
Max K. Agoston

Computer Graphics and
Geometric Modeling
Implementation and Algorithms

Max K. Agoston, MA, MS, PhD
Cupertino, CA 95014, USA

British Library Cataloguing in Publication Data
Agoston, Max K.

Computer graphics and geometric modeling:implementation & algorithms
1. Computer graphics 2. Geometry—Data processing 3. Computer-aided design
4. Computer graphics—Mathematics I. Title
006.6

ISBN 1852338180

Library of Congress Cataloging-in-Publication Data

Agoston, Max K.
Computer graphics & geometric modeling/Max K. Agoston.

p. cm.
Includes bibliographical references and index.
Contents: Implementation & algorithms
ISBN 1-85233-818-0 (v. 1 : alk. paper)
1. Computer graphics. 2. Geometry—Data processing. 3. Mathematical models. 4. CAD/CAM

systems. I. Title.

T385.A395 2004
006.6—dc22 2004049155

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

ISBN 1-85233-818-0
Springer is part of Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005
Printed in the United States of America

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: SNP Best-set Typesetter Ltd., Hong Kong
34/3830-543210 Printed on acid-free paper SPIN 10971451

geometry of two- and three-dimensional manifolds. Both programs were written using
the Microsoft Visual C++ compiler (and OpenGL) and run under Microsoft Windows
98 or later. Their source code and documentation are included on the CD. The ReadMe
file on the CD lists what all is on the CD and also contains instructions for how to use
what is there.

As I began to develop this book on geometric modeling, one concern obviously
was to do a good job in presenting a thorough overview of the practical side of the
subject, that is, the algorithms and their implementation details. However, there were
two other goals that were important from the very beginning. One was to thoroughly
explain the mathematics and the other, to make the material as self-contained as pos-
sible. In other words, pretty much every technical term or concept that is used should
be defined and explained. The reason for putting all the computer graphics–related
material into one book and all the mathematics into the other rather than inter-
weaving the material was to keep the structure of the implementation of a modeling
program as clear as possible. Furthermore, by separating out the mathematics it is
easier for readers to skip those mathematical topics that they are already familiar with
and concentrate on those with which they are not. In general, though, and in partic-
ular as far as instructors using this book are concerned, the intent is that the mate-
rial in the two books be covered in parallel. This is certainly how I always taught my
courses. An added motivation for the given division was that the applied part of geo-
metric modeling was often a moving target because, largely due to improvements in
hardware (faster CPUs, more memory, more hard disk space, better display devices),
the way that one deals with it is changing and will continue to change in the future.
This is in contrast to the supporting mathematics. There may be new mathematics
relevant to computer graphics in the future but it will be a long time before the math-
ematics I do discuss will lose its relevance. A lot of it, in fact, is only now starting
to be used as hardware becomes capable of dealing with computationally expensive
algorithms.

One property that sets this book apart from others on geometric modeling is
its breadth of coverage, but there is another. The combined books, this one and
[AgoM05], differ from other books on computer graphics or geometric modeling in
an important way. Some books concentrate on implementation and basically add the
relevant mathematics by tossing in appropriate formulas or mathematical algorithms.
Others concentrate on some of the mathematical aspects. I attempt to be as compre-
hensive on both the implementation and theory side. In [AgoM05] I provide a com-
plete reference for all the relevant mathematics, but not in a cookbook fashion. A
fundamental guiding principle was to present the mathematics in such a way that the
reader will see the motivation for it and understand it. I was aiming at those indi-
viduals who will want to take the subject further in the future and this is not possi-
ble without such understanding. Just learning a few formulas is not good enough. I
have always been frustrated by books that throw the reader some formulas without
explaining them. Furthermore, the more mathematics that one knows, the less likely
it is that one will end up reinventing something. There are instances (such as in the
case of the term “geometric continuity”) where unfamiliarity with what was known
caused the introduction of confusing or redundant terminology. The success or failure
of the two books should be judged on how much understanding of the mathematics
and algorithms the reader gets. In the case of this book by itself, it is a question of
whether or not the major topics were covered adequately. In any case, because I

vi Preface

emphasize understanding what is going on, there is a natural emphasis on theory and
not on tricks of the trade. The reader will also not find any beautiful glossy pictures.

Clearly, no one book can cover all that falls under the general heading of geo-
metric modeling. As usual, the topics that are in fact covered and the degree to which
they are covered reflect my own bias. In a large field, there are many special topics
and it should not be surprising that some are not discussed at all and others only
briefly in an overview. On the other hand, one would expect to see a discussion of
principles and issues that are basic to the field as a whole. In that regard, I would like
to alert the reader to one topic, namely, the issue of robustness of algorithms and com-
putations, that really is a central issue in geometric modeling, but is not dealt with
as thoroughly as it should be, given its importance. The only excuse for this is that to
do this topic justice would have entailed a much larger book. It is important that
readers who want to do serious work in geometric modeling realize that they will have
to get more information elsewhere on this. The discussion in Section 5.10 is inade-
quate (although I do devote the brief Chapter 18 to interval analysis). When it comes
to the bibliography, as large as it is, it is also a victim of space constraints. In some
cases I have tried to compensate for the lack of completeness by giving references to
books or papers where additional references could be found.

Most of this book covers material that is not new, but a few algorithms have not
appeared in print before. One is the approach to trimmed surfaces based on the Vatti
clipping algorithm described in Section 14.4. Another is the result in Section 17.5
about convex set intersections, which motivated the algorithm described in Section
13.2. Another aspect of the book that should be noted is Chapter 16 and the SPACE
program. Although the material on intrinsic geometry in Sections 16.3 and 16.4 did
not get developed as much as I would have liked, it is a start. The extensive material
on topology in [AgoM05], in particular algebraic and differential topology, has hereto-
fore not been found in books on geometric modeling. Although this subject is slowly
entering the field, its coming has been slow. Probably the two main reasons for this
are that computers are only now getting to be powerful enough to be able to handle
the complicated computations and the material involves exceptionally advanced
mathematics that even mathematics majors would normally not see until graduate
school.

Here is how the material in this book has been used successfully in teaching three
different types of semester courses on computer graphics in the Department of Math-
ematics and Computer Science at San Jose State University. The courses were

(1) Introduction to Computer Graphics,
(2) Computer Graphics Algorithms, and
(3) Geometric Modeling.

The first two were upper-division undergraduate courses and the third was a gradu-
ate course. The prerequisites for the introductory course were three semesters of
calculus, linear algebra, and an upper division course in data structures. The only
prerequisite to both the algorithm and geometric modeling course was the introduc-
tory computer graphics course. Some of the material in the introductory course was
briefly reviewed in the other two courses. The courses used material from the fol-
lowing parts of this book and [AgoM05] (but the material was not necessarily dis-

Preface vii

cussed in the order listed, and listing a chapter or section in no way means that all
of it was covered):

Introduction to Computer Graphics: Chapters 1–4, a quick overview of Chapters
5, 6, 11, 12, and a brief discussion of
visible surface algorithms and shading
from Chapters 7 and 10.

From [AgoM05]: Chapters 1–3.
Computer Graphics Algorithms: Chapters 2–10, just enough of Chapter 12 to

have surfaces to render, Sections 21.6–
21.8, and Chapter 22.

From [AgoM05]: Chapter 1 and Sections 4.5,
4.7, 8.1–8.5.

Geometric Modeling: Chapters 3–6, 11, 12, a sampling of topics
from Chapters 13–15, and Sections 17.4–
17.5.

From [AgoM05]: Review of parts of
Chapters 1 and 2, Sections 4.2, 4.5, 4.7,
Chapter 6, and Sections 8.1–8.5, 9.2–9.4,
9.9.

The numbering of items in this book uses the following format: x.y.z refers to item
number z in section y of chapter x. For example, Theorem 12.7.1 refers to the first
item of type theorem, proposition, lemma, or example in Section 7 of Chapter 12.
Algorithm 14.3.1 refers to the first algorithm in Section 3 of Chapter 14. Tables are
numbered like algorithms. Figures are numbered by chapter, so that Figure 14.7 refers
to the seventh figure in Chapter 14. Exercises and programming projects at the end
of chapters are numbered by section.

Finally, some comments on the language used in this book to describe algorithms.
Even though the C/C++ language is the language of choice for most people writing
computer graphics programs, with the exception of some initialization code found in
Section 1.6, we have opted to use “the” more universal “standard” algorithmic lan-
guage. The reason is that this book is mostly about concepts that are independent of
any particular programming language and low-level optimization issues that hinge on
the language being used do not play any role. Every reader with some general com-
puter experience will understand the language used here (a detailed description of its
syntax can be found in Appendix B) and so there seemed to be little point to restrict
the audience to those familiar with C. Consider the following points:

(1) There is little difference between the code that is presented and what the
corresponding C code would look like, so that any translation would be
straightforward.

(2) The emphasis in the code and algorithms in this book is on clarity and the
fact is that even in simple constructs like a for-loop or a case statement, C has more
complicated syntax and uses more obscure terminology which would make it harder
for the non-C reader to understand. A certain universality would be lost with no real
corresponding gain. The efficiency advantage of C that is usually cited is only really

viii Preface

significant in a relatively small number of places. It would be relevant, for example,
if one wanted to implement low level drawing primitives, but that is not what this
book is about.

(3) C programmers who want to see C code can look at the GM and SPACE pro-
grams, which are written in C++.

Cupertino, California Max K. Agoston

Preface ix

2.12 Exercises . 66
2.13 Programming Projects . 67

3 Clipping . 69
3.1 Introduction . 69
3.2 Line Clipping Algorithms . 71

3.2.1 Cohen-Sutherland Line Clipping . 71
3.2.2 Cyrus-Beck Line Clipping . 73
3.2.3 Liang-Barsky Line Clipping . 77
3.2.4 Nicholl-Lee-Nicholl Line Clipping . 81

3.3 Polygon Clipping Algorithms . 84
3.3.1 Sutherland-Hodgman Polygon Clipping 84
3.3.2 Weiler Polygon Clipping . 85
3.3.3 Liang-Barsky Polygon Clipping . 86
3.3.4 Maillot Polygon Clipping . 89
3.3.5 Vatti Polygon Clipping . 98
3.3.6 Greiner-Hormann Polygon Clipping 106

3.4 Text Clipping . 109
3.5 Exercises . 110
3.6 Programming Projects . 110

4 Transformations and the Graphics Pipeline . 111
4.1 Introduction . 111
4.2 From Shape to Camera Coordinates . 112
4.3 Vanishing Points . 117
4.4 Windows and Viewports Revisited . 119
4.5 The Clip Coordinate System . 122
4.6 Clipping . 125
4.7 Putting It All Together . 130
4.8 Stereo Views . 131
4.9 Parallel Projections . 132
4.10 Homogeneous Coordinates: Pro and Con . 134
4.11 The Projections in OpenGL . 138
4.12 Reconstruction . 139
4.13 Robotics and Animation . 141
4.14 Quaternions and In-betweening . 146
4.15 Conclusions . 149
4.16 Exercises . 151
4.17 Programming Projects . 152

5 Approaches to Geometric Modeling . 156
5.1 Introduction . 156
5.2 R-sets and Regularized Set Operators . 158
5.3 Representation Schemes . 160

5.3.1 Early Representation Schemes . 164

xii Contents

Contents xiii

5.3.2 Boundary Representations . 166
5.3.3 The CSG Representation . 167
5.3.4 Euler Operations . 171
5.3.5 Sweep Representations and Generative Modeling 174
5.3.6 Parametric Representations . 178
5.3.7 Decomposition Schemes . 178
5.3.8 Volume Modeling . 180
5.3.9 The Medial Axis Representation . 182

5.4 Modeling Natural Phenomena . 188
5.5 Physically Based Modeling . 190
5.6 Parametric and Feature Based Modeling . 192
5.7 Functions and Algorithms . 198
5.8 Data Structures . 199

5.8.1 Data Structures for Boundary Representations 199
5.8.2 Data Structures for Volume Modeling 203

5.9 Converting Between Representations . 205
5.10 Round-off Error and Robustness Issues . 211
5.11 Algorithmic Modeling . 215
5.12 Conclusions . 220
5.13 Exercises . 225

6 Basic Geometric Modeling Tools . 227
6.1 Introduction . 227
6.2 Bounding Objects and Minimax Tests . 227
6.3 Surrounding Tests . 232
6.4 Orientation Related Facts . 238
6.5 Simple Intersection Algorithms . 240
6.6 Distance Formulas . 245
6.7 Area and Volume Formulas . 249
6.8 Circle Formulas . 252
6.9 Parametric or Implicit: Which Is Better? . 258
6.10 Transforming Entities . 259
6.11 Exercises . 261
6.12 Programming Projects . 262

7 Visible Surface Algorithms . 264
7.1 Introduction . 264
7.2 Back Face Elimination . 267
7.3 The Schumacker List Priority Algorithm . 268
7.4 Newell-Newell-Sancha Depth Sorting . 269
7.5 The BSP Algorithm . 270
7.6 Warnock and Weiler-Atherton Area Subdivision 273
7.7 Z-buffer Algorithms . 275
7.8 The Watkins Scan Line Algorithm . 278
7.9 Octree Algorithms . 283

xiv Contents

7.10 Curved Surface Algorithms . 284
7.11 Adding Antialiasing . 290
7.12 Conclusions . 291
7.13 Programming Projects . 293

8 Color . 294
8.1 Introduction . 294
8.2 What Is Color? . 294
8.3 Perceived Color . 295
8.4 Colorimetry . 297
8.5 Color Models . 299
8.6 Transforming Between Color Models . 303
8.7 Programming Projects . 307

9 Illumination and Shading . 308
9.1 Introduction . 308
9.2 Local Reflectance Models . 310
9.3 Simple Approaches to Shading . 316
9.4 Global Illumination Models . 318

9.4.1 Shadows . 318
9.4.2 Transparency . 320
9.4.3 Ray Tracing . 322
9.4.4 Radiosity Methods . 323

9.5 The Rendering Equation . 323
9.6 Texture and Texture Mappings . 324
9.7 Environment Mappings . 327
9.8 Bump Mappings . 328
9.9 The Rendering Pipeline . 330
9.10 Selecting a Color Palette . 332
9.11 Programming Notes . 333
9.12 Programming Projects . 335

10 Rendering Techniques . 337
10.1 Introduction . 337
10.2 Ray Tracing . 338

10.2.1 A Ray-Tracing Program . 338
10.2.2 Ray Intersection Formulas . 344
10.2.3 Ray Tracing CSG objects . 348

10.3 The Radiosity Method . 350
10.3.1 Form Factors: The Hemicube Method 355

10.4 Volume Rendering . 358
10.4.1 Discrete Three-Dimensional Lines 362
10.4.2 The Marching Cubes Algorithm . 365

10.5 Exercises . 369
10.6 Programming Projects . 369

II Geometric Modeling Topics . 371

11 Curves in Computer Graphics . 373
11.1 Introduction to Curves and Surfaces . 374
11.2 Early Historical Developments . 378

11.2.1 Lagrange Interpolation . 378
11.2.2 Hermite Interpolation . 381
11.2.3 Spline Interpolation . 387

11.3 Cubic Curves . 390
11.4 Bézier Curves . 396
11.5 B-Spline Curves . 404

11.5.1 The Standard B-Spline Curve Formulas 404
11.5.2 The Multiaffine Approach to B-Splines 418
11.5.3 Rational B-spline Curves . 430
11.5.4 Efficient B-spline and NURBS Curve Algorithms 436
11.5.5 B-Spline Interpolation . 441

11.6 Nonlinear Splines . 445
11.7 Superellipses . 448
11.8 Subdivision of Curves . 449
11.9 Composition of Curves and Geometric Continuity 452
11.10 The Shape of a Curve . 456
11.11 Hodographs . 459
11.12 Fairing Curves . 460
11.13 Parallel Transport Frames . 461
11.14 Recursive Subdivision Curves . 465
11.15 Summary . 466
11.16 Exercises . 468
11.17 Programming Projects . 470

12 Surfaces in Computer Graphics . 472
12.1 Introduction . 472
12.2 Surfaces of Revolution . 474
12.3 Quadric Surfaces and Other Implicit Surfaces 480
12.4 Ruled Surfaces . 482
12.5 Sweep Surfaces . 484
12.6 Bilinear Surfaces . 486
12.7 Coons Surfaces . 487
12.8 Tensor Product Surfaces . 495
12.9 The Bicubic Patch . 496
12.10 Bézier Surfaces . 500
12.11 Gregory Patches . 502
12.12 B-spline Surfaces . 504

12.12.1 The Basic B-spline Surface . 504
12.12.2 Polynomial Surfaces and Multiaffine Maps 505
12.12.3 Triangular Bézier Surfaces . 509
12.12.4 Rational B-spline Surfaces . 512

Contents xv

12.12.5 Efficient B-spline and NURBS Surface Algorithms 514
12.12.6 B-spline Interpolation . 516

12.13 Cyclide Surfaces . 517
12.14 Subdivision of Surfaces . 521
12.15 Composite Surfaces and Geometric Continuity 522
12.16 Fairing Surfaces . 525
12.17 Recursive Subdivision Surfaces . 526
12.18 Summary for Curves and Surfaces . 530
12.19 A Little Bit of History . 532
12.20 Exercises . 534
12.21 Programming Projects . 536

13 Intersection Algorithms . 537
13.1 Overview . 537
13.2 Convex Set Intersections . 540
13.3 Curve Intersections . 543

13.3.1 Ray-Curve Intersection . 543
13.3.2 Curve-Curve Intersections . 545
13.3.3 A Curve Newton-Raphson Method 546
13.3.4 Curve Recursive Subdivision Methods 547
13.3.5 Curve Algebraic Methods . 551

13.4 Special Surface Intersections . 552
13.4.1 Ray-Surface Intersections . 552
13.4.2 Curve-Surface Intersections . 552
13.4.3 Surface Sections . 553

13.5 Surface-Surface Intersections . 557
13.5.1 Surface Lattice Evaluation Methods 558
13.5.2 Surface Marching Methods . 558
13.5.3 Surface Homotopy Method . 570
13.5.4 Surface Recursive Subdivision Methods 572
13.5.5 Surface Algebraic Methods . 574

13.6 Summary . 578
13.7 Programming Projects . 580

14 Global Geometric Modeling Topics . 582
14.1 Overview . 582
14.2 Distance Algorithms . 582
14.3 Polygonizing Curves and Surfaces . 587
14.4 Trimmed Surfaces . 598
14.5 Implicit Shapes . 614

14.5.1 Implicit Curves . 614
14.5.2 Implicit Surfaces and Quadrics . 622

14.6 Finding Contours . 624
14.7 Skinning . 630
14.8 Computing Arc Length . 633
14.9 Offset Shapes . 638

14.9.1 Offset Curves . 638
14.9.2 Offset Surfaces . 644

xvi Contents

14.10 Envelopes . 646
14.11 Exercises . 647
14.12 Programming Projects . 647

15 Local Geometric Modeling Topics . 649
15.1 Overview . 649
15.2 Curvature . 649
15.3 Geodesics . 652

15.3.1 Generating Smooth Geodesics . 652
15.3.2 Generating Discrete Geodesics . 657

15.4 Filament Winding and Tape Laying . 667
15.5 Dropping Curves on Surfaces . 670
15.6 Blending . 672
15.7 Programming Projects . 683

16 Intrinsic Geometric Modeling . 684
16.1 Introduction . 684
16.2 Virtual Reality . 685
16.3 Geometrically Intelligent Modeling Systems 687
16.4 Exploring Manifolds . 689
16.5 Where To From Here? . 693

III More on Special Computer Graphics Topics 695

17 Computational Geometry Topics . 697
17.1 Introduction . 697
17.2 Range Queries . 697
17.3 Interval and Segment Trees . 703
17.4 Box Intersections . 709
17.5 Convex Set Problems . 711
17.6 Triangulating Polygons . 714
17.7 Voronoi Diagrams . 720
17.8 Delaunay Triangulations . 722

18 Interval Analysis . 726
18.1 Introduction . 726
18.2 Basic Definitions . 727
18.3 Inclusion Functions . 731
18.4 Constraint Solutions . 735
18.5 An Application: Implicit Curve Approximations 738
18.6 Constrained Minimizations . 742
18.7 Conclusions . 744
18.8 Exercises . 744

19 The Finite Element Method . 745
19.1 Introduction . 745
19.2 What Is It All About? . 745

Contents xvii

19.3 The Mathematics Behind FEM . 747
19.4 An Example . 749
19.5 Summary . 753

20 Quaternions . 755
20.1 Introduction . 755
20.2 Basic Facts . 755
20.3 Quaternions as Transformations . 760
20.4 Exercises . 766

21 Digital Image Processing Topics . 767
21.1 Introduction . 767
21.2 The Ubiquitous Laplace Equation . 768
21.3 From Laplace to Fourier . 772
21.4 The Lp Function Spaces . 773
21.5 Fourier Series . 775
21.6 The Fourier Transform . 781
21.7 Convolution . 786
21.8 Signal Processing Topics . 788
21.9 Wavelets . 792
21.10 Exercises . 796

22 Chaos and Fractals . 797
22.1 Introduction . 797
22.2 Dynamical Systems and Chaos . 797
22.3 Dimension Theory and Fractals . 802
22.4 Iterated Function Systems . 806

Appendix A: Notation . 815

Appendix B: Abstract Program Syntax . 819

Appendix C: IGES . 822
C.1 What Is IGES? . 822
C.2 A Sample IGES File . 822
C.3 The IGES Geometric Types . 827
C.4 The IGES Nongeometric Types . 832

Bibliography . 835
Abbreviations . 835
Advanced Calculus . 835
Algebraic Curves and Surfaces . 835
Algebraic Geometry . 836
Algebraic Topology . 836
Analytic Geometry . 836
Antialiasing . 836
Blending . 836
Clipping . 837

xviii Contents

Color . 837
Computational Geometry . 838
Conics . 839
Constructive Solid Geometry . 839
Contours . 839
Convex Sets . 840
Curvature . 840
Curve Algorithms . 840
Cyclides . 841
Differential Geometry . 841
Digital Image Processing . 841
Engineering Applications . 841
Finite Element Method . 842
Fourier Series and Transforms . 842
Fractals . 842
General Computer Graphics . 843
Geodesics . 843
Geometric Modeling Books . 843
Geometric Modeling Papers . 845
Graphical User Interfaces . 848
Graphics Pipeline . 848
Graphics Standards . 848
Hodographs . 849
Implicit Curves and Surfaces . 849
Intersection Algorithms . 850
Interval Analysis . 852
Mathematics for Geometric Modeling . 852
Medial Axes . 852
Miscellaneous . 854
Numerical Methods . 854
Offset Curves and Surfaces . 855
PC Oriented Computer Graphics . 855
Physically Based Modeling . 855
Polygonization Algorithms . 856
Projective Geometry and Transformations . 856
Quadrics . 856
Quaternions . 856
Radiosity . 857
Raster Algorithms . 857
Ray Tracing . 858
Real Analysis . 859
Rendering . 859
Robotics . 859
Shading and Illumination (Early Work) . 859
Spatial Data Structures . 860
Splines . 860
Subdivision Curves and Surfaces . 862
Surfaces and Manifolds . 862

Contents xix

Texture . 863
Topology . 863
Trimmed Surfaces . 863
Virtual Reality . 864
Visible Surface Detection . 864
Visualization . 865
Volume Rendering . 865

Index . 867

Bibliographic Index . 896

Index of Algorithms . 906

xx Contents

As we look at the various representation problems shown in Figure 1.1, note that,
although we have only mentioned objects so far, representations also need to repre-
sent the maps (operations, etc.) between them because a good and complete model
of something needs to mimic everything in the original. In any case, objects and maps
go hand in hand in mathematics. With every new class of objects it is fruitful to define
the naturally associated maps (take vector spaces and linear transformations, for
example).

To summarize, the emphasis of this book is on showing how to model finite poly-
hedra and the invariants associated to them on a computer and we shall show how
to set up a programming environment to facilitate this investigation. One has a fairly
good grip on the mathematics part of the representation pipeline, but less so on the
rest, at least in terms of having a well-defined theoretical approach. The fact is that,
although computer graphics is an exciting, rapidly developing field that has come a
long way from the early days when people first tried to use computers for this, things
are still being done in rather ad hoc ways. There is really no overall systematic
approach, only a lot of isolated, special results that, neat as some of the ideas and
algorithms may be, do not fit into any unifying picture. To put it another way, com-
puter graphics today is an “art” and not a “science.” There have been a few attempts
to formalize the digital geometry aspect. See [Fium89] or [Herm98], for example. On
the other hand, since the nonmathematical part of computer graphics depends on the
current technology used for the display medium (raster devices at present) and, of
course, the computer, and since this will continually evolve (with holographic displays
the next dominant medium perhaps), the hardcore part of “computer” graphics may
stay an art and never become a science.

All that we shall do in this chapter is get a few preliminaries out of the way. We
shall introduce some basic terminology and indicate some of the mathematics we shall
need. What little we have to say about hardware topics will be found in this chapter.
The chapter ends with a bit of mathematics so that we can get started with some
simple two-dimensional (2d) graphics.

1.2 The Basic Graphics Pipeline

Any meaningful use of a computer to study geometry implies that we ultimately want
to display objects on a graphics device. Figure 1.2 shows some standard terminology
for the first step of the three-dimensional (3d) graphics pipeline that takes us from
the mathematical representation of an object in R3 to its image on the device. Objects
in the world are described by the user with respect to a world coordinate system. The
world is then projected onto a view plane from some viewpoint that we shall think of
as the location of a camera or the eye. We have an associated view plane and camera

4 1 Introduction

 real world
 objects
and queries

Æ
mathematical
 objects
 and maps

Æ
 abstract

finite
representations

Æ
 actual
implementations

Figure 1.1. The geometric modeling representation pipeline.

coordinate system. Looking from the viewpoint along the positive z-axis of the camera
coordinate system specifies the view direction. A window in the view plane specifies
the area of interest. The view volume or view pyramid is the infinite volume swept out
by the rays starting at the viewpoint and passing through points of the window. To
limit the output of objects one often uses a near (or front or hither) and far (or back
or yon) clipping plane. The volume inside the view volume between these two planes
is called the truncated view volume or truncated view pyramid. Only those parts of
objects that lie in this volume and project into the window will be displayed. Finding
those parts of an object is referred to as clipping. In principle, the three coordinate
systems – the world, the camera, and the view plane coordinate system – could be dis-
tinct. In practice, however, one assumes that the coordinate axes of the camera and
view plane coordinate system are parallel and the z-axes are perpendicular to the view
plane. One also assumes that their x- and y-axes are parallel to the sides of the window.

The final step in mapping an object to a graphics device involves a map that trans-
forms view plane coordinates to physical device coordinates. This is usually thought
of as a two-stage process. First, an initial map transforms the window to a viewport
that is a subrectangle of a fixed rectangle called the logical screen, and a second map
then transforms logical screen coordinates to physical device coordinates. See Figure
1.3. Sometimes the logical screen is already defined in terms of these coordinates, so
that the second map is not needed. Other times, it is set equal to a standard fixed rec-
tangle such as the unit square [0,1] ¥ [0,1], in which case we say that the viewport is
specified in normalized device coordinates (NDC). The basic 3d graphics pipeline can
now be summarized as shown in Figure 1.4. Chapter 4 will discuss it in great length
and also fill in some missing details.

1.2 The Basic Graphics Pipeline 5

Figure 1.2. 3d graphics coordinate systems and terminology.

The two-dimensional graphics pipeline is similar but much simpler. The window-
to-device pipeline shown in Figure 1.3 stays the same, but Figures 1.2 and 1.4 get
replaced by Figures 1.5 and 1.6, respectively. We have a two-dimensional world coor-
dinate system and a window whose edges are parallel to the coordinate axes. In the
case of the three-dimensional graphics pipeline, one usually assumes that the window
is of a fixed size centered on the z-axis of the camera coordinate system. This is ade-
quate to achieve most views of the world. To move the viewpoint and change the view
direction we simply change the camera coordinate system. Zooming in and out is
accomplished by moving the view plane further from or closer to the viewpoint. In
the two-dimensional graphics case, on the other hand, one must allow the window to
move and change in size. We have to be able to move the window to see different parts
of the two-dimensional world and we must be able to shrink or expand the size of the
window to zoom.

One word of caution is in order. The distinction between “window” and “view-
port” is often blurred and, sometimes, what should be called a viewport is called a
window. The terms used are not as important as the conceptual difference. One spec-
ifies what one sees in user coordinates and the other specifies where one sees it. The
window, as defined above, refers to the former and the viewport, to the latter.

6 1 Introduction

Figure 1.3. The window-to-device
pipeline.

ÆÆ Æ Æ

Æ Æ Æ

 transform
 into camera
 coordinates

 clip
 against
view volume

 project
 to
view plane

 transform
 to
 viewport

Transform to
physical device
 coordinates

representation
 of 3d world
 objects

Figure 1.4. The basic 3d graphics pipeline.

1.3 Hardware Basics

Although the goal of this book is to emphasize the abstract ideas in graphics, one does
need to understand a few hardware basics because that is what drives the search for
efficient algorithms for the implementation of low-level graphics primitives. The most
common display devices have been cathode ray tube (CRT) devices. Here an electron
beam traces out an image on a phosphor-coated screen. There have been different
types of CRTs, but since the early 1970s raster scan CRTs have been the most preva-
lent graphics display devices. They are refresh CRTs because the electron beam is con-
tinually rescanning the entire screen. The screen itself should be thought of as a
rectangular array of dots. The image that one sees depends on how those dots are lit.
The beam starts at the top of the screen and proceeds down the screen from one scan
line to the next until it gets to the bottom. It then jumps back to the top. See Figure
1.7. The term “horizontal retrace” refers to the time the beam jumps from the end of
a line to the beginning of the next line and “vertical retrace” refers to the time it jumps
from the right bottom corner of the screen to the top left corner. These times, espe-
cially the latter, were often used to write to the screen to avoid flicker and knowing
them was important to game developers who wanted to produce smooth animation
effects.

Another display technology that has been becoming more and more popular in
recent years is the liquid crystal display (LCD). Although there are different variants,
LCDs are also raster scan devices because, for all practical purposes, they consist of
a rectangular array of dots that is refreshed one row at a time. The dots themselves
are the “liquid crystals,” which are usually organic compounds that consist of mole-
cules that allow light to pass through them if they are aligned properly by means of
an applied voltage. The bottom line is that the liquid crystals can be individually
switched on or off. LCDs have a number of advantages over the raster scan CRTs. In

1.3 Hardware Basics 7

Figure 1.5. 2d graphics coordinate system and
window.

ÆÆ Æ Æ
 clip against

window
transform
 to
 viewport

 transform to
physical device
 coordinates

representation
 of 2d world
 objects

Figure 1.6. The basic 2d graphics pipeline.

particular, one does not have to worry about refresh rates or flicker and they are not
as bulky.

The hardware assumption made in this book, one that should apply to two-dimen-
sional displays in the foreseeable future, is that the reader is working on a raster scan
device. This assumption has an important consequence. Raster scan devices use a
refresh buffer to specify which dots on the screen are to be lit and how. To get the
picture we want, we only have to set the values in that buffer correctly. Therefore, our
abstract representation problem specializes to representing subsets of Euclidean
space as (discrete) subsets of a rectangle in Z2. Less formally, we shall talk about rep-
resenting objects in a “raster.” A raster refers to a two-dimensional rectangular array
of pixels, where a pixel is an abbreviation for “picture element,” which could, in theory,
be any value. In practice, a pixel is represented in computer memory by one or more
bits that specify a color. A monochrome picture is where each pixel is represented by
only one bit. A row in a raster is called a scan line. If the raster has m columns and
n rows, then we say that the resolution of the picture is m ¥ n.

The hardware graphics standards for computers have evolved over time. The stan-
dards for the IBM personal computer (PC) are listed in chronological order below:

8 1 Introduction

Figure 1.7. The raster scan CRT.

Type Resolution Number of colors

CGA 640 ¥ 200 2 (black plus one other)
Hercules 720 ¥ 348 2 (black and white)
EGA 640 ¥ 350 16
VGA 640 ¥ 480 16
super VGA ≥800 ¥ 600 ≥256

For more details about these standards see [Wilt87] or [Ferr94].
The refresh buffer of a raster scan device is usually called a frame buffer. In

general, the term “frame buffer” refers to an array of memory (separate from main
memory) thought of as a two-dimensional array of pixels (a raster). Frame buffers
serve two functions:

(1) as a place where the image is stored as it is computed
(2) as a refresh buffer from which the image is displayed on a raster device

A frame buffer is an interface between what are usually relatively slow graphics compu-
tations and the high data rate video image display. In the typical personal computer the
frame buffer is located on the graphics card that manages the video subsystem of the
computer. It basically used to be not much more than some extra memory. For example,
the table below describes the frame buffers used by the IBM PC family of computers:

1.3 Hardware Basics 9

Type Size of frame buffer Starting memory address (in hexadecimal)

CGA 16 K B800:0000
Hercules 64 K B000:0000
EGA,VGA 256 K for 16 colors accessed via a 64 K window starting at A000:0000
super VGA 1 M or more accessed via a 64 K window starting at A000:0000

Over time the graphics subsystems of personal computers have become more power-
ful, and the hardware is supporting more and more of the operations that one needs
to perform in graphics, such as antialiasing (Section 2.6) and the bit map operations
discussed below and in Section 2.10. They also have additional buffers, such as a z-
buffer (Chapter 7), texture buffers (Chapter 9), or stencil buffers (for masking opera-
tions). This support only used to be found on high-end graphics workstations.

As indicated above, displaying objects on the computer screen involves writing to
the frame buffer. This amounts to storing values in memory. Ordinarily, a store opera-
tion replaces the value that was there. In the case of frame buffers one has more
options. If A is a location in memory, then let [A] denote the content of A. Frame buffers
typically support store operations of the form (V op [A]) Æ [A], where V is a new value
and op is a binary logical operator that operates on a bit-by-bit basis. Typical binary
logical operations on bits are or, and, xor, and replace. The statement (V replace [A])
Æ [A] corresponds to the standard store operation where the new value replaces the
old one. When a frame buffer uses a store operation corresponding to an operator op,
we shall say that it is in op mode. For example, we may talk about being in xor mode.

As a simple example of how having various modes for a frame buffer can be useful,
consider how the standard quick and dirty method used to move a cursor around on
the screen without destroying the background uses the xor mode. The method relies
on xor’s well-known property that

What this means is that if one xor’s the same value to a memory location twice in a
row, then that memory location will hold its original value at the end. Now, a straight-
forward way to move a cursor on the screen without erasing what is there would be
to save the area first before writing the cursor to it and then restoring the old value
after the cursor has moved. This would be very time consuming. There is a much
better way of using the xor mode. Assume that the cursor starts out at some initial
position defined by a variable oldA. Now switch into xor mode and repeat the fol-
lowing three steps as often as desired:

Draw cursor at oldA (this will erase the cursor)
Draw cursor at new position newA
Replace the value in oldA with that in newA

b b a axor xor() = .

Note that replace mode would cause this loop to erase everything in the cursor’s
path and leave behind a trail of the cursor. There is one disadvantage with
the xor operation, however, which may not make it a viable option in certain situa-
tions. Although one can use it to move objects around on the screen without destroy-
ing the background, the objects may change color. If, for example, one wants to move
a red cursor and have it stay red, then this is not possible with xor mode because
the cursor will assume different colors as it moves over differently colored areas
of the screen. Therefore, if it is important that the cursor stay red, then there is
no simple alternative to first saving the area to which one is writing and restoring it
afterwards.

Because the availability of logical operators in store operations simplifies
and speeds up many useful graphics operations, current graphics systems have
built-in hardware support for them. We will have more to say about this in Section
2.10.

We finish this section with two more terms one sees frequently in graphics. Scan
conversion is the act of converting points, lines, other geometric figures, functions,
etc., into the raster data structure used in frame buffers one scan line at a time. After
a scene is modeled, it needs to be “rendered.” To render a scene means to construct
an image on a display device that is visually satisfactory. What is “satisfactory”
depends firstly on the device and its constraints and secondly on what one is trying
to do. To emphasize the position that rendering occupies in graphics, keep in mind
that the modeling or mathematical representation comes first and then the rendering.
Any given model can have many different renderings. For example, a sphere can be
rendered in different colors. In trying to render scenes one runs into a number of
important problems: visible line or surface determination, illumination, texturing,
transparency, etc. These will all be addressed in coming chapters.

1.4 Graphics Standards and Primitives

A person who wants to develop a graphics program has to learn how to access the
graphics capabilities of the system that he/she is working on. Unfortunately, there are
many graphics devices out there in the world. If one wanted a program to work with
all those devices and if one had to program the hardware directly, then one could
easily spend all of one’s time on very low-level code and never get to that in which
one is really interested. Therefore, let somebody else, say the manufacturer of the
system or the compiler vendor, worry about the low-level stuff so that one can con-
centrate on higher-level ideas. This is where software graphics standards come in.
They are the interface between a high-level language and the low-level code that talks
to the actual hardware. The interface is basically a specification of high-level graph-
ics primitives. As long as one’s code calls only these primitives, a program will run on
any system that is supported by that particular interface. In other words, standards
make code portable by making it device independent.

Lots of different standards exist with some more sophisticated than others. The
early DOS operating system standards, such as the Borland Graphics Interface (BGI),
were fairly primitive. Any program in Borland PASCAL or C/C++ that used the Borland
PASCAL or C/C++ graphics primitives was guaranteed to run under DOS on most of

10 1 Introduction

the IBM PC–compatible computers. The same was true of the corresponding inter-
face found in the Microsoft compilers. A number of much more sophisticated stan-
dards were developed over the years such as

Core (The 3d Core Graphics System): specified by ACM SIGGRAPH committees
in 1977 and 1979 ([GSPC77] and [GSPC79])

GKS (Graphics Kernel System): specified by various national and international
committees in the 1980’s with a 3d version becoming a standard in 1988
([ANSI85], [ISO 88], [EnKP84], [BDDH95])

PHIGS (Programmer’s Hierarchical Interactive Graphics System): a more complex
standard than GKS, which was specified by ANSI (the American National
Standards Institute) in 1988 ([ANSI88] and [VanD88])

See [Cars98] for a brief history. Two more recent standards are

OpenGL: see [WNDS99], [KemF97], [WriS00]
DirectX: see [Glid97], [BarD98], [Timm96]

The rise in the popularity of the Microsoft Windows operating system meant that
its application programming interface (API) became a driving force for standards for
that system. At first there was only the basic Windows graphics device interface (GDI).
This made writing graphics programs hardware independent, but at the expense of
speed. The result was that developers, especially those involved in writing games,
stayed with DOS, which allowed programmer to go directly to the hardware and
squeeze out the last ounce of speed essential for games. To attract developers to
Windows, Microsoft next came out with WinG, which provided a few low-level bitmap
functions that did speed up basic graphics operations substantially, but it was not
enough. Microsoft’s graphics standard successors to WinG were DirectDraw and
Direct3D, which were part of the DirectX API that was intended for multimedia appli-
cations. DirectDraw provided two-dimensional graphics primitives. Direct3D was
the three-dimensional counterpart. Although these allowed for high-performance
graphics under Windows, DirectDraw and Direct3D were low level. A competing
and higher-level graphics API is OpenGL, a graphics standard originally developed
by Silicon Graphics, Inc., for its graphics workstations. Good implementations of
OpenGL for Windows are built on DirectX drivers. Although native DirectX code is
currently faster, the advantage of OpenGL is that it is available on many other com-
puter and operating system platforms, a plus for Internet applications. The companion
programs for this book, GM and SPACE, use OpenGL.

Having just praised standards, we also need to point out what has traditionally
been their downside. If one uses a standard, then one must be willing to put up with
extra overhead in the code. Furthermore, because standards are device independent,
they, by definition, usually do not take advantage of any special features that a par-
ticular piece of hardware may have. What this means is that programs that use them
are sometimes much slower on a particular machine than a program that accesses its
hardware features directly. Software developers have often been forced to choose
between device independence and speed in those cases where speed is critical. For-
tunately, with DirectX and OpenGL the situation has much improved and this is no
longer a serious problem.

1.4 Graphics Standards and Primitives 11

1.5 From Window to Viewport

One of the first bits of mathematics one runs into in a graphics program is the trans-
formation from the window to the viewport. Both the window and viewport are rep-
resentable as rectangles in the plane whose sides are parallel to the coordinate axes.
What we are looking for is a simple map from one of these rectangles to another.
Intuitively, all this amounts to is a change of scale.

The standard representation for our rectangles is as products of intervals in the
form [a,b] ¥ [c,d]. Normally, the implied assumption in the representation of an inter-
val like [a,b] is that a £ b; however, in our current context where we will be interested
in maps from one interval to another, we do not require that. It will be useful to allow
a > b. Returning to our discussion of windows and viewport, if one uses normalized
device coordinates, the viewport is a subrectangle of [0,1] ¥ [0,1]. If one considers the
viewport as a rectangle in the raster, then it has the form [m1,m2] ¥ [n1,n2], where mi
and ni are integers. There is one caveat, however. The (0,0) position in the raster has
traditionally been associated to the top left-hand corner on the screen. That means that
the y-axis has to be inverted because users always think of that axis as going up, not
down. In other words, if, say, the resolution is 800 ¥ 600 and the viewport is the entire
screen, then the viewport should be represented by the rectangle [0,799] ¥ [599,0].

Mathematically then, the search for the window-to-viewport transformation boils
down to the following: If W = [wa,wb] ¥ [wc,wd] and V = [va,vb] ¥ [vc,vd] are the rec-
tangles that represent the window W and viewport V, respectively, then we want a
map T: W Æ V of the form

where each Ti is linear. In other words, we have two one-dimensional problems of the
form:

Given intervals [a,b] and [c,d], find the linear map S: [a,b] Æ [c,d] with
S(a) = c and S(b) = d.

If S(x) = ax + b, then the stated boundary conditions for S lead to two equations in
two unknowns a and b, which are easily solved. We get that

The second form of the answer says that we send x to that point in [c,d], which is the
same percentage of the way from c to d as x is from a to b. If one remembers that
intuitive fact then one has no need to solve equations because the answer is obvious.
At any rate, we now have the following solution for T:

T x y
w w

v v x w v w v
w w

v v y w v w v
b a

b a b a a b
d c

d c d c c d, , .() =
-

-() + -()()Ê
Ë -

-() + -()()̂̄1 1

S x
d c
b a

x
bc ad
b a

c
x a
b a

d c

() =
-
-

+
-
-

= +
-
-

-().

T x y T x T y, , ,() = () ()()1 2

12 1 Introduction

Later on in Chapter 4 we shall derive a more general window-to-viewport transfor-
mation, but what we have now is good enough to do some simple two-dimensional
graphics programming.

1.6 Programming Notes

In the early years of the IBM PC and DOS and after there were some programming
languages such as PASCAL or C that had some basic graphics primitives built into the
language, it was fairly easy to describe what had to be done to write a graphics
program. It was a three-stage process. First, every such program had to enter “graph-
ics mode” when it started, then it could do all the graphics that it wanted, and finally
it had to leave graphics mode at the end and restore whatever mode the system was
in before the program started. Life has gotten much more complicated now that we
are in an age of graphical user interfaces (GUIs) and the Microsoft Windows operat-
ing system. Describing how one programs the graphics API for Microsoft Windows
would entail writing another book. However, we do want to give the reader a flavor
of what is involved. To that end we present and discuss our only piece of low-level
graphics code in this book. It shows how one would have used BGI code for the DOS
operating system.

As we just mentioned, the first thing that needed to be done in any graphics
program was to initialize both the hardware and certain global variables describing
this hardware to the program. Program 1.6.1 shows a very basic sample BGI C pro-
cedure, “InitializeGraphics,” which did this. The BGI procedure “initgraph” did the
initialization and returned the information about the hardware in use in its parame-
ters “graphDriver” and “graphMode.” The third parameter to the procedure was a DOS
path name to a directory where the BGI drivers were located. An empty string meant
that they were in the current directory. The function “graphresult” returned any error
that might have occurred and prevented the graphics system from being initialized.
A typical error was caused by the fact that the BGI driver was not located in the
current directory. The BGI drivers were files that came with the Borland program-
ming languages. Each contained hardware-specific code for the basic graphics prim-
itives and the one that matched one’s hardware got linked into one’s program.

After the graphics mode was initialized correctly, we then stored some useful
constants in global variables. The functions “getmaxx” and “getmaxy” returned the
maximum resolution of the screen in pixels in the horizontal and vertical direction,
respectively. The “textheight” and “textwidth” functions returned the height and width
of characters which one needs to determine the space required for text.

The “atexit” procedure passed the name of a procedure to call when the program
was done and was about to return to DOS. We have passed the name of the “MyEx-
itProc” procedure that calls the “closegraph” procedure. The latter switches from
graphics mode back to the standard 25 line and 80 column text mode (or whatever
mode the system was in before the program was called). Without the call to the “close-
graph” procedure the system would have been left in graphics mode with a messed-
up screen and would probably have had to be rebooted.

Assuming that the “InitializeGraphics” procedure executed without problems, one
would be in graphics mode and be presented with a blank screen. As indicated earlier,

1.6 Programming Notes 13

doing a similar initialization for Microsoft Windows is much more complicated. The
reason is that the user’s program is now initializing one of potentially many windows
on the screen. Under DOS basically only one window was initialized, namely, the
whole screen. If a program wanted to deal with multiple windows, it would have to
do that completely by itself. In other words, with Microsoft Windows we have a more
complicated initialization procedure but we gain functionality. If one is using OpenGL
or DirectX, then actually two initializations are required. After initializing the native
Windows GDI, so that one can run the program in a standard window on the screen

14 1 Introduction

/* Global variables */
int graphDriver, graphMode, /* After call to InitGraph these variables specify the

 current hardware */
numColors, /* maximum number of colors */
scrnXmax, scrnYmax /* screen resolution */
txtHeight, txtWidth; /* the height and width in pixels of a character in the

 current font */

void MyExitProc (void)
{ closegraph (); /* Shut down the graphics system */
}

void InitializeGraphics (void)
{ int errorCode;

graphDriver = DETECT; /* DETECT is a BGI constant */
 initgraph (&graphDriver,&graphMode,"");
 errorCode = graphresult ();

if (errorCode != grOk) /* grOk is a BGI constant */
 { /* Error occurred during initialization */
 printf (" Graphics system error: %s\n",grapherrormsg (errorCode));
 exit (1);
 }

 atexit (MyExitProc); /* so that we do closegraph when exiting */

 numColors = getmaxcolor () + 1;
 scrnXmax = getmaxx ();
 scrnYmax = getmaxy ();
 txtHeight = textheight ("A");
 txtWidth = textwidth ("A");

}

Program 1.6.1. Code for initializing DOS graphics mode.

and use basic windowing operations, one has to initialize OpenGL and DirectX in a
separate step.

After a program has initialized the graphics hardware, the next step is to decide
how to lay out the screen. Where should graphics output go? Where to put the menus?
What about an area for getting feedback from the user and printing system–related
messages? Books have been written on what makes for a good graphical user inter-
face. See [Pedd92] for example. Microsoft has its own recommendations for programs
that run in its Windows environment. See [Micr94].

One thing is clear though about today’s GUIs. They take an awful lot of code and
time to develop. Even if one does not start from scratch and one uses the typical APIs
one gets when developing for an environment like Windows, it still requires quite a
bit of understanding about the underlying architecture to use them effectively. For
that reason, when this author has taught graphics classes he always, since the days
of DOS, provided the students with a program similar to the current GM program
that can be found on the accompanying CD. Its interface, described in the document
GmGUI which is also on the CD, allowed both mouse and keyboard input and made
it easy for students to add menus. In this way the students did not have to spend any
time developing this interface and could concentrate on implementing the various
algorithms described in the book. The current Windows version of GM is also such
that students do not need to have any prior knowledge of Windows or C++. (They obvi-
ously do have to know how to program in C.) A couple of lectures at the beginning
of the semester and another one or two later on to describe some additional features
was all that was necessary. Of course, if one wants to make use of OpenGL, then this
takes extra time.

The GM program already comes with quite a bit of functionality built into it. This
means that some of the programming projects at the end of the chapters in this book,
in particular some of the basic ones in the early chapters such as this one, have already
been implemented either implicitly or explicitly. Readers who are new to graphics pro-
gramming should ignore this fact and will find it very instructive to develop the
required code on their own. They can then compare their solutions with the ones in
the GM program. It is when one gets to more advanced projects that building on the
GM program would be appropriate.

Finally, this book will not get into any device-dependent issues and all the algo-
rithms and code will be analyzed and presented at a higher level than that. Except for
the BGI example above, we present no actual code but shall use a fairly standard
abstract program syntax (pseudocode) described in Appendix B. We shall also not use
any actual API when discussing abstract algorithms, but, if needed, use the following
set of graphics primitives:

(The points and rectangles below are assumed to be in the raster, that is, they are
specified by integer coordinates. Rectangles are specified by two points, the top left
and bottom right corner. By a rectangle we mean the border only, not the interior.)

SetMode (MODE) (sets “current” mode to MODE, where MODE is a
bit operation such as xor or replace)

SetColor (COLOR) (sets “current” color to COLOR)
Draw (point or rectangle) (in “current” color and mode)
Erase (point or rectangle) (draws in “background” color)

1.6 Programming Notes 15

Draw (point or rectangle, (attribute is typically a color but could be
attribute) something more general)

DrawLine (point, point) (draws raster version of line segment from first
point to second in “current” color and mode)

Write (string, point) (write a string into the raster at pixel location
point)

Note that erasing a point or rectangle is really the same as drawing it in the “back-
ground” color. We list the “Erase” procedure separately only for conceptual reasons.
Also, drawing a rectangle or a line segment could be implemented with the “Draw
(point)” procedure, but all current graphics APIs have efficient procedures for drawing
rectangles and line segments directly and that is why we list that procedure separately.
We shall show how the DrawLine procedure is implemented in terms of “Draw
(point)” in Chapter 2. Of course, drawing lines is a very basic operation that typically
is called many times. It is a place where optimization really pays off and is best imple-
mented in assembly language, or better yet, in hardware. Therefore, when coding pro-
grams one should use the line drawing procedure that comes with the software.

The primitives above can easily be implemented using any given API. We believe,
however, that they will make our abstract code more readable. In any case, whatever
system the reader is working on, it is assumed that he/she can implement these pro-
cedures. These primitives are all that we shall need to describe all of the algorithms
in this book.

1.7 EXERCISES

Section 1.5

1.5.1 Find the equations for the following transformations:

(a) T: [-1,3] Æ [5,6]
(b) T: [2,7] Æ [3,1]
(c) T: [-1,2] ¥ [3,5] Æ [5,7] ¥ [-3,-4]
(d) T: [7,-2] ¥ [1,2] Æ [3,2] ¥ [0,3]

1.8 PROGRAMMING PROJECTS

Section 1.5

In these programming assignments assume that the user’s world is the plane. We also assume
the reader has a basic windowing program with an easily extensible menu system. The GM
program is one such and the user interface in the projects below fits naturally into that program.
Furthermore, the term “screen” in the projects below will mean the window on the real screen
in which the program is running. All projects after the first one (Project 1.5.1) assume that a
window-to-viewport transformation has been implemented.

1.5.1 A window-to-viewport transformation

The goal of this first project is simply to write and test the window-to-viewport transformation.
The main menu should add another item to the list:

16 1 Introduction

Activating the Utils item should bring up the menu

1.8 Programming Projects 17

that allows the user to change the current dimensions of the window, to change the location of
the viewport on the screen, and to toggle the display of the window’s dimensions, respectively.
If the window dimension display has been toggled to be on, then it should stay on the screen
no matter which menu is the current one. Let the default window be [-10,10] ¥ [-10,10]. Keep
in mind though that the window dimensions can be arbitrary real numbers. It is the viewport
dimensions that are always integers. One way to display the window dimensions would be as
follows:

In this project there are no objects to display but it can be tested by drawing viewports
with a background that has a color different from the rest of the screen and checking the dimen-
sions that are displayed.

1.5.2 Graphing functions

The object of this project is to try out some line drawing commands. Specifically, you are to draw
a linear approximation to the graph of some functions. Add another item to the main menu:

The idea is to evaluate a given function at a finite set of values in its domain and then to draw
the polygonal curve through the corresponding points on its graph. See Figure 1.8. Let a user
specify the following:

(1) The interval [a,b] over which the function is to be graphed.

(2) The “resolution” n, meaning that the function will be evaluated at a + i (b - a)/n, 0 £ i £ n.

Because the values of a function may change substantially from one domain to the next
one it is important that one choose the window well; otherwise, the graph may look very tiny
or not show up at all. A simple scheme would scale the x-direction to be not much bigger than
the domain of the function and the y-direction to cover only that range of values needed for
the graph. To do the latter one should first evaluate all the points, find the maximum and
minimum of the y-value, and then adjust the y-dimension of the window to those values. Such
a scheme does have the disadvantage, however, that the window will keep changing if one
changes the domain. To avoid this one could leave it to the user to decide on the window or
pick some fixed default window that only changes if the graph moves outside it. To test whether
a graph lies entirely in the window check that all the points on it lie in the window.

Finally, to make the graph more readable it would help to show the coordinate axes with
ticks for some representative values.

1.5.3 Turtle graphics

This is another project to try out line drawing commands. Assume that a “turtle” is crawling
around in the plane (R2). A turtle is an object that is defined by a position and a direction (in
which it is looking). The standard basic commands that a turtle understands are

Forward (dist)
MoveTo (x,y)
Turn (q)
TurnTo (q)
Right (q)

The “Forward” procedure draws a line from the current position of the turtle to the new one,
which is a distance “dist” from the old one in the direction in which the turtle is looking. The
“MoveTo” procedure does not, but simply repositions the turtle to the real point (x,y). The
“Turn” procedure turns the turtle by the angle q specified relative to the current direction it
is looking. The “TurnTo” procedure is the absolute version of “Turn.” It turns the turtle to
look in the direction that makes an angle q with the x-axis. You will be surprised at what
interesting figures can be created by a turtle. For lots more on turtle geometry and interesting
graphics that can be generated with it see [AbeD81].

Add an item to the main menu so that it now looks like:

18 1 Introduction

Figure 1.8. A sample function graph.

Activating the Turtle item in the main menu should enter the user into “turtle graphics” mode,
show a turtle at its current position, and show the menu

1.8 Programming Projects 19

A simple drawing of a turtle would be a small square with a line segment emanating from
it to show the direction in which it is looking. Activating “PolySpi” in the menu should (start-
ing with the current position and direction of the turtle) draw the path taken by the turtle
according to the following algorithm:

real dist, turnAngle, incr;
integer numSteps;

{Draws numSteps segments of a spiral with given exterior angle
(measured in degrees)}

for i:=1 to numSteps do
begin
Forward (dist);
Right (turnAngle);
dist := dist + incr;

end;

Draw the spiral after asking the user to input values for the four parameters. Some values to
try are num = 100 and (dist,angle,incr) = (.1,144,.1), (.05,89.5,.05), (.05,170,.05), and (.05,60,.05).
The “Clear” command should clear the viewport except for the turtle. The “MoveTo” and
“Direction” command should have the obvious effect on the turtle.

When entering the turtle menu for the first time, the turtle should be initialized to “sit” at
the center of an empty viewport “looking” right. After that the program should not reinitialize
the turtle or clear the screen on its own, except that the screen should be cleared whenever the
Turtle menu is exited. The turtle should only be visible whenever one is inside the Turtle menu.
When outside the turtle menu, the graphics area should always be blank except for the pos-
sible dimension values.

Note: You do not have to worry about clipping the turtle’s path to the window. In this program
it is the user’s responsibility to ensure that the path lies entirely inside the window.

1.5.4 Turtle crawling on a cube ([AbeD81])

For this project change the main menu to

This project is more advanced and requires familiarity with vectors. It also needs the
formula for the intersection of two segments discussed in Section 6.5. To display a turtle crawl-
ing on a cube we use a parallel projection of a three-dimensional cube into the plane. In this
way, the path of the turtle can be described via linear combinations of planar vectors without
involving any knowledge of transformations from R3 to R2. See Figure 1.9(a) for what one
should see. Note that walking in a straight line preserves the angle the path makes with an edge
as the edge is crossed. Ignore the case where a path meets a vertex of the cube. One can let the
turtle disappear there.

The key idea is that, at any time, the turtle is in a face of the cube which one can identify
with a fixed square. The parallel projection then maps this square onto a parallelogram. See
Figure 1.9(b) where we map the square A with vertices a, b, c, and d onto the parallelogram
A¢ with vertices a¢, b¢, c¢, and d¢, respectively. If p is an arbitrary point of A, write p in the form

a + s ab + t ad.

The parallel projection will then map p to

a¢ + s a¢b¢ + t a¢d¢.

Therefore, the basic steps are:

(1) Pick points ai in the plane onto which the vertices of the cube (one may as well use
the standard unit cube [0,1] ¥ [0,1] ¥ [0,1]) get mapped.

(2) Keep track of the face the turtle is on along with the identification of its vertices with
the given vertices in the plane.

(3) When moving forward a certain distance d from a point p, check if this entails cross-
ing an edge. If yes, then move only to the point on the edge and move the remaining
distance in the new face in the next step. Let q be the end point of the current segment
through which we moved.

(4) Find the segment p¢q¢ which is the image of the segment pq and draw it.

(5) Repeat steps (3) and (4) until one has moved forward the distance d. If we crossed an
edge, then we may have to update the face we are on.

20 1 Introduction

Figure 1.9. Turtle crawling on cube.

To make the picture look nicer, draw the segments on the back faces of the cube with dashed
lines. To generate paths use a procedure like the polyspiral procedure in project 1.3.

1.5.5 The Chaos game ([Barn87])

To play this game add the following item to the main menu:

1.8 Programming Projects 21

Let the user pick four points on the screen. For example, Figure 1.10 shows points marked
“heads,” “tails,” “side,” and “p1.” Now generate points pi, i ≥ 2, as follows: “Toss a coin.” If the
coin comes up heads, pi is the point half way from pi-1 to the point marked “heads.” If the coin
comes up tails, pi is the point half way from pi-1 to the point marked “tails.” If the coin ends up
on its side, pi is the point half way from pi-1 to the point marked “side.” Analyze the patterns of
points that are generated in this fashion. Tossing a coin simply translates into generating a
random integer from {0,1,2}.

Figure 1.10. The chaos game.

more generally in Zn. Although we are only interested in the case n = 2 in this chapter,
there is nothing special about that case (except for the terminology), and it is useful
to see what one can do in general. In fact, the case n = 3 will be needed to define dis-
crete lines for volume rendering in Chapter 10. This book will not delve into the
concept of curve rasterization in dimensions larger than 3, but the subject has been
studied. See, for example, [Wüth98] or [Herm98].

Definition. In Z2, the 4-neighbors of (i,j) are the four large grid points adjacent to
(i,j) shown in Figure 2.1(a). The 8-neighbors of (i,j) are the eight large grid points adja-
cent to (i,j) in Figure 2.1(b). More precisely, the 4-neighbors of (i,j) are the points (i,j
+ 1), (i - 1,j), (i,j - 1), and (i + 1,j). The 8-neighbors can be listed in a similar way.

In order to generalize this definition to higher dimensions, think of the plane as
tiled with 1 ¥ 1 squares that are centered on the grid points of Z2 and whose sides are
parallel to the coordinate axes (see Figure 2.1 again). Then, another way to define the
neighbors of a point (i,j) is to say that the 4-neighbors are the centers of those squares
in the tiling that share an edge with the square centered on (i,j) and the 8-neighbors
are the centers of those squares in the tiling that share either an edge or a vertex with
that square. Now think of Rn as tiled with n-dimensional unit cubes whose centers
are the points of Zn and whose faces are parallel to coordinate planes.

Definition. In Z3, the 6-neighbors of (i,j,k) are the grid points whose cubes meet the
cube centered at (i,j,k) in a face. The 18-neighbors of (i,j,k) are the grid points whose
cubes meet that cube in either a face or an edge. The 26-neighbors of (i,j,k) are the
grid points whose cubes meet that cube in either a face or an edge or a point.

Figure 2.2(a) shows the cubes of the 6-neighbors of the center point. Figure 2.2(b)
shows those of the 18-neighbors and Figure 2.2(c), those of the 26-neighbors. More
generally,

2.2 Discrete Topology 23

Figure 2.1. The 4- and 8-neighbors of a point.

Figure 2.2. The 6-, 18-, and 26-neighbors of a point.

Definition. Let p Œ Zn and let d be a fixed integer satisfying 0 £ d £ n - 1. Suppose
that k is the number of points of Zn that are the centers of cubes that meet the cube
with center p in a face of dimension larger than or equal to d. Each of those points
will be called a k-neighbor of p in Zn.

Note: The general definition for k-neighbor is not very satisfying because it is rela-
tively complicated. It would have made more sense to call the point a “d-neighbor.”
Unfortunately, the terminology as stated is too well established for the two- and three-
dimensional case to be able to change it now.

Definition. Two points in Zn are said to be k-adjacent if they are k-neighbors.

k-adjacency is the key topological concept in the discrete world. All the terms
defined below have an implicit “k-” prefix. However, to simplify the notation this prefix
will be dropped. For example, we shall simply refer to “adjacent” points rather than
“k-adjacent” points. It must be emphasized though that everything depends on the
notion of adjacency that is chosen, that is, for example, whether the intended k is 4
or 8, in the case of Z2, or 6, 18, or 26, in the case of Z3. To make this dependency
explicit, one only needs to restore the missing “k-” prefix.

There is a nice alternate characterization of k-adjacency in two special cases that
could have been used as the definition in those cases.

Alternate Definition. Let p = (p1,p2, . . . ,pn), q = (q1,q2, . . . ,qn) Œ Zn. The points p
and q are 2n-adjacent in Zn if and only if

They are (3n - 1)-adjacent in Zn if and only if p π q and |qi - pi| £ 1 for 1 £ i £ n.

Properties of 2n- and (3n - 1)-adjacency are studied extensively in [Herm98].

Definition. A (discrete or digital) curve from point p to point q in Zn is a sequence
rs, 1 £ s £ k, of points such that p = r1, q = rk, and rs is adjacent to rs+1, 1 £ s £ k - 1.
Furthermore, with this notation, we define the length of the curve to be k - 1.

For example, the points p1, p2, p3, and p4 in Figure 2.3 form a discrete curve of
length 3 with respect to 8-adjacency but not with respect to 4-adjacency because p1
and p2 are not 4-adjacent.

Definition. A set S is connected if for any two points p and q in S there is a curve
from p to q that lies entirely in S. A maximal connected subset of S is called a
component.

q pi i
i

n

- =
=
Â 1

1

24 2 Raster Algorithms

Figure 2.3. An 8-connected discrete curve.

Because of the difference between 4- and 8-connected, note the difference between
a 4-component and an 8-component. It is easy to show that every 8-component is the
union of 4-components (Exercise 2.2.2). A similar comment holds for the components
of sets in Z3.

Some Definitions. We assume that the sets S below are subsets of some fixed set P
in Zn. In practice, P is usually a large but finite solid rectangular set representing the
whole picture for a scene, but it could be all of Zn.

The complement of S in P, denoted by Sc, is, P - S.
The border of S, B(S), consists of those points of S that have neighbors belonging

to Sc if S π P or neighbors in Zn - P if S = P.
The background of S is the union of those components of Sc that are either

unbounded in Zn or that contain a point of the border of the picture P.
The holes of S are all the components of Sc that are not contained in the back-

ground of S.
S is said to be simply connected if S is connected and has no holes.
The interior of S, iS, is the set S - B(S).
An isolated point of S is a point of S that has no neighbors in S.
If S is a finite set, then the area of S is the number of points in S.

See Figure 2.4 for some examples.

Definition. There are several ways to define the distance d between two points (i,j)
and (k,l) in Z2, or, more generally, between points p and q in Zn:

(a) Euclidean distance: or d = |pq|.

(b) taxicab distance: d = |k - i| + |j - l| or

This distance function gets its name from the fact that a taxi driving from one
location to another along orthogonal streets would drive that distance.

(c) max distance: d = max (|k - i|,|j - l|) or d q p
i n

i i= -{ }
£ £

max .
1

d q pi i
i

n

= -
=
Â

1

.

d i k j l= -() + -()2 2

2.2 Discrete Topology 25

Figure 2.4. Examples of discrete
concepts.

All three of these distance functions define a metric on Zn, called the Euclidean,
taxicab, and max metric, respectively. (They actually also define a metric on Rn.) For
example, consider the points p = (2,1) and q = (5,3). Then the distances between these
two points are:

Euclidean distance:
Taxicab distance: 5
Max distance: 3

The points that are a distance of 1 from a given point are its 4-neighbors when we
use the taxicab distance and the 8-neighbors when we use the max distance.

Finally, the rest of this chapter deals with two-dimensional sets and, unless stated
otherwise, all our sets will be (discrete) subsets of some given picture P in Z2. We shall
use the terminology above.

2.3 Border-Following Algorithms

Algorithms that can compute the borders of regions in a picture are important in a
variety of places, in particular in animation. We describe one such algorithm here to
give the reader a flavor of what they are like. See [RosK76] for more details. Other
contour-following algorithms are described in [Pavl82]. See also [Herm98].

Assume that each point of a picture has a value associated to it and that in our
case this is either 0 or 1, with the region of interest in it being the points with value
1. We shall show pictures by showing the values at their points and, to simplify the
discussion, we often identify the point with its value. (“Setting a point to 3” will mean
setting its value to 3.)

Definition. If C is a component of S, D a component of Sc, then the D-border of C
is the set of points of C that are adjacent to a point of D.

For example, consider the connected set S of 1’s below:

13

26 2 Raster Algorithms

1 1 1 1

1 0 1 1 0

1 1 1 1

Let D1 and D2 be the components of Sc that contain the left and right “0,” respectively.
Then

1 1 1 1 1 1 1

1 1 and 1 1

1 1 1 1 1 1 1

are the D1-border and D2-border of S, respectively.
Algorithm 2.3.1 is one border-following algorithm.

2.3.1 Example. We show the various stages of Algorithm 2.3.1 for a set S. The
values of points in the pictures below are shown in boldface and S starts off as the
points marked with 1’s. The current c and d are shown in parentheses to the left of
the point to which they refer. The numbering of the 8-neighbors of c is shown in paren-
theses to the right of the point. We also show the value of k that we get in step (2) of
the algorithm.

2.3 Border-Following Algorithms 27

Input : an 8-component C of S, a 4-component D of Sc

4-adjacency
adjacent points c Œ C , d Œ D

Output: all points of D-border of C

Follow the steps below:

(1) If C is an isolated point, then the D-border is just c. Change c to 4 and stop.
Otherwise, change c to 3 and d to 2.

(2) List the 8-neighbors of c in clockwise order starting with d and ending with first
 occurrence of 1, 3, or 4:

e1 , e2 , ... , ek

(3) If c is 3, ek is 4, and eh is 2 for some h < k, then set c to 4, eh to 0, and stop;
otherwise, set c to 4 (only if it was 1 and not 3), take ek as the new c, take ek-1

as the new d, and go back to (2).

 When the algorithm stops, the 4’s will be the D-border of C.

Algorithm 2.3.1. A border-following algorithm.

 (d)0(1) 0(2) 0 2 (d)0(1) 0(2) 2 0 0 0 2 0 0

 (c)1 1(3) 0 Æ 3 (c)1 0(3) Æ 3 4(8) (d)0(1) 0(2) Æ 3 (c)4 0 Æ

1 0 1 1 0 1(4) 1 0(7) (c)1 0(3) 1(2) (d)0(1) 4

0 0(6) 0(5) 0(4) 0 0 0

k = 3 k = 4 k = 8 k = 2

0 2 0 0 0(2) 2(3) 0(4) 0 0 0 0

0(6) 3(7) 4 0 Æ (d)0(1) (c)3 4(5) 0 Æ 4 4 0

0(5) (c)1 (d)0(1) 4 0 4 0 4 4 0 4

0(4) 0(3) 0(2) 0

k = 7 k = 5, h = 3

Finally, the configuration

28 2 Raster Algorithms

1 1 1 1

1 1 0 1

1 1 1 0

1

1

shows that the choice of adjacency is important. The algorithm fails if C is a 4-
component and must be changed. See [RosK76].

Algorithm 2.3.1 can be used to find all border points of a set S. It provides a way
of marking its border points so that one can then fill the interior of S using a fill algo-
rithm of the type discussed in the next section.

2.4 Fill Algorithms

Contour-filling algorithms are used in many places. For example, in pattern recogni-
tion problems integrals may have to be computed over areas; in photo typesetting,
fonts are described by contours that are later filled; in animation, the cel painter who
fills figures has the next most time-consuming job after the animator.

There are two broad classes of such algorithms – polygon-based (edge-filling) algo-
rithms and pixel-based algorithms. The former can be used in the case where the
regions to be filled are defined by polygons and we can use the equations for the edges.
The latter are, in a sense, more general because they can be used both for polygonal
regions and also arbitrary regions whose boundaries are defined on the pixel level.

There is also a distinction as to how the algorithm decides whether a point is in
the interior of a region. Some use a parity check that is based on the fact that lines
intersect a closed curve an even number of times (if one counts intersections at certain
special points such as at points of tangency correctly). This test is always used in case
of polygon-based algorithms, but can also be used for pixel-based ones. Other algo-
rithms, called seed fill algorithms, use connectivity methods. Here it is assumed that
one is given a starting point or seed. Then one sees which pixels can be reached from
this one without crossing the contour. The bounding curves can be quite general. This
approach applies only to pixel-based algorithms. Also, one needs to know an interior
point. This is okay in interactive situations (where one picks one using a mouse, for
example), but if one wants to automate the process, note how border-following algo-
rithms become relevant.

In this section we shall describe the pixel-based seed fill algorithms. Section 2.9.1
will look at polygon-based fill algorithms.

The Flood Fill Problem: Given distinct colors c and c¢, a set A of the same color c bounded
by points whose colors are different from c and c¢, find an algorithm that changes all points
of A and only those to the color c¢.

An algorithm that solves this problem is called a flood fill algorithm. There are a
number of related fill problems and associated algorithms. For example, boundary fill
algorithms assume that all points of the boundary have the same color, which is dif-

ferent from the color inside the region, where the boundary of a set S means here the
set of points of Sc that are adjacent to S.

In the algorithms of this section, the Boolean-valued function Inside(x,y) deter-
mines whether or not the pixel at (x,y) has the property one wants. The procedure
Set(x,y) sets the value of the pixel at (x,y) to its desired value. For example, to get a
flood fill algorithm let Inside(x,y) be true if the value of the pixel at (x,y) agrees with
the value of the pixels in the region and let Set(x,y) set the pixel value to its new
value (the same as Draw(x,y,c¢)). Using the functions Inside and Set will make our
algorithms more general and applicable to a variety of fill algorithms. There is one
constraint on the Inside function however: Inside(x,y) must return false after an
operation Set(x,y).

Assume 4-adjacency is chosen and that our regions are 4-connected. The BFA pro-
cedure in Algorithm 2.4.1 shows that the basic idea behind a fill algorithm is very
simple. Notice that 4-connected is important and that the algorithm will not work if
the region is not 4-connected.

Although the BFA algorithm is simple, the recursion is expensive. One of the earli-
est nonrecursive algorithms is due to Smith ([Smit79]). It is not very efficient because
pixels are visited twice, but many of the better algorithms are based on it. It will be
worthwhile to describe Smith’s algorithm, Algorithm 2.4.2, first before we present the
one due to [Fish90b]. In this algorithm and the next, the constants XMIN, XMAX,
YMIN, and YMAX define the minimum and maximum values for the x- and y-
coordinates of pixels in the viewport. The procedures Push and Pop push and pop a pair
(x,y) onto and from a stack, respectively. The function StackNotEmpty tests whether
this stack is empty or not. The procedures Inside and Set are as described above.

For example, suppose that in Figure 2.5 our starting point is (7,3). After the first
FillRight command the two-pixel segment from (7,3) to (8,3) would have been filled.
The FillLeft command would fill (6,3). The ScanHi command would place the pixel
coordinates (6,4) and (8,4) on the stack in that order. The ScanLo command would
add (6,2). The segments of the region that (6,4), (8,4), and (6,2) belong to are usually
called “shadows.” The point of the ScanHi and ScanLo procedures is to find these
shadows that still need to be filled. We now return to the beginning of the main while
loop, pop (6,2), and make that our new starting point. The next FillRight and
FillLeft would fill the segment from (2,2) to (8,2). The ScanHi and ScanLo would

2.4 Fill Algorithms 29

procedure BFA (integer x, y)
if Inside (x,y) then

begin
 Set (x,y);
 BFA (x,y - 1); BFA (x,y + 1);
 BFA (x - 1,y); BFA (x + 1,y);

end;

Algorithm 2.4.1. The basic fill algorithm.

30 2 Raster Algorithms

{ Global variables }
integer x, y, lx, rx;
a stack of pixel coordinates (x,y);

procedure Fill (integer seedx, seedy)
begin

x := seedx; y := seedy;
if not (Inside (x,y)) then Exit;
Push (x,y);
while StackNotEmpty () do

begin
 PopXY ();

if Inside (x,y) then
begin

 FillRight (); FillLeft (); { Fill segment containing pixel }
 ScanHi (); ScanLo (); { Scan above and below current segment }

end
end

end;

procedure FillRight ()
begin

integer tx;

tx := x;
{ Move right setting all pixels of segment as we go }
while Inside (tx,y) and (tx £ XMAX) do

begin
Set (tx,y); tx := tx + 1;

end;
rx := tx - 1; { Save index of right most pixel in segment }

end;

procedure FillLeft ()
begin

integer tx;

tx := x;
{ Move left setting all pixels of segment as we go }
while Inside (tx,y) and (tx ≥ XMIN) do

begin
Set (tx,y); tx := tx - 1;

end;
lx := tx + 1; { Save index of left most pixel in segment }

end;

Algorithm 2.4.2. The Smith seed fill algorithm.

2.4 Fill Algorithms 31

procedure ScanHi ()
{ Scan the pixels between lx and rx in the scan line above the current one.
 Stack the left most of these for any segment of our region that we find.
 We do not set any pixels in this pass. }

begin
integer tx;

if y + 1 > YMAX then Exit;
tx := lx;
while tx £ rx do

begin
{ Scan past any pixels not in region }
while not (Inside (tx,y + 1)) and (tx £ rx) do tx := tx + 1;
if tx £ rx then

begin
Push (tx,y + 1);
{ We just saved the first point of a segment in region.
 Now scan past the rest of the pixels in this segment. }
while Inside (tx,y + 1) and (tx £ rx) do tx := tx + 1;

end;
end

end;

procedure ScanLo ()
{ Scan the pixels between lx and rx in the scan line below the current one.
 Stack the left most of these for any segment of our region that we find.
 We do not set any pixels in this pass. }

begin
integer tx;

if y - 1 < YMIN then Exit;
tx := lx;
while tx £ rx do

begin
{ Scan past any pixels not in region }
while not (Inside (tx,y - 1)) and (tx £ rx) do tx := tx + 1;
if tx £ rx then

begin
Push (tx,y - 1);
{ We just saved the first point of a segment in region.
 Now scan past the rest of the pixels in this segment. }
while Inside (tx,y - 1) and (tx £ rx) do tx := tx + 1;

end;
end

end;

Algorithm 2.4.2. Continued

put (2,3) and (6,3) on the stack. The loop would start over and pop (6,3). This time,
since (6,3) has already been filled, we immediately jump back to the beginning and
pop (2,3), and so on.

The problem with Smith’s basic algorithm is that we look at some pixels twice, as
we saw in the case of (2,3) in the previous example. This happens because we auto-
matically put coordinates from both the line above and the line below the current one
on the stack. When we then, say, deal with the line above, the algorithm will have us
look at the current line again because it will be the line below that one. For a fast
algorithm we need to prevent this duplicate effort. Algorithm 2.4.3 from [Fish90b]
involves more bookkeeping because it differentiates between the three different types
of possible shadows shown in Figure 2.6, but it will read each pixel only slightly more
than once on the average and also has good worst-case behavior. Fishkin points out
that it is optimal if the region has no holes.

An alternative improvement to Smith’s seed fill algorithm is described by Heck-
bert in [Heck90b].

Finally, another distinction that is made between flood fill algorithms is whether
we are dealing with hard or soft area flooding. The algorithms we have described so
far were hard area flooding, which basically assumed that the region to be filled was
demarcated by a “solid” boundary, that is, a curve of pixels all of the same color. Such
a boundary would be a jagged curve. To get a smoother looking boundary one typi-
cally would blur or “shade” it by assigning a gradation of colors in a neighborhood
of it. (The causes of the “jaggies” and solutions to the aliasing problem are discussed
later in Section 2.6.) If boundaries are shaded, then we would like filling algorithms
to maintain this shading. Soft area flooding refers to algorithms that do this and leave
any “shading” intact. Smith’s paper [Smit79] is a good reference for both hard and
soft area flooding. The tint fill algorithm he describes in that paper is a soft area flood-
ing algorithm.

There are other types of pixel-based fill algorithms. Pavlidis [Pavl82] describes a
parity check type algorithm. Rogers [Roge98] describes various algorithms for filling
regions bounded by polygons that he calls “edge fill” algorithms.

32 2 Raster Algorithms

Figure 2.5. A fill algorithm example.

Figure 2.6. Pixel shadows.

2.4 Fill Algorithms 33

direction = (-1,+1);
stackRec = record { a stackRec records the data for one shadow }

integer myLx, myRx, { endpoints of this shadow }
 dadLx, dadRx, { endpoints of my parent }
 myY; { scan line of shadow }

direction myDirection; { -1 means below parent, +1 means above }
end;

{ Global variable }
stack of stackRec shadowStack;

procedure Fill (integer seedx, seedy)
begin

label 1, 2;
integer x, lx, rx, dadLx, dadRx, y;
direction dir;
boolean wasIn;

Initialize shadowStack to empty;

Find the span [lx,rx] containing the seed point;

Push (lx,rx,lx,rx,seedy+1,1);
Push (lx,rx,lx,rx,seedy-1,-1);

while StackNotEmpty () do
begin

1: Pop ();
if (y < YMIN) or (y > YMAX) then Goto 1;
x := lx + 1;
wasIn := Inside (lx,y);
if wasIn then

begin
Set (lx,y); lx := lx - 1;

{ If the left edge of the shadow touches a span, then move to its
 left end setting pixels as we go }

while Inside (lx,y) and lx ≥ XMIN do
begin

Set (lx,y); lx := lx - 1;
end

end;

{ Start the main loop. Moving to the right starting from the current position x,
 if wasIn is true, then we are inside a span whose left edge is at lx. }

Algorithm 2.4.3. The Fishkin seed fill algorithm.

34 2 Raster Algorithms

while x £ XMAX do
if wasIn

then
begin

if Inside (x,y)
then Set (x,y) { was inside and still inside }
else

begin
 { was inside but not anymore, i.e., we

just passed the right edge of a span }
 Stack (dadLx,dadRx,lx,x-1,y,dir);
 wasIn := false;

end
end

else
begin

if x > rx then Goto 2;
if Inside (x,y) then

begin
{ we weren't inside but are now, i.e.,
 we just found the left edge of a new span }
Set (x,y);
wasIn := true;
lx := x;

end
x := x + 1;

end;

2: if wasIn then
{ we just hit the edge of the viewport while in a span }
Stack (dadLx,dadRx,lx,x-1,y,dir);

end
end;

boolean function StackNotEmpty ()
{ Returns true if shadowStack is empty and false otherwise }

procedure Push (integer myl, myr, dadl, dadr, y; direction dir)
{ Pushes record onto shadowStack }

procedure Pop ()
{ Pops top of shadowStack into local variables lx, rx, dadLx, dadRx, y, dir }

procedure Stack (integer dadLx, dadRx, lx, rx, y; direction dir)
{ Pushes an extra shadow onto shadowStack, given a newly discovered span
 and its parent. This is where the three types of shadows are differentiated. }

begin

Algorithm 2.4.3. Continued

2.5 Generating Discrete Curves

Now we start a central topic of this chapter, namely, curves and the problem that one
runs into when one tries to represent them with a discrete set of points. Clearly, we
want any mapping of continuous structures into discrete ones to preserve the visual
shape properties, such as smoothness and uniform thickness, as much as possible but
this is not easy. We shall look at the problem of defining and generating discrete lines
first and then conics.

Lines, or more accurately segments, are the most basic of computer graphics
objects because most modeling systems use linear approximations to all objects so
that displaying them reduces to drawing lots of lines. It is possible to actually give a
formal definition of a discrete “straight” line (see [ArcM75] and [BoLZ75]). Not sur-
prisingly, such definitions get complicated, but from a practical point of view we are
not really interested in a definition. Rather, we are happy with an algorithm that gen-
erates a satisfactory set of points for a line. What is satisfactory? Well, that is not very
precise, but some attributes that we want the generated discrete lines to have are:

(1) Visually, the line should appear as straight as possible.
(2) The line should start and end accurately, so that, for example, if several con-

tiguous line segment are drawn, then there is no gap between them.
(3) Each line should appear to have an even visual thickness, that is, it should

have as constant a density as possible, and this thickness should be inde-
pendent of its length and slope.

(4) The conversion process must be fast.

In Sections 2.5.1–2.5.3 we look at line-drawing algorithms for the monochrome
case, that is, where the raster is an array of 0’s and 1’s and the line consists of those
pixels that are set to 1. Section 2.6 looks at some deeper problems that one encoun-
ters in the process of discretizing continuous objects and making them look smooth.
Section 2.9.1 looks at a scan line algorithm for lists of lines and fill algorithm for
polygons.

Conics are the next most common curve after the “straight” line. The circle is one
obvious such curve, but the other conics are also encountered frequently. Their geo-

2.5 Generating Discrete Curves 35

integer pushrx, pushlx;

pushrx := rx + 1; pushlx := lx - 1;
Push (lx,rx,pushlx,pushrx,y+dir,dir);
if rx > dadRx then Push (dadRx+1,rx,pushlx,pushrx,y-dir,dir);
if lx < dadLx then Push (lx,dadLx-1,pushlx,pushrx,y-dir,dir);

end;

Algorithm 2.4.3. Continued

metric properties and relatively low degree (when compared with the popular cubic
splines) make them attractive for use in designing shapes such as fonts. Because of
this, a great deal of effort has been spent on devising efficient algorithms for com-
puting them. We shall look at a few of these in Sections 2.9.2 and 2.9.3.

Because one common theme of some of the algorithms that generate discrete
curves is derived from the geometric approach to solving differential equations, we
start with that subject.

2.5.1 Digital Differential Analyzers

Consider the basic first order differential equation of the form

(2.1)

If y(x) is any solution, then f(x,y(x)) specifies the slope of the graph of y(x) at the point
(x,y(x)). In other words, if one thinks of the function f as specifying a vector field over
the entire plane (to (x,y) in the plane we associate the vector (1,f(x,y))), then solving
equation (2.1) corresponds to finding a parameterized curve x Æ (x,y(x)) whose
tangent vectors agree with the vectors from this vector field. Mathematicians call such
curves “integral curves.” In general, given a vector field, a curve whose tangent vectors
agree with the vectors of that vector field at every point on the curve is called an inte-
gral curve for that vector field. See Figure 2.7. The reason for this nomenclature is
that solving for the curve basically involves an integration process.

This idea of vector fields and integral curves leads to the following approach to
finding numerical solutions to differential equations called Euler’s method. Suppose
that we want the solution to pass through p0 = (x0,y0). Since we know the tangent
vector to the solution curve there and since the tangent line is a good approximation
to the curve, moving a small distance along the tangent, say by e(h(x0,y0),g(x0,y0)),
where e is a small positive constant, will put us at a point p1 = (x1,y1), which hope-
fully is not too far away from an actual point on the curve. Next, starting at p1 we
repeat this process. In general, let

dy
dx

f x y
g x y
h x y

= () =
()
(),

,
,

.

36 2 Raster Algorithms

Figure 2.7. Integral curves of a vector
field.

(2.2)

See Figure 2.8. The sequence of points p0, p1, . . . , pn obtained in this way becomes
our approximation to the actual integral curve passing through p0.

Unfortunately, as we move from point to point we start drifting away from the
actual curve and so our approximation will, in general, get further and further away
from the true solution. To make the method work we need to compensate for any
possible error as we move along. There are some very good algorithms that solve dif-
ferential equations with basically this approach by using some fancy error-correcting
terms. For more information see a text on numerical analysis such as [ConD72] or
[DahB74].

Discrete curve-drawing algorithms that are based on the qualitative solutions to
differential equations as described above are called digital differential analyzer or DDA
type algorithms. Let us see what we get in the special case of straight lines.

The differential equation for the straight line that passes through the points (x0,y0)
and (x1,y1) is

where Dy = y1 - y0, Dx = x1 - x0, and e is any positive real number. Specializing the
approximation formula, equation (2.2), to this differential equation gives us a
sequence of points pi defined by

(2.3)

In fact, the points pi we generate will actually fall on the line, so that we do not have
to worry about compensating for any errors. Although this may seem like overkill in
the case of continuous lines, it does motivate an approach to generating discrete lines
that leads to an extremely efficient such algorithm (the Bresenham algorithm). Note
that if qi is the point with integer coordinates that is gotten from pi by rounding each
real coordinate of pi to its nearest integer, then the points qi define a discrete curve
that is an approximation to the continuous one. The key to getting an efficient line-
drawing algorithm is to be able to compute the qi efficiently.

p pi i x y+ = + ()1 e eD D, .

dy
dx

y
x

y
x

= =
D
D

D
D

e
e

,

p pi i i i i ih x y g x y+ = + () ()()1 e , , , .

2.5 Generating Discrete Curves 37

Figure 2.8. Generating an integral curve
approximation.

In the continuous case one always generates points on the line no matter what e
is chosen but the choice of e does matter when generating discrete lines. We now look
at two possible choices for e. These give rise to what are called the simple and sym-
metric DDA, respectively.

Let m = max(|Dx|,|Dy|).

The simple DDA: Choose e = 1/m.
The symmetric DDA: Choose e = 2-n, where 2n-1 £ m < 2n.

2.5.1.1 Example. Suppose that we want to generate the discrete line from (1,2) to
(6,5).

Solution. In this case (Dx,Dy) = (5,3). For the simple DDA we have

In the case of the symmetric DDA, we have

The points that are generated are shown in Figure 2.9. The points of the simple DDA
are shown as ¥¢s and those of the symmetric DDA are shown as solid circles.

2.5.2 The Bresenham Line-Drawing Algorithm

Although the DDA algorithms for drawing straight lines are simple, they involve real
arithmetic. Some simple modifications result in an algorithm that does only integer
arithmetic, and only additions at that.

Note that in the case of the simple DDA, either x or y will always be incremented
by 1. For simplicity, assume that the start point of our line is the origin. If we also
restrict ourselves to lines whose endpoint is in the first octant in the plane, then it will
be the x that always increases by 1. Therefore, we only need to worry about comput-
ing the y coordinates efficiently.

e e e= = = = + ()+1 8 5 8 3 8 5 8 3 81, , , , .D Dx y and i ip p

e e e= = = = + ()+1 5 1 3 5 1 3 51, , , , .D Dx y and i ip p

38 2 Raster Algorithms

¥¥ simple DDA ∑ symmetric DDA

Figure 2.9. Simple and symmetric
DDA generated lines.

Suppose therefore that we want to draw a line from (0,0) to (a,b), where a and b
are integers and 0 £ b £ a (which puts (a,b) into the first octant). Using equation (2.3),
the points pi, 0 £ i £ a, generated by the simple DDA are then defined by

and the discrete line consists of the points (i,yi), where yi is the real number i(a/b)
rounded to the nearest integer.

Now the y coordinates start at 0. At what point does yi become 1? To answer this
question, we must compute b/a, 2b/a, 3b/a, . . . , and watch for that place where these
values become bigger than 1/2. Furthermore, the yi will then stay 1 until these values
become bigger than 3/2, at which time yi will become 2. Since we want to avoid doing
real arithmetic, note that we do not really care what the actual values are but only
care about when they get bigger than 1/2, 3/2, 5/2, This means that we can mul-
tiply through by 2a and the answer to the question as to when yi increases by 1 is
determined by when 2b, 4b, 6b, . . . become bigger than a, 3a, 5a, Since comput-
ers can compare a number to 0 in less time than it takes to compare it to some other
number, we shall start off by subtracting a. Our first question now is

“When does 2b - a, 4b - a, 6b - a, . . . become bigger than 0?”

and only involves repeated integer additions of 2b to an initial sum d = 2b - a. After
the sum d has become bigger than 0 and y has switched to 1, we need to check when
the sum becomes bigger than 2a. By subtracting 2a, we again only need to keep check-
ing for when the sum gets to be bigger than 0 by successive additions of 2b. In general,
whenever y is incremented by 1, we subtract 2a from the current sum d. In that way
we always need to check d simply against 0. For example, suppose we want to draw
the line from (0,0) to (15,3). In this case, 2a = 30, 2b = 6, and the initial d is 6 - 15 =
-9. The table below shows the points (xi,yi) that are drawn and the changes to the
sum d as i ranges from 0 to 8:

i 0 1 2 3 4 5 6 7 8

d -9 -3 -27 -21 -15 -9 -3 -27
(xi,yi) (0,0) (1,0) (2,0) (3,1) (4,1) (5,1) (6,1) (7,1) (8,2)

The code in Algorithm 2.5.2.1 implements the algorithm we have been describing.
In our discussion above we have restricted ourselves to lines that start at the origin

and end in the first octant. Starting at another point simply amounts to adding a con-
stant offset to all the points. Lines that end in a different octant can be handled in a
similar way to the first octant case – basically by interchanging the x and y. What this
boils down to is that an algorithm which handles all lines is not much harder, involv-
ing only a case statement to separate between the case where the absolute value of
the slope is either larger or less than or equal to 1.

We have just described the basis for the Bresenham line-drawing algorithm
([Bres65]). It, or some variation of it, is the algorithm that is usually used for drawing
straight lines. Bresenham showed in [Bres77] that his algorithm generated the best-
fit discrete approximation to a continuous line. The variation that is Algorithm 2.5.2.2

p pi i b a i i b a= + () = ()-1 1, , ,

2.5 Generating Discrete Curves 39

comes from [Heck90c] and works for all lines. It generates the same points as the
original Bresenham line-drawing algorithm but is slightly more efficient.

To further improve the efficiency of DDA-based algorithms, there are n-step algo-
rithms that compute several pixels of a line at a time. The first of these was based on
the idea of double stepping. See [RoWW90] or [Wyvi90]. There are also algorithms
that use a 3- or 4-step process. See [BoyB00] for an n-step algorithm that automati-
cally uses the optimal n and claims to be at least twice as fast as earlier ones.

2.5.3 The Midpoint Line-Drawing Algorithm

Because drawing lines efficiently is so important to graphics, one is always on the
lookout for better algorithms. Another well-known line-drawing algorithm is the so-
called midpoint line-drawing algorithm. It produces the same pixels as the Bresenham
algorithm, but is better suited for generalizing to other implicitly defined curves such
as conics and also to lines in three dimensions (see Section 10.4.1). The general idea
was first described in [Pitt67] and is discussed in greater detail by [VanN85].

Assume that a nonvertical line L is defined by an equation of the form

f x y ax by c, ,() = + + = 0

40 2 Raster Algorithms

 Code for drawing the discrete line from (0,0) to the point (a,b) in the first octant:

begin
integer d, x, y;

d := 2*b - a;
x := 0;
y := 0;
while true do

begin
Draw (x,y);
if x = a then Exit;
if d ≥ 0 then

begin
y := y + 1;
d := d - 2*a;

end;
x := x + 1;
d := d + 2*b;

end
end

Algorithm 2.5.2.1. Basic line-drawing algorithm.

where -b ≥ a ≥ 0. This assumption implies that our line has slope between 0 and 1.
Lines with other slopes are handled in a symmetric way like in Bresenham’s algo-
rithm. Vertical lines are a very special case that would be handled separately. Another
important consequence of our assumptions is that f(x,y) will be positive for points
(x,y) below the line and negative for points above the line. Also like in the Bresenham
algorithm, the points pi = (xi,yi) that we will generate for the line will have the prop-
erty that the x-coordinate will be incremented by 1 each time, xi+1 = xi + 1, so that we
only have to determine the change in the y coordinate.

See Figure 2.10. The only possible value for yi+1 is yi or yi + 1. The decision will
be based on the sign of

If di > 0, then the line L crosses the line x = xi + 1 above the point (xi + 1, yi + 0.5) and
we need to let yi+1 be yi + 1. If di < 0, then we should let yi+1 be yi. If di = 0, then either
y value would be satisfactory. We shall choose yi in that case. Choosing our points pi
in this way is what constitutes the basic idea behind the midpoint line-drawing algo-
rithm. The only thing that is left is to describe some optimizations that can be made
in the computations. First, the di can be computed efficiently in an incremental way.
By definition, if di £ 0, then

On the other hand, if di > 0, then

This shows that the next value of the decision variable can be computed by simple
additions to the previous value. If our line L starts at the point p0 = (x0,y0) , then

This gives us the starting value for the decision variable and all the rest are computed
incrementally. We can avoid the fraction in the starting value and do all our compu-

d f x y f x y a b0 0 0 0 01 0 5 2= + +() = () + +, . , .

d f x y

a x b y c

d a b

i i i

i i

i

+ = + +()
= +() + +() +
= + +

1 2 1 5

2 1 5

, .

.

.

d f x y

a x b y c

d a

i i i

i i

i

+ = + +()
= +() + +() +
= +

1 2 0 5

2 0 5

, .

.

.

d f x yi i i= + +()1 0 5, . .

42 2 Raster Algorithms

Figure 2.10. The midpoint line-drawing algorithm
decision.

tations using purely integer arithmetic by multiplying the equation for our line by 2,
that is, let us use

This has the effect of multiplying our starting value for the decision variable and its
increments by 2. Since only the sign of the variable was important and not its value,
we have lost nothing. Putting all this together leads to Algorithm 2.5.3.1.

Finally, before leaving the subject of line-drawing algorithms, we should point out
that there are other such algorithms other than the ones mentioned here. For example,
there are run-based line drawing algorithms. See [SteL00]. One thing to keep in mind

F x y f x y ax by c, , .() = () = + +() =2 2 0

2.5 Generating Discrete Curves 43

procedure DrawLine (integer x0, y0, x1, y1)
{ We have chosen the equation

f (x, y) = (dy) x - (dx) y + c = 0

 as the equation for the line.}
begin

integer dx, dy, d, posInc, negInc, x, y;

dx := x1 - x0;
dy := y1 - y0;
d := 2*dy - dx; { Initial value of decision variable }
posInc := 2*dy; { The increment for d when d ≥ 0 }
negInc := 2*(dy - dx); { The increment for d when d < 0 }
x := x0; y := y0;
Draw (x,y);
while x < x1 do

begin
if (d £ 0)

then d := d + posInc
else

begin
d := d + negInc; y := y + 1;

end;
x := x + 1;
Draw (x,y);

end
end;

Algorithm 2.5.3.1. The midpoint-line drawing algorithm.

though is that the time spent in line drawing algorithms is often dominated by the
operation of setting pixels in the frame buffer, so that software improvements alone
may be less important.

2.6 The Aliasing Problem

No matter how good a line drawing algorithm is, it is impossible to avoid giving most
discrete lines a staircase effect (the “jaggies”). They just will not look “straight.”
Increasing the resolution of the raster helps but does not resolve the problem entirely.
In order to draw the best looking straight lines one has to first understand the “real”
underlying problem which is one of sampling.

The geometric curves and surfaces one is typically trying to display are continu-
ous and consist of an infinite number of points. Since a computer can only show a
finite (discrete) set of points, how one chooses this finite set that is to represent the
object is clearly important. Consider the sinusoidal curve in Figure 2.11. If we sample
such a sine wave badly, say at the points A, B, C, and D, then it will look like a straight
line. If we had sampled at the points A, E, F, and D, then we would think that it has
a different frequency.

The basic problem in sampling theory: How many samples does one have to take so
that no information is lost?

This is a question that is studied in the field of signal processing. The theory of
the Fourier transform plays a big role in the analysis. Chapter 21, in particular Section
21.6, gives an overview of some of the relevant mathematics. For more details of the
mathematics involved in answering the sampling problem see [GonW87], [RosK76],
or [Glas95]. We shall only summarize a few of the main findings here and indicate
some practical solutions that are consequences of the theory.

Definition. A function whose Fourier transform vanishes outside a finite interval is
called a band-limited function.

One of the basic theorems in sampling theory is the following:

The Whittaker-Shannon Sampling Theorem. Let f(x) be a band-limited function
and assume that its Fourier transform vanishes outside [-w,w]. Then f(x) can be
reconstructed exactly from its samples provided that the sampling interval is no bigger
than 1/(2w).

44 2 Raster Algorithms

Figure 2.11. Aliasing caused by bad sampling.

If T is a sampling interval, then 1/T is called the sampling frequency and 1/(2T) is
called the Nyquist limit. The Whittaker-Shannon Theorem says that if a function is
sampled less often than its Nyquist limit, then a complete recovery is impossible. One
says that the function is undersampled in that case. Undersampling leads to a phe-
nomenon referred to as aliasing, where fake frequencies or patterns appear that were
not in the original object. The two-dimensional situation is similar, but in practice
one must sample a lot more because of limitations of available reconstruction
algorithms.

Now in the discussion above, it was assumed that we were taking an infinite
number of samples, something that we obviously cannot do in practice. What happens
if we only take a finite number of samples? Mathematically, this corresponds to where
we multiply the sampled result by a function that vanishes outside a finite interval.
The main result is that it is in general impossible to faithfully reconstruct a function
that has only been sampled over a finite range. To put it in another way, no function
that is nonzero over only a finite interval can be band-limited and conversely, any
band-limited function is nonzero over an unbounded set.

The practical consequences of the theory sketched above can be seen in lots of
places. Aliasing is most apparent along edges, near small objects, along skinny high-
lights, and in textured regions. Ad hoc schemes for dealing with the problem may be
disappointing because of the human visual system’s extreme sensitivity to edge dis-
continuities (vernier acuity). Aliasing is also a problem in animation. The best-known
example of temporal aliasing is the case of the wagon wheel appearing to reverse its
direction of motion as it spins faster and faster. Other examples are small objects flash-
ing off and on the screen, slightly larger objects appearing to change shape and size
randomly, and simple horizontal lines jumping from one raster line to another as they
move vertically. See Figure 2.12. This happens because objects fall sometimes on and
sometimes between sampled points.

Jaggies do not seem to appear in television because the signal generated by a tel-
evision camera, which is sampled only in the vertical direction, is already band-limited
before sampling. A slightly out of focus television camera will extract image samples
that can be successfully reconstructed on the home television set. People working in
computer graphics usually have no control over the reconstruction process. This is
part of the display hardware. In practice, antialiasing techniques are imbedded in
algorithms (like line-drawing or visible surface determination algorithms). The
approaches distinguish between the case of drawing isolated lines, lines that come
from borders of polygons, and the interior of polygons.

There are essentially two methods used to lessen the aliasing problem. Intuitively
speaking, one method treats pixels as having area and the other involves sampling
at a higher rate. The obvious approach to the aliasing problem where one simply

2.6 The Aliasing Problem 45

Figure 2.12. Objects appearing, disappearing,
changing size.

increases the resolution of the display device is a special case of the latter. Mathe-
matically, the two methods are

(1) prefiltering, and
(2) supersampling or postfiltering

Prefiltering. This amounts to treating each sample point as representing a finite
area rather than simply a dot. Because lines often fall between pixels, this would avoid
concentrating everything at a pixel in a hit-or-miss fashion. Mathematically, the
process corresponds to applying a convolutional filter before sampling. One must
make sure that the highest frequency of a signal in a scene does not exceed one-half
the sampling rate.

Two widely used models for computing the area subtended by a pixel are

(1) One considers the image a square grid as in Figure 2.13 with the pixels in the
centers of the squares.

(2) One computes the area using a weighting function similar to a Gaussian func-
tion. This in fact models the effect of the electron beam of a CRT and print-
ing processes more closely. The pixels are larger and overlap. Details near the
center now count more heavily than those near the edge.

Model (1) is easier than (2), but (2) produces better pictures. Internal details, such as
highlights, are harder to handle.

In the case of boundaries of polygons we can use shading to suggest the position
of the edges and can make the picture look as if it had higher resolution than it in
fact has. Therefore, associate to each pixel an intensity proportional to the percent-
age of its area that is covered by the polygon. For example, if the intensity values
ranged from 0 to 15, then we might assign pixel A in Figure 2.13 a value of 2 and
pixel B, a value of 8. This approach could obviously substantially increase the amount
of computation one has to do. However, by using an efficient approximation of
the area that is needed, it turns out that all it takes is a slight modification to the
Bresenham algorithm to get an efficient implementation of it, namely, the Pitteway-
Watkinson algorithm. See [PitW80] or [Roge98].

Another approach for drawing antialiased lines treats the lines as having a thick-
ness. An algorithm of this type is the Gupta-Sproull algorithm. See [GupS81],
[Thom90], or [FVFH90]. It also starts with the standard Bresenham algorithm and
then adds some checks for nearby pixels above and below each pixel that would be
drawn by that algorithm.

46 2 Raster Algorithms

Figure 2.13. Pixel intensities based on percentage of
area covered.

Supersampling. Here we sample at more points than will actually be displayed.
More precisely, we sample at n uniformly situated points within the region associated
to each pixel and then assign the average of these values to the pixel. One usually over-
samples the same amount in each direction so that n = s2 for some scaling factor s.
For example, to create a 512 ¥ 512 image we would sample at 1536 ¥ 1536 points if
s is 3. The samples would be taken 1/3 of a pixel width apart. In Figure 2.14, each
square corresponds to a pixel in the final image and the dots show the location of the
nine samples per pixel.

Postfiltering. In supersampling the sample values for each pixel are averaged. This
gives each sample the same weight. Postfiltering uses the same approach but allows
each sample to have a different weight. Supersampling is therefore a special case of
postfiltering. Different weighting or “window” functions can be used. For example,
if we represent the weighting operation in matrix form with the ij’th entry being
the weighting factor for the ij’th sample, then rather than using the supersampling
matrix

we could use

Mathematically, postfiltering corresponds to a convolution and filtering operation on
the samples. The cost of generating an image with supersampling and postfiltering is
proportional to the number of scan lines. The cost of calculations involving shading
is proportional to the square of the number of scan lines. This means that the algo-
rithm is particularly expensive for visible surface determination algorithms.

In conclusion, antialiasing techniques add a large amount of computation time to
any algorithm that uses them. To minimize this extra work, one tries to do it only for
areas where problems occur and makes no special computations for the rest. Of
course, this assumes that one knows all about the picture, say a jar defined via many
polygons. For lots more about antialiasing techniques see [FVFH90].

1 8

0 1 0

1 4 1

0 1 0

1 16

1 2 1

2 4 2

1 2 1

()
Ê

Ë
Á
Á

ˆ

¯
˜
˜

()
Ê

Ë
Á
Á

ˆ

¯
˜
˜

or .

1 9

1 1 1

1 1 1

1 1 1

()
Ê

Ë
Á
Á

ˆ

¯
˜
˜
,

2.6 The Aliasing Problem 47

Figure 2.14. Supersampling with scaling factor 3.

2.7 Halftoning, Thresholding, and Dithering

In contrast to antialiasing where we use multiple intensity levels to increase the
resolution, halftoning (or patterning) is a technique for obtaining increased visual
resolution with a minimum number of intensity levels. Basically, rectangular grids of
pixels are treated as single pixels. This is how photographs are usually reproduced for
magazines and books. For example, using a 2 ¥ 2 grid we can get five different inten-
sities. See Figure 2.15(a). Not all of the possible combinations are used (basically sym-
metric patterns are to be avoided) in order not to introduce unwanted patterns into
the picture. Using the patterns in Figure 2.15(b) could easily introduce unwanted hor-
izontal or vertical lines in a picture. Normally 2 ¥ 2 or 3 ¥ 3 grids are used.

Halftoning reduces the overall spatial resolution of a system. For example, the
resolution of a 1024 ¥ 1024 monitor would be reduced to 512 ¥ 512 with 2 ¥ 2 grids.
This means that such a technique is best applied when the resolution of the original
scene is less than that of the output device.

Another technique called thresholding deals with the problem where we have a
digital image with the same resolution as our monochrome display device but with
more intensity levels. The simplest form of thresholding is to use a fixed threshold for
each pixel. If the intensity exceeds that value, the pixel is drawn white, otherwise it
is drawn black. Such a simple scheme can lose a lot of detail. A more refined algo-
rithm of this type is due to Floyd and Steinberg. See [Roge98].

Finally, dithering is a technique applying to monochrome displays that is used with
halftoning or thresholding methods to smooth edges of objects by introducing random
noise into the picture. It increases the visual resolution without reducing the spatial
resolution. One adds a random error to each pixel value before comparing to the
threshold value (if any has been selected). Good error patterns have to be chosen care-
fully. Ordered dithering is where a square dither matrix is added to the picture. Alter-
natively, rather than adding noise using the same threshold for each pixel one can
vary the threshold. With this approach, an optimum 2 ¥ 2 matrix has been shown to
be

The entries of the matrix are used as the threshold for the corresponding pixel. There
are recursive formulas for higher dimensional dither matrices. See [Roge98].

0 2

3 1
Ê
Ë

ˆ
¯.

48 2 Raster Algorithms

Figure 2.15. Halftone patterns.

2.8 Choosing the Coordinates of a Pixel

Before going on to discuss another scan conversion algorithm we pause to take up a
subject that probably did not occur to the reader as being an issue. However, since
pixels should be treated as having area, if we consider our image as corresponding to
a grid as we have, where should the pixels be placed? Should they be at the intersec-
tion of the grid lines or in the center of the grid squares? Equivalently, when we con-
sider scan lines, do their y-coordinates fall on integers or half-integers? Whatever
choice one makes, it does matter. We summarize the conclusions of the excellent
article by Heckbert [Heck90a].

The real issue here is how one maps reals to integers. Should one round or trun-
cate? Rounding corresponds to placing pixels at the integers because the whole inter-
val [n - 0.5,n + 0.5) will map to n. Truncating corresponds to placing the pixels at
half-integers because the whole interval [n,n + 1) will map to n. To use an example,
if one rounds, then the interval [-.5,2.5) maps to {0,1,2}, whereas if one truncates,
then [0,3) maps to {0,1,2}. The second approach is a cleaner choice because there are
no .5’s to worry about. By truncating one simplifies some mathematics. We shall there-
fore use the following correspondence if we need to map back and forth between the
continuous and discrete world:

real c Æ integer n = Floor (c)
integer n Æ real (n + 0.5)

(Mathematically it is the Floor function that returns an integer whereas the Trunc
function returns a real.) In two dimensions this means that when we have a pixel with
coordinates (x,y), its center will be at continuous coordinates (x + 0.5,y + 0.5). Note
that this was the choice we made when discussing antialiasing. Now we know why.

In the future, whenever we scan a continuous object the scan lines will fall on
half-integers.

2.9 More Drawing Algorithms

2.9.1 Scan Converting Polygons

The Bresenham line-drawing algorithm discussed in Section 2.5.2 dealt with scan con-
verting a single segment. There may be several segments we want to scan convert
such as the boundary of a polygon. In that case one can use the coherence inherent
in that problem and use an algorithm that is more efficient that simply scan con-
verting each bounding edge separately.

Consider the edges in Figure 2.16. As we move down from the top of the picture
one scan line at a time we do not need to compute the intersections of the edges
with the scan line each time. These can be computed incrementally. Since not every
edge will intersect current scan line, by using an active edge list (AEL), we do not
have to look at every edge each time. Here are the steps to scan convert these edges
efficiently:

2.9 More Drawing Algorithms 49

Step 1. Associate a “bucket” to each scan line and initialize it to empty.
Step 2. Find the largest y value for each edge and put the edge into the correspon-

ding scan line’s bucket.
Step 3. For each edge e maintain the following information:

x – initially the x-coordinate of the highest point of the edge e (in general
the x-coordinate xe of the intersection of e with the current scan line)

dx – change in x from line to line (the reciprocal of the slope of the line)
dy – initially the number of scan lines crossed by e

Step 4. Initialize the active edge list to empty. Set y to the height of the top scan line.
Step 5. Add any edges in the bucket for y to the active edge list.
Step 6. For each edge in the active edge list draw (x,y), change the x to x + dx, and

decrement dy. If dy becomes 0, then remove that edge from the list.
Step 7. Decrement y. If y is 0, then quit; otherwise, go back to Step 5.

In Figure 2.16, when we reach scan line y1, the edges AB and BC will be added to the
active edge list. At scan line y2 nothing special happens. When we get to scan line y3,
the edges CD and DE will be added to the list. Finally, at scan line y5 there are only
the two edges BC and CD on the list and they will now be removed.

To avoid having fixed bucket sizes and limiting the amount of data for each scan
line, one stores pointers only and stores all information sequentially in an array. Alter-
natively, one can use a linked list to be able to add and delete easily.

A problem related to scan converting lists of edges which is of more practical
importance is scan converting solid polygons. This leads to polygon based fill algo-
rithms. The pixel-based analog was already discussed earlier in Section 2.4.

Assume that XMIN, XMAX, YMIN, and YMAX are the minimum and maximum
values for the x- and y-coordinates of pixels. The basic idea here is the following:

for i:=YMIN to YMAX do
for j:=XMIN to XMAX do

if Inside (polygon,j,i) then Draw (j,i);

The Boolean-valued function “Inside” counts the intersections of the line from (j,i) to
(-•,i) with the polygon. If this number is odd, then the function returns true, other-

50 2 Raster Algorithms

Figure 2.16. Scan converting a polygon.

wise it returns false. Of course, this algorithm is too slow. One needs to take scan
line coherence into account. This leads us to what are called ordered edge list fill algo-
rithms. They have the following general form:

for each scan line do
begin
Find all intersections of edges with the scan line;
Sort the intersections by increasing x;
Fill alternate segments;

end;

For example, consider the scan line y4 in Figure 2.16. Notice how filling the alternate
segments [b,c] and [d,e] does in fact fill what we want. That this works is justified by
a parity type argument. An active edge list again helps. Algorithm 2.9.1.1 shows a
more detailed version.

2.9 More Drawing Algorithms 51

linerec = record
real x, dx;
integer dy;

end;

linerecs = linerec list;

begin
linerecs array [0..] edges; { the edges of the polygons }
linerecs ael; { the active edge list }
integer y;

 Scan the polygon and set up the edges table;
ael := nil;

for y:=YMIN to YMAX do
begin

 Add all edges in edges [y] to ael;
if ael π nil then

begin
Sort ael by increasing x;
Fill pixels along y by scanning ael and filling alternate x segments;
Delete from ael edges for which dy = 0 ;

 Update each x in ael by dx;
end

end
end;

Algorithm 2.9.1.1. An ordered edge list fill algorithm.

The following points need to be made about Algorithm 2.9.1.1:

(1) The polygon is assumed to lie entirely in window.
(2) Horizontal edges need not be considered because they get filled automatically.
(3) There is a problem with parity at vertices unless one takes precautions.

To understand the parity problem at vertices consider Figure 2.16 again. At vertices,
their x values would be listed twice in the active edge list. In the case of a local
maximum like vertex B = (xB,yB), the algorithm would fill the segments [XMIN,xB],
[xB,xB], and [xB,XMAX] on the scan line y = yB to the background color, the color of
the polygon, and the background color, respectively. This is as we would want it. On
the other hand, when the algorithm gets to vertex A = (xA,yA), assuming that there was
another edge below this vertex, it would fill [XMIN,xA] to the background color,
[xA,xBA] to the color of the polygon, and [xBA, xBC] to the background color, etc. This
is not correct. Furthermore, we cannot simply skip duplicate x-coordinates as we scan
the active edge list. If we did, then vertices like A would be handled correctly, but the
algorithm would now fail at local maxima and minima like B. The way that this parity
problem is usually resolved is to shorten one of the (two) edges that meet in a vertex
that is not at a local extremum. For example, change the lower vertex (x,y) of the
upper edge to (x,y + 1) (leaving the upper vertex of the lower edge in tact). No short-
ening takes place at vertices that are local extrema. With this change to the edges,
Algorithm 2.9.1.1 will now work correctly, but we need a test for when vertices are
local extrema. Here is one:

if adjacent edges have the same sign for their slope
then the common vertex is not a local extremum
else test the opposite endpoints for whether or not they lie on the

same side of the scan line as the vertex: if they do, then the
vertex is a local extremum, otherwise, not

To see that a further test is required in the else case, consider Figure 2.17 and the
two pairs of segments ([(-1,-1),(0,0)],[(0,0),(1,-1)]) and ([(-1,-1),(0,0)],[(0,0),(-1,1)]).
In both pairs, the segments have opposite slopes, but (0,0) is a local extremum for the
first pair but not for the second. One can tell the two apart however because the end-
points (-1,-1) and (-1,1) for the first pair lie on opposite sides of the scan line for
(0,0), whereas the endpoints (-1,-1) and (1,-1) both lie on the same side of the scan
line.

Finally, note that the ordered edge list fill algorithm “works” for polygons with
self-intersections and/or holes. See Figure 2.18. One needs to understand what “works”

52 2 Raster Algorithms

Figure 2.17. Testing for local extrema.

means though. For example, the inside of the inner loop of Figure 2.18(a) will be
drawn in the background color.

Looking ahead to Chapter 7, which is on visible surface determination, we can
deal with multiple polygons here if we have an associated priority number with each,
where having a higher priority means being in front of or not obscuring. In the
algorithm above, as we go along we must now keep track of the polygon to which
the “current” segment “belongs.” One way to do this is to maintain the following
additional data:

(1) covers – a Boolean array so that covers[i] is true for the ith polygon if
it covers the current segment

(2) numcover – the number of polygons covering the current segment
(3) visiblePoly – a pointer to the foremost polygon, if any

As we move from segment to segment in a scan line, numcover is incremented or
decremented appropriately. The array covers is initialized to false and every time that
one runs into an edge of the ith polygon, covers[i] is negated. The pointer visiblePoly
tells us the color of the current segment.

In conclusion, here are some points to consider when deciding on a fill algorithm.
The main advantages of ordered edge list algorithms are that pixels are visited only
once and they are well suited for shading algorithms since both ends of a span are
computed before the span is drawn so that one can interpolate intensities. The main
disadvantage is the large amount of processing required maintaining and sorting
various lists. The main advantage to seed fill algorithms is that they can fill arbitrary
planar contours, not just those bounded by polygonal curves. The main disadvantages
are that some pixels are visited many times and one requires an initial interior point.
The latter is not a problem in interactive situations but would be in a fully automated
one. One would then have to invoke another algorithm to find such a point. See
[AckW81] for some conclusions based on performance tests. Basically, fill time tends
to be dominated by the time required to set pixels making the ordered edge list algo-
rithms the most attractive overall. [FisB85] compares various specific seed fill algo-
rithms. An antialiased scan conversion algorithm is described in [Morr90].

2.9 More Drawing Algorithms 53

Figure 2.18. Various types of polygon.

2.9.2 Drawing Circles

Probably the most straightforward approach to generating points on a circle is to use
a polar coordinate parameterization. If, for simplicity, we restrict the discussion to
circles of radius r centered at the origin, then this map is given by the formula

The only problem with this is that the sine and cosine functions are relatively com-
plicated to evaluate. We want a speedier algorithm. One can use rational functions.
For example, there is the following rational function parameterization of the right
half of the unit circle

These rational polynomials can be evaluated rather efficiently using a method of
forward differences, but the problem now is that equally spaced t’s do not give rise to
equally spaced points on the circle.

The DDA approach that led to a good algorithm in the case of lines is also appli-
cable to circles. By differentiating the equation

for a circle of radius r about the origin implicitly with respect to x, one sees that

is the differential equation for that circle. This means that a circle-generating DDA
can be written in the form

A natural choice for e is 2-n, where 2n-1 £ r < 2n. Unfortunately, if one were to plot the
points that are generated by these equations, one would find that they spiral outward.
From a mathematical standpoint one should not have been surprised because the
determinant of the matrix

for this linear transformation is 1 + e2. An ad hoc way to correct this determinant
problem is to make a slight change and note that the matrix

1

1 2

-
-

Ê
Ë

ˆ
¯

e
e e

1

1

-Ê
Ë

ˆ
¯

e
e

x x y

y y x
n n n

n n n

+

+

= +
= -

1

1

e
e .

dy
dx

x
y

= -

x y r2 2 2+ =

t
t

t

t

t
tÆ

-
+ +

Ê
ËÁ

ˆ
¯̃

- £ £
1

1

2

1
1 1

2

2 2
, , .

q q qÆ ()r rcos , sin .

54 2 Raster Algorithms

has determinant equal to 1. The points that are generated by the corresponding trans-
formation produce a much better result. The equations for this transformation are

which reduces to

Notice how the equation for the (n + 1)st value for y now also involves the (n + 1)st
value of x. The coordinates of the new point have to be computed sequentially, first
the x value, then the y value. Before we could compute them in parallel. Furthermore,
what we have here is a simple example of an error-correcting term. All good methods
for numerical solutions to differential equations have this, something that was alluded
to in Section 2.5.1.

Returning to our problem of generating points on a circle, our new system of equa-
tions produces points that no longer spiral out. However, having determinant equal to 1
is only a necessary requirement for a transformation to preserve distance. It is not a suf-
ficient one. In fact, the points generated by our new transformation form a slight ellipse.

To get a better circle-generating algorithm we start over from scratch with a new
approach. Assume that the radius r is an integer and define the “error” function E by

This function measures how close the point (x,y) is to lying on the circle of radius r.
As we generate points on the circle we obviously want to minimize this error. Let us
restrict ourselves to the octant of the circle in the first quadrant, which starts at (0,r)
and ends at (r/÷2,r/÷2). Note that in this octant as we move from one point to the next
the x-coordinate will always increase by 1 and the y-coordinate will either stay the
same or decrease by 1. Any other choice would not minimize E. The two cases are
illustrated in Figure 2.19. We shall call the two possible moves an R-move or a
D-move, respectively.

As we move from point to point, we choose that new point which minimizes E.
However, we can save computation time by computing the new E incrementally. To
see this, suppose that we are at (x,y). Then the current E, Ecur, is given by

E r x y= - -2 2 2.

x x y

y y x
n n n

n n n

+

+ +

= +
= -

1

1 1

e
e .

x x y

y y x

n n n

n n n

+

+

= +
= -() -

1

1
21

e
e e ,

2.9 More Drawing Algorithms 55

Figure 2.19. Moves in circle-generating
algorithm.

ED ER |ED| - |ER|

+ + ED - ER = 2y - 1, always positive
+ - ED + ER

- + this case never happens
- - -ED + ER = -(2y - 1), always negative

After an R-move the new E, call it ER, is

After a D-move the new E, call it ED, is

One algorithm for drawing a circle is to choose that move which makes our new error,
either ER or ED, have the opposite sign of our current one. The idea is that if we find
ourselves outside the circle we should move as quickly as possible back into the circle
and vice versa. This leads to Algorithm 2.9.2.1, the Bresenham circle-drawing algorithm.

The only problem with Algorithm 2.9.2.1 is that we were using a heuristic that does
not always minimize the real error E (Exercise 2.9.2.1). To get a better algorithm, we
have to make that our goal. Choosing the move that minimizes the error can be done by
testing the sign of |ED| - |ER|. To gain efficiency we want to avoid having to compute
absolute values of numbers. Consider the possible outcomes shown in following table:

E r x y

E x y
D

cur

= - +() - -()
= - +() + -()

2 2 2
1 1

2 1 2 1 .

E r x y

E x
R

cur

= - +() -
= - +()

2 2 21

2 1 .

E r x ycur = - -2 2 2.

56 2 Raster Algorithms

x := 0; y := r; E := 0;
while x £ y do

begin
if E < 0 then

begin
E := E + y + y - 1;
y := y - 1;

end;
E := E - x - x - 1;
x := x + 1;
Draw (x,y);

end;

Algorithm 2.9.2.1. The Bresenham circle-drawing algorithm (one octant).

This table shows that the sign of |ED| - |ER| always agrees with the sign of the auxili-
ary variable

Furthermore, G can also be computed incrementally. Let GR and GD denote the values
of G after an R-move or D-move, respectively. If Gcur is the current G value, then

(2.4)

and

(2.5)

It is easy to derive formulas (2.4) and (2.5). We prove formula (2.4) for GR in case we
move right. Recall that

On an R-move,

The other cases are proved in a similar fashion.
Finally, going one step further, the increments to GR and GD themselves can be

computed incrementally, producing an improved Algorithm 2.9.2.2. It can be shown
that the algorithm produces a best-fit curve for the circle when either the radius r or
its square is an integer, but that may not be the case if one tries the same approach
when r2 is not an integer.

See [Blin87] for a more complete overview of circle drawing algorithms. For a
version of the midpoint line-drawing algorithm that works for circles see [VanN85].

2.9.3 Drawing Ellipses and Other Conics

The equation for the standard ellipse centered at the origin is

(2.6)
x

a

y

b

2

2

2

2
1+ = ,

E E x

newE E x

newE E x y and

G newE newE

E x y

E x x y

G

new cur

R new

D new

R D R

new

cur

cur

= - +()
= - +() +[]
= - +() +[] + -()
= +
= - +() - + -()
= - +() - +() - + -()
= -

2 1

2 1 1

2 1 1 2 1

2 4 2 2 2 1

2 2 2 1 4 2 2 2 1

4

,

,

,

xx - 6.

E E x

E E x y and

G E E E x y

R cur

D cur

cur D R cur

= - +()
= - +() + -()
= + = - +() + -()

2 1

2 1 2 1

2 4 2 2 1

,

,

.

G G x yD cur= - + -4 4 10.

G G xR cur= - -4 6

G E ED R= + .

2.9 More Drawing Algorithms 57

and we can generate points on it using the standard parameterization

Differentiating equation (2.6) implicitly gives the differential equation

This leads to a DDA approach similar to the case of a circle.
Because ellipses are an important class of curves, many algorithms exist to draw

them. The Bresenham approach to drawing a circle can be extended to ellipses, but
that algorithm will no longer guarantee a minimum linear error between the ellipse
and the chosen pixels. See [Mcil92] for a correct Bresenham-type algorithm. Alterna-
tively, a version of the midpoint algorithm described in Section 2.5.3 produces an
efficient and more accurate algorithm. For more details and other references see
[VanN85] and [Roge98].

dy
dx

x
y

b

a
= -

2

2
.

q q qÆ ()a bcos , sin .

58 2 Raster Algorithms

x := 0;
y := r;
g := 2*r - 3;
dgr := - 6; dgd := 4*r - 10;
while x £ y do

begin
if g < 0

then { go diagonal }
begin

g := g + dgd;
dgd := dgd - 8; { -4 (x+1) + 4 (y-1) - 10 = -4x + 4y - 10 - 8 }
y := y - 1;

end
else { go right }

begin
g := g + dgr;
dgd := dgd - 4; { y stays the same, x increases by 1 }

end;

dgr := dgr - 4; { x always gets incremented: -4 (x+1) - 6 = -4x - 6 - 4 }
x := x + 1;
Draw (x,y);

end;

Algorithm 2.9.2.2. An improved Bresenham circle-drawing algorithm (one octant).

Special algorithms for generating parabolas and hyperbolas are also known. We
shall not describe any here but instead jump directly to the case of a general conic.
Every conic can be defined implicitly by an equation of the form

Given a starting pixel on the conic, one can determine which adjacent pixel to pick
next similar to what we did in the case of circles by looking at an error function. Each
possible move will have an error associated to it and we simply choose the move with
the least error. It is easy to show that the error functions have the same form as the
equation of the conic and that they can be computed incrementally. See [Blin88a] and
[Chan88] for more details.

Conics are a special case of implicitly defined curves and general algorithms for
generating such curves will be presented in Section 14.5.1.

2.10 Bit Map Graphics

There are lots of situations in graphics where one needs to map blocks of bits from
one location to another. Today’s graphical user interfaces present a user with many
“windows” that pop on and off the screen. Animation techniques usually achieve their
motion effect by mapping a saved block of pixels to the current location of the moving
figure (thereby erasing it and restoring the background) and then mapping another
block containing the figure to its new location. This section looks at some rectangu-
lar bit map basics. The discussion is specific for the IBM PC, although most of it is
generic. For a more extensive discussion see [Miel91], [FVFH90], and [DeFL87].

First of all, what does it take to define a bit map? Rectangles are specified by the
upper left and lower right corner:

rectangle = record
integer x0, y0, { upper left corner }

x1, y1; { lower right corner }
end;

A bit map specifies a rectangle in a possibly larger rectangle:

bitMap = record
pointer base; { start address in memory }
integer width; { width in number of words }
rectangle rect;

end;

Bit maps are stored in row major form in memory. The width field refers to a possi-
ble larger bitmap that contains this rectangle. For example, the rectangle may be prop-
erly contained in a frame buffer whose pixels are stored in row major form. In that
case, the pixels of the rectangle do not form a contiguous sequence and one needs the
width of the bigger frame buffer to be able to access the pixels of the rectangle as one
moves from one row to the next. See Figure 2.20. Note that each row of a rectangle
is assumed to specify a contiguous chunk of bits in memory however.

ax bxy cy dx ey f2 2 0+ + + + + = .

2.10 Bit Map Graphics 59

Several modes are allowed in bit map copying:

opMode = (XORmode,ORmode,ANDmode,REPLACEmode);

One often allows a “texture” so that one can generate patterns.

texture = byte array [1..texlen];

The value of texlen depends on the graphics hardware. Each bit in the texture array
indicates whether the corresponding bit in the source rectangle is to be copied.

Here are the basic parameters of a bitBlt (bit block transfer) procedure:

procedure BitBlt (bitMap source;
integer x0, y0; { start point of source rectangle }
texture tex;
bitMap destination;
rectangle rect; { target rectangle }
opMode mode);

Sometimes the source rectangle is specified instead of the target rectangle. In any
case, both the source and target rectangle are the same size and may need to be clipped
against their associated bit maps. The bit maps themselves may overlap so that the
copy operation must be careful not to overwrite essential data. Here is an outline for
the procedure:

Clip the source and target rectangle to their bit maps;
If either the width or height of the clipped rectangles is negative, then exit;
addr1 := address of start of clipped source rectangle;
addr2 := address of start of clipped target rectangle;
if addr1 < addr2
then
begin
Reset addr1 to address of end of clipped source rectangle;
Reset addr2 to address of end of clipped target rectangle;
Copy the rows of the source rectangle to the target in bottom to top order

end
else Copy the rows of the source rectangle to the target in top to bottom order

60 2 Raster Algorithms

Figure 2.20. Specifying bit maps.

Before each bit is copied, one checks the appropriate bit in the texture array. A “1”
means that the bit is to be copied, a “0,” that it is not. If a source bit sB is to be copied,
then the target bit tB is replaced by sB op tB using the current copying mode op.

Although the abstract code for a bitBlt operation is straightforward, the tricky
part is to implement it as efficiently as possible. For that reason, such operations are
usually implemented in assembly language. A complicating factor is when addresses
do not fall on word boundaries. Efficient coding is absolutely essential here and can
speed up the speed of the procedure by orders of magnitude!

An important application of BitBlt procedures is managing a cursor on the screen.
What this involves is mapping predefined bit maps to specified locations on the screen.
A cursor corresponds to a small rectangle of bits. In Section 1.3 we already described
a simple way to move a cursor is using xor mode along with the advantages and dis-
advantages of this method.

2.11 2D Animation

The object of this section is to describe a few simple aspects of two-dimensional ani-
mation. The general topic is much too large to do more than that here, especially since
much of it is not really a topic in geometric modeling per se. On the other hand, many
of the techniques used in two-dimensional computer animation belong in a discus-
sion of raster graphics. This is certainly true of that part of animation which deals
with showing moving objects and which lends itself to a lot of fun programming exer-
cises. Keep in mind though that animation techniques have changed along with hard-
ware. All we shall basically do here is describe a few interesting tricks that deal with
Boolean operations on bits. These tricks were especially important in the early days
of graphics where one had only a single frame buffer and not the multiple buffers that
one finds in graphics systems today. We shall have a little to say about animation of
three-dimensional objects in Sections 4.13 and 4.14.

Showing moving objects is accomplished by showing a sequence of still objects,
where each individual picture shows the objects moved slightly from their previous
position. Here are some simple methods by which one can perform such animation,
starting with the most basic:

(1) Redraw the whole screen for each new image.
(2) If the objects consist of lines, then simply erase the current lines and redraw

them at the new location.
(3) Erase/draw objects using block write commands.
(4) Use an approach similar to (3), except let each block have “trailing” blanks,

so that each new block write erases and draws simultaneously. This reduces the
number of block writes. An example of this is shown in Figure 2.21. If we wanted to
show a ball moving from left to right, we could show the ball at the sequence of loca-
tions shown in (a). Rather than writing blocks of pixels the size of the ball, we could
write a block shown in (b) which simultaneously erases the previous ball as it writes
the new one.

(5) Use bit operations such as xor, and, or more general BitBlt procedures. We
have already discussed in Section 1.3 how xor mode is useful in moving a cursor

2.11 2D Animation 61

without disturbing the background. One can also use xor to do “rubber banding.” For
example, to drag a line anchored to a point around on the screen with the mouse, one
would perform the following two instructions in a loop:

Erase the current line segment.
Draw the line segment from the fixed point to the new location of the mouse.

The advantage of xoring is speed but its disadvantages are

The background can bleed through because if it is nonzero, then xor operation
will add bits to the image being drawn.

One cannot xor a zero.

One can also use combinations of bit operations. Here is an example using the
or/xor combination. See Figure 2.22. Suppose that one wants to move a ball around
on a grid. Assume that the ball has color c1, the grid has color c2, and the background
is black. Define two blocks A and B as follows: A contains a ball of color c1 on a black
background and B contains a white ball on a black background. See Figure 2.22(a).
If we want to write the ball to block W on the screen, we first save W and then replace
W by (B or W) xor A. See Figure 2.22(b). To make this work, we need to assume that
c1 and c2 are complimentary colors in the sense that

(a) c1 or c2 = white (or all 1s)
(b) c1 and c2 = black (or 0)

62 2 Raster Algorithms

Figure 2.22. or/xor animation.

Figure 2.21. Animating with “trailing
blank” blocks.

Actually, the only thing we really need for this technique to work in general is that
the objects in the world have a different color from the object we are trying to move.
The reason is that we have been talking about color numbers and the association
between actual colors and their numbers is quite arbitrary and can be changed at will.
This will become clear later when we talk about color lookup tables. One can play
similar tricks with other bit operations such as or/and.

(6) Maintain several “pages” of information and “flip” between the pages. For
example, to show a walking man, one could precompute several different walking
positions of the man, and then cycle between them. Having predrawn images in
memory may very well be faster than computing them dynamically.

The speed of objects depends on how far apart they are drawn in succession. A
basic way to keep track of multiple moving figures is to cycle through them. One can
keep track of them using arrays. If objects overlap but one knows their relative
distances from the viewer one can prioritize them by distance and use a painter’s algo-
rithm (see Chapter 7) and draw the nearer objects last.

One big problem with multiple objects is collision detection. Bounding boxes (see
Chapter 6) may be helpful in cutting down on the amount of computation if the objects
are complicated. Sometimes one knows where collisions can occur and then one only
has to check in those places. One potential problem is shown in Figure 2.23 where
two objects crossed paths but no collision would have been detected since one only
checks for that in their final position. To handle that one could keep track of the paths
of objects and check their intersections.

Now, the methods above have lots of constraints and will only work in certain sit-
uations. In (2) and (3), each figure has to fit into a block with a fixed background in
that block. The methods also tend to be slow. However, in the early days of the per-
sonal computer the graphics system did not give developers much to work with. There
is another issue in the case of CRTs that was alluded to briefly in Section 1.3. Writing
a block of memory to the frame buffer while the hardware is scanning it and dis-
playing the picture will usually cause flicker in the image. This is caused by the fact
that the scan is much faster than the memory writes and during one scan only part
of the memory block may have been written. To get flicker-free images a programmer
would have to be very careful about the timing of the writes, which would usually be
done during the vertical retrace of the beam. Furthermore, everything would have to
be done in assembly language to get maximum speed. Fortunately, by using APIs like

2.11 2D Animation 63

Figure 2.23. A collision-detection problem.

OpenGL and DirectX, most programmers no longer have to worry about such low-
level issues because those were dealt with by the implementers of those APIs.

Next, we look at another aspect of frame buffers that is very helpful for anima-
tion. Today’s frame buffers have hardware support for

(1) lookup tables
(2) panning, and
(3) zooming

Lookup Tables. Users and programmers can reference colors in different ways even
though, at the hardware level, any representation eventually needs to be translated
into RGB values. (We shall have more to say about color in Chapter 8.) One standard
way to reference a color is by means of a number that really is an index into a table.
This table is initialized by the operating system to certain default values. The size of
the table depends on the number of colors that can be displayed simultaneously by
the graphics system. For example, the number 0 is the standard representative for
black. For a 256-color table, the standard number for white would be 255. The actual
color that the hardware can associate to an index is quite arbitrary however and can
be changed by a programmer. In that way, a relatively small table can access a large
number of colors. For example, even if we only have a table of size 256 (8 bits), we
would be able to access an actual 24 bit worth of colors (but only 256 at a time).

Panning. The frame buffer in the graphics hardware might actually be much larger
than the number of pixels on the screen. By using “origin registers” that specify the
location where the electron beam starts its scan in the buffer, the hardware makes
panning easy. One can quickly scroll the image up or down, or left or right, simply by
changing the values in those registers.

Zooming. The zoom feature allows one to display a portion of the image in magni-
fied form. The magnification power is typically a power of 2. What happens is that a
zoom factor of, say 2, would repeat each pixel and scan line twice.

The above-mentioned features allow three interesting forms of animation.

(1) Animation using lookup tables:

We explain this technique with an example. To show a red ball bouncing on a gray
floor and a black background we could set up a picture as shown in Figure 2.24.

64 2 Raster Algorithms

Figure 2.24. Bouncing ball using lookup table.

The numbers show the color numbers associated to the indicated regions. We start
by associating the colors gray and red to 1 and 2, respectively, and black to all the
other numbers. For the second frame we change 2 to black and 3 to red. For the
third frame, we change 3 to black and 4 to red, and so on. In this way, making
the ith ball the red ball as i changes from 2 to 6 and then from 6 back to 2, the
ball will appear to bounce.

(2) Animation using color cycling and bit plane extraction:

Color cycling means that if we have a color table T with n entries, then we keep
changing the colors of items via the instructions

If the colors in the image are designed appropriately, then these changes can create
the illusion of motion.

Bit plane extraction relies on the fact that individual bits of a pixel can be
thought of as corresponding to individual image bit planes. Frame buffers are then
just a collection of k bit planes, where k is the number of bits in a pixel. See Figure
2.25. One trick we can now play is to create k different image frames with each
frame using a subset of all colors. Then animation can be achieved by setting the
lookup values for all values except the current frame value to the background
color. Such updating of lookup values causes the picture to cycle through the
frames. For example, assume that we have 3 bit pixels. We first set all color
numbers except 4 to black, then we set all color numbers except 2 to black, and
finally we set all color numbers except 1 to black. This will cycle through three
single color images.

(3) Animation using the pan and zoom features:

One divides the frame buffer into k smaller areas. Typical values for k are 4 and
16. Next, one creates a reduced resolution image for a frame of animation in
each area. The animation is produced by zooming each area appropri-

T T T T T i T i T n T n T T n2 1 3 2 1 1 1[] = [] [] = [] +[] = [] [] = -[] [] = []: ; : ; . . . : ; . . . : ; : ;

2.11 2D Animation 65

Figure 2.25. The bit planes of a
frame buffer.

ately and then cycling through the areas by changing the origin registers
appropriately.

Comparing the second and third methods, we see that the second has full reso-
lution but allows a limited number of colors whereas the third has low resolution but
offers full use of colors.

Some graphics systems supported small fixed-size rectangular pixel blocks that
are maintained separately from the frame buffer but can be superimposed on it by
the hardware. These are called sprites and were common in the hardware for video
games. Using sprites it is very fast to move small images around on the screen without
disturbing the background simply by changing some registers that specify the address
in the frame buffer at which to show the sprite. Some simple video games consisted
entirely of sprites moving over a fixed background. Collisions can be checked very
easily. Sprites can also be implemented in software using bitBlt operations, although
this will obviously not be as fast.

Finally, to get a smooth animation sequence, one needs to generate a minimum
of 10–15 frames per second but this depends on the complexity of the scene and one
probably wants more like 24–30 frames per second. Aside from the fact that writing
large blocks of data takes time and would slow down any animation, there is an addi-
tional problem for CRTs that we have mentioned before. One has to be very careful
about when and what one writes to the frame buffer if one wants to avoid flicker. It
might be much better to create a complete image in an auxiliary buffer and then copy
it to the frame buffer in one fell swoop. The only problem is that the copy operation
would involve so much memory that it would not be fast enough and there would still
be flicker. To avoid this copying most graphics systems on PCs now support what is
called double buffering, that is, the auxiliary buffer one wants to write to is actually
part of the graphics system (not part of main memory) and rather than copying it to
the frame buffer, the hardware allows one to switch the scanning of the electron beam
between it and the initial frame buffer. The changeover becomes almost instantaneous
and the flicker will be gone. Of course, if it takes too long to compute each image,
then the animation would be jerky.

Graphics systems nowadays have lots of memory on board and support all kinds
of extra buffers. We shall have some more to say about this later in Chapter 9.

2.12 EXERCISES

Section 2.2

2.2.1 Find the various integers k so that there are k-neighbors in Z4.

2.2.2 Prove that every 8-component of a subset of Z2 is the union of 4-components.

Section 2.5.1

2.5.1.1 Determine the points generated by the simple and symmetric DDA for the line segment
from (2,6) to (-1,1). Make a table and also plot these points (both the real and integer
ones).

66 2 Raster Algorithms

Section 2.9.1

2.9.2.1 Give an example showing that the first Bresenham circle-drawing algorithm
(Algorithm 2.9.2.1) is not optimal but that the improved Bresenham algorithm
(Algorithm 2.9.2.2) gives the correct results in this case.

2.13 PROGRAMMING PROJECTS

For some of the projects below you will first have to have a program, like GM, which lets a user
define boundaries for arbitrary regions by dragging the cursor across the screen (either with a
mouse or by using the arrow keys on the keyboard). Alternatively, deal only with polygonal
regions that the user specifies by picking its vertices.

Section 2.4

2.4.1 Fill the region with a user selected color using the Fishkin algorithm.

Section 2.9.1

2.9.1.1 Implement the algorithm for scan converting polygons described in this section. More
generally, implement this algorithm for multiple polygons that admit a back-to-front
ordering.

Section 2.10

2.10.1 Implement a program showing a bouncing ball using the color lookup table technique
as indicated in Figure 2.24.

2.10.2 A billiard ball game

The object of this project is to simulate the motion of a billiard ball and a cue stick. See Figure
2.26. Specifically, you should

2.13 Programming Projects 67

Figure 2.26. A billiard ball game.

(1) display a rectangular “table” with a single solid colored ball at some initial position

(2) show a cue stick (represented as a long, thin rectangular object) hitting the ball at
various angles specified by the user

(3) show the movement of the ball after it is hit as it bounces from wall to wall

(4) have the balls slow down and finally come to a halt to make things look somewhat
realistic

Experiment with different animation techniques on your own, such as double buffering. Hand
in the one that you think gives the best results. Be sure to explain why it was chosen over other
approaches.

Optionally, have one or more other balls on the table and

(5) if a moving ball hits another one, then it should come to a stop and the other one
should move in the appropriate direction with the first one’s velocity (if a ball hits k
> 1 balls with velocity v, then they should start with velocity v/k)

Your program should have suitable menus and output explanations as to what is happening.

68 2 Raster Algorithms

Line-clipping algorithms fall into two types: those that use encoding of the end-
points of the segment (Cohen-Sutherland) and those that use a parameterization of
the line determined by the segment (Cyrus-Beck, Liang-Barsky, and Nicholl-Lee-
Nicholl). In Section 4.6 we discuss a hybrid of the two approaches that works well for
the clipping needed in the graphics pipeline.

Frequently, one needs to clip more than one edge at a time, as is the case when
one wants to clip one polygon against another. One could try to reduce this prob-
lem to a sequence of line-clipping problems, but that is not necessarily the most
efficient way to do it, because, at the very least, there would be additional book-
keeping involved. The clipped figure may involve introducing some vertices that were
not present in the original polygon. In Figure 3.1 we see that the corners A and B

70 3 Clipping

Line-clipping algorithms:

Category Clip Polygon Comments

Cohen-Sutherland (2) rectangular The classic line-clipping algorithm. Still
popular because it is so easy to implement.

Cyrus-Beck (4) convex
Liang-Barsky (2) rectangular Faster than Cohen-Sutherland.

Still popular. Easy to implement.
Nicholl-Lee-Nicholl (1) rectangular Purely two-dimensional.

Polygon-clipping algorithms:

Category Clip Polygon Comments

Sutherland-Hodgman (3) convex
Weiler (3), (4) arbitrary
Liang-Barsky (4) rectangular
Maillot (1) rectangular
Vatti (1) arbitrary Fast, versatile, and can generate a trape-

zoidal decomposition of the intersection.
Greiner-Hormann (1) arbitrary As general as Vatti. Simpler and potentially

faster, but no trapezoidal decomposition.

Figure 3.1. Turning points in polygon clipping.

of the window need to be added. These corners are called turning points. The term
was introduced in [LiaB83] and refers to the point at the intersection of two clip-
ping region edges that has to be added to preserve the connectivity of the original
polygon. This is the reason that polygon clipping is treated separately from line
clipping.

Polygon-clipping algorithms fall into roughly two categories: turning-point-based
algorithms like the Liang-Barsky and Maillot algorithms, which rely on quickly being
able to find turning points explicitly, and the rest. Turning-point-type algorithms scan
the segments of the subject polygon and basically clip each against the whole
window. The rest tend to find turning points implicitly, in the sense that one does not
look for them directly but that they are generated “automatically” as the algorithm
proceeds. The Sutherland-Hodgman algorithm treats the clip polygon as the inter-
section of halfplanes and clips the whole subject polygon against each of these half-
planes one at a time. The Weiler, Vatti, and Greiner-Hormann algorithms find the
turning points from the clip polygon in the process of tracing out the bounding curves
of the components of the polygon intersection, although they trace the boundaries
in different ways.

The chapter ends with some comments on clipping text. Some additional com-
ments on clipping when homogeneous coordinates are used can be found in the next
chapter in Sections 4.6 and 4.10.

3.2 Line-Clipping Algorithms

3.2.1 Cohen-Sutherland Line Clipping

This section describes an algorithm that solves the following planar clipping
problem:

Given a segment [P1, P2], clip it against a rectangular window and return the clipped segment
[Q1, Q2] (which may be empty if the original segment lies entirely outside the window).

The Cohen-Sutherland line-clipping algorithm is probably the most popular of
such algorithms because of its simplicity. It starts out by encoding the nine regions
into which the boundary lines of the window divide the whole plane with a 4-bit binary
code. See Figure 3.2. If P is an arbitrary point, then let c(P) = x3x2x1x0, where xi is
either 0 or 1, define this encoding. The bits xi have the following meaning:

3.2 Line-Clipping Algorithms 71

Figure 3.2. Cohen-Sutherland point codes.

x0 = 1 if and only if P lies strictly to the right of the right boundary line.
x1 = 1 if and only if P lies strictly above the top boundary line.
x2 = 1 if and only if P lies strictly to the left of the left boundary line.
x3 = 1 if and only if P lies strictly below the bottom boundary line.

The algorithm now has three steps:

Step 1. Encode P1 and P2. Let c1 = c(P1) and c2 = c(P2).
Step 2. Check if the segment can be trivially rejected, that is, using the bitwise

logical or and and operators, test whether

(a) c1 or c2 = 0, or
(b) c1 and c2 π 0.

In case (a), the segment is entirely contained in the window since both end-
points are and the window is convex. Return Q1 = P1 and Q2 = P2.
In case (b), the segment is entirely outside the window. This follows because
the endpoints will then lie in the halfplane determined by a boundary line
that is on the other side from the window and halfplanes are also convex.
Return the empty segment.

Step 3. If the segment cannot be trivially rejected, then we must subdivide the
segment. We clip it against an appropriate boundary line and then start over
with Step 1 using the new segment. Do the following to accomplish this:

(a) First find the endpoint P that will determine the line to clip against.

If c1 = 0000, then P1 does not have to be clipped and we let P be P2
and Q be P1.
If c1 π 0000, then let P be P1 and Q be P2.

(b) The line to clip against is determined by the left-most nonzero bit in
c(P). For the example in Figure 3.3, P = P1, Q = P2, and the line to clip
against is the left boundary line of the window. Let A be the intersec-
tion of the segment [P,Q] with this line.

(c) Repeat Steps 1–3 for the segment [A,Q].

The algorithm will eventually exit in Step 2.
With respect to the efficiency of the Cohen-Sutherland algorithm, note that the

encoding is easy since it simply involves comparing a number to some constant (the

72 3 Clipping

Figure 3.3. Cohen-Sutherland line-clipping example.

boundary lines of the window are assumed to be horizontal and vertical). Step 3 is
where the real work might have to be done. We shall have to clip four times in the
worst case. One such worst case is shown in Figure 3.3 where we end up having to
clip successively against each one of the window boundary lines generating the inter-
section points A, B, C, and D.

Algorithm 3.2.1.1 is an implementation of the just-described algorithm. To be
more efficient, all function calls should be replaced by inline code.

Finally, note that the encoding found in the Cohen-Sutherland line-clipping algo-
rithm is driven by determining whether a point belongs to a halfplane. One can easily
generalize this to the case where one is clipping a segment against an arbitrary convex
set X. Assume that X is the intersection of halfplanes H1, H2, . . . , Hk. The encoding
of a point P is now a k-bit number c(P) = XKXK-1 . . . X1, where

Xi is 1 if P lies in Hi and 0 otherwise.

Using this encoding one can define a clipping algorithm that consists of essentially
the same steps as those in the Cohen-Sutherland algorithm. One can also extend
this idea to higher dimensions and use it to clip segments against cubes. See
Section 4.6.

3.2.2 Cyrus-Beck Line Clipping

The Cyrus-Beck line-clipping algorithm ([CyrB78]) clips a segment S against an arbi-
trary convex polygon X. Let S = [P1,P2] and X = Q1Q2 . . . Qk. Since X is convex, it is
the intersection of halfplanes determined by its edges. More precisely, for each
segment [Qi,Qi+1], i = 1,2, . . . ,k, (Qk+1 denotes the point Q1) we can choose a normal
vector Ni, so that X can be expressed in the form

where Hi is the halfplane

With this choice, the normals will point “into” the polygon. It follows that

In other words, we can clip the segment S against X by successively clipping it
against the halfplanes Hi. This is the first basic idea behind the Cyrus-Beck clipping
algorithm. The second, is to represent the line L determined by the segment S
parametrically in the form P1 + tP1P2 and to do the clipping with respect to the
parameter t.

S X S H« = «()
=

i
i

k

1
I .

H Q N Q Qi i i= -() ≥{ }• .0

X H=
=

i
i

k

1
I ,

3.2 Line-Clipping Algorithms 73

74 3 Clipping

{ Constants }
RIGHTBDRY = 1;
TOPBDRY = 2;
LEFTBDRY = 4;
BOTTOMBDRY = 8;

boolean function CS_Clip (ref real x0, y0, x1, y1; real xmin, ymin, xmax, ymax)
{ This function clips the segment from (x0, y0) to (x1, y1) against the window
 [xmin, xmax]¥[ymin, ymax]. It returns false if the segment is entirely outside the
 window and true otherwise. In the latter case the variables x0, y0, x1, and y1 will
 also have been modified to specify the final clipped segment. }

begin
byte c0, c1, c;
real x, y;

{ First encode the points }
c0 := RegionCode (x0,y0);
c1 := RegionCode (x1,y1);

{ Next the main loop }
while (c0 or c1) π 0 do

if (c0 and c1) π 0
then return (false);
else

begin
{ Choose the first point not in the window }
c := c0;
if c = 0 then c := c1;

{ Now clip against line corresponding to first nonzero bit }
if (LEFTBDRY and c) π 0

then
begin { Clip against left bdry }

x := xmin;
y := y0 + (y1 - y0)*(xmin - x0)/(x1 - x0);

end
else if (RIGHTBDRY and c) π 0

then
begin { Clip against right bdry }

x := xmax;
y := y0 + (y1 - -y0)*(xmax x0)/(x1 - x0);

end
else if (BOTTOMBDRY and c) π 0

then

–
–

Algorithm 3.2.1.1. The Cohen-Sutherland line-clipping algorithm.

3.2 Line-Clipping Algorithms 75

begin { Clip against bottom bdry }
x := x0 + (x1 - x0)*(ymin - y0)/(y1 - y0);
y := ymin;

end
else if (TOPBDRY and c) π 0

then
begin { Clip against top bdry }
 x := x0 + (x1 - x0)*(ymax - y0)/(y1 - y0);

y := ymax;
end;

{ Next update the clipped endpoint and its code }
if c = c0

then
begin

x0 := x; y0 := y;
c0 := RegionCode (x0,y0);

end
else

begin
x1 := x; y1 := y;
c1 := RegionCode (x1,y1);

end
end; { while }

return (true);
end;

byte function RegionCode (real x,y);
{ Return the 4-bit code for the point (x,y) }
begin

byte c;

c := 0;
if x < xmin

then c := c + LEFTBDRY
else if x > xmax

then c := c + RIGHTBDRY;
if y < ymin

then c := c + BOTTOMBDRY
else if y > ymax

then c := c + TOPBDRY;
return (c);

end; { RegionCode }

Algorithm 3.2.1.1. Continued

is the set of parameters for the points in S « X. In other words, if I is not empty, then

We shall explain this process with the example in Figure 3.4. In this example,

which clearly gives the right answer.

3.2.3 Liang-Barsky Line Clipping

The Liang-Barsky line-clipping algorithm ([LiaB84]) optimizes the Cyrus-Beck line-
clipping algorithm in the case where we are clipping against a rectangle. It starts by
treating a segment as a parameterized set. Let P1 = (x1,y1) and P2 = (x2,y2). A typical
point P = (x,y) on the oriented line L determined by P1 and P2 then has the form
P1 + tP1P2. See Figure 3.5. If we let Dx = x2 - x1 and Dy = y2 - y1, then

If the window W we are clipping against is the rectangle [xmin,xmax] ¥ [ymin,ymax],
then P belongs to W if and only if

that is,

- £ -
£ -

- £ -
£ -

D
D
D
D

x t x x

x t x x

y t y y

y t y y

1

1

1

1

min

max

min

max .

x x x t x

y y y t y

min max

min max

£ + £
£ + £

1

1

D
D

x x x t

y y y t

= +
= +

1

1

D
D .

I = [] « +•[) « -•(] « +•[) = []0 1 1 2 3 3 2, , , , , ,t t t t t

S X P P P P P P« = + +[]1 1 2 1 1 2a b, .

3.2 Line-Clipping Algorithms 77

Figure 3.5. Liang-Barsky line clipping.

To simplify the notation, we introduce variables ck and qk and rewrite these equations
as

Set tk = qk/ck whenever ck π 0. Let B1, B2, B3, and B4 denote the left, right, bottom,
and top boundary lines of the window, respectively. With this notation we can make
the following observations:

(1) If ck > 0, then L goes from the “inside” to the “outside” of the boundary line
Bk as t increases and we shall call tk an exit value.

(2) If ck < 0, then L goes from the “outside” to the “inside” of the boundary line
Bk as t increases and we shall call tk an entry value.

(3) If ck = 0, the L is parallel to Bk, which is outside the window if qk < 0.

The clipping algorithm now proceeds by analyzing the three quantities qk, ck, and tk.
Algorithm 3.2.3.1 is a high-level version of the Liang-Barsky algorithm. Algorithm
3.2.3.2 gives the code for the actual Liang-Barsky algorithm.

3.2.3.1 Example. Consider the segment [P1,P2] in Figure 3.6. We see that c1, c4 <
0 and c2, c3 > 0. In other words, t1 and t4 are entry values and t2 and t3 are exit values.
The picture bears this out. One can also easily see that t1 < 0 < t2 < t4 < 1 < t3. There-
fore, there is an entry value (t4) that is larger than an exit value (t2). Using the algo-
rithm we conclude that the segment lies entirely outside the window, which is correct.

c t q

c t q

c t q

c t q

1 1

2 2

3 3

4 4

£
£
£
£ .

78 3 Clipping

Reject the segment as soon as

an entry value is larger than 1 or
an exit value is less than 0 or

an entry value is larger than an exit value

Otherwise, the segment meets the window. We need to compute an intersection
only if t0 > 0 and t1 < 1, where

t0 = max (0, max { entry values tk }), and
t1 = min (1, min { exit values tk }).

(The case where t0 = 0 or t1 = 1 means that we should use the endpoint, that is,
no clipping is necessary.)

Algorithm 3.2.3.1. High-level Liang-Barsky line-clipping algorithm.

3.2 Line-Clipping Algorithms 79

boolean function LB_Clip (ref real x0, y0, x1, y1; real xmin, ymin, xmax, ymax)
{ This function clips the segment from (x0, y0) to (x1, y1) against the window
[xmin, xmax]¥[ymin, ymax]. It returns false if the segment is entirely outside the
window and true otherwise. In the latter case the variables x0, y0, x1, and y1 will
also have been modified to specify the final clipped segment. }
begin

real t0, t1, dx, dy;
boolean more;

t0 := 0; t1 := 1; dx := x1 - x0;

Findt (-dx,x0 - xmin,t0,t1,more); { left bdry }
if more then

begin
Findt (dx,xmax - x0,t0,t1,more); { right bdry }
if more then

begin
dy := y1 - y0;
Findt (-dy,y0 - ymin,t0,t1,more); { bottom bdry }
if more then

begin
Findt (dy,ymax - y0,t0,t1,more); { top bdry }
if more then

begin { clip the line }
if t1 < 1 then

begin { calculate exit point }
x1 := x0 + t1*dx;
y1 := y0 + t1*dy;

end;
if t0 > 0 then

begin { calculate entry point }
x0 := x0 + t0*dx;
y0 := y0 + t0*dy;

end;
end

end
end

end;
return (more);

end;

procedure Findt (real denom, num; ref real t0, t1; ref boolean more)
begin

real r;

more := true;

Algorithm 3.2.3.2. The Liang-Barsky line-clipping algorithm.

3.2.3.2 Example. Consider the segment [P1,P2] in Figure 3.7. In this example, c1,
c3 < 0 and c2, c4 > 0, so that t1 and t3 are entry values and t2 and t4 are exit values.
Furthermore, t1 < 0 < t3 < 1 < t2 < t4. This time we cannot reject the segment and must
compute t0 = max (0, c1, c3) = c3 and t1 = min (1, c2, c4) = 1. The algorithm tells us
that we must clip the segment at the P1 end to get Q but do not need to clip at the P2
end. Again this is clearly what had to be done.

In conclusion, the advantage of the Liang-Barsky algorithm over the Cohen-
Sutherland algorithm is that it involves less arithmetic and is therefore faster. It needs
only two subtractions to get qk and ck and then one division.

80 3 Clipping

if denom < 0
then

begin { line from outside to inside }
r := num/denom;
if r > t1

then more := false
else if r > t0 then t0 := r;

end
else if denom > 0

then { line from inside to outside }
begin

r := num/denom;
if r < t0

then more := false
else if r < t1 then t1 := r;

end
else if num < 0 { line parallel to boundary }

then more := false;
end; { Findt }

Algorithm 3.2.3.2. Continued

Figure 3.6. Liang-Barsky line-clipping example.

3.2.4 Nicholl-Lee-Nicholl Line Clipping

One of the problems common to both the Cohen-Sutherland and the Liang-Barsky
algorithm is that more intersections are computed than necessary. For example, con-
sider Figure 3.6 again where we are clipping line segment [P1,P2] against the window.
The Cohen-Sutherland algorithm will compute the intersection of the segment with
the top boundary at t4 even though the segment is later rejected. The Liang-Barsky
algorithm will actually compute all the parameter values corresponding to the inter-
section of the line with the window. Avoiding many of these wasted computations is
what the Nicholl-Lee-Nicholl line-clipping algorithm ([NiLN87]) is all about. These
authors also make a detailed analysis of the deficiencies of the Cohen-Sutherland and
Liang-Barsky algorithms. Their final algorithm is much faster than either of these. It
is not really much more complicated conceptually, but involves many cases. We
describe one basic case below.

Assume that we want to clip a segment [P1,P2] against a window. The determi-
nation of the exact edges, if any, that one needs to intersect, reduces, using symme-
try, to an analysis of the three possible positions of P1 shown in Figure 3.8. The cases
are

(1) P1 is in the window (Figure 3.8(a)),
(2) P1 is in a “corner region” (Figure 3.8(b)), or
(3) P1 is in an “edge region” (Figure 3.8(c)).

For each of these cases one determines the regions with the property that no matter
where in the region the second point P2 is, the segment will have to be intersected
with the same boundaries of the window. These regions are also indicated in Figure
3.8. As one can see, these regions are determined by drawing the rays from P1 through
the four corners of the window. The following abbreviations were used:

T – ray intersects top boundary LT – ray intersects left and top boundary
L – ray intersects left boundary LR – ray intersects left and right boundary
B – ray intersects bottom boundary LB – ray intersects left and bottom boundary
R – ray intersects right boundary TR – ray intersects top and right boundary

TB – ray intersects top and bottom boundary

3.2 Line-Clipping Algorithms 81

Figure 3.7. Liang-Barsky line-clipping example.

For example, suppose that the segment [P1,P2] is as shown in Figure 3.8(c). Here are
the computations one has to perform. Let Pi = (xi,yi) and let C = (xmax,ymin) be the
corner of the window also indicated in Figure 3.8(c). After checking that y2 < ymin,
we must determine whether the vector P1P2 is above or below the vector P1C. This
reduces to determining whether the ordered basis (P1C,P1P2) determines the standard
orientation of the plane or not. Since

P1P2 is below P1C. We now know that we will have to compute the intersection of
[P1,P2] with both the left and bottom boundary of the window.

Algorithm 3.2.4.1 is an abstract program for the Nicholl-Lee-Nicholl algorithm in
the edge region case (P1 in the region shown in Figure 3.8(c)). We assume a window
[xmin,xmax] ¥ [ymin,ymax].

det max min ,
P C

P P
1

1 2
1 2 1 1 2 1 0Ê

Ë
ˆ
¯ = -() -() - -() -() <x x y y y y x x

82 3 Clipping

Figure 3.8. Nicholl-Lee-Nicholl line clipping.

procedure LeftEdgeRegionCase (ref real x1, y1, x2, y2; ref boolean visible)
begin

real dx, dy;

if x2 < xmin
then visible := false
else if y2 < ymin

then LeftBottom (xmin,ymin,xmax,ymax,x1,y1,x2,y2,visible)
else if y2 > ymax

then
begin

Algorithm 3.2.4.1. The edge region case of the Nicholl-Lee-Nicholl line-clipping
algorithm.

3.2 Line-Clipping Algorithms 83

{ Use symmetry to reduce to LeftBottom case }
y1 := -y1; y2 := -y2; { reflect about x-axis }
LeftBottom (xmin,-ymax,xmax, -ymin,x1,y1,x2,y2,visible);
y1 := -y1; y2 := -y2; { reflect back }

end
else

begin
dx := x2 - x1; dy := y2 - y1;
if x2 > xmax then

begin
y2 := y1 + dy*(xmax - x1)/dx; x2 := xmax;

end;
y1 := y1 + dy*(xmin - x1)/dx; x1 := xmin;
visible := true;

end
end;

procedure LeftBottom (real xmin, ymin, xmax, ymax;
ref real x1, y1, x2, y2; ref boolean visible)

begin
real dx, dy, a, b, c;

dx := x2 - x1; dy := y2 - y1;
a := (xmin - x1)*dy; b := (ymin - y1)*dx;
if b > a

then visible := false { (x2,y2) is below ray from (x1,y1) to bottom left corner }
else

begin
visible := true;
if x2 < xmax

then
begin x2 := x1 + b/dy; y2 := ymin; end

else
begin

c := (xmax - x1)*dy;
if b > c

then { (x2,y2) is between rays from (x1,y1) to
 bottom left and right corner }

begin x2 := x1 + b/dy; y2 := ymin; end
else

begin y2 := y1 + c/dx; x2 := xmax; end
end;

end;
y1 := y1 + a/dx; x1 := xmin;

end;

Algorithm 3.2.4.1. Continued

To deal with symmetry only rotations through 90, 180, and 270 degrees about the
origin and reflections about the lines x = -y and the x-axis are needed. These opera-
tions are extremely simple and involve only negation and assignment. See [NiLN87]
for further details.

This finishes our survey of line-clipping algorithms. Next, we turn our attention
to polygon-clipping algorithms.

3.3 Polygon-Clipping Algorithms

3.3.1 Sutherland-Hodgman Polygon Clipping

One of the earliest polygon-clipping algorithms is the Sutherland-Hodgman algorithm
([SutH74]). It is based on clipping the entire subject polygon against an edge of the
window (more precisely, the halfplane determined by that edge which contains the
clip polygon), then clipping the new polygon against the next edge of the window, and
so on, until the polygon has been clipped against all of the four edges. An important
aspect of their algorithm is that one can avoid generating a lot of intermediate data.

Representing a polygon as a sequence of vertices P1, P2, . . . , Pn, suppose that we
want to clip against a single edge e. The algorithm considers the input vertices Pi one
at a time and generates a new sequence Q1, Q2, . . . , Qm. Each Pi generates 0, 1, or 2
of the Qj, depending on the position of the input vertices with respect to e. If we con-
sider each input vertex P, except the first, to be the terminal vertex of an edge, namely
the edge defined by P and the immediately preceding input vertex, call it S, then the
Q’s generated by P depend on the relationship between the edge [S,P] and the line L
determined by e. There are four possible cases. See Figure 3.9. The window side of
the line is marked as “inside.” The circled vertices are those that are output. Figure
3.10 shows an example of how the clipping works. Clipping the polygon with vertices
labeled Pi against edge e1 produces the polygon with vertices Qi. Clipping the new
polygon against edge e2 produces the polygon with vertices Ri.

Note that we may end up with some bogus edges. For example, the edge R5R6 in
Figure 3.10 is not a part of the mathematical intersection of the subject polygon with

84 3 Clipping

Figure 3.9. The four cases in Sutherland-
Hodgman polygon clipping.

the clip polygon. Eliminating such edges from the final result would be a nontrivial
effort, but normally they do not cause any problems. We run into this bogus edge
problem with other clipping algorithms also.

An implementation of the Sutherland-Hodgman algorithm can be found in
[PokG89].

3.3.2 Weiler Polygon Clipping

Another early polygon clipping algorithm was developed in the context of the visible
surface determination algorithm in [WeiA77]. Weiler and Atherton needed a new algo-
rithm because the Sutherland-Hodgman algorithm would have created too many aux-
iliary polygons. An improved version of the algorithm can be found in [Weil80]. Here
is a very brief description of the algorithm:

The boundaries of polygons are assumed to be oriented so that the inside of
the polygon is always to the right as one traverses the boundary. Note that inter-
sections of the subject and clip polygon, if any, occur in pairs: one where the
subject enters the inside of the clip polygon and one where it leaves.

Step 1: Compare the borders of the two polygons for intersections. Insert ver-
tices into the polygons at the intersections.

Step 2: Process the nonintersecting polygon borders, separating those contours
that are outside the clip polygon and those that are inside.

Step 3: Separate the intersection vertices found on all subject polygons into two
lists. One is the entering list, consisting of those vertices where the
polygon edge enters the clip polygon. The other is the leaving list, con-
sisting of those vertices where the polygon edge leaves the clip polygon.

Step 4: Now clip.

3.3 Polygon-Clipping Algorithms 85

Figure 3.10. A Sutherland-Hodgman polygon-clipping example.

(a) Remove an intersection vertex from the entering list. If there is none,
then we are done.

(b) Follow the subject polygon vertices to the next intersection.
(c) Jump to the clip polygon vertex list.
(d) Follow the clip polygon vertices to the next intersection.
(e) Jump back to the subject polygon vertex list.
(f) Repeat (b)–(e) until we are back to the starting point.

This process creates the polygons inside the clip polygon. To get those that
are outside, one repeats the same steps, except that one starts with a vertex
from the leaving list and the clip polygon vertex list is followed in the reverse
direction. Finally, all holes are attached to their associated exterior contours.

3.3.2.1 Example. Consider the polygons in Figure 3.11. The subject polygon ver-
tices are labeled Si, those of the clip polygon are labeled Ci, and the intersections are
labeled Ii. The entering list consists of I2, I4, I6, and I8. The leaving list consists of I1,
I3, I5, and I7. Starting Step 4(a) with the vertex I2 will generate the inside contour

Starting Step 4(a) with vertices I1, I3, I5, and I7 will generate the outside contours

3.3.3 Liang-Barsky Polygon Clipping

This section gives a brief outline of the Liang-Barsky polygon-clipping algorithm
([LiaB83]). The algorithm is claimed to be twice as fast as the Sutherland-Hodgman
clipping algorithm. This algorithm and the next one, the Maillot algorithm, base their
success on their ability to detect turning points efficiently. Before we get to the algo-
rithm, some comments on turning points are in order.

I S S I I I S I I I S I I I S I I1 7 1 2 1 3 2 4 3 5 4 6 5 7 5 8 7, , , .and

I I I S I I I I S I I2 3 4 3 5 6 7 8 6 1 2.

86 3 Clipping

Figure 3.11. Weiler polygon clipping.

Assume that [P1,P2] is an edge of a polygon. It is easy to see that the only time that
this edge is relevant to the issue of turning points is if it enters or exits a corner region
associated to the window. Figure 3.12 shows some cases of polygons (the shaded
regions) and how the exiting edge [P1,P2] affects whether or not the corner C becomes
a turning point and needs to be added to the output. One sees the following:

(1) The analysis divides into two cases: whether the polygon is to the right or left
of the edge. (Figure 3.12(a,b) versus Figure 3.12(c,d))

(2) There are two subcases that depend on which side of the ray from P2 to C the
segment [P2,P3] is located.

(3) The decision as to whether a turning point will be needed cannot be made on
the basis of only a few edges. In principle one might have to look at all the
edges of the polygon first.

It is observation (3) that complicates life for polygon-clipping algorithms that process
edges sequentially in one pass. One could simplify life and generate a turning point
whenever we run into an edge that enters, lies in, or exits a corner region. The
problem with this approach is that one will generate bogus edges for our clipped
polygon. The polygon in Figure 3.12(c) would generate the “dangling” edge [B,C].
Bogus edges were already encountered in Sutherland-Hodgman clipping (but for dif-
ferent reasons). These edges might not cause any problems, as in the case where one
is simply filling two-dimensional regions. On the other hand, one would like to min-
imize the number of such edges, but avoiding them entirely would be very compli-
cated with some algorithms like the Liang-Barsky and Maillot algorithm.

With this introduction, let us describe the Liang-Barsky algorithm. We shall be
brief because it does not contain much in the way of new insights given the fact that

3.3 Polygon-Clipping Algorithms 87

Figure 3.12. Different types of turning
points.

it is built on the approach they use in their line-clipping algorithm. Furthermore,
another algorithm, the Maillot algorithm, is better. Our discussion here will follow
[FVFH90], who have modified the algorithm so that it is easier to follow although it
has the potential disadvantage of creating more bogus edges.

Consider Figure 3.13. We extend the edges of our rectangular window to divide
the plane into nine regions. If we are at a point of the polygon that lies in one of the
four outside regions that meet the window in an edge, then the next edge of the
polygon can only meet the window in that edge. See Figure 3.13(a). On the other hand,
if the point is in one of the four corner regions, then the next edge could meet the
window in one of two possible edges. Without look-ahead, we really cannot tell
whether the adjacent corner of the window will become a turning point and will
have to be added to the output polygon. In such a situation we shall play it safe and
always include the corner point (even though this may create some of these unwanted
edges that we have been talking about). This is the first point to make about the
algorithm.

The other point is that the algorithm rests on the idea of entry and exit points for
the edges of the polygon that correspond to the entry and exit values used in the line-
clipping algorithm described in Section 3.2.3. By analyzing these points one can tell
if an edge intersects the window or if it gives rise to a turning point. As we work our
way through the edges of the polygon, assume that the current edge e = [pi,pi+1] is
neither vertical nor horizontal. Then e will intersect all the boundary lines of our
window. If we parameterize the line containing e in the form pi + tpipi+1, then the four
intersection points correspond to four parameter values and can again be classified
as two entry and two exit points. We shall denote these associated parameter values
by t_in1, t_in2, t_out1, and t_out2, respectively. It is easy to see that the smallest of
these is an entry value and we shall let t_in1 be that one. The largest is an exit value
and we shall let t_out2 be that one. Nothing can be said about the relative size of the
remaining two values in general. From Section 3.2.3 we know, however, that if t_in2
< t_out1, then the line intersects the window and if t_out2 < t_in1, then the line inter-
sects a corner region.

If a line does not intersect the window, then it must intersect three corner regions.
The conditions for that are that 0 < t_out1 £ 1 and 0 < t_out2 £ 1. The last statement
also holds if the line intersects the window. Putting all these facts together leads to
Algorithm 3.3.3.1. However, we were assuming in the discussion that edges were
neither horizontal nor vertical. We could deal with such lines by means of special
cases, but the easiest way to deal with them and preserve the structure of Algorithm
3.3.3.1 is to use a trick and assign dummy ±• values to the missing entering and
leaving parameters. See [FVFH90].

88 3 Clipping

Figure 3.13. Testing for turning points.

3.3.4 Maillot Polygon Clipping

The Maillot clipping algorithm ([Mail92]) clips arbitrary polygons against a rectan-
gular window. It uses the well-known Cohen-Sutherland clipping algorithm for seg-
ments as its basis and then finds the correct turning points for the clipped polygon
by maintaining an additional bit of information. As indicated earlier, it is speedy deter-
mination of turning points that is crucial for polygon clipping, and this algorithm
does it very efficiently. We shall use the same notation that was used in Section 3.2.1.
We also assume that the same encoding of points is used. This is very important; oth-
erwise, the tables Tcc and Cra below must be changed.

Let P be a polygon defined by the sequence of vertices p0, p1, . . . , pn, pn+1 = p0.
Algorithm 3.3.4.1 gives a top-level description of the Maillot algorithm.

In addition to the Cohen-Sutherland trivial rejection cases, Maillot’s algorithm
subjects all vertices of the polygon to one extra test, which he calls the “basic turning
point test.” This test checks for the case where the current point lies in one of the four

3.3 Polygon-Clipping Algorithms 89

for each edge e of polygon do
begin

Determine the direction of e; { Used to tell in what order the bounding
 lines of the clip region will be hit }

Find exit t values;
if t_out2 > 0 then find t_in2;
if t_in2 > t_out1

then { No visible segment }
begin

if 0 < t_out1 £ 1 then OutputVertex (turning vertex);
end

else
begin

if (0 < t_out1) and (t_in2 £ 1) then
begin { Part of segment is visible }

if 0 £ t_in2
then OutputVertex (appropriate side intersection)
else OutputVertex (starting vertex);

if t_out1 £ 1
then OutputVertex (appropriate side intersection)
else OutputVertex (ending vertex);

end
end;

if 0 < t_out2 £ 1 then OutputVertex (appropriate corner);
end;

Algorithm 3.3.3.1. Overview of a Liang-Barsky polygon-clipping algorithm.

corners outside the window. One probably needs to add a turning point to the clipped
polygon in this case. See Figure 3.14. We said “probably” because if the current point
is considered in isolation (without looking at its predecessors), then to always auto-
matically add the point may cause us to add the same corner several times in a row.
See points pi, pi+1, and pi+2 in Figure 3.14. In the implementation of Maillot’s algo-
rithm, we do not try to eliminate such redundancies. If this is not desired, then extra
code will have to be added to avoid it.

If all of a polygon’s edges meet the window, then the basic turning point test is all
that is needed to clip it correctly. For polygons that have edges entirely outside the
clipping region, one needs to do more. Figure 3.15 shows all (up to symmetry) generic
cases that need to be handled in this more complex situation. The following termi-
nology is useful for the case of edges outside the clipping region.

Notation. A point that lies in a region with code 0001, 0010, 0100, or 1000 will be
called a 1-bit point. A point that lies in a region with code 0011, 0110, 1100, or 1001

90 3 Clipping

Figure 3.14. A turning point case.

p := p0; cp := c(p);
for i:=1 to n+1 do

begin
q := pi; cq := c(q);

{ Clip the segment [p,q] as in Cohen-Sutherland algorithm }
DoCSClip ();

if segment [p,q] is outside clipping region then TestForComplexCase;

DoBasicTurningPointTest ();

p := q; cp := cq;
end;

Algorithm 3.3.4.1. Overview of Maillot polygon-clipping algorithm.

will be called a 2-bit point. A segment is called an x-y segment if its start point is an
x-bit point and its endpoint is a y-bit point.

Knowing the type of segment that one has is important for the algorithm. This is
why an extra bit is used in the encoding of points. It is stuck at the left end of the
original Cohen-Sutherland code. Below is an overview of the actions that are taken
in the TestForComplexCase procedure. Refer to Figure 3.15.

The 1–1 Segment Cases (Segments a and b). Either the two points have the same
code (segment a) and no turning point needs to be generated or they have different
codes (segment b). In the latter case there is one turning point that can be handled
by the basic turning point test. The code for the corner for this turning point is com-
puted from the or of the two codes and a lookup table (the Tcc table in the code).

The 2–1 and 1–2 Segment Cases (Segments c and d). In this case one point of the
segment has a 1-bit code and the other, a 2-bit code.

(a) The endpoint is the point with the 1-bit code (segment c): If both codes and
to a nonzero value (segment [P,R] in Figure 3.16(a)), there is no turning point. If both

3.3 Polygon-Clipping Algorithms 91

Figure 3.15. Turning point cases in Maillot
algorithm.

Figure 3.16. Turning point tests.

codes and to zero, then we need to generate a turning point that depends on the two
codes. A lookup table (Tcc in the code) is used for this.

(b) The endpoint has the 2-bit code (segment d): The case where the and of both
codes is nonzero is handled by the basic turning point test (segment [R,Q] in Figure
3.16(b). If both codes and to zero, we need two turning points. The first one depends
on the two codes and is determined by again using a lookup table (Tcc in the code).
The other is generated by the basic turning point test (segment [P,Q] in Figure
3.16(b)).

As an example of how the Tcc table is generated, consider the segment [P,Q] in
Figure 3.16(b). In the figure there are two turning points A and B. The basic turning
point test applied to Q will generate B. Let us see how A is generated. How can one
compute the code, namely 3, for this turning point? Maillot defines the sixteen element
Tcc table in such a way that the following formula works:

For the 1–1, 2–1, and 1–2 segment cases only four entries of Tcc are used in con-
junction with this formula. Four other entries are set to 1 and used in the 2–2 segment
case discussed below when it runs into a 1–1 segment. The remaining eight of the
entries in Tcc are set to 0.

The 2–2 Segment Case (Segments e, f and g). There are three subcases.

(a) Both points have the same code (segment e): No turning point is needed here.
(b) Both codes and to a nonzero value (segment f): Apply the basic turning point

test to the end point.
(c) Both codes and to a zero value (segment g): There will be two turning points.

One of them is easily generated by the basic turning point test. For the other one we
have a situation as shown in Figure 3.17 and we must decide between the two possi-
ble choices A or B. Maillot uses a midpoint subdivision approach wherein the edge
is successively divided into two until it can be handled by the previous cases. The

newCode code Tcc code= () + ()[]Q P

92 3 Clipping

Figure 3.17. 2-2 segment case turning points.

number of subdivisions required depends on the precision used. For 32-bit integers,
there will be less than 32 subdivisions.

Maillot presents a C implementation of his algorithm in [Mail92]. Our version of
this algorithm is Algorithm 3.3.4.2 below. The main difference is that we tried to be
as clear as possible by using extra auxiliary functions and procedures. To be efficient,
however, all these calls should be eliminated and the code put inline.

As mentioned earlier, Maillot’s algorithm uses the Cohen-Sutherland clipping
algorithm. One can use the implementation in Section 3.2.1 for this except that the
extended encoding function (ExtendedCsCode) shown in Algorithm 3.3.4.3 should be

3.3 Polygon-Clipping Algorithms 93

{ Constants }
MAXSIZE = 1000; { maximum size of pnt2d array }
NOSEGM = 0; { segment was rejected }
SEGM = 1; { segment is at least partially visible }
CLIP = 2; { segment was clipped }
TWOBITS = $10; { flag for 2-bit code }

{ Two lookup tables for finding turning point.
 Tcc is used to compute a correct offset.
 Cra gives an index into the clipRegion array for turning point coordinates. }

integer array [0..15] Tcc = (0, -3, -6,1,3,0,1,0,6,1,0,0,1,0,0,0);
integer array [0..15] Cra = (-1, -1, -1,3, -1, -1,2, -1, -1,1, -1, -1,0, -1, -1, -1);

pnt2d = record
real x, y;

end;

pnt2ds = pnt2d array [0..MAXSIZE];

{ Global variables }
{ The clipping region [xmin,xmax]¥[ymin,ymax] bounds listed in order:
 (xmin,ymin),(xmax,ymin),(xmin,ymax),(xmax,ymax) }

array [0..3] of pnt2d clipRegion;

pnt2d startPt; { start point of segment }
integer startC; { code for start point }
integer startC0; { saves startC for next call to CS_EndClip }
pnt2d endPt; { endpoint of segment }
integer endC; { code for endpoint }
integer aC; { used by procedure TwoBitEndPoint }

Algorithm 3.3.4.2. The Maillot polygon-clipping algorithm.

94 3 Clipping

procedure M_Clip (ref pnt2ds inpts; integer numin);
ref pnt2ds outpts; ref integer numout)

{ inpts[0..numin-1] defines the input polygon with inpts[numin-1] = inpts[0] .
 The clipped polygon is returned in outpts[0..numout-1]. It is assumed that
 the array outpts is big enough. }
begin

integer i;

numout := 0;

{ Compute status of first point. If it is visible, it is stored in outpts array. }
if CS_StartClip () > 0 then

begin
outpts[numout] := startPt;
Inc (numout);

end;

{ Now the rest of the points }
for i:=1 to numin-1 do

begin
cflag := CS_EndClip (i);

startC0 := endC; { endC may get changed }
if SegMetWindow (cflag)

then
begin

if Clipped (cflag) then
begin

outpts[numout] := startPt;
Inc (numout);

end;
outpts[numout] := endPt;
Inc (numout);

end
else if TwoBitCase (endC)

then TwoBitEndPoint ()
else OneBitEndPoint ();

{ The basic turning point test }
if TwoBitCase (endC) then

begin
outpts[numout] := clipRegion[Cra[endC and not (TWOBITS)]];
Inc (numout);

end;

startPt := inpts[i];
end;

Algorithm 3.3.4.2. Continued

3.3 Polygon-Clipping Algorithms 95

{ Now close the output }
if numout > 0 then

begin
outpts[numout] := outpts[0];
Inc (numout);

end
end; { M_Clip }

boolean function SegMetWindow (integer cflag)
return ((cflag and SEGM) π 0);

boolean function Clipped (integer cflag)
{ Actually, this function should return true only if the first point is clipped;
 otherwise we generate redundant points. }

return ((cflag and CLIP) π 0);

boolean function TwoBitCase (integer cflag)
return ((cflag and TWOBITS) π 0);

procedure TwoBitEndPoint ()
{ The line has been rejected and we have a 2-bit endpoint. }
if (startC and endC and (TWOBITS - 1)) = 0 then

begin
{ The points have no region bits in common. We need to generate
 an extra turning point - which one is specified by Cra table. }
if TwoBitCase (startC)

then BothAreTwoBits () { defines aC for this case }
else aC := endC + Tcc[startC]; { 1-bit start point, 2-bit endpoint }

outpts[numout] := clipRegion[Cra[aC and not (TWOBITS)]];
Inc (numout);

end; { TwoBitEndPoint }

procedure BothAreTwoBits ()
{ Determines what aC should be by doing midpoint subdivision. }
begin

boolean notdone;
pnt2d Pt1, Pt2, aPt;

notdone := true;
Pt1 := startPt;
Pt2 := endPt;

Algorithm 3.3.4.2. Continued

96 3 Clipping

while notdone do
begin

aPt.x := (Pt1.x + Pt2.x)/2.0;
aPt.y := (Pt1.y + Pt2.y)/2.0;
aC := ExtendedCsCode (aPt);
if TwoBitCase (aC)

then
begin

if aC = endC
then Pt2 := aPt
else

begin
if aC = startC

then Pt1 := aPt
else notdone := false

end
end

else
begin

if (aC and endC) π 0
then aC := endC + Tcc[startC and not (TWOBITS)]
else aC := startC + Tcc[endC and not (TWOBITS)];

notdone := false;
end

end
end; { BothAreTwoBits }

procedure OneBitEndPoint ()
{ The line has been rejected and we have a 1-bit endpoint. }
if TwoBitCase (startC)

then
begin

if (startC and endC) = 0 then
 endC := startC + Tcc[endC];

end
else

begin
 endC := endC or startC;

if Tcc[endC] = 1 then endC := endC or TWOBITS;
end; { OneBitEndPoint }

Algorithm 3.3.4.2. Continued

used. This function adds the extra bit (TWOBITS), which we talked about. Within the
Cohen-Sutherland clipping the extra bit should be ignored.

Two functions in the Maillot algorithm, Algorithm 3.3.4.2, make use of Cohen-
Sutherland clipping:

CS_StartClip: This function defines global variables

startPt – the first point of the input polygon
startC – the extended Cohen-Sutherland code for startPt

and returns values SEGM or NOSEGM, where

SEGM means that the point is inside the clipping region
NOSEGM means that the point is outside the clipping region

CS_EndClip (integer i): This function uses the global variables startC0 and
startPt, clips the segment [startPt,ith point of polygon],
and defines the global variables

startC, endC – the extended Cohen-Sutherland code for the start and end-
point, respectively

startPt, endPt – these are the original endpoints if there was no clipping or
are the clipped points otherwise

The function returns values SEGM, SEGM or CLIP, or NOSEGM, where

3.3 Polygon-Clipping Algorithms 97

integer function ExtendedCsCode (pnt2d p)
{ The Maillot extension of the Cohen-Sutherland encoding of points }
begin

if p.x < clipRegion[0].x then
begin

if p.y > clipRegion[3].y then return (6 or TWOBITS);
if p.y < clipRegion[0].y then return (12 or TWOBITS);
return (4);

end;
if p.x > clipRegion[3].x then

begin
if p.y > clipRegion[3].y then return (3 or TWOBITS);
if p.y < clipRegion[0].y then return (9 or TWOBITS);
return (1);

end;
if p.y > clipRegion[3].y then return (2);
if p.y < clipRegion[0].y then return (8);
return (0);

end;

Algorithm 3.3.4.3. An extended clipping code function.

SEGM means that the segment is inside the clipping region
CLIP means that the segment is only partly inside the clipping region
NOSEGM means that the segment is outside the clipping region

In conclusion, Maillot claims the following for his algorithm and implementation:

(1) It is up to eight times faster than the Sutherland-Hodgman algorithm and up
to three times faster than the Liang-Barsky algorithm.

(2) It can be implemented using only integer arithmetic.
(3) It would be easy to modify so as to reduce the number of degenerate edges.

With regard to point (3), recall again that the Sutherland-Hodgman and Liang-Barsky
algorithms also produce degenerate edges sometimes. The Weiler and Vatti algorithm
are best in this respect.

3.3.5 Vatti Polygon Clipping

Quite a few polygon-clipping algorithms have been published. We have discussed
several. The Liang-Barsky and Maillot algorithms are better than the Sutherland-
Hodgman algorithm, but these algorithms only clip polygons against simple rectan-
gles. This is adequate for many situations in graphics. On the other hand, the
Sutherland-Hodgman and Cyrus-Beck algorithms are more general and allow clipping
against any convex polygon. The restriction to convex polygons is caused by the fact
that the algorithm clips against a sequence of halfplanes and therefore only applies
to sets that are the intersection of halfplanes, in other words, convex (linear) poly-
gons. There are situations however where the convexity requirement is too restrictive.
The Weiler algorithm is more general yet and works for non-convex polygons. The
final two algorithms we look at, the Vatti and Greiner-Hormann algorithms, are also
extremely general. Furthermore, they are the most efficient of these general algo-
rithms. The polygons are not constrained in any way now. They can be concave or
convex. They can have self-intersections. In fact, one can easily deal with lists of poly-
gons. We begin with Vatti’s algorithm ([Vatt92]).

Call an edge of a polygon a left or right edge if the interior of the polygon is to the
right or left, respectively. Horizontal edges are considered to be both left and right
edges. A key fact that is used by the Vatti algorithm is that polygons can be represented
via a set of left and right bounds, which are connected lists of left and right edges,
respectively, that come in pairs. Each of these bounds starts at a local minimum of the
polygon and ends at a local maximum. Consider the “polygon” with vertices p0, p1, . . . ,
p8 shown in Figure 3.18(a). The two left bounds have vertices p0, p8, p7, p6 and p4, p3,
p2, respectively. The two right bounds have vertices p0, p1, p2 and p4, p5, p6.

Note. In this section the y-axis will be pointing up (rather than down as usual for a
viewport).

Here is an overview of the Vatti algorithm. The first step of the algorithm is to
determine the left and right bounds of the clip and subject polygons and to store this
information in a local minima list (LML). This list consists of a list of matching pairs

98 3 Clipping

A good way to implement these partial polygons is via a circularly linked list, or cycle,
and a pointer that points to the last element of the list.

The algorithm now computes the bounds of the output polygons from the LML
by scanning the world from the bottom to the top using what are called scan beams.
A scan beam is a horizontal section between two scan lines (not necessarily adjacent),
so that each of these scan lines contains at least one vertex from the polygons but
there are no vertices in between them. Figure 3.18(a) shows the scan beams and the
scan lines that determine them for that particular polygon. The scan beams are the
regions between the horizontal lines. It should be noted here that the scan lines that
determine the scan beams are not computed all at once but incrementally in a bottom-
up fashion. The information about the scan beams is kept in a scan beam list (SBL),
which is an ordered list ordered by the y-coordinates of all the scan lines that define
the scan beams. This list of increasing values will be thought of as a stack. As we scan
the world, we also maintain an active edge list (AEL), which is an ordered list con-
sisting of all the edges intersected by the current scan beam.

When we begin processing a scan beam, the first thing we do is to check the LML
to see if any of its bound pairs start at the bottom of the scan beam. These bounds
correspond to local minima and may start a new output polygon or break one into
two depending on whether the local minimum starts with a left-right or right-left edge
pair. After any new edges from the LML are added to the AEL, we need to check for
intersections of edges within a scan beam. These intersections affect the output poly-
gons and are dealt with separately first. Finally, we process the edges on the AEL.
Algorithm 3.3.5.1 summarizes this overview of the Vatti algorithm.

To understand the algorithm a little better we look at some more of its details.
The interested reader can find a much more thorough discussion with abstract pro-
grams and explicit data structures in the document VattiClip on the accompanying
CD. The UpdateLMLandSBL procedure in Algorithm 3.3.5.1 finds the bounds of a
polygon, adds them to LML, and also updates SBL. Finding a bound involves finding
the edges that make them up and initializing their data structure that maintains the
information that we need as we go along. For example, we keep track of the x-coor-
dinate of their intersection with the bottom of the current scan beam. We call this the
x-value of the edge. The edges of the AEL are ordered by these values with ties being
broken using their slope. We also record the kind of an edge which refers to whether
it belongs to the clip or subject polygon. Two edges are called like edges if they are of
the same kind and unlike edges otherwise. The partial polygons that are built and that,
in the end, may become the polygons that make up the clipped polygon are called the
adjacent polygons of their edges.

Because horizontal edges complicate matters, in order to make dealing with hor-
izontal edges easier, one assumes that the matching left and right bound pairs in the
LML list are “normalized”. A normalized left and right bound pair satisfies the fol-
lowing properties:

(1) All consecutive horizontal edges are combined into one so that bounds do not
have two horizontal edges in a row.

(2) No left bound has a bottom horizontal edge (any such edges are shifted to the
right bound).

(3) No right bound has a top horizontal edge (any such edges are shifted to the
left bound).

100 3 Clipping

We introduce some more terminology. Some edges and vertices that one encoun-
ters or creates for the output polygons will belong to the bounds of the clipped
polygon, others will not. Let us call a vertex or an edge a contributing or noncon-
tributing vertex or edge depending on whether or not it belongs to the output poly-
gons. With regard to vertices, if a vertex is not a local minimum or maximum, then
it will be called a left or right intermediate vertex depending on whether it belongs to
a left or right bound, respectively. Because the overall algorithm proceeds by taking

3.3 Polygon-Clipping Algorithms 101

{ Global variables }
real list SBL; { an ordered list of distinct reals thought of as a stack}
bound pair list LML; { a list of pairs of matching polygon bounds }
edge list AEL; { a list of nonhorizontal edges ordered by x-intercept

 with the current scan line}
polygon list PL; { the finished output polygons are stored here as algorithm

 progresses }

polygon list function Vatti_Clip (polygon subjectP; polygon clipP)
{ The polygon subjectP is clipped against the polygon clipP.
 The list of polygons which are the intersection of subjectP and clipP is returned to the
 calling procedure. }

begin
real yb, yt;

Initialize LML, SBL to empty;

{ Define LML and the initial SBL }
 UpdateLMLandSBL (subjectP,subject);
 UpdateLMLandSBL (clipP, clip);

Initialize PL, AEL to empty;

yb := PopSBL (); { bottom of current scan beam }

{ subject and clip specify a subject }
{ or clip polygon, respectively }

repeat
 AddNewBoundPairs (yb); { modifies AEL and SBL }

yt := PopSBL (); { top of current scan beam }
ProcessIntersections (yb,yt);
ProcessEdgesInAEL (yb,yt);
yb := yt;

until Empty (SBL);

return (PL);
end;

Algorithm 3.3.5.1. The Vatti polygon-clipping algorithm.

the appropriate action based on the vertices that are encountered, we shall see that
it therefore basically reduces to a careful analysis of the following three cases:

(1) The vertex is a local minimum.
(2) The vertex is a left or right intermediate vertex.
(3) The vertex is a local maximum.

Local minima are encountered when elements on the LML become active. Interme-
diate vertices and local maxima are encountered when scanning the AEL. Intersec-
tions of edges also give rise to these three cases.

Returning to Algorithm 3.3.5.1, the first thing that happens in the main loop is to
check for new bound pairs that start at the bottom of the current scan beams. If any
such pairs exist, then we have a case of two bounds starting at a vertex p that is a
local minimum. We add their first nonhorizontal edges to the AEL and the top y-values
of these to the SBL. The edges are flagged as being a left or right edge. We determine
if the edges are contributing by a parity test and flag them accordingly. An edge of
the subject polygon is contributing if there are an odd number of edges from the clip
polygon to its left in the AEL. Similarly, an edge of the clip polygon is contributing if
there are an odd number of edges from the subject polygon to its left in the AEL. If
the vertex is contributing, then we create a new partial polygon P[p] and associate
this polygon to both edges. Note that to determine whether or not an edge is con-
tributing or noncontributing we actually have to look at the geometry only for the first
nonhorizontal edge of each bound. The bound’s other edges will be of the same type
as that one.

The central task of the main loop in the Vatti algorithm is to process the edges
on the AEL. If edges intersect, we shall have to do some preprocessing (procedure
ProcessIntersections), but right now let us skip that and describe the actual process-
ing, namely, procedure ProcessEdgesInAEL. Because horizontal edges cause sub-
stantial complications, we separate the discussion into two cases. We shall discuss the
case where there are no horizontal edges first.

If an edge does not end at the top of the current scan beam, then we simply update
its x-value to the x-coordinate of the intersection of the edge with the scan line at the
top of the scan beam. If an edge does end at the top of the scan beam, then the action
we take is determined by the type of the top end vertex p. The vertex can either be an
intermediate vertex or a local maximum.

If the vertex p is a left or right intermediate vertex, then the vertex is added at the
beginning or end of the vertex list of its adjacent polygon, depending on whether it is
a left or right edge, respectively. The edge is replaced on the AEL by its successor edge
which inherits the adjacent polygon and left/right flag of the old edge.

If the vertex p is a local maximum of the original clip or subject polygons, then a
pair of edges from two bounds meet in the point p. If p is a contributing vertex, then
the two edges may belong either to the same or different (partial) polygons. If they have
the same adjacent polygons, then this polygon will now be closed once the point p is
added. If they belong to different polygons, say P and Q, respectively, then we need to
merge these polygons. Let e1 and e2 be the top edges for P and f1 and f2, the top edges
for Q, so that e1 and f1 meet in p with f1 the successor to e1 in the AEL. See Figure 3.19.
Figures 3.19(a) and (c) show specific examples and (b) and (d) generic cases. If e1 is a
left edge of P (Figures 3.19(a) and (b)), then we append the vertices of Q to the begin-

102 3 Clipping

ning of the vertex list of P. If e1 is a right edge of P (Figures 3.19(c) and (d)), then we
append the vertices of P to the end of the vertex list of Q. Note that each of the poly-
gons has two top contributing edges. In either case, after combining the vertices of P
and Q, the two edges e1 and f1 become noncontributing. If e1 was a left edge, then f2 will
be contributing to P and the adjacent polygon of f2 will become P. If e1 was a right edge,
then e2 will be contributing to Q. Therefore, the adjacent polygon of e2 will become Q.

When we find a local maximum we know two top edges right away, but if these
have different adjacent polygons, then we need to find the other two top edges for
these polygons. There are two ways to handle this. One could maintain pointers in
the polygons to their current top edges, or one could do a search of the AEL. The first
method gives us our edges without a search, but one will have to maintain the point-
ers as we move from one edge to the next. Which method is better depends on the
number of edges versus the number of local maxima. Since there probably are rela-
tively few local maxima, the second method is the recommended one.

Finally, we look at how one deals with intersections of edges within a scan beam.
The way that these intersections are handled depends on whether we have like or
unlike edges. Like intersections need only be considered if both edges are contribut-
ing and in that case the intersection point should be treated as both a left and right
intermediate vertex. (Note that in the case of like intersections, if one edge is con-
tributing, then the other one will be also.) Unlike intersections must always be
handled. How their intersection point is handled depends on their type, side, and rel-
ative position in the AEL.

It is possible to give some precise rules on how to classify intersection points. The
classification rules are shown in Table 3.3.5.1 in an encoded form. Edges have been
specified using the following two-letter code: The first letter indicates whether the edge
is a left (L) or right (R) edge, and the second letter specifies whether it belongs to the
subject (S) or clip (C) polygon. The resulting vertex type is also specified by a two-letter
code: local minimum (MN), local maximum (MX), left intermediate (LI), and right inter-
mediate (RI). Edge codes are listed in the order in which their edges appear in the AEL.

For example, Rule 1 translates into the following: The intersection of a left clip edge and
a left subject edge, or the intersection of a left subject edge and a left clip edge, produces

3.3 Polygon-Clipping Algorithms 103

Figure 3.19. Merging polygons.

a left intermediate vertex. Rules 1–4 are shown graphically in Figure 3.20(a). Figure
3.20(b) shows an example of how the rules apply to some real polygon intersections.

As one moves from scan beam to scan beam, one updates the x-values of all the
edges (unless they end at the top of the scan beam). Although the AEL is sorted as
one enters a new scan beam, if any intersections are found in a scan beam, the AEL
will no longer be sorted after the x-values are updated. The list must therefore be
resorted, but this can be done in the process of dealing with the intersections. Vatti
used a temporary sorted edge list (SEL) and an intersection list (IL) to identify and
store all the intersections in the current scan beam. The SEL is ordered by the x-coor-
dinate of the intersection of the edge with the top of the scan beam similarly to the
way that the AEL is ordered by the intersection values with the bottom of the scan
beams. The IL is a list of nodes specifying the two intersecting edges and also the
intersection itself. It is sorted in an increasing order by the y-coordinate of the inter-
section. The SEL is initialized to empty. One then makes a pass over the AEL com-
paring the top x-value of the current edge with the top x-values of the edges in the
SEL starting at the right of the SEL. There will be an intersection each time the AEL
edge has a smaller top x-value than the SEL edge. Note that the number of intersec-
tions that are found is the same as the number of edge exchanges in the AEL it takes
to bring the edge into its correct place at the top of the scan beam.

Intersection points of edges are basically treated as vertices. Such “vertices” will
be classified in a similar way as the regular vertices. If we get a local maximum, then
there are two cases. If two unlike edges intersect, then a contributing edge becomes

104 3 Clipping

Table 3.3.5.1 Rules that Classify the Intersection Point Between Edges

Unlike edges: Like edges:

(1) (LC « LS) or (LS « LC) Æ LI (5) (LC « RC) or (RC « LC) Æ LI and RI
(2) (RC « RS) or (RS « RC) Æ RI (6) (LS « RS) or (RS « LS) Æ LI and RI
(3) (LS « RC) or (LC « RS) Æ MX
(4) (RS « LC) or (RC « LS) Æ MN

Figure 3.20. Intersection rules.

a noncontributing edge and vice versa. This is implemented by simply swapping the
output polygon pointers. If two like edges intersect, then a left edge becomes a right
edge and a right edge becomes a left edge. One needs to swap the intersecting edges
in the AEL to maintain the x-sort.

This finishes our discussion of the Vatti algorithm in the case where there are no
horizontal edges. Now we address the more complicated general case that allows hor-
izontal edges to exist. (However, we never allow edges to overlap, that is, where they
share a common segment.) The only changes we have to make are in procedure
ProcessEdgesInAEL. On an abstract level, it is easy to see how horizontal edges should
be handled. The classification of vertices described above should proceed as if such
edges were absent (had been shrunk to a point). Furthermore, if horizontal edges do
not intersect any other edge, then for all practical purposes they could be ignored.
The problems arise when intersections exist.

Imagine that the polygons were rotated slightly so that there were no horizontal
edges. The edges that used to be horizontal would now be handled without any
problem. This suggests how they should be treated when they are horizontal. One
should handle horizontal edges the same way that intersections are handled. Note that
horizontal edge intersections occur only at the bottom or top of a scan beam. Hori-
zontal edges at local minima should be handled in the AddNewBoundPairs procedure.
The others are handled as special cases in that part of the algorithm that tests whether
or not an edge ends in the current scan beam. If it does, we also need to look for hor-
izontal edges at the top of the current scan beam and the type classification of a vertex
should then distinguish between a local maximum, left intermediate vertex, or right
intermediate vertex cases. The corresponding procedures need to continue scanning
the AEL for edges that intersect the horizontal edge until one gets past it. One final
problem occurs with horizontal edges that are oriented to the left. These would be
detected too late, that is, by the time one finds the edge to which they are the suc-
cessor, we would have already scanned past the AEL edges that intersected them. To
avoid this, the simplest solution probably is to make an initial scan of the AEL for all
such edges before one checks events at the top of the scan beam and put them into a
special left-oriented horizontal edge list (LHL) ordered by the x-values of their left
endpoints. Then as one scans the AEL one needs to constantly check the top x-value
of an edge for whether it lies inside one of these horizontal edges.

This completes our description of the basic Vatti algorithm. The algorithm can be
optimized in the common case of rectangular clip bounds. Another optimization is pos-
sible if the clip polygon is fixed (rectangular or not) by computing its bounds only once
and initializing the LML to these bounds at the beginning of a call to the clip algorithm.

An attractive feature of Vatti’s algorithm is that it can easily be modified to gen-
erate trapezoids. This is particularly convenient for scan line–oriented rendering algo-
rithms. Each local minimum starts a trapezoid or breaks an existing one into two
depending on whether the local minimum starts with a left-right (contributing case)
or right-left (noncontributing case) edge pair. At a contributing local minimum we
create a trapezoid. Trapezoids are output at local maxima and left or right interme-
diate vertices. A noncontributing local minimum should output the trapezoid it is
about to split and update the trapezoid pointers of the relevant edges to the two new
trapezoids. Vatti compared the performance of the trapezoid version of his algorithm
to the Sutherland-Hodgman algorithm and found it to be roughly twice as fast for
clipping (the more edges, the more the improvement) and substantially faster if one

3.3 Polygon-Clipping Algorithms 105

does both clipping and filling. Because Section 14.4 will describe a special case of the
trapezoid form of the Vatti algorithm for use with trimmed surfaces, we postpone any
further details on how to deal with trapezoids to there.

Finally, we can also use the Vatti algorithm for other operations than just inter-
section. All we have to do is replace the classification rules. For example, if we want
to output the union of two polygons, use the rules

(1) (LC » LS) or (LS » LC) Æ LI
(2) (RC » RS) or (RS » RC) Æ RI
(3) (LS » RC) or (LC » RS) Æ MN
(4) (RS » LC) or (RC » LS) Æ MX

Local minima of the subject polygon that lie outside the clip polygon and local minima
of the clip polygon that lie outside the subject polygon should be treated as con-
tributing local minima.

For the difference of two polygons (subject polygon minus clip polygon) use the rules

(1) (RC - LS) or (LS - RC) Æ LI
(2) (RS - LC) or (LC - RS) Æ RI
(3) (RS - RC) or (LC - LS) Æ MN
(4) (RC - RS) or (LS - LC) Æ MX

Local minima of the subject polygon that lie outside the clip polygon should be treated
as contributing local minima.

3.3.6 Greiner-Hormann Polygon Clipping

The last polygon-clipping algorithm we consider is the Greiner-Hormann algorithm
([GreH98]). It is very much like Weiler’s algorithm but simpler. Like the Weiler and
Vatti algorithm it handles any sort of polygons including self-intersecting ones. Fur-
thermore, it, like Vatti’s algorithm, can be modified to return the difference and union
of polygons, not just their intersections.

Suppose that we want to clip the subject polygon S against the clip polygon C.
What we shall do is find the part of the boundary of S in C, the part of the boundary
of C in S, and then combine these two parts. See Figure 3.21. Since we allow self-
intersecting polygons, one needs to be clear about when a point is considered to be
inside a polygon. Greiner-Hormann use the winding number w(p,g) of a point p with
respect to a parameterized curve g. They define a point p to be in a polygon P if the
winding number of the point with respect to the boundary curve of P is odd. (The
oddness or evenness of the winding number with respect to a curve is independent of
how the curve is parameterized.)

Polygons are represented by doubly-linked lists of vertices. The algorithm pro-
ceeds in three phases. One will find it helpful to compare the steps with those of the
Weiler algorithm as one reads.

Phase 1. We compare each edge of the subject polygon with each edge of the clip
polygon, looking for intersections. If we find one, we insert it in the appropriate place

106 3 Clipping

in both polygons’ vertex lists. If there are no intersections, then either one polygon is
contained in the other or they are disjoint. These cases are checked for easily and we
then exit the algorithm in this case with our answer.

Phase 2. We traverse each polygon’s new vertex lists marking any intersection points
as either entry or exit points. This is done by checking whether the first vertex of each
polygon lies inside the other polygon or not using the winding number. The rest of
the tagging as entry or exit points is then easy.

Phase 3. This stage actually creates the intersection polygons. We start at an inter-
section point of the subject polygon and then move along its point list either forward
or backward depending on its entry-exit flag. If we are at an entry point, then we move
forward, otherwise, backward. When we get to another intersection point, we move
over to the other polygon’s list.

The data structure used for vertices is shown in Data 3.3.6.1. In the case of an
intersection point, if the entry field is false, then the point is an exit point. At an inter-
section vertex in one of the polygon’s vertex lists the field neighbor points to the cor-
responding vertex in the other polygon’s vertex list. The field alpha for an intersection
point specifies the position of the intersection relative to the two endpoints of the edge

3.3 Polygon-Clipping Algorithms 107

Figure 3.21. Greiner-Hormann polygon clipping.

vertex = record
float x, y;
vertex pointer next, prev;
boolean intersect;
boolean entry;
vertex pointer neighbor;
float alpha;
vertex pointer nextPoly;

end;

Data 3.3.6.1. The Greiner-Hormann vertex structure.

containing this intersection point. Because the intersection polygon may consist of
several polygons, these polygons are linked with this field. The first vertex of each
intersection polygon list has its nextPoly field point to the first vertex of the next inter-
section polygon.

The basic steps for Phase 3 are shown in Algorithm 3.3.6.1. The procedure
NewPolygon starts a new polygon P and NewVertex creates a new vertex for this
polygon and adds it to the end of its vertex list. Figure 3.22 shows the data structure
that is created for a simple example.

The algorithm uses an efficient edge intersection algorithm and handles degener-
ate cases of intersections by perturbing vertices slightly.

The advantage of the Greiner-Horman algorithm is that it is relatively simple and
the authors claim their algorithm can be more than twice as fast as the Vatti algo-
rithm. The reason for this is that Vatti’s algorithm also checks for self-intersections
which is not done here. Of course, if one knows that a polygon does not have self-
intersections, then the extra work could be avoided in Vatti’s algorithm also. The
disadvantage of the algorithm is that one does not get any trapezoids but simply
the boundary curve of the intersection. In conclusion, the Greiner-Horman algorithm
is a good one if all one wants is boundaries of polygons because it is simple and yet
fast.

108 3 Clipping

vertex pointer current;

while more unprocessed subject intersection points do
begin

current := pointer to first remaining unprocessed subject intersection point;
NewPolygon (P);
NewVertex (current);
repeat

if currentÆentry
then

repeat
current := currentÆnext;
NewVertex (current);

until currentÆintersect
else

repeat
current := currentÆprev;
NewVertex (current);

until currentÆintersect
current := currentÆneighbor;

until Closed (P);
end;

Algorithm 3.3.6.1. Algorithm for Greiner-Hormann’s Phase 3.

3.4 Text Clipping

The topic of text generation and display is a very complex one. We shall barely scratch
the surface here.

Characters can be displayed in many different styles and sizes and each such
overall design style is called a typeface or font. Fonts are defined in one of several ways:

Bit-Mapped Fonts. Each character is represented by a rectangular bitmap. All the
characters for a particular font are stored in a special part of the graphics memory
and then mapped to the frame buffer when needed.

Vector Fonts. Each character is represented by a collection of line segments.

Outline Fonts. Each character’s outline is represented by a collection of straight line
segments or spline curves. This is more general than vector fonts. An attractive feature
of both vector and outline fonts is that they are device independent and are easily
scaled, rotated, and transformed in other ways. In either case, one has the option of
scan converting them into the frame buffer on the fly or precomputing them and
storing the bitmaps in memory. Defining and scan converting outline fonts gets very
complicated if one wants the result to look nice and belongs to what is called digital
typography.

Two overall strategies that are used to clip text are:

3.4 Text Clipping 109

Figure 3.22. The Greiner-Hormann data structures.

All-or-Nothing String Clipping. Here one computes the size of the rectangle that
contains the string and only maps the string to the frame buffer if the rectangle fits
entirely into the window in which the string is to be displayed.

All-or-Nothing Character Clipping. Here one clips on a character-by-character
basis. One computes the size of the rectangle that contains a given character and only
maps the character to the frame buffer if the rectangle fits entirely into the window
in which it is to be displayed.

The all-or-nothing approaches are easy to implement because it is easy to check
if one rectangle is inside another. The all-or-nothing character clipping approach is
often quite satisfactory. A more precise way to clip is to clip on the bit level. What
this means in the bit-mapped font case is that one clips the rectangular bitmap of
each character against the window rectangle and displays that part which is inside.
In the vector or outline font case, one would clip the curve that defines a character
against the window using one of the line-clipping algorithms and then scan converts
only the part of the character that lies in the window.

3.5 EXERCISES

Section 3.2.2.

3.2.2.1 Let p1 = (-4,-2) and p2 = (2,3). Let A = (0,0), B = (3,0), and C = (0,3). Work out the
steps of the Cyrus-Beck clipping algorithm and compute the [ai,bi]s that are generated
when clipping the segment [p1,p2] against triangle ABC. See Figure 3.23. Assume that
the lines L1, L2, and L3 are defined by equations y = 0, x = 0, and x + y = 3, respectively.

3.6 PROGRAMMING PROJECTS

1. Clipping (Section 3.3.5 and 3.3.6)

Implement either the Vatti or Greiner-Hormann clipping algorithm in such a way so that it
handles all three set operations «, », and -.

110 3 Clipping

Figure 3.23. A Cyrus-Beck clipping example.

three-dimensional environment. Section 4.10 discusses some advantages and dis-
advantages to using homogeneous coordinates in computer graphics. Section 4.11
explains how OpenGL deals with projections. The reconstruction of objects and
camera data is the subject of Section 4.12 and the last graphics pipeline related topic
of this chapter. The last two sections of the chapter are basically further examples of
transformations and their uses. Section 4.13 takes another look at animation, but from
the point of view of robotics. This subject, interesting in its own right, is included
here mainly to reinforce the importance of understanding transformations and
frames. Next, Section 4.14 explains how quaternions are an efficient way to express
transformations and how they are particularly useful in animation. We finish the
chapter with some concluding remarks in Section 4.15.

4.2 From Shape to Camera Coordinates

This section describes the first three coordinate systems in the graphics pipeline. In
what follows, we shall use the term “shape” as our generic word for a geometric object
independent of any coordinate system.

The World Coordinate System. This is the usual coordinate system with respect to
which the user defines objects.

The Shape Coordinate System. This is the coordinate system used in the actual
definition of a shape. It may very well be different from the world coordinate system.
For example, the standard conics centered around the origin are very easy to describe.
A good coordinate system for the ellipse in Figure 4.2 is defined by the indicated frame
(u1,u2,p). In that coordinate system its equation is simply

112 4 Transformations and the Graphics Pipeline

Figure 4.1. The coordinate system pipeline.

4.2 From Shape to Camera Coordinates 113

Figure 4.2. A shape coordinate system.

The equation of that ellipse with respect to the standard world coordinate system
would be much more complicated.

The Camera Coordinate System. A view of the world obtained from a central pro-
jection onto a plane is called a perspective view. To specify such view we shall borrow
some ideas from the usual concept of a camera (more precisely, a pinhole camera
where the lens is just a point). When taking a picture, a camera is at a particular posi-
tion and pointing in some direction. Being a physical object with positive height and
width, one can also rotate the camera, or what we shall consider as its “up” direction,
to the right or left. This determines whether or not the picture will be “right-side up”
or “upside down.” Another aspect of a camera is the film where the image is projected.
We associate the plane of this film with the view plane. (In a real camera the film is
behind the lens, whose position we are treating as the location of the camera, so that
an inverted picture is cast onto it. We differ from a real camera here in that for us
the film will be in front of the lens.) Therefore, in analogy with such a “real” camera,
let us define a camera (often referred to as a synthetic camera) as something specified
by the following data:

a location p
a “view” direction v (the direction in which the camera is looking)
an “up” direction w (specifies the two-dimensional orientation for the camera)
a real number d (the distance that the view plane is in front of the camera)

Clearly, perspective views are defined by such camera data and are easily manipulated
by means of it. We can view the world from any point p, look in any direction v, and
specify what should be the top of the picture. We shall see later that the parameter d,
in addition to specifying the view plane, will also allow us to zoom in or out of views
easily.

A camera and its data define a camera coordinate system specifed by a camera
frame (u1,u2,u3,p). See Figure 4.3(a). This is a coordinate system where the camera
sits at the origin looking along the positive z-axis and the view plane is a plane
parallel to the x-y plane a distance d above it. See Figure 4.3(b). We define this
coordinate system from the camera data as follows:

x y2 2

4 9
1+ = .

(4.1)

These last two axes will be the same axes that will be used for the viewport. There
were only two possibilities for u1 in equations (4.1). Why did we choose u3 ¥ u2 rather
than u2 ¥ u3? Normally, one would take the latter because a natural reaction is to
choose orientation-preserving frames; however, to line this x-axis up with the x-axis
of the viewport, which one always wants to be directed to the right, we must take the
former. (The easiest way to get an orientation-preserving frame here would be to
replace u3 with -u3. However, in the current situation, whether or not the frame is
orientation-preserving is not important since we will not be using it as a motion but
as a change of coordinates transformation.)

Although an up direction is needed to define the camera coordinate system, it is
not always convenient to have to define this direction explicitly. Fortunately, there is
a natural default value for it. Since a typical view is from some point looking toward
the origin, one can take the z-axis as defining this direction. More precisely, one can
use the orthogonal projection of the z-axis on the view plane to define the second axis
u2 for the camera coordinate system. In other words, one can define the camera frame
by

(4.2)

As it happens, we do not need to take the complete cross product to find u1, because
the z-coordinate of u1 is zero. The reason for this is that e3 lies in the plane gen-
erated by u2 and u3 and so u1 is orthogonal to e3. It follows that if u3 = (u31,u32,u33)
and u2 = (u21,u22,u23), then

u v v

u w w w e e u u

u u u

3

2 3 3 3 3

1 3 2

=
= = - ∑()
= ¥

,

.

where

u v v

u w w

u u u

3

2

1 3 2

=
=
= ¥ .

114 4 Transformations and the Graphics Pipeline

ÆÆ

Figure 4.3. The camera coordinate system.

It is also easy to show that u1 is a positive scalar multiple of (u32,-u31,0) (Exercise
4.2.1), so that

(4.3)

Although this characterization of u1 is useful and easier to remember than the cross
product, it is not as efficient because it involves taking a square root.

Note that there is one case where our construction does not work, namely, when
the camera is looking in a direction parallel to the z-axis. In that case the orthogonal
projection of the z-axis on the view plane is the zero vector. In this case one can arbi-
trarily use the orthogonal projection of the y-axis on the view plane to define u2. For-
tunately, in practice it is rare that one runs into this case. If one does, what will happen
is that the picture on the screen will most likely suddenly flip around to some unex-
pected orientation. Such a thing would not happen with a real camera. One can
prevent it by keeping track of the frames as the camera moves. Then when the camera
moves onto the z-axis one could define the new frame from the frames at previous
nearby positions using continuity. This involves a lot of extra work though which is
usually not worth it. Of course, if it is important to avoid these albeit rare occurrences
then one can do the extra work or require that the user specify the desired up direc-
tion explicitly.

Finally, given the frame F = (u1,u2,u3,p) for the camera, then the world-to-camera
coordinate transformation TworÆcam in Figure 4.1 is the map

(4.4)

where M is the 3 ¥ 3 matrix that has the vectors ui as its columns.
We begin with a two-dimensional example.

4.2.1 Example. Assume that the camera is located at p = (5,5), looking in direc-
tion v = (-1,-1), and that the view plane is a distance d = 2 in front of the camera. See
Figure 4.4. The problem is to find TworÆcam.

Solution. Let u2 = v/|v| = (-1/ ,-1/) (u2 plays the role of u3 here). The “up” direc-
tion is determined by e2 in this case, but all we have to do is switch the first and
second coordinate of u2 and change one of the signs, so that u1 = (-1/ ,1/). We
now have the camera frame (u1,u2,p). It follows that T = TworÆcam is the map

In other words,

x y x y, , .() Æ - -()
- -

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

5 5

1

2
1

2

1

2
1

2

22

22

q q p u u u q pÆ -()() = -()1 2 3
T T T

M,

u1

31
2

32
2 32 31

1
0=

+
-()

u u
u u, , .

u1 32 23 22 33 33 21 23 31 0= - -()u u u u u u u u, , .

4.2 From Shape to Camera Coordinates 115

As a quick check we compute T(5,5) = (0,0) and T(5 - ,5 -) = (0,2), which clearly
are the correct values.

Next, we work through a three-dimensional example.

4.2.2 Example. Assume that the camera is located at p = (5,1,2), looking in direc-
tion v = (-1,-2,-1), and that the view plane is a distance d = 3 in front of the camera.
The problem again is to find TworÆcam.

Solution. Using equations (4.2) we get

It follows that

T x x y

y x y z

z x y z

wor camÆ ¢ =
-

-() + -()

¢ =
-

-() +
-

-() + -()

¢ =
-

-() +
-

-() +
-

-()

:

.

2

5
5

1

5
1

1

30
5

2

30
1

5

30
2

1

6
5

2

6
1

1

6
2

u

u w w w

u u u

3

2

1 3 2

1

6
1 2 1

1

30
1 2 5

1
6

1 2 5

1

5
2 1 0

= - - -()

= = - -() = - -()

= ¥ = -()

, ,

, , , , ,

, , .

where

22

T x x y x y

y x y x y

wor camÆ ¢ = - -() + -() = - +

¢ = - -() - -() = - - +

:
1

2
5

1

2
5

1

2

1

2
1

2
5

1

2
5

1

2

1

2
5 2

116 4 Transformations and the Graphics Pipeline

Figure 4.4. Transforming from world to
camera coordinates.

Note in the two examples how the frame that defines the camera coordinate
system also defines the transformation from world coordinates to camera coordinates
and conversely. The frame is the whole key to camera coordinates and look how simple
it was to define this frame!

The View Plane Coordinate System. The origin of this coordinate system is the
point in the view plane a distance d directly in front of the camera and the x- and
y-axis are the same as those of the camera coordinate system. More precisely, if
(u1,u2,u3,p) is the camera coordinate system, then (u1,u2,p+du3) is the view plane
coordinate system.

4.3 Vanishing Points

If there is no clipping, then after one has the camera coordinates of a point, the next
problem is to project to the view plane z = d. The central projection p of R3 from the
origin to this plane is easy to compute. Using similarity of triangles, we get

(4.5)

Let us see what happens when lines are projected to the view plane. Consider
a line through a point p0 = (x0,y0,z0), with direction vector v = (a,b,c), and
parameterization

(4.6)

This line is projected by p to a curve p¢(t) = (x¢(t),y¢(t),d) in the view plane, where

(4.7)

It is easy to check that the slope of the line segment from p¢(t1) to p¢(t2) is

which is independent of t1 and t2. This shows that the curve p¢(t) has constant slope
and reconfirms the fact that central projections project lines into lines (but not
necessarily onto).

Next, let us see what happens to p¢(t) as t goes to infinity. Assume that c π 0. Then,
using equation (4.7), we get that

(4.8)

This limit point depends only on the direction vector v of the original line. What this
means is that all lines with the same direction vector, that is, all lines parallel to the

lim , ,
t

x t y t da c db c
Æ•

¢() ¢()() = ()

¢() - ¢()
¢() - ¢() =

-
-

y t y t
x t x t

y c bz
x c az

2 1

2 1

0 0

0 0
,

¢() =
+
+

¢() =
+
+

x t d
x at
z ct

and y t d
y bt
z ct

0

0

0

0
;

p t x t y t z t t() = () () ()() = +, , .p v0

p x y z x y d d x z d y z d, , , , , , .() = ¢ ¢() = ()

4.3 Vanishing Points 117

original line, will project to lines that intersect in a point. If c = 0, then one can check
that nothing special happens and parallel lines project into parallel lines.

In the context of the world-to-view plane transformation with respect to a given
camera, what we have shown is that lines in the world project into lines in the view
plane. Furthermore, the projection of some lines gives rise to certain special points
in the view plane. Specifically, let L be a line in the world and let equation (4.6) be a
parameterization for L in camera coordinates. We use the notation in the discussion
above.

Definition. If the point in the view plane of the camera that corresponds to the point
on the right hand side of equation (4.8) exists, then it is called the vanishing point for
the line L with respect to the given camera or view.

Clearly, if a line has a vanishing point, then this point is well-defined and unique.
Any line parallel to such a line will have the same vanishing point. Figure 4.5 shows
a projected cube and its vertices. Notice how the lines through the pairs of vertices A
and E, B and F, C and G, and D and H meet in the vanishing point P. If we assume
that the view direction of the camera is perpendicular to the front face of the cube,
then the lines through vertices such as A, B, and E, F, or A, C, and B, D, are paral-
lel. (This is the c = 0 case.)

Perspective views are divided into three types depending on the number of
vanishing points of the standard unit cube (meaning the number of vanishing points
of lines parallel to the edges of the cube).

One-point Perspective View. Here we have one vanishing point, which means
that the view plane must be parallel to a face of the cube. Figure 4.5 shows such a
perspective view.

Two-point Perspective View. Here we have two vanishing points and is the case
where the view plane is parallel to an edge of the cube but not to a face. See Figure
4.6 and the vanishing points P1 and P2.

118 4 Transformations and the Graphics Pipeline

Figure 4.5. Vanishing point.

Three-point Perspective View. Here we have three vanishing points and is the case
where none of the edges of the cube are parallel to the view plane. See Figure 4.7 and
the vanishing points P1, P2, and P3.

Two-point perspective views are the ones most commonly used in mechanical
drawings. They show the three dimensionality of an object best. Three-point per-
spective views do not add much.

4.4 Windows and Viewports Revisited

The simple view of windows and viewports described in Chapter 1 glossed over some
important points and so we need to take another look. Assume that [wxmin,wxmax]
¥ [wymin,wymax] and [vxmin,vxmax] ¥ [vymin,vymax] define the window and view-
port rectangles, respectively. See Figure 4.8. We shall not change the basic idea that
a window specifies what we see and that the viewport specifies where we see it, but
there was a natural implication that it is by changing the window that one sees dif-
ferent parts of the world. Is that not how one would scan a plane by moving a rec-

4.4 Windows and Viewports Revisited 119

Figure 4.6. Two-point perspective
view.

Figure 4.7. Three-point perspective
view.

tangular window around in it? What is overlooked here is the problem that occurs
when the viewport and the window are not the same size rectangle. For example,
suppose that the window is the square [-2,2] ¥ [-2,2] and that the viewport the rec-
tangle [0,100] ¥ [0,50]. What would happen in this situation is that the circle of radius
1 around the origin in the view plane would map to an ellipse centered at (50,25) in
the viewport. What we know to be a circle in the world would show up visually as an
ellipse on the screen. Would we be happy with that? This is the “aspect ratio” problem.
The reader may have noticed this already when implementing some of the program-
ming projects. What can one do to make circles show up as circles?

The best way to deal with the aspect ratio problem would be to let the user change
the viewport but not the window. The window would then be chosen to match the
viewport appropriately. First of all, users are not interested in such low level concepts
anyway and want to manipulate views in more geometric ways by using commands
like “pan,” “zoom,” “move the camera,” etc. Secondly, in the case of 3d graphics, from
a practical point of view this will in no way affect the program’s ability to handle dif-
ferent views. Changing the camera data will have the same effect. In fact, changing
the position and direction of the camera gives the program more control of what one
sees than simply changing the window. Changing the distance that the view plane is
in front of the camera corresponds to zooming. A fixed window would not work in
the case of 2d graphics, however. One would have to let the user translate the window
and change its size to allow zooming. A translation causes no problem, but the
zooming has to be controlled. The size can only be allowed to change by a factor that
preserves the height divided by width ratio. There is no reason for a user to know
what is going on at this level though. As long as the user is given a command option
to zoom in or out, that user will be satisfied and does not need to know any of the
underlying technical details.

Returning to the 3d graphics case, given that our default window will be a fixed
size, what should this size be? First of all, it will be centered about the origin of the
view plane. It should have the same aspect ratio (ratio of height to width) as the view-
port. Therefore, we shall let the window be the rectangle [-1,1] ¥ [-b,b], where b =
(vymax - vymin)/(vxmax - vxmin). Unfortunately, this is not the end of the story. There
is also a hardware aspect ratio one needs to worry about. This refers to the fact that

120 4 Transformations and the Graphics Pipeline

Figure 4.8. The window and view-
port rectangles.

the dots of the electron beam for the CRT may not be “square.” The hardware ratio
is usually expressed in the form a = ya/xa with the operating system supplying the
values xa and ya. In Microsoft Windows, one gets these values via the calls

where hdc is a “device context” and ASPECTX and ASPECTY are system-defined
constants.

To take the aspect ratios into account and to allow more generality in the defini-
tion of the viewport, Blinn ([Blin92]) suggests using normalized device coordinates
(NDC) for the viewport that are separate from pixel coordinates. The normalized
viewport in this case will be the rectangle [-1,1] ¥ [-a,a], where a is the hardware
aspect ratio. If Nx and Ny are the number of pixels in the x- and y-direction of our
picture in pixel space, then Figure 4.8 becomes Figure 4.9.

We need to explain the “-e” terms in Figure 4.9. One’s first reaction might be that
[0,Nx - 1] ¥ [0,Ny - 1] should be the pixel rectangle. But one needs to remember our
discussion of pixel coordinates in Section 2.8. Pixels should be centered at half
integers, so that the correct rectangle is [-0.5,Nx - 0.5] ¥ [-0.5,Ny - 0.5]. Next, the map
from NDC to pixel space must round the result to the nearest integer. Since rounding
is the same thing as adding 0.5 and truncating, we can get the same result by mapping
[-1,1] ¥ [-a,a] to [0,Nx] ¥ [0,Ny] and truncating. One last problem is that a +1 in the
x- or y-coordinate of a point in NDC will now map to a pixel with Nx or Ny in the
corresponding coordinate. This is unfortunately outside our pixel rectangle. Rather
than looking for this special case in our computation, the quickest (and satisfactory)
solution is to shrink NDC slightly by subtracting a small amount e from the pixel
ranges. Smith suggests letting e be 0.001.

There is still more to the window and viewport story, but first we need to talk
about clipping.

xa GetDeviceCaps hdc ASPECTX

ya GetDeviceCaps hdc ASPECTY

= ()
= ()

, ;

, ;

4.4 Windows and Viewports Revisited 121

Figure 4.9. Window, normalized view-
port, and pixel space.

4.5 The Clip Coordinate System

Once one has transformed objects into camera coordinates, our next problem is to
clip points in the camera coordinate system to the truncated pyramid defined by
the near and far clipping planes and the window. One could do this directly, but we
prefer to transform into a coordinate system, called the clip coordinate system or clip
space, where the clipping volume is the unit cube [0,1] ¥ [0,1] ¥ [0,1]. We denote the
transformation that does this by TcamÆclip. There are two reasons for using this
transformation:

(1) It is clearly simpler to clip against the unit cube.
(2) The clipping algorithm becomes independent of boundary dimensions.

Actually, rather than using these coordinates we shall use the associated homogeneous
coordinates. The latter define what we shall call the homogeneous clip coordinate
system or homogeneous clip space. Using homogeneous coordinates will enable us to
describe maps via matrices and we will also not have to worry about any divisions by
zero on our way to the clip stage. The map TcamÆhclip in Figure 4.1 refers to this
camera-to-homogeneous-clip coordinates transformation. Let ThcamÆhclip denote the
corresponding homogeneous-camera-to-homogeneous-clip coordinates transforma-
tion. Figure 4.10 shows the relationships between all these maps. The map Tproj is the
standard projection from homogeneous to Euclidean coordinates.

Assume that the view plane and near and far clipping planes are a distance d, dn,
and df in front of the camera, respectively. To describe TcamÆhclip, it will suffice to
describe ThcamÆhclip.

First of all, translate the camera to (0,0,-d). This translation is represented by the
homogeneous matrix

M

d

tr =

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1

.

122 4 Transformations and the Graphics Pipeline

Figure 4.10. The camera-to-clip
space transformations.

Next, apply the projective transformation with homogeneous matrix Mpersp, where

(4.9)

To see exactly what the map defined by Mpersp does geometrically, consider the lines
ax + z = -d and ax - z = d in the plane y = 0. Note that (x,y,z,w) Mpersp = (x,y,z,(z/d)+w).
In particular,

This shows that the camera at (0,0,-d) has been mapped to “infinity” and the two lines
have been mapped to the lines x¢ = -d/a and x¢ = d/a, respectively, in the plane y = 0.
See Figure 4.11. In general, lines through (0,0,-d) are mapped to vertical lines through
their intersection with the x-y plane. Furthermore, what was the central projection
from the point (0,0,-d) is now an orthogonal projection of R3 onto the x-y plane. It
follows that the composition of Mtr and Mpersp maps the camera off to “infinity,” the
near clipping plane to z = d (1 - d/dn), and the far clipping plane to z = d (1 - d/df).
The perspective projection problem has been transformed into a simple orthographic
projection problem (we simply project (x,y,z) to (x,y,0)) with the clip volume now being

-[] ¥ -[] ¥ -() -()[]1 1 1 1, , , .b b d d d d d df n

0 0 1 0 0 0

0 1 0 0 1

0 1 0 0

2

, , , , , ,

, , , , , , , , ,

, , , , , , , ,

-() = -()

- -() = - - -Ê
Ë

ˆ
¯ = - - +Ê

ËÁ
ˆ
¯̃

- +() = - +Ê
Ë

ˆ
¯ =

d M d

x d ax M x d ax
ax
d

d
ax

d
a

d
d
ax

x d ax M x d ax
ax
d

d
ax

d
a

d

persp

persp

persp --Ê
ËÁ

ˆ
¯̃

d
ax

2

1, .

M
d

persp =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

.

4.5 The Clip Coordinate System 123

Figure 4.11. Mapping the camera to infinity.

To get this new clip volume into the unit cube, we use the composite of the following
maps: first, translate to

and then use the radial transformation which multiplies the x, y, and z-coordinates
by

respectively. If Mscale is the homogeneous matrix for the composite of these two maps,
then

so that

(4.10)

is the matrix for the map ThcamÆhclip that we are after. It defines the transformation
from homogeneous camera to homogeneous clip coordinates. By construction the
map TcamÆclip sends the truncated view volume in camera coordinates into the unit
cube [0,1] ¥ [0,1] ¥ [0,1] in clip space.

Note that the camera-to-clip-space transformation does not cost us anything
because it is computed only once and right away combined with the world-to-camera-
space transformation so that points are only transformed once, not twice.

Finally, our camera-to-clip-space transformation maps three-dimensional points
to three-dimensional points. In some cases, such as for wireframe displays, the z-
coordinate is not needed and we could eliminate a few computations above. However,

M M M M d

d d

d

d d d d
d d

d d d

hcam hclip tr persp scale
f

f n

n f

f n

Æ = =

-()

-
-()

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

1

2
0 0 0

0
1

2
0 0

1

2

1

2

1

0 0 0

M
d

d d

d d d
d d d
d d d

scale
n f

f n

n f

f n

=

-()

-
-()

-()

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

1
2

0 0 0

0
1
2

0 0

0 0 0

1
2

1
2

1

2

,

1
2

1
2 2

, , ,
b

and
d d

d d d
n f

f n-()

0 2 0 2 0
1 12, , , ,[] ¥ [] ¥ -Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

b d
d dn f

124 4 Transformations and the Graphics Pipeline

if we want to implement visible surface algorithms, then we need the z. Note that the
transformation is not a motion and will deform objects. However, and this is the
important fact, it preserves relative z-distances from the camera and to determine
the visible surfaces we only care about relative and not absolute distances. More pre-
cisely, let p1 and p2 be two points that lie along a ray in front of the camera and assume
that they map to p1¢ and p2¢, respectively, in clip space. If the z-coordinate of p1 is
less than the z-coordinate of p2, then the z-coordinate of p1¢ will be less than the z-
coordinate of p2¢. In other words, the “in front of” relation is preserved. To see this,
let pi = (tix, tiy, tiz), 0 < t1 < t2, and pi¢ = (xi¢, yi¢, zi¢). It follows from (4.10) that

from which it is easy to show that t1 < t2 if and only if z1¢ < z2¢.

4.6 Clipping

In the last section we showed how to transform the clipping problem to a problem of
clipping against the unit cube in clip space. The actual clipping against the cube will
be done in homogeneous clip space using homogeneous coordinates (x,y,z,w). The
advantage of homogeneous coordinates was already alluded to: every point of camera
space is sent to a well-defined point here because values become undefined only when
we try to map down to clip space by dividing by w, which may be zero.

Chapter 3 discussed general clipping algorithms for individual segments or whole
polygons. These have their place, but they are not geared to geometric modeling envi-
ronments where one often wants to draw connected segments. We shall now describe
a very efficient clipping algorithm for such a setting that comes from [Blin91a]. It uses
the “best” parts of the Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms.

In homogeneous coordinates halfplanes can be defined as a set of points that have
a nonnegative dot product with a fixed vector. For example, the halfplane ax + by +
cz + d ≥ 0, is defined by the vector (a,b,c,d) in homogeneous coordinates. Therefore,
by lining up vectors appropriately, any convex region bounded by planes can be
defined as the set of points that have nonnegative dot products with a fixed finite set
of vectors. In our case, we can use the following vectors for the six bounding planes
x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1 for the unit cube I3:

If p = (x,y,z,w), then let BCi = BCi(p) = p•Bi. We shall call the BCi the boundary coor-
dinates of p. These coordinates are easy to compute:

BC x BC y BC z

BC w x BC w y BC w z

1 3 5

2 4 6

= = =

= - = - = -

, , ,

, , .

B B B

B B B

1 3 5

2 4 6

1 0 0 0 0 1 0 0 0 0 1 0

1 0 0 1 0 1 0 1 0 0 1 1

= () = () = ()

= -() = -() = -()
, , , , , , , , , , , ,

, , , , , , , , , , , .

z
d
t z

d
d di

n

i

f

f n

¢ = -Ê
Ë

ˆ
¯ -()1

4.6 Clipping 125

A point will be inside the clip volume if and only if all of its boundary coordinates are
nonnegative. If the ith boundary coordinate of a point is nonnegative, then we shall
call the point i-inside; otherwise, it is i-out. Let BC = BC(p) = (BC1(p),BC2(p), . . . ,
BC6(p)) denote the vector of boundary coordinates.

Next, let p0 and p1 be two points and set BC0 = BC(p0) and BC1 = BC(p1). The
next table shows the relationship of the segment [p0,p1] with respect to the ith bound-
ary:

126 4 Transformations and the Graphics Pipeline

Sign bit Sign bit
BC0i BC1i Meaning

0 0 Entire segment is i-inside
1 0 Segment straddles boundary, p0 is i-out
0 1 Segment straddles boundary, p1 is i-out
1 1 Entire segment is i-out

It will be convenient to record the sign information of a point p into a six-bit word
called its outcode and denote it by CODE(p). More precisely, the ith bit of CODE(p)
will be the sign bit of BCi(p). Let CODE0 = CODE(p0) and CODE1 = CODE(p1).
Simple logical operations on CODE0 and CODE1 now give us a lot of information
about the location of the segment. For example, the segment will be inside the clip
volume if (CODE0 or CODE1) is zero. The segment will be entirely outside the
clip volume if (CODE0 and CODE1) is nonzero. (Compare this with the Cohen-
Sutherland clipping algorithm.)

Whenever the segment crosses the ith clipping plane, we need to find the inter-
section. This is easy to do if we parameterize the segment, and we have done this sort
of thing before. We need to find the t so that

With our notation, t = BC0i/(BC0i - BC1i). The segment will intersect the plane only
if this t lies in [0,1]. The expression shows that this can only happen if BC0i and BC1i
have different signs.

Now, the clipping algorithm we are in the process of describing is intended for
situations where we want to do a sequence of “DrawTo” and “MoveTo” commands.
The flag parameter in the “Clip” procedure is used to distinguish between the two
cases and will save us having to write a separate “Clip” procedure for both. The
abstract programs are given in Algorithm 4.6.1 with the ViewPt procedure represent-
ing the next stage of the graphics pipeline after clipping, namely, the clip-space-to-
pixel-space map. A more efficient procedure using goto’s, assuming that the trivial
rejects are the most common cases, is shown in Algorithm 4.6.2.

Next, we describe the nontrivial stuff that happens when a segment straddles a
boundary. We basically use the Liang-Barsky algorithm here. In Algorithm 4.6.3, the
variables a0 and a1 keep track of the still-visible part of a segment. MASK is used to
select one boundary at a time. Blinn points out that he does the operation CODE0 or
CODE1 again on the theory that it will not get done often and we save storing an

p0 p1 p0 B+ -()() ∑ =t i 0.

unneeded value earlier. He also made all tests as much as possible into integer com-
parisons to cut down on floating point operations.

There are some limitations to Blinn’s clipping algorithm. Although they tend to
be more theoretical than practical, one should be aware of them. The problem is that
one is clipping to the infinite inverted pyramid in homogeneous coordinate space
shown in Figure 4.12(a) when, in fact, one should be clipping to the double pyramid
shown in Figure 4.12(b). The points in the negative pyramid will also project to the
visible region. On the other hand, the basic graphics pipeline that we have been
describing will not introduce any negative w’s and so this problem will not arise here.
The problem arises only if negative w-coordinates are introduced explicitly or if one
wants to represent infinite segments (the complement of a normal segment in a line).
If one does want to handle such cases, the quickest way to do it is to draw the world
twice, once as described above and then a second time, where the matrix that maps
from shape to clip coordinates is multiplied by -1.

4.6 Clipping 127

rea
homogeneous point p0, p1;

l BC0,BC1
6-bit word CODE0,CODE1;

Procedure Clip ((move,draw) flag)
{We assume that p0, BC0, and CODE0 have been defined. We clip [p0, p1]}
begin

Calculate BC1, CODE1;

case flag of
move : DoMoveStuff ();
draw : DoDrawStuff ();

end;

{ Update globals }
[p0,BC0,CODE0] := [p1,BC1,CODE1];

end;

Procedure DoMoveStuff ()
if CODE1 = 0 then ViewPt (p1,move);

Procedure DoDrawStuff ()
if (CODE0 and CODE1) = 0 then

begin
if (CODE0 or CODE1) = 0

then ViewPt (p1,draw)
else DoNontrivialStuff ()

end;

Algorithm 4.6.1. Abstract programs for clipping using homogeneous coordinates.

128 4 Transformations and the Graphics Pipeline

Procedure Clip ((move,draw) flag)
begin

label moveit, nontriv, finish;

Calculate BC1, CODE1;

if flag = move then goto moveit;
if (CODE0 and CODE1) π 0 then goto finish;
if (CODE0 or CODE1) π 0 then goto nontriv;
ViewPt(p1,draw);

finish:
[p0,BC0,CODE0] := [p1,BC1,CODE1];
return;

moveit:
if CODE1 π 0 then goto finish;
ViewPt(p1,move);
goto finish;

nontriv:
DoNontrivialStuff ();
goto finish;

end;

Algorithm 4.6.2. More efficient clipping using homogeneous coordinates.

Figure 4.12. Single- and double-clip pyramid.

Algorithm 4.6.3. The nontrivial part of homogeneous coordinate clipping.

4.6 Clipping 129

Procedure DoNontrivialStuff ()
begin

6-bit word BCASE, MASK;
real
integer i;

a0, a1, a;

homogeneous point p;

BCASE := CODE0 or CODE1;
a0 := 0.0; a1 := 1.0; MASK := 1;
for i:=1 to numClipPlanes do

begin
if (BCASE and MASK) π 0 then

begin
a := BC0[i] / (BC0[i] - BC1[i]);
if (CODE0 and MASK) π 0

then a0 := max (a0,a)
else a1 := min (a1,a);

if a1 < a0 then return; { reject }
end;

Shift MASK left one bit
end;

if CODE0 π 0 then
begin

p := p0 + a0*(p1 - p0);
ViewPt (p,move);

end;

if CODE1 π 0
then

begin
p := p0 + a1*(p1 - p0);
ViewPt (p,draw);

end
else ViewPt (p1,draw);

end;

4.7 Putting It All Together

We are finally ready to put all the pieces together. See Figure 4.1 again. Starting with
some shape we are initially in shape coordinates. We then

(1) transform to world coordinates
(2) transform from world to homogeneous clip coordinates by composing

TworÆcam and TcamÆhclip
(3) clip
(4) project (x,y,z,w) down to (x/w,y/w,z/w) in the unit cube of clip space with Tproj
(5) map the unit square in the x-y plane of clip space to the viewport
(6) map from the viewport to pixel space

With respect to (4), note that using a front clipping plane does have the advantage
that we do not have to worry about a division by zero. Almost, but not quite. There
is the very special case of (0,0,0,0) that could occur and hence one needs to check for
it (Exercise 4.7.1). It would be complicated to eliminate this case.

Also, because of the clipping step, Blinn suggests a more complete version of the
window-to-pixel map than shown in Figure 4.9. See Figure 4.13. The square [0,1] ¥
[0,1] represents the clipping. This allows one to handle the situation shown in Figure
4.14, where the viewport goes outside the valid NDC range quite easily. One pulls back
the clipped viewport

to the rectangle

and then uses that rectangle as the window. Only the transformation TcamÆhclip needs
to be changed, not the clipping algorithm.

Blinn’s approach is nice, but there may not be any need for this generality. A much
simpler scheme that works quite well is to forget about the NDC by incorporating the
hardware aspect ratio rh into the window size. Let

wx wx wy wymin, max min, max[] ¥ []

ux ux uy uymin, max min, max[] ¥ []

130 4 Transformations and the Graphics Pipeline

Figure 4.13. From window to pixel
coordinates.

be the current viewport. Then fix the window to be the rectangle [-1,1] ¥ [-b,b], where

Now map directly from [0,1] ¥ [0,1] to pixel space. With this window and the view
transformations discussed in this chapter, circles will look like circles.

We close with a final remark on clipping. Clipping is expensive and therefore we
would rather not do it! In future chapters we shall discuss ways one can often avoid
it (by using bounding boxes, the convex hull property of splines, etc.).

4.8 Stereo Views

Occasionally, it is useful to allow the origin of the view plane to be a point other than
the one directly in front of the camera. One such case is where one wants to compute
stereo views. This involves computing two views, one for each eye.

The Eye Coordinate System. Given a camera, let (u1,u2,u3,p) be the camera coor-
dinate system, where the vectors u1, u2, and u3 are defined by equation (4.1) If
we think of one eye as being located at p + au1 + bu2, then the eye coordinate system
with respect to the given camera and some a, b Œ R is defined by the frame
(u1,u2,u3,p + au1 + bu2). If a = b = 0, then this is the same as the camera coordinate
system.

It is easy to see that if the coordinates of a point p in camera coordinates is (x,y,z),
then the coordinates of that same point in eye coordinates are (x - a,y - b,z). Fur-
thermore, if p projects to (x¢,y¢,d) in eye coordinates, then it projects to (x¢ + a,y¢ +
b,d) in camera coordinates. It follows that, using homogeneous coordinates, the only
difference in computing the view in camera coordinates to computing it in eye coor-
dinates amounts to replacing the matrix Mpersp in equation (4.9) by

b r y y x xh= -() -()max min max min .

vpx vpx vpy vpymin, max min, max[] ¥ []

4.8 Stereo Views 131

Figure 4.14. General window and
viewport example.

(4.11)

To compute stereo views one would compute two views – one with the eye at p +
au1 and one with the eye at p - au1 for some suitable a. See Figure 4.15. The two
views are then displayed a suitable distance apart in a viewport. Actually, our discus-
sion here is a simplification of what is involved in stereo rendering and we refer the
reader to [Hodg92] for a much more thorough overview.

4.9 Parallel Projections

So far we have dealt solely with perspective views, but there are times when one wants
views based on parallel projections. Although this can be thought of as a special case
of central projections where the camera is moved to “infinity” along some direction,
it is worth considering on its own because one can achieve some simplifications in
that case.

Assume that our view plane is the x-y plane and that we are interested in the
parallel projection of the world onto that plane using a family of parallel lines. See
Figure 4.16.

4.9.1 Proposition. If p is the parallel projection of R3 onto R2 with respect to a
family of parallel lines with direction vector v = (v1,v2,v3), then

p x y z x z v v y z v v, , , , .() = - () - ()()1 3 2 3 0

M

a b

d

a b

a d b d d
eye =

- -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ1 0 0 0

0 1 0 0

0 0 1 0

0 1

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 1

1 0 0 0

0 1 0 0

1 1

0 0 0 1 ¯̄

˜
˜
˜̃

132 4 Transformations and the Graphics Pipeline

Figure 4.15. Views from two eyes for stereo.

Proof. Exercise 4.9.1.

Passing to homogeneous coordinates, consider the projective transformation Tpar
defined by the matrix

(4.12)

Our parallel projection onto the x-y plane is then nothing but the Cartesian version
of Tpar followed by the orthogonal projection (x,y,z) Æ (x,y,0). It follows that the matrix
Mpar plays the role of the matrix Mpersp in Section 4.5 (equation (4.9)) in that it reduces
a general projection problem into a simple orthogonal projection.

Notice that a parallel projection does not depend on the length of the vector v. In
fact, any multiple of v will define the same projection, as is easily seen from its equa-
tions. The parallel projection can also be considered the limiting case of a central pro-
jection where one places an eye at a position v = (v1,v2,v3) = (a¢d,b¢d,-d) and one lets
d go to infinity. This moves the eye off to infinity along a line through the origin with
direction vector v. The larger d gets, the more parallel are the rays from the eye to
the points of an object. The matrix Meye in equation (4.11) (with a = a¢d and b = b¢d)
approaches Mpar because 1/d goes to zero.

An even simpler case occurs when the vector v is orthogonal to the view plane.

Definition. A parallel projection where the lines we are projecting along are orthog-
onal to the view plane is called an orthographic (or orthogonal) projection. If the lines
have a direction vector that is not orthogonal to the view plane, we call it an oblique
(parallel) projection. A view of the world obtained via an orthographic or oblique pro-
jection is called an orthographic or oblique view, respectively.

A single projection of an object is obviously not enough to describe its shape.

Definition. An axonometric projection consists of a set of parallel projections that
shows at least three adjacent faces. A view of the world obtained via an axonometric
projection is called an axonometric view.

M v
v

v
v

par =
- -

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

1 0 0 0

0 1 0 0

1 0

0 0 0 1

1

3

2

3

4.9 Parallel Projections 133

Figure 4.16. A parallel projection onto the
x-y plane.

In engineering drawings one often shows a perspective view along with three
orthographic views – a top, front, and side view, corresponding to looking along the
z-, y-, and x-axis, respectively. See Figure 4.17. For a more detailed taxonomy of pro-
jections see [RogA90].

Finally, in a three-dimensional graphics program one might want to do some 2d
graphics. For example, one might want to let a user define curves in the plane. Rather
than maintaining a separate 2d structure for these planar objects it would be more
convenient to think of them as 3d objects. Using the orthographic projection, one can
simulate a 2d world for the user.

4.10 Homogeneous Coordinates: Pro and Con

The computer graphics pipeline as we have described it made use of homogeneous
coordinates when it came to clipping. The given reason for this was that it avoids a
division by zero problem. How about using homogeneous coordinates and matrices
everywhere? This section looks at some issues related to this question. We shall see
that both mathematical and practical considerations come into play.

Disadvantages of the Homogeneous Coordinate Representation. The main dis-
advantage has to do with efficiency. First, it takes more space to store 4-tuples and 4
¥ 4 matrices than 3-tuples and 3 ¥ 4 matrices (frames). Second, 4 ¥ 4 matrices need
more multiplications and additions to act on a point than 3 ¥ 4 matrices. Another dis-
advantage is that homogenous coordinates are less easy to understand than Cartesian
coordinates.

Advantages of the Homogeneous Coordinate Representation. In a word, the
advantage is uniformity. The composite of transformations can be dealt with in a more
uniform way (we simply do matrix multiplication) and certain shape manipulations
become easier using a homogeneous matrix for the shape-to-world coordinate system

134 4 Transformations and the Graphics Pipeline

Figure 4.17. Perspective and orthographic
views of a 2 ¥ 5 ¥ 3 block.

transformation. Furthermore, computer hardware can be optimized to deal with 4 ¥
4 matrices to more than compensate for the inefficiency of computation issue men-
tioned above.

Let us look at the advantage of homogeneous coordinates in more detail. To see
the geometric power contained in a 4 ¥ 4 homogeneous matrix consider Figure 4.18.
The matrix can be divided into the four parts L, T, P, and S as shown, each of which
by itself has a simple geometric interpretation. The matrix corresponds to an affine
map if and only if P is zero and in that case we have a linear transformation defined
by L followed by a translation defined by T. If P is nonzero, then some plane will be
mapped to infinity. We illustrate this with the examples shown in Figure 4.19.

First, consider L. That matrix corresponds to a linear transformation of R3. If L
is a pure diagonal matrix, then we have a map that expands and/or contracts along

4.10 Homogeneous Coordinates: Pro and Con 135

Figure 4.18. Parts of a homogeneous matrix.

1 0 0 0

0 7 0 0

0 0 1 0

0 0 0 0

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

1 0 0 0

3 1 0 0

0 0 1 0

0 0 0 1

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

1 0 0 0
0 1 0 0
0 0 1 0
1 3 5 1

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯-

(a) (b) (c)

1 0 0 0
0 7 0 0
0 0 1 0
0 0 0 5

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

1 0 0 2
0 1 0 3
0 0 1 0
0 0 0 1

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

 (d) (e)

Figure 4.19. Transformation examples.

the x, y, or, z axis. For example, the map in Figure 4.19(a) sends the point (x,y,z) to
the point (x,7y,z), which expands everything by a factor of 7 in the y direction.

A lower triangular matrix causes what is called a shear. What this means is that
the map corresponds to sliding the world along a line while expanding or contract-
ing in a possibly not constant manner along a family of lines not parallel to the first
line. The same thing holds for upper triangular matrices. For example, consider the
matrix M in Figure 4.19(b). The point (x,y,z) gets sent to (x + 3y,y,z). Points get moved
horizontally. The bigger the y-coordinate is, the more the point is moved. Note that
this map is really an extension of a map of the plane.

Next, consider the map in Figure 4.19(c). This map sends the point (x,y,z) to (x -
1,y + 3,z + 5) and is just a simple translation by the vector (-1,3,5). The map in Figure
4.19(d) sends the homogenous point (x,y,z,1) to (x,7y,z,5), in other words, (x,y,z) is
sent to (x/5,7y/5,z/5), which is just a global scaling. Finally, the map in Figure 4.19(e)
sends (x,y,z) to (x/(2x + 3y + 1), y/(2x + 3y + 1), z/(2x + 3y + 1)). The plane 2x + 3y + 1
= 0 gets sent to infinity. The map is a two-point perspective map with vanishing points
for lines parallel to the x- or y-axes.

We finish this section by describing a way to visualize homogeneous coordinates
and why some caution should be exercised when using them.

The standard embedding of R3 in P3 maps (x,y,z) to [x,y,z,1]. This means that we
can use the space of 4-tuples, that is, R4, to help us visualize P3. More precisely, since
the lines through the origin correspond in a one-to-one fashion with the points of P3,
we can use the plane w = 1 in R4 to represent the real points of P3. Furthermore, if
someone talks about a point p1 with homogeneous coordinates (x,y,z,w), then we can
pretty much deal with p1 as if it actually were that 4-tuple in R4. We need to remem-
ber, however, that if p1 lies on a line through the origin and a point A on the plane w
= 1, then p1 and A will represent the same point of P3. See Figure 4.20. Now, once
one decides to use homogeneous coordinates for a graphics problem, although one
usually starts out with a representative like A, after one has applied several transfor-
mations (represented by 4 ¥ 4 matrices), one may not assume that the 4-tuple one
ends up with will again lie on the plane w = 1. Although one could continually project
back down to the w = 1 plane, that would be awkward. It is simpler to let our new

136 4 Transformations and the Graphics Pipeline

Figure 4.20. The w = 1 plane in R4.

points float around in R4 and only worry about projecting back to the “real” world at
the end. There will be no problems as long as we deal with individual points. Prob-
lems can arise though as soon as we deal with nondiscrete sets.

In affine geometry, segments, for example, are completely determined by their end-
points and one can maintain complete information about a segment simply by keeping
track of its endpoints. More generally, in affine geometry, the boundary of objects
usually determines a well-defined “inside,” and once we know what has happened to
the boundary we know what happened to its “inside.” A circle in the plane divides the
plane into two parts, the “inside,” which is the bounded part, and the “outside,” which
is the unbounded part. This is not the case in projective geometry, where it is not
always clear what is “inside” or “outside” of a set. Analogies with the circle and sphere
make this point clearer. Two points on a circle divide the circle into two curvilinear
segments. Which is the “inside” of the two points? A circle divides a sphere into two
curvilinear disks. Which is the “interior” of the circle?

Here is how one can get into trouble when one uses homogeneous coordinates
with segments. Again, consider Figure 4.20 and the segment corresponding to the
“real” points A and B. The figure shows that at least with some choices of represen-
tatives, namely, p1 and p2, nothing strange happens. The segment [p1,p2] in R4 proj-
ects onto the segment [A,B] and so the points

represent the same points of P3 as the points of [A,B]. It would appear as if one can
deal with segments in projective space by simply using the ordinary 4-tuple segments
in R4. But what if we used p1¢ = ap1 instead, where a < 0? See Figure 4.21. In that
case, the segment [p1¢,p2] projects to the exterior segment on A and B and so deter-
mines different points in P3 from [A,B]. The only way to avoid this problem would
be to ensure that the w-coordinate of all the points of our objects always stayed pos-
itive as they got mapped around. Unfortunately, this is not always feasible.

s t s t s tp p1 2 0 1 1+ £ £ + =, , , ,

4.10 Homogeneous Coordinates: Pro and Con 137

Figure 4.21. Problems with homogeneous
representatives for points.

4.11 The Projections in OpenGL

In OpenGL one needs to specify the viewing volume. This is done in the way indi-
cated in Figure 4.22. Note that there is no view plane as such and that the z-axis does
not point in the direction one is looking but in the opposite direction. The view volume
is specified by the far clipping plane z = -f and a rectangle [R,r] ¥ [b,t] in the near clip-
ping plane z = -n.

The steps in OpenGL are

(1) Convert to camera coordinates.
(2) Map the homogeneous camera coordinates to homogeneous clip space, but

this time one maps into the cube [-1,1] ¥ [-1,1] ¥ [-1,1]. The homogeneous matrix M
that does this is defined by the equation

The matrix M is obtained in the same manner as was MhcamÆhclip in Section 4.5. The
call to the function glFrustum (R,r,b,t,n,f) in OpenGL generates the matrix nM.

(3) Project to normalized device coordinates in Euclidean space (division by w).
(4) Transform to the viewport.

nM

n
r

n
t b

r
r

t b
t b

f n
f n

fn
f n

=

-

-
+
-

+
-

-
+
-

-

-
-

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

2
0 0 0

0
2

0 0

1

0 0
2

0

l

l

l

138 4 Transformations and the Graphics Pipeline

Figure 4.22. The OpenGL viewing
volume.

.

4.12 Reconstruction

Ignoring clipping, which we shall in this section, by using homogeneous coordinates
the mathematics in our discussion of the graphics pipeline basically reduced to an
equation of the form

(4.13)

where M was a 4 ¥ 3 matrix, a Œ R4, and b Œ R3. The given quantities were the matrix
M, computed from the given camera, and a point in the world that determined a. We
then used equation (4.13) to compute b and the corresponding point in the view plane.
Our goal here is to give a brief look at basic aspects of two types of inverse problems.
For additional details see [PenP86]. For a much more thorough and mathematical
discussion of this section’s topic see [FauL01].

The Object Reconstruction Problem. Can one determine the point in the world
knowing one or more points in the view plane to which it projected with respect to a
given camera or cameras?

The Camera Calibration Problem. Can one determine the world-to-view-plane
transformation if we know some world points and where they get mapped in the view
plane?

Engineers have long used two-dimensional drawings of orthogonal projections of
three-dimensional objects to describe these objects. The human brain is quite adept
at doing this but the mathematics behind this or the more general problem of recon-
structing objects from two-dimensional projections using arbitrary projective trans-
formations is not at all easy. Lots of work has been done to come up with efficient
solutions, even in what might seem like the simpler case of orthographic views. See,
for example, [ShiS98]. Given three orthographic views of a point (x,y,z), say a front,
side, and top view, one would get six constraints on the three values x, y, and z. Such
overconstrained systems, where the values themselves might not be totally accurate
in practice, are typical in reconstruction problems and the best that one can hope for
is a best approximation to the answer.

Before describing solutions to our two reconstruction problems, we need to
address a complication related to homogeneous coordinates. If we consider projec-
tive space as equivalence classes [x] of real tuples x, then mathematically we are really
dealing with a map

(4.14)

Equation (4.13) had simply replaced equation (4.14) with an equation of representa-
tives a, M, and b for p, T, and q, respectively. The representatives are only unique up
to scalar multiple. If we are given p and T and want to determine q, then we are free
to choose any representatives for p and T. The problems in this section, however,
involve solving for p given T and b or solving for T given p and q. In these cases, we

T

T

: P P

p q p

3 2Æ
Æ = ()

a bM = ,

4.12 Reconstruction 139

cannot assume that the representatives in equation (4.13) all have a certain form. We
must allow for the scalar multiple in the choice of representatives at least to some
degree. Fortunately, however, the equations can be rewritten in a more convenient
form that eliminates any explicit reference to such scalar multiples. It turns out that
we can always concentrate the scalar multiple in the “b” vector of equation (4.13).
Therefore, rather than choosing the usual representative of the form b = (b1,b2,1) for
[b], we can allow for scalar multiples by expressing the representative in the form

(4.15)

Let a = (a1,a2,a3,a4) and M = (mij). Let mj = (m1j,m2j,m3j,m4j), j = 1,2,3, be the column
vectors of M. Equation (4.13) now becomes

It follows that c = a•m3. Substituting for c and moving everything to the left, equa-
tion (4.13) can be replaced by the equations

(4.16a)

(4.16b)

It is this form of equation (4.13) that will be used in computations below. They have
a scalar multiple for b built into them.

After these preliminaries, we proceed to a solution for the first of our two recon-
struction problems. The object reconstruction problem is basically a question of
whether equation (4.13) determines a if M and b are known. Obviously, a single point
b is not enough because that would only determine a ray from the camera and provide
no depth information. If we assume that we know the projection of a point with
respect to two cameras, then we shall get two equations

(4.17a)

(4.17b)

At this point we run into the scalar multiple problem for homogeneous coordinates
discussed above. In the present case we may assume that M¢ = (mij¢) and M≤ = (mij≤)
are two fixed predetermined representatives for our projections and that we are
looking for a normalized tuple a = (a1,a2,a3,1) as long as we allow a scalar multiple
ambiguity in b¢ = (c¢b1¢,c¢b2¢,c¢) and b≤ = (c≤b1≤,c≤b2≤,c≤). Expressing equations (4.17)
in the form (4.16) leads, after some rewriting, to the matrix equation

(4.18)

where

A

m b m m b m m b m m b m

m b m m b m m b m m b m

m b m m b m m

=

¢ - ¢ ¢ ¢ - ¢ ¢ ¢¢ - ¢¢ ¢¢ ¢¢ - ¢¢ ¢¢

¢ - ¢ ¢ ¢ - ¢ ¢ ¢¢ - ¢¢ ¢¢ ¢¢ - ¢¢ ¢¢

¢ - ¢ ¢ ¢ - ¢ ¢

11 1 31 21 2 31 11 1 31 21 1 31

12 1 32 22 2 32 12 1 32 22 1 32

13 1 33 23 2 33 13
¢¢ - ¢¢ ¢¢ ¢¢ - ¢¢ ¢¢

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜b m m b m1 33 23 1 33

a a a A1 2 3() = d,

a b¢¢ = ¢¢M .

a b¢ = ¢M

a m m∑ -() =2 2 3 0b .

a m m∑ -() =1 1 3 0b

a m a m a m∑ ∑ ∑() = ◊ ◊()1 2 3 1 2, , , , .c b c b c

b = ◊ ◊()c b c b c1 2, , .

140 4 Transformations and the Graphics Pipeline

and

This gives four equations in three unknowns. Such an overdetermined system does
not have a solution in general; however, if we can ensure that the matrix A has rank
three, then there is a least squares approximation solution

(4.19)

using the generalized matrix inverse A+ (see Theorem 1.11.6 in [AgoM05]).
Next, consider the camera calibration problem. Mathematically, the problem is to

compute M if equation (4.13) holds for known points ai and bi, i = 1, 2, . . . , k. This
time around, we cannot normalize the ai and shall assume that ai = (ai1,ai2,ai3,ai4) and
bi = (cibi1,cibi2,ci). It is convenient to rewrite equations (4.16) in the form

(4.20a)

(4.20b)

We leave it as an exercise to show that equations (4.20) can be written in matrix form
as

where

and

This overdetermined homogeneous system in twelve unknowns mij will again have a
least squares approximation solution that can be found with the aid of a generalized
inverse provided that n is not zero.

4.13 Robotics and Animation

This section is mainly intended as an example of frames and transformations and how
the former can greatly facilitate the study of the latter, but it also enables us to give
a brief introduction to the subject of the kinematics of robot arms. Even though we
can only cover some very simple aspects of robotics here, we cover enough so that
the reader will learn something about what is involved in animating figures.

n = ()m m m m m m m m m m m m11 21 31 41 12 22 32 42 13 23 33 43 .

A

b b b b b b

T T
k

T

T T
k

T

T T
n

T T T
n n

T
=

- - - - - -

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

a a a 0 0 0

0 0 0 a a a

a a a a a a

1 2

1 2

11 1 21 1 1 1 12 1 22 1 2

L L

L L

L L

n 0A = ,

m a m a2 3 2 0∑ - ∑ =i i ib .

m a m a1 3 1 0∑ - ∑ =i i ib

a a a A A AAT T
1 2 3

1() = = ()+ -
d d .

d = ¢ ¢ - ¢ ¢ ¢ - ¢ ≤ ≤ - ≤ ≤ ≤ - ≤()b m m b m m b m m b m m1 34 14 2 34 24 1 34 14 2 34 24 .

4.13 Robotics and Animation 141

Mechanical manipulators are the most important examples of industrial robots
and much work has been done to understand the mechanics and control of such
manipulators. We begin with some terminology (see [Crai89]).

Kinematics: The science of motion where motion is studied without worrying about
what caused it.

Manipulator: This is assumed to be an object that consists of nearly rigid links con-
nected by joints that allow neighboring links to move. One end is usually fixed to
some nonmoving part and the other end is free. See Figure 4.23. The joints may
be either revolute joints, which allow rotational motion measured by joint angles,
or prismatic joints, which allow sliding motion that is measured by joint offsets.

Degrees of freedom of a manipulator: This is the number of variables that it takes to
completely describe the state or position of the manipulator. Typically this is the
number of joints since joints can usually be described by one variable.

End-effector: This is the tool at the free end of the manipulator such as a gripper.
Tool frame: The frame associated to the end-effector.
Base frame: The frame associated to the fixed end of the manipulator.
Forward kinematics: This is the problem where one wants to compute the tool frame

(intuitively, the position and orientation of the tool) relative to the base frame
given the set of joint angles.

Inverse kinematics: This is the problem where one wants to compute all possible sets
of joint angles that can give rise to given tool and base frames. This problem is
usually more difficult than the forward kinematics problem. There may not even
be a solution to a particular problem or there may be more than one solution.

Workspace for a given manipulator: The possible tool frames (position and orienta-
tion of the tool) that are achievable by the manipulator.

Trajectory generation: The determination of the trajectories of each joint of a manip-
ulator that lead from some initial configuration to a final configuration. Since
manipulators are usually moved by actuators that apply a force or torque to each
joint, these forces and torques would also have to be computed in order for a solu-
tion to be effective.

142 4 Transformations and the Graphics Pipeline

Figure 4.23. Robot arm terminology.

and qi. Our discussion above basically showed how the latter are derived from the
former. One can also show that the link parameters completely define the frames. In
practice it is easier for a user to manipulate the link parameters and so the usual
problem is to find the frames given their values. As another example, consider a two-
dimensional robot with three links and revolute joints. We can think of this as a special
case of the general one where all the z-axes of the frames point in the same direction
and all the ai and di are zero. Figure 4.25(a) shows the link parameters and Figure
4.25(b), the associated frames.

As one can see, frames play a role in defining the state of a robot, but how are
they used to solve problems? Well, the forward kinematic problem is to find the tool
frame (“where the tool is”) given the link parameters. This problem will be solved if
we can determine the transformation Tn, which, given the coordinates of a point p in
Fn coordinates, finds the coordinates of p with respect to F0. Let dTi, 0 < i £ n, denote
the transformation that maps coordinates relative to Fi to coordinates relative to
Fi-1. It follows that

(4.21)

The dTi are relatively easy to compute from the link parameters because they are the
composition of four simple maps.

The Computation of dTi and Its Homogeneous Matrix dMi. Let Ti(zi, di) denote
the translation with translation vector dizi. Its homogeneous matrix is

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1di

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

T dT dT dTn n= 1 2o o Lo .

144 4 Transformations and the Graphics Pipeline

Figure 4.25. Two-dimensional robot arm geometry.

Let Ri(zi,qi) denote the rotation about the zi axis of the frame Fi through an angle qi.
Its homogeneous matrix is

Let Ti-1(xi-1,ai-1) denote the translation with translation vector ai-1xi-1. Its homoge-
neous matrix is

Finally, let Ri-1(xi-1,ai-1) denote the rotation about the xi-1 axis of the frame Fi-1
through an angle ai-1. Its homogeneous matrix is

Then

(4.22)

and multiplying the matrices for the corresponding maps together (but in reverse
order since matrices act on the right of a point), we get that the matrix dMi associ-
ated to the transformation dTi is defined by

(4.23)

Equations (4.21–4.23) provide the solution to the forward kinematic problem. In the
two-dimensional robot case where ai and di are zero, the matrices dMi specialize to
matrices dNi, where

(4.24)dN

a

i

i i

i i

i

=
-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-

cos sin

sin cos

q q
q q

0 0

0 0

0 0 1 0

0 0 11

dM

a d d

i

i i i i i

i i i i i

i i

i i i i i

=
-

-
-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

- -

- -

- -

- - -

cos sin cos sin sin

sin cos cos cos sin

sin cos

sin cos

q q a q a
q q a q a

a a
a a

1 1

1 1

1 1

1 1 1

0

0

0 0

1

dT R T a R T di i i i i i i i i i i i i= () () () ()- - - - - -1 1 1 1 1 1x x z z, , , , ,a qo o o

1 0 0 0

0 0

0 0

0 0 0 1

1 1

1 1

cos sin

sin cos

a a
a a

i i

i i

- -

- --

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 1 0 0

0 0 1 0

0 0 11ai-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

cos sin

sin cos

q q
q q
i i

i i

0 0

0 0

0 0 1 0

0 0 0 1

-
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

4.13 Robotics and Animation 145

This concludes what we have to say about robotics. For a more in-depth study of
the subject see [Crai89], [Feat87], or [Paul82]. The description of mechanical manip-
ulators in terms of the four link parameters described in this section is usually called
the Denavit-Hartenberg notation (see [DenH55]).

As is often the case when one is learning something new, a real understanding of
the issues does not come until one has worked out some concrete examples. The ani-
mation programming projects 4.13.1 and 4.13.2 should help in that regard. Here are
a few comments about how one animates objects. Recall the discussion in Section
2.11 for the 2d case. To show motion one again discretizes time and shows a sequence
of still pictures of the world as it would look at increasing times t1, t2, . . . , tn. One
changes the apparent speed of the motion by changing the size of the time intervals
between ti and ti+1, the larger the intervals, the larger the apparent speed. Therefore,
to move an object X, one begins by showing the world with the object at its initial
position and then loops through reshowing the world, each time placing the object in
its next position.

4.14 Quaternions and In-betweening

This short section describes another aspect of how transformations get used in ani-
mation. In particular, we discuss a nice application of quaternions. Unit quaternions
are a more efficient way to represent a rotation of R3 than the standard matrix rep-
resentation of SO(3). Chapter 20 provides the mathematical foundation for quater-
nions. Other references for the topic of this section are [WatW92], [Hogg92], and
[Shoe93].

We recall some basic facts about the correspondence between rotations about the
origin in R3 and unit quaternions. First of all, the quaternion algebra H is just R4

endowed with the quaternion product. The metric on H is the same as that on R4.
The standard basis vectors e1, e2, e3, e4 are now denoted by 1, i, j, k, respectively. The
subspace generated by i, j, and k is identified with R3 by mapping the quaternion
ai+bj+ck to (a,b,c) and vice versa. The rotation R of R3 through angle q about the
directed line through the origin with unit direction vector n is mapped to the quater-
nion q defined by

(4.25)

Conversely, let q = r + ai + bj + ck be a unit quaternion (q Œ S3) and express q in the
form

(4.26)

where n is a unit vector of R3. If Mq is the matrix defined by

(4.27)M

b c rc ab ac rb

ab rc c a ra bc

rb ac bc ra a b
q =

- - + -
- - - +
+ - - -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

2 2

2 2

2 2

,

q n= +cos sin ,q q

q n H= + Œcos sin .
q q
2 2

146 4 Transformations and the Graphics Pipeline

then Mq Œ SO(3) and the map of R3 that sends p to pMq is a rotation Rq about the
line through the origin with direction vector n through the angle 2q. This mapping

has the property that Rq = R-q.
Now, suppose an object is moved by a one-parameter family of matrices M(s) Œ

SO(3). Assume that we have only specified this family at a fixed set of values si. How
can we interpolate between these values? In animation such an interpolation is called
in-betweening. A simple interpolation of the form

would not work because the interpolants would not again be elements of SO(3). One
could try to use Euler angles, but there are problems with this also. See [Shoe85]. A
better way is to translate our maps into quaternions and to look for a one-parameter
family of unit quaternions q(s) that interpolates between two quaternions a and b.
However, a simple linear interpolation followed by a normalization to get unit quater-
nions does not work well either for the same reason that one does not get a uniform
subdivision of an arc of a circle by centrally projecting a uniform subdivision of the
chord connecting its endpoints. What would happen in the animation is that the object
would move faster in the middle of the interpolation. A better solution is to subdivide
the arc of the great circle in S3 connecting a and b. See Figure 4.26.

4.14.1 Lemma. Let a and b be two unit quaternions that make an angle of q π 0
with each other, that is, a ·b = cosq and 0 < q < p. Then the unit quaternion c(t) that
lies in the plane spanned by a and b and which makes an angle tq with a, 0 £ t £ 1 is
defined by the equation

(4.28)

Proof. By hypothesis,

c a bt r s() = +

c a bt
t t() =

-()
+

sin
sin

sin
sin

.
1 q

q
q
q

tM s t M si i() + -() ()+1 1

unit quaternions rotations of about the origin

R

Æ
Æ

R

q q

3

4.14 Quaternions and In-betweening 147

Figure 4.26. Interpolating between two quaternions.

for some real numbers r and s. Taking the dot product of both sides of this equation
with a and b leads to equations

(4.29)

and

(4.30)

Solving equations (4.29) and (4.30) for r and s and using some standard trigonomet-
ric identities leads to the stated result.

4.14.2 Example. Let L0 and L1 be the positively directed x- and y-axis, respectively.
Let R0 and R1 be the rotations about the directed lines L0 and L1, respectively, through
angle p/3 and let M0 and M1 be the matrices that represent them. If Mt, t Œ [0,1], is
the 1-parameter family of in-betweening matrices in SO(3) between M0 and M1, then
what is M1/2?

Solution. The unit direction vectors for L0 and L1 are n0 = (1,0,0) and n1 = (0,1,0),
respectively. Therefore, by equation (4.25)

and

are the unit quaternions corresponding to rotation R0 and R1. The angle q between
q0 and q1 is defined by

It follows that

Using equation (4.28), let

Finally, equation (4.27) implies that

q q q1 2 0 1
2

14
2

3
14

1

14

1

14
0 2

3
14

1

7

1

2

1

2
0= +() = + Ê

Ë
ˆ
¯ = + Ê

Ë
ˆ
¯, , , , .

sin cos sin
cos

.q q
q q

= - = =
-

=1
7
4 2

1
2

1

2 2
2 and

cos .q = ∑ =q q0 1
3
4

q n1 16 6
3

2
1
2

1 0 0= + = + ()cos sin , ,
p p

q n0 06 6
3

2
1
2

1 0 0= + = + ()cos sin , ,
p p

cos .1-() = () ∑ = ∑ +t t r sq c b a b

cost t r sq = () ∑ = + ∑c a b a

148 4 Transformations and the Graphics Pipeline

We can also see from the expression for q1/2 and equation (4.26) that M1/2 defines a
rotation about the directed line through the origin with direction vector (1,1,0) and
angle 2a, where

It is clear that the quaternions c(t) defined by Lemma 4.14.1 do indeed lie on a
great circles in the unit sphere of the quaternions. We have solved the uniform spacing
problem, but unfortunately this is not the end of the story as far as animation is con-
cerned. Two points on a circle divide the circle into two arcs. If the points are not
antipodal points, then one typically is interested in the smaller arc. In our situation
we cannot simply always take the smaller arc without further consideration because
we are representing rotations by quaternions, and if q is a unit quaternion, both q
and -q correspond to the same rotation in SO(3). The solution suggested in [WatW92]
is, given representations a and b for two rotations, to choose between a, b and a, -b.
One compares the distance between a and b, |a - b|, to the distance between a and
-b, |a + b|. If the former is smaller use a, b otherwise use a, -b.

After getting our uniformly spaced quaternions c(ti) along the arc, if we were to
do a linear interpolation between them, then the motion may look jerky. It is better
to smooth things out by using Bezier curves or, more generally, splines, but this is
somewhat more complicated in quaternion space than it was in Rn. See [BCGH92],
[WatW92], [Hogg92], or [Shoe93] for what needs to be done.

4.15 Conclusions

Transformations were at the center of all the discussions in this chapter. We would
like to emphasize one last time that when it comes to representing and defining affine
transformations one should do that via frames if at all possible. Frames are ortho-
normal basis and these are easy to define. Without them, geometric modeling for n-
dimensional objects would become very complicated when n is larger than 2. Once
one has a frame it can be interpreted as a transformation, a coordinate system, or as
defining a change of coordinates. See Chapter 2 in [AgoM05] for more details.

The main role of homogeneous coordinates and projective space is as the natural
setting for projective transformations. The mathematics becomes much easier. A prac-
tical application is that one can replace all transformations, including translations,
with matrices in uniform way. We described some of the main perspective and par-
allel projections.

cos .a = 2
3

14

M1 2

6
7

1
7

2 3
7

1
7

6
7

2 3
7

2 3
7

2 3
7

5
7

=

-

-

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

.

4.15 Conclusions 149

The discussion in this chapter emphasized a mathematical view of transforma-
tions. Let us add a few comments about efficiency because there are times when effi-
ciency is more important than clarity. Transformations get used a lot in geometric
modeling and generating them in a systematic way, which usually involves repre-
senting them as a composite of primitive ones, involves more arithmetic operations
than necessary. The papers [Gold90] and [Mill99] describe a more efficient approach.
For example, suppose we express an arbitrary affine transformation T of R3 in the
form

where M is a 3 ¥ 3 matrix and v is a fixed translation vector. If T is a rotation through
an angle q about a line L through a point q with direction vector w, then it is shown
that

(4.31a)

(4.31b)

where I is the 3 ¥ 3 identity matrix,

and

With this representation, an optimized computation takes 15 multiplications and 10
additions to compute M and 9 multiplications and 9 additions to compute v. The
number of operations to compute the matrix M and vector v with the “composite-of-
transformations” approach would be much greater. See [Gold90] for efficient formu-
las for other transformations.

Finally, one topic not discussed much in this book (other than in the documen-
tation for the GM and SPACE program) is the user interface of a modeling program,
even though this takes up a large percentage of the time needed to develop such a
program in general. Certain aspects of such a discussion, if we had the space or time,
would probably be most appropriate in the context of the topic of this chapter. There
are lots of interesting issues here as to how one can make it easier for the user to
define the desired view of the world. How to best look at the world is often a major
concern to a user. How does a user specify a view? How does one control panning
and zooming? How does one specify a user’s or the camera’s arbitrary movement
through the world? In a three-dimensional world this is not always easy if all one has
is a keyboard and a mouse.

A

w w

w w

w w
w =

-
-

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

0

0

0

3 2

3 1

2 1

.

a bƒ =
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜

()
a b a b a b

a b a b a b

a b a b a b

a

a

a

b b b
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1

2

3

1 2 3 ,

v q Mq= - T,

M I A andw= + -() ƒ +cos cos sinq q q1 w w

T M Tp p v() = + ,

150 4 Transformations and the Graphics Pipeline

4.16 EXERCISES

Section 4.2

4.2.1 Prove equation (4.3).

4.2.2 Find the world-to-camera coordinates transformation T in two dimensions given the
following data: the camera is at (1,4) looking in direction (-1,-3) with the view “plane”
(a line) a distance in front of the camera.

4.2.3 Find the world-to-camera coordinates transformation T in three dimensions given that
the camera is at (2,3,5) looking in direction (-1,2,1) with the view plane a distance 7 in
front of the camera.

Section 4.3

4.3.1 A camera is situated at the origin looking in direction v. Find the vanishing points of
the view defined by lines parallel to the standard unit cube when

(a) v = (2,0,3)
(b) v = (0,3,0)
(c) v = (3,1,2)

Section 4.5

4.5.1 With regard to Figure 4.11 show that the regions below are mapped as indicated:

Note that z/w denotes the “real” z coordinate of a projective point (x,y,z,w).

4.5.2 Assume that the near and far planes for a camera are z = 2 and z = 51, respectively, in
camera coordinates. If the view plane is z = 5, find the matrix MhcamÆhclip.

Section 4.7

4.7.1 Explain how the case (0,0,0,0) can occur.

Section 4.9

4.9.1 Prove Proposition 4.9.1.

4.9.2 Compute the parallel projection of R3 onto the x-y plane in the direction v = (2,1,5).

4.9.3 Compute the parallel projection of R3 onto the plane x - 2y + 3z = 1 in the direction
v = (2,1,-3).

-• < < - Æ < < +•
- < < Æ -• < <

< < +• Æ < < +

z w z w

z w z w

z w z w

1 1

1 0 0

0 0 1

10

4.16 Exercises 151

Section 4.14

4.14.1 Let L0 and L1 be the directed lines through the origin in R3 with direction vectors
(1,-1,0) and (1,1,0), respectively. Let R0 and R1 be the rotations about the directed lines
L0 and L1, respectively, through angle p/3 and let M0 and M1 be the matrices that rep-
resent them. If Mt, t Œ [0,1], is the 1-parameter family of in-betweening matrices in
SO(3) between M0 and M1, find M1/2?

Section 4.15

4.15.1 Show that equations (4.31) compute the rotation T correctly.

4.17 PROGRAMMING PROJECTS

Section 4.5

4.5.1 A simpler graphics pipeline

The approach to clipping we described in Section 4.5 is more general than may be needed in
some simple situations. This project describes a quick way to deal with clipping if one already
has a two-dimensional clipper implemented. The basic idea is to do the z-clip in three dimen-
sions but then to project to the view plane and do the rest of the clipping with the old 2-dimen-
sional clipper. Since the far clipping plane is usually not very important, we shall ignore it and
only worry about the near clipping plane. Then a simple graphics pipeline for an object that is
either a point or a segment would go as follows:

(1) Transform any vertex (x,y,z) of the object in shape coordinates to camera coordi-
nates (x¢,y¢,z¢).

(2) Clip the resulting point or segment against the near clip plane.

(3) Project any vertex (x¢,y¢,z¢) of the remaining object to the point (x≤,y≤) in the view
plane using the equations

where d is the distance that the view plane is in front of the camera.

Clipping against the near clip plane is essential for two reasons. One is that we do not want
points from behind the camera to project to the front. The second is that we want to prevent
any division by zero. The clipping itself is very easy here. Assume that the near clipping plane
is defined in the camera coordinate system by the equation z = dn. Mathematically, clipping a
single point simply amounts to checking if z¢ < dn or not. In the case of a segment, we have to
find the intersection of that segment with the plane.

Consider a world of rectangular blocks for this program. Each block is defined by three
real parameters a, b, and c and a frame f. The basic block is situated at the origin with faces
parallel to the coordinate planes and vertices (0,0,0), (a,0,0), (a,0,c), (0,0,c), (0,b,0), (a,b,0),
(a,b,c), and (0,b,c) and all other blocks are copies of this block moved by the frame f.

¢¢ =
¢
¢

¢¢ =
¢
¢

x d
x
z

and y d
y
z

,

152 4 Transformations and the Graphics Pipeline

Section 4.7

4.7.1 The full-fledged clipping pipeline

Implement the graphics pipeline described in steps (1)–(6) in Section 4.7. Use the same world
of blocks as in project 4.5.1.

Section 4.9

4.9.1 Implement stereo views of some simple objects like a cube.

Section 4.12

4.12.1 Implement the object reconstruction algorithm as described in Section 4.12 in a
working graphics program like GM and check its accuracy. Let a user input a three-
dimensional point p, compute its projection q with respect to a known camera, and
compare the value of p with the one computed by the reconstruction algorithm from
q and the camera data.

4.12.2 Implement the camera calibration algorithm as described in Section 4.12 in a working
graphics program like GM and check its accuracy. Let a user input three-dimensional
points pi, compute their projections qi with respect to a known camera, and compare
the given camera data with the one computed by the camera calibration algorithm from
the pi and qi data.

Section 4.13

4.13.1 A walking robot

This project applies some of the mathematical ideas behind the forward kinematics solution
for robots to a three-dimensional animation problem. The idea is to animate a simple robot
figure built out of blocks walking on the xy-plane. See Figure 4.27. The parts of the robot are
a head, torso, two arms, and two legs. The robotics comes into the picture when moving the
arms and legs. Each arm and leg consists of three links that are constrained to planar motion.
Figure 4.28 shows a two-dimensional projection of a leg. The base frame of the figure is that
of the torso. The head is rigidly attached to the torso.

The following menu should be associated to this project

4.17 Programming Projects 153

and the items should perform the following tasks when activated:

Create: Ask the user for a size and then create a new robot of that given size. At any given
time there is a currently active robot (the one to which the “Walk,” “Speed,” and
“Reset” commands apply).

Walk: Ask the user for a number of steps, then walk the robot that many steps in the direc-
tion it is facing with its joints moving in a way so that the walk is reasonably close
to a human’s walk.

Speed: Ask the user for a new speed that is a function of the distance between positions at
which the robot is displayed.

Reset: Resets the robot to its initial configuration.
Select: Let the user specify another robot to be the currently active one.

4.13.2 Robot walking along path

Extend project 4.13.1 by associating a path to each robot along which it walks. For example,
the robot in Figure 4.27(b) is walking along path C. The default path for a robot (if the user
did not explicitly define one) is a straight line in the direction the robot is pointing.

The menu should now look like

154 4 Transformations and the Graphics Pipeline

 (a) (b)

Figure 4.27. Robots in motion.

Figure 4.28. Two-dimensional link parameters.

4.17 Programming Projects 155

Activating the Path item should allow the user to define a new path in the xy-plane by select-
ing points that correspond to the vertices of a polygonal curve. After the new path has been
defined the robot should be placed at the beginning of the path looking in the direction defined
by the first edge.

Walking along paths entails some slight changes to the “Walk” and “Reset” operations.

Walk: Now when the robot moves along points on its path it should always be looking in the
direction that is tangent to the curve. In those few instances where the robot lands on
a vertex, assume that the tangent at the vertex is the average of the tangent vectors for
the segments meeting in that vertex.

Reset: If the robot has a path associated to it, place it at the beginning of the path looking
in the direction defined by the first edge. If there is no path, reset the robot to some
initial configuration as before.

5.1 Introduction 157

Some texts and papers use the term “solid modeling” in the context of represent-
ing objects in 3-space. Since this term connotes the study of homogeneous spaces (n-
manifolds), we prefer to use the term “geometric modeling” and use it to refer to
modeling any geometric object. Three-dimensional objects may be the ones of most
interest usually, but we do not always want to restrict ourselves to those.

The first steps to develop a theoretical foundation for the field of geometric mod-
eling were taken in the Production Automation Project at the University of Rochester
in the early 1970s. The notion of an r-set and that of a representation scheme were
introduced there. These concepts, along with the creation of the constructive solid
geometry (CSG) modeler PADL-1 and the emphasis on the validity of representations,
had a great influence on the subsequent developments in geometric modeling. R-sets
were thought of as the natural mathematical equivalent of what one would refer to
as a “solid” in everyday conversation. Using r-sets one could define the domain of cov-
erage of a representation more carefully than before. The relevance of topology to
geometric modeling was demonstrated. The terms “r-set” and “representation scheme”
are now part of the standard terminology used in discussions about geometric mod-
eling. Most of this chapter is spent on describing various approaches to and issues in
geometric modeling within the context of that framework.

Section 5.2 defines r-sets and related set operations. Section 5.3 defines and dis-
cusses what is called a representation scheme. The definitions in these two sections
are at the core of the theoretical foundation developed at the University of Rochester.
After some observations about early representation schemes in Section 5.3.1, Sections
5.3.2–5.3.9 describe the major representation schemes for solids in more or less his-
torical order, with emphasis on the more popular ones. The two most well-known rep-
resentation schemes, the boundary and CSG representations, are discussed first. After
that we describe the Euler operations representation, generative modeling and the
sweep representations, representations of solids via parameterizations, representa-
tions based on decomposition into primitives, volume modeling, and the medial axis
representation. Next, in Section 5.4, we touch briefly on the large subject of repre-
sentations for natural phenomena. Section 5.5 is on the increasingly active subject of
physically based modeling, which deals with incorporating forces acting on objects
into a modeling system. Feature-based modeling, an attempt to make modeling easier
for designers, is described in Section 5.6. Having surveyed the various ways to repre-
sent objects, we discuss, in Section 5.7, how functions and algorithms fit into the
theory. Section 5.8 looks at the problem of choosing appropriate data structures for
the objects in geometric modeling programs. Section 5.9 looks at the important
problem of converting from one scheme to another. Section 5.10 looks at the ever-
present danger of round-off errors and their effect on the robustness of programs.
Section 5.11 takes a stab at trying to unify some of the different approaches to geo-
metric modeling. We describe what is meant by algorithmic modeling and discuss

 real world
 objects
and queries

mathematical
 objects
 and maps

finite
representations

 actual
implementations→ → →

Figure 5.1. The real world to implementation pipeline.

158 5 Approaches to Geometric Modeling

what computability might mean in the continuous rather than discrete setting. Finally,
Section 5.12 finishes the chapter with some comments on the status and inadequa-
cies in the current state of geometric modeling.

5.2 R-Sets and Regularized Set Operators

One of the terms that is used a lot in geometric modeling is the term “solid.” What
does it mean? It should be very general and include all the obvious objects. In par-
ticular, one would want it to include at the very least all linear polyhedral “solids.”
One also wants the set of solids to be closed under the natural set operations such as
union, intersection, and difference.

Intuitively, a solid is something that is truly three-dimensional and also homo-
geneous in the sense that, if we take a solid like the unit cube and stick a (one-
dimensional) segment onto it forming a set such as

(5.1)

which is shown in Figure 5.2, then we do not want to call X a solid. A definition of a
solid needs to exclude the existence of such lower-dimensional parts.

Definition. Let X Õ Rn. Define the regularization operator r and the regularization of
X, rX, by

The set X is called a regular set or an r-set (in Rn) if X = rX, that is, the set is the
closure of its interior.

Note that the definitions depend on the dimension n of the Euclidean space under
consideration because the interior of a set does. For example, the unit square is an r-
set in R2 but not in R3 (Exercise 5.2.1). Note also that the set X in equation (5.1) is
not an r-set because

One can also show that

(5.2)r r rX X() =

cl int , , , .X X()() = [] ¥ [] ¥ [] π0 1 0 1 0 1

r clX X= ()()int .

X = [] ¥ [] ¥ [] » () ()[]0 1 0 1 0 1 1 1 1 2 2 2, , , , , , , , ,

Figure 5.2. A nonsolid.

5.2 R-Sets and Regularized Set Operators 159

(Exercise 5.2.2). In other words, rX is an r-set for any subset X of Rn. R-sets seem to
capture the notion of being a solid. Anything called a solid should be an r-set, but we
shall refrain from giving a formal definition of the word “solid.” In many situations,
one would probably want that to mean a compact (closed and bounded) n-manifold.
R-sets are more general than manifolds, however. The union of two tetrahedra which
meet in a vertex is an r-set but not a 3-manifold because the vertex where they meet
does not have a Euclidean neighborhood.

Because halfplanes are r-sets we get all our linear polyhedral “solids” from those
via the Boolean set operators such as union, intersection, and difference. We can think
of halfspaces as primitive building blocks for r-sets if we allow “curved halfspaces” by
extending the notion as follows:

Definition. A halfspace in Rn is any set of the form

where f : Rn Æ R. If H is a halfspace, then we shall call rH a generic halfspace. A finite
combination of generic halfspaces using the standard operations of union, intersec-
tions, difference, and complement is called a semialgebraic or semianalytic set if the
functions f are all polynomials or analytic functions, respectively.

For example, the infinite (solid) cylinder of radius R about the z-axis, that is,

is a generic halfspace, in fact, a semialgebraic set. See Figure 5.3. Semialgebraic sets
are an adequate set of building blocks for most geometric modeling and are also “com-
putable” (see Section 5.11).

Next, we need to address a problem with the standard Boolean set operators,
namely, they are not closed when restricted to r-sets. For example, the intersection of
the two r-sets X = [0,1] ¥ [0,1] and Y = [1,2] ¥ [0,1] is not an r-set. See Figure 5.4.
From the point of view of solids, we would like to consider X and Y as being disjoint.
One sometimes calls X and Y quasi-disjoint, which means that their intersection is a
lower-dimensional set. If we want closure under set operations, we need to revise their
definitions.

x y z x y R, , ,() + - £{ }2 2 2 0

H f f or H f f+ -() = () ≥{ } () = () £{ }p p p p0 0 ,

Figure 5.3. A generic halfspace.

160 5 Approaches to Geometric Modeling

Definition. Define the regularized set operators »*, «*, -*, c*, and D* by

where c and D are the complement and symmetric difference operators, respectively.

5.2.1 Theorem

(1) The regularized set operators take r-sets into r-sets. Furthermore, there are algo-
rithms that perform these operations.

(2) The class of regular semialgebraic or semianalytic sets is closed under regularized
set operations.

Proof. For (1) see [Tilo80] or [Mort85]. For (2) see [Hiro74].

Even though r-sets are quite general, they have their limitations.

(1) Although they have attractive features from a mathematical point of view, they
are complicated to deal with computationally.

(2) One may want to deal with nonsolids like in Figure 5.2. This is not possible
with r-sets.

Nevertheless, at least one has something mathematically precise on which to base
proofs.

5.3 Representation Schemes

Geometric modeling systems have taken many different approaches to representing
geometric objects. The following definitions ([ReqV82]) can be thought of as a start
towards being able to evaluate and judge these approaches in a rigorous way.

X Y X Y

X Y X Y

X Y X Y

Y Y

X Y X Y Y X

» = »()
« = «()
- = -()

= ()
= -() » -()

* ,

* ,

* ,

* ,

* * * * ,

r

r

r

c r c and

D

Figure 5.4. Quasi-disjoint sets.

5.3 Representation Schemes 161

Definition. A representation scheme, or simply representation, of a set of “objects” O
using a set L is a relation r between O and L. If (x,y) Œ r, then we shall say that y rep-
resents x. A representation scheme r is unambiguous (or complete) if r is one-to-one.
A representation scheme r is unique if r is a function (that is, single-valued). The ele-
ments of L are called representations or syntactically correct representations and those
in the range of r are called the semantically correct or valid representations.

See Figure 5.5. The term “syntactically/semantically correct” is used, because if r
is a representation scheme, we can think of r(x) as a set of encodings for x in a “lan-
guage” L. The semantically correct elements of L are those “sentences” which have a
“meaning” in that there is an object that corresponds to them. The terms unambigu-
ous and unique separate out those relations that are not many-to-one or one-to-many,
respectively. To be unambiguous means that if one has the encoding, then one knows
the object to which it corresponds. To be unique means that there is only one way to
encode an object.

5.3.1 Example. Let O be the set of polygons in the plane that have positive area
but no holes. Let L be the set of finite sequences of points. For example, the sequence
(2,1), (-1,3), (4,5) belongs to L. Define a representation scheme for O using L by asso-
ciating to each object in O the set of its vertices listed in some order. This represen-
tation scheme is neither unambiguous nor unique. It is ambiguous because the objects
in Figures 5.6(a) and (b) both have the same vertices. It is not unique because the ver-
tices of an object can be listed in many ways. Furthermore, not all sequences of points

Figure 5.5. Representation scheme.

Figure 5.6. Example of ambiguous repre-
sentation scheme.

are semantically correct. A sequence of collinear points does not correspond to a
polygon in O.

We could modify Example 5.3.1. For example, we could require the polygons to
be convex or we could require that the vertices be listed in counter-clockwise order.
In both instances we would then have an unambiguous representation scheme.

There are reasons for why unambiguousness and uniqueness are important prop-
erties of a representation scheme. It is difficult to compute properties from ambigu-
ous schemes. For example, it would be impossible to compute the area of a polygon
with the ambiguous scheme in Example 5.3.1. An example of why uniqueness is
important is when one wants to determine if two objects are the same. The ability to
test for equality is important because one needs it for

(1) detecting duplication in data base of objects
(2) detecting loops in algorithms, and
(3) verifying results such as in case of numerically controlled (NC) machines

where it is important that the desired object is created

With uniqueness one merely needs to compare items syntactically. Note that the
problem of determining whether two sets are the same can be reduced to a problem
of whether a certain other set is empty, because two sets X and Y are the same if and
only if the regularized symmetric difference XD*Y is empty.

Although unambiguousness and uniqueness are highly desirable, such represen-
tations are hardly ever found. Two common types of nonuniqueness are

(1) permutational (as in the example where sequences of points represent a
polygon) and

(2) positional (where different representations exist due to primitives that differ
only by a rigid motion).

Eliminating these types of nonuniqueness would involve a high computational
expense.

The domain of a representation scheme specifies the objects that the scheme is
capable of representing. One clearly wants this to be as large as possible. In particu-
lar, one would want it to include at the very least all linear polyhedral “solids.” One
also wants the domain to be closed under some natural set operations such as union,
intersection, and difference. This raises some technical issues.

One issue that has become very important in the context of representation
schemes is validity.

The Basic Validity Problem for a Representation Scheme: When does a representa-
tion correspond to a “real” object, that is, when is a syntactically correct representation
semantically correct or valid?

Ideally, every syntactically correct representation should be semantically correct
because syntactical correctness is usually much easier to check than semantic
correctness. Certainly, a geometric database should not contain representations of
nonsense objects. The object in Figure 5.7 could easily be described in terms of surface

162 5 Approaches to Geometric Modeling

5.3 Representation Schemes 163

patches and so its definition would seem correct from a local point of view, but taken
in its entirety it clearly does not correspond to a real object. In early geometric mod-
eling systems, validity of a representation was the responsibility of the user, but this
has changed. It is no longer acceptable to assume human intervention to correct
errors. For one thing, a modeling system might have to feed its geometric data directly
to another system such as a robot and bad data might crash that system.

Here are some other informal properties of representation schemes:

(1) Robustness and numeric precision (see Section 5.10 for a discussion of this
topic)

(2) Compactness (for storing): “Verbose” representations may contain redundan-
cies that would make verifying validity harder. On the other hand, in the usual
trade-off, this may improve performance.

(3) Computational ease and applicability: No representation is best for everything.
To support a variety of applications, we could have multiple representations
for each object, but then one must maintain consistency.

(4) Ability to convert between different representation schemes: One may want to
pass data between different modelers, but even a single modeler may contain
more than one representation scheme.

Along with a formalization of the objects that constitute the domain of a modeler,
one should also specify and formalize the allowable operations and functions. This
formalization has only been carried out in a minimal way so far. We postpone this
largely ad hoc discussion to Section 5.7. Insofar as the usual definition of the term
“representation scheme” does not address operations and functions, it is an incom-
plete concept. The term “object representation scheme” would have been more appro-
priate because it is more accurate.

Representation schemes coupled with the user interface of a modeler have a great
influence on the way that a user will think about objects or shapes. One needs to dis-
tinguish between a machine representation and a user representation. The discussion
above has concentrated on the former, which may or may not be visible to the user,
but the latter is also very important and deals with the user interface. A driving force
behind generative modeling, which will be described in Section 5.3.5, had to do with
giving a modeler a desirable user representation. The issues involved with user rep-
resentations are similar to but not the same as those for machine representations.
Some important informal questions that a user representation must address are

Figure 5.7. A nonsense object.

(1) To what class of shapes is a user restricted?
(2) How does a user describe and edit the possible shapes and how easy is this?

(a) How shapes are described can easily limit the user’s ability to use good
designs and even to think up a good design in the first place.

(b) How much input is required for each shape?
(c) Can a user easily predict the output from the input?
(d) How accurate are the representations with respect to what the user wants?
(e) Are the operations that a user can perform on shapes closed in the sense

that the output to an operation can be the input to another?

(3) How fast and how realistically can the shapes be generated on a display?
(4) What operations can a user perform on shapes and how fast can they be

carried out?

Of course, the type of user representation that one wants depends on the user. Here
we have in mind a more technical type of user. Later in Section 5.6 we consider a user
in the context of a manufacturing environment.

5.3.1 Early Representation Schemes

Approaches to geometric modeling have changed over the years. These changes began
before computers existed and all one had was pencil and paper. Since the advent
of computers, these changes were largely influenced by their power, the essential
mathematics behind the changes being basically not new. As computers become more
and more powerful, it gradually becomes possible to implement mathematical repre-
sentations that mathematicians have used in their studies. The history of the devel-
opment of geometric modeling shows this trend. Of course, the new ways of
interactively visualizing data that was not possible before will undoubtedly cause its
own share of advances in knowledge. We shall comment more on this at the end of
this chapter.

Engineering Drawings. Engineering drawings were the earliest attempts to model
objects. Computers were not involved and they were intended as a means of com-
munication among humans. They often had errors but humans were able to use
common sense to end up with correct result. There was no formal definition of such
drawings as a representation scheme. The basic idea was to represent objects by a
collection of planar projections. As such it is a highly ambiguous representation
scheme because if one were to try to implement it on a computer, it is very difficult
to determine how many two-dimensional projections would be needed to completely
represent a three-dimensional object. Constructing an object from some two-dimen-
sional projections of it is a highly interesting and difficult problem. We touched on
two small aspects of this problem in Section 4.12. For more, see [RogA90], [BoeP94],
[PenP86], or [Egga98].

Wireframe Representations. Wireframe representations were the first representa-
tion schemes for three-dimensional linear polyhedra. It is a natural approach, the idea

164 5 Approaches to Geometric Modeling

5.3 Representation Schemes 165

being to represent them using only their edges. After all, edges are some of the most
important features of an object that one “sees.” Unfortunately, this representation
scheme is ambiguous. For example, Figure 5.8 shows a block with a beveled hole
through its center. It is not possible to tell along which axis the hole lies from the edge
information alone. Two problems caused by the ambiguity are that one cannot remove
hidden lines reliably and one cannot produce sections automatically.

Many early commercially available modeling systems used wireframe representa-
tions. Even now many systems support a wireframe display mode because it is fast
and adequate for some jobs. A wireframe display is one where only edges and no faces
are shown. Note that how objects are displayed is quite independent of how they are
represented internally.

Faceted Representations. A simple solution that eliminates the major wireframe
representation problems for three-dimensional objects is to add faces. This represen-
tation is unambiguous. We shall look at this approach in more detail later in the
section on the boundary representation. Again, there is a difference between a mod-
eling system using a faceted representation and one using a faceted display. The latter
means that objects (of all dimensions) are displayed as if they were linear polyhedra
even though the system may maintain an exact analytic representation of objects inter-
nally. For example, a sphere centered at the origin is completely described by one
number, its radius, but it might be displayed in a faceted manner.

Attempts have been made to develop algorithms that generate faces from a wire-
frame representation automatically, but it is known that only using topological infor-
mation leads to an NP-complete problem, so that the algorithms will not be very
efficient in general. See, for example, [BagW95].

Primitive Instancing Schemes. In this scheme we simply have a finite number of
generic parameterized primitives that can be represented via tuples of the form

(type code, parameter 1 , . . . , parameter k)

where the parameters are either reals or integers. See Figure 5.9. We do not need all
dimensions as parameters, only those that are variable. The representation is unam-
biguous and may be unique. It is certainly very compact. With regard to algorithms
for computing properties of objects represented by such scheme, one basically needs
a special case for each primitive.

Figure 5.8. An ambiguous wireframe representation.

5.3 Representation Schemes 167

There is no easy answer to this question. Here are some conditions in case the b-rep
for a solid is supposed to be induced from a simplicial decomposition, that is, the
solid is the underlying space of a simplicial complex:

(1) Each face must have three edges.
(2) Each edge must have two vertices.
(3) Each edge must belong to an even number of faces.
(4) Each vertex of a face must belong to precisely two edges of the face.
(5) All points (x,y,z) must be distinct.
(6) Edges must be disjoint or intersect in a vertex.
(7) Faces must be disjoint or intersect in edges.

Conditions (1)–(4) deal with the combinatorial topology of simplicial complexes and
are easy to check. Conditions (5)–(7) are point set topology questions that are expen-
sive to test.

Some common data structures that are used to implement the boundaries of linear
polyhedra are described in Section 5.8.1.

5.3.3 The CSG Representation

In constructive solid geometry (CSG) one represents objects in terms of a sequence
of Boolean set operations and rigid motion operators starting with a given collection
of primitive objects. One can express this representation pictorially as a binary tree.
For example, in Figure 5.11 the binary tree on the left is used to represent the union
of three blocks, one of which has been translated by a vector v. Although the idea is
simple enough, we must get a little technical in order to give a precise definition.

Let P be a set of r-sets in Rn. The elements of P will be called primitive objects.
Let O be a set of regularized binary set operators such as »*, «*, -*, Let M be a
set of pairs (m,x) where m is a label for a rigid motion of Rn such as a translation,
rotation, . . . , and x is data that defines a specific such motion. For example, if n = 2,
then (rotation,(p,p/2)) is a possible pair in M and represents the rotation of R2 about
p through an angle p/2. If (m,x) Œ M, then let m(x) denote the rigid motion defined
by the pair (m,x).

Figure 5.10. A boundary representation
graph.

Although one is free to choose any set of primitives or transformations for a csg-
rep, generic halfspaces of one sort or another are usually used as primitives. Two
common csg-reps used

(1) “arbitrary” (possibly unbounded) generic halfspaces as primitives, or
(2) bounded generic halfspace combinations as primitives.

Primitives are often parameterized. For example, a primitive block is usually con-
sidered to be situated at the origin and to be defined by the three parameters of length,
width, and height. One then talks about instancing a primitive, where that term means

(1) assigning values to the configuration parameters, and then
(2) positioning the result of (1) via a rigid motion (which could also be viewed as

assigning values to positional parameters).

Csg-reps can handle nonmanifold objects. Their exact domain of coverage
depends on

(1) the primitives (actually the halfspaces which define them),
(2) the motion operators that are available, and
(3) the set operators that are available.

It is interesting to note the results of an extensive survey of mechanical parts and
what it takes to describe them which can be found in [SaRE76]. Fully 63% of all the
parts could be handled with a CSG system based on only orthogonal block and
cylinder primitives. A larger class of primitives provided a natural description of over
90% of the parts. This indicated that CSG is therefore a good fit for a CAD system in
that sort of environment because most mechanical parts seemed to be relatively
simple.

If one uses general operations and bounded primitives, then one gets a represen-
tation that is

(1) unambiguous,
(2) not unique,
(3) very concise, and
(4) easy to create (at least for its domain of coverage).

One of the biggest advantages of a csg-rep over other representation schemes is
that validity is pretty much built into the representation if one is a little careful about
choosing primitives. For example, if one uses r-sets as primitives and arbitrary regu-
larized set operations, then the algebraic properties of r-sets ensure that a represen-
tation is always valid. This is not the case if operations are not general, for example,
if the union operation is only allowed for quasi-disjoint objects. Also, in a CSG system
based on general generic halfspaces, some trees may represent unbounded sets and
hence not be valid. It is true however that, by in large, all syntactically correct CSG
representations (trees) are also semantically correct.

Because of the tree structure of a CSG representation, one can often use a divide-
and-conquer approach to algorithms: one first solves a problem for the primitive

5.3 Representation Schemes 169

170 5 Approaches to Geometric Modeling

objects and then uses recursion. See Algorithm 5.3.3.1. The point membership clas-
sification function, which is discussed in Section 5.9, is an example of this.

One disadvantage with a CSG representation is that it is not easy to generate a
display using it because one needs the boundary of an object for that. Getting a bound-
ary representation for an object defined by CSG (a process referred to as boundary
evaluation) is relatively hard. We look at this in more detail in Section 5.9. One
problem in this context (especially for mechanical design) is how to define a “face” of
an object. This certainly is no problem in the linear case, but it is for curved objects.
See Figure 5.12. What should the faces be in that figure? Some minimal characteris-
tics of a face are:

(1) A face should be contained in the boundary of the solid.
(2) Topologically, a face should be a surface with boundary.
(3) If the solid was defined via regularized Boolean set operations from a collec-

tion of halfspaces {Hi}, then each face should be contained in bHi for some i.
(4) Faces should be quasi-disjoint, that is, pairwise intersections of faces should

either be empty or lie in their boundary.

answer function Solve (CSG-tree T)
begin

answer ans1, ans2;
operation op;

if IsPrimitive (T)
then return (PrimitiveAnswerOf (T));
else

begin
ans1: = Solve (LeftSubtree (T));
ans2: = Solve (RightSubtree (T));
op : = ValueAtRoot (T);
return (CombineAnswers (ans1,op,ans2));

end
end;

Algorithm 5.3.3.1. A divide-and-conquer approach in CSG.

Figure 5.12. What are the faces of this solid?

5.3 Representation Schemes 171

Another issue when it comes to faces is how to represent them? We shall see in
Section 5.9 that to represent a face F we can

(1) represent the halfspace in whose boundary the face F lies (for example, in the
case of a cylinder, use its equation),

(2) represent the boundary edges of F (the boundary of a face is a list of edges),
and

(3) maintain some neighborhood information for these bounding edges and
orient the edges (for example, we can arrange it so that the inside of the face
is to the right of the edge or we can store appropriate normal vectors for the
edges).

This scheme works pretty well for simple surfaces but for more complicated surfaces
one needs more.

5.3.4 Euler Operations

Representation schemes based on using Euler operations to build objects are an
attempt to have a boundary representation meet at least part of the validity issue head
on. The idea is to permit only boundary representations that have a valid Euler char-
acteristic. If we only allow operations that preserve the Euler characteristic or that
change it in a well-defined way (such operations are called Euler operations), then we
achieve this. Of course this is only a part of what is involved for an object not to be
a nonsense object. Nevertheless we have at least preserved the combinatorial validity
since the Euler characteristic is a basic invariant of combinatorial topology. As for
metric validity, one still must do a careful analysis of face/face intersections. In any
case, to say that a modeler is built on Euler operations means that it represents objects
as a sequence of Euler operations.

Topologically, Euler operations are based on elementary collapses and expansions
and/or cutting and pasting (see Sections 7.2.4 and 6.4 in [AgoM05], respectively).
Figure 5.13 shows two elementary collapse and expansion examples. One says that
the space Y consisting of the two segments on the right of Figure 5.13(a) is obtained
from the solid triangle X on the left via an elementary collapse of the cell c from the
edge e. Conversely, the space X is said to be obtained from Y via an elementary expan-
sion. Figure 5.13(b) shows another elementary collapse and expansion, this time
involving a three-dimensional cell ABCD and a face ABC. Figure 5.14 shows a cutting

Figure 5.13. Elementary collapses/expansions.

172 5 Approaches to Geometric Modeling

and pasting example. Specifically, we show how to cut the torus to get a rectangle and
how, looking at it backward, we can get the torus from the rectangle by pasting appro-
priate edges together.

Elementary collapses or expansions do not change the Euler characteristic of a
space. On the other hand, cutting and pasting operations usually do change the Euler
characteristic. It turns out that these four operations do an excellent job to completely
describe and define surfaces. (In higher dimensions things get more complicated.)
Every surface, and hence solid in 3-space, can be obtained from a point by a sequence
of elementary expansions, cuts, and pastes. Modelers based on Euler operations use
a boundary representation for solids and simply define procedures that mimic the col-
lapses, expansions, cutting, and pasting operations just described by modifying the
cell structure of this boundary representation in a well-defined way.

Definition. The Euler operation representation of polyhedra is defined by the collec-
tion of pairs (X,(s1,s2, . . . , sk)), where X is a polyhedra and s1,s2, . . . , sk is a sequence
of Euler operations that produces ∂X starting with the empty set.

Euler operations were first introduced by Baumgart in his thesis and then used
in his computer vision program GEOMED ([Baum75]). Braid, Hillyard, and Stroud
([BrHS80]) showed that only five operators are needed to describe the boundary sur-
faces of three-dimensional solids. Such a surface satisfies the Euler equation

where

They used a set of these Euler operations in their BUILD modeling system. Although
one can make other choices for the five primitive operators, it seems that the bound-
ary representation part of modelers built on Euler operations tend to use either

V = the number of vertices,

E = the number of edges,

F = the number of faces,

S = the number of solid components, and

H = the number of holes in the solid.

V E F S H- + = -()2 ,

Figure 5.14. Cutting and pasting.

5.3 Representation Schemes 173

Baumgart’s winged edge representation (see Section 5.8.1) or some variant of it, so
that this is what these operators modify.

Historically, Euler operators were given cryptic mnemonic names consisting of
letters. A few of these are shown below along with their meanings:

Using that notation, three typical operators were:

Figure 5.15 shows how one could create a solid tetrahedron using these operators.
The operators create the appropriate new data structure consisting of vertices,
edges, faces, and solids and merge it into the current data structure. Along with each
Euler operator that creates vertices, edges, or faces, there are operators that delete or
kill them. This enables one to easily undo operations, a very desirable feature for a
modeler.

There are good references for implementing modelers based on Euler operations.
One is the book by Mäntylä ([Mant88]), which describes a modeling program
GWB (the Geometric WorkBench). Another is the book by Chiyokura ([Chiy88]),
which describes the modeling program DESIGNBASE. Euler operations were
originally defined only for polyhedra but were extended to curved surfaces by
Chiyokura.

To summarize, modelers based on Euler operations are really “ordinary” b-rep
modelers except that the objects and boundary representations that can be built are
constrained by the particular Euler operators that were chosen, so that they at least
have combinatorial validity. The Euler operators are flexible enough though so that

MEV -
-
-

make ede and vertex

MFE make face and edge

MBFV make body, face, and vertex

M make K kill L - loop

V vertex E edge F face B body solid

- -
- - - -S

Figure 5.15. Building a tetrahedron with
Euler operations.

5.3 Representation Schemes 175

Sweeps sometimes become inputs to other representations. For example, in CADD
(a program developed by McDonnell Douglas) one can translate certain sweep repre-
sentations, such as translational and rotational ones, into boundary representations.

Related to sweeps is the multiple sweeping operation using quaternions described
in [HarA02]. There are also the generalized cylinders of Binford ([Binf71]). See Figure
5.19. Here the “sweeping” is parameterized. We shall now discuss a representation
scheme developed by J. Snyder at Caltech that is more general yet. It was the basis
for the GENMOD modeling system, which Snyder’s book [Snyd92] describes in great
detail.

Definition. A generative model is a shape generated by a continuous transformation
of a shape called the generator.

Arbitrary transformations of the generator are allowed. There is no restriction as
to the dimension of the model. The general form of a parameterization S(u,v) for a
generative model which is a surface is

(5.3)

where g : [a,b] Æ R3 is a curve in R3 and f : R3 ¥ R Æ R3 is an arbitrary function. One
of the simplest examples of this is where one sweeps a circle along a straight line to
get a cylinder. Specifically, let

be the standard parameterization of the unit circle. Define f by

f v vp p, , , .() = + ()0 0

g
p p

: ,

cos , sin ,

0 1

2 2 0

3[] Æ
Æ ()

R

u u u

S u v f u v, , ,() = ()()g

Figure 5.18. Problem with sweeps.

Figure 5.19. Generalized cylinder.

Definition. The generative modeling representation consists of pairs (X,F), where F
is a parameterization of the generative model X of the form shown in equation (5.4).

The driving force behind GENMOD was correcting some perceived deficiencies in
the geometric modeling systems of that time and some key defining points listed by
[Snyd92] for the generative modeling approach as implemented in GENMOD are:

(1) The representation is a generalization of the sweep representation.
(2) Shapes are specified procedurally.
(3) Specifying a shape involves combining lower-dimensional shapes into higher-

dimensional ones.
(4) An interactive shape description language allows low- and high-level opera-

tors on parametric functions.
(5) It is closed, that is, the outputs to operations can be inputs to operations (like

CSG).
(6) It allows parameterized shapes whose parameters a user can change.
(7) It supports powerful high-level operators and functions, such as

reparameterizing a curve by arc length,
computing the volume of a shape enclosed by surface patches, and
computing distances between shapes.

These operations are closed and free of approximation error.
(8) It supports deformation operators, CSG, and implicitly defined shapes.
(9) One has the ability to control the error in the representation.

A large variety of symbolic operators on the parameterizations and their coordi-
nates help the user define generative models, such as vector and matrix operations,
differentiation (partial derivatives), integration, concatenation, and constraint opera-
tors. Since parameterizations can be thought of as vector fields, another useful oper-
ator is one that solves ordinary differential equations. GENMOD had a language in
which a user could define models using the various operators.

Now, models will have to be displayed. By converting to polygonal meshes and ad
hoc error control, the interactive rendering of generative models becomes feasible.
One can specify the subdivisions in two ways: uniform in domain or adaptive sam-
pling. More realistic images can be obtained at the expense of speed.

For accuracy, GENMOD used interval analysis. Interval analysis (see Chapter 18)
is an attempt to make numeric computations on a computer more robust and has its
advantages and disadvantages. Snyder argued for its use in geometric modeling and
described various applications to computing nonintersecting boundaries of offset
curves and surfaces, approximating implicitly defined curves and surfaces, and
trimmed surfaces and CSG operations on them.

In summary, three more advantages used by Snyder to justify the generative
modeling approach are:

(1) The representation handles all dimensions, is high-level, and extensible.
(2) Using a high-level interpreted language, the mathematically knowledgeable

user can easily build a library of useful shapes.
(3) An adequate number of robust tools for rendering and manipulating genera-

tive models exist.

5.3 Representation Schemes 177

5.3.6 Parametric Representations

Many of the representations of solids rest on a representation of their boundaries.
That was true even in the case of the csg-rep. Although the primitives were solids,
in practice one only had equations or parameterizations for their surfaces, and
the interior of the solid was not referenced explicitly. As far as parameterizations are
concerned, there is no reason why we have to limit ourselves to parameterizations
of two-dimensional objects. If we want access to interior points, we can define
three-dimensional parameterizations just as easily. For example,

is a parameterization of a solid cylinder of radius 1 and height 2 with axis the z-axis.
If we allowed such parameterizations, then we could also generate interior points of
the object at will. Chapter 12 describes a number of basic surfaces and their para-
meterizations. Similarly, one could describe a corresponding basic collection of solids
and their parameterizations. In other words, three-dimensional parameterizations are
a representation scheme for solids. See [Mort85] for a discussion of what he calls a
tricubic parametric solid. This is a space parameterized by a function p(u,v,w) of the
form

This is the most general cubic parameterization, but one can look at special cases
such as Bezier or spline forms, just like in the surface case. See [HosL93].

5.3.7 Decomposition Schemes

Decomposition representation schemes represent objects as a union of quasi-disjoint
pieces. These representations come in two flavors: object-based or space-based. The
object-based versions present a subdivision of the object itself. The space-based ver-
sions, on the other hand, subdivide the whole space and then mark those pieces that
belong to the object. The hatched cells in Figure 5.21(b) define a space-based decom-
position representation of the object in Figure 5.21(a). Figure 5.21(c) shows an object-
based decomposition of the same object.

Another distinction between decomposition schemes is whether they use a
uniform or adaptive subdivision. The choice is driven by the geometry of the object.
For example, at places where an object is very curved it would be advantageous to
subdivide it more to get a more accurate representation. Object-based decomposition
schemes tend to be adaptive.

Cell Decompositions. This is a very general object-based decomposition represen-
tation. Here the primitive pieces that an object is broken into can be arbitrary (curved)
cells, typically triangles in the two-dimensional case or tetrahedra in the three-
dimensional one. The idea is to find triangular or tetrahedral pieces each of which

p u v w u v w u v w andijk
kji

i j k
ijk, , , , , , .() = Œ[] Œ

===
ÂÂÂ a a R

0

3

0

3

0

3
30 1

p r z r r z r z, , cos , sin , , , , , , , ,q q q q p() = () Œ[] Œ[] Œ[]0 1 0 2 0 2

178 5 Approaches to Geometric Modeling

5.3 Representation Schemes 179

has a relatively simple definition, something that presumably the whole object did not
have. The representation is unambiguous but certainly not unique. Cell decomposi-
tions are an essential ingredient of finite element modeling (see Chapter 19).

Certain important topological properties can be computed relatively easily from
a cell decomposition, such as answers to the questions

(1) Is the object connected?
(2) How many holes does it have?

The representation is also good for nonhomogeneous objects. See Section 7.2.4 in
[AgoM04] for a general definition of a cell complex. Handle decompositions of man-
ifolds (see Section 8.6 in [AgoM05]) are a special case of this type of representation.
Chapter 16 will address the usefulness of “intrinsic” cell decompositions of spaces.

Spatial Occupancy Enumeration. This space-based scheme represents objects by
a finite collection of uniformly sized cells. Areas are divided into squares (pixels).
Volumes are divided into cubical cells called voxels, an abbreviation for “volume ele-
ments.” There are two choices here in that one can either represent the object bound-
ary or its interior. In the latter case, one can, for example, list the coordinates of the
center of grid cells in the object. See Figure 5.22.

Spatial occupancy enumeration is an ambiguous representation. Furthermore, a
big problem with this scheme is the amount of data that has to be stored. For that

Figure 5.21. Decomposition
representations.

Figure 5.22. Spatial occupancy representation.

180 5 Approaches to Geometric Modeling

reason it was not used much for mechanical CAD or CAM (computer-aided manu-
facture) initially except for gross models to help with certain calculations such as col-
lision checking and getting a rough estimate of volume. This has changed now that
computers with gigabytes of memory have become a reality and voxel-based repre-
sentation schemes for volumes have become very popular in certain parts of computer
graphics. A more detailed discussion of this subject follows in the next section. Section
5.8.2 will describe the standard approach to cutting down on the amount of data one
has to store.

5.3.8 Volume Modeling

Here are four terms and their definitions that usually appear in the same context:

Volumetric data: The aggregate of voxels tessellating a volume.
Volume modeling: The synthesis, analysis, and manipulation of sampled, com-

puted, and synthetic objects contained within a volumetric
data set.

Volume visualization: A visualization method concerned with the representation,
manipulation, and rendering of volumetric data.

Volume graphics: The subfield of computer graphics that employs a volume
buffer for scene representation and is concerned with synthe-
sizing, manipulating, and rendering such scenes. Volume
graphics is the three-dimensional counterpart of raster
graphics.

The definitions are taken from [KaCY93] and are an adequate representation of how
these terms are usually used. The subject matter that is addressed by these terms is
what this section is about. It really only dates back to the early 1980s and started in
the context of tomography.

Although our main interest in this book is on modeling geometric objects, volume
modeling covers a much broader subject in that the “volumes” may have arisen in
other ways. Volume modeling in its most general sense deals with scalar-valued func-
tions defined on three-dimensional space. In that sense, it is not really a modeling
scheme per se but has close connections with modeling. In the special case where the
function takes on only two values, 0 and 1, we can, in fact, interpret the function as
defining a space-based decomposition scheme generalizing the voxel-based spatial
occupancy enumeration scheme. The voxel case is the uniform case, but the data set
may have different geometries such as being composed of rectangular or curved cells.
Cells might be different distances apart. On the other hand, the function could come
from some arbitrary mathematical model. For example, one might want to display
the temperature of a heated solid visually, perhaps by displaying the surfaces of con-
stant temperature. We can think of volume modeling as modeling data that is acquired
from appropriate instruments and then sampled to get the voxelization. The data
could also be an “object” that is defined in terms of point samples. Volume rendering
refers to the process of displaying such models. We shall have more to say about
volume rendering in Section 10.4.

5.3 Representation Schemes 181

Volume modeling is beginning to make an impact on the more conventional CAD
and CAGD. Here are some of its advantages:

(1) One can “cut away” parts of an object and look at its interior. See Figure 5.23.
(2) CSG can be implemented quite easily because at the voxel level the set oper-

ations are easy, especially if one has support for voxBlt (voxel block transfer)
operations that are the analog of the bitBlt operations.

(3) Rendering is viewpoint independent.
(4) It is independent of scene and object complexity.

The author has felt for many years that it was advantageous to model the whole world
and not just the objects within it. It gives one much more information. For example,
to trace a ray, one simply marches through the volume and sees what one hits along
the way, rather than having to check each object in the world for a possible intersec-
tion. Volume modeling is now making this possible.

Some disadvantages of volume modeling are:

(1) A large amount of data has to be maintained.
(2) The discretization causes loss of information.
(3) The voxelization causes aliasing effects.

Volume modeling plays an important role in the visualization of scientific data.
This is a big field in computer graphics. Although not the focus of this book, it would
not be right to omit mentioning some examples of it:

Medical Imaging. This was one of the first applications of volume modeling. See
[StFF91] for an overview of early work. Physicians used MRI (magnetic resonance
imaging) and CT (computed tomography) scanners to get three-dimensional data of
a person’s internal organs. In tomography one gets two-dimensional slices of the
object using X-rays. One projects X-rays through the body and measures their inten-
sity with detectors on the other side of the body. The X-ray projector is rotated about
the body and measurements are taken at hundreds of locations around the patient. A

Figure 5.23. Foot with bones exposed
([ScML98]). (Reprinted from Schroeder et al:
The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, third edition, 2003,
1-930934-07-6, by permission of the publisher
Kitware Inc.).

picture of the slice is then obtained from a reconstruction process applied to all this
data. Radiologists were apparently good at seeing three-dimensional models from
these two-dimensional slices, but surgeons and doctors were not. Fortunately, there
exist algorithms that, when applied to a stack of such slices, produce a representation
of the whole organ and volume rendering makes it possible to display it. One is able
to remove uninteresting tissues to see those parts that one wants to see. At this point
in time, three-dimensional medical graphics is not yet widely used, mainly because
of the cost. Also, the slices are more accurate and have more information than the
three-dimensional reconstruction, so that radiologists tend to refer to them more.

In another recent development, surgeons can now also use haptic systems to prac-
tice surgeries beforehand. “Haptic” means that one gets physical touch feedback from
the system.

Modeling Natural Phenomena. Understanding the flow of air over an airplane
wing is important for its design. A similar understanding is needed for designing
intake or exhaust manifolds in engines. This is where fluid dynamics enters. Fluid
dynamics deals with fluid flow, which is governed by a set of differential equations
called the Navier-Stokes equations. These equations define the velocity and vorticity
of the fluid. The vorticity describes the rotational part of the flow and is defined by
a vector at each point of the fluid. Understanding vector-valued functions is not
easy, but volume-rendering techniques have enabled scientists to get a better visual
understanding of what happens inside a flow. Volume modeling has been helpful in
modeling other phenomena such as ocean turbulence and hurricanes. Oil exploration
has been greatly aided by the ability to use volume modeling to analyze geological
data.

Education. Volume modeling has been used to avoid having to use actual bodies in
dissection experiments. As a result of the visible human project sponsored by the
National Library of Medicine, there now exist models of a human male and female.
If one tried to model a human in the more traditional way by means of facets, it would
take millions of triangles to do so.

Nondestructive Testing. Volume modeling has been used to enable mechanical and
materials engineers to find structural flaws in objects without having to take them
apart.

This ends our brief overview of volume modeling. We return to the very interest-
ing topic of volume rendering in Section 10.4. There is a large body of literature on
volume modeling and the related subject of scientific visualization. A good place to
begin more reading is [LiCN98], [ScML98], and various ACM SIGGRAPH course notes
such as [Kauf98].

5.3.9 The Medial Axis Representation

In mathematics, when one tries to characterize or classify geometric objects, one first
looks for coarse invariants (topology) and then successively refines the classification
by adding metric criteria, differentiability criteria, etc. For example, at a very top level,

182 5 Approaches to Geometric Modeling

5.3 Representation Schemes 183

a doughnut and a circle are similar because one can collapse the doughnut down to
a circle. A double doughnut (two doughnuts attached to each other along a disk) is
like a figure-eight curve. Therefore, since the circle is clearly a quite different shape
from a figure-eight, one can see that the more complicated solids to which they are
associated must also be fundamentally different shapes. This section is about a similar
idea, namely, to facilitate dealing with objects by representing them by simpler (lower-
dimensional) objects that nevertheless still capture the essence of the shape of the
original object. The idea of using a “skeleton” of an object as a shape descriptor goes
back to [Blum67] and [Blum73]. The fact that one gets a representation that has many
attractive features has led to quite a bit of research activity on this subject. It should
be noted, however, that the skeletal representation of an object is not a stand-alone
representation for objects in practice. Mostly, it is intended to be used in conjunction
with others, typically a boundary representation for continuous objects and a spatial
occupancy enumeration representation based on pixels or voxels for discrete objects.

Skeletons come in two flavors, namely, continuous and discrete. We shall begin
with definitions for the continuous case.

Definition. Let X Õ Rn. A maximal disk in X is a closed disk Dn(p,r) contained in X
with the property that it is not properly contained in any other closed disk in X.

Definition. Let X Õ Rn. The medial axis (MA) or skeleton or symmetric axis of X is
the closure of the set of centers of maximal disks in X. The medial axis of a solid in
R3 is sometimes called a medial surface. The real-valued function that assigns to each
center of a maximal disk in X the radius of that disk extends to a continuous func-
tion on the medial axis called the radius function of that medial axis.

Note. Unfortunately, there is not complete agreement with regard to the terms
medial axis, skeleton, and symmetric axis in the literature. For example, the medial
axis in the continuous case is often also defined as the set of points equidistantly
closest to at least two points in the boundary. The advantage of the definition given
here with its closure condition is that if X is bounded then the medial axis will be a
compact set.

Figure 5.24 shows the medial axis (indicated by solid lines) of a planar L-shaped
bracket and a three-dimensional block. For a convex planar polygon it always con-

Figure 5.24. Medial axes.

184 5 Approaches to Geometric Modeling

sists of straight line segments but if the polygon is nonconvex there may be curved
arcs as Figure 5.24(a) shows. There is a close relation between the medial axis and
the Voronoi diagram of an object ([ShAR96]).

The medial axis for a polyhedron has a natural partition into cells. Determining
the medial axis basically reduces to determining its cell decomposition. In two dimen-
sions the cells are called arcs and junctions. For example, in Figure 5.24(a) BC and
CD are arcs and the points A, B, and C are called junctions. In the nondegenerate
case, junctions are the points where the maximal disk has three or more contact points
with the boundary. The maximal disks at endpoints of arcs that lie in the boundary,
like point D, have one contact point with the boundary. In three dimensions the cells
are called sheets, seams, and junctions. The sheets are surface patches. These are
further subdivided into wing sheets and body sheets. Wing sheets are those with points
in their boundary where the maximal disk makes contact with the boundary at only
one point, such as ABCD in Figure 5.24(b). Body sheets are the remaining sheets,
such as ABEF. The seams are curves that typically are the intersection of two or more
sheets where the maximal disk has three or more contact points with the boundary.
Junctions are points that are the intersections of three or more sheets. See [BBGS99].

Next, consider discrete objects. We could give the same definitions because all that
we need is a metric which we have. However, there are several natural metrics to
choose from in this case and so it is possible to play around with the definition a bit
and choose a variant which may be more suitable for a particular discrete problem.
We follow [RosK76].

Definition. Let X Õ U Õ Zn. The medial axis (MA) or skeleton or symmetric axis of
X with respect to U is the set of points whose distances from the complement U - X
are a local maximum, that is, no neighboring point has a greater distance to the com-
plement. The distance function for the medial axis is the real-valued function that
assigns to each point of the medial axis its distance to U - X.

In practice, the “universe” U is a rectangle when n = 2 (the pixel case) and a rec-
tangular box when n = 3 (the voxel case). Figure 5.25 shows the medial axes for a 7
¥ 8 discrete rectangle in Z2. In Figure 5.25(a) we used the taxicab metric and in Figure
5.25(b), the max metric. The medial axes are the numbered points with the numbers
giving the distance of the point to the complement.

Figure 5.25. Discrete medial axes.

Definition. The medial axis representation or medial axis transform (MAT) of an
object consists of its medial axis together with the associated radius function in the
continuous case and the distance function in the discrete case.

One can show that an object is completely specified by its medial axis represen-
tation. See [Verm94] and [RosK76]. Furthermore, in the continuous case the enve-
lope of the maximal disks is just the boundary of the object. One nice thing about the
medial axis representation is that it depends on the geometry of the object and not
on the choice of coordinate axes like the quadtree or octree representation for dis-
crete objects defined by pixels or voxels.

Algorithms that compute medial axes divide into two types based on whether they
apply to discrete or continuous objects. The basic thinning algorithm for computing
the discrete medial axis is often referred to as the “grassfire” algorithm. If a fire
started at the boundary of the object were to burn into the object at a constant rate,
then it would meet in the medial axis. One starts on the boundary of the object and
strips away one layer of pixels or voxels after another until one reaches points that
the fire reaches from two directions. See [RosK76] and [WatP98] for thinning of two-
dimensional discrete sets. Similar arguments work in three dimensions.

In describing algorithms for finding the medial axis of continuous objects we shall
concentrate on three-dimensional objects. Such algorithms can be classified by the
specific approach that is used: volume thinning, tracing of seams and sheets, Voronoi
diagrams, or Delaunay triangulation. See [BBGS99] for advantages and disadvantages
for various schemes. [CuKM99] also describes previous work.

Volume Thinning. One voxelizes the object and then computes the discrete medial
axis that is then polygonized. An additional extra pass is required at the end to deter-
mine the radius function. Of course, this will only determine an approximation to the
medial axis and one must be careful that it is accurate.

Tracing Approaches. One tracing approach is described in [ShPB95]. One starts at
a known junction like a vertex of the polyhedron and then traces along an adjacent
seam, defined as the zero set of some functions, until one gets to another junction. At
that point one repeats this process for each seam that ends at that new junction. Polyg-
onal approximations to the seams are computed. The main difficulty is determining
the next junction. A similar approach is used in [CuKM99] but is claimed to be more
accurate because it uses exact arithmetic.

Voronoi Diagrams. A number of algorithms use Voronoi diagrams because of their
close connection to the medial axis problem since they also deal with equidistant sets
of points. See Section 17.7 for a definition of Voronoi diagrams and some of their
properties. The idea is to use a suitable sample of points in the boundary and compute
their Voronoi diagram. See [Bran92], [ShPB95], or [ShPB96]. [CuKM99] describes an
algorithm for polyhedra via Voronoi diagram and exact arithmetic.

Delaunay Triangulations. See Section 17.8 for a definition of a Delaunay triangu-
lation of a set of points. A Delaunay triangulation is the geometric dual to the Voronoi
diagram. [ShAR95] and [ShAR96] generate a domain Delaunay triangulation con-
sisting of a set of tetrahedra based on an adaptive collection of boundary points. The
medial axis is obtained from this triangulation.

5.3 Representation Schemes 185

5.3 Representation Schemes 187

sphere labeled spherei. Let fcylij be the local distance function associated to the cylin-
der labeled cylij that is centered on the edge from pi to pj and meets the spheres
labeled spherei and spherej tangentially. Let fplanes be the local distance function asso-
ciated to the planes that meet the spheres labeled spherei tangentially. Then the local
distance function f(p) associated to the facet is defined by

If the radius is not constant over a facet but varies linearly over it, then a similar con-
struction works using cones rather than cylinders. In the end, the refleshed object is
defined as the halfspace of a (distance) function. The implicitly defined boundary (the
zero set of the function) can then be polygonized by some standard method if this is
desired.

One goal of the medial axis representation is to make modeling easier for the user.
For one thing, we have reduced the dimension by one. An example of this is the rep-
resentation of an object by orthogonal projections. See [Bloo97], [STGLS97], and
[BBGS99] for how a user might edit an object using its medial axis. In [BBGS99] the
basic approach to editing a solid was

(1) Compute the medial axis and radius function for the solid.
(2) Allow the user to interactively edit the skeleton and radii.
(3) Reflesh to obtain the edited solid.
(4) Polygonize the boundary of the solid so that the user can use the b-rep for

other purposes.

The allowed editing operations were

(1) Stretching: The user picks skeletal vertices and a translation vector.
(2) Bending: The user picks a joint and specifies a rotation by clicking with the

mouse on one side of a separating plane through the rotation axis.
(3) Rounding: At sharp convex edges the wing sheets meet the boundary of the

object and the disk radii go to zero. The user can either remove the wing sheets
or change the disk radii.

f f if sphere labeled sphere

f if cylinder labeled cyl

f if region labeled planes

si

cylij

planes

p p p i

p p ij

p p

() = () Œ
= () Œ
= () Œ

,

,

, .

Figure 5.27. The regions used to define a local
distance function for a facet.

(4) Editing disk radii: This allows a user to round, thicken, or thin parts of the
object in uniform or nonuniform ways.

The bending operation in particular shows why the medial axis representation has an
advantage over a b-rep. With a b-rep such an operation can produce tears if one is
not careful. Although bending the medial axis may produce tears or intersections, the
refleshing operation removes all that.

Medial axis computations have many applications. Just to list a few topics and
references, they are used in finite element mesh generation ([STGLS97]), shape opti-
mization and robot path planning ([GelD95]), and pattern analysis and shape recog-
nition ([FarR98]). See [Nack82] for relationships between the curvature of a surface
and curvature functions associated to its medial axis representation.

Finally, related to the medial axis are the level sets of [LazV99] and the Reeb
graph of [ShKK91] and [ShiK91]. With level sets the goal was to describe both the
topology and geometry of the object, whereas with the Reeb graph the goal was to
encode the topology. Both of these approaches are based on the handle decomposi-
tion of manifolds that is central to the classification of manifolds. See Chapter 8 in
[AgoM04]. Reeb graphs have also been useful for volume data mining ([FTAT00]).

5.4 Modeling Natural Phenomena

Except for the pixel- and voxel-based types, the representation schemes we have dis-
cussed so far are not very useful for modeling natural phenomena. Objects such as
trees, mountains, grass, or various terrain cannot easily be modeled by linear poly-
hedra or smooth surface patches. Using very small pieces in the representation would
overwhelm one with massive amounts of data. Even if this were not a problem, it
would not be a satisfactory solution. The picture might look all right at the start, but
what if one were to zoom in? One would have to adjust the fineness of the subdivi-
sion dynamically to prevent things from eventually looking flat. Modeling and ren-
dering natural phenomena is a digression from the main thrust of this book. For that
reason, we shall only take a brief look at this subject. The four topics we consider are
fractals, iterated function systems, grammar based models, and particle systems.

Fractals. One of the most important applications of fractals to graphics is in the
representation of natural phenomena. For a definition of a fractal, see Section 22.3.
They enable one to represent such phenomena in a realistic way with a small amount
of data. The zooming problem also is no problem here. There is one caveat however.
Fractals are typically used to represent “generic” trees, mountains, or whatever. They
do not lend themselves easily to represent a specific tree or mountain. This is usually
not an issue though.

Why are fractals so great for modeling certain natural phenomena? To begin with
let us show how fractal curves and surfaces can be generated. The basic construction
generalizes that of the well-known Koch curve (see Section 22.3).

In the one-dimensional case, the algorithm starts with a given initial polygonal
curve and then generates a sequence of new curves, each of which adds more detail
to the previous one. In every iteration we replace each segment of the old curve with

188 5 Approaches to Geometric Modeling

5.4 Modeling Natural Phenomena 189

a new curve segment. The simplest way to do this is to displace the midpoint of the
segment by a random amount along the perpendicular bisector. See Figure 5.28. Given
the segment AB, let C be its midpoint. Compute a unit normal vector u for it, choose
a suitable random number r based on the current scale, and replace AB by the seg-
ments AD and DB, where C is the midpoint of AB and D = C + ru.

Now, to describe some natural shape such as the boundary of an island proceed
as follows: Specify the rough outline of island with a polygonal curve and then apply
the algorithm described above, that is successively replace each edge with an appro-
priate collection of edges. Figure 5.29 shows one possible result after starting with an
approximation to the Australian continent. One does have to deal with the problem
of self-intersections in the resulting curves.

In the two-dimensional case, we have more freedom. For example, for surfaces
described as a collection of triangles one common approach is to do the following:
“Subdivide” each triangle into smaller triangles obtained by connecting its vertices to
appropriate random offsets of the midpoints of its sides. This replaces each triangle
successively by seven new smaller triangles and the process can be repeated. In Figure
5.30(a) the midpoints of the edges of triangle ABC were offset to D, E, and F, and the
triangle replaced by triangles ABD, BDE, BEC, CEF, ACF, ADF, and DEF. A similar
construction works for quadrilaterals. There is one complication in the two-
dimensional case, namely, if one is not careful, then gaps can appear in places where
triangles used to be adjacent. Figure 5.30(b) shows the potential problem if we offset

Figure 5.28. Curve midpoint
displacements.

(a) Rough sketch (b) After random subdivisions

Figure 5.29. A fractal island.

190 5 Approaches to Geometric Modeling

the midpoint of the edge AB to X and X¢ with respect to the triangles ABC and ABC¢,
respectively. One has to make sure that one uses the same random number and normal
when offsetting an edge with respect to both triangles that have it in common.

Some good references on fractals are [Mand83] and [DevK89].

Iterated Function Systems. Iterated function systems are an elegant way to gen-
erate fractals. We refer the reader to Section 22.4 for a brief discussion. [Barn88] is
a good reference.

Grammar-Based Models. Building on work of Lindenmayer ([Lind68]) on parallel
graph grammars, Smith ([Smit84]) described a class of plant models that he called
graftals. The modeling involved two stages: first one generates a formal string from
an initial string using production rules and then the image is generated by interpret-
ing this string as a geometric tree in a suitable way. Graftals were not necessarily frac-
tals, but were very similar in that one could generate as much detail as desired. Very
realistic plants and trees could be generated using botanical laws.

Particle Systems. Particle systems, introduced in [Reev83], were good at modeling
phenomena that was “fluid-like” and changed over time by flowing or spattering, such
as clouds, smoke, fire, water falls, and water spray. Typical particles were spheres and
ellipsoids. They would be created in a random way with respect to size, position,
shape, and other properties and then randomly deleted. During their lifetime their
paths, which could be controlled by specified physical forces, would be rendered in
appropriate colors. See also [ReBl85].

Most models above are what are called procedural models. We have more to say
about this later in Sections 5.6 and 5.11.

5.5 Physically Based Modeling

The kind of modeling we have discussed so far has dealt mostly with static objects.
Allowing for animation would not change that since animation is nothing but a matter
of generating a sequence of views of static objects (rather than a single view). This
static modeling is what the traditional CAD systems do and is quite adequate in aiding

Figure 5.30. Surface midpoint displacements.

users in the tasks for which they are used. The real world does not consist of isolated
objects however. Objects interact due to a variety of forces. We need to broaden our
outlook. Another goal should be to facilitate the modeling of the real world with its
interactions. Geometric modeling, the modeling of isolated static objects, is an impor-
tant step toward modeling real world scenes, but it is only a first step. The next step
is to make it easier for users to include the interactions of the objects.

For example, if we wanted to model a ball in a scene with a cloth draped over it,
we could do it with the standard modeling system, but it would take quite some effort.
We would have to figure out the creases in the cloth on our own. These creases are
determined by gravity and other physical forces associated to the particular material
from which the cloth is made. We could use the relevant equations of physics to define
the set of spline surface patches, or whatever, that would generate the correct picture.
How much easier it would be if we only had to tell the CAD program the position and
radius of the ball, the material properties of the flat cloth, the starting position of the
cloth parallel to the floor at the top of the ball, and then let the program compute the
final shape of the cloth after it has reached equilibrium with respect to the forces
acting on it. Obviously, a program that could do this would have to have the relevant
equations and algorithms programmed within it, but this would only have to be done
once.

As another example, suppose that we wanted to show a ball bouncing on a floor.
Again, we could do this animation ourselves with a traditional CAD system by deter-
mining by hand the series of positions of the ball along with the time intervals between
those positions that made up the animation. Why can the CAD program not do this
for us, so that all we had to input was an initial height from which the ball is dropped?
Obviously, the CAD system could be programmed to do this. This would take some
hard work, but again, it would only have to be done once, and then it could help many
users in this and similar types of problems.

Modeling that also considers the dynamics of physical objects in addition to their
static properties is called physically based modeling. The objects may be simple parti-
cles or rigid objects, but could also be much more complex, like cloth. As indicated
earlier, we are not really dealing with a new representation scheme but rather an
extension of “traditional” representation schemes. This is a relatively new branch of
computer graphics, with the name “physically based modeling” being introduced for
the first time in an ACM SIGGRAPH 87 course by A.H. Barr ([BarrA87]). To carry out
its program involves a great deal of knowledge about physics and other sciences.

Physically based modeling can be interpreted quite generally to encompass the
three main areas in computer graphics, modeling, rendering, and animation, but at
its core, it deals with classical dynamics of rigid or flexible bodies, interaction of
bodies, and constraint-based control. An active area of research is how a user can best
control the models. There is a trade-off between realism and control. If the models
perform realistically, they are typically controlled by differential equations and the
only control a user has in initial conditions. On the other hand, giving the user more
control might mean that objects will perform less realistically. Constraint-based tech-
niques are a common way to deal with this problem. This includes constraints defined
by equations in physics but also refers to situations where we would like the user to
be able to say things like “move object A so that it touches both objects B and C,” “let
a ball roll down a hill following a given path,” or “show a moving robot, figure, or
object in a domain with obstacles.” Unfortunately, if constraints are not chosen care-

5.5 Physically Based Modeling 191

fully, we may create underconstrained situations where there is no unique solution,
or overconstrained situations where there is no solution.

For a more thorough discussion of physically based modeling see the references
in that section of the bibliography.

5.6 Parametric and Feature-Based Modeling

We have mostly talked about various technical aspects of modeling systems, but a
good modeler must also take the user’s or designer’s point of view into account. The
difference between a machine representation and a user representation was briefly
alluded to in Section 5.3. We also touched on this subject in our discussion of gener-
ative modeling in Section 5.3.5. Users should not have to be forced to adapt their way
of describing geometry to any low-level abstractions due to technical requirements of
a modeler. Defining nontrivial geometric models is usually a difficult task in the best
of circumstances. If possible, the process should require no more expertise than the
understanding of the final model. Of course, there are times when knowing the under-
lying mathematics is essential to building a model and so the option of taking advan-
tage of it should be there. Nevertheless, for those times when it is not, we would like
a modeler to have the ability to understand high-level, user-friendly concepts. Of
course, what is considered user friendly depends on the user. In this section we are
concerned with manufacturing environments, where, for example, designers often
think of geometric objects in terms of important features that are associated to them,
such as, “a block with a slot and rounded corners.” Today’s modelers have a long way
to go in fully supporting that type of interface. This section will introduce the reader
to what is referred to as feature-based modeling. [ShaM95] is a good reference for this
subject. A brief survey can be found in [SodT94].

Systems using parametric or variational models were a first step toward feature-
based modeling and making life easier for the designer. As is pointed out in [ShaM95],
perhaps 80% of new designs are simply variations of old ones. Therefore, given the
effort that is sometimes needed to create an individual model, why should one have
to create each of these variants from scratch? As an oversimplified example of the type
of interface that would be found in a modeler using parametric models, the object in
Figure 5.31 might be defined by the following sorts of commands:

192 5 Approaches to Geometric Modeling

Figure 5.31. A parametric model.

5.6 Parametric and Feature-Based Modeling 193

(1) horizontal line A of length a
(2) line B perpendicular to line A of length b
(3) line D makes signed angle a with line B
(4) circular arc C tangent to lines A and D

It would then be up to the system to check if this description gives rise to a unique
consistent model for particular values of a and b. The basic design process in such
a modeling system is then that the user describes a list of geometric primitives to
be used and the geometric relationships between them symbolically without any
numbers. After the user inputs the actual geometric constraints, the system creates
an actual instance of the object if possible. The user can subsequently input new data
and get new instances of the object. Note that the “parametric” models considered
here are higher-level constructs than those in the generative representation discussed
in Section 5.3.5.

Although the terms “parametric” and “variational” are often used interchangeably,
there is a subtle distinction between what are called parametric and variational
methods. Parametric methods solve constraints by replacing symbolic variables by
values that are computed sequentially from previously computed variables. Varia-
tional methods use equations to represent constraints and solve them simultaneously.
The difference is captured by the difference between defining a variable via a formula
or implicitly. For more on parametric and variational modeling see [ShaM95]. Some
sample papers on constraint-based modeling with additional references are [LiHS02]
and [Podg02].

An approach to geometric design based on functional programming that extends
variational modeling is described in [PaPV95]. The authors discuss a high-level func-
tional programming language (a language that manipulates functions) with the under-
lying geometric objects represented in a hierarchical manner much like in CSG.
Elementary polyhedra are stored as inequalities and the basic Boolean set operations
are supported. The language is such that all syntactically correct objects are valid. It
is argued that the power of this functional approach is that it lets the user naturally
generate new models from old ones and is similar to generative modeling in this
respect.

Parametric and variational modeling is a start toward facilitating geometric
design, but it still only deals with individual geometric primitives with no grouping
capabilities and lacks a vision of the whole modeling process. Consider a manufac-
turing company. Its ability to deal with the design, planning, and manufacturing
process in an integrated way is clearly of practical importance. To do this one needs
to model the whole process. However, the models used by a designer should be allowed
to be different from those used by the person manufacturing the product about which
the designer may know little. Both may evolve over time and one only needs a way to
map from one to the other. Feature modeling seems like a promising approach to an
integrated solution. Again, the problem with the type of modelers we have been dis-
cussing up to now is that they dealt solely with the geometry of objects and ignored
many of the other issues such as process planning, assembly planning, and inspec-
tion planning. Even in the case of just the geometry they were not totally adequate
since they tended to be low-level and did not make it easy for a designer to make
changes, although parametric modeling helped.

Feature-based modeling dates back to the mid-1970s when attempts were made
to get data on manufacturing features for NC programming. Kyprianou [Kypr80]
was the person who first introduced automated feature recognition into a modeler
(BUILD). [PraW85] was one of the earliest studies of “design by features.” So what
exactly is a “feature?”

The term “feature” refers to a high-level abstract entity. It refers to some inter-
esting aspect of, or associated to, an object and is usually a combining of details into
one entity that is more meaningful for manipulation than the individual parts. For
example, in a b-rep modeler a block with a hole through it might consist of a collec-
tion of surface patches with no explicit notion of the center and radius of the hole.
Moving the hole might then involve moving and changing a subset of these patches –
a tedious task. The term “feature” was first used in manufacturing but has since taken
on a broader meaning. Machined parts typically can be described by things like holes,
slots, pockets, and grooves. A relatively small collection of such features might have
been adequate to describe a part in a particular manufacturing environment and with
them one might then be able to create a manufacturing plan. Features are important
to automating the design to manufacturing process because they help define the func-
tionality of objects. [ShaM95] lists the following characteristics of a feature:

(1) It is a physical constituent of a part.
(2) It is mappable to a generic shape.
(3) It has engineering significance. (This may involve describing its function or

how it “behaves.”)
(4) It has predictable properties.

A feature model is a data structure representing a part or assembly mainly in terms
of its constituent features. It is convenient to subdivide features into the following
subtypes:

(1) Geometric features

(a) Form features: They describe some idealized geometry.
(b) Tolerance features: They describe variance constraints from the ideal-

ized geometry.
(c) Assembly features: This is a grouping of various feature types into a

larger entity and includes kinematic relationships.

(2) Functional features: These describe the overall function of the part.
(3) Material features: These give material names, specify treatments such

as painting, etc.

Figure 5.32 shows a standard example of what one means by form features. It is
a slightly modified version of the CAM-I ANC101 part that is not the picture of any
real functioning object but is simply used to test geometric capabilities of modelers.
(CAM-I is an abbreviation for Computer Aided Manufacturing, Inc., a nonprofit
consortium in Arlington, Texas.) Form features can be primitive or compound. For
example, one can talk about a specific pattern of holes rather than just an individual

194 5 Approaches to Geometric Modeling

5.6 Parametric and Feature-Based Modeling 195

hole. Tolerance constraints are needed to ensure that parts will work as specified given
the inevitability of inaccuracies in the manufacturing process. The three geometric
features (form, tolerance, and assembly features) are the ones that are mostly
supported by modelers. Support for functional features is currently still very weak
because it assumes a lot more intelligence on the part of modelers than they currently
have. Although there is no limit on the number of features one can define, attempts
have been made to create taxonomies for them. This is important if one is to have
any data exchange standards.

Just as one has to worry about the validity of geometry, one has to also make sure
that features are created, modified, and deleted in a valid way. Unfortunately, this is
not a mathematical process like it was in the case of geometry. [ShaM95] mentions
four general classes of validity checks that are needed:

(1) Attachment validation: A recess feature cannot be attached to an outside
face of a block.

(2) Dimension limits: A hole cannot be larger than the block that contains it.
(3) Location limits: A hole should not get too close to the edge of a block.
(4) Interaction limits: This is where two or more features change the geom-

etry or semantics of features. The geometry may not
necessarily be invalid. For example, a larger hole
may delete a smaller hole.

As one moves from one stage to another in the manufacturing process, the fea-
tures that are relevant to the persons involved may change. At the design stage, one
may worry about the strength of a particular geometric configuration, whereas at the
manufacturing stage this may no longer be relevant and the only features one may
care about is where certain holes are to be drilled. This calls for mappings from one
feature model to another and is referred to as feature mapping.

Modelers are typically not concerned with features as such, at least not explicitly.
One either needs to add to them the ability to deal with features or add features as a
set of primitive data structures. For example, CSG is not detailed enough for many
features and b-rep is too detailed. So how do we add feature capability to modelers?
The three standard approaches are

F i g u r e 5 . 3 2 . M o d i f i e d
ANC101 test part (CAM-I and
[ShaM95]). (This material is
used by permission of John
Wiley & Sons, Inc. from Para-
metric and Feature-Based
CAD/CAM, Shah, 1995 John
Wiley & Sons, Inc.)

196 5 Approaches to Geometric Modeling

(1) Interactive feature definition: A human determines the features either at
model creation time or later.

(2) Automatic feature recognition: Here one extracts feature information à
posteriori if the geometric models are
already defined.

(3) Design by feature: Here one designs with features in the first
place.

Approach (1) is easiest to implement, but it is up to the user to check for validity and
it may be a tedious job if there are lots of features. Approach (2) is much more com-
plicated than (1), but has been incorporated in some modelers (for example, BUILD).
A number of different algorithms have been developed to get a handle on the recog-
nition problem. One basically needs a program that looks for patterns. For example,
to look for a pocket in a face one could look for a cycle of edges at which the solid
has a convex corner. Difficult as automatic feature detection may be, one may need it
if different features are used at different stages in the manufacture of an object. With
regard to approach (2), some features could be defined at model creation time, as
when one creates a slot by sweeping. However, these would by in large be purely geo-
metric features and not all features are that. Furthermore, the primitive operations
of a modeler may not directly correspond to the features that are of interest to
someone and some may lead to ambiguous features (see Figure 5.33). A good overview
of feature recognition techniques can be found in [JiMa97].

Approach (3) is probably the most attractive. A modeler might have a menu allow-
ing a designer to create an object in terms of its features. One would be able to create
an object with a slot or hole in essentially one step, or at least in a number of steps
that depended on the number of varying parameters for that particular shape. Figure
5.34 shows 10 of the 13 steps needed to create the ANC101 part in Figure 5.32.
Although this might make life easier for the designer, it would certainly make life
much harder for the implementer of this modeler. The problem is validity. The
modeler would have to make sure that the chosen features were consistent, a difficult
task in general. For example, if someone defined a block with a hole, the modeler
would have to make sure that the hole was not too close to the side so that it would
break through. The bigger the collection of features, the more checking that would
have to be done. Roller ([Roll95]) discusses designing with constrained parameterized
features.

There are two ways to deal with feature definitions in a design-by-feature sys-
tem, procedural or declarative, although these can be combined. In the procedural
approach, features are defined by a collection of procedures in the programming lan-
guage of the system. In the declarative approach a feature definition consists of a col-
lection of constraint specifications, rules, or predicate logic statements. Satisfaction

Figure 5.33. Ambiguous features: boss on disk or flange on
cylinder?

5.6 Parametric and Feature-Based Modeling 197

Figure 5.34. Designing with features ([ShaM95]). (This material is used by permission
of John Wiley & Sons, Inc. from Parametric and Feature-Based CAD/CAM, Shah 1995;
John Wiley & Sons, Inc.)

of the declarations is accomplished by a constraint satisfaction algorithm, an infer-
ence engine, or unification, respectively. Three basic approaches are used for solving
the constraint problem: constraint graphs where the nodes are geometric entities
and the edges are the constraints, logical assertions, or algebraic equations that are
expressed symbolically and solved symbolically. None of the approaches are easy. See
[LiON02] for an example of feature mapping in a design-by-feature system.

In conclusion, many modelers are now supporting features. Overall, b-rep mod-
elers, in particular those that support nonmanifolds, seem better suited to the feature
recognition task than CSG modelers. The only advantage of the latter is in editing but
this can also be dealt with in a b-rep modeler. For example, consider an object with
slots of varying lengths. Changing the length of the slots may cause them to intersect.
With a CSG representation the history of any changes can be maintained relatively
easily, whereas with a boundary representation such changes might cause radical
changes in the relationships of facets. [Prat87b] mentions the following feature-
specific advantages of a boundary representation:

(1) Features are usually best described in terms of faces, edges, etc.
(2) Dimensioning and tolerancing of features need these low-level entities.
(3) CSG representations can be ambiguous. See Figure 5.33 again.
(4) Local operations for feature manipulation are available in the design stage.

Feature recognition algorithms for b-rep modelers divide into two types: those that
use purely surface information and those that use volume decompositions. The latter
seem to be a better approach but are not as developed yet.

[Prat87a] and [Prat87b] have a nice survey of work in feature based modeling
from 1980 to 1987.

Finally, since there are a number of feature-based modelers, it is important that
one can exchange data between them. One might also want to input some feature data
to an application program. STEP (Standard for exchange of product data) is a set
of standards that resulted from an international effort to enable this exchange. See
[ShaM95] for an overview and additional references.

5.7 Functions and Algorithms

In addition to modeling objects, modelers must also be able to perform a variety of
operations on the objects that they have modeled. As indicated in the introduction,
modeling involves modeling maps as well as objects. Here is a sample of some queries
users may want to make and actions they may want to perform:

(1) Find physical propertie of objects: center of mass, moments of inertia, area,
volume, . . .

(2) Find geometrical properties of objects: distances between objects, collision
detection, intersections and other
Boolean set operations, . . .

(3) Perform geometrical operations: rigid motions, . . .
(4) Numerical control related operations: milling, lathing, . . .

198 5 Approaches to Geometric Modeling

5.8 Data Structures 199

In a modeler mathematical functions get replaced by algorithms. We want a
commutative diagram as shown in Figure 5.35. Some issues that arise are:

(1) A “correct” algorithm must perform the “correct” action on all valid inputs.
This is a serious issue in the context of computers because of round-off errors.
For example, finding the intersection of two rectangles should work if they
only touch along a face.

(2) If an input to an algorithm is meaningless or invalid the algorithm should

(a) inform the user, and
(b) still return some answer which will not cause the system to crash

(3) An algorithm should be efficient. If objects have several representations it
should be smart enough to pick the best one for its task.

(4) An algorithm should be as general as possible to allow extensions.

We can see from this discussion that modelers must deal with many tasks that
fall into the field of computational geometry, which deals with finding geometric
algorithms and analyzing them. In this regard we should mention the relatively new
but growing area of research into genetic algorithms. These algorithms are a class
of search algorithms that are proving to be very useful in the complex optimization
problems encountered by modelers. An overview of this topic can be found in
[RenE03].

5.8 Data Structures

5.8.1 Data Structures for Boundary Representations

Anyone interested in implementing a geometric modeling program will quickly face
the problem of choosing appropriate data structures for the geometry that is to be
modeled. As usual, one wants data structures that will be efficient in both space and
execution times of algorithms. This section will briefly look at this issue in the case
where we use a boundary representation for linear polyhedra. The next section will
look at what one can do in the case of volume rendering.

Rendering linear polyhedra, or cell complexes in general, involves two parts: the
abstract structure of the complex and the actual data. To describe the structure means
describing various adjacency relations between the cells of the space.

Figure 5.35. Relationship between functions
and algorithms.

200 5 Approaches to Geometric Modeling

Definition. A d-dimensional cell is said to be adjacent to an e-dimensional cell if

(1) d π e and one is contained in the other,
(2) d = e > 0, and they have a (d–1)-dimensional cell in common, or
(3) d = e = 0, and they are the two ends of some 1-dimensional cell (edge).

In our discussion here we shall restrict ourselves to two-dimensional complexes.
Algorithms dealing with such complexes typically need adjacency information such
as the set of edges of a face or the set of faces that contain a given vertex. We shall
use the following notation:

notation what it means
x Æ y x is adjacent to y
x Æ Y the set of objects of type Y adjacent to x, that is,

{y | y is an object of type Y and x Æ y}
X Æ Y the sets {x Æ Y | x is an object of type X}

In the context of this notation, capital letters such as X and Y will be one of the types
V (vertex), E (edge), or F (face). |X| will denote the number of objects of type X. We
shall refer to X Æ Y as an adjacency relation.

The nine possible types of adjacency information between vertices, edges, and
faces are shown in Figure 5.36. If a data structure contains one of these adjacency
relations explicitly, then we shall say that one has direct access to that information.
For example, the notation E Æ V means that each edge has direct access to both of
its vertices and V Æ V means that each vertex has direct access to all of the vertices
adjacent to it. Call a relation X Æ X a self-relation.

Two questions which need to be addressed when choosing a data structure are:

(1) Does the data structure adequately describe the topology of the spaces that
are represented? If so, then we shall say that it is topologically adequate.

(2) What is the complexity of determining the truth of x Æ y or computing some
x Æ Y given the adjacency relations defined explicitly by the data structure.

[Weil85] has an extensive discussion of question (1). The topologically adequate adja-
cency relationships are identified and proved to be that. We shall not repeat those

Figure 5.36. Possible face-edge-vertex adjacency
data.

5.8 Data Structures 201

arguments here but simply refer the interested reader to that paper. Rather, we want
to concentrate on the answer to (2) and summarize the main results of [NiBl94]. It
should be noted however, that all the adjacency relations that we mention later on as
having the best complexity properties are also topologically adequate.

First of all, as Ni and Bloor point out, we need to distinguish between complex-
ity in the context of a particular implementation and complexity at the abstract data
structure level. [NiBl94] analyze the latter, which is implementation independent, and
give answers in terms of the number of direct accesses of information and the number
of set operations, such as union, intersection, etc., that are needed. A discussion of
the costs involved in the context of some specific implementations, in particular, edge-
based ones, can be found in [Weil85].

As an example of how one can compute the implementation independent cost of
an adjacency relation that may be needed for an algorithm, suppose that a single non-
self-relation X Æ Y is given. Algorithm 5.8.1.1 computes the inverse adjacency rela-
tion Y Æ X. The cost of this algorithm is |X| direct accesses, |X| set membership tests,
and at most |X||Y| unions for a total of 2|X| + |X||Y| steps. Ni and Bloor analyze in a
similar way the costs of all the other possible queries for any given set of adjacency
relations. One relation, namely, the E Æ E relation, is treated as a special case. Some-
times data structures are used that do not store all objects adjacent to a given object.
For historical reasons, due to the influential papers [Baum72] and [Baum75], the
edge-edge adjacency relation has come to denote a more restricted relation in that
only two of the edges adjacent to a given edge are listed.

Baumgart’s Winged Edge Representation. In this representation each face is
assumed to be bounded by a set of disjoint edge cycles. One of these is the outside

An algorithm for computing Y Æ X f rom X Æ Y :

Let xi , 1 £ i £ |X| , and yj , 1 £ j £ |Y|, denote the objects of type X and Y, respectively.

for j:=1 to |Y| do
begin

Initialize a set Xj of objects of type X to empty;
for i:=1 to |X| do

begin
One direct access gives us xi Æ Y;
If yj Œ (xi Æ Y) then Xj = Xj » { xi };

end
end;

The collection of sets Xj now constitutes Y Æ X .

Algorithm 5.8.1.1. Computing the inverse adjacency relation Y Æ X.

202 5 Approaches to Geometric Modeling

boundary, and the others are holes in the face. In terms of implementing this, one
uses a face table that consists of a list of edges where one has taken one edge from
each edge cycle. Each vertex belongs to a circularly ordered set of edges. These sets
are represented by one edge that is chosen from each. For each edge one lists

(1) the incident vertices,
(2) the left and right face,
(3) the preceding and succeeding edge in clockwise (cw) order with respect to the

exterior of the solid, and
(4) the preceding and succeeding edge in counter-clockwise (ccw) order with

respect to the exterior of the solid

See Figure 5.37(a). Figure 5.37(b) shows the relations which are involved, although
V Æ E and F Æ E are only partial relations in this case.

Weiler ([Weil85]) showed that although the Baumgart structure represents the
topology completely, certain algorithms for querying the data structure became com-
plicated if self-looping edges were allowed (the two endpoints are the same point). He
defined three improvements. One added a little to the structure and the other two split
the edge structure into two.

Returning to [NiBl94], one finds the following conclusions:

(1) The best single relations are V Æ E and F Æ E. These relations are also ade-
quate to describe the topology completely provided that the sets {Ej} are
ordered in a circularly coherent manner.

(2) When one is given a pair of adjacency relations, this is the first time that one
can, with an appropriate choice, answer all possible adjacency queries. The
best pair of relations is V Æ E and F Æ E.

(3) The two adjacency relation combinations shown in Figure 5.38(a) are the best
combinations when one uses three adjacency relations.

(4) Figure 5.38(b) shows the best combination of four adjacency relations. This
relation was discovered by [WooT85].

(5) The winged data structure shown in Figure 5.37(b) and some of its variants
are worse than the combination in Figure 5.38(b).

Figure 5.37. Winged edge representation.

5.8 Data Structures 203

See [NiBl94] for additional observations. The authors point out that in some situa-
tions, the face-edge-vertex structure shown in Figure 5.39 is one worth considering
because the algorithms used with it are simpler than the corresponding ones one
would use with the related winged-edge representation.

Of course, as our final observation, in general the way one chooses a data struc-
ture for an algorithm is by first seeing what operations are needed by the algorithm
and then choosing an optimal data structure for these operations. In the discussion
above we evaluated data structures in terms of efficiency with respect to all possible
adjacency queries which were possible with a given set of adjacency relations. In a
particular context one may not need to answer all such queries however.

5.8.2 Data Structures for Volume Modeling

Encoding techniques based on tree structures have been used to cut down on
the amount of data one needs when objects are represented by pixels or voxels. The
recursive step in the basic algorithm for the general (n-dimensional) volume case is
the following:

(1) If the volume is empty or completely covered by the object, then no further
subdivision is necessary. Mark the volume as EMPTY or FULL, respectively.

(2) Otherwise, subdivide the volume and recursively repeat these two steps on
each of the subvolumes.

Figure 5.38. Optimal combinations of adjacency relations.

Figure 5.39. Another useful adjacency relation.

204 5 Approaches to Geometric Modeling

The binary nature of the algorithm suggests a binary tree structure, but this is not
as efficient as the quadtree in the two-dimensional case and octree in the three-
dimensional case.

Quadtrees. Assume that a planar region is contained in a rectangle. For example,
consider the shaded region R in Figure 5.40(a). Now change the general algorithm
above to the following:

(1) If the region covers the current rectangle or is disjoint from it, then stop sub-
dividing and return that fact; otherwise,

(2) divide the rectangle into four equal parts and repeat these two steps for each
of the subrectangles.

For the region R in Figure 5.40(a) we shall end up with a subdivision as indicated
in the figure. The region can therefore be represented by a tree structure, called
a quadtree, where each node has up to four nonempty subtrees. If we label the four
subrectangles of a rectangle as indicated in Figure 5.41(a), then the Figure 5.41(b)
shows the tree structure for R.

Quadtrees can also be used to represent curved regions as shown in Figure 5.40(b)
by modifying the criteria for when one quits subdividing in one of two ways:

Figure 5.40. Quadtree examples.

Figure 5.41. Quadtree structure.

5.9 Converting Between Representations 205

(1) We could specify a cutoff depth below which we do not subdivide, or
(2) rather than requiring that the region either misses or covers a rectangle

completely, we can quit if it “almost” misses or quits, that is, one uses thresh-
olds on the percentage of area covered.

Octrees. Octrees are the three-dimensional generalization of quadtrees. In the case
of octrees we divide a cube into eight octants. See Figure 5.42. We can then encode
objects with trees where each node has up to eight nonempty subtrees. Octrees are
generated for objects analogous to how quadtrees are generated.

One can show that the number of nodes in a quadtree or octree are typically
proportional to the size of the object’s boundary, although it is possible to create
some worse cases. The intuitively obvious reason for that is that the only time one
needs to subdivide is when a cell is crossed by the boundary.

The quadtree and octree representations for objects have many nice properties
and they have been studied extensively in order to store and process them efficiently.
Boolean set operations are relatively easy. One traverses both trees in parallel and
takes the appropriate steps at each corresponding pair of nodes. Algorithms exist for
finding a pixel or voxel or finding neighboring pixels or voxels in the tree. These are
operations that one often needs. Some simple transformations, such as rotations by
90 degrees, scaling by powers of 2, and reflections are easy. Other transformations are
not. Aliasing is a big problem when performing these transformations. For more
details see the references in the spatial data structure section of the bibliography.

5.9 Converting Between Representations

The need for algorithms that convert from one representation to another exists not
only because modelers using different representations may want to exchange geo-
metric data but especially because modelers increasingly seem to maintain multiple
representations internally. By in large, the problem seems to have only been dealt with
in an ad hoc way. We begin by addressing the two classical CSG-to-b-rep and b-rep-
to-CSG problems. We end with some comments about the IGES data exchange
standard between modelers.

The CSG-to-b-rep problem is the boundary evaluation problem in CSG that was
first studied systematically in [ReqV85]. An early algorithm for polyhedral objects can

Figure 5.42. Octree subdivision.

206 5 Approaches to Geometric Modeling

be found in [LaTH86]. Ways to speed up the operation by only making computations
for “active zones” (those parts of the CSG tree that actually affect the final answer)
are described in [RosV89].

Let X be a CSG object. We clarify the basic approach to finding the boundary of
X with the example in Figure 5.43(a) which is the union of a square (the intersection
of four halfplanes defined by the edges a, b, c, and d) and the halfspace which is a
disk. See [GHSV93].

Step 1: Determine the boundary of every CSG primitive halfspace Hi used in the
definition of X. In our example this gives us four lines and a circle.

Step 2: We know that ∂X Õ » ∂Hi. Assuming that we have manageable definitions
of the ∂Hi, we now trim these boundaries against each other to get ∂X. In
our example, we would get four segments and three circular arcs. See Figure
5.43(b).

Step 3: To get a more compact representation one finally tries to merge adjacent
faces into larger ones. In Figure 5.43(b) one would merge the three adjacent
arcs into one arc.

The hard part in this algorithm is Step 2. We already mentioned some aspects of
this problem in Section 5.3.3. We subdivide the step.

Step 2a: The points of each ∂Hi are divided into three subsets which consist of those
points that are either in, out, or on with respect to X. See Figure 5.43(b).

Step 2b: The boundary ∂X consists of all those points which are on. This set is
computed from the collection of in, out, and on sets using Boolean set
operations together with some additional neighborhood information.

Essential to these computations is the point membership classification function,
denoted by PMC. Assume that X is an r-set and p is a point. Define

PMC (p,X) = in, if p lies in the interior of X,
= out, if p lies in the complement of X,
= on, if p lies on the boundary of X.

Figure 5.43. A CSG-to-b-rep conver-
sion example.

5.9 Converting Between Representations 207

One computes PMC by using the CSG structure of X. What this means is that

(1) one has to know the value on the CSG primitives, and
(2) one needs to be able to combine values for the various set operations, that is,

if op is one of the operations such as »* and «*, we need to express PMC
(p,X op Y) in terms of PMC (p,X) and PMC (p,Y).

As an example, here is the answer, in table form, to the combine operation (2) for the
operation «*:

Figure 5.44. An ambiguity in the
on/on case for »*.

X \ Y in on out

in in on out
on on on/out out
out out out out

There is a complication in the case where the point p is on both sets. Figure 5.44 shows
the problem. We are unable to distinguish between the situations shown in Figure
5.44(a) and (b). To resolve this problem we need to store some neighborhood informa-
tion N(p,X) whenever the point is on X. We therefore redefine the PMC function to

PMC (p,X) = in,
= out,
= (on, N(p,X)).

Describing the neighborhoods N(p,X) can get complicated in general, depending
on the kind of primitive spaces one allows. However, as an extremely simple two-
dimensional example consider the case where the primitives are simply orthogonal
rectangles. In that case it is possible to encode N(p,X) as a 4-tuple (a,b,c,d), where a,
b, c, and d are T or F because the essential nature of a disk neighborhood of a point
p on the boundary of X can be captured by considering the disk to be divided into
quadrants and specifying which quadrant belongs to X. A quadrant is assigned a T if
it belongs to X and an F, otherwise. See Figure 5.45. In Figure 5.44(a), we would have

208 5 Approaches to Geometric Modeling

N(p,X) = (F,F,T,T) and N(p,Y) = (T,T,F,F). In Figure 5.44(b), N(p,X) = (F,F,T,T)
and N(p,Y) = (F,F,T,T). Simple Boolean operations on these representations would
then determine the neighborhood of points in the on/on case. In a corresponding
three-dimensional example of orthogonal blocks one would use an encoding based on
octants. The reader is referred to [Tilo80] and [ReqV85] for a discussion of how one
would handle more general cases.

Next, we consider the problem of converting from a b-rep to CSG, which is much
more difficult than going in the opposite direction. The basic idea is to use the half-
spaces associated to the faces of the b-rep to describe a CSG representation. Unfor-
tunately, this may not work as the example in Figure 5.46(a) shows. The shaded region
consisting of the three regions A, B, and C is our solid X and H1 and H2, the interi-
ors of the horizontal and vertical ellipse, respectively, are the halfspaces associated to
the faces of X. No CSG representation which only uses these two halfspaces will rep-
resent X because any space defined by such a representation that contains region C
will also contain region D. We have to introduce some additional halfspaces, called
separating planes. The separating plane and the halfplane H3 below it shown in Figure
5.46(b) will do the job for the space X. For example,

(5.5)X H H H H H H= «() » «() » «()3 1 3 2 1 2* * * * * .

Figure 5.45. Neighborhood classification
of an on/on point.

Figure 5.46. The need for separating planes.

Therefore, before continuing, we need to answer the question: When can a space
be described in terms of unions, intersections, and complements of halfspaces?
Assume that we have a finite collection of halfspaces H = {H+(f1), H+(f2), . . . , H+(fk)}.
Although there is an infinite number of ways that these spaces can be combined with
the regular operators »*, «*, or -*, the following is true:

5.9.1 Theorem. All possible combinations of the halfspaces in H using the opera-
tors »*, «*, or -* will generate only a finite number of regular spaces X and each of
these can be represented by a unique expression in the form

(5.6)

and each hj is either H+(fj) or H-(fj).

Proof. See [ShaV93].

As an example of this theorem, consider the space X in Figure 5.46(b) again. The
unique decomposition of X guaranteed by the theorem is the one below:

(5.7)

(The decomposition in equation (5.5) does not have the right structure.)
In general, let us call any space like Pi in equations (5.6) a canonical intersection

term for the collection of halfspaces H. Note that the interior of every canonical inter-
section term is the intersection of the interior of the halfspaces that defined that
canonical intersection. This leads to the main theorem about when a space admits a
CSG representation based on a given set of halfspaces.

5.9.2 Theorem. Let H = {H1, H2, . . . , Hk} be a collection of halfspaces. A solid X
with the property that ∂X Ã (∂H1 » ∂H2 » . . . » ∂Hk) admits a CSG representation
based on H if and only if the interior of every canonical intersection term based on
H is either entirely contained in X or entirely outside of X.

Proof. See [ShaV91a].

Theorem 5.9.2 explains why the two halfspaces in Figure 5.46(a) were inadequate
to describe the space X: the canonical intersection H1 «* c*(H2) is half in X and half
outside of X.

We clarify our discussion with another example. We desire a b-rep-to-CSG
conversion for the solid X in Figure 5.47(a) ([GHSV93]). The b-rep of our solid X
specifies five halfspaces associated to each face in the boundary: four halfplanes and
one disk. Figure 5.47(b) shows the in/out classification of the canonical intersections
for our halfspaces. We see that the regions A and B in the figure that belong to the
same canonical intersection have a different in/out classification. They are both in the
square and outside the disk, but one is inside our solid and the other is outside it. By
Theorem 5.9.2 this means that X cannot be obtained from the given halfplanes and

X H H H H H H

H H H H H H

= « «() » « « ()() »
« « ()() » « « ()()

3 1 2 3 1 2

3 2 1 1 2 2

* * * * * * *

* * * * * * * .

c

c c

X h h h= = « « «U K
i

i i kwhere* , * * *P P 1 2

5.9 Converting Between Representations 209

210 5 Approaches to Geometric Modeling

disk by standard set operations. We need more halfspaces and the separating half-
space shown in Figure 5.47(c) resolves our problem.

We are now ready to describe the steps in a general b-rep-to-CSG conversion.

Step 1: We use the b-rep of our solid X to specify halfspaces associated to each face
in the boundary.

Step 2: Since the halfspaces we get from Step 1 may not be adequate to describe X
in a CSG way, we may have to introduce additional separating halfspaces.
This is the hardest part of the conversion. What we do is to compute the
canonical intersections of the halfspaces derived in Step 1. They divide the
whole Euclidean space into a collection of cells. These cells and their inte-
riors do not need to be connected. (See Figures 5.46 and 5.47.) Heavy use
of the point membership classification function enables us to determine the
in/out classification of these components. This classification tells us whether
we need separating planes and is also used to find such planes if they are
needed.

Step 3: The CSG decomposition is gotten from the cells in Step 2 by taking a union
of all the cells that consisted of in points.

Step 4: The CSG decomposition we get in this way may not be very efficient and
so as a last step one may try to perform some optimization which either
minimizes the number of primitives or the number of set operations.

Figure 5.47. A b-rep to CSG conversion example.

For more details see [ShaV91a], [ShaV91b], and [ShaV93]. [GHSV93] has a nice
overview of the generic representation conversion process and the general principles
that are involved. Step 4 above points to one of the stumbling blocks to having a nice
theory of conversions between different representations. The answer may not be well-
defined. In the b-rep-to-CSG case, we do not have a clear idea of which of the many
possible primitives that one can use are best.

As we have seen, converting between different representations is potentially a hard
problem. There is another related problem. Two modelers may use basically the same
representation scheme but have implemented them differently. This is hardly sur-
prising since each had a different team of programmers. What we have here is an
implementation conversion problem. Because there are many commercial modeling
systems in use, this is a real problem since many businesses are not able to assume
that all needed data will be generated internally and there is a need to transfer
data from one system to another. IGES (Initial Graphics Exchange Specification)
was developed to solve this problem and enable different systems to exchange data
between themselves. To use IGES, a modeling system must have translators that
convert from their representations to those of IGES and vice versa. A person wishing
to transfer data from system A to system B would then first use system A’s IGES trans-
lator to translate the system A data into the IGES format and write this to a file. That
file would then be read by system B’s IGES translator that would convert the IGES
data into system B’s own internal format.

IGES is not perfect and it is easy to complain about its constraints. There is
another more advanced data exchange format STEP that allows for much more
high-level descriptions than the relatively simple annotated geometry formats of
IGES, but we refer the reader to [ShaM95] for that. Nice features of a modeling system
can get lost in the translation to and from IGES. A direct translation from one system’s
data structure into the other’s would usually be more efficient. The latter approach
would therefore be the way to go in certain dedicated situations. However, it is
certainly much simpler to write one translator (for IGES) than writing many (one
for each external modeling system). Writing translators is a nontrivial task. Further-
more, modeling systems continue to evolve and one would have to keep updating
any direct translators. IGES also continues to change with the times, but at least only
one update has to be written if one uses it. The bottom line is that IGES is a cost-
effective solution to the geometric data transfer problem that works. See Appendix C
for a summary of how various object types are represented by IGES and the format
of an IGES file.

5.10 Round-off Error and Robustness Issues

Accuracy and robustness are important issues in numerical computations. For an
overview of some common pitfalls see [McCa98]. Because geometric modeling
involves a great many numerical algorithms, one wants to minimize the potential of
round-off errors and avoid situations where small changes can lead to radically dif-
ferent results. To accomplish this one must choose carefully between different algo-
rithms and representations for objects. In this section we only scratch the surface of

5.10 Round-off Error and Robustness Issues 211

212 5 Approaches to Geometric Modeling

this difficult subject. Currently, solutions to numerical problems tend to be targeted
to specific areas. What are still needed are general solutions. In the meantime it is
largely up to users to be aware of potential problems and to take steps on their own
to try to avoid them.

One of the first things one learns about real numbers when programming is that
one almost never tests for equality but rather asks whether numbers are close enough.
Modeling systems tend to use plenty of epsilons, small positive constants that are used
to define when quantities are supposed to be considered equal. Getting correct yes/no
answers when one only has approximations is not easy. So often the mathematical
answer to a geometric problem is short and simple, but the computer program that
implements it is much longer and messy. For example, to determine whether a point
in the plane lies on a line is trivial mathematically. One can simply check whether the
point satisfies the equation of the line, which involves checking whether some expres-
sion equals zero. In a computer program, testing for zero would probably be too
strong a test and one would be satisfied if the expression is suitably small. This might
not cause any problems by itself, but errors can propagate. Treating two lines as par-
allel if they are only almost parallel might be all right, but if a sequence of lines are
almost parallel, then the first and the last might be quite far from being parallel. Fur-
thermore, no matter how small the epsilons, there is a potential of getting inconsis-
tencies in the geometric database. In Figure 5.48, if the segment AB is close to being
parallel to the top face f of the solid, then in the process of intersecting it with the
solid, one may conclude that AB intersects the face f in the segment CD. On the other
hand, one may get a more accurate intersection with the side face g and conclude in
that case that the line does not intersect CD. This might leave an incorrect descrip-
tion of AB in the database as a composition of three segments. The author has per-
sonally known of commercial CAD systems that (at least in their initial version) would
crash in some constructions that involved solids that touched each other along essen-
tially parallel faces.

Maintaining the orthogonality of orthogonal matrices is another problem in com-
puter graphics. Orthogonal matrices may become nonorthogonal after numerous
transformations. This is a serious problem in robotics where moving joints means
transforming matrices. What one needs to do here is to maintain a count of the
number of transformations that have been performed and then periodically reorthog-
onalize the matrices. Of course, since one does not know which values are incorrect,
the new matrices, although orthogonal, are probably not what they should be
mathematically.

Figure 5.48. Intersection inconsistencies due to
round-off errors.

Numerical analysis is clearly the first place to look for answers about accuracy in
a world of approximations. A lot is known about the accuracy of the output of a com-
putation given the accuracy of the input. For example, to get precise answers with
linear problems one would have to perform computations using four to five times the
precision of the initial data. In the case of quadratic problems, one would need forty
to fifty times the precision. Sometimes there may be guidelines that help one improve
the accuracy of results. Given the problems with floating point arithmetic, one could
try other types of arithmetic.

Bounded Rational Arithmetic. This is suggested in [Hoff89] and refers to restrict-
ing numbers to being rational numbers with denominators that are bounded by a
given fixed integer. One can use the method of continued fractions to find the best
approximation to a real by such rationals.

Infinite Precision Arithmetic. Of course, there are substantial costs involved in
this.

“Exact” Arithmetic. This does not mean the same thing as infinite precision
arithmetic. The approach is described in [Fort95]. The idea is to have a fixed but rel-
atively small upper bound on the bit-length of arithmetic operations needed to
compute geometric predicates. This means that one can do integer arithmetic.
Although one does not get “exact” answers, they are reliable. It is claimed that bound-
ary-based faceted modelers supporting regularized set operators can be implemented
with minimal overhead (compared with floating point arithmetic). Exact arithmetic
works well for linear objects but has problems with smooth ones. See also [Yu92] and
[CuKM99].

Interval Analysis. See Chapter 18 for a discussion of this and also [HuPY96a] and
[HuPY96b].

Just knowing the accuracy is not always enough if it is worse than one would
like. Geometric computations often involve many steps. Rather than worrying about
accuracy only after data structures and algorithms have been chosen, one should
perhaps also use accuracy as one criterion for choosing the data structures and
algorithms.

One cause for the problem indicated in Figure 5.48 is that one often uses differ-
ent computations to establish a common fact. The question of whether the line
segment intersected the edge of the cube was answered twice – first by using the face
f and second by using the face g. The problem is in the redundancy in the represen-
tation of the edge and the fact that the intersection is determined from a collection
of isolated computations. If one could represent geometry in a nonredundant way,
then one would be able to eliminate quite a few inconsistency problems. Furthermore,
the problem shown in Figure 5.48 would be resolved if, after one found the intersec-
tion with face f, one would check for intersections with all the faces adjacent to f and
then resolve any inconsistencies.

We give a brief overview of an approach to achieving robust set operations on
linear polyhedra described in [HoHK89] and [Hoff89]. It involves both data structures

5.10 Round-off Error and Robustness Issues 213

and algorithms. Their data structure allows for nonmanifold objects and specifies the
following information about vertices, edges, and faces:

vertex: the adjacent edges and faces
edge: the bounding vertices and adjacent faces with the faces listed in a con-

tiguous cyclical order with respect to their intersection with a plane
orthogonal to the edge

face: the bounding edges and vertices as circular lists with the face to the right

Normal planes to edges and planes associated to planes are assumed to be oriented
appropriately. To achieve irredundancy of information, planes are defined via equa-
tions that are oriented so that the associated normals point out of the associated solid.
Vertices are defined as the intersection of the planes to which their adjacent faces
belong. Edges are oriented and defined by their bounding vertices. The entire geom-
etry is defined by a unique set of plane equations.

Since all Boolean set operations can be defined by the intersection and comple-
ment operation, the interesting operation is intersection. We consider the simplest,
but most important, case of finding the intersection of two solids X and Y with con-
nected boundaries. The initial overall strategy is

(1) If no pair of faces from X and Y intersect, check if one solid is contained in
the other and quit.

(2) Intersect the boundaries of X and Y. For each face f of X that intersects Y
find the cross-section of Y with respect to the plane of f. Determine the part
of X «* Y contained in that cross-section. These regions will be defined by
points and line segments lying in the boundary of X.

(3) The cells obtained in Step (2) will also lie in faces of Y. We use these cells to
determine the subdivision of those faces of Y. Then using face adjacency infor-
mation for Y, we find and add all the faces of Y lying in the interior of X.

(4) Assemble all the intersection faces into the solid X «* Y.

The problem with Step (2) is that intersections are computed in isolation that can
lead to the inconsistencies mentioned above, therefore, Step (2) and (3) are replaced
by

(2¢) For each intersecting pair of faces f and g from X and Y, respectively, deter-
mine the points and segments in which they intersect. Using three-
dimensional neighborhood information for each intersection, the relevant
parts are then transferred to all adjacent faces of X and Y.

(3¢) Finally, those faces of either solid that are contained in the other are found
using face adjacency information for the solids.

Bounding boxes are used for faces to speed up the algorithm and avoid unneces-
sary checks for face/face intersections along with efficient algorithms for determining
whether intervals intersect. The most work takes place in Step (2). It is here that one
makes sure that each element of the intersection is computed in a consistent way with
respect to all adjacent cells. For intersecting faces one has to

214 5 Approaches to Geometric Modeling

(1) find and analyze the points and segments in the intersection,
(2) transfer the results to adjacent faces in X and Y, and
(3) link the various intersection pieces into complete face and edge descriptions.

These steps involve careful analysis of neighborhoods of cells. The six major cases
arise from face/face, face/edge, face/vertex, edge/edge, edge/vertex, and vertex/vertex
intersections.

The authors of [HoHK89] reported that when the algorithm we just described was
implemented, very substantial improvements in robustness were realized compared
with other modelers. Their test cases included such typically difficult cases as finding
the intersection of two cubes, where the second is a slightly rotated version of the
first. We refer the reader to that paper and [Hoff89] for additional ideas about dealing
with accuracy and robustness that we do not have space to get into here. More papers
on robustness can be found in [LinM96]. See also [DeSB92] and [EdaL99]. Often the
problems we have talked about are caused by the fact that they are special cases or
some sort of degeneracy. There is no problem determining whether two lines inter-
sect if they are reasonably skew. Therefore, perhaps one can always arrange it so that
they are or that objects are not almost touching, etc., by perturbing them slightly. This
is the basis for an approach to robustness described in [EdeM90]. Objects are put into
general position by a small perturbation; however, the perturbation is done symboli-
cally. Nothing is actually ever perturbed.

Finally, because conics are such an important class of spaces in modeling, we
finish this section with some facts about the robustness of some of their standard rep-
resentations. Four common ways to define conic curves are:

(1) via the general quadratic equation
(2) in standard form at the origin along with a transformation
(3) via a few points and/or reals (For example, one can define an ellipse in terms

of its center, major axis, and major and minor axes lengths.)
(4) via projective geometry type constructions

Which is best? It is well known that (1) is by far the worst representation. Changing
coefficients even just slightly, can, in certain circumstances, lead to incorrect conclu-
sions as to the type of the conic. According to [Wils87], (2) and (3) are the best with
(3) slightly better.

5.11 Algorithmic Modeling

Sections 5.3.1–5.3.9 discussed various specific approaches to geometric modeling.
This section takes a more global view and tries to identify some unifying principles
behind some of the details. Specifically, the relatively recent generative modeling
scheme and the natural phenomena and physically based modeling schemes are exam-
ples of what is referred to as algorithmic or procedural modeling in [GHSV93]. Algo-
rithmic modeling refers to that part of geometric modeling where one uses algorithms
to define and manipulate objects or functions rather than nonconstructive definitions.

5.11 Algorithmic Modeling 215

Sometimes one has a choice, but even though the spaces we might get can be
described by a function that parameterizes the space or defines it implicitly, there are
reasons for why it might be useful to generate a space algorithmically:

(1) Not all spaces can be computed and sometimes, like in the case of fractals,
one can only describe them by a limiting process.

(2) The geometry of a space sometimes changes over time or due to external influ-
ences and the best way to describe this may be algorithmically.

(3) Some complex geometric structures are too complicated to describe by
functions.

(4) Algorithmic descriptions may give rise to added flexibility and power.

In [GHSV93] algorithmic models are divided into four main classes.

Geometry-based models: Generative modeling is an example. Its models are
parameterized by properties and transformations

Functional-based models: These models are defined by functions and modified by
other functions. Texture functions are an example how
functions can modify geometry.

Grammar-based models: Here the structure is defined by a language and a
grammar for that language. The grammars can be
divided into geometric (fractals and their initiator/
generator paradigm) and topological (graftals)
grammars.

Physics-based models: The models are controlled by the laws of physics. See
Section 5.5. Also included here are particle systems,
deformable models (elastic/inelastic), and constraint
systems.

For more details see [GHSV93].
Looked at abstractly, what the theory of algorithmic modeling adds to “standard”

geometric modeling is a symbol generation mechanism that can be either determin-
istic or probabilistic. To formalize this we must generalize the notion of a Turing
machine to one that can deal with continuous functions.

Although the theory of computation is a well-developed subject, the classical
theory of Turing machines deals with discrete computations. Here, an analysis of the
complexity of a computation takes into account the size of numbers in terms of
the number of bits in their binary representation. On the other hand, when we deal
with continuous geometry, as we do in geometric modeling, it would be nice to
make our baseline the reals and to consider the cost of basic arithmetic operations,
such as multiplication, independent of their “size.” To put it another way, since
geometric shapes are usually defined by parameterizations or implicitly, we would like
to have a concept of computability based on reals and appropriate “computable” con-
tinuous functions. We would then like to ask the same types of questions as in the
discrete Turing machine case. For example, which topological spaces are “com-
putable” in this setting? In recent years, such a continuous theory of computation has

216 5 Approaches to Geometric Modeling

5.11 Algorithmic Modeling 217

been developed that formalizes the notion of a machine over the reals. See [BlSS89]
or [GHSV93]. We would like to mention a few of the highlights of the theory in this
section.

We motivate our definition of a machine over the reals with two examples from
[BlSS89].

5.11.1 Example. Let g :C Æ C be a complex polynomial map. Since the highest
order term of g dominates, one can show that there exists a positive constant Cg so
that |z| > Cg implies that |gk(z)| Æ • as k goes to infinity. Figure 5.49 shows a flow-
chart for an algorithm based on g. Right now we prefer to think of it as a state diagram
for a machine M. Clearly, M will halt precisely on those inputs z for which |gk(z)| Æ
• as k goes to infinity.

5.11.2 Example. Figure 5.50 shows an algorithm that computes the greatest
integer Îx˚ for x Œ R, x ≥ 0. We again shall think of it as a state diagram of a machine
that operates on a pair (k,x). To find the greatest integer in x, one inputs (0,x).

Figure 5.49. State diagram for Example
5.11.1.

Figure 5.50. Computing the greatest
integer in x.

What is notable about the two examples here is the state diagram of the
“machines” that carried out the associated algorithms. This is what we want to gen-
eralize now.

Let R be an ordered commutative ring with unity. Because there is no space to go
into lots of details, the definitions we give here will not be as general as they could be
but are aimed at the special cases R = Z or R.

Definition. A machine M over R consists of three sets I = Rm (the input space), O =
Rn (the output space), and S = Rk (the state space), along with a finite connected
directed graph G whose nodes are one of four types:

Input node: There is only one node of this type and it will be denoted by 1.
It has no incoming edge and only one outgoing edge to a node
denoted by b(1) and called the next node. Associated to this node
is a linear injective map i : I Æ S. One thinks of i as just taking
the input and “putting it into the machine.”

Output node: These nodes have no outgoing edges. Associated to each such
node o, there is a linear map go :S Æ O.

Computation node: Each such node c has a unique outgoing edge to a node denoted
by b(c) and called the next node. Associated to the node is a poly-
nomial map gc :S Æ S. If R is a field, then we can let gc be a
rational function.

Branch node: Each such node b has precisely two outgoing edges to nodes
denoted by b-(b) and b+(b) called next nodes. Associated to b is
a polynomial hb :S Æ R, such that b+ (b) and b- (b) are associ-
ated to the conditions hb(x) ≥ 0 and hb(x) < 0, respectively.

By expressing the definition of a machine over a ring graphically, it is not as com-
plicated as it may sound. It leads to state diagrams just like in the Turing machine
case. The two examples above are, in fact, special cases of a machine M over the reals.
In Example 5.11.1, we identify the complex numbers C with R2. The input, output,
and state spaces of M are all R2. The function i associated to the input node is the
identity map and the function at the branch node is h(z) = |z|2 - Cg. In Example 5.11.2,
the input, output, and state spaces are R, R, and R2, respectively. The function asso-
ciated to the input node is the function from R to R2 that maps x to (0,x). At com-
putation nodes, the associated function is (x,y) Æ (x + 1,y - 1). The output function
is the map from R2 to R that maps (x,y) to y.

Now, given a machine M over a ring R with nodes N, define a partial map

by G (n,s) = (n¢,s¢) where

(1) G is not defined if n is an input or output node.
(2) If n is a computation node, then n¢ = b(n) and s¢ = gn(s).
(3) If n is a branch node, then s¢ = s and n¢ = b+(n) if hn(s) ≥ 0 and n¢ = b-(n) if

hn(s) < 0.

G N S N S: ¥ Æ ¥

218 5 Approaches to Geometric Modeling

5.11 Algorithmic Modeling 219

If we allowed rational functions in (2), then gn may not be defined because its denom-
inator vanishes on s. It turns out that it is easy to overcome this technical problem
and so there is no loss in generality if we assume that gn is always defined on any
value where we want to evaluate it.

Definition. A computation of length t is a sequence

(5.8)

where x is an element of I. The set

is called the halting set of M. The input-output map

is defined as follows: Let x Œ WM and let (5.8) be the computation with o = nt Œ O.
Then

Definition. A map f :A Õ Rm Æ Rn is said to be computable over R if there exists a
machine M over R so that WM = A and jM = f. In this case we say that M computes f.

Definition. A set A Õ Rm is recursively enumerable over R if A = WM for some machine
M over R. It is decidable if it and its complement are both recursively enumerable over
R; otherwise it is said to be undecidable.

One can show that decidability of a set A is equivalent to its characteristic func-
tion being computable. Lots of interesting results about machines over a ring are
proved in [BlSS89]. The ones most interesting for us here will now be mentioned.

5.11.3 Theorem. A recursively enumerable set over R is the countable union of
semialgebraic sets.

Proof. See [BlSS89].

5.11.4 Corollary. The halting set of a machine over R is the countable union of
disjoint semialgebraic sets. The input-output map for the machine is a piecewise poly-
nomial map.

Since one can show that the Hausdorff-Besicovitch dimension of a semialgebraic
set is an integer, we also get

5.11.5 Corollary. The halting set of a machine over R has integral Hausdorff
dimension.

jM o tx g s() = ().

jM M O: W Æ

WM x I there= Œ (){ } is a computation of the form 5.8 with n an output nodet

1 1 1 11 1 2 2
2, , , , , , , , , , , ,i i i ix n s G x n s G x n s G xt t

t()() () = ()() () = ()() () = ()()K

220 5 Approaches to Geometric Modeling

Corollary 5.11.4 indicates why it is reasonable to stay with semialgebraic sets in
traditional geometric modeling. Corollary 5.11.5, on the other hand, shows that we
do not get fractals in this way. The next result tells us something about the sets one
encounters when trying to define fractals.

5.11.6 Theorem. The basis of attraction of a complex rational function g :C Æ C
(which means the union of the basin of attraction of all attractive periodic points) is
a recursively enumerable set over R. In particular, it is the countable union of semi-
algebraic sets.

Proof. See [BlSS89]. It can be shown that g has only a finite number of attractive
periodic points and that there is a polynomial h so that a point is in the basin of g if
and only if h(z) < 0 for some z in its orbit. The theorem is proved using this h and a
machine very similar to the one in Example 5.11.1.

Not all basins of attraction are decidable. In fact, it is shown in [BlSS89] that the
Julia set and most of its analogs are not recursively enumerable. On the other hand,
one can compute semialgebraic set approximations to Julia sets.

5.12 Conclusions

In the 1970s and 1980s most modelers were based on either the boundary or CSG
representations or both. Here is a summary of the differences between these two rep-
resentations. Roughly speaking, the advantages of the boundary representation are
disadvantages for the CSG representation and vice versa.

Advantages of b-reps: (1) It is good for efficient rendering algorithms.
(2) It can handle general “free-form” or “sculptured” sur-

faces, that is, “curved” surfaces that typically are
defined implicitly or via parameterizations.

(3) It is good for local modification of models.

Disadvantages of b-reps: (1) It takes a lot of data structures and space to define
objects.

(2) Object definitions tend to be complicated.
(3) Verification of validity is difficult.

Advantages of CSG: (1) It is very compact.
(2) It is a natural way to define many objects and

“perfect” for most mechanical engineering parts.
(3) Validity checking is “built in.”

Disadvantages of CSG: (1) It is not good for rendering because one needs a sep-
arate boundary evaluation algorithm.

(2) It may not be easy to define the motions that place
objects in position for the Boolean set operations.

(3) It is impractical to use for sculptured surfaces or
solids bounded by such surfaces except in the most

trivial cases. With the typical set of primitives, the
best that one could do for such objects, as for
example an airplane wing, is get a very inefficient
approximation.

(4) The definition of what is a “face” is more
complicated.

Some modelers were hybrid systems that used the best features of boundary and
CSG representations. In fact, the user interfaces for modelers are reasonably standard
and hide the actual representation that is used. It is like with a database program
where the user usually does not really know (or care) whether it is truly relational or
not. The only way one might get an inkling of the representation on which a modeler
is based is by the speed and ease of completing certain queries. For example, bound-
ary representations have an easier time with queries that deal with faces. A hybrid
system does have problems however:

(1) It must be able to convert between the different representation and the b-rep-
to-CSG conversion is very hard.

(2) It must maintain consistency between representations. This limits its cover-
age. For example, if a b-rep object came from a CSG representation and one
modifies it using a parametric surface for blending, the original CSG struc-
ture can probably not be kept consistent with it. See [ShaV95].

Initially, the typical operators in b-rep modelers were the set operations basic to
CSG, but gradually more and more operations were introduced into modelers, oper-
ations, such as local blending operations, that were not easy to implement in a CSG
modeler. This has caused pure CSG modelers to disappear, probably also because of
the many advantages to using spline surfaces, especially NURBS surfaces, and the fact
that there is no general b-rep-to-CSG algorithm. The result is that most modelers are
now b-rep based. Volume-based modelers will also probably become more prevalent
in the future with faster computers and large amounts of memory. Nevertheless, CSG
has had a fundamental impact on the way that one views geometric modeling. CSG
can be viewed as an abstract description of objects and so, whether or not a modeler
is based on it, the user interfaces will continue to support it. It should be pointed out
that the parametric modeling systems that developed did not entirely avoid the prob-
lems found in the dual b-rep/csg-rep systems. When a slot in the middle of a block is
moved to the edge of the block, it and the associated blend will disappear. Shapiro
and Vossler ([ShaV95]) argue that such difficulties are caused by the fact that the
concept “parametric family” is not well-defined. A designer may not be able to predict
whether certain parameterizations will remain valid throughout the design process.
A lot more work needs to be done in this area if one wants a design process that does
not require human intervention in the parametric structure of an object.

A modeler’s ability to edit a model is extremely important to a user. Finding a good
way to do this is the basis of a lot of current research. We briefly discussed the medial
axis representation. Another approach called Erep is described in [GHSV93]. Its goal
is to be an editable, high-level textual representation for feature based solid model-
ing. It is a representation that is independent of the underlying modeler.

5.12 Conclusions 221

222 5 Approaches to Geometric Modeling

Editing involves performing operations on models. Below are some typical local
operations supported by modeling systems:

(1) extrusions, or more generally sweeps (Figure 5.51(a))
(2) beveling or defining wedges (Figure 5.51(b))
(3) blending (see Section 15.6), which is a general operation that involves finding

blending curves or surfaces.

A blending curve is one that smoothly connects the endpoints of two curves.
A blending surface is one that smoothly connects two surfaces along two given

curves, one in each surface, and meets the surfaces tangentially at those
curves.

Fillets are a special case of blending. See Figure 5.51(c). Filleting refers to a
“rounding” along an edge of a concave corner. This could mean, e.g., match-
ing a circle to a corner which is tangent to the edges.

Chamfering refers to “rounding” at a vertex or along a convex edge. See Figure
5.51(d).

The term “rounding” itself has sometimes been used to mean chamfering.

(4) local deformations of an edge or a face
(5) undoing one or more operations to restore a model to a previous state
(6) skinning (see Section 14.7)

Figure 5.51. Various types of edits.

5.12 Conclusions 223

(7) transforming shapes by scaling, mirroring, rotating, translating, . . .

In addition to the geometric operations, commercial modeling systems must also
have the ability to annotate the geometry so that users can produce standard mechan-
ical drawings. As a matter of fact, dimensioning and tolerancing is not an after-
thought, but an important aspect of the total design and manufacturing process.
Dimensions specify the “nominal” or perfect geometry of an object. Since one can
never create the perfect object, one needs to be able to specify tolerances within which
it would be considered acceptable. Other annotations relate to the type of material of
an object and how it is to be rendered – in what color, etc. The representation schemes
described in this chapter dealt with dimensions. The representation problem for tol-
erances is much harder. Coming up with a rigorous theoretical foundation for what
humans have been doing manually for hundreds of years has been a nontrivial task
and many problems remain as one moves towards the goal of automating annota-
tions. See [Just92] for a brief overview of this topic.

Another property that can distinguish modelers is whether they use exact or
faceted representations of objects in computations. Many modelers use a faceted rep-
resentation for display purposes because the display hardware has been optimized to
deal with that. The display itself is not the issue here, but rather, whether an algo-
rithm, such as one that determines if two objects intersect, uses a faceted or exact
representation of these objects. Finding the intersection of linear spaces is much
easier than doing this for curved spaces and so many modelers did this in the 1980s.
There are potentially serious problems with this however. To give a two-dimensional
example, consider what happens when slightly overlapping circles are approximated
by polygons. If they are rotated, an intersection algorithm would sometimes find an
intersection and sometimes not, like in Figure 5.52. An incorrect determination of this
type could cause problems if passed on to another operation.

This chapter has presented an overview of the evolution of geometric modeling.
Although we have come a long way, the current state of the field is far from satisfac-
tory. Attempts have been made to develop theoretical foundations so that one can talk
about issues in a rigorous way, but by in large the field is still advancing in an ad hoc
way. Some specific defects are:

(1) R-sets may be inadequate. One may want to be able to represent non-
manifold solids with dangling edges or faces. Simply enlarging the domain
would still leave unanswered the question of which operations to allow and
what they would preserve. See [GHSV93].

(2) In practice the definition of a representation scheme r is rather ad hoc. Usually
only r-1 is well-defined and r itself is not. It is hard to compare different rep-
resentation schemes. For example, when converting from a boundary to a CSG

Figure 5.52. An intersection problem with faceted
circles.

representation, which CSG representation of the object does one want? Which
is the “correct” one? Ad hoc answers are not good enough. See [Shap91] and
[GHSV93].

(3) A theoretical foundation for operations on objects is lacking or not well inte-
grated into the representation scheme concept.

From a very global point of view however, a basic bottleneck is computer power.
The fact is that (at least in some important aspects) there is a great body of known
mathematics about geometry and topology that is central to doing geometric model-
ing “right” and which is simply waiting for the time that computers are fast enough
to make dealing with it feasible. It is easy to see this relationship between progress
in geometric modeling and the development of speedier computers. One simply has
to look at the fantastic advances in rendering photorealistic images. This is not to say
that no innovations are needed. The use of computers has brought along with it a host
of additional problems that have to be solved while at the same time creating oppor-
tunities for finding new ways to understanding. An example of the former is the fact
that computers do not have infinite precision arithmetic so that algorithms that are
mathematically simple become very tricky to implement when one has to worry about
round-off errors. An example of the latter is the ability to use computers to visualize
data in ways that was not possible before. This by itself can lead to advances in knowl-
edge. Coming up with good user interfaces is also a great challenge. Nevertheless, if
computers could just deal with all the mathematics related to geometric modeling
that is known right now we would be a giant step further along. Along these lines,
two features that modeling systems should support but do not because the algorithms
are too expensive computationally are:

(1) The ability to differentiate between objects topologically.
(One would need to implement the basic machinery of algebraic topology.)

(2) The ability to represent space and objects intrinsically.
Another aspect of this is that one should represent not only objects but the
space in which they are imbedded. With the rise of volume rendering we are
beginning to see some movement on that front.

These issues will be addressed again in Chapter 16. Given the certainty of rapid
advances in hardware, geometric modeling has an exciting future.

Finally, here are some “philosophical” comments, alluded to before, having to do
with the way that one should approach the subject of geometric modeling ideally. One
of the things one learns from mathematics is that whenever one introduces a certain
structure, be it that of a group, vector space, or whatever, it has always been fruitful
to define maps that preserve that structure, like homomorphisms, linear transforma-
tions, and so on, respectively. The sets and maps are in a sense interchangeable. One
could start with a class of maps and define a structure in terms of that which is left
invariant by the maps. Furthermore, new structures and maps are usually studied
by associating simpler invariants to them. A perfect example of this is the field of alge-
braic topology. See Chapter 7 in [AgoM05] for some simple examples of this (for
example, the functor from the category of simplicial complexes and simplicial maps
to the category of chain complexes and chain maps). In computer science one looks
for “representations” and everything boils down to finding suitable representations

224 5 Approaches to Geometric Modeling

5.13 Exercises 225

for abstract concepts, representations that mimic the abstract concepts in every way.
The point of these remarks is encapsulated by Figure 5.53. Ideally, one starts with
abstract sets and transformations and then represents them by other sets and trans-
formation in such a way that everything is preserved, meaning that one gets com-
mutative diagrams. In the context of geometric modeling, there are objects,
transformations of objects, and functions on these objects. Representations act on
maps as well as sets and need to produce commutative diagrams. It would be nice if
representations were what are called functors between categories but they are not.
(The terms “functor” and “category” have a very definite meaning in mathematics.
They help make precise the notion of commutative diagrams that we talk about at
various places in this book, but that is another story that we cannot go into here.)
Nevertheless it is worth reminding the reader of what one should at least strive for,
or at least keep in mind, even if it is not possible to achieve in practice. Recall our
discussion in Section 5.7 and Figure 5.35.

5.13 EXERCISES

Section 5.2

5.2.1 Explain why the unit square [0,1] ¥ [0,1] is not an r-set in R3.

5.2.2 Prove that r(rX) = rX.

5.2.3 Give an intuitive but convincing argument for why the regularized set operators take r-
sets to r-sets.

Section 5.3.3

5.3.3.1 Here is a slight variation of the usual linear polyhedron.

Definition. A set X Õ Rn that can be obtained from a given collection of open linear
halfplanes by a finite sequence of set operations consisting of the complement and
intersection operator is called a Nef polyhedron.

Figure 5.53. Commutative diagrams
for representations.

Prove that a set X Õ Rn is a Nef polyhedron if and only if it is the realization of a CSG-
tree based on closed linear halfplanes and the set operations of ordinary union, inter-
section and difference. Because of this fact and other reasons, it has been argued that
Nef polyhedra are an attractive primitive for CSG and geometric modeling in general.
See [Bier95].

226 5 Approaches to Geometric Modeling

not intersect. If they do intersect, well, then we will have to bite the bullet and check
out the original objects.

Definition. A bounding object for an object A is any object B that contains A.

This section looks at some common types of bounding objects. Keep in mind the
following three desirable properties that bounding objects should possess:

(1) They should be easy to compute.
(2) It should be easy to tell if they intersect.
(3) They should “fit” an object fairly closely.

The motivation behind property (3) is that we are trying to detect disjointness quickly,
and the bigger that bounding objects are the more they will intersect, forcing us into
lengthy computations we are trying to avoid. For an analysis as to whether bounding
objects are really worth it see [SuHH99] and [ZhoS99].

Definition. A box in Rn is any subset of the form

where ai, bi Œ R. (It is convenient here to think of [ai,bi] as segments and not require
that ai £ bi.) A bounding box for an object is a box that contains the object.

Figure 6.1(a) shows a bounding box. It is easy to check for intersections of bound-
ing boxes. For example, two segments [a1,b1] and [a2,b2] intersect if and only if

and if they intersect, then the intersection is the interval

Notice how this formula shows that [1,5] « [2,7] = [2,5] and [1,5] « [7,9] = f. In
general, we have

max min , , min , , min max , , max , .a b a b a b a b1 1 2 2 1 1 2 2() ()() () ()()[]

max min , , min , min max , , max , ,a b a b a b a b1 1 2 2 1 1 2 2() ()() £ () ()()

a b a b a bn n1 1 2 2, , . . . , ,[] ¥ [] ¥ ¥ []

228 6 Basic Geometric Modeling Tools

Figure 6.1. Bounding boxes.

6.2.1 Theorem. The boxes

will intersect if and only if

for all i. If they intersect, then

Proof. Easy. See Figure 6.1(b).

For obvious reasons, the intersection test in Theorem 6.2.1 is usually called the
minimax test.

A bounding box for a polygon can be defined from the minimum and maximum
values of all the coordinates of its vertices. Looking ahead, the bounding box for a
spline curve or surface (defined in Chapters 11 and 12) is usually taken to be a bound-
ing box for its control points. (This uses the important fact that splines lie in the
convex hull of their control points.) Other objects may have to have their bounding
boxes defined by hand.

Bounding boxes are probably the most common bounding objects that are used
because it is so easy to work with them, but they are far from perfect. The main
problem is that they may be a bad fit to the object. For example, the best bounding
box for a line segment has that line segment as a diagonal. It is clearly easy to find
lots of other objects for which rectangular boxes are a bad fit. For that reason, other
bounding objects may be more appropriate for any given world of objects. There is
nothing to keep us from using different types of bounding objects within one program
to optimize fits. Unfortunately though, usually the better the fit, the more complicated
it is to compute intersections.

A natural way to generalize bounding boxes is to allow bounding faces to be
slanted and not just horizontal or vertical.

Definition. A slab in Rn is the region between two parallel hyperplanes.

Given a bounded set X, a unit vector n determines a slab as follows: Starting arbi-
trarily far out on the two ends of the line through the origin with direction vector n,
slide two hyperplanes orthogonal to n towards the origin until they touch X.

Definition. The region between the two touching planes is called the slab for X
induced by the unit vector n and is denoted by Slab(X,n).

See Figure 6.2(a). The two hyperplanes that bound the slab Slab(X,n) can be
written in the form

where dnear £ dfar. The plane that corresponds to the dnear will be called the near
plane for the slab and the other one, the far plane. Note that if we were to project X
orthogonally to the line through the origin with direction vector n, then X would
project onto the segment [dnearn,dfarn].

We can use more than one vector n.

n • p n • p= =d and dnear far ,

X Y« = [] ¥ [] ¥ ¥ []lb ub lb ub lb ubn n1 1 2 2, , . . . , .

lb a b c d ub a b c di i i i i i i i i i= () ()() £ = () ()()max min , , min , min max , , max ,

X Y= [] ¥ [] ¥ ¥ [] = [] ¥ [] ¥ ¥ []a b a b a b and c d c d c dn n n n1 1 2 2 1 1 2 2, , . . . , , , . . . ,

6.2 Bounding Objects and Minimax Tests 229

terms of the dnear and dfar of the primitives that define it. For example, to get the dnear

and dfar of the union of two objects X and Y, we need simply take the minimum of
the two given dnear and the maximum of the two given dfar. See Figure 6.3.

Finding the intersection B of two generalized bounding boxes B1 and B2 (defined
with respect to the same set of normal vectors) is not hard. The formulas are really
the same as those for boxes. The only difference is that instead of taking maxima and
minima of coordinates (the orthogonal projections onto the standard axes ei) we now
take maxima and minima of the orthogonal projections onto the normals ni, that is,

(6.3)

The generalized boxes B1 and B2 are disjoint if and only if di
far(B) < di

near(B) for some
i.

Other common types of bounding object are circles or spheres (we shall use the
generic term “sphere” to refer to both). Such bounding spheres are also easy to deal
with and may fit the objects better. See Figure 6.4. Two spheres Si with centers ci and
radii ri will intersect if and only if

Finding the appropriate bounding sphere for an object is usually not hard if done by
hand. Automating the process is not quite so easy. It involves finding the smallest

c c1 2 1 2- £ +()r r .

d d d and d d di
near

i
near

i
near

i
far

i
far

i
far

B B B B B B() = () ()() () = () ()()max , min , .1 2 1 2

6.2 Bounding Objects and Minimax Tests 231

Figure 6.3. Combining bounding boxes.

Figure 6.4. Bounding spheres.

sphere containing a set of n points. There are optimal O(n) algorithms known for
doing this using Voronoi diagrams. See [PreS85].

6.3 Surrounding Tests

Along with finding intersections, determining whether or not a point belongs to a two-
or three-dimensional region is another common task. This section looks at some
simple tests to answer the question

“Does the point p belong to the linear polyhedron Q?”

We call them “surrounding” tests because the question could also be thought of as
one that asks whether a point is inside a closed curve or surface (the boundary of the
polyhedron Q in this case). Surrounding tests fall naturally into two classes—those
that deal with convex polyhedra and those that handle arbitrary polyhedra. Our dis-
cussion will also separate these two cases, but the reader should note the following:
In either of these two cases it is usually a good idea to use a bounding box B for Q
and first check whether p belongs to B or not. The reason is that it is very easy to
check if a point belongs to a box. If p does not belong to B, then it will not belong to
Q and there would be no need to do a lot of work to test p against Q.

We begin with tests for a convex polyhedron Q.

The Normals Test (Convex Q). A convex polyhedron Q is the intersection of a col-
lection of halfplanes associated to the faces of Q. Suppose that we are given a normal
vector ni and vertex qi for the ith face, so that the ith halfplane can be expressed in
the form

The point p will belong to Q if and only if

for all i. As a trivial example, suppose that Q is the unit square [0,1] ¥ [0,1]. It has
four faces. Let

See Figure 6.5. If p = (x,y), then

p q n

p q n

p q n

p q n

-() ≥ ≥
-() ≥ £
-() ≥ £
-() ≥ ≥

0 0

1 1

2 2

3 3

0 0

0 4

0 4

0 0

• ,

• ,

• ,

• .

means that y

means that x

means that y and

means that x

n n n n

q q q q
0 1 2 3

0 1 2 3

0 1 1 0 0 1 1 0

0 0 4 0 4 4 0 4

= () = -() = -() = ()
= () = () = () = ()

, , , , , , , ,

, , , , , , , .and

p q n-() ≥i i• 0

q q q n-() ≥{ }i i• .0

232 6 Basic Geometric Modeling Tools

These constraints on x and y are clearly the correct ones.

The Equations Test (Convex Q). This test is really just a rewriting of the previous
test. We shall describe it in the two-dimensional case. Let ni = (ai,bi) and ci = -qi ·ni.
With this notation, the ith halfplane above is just the set

It follows that p = (x,y) will belong to the polygon if and only if

for all i. What is the difference between the normals and equations test? Not much.
Deciding which test to use basically depends on how data has been stored in a
program. Did one store vectors ni or coefficients ai, bi, and ci?

The normals and equations tests can be generalized to a test for whether or not
a convex polyhedron P is contained in Q. One simply checks if all the vertices of P
belong to Q. If they do, then P will be contained in Q, otherwise not.

The Barycentric Coordinate Test (Convex Q). This test ([Bado90]) applies only to
polyghedron in the plane. We think of Q = p0p1 . . . pk as a fan of triangles p0pipi+1
and then check each triangle to see whether p belongs to it by computing its barycen-
tric coordinates with respect to the vertices. For example, in the case of the triangle
D = p0p1p2, express p0p in the form

The point p will belong to D if and only if a,b ≥ 0 and a + b £ 1. See Figure 6.6. If one
keeps track of the number of triangles that cover the point, then one can extend the
test to nonconvex polygons.

The Wedge Test (Convex Q). This test ([PreS85]) also applies only to polygons in
the plane. One adds a central point q to the polygon Q = p0p1 . . . pk, say the centroid.

p p p p p p0 0 1 0 2= +a b .

a x b y ci i i+ + ≥ 0

x y a x b y ci i i, .() + + ≥{ }0

6.3 Surrounding Tests 233

Figure 6.5. Surrounding test based on
normals.

The rays from this point through all the vertices of Q then divide the plane into infi-
nite wedges that are cut in half by the associated edge of Q. One can find the wedge
that contains p by doing a binary search for the angle of qp among the angles of the
vectors qpi. Finally one checks where p lies with respect to the edge of Q in the wedge.
See Figure 6.7. Because binary search is fast, this can be a good algorithm.

Next, we look at surrounding tests for arbitrary (possibly nonconvex) polyhedra.

The Parity or Crossings Test (Arbitrary Q). For this test one checks how many
times any ray starting at p will intersect the boundary of Q. If it intersects an even
number of times, p is outside Q. If it intersects an odd number of times, p is inside
Q. See Figure 6.8. For this to work though one must count an intersection twice
if the ray is “tangent” to the boundary of Q at that point. In the two-dimensional case
“tangent” means that the boundary edges containing the intersection point lie entirely
to one side of the ray. In the three-dimensional case the boundary faces containing
the point should lie entirely to one side of a “tangent” plane containing the ray. The
polyhedron does not have to be convex for the parity test, but it can be made more
efficient in the convex case.

The intersection tests and tests for tangency could make this a somewhat com-
plicated test to implement without some tricks, especially in three dimensions. We

234 6 Basic Geometric Modeling Tools

Figure 6.6. Surrounding test based on barycentric
coordinates.

Figure 6.7. Surrounding test based on
wedges.

indicate a few details in the planar case. In this case the ray from p is usually chosen
to be parallel to the x-axis with direction vector (0,1). To avoid the problem case where
a vertex of Q actually lies on the ray, one pretends that all such points lie slightly above
the ray. Next, one can easily tell if the ray intersects an edge. If the y-coordinates of
the endpoints have the same signs, then the ray does not intersect. If they have oppo-
site signs, then there will be an intersection if both x-coordinates are to the right of
the x-coordinate of p. If the x-coordinates straddle the point, then one must compute
the intersection and check on which side of p it lies.

The Angle Counting Test. This test, which applies only to planar polygons Q, is
based on the topological concept of winding number that counts how many times one
object “winds around” another. See Section 9.3 in [AgoM05]. The test, due to Weiler
([Weil94]), was motivated by the solution to a slightly different problem, which we
shall describe first.

Let W be a rectangular “window” in the plane. Assume that Q also lies in the plane
and that the boundaries of W and Q are disjoint. The question we want to answer is
whether the two spaces are disjoint. Just because their boundaries are disjoint does
not mean that the spaces are since one could contain the other. We present an algo-
rithm ([Roge98]) that involves counting certain angles. In the topological case we
would have to sum up infinitesimal angles, but here we do not have to be that accu-
rate. Let us number the “octants” around W as shown below:

3 2 1

4 0

5 6 7

For a point p, let c(p) denote the number of the octant into which it falls. For each
oriented polygon edge e, define the recursive angle increment function dq(e) by

real function dq (edge e)
begin

real d;
Assume that e = [p,q];
d := c(q) - c(p);
if d > 4 then d := d - 8;
if d < -4 then d := d + 8;

6.3 Surrounding Tests 235

Figure 6.8. Surrounding test based on parity.

if |d| = 4 then
begin

Split e into two edges e1 and e2 at a window edge;
d := dq(e1) + dq(e2)

end;
return d;

end;

Define the total angle W by

(6.4)

One can prove the following:

6.3.1 Theorem. The polygon Q will be disjoint from the window W if W is 0 and
surround the window if W = ±8n.

Figure 6.9 shows some examples. Figure 6.10 shows the need for the adjustment
to dq in the |dq| = 4 case.

We now return to our original problem about when a point p belongs to a
polygon Q, Weiler’s angle counting algorithm. Weiler basically takes the algorithm
described above, shrinks the window W to a point p, and adjusts the algorithm accord-
ingly. Now we classify the vertices of Q with respect to the quadrant into which they
fall with respect to p = (x0,y0). See Figure 6.11. The quadrants are encoded via inte-
gers 0, 1, 2, or 3. Given a point (x,y), define

quadrant x y if x x and y y

if x x and y y

if x x and y y

if x x and y y

,

.

()() = > >
= £ >
= £ £
= > £

0

1

2

3

0 0

0 0

0 0

0 0

W = ()Â d
edge of

q
e Q

e .

236 6 Basic Geometric Modeling Tools

Figure 6.9. Window surrounding test based on angle counting.

With our choice of inequalities, the point p falls into quadrant 2 and the other points
on the vertical or horizontal axis in Figure 6.11 are encoded by the number of the
quadrant to the left or below it, respectively. The actual program that computes the
total angle W that is traced out by Q about p is quite simple. We start with a value of
0 and then add to W the difference dq in quadrant values from one vertex to the next.
The only problem is that we will again have to worry about moves between diagonal
quadrants (too large of an angle). Therefore, increments will have to be adjusted using
the function adjustDelta below. To compute the adjustment, one also needs a func-
tion that determines when a polygon edge passes to the left or right of p at y-level y0.
Here are the functions we need:

Assume that p = (x0,y0) and that e = [q1,q2] is an oriented edge of Q
and qi = (xi,yi).

{Find x-intercept of polygon edge e with horizontal line through y0.}
x_intercept (e) = x2 - (y2 - y0) * ((x1 - x2)/(y1 - y2))

{dq = quadrant (q2) - quadrant (q1)}
adjustDelta (dq,e) =

case (dq) of
3 : dq = -1; {we are crossing between quadrants 0 and 3}
-3 : dq = 1; {we are crossing between quadrants 0 and 3}
2, -2 : {we are crossing between diagonal quadrants}

if (x_intercept (e) > x0) then dq = - dq;
end;

The reader can find a C program for computing W in [Weil94]. The main result is then
the following:

6.3 Surrounding Tests 237

Figure 6.10. Example showing need for care
in angle counting.

Figure 6.11. Surrounding test based on angle
counting.

6.3.2 Theorem. If p does not lie on the boundary of Q, then it is outside polygon
Q if W is 0 and inside if W = ±4. If p lies on the boundary, then the algorithm will
return 0 or ±4 depending on whether the interior of Q was to the left or right of p
with respect to the orientation of ∂Q.

Weiler’s angle counting algorithm extends to polygons Q with holes if one knows
which is the outside boundary. The point p must be inside the outside boundary and
outside the hole boundaries. There is also an extension to nonsimple polygons, such
as polygons that intersect themselves.

Finally, we would to point the reader to the paper by Haines ([Hain94]) that
analyzes a variety of “point-in-planar-polygon” tests with some detailed conclu-
sions about which algorithm to use in which situation. Both the time and the
amount of extra storage that is needed must be taken into account. Choosing effi-
cient implementations of the algorithms is obviously also important. Haines has code
for a parity algorithm, two versions of algorithms using normals, and an algorithm
based on grids. A reader who is looking for the most efficient algorithm really
needs to read Haines’ paper, but a rough summary of his recommendations is the
following:

No preprocessing or extra storage: use the parity test
Some preprocessing and extra storage:

convex polygon:
few sides: use a normals type test on triangle fans
many sides: use the wedge test

arbitrary polygon:
few sides: use a normals type test on triangle fans
many sides: use the parity test

Lots of preprocessing capability and extra storage: use a test based on grids (see
[Hain94])

6.4 Orientation-Related Facts

When is a polygon P convex? The answer to this question is clear if P is defined as
the intersection of halfplanes, but the more typical way that polygons are presented
is via their boundary, that is, by a sequence of points. Therefore, the “real” question
is “When does a sequence of points (in a plane) define a convex polygon?” One test is
based on whether segments keep “turning” in one direction.

Definition. Two linearly independent vectors u and v in R2 are said to determine a
left turn if the ordered basis (u,v) determines the standard orientation. Otherwise, we
say that they determine a right turn. If the vectors are linearly dependent, then we will
say that they determine both a left and right turn.

The notion of left or right turning vectors leads to the following intuitively obvious
convexity test:

238 6 Basic Geometric Modeling Tools

6.4.1 Theorem. (Convexity test for polygons) Assume that a planar polygon P is
defined by a sequence of points p0, p1, . . . , pn, pn+1 = p0. The polygon P will be convex
if and only if the vectors pipi+1 and pi+1pi+2 either all determine left turns or all right
turns.

Another way to express this test is to say that as one traverses the boundary of
the polygon, successive edges either all make left or right turns. Alternatively, vertices
of the polygon always lie on the same side of the previous edge as the one before.

There is a simple test for when two vectors u and v determine a left turn: It
happens if and only if

Therefore, the convexity test above is easy to program.
Next, suppose that the polygon F is the face of a solid S in R3 and that p is a point

in the interior of F.

Definition. Let n be any normal for F. We say that n is an inward-pointing normal
to F with respect to the solid S, if the segment [p,p + en] is entirely contained in the
solid for some e > 0. In that case, -n is called an outward-pointing normal for F with
respect to S.

There is an easy way to determine if a normal is inward- or outward-pointing
for a convex solid S. If q is any point in the interior of S, then n will be an outward-
pointing normal for F if

otherwise it is inward-pointing.

Definition. If P is a polygon in a plane X, an orientation of P is an orientation of X.
An oriented polygon is a pair (P,o), where P is a polygon and o is an orientation of P.

A choice of a normal vector n to a face F of a solid defines an orientation of the
face. Choose an ordered basis (u,v) for the plane X generated by the face so that (u,v,n)
induces the standard orientation of R3. The orientation of X induced by (u,v) is well-
defined.

Definition. The orientation [u,v] of X is called the orientation of F induced by n.

Conversely, an orientation o = [u,v] of the face determines the well-defined unit
normal vector

Definition. The vector n is called the normal vector of F induced by the orientation o.

n
u v

u v=
¥

¥
1

.

n qp• ,≥ 0

det • .
u

v
e u vÊ

Ë
ˆ
¯ = ¥() ≥3 0

6.4 Orientation-Related Facts 239

Faces are usually defined by listing their vertices in some order. This ordering
defines an orientation and normal vector in a unique way. These are called the induced
orientation and induced normal vector, respectively. For example, if the face is defined
by p0, p1, . . . , pk, then the induced normal vector is p0p1¥ p1p2 (assuming that p0, p1,
and p2 are noncollinear). Conversely, an orientation or normal vector for a face defines
a unique ordering of its vertices called the induced ordering.

All this extends to the case of an (n - 1)-dimensional face F of an n-dimensional
solid S in Rn, in particular, to the case n = 2 and edges of polygons in the plane.

Finally, if one has a set of either all outward- or all inward-pointing normals for
a polygon, then another way to test for its convexity is to take successive cross prod-
ucts of the edges and their normals and see if the vectors we get all point the same
way.

6.5 Simple Intersection Algorithms

6.5.1 Problem. Find the point I that is the intersection of two planar segments
[A,B] and [P,Q].

Solution. Let L and L¢ be the lines determined by A,B and P,Q, respectively. See
Figure 6.12. Since I, if it exists, must belong to both L and L¢, we can express I in the
form

(6.5)

for some s and t. Assume that N and N¢ are two vectors which are perpendicular to
L and L¢, respectively. It follows that

or

(6.6)

Similarly,

P N P PQ N A AB N A N AB N• • • • • .¢ = +() ¢ = +() ¢ = ¢ + ¢()t s s

t = () ()PA N PQ N• • .

A N A AB N P PQ N P N PQ N• • • • • ,= +() = +() = + ()s t t

I A AB P PQ= + = +s t ,

240 6 Basic Geometric Modeling Tools

Figure 6.12. Finding the intersection of two
segments.

or

(6.7)

Of course, s and t may not be defined if the denominators in (6.6) and (6.7) are zero,
but this happens precisely when L and L¢ are parallel.

This leads to the following solution to Problem 6.5.1:

Case 1. [A,B] and [P,Q] are not parallel.

In this case, use equations (6.6) and (6.7) to compute s and t. If

then the segments [A,B] and [P,Q] intersect in the point

Case 2. [A,B] and [P,Q] are parallel.

There are two steps in this case.

(1) Check to see if L and L¢ are the same line. This can be done by simply checking
if they have a point in common. For example, if AP ·N = 0, then they do and L =
L¢. If L is not the same line as L¢, then the segments will not intersect.

(2) If L = L¢, then we still need to check if the segments intersect. One can reduce
this to a problem of segments in R, because the problem is equivalent to asking
if the segments [0,|AB|] and [|AP|,|AQ|] intersect.

Unfortunately, although the two steps in Case 2 are a straightforward solution to
the mathematical problem, implementing this in a way that produces correct results
on a computer is not easy because of round-off errors.

One other issue must still be addressed before we leave the solution to Problem
6.5.1. How does one get the normal vectors N and N¢. Since we are in the plane, this
is easy. If V = (a,b) is a vector, then (-b,a) is a vector perpendicular to V. Finally, for
a solution that is concerned with minimizing the number of arithmetic operations
needed to solve the problem see [Pras91].

6.5.2 Problem. Find the intersection I of a line L and a plane X in R3. Assume that
L is defined by two distinct points P and Q and that X contains a point O and has
normal vector N.

Solution. Since I lies on L we can again express I in the form

(6.8)

for some t. Furthermore, OI must be orthogonal to N. Therefore,

I P PQ= + t ,

I P PQ= + t .

0 1£ £s t, ,

s = ¢() ¢()AP N AB N• • .

6.5 Simple Intersection Algorithms 241

Solving for t leads to

(6.9)

Of course, t is only defined if PQ and N are not orthogonal, that is, L is not parallel
to X. The parallel case is again a tricky case for a computer program. One needs to
determine whether or not L lies in X.

6.5.3 Example. Find the intersection I of the line L containing points P(1,1,1) and
Q(2,0,3) with the plane X which has normal vector N = (-1,2,0) and contains O(3,1,2).

Solution. Substituting into (6.9) gives

Therefore

Problem 6.5.2 easily generalizes to the case where X is a hyperplane in Rn. It also
generalizes to

6.5.4 Problem. Find the intersection of a line L with a k-dimensional plane X in
Rn. Assume that N1, N2, . . . , and Nn-k are orthogonal normal vectors for X. Assume
also as before that P and Q are points on L and O is a point on X.

Solution. Define numbers ti by

(6.10)

The ti will be defined provided that L is not parallel to X, which is a special case that
must be treated separately. If t1 = t2 = . . . = tn-k, then L intersects the plane X in the
point

(6.11)I P PQ= + ti .

ti
i

i
=

PO• N
PQ• N

.

I t= + = () + () -() = ()P PQ 1 1 1 2 3 1 1 2 5 3 1 3 7 3, , , , , , .

t =
() -()

-() -() =
2 0 1 1 2 0

1 1 2 1 2 0
2 3

, , • , ,
, , • , ,

.

t =
PO• N
PQ• N

.

0 = = + -()OI N P PQ O N• • .t

242 6 Basic Geometric Modeling Tools

6.5.5 Example. Find the intersection I of the lines L and L¢ in R3, where L con-
tains the points A(0,3,1) and B(2,3,3) and L¢ contains the points C(2,1,1) and D(0,5,3).

Solution. A direction vector for L¢ is CD = (-2,4,2). Two orthogonal vectors normal
to L¢ are N1 = (2,1,0) and N2 = (-1,2,-5). Then

and

Since t1 = t2, the intersection I exists and

The reader may wonder where N1 and N2 came from. One can either assume that
they were given or find two such vectors as follows: Take any two vectors orthogonal
to CD and then apply the Gram-Schmidt orthogonalization algorithm to these. An
alternate solution to this problem is to observe that L and L¢ intersect if and only if
they lie in a plane X. A normal to this plane is N = AB ¥ CD. Therefore the lines inter-
sect if C and D satisfy the plane equation

To actually find the intersection, find a normal N1 to L in X (using, for example, the
Gram-Schmidt algorithm on N, AB, CD). Now the problem is to find the intersection
of a line L¢ with the hyperplane L in X with normal N1. The formula from Problem
6.5.2 applies to this variation of the intersection problem also.

We should point out that Formula 6.6.5 in Section 6.6 provides a more direct
formula for the intersection of two lines in R3.

6.5.6 Problem. To find the intersection I of three planes Xi, i = 1,2,3, which are
defined by points pi and normal vectors Ni. We assume that the vectors Ni are linearly
independent, that is, the planes are pairwise nonparallel.

Solution. One needs a simultaneous solution to the equations Ni • (p - pi) = 0, i =
1,2,3. The solution is

(6.12)I
p N N N p N N N p N N N

N N N
=

() ¥() + () ¥() + () ¥()
¥()

1 1 2 3 2 2 3 1 3 3 1 2

1 2 3

• • •
•

.

N P A• .-() = 0

I = () + ()() = ()0 3 1 1 2 2 0 2 1 3 2, , , , , , .

t2
2

2

2 2 0 1 2 5
2 0 2 1 2 5

1 2= =
-() - -()

() - -() =
AC• N
AB• N

, , • , ,
, , • , ,

.

t1
1

1

2 2 0 2 1 0
2 0 2 2 1 0

1 2= =
-() ()

() () =
AC• N
AB• N

, , • , ,
, , • , ,

6.5 Simple Intersection Algorithms 243

Equation (6.12) is just a fancy way of writing the solution to this system of three equa-
tions. It is easy to check that I satisfies the equations. Note that N1 • (N2 ¥ N3) is just
the determinant of that system.

The next two problems find the intersection of a ray with a circle. We shall use
the following notation: X will denote a ray from a point p in a direction v and L will
denote the line through p with direction vector v.

6.5.7 Problem. To find the intersection q, if any, of the ray X and the circle Y with
center a and radius r.

Solution. See Figure 6.13. Now, q can be written in the form q = p + tv and so we
need to solve for t satisfying

or equivalently,

(6.13)

Let A = v•v, B = (p - a)•v, and C = (p - a)• (p - a) - r2. Equation (6.13) can be re-
written in the form

(6.14)

By the quadratic formula, the roots of (6.14) are

(6.15)

Note that A cannot be zero because v π 0. That leaves three cases:

t
B B AC

A
=

- ± -2

.

At Bt C2 2 0+ + = .

p a v p a v- +() - +() =t t r• .2

p v a+ - =t r,

244 6 Basic Geometric Modeling Tools

Figure 6.13. Finding the intersection of a ray and a
circle.

Case 1: B2 - AC = 0: The line L will intersect the circle in a single point and is
tangent to it there. If t ≥ 0, then the ray also intersects the circle
at that point.

Case 2: B2 - AC < 0: Both the line L and the ray miss the circle.
Case 3: B2 - AC > 0: The line L intersects the circle in two points. Let t1 and t2

be the two distinct solutions to equation (6.13) with t1 < t2.
If t1 ≥ 0, then the ray intersects the circle in two points. If
t1 < 0 £ t2, then the ray intersects the circle in one point. Finally,
if t2 < 0, then the ray misses the circle.

A special case of Problem 6.5.7 is

6.5.8 Problem. To find the intersection q, if any, of the ray X and the circle Y with
radius r centered at the origin.

Solution. In this case we need to solve for t satisfying

or equivalently,

It follows that

(6.16)

The three cases in Problem 6.5.7 reduce to

Case 1: (p•v)2 - |v|2 (|p|2 - r2) = 0
Case 2: (p•v)2 - |v|2 (|p|2 - r2) < 0
Case 3: (p•v)2 - |v|2 (|p|2 - r2) > 0

with the same answers as before.

6.6 Distance Formulas

The next two sections describe a number of formulas that are handy for applications.

6.6.1 Formula. Let L be a line defined by a point Q and direction vector v and let
P be a point. The point

t
r

=
-() ± () - -()p v p v v p

v

• •
.

2 2 2 2

2

v p v p
2 2 2 22 0t t r+ () + - =• .

p v+ =t r,

6.6 Distance Formulas 245

(6.17)

is the unique point of L that is closest to P. If d is the distance from P to L, then

(6.18)

Alternatively,

(6.19)

Proof. We shall only prove the first formula. The second is Exercise 6.6.1. Consider
Figure 6.14. We seek the point A so that AP is orthogonal to v (Theorem 4.5.12 in
[AgoM05]). The vector

is the orthogonal projection of QP onto L. If A = Q + w, then AP = QP - QA =
QP - w is orthogonal to v. Then d = |AP| = |QP - QA|. A solution that is concerned
with minimizing the number of arithmetic operations needed to solve the problem
can be found in [Morr91].

A straightforward generalization of Formula 6.6.1 is

6.6.2 Formula. The distance d from a point P to a plane X which contains a point
Q and has orthonormal basis v1, v2, . . . , vk is given by

(6.20)

Furthermore,

(6.21)A Q QP v v QP v v= + () + + ()• . . . •1 1 k k

d dist

k k

= ()
= - () - - ()

P X

QP QP v v QP v v

,

• . . . •1 1

w QP •
v
v

v
v

= Ê
Ë

ˆ
¯

d =
¥PQ v

v
.

d dist= () = = - Ê
Ë

ˆ
¯P L PA QP QP

v
v

v
v

, • .

A Q QP
v
v

v
v

= + Ê
Ë

ˆ
¯•

246 6 Basic Geometric Modeling Tools

Figure 6.14. Computing the distance from a point to a
line.

is the unique point of X which is closest to P.

Proof. Exercise 6.6.2.

If one has a normal vector to a plane, then the formula for the distance of a point
to it is much simpler.

6.6.3 Formula. The distance d from a point P to a plane X that contains the point
Q and has normal vector N is given by

(6.22)

The point

(6.23)

is the unique point of X that is closest to P.

Proof. See Figure 6.15. The vector

is the orthogonal projection of QP onto N. Therefore, d = |w|. Define

Then A = Q + BP = Q + QP - QB = P - w is the unique point of X that is closest to P
because AP is orthogonal to the plane (Theorem 4.5.12 in [AgoM05]).

Formula 6.6.3 can be restated in terms of coordinates as follows:

B Q QP •
N
N

N
N

= + Ê
Ë

ˆ
¯ .

w QP •
N
N

N
N

= Ê
Ë

ˆ
¯

A P QP •
N
N

N
N

= - Ê
Ë

ˆ
¯

d dist= () =P X QP
N
N

, • .

6.6 Distance Formulas 247

Figure 6.15. Computing the distance from a
point to a plane.

6.6.4 Formula. If X is a hyperplane in Rn defined by equation

then the distance from X to the origin is

Proof. Note that (a1,a2, . . . ,an) is a normal vector to plane X. Therefore, the formula
is basically equation (6.22) written in coordinate form. For an efficient formula that
avoids square roots see [Geor92].

Two special cases of Formula 6.6.4 are worth noting. The distance from the origin
to the line in the plane with equation ax + by + c = 0 is

(6.24)

The distance from the origin to the plane in R3 with equation ax + by + cz + d = 0 is

(6.25)

6.6.5 Formula. Let L1 be the line defined by a point P and direction vector v. Let
L2 be the line defined by a point Q and direction vector w. Assume that the lines are
not parallel. The distance d between L1 and L2 is given by

(6.26)

where

Furthermore, the point A = P + sv on L1 is the unique point of L1 which is closest to
L2. Similarly, the point B = Q + tw on L2 is the unique point of L2 which is closest to
L1. If the lines intersect, then A = B and we have formulas for the intersection point.

Proof. See Figure 6.16. Let A = P + sv and B = Q + tw be typical points on L1 and
L2, respectively. Clearly, d = d(s,t) = dist(A,B), where the vector AB = PQ - sv + tw is

s D

t D and

D

= -()() + ()()()
= ()() - ()()()

= ()() - ()

PQ• w w • v PQ• v w • w

PQ• v v • w PQ• w v • v

v • v w • w v • w

,

,

.
2

d dist s t= () = - +L L PQ v w1 2, ,

d

a b c2 2 2+ +
.

c

a b2 2+
.

d

a a an1
2

2
2 2+ + +. . .

.

a x a x a x dn n1 1 2 2 0+ + + + =. . . ,

248 6 Basic Geometric Modeling Tools

orthogonal to both v and w (Theorem 4.5.12 in [AgoM04]). Expanding the two con-
ditions AB•v = 0 and AB•w = 0 reduces to the equations

with the indicated solutions. By the Cauchy-Schwarz inequality, the denominator D
is zero precisely when the vectors v and w are parallel.

6.7 Area and Volume Formulas

This section contains some more useful formulas. The “proofs” of these formulas will
rely on simple-minded geometric observations and will not be very rigorous. For rig-
orous proofs one would need to use a theory of areas and volumes. The most elegant
approach would be via differential forms. See [Spiv65] or Section 4.9 in [AgoM05].
Finally, the formulas below are “mathematical” formulas. For efficient ways to
compute them see [VanG95].

6.7.1 Formula. The area A of a parallelogram defined by two vectors u and v in
R2 is given by

(6.27)

Proof. The first equality follows from properties of the cross product and the fact
that A is the product of the height of the parallelogram and the length of its base. See
Figure 6.17(a). The second follows from direct computation of the cross product and
the indicated determinant.

6.7.2 Formula. The volume V of a parallelopiped defined by vectors u, v, and w
in R3 is given by

A = ¥ = Ê
Ë

ˆ
¯u v

u

v
det .

t s

t s

w • v v • v PQ• v

w • w v • w PQ• w

- = -
- = -

6.7 Area and Volume Formulas 249

Figure 6.16. Computing the distance between
two lines.

(6.28)

Proof. By a rigid motion we can arrange it so that u and v lie in the plane R2.
The first equality follows from the fact that V is the product of the height of the
parallelopiped and the area of its base. See Figure 6.17(b). The second equality is a
property of the triple product.

Note that Formula 6.7.1 is a special case of Formula 6.7.2 where we let w = e3.

6.7.3 Formula. The area A of a triangle defined by two vectors u and v in R2 is
given by

(6.29)

Proof. This is an immediate corollary of Formula 6.7.1. Of course, we could also
use the well-known formula

(The height is just the length of the orthogonal complement of v with respect to u.)

6.7.4 Formula. The area A of a polygon defined by points p0, p1, . . . , pn, pn+1 = p0
in R2 is given by

A length of base height= () () ()

= () - Ê
Ë

ˆ
¯

1 2

1 2 u v v •
u
u

u
u

.

A = () ¥ = () Ê
Ë

ˆ
¯1 2 1 2u v

u

v
det .

V = ¥() =
Ê

Ë
Á
Á

ˆ

¯
˜
˜

u v • w

u

v

w

det .

250 6 Basic Geometric Modeling Tools

Figure 6.17. The area of a parallelogram and volume of a parallelopiped.

(6.30)

Proof. Consider Figure 6.18 and use Formula 6.7.3. The argument also works for
nonconvex polygons.

6.7.5 Formula. The signed volume V of a tetrahedron with vertices p1, p2, p3, and
p4 is given by

(6.31)

where pi = (pi1,pi2,pi3). The value for V will be positive if we order the points so that
the ordered basis (p1 - p2,p1 - p3,p1 - p4) induces the standard orientation of R3.

Proof. The first equality follows from Formula 6.7.2 and the fact that the paral-
lelolopiped defined by p1 - p2, p1 - p3, and p1 - p4 can be decomposed into six tetra-
hedra of equal volumes. The second equality in formula (6.31) follows from basic
properties of the determinant, in particular, the fact that the determinant of a matrix
is unchanged if a row of the matrix is subtracted from another row.

Definition. Let g: [a,b] Æ R2 be a differentiable curve in the plane. Let p Œ R2. The set

is called the region subtended by the curve g from the point p. See Figure 6.19(a).

6.7.6 Formula. Let g: [a,b] Æ R2, g(t) = (g1(t),g2(t)), be a curve in the plane. The
signed area A of the region subtended by the curve g from the origin is given by

U
t a b

t
Œ[]

()[]
,

,p g

V

p p p

p p p

p p p

p p p

= ()
-
-
-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

= ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 6 1 6

1

1

1

1

1 2

1 3

1 4

11 12 13

21 22 23

31 32 33

41 42 43

det det ,

p p

p p

p p

A
i

n
i

i
= () Ê

Ë
ˆ
¯

=

-Â 1 2
2

0 1

0
det .

p p

p p

6.7 Area and Volume Formulas 251

Figure 6.18. Computing the area of a polygon.

(6.32)

Proof. See Figure 6.19. Let a = t0, t1, . . . , tk = b be a partition of [a,b]. Let DAi be the
signed area of the triangle 0g(ti)g(ti+1). Since

for some ti* Œ [ti,ti+1], we get that

by Formula 6.7.3. The sign of DAi will be positive if the curve is moving in a coun-
terclockwise direction about the origin at g(ti) and negative otherwise. Adding up all
the DAi is clearly an approximation to A and a Riemann sum that converges to the
integral in the formula as the norm of the partition goes to zero.

6.8 Circle Formulas

6.8.1 Formula. Let p1, p2, and p3 be noncollinear points in R3. Let a = p2 - p1 and
b = p3 - p1. The unique circle that contains the points pi has center o = p1 + c, where

(6.32)

and radius r, where

c
b• b a • a a • b a a • a b• b a • b b

a b
=

() -() + () -()
¥2

2
,

DA
t

t
t ti

i

i
i i= ()

()
¢()

Ê
ËÁ

ˆ
¯̃ -()+1 2 1det

*

g
g

g g gt t t t ti i i i i+ +() - () = ¢() -()1 1* ,

A
a

b
= ¢ - ¢()Ú g g g g1 2 1 2 .

252 6 Basic Geometric Modeling Tools

Figure 6.19. Area subtended by curve from origin.

In the special case where p1, p2, and p3 are points in the plane, these formulas can
be simplified. Let a = (a1,a2), b = (b1,b2), and c = (c1,c2). Then

(6.33)

Proof. We shall give essentially two proofs for this formula. We give a geometric
argument in the general case and an algebraic one in the planar case. In either case,
the solution to this problem will be easier if we first move the point p1 to the origin
and solve the problem of finding the center c of the circle through the points 0, a, and
b. Consider the following planes and their point-normal equations:

c
b a

a b b a
and c

a b
a b b a1

2
2

2
2

1 2 1 2
2

2
1

2
1

1 2 1 22 2
=

-
-() =

-
-()

a b b a
.

r =
-

¥
a b a b

a b2
.

6.8 Circle Formulas 253

Figure 6.20. Circle through three points.

plane equation

the plane X containing the points 0, a, and b (and c) (a ¥ b) •(x - c) = 0
the plane X1 that is the perpendicular bisector of the segment [0,a] a •(x - (1/2)a) = 0
the plane X2 that is the perpendicular bisector of the segment [0,b] b •(x - (1/2)b) = 0

Basic geometric facts about circles imply that c is the intersection of these three planes
X, X1, and X2. See Figure 6.20 where we have identified X with the xy-plane. Letting
x be 0 in the equation for X and c in the other two equations gives us that

Applying Formula 6.5.6 for the intersection of three planes now gives us our formula
(6.32). The formula for the radius r is gotten by substituting formula (6.32) into the
equation r2 = c•c and simplifying.

Next, assume that our points pi lie in the xy-plane. The equation for the circle
with center c and radius r is

(6.34)x c y c r-() + -() =1
2

2
2 2.

a b • c c• a a c• b b¥() = = () = ()0 1 2 1 2
2 2

, , .and

Since r2 = c1
2 + c2

2, equation (6.34) reduces to

(6.35)

Substituting points a and b into equation (6.35) gives two equations in two unknowns
c1 and c2:

(6.36)

The solution to this system of equations leads to the formula (6.33). This finished the
proof of Formula 6.8.1.

The next two formulas are useful in blending computations.

6.8.2 Formula. Let L1 and L2 be intersecting lines in the plane defined by
equations

respectively. The circles of radius r that are tangent to L1 and L2 have centers (d,e)
defined by

Proof. From Figure 6.21(a) one can see that there are four solutions in general. Let
L1¢ and L2¢ be lines that are parallel to and a distance r from lines L1 and L2, respec-
tively. See Figure 6.21(b). There are four such pairs of lines and it is easy to see that
the intersection of these lines defines the centers (d,e) of the circles we seek. Now the
lines L1¢ and L2¢ are a distance r closer or further to the origin than the lines L1 and
L2. Therefore, it is easy to see from equation (6.24) that the equations for L1¢ and L2¢
are

(6.37a)

(6.37b)

Solving equations (6.37) gives our answer.

a x b y c r a b2 2 2 2
2

2
2+ = - ± + .

a x b y c r a b1 1 1 1
2

1
2+ = - ± +

d
b c c b r b a b b a b

a b a b

e
a c a c r a a b a a b

a b a b

=
- ± + - +()

-

=
- ± + - +()

-

1 2 1 2 2 1
2

1
2

1 2
2

2
2

1 2 2 1

2 1 1 2 1 2
2

2
2

2 1
2

1
2

1 2 2 1

,

.

a x b y c2 2 2 0+ + = ,a x b y c and1 1 1 0+ + =

2 2

2 2

1 1 2 2
2

1 2 2 2
2

a c a c

b c b c

+ =

+ =

a

b .

2 21 2
2 2xc yc x y+ = + .

254 6 Basic Geometric Modeling Tools

6.8.3 Formula. Let A be a point and C a circle with center B and radius r. Assume
that |AB| > r. There are two lines through A that are tangent to C and they intersect
C in the points D± defined by

where u and v are the orthonormal vectors

Proof. Figure 6.22(a) shows the two lines L and L¢ that pass through A and are
tangent to C. By switching to the coordinate system defined by the frame (A,u,v) we
may assume that A = (0,0) and B = (b,0). Let D = (d1,d2). See Figure 6.22(b). The fol-
lowing equations are satisfied by D:

u
AB
AB

v= = () = -()u u and u u1 2 2 1, , .

D A
AB

AB
u

AB
AB v± = +

-
± -

2 2
2 2r r

r ,

6.8 Circle Formulas 255

Figure 6.21. Circles of fixed radius tangent to two lines.

Figure 6.22. Lines through a point tangent to a circle.

In other words,

If follows that

Since b corresponds to |AB| in the original problem, our solution translates into the
stated one in world coordinates.

6.8.4 Formula. Consider two circles in the plane centered at points A and B with
radii r1 and r2, respectively. Assume that |AB| > r1+ r2 and r1 > r2. Let Di,± and Ei,± be
the points where the four lines Li that are tangent to both of these circles intersect
the circles. See Figure 6.23(a). Then

where A1 = A, A2 = B, e1 = +1, e2 = -1, and u and v are the orthonormal vectors

D A
AB

u
AB

AB v

E A
AB

u
AB

AB v

i i
i i

i i i
i i

r r r r
r r

r r r r
r r

,

,

,

,

±

±

= +
-()

± - -()

= +
+()

± - +()

1 2 2
1 2

2

1 2 2
1 2

2e

d
b r

b
and d

r
b

b r1

2 2

2
2 2=

-
= ± - .

d b d r

d d b d

1
2

2
2 2

1 1 2
2

0

-() + =

-() + = .

BD• BD

D• BD

=
=

r2

0.

256 6 Basic Geometric Modeling Tools

Figure 6.23. Lines tangent to two circles.

Proof. Note that the associated pairs of lines (L1,L2) and (L3,L4) intersect on the line
through the points A and B. We again switch to the coordinate system defined by the
frame (A,u,v) and assume that A = (0,0) and B = (b,0), b > 0. See Figure 6.23(b). Let
F = A + sAB be the point where L1 intersects the x-axis. Then

(6.38)

Because the triangles ADF and BEF are similar, we get that

(6.39)

Case 1: s > 1. In this case equation (6.39) implies that

Case 2: 0 < s < 1. In this case equation (6.38) implies that

In either case, since we now know F, we can now use Formula 6.8.3 to compute
Di,± and Ei,±. For example, in Case 1,

Note that to use Formula 6.8.3 we must use the frame (F,-u,v). It is now a simple
matter to rewrite this formula in the form stated earlier.

6.8.5 Formula. Consider two circles in the plane centered at points A and B with
radii r1 and r2, respectively. Assume that r1 + r2 < |AB| < r1 + r2 + 2r. The circles of
radius r that are tangent to these circles have center C defined by

where

C A u v= + ± +() -e r r e1
2 2 ,

D F
AB

AB
u

AB
AB v2

2 2
2

2
2 2 2

2
21

1 1
1, .± = -

-() -
-

±
-

-() -
s r

s
r

s
s r

s
r

r r
=

+
1

1 2
.

s
r

r r
=

-
1

1 2
.

r
r

s
s

s
s

1

2 1 1
= =

-
=

-
AF
BF

AB
AB

.

AF AB

BF AB

=
= -

s

s 1 .

u
AB
AB

v= = () = -()u u and u u1 2 2 1, , .

6.8 Circle Formulas 257

Proof. We can see from Figure 6.24(a) that there are precisely two circles of radius
r which are tangent to both circles. What we have to do is find the intersection of
two circles: one has center A and radius r1 + r and the other has center B and radius
r2 + r.

We switch to the coordinate system defined by the frame (A,u,v). Let A = (0,0) and
B = (b,0). See Figure 6.24(b). We must solve the equations

We get that

This translates to the desired formula in world coordinates since b corresponds to
|AB|.

This concludes our list of formulas involving circles. Other formulas can be found
in [Chas78] and [BowW83].

6.9 Parametric or Implicit: Which Is Better?

Two of the most common ways to present a geometric object X is via a parameteri-
zation or implicitly as the zeros of an equation. It is natural to ask which is better.
The advantages and disadvantages of these two representations are seen best in the
context of the following two tasks:

x
b r r r r

b

y r r x

= +
+() - +()

= ± +() -

2 2
1

2
2

2

1
2 2 .

x y r r

x b y r r

2 2
1

2

2 2
2

2

+ = +()

-() + = +() .

e
r r r r

u u and u u= +
+() - +()

= = () = -()AB
AB

u
AB
AB

v
2 2

1
2

2
2

1 2 2 1, , , , .

258 6 Basic Geometric Modeling Tools

Figure 6.24. Circles of fixed radius tangent to two circles.

Task 1: Generate some points that belong to X.
Task 2: Determine if a point q belongs to X.

Assume that X Õ Rn. Suppose that

(6.40)

is a parameterization of X, where A Õ Rk. Suppose also that

(6.41)

where f: Rn Æ R.

Advantage of a parameterization: Task 1 is easy because all one has to do
is to evaluate the function p in (6.40) at
different values.

Disadvantage of a parameterization: Task 2 is hard because one has to find a
value t that satisfies the equation p (t) = q.

Advantage of an implicit definition: Task 2 is easy because all one has to do
is check if f(q) = 0 for the f in equation
(6.41).

Disadvantage of an implicit definition: Task 1 is hard because one has to find
values q for which f(q) = 0. Solving
equations is usually not easy.

Since both Tasks 1 and 2 are usually handy to be able to carry out in a modeler, it would
be nice if one could maintain both a parametric and an implicit representation for an
object. The implicit function theorem implies that locally a smooth manifold in Rn has
both a parametric and implicit representation, at least in terms of C• functions. On the
other hand, in computer graphics, for computability reasons, one prefers polynomial
functions (sometimes rational functions are acceptable) and then the question
becomes harder. With the exception of a few well-known spaces, such as conics, finding
such representations is difficult in general and falls into the domain of algebraic geom-
etry. See Chapter 10 in [AgoM05] for some answers to the question of how one can
convert from parameterizations to implicit representations and vice versa.

6.10 Transforming Entities

This section makes two simple but useful observations about transformations. The
first has to do with how vectors transform.

Let M: Rn Æ Rn be an affine map. The map M can be written uniquely in the form
M = TM0, where T is a translation and M0 is linear transformation with M0(0) = 0. Let
v Œ Rn, where we think of v as a vector. Let v¢ be the vector to which v is transformed
by the map M. Then

(6.42)v v not v¢ = () ()()M M0 .

X q q= () ={ }f 0 ,

p : A XÆ

6.10 Transforming Entities 259

6.10.1 Example. Let L be the line in the plane defined by

(6.44)

and let T be the rotation about the origin through the angle of ninety degrees. The
equations for T and T-1 are

If L¢ = T (L), then from what we just said above, the equation for L¢ is gotten from
equation (6.44) by substituting y and -x for x and y, respectively. This gives

(6.45)

That this is the correct answer can easily be checked. See Figure 6.26. Simply take
two points on L and find the equation of the line through the image of these two points
under T. For example, the points (0,-1) and (1,0) map to (1,0) and (0,1), respectively,
and equation (6.45) contains these two points.

6.11 EXERCISES

Section 6.5

6.5.1 Find the intersection of the segments [(2,1),(6,-2)] and [(-1,-3),(7,1)].

6.5.2 Find a formula for the intersection of a ray with a segment in the plane.

6.5.3 Find the intersection of the line L defined by

x t

y t

z t

= +
=
= - +

2

3

5 2

y x x y- -() - = + - =1 1 0

T x y T x y

y x y x

: :

.

¢ = - ¢ =
¢ = ¢ = -

-1

x y- - =1 0

6.11 Exercises 261

Figure 6.26. Transforming a line.

and the plane X with equation x + y - z = 2.

6.5.4 Find all intersections of the ray starting at the point p = (2,1) and direction vector
v = (1,-3) with the circle defined by x2 - 2x + y2 = 0.

Section 6.6

6.6.1 Prove equation (6.19).

6.6.2 Prove Formula 6.6.2.

Section 6.7

6.7.1 Show that Formula 6.7.4 works for nonconvex polygons.

Section 6.8

6.8.1 Find the equation of the circle through the points p1 = (2,1), p2 = (3,3), and p3 = (7,1).

Section 6.10

6.10.1 Find the equation of the parabola y = x2 after it is rotated about the origin through an
angle of p/3.

6.12 PROGRAMMING PROJECTS

Section 6.5

6.5.1 Two-dimensional ray tracing

This project involves implementing a simple 2d ray-tracing program. Create the following
submenu for your main program

262 6 Basic Geometric Modeling Tools

When the user enters this menu, he/she should be presented with a view looking orthogonally
down on the plane. Then the menu items should cause the following actions to be taken when
activated:

Start Pt: This should let the user to graphically pick a point p on the screen.
Direction: This should ask the user for an angle q.
Start: This should start drawing the ray from p in the direction defined by q. The ray

should continue, reflecting off of any polygonal curves and circles in the world,
until the user presses a key. If a ray does not meet any object, that is, it is about
to escape to “infinity,” draw a short segment in that direction and then stop after
telling the user what has happened. Alternatively, rather than waiting for a key to
be pressed ask for a number k and quit drawing the ray after k reflections.

Be sure to include a delay each time the ray hits an object so that one can
watch the ray trace out its path in the world. Without this, the whole process will
happen so fast that one would only see a “final” picture.

Example: This would display a sample world of objects for the user to use in this ray tracing
exercise.

An additional nice option in your program would be to allow the user to create his/her own
world of circles and closed or open polygons in the plane.

6.12 Programming Projects 263

7.1 Introduction 265

whereas image precision algorithms are of the form

for each pixel on the screen do
begin

Determine the visible object O that is pierced
by the ray from the viewer determined by the pixel;

if there is such an O
then display the pixel appropriately
else display the pixel in the background color;

end;

Both types of algorithms do all their computations to the same precision in which the
objects were defined. The main difference between them is that the former accurately
compute all the visible parts of the world whereas the latter only determine visibility
in a sampled number of directions. The complexity of image precision algorithms
depends on the resolution of the screen, whereas the complexity of object precision
algorithms does not (except at the last stage when regions have to be scan converted).
In that sense, with the former one has to worry about aliasing. Pure object precision
algorithms were used only in the early days of graphics, mainly on vector graphics
devices. Given a raster graphics device it is only natural to use the discreteness of the
pixels to help make the algorithm efficient.

Ray tracing captures the essence of image precision algorithms, which can be
further subdivided into whether they deal with areas or points (area versus point
sampling). The Warnock algorithm is an example of the former. The Z-buffer
algorithm, the Watkins algorithm, and ray tracing are examples of the latter.

List priority algorithms fall somewhere in between object and image precision
algorithms. They differ from pure image precision algorithms in that they precom-
pute, in object space, a visibility ordering before scan converting objects to image
space in a simple back-to-front order. Obtaining such an ordering may involve split-
ting objects. The Schumacker, Newell-Newell-Sancha, and BSP tree algorithm are
examples of this type of algorithm.

Like in Chapter 3, each algorithm described in this chapter was selected with
certain considerations in mind, which were:

(1) It is currently an acceptable approach in its intended application.
(2) The algorithm was interesting for historical reasons and easy to describe.
(3) It involved the use of some interesting techniques, even though it itself is no

longer a recommended method.

This led to the following list categorized by (1)–(3) above:

266 7 Visible Surface Algorithms

The algorithms above, except for the ray-tracing algorithm, will be discussed in Sec-
tions 7.3–7.10. Section 7.2 will describe a preprocessing step called back face removal,
which is easy to carry out and saves the algorithms a lot of needless work, but can
also be used all by itself to provide some rudimentary realism to scenes. When we
discuss the visible surface determination algorithms, the reader needs to be aware
about one assumption that is made because it is convenient. Unless explicitly stated
otherwise, we shall assume the following:

The orthogonal projection assumption: We assume that the world has been transformed
into a coordinate system where the eye is at infinity, so that the projection to the view plane
is an orthogonal projection (rather than a central projection) and corresponds to simply
dropping the z-coordinate.

Finally, it should be mentioned that there are also visible line determination or
hidden line removal algorithms. These algorithms are used mainly in the context of
wireframe displays. Every visible surface determination algorithm can be modified
into a visible line determination algorithm, but not vice versa. For an example of this
see [PokG89]. The earliest visible line determination algorithm was developed by
Roberts in [Robe63]. It assumed all lines came from edges of convex polyhedra. First,
back edges were removed. (A back edge is a common edge of two back faces.) Each
remaining edge was then checked against all the polyhedra that might obscure it.
[Roge98] describes this algorithm in great detail. A more general purpose visible line
determination algorithm was described by Appel in [Appe67]. Appel introduced a
notion of the quantitative invisibility of a point, which was the number of front-facing
polygons that obscured the point. A point was visible if and only if its quantitative
invisibility was zero. Visible line determination lost its importance as computers
became more powerful.

Algorithm Category Comments

Schumacker-Brand-Gilliland-Sharp (2) The first list priority algorithm.
Newell-Newell-Sancha (2), (3) A depth sort list priority algorithm.
The BSP algorithm (1), (2) A list priority algorithm.
Warnock (2), (3) An area subdivision image precision algorithm.
Weiler-Atherton (2), (3) A more sophisticated area subdivision algorithm.
The Z-buffer algorithm (1) The algorithm used originally on high-end graphics

work stations but now in most graphics systems.
Watkins (1), (2) A scan line algorithm that is still worthy of

consideration in certain applications because it is
much faster than a ray-tracing–type algorithm.

Ray tracing (1) The approach used in conjunction with radiosity
methods if one wants the highest quality realistic
images. It is discussed at length in Chapter 10.

Octree (1) A list priority algorithm useful for volume
rendering

The Blinn curved surface algorithm (2), (3)

7.2 Back Face Elimination 267

7.2 Back Face Elimination

The simplest way to render in a geometric modeling program is to display the world
in wireframe mode. Such displays might be quite adequate for the task at hand and
they have the added advantage that they are fast. An extremely easy way to make them
look more realistic is to eliminate edges common to “back faces.”

A back face of a solid object is a face that is facing “away from” the camera. To
explain what this means and derive a test for it we need to look at normal vectors.
Recall the discussion in Section 6.4. The faces of a solid have a natural outward-
pointing normal vector associated to them. On the other hand, a choice of a normal
vector for a face is equivalent to having an orientation for the face. Therefore, a
general definition for a back face is the following (see Figure 7.1):

Definition. An oriented face is called a back face with respect to a vector v
(typically the view direction of a camera) if the angle between its normal vector n and
v is between 0 and 90 degrees. Mathematically, this simply means that n•v ≥ 0. If
n•v £ 0, then it is called a front face for v.

This definition of back face also handles the case of faces in an arbitrary oriented
surface patch that may not be the boundary of a solid, such as the upper hemisphere
of the unit sphere or a bicubic patch.

Removing edges on the back faces in wireframe mode works pretty well on bound-
aries of solids, such as a sphere. On the other hand, some viewers may not be happy
with the result in other cases. For example, if one looks diagonally down on a cylin-
drical surface, back face removal would only show half of it even though the back
part would actually be “visible” from the viewpoint. For that reason, a modeling
program should have the ability to flag a face as “two-sided,” meaning that it should
be treated as a “front” face no matter where the viewpoint is.

Finally, it is important to realize that back face removal is based on a local deci-
sion. It does not guarantee that the faces that are left are in fact visible. They might
be obscured by some other object or even another part of the same object if it is not
convex. Therefore, back face removal in no way saves us from a subsequent visible
surface determination algorithm. If one wants to display only visible surfaces, one will
still basically have to check each face against every other face to see if one obscures
the other. What it does do however is cut down the number of faces that have to be
looked at by a factor of two on the average, which is a substantial savings, and so
visible surface determination algorithms usually have this built in as a preprocessing
step because it is so easy to do.

Figure 7.1. Defining a back face.

268 7 Visible Surface Algorithms

7.3 The Schumacker List Priority Algorithm

The original list priority algorithm is due to [SBGS69]. Its major contribution was the
idea that faces of objects can sometimes be given a priory ordering from which their
visibility can be computed independently of the viewpoint. Figure 7.2 shows an
example of this. Figure 7.2(a) shows possible priority numbers for the faces. Figure
7.2(b) shows how one uses these numbers. Once an actual viewpoint is specified, one
eliminates back faces (shown with dotted lines) and then uses the priority numbers
on the remaining faces to tell which face is in “front” of another one. More accurately,
if one face has a lower priority number than another one, then this means that the
second will never obscure the first. In the figure, we would conclude that the face with
priority number 2 does not obscure the face with priority number 1. Given the
priority numbers we can then use the so-called painter’s algorithm, Algorithm 7.3.1,
to draw the scene. The painter’s algorithm gets its name from the way a painter paints
an oil painting. As the brush draws over other paint it covers it up.

Of course, the priority numbering that Schumacker was looking for does not
always exist for the whole world. One can, however, divide the world into prio-
ritizable clusters, that is, collections of faces within which one can assign priority
numbers to each face with the meaning above. These clusters will then themselves
have to be prioritized. One big problem with Schumacker’s approach was that too

Figure 7.2. A priority ordering for faces.

Given: The faces of a scene listed in “back” to “front” order, meaning that if
 face A is in back of face B, or equivalently, face B is in front of face A,

then A will not obscure B in any way.

Draw the scene by writing the faces to the frame buffer in back to front order.

Algorithm 7.3.1. The painter’s algorithm.

7.4 Newell-Newell-Sancha Depth Sorting 269

much had to be done by hand, but it was useful in situations where the objects in
the scene did not change much and only the viewpoint changed, as, for example, in
Schumacker’s own application to a flight simulation program.

7.4 Newell-Newell-Sancha Depth Sorting

The Newell-Newell-Sancha visible surface algorithm ([NeNS72]) is an early list pri-
ority algorithm that sorts objects by depth and then uses a painter’s algorithm to
display them. One important difference between it and the Schumacker algorithm is
that it computes the depth ordering on the fly and does not rely on an a priori order-
ing like the Schumacker algorithm. For that reason it is a more versatile algorithm.
It introduced some interesting ideas on how to obtain a depth ordering.

The Newell algorithm does an initial crude ordering of the polygon faces of objects
based on the z-value of that vertex of a face that is furthest from the viewer. Next,
starting with the last polygon P in the list (the one furthest from the viewer) and the
next to the last polygon Q, one checks if P can be safely written to the frame buffer
by asking whether P and Q separated by depth, that is, whether

If yes, then P can never obscure any part of Q and we can write P to the frame buffer.
See Figure 7.3(a). If no, then one considers the set {Q} of polygons that overlap P in

minimum z-value of a vertex of maximum z-value of a vertex of P Q() > ()?

Figure 7.3. Some relative positions of faces.

depth. Although there is this overlap in z, P may in fact not obscure any part of any
of the Qs, and so the algorithm performs a series of tests, ordered by complexity. These
tests involve answering the following questions:

(1) Can one separate P and the Qs in x?
(2) Can one separate P and the Qs in y?
(3) Is P on the farther side of the Qs? See Figure 7.3(b).
(4) Are the Qs on the near side of P? See Figure 7.3(c).
(5) Do P and the Qs project to disjoint sets?

Test (5) is clearly the most complicated and the hope is that one does not have
to perform it very often. If the answer to all these tests is “no,” then one swaps P
with a Q and repeats the tests. One has to mark the Q to prevent getting into an
infinite loop. An attempt to swap an element already swapped at a previous stage
implies that one has encountered a “cyclical overlap.” An example of this is shown in
Figure 7.3(d). In that case one would cut Q at the dotted line and replace the old Q
with the two parts. Eventually one would be able to write the polygons to the frame
buffer.

The Newell algorithm handled transparency effects by overwriting the frame
buffer only partially. However, aside from the historical interest, the interesting aspect
of the algorithm comes from tests (1)–(4), which can be useful in other situations.

7.5 The BSP Algorithm

The Binary Space Partitioning (BSP) algorithm ([FuKN80] and [FuAG83]) is a visible
surface algorithm that improved on Schumacker’s work by automating the division
into clusters. The basic BSP algorithm consists of two steps:

(1) A one-time preprocessing step that converts an input polygon list into a binary
tree structure called a BSP tree

(2) A traversal algorithm that traverses this tree and outputs the polygons to the
frame buffer in a back-to-front order

A key idea here (like in Schumacker’s work) is that of a separating plane. The main
condition that this plane has to satisfy is that no polygon on the viewpoint side of the
plane can be obstructed by a polygon on the other side. To construct the BSP tree,
one proceeds as follows:

(1) Select any polygon P from the current list of polygons and place it at root of tree.
(2) Each remaining polygon in the list is then tested to see on which side of P it

lies. If it lies on the same side as the viewpoint one puts it in the left (or “front”)
subtree list, otherwise one puts it in the right (or “back”) subtree list. If a
polygon straddles Ps plane, divide it along that plane and put each of the
pieces in the appropriate subtree list.

(3) Repeat this procedure recursively on the two subtree lists.

270 7 Visible Surface Algorithms

7.5 The BSP Algorithm 271

Consider the example shown in Figure 7.4. There are five polygons numbered from 1
to 5 in Figure 7.4(a). The arrows are supposed to indicate the side containing the view-
point. (In this example, the chosen directions do not correspond to a possible situa-
tion.) We assume that polygon 3 is the one chosen first, then 2 and finally 4. The stages
of the BSP tree are shown in Figure 7.4(b). Note that choice of polygons can greatly
influence the outcome. Figure 7.4(c) shows the tree that we would get if the polygons
were chosen in the following order 5, 4, 3, 1, and 2.

Once the BSP tree is generated, it is easy to generate the view by traversing the
tree in in-order fashion. At each node of the tree determine whether the eye is in front
or in back of the current root polygon. Traverse the opposite side of the tree, output
the root polygon to the frame buffer, and then traverse the remaining side.

Algorithm 7.5.1 is a more precise description of how the BSP tree is built and tra-
versed. It was originally feared that the BSP tree would be significantly larger than
the input polygon list, but this did not turn out to be the case in practice. To cut down
on the number of polygons that are split, the following heuristic was used: Select that
polygon to be the root of the next subtree that cuts the fewest other polygons. It was
discovered that it was not necessary to look over all of the remaining polygons. Rather,

2

1
3

4

5
5a

5b

(a)

3
front

1
2
5a

after 1 level
of recursion complete tree

4
5b

back
3

2

5a 5b1

4

front back

(b)

front back

5

4

3

1

2

front

(c)

back

back

back

Figure 7.4. A BSP example.

272 7 Visible Surface Algorithms

BSPtree function BuildBSPTree (polygon list plist)
begin

polygon list frontList, backList;
polygon root, poly, frontPart, backPart;

if IsEmpty (plist) then return (Empty BSP tree);

frontList := nil; backList := nil;
 root := SelectAndRemoveOne (plist);

for poly in plist do
if InFrontOf (poly,root)

then Insert (poly,frontList)
else if InBackOf (poly,root)

then Insert (poly,backList)
else

begin
SplitPolygon (poly,root,frontPart,backPart);
Insert (frontPart,frontList);
Insert (backPart,backList);

end;

return (CreateBSPTree (BuildBSPTree (frontList),root,BuildBSPTree (backList)));
end;

Procedure TraverseBSPTree (BSPTree T)
{ The procedure Display is assumed to do all the necessary transformations,
 clipping, shading, etc. }
begin

if IsEmpty (T) then return;
if InFrontOf (eye,rootPolygon (T))

then
begin

TraverseBSPTree (backSubtree (T));
Display (rootPolygon (T));
TraverseBSPTree (frontSubtree (T));

end
else

begin
TraverseBSPTree (frontSubtree (T));

{ If back faces are not to be displayed, remove the next statement }
Display (rootPolygon (T));

TraverseBSPTree (backSubtree (T));
end

end;

Algorithm 7.5.1. The BSP tree algorithm.

7.6 Warnock and Weiler-Atherton Area Subdivision 273

it was sufficient to choose the best from a few chosen at random (five seemed to work
well).

We have just described the original BSP algorithms. Variants have been developed
since then. For example, Kaplan ([Kapl85]) chose his separating planes to be parallel
to the coordinate planes of the reference coordinate system. Such an algorithm is
sometimes called an orthogonal BSP algorithm. This property of separating planes can
simplify computations, especially when objects have bounding boxes. We shall
mention other BSP algorithms later on when discussing ray tracing in Section 10.2.

To summarize, the BSP algorithm is a good algorithm where the world model does
not change much and only the viewpoint changes. Examples of such situations are
flight simulators, architects walking through a house, and biochemists viewing com-
plicated molecules. Chin ([Chin95]) describes an efficient way to implement and use
BSP trees.

7.6 Warnock and Weiler-Atherton Area Subdivision

The Warnock visible surface determination algorithm [Warn69] is an image space
algorithm that attempts to find rectangular regions (here called windows) of the same
intensity on the screen (area coherence). Algorithm 7.6.1 is an outline of the algorithm.
The polygons referred to in the algorithm are the projected polygons. See Figure 7.5.

Essential to this algorithm is the ability to perform the following tests on any
polygon P:

Initialize a list L of windows to consist of a single window that is the entire screen;

For each window W in the current list L of windows look for one of the following “trivial”
cases:

(1) All polygons are disjoint from W. In this case one draws W in the background color.
(2) Only one polygon P intersects W. In this case draw the intersection of P and W in the

color of P and the rest of W in the background color. In practice, this case is divided
into three subcases: P is contained in W, P surrounds W, P and W have a nontrivial
intersection.

(3) At least one surrounding polygon was found and it is in front of all other polygons that
intersect the window. In that case draw the window in the color of that polygon.

Otherwise, divide the window W into four equal smaller windows, add them to the list L of
windows, and repeat the process until one gets down to a window the size of a pixel. At that
point one checks directly which polygon is in front of all the others at that pixel.

Algorithm 7.6.1. Outline of the Warnock algorithm.

274 7 Visible Surface Algorithms

Test 1: Is P disjoint from a window?
Test 2: Does P surround a window?
Test 3: Does P partially meet a window?
Test 4: Does P fall inside a window?
Test 5: Is P in front of other polygons?

For a quick test for disjointness, one usually uses bounding boxes. One way to test
if the window falls inside a polygon is to substitute the vertices of the window into
the equations for the edges of the projected polygons. If these tests fail, then one needs
to check if the boundary of the polygon intersects the window by checking each edge
of the polygon against each edge of the window. If the boundaries are disjoint, then
one still has to distinguish between the case where the regions are disjoint or where
one contains the other. We discussed some tests for doing this in Section 6.3. One
approach is to use a parity test and count the number of times that, say, any hori-
zontal ray starting at a window vertex intersects the polygon. If the number is even,
then the two are disjoint, otherwise the polygon surrounds the window. Another
approach is to use an angle counting argument.

Tests 1–4 above dealt with view plane issues. Test 5 involves depth calculations.
As mentioned earlier, we are assuming an orthogonal projection (with the camera at
-•) and so testing if one point is in front of another amounts to checking that its z-
value is less than that of the other point. Assume that two polygons P and Q meet the
window. We give a test for whether P is in front of Q. In Warnock’s algorithm this test
is only needed for the case P is a surrounding polygon, but the fact that it is sur-
rounding is not important. Here is the test: if the depth of the plane of P is less than
the depth of the plane of Q at the four corners of the window, then P is in front of Q
(Figure 7.6(a)). This is a sufficient but not necessary condition for that to happen
(Figures 7.6(b) and (c)). Warnock subdivides the window if the test fails.

There are many variations of Warnock’s algorithms. The windows need not be rec-
tangular. The problem with rectangular windows is that, being bad matches to most
polygons, the algorithm has to recurse down to the pixel level a lot. The Weiler-
Atherton algorithm ([WeiA77]) uses subwindows that match the shape of the poly-
gons. See Figure 7.7, which shows a list of polygons being clipped against a polygon

Figure 7.5. Area subdivision examples.

7.7 Z-buffer Algorithms 275

P. The resulting pieces are separated into two lists, those that lie inside P and those
that lie outside. This is more complicated to implement and the authors had to develop
a new clipping algorithm, which was discussed briefly in Section 3.3.2, but it is more
efficient.

Both the Warnock and Weiler-Atherton algorithms are not scan line oriented but
jump around as they draw the scene. Their complexity is approximately the com-
plexity of the final display (not of the scene).

7.7 Z-buffer Algorithms

Z-buffer algorithms record “current” depth information for each pixel. A “real” Z-
buffer is a two-dimensional array of real numbers of the same size as the frame buffer.
The real numbers record current depth information. A Z-buffer algorithm then scan
converts an entire face at a time into both the frame and the Z-buffer. The high-level
outline of such algorithms is extremely simple and is shown in Algorithm 7.7.1. There

Figure 7.6. Examples of a face in front of another face.

Figure 7.7. Weiler-Atherton type area subdivision.

276 7 Visible Surface Algorithms

are variants of the Z-buffer algorithm that incorporate antialiasing. An early scan line
approach described in [Catm78] was computationally expensive. A more efficient
approach, called the A-buffer algorithm, is described briefly in Section 7.11.

A Z-buffer takes up a lot of memory. By taking a scan line approach, one only
needs an array as long as a scan line. This leads to a slightly modified Z-buffer
algorithm shown in Algorithm 7.7.2. See [Roge98]. Such Z-buffer algorithms all use
the notion of “segment” and “span” in a scan line (where a face intersects the scan
line) and ask the question “Which segments are visible?” One uses the x-z plane. The
dotted lines in Figure 7.8(a) divide the scan lines into “spans.” Within each span one
determines the visibility of segments by checking their depths using plane equations.
Different choices of spans are possible because the only criterion is that one can
unambiguously order the segments within it by their depths. Therefore, there is the
issue of how to best choose the spans? For example, Figure 7.8(b) shows a better
choice of spans than Figure 7.8(a).

The scan line algorithms all do

(1) a Y sort to limit attention of algorithm to edges or faces which intersect scan line
(2) an X sort
(3) Z depth search

With regard to (1), one brings in new edges, etc., as one proceeds to the next scan line
and discards those that are no longer needed. One uses coherence and a list of “active”

Let Depth(p) denotes the “depth” of a point p, that is, the z-coordinate of p in the
camera or eye coordinate system. The array DEPTH below holds these z-values of
object points nearest to the eye.

color array FRAMEBUF[XMIN..XMAX,YMIN..YMAX];
real array DEPTH[XMIN..XMAX,YMIN..YMAX];

begin
Initialize FRAMEBUF to the background color;
Initialize DEPTH to •;

for all faces F in the world do
for each point p of F do

if p projects to FRAMEBUF[i, j] for some i, j then
if Depth (p) < DEPTH[i, j] then

begin
FRAMEBUF [i, j] := color of F at p;
DEPTH [i, j] := Depth (p);

end
end;

Algorithm 7.7.1. The Z-buffer algorithm.

278 7 Visible Surface Algorithms

edges. For (2) one divides the scan line into “sample spans” within which the same
face is visible (one is using “point-to-point” coherence along the line). Finally, at step
(3) each sample span must then be processed. How this is done depends on how they
were chosen. If we use the method indicated in Figure 7.8(a), then this is straight-
forward, although if we allow penetrating faces there are extra modifications needed:
At each vertex or span endpoint one must compute the depths of the segments that
fall into the span.

7.8 The Watkins Scan Line Algorithm

The Watkins algorithm ([Watk70]) is a scan line image space algorithm that is espe-
cially efficient. The idea is to let the right end of the current span “float” and keep the
left end fixed. One starts at the extreme right. As new segments are taken from the
x-sorted list, the right end moves left until one gets a span that is simple enough to
compute which segment is visible.

Algorithm 7.8.1 gives an outline of a Watkins-type algorithm. There are two things
to note. One is that for parity to work, one needs to shorten the edges appropriately
as described in Section 2.9.1. The other is that we assume that polygons have been
clipped.

To help clarify the algorithm we shall work through an example. Consider the
scene shown in Figure 7.9(a). Figures 7.9(b) and (c) show its projection onto the x-z
and x-y plane, respectively. Suppose that we are at scan line y as shown in Figure
7.9(c). The critical points along the x-axis are 0, a, b, c, and d. Table 7.7.1 shows how
the x scan progresses. We show the values of the indicated variables at the locations
in the procedure ProcessActiveEdgeList marked “LA” or “LB.” Note how the active
flag for each polygon toggles back and forth between true and false based on a parity-
type argument.

The objects in Figure 7.9(a) did not intersect. Figure 7.10 shows a case where one
polygon penetrates another. In such a case we have to find intersections and keep
moving the right end of the span to the left, saving the current values as we go along,
until we find an intersection-free segment. In the case shown there is one intersection
with x value xI in the segment [b,c]. We need to check all active polygons against all
other active polygons when testing for intersections. We can tell if two polygons inter-
sect by looking at their z-depth values at the endpoints of the span, call these zl1,zr1
for the first polygon and zl2,zr2 for the second polygon. The polygons will intersect if

If we find an intersection, then certain branches in the code of the procedure
LastVisiblePolygonColor will now be executed. The new x scan will now pass state-
ments marked “LC” and “LD,” as we can see from Table 7.7.2 in our example. First
we save c on the stack and deal with the segment [b,xI]. Then we set spanLeft to xI,
pop c from the stack, and deal with [xI,c]. The rest proceeds as before.

Notice that we always check if segments intersect in an endpoint of a span. If so,
then we use the opposite endpoint’s x value to do a depth check to see which polygon
is closer.

zl zl zr zr zl zl zr zr1 2 1 2 1 2 1 2<() >()() >() <()()and or and .

7.8 The Watkins Scan Line Algorithm 279

 Assume that the viewport is [XMIN,XMAX]¥[YMIN,YMAX] .

{ The data record we need for each polygon in the world. }
polydata = record

integer y, { first scan line crossed by poly }
edgedata list edges; { each edge of polygon has an associated edgedata record }
real a, b, c, d; { ax + by + cz + d = 0 is plane equation for polygon }
color hue;
boolean active; { updated as the algorithm proceeds }

end;

{ horizontal span endpoint record }
edgedata = record

polydata pointer polyP; { pointer to data for polygon to which edge belongs }
real x, { where the edge intersects the current scan line }

dx; { change in x from one scan line to the next }
integer dy; { the number of scan lines left to cross by the edge }

end;

{ Global variables: }
polydata list activePolys; { the list of currently active polygons }
edgedata list activeEdges; { the list of currently active edges }
polydata list array buckets[YMIN..YMAX];

{ buckets[y] holds all polygons which "start" at scan line y }
real spanLeft, spanRight; { used by procedure ProcessActiveEdgeList }

procedure WatkinsAlgorithm ()
begin

integer y;

InitializeData ();

for y:=YMIN to YMAX do
begin

 Add any polygons in buckets[y] to active polygon list activePolys;

 Scan edges of polygons in activePolys and add those that start at y
to active edge list activeEdges;

Sort edges of activeEdges by increasing x;
(Sorting is needed because when the list gets updated below the ordering
 is destroyed if edges cross.)

ProcessActiveEdgeList ();
 UpdateActiveEdgeList ();
 UpdateActivePolygonList ();

end
end;

Algorithm 7.8.1. A Watkins visible surface algorithm.

280 7 Visible Surface Algorithms

procedure InitializeData ()
begin

integer i;

activePolys := nil;
activeEdges := nil;

{ Initialize all buckets to nil }
for i:=YMIN to YMAX do buckets[i] := nil;

for each polygon P in the world do
begin

Create a new polydata record pData for P (active field is set to false);
 Add pData to buckets[pData.y];

end
end;

procedure ProcessActiveEdgeList ()
begin

color spanColor;
integer polyCount;
edgedata E;
polydata P;

spanLeft := XMIN;
polyCount := 0;

for E in activeEdges do
begin

spanRight := E.x;
{LA} case polyCount of

0 : spanColor := backgroundColor;
1 : spanColor := ColorOf (OnlyMemberOf (activePolys));
>1 : spanColor := LastVisiblePolygonColor;

end;

P := PolydataOf (E);
ToggleActive (P); { if active field true, set to false and vice versa }
if IsActive (P)

then polyCount := polyCount + 1
else polyCount := polyCount - 1;

{LB} Display ([spanLeft,spanRight],spanColor);
spanLeft := spanRight;

end;

if spanLeft < XMAX then Display ([spanLeft,XMAX],backgroundColor);
end;

Algorithm 7.8.1. Continued

7.8 The Watkins Scan Line Algorithm 281

Procedure CheckForSegIntersections (ref boolean intersected; ref real xint)
if two segments in the activeEdges list intersect at an x-coordinate xint with

spanLeft < xint < spanRight
then intersected := true
else

begin
intersected := false;
if two segments in activeEdges touch at spanLeft

then xint := spanRight
else xint := spanLeft;

end;

polydata function MinActiveZvaluePolygon (real x, y);
{ Scan active polygon list and return the data for the one with minimum zvalue at
 (x,y). The z values are determine by the equation z = -(a*x + b*y + d)/c where
 a,b,c, and d are the coefficients of the planes of the polygons. }

color function LastVisiblePolygonColor ()
{ Checking for intersections is where we may have to do a lot of work }
begin

real stack spanStack;
boolean intersected;
real xint;

Reset stack of spans spanStack to empty;
repeat forever

CheckForSegIntersections (intersected,xint);
if intersected

then
begin

{ There was an intersection. Push current spanRight,
 divide the span, and process the left half [spanLeft,xint] }
Push (spanright,spanStack);
spanRight := xint;

{LC} end
else

begin
segcol := ColorOf (MinActiveZvaluePolygon (xint,y));

if Empty (spanStack) then return (segcol);

Display ([spanLeft,spanRight],segcol);
{LD} spanLeft := spanRight;

spanRight := Pop (spanStack);
end

end
end; { LastVisiblePolygonColor }

Algorithm 7.8.1. Continued

282 7 Visible Surface Algorithms

procedure UpdateActiveEdgeList ()
begin

edgedata E;

for E in activeEdges do
if E.dy = 0

then Delete E from activeEdges
else

begin
E.dy := E.dy - 1;
E.x := E.x + E.dx;

end;
end;

Procedure UpdateActivePolygonList ()
begin

polydata P;

for P in activePolys do
if P.dy = 0 then Delete P from activePolys

else P.dy := P.dy - 1;
end;

Algorithm 7.8.1. Continued

Figure 7.9. A Watkins scan line algorithm example.

284 7 Visible Surface Algorithms

consider Figure 7.11 and assume that the camera is in the first octant looking toward
the origin. In that case, the sequence 8, 7, 4, 6, 5, 2, 3, 1 is one order in which to list
the voxels so that no voxel in the list will ever be obscured by a voxel appearing earlier
in the list. As each voxel is subdivided, we would use the same order for the new sub-
divided voxels.

Assuming that the voxel faces are parallel to the coordinate planes, it is straight-
forward to define a back-to-front order for the voxels for an arbitrary orthographic
projection based simply on knowing into which of the eight octants the view plane
normal is pointing. This can be generalized to an arbitrary parallel projection, not
just orthographic projections. Having decided on a back-to-front order of the voxels
(there is more than one), one then simply writes them to the frame buffer in that order
like in the painter’s algorithm. For more details and references to papers see [FVFH90]
and [Roge98].

For a visible surface algorithm based on ray tracing in the volume rendering case
see Chapter 10. One has to define discrete 3d rays first, which is done in Section 10.4.1.

7.10 Curved Surface Algorithms

One of the earliest curved surface visible surface algorithms is Catmull’s z-buffer algo-
rithm described in [Catm75]. It recursively subdivided surface patches until they
covered a single pixel and then updated the z-buffer appropriately. In this section we
describe a scan line approach that is due to Blinn ([Blin81]). Before we start, however,
we need to point out that curved surface algorithms like Blinn’s are hardly, if ever,
used anymore. Nowadays, one simply generates a sufficiently close polygonal approx-
imation to the surface and displays those polygons. We will have more to say about
this in Chapter 14. High-performance graphics systems now have hardware support
to make this feasible. Nevertheless, it is worthwhile discussing Blinn’s algorithm
anyway because it brings out some interesting aspects of curved surfaces.

Let us begin with a review of the polygonal case. The top level scan line algorithm
was:

Figure 7.11. Determining a back-to-front order
for voxels.

7.10 Curved Surface Algorithms 285

for iy := MINY to MAXY do
begin
intersect plane y = iy with objects to get segments;
for ix := MINX to MAXX do
show point (ix,iy) in segments, if any, which are
closest to viewer;

end;

Of course one had to make this practical using “coherence.” We made incremental
computations and had “active edge lists.” Figure 7.12 shows the basic cases for which
we had to watch out as we moved from scan line to scan line. We did various sorts
to speed things up.

As we pass to curved surfaces we need to handle new cases. Assume that the
surface is parameterized by a function

We need to look at level curves. Again assuming an orthogonal projection with the y-
axis corresponding to scan lines, these level curves are defined by equations

In the linear case all the geometric information was contained in the edges and these
could be represented by their endpoints. Now this is not enough because of “silhou-
ettes.” A silhouette is formed by points where the normal to the surface is orthogonal
to the z-axis (or line of sight for a nonorthogonal view).

Let us keep track of points on level curves that are endpoints on patches or sil-
houettes. We shall do this by keeping track of their parameter values (u,v) and update
them as we move down the scan lines. This is an important point, namely, that

Y u v c, .() =

f u v X u v Y u v Z u v, , , , , , .() = () () ()()

Figure 7.12. Basic cases to watch for
in scan line algorithms.

7.10 Curved Surface Algorithms 289

7.18. The computation for finding the points was similar to the way that silhouettes
are found, except that now one allows other angles. More precisely, one solves

or

We can precompute the values sinqi and cosqi. This gives a whole new set of edge
trackers. All the edge trackers above must be linked together appropriately to get a
polygonal approximation to the intersection curve. Links are created as we pass crit-
ical points. When we pass saddle points we get breaks that must be repaired by “side-
ways” iteration. One moves along level curves of constant y but changing q. A new
edge tracker is created.

Using this approximation, level curves at a scan line are a chain of edge trackers
that can be specified by an index into a table of sines and cosines. The angle rotates
and we would expect that the index changes by 1 as we move from one edge tracker
to the next (except obviously when we pass from the end of the table to the begin-
ning). There is one other case however. The angle q can have local maxima or minima
as we move around. See Figure 7.19. This occurs at inflection points of cross-section
curves. Mathematically, if v is the tangent to the level curve, the directional derivative
of q in the direction v vanishes: DVq = 0. We need to create trackers to follow this
function.

The x-sampling described above sometimes made the polygonal nature of the
approximation obvious in the output. Nevertheless it seemed to be reasonably good
and did not use an excessive amount of time to compute. For smooth shading, most
of the time was spent in the y-iteration. Blinn’s approach made surfaces look better
than if one had used a polygonal approximation to them.

A Summary of the Blinn Algorithm. It is a scan line algorithm that generalizes
polygon visible surface algorithms and involves solving equations determined by
various geometric features, such as

n nx zsin cos .q qi i- = 0

qi
z

x
= Ê

Ë
ˆ
¯

-tan 1 n
n

Figure 7.18. Using curve normals
for subdivision.

290 7 Visible Surface Algorithms

Feature Equations

boundary curves of patches Y (0,v) = Yscan Y (u,0) = Yscan
Y (1,v) = Yscan Y (u,1) = Yscan

silhouette edges Y (u,v) = Yscan nz (u,v) = 0
local maxima or minima ∂Y/∂u (u,v) = 0 ∂Y/∂v (u,v) = 0
segments of x-scan Y (u,v) = Yscan X (u,v) = Xscan

The equations are solved by making initial guesses and then using a Newton-Raphson
iteration. One has a current active segment lists with segments being created and
deleted and one sorts to find visible points. Blinn used heuristics to handle the many
problems that arose.

We mention several other curved surface algorithms:

The Whitted Algorithm ([LCWB80]). This algorithm generalized the handling of
surface patches bounded by straight lines to the case where boundaries are cubics.
It avoided the problem of polygonal silhouettes but had problems with internal
silhouettes and numerical techniques.

The Carpenter-Lane ([LCWB80]) and Clark ([Clar79]) Algorithms. These algo-
rithms, like Catmull’s algorithm ([Catm75]), use a subdivision technique that ends up
subdividing patches until they are flat enough so that they can be approximated by
planar polygons. The polygons are then scan converted using a standard approach.
The approximation is as good as the view requires but not a priori. Unlike Catmull’s
algorithm, these are scan line algorithms. A problem that the algorithms have to worry
about is that cracks can appear in the image if adjacent patches are not approximated
carefully.

Blinn’s algorithm is actually more general than either the Whitted or Carpenter-
Lane algorithms.

7.11 Adding Antialiasing

So far in our discussion of visible surface algorithms, we have only touched on the
aliasing issue. In fact, these algorithms often have antialiasing techniques built into
them. Some general references that have a lot more material on antialiasing methods
than we shall mention here are [MagT87], [FVFH90], [WatW92], and [Roge98].

Figure 7.19. An inflection point case with angle
trackers.

We already mentioned antialiasing lines and polygons in Section 2.6. Antialiasing
algorithms are incorporated into image precision algorithms, such as the Warnock
algorithm, by a supersampling type approach. One subdivides to below a pixel and
averages the subpixel values.

Early antialiasing efforts in scan line algorithms ([Crow77a], [Catm78]) led to the
A-buffer algorithm that is used for antialiasing in Z-buffer algorithms. This algorithm
originated with [Carp84] and was subsequently improved by [AbWW85]. A pixel is
again assumed to have area, but rather than making complicated geometric clipping
computations on this area one associates a bitmask to the pixel (Carpenter used a 4
¥ 8 bitmask) and one does the clipping via Boolean operations on the bits, which is
much faster. The bitmasks are used in conjunction with a z-ordering of the polygon
pieces. An edge fill scan conversion algorithm is used to enter the edges of the polygon
pieces into the bitmask. The bitmasks are initialized to 0 and in the end have a certain
number of 1’s. A simple counting of the number of 1’s determines the percentage of
area of the polygon piece that is used to determine its contribution to the shade asso-
ciated to the pixel. See [MagT87], [WatW92], or [Roge98].

For antialiasing in ray tracing, see Section 10.2.

7.12 Conclusions

We finish the chapter with some observations on visible surface algorithms. To begin
with, note the importance of coherence. Basically, one thinks of a picture as consist-
ing of regions all of whose pixels have the same value. Once we have the value of a
pixel for a region, then we keep setting all adjacent pixels to the same value until we
run into one of those “few” boundaries between regions where a change takes place.
Below is a sampling of some different types of coherence guidelines when dealing
with linear polyhedra.

Edge coherence: The visibility of an edge changes only when it crosses another edge.
Therefore, we can create a list of edge segments without intersections and need only check
one point per segment.

Face coherence: A face is often small compared to the whole scene. Therefore, usually the
whole face is visible if one point of it is.

Object coherence: The use of bounding objects is a form of coherence.

Depth coherence: Different surfaces are usually well separated in depth.

Scan line coherence: Segments visible on one line are likely to be visible on the next.

Frame coherence: Images do not change much from frame to frame.

Geometric coherence: The possible visible/invisible configurations at any vertex are
limited. For example, in a convex object the outside lines are visible (Figure 7.20(a)) as are
all the edges surrounding a vertex (Figure 7.20(b)).

7.12 Conclusions 291

292 7 Visible Surface Algorithms

Curved objects satisfy similar types of coherence.
Visible surface determination algorithms need to be evaluated in the context of

the whole rendering algorithm. There is no “best” such algorithm. Differences in
algorithms stem from different requirements: different scenes, different complexity of
output. The choice of an algorithm also depends on the shading algorithm that is to
be used. For example, although the Watkins algorithm is a nice algorithm, one cannot
use it if one wants to use a global reflectance model as described later in Chapters 9
and 10. In general though, image space algorithms seem to be the most popular. In
fact, it is fair to say that Z-buffer algorithms, which are extremely simple and versa-
tile, are the de facto standard in high performance graphics system because the price
of memory is no longer such a problem. Furthermore, as mentioned earlier, because
these systems typically have hardware support for fast display of polygons, all sur-
faces, including curved ones, are treated as collections of polygons. Many of the
mathematical complications in algorithms like Blinn’s are thereby avoided. Of course,
having a high-speed system is now more important than ever because of the large
number of polygons with which one has to deal.

The table below summarizes normalized speed results from Table VII in [SuSS74]:

Number of facets in the scene
Algorithm 100 2500 60000

Schumacker 30 179 1215
Newell-Newell-Sancha 1 10 507
Warnock 11 64 307
Z-buffer 54 54 54
Watkins 3 21 457

In the table we have normalized the Newell-Newell-Sancha algorithm to 1. The
numbers are estimates only though and should mainly be used for comparison
purposes. Small differences are inconclusive and only orders of magnitude are
significant.

Depth sorting and scan line algorithms are good if there are only a small number
of surfaces (up to several thousand). Scan line algorithms take advantage of coher-
ence between successive scan lines and of span coherence within a scan line. They
reduce a three-dimensional problem to a two-dimensional one. One danger though is
that very narrow polygons can fall between scan lines. In general, depth sorting is
good if the scene is spread out in depth (relative overlap in z-direction) and scan line
or area-subdividing algorithms are good if surfaces are separated horizontally or
vertically.

Figure 7.20. Examples of geometric
coherence.

For scenes with very large numbers of objects, z-buffer methods or methods
designed for objects encoded as octrees are good because their complexity is inde-
pendent of the number of surfaces.

Sorting is an extremely important part in all the algorithms we discussed. In a
sense the real difference between all the algorithms is just in the way they sort. The
sorting technique chosen should match the statistical properties of the data being
sorted. See [SuSS74] for how sorting affects algorithms.

7.13 PROGRAMMING PROJECTS

Section 7.5

7.5.1 The BSP algorithm

Implement the BSP algorithm to display a world of blocks with solid colored faces. You will
have to scan convert the projected polygons using the algorithm from Section 2.9.1 (see pro-
gramming project 2.9.1.1). If you are using OpenGL, then one can simply use one of the OpenGL
functions that fill in polygons.

Add the following item to the main menu

7.13 Programming Projects 293

8.3 Perceived Color 295

been made relatively recently. Even today there is no complete answer. One needs to
know more about the eye and the brain.

Some objects like the sun and a burning ember radiate light and are said to be
luminous. Most objects that we see are nonluminous. We see them because light from
some other source has reflected off them. Here are the basic events that happen when
we look at an object ([AgoG87]). See Figure 8.1.

(1) The object’s light enters the eye through the cornea.
(2) It passes through a clear liquid (aqueous humor), the pupil, the lens, and some

jelly-like material (vitreous humor) before it falls on the retina.
(3) In the retina it passes through several layers of nerve cells before it is absorbed

by receptor cells. There are two types of receptor cells, called rods and cones.
There are three varieties of cones.

(4) The absorption causes some chemical changes leading to electrical changes
that are then transmitted by optic nerve fibers from the eye to the opposite
half of the brain.

(5) Finally, the brain responds by producing various sensations such as color, size,
position, etc.

For an overview of the basic ingredients of the human visual processing system see
[Ferw01].

We return to our original question: What is color? There are two possible answers:

(1) It is a sensation produced by the brain (the “perceived” color) in response to
light received at the retina, so that one would say, for example, “the color pro-
duced by some given light is red or whatever.”

(2) It is an arbitrary definition by specialists in colorimetry, the measure of color.

The next two sections attempt to explain these answers. We rely heavily on [AgoG87].

8.3 Perceived Color

Because a color is often influenced by surrounding colors, how can one judge a color
from a nonluminous object in isolation? One way that this can be done is to illumi-

Figure 8.1. A horizontal cross-section
of the eye.

nate the object in a dark room. Another is to view it through a hole in a black panel
while focusing on the perimeter of the hole. In the latter case, the perceived colors
are called film or aperture colors.

Perceived colors have a number of characteristics. In the case of film colors, the
simplest case, there are only three, namely, hue, saturation, and brightness:

Perceived hue:

Looking at red light we experience a sensation of a red “hue.” It is hard to say
exactly what hue is. The problem is similar to trying to describe the sensation of
bitterness or shrillness in voice. It can also be thought of as the “color” of the color
by which the color is designated. Colors are subdivided into

chromatic colors – those perceived colors that have hue
achromatic colors – those perceived colors that do not have hue (for example,

the colors from a fluorescent lamp)

There are four basic hues (the unitary or unique hues): unitary red, yellow, green,
and blue. All other hues are mixtures.

Perceived saturation:

This is the perception of the relative amount of a hue in a color and can be thought
of as a number between 0 and 1. Since light can be thought to have two compo-
nents, a chromatic and an achromatic one, a working definition of saturation is
as the ratio of the chromatic to the sum of the chromatic and achromatic com-
ponents of a color. For example, pink has a lower chromatic component than red.
Saturation measures how much a pure color is diluted by white.

Perceived brightness:

Brightness is an attribute of the illumination in which a nonisolated object is
viewed. It is a “perception of the general luminance level.” Brightness applies to
the color of an object only when the object is isolated and the light comes to the
eye from nowhere else. One generally talks about it as ranging from “dim” to
“dazzling.”

Perceived colors other than film colors have additional characteristics such as:

Perceived lightness:

This is an attribute of a nonisolated color produced in the presence of a second
stimulus. One uses terms such as “lighter than” or “darker than” for this.

Perceived brilliance:

This is perceived only when the object is not isolated as, for example, in the case
of an area of paint in a painting or a piece of glass among others in a stained glass
window.

296 8 Color

8.4 Colorimetry

The terms in the last section apply to color response and hence are terms of psychol-
ogy. There is a more scientific approach to analyzing color called colorimetry.

We begin with the question: What is light? Well, light is a form of energy, electro-
magnetic energy. Note that sometimes a distinction is made between light, that radia-
tion in proportion to its effectiveness in producing vision, and visible radiant energy,
which refers to all radiation in the visible range. Only part of all light is visible. Light
has wavelengths given in nanometers (nm), where 1 nanometer equals 10-9 meters or,
equivalently, 10 angstroms. Visible light is the light with wavelengths in the 380nm
to 780nm range. For example, blue and green correspond to light with wavelengths
of 470nm and 500nm, respectively.

Here is some more terminology related to light and perceived colors:

Monochromatic light: This is light consisting of a single wavelength.
Spectral hues: These are the hues in monochromatic visible radiation

(those present in the sun’s spectrum). The hues in a
rainbow are spectral hues.

Spectral colors: These are all the colors that are perceived to have a spec-
tral hue.

Monochromatic light has maximum saturation but may have an achromatic compo-
nent. We experience also nonspectral hues, for example, purple or purplish red, which
are not present in the sun’s spectrum, and nonspectral colors.

Because perceived colors vary with illumination, one prefers to make comparisons
in daylight. But this must be specified precisely. In 1931 the Commission Interna-
tionale de l’Éclairage (CIE) defined the CIE illuminants. Colors can now be measured
by matching against standard samples under standardized viewing conditions using
colorimeters. Here a photoelectric cell replaces the human eye. One takes a sample
color (the color one is trying to identify) and compares it to a mixture of standard
colors. The intensities of the latter are varied via three adjustments, the CIE tri-
stimulus values. The tri-stimulus theory of light is based on the assumption that there
exist three types of color sensitive cones at the center of eye which are most sensitive
to red, green, and blue. The eye is most sensitive to green.

Basically, one chooses three beams (a short, medium, and long wave length which
are typically the three additive primary colors red, green, and blue). Different colors
can then be produced by shining the three beams on a spot and varying the intensity
of each. The chromaticity of a color C is defined by a triple (x,y,z) of numbers speci-
fying these three intensities, or weights, for the color. Mathematically, one is repre-
senting the color C in the barycentric coordinates form

where R, G, and B represent the colors red, green, and blue, respectively, and x + y +
z = 1. The numbers x, y, and z would be called the chromaticity values of C. Figure
8.2(a) shows this in graphical form. The triangle is called Maxwell triangle chro-

C R G B= + +x y z ,

8.4 Colorimetry 297

298 8 Color

maticity diagram (the equal-sided case). This was used by Maxwell in his work on
color. The condition imposed on the selection of colors to serve as primaries is that
in equal amounts they produce white (at E in Figure 8.2(a)). The point P corresponds
to (x,y,z) = (0.2,0.6,0.2). Because the equal-sided triangle is awkward to employ
in practice, one prefers a right triangle. (We do not need z anyway.) See Figure
8.2(b).

Now it is known that not all colors can be represented as the sum of three primary
colors. What about a color that cannot be so represented? Well, we can add one of
the primary beams to this color to bring it into the range of colors we can represent.
This corresponds to using a negative coefficient. Although one could use negative
coefficients for the representation of colors in terms of primary colors, for practical
reasons, it was decided by the CIE to use a scheme in which negative numbers do not
arise. Since this is not possible with real primaries, imaginary primaries were invented
(they are called that because they are not visible) called imaginary red, imaginary green,
and imaginary blue and denoted by X, Y, and Z. Then every color C can be written
as

In this way one can represent colors as triples (X,Y,Z) in a three-dimensional space
(actually its first octant). A further step is taken. Rather than using arbitrary triples
(X,Y,Z), one normalized the numbers and uses (x,y,z), where

This corresponds to using the intersection of the plane X + Y + Z = 1 and the line
through the origin and (X,Y,Z). See Figure 8.3. The numbers x, y, and z are called the
chromaticity values for C. Since x + y + z = 1, one only really needs x and y. Note
however that we cannot determine the original point (X,Y,Z) from just x and y. We
need some additional information and the Y value is used. In the end, therefore, the

x
X

X Y Z
y

Y
X Y Z

z
Z

X Y Z
=

+ +
=

+ +
=

+ +
.

C X Y Z= + + ≥X Y Z X Y Z, , , .0

Figure 8.2. Maxwell’s triangles.

8.5 Color Models 299

CIE color specification for the color C based on chromaticity is written CIE (x,y,Y)
(rather than (X,Y,Z)).

Now the tri-stimulus values of this system really have only relative meaning
because we do not know what the units are when a color is measured. The CIE spec-
ification gives them an absolute meaning by interpreting Y appropriately. What one
does is to observe that an important characteristic of imaginary red and blue is that they
have zero luminance. Luminance is essentially the intensity. By assigning the lumi-
nance, which can be obtained by a separate measurement, to Y (the imaginary green
value), the tristimulus values can now be given an absolute meaning. For example,
for the tuple (X,Y,Z) = (1000,800,1200), if the measurement for the luminance gave Y =
200, then one would adjust the X and Z in proportion and use the tuple (250,200,300)
instead. By convention, the tri-stimulus values of a color are specified with respect to
Y = 100 and if we had Y = 200, that that value would be reported separately.

The CIE chromaticity diagram shown in Figure 8.4 is based on test data for a
narrow 2 degree angle of vision. The diagram is a two-dimensional projection of three-
dimensional color space which plots the x and y values of the CIE (x,y,Y) specifica-
tion of a color. The horseshoe region corresponds to the visible colors. A slightly
different diagram generated in 1964 applied to a 10 degree angle of vision, but is con-
sidered less useful for computer graphics.

8.5 Color Models

The range of colors produced by an RGB monitor is called its gamut. There are a
number of models for the gamut of an RGB monitor.

The Color Cube or RGB Model. This is the “natural” gamut model that represents
the gamut as the unit cube [0,1] ¥ [0,1] ¥ [0,1]. See Figure 8.5.

The CMY Model. This model uses the subtractive primary colors cyan, magenta, and
yellow, which are the complements of red, green, and blue, that is,

C

M

Y

R

G

B

Ê

Ë
Á
Á

ˆ

¯
˜
˜

=
Ê

Ë
Á
Á

ˆ

¯
˜
˜

-
Ê

Ë
Á
Á

ˆ

¯
˜
˜

1

1

1

.

Figure 8.3. The chromaticity values of a color.

300 8 Color

The colors are called “subtractive” because they tell one what has to be subtracted
from white (rather than what has to be added to black) to get the color. The CMY
model is used with reflective sources and for devices like ink-jet plotters.

The YIQ Model. This model is defined by the equation

Y

I

Q

R

G

B

Ê

Ë
Á
Á

ˆ

¯
˜
˜

= - -
-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

0 299 0 587 0 114

0 596 0 275 0 321

0 212 0 523 0 311

. . .

. . .

. . .

.

x

y

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.9

R
E

B

J

D

G

Figure 8.4. The CIE chromaticity diagram.

Figure 8.5. The RGB color cube.

8.5 Color Models 301

See [Blin93]. We get a new space of primaries called the transmission primaries, which
were recommended by the National Television System Committee (NTSC) in 1953 as
the basis for generating color television broadcast signals in the United States. The
value Y is called the luminance and measures brightness. It is the only signal received
by a black and white TV. This is a good basis with respect to properties of RGB phos-
phors and the “standard” observer. The triangular region in the chromaticity diagram
shown in Figure 8.4 is the possible gamut of the 1953 NTSC recommended RGB
monitor, although actual monitors have a smaller triangle.

Although the RGB model is very simple mathematically, getting a desired color
by varying the R, G, B guns of a monitor is not so simple. Artists especially would
find the RGB model very unintuitive. For that reason other models were introduced.

The HSV (Hue-Saturation-Value) “Hexcone” Model. We get this model
by looking down at the color cube along its main diagonal (see Figure 8.6) and re-
coordinatizing (see Figure 8.7). A color is now specified by three numbers h (hue), s
(saturation), and v (value). The hue corresponds to an angle from 0 to 360 degrees,
where, for example, red is at 0 degrees and green at 120 degrees. The saturation s, s
Œ [0,1], measures the departure of a hue from white or gray. The value v, v Œ [0,1],
measures the departure of a hue from black, the color of zero energy. See Figure 8.8.

The hexcone model tries to mimic how artists work. Their way of working with
color has been described as follows in [AgoG87]:

“Artists choose a pure hue, or pigment, and lighten it to a tint of that hue by adding white
or darken it to a shade of that hue by adding black, or in general obtain a tone of that hue
by adding a mixture of white and black, that is, gray.”

The HSL (Hue-Saturation-Brightness) Triangle Model. See Figure 8.9. The
reason for not using the letter “B” is so as not to cause confusion with “blue.” The
hue is again specified as an angle between 0 and 360 degrees about the vertical axis
and the saturation and brightness are values between 0 and 1.

The HSL model is good for color gradations found in nature.

Figure 8.6. The HSV hexcone.

302 8 Color

Figure 8.7. The single hexcone HSV color
model.

Figure 8.8. The HSV triangle.

Figure 8.9. The double hexcone HSL color
model.

8.6 Transforming Between Color Models 303

8.6 Transforming Between Color Models

Finally, one needs transformations to convert between the various color models. Algo-
rithms 8.6.1 and 8.6.2 describe the conversions between RGB and HSV. Algorithms
8.6.3 and 8.6.4 convert between RGB and HSL. Algorithm 8.6.4, which converts HSL
to RGB, is the one described in [Fish90a]. It basically converts HSL to HSV and then
uses the steps in the HSV to RGB conversion algorithm. An undefined hue in these
algorithms means that the color is achromatic and corresponds to a shade of gray

UNDEFINED is a constant real number outside the interval [0,360].

procedure RGBToHSV (real r, g, b; ref real h, s, v)
{ Input: r, g, b Œ [0,1]

Output: h Œ [0,360] , s, v Œ [0,1] unless s = 0 in which case h = UNDEFINED
begin

real max, min, d;

max := Max (r,g,b);
min := Min (r,g,b);

v := max; { define the value }
if max = 0 { define the saturation }

then s := 0
else s := (max - min)/max;

if s = 0
then h := UNDEFINED
else { the saturation is not zero (the chromatic case) }

begin
d := max - min;
if r = max

then h := (g - b)/d; { color is between yellow and magenta }
else if g = max

then h := 2 + (b - r)/d; { color is between cyan and yellow }
else if b = max

then h := 4 + (r - g)/d; { color is between magenta and cyan }
h := 60*h; { convert to degrees }
if h < 0 then h := h + 360; { prevent negative values }

end
end;

Algorithm 8.6.1. Converting RBG to HSV.

304 8 Color

UNDEFINED is a constant real number outside the interval [0,360].

procedure HSVToRGB (real h, s, v; ref real r, b, g)
{ Input: h Œ [0,360] or UNDEFINED, s , v Œ [0,1]

Output: r, g, b Œ [0,1]
begin

integer sextant;
real fract, p, q, t;

if s = 0
then

if h = UNDEFINED
then begin r := v; g := v; b := v; end
else Error () { invalid input }

else
begin

if h = 360 then h := 0;
else h := h/60;

sextant := Floor (h); { h is now in [0,6) }
fract := h - sextant; { the fractional part of h }
p := v*(1 - s);
q := v*(1 - (s*fract));
t := v*(1 - (s*(1 - fract)));
case i of

0 : begin r := v; g := t; b := p; end;
1 : begin r := q; g := v; b := p; end;
2 : begin r := p; g := v; b := t; end;
3 : begin r := p; g := q; b := v; end;
4 : begin r := t; g := p; b := v; end;
5 : begin r := v; g := p; b := q; end;

end
end

end;

Algorithm 8.6.2. Converting HSV to RGB.

that lies along the central axis of the models. [Roge98] also describes a number of
other conversion algorithms such as between RGB and CIE.

8.7 PROGRAMMING PROJECTS

Section 8.6

8.6.1 Write a program that lets a user define colors graphically by means of three sliders that
correspond to the hue, saturation, and value parameters of the HSV hexcone model.

8.7 Programming Projects 307

one can try to rigorously simulate the illumination process; on the other, one might
be satisfied with achieving the illusion of realism. The first approach is an ideal that
inevitably takes a lot of CPU cycles. The second allows one to take shortcuts that
produce results quicker but hopefully still produce good images. Actual illumination
models used in practice differ from theoretical derivations. Hall ([Hall89]) classifies
them into three types: empirical, transitional, and analytical. The corresponding
shading techniques that evolved from these three models are classified as being incre-
mental, using ray tracing, or using radiosity methods, respectively. There are now also
hybrid approaches using the last two techniques.

The first illumination models were empirical in nature. The illumination values
were evaluated after the geometry was transformed to screen space and standard scan
line incremental approaches were used. Transitional models used more optics. They
used more object space geometry so that reflections, refractions, and shadows were
geometrically correct. Ray tracing was started. Gradually, analytical models were
developed. Hall describes the shift in approaches as “a shift in research from the
hidden surface problem, to creating realistic appearance, to simulating the behavior
that creates the appearance.” He points out that as we look at how illumination and
shading are dealt with, one finds that the two main approaches can be explained in
terms of two questions. One approach starts at the eye, considers the visible surfaces,
and asks for each visible pixel:

“What information is required to calculate the color for this surface point?”

Getting this information implies that other surfaces must be considered and so the
same question is asked recursively. Ray tracing is an example of this approach. The
second approach starts at the light sources, traces the light energy, and asks:

“How is this light reflected or transmitted by this surface?”

From this point of view, every illuminated surface becomes an emitter. This is how
radiosity works.

The first approach where we start at the eye generates a view-dependent map of
light as it moves from surfaces to the eye. Every new viewpoint calls for a new map.
Initially, rendering programs used only the ambient and diffuse component of light
([Bouk70]), and then the specular component was added ([BuiT75]). This worked
fairly well for isolated objects. Eventually, reflections were also dealt with, culminat-
ing in ray tracing. The ray-tracing program described by Kajiya ([Kaji86]) started at
the eye and sent out 40 rays per pixel.

The second approach to rendering where we start from the light generates a view-
independent map. This approach may seem extremely wasteful at first glance because
one makes computations for surfaces that are not seen. However, starting at the eye
gets very complicated if one wants to render diffuse surfaces correctly. Single reflec-
tions between n surfaces require n2 computations. This number goes up very rapidly
as one attempts to follow subsequent reflections. Furthermore, having made the com-
putations once, one can then make as many images as one wants without any addi-
tional work.

Two important phenomena one has to watch out for when modeling light are:

9.1 Introduction 309

310 9 Illumination and Shading

(1) The interaction of light with boundaries between materials, and
(2) the scattering and absorption of light as it passes through material.

Therefore, the two basic ingredients to all models are properties of surfaces and prop-
erties of light. An important property of a surface is its reflectance. Different
reflectances for different wavelengths cause color. Another property is transparency.
Also, in order to model color accurately, one needs to maintain the wavelength or
spectrally dependent information throughout the visible range. We shall indicate the
dependence of a variable on wavelength by giving it a wavelength parameter l. In
practice we are only interested in the three wavelengths that correspond to the red,
green, and blue colors of an RGB monitor, so that each of the intensity equations we
shall see in this chapter really represent three equations, one for each of those three
colors.

To summarize, several shading models are used in graphics ranging from the
simple to the complex. The Phong reflectance model ([BuiT75]), which has been
around since the mid-1970s, still seems to be the most popular of the local reflectance
models, even though there have been many improvements (see [Glas95]). Phong
shading together with texture maps and shadows does a pretty good job for local
shading models. Furthermore, one can mix in ray tracing for good result. For really
eye-catching images, full-blown ray-tracing methods, radiosity methods, or a combi-
nation of the two are the current candidates. Of course, the latter also take corre-
spondingly more computer power.

Finally, although photorealism was the holy grail of computer graphics for many
years, now that it has been pretty much achieved, it is no longer the driving force it
once was and one is more concerned with finding innovative uses for this new
medium.

Section 9.2 starts this chapter’s topics with a discussion of local reflectance
models. We then move on to shading models in Section 9.3, global reflectance models
in Section 9.4, and tie things all together with the rendering equation in Section 9.5.
Sections 9.6–9.8 describe ways of enhancing images without increasing geometric
complexity. An overview of the whole rendering process is presented in Section 9.9.
The chapter ends with a discussion of ways to deal with rendering colors when there
are limitations on the size of the color palette.

9.2 Local Reflectance Models

Geometrical optics (or ray theory) treats reflected light as having three components, an
ambient one and a diffuse and specular one. Ambient (or background) light is that
light that is uniformly incident from the environment and which is reflected equally
in all directions by surfaces. Diffuse and specular light is reflected light from specific
sources. Diffuse light is light that is scattered equally in all directions and has two
sources. It comes either from internal scattering at those places where light penetrates
or from multiple surface reflections if the surface is rough. For example, dull or matte
material generates diffuse light. Specular light is the part of light that is concentrated
in the mirror direction. It gives objects their highlights.

9.2 Local Reflectance Models 311

The following notation will be used throughout this chapter. See Figure 9.1. At
each point p of a surface the unit normal to the tangent plane at that point will be
denoted by N. The vectors V and L are the unit vectors that point to the eye (or
camera) and the light, respectively. It is convenient to define another unit vector H
which is the bisector of V and L, that is,

The angle between H and N will be denoted by a.
The simplest reflectance model ([Bouk70]) takes only ambient and diffuse light

into account. The ambient component of the intensity is assumed to have the form

where Ia(l) is the ambient light intensity at wavelength l and ka(l) Œ [0,1] is the
ambient reflection coefficient, which is the proportion of ambient light that is reflected.
The diffuse component is assumed to have the form

where Ip(l) is the intensity of the point light source reaching the point p, kd(l) Œ [0,1]
is the diffuse reflection coefficient, which is a constant that depends on the material,
and rd is the diffuse reflectance factor. The factor rd is computed from Lambert’s law
for ideal diffuse reflectors which states that they will diffuse incident light equally in
all directions. Consider Figure 9.2. An area A1 of light incoming along a direction L
will shine on an area A2 in the plane with normal N. If q is the angle between N and
L, then it is easily shown that

A
A

N L1

2
= = ∑cos .q

I k rp d dl l() () ,

I ka al l() (),

H
V L
V L

=
+
+

.

Figure 9.1. Some basic notation.

312 9 Illumination and Shading

The ratio A1/A2 specifies the part of the light that will diffuse equally in all directions,
but there is one other assumption. Any light coming from behind the surface will be
assumed not to contribute any diffuse light. To put it another way, any surface that
faces away from the light, that is, where N•L < 0, contributes nothing. It follows that
rd = max (N•L,0).

Putting this all together gives us

(9.1)

Next, we want to include a specular component into our intensity function. See
Figure 9.3. Given a light ray L and the normal N to a plane, the formula for the “mirror
direction” R of a light ray hitting the plane is clearly

(9.2)

One assumes that the specular component has the form

where rs is the specular reflectance factor and the specular reflection coefficient ks is
really a function of the angle of incidence q but is usually set to a constant between 0
and 1. In the case of a perfect mirror,

I k rp s sl() ,

R L L N L N= - - ∑()()2 .

Bouknight’s reflectance model: I I k I k ra a p d dl l l l l() = () () + () ()

Figure 9.2. Diffuse reflection geometry.

Figure 9.3. Specular reflection
geometry.

9.2 Local Reflectance Models 313

This is not realistic. There is a specular contribution also when V is close to R. See
Figure 9.4(a). Phong ([BuiT75]) used the angle f between R and V to control the
decrease in the intensity of reflected light as one moves away from the mirror direc-
tion. Specifically, he used a power m of cosf = R•V to adjust the sharpness of the
highlights and defined rs by

(9.3)

(9.4)

Although some books say that the constant exponent m measures the “shininess”
of a surface, with a large m corresponding to glossy surfaces and a small one to dull
surfaces, a better visual description would be that it changes the apparent size of the
light by making the highlight smaller or larger, respectively. Typical values of m range
from 50 to 60. Note that the specular reflection coefficient ks is not a function of wave-
length. This is so that highlights appear to have the color of the source.

In practice, one makes some simplifications to Phong’s model. First of all, one
approximates the ambient term by a constant. Another simplification is made if the
light source and viewer are at infinity. In this case, one replaces the angle f by the
angle a between the normal N and H. The justification for this is that H specifies
the direction that the surface normal should be for V to be the mirror direction. When
that happens, then f = 2a. Therefore, we can compensate for the difference in the dot
products by changing the power m. The nice consequence of this is that since L and
V are constant, H is also constant, and so we save ourselves some computations. This
leads to the following ([Blin77]):

A simplified Phong specular reflectance model:

(9.5)

Phong’s model was derived empirically. It produced results that were better than
those using previous methods. To get better results yet, one needs to go back to theory.
Experimentally one has a pretty good match to Phong’s model except that the peak

I I k kp d s
ml l l() = + () () ∑() + ∑()()ambient constant N L N H

Phong’s specular reflectance model: I I k I k r k ra a p d d s sl l l l l() = () () + () () +()

r rs s
m m= () = () = ∑()()f fmax cos , max ,0 0R V

r if

otherwise
s = =

=
1

0

,

, .

V R

Figure 9.4. More realistic specular
drop off.

specular direction was incorrect when the angle of incidence for the light was small.
Torrance and Sparrow ([TorS67]) worked out a theoretical model that was very accu-
rate. Their model predicted the directional and spectral composition of reflected light.
Phong’s model often made objects look plastic, and the new model avoided this plastic
look for metals. Mathematically, the model differs from Phong’s by replacing the factor
rs with another more complicated one.

The Torrance-Sparrow specular reflectance model ([Blin77]):

Hypothesis. The surface being modeled consists of collection of many small mirror-
like faces (“micro facets”) oriented in a random manner. The specular component is
assumed to come from the reflection in those faces oriented in the direction H.

Conclusion.

(9.6)

D is the distribution function of the directions of the small faces,
G is the amount by which these faces shadow and mask each other, and
F is from the Fresnel reflection law.

Here is a more detailed description of the factors:

D: This term measures the proportionate number of facets oriented at an angle
a from the average normal to the surface. Torrance and Sparrow used a
simple Gaussian distribution and the formula

where c2 is the standard deviation of the distribution and a = cos-1 (N•H).
The c2 depends on the surface and plays the role of m in Phong’s model.

1/(N•V): Since intensity is proportional to the number of facets pointing in the direc-
tion H, we see more of the surface if the surface is tilted. The increase is
inversely proportional to the cosine of the tilt, leading to this term.

G: This term counteracts the previous one. Some facets shadow others. There
are three cases if we assume that facets are V-shaped grooves and angles
are equal but opposite about N. See Figure 9.5. See [Blin77] for a mathe-
matical justification for the approximation that

G(1) = 1 (case of no interference)

G(2) = 2 (case where the reflected light is blocked)

G(3) = 2 (case where the incident light is blocked)

Note that 0 £ G(i) £ 1.

N H N L
V H

∑() ∑()
∑

N H N V
V H

∑() ∑()
∑

G G G G where= ()() () ()min , , ,1 2 3

D c= -()()exp ,a 2
2

r
DGF

wheres =
∑N V

,

314 9 Illumination and Shading

9.2 Local Reflectance Models 315

F: This term corresponds to the fraction of light actually reflected rather than
absorbed, which, using the Fresnel reflection law, is a function of the angle
of incidence and index of refraction n.

(9.7)

where c = (V•H) and g = n2 + c2 - 1.

Other Ds have been used which are simpler in order to offset the computation for
G and F. See [Blin77] for more details.

In the discussion of reflectance models above we assumed a single-point light
source. For multiple light sources one adds the diffuse and specular contribution of
each but uses only one ambient term.

Finally, one fact that has not been touched on so far is how the distance between
an object and a light source affects its intensity. If one does not take distance into
account, then two equally sized spheres, one of which is much further away from the
light than the other, would be visually indistinguishable in a picture, which is not what
one would experience in real life. Laws of physics imply that light intensity is inversely
proportional to the square of the distance from the source. It turns out, however, that
if one models this effect, a lot of the time the pictures do not come out right and so
this factor is often ignored. Sometimes a factor inversely proportional to the distance
(rather than its square) is used. There are times when one wants to assume that the
light is “infinitely” far away (the rays are all parallel) and, in that case, clearly dis-
tance has to be ignored otherwise one would have zero intensity. The sun shining on
a scene is an example of this. If one wants to add a distance factor f, then one should
use an intensity equation of the form

(9.8)

where f could be 1/D2, D being the distance.

I I k f I k r k ra a p d d s s= + +(),

F
g c

g c

c g c

c g c
=

-()
+()

+
+() -[]
-() +[]

È

Î
Í
Í

˘

˚
˙
˙

2

2

2

2
1

1

1

Figure 9.5. Facets shadowing others.

316 9 Illumination and Shading

9.3 Simple Approaches to Shading

The last section described some simple illumination models and how one can use
them to compute the illumination at each point of an object. In this section we show
how this information is used to implement shading in a modeling program. The details
depend on

(1) the visible surface determination algorithm that is used,
(2) the type of objects that are being modeled (linear or curved), and
(3) the amount of work one is willing to do.

Constant Shading. The simplest way to shade is to draw all objects in a constant
color. The visible surface algorithms in Chapter 7 would then suffice to accomplish
that. A more sophisticated model would draw each polygon in the scene with a con-
stant shade determined by its normal and one of the described illumination models.

Constant shading that used facet normals would work fine for objects that
really were linear polyhedra, but if what we were doing was approximating curved
objects by linear polyhedra, then the scene would look very faceted and not smooth.
To achieve more realistic shading, we first consider the case of a world of linear
polyhedra.

Gouraud Shading. Gouraud’s scan line algorithm ([Gour71]) computes the illumi-
nation at each vertex of an object using the desired illumination model and then com-
putes the illumination at all other points by interpolation. As an example, consider
Figure 9.6. Assuming that the illumination is known at the vertices A, B, C, and D,
one computes it at the point X as follows: Let P and Q be the points where the edges
AC and BD intersect the scan line containing X, respectively. Compute the illumina-
tion at P and Q by linearly interpolating the illumination values at A, C, and B, D,
respectively. The value at X is then the linear interpolation of those two values.

To get the exact illumination values at vertices, normals are needed. These normals
are typically computed by taking the average of adjacent face normals. One needs to
realize though that doing this will have the effect of smoothing out an object. This is
what one wants if our objects are faceted representations of curved objects. On the
other hand, sometimes one wants to show edges, as in the case of a cube, and then
we need to avoid this smoothing operation. When we shade such a face, the normals
of the vertices for that face should be the same as the face normal.

Figure 9.6. Gouraud shading example.

9.3 Simple Approaches to Shading 317

Some anomalies can occur with Gouraud shading. Figure 9.7 shows a faceted
surface which might have been an approximation to a wavy surface, but whose
Gouraud shading would make it look flat because of the averaging of the normals.
The simplest way to get around that is to subdivide the given facets more. In the case
of Figure 9.7, we could divide each rectangular face into four subfaces.

There are other problems. If one uses Phong’s reflectance model, then small vari-
ations in the normal can produce large variations in the specular reflection. This
causes Gouraud’s method to produce peculiar highlights.

Phong Shading. To remedy some of the problems with Gouraud shading, Phong
([BuiT75]) interpolated the surface normals (rather than the intensities) at vertices
across faces and then computed the illumination at each point directly from the
normals themselves. This clearly takes more work, however. In particular, generating
unit-length vectors means taking square roots, which is costly in time. To lessen this
cost, one can use a lookup table and linear interpolation ([Duff79]). Alternatively, one
can use a Taylor expansion to get a good approximation ([BisW86]). The latter
approach produces pictures indistinguishable from real Phong shading at a cost that
is not much greater than that of Gouraud shading.

Phong shading produces better results than Gouraud shading, but it also has prob-
lems. Consider the concave polygon in Figure 9.8. The difference between the inter-
polated normal at the point P and the normal at the vertex V could cause a big change
in the illumination value as one moves from P to V. This again shows the importance
of sampling properly.

Gouraud and Phong shading basically assumed a scan line visible surface algo-
rithm approach. In that context, one can speed up the process by computing the
shading equations incrementally.

Figure 9.7. Gouraud shading anomaly.

Figure 9.8. Phong shading anomaly.

318 9 Illumination and Shading

9.4 Global Illumination Models

The problem with the simple models discussed in Section 9.2 is that they are only
local illumination models in the sense that they totally ignore the contribution of
other objects in the world. We have assumed that the light comes to a point directly
from a single source (with no shadows) and have dealt only with reflections from a
single surface when in reality light often reflects from several surfaces before reach-
ing the eye. Transparency properties have also been ignored. This section looks at
some global aspects of illumination and how to deal with them.

9.4.1 Shadows

In trying to produce realistic pictures, one will quickly discover that they do not look
that great if we omit shadows. A good discussion of shadow algorithms can be found
in [WoPF90] and [WatW92]. The algorithms are classified into the following
approaches:

(1) as part of early scan line visible surface algorithms,
(2) as part of the Weiler-Atherton visible surface algorithm ([AtWG78]),
(3) using “shadow volumes” ([Crow77b]),
(4) using “shadow z-buffers” ([Will78]).
(5) as part of ray tracing, and
(6) as part of radiosity methods.

We shall not go into the first two of these approaches. Approach (2) amounted to
running the basic Weiler-Atherton algorithm twice and involved lots of clipping of
polygons.

In the shadow volumes approach one extends each edge of an object that is an
outline. See Figure 9.9. The volume between the tetrahedron ABCD and its projec-
tion A¢B¢C¢D¢ from the light source on some fixed distant plane is called the shadow
volume generated by the object ABCD. The faces obtained in this way bound a volume
in which light has been obscured. For several light sources we get several such which
are tagged by the light source. Real polygons along with these shadow ones are passed
to the visible surface determination algorithm. Potentially many shadow polygons, that
is, faces of shadow volumes, will lie between the viewpoint and a surface. One uses a

Figure 9.9. Shadow volumes.

we have determined a visible point, all we have to is to send out a ray toward the light
source and see if it hits an object on the way. Radiosity methods handle shadows by
in large automatically, except some extra processing is required along the outlines of
shadows.

Finally, we need to point out that one needs to distinguish between hard and soft
shadow algorithms. We have discussed the former that simply determine in a “true”
or “false” manner whether a point is in a shadow. One associates either 0 or the normal
light intensity value to the point. Because of this, all that is involved is a visibility
determination of points in the umbra region of a shadow (the points that receive no
light). A soft shadow algorithm also includes a penumbra region in the computation
(the points that receive partial light). We refer the reader to the above-listed refer-
ences to see how algorithms can be modified to accomplish this. The references also
touch on the much more difficult problem of shadows when there are transparent
objects present.

9.4.2 Transparency

There are two ways to model transparency. The simple way is to ignore refraction and
pretend that light will pass straight through an object without any bending. The other
is to take refraction into account.

Using the simple model with no refraction, transparency can be implemented by
letting surfaces only partially obscure surfaces behind them. If a painter’s algorithm
is used in the visible surface determination algorithm, then one can overwrite (in the
back-to-front manner) each face on the current background with a blending function
of the type

(9.9)

where If and Ib are the illumination associated to the face and current background,
respectively, and kt is a transparency factor. As usual, there is a separate equation (9.9)
for each wavelength. One problem with this approach is that one loses any specular
reflection. To avoid this one can restrict the interpolation to the ambient and diffuse
component of the light and then add the specular component from the front object.
Adding transparency in this way greatly increases the cost of the rendering algorithm
because every surface is painted whether visible or not.

Using refraction in the transparency model increases the cost even further because
light no longer travels in a straight line and one has to compute how it is bent. Con-
sider a light ray passing from one medium to another at a point p on their common
boundary. See Figure 9.11. Let L and T be the unit vectors associated to the light paths
in the first and second medium as shown in the figure. Let q1 (the angle of incidence)
be the angle between L and the unit normal vector N to the boundary surface at a
point and q2 (the angle of refraction), the angle between T and N. Snell’s law states
that

(9.10)
sin
sin

,
q
q

1

2

1

2
=

n
n

I l k I k It f t b= -() + ,

320 9 Illumination and Shading

9.4 Global Illumination Models 321

where n1 and n2 are the index of refraction of the first and second medium, respec-
tively. A medium’s index of refraction is the ratio of the speed of light in a vacuum to
the speed of light in the medium. The index of refraction varies with wavelength. For
example, it is 1.0 if the medium is a vacuum and close to 1.0 in the case of air. For
other material it is larger than 1.0. Water has an index of refraction of 1.33; crown
glass, 1.52; and dense flint glass, 1.66.

To compute the refracted ray T, let U be the unit vector obtained by normalizing
the orthogonal projection of -L onto the plane orthogonal to N. It is easy to see that

Since

substituting the formula for U into this expression and rearranging terms gives

where n12 = n1/n2. But

so that

(9.11)

Note that formula (9.11) has a square root in it. This can be imaginary in certain cir-
cumstances. For example, if the index of refraction of the second medium is lower

T N L N L N L= ∑() - - - ∑()()[] -n n n12 12
2 2

121 1 .

cos sin sin ,q q q2
2

2 12
2 2

1 12
2 2

1 1 1 1= - = - = - - ∑()()n n N L

T N L= -() -n n12 1 2 12cos cos ,q q

T U N= () - ()sin cos ,q q2 2

U
N L
N L

N L=
() -
() -

= () -()cos
cos sin

cos .
q
q q

q1

1 1
1

1

Figure 9.11. The basic refraction model.

322 9 Illumination and Shading

than that of the first medium, then q2 is larger than q1. It is therefore possible for q2
to become larger than 90°. In that case, the light is reflected and no light enters the
second medium. This phenomenon is referred to as total internal reflection and the
smallest angle q1 at which this occurs is called the critical angle. Since sinq2 has value
1 there, Snell’s law shows that the critical angle is sin-1(n2/n1). Usually one is not inter-
ested in this angle and one only wants to know if total reflection has occurred, so that
one simply checks if the quantity under the square root sign in the formula for T is
negative.

9.4.3 Ray Tracing

Dealing with shadows and transparency handles the nonlocal property of illumina-
tion in only a very narrow way. There is a lot more interaction between objects. For
example, two glossy objects near one another reflect off each other. The models above
do not deal with this. Whitted ([Whit80]) is usually credited with implementing the
first comprehensive global illumination model. He suggested a recursive ray-tracing
algorithm, which can be represented as a tree. See Figure 9.12. One follows each com-
ponent ray and finds its intersection with all surfaces. Whitted used a formula of the
type

where the new rtIt term models the transparency effects due to refraction. This worked
quite well. The next chapter will study ray tracing in detail and so we say no more
about it here. Ray tracing is very expensive computationally. Whitted used bounding
volumes (spheres) to eliminate objects with respect to whether a given ray intersects
it. He also incorporated antialiasing.

A lot of work has been done on ray tracing. Its best results can be seen in pictures
where there are lots of reflections between objects. The pictures are not totally real

I r I r I r I r Ia a d d s s t t= + + + ,

Figure 9.12. Basic ray tracing.

however because these reflections come out too sharp. This does not happen in real
life where things are fuzzier. Ray tracing captures the specular interaction between
objects very well but not the diffuse interactions. Radiosity methods deal with the
latter.

9.4.4 Radiosity Methods

First implemented in 1984 at Cornell University ([GoTG84]), radiosity methods are
view-independent solutions that are based on the conservation of light in a closed
world. The term radiosity, derived from the literature on heat transfer, refers to the
rate at which energy leaves a surface and is the sum of the rates at which energy is
emitted, reflected, or transmitted from that surface to others. We shall give more
details in the next chapter. Suffice it to say that the method is more complex than ray
tracing but it produces more realistic pictures even though it does not handle specu-
lar light correctly. It is possible to combine ray tracing and the radiosity approach.

9.5 The Rendering Equation

Looking back over what has been covered with regard to illumination in this chapter,
we see lots of different formulas and approaches. Kajiya ([Kaji86]) attempted to unify
the general illumination problem by expressing it in terms of finding a solution to a
single equation that he called the rendering equation:

(9.12)

where

p and p¢ are any two surface points,
I(p,p¢) is the intensity of light passing from p to p¢,
g(p,p¢) is a visibility term (which is 0 if p and p¢ cannot see each other and

inversely proportional to the square of the distance between the points
otherwise),

e(p,p¢) is the intensity of light emitted from p¢ to p,
r(p,p¢,p≤) is related to the intensity of all light reflected towards p from a point

p¢ having arrived at p¢ from the direction to p≤, and
the integration is over all surfaces in the scene.

Notice that (9.12) is a recursive equation because the function I appears on both sides
of the equation. Also, each wavelength has its own equation (9.12). It can be shown
([WatW92]) that most of the illumination models discussed in this chapter are approx-
imations to the rendering equation. The rendering equation does not model every-
thing however. For example, it ignores diffraction and transparency.

I g I d
surfaces

p p p p p p p p p p p p, , , , , , ,¢ ¢ ¢ ¢ ≤ ¢ ≤ ≤() = () () + () ()È

Î
Í

˘

˚
˙Úe r

9.5 The Rendering Equation 323

324 9 Illumination and Shading

9.6 Texture and Texture Mappings

Surfaces are usually not homogeneous with respect to any particular property such
as color, intensity, etc., but they usually have a more or less uniform pattern that is
called the visual texture. This pattern could be generated by physical texture, such as
a rough wall surface, or markings, as on wallpaper. Sometimes a collection of objects
is viewed as one, as in the case of a brick wall, and then the pattern in each deter-
mines the texture of the whole. Texture is a useful concept in understanding scenes.
Without texture pictures do not look right.

What exactly is meant by texture? The characteristics of synthetic textures are
easiest to explain. Examples of these are shown in Figure 9.13. It is much harder in
case of natural phenomena such as sand, straw, wood, etc., but there is some unifor-
mity. One studies texture as a property of a pattern that is uniform in a statistical or
structural sense. There is a nice discussion of texture in [Neva82]. We summarize a
few of the main points.

Statistical Texture Measures. Such measures are motivated by a lack of a simple
pattern. One looks for average properties that are invariant over a region. An example
of this is the probability distribution of single pixel attributes, such as, the mean and
variance of its intensity function. Another is the use of histograms of individual pixel
attributes. Better yet, one can try to detect the presence of certain features, such as
the density of edges, and then compute the mean, variance, etc., of these to distin-
guish between “course” and “fine” textures. The Fourier transform has also been used
to look for peaks since textures are patterns. Using such measures one can generate
symbolic descriptions like “bloblike,” “homogeneous,” “monodirectional,” or “bidi-
rectional.” An example of a fancier measure is a function of the type

Such measures have been used successfully for wood, grass, corn, water, etc.

p i j d the

ith

, , ,q
q

() = probability of a pair of pixels separated by a distance d in

direction w intensities i and j

Figure 9.13. Synthetic textures.

9.6 Texture and Texture Mappings 325

Structural Texture Measures. The idea here is to find primitives from which the
totality is built. This clearly is hard to compute for natural textures. There may be a
hierarchy: one pattern may repeat to form a larger pattern. One can think of struc-
tural texture in a syntactical way. The primitives are a little bit like sentences of a lan-
guage with a specified grammar.

Texture is introduced into graphical images by means of texture mappings. It is a
way to attach detail to surfaces without a geometric model for the detail so that one
can produce much more complex images without more complexity in geometric
descriptions. This idea was first used by Catmull and then extended by Blinn and
Newell ([BliN76]). Heckbert ([Heck86]) presents a good survey of texture maps. See
also [WeiD97]. In general, texture maps can be functions of one or more variables.
We concentrate on the two variable case here.

Assume that we are given a surface patch parameterized by a function p(u,v). In
addition to each point p on the surface having (u,v)-coordinates, we now associate
texture coordinates (s,t) and a predefined texture map T(s,t) defined on this texture
coordinate space, which defines the light intensity at the point p. If p projects to screen
coordinates (x,y), then the value T(s,t) is copied to frame buffer location (x,y). Basi-
cally, we have a map F which sends (u,v) to (s,t). See the commutative diagram in
Figure 9.14(a). Usually the map F is a linear map and T is represented by a two-
dimensional array. Figure 9.14(b) shows how one can map a grid of lines onto a cylin-
der. The parameterization is assumed to be the map p given by

With domain [0,p/2] ¥ [0,1]. The map F is given by

If T is represented by a two-dimensional array, then the intensity
T(Round(2u/p),Round(v)) would be associated to the pixel at (x,y). Another way to

F u v u v, , .() = ()2 p

p u v u u v, cos , sin ,() = -() -()()p p2 2

Figure 9.14. Texture mappings.

deal with repeated patterns like this is to predefine only a primitive part of the pattern
and then get the repetition using the mod function as in

For example, if k is 10, then we get a 10 ¥ 10 grid on the patch.
These examples show the essential idea behind texture mappings but assume a

perfect mathematical model with all computations carried out to infinite precision.
Implementing such an approach involves a lot of work and care must be taken to
avoid aliasing. If the rendering algorithm is a scan line algorithm, then for each screen
coordinate (x,y) one needs to find the (u,v) so that p(u,v) projects to (x,y), which is
time consuming. Catmull ([Catm74]) subdivided the surface until each patch pro-
jected into a single pixel. One could then map the center of each of the corresponding
rectangles in (u,v) space to texture space. Unfortunately, this straightforward
approach leads to aliasing. In Figure 9.14 we might miss the grid lines. Aliasing is a
serious problem for texture mappings. One solution is to sample at higher resolutions
and the other is to use filters before sampling. Catmull used the latter and a convo-
lution filter. He also subdivided texture space at the same time until each of its patches
mapped onto a single pixel and used the average of the texture values in that final
texture patch. A better solution is the one found in [BliN76].

Another problem with the above is distortion of the texture if the parameteriza-
tion is not chosen correctly. For example, if we parameterize the cylinder by

then the grid pattern is no longer uniformly spaced on the cylinder. The problem is
that the parameterization is not a similarity map. Few are. One simple approach that
seems to be quite successful for spline surfaces is to use a chord length approxima-
tion to the original parameterization. See [WooA98]. Bier and Sloan ([BieS86]) sug-
gested another approach to alleviate the distortion problem. The idea is to define
the texture for an intermediate surface I and then use a map m from that surface to
the target surface O. Four methods have been used to define the map m : I Æ O. Let
q = m(p).

Method 1. This method computes m-1. If R is the ray starting at q that is the reflec-
tion of the ray from the eye to q, then p is the intersection of R with the intermedi-
ate surface. See Figure 9.15(a).

Method 2. This method also computes m-1. If R is the ray starting at q in the direc-
tion of the normal to the target surface at q, then p is the intersection of R with the
intermediate surface. See Figure 9.15(b).

Method 3. This is yet another method which computes m-1. If R is the ray from the
centroid of the target surface to q, then p is the intersection of R with the interme-
diate surface. See Figure 9.15(c).

Method 4. If R is the ray from p in the direction of the normal to the intermediate
surface at p, then q is the intersection of R with the target surface. See Figure 9.15(d).

p u v u u v, , , ,() = - -()1 2

F u v uk vk, mod , mod .() = ()2 1 1p

326 9 Illumination and Shading

9.7 Environment Mappings 327

Some intermediate surfaces that have been used are planes, the surface of boxes,
spheres, and cylinders. Using intermediate surfaces that reflect the shape of the target
surface rather than always using a square or the sphere is what avoids some of the
distortion. Bier and Sloan refer to this approach as “shrink wrapping” a pre-distorted
surface onto an object. One could of course eliminate all distortion by letting the
intermediate surface be the target surface; however, the latter was presumably too
complicated to have defined the texture on it directly. One has to walk a fine line
between having relatively simple intermediate surfaces and minimizing distortion.
Furthermore, the map m or m-1 should not be too complicated.

One way to avoid the problems associated with texture maps that we mentioned
above is to use three-dimensional texture maps. Specifically, we assign a texture
T(x,y,z) to each world point (x,y,z). Then for each point p of an object in world co-
ordinates we would simply use the texture T(p). In this way textures can be mapped
in a nice continuous way onto objects and we have solved one of the main problems
of two-dimensional texture maps. Of course, we need to be able to define such a map
T(p). A table of values would now take up a prohibitive amount of space so that a
procedural definition would be called for, but that is not always easy to find.

Aliasing can be problem with texture. The most common solution is to use mip-
maps. Mip-mapping was developed by Williams ([Will83]) specifically for textures.
Instead of a single texture, one precomputes a sequence, each successor being half
the resolution of the previous one. One selects the texture for a region of an object
based on its distance from the viewer to get the level of detail correct. For a more
thorough description the reader can also see [WatW92] or [WatP98].

9.7 Environment Mappings

An environment mapping starts with a predefined picture on some closed surface that
surrounds the entire world of objects and then maps this picture onto the objects. The
difference between this and texture mappings is that the picture is mapped in a view-

Figure 9.15. Texture mappings with interme-
diate surfaces.

328 9 Illumination and Shading

point dependent way. As an example, consider Figure 9.16. The picture is assumed to
be painted on a spherical environment surface E. We map it onto the object O as
follows: To each visible point q on O we map that point p on E to which the ray from
the viewpoint reflects. Nice effects can be achieved by either moving the object O or
changing the viewpoint. The environment surface does not have to be a sphere. In
fact, it turns out that a sphere is not a good choice because trying to paint a picture
on it can easily cause distortion. A more common choice is to use a cube. One could,
for example, take six pictures of a room and map these to the six sides of the cube.

Environment mappings were originally developed in [BliN76] where they were
called reflection mappings. [Gree86] suggested using cubes. The whole idea of envi-
ronment mappings is basically a cheap way to get the kind of reflection effects that
one gets with ray tracing, but they have become popular. Large flat surfaces on objects
cause problems however because the reflection angle changes too slowly.

9.8 Bump Mappings

A problem related to giving texture to objects is to make them look rough or smooth.
Simply painting a “rough” texture on a surface would not work. It would not make
the surface look rough but only look like roughness painted on a smooth surface. The
reason for this is that the predefined texture image is using a light source direction
that does not match the one in the actual scene. One needs to change the normals
(from which shading is defined if one uses the Phong model) if one wants an effect
on the shading. This was done by Blinn ([Blin78]), who coined the term “bump
mapping.” Again, assume that we have a surface patch X parameterized by a func-
tion p(u,v). A normal vector n(u,v) at a point on the surface is obtained by taking the
cross-product of the partial derivatives of p(u,v) with respect to u and v, that is,

If we perturb the surface slightly along its normals, we get a new surface Y with para-
meterization function P(u,v) of the form

(9.13)P u v p u v b u v
n u v
n u v

, , ,
,
,

,() = () + () ()
()

n u v p u v p u vu v, , , .() = () ¥ ()

Figure 9.16. A spherical environment mapping.

9.8 Bump Mappings 329

where b(u,v) is the bump map or perturbation. See Figure 9.17. The vectors

are normal vectors to Y at P(u,v). But, suppressing references to the parameters u
and v,

and

If we assume a small perturbation b(u,v), then it is reasonable to neglect the last terms.
Therefore, N is approximated by

(9.14)

Note that in order to compute the approximate normals for Y we do not need to know
the perturbation function b(u,v) itself, but only its partial derivatives. Any function
can be used as a bump function. To speed up the computation one typically uses a
lookup table and interpolation. Standard approximations to the partials are

(9.15a)b u v b u v b u vu , , ,() = +() - -()()1
2e

e e

¢ = ¥ +
¥

+
¥

= +
¥

+
¥

N p p b
n p

n
b

n p
n

n b
n p

n
b

n p
n

u v u
v

v
u

u
v

v
u .

P p b
n
n

b
v

n
nv v v= + + Ê

Ë
ˆ
¯

∂
∂

.

P p b
n
n

b
u

n
nu u u= + + Ê

Ë
ˆ
¯

∂
∂

N u v P u v P u vu v, , ,() = () ¥ ()

Figure 9.17. Texturing with bump
maps.

330 9 Illumination and Shading

(9.15b)

for suitable small value e. Thus it suffices to use a table b(i,j) and to compute b(u,v)
at all other values via a simple linear interpolation. The values of the partials bu and
bv are computed with formulas (9.15).

To reduce aliasing, Blinn suggested that one sample intensities at a higher reso-
lution and then average the values.

9.9 The Rendering Pipeline

In this and previous chapters we have covered many different topics that deal with
getting a real picture onto a computer’s monitor screen. We started be describing the
basic graphics (projection) pipeline and then moved on to visible surface algorithms
and illumination and shading models. Everything might have made sense in isolation,
but the reader may have been left wondering how one puts all this together in prac-
tice. What is the order in which various steps should be performed? This section will
try to clarify that. The answer depends on how objects are represented, whether we
are using a local or global illumination model, and which visible surface algorithm
we are using.

The most popular way to render scenes has become a case of first polygonizing
the objects in the scene (if they are not already a collection of polygons) and then ren-
dering the resulting polygons. With this approach, a polygon becomes the basic unit
in the rendering process and the typical graphics hardware supports this nowadays.
Such support is important for real-time rendering because a complex scene with
curved objects might need millions of polygons for a good representation. Although
rendering smooth surfaces by means of approximating polygons is the most efficient
approach with today’s hardware, there are problems, such as aliasing, and algorithms
exist for rendering them directly. See, for example, [ElbC96].

Local Illumination Pipelines. There are two basic ways to render the list of poly-
gons. One can render each polygon individually and independent of each other (by-
polygon rendering) or one can render all the polygons in a scan-line order (by-scan-line
rendering), meaning that all the segments in which polygons meet a scan line are ren-
dered before one moves on to the next scan line. One can use different visible surface
algorithms, but the use of a Z-buffer or some sort of depth ordering has become
commonplace.

Rendering approach Compatible visible surface algorithm type

by-polygon Z-buffer, list priority type algorithms
by-scan-line Z-buffer, scan line Z-buffer, scan line algorithm

The advantage of by-polygon rendering is that it is easy to implement with little active
data to maintain, whereas the by-scan-line rendering has to maintain a potentially
large amount of data for each scan line. On the other hand, by-scan-line rendering is

b u v b u v b u vv , , , ,() = +() - -()()1
2e

e e

9.9 The Rendering Pipeline 331

more efficient since it can take advantage of coherence. Furthermore, since the image
is generated in scan line order, there are opportunities for hardware optimization
along with making anti-aliasing easier.

As an example, Figure 9.18(a) shows the rendering pipeline for a Z-buffer algo-
rithm and Gouraud shading. A polygon is first transformed into world coordinates.
Simple tests, such as back face elimination or bounding box tests, are performed to
eliminate polygons that are obviously not visible. The illumination is computed at
each vertex. This computation cannot be postponed because the perspective trans-
formation distorts the needed normal and light vectors. (Camera coordinates would
also work.) Next the object is mapped to the homogeneous clipping coordinates and
clipped. If new vertices are introduced at this stage, then we must compute illumi-
nation values for them. To get these new values we have to map the points back to
the corresponding world coordinate points and do the illumination computations for
the latter. Finally, the vertices of the clipped polygon are mapped back down to the
normalized clip coordinates in the unit cube and sent to the Z-buffer along with the
illumination information. The Gouraud algorithm will now interpolate the vertex
values over the entire object.

A second example of the rendering pipeline where we use the Z-buffer algorithm
and Phong shading is shown in Figure 9.18(b). The difference between this pipeline
and the one in Figure 9.18(a) is that, since we need normals, we cannot do any light-
ing computations until we are finished clipping. It is at that point that we need to
map all vertices back to world or camera coordinates. The normals, their interpolated

Æ Æ Æ Æ

Æ Æ Æ Æ

(a) Z-buffer algorithm and Gouraud shading

Æ Æ Æ Æ

Æ Æ Æ Æ

(b) Z-buffer algorithm and Phong shading

List of
polygons

Shape to
world coords

Trivial
reject/accept

Vertex lighting
computations

World to
hclip coords

Clipping To clip coords in
[0,1]¥[0,1]¥[0,1]

To frame and
Z-buffer

Screen

List of
polygons

Shape to
world coords

Trivial
reject/accept

World to
hclip coords

Clipping

To clip coords in
[0,1]¥[0,1]¥[0,1]

Lighting
computations

ScreenTo frame and
Z-buffer

Figure 9.18. Local illumination rendering pipelines.

332 9 Illumination and Shading

values, the light direction vectors, etc., on which illumination computations are based,
must all be in world or camera coordinates.

As a third example of the rendering pipeline, suppose that one were to use a list
priority algorithm such as the BSP algorithm and Phong shading. The pipeline will
be similar to the one shown in Figure 9.18(b), but we do not need a Z-buffer here
because polygons are ordered by depth and we can use a painter’s algorithm.

Global Illumination Pipelines. In the case of radiosity and, say, Gouraud shading
we first convert objects to world coordinates and precompute the view-independent
vertex intensities. This new data is then fed into a standard rendering pipeline, which
no longer needs to do any lighting computations. See Figure 9.19(a).

The ray-tracing rendering pipeline is the easiest of them all. It is shown in Figure
9.19(b). We simply convert all objects into world coordinates and then do the ray
tracing for each pixel on the screen.

9.10 Selecting a Color Palette

After the pixel data has been generated for an image, one is sometimes faced with one
last decision, namely, choosing a palette (an indexed collection of colors). The problem
is that there may be a limit to how many colors a graphics system can display at any
one time and the image may contain more colors than that. This is no longer such a

Step 1:
Æ Æ

Step 2:
Æ Æ

Æ Æ Æ Æ

(a) Radiosity and Gouraud shading

Æ Æ Æ

(b) Ray tracing

Polygons in world coords
with intensity data

Trivial
reject/accept

World to
hclip coords

Clipping To clip coords in
[0,1]¥[0,1]¥[0,1]

To frame and
Z-buffer

Screen

List of
polygons

Shape to
world coords

Ray tracing Screen

List of
polygons

Shape to
world coords

Vertex intensity computations
using radiosity method

Figure 9.19. Global illumination rendering pipelines.

big issue today because graphics systems typically have no problem displaying 24 bits
of color; however, in earlier days it was only possible to display 256 colors (or less).
We sketch some solutions to the color quantization problem here. More details can
be found in [Lind92]. See also [Paet90].

Fixed Palette Quantization. Here one basically ignores the problem and simply
uses a fixed palette of, say, 256 colors for all pictures and “rounds” all image colors
to one of these. This is obviously the simplest approach but would probably not be
very satisfying.

Uniform Quantization. Here we divide the RGB color cube into uniformly spaced
subcubes and round any number to its appropriate subcube representative.

Popularity Quantization ([Heck82]). In this approach we count the number of
pixels associated to each color in the image and then use the colors with the largest
counts. All other colors are mapped to one of these using some sort of minimum dis-
tance criterion. The algorithm works fairly well if there are only a small number of
colors in the image. It has problem with highlights that usually account for only a few
pixels. One way that this problem is diminished is by always including the eight
corners of the RGB cube.

Median Cut Quantization ([Heck82]). This improves on the popularity quantiza-
tion and is probably the most popular method. The idea here is to choose colors so
that each represents roughly the same number of pixels in the image. The set of colors
in the RGB color cube from the image is enclosed in a box and the longest side of the
box is divided in half at the median point so that half of the image colors are in each
half. This division process is repeated recursively on the smaller boxes until we have
as many boxes as the desired number of colors in our palette. All image colors are
then rounded to the colors at the centroid of the boxes.

Octree Quantization ([GerP90]). This approach mimics the octree approach to
representing solids. We start with the color cube and divide it into eight subcubes.
These subcubes are then further subdivided recursively depending on whether or not
they contain a color from the image. The tree is maintained at the desired size with
an averaging process. Any reductions in size are carried out as the tree is being built.
There is no need to use up a lot of space and build the complete tree first. The main
advantages of octree quantization are that it is faster, uses less memory, and produces
similar results to the other methods.

9.11 Programming Notes

This section provides the reader with a few helpful hints for using shading in a mod-
eling program. Most are in reference to the Bouknight or Phong reflectance models.

First of all, use ambient light because, without ambient light, back faces would
be black. Set the ambient light to the color of the background, even though this is not
what we actually experience because in real life light reaches that face from diffuse

9.11 Programming Notes 333

surfaces in many ways. In any case, the ambient term lets us model this light in a
simple way without doing lots of complicated computations (such as radiosity). Too
little ambient light creates very sharp shadows, too much washes out the entire
picture.

Picking good reflectance coefficients ka, kd, and ks is not easy and they are usually
found by experimentation. The task is basically an art because it relies on one’s expe-
rience. This should not be that surprising given the empirical foundation of the
Bouknight and Phong models. Simple models set the entire ambient term to a con-
stant. Other constants to try are

For several light sources one uses separate diffuse and specular light components.
There is one problem that arises whether one is using a single or several light sources.
One wants the total computed light intensities at a pixel to fall inside the interval [0,1]
because they are considered to be based on the color cube model. This may not happen
though. The simplest solution would be to clip the value to [0,1]. One can also scale
all pixel values appropriately, although this would involve more work. Unfortunately,
either of these solutions may cause color artifacts. For a good analysis of this problem
see [Hall89]. In general, Hall’s book is a good all-around reference for practical sug-
gestions dealing with illumination and regarding the use of the Phong model. Note
that once intensities are in [0,1] a program would scale them to the correct bit values.
For example, if our graphics system supports 8 bits each for red, green, and blue, then
we would scale to an integer value between 0 and 255. The typical graphics API
requires that colors are represented by integer values (or composites thereof, since
one combines the red, green, and blue parts into one word usually).

Here are some sample RGB color values ([Lind92]), but be aware that these are
not universally agreed on values:

aquamarine = (0.498,1.0,0.8314) ivory = (1.0,1.0,0.9412)
beige = (0.64,0.58,0.5) maroon = (0.6902,0.1882,0.3765)
brown = (0.5,0.1647,0.1647) mint = (0.74,0.99,0.79)
carrot = (0.93,0.57,0.13) orange = (1.0,0.5,0.0)
chartreuse = (0.498,1.0,0.0) orchid = (0.8549,0.4392,0.8392)
chocolate = (0.8235,0.4118,0.1176) pink = (1.0,0.7529,0.7961)
cobalt = (0.24,0.35,0.67) plum = (0.8667,0.6275,0.8667)
copper = (0.84,0.04,0.15) purple = (0.6275,0.1255,0.9412)
coral = (1.0,0.498,0.3137) silver = (0.8,0.8,0.8)
flesh = (1.0,0.49,0.25) turquoise = (0.251,0.8784,0.8157)
gold = (1.0,0.8431,0.0) violet = (0.56,0.37,0.6)
indigo = (0.03,0.18,0.33) wheat = (0.9608,0.8706,0.7020)

On another matter, to make a light appear in a scene associate to it a sphere which
is fully transparent.

Finally, there is a fact about luminance (measured brightness) that should be men-
tioned. RGB color values and the luminance that they define are not related in a linear
way on most CRT monitors or our visual system. If one were to switch from an inten-
sity value of 0.5 to one of 1.0, one might expect that the image would be twice as

k k k m and ka d s t= = = = =0 3 0 7 0 9 100 0 65. , . , . , , . .

334 9 Illumination and Shading

9.13 Programming Projects 335

bright, but that is not what happens. Figure 9.20 shows the relationship between elec-
tron gun voltage V and luminance I. The formula relating the two has the form

where c and g are constants that are different for each monitor. The typical range for
g is a value between 2.0 and 3.0 with g = 2.2 being the NTSC signal standard. The com-
pensation for this nonlinearity is called the gamma correction and is accomplished by
using a lookup table. For example, if intensities are translated into 8-bit integer values,
then one would have a table of size 256 and location k in the table would hold the
value k1.0/g. The same lookup table would be used for the red, green, and blue com-
ponents of a color.

9.12 PROGRAMMING PROJECTS

Section 9.3

9.3.1 Extension of programming project 7.5.1.

Now include shading. Compare the results you get from using the Bouknight and Phong
reflectance model.

Section 9.4

9.4.1 A simple shaded world.

(a) Display a shaded world of spheres and a “floor.” Also show shadows. Represent the floor
as a large rectangle in the plane with the spheres above it. Use a simple ray-tracing program.
Send out two rays: one from the camera (through each pixel in the view plane) to find the point
on the nearest object and then one from that point to the light to see if it is in the shadow. For
testing purposes, add the following submenu to your main menu

I c V= g,

Figure 9.20. The relationship between CRT
gun voltage and luminance.

336 9 Illumination and Shading

Clicking on the ViewPos and LightPos items should let the user to change the position of the
viewer and the light, respectively.

Again compare the results from using the Bouknight and Phong reflectance model. See
how adding a distance factor changes the image.

(b) Add blocks to the world in (a).

Section 9.6

9.6.1 Implement some textures on boxes and spheres.

to make simplifications because of the computational complexity. A sometimes-
overlooked important third stage (and one we do not consider at all in this book) is
mapping these values correctly to the display device to produce the correct image for
the user. The goal is to make a user’s perceptual reaction to a real scene and to its
picture the same. These comments lead us to say a few words about another topic,
image-based rendering.

Image-based rendering has become a very active area of research. In very broad
terms, what one is trying to do here is to reconstruct a three-dimensional world from
two-dimensional data that may have been collected from a variety of sensors, such as
cameras. In the case of pictures from a camera, one is starting with something that
is as realistic as it can get since it involves an image of an actual scene, not an artifi-
cially created one. In one form of image-based rendering one takes one or more pic-
tures of a scene and then attempts to show how the scene would look from different
view points. No three-dimensional models are built and no lighting model is involved
because one is simply transforming given pixel values. In other types of image ren-
dering the goal is to reconstruct a three-dimensional world that can then be displayed
from different views. Depending on the generality of the scenes that one wants to
handle, this might involve using tools from the field of computer vision. Computer
vision deals with taking some raw two-dimensional pixel data and trying to make
sense of it by, for example, finding the edges in the picture and then collecting them
together into higher-level objects such as curves and rectangles. Knowing the rectan-
gles in a picture one can then try to figure out the three-dimensional object that pro-
jected on them.

By in large, image-based rendering is only peripherally related to the subject of
this book. A good place for a vast amount of information about the field are some of
the courses at the yearly ACM SIGGRAPH conference that have been dedicated to this
subject, for example, [Debe99]. As one can see from the title of that particular course,
the field can be considered as divided into three parts: image-based modeling, image-
based rendering, and image-based lighting. In image-based modeling all or part of the
goal is to reconstruct a three-dimensional world. Although one uses methods of geo-
metric modeling, this is not really a part of the field of geometric modeling per se.
Image-based rendering, as we described above, deals with generating different views
of a picture by transformations of the original. Image-based lighting refers to the
process of reconstructing the correct lighting for the different views generated via
image-based modeling or rendering.

10.2 Ray Tracing

10.2.1 A Ray-Tracing Program

A top-level abstract ray-tracing program looks like the following:

338 10 Rendering Techniques

for all pixels p do
begin

Define the ray R(p) which starts at the eye and goes in the
direction determined by p in world coordinates;

Find the intersections of R(p) with all objects in the world;
Determine which intersection is closest to the eye;
Determine the color of the light returning to the eye from that

point;
Set the value of p to that color;

end;

To determine the color at the pixel, one needs to determine all possible light rays that
arrive at the corresponding point in the world. This reduces to recursively sending
out a number of secondary rays.

The ray-tracing program described in this section will keep track of four differ-
ent rays. See Figure 10.1(a). A pixel ray is the ray “from” the eye to the point in the
view plane determined by a pixel. A reflection ray is a ray that carries reflected light
to a point on an object. A transparency ray is a ray that carries light (the transmitted
light) to a point on an object from “within” it. Finally, a shadow ray is the ray from a
point on an object to a light source. Shadow rays are used to determine if a point is
in the shade of another object. As mentioned in the last chapter, shadow information
is important for making pictures look realistic. In Figure 10.1(a) we assume that
objects W and Y are transparent whereas objects X and Z are not, that is, the latter
two objects do not allow any light to pass through them. In the figure, E is a pixel ray.
R1 is the reflection of E at a point on object W and T1 is the transparency ray. S1 and
S2 are the shadow rays to the two light sources A and B. The fact that S2 intersects Z
means that Z casts a shadow on W. The ray T1 hits object X and is reflected along R2.
Two shadow rays S3 and S4 are spawned. The ray R1 hits object Y and generates a
reflected ray R3 and a transparency ray T2. The two shadow rays here are S5 and S6.
The ray tree is shown in Figure 10.1(b).

Assume that the viewport is the rectangle [XMIN,XMAX] ¥ [YMIN,YMAX] and
that I[i,j] specifies the intensity value of the (i-j)th pixel in the frame buffer. Algorithm

10.2 Ray Tracing 339

Figure 10.1. Ray-tracing rays.

10.2.1 shows a more detailed ray-tracing program. The Shade function is shown in
Algorithm 10.2.2. There we further assume that each object has associated with it two
fields – shininess and transparency – which indicate if it is shiny or transparent
enough to warrant sending out new reflection and transparency rays, respectively. See
[Hill90]. For simplicity we treat intensity as just a single real number in both algo-
rithms even though it has three components, for red, green, and blue. A real algo-
rithm would have to make three separate computations. For a more sophisticated
ray-tracing program using OpenGL, see [Hill01].

To speed up a ray-tracing program one needs to reduce the number of ray-object
intersection computations. One thing that is usually done is to use bounding boxes
or other bounding objects. More generally, one uses a hierarchical structure for the
bounding objects. For example, in the case of a table one might have a bounding box
for the whole table, and, if a ray intersected this box, then one would next check for
intersections with bounding boxes for the legs and top. Kay and Kajiya ([KayK86])
discuss the properties such a hierarchy should have and how one can construct it. A
natural hierarchy of bounding objects can be gotten by mimicking the hierarchy or
tree structure of the parts of an object.

340 10 Rendering Techniques

integer i, j;
ray r; { defines starting point and direction of ray }
point eyePt, hitPt;
shape pointer hitObjP;
real array I [XMIN .. XMAX, YMIN .. YMAX];

for i:=YMIN to YMAX do
for j:=XMIN to XMAX do

begin
ComputeRay (i,j,r);
FirstIntersection1 (r,hitPt,hitN,hitObjP);
if hitObjP π nil

then I[i,j] := Shade (eyePt,nil,hitPt,hitN,hitObjP,1)
else I[i,j] := background

end;

procedure ComputeRay (integer i, j; ref ray r)
{ Computes the ray r (in world coordinates) from the eye defined by the (i,j)th pixel }

procedure FirstIntersection1 (ray r; ref point hitPt, hitN; ref shape pointer hitObjP)
{ Returns a pointer hitObjP to the closest object intersected by the ray r, the point hitPt
 on that object where the ray intersects it, and the surface normal hitN at that point.
 Use bounding boxes for projected objects in view plane to speed up computation. }

Algorithm 10.2.1. A ray-tracing program.

10.2 Ray Tracing 341

{ Constants }
maxDepth = 10; { the maximum number of reflections or refractions we allow }
minShinyness = 0.1;
minTransparency = 0.1;

real refl, refr; { Global reflection and refraction coefficients }

real function Shade (point atPt; shape pointer atObjP; point fromPt, fromN;
shape pointer fromObjP; integer depth)

{ This returns the shade at point atPt on the object to which atObjP points determined by the
 light coming from fromPt on object to which fromObjP points. fromN is normal at fromPt. }

begin
boolean rayInObject;
real light; { the intensity }
point viewV, lightV, lightPt, newPt, newN;
ray reflectedRay, refractedRay;
shape pointer newObjP;

if fromObjP = nil then return (background intensity);

viewV := atPt - fromPt;
rayInObject := (atObjP = fromObjP);

{ First we compute the local intensity }
if rayInObject

then light := 0.0
else

begin
light := AmbientLight (atPt);
for all light source location lightPt do

begin
 lightV := lightPt - fromPt;
if not (InShadow (fromPt,lightPt) then

light := light + DiffuseLight(viewV,lightV,fromN)
+ SpecularLight(viewV,lightV,fromN);

end
end;

if depth < maxDepth then
begin

{ Now shoot the reflected ray }
if ShinynessOf (fromObjP) > minShinyness then

begin
reflectedRay := MkReflectedRay (viewV,fromPt,fromN);
FirstIntersection2 (reflectedRay,newPt,newN,newObjP);
if newObjP π nil then
 light := light + refl*Shade (fromPt,fromObj,newPt,newN,newObjP);

end;

Algorithm 10.2.2. A shade function.

Bounding boxes help in determining the intersection of a ray with an object, but
perhaps there was no need to consider that object in the first place. In other words,
we should try to mark those parts of space that contain no objects at all and take
advantage of spatial coherence. For example, using a median cut scheme that is gen-
erated automatically by the program we can create a top-down binary tree obtained
by sorting objects by the x-coordinate of some different coordinate axes at each level
and using the median value to partition the objects. If one were to sort on all three
coordinates x, y, and z simultaneously, one would get a hierarchy similar to that of
an octree. See [Glas84] and [FuTI86]. Alternatively, Sung and Shirley ([SunS92])
describe how a BSP tree can be used and compare this method to others. Subse-
quently, Havran et al. ([HKBZ97]) showed that one can speed up the traversal sub-
stantially if one uses an orthogonal BSP tree and ensures that statistically more
common cases are handled more efficiently. Another way to use coherence is to alter-
nate scanning from left-to-right and right-to-left. In that way one can use coherency
at the ends of scan lines to make intersection computations more efficient. For a more
detailed discussion of ray tracing speed-ups see [WatW92].

The simple ray-tracing program described in Algorithm 10.2.1 runs into the old
problem of aliasing, that is, the problem of not sampling enough. For example, we
only sent out as many primary rays as there are pixels. This means that some small
objects may not show up because they “fell through the crack.” See Figure 10.2. Two

342 10 Rendering Techniques

{ Next, shoot the refracted ray }
if TransparencyOf (fromObjP) > minTransparency then

begin
if not(TotalInternalReflection (fromN,viewV)) then

begin
 refractedRay := MkRefractedRay (viewV,fromPt,fromN,fromObj);
 FirstIntersection2 (refractedRay,newPt,newN,newObjP);

if newObjP π nil then
light := light + refr*Shade (fromPt,fromObj,newPt,newN,newObjP);

end
end

end;

return (light);
end; { Shade }

{ The functions MkReflectedRay and MkRefractedRay return the appropriate ray }

procedure FirstIntersection2 (ray r; ref pnt3d hitPt, hitN; ref shape pointer hitObjP)
{ The only difference between this procedure and FirstIntersection1 is that we use
 three-dimensional bounding boxes rather than two-dimensional boxes }

Algorithm 10.2.2. Continued

ways to deal with this aliasing problem are (uniform) supersampling and stochastic
sampling. More thorough discussions can be found in [WatW92] and [Roge98].

Supersampling. With this approach one simply sends out more rays and then aver-
ages the results. For example, one could send out k2 rays for each pixel. More specif-
ically, if the resolution is m ¥ n, assume a virtual resolution of km ¥ kn and send out
a ray for each virtual pixel and then average the values of successive k ¥ k grids.
Although this approach does not solve the aliasing problem, it helps. According to
[Whit85], k = 4 seems to give adequate results. Two methods related to supersampling
that avoid the problem in simple ray tracing caused by sending out an infinitesimally
thin ray are cone tracing ([Aman84]), where single rays are replaced by thin cones,
and beam tracing ([HecH84]), where rays are replaced by bundles of parallel rays.

Adaptive Supersampling ([Whit80]). This is a variant of supersampling. The idea
here is that rather than blindly shooting off all the rays that supersampling requires,
one should concentrate where it counts. See Figure 10.3. One starts by tracing rays
through the four corners and center of a pixel, marked A–E in the figure. Next, one
compares the colors of the pairs of rays (A,E), (B,E), (C,E), and (D,E). One starts sub-
dividing and sending out more rays only where differences are detected. For example,
suppose that the values at the pairs (A,E) and (D,E) are similar, but the values at the
other pairs are substantially different. In this case, one should look at the quadrant
defined by E and B more closely. To do this, one sends out new rays through F, G, and
H shown in the figure. Again one compares the values in this quadrant and, if there
are any differences, then the subdivision process is continued until no substantial dif-
ferences between adjacent points are detected. Next, one would notice that the values
at C and E are different and apply the same recursive process to the E-C quadrant.

10.2 Ray Tracing 343

Figure 10.2. Losing small objects in ray tracing.

Figure 10.3. Shooting rays with adaptive
supersampling.

In the end we have values for a collection of rays and the last step is to determine an
appropriate weighted average of all these ray values, which is then assigned to the
pixel. A simple scheme for doing this is to recursively average the four subquadrant
values for every quadrant.

Stochastic Sampling. Here, rather than sending out extra rays in a uniform pattern
as is done in supersampling, we sample in a nonuniform manner. One pattern, sug-
gested by [Cook86], is referred to as a minimum-distance Poisson distribution, where
one rejects points from a Poisson pattern that are closer than some minimum dis-
tance. This method is very expensive because it requires a very large lookup table.
Another method, which turns out to be an approximation to the one just mentioned,
is called jittering, where we start with a uniformly spaced pattern of points and then
displace them by a small amount. This is much easier to implement. From a theo-
retical point of view, what we are doing is replacing aliasing with noise, something
that the human eye finds less bothersome.

Distributed Ray Tracing ([CoPL84], [Cook89]). This is a special case of the jitter-
ing approach. The area of a pixel is uniformly subdivided and a ray sent out through
a randomly chosen point in each subdivided area. Cook found that 16 rays per pixel
was adequate. See Figure 10.4 for the case of nine rays. The method was not used just
for visibility computations, but also for other properties, providing a uniform
approach to achieving

(1) blurry reflections,
(2) blurry transparency,
(3) soft shadows,
(4) depth of field, and
(5) motion blur.

Only the initial ray was sampled stochastically. All subsequent reflected rays used a
precomputed Monte Carlo method via lookup tables.

Other stochastic sampling methods were developed to cut down on unnecessary
rays by establishing criteria for “important” areas.

10.2.2 Ray Intersection Formulas

In this section we shall derive formulas for the intersection of a ray in Rn with various
standard surfaces. Before we begin we should again point out the obvious. No matter

344 10 Rendering Techniques

Figure 10.4. Shooting nine rays for distributed ray tracing.

how efficient ray intersection tests are it is better not to have to perform them at all.
One should do whatever is possible to avoid the tests altogether. To that end we
mention one useful step ([Ritt90]). If an object has a bounding box, then find a good
bounding rectangle in the screen of the projection of the corners of this box and check
if the pixel that defines the current ray lies in this rectangle. These computations
will typically be simpler than any ray intersection test for the three-dimensional
object.

We shall use the following notation throughout this section: X will denote a ray
from a point p in a direction v and L will denote the line through p with direction
vector v.

10.2.2.1 Problem. To find the intersection q, if any, of the ray X and the (n - 1)-
dimensional sphere S with center a and radius r.

Solution. This problem is solved in the same as that for the ray–circle intersection
problem already handled in Section 6.5.

The next problems assume that we are dealing with rays in R3.

10.2.2.2 Problem. To find the intersection q, if any, of the ray X and the cylinder
Y with radius r and height h centered at the origin with axis the z-axis.

Solution. First of all, note that the cylinder Y is defined by

Let p = (p1,p2,p3), v = (v1,v2,v3), and q = p + tv. Then we must have

which reduces to

(10.1)

where

Case A = 0: In this case the ray is parallel to the axis of the cylinder. One must check
for the special case where the ray lies in the cylinder, that is, p1

2 + p2
2 = r2.

Case A π 0: In this case one has to analyze the solutions to the quadratic equation
(10.1) as we did in the case of spheres. If a solution is found, then one
must check that 0 £ p3 + t v3 £ h. Only then will the ray actually inter-
sect the cylinder.

If the cylinder has a top and/or bottom and the ray did not intersect the sides of
the cylinder, then we need to find the intersection of the ray with the planes z = 0 and
z = h. Given such an intersection q = (q1,q2,q3), the ray intersects the bottom or top
if q1

2 + q2
2 £ r2.

A v v B p v p v and C p p r= + = + = + -1
2

2
2

1 1 2 2 1
2

2
2 2, , .

At Bt C2 2 0+ + = ,

p t v p t v r1 1
2

2 2
2 2+() + +() = ,

Y = () + = £ £{ }x y z x y r and z h, , .2 2 2 0

10.2 Ray Tracing 345

10.2.2.3 Problem. To find the intersection q, if any, of the ray X and the cone Y
with radius r and height h centered at the origin with axis the z-axis.

Solution. The cone Y is defined by

Let p = (p1,p2,p3), v = (v1,v2,v3), and q = p + tv. Then we must have

which reduces to

(10.2)

where

Case A = 0: In this case the direction vector of the ray lies in the cone, that is, it is
parallel to a generating line for the cone.

B = 0: The ray intersects the cone if and only if p lies on Y and satisfies its
equation.

B π 0: In this case use equation (10.2) to solve for t and check whether
0 £ p3 + t v3 £ h.

Case A π 0: In this case one has to analyze the solutions to the quadratic equation
(10.2) similar to what we did in the case of spheres. If a solution is found,
then one must check that 0 £ p3 + t v3 £ h. Only then will the ray actu-
ally intersect the cone.

If the ray did not intersect the sides of the cone and the cone has a bottom, then one
must still check if the ray intersects the bottom. This is done in the same way that
one checks whether a ray intersects the bottom of a cylinder.

A generalization of Problems 10.2.2.2 and 10.2.2.3 is finding the intersection of a
ray with an arbitrarily positioned cylinder or cone. The best way to deal with this
problem is to transform the problem to a normalized coordinate system to which the
above solutions apply.

10.2.2.4 Problem. To find the intersection, if any, of the ray X and a polygon.

Solution. One first checks whether the ray is parallel to the plane containing the
polygon. If it is, then there will be no intersection if p does not belong to the plane.
If p does belong to the plane, then the problem reduces to finding the intersection of
a ray in R2 with a polygon in R2. We now have a two-dimensional clipping problem
of the type considered in Chapter 3. If the polygon is convex, then one can use a Cyrus-
Beck approach.

C p p r h h p= + - () -()1
2

2
2 2

3
2
.

B p v p v r h h p v and= + + () -()1 1 2 2
2

3 3,

A v v r h v= + - ()1
2

2
2 2

3
2,

At Bt C2 2 0+ + = ,

p t v p t v r h h p t v1 1
2

2 2
2 2

3 3
2+() + +() = () - -() ,

Y = () + = () -() £ £{ }x y z x y r h h z and z h, , .2 2 2 2
0

346 10 Rendering Techniques

Next, assume that the ray was not parallel to the plane containing the polygon.
One needs to find the intersection of X with the plane containing the polygon. If such
an intersection exists, one will then have to check if it lies in the polygon. This is a
point-in-polygon type problem that we have already considered in Section 6.3, except
that now we have an arbitrary plane rather than just R2. To reduce the problem to
one of two coordinates rather than three, we project the point and polygon orthogo-
nally to the xy-, xz-, or yz-plane depending on whether |n3|, |n2|, or |n1| is the largest,
respectively, where n = (n1,n2,n3) is a normal vector to the plane. Of course, the pro-
jection involves no work. It is simply a case of using the corresponding two coordi-
nates of the 3-coordinate points. The motivation behind making our choice of
projection depend on the largest component of n is numerical accuracy. We want to
have the projected polygon as large as possible and not have its vertices projected too
closely together.

10.2.2.5 Problem. To find the intersection, if any, of the ray X and a convex
quadrilateral.

Solution. This problem could be considered to be a special case of Problem 10.2.2.4
but because it is often encountered it is worth considering separately. For example,
parametric surfaces are often represented by a grid of points gotten by evaluating
their parameterization at the vertices of the subrectangles from a subdivision of their
rectangular domains. Although such surface quadrilaterals may not actually be planar
or convex, they may be assumed to be so since they will be very small. There are also
adaptive tessellation schemes that can be used to guarantee that the quadrilaterals
are within a given tolerance of being convex and planar.

The first part of the solution is the same as that in Problem 10.2.2.4. It is the test
as to whether a point in the plane belongs to a planar polygon that can be improved
in the case of a quadrilateral. We describe the solution presented in [SchS95]. It is a
generalization of Badouel’s ([Bado90]) point-in-triangle solution. Assume that we are
in R2. Consider a point Q and a nondegenerate convex quadrilateral with vertices A,
B, C, and D. Any point of ABCD can be expressed in the form

See Figure 10.5. Therefore, the point Q will belong to ABCD if and only if

AQ AB AD AE= + +r s rs ,

G GH G A AB H D DC+ = + = + £ £s where r and r and r s, , .0 1

10.2 Ray Tracing 347

Figure 10.5. Surrounding test for quadrilateral.

where

and 0 £ r, s £ 1. The two quadratic equations in two unknowns r and s are easily solved
and one simply has to check if r and s lie in [0,1]. The solutions become even easier
if the quadrilateral is a trapezoid with two parallel sides.

10.2.2.6 Problem. To find the intersection, if any, of the ray X and an oriented
faceted surface.

Solution. This problem reduces to checking for an intersection of the ray with each
of the facets of the surface using the solution to Problem 10.2.2.4. In fact, we only
have to look at front-facing (front) facets, that is, facets whose normals (induced from
the orientation) have a nonpositive dot product with v.

10.2.2.7 Problem. To find the intersection, if any, of the ray X and a generalized
bounding box B = B(X,n1,n2, . . . ,nk) (as defined in Section 6.2).

Solution. First of all, finding the intersection of the line L with a slab is easy. One
simply substitutes the equation for the line into the equation of the far and near planes
for the slab. This will produce an interval [ai,bi] of parameters t so that p + tv lies in
the ith slab. Let I be the intersection of these intervals. Equivalently, if

and

then I = [a,b]. Finally, if I π f and a ≥ 0, then p + av is the nearest intersection of X
with B.

10.2.3 Ray Tracing CSG Objects

Ray tracing CSG objects is much simpler than constructing them. The basic idea,
described in [Roth82], only involves computing ray intersections with the primitives
used in the CSG tree that defines the object and then combining the resulting one-
dimensional segments with the set operations from that CSG tree.

Let T be a CSG tree that defines an object X. Let r be a ray with starting point p0
and unit direction vector v. Let LT and RT be the left and right subtree of the root of
T and assume that they correspond to objects A and B, respectively. The ray r will
intersect A and B in a collection of segments SA and SB.

Given the operation op at the root of T, the ray r will intersect X in the segments
SA op SB. See Figure 10.6. This leads to Algorithm 10.2.3.1. In the algorithm we have
made use of the fact that if the ray does not intersect the object corresponding to the

b t t lies on one of the far planes= +{ }min ,p v

a t t lies on one of the near planes= +{ }max p v

AE DC BA DA BC= + = +

348 10 Rendering Techniques

left subtree of the CSG tree for an object X, then it will also miss X except possibly
in the case where the operation at the root is the union operation.

The CombineSegs function in Algorithm 10.2.3.1 described in [Roth82] consists
of three steps:

(1) One merges the sorted endpoints of the segments in LL and RL to produce a
new segmentation of the ray.

(2) The resulting segments are classified as “in” or “out” depending on the set
operation being applied to the left and right subtree of the CSG tree and the
classification of the segments in LL and RL.

(3) Lastly, contiguous segments with the same classification are merged to sim-
plify the result.

Step (2) uses the following lookup table:

10.2 Ray Tracing 349

- - - - ææææææææ - - - - >

- - ææ - - - - - - - - ææ - - >

- - ææææ - - - - ææææ - - >

- - - - ææ - - - - ææ - - - - >

- - æææææææææææææ - - >

 Ray Segments

Figure 10.6. CSG ray tracing.

Left Right » « -
in in in in out
in out in out in
out in in out out
out out out out out

Finally, if all one wants is to determine whether or not a ray intersects an object
and one is not interested in the actual intersection, then one can use a simplified
version of Algorithm 10.2.3.1. There is no need to check for an intersection of the
right subtree if one determines that the left subtree was intersected.

To speed things up one should use bounding boxes at each node of the CSG tree.
Bounding boxes work best when they are lined up with the viewing coordinate system.
Maintaining this would mean that one has to recompute them whenever the view
changes. If this happens a lot, one could use bounding spheres, but boxes typically fit
objects better than spheres.

10.3 The Radiosity Method

As indicated in Section 9.4.4, radiosity methods were another step to model illumi-
nation more accurately. They correct some defects in the ray-tracing approach. In par-

350 10 Rendering Techniques

segList function CSG_RayIntersect (CSGtree T, ray r)
begin

segList LL, RL;

if IsPrimitive (T)
then return RayIntersection (T, r)

else
begin

LL := CSG_RayIntersect (LeftSubtree (T), r);
if (Empty (LL) and (Op (T) π »))

then return nil
else

begin
RL := CSG_RayIntersect (RightSubtree (T), r);
return CombineSegs (LL, RL, Op (T));

end
end

end;

{RayIntersection computes the intersection of the ray with a primitive
object directly on a case by case basis using its special properties.}

Algorithm 10.2.3.1. CSG ray intersection algorithm.

ticular, they solve the problem of interactions of diffuse light in a closed environment
in a theoretical way. The theoretical foundation of the radiosity method lies in the
theory of heat transfer or exchange between surfaces and the conservation of energy.
It involves radiometry and transport theory. Because the radiosity method is techni-
cally rather complicated, all we shall do in the next two sections is sketch its overall
strategy and implementation. The interested reader is directed to [CohW93],
[FVFH90], [WatW92], [CohG85], or [CCWG88] for more details.

If we assume perfect diffuse (Lambertian) surfaces, then the rate of energy leaving
a surface (the radiosity) is equal to the sum of the self-emitted energy and the ener-
gies that came as reflections from other surfaces. This leads to an equation for the
radiosity function B(p) at a point p of the form

(10.3)

where

E(p) is an emitted light function,
r(p) is a diffuse reflectivity function,
G(p,q) is a function of the geometric relationship between p and q, and

the integration is over all surfaces in the environment.

Equation (10.3) is called the Radiosity equation. It is a special case of the rendering
equation (9.12).

If we now subdivide all surfaces into patches Ai over which the radiosity and
emitted energy are essentially constant with constant value Bi and Ei, respectively,
then equation (10.3) leads to the following equation relating the Bi:

(10.4)

where

Ei is the light emitted from the ith patch,
ri is the reflectivity of the patch, namely, the fraction of the light that arrives at

the patch that is reflected back into the environment, and
Fji is the fraction of the energy leaving the jth patch which reaches the ith patch.

The factors Fji are called form factors and are assumed to depend only on the geom-
etry of the surfaces in the environment. In fact, using the identity

(10.5)

equation (10.4) reduces to

(10.6)

Solving for the Bi reduces to solving a system of linear equations that looks like

B E B Fi i i j ij
j

n

= +
=
Âr

1

F A F Aij i ji j=

B A E A B F Ai i i i i j ji j
j

n

= +
=
Âr ,

1

B E B G dA
s

p p p q p q() = () + () () ()Úr , ,

10.3 The Radiosity Method 351

(10.7)

in matrix form. If we define a matrix K = (Kij), where Kij = dij - riFij, then equation
(10.7) can be written more compactly as

. (10.8)

When the Bi have been solved for, we will have a single radiosity value for each of our
surface patches. We can now use a standard Gouraud shading model renderer to
display the world. The renderer will actually need illumination values at vertices of
the surfaces, but these can be obtained by averaging the illumination values of the
patches surrounding a vertex. In general terms, the overall steps for a radiosity ren-
derer are then

KB E=

1

1

1

1 11 1 12 1 1

2 21 2 22 2 2

1 2

1

2

1

2

- - -
- - -

- - -

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

=

Ê

Ë

Á
Á

r r r
r r r

r r r

F F F

F F F

F F F

B

B

B

E

E

E

n

n

n n n n n nn n n

. .

. .

.

.

. .

.

.

.

.
ÁÁ
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

352 10 Rendering Techniques

Æ Æ Æ Ægenerate the
surfaces for
a scene

subdivide them
into sufficiently
small patches

compute
the form
factors

solve the
matrix equation
(10.8)

display world
using a standard
renderer

The first four of these steps are view independent, which means that the most time-
consuming computations have to be made only once.

Because the matrix equation (10.8) involves a large matrix, direct methods for
solving it, like Gaussian elimination, are unsuitable and one is led to use iterative
methods. The idea is to make an initial guess B(0) and then by means of a sequence
of corrections produce a sequence of new guesses that hopefully converge to a solu-
tion. Let B(k) denote the kth guess and define the residual r(k) by

The size of a residual tells us how close we are to an actual solution. An iterative algo-
rithm of this type is called a relaxation method if at each step of the iteration a guess
is updated in such a way as to set one of the residuals to zero. Although this may
change the other residuals, one hopes that an overall improvement has occurred. Algo-
rithm 10.3.1 is an O(n2) algorithm, which computes an approximation to the radios-
ity vector B. It is based on a relaxation method called the Gauss-Seidel algorithm. The
justification for the formula in the algorithm is derived from the fact that to make the
ith component of the residual for the kth solution B(k) zero, we must replace the ith
component Bi

(k) of B(k) by

B
K

E K Bi
k

ii
i ij j

k

j

n
() ()

=
+ -

Ê
ËÁ

ˆ
¯̃Â1

1

.

r KB Ek k() ()= - .

If there is no information to aid in making an initial guess, then set B(0) equal to
the light source radiosities E. The convergence criterium is usually to require that the
largest of the |ri

k|, i = 1,2, . . . ,n is sufficiently small. One can show that the matrices
in (10.8) are of a form that guarantees the convergence of the solutions that the algo-
rithm generates.

In the terminology of [CCWG88], the Gauss-Seidel algorithm corresponds to
updating the ith patch at each iteration by “gathering” together the contribution of
the radiosities from all other patches as suggested in Figure 10.7. A more efficient way
to compute the radiosity is what is called a “progressive refinement” method. Here
one updates the whole picture during each iteration rather than just a single patch.
One basically reverses the procedure and asks what contribution the ith patch makes
to the radiosity of all the other patches. Equation (10.6) shows that

determines the radiosity contribution of patch j to patch i. Using equation (10.5), one
sees that

ri j ij
i

j
B F

A
A

ri j ijB F

10.3 The Radiosity Method 353

Make an initial guess B for the radiosity vector.

while B has not yet converged do
for i:=1 to n do

Bi := Ei -
ii

jij
n

ij,1j K

BK
S

π=

Algorithm 10.3.1. A Gauss-Seidel algorithm for computing the radiosity vector.

Figure 10.7. Gathering contributions in Gauss-
Seidel radiosity algorithm.

determines the radiosity contribution of patch i to patch j. The new algorithm, Algo-
rithm 10.3.2, will compute this contribution for all patches j. We can think of this as
“shooting” light out from patch i into the environment. See Figure 10.8. As the algo-
rithm iterates over various ith patches, the same i may be repeated several times. At
a subsequent use of i, since the environment has already used the previous Bi, we only
need to consider the difference, DBi, between the previous and current value of Bi.

One of the nice features of Algorithm 10.3.2 is that, rather than having to wait
until the final picture is computed, one can watch intermediate renderings. The algo-
rithm as it stands will start with a dark picture that gradually turns light. To get a

354 10 Rendering Techniques

B := E;
DB := E;
while B has not yet converged do

begin
Pick an i so that AiDBi is the largest (to speed convergence);
Calculate the row of form factors Fij using a hemicube centered on patch i ;
for each j π i do

begin
Drad := DBi rjFij Ai /Aj;
DBj := DBj + Drad;
Bj := Bj + Drad;

end;

DBi := 0;
end;

Algorithm 10.3.2. A progressive refinement algorithm for computing the radiosity
vector.

Figure 10.8. A progressive refinement
radiosity algorithm.

brighter picture sooner, [CCWG88] describes a way of introducing an initial ambient
term.

10.3.1 Form Factors: The Hemicube Method

The lengthiest computations of the radiosity method are evaluating the form factors.
These factors arise from an integral of the form

(10.9)

These factors are not easy to compute. Some analytical formulas are known dealing
with areas such as polygon to polygon (without occlusion), differential area to
polygon, and some special cases such as rectangle to rectangle and point to disk. They
are, however, purely geometric and do not depend on the aspects of light, such as
reflectivity or emissivity. One mostly has to use numerical approaches.

The integral in (10.9) can be approximated in different ways. One can use the
trapezoidal rule or Simpson’s rule, for example. The standard approach there is to
sample at evenly spaced points. On the other hand, if one knows something about the
integrand, then one might be able to sample less by sampling at the most significant
places. One of the early and efficient methods of computing form factors is what is
called the hemicube method. This is the only method we shall describe here.

To begin with, let us make the assumption that patches are far apart relative to
their size. Two simplifications follow from this assumption. First, the inner integral
is essentially constant, so that the outer integral with the 1/Ai term essentially disap-
pears and we may assume an approximation of the form

(10.10)

Second, two patches that have the same projection onto the surface of a hemi-
sphere centered on the patch Ai have the same form factor. See Figure 10.9. Rather
than dealing with a hemisphere, it is more convenient to use a hemicube centered on
Ai. See Figure 10.10. Subdivide this hemicube surface into small rectangles Qst. The
form factor for each Qst has an approximation

where DAst is the area of the rectangle Qst. One precomputes these form factors and
stores them in a lookup table. To compute the form factor Fij one simply adds up the
form factors for all the rectangles Qst onto which the patch Aj projects, that is,

(10.11)F Fij Q
Q

= ÂD ,

D DF
r

AQ
i j

stst =
cos cos

,
f f
p 2

F F
r

dAij dij
i j

j
A j

ª = Ú
cos cosf f

p 2

F
A r

dA dAij
i

i j
j i

AA ji
= ÚÚ

1
2

cos cosf f
p

10.3 The Radiosity Method 355

where Q ranges over all rectangles Qst that lie in the projection of Aj onto the
hemicube. A three-dimensional version of the Cohen-Sutherland clipping algorithm
can be used to compute the projection of Aj onto the hemicube. One can also handle
occlusions of patches. This is done on the Rij level, that is, for each rectangle Qst in
the projection, use the form factor of that patch Aj that is closest. There is a similar-
ity with the z-buffer algorithm, except that here we maintain labels for the nearest
patch rather than a z-value. Figure 10.11 shows a cross-section of an example.

The formulas for the form factors DFQ in equation (10.11) are easy to compute.
For rectangles Q in the top of the hemicube we have

This follows from the geometry shown in Figure 10.12. There are similar formulas for
Q in the side of the hemicube. For example, for Q in the plane x = 1, we have

D DF
x y l

AQ =
+ +()

1

2 2 2
p

.

356 10 Rendering Techniques

Figure 10.9. Form factors using
hemispheres.

Figure 10.10. Form factors using
rectangles.

Finally, as mentioned earlier, the biggest cost in the radiosity method is in com-
puting the form factors. Precomputing them helps, but there is a storage problem.
The form factor matrix is basically an n2 matrix. Since many patches cannot see each
other, many entries of this matrix are zero, but many nonzero entries remain. An esti-
mate from [CCWG88] indicates that one would need on the order of a gigabyte of
memory to store the form factors with 50,000 patches. Using the progressive refine-
ment algorithm this n2 storage requirement is eliminated.

Aliasing also rears its ugly head with radiosity methods. The biggest culprit is the
uniform subdivision used in the hemicube method. One approach ([WaCG87]) is to
change the orientation of the hemicube with respect to the surface normal in a
random way as one moves from patch to patch.

Being view independent, radiosity methods separate the shading problem from
the visible surface determination problem. Because the basic radiosity method does
not handle the specular part of light very well, something that ray tracing does, there

D DF
z

y z l
AQ =

+ +()p 2 2 2
.

10.3 The Radiosity Method 357

Figure 10.12. The geometry for rectan-
gular form factors.

Figure 10.11. Handling occlusions
with form factors.

are now solutions to the global illumination problem that combine these two
approaches. See, for example, [NeuN95].

10.4 Volume Rendering

Up to now, the type of rendering of three-dimensional objects we have been discussing
is sometimes called surface rendering, because it assumed that objects were repre-
sented by their boundary and so that was what we had to display. The “interior” of
an object was never considered. This approach works fine for objects that have well-
defined surfaces, but does not work so well when modeling natural phenomena such
as clouds, fog, smoke, etc. Here the light partially penetrates the objects and their
interior becomes important and volume rendering comes to the rescue. This and the
next two sections give an overview of volume rendering and some of the algorithms
it uses. Two general references are [Elvi92] and [LiCN98]. Elvins describes several
additional algorithms.

The complete volume-rendering pipeline really consists of three parts: data acqui-
sition, data classification, and the actual rendering algorithms. The data acquisition
part will not be considered here. We assume that we have been given some volumet-
ric data consisting of a cubical collection of voxels. Data classification is actually quite
a tricky part of the overall process and refers to deciding on criteria for what part of
the raw data to use. After one has decided on a classification, the last step is to display
the geometry it represents.

In the past (see [KaCY93]), volume rendering was sometimes defined as a tech-
nique for visualizing volumes directly from the volumetric data without the use of
surfaces or other explicit intermediate representations of the geometry. We shall use
the term in a more general sense, so that it includes any technique that is used to
render volumetric data. Some techniques in fact do involve constructing surfaces,
such as the marching cube algorithm described in Section 10.4.2.

We look at direct volume rendering first and ray casting approaches. (The terms
“ray tracing” and “ray casting” are usually used interchangeably, but some prefer to
use the term “ray casting” in the volume rendering context because they give it the
more restricted meaning that the rays are sent in only a single direction, in contrast
to “ray tracing,” which for them suggests that the rays bounce around in all direc-
tions in the scene.) Similar to visible surface algorithms, they can be classified as
image precision or object precision type algorithms.

Image Precision Volume Rendering. Here, we send out a three-dimensional ray
for each pixel on screen. For a parallel projection these rays would be perpendicular
to the view plane. See Figure 10.13. The rays can be parameterized and density values
associated to points evaluated at uniform intervals or they could be discrete rays gen-
erated by a Bresenham-type algorithm (see Section 10.4.1). In either case, we would
have to interpolate the density values at their points from the adjacent voxel data that
we were given. One simplification in the case where we use discrete rays in a paral-
lel projection is that we can use “templated” discrete rays. What this means is that we
only need to compute one ray starting at one pixel and then the relative movement
from one voxel to another would be the same for the rays at all the other pixels. One

358 10 Rendering Techniques

has the option of starting these rays at the view plane or at a base plane of the voxel
volume. See Figure 10.14. In the former case one may miss some voxels and in the
latter case we do not, but we may get some warping, which requires some resampling
to map the result back to the view plane. Given density values along the ray we then
have to decide how to use these values to get a value for the pixel to which they project.
This is the compositing problem that we consider shortly.

Object Precision Volume Rendering. In this approach we project to the view plane
along rays starting at voxels in the view volume. See Figure 10.15. Since voxels do not
necessarily project to pixels in the view plane, we can see that there are some poten-
tial problems that have to be handled. As far as assigning a density value to a pixel,
we can do that based on a weighting of the values of voxels that map to a neighbor-
hood of the pixel. To overcome holes we can use a technique called splatting (see
[West90]), which distributes values of a voxel over a region around the point in the
view plane to which the voxel projects. Another problem one has to deal with is gaps
caused by getting too close to the voxels.

In each of the ray-casting methods above we run into a compositing problem. The
problem is that potentially many voxels map onto the same pixel and combining the

10.4 Volume Rendering 359

Figure 10.13. Image precision rays for volume
rendering.

Figure 10.14. Image plane versus base plane ray casting.

density values at these voxels to come up with a single value at the pixel is called com-
positing. From a theoretical point of view, one should integrate the intensities along
rays, but different compositing functions can be chosen. The simplest is to project the
maximum density along the ray to the pixel. This is often useful when trying to isolate
well-defined structures in the view volume. We can do the compositing in a front-to-
back or back-to-front manner. One has the option of computing with the transparency
t associated to a voxel or its opacity o = 1 - t.

[LacL94] describes an efficient variant of ray casting called shear-warp volume
rendering. Rather than sending out rays that are skew to the voxel volume (Figure
10.16(a)), they apply a shear transformation to the voxels to achieve an equivalent sit-
uation where rays are cast that are perpendicular to the view plane (Figure 10.16(b)).
In this way one can define an efficient ray traversal. Two other methods used in the
algorithm to speed things up is run-length encoding of the voxel scan lines (a defini-
tion of run-length encoding can be found in [Salo99], for example) and early ray ter-
mination, where one stops the compositing process when a pixel has reached full
opacity.

Data classification in direct volume rendering amounts to defining the opacity or
transparency of voxels. This is accomplished by defining what is called a transfer func-
tion that maps densities, or densities together with gradient information, to opacities.
Typically, the transfer functions map ranges of densities and gradient values to the

360 10 Rendering Techniques

Figure 10.15. Object precision rays for volume
rendering.

Figure 10.16. Shear-warp volume rendering.

same opacity. Opacity values make it possible to extract and make visible different
parts inside an object. For example, if we want to see the bone structure, then we
would set the other material to be transparent. Transfer functions can also be used to
map to colors.

Once transfer functions have been defined, the rendering is automatic. Unfortu-
nately, it is not possible to generate all possible such functions systematically because
the features one is trying to extract may be hard to specify with a program. Defining
suitable transfer functions remains one the difficult tasks in volume rendering. See
[RhyT01]. Extracting features from data is called segmentation and sometimes
requires user input and, in the worst case, may have to be done entirely by hand. In
volume rendering it is basically a labeling procedure applied to voxels to indicate their
material type. It is a preprocessing procedure applied to the data before it is rendered
and the segmentation information is stored along with the other voxel data that can
then be used by transfer functions.

Now, in many applications of volume rendering, the issue is not photorealism but
making data meaningful. For that reason parallel projection is typically used in
volume rendering. For typical medical applications nothing is gained by perspective
views. Furthermore, perspective views have problems in that, since the rays diverge,
they may miss voxels and create aliasing problems.

To get shading one needs normals. To get these one typically uses the gradient

of the density function f. The central difference operators

are the most common approximations to the partial derivatives ∂f/∂x, ∂f/∂y, and ∂f/∂z,
respectively, but there are others.

Finally, sometimes one knows that there are surfaces present in the volumetric
data. Two well-known approaches used in volume rendering try to construct a con-
ventional surface model S from the data that is then rendered in the ordinary way.

Approach 1. Here one proceeds in two stages: first one determines the curves that
make up the contour of S in each slice and then one tries to connect these contours
with surface patches, a process called skinning. Figuring out how to connect the con-
tours from one slice to the next is an especially tricky problem, because a contour
may consist of several curves. Chapter 14 will have more to say about finding con-
tours and skinning.

Approach 2. In Approach 1 separate and independent algorithms are used in the
two stages. There are more general approaches to finding the surface S that work on

f i j k f i j k, , , , ,+() - -()1 1

f i j k f i j k, , , , ,+() - -()1 1

f i j k f i j k+() - -()1 1, , , , ,

— = Ê
Ë

ˆ
¯f

f
x

f
y

f
z

∂
∂

∂
∂

∂
∂

, ,

10.4 Volume Rendering 361

the three-dimensional data directly. Because S corresponds to the voxels having some
specified density values it is also sometimes called a contour or isosurface and the
algorithms that find it, contour algorithms. One is called the marching cube algorithm.
It is more complicated though. We give an overview of the algorithm in Section 10.4.2.
Another algorithm that finds S using octrees is described in [WilV90a]. A third algo-
rithm due to Ehud Artzy is described in [Herm98]. Here we assume that the voxels
have been assigned a value of 0 or 1. In practice, the voxels with value 1 correspond
to the tissue of interest in a CT scan. The algorithm then determines all the faces of
the voxels that are in the boundary of a connected component of the set of voxels
marked with 1. Although Artzy’s algorithm is not hard to describe, proving that it
works relies on a theorem in discrete topology (one proved in [Herm98]).

When using surfaces in volume rendering one problem is the fact that defining a
surface is a binary decision process (a surface divides a region into two parts). Since
that decision is made on sampled functions, one can easily end up with spurious or
missing surface parts. With regard to the aliasing problem, we run into an added com-
plication in volume rendering. Since we only have the sampled data that was origi-
nally presented to us, we cannot readily generate new samples on our own. Basically,
the responsibility lies with the original data having been sampled adequately.

Finally, there are many nice aspects to volume rendering. Some tasks that are hard
with other rendering methods become easy here. Consider again the example of how
easy it is to modify the geometry and create the effect of cutting a hole in an object
to look inside. Levoy ([Levo90]) describes a hybrid ray tracer for both volume and
polygon data.

10.4.1 Discrete Three-Dimensional Lines

Section 2.2 already introduced the basic discrete topology concepts. Specifically, we
defined what is meant by a curve in Z3 that is 6-, 18-, or 26-connected. Our goal now
is to describe some three-dimensional analogs of the two-dimensional Bresenham
line-drawing algorithm. These are the algorithms used in volume rendering to define
voxelized rays. Because of the higher dimension, things get somewhat more compli-
cated. Furthermore, since we are interested in the application of this to volume ren-
dering, we have to address some issues that were not considered in Chapter 2.

We start again with the two-dimensional case because examples are easier to draw
and therefore clearer. When boundaries of sets are represented in a discrete way, we
have to worry about “holes” or “tunnels” through which a ray can pass. Figure 10.17(a)
shows an example of an 8-connected ray passing through an 8-connected boundary
without intersecting it. Figure 10.17(b) shows the same thing in three dimensions,
namely, an 18-connected ray passing through a 6-connected object. We do not want
to allow this, otherwise, the rendering of our voxelized objects will be flawed. To avoid
the problems demonstrated by Figure 10.17, we must make sure that objects and rays
are suitable connected.

The algorithms for generating discrete rays in 3-space are motivated by the mid-
point line-drawing algorithm we used in the plane. See Algorithm 2.5.3.1 in Section
2.5.3. Suppose that we want to draw a discrete version of a line L from p0 = (x0,y0,z0)
to p1 = (x1,y1,z1). Let

362 10 Rendering Techniques

We shall describe an algorithm for generating 26-connected lines first.
Assume that dx ≥ dy ≥ dz ≥ 0. Let Lxy and Lxz be the projections of L on the xy-

and xz-plane, respectively. We shall build our discrete line from the midpoint line
drawing algorithm applied to the lines Lxy and Lxz. Now the line Lxy goes from (x0,y0,0)
to (x1,y1,0) and Lxz goes from (x0,0,z0) to (x1,0,z1). Using the notation of Algorithm
2.5.3.1 in Section 2.5.3, let dxy be the decision variable for the line Lxy and posIncxy
and negIncxy the increments of this variable. Similarly, let dxz, posIncxz, and negIncxz
be the corresponding variables for the line Lxz. Since the metric associated to 26-
connected curves is the max metric, our assumptions on the relative sizes of dx, dy,
and dz mean that the x-coordinate of the discrete points we generate will increase by
one each time, so that the curve will have length dx. Furthermore, we can determine
how the y-coordinate and z-coordinate change by looking at the midpoint algorithm
applied to the lines Lxy and Lxz, respectively. If we fill in the details we get Algorithm
10.4.1.1. Finally, for a complete algorithm that generates 26-connected discrete lines,
one that handles lines between any two points, we need two more versions of Algo-
rithm 10.4.1.1 to handle the case of nonnegative dx, dy, and dz, namely, one where dy
is the largest increment and one where dz is the largest. The rest of the cases where
one or more of the dx, dy, or dz are negative are handled by symmetry.

Next, we look at the case of 6-connected lines. We shall describe the algorithm
presented in [CohK97]. This time we only need to assume that dx, dy, dz ≥ 0. In addi-
tion to the projections Lxy and Lxz we also consider the projection Lyz of the line L
onto the yz-plane. Define functions fi(x,y) by

Then the lines Lxy, Lxz, and Lyz are defined by f1(x,y) = 0, f2(x,z) = 0, and f3(y,z) = 0,
respectively. Assume that pixels are centered on points with integer coordinates. If the
line crosses a pixel centered at (x,y,z), then it will leave the pixel via one of the three
faces adjacent to the point O = (x + 0.5,y + 0.5,z + 0.5). See Figure 10.18(a). We shall

f y z dz y dy z c3 3, .() = () - () +

f x z dz x dx z c2 2,() = () - () +

f x y dy x dx y c1 1,() = () - () +

dx x x dy y y and dz z z= - = - = -1 0 1 0 1 0, , .

10.4 Volume Rendering 363

Figure 10.17. Rays tunneling through objects.

364 10 Rendering Techniques

procedure DrawLine (integer x0, y0, z0, x1, y1, z1)
{ We assume that (x1 - x0) ≥ (y1 - y0) ≥ (z1 - z0) .
 The procedure Draw (x,y,z) is assumed to draw a voxel at location (x,y,z) on the
 three-dimensional raster. }
begin

integer dx, dy, dz, dxy, posIncxy, negIncxy, dxz, posIncxz, negIncxz, x, y, z;

dx := x1 - x0; dy := y1 - y0; dz := z1 - z0;
dxy := 2*dy - dx; posIncxy := 2*dy; negIncxy := 2*(dy - dx);
dxz := 2*dz - dx; posIncxz := 2*dz; negIncxz := 2*(dz - dx);
x := x0; y := y0; z := z0;
Draw (x, y, z);
while x < x1 do

begin
if dxy £ 0

then
begin

dxy := dxy + posIncxy;
if dxz £ 0

then dxz := dxz + posIncxz;
else

begin
dxz := dxz + negIncxz;
z := z + 1;

end
end

else
begin

dxy := dxy + negIncxy;
if dxz £ 0

then dxz := dxz+ posIncxz;
else

begin
dxz := dxz + negIncxz;
z := z + 1;

end
y := y + 1;

end;
x := x + 1;
Draw (x, y, z);

end
end;

Algorithm 10.4.1.1. A 26-connected line drawing.

10.4 Volume Rendering 365

determine the actual face by which it leaves by analyzing the projections Lxy, Lxz, and
Lyz with respect to the projections of the three edges of the pixel that meet in the point
O. See Figure 10.18(b–e). Note that, like in the midpoint line-drawing algorithm, the
sign of fi(0.5,0.5) tells us the relative position of the corresponding line with respect
to the point (0.5,0.5). If the sign is negative, the line is below the point. Since it is the
taxicab metric that determines the length of lines in the case of 6-connected lines, our
line will have dx + dy + dz + 1 points. Algorithm 10.4.1.2 implements the algorithm.
The reason for the name is that the vertex O and the three edges emanating from it
in Figure 10.18(b) have the appearance of a tripod.

Efficient C versions of Algorithms 10.4.1.1 and 10.4.1.2 can be found in [CohK97].
Rather than indexing into a voxel array the idea is to use a pointer to the beginning
of the array and then, using pointer arithmetic, to add the appropriate offsets instead
of updating indexes. [CohK97] also contains a discussion of and references for other
algorithms for drawing three-dimensional discrete lines. Another algorithm and more
references can be found in [Roge98].

[YaCK92] describes how rays generated using the algorithms of this section can
be used to ray trace voxelized objects. Note that 26-connected rays contain a lot fewer
pixels than 6-connected rays, but one has to worry about tunnels that would cause
artifacts in the image. One can mix 26-connected and 6-connected rays, using the
latter only when we are near objects.

10.4.2 The Marching Cubes Algorithm

The marching cubes algorithm was developed independently by [WyMW86] and
[LorC87]. We follow the outline of the algorithm presented in [LorC87]. For an imple-
mentation of the algorithm we refer the interested reader to [WatW92].

Figure 10.18. Tripod 6-connected line-drawing algorithm cases.

366 10 Rendering Techniques

procedure DrawLine (integer x0, y0, z0, x1, y1, z1)
{ We assume that x1 - x0 , y1 - y0 , z1 - z0 ≥ 0 . The procedure Draw (x,y,z) is
 assumed to draw a voxel at location (x,y,z) on the three-dimensional raster. }
begin

integer dx, dy, dz, dxy, dxz, dzy, num, i, x, y, z;

dx := x1 - x0; dy := y1 - y0; dz := z1 - z0;
dxy := dy - dx; dxz := dz - dx; dyz := dz - dy;
num := dx + dy + dz;
i := 0; x := x0; y := y0; z := z0;
Draw (x, y, z);
while i < num do

begin
if dxy < 0

then
begin

if dxz < 0
then

begin
x := x + 1;
dxy := dxy + 2*dy; dxz := dxz + 2*dz;

end
else

begin
z := z + 1;
dxz := dxz - 2*dx; dyz := dyz - 2*dy;

end
end

else
begin

if dyz < 0
then

begin
y := y + 1;
dxy := dxy - 2*dx; dyz := dyz + 2*dy;

end
else

begin
z := z + 1;
dxz := dxz - 2*dx; dyz := dyz + 2*dz;

end
end;

Draw (x, y, z);
end

end;

Algorithm 10.4.1.2. The 6-connected tripod line drawing.

The setting for the algorithm is the following: It is assumed that the data has been
acquired and possibly processed with some image processing techniques and is avail-
able as a three-dimensional array of voxels. If we think of the data as corresponding
to some density values, then the object is to use this data to define a surface S spec-
ified in terms of a given density value s. Data classification then amounts to using s
as a threshold value.

The algorithm proceeds as follows: For each voxel or cube we determine how its
vertices are situated with respect to our surface S and then “march” on to the next
cube. Each vertex is assigned a value of 1 if its density is greater than or equal to s,
that is, they are inside the surface, and 0 otherwise, if they are outside. This gives rise
to a classification of the possible types of intersections of the surface with the cube,
where the classification is based on which edges of the cube the surface intersects.
We then simply use a table to look up what our intersection looks like for any par-
ticular case. The numbering of vertices allows, in principle, up to 28 = 256 possible
configurations of 1s and 0s for a given cube. Each case corresponds to an intersec-
tion type. Fortunately, one can use symmetry to reduce this number. One type of sym-
metry is based on the fact that the intersection type of the surface is unchanged if we
swap what is considered as the “inside” and “outside” of the surface, that is, if we
exchange 1s and 0s. This means that we only need to consider the cases where only
zero to four vertices have a value of 1. A second type of symmetry is rotational
symmetry. Making use of these symmetries, we can reduce our table of intersections
to fourteen. These are shown in Figure 10.19. Solid disks indicate the vertices with
value 1. Figure 10.19 also shows the triangulations that are used to approximate the
intersection. The triangles are defined using linear interpolation of the vertex values.
Since what is important is the intersection of the surface with the edges of the cube,
we record the edge intersection information in our table. As it happens, two of the
cases in Figure 10.19, cases 5 and 10, are ambiguous and these ambiguities have to
be resolved. See [ScML98] or [WilV90b].

For rendering, one also needs normals for each triangle. These are also obtained
via linear interpolation of the gradient of density values at the vertices of the cube.
It is assumed that this gradient is nonzero along our surface. Now, it is a well-
known fact (see Section 8.4 in [AgoM05]) that if a surface is defined by an equation
f(x,y,z) = c where f is some function and c is a constant, then the gradient of f, �f, is
normal to the surface. To approximate the gradient at the vertices, one uses central
differences:

where Dx, Dy, and Dz are the lengths of the sides of the cubes.

∂
∂
f
z

f i j k f i j k
z

~
, , , ,+() - -()1 1

D

∂
∂
f
y

f i j k f i j k
y

~
, , , ,+() - -()1 1

D

∂
∂
f
x

f i j k f i j k
x

~
, , , ,+() - -()1 1

D

10.4 Volume Rendering 367

[LorC87] applied the marching cube algorithm to three-dimensional medical data
that provided two-dimensional slices of data. They used the following steps to create
a surface from this data:

(1) Four slices of data were read into memory at a time.
(2) Two slices were scanned to create a cube from four neighbors on one slice and

four neighbors on the next slice.
(3) By comparing the eight density values at the cube vertices with the surface

constant an eight bit (one bit per vertex) index was calculated.
(4) This index was used to look up in a precalculated table the edges of the cube

that are intersected by the surface.
(5) The actual surface-edge intersections are then computed by linear interpola-

tion of the density values at the cube vertices. The intersection is divided into
triangles.

(6) Central differences are used to compute a unit normal at each cube vertex
which are then interpolated to each triangle vertex.

(7) Finally, the triangle vertices and normals are output.

[LorC87] points out that linear interpolation is adequate and that using higher-degree
interpolants does not provide any significant improvement. Although one could deter-
mine normals from the surface triangles themselves, it turns out that the gradient
method used above gives substantially better results. In order to avoid aliasing prob-
lems, the initial data must have been sampled enough to produce sufficiently small
triangles in the surface.

368 10 Rendering Techniques

Figure 10.19. The marching cube algorithm cases.

After the marching cube algorithm finds the surface and its normals one can
render the surface with a rendering technique such as ray casting and Phong shading.
According to [THBP90], the algorithm has problems with thin surfaces and sharp
edges and is expensive compared with other surface methods.

A 2d version of the marching cubes algorithm, called the marching squares algo-
rithm, is described in [ScML98].

10.5 EXERCISES

Section 10.3

10.3.1 Consider the cylinder C with base in the x-y plane and height 7 defined by

Let X be the ray that starts at p = (-1,8,15) and has direction vector v = (1,-1,-2). Find the
first intersection of X with C in the following two cases:

(1) C has neither a top or bottom.
(2) C has both a top and bottom.

10.6 PROGRAMMING PROJECTS

Section 10.2

10.2.1 A ray-tracing program

Build on programming project 9.4.1(a) and implement a complete ray-tracing program
for a world of spheres that includes shadows, reflections, and transparencies using the Phong
illumination model.

x y-() + -() =3 5 42 2 .

10.6 Programming Projects 369

such as the one shown in Figure 11.1, which have differentiable parameterizations
but also have a cusp. Section 11.10 discusses how one can detect that condition. The
same thing can happen in the case of surfaces. Smoothness of the function p does not
imply smoothness of its range X (and vice versa). At the heart of this is again the dis-
tinction between a Ck function and a Ck manifold, which is a set. We shall take a
closer look at this issue in Section 11.9.

11.1 Introduction to Curves and Surfaces

The first 10 chapters of this book have described the basic ideas and algorithms cur-
rently used to render geometric objects. The main topics covered were the mathe-
matics for the graphics pipeline, clipping, drawing discrete lines, visible surface
determination, and shading. In short, we know pretty much all that we need to know
to render any linear polyhedra. Linear polyhedra are a too-limited domain, however,
even if we were to include the conics. The time has come to talk about general “curved”
objects. After all, most interesting objects are curved.

There are many aspects to the study of curves and surfaces. We shall touch on a
lot of them in the next two chapters because curves and surfaces are clearly central
to geometric modeling. However, the subject and the literature dealing with it are
especially large and we do not want to raise overly high expectations with respect to
the coverage. Readers who become interested in a really in-depth discussion of certain
topics may not find enough here, especially with regard to all the various choices and
some practical details related to the most efficient algorithms and implementations.
They should not be surprised to find themselves reaching for one of the references for
this depth. Given the breadth of our overview of geometric modeling, it was just not
possible to do more here. It is hoped, however, that we shall have at least conveyed
the essence of the forest of fundamental ideas if not of the trees. Specifically, at the
end of the day, we expect the reader to have learned the following:

(1) the ability to describe the main curves and surfaces that one encounters in
the real world of manufacturing and other areas of computer graphics,

(2) a basic understanding of what makes these objects tick,
(3) efficient and robust algorithms to compute some of their most important

properties,
(4) ways to make it easier to manipulate these objects, because it is not just math-

ematicians that use the objects, and
(5) an appreciation of the richness of the subject.

We begin with some general comments. The first question that needs to be
answered is how curved objects should be represented. A polygon could be repre-

374 11 Curves in Computer Graphics

Figure 11.1. A curve with a differentiable parameterization.

sented by a sequence of points. This is not going to work here, although we will want
finite descriptions since everything is going to be represented in a computer. The two
standard representations are by parameterizations or implicitly via equations. Rela-
tively few objects have a convenient implicit representation, with the conics being the
main exception. Our emphasis will be on parametric curves and surfaces.

How are curves and surfaces defined in practice? This depends on what one is
trying to do. There are three aspects to this problem though—the definition, the imple-
mentation, and the user interface. The underlying mathematical theory is obviously
important but often the actual formulas have been known for a long time and the real
problem is to make it easy for a user to specify them. In other words, it is often the
user interface that is the driving force. Users would like to be able to create and manip-
ulate objects easily in terms of properties relevant to their task and ones they can
understand. One way to think of this is in terms of a black box that has some dials,
one for each property that the user wants to adjust. A large percentage of the papers
on curves and surfaces have to do with finding more intuitive and convenient ways
to define and manipulate the same underlying mathematical curve. For example, one
may want to define a piecewise cubic curve by simply specifying some points that
control its shape, or by some tangent vectors, or by conditions on its curvature. It is
the mathematician’s task to make this possible and efficient.

As one looks over how curves and surfaces are used in geometric modeling one
finds that the subject develops in two directions. Are we trying to model a very precise
object, so that accuracy is paramount, or are we designing shapes in a more rough
outline manner? For example, in the design of the wing of an airplane or the blades
of a turbine one is dealing with analytical models that must be reproduced faithfully
within strict tolerance limits. On the other hand, when designing an automobile body,
this is more intuitive and involves aesthetics. Here the tolerances are not so strict.
Many definitions of curves and surfaces are derived from data-fitting-type problems
and in one sense their study deals with special cases of the following:

The general approximation problem: Given a fixed collection of functions j1, j2, . . . , jk,
find coefficients ci such that

(11.1)

is an approximation to some “theoretical” function f(x). The functions ji are often called
primitive or basis functions.

For example, if f(x) is a real-valued function of a real variable, the function ji(x) could
be the monomial xi, in which case we are simply looking for the polynomial g(x) that
best approximates f(x).

Figure 11.2 depicts the environment in which we are operating. The function f
is thought of as a given function in some large function space X over some domain
D. We are looking for a function g that comes from a certain special linear subspace
A of X defined by the ji. The domain D could be quite general, so that the variable x
is not necessarily a real number. Often D consists of points in Rn. For example, the
functions could be defined on a surface and then the xs would be elements of R2. The
function g should also be a “good” approximation. Desirable properties are:

g ci i
i

k

x x() = ()
=
Â j

1

11.1 Introduction to Curves and Surfaces 375

(1) The function g should be “close” to f with respect to some appropriate metric.
(2) The coefficients ci should be unique.

What does it mean for functions to be close? Well, that depends on the metric that
is chosen for the function spaces in question (see Section 5.2 in [AgoM04]). Many
metrics are possible and one needs to choose the one that is appropriate for the
problem at hand. A common metric is the so-called “max” metric where d(a,b), the
distance between two functions a(x) and b(x), is defined by

On the other hand, the function f(x) may only be known at a finite number of points
x1, x2, . . . , xs, so that the best we can do is to minimize the error at the points xj.
Before we define the well-known approach to the approximation problem in this
important special case, we make two observations. First, the function g defined
by equation (11.1) depends on the values ci and so we shall use the notation g(x;c1,
c2, . . . ,ck) to indicate this dependence explicitly. Second, since distances involve a
square root, one simplifies things without changing the minimization problem by
using the square of the distance.

Definition. The function g(x;c1,c2, . . . ,ck) that minimizes

is called the least squares approximation to the function f(x).

Finding the least squares approximation involves setting the partials ∂E/∂ci to zero
and solving the resulting system of linear equations for the ci.

When dealing with approximation problems one usually encounters other con-
straints. Some of these are:

(1) Interpolatory constraints:

g fj jx x x() = (), .for some fixed points j

E c c c f g c c ck j j k
j

s

1 2 1 2
2

1

, , . . . , ; , , . . . ,() = () - ()()
=
Â x x

d a b a b d, .() = () - ()Ú x x x
D

376 11 Curves in Computer Graphics

Figure 11.2. The general approximation problem.

(2) A mixture of (1) and smoothness conditions, such as conditions that the deriv-
atives of g and f agree at the xj.

(3) Orthogonality constraints:

(4) Variational constraints:

(5) Intuitive shape constraints involving, for example, the curvature of the curve
or surface.

A common thread, alluded to earlier, that underlies much of the discussion of
parametric curves and surfaces in CAGD, is:

Although it may seem like we are discussing different parameterizations, we are often talking
about one single function throughout and it is not the case that we are describing different
functions. The only thing that changes is how we represent the parameterization—which
control points we choose, what knots there are, if any, etc. Terms such as “Bézier curve” or
“B-spline curve” simply refer to different ways of looking at the same function.

The reader will find it helpful to keep this in mind. The study of curves and surfaces
in the context of CAGD largely revolves around coming up with techniques for
letting the user control their shape in the manner that is most natural for achieving
one’s current ends. Furthermore, it involves finding ways to switch between various
representations. We shall see that polynomials are the most popular functions
used for parameterizations. The reason is that they are relatively simple to compute.
Furthermore, they play the same role for functions as integers play for real
numbers.

We are almost ready to start our study of curves, but first some terminology.
Consider a parametric curve

Note that the component functions pi of p are just ordinary real-valued functions of
a real variable.

Definition. If all the pi have a certain property, then we shall say that p has that
property. For example, if all the pi are polynomials or splines (a term that will
be defined shortly), then we say that p is a polynomial or spline curve, respectively.
If all the pi are linear, quadratic, or cubic polynomials, then we say that p is a linear,
quadratic, or cubic curve, respectively.

Our plan for this chapter is to start off with some simple examples of curves and
their properties that require no new knowledge past calculus. In particular, Sections

p a b p u p u p u p um
m: , , , , . . . , .[] Æ () = () () ()()R 1 2

f g f h
h A

- = -
Œ

min

f g for all ii-() ∑ =j 0 .

11.1 Introduction to Curves and Surfaces 377

11.2 looks at some old interpolation problems beginning with two classical
approaches to curve fitting. Section 11.3 translates the results on Hermite interpola-
tion into matrices. We then discuss the popular Bézier and B-spline curves from
their “classical” point of view in Sections 11.4 and 11.5.1, respectively. The material
up to this point is really intended as a warm up. It is in Section 11.5.2 that we describe
the modern treatment of the curves defined in the earlier sections. We introduce
the easy but fundamentally new idea of multiaffine maps that is the elegant basis for
most of the curves and surfaces that are used in CAGD. From a high-level standpoint,
we really should have started with Section 11.5.2, but doing so without the back-
ground of the curves described in the earlier sections might have left a reader some-
what overwhelmed by the simple but yet technical nature of multiaffine maps.
Furthermore, the facts themselves are worthwhile knowing. The only thing missing
was a uniform framework. After defining rational B-spline and NURBS curves in
Section 11.5.3, we present some algorithms in Section 11.5.4 that compute B-spline
and NURBS curves efficiently. Section 11.5.5 describes some aspects of B-spline inter-
polation. We finish the discussion of splines in Section 11.6 with nonlinear splines.
Section 11.7 defines superellipses, an interesting special class of curves. Section 11.8
discusses the subdivision problem. The problem of piecing together curves in such a
way that one gets a globally smooth curve in the end is discussed briefly in Section
11.9. Section 11.10 looks at some issues related to the shape of curves. Section 11.11
defines hodographs and Section 11.12 explains the fairing of curves along with some
comments on interpolation with fair curves. Section 11.13 introduces parallel trans-
port frames on curves, which are the sometimes useful alternative to Frenet frames.
Finally, switching from smooth curves to polygonal curves, Section 11.14 discusses
an algorithm that can be thought of as either as a way of smoothing the latter or as
defining an entirely new class of curves. Section 11.15 summarizes the main points
of the chapter.

11.2 Early Historical Developments

11.2.1 Lagrange Interpolation

The simplest form of interpolation is Lagrange interpolation.

The Lagrange interpolation problem: Given points (x0,y0), (x1,y1), . . . , and (xn,yn), find
a polynomial p(x), so that p(xi) = yi for i = 0,1, . . . , n.

11.2.1.1 Theorem. There is a unique such polynomial p(x) of degree n called the
Lagrange polynomial.

Proof. Define polynomials

(11.2)L x L x x x x
x x

x xi n i n n
j

i jj j i

n

, ,
,

; , , . . . , .() = () =
-
-= π

’0 1
0

378 11 Curves in Computer Graphics

The polynomials Li,n are called the Lagrange basis functions with respect to x0,
x1, . . . , xn. It is easy to check that

(11.3)

so that the nth degree polynomial

(11.4)

satisfies the interpolatory conditions. This proves the existence.
To prove uniqueness assume that q(x) is another nth degree polynomial satisfy-

ing this condition, then the nth degree polynomial h(x) = p(x) - q(x) has n + 1 roots
x0, x1, . . . , xn. This is impossible unless h(x) is the zero polynomial, since a nontriv-
ial polynomial of degree n can have at most n roots (Corollary E.5.4 in [AgoM05]).
The theorem is proved.

Note that the Lagrange basis functions satisfy the equation

(11.5)

for all x. This is so because the equation is trivially true for x = xj, and a nontrivial
nth degree polynomial can take on the same value at most n times.

The discussion above can be applied to interpolating points in Rm with a
parametric curve because it is simply a case of applying formula (11.4) to the m
components of the points separately. In other words, given distinct real numbers u0,
u1, . . . , un and points p0, p1, . . . , pn in Rm, the function

(11.6)

is the unique polynomial curve of degree n which interpolates the points pi at the
values ui. It is called the Lagrange interpolating polynomial curve. Because cubic curves
will be of special interest to us throughout this chapter, we look at the formulas for
this case in detail. To begin with

(11.7)

L u
u u u u u u

u u u u u u

L u
u u u u u u

u u u u u u

L u
u u u u u

0 3
1 2 3

0 1 0 2 0 3

1 3
0 2 3

1 0 1 2 1 3

2 3
0 1

,

,

,

,

,

() =
-() -() -()
-() -() -()

() =
-() -() -()
-() -() -()

() =
-() -() --()
-() -() -()

() =
-() -() -()
-() -() -()

u
u u u u u u

and

L u
u u u u u u

u u u u u u

3

2 0 2 1 2 3

3 3
0 1 2

3 0 3 1 3 2

,

.,

p u L u u u ui n n i
i

n

() = ()
=
Â , ; , , . . . ,0 1

0

p

L xi n
i

n

, () =
=
Â

0

1

p x y L xi i n
i

n

() = ()
=
Â ,

0

L xi n j ij, ,() = d

11.2 Early Historical Developments 379

If we let

and

then it is straightforward to show that p(u) can be written in the following matrix
form:

(11.8)

Figure 11.3 shows several cubic curves p(u). We have assumed that

Note how the spacing of the ui affects the shape of the curve. The smaller the value

u u

u u d and

u u

1 0 0 1

2 1 1 2

3 2 2 3

= +
= +
= +

p p

p p

p p

,

,

.

p u u u u() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2 1 M

p

p

p

p

0

1

2

3

.

M =

+ + + + + + + +

+ + + + + + + +

1 1 1 1

0 1 2 3

1 2 3

0

0 2 3

1

0 1 3

2

0 1 2

3

1 2 2 3 3 1

0

0 2 2 3 3 0

1

0 1 1 3 3 0

2

0 1 1 2 2 0

P P P P

P P P P

P P P P

u u u u u u u u u u u u

u u

33

1 2 3

0

0 2 3

1

0 1 3

2

0 1 2

3

u u u u u u u u u u u u
P P P P

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

Pi i j
j j

n

u u= -()
= π
’
0 1,

380 11 Curves in Computer Graphics

Figure 11.3. How spacing affects cubic curves.

of d, the closer the curve gets to the segment from p1 to p2 and the worse the curve
approximates the other segments.

Although Theorem 11.2.1.1 shows that one can always find an interpolating poly-
nomial, there are some serious drawbacks to using this polynomial as the interpolat-
ing curve. First, the degree of the polynomial gets large as n gets large. This would
make it computationally expensive to evaluate. Second, the curve that is generated
will have ripples so that its shape may not match the shape implied by the data. For
example, the unique cubic polynomial that interpolates the points (0,0), (1/3,10/27),
(1/2,3/8), and (2,0) is

but its shape has more wiggles than the shape of the polygonal curve through the
points. See Figure 11.4. It is not possible to eliminate the ripples in a polynomial
because an nth degree polynomial always has potentially a total of n - 1 maxima and
minima (up to multiplicity).

11.2.2 Hermite Interpolation

To avoid the polynomial oscillation problem with Lagrange interpolation, one could
piece together polynomials of degree two, but one would in general get corners where
they meet. However, if we try using cubic polynomials, then we have enough degrees
of freedom to force the polynomials to have the same slope where they meet.

11.2.2.1 Lemma. Given real numbers y0, y1, m0, and m1, there is a unique cubic
polynomial p(x) so that

Proof. The general cubic

has four degrees of freedom. Substituting our constraints gives four equations in four
unknowns that have a unique solution for the a, b, c, and d.

Alternatively, one can use a matrix approach. Since

p x a bx cx dx() = + + +2 3

p y p y p m and p m0 1 0 10 1 0 1() = () = ¢() = ¢() =, , , .

p x x x x() = -() -()1 2 ,

11.2 Early Historical Developments 381

Figure 11.4. Undesired ripples in interpolating
polynomials.

it is easy to check that

. (11.9)

The square 4 ¥ 4 matrix on the left of equation (11.9) has an inverse. A straightfor-
ward computation shows that its inverse Mh is given by

. (11.10)

Therefore,

(11.11)

and

(11.12)

If we define polynomials F1, F2, F3, and F4 by

(11.13)

then

(11.14)

F x x x

F x x x

F x x x and

F x x x

1
2

2
2

3
2

4
2

1 2 1

3 2

1

1

() = -() +()
() = -()

() = -()
() = -()

,

,

,

.

F x F x F x F x x x x h1 2 3 4
3 2 1() () () ()() = () M ,

p x x x x

y

y

m

m

h() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2

0

1

0

1

1 M .

d

c

b

a

y

y

m

m

h

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

M

0

1

0

1

,

Mh =

-
- - -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

2 2 1 1

3 3 2 1

0 0 1 0

1 0 0 0

0 0 0 1

1 1 1 1

0 0 1 0

3 2 1 0

0

1

0

1

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

d

c

b

a

y

y

m

m

¢() = + +p x b cx dx2 3 2,

382 11 Curves in Computer Graphics

More importantly,

(11.15)

Notice that the polynomials Fi(x) satisfy

(11.16)

Figure 11.5 shows the graph of these functions. The existence of functions with these
properties would by itself guarantee that equation (11.15) is satisfied.

Definition. The matrix Mh defined by equation (11.10) is called the Hermite matrix.
The polynomials Fi(x) defined by equations (11.13) and (11.14) are called the Hermite
basis functions.

For future reference, note that the equation

(11.17)

holds for all x. Also, because the Fi are part of a more general pattern of functions
similar to that of the Lagrange polynomials, we introduce the following alternate nota-
tion for them:

(11.18)

This notation will be useful in the next chapter.
Lemma 11.2.2.1 is a special case of a general interpolation problem.

The piecewise Hermite interpolation problem: Given triples (x0,y0,m0), (x1,y1,m1), . . . ,
and (xn,yn,mn), find cubic polynomials pi(x), i = 0,1, . . . , n - 1, so that

H F H F H F and H F0 3 1 1 3 3 2 3 4 3 3 2, , , ,, , , .= = = =

F x F x1 2 1() + () =

F F F F

F F F F

F F F F

F F

1 1 1 1

2 2 2 2

3 3 3 3

4 4

0 1 1 0 0 0 1 0

0 0 1 1 0 0 1 0

0 0 1 0 0 1 1 0

0 0 1 0

() = () = ¢() = ¢() =
() = () = ¢() = ¢() =
() = () = ¢() = ¢() =
() = () =

, , , ,

, , , ,

, , , ,

, , , .¢ () = ¢ () =F F4 40 0 1 1

p x y F x y F x m F x m F x() = () + () + () + ()0 1 1 2 0 3 1 4 .

11.2 Early Historical Developments 383

1

1

F1

F3

F4

F2

Figure 11.5. The Hermite basis functions.

(11.19)

11.2.2.2 Theorem. The piecewise Hermite interpolation problem has a unique
solution.

Proof. This is an easy consequence of equation (11.12). A simple change of variables
in that equation, where we replace x by

does not quite do the trick though because the chain rule would tell us that we had
the wrong slopes at the endpoints since

We need to modify the input slopes by an appropriate factor. It is easy to check that
the correct formula for the Hermite basis function pi(x) is

We can simplify this formula. Let

(11.20)

Then

(11.21)

where Dxi = xi+1 - xi. For a less ad hoc derivation of this result, see Exercise 11.2.2.1.

p x x x x x x x x

y

y

m

m

i i i i h i

i

i

i

i

() = -() -() -()() ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

+

+

3 2 1

1

1 M D ,

Mh d

d d d d

d d d d() =

-
- - -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

2 2 1 1

3 3 2 1

0 0 1 0

1 0 0 0

3 3 2 2

2 2

.

p x s s s

y

y

m x x

m x x

i h

i

i

i i i

i i i

() = ()
-()
-()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

+

+

+ +

3 2 1

1

1 1

1 M .

ds
dx x xi i

=
-+

1

1
.

s
x x

x x
i

i i
=

-
-+1

,

p x y

p x m

p x y and

p x m

i i i

i i i

i i i

i i i

() =
¢() =
() =

¢() =
+ +

+ +

,

,

,

.

1 1

1 1

384 11 Curves in Computer Graphics

Equation (11.21) in the proof of Theorem 11.2.2.2 shows us that the interpolat-
ing polynomials pi(x) can be expanded in the following way:

(11.22)

where the functions fj(x) (which depend on i) are defined by

(11.23)

The interesting property that we want to record here is that

(11.24)

for all x. Compare this with equation (11.17). The proof is left as Exercise 11.2.2.2.
Just like in the Lagrange case we can apply the results above to interpolating

points in Rm with a parametric curve. In other words, given distinct real numbers u0,
u1, . . . , un, points p0, p1, . . . , pn and tangent vectors v0, v1, . . . , vn in Rm, there is a
unique curve p : [u0,un] Æ Rm, called the piecewise Hermite interpolating curve,
satisfying

(1) p (ui) = pi,
(2) p¢ (ui) = vi, and
(3) pi = p | [ui,ui+1] is a cubic polynomial.

In fact,

(11.25)

where Dui = ui+1 - ui. Using equation (11.23) we can also express pi(u) in the form

(11.26)

where the functions fj(u) are defined as in equation (11.22).
The function p(u) is clearly differentiable by construction. However, this does not

completely solve the problem with which we began, because although we now have
an interpolating curve of low degree without “corners,” we assumed that the tangent
vectors vi were given to us. Such an assumption may not be convenient and it is in
fact unnecessary as we shall see in the next section.

Finally, the answers to the Lagrange and Hermite interpolation problems above
show a pattern that ought to be noted. In each case, the problem was solved in an
elegant way by finding basis functions ai(x) such that ai(xj) = dij and similar functions
for derivatives. These functions constructively isolated the effect of each “control
datum” so that it occurred only once as an explicit parameter in the solution. This is

p u f u f u f u f ui i i i i() = () + () + () + ()+ +1 2 1 3 4 1p p v v ,

p u u u u u u u ui i i i h i

i

i

i

i

() = -() -() -()() ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

+

+

3 2 1

1

1 M

p

p

v

v

D ,

f x f x1 2 1() + () =

f x f x f x f x x x x x x x xi i i h i1 2 3 4
3 2

1() () () ()() = -() -() -()() ()M D .

p x f x y f x y f x m f x mi i i i i() = () + () + () + ()+ +1 2 1 3 4 1,

11.2 Early Historical Developments 385

called the blending function approach to interpolation and approximation. We shall
see more examples of this in the future. We want to make one last important obser-
vation in this context.

Let A Õ Rk and consider a function p : A Æ Rm of the form

(11.27)

where pi, vj Œ Rm, the pi are “points,” the vj are “vectors,” and the fi(u) and gi(u) are
real-valued functions. The difference between a “point” and a “vector” here has to do
with how they transform. We assume that an affine map T of Rm sends a “vector” v
(thought of as a directed segment from the origin to the point v) to the “vector”
T(0)T(v). Given an arbitrary affine map T of Rm, express T in the form

where M is a linear transformation (see Chapter 2 in [AgoM05], in particular, Theorem
2.5.8). Let X = p(A) Õ Rm. The question we want to ask is how one can compute the
tranformed set Y = T(X). An arbitrary point p(u) of X gets mapped by T to

(11.28)

On the other hand, if we simply replaced the points pi and vectors vi in equation
(11.27) by their transformed values, we would get

(11.29)

Definition. The function p(u) defined by equation (11.27) is said to be affinely invari-
ant if expressions (11.28) and (11.29) define the same point.

11.2.2.3 Theorem. The function p(u) defined by an equation of the form (11.27)
is affinely invariant if and only if

Proof. This is easy. One simply equates expressions (11.28) and (11.29).

11.2.2.4 Corollary. The Lagrange and Hermite interpolating curves are affinely
invariant.

Proof. This follows from Theorem 11.2.2.3 and equations (11.5) and (11.24).

The importance of being affinely invariant lies in the fact that in order to move a
curve (or the set traced out by an arbitrary parameterization defined by equation
(11.27)) we do not have to move every point on it (which would not be very feasible
even in the case of computer graphics where the screen consists of only a finite

f uj
j

s

() =
=
Â 1

1

.

f u M f u M g u M g u M

f u M f u M f u g u M

s s t t

s s j
j

s

1 1 0 0 1 1

1 1
1

0 1 1

() () +() + + () () +() + () () + + () () =

() () + + () () + ()
Ê
ËÁ

ˆ
¯̃

+ () ()
=
Â

p q p q v v

p p q v

.

. . . + + () (). . . .g u Mt tv

f u M f u M g u M g u Ms s t t1 1 1 1 0() () + + () () + () () + + () () +p p v v q.

T Mq q q() = () + 0,

p u f u f u g u g us s t t() = () + + () + () + + ()1 1 1 1p p v v. ,

386 11 Curves in Computer Graphics

number of pixels) but can simply recompute the curve using the moved “control
data.”

No real constraints were placed on the basis functions above. However, in later
sections on Bézier curves and B-splines we shall see the usefulness of the following
properties:

(1) The functions should be nonnegative.
(2) The functions corresponding to point data should sum to 1.
(3) The functions should have compact support.

Properties (1) and (2) would imply that the curve lies in the convex hull of its control
points and property (3) essentially means that if a control point is moved only the
curve near that point changes. Properties (1)–(3) basically mean that the functions
form a partition of unity.

11.2.3 Spline Interpolation

The interpolation problems described in the last section and the functions that solve
them can be generalized.

Definition. A spline of degree m and order m + 1 is a function S : [a,b] Æ R for which
there exist real numbers xi, i = 0, . . . , n, with a = x0 £ x1 £ . . . £ xn = b, so that

(1) S is a polynomial of degree £ m on [xi,xi+1], for i = 0, . . . , n - 1, and
(2) S is a Cm-1 function.

The xi are called knots and (x0,x1, . . . ,xn) is called the knot vector of length n + 1 for
the spline. The intervals [xi,xi+1] are called spans. If a knot xi satisfies xi-1 < xi = xi+1 =
. . . = xi+d-1 < xi+d (x-1 = -• and xn+1 = +•), then xi is said to be a knot of multiplicity d.
S is called a linear, quadratic, or cubic spline if it has degree 1, 2, or 3, respectively.

Note. One allows a = -• and/or b = +• in the definition of a spline. Only finite xi
are called knots, however.

If one had to list the key terms that should always be intimately associated with
the concept of spline they would be “piecewise polynomial function,” “knots,” and
“differentiability.” Note that splines are more than just piecewise polynomials because
they satisfy a global differentiability condition. The piecewise Hermite interpolation
function described in the last section was not smooth enough to be called a cubic
spline.

The physical definition of a spline. A spline is a thin metal or wooden strip that
is bent elastically so as to pass through certain points of constraint.

Physical splines have been used for ages. For example, in the construction of ships’
hulls, the hull was modeled at full or nearly full size on a wooden floor in the “mold’s
loft.” This task, called “lofting,” was carried out by skilled “loftsmen” using such phys-
ical splines. When one tries to determine a mathematical description of the curves
generated by physical splines, one discovers something very interesting. Physics tells

11.2 Early Historical Developments 387

us that the strip will assume a shape that minimizes the strain. The equation for this
minimum energy problem is difficult to solve directly, however, an approximation to
it can be solved and leads to a solution that is a cubic spline. We shall explain this a
little more in Section 11.6. At any rate, it is this ability of cubic splines to model curves
from physical splines, plus the fact that their low degree makes them easy to compute,
that makes them the most popular spline by far.

The spline interpolation problem: Given an integer k and real numbers xi and yi, i = 0,
. . . , n, with x0 < x1 < . . . < xn, find a spline g(x) of order k so that the xi are the knots for g
and g(xi) = yi.

11.2.3.1 Theorem. The spline interpolation problem has a solution.

Proof. For a general solution see [BaBB87] or [deBo78]. One can also prove this
using B-splines, which are discussed later. See [RogA90]. Here we shall only show the
existence of a solution in the important special case of a cubic spline. We rephrase
the problem as follows: Given points (x0,y0), (x1,y1), . . . , and (xn,yn), find cubic poly-
nomials pi(x), so that for i = 0,1, . . . , n - 1,

and for i = 1,2, . . . , n - 1,

In this situation we have 4n degrees of freedom and only 4n - 2 constraints. The two
extra degrees of freedom can be handled in several ways depending on how we choose
to specify m0 and mn, the slope at the beginning and end of the spline, respectively.
We mention four approaches, but there are others.

End condition choices for interpolating splines:

(1) (Clamped end condition) We can specify the slopes m0 and mn explicitly.
(2) (Bessel end condition) We can let m0 and mn be the end slope of the interpo-

lating parabola for the first, respectively, last three data points.
(3) (Natural end condition) We can require that the second derivative of the spline

vanishes at the ends. This amounts to requiring zero curvature of the spline at the
ends and is closer to what happens in the case of a physical spline. The spline will act
like a straight line near its endpoints. This type of spline is called a natural spline.

(4) (Periodic end condition) We require that the value of the spline and the value
of its first and second derivative are the same at both endpoints. This is of interest
mainly in the context of closed spline curves.

In the first approach we are obligated to specify the end conditions ourselves, whereas
in the other approaches it is done automatically for us. No matter what choice we

¢() = ¢ ()
¢¢() = ¢¢ ()

-

-

p x p x

p x p x
i i i i

i i i i

1

1

,

.

p x y

p x y
i i i

i i i

() =
() =+ +

,

,1 1

388 11 Curves in Computer Graphics

make it will definitely influence the curve. As an example, consider the first three
approaches in the context of a uniformly spaced spline curve that interpolates points
on an arc of a circle (we shall show how our results about spline functions applies
to spline curves shortly). One would like the curvature of the curve to be approxi-
mately constant since that holds for the circle. What one finds is the following (see
[Fari97]): With the correct choice of start and end tangents, the clamped end condi-
tion approach has the best curvatures, the Bessel end condition approach is the next
best, and the natural end condition approach is the worst because it forces the biggest
deviations from constant curvature near the endpoints.

For more on spline interpolation see [Beac91], [Fari97], or [RogA90]. Here we
only sketch the solution to the spline interpolation problem for clamped end
conditions.

Let us assume for the moment that we know the slopes mi = pi¢(xi) for i = 1,2,
. . . , n - 1. Assume further that we also know the slopes m0 and mn at x0 and xn, respec-
tively. Because the slopes are known, equation (11.21) defines the polynomials pi(x).
A simple computation using equation (11.21) shows that

where Dxi = xi+1 - xi, and Dyi = yi+1 - yi. Setting pi≤(xi) equal to pi-1≤(xi) leads to the
equation

for i = 0,1, . . . , n - 1, where di = 1/Dxi. The matrix form of this system of equations is

(11.30)

where Sn is the (n - 1) ¥ (n - 1) matrix

(11.31)Sn

n

n n n

n n n

=

+()
+()

+()

+()
+()

Ê

Ë

Á
Á
Á
Á
Á
Á
Á

-

- - -

- - -

2 0 0 0

2 0 0

0 2 0 0

0 0 0 0

0 0 0 2

0 0 0 2

0 1 1

1 1 2 2

2 2 3

3

3 2 2

2 2 1

d d d
d d d d

d d d

d
d d d

d d d

...

...

...

.

.

...

...

...

ÁÁ
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜
˜

.

S

m

m

m

m

y y m

y y

y y

y y

n

n

n

n n n n

n n n

1

2

2

1

0
2

0 1
2

1 0 0

1
2

1 2
2

2

3
2

3 2
2

2

2
2

2 1
2

3

3

3

3

.

.

.

.

-

-

- - - -

- - -

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

=

+() -
+()

+()
+

d d d
d d

d d
d d

D D
D D

D D
D D n n nm- -() -

Ê

Ë

Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜

1 1d

,

d d d d d di i i i i i i i i i im m m y y- - - + - -+ +() + = +()1 1 1 1 1
2

1
22 3 D D ,

¢¢() =
+() -

-() +
- +()+ +p x

x m m y

x
x x

y x m m

x
i

i i i i

i
i

i i i i

i

6
2

2
3 21

3
1

2

D D
D

D D
D

,

11.2 Early Historical Developments 389

The tridiagonal symmetric matrix Sn has all positive entries and is diagonally domi-
nant, which implies that it has an inverse. In other words, there is a solution to the
cubic spline interpolation problem and this solution is unique. The tridiagonal nature
of the matrix means that the system of equations can be solved very efficiently. One
needs only one forward substitution sweep (row operations starting from the top,
which eliminate the elements below the diagonal and change the diagonal elements to
1) and then one backward substitution sweep starting from the bottom. See [ConD72].

Finally, let us translate the above results to interpolating points in Rm with a para-
metric curve. Suppose that we are given distinct real numbers u0, u1, . . . , un and
points p0, p1, . . . , pn in Rm, then there is a unique cubic spline p : [u0,un] Æ Rm sat-
isfying p(ui) = pi. The individual cubic curves that make up p(u) are defined by equa-
tion (11.25). All that is needed is to find the tangent vectors vi at the points p(ui). Let

Then equation (11.30) becomes

(11.32)

The vi are solved for using this equation. The uniform spline case where ui+1 - ui = 1
is of special interest. In that case we need to solve the following system:

(11.33)

Section 11.5.5 will look at another solution to the spline interpolation problem.

11.3 Cubic Curves

Cubic curves are the most popular in graphics because, as indicated earlier, the degree
is high enough for them to be able to satisfy the typical constraints one wants and yet

4 1 0 0 0 0

1 4 1 0 0 0

0 0 0 1 4 1

0 0 0 0 1 4

31

2

2

1

2 0 0...

...

.

.

.

...

...

.

.

.

O

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

=

-() -

-

-

v

v

v

v

p p v

n

n

33

3

3

3 1

1 3

2

p p

p p

p p v

-()

-()
-() -

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜- -

-

.

.

.

n n

n n n

Sn

n

n

n n n n

n n n

v

v

v

v

p p v

p p

p p

p p

1

2

2

1

0
2

0 1
2

1 0 0

1
2

1 2
2

2

3
2

3 2
2

2

2
2

2 1
2

3

3

3

3

.

.

.

.

-

-

- - - -

- - -

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

=

+() -
+()

+()
+

d d d
d d

d d
d d

D D
D D

D D
D D n n n- -() -

Ê

Ë

Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜

1 1d v

Dp p pi i i i
i i

and
u u

= - =
-+

+
1

1

1
d .

390 11 Curves in Computer Graphics

they are easy to compute. For that reason it is worthwhile to collect together in one
place some facts about them. The emphasis in this section will be on their basic matrix
representation and how it can be used to analyze the curves. Additional matrix rep-
resentations will be encountered in the sections on Bézier curves and B-splines. We
should point out though that matrix representations are not always the fastest or the
most numerically stable representations. See Section 11.15.

To begin with, it is easy to see, by collecting together terms with the same power
of u, that every cubic curve in Rm can be written in the form

(11.34)

where the ai are vectors in Rm. For example,

can be written as

Suppose that one wants to use a polynomial as in (11.34) to design curves. The ai
are then the unknowns and in this representation of the function they are what has
to be determined. However, the same function can be specified in many different ways.
The most convenient way to specify the parameterization depends on what one is
doing. Specifying the ai directly is usually the least convenient. Hermite interpolation
was basically a case where one wanted to specify the curve by means of its endpoints
and its tangent vectors at those points. This is a more geometric approach but there
are others. Given that curves can be represented in different ways it is desirable to be
able to switch between representations. We show in this and later sections that matri-
ces can be used effectively for this task.

Notation. We shall abbreviate p(c) and p¢(c) to pc and pu
c, respectively.

From now on, unless stated otherwise, the domain of our cubic curve is assumed
to be [0,1]. This assumption leads to simplified formulas but the results in this case
translate easily into corresponding results for other domains. See the comments at
the end of this section.

Define matrices

(11.35)

Definition. The vectors ai are called the algebraic coefficients of the cubic curve p(u).
The elements of Bh are called its geometric or Hermite coefficients.

U A

a

a

a

a

B

p

p

p

p

= () =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

u u u and h u

u

3 2

3

2

1

0

0

1

0

1

1 , , .

p u u u u() = () + -() + () + ()3 7 2 0 3 1 2 0 1 0 1 52 3, , , , , , , , .

p u u u u u u u() = + - + + + +()2 3 3 7 5 22 3 3 2,

p u u u u() = + + +a a a a0 1 2
2

3
3,

11.3 Cubic Curves 391

Note that

Furthermore, in analogy with equation (11.9),

Recall from (11.10) that the Hermite matrix Mh, which is the inverse of the 4 ¥ 4
matrix on the left, is given by

(11.36)

By definition, A = MhBh. We have the following matrix equations:

(11.37)

where

The functions Fi(u) are just the Hermite basis functions defined earlier in (11.14). They
will now also be called blending functions because they blend the geometric coeffi-
cients into p. Equations (11.37) show that a curve can be manipulated by changing
either its algebraic or geometric coefficients.

Derivatives of p can also be computed in matrix form:

(11.38)

where

(11.39)Mu =
-

- - -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

0 0 0 0

6 6 3 3

6 6 4 2

0 0 1 0

,

¢() = ()¢ = = ¢p u b h
u

h hUM B UM B F B ,

F UM= = () () () ()()h F u F u F u F u1 2 3 4 .

p u

h h

h

() =
=
=

UA

UM B

FB ,

Mh =

-
- - -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

2 2 1 1

3 3 2 1

0 0 1 0

1 0 0 0

.

0 0 0 1

1 1 1 1

0 0 1 0

3 2 1 0

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=A Bh.

p u and p u u u() = ¢() = ¢ = ()UA U A A3 2 1 02 .

392 11 Curves in Computer Graphics

and

(11.40)

where

(11.41)

Before moving on to other matrix descriptions of a cubic curve we pause to show
how just the geometric matrix by itself already tells us a lot about its shape. A more
thorough discussion of the shape of curves can be found in Section 11.10. First of all,
we need to realize that only a limited number of shapes are possible here because
cubic polynomials have the property that their slope can change sign at most twice
and they can have only one inflection point. For example, Figure 11.6(a) shows pos-
sible shapes and Figure 11.6(b) shows impossible ones. Secondly, although there may
be many ways to specify a cubic curve, it is uniquely defined once one knows its geo-
metric coefficients. To put it another way, if one can come up with a cubic curve that
has the same geometric coefficients as some other cubic curve, then this will be the
same curve as the other one, no matter how the other one was defined. Having said
that we shall now show how looking at the x-, y-, and z-coordinates of a cubic curve
separately and then combining the analysis can tell us a lot about its shape and
whether it has loops or cusps.

11.3.1 Example. Consider the following four geometric coefficient matrices Bh:

a b c d()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

()

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

()

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 3 1

7 3 1

6 0 0

6 0 0

1 3 1

7 3 1

6 0 10

6 0 10

1 3 1

7 3 1

20 0 40

20 0 40

1 3 1

7 3 1

6 0 10

6 0 10

Muu =
-

- - -

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

0 0 0 0

0 0 0 0

12 12 6 6

6 6 4 2

.

¢¢() = ()¢¢ = = ¢¢p u b h
uu

h hUM B UM B F B ,

11.3 Cubic Curves 393

Figure 11.6. Possible and impossible cubic curves.

The problem is to sketch the corresponding curves p(u) without actually computing
the polynomials via formula (11.37).

Solution. Sketches of the curves are shown in Figure 11.7, but we want to give a
qualitative explanation for why they look like they do.

First of all, note that in all four cases the curve starts at (1,3,1) and ends at (7,3,1).
Let

Then y(0) = y(1) = 3 and y¢(0) = y¢(1) = 0. It follows that y(u) = 3 for all u and that each
curve lies in the plane y = 3. To analyze each curve we need only find its projection
in the x-z plane. This will be done by analyzing x(u) and z(u).

Curve (a). The tangent vector at the beginning and at the end is (6,0,0). Since the
straight line

from (1,3,1) to (7,3,1) has the same tangent vector, this is the (only) solution. See
Figure 11.7(a).

Curve (b). See Figure 11.7(b). The function x(u) is just a linear function since it has
the right slope, namely, 6, at both ends. Because the slope of z(u) is 10 at 0 and -10

p u u() = () + ()1 3 1 6 0 0, , , ,

p u x u y u z u() = () () ()(), , .

394 11 Curves in Computer Graphics

Figure 11.7. The cubic curves for Example 11.3.1(a)–(d).

at 1, the shape of the graph of z(u) can be realized by a parabola as shown in the
figure. The function z(u) achieves its maximum value at u = 0.5. (By uniqueness, since
a parabola is able to satisfy the given data, it must be the curve. Actually solving for
z(u) would give us

but we do not need this precise formula.) It follows that as u moves from 0 to 1, x(u)
increases steadily from 1 to 6 in a uniform way and the function z(u) starts at 1 and
increases until u = 0.5, then it decreases back to 1. This leads to the indicated sketch
of the projection of p(u) to the x-z plane.

Curve (c). See Figure 11.7(c). The graph of x(u) needs to have the shape shown since
its slope is 20 at both 0 and 1. It is a cubic. The only fact that we need to believe that
requires perhaps a little extra experience with functions is that the local maximum
and minimum occur at some values a and b, respectively, where 0 < a < 0.5 < b < 1.
The function z(u) has slope 40 at 0 and -40 at 1. Therefore, since this can again be
realized by a parabola which takes on its maximum value at u = 0.5, it is that parabola.
Its actual formula happens to be

but this is again not important for what we are doing. All that we need to
know is that as u moves from 0 to a, the x-coordinate of p(u) is increasing and
so is the z-coordinate. As we move from a to 0.5, x is decreasing, but z is still
increasing. Moving from 0.5 to b, both x and z are decreasing. Finally, as u moves
from b to 1, x is increasing, but z is decreasing. The reader should check that the
x- and z-coordinates of the self-intersecting loop shown on the right in Figure
11.7(c) behave in the same way as one moves from the left to the right endpoint of
that curve.

Curve (d). See Figure 11.7(d). The graph of x(u) is again a straight line and the
shape of the graph of z(u) is forced by its slope of 10 at both ends to be the cubic
as shown. The rest of the argument is, like for curve (c), based on an analysis of
the regions where x and z are increasing and decreasing. This finishes Example
11.3.1.

Example 11.3.1 and others such as Exercise 11.3.2 should begin to give the reader
a feel for how changing pu

0 and pu
1 affects a curve.

One other useful matrix form is the one for a cubic curve that interpolates four
points p0, p1, p2, and p3. Although equation (11.8) already described a general solu-
tion for this problem, it is worthwhile to state the special uniform case explicitly. That
is the case where the ui are chosen to be the numbers 0, 1/3, 2/3, and 1, in other words,
pi = p(i/3). Let

z u u() = - -() +20 0 5 6
2

. ,

z u u() = - -() +5 0 5 2 25
2

. . ,

11.3 Cubic Curves 395

Then the so-called four-point matrix form of a cubic curve is

(11.42)

where the four-point matrix M4 is defined by

(11.43)

The geometric matrix Bh and P are related by the equation Bh = LP, where

(11.44)

The discussion up to here has centered on cubic curves with domain [0,1]. What
happens in the case of a different domain [a,b]? One can give a similar analysis, except
that the “geometric coefficients” for such a cubic curve would have to be based on the
values and tangents at a and b, rather than at 0 and 1. Other than that one could
proceed pretty much as before. Note that the Hermite matrix Mh can no longer be
used, but there would be a matrix that plays the same role but based on a and b.
Exercise 11.3.4 asks the reader to work out one example of such a change.

11.4 Bézier Curves

This section and the next will deal with curves that are defined by control points but
do not interpolate them in general. We shall return to the interpolation problem in
Section 11.5.5.

Although the geometric coefficients approach to defining curves is a big improve-
ment over having to specify the algebraic coefficients, specifying tangent vectors in
an interactive computer graphics environment is still somewhat technical. A better
way allows a user to specify these vectors implicitly by simply picking points that
suggest the desired shape of the curve at the same time. Figure 11.8 shows a cubic
curve p(u) which starts at p0 and ends at p3. It is very easy to specify the tangent lines

L M M= = - -
- -

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

-
h

1
4 11

2
9
2

9
2

11
2

1 0 0 0

0 0 0 1

9 1

1 9

.

M4

9
2

27
2

27
2

9
2

45
2

9
2

11
2

9
2

9 18

9 1

1 0 0 0

=

- -
- -

- -

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

.

p u() = UM P4 ,

P

p

p

p

p

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

0

1

2

3

.

396 11 Curves in Computer Graphics

to the curve at these points by graphically picking any points p1 and p2 along these
lines. Then

(11.45)

for some a and b. Now let us turn this construction around. Rather than starting with
the curve p(u), let us start with the points pi and ask what curve p(u) these points and
equations (11.45) define. We could of course let a and b be any fixed positive real
numbers, but for reasons that will become apparent shortly, we fix a = b = 3.

By definition, the Hermite matrix Bh for the cubic curve p(u) is just MhbBb, where

The matrix Bb defines the geometric data for the Bézier curve. It follows that

(11.46)

where Fb = UMb and

(11.47)

Definition. The elements of the matrix Bb, namely, the points pi, are called the Bézier
coefficients of the curve p(u). The matrix Mb is called the Bézier matrix.

Multiplying the matrices in equation (11.44) leads to the following formula for
p(u):

(11.48)p u u u u u u u() = -() + -() + -() +1 3 1 3 1
3

0
2

1
2

2
3

3p p p p .

M M Mb h hb= =

- -
-

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 3 3 1

3 6 3 0

3 3 0 0

1 0 0 0

p u h h h hb b b b

b b

() = = =
=

UM B UM M B UM B

F B ,

M B

p

p

p

p

hb band=
-

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 0 0 1

3 3 0 0

0 0 3 0

0

1

2

3

.

¢() =
¢() =

p

p

0

1
0 1

2 3

a
b

p p

p p

,

,

11.4 Bézier Curves 397

Figure 11.8. A Bézier curve and its data.

This cubic curve is called the cubic Bézier curve based on the points pi. Notice how
the coefficients add up to 1, which tells us that the curve lies in the convex hull of the
points pi. This is one reason for our particular choice of a and b in equation (11.45).

We have a new way to design curves. Picking four points produces a curve that
starts at the first and ends at the last and has a tangent vector at the beginning and
end that is parallel to the lines between the first and last two points, respectively. We
manipulate the curve by simply moving one or more of these “control points.”

Next, we shall generalize this construction from four points to an arbitrary
number. We want to be able to define a curve by outlining its desired shape with some
points. We shall describe two approaches to defining general Bézier curves. They can
be defined by

(1) starting with the Bernstein polynomial approximation of continuous functions
and continuing with a “brute” force approach to derive various properties, or

(2) using a more geometric “multiaffine” approach.

We begin with the first approach. Section 11.5.2 will deal with the second.

Definition. Let f : [0,1] Æ Rm be a continuous function. Define

(11.49)

where

(11.50)

The polynomial function Fn(f)(u) is called the Bernstein polynomial approximation of
degree n to f.

Bernstein used these polynomials to give a constructive proof of the Weierstrass
approximation theorem, which showed that every continuous function could be
approximated by a polynomial. One can show that the Bernstein polynomials con-
verge uniformly to f, but they converge very slowly and so they are not normally used
for that in mathematics since there are better ways to approximate functions by poly-
nomials. On the other hand, they lead to a representation for curves that is good for
interactive curve design.

Definition. Given a sequence of points pi in Rm, i = 0,1, . . . , n, define the Bézier curve
p(u), u Œ [0,1], by

(11.51)p u B ui n i
i

n

() = ()
=
Â , .p

0

B u
n

i
u ui n

i n i
, .() = Ê

Ë
ˆ
¯ -() -

1

F f u f
i
n

B un
i

n

i n()() = Ê
Ë

ˆ
¯ ()

=
Â

0
, ,

398 11 Curves in Computer Graphics

The points pi are called the Bézier or control points for p(u) and the polygonal curve
defined by them is said to form the Bézier or characteristic or control polygon for p(u).
The functions Bi,n(u) are called the Bézier basis functions.

Note. P. Bézier, who invented the Bézier curves, originally used coefficient functions
in (11.51) that were slightly different from but related to the Bernstein polynomials.
See [Fari97]. One does not use his original functions anymore because the Bernstein
polynomials are easier to use.

Bézier curves have a number of nice properties. The first of these is that they lie
in the convex hull of their characteristic polygon. This follows from the following two
facts and Theorem 1.7.2 in [AgoM05]:

(1) Bi,n(u) ≥ 0.

(2)

Equation (2) holds because the Bi,n(u) are just the terms that one gets in the binomial
expansion of the right hand side of the equation

It is also easy to check that the Bézier curve starts at the first control point and ends
on the last, that is, p(0) = p0 and p(1) = pn .

Bézier curves are also symmetric. What this means is that if we list the control
points of the curve in reverse order we get the same curve, although it will be tra-
versed in the opposite direction. This follows from the easily checked fact that

(11.52)

so that

Next, we show that Bézier curves have a simple recursive definition by rewriting
the formula that defines them. Using the identity for binomial coefficients

(11.53)

we get

n

i

n

i

n

i
Ê
Ë

ˆ
¯ =

-Ê
Ë

ˆ
¯ +

-
-

Ê
Ë

ˆ
¯

1 1

1
,

B u B ui n i
i

n

i n n i
i

n

, , .() = -()
=

-
=

Â Âp p
0 0

1

B u B ui n n i n, , ,() = -()- 1

1 1 1= = -() +()n n
u u .

B ui n
i

n

, .() =
=
Â 1

0

11.4 Bézier Curves 399

The terms in square brackets are actually just Bézier curves on n points. Let pi,j(u)
denote the Bézier curve defined by the points pi, pi+1, . . . , pj. Clearly, p0,n(u) is just p(u).
Furthermore, by changing variables in the summations above it is easy to see that

(11.54)

It follows that the Bézier curve for n + 1 points is a simple convex linear combination
of two Bézier curves on n points. This leads not only to an efficient way to evaluate
Bézier curves but to a nice geometric construction for sketching such a curve that we
shall indicate by looking at a few examples. First, note that the Bézier curve for one
point p0 is just the constant function p(u) = p0. Using this fact and the recursive
formula above gives that the Bézier curve for two points p0 and p1 is given by

In other words, the Bézier curve is just the standard linear parameterization of the
segment [p0,p1]. Next, to compute p(u) in the case of three points p0, p1, and p2, let

and

Then p(u) = (1 - u)q1 + uq2. Figure 11.9(a) shows how this works to find p(1/3). First,
we find the point A that is one third of the way on the segment from p0 to p1, then
B, which is one third of the way from p1 to p2. Finally, p(1/3) is the point one third
of the way from A to B. Figure 11.9(b) shows an analogous construction for com-
puting p(1/3) in the case of four points. The points A, B, and C are one third of the
way on the segment from p0 to p1, from p1 to p2, and from p2 to p3, respectively. The

q p p2 1 21= -() +u u .

q p p1 0 11= -() +u u

p u u p u u p u

u u

() = -() () + ()
= -() +

1

1
00 11

0 1p p .

p u u p u u p u

p u u p u p u
n n

n n n

() = -() () + ()
= () + () - ()[]

-

- -

1 0 1 1

0 1 1 0 1

, ,

, , ,

p u B u

u
n

i
u u u

u
n

i
u u

n

i
u u u

i n i
i

n

n i n i
i

n
n

i

n

n i n i
i

i n i
i

n
n

() = ()

= -() + Ê
Ë

ˆ
¯ -() +

= -() +
-Ê

Ë
ˆ
¯ -() +

-
-

Ê
Ë

ˆ
¯ -() +

=

-

=

-

- -

Â

Â

, p

p p p

p p p p

0

0
1

1

0

1 1

1
1

1
1

1
1

ii

n

i

n

n i n i
i

i

n

i n i
i

n
n

i

n

u u
n

i
u u

u
n

i
u u u

=

-

=

-

- - -

=

-

- - -

=

-

ÂÂ

Â

Â

= -() -() +
-Ê

Ë
ˆ
¯ -()È

Î
Í

˘

˚
˙

+
-
-

Ê
Ë

ˆ
¯ -() +

È

Î
Í

˘

˚
˙

1

1

1

1

1
0

1

1

1

1 1

1

1

1 1
1

1

1

1
1

p p

p p

400 11 Curves in Computer Graphics

points C and D are one third of the way from A to B and from B to C. The point p(1/3)
is one third of the way from D to E.

The geometric construction just described translates into the de Casteljau evalu-
ation algorithm shown in Algorithm 11.4.1.

11.4.1 Theorem. Algorithm 11.4.1 computes p(u).

Proof. Clear.

Algorithm 11.4.1 can be visualized via the following triangular array:

(11.55)

p p p p

p p p

p p

p

0 1 1

0
1

2
1

1
1

0
1

1
1

0

. . .

. . .

.

n n

n n

n n

n

-

- -

- -

11.4 Bézier Curves 401

Figure 11.9. Graphing a Bézier curve geometrically.

Inputs: Control points pi, i = 0,1,...,n in Rm for a Bézier curve p(u)
u Œ [0,1]

Output: p(u)

Step 1: Set pi
0 = pi .

Step 2: For r = 1,2,...,n and i = 0,1,...,n-r compute

pi
r = (1-u) pi

r-1 + u pi+1
r-1 .

When one has finished, p0
n = p (u) .

Algorithm 11.4.1. The de Casteljau algorithm.

Each row in the array is generated from the row above it. Each element in a row is
defined from the two elements in the row above it, which are immediately above and
to the left of it. One does not need a two-dimensional array to implement the algo-
rithm however. One needs only one array of length n + 1. As each new row is gener-
ated it is written on top of the previous row. Computing Bézier curves with the de
Casteljau algorithm is much faster than straightforward evaluation of the polynomial
formula.

To compute the derivative of the Bézier curve, note that

(11.56)

It follows that

(B-1,n-1(n) = Bn,n-1(n) = 0.) Collecting terms gives us the formula we want

(11.57)

Among other things, this shows that the derivative of a Bézier curve is another Bézier
curve. In particular, one can compute the derivative efficiently with a de Casteljau type
algorithm. Since higher derivatives are themselves just derivatives of functions, it
should not be surprising that there is a recursive formula for the derivative of any
order. See Theorem 11.5.2.6. Right now we simply note the following special cases,
which follow from equation (11.57) applied to p(u) and p¢(u):

(11.58)

and

(11.59)

Equation (11.58) explains another important property of Bézier curves: the vector
p0p1 is tangent to the curve at the beginning and the vector pn-1pn is tangent to the

¢¢() = -() - +() ¢¢() = -() - +()- -p n n p n n n n n0 1 2 1 1 22 1 0 1 2p p p p p p, .

¢() = -() ¢() = -()-p n p n n n0 11 0 1p p p p,

d
du

p u n B ui i i n
i

n

() = -() ()+ -
=

-

Â p p1 1
0

1

, .

d
du

p u n B u B u

n B u n B u

n B u n B u

i n i n i
i

n

i n i
i

n

i n i
i

n

i n i i n i
i

n

i

() = () - ()()

= () - ()

= () - ()

- - -
=

- -
=

-
=

-

- + -
=

-

=

Â

Â Â

Â

1 1 1
0

1 1
1

1
0

1

1 1 1
0

1

0

, ,

, ,

, , .

p

p p

p p
nn-

Â
1

d
du

B u
d

du
n

k
u u

k n
k n k

u u
n k n

k n k
u u

n B u B u

k n
k n k

k n k k n k

k n k n

,

, ,

!
! !

!
! !

.

() = Ê
Ë

ˆ
¯ -()

=
-() -() -

-()
-() -()

= () - ()()

-

- - - -

- - -

1

1 11 1

1 1 1

402 11 Curves in Computer Graphics

curve at the end. The Bézier curve in Figure 11.10 shows some of basic properties
possessed by Bézier curves: it lies in the convex hull of the control points, it starts at
the first control point, ends at the last one, and is tangent to the first and last segment
of the characteristic polygon there.

Another important property of Bézier curves is that they are affinely invariant.
This follows both from Theorem 11.2.2.3 and from their recursive definition and the
fact that affine maps preserve barycentric coordinates (Theorem 2.5.9 in [AgoM05]).
As indicated earlier in Section 11.2.2, this is important for graphics because it says
that to compute a Bézier curve that has been moved by an affine map, such as a rota-
tion, all we have to do is compute the image of the control points and then recom-
pute the curve from those new points. Not all curves have this property.

Although it is usually convenient to restrict the domain of a Bézier curve to [0,1],
this is not necessary. More precisely, given any interval [a,b], a curve q : [a,b] Æ Rm of
the form

(11.60)

where p(u) is the Bézier curve on [0,1] defined by formula (11.51), is called a Bézier
curve. Such a curve satisfies all the properties that the original Bézier curve satisfied.
In particular, the important de Casteljau algorithm also applies to q(v) because the
algorithm really only uses barycentric coordinates and does not care about the end-
points of the domain. See the general de Casteljau algorithm in Section 11.5.2. All of
this is usually summarized by saying that Bézier curves are invariant under affine
parameter transformations.

In conclusion, the way that one works with Bézier curves in practice on an inter-
active graphics system is:

(1) One sketches a curve by hand.
(2) One specifies vertices that outline the shape.
(3) One then moves, adds, or deletes vertices as necessary to improve the shape

of the Bézier curve that is generated from these vertices.

The advantage of the Bézier curve over the Hermite curve is that it is more intu-
itive to specify four points than two points and two tangent vectors. Furthermore, the
fact that the curve lies in the convex hull of its control points makes clipping easier.
One first clips this convex hull against the window. If they do not intersect, then the
curve will be outside the window.

Two problems with the general Bézier curve are

q v p
v a
b a

() =
-
-

Ê
Ë

ˆ
¯ ,

11.4 Bézier Curves 403

Figure 11.10. A Bézier curve.

(1) The degree of the curve increases with the number of control points.
(2) There is no local control. The smallest change in any control points forces a

recomputation of the whole curve, although the further that one is from the
control point that was changed, the smaller is the change in the curve.

The usual way to avoid the first disadvantage is to use piecewise Bézier curves, but
then one has to worry about the overall smoothness of the curve and whether the indi-
vidual pieces fit together nicely. There are tricks that one can play to preserve visual
smoothness, however. For example, by taking four control points at a time, one can
get a piecewise cubic Bézier curve. If the last edge of one four-point control polygon
is parallel to the first edge of the next control polygon, then the curve will look smooth
without any apparent corner. To achieve this one can add control points to the orig-
inal set that are the midpoints of appropriate segments. Figure 11.11(a) shows two
four-point Bézier curves that meet in a corner. By adding the points p and q, the new
curve in Figure 11.11(b), which now consists of three four-point Bézier curves, no
longer has a corner. Of course, adding points means that one has changed the curve
that a user is trying to design, but the change will probably not be noticeable. Besides,
in an interactive environment, a user may not have a specific curve in mind anyway
and is only interested in being able to control the general shape.

11.5. B-Spline Curves

11.5.1. The Standard B-Spline Curve Formulas

One common problem with the curves discussed so far is that any change to a control
point forces recomputation of the whole curve. This is very undesirable. B-spline
curves solve this problem. Changes to control points will have only a local effect on
the curve.

B-splines can be defined in several ways. One can define them using

(1) a “brute force” approach by solving equations specifying certain constraints
(see Theorem 11.5.1.1 for example),

(2) truncated (also called one-sided) power functions (see [deBo78] or [BaBB87]),
(3) recursion (the functions Ni,k(u) defined later in this section),
(4) matrices (typically for the case of quadratic and cubic B-splines), or
(5) a multiaffine map approach (see Section 11.5.2).

404 11 Curves in Computer Graphics

Figure 11.11. Bezier curves.

We shall look at all of these approaches, except for the second, but begin by looking
at a special case to help clarify and motivate the general discussion later on.

Polygons are the simplest examples of B-spline curves, although one normally
does not think of them that way. Because they are so simple they are useful in high-
lighting some basic aspects of B-splines. Consider a polygon X with vertices pi = (xi,yi),
i = 0,1, . . . ,n. Define functions Si and S by

(11.61)

and

(11.62)

The function S is then a spline function with respect to the knots ti = xi and the polygon
is just the graph of this function over the interval [x0,xn]. The graph of Si over [xi,xi+1]
is just the segment Xi = [pi,pi+1] of X and Si corresponds to a linear parameterization
of Xi.

Note that if we move any of the points pi, then only the two adjacent functions
Si-1 and Si are affected. We can write S as a sum of basis functions that localize
changes similar to what we saw in the case of Lagrange and Hermite interpolation.
Namely, for each i consider the unit “hat” function bi(t) defined by

(11.63)

See Figure 11.12(a). The bi are what are called linear B-splines because they are
splines that are nonzero on only two spans. A property of these hat functions, which
may not seem important at the moment, is that they sum to 1, that is,

(11.64)b t for x t xi n
i

n

() = £ £ -
=
Â 1 1 1

0

b t if t x

t x x x if x t x

x t x x if x t x

if x t

i i

i i i i i

i i i i i

i

() = <
= -() -() £ £
= -() -() £ £
= <

-

- - -

+ + +

+

0

0

1

1 1 1

1 1 1

1

,

,

.

S t y if t x

S t x x x if x t x

y if x t
i i i i i i

n n

() = <
= -() -()() £ £
= <

+ +

0 0

1 1,

.

S t t y t yi i i() = -() + +1 1

11.5 B-Spline Curves 405

Figure 11.12. Linear B-splines.

Each segment of the polygon, except the first and last, is just the graph of the sum
of two of the hat functions. More precisely,

(11.65)

See Figure 11.12(b). In other words, if we stay away from the endpoints, then

(11.66)

Furthermore, the natural parameterization of the graph of a function and equation
(11.66) leads to the following parameterization of X:

The last equality is justified by the fact that

which follows from equation (11.66) applied to the special case where yi = xi, that is,
the case S(t) = t. In other words, we have another example of a parametric curve in
the form

(11.67)

for some functions bi(u) and “control points” pi. Basically much of the discussion in
this chapter revolves around these are the types of parametric curves and deciding
what is the best choice for the functions bi(u).

Using linear B-splines gave us a continuous curve. If we want a smoother curve,
then we need to use higher-degree basis functions. Quadratic B-splines will give us
differentiable curves. Cubic B-splines will give us twice differentiable curves. Here are
the desirable properties that a general B-spline of degree m should have:

(1) It should be a spline of degree m.
(2) It should vanish outside of m + 1 sequentially contiguous spans. Equivalently,

its support should be contained in m + 1 contiguous spans.

We are not going to make this into a formal definition of a B-spline, however, because
we shall reserve that word for a specific family of functions, namely, the function
Ni,k(u), which will be defined shortly, and those functions will also not be quite as dif-

p u b ui i
i

n

() = ()
=
Â p ,

0

t b t xi i
i

n

= ()
=
Â

0

,

t t S t t y b t b t x yi i
i

n

i i i
i

n

Æ ()() = ()Ê
ËÁ

ˆ
¯̃

= ()()
= =
Â Â, , , .

0 0

S t y b t for x t xi i n
i

n

() = () £ £ -
=
Â 1 1

0

.

S t y b t y b t for i ni i i i i() = () + () < <+ +1 1 0 .

406 11 Curves in Computer Graphics

ferentiable as a spline is supposed to be. The important condition is that the splines
have finite support because that is what will give us local control. In that regard, we
should point out that the number m + 1 of spans that is supposed to contain the
support of a B-spline of degree m was not chosen in an arbitrary way. This is in general
the smallest number of spans over which an (m - 1)-differentiable piecewise polyno-
mial function is nonzero.

The proof of the next theorem is an example of how a brute force method can be
used to show that cubic splines satisfying the finite support condition exist.

11.5.1.1 Theorem. Given distinct knots xi-2, xi-1, xi, xi+1, and xi+2, there is a unique
cubic spline bi(t) such that

(1) bi (t) = 0, for t < xi-2 or xi+2 < t, and
(2) bi (xi-1) + bi (xi) + bi (xi+1) = 1.

Proof. See [BaBB87]. Basically, we have four cubic polynomials, one for each span,
which gives us 16 degrees of freedom. The fact that we want the polynomials to meet
at the five knots and have the same first and second derivatives there gives us 15 con-
straints. (At the endpoints xi-2 and xi+2 the functions and their derivatives are zero.)
The normalizing constraint in (2) is the extra one needed for a unique solution. This
solution consists of the four polynomials

(11.68)

where t ranges over the intervals [xi-2,xi-1], [xi-1,xi], [xi,xi+1], and [xi+1,xi+2], respectively.
See Figure 11.13. Without condition (2), there would be many solutions.

After all these preliminaries, here are the functions we are after. We give the
Cox-de Boor recursive definition.

1 6

1 6 3 3 3 1

1 6 3 6 4

1 6 3 3 1

3 2

1 2

3 2 1

1

3 2

1

3 2

() =
-

-

() - + + +() =
-
-

() - +() =
-

-

() - + - +() =
-

-

- -

-

-

+

u u
t x

x x

u u u u
t x
x x

u u u
t x

x x
and

u u u u
t x

i

i i

i

i i

i

i i

i

, ,

, ,

, ,

, ++

+ +-
1

2 1x xi i
,

11.5 B-Spline Curves 407

Figure 11.13. A cubic B-spline basis function.

Definition. Given n ≥ 0, k ≥ 1, and a nondecreasing sequence of real numbers U =
(u0,u1, . . . ,un+k), define functions

recursively as follows:

(11.69a)

If k > 1, then

(11.69b)

where, if any term is of the form 0/0, we replace it by 0. The function Ni,k(u) is called
the ith B-spline, or B-spline basis function, of order k and degree k-1 with respect to the
knot vector U.

Note. We need to make one technical point. Although a B-spline of order k is a spline
of some order, it is not necessarily a spline of order k. If some knot has multiplicity
larger than 1, then a B-spline is not differentiable enough at that point. See Theorem
11.5.1.4(2). This causes an occasional awkwardness when talking about such func-
tions. On the other hand, it turns out that any spline is a linear combination of
B-splines basis functions (Theorem 11.5.2.16), so that one not lose anything if one
concentrates on these particular splines. The fact that B-splines form a basis for the
space of splines is actually what gave B-splines their name because the “B” in the
name stands for “basis” ([Scho67]).

A spline is greatly influenced by how the knots are chosen. Before we work
through some examples showing the shape of a few of the splines Ni,k (u) it is con-
venient to introduce some terminology.

Definition. A knot vector for a spline or a B-spline of order k is said to be clamped
if the first and last knot each has multiplicity k. Otherwise, it is said to be unclamped.
An (unclamped) knot vector U of length L is said to be uniform or periodic if the knots
ui are evenly spaced, that is, there is a constant d > 0, so that ui+1 = ui+d for 0 £ i £
L - 2. If U is clamped, then it is said to be uniform if all the knots ui except the first
and last k knots are evenly spaced, that is, ui+1 = ui+d, for k £ i < L - k. A knot vector
that is not uniform is said to be nonuniform.

Definition. The adjectives clamped, unclamped, uniform, periodic, or nonuniform are
applied to a spline or B-spline if they apply to its knot vector.

Note. Unfortunately, the terminology for splines and their knot vectors did not
develop in a consistent way. Other terms can also be found in the literature. For
example, the term “open uniform” is sometimes used for what we are calling clamped

N u
u u

u u
N u

u u
u u

N ui k
i

i k i
i k

i k

i k i
i k, , , ,() =

-
-

() +
-

-
()

+ -
-

+

+ +
+ -

1
1

1
1 1

N u for u u u and

elsewhere
i i i, , ,

, .
1 11

0

() = £ <
=

+

N i ni k, : , ,R RÆ £ £0

408 11 Curves in Computer Graphics

uniform. “Nonperiodic” has been used to mean clamped nonuniform. The terms above
seem to make the most sense and are starting to be used. See [PieT95].

Two types of knot vectors are common enough to deserve a name.

Definition. Let (u0,u1, . . . ,un+k) be the knot vector for a B-spline of order k. It will
be called the standard uniform knot vector if ui = i. It is called the standard clamped
uniform knot vector if

(11.70)

To help the reader get a feel for the functions Ni,k(u) we shall compute a few cases
using the standard clamped uniform knot vector. In this case we may assume that
0 £ u £ n - k + 2 because all the functions vanish outside that interval. Note that
to compute the Ni,k(u) for a fixed k, we must use the same knot sequence for all
the Ni,j(u), 1 £ j < k.

11.5.1.2 Example. n = 3, k = 1:

Solution. The knots ui in this case are

Figure 11.14 shows the graphs of Ni,1(u).

11.5.1.3 Example. n = 3, k = 2:

Solution. This time the ui are

Since the knot values have changed, we cannot use the Ni,1(u) that were computed in
Example 11.5.1.2 and must recompute them. The new graphs are shown in Figure
11.15(a). The Ni,2(u) reduce to the following:

u u u u u u0 1 2 3 4 50 1 2 3= = = = = =, , , .

u u u u u0 1 2 3 40 1 2 3 4= = = = =, , , , .

u u u

u i k for k i n

u u u n k

k

i

n n n k

0 1 1

1 2

0

1

2

= = = =
= - + £ £

= = = - +

-

+ + +

. . .

, ,

. . . .

11.5 B-Spline Curves 409

Figure 11.14. The functions Ni,1(u) in Example 11.5.1.2.

The graphs of the Ni,2(u) are shown in Figure 11.15(b). We use N1,2(u) as an example
to show how the graphs are determined. Since the formula for N1,2(u) is a linear com-
bination of N1,1(u) and N2,1(u), N1,2(u) will be zero except possibly over the intervals
[0,1] and [1,2]. If u Œ [0,1], then N1,1(u) is 1 and N2,1(u) is zero. Therefore, N1,2(u) =
u. If u Œ [1,2], then N1,1(u) is 0 and N2,1(u) is 1. Therefore, N1,2(u) = 2 - u.

Generalizing from Examples 11.5.1.2 and 11.5.1.3, if one wants to compute the
Ni,k(u) by hand, one would first recursively use formula (11.69b) to express the func-
tion as a linear combination of the Nj,1(u) in the form

(11.71)

Let Ii be the interval over which Ni,1(u) is nonzero. Then, since Ii « Ij = f if i π j, the
formula for Ni,k(u) over Ij is just the coefficient function aj(u) of Nj,1(u). We shall see

N u a u N ui k j j
j

, , .() = () ()Â 1

N u
u u
u u

N u
u u
u u

N u

u N u

N u
u u
u u

N u
u u
u u

N u

u N u u N u

0 2
0

1 0
0 1

2

2 1
11

11

1 2
1

2 1
11

3

3 2
21

11 21

1

2

, , ,

,

, , ,

, ,

() =
-
-

() +
-
-

()

= -() ()

() =
-
-

() +
-
-

()

= () + -() ()

N u
u u
u u

N u
u u
u u

N u

u N u u N u

N u
u u
u u

N u
u u
u u

N u

u N

2 2
2

3 2
21

4

4 3
31

21 31

3 2
3

4 3
31

5

5 4
4 1

3

1 3

2

, , ,

, ,

, , ,

() =
-
-

() +
-
-

()

= -() () + -() ()

() =
-
-

() +
-

-
()

= -() ,1 u()

410 11 Curves in Computer Graphics

(a)

(b)

Figure 11.15. The functions Ni,j(u) in Example 11.5.1.3.

another example of this process shortly when we describe the uniform quadratic
B-splines.

11.5.1.4 Theorem. The functions Ni,k(u) defined by equations (11.69) satisfy the
following properties:

(1) (Compact support property) The function Ni,k(u) vanishes on (-•,ui) » [ui+k,•).
In particular, only the functions Ni-k+1,k(u), Ni-k+2,k(u), . . . , Ni,k(u) are nonzero on
[ui,ui+1).

(2) (Differentiability property) The function Ni,k(u) is C• on the interior of the
spans and Ck-1-m at a knot of multiplicity m. In particular, Ni,k(u) is a spline of order
k if all knots have multiplicity 1.

(3) Ni,k (u) ≥ 0, for all u.
(4) The identity

holds for all u Œ [k - 1,n + 1] and fails for any other u. If the knot vector is clamped,
then the identity holds for all u Œ [0,n + k].

Proof. See [Seid89], [PieT95], or [Fari97]. Parts (1) and (3) are easy to prove using
induction on k. Note that they are trivially true when k is equal to 1. Induction also
plays a big role in the proof of the other parts. The reason for the restricted domain
in part (4) will become clearer in our discussion of uniform quadratic B-splines below.
Also, if the knot vector is clamped, then [k - 1,n + 1] = [0,n + k].

The compact support property of B-splines is important because it means that one
can make local modifications to curves based on such functions without having to
recompute the whole curve. Theorem 11.5.1.4(3) and (4) show that the B-spline basis
functions act like barycentric coordinates, which will be important for convexity
issues later.

Definition. Given a sequence of points pi, i = 0,1, . . . ,n, the curve

(11.72)

is called the B-spline curve of order k (or degree m = k - 1) with control or de Boor
points pi and knot vector (u0,u1, . . . ,un+k). The adjectives clamped, unclamped, uniform,
periodic, or nonuniform are applied to the curve if they apply to its knot vector. The
domain of the curve is defined to be the interval [uk-1,un+1]. (Note that if the curve is
clamped, then the domain is the whole interval [u0,un+k].) Each piece p([ui,ui+1]), k-1
£ i £ n, of the whole curve traced out by p(u) is called a segment of the curve. The
polygonal curve defined by the control points is called the de Boor or control polygon
of the curve.

The reason that nonclamped B-spline curves have a restricted domain is that we
want the identity in Theorem 11.5.1.4(4) to hold.

p u N ui k i
i

n

() = ()
=
Â , .p

0

N ui k
i

n

, () =
=
Â

0

1

11.5 B-Spline Curves 411

Because of the importance of B-spline curves to geometric modeling, much effort
has gone into coming up with efficient algorithms for computing them and their deriv-
atives. We leave the discussion of these algorithms to Section 11.5.4, at which time
we will also be able to include the rational B-spline curves. In this section will shall
only consider some special ways of computing and working with the quadratic and
cubic curves which, hopefully, will aid the reader in understanding the general curves.

Consider Figure 11.16, which shows some quadratic B-splines. Note how nice and
symmetric the curves look in Figure 11.16(a) and (b) when the knots are spaced evenly
and how this symmetry is lost in Figure 11.16(c) and (d) when the knot spacing
becomes irregular. The cusp in Figure 11.16(d) is caused by the knot 1 which has
multiplicity 2. Figure 11.17 shows all the clamped uniform cubic B-splines Ni,4(u)
associated to the knot vector (0,0,0,0,1,2,3,4,5,6,6,6,6). Again we have regularly
spaced knots and symmetric curves.

The fact is that over uniformly spaced knots the B-splines of a given degree all
have the same shape and are just translates of each other. This is easy to see from the
definition of the Ni,k(u). Assume we have a knot vector (0,1,2, . . .), so that ui = i. A
simple induction shows that

412 11 Curves in Computer Graphics

1

knots = (0,1,2,3,4,5)

(a)

N0,3 N1,3 N2,3
1

knots = (0,0,0,1,2,3,3,3)

(b)

N0,3

N1,3

N2,3
N3,3

N3,3

N4,3

N4,3
1

knots = (0,0,0,1,9,2,3,3)

(c)

N0,3

N1,3

N2,3
1

knots = (0,0,0,1,1,3,3,3)

(d)

N0,3

N1,3

N2,3

N3,3

N4,3

Figure 11.16. Some quadratic B-splines.

(11.73)

Using formula (11.69b) and induction on k then easily leads to

(11.74)

This property of splines having the same shape is also true in the case of clamped
uniform knot vectors as long as one stays away from the ends of the knots. We saw
this in the case of linear B-splines and the hat functions. The middle three curves
N3,4(u), N4,4(u), and N5,4(u) in Figure 11.17 are another good example, as are the
formulas in Theorem 11.5.1.1. This then is our next goal, to analyze the Ni,k(u) for
standard uniform knot vectors and to find formulas for the quadratic and cubic
uniform B-spline curves.

We start with the uniform quadratic B-splines and assume that uj = j, 0 £ j £ n +
3. Let 0 £ i £ n. It is easy to show that formulas (11.69) imply that

(11.75)

(11.76)

(11.77)

Next, we want to use the Ni,3(u) defined by (11.77) to define a quadratic B-spline curve
p(u) for control points pi, i = 0,1, . . . ,n. Before we do that and use formula (11.72)
for p(u), take a look at Figure 11.16(a) again. Over the first and last two spans there
are some “missing” B-splines. They are missing in the sense that there are three
nonzero B-splines over the middle spans between 2 and n + 1, whereas there are
fewer nonzero B-splines over those end spans.

Note. There are similar missing B-splines over the end spans in the general case and
this explains why the identity in Theorem 11.5.1.4(4) fails outside of [uk-1,un+1].

N u u i N u u i i u N u

i u u i N u i u N u

i i i

i i

, , ,

, ,

3
2

1 11

11
2

21

1 2 2

3 1 3

() = () -() () + -() + -() () +[
+ -() - -() () + + -() ()]

+

+ +

N u u i N u i u N ui i i, , ,2 1 112() = -() () + + -() ()+

N u for i u i and

elsewhere
i, , ,

, .
1 1 1

0

() = £ £ +
=

N u N u ji j k i k+ () = -(), , .

N u N u ji j i+ () = -(), , .1 1

11.5 B-Spline Curves 413

1

N3,4 N5,4N4,4

knots = (0,0, 0,1, 2,3, 4,5, 6,6, 6,6)

Figure 11.17. The clamped uniform cubic
B-splines Ni,4(u) for n = 8.

Returning to the uniform quadratic B-spline curves p(u) defined by (11.72), we
want to show that they can be computed very easily using matrices. Assume that
u Œ [i,i+1). Since only Ni,1(u) is nonzero for such a u, formulas (11.72) and (11.77)
show that the coefficient of pj vanishes for all j except for j = i - 2, i - 1, or i. In other
words,

Let qi-1(u), u Œ [0,1], be the restriction of p(u) to the interval [i,i+1] but reparame-
terized to [0,1]. Then

Notice how the coefficients of the points are independent of i. In matrix form (replac-
ing i by i + 1),

(11.78)

where Ms2 is the quadratic uniform or periodic B-spline matrix defined by

(11.79)

The curve qi(u) is defined for 1 £ i £ n - 1 and u Œ [0,1]. It traces out the same set as
the original quadratic B-spline p(u) restricted to u in [i - 1,i]. Derivatives are now also
computed easily. For example,

(11.80)

Repeating the above steps in the case where p(u) is a uniform cubic B-spline pro-
duces a similar result. More precisely, if 1 £ i £ n - 2 and u Œ [0,1], then

(11.81)

where Ms3 is the cubic uniform or periodic B-spline matrix defined by

q u u u ui s

i

i

i

i

() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-

+

+

3 2
3

1

1

2

1 M

p

p

p

p

,

¢() = ()
Ê

Ë
Á
Á

ˆ

¯
˜
˜

-

+

q u ui s

i

i

i

2 10 2

1

1

M

p

p

p

.

Ms2 1 2

1 2 1

2 2 0

1 1 0

= ()
-

-
Ê

Ë
Á
Á

ˆ

¯
˜
˜
.

q u u ui s

i

i

i

() = ()
Ê

Ë
Á
Á

ˆ

¯
˜
˜

-

+

2
2

1

1

1 M

p

p

p

,

q u p i u

u u u u

i

i i i

-

- -

() = +()

= () -() + - + +() +[]
1

2
2

2
1

21 2 1 2 2 1p p p .

p u i u u i i u i u u i u ii i i() = () + -() + () - +() + -() + + -() -()[] + () -()- -1 2 1 1 2 1 1 2 1 2
2

2 1
2

p p p .

414 11 Curves in Computer Graphics

(11.82)

Note how these formulas are compatible with the formulas in equation (11.68). The
derivative can be computed using

(11.83)

The points pj in equations (11.78) and (11.81) are called the ith B-spline coeffi-
cients of the uniform curve p(u). One can also define the nonuniform B-splines with
matrices, but this takes more than one matrix. One needs separate matrices for com-
puting the curve near the endpoints. See [PokG89].

One important difference between clamped uniform and uniform B-spline curves
is that the former start at the first control point and end at the last one whereas the
latter do not. See Figure 11.18. As a partial demonstration of this point we analyze
the quadratic uniform case more closely. Using formula (11.78) we see that

and

that is, the curve starts at the midpoint of the segment [p0,p1], ends at the midpoint
of [pn-1,pn], and passes through the midpoints of all the other segments. Since

¢() = - -qi i i0 1p p

qn n n- -() = () +()1 11 1 2 p p ,

qi i i0 1 2 1() = () +()-p p

¢() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-

+

+

q u u ui s

i

i

i

i

3 2 102
3

1

1

2

M

p

p

p

p

.

Ms3 1 6

1 3 3 1

3 6 3 0

3 0 3 0

1 4 1 0

= ()

- -
-

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃
.

11.5 B-Spline Curves 415

p1 p2

p0

p3

(a)

p4

p5

p1 p2

p0

p3

(b)

p4

p5

Figure 11.18. Clamped uniform versus uniform B-splines.

and

we also see that the first and last segment of the control polygon are tangent to the
curve at the first and last point, respectively.

There is a trick one can use to force a uniform B-spline to start at the first control
point and end at the last one to mimic the clamped uniform case. Qne can add some
“phantom” endpoints. One defines

(11.84)

See [BaBB87].
Next, we look at closed B-spline curves. The uniform B-spline curves come in

handy here. However, to close a curve we have to do more than simply add the first
point to the end of the control point sequence. Figure 11.19 shows a closed cubic
uniform B-spline curve with control points (p0,p1,p2,p3,p4, p5,p0,p1,p2). A simple mod-
ification to formulas (11.78) and (11.81) leads to the following formulas for closed
curves. Let 1 £ i £ n + 1 and u Œ [0,1].

The closed quadratic uniform B-spline curve:

(11.85)

The closed cubic uniform B-spline curve:

(11.86)

Before we leave the subject of B-splines as matrices, we should point out that,
although this is an efficient way to compute them, the disadvantage to using these
matrices in a program is that it would involve code for lots of special cases. For
that reason and the fact that computers are powerful enough these days, a general

q u u u ui s

i n

i n

i n

i n

() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

- +()

+()

+ +()

+ +()

3 2
3

1 1

1

1 1

2 1

1 M

p

p

p

p

mod

mod

mod

mod

.

q u u ui s

i n

i n

i n

() = ()
Ê

Ë
Á
Á

ˆ

¯
˜
˜

- +()

+()

+ +()

2
2

1 1

1

1 1

1 M

p

p

p

mod

mod

mod

.

p p p p p p- + -= - = -1 0 1 1 12 2and n n n .

¢() = -+qi i i1 1p p ,

416 11 Curves in Computer Graphics

p1

p2

p0

p3p4

p5

Figure 11.19. A closed cubic uniform B-spline curve for
n = 5.

geometric modeling program would be unlikely to use them anymore. Instead, one
uses the algorithms described in Section 11.5.4.

Like Bézier curves, B-spline curves p(u) satisfy a convex hull property. Specifically,
it follows from Theorem 11.5.1.4(3) and (4) that B-spline curves defined by equation
(11.72) lie in the convex hull of their control points. Actually, a stronger fact is true
since most of the coefficients in (11.72) are zero for any given u.

11.5.1.5 Theorem. (Local convex hull property) Successive segments of a B-spline
curve of order k are contained in the convex hull of the corresponding sequence of k
control points (the coefficients of the other points vanish). More precisely, suppose
that the B-spline curve p(u) has knots ui and control points pi, then p([ui,ui+1)) is con-
tained in the convex hull of the points pi-k+1, pi-k+2, . . . , pi.

Proof. Use Theorem 11.5.1.4.

In addition to being useful for clipping, Theorem 11.5.1.5 also tells us more about
the curve. For example, in the quadratic case, the B-spline curve lies in the union of
the triangles pipi+1pi+2, 0 £ i £ n - 2. See Figure 11.20. Similar facts are true in the
general case.

Finally, we list, without proof, several additional facts about B-spline curves.
Proofs can be found in [Fari97] or could be derived from the material in Section
11.5.2. These are facts that anyone working with B-spline curves should know. They
deal with how the shape of such curves changes as certain properties are changed.

(1) If the B-spline curve is clamped, then it interpolates the first and last control
point.

(2) Inserting multiple control points eventually forces the curve to go through the
point, as does increasing the multiplicity of knots. See [Fari97] or the next section on
how to insert knots. See also Section 11.5.3 for situations where one might want to
do this.

(3) Increasing the order of a B-spline curve for a fixed number of control points
reduces the number of curve segments, so that the influence of any given control
point on a segment is reduced. Also, each curve segment now lies in the convex hull
of a larger number of control points. Conversely, reducing the order of a B-spline
means that each control point influences fewer segments although its influence is
stronger.

(4) Given a nonperiodic B-spline defined by equations (11.69) we must have n ≥
k - 1, otherwise the equation for the integer knots breaks down. In other words, one
must have at least as many control points as the order of the spline. One needs n ≥ k
if one wants a spline with a domain that is larger than a point.

11.5 B-Spline Curves 417

Figure 11.20. The local convex hull property
of B-splines.

(5) Bézier curves can be considered as a special case of B-spline curves. For
example, the four B-splines from the periodic spline over the knot sequence
0,0,0,0,1,1,1,1 give the cubic Bernstein polynomials.

11.5.2 The Multiaffine Approach to B-Splines

This section describes another geometric approach to Bézier curves and B-splines.
The approach taken in the previous two sections is in a sense rather ad hoc but it has
the advantage that it is easier to follow initially. On the other hand, it gets messy and
complicated to prove anything. The multiaffine approach in contrast may seem totally
confusing initially with all of its sub- and superscripts, but, once one gets over that,
lots of properties of Bézier and B-spline curves become really trivial and very geo-
metric. The core of the material in this section comes from [Seid89]. See also [Seid93]
and [Rock93].

It is an old fact in mathematics that there is a kind of duality between degree k
polynomials of one variable and multivariate polynomials that have degree 1 in each
variable. To show this we need some definitions. Let V and W be real vector spaces.

Definition. A function g : V Æ W is said to be an affine map if

for all k > 0, vi Œ V, and ai Œ R satisfying A function f : Vd Æ W is said to be

a multiaffine map if for all i and v1, v2, . . . , vi-1, vi+1, . . . , vd Œ V, the map gi : V Æ W
defined by

is an affine map.

The definition of an affine map given here agrees with the “usual” definition of an
affine map, namely, that it is a map that sends lines to lines. (In the case of maps from
Rn to Rn this follows from Theorem 2.5.9 in [AgoM05].) In this section the barycen-
tric coordinate preserving property of affine maps is emphasized because that is the
key to everything that we do here. We will be using this property over and over again.
Proofs of results will be trivial as long as one keeps this in mind. Figure 11.21 shows
the critical property of linear maps when using barycentric coordinates. If the linear
map from one simplex to another maps a point p to the point p¢, then both p and p¢
have the same barycentric coordinates, albeit with respect to different vertices. The
map simply replaced the vertices in the barycentric coordinate representation.

If V = R and W = Rm, which is the special case of interest to us, then g(u) =
(g1(u),g2(u), . . . ,gm(u)) and g is an affine map if and only if each gi is a polynomial of
degree 1. Furthermore, a multiaffine map is then simply a polynomial of degree 1 in
each variable separately.

g fi i i dv v v v v v v() = ()- +1 2 1 1, , . . . , , , , . . . ,

ai
i

k

=
=
Â 1

1

.

g a a gi i
i

k

i i
i

k

v v
= =
Â ÂÊ

ËÁ
ˆ
¯̃

= ()
1 1

418 11 Curves in Computer Graphics

11.5.2.1 Theorem. (The Polar Form or Blossoming Theorem) Let

be a polynomial function of degree d. Then there exists a unique symmetric multi-
affine map

satisfying P(u, . . . ,u) = p(u). Furthermore, the rth derivative of p is given by

(11.87)

The map P is called the polar form or blossom of p.

Proof. See [Rams88]. Express p in the form

where ai Œ Rm, and let

where si = si(u1,u2, . . . ,ud) is the ith elementary symmetric polynomial in the
variables u1, u2, . . . , ud. It is easy to check that

Next, let d : R Æ Rd be the diagonal map

Then p(u) = P(d(u)). Therefore, by the chain rule

d u u u() = (), . . . , .

P u u p u, . . . , .() = ()

P u u u u u ud i i d
i

d

1 2 1 2
0

, , . . . , , , . . . , ,() = ()
=
Âa s

p u
d

i
ui

i

d
i() = Ê

Ë
ˆ
¯

=
Âa

0

,

p u
d

d r
r

i
P u u u ur

i

r
r i

d i i

()

=

-

-

() =
-()

Ê
Ë

ˆ
¯ -() + +Â!

!
(, . . . , , , . . . ,).

0

1 1 11 24 34 1 244 344

P d m: R RÆ

p m: R RÆ

11.5 B-Spline Curves 419

Figure 11.21. Affine maps preserve barycen-
tric coordinates.

This fact and induction leads to a proof of equation (11.87). The uniqueness of P
follows from the derivative formula (11.87).

Note. The term “polar form” comes from mathematics. The term “blossom” was
introduced by Ramshaw in [Rams88]. A polynomial can be recovered from its
blossom.

11.5.2.2 Example. A classical example of a blossom is the dot product function
P(u,v) = u•v in Rn, which is the blossom of the length squared function p(v) = |v|2.

11.5.2.3 Example. The blossom of the cubic polynomial

is

What is the point of all of this? Replacing a polynomial of degree k with a func-
tion in k variables that is linear in each variable turns out to be very useful. We shall
see that it is another example of how nonlinear problems can be solved by lineariz-
ing them. To see what is going on here we look at a simple example.

11.5.2.4 Example. Consider the function

on [0,1] which has blossom

Suppose that we want to compute p(1/3). If D is the diagonal map D(u) = (u,u), then
p(u) = P(D(u)). See Figure 11.22. Let A, B, . . . be the points as indicated in the figure.

p u u u u1 2 1 23 1, .() = +

p u u() = +3 12 .

P u u u a a u u u a u u u u u u a u u u1 2 3 0 1 1 2 3 2 1 2 1 3 2 3 3 1 2 33 3, , .() = + () + +() + () + +() +

p u a a u a u a u() = + + +0 1 2
2

3
3

¢() = ()() ¢()p u DP d u d u .

420 11 Curves in Computer Graphics

Figure 11.22. How blossoming linearizes maps.

Let (a,b)X,Y denote the point aX + bY whose barycentric coordinates with respect
to the points X and Y are (a,b). Since P is linear when restricted to vertical and
horizontal lines,

and

It follows that we can compute p(1/3) by applying the linear condition to P three times,
once each to compute P(F) and P(G) with respect to the segments [O,D] and [C,E],
respectively, and then once to the segment [F,G]. Note that because of the symmetry
of the function P we could have also used the segments [O,C], [D,E], and [I,J]. Note
further that P is not linear on the diagonal segment [O,E]. For example, H =
(2/3,1/3)O,E but (2/3,1/3)O¢,E¢ = 2 π H¢.

Next, suppose that P is the blossom of a polynomial function p as in Theorem
11.5.2.1 and that s and t are fixed distinct real numbers. If u Œ R, then let (a0,a1) be
the barycentric coordinates of u with respect to s and t, that is, a0 and a1 satisfy

It is easy to check that

Define

(11.88)

Notice that

In the computations that follow, keep in mind that since P is a symmetric function
we can permute its parameters in any way we want without changing its value.
Expanding the first parameter gives

p u P u u ud() = () = (), . . . , .b0

bi
r

r d r i i

u P u u s s t t() =
- -

(, . . . , , , . . . , , , . . . ,).1 24 34 124 34 123

a
t u
t s

and a
u s
t s0 1=

-
-

=
-
-

.

u a s a t and a a= + + =0 1 0 1 1.

P P P

P P P

P P P

F O D

G C E

H F G

() = () () + () () = () + () =
() = () () + () () = () + () =
() = () () + () () = () + () =

2 3 1 3 2 3 1 1 3 1 1

2 3 1 3 2 3 1 1 3 4 2

2 3 1 3 2 3 1 1 3 2 4 3.

F F F

G G G

H H H

O,D

C,E C ,E

F,G F ,G

= () Æ ¢ = () = ()

= () Æ ¢ = () = ()

= () Æ ¢ = () = ()

¢ ¢

¢ ¢

¢ ¢

2 3 1 3 2 3 1 3

2 3 1 3 2 3 1 3

2 3 1 3 2 3 1 3

, ,

, ,

, ,

,P

P

P

O D

11.5 B-Spline Curves 421

Similarly, one can show that

(11.89)

Let

(11.90)

and

(11.91)

11.5.2.5 Theorem.

(11.92)

Proof. Use the fact that p(u) = b0
d(u) and the recursive formula for the bi

r. Basically,
all that one has done is expand each of the u parameters in P. See [Seid89].

Definition. Equation (11.92) is called the Bézier representation of the polynomial
p(u). The points bi are called the poles or Bézier points or control points of p(u). The
functions Bi,d(u) are called the Bézier polynomials for p(u).

The reason for the terminology is obvious because the curve p(u) is a generaliza-
tion of the Bézier curves that were studied in Section 11.4.

Returning to Example 11.5.2.4 and Figure 11.22, letting [s,t] = [0,1] and u = 1/3,
we get that (a0,a1) = (2/3,1/3) and

Our control points are just O¢, D¢, and E¢ and the image of the map lies in their convex
hull [1,4].

More generally, expanding two of the u in an arbitrary blossom P leads to

b O

b C D

b E

b F b

0
0

1
0

2
0

0
1

0
0

0 0 1

0 1 1 0 1

1 1 4

1 3 0 2 3

u P s s P

u P s t P P

u P t t P

u P u s P

() = () = () = ¢ =

() = () = () = () = ¢ = ¢ =

() = () = () = ¢ =

() = () = () = ¢ = ()

, ,

, , ,

, ,

, , u u

u P u t P u u

() + () ()
() = () = () = ¢ = () () + () ()

1 3

1 3 1 2 3 1 3
1
0

1
1

1
0

2
0

b

b G b b, , .

p u B ui d i
i

d

() = ()
=
Â , .b

0

B u
d

i
a a

d

i

u s t u

t s t s
i d

i d i
i d i

i d i, .() = Ê
Ë

ˆ
¯ -() = Ê

Ë
ˆ
¯

-() -()
-() -()

-
-

-1 11

b bi i

d i i

u P s s t t= () =
-

0 (, . . . , , , . . . ,)123 123

b b bi
r

i
r

i
ru a u a u for i d r and r d() = () + () £ £ - £ £-
+
-

0
1

1 1
1 0 0, .

b

b b
0 0 1

0 0
1

1 1
1

d

d d

u a P s u u a P t u u

a u a u

() = () + ()
= () + ()- -

, , . . . , , , . . . ,

.

422 11 Curves in Computer Graphics

(11.93)

Figure 11.23 shows the geometry in all this for a cubic polynomial curve in the plane.
Recall that we can permute parameters, so that

Again, the reader needs to stare at Figure 11.23 and match its geometry with equa-
tions (11.93) until the relationship is clear. The mathematics in this section is basi-
cally simple, but it may look complicated because it is easy to get lost in the subscripts
and parameters.

The recursive formula for the bi
r(u) in (11.89) leads to the recursive algorithm for

computing p(u) from its control points bi shown in Algorithm 11.5.2.1. Note how this
algorithm generalizes the corresponding Algorithm 11.4.1 in Section 11.4. In par-
ticular, letting d = n, s = 0, and t = 1, equations (11.51) and (11.92) define the same
curve. See also Exercise 11.5.2.1.

There is also a formula for the derivatives of p(u) using forward differences.
Forward difference methods lead to fast evaluation of polynomials at uniformly
spaced intervals. They are discussed in most books on numerical analysis. Wallis
([Wall90]) has a brief tutorial.

Definition. For any sequence of points bi, define the rth forward difference operator
Dr as follows:

The operator D1 is usually abbreviated to D.

D
D D D

0

1
1

1 0

b b

b b b

i i

r
i

r
i

r
i r

=
= - >-

+
- , .

P u t t P t t u and P s u t P s t u, , , . . . , , , . . . , , , . . . , , ,() = () () = ()

p u P u u u

a P s u u u a P t u u u

a a P s u u u a P s t u u

a a P t s u u a P t t u

() = ()
= () + ()
= () + ()()

+ () +

, , . . . ,

, , , . . . , , , . . .

, , , . . . , , , , . . . ,

, , , . . . , , , , .

0 1

0 0 1

1 0 1 . . ,

, , , . . . , , , , . . . , , , , . . . , .

u

a P s s u u a a P s t u u a P t t u u

()()

= -() () + -() () + ()1 2 11
2

1 1 1
2

11.5 B-Spline Curves 423

Figure 11.23. The geometry of the
Bézier polynomial con-
struction.

11.5.2.6 Theorem. The rth derivative of the Bézier curve p(u) defined by equation
(11.92) is given by

Proof. See [Fari97]. To show the reader some more sample computations with blos-
soms, we will work through the main steps for the case r = 1. Let P(u1, . . . ,ud) be the
blossom of p(u). To simplify the notation we assume that [s,t] = [0,1]. Then

This formula shows that

∂
∂
P
u

P u u h u P u u u
h

P u u P u u
i h

i d i d

d d

=
+() - ()

= () - ()
Æ

lim
, . . . , , . . . , , . . . , , . . . ,

, . . . , , . . . , , . . . , , . . . , .

0

1 1

1 11 0

P u u h u u h P u u u u

u h P u u u u

u P u u

i d i i i d

i i i d

i i

1 1 1 1

1 1 1

1 1

1 0

1

1 0

, . . . , , . . . , , . . . , , , , . . . ,

, . . . , , , , . . . ,

, . . . , , ,

+() = - +()() ()
+ +() ()

= -()

- +

- +

- u u

u P u u u u

h P u u u u P u u u u

P u u

i d

i i i d

i i d i i d

i

+

- +

- + - +

()
+ ()
+ () - ()[]

=

1

1 1 1

1 1 1 1 1 1

1

1

1 0

, . . . ,

, . . . , , , , . . . ,

, . . . , , , , . . . , , . . . , , , , . . . ,

, . . . , - +

- + - +

()
+ () - ()[]

1 1

1 1 1 1 1 11 0

, , , . . . ,

, . . . , , , , . . . , , . . . , , , , . . . , .

u u u

h P u u u u P u u u u
i i d

i i d i i d

d

du
p u

d
d r

u
r

r
r d r() =

-()
()-!

!
.D b0

424 11 Curves in Computer Graphics

Inputs: Control points bi, i = 0,1, º ,d in Rm

Fixed distinct real numbers s and t
u Œ R

Output: p(u) as defined by equation (11.92)

Let u = a0 s + a1 t , where a0 + a1 = 1 .

Step 1: Set bi
0 = bi .

Step 2: For r = 1,2, º ,d and i = 0,1, º ,d-r compute

bi
r = a0 bi

r-1 + a1 bi+1
r-1 .

When one has finished, b0
d = p(u) .

Algorithm 11.5.2.1. The de Casteljau algorithm.

Finally, using the chain rule and the fact that blossoms are symmetric functions we
get

which is the case r = 1 of the theorem.

Theorem 11.5.2.6 generalizes the formula in equation (11.57).
Next, let us see where an analysis using blossoms leads when applied to the B-

spline functions Ni,k(u) given the nondecreasing knot sequence

Let N
j
i,k(u) denote the restriction of Ni,k(u) to the interval Ij = [tj,tj+1). The function

N
j
i,k(u) is a polynomial of degree k - 1. Let n

j
i,k be its blossom.

11.5.2.7 Theorem. The functions n
j
i,r(u) satisfy the recurrence relation

(11.94)

Proof. The theorem is proved by induction. One shows that the relation defines
symmetric multiaffine maps and that the diagonals clearly agree with the Ni,r. See
[Seid89].

11.5.2.8 Corollary. If tj < tj+1 and j-r+1 £ � £ j, then

Proof. One uses the formulas in Theorem 11.5.2.7 and induction on r. See [Seid89].

Corollary 11.5.2.8 leads to an important algorithm that relates the control points
of a B-spline to associated blossoms. Let

(11.95)

be a B-spline curve of order k. Since p(u) is a polynomial over each knot interval, let
pj(u) be the polynomial which defines p(u) over the interval Ij = [tj,tj+1] and let Pj be
its blossom.

11.5.2.9 Theorem. If tj < tj+1 and j-k+1 £ � £ j, then the de Boor point p� is defined
by

p u N ui k i
i

n

() = ()
=
Â , p

0

n t t ti r
j

r i, , , . . . , .l l l l+ + + -() =1 2 1 d

n

n u u u
u t
t t

n u u u

t u
t t

n u u u

i
j

ij

i r
j

r
r i

i r i
i r
j

r

i r r

i r i
i r
j

r

,

, ,

,

,

, , . . . , , , . . . ,

, , . . . , ,

1

1 2 1
1

1
1 1 2 2

1
1 1 1 2 2 2

() =

() =
-
-

()

+
-
-

() £

-
-

+ -
- -

+

+ +
+ - -

d

r k£ .

t t t t t t t tk k n n n n k0 1 1 1 2= = = = = =- + + +. . . , , . . . , ,

¢() = () - ()[] = -[]- -p u d P u u P u u d d d1 0 1
1

0
1, , . . . , , , . . . , ,b b

11.5 B-Spline Curves 425

(11.96)

Proof. It follows from Theorem 11.5.1.4(1) that

so that

Corollary 11.5.2.8 now implies the result. See [Seid89].

11.5.2.10 Theorem. Let p(u) be a B-spline of order k with knot vector (t0,t1, . . .
tn+k) and control points p0, p1, . . . , pn. If tj £ u < tj+1, then Algorithm 11.5.2.2 com-
putes p(u).

Proof. See [Seid89]. The function

satisfies the same recurrence relation as pi
r and so the two quantities must be equal.

Now use Theorem 11.5.2.9.

Notice the similarity in the recurrence relations in Algorithm 11.5.2.1 and 11.5.2.2.
The only real difference is in the coefficients (barycentric coordinates) of the points.

P t t u u t tj i j

r

j i k r(, . . . , , , . . . , , , . . . ,)+ + + - -1 1 11 24 34

P u u u n u u uj k i k
j

i j k

j

k i1 2 1
1

1 2 1, , . . . , , , . . . , .,-
= - +

-() = ()Â p

p u N uj i k
j

i j k

j

i() = ()
= - +
Â , ,

1

p

pl l l l= ()+ + + -P t t tj k1 2 1, , . . . , .

426 11 Curves in Computer Graphics

Input: A B-spline curve p(u) of order k with knots t0,t1, º tn+k

tj £ u < tj+1

Output: p(u) as defined by equation (11.95)

Step 1: Set p i
0 = p i .

Step 2: For r = 1,2, º ,k-1 and i = j-k+1+r, º ,j compute

pi
r =

irki

i

tt

tu
1

-
-

-
-+

) (pi-1
r-1 +

irki

i

tt

tu

-
-

-+

pi
r-1 .

When one has finished, pj
k-1 = p(u) .

Algorithm 11.5.2.2. The de Boor Algorithm.

Figure 11.24 shows how Algorithm 11.5.2.2 computes the value of the cubic B-spline
p(u) with knot vector (0,0,0,0,1,2,4,5,6,6,6,6) at u = 3. In that case, i = 5 and p(3) =
P5(3,3,3).

There is more geometry hidden in the formalism above. Given a blossom we can
use equations (11.90) and (11.96) to define the Bézier and de Boor points, respectively.
In other words, we have a way to switch between a Bézier and a B-spline represen-
tation for a B-spline curve. We show how this works with an example.

11.5.2.11 Example. Let p(u) be a cubic B-spline p(u) with knot vector (ti) =
(0,0,0,0,1,2,4,5,6,6,6,6) and consider the interval [2,4]. Using the notation of Theorem
11.5.2.9 that interval corresponds to the values j = 5, k = 4, and 2 £ � £ 5. In equation
(11.90) we would have d = 3. Using the blossom of the curve p(u) over [2,4] = I5 =
[t5,t6] we can compute both the associated de Boor points p2 = P5(0,1,2), p3 = P5(1,2,4),
p4 = P5(2,4,5), and p5 = P5(4,5,6) and the Bézier points b0 = P5(2,2,2), b1 = P5(2,2,4),
b2 = P5(2,4,4), and b3 = P5(4,4,4). See Figure 11.25. From this it is easy to see the rela-
tionship between the Bézier and de Boor points. Consider the three points p3 =
P5(1,2,4) = P5(t4,t5,t6), b1 = P5(2,2,4) = P5(t5,t5,t6), and p4 = P5(5,2,4) = P5(t7,t5,t6). Using
barycentric coordinates and the linearity of P5 with respect to its first coordinate, we
see that

Similarly, b2 = P5(4,2,4) = P5(t6,t5,t6), and

b p p p p1
7 5

7 4
3

5 4

7 4
4 3 43 4 1 4=

-
-

+
-
-

= () + ()t t
t t

t t
t t

.

11.5 B-Spline Curves 427

Figure 11.24. The de Boor algorithm for
B-splines using blossoms.

Figure 11.25. Computing Bézier points
from the de Boor points.

In particular, the points p3, b1, b2, and p4 are collinear. Furthermore, the point b1
divides the segment [p3,p4] in the same proportion as t5 divides the interval [t4,t7].
Similarly, the point b2 divides the segment [p3,p4] in the same proportion as t6 divides
the interval [t4,t7].

The computations in Example 11.5.2.11 easily generalize. There was nothing
special about our knots and j = 5. Consider an arbitrary cubic B-spline p(u) with knots
tj and control points pi. With respect to [tj,tj+1], tj < tj+1, we have

Define points

Then we can easily show like in Example 11.5.2.11 that

and

11.5.2.12 Theorem. If tj £ u £ tj+1, then the cubic curve traced out by the function
p(u) defined by equations (11.95) and the curve traced out by the Bézier curve p(u)
defined on [0,1] by equation (11.49) for control points b3j-6, b3j-5, b3j-4, and b3j-3 are
the same.

Proof. This is an easy consequence of the validity of the de Casteljau and the de
Boor algorithms.

Theorem 11.5.2.12 can be rephrased as saying that each cubic B-spline curve can
be thought of as a collection of cubic Bézier curves. Comparing control points, each
knot interval contributes two de Boor points and four Bézier points under this
correspondence.

The de Boor algorithm also shows us how to insert knots. The reason one might
want to insert knots is to allow more flexibility in subsequent manipulations. As usual,
assume that we have a B-spline p(u) of order k with knot vector K = (t0,t1, . . . tn+k)
defined by equation (11.95) and suppose that we want to add a new knot t, where t Œ
(th,th+1). Let K* = (t0,t1, . . . , th,t,th+1, . . . , tn+k) be the new knot vector and let N*i,k(u)
be the spline functions defined recursively by equations (11.69) but with respect to
the new knot vector K*. We want to find new control points pi* so that

b p p3 4
2 1

2 1
2

1 1

2 1
1j

j j

j j
j

j j

j j
j

t t

t t

t t

t t-
+ +

+ -
-

+ -

+ -
-=

-
-

+
-
-

.

b p p3 5
2

2 1
2

1

2 1
1j

j j

j j
j

j j

j j
j

t t

t t

t t

t t-
+

+ -
-

-

+ -
-=

-
-

+
-
-

b b

b b
3 6 3 5 1

3 4 1 1 3 3 1 1 1

j j j j j j j j j j

j j j j j j j j j j

P t t t P t t t

P t t t P t t t

- - +

- + + - + + +

= () = ()
= () = ()

, , , , , ,

, , , , , .

p pj j j j j j j j j jP t t t and P t t t- - + - + += () = ()2 1 1 1 1 1, , , , .

b p p p p2
7 6

7 4
3

6 4

7 4
4 3 41 4 3 4=

-
-

+
-
-

= () + ()t t
t t

t t
t t

.

428 11 Curves in Computer Graphics

(11.97)

11.5.2.13 Theorem. The new control points for equation (11.97) are defined by

where

Proof. See [Boeh80] or [Seid89]. Figure 11.26 shows the idea behind the proof. We
have inserted the knot t = 3 into the knot vector (0,0,0,0,1,2,4,5,6,6,6,6) used in Figure
11.25.

Inserting knots does not change the shape of the curve but increases the number
of control points; however, in contrast to Bézier curves we do not raise the degree of
the curve by doing this.

Theorem 11.5.2.13 shows how to insert a single knot. Sometimes one wants to
insert more than one knot at a time into a knot vector. The next theorem shows how
to do that. We again assume that we have a B-spline p(u) with knot vector K = (t0,t1,
. . . tn+k), but this time we want to replace K with a new knot vector K* = (s0,s1, . . . ,
sm+k), m ≥ n. If N*i,k(u) are the spline functions associated to K*, we want to find the
new set of control points pj*, so that

(11.98)

11.5.2.14 Theorem. (The Oslo Algorithm) The control points for equation (11.98)
are defined by

p pj i j
k

i
i

n

a j m* , ,,= £ £
=
Â

0

0

p u N uj k j
j

m

() = ()
=
Â ,* *.p

0

a i h k

t t
t t

h k i h

h i n

i

i

i k i

= £ £ - +

=
-

-
- + £ £

= + £ £ +
+ -

1 0 1

2

0 1 1
1

,

, ,

,

p p pi i i i ia a* ,= + -() -1 1

p u N ui k
i

n

i() = ()
=

+

Â ,* *.
0

1

p

11.5 B-Spline Curves 429

Figure 11.26. Boehm knot insertion.

where the ak
i,j are defined recursively by

Proof. See [CoLR80].

We finish this section with several other theorems that follow easily from the
multiaffine map approach to splines. First of all, an important fact that drops out of
the formalism is the differentiability of the functions Ni,k(u), which is not totally
obvious from their recursive definitions.

11.5.2.15 Theorem. If t = tj+1 = tj+2 = . . . = tj+m is a knot of multiplicity m £ k for
Ni,k(u), then Ni,k(u) is Ck-1-m at t.

Proof. See [Seid89].

11.5.2.16 Theorem. (Curry-Schoenberg Theorem) All splines are linear combina-
tions of B-splines.

Proof. See [Seid89].

One can use Theorems 11.5.2.12 and 11.5.2.15 to find the Bézier control points of
a spline of order k. Simply keep inserting knots until all have multiplicity k - 1. At
that point the de Boor points reduce to the Bézier points.

11.5.2.17 Theorem. (Variation diminishing property) A plane (line in planar case)
intersects a B-spline in no more points than it intersects the control polygon.

Proof. See [LanR83], [Seid89], or [PieT95]. In particular, this theorem applies to
Bézier curves.

One important point about all the results in this section is that the proofs are very
short and straightforward. The reader should have little trouble filling in those that
are omitted.

11.5.3 Rational B-spline Curves

Although B-splines curves represent a very large class of curves, they are unable to
represent some very simple curves exactly. It is easy to show that conics like circles
and ellipses cannot be represented by polynomial curves and so B-spline curves can
only approximate them. This is a drawback because conics are curves that one often
wants to represent.

Fortunately, all is not lost. Conics can be represented by rational curves via a
simple trick. We show how this works in the case of a circle. Consider the circle of

a if t s t

elsewhere

a
s t

t t
a

t s

t t
a r

i j i j i

i j
r j k i

i k i
i j
r i k j k

i k i
i j
r

,

, , ,

, ,

, .

, .

1
1

1

1

1 1

1
1
1

1

0

1

= £ £

=

=
-
-

+
-
-

>

+

+ -

+ -

- + + -

+ +
+
-

430 11 Curves in Computer Graphics

radius r shown in Figure 11.27. Every nonvertical line through (-r,0) can be
parameterized by its slope u and satisfies the equation

(11.99)

Solving for the intersection of this line and the circle

leads to the solution

and the parameterization

(11.100)

Another argument for showing that conics have rational parameterizations comes
about by using projective geometry and homogeneous coordinates. It is a well-known
fact (Theorem 3.6.1.1 in [AgoM04]) that all conics are projectively equivalent. In fact,
every conic X in the plane z = 1 in R3 is the central projection of a parabola Y in some
other plane. See Figure 11.28. Furthermore, a parabola is the only conic that has a
polynomial parameterization. Now the standard parabola y = x2 in R2 can be
parameterized by u Æ (u,u2), so that our parabola Y can be parameterized by a
quadratic curve

(11.101)

since it is obtained from the standard one by a linear change of variables and such a
transformation does not change the degree of the parametrization. It follows that the
conic X has a rational parametrization of the form

u x u y u z uÆ () () ()(), ,

u
r u

u

ru

u
Æ

-()
+ +

Ê
ËÁ

ˆ
¯̃

1

1

2

1

2

2 2
, .

x
r u

u
and y

ru

u
=

-()
+

=
+

1

1

2

1

2

2 2

x y r2 2 2+ =

y u x r= +().

11.5 B-Spline Curves 431

Figure 11.27. Defining a rational parameterization of
the circle.

because the central projection is gotten simply by dividing by the z-coordinate. But
we can think of equation (11.101) as defining a conic with homogeneous coordinates
in projective space P2. The important observation is then that conics do have
polynomial representations if we use homogeneous coordinates.

In summary, we have shown that we can handle a larger class of curves if we use
homogeneous coordinates. In that setting, the analog of equation (11.67) is

(11.102)

where the bi(u) are suitable basis or blending functions and the Pi are points described
with homogeneous coordinates. Everything we did earlier for polynomial curves
applies to the curves defined by equation (11.102) since the nature of the coordinates
did not play a role. In particular, we have the obvious notions of Bézier and B-spline
curves for homogeneous coordinates. Furthermore, if we write Pi in the form Pi =
(xiwi,yiwi,ziwi,wi), then the projective space curve defined by P(u) projects to the curve

(11.103)

where pi = (xi,yi,zi). There are several important special cases of such curves.

Definition. The curve p(u) defined by equation (11.103) is called a rational Bézier
curve if its domain is [0,1] and bi(u) = Bi,n(u). (The Bs,t(u) are the functions defined
by equation (11.50).) The curve p(u) is called a rational B-spline curve of order k if the

p u

w b u

w b u

i i i
i

n

i i
i

n
() =

()

()

=

=

Â

Â

p
0

0

P u b ui i
i

n

() = ()
=
Â P ,

0

p u
x u
z u

y u
z u

() =
()
()

()
()

Ê
Ë

ˆ
¯,

432 11 Curves in Computer Graphics

Figure 11.28. Projectively equivalent
ellipse and parabola.

bi(u) are B-splines of order k. The curve p(u) is called a nonuniform rational B-spline
(NURBS) curve of order k with domain [a,b] if bi(u) = Ni,k(u) with respect to a knot
vector

(The Ni,k(u) are the B-splines defined by equations (11.69).) In any case, the points pi
are called the control points of the curve p(u) and the numbers wi are called its weights.

The ordinary Bézier and B-spline curves are clearly a special case of the rational
ones since we get them by using weights that are all equal to 1. Note further that if
we define the function Ri(u) by

(11.104a)

then

(11.104b)

so that p(u) is again a curve of a form (like that of equation (11.67)) that we have seen
many times before.

Definition. The functions Ri(u) in equations (11.104) are called the rational basis
functions for the curve p(u).

NURBS curves (and surfaces) have become very popular in recent years and a
number of modeling programs are based on them. Some general references for these
and rational Bézier curves are [PieT95], [Pieg91], [Fari95], [Roge01], or [RogA90]. In
the rest of this section we shall look at some examples and properties of NURBS
curves, leaving a discussion of how to compute them efficiently to the next section.

11.5.3.1 Example. Suppose that we want to find a NURBS representation for the
unit circle.

Solution. Consider the first quadrant of the unit circle. By equation (11.100) we have
the rational parameterization

In homogeneous coordinates this can be written as

(11.105)

P u u u u

u u

() = - +()
= () + () + -()

1 2 0 1

1 0 0 1 0 2 0 0 1 0 0 1

2 2

2

, , ,

, , , , , , , , , .

p u
u

u

u

u
for u() =

-
+ +

Ê
ËÁ

ˆ
¯̃

Œ[]1

1

2

1
0 1

2

2 2
, , , .

p u R ui i
i

n

() = ()
=
Â p ,

0

R u
w b u

w b u
i

i i

j j
j

n
() =

()

()
=
Â

0

,

U u a a u u u b bi

k

k k n

k

= () = +(, . . . , , , , . . . , , , . . . ,).124 34 124 341

11.5 B-Spline Curves 433

The Bézier approach to describing this curve is to look for three homogeneous control
points P1, P2, and P3 so that

(11.106)

Equating the coefficients of the u’s in the two equations (11.105) and (11.106) for P(u)
gives that

The corresponding pi are shown in Figure 11.29(a). Using these Pi as control points
and the knot vector (0,0,0,1,1,1) gives us the NURBS curve that describes the first
quadrant of the unit circle. A NURBS representation for the second quadrant can
easily be obtained from this one by rotating the control points about the y-axis by
180 degrees. Alternatively, reparameterizing to [1,2], a parameterization q(u) for this
second quadrant is

and we can solve for the new control points as before. At any rate, the new control
points are

Finally, rotating our control points by 180 degrees about the x-axis gives us the com-
plete NURBS representation for the whole unit circle. It is easy to check that the
parameterization can be written in the form

p u

w N u

w N u

i i i
i

i i
i

() =
()

()

=

=

Â

Â

,

,

,
3

1

9

3
1

9

p

P P P3 4 50 2 0 2 11 0 1 1 0 0 1= () = -() = -(), , , , , , , , , , ,and

q u
u u

u u

u

u u
for u() =

- +
- +

- -()
- +

Ê
ËÁ

ˆ
¯̃

Œ[]
2

2 2

4 3

4 5

2 2

4 5
1 2, , , ,

P P P1 2 31 0 0 1 11 0 1 0 2 0 2= () = () = (), , , , , , , , , , , .and

P u u u u u

u u

() = -() + -() +

= + -() + - +()
1 2 1

2 2

2
1 2

2
3

1 2 1
2

3 2 1

P P P

P P P P P P .

434 11 Curves in Computer Graphics

Figure 11.29. The circle as a rational B-spline.

where the weight sequence (w1,w2, . . . ,w9) is (1,1,2,1,1,1,2,1,1) and the knot vector is
(0,0,0,1,1,2,2,3,3, 4,4,4). The points pi are shown in Figure 11.29(b).

Although Example 11.5.3.1 found a NURBS representation for the unit circle, it
is not a good one because it does not distribute points uniformly along the circle. The
problem is with the rational function parameterization that we used as a starting
point. [Till83] shows how one can get a better parameterization by a rational trans-
formation of the form

Next, there is a geometric interpretation of the weights. To emphasize the depend-
ence of the function p(u) defined by equation (11.103) on its weights we shall include
a reference to the weights in the parameters of the functions below along with any
values that may have been assigned to them. See Figure 11.30, where

If

where the Ri are the rational basis functions of p(u), then one can show that

It follows that

In other words, the weight wi is just the cross-ratio of the four points pi, q, r, and qi.
The following geometric facts can be proved:

wi
i i i

i
= =

- -p r
qr

p q
qq

1 1a
a

b
b

.

r q p

q q p

= -() +
= -() +

1

1

a a
b b

i

i i

and,

.

a b= =() = ()R u w and R ui i i; ,1

q r q= =() = =() = π()p u w p u w and p u w ori i i i; , ; , ; .0 1 0 1

u
at b
ct b

=
+
+

.

11.5 B-Spline Curves 435

p1

p2 p3

 q3

 q

r

p0 p5p4

Figure 11.30. The geometric interpreta-
tion of rational B-spline
weights.

(1) Increasing or decreasing wi will increase or decrease b which pulls the curve
toward pi or pushes it away from pi, respectively.

(2) Increasing or decreasing wi will push the curve away from pj or pull it toward
pj, j π i, respectively.

(3) The points qi lie on the line segment [q,pi].
(4) As qi approaches pi, b approaches 1 and wi approaches infinity.

We finish by listing a few of the important properties of NURBS curves.

11.5.3.2 Theorem. Let p(u) be a NURBS curve of order k with domain [0,1], knots
ui, control points pi, and weights wi > 0.

(1) The rational basis functions Ri(u) for p(u) satisfy Ri(u) ≥ 0 and

(2) The curve p(u) interpolates the first and last point. More precisely, p(0) = p0
and p(1) = pn.

(3) (Local control) Changing the control point pi or weight wi only changes the
formula for p(u) over the interval (ui,ui+k).

(4) (Projective invariance) If the curve p(u) is transformed by a projective trans-
formation, the formula for the new curve is gotten simply by transforming the homo-
geneous control points (equation (11.102) and then projecting back to R3 to get
another formula like equation (11.103).

(5) (Local convex hull property) The curve p(u) satisfies a strengthened convex
hull property like the ordinary B-splines, namely, for each i, p([ui,ui+1]) is contained
in the convex hull of the control points pi-k+1, pi-k+2, . . . , pi.

(6) (Variation diminishing property) A plane (line in planar case) intersects the
curve p(u) in no more points than it intersects the control polygon.

Proof. See [PieT95]. The projective invariance property is stronger than affine
invariance. Ordinary B-splines are affinely invariant but not projectively invariant.

Finally, although rational Bézier and B-spline curves are defined as projections
of ordinary Bézier and B-spline curves in R4 to the plane w = 1, it turns out that the
associated correspondence between ordinary splines in R4 and ordinary splines in R3

is not as natural as one might want. For example, not every C1 Bézier and B-spline
curve p(u) in R3 with simple knots is a projection of a spline curve q(u) in R4 with
simple knots. To find a curve q(u) that projects to p(u) we would have to allow q(u)
to have multiple knots. See [Fari89] for a discussion of this and the condition that
guarantees that a C1 curve with simple knots is a projection of a C1 curve with simple
knots.

11.5.4 Efficient B-Spline and NURBS Curve Algorithms

As mentioned earlier, B-spline and NURBS curves are used a lot. Fortunately, although
their definitions seem somewhat complicated and it is certainly more work than

R ui
i

n

() =
=
Â

0

1.

436 11 Curves in Computer Graphics

dealing with simple polynomial functions, there are efficient algorithms so that using
them in a modeler is not all that bad.

We start with the problem of computing a B-spline curve p(u) of order k and
degree m = k - 1 with knots vector U = {u0,u1, . . . ,un+k}. Actually, because tangent
vectors and derivatives of parametric curves are often needed in geometric modeling,
we present an efficient algorithm that computes not only the value p(u) but also its
derivatives up to any order d at the same time.

The first thing that we must do is find the nondegenerate span to which u belongs.
This can be done using Algorithm 11.5.4.1. The function SpanIndex returns the index
r so that u Œ [ur,ur+1), where ur < ur+1, unless u is the right endpoint un+1 of the domain
of the curve and there might not be such an r, in which case we return n and will have
u Œ (un,un+1]. To avoid the special case one could also restrict the domain of the curve
to [um,un+1 - e], where e is some small positive value.

Now assume that u Œ [ur,ur+1), where ur < ur+1, or u = un+1 and u Œ (ur,ur+1]. We
know that

p u N u N ui k
i

n

i i k i
i r m

r

() = () = ()
= = -
Â Â, , ,

0

p p

11.5 B-Spline Curves 437

integer function SpanIndex (real array knots [0..]; integer n, m; real u)
{ Inputs:

ui = knots[i] , 0 £ i £ n + m + 1 – the knots
n + 1 = number of control points
m – the degree of the B-spline basis functions }

begin
integer lo, hi, mid;

if (u = knots[n+1]) return n;

{ Now do a binary search of um, um+1, º , un+1 }
lo := m; hi := n + 1; mid := (lo + hi)/2;
while (u < knots[mid]) or (u >= knots[mid+1] do

begin
if (u < knots[mid])

then hi := mid
else lo := mid;

mid := (lo + hi)/2;
end;

return mid;
end;

Algorithm 11.5.4.1. A B-spline span-finding algorithm.

because the coefficients of the other terms vanish. See Theorem 11.5.1.4. This expres-
sion only uses the knots ur-m, ur-m+1, . . . , ur+m+1. Let Ni,j = Ni,j(u). The Cox-de Boor
definition of the Ni,j computes p(u) based on the following diagram, which shows the
nonzero terms:

Furthermore, to compute p(u) one just needs a one-dimensional array. Starting with
some appropriate initial values, one can compute the final B-spline value by com-
puting new values of the array from previous ones using the recursive formulas for
the Ni,j. With regard to derivatives, by differentiating the Ni,k(u) using formula (11.69b)
and using a simple inductive argument it is easy to show that the following recursive
formula holds for the first derivative:

Higher derivatives can be expressed similarly, with the dth derivative being a linear
combination of the functions Ni+j,k-d(u), 0 £ j £ d. See [PieT95]. This means that both
the value of the curve and its derivatives can be computed in a recursive fashion using
a single array. In order to simplify the notation in the algorithm, we re-index the knots
so that they become u0,u1, . . . ,u2m+1. The control points pr-m, pr-m+1, . . . , pr, are re-
indexed with new index varying from 0 to m. This will put u into the interval [um,
um+1) (or (um, um+1] in the one special case). After the re-indexing, the procedure Deriv-
atives in Algorithm 11.5.4.2 then computes the values we want. The algorithm used
comes from [LeeE82]. The proof of its correctness uses a knot insertion–type argu-
ment. When d = 0, that is, when we only want the value of the function, then the algo-
rithm reduces to the standard de Boor algorithm described in Section 11.5.2. The
Boolean variable fromRight in the algorithm determines which end of the span is
closest to u. It is used to select the code that will produce the most accurate result
numerically. If one only needs the value and first derivative of a curve, then Luken
and Cheng ([LukC96]) describe a two stage Cox–de Boor method that is somewhat
better than Lee’s algorithm.

Next, we consider the evaluation problem for NURBS curves p(u). Fortunately,
by switching to homogeneous coordinates we do not need anything new because the
hard part, the evaluation of the ordinary B-splines Ni,k(u), has already been done.
Algorithm 11.5.4.3 computes p(u). Finding derivatives is more complicated because
we have quotients. We describe the algorithm in [PieT95]. Let A(u) and w(u) be the
numerator and denominator functions of p(u), respectively, that is,

d
du

N u
k

u u
N u

k
u u

N ui k
i k i

i k
i k i

i k, , , .() =
-

-
() +

-
-

()
+ -

-
+ +

+ -
1 1

1
1

1
1 1

0 0

0 0

0 0

0 0

1

2 1 2

3 1 3 2 3

1 2 1

N

N N

N N N

N N N N

r

r r

r r r

r k r k r k k r k k

,

, ,

, , ,

, , , ,

.

.

. . .

-

- -

- - + - +

438 11 Curves in Computer Graphics

11.5 B-Spline Curves 439

The Problem: Given an arbitrary B-spline curve

p (u) = S
=

n

0i

Ni,k (u) pi

of order k and degree m = k - 1, to compute all the derivatives of p(u) up to order d at u.

procedure Derivatives (real array knots [0..]; point array ctrls [0..];
integer m; real u; integer d; ref point array derivs [0..])

{ Inputs:
ui = knots[i] – the knots
pi = ctrls[i] – the control points
m – the degree of the B-spline basis functions
u – parameter value at which the function's derivatives are to be evaluated
d – highest derivative desired
um < um+1 , u Œ [um,um+1) , d £ m

 See text as to how knot and control point arrays need to be re-indexed before
calling this procedure and for the one special case where u Œ (um,um+1] .

Outputs:
derivs[0..d] – the 0th through dth derivatives of the curve at u

}

Algorithm 11.5.4.2. A B-spline evaluation algorithm ([LeeE82]).

The quotient rule for derivatives implies that

so that p¢(u) can be computed applying Algorithm 11.5.4.2 to the functions p(u), w(u),
and A(u). For higher derivatives, note that

Applying Leibnitz’s formula to the product on the right-hand side of this equation and
reorganizing the result leads to

(11.107)p u

A u
d

i
w u p u

w u
d

d i d i

i

d

()

() () -()

=() =
() - Ê

Ë
ˆ
¯ () ()

()

Â
1 ,

A u w u p ud d() ()() = () ()()

¢() =
¢() - ¢() ()

()p u
A u w u p u

w u
,

p u

w N u

w N u

A u
w u

i i k i
i

n

i i k
i

n
() =

()

()
=

()
()

=

=

Â

Â

,

,

.

p
0

0

440 11 Curves in Computer Graphics

begin
real array a [0..] , b [0..];
boolean fromRight;

if m = 0 then
begin

derivs[0] := ctrls[0];
return;

end;

for i:=1 to m do
begin

a[i] := u - knots[i];
b[i] := knots[m+i] - u;

end;

fromRight := (b[1] > a[m]);
if fromRight

then
begin

for i:=0 to m do derivs[i] := ctrls[i];
for j:=1 to m do

for i:=0 to m-j do
derivs[i] := (1.0/(a[i+j]+b[i+1]))*

(a[i+j]*derivs[i+1] + b[i+1]*derivs[i]);
for j:=1 to d do

for i:=d downto j do
derivs[i] := ((m-j+1)/b[i-j+1])*(derivs[i] - derivs[i-1]);

end
else

begin
for i:=0 to m do derivs[i] := ctrls[m-i];
for j:=1 to m do

for i:=0 to m-j do
derivs[i] := (1.0/(a[m-i]+b[m-j+1-i]))*

(b[m-j+1-i]*derivs[i+1] + a[m-i]*derivs[i]);
for j:=1 to d do

for i:=d downto j do
derivs[i] := (-(m-j+1)/a[m-i+j])* (derivs[i] - derivs[i-1]);

end
end;

Algorithm 11.5.4.2. Continued

which provides us with a recursive way to compute p(d)(u). Algorithm 11.5.4.4 uses
equation (11.107) to compute the derivative of NURBS curves. Note that to speed up
the algorithm we have assumed that the binomial coefficients have been precomputed
and stored in an array binom[..,..].

11.5.5 B-Spline Interpolation

This section returns to the interpolation problem and describes another approach
using B-splines.

The cubic B-spline interpolation problem: Given parameter values ui , i = 0, . . . , n, with
u0 < u1 < . . . < un , and points pi, find a cubic B-spline curve p(u) with the ui as knots and
control points qj, j = -1, . . . , n + 1, so that p(ui) = pi.

Following [Fari97] we shall solve the B-spline interpolation problem by using the
fact that this spline can be represented as a piecewise cubic Bézier curve with control
points bj, so that pi = b3i. See Theorem 11.5.2.12. The idea will be to use the well-
defined relationships between the bj and the pi and also those between the bj and the
qk. Eliminating the bj from these relationships will give us the relationship between
the pi and qk that we are after.

11.5 B-Spline Curves 441

The Problem: Given an arbitrary NURBS curve

p (u) =

n

i i,k i
i 0

n

i i,k
i 0

w N (u)

w N (u)

=

=

S

S

p

of order k , knot vector U = {u0,u1, º ,un+k), weights wi, and control points
pi = (xi,yi,zi) , to compute p(u).

Step 1: Use Algorithm 11.5.4.1 to find the span that contains u.
Step 2: Let Pi = (xiwi,yiwi,ziwi,wi) . Use Algorithm 11.5.4.2 to evaluate

P (u) = S
n

0i=
Ni,k(u) Pi = (P1 (u),P2 (u),P3 (u),P4 (u)) .

(The only change to Algorithm 11.5.4.2 is that we allow control points
 to be 4-tuples rather than 3-tuples.)

Step 3: p (u) = (1

4

P (u)

P (u)
, 2

4

P (u)

P (u)
, 3

4

P (u)

P (u)
)

Algorithm 11.5.4.3. A NURBS curve evaluation algorithm.

Let Di = ui+1 - ui. It follows from the discussion following Example 11.5.2.11 that

(11.108)

and that

(11.109)

b
q q

b
q q

b
q q

2
1 0 0 1

0 1

3 1
1 2 1

2 1

3 1
1 1 1

1 1

2 1

1

=
+
+

=
+ +()

+ +
= -

=
+() +

+ +
=

-
- - -

- -

+
+ - +

- +

D D
D D

D D D
D D D

D D D
D D D

,

, , . . . , ,

, , . . . ,

i
i i i i i

i i i

i
i i i i i

i i i

i n

i n --

=
+
+-

- - - -

- -

2

3 2
1 1 2 2

2 1

,

.

and

n
n n n n

n n
b

q qD D
D D

p
b b

i
i i i i

i i
=

+
+

- - +

-

D D
D D

3 1 1 3 1

1
,

442 11 Curves in Computer Graphics

The Problem: Given an arbitrary NURBS curve

p (u) =

n

i i,k i
i 0

n

i i,k
i 0

w N (u)

w N (u)

=

=

S

S

p
 =

A(u)

w(u)
 ,

to compute all the derivatives of p(u) up to order d at u.

Given:
Aderivs[0..d] – the 0th through dth derivatives of A(u) at u
wderivs[0..d] – the 0th through dth derivatives of w(u) at u

binom[..,..] – precomputed table of binomial coefficients, binom[i,j] = ()i
j

Outputs:
derivs[0..d] – the 0th through dth derivatives of the curve p(u) at u

integer i, j;
real s;

for i:=0 to d do
begin

s := Aderivs[i];
for j:=1 to i do s := s - binom[i,j]*wderivs[j]*derivs[i-j];
derivs[i] := s/wderivs[0];

end;

Algorithm 11.5.4.4. A NURBS curve derivatives algorithm.

Eliminating the bj from equations (11.108) and (11.109) leads to the system of
equations

(11.110)

where

After an arbitrary choice of points b1 and b3n-1, equation (11.110) can be represented
in the following matrix form:

(11.111)

where ri = (Di-1 + Di)pi. Setting q-1 = p0 and qn+1 = pn completes the definition of
the qi.

In the special case where the knots are uniformly spaced, the system (11.111)
becomes

(11.112)

In the other interesting case of a closed curve, we do not need the last point pn, and
matrix equation (11.111) becomes

1 0 0

1 0

0 1 4 1

1 4 1 0

0 0 1

0 0 0 1

6

6

6

6

3
2

7
2

7
2

3
2

0

1

2

2

1

1

1

2

2

1

3 1

O M M

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

=

Ê

Ë

Á
Á
Á
Á

-

-

-

-

-

q

q

q

q

q

q

b

p

p

p

p

b

n

n

n

n

n

n

ÁÁ
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

.

1 0 0

0

0

0 0 1

1 1 1

1 1 1

0

1

1

1

1

1

3 1

a b g

a b g
O M M

n n n n

n

n

n

- - - - -

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

=

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

q

q

q

q

b

r

r

b

,

a

b

g

i
i

i i i

i
i i i

i i i

i i i

i i i

i
i

i i i

and

=
()
+ +

=
+()

+ +
+

+()
+ +

=
()
+ +

- -

- -

- -

- +

- +

-

- +

D
D D D
D D D
D D D

D D D
D D D

D
D D D

2

2 1

2 1

2 1

1 1

1 1

1
2

1 1

,

,

.

D Di i i i i i i i i- - ++() = + +1 1 1p q q qa b g ,

11.5 B-Spline Curves 443

(11.113)

Now in practice the knots are not usually given. See [Fari97] for some ways to
define them. The uniform spacing case, although simple, does not give the best results
usually. The standard choices for spacing are shown below but there are others:

Uniform Spacing. The knot intervals all have the same lengths, that is,

Chord-length (Chordal) Spacing. The lengths of the knot intervals are proportional
to the lengths of the polygon segments, that is,

Centripetal Spacing. The lengths of the knot intervals are related to the lengths of
the polygon segments via the following relationship

Of the spacing choices listed here only uniform spacing is invariant under affine
transformations of the control points. In terms of increasing quality of the shape of
the curve, the ranking of the spacing methods would be: uniform, chordal, centripetal.
This ranking also applies to the amount of work involved. See [Fari97] or [HosL93]
for more on the advantages and disadvantages of the various spacing choices.

The advantage B-spline interpolation has over Hermite and Bézier interpolation
is that it needs fewer control points. The Hermite and Bézier interpolations need
3n - 1 control points whereas the B-spline interpolation needs only n.

What might be considered another variant of the B-spline interpolation problem
is the following:

The cubic Bézier interpolation problem: Given points pi, i = 0, . . . , n, find, for each i,
additional Bézier control points qi and ri, so that the Bézier curve defined by the four points
pi, qi, ri, and pi+1 matches the uniform cubic spline curve that interpolates these points.

A solution to this problem was already indicated in the discussion leading up to
Theorem 11.5.2.12. [Rasa90] describes an interesting answer to this problem which

D
D

i

i

i i

i i+

+

+ +
=

-
-1

1

2 1

p p
p p

.

D
D

i

i

i i

i i+

+

+ +
=

-
-1

1

2 1

p p
p p

.

D j i i
nu u

u u
n

= - =
-

+1
0 .

b g a
a b g

a b g
g a b

0 0 0

1 1 1

2 2 2

1 1 1

0

1

2

1

1

1

2

1

0 0

0 0

0 0

0 0

O M M

n n n

n n n

n

n

n

n

- - -

- - -

-

-

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

=

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

q

q

q

q

b

r

r

r

.

444 11 Curves in Computer Graphics

is actually an approximation to the answer but is accurate enough for computer
graphics display purposes. His answer reduces to a simple formula.

The interpolation in this section assumed that the values ui at which the interpo-
lating spline took on the value pi were also its knots. One can be more general and
look for an interpolating spline for which not only the parameter values but also the
knots are specified (the two sequences could be different). For a solution to that
problem and interpolation by higher-order B-splines see [PieT95].

11.6 Nonlinear Splines

When we defined splines we pointed out that the reason for cubic splines being so
popular is that they are low-degree polynomials and yet provide very good approxi-
mations to many of the curves needed in CAD and CAGD. Specifically, they are a good
substitute for the physical splines that were used in the past. To make this argument,
however, we need to know what physics tells as about how flexible rods bend. It is
not possible to delve into the justification from physics here, but one can show that
the so-called mechanical and wooden splines defined below are two models for a curve
that describes the shape of a bent rod.

Definition. Let F(s) be an arc-length parameterized curve with domain [0,L] and
curvature function k(s) that interpolates a fixed set of points. The curve F(s) is called
a mechanical spline if it minimizes the energy functional

(11.114)

It is called a wooden spline if

(11.115)

The mechanical and wooden splines are called nonlinear splines whereas the poly-
nomial splines defined in Section 11.2.3 would be called “linear” splines. The reason
for this is that a linear combination of two polynomial splines with the same knots
and degree would again be a spline of that type. In fact, such splines form a finite
dimensional linear vector space. On the other hand, a linear combination of mechan-
ical or wooden splines would not have the right curvature and hence not be a spline
of that same type. The rest of this section will point out a few facts about nonlinear
splines that make them interesting in graphics. Good references are [Mehl74],
[Malc77], or [HosL93]. For a more mathematical introduction to nonlinear splines
see [Wern79]. We shall stick to the case of planar curves and use signed curvature in
the discussion below.

First, consider a mechanical spline. If it is the graph of a function y = f(x) over
some interval [a,b], then the integral in (11.114) that defines it turns into

d

ds

2

2
0

k
= .

k2
0

ds
L

.Ú

11.6 Nonlinear Splines 445

(11.116)

Here we have used the facts that

where ks(x) is the signed curvature function. (They follow from equation (9.2) and
Proposition 9.3.4 in [AgoM05]). Assuming that f¢(x) is very small, one can drop the
denominator in (11.116) and conclude that

(11.117)

is a good approximation to the integral. An easy application of the calculus of varia-
tions shows that the function f(x) that minimizes the integral in (11.117) must satisfy
f(4)(x) = 0, so that it is a cubic polynomial, that is, a cubic spline. On the other hand,
without the simplifying hypothesis that f¢(x) is small, the integral in (11.116) is harder
to solve. The interested reader should consult [Mehl74], [Malc77], or [HosL93].

Next, consider a wooden spline F(s) defined by equation (11.115). These curves
can also be approximated by cubic splines because for graphs of functions y = f(x),
the signed curvature ks(x) can be approximated by f≤(x) and so, like for mechanical
splines, they are approximated by functions satisfying f(4)(x) = 0. Integrating equation
(11.115) shows that

(11.118)

for some constants a and b. From this we could already guess at the shape of such a
curve. Its curvature increases with s and hence would have to spiral in on itself like
the spring of a clock. To get an actual formula, let q(s) be the turning angle function
for F(s). We know (see Chapter 9 in [AgoM04]) that

(11.119)

and

(11.120)

where c and d are constants. Integrating equation (11.119) and using (11.118) implies
that

(11.121)q q q qs s ds as b ds as bss
s s

() = () + = +() + = + +Ú Úk 0
0 0

0
2

0
1
2

,

F s s ds c s ds d
s s

() = () + () +()Ú Úcos , sin ,q q
0 0

k s s
d
ds

() =
q

k s s as b() = + ,

¢¢ ()Ú f x dx
a

b 2

ds f x dx and x
f x

f x
s= + ¢ () () =

¢¢()

+ ¢ ()()
1

1

2

2 3 2
k ,

¢¢ ()

+ ¢ ()()Ú
f x

f x
dx

a

b 2

2 5 2
1

.

446 11 Curves in Computer Graphics

for some constant q0. Substituting this into equation (11.120) gives us our general
wooden spline F(s). There are well-known special cases.

Definition. The planar curve

is called a clothoid or Cornu spiral. The curve

is called a generalized clothoid or Cornu spiral.

Figure 11.31 shows the clothoid. The integrals in the definition are Fresnel inte-
grals and since

we see the the clothoid converges to the two points

It is easy to show that the generalized clothoid has signed curvature function

Clothoids play an important role in the construction of freeways and railroad
tracks. As an example for why this might be so, note that the curve corresponding to
an exit ramp for a highway needs to start off with zero curvature and then reach some

k s
ns s() = .

±Ê
ËÁ

ˆ
¯̃

p p
2 2

, .

cos sin
x

dx
x

dx
2

0

2

02 2 2
Ê
ËÁ

ˆ
¯̃

=
Ê
ËÁ

ˆ
¯̃

= ±
±• ±•

Ú Ú
p

F s
x
n

dx
x
n

dx
n s ns

() =
+

Ê
ËÁ

ˆ
¯̃ +

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

+ +

ÚÚ cos , sin
1

0

1

0 1 1

F s
x

dx
x

dx
ss

() =
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ÚÚ cos , sin

2

0

2

0 2 2

11.6 Nonlinear Splines 447

Figure 11.31. A clothoid or Cornu spiral.

nonzero curvature in a continuous way. That is exactly what clothoids do. If one were
to use a circular arc, then one would have a curvature discontinuity since we would
jump from zero to nonzero curvature.

[HosL93] defines interpolating mechanical and wooden splines. In the case of
wooden interpolating splines, each segment is required to be a clothoid.

11.7 Superellipses

This section looks briefly at a very special class of curves that generalize ellipses.

Definition. The parametric curve p(q) defined by

0 £ q £ 2p , is called a superellipse.

Figure 11.32 shows some superellipses. When 0 < n < 1, the curve looks like a
rounded square. The shape approaches that of a square as n Æ 0. For n = 1, we get
an ordinary ellipse. When n = 2, the curve looks like a diamond and when n > 1, it
looks like a pinched diamond. As n Æ •, the shape approaches a plus sign. One can
show that the curve always lies in the rectangle [-a,a] ¥ [-b,b]. The points (±sa,±sb),
where s = 2-1/n, are called the corner points of the superellipse and s is called its super-
ness. The implicit form for a superellipse is

(11.122)

Superellipses were first defined and studied by the French mathematician Gabriel
Lamé in 1818. Their occasional use in modeling systems stems from the fact that the
parameter n allows one to control the fullness of the curve.

x
a

y
n

m
m m

+ = ≥1 0, .

p a bn nq q q() = ()cos , sin ,

448 11 Curves in Computer Graphics

Figure 11.32. Superellipses: 0 < n < 1, n = 2, and n > 1.

11.8 Subdivision of Curves

Bézier and B-spline curves are easy to manipulate by moving control points. On the
other hand, we may have too few control points to get the exact shape we want. What
is needed is to be able to add control points, or also knots in the case of B-splines, to
get the desired freedom in shape manipulation. Besides, the fact is that a given curve
can be represented in an infinite number of ways in terms of control points and/or
knots. It is up to us to choose which we like the best. For efficiency one usually wants
the representation that uses the smallest such number, but as we can see, that is not
always the important criterion.

To solve our shape manipulation problem, the general idea will be to subdivide
the shape and express each piece by means of its own independent control data with
the result that the whole curve is then defined by a larger set of control data. We begin
by stating a general form of this problem and then show how it relates to cubic curves.
Later we shall see what this means for Bézier and B-spline curves.

The general subdivision problem: Suppose that we are given a curve p(u) with domain
[a,b], which is expressed in the form

(11.123)

where the pi are “points” and the vi are “vectors” in Rm and the fi(u) and gi(u) are real-
valued functions. Let c and d be real numbers with a £ c £ d £ b. The problem is to find a
curve q(u) so that

(1) q(u) has the same domain [a,b] as p(u),
(2) q(u) traces out the same set as p|[c,d], that is, q([a,b]) = p([c,d]), and
(3) the formula for q(u) has the same form as p(u), that is,

for some points qi and vectors wi (the basis functions fi(u) and gi(u) are kept unchanged).

Let us see how the problem can be handled in the case of an arbitrary cubic curve
p(u) (higher degree curves can be handled similarly). Suppose p(u) has domain [0,1]
and is defined by an equation

(11.124)

where M is some matrix and the pi are either points or vectors. We shall work out the
subdivision problem in the case where the interval is to be divided at the value c. The
function u Æ cu reparameterizes [0,1] as [0,c]. Substituting cu for u in (11.124) gives

p u u u u() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2

0

1

2

3

1 M

p

p

p

p

,

q u f u f u g u g us s t t() = () + + () + () + + ()1 1 1 1q q w w.

p u f u f u g u g us s t t() = () + + () + () + + ()1 1 1 1p p v v. ,

11.8 Subdivision of Curves 449

which can be written in the form

(11.125)

where

Therefore, if we define the points qi by the equation

then

(11.126)

This solves the subdivision problem over [0,c].
Next, note that to reparametrizes [0,1] to [c,1] replace u by c+u(1-c) in (11.124)

to get

q u c u c c u c c u c() = + -()() + -()() + -()()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 1 1 1
3 2

0

1

2

3

M

p

p

p

p

,

q u u u u() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2

0

1

2

3

1 M

q

q

q

q

.

q

q

q

q

M K M

p

p

p

p

0

1

2

3

1

0

1

2

3

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-
c ,

K c

c

c

c
=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3

2

0 0 0

0 0 0

0 0 0

0 0 0 1

.

q u u u u c() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2

0

1

2

3

1 K M

p

p

p

p

,

q u c u c u cu() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 3 2 2

0

1

2

3

1 M

p

p

p

p

,

450 11 Curves in Computer Graphics

which can be written in the form

(11.127)

where

Define points qi by the equation

Then equation (11.126) will be satisfied in this case also and we are done.
What we have just accomplished is to represent the initial cubic curve p(u) in

terms of two curves, so that we now have twice as much control data to use in manip-
ulating the curve.

The cubic curve solution applies to cubic Bézier curves. In that case the matrix
M is just the Bézier matrix. Figure 11.33 shows how p|[0,c] is now represented as a
Bézier curve with control points q0, q1, q2, and q3. Another four control points q3, q4,
q5, and q6 would represent p|[c,1]. This means that we can now use seven control
points to modify the curve, where before we had only four.

A more interesting problem is the general Bézier curve p(u) with control points
p0, p1, . . . , pn. It might seem as if the obvious solution here is simply to let a user
pick more control points interactively. The problem with that is that the user is then

q

q

q

q

M L M

p

p

p

p

0

1

2

3

1

0

1

2

3

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-
c ,

Lc

c c c c c c

c c c c

c c
=

-() -() -()
-() -()

-

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

1 3 1 3 1

0 1 2 1

0 0 1

0 0 0 1

3 2 2 3

2 2
.

q u u u u c() = ()
Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

3 2

0

1

2

3

1 L M

p

p

p

p

,

11.8 Subdivision of Curves 451

Figure 11.33. Subdividing cubic Bézier curves.

basically starting the curve design from scratch again. The fact is that the user may
already have a reasonable shape and may only want to fine tune it. What is needed
therefore is that one wants to first add control points near the point of interest in such
a way that the larger collection still describes the original curve and then let the user
continue with more detailed modifications. Fortunately, this is possible. One can
increase the number of control points for a Bézier curve and still end up with the
same curve. We shall not describe this method, called “degree elevation,” here. See
[Fari97]. Instead, we describe a curve subdivision method.

Given that [0,1] is the domain for the curve p(u), we shall again divide the domain
[0,1] at a value c, 0 £ c £ 1. The set p([0,c]) is actually the path of a Bézier curve q(v)
defined on [0,1] with control points q0 = p0, q1, . . . , qn = p(c), so that

The problem is to find the control points qi. See Figure 11.33. Using the notation of
the de Casteljau algorithm in Section 11.5.2:

(11.128)

This shows that the de Casteljau algorithm can be used to find the qi. Furthermore,
because of the symmetry property of Bézier curves, the control points r0 = p(c),
r1, . . . , rn = pn of the Bézier curve

for the set p([c,1]) are

(11.129)

The points qi and rj are the extra control points we were looking for.
The subdivision problem for B-spline curves has a solution similar to that of the

Bézier problem. We already gave two algorithms in Section 11.5.2 for adding either
a single knot (Theorem 11.5.2.13) or multiple knots (Theorem 11.5.2.14).

11.9 Composition of Curves and Geometric Continuity

From an abstract point of view, when one talks about curves one usually has one-
dimensional subsets of Rm in mind and the parameterizations of these subsets are
incidental. One is interested in properties of these sets. The functions that parame-
terize them are usually just intermediary concepts. In practice however, parameteri-
zations do play a role. A given curve may be defined by means of several parametric
curves, each of which traces out only part of the whole curve. Questions arise as to
how the parametric curves meet. This section takes a brief look at some answers to
such questions.

r pi n i
i c= ()- .

r v p c v c v() = + -()() Œ[]1 0 1, , ,

q pi
i c= ()0

p u q
u
c

u c() = Ê
Ë

ˆ
¯ Œ[], , .0

452 11 Curves in Computer Graphics

Suppose that we have two Ck curves

(11.130)

How “smooth” is

at b? How can we control the smoothness, or lack of it, there? These are the type of
questions considered in this section. We might be tempted to say that the composi-
tion of these two curves will certainly be continuous because of the hypothesis that
p(1) = q(0), but this does not make much sense unless we know what is meant by the
composite map.

Definition. The parametric curve g: [0,1] Æ Rm defined by

is called the composite of the curves p(u) and q(u) in expression (11.130).

Note that by the chain rule, the speed of the curve g(u) is twice that of the curves
p(u) and q(u). This change was forced on us because we wanted the domain of the
composite to be [0,1]. On the other hand, the tangent lines of g(u) agree with those
of p(u) and q(u). This is what is important to us and not the fact that the speed
changed by a common multiple. If we wanted the velocity of the new curve to be the
same as the velocities of the old ones then we could have defined a curve with domain
[0,2], which agrees with p(u) on [0,1] and with q(u - 1) on [1,2].

Now, when two regular parametric curves meet at a point where they have a
common tangent line, they can be reparameterized (for example, using the arc-length
parameterization) so that their tangent vectors match where they meet to make the
composite differentiable. Mathematically, therefore, it is unimportant whether or not
the tangent vectors match exactly because we always get a differentiable manifold.
However, there are practical reasons for allowing parametric curves to meet with a
common tangent line but distinct tangent vectors.

Returning to the curves in (11.130), suppose that p([0,1]) has the same tangent
line at p(1) as q([0,1]) at q(0), that is, p¢(1) = a q¢(0) , where a π 0. The curve will look
smooth but it will not be differentiable unless a = 1. On the other hand, if we had
chosen different parameterizations, then this composite might be differentiable.
Because it is convenient to allow for “wrong” parameterizations, the general question
is whether one can tell from p and q alone whether X will be smooth.

Assume that p(u) and q(u) are regular curves.

Definition. We say that the regular curves p(u) and q(u) in (11.130) meet with kth
order geometric continuity, or Gk continuity, if there is an equivalent parameterization
r(u) for p(u) with respect to an orientation-preserving change of parameters so that
r(u) and q(u) meet with Ck continuity, that is, the composite curve is also Ck at
p(1) = q(0). A regular curve is called a Gk continuous or simply Gk curve if it admits

g u p u for u

q u for u

() = () Œ[]
= -() Œ[]

2 0 1 2

2 1 1 2 1

,

,

X = []() » []()p q0 1 0 1, ,

p q with p qm, : , .0 1 1 0[] Æ () = ()R

11.9 Composition of Curves and Geometric Continuity 453

a reparameterization that is Ck with respect to an orientation-preserving change of
parameters.

Note. Gk continuity really corresponds to the composite curve being a Ck manifold
in a neighborhood of the point where they join. Unfortunately, this observation came
later in the historical development of the concept of Gk continuity. Recognition of this
fact from the beginning would have clarified the issue. Gk continuity has to do with
continuity of the shape of a curve whereas Ck continuity has to do with the continu-
ity of the parameterization p(u).

Assume that r(u) = p(j(u)). The chain rule implies that

Letting

(11.131)

it follows that

(11.132a)

(11.132b)

with b1 > 0.

Definition. The bs are called shape parameters and equations (11.132) are called the
beta constraints. The numbers b1 and b2 are called the bias and tension of the curve,
respectively.

Figure 11.34 expresses the geometry of the situation.

11.9.1 Theorem

(1) Two parametric curves meet with G1 continuity if and only if they have the
same unit tangent vector at their common point.

¢¢() = ¢¢() = ¢¢() + ¢()q r p p0 1 1 11
2

2b b ,

¢() = ¢() = ¢()q r p0 1 11b ,

b j b j1 21 1= ¢() = ¢¢()and ,

¢() = ¢ ()() ¢() ¢¢() = ¢¢ ()() ¢() + ¢ ()() ¢¢()r u q u u and r u p u u p u uj j j j j j2
.

454 11 Curves in Computer Graphics

Figure 11.34. The shape parameters and geo-
metric continuity.

(2) Two parametric curves meet with G2 continuity if and only if they have the
same unit tangent and curvature vector at their common point, that is, the arc-length
parameterization is C2.

(3) In general, two parametric curves meet with Gk continuity if and only if the
arc-length parameterization of the composite is Ck at their common point.

Proof. See [BarD89].

Because of Theorem 11.9.1(3), Gk continuity is sometimes referred to as Ck arc-
length continuity. Also, because of the relationship between curvature and the second
derivative, G2 continuous curves are called curvature continuous.

Turning things around, one can show that the composite of the two curves in equa-
tion (11.130) meet with second-order geometric continuity if there exist two constants
b1 > 0 and b2, so that equations (11.132) hold. Therefore, one can define a collection
of basis functions, called Beta-splines, satisfying (11.132) and parameterized by b1 and
b2. These functions have all the basic properties as the regular B-spline basis func-
tions. Using them one now has additional control over the curvature and shape of a
curve because one can now alter the b1 and b2 values. Beta splines are the geometri-
cally continuous analog of ordinary B-splines.

There are other formulations of the geometric continuity problem. See [Fari97].
Each has its own advantages. As usual, it depends on the problem that one is trying
to solve as far as deciding on an approach.

A more geometric formulation of geometric continuity in the case of two cubic
Bézier curves is the following. Let b0, b1, b2, b3 and c0, c1, c2, c3 be the control points
of the two curves with b3 = c0. See Figure 11.35. Let B-, B+, C-, and C+ be the areas
of the triangles b1b2b3, b2b3d, db3c1, and b3c1c2, respectively. Define r- = |b1b2|/|b2d|,
r+ = |dc1|/|c1,c2|, and r = |b2b3|/|b3c1|. Then one can prove

11.9.2 Theorem. We have G2 continuity at b3 if r2 = r-r+.

Proof. See [Fari97].

The geometric constraint defined in Theorem 11.9.2 can be used to construct a
cubic G2 spline from a set of given control points whose curvature a user can control
by specifying suitable tangents. Two interior Bézier points are added for each suc-
cessive pair of control points subject to the G2 continuity constraints and the final
curve is a collection of Bézier curves. See [Fari97].

11.9 Composition of Curves and Geometric Continuity 455

Figure 11.35. Geometric continuity for Bézier
curves.

For more information about geometric continuity see [Fari97] or [Greg89]. It is
of interest to CAGD not only for curves but also for composite surface patches. See
Section 12.15. Another type of continuity has also been defined for curves that is more
geometric because it relates directly to the concepts of curvature and torsion of the
curve rather than just differentiability.

Definition. We say that the Rm curves p(u) and q(u) in (11.130) meet with Frenet
frame continuity if the first m derivatives of the curves are linearly independent and
the Frenet basis and generalized curvatures of the composite curve (see Theorem
9.4.11 in [AgoM05]) are continuous at the point p(1) = q(0).

Frenet frame continuity and Gk continuity are similar but not the same. First of all,
note that k does not have to equal m. One can show that mth order geometric con-
tinuity implies Frenet frame continuity but not vice versa. See [Boeh87] and [Greg89].

11.10 The Shape of a Curve

This section looks at some properties that influence the shape of a curve. Specifically,
at issue is a geometric determination of whether a curve has loops, cusps, or inflec-
tion points.

Definition. Let p: [a,b] Æ Rn be a parametric curve. (We allow a = -• or b = •.)
The curve p(u) is said to have a loop if the parameterization is not one-to-one on
(a,b), that is, it intersects itself. The curve is said to have a cusp at c Œ (a,b) (or at
p(c)) if

(1) its tangent vector vanishes at c, that is, p¢(c) = 0,
(2) c is an isolated zero of p¢(u), and
(3) the unit tangent vectors have an essential discontinuity at c.

The curve is said to have an inflection point at c Œ (a,b) if the curvature of the curve
is 0 at c and c is an isolated 0 of the curvature function. Loops, cusps, and inflection
points are called singularities of the curve.

The reason that loops, cusps, and inflection points are interesting is that the pres-
ence of such points can cause problems in manufacturing processes or in the manu-
factured objects themselves. For example, surfaces whose cross-sectional curves have
loops cannot be manufactured. Milling machines can have problems if they follow
curves that have a cusp. Inflection points can cause aerodynamic instabilities.

Since curves are often described by means of control points, it is natural to ask
how the position of these control points determines the existence of singularities. This
question is discussed at great length in [SuLi89], [SuLi83], [StoD89], and [Wang81].
We shall summarize some of the results that pertain to planar cubic curves, although
non-planar and non-cubic curves have been treated as well.

Let

456 11 Curves in Computer Graphics

(11.133)

be a planar cubic curve. It turns out that the singular points u of the curve p(u) are
all found among the roots of the equation

(11.134)

This is clear for the cusps. It is also true for the inflection points because of the rela-
tionship of the function S(u) with the curvature function of the curve (Proposition
9.3.4 in [AgoM05]). That it also gives information about loops may be a little sur-
prising however. Doing the computation, it is easy to show that

(11.135)

where

The cubic term, which might have been expected in (11.134), has canceled out.

Note. In this section, a planar cubic curve will be called nondegenerate if every line
in the plane meets the curve in three points over the complex numbers, counting mul-
tiplicities. In essence, we are excluding curves that lie in a line or conic.

11.10.1 Theorem. Using the notation in (11.135) for a nondegenerate cubic curve
p(u) defined by equation (11.133), let D = B2 - 4AC.

(1) If A = 0, then p(u) has exactly one inflection point.
(2) Assume that A π 0.

(a) If D > 0, then p(u) has exactly two inflection points.
(b) If D = 0, then p(u) has a cusp.
(c) If D < 0, then p(u) has a loop.

Proof. See [SuLi83] and [Wang81]. The domain of p(u) is assumed to be all of R
here.

It follows from Theorem 11.10.1 that a nondegenerate cubic curve can have at
most one type of singularity (a loop, a cusp, or inflection points). It cannot have two
types simultaneously.

The analysis of the shape of a cubic curve now proceeds by using a Bézier repre-
sentation in which the curve is defined by four control points p0, p1, p2, and p3. If
the curve is not degenerate, then we can map it into a canonical position with p0 = 0,
p1 = (0,1), and p2 = (1,1) by a linear change of variables. Such transformations
preserve the singularities. We have fixed three of the control points, but the fourth is

A B and C= Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ = Ê

Ë
ˆ
¯6 6 22

3

1

3

1

2
det , det , det .

a

a

a

a

a

a

S u A u B u C() = + +2 ,

S u
p u

p u
x u y u x u y u() =

¢()
¢¢()

Ê
Ë

ˆ
¯ = ¢() ¢¢() - ¢¢() ¢() =det .0

p u u u u x u y u() = + + + = () ()()a a a a0 1 2
2

3
3 ,

11.10 The Shape of a Curve 457

free to move. Figure 11.36 now shows how a particular choice of the fourth point can
lead to the different types of cubic curves. The object therefore is to describe the
regions in the plane, so that, as p3 varies over the points of a region, we generate the
same type of singularity. Figure 11.37 is the diagram one obtains if the domain of
the curve (11.133) is restricted to [0,1], where the labels have the following meaning:

Cusp line: The parabolic curve defined by the equation D = 0.
Parabolic point: A point where the cubic curve degenerates into a quadratic

curve.

See [StoD89] for a more complete analysis.
Other papers on cusps and inflection points are [ManC92a] and [LiCr97].

458 11 Curves in Computer Graphics

Figure 11.36. Cubic curve singularities.

Figure 11.37. The regions of constant sin-
gularity type.

Another interesting approach to analyzing the shape of cubic curves can be found
in the series of papers [Blin89a], [Blin89b], [Blin99], [Blin00a], and [Blin00b]. A
related topic has to do with buckling of interpolating spline curves or surfaces. Con-
sider Figure 11.38(a), which shows an interpolating spline through points for which
the control polygon is convex but the spline is not. The nonconvex region of the spline
near the point C is called a buckle. A similar phenomenon can happen for interpo-
lating surfaces. Buckling is usually undesirable and the hope is that moving the offend-
ing control point/s slightly would remove the flaw. Figure 11.38(b) shows a new
position for the point C in Figure 11.38(a) that eliminates the buckling. Note that
buckling indicates that an inflection point is present. See [VanW96] for a way to detect
buckling and remove it.

11.11 Hodographs

Although a well-established term in classical mechanics, the term “hodograph” usually
only gets mentioned in passing, if at all, in the geometric modeling literature.

Definition. The hodograph of a plane curve p(u) is defined to be the subset of the
plane traced out by derivative p¢(u).

See Figure 11.39. There are some interesting applications of hodographs. See
[Forr72], [Bézi72], [SedW87], [Faro92], and [KimD93]. For example, in [Bézi72] it is
shown that the hodograph can be used to characterize geometric properties of Bézier
curves, such as inflection points and cusps. Recall from Section 11.4 that the deriva-
tive of a Bézier curve is a Bézier curve. In fact, equation (11.57) showed that if the
curve had control points p0, p1, . . . , pn then the control points of the derivative are
nai, where ai = pi+1 - pi, i = 0, 1, . . . , n - 1. [Faro92] shows that offsets to curves whose
hodographs satisfy a certain property admit a rational parameterization. This means
that one can deal with such offsets directly without approximations. [KimD93] uses
hodographs to characterize arbitrary plane cubic curves. The answer has the same
flavor as that in [StoD89] in that the plane is divided into different regions which

11.11 Hodographs 459

Figure 11.38. Buckling in an interpolating spline.

define the inflection points, loops, etc. It is claimed that this new approach is not as
sensitive to degenerate cases as previous solutions. Other aspects of hodographs are
described in [SaWS95] and [Moon99].

11.12 Fairing Curves

Producing curves with a pleasing or “fair” shape is not easy. One is confronted with
two tasks here. First, one has to define what it means for a curve to be fair and provide
tests that one can use to check for this property. The latter step is sometimes called
curve interrogation. Second, one has to describe procedures with which a curve that
is not fair can be turned into one that is. This process is referred to as “fairing” the
curve. A good reference is [HosL93].

There does not seem to be any consensus on a definition of “fair.” Curvature clearly
has something to do with it. A common way to deal with fairing is to analyze a plot
of the curvature. Small differences between curves that may not be visible to the eye
can show up in such plots. See [Fari92a]. We shall define the concept as follows (see
[SuLi89]):

Definition. A curve p(u) is said to be fair if

(1) it is G2 continuous,
(2) it has no undesirable inflection points, and
(3) its curvature varies in an even way.

As is pointed out in [SuLi89], conditions (2) and (3) are the most important
usually, with emphasis on condition (3). Plots of the curvature functions are useful.
Basically, one likes curves whose curvature function consists of a few monotone
(preferably linear) regions. The points that separate these regions should be a small
set. Another way to put this is to say that the curvature has few extrema. With this
definition a sine curve is not fair because it has lots of inflection points.

Since curves are often defined by point data, we make the following definition:

460 11 Curves in Computer Graphics

Figure 11.39. Curve and its hodograph.

Definition. A set of points is said to be fair if there exists a fair curve that interpo-
lates these points.

This leads to various solutions to the curve-fitting problem. Two well-known
methods are the least squares method and the energy function approach. The latter is
based on the idea that nature will naturally produce fair curves and their shapes are
determined by minimizing certain bending energy integrals. A variety of these integrals
are described in [HosL93]. Another approach to finding a fair interpolating curve is to
start with the obvious polygonal curve that connects the points and then to improve its
shape using interpolatory refinement schemes. See [Kobb96] for an overview of several of
such schemes and how they can be described in a more systematic way.

Now if the control points of a curve are chosen badly, then there is not much one
can do to improve its shape. Therefore, part of the task of coming up with fair curves
is picking good data to interpolate or approximate. We want to eliminate the hope-
fully few bad points.

For more about fairing and curvature see Section 15.2. See also [SéCM95] where
fairing is obtained by minimizing various functionals. An adaptive approach to fairing
digitized point data is described in [LWZL02].

11.13 Parallel Transport Frames

The Frenet frames to a curve provide a moving coordinate system along the points of
a curve that often comes in handy. They are, for example, useful in dealing with gen-
eralized cylinders. The problem is that Frenet frames are not defined at points of a
curve where the second derivative vanishes and the curve is locally flat. This section
briefly describes a more general way to define a moving coordinate system that applies
to all regular curves, whether or not they have a vanishing second derivative. For
additional information see [Bish75], [ShaB84], [Bloo90], or [HaMa95].

Given a regular space curve p(t), let T(t) be the unit tangent vector of the curve
at p(t), that is,

Our specific problem is to find parameterized unit vectors n1(t) and n2(t) so that the
triple F(t) = (T(t),n1(t),n2(t)) defines a continuously varying orthonormal basis for R3

at p(t). If the second derivative of p(t) does not vanish, then one solution is the Frenet
frame (T(t),N(t),B(t)), where N(t) and B(t) are the principal normal and binormal to
p(t) at t, respectively. Alternatively, we can pick an arbitrary orthonormal basis
(T(t0),n1(t0),n2(t0)) of vectors at a start parameter t0 and try to propagate this basis
along p(t) by rotating it by a rotation based on the way that T(t) rotates as it moves,
independent of the curvature. Such frames, defined more precisely shortly, are called
parallel transport frames.

An Algorithm for Computing Parallel Transport Frames F(ti) at Points p(ti).
Assume that we already have the frame F(ti-1) = (T(ti-1),n1(ti-1),n2(ti-1)) at p(ti-1). Let

T t
p t

p t() =
¢() ¢()1

.

11.13 Parallel Transport Frames 461

qi be the angle between T(ti-1) and T(ti) and let wi = T(ti-1) ¥ T(ti) be the unit vector
that is orthogonal to the plane generated by T(ti-1) and T(ti). Then F(ti) =
(T(ti),n1(ti),n2(ti)) is the frame obtained by rotating (T(ti-1),n1(ti-1),n2(ti-1)) about wi
through an angle qi. See Figure 11.40.

To describe the mathematics behind this algorithm we need to use some facts
about frame fields on R3 and along curves. For the rest of this section we shall assume
that

is a regular space curve.

Definition. A vector field along the curve p(t) is a vector-valued function X: [a,b] Æ
R3. The vector field X is tangential or normal to p(t) if the vectors X(t) and p¢(t) are
parallel or orthogonal, respectively, for all t.

Definition. A normal vector field X along the curve p(t) is said to be relatively par-
allel to p(t) if X¢(t) is a tangential vector field.

In the case of a relatively parallel normal vector field X the fact that X•X¢ = 0
implies that the vectors X(t) have constant length. Although the next fact is not needed
here, it is an interesting connection to parallel curves that is worth making.

11.13.1 Theorem. A normal vector field X is relatively parallel to p(t) if and only
if p(t) and q(t) = p(t) + X(t) are parallel curves.

Proof. See [Bish75].

The next lemma answers the question as to whether relatively parallel normal
vector fields exist.

p a b: ,[] Æ R3

462 11 Curves in Computer Graphics

Figure 11.40. Parallel transport
frames (T,n1,n2).

11.13.2 Lemma. Let c Œ [a,b]. Given any vector v, there is a unique relatively par-
allel normal vector field X(t) to p(t) with the property that X(c) = v.

Proof. The uniqueness follows from the fact that the difference of relatively paral-
lel vector fields is again such a field and the fact that the difference is 0 at c and
hence would have to be constantly equal to 0. The existence part follows by express-
ing X(t) in terms of a continuously varying orthonormal basis (T(t),n1(t),n2(t)) for
R3 along p(t) (which always exists locally) and showing that a solution depends
on the existence of a solution to Serret-Frenet type differential equations. See
[Bish75].

Definition. A tangential vector field X along p(t) is said to be relatively parallel to
p(t) if there is a constant c so that X¢(t) = cT(t) for all t. An arbitrary vector field X is
said to be relatively parallel to p(t) if the tangential and normal parts (that is, the vector
fields consisting of the orthogonal projections of X(t) onto the tangent line and normal
plane of the curve at p(t), respectively) are relatively parallel.

Lemma 11.13.2 generalizes to the following:

11.13.3 Theorem. Let p: [a,b] Æ R3 be a Ck regular space curve, k ≥ 2. Given c Œ
[a,b] and any vector v there is a unique Ck-1 relatively parallel vector field X(t) along
p(t) with X(c) = v. The dot product of any two relatively parallel vector fields is
constant.

Proof. See [Bish75].

Now it is clear that the space of relatively parallel vector fields along p(t) is a vector
space over R. Furthermore, it follows from Theorem 11.13.3 that this is a three-
dimensional vector space.

Definition. A triple (T,n1,n2) of orthonormal relatively parallel vector fields along p(t)
is called a relatively parallel adapted frame field for p(t). (As usual, T denotes the unit
tangent vector field for p(t).) The frames (T(t),n1(t),n2(t)) are called parallel transport
frames.

11.13.4 Theorem. Let c Œ [a,b]. Any frame (T(c),u1,u2) at p(c) defines a unique
relatively parallel adapted frame field (T,n1,n2) for p(t) so that n1(c) = u1 and
n2(c) = u2.

Proof. One can show that a relatively parallel adapted frame field (T,n1,n2) satisfies
(and can be obtained as a solution to) the differential equations

(11.136)

¢() = () () () + () () ()
¢ () = - () () ()
¢ () = - () () ()

T t v t k t n t v t k t n t

n t v t k t T t

n t v t k t T t

1 1 2 2

1 1

2 2 .

11.13 Parallel Transport Frames 463

for some functions k1(t) and k2(t), where v(t) = |p¢(t)|. This follows from the definition
of relatively parallel and a translation of the proof of Theorem 9.16.6 in [AgoM05]
into this context. One then simply pieces together the unique local solutions defined
by their initial conditions.

11.13.5 Theorem. The following relationships exist between the curvature and
torsion of a curve p(t) and the functions k1(t) and k2(t) in equations (11.136) for its
parallel transport frames:

Proof. See [Bish75]. The formula for k(t) is clear from the definition of the curva-
ture function. To get the formula for torsion function t(t) assume that we have arc-
length parameterization and write the principal normal N in the form

(11.137)

Assuming that the frame field (T,n1,n2) has been oriented correctly, one gets that the
binormal B is defined by

since that is a vector orthogonal to the N (and T). Differentiating equation (11.137) gives

(11.138)

Finally, comparing equation (11.138) with the Serret-Frenet formulas shows us that
t = q¢.

Here are some points to keep in mind when deciding on frames for curves. The
advantage of Frenet frames is that they are defined locally. Their disadvantage is that
one cannot use them if second derivatives of curves are zero. The advantage of par-
allel transport frames is that they are defined for arbitrary regular curves. Their dis-
advantage is that, being basically solutions to differential equations, errors may
accumulate as one moves far from the start point. One can of course switch back and
forth between Frenet and parallel transport frames as appropriate. If one uses curves
and Frenet frames to define tubes, one will observe a great deal of twisting near points
on the curve with small curvature or large torsion. This undesirable property is readily
explained by the generalized Serret-Frenet formulas (Theorem 9.4.8 in [AgoM05])
since the derivatives of the normal and binormal vectors will be large at those places.
Reducing such twisting is one reason for using parallel transport frames. On the other

¢ = - + ¢ -() + ()()
= - + ¢

N T n n

T B

k
k

q q q
q

sin cos

.
1 2

B n n= -() + ()sin cos ,q q1 2

N n n= () + ()cos sin .q q1 2

k

t

t k t k t

t
d
dt

t where t
k t
k t

() = () + ()

() = () () =
()
()

Ê
Ë

ˆ
¯

1
2

2
2

2

1

q
q, arctan .

464 11 Curves in Computer Graphics

hand, such as in the case of helical curves, the Frenet frames produce more intuitively
desirable results than the parallel transport planes.

Finally, Hanson and Ma ([HaMa95]) show how quaternions can be helpful in gen-
erating both Frenet and parallel transport frames.

11.14 Recursive Subdivision Curves

The discussion up to now concerned smooth curves. The splines may have had a
control polygon driving their shape, but the actual curve had a smooth parameteri-
zation. This section addresses the question of smooth curves from a different direc-
tion. We shall describe an algorithm that starts with a polygonal curve and smooths
out the curve directly by a “subdivision” process without invoking the machinery of
splines. At the end we shall still only have a polygonal curve and not actually any func-
tion that parameterizes it. The algorithm in question is the Chaikin curve subdivision
algorithm ([Chai74]). The idea behind it is to define recursively a sequence of curves
where each new curve is obtained from the previous one by “cutting off the corners.”
If we go far enough out in this sequence we shall have a smooth-looking curve. More
precisely, given a polygonal curve Chaikin introduced a new vertex in each edge that
alternately was either three quarters or one quarter of the way from the first vertex
to the second vertex of the edge. This new sequence of vertices, along with the first
and last vertex of the old curve if it was not closed, then defined the next curve. Repeat-
ing this process produces a convergent sequence of polygonal curves. Figure 11.41
shows two stages of this algorithm. The initial polygon is defined by the vertices A,
B, C, D, and E. Performing the Chaikin algorithm twice produces the polygon defined
by the vertices A, a, b, . . . , l, E.

Limit curves obtained by a recursive algorithm like Chaikin’s are sometimes called
recursive subdivision curves. Riesenfeld ([Ries75]) observed that the limit curves
of the Chaikin algorithm are in fact quadratic B-splines. A good discussion of recur-
sive curve (and surface) algorithms from a historical perspective can be found in
[CavM89]. Chaikin’s algorithm is a special case of much more general constructions.

11.14 Recursive Subdivision Curves 465

Figure 11.41. Two stages of the Chaikin
curve subdivision algorithm.

11.15 Summary

It is worthwhile to summarize the main properties of the various types of parametric
curves we discussed in this chapter. First of all, recall that Bézier curves are really
special cases of B-splines, so that when one refers to “Bézier curves” and “B-spline
curves” one is really referring to their representation and not to the underlying curve.
They are simply different ways of controlling a curve and based on different basis
functions. One can convert between the two representations.

Differences between the Bézier and B-spline curves:

(1) For splines one needs to specify knots ti. Bézier curves do not need knots.
(2) One can force an order k B-spline to pass through a control point by giving

that point a multiplicity k - 1, although a cusp may result. Similarly, a knot
of order k - 1 will cause the B-spline to pass through the corresponding control
point.

(3) B-splines use fewer control points than the corresponding Bézier curve.
(4) The Bézier basis functions are easier to compute.

Similarities between Bézier and B-spline curves:

(1) The shape of the curves roughly follow the outlines of the control polygon,
although B-spline curves offer more control over the shape.

(2) B-splines can be made to start and end at control points like the Bézier curves.
(3) The tangents at the ends of the curve is determined by the slope of the secants at

the ends.
(4) They are symmetric.
(5) They are affinely invariant, but this is true for B-splines only if we use uniformly

spaced knots.
(6) They are invariant under affine parameter transformations.
(7) They satisfy the variation diminishing property.

Other properties of Bézier curves:

(1) They satisfy the convex hull property, that is, they lie in the convex hull of their
characteristic polygon.

(2) They interpolate the first and last control points.
(3) Their tangent vector at the beginning and end is parallel to the line between the

first and last two control points.
(4) They only have pseudo local control: Although changing any control point changes

the entire curve, the change in the curve drops off rapidly as one moves away
from the point that was changed.

Other properties of B-spline curves:

(1) They satisfy a strengthened version of the convex hull property, namely, they lie
inside the union of triangles defined from consecutive triples of control points.
See Figure 11.20.

466 11 Curves in Computer Graphics

(2) They provide local control.
(3) The nonperiodic B-splines interpolate the first and last control points, the peri-

odic ones do not.
(4) The degree of a Bézier curve increases with the number n of points, whereas with

B-splines one can vary n and the differentiability via k independently.
(5) Mathematically, a Bézier parameterization is a special case of a B-spline

parameterizations.
(6) The higher the multiplicity of a knot, the lower the differentiability at that point.

Periodic B-splines have a simple matrix formulation (which converts the curve to
the power form). The main advantage of this is realized if the matrix multiplication
is handled by hardware.

[FarR87], [FarR88], and [Faro91] showed that the Bernstein form of Bézier curves
is numerically more stable than the power form, the caveat being however that one
should not convert between the two. One would have to do everything, including algo-
rithms and how the data is stored, in the barycentric form. See [DanD89].

Differences between Hermite and B-spline reprentations (see [Fari97]):

(1) B-splines are numerically more stable.
(2) Hermite basis functions are not invariant under affine parameter changes.
(3) B-splines use less storage. For the interpolation of n points, the B-spline curve

needs n + 2 control points plus n + 1 knots (assuming that multiple knots
are stored just once), whereas the Hermite curve needs 2n points plus n + 1
knots.

Next, some comments about NURBS curves.

Advantages to using NURBS curves:

(1) They can represent a wide variety of objects and enable a uniform approach. Using
them one only needs to support one type of object. Their ability to represent conics
is extremely important for CAD. They are supported by many standards such as
IGES and STEP.

(2) Many tools exist for manipulating their geometry, such as, insertion of knots, etc.
(3) They support modification of local geometry.
(4) They are easy to transform under scaling, rotation, translation, shear, parallel and

perspective projection.
(5) In general, they have pretty much all the same nice properties as ordinary B-

splines.

Disadvantages to using NURBS curves:

(1) They are more complicated to compute in comparison to special types such as
circles, spheres, etc. On the other hand, current algorithms are fast and numeri-
cally stable.

11.15 Summary 467

(2) They take more storage. For example, a circle takes seven control points and ten
knots.

(3) They can produce bad parameterizations.

Finally, we point out to the interested reader some topics that were omitted in this
chapter (see, for example, [HosL93]):

(1) Splines in tension: These are interpolating splines that try to dampen unwanted
oscillations and extraneous inflection points. See also [Niel74] or [BaBB87].

(2) Shape preserving splines: If data is monotone or convex, then so should be the
spline.

(3) Various “geometric” spline curves

11.16 EXERCISES

Section 11.2.1

11.2.1.1 Determine the Lagrange polynomials through the following sequences of points:

(a) (0,5), (1,2), (3,2)
(b) (-1,1), (0,-1), (1,-1), (2,1)

Section 11.2.2

11.2.2.1 Prove the validity of equation (11.21) by a direct argument, that is, let

and solve for the coefficients a, b, c, and d as in the proof of Lemma 11.2.2.1.

11.2.2.2 Prove equation (11.24).

Section 11.2.3

11.2.3.1 Use equations (11.25) and (11.33) to find the cubic spline curve p(u) that has knots
0, 1, 2, and 3 and that passes through the points (0,0), (2,2), (4,2), and (6,4). Assume
that p¢(0) = (1,3) and p¢(3) = (1,6).

Section 11.3

11.3.1 Express the curve

in the form of equation (11.34).

p u u u u u() = + - + + -()3 2 5 2 7 33 3 2, ,

p x a bx cx dxi() = + + +2 3

468 11 Curves in Computer Graphics

11.3.2 Consider the geometric coefficient matrix

for a curve p(u). Analyze p(u) geometrically like we did in Example 11.3.1. In particu-
lar, try to sketch the curve without computing its analytic formula.

11.3.3 Check that formula (11.42) for the interpolating cubic curve works when p0 = (0,0),
p1 = (2,0), p2 = (3,2), and p3 = (2,3).

11.3.4 Find the matrix M for cubic curves p(u) with domain [0,2] that corresponds to the
Hermite matrix Mh for curves with domain [0,1] so that the equation

holds for all such curves.

Section 11.4

11.4.1 Show that the Bézier basis functions Bi,n (u) satisfy the recurrence relation

11.4.2 Let p(u) be a Bézier curve.

(a) Sketch the value p(2/3) if the control points are (0,0), (2,3), (6,2).
(b) Sketch the value p(3/4) if the control points are (0,0), (2,3), (6,2), (7,5).
(c) Sketch the value p(3/4) if the control points are (0,0), (2,3), (2,3), (6,2), (7,5).

Section 11.5.1

11.5.1.1 Compute the B-spline of order 3 that is defined by equation (11.72) if it has control
points (0,0), (2,3), (6,2), (7,5) and knot vector (1,2,4,5,7,8,9).

11.5.1.2 Prove equation (11.74).

Section 11.5.2

11.5.2.1 The blossom of a Bézier curve p(u) with control points pi can be obtained using the
following generalization of the de Casteljau algorithm (see [Rams89]): Rather than

B u

B u u B u u B u i n ni n i n i n

0 0

1 1 1

1

1 0 0
,

, , , , , .

() =
() = -() () + () £ £ >- - -

p u

p

p

p

p

() =

()
()
¢()
¢()

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

UM

0

2

0

2

Bh =

-

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

1 3 1

7 3 1

18 0 40

18 0 40

11.16 Exercises 469

using the same parameter u at each stage in Step 2 of Algorithm 11.5.2.1, use a dif-
ferent name for the parameter at each stage, so that pi

r would become a function of
r variables. At the end, p0

n would be the blossom. For example, in the cubic case we
would have

with p0
3(u1,u2,u3) the blossom of p(u). Check that this works for the quadratic and

cubic Bézier curve case.

11.5.2.2 Consider the B-spline curve p(u) of order 3 with control points (1,2), (2,3), (5,1), (6,2)
and knot vector (0,0,0,1,4,4,4) defined by equation (11.95). Find the three control
points q0, q1, and q2 so that the quadratic Bézier curve q(u) defined on [0,1] with
those control points generates the same curve as p(u)|[1,4].

11.5.2.3 Again consider the quadratic B-spline curve p(u) from Exercise 11.5.2.2. Find the
control points for the B-spline curve that is obtained after inserting the knot t = 2.

Section 11.5.4

11.5.4.1 Prove equation (11.107).

Section 11.9

11.9.1 Consider the curves p: [0,1] Æ R2 and q: [0,1] Æ R2 defined by

Clearly, p(1) = (0,1) = q(0). Show that the composite curve is C1 but not G1.

11.17 PROGRAMMING PROJECTS

1. Display and manipulation of curves (Sections 11.4, 11.5.1, and 11.5.3)

Rather than listing specific projects, we shall simply suggest that the reader implement any one
of the many types of curves we have described in this chapter and provide a user interface that
allows one to manipulate the parameters associated to them. Of special interest are the many
B-spline curves. Allow comparison of the curves by displaying several modifications of a curve
simultaneously. Try to limit the amount of typing one has to do for the program and allow as
much geometric input using the mouse as possible.

2. Interpolation (Sections 11.2.3 and 11.5.5)

Implement some interpolating splines for user picked or defined points.

p t u u u u and q t u u() = - + - +() () = +()2 3 2 32 1 3 3 1, , .

p p p p

p p p

p p

p

0 1 2 3

0
1

1 1
1

1 2
1

1

0
2

1 2 1
2

1 2

0
3

1 2 3

u u u

u u u u

u u u

() () ()
() ()

()
, ,

, ,

470 11 Curves in Computer Graphics

3. Fairing of curves (Sections 11.10 and 11.12)

Another interesting project is on the shapes of curves and giving the user the ability to fair the
curves. A starting point for this would be to plot the curvature graphs of a curve.

4. Frenet frames and parallel transports (Section 11.13)

Display the Frenet frames and parallel transports on a curve at specified intervals along
the curve.

5. Recursive subdivision (Section 11.14)

Allow a user to define a planar polygonal curve and then show how it changes with recursive
subdivision.

11.17 Programming Projects 471

curves carries over to surfaces. Although parameterizations typically have rectangu-
lar domains, there are times when triangular domains are more convenient and
Section 12.12.3 discusses those. Rational B-spline and NURBS surfaces are defined
in Section 12.12.4 and efficient evaluation algorithms for both B-spline and NURBS
surfaces are discussed in Section 12.12.5. Section 12.12.6 is on interpolation using B-
spline surfaces. Section 12.13 defines the very special cyclide surfaces. Sections
12.14–12.16 revisit, in the context of surfaces, some of the topics we encountered with
curves in Sections 11.8–11.12. We discuss the subdivision of surfaces into smaller
patches, the addition of control points and knots, composite surfaces, and fairing sur-
faces. Next, in Section 12.17, we switch from smooth surfaces and describe the class
of polygonal surfaces defined by recursive subdivision. Section 12.18 gives a summary
of some of the main points to remember when it comes to curves and surfaces and
we finish with a few historical comments in Section 12.19.

12.2 Surfaces of Revolution

Surfaces of revolution are a frequently encountered type of surface. Spheres and cylin-
ders can be thought of as surfaces of revolution. In general, one gets an “object of
revolution” by revolving a set about some arbitrary axis. To analyze what this means
in more detail, consider the simplest object to revolve, namely, a point. In that case
one gets a circle in a plane orthogonal to the axis with center on the axis and radius
equal to the distance of the point to the axis. It follows that one can think of an object
of revolution as consisting of a union of circles centered on the axis, one for each
point of the object being revolved. This also suggests that a way to parameterize a
point p of an object gotten by revolving a curve about an axis is to use two parame-
ters. One parameter is the parameter of the point on the curve, which gave rise to p
and the other is the angle through which it was rotated. For general objects of revo-
lution we would need k + 1 parameters, where k is the number of parameters needed
to parameterize the object being revolved.

Our actual definition of a surface of revolution, which will be in terms of a para-
meterization, will restrict itself to the case where a curve is being revolved about the
x-axis. This will simplify the definition. Besides, one can get surfaces of revolution
about an arbitrary axis from this using rigid motions. Another simplifying hypo-
thesis will be to assume that the curve lies in the x-y plane. Extending the definition
to allow arbitrary space curves is left as an exercise for the reader (see Exercise
12.2.1.). One should note however that although it is easy to define an “object” of
revolution, it is not easy to guarantee that the result will be a surface. We shall see
that even in the special cases we shall analyze it is not trivial to ensure that the result
will not have any singularities.

Definition. Let g : [a,b] Æ R2 be a planar parametric curve and let g(t) = (g1(t),g2(t)).
Define a function

p : a,b[]¥[] Æc d, R3

474 12 Surfaces in Computer Graphics

476 12 Surfaces in Computer Graphics

The Curve Crosses the X-axis. For example, the surface of revolution obtained by
rotating the segment [A,B] in Figure 12.3 about the x-axis has no tangent plane at C
where the curve crossed the axis. Even if a tangent plane exists at such points, such
as when one revolves the upper half of the unit circle about the x-axis to get the unit
sphere S2, problems may arise because the standard approach to getting the tangent
plane using the partials of the parameterization may fail. See Exercise 12.2.2.

Choosing a Direction for the “Outward” Normal. The direction would most likely
depend on the orientation of the curve, but the curve may zigzag.

The main problems are typically caused by partial derivatives vanishing so that it is
messy trying to find the tangent plane at a point of the surface.

Next, we look at a number of important special cases of surfaces of revolution
and work out some concrete examples.

Consider the full surface of revolution S obtained by rotating a line segment X
about the x-axis.

Case 1: If X is parallel to axis, then S is a cylinder. See Figure 12.4(a).
Case 2: If X is skew to axis, then S is a truncated cone. See Figure 12.4(b).
Case 3: If X is orthogonal to the axis, then S is an annulus. See Figure 12.4(c).

12.2.1 Example. Assume that S is the surface of revolution obtained by rotating
the segment X = [(0,1),(2,3)] about the x-axis. We want to find the tangent plane to S
at p = (1, ,) .

Solution. The function

parameterizes S and

and
∂ () = - +() +()()p

x x x
∂q

q q q, , sin , cos .0 1 1
∂ () = ()p

x
x

∂
q q q, ,cos ,sin1

p x x x x, , cos , sinq q q() = +() +()()1 1

22

Figure 12.3. A surface of revolution tangent
plane problem.

12.2 Surfaces of Revolution 477

Since p(1,p/4) = p, it follows that

are a basis for our tangent plane. Finally,

is a normal vector to the plane, so that its equation is

or

12.2.2 Example. Assume that S is the surface of revolution obtained by rotating
the segment X = [(3,1),(3,3)] about the x-axis. We want to find the tangent plane to S
at p = (3,0,2).

Solution. The surface S is parameterized by

and

∂
∂

q q q
∂
∂q

q q q
p
y

y and
p

y y y, ,cos ,sin , , sin , cos .() = () () = -()0 0

p y y y, , cos , sinq q q() = ()3

2 2 2 2 0x y z- - + = .

2 2 2 1 2 2 0, , , , , , ,- -() ∑ () - ()() =x y z

∂
∂

p
∂
∂q

p
p p
x

1 4 1 4 2 2 2, , , ,() ¥ () = - -()

∂ () = () ∂ () = -()p
x

and
p

∂
p

∂q
p1 4 11 2 1 2 1 4 0 2 2, , , , , ,

Figure 12.4. Interesting surfaces of revolution.

Since p(2,p/2) = p, it follows that

are a basis for our tangent plane. Finally,

is a normal vector to the plane, so that its equation is

or

Next, if we rotate a semicircle about an axis whose endpoints lie on the axis, then
we get a sphere. In the case of the semicircle of radius r about the origin, we can
parameterize its points with the map

This leads to the following parameterization of the sphere of radius r about the origin:

(12.5)

See Figure 12.5(a). The partial derivatives

(12.6)

define the tangent planes except at the two poles (±r,0,0) where they vanish. The
tangent planes at those two points have to be handled as a special case unfortunately.

If we rotate a circle about an axis and if this circle does not meet the axis, then we
get a torus. As a special case, let T be the torus obtained by rotating the circle of radius
r with center (0,R,0), r < R, about the x-axis. See Figure 12.5(b). Here is another natural
way to visualize the standard parameterization of T. Let Pq be the plane through the x-
axis that makes an angle q with the x-y plane. This plane intersects T in a circle Cq with
center Ruq, where uq = (0,cosq, sinq) is the unit vector in the y-z plane that makes an
angle q with the y-axis. Parameterizing the points of Cq by the angle f that the ray from
the center of Cq makes with the x-axis corresponds to the map

∂
∂q

f q f q f q
p

r r, , sin sin , sin cos() = -()0

∂
∂f

f q f f q f q
p

r r r, sin , cos cos , cos sin() = -()

p r r rf q f f q f q, cos , sin cos , sin sin .() = ()

f f f f pÆ () Œ[]r r forcos , sin , .0

x - =3 0.

2 0 0 3 0 2 0, , , , , , ,() ∑ () - ()() =x y z

∂
∂

p
∂
∂q

p
p
y

p
2 2 2 2 2 0 0, , , ,() ¥ () = ()

∂
∂

p
∂
∂q

p
p
y

and
p

2 2 0 0 1 2 2 0 2 0, , , , , ,() = () () = -()

478 12 Surfaces in Computer Graphics

If we rotate half of a parabola about its axis, then we get a paraboloid of revolution
(also called an elliptic paraboloid). See Figure 12.5(c). If we do the same thing to a
hyperbola, we get a hyperboloid of revolution (also called a hyperboloid of one sheet).

12.2.4 Example. Let S be the paraboloid of revolution obtained by rotating the
part of the parabola x = y2, y ≥ 0, about the x-axis. We want to find the tangent plane
and normal to S at p = (4,0,2).

Solution. The standard parameterization for S is

Since p(4,p/2) = (4,0,2) and

evaluating these vectors at (4,p/2) and taking the cross product gives us that (1/2,0,
-2) is a normal vector, so that

or

is the equation for the tangent plane.

12.3 Quadric Surfaces and Other Implicit Surfaces

Like the conic curves, quadric surfaces are an important shape for CAGD. A quadric
surface is a subset of points (x,y,z) in R3 which satisfies a general quadratic equation
of the form

(12.9)

A complete classification of the solutions to equation (12.9) can be found in Section
3.7 in [AgoM04] and we shall not repeat it here. Omitting the degenerate cases, one
gets the basic ellipsoids, cylinders, cones, paraboloids, and hyperboloids. Figure
12.5(a) and (c) showed a sphere (a special case of an ellipsoid) and paraboloid. Figure
12.6 shows examples of the others. Clearly, many mechanical parts have such shapes.
In an interesting paper, Goldman ([Gold83]) analyzes quadrics that are surfaces of

ax by cz dxy exz fyz gx hy iz j2 2 2 0+ + + + + + + + + = .

x z- + =4 4 0,

1 2 0 2 4 0 2 0, , , , , , ,-() ∑ () - ()() =x y z

∂
∂

q q q

∂
∂q

q q q

p
x

x
x x

p
x x x

, , cos , sin

, , sin , cos ,

() = Ê
Ë

ˆ
¯

() = -()

1
1

2

1

2

0

p x x x x, , cos , sin .q q q() = ()

480 12 Surfaces in Computer Graphics

12.3 Ouadric Surfaces and Other Implicit Surfaces 481

revolution (like the cyclinder, ellipsoid, paraboloid, cone, and hyperboloids) and
shows that they make good candidates for primitives in modeling systems because
one can classify their intersections.

A fundamental question for a quadric surface like for all surfaces is how one
can find a normal vector and an equation for the tangent plane at a point. Since
many of these surfaces are surfaces of revolution, we could apply the methods
developed in the last section. We could also use the fact that these surfaces can be
parameterized and tangent planes are easily computed from parameterizations.
Here, rather than using either of these two approaches, we shall describe another
powerful method. Quadric surfaces are a special case of implicit surfaces. An
implicit surface S in R3 is a surface that is the set of zeros of a function f : R3 Æ R,
that is,

It is a well-known fact that if p Œ S, then the gradient to f at p, —f(p), is a normal
vector to S at p (assuming that the function f is differentiable). This means that com-
puting normals for implicit surfaces is trivial. Of course, once one has the normal,
then the tangent plane is easily expressed in the point-normal form.

12.3.1 Example. We want to find the tangent plane to the hyperboloid S defined
by

at p = (,0,2). See Figure 12.6(c).

Solution. Let

f x y z x y z, , .() = - + + -2 2 2 1

3

- + + =x y z2 2 2 1

S p R p= Œ () ={ }3 0f .

Figure 12.6. Three quadric surfaces.

Since —f(x,y,z) = (-2x,2y,2z), —f(p) = (,0,4) is a normal vector to S at p. It follows
that the tangent plane is defined by

or

From the point of view of finding normals to surfaces it is therefore advantageous
to have an implicit representation of it. Unfortunately, except for quadric surfaces,
surfaces are usually presented via parameterizations. Finding an implicit representa-
tion given a parameterization is a nontrivial problem that is addressed in Chapter 10
in [AgoM04].

It should be pointed out that many surfaces of revolution are implicit surfaces, so
that the gradient method for finding normals and tangent planes applies to them. For
example, consider the surface of revolution defined by equation (12.2). It is easy to
show that this surface is the set of zeros of the function

(12.10)

12.3.2 Example. We rework Example 12.2.4 using this approach. Using equation
(12.10), the surface is defined by the equation

But —F(x,y,z) = (-1,2y,2z) and —F(4,0,2) = (-1,0,4). The latter is, up to a scalar
multiple, the same normal as the one we got before.

Finally, we mention Barr’s ([Barr81]) superquadric surfaces. These are the surface
analogs of superellipses and are useful in representing shapes such as rounded blocks
or rounded square toroids. They are defined by trigonometric functions raised to expo-
nents. [Barr92] presents expressions for their volume, center of mass, and rotational
inertia tensor.

12.4 Ruled Surfaces

Ruled surfaces are probably the next simplest surfaces after planes. Special cases of
these are extrusions. These are surfaces obtained by sweeping a vector along a curve.

Definition. Given a curve f : [a,b] Æ R3 and a vector v Œ R3, the parametric surface

defined by

p a b: , ,[] ¥ [] Æ0 1 3R

F x y z y z x, , .() = + - =2 2 0

F x y z y z f x, , .() = + - ()2 2 2

- + - =3 2 7 0x z .

-() ∑ () - ()() =2 3 0 4 3 0 2 0, , , , , ,x y z

-2 3

482 12 Surfaces in Computer Graphics

12.4 Ruled Surfaces 483

(12.11)

is called an extrusion. The vector v is called the sweep vector for the extrusion.

See Figure 12.7(a). The partials are again easy to compute:

(12.12)

Definition. Given two curves f, g : [a,b] Æ R3, the parametric surface

defined by

(12.13)

is called a lofted surface.

Lofted surfaces are ruled surfaces that interpolate two curves. See Figure 12.7(b).
The partials are

(12.14)

Note that extrusions are a special case of a lofted surface. In both the case of extru-
sions and the case of lofted surfaces, one needs to worry about self-intersections. Of
the nondegenerate quadric surfaces, the cylinders and cones are ruled surfaces. The
hyperboloid of one sheet and the hyperbolic paraboloid are doubly ruled surfaces. For
a more thorough discussion of ruled surfaces that includes algorithms for computing
planar intersections and contour outlines see [PePR99].

One question that sometimes arises in the context of ruled surfaces is whether

∂
∂

∂
∂

p
u

v f u vg u and
p
t

g u f u= -() () + () = () - ()1 ¢ ¢ .

p u v v f u vg u, .() = -() () + ()1

p a b: , ,[] ¥ [] Æ0 1 3R

∂
∂

∂
∂

p
u

f u and
p
t

= () =¢ v.

p u t f u t,() = () + v

Figure 12.7. Extrusions and lofted surfaces.

12.5 Sweep Surfaces 485

Definition. The parametric surface p(s,t) defined by equation (12.15b) is called the
sweep surface obtained by sweeping f(t) along the framed curve g(s).

12.5.1 Example. The path of a cutter as shown in Figure 12.9(a) can easily be
described as two sweep surfaces defined by equations like equation (12.15b), where
each function f(t) parameterizes a vertical segment.

Equation (12.15b) can be generalized by letting a one-parameter family of
affine maps Ts act on the curve f(t) as we sweep it along g(s). Define function
gi(s,t) by

and the new parametric surface p(s,t) by

(12.16)

Definition. The parametric surface p(s,t) defined by equation (12.16) is called a
screw sweep surface.

12.5.2 Example. Let g(s) be the spiral

Using the Frenet frame (T(s),N(s),B(s)) for this curve we let

Let f : [0,4] Æ R3 parameterize the unit square in the x–z plane as follows:

u

u

u

1

2

3

0

1 10 3 3 1

1 10 3

s N s s s

s T s s s

s B s s s

() = () = - -()

() = () = () -()

() = () = () -()

cos , sin , ,

sin , cos , ,

sin , cos , .

g s s s s() = ()3 3cos , sin , .

p s t s g s t s g s t s g s t s, , , , .() = () + () () + () () + () ()g 1 1 2 2 3 3u u u

T f t g s t g s t g s ts ()() = () () ()()1 2 3, , , , ,

Figure 12.9. Sweep surfaces: a cutter path and square rotated along a spiral.

486 12 Surfaces in Computer Graphics

We shall rotate the square as it is swept along g(s). This can be accomplished by
defining

The functions gi(s,t) are easily computed. For example, for t Œ [1,2],

Figure 12.9(b) shows the resulting screw sweep surface.

12.6 Bilinear Surfaces

Let four points p00, p01, p10, and p11 be given. The easiest way to define a surface
p(u,v) that interpolates these points is by means of a double linear interpolation.
Define

(12.17a)
(12.17b)

where 0 £ u, v £ 1. Equation (12.17a) says that to find p(u,v) we first find p(u,0) and
p(u,1) by a linear interpolation in the u-direction and then do a linear interpolation
of those points in the v-direction. Equation (12.17b) says that we get the same answer
if we first interpolate in the v-direction and then in the u-direction. See Figure
12.10(a).

Definition. The parametric surface defined by equations (12.17) is called the
bilinear surface determined by the four points or the four-point interpolating surface.

= -() -() +[] + -() +[]
= -() -() + -() + -() +

1 1 1
1 1 1 1

00 01 10 11

00 01 10 11

u v v u v v
u v u v u v uv

p p p p
p p p p

,
,

p u v v u u v u u, ,() = -() -() +[] + -() +[]1 1 100 10 01 11p p p p

g s t s g s t and g s t t s1 2 30 1, cos , , , , sin .() = () = () = -()

T x y z x s y z ss , , cos , , sin .() = ()

f t t t

t t

t t

t t

() = () Œ[]
= -() Œ[]
= -() Œ[]
= -() Œ[]

, , , , ,

, , , , ,

, , , , ,

, , , , .

0 0 0 1

1 0 1 1 2

3 0 1 2 3

0 0 4 3 4

Figure 12.10. Bilinear surfaces.

The bilinear surface is a special case of a lofted surface and also of the Coons
surface and the Bézier tensor product surface described later on. We can rewrite the
function p(u,v) in matrix form as

If the points pi are coplanar and linearly independent (as in Figure 12.10(b)), then the
resulting surface is a quadrilateral, otherwise (as in Figure 12.10(c)) it is a surface of
degree two, meaning that it is parameterized by quadratic polynomials.

12.6.1 Example. If p00 = (1,0,0), p01 = (1,3,-1), p10 = (-1,-2,2), and p11 = (-1,1,1),
then it is easy to check that

Note that the points all lie on the plane 2x + y + 3z = 1.

12.6.2 Example. If we use the same points as in Example 12.6.1 but replace p00
by p00 = (0,0,0), then

The points are no longer coplanar and we see a quadratic term “uv” in the formula
for p(u,v).

A special case of the four-point interpolating surface arises when two of the points
are the same. We are then simply parameterizing a triangular planar patch. However,
it makes more sense in that case to use a triangular domain. We can do that if we use
barycentric coordinates. Let p0, p1, and p2 be three points and define

(12.18)

where 0 £ u,v and 0 £ u + v £ 1. The function p(u,v) parameterizes the triangle p0p1p2.
If we drop all the constraints on u and v, then we get a parameterization of the plane
containing the three points called the interpolating plane. Note that equation (12.18)
can be rewritten in the form

which shows more clearly that we are parameterizing a plane that has the vectors
p2p0 and p2p0 for a basis.

12.7 Coons Surfaces

The surfaces described so far had a relatively simple description by means of a single
formula. There are many other surfaces that one needs to deal with in CAGD, such

p u v u v,() = + +p p p p p2 2 0 2 0

p u v u v u v, ,() = + + - -()p p p0 1 21

p u v v u uv v u u v, , , .() = - - - -()3 2 2

p u v u v u u v, , , .() = - - -()1 2 3 2 2

p u v u u
v

v
,

.
() = -()ÊË

ˆ
¯

-Ê
Ë

ˆ
¯1

100 01

10 11

p p

p p

12.7 Coons Surfaces 487

12.7 Coons Surfaces 489

Interpolating this error term in the v-direction is just the function P2(p - P1p)(u,v). If
we were to arbitrarily define

(12.20a)

then by construction this function p(u,v) would now interpolate our entire boundary.
What would have happened if we had applied this argument to P2p and its difference
with the actual values of p along the v-direction boundaries? Fortunately, because the
operators P1 and P2 commute, that is, P2P1 = P1P2, we would have arrived at the same
formula (12.20a). As one can see from Figure 12.12, P1P2p(u,v) is what is called a
doubly ruled surface. Replacing the operators Pi in the formula for p(u,v) in equation
(12.20a) by their definitions leads to the original Coons formula

(12.20b)

Definition. The parametric surface defined by the function p(u,v) in equations
(12.20) is called the (bilinearly blended) Coons patch or Coons surface for the curves
p(0,v), p(1,v), p(u,0), and p(u,1).

The Coons surface can be expressed in matrix form as follows:

(12.20c)

(12.20d)

The basic Coons surface is easily generalized by replacing the simple linear
blending functions by others. Let b0(t), b1(t), c0(t), and c1(t) be arbitrary real-valued
functions on [0,1] and define new operators P1 and P2 on functions p(u,v) by

= -()
- () - () ()
- () - () ()

() ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Ê

Ë
Á
Á

ˆ

¯
˜
˜

1 1

0 0 0 1 0

1 0 11 1

0 1

1

1

u u

p p p v

p p p v

p u p u

v

v

, , ,

, , ,

, ,

.

0

p u v u u
p v

p v
v v

p u

p u
u u

p p

p p

v

v
,

,

,

,

,

, ,

, ,
() = -() ()

()
Ê
Ë

ˆ
¯ + -() ()

()
Ê
Ë

ˆ
¯ - -() () ()

() ()
Ê
Ë

ˆ
¯

-Ê
Ë

ˆ
¯1

0

1
1

0

1
1

0 0 0 1

1 0 11

1

p u v v p u vp u u p v up v

u v p u vp u v p uvp

, , , , ,

, , , , .

() = -() () + () + -() () + ()
- -() -() () - -() () - -() () - ()
1 0 1 1 0 1

1 1 0 0 1 0 1 1 1 0 11

p u v P p u v P p P p u v P p u v P p u v P P p u v, , , , , , ,() = () + -()() = () + () - ()1 2 1 1 2 2 1

Figure 12.12. A bilinearly blended Coons patch.

490 12 Surfaces in Computer Graphics

(12.21a)

(12.21b)

Notice how the definition of the functions (Pip)(u,v) only uses the boundary values of
p(u,v). These new equations reduce to the ones in equation (12.19) if we let b0(t) =
c0(t) = L0,1(t) and b1(t) = c1(t) = L1,1(t), where L0,1(t) = 1 - t and L1,1(t) = t are the linear
Lagrange basis functions defined in equation (11.2) of Section 11.2.1. In fact, the only
conditions that the blending functions bi(t) and ci(t) have to satisfy in order to have
the functions defined by equation (12.21) interpolate the v-, respectively, u-direction
boundary are that

The operators P1 and P2 are best thought of as projection operators that project
the space of vector-valued functions of two variables onto a subspace because Pi

2 =
Pi. The sum of the two operators is not a projection since (P1 + P2)2 π P1 + P2, but if
they commute, that is, P1P2p = P2P1p, then the Boolean sum operator P defined by

(12.22a)

is a projection. Equation (12.22a) can be expressed in matrix form as

(12.22b)

We summarize the main facts about the operator P.

12.7.1 Theorem. If the functions bi(u) and ci(v) and operators Pi in equations
(12.21) satisfy

(1) bi(j) = ci(j) = dij, i,j Œ {0,1}, and
(2) P1P2p = P2P1p for all p,

then the parametric surface (Pp)(u,v) defined by equations (12.22) interpolates the
boundary curves p(0,v), p(1,v), p(u,0), and p(u,1). If also

(3) bi¢(j) = ci¢(j) = 0, i,j Œ {0,1},

then

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
Pp u v c v

p
u

i c v
p
u

i

v
Pp u v b v

p
v

i b v
p
v

i

()() = () () + () ()

()() = () () + () ()

, , ,

, , , ,

0 1

0 1

0 1

0 1

Pp u v b u b u

p p p v

p p p v

p u p u

c v

c v()() = () ()()
- () - () ()
- () - () ()

() ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

()
()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

,

, , ,

, , ,

, , .
0 1

0

11

0 0 0 1 0

1 0 11 1

0 1 10

Pp P P p P P P P p= ≈() = + -()1 2 1 2 1 2

b b b b

c c c c

0 0 1 1

0 0 1 1

0 1 1 0 0 0 1 1

0 1 1 0 0 0 1 1

() = () = () = () =

() = () = () = () =

, , , ,

, , , ,

P p u v c v p u c v p u2 0 10 1()() = () () + () (), , , .

P p u v b u p v b u p v1 0 10 1()() = () () + () (), , , ,

for i = 0 or 1.

Proof. Exercise 12.7.2.

As a simple application of Theorem 12.7.1 we can get a smoother Coons surface
by using the Hermite basis functions Hi,3 introduced in equation (11.18) of Section
11.2.2 and defining

(12.23)

All three conditions of Theorem 12.7.1 are satisfied by H0,3 and H3,3.

Definition. The parametric surface defined by the function p(u,v) in equation (12.23)
is called the bicubic Coons patch or surface for the curves p(0,v), p(1,v), p(u,0), and
p(u,1).

One of the nice properties of the bicubic Coons surface is that it gives us smooth
global surfaces. Specifically, given a network of curves, the global interpolating surface
that one would get using the basic bilinearly blended Coons parameterization for each
individual patch would be only C0 even if the curves themselves are C1. This problem
is caused by the use of linear blending functions. If we use the bicubic Coons surface,
then we get a globally C1 surface. This follows from Theorem 12.7.1 and properties
of the functions H0,3 and H3,3.

Another interesting fact about the surface (Pp)(u,v) defined by equations (12.22)
is that if

(12.24)

then it is affinely invariant in the sense that if the surface is transformed by an affine
transformation, then the transformed version can be computed from equations (12.22)
applied to the transformed boundary data. By a simple extension of Theorem 11.2.2.3
we only have to show that the coefficients of equation (12.22b) add to 1, that is,

but this equation can be rewritten in the form

It follows that both the bilinearly blended and bicubic Coons surface are affinely
invariant.

Even though the bicubic Coons patch gives us a C1 surface if the boundary curves
are C1, we have little control over the derivatives along the boundaries. To get more
flexibility assume that we are also given the partial derivatives pu(0,v), pu(1,v), pv(u,0),
and pv(u,1). See Figure 12.13. Define new operators Q1 and Q2 by

b u b u c v c v0 1 0 11 1 0() + () -() () + () -() = .

b u b u c v c v b u c v b u c v b u c v b u c v0 1 0 1 0 0 0 1 1 0 1 1 1() + () + () + () - () () - () () - () () - () () = ,

b u b u or c v c v0 1 0 11 1() + () = () + () = ,

p u v H u H u

p p p v

p p p v

p u p u

H v

H v,

, , ,

, , ,

, ,

., ,

,

,() = () ()()
- () - () ()
- () - () ()

() ()

Ê

Ë
Á
Á

ˆ

¯
˜
˜

()
()

Ê

Ë
Á
Á

ˆ

¯
˜
˜0 3 3 3

0 3

3 31

0 0 0 1 0

1 0 11 1

0 1 10

12.7 Coons Surfaces 491

492 12 Surfaces in Computer Graphics

(12.25a)

(12.25b)

Unfortunately, the Boolean sum

(12.26)

refers to the values puv(0,0), puv(0,1), puv(1,0), and puv(1,1) of the mixed second
partials at the corners of the patch and so we also have to assume that we have
been given those values, but once we have them then the properties of the func-
tions Hi,j(u) imply that the parametric surface (Qp)(u,v) now interpolates all the
data.

Definition. The parametric surface Qp(u,v) defined by equation (12.26) and
its matrix form (12.29) below is called the generalized bicubic Coons patch or
surface.

Before we describe the matrix form of the generalized bicubic Coons patch, let us
generalize equations (12.25) to allow other blending functions d0(t), d1(t), e0(t), and
e1(t). Assume that the operators Q1 and Q2 are defined by

(12.27a)

(12.27b)

The necessary constraints on the new blending functions for everything to work
are

(12.27c)

(We know that the functions Hi,j(t) satisfied those constraints.) If we define a matrix
B by

d j e j d j e j i ji i i i ij() = () = () = () = Œ{ }0 0 1, , , , .¢ ¢ d

Q p u v c v p u c v p u e v p u e v p uv v2 0 1 0 10 1 0 1()() = () () + () () + () () + () (), , , , , .

Q p u v b u p v b u p v d u p v d u p vu u1 0 1 0 10 1 0 1()() = () () + () () + () () + () (), , , , , ,

Qp Q Q p Q Q Q Q p= ≈() = + -()1 2 1 2 1 2

Q p u v H v p u H v p u H v p u H v p uv v2 0 3 1 3 2 3 3 30 0 1 1, , , , , ., , , ,() = () () + () () + () () + () ()

Q p u v H u p v H u p v H u p v H u p vu u1 0 3 1 3 2 3 3 30 0 1 1, , , , , ,, , , ,() = () () + () () + () () + () ()

Figure 12.13. A smooth bicubic Coons patch.

12.7 Coons Surfaces 493

(12.28)

then equation (12.26) can be written in the form

(12.29)

The surface Qp(u,v) defined by equation (12.29) will interpolate the boundary curves
p(0,v), p(1,v), p(u,0), p(u,1), their derivatives pu(0,v), pu(1,v), pv(u,0), pv(u,1), and the
values puv(0,0), puv(0,1), puv(1,0), puv(1,1). Using such parameterizations we can now
define a network of patches from a given grid of boundary curves p(i,v) and p(u,j), i,j
= 1,2, . . . , as shown in Figure 12.14 that is a globally C1 surface. It is also affinely
invariant provided that equations (12.24) are satisfied. Section 12.9 will have more to
say about the B matrix in equation (12.28). We summarize our results about networks
of Coons surfaces in Table 12.7.1.

Qp u v

b u b u d u d u

p v

B p v

p v

p v

p u p u p u p u

c v

c v

e v

e
u

u

v v

()() =

() () () ()()

()
- ()

()
()

() () () ()

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

()
()
()

,

,

,

,

,

, , , ,

0 1 0 1

0

1

01

0

1

0

1

0 1 0 1 0
11

1

v()

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

.

B

p p p p

p p p p

p p p p

p p p p

v v

v v

u u uv uv

u u uv uv

=

() () () ()
() () () ()
() () () ()
() () () ()

Ê

Ë

Á
Á
ÁÁ

ˆ0 0 0 1 0 0 0 1

1 0 11 1 0 11

0 0 0 1 0 0 0 1

1 0 11 1 0 11

, , , ,

, , , ,

, , , ,

, , , , ¯̄

˜
˜
˜̃
,

Figure 12.14. A smooth network of Coons
surfaces.

Table 12.7.1 Properties of Coons networks.

Individual patch p(u,v) Continuity of
of Coons networks network Comments

Bilinearly blended (equations (12.20)) C0 Affinely invariant
Bicubic (equation (12.23)) C1 Affinely invariant
Beneralized bicubic (equation (12.26)) C1 Affinely invariant, allows control over

partials along boundary

494 12 Surfaces in Computer Graphics

Generalized Coons surfaces p(u,v) are nice because they are flexible. They inter-
polate arbitrary boundary curves and partials along the boundary. They have some
problems however. The first problem is that someone using them would also have to
specify puv(0,0), puv(0,1), puv(1,0), and puv(1,1). This is not easy because, since p(u,v)
is unknown, all one can do is estimate those unintuitive values. We describe one
way that avoids having to specify the mixed partials. Let a(v) = pu(0,v), b(v) = pu(1,v),
g(u) = pv(u,0), d(u) = pv(u,1). Replace the 2 ¥ 2 submatrix of vectors puv(0,0), puv(0,1),
puv(1,0), and puv(1,1) in the matrix B of equation (12.29) by the 2 ¥ 2 matrix
of parameterized vectors

(12.30)

Definition. The parameterized surface that we get from this new data is called the
Gregory square.

Note that it might have been tempting to have written expressions like

as upvu(0,0), but we did not on purpose. It would have been confusing because
it would have looked as if we needed to specify the mixed second partial pvu(u,v)
at (0,0), which is not case. We computed the value from the curve a(v) that we
were given. Note also that the terms in matrix (12.30) are just convex combinations
of the derivatives of the curves a(v), b(v), g(u), and d(u) and that the mixed partials
that we get at the corners of the patch now depend on the direction in which we
approach the corner. See [Chiy88], [HosL93], or [Fari97] for more about this surface
patch.

A second problem for generalized Coons surfaces p(u,v) is that nice func-
tions, such as C2 functions, have the property that one can interchange the order
of partial differentiation, but this may not be true for the parameterization p(u,v).
Specifically, ∂2p/∂u∂v may not equal ∂2p/∂v∂u at the corners of the patch. Achieving
equality of these two mixed partials is referred to as a compatibility condition.
(That term is used for other conditions such as having the boundary curves meet at
the corners or adjacent patches having the same tangent planes where they meet.) A
consequence of unequal mixed partials is that the projection operators Q1 and Q2
in equation (12.26) may not commute. The Gregory square does not satisfy the
compatibility condition. On the other hand, the Gregory patch discussed later in
Section 12.11 does.

Finally, Coons surfaces are a special case of Gordon surfaces. The latter inter-
polate a network of m curves in the u-direction and n curves in the v-direction. The
Coons surface is the case m = n = 1. It is also possible to define triangular Coons
patches. See [HosL93], [Fari97], or [Salo99].

u
d
dv

a
0()

u
d
dv

v
d
du

u v

u
d
dv

v
d
du

u v

u
d
dv

v
d
du

u v

u
d
dv

v
d
du

u v

a g a d

b g b d

0 0 1 1 0

1

1 0 1

1

1 1 1 1

1 1

() + ()

+

() + -() ()

+ -

-() () + ()

- +

-() () + -() ()

- + -
.

12.8 Tensor Product Surfaces 495

12.8 Tensor Product Surfaces

Tensor product surfaces are one of the most common surfaces encountered in CAGD.
Some simple versions can be computed with matrices. This section only gives an
overview, leaving the details with regard to some important special cases for subse-
quent sections.

Consider a curve

where the fi(u) are basis functions, and we treat the pi as a 1-parameter family of
vector-valued functions

with respect to some other basis functions gj(v) and points pij.

Definition. The parametric surface p(u,v) defined by

(12.31)

is called a tensor product or Cartesian product surface with basis functions fi(u)gj(v).
In matrix form, equation (12.31) becomes

(12.32)

Note how the partial derivatives of tensor product surfaces are easily obtained
from the derivatives for the curves:

(12.33a)

(12.33b)
∂
∂

∂
∂

p
v

u v f u
v

g vi
i

m

j ij
j

n

,() = () ()
È

Î
Í

˘

˚
˙

= =
Â Â

0 0

p

∂
∂

∂
∂

p
u

u v g v
u

f uj
j

n

i ij
i

m

,() = () ()È

Î
Í

˘

˚
˙

= =
Â Â

0 0

p

p u v f u f u f u

g v

g v

g v

m

n

m mn n

, .() = () () ◊ ◊ ◊ ()()

◊ ◊
◊ ◊ ◊
◊ ◊ ◊

◊ ◊

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

()
()
◊
()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

0 1

00 0

0

0

1

p p

p p

p u v f u g vi j ij
j

n

i

m

,() = () ()
==
ÂÂ p

00

p v g vi j ij
j

n

() = ()
=
Â p

0

p u f u pi i
i

m

() = ()
=
Â

0

,

The next four sections discuss some of the more common tensor product
surfaces: the bicubic patch, Bézier surfaces, B-spline surfaces, and rational B-spline
surfaces.

12.9 The Bicubic Patch

Definition. A parametric surface p(u,v) defined by

(12.34)

where 0 £ u,v £ 1 is called the general bicubic tensor product surface or bicubic patch.
Similar to the case of curves, the points pi,j are called the algebraic coefficients of the
bicubic patch.

It is easy to see that the bicubic patch can be interpreted as the tensor product of
two cubic curves defined by their algebraic coefficients as in equation (11.37). Just as
in the case of curves, the algebraic description (12.34) is usually not very convenient
for a user. One wants a more geometric way to specify the surface. One way to get
this geometric description is with the following observations. There are 16 (vector)
degrees of freedom. Some obvious geometric constraints are the four corner points
and the eight tangent vectors in the u and v direction at those points. That leaves four
degrees of freedom and we can use the mixed partials puv(u,v) at the corner points.
They are called the twist vectors.

Definition. The matrix B defined by

(12.35)

is called the geometric matrix for the bicubic patch. Its elements are called the
geometric coefficients of the patch.

The geometric matrix determines the algebraic coefficients completely. Here is
how the geometric coefficients would determine the point p(u,v) on the patch by
repeatedly using the Hermite principle that the endpoints and tangents of a curve
determine the curve completely: See Figure 12.15.

(1) p(u,0) is determined from p(0,0), p(1,0), pu(0,0), and pu(1,0).
(2) Similarly, p(u,1) is determined from p(0,1), p(1,1), pu(0,1), and pu(1,1).
(3) Next, pv(u,0) is determined from pv(0,0), pv(1,0), puv(0,0), and puv(1,0).
(4) Similarly, pv(u,1) is determined from pv(0,1), pv(1,1), puv(0,1), and puv(1,1).
(5) Finally, p(u,v) is determined from p(u,0), p(u,1), pv(u,0), and pv(u,1).

B =

() () () ()
() () () ()
() () () ()
() () () ()

Ê

Ë

Á
Á
ÁÁ

ˆp p p p

p p p p

p p p p

p p p p

v v

v v

u u uv uv

u u uv uv

0 0 0 1 0 0 0 1

1 0 11 1 0 11

0 0 0 1 0 0 0 1

1 0 11 1 0 11

, , , ,

, , , ,

, , , ,

, , , , ¯̄

˜
˜
˜̃

p u v u vi j
ij

ji

, ,() =
==
ÂÂ p

0

3

0

3

496 12 Surfaces in Computer Graphics

12.9 The Bicubic Patch 497

To find a formula for computing a point on the bicubic patch from its geometric
coefficients, one needs to take the tensor product of two cubic curves defined via their
geometric coefficients as in equation (11.37). This leads to the formula

(12.36a)

for some matrix Q = (qij), 0 £ i,j £ 3. By computing the points and partials of this curve
at the four points (0,0), (1,0), (0,1), and (1,1) directly from its formula, it is easy to
check that in fact the matrix Q is just the matrix B in equation (12.35) (Exercise
12.9.1). Therefore, the geometric form of the equation for the bicubic patch is

(12.36b)

This equation can also be written in the form

(12.37)

where the functions Fi are defined by equations (11.14). (See equation (11.37).)

12.9.1 Example. Consider the bicubic patch p(u,v) with geometric matrix:

We want to show that this patch is part of a parabolic cone.

B =

-() -() () ()
() () -() -()
() () -() -()
() () - -() -

0 4 0 0 2 2 0 2 2 0 2 2

2 0 0 1 0 2 1 0 2 1 0 2

2 0 0 1 0 0 1 0 0 1 0 0

2 8 0 1 4 0 1 4 0 1

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

.

-()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

4 0

p u v F u F u F u F u

F v

F v

F v

F v

,() = () () () ()()

()
()
()
()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 2 3 4

1

2

3

4

B

p u v h h
T T, .() = UM BM V

p u v h h
T T, ,() = UM QM V

Figure 12.15. Using the geometric
matrix to compute
p(u,v).

498 12 Surfaces in Computer Graphics

Solution. See Figure 12.16. Let

First of all, p(0,v) parameterizes the straight line segment [(0,-4,0),(0,-2,2)] because
the geometric data for x(u,0) is 0 and both y(u,0) and z(u,0) have the right geometric
data for a straight line. Similarly, p(1,v) parameterizes the straight line segment
[(2,0,0),(1,0,2)]. The geometric data for the curves p(u,0) and p(u,1) indicates that they
are parabolas. In fact, the data

is easily solved to give

Next, we use the data

to get

Note how this agrees with p(u,1) - p(u,0). The point C = (0,0,4) is clearly the vertex
of the parabolic cone which contains this patch. We leave it as an exercise to show
that

p u v u v u v v, , , , .() = -() -() -()()2 2 1 2 22

p u p u u uv v, , , , .0 1 2 1 22() = () = - -()()

p p p p

p p p
v v uv uv

v v uv

0 0 0 2 2 1 0 1 0 2 0 0 1 0 0 1 0 1 4 0

0 1 0 2 2 11 1 0 2 0 1 1 0 0

, , , , , , , , , , , , , , ,

, , , , , , , , , , , ,

() = () () = -() () = -() () = - -()
() = () () = -() () = -() ppuv 11 1 4 0, , ,() = - -()

p u u u and p u u u, , , , , , .0 2 4 1 0 1 2 1 22 2() = -()() () = -()()

p p p p

p p p p
u u

u u

0 0 0 4 0 1 0 2 0 0 0 0 2 0 0 1 0 2 8 0

0 1 0 2 2 1 1 1 0 2 0 1 1 0 0 1 1

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , ,

() = -() () = () () = () () = ()
() = -() () = () () = () () = 1 4 0, ,()

p u v x u v y u v z u v, , , , , , .() = () () ()()

Figure 12.16. Analyzing geometric matri-
ces for bicubic patches.

12.9.2 Theorem. The bicubic patch defined by equation (12.36) is affinely
invariant.

Proof. By Theorem 11.2.2.3 we need to expand equation (12.37) and show that the
functions that are the coefficients of p00, p10, p01, and p11 add to 1 (the other elements
of the geometric matrix B are “vectors”). But this sum is just

using identity (11.17).

Although the twist vectors puv(u,v) of a bicubic patch do have a geometric inter-
pretation, they are the least geometric part of the geometric matrix. For that reason,
they are sometimes set to zero.

Definition. A bicubic patch for which the twist vectors vanish, that is, a patch that
has a geometric matrix of the form

is called a Ferguson patch.

Ferguson patches may simplify specifying the data for a patch, but they have prob-
lems. They make the patch look flat in a neighborhood of its corners. This is espe-
cially noticeable for networks of patches and therefore they are used very little. There
are better ways to specify the twist vectors automatically without user intervention.
Recall the Gregory square.

The Adini twist vector is obtained at a vertex by using information from the bound-
ary of a patch or patches. In the single patch case we compute the bilinearly blended
Coons patch from the cubic boundary curves of our patch and use its mixed partial
derivative at the vertex as the twist vector. In the case of a network of patches this
would not give us C1 continuity at the vertices, but a simple modification works. We
compute the bilinearly blended Coons patch for the boundary of the union of the four
patches that meet at the vertex and use the mixed partial derivatives of that larger
patch at the vertex. If the network of patches over domains [ui,ui+1] ¥ [vj,vj+1] defines
the global parameterization q(u,v), then one can show that the Adini twist vectors are

(12.38)

Another way to specify a bicubic patch is by means of a 4 ¥ 4 grid of points pij
and requiring that the patch interpolate those points. These points provide 48 con-

q u v
q u v q u v

u u

q u v q u v

v v

q u v q u v q u v q u

uv i j
u i j u i j

i i

v i j v i j

j j

i j k j i j

,
, , , ,

, , ,

() =
() - ()

-
+

() - ()
-

-
() - () + () -

+ -

+ -

+ -

+ -

+ + + - - -

1 1

1 1

1 1

1 1

1 1 1 1 1 1 i j

i i j j

v

u u v v
- +

+ - + -

()
-() -()

1 1

1 1 1 1

,
.

p p p p

p p p p

p p

p p

v v

v v

u u

u u

0 0 0 1 0 0 0 1

1 0 11 1 0 11

0 0 0 1

1 0 11

, , , ,

, , , ,

, ,

, ,

,

() () () ()
() () () ()
() ()
() ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃0 0

0 0

F u F v F u F vi j
i j

i
i

j
j

() () = () ()
Ê
ËÁ

ˆ
¯̃

=
= = =

Â Â Â
,

,
1

2

1

2

1

2

1

12.9 The Bicubic Patch 499

straints that define the parameterization p(u,v) completely. We shall derive a formula
for p(u,v) in the uniform spacing case, but rather than finding the algebraic coeffi-
cients by solving equations, we shall use a matrix approach similar to what we did in
the case of the four-point problem for curves. We start with the equation (12.36) and
seek a matrix Ml so that

(12.39)

where P = (pij = p(i/3, j/3)). It is easy to check that the matrix Ml, which solves (12.39)
is the same four-point matrix Ml that was defined in equation (11.43), that is,

Furthermore, the B and P matrices are related by the equation B = LPLT, where the
matrix L is as in equation (11.44).

Up to this point we have assumed that the domain for our bicubic patch is [0,1]
¥ [0,1], but what if we were to reparameterize and use a different domain [a,b] ¥ [c,d]?
The answer is similar to the answer we gave in Section 11.3 for cubic curves. The geo-
metric matrix would have to be defined in terms of the values and derivatives of the
function at the endpoints a, b, c, and d.

12.10 Bézier Surfaces

Defining tangents and especially the twist vectors for the bicubic patch is not very
intuitive for many users. Again, a Bézier approach can be followed, but this time we
specify a grid of sixteen points pij. See Figure 12.17. Let

(12.40)

and define a parameterization p(u,v), 0 £ u,v £ 1 , by

(12.41)

where Mb is the matrix defined in (11.47).

p u v b b b
T T, ,() = UM B M V

B

p p p p

p p p p

p p p p

p p p p

b =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

M1

9
2

27
2

27
2

9
2

9
45
2

18
9
2

11
2

9
9
2

1

1 0 0 0

=

- -

- -

- -

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

.

p u v T T, ,() = UM PM V1 1

500 12 Surfaces in Computer Graphics

12.10 Bézier Surfaces 501

Definition. The parametric surface p(u,v) is called a cubic Bézier surface. The ele-
ments of the matrix Bb, namely, the points pij, are called the Bézier coefficients of this
Bézier surface.

To understand this construction a little better, let

It is easy to see that

(12.42)

where Mh is the Hermite matrix defined in (11.10). In other words, B is the geomet-
ric matrix for the cubic Bézier surface defined by (12.40). Furthermore, a straight-
forward computation shows that p(u,0) is the Bézier curve based on the points p00,
p10, p20, and p30. Similarly, the other boundary curves of the surface are Bézier curves
on the corresponding boundary points pij. One can also show that

The cubic Bézier surface can be generalized. Given points pij, 0 £ i £ m, 0 £ j £ n,
define a function p(u,v), 0 £ u,v £ 1 by

(12.43)

p u v B u B v

m

i
u u

n

j
v v

i m j n ij
j

n

i

m

j

n

i

m
i m i j n j

ij

,

.

, ,() = () ()

= Ê
Ë

ˆ
¯ -() Ê

Ë
ˆ
¯ -()

==

==

- -

ÂÂ

ÂÂ

p

p

00

00

1 1

p u v
i

u u
j

v v
ji

i i j j
ij, .() = Ê

Ë
ˆ
¯ -() Ê

Ë
ˆ
¯ -()

==

- -ÂÂ 3
1

3
1

0

3

0

3
3 3

p

p u v h h
T T, ,() = UM BM V

B B=
-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

-

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 0 0 1

3 3 0 0

0 0 0 0

1 0 3 0

0 0 3 0

0 0 0 3

0 1 0 3

b .

Figure 12.17. The cubic Bézier surface.

Definition. The parametric surface p(u,v) defined by equation (12.43) is called the
Bézier surface defined by the control points pij.

The points of a Bézier surface are efficiently computed by the two-dimensional
analog of the de Casteljau algorithm (see [PieT95]). Partial derivatives are easily deter-
mined since we already know the derivatives for Bézier curves (see equation (11.57)):

Similarly,

Formulas for higher derivatives are obtained just like in the case of curves.
Here are some properties of a Bézier surface, many of which are similar to those

of Bézier curves:

(1) The boundary curves of a Bézier surface are Bézier curves.
(2) Only the corner vertices are interpolated but the shape of the surface closely

follows the control points pij.
(3) The vectors p00p10 and p00p01 generate the tangent plane at p00, with similar

facts at the other corner points.
(4) The Bézier patch lies in the convex hull of its control points.

12.10.1 Theorem. The Bézier surface defined by (12.42) is affinely invariant.

Proof. This follows from the Theorem 11.2.2.3.

Bézier surfaces do not satisfy any known variation diminishing property (see
[PraG92]).

Just like in the case of Bézier curves, one drawback with Bézier surfaces is that
the degree of the surface increases as the number of control points increases. One can
counter this problem by restricting oneself to cubic patches. See Section 12.15 for
ways to ensure that patches meet smoothly.

12.11 Gregory Patches

Gregory patches are an extension of the Coons patch and Bézier surface. Chiyokura
([Chiy88]) has an extensive discussion of the surface and its uses. See also [HosL93]
or [Salo99]. Rather than using 16 control points for a patch like an ordinary

∂
∂

p
v

u v n B u B vi m
j

n

i

m

j n i j ij, ., , ,() = () () -()
=

-

=
- +ÂÂ

0

1

0
1 1p p

∂
∂

∂
∂

p
u

u v B v
u

B u P

m B u B v

j n
j

n

i m ij
i

m

i m
i

m

j

n

j n i j ij

,

.

, ,

, , ,

() = () ()Ê
ËÁ

ˆ
¯̃

= () () -()

= =

-
=

-

=
+

Â Â

ÂÂ

0 0

1
0

1

0
1p p

502 12 Surfaces in Computer Graphics

12.11 Gregory Patches 503

cubic Bézier patch, a Gregory patch uses 20 by splitting the interior four points
in two.

Let qijk Œ R3, 0 £ i, j £ 3, k Œ {0,1}, and assume that qij0 = qij1, (i,j) π (1,1), (2,1),
(1,2), (2,2). Define points pij(u,v) by

See Figure 12.18. Note the similarity between the the last four points and those used
in matrix (12.30) for the Gregory square.

Definition. The parametric surface p(u,v) defined by

(12.44)

for 0 £ u,v £ 1 is called a Gregory patch and the points qijk are called its control points.

The Gregory patch has a number of useful properties:

(1) If qij0 = qij1, i,j Œ {1,2}, then it reduces to the ordinary cubic Bézier surface as
defined by equation (12.43).

(2) Using equation (12.44) makes evaluating p(u,v) and its derivatives just as easy
as the corresponding task for Bézier surfaces. The only extra work is that one
has to evaluate the interior points pij(u,v), i,j Œ {1,2}, first.

(3) The surface lies in the convex hull of its twenty control points.
(4) It can be used to interpolate not only arbitrary Bézier boundary curves but

arbitrary “normal” derivatives along the boundary by choosing the interior
control points appropriately because

p u v B u B v u vi
ji

j ij, ,, ,() = () () ()
==
ÂÂ 3

0

3

0

3

3 p

p q q

p
q q

p
q q

p
q q

ij ij iju v i j

u v
u v

u v
u v

u v
u v

u v
u v

u v

, , , , , , , , , ,

, , , ,

, ,

,() = = () π () () () ()

() =
+
+

() =
-() +

- +

() =
+ -()
+ -

0 1

11
110 111

21
210 211

12
120 121

11 2 1 1 2 2 2

1
1

1
1

pp
q q

22
220 2211 1

1 1
u v

u v
u v

, .() =
-() + -()

- + -

Figure 12.18. The Gregory patch.

504 12 Surfaces in Computer Graphics

(12.45a)

(12.45b)

(5) It satisfies the compatibility condition for twist vectors and those do not have to
be specified.

Because of property (4), it is easy to use Gregory patches to define composite sur-
faces in which all the patches meet smoothly along common edges. They are also good
for blending since one can define nonrectangular Gregory patches. See [Chiy88] for
how one works with these patches in practice and how the control points are used.

12.12 B-spline Surfaces

12.12.1 The Basic B-spline Surface

Let Ni,k(u) and Nj,h(v) be the functions defined by equations (11.69) with respect to
given nondecreasing knot vectors (u0,u1, . . . , um+k) and (v0,v1, . . . ,vn+h), respectively.
Let pij be a given set of points. Define a function p(u,v) by

(12.46)

Definition. The parametric surface p(u,v) defined by equation (12.46) is called a B-
spline surface of order (k,h) and degree (k - 1,h - 1) with control points pij and u-knots
ui and v-knots vj. The domain of the surface is defined to be the rectangle
[uk-1,um+1] ¥ [vh-1,vn+1]. If k = h = 3, then the surface is called a bicubic B-spline surface.

The B-spline tensor product surface defined by equation (12.46) satisfies some
important properties that follow from those of the corresponding curves. For example,

(1) (Local control) If a point pij is moved, then the only change to the function p(u,v)
occurs in the rectangle [ui,ui+k) ¥ [vj,vj+h).

(2) At a u-knot of multiplicity r, the partial derivatives ∂ip/∂ui exist and are continuous
for 0 £ i £ k - 1 - r. At a v-knot of multiplicity s, the partial derivatives ∂jp/∂vj exist
are continuous for 0 £ j £ h - 1 - s.

(3) (Local convex hull property) The surfaces satisfy the convex hull property, that is,
they lie in the convex hulls of their control points. In fact, like in the case of B-spline
curves, a stronger property holds: if (u,v) Œ [ui,ui+1) ¥ [vj,vj+1), then p(u,v) lies in the
convex hull of the points pst, i - k + 1 £ s £ i , j - h + 1 £ t £ j.

(4) If the B-splines Ni,k(u) and Nj,h (v) have clamped knot vectors, then p(u,v)
interpolates the four corner points, that is,

p u v N u N vi k j h ij
j

n

i

m

, ., ,() = () ()
==
ÂÂ p

00

p v B u p v B uu i i i
i

u i i i
i

0 3 1 33 1 1 0 0
0

3

3 3 0 2 1
0

3

, , , ., ,() = () -() () = () -()
= =
Â Âq q q q

p u B u p u B uv i i i
i

v i i i
i

, , , ,, ,0 3 1 33 10 00
0

3

3 30 20
0

3

() = () -() () = () -()
= =
Â Âq q q q

12.12 B-spline Surfaces 505

(5) If m = k - 1, n = h - 1, (ui) = (0, . . . ,0,1, . . . 1), and (vj) = (0, . . . ,0,1, . . . ,1), then
p(u,v) defines a Bézier surface.

In addition, we have

12.12.1 Theorem. B-spline surfaces are affinely invariant.

Proof. This follows from Theorem 11.2.2.3.

B-spline surfaces p(u,v) do not satisfy any known variation diminishing property
(see [PraG92]). Section 12.12.5 will discuss algorithms for evaluating p(u,v) and its
derivatives.

12.12.2 Polynomial Surfaces and Multiaffine Maps

The multiaffine approach to polynomial curves described in Section 11.5.2 can be
extended to polynomial surfaces. What we need to do is extend the notion of polar
form or blossom for a polynomial function of one parameter to a polynomial
function

(12.47)

of two parameters. There are two ways that one can define a blossom P for such p.
One leads to tensor product surfaces, the other, to surfaces based on triangular
patches. We only sketch the approaches. For much more detail see [Gall00] or
[Fari97]. A reader who understands the material in Section 11.5.2 should find what
we do here straightforward.

The Tensor Product Surface Blossom. Here we treat each variable u and v for a
point (u,v) in R2 separately and construct a blossom for each in the same manner as
in Section 11.5.2, that is, if the degree of p in u and v is d1 and d2, respectively, then
the blossom has the form

(12.48)

The function P(u1,u2, . . . ,ud1,v1,v2, . . . ,vd2), called the tensor product polar form or
tensor product blossom for p(u,v), is only symmetric and multiaffine in the variables
ui and vj separately. It follows that keeping one set of variables fixed and thinking of
P as a function of the other set means that all the algorithms and properties of the
blossoms in Section 11.5.2 are valid here. The efficient evaluation of tensor product
Bézier and B-spline surfaces is based on this notion of blossom.

12.12.2.1 Example. To find the tensor product blossom P of p(u,v) = (u + v - 3,uv,u2

+ v2).

Solution. For fixed v, the blossom with respect to u is

P Rd d m: .R R1 2¥ Æ

p m: R R2 Æ

p u v p u v p u v and p u vk h m h m k n n m n mn- - + - - + + +() = () = () = () =1 1 00 1 1 0 1 1 0 1 1, , , , , , , .p p p p

506 12 Surfaces in Computer Graphics

We now think of u1 and u2 as fixed and find the blossoms of the polynomials in v to
get

We would have gotten the same function P if we had first found the blossom for v and
then u.

The Triangular Surface Blossom. Here we look for a more direct generalization
of a blossom as defined in Section 11.5.2 and treat a point (u,v) in R2 as a single entity.
In other words, the blossom of the polynomial function p in equation (12.47) should
be a symmetric multilinear function of the form

(12.49)

where d is some appropriate “degree” of p, and it should satisfy P((u,v), . . . ,(u,v)) =
p(u,v).

12.12.2.2 Theorem. If d is the total degree of p, then a unique such function P
exists and is called the triangular polar form or triangular blossom of p. If p(u,v) is a
monomial cuhvk, h + k = m £ d, then

(12.50)

The blossom for an arbitrary polynomial p(u,v) is obtained by adding up the blossoms
of all the monomial terms in p(u,v) using equation (12.50).

Proof. See [Gall00].

12.12.2.3 Example. To find the triangular blossom P of p(u,v) = (u + v - 3,uv,u2 + v2).

Solution. The polynomial has total degree two and so using equation (12.50) on all
the monomials we get

The justification for the adjective “triangular” in the name of the blossom P is
that this approach leads to surfaces defined on triangular patches because one
wants to use barycentric coordinates to describe points in the plane R2 (as we did
for points in R) and for that one needs a triangle. The basic domain for p, which
was the unit interval [0,1] for curves, is now the triangle with vertices (0,0), (1,0), and
(0,1).

P u v u v u u v v u v u v u u v v1 1 2 2 1 2 1 2 1 2 2 1 1 2 1 21 2 1 2 3 1 2, , , , , .() ()() = () +() + () +() - () +() +()

P u v u v c
h k d h k

d
u vd d i

i II J d I J I h J k
j

j J
1 1

1

, , . . . , ,
! ! !

!
.

, . . . , , , ,

() ()() =
- +()() Ê

ËÁ
ˆ
¯
Ê
ËÁ

ˆ
¯̃Œ» Õ{ } « = = = Œ

’Â ’
f

P d m: ,R R2() Æ

P u u v v u u v v u u v v u u v v1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 3 1 4, , , , , .() = () +() + () +() - () +() +() +()

1 2 3 1 21 2 1 2 1 2
2() +() + - () +() +()u u v v u u u u v, , .

With this true generalization of a blossom, everything we did in Section 11.5.2
carries over to here (as long as we translate results correctly). We need to remember,
however, that barycentric coordinates are now triples of real numbers, not pairs, so
that, as a consequence, arrays of control points are replaced by triangular arrays of
control points as we shall see shortly. To simplify the notation, define the triangular
set of integer triples Id by

Definition. If (i,j,k) Œ Id, then the Bernstein polynomial Bi,j,k
d (u,v,w), u + v + w = 1, is

defined by

Like their cousins in Section 11.4, these Bernstein polynomials also satisfy a
recurrence relation (see Exercise 11.4.1).

12.12.2.4 Theorem. The Bernstein polynomials satisfy the recurrence relation

Proof. This follows easily from the binomial coefficient identity

The next theorem states the main facts about triangular blossoms.

12.12.2.5 Theorem. Let r, s, and t be three linearly independent points in R3. Let

be any set of (d + 1)(d + 2)/2 points in R3 for some integer d ≥ 1.

(1) There is a unique polynomial surface p(u,v) of total degree d whose triangular
blossom P satisfies

for all (i,j,k) Œ Id.
(2) If (u,v) = ar + bs + ct, a + b + c = 1, then

P
i j k

i j k(, . . . , , , . . . , , , . . . ,) , ,r r s s t t b124 34 124 34 123 =

b i j k di j k I, , , ,() Œ{ }

d
i j k

d
i j k

d
i j k

d
i j k

!
! ! !

!
! ! !

!
! ! !

!
! ! !

.=
-()

-() +
-()

-() +
-()

-()
1

1
1
1

1
1

B u v w uB u v w vB u v w wB u v w i j k Ii j k
d

i j k
d

i j k
d

i j k
d

d, , , , , , , ,, , , , , , , , , , , .() = () + () + () () Œ- - -1 1 1

B u v w
d

i j k
u v wi j k

d i j k
, , , ,

!
! ! !

.() =

I i j k Z i j k and i j k dd = () Œ £ + + ={ }, , , , .3 0

12.12 B-spline Surfaces 507

508 12 Surfaces in Computer Graphics

(12.51)

Furthermore, if we define points bi,j,k
m , 1 £ m £ d, by

then

and p(u,v) = b000
d .

Proof. See [Gall00]. The second part of (2) is proved by a simple induction
and leads to Algorithm 12.12.2.1 for computing p(u,v) called the de Casteljau
algorithm.

Definition. Using the notation in Theorem 12.12.2.5 a set of points like the set of
bi,j,k is called a triangular or Bézier control net and the parametric surface p(u,v) is
called a triangular Bézier surface of degree d whenever r = (1,0), s = (0,1), and t = (0,0).

The definitions and facts about triangular blossoms, especially the notation, may
look formidable in the abstract but, like in the case of blossoms for curves, “the beast
has a bark that is louder than its bite.” The examples and applications in the next
section will show that actually working with triangular blossoms is not that bad
because it involves fairly simple triangle geometry.

b r r s s t ti j k
m

m i j k

P u v u v, , (, , . . . , , , , . . . , , , . . . , , , . . . ,),= () ()
1 244 344 124 34 124 34 123

b b

b b b b

i j k i j k

i j k
m

i j k
m

i j k
m

i j k
ma b c i j k d m

, , , ,

, , , , , , , ,

.

, ,

0

1
1

1
1

1
1

=

= + + + + = -+
-

+
-

+
-

p u v P u v u v B a b ci j k
d

i j k
i j k Id

, , , . . . , , , , ., , , ,
, ,

() = () ()() = ()
()Œ

Â b

Inputs: A triangular array of points bi,j,k , 0 £ i, j, k, i + j + k = d
A tuple (a,b,c) with a + b + c = 1

Output: b0,0,0
d

Step 1: Set bi,j,k
0 = bi,j,k.

Step 2: For m = 1, 2,...,d and i + j + k = d - m

bi,j,k
m = a bi+1,j,k

m-1 + b bi,j+1,k
m-1 + c bi,j,k+1

m-1

Algorithm 12.12.2.1. The de Casteljau algorithm for triangular patches.

12.12 B-spline Surfaces 509

12.12.3 Triangular Bézier Surfaces

In the last section we laid the groundwork for triangular blossoms. This section will
show how one works with them. Using them for surface parameterizations means that
such parameterizations are based on triangular domains. Triangles are in a sense more
natural for surfaces because a triangular grid of points on a surface gives a truly linear
approximation of a surface, whereas a rectangular grid may very well have rectangles
whose vertices do not lie in a plane so that they would not be planar.

First of all, a triangular control net {bi,j,k} is usually displayed in a triangular form
(even though the points themselves can be arbitrary points of R3). For example, see
the right side of Figure 12.19 for the case when d = 3. (That representation is not uni-
versal however because some authors show a rotated version of this triangle.) If we
let r = (1,0), s = (0,1), and t = (0,0) in Theorem 12.12.2.5, then according to that
theorem the points bi,j,k define a surface p(u,v). Again looking at Figure 12.19 note
that when we represent all points in the triangle rst by means of barycentric coordi-
nates there is a natural correspondence between the point bi,j,k and the point in the
triangle rst with barycentric coordinates (i/d,j/d,k/d). Note also how the ith to the right
slanting column of the bi,j,k array all have the same index i. Such a diagram general-
izes in the obvious way to triangular bi,j,k arrays for other values of d. With this rep-
resentation it is now easy to explain how the de Casteljau algorithm works in this
situation. Consider the case d = 3 again. See Figure 12.20. To simplify the notation
we have dropped the superscripts, so that the points bi,j,k

m can be recognized by the
fact that their indices add up to d - m. The start points bi,j,k

0 = bi,j,k are the points
marked with solid circles along the outside of the region along with the one center
point b1,1,1. The points bi,j,k

1 are the points marked as circles. For example,

The points bi,j,k
2 are the points marked with a cross. For example,

b b b b0 0 1
2

1 0 1 0 11 0 0 2, , , , , , , , .= + +a b c

b b b b0 0 2
1

1 0 2 0 1 2 0 0 3, , , , , , , , .= + +a b c

Figure 12.19. The standard triangular net versus an arbitrary one for d = 3.

510 12 Surfaces in Computer Graphics

Finally, the point

is marked with a square.
Let us work through a concrete example.

12.12.3.1 Example. Let a triangular Bézier surface p(u,v) of degree two be defined
by the triangular net

The problem is to compute p(1/6,1/3).

Solution. The barycentric coordinates of (1/6,1/3) with respect to the vertices (1,0),
(0,1), and (0,0) of our triangular domain are (1/6,1/3,1/2). Therefore,

b b b b

b b b

0 0 1
1

1 0 1 0 11 0 0 2

1 0 0
1

2 0 0 11 0

1 6 1 3 1 2

1 6 3 3 1 1 3 2 4 1 1 2 2 3 0 13 6 10 3 1 2

1 6 1 3

, , , , , , , ,

, , , , , ,

, , , , , , , ,

= () + () + ()
= ()() + ()() + ()() = ()
= () + () + 1 2

1 6 4 3 0 1 3 3 4 3 1 2 3 3 1 19 6 10 3 3 2

1 0 1()
= ()() + ()() + ()() = ()

b , ,

, , , , , , , ,

b

b b

b b b

0 2 0

0 11 11 0

0 0 2 1 0 0 2 0 0

2 5 0

2 4 1 3 4 3

2 3 0 3 3 1 4 3 0

, ,

, , , ,

, , , , , ,

, ,

, , , ,

, , , , , ,

= ()
= () = ()
= () = () = ()

p u v a b c, ., , , , , , , ,() = = + +b b b b0 0 0
3

1 0 0 0 1 0 0 0 1

Figure 12.20. Stages of the de Casteljau algorithm.

12.12 B-spline Surfaces 511

and p(1/6,1/2) = b0,0,0
2 .

Next, let S be a triangular Bézier surface with parameterization p(u,v) of degree
d and domain D. Restricting p(u,v) to the boundary of the triangle D maps those points
to the boundary of the surface S. In terms of barycentric coordinates (a,b,c) the
boundary of D corresponds to the points with a = 0, b = 0, or c = 0. From this it is
easy to see that

(1) The surface interpolates the three corner points bd,0,0, b0,d,0, and b0,0,d of its
control net.

(2) Restricting p(u,v) to an edge of the boundary of D is just a Bézier curve with
the points of the triangular net along that edge as its control points.

(3) The tangent plane to S at the three corner points of its control net is defined
by the three corner control points. For example, the tangent plane at b0,d,0 is
defined by b0,d,0, b1,d-1,0, and b0,d-1,1.

The partial derivatives of a triangular Bézier surface are easily computed by a de
Casteljau–type algorithm. One uses the Bernstein representation, equation (12.51), for
the parameterization and an argument similar to the one for computing derivatives
of Bézier curves.

12.12.3.2 Theorem. Let p(u,v) define a triangular Bézier surface of degree d and
control net {bi,j,k}. Then

Proof. The formulas follow from equation (12.51).

∂
∂

∂
∂

p
u

u v d B u v u v

p
v

u v d B u v u v

i j k
d

i j k I
i j k i j k

i j k
d

i j k I
i j k

d

d

, , ,

, , ,

, ,
, ,

, , , ,

, ,
, ,

, ,

() = - -() -()

() = - -() -

-

()Œ
+ +

-

()Œ
+

-

-

Â

Â

1
1 1

1
1

1

1

1

1

b b

b bi j k

i j k
d

i j k I
i j k i j k i j k

i j k
d

p

u
u v d d B u v u v

p

v
u v d d B

d

, ,

, ,
, ,

, , , , , ,

, ,

, , ,

,

+

-

()Œ
+ + + +

()

() = -() - -() - +()

() = -()

-

Â

1

2

2
2

2 1 1 2

2

2

1 1 2

1

2

∂
∂

∂
∂

b b b

--

()Œ
+ + + +

-

()Œ
+ +

- -() - +()

() = -() - -()

-

-

Â

Â

2
2 1 1 2

2
2

1

1 2

1 1

2

2

u v u v

p
u v

u v d d B u v u v

i j k I
i j k i j k i j k

i j k
d

i j k I
i j

d

d

, ,

, , ,

, ,
, , , , , ,

, ,
, ,

,

b b b

b
∂

∂ ∂ 1 1 1 1 1 2, , , , , , , .k i j k i j k i j k- - +()+ + + + +b b b

b b b b

b b b

0 1 0
1

1 1 0 0 2 0 0 1 1

0 0 0
2

1 0 0 0 1 0

1 6 1 3 1 2

1 6 3 4 3 1 3 2 5 0 1 2 2 4 1 13 6 13 3 1

1 6 1 3 1

, , , , , , , ,

, , , , , ,

, , , , , , , ,

= () + () + ()
= ()() + ()() + ()() = ()
= () + () + 22

1 6 19 6 10 3 3 2 1 3 13 6 13 3 1 1 2 13 6 10 3 1 2 7 3 11 3 5 6

0 0 1()
= ()() + ()() + ()() = ()

b , ,

, , , , , , , , ,

12.12.4 Rational B-spline Surfaces

Rational B-spline surfaces are the surface analogs of rational B-spline curves and their
use is motivated by similar reasons, namely, that, although B-spline surfaces are very
general, they do not include the quadric surfaces and can only approximate them. By
using rational B-spline curves and surfaces a modeling system needs to support only
one uniform representation for its geometric objects. Some general references for
rational Bézier and B-spline surfaces are [PieT95], [Pieg91], [Fari95], [Roge01], or
[RogA90].

Proceeding just like we did for curves in Section 11.5.3, consider the tensor
product surfaces defined by equation (12.31). These were surfaces in affine space.
Using homogeneous coordinates, their projective space analogs would have the form

(12.52)

where the Pij are points described with homogeneous coordinates. Expressing the
points Pij in the form (wijxij,wijyij,wijzij,wij), the projective space surface defined by
P(u,v) will project to the surface

(12.53)

where pij = (xij,yij,zij).

Definition. The parametric surface p(u,v) defined by equation (12.53) is called a
rational tensor product surface. It is called a rational Bézier surface if its domain is [0,1]
¥ [0,1] and ai(u) = Bi,m(u) and bj(v) = Bj,n(v). (The Bs,t(u) are the functions defined by
equation (11.50).) The surface p(u,v) is called a rational B-spline surface of order (k,h)
and degree (k - 1,h - 1) if the ai(u) and bj(v) are B-splines of order k and h, respec-
tively. The knots of ai(u) are called the u-knots of the surface and those of bj(v), the
v-knots. In both the Bézier and B-spline case, the points pij are called the control points
of the surface and the numbers wij are called its weights.

Definition. The functions

(12.54)

are called rational basis functions for the surface defined by equation (12.53).

R u v
a u b v w

a u b v w
ij

i j ij

s t st
t

n

s

m
, .() =

() ()

() ()
==
ÂÂ

00

p u v

a u b v w

a u b v w

i j ij ij
j

n

i

m

i j ij
j

n

i

m
, .() =

() ()

() ()

==

==

ÂÂ

ÂÂ

p
00

00

P u v a u b vi j ij
j

n

i

m

, ,() = () ()
==
ÂÂ P

00

512 12 Surfaces in Computer Graphics

Using the rational basis functions, equation (12.53) can be rewritten as

(12.55)

The most commonly used type of rational B-spline surface is the following:

Definition. If the B-splines Ni,k(u) and Nj,h(v) (defined by equations (11.69)) are
defined with respect to knot vectors

(12.56a)

respectively, then the rational B-spline surface

(12.56b)

has domain [a,b] ¥ [c,d] and is called a nonuniform rational B-spline (NURBS)
surface.

Note that if the weights of a NURBS surface are all 1, then formula (12.56b)
reduces to (12.46) and we just have an ordinary B-spline surface. This follows from
Theorem 11.5.1.5. For NURBS surfaces one usually has k = h and the domain is
assumed to be [0,1] ¥ [0,1]. Algorithms for evaluating NURBS surfaces will be dis-
cussed in the next section.

Compare the properties of NURBS surfaces listed in the next theorem to the cor-
responding ones in Theorem 11.5.3.2 for NURBS curves.

12.12.4.1 Theorem. Let p(u,v) be a NURBS surface of order (k,h) with domain
[0,1] ¥ [0,1], u-knots ui, v-knots vj, control points pij, and weights wij.

(1) The rational basis functions Rij(u) for p(u,v) satisfy

and Rij(u,v) ≥ 0 if all the weights are nonnegative.

(2) The surface p(u,v) interpolates the four corner points. More precisely, p(0,0)
= p00, p(1,0) = pm,0, p(0,1) = p0n, and p(1,1) = pmn.

R u vij
j

n

i

m

,() =
==
ÂÂ

00

1

p u v

N u N v w

N u N v w

i k j h ij ij
j

n

i

m

i k j h ij
j

n

i

m
, .

, ,

, ,

() =

() ()

() ()

==

==

ÂÂ

ÂÂ

p
00

00

U a a u u u b b and V c c v v v d d
k

k k m

k h

h h n

h

= =+ +(, . . . , , , , . . . , , , . . . ,) (, . . . , , , , . . . , , , . . . ,),124 34 124 34 124 34 124 341 1

p u v R u vij ij
j

n

i

m

, , .() = ()
==
ÂÂ p

00

12.12 B-spline Surfaces 513

(3) (Local control) Changing the control point pij or weight wij only changes the
formula for p(u,v) over the rectangle (ui,ui+k) ¥ (vj,vj+h).

(4) (Projective invariance) If the surface p(u,v) is transformed by a projective
transformation, the formula for the new surface is gotten simply by transforming the
homogeneous control points in equation (12.52) and then reprojecting to a formula
in the form of equation (12.56b).

(5) (Local convex hull property) If wij > 0 for all i and j, then the surface p(u,v)
satisfies a strengthened convex hull property. For each i and j, p((ui,ui+1) ¥ (vj,vj+1))
is contained in the convex hull of the control points pst, where i - k + 1 £ s £ i and
j - h + 1 £ t £ j.

Proof. See [PieT95].

It is not known whether NURBS surfaces satisfy any variation diminishing
property.

12.12.4.2 Theorem. Every quadric surface can be expressed as a NURBS surface.

Proof. See [Fari97]. One can show that the only quadric surface that can be para-
meterized by polynomials are the elliptic or hyperbolic paraboloids and parabolic
cylinders. Furthermore, every quadric is a central projection of one of these in R4.

Because one can think of a NURBS surface as a B-spline surface in R4 that is pro-
jected back to R3, all of the basic spline algorithms, such as knot insertion, etc., carry
over easily to these surfaces.

Finally, we should note that just like in the case of curves, there are some differ-
ences between rational and ordinary spline surfaces. One can show that not every tri-
angular patch on a quadric can be represented by a rational triangular quadratic
patch. For this and characterizations of when a triangular patch lies on a paraboloid
see [Fari89] or [Fari97].

12.12.5 Efficient B-spline and NURBS Surface Algorithms

B-spline and NURBS surfaces have become very popular like their curve cousins, so
that it is good that efficient algorithms exist for evaluating them and their derivatives.
A good reference for a great many detailed algorithms is [PieT95]. We shall only
describe what one has to do to find points and first partials for the surfaces, which is
all that is needed for rendering.

We begin with B-spline surfaces. The basic steps to evaluate a point on the B-
spline surface p(u,v) are the following:

(1) Use Algorithm 11.5.4.1 to find the u-knot span that contains u, that is, find i so
that u Œ [ui,ui+1) or u Œ (ui,ui+1].

(2) Use Algorithm 11.5.4.1 to find the v-knot span that contains v, that is, find j so
that v Œ [vj,vj+1) or v Œ (vj,vj+1].

(3) Compute that part of the sum in equation (12.46) that involves the coefficients
Ni-k+1,k(u), Ni-k+2,k(u), . . . , Ni,k(u) and Nj-h+1,h(v), Nj-h+2,h(v), . . . , Ni,h(v). These are
the only coefficients that do not vanish at the given u and v, so that

514 12 Surfaces in Computer Graphics

12.12 B-spline Surfaces 515

(12.57a)

where

(12.57b)

To carry out step (3) we use Algorithm 11.5.4.2 to compute each of the points ps(v)
in equation (12.57b) and then use it one more time to compute p(u,v) in equation
(12.57a), which, for fixed v, is just another B-spline curve.

To compute the partial derivatives of a B-spline surface p(u,v), consider the case
of ∂p/∂u. Since

(12.58)

computing the partial ∂p/∂u is no different than computing the ordinary derivative of
the B-spline curve q(u) = p(u,v). This can again be done with Algorithm 11.5.4.2. The
case of ∂p/∂v can be handled in a similar manner if we think of p(u,v) as a B-spline
curve in v and interchange the summation in equation (12.46). The best way to deal
with higher order of partial derivatives of p(u,v) is to have a separate algorithm (one
could use a modified version of Algorithm 11.5.4.2) that computes all the needed deriv-
atives of just the B-spline basis functions Ns,k(u) and Nt,h(v), puts these values into an
array, and then computes the appropriate linear combination of these values as spec-
ified by the mathematical formula for the partial derivative.

A NURBS surface p(u,v) can be evaluated using the approach that was used to
evaluate NURBS curves. If pij = (xij,yij,zij), then pij can be represented in homogeneous
coordinates by the point Pij = (wijxij,wijyij,wijzij,wij). Let

(12.59)

If P(u,v) = (P1(u,v), P2(u,v), P3(u,v), P4(u,v)), then

Therefore, compute P(u,v) thought of as a B-spline surface in R4 and divide the first
three coordinates by P4(u,v) at the end to get p(u,v).

Partial derivatives of a NURBS surface are computed by formally differentiating
the right-hand expression in equation (12.53) similar to what we did for NURBS
curves in Section 11.5.4. The result then again consists of pieces that can be thought
of as ordinary B-spline surfaces or their derivatives, so that we can apply the methods
of evaluating those surfaces. For higher derivatives it is best to derive a recursive

p u v
P u v
P u v

P u v
P u v

P u v
P u v

, (
,
,

,
,
,

,
,
,

).() =
()
()

()
()

()
()

1

4

2

4

3

4

P u v N u N vi k j h ij
j

n

i

m

, ., ,() = () ()
==
ÂÂ P

00

∂
∂

p
u

u v N u vs k s
s i k

j

, ,,() = () ()
= - +
Â ¢ p

1

p ps t h st
t j h

j

v N v() = ()
= - +
Â , .

1

p u v N u vs k s
s i k

i

, ,() = () ()
= - +
Â p

1

formula like equation (11.107) for the NURBS curve derivatives. The reader is again
referred to [PieT95].

Finally, for the situation where one only needs the value and first partial deriva-
tives of a NURBS surface (which is all that is needed for rendering), Luken and Cheng
([LukC96]) analyze the complexity of three ways of computing those values: a two
stage Cox-de Boor method, a knot insertion method based on Lee’s approach that we
used in Section 11.5.4, and a forward differencing method. Their conclusion is that
the first of these methods is the best. Although forward differencing actually was the
fastest method it has numerical stability problems.

12.12.6 B-spline Interpolation

Algorithms for finding surfaces that interpolate some given data depend on the struc-
ture of the data. If the data consists of a rectangular array of points, the algorithm
for finding an interpolating B-spline surface is based on the corresponding algorithm
for B-spline curves. We shall outline the steps for one form of bicubic B-spline surface
interpolation.

The Bicubic B-spline Interpolation Problem. Given parameter values ui, i = 0, . . . , m,
with u0 < u1 < . . . < um, and vj, j = 0, . . . , n, with v0 < v1 < . . . < vn, and given points pij, find
a bicubic B-spline surface p(u,v) with the ui and vj as the n-knots and v-knots, respectively,
and control points qst, s = -1, . . . , m + 1, t = -1, . . . , n + 1, so that p(ui,vj) = pij.

To motivate the solution to the interpolation problem note that an interpolating
B-spline surface of the form shown in equation (12.46) would satisfy

(12.60a)

where

(12.60b)

Equation (12.60a) shows that for fixed j the rsj are the control points of a spline that
interpolates the column of points pij, i = 0, . . . , m, and equation (12.60b) shows that
for fixed i the qst are the control points of a spline that interpolates the row of points
rsj, j = 0, . . . , n. This means that our interpolation problem can be solved in two stages
using results from Section 11.5.5.

(1) First, solve the curve interpolation problem for each column of the array of
points pij. This will give us cubic B-spline curves pj(v) with knots vj and control points
rsj, i = -1, . . . m + 1. Note that the solutions are based on the same tridiagonal matrix
shown in equation (11.111), which means that the LU-decomposition of that matrix
which is used to solve that system of equations is done only once.

r qsj t h j st
t

n

N v= ()
=
Â , .

0

p q rij i j s k i t h j st
t

n

s

m

s k i sj
s

m

p u v N u N v N u= () = () () = ()
== =
ÂÂ Â, ,, , ,

00 0

516 12 Surfaces in Computer Graphics

12.13 Cyclide Surfaces 517

(2) Next, do a curve interpolation on the rows of the array of points rsj to get the
desired control points qst.

Of course, like in the curve case, one is not given the knots in practice. Unfortu-
nately, things get more complicated here because we have to produce one set of knots
ui for all of the curves p(u,vj) with fixed vj, j = 0, . . . n, and similarly for the vj. One
typically uses some sort of averaging process, but that may not work very well if our
data is not well spaced. See [PieT95] or [Fari97] for a much more thorough discus-
sion. [PieT95] also discusses of interpolation of curve networks.

Data sets are not always rectangular. For example, one might have gotten rows of
unequal number of data points from a sampling of slices of an object. One approach
for this case is to use spline curves that interpolate the rows and then use a skinning
surface (see Section 14.7) for these curves for our interpolating surface. One poten-
tial problem is that the number of column control points might get very large. An
approach that alleviates this problem can be found in [PieT00].

12.13 Cyclide Surfaces

This section discusses one final class of surfaces that can be defined by equations,
namely, the cyclides. See Figure 12.21. Interest in cyclides has waxed and waned over
time. In 1982 R.R. Martin ([Mart82]) showed that they were useful in CAGD and since
then interest in these surfaces has revived. They have proved especially useful for
certain blending operations. We shall describe a few such applications in Section 15.6.
In this section we shall discuss a few of their properties relevant to CAGD. We can
only present a brief overview. More details can be found in [ChDH89], [Prat90], and
[Boeh90]. Another good reference is [KraM00]. Throughout this section, the term
“cyclide” will mean “Dupin cyclide.” Only at the end will we make a few comments
about a more general related class of surfaces also called cyclides.

Cyclides are defined in Section 9.13 in [AgoM04] by means of geometric con-
structions that make it easier to deduce some of their geometric properties, but for
computation purposes it is useful to have both a parametric and an implicit defini-
tion. We give such definitions for central cyclides whose spine curves are an ellipse
and hyperbola and which are in standard position as shown in Figure 12.22. More
precisely, we assume that the ellipse E and hyperbola H with branches H1 and H2 are
defined by equations

Figure 12.21. A central ring cyclide.

518 12 Surfaces in Computer Graphics

(12.61a)

and

(12.61b)

respectively. In Figure 12.22 the cyclide is then the set of points traced out by the end
B of a taut string of fixed length L = ΩAPΩ + ΩPBΩ that is tied to the focus A of the
ellipse and touches the ellipse at its points P. The line L through P and B would meet
the hyperbola in a point Q. Let us write the length L in the form L = a + k. Then the
intersection of the cyclide with the two planes z = 0 and y = 0 is shown in Figure 12.23.
In both cases we get two circles with radii that are simple functions of a, c, and k.
Another way of thinking of the cyclide is as the envelope of spheres with centers on
the two conics. Looking again at Figure 12.22, the spheres in question would have

x

c

z

b
y c a b

2

2

2

2
2 2 21 0- = = = -, , ,

x

a

y

b
z b a

2

2

2

2
1 0 0+ = = < <, , ,

H1
H2

A

z

E P x

L

Q

B

(–a,0,0) (–c,0,0)

(0,–b,0)

(0,b,0)

(c,0,0)

(a,0,0)

y

Figure 12.22. A central cyclide in
standard position.

Figure 12.23. Projections of the central cyclide in Figure 12.22.

radius PB if the sphere is centered on a point P of the ellipse and radius QB if it is
centered on a point Q of the hyperbola.

12.13.1 Theorem. The central cyclide with the curves defined in (12.61) as its focal
curves has a parameterization

(12.62)

where 0 £ q, y < 2p, and is defined by the equation

(12.63)

Proof. See [Fors12]. We shall only sketch a derivation of the parameterization in
(12.62), which can also be found in [Gray98] or [Boeh90]. Let us parameterize the
points P on the ellipse E and points Q on the hyperbola H by

One shows that

If we write the length L = ΩAPΩ + ΩPBΩ in the form L = a + k, then we can show that
ΩPBΩ = ΩaΩ and ΩBQΩ = ΩbΩ, where

In fact, the signed quantities a and b are such that B can be expressed in barycentric
form as

If we express all the variables in this representation of B in terms of q and y, we will
get the formula p(q,y) in equation (12.62).

Theorem 12.13.1 makes it easy to work with a ring central cyclide. Its intersec-
tion with the planes z = 0 and y = 0 determine it completely. Therefore, one can use
these cross-sections to visualize the surface and manipulating it is simply a matter of
changing the values of a, c, and k. Also, equation (12.63) shows that the central cyclide
is a fourth-degree surface. Parabolic cyclides are surfaces of degree three.

Here are a few more details about cyclides. There is a natural two-level geomet-
ric classification of cyclides (see [Boeh90] and [ChDH89]). At the top level there is the
division of cyclides into central, parabolic, revolute, or degenerate cyclides depend-

B P Q=
+

+()1
a b

a b .

a q b y= - = -k c and a kcos sec .

AP PQ= + = -a c and a ccos sec cos .q y q

q q q
y y y

Æ ()
Æ ()

P a b and

Q c b

cos , sin ,

sec , tan .

x y z k b ax ck b y2 2 2 2 2 2 2 2 24 4+ + - +() = -() + .

p
k c a b

a c
b a k
a c

b c k
a c

q y
q y q

q y
q y

q y
y q

q y
,

cos cos cos
cos cos

,
sin cos

cos cos
,

sin cos
cos cos

,() =
-() +

-
-()

-
-()

-
Ê
ËÁ

ˆ
¯̃

2

12.13 Cyclide Surfaces 519

ing on whether their spines are central conics, parabolas, straight lines and circles,
or degenerate conics. Each of these types of cyclides can be further subdivided into
three subtypes. We describe that subdivision in the case of central cyclides. Assume
that the coordinate system is again chosen so that the cyclide is in standard position
as shown in Figure 12.22.

Definition. The central cyclide is called a ring cyclide if 0 £ c < k £ a. It is called a
horned cyclide if 0 < k £ c < a. It is called a spindle cyclide if 0 £ c £ a < k.

Visually, a horned cyclide looks like two crescent-shaped solids that meet at their
pinched points. A spindle cyclide has two pinch points at which the two parts of the
entire surface meet with one part looking like a spindle inside the other. Ring cyclides,
such as the one shown in Figure 12.21, are the easiest to draw because they do not
have any of these degeneracies. Another way to describe these subtypes is in terms of
two important values

Let Ls be the line in the x-y plane that is parallel to the y-axis and passes through the
point (s,0,0) on the x-axis. Let Lt be the line in the x-z plane that is parallel to the z-
axis and passes through the point (t,0,0) on the x-axis. We will have a ring cyclide if
Ls does not intersect the focal ellipse E and Lt does not intersect the focal hyperbola
H. We will have a horned cyclide if Ls intersects the ellipse E and a spindle cyclide if
Lt intersects the hyperbola H. The lines Ls and Lt are called the characteristic lines of
the cyclide ([ChDH89]).

Some properties of cyclides that make them attractive to CAGD are (see [Prat90]):

(1) Each curvature line is a circle and cyclides are the only fourth-degree surfaces
whose curvature lines are circles. The curvature lines split into two families similar
to what happens in the case of a torus.

(2) The planes of each family of curvature lines meet in a line.
(3) One gets offset surfaces for a cyclide by changing the parameter k. Furthermore,

the offset of a cyclide is a cyclide.
(4) For each curvature line, the angle between the principal normal of that curve and

the surface normal is constant. Hence there is a right circular cone tangent to any
circular curvature line of the cyclide.

(5) The inversion in a sphere of a cyclide with respect to a point not on it is again a
cyclide.

One can show that the change of parameters

produces a rational biquadratic parameterization of the cyclide. The lines of constant
u and v correspond to lines of curvature, namely circles. If we call a region in a cyclide
bounded by lines of curvature a principal cyclide patch, then we can use the rational

u v= =tan , tan
q y
2 2

s
ka
c

and t
kc
a

= = .

520 12 Surfaces in Computer Graphics

12.14 Subdivision of Surfaces 521

parameterization in u and v to define a Bézier parameterization for such a patch. See
[Mart82], [MaPS86], [Prat90], [Boeh90], [DuMP93], [Prat95], and [KraM00]. This is
very useful for representing cyclides in a CAGD program. One factor restricts the prin-
cipal cyclide patch, namely, its four corners lie on a circle. This means that once one
has picked two adjacent sides of a patch one has only one degree of freedom to pick
the fourth corner since it must lie on the circle determined by the other three. One
can also define triangular Bézier patches ([AlbD97]). Conditions for obtaining com-
posite cyclide patches that join with G1 continuity are discussed in [KraM00].

For cyclide intersections see [MaPS86] and [John93].
We already mentioned at the beginning of this section that cyclides are useful in

blending. They are also useful in controlling the fairness of a surface. The advantage
of cyclides is that they provide a manageable representation of a larger piece of a
surface. Tensor product Bézier or B-spline patches deal with smaller pieces. This has
led to a search for other general fourth-degree algebraic surfaces that might be useful
in CAGD. One such class of surfaces are the supercyclides that are projective images
of Dupin cyclides. These are special cases of so-called double-Blutel surfaces. For more
on these generalizations see [Dege94], [Prat96], and [Prat97]. A unified theory of
supercyclides is described in [Dege98].

12.14 Subdivision of Surfaces

Like in the case of curves, being able to subdivide surfaces is important in a variety of
applications. Subdivision problems come in two flavors. In one case we have a para-
metric surface and in the other we have no parameterization but simply a polygonal
surface defined by an arbitrary (not necessarily rectangular) grid of points. This section
makes a few comments about the first case. The second is dealt with in Section 12.17.

At one level, subdividing a parametric surface simply amounts to subdividing its
domain. On the other hand, if we are dealing with a surface defined by control points
or control points and knots, then the more interesting question is how one can add new
control points or knots. The tensor product surface case is quite straightforward and
reduces to subdividing curves in the u- and v-direction and hence is basically a one-
dimensional problem. The triangular surface case is more involved. Blossoms come in
very handy here. One way to subdivide a triangle is shown in Figure 12.24. We add new
vertices at the midpoints of the edges. The four new triangles give rise to four new tri-
angular nets. The main issue is to do computations with respect to the smaller trian-
gles as efficiently as possible by judicious use of the de Casteljau algorithm. We refer
the interested reader to [Gall00]. There are other ways to subdivide triangles and
[Fili86] suggests that the choice of subdivision should be made adaptively.

Figure 12.24. Subdividing triangular domains.

522 12 Surfaces in Computer Graphics

12.15 Composite Surfaces and Geometric Continuity

This section looks at conditions that ensure that a collection of surface patches that
meet along boundary curves will define a globally smooth surface. For more infor-
mation and references to work in this area see [FauP79], [Mort85], [Greg89],
[HosL93], or [Fari97].

The idea here is basically the same as it was for curves. As a set, the union S of
the sets that are traced out by the individual Ck parameterizations should be a smooth
surface. Of course, since there are now two parameters, things are somewhat more
involved computationally. Now Ck continuity would mean that the parameterization
of the union S induced by the individual parameterizations be Ck. This requirement
is again stronger than needed.

Definition. Two parameterized surface patches p(u,v) and q(u,v) meet along their
boundary with kth-order geometric continuity, or Gk continuity, if there is a repar-
ameterization r(u,v) equivalent to p(u,v) so that r(u,v) and q(u,v) meet with Ck

continuity.

One can show that G1 continuity simply means that the two patches have the same
tangent planes at the points where they meet, so that G1 continuity is sometimes
referred to as tangent plane continuity. Since the analog of tangent lines for curves is
tangent planes for surfaces, this is certainly a natural first condition for patches to
meet in a way that is visually smooth. We mentioned earlier that one can get G1 con-
tinuity with Gregory patches. Here we shall consider some simple conditions that will
achieve this for tensor product and triangular patches. Section 15.2 discusses addi-
tional curvature-related criteria.

First of all, let p(u,v) and q(u,v) be two rectangular Bézier patches with domain
[a,b] ¥ [c,d] and [a,b] ¥ [d,e] and control points pij, 0 £ i £ m, 0 £ j £ n, and pij, 0 £ i
£ m, n £ j £ 2n, respectively. The condition that they meet with G1 continuity along
the boundary curve defined by the points pin, 0 £ i £ n, is that the three points pi,n-1,
pin, pi,n+1 are collinear for 0 £ i £ n. See Figure 12.25. The reason is that the normal
for the tangent plane is the cross-product of the partials in the u- and v-direction.
Since the boundary curve has the same control points for both patches, we only need
the tangent vector in the v-direction to be parallel. For C1 continuity, collinearity is

Figure 12.25. Collinearity condition for
smoothly meeting Bézier
patches.

12.15 Composite Surfaces and Geometric Continuity 523

not enough. The relative size of their domain comes into play and one has to add the
condition that the points are in the same ratio (d-c):(e-d).

Next, consider triangular Bézier patches. Let p(u,v) and q(u,v) be two triangular
Bézier patches of degree d defined by triangular nets {bijk} and {cijk}, respectively, and
assume that they meet along the edge u = 0 and b0,j,d-j = c0,j,d-j. A necessary condition
for the patches to meet with G1 continuity is that the triangles from the two patches
that meet in a common edge are coplanar. For C1 continuity those triangles for each
patch must be the image of the same affine map. See Figure 12.26.

Finally, we look at bicubic patches as defined in Section 12.9. An interpolating
bicubic B-spline surface can be thought of as a collection of such patches, but we
want to go in the other direction. Given a rectangular grid of points pij, 0 £ i £ m,
0 £ j £ n, we would like to find conditions on the geometric coefficients of the bicubic
patches defined by the individual rectangles of the grid that will guarantee a globally
smooth surface. We could transform a bicubic patch into a Bézier patch and use
what we know about Bézier patches, but here we want to approach the problem
directly.

We begin by analyzing the conditions under which two bicubic patches meet
smoothly. Let p(u,v) be a patch defined by points p00, p10, p01, and p11 and q(u,v) a
patch defined by points q00, q10, q01, and q11. Assume that q00 = p10, q01 = p11, and
that the patches meet along the boundary curve

See Figure 12.27, where we use the abbreviations

and similar abbreviations for q. To get C1 continuity where the patches meet it must
be possible to find a change of coordinates of the function q(u,v) in the v direction,
so that the new function has the same derivatives along g as the function p(u,v). This
means that ∂q/∂u and ∂p/∂u must be multiples of each other along g. It follows that
having

q p q p q p q p00 10 00 10 01 11 01 11
u u uv uv u u uv uva a a and a= = = =, , , ,

p pij
u

u ij
uv

uvp i j and p i j= () = (), ,

g v p v q v() = () = ()1 0, , .

Figure 12.26. Ensuring that triangular
Bézier patches meet
smoothly.

524 12 Surfaces in Computer Graphics

for some constant a, are sufficient conditions for achieving C1 continuity. These con-
ditions in fact imply that

If our patches had met in a boundary curve in the u direction, say p(u,1) = q(u,0), the
analogous conditions would be

for some constant b. In the case of a network of patches, the condition for meeting
with C1 continuity along the boundary curves translates into the fact that we have lost
quite a few degrees of freedom in defining the geometry of the surface. At each point
of the network where four patches meet, instead of having 48 degrees of freedom (each
of the four patches would have an arbitrary corner vertex, two tangent vectors, and
one twist vector) we only have 14 (one vertex, two tangent vectors, one twist vector,
and two constants). To put it another way, whereas the geometric matrices of a set of
mn independent patches would normally be defined by 16mn vectors, given the
aforementioned constraints, a C1 continuous patch network can be represented by
4(m + 1)(n + 1) vectors and m + n scalars, namely, by a four-vector grid, pij, pu

ij, pv
ij,

and puv
ij, and two sequences of scaling factors ai and bj. The geometric matrix of the

ijth patch would then have the form

p p p p

p p p p

p p p p

p p p

ij i j ij
v

j i j
v

i j i j i j
v

j i j
v

ij
u

i j
u

ij
uv

j i j
uv

i i j
u

i i j
u

i i j
uv

i

b

b

b

a a a a

, ,

, , , ,

, ,

, , ,

+ + +

+ + + + + + +

+ + +

+ + + + + + +

1 1 1

1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 + + + +

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

1 1 1 1bj i j
uvp ,

.

q p q p q p q p00 01 00 01 10 11 10 11
v v uv uv v v uv uvb b b and b= = = =, , , ,

∂
∂

∂
∂

q
u

v a
p
u

v for all v in0 1 0 1, , , , .() = () []

Figure 12.27. Making bicubic patches
meet smoothly.

12.16 Fairing Surfaces 525

12.16 Fairing Surfaces

Fairing surfaces is, like in the case of curves, a question of achieving a pleasing shape.
It is a much more complicated problem than fairing curves because the obvious
approach to reduce the problem to a one-dimensional one would involve the shape of
a surface along an infinite number of directions at every point. In any case, there are
again two sides to the problem. First, one needs some tools to detect any imper-
fections in the shape and, second, one needs to describe ways to correct these
imperfections.

Curvature is again key to the general detection process, but, just like the fact that
a simple number, such as the slope for real-valued functions, cannot capture the idea
of derivative for vector-valued functions, it is not easy trying to capture the idea of
curvature at a point on a surface with real-valued functions. Some basic functions
that have been used are

(1) Gauss curvature,
(2) mean curvature, and
(3) absolute curvature (Ωk1Ω + Ωk2Ω, where k1 and k2 are the principal normal

curvatures).

Determining imperfections in the fairness of a surface boils down to making sure that
plots of these curvature functions have appropriate shapes. In particular, places where
the sign of the curvature function changes too often are potential problem spots. A
problem with Gauss curvature is that it is zero for ruled surfaces and hence gives no
useful information in those cases.

Other specialized tools have been used. Hagen and Hahmann ([HagH95]) use sta-
bility concepts based on infinitesimal bendings to control the shape of a surface.
Séquin et al. ([SéCM95]) faired surfaces by minimizing functionals based on the arc-
length derivative of normal curvature, although this turned out to be very expensive
computationally. Other variational approaches are described by Sarraga ([Sarr98]).
Net fairing methods are described in [SuLi89] in case a surface is defined by a network
of curves.

Another method that has been used in designing pleasing car body shapes is based
on reflection lines ([Klas80]). Reflection lines are the patterns that one sees on the pol-
ished surface of a car caused by parallel lines of light from light sources. See Figure
12.28. The criterion for a nice shape is that these patterns look “nice.” Curvature plots

Figure 12.28. Detecting surface
imperfections with
reflection lines.

tend to detect local imperfections whereas reflection lines catch more global prob-
lems. A related approach is the method of isophotes ([Pösc84], [HutH96]) that ana-
lyzes lines of equal light intensity. There are, as one can see, a number of special curves
on a surface that can be used to analyze it instead of using the surface curvature
directly. Theisel and Farin ([TheF97]) show how one can determine the curvature of
contour lines, lines of curvature, asymptotic curves, reflection lines, and isophotes
without computing the curves directly. For more on surface interrogation algorithms
see [Hage92] or [FolR93]. Rather than having the designer use surface analysis tools
to fair a surface him/herself, Rando and Roulier ([RanR91]) describe a system that
fairs parametric surfaces automatically. Moreton and Séquin ([MorS92]) describe a
way to design smoothly shaped surfaces of any genus.

The problem of fairing discrete surfaces has also been studied. See [SuLi89]. A
discussion on the fairing of subdivision surfaces can be found in [ZorS99]. One moti-
vating observation is that obtaining a fair surface may be more important than obtain-
ing a smooth one. If one has a polygonal mesh, one has more freedom to make
changes. Discrete analogs of curvature are available. One can always get a smooth
surface at the end if that is needed, an interpolatory B-spline surface in fact.

Finally, if problems with a surface’s shape are detected, they need to be corrected.
In the case of tensor product surfaces one can try some curve-smoothing methods on
the curves in the two coordinate directions. For much more about surface fairing see
[HosL93]. Section 15.2 has more about fairing and curvature.

12.17 Recursive Subdivision Surfaces

This section is about polygonal surfaces and ways to turn them into smoother looking
objects. There are basically two approaches. One (see, for example, [Pete95]) is to
define parametric patches for each facet and ensure that they all meet in a smooth
manner. The other uses a recursive subdivision process that smooths the corners and
edges to get a closer and closer polygonal approximation of a smooth surface. It is
these recursive subdivision surfaces that we want to discuss in this section. There are
two ways of looking at such surfaces. From one point of view, we can consider the
original polygonal surface as having been a rough outline of some specific smooth
one and that reconstruction of this smooth surface is our goal. One reason that one
may not have had or even care about an actual parameterization for the smooth
surface is that surfaces that have reasonable parameterizations with the usual rec-
tangular or triangular domains are somewhat limited in their shape or topology unless
one is willing to put up with what may be unpleasant singularities. Even a space as
simple as a sphere cannot be parameterized without singularities unless one uses
several patches to cover it. The other point of view is that recursive subdivision sur-
faces are a wholly new class of surfaces that are interesting in their own right inde-
pendent of any associated smooth surface.

A number of polygonal surface subdivision algorithms are known. An excellent
overview of the subject and its applications can be found in [ZorS99]. See also
[CavM89] and [Sabi90]. One large class of such algorithms can be classified by
whether they use a “corner cutting” or vertex insertion approach. In the latter case
one can distinguish further based on whether they generate quadrilateral or

526 12 Surfaces in Computer Graphics

12.17 Recursive Subdivision Surfaces 527

triangular meshes and whether they approximate or interpolate. An important ques-
tion for all these algorithms is whether repeated application produces a sequence of
surfaces that converges to a surface and how smooth this limit surface is. See [Reif95].

The first subdivision algorithm that we shall describe is the Doo-Sabin algorithm
([DooS78]). This algorithm is a corner-cutting algorithm and is a generalization of the
Chaikin curve subdivision algorithm that we described in Section 11.14. The Doo-Sabin
algorithm starts with a polygonal surface S that has been defined by a set of vertices
together with a specification of its edges and faces. (Actually, the faces do not need to be
planar for the algorithm and all we need is a polygon-type data structure and not a real
polygon.) One then defines some new vertices for each face F, one for each vertex of F,
and this new set of vertices will then become the vertex set of the subdivided surface S¢.
The faces (and edges) of S¢ are determined by the following three rules:

(1) If F was an n-sided face of S, then the n new vertices associated to F will
become a face of S¢ and is called an F-face. See Figure 12.29(a).

(2) If E is an edge of S that belongs to faces F and F¢ of S, then the four vertices
of S¢ created for the endpoints of E in F and F¢ define a face of S¢ called an
E-face. See Figure 12.29(b). No face is associated to a boundary edge of S.

(3) If V is a nonboundary vertex of S that belonged to n faces of S, then the n ver-
tices of S¢, associated to the vertex V in those n faces, define a face of S¢ called
an V-face. See Figure 12.29(c).

Figure 12.29. The new vertices of the Doo-Sabin algorithm.

Figure 12.29(d) shows the result of applying the algorithm to the surface S whose
vertices are the solid circles and the edges are drawn as bold lines. The vertices
and edges of the subdivided surface S¢ are the hollow circles and thin lines, respec-
tively.

To finish the Doo-Sabin algorithm, all that is left to do is to explain how the new
vertices are defined in each face of the original surface S. Various schemes exist. Let
vi be the new vertex created for vertex wi in an n-sided face F of S. The original idea
was to let vi be the midpoint of the segment from wi to the centroid of F. Another
expresses vi in the form

and sets

The aij are not as strange as they may look at first glance. They are closely related to
the nth roots of unity. In fact, they are barycentric coordinates because

This follows easily from the fact that the sum of the real parts of the nth roots of unity
is 0, namely,

The following observations can be made about the subdivision surfaces:

(1) After the first subdivision all vertices will be incident to four edges.
(2) Each n-sided face gives rise to an n-sided face in the subdivision but the

number of n-sided faces, n π 4, stays constant. As one keeps subdividing, such
faces get smaller and smaller and converge to the centroid of the original face.

(3) We will get more and more four-sided faces and our subdivision will look more
and more like a rectangular grid.

(4) The surfaces satisfy the convex hull and local control property. They are also
affinely invariant.

cos .
2

0
1

pk
nk

n Ê
Ë

ˆ
¯ =

=
Â

aij
j

n

=
Â =

1

1.

a

a

p

ij

ij

n
n

for i j

i j
n

n
for i j

=
+

=

=
+

-()

π

5
4

3 2
2

4

,

cos
.

v wi ij j
j

n

=
=
Âa

1

528 12 Surfaces in Computer Graphics

Observation (3) means that we can, except for a fixed number of arbitrarily small
regions, express the last subdivision surface as a collection of 3 ¥ 3 rectangular grids.
These 3 ¥ 3 grids can be replaced by a quadratic Bézier surface, so that our subdivi-
sions start looking more and more like quadratic Bézier surfaces. The parameteriza-
tion of the limit surface is C1 (and has well-defined tangent planes) except at a finite
number of points.

An improved Doo-Sabin algorithm that gives one control over the boundary and
also allows for interpolation is described in [Nasr87]. An even simpler subdivision
construction than the one used in the Doo-Sabin algorithm, called the mid-edge sub-
division, is analyzed in [PetR97]. One disadvantage of the Doo-Sabin algorithm is that,
being based on quadratic B-splines, it shares a problem with those, namely, that the
limit surface may bulge too much to the control points.

The next subdivision algorithm we would like to describe is the Catmull-Clark
algorithm ([CatC78]), which is a vertex insertion algorithm that produces a quadri-
lateral mesh. Given a polygonal surface S, we create a new vertex for each of its faces,
edges, and vertices. The new vertex vF for a face F of S is just its centroid, that is, if
v1, v2, . . . , and vk are the vertices of F, then

If E is an edge of S with vertices v and w which is adjacent to faces F and G, then
the new vertex vE for E is the centroid of v, w, vF, and vG, that is,

Finally, there are several ways to define the new vertex vv for a vertex v of S. We
follow the original definition given in [CatC78]. Let Fav denote the average of all the
vF, where F is face of S to which v belongs. Let Eav denote the average of all the mid-
points of all the edges E of S which contain v and assume that there are n such edges.
Then

The subdivision S¢ of S is now defined as follows: We create an edge from each new
vF to all the new vE, where E is an edge of F, and also an edge from each new vv to
each vE, where v belongs to E. See Figure 12.30. In that figure the vertices vF are
marked by a cross, the vertices vE are marked by hollow circles, and the vertices vv
are marked by hollow squares. After each subdivision in this algorithm all faces are
four-sided and most vertices belong to four edges, but there may be a constant number
of vertices that are incident to n edges, n π 4. In the limit one gets a surface that is
essentially built from cubic B-spline surfaces and has a parameterization that is C2

except at a finite number of points. Although tangent planes are defined everywhere,
the singular points may exhibit curvature problems in that one may either get

v F E vv av avn n
n

n
= + +

-1 2 3
.

v v w v vE F G= + + +()1
4

.

v vF i
i

k

k
=

=
Â1

1

.

12.17 Recursive Subdivision Surfaces 529

530 12 Surfaces in Computer Graphics

unbounded results when trying to estimate the curvature there or the curvature may
be zero.

A final subdivision algorithm we would like to mention is the Loop algorithm
([Loop87]). This is another vertex insertion algorithm that produces a triangular mesh
and a similar C2 parameterization. Details of the algorithm can also be found in
[Gall00].

The limit surfaces that one gets from subdivision algorithms like the ones discussed
in this section are often called recursive subdivision surfaces. It is shown in [Stam98]
and [ZorS99] that points and derivatives of Catmull-Clark and Loop limit surfaces can
be computed directly without subdividing. The advantage of vertex insertion algo-
rithms is that there is a natural way to associate the vertices of the original surface with
vertices of the subdivided surface. For a more thorough discussion of the advantages
and disadvantages of various subdivision schemes see [ZorS99]. For subdivision sur-
faces that interpolate a given set of possibly intersecting curves see [Nasr00].

12.18 Summary for Curves and Surfaces

In the last two chapters we have covered a great many topics on curves and surfaces.
However, anyone wanting to develop a modeling system would quickly find that they
have been presented with lots of choices. The intent of this section is to discuss some
of the hard decisions that inevitably have to be made with regard to questions such
as the following:

(1) What types of curves and surfaces should be supported?
(2) What sort of mathematical functions should be used for the parameteriza-

tions?
(3) Which algorithms should be used to compute values and derivatives for the

chosen types?

Constructing curves and especially surfaces is not an easy task and so a user would
want a modeling system to support as wide a range of curve and surface construc-

Figure 12.30. Catmull-Clark subdivision
surface.

tions as possible. On the other hand, providing a user with many predefined types of
curves and surfaces does not mean that all their underlying mathematical represen-
tations have to be implemented differently. For example, one would certainly allow
users to define spheres and surfaces of revolution. The question for the modeling
system implementer is whether to use special case formulas to parameterize these or
describe them with, say, Bézier or B-spline surfaces. Having separate implementations
usually means a gain in efficiency, but it also means that one has to maintain all these
implementations. Some newer modeling systems are based on NURBS curves and
surfaces and make these the only internal geometric types. These types are general
enough to be able to represent all the curves and surfaces that one typically wants.
The advantage of the NURBS approach is that one has to implement operations such
as evaluation and differentiation only for these two types. (Actually, there would really
only be one type of computation since the surface computations reduce to curve com-
putations.) Sections 11.5.4 and 12.12.5 presented a few efficient algorithms for such
computations. For a very detailed discussion of algorithms and constructions using
NURBS see [PieT95]. One disadvantage with NURBS is, of course, that no matter how
efficient they are, they will not be as simple or fast as special-case algorithms, although
with regard to speed, computers have become powerful enough so that this is no
longer such a great disadvantage. It should also be pointed out that there exist explicit
matrix formulations for NURBS curves and surfaces that produce more efficient
evaluation algorithms but are complex and have numerical stability problems. See
[LiuW02]. We should note further that the Gregory patch and its generalizations
achieved a lot of popularity for blending and surface design in general.

A related question that someone new to the subject might have is whether to use
Bézier, spline, or B-spline curves and surfaces. Mathematically, these three types cover
the same class of curves and surfaces. Only their representations are different but one
can switch back and forth between them. The only way to make the question mean-
ingful is to rephrase it as asking whether one wants to think of curves and surfaces
in an interpolatory or interactive (control point) way. Because both interpolation and
interactive manipulation are important, it would make sense for a modeling system
to support both representations since each is more efficient in its own domain.

With respect to the question of computation, it is known that the Bézier form of
a curve or surface with the de Casteljau algorithm is numerically more stable than
the polynomial form (although Horner’s method for evaluating polynomials makes
the latter more efficient for computational purposes). It is important to note however
that to obtain this stability one should not switch back and forth between the two
forms and needs to do everything in the Bézier form.

Here are a few comments on deciding whether to use rectangular or triangular
domains for parameterizing functions.

Advantages of triangular domains:

(1) Sometimes one needs to parameterize triangular surfaces patches. If one only
uses rectangular patches, then one has to play tricks such as mapping two corners of
a rectangle to the same point. A good example of this is the case of a surface of rev-
olution where the curve one is revolving touches the axis one is revolving about. Col-
lapsing rectangle vertices leads to degeneracies and would not be necessary if one
allowed a triangular domain.

12.18 Summary for Curves and Surfaces 531

(2) Parts of complex geometric objects, such as rounded corners, may have a more
natural description with triangular patches.

Disadvantages of triangular domains:

(1) Triangular domains are not convenient for everything, so that it would not be
desirable to restrict all parameterizations to have such domains.

(2) Triangular patches involve a specialized data structure which would have to
be integrated into an existing modeling system. This could be expensive.

For a discussion of how one can define surface patches over domains that are arbi-
trary convex polygons see [LooD89].

Finally, recursive subdivision surfaces have an advantage over regular B-spline
surfaces when one can define a polygonal structure that fits the surface better. On the
other hand, one pays a price because a recursive structure is usually much harder to
work with than simple formulas.

12.19 A Little Bit of History

We would like to end our discussion of curves and surfaces with a brief history of
their development as far as it relates to design and manufacturing. A good reference
is [Sabi90]. See also [NowR83], [Hoch83], [Elsa83], and [Fari83].

The earliest significant instance involving a systematic design of surfaces was in
the building of boats. For hundreds of years craftsmen designed boat hulls by using
a sequence of frames that defined the lateral shape of the hull. Planking was then
applied to these frames to produce the hull. If the frames were defined well, then the
planks produced a smooth shape. It took great skill to end up with a shape that had
the desired property. Eventually, pencil and paper drawings were used to help in this
process. Designing a boat involved roughly two stages:

The Design Stage. Some initial specifications for the hull led to a preliminary line
plan that consisted of a collection of planar curves representing an orthogonal set of
cross-sections of the targeted shape. Figure 12.31(b) shows some sample views of the
boat in Figure 12.31(a). The goal of this stage was to resolve any potential problems
caused by perhaps conflicting specifications.

The Fairing Stage. The goal of this stage was to adjust the line plan obtained in the
first stage to obtain a smoother looking surface while still meeting the basic initial
requirements. The process involved checking the shape of the surface along some
other control sections. The two strategies used here were to either modify some lines
after the fact or to have defined a parameterized set of lines to begin with and to tweak
these parameters.

Basically, one would draw a sequence of frames on a drawing board to full scale
and horizontal and vertical sections were determined. This required a large drawing
board that was situated on the floor of the loft above the room where the ship was
being built, hence the term “lofting.” When ships became too big for full-scale

532 12 Surfaces in Computer Graphics

12.19 A Little Bit of History 533

drawings, a smaller scale was used. Figure 12.31 shows a highly simplified view of
what was specified. In the shown coordinate system one would define a number of
orthogonal sectional views referred to as sections (x = constant), buttocks (y = con-
stant), and waterlines (z = constant). From this data one could compute other control
curves that would correspond to other sorts of sections. Their computation would
need a skilled craftsman. If any of these had undesirable shape features, one would
back up and change the initial form data and repeat the process until one was finally
satisfied.

A similar process was used in the manufacture of other surfaces such as those
needed in the aircraft and automobile industry. Using the approach just described
meant that the process was based on curves and the fairing of curves. In the aircraft
industry, “conic lofting” was popular, meaning that conic curves were used to describe
sections of aircraft fuselages. In boat building, least squares fitting polynomials were
found to be more useful. In the 1960s one started to use splines.

Another idea that started to take hold was the idea of fairing an entire surface
patch because dealing with large meshes of curves and data points was very time-con-
suming and complicated. The papers of Ferguson ([Ferg64]) and Coons ([Coon67])
(an earlier 1964 version of this paper was well known) had a great influence and intro-
duced the bicubic and Coons patch, respectively. From a single patch one moved on
to a grid of patches that was defined automatically from the grid of boundary curves.
Twist vectors were a major problem. Bézier ([Bézi71]) introduced Bézier curves and
surfaces. The nice thing about these objects was that it was much easier to manipu-
late their shape. One simply moved the control points in their control polygon. A
remaining problem was that the degree of the Bézier objects increased as the number
of control points increased unless one resorted to piecewise Bézier objects. This

Figure 12.31. A simplified view of boat hull specification.

problem was solved when Gordon and Riesenfeld ([GorR74a]) suggested using B-
splines as described by Schoenberg ([Scho67]). The term “NURBS” was coined at
Boeing in 1985 ([BloK02]). See [Roge01] for other historical tidbits.

When the design and manufacturing process started to be computerized, one tried
to imitate what was done by hand. Objects were defined by collections of curves. There
were lots of possible curves, but mathematically one tried to define and manipulate
them in terms of controlling features such as endpoints and tangents at the endpoints.
Until the early 1980s most ship-fairing systems were based on fairing curves. Poly-
nomial curves gave way to spline functions because, being piecewise polynomial, they
avoided the global oscillation of large degree global polynomials and also allowed
one to proceed in the same way that it was done with the physical splines by moving
control points.

12.20 EXERCISES

Section 12.2

12.2.1 Consider the surface of revolution S obtained by revolving a space curve g : [a,b] Æ R3

about a line L through a point p and direction vector v.

(a) Find a parameterization p(u,v) for S.
(b) Find a parameterization p(u,v) for S when g(u) = (0,0,u), [a,b] = [1,3], p = (1,2,0),

and v = (2,-1,3). Also find ∂p/∂u, ∂p/∂v, and a normal vector at the point (0,0,1).

Section 12.3

12.3.1 Find an implicit equation f(x,y,z) = 0 for the surface S in Exercise 12.2.1(b). Use the
gradient of f to find a normal to S at (0,0,1) and verify that it is parallel to the normal
you got in Exercise 12.2.1(b).

Section 12.4

12.4.1 Consider the curves f, g : [1,3] Æ R3, where f(u) = (u + 1,u2 - 4u + 5,0) and g(u) = (0,u,u3).
Let p(u,v) be the lofted surface defined by f and g. Sketch the surface and find the equa-
tion of the tangent plane at p(2,0.5).

Section 12.5

12.5.1 Consider the spiral f : [0,p] Æ R3, f(t) = (3 cos t,3 sin t,t), and its Frenet frame
(T(t),N(t),B(t)). Let p(u,v) be the sweep surface obtained by sweeping the segment
[(0,0,-1),(0,0,1)] along f(t) rotating the segment in the N(t)-B(t) plane in a uniform
counter-clockwise manner so that we have rotated through an angle of p when we reach
f(p). Find the formula for p(u,v).

534 12 Surfaces in Computer Graphics

Section 12.7

12.7.1 Find the formula for the Coons surface p(u,v) defined by boundary curves p(u,0) =
(2u,u2,0), p(u,1) = (2u,-4u2 + 8u + 1,0), p(0,v) = (0,v,0), and p(1,v) = (-4v2 + 4v + 2,4v +
1,0). Also find ∂p/∂u(0.5,0.5) and ∂p/∂v(0.5,0.5).

12.7.2 Prove Theorem 12.7.1.

Section 12.9

12.9.1 Prove that the matrix Q in equation (12.36a) is just the matrix B in equation
(12.35).

12.9.2 Consider the bicubic patches p(u,v) with geometric matrices

(a)

(b)

(c)

Describe the surfaces defined by these patches geometrically like we did in Example
12.9.1.

12.9.3 (a) Let p(u,v) be the bicubic patch defined by Exercise 12.9.2(b). Consider the rec-
tangle A = [1/4,3/4] ¥ [1/3,2/3]. Let q(u,v) be the bicubic patch that is the subpatch
pΩA reparameterized to [0,1] ¥ [0,1]. Find the geometric matrix for q(u,v).

(b) Generalize (a) to the case of an arbitrary subrectangle A = [a,b] ¥ [c,d].

Section 12.12.3

12.12.3.1 The blossom for a triangular Bézier surface p(u,v) can be obtained from its control
points bijk using the triangular de Casteljau algorithm similar to what was done in
Exercise 11.5.2.1 for curves. To learn about it, see, for example, [Fari97].

B =

() () Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯

() () Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯

11 0 1 0 1 0 0
2

0
2

0

2 2 0 2 0 2 0 0
2

0
2

0

1
1
2

0 1 0
1
2

0 0
4

0
4

0

1
1

2

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

,

p p

p p

p p

22
0 1 0

1
2 2

0 0
4 2

0
4 2

0, , , , , , ,Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜p p

B =

() () -() -()
() () () ()
() () () ()
() () () ()

Ê 1 0 0 0 2 3 1 2 3 1 2 3

3 0 0 3 2 3 0 2 3 0 2 3

2 0 0 3 0 0 1 0 0 1 0 0

2 0 0 3 0 0 1 0 0 1 0 0

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,ËË

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

B =

() () () ()
() () () ()

-() -() () ()
-() -() () (

11 0 3 2 0 2 1 0 2 1 0

2 0 0 5 1 0 3 1 0 3 1 0

1 1 0 2 1 0 1 0 0 1 0 0

1 1 0 2 1 0 1 0 0 1 0 0

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,))

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

12.20 Exercises 535

12.21 PROGRAMMING PROJECTS

1. Display and manipulate surfaces (Sections 12.2–12.11, 12.12.1, 12.12.3, 12.12.4, 12.13)

(a) Like in the case of curves, we shall simply suggest that the reader implement any one
of the many types of surfaces in the listed sections. Because defining three-dimensional points
is not easy to do interactively, allow the data to be read in from a file. B-spline and NURBS sur-
faces are of special interest like their curve counterparts.

(b) Given a surface p(u,v), let the user input values for u and v and then display the par-
tials ∂p/∂u and ∂p/∂v and the normal vector at p(u,v). A more interactive approach would be to
let the user pick a point on the surface with the mouse and then display that data at the picked
point. Finding the point that was picked amounts to sending a ray from the viewer through the
picked point in the view plane and finding the nearest intersection of this ray with the surface
patches in the world. An algorithm for finding the intersections is discussed in Section 13.4.1.

2. Interpolation (Sections 12.12.6)

Implement some interpolating B-spline surfaces using data from files.

3. Recursive subdivision (Section 12.17)

Allow a user to define a polygonal surface via data from a file and then show how it changes
with recursive subdivision.

536 12 Surfaces in Computer Graphics

look up those sorts of details, insofar as they are available, in the references to spe-
cific algorithms. Some general references that give an overview of intersection algo-
rithms and compare some of the methods used in these algorithms are [PraG86],
[SedP86], [Luka89], [DoSY89], [Hoff89], [AzBB90], [BarK90], [SedN90], [Boen91],
[Patr92], [Patr93], and [HosL93]. We conclude with a brief summary in Section 13.6.

A few general comments are in order before we get started. The problem of finding
the intersection of two smooth objects is invariably reduced to the problem of finding
the roots of an equation. The exact nature of this equation is determined by how the
two objects O1 and O2 are presented, that is, whether they are defined parametrically
or implicitly via equations. In the discussion below assume that O1 and O2 are m-
dimensional objects in Rn, that x Œ Rn, and that s, t Œ Rm are variables used to para-
meterize the objects. (For the curves and surfaces of interest to us, m will be 1 or 2,
respectively, and n will be 2 or 3.)

Implicit/parametric Intersection. This is the easiest case. Suppose that O1 is
defined by an equation

(13.1)

and that O2 is parameterized by a function p(t) = (p1(t),p2(t), . . . , pn(t)). The inter-
section O1 « O2 can be obtained by solving the equation

(13.2)

which defines an implicit object in Rm.

Implicit/implicit Intersection. Suppose that O1 and O2 are defined by equations

and

respectively. One needs to solve

Parametric/parametric Intersection. Suppose that O1 and O2 have parameteriza-
tions p(s) and q(t), respectively. We need to solve

(13.3)

Because the implicit/parametric case is the easiest case, one often tries to convert
to this case. This is one way how algebraic geometry enters the picture. Converting
the parametric/parametric case means that we would use algebraic geometry to
convert one of the parameterizations to an implicit representation. This is always pos-

F p qs t s t 0, .() = () - () =

F f gx x x 0() = () ()() = () =, , .0 0

g x() = 0,

f x() = 0

F f p p pnt t t t() = () () ()() =1 2 0, , . . . , ,

f x() = 0,

538 13 Intersection Algorithms

sible for a rational parameterization. For the implicit/implicit case, we would use
algebraic geometry to convert one of the implicit representations to a parametric one,
although this is not always possible. See Sections 10.9 and 10.15 in [AgoM05].

Another comment we would like to make here is with regard to the Newton-
Raphson method. This method, whose mathematics is described in more detail in
Section 4.7 in [AgoM05], will be referred to over and over again because it gets used
in many of the algorithms described in this chapter. Therefore, to ensure that the
reader knows what is involved when it is mentioned, it is probably helpful to review
the idea behind it in general terms before we get started. The Newton-Raphson
method is an approach to solving an equation of the form

(13.4)

One starts with an initial guess x0 and then generates a sequence of points xi that,
hopefully, converge to a solution p0 of equation (13.4). If S is the set defined by equa-
tion (13.4), then this process is often referred to as relaxing x0 to p0 in S. Given xi, one
gets the next point xi+1 by using the first few terms of the Taylor expansion for f about
xi as an approximation for f and solving for its zeros. Strictly speaking, the Newton-
Raphson method uses the linear approximation

which uses the first two terms. The solution to the linear system h (x) = 0 then becomes
the next point xi+1. Using the Moore-Penrose inverse matrix to solve for xi+1 we get

(13.5)

where f¢(z) is the Jacobian matrix of f at z. The solution p0 may only be one point of
a curve segment that belongs to the entire solution set S of equation (13.4). In that
case, one generates a sequence of solutions pi that become the vertices of a polygo-
nal curve that approximates a curve segment of S. One gets pi+1 from pi by starting
with a guess x0 = pi + d for some appropriate small d and relaxing that point to S in
the manner described above. If one is careful, then one can use this technique to gen-
erate an approximation to the entire solution set S, but one needs a starting guess for
every component of S.

A major problem for algorithms that compute intersections is that one has to cope
with potentially complicated intersections and situations where objects intersect in
singular ways. For example, two surfaces may intersect in a surface, in isolated points,
or in a curve that has cusps, self-intersections, and consists of several disconnected
pieces. The nicest situation is where objects meet transversally, but even there prob-
lems arise in practice if points are too close to a singularity, such as where the objects
are close to intersecting or almost tangent. As we indicated in our comments at the
beginning of this section, there is a constant worry about numerical instability.

Another issue that comes up with surface intersections is the question of how the
intersection should be represented. Some ways to represent the intersection curve are

x x x x x xi i i
T

i i
T

if f f f+
-

= + () ¢ () ¢() ¢ ()()()1
1

.

h f Dfi i ix x x x x() = () + () -(),

f x 0() = .

13.1 Overview 539

(1) exactly via equations or parameterizations (for example, this is possible for
quadric intersections),

(2) as a polygonal curve that matches the intersection to some tolerance,
(3) as a spline (usually of a low degree) that uses an appropriate number of points

on the intersection as control points, or
(4) procedurally (for example, determine a fixed number of points on the inter-

section and compute the intersection to the desired accuracy on demand by
a marching method).

The polygonal curve approach seems to be the most popular.

13.2 Convex Set Intersections

This section describes a simple algorithm for testing whether two convex linear poly-
hedra intersect. The result is based on the fact, proved in Section 17.5, that disjoint
convex sets can be separated by a hyperplane and that there is a straightforward algo-
rithm for determining whether such a hyperplane exists or not.

See [Edel87] for a linear programming approach to the intersection and separat-
ing hyperplane problem. The solutions there result in much more complex programs
and may not be that much faster if m is relatively small.

Algorithm 13.2.1 is an abstract program for a function AreDisjoint that determines
whether two convex hulls are disjoint. First, a function SpaceProjectionType is called
that implements Theorem 17.5.1 directly and determines if the sets are linearly
separable. If the sets are separated by a plane P, then this still allows the possibility
that they intersect in that plane. Therefore, Theorem 17.5.1 has to be applied again
to the intersections of the sets with this plane. This is accomplished by the function
PlanarProjectionType. If two sets are separated in a plane this allows one final possi-
bility that they may intersect on the separating line and so we check for that with a
final call to function LinearProjectionType.

13.2.1 Theorem. Algorithm 13.2.1 for whether the convex hulls of two sets X
and Y with s and t points, respectively, are disjoint is an O(m4) algorithm, where m =
s + t.

Proof. The algorithm is implemented by the function AreDisjoint. The work done
in AreDisjoint is dominated by the call to SpaceProjectionType. The loop in this func-
tion is executed m(m - 1)(m - 2) times and involves O(m) operations.

Finally, it should be noted that it is possible to make the algorithm more efficient
by decreasing the size of the loop in the SpaceProjectionType procedure. For example,
for each point picked in the outer i loop of the procedure one only needs to look at
vertices that lie in the “silhouette” of the polygons as seen from that point. Of course,
any gain in efficiency of the algorithms is at the expense of much more complicated
code.

540 13 Intersection Algorithms

13.2 Convex Set Intersections 541

boolean function AreDisjoint (point set X, Y)
{ The function returns true if conv

P(p,n) denotes the plane through p with normal vector n.
Given a vector n, n(X) denote the set {n·x | xe X}

(X) and conv(Y) are disjoint and false otherwise.
 We assume that the affine hull of the points in X and Y has dimension 3. }
begin

integer itp;
point p, q; vector n1, n2;
point set X1, Y1;
real c;

itp := SpaceProjectionType (X,Y,p,n1);
case itp of

0 : return (false); { Sets intersect }
1 : return (true); { Sets are disjoint }
2 : begin

X1 := X « P(p,n1); Y1 := Y « P(p,n1);
itp := PlanarProjectionType (X1,Y1,p,n1,q,n2);
case itp of

0 : return (false); { Sets intersect }
1 : return (true); { Sets are disjoint }
2 : begin

X1 := X1 « P(q,n2); Y1 := Y1« P(q,n2);
itp := LinearProjectionType (X1,Y1,q,n1,n2);
return (itp = 0);

end
end

end
end

end;

integer function SpaceProjectionType (point set X, Y; ref point p; ref vector n)
{ Inputs: subsets X = (p1,p2,º,ps) and Y = (q1,q2,º,qt) of R3

 Output: point p and normal vector for a plane P
 function returns an integer:

0 - convex hulls of X and Y intersect
1 - convex hulls of X and Y are disjoint
2 - conv(X) « conv(Y) lies in P(p,n) }

begin
point set S;
integer m, itp, i, j, k;

S := X » Y; { S = (p1,p2,º,ps,q1,q2,º,qt) = (s1,s2,º,sm) }
m := s + t; itp := 0;

Algorithm 13.2.1. Algorithm for when convex sets are disjoint.

542 13 Intersection Algorithms

for i:=1 to m do
for j:=i+1 to m do

for k:=j+1 to m do
if si,sj,sk are linearly independent points then

begin
n := (sj - si) ¥ (sk - si); { normal to plane P }
if n(X) is disjoint from n(Y)

then
begin

itp := 1; Break;
end

else if n(X) meets n(Y) is a single number
then

begin
itp := 2; p := si; Break;

end
end;

return (itp);
end;

integer function PlanarProjectionType (point set X, Y;point p;vector n1;
 ref point q;ref vector n2)

{ Inputs : X = (p1,p2,...,ps) , Y = (q1,q2,...,qt) Õ plane P = P(p,n1)
 Convex hull of points in X and Y is assumed to have dimension 2.

 Output : point q and normal vector n2 for a plane P
 function returns an integer:

0 - convex hulls of X and Y intersect
1 - convex hulls of X and Y are disjoint
2 - conv(X) « conv(Y) lies on line L = P(q,n1) « P(q,n2) }

begin
point set S;
integer m, itp, i, j;

S := X » Y; { S = (p1,p2,...,ps,q1,q2,...,qt) = (s1,s2,...,sm) }
m := s + t;
itp := 0;
for i:=1 to m do

for j:=i+1 to m do
if si,sj are distinct points then

begin
n2 := (sj - si) ¥ n1; { normal to the line L in the plane P }
if n2(X) is disjoint from n2(Y)

then
begin

itp := 1; Break;
end

Algorithm 13.2.1. Continued

13.3 Curve Intersections 543

else if n2(X) meets n2(Y) is a single number
then

begin
itp := 2; q := si; Break;

end
end;

return (itp);
end;

integer function LinearProjectionType (point set X, Y; point p; vector n1, n2)
{ Inputs: X = (p1,p2,...,ps) , Y = (q1,q2,...,qt) Õ line L = P(p,n1) « P(p,n2)
 Output: function returns an integer:

0 - convex hulls of X and Y intersect
1 - convex hulls of X and Y are disjoint }

begin
vector v;
real a, b, c, d;

v := a direction vector for line L;
a := min(v(X)); b := max(v(X)); c := min(v(Y)); d := max(v(Y));
if [a,b] « [c,d] = f then return (0)

else return (1);
end;

Algorithm 13.2.1. Continued

13.3 Curve Intersections

13.3.1 Ray-Curve Intersection

We assume that we are dealing with planar curves. Intersecting a ray with a polygo-
nal curve reduces to intersecting a ray with a segment. This is a problem that the
reader was asked to solve in Exercise 6.5.2. That leaves the interesting case of smooth
curves.

A Newton-Raphson Method. Suppose that one wants to find the intersection of a
ray X from a point p in a direction v with a smooth curve parameterized by a func-
tion p(u). Let L be the line through p with unit direction vector v. One can use a rigid
motion to transform this situation into one where p is the origin and v is e2, so that
L is the y-axis. To simplify our discussion, assume that this has been done. Note that
there is typically no real cost associated to this assumption since modeling systems
usually define objects relative to associated coordinate systems. This means that to

13.3 Curve Intersections 545

The easiest way to get a bounding box is to use the minimum and maximum values
of the coordinates of the control points. It is faster to compute the intersection of a
line with such a bounding box than with the control polygon. The subdivision
approach generalizes to nonplanar curves.

Another recursive subdivision algorithm is a “characteristic point”–based sub-
division algorithm described in [KopM83]. A characteristic point is basically one
where the first or second derivative of a component function vanishes. Such points
were computed using interval analysis for accuracy. We describe the planar case.
Given a curve, one determines all the points that have horizontal or vertical tangent
lines. These points, along with the endpoints of the curve, divide the curve into seg-
ments. The rectangle that has diagonal defined by the two endpoints of a curve
segment then contains that segment. See Figure 13.2. The collection of these rectan-
gles becomes the bounding boxes for the curve. If our ray intersects any of these rec-
tangles, then we divide the corresponding curve segment in half and compute the new
bounding rectangles. We keep doing this until the remaining bounding rectangles are
small enough. The only disadvantage of this algorithm is that one has to find the places
on the curve with horizontal and vertical tangents. For low-degree curves it is shown
in [SedP86] that the method is actually faster than the Bézier subdivision approach,
although the latter is more stable.

13.3.2 Curve-Curve Intersections

Finding the intersection of two polygonal curves reduces to finding the intersection
of a segment with a curve and finally to finding the intersection of two segments. The
last problem has already been dealt with in Section 6.5.

To find the intersection of a parameterized and a polygonal curve reduces to
finding the intersection of a segment with a smooth curve. We can use a straightfor-
ward modification of the ray-curve algorithm described in Section 13.3.1.

To intersect two smooth curves one could of course replace those curves by poly-
gonal approximations and a use polygonal intersection algorithm. The main problem
is determining whether the approximations are good enough so that no intersections
are missed. In a variation of the subdivision approach described in [LanR80], Turner
([Turn88]) actually replaced the curve with two approximations that contained the
curve between them. As an example, consider the planar Bézier curve shown in Figure
13.3. The convex hull of the four control points is bounded by two curves C1 and C2,

Figure 13.2. Bounding rectangles for curve segments without characteristic points.

546 13 Intersection Algorithms

one on either side of the actual curve. Turner called the region between the two curves
a curve-bounding area. This idea easily generalizes to any curves defined by control
points. In general, one can define two bounding curves associated to a curve, which
have the property that the region between them contains the original curve. If the
curve-bounding areas of two curves do not intersect, then the curves will not inter-
sect. If they intersect, then a subdivision process is applied to get a new set of two
curves so that the region between them is a closer fit to the original curve. Turner
describes steps that one can take to make sure that the intersection algorithm based
on this idea provides correct answers in the presence of singularities.

The next three sections discuss more direct approaches to the smooth curve inter-
section problem. For an approach based on interval arithmetic see [HMSP96].

13.3.3 A Curve Newton-Raphson Method

To find the intersection of two smooth curves parameterized by functions p(u) and
q(u) amounts to solving an equation of the form

(13.6)

We describe an approach discussed in [HosL93]. Let p(u) = (p1(u),p2(u)) and q(v) =
(q1(v),q2(v)).

(1) Pick a point p0 = (x0,y0) = p(u0) on the curve p(u).
(2) Find the intersection of the tangent line L0 to p(u) at p0 with the curve q(u).

Since this tangent line is defined by p0 + t p¢(u0) and has equation

the equation we need to solve is

or

(13.7)q v p u q v p u x p u y p u1 2 0 2 1 0 0 2 0 0 1 0 0() ¢() - () ¢() - ¢() - ¢()() = .

q v x p u q v y p u1 0 2 0 2 0 1 0 0() -() ¢() - () -() ¢() = ,

x x p u y y p u-() ¢() - -() ¢() =0 2 0 0 1 0 0,

f u v p u q v, .() = () - () = 0

Figure 13.3. Bounding curves for a Bézier curve.

Let v0 be a solution. Now find the intersection of the tangent line L1 to q(v) at
p1 = q(v0) with the curve p(u). Let this point be p2 = p(u1).

(3) Continue this process, getting sequences ui, vi, and pi. Stop when |pi - pi+1| is
sufficiently small.

See Figure 13.4(a). The method works as long as the tangents keep intersecting the
curves. In Figure 13.4(b) this corresponds to starting at points along the boundary of
the shaded region.

Numerical techniques for tracing curves work pretty well if one does not run into
any singularities. The problem at singularities is that the approximation that one is
using for the curve fails to be sufficiently accurate at such points.

13.3.4 Curve Recursive Subdivision Methods

We can extend the line-curve recursive subdivision (divide-and-conquer) approaches
described earlier. The only difference is that we keep subdividing both curves and
checking for intersections of bounding boxes. For curves that satisfy the variation
diminishing property we get the algorithm from [LanR80]. The algorithm in
[KopM83] applies to arbitrary curves.

The paper [SedN90] describes a better algorithm for planar Bézier curves. The
authors refer to their approach as Bézier clipping. It is also a bounding box type
approach.

Definition. A fat line is the region between two parallel lines.

Note that a fat line can be thought of as special case of the slabs defined in Section
6.2. The reader should compare the computations we will make for fat lines with those
we made for slabs. Some other related concepts are the “fat arcs” in [SeWZ89], used
as a criterion for curve flatness, and what could be called “fat planes”, used in [Carl82]
for an intersection algorithm for Bézier surfaces.

The first thing we want to do is associate a fat line to an arbitrary Bézier curve
p(u). Let pi = (xi,yi), i = 0,1, . . . n, be the control points of p(u). See Figure 13.5. Let
L be the line through p0 and pn. Represent the line by an equation of the form

13.3 Curve Intersections 547

Figure 13.4. Curve intersections with the Newton-Raphson method.

If d1d2 £ 0, then let

After these preliminaries, we are ready to describe the Bézier clipping algorithm.
Let p(u) and q(u) be the two Bézier curves with domain [0,1] whose intersection we
want to determine. Let X be a fat line that contains the curve q(u). See Figure 13.6(a).
In that example, X is the region between the parallel lines L1 and L2. We want to deter-
mine the values of u for which p(u) lies outside of X. Express p(u) in the form

(13.10)

where Bi,n (u) are the Bernstein polynomials and pi = (xi,yi) are the control points of
p(u). Let equation (13.8) be the equation of the line through p0 and pn and let d(u)
be the signed distance from p(u) to L. It is easy to show that

Finally, define the parametric curve

where Di = (ti,di) and ti = i/n. The fact that the x-coordinate of D(u) is u follows from
the identities

D u B u

u d u

i n i
i

n

() = ()

= ()()
=
Â ,

, ,

D
0

d u B u d d ax by ci n
i

n

i i i i() = () = + +
=
Â , , .

0

p u B ui n
i

n

i() = ()
=
Â , ,

0

p

d d d and d d dmin maxmin , , max , , .= { } = { }4
9

0
4
9

01 2 1 2

13.3 Curve Intersections 549

Figure 13.6. Sederberg-Nishita Bézier clipping.

Figure 13.6(b) shows the graph of D(u) for the example in Figure 13.6(a). Clearly, if

then p(u) will not lie on the curve q(u). Therefore one can trim away those parts of
p(u). Actually, we shall only trim away parts at the ends of the curve. Let umin and
umax be the largest and smallest u so that the convex hull of the Di misses the fat line
Y between y = dmin and y = dmax over the intervals [0, umin] and [umax,1], respectively.
For the example in Figure 13.6(b) it turned out that umin = 0.25 and umax = 0.75. We
now subdivide the Bézier curve p(u) at umin and umax using the de Casteljau algorithm
and only keep the part over [umin,umax]. That part is then reparameterized to [0,1].
Note that we are being conservative here and we could have trimmed a little more.
As Figure 13.6(b) shows, the curve D(u) meets the fat line Y over an interval smaller
than [umin,umax].

After clipping p(u) against q(u), we repeat this process, this time clipping q(u)
against the fat line associated to the clipped p(u). We alternate back and forth between
clipping against p(u) and q(u) until we arrive at our intersection point. This is the
basic idea behind the Bézier clipping algorithm for finding curve intersections, but
there are some important details that need to be added.

The first observation is that we can use any fat line for the clipping. The choice
above is usually effective, but another choice that is sometimes better is to use a fat
line orthogonal to the line containing p0 and pn. An example of that is shown in Figure
13.7. The fat line between L1 and L2 is a better choice when clipping q(u) against p(u)
than using one that is parallel to the line containing the endpoints A and B of
the curve p(u). The extra time used in checking which choice is better seems to be
worth it.

Another point that has not been addressed is whether or not the above algorithm
actually converges. In fact, it may not if we only clip little if anything at each stage.

D u d or D u d() £ () ≥min max ,

B u i n u u u ui n
n

i

n

, .()() = -() +[] =
=
Â 1

0

550 13 Intersection Algorithms

Figure 13.7. An alternative fat line.

Figure 13.8 shows an example of multiple intersections, which lead to such situations.
Therefore, the suggested solution for the problem is the following recursive subdivi-
sion step: If Bézier clipping does not reduce the parameter range of each of the curves
by at least 20%, then subdivide the curve with the largest remaining parameter
interval and do a Bézier clip of the other curve with the two halves. Although this
solves our convergence problem, if curves are almost tangent or two intersections
are very close, then the algorithm reduces to a divide-and-conquer binary search
type algorithm in the neighborhood of those points. There is a very efficient way to
handle that situation, but we refer the reader to [SedN90] for the details. This finishes
our discussion of the Sederberg-Nishita Bézier clipping algorithm. Timing compar-
isons in [SedN90] show that for curves of degree less than five, the implicitization
algorithm in [SedP86] runs typically between 1 and 3 times faster than the Bézier clip
algorithm, which in turn is between 2 and 10 times faster than the algorithms from
[LanR80] and [KopM83]. For higher-degree curves, the Bézier clipping algorithm
seems to win. [Rock90] also has a comparison of various divide-and-conquer methods
for curves.

13.3.5 Curve Algebraic Methods

[SedP86] describes an algorithm for computing the intersection of two rational curves.
By implicitizing one of the curves and substituting the parameterization of the other
into the equation for the first one ends up having to solve a set of homogeneous linear
equations. Another approach combining elimination theory and matrix computations
is described in [ManD94] and [ManK97]. An algorithm for finding the intersection of
two algebraic curves is described in [Sede89].

In general, depending on how smooth curves are presented, earlier comments
imply that the intersection problem can be reduced to finding the roots of an equa-
tion of one or two variables. The interesting case is the two-variable case that involves
solving a polynomial equation of the form

like equation (13.6). This is the type of problem that algebraic geometry can help solve
and is really part of the more general problem of computing implicitly defined objects
about we have more to say in the next chapter.

Sometimes one wants not only the points in the plane that constitute the inter-
section of two parameterized curves but the parameter values at the points of inter-
section. If one used an implicitization approach to find the intersection, then the
parameter variables would have disappeared. This means that after finding an

f u v, ,() = 0

13.3 Curve Intersections 551

Figure 13.8. Multiple-curve
intersections.

intersection point q, one is left with another problem, namely, that of finding the
parameter u so that p(u) = q.

13.4 Special Surface Intersections

13.4.1 Ray-Surface Intersections

Problem 10.2.2.6 solved the ray-surface intersection problem for the faceted surface
case. Now assume that S is a parameterized surface with parameterization p(u,v) and
that X is a ray from a point p in a direction v. Let L be the line through p with direc-
tion vector v. Using a rigid motion we can transform this situation into one where p
is the origin and v is e3, so that L is the z-axis. Like in the ray-curve case, there is
little cost associated to assuming that this has been done.

If p(u,v) = (p1(u,v),p2(u,v),p3(u,v)), then finding the point where the z-axis pierces
S is equivalent to solving the equations

along with the condition that p3(u,v) ≥ 0. These equations can be solved using a
Newton-Raphson method but one needs a starting guess at a solution. One way to get
one is to subdivide the u-v domain into small rectangles with corners (ui,vj) and then
approximate the surface by the grid of points p(ui,vj). If we find a quadrilateral pierced
by the ray, then any one of its corners can be used as an initial guess for the Newton-
Raphson iteration.

Again, like in all Newton-Raphson method approaches, one has to be ready to deal
with at least two problems. The first is that the partial derivatives of the functions
p1(u,v) and p2(u,v) may not be linearly independent at some points causing the usual
problems with a Newton-Raphson method. The other more complicated problem is
caused by the fact that we have a bounded domain and the iteration may want to
cross one of the boundary lines. When this happens one should check if the solution
does not in fact lie on the boundary by applying a Newton-Raphson iteration along
the boundary, which is a one-dimensional problem. There will be additional problems
at the corners of the patch. If at any time the solution seems to want to move back
inside the patch, revert to the two-dimensional search problem.

13.4.2 Curve-Surface Intersections

We only consider the case where both the curve and surface are smooth subsets of R3

and are defined by parameterizations. Assuming that the curve is parameterized by
q(t) and the surface by p(u,v), we need to solve the equation

(13.11)r t u v q t p u v, , , .() = () - () = 0

p u v

p u v
1

2

0

0

,

,

() =
() =

552 13 Intersection Algorithms

We describe a Newton-Raphson approach. The idea is to start with a guess (t0,u0,v0)
for a solution to equation (13.11) and then define a sequence (ti,ui,vi) that converges
to an actual solution. Assume that we have already defined ri = (ti,ui,vi), i ≥ 0. Using
the linear function

as an approximation to the function r(t,u,v) in a neighborhood of (ti,ui,vi), we get
the next iterate (ti+1,ui+1,vi+1) by solving h(t,u,v) = 0 . Let qt

i = q¢(ti), pu
i = pu(ui,vi), and

pv
i = pv(ui,vi). It is easy to show that

so that we need to solve

(13.12)

Since, pu
i ¥ pu

i = 0,

But qt
i is orthogonal to pu

i ¥ qt
i and so qt

i • (pu
i ¥ qt

i) = 0 and

(13.13)

Finally, let ni = pu
i ¥ pv

i be the normal to the surface at r(ti,ui,vi) and set Di = qt
i •ni.

Then equation (13.13) can be solved for v. A similar argument can be applied to the
variables u and t. What we finally get are equations

(13.14)

The sequence (ti,ui,vi) defined by equations (13.14) will converge to a point in the inter-
section of our curve and surface provided that we do not run into the usual problems
associated to Newton-Raphson methods. Getting all the intersection points hinges on
being able to come up with enough initial guesses.

13.4.3 Surface Sections

We begin our look at surface-surface intersections with the special case of finding a
section of a surface S. This includes the problem of finding contours, although we
will say more about that in Section 14.6.

Definition. The intersection of a set in Rn and a hyperplane is called a section of
that set. If the hyperplane is parallel to a coordinate plane, that is, if it is defined by
an equation of the form xi = c, where c is constant, then the section is called a contour.

t t D

u u D

v v D

i i i
u

i
v

i i

i i i
v

i
t

i i

i i i
t

i
u

i i

+

+

+

= - ∑ ¥()()
= - ∑ ¥()()
= + ∑ ¥()()

1

1

1

p p r

p q r

q p r .

q p r q p p 0i
t

i
u

i i
t

i
u

i
v

iv v∑ ¥() - ∑ ¥() -() = .

p r p q p p 0i
u

i i
u

i
t

i i
u

i
v

it t v v¥ + ¥ -() - ¥ -() = .

r q p p 0i i
t

i i
u

i i
v

it t u u v v+ -() - -() - -() = .

h t u v t t u u v vi i
t

i i
u

i i
v

i, , ,() = + -() - -() - -()r q p p

h t u v r t u v Dr t u v t t u u v vi i i i i i i i i, , , , , , , ,() = () + () - - -()

13.4 Special Surface Intersections 553

We first consider the case where S is faceted. Assume that S has convex facets. To
find the section of S with respect to some plane there is again no loss of generality
by assuming that the plane is the x-y plane. The idea will be to find all the edges of S
that cross the x-y plane and then to connect the intersection points appropriately. To
find the crossing edges, we only need to look at the z-coordinates of the endpoints of
the edges and see if they straddle 0. To facilitate connecting the edge intersections we
use the fact that if the section crosses a face then it crosses two of its edges (unless
it just touches the face in an edge or vertex). Therefore, we associate a pair of inte-
gers to each face which will either both be -1 or the index of an edge in the edge array.
The resulting algorithm is shown in Algorithm 13.4.3.1.

The problem of finding sections of smooth surfaces is more complicated. We have
actually run into this problem earlier in the book. In fact, some of the techniques
described in Section 7.10 that provided a scan line visible surface determination algo-
rithm for smooth surfaces would also apply to solve this problem. Here we describe
another approach. See [PraG86] or [Sutc80].

The Grid or Lattice Evaluation Method. First of all, we may again transform the
intersection problem by a rigid motion to the case where the plane is parallel or in
fact equal to the x-y plane. The problem then is equivalent to finding a contour on a
surface. If the surface is parameterized by a function

then the problem is to solve the equation z(u,v) = 0. The basic idea is to reduce the
problem to a lower-dimensional one by adding some constraints. Typically, one eval-
uates z(u,v) at a grid of points (ui,vj). Let zij = z(ui,vj). If adjacent zij’s have opposite
signs, then the contour will cross the corresponding edge between the grid points.
One finds the crossing point by solving a one-dimensional problem of the form z(ui,v)
= 0 or z(u,vj) = 0. The intersection points are then connected to get a polygonal approx-
imation of the contour. See Figure 13.9(a). One major problem with this approach is
that it can be difficult to determine how to connect intersection points on the grid

p u v x u v y u v z u v, , , , , , ,() = () () ()()

554 13 Intersection Algorithms

Figure 13.9. Sections using a lattice evaluation method and ambiguities.

13.4 Special Surface Intersections 555

Input: A faceted surface S
Output: A list of pseudofacets F that constitute the section of

(A pseudofacet is a list of vertices that define a facet that may be listed
in a random order)

S by the x-y plane

{ Global variables }
integer list array indexed by the faces of S Exs;
edge list E;
edge e, e';
real z0, z1;
vertex v0, v1;
pseudofacet fc;

begin
for each face f in S do initialize Exs[f] to the empty list;
Initialize E to empty;
for each edge e in S do

begin
 z0 := z-coordinate of first vertex v0 of e;
 z1 := z-coordinate of second vertex v1 of e;

if 0 Œ [z0,z1] then
case type of intersection of

z0 = 0, z1 π 0 : for each edge e' incident to v0 do
begin

Add e' to E;
for each face f incident to e' do Add e' to Exs[f];

end;
z1 = 0, z0 π 0 : for each edge e' incident to v1 do

begin
Add e' to E;
for each face f incident to e' do Add e' to Exs[f];

end;
z0 = z1 = 0 : { horizontal edge case }

for each face f incident to e do
for each nonhorizontal edge e' of f adjacent to e do

begin
 Add e' to E; Add e' to Exs[f];
end;

0 Œ (z0,z1) : begin { the typical generic case }
Add e to E;
for each face f incident to e do Add e to Exs[f];

end
end;

Initialize F to empty;
if Empty (E) then Exit;

Algorithm 13.4.3.1. A faceted surface sectioning algorithm.

556 13 Intersection Algorithms

for e in E do
begin

fc := PseudoFacetItDefines (e); { Delete e and possibly other edges from E }
if NotNull (fc) then Add fc to F;

end
end;

pseudofacet function PseudoFacetItDefines (edge e0)
begin

pseudofacet fc;
face f, lastf;
edge e;
boolean more;

Delete e0 from E;
Initialize fc to z, the intersection of e0 with x-y plane;
for each face f adjacent to e0 do flag the e0 in Exs[f] as SEEN;
(lastf,e) := face lastf is adjacent to e0 and edge e in Exs[lastf] is not yet SEEN;

more := true;
while more do

begin
Delete e from E;

 Add intersection z of e with x-y plane to end of fc;
for each face f adjacent to e do flag the e in Exs[f] as SEEN;

if some face f (π lastf) adjacent to e has edge (π e) in Exs[f] marked SEEN
then more := false
else

begin
lastf := face adjacent to e;
e is edge in Exs[lastf];

end;
end;

Delete all references to edges in all Exs[] which were marked as SEEN;

return (fc);
end;

Algorithm 13.4.3.1. Continued

lines. A second problem is that some loops may be missed entirely if the grid is not
fine enough. This problem often occurs near critical points of z(u,v), such as saddle
points, or other singularities because the data may not have a unique interpretation.
In Figure 13.9(b) there are three possible intersection curves that give rise to the same
labeling of grid vertices with the sign of their zij values.

[Faro87] describes an algebraic geometry approach to finding sections of bicubic
patches. See also [ChaK87]. Another surface section algorithm is a special case of the
general surface intersection algorithm described in [GraK97].

The problem of finding sections has a converse, namely to describe a surface
given a collection of sections for it. This is skinning problem and will be discussed
in Section 14.7.

13.5 Surface-Surface Intersections

General surface intersection algorithms are particularly important in geometric
modeling, such as in the boundary evaluation algorithm of CSG and NC cutter path
generation. Unfortunately, finding such intersections is a very difficult problem and
no algorithm that is both efficient and correct is known at the moment. Efficient algo-
rithms have problems near singularities or almost-singularities because computers
only have finite precision. Accurate and robust algorithms are currently too slow.
Some are based on algebraic geometry methods that do not apply to nonalgebraic sur-
faces. Others try to use interval arithmetic ([HMPY97]). Pratt and Geisow ([PraG86])
give a good survey of some older known intersection algorithms. [Fari92b] contains
a list of references on the topic of intersection algorithms.

First of all, finding the intersection of two faceted surfaces reduces to finding the
intersection of two facets in 3-space. This in turn reduces to finding the intersection
of a convex polygon with a plane and then finding the intersection of a segment with
a convex polygon. The mathematics behind doing this was discussed in Section 6.5.
If only one of the surfaces is faceted and the other is smooth, one can reduce this
problem to finding sections of the smooth surface and finding the intersection of two
curves in these sections. This leaves the problem of finding the intersection of two
smooth surfaces.

Like in the curve case, one approach to finding intersections of smooth surfaces
that one might think of almost immediately is to approximate them by faceted sur-
faces and then use methods for intersecting those types of surfaces. The usual problem
is deciding when an approximation is good enough. [Grif75] and [Grif78] used this
approach to display parametric surfaces. [HaAG83] starts off with coarse faceted
approximations whose intersecting facets are then subdivided further appropriately.
[RosR86] used meshes of isoparametric curves. [Turn88] used a two-surface bound-
ing volume that generalized his curve intersection approach described earlier in
Section 13.3.2. After finding points close to the intersection, a Newton-Raphson
method was used to actually find points on it.

Rather than solving the smooth surface intersection problem by reducing it to the
faceted case it is better to deal with it directly. The special case of quadric surface
intersections has been studied extensively. See, for example, [FaNO89] and [Pieg92]

13.5 Surface-Surface Intersections 557

and the references in those papers. The solutions to the general problem involve five
basic approaches referred to as lattice evaluation methods, marching methods,
homotopy methods, recursive subdivision methods, and methods based on algebraic
geometry. When the actual complete surface intersection algorithms that have been
proposed are classified as belonging to one of these approaches one must keep in mind
that the algorithms usually consist of several stages and different methods can be used
for the separate stages. Therefore, many algorithms are really hybrids that do not fit
under any single roof as, for example, the ones described in [BarK90], [Kopa91], and
[GraK97]. The next five sections will discuss the various approaches.

[MarM91] describes a parameterization for the intersection curve. [GarW89]
represents the intersection curve algebraically, basically as an algebraic curve and a
birational map between the plane and space curve. Bounding boxes are sometimes
used in intersection algorithms and [FiMM86] gives some general bounds for surfaces.

Parallelism has also been used to speed up intersection algorithms. See [BurS93]
and [ChBA94].

13.5.1 Surface Lattice Evaluation Methods

A common special case of the lattice evaluation method was already described in
Section 13.4.3 in the context of finding contours of the graph of a function of two
variables. For more general surface intersection algorithms the method is used at most
as a preprocessing step to get some starting points in the intersection. Given two para-
metric surfaces p(u,v) and q(u,v), one considers the lattice of curves p(ui,v) and p(u,vj)
defined over grid lines in the rectangular domain of p(u,v) and finds their intersec-
tion with the surface q(u,v). The intersections give us starting points to which a march-
ing method can be applied to find the complete intersection of the two surfaces. One
might have to refine the lattice at places to make sure that no part of the intersection
is missed. We shall see an example of this in the discussion of Timmer’s algorithm in
the next section. In [BFJP87] polygonal approximations of the curves p(ui,v) and
p(u,vj) were intersected with a polygonal approximation of q(u,v) and a Newton-
Raphson method was then used to find real points on the intersection curves.

13.5.2 Surface Marching Methods

Marching methods, also sometimes referred to as tracing methods, are the most widely
used methods for computing intersections. They assume that one has found points
on the intersection and one then “marches” out from those points along the inter-
section curve by using information about the local geometry. We have already seen
examples of this approach in other contexts. In general, this type of approach has
three phases: a hunting phase, a tracing phase, and a sorting phase. In the initial
hunting phase one tries to find start values that one then uses in the tracing phase to
generate sequences of points that lie on the intersection. One needs enough start
values, so that no part of the intersection is missed. Finally, in the sorting phase one
separates the sequences of points generated by the tracing phase into sequences that
define the connected pieces and loops that are the subcurves of the entire intersec-
tion. We end up with a discrete approximation to the intersection.

558 13 Intersection Algorithms

An early marching method is one due to Timmer. See [Timm77] or [Mort85].
Suppose that two surfaces S1 and S2 have parameterizations p(u,v) and q(u,v), respec-
tively, each with a rectangular domain. To find their intersection X, we shall find the
subset of the domain of p(u,v) which parameterizes this set. The three solid curves in
Figure 13.10 are an example of a set of parameter values for one possible such X.

Timmer’s Hunting Phase. Subdivide the domain of p into subrectangles. Restrict-
ing p to the associated grid lines defines a grid of curves p(ui,v) and p(u,vj) on S1. The
intersections of these curves with S2 will provide the starting points that are used to
trace the pieces of X. We run into the usual problem of making our grid fine enough,
so that we will not miss any part of X. In Figure 13.10 the intersection of the grid
lines with this set consists of points that have been numbered from 1 to 15. Let uvi
denote the parameter point numbered i. The numbering is based on an ordering of
the grid lines and the intersections that lie on them. We started with the vertical grid
lines ordered from left to right and ordered their intersections based on increasing v
value and then moved on to the horizontal lines ordered from bottom to top and
ordered their intersections based on increasing u value. Actually, we do not really have
to compute the intersection points precisely initially. They only need to be accurate
enough so that a Newton-Raphson method, say, can be used to converge to the actual
values. Therefore, the initial guesses for the intersection points could be found by dis-
cretizing the curves p(ui,v) and p(u,vj) also. Alternatively, we can think of the problem
as one of finding points on a curve that are closest to a surface and use any algorithm
that is known to solve this problem. Once we have our intersection parameter values
uvi we start the next phase.

Timmer’s Tracing Phase. We consider the part of the intersection over each subgrid
separately. We analyze each subgrid one after another based on a left to right, bottom
to top order. Figure 13.11 shows the subgrid labeled A in Figure 13.10. Since the points
uvi correspond to endpoints of curves in the subgrid, we now use them one at a time
based on their ordering to trace the parts of the curves that lie in the subgrid. This
not only gives an ordering to the pieces but also a direction. Figure 13.10 also showed
the ordering, indicated with the labels a, b, . . . , k, and the direction in which curve
segments were traced.

13.5 Surface-Surface Intersections 559

Figure 13.10. Hunting grids for Timmer’s
algorithm.

560 13 Intersection Algorithms

The actual tracing of the curves is carried out using a standard Newton-Raphson
approach, but it is worth commenting on how two details were implemented.

First, tangent vectors for the curves were used for stepping. They are obtained
from the normals to the surfaces provided that the surfaces are not tangent at the
point of intersection. Specifically, if x = p(u1,v1) = q(u2,v2) is a point in the intersec-
tion X, then

is a tangent vector to X at x. Note however that we are making all of our computa-
tions relative to p(u,v), so that we have the parameter (u1,v1) but not (u2,v2). To get
the parameters (u2,v2), another iterative procedure is used that, given a point x, solves
an equation of the type

for (u,v).
Second, one needed to decide on a step size L. See Figure 13.12. Suppose that we

are at point pi. Let Ti be the unit tangent vector at pi. Let ki be the curvature of the
curve at pi. This value can be computed using the first and second partials of p(u,v)
and q(u,v). Let ri be the radius of curvature, namely, the radius of the osculating circle.
Then ri is just the reciprocal of the absolute value of ki. The step size L is then defined
to be the length riDq of the arc from pi to A of the osculating circle with center C,
where Dq is some predefined constant angle tolerance. (It should be noted, however,
that there is no need to actually compute the osculating circle because we only need
the radius.) The point B = pi + LTi in Figure 13.12 was then used as a starting guess
for a Newton-Raphson iteration to get the next point pi+1.

x - () =q u v, 0

p u v p u v q u v q u vu v u v1 1 1 1 2 2 2 2, , , ,() ¥ ()() ¥ () ¥ ()()

Figure 13.11. Curves in a hunting subgrid.

Figure 13.12. Determining the step size in Timmer’s algorithm.

Timmer’s Ordering Phase. We have to take our list of curve segments and combine
them appropriately to get the complete curve. This is not totally trivial. Only the end-
points of the curve pieces are important. Basically, one starts with the first point uv1
and the piece to which it belongs, then looks for another piece that has an endpoint
that matches the second endpoint of our piece, and continues in this manner. For the
example in Figure 13.10 we would get following connected pieces:

This concludes our sketch of Timmer’s algorithm. The problem with Timmer’s
algorithm is that it does not always give the correct answer and it is not as efficient
as some more recent algorithms. Although more recent algorithms also fail at times,
they give the correct answers in many more cases. We shall describe one more march-
ing algorithm, namely, the one by Barnhill and Kersey ([BarK90]), although strictly
speaking this algorithm is a hybrid method since it includes elements of recursive sub-
division. Its primary goal was to be more general and more robust than previous such
algorithms while still being efficient.

The Barnhill-Kersey Hunting Phase. The first step is to subdivide the rectangular
or triangular domain of each of the parameterizations in an adaptive way. A quadtree
data structure is used to represent a subdivision. Several types of subdivisions are per-
formed. First, there is a uniform subdivision of the domain down to a user specified
level for the quadtree. Then may come a further subdivision of those subpatches that
do not meet a flatness and edge linearity criterion based on the angles between
normals and tangents, respectively. For each subpatch we want the normals at the
vertices and at one interior point to be almost parallel. Equivalently, the angles
between them should be small. See Figure 13.13(a). In addition, for each edge of the
subpatch, if T and T¢ are the unit tangent vectors at the endpoints of that edge, then

a c d i j k

b e f

h m l g

, , , , ,

, ,

, , ,

- -
-
- -

13.5 Surface-Surface Intersections 561

Figure 13.13. Flatness and edge linearity tests in the Barnhill-Kersey algorithm.

562 13 Intersection Algorithms

we also want those two vectors to be almost parallel or the angle between them small.
See Figure 13.13(b). The eFT and eELT in the figures represent some predefined
flatness and edge linearity tolerances, respectively.

At this stage, a parallelopiped bounding box is associated to each subpatch. Care
must be taken in the definition of these bounding boxes so that they satisfy their essen-
tial property, which is that they contain their subpatch. The initial guess for a bound-
ing box is determined from the vertices of the patch but is then enlarged using
geometric information about the edge tangents and normal vectors. The subdivision
is assumed to be fine enough so that the simple geometric argument that is used
works. One uses the bounding boxes to cull away subpatches from the two surfaces
that cannot possibly intersect. Determining whether two parallelopipeds intersect is
done by transforming the second into the skew coordinate system determined by the
first. The problem reduces to determining whether a parallelopiped intersects the unit
cube and this has a straightforward solution.

Once one has found potential subpatch intersections, there may be some more
subdivisions of those to increase accuracy and/or achieve convergence for subsequent
Newton-Raphson steps. Suppose now that we have two bounding boxes that inter-
sect, one from each surface. One then takes the average of the corner vertices of the
subpatches associated to the bounding boxes and relaxes it to the intersection. One
does this for every pair of intersecting bounding boxes. This will give us a collection
of points on the intersection that are used as start points for the tracing stage, but
before we get to that we want to describe how points are relaxed in [BarK90]. Such
an operation is performed repeatedly in the tracing stage.

Relaxing Points in the Barnhill-Kersey Algorithm. Let p be the point to be
relaxed. The point q in the intersection to which p is relaxed will be the limit of a
sequence of points pi, where p0 = p. Assume that we have already found pi. We describe
how the point pi+1 is defined. The first step is to find points q1 in S1 and q2 in S2 that
are closest to pi. Ways to carry out this step are described in Section 14.2. If the points
q1 and q2 are within a predefined same point tolerance eSPT, then we have found our
q and we quit. Otherwise, let Tj be the tangent planes to Sj at qj. The point pi+1 will
be the midpoint of the projections of q1 and q2 onto the line which is the intersection
of T1 and T2. See Figure 13.14. Alternatively, let nj be a unit normal vector for plane
Tj and define a third nonparallel plane T3 as the plane through the point (1/2)(q1 +

Figure 13.14. The Barnhill-Kersey relaxation
algorithm.

q2) and normal n3 = n1 ¥ n2. Then pi+1 is the intersection of the three planes T1, T2,
and T3. The special case where the planes T1 and T2 are parallel is easily handled sep-
arately. Convergence, although a problem theoretically, was not a problem in practice
given that points were only needed within the tolerance eSPT.

The method for relaxing points that we just described is what is used for deter-
mining the intersection in the interior of the surface patches, which is most of the
time, but not for relaxing points onto the boundary of the patches. In that case one
uses a Newton-Raphson approach to solve

along with a parameter constraint determined by the boundary to which one is
relaxing, for example, u = 0. We have a system of three equations in three unknowns.
Parallel tangent planes are again a problem.

The Barnhill-Kersey Tracing Phase. This phase is started for each intersection
point obtained in the hunting phase. For each start point, one generates a sequence
of points that lie on the intersection. As one moves from one point p to the next
one needs a step direction and step size. The tangent of the intersection curve at the
current point is used as the step direction. Like in Timmer’s algorithm, this is com-
puted from the cross-product of the normal vectors to the surfaces at p. One can save
some multiplications by using Theorem 1.10.4(2) in [AgoM05] and use the direction

instead. Unfortunately, these formulas give the zero vector if the surfaces are tangent.
In that case one can take the difference of previous intersection points. If there are
no previous points and we are at the first intersection point, say p = p(u0,v0) = q(s0,t0),
one samples points on the circles around (u0,v0) and (s0,t0) in the domains of the para-
meterizations to find another point on the intersection. The new step direction is then
taken to be the difference between this point and p.

Once one has the step direction one has to decide on a step size L. Like in Timmer’s
algorithm one wants to use a formula of the form L = rDq, where r is the radius of
curvature and Dq is some predefined angle tolerance. However, the parameteriza-
tions were only assumed to be C1 here and so the second derivatives are not directly
available to compute this radius. Therefore, an approximation was used. Assume that
we are a point p on the intersection. Two points a small distance e from p on the
tangent line to the intersection curve at p are relaxed to points x and y on the inter-
section. The three points p, x, and y determine a circle and we let r be its radius
because we can consider this circle to be an approximation to the osculating circle.
Formula 6.8.1 implies that

where a = x - p and b = y - p. If the three points were collinear or L turned out to
be larger than some predefined curve refinement tolerance eCRT, then L was set to
eCRT.

r =
-

¥
a b a b

a b2
,

p p p p p pu v u v v u¥() ¥ = ∑() - ∑()n n n2 2 2

p u v q s t, ,() - () = 0

13.5 Surface-Surface Intersections 563

The point q is then relaxed to an intersection point that is defined to be pi+1. There
are numerical problems if the tangents to the two curve segments at the branch point
are almost parallel. A further problem is indicated in Figure 13.16. Suppose that we
have detected an intersection in the parameter segments whose endpoints parame-
terize two pairs of points pi, pi+1 and pj, pj+1. In Figure 13.16(a), if we were to choose
pi and pj as start points of our iteration, then pj projects to the point A on the tangent
line at pi and the point A relaxes to a point B which is again on the second curve
segment. This violates our condition that our sequence of points should alternate
between curve segments. If we had started with, say, pi and pj+1, as indicated in
Figure 13.16(b), then everything would have been fine. To avoid this problem,
Barnhill and Kersey suggest testing the angle between the vectors pipi+1 and pjpj+1. If
the angle is less than 90 degrees, that is,

then choose pi and pj, otherwise, choose pi and pj+1. There are numerical problems
when the angle is near 0 or 90 degrees.

The algorithm in [GraK97] uses a different approach to finding terminating points
in the case of tensor product spline surfaces. It uses an algebraic method for hunting
and finds the terminating points before starting the tracing. The method is based on
an algorithm that finds all solutions to the kind of nonlinear systems of equations one
gets in the tensor product spline surface case.

Tolerances in the Barnhill-Kersey Algorithm. Several predefined tolerances were
used in the algorithm. The main one was the same point tolerance eSPT. In [BarK90]
it was claimed that assigning it a value of 10-7 gave good results on a computer with
16-decimal-place precision. It was also recommended to use tolerances based on
angles as much as possible to remove dependencies on surface magnitudes and units
of measure.

The Data Structures in the Barnhill-Kersey Algorithm. The main structure is that
of a quadtree node. Each such node maintained the following information:

p p p pi i j j+ +∑ >1 1 0,

13.5 Surface-Surface Intersections 565

Figure 13.16. A branch convergence problem.

its level,
the coordinate transformation and its inverse for the associated bounding box,
edge linearity and flatness measures,
the parameter domain,
the values, partials, and normals at the vertices and the centroid,
a pointer to a doubly linked adjacency list used for sorting, and
pointers to child nodes.

An adjacency list node consisted of a pointer to a doubly linked list of nodes that con-
tained intersection information, namely,

the start and endpoint of the domain of the segment in the form of four reals u1,
v1, u2, and v2,

the start and endpoint p1 and p2 of the segment in R3, and
a flag indicating whether the segment terminated.

There was a list of pairs of quadtree nodes whose bounding boxes intersected.

The Barnhill-Kersey Sorting Phase. The quadtree data structure facilitated the
sorting phase, but is not necessary. Note that all non-closed polygonal curve segments
generated by the tracing phase terminate at boundary or branch points. When sorting
those segments, endpoints are considered the same if they are within a tolerance of
eSPT. The recursive divide-and-conquer algorithm described in [HEFS85] was used on
the partial adjacency lists associated to the quadtree nodes.

This finishes our discussion of the algorithm in [BarK90]. The authors compared
their algorithm to others, in particular to those in [BFJP87] and [HEFS85]. The advan-
tages were that it also worked for parameterizations with triangular domains, did
not need second derivatives, and handled more tricky cases correctly. It was at least
as robust or more than other surface intersection algorithms. The tolerance constants
described above could be adjusted manually to achieve better results in difficult cases.
The reader might also look at the algorithm in [Luka89] for additional details on the
Newton-Raphson mathematics.

As a third example of a marching method for finding the intersection of two sur-
faces, assume that the intersection curve lies in the uv-plane, is defined by an equa-
tion f(u,v) = 0, and we have already computed the ith solution point pi = (ui,vi). Of
course, one can look at this version of the intersection problem from various points
of view. It can be thought of as an implicit curve or contour problem. Sections 14.5.1
and 14.6 discuss those. Here we shall describe a “step constraint” approach for getting
the next point. Let us add another constraint g(u,v) = 0. For example,

(13.15)

corresponds to requiring that the next point pi+1 is on the intersection a distance d
from pi. A step in the direction of the tangent of the curve at (ui,vi) is used as an initial
guess and then a Newton-Raphson method is used to converge to the next solution.
See Figure 13.17. There are the usual potential problems such as needing a start point

g u v u u v v di i,() = -() + -() -2 2 2

566 13 Intersection Algorithms

on the intersection curve and possible lack of convergence where the partials of f
vanish. Additionally, the step constraint must be chosen carefully. For example, for a
constraint of the type shown in equation (13.15), the step size d influences the result
and the value of d may change from point to point. We do not want to step to another
branch of the curve. We also have to check for the possibility that our solution takes
us outside the given (u,v)-domain. If the intersection curve is closed, then we also
want to be able to close our curve explicitly.

A fourth marching method approach tries to minimize a function that vanishes
on the set of interest. For example, if the intersection is defined by

and we use a step constraint

then we could try to minimize

(13.16)

See, for example, [Powe72] or [PraG86].
We mention one last marching type approach. Here one uses vector fields and

differential equations, where intersection curves are solutions to the latter. See, for
example, [PhiO84], [Chen89], [MarM89], or [KrPW92].

At the heart of the typical marching method is the Newton-Raphson method. One
ends up with a discrete approximation to the solution. As one generates the points
one always starts with a guess for the next point and then uses the Newton-Raphson
method to successively refine that guess until we get a point that lies on the actual
solution set with desired accuracy. Let us recapitulate some of the common problems
marching methods have to contend with:

(1) They need starting points.
(2) The direction and step size has to be selected very carefully to avoid missing

entire pieces of the intersection or accidentally stepping from one component
to another.

F f g h= + +2 2 2.

h x y z, , ,() = 0

f x y z

g x y z

, ,

, ,

() =
() =

0

0

13.5 Surface-Surface Intersections 567

Figure 13.17. A step constrained marching
method.

568 13 Intersection Algorithms

(3) They get tricky to implement near terminating points.
(4) They have problems at singular points.

What differentiates the various marching algorithms is how these problems are
addressed. We finish this section with a discussion of these points.

When it comes to picking start points, we have seen how the Timmer and
Barnhill-Kersey algorithms do it. For more on the subject we refer the reader to
[AbdY97]. That paper discusses two general methods for picking start points along
with an analysis and comparison.

The question of step direction and size really has to do with finding a good approx-
imation to the next point on the curve. Obviously, the better these guesses are, the
faster the Newton-Raphson method converges to the solution. Most of the time, the
guesses are based on linear approximations to the solution. For example, a starting
guess for the next point is often chosen from the points along the tangent line at the
current point of an intersection curve. This is often only a crude guess. A higher-order
approximation to the solution set would lead to quicker convergence of the Newton-
Raphson method. [Stoy92] suggests using a second-order approximation, that is,
parabolas. In that way one was also able to control the deviation of the actual inter-
section curve from its polygonal approximation.

We shall sketch the mathematics involved in getting higher order approximations.
The details can be found in [BHLH88] and [Hoff89]. Consider the implicit/implicit
case where the two surfaces S1 and S2 in R3 are defined by equations

and (13.17)

As usual our object is to define a sequence of points p0, p1, p2, . . . , so that the polyg-
onal curve they define approximates the intersection of S1 and S2. We need to describe
how we get the first point and then how we get from one point to the next.

Assume that we are given a point p = pi that lies on the intersection of S1 and S2
and we want to get the next point pi+1. Assume further that the gradients —f(p) and
—g(p) are not zero and that the surfaces intersect transversally at p. If any of these
conditions are not satisfied, the approach that will be described here will probably
fail and an algebraic geometry approach would be appropriate if f and g are polyno-
mials. The general assumption we make here is that the intersection of S1 and S2 can
be defined by an analytic function of the form

(13.18)

defined in the neighborhood of the origin with g(0) = p. We use the first m terms of
this power series to approximate g(t). The case m = 1 corresponds to the usual linear
approximation and so of interest here is the case m > 1, specifically when m = 2 or 3.
To accomplish the goal, we need to solve for the ai, i = 0, 1, . . . , m.

Let q = p + d and let d = (d1,d2,d3). Consider the Taylor expansion

(13.19)f a a
i j k

f

x y z
ijk

i j k
ijk

i j k

i j k
i j k dd

q p() = = ()
+ +

+ + ==

•

ÂÂ d d d
∂

∂ ∂ ∂1 2 3
0

1
,

! ! !

g gt t t where
ii

i() = + + + = ()()a a a a0 1 2
2 1

0. . . ,
!

,

g x y z, , .() = 0f x y z, ,() = 0

13.5 Surface-Surface Intersections 569

for f around p. Assume that g(t) = q. Since g(t) lies in S1, h(t) = f(g(t)) = 0. Therefore,
if one substitutes the series (13.18) into (13.19) all the coefficients of the resulting
power series in t must vanish. Setting the coefficients of ti, i = 1, 2, . . . , m, to zero
gives m equations in 3m unknowns gj

(i)(0), j = 1, 2, 3, and i = 1, 2, . . . , m. Applying
the same argument to the function g that defines the surface S2 gives another m equa-
tions. This underdetermined system of equations can be solved. By adding some addi-
tional geometric constraints dealing with the curvature and moving triad associated
to the space curve g(t), one can get a unique solution. The way that the additional con-
straints are chosen affects the parameterization g(t) of the intersection of the surfaces.
[BHLH88] and [Hoff89] also discuss how to choose the step d. One has to watch out
that one does not get outside the radius of convergence of g(t). This is not easy, but
one can give bounds for the maximum step size. In the case m = 3 these depend on
the second and third derivative of g.

Having gotten an approximation to the next point on the surface intersection, one
performs a Newton-Raphson iteration consisting of points q0 = q, q1, q2, . . . , to find
the point pi+1 that actually lies in that intersection with as much accuracy as desired.
One point to note is that what we just did for R3 easily extends to computing the inter-
section of n - 1 hypersurfaces in Rn.

Using higher-order approximations to curves takes computation time, which is
why many algorithms are satisfied with linear approximations and step in the tangent
direction. However, one must also decide on the step size. Intuitively, it makes a lot of
sense to base the decision on the osculating circle since it is the best circle approxi-
mation to the curve at the point. Both the Timmer and Barnhill-Kersey algorithms step
in the tangent direction and use the radius of the osculating circle to determine a step
size. Since everything is an approximation anyway, the only question is how accurately
we should compute the osculating circle and its radius r. Computing second derivatives
is usually not cheap. Timmer’s algorithm did compute r exactly. The Barnhill-Kersey
algorithm used an approximation to the real r. Neither algorithm actually tried to
compute the osculating circle and only needed its radius. The algorithms in [CheO88]
and [Aste88], on the other hand, actually stepped along the circle. The first applied
to parametric surfaces and the second to implicit surfaces. The approximation in
[WuAn99] is better yet for parametrically defined surfaces. The authors define an
approximation to the osculating circle that can be computed efficiently and step in its
tangent direction (not along the tangent to the curve). The equation for their circle is
based on the current and previously computed curve point and tangent. Let Ti denote
the tangent to the intersection curve at point pi. Let C be the point that is the intersec-
tion of the following three planes p1, p2 and p3 described in point-normal form:

plane p1: point pi-1, normal vector Ti-1
plane p2: point pi, normal vector Ti
plane p3: point pi, normal vector Ti-1 ¥ Ti

The point C is then assumed to be the center of the circle. The plane of the circle is
assumed to have normal vector Cpi-1 ¥ Cpi. See Figure 13.18. Degenerate cases are
handled in the paper. One can show that this circle converges to the actual osculat-
ing circle as pi approached pi-1. The marching distance is again taken to be rDq, where
r = |Cpi| and Dq is a predefined tolerance. It was found that this method leads to a
robust marching algorithm that

(1) has the same complexity but better accuracy than using the tangent vector
direction,

(2) is simpler than using parabolic approximations to the curve but not quite as
accurate, and

(3) is as reliable as continuation methods but is more general.

This still leaves open the question as to whether one has chosen small enough
steps so as to find all parts of the intersection curves. Therefore, the methods need an
add-on for loop detection such as is described in [SedM88], [SeCK89], [Hohm91], and
[MaLe98]. This also applies to finding the start points. Unfortunately, it is very hard
to set tolerances correctly.

The problem of terminating points was encountered in our discussion of the
Barnhill-Kersey algorithm where we had to make a special case out of finding those
points and dealing with them. Finally, the problem with singular points is that the
Newton-Raphson iteration method involves solving linear equations and the matrices
for these equations usually have very bad condition numbers at the singular points,
which means that one loses all accuracy. The iteration may not converge or may miss
parts of the intersection curves.

[KrPP90] describes a hybrid algorithm that is basically a marching algorithm but
uses algebraic methods to make sure that no part of the intersection is missed. It
applies to the intersection of an algebraic and a rational parametric surface. The key
point was being able to detect all the “significant” points on the intersection curve.
Those are the boundary points, turning points (where the normal vector to the curve
is parallel to the u- and v-axis), and singular points (where the first partials vanish).

13.5.3 Surface Homotopy Method

The problem of finding intersections of implicit surfaces can be thought of as a special
case of the more general problem of solving systems of polynomial equations. One
much-studied technique that is used is called the homotopy method. It has also been
called the homotopy continuation method or simply a continuation or embedding
method. The idea is to find the solutions to a related set of simpler equations first and
then to deform these equations and their solutions into the given ones. A simple
example, presented in [PraG86], considers the problem of finding the solutions to the
equations

570 13 Intersection Algorithms

Figure 13.18. An approximation to the
osculating circle.

(13.20)

We note that the following related equations

(13.21)

are easily solved and the solutions to the parameterized equations

(13.22)

define a homotopy between the solutions to equations (13.20) and (13.21). Therefore,
to solve the equations (13.20) we compute the incremental changes to the solutions
to (13.21) as t changes from 0 to 1. One surface intersection algorithm that uses the
homotopy method can be found in [AbdY96].

Here is an overview of the general homotopy method. A good survey can be found
in [AllG90] and [Wats86]. Some other helpful papers are [GarZ79], [Morg83],
[Wrig85], and [AllG93], where one can also find many additional references.

A system of m polynomial equations in n variables corresponds to a polynomial
map f: Rn Æ Rm and an equation

(13.23)

We choose another system of equations

(13.24)

defined by a map g: Rn Æ Rm whose zeros are known and consider the homotopy h:
Rn ¥ R Æ Rm between g(x) and f(x) defined by

(13.25)

Let x0 be a zero of g(x). The object is to find a curve g(t) in the zero set of h that starts
at (x0,0) and ends at a point (x1,1), where x1 is a zero of f. More precisely, we look for
a curve

with the property that

(1) g(0) = (x0,0)
(2) h(g(t)) = 0 , for all t Œ [0,1], and
(3) g(1) = (x1,1) , with f(x1) = 0 .

g : ,0 1[] Æ ¥R Rn

h t t g tfx x x, .() = -() () + ()1

g x 0() =

f x 0() = .

x txy

y tx

2

2

1 0

5 0

- - =
- - =

x

y

2

2

1 0

5 0

- =
- =

x xy

y x

2

2

1 0

5 0

- - =
- - = .

13.5 Surface-Surface Intersections 571

One way to find g(t) is to differentiate the equation in condition (2). This shows
that g(t) must satisfy

(13.26)

where J(x,t) is the Jacobian matrix

If the rank of J(x,t) is n for all values t, then the implicit function theorem will guar-
antee that g(t) exists. We are left with the problem of solving the system of ordinary
differential equations defined by (13.26) and can use any of the well-known ways to
solve such equations.

A second way to find g(t) is to use a standard root finding method like the Newton-
Raphson method to the equation in condition (2) above.

We mention two potential problems with using the homotopy method. In general
terms, what sets the homotopy method apart from previous iterative schemes is the
fact that it replaces a “local convergence” approach with a “global convergence” one.
With the homotopy method we already have some knowledge about certain initial
zeros (if our initial guess for a zero is poor when using a standard Newton-Raphson
method then we may have extreme difficulty in converging to a zero) and we can use
them to iterate to all of the zeros of our function. Nevertheless, we are still dealing
with an iterative process and one big problem with the type of iterative methods that
are used is that when relevant Jacobian matrices have singularities, then it is very
hard to guarantee the convergence to a desired solution. It took a lot of work to over-
come the singular Jacobian matrix problem and make the homotopy method work
and be reasonably efficient.

Another problem that caused great inefficiencies in the homotopy method initially
was the choice of a start function g(x). The original approach was to use Bézout’s
theorem and choose a polynomial function g(x) of total degree d that was the product
of the degrees of the polynomials in f(x). In practice, however, the number of zeros
of f(x) was often much smaller than d and so a lot of computation effort was wasted
in generating curves g(t) that diverged to • as t Æ 1. It was important to find a better
bound on the number of zeros of f(x). This can be done in the case of sparse polyno-
mials, that is, polynomials that have a relatively small number of monomial terms.
One gets a more efficient homotopy method when f(x) is a sparse polynomial. See,
for example, the paper [VeVC94], which concentrates on sparse polynomial systems.

13.5.4 Surface Recursive Subdivision Methods

The general idea of using recursive subdivision (divide-and-conquer) in computer
graphics is an old one. Display algorithms in early papers, such as [Catm74] and
[LCWB80], made use of it. The first suggestion that it might be useful for intersection
problems can be found in [LanR80]. Bézier and B-spline surfaces with their control

J t
h
x

ti

j
x x, , .() = ()Ê

ËÁ
ˆ
¯̃

∂
∂

J t t
d
dt

t
h
t

t tg
g ∂

∂
g()() () + ()() =, , ,0

572 13 Intersection Algorithms

points are good candidates for this approach because their subdivisions have associ-
ated control nets. In [LanR80] the idea is to subdivide the surfaces enough so that the
individual pieces are essentially flat (see also [Clar79] and [LCWB80]). One then finds
the intersection of the approximating planar patches to get a polygonal approxima-
tion to the actual intersection. Because the surfaces satisfy the convex hull property,
one can use bounding boxes to make the algorithm more efficient. This is the analog
of the recursive subdivision for curve intersections in Sections 13.3.1 and 13.3.4.

One problem associated to recursive subdivision is the amount of data that could
be generated potentially. The way to mitigate this problem is by not doing the subdi-
vision down to a certain level blindly. One should keep subdividing an object only at
those places where there is a possibility of it intersecting the other object. The typical
way that such an adaptive approach is carried out is by using some sort of bounding
box approach. Min-max boxes, which are obtained from the minimum and maximum
values of the coordinates of the points of an object, are common choices because they
are so simple. Other bounding objects are slabs (see Section 6.2), convex hulls in the
case of Bézier or B-spline surfaces, or “fat” planes ([Carl82]) for Bézier surfaces. If
the bounding objects do not intersect, then the objects will not intersect. Checking for
intersections of the bounding objects is much easier than checking for intersections
between the objects themselves. One subdivides the objects only at those places where
the bounding boxes intersect. This approach implies that one has a termination cri-
terion. The usual such is based on a flatness test. There are many ways to check for
flatness, but one simple one is to use the normal vectors. The normal vectors will not
change much over regions that are close to flat. Of course, no matter how simplified
a test one uses, this will still take some extra time and so the more one can avoid
having to use such tests, the better. One might be able to say in advance how much
subdivision is needed.

The algorithm in [HEFS85] is an example of a recursive subdivision algorithm for
C1 parametric surfaces. It proceeds in four steps: subdivision, intersection, sorting,
and refinement. The subdivision is done in stages. First, the surfaces are subdivided
until the subpatches satisfy an initial flatness and edge linearity criterion. A stack of
possibly intersecting pairs of subpatches is created. The test for intersection here is
based on whether associated “oriented” bounding boxes (bounding boxes that roughly
line up with their patches) intersect. The leftover subpatches are successively subdi-
vided further to higher flatness tolerances. A tree data structure is used to maintain
the data generated. When subpatches are flat enough, they are approximated by two
triangles and the intersections of these triangles are used as approximations to the
intersection of the patches. This produces a collection of segments that the sorting
phase must then combine to get the polygonal curve segments that become the
approximation of the intersection curves of the surfaces. Since the algorithm is based
on adaptive subdivision there may be gaps between adjacent triangles, but the algo-
rithm checks for this and redefines subpieces appropriately to prevent the problem
from occurring. Finally, the triangle intersections are only approximations, therefore
a refinement step iteratively tries to find points closer to the surfaces. We described a
slightly improved version of this refinement in the Barnhill-Kersey algorithm in
Section 13.5.2. An algorithm similar to the one in [HEFS85] is described in [FiMM86].
There bounding boxes are defined using derivative bounds.

On a related topic, [Nasr87] discusses finding intersections of recursive subdivi-
sion surfaces.

13.5 Surface-Surface Intersections 573

13.5.5 Surface Algebraic Methods

When one tries to use algebraic methods to solve intersection problems, one looks
first for special cases that can be handled by special techniques. For example,
plane/plane or plane/quadric intersections produce lines and conics, respectively, and
can be solved for explicitly. In general, because the implicit/parametric case is rela-
tively easy, attempts have been made to reduce other cases to this one.

An implicit surface S can be parameterized, but not necessarily by rational poly-
nomial functions. If S is defined by linear or quadratic polynomials, then S can be
parameterized by rational polynomial functions. If S is defined by higher-degree
polynomials, then it may not admit such a parameterization. See Section 10.15 in
[AgoM05] for more details. Parameterized surfaces, on the other hand, can always be
represented implicitly by rational polynomial functions if the parameterization was
also of that form. The only problem is that the standard implicitization algorithms
may produce very complicated equations. See Sections 10.9 and 10.10 in [AgoM05].
For example, it can be shown that a bicubic patch is equivalent to an algebraic surface
of degree 18 whose equation contains 1330 terms. For these reasons, algebraic geom-
etry methods seem to be impractical currently, but there is a lot of ongoing research.

At any rate, because it is known that every algebraic curve in R3 can be mapped to
an algebraic curve in R2 (although the latter may be more complicated than the
former), one general algebraic approach to solving the surface intersection problem is:

(1) Map the intersection curve in R3 to a plane curve defined by an equation

(13.23)

(2) Solve equation (13.23).
(3) Map the solution back to R3.

Step (2) is considered in more detail in Sections 14.5.1 and 14.6. Here we describe
two approaches to (1) and (3). One is based on substitutions and the other, on pro-
jections. Let S1 and S2 be surfaces in R3.

The Substitution Approach. Suppose that surface S1 is defined implicitly by an
equation

(13.24)

and surface S2 is defined via a parameterization

Substituting into equation (13.24) gives

(13.25)

If we solve equation (13.25) in the u-v plane, then we can map the solution back to
R3 using g.

h u v f g u v g u v g u v, , , , , , .() = () () ()() =1 2 3 0

g u v g u v g u v g u v, , , , , , .() = () () ()()1 2 3

f x y z, ,() = 0

h u v, .() = 0

574 13 Intersection Algorithms

If both surfaces are defined parametrically, we can implicitize one of them using
the Gröbner basis approach and thus reduce the problem to the previous case. We
could also use the resultant to implicitize a surface, but that method has the disad-
vantage of introducing extraneous factors. See Section 10.9 in [AgoM05].

If both surfaces are defined implicitly, we would like to parameterize one of them
to again reduce the problem to the case solved above. Unfortunately, as was pointed
out earlier, it is not always possible to parameterize an implicitly defined surface by
rational functions. On the other hand, it can be shown that the intersection of two
implicitly defined surfaces always lies on a parameterizable surface X. Here is an algo-
rithm that will produce such a surface. Assume that S1 and S2 are the zero sets of
functions f(x,y,z) and g(x,y,z), respectively.

Step 1. Homogenize the function f(x,y,z) and g(x,y,z) to get homogeneous functions
F(x,y,z,w) and G(x,y,z,w), respectively. The intersection of the surfaces S1 and S2 cor-
responds to the nonideal points of the intersection of the homogeneous hypersurfaces
defined by F and G.

Step 2. Choose one of the variables appearing in F or G and express F and G as
polynomials in that variable (with coefficients that are polynomial in the other vari-
ables). If we suppose that w was chosen, then we write

(13.26)

where ai and bj are polynomials in x, y, and z. Assume without loss of generality that
m ≥ m¢ > 1. We can assume that m¢ > 1 because otherwise f and g would be homoge-
neous polynomials and that special case will not be considered here. Define

(13.27)

We can think of F1 and G1 as having been derived from F and G by removing their
highest, respectively, lowest degree terms. Note that both are linear combinations of
F and G and hence the intersection of the hypersurfaces defined by them contains the
intersection of the hypersurfaces defined by F and G.

Step 3. Since the degree of F1 and G1 is less than n, we repeat Step 2 with F1 and
G1 replacing F and G, thereby generating a sequence of polynomials Fi and Gi, until
we finally end up with an Fk or Gk, which has degree 1. (The case where Fi = Gi for
some i and where we go from a degree larger than 1 to a degree 0 in one step is a
special case not dealt with in our algorithm.) Using this linear polynomial in w we
see that our (homogeneous) intersection lies on a hypersurface defined by an equa-
tion of the form

(13.28)

By induction, the polynomial H is a linear combination of F and G.

H x y z w wH x y z H x y z, , , , , , , .() = () + () =1 2 0

F a w G b F

G
a G b F

w

m
m m

m1

1
0 0

= -

=
-

- ¢
¢

.

F a a w a w a w

G b b w b w b w

m
m

m
m

= + + + +
= + + + + ¢

¢
0 1 2

2

0 1 2
2

. . .

. . . ,

13.5 Surface-Surface Intersections 575

Step 4. The hypersurface defined by equation (13.28) can be parameterized (with
homogeneous coordinates) by

(13.29)

Substituting these functions into the formula for G, we get a homogeneous plane
curve. Dehomogenizing this curve gives us an affine plane curve that is now solved.

13.5.5.1 Example. Consider the ellipsoid S1 centered at the origin and the sphere
S2 centered at (1,0,0) defined by

(13.30)

and

(13.31)

respectively. Figure 13.19 shows the x-z plane cross-section of the two surfaces. We
show how to use Steps 1–4 above to map the intersection of S1 and S2 to a planar
curve. (Of course, because the equations are so simple, we could have done this
directly without following any fancy steps, but this is beside the point.)

Solution. Step 1 produces

Step 2, based on the variable x, leads to

F x y z w x y z w

G x y z w x xw y z

, , ,

, , , .

() = + + -
() = - + +

4

2

2 2 2 2

2 2 2

g x y z x y z x x y z, , ,() = -() + + - = - + + =1 1 2 0
2 2 2 2 2 2

f x y z x y z, ,() = + + - =4 1 02 2 2

x r s t r

y r s t s

z r s t t

w r s t
H r s t
H r s t

, ,

, ,

, ,

, ,
, ,
, ,

.

() =
() =
() =

() = -
()
()

2

1

576 13 Intersection Algorithms

Figure 13.19. The ellipsoids of Example
13.5.5.1.

Choosing the simpler equation F1 = 0 to solve for x, we get

Substituting this expression for x in G and dehomogenizing, that is, setting w to 1,
gives us the equation

(13.32)

Equation (13.32) defines the circle

in the y-z plane. (To see this, let u = y2 + z2 in equation (13.32) and solve for u.)
Notice that we can run into serious problems if the wrong variable is chosen at

Step 2. For example, choosing y we would get

and we are not able to solve for y. The reason that x worked and y does not is
that the intersection projects nicely in a one-to-one fashion to the y-z plane using an
orthographic projection parallel to the x-axis whereas projecting parallel to the y-axis
collapses the intersection to a closed segment.

One problem with the above approach is that it has the potential to introduce
extraneous factors and solutions. The intersection of X and S1 may be larger than the
intersection of S1 and S2. See [Hoff89] for examples of this.

The Projection Approach. The idea here is to use a central projection from some
point p to project the space curve to a plane curve. The only problem is choosing p
correctly. We do not want the projection to introduce any singularities so that the map
cannot be inverted. [Hoff89] describes a method that works with a high probability.

Step 1. Transform the surface equations by a linear transformation defined by a
matrix with symbolic coefficients.

Step 2. Use the resultant to project the intersection.

Step 3. Substitute random values for the symbolic coefficients and check that the
projection has the desired properties.

F G F x xw w

G x y w y xwy

1
2 2

1
2 2

3 2

3 2

= - = - - +
= - +

y z2 2 5 9+ =

3 3 1
8

2
3 3 1

8
0

2 2 2 2 2
2 2y z y z

y z
+ +Ê

ËÁ
ˆ
¯̃

-
+ +Ê

ËÁ
ˆ
¯̃

+ + = .

x
y z w

w
=

+ +3 3
8

2 2 2

.

F G F xw y z w

G y z w x xw y z y z x y z w x

x y z w w y z w

1
2 2 2

1
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

4 8 3 3

2 4

3 3 2

= - = - + + +
= + -() - + +() - +() + + -()[]
= - - -() - + -().

13.5 Surface-Surface Intersections 577

13.5.5.2 Example. We redo Example 13.5.5.1 using the projection approach.

Solution. We can skip Steps 1 and 3 this time because there are no singularities
when resolving on x. Using the resultant which eliminates x from f and g, we get

This again defines a circle in the y-z plane. If we had tried to eliminate the y variable
we would have a problem because

We need Step 1 and 3 in general to make sure that there are no singularities in the
projection. We were lucky when we chose x originally.

A major problem with algebraic approaches is that algorithms for finding solu-
tions to high-degree polynomial equations are numerically unstable. It is also com-
putationally expensive to compute resultants. By combining elimination theory with
matrix computations the authors of [ManD94] tried to avoid these problems. Rather
than finding roots of polynomials they had to find eigenvalues of matrices. Algorithms
for finding eigenvalues are known to be stable. The algorithm in [ManK97] builds on
this approach. Because one only needs the eigenvalues in a certain range, the new
algorithm saves time by not computing those that are not needed.

13.6 Summary

In this chapter we have seen some of the difficulties involved in finding the intersec-
tion of objects. For that reason, many special cases have been studied extensively to
get the best possible results. We have looked at some of these. Intersections of lines,
conics, and quadrics are other special cases about which much is known. Here are a
few of those and references to optimized algorithms for them:

Rectangular solids and convex polyhedra: [Gree94]
Line and cylinder: [Shen94]
Ray and cylinder: [CycW94]
Line and cone: [Shen95]
Ray and quadric surface: [CycW92]
Parametric cubics: [Klas94]

R f g

x z

x z

x x z

x x z

x x

y , det

.

() =

+ -
+ -

- +
- +

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

= - - +()

1 0 4 1 0

0 1 0 4 1

1 0 2 0

0 1 0 2

3 2 1

2 2

2 2

2 2

2 2

2 2

R f g

y z

y z

y z

y z

y z y z

x , det

.

() =

+ -
+ -

- +
- +

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

= +() + +() -

4 0 1 0

0 4 0 1

1 2 0

0 1 2

9 22 11

2 2

2 2

2 2

2 2

2 2 2 2 2

578 13 Intersection Algorithms

Some more references for intersections of quadrics are [OckS84], [GolM87], [Mill87],
[OweR87], [SheJ87], [FaNO89], and [Gold83] (for quadrics of revolution). The special
case of ruled surfaces is considered in [HeKE99]. [HMPY97] describes a robust inter-
val analysis approach. [FaNO89] studies a class of degenerate quadric intersections
that are rather common cases. Because the intersection curves in these cases admit-
ted rational parameterizations, algebraic methods could be applied. Specifically, the
approach described in [FaNO89] made use of both the Segre characteristic of a quad-
ratic form (which is something determined from the multiplicities of roots to an
associated polynomial) and the projecting cone of a space curve (which is the ruled
surface determined by the pencil of lines through the origin and points on the curve)
with multivariate polynomial factorization algorithms. An equivalent approach was
described in [WilM93] that was somewhat simpler and facilitated the display of the
intersection curves.

For cyclide intersections see [MaPS86] and [John93]. For formulas for the
intersection of a ray with various objects see [Hain89] and [Hanr89]. More references
for the general intersection problem can be found in [AbdY97] and [HosL93].
[MarM89] and [LuMM95] address the difficult tangential surface-surface intersection
problem.

Note that nothing has been said about set operations on CSG objects. The reason
is that there is nothing new to say in that regard. The fact is that if we apply set oper-
ations to two CSG objects, then we get another CSG object, so that the problem is
dealt with in the context of the boundary evaluation algorithm for CSG. See Section
5.9.

Methods, such as marching methods, which use Newton-Raphson iteration some-
where along the line, are the most common. [BarK90] has a comparison of some
marching methods. [DoSY89] compares marching and recursive subdivision methods.
Pure marching techniques tend to be faster, because the Newton-Raphson method
has a quadratic rate of convergence, but are liable to failure because they are very
sensitive to local singularities. Pure recursive subdivision techniques need no starting
points and tend to be more robust but are less efficient. They can produce an exces-
sive amount of data for a fixed tolerance when singularities are present. [DoSY89]
describes a method that is a combination of the two where one uses recursion to dis-
cover the geometry and iteration for accuracy. [AzBB90] compares the two methods
for Bézier surfaces and shows that iteration is more accurate. An approach that com-
bines marching and algebraic methods can be found in [KriM97]. It uses a matrix
representation for the intersection curve.

The homotopy method described in Section 13.5.3 has not been used much in
geometric modeling. Marching methods can actually be considered to be a kind of
special case. The papers [LamM95] and [LamM96] compare the two methods, and
the authors argue that the homotopy method has advantages over methods based on
standard Newton-Raphson iteration. It also needs a “starting solution” but often has
better convergence properties. Basically, the problem is that the basins of attraction
for the Newton-Raphson method (the points to which one converges) tend to be
fractal-like whereas the corresponding sets for homotopy methods are smoother. They
are semialgebraic sets when one is solving algebraic systems. It is the chaotic nature
of the Newton-Raphson method that causes its problems. The negative aspect of
homotopy methods is that according to [LamM96] they are roughly 10–20 times
slower than Newton-Raphson methods (assuming that the latter converge). The paper
describes how homotopy curves are followed.

13.6 Summary 579

As mentioned above, getting the wrong connectivity of the intersection curve is a
big problem. Three aspects of this problem are loop detection, jumping components,
and incorrectly ordered components.

Loop Detection. The reason why it is good to have criteria for the existence of loops
in the intersection is that if there are none, then the intersection must start in the
boundary of the surfaces and one could then start with the simpler problem of inter-
secting a curve with a surface. Unfortunately, the flatness conditions in subdivision
algorithms have a hard time dealing with loops. For example, consider the case of a
large sphere and a plane. As the sphere approaches the plane, one passes from no
intersection to the case where the intersection is a point and finally to where it is a
circle. Locally the sphere is very flat and it becomes very hard to detect the circles
when they are still small.

Jumping Components. In the case of tracing algorithms, one is trying to generate
sequences of points, each of which describe one component of the intersection curve.
It is not easy choosing a step size that will prevent the algorithm from jumping from
one component of the intersection curve to another if they are very close. This would
produce the wrong connectivity in the result.

Incorrectly Ordered Component. Similarly, one might accidentally jump from one
part of the curve to another part of the same component if those parts passed close
by each other. This would generate an incorrectly ordered sequence of points for that
component.

[Hohm91] describes a loop detection criterion that can also be used to guarantee
that a tracing algorithm does not jump components or generate points out of order.
The criterion is based on properties of the Gauss map for the two surfaces. It isolates
intersections with no loops quite well if the surfaces are relatively flat. An approach
in case the loop criterion is not satisfied can be found in [KriM97]. [SedM88] describes
a criterion that ensures that all branches of the intersection curve will be detected.
An improved criterion is proved in [SeCK89]. [MaLe98] has an overview of approaches
for loop detection with additional references and gives a topological criterion for the
existence of loops in the intersection of two C2 parametric surfaces.

[Wang92] also describes a way to deal with the topological inconsistency
problems.

Finally, in this chapter we have been satisfied with simply getting the curve that
is the intersection of two surfaces. In most algorithms one gets a polygonal approxi-
mation. There are times when one might want to get a higher-order approximation
to the intersection. In that case it would be helpful to know the derivatives of the curve
up to some arbitrary order k. Formulas for these and other geometric invariants such
as tangents, curvature, and torsion, are derived in [YeMa99].

13.7 PROGRAMMING PROJECTS

1. Convex set intersections (Section 13.2)

Implement and test Algorithm 13.2.1 for a world of rotated blocks.

580 13 Intersection Algorithms

2. Curve intersections (Sections 13.3.1, 13.3.3, 13.3.4)

(a) Implement a ray-curve intersection algorithm as described in Section 13.3.1. Let a user
define a world of curves and then specify various start points and rays interactively.

(b) Implement a polygonal curve intersection algorithm for two user-defined polygonal
curves. If they intersect, use an arrow to point at the intersection points.

(c) Implement a curve-curve intersection algorithm as described in either Section 13.3.3
or 13.3.4. Let the user define two planar B-spline curves and then say whether they
intersect or not. If so, use an arrow to point at the intersection points.

3. Surface sections (Section 13.4.3)

Display the horizontal sections at a given level z = h, specified by the user, of all the sur-
faces in the world by drawing the intersection curves in some appropriate color.

4. Surface intersections (Section 13.5.3)

Implement a surface-surface intersection algorithm. Let the user define two B-spline sur-
faces and then say whether they intersect or not. If so, draw the intersection curves in some
appropriate color.

13.7 Programming Projects 581

We begin with some general observations that are the basis for all the algorithms
that find the distance between two parameterized objects O1 and O2 in Rn. Let A Õ
Rs, B Õ Rt, and assume that p :A Æ O1 and q :B Æ O2 are parameterizations of O1
and O2, respectively. Define h :A ¥ B Æ R by

(14.1)

Finding the points of O1 and O2 that are closest is equivalent to finding the minima
of h(u,v). If p(u) and q(v) are closest points on O1 and O2, respectively, then (u,v) must
satisfy one of the following two properties:

(1) (u,v) is a critical point of h in the interior of A ¥ B.
(2) (u,v) Œ ∂(A ¥ B), that is, u is on the boundary of A and/or v is in the bound-

ary of B.

Finding the minima of h is therefore a two-step process. First, the critical points of h
are found by searching for zeros of the derivative of h. (We will always assume that
functions are as differentiable as needed.) If we are not lucky to have formulas for
these zeros, then any method that finds zeros of functions, such as the Newton-
Raphson method, can be used here. We shall see in our examples below that having
the derivative of h zero at some point (u,v) corresponds geometrically to the saying
that the vector p(u) - q(v) is orthogonal to the tangent planes of O1 and O2 at p(u)
and p(v), respectively. This is intuitively what we would expect to have happen at two
closest points. It generalizes the fact that the vector between two closest points on
two lines is orthogonal to both of the lines. Of course, do not forget the possible special
case where the objects intersect. The zero vector is orthogonal to everything.

Now the derivative of h is defined by the Jacobian matrix, which in turn is defined
by the partials of p(u) and q(v). The exact form they take depends on the specific func-
tions. Next, after having found any closest points on the interior of A ¥ B, we have to
compare them with those on the boundary of A ¥ B. This is basically another problem
of the same type but of one lower dimension.

Point-curve Distance. To find the distance between a point p and a parameterized
curve q : [c,d] Æ R3 we need to solve the equation

(14.2)

for v. The left-hand side of equation (14.2) is what the derivative of the function h in
equation (14.1) reduces to here. There may be more than one solution. For example,
in Figure 14.1 both points q1 and q2 satisfy equation (14.2). Therefore, after finding
all the solutions we need to check which of the solutions that lie in [c,d] correspond
to the closest point. Finally, we need to compare the distance of that closest point to
the distances from p to q(c) and q(d), the endpoints of the curve. Note how q(d) is
actually the closest point on the curve in Figure 14.1.

Curve-curve Distance. Assume that two curves are parameterized by functions p(u)
and q(u), respectively. To find points on these curves that are closest to each other we

p - ()() ¢() =q v q v• 0

h p q p qu v u v u v, • .() = () - ()() () - ()()

14.2 Distance Algorithms 583

584 14 Global Geometric Modeling Topics

first find the critical points of the function h(u,v) in equation (14.1). These are the
points where both of its partial derivatives vanish, that is, we must solve

(14.3)

Notice again that, geometrically, we are looking for points p and q on the curves with
the property that either p = q or the line through p and q is orthogonal to the tan-
gents of the curves at those points. See Figure 14.2(a). Finally, we also have to check
the distances from each endpoint of a curve to the other curve.

14.2.1 Example. To find the distance between the curves defined by

Solution. See Figure 14.2(b). Equation (14.1) translates into

It is easy to check that the solutions to the equations

and

∂
∂

= - - -() - -() = - - + - -()[] =
h
v

u v u v u v u v2 2 4 1 2 2 2 2 4 02 2, • ,

∂
∂

= - - -() () = - + - -()()[] =
h
u

u v u v u u v u v u2 2 4 1 2 2 2 4 2 02 2, • ,

h u v u v u v u v u v, , • , .() = - - -() - - -()2 22 4 2 4

p u u u and q v v v() = () () = +(), , .2 2 4

∂
∂

= -() ¢ =

∂
∂

= -() ¢ =

h
u

p q p

h
v

p q q

2 0

2 0

• ,

• .

Figure 14.1. Distance from a point to a curve.

14.2 Distance Algorithms 585

are

The distance between A = p(1) = (1,1) on p(u) and B = q(-1) = (-1,2) on q(v) is a local
maximum. The curves intersect at C = (1 - , 1 -) and D = (1 + , 1 +). We
have not said anything about the domain of the curves. If it is R, then the distance
between them is zero since they intersect. On the other hand, if, for example, the
domain of p(u) is R but we had restricted the domain of q(v) to [0,1], so that q(v)
would only trace out the segment [E,F] in Figure 14.2(b), then the values we just com-
puted would not apply since they lie outside the domain of the current q(v). In fact,
in a real algorithm we would have gotten the answer that h(u,v) has no critical points
given our domains. To find the distance between p(u) and q(v) we would now have
had to go on and check the distance of the endpoints E = q(0) = (0,4) and F = q(1) =
(1,6) to p(u) and pick the closest distance.

Next, we move on to finding distances involving surfaces. If p(u,v) is a parame-
terization for a surface, let

np(u,v) will be a normal vector to the surface at p(u,v).

Point-surface Distance. To find the distance between a point p and a parameter-
ized surface

we look for a point q = q(u,v) on the surface with the property that p - q is orthogo-
nal to the tangent plane of the surface at q, that is, we need to solve the equations

(14.4)

p

p

- ()() () =
- ()() () =

q u v q u v

q u v q u v
u

v

, • ,

, • , .

0

0

q a b c d: , ,[] ¥ [] Æ R3

n u v p u v p u vp u v, , , .() = () ¥ ()

5555

u v and, , , , , , .() = -() - -() + +()1 1 1 5 1 5 1 5 1 5

Figure 14.2. Distance between two curves.

586 14 Global Geometric Modeling Topics

Equivalently, we can look for a q so that the vector p - q is parallel to the normal
nq(u,v), that is,

(14.5)

If there are more than one solution to equations (14.4) or (14.5), then we need to
check the distances between all those points and p and pick the closest. After that
we will also have to find and check the distance from p to the four edge curves of
q|∂([a,b] ¥ [c,d]). The need for that is shown in Figure 14.3. Solving equations (14.4)
and (14.5) would determine the point q1 in the figure, but the closest point is actually
q2.

Curve-surface Distance. To find the distance between a parameterized curve

and a parameterized surface

we need to solve the equations

(14.6)

See Figure 14.4. In addition, we also need to check the distances of p(a1) and p(b1) to
q(u,v) and the distance of q|∂([a2,b2] ¥ [c2,d2]) to p(u).

Surface-surface Distance. To find the distance between parameterized surfaces

and

we need to solve the equations

q a b c d: , ,2 2 2 2
3[] ¥ [] Æ Rp a b c d: , ,1 1 1 1

3[] ¥ [] Æ R

p q q q p q n

p q p

u v q-() ¥ ¥() = -() ¥ =
-() ¢ =

0

0• .

q a b c d: , ,2 2 2 2
3[] ¥ [] Æ R

p a b: ,1 1
3[] Æ R

p - ()() ¥ () =q u v n u vq, , .0

Figure 14.3. Distance from a point to a
surface.

14.3 Polygonizing Curves and Surfaces 587

(14.7)

See Figure 14.5. Again we need to check distances for the boundaries, namely, the dis-
tance of p|∂([a1,b1] ¥ [c1,d1]) to q(u,v) and the distance of q|∂([a2,b2] ¥ [c2,d2]) to p(u,v).
As an example of how one can improve the efficiency of these algorithms in special
cases see [KimK03]. Kim describes algorithms for computing the distance between a
canal surface and a plane, sphere, cylinder, cone, and torus.

Finally, for objects defined implicitly by equations f(p) = 0 and g(q) = 0 we must
find the simultaneous solutions to these two equations.

14.3 Polygonizing Curves and Surfaces

In previous chapters we have already seen a number of algorithms that applied to
smooth objects but which used linear approximations to these objects to accomplish

p q p p p q n

p q q q p q n

u v p

u v q

-() ¥ ¥() = -() ¥ =
-() ¥ ¥() = -() ¥ =

0

0

Figure 14.4. Distance from a curve to a
surface.

Figure 14.5. Distance between two
surfaces.

their tasks. For example, we pointed out that smooth objects are typically rendered by
rendering collections of line segments for curves and collections of facets for surfaces.
Some of the intersection algorithms were based on piecewise linear approximations.
There are many other CAD/CAM applications where one wants or needs such approx-
imations. Another is the grid or mesh representations needed for finite element models.
In all such situations it is important that the shapes of the original objects were
matched sufficiently faithfully. The reader might have gotten the impression that to
accomplish this one simply has to subdivide enough in some straightforward way, but
there is more to it than that. This section discusses some issues that have to be looked
at when deciding on an approximation. In fact, we shall look at the general topic of
how to “polygonize” objects. That term will mean representing an object by an organ-
ized collection of edges or facets, depending on the dimension of the object. The terms
“tile,” “tesselate,” or “discretize” are sometimes used to mean the same thing as “poly-
gonize.” The term “tile” is especially popular when it comes to implicit objects.

Although there are many algorithms for polygonizing objects, they are not all
equally good. Their worth depends on the particular application, but one cannot make
choices if one does not understand the issues involved. Some properties that one
usually wants the polygonized object to have are:

(1) One wants it to be a good approximation to the shape of the original object.
Its points should be within a specified distance from the object.

(2) It should be efficient. Usually this means that we want to use as little space
as possible to achieve property (1), but the time an algorithm takes to produce
the approximation may also play a role. Ideally, the linearization should be
adaptive with fewer edges or facets in places where the object is relatively flat.

(3) In the case of surfaces, one would like “well-shaped” facets. For example,
facets that are thin slivers are bad for finite element methods.

(4) The approximation should not have “cracks” and have the same topology
locally as the part of the object it is approximating.

We start our discussion of polygonization algorithms by looking at some that
apply to parametric objects. In this case we really have two problems. First, we have
to polygonize the domain of the parameterization and second, we often want to ensure
that this polygonization will get mapped to a “good” polygonization of the actual
object. By “good” one means that, in the case of surfaces, the approximating facets
have a reasonable size and shape. As we just mentioned, long thin facets are consid-
ered bad. The hard part is the second problem because the domain of a parameteri-
zation is just an interval in the case of curves and typically a rectangle in the case of
surfaces. The exception is trimmed surfaces, but those will be considered in Section
14.4. It would be nice if a good polygonization of the domain of a parameterization
would induce a good polygonization of the object, but for that to happen, the para-
meterization would have to be close to a similarity transformation and that is rarely
the case.

Suppose that p : [a,b] Æ Rn defines a parametric curve. We can approximate the
curve by a polygonal one by dividing its domain into k intervals a = u0 < u1 < . . . < uk
= b and use the polygonal curve defined by pi = p(ui). The common choice is to use
the uniform subdivision ui = a + i (b - a)/k. This may not be a good choice, however,
for two reasons:

588 14 Global Geometric Modeling Topics

14.3 Polygonizing Curves and Surfaces 589

(1) The approximation may not be very good at places of high curvature along the
curve. For example, consider the parabola

in Figure 14.6. The substitution u = v1/k, k odd, reparameterizes the curve to

Let k = 5 and suppose that we divide [-1,1] into 64 equal parts. Then

is not a good approximation to the curve even though we have a rather fine
subdivision.

(2) If k is large to get a good fit, then the fact that we generate a lot of data may
become a problem. If the curve has pieces that are essentially flat, then we might
have saved a lot of space and effort by not subdividing those pieces as much. The
extreme case is where the curve is a straight line segment and all we really need
is p(a) and p(b).

These two reasons suggest that an adaptive subdivision would be more appropriate,
where we subdivide highly curved segments more and flat ones less.

This raises the next issue, namely, how to define “flat.” On an intuitive level, flat-
ness over a segment [c,d] is often thought of as a measure of how much the curve
deviates from the chord [p(c),p(d)].

Definition. The value

is called the chordal deviation of p(u) over [c,d].

The chordal deviation of the curve in Figure 14.7 is the distance between the points
A and B. On the other hand, if one is interested in preserving shape, then a better cri-

max , ,
,u c d

dist p u p c p d
Œ[]

() () ()[]()

q q q q-() -Ê
Ë

ˆ
¯ = -Ê

Ë
ˆ
¯

Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ ()1

1
32

9
4

1
2

1
32

9
4

1
2

1, . . . , , , , , . . . ,

q u v vk k() = - +()3 32 1, .

p u u u u() = - +() Œ -[]3 3 112 , , , ,

Figure 14.6. Problems with a uniform
subdivision.

590 14 Global Geometric Modeling Topics

terion for flatness should be based on the curvature function for the curve, but to
compute that would involve computing the first and second derivatives. De Figueiredo
([Figu95]) describes a recursive algorithm, Algorithm 14.3.1, that generates a good
adaptively sampled polygonal approximation to the curve p(u) but takes less work.
What the algorithm does is check to see if the curve is flat over the input domain by
calling a function Flat. If so, then it approximates the curve with the segment defined
by the endpoints of the curve segment; otherwise, it divides the domain into two and
recursively calls itself over the two subdomains.

Figure 14.7. Chordal deviation.

Inputs: A curve p : [a,b] Æ Rn

A function Flat(p1,p2,p3) that returns true or false depending on whether the
three consecutive points p1, p2, and p3 pass some flatness test

Output: A sequence of points pi that define a polygonal approximation to the curve p(u)

begin
Output (p(a));
Sample (p,a,b,p(a),p(b));

end;

procedure Sample (curve p; real c, d; point pc, pd)
begin

real s;
point ps;

s := random number in (c,d);
ps := p(s);
if Flat (pc,ps,pd)

then Output (pd)
else

begin
Sample (p,c,s,pc,ps);
Sample (p,s,d,ps,pd);

end
end;

Algorithm 14.3.1. Adaptive curve subdivision algorithm.

The flatness test for the curve p(u) over a subinterval [c,d] carried out by the func-
tion Flat is based on picking some s Œ (c,d) and checking for one of the following
properties of the sequence of three points pc = p(c), ps = p(s), and pd = p(d):

(1) The triangle pcpspd has small area.
(2) The angle between the vectors pspc and pspd is close to 180 degrees. Equiva-

lently, the dot product pspc •pspd is close to -1.
(3) The point ps lies close to the segment [pc,pd].
(4) |pcps| + |pspd| is close to |pcpd|.
(5) The tangent vectors of p(u) at c, s, and d are approximately parallel.

The five tests were found to be equally effective, with the first having the edge because
no square roots are involved. The last test is the slowest because it involves the deriv-
ative of the curve. A tempting choice for s might be the midpoint (c + d)/2. The poten-
tial problem with that choice is that it may cause bad sampling, as in the case of
uniformly undulating curves like a sine curve. De Figueiredo therefore suggests choos-
ing s randomly but biased to the midpoint. In fact, a uniform distribution on [c +
0.45(d - c),c + 0.55(d - c)] was found to be satisfactory. Two other approaches are
described by Filip et al. ([FiMM86]) and Lindgren et al. ([LiSH92]). The first uses
bounds on the derivatives to guarantee a specified accuracy of the linear approxima-
tion and the second is based on an automated heuristic test for flatness.

Next, we consider parametric surfaces. Uniform subdivisions have the same prob-
lems that one ran into in the case of curves. One would again like to subdivide in an
adaptive manner based on the local curvature but this is a much more complicated
concept mathematically than for curves. One can choose from the “easier” curvature
functions such as principal curvatures, Gauss curvature, or mean curvature, but even
these would take a lot of work to compute. A simpler approach is described by Lichten
and Samek ([LicS87]) that applies to Bézier, B-spline, and special bicubic Coons sur-
faces. The idea is to compare the distance between adjacent control points with the
arc length of the curve segments between these points and requiring that the ratio
should be in a specified range. If not, the midpoint of the curve is used to add another
control point. When one splits, one has the choice of splitting the whole row (or
column) at that parameter or one can split individual patches. With the latter choice
one has to watch out that no cracks appear in the surface. Preventing cracks is some-
thing one often has to worry about when subdividing. [HEFS85], [BaDD87], and
[DehZ91] describe ways to avoid the problem. One problem with the approximations
in [LicS87] is that if the bad curvature occurs in the interior of a patch, then it will
be missed. The authors considered a recursive triangulation based on adjacent
normals being within a specified range but rejected this approach because of prob-
lems when surfaces had nonsmooth features.

Another adaptive subdivision algorithm is described by Filip ([Fili86]) and applies
to surfaces defined by Bézier triangles. The subdivision test has three steps:

(1) Use a curve flatness test to see if the boundary curves are flat. If not all are,
then subdivide the patch and repeat the test on the subtriangles.

(2) Use a surface flatness test and if that fails on the patch, then subdivide it and
repeat all the tests on the subtriangles.

14.3 Polygonizing Curves and Surfaces 591

592 14 Global Geometric Modeling Topics

(3) If the patch passes both the curve and surface flatness test, then output the
planar triangle defined by the three corner vertices.

When subdividing triangles one has several choices. See Figure 14.8. The curve flat-
ness test basically was to check if the Bézier control points p0, p1, . . . , pn for any edge
are sufficiently close to the segment [p0,pn]. The surface flatness test was similar. One
checked if the Bézier control points for a patch with corner control points q0, q1, and
q2 are close enough to the planar triangle q0q1q2. Crack prevention was based on the
approach in [BaDD87].

A further subdivision algorithm can be found in [FiMM86]. It determines the
fineness of the subdivision based on computing bounds for the derivatives of the C2

parameterizing functions, so that one can also specify the accuracy of the linear
approximation. It produces right triangles in the parametric domain and cracks
between neighboring patches. The subdivision is not adaptive, but the authors claim
that it is several times faster than the adaptive algorithms in [LanR80] and [Fili86].
The adaptive algorithm by Herzen and Barr ([HerB87]) produced a triangulation
using a quadtree for parameter space based on curvature bounds. One again got right
triangles in parameter space and a potentially large number of triangles with cracks
between patches.

We mention two more papers with a slightly different flavor. Cuillière ([Cuil98])
describes an automatic mesh generation algorithm useful for finite element mesh gen-
eration where one is given some a priori nodal density function that might have been
obtained from some knowledge of the object’s features. This approach differs from
the more usual approach where one starts with nodes that are a crude approximation
and then refines them as needed. Here we already have some information about where
the nodes should be. Volpin et al. ([VSBJ98]) start with a smooth model and want to
produce another model that is within a given tolerance of the original one but that is
based on a simpler facet structure. The problem can be considered to be an example
of the model simplification problem that we shall describe later. The algorithm in the
paper first divides the input model into regions over which a discrete curvature related
value is within a specified range. Next, a quadrilateral mesh is defined from those
regions and finally a smooth surface is constructed for this mesh. The mesh is well
suited for finite element analysis.

The majority of the early work on polygonizing curves and surfaces involved
various types of recursive subdivisions of the parameter space. [HerB87] gives a good
overview of this approach along with references. A quadtree type data structure was
a major ingredient in the surface case. A more direct approach is described by Kosters

Figure 14.8. Possible triangle subdivisions.

([Kost91]). Kosters deals both with curves and surfaces and defines what he calls angle
parameterizations. These correspond to special reparameterizations that are computed
numerically from the original parameterizations using their first and second deriva-
tives. Using these parameterizations one simply uses a fine enough uniform subdivi-
sion of the domain of the parameterization to get the desired polygonization of the
curve or surface. Kosters also discusses the advantages and disadvantages of his
approach compared with recursive subdivision. For surfaces, two advantages are that
it is easier and works better for boundaries. Recursive subdivision methods are more
flexible.

We end the discussion of approximations to parametric curves and surfaces with
some observations. The first relates to the amount of work that is involved in subdi-
vision. Computing functions can sometimes be a lot of work, but in certain cases it
can be done relatively efficiently. Specifically, subdivision of B-splines corresponds to
knot insertion and subdivision of Bézier objects corresponds to de Casteljau subdivi-
sion. Second, a common approach to polygonization is to find a single step size, so
that the linear approximation corresponding to the subdivision using that uniform
step size is guaranteed to be within the desired tolerance over the entire domain of
the parameterization. It is important here that this step size is not chosen too con-
servatively; otherwise, one does a lot of extra work subdividing more than would be
necessary. Zheng and Sederberg ([ZheS00]) describe an algorithm for rational curves
and surfaces that produces step sizes that are substantially larger than obtained by
previous methods. Finally, many polygonization algorithms for surfaces work only
for parameterizations with rectangular or triangular domains and do not work for
trimmed surfaces. We shall consider that case in Section 14.4 and indirectly revisit
the whole polygonization problem.

Next, we consider tilers for implicit objects but shall restrict ourselves to general
comments. Sections 14.5 and 14.6 will describe some specific algorithms. Implicit
tilers are also referred to as isosurface generation algorithms when the data is pre-
sented in the form of values of a function f and one wants to extract from that data
the surface defined by an equation f(p) = c. In general, at the top level the tilers in
question end up dealing with data associated to the vertices of some sort of spatial
partitioning. In other words, space has been divided into polygonal cells, typically
squares or triangles in the two-dimensional case, and polyhedral cells, typically cubes
or tetrahedra in the three-dimensional case. The tilers fall into two classes: discrete
tilers that deal with discrete data and continuous tilers that deal with continuous data.

By discrete data we mean data obtained either experimentally, such as medical
data from MRI or CT scans, or from volumetric computations, such as discrete grids
from fluid flow simulations. The data typically corresponds to contour data for some
unknown function. In the continuous data case we assume that we actually have a
(smooth) function whose zeros define the object, in addition to having a cell decom-
position with data at the vertices.

In both the discrete and continuous data case the goal of the tilers is to determine
a linear approximation to the curve or surface that the data is assumed to be speci-
fying. Specifically, one wants to determine how the object intersects the edges and/or
faces of the cells and create a polygonization of the object from that information. In
the discrete data case one has to interpolate the given data at the vertices of the cells
to find intersections. In the continuous data case, the intersection can be computed
accurately. If the cells in our partition are of different sizes, then our tiler is called an

14.3 Polygonizing Curves and Surfaces 593

594 14 Global Geometric Modeling Topics

adaptive tiler. As usual, one must be careful to make sure the cell partition is fine
enough so that our approximation is accurate, but not too fine so that we create too
much data. A review of implicit tilers can be found in [Kalv92], [NinB93], and
[Bloo97].

Algorithm 14.3.2 is an outline for the typical implicit tiler. We shall now explain
it in more detail. Our discussion will concentrate on surface tilers. Curve tilers are
similar but much easier. The first step is to divide space into cells. Bloomenthal
([Bloo97]) separates the approaches into three broad types: subdivision, enumeration,
and continuation.

In the subdivision approach one builds an octree representation of the object (a
quadtree for planar curves). The cells are usually cubes or tetrahedra because it is
easy to subdivide them into cells of the same type. The enumeration approach
applies to volume modeling situations where one starts with a large three-dimensional
grid of data thought of as the values of some unknown function. The data could, for
example, come from MRI or CT scans. The grid is then searched to find all the cells
intersected by what would correspond to a contour surface of that function. This is
the kind of situation to which the marching cube algorithm applied. The continua-
tion approach is one based on incremental steps. One does not start out with a fixed
subdivision. Instead, one needs a starting point for each component of our surface.
One then marches out from that point generating an approximation to each compo-
nent. Predictor-corrector type methods often work fine for curves. In that case one
marches along the tangent line from the start point and uses some correction mech-
anism like the Newton-Raphson method to get back to the curve and a new point on

Step 1: Partition space into cells

Methods: subdivision – subdivide space and represent ob ject via a data structure
like a quadtree or octree

 enumeration - get a predefined grid of values with the surface
corresponding to a contour

 continuation - starting at certain points on the object expand the
 subdivision of it into cells in an incremental way

Step 2: Polygonize object

Method: Find intersection of object with the boundary of each cell and then “fill in”
intersection with the interior of the cell.

Problem: Ambiguity of the topology of the intersection with a particular cell.

Strategies to overcome the problem:

 Topology inference, preferred polarity, or cell decomposition

Algorithm 14.3.2. Outline for implicit tilers.

14.3 Polygonizing Curves and Surfaces 595

the curve to use as the next start point. This approach becomes difficult when applied
to surfaces. A more common approach is to determine which collection of tetrahedra
([AllS85], [AllG87], [AllG90], [AllG91]) or cubes ([WyMW86]) covers the surface. One
again finds this collection by marching out from a given start point.

After one has the partition data, one tries to create the faceted approximation to
the surface from it. Unfortunately, this is where one can run into ambiguity problems
in general. The problem is that the cells may not satisfy an important condition,
namely, that the intersection of the object and the cell is simple enough so that one
can establish its topology. One first determines how the object intersects the bound-
ary of the cell and then tries to “fill in” the part of the intersection that lies in the inte-
rior of the cell by some sort of interpolation. Typically, when working with a cell the
only information that one has to determine the intersection are values at the vertices
of the cell that say on which “side” of the object the vertex lies. The “side” is specified
by the sign of the value. This is not always enough to determine the connectivity of
the intersection in the cell interior. Figure 14.9 shows the problem in the case of
curves. The “¥’s” indicate the computed intersection of the curve with the boundary
of the cell, but the given data does not allow one to know how to connect them. There
are three legitimate interpretations.

Ning and Bloomenthal ([NinB93]) divide the methods that have been used to dis-
ambiguate into three types: topology inference, preferred polarity, and cell decompo-
sition. The topology inference approach tries to disambiguate with some more data
sampling or interpolation. For example, one could sample the data at the center of
each cell in addition to the values at the corners. The preferred polarity approach
tries to disambiguate by adding some rules on how to connect boundary values. For
example, one could specify that “+” corner values should always be separated. This
rule would choose Figure 14.9(b) over 14.9(a). The cell decomposition approach pro-
ceeds by subdividing the cell that generated the ambiguity until, hopefully, it disap-
pears. Tetrahedral cells never have any ambiguity, so that one could subdivide any
cubical cell into tetrahedra or one could have started with tetrahedra in the first place.
Unfortunately, tetrahedral subdivisions generate much more data than subdivisions
into cubes. [NinB93] shows that tetrahedral decompositions generate roughly twice
as many triangles in the polygonized surface as would a cubical decomposition. On
the other hand, subdividing a cube into smaller cubes means that one might have
to recursively do this subdivision an arbitrary number of times before the ambiguity
disappears.

The decompositions above do not have to have all the cells of the same size
although this is the most popular choice because it is easiest to implement. There are

Figure 14.9. Ambiguous cell data.

596 14 Global Geometric Modeling Topics

at least two reasons for using an adaptive tiler. One is that one would usually use less
space. The other is that, like in the parametric object case, we may want to get a better
approximation to the actual shape if its curvature varies substantially. See [Bloo97]
for a discussion of this topic and for references.

Finally, Velho et al. ([VeDG99]) describe a polygonization algorithm that works
for both implicit and parametric surfaces. The paper also provides an overview and
references for many of the previous polygonization algorithms. Their algorithm is an
adaptive one that creates a hierarchical mesh. The construction guarantees that there
will be no cracks. There are three steps:

Step 1: Determine a rough triangulation of the surface.
Step 2: Sample the edges of the triangulation to produce a hierarchical approxi-

mation to the corresponding edge on the surface.
Step 3: Subdivide the triangles of the triangulation into smaller triangles based on

the number of vertices in their boundary edges.

The only requirement in Step 1 is that the triangulation is faithful to the topol-
ogy of the surface. For parametric surfaces this boils down to triangulating planar
domains. The examples in the paper show that for parameterizations with rectangu-
lar domains, simply dividing the rectangle into two triangles with the diagonal will
often be adequate. The algorithm however also works for trimmed surfaces. In the
case of implicit surfaces, any one of a number of uniform polygonization algorithms
can be used as long as the edges of the mesh lie in a tubular neighborhood of the
surface. One such algorithm that does this is the one in [StaH97]. We shall describe
it later in Section 14.5.2.

In Step 2 one makes a single pass over all the edges in the triangulation. To each
edge one associates a data structure that consists of its two endpoints, a binary tree,
and a real number that gives the maximum deviation of the edge from the surface.
The binary tree comes from recursively replacing an edge e = [p,q] with two new edges
eR = [p,r] and eL = [r,q]. The nodes in the tree consists of a vector v from the mid-
point of e to r, the maximum of the deviations of the edges eR and eL from the surface,
and pointers to the tree nodes associated to eR and eL. See Figure 14.10. Ideally, to
get a nice balanced tree one would like r to be the midpoint of the curve correspon-
ding to the edge, but since this would be too complicated to compute exactly, an
approximation is used. In the end this produces an adaptive multi-resolution approx-
imation to the curve corresponding to the edge.

Step 3 is carried out in a way that depends solely on the edge structure obtained
from Step 2. First, the original edges of the triangulation are classified as simple or
complex, depending on whether Step 2 subdivided them or not. Then the way a tri-
angle gets subdivided depends on how many simple edges it has. The four cases are
shown in Figure 14.11. If all three edges are simple, we do not subdivide. Otherwise,

Figure 14.10. Edge sampling in [VeDG99].

14.3 Polygonizing Curves and Surfaces 597

we get two, three, or four subtriangles for the subdivision. There are several possible
choices in the cases corresponding to Figure 14.11(c) and (d). A local optimization
criterion is used to make a decision here. The choice will influence the quality of the
final mesh and so it is worthwhile having a good criterion. The entire triangle subdi-
vision process is again a recursive one.

Only Step 1 requires global knowledge about the surface. All the other
steps use only local information. One advantage with this approach is that one gets a
multi-resolution progressive structure. The authors mention applications to tolerance
analysis, multi-resolution editing, level-of-detail rendering and compression, and
progressive transmission and display. (Progressive transmission refers to being able to
see better and better approximations of an object as it is incrementally received. See
[Hopp96]).

We conclude this section with a brief mention of a closely related topic of research,
namely, that of curve and surface simplification. Because models are being created
with more and more detail, there are times when it is important to simplify them in
order to save storage space, to save time in transmitting them from one place to
another, or to speed up computations (the level of detail of a far away object does not
have to be as high as one close up). Two good surveys of this subject can be found in
[HecG97] and [Lueb01].

A general object simplification problem: Given an object with n vertices, find an approx-
imating polygonized object with m vertices. An additional condition might be some error
tolerance condition.

The simplification problem has two aspects: refinement and decimation. Deci-
mation is the obvious interpretation of the problem. It is a “bottom-up” process where

Figure 14.11. Subdividing triangles in [VeDG99].

we start with a polygonization and keep eliminating vertices until our polygonization
is coarse enough. However, there is a reverse aspect. For example, in cartography one
may have lots of data points (vertices) specifying a terrain and one would like a more
compact polygonized surface representation of it. Similar situations arise in areas of
scientific visualization and computer vision. Solving these problems is what one refers
to as refinement. It is a “top-down” process and, in fact, is usually considered to
include the polygonization problems for parameterized objects described earlier in
the section. (Interpret a parameterized object as one defined by its points and thus
defined by an infinite number of “vertices”.)

The simplification problem is fairly well understood for curves, but less so for sur-
faces. One can sometimes avoid simplification by not generating excessive data in the
first place by using an adaptive subdivision method. Algorithm 14.3.1, when applied
in reverse, is a variant of what is commonly called the Douglas-Peucker algorithm
that is used in cartography and scene analysis. We start with a polygonized curve and
consider the segment from the first to the last point. If the other points are close
enough to the segment we throw them away and replace the original curve with the
segment; otherwise, we divide the curve into two and repeat the process for the two
halves.

Multiresolution modeling is an area where one runs into the simplification
problem. In this type of modeling one wants to be able to zoom in and out of levels
of detail for the geometry. This is important for flight simulation and video games,
for example.

14.4 Trimmed Surfaces

Surfaces are often designed in a piecewise manner. For example, one may start with
a collection of surface patches and then add blends or fillets (see Section 15.6) between
them to get the final global surface. This involves “trimming” away parts of the
original patches. Also, when one performs set operations on solids, such as in CSG,
the resulting surface patches are best described as trimmed patches. For that reason,
the ability to represent trimmed surfaces is important for modelers and we now
discuss some approaches to doing this.

Most parameterized surface patches have a parameterization function p(u,v) that
has a rectangular domain. This means that the obvious way to display such a surface
is to evaluate p(u,v) on a grid of parameter values in its domain and then to display
the corresponding grid of lines, in the case of a wireframe display, or to use the grid
rectangles or triangles as an approximation to the surface patch in some scan line or
z-buffer algorithm. Trimming a surface patch involves restricting the domain of p(u,v)
to an arbitrary subregion that will not be rectangular in general. The boundary of the
subregion is called a trimming curve. In the context of blending, such curves are also
called contact or link curves. Polygonizing trimmed regions is not so simple. It may
get even more complicated if there is more than one parameterized patch involved
and the trimming overlaps patches. A number of algorithms have been developed over
the years to deal with such issues. We shall begin with a brief overview of some of
the existing algorithms. Keep in mind though that, in the end, all the algorithms want
a polygonization of the trimmed surface that has all the same properties that we

598 14 Global Geometric Modeling Topics

14.4 Trimmed Surfaces 599

wanted for the polygonizations described in Section 14.3. The algorithms therefore
need to be judged with respect to those properties in addition to any new constraints.

One early algorithm for representing trimmed surfaces is described by Rockwood
et al. in [RoHD89]. The main steps for this algorithm are:

(1) Convert the given surface representation to a grid of Bézier patch represen-
tations. Each trimming curve is converted into a Bézier or linear trimming curve. A
NURBS surface and its NURBS trimming curves are converted by means of knot inser-
tions and change of basis. If trimming regions cross patches, they are divided so that
they can be dealt with on a patch-by-patch basis.

(2) Subdivide all the trimming regions for a patch in (u,v)-parameter space into
uv-monotone regions with respect to the u- or v-axis, where a region is said to be
uv-monotone with respect to an axis if every line perpendicular to that axis intersects
the region in a convex set, that is, an interval. Figure 14.12(a) shows four such uv-
monotone regions.

(3) Each uv-monotone region is then further subdivided into rectangles in the
interior and a triangular coving along its boundary. The size of the rectangles, specif-
ically the step sizes su and sv in the u- and v-direction, respectively, is determined by
ensuring that each rectangle projects into a sufficiently small region in screen space.
The user specifies how small the screen space regions should be. See Figure 14.12(b).

(4) Each trimming curve in parameter space is approximated by a polygonal curve
whose vertices lie on the curve. The spacing of the vertices is determined from the
parameterization of the curve and from the size of the rectangles if the curve lies in
the interior of the patch. The vertices and the rectangles determine the triangular
coving near the boundary of a region. The manner in which this is done guarantees
that adjacent parametric patches will not generate any cracks because adjacent
patches will always use the same vertices along their common boundary even if the
rectangle size is different in each patch.

The step sizes su and sv are based on curvature bounds for Bézier functions and are
view dependent. The uv-monotone regions are determined by finding local maxima
and minima of the trimming curves using a root finder. Problems with this approach
are that the algorithm for finding uv-monotone regions is complicated and the coving
may produce undesirable triangles. In addition, although it prevented cracks between

Figure 14.12. From the algorithm in [RoHD89].

Bézier subpatches for a single original surface, it did not prevent cracks between
distinct trimmed surfaces. For example, the surface of the union of two solids might
lead to two trimmed surfaces and the algorithm applied to each might not produce
a common boundary since each surface may have used a different definition for that
boundary curve.

Kumar and Manocha ([KumM95] and [KumM94]) describe an algorithm that is
similar to the one in [RoHD89]. NURBS surfaces and NURBS trimming curves were
converted into a sequence of Bézier representations because Bézier representation
makes some computations simpler than they would be for B-spline representations.
One also gets better bounds on derivatives and curvature. The curves are polygonized
and a triangulation of the trimmed surface is generated via uniform subdivisions. The
uniformity greatly simplifies the work. What one needs therefore is to determine the
u- and v-step sizes for the surface tessellation and the step sizes for the trimming
curves. Two possible criteria for finding these are:

The Deviation Criterion: The triangles should approximate the surface and their
image in screen space should not deviate by more than a user specified bound from
the surface. This involves second derivative bounds.

The Size Criterion: The triangles should have a reasonable size with their edges
in screen space shorter than a predefined user tolerance. This only involves first
derivative bounds.

Even though the size criterion may not work well on small patches that have a
large variation in their curvature, it was used in [KumM95] because it is expensive to
compute second derivatives for rational surfaces. uv-Regions were not used and
coving was only done in rectangles that are intersected by trimming curves. The algo-
rithm was simpler than the one in [RoHD89] and produced fewer triangles. Cracks
and singularities were avoided not only between patches but also between surfaces.
To avoid cracks between surfaces one considered the trimming curves in R3 and, once
the matching surfaces were found, one used only one representation for both curves.
The rendering algorithm described in [KumM94] computed the polygonization
dynamically based on the viewing parameters, used back-patch culling (an approxi-
mation to the normal was used for efficiency), and made use of spatial and temporal
coherence between frames.

The algorithm by Luken in [Luke96] is another that tried to avoid some of the
problems that arose in [RoHD89]. In the Rockwood et al. algorithm, a surface was
divided into patches and the trimming regions intersected with each patch to get a
new collection of subpatches and trimming curves for them. See Figure 14.13(a).
Because each subpatch was rendered independently, one had to do extra work so that
no cracks appeared between patches. The coving done by [RoHD89] was avoided in
[Luke96] by not dividing a surface into subpatches but defining a subdivision grid for
the entire surface. One polygonized the trimming curves once for the entire surface
and did not have to find intersections with subpatch boundaries. The uv-domain of
the surface was divided into v-intervals that produced horizontal slices over the whole
u domain. See Figure 14.13(b). Trimming polygons are clipped to these slices. A
uniform subdivision of the u-parameter then subdivides each slice into rectangles,
each of which is then handled separately, although the handling of those introduced

600 14 Global Geometric Modeling Topics

14.4 Trimmed Surfaces 601

some new complexities. However, there was no need for computing maxima and
minima of curves or uv-monotone regions, as was the case in [RoHD89].

Sheng and Hirsh ([SheH92]) describe an algorithm for triangulating trimming
surfaces that are grids of polynomial patches. The intended application was in stere-
olithography where one wanted to generate a “solid hard copy” directly from a three-
dimensional CAD model. There the machines that carry this out need a very accurate
triangulation. First, the trimming curves in parameter space were approximated by
polygonal curves and merged to produce planar polygons with possibly holes. These
polygons were triangulated using a special Delaunay triangulation algorithm and then
this triangulation was refined until the edges of the triangles satisfied allowed toler-
ances. Cracks were avoided not only between patches of a single surface but also
between surfaces. To avoid cracks between different surfaces one first determined the
matching common boundaries (the distance between the boundaries must be suffi-
ciently small) and then used a merging process to combine the two sets of vertices
into one. One disadvantage with the approach is that the size of the triangles is deter-
mined by a global flatness bound for each patch that depends on the second deriva-
tive of the parameterization and is not adaptive, so that potentially a very large
number of triangles are generated. The triangles one gets may also not have a desir-
able shape. A similar algorithm was described by Piegl and Richard in [PieR95].
Although it also used a global, but different, bound on the edge length of the trian-
gles to ensure that the triangulation was within a user-specified tolerance, it had a
special way to select the vertices of the triangles giving the triangles a more even size.

Many algorithms assume that surfaces are C2. The Piegl and Tiller algorithm in
[PieT98] only assumes a C0 parameterization p(u,v) for a surface. Given a trimming
tolerance ec and a triangulation tolerance es, the algorithm outputs polygonal trim-
ming curves and a triangulated trimmed surface. The polygonal approximation for
each trimming curve g(t) in the domain of p(u,v) is within a tolerance of ec of the trim-
ming curve p(g(t)). The triangulated surface is within a tolerance of es of the surface
p(u,v). First, the trimming curves, which do not have to be closed curves, are linked
together into lists that correspond to closed curves and are marked as being either
inner or outer loops. Then they are polygonized. If g(t) is a trimming curve, its domain

Figure 14.13. Differences between the algorithms in Rockwood, A., et al. “Real-Time
Rendering of Trimmed Surfaces,” SIGGRAPH 89, 23(3), July 1989, 107–117. By permis-
sion of the publisher, ACM and Luken, William L., “Tessellation of Trimmed NURB Sur-
faces,” CAGD, 13(2), March 1996, 163–177.

602 14 Global Geometric Modeling Topics

is subdivided into subintervals [tj,tj+1] with the property that the cubic curve which
interpolates the four points p(g(tj)), p(g((2/3)tj + (1/3)tj+1)), p(g((1/3)tj + (2/3)tj+1)), and
p(g(tj+1)) deviates from the chord [p(g(tj)), p(g(tj+1))] by an amount that is between
(1/2)ec and ec. The lower bound (1/2)ec is used to make sure that the polygonization
does not consist of too many small segments. Next, the surface is subdivided into a
grid of rectangular patches that are sufficiently flat using a modification of the algo-
rithm in [LanR80] and [Peter94]. Since p(u,v) was only assumed to be C0, one has no
curvature information and so the flatness test is based purely on the flatness of the
grid. Specifically, one checks how close corner vertices are to lying in a plane and how
flat the boundary curves are. While subdividing one also tags the rectangles with
respect to the polygonal trimming curves:

IN: The rectangle is in one loop and outside all inner loops.
OUT: The rectangle is out all outer loops or in one inner loop.
ON: The rectangle intersects a loop.
OVER: At least one loop is entirely inside the rectangle.
ONANDOVER: There are some loops that are inside the rectangles and some that

intersect it.

The OUT rectangles are discarded. See Figure 14.14(a). The tags OVER and
ONANDOVER are needed in the case where many small punctures are made in a
surface. A rather complicated algorithm now merges the trimming loops with the
subdivision rectangles. One has to handle many special cases. See Figure 14.14(b).
Finally, the polygonal regions are triangulated. See Figure 14.14(c).

Figure 14.14. The Piegl and Tiller algorithm (Piegl, L.A., et al. “Geometry-Based Trian-
gulation of Trimmed NURBS Surfaces,” CAD, 30(1), January 1998, 11–18. By permission
of the publisher Elsevier).

14.4 Trimmed Surfaces 603

A quite different algorithm for generating two- and three-dimensional triangular
meshes for surfaces and solids that also applies to trimmed surfaces is described by
Shimada and Gossard in [ShiG95]. The algorithm, called bubble meshing by the
authors, consists of two steps. First, one defines a packing of bubbles or spheres with
centers on the object. To minimize the gaps and overlaps, one makes an initial guess
for the placement based on a hierarchical spatial subdivision. Proximity-based repul-
sive and attractive forces associated to the bubbles are defined and a physically based
dynamic simulation searches for a force-balanced solution that involves adding and
deleting bubbles depending on an overlap ratio.

After one has a packing, a constrained Delaunay triangulation or tetrahedrization
is used to select the best tessellation. Figure 14.15(a) shows an initial random place-
ment of bubbles without the use of a hierarchical subdivision and one can see that
the induced triangulation has undesirable properties. Figure 14.15(b) shows the final
bubbles and triangulation after the relaxation process. One motivation for the algo-
rithm is that the centers of a tightly packed set of bubbles mimics the structure of a
well-shaped Voronoi diagram, so that the number of poorly shaped triangles or tetra-
hedra is greatly reduced. The problem with the algorithm is that it is complex and the
relaxation method is computationally expensive. It also applied only to a single patch
and did not address the problem of cracks between patches.

Another adaptive trimming algorithm for a parametric surface p(u,v) is described
by Vigo and Brunet in [VigB95]. Its focus was also on stereolithography applications.
First, let p1, p2, and p3 be any three points in the domain of p(u,v). Let a(u,v) be the
standard linear map from the triangle p1p2p3 to the triangle p(p1)p(p2)p(p3).

Definition. The triangle p1p2p3 is said to be admissible with respect to a tolerance e if

for all (u,v) Œ p1p2p3. A triangulation of a region in the domain of p(u,v) is said to be
an admissible triangulation if all of its triangles are admissible.

To test for admissibility Vigo and Brunet defined a function R(p) based on bounds
involving the second derivative of p(u,v) such that the following was true.

Admissibility Criterion. A triangle in the domain of p(u,v) is admissible if and only
if |pq| £ max (R(p),R(q)) for each of its edges pq.

p u v u v, ,() - () £a e

(a) (b)

Figure 14.15. Shimada and Gossard bubble meshing (Modeling and Applications, Third
ACM Symposium, May 1995, p. 416, © 1995 ACM, Inc. (Reprinted by permission).

604 14 Global Geometric Modeling Topics

For each patch, a quadtree structure is built using the function R(p). The bound-
ary curves for trimming regions for each patch were then polygonized using this struc-
ture. These curves consisted of parts of trimming curves and possibly parts of
boundary curves for patches. Cracks were prevented by defining a single polygonized
curve for a common boundary. A sufficient number of vertices were then placed
randomly in the interior of all the trimming regions. This number was determined by
making an estimate of the number of vertices in an admissible triangulation. Finally,
a relaxation method was used on the selected vertices to move them into vertices of
an admissible triangulation. The method was different from the one used in [ShiG95]
because the attraction-repulsion force approach was considered to have drawbacks
and also could not guarantee that one got permissible triangles without additional
testing. Instead, a constrained Delaunay triangulation of the interior vertices and the
vertices of the trimming curves and any boundary curves was computed after each
relaxation step and checked for admissibility. The relaxation step involved moving ver-
tices if they belonged to edges that were too long or too short. Each offending edge
determined a translation of the vertex and the actual move of the vertex was the vector
sum of the translation vectors defined by all the incident edges. Care had to be taken
so as not to move outside of the trimming region.

Anglada et al. ([AnGC99]) describe another variant of the algorithm in [VigB95].
The main difference between the two is that a different and often smaller set of
triangles is generated. In [AnGC99] the triangles are determined using directional
bounds. One takes directional aspects of curvature into account, so that if the curva-
ture is small in one direction and larger in another one, then one get elongated tri-
angles aligned with the first direction. For example, in the extreme case of a cylindrical
shaped surface one would get thin triangles aligned with the axis of the cylinder and
as long as it. Figure 14.16(a) and (b) show the difference in results after applying the
algorithm in [VigB95] and [AnGC99], respectively.

The paper by Cho et al. ([ChPP98]) takes quite a different approach to the trimmed
surface problem. One problem encountered by many of the algorithms described
above is that they triangulate a surface S by triangulating the domain of a parame-
terization p(u,v). Even if one makes sure that the resulting triangulation is a good
enough approximation, the map p(u,v) from parameter space to R3 inevitably intro-
duces distortions in the triangles since it is not an isometry. The approach suggested
in [ChPP98] is to reparameterize the surface so that the new parameterization is close

 (a) (b)

Figure 14.16. Results of the algorithms in Vigo, M., et al. “Piecewise Linear Approxi-
mation of Trimmed Surfaces,” in [HaFN95], 341–356 and Anglada, M.V., et al., “Direc-
tional Adaptive Surface Triangulation,” CAGD, 16(2), February 1999, 107–126.

14.4 Trimmed Surfaces 605

to a local isometry. Of course, this has to be done in a way that does not involve exces-
sive computations. Starting with a rectangular grid of points on the surface, the
authors construct a mapping from this grid to a grid G in the plane that is approxi-
mately a local isometry in the sense that edges adjacent to a vertex should be mapped
to edges in the plane of approximately the same length. In Figure 14.17(a) we see an
original surface, then a grid on that surface, and finally the grid G in the plane. Cho
et al. define a global error function and use a minimization argument to accomplish
this. Next, they define a one-to-one and onto linear map a from the region D defined
by G to the rectangular domain of p(u,v). The map j(u,v) = p(a(u,v)) will be a para-
meterization of the surface with domain D. See Figure 14.17(b). A nice triangulation
of D or the trimmed regions in D will then map to a reasonably nice triangulation of
S by j(u,v).

Most algorithms that triangulate trimmed surfaces obtain the triangulation by
triangulating the region bounded by the trimming curves in parameter space. This
means that the trimmed surface problem has as part of it a problem that is interest-
ing on its own, namely, the triangulation problem for such planar regions. This is a
well-known problem in computational geometry and Section 17.6 discusses algo-
rithms for triangulating planar polygons without holes and their complexity. On the
other hand, since we are interested in the rendering of trimmed surfaces, we do not
necessarily need triangles. We shall now describe an implementation of a relatively
simple algorithm that solves the following general problem.

Trapezoidation problem: Given a closed planar region bounded by k closed polygonal
curves, k ≥ 1, decompose it into a collection of trapezoids.

Of course, once a region has been divided into trapezoids, it is obviously easy to get
a triangulation, so that we will also have solved the corresponding triangulation

(a

P

D

)

(b)

Figure 14.17. Tessellating surfaces via locally isometric approximations (Cho, W.P., et
al. “Approximate Development of Trimmed Patches for Surface Tessellation,” CAD,
30(14), December 1998, 1077–1087.).

problem. To use our algorithm to triangulate trimmed surfaces one would first have
to use some other algorithm to represent the trimming curves in parameter space as
a suitable collection of closed polygonal curves. Additional criteria would have to be
used to determine if the triangulation is fine enough. It should also be noted before-
hand that since our trapezoidation algorithm does not concern itself with the para-
meterization of the trimmed surface, the induced triangulation of the surface may
contain very thin triangles, so that extra work would have to be done to avoid that.
Nevertheless it leads to a quick-and-dirty algorithm for displaying trimmed surfaces
and we shall describe the algorithm with that application in mind. (We should
mention the algorithm in [ZalC99] that seems to be based on similar ideas; however,
the author has used the algorithm we are about to describe for a number of years
even though it was never published until now.)

Our trapezoidation algorithm is based on an idea from Vatti’s clipping algorithm
([Vatt92]) that we described in Section 3.3.5. Recall that the central idea of his algo-
rithm is to define polygons in terms of left and right bounds and then to obtain the
final clipped regions using a fairly standard scan line approach with active edge lists.
This idea of polygon bounds can also be used effectively to generate a trapezoidal
decomposition of a polygonal region. The domain can be quite general for our
algorithm. It may have holes or consist of more than one component.

The main task will be to show how to subdivide a given polygonal region into trape-
zoids using the left and right bounds of the bounding curves for the polygons of the
region. (Trapezoids in this discussion will include the “degenerate” case of triangles.)
Because of the application to trimmed surfaces, we also give an algorithm for subdi-
viding a trapezoid appropriately for a wireframe display of the parametric surface
defined on it. This would also apply to a z-buffer type display algorithm. The complete
details for an algorithm that displays trimmed parameterized surfaces (above and
beyond what is discussed here) depend on the type of display that is desired. As an
example of one approach for shaded surfaces using a z-buffer algorithm see [RoHD89]
but replace the regions that are used there with the trapezoids from here.

The discussion in this section will depend heavily on what was done in Section
3.3.5. To be able to handle our regions we can use a simplified version of the algo-
rithm described in Section 3.3.5. Major simplifications arise from the fact that,
although the region may consist of more than one polygon, none intersect here. On
the other hand, we shall need to worry about “knots,” so that the data structures will
be modified slightly to fit our current needs. We shall concentrate the discussion on
those aspects that are different from those in Section 3.3.5. Like in that section
we shall only sketch the main ideas. A more thorough discussion can be found in the
document VattiTrim on the accompanying CD.

Given our planar region, first determine the left and right bounds of the polygons
making up the region and store this information in a local minima list (LML) as
before. Next, compute the trapezoidal decomposition of the region from the LML by
scanning the region from the bottom to the top using scan beams whose y-values are
kept in a scan beam list (SBL). Recall that the values for this list are not generated
all at once. We start with the list of all the local y-minima of the polygon boundaries
and the y-values of the top endpoint of the edges that start at the local minima and
then add to the list incrementally on an edge by edge basis. As we scan the world one
scan beam at a time, an active edge list (AEL) lists all the edges intersecting the current
scan beam just like in Section 3.3.5.

606 14 Global Geometric Modeling Topics

14.4 Trimmed Surfaces 607

When we begin processing a scan beam, before we look at any of the edges of the
AEL, we check the LML to see if any of its bound pairs start at this level. These bounds
correspond to local minima. Each of these will start a trapezoid or break an existing
one into two depending on whether the local minimum starts with a left-right or right-
left edge pair. The first nonhorizontal edge from each bound of a local minimum is
added to the AEL. Note that horizontal edges are never put on the AEL. Intermedi-
ate horizontal edges basically are skipped but they do create “knots” as will be
described later. After any new edges from the LML are added to the AEL, we process
the edges of the AEL one at a time starting from the left. See Algorithm 14.4.1 for a
more precise description of the top-level algorithm described so far. Compare this
algorithm with Algorithm 3.3.5.1.

{Global variables}
real list SBL; {an ordered list of distinct reals thought of as a stack}
bound pair list LML; {a list of pairs of matching polygon bounds}
edge list AEL; {a list of nonhorizontal edges ordered by x-intercept

 with the current scan line}
trapezoid list TRAPS; {the trapezoids are stored here as algorithm progresses}

trapezoid list function ConvertToTrapezoids (curve list PL)
{The list PL represents a polygon with holes. The first curve in the list is the outer boundary
 of the polygon and the others, if any, are the holes. The procedure partitions the polygon
 into trapezoids. The list of these trapezoids is returned to the calling procedure.}

begin
real yb, yt;

Initialize LML, SBL to empty;

{Define LML and the initial SBL}
for each curve P in PL do UpdateLMLandSBL (P);

Initialize TRAPS, AEL to empty;

yb := PopSBL (); { bottom of current scan beam }
repeat

 AddNewBoundPairs (yb);
yt := PopSBL (); { top of current scan beam }
ProcessEdgesInAEL (yb,yt);
yb := yt;

until Empty (SBL);

return (TRAPS);
end;

Algorithm 14.4.1. The trapezoid creation algorithm.

608 14 Global Geometric Modeling Topics

Like in Section 3.3.5, the UpdateLMLandSBL procedure finds the bounds of
a polygon, adds them to LML, and also updates SBL. This time we will have an
adjacent trapezoid associated to edges rather than an adjacent polygon. It may change
as we move from one scan beam to the next. Because horizontal edges complicate
matters, in order to make dealing with horizontal edges easier, we again assume that
the matching left and right bound pairs in the LML list are normalized (see Section
3.3.5 for a definition).

Next, consider the AddNewBoundPairs procedure. The task of this procedure is
to add those bounds that start at the current scan line into the AEL list. This is not
as straightforward as it may seem. Some of the complicating possibilities are shown
in Figure 14.18, which shows some of the events that can occur in the processing of
the scan beam between the two scan lines at yb and yt. As we deal with local minima
at the points p1 and p2, we have to worry about potential “knots” for either new or
old trapezoids. By a knot for the top or bottom edge of a trapezoid we mean the x-
coordinate of a vertex of a polygon that must be included in any subdivision of the
trapezoid. Knots are needed because adjacent trapezoids might have only part of an
edge in common. Without keeping track of the knots, subdivisions of these adjacent
trapezoids might subdivide the part of the edge that they have in common in differ-
ent ways that would lead to gaps in the surface defined over these trapezoids. In Figure
14.18, when we process the local minimum at p1 we have to add a top knot to trape-
zoid tz1. When we process p2, we must add two top knots corresponding to p2 and
p3 to tz1. The knots corresponding to points p4, p5, and p6 in the bottom edge of
trapezoid tz6 would have been specified when the scan beam below the current one
was processed and the local maxima were encountered. Only knots interior to an edge
are kept track of in the trapezoid data structure. Although the endpoints of the top
and bottom edges of a trapezoid clearly fall under the label of knots, we do not include
them in the knot arrays, because that would be redundant data.

After these comments, assume that the trapezoids use the data structure shown
in Data 14.4.1. The leftDx and rightDx fields are simply the increments by which leftX
and rightX changes as we move from one scan line to the next. Here is what we have
to do when we add the edges of a bound pair to the AEL list. In general, at a left-
right edge pair minimum, we

Figure 14.18. Complications for the AddNewBoundPairs procedure.

(1) create a new trapezoid T with all fields defined, except that at this point it is
degenerate because the topY and bottomY fields are temporarily set to the
same value, and

(2) make T be the adjacent trapezoid of the two edges.

A local minimum at a right-left edge pair is more complicated. Basically, the
trapezoid below us is about to split. First of all, let us introduce some notation. Call
a trapezoid T closable if

(1) its topY and bottomY fields have the same value, and
(2) the common value of these two fields is less than the y-coordinate of the

bottom of the current scan beam.

The process of setting the topY field to a value larger than the value of the bottomY
field (thereby making the trapezoid “nondegenerate”) will be referred to as closing the
trapezoid. Sometimes when a trapezoid is closed, we need to update its rightX and
rightDx fields. A trapezoid whose topY and bottomY fields have distinct values is
said to be closed. Closed trapezoids may still have incomplete knot arrays however.

Dealing with a right-left edge pair (e1,e2) therefore involves three steps. Let
prevE be the edge to the left of e1 and let belowTrap be the trapezoid below this
one which is splitting. Let BottomX(e) of an edge e denote the x-coordinate of the
intersection of e with the horizontal line at the bottom of the current scan beam.

Step 1: If the trapezoid adjacent to prevE is still open, then close it and create a
new trapezoid T1 for e1 and prevE. For example, in Figure 14.19(a), when we get to
p1, tz1 would be adjacent to e1. We would close it and create tz2 for e1 and e3. On
the other hand, when we get to p2, we do not need to close tz3.

Step 2: Create a new open trapezoid T2 and make it the adjacent trapezoid for
e2 and the edge that follows e2. Move any knots from the bottom of prevE’s trape-
zoid that are bigger than BottomX(e2) to T2. For example, in Figure 14.19(b), tz4
would already have bottom knots corresponding to p4, p5, and p6 as we start pro-
cessing the scan beam. At p1 (and p2) the knots p4, p5, and p6 would be shifted.

Step 3: The new local minimum at BottomX(e1) creates a knot in the top of
belowTrap. See point p1 in Figure 14.19. If BottomX(e2) is larger than BottomX(e1),
then we get a second knot. See edge p2p3 in Figure 14.19(b). These knots must be
added to the top knots of belowTrap.

14.4 Trimmed Surfaces 609

trapezoid = record

real leftX, { the x-coordinate of the bottom left vertex }
leftDx, { the reciprocal of the slope of the left edge }
rightX, { the x-coordinate of the bottom right vertex }
rightDx, { the reciprocal of the slope of the right edge }
bottomY, { the y-coordinate of the bottom edge }
topY; { the y-coordinate of the top edge }

real array topKnots, { the interior knots for the top edge }
botKnots; { the interior knots for the bottom edge }

end;

Data 14.4.1. The trapezoid data structure.

610 14 Global Geometric Modeling Topics

By the way, keeping track of the trapezoid below the current position in the scan
line is not hard, because trapezoids are added to TRAPS in a bottom-up, left-to-right
manner, so that we merely need to keep moving a pointer to the right appropriately.

One determines whether an edge is a left or right edge at the time that it is put
on the AEL. This is done by a parity-type argument. If there are an even number of
edges on the AEL to the left of the new edge, then this edge is a left edge, otherwise,
it is a right edge.

Figure 14.19(b) and Table 14.4.1 should clarify how the AddNewBoundPairs
procedure works. We use the notation shown in Figure 14.19(b) and the following
abbreviations:

xpi is the x-coordinate of point pi.
dxi is the value of the dx field in edge ei.
xib is the x-coordinate of the point where edge ei meets scan line at yb.
xit is the x-coordinate of the point where edge ei meets scan line at yt.

(a) (b)

Figure 14.19. Closing and splitting trapezoids.

Table 14.4.1 Stages of the AddNewBoundPairs procedure.

AEL Trapezoid values

At beginning {e1,e6} tz4 (x1b,dx1,x6b,dx6,yb,yb,{},{xp4,xp5,xp6})
tz5, tz6, and tz7 not yet defined
topKnots of tz1: {}

After (e7,e8) pair {e1,e7,e8,e6} tz4 (x1b,dx1,xp1,dx7,yb,yb,{},{})
tz5 (xp1,dx8,x6b,dx6,yb,yb,{},{xp4,xp5,xp6})
tz6 and tz7 not yet defined
topKnots of tz1: {xp1}

After (e9,e10) pair {e1,e7,e8,e9,e10,e6} tz4 (x1b,dx1,xp1,dx7,yb,yb,{},{})
tz5 (xp1,dx8,xp2,dx9,yb,yb,{},{})
tz6 (xp3,dx10,x6b,dx6,yb,yb,{},{xp4,xp5,xp6})
tz7 not yet defined
topKnots of tz1: {xp1,xp2,xp3}

14.4 Trimmed Surfaces 611

Because the trapezoids tz2 and tz3 are already defined and do not change, we do not
include them in the table.

Next, we describe the AEL processing procedure. After adding any bottom edges
from local minima to the AEL, we process the edges of the AEL one at a time start-
ing from the left. If an edge extends past the current scan beam, then we simply update
the x-intersection field of the edge. If the edge ends at the top of the current scan
beam, then one or two trapezoids are closed and the edge is processed in one of two
ways depending on whether the top vertex is an intermediate vertex or a local
maximum. If the vertex is an intermediate vertex, then the edge is replaced in the AEL
by its successor edge and the left/right flag is passed on to the new edge. In the case
of a left intermediate vertex, the adjacent trapezoid is closed. In the case of a right
intermediate vertex, we close the trapezoid to its left if it is still open. If the top vertex
is a local maximum, then two bounds meet that may belong either to the same or to
different trapezoids. If the bounds belong to the same trapezoid, that is, the edge e
was a left edge, then the trapezoid adjacent to e is closed. If the bounds belonged to
different trapezoids, then two trapezoids (one to the left of e and the other to the right
of the second bound) must be closed and a new merged trapezoid T started. Knots
are a complicating factor in this last case. The top endpoint of e will contribute a
knot to the botKnots array of trapezoid T. We must also check if our local maximum
has a top horizontal edge because then a second knot will be added to the same bot-
Knots array. Table 14.4.2 gives an example of these steps using Figure 14.19(b) again.
Figures 14.20(a) and 14.21(a) show some sample polygons and their final trapezoidal
decompositions.

Returning to the topic of trimmed surfaces, once we get a trapezoidal decompo-
sition of their domain as described above, there is still work to be done when it comes
to displaying them. For one thing, the trapezoids may be large and may need to be
subdivided. Any subdivision has to take the knots into account to avoid gaps in the
image. We shall describe a scan line approach that would also be suitable in the
context of a z-buffer or related type display. Basically, we need to come up with a
convenient way to subdivide the trapezoidal u-v domain appropriately.

Assume that du and dv are the maximum u and v step sizes, respectively, that we
are to use. Assume that trapezoids have a Boolean doBottom field that specifies
whether or not the bottom edge of the trapezoid is to be drawn (we always draw the
top edge). The reason for this is that if two trapezoids are adjacent, then we might
not want to draw their common edge twice. Because of the way that trapezoids are

Table 14.4.2 Stages of the AEL processing procedure.

AEL Trapezoid values Edges
(topY,topKnots) (x,adjacent trapezoid)

At beginning {e1,e7,e8,e9,e10,e6} tz4 (yb,{}) e1 (x1b,tz4)
tz5 (yb,{})
tz6 (yb,{})

After e1 {e1,e7,e8,e9,e10,e6} no change e1 (x1t,tz4)
After e8 {e1,e11,e9,e10,e6} tz4 (yt,{xp7}) e1 (x1t,tz7)

tz7 (yt,{})
After e10 {e1,e11,e10,e6} no change e10 (x10t,tz6)

612 14 Global Geometric Modeling Topics

generated they never have common side edges. Incorporating this doBottom field in
the trapezoid generation algorithm is easy. It is set to true for all trapezoids whose
bottom edge comes from a local minimum horizontal edge or that meet a local
maximum horizontal edge.

Given a trapezoid we first want to subdivide it into horizontal slices that are at
most dv units high and then to subdivide each of these slices into rectangular or tri-
angular patches whose top and bottom edges are at most du units wide. Furthermore,
any knots that the trapezoid may have must appear as vertices for the patches. Getting
the horizontal slices is easy. The tricky part is to divide those slices vertically in a way
that will include the knots in the division. One can do this by dealing with various
cases separately. The three types of generic cases are shown in Figure 14.22 and one
basically divides the trapezoids along the dotted lines shown in the figure, except that
the existence of knots may mean that the actual lines along which the trapezoids are
divided may be a slightly perturbed version of those. In the end, drawing a slice is

(a) (b)

Figure 14.20. Trapezoidal decompositions of polygons.

(a) (b)

Figure 14.21. More trapezoidal decompositions of polygons.

14.4 Trimmed Surfaces 613

reduced to drawing a sequence of subdivided triangles with a single bottom vertex,
subdivided triangles with a single top vertex, and/or subdivided parallelogram type
regions. See the document VattiTrim on the accompanying CD for more details.
Sample outputs using this approach are shown in Figures 14.20(b) and 14.21(b).

Finally, consider Figure 14.23. This shows the triangles and parallelograms that
are generated for a trimmed Bezier surface patch where the bounding curves are cubic
B-splines. Notice that parts of the domain were subdivided more than others. This
may not be desirable. The “feature” has two causes:

(1) All trapezoids are drawn no matter how thin they are.
(2) The vertical height of trapezoids is determined by scan beams and these are

usually thinner than the resolution of the bounding curves would suggest.

One can mitigate these causes by using a smaller resolution for the bounding curves,
expecting the trapezoids to be smaller anyway, or one could get fancier with the
algorithms described above and change the subdivision of the bounding curves in

Figure 14.22. Cases when decomposing
horizontal trapezoid slices.

Figure 14.23. Trapezoidal decomposition of a
trimmed Bezier patch.

a dynamic way from one scan beam to the next. Alternatively, one could do some post-
processing of the trapezoids. Actually, the problem of thin triangles or trapezoids is
only part of the problem. As we pointed out in Section 14.3, how the domain of a
parameterization is polygonized has, in principle, little bearing on the polygonization
of the surface that this polygonization induces. If getting a uniform polygonization
for a trimmed surface is important, then an approach like in [ChPP98] could be
considered.

We shall end this section with a few words about a problem related to trimming
curves. A trimming curve for a parametric surface p(u,v) is usually assumed to be a
curve g(t) in parameter space of the parameterization p(u,v). One may need to deal
with the trimming curve p(g(t)) in the surface directly. The general problem is to find
an appropriate representation of the composite of two functions given a representa-
tion for each separately. For example, suppose that both g(t) and p(u,v) have a Bézier
representation, can one represent the composite p(g(t)) as a Bézier curve? Among
other applications, an affirmative answer would be useful for data exchange between
CAD systems. The representation of composite functions has been studied for various
types of functions. We shall leave the reader with one reference for this subject. In
[LasB95] it is shown how the composite of a Bézier trimming curve and a Bézier
tensor product surface can be given an explicit Bézier representation.

14.5 Implicit Shapes

14.5.1 Implicit Curves

This section considers ways to find and describe the solutions to a polynomial equa-
tion of the form

(14.8)

We shall look at rasterization, marching, and algebraic geometry approaches.
In Sections 2.9.2 and 2.9.3 we tried to generate a solution to a special class of such

equations on a pixel-by-pixel basis. A number of rasterization algorithms exist for the
general case of equation (14.8). The simpler ones, such as [Chan88], may fail at sin-
gularities. An algorithm that also works at singularities is described by Taubin
([Taub94]). The basic idea of the algorithm is to traverse all the pixels (thought of as
squares) and to output those that the curve intersects. Of course, it is much too inef-
ficient to look at every pixel since the curve would only intersect a few. Therefore,
Taubin uses an approach similar to the Warnock visible surface algorithm. One checks
if the screen is intersected by the curve. If it is not, then one is done. If it is, then it
is subdivided into four rectangular pixel areas and the same process is repeated for
each of the subrectangles. One keeps subdividing until one gets down to an individ-
ual pixel. The key element in the algorithm was coming up with an efficient test
whether the curve intersected a box. Actually, Taubin achieves efficiency by not having
a yes-or-no test but rather an “approximate” maybe-or-no test. However, and this is
an important condition in order to get a correct algorithm, if it said “maybe,” then
eventually it would say no to any of the subrectangles that were not intersected. We

f x y, .() = 0

614 14 Global Geometric Modeling Topics

never end up at a pixel with a “maybe” as an answer. Taubin indicated how the algo-
rithm could be extended to three-dimensional rasterization of surfaces and surface
intersections. The answers in that case were collections of boxes useful for volume
rendering type situations.

A number of algorithms that solve equation (14.8) are based on marching
methods. They produce polygonal approximations to the curve. For example,
Timmer’s algorithm for finding surface intersections can also be used to compute
implicit curves. One simply defines a grid in the plane. Another marching algorithm
is described by Snyder in [Snyd92]. It uses interval analysis and is better and more
robust than the algorithm by Timmer or [BHLH88]. Section 18.5 has an overview of
Snyder’s algorithm. Of course, one could also use the algorithm described later in
Section 14.6 since implicit curves can be thought of as contours.

A final approach to solving equation (14.8) that we want to describe is one that
uses algebraic geometry methods. For more details see Bajaj et al. ([BHLH88]) and
Hoffmann ([Hoff89]). Algebraic geometry approaches to solving equation (14.8) fall
into two categories:

(1) One can try to find a parameterization for the curve.
(2) Starting with a point on the curve, one can use a standard incremental

approach to crawl along the curve when one is not near any singularities, but
use algebraic geometry to get past singularities.

Techniques for converting from implicit to parametric representations are dis-
cussed in Section 10.15 in [AgoM05], but not all algebraic curves are rational and
Sederberg et al. ([SeZZ89]) describe a way to get approximate parameterizations. Here
we describe an incremental approach. We start with a fundamental result from alge-
braic geometry (Theorem 10.13.26 in [AgoM05]) that says that every such curve can
be transformed birationally into a plane curve g(u,v) = 0 which contains at most ordi-
nary singularities, that is, points where the curve crosses itself in a transverse fashion.
(We shall not count ordinary singularities as singularities in the discussion that
follows.) Actually, there is a stronger theorem (Theorem 10.13.27 in [AgoM05]), which
states that a curve is birationally equivalent to a curve without any singularities at all,
but unfortunately the latter will in general be a curve in higher dimensions. At any
rate, the basic idea for tracing a curve C defined by equation (14.8) will therefore be
to toggle between two modes:

(1) If we are at a nonsingular point of f, then trace C using f and some standard
Newton-Raphson root-finding method until done or until we approach a sin-
gularity of f.

(2) If we are near a singularity, then trace C using g in a neighborhood of this sin-
gularity until we are past the singularity and then return to tracing C using f
again.

This approach works because a curve has only a finite number of singular points
(Theorem 10.6.4 in [AgoM05]). The reason that we cannot simply use g for the whole
process is that this would involve tracing through points at infinity. Algorithm 14.5.1.1
shows the steps of the algorithm. We shall now describe them in more detail.

The curve C is traced using what is called a place of f in algebraic geometry.
Assume that p0 = (x0,y0) is a point of C and that the formal power series

14.5 Implicit Shapes 615

616 14 Global Geometric Modeling Topics

(14.9)

corresponds to a place of f with center p0. We can solve for these power series by
substituting them into the equation (14.8) and setting the coefficients to 0.

14.5.1.1 Example. To find the parameterization (14.9) at the origin for f(x,y) =
x3 - x2 + y2.

Solution. In this case (a0,b0) = (0,0) and we need to solve

(14.10)

Two solutions to (14.10) are

(14.11)

x t t

y t t t t

() =
() = - () - () -1 2 1 82 3 . . .

b a

a a a b b

a a a a a b b b

1
2

1
2

1
3

1 2 1 2

1
2

2 1 3 2
2

1 3 2
2

0

2 2 0

3 2 2 0

- =

- - =

- - + + =
.

x t a a t a t

y t b b t b t

() = + + +
() = + + +

0 1 2
2

0 1 2
2

. . .

. . .

How algebraic geometry can be used to tile a planar curve defined by

f (x,y) = 0

Step 1: Let p be a nonsingular point of f.
Step 2: Trace f one step starting at p in the tangent direction to the next point p¢.
Step 3: If we are done, then quit.
Step 4: If p¢ is a nonsingular point, then let p be p¢ and go to Step 2.
Step 5: Transform the curve f to a curve f1 so that the singular point p¢ gets sent to the

origin.
Step 6: Use a birational map F to transform the curve f1 to a curve g, so that

(a) There is a neighborhood U of the curve f1 about the origin and U-0 gets
mapped in a bijective way onto F(U)-F(0) by F.

(b) Each place of f1 centered at 0 gets mapped to a regular place of g.
(c) The center of these places of g is a regular point of g.

Step 7: Trace g to get past the singularity of f and to a new nonsingular point p.
Step 8: Go to Step 2.

Algorithm 14.5.1.1. Incremental curve tiling algorithm.

and

(14.12)

The fact that there is more than one solution indicates that we are at a singular point
because only one place exists at a regular point.

In general, the equations like (14.10) that one uses to solve (14.9) for ai and bi can
actually be put into the form

where g(t) = (x(t), y(t)). One deals with them in a way similar to how equations (13.18)
and (13.19) are handled in Section 13.5.2. At nonsingular points where we have a
unique solution we trace f using an approximation to g(t), say by a cubic approxi-
mation by using the first three terms of the series, and then use a Newton-Raphson
method to converge to a point on the curve.

So far there is nothing new. Things get interesting when we approach a singular-
ity on C. Assume that the singularity is at the origin. We need to find a transforma-
tion that will map our curve into a singularity-free curve.

Removing a Singularity at the Origin. We use the quadratic transformations

(14.13)

One can show that T1 has the following properties (with similar properties for T2):

(1) The y-axis gets mapped to infinity.
(2) Away from the y-axis T1 is one-to-one.
(3) The tangent lines of C at the origin will get mapped to distinct tangent lines

at distinct regular points of the curve defined by g.

Furthermore, it is known (see Section 10.12 in [AgoM05] and in particular Lemma
10.12.15) that the singularity-free curve g(u,v) = 0 we are seeking can be obtained by
applying a finite number of transformations of the form T1 or T2. If our curve has no
vertical tangent lines, then we use T1, otherwise we use T2. The transformations
resolve our singularity into a finite number of points on the curve defined by g.

We shall clarify the singularity removal process with an example. First, recall that
it is easy to compute the equation of any transformed implicitly defined object. In our
case, the transformations T1 or T2 map the curve C into a curve that has equation

respectively, and the inverses of T1 and T2 are defined by

g u v f T u v or g u v f T u v, , , , ,() = ()() = () = ()() =- -
1

1
2

10 0

v
y
x

v y= = .

T u x or T u
x
y1 2: := =

— () () =()f t cm
f mp0 • ,,g

x t t

y t t t t

() =
() = - - () - () -1 2 1 82 3 . . .

14.5 Implicit Shapes 617

618 14 Global Geometric Modeling Topics

(14.14)

Also, property (3) of T1 is simply a consequence of the fact that, except for the origin,
the points of the line y = mx gets mapped by T1 to the line v = m.

14.5.1.2 Example. To remove the singularity of f(x,y) = y2 - x2 - x3.

Solution. See Figure 14.24. The map T1 transforms f(x,y) into g(u,v) = u2 (v2 - 1 - u).
This means that the points of the curve C defined by f(x,y) = 0 that have nonzero x-
coordinates get mapped into the curve defined by v2 - 1 - u = 0. To see what happens
to the branches of the curve at the origin, let us solve the equation f(x,y) = 0 for y. We
get

This shows that one branch at the origin of our curve C satisfies equation f1(x,y) = 0,
where

Applying T1 to f1(x,y) gives

From this it is easy to see that if pi are points on the branch of C defined by f1(x,y)
that converge to the origin, then the points qi = T1(pi) converge to (0,1). In other words,
the origin that was a singular point for f(x,y) has been resolved into the nonsingular
point (0,1) for g(u,v). Finally, note that at the origin, the tangent line of the curve
defined by f1(x,y) has slope 1 and the line y = x gets mapped to the line v = 1.

Let us return to our curve tracing. Suppose that we are at point p on the curve C and
we are approaching a singularity at the origin. What we have to do is the following:

g u v u v u1 1, .() = - +()

f x y y x x1 1, .() = - +

y x x= ± +1 .

T x u and T x uv

y uv y v
1

1
2

1- -= =
= =

: :

.

Figure 14.24. Removing the singularity of f(x,y) = y2 - x2 - x3.

(1) Determine the tangent line at the origin of the branch of f that we are cur-
rently on. Suppose that it has slope equal to m.

(2) Compute the singularity-free curve g(u,v) = 0 using a composite T of the quad-
ratic transformations Ti as described above. Let q = T(p).

(3) Trace g from q to a point q¢ that is a small distance past (0,m) and map these
traced points back to f using the inverse of T.

We will now be at the point p¢ = T-1(q¢), which is past the singularity of f and we con-
tinue tracing f as before until we get to a new singularity.

Three issues were brushed over in the description of our algorithm: determining
when we are approaching a singularity, moving it to the origin, and making sure that
we do not invert our tracing direction when we move to tracing g.

Finding Singularities. Our singular points are defined by the constraints f = fx = fy
= 0. With infinite precision there would be no problem, but without that it turns out
that we should use the condition number of the matrix

to determine when we are getting close to a singularity. [Hoff89] suggests several
approaches. Two possible iterative approaches are using a least squares method or
some sort of constrained minimization. Two possible direct approaches for finding
roots are to use resultants or Gröbner bases.

Moving Singularities to the Origin. The problem here is that we need our singu-
larity to be at the origin to apply our quadratic transformations, but we may have to
apply a series of these and they are sensitive to numeric errors in the transformed
functions.

Preserving the Tracing Direction. Since the vector —f = (fx,fy) is normal to the
curve, the orthogonal vector v = (-fy,fx) will be tangent to it and will be the default
direction in which to start traversing f. This choice is motivated by the fact that the
ordered basis (—f,v) induces the standard orientation of R2 because

Intuitively this corresponds to preferring a counterclockwise direction, as for example
in the case of the unit circle defined by f(x,y) = x2 + y2 - 1.

Definition. We call (-fy,fx) the standard trace direction for f.

Now the actual tracing of a curve is done using a parameterization g(t) = (x(t),y(t))
as defined by equations (14.9). The parameter t in the parameterization induces a
direction on the curve that will agree with our choice if

d
f

a b
f, det

,
.g =

—
()

Ê
Ë

ˆ
¯ >

1 1
0

det .
—Ê

Ë
ˆ
¯ >

f

v
0

f f

f f

x y

y x

-Ê
ËÁ

ˆ
¯̃

14.5 Implicit Shapes 619

620 14 Global Geometric Modeling Topics

If this is not true, then we need to trace the parameterization in the negative t direc-
tion. From this we see that the issue of the tracing direction of a curve involves the
following two points:

(1) The direction in which we trace is not determined intrinsically by a curve C
but by the function f which is used to define it. If we replace f by -f, then the
curve will be traced in the opposite direction.

(2) In addition to finding a parameterization for the curve, we need to check df,g,
which determines whether the parameter t induces the same direction as the
one in which we want to trace.

If the curve we are tracing has no singularities, then no more needs to be said. If
singularities exist, in particular if the origin is a singularity, then the standard tracing
directions may not vary continuously as we pass through the origin. We can see this
in Figure 14.25 ([Hoff89]). Of course in that case we do not trace the curve using the
function f alone but use a transform g of it to get past the singularities. Tracing g will,
just like in the case of f, involve the gradient of g and a parameterization of g. We
need to establish how the tracing direction of g should be determined from that of f.
Assuming that a0 π 0, so that we can use a T1 transformation, then g(u,v) = f (T1

-

1(u,v)), and so by the chain rule Dg = Df°DT1
-1. If (u,v) = T1(x,y), then

(14.15)

The parameterization for g at (u,v) induced by g is

It is easy to show by long division that

c
b
a0

0

0
=

u t x t

v t
y t
x t

c c t c t

() = ()

() =
()
() = + + +0 1 2

2 . . .

— () = () ()()ÊË
ˆ
¯

=
+Ê

ËÁ
ˆ
¯̃

g u v f x y f x y
v u

x
xf yf

x
f

x y

x y
y

, , ,

, .

1 0

2

Figure 14.25. Tracing directions (-fy,fx) for f(x,y) = y2 - x2

- x3.

14.5 Implicit Shapes 621

Because u(t) = x(t), the parameterizations of the curve and its transform should be
taken either both in the positive or both in the negative t direction. From equation
(14.15) we see that —f(x0,y0) and —g(T1(x0,y0)) differ in the second coordinate by the
factor x0. We therefore use the sign of x0 to decide whether the tracing direction with
respect to —g needs to be changed. Putting all this together, we determine the orien-
tations for tracing as follows:

(1) Assume the current tracing direction at (x,y) with respect to f is d(-fy,fx), where
d = ±1.

(2) If we switch to tracing g, then trace g in direction xd(-gy,gx), that is, we use
g’s standard trace direction if and only if xd > 0.

(3) When we finally are ready to switch back to tracing f, if we are tracing in direc-
tion d(-gy,gx), then start tracing in direction xd(-fy,fx).

14.5.1.3 Example. To apply the above steps to f (x,y) = y2 - x2 - x3 and show how
the problem indicated in Figure 14.25 disappears.

Solution. See Figure 14.26 ([Hoff89]). If we start our tracing at A moving toward
the singularity at the origin, we eventually get to B where we switch to the transform
g and the curve v2 - 1 - u = 0. We start at the point B1 on that curve and then trace
in direction (-gy,gx) until we get to point C1 at which time we have passed the singu-
larity and revert to tracing f at C, but with tracing direction (fy,-fx).

One common problem for all methods that try to compute an implicitly defined
set of points is to make sure that we end up with a set that has the correct topology.
Note that we ran into a similar problem in the last chapter in the context of finding
the intersection of two surfaces. Great strides have been made in the efficient appli-
cation of algebraic geometry to this issue. One example of this is the paper [GonN02],
where one can also find references to additional work.

c
b a a b

a
1

1 0 1 0

0
2

=
-

. . .

Figure 14.26. Adjusting the tracing direction at a singularity.

14.5.2 Implicit Surfaces and Quadrics

This section takes a brief look at implicitly defined surfaces. Specifically, we want to
study the solution of a polynomial equation of the form

(14.16)

The reader should review the general comments on implicit tilers at the end of Section
14.3.

The important special case of quadric surfaces is often dealt with separately. If all
one wants to do is to render them, then [Bloo97] presents a scan line–rendering algo-
rithm. We already know the types of quadrics that exist. See Section 3.7 in [AgoM05].
Assume that the quadric is represented in world homogeneous coordinates by the
equation

(14.17)

Recall the discussion of the graphics coordinate system pipeline in Chapter 4. By com-
posing the homogeneous version of the world-to-camera coordinates transformation
(equation (4.4)) with the homogeneous camera-to-clip coordinates transformation
(equation (4.10)), we get a transformation M, which maps from homogeneous world
coordinates to homogeneous clip coordinates. It follows that the equation for the
quadric in homogeneous clip coordinates is

(14.18)

where Q* = M-1Q(M-1)T. Actually, since M-1 differs from the adjoint, adj(M), by a con-
stant (the reciprocal of the determinant of M), we may simplify equation (14.18) and
assume that

in that equation. For a pixel on the screen with integer coordinates (x,y) let (xs,ys) Œ
[0,1] ¥ [0,1] denote its normalized device coordinates. With this notation, we can now
describe the algorithm for rendering the quadric defined by equation (14.17).

For each pixel (x,y), we solve the following quadratic equation in z:

(14.19)x y z Q

x

y

z
s s

s

s1

1

0()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=* .

Q adj M Q adj M
T

* = () ()

x y z w Q

x

y

z

w

¢ ¢ ¢ ¢()

¢
¢
¢
¢

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

=* ,0

h x y z w x y z w Q

x

y

z

w

, , , .() = ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

= 0

f x y z, , .() = 0

622 14 Global Geometric Modeling Topics

If there is no solution, then the quadric misses that pixel. Otherwise, choose the small-
est z and transform the point (xs,ys,z,1) back to camera coordinates to compute
shading and texture information at that point.

For shading we need normals, but these are easy to compute for the quadric
defined by equation (14.17) because it corresponds to the solution to the equation
(14.16) with f(x,y,z) = h(x,y,z,1) and the normal at (x,y,z) to a surface defined by an
equation like (14.16) is just —f(x,y,z). Fix w and define s(x,y,z) = (xw,yw,zw,w). Then
f = hs. Therefore, applying the chain rule

where si is the ith component function of s. Similarly,

This shows that —f is a multiple of

Differentiating equation (14.17) with respect to x gives

with similar formulas for the other partials. Finally, we can combine these facts to
conclude that

(14.20)

is a normal to the quadric at the point (x/w,y/w,z/w).
Once one finds one visible point one does not need to check all the remaining

pixels on the screen. It is possible to be more efficient and restrict the remaining pass
to a smaller subset. Subsequent z and normal vector computations can also be speeded
up by making incremental computations. The reader is referred to [Bloo97] for the
details.

Moving on to the general case, an approach to getting a piecewise linear approx-
imation to a solution to equation (14.16) and higher dimensional analogs in the case

N x y z w Q= ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

2

1 0 0

0 1 0

0 0 1

0 0 0

∂
∂

= ()

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

h
x

x y z w Q2

1

0

0

0

,

∂
∂

∂
∂

∂
∂

Ê
Ë

ˆ
¯

h
x

h
y

h
z

, , .

∂
∂

==
∂
∂

∂
∂

=
∂
∂

f
y

w
h
y

and
f
z

w
h
z

.

∂
∂

=
∂
∂

=
∂
∂=

Âf
x

D h
x

w
h
xi

i

i

1

4 s
,

14.5 Implicit Shapes 623

of a regular map where the solution is a manifold is described in [AllS85], [AllG87],
and [AllG91]. One does need to get a start point for each component of the solution.
A Newton-Raphson–type method is used to do this. One then “marches” out from that
start point building a triangulation as one goes along.

Snyder ([Snyd92]) describes a marching type algorithm that uses interval analy-
sis and, because of that, is more robust than the one in [Bloo88]. Another interesting
algorithm that uses interval analysis to guarantee robustness is described by Stander
and Hart in [StaH97]. This algorithm is based on the handle decomposition of a man-
ifold defined by the nondegenerate critical points of a Morse function for it. See Sec-
tions 4.5, 4.6, 8.6, and 8.7 in [AgoM05] for a discussion of the general theory behind
this. One assumes that equation (14.16) defines a surface S that is the boundary of a
solid defined by f(x,y,z) ≥ 0 and that the function f(x,y,z), or a slight perturbation of
it, has only nondegenerate critical points. Assume further that the critical values of
the function lie in an interval (-c,c) for some c. Consider the contours Ct = f-1(t). As
t ranges from c down to 0, the sets Ct start with the empty set and end with S. In
between critical values the topology of the sets Ct does not change. As one passes a
critical value, the topology changes in a well-defined manner that is a very simple
special case of the surgery described in Section 8.7 in [AgoM04]. Stander and Hart
use interval analysis to find the critical points of f. They are just the zeros of the gra-
dient of f. They then incrementally polygonize the contours Ct moving from one crit-
ical value to the next. The polygonization of S that they get in the end is then
guaranteed to be topologically correct. They claim that their approach is faster than
the one in [Snyd92] and produces fewer small polygons.

Finally, one can again use algebraic geometry, either to try to find a parameteri-
zation or to get past singularities that are the places where algorithms tend to run
into difficulties.

14.6 Finding Contours

Problems dealing with contours come in different flavors. In this section we consider
the following:

The general contour problem: Given a function f: Rn Æ Rm and a point c Œ Rm, find the
contour X = f-1(c). (Other terms for such a set X are level curve or isoline or isosurface with
isovalue c.)

Sometimes the subset

of the graph of f is called the contour rather than X, but this set would be easy to get
once one knows X, and so we prefer our formulation. It should be pointed out that
the contour finding problem is closely related to the problem of finding spaces that
are defined implicitly because finding f-1(c) is equivalent to finding the zeros of the
function g(p) = f(p) - c. The two problems are just two sides of the same coin. The
justification for discussing the problems separately is that they have different conno-

p p p X, f()() Œ{ }

624 14 Global Geometric Modeling Topics

tations. In one case we are looking for a slice of a given object and in the other, the
zero set of a function is the entire object of interest.

An entirely different context for contour problems is where we are simply given
some discrete data and we are asked to find contour lines or surfaces for this data.
Specifically, we would want a structured definition of the line (an ordered list of
points) or surface (its edge and facet structure), not simply a random list of its points.
This problem can be thought of as a kind of special case of the contour problem stated
above by thinking of the data as consisting of sampled points for the zero set of a
function which we do not know. We ran into the problem earlier in Chapter 10 when
we discussed volume rendering and the marching cube algorithm. We shall not discuss
the discrete contour problem any further here. The interested reader is referred to
[Sabi85] and [Dowd85]. [HosL93] also has quite a few references. A related problem
is fitting curves and surfaces to discrete data that has also been studied extensively.

We now return to the contour-finding problem as we have stated it and the case
m = 1. If n = 3, then we would expect f-1(c) to be a surface. If n = 2, then we expect
to get a curve. This is the case we consider in this section and “finding the contour”
will mean finding a polygonal approximation for the curve. We restate the problem
for this case as

Given a real-valued function of two variables f(x,y) defined on some domain D in R2 and
a real number c, find a polygonal approximation to X = f-1(c).

In general one would expect the set X to consist of components which are curves,
but without some extra conditions on the function f(x,y), it could be pretty much any-
thing. For example, if

then c = 1, 0, or -1 produces an X that is the unit circle, the single point (0,0), or the
empty set, respectively. A more degenerate case is the constant function f(x,y) = c, in
which case X is all of D. One well-known condition that guarantees that X does
consist of nice curves is that f is a continuously differentiable function whose deriv-
ative has rank 1 on X. This condition is not one that one can always assume in prac-
tice however, and so any algorithm that finds contours has to be able to handle some
degenerate cases.

Contour finding algorithms typically consist of two steps:

Step 1: One has to find starting points, that is, one has to find one point on each
component of the contour.

Step 2: Given a starting point in a component, one then has to trace out the rest of
that component.

Step 1 is the problem of finding solutions to or zeros of equations about which
much is known. See Section 4.7 in [AgoM05]. We say no more about it here and con-
centrate instead on Step 2.

Assuming that one has found one point p0 of a component C of X, two basic
approaches to finding the rest of it are:

f x y x y, ,() = +2 2

14.6 Finding Contours 625

626 14 Global Geometric Modeling Topics

Approach 1: We can use the tangent to C at p0 to guess another nearby point.
Approach 2: We can use a triangulation of the domain, replace the function f by an

approximation g obtained via linear interpolation of the values of f at
the vertices of the triangulation, and then find the intersection of C
with the edges of the triangulation.

Approach 1 is basically what we used in Section 2.5.2 and 2.9.2 to draw lines and
circles. If v is a tangent vector to C at p0, we start with q0 = p0 + ev as a guess for the
next point on C and then adjust this guess to compensate for any deviation of
the contour from the tangent line. For example, we can look along the normal to the
tangent line at q0 to move back towards C. See Figure 14.27.

Of interest to us in this section is Approach 2 and the algorithm that is described
by Dobkin et al. in [DLTW90]. That paper also compares the two approaches. Roughly
speaking, Approach 1 produces an approximate solution using exact values of the
function and Approach 2 produces an exact solution using an approximation to the
function.

Because the complete algorithm described in [DLTW90], including handling of
various degenerate cases, is very lengthy, we only present an overview of it here and
refer the reader to the paper for the missing details. There is no loss of generality by
assuming that c = 0, and so our problem will be the following:

Given one point p0 with f(p0) = 0, find the rest of the component C of the contour f-1(0) to
which p0 belongs.

The general idea of the algorithm is to triangulate the domain of f and to find the
points where the component intersects the edges of the triangles. The component is
then the polygonal curve obtained by connecting these intersection points with seg-
ments. See Figure 14.28. In essence we are solving the contour problem for an approx-
imation g to f, where g agrees with f on the vertices of the triangulation but is a linear
interpolation of the vertex values over the rest of each triangle. The advantages of this
approach are

Figure 14.27. Tangent line approximation to a
contour.

Figure 14.28. Connecting edge intersections.

(1) One only needs to evaluate f at the vertices at most.
(2) Given the way that the tracing proceeds this means that we need at most as

many function evaluations as there are triangles.

The main part of the algorithm is iterative in nature. At each stage we assume
that we have just “entered” a new triangle from some point pi on one of its edges
(f(pi) = 0). If the initial point does not lie on an edge of a triangle, then we use inter-
polation to replace it with one that does. Therefore, assume

(1) the triangle we are entering has vertices v0, v1, and v2,
(2) pi lies in the interior of edge [v0,v1], and
(3) f(v1) < 0 < f(v0).

The contour will leave the triangle through an edge e that is determined as follows:
if f(v2) > 0, then the contour leaves through e = [v1,v2], otherwise, f(v2) < 0, and the
contour leaves through e = [v0,v2]. In either case, a simple linear interpolation of the
function values at the vertices finds us the new point pi+1 in the interior of the edge
through which the contour leaves the triangle (f(pi+1) = 0). We now repeat these same
steps with the point pi+1 and the triangle adjacent to the current one along edge e.

The iteration finishes when we return to the starting triangle or if we leave the
domain D. In the first case we have found our component and it is a closed loop. In
the second case we again start with p0 but move in the opposite direction to find the
other “half” of the component that now is a curve with two ends.

There is one final aspect of this algorithm. It has to do with the efficient way that
the triangulation is dealt with in [DLTW90]. In particular, there is no need to somehow
precompute a global triangulation of the domain or the values of the function on its
vertices. All one needs to do is to be able to generate the triangulation “locally.” The
properties one wants are to be able to find vertices of adjacent triangles easily, all tri-
angles should have roughly the same size, and their dimensions should roughly be
the same in different directions (no “thin” triangles). There are triangulations, called
monohedral triangulations generated by reflections, which satisfy these properties. The
name means that the simplices in the triangulation are all congruent and all the sim-
plices are generated from a fixed one by reflection about faces. There is a complete
classification of such triangulations. The paper [DLTW90] discusses them and also
gives further references. The three possible triangulations of this type in the plane are
shown in Figure 14.29(a–c). They are the so-called Coxeter triangulations of type
P3, R3, and V3, respectively. The P3 and R3 triangulations are actually just a two-
dimensional instance of a family of triangulations Pm and Rm, which exist in dimen-
sion m - 1. We shall only summarize the main conclusion relevant in the context of
the special contour finding algorithm being described here.

The reflection rule associated to finding the new vertex of a triangle adjacent to
an edge is simplest when using a triangulation of the P3 type shown in Figure 14.29(a):

The P3 reflection rule: To reflect vertex vi of a triangle about the opposite edge, replace
it by vi-1 + vi+1 - vi, where indices are taken modulo 3.

This rule and the other reflection rules for the R3 and V3 triangulations can actually
be applied to any triangle and therefore produces an algorithm for generating a tri-

14.6 Finding Contours 627

628 14 Global Geometric Modeling Topics

angulation along with a labeling of the vertices of this triangulation. For example,
applying the P3 reflection rule to a basic R3 triangle in Figure 14.29(b) produces the
triangulation shown in Figure 14.30. Here is what is recommended by [DLTW90]: The
P3 triangulation seems to be the best geometrically for the contour-finding algorithm.
Start off with the triangle v0v1v2 centered at the origin, where

Scale this triangle to the appropriate size and then translate it so that our start point
becomes its barycenter. Now start the iterative algorithm described above. If one
wants to find several components of the contour and we want all of them to use the
same triangulation, then things get a little trickier. See [DLTW90].

With our choice of triangulation one can simplify the termination test, which
checks for loops. This can be done by expressing points with respect to the basis v1
and v2. For example, the coordinates of the barycenters of all simplices will then have
the form (1/3)k, where k is an integer unique to the simplex. Checking whether a
contour has terminated in a loop therefore amounts to simply checking if two integer
vectors are equal. The authors of [DLTW90] suggest that it is possible to avoid some
round-off errors if other computations are also done in that basis. Of course, the con-
version from Euclidean coordinates to the coordinates with respect to that basis costs
a little time.

Finally, we need to say something about the limitations of the algorithm just
described. First of all, we only dealt with the nondegenerate case. There are two degen-
erate cases that must be handled in special ways. The first is where the derivative of

v v v0 1 20 0 2
1

6
0

1

6

1

2
= () = Ê

Ë
ˆ
¯ = Ê

Ë
ˆ
¯, , , , , .and

(a) P3 rule (b) R3 rule (c) V3 rule

Figure 14.29. Three triangulations by reflections.

Figure 14.30. The P3 reflection rule applied to a basic R3
triangle.

14.6 Finding Contours 629

f vanishes, which basically corresponds to the case where entire simplices are mapped
to 0 and the contour is not one-dimensional. The second is where the contour passes
through a vertex of the triangulation. We refer the reader to the paper for ways to
handle these cases. However, there are some potential problems even in the nonde-
generate case if one does not choose the triangulation well. Some of the ways that the
algorithm can produce results with incorrect topologies are shown in Figure 14.31.
Figure 14.31(a) shows how disconnected contour components can lead to a connected
answer. Figure 14.31(b) shows the opposite. Figure 14.31(c) shows how a component
can be lost entirely if its interior does not contain any vertices. It is therefore impor-
tant to choose the “resolution” of the triangulation carefully. It must be noted,
however, that although one would hope to have an algorithm of this type produce the
correct results for f’s that appear in real applications, one should not expect this for
arbitrary f because one can find differentiable f that have arbitrary compact subsets
of R2 as their contour. Furthermore, consider Figure 14.32 which shows the contour
of the function f(x,y) = xy. That example shows that increasing the resolution is not
good enough by itself, because, as shown in Figure 14.32(a), the algorithm would rep-
resent the actual connected contour by two disjoint pieces. That means that, given a
starting point on the contour, the algorithm would only trace out one of the pieces
and leave out the other one. One way to deal with this is to add a bias to 0, meaning
that we replace the function values at vertices that are less than some e by 0. Figure
14.32(b) shows how this can correct the problem in Figure 14.32(a), but with the
potential effect of blacking out some squares. Furthermore, it is not easy to choose
the correct e. Making it too big would black out too many squares. [DLTW90] sug-
gests a trial and error method as the best approach here.

(a) (b) (c)

Figure 14.31. Problems for nondegenerate cases.

(a) (b)

Figure 14.32. Biasing a function toward zero.

This finishes our discussion of contours, although much is also known for the
higher dimensional cases. As one reference for the contour surface problem we
mention [Rock90].

14.7 Skinning

Sections 13.4.3 and 14.6 dealt with what might be called finding level curves of a given
surface. This section turns the problem around.

Definition. A skinning surface for a sequence of sets C0, C1, . . . , Ck is a surface S
satisfying

(1) S interpolates the sets, and
(2) there is a continuous function f: S Æ [0,1] and real numbers 0 = t0 < t1 < . . .

< tk = 1 so that Ci = f-1(ti).

The process of finding such a surface is called skinning. In practice, the sets Ci consist
of one or more curves, in which case they are sometimes called skinning curves.

In many cases, skinning is just a more recent term for lofting. Condition (2) of a
skinning surface is simply trying to capture the intent that the curves Ci should be
contours or level curves of the surface with respect to a function. Some skinning
algorithms may at times produce self-intersecting surfaces, but that would be an
undesirable “feature” of the algorithm. A common case for the curves is where they
are planar and correspond to parallel cross-sections of a surface. It is easy to imagine
though how complicated things might get if one is given an arbitrary collection of
curves.

Of course, like in all interpolation problems, one wants more from the skinning
surface S than that it interpolates the curves. Specifically, some properties that one
wants S to satisfy are:

(1) the shape of the surface should match the shape suggested by the curves and
it should not have any unnecessary wiggles.

(2) The surface should be smooth if all the curves are.
(3) The algorithm for getting S should be affinely invariant, meaning that if the

curves are moved by an affine transformation T, then the algorithm applied
to the new curves T(Ci) should produce T(S).

Skinning algorithms have been defined in two quite different contexts, a polygo-
nal and a smooth one. The polygonal case, which is often the harder one, is where
the curves are polygonal and we are looking for a faceted S. The smooth case is where
the curves are smooth parametric curves and one wants a smooth parameterization
for S. This section will only touch on a few aspects of the skinning problem. Two
papers that have numerous references to work on this subject are [MeSS92] and
[ParK96].

We consider the polygonal case of the skinning problem first. Meyers et al.
([MeSS92]) break this problem into four subproblems:

630 14 Global Geometric Modeling Topics

14.7 Skinning 631

The correspondence problem: One has to determine a correspondence between closed
curves of adjacent contours. This defines some crude topological properties of an object.
For example, if two closed curves of one contour correspond to one closed curve on the
next, this would indicate a saddle structure for the object. Clearly, the only hope for coming
up with a reasonable answer to the correspondence problem is to assume that the contours
of the skinning surface have been spaced close enough together so that simple heuristics
will work.

The tiling problem: One has to determine a triangulation for the surface that is to span
two adjacent contours. There is no unique triangulation, and so solutions to this problem
try to optimize some function that measure the appropriateness of spanning surfaces. Many
such “metrics” have been proposed. Each one has its problems.

The branching problem: If there is more than one closed curve on adjacent contours,
then one may need to determine how two or more closed curves in one contour get merged
into one closed curve in the next contour. This would typically also entail determining how
parts on the closed curves of the first contour are related. The tiling problem is more com-
plicated when there are branches. Early work on tiling tended to assume that there were
no branches or expected a user to help out interactively.

The surface-fitting problem: After one has a tiling, one may want to fit a smooth surface
to that tiling.

Let us look at a simple aspect of the tiling problem. Assume that two adjacent
contours are defined by two closed polygonal curves with distinct vertices p0, p1, . . . ,
pm and q0, q1, . . . , qn, respectively. One would like a triangulation of the skinning
surface S to look something like the surface shown in Figure 14.33, where m = n = 4.
Now, in general, m and n are not equal, but the real problem is that one is not given
any information about which point qj should connect to which point pi. For example,
in Figure 14.33, how do we determine that q2 is the point that should be connected
to p0 and p1? We certainly do not want to connect p0 and q0. It is not the case that
there is no algorithm for finding the triangulated surface as shown in Figure 14.33.
One could do an exhaustive search, but this would be prohibitively slow to carry
out. The issue is finding an efficient algorithm. Fuchs et al. ([FuKU77]) reduced the
problem to one of searching a toroidal graph. (A toroidal graph is a graph that can be
embedded in a torus.) They used a “divide-and-conquer” technique along with an area-
minimizing heuristic. A number of other approaches have been proposed using dif-
ferent heuristics. For such heuristics to work reasonably well, a common assumption

Figure 14.33. Skinning polygonal curves.

632 14 Global Geometric Modeling Topics

is that the two curves satisfy some not unrealistic coherence condition. Basically, one
assumes that the curves are closed, planar, coherent in size and shape, and mutually
centered. By transforming the planar curves in a preprocessing stage one can always
arrange it so that this is the case. [GanD82] describes an algorithm that runs in time
O(m + n) using a heuristic that seems to work well in practice. [GanD82] also has ref-
erences to other work. We refer the reader to that paper for details.

Meyers et al. ([MeSS92]) describe a skinning algorithm that handles the corre-
spondence problem without requiring overlapping contours and generates a tiling
even in the presence of relatively complex branching of contours and without adding
new vertices. Park and Kim ([ParK96]) address the surface-fitting problem. They rep-
resent contour curves as cubic closed B-spline curves with a common knot vector and
find an approximation to the skinning surface that is a C2 bicubic closed B-spline
surface.

Next, we consider the skinning problem for a sequence of curves that are B-
splines and describe the standard algorithm for creating a skinning B-spline surface.
Algorithm 14.7.1 outlines the steps. Let

be the parameterization of the curve Cj after steps 1–3 in the algorithm. Piegl and
Tiller ([PieT95]) suggest defining the parameters wj and knots vj in Step 4 as follows
in order to match the chordal lengths:

p u N u j kj i d i j
i

n

() = () £ £
=
Â , , , ,p

0

0

Inputs: A sequence of B-spline curves p0(u), p1(u), º , pk(u)
Output: A skinning B-spline surface p(u,v) for these curves

Step 1: Change the domain of the curves, if necessary, so that they all have the same domain.
Step 2: Arrange it so that all curves have the same degree. Use the degree elevation algorithm

to raise the degree of any particular curve to the maximum degree d of all the curves.
Step 3: Merge the knots of all the curves into a knot vector {ui}. For each curve use the knot

refinement algorithm to get a new B-spline that has {ui} as its knot vector. All the
curves will now have the same knot vector. Let p0,i, p1,i, º , pn,i be the control points
of the ith curve.

Step 4: Choose a degree e (£ k) for the v-direction, parameters {wj}, and a knot vector {vj}.
Step 5: For each j, 0 £ j £ n , let qj(v) be the B-spline of degree e that interpolates the points

pj,0, pj,1, º , pj,k and that satisfies qj (wi) = pi,j . Let q0,j, q1,j, º , qk,j be the control
points of the B-spline qj(v).

Step 6: The skinning surface is then defined to be the tensor product B-spline surface p(u,v)
that has control points qi,j and knot vectors {ui} and {vj}.

Algorithm 14.7.1. A B-spline skinning algorithm.

where Li is the chord length of the polygonal curve with vertices pi,0, pi,1, . . . , pi,k, and

There are problems with this approach.

(1) The surface may not have the desired shape.
(2) There may be lots of knots {ui} with some very close together causing potential

numeric problems in applications that may use this data.
(3) The surface may have self-intersections.

Part of the problems is caused by the fact that we had to choose the same knot vector
for all the curves in the v-direction. In order to overcome some of these problems
[FilB89] describes a skinning surface in a procedural way. This new method also does
not require the curves to be B-splines. The steps to compute the parameterization
p(u,v) at (u,v) are outlined in Algorithm 14.7.2. In practice, a cubic approximation to
the function vi(u) simplified the computations and was found to be adequate.

Finally, we point out that skinning is really a special case of the more general
surface reconstruction problem. We are given a set of scattered data points and want
to fit a surface to those points. There is no time to go into this topic here, but we leave
the reader with sample references for this and a related problem. In [BoiC00] the
reconstructed surface is an implicitly defined smooth manifold. The paper [ACDL00]
simplifies a previous algorithm and also proves that if the data came from a surface,
then the construction is homeomorphic to the input surface. In [HuaM02] there is an
algorithm for creating a combinatorial manifold mesh given some unorganized point
samples from an existing object. A related two-dimensional problem is image recon-
struction that involves fitting a continuous intensity surface through image samples
and [YuMS01] describes an approach that does not depend on patch boundaries lining
up with coordinate axes. These papers contain many additional references.

14.8 Computing Arc Length

Let

(14.21)

be a parametric curve. This section discusses algorithms that solve the following two
problems:

p a b: ,[] Æ R3

v v v v

v
e

w s k e

e k k e

s e i
i s

s e

0 1 1

1

0 1

1
1

= = = = = =

= = -

+ + +

+
=

+ -

Â

. . . , . . . ,

, , . . . , .

w w

w w
n L

j k

k

j j
i j i j

ii

n

0

1
1

0

0 1

1
1

0

= =

= +
+

-
< <-

-

=
Â

, ,

,, ,p p

14.8 Computing Arc Length 633

634 14 Global Geometric Modeling Topics

The Arc length problem: Compute the length L of p.

The Arc-length parameterization problem: Given s Œ [0,L], find the point q on the curve
so that the part of the curve from p(a) to q has length s. In practice, the problem is one of
finding u Œ [a,b], so that p(u) is that point.

By definition, the length L of the curve p in (14.21) is the limit of sums of the form

(14.22)

where the limit is taken over all partitions {ui} of [a,b], a = u0 < u1 < . . . < un = b, whose
norms go to zero. It follows that L({ui}) will be a good approximation to L provided
that the polygonal curve p(u0), p(u1), . . . , p(un) is a good approximation to the curve
p. Therefore, a quick and dirty way to estimating arc length is just to make a guess
as to a reasonable subdivision {ui} and then to use the value L({ui}). We can also get
a quick estimate for q in the arc-length parameterization problem as follows:

(1) Make a table of the lengths si of the polygonal curve defined by the points
p(u0), p(u1), . . . , p(ui).

(2) Given s, find j so that sj £ s £ sj+1.
(3) Set q = p(u), where u is the corresponding interpolated value in [uj,uj+1], that

is,

L u p u p ui i i
i

n

{ }() = () ()-
=
Â 1

1

,

Inputs: Contour curves pi(u), real numbers u and v
Output: p(u,v)

Step 1: Because one no longer requires the same v knot vector for all u, one computes a knot
vector v0(u), v1(u), º , vk(u) as follows:

v0 (u) = 0 , v1 (u) = 1 , for all u

vi (u) = i

k

L

L
Œ [0,1] , 1 < i < k ,

where Lj is the length of the polygonal curve with vertices p0(u), p1(u), º , pj(u).
Step 2: Determine s so that vs(u) £ v < vs+1(u).
Step 3: Evaluate ps-1(u), ps(u), ps+1(u), and ps+2(u).
Step 4: Determine the cubic curve D(w), 0 £ w £ 1, which starts at ps(u), ends at ps+1(u), and

has tangent vectors at its endpoints that match the tangent vector to the parabolas
defined by ps-1(u), ps(u), ps+1(u) and ps(u), ps+1(u), ps+2(u), respectively.

Step 5: Let p (u,v) = D (s

ss 1

v v

v v+

-
-

)

Algorithm 14.7.2. A procedural skinning algorithm.

14.8 Computing Arc Length 635

On the other hand, to get a more accurate values we must do more work. We start
with the arc length problem. Our first good approximation to arc length based on
equation (14.22) relies on getting a good polygonal approximation to the curve and
then using the length of that polygonal curve. Any good polygonal approximation will
work. One such is the de Figueiredo algorithm (Algorithm 14.3.1) described in Section
14.3, where one subdivides recursively until the curve is relatively flat according to
some criterium. Algorithm 14.8.1 computes arc length based on the polygonal approx-
imation that one gets from this.

Next, note that for smooth functions p(u) the sums L({ui}) in equation (14.22) are
Riemann sums which converge to an integral. Specifically,

(14.23)

Therefore, another way to compute L is to use a known numerical approximation to
integrals. Now sometimes one is in a situation where one has a fixed curve p(u) and
one needs to answer multiple requests for arc lengths of different subarcs p([c,d]) of
p(u). Guenter and Parent ([GueP90]) deal with this situation. The authors decided to
use a Gaussian quadrature method for evaluating integrals because it is a particularly
efficient integration method. They suggested that it is advantageous here to build a
table of a certain number of precomputed arc length values in order to speed up the
computation of other values.

For any c,d Œ [a,b], let GQ(c,d) denote the Gaussian quadrature approximation to
the integral

L L a b p
a

b
= () = ¢Ú, .

u u
s s

s s
u uj

j

j j
j j= +

-
-

-()
+

+
1

1 .

 Assume that Flat(p1,p2,p3) is a function that returns true or false depending on whether
the three consecutive points p1, p2, and p3 pass some flatness test.

real function Length (curve p; real c, d; point pc, pd)
begin

real s;
point ps;

s := random number in (c,d);
ps := p(s);
if Flat (pc,ps,pd)

then return |pcpd|
else return (Length (p,c,s,pc,ps) + Length (p,s,d,ps,pd));

end;

Algorithm 14.8.1. Arc length based on polygonal approximation.

636 14 Global Geometric Modeling Topics

(14.24)

Note that since Gaussian quadrature is defined for functions defined over [-1,1], in
order to use this method one must reparameterize the integral in (14.24) to

In [GueP90] one then builds a table (uj,sj), 0 £ j £ n, using Algorithm 14.8.2. The {uj}
form a partition of [a,b] and sj is a Gaussian quadrature approximation to

Using this table, if one wants L(a,u) one first finds the j so that uj £ u < uj+1 and returns
the value

p
c

uj ¢Ú .

d c
p

d c t d c
dt

-Ê
Ë

ˆ
¯ ¢

-() + +Ê
Ë

ˆ
¯-Ú 2 21

1
.

p
c

d
¢Ú .

e = some fixed error tolerance
(u0,s0) = (a,0)
n = 0;
(un,sn) = (b,Subdivide (a,b,GQ(a,b),0,e)

real function Subdivide (real c, d, fullInt, totLength, epsilon)
begin

real m, lval, rval, lsub;

m := (c + d)/2 ;
lval := GQ (c,m);
rval := GQ (m,d);
if (|fullInt- lval- rval| > epsilon)

then
begin

lsub := Subdivide (c,m,lval,totLength,epsilon/2);
totLength := totLength + lsub;
(un,sn) := (m,totLength);
n := n + 1;
return (lsub + Subdivide (m,d,rval,totLength,epsilon/2);

end
else return (lval + rval);

end;

Algorithm 14.8.2. Building a table for arc length computation.

Because u lies in [uj,uj+1], the computation for GQ(uj,u) will be fast. In general, for
any [c,d] Õ [a,b], L(c,d) is computed as L(a,d)-L(a,c). Algorithm 14.8.2 is an adaptive
algorithm. Basically, one keeps subdividing intervals I in half and as long as GQ(I)
differs by more than some small tolerance e one uses

If one subdivided I, then the midpoint of I and the associated arc length to that point
from a gets entered into the table.

Another algorithm for computing arc length in the special case of Bézier curves
is described by Gravesen in [Grav95]. It is an adaptive algorithm based on the fact
that the control polygon of such curves converges to the curve under subdivision.

Next, we move on to the arc-length parameterization problem. One of the earliest
algorithms for finding arc-length parameterizations is described by Sharpe and
Thorne in [ShaT82]. Given the curve defined by (14.21) and s Œ [0,L] we need to solve

(14.25)

for t. This is equivalent to solving

(14.26)

Starting with an initial guess t0, the standard Newton-Raphson method applied to
equation (14.26) generates a sequence of numbers tn,

(14.27)

that hopefully converges to a root of f(t). The integral in the formula (14.26) is eval-
uated in [ShaT82] via Romberg integration that worked better than the trapezoidal
or Simpson method. Furthermore, the fact that arc length is often roughly propor-
tional to the parametric value motivated the authors to use the following starting value

where

D D
D

t and s p
a

a t
= = ¢

+
Ú0 1. .

t a
t
s

s0 = +
D
D

,

t t
f t
f t

t
f t
p t

n

n n
n

n

n
n

n

= -
()
¢()

= -
()
¢() >

-
-

-

-
-

-

1
1

1

1
1

1
0, ,

f t p s
a

t
() = ¢ - =Ú 0.

s p
a

t
= ¢Ú

GQ left half of GQ right half ofI I() + ().

s GQ u uj j+ (), .

14.8 Computing Arc Length 637

14.9 Offset Shapes 639

This section will look at some of the mathematics behind offset curves and how
it can be used to solve practical problems. The reader is assumed to have familiarity
with some basic differential geometry. The necessary background can be found in
Chapter 9 in [AgoM05]. In particular, see Section 9.7 in that chapter on parallel curves
(that is what offset curves are called in differential geometry) for proofs of many of
the mathematical assertions made here.

Offset curves are useful tools in a number of practical applications, such as in
milling operations, tolerance analysis, and robot path planning. We shall start our dis-
cussion of analytic properties of offset curves by considering those of planar curves.
This is what is relevant for describing the path of a two-axis NC machine that can
move in two orthogonal directions (say the x- and y-direction). Such machines are
commonly used to cut two-dimensional outlines in materials. See Figure 14.37. Two
serious problems for them are local overcuts (gouging) or local undercuts. Figure
14.38(a) shows a gouging example. As described in [MaeP93], the problem is that in
regions where the curvature and the signed offset distance have opposite signs, the
cutter radius must be smaller than any radius of curvature of the boundary curve of
the part being machined. If we simply eliminate the part of the cutter path that started
and ended at the intersection point of the offset curve, then we eliminate the overcut,
but will now have produced an undercut. See Figure 14.38(b).

Let p(u) = (x(u),y(u)) be a regular parameterization of a curve C in the plane. The
vector

n u
p u

y u x u() =
¢() - ¢() ¢()()1

,

Figure 14.35. Offset curves when there are cusps.

Figure 14.36. Offset curves when there are corners.

640 14 Global Geometric Modeling Topics

is a counter-clockwise oriented unit normal vector to this curve.

Definition. The offset curve pd(u) to the planar curve p(u), which is a distance |d|
from p(u) for some real number d is defined by

(14.28)

Since

(14.29)

where k(u) is the curvature function of p(u), we see that the tangent vector to pd(u)
is parallel to the tangent vector to p(u). One can also show that the curvature func-
tion for pd(u), kd(u), is defined by

Its derivative with respect to arc-length parameterization is given by

(14.30)

Note that even if the original curve p(u) has a nice smooth shape, pd(u) may not
be. In Figure 14.34, the offset curves C1 and C2 are as nice as the original ellipse. On

d
ds d

d
ds

d

d

k

k

k
=

+()
1

1
3

.

k
k
kd u

u
u d

() =
()

+ ()1
.

p u p u u dd ¢() = ¢() + ()()1 k ,

p u p u dn ud () = () + ()

Figure 14.37. Offset curve generated by two-axis NC
machine.

Figure 14.38. NC cutter over- and undercuts.

the other hand, C3 and C4 have cusps and C4 has self-intersections on top of that. The
offset curve may also intersect the original curve. Equation (14.29) points out part of
the problem. Even though p(u) may be a regular curve, pd(u) will not be at those points
where

(14.31)

There may be cusps at those points. This is only a symptom of a bigger problem,
which is that a curve and its offset curve usually have different analytic types. For
example, the offsets of rational curves are typically not themselves rational curves.

One often wants to talk about offset curves even when the curve is not differen-
tiable everywhere and the normal n(u) may not be defined. See Figure 14.35(a) or
14.36(a), where we are dealing with a piecewise differentiable curve. One can deal
with such problems in the case of simple isolated singularities like cusps or corners.

After this litany of problems with offset curves, let us look at approaches to dealing
with them. The idea is to subdivide the domain of the curve into segments over which
it and the offset behave nicely. The breakpoints of the subdivision correspond to
special points on the curve for which there are tests. The points to look for are:

(1) Ordinary cusp of offset: Defined by equation (14.31) and the condition
k¢(u) π 0

(2) Extraordinary cusp of offset: Defined by equation (14.29) and the conditions
k¢(u) = k≤(u) = 0

(3) Turning point: A point where p¢(u) is either vertical or
horizontal, that is, either x¢(u) = 0, y¢(u) π 0,
or x¢(u) π 0, y¢(u) = 0.

(4) Inflection point: A point where k(t) = 0, that is, the curve is
locally flat.

(5) Vertex: A point where dk/ds = 0, that is, k has a local
extremum.

The planar evolute of the curve is relevant here because one can show that the cusps
of an offset lie on the evolute of the original curve (Theorem 9.7.1 in [AgoM05]). The
planar evolute is the locus of the centers of curvature and is defined by

(14.32)

The special points defined by (3–5) above (called characteristic points in [FarN90a])
are “intrinsic” properties of curves because they involve solving for zeros of p¢(u), k(u),
k¢(u), k≤(u), etc. These points are interesting on both curves, but one can show that
the turning points, inflection points, and vertices of the offset curve correspond to
those of the original curve, except that if k(t) = -1/d at a turning point or vertex of
p(u), then the corresponding point on pd(u) is a cusp or an extraordinary cusp. See
Theorem 9.7.2 in [AgoM05].

After the special points (1–5) above have been found one has a segmentation of
the curve and its offset. The curve can then be approximated over each primitive

q u p u
u

n u() = () + ()
()1

k

1 0+ () =k u d .

14.9 Offset Shapes 641

642 14 Global Geometric Modeling Topics

segment in a suitable way, say by some polygonal curves. One is not yet done though
because trimming needs to be done if there are self-intersections in the offset curve.
This involves first finding the intersection points, an interesting problem in its own
right, and then trimming the segments between them. See [FarN90a]. One is then
finally ready to generate an appropriate path for the NC machine.

Another approach to getting offset curves is suggested by how milling machines
work. One rolls a circle of radius d along the curve. This will sweep out a solid region
and the offset curve is one of the boundaries of that region. See Figure 14.39. Now
the circle of radius d centered at p(u) can be parameterized by

(14.33)

The points on the offset curve are therefore those at which the tangent line to j(q) is
parallel to the tangent line at p(u) = (x(u),y(u)). In other words, we are looking for
those points at which

(14.34)

that is,

One has to worry about those places where y¢(u) is zero, in particular, where there are
cusps. See Figure 14.40.

The fact that equations (14.33) and (14.34) involve transcendental functions may
not be desirable. Therefore, one may want to reformulate the envelope into a poly-
nomial form by introducing two variables s and t as follows:

tan .q = -
¢()
¢()

x u
y u

-() = ¢() ¢()()sin ,cos , ,q q c x u y u

j q q q() = () + ()p u d cos ,sin .

Figure 14.39. Offset curves from milling machine.

Figure 14.40. A milling machine offset curve problem.

14.9 Offset Shapes 643

(14.35)

Condition (14.34) then translates into the constraint that the tangent vector is orthog-
onal to the radius vector, namely,

(14.36)

As a final application involving offset curves, consider the problem of milling free-
form surfaces. This sort of operation requires minimally a three-axis milling machine
that can move in three orthogonal directions. See Figure 14.41(a). Better yet is a five-
axis milling machine that has an additional two degrees of freedom to allow rotations
specified by two angles. See Figure 14.41(b). In any case, to carry out the milling, one
can first mill along the boundary curves of the patch. Then along an offset curve in
the interior of the patch that is an offset of the boundary. We can continue this way
until the whole surface is milled. This process involves defining offset curves for space
curves. This time we do not have well-defined normals to offset along since there is a
whole normal plane at each point of the curve. However, if we look at circles of radius
d in these normal planes, what we want is that the offset curve intersects that circle
at some point. It is not hard to write down the appropriate equations.

Next, let p(u) be a space curve and (T(u),N(u),B(u)) its Frenet frame. The princi-
pal normal N(u) and binormal B(u) form an orthonormal basis for the normal plane
to the curve at p(u).

Definition. An offset curve pd(u) to the space curve p(u) at a distance d > 0 from p(u)
is defined by an equation of the form

(14.37)

where q is a function of u in general.

Approaches to computing offset curves for a surface patch parameterized by a
function p(u,v) are discussed in [HosL93]. One practical problem with the formula-
tion above is that the principal normal and binormal are not easy to compute.

This concludes our discussion of offset curves. For additional facts see [FarN90a],
[FarN90b], or [MaeP93]. Offsets of clothoidal splines are discussed in [MeeW90]. For
an overview of a different approach, where one tries to approximate the offset rather
than represent it exactly, see [ElLK97]. The motivation is that working with approxi-

p u p u d N u B ud () = () + () + ()()cos sin ,q q

p u s x u t y u¢() - () - ()() =• , .0

s x u t y u d- ()() + - ()() - =2 2 2 0.

Figure 14.41. Offset curves for multi-axes milling machines.

mations is not as computationally expensive. The analysis of different algorithms in
[ElLK97] showed that the one described in [TilH84] performed best on piecewise quad-
ratic curves. The question of which curves have rational offsets has also been studied
in various papers, because otherwise one is basically only left with approximations. For
more information about this subject see [Faro92], [Pott95], [Lü95], or [FarS95].

14.9.2 Offset Surfaces

We have already talked about offset-type surfaces when we considered bump map-
pings in Section 9.8. Here we give a few definitions and state some properties of the
basic offset surfaces.

Suppose that p(u,v) is a regular parameterization for a surface S. If p(u,v) is dif-
ferentiable, then

(14.38)

is the standard normal vector to the surface. Since N(u,v) does not vanish,

(14.39)

is a well-defined unit normal vector to S at p(u,v). Let d be any nonzero real number.

Definition. The offset surface pd(u,v) to p(u,v), which is a distance |d| from p(u,v) is
defined by

(14.40)

Offset surfaces are called parallel surfaces in differential geometry. Just as in the
case of offset curves, the reader is assumed to have familiarity with some basic dif-
ferential geometry. The relevant material for this section can be found in Section 9.14
in [AgoM05] along with proofs of many of the mathematical assertions made here.

There are formulas that express the basic intrinsic geometric properties of an
offset surface in terms of the corresponding properties of the original surface. We list
them here. First of all, the normal vector

to the surface pd(u,v) is given by the following formula

(14.41)

where K and H are the Gauss and mean curvature of S, respectively. Let

N u v Hd Kd N u vd , , ,() = - +() ()1 2 2

N u v
p
u

u v
p
v

u vd
d d, , ,() =

∂
∂

() ¥
∂
∂

()

p u v p u v d u vd , , , .() = () + ()n

n u v
N u v
N u v

,
,
,

() =
()
()

N u v
p
u

u v
p
v

u v, , ,() =
∂
∂

() ¥
∂
∂

()

644 14 Global Geometric Modeling Topics

14.9 Offset Shapes 645

and define s by nd = sn. Notice that s may equal -1 because the orientation of the
offset surface may not be the same as that of the original surface. The principal normal
curvatures (ki)d for the offset surface are given by

(14.42)

The Gauss curvature Kd and mean curvature Hd of the offset surface can be computed by

(14.43)

and

(14.44)

Clearly, all the problems that could arise in the context of offset curves are mag-
nified for offset surfaces. There could again be cusps. We could have ridges and, of
course, complicated self-intersections. Regions of high curvature and where the offset
distance is close to the minimum concave radius of curvature cause problems.
Barnhill and Frost ([BarF95]) analyzed three approaches to offset surfaces via approx-
imations based on uniform bicubic Hermite meshes, NURBS surfaces, and uniform
bicubic/biquintic Bézier meshes and then proposed a solution that used triangular
Bernstein-Bézier patches. Other approaches for NURBS can be found in [KuSP02]
and [KuSP03].

Forsyth ([Fors95]) discusses offsetting and the closely related operation of shelling
in a slightly different context. Offsetting is thought of here as an operation on a solid
model that adds or removes a uniform layer to its boundary. Shelling comes in two
forms. Closed shelling is where one removes all of the interior of a solid further than
a given distance from its boundary. In open shelling one removes all of the solid further
than a given distance from a part of its boundary. Figure 14.42 shows two-

H
H Kd

Hd Kd
d =

-
- +

s
1 2 2

.

K
K

Hd Kd
d =

- +1 2 2

k
k
k

k
k
k1

1

1
2

2

21 1
() =

-
() =

-d dd
and

d
s s

.

nd
d

d
u v

N u v
N u v

,
,
,

() =
()
()

Figure 14.42. Shelling.

646 14 Global Geometric Modeling Topics

dimensional examples of these operations. Clearly, shelling can be defined in terms of
standard offset operations. Forsyth describes how to define such offsetting operations
for the boundary representation of solids.

14.10 Envelopes

Envelopes are spaces that are a generalization of offset curves or surfaces. These
spaces arise from the boundary of regions swept out by moving parts of machinery.
Understanding the geometry of envelopes is therefore important in the design of
machinery and its operation, such as in the case of NC machines or robots. In par-
ticular, it is relevant in making sure that there is adequate clearance of these parts in
the work environment. Envelopes have mostly been studied when one is sweeping
circles, planes, and spheres. Even there the analysis can get very tricky. A discussion
of general envelopes can be found in [Brec92].

Here is a definition for envelopes in the plane.

Definition. Let at: [0,1] Æ R2 be a one-parameter family of curves in the plane
defined by at(u) = a(u,t) for some C• function a: [0,1] ¥ [0,1] Æ R2. An envelope of
this family is defined to be a curve p(u) that is not a member of this family but which
is tangent to some member of the family at every point.

Figure 14.43(a) shows a nicely structured envelope. Figure 14.43(b) shows the
envelope of normals to an ellipse whose ends are the centers of the osculating circles.
In other words, an envelope can have bad singularities even if we start with nice
functions.

One approach to studying the envelope p(u) is to think of p(u) as being the limit
as e approaches 0 of the intersections of p(u) and p(u+e). Although this has serious
problems in general, it seems to work in many cases of interest.

Figure 14.43. Envelopes of curves and normals.

14.11 EXERCISES

Section 14.2

14.2.1. Carefully describe an algorithm that finds the distance between a point and a polygo-
nal curve.

14.2.2. Find the the point q on the curve p(u) = (u,u2) that is closest to p = (-3,1).

14.2.3. Find the two nearest points on the curves p: [-•,3] Æ R2, p(u) = (2u,u2), and q: R Æ
R, q(u) = (-u + 1,u + 5).

14.2.4. Consider the surface p: D Æ R3, p(u,v) = (u,v,u2 + v2).

(a) Find the the point q on the surface that is closest to p = (0,3,0) if D = R2.
(b) Find the the point q on the surface that is closest to p = (0,3,0) if D = R¥(-•,-1].

14.2.5. Find the two nearest points on the surfaces p(u,v) = (u,v,u2+v2) and q(u,v) = (u,v,2u-
6).

Section 14.5.1

14.5.1.1 Consider the curve defined implicitly by the equation y2 - x3 = 0. Resolve the singu-
larity of this curve at (0,0) using the method described in Section 14.5. Work through
and explain the details just like we did in Example 14.5.1.2.

Section 14.9.1

14.9.1.1 Consider the planar curve p(u) = (u,u2). Analyze the offset curve pd(u) defined by equa-
tion (14.28) with respect to cusps, turning points, inflection points, vertices, and self-
intersections for the following values of d:

(a) 0 < d < 0.5
(b) 0.5 < d
(c) d = 0.5

14.12 PROGRAMMING PROJECTS

Section 14.2

14.2.1. Implement a point-curve distance algorithm for planar

(a) polygonal curves, and
(b) B-spline curves.

Let the user define a curve interactively with a mouse or specify a previously created
one. Then let him/her pick a point with the mouse and display both the distance and
the point on the curve that is closest to the picked point.

14.12 Programming Projects 647

Section 14.4

14.4.1. Implement a trimmed surface algorithm for smooth surfaces with rectangular
domains, such as surfaces of rotation, Bézier surfaces, or B-spline surfaces. After a
user has selected one, show him/her the domain and let him/her define polygonal
curves in that domain. The curves are of two types: those that that define the outer
boundary of the final trimmed region and those that specify a hole. After the user has
specified the region that is to be trimmed away display the trimmed surface. Develop
this program for

(a) polygonal trimming curves, and
(b) B-spline trimming curves with the picked points becoming their control points

Section 14.5.1

14.5.1.1. Implement a marching algorithm for an implicit planar curve that is defined by some
predefined polynomial equation.

Section 14.6

14.6.1. Implement a contour program for graphs of functions f: R2 Æ R. After the user defines
a polynomial function, display the surface, prompt the user for a value h, and then
highlight the contour f-1(h) on the surface.

Section 14.9.1

14.9.1.1. Display offset curves for planar B-spline curves. Allow the user to specify the curve
and the d parameter. Check for singularities in the offset curve and mark them for
the user to see.

648 14 Global Geometric Modeling Topics

To begin with, there is the notion of curvature itself. In the case of curves, there
is really only one concept of curvature and computing it involves the second deriva-
tive of the curve. In the case of surfaces, the situation is not as simple because there
are a number of different curvature related concepts. The most important is Gauss
curvature, but principal and mean curvatures are also useful. To compute these one
needs second order partial derivatives. Formulas for computing the various curva-
tures can be found in Chapter 9 in [AgoM05].

We consider curves first. The fairness of a curve is defined in terms of curvature.
See Section 11.12. Typically one seeks curves whose curvature functions are appro-
priately piecewise monotone. Sapidis ([Sapi92]) describes a simple geometric condi-
tion so that a quadratic Bézier curve segment has a monotone curvature function. It
is furthermore shown how to move the middle control point of that segment to correct
any bad curvature plot it may have initially.

Just because we have an approximation that is within a given tolerance of an
object does not mean that the shape of the object has been approximated very well.
A curve that wiggles about a straight line would not be a good approximation of
the shape of the line. As was indicated in earlier chapters, the choice of metric with
respect to which an approximation is defined matters. Wolters and Farin ([WolF97])
describe a metric based on total curvature that does a better job in approximating
shape.

Miura ([Miur00]) proposes a new type of curve whose curvature is easier to manip-
ulate than that of the more traditional curves. The method is based on integrating
tangent vectors, specifically unit tangent vectors. In order to make this easier for the
user to define such vectors, the author’s system asks the user to pick points on the
unit sphere in an interactive way. The selected vectors are interpolated by thinking of
them as unit quaternions. This construction is the analog of the clothoid construc-
tion that has been used to manipulate plane curves in a way that controls curvature
properties. Miura calls his curve a unit quaternion integral curve.

Next, consider surfaces. Krsek et al. ([KrLM98]) describe methods for computing
curvature quantities from discrete data. The approach is to approximate the data by
second order curves or surfaces. Higher orders did not seem to lead to much improve-
ment. They describe various methods but analyze

The circle fitting method: This turns out to be the fastest.
The paraboloid fitting method: This is slower than the circle fitting method but

more accurate on noisy data.
The Dupin cyclide method: This is the slowest but is usually more accurate than

the other two methods.

Wollmann ([Woll00]) also tries to estimate curvature values for a discrete surface. The
method is based on getting estimates to the curvature of curves and using Euler’s and
Meusnier’s theorem.

Meek and Walton ([MeeW00]) analyze the accuracy of various approaches to the
problem of getting approximations to surface normals and Gauss curvature given a
surface defined by a set of discrete points. The assumption is that one has accurate
data for a smooth surface such as one would get from sampling points on a real object.
They analyzed the following methods for finding an approximation to the surface
normal and/or the Gauss curvature at a point p:

650 15 Local Geometric Modeling Topics

(1) Fitting a quadratic surface to the given data near p and using its normal and
Gauss curvature as approximations.

(2) Approximating the surface at p by a set of triangles incident to p and using
various types of averages of their normals.

(3) Approximating the Gauss curvature at p by discretizing its definition based
on the Gauss map where one thinks of it as a limit of the quotient of small
areas containing p and the area of their images on the unit sphere. See equa-
tion (9.42) in Chapter 9 in [AgoM05].

(4) Approximating the Gauss curvature at p by means of the angle deficit
method.

One surprising conclusion was that the popular method (4) is not always very
accurate.

Andersson ([Ande93]) discusses how one could design a surface by modifying its
curvature. This is carried out in terms of solutions to boundary value problems for
partial differential equations.

Ye ([Ye96]) points out how a color-coded Gauss curvature map can be used to
judge the fairness of a surface. A smoothly varying map is good and rapidly varying
ones are bad. Ye answers the following question about the fairness of a surface where
two patches meet:

Question: Can the curvature continuity between the patches be visualized by means of the
Gauss curvature? Alternatively, if two patches are tangent-plane continuous along their
common edge and they have the same Gaussian curvature along the common edge, are
they curvature continuous there?

There is a similar question for mean curvature. Let kn(C,S,p) denote the normal cur-
vature at a point p of a curve C lying in surface S.

Definition. Let S1 and S2 be surfaces that are tangent-plane continuous along a
curve C. The surfaces are said to be curvature continuous along C if for all curves C1
and C2 on S1 and S2, respectively, that meet and are tangent at a point p on C we have
that kn(C1,S1,p) = kn(C2,S2,p).

Ye gives an answer to the question in terms of Dupin indicatrices, principal cur-
vatures, and Gauss and mean curvatures. Mean curvatures turn out to be a better way
to measure curvature continuity.

Kaklis and Ginnis ([KakG96]) address the problem of constructing shape-
preserving C2 surfaces that interpolate point sets lying on parallel planes. Call the
planar curves pi(u) interpolating the data of a given plane a skeletal line. We are basi-
cally looking for a skinning surface p(u,v) for the skeletal lines pi(u). Kaklis and Ginnis
describe how one can get a skinning surface that has the property that if the curva-
ture of adjacent curves pi(u) and pi+1(u) has the same sign over an interval [uj,uj+1],
then the curvature of all the curves p(u,v), v Œ [vi,vi+1] also has the same sign over the
interval [uj,uj+1].

Wolter and Tuohy ([WolT92]) describe how to compute curvatures for degenerate
surface patches.

Other aspects of surfaces that are sometimes interesting are their lines of curva-
ture. Analyzing these involves solving differential equations. See [BeFH86]. Lines of
curvature are used to define principal patches.

15.2 Curvature 651

Finally, is there a notion of curvature in the case of polygonal objects? Such a
notion would be defined at vertices and would be a function involving the angle
between adjacent edges for curves and the sum of the angles of the faces meeting at
a vertex for surfaces.

15.3 Geodesics

15.3.1 Generating Smooth Geodesics

The mathematics of geodesics for surfaces in R3 is discussed in Section 9.10 in
[AgoM05]. The mathematical definition of a geodesic is that it is a function (a para-
meterized curve) defined by second-order differential equations. This is what we shall
mean by the term “geodesic,” but it is sometimes used more loosely, for example, to
refer to the underlying set that is traced out by a geodesic. A common statement is
that a straight line in the plane is a geodesic, but one needs to remember that a line
can be parameterized in many ways and only some of those parameterizations would
actually fulfill the mathematical definition of a geodesic. Two other definitions that
are given sometimes (and that consider geodesics as sets rather than maps) are:

The Kinematic Definition. A geodesic is a curve traversed by a particle whose accel-
eration vector at a point lies in the plane spanned by the velocity vector and the normal
to the surface at that point. There is no “side-to-side” acceleration. Any acceleration
that there is, is used to keep the particle in the surface or to speed it up or slow it
down in the direction of the path.

The Static Force Definition. On a convex surface, a curve is called a geodesic if a
thread stretched along the path it traces out on the surface is in static equilibrium
with respect to any sideways tension on it.

A true geodesic would satisfy both of these criteria. However, a geodesic in the
kinematic or static force sense would not necessarily be a real geodesic since its accel-
eration vector might not be orthogonal to its velocity vector. Nevertheless, by Theorem
9.10.11 in [AgoM05] it does trace out a geodesic path.

Note. The boundary of a surface causes technical problems for the definition of a
geodesic because one often needs derivatives to be defined in open neighborhoods of
a point. To avoid such problems, we shall assume throughout this section that either
our surfaces have no boundary or that all the curves being defined are well away from
the boundary.

Consider a surface patch S in R3 parameterized by

Any curve g(t) in S can be expressed in the form g(t) = j(a(t)), where

(If we were given g first we could define a = j-1
° g.) See Figure 15.1. Let

a : , , , .a b c d e f[] Æ [] ¥ []

j : , ,c d e f[] ¥ [] Æ S

652 15 Local Geometric Modeling Topics

and

We know that

form a basis for the tangent space at every point of the surface and

is a normal vector at those points. The chain rule implies that

(15.1)

where Jj is the Jacobian matrix for j. It follows that

(15.2)

and

g a j a j≤ = ≤ + ¢()¢J JT T

g j a

a j

a a

j j j

j j j

¢() = ¢()()

= ¢() ()

= ¢ () ¢ ()()

∂
∂

() ∂
∂

() ∂
∂

()

∂
∂

() ∂
∂

() ∂
∂

()

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

t D t

t J u v

t t
u

u v
u

u v
u

u v

v
u v

v
u v

v
u v

T
,

, , ,

, , ,
1 1

1 2 3

1 2 3

n =
∂
∂

¥
∂
∂

j j
u v

∂
∂

=
∂
∂

∂
∂

∂
∂

Ê
Ë

ˆ
¯

∂
∂

=
∂
∂

∂
∂

∂
∂

Ê
Ë

ˆ
¯

j j j j j j j j
u u u u

and
v v v v

1 2 3 1 2 3, , , ,

a a at t t() = () ()()1 2, .

j j j ju v u v u v u v, , , , , ,() = () () ()()1 2 3

15.3 Geodesics 653

Figure 15.1. Curve in parameterized
surface.

The condition on g≤(t) which makes the curve g(t) into a geodesic is that

(15.3a)

(15.3b)

This would lead to having to solve a second order differential equation for a.
Instead, by introducing a new variable a¢(t) = b(t), one turns the system (15.3)
into a system of first order differential equations, which is the usual preferred
approach. See [PFTV86], for example, for ways to solve such systems of
equations.

Next, assume that we only want a geodesic in the kinematic or static force sense.
In this case, equations (15.3) get replaced by the single equation

(15.4)

where

Of course, as was pointed out earlier, such a curve g(t) may not mathematically be a
geodesic since g≤(t) may not be a normal to the surface, but it will trace out a geo-
desic path. Now, assume that the curve a(t) above is an arc-length parameterization
of a curve, so that |a¢(t)| = 1. Let us parameterize the unit vectors a¢(t) by the turning
angle q(t). In other words, write

(15.5)

It follows from (15.5) and the chain rule that

(15.6)

If we replace g≤ in equation (15.4) by the right-hand side of equation (15.2) and also
replace a≤ by the right hand side of equation (15.6), then one can solve for q¢(t). In
fact, it is easy to show that solving (15.4) is equivalent to solving the following system
of equations:

¢¢() = ¢() - () ()()a q q qt t t tsin , cos .

a q q¢() = () ()()t t tcos , sin .

b nt t t() = ()() ¥ ¢()g g .

g≤ () () =t t• b 0

g
j

a≤() ∂
∂

()() =t
v

t• .0

g
j

a≤() ∂
∂

()() =t
u

t• ,0

J

u u v u v v

u u v u v v

u u v

j

j
a

j
a

j
a

j
a

j
a

j
a

j
a

j
a

j
a

j
a

()¢ =

∂
∂

¢ +
∂
∂ ∂

¢
∂
∂ ∂

¢ +
∂
∂

¢

∂
∂

¢ +
∂
∂ ∂

¢
∂
∂ ∂

¢ +
∂
∂

¢

∂
∂

¢ +
∂
∂ ∂

¢
∂

2
1

2 1

2
1

2

2
1

1

2
1

2 2

2
2

2 1

2
2

2

2
2

1

2
2

2 2

2
3

2 1

2
3

2

22
3

1

2
3

2 2
j

a
j

a
∂ ∂

¢ +
∂
∂

¢

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

u v v

.

654 15 Local Geometric Modeling Topics

(15.7)

We shall return to this equation in Section 15.4.
Now what we have described so far are just local conditions for geodesics. The

curves must satisfy the differential equations shown above in a neighborhood of any
point through which they pass. Furthermore, there are of course many solutions to
these equations and to get unique solutions one needs to specify additional con-
straints. The most common constraints, and the ones handled most easily with stan-
dard numerical techniques for solving differential equations, are initial conditions.
Typical initial conditions would be a start point of the desired curve and a direction
vector. However, this does not solve the problem of finding a shortest curve between
two points because we would not know the initial direction of the curve. The short-
est curve problem is a boundary value problem and much more difficult. A solution
to the discrete version of this problem is described in the next section.

One area where one has to deal with geodesics is in the design and manufacture
of composite materials. See Section 15.4 below. In this case one wants to generate
geodesics given a start point and an initial direction. A common approach is to tes-
sellate the surface and generate geodesics on the resulting polygonal surface. The
paper [KSHS03] describes differential equations for a geodesic obtained from a vari-
ational approach and compares the numeric solution to these equations to the dis-
crete geodesics one can generate on the approximating polygonal surface using two
different algorithms. It turns out that the deviation of the discrete geodesics from the
smooth geodesic is not always proportional to the error caused by the tessellation but
depends also on the complexity of the surface.

We finish this section with an example. Unfortunately, just as very few curves have
a simple formula for their length, very few geodesics have a simple formula. Never-
theless, the following may help the reader understand the mathematics.

15.3.1.1 Example. Consider the paraboloid of revolution S defined by the
equation

and parameterization

We want to compute the equations that define the geodesics for this surface.

Solution. Let a(t) = (u(t),v(t)) be a curve in the domain of j. First of all, observe
that

∂
∂

= () ∂
∂

= ()j j
u

u and
v

v1 0 2 0 1 2, , , , ,

j u v u v u v u v, , , , , .() = +() () Œ2 2 2R

f x y z z x y, ,() = - -2 2

q
q q y

q q y
a q
a q

¢ =
-()()¢

-()()
¢ =
¢ =

cos , sin •

sin , cos •

cos

cos .

J

J

T

T

b

b

1

2

15.3 Geodesics 655

and

Clearly, b(t) • g≤(t) = 0, so that g(t) is a kinematic geodesic (but not a geodesic since
g≤(t) is not a normal to the surface).

15.3.2 Generating Discrete Geodesics

The last section dealt with smooth geodesics and had to do with smooth curves lying
in smooth surfaces. What if our surface is not smooth but polygonal? See [KSHS03]
for a discussion of two algorithms that generate discrete geodesics given a start
point and a start direction. It is obvious how to proceed here except in the case where
the geodesic passes through a vertex (we preserve angles when crossing edges just
like in the plane). The decision made at a vertex is especially critical if the surface
came from a tessellation of a smooth surface and we are trying to approximate a
smooth geodesic. One needs to take into account the discrete curvature at the point
that could be defined in terms of the sum of angles around the point or the normals
to the faces that meet at the point.

In this section we discuss the other and much harder variant of the geodesic
problem where we are given two endpoints and we want to find the locally shortest
polygonal curves connecting the two points. Before establishing that this is a mean-
ingful question and getting to the main results, we need to introduce some terminol-
ogy. In particular, we pause to make the definition of a polygonal curve (to be called
a piecewise linear curve) more precise. It is hoped that the reader will not despair
because of the rather large number of detailed definitions of what may seem like
obvious terms, but that is the cross that one has to bear when one tries to be un-
ambiguous. The requirement that piecewise linear curves are defined by a sequence
of at least two points is motivated by the fact that other definitions are then less
complicated.

Definition. A piecewise linear curve or pwl curve p in Rn is a sequence (p0,p1, . . . ,pk),
k > 0, of points of Rn. The length of p, Length(p), is defined using the standard
Euclidean metric by

The curve p is said to be closed if p0 = pk. The path or underlying space of p, |p|, is
defined by

If X Õ Rn and |p| Õ X, then we say that p is a pwl curve in X. The pwl curve p is said
to be simple if

p k k= [] » [] » » []-p p p p p p0 1 1 2 1, , . . . , .

Length p k k() = + + + -p p p p p p0 1 1 2 1. . . .

b nt t t t() = ()() ¥ ¢() = +() -()g g q q1 4 02 sin , cos , .

n g
j

q q
j

q q q qt
u

t t
v

t t t t()() =
∂
∂

() ¥
∂
∂

() = - -()cos , sin cos , sin cos , sin ,2 2 1

15.3 Geodesics 657

(1) all the points pi, except possibly the first and last, are distinct, and
(2) no segments [pi,pi+1] and [pj,pj+1], 0 £ i < j < k, intersect unless

(a) j = i + 1, in which case they intersect in the point pi+1, or
(b) the curve is closed, i = 0, and j = k - 1, in which case they intersect in the

point p0 = pk.

If q Œ [pi,pi+1], then the pwl curve (p0,p1, . . . ,pi,q,pi+1, . . . ,pk) is called an elementary
subdivision of the pwl curve p and a proper elementary subdivision if q lies in the inte-
rior of the segment [pi,pi+1]. A pwl curve that is obtained from p by a sequence of
(proper) elementary subdivisions is called a (proper) subdivision of p.

If we think of pwl curves as defining a path that one walks along, then in the case
of a simple pwl curve there is no backtracking or self-intersection. In particular, a
simple pwl curve traces out a one-dimensional manifold. (See Lemma 15.3.2.1 below.)
Clearly, proper subdivisions of simple curves are again simple.

It is easy to parameterize the path of a pwl curve.

Definition. Let p = (p0,p1, . . . ,pk) be a pwl curve and let

be the standard linear map that, using barycentric coordinates, has the form

The map

where

is called the standard parameterization of the pwl curve p. If s, t Œ [0,1] and s £ t, then
define a pwl curve q, called the pwl curve induced by [s,t] with respect to the standard
parameterization, as follows:

Case s = t: Set q = (r(s), r(t)).

Case s < t: Define i and j by the condition that

If i = k - 1, then q = (r(s), r(t)). Otherwise, q = (r(s),pi+1,pi+2,
. . . ,pj,r(t)).

15.3.2.1 Lemma. Let p = (p0,p1, . . . ,pk) be a pwl curve and r its standard
parameterization.

s
i
k

i
k

and t
j
k

j
k

Œ
+È

ÎÍ
ˆ
¯ Œ

+Ê
Ë

˘
˚̇

, , .
1 1

r r| , ,
i
k

i
k i
+È

ÎÍ
˘
˚̇

=
1

r : , ,0 1[] Æ p

i
k

s
i
k

t s t s t s ti i+
+

Æ + ≥ + =+
1

0 11p p , , , .

ri i i
i
k

i
k

i k: , , , ,
+È

ÎÍ
˘
˚̇

Æ [] £ <+
1

01p p

658 15 Local Geometric Modeling Topics

(1) The map r is continuous.
(2) If p is simple, then r|(0,1) is a homeomorphism between (0,1) and |p| - {p0,pk}.

If p is simple and not closed, then r is a homeomorphism between [0,1] and |p|.

Proof. Easy.

Definition. Let p be a pwl curve and r its standard parameterization. Let p and q
be two points in the path of p. Choose s and t, so that s £ t, p = r(s), and q = r(t). The
set r([s,t]) is called the part of the path of p from p to q.

The part of a path of a pwl curve is not well-defined in general because there may
be many choices for the parameters s and t (the curve may backtrack on itself, for
example). However, for simple curves it is well-defined unless the curve is closed and
one of the points is the first or last point of the curve.

After these preliminary definitions, we come to the first basic fact about shortest
curves, namely, that they exist.

15.3.2.2 Theorem. Let S be a connected compact polygonal surface.

(1) Any two points of S can be connected by a shortest pwl curve, meaning that
any other pwl curve between the points will have a length that is larger than or equal
to the length of that curve. In fact, a shortest pwl curve between two points will have
length less than or equal to the length of any rectifiable curve between those two
points, not just pwl curves.

(2) Every shortest pwl curve between two points of S is a simple curve but there
may be more than one shortest curve between two points.

(3) There is a d > 0, so that, for any two points p and q in S with |pq| < d, there
is a unique shortest pwl curve from p to q.

Proof. By cutting along edges one can flatten the whole surface out in the plane, so
that one can study curves on the surface by studying curves in planar polygons. It is
a well-known fact that the shortest parametric curve between two points in the plane
traces out the segment between the points.

Just like in the smooth case, shortest pwl curves are a special case of a more
general type of pwl curve.

Definition. A pwl curve p in a polygonal surface S is called a discrete geodesic if it
is locally the shortest pwl curve. More precisely, there is a d > 0, so that, for any s,
t Œ [0,1], s £ t, with |s - t| < d, the pwl curve induced by [s,t] with respect to the stan-
dard parameterization r of p is a shortest pwl curve between r(s) and r(t).

Intuitively, a discrete geodesic has the property that if two points p and q in its
path are sufficiently close, then the part of the path from p to q is the path of a short-
est pwl curve from p to q. Just like in the smooth case, geodesics are not necessarily
the shortest curves between points. For example, on a cube a geodesic between two
points may pass those points more than once as it wraps around the cube multiple
times. On the other hand, it is obvious that every shortest pwl curve is a discrete
geodesic.

The discrete geodesic problem: Given two points p and q on a polygonal surface S, find
a shortest pwl curve in S from p to q.

15.3 Geodesics 659

In the rest of this section we shall assume the following:

(1) All surfaces S will be compact, connected, triangulated, and without boundary.
(2) All pwl curves in a surface S will have the property that if they meet a vertex

of S, then that vertex is a vertex for the curve.
(3) All pwl curves are assumed to be simple. All subdivisions will be proper.

Surfaces are assumed to be triangulated because triangular faces simplify argu-
ments. Fortunately, a polygon with v vertices and no holes or self-intersections can
always be triangulated in time O(v) (see Section 17.6). Furthermore, if a surface has
e edges, then it will have O(e) edges after triangulation. However, there is one point
that needs to be kept in mind with respect to the triangulation hypothesis. The number
of faces may have increased substantially. Therefore, if the big-O complexity of an
algorithm depends on the number of faces, then the triangulation has to be taken into
account.

Surfaces are not allowed to have a boundary because, like in the last section, the
boundary would cause problems that will not be addressed here. A typical surface
would therefore be the surface of a polyhedron in R3. The assumption about pwl
curves being simple is justified by the fact that our goal is to find shortest curves and
these are all simple. Finally, note that subdividing either a curve or the surface has
no effect on the length of the curves or the geodesics in the surface.

The O(n2) solution to the discrete geodesic problem for polygonal surfaces with
n edges presented by Chen and Han in [CheH90] is too complicated to describe in its
entirety here, but we shall sketch the main steps for the convex case. Whether or not
a surface is convex has a great influence on the complexity of a shortest curve algo-
rithm. When a surface is not convex, one has to handle some complicating special
cases although the basic idea is the same as in the convex case.

The specific shortest path problem that we address is the “single source” shortest
path problem, namely, we seek an algorithm for finding a shortest pwl curve from
a fixed “start” point s of the surface S to all other points of S. We shall assume
that s is a vertex of the triangulation of S. The Chen and Han algorithm is actually
not the most efficient solution to the problem. Kapoor ([Kapo99]) has described an
O(nlog2 n) algorithm, but it is more complicated to describe. A number of other papers
prepared the ground for these algorithms. In particular, [MiMP87] is worthwhile
reading because it helps one see what the problems are when one is looking for short-
est paths. Other references can be found in that paper and in [CheH90]. The solution
in [MiMP87], which is not as efficient, is based on an argument that is similar to
Dijkstra’s single-source shortest path algorithm for graphs.

Definition. Two faces of S are edge-adjacent if they meet in a common edge. An
edge-adjacent sequence of faces is a sequence F = (f1,f2, . . . ,fk) of faces fi with fi
edge-adjacent to fi+1. If ei is the common edge of fi and fi+1, then the sequence
E = (e1,e2, . . . ,ek-1) is called the edge sequence defined by the sequence F. The
sequences F or E are said to be simple if no face or edge, respectively, appears more
than once in the sequence. Let qi be a point in the interior of the edge ei. The pwl
curve q = (q1,q2, . . . ,qk-1) is said to connect the edge sequence E. A pwl curve q in S
of the form (q0,q1,q2, . . . ,qk-1,qk), where q0 and qk are arbitrary points in f1 and fk,
respectively, is said to define the edge sequence E.

660 15 Local Geometric Modeling Topics

Figure 15.3 shows an edge-adjacent sequence of faces for k = 6 and its associated
edge sequence. Given an edge-adjacent sequence of faces f1, f2, . . . , fk, it is clear that
such a sequence can be “unfolded” into the plane determined by the last face. One
simply successively rotates the plane of fi about ei into the plane of fi+1, i = 1, 2, . . . ,
k - 1, so that the image of fi under this rotation Ri of R3 and fi+1 lie on opposite sides
of the edge ei. Define motions Mi by

and define a map

by n|fi = Mi. Next, set f i¢ = n(fi) = Mi(fi). The triangle f i¢ is just the image in the plane
of fk of the face fi under this “unfolding.” See Figure 15.4.

Definition. The sequence of triangles f1¢, f2¢ , . . . , fk¢ is called the planar unfolding of
the edge-adjacent sequence of faces f1, f2, . . . , fk. If X is any subset of the union of
the faces f1, f2, . . . , and fk, then the set n(X) is called the unfolding of X and the map
n is called the unfolding map with respect to the sequence f1, f2, . . . , and fk.

In Figure 15.4, the pwl curve (A,B,C,D) unfolds to (A¢,B¢,C¢,D¢). The unfolding map
n is clearly one-to-one on each face fi but may not be globally one-to-one because the
faces may wrap around each other. The next two lemmas state some interesting prop-
erties of geodesics and their unfoldings.

15.3.2.3 Lemma. A geodesic pwl curve that connects the edge sequence of an edge-
adjacent sequence of faces unfolds to a straight line with respect to that sequence.

n : f fi
i

k

kplane of
=

Æ
1

U

M R R R i k

M identity map
i k k i

k

= ◊ ◊ ◊ = -
=

- -1 2 1 2 1o o o , , , . . . , ,

,

15.3 Geodesics 661

Figure 15.3. An edge-adjacent sequence of faces.

Figure 15.4. Unfolding a curve.

Proof. See [MiMP87]. The fact that the curve intersects the edges in the edge
sequence in their interior is needed here.

If our surface is convex, then one can show that, except for possibly its first
and last point, a discrete geodesic will not go through any vertices of the surface.
Unfortunately, things get more complicated in the nonconvex case. See Figure 15.5.
However, a discrete geodesic that passes through a vertex has to satisfy an interest-
ing geometric condition there.

Definition. The angle of a face at one of its vertices v is the angle between the two
edges of the face that meet in v.

Suppose that a simple pwl curve goes through a vertex v. Let e and e¢ be the two
distinct adjacent edges of the curve that meet in v. By momentarily dividing a face
into two, if necessary, we may assume that both e and e¢ lie in edges of faces that
meet in v. Clearly, we can now divide the faces that meet in v into two edge-adjacent
sequences whose first and last faces meet in edges containing e and e¢. For each of
these two sequences add up the angles of their faces at v.

Definition. The smaller of the two sums is called the angle that the curve makes at v.

In Figure 15.6, q is the angle of the curve at v. The reader should not assume that
the faces adjacent to a vertex can be flattened out in the plane. Figure 15.5(a) shows
an example where this would not be possible.

662 15 Local Geometric Modeling Topics

Figure 15.5. Shortest curves on nonconvex surfaces.

Figure 15.6. The angle at a vertex.

15.3.2.4 Lemma

(1) A discrete geodesic is a curve that alternates between vertices and (possibly
empty) edge sequences such that the unfolded path along any edge sequence is a
straight line segment. If the curve passes through any surface vertex, then the angle
that the curve makes at that vertex is greater than or equal to p.

(2) If a discrete geodesic between two points is actually the shortest curve between
those points, then no edge can appear in more than one edge sequence and each edge
sequence must be simple.

Proof. See [MiMP87]. Figure 15.5(b) shows how a sequence of vertices could be part
of a geodesic.

The basic idea that will lead to our main theorem (Theorem 15.3.2.6) is to divide
the surface into regions, so that the shortest pwl curves from the start point s to all
the points within a region define the same edge sequence. See the shaded region in
Figure 15.7.

Definition. If p is a shortest pwl curve from s to a point p that defines an edge
sequence, then that edge sequence will be called a shortest edge sequence for p.

Not every edge sequences is a shortest edge sequence. For example, if we are
dealing with a convex surface in Figure 15.8(a), then the unfolded edge sequence e¢1,
e¢2, e¢3, e¢4, e¢5 cannot possibly come from a shortest edge sequence. (It could be without
the hypothesis of convexity as one can see from Figure 15.5(b).) In the next stage of
our discussion we shall assume that surfaces are convex. The following facts hold in
that case:

15.3 Geodesics 663

Figure 15.7. Regions with the same edge sequence.

Figure 15.8. Impossible and possible edge sequences for shortest curves.

15.3.2.5 Lemma. Assume that S is a convex surface with n faces.

(1) A shortest path cannot traverse more than n faces.
(2) Two shortest paths from the start point s can only intersect in s and their

endpoint.

Proof. See [ShaS86].

We now look for a criterion that rejects edge-adjacent sequences of faces that
cannot possibly come from a shortest curve.

Definition. Given a point p and a set X, define infCone(p,X), the infinite cone on X
from p, by

Definition. Given a point p and sets X and Y, define proj(p,X,Y), the projection of
X on Y from p, by

Now let Fk = (f1,f2, . . . ,fk+1) be an edge-adjacent sequence of faces in S with
associated edge sequence Ek = (e1,e2, . . . ,ek) and unfolding map nk. Recall that nk
maps all faces fi into the plane of fk+1. Assume that the start point s is the vertex of
f1 opposite the edge e1. Let sk¢ and ei¢ be the unfolding of s and ei with respect to nk,
respectively.

Definition. Define the subsets projs,i, 1 £ i £ k, of ei recursively as follows:

Call projs,i a shadow of the start point s on edge ei. We shall call fi+1 a face shadowed
by the edge ei with respect to the sequence Fi.

Figure 15.8(b) shows what the shadow projs,5 would look like. Because our surface
is convex, we could stop our edge-adjacent sequence of faces at that point since e6
cannot belong to a shortest edge sequence. In fact, projs,6 would be the empty set.
Basically, projs,i defines a cone from s in which all shortest paths with edge sequence
(e1,e2,e3,e4,e5) would have to lie. The algorithm for finding shortest paths for convex
surfaces uses these shadows to control the search that one has to perform. Algorithm
15.3.2.1 is an outline of an algorithm for finding shortest edge sequences. One builds
a tree whose nodes, other than the root, consist of quadruples of the form
N = (e,f,p,projs,e), where

e is an edge of the face f in the surface S,
p is a point in the plane of f that is an unfolding of s, that is, p = n(s) where n is

an unfolding map to the plane of f, and
projs,e is a subset of e that is a shadow of s.

Note that a face can be shadowed by each of its three edges.

Definition. The set cone(p,projs,e) « f is called the shadow of s in N.

proj

proj proj proj ii i i s i i

s

s

e

s e
,

, ,

,

, , , .
1 1

1 1

=
= () ()() >-n n

proj Conep X Y p X Y, , inf , .() = () «

inf , , , .Cone s sp X p px x X() = + Œ •[) Œ{ }0

664 15 Local Geometric Modeling Topics

The tree built by Algorithm 15.3.2.1 is called the edge sequence tree for S with
respect to the start point s. The reason for the name is that every path from the root
to a node in the tree defines an edge sequence for geodesics from s to a point p in the
node’s shadow of s. These geodesics are not necessarily shortest paths but there is a
unique geodesic with that edge sequence from s to every point in the node’s shadow
of s. To find the shortest path from s to an arbitrary point p in S one would first find
all the nodes N in the tree, so that p is in the shadow of s in N. These nodes would
define unique geodesics to p. We would simply select the shortest of those and that
would be the shortest path from s to p.

We now have a correct algorithm for finding shortest paths. The only problem is
that the edge sequence tree might be exponential in size. Figure 15.9(a) shows how

15.3 Geodesics 665

Input: a convex surface S with n faces
a vertex s of S called the start point

Output: a node tree T

node = quadruple (e,f,p,projs,e), where
e is an edge of the face f in the surface S,
p is a point in the plane of f that is an unfolding of s,
projs,e is a subset of e that is a shadow of s

node tree T;
integer i;
edge e¢;
point set X;

Initialize T to consist of simply a root that is a dummy node;
for all faces f that have s as vertex do

for all edges e of f do Insert (e,f,s,e) as child of root of T;

for i:=1 to n do
for all leaves N=(e,f,p,projs,e) of T at ith level do

begin
Let f ¢ be the other face (π f) containing the edge e;
Let e1 and e2 be the edges of f ¢ other than e;
Unfold p to p¢ in the plane of f ¢;
for e¢:=e1,e2 do

begin
X := proj (p¢,projs,e,e¢);
if X π ff then Insert the node (e¢,f ¢,p¢,X) into T as a child of N;

end
end;

return T;

Algorithm 15.3.2.1. A convex surface edge sequence algorithm.

shadows can cover angles opposite an edge and this would give rise to two children
to a node. However, our task was to find shortest paths and not all geodesics. Because
of this it turns out that the initial edge sequence tree can be pruned. The key obser-
vation is that at most one node whose shadows cover the angle needs to be given two
children if one is only looking for shortest paths. See Figure 15.9(b). In the figure
nodes N1 and N2 with the same edge BC gave rise to unfolded start points p1 and p2
with respect to face ABC. If |p1A| < |p2A|, then the shorter paths to s from points on
edges AB and AC sufficiently close to A come from the edge sequence defined by N1.
This means that only N1 needs to be given two children. If |p1A| = |p2A|, then both N1
and N2 need only one child. Using this “one angle, one split” criterion leads to a new
edge sequence tree generation algorithm that produces a tree with O(n) leaves at each
stage. One can reduce the total space used to O(n) by the following trick: if a leaf in
the current tree generates only one child, we delete that node and replace it with the
child. One can also show that the new tree can be generated in time O(n2). Once the
tree is built, one can find shortest paths in time O(n). To do better, one needs to make
some more improvements.

It turns out that the essential information one needs to store is the shortest paths
to vertices. Therefore, the authors in [CheH90] create additional “vertex nodes” while
they build the edge sequence tree. This can also be done using O(n) space and, given
the nature of the tree, one can now find the shortest path to a vertex in time O(k),
where k is the number of edges in the path.

Now the edge sequence tree certainly has to be built once. This takes time O(n2).
However, after that, what slows down answering shortest path queries to O(n) is
finding path information in the tree. By storing that information more efficiently one
can speed up multiple queries. An appropriate Voronoi diagram and the subdivision
it induces on the surface turns out to do the trick.

First, one cuts the surface along the shortest paths to its vertices. The cut surface
can be flattened out into the plane (there may be overlaps). The authors in [CheH90]
call the layout one gets the inward layout to distinguish it from the one used in
[ShaS86]. The start point s will map to O(n) vertices si¢. A Voronoi diagram is built
with respect to these image points in the plane and this induces a subdivision of the
layout with the property that points that belong to the same region, say the one asso-
ciated to si¢, are closer to si¢ than to any other sj¢, i π j, and their shortest paths have
the same edge sequence. This leaves the question of the complexity of building the
Voronoi diagram. Lemma 15.3.2.5(2) implies that all vertices other than the start point

666 15 Local Geometric Modeling Topics

Figure 15.9. Limiting the number of children of a node.

can be listed in a circular order based on the angle that a shortest path to that vertex
makes with a fixed line at the start point. Using such an order, connect the flattened
vertices by edges in the order in which they are listed. This generates a circular loop
called the equator that cuts the flattened surface into two regions called the arctic
region (the one containing the start point) and the antarctic region. One can show that
the Voronoi diagram is a tree with O(n) edges. Therefore, it can be built in time
O(nlogn) and space O(n). The subdivision of the surface induced by the subdivision
of the layout can be built in time O(n2).

This completes the sketch of how one finds shortest paths in convex surfaces. If
the surface is not convex, the steps in the algorithm have to be modified but fortu-
nately the complexity of the steps does not change in the end. The final result for sur-
faces, convex or not, is stated below.

15.3.2.6 Theorem. Let S be an arbitrary polygonal surface with n edges and
let p be a fixed point on S. After a preprocessing time of O(n2) and using space
O(n2), the Chen and Han algorithm answers any query about the shortest distance
from a point q on S to p in time O(logn) and the shortest path from p to q can
be generated in time O(k + logn), where k is the number of edges intersected by the
path.

Proof. See [CheH90].

The Chen and Han algorithm improved on the one in [MiMP87], which was an
O(n2 logn) algorithm, but it and the better O(nlog2 n) Kapoor algorithm are too com-
plicated and slow to be practical if one wants accurate answers since one would have
to represent computations with a number of bits that is an exponential function of
the number of bits in the coordinates of a vertex. For that reason, algorithms have
been developed that only give an approximate answer but which are much more
efficient. See, for example, the paper by Agarwal et al. ([AgHK00]).

15.4 Filament Winding and Tape Laying

The previous two sections described the mathematics involved in generating geo-
desics on surfaces. One area of manufacturing where geodesics play a role is in
winding filaments or tapes around mandrels to create composite materials. Filament
winding is a reinforcement method for creating composites that have high strength
and low weight. These materials are created by encasing filaments or fibrous tapes
in a resin matrix. The matrix holds the fibers in place, transfers stresses between
them, and also seals them from mechanical or environmental damage. The filament
or tape and matrix combination is wound around a mandrel that corresponds to the
desired shape of the finished material. Surfaces of revolution, or cylindrical surfaces
as a special case, are common shapes for these mandrels. At the end, after the mate-
rial is cured, the mandrel may become part of the finished product or be discarded.
The method is widely used in aerospace, hydrospace, military, and many other
applications. It is the mathematical aspect of the subject that interests us here, in
particular, the role that geodesics play. For manufacturing and other details the

15.4 Filament Winding and Tape Laying 667

reader should consult appropriate engineering books such as [RosG64] and [Schw97]
and related journals.

First, consider the mathematics involved in filament winding. Surfaces of revolu-
tion or similar surfaces whose diameter is small compared to the length are good
target objects here. Figure 5.10 shows the two common types of filament winding,
helical and polar. It is clear why filament paths need to stay close to geodesics. In fact,
on a frictionless convex surface it would be impossible to lay a filament in any way
other than along a geodesic since those curves correspond to a state of static equi-
librium. In the presence of friction the filament becomes “sticky” and its path can
deviate from geodesics. The amount of possible deviation would depend on the
amount of “stickiness.” In practice, the filaments need to be kept tight to minimize
slippage, something that is not a problem with tape. Additional problems arise with
concave regions in the surface that can cause “bridging.” Concave regions are also
less of a problem with tape.

Next, we consider tape laying and its mathematics. Figure 15.11 shows the laying
of tape along a rotating mandrel. The basic problem with laying a tape along an object
is that it may not unroll smoothly, but, depending on the curvature of the surface,
may form folds or crinkles in the process. To understand what is going on, one needs
to analyze the problem using differential geometry. A piece of tape is a developable
surface because it is isometric to a subset of the plane R2. It follows from Theorem
9.15.5 in [AgoM05] that the only surface on which one can lay a tape in a problem-
free manner is a surface whose Gauss curvature is zero at every point. For example,
a cylinder is such a surface. On the other hand, since the Gauss curvature of a sphere
is nonzero, it is not possible to lay a tape smoothly onto a sphere.

668 15 Local Geometric Modeling Topics

Figure 15.10. Helical and polar filament winding.

Figure 15.11. Laying tape on a rotating mandrel.

Clearly, if a tape can be laid on a surface S, then one can specify a particular place-
ment or tape path with a map

(15.8)

where 2d is the width of the tape, L is its length, and

(15.9)

is the curve traced out by the center line of the tape parameterized by arc-length. Now
if j is an isometry, then g(t) is a geodesic in S because 0 ¥ [0,L] lies in [-d,d] ¥ [0,L].
This corresponds to using a tape that is “stiff laterally.” There is a kind of converse,
namely, the centerline of a laterally stiff tape follows a geodesic path. Fix t and define
the curve ht(s) by

15.4.1 Theorem. If the curve hc(s) is a kinematic geodesic and orthogonal to the
curve g(t) at the point g(c) for all c, then g(t) is a kinematic geodesic.

Proof. We need to show that g≤(c) is a linear combination of g¢(c) and n(g(c)), where n(p)
denotes a nonzero normal vector to S at p. Since hc(s) is orthogonal to g(t), the vectors
hc¢(0), g ¢(c), and n(g(c)) form an orthogonal basis for R3 at g(c). Next, the assumption
that hc(s) is a kinematic geodesic implies that hc≤(0) is a linear combination of hc¢(0) and
n(g(c)). This fact and with the orthogonality of hc¢(0), g¢(c), and n(g(c)), shows that

Finally, differentiating the equation

leads to the following string of equalities:

In other words, g≤(c) is a linear combination of g ¢(c) and n(g(c)) and we are done.

Definition. A natural path for a tape on a surface S is a tape path j where the center
line g(t) is a geodesic and the Gauss curvature at every point of S in the image of j is
zero.

Natural paths are the ideal situation, but there are instances where one is willing
to put up with less:

(1) There are many surfaces on which one may want to lay tape that have nonzero
Gauss curvature. One would have a problem even if one follows a geodesic.

(2) Even on flat surfaces, one may sometimes want to lay tape along lines that
are not quite straight.

¢ () ¢¢() = - ¢¢() ¢() =h g h gc cc c0 0 0• • .

¢ () ¢() =h gc c0 0•

¢¢() ¢() =h gc c0 0• .

h jt s s t() = (), .

g g j: , , , ,0 0L t t[] Æ () = ()S

j : , , ,-[] ¥ [] Æd d L0 S

15.4 Filament Winding and Tape Laying 669

For these reasons, one is willing to put up with some crinkling or folding; however,
the amount of such crinkling or folding that is allowed is something that the user
should be able to specify. Therefore, the ability to

(1) specify the actual path and direction angle of the tape, and
(2) predict any gaps, overlaps, and laminate thickness,

would be important to anyone doing off-line programming of the process. In an auto-
mated environment a robotic arm that is laying the tape needs to be able to allow for
sideways movement and turning.

Note that in the case of filament winding only the path g(t) is important so that
the flatness of objects is not so critical. However, filament tows often consists of several
filaments and in that case one runs into problems similar to those with tapes because,
if a surface is not flat, then adjacent filaments may bulge and move apart if they do
not travel equal distances.

From this discussion we see that both in the case of tapes and filaments (those
that are sticky or those that are part of multi-filament tows) one is looking for curves
that are close, but not necessarily equal to geodesics. Let us show how, given a coef-
ficient of friction m, it is possible to define generalized geodesics ([Crai88]) that are con-
trolled by a “steering function” s(t) satisfying

which will do the job. To find these generalized geodesics we can use the mathemat-
ics developed in Section 15.3.1. All we have to do is replace the function b(t) in equa-
tion (15.7) by

(15.10)

and solve these new differential equation. We can also think of the function s(t) as
allowing for stickiness of a filament.

15.5 Dropping Curves on Surfaces

Drawing curves on surfaces is important in robotics applications that involve gener-
ating paths for tools to follow. In fact, in those cases one also wants to generate frames
which are tangent to the surface along the path. These would be needed by the robot
arm for orientation purposes. Mathematically, the easy part of the problem is finding
the point where a ray pierces a surface. This is something we already discussed in
Section 13.4.1.

Let S be a surface parameterized by a function p(u,v). Picking points pi on S with
a mouse would also give us a sequence of points qi = (ui,vi) in the parameter space X
of S, where p(qi) = pi. The goal is to generate the frames Fi = (u1i,u2i,u3i,pi). See Figure
15.12. From the points qi we can generate a curve

s : , .0 1 2[] Æ ÃX R

b
n
n

t s t
t
t

() - () ()()
()()

g
g

- < () <m ms t

670 15 Local Geometric Modeling Topics

Then g : [0,1] Æ S defined by g(t) = p(s(t)) is a curve on the surface. How should s be
defined from the qi? If we are not careful then, depending on the parameterization
p(u,v), g may wiggle in undesired ways on the surface. The point is that the user was
outlining a curve on the surface not in its parameter space. Most likely, the curve
should go along a geodesic from one point to the next. Therefore, one way to try to
generate the curve from qi to qi+1 is to follow the geodesic which starts at qi in the
“direction from qi to qi+1.” As an approximation to this direction we can take the vector
qiqi+1. Now we can apply the methods discussed in Section 15.3.1. Unfortunately, the
complete curve may now have corners at the dropped points.

In the case of polygonal surfaces one wants to find a polygonal curve that pass
through the dropped points. Connect the dropped points by discrete geodesics.

A related problem is to project a given curve C orthogonally to a surface S. What
this means is that each point p on the curve C should project to the point q on the
surface S that is closest to it. In the smooth case a necessary condition is that

where nq is a normal to S at q. See Figure 15.13. The problem of finding the point on
a smooth surface that is closest to a single point was already considered in Section
14.2. In our case here we could pick points pi on the curve and find their closest points
qi on the surface by solving equations like equations (14.4) or (14.5). Connecting the
points qi by paths on the surface would give us a curve that is an approximation to
the projection curve. Alternatively, if the curve C and surface S are parameterized by
functions g(t) and j(u,v), respectively, then the equation above is equivalent to the
equations

p q n 0q-() ¥ = ,

15.5 Dropping Curves on Surfaces 671

Figure 15.12. Dropping frames on surfaces.

Figure 15.13. Projecting a curve onto a
surface.

which one can try to solve for t, u, and v by some Newton-Raphson method using the
points pi and qi as start points.

Once one has a curve in a surface, frames at points along it would be obtained from
the tangent vector to the curve, the normal to the surface, and their cross product.

15.6 Blending

One of the important features of a good modeling system is the ability to blend curves
or surfaces. On its simplest level blending simply means to “round” corners and edges
or to smoothly connect two or more curves or surfaces to each other. This is an inte-
gral part of many manufacturing processes. Much work has and is being done on that
subject. Woodwark ([Wood87]), Hoschek and Lasser ([HosL93]), and Vida et al.
([ViMV94]) have a nice overview of the field. We shall only be able to discuss some of
the basic elements of it here.

We begin with a comment about terminology. Two terms that are often used in
the context of blending are “fillet” and “chamfer.” We shall use the “definitions” given
in [Wood87]. The size of a blend influences the terminology. Large blends could be
considered as a fairing of the surface. On the other hand, fairing a surface along an
area where two surface patches meet in an almost tangential way is in general a quite
different procedure from the process of blending that we have in mind now. A fillet is
a mid-sized blend that blends a concave vertex, edge, or region in the “internal” part
of a nonconvex solid. A good real-life example of this is where a person puts model-
ing clay along a concave corner and runs his/her thumb along it to create a smooth
blend that meets the adjoining surfaces in a tangential manner. A chamfer is another
mid-sized blend that blends a vertex, edge, or region in the “external” or convex part
of a solid. One way that the difference between a fillet and a chamfer is expressed
sometimes is to say that a fillet is a place where material is added and a chamfer a
place where material is subtracted. Finally, it should be pointed out that the terms
“blending,” “rounding,” “smoothing,” “filleting,” and “chamfering” are at times used
interchangeably. In mechanical design and manufacturing blending is usually called
filleting or chamfering.

Next, before we get into details, it is useful to try and impose some structure to
the broad topic of blending. Varady et al. ([VaVM89] and [VaMV89]) divide blending
approaches at the top level into four general types.

Superficial blending: The blending takes place at production time and there are
no explicit mathematical formulas associated to the operation but rather there is an
instruction of the type “round off with radius R.”

Surface blending: One desires a surface that blends two or more other
surfaces that are defined either parametrically or implicitly and may or may not
intersect.

g j j

g j j

t u v u v

t u v u v

u

v

() - ()() () =

() - ()() () =

, • ,

, • , ,

0

0

672 15 Local Geometric Modeling Topics

Polyhedral blending: Here objects are defined by polyhedra and one wants either
a polyhedral blending surface or a procedure that, via recursive subdivision, gener-
ates a polyhedral blending surface.

Volumetric blending: This approach assumes that we have modeling system
based on solids. The system takes care of the blending and provides the user with
appropriate operations that carry out the blending automatically. Typically the
systems that support this are CSG or b-rep systems where the blending operations are
carried out via set operations on the solids. The blending here tends to be of a global
nature, whereas the other types of blending are more local, in that they apply only to
specific parts of an object.

At the computational level one can make some further distinctions. Is one dealing
with implicit or parametric surfaces? Are we using a subdivision algorithm? Are
we treating blending as a boundary value problem that is then solved numerically?
Additionally, [Wood87] separates blending operations into four types depending on
the extent of the blend, that is, how much or in what way the surfaces being blended
are modified. Figure 15.14 shows examples of the four types.

(1) There is no constraint and the blend has a global influence on the objects
(Figure 15.14(a)).

(2) The blend is constrained to lie in a volume (Figure 15.14(b)).
(3) The blend is constrained to lie in a given range in terms of distances from the

edges of surfaces (Figure 15.14(c)).
(4) The blend is constrained by specifying a minimum radius of curvature (Figure

15.14(d)).

We shall look first at several approaches to blending based on implicit surfaces
and begin with an example of global blends. Blinn ([Blin82]) was interested in dis-
playing molecules and wanted to get away from the “ball-and-stick” approach. He
wanted to blend the atoms. His idea was to think of an atom not as a sharply defined
ball but rather as a more nebulous object that had a high density near the center of
the object but whose density fell off to zero in an exponential fashion. The density
function for the atom with center at (x1,y1,z1) was therefore assumed to be of the form

where

D x y z e ar, , ,() = -

15.6 Blending 673

Figure 15.14. Examples of blends.

Given a collection of n atoms, we sum the densities for the collection to get a density
function of the form

(15.11)

where ri is the distance of (x,y,z) to the center of the ith atom. Actually, for efficiency
reasons, ri

2 was used in the exponents of equation (15.11) rather than simply ri. One
then used a cutoff value c and only displayed those points for which D(x,y,z) > c. See
Figure 15.15. By changing the constants bi and ai one could achieve different effects.
One problem with trying to apply this type of blending in a CAGD program is that
the objects would get bigger or smaller because the density function would modify
any original sharp boundaries.

Next, [Wood87] attributes an early example of volume bounded blends to M.A.
Sabin. Given two surfaces defined by F = 0 and G = 0, define

(15.12)

where

(15.13)

for some auxiliary surfaces defined by P = 0 and Q = 0. The surfaces defined by P and
Q define what are usually called the contact curves, link curves, or trim (ming) curves
on the surfaces defined by F and G, respectively. These curves define the boundaries
of the blending surface. See Figure 15.16. The equation H = 0 then defines the blended
surface. The term cu2(1 - u2) in equation (15.12) was needed to prevent the blend
from passing through the intersection of F = 0 and G = 0 and creating a “bump” at
that point.

A related approach originated by Liming ([Limi44]) depends on projective
properties of conics. The problem Liming was concerned with was designing airplane
fuselages with conic cross-sections. First, note that if we have two conics defined
by F = 0 and G = 0, then

(15.14)1 0-() + =t F tG

u
P

P Q
=

+

H F u Gu cu u= -() + + -()1 12 2 2 2 ,

D x y z b ei
i

n
a ri i, , ,() =

=

-Â
1

r x x y y z z= -() + -() + -()1
2

1
2

1
2
.

674 15 Local Geometric Modeling Topics

Figure 15.15. Blending with density functions.

defines a family of conics which starts with F = 0 and ends with G = 0 as t ranges
from 0 to 1. We can apply this to the degenerate conics

and

which correspond to two pairs of lines L1,L2 and L3,L4, respectively. Then the family
of conics defined by equation (15.14) passes through the four intersection points A,
B, C, and D of the lines. See Figure 15.17(a). If we let C approach D and B approach
A, that is, we let the lines L3 and L4 move toward each other, then we shall find that
in the limit when L3 = L4, the lines L1 and L2 will be tangent to the conics defined by
(15.14) at C = D and B = A, respectively. See Figure 15.17(b). The conic is uniquely
specified by the two points of tangency A and D, the intersection point I, and one
other point F, which also determines t. This construction obviously gives us blends
between two lines in the plane. Furthermore, it extends to 3-space and can be used
to find cylindrical and conical blends between two planes.

G a x b y c a x b y c= + +() + +()3 3 3 4 4 4 ,

F a x b y c a x b y c= + +() + +()1 1 1 2 2 2

15.6 Blending 675

Figure 15.16. Volume-bounded blends.

Figure 15.17. Blending with conics.

An example of a range constrained blend is the superelliptic blend described in
[RocO87], where the cross-sections of the blending surface are superellipses. Another,
which we shall describe briefly, is the so-called potential method of Hoffmann and
Hopcroft in [HofH87]. If F, G, . . . : R3 Æ R, let V(F,G, . . .) denote the set of simulta-
neous zeros of the functions F, G, . . . , that is,

Consider a set V(F). This set partitions space into three sets: The points p where
F(p) > 0, which we shall call the outside of V(F), the points p where F(p) < 0, which
we shall call the inside of V(F), and the set V(F) itself. For any nonzero value s, the
set V(F - s) is either inside or outside of V(F), depending on the sign of s. For example,
if

then V(F - 3) is the sphere of radius 2 that lies entirely outside the unit sphere V(F).
Now

and in general such a set corresponds to the intersection of two surfaces and repre-
sents a curve in space. Consider V(G - s,H - t). This describes a family of space curves
parameterized by s and t. Next, suppose we constrain the parameters s and t to lie on
a curve C in the plane defined by an equation

Define F by

(15.15)

Then

(15.16)

is a surface. Figure 15.18 shows how V(F) is the union of points p that are the inter-
sections V(G - s,H - t) of offsets of V(G) and V(H). If f is chosen appropriately, then
V(F) becomes our blending surface between G and H.

15.6.1 Theorem. If C is tangent to the s-axis at (a,0), then V(F) is tangent to V(H)
along the curve V(G - a,H). Similarly, if C is tangent to the t-axis at (0,b), then V(F)
will be tangent to V(G) along V(G,H - b).

Proof. See [HofH85].

Since we clearly want a blending surface to be tangent to the surfaces between
which it is a blend, the important consequence of Theorem 15.6.1 is that we have

V F V G s H t
f s t

() = - -()
()=

,
, 0
U

F x y z f G x y z H x y z, , , , , , , .() = () ()()

f s t, .() = 0

V G H V G V H,() = () « ()

F x y z x y z, , ,() = + + -2 2 2 1

V F G F G, ,() = = () = () ={ }p p p0

676 15 Local Geometric Modeling Topics

reduced the blending problem for surfaces to the problem of finding a blending func-
tion f(s,t) for the coordinate axes in parameter space that is much easier. Further-
more, if the functions we are dealing with are polynomials, then we would like f to
have as low a degree as possible. The natural candidate for f is therefore a conic. In
view of the tangency conditions, the general form for f is

(15.17)

where a, b, and l are parameters we are free to choose. The parameters a and b specify
the points of tangency and l determines the type of conic we are using (see Table
15.6.1). With this choice of f, the blending surface F will have degree 2(m + n) if G
and H have degree m and n, respectively. If G and H are quadratics, then F will be a
quartic.

15.6.2 Example. Consider the cylinder V(G) and plane V(H), where

We would like a blending surface that meets V(G) and V(H) in the vertical lines
through (4,3) and (6,2), respectively.

Solution. See Figure 15.19(a). If we set a = 11, b = 1, and l = -11 in equation (15.17),
then

f s t s t s t st, .() = + + - - -2 2121 121 22 242 22

G x y z x y and H x y z y, , , , .() = + - () = -2 2 25 2

f s t b s a t a b ab s a bt st, ,() = + + - - +2 2 2 2 2 2 2 22 2 2l

15.6 Blending 677

Figure 15.18. Blending with intersections of
offsets.

Table 15.6.1

Type of conic

l = -• A pair of lines: s = 0 and t = 0
-• < l < -ab Hyperbola
l = -ab Parabola
-ab < l < ab Ellipse: a circle if a = b and l = 0
l = ab The line bs + at - ab = 0, counted double

The curve f(s,t) = 0 defines a parabola (see Figure 15.19(b)) and satisfies the hypothe-
ses in Theorem 15.6.1, so that V(F) will be the surface we want, where

is defined by equation (15.15). See Figure 15.19(a), which shows the horizontal slice
of our surfaces in the xy-plane.

Our construction created a blending surface by a sweeping operation of curves
parameterized by a curve f in a plane. We can think of this as a three-dimensional
construction by thinking of f as defining a conic cylinder in x-y-z space.

Another well-known implicit blending approach is the rolling ball–type blend.
As the name suggests, one rolls a ball along the two surfaces one is trying to blend.
The ball will touch the surfaces in a tangential way. Mathematically, the surface
generated by the rolling ball is a canal surface. One problem is that the blending
surface that is obtained in this way is defined by complicated equations even for a
blend between relatively simple surfaces such as cylinders. For that reason one has
sometimes used approximations ([RosR84]). Klass and Kuhn ([KlaK92]) describe a
unified approach to finding a fillet surface based on a rolling ball approach. After
determining the intersection curves that are needed for trimming the original sur-
faces, they end up defining a bicubic Bézier blending surface.

More complicated yet are variable radius rolling ball blends. This leads us to
cyclides. The definition and geometry of these surfaces are discussed elsewhere in this
book (see Section 12.13 in this book and Section 9.13 in [AgoM05]). The reason for
the renewed interest in them is precisely because of their usefulness for blending.
Figure 15.20 shows how a cyclide can be a blending surface between a cylinder and
a plane. More generally, cyclides work well for blending between the basic quadrics,
namely, planes, spheres, cylinders, and cones. Allen and Dutta ([AllD97a] and
[AllD97b]) define the problem carefully and show that cyclides can achieve singular-
ity-free variable radius rolling ball blends. They give necessary and sufficient condi-
tions for the existence of certain blends and describe constructions for them. They
also indicate limitations with single cyclide blends. The paper [AllD97c] extends their
results to supercyclides. The supercyclides allow more freedom in the shape of blends

F x y z x x y x y y y x y y, ,() = + - + - - + + +4 2 2 2 4 3 2 22 22 22 28 93 176 1164

678 15 Local Geometric Modeling Topics

Figure 15.19. Blending with potential surfaces.

but are also more complex computationally. Shene ([Shen98]) gives a complete analy-
sis of possible blendings of two cones with a cyclide. The paper [Shen00] discusses a
solution to problems encountered with a common construction for blending two
cones with a cyclide. A well-known unsolved blending problem is the so-called Cran-
field object that involves a cone/torus blend. See Figure 15.21. The actual Cranfield
object is a real part of an oil rig. Although it is possible to model the part in com-
mercial systems, it is not easy. As Pratt ([Prat90]) and others have pointed out, mod-
eling systems should have built in capabilities that would allow a user simply to
specify the cone and torus and let the system do a robust blending operation on its
own. Other references for cyclides can be found in the bibliography.

Next, we look at blending based on parametric surfaces. A good reference is
[ViMV94]. It will be worthwhile to start with some terminology as summarized by
Vida et al.

Base surfaces: The surfaces that are being blended. See Figure 15.22(a).
Blending surface: The surface that does the blending. See Figure 15.22(a).
Trimline: A curve along which the base and blending surfaces meet.

Such a curve can be considered as a curve that trims the
base or blending surface. See Figure 15.22(a).

Range parameter: Parameters that specify the extent of the blend such as how
far from the intersection of the base surfaces the trim line
should be. They could be computed automatically or speci-
fied by the user. See Figure 15.22(b).

Spine curve: In those cases where a blending surface is defined by a
sweeping-type operation, a spine curve could be the trajec-

15.6 Blending 679

Figure 15.20. Cross-section of cylinder/plane
blending with a cyclide.

Figure 15.21. The cone/torus blending problem.

tory of the sweep, but it is more generally other related
curves such as the intersection of the base surfaces or some
offsets of those. See Figure 15.22(c).

Profile curve: A cross-sectional curve of the blending surface associated to
each point of its spine. It is usually a planar curve. Other
terms that have been used for this curve are “blending arc,”
“generator,” or “crossing curve.” See Figure 15.22(a).

Thumbweight: This is a quantity associated to the shape of a profile curve
and measures its “fullness.” The closer the curve is to the
base surfaces, the higher one says that its thumbweight is.
See Figure 15.22(d).

Assignment: One can define profile curves without spine curves, but then
one has to say which points correspond to which on the trim
lines. This correspondence is called assignment. See Figure
15.22(a).

Vida et al. divide parametric blending approaches into five categories:

(1) Rolling ball blends
(2) Spine-based blends
(3) Trimline–based blends

680 15 Local Geometric Modeling Topics

Figure 15.22. Parametric blending terminology.

(4) Polyhedral methods
(5) Other methods

Rolling ball blends have already mentioned. There is a natural spine curve,
namely, the curve swept out by the center of the ball, and the trimlines are just where
the ball meets the base surfaces. See the paper by Vida et al. for a discussion and
references for how the blending surface can be parameterized. For example, Choi and
Ju ([ChoJ89]) use quadratic rational Bézier curves for the cross-sections of the para-
meterizations. Another approach is described in the paper [KlaK92] mentioned
earlier.

In spine-based methods, the spine has to be defined. In the case of rounding edges,
the edge can be used as the spine. More generally, it could be the intersection of two
surfaces, such as offset surfaces from the base surfaces. If sweeping is involved, then
the sweep lines can be so used. Rolling ball blends can be considered as a special case
of spine-based methods. The modeler described by Chiyokura in [Chiy88] basically
does spline-based blending. Trimlines are usually computed automatically. For
example, the trimlines could be defined in terms of the points on the base surfaces
closest to the spine curve. The profile curves are usually required to be curves that lie
in the planes determined by the points on the spine curves and their two assigned
points on the trimlines.

For trimline–based methods there are many ways that those curves could be
specified. One can define trimlines as the intersection of a base surface and another
surface, such as an offset surface for the other base surface. One can also define trim-
lines by specifying curves in the parameter spaces of the base surfaces if they are
parametric surfaces. Once one has the trimlines, the next step is to define profile
curves. This can be done with or without an explicit spine curve. Quite a few
approaches to blending are trimline based. Again see [ViMV94] for more details. An
approach using trimmed tensor product surfaces is described in [ElbC97].

Most parametric blending tends to use rectangular or triangular patches. The
reader interested in blends for n-sided patches should see [HsuT98], where one can
find a number of additional references for this topic.

Blending methods based on polyhedral objects fall into two types. In both cases
one starts with an initial polyhedral object that defines the general shape of the final
object. One can then either use recursive subdivision of the facets or a local round-
ing operation to achieve smoothing. Recursive subdivision surfaces were described
in Section 12.17. Chiyokura and Kimura ([ChiK83]) suggested using local rounding
operations that are built into a modeler. Their idea was that one would first define a
wireframe object by means of Euler operations whose edges would be tagged as needing
rounding or not. The initially straight edges were then replaced by appropriate curved
edges. The last step was to fill in faces with smooth surface patches. The approach
was extended in [Chiy87] and [Chiy88]. A user would first specify fancier appropriate
rounding data for edges and vertices of the original polyhedral model. (Such data
essentially corresponds to defining trimlines.) This would define a curved mesh and
Gregory patches would then be generated for the actual rounding. Another direct
approach is described in [Szil91]. Szilvasi-Nagy uses automatically generated rectan-
gular Ferguson-type bicubic patches for the blending. Cylindrical surfaces are used to
round edges and, at the vertices where they meet, a rectangular patch blends them.
A user can vary the shape of the blend by modifying parameters such as rounding
radii.

15.6 Blending 681

The two last approaches to blending that we shall mention are quite different from
all the others. The first is due to Roach and Martin ([RoaM92]), who use Fourier trans-
form methods. Roughly speaking, one starts with a rectangular array of points chosen
from the relevant region in the initial surface. The Fourier transform is then applied
to these points, the high-frequency part of this data is attenuated, and then mapped
back by means of the inverse Fourier transform. The motivation for this is that high
frequencies correspond to sharp changes in shape, such as, for example, at vertices
and edges, and the mathematical steps taken are a way to smooth these changes. The
other blending approach is due to Bloor and Wilson ([BloW89a] and [BloW89b]), who
argue that a blending surface can be thought of as a solution to the following type of
problem:

Given a region W with boundary ∂W, is there a function defined on that region that satis-
fies some given conditions on ∂W?

This is a well-known type of problem in analysis and leads naturally to Laplace-type
partial differential equations satisfying certain boundary conditions. We sketch the
example in [BloW89b]. That example involves blending a vertical cylinder of radius 1
centered on the z-axis and the horizontal xy-plane z = 0. In our current context, a
parameterization

for the blending surface, should therefore be interpreted as a solution to the partial
differential equations

(15.18)

where a and b are constants that have been introduced to allow for more control over
the solution. The trimlines were taken to be the circle

at height h on the cylinder and the circle

in the plane. Given the boundary conditions

(15.19)

it turns out that one can write down an explicit solution to equations (15.18) that
depends on the two parameters a and s. (The parameter b ends up being fixed for this

x v v y v v z v h

x v R v y v R v z v

x v y v z v s

z v x v and or y v
u u u

u u u

0 0 0

1 1 1 0

0 0 0 0 0

1 0 1 1

, cos , , sin , , ,

, cos , , sin , , ,

, , , , , ,

, , , ,

() = () = () =
() = () = () =

() = () = () =
() = () () π 0,

z x y R= + =0 2 2 2, .

z h x y= + =, 2 2 1

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
∂

∂
+

∂
∂

Ê
ËÁ

ˆ
¯̃

=
2

2
2

2

2

2

2
2

2

2

2

2
2

2

2

2

0 0 0
x

u
b

x

v

y

u
b

y

v
and

u
a

v
z, , ,

p u v x u v y u v z u v, , , , , ,() = () () ()()

682 15 Local Geometric Modeling Topics

solution.) Varying these parameters generates different blends and their effect can be
described geometrically. Figure 15.23 shows cross-sections of the solutions corre-
sponding to s = -0.1 and -10.0 for a fixed parameter a.

Finally, as is the case for most solutions to geometric modeling problems, after
one has a basic idea for a solution one usually has to deal with a number of “details.”
In the case of blending, aside from the usual issues of robustness and efficiency, there
are some topological issues. If one is blending an edge, what does one do at the ends
of the edge? A vertex by itself can be dealt with by defining a trimline and filling in a
patch. Ends of edges are more complicated. There may be several edges ending in the
same vertex. See [ViMV94] for this nontrivial problem and ways to deal with it.

15.7 PROGRAMMING PROJECTS

Section 15.3.1

15.3.1.1 Let a user pick two points on a surface. Use the second point to define a direction
and then generate a smooth geodesic starting at the first point and going in that
direction.

Section 15.5

15.5.1 Have the user pick a surface and then define a space curve whose data was read from
a file. Drop this curve onto the surface.

Section 15.6

15.6.1 Implement one of the blending techniques for curves.

15.7 Programming Projects 683

Figure 15.23. Blending as a boundary value problem.

16.2 Virtual Reality 685

here. In particular, the global illumination models discussed in the earlier chapter still
were implemented in a local space.

Finally, this brings us to another point. Current modeling systems (other than
those involved with volume rendering) only represent objects. Systems should really
also model the entire space (R3) that these objects exist in. Since the objects are really
imbedded objects, if one modeled the complimentary space one would have a lot more
information. For example, visible surface determination would theoretically become
less expensive because one could basically “walk” from the viewpoint to an object to
see if something blocked it rather than having to check a ray against all the objects
in a scene. The fact that one can do precisely that in volume rendering makes that
approach very attractive and guarantees that it will become more important in the
future, especially since the hardware issues that have made this approach impracti-
cal are going away.

Section 16.2 is a slight digression from the main topic of this chapter, although
the material is related. We discuss current virtual reality programs that try to immerse
a user into computer generated worlds which are representations of either actual or
totally artificial environments. Section 16.3 describes what geometrically intelligent
modeling systems might look like. Section 16.4 describes the idea behind the SPACE
program that accompanies this book. Section 16.5 touches on some software that cur-
rently exists and which implements some aspects of what we have been talking about
here, suggesting future directions for geometric modeling.

16.2 Virtual Reality

The term “virtual reality” (VR) is used to mean many things, ranging from visions that
one may never be able to achieve to more down-to-earth applications that are start-
ing to have a profound influence. If one wants to create a virtual, meaning computer-
generated, world, one clearly has to be able to model this world. It is therefore
appropriate to say something about it in a book on geometric modeling; however,
there is much more to VR than just modeling and so we shall limit ourselves to some
general comments. The interested reader is referred to [Broo99] and [VFLL00], where
one can find lots of other references to work in the field. Those papers and others in
the IEEE Computer Graphics and Applications journal also describe many examples
of applications in VR. We shall not describe them here.

The idea of virtual environments (VE) using head-mounted displays (HMD) goes
back to the early 1960s ([HalM63]). Ivan Sutherland ([Suth65]) considered the com-
puter screen as a window into a virtual world. However, actually getting anything to
work took some time because it was harder than initially expected. Before 1990 the
results were very limited and existed mainly at a few laboratories. The first two IEEE
conferences on VR took place in 1993. One was the Virtual Reality Annual International
Symposium (VRAIS ’93) and the other was a symposium at the Visualization ’93
conference. As Brooks ([Broo99]) points out, between 1994 and 1999 the technology
moved from “it almost works” to “it barely works.” Vehicle simulators and entertain-
ment applications were not counted in that analysis. Although very successful, the
former were not really built on VR technology and the latter made lower demands and
the experience achieved was an end in itself and not thought of as a tool.

686 16 Intrinsic Geometric Modeling

Sometimes it is convenient to distinguish between two flavors of VR, namely,
passive (nonimmersive) versus immersive virtual reality (IVR). An example of the
former would be running a flight simulator on a computer screen. In the case of IVR,
a user would feel surrounded by the computer-generated environment and would be
able to walk through it and interact with it. There are two standard implementations
of IVR. One uses a head-mounted display and the other puts the user in a “cave.” The
original cave environment was the CAVE system described in [CrSD93]. IVR can be
further distinguished by how much freedom a user has and what the constraints are.
What mobility does a user have? Can one “walk” around the environment? What is
the field of view?

LaViola ([VFLL00]) divides three-dimensional user interaction in a VE into three
categories:

Navigation. This includes physical movement (e.g., actual walking, walking in place
on a treadmill, riding a stationary vehicle like a bicycle), manual viewpoint manipu-
lation (e.g., hand motions determine movement), steering (e.g., gaze directed motion),
target-based travel (user specified destination), and route planning (e.g., the user
specifies a path to follow by drawing on a map).

Selection and Manipulation. A basic approach here would be a virtual hand or a
cursor that tracks one’s hand. One can also implement indirect control via widgets
(e.g., handle widgets that allow rotation, translation, . . .). A third way is via physical
props.

Application Control. This can be achieved, for example, with graphical menus,
voice commands, gestural interaction, or tools.

Brooks ([Broo99]) argues that four technologies are needed for VR to be
successful:

(1) To get multiple sensory information, one needs visual, auditory, haptic, and
tactile displays to immerse a user in the virtual world while at the same time
blocking out any contradictory sensory impressions from real world.

(2) Graphics rendering systems need to be able to sustain 20–30 frames per
second motions.

(3) Tracking systems need to be capable of continually reporting a user’s position
and orientation.

(4) One has to be able to create and maintain large databases of models in the
virtual world.

Resolution will have to increase before VR looks real. A user would want to get
the same sensations from the virtual environment as from a real one. In particular,
there should be force feedback. A big early problem was latency. In 1994 it tended to
be 250–500ms, which was much too large because flight simulators have shown that
a latency of more than 50ms is perceptible. The latency problem is especially notice-
able for head rotations. Motion capture can be achieved via wireless optical and
magnetic tracking systems with or without wires or by using an exoskeleton. Virtual
humans are very difficult because their motions a very complex. Models for a virtual
environment are not easy to come by. They usually come either from a CAD systems

16.3 Geometrically Intelligent Modeling Systems 687

or sensing devices. In general, what is the best way to populate virtual environments?
A recent additional level of complexity arises in the context of distributed and
multiuser environments. See [CMBZ00] for some comments on networked virtual
environments.

An alternative to VR is augmented reality (AR). This is a hybrid approach where
one displays three-dimensional virtual objects in a user’s natural environment. Typi-
cally, a user would see the world via a head-mounted camera and a display with virtual
images superimposed onto the real scene. Some applications of AR are showing pro-
posed buildings in their actual setting, interacting with machinery, and medical data
for patient. For example, AR has been used to superimpose internal ultrasound data
onto a patient.

There are of course many connections between VR and geometric modeling. One
area where VR has stimulated research in geometric modeling has to do with the fact
that one often deals with large models that have to be displayed quickly in interac-
tive environments. Decimation algorithms come in handy here, that is, one wants to
remove data that is not really needed for accurate display. See the end of Section 14.3
for a few more details and some references.

It seems that currently, in addition to the standard architectural walkthroughs,
virtual prototyping, and medical, therapy, and entertainment applications, IVR is
having its biggest impact on scientific visualization where the huge amounts of data
one has to cope with makes it hard to grasp its meaning. The current successful appli-
cations are rather specialized however and one is left with the question of when IVR
will be used in the more general purpose sort of way that its strongest advocates dream
about.

16.3 Geometrically Intelligent Modeling Systems

Modeling systems have come a long way. A variety of paradigms have been developed.
They were discussed in Chapter 5, but it is clear that overall what we have is a lot of
ad hoc approaches, some of which work reasonably well within their domain. A uni-
fying structure is missing in CAD/CAM/CAGD. Of course, the ad hoc nature of current
state of geometric modeling is not surprising, given the short time that computers
have existed. Furthermore, it is important to have something that “will get the work
done” now. The niceties of having a unifying “theory” are things that can be indulged
in at some future point in time. Besides, there will always be special problems that
are solved in special ways. Nevertheless, it is the author’s dream to see a truly general
and complete modeling system that will understand all the geometry that mathemat-
ics understands at the time.

There are really two basic parts to CAD/CAM/CAGD systems: the underlying geom-
etry and the interface between it and the user. Since the geometric coverage is
adequate for current users and industry, if one overlooks the constant efforts to make
algorithms and data structures more efficient, it is not surprising that most of the new
work is related in one way or another with the user interface. The book [ShaM95]
explains how, by looking at the design process, one can create feature libraries and
automate some common model manipulations. The authors refer to features as being
based on an extensional view of design, where one records what practitioners com-
monly do. They argue that one also needs to capture the intentional aspect of design,

688 16 Intrinsic Geometric Modeling

where one tries to establish in advance what a user may want to do. Much more work
needs to be done in this area. The then-current state of feature-based design and key
problems are discussed by Mäntylä et al. in [MäNS96]. Developing expert systems in
the geometric context is much harder than for the traditional areas where expert
systems have been successful. Ways of using a blend of artificial intelligence and com-
putational geometry algorithms to help here are described by Requicha in [Requ96]).

Amato’s ([Amat96]) view of geometric modeling was that while a lot has been done
with respect to building models, much more work remains to be done when it comes
to analyzing and manipulating models. She specifically addresses the problem of
virtual prototyping in industrial design. There are many more stages to product devel-
opment than just modeling and one would like to automate them also. Two of the
problems she mentions are:

Design for Maintenance. After individual parts of a larger object have been
designed and assembled, one would like an understanding of how they fit “together.”
Can a part be removed without removing other parts? Is there room enough to insert
a tool and for a mechanic to do this? Amato points out that the Boeing 777 was
completely designed in a CAD/CAM system, but the maintenance issues were studied
with physical models. A problem such as part removal is really a special case of the
difficult motion planning problem.

Assembly Sequencing. If an object is made up of parts, what sequence of steps
would allow one to put the whole object together? This is related to the part removal
problem.

By modeling the entire prototyping process, one can create manuals and also
virtual environments for training. Computational geometry is a major component in
a solution because many of the problems that have to be solved belong to that field.

From now on we shall use the term “geometrically intelligent modeling system”
to mean a system that understand geometric invariants associated to spaces and can
answer questions such as whether or not two spaces are homeomorphic or isometric.
We are talking about systems that are knowledgeable about the topology and differ-
ential geometry of an object. Current commercial systems (basically those outside
university research departments) only have a superficial knowledge of the geometry
of objects. Most of what they know is local information.

For a modeling system to be geometrically intelligent, it will minimally have to
maintain whatever is necessary to compute the invariants described in Chapters 6–9
in [AgoM04]. These invariants enable us to distinguish between surfaces. Although
they are insufficient for classifying spaces in higher dimensions, they are at least
a start towards that goal. The following two steps are necessary to carry out this
program:

(1) We need to maintain an adequate cell structure for all of its objects, one suit-
able for computing at least the standard algebraic topology invariants such as
the homology groups.

(2) We need to maintain the appropriate differentiable structure to compute dif-
ferentiable geometry invariants. In the discrete case one only needs the attach-
ing maps of the cells.

16.4 Exploring Manifolds 689

The ability to classify spaces is especially important for computer vision and robot-
ics. A lot of work has been done over the years to determine the parts of a digitized
scene, the goal being to understand what is really in the scene in the same sense that
humans would. For example, one would like to be able to recognize whether we are
looking at a sphere or a doughnut (torus). Much still needs to done to achieve such
a higher level of recognition.

As a concrete example of what the author has in mind when it comes to geomet-
rically intelligent programs, the next section describes the author’s attempt at such a
program. It is hardly a definitive answer to the discussion above but should be taken
simply as an indication of how manifolds can be treated intrinsically.

16.4 Exploring Manifolds

This section describes some features and capabilities of the SPACE program that the
author is currently implementing. It is a work in progress and not everything has yet
been implemented. The reader will have to consult the documentation on the accom-
panying CD to find out the latest state of the program. Nevertheless, we want to indi-
cate the author’s approach to the development of geometrically intelligent modeling
programs. The idea of the program is to enable users to define and edit arbitrary
three-dimensional manifolds (with or without boundary), to “fly” through them, and
to query them about topological and geometric properties. The user interface is
described in more detail in the document SpaceGUI on the CD. The code for the
program and additional documentation can also be found on the CD. There is a
“21/2”-dimensional mode in the program for studying surfaces. If S is a surface, we
use the three-dimensional space S ¥ [0,1] to study S. The surface S is thought of as
the “floor” S ¥ 0 of the “room” S ¥ [0,1] along which we can walk. In this way the
study of surfaces can be made into a special case of the study of three-dimensional
manifolds, which does not involve much extra work.

Internally, the SPACE program represents a manifold by means of a cell decom-
position. It could easily be generalized to represent arbitrary spaces that admit cell
decompositions because the only essential property of the cell decomposition is that
a space is built by a sequence of steps, each of which involves attaching a cell to the
previous part via some attaching map. We also deal only with polygonal manifolds
(manifolds obtained by gluing rectilinear cells together via linear maps), so that ques-
tions of differential geometry are moot, but one could handle discrete curvature or
other discrete geometry questions. Manifolds M are represented as the union of a
sequence of 3-dimensional faceted disks D1, D2, . . . , and Dk, so that if

then M = Mk and each Di is attached to the boundary of Mi-1 by identifying a collec-
tion of facets in the boundary of Di with facets in the boundary of Mi-1 via a map fi.

Manifold Creation. Users can create new manifolds in a variety of ways ranging
from low-level to high-level operations such as

M Di j
j

i

=
=1
U ,

690 16 Intrinsic Geometric Modeling

(1) by choosing from a collection of well-known predefined manifolds that topo-
logically are homeomorphic to spaces such as D3, S3, or P3,

(2) by gluing two parts of the boundary of an already constructed manifold
together,

(3) by attaching one manifold to another along regions in their boundary,
(4) by a connected sum operation on two existing manifolds,
(5) via a spherical modification (surgery) operation on an existing manifold or by

adding a handle to the boundary, and
(6) as a quotient of D3 by the action of certain transformation groups.

Visualization. One can visualize a manifold M using one of two views.

The “global” view: This is the intrinsic view where the observer is moving
through M.

The “local” view: This shows a perspective view of the individual cells in R3

that were used in the construction of M. There is an associ-
ated orthographic view, which is simply the orthographic pro-
jection of the local view onto the x-y plane.

One can think of these views as corresponding to two worlds – a global and local
world. Looking at this another way, there is an abstract cell structure which is the
same in the global and local world but their point data is different (the two worlds
correspond to different realizations of the abstract cells). Basically, the observer is
inside the manifold in the global world and outside looking at its parts in the local
world. Users can move the cells in the local view without changing the topological
type of the manifold. The local view has a mode where the identification of bound-
ary polygons is indicated. Both the global and perspective local view can be seen
simultaneously. The observer is indicated by means of a cone in the perspective and
orthographic local view. The observer can be moved in various ways and all the
representations of the observer in the different views move in parallel.

Initially, when a manifold is defined, the boundaries of the cells that make it
up are shown when one is in the global view. It is convenient to think of the bound-
ary polygons as “walls.” At this point the user can start collapsing the cell structure,
either by piercing individual walls or by letting the program automatically collapse
all the walls as far as possible to a “reduced” state. The observer would then see
only walls that are left and that cannot be collapsed any further. One can make
these also invisible, but in that case, assuming that the manifold did not have any
boundary, there would be nothing to see (actually the user can specify how far one
can look in terms of the number of cells that one can look through). To make things
more interesting one can define (and move) objects in the cells of the manifold,
so that the topology of the manifold will then influence the way and the number of
times that one sees them as one looks straight ahead. One can also make marks on
the walls.

Figures 16.1–16.3 (the color version of these figures are .GIF files that can be found
on the accompanying CD) are examples of what one can see in the SPACE program.
Figure 16.1 shows the (21/2)-dimensional (global) view from inside the surface S2. In
fact, we see how the entire screen on the computer monitor would look. The top of
the screen shows some status information. On the right are menu items. Immediately

16.4 Exploring Manifolds 691

Figure 16.1. A 21/2-dimensional view from inside S2.

Figure 16.2. A local view of the cells making up the view in Figure 16.1.

692 16 Intrinsic Geometric Modeling

to the right and below the graphics area are various buttons that perform view manip-
ulation actions, such as zooming, spinning, changing the rendering mode, etc. As men-
tioned earlier, we are really showing S2 ¥ [0,1]. The floor S2 ¥ 0 and ceiling S2 ¥ 1 are
shown in brown and blue, respectively. The (abstract) cell structure of the sphere has
been collapsed to consist of one 2-cell and one 0-cell. There is an option to show the
0-cell, which would then show up as a column. As a 3-dimensional manifold the world
consists of a collection of 3-cells with identifications along their boundary and to
display a view we simply look through these cells. We have allowed ourselves to look
straight ahead through six cells. The “walls” in the distance are boundary walls of the
last cell we see through. They are colored to look like a sky with stars and this is
intended to indicate that we could look further. There is also a single yellow sphere
in our world. The fact that one sees more than one is caused by the fact that a line
of sight goes several times around the sphere. Although a person looking in a real
empty sphere would only see the back of their head, the reason Figure 16.1 shows
multiple spheres in staggered positions and deviates from the theoretical view is that
our polygonal representation of the sphere has modified the geometry and produced
different geodesics. Figure 16.2 is the wireframe local view of the cell structure that
is used to represent the world in Figure 16.1. The red cone represents the observer.

Figure 16.3 shows the view from inside the three-dimensional manifold S3. The
cell structure of the sphere has again been reduced and consists of one 3-cell and one
0-cell. The starry sky in the distance indicates the edge of our specified viewing
distance. The yellow boxes are what we see of the single box that we created in our
world.

Figure 16.3. A view from inside S3.

16.5 Where to from Here? 693

The cell structure of a manifold gives us all the information that one needs to
define homology groups and any derived algebraic invariants. One could also define
discrete geometry concepts such as the discrete curvature at edges and vertices from
the attaching maps, although this has not yet been implemented.

Current Available Queries. One can ask for the homology groups.

16.5 Where to from Here?

The SPACE program is obviously only a start on a general purpose three-dimensional
manifold program. For one thing, there are a lot more interesting and important
invariants associated to three-dimensional manifolds other than homology groups.
Some of these and algorithms for computing them can be found in [Matv03].

Although mathematicians at various university research centers have developed
software over the years to study aspects of the intrinsic geometry of spaces along the
lines that we have been discussing here, the programs tended to be more specialized
than is the intent of the SPACE program and restricted to predefined classes of man-
ifolds. There is no room to go into all these interesting programs here, but we mention
several below.

Higher Dimensions. Four dimensions have been of particular interest. A simple
example of a four-dimensional space is the hypercube [0,1]4. Getting a good visual
understanding of such a space boils down to using good projections of it to R3 (and
then to R2). Thomas Banchoff and others pioneered the visualization of surfaces in
R4 in the 1970s at Brown University. Showing the surfaces as they rotated helped give
the viewer a feeling of depth. See [Banc95], [HanH92], and [HaMF94].

Special Task Programs. One research center (shut down in 1998) that seems to
have produced an extraordinary number of modeling programs was the Geometry
Center, a National Science Foundation Science and Technology center at the Univer-
sity of Minnesota. Gunn’s MANIVIEW program ([Gunn93]) is probably the program
that comes closest to what the SPACE program is trying to do. Here the viewer is also
inside a three-dimensional manifold (one defined by a discrete group in this case).
The program was an external module for the well-known surface visualization
program GEOMVIEW. Another program, also from the Geometry Center, is Jeff
Weeks’ SNAPPEA program for studying hyperbolic 3-manifolds. (A hyperbolic mani-
fold is a Riemannian manifold with constant negative sectional curvature. In a hyper-
bolic plane, given a line and a point not on the line, there are an infinite number of
lines through the point that are parallel to the line. The sum of the angles of a trian-
gle is less than p.). Such manifolds are important to the classification of 3-manifolds.
The program is also an important tool for studying knot theory. See [Week85].

For a discussion of some further visualization programs see [HaMF94].

In the next section our object will be to describe quick intersection algorithms for
axis-parallel line segments, rectangles, and blocks (the axis-parallel one-, two-, and
three-dimensional boxes, respectively). Right now we concentrate on the problem of
determining which points (0-dimensional boxes) from a collection of points fall into
an axis parallel box.

Problem 1. Assume that S = {r1,r2, . . . ,rn} is a fixed set of n real numbers. Given
numbers a and b, which of the ri lies in the segment [a,b]?

If the question in Problem 1 is only asked once, then there is a straightforward
O(2n) solution. We simply compare each of the ri with the endpoints of the segment
[a,b]. However, if the question is asked many times with different segments, then it
turns out that we can do better.

Step 1. We first build a balanced binary search tree T from the ri. (For the discus-
sion here, the term “balanced” means that all the leaves of the tree lie on adjacent
levels.) To do this we sort the numbers in S, put the median M of the numbers in S
at the root of T, put the median of all the numbers in S that are less than M at the
root of the left subtree of T, put the median of all the numbers in S that are larger
than M at the root of the right subtree of T, and so on. The actual numbers are stored
at the leaves, but we use the values at the interior nodes to guide the search. See
Figure 17.1.

Step 2. Search for a in T. Assume that the search ends at the leaf na. Search for b
in T. Assume that the search ends at the leaf nb. The numbers of S that lie in [a,b] are
the leaves of T between nodes na and nb. For example, Figure 17.1 shows the case
[a,b] = [25,72]. The leaves corresponding to the numbers that lie in the interval are
shown as black rectangles.

698 17 Computational Geometry Topics

Figure 17.1. Range searching with balanced binary search trees.

Incidentally, the left and right subtrees of each interior node n of the tree T can
be thought of as representing ranges. If the node has the value s and its parent
the value t, then [-•,s] and [s,t] are the ranges of the left and right subtree of n,
respectively.

By linking all the leaves of T together, it is easy to see that the time complexity of
Problem 1 is O(log2 n + k), where k is the number of elements of S that lie in [a,b].
The links take up additional space and one can do without them using a recursive
algorithm that traverses all the subtrees “between” leaves na and nb. In Figure 17.1,
the nodes that have to be traversed, other than those on the path to na and nb, are
shown in black. Because the ideas behind implementing this recursive algorithm will
be needed later, we shall describe the algorithm. An important location we have to
find is the node where the paths from the root of T to na and nb split. We shall call
this the splitting node. For example, the splitting nodes for the intervals [25,72] and
[25,40] are indicated in Figure 17.1. Let Tr denote the number stored at the root of a
tree T. Algorithm 17.2.1 finds the splitting node. After we find the splitting node for
our range problem, then we simply make one pass from that node to na, printing the
leaves of all the right subtrees of the nodes we encounter, and another pass from that
node to nb, printing the leaves of all the left subtrees of the nodes we encounter. The
leaves na and nb themselves have to be checked separately to see if the values they
hold are part of our range. Algorithm 17.2.2 describes the whole range query process.

Summarizing we get

17.2.1 Theorem. Given a set of n real numbers, these numbers can be stored in a
balanced binary search tree that can be constructed in time O(nlog2 n) using O(n)
space. Interval queries can be made in time O(log2 n + k), where k is number of real
numbers in our set that satisfy the query.

Proof. For more details see [BKOS97].

Next, we look at the corresponding two-dimensional problem for finding points
in certain ranges.

Problem 2. Assume that S = {p1,p2, . . . ,pn} is a fixed set of n points in R2. Given a
rectangle (or “window”) [a,b] ¥ [c,d], which of the pi lies in this rectangle?

17.2 Range Queries 699

binary tree function SplitNode (binary tree T, real a, b)
begin

while NotALeaf (T) and ((b £ Tr) or (a > Tr)) do
if b £ Tr

then T := LeftSubtree (T)
else T := RightSubtree (T);

return T;
end;

Algorithm 17.2.1. Finding the splitting node.

We reduce the solution to Problem 2 to two one-dimensional problems. Let pi =
(xi,yi). Assume that all the x- and y-coordinates of our points are distinct. We need
this assumption for the binary search trees we build, but shall show how to get rid of
this assumption later.

Step 1. Create a balanced binary search tree T for the x-coordinates xi like in the
solution to Problem 1. This will enable us to find all the points of S whose x-coordinates
lie in the correct range. Of course, their y-coordinates may not be in range.

Step 2. If n is a node of T, let P(n) be all the points of S that are leaves in the subtree
of T with root n. Store at n a pointer to the balanced binary search tree T(n) based
on the y-coordinates of the points in P(n), except that we also store the points pi at
the leaves not just simply their y-coordinates.

Definition. The data structure consisting of the tree T together with the associated
trees T(n) is called a range tree.

700 17 Computational Geometry Topics

procedure 1dRangeQuery (binary tree T, real a, b)
begin

binary tree splitT;

splitT := SplitNode (T, a, b);
if IsLeaf (splitT)

then check if we need to print splitTr

else
begin

T := LeftSubtree (splitT);
while NotALeaf (T) do

if a £ Tr

then
begin

PrintSubTree (RightSubtree (T));
T := LeftSubtree (T);

end
else T := RightSubtree (T);

Check if we need to print Tr;

T := RightSubtree (splitT);
Do a similar traversal as we did for the left subtree, except that

we print leaves of left subtrees;
end

end;

Algorithm 17.2.2. A 1d range query algorithm.

Algorithm 17.2.3 is a more precise description of how the range tree is built.
Algorithm 17.2.4 shows how a range tree is used to answer the query of Problem 2.

We summarize the results on Problem 2:

17.2.2 Theorem. Given a set of n points in R2, we can store them in a range tree
that can be constructed in time O(nlog2 n) using O(nlog2 n) space. Axis-parallel rec-
tangle queries can be made in time O(log2

2 n + k), where k is number of points in our
set that satisfy the query.

Proof. For a proof see [BKOS97].

In the discussion leading up to Theorem 17.2.2, we implicitly assumed that all the
x-coordinates and y-coordinates are separately distinct. We shall now show that there
is a simple labeling trick that will enable us to drop this assumption. The fact is that

17.2 Range Queries 701

range tree function RangeTree (point set P)
begin

binary tree T;
range tree R, RL, RR;
real xmid;
point set PL, PR;

T := balanced binary search tree based on y-coordinates of points in P with points
also stored at leaves;

if |P| = 1
then R := range tree with only a root at which we store the single point of P

 and to which we associate T
else

begin
xmid := median of x-coordinates of points in P;
PL := points of P with x-coordinates less than or equal to xmid;
PR := points of P with x-coordinates larger than xmid;
RL := RangeTree (PL);
RR := RangeTree (PR);
R := range tree with only a root at which we store xmid and

 to which we associate T;
Make RL and RR the left and right subtree of R, respectively;

end;

return R;
end;

Algorithm 17.2.3. Building a range tree.

to be able to use our binary search trees, the only thing we really needed were linear
orders on what we called the “x-” and “y-coordinates” of points and any such would
do. The following lexicographic type ordering will do the job:

Interpret the phrase “the x-coordinate of (x,y) is less than the x-coordinate of
(x¢,y¢)” to mean x < x¢ or (x £ x¢ and y < y¢).

Interpret the phrase “the y-coordinate of (x,y) is less than the y-coordinate of
(x¢,y¢)” to mean y < y¢ or (y £ y¢ and x < x¢).

Another approach to solving Problem 2 is via Kd-trees. The query time using this
data structure is worse, namely, O(÷n– + k), but it uses only O(n) space. Yet another
way is by using a technique called fractional cascading. In this case we use more space
but can get the query time down to O(log2 n + k). See [BKOS97].

702 17 Computational Geometry Topics

procedure 2dRangeQuery (range tree R, real a, b, c, d)
begin

range tree splitR;

{ Except for the fact that we are dealing with range trees, the SplitNode function
 below is just like the one in Algorithm 17.2.1. }
splitR := SplitNode (R, a, b);
if IsLeaf (splitR)

then check if we need to print point stored at splitR
else

begin
R := LeftSubtree (splitR);
while NotALeaf (R) do

if a £ x-value at root of R
then

begin
1dRangeQuery (T (Root (R)), c, d); {query on y}
R := LeftSubtree (R);

end
else R := RightSubtree (R); {query on y}

Check if we need to print point stored at R;

R := RightSubtree (splitR);
Do a similar traversal as we did for the left subtree, except that

we print leaves of left subtrees;
end

end;

Algorithm 17.2.4. A 2d range query algorithm.

17.3 Interval and Segment Trees

We begin with the following problem:

Problem 1. Which of a collection of axis-parallel segments in R2 intersect a given
rectangle (or “window”) [a,b] ¥ [c,d]?

Let us divide the segments into four classes:

(1) Those that are contained in the rectangle.
(2) Those that intersect the boundary of the rectangle only once.
(3) Those that intersect the boundary exactly twice.
(4) Those that contain an edge of the boundary.

The segments belonging to classes (1) and (2) have an endpoint in the rectangle and
can be found using our answer to Problem 2 in the last section with respect to the
question “Which of the 2n endpoints lie in the rectangle?” Range trees or fractional
cascading can be used to provide the answer. This leaves the edges belonging to classes
(3) and (4). We concentrate on the edges parallel to the x-axis. Those parallel to the
y-axis can be handled in a similar manner. It follows that all we have to do is deter-
mine which segments intersect the left vertical edge of the rectangle.

Problem 2. Which of a collection of segments in R2 that are parallel to the x-axis
intersect a given vertical segment a ¥ [c,d]?

Problem 2 is solved in two steps.

Step 1. Determine which of the segments intersect a given vertical line?

Solving Step 1 is really a one-dimensional problem.

Problem 2a. Let I = {[a1,b1],[a2,b2], . . . ,[an,bn]} be a collection of intervals. Which
of those intervals contain the query point c?

Our approach to solving Problem 2a will be to use recursion. Let cmid denote the
median of the 2n endpoints of these intervals. We shall use cmid to express I as the
disjoint union of three sets Ileft, Imid, and Iright and replace the question about which
intervals contain c with three questions. Define

Ileft = the set of intervals in I which lie entirely to the left of cmid,
Imid = the set of intervals in I which contain cmid, and
Iright = the set of intervals in I which lie entirely to the right of cmid.

See Figure 17.2. The interesting set is Imid. When trying to determine which of its
intervals contain c we have extra information in the case of this set that speeds up
getting an answer. If c < cmid, then we only have to check the left endpoints of the
intervals because all the right endpoints are larger than cmid. Similarly, if c > cmid, then
we only have to check the right endpoints of the intervals because all the left end-
points are smaller than cmid. Therefore, let us store the left endpoints in increasing
order and the right endpoints in decreasing order. We can now easily determine the
intervals that contain c. If c < cmid, then we start at the smallest left endpoint and

17.3 Interval and Segment Trees 703

move right and report the interval with that endpoint until we find a left endpoint
which is larger than c. If c > cmid, then we start at the largest right endpoint and move
left and report the interval with that endpoint until we find a right endpoint which is
smaller than c. There is the case where c = cmid, but this can easily be handled in the
earlier two cases.

We are ready to describe a data structure that will match the algorithm we just
outlined. Construct a binary tree T = T(I) as follows:

(1) If I is empty, let T be the empty tree.
(2) Otherwise, using the notation above, T will consist of a root and a left and

right subtree, namely, T(Ileft) and T(Iright), respectively. To the root node of T we asso-
ciate the value cmid(T) = cmid and two sorted lists Lleft(T) and Lright(T), where Lleft(T)
is a copy of Imid sorted by the left endpoints of its intervals and Lright(T) is a copy of
Imid sorted by the right endpoints.

Definition. The data structure T(I) is called an interval tree.

Algorithm 17.3.1 shows how an interval tree is used for a query.

17.3.1 Theorem. The interval tree associated to a set of n intervals uses O(n)
storage and has height O(log2 n) . It can be built in time O(nlog2 n). If there are k
intervals which contain the query point, we can report them in time O(log2 n + k).

Proof. See [BKOS97]. To speed up finding the medians cmid one needs to sort the
whole list of endpoints once and for all.

This finishes Step 1 in the solution to Problem 2.

Step 2. Given the collection of segments that intersect a given vertical line, select
those that intersect an interval in that line.

To carry out Step 2 we must modify our interval tree T. Let c ¥ [d,e] be the verti-
cal interval. At the moment the tree T is only concerned with the x-coordinates of
points. We must also look at the y-coordinates. The problem is that the lists Lleft(T)
and Lright(T) are inadequate. What we need to do in the case of Lleft(T) is check if end-
points lie in the rectangle (-•,c] ¥ [d,e]. See Figure 17.3. In the case of Lright(T) we
must check if endpoints lie in the rectangle [c,+•) ¥ [d,e]. But we saw in Section 17.2

704 17 Computational Geometry Topics

Figure 17.2. The sets Ileft, Imid, and Iright.

that a range tree is a good data structure for that. Therefore, we replace the lists Lleft(T)
and Lright(T) in T with range trees Rleft(T) and Rright(T) determined from the left and
right endpoints of Imid, respectively. The only change that has to be made in Algorithm
17.3.1 for querying an interval tree is that instead of traversing the lists Lleft(T) and
Lright(T) we make queries on the corresponding range tree.

Summarizing, we get

17.3.2 Theorem. Let S be a set of n horizontal segments in the plane. If k of these
intersect a vertical segment, then they can be reported in time O(log2

2 n + k) using a
data structure that uses O(nlog2 n) space and which can be built in time O(nlog2 n).

17.3 Interval and Segment Trees 705

procedure IntervalTreeQuery (interval tree T, real c)
begin

if NotALeaf (T) then
if c < cmid(T)

then
begin

Beginning with the leftmost interval in Lleft(T) move right
reporting all intervals that contain c and stop at the first
interval that does not;

IntervalTreeQuery (LeftSubtree (T),c);
end

else
begin

Beginning with the rightmost interval in Lright(T) move left
reporting all intervals that contain c and stop at the first
interval that does not;

IntervalTreeQuery (RightSubtree (T),c);
end

end;

Algorithm 17.3.1. The interval tree query algorithm.

Figure 17.3. Checking endpoints of Lleft(T).

Proof. See [BKOS97].

The discussion above can be combined to answer the question in Problem 1.

17.3.3 Corollary. Let S be a set of n axis-parallel segments in the plane. If k of
these intersect an axis-parallel rectangle, then they can be reported in time O(log2

2 n
+ k) using a data structure that uses O(nlog2 n) space and which can be built in time
O(nlog2 n).

So far we have only considered axis-parallel segments. What if our segments are
not parallel to the coordinate axes? We could solve this segment-window intersection
problem with a trick. Simply enclose these segments in axis-parallel rectangles, so
that they become one of the diagonals of the rectangle. We can now apply what we
know about axis-parallel rectangle intersections. If a rectangle intersection is found
we will have to check if the segment actually intersects the window. Unfortunately,
it is easy to construct examples where the rectangles intersect the window but the
segments do not, so that our solution is not very efficient. Getting a better solution to
this problem leads to our next data structure.

We return to an earlier query problem, Problem 2a. Let I = {[a1,b1],[a2,b2], . . . ,
[an,bn]} be a collection of intervals. We want to find those intervals that contain a
query point c. Let e1, e2, . . . , em be the ordered list of distinct left and right endpoints
of the intervals in I. These points induce a partitioning of the real line into the fol-
lowing open and closed intervals:

(17.1)

Each of these intervals will be called an elementary interval. The reason for including
the closed intervals that contain a single endpoint is that one may want to distinguish
between a query point being an endpoint or in the interior of an interval.

The first step to finding an interval that contains the query point is to find the ele-
mentary interval to which it belongs. Therefore we build a balanced binary search tree
T whose leaves correspond to the intervals in the list (17.1). If n is a leaf node in T, let
E(n) denote its associated elementary interval. We could store all the intervals of I that
contain E(n) in a list at n, but the only problem with this is a big cost in storage since
the same intervals would potentially appear in many different lists because it might
contain many elementary intervals. A more efficient approach would be to store the
interval in a list at a node that is the root of that subtree of T whose leaves consist of
the elementary intervals contained in that interval. We cannot quite do that but we can
come close. We define a data structure S = S(I) that accomplishes this:

(1) Let T = T(S) be the balanced binary search tree T whose leaves correspond to
the intervals in (17.1). If n is a leaf node in T, then E(n) will denote its asso-
ciated elementary interval.

(2) If n is an interior node of T, then E(n) will denote the union of elementary
intervals that are the leaves of the subtree of T with root n.

(3) At each node n of T we store E(n) and the subset I(n) of intervals in I defined by

The subset I(n) will be called the canonical subset of the node n.

I I E and E Parentn n n() = Œ () Õ ()() À{ }a a a_ .

-•() [] () [] () [] +•()-, , , , , , , , . . . , , , , , ,e e e e e e e e e e e em m m m m1 1 1 1 2 2 2 1

706 17 Computational Geometry Topics

Definition. The data structure S(I) consisting of the annotated tree T(S) is called a
segment tree.

Figure 17.4 shows a segment tree. Algorithm 17.3.2 shows how a segment tree is
used for a query. We construct the segment tree by first sorting the endpoints of the
intervals and use this ordering to build a balanced binary search tree for the ele-
mentary intervals. We also compute the intervals E(n) for all the nodes n. Then the
intervals from I are inserted one at a time in the appropriate lists associated to the
nodes n using Algorithm 17.3.3.

17.3.4 Theorem. The segment tree associated to a set of n intervals uses O(nlog2n)
storage and can be built in time O(nlog2 n). If there are k intervals that contain the
query point, we can report them in time O(log2 n + k).

17.3 Interval and Segment Trees 707

Figure 17.4. A segment tree.

procedure SegmentTreeQuery (segment tree S, real c)
begin

Report all the intervals in I (Root (S));
if NotALeaf (S) then

if c Œ E (Root (LeftSubtree (S)))
then SegmentTreeQuery (LeftSubtree (S),c);
else SegmentTreeQuery (RightSubtree (S),c);

end;

Algorithm 17.3.2. The segment tree query algorithm.

Proof. See [BKOS97]. The key observation about the space requirement is that any
interval is stored in the interval list of at most two nodes per level and the height of
the tree is O(log2 n).

In this section we have described two data structures, the interval tree and the
segment tree, both of which speed up queries about which intervals from a set of inter-
vals contain a given point. The interval tree uses only linear storage and is therefore
better for simple queries. On the other hand, the segment tree is better when we have in
mind more complicated queries, such as testing for intersections with a given window.
The reason is that the interval tree will inspect O(log2 n) nodes in a query, but not all of
the intervals associated to those nodes will contain the query point. In a segment tree
search, our answer will consist of the union of each entire canonical subset of intervals
encountered at the nodes in our search. As an example of the advantage of the segment
tree we return to the non-axis-parallel segment intersection problem.

Problem 3. Which of a collection of segments in R2, not necessarily parallel to the
x-axis but not vertical, intersect a given vertical segment q = a ¥ [c,d]?

Consider the segment tree built from the x-coordinates of the segments. Alterna-
tively, we are talking about the segment tree built on the intervals on the x-axis that
are the orthogonal projection of the segments on that axis. We make one slight change
in that segment tree, in that we shall store the actual segments in the canonical
subsets, not their projections. Then when we encounter a node n of that tree in a
query for a, E(n) corresponds to a slab E(n) ¥ R in the two-dimensional problem and
so the tree gives us information about which slabs are crossed by our original seg-
ments. See Figure 17.5. Furthermore, a segment a intersecting the line x = a will inter-
sect our vertical query segment q if and only if the top endpoint of q lies above the
line L(a) determined by a and the bottom endpoint lies below it. To find these seg-
ments, we make another assumption, namely, we assume that the interiors of all of
our segments are disjoint. With that assumption, one can order the segments verti-

708 17 Computational Geometry Topics

procedure SegmentTreeInsertion (segment tree S, interval a)
begin

if E (S) Õ a
then Insert a into the set I (Root (S))
else

begin
if E (Root (LeftSubtree (S))) « a π f

then SegmentTreeInsertion (LeftSubtree (S), a);
if E (Root (RightSubtree (S))) « a π f

then SegmentTreeInsertion (RightSubtree (S), a);
end

end;

Algorithm 17.3.3. Segment tree insertion algorithm.

cally, that is, a segment b will be above a segment a if and only if both endpoints of
b lie above L(a). If both segments lie in the same line, it does not matter which is con-
sidered above which. For example, the segments in Figure 17.5 are listed in decreas-
ing vertical order. These observations lead to the following data structure for solving
Problem 3:

(1) Create a segment tree S for the intervals that are the projections of the seg-
ments on the x-axis, but store the actual segments in the canonical subsets
rather than their projections.

(2) Maintain the canonical subsets I(n) at a node n as a binary search tree based
on the vertical order of the segments.

To make a query with respect to the vertical segment q, we search the segment tree
S. For each node n we encounter we do what amounts to a one-dimensional range query
on the canonical subsets with respect to the interval [c,d]. This approach gives us.

17.3.5 Theorem. Let S be a set of n segments with disjoint interiors in the plane.
If k of these intersect a vertical segment, then they can be reported in time O(log2

2 n
+ k) using a data structure that uses O(nlog2 n) space and which can be built in time
O(nlog2 n).

Proof. See [BKOS97].

17.3.6 Corollary. Let S be a set of n segments with disjoint interiors in the plane.
If k of these intersect an axis-parallel rectangle, then they can be reported in time
O(log2

2 n + k) using a data structure that uses O(nlog2 n) space and which can be built
in time O(nlog2 n).

17.4 Box Intersections

As we have pointed out in the past, computing intersections is often a very expensive
operation and it would be better not to start such computations unless one was

17.4 Box Intersections 709

Figure 17.5. A slab.

reasonably certain that the objects in fact intersected. By associating bounding boxes
to objects, a quick test for whether two objects intersect is to check if their associated
bounding boxes intersect. Finding the intersection of two boxes is easy, but since
bounding boxes get used a lot in computer graphics, it is worthwhile to use some
especially efficient algorithms for doing this. This section describes such algorithms
using the results from Sections 17.2 and 17.3.

Interval Intersections. Assume that we are given a set I of n intervals. We want to
determine those that intersect a given interval [a,b]. This problem can be reduced to
two searches:

Step 1: Find those intervals which contain a.
Step 2: Find those intervals whose left endpoint belongs to [a,b].

For Step 1 we can use an interval tree. This approach would take O(n) space. It takes
O(nlog2 n) time to build the tree and O(log2 + k) time for each query that has k
answers. We could also use a segment tree but that takes more space, namely,
O(n log2 n). Step 2 is just a one-dimensional range query problem that can be solved
with a balanced binary search tree built from the left endpoints of the intervals in I.
It has the same space and time complexity as the interval tree for Step 1.

Rectangle Intersections. Assume that we are given a set R of n axis-parallel rec-
tangles in the plane. We want to determine those that intersect a given rectangle or
window [a,b] ¥ [c,d]. One approach to solving this problem is to use interval trees for
the segments that make up the boundary of the rectangles. The only rectangles that
will be missed are ones that either contain the window or are disjoint from it. One
can check for these rectangles separately in time O(n) by checking if the vertices are
either all inside or all outside the rectangle. It follows that the k intersecting rectan-
gles can be reported in time O(log2

2 n + k) using a data structure that uses O(nlog2 n)
space and which can be built in time O(nlog2 n). Segment trees could also be used at
the cost of somewhat higher storage requirement (O(nlog2

2 n)).

Box Intersections. Assume that we are given a set B of n axis-parallel boxes in R3.
We want to determine those that intersect a given box [a,b] ¥ [c,d] ¥ [e,f]. This problem
can also be solved by reducing it to a lower-dimensional problem. By considering the
rectangle faces of the boxes, we can think of it as three two-dimensional problems
with an extra dimension that is handled with a balanced binary search tree. This
would lead to a query complexity of O(log3

2 n + k). A slightly faster O(log2
2 n + k) algo-

rithm is obtained with a sweep algorithm. We sketch this approach next. For more
details see [Hoff89].

Box Intersections Based on Sweeping. We sweep a plane parallel to the x-y plane
in a positive direction along the z-axis. Every box intersection will then show up as a
rectangle intersection in one of these planes. See Figure 17.6. As one moves the sweep
plane at height z the only time anything changes with respect to one of the boxes [x1,
x2] ¥ [y1, y2] ¥ [z1, z2] is when one passes the top or bottom face of this box, that is,
z passes the values z1 and z2. Let R(z) denote the set of rectangles that are the inter-
sections of all the boxes with the sweep plane at level z. Thought of as rectangles in

710 17 Computational Geometry Topics

the plane, we need to find the intersection of the rectangles R(z) with the query rec-
tangle [a,b] ¥ [c,d]. Of course, we are only interested in zs in the interval [e,f]. For a
very large negative z the set R(z) will be empty. Then as z increases one needs to add
and delete rectangles from R(z). We sort the z-values of the bottom and top face of
all the boxes to rapidly find the z-values where R(z) changes and use interval trees for
the sets R(z).

The sweeping technique can also be used to find intersections of rectangles in the
plane.

17.5 Convex Set Problems

This section considers some related problems dealing with convex sets. We first
describe a simple algorithm for testing whether two convex linear polyhedra inter-
sect. We then apply this result to the well-known problem of determining the vertices
of a convex hull. The results are based on the fact that disjoint convex sets can be
separated by a hyperplane (see [Vale64] or [Rock70]) and that there is a straight-
forward algorithm for determining whether such a hyperplane exists or not.

Notation. Let p and n be a point and nonzero vector of Rn, respectively. Let H(p,n)
and iH(p,n) denote the halfplane and open halfplane, respectively, defined by

and

Let P(p,n) denote the hyperplane

Definition. Two subsets X and Y of Rn are said to be linearly separable if there is a
hyperplane P(p,n) so that X Õ H(p,-n) and Y Õ H(p,n). The hyperplane is said to sep-

P p n H p n H p n q n • p q, ,() = () « -() = -() ={ }, .0

iH p n q n • p q,() = -() >{ }0 .

H p n q n • p q,() = -() ≥{ }0

17.5 Convex Set Problems 711

Figure 17.6. Box intersections with sweeping.

arate X and Y. The sets are said to be strictly linearly separable if X Õ iH(p,-n) and
Y Õ iH(p,n) and the hyperplane is said to strictly separate X and Y in this case.

Spaces that are strictly linearly separable are clearly disjoint. Spaces that are lin-
early separable may not be, but their intersection will be contained in the boundary
of the spaces if they are both n-dimensional. For example, the squares [0,1] ¥ [0,1]
and [1,2] ¥ [0,1] are linearly separable (using the hyperplane P((1,0),(1,0))) even
though their intersection, the line segment 1 ¥ [0,1], is nonempty.

Definition. Let n Œ Rn. If p Œ Rn, then define the projection of p along n, n(p), by

If S Õ Rn, then the projection of S along n, n(S), is the subset of R defined by

Note that the projection of a convex set is an interval.
Some of the results that follow have a hypothesis that certain affine hulls are n-

dimensional (for example, the set S in Theorem 17.5.1). We do this only to keep the
statement of the results as simple as possible. If the hypothesis were not to hold we
basically have a lower-dimensional problem that could also be handled easily.

17.5.1 Theorem. Let p1,p2, . . . ,ps and q1,q2, . . . ,qt be points in Rn. Let X = p1p2
. . . ps and Y = q1q2 . . . qt. Assume that the affine hull of S = {p1,p2, . . . ,ps,q1,q2, . . . ,qt}
has dimension n. The following two statements are equivalent:

(1) The convex hulls X and Y are linearly separable.
(2) There are linearly independent points r1,r2, . . . ,rn in S so that if n is any

nonzero normal vector to the hyperplane that they generate, then the inter-
vals n(X) and n(Y) intersect in at most one point.

Proof. To show that (2) implies (1), assume that n(X) = [a,b] and n(Y) = [c,d] inter-
sect in at most one point for some vector n. Without loss of generality assume that b
£ c. Let p be a vertex of X so that n(p) = b. Clearly, P(p,n) is a separating plane for
X and Y.

It remains to show that (1) implies (2). This is the nontrivial part of the theorem.
We begin by looking at the special cases of where n is 1 or 2.

Case n = 1: The convex hulls X and Y in this case are just intervals [a,b] and
[c,d]. We need to show that if they are linearly separable by a hyperplane P(p,n) (a
point in this case) then n(X) = [ka,kb] and n(Y) = [kc,kd] are either disjoint or meet
in at most one point, where k = |n|. This is clear.

Case n = 2: This is the interesting case in that its proof will show what one wants
to do in general. Suppose that X and Y are linearly separable via a line L = P(p,n). Let
e = n(p). It is easy to see that n(X) Õ (-•,e] and n(Y) Õ [e,+•), so that n(X) and n(Y)
can have at most the endpoint e in common. If L contains two distinct vertices from X
and Y, then we are done. Otherwise, consider the case where L is disjoint from X and

n S n p p S() = () Œ{ }| .

n p n • p() = .

712 17 Computational Geometry Topics

Y. (It will be obvious from the discussion of this case how to deal with the other case
where L contains one vertex from X and Y.) See Figure 17.7. Consider the distances
from the vertices of X and Y to L. Assume without loss of generality that it is a vertex
r1 of X that is closest to L. Let L¢ be the line through r1 that is parallel to L. Clearly, L¢
linearly separates X and Y. If L¢ contains no vertex of X other than r1, then rotate L¢
about r1 through an angle q to a line L≤ that “bumps” into another vertex of X or Y other
than r1. We can let this vertex be r2. See Figure 17.7, where r2 belongs to X. For the
angle of rotation simply take the minimum of all the angles between L¢ and lines
through r1 and a vertex of X or Y. (To have well-defined angles orient the line L¢.)

The General Case. This case is handled similar to the case where n is 2. Instead
of lines we now have hyperplanes. If the separating hyperplane is disjoint from X and
Y, then we translate it to pass through a point of X. Finally, we rotate it about this
point, if necessary, until we have “bumped” into n linearly independent vertices of X
and Y.

The theorem is proved.

In the special case where Y is a point, we can strengthen the result in Theorem
17.5.1.

17.5.2 Theorem. Let p1,p2, . . . ,ps, and q be points in Rn. Assume that X = p1p2
. . . ps has dimension n. Then q is disjoint from X if and only if there is a subset
{r1,r2, . . . ,rn} of linearly independent points of {p1,p2, . . . ,ps} so that the hyperplane
H = aff({r1,r2, . . . ,rn}) strictly separates X and q.

Proof. Since the point q is clearly disjoint from X if the hyperplane H exists, we
only need to prove the converse. If q does not belong to X, we know that we can
strictly separate X and q by a hyperplane P(p,n). By translating P(p,n), if necessary,
we may assume like in the proof of Theorem 17.5.1 that p is a vertex of X. Consider
the (n - 1)-dimensional faces of X that contain p and let P(p,n1), P(p,n2), . . . ,
P(p,nm) be the hyperplanes determined by these faces, where the normals ni are

17.5 Convex Set Problems 713

Figure 17.7. Determining a separating plane.

chosen so that X Õ H(p,ni). We claim that one of the hyperplanes P(p,ni) must
strictly separate X and q. If this were not so, then q would lie in every one of the
halfplanes H(p,ni) and hence lie in their intersection. Since this intersection lies in
the halfplane H(p,n), which contains X, it would follow that q lies in H(p,n), which
is a contradiction. Therefore, without loss of generality suppose that P(p,n1) strictly
separates X and q. This hyperplane must clearly contain n linearly independent
points of {p1,p2, . . . ,ps}.

Definition. A point v is said to be a vertex or an extreme point of a convex set C if v
does not belong to the interior of any segment whose endpoints lie in C.

Finding the vertices of the convex hull of a finite set of points is the convex hull
vertex problem. Theorem 17.5.2 leads to a simple algorithm for finding the vertices
of a convex hull.

17.5.3 Corollary. Let p1,p2, . . . ,ps be points in Rn. Assume that X = p1p2 . . . ps has
dimension n. Let Y = p1p2 . . . ps-1. Then ps is a vertex of X if and only if either

(1) Y is (n - 1)-dimensional, or
(2) there is a subset {r1,r2, . . . ,rn} of linearly independent points of {p1,p2, . . . ,ps-1}

so that the hyperplane H = aff({r1,r2, . . . ,rn}) strictly separates Y and ps.

Proof. The corollary easily follows from Theorem 17.5.2 and the fact that if ps is
a vertex of X, then ps does not belong to Y and can be strictly separated from that
set.

Finally, it is easy to see that the proofs of the theorems above lead to an O(mn+1)
algorithm for determining whether the convex hulls of s and t points, respectively,
intersect, where m = s + t. We get an O(sn+1) algorithm for deciding if a point is a
vertex of the convex hull of s points.

17.6 Triangulating Polygons

Polygonal sets are very common. The simplest of these are simplices. By triangulat-
ing sets one can sometimes reduce problems to problems on simplices. A good case
in point is algebraic topology where triangulations can be used effectively to define
and compute homology groups. There are also many places in CAD/CAGD where tri-
angulations are useful. This section discusses triangulation algorithms for (planar)
polygons (without holes).

If a polygon P defined by vertices p1, p2, . . . , pk is convex, then a simple way to
triangulate it is to use triangles p1pipi+1, i = 2,3, . . . ,k. See Figure 17.8. Of course, a
real algorithm would have to be more careful if one wants nondegenerate triangles
because vertices might be collinear.

Now consider the general case, but before we get started, it is important that the
reader understand what we mean by a polygon because that term is often used very
loosely. A polygon (defined carefully in Section 6.3 in [AgoM05]) is a bounded closed
planar set whose boundary is a single closed polygonal curve and as such can be

714 17 Computational Geometry Topics

thought of as being defined by a sequence of vertices. Polygons have no holes and
they are not “self-intersecting.” Some texts, such as [BKOS97], call such polygons
simple polygons.

The approach to triangulating an arbitrary (simple) polygon will be to successively
add edges between two of its vertices.

Definition. A diagonal of a polygon P is a segment (1-simplex) uv between two dis-
tinct vertices u and v of P whose interior is contained in the interior of P.

In Figure 17.8 the segment p1p3 is a diagonal, but p1p2 is not. A segment between
two vertices that passes outside of the polygon, which could happen if it is not convex,
is not a diagonal.

17.6.1 Lemma. Every polygon P in R2 with n > 3 vertices has a diagonal.

Proof. Order the vertices of P by their x-coordinates and, of the left-most vertices,
let u be the one with the smallest y-coordinate. Let v and w be the two vertices of P
adjacent to u. See Figure 17.9. If vw is a diagonal, then we are done. Otherwise, let
S be the set of all vertices of P other than u, v, and w that lie in the triangle uvw.
Choose a vertex u¢ in S that is farthest from the line through v and w. We claim that
uu¢ is a diagonal. This is because if L is the line through u¢ that is parallel to vw, then
the halfplane H defined by L, which does not contain u is convex and must contain
all the points of S and any edges of P between these points.

17.6 Triangulating Polygons 715

Figure 17.8 Triangulating a convex polygon.

Figure 17.9. Finding a diagonal of a polygon.

17.6.2 Theorem. Every polygon can be triangulated. If the polygon has n vertices,
then each of its triangulations will have n - 2 triangles.

Proof. Let P be a polygon in R2 with n ≥ 3 vertices. We prove that P can be trian-
gulated by induction on n. If n = 3, then we have a triangle and there is nothing to
do. Assume that n > 3 and that the theorem is true for all m, 3 £ m < n. By Lemma
17.6.1 P has a diagonal. This diagonal will divide P into two polygons, each having
fewer than n vertices. These two polygons will have triangulations by the inductive
hypothesis and the union of these triangulations will define a triangulation of P.

Next, we show that any triangulation of P has n - 2 triangles. This is again proved
by induction on n. Pick any diagonal of P. Assume that it has vertices u and v and let
P1 and P2 be the two polygons into which it divides P. Suppose that Pi has ni vertices.
Clearly,

since the only vertices that P1 and P2 have in common are u and v. By induction, Pi
has ni - 2 triangles. Therefore, P has

triangles and we are done.

Theorem 17.6.2 leads to an O(n2) algorithm for a triangulation. Finding a diago-
nal with the argument in Lemma 17.6.1 takes O(n) steps because taking the left-most
vertex, checking if the segment between the two adjacent vertices is a diagonal, and
finding u¢ if not, takes at most O(n) steps. As we subdivide the polygon along the diag-
onal, the worst case is when one of the two polygons always ends up being a trian-
gle. Is this the best we can do? No, we can do better. We sketch the geometric idea
behind one improvement and refer the reader to [BKOS97] or [LeeP77] and [GJPT78]
for more details. We already pointed out that for convex polygons one needs only O(n)
steps. However, partitioning a polygon into convex pieces is itself a difficult problem
and so we need a weaker property than convexity.

Definition. A polygon P is said to be monotone with respect to line L if every line
L¢ that is orthogonal to L intersects P in a connected interval. We say that P is y-
monotone if it is monotone with respect to the y-axis.

See Figure 17.10 for a polygon P that is y-monotone and one, Q, that is not. Our
first task will be to divide a polygon into y-monotone pieces. We begin by classifying
the vertices of the polygon.

Let P be a polygon defined by the vertex sequence p1, p2, . . . , pk. To simplify the
notation define p0 = pk and pk+1 = p1. Assume that the vertices have been listed in a
counterclockwise order, that is, the polygon P lies to the “left” of an edge pipi+1. (The
normal ni with the property that (pipi+1,ni) induces the standard orientation points
into the polygon along the edge pipi+1.)

Definition. Define the interior angle qi at a vertex pi to be the signed angle between
the vectors pipi+1 and pipi-1. A vertex pi is called a turn vertex if it is one of the fol-
lowing type:

n n n n n n1 2 1 22 2 4 2 4 2-() + -() = +() - = +() - = -

n n n1 2 2+ = +

716 17 Computational Geometry Topics

start vertex: Its two adjacent vertices lie below it and the interior angle is less
than p.

end vertex: Its two adjacent vertices lie above it and the interior angle is less
than p.

split vertex: Its two adjacent vertices lie below it and the interior angle is larger
than p.

merge vertex: Its two adjacent vertices lie above it and the interior angle is larger
than p.

If a vertex is not a turn vertex it is called a regular vertex. Here a vertex p = (px,py) is
below another vertex q = (qx,qy) if py < qy or py = qy and px > qx. The vertex p is above
q if py > qy or py = qy and px < qx.

See Figure 17.11. Note that if the adjacent vertices of a vertex lie either above or
below it, then the interior angle cannot equal p. Now it is the split and merge vertices
that we want to eliminate because a polygon will be y-monotone if it has no such ver-
tices. To partition a polygon into y-monotone pieces we proceed as follows. We start
at a highest vertex and sweep a line downwards. When we hit a split vertex pi, then
we want to choose a diagonal that goes up from pi and split the polygon with it. This
will give us two polygons and we then work on them one at a time. If we hit a merge
vertex, then we choose a diagonal that goes down. Figure 17.12 shows what would
have happened to the polygon in Figure 17.11. Polygon P in Figure 17.12(a) would
split into polygons P1 and P2 shown in Figure 17.12(b) and finally polygon P2 would
split into polygons P3 and P4 shown in Figure 17.12(c). By choosing suitable data

17.6 Triangulating Polygons 717

Figure 17.10. Y-monotonicity of polygons.

Figure 17.11. Vertex types of a polygon.

structures such as a priority queue and balanced search trees to optimize the opera-
tions in the algorithm, one can prove the following.

17.6.3 Theorem. A polygon with n vertices can be partitioned into y-monotone
regions in O(nlogn) time using O(n) storage.

Proof. See [BKOS97].

The next step is to find an efficient algorithm for triangulating a y-monotone
polygon. The idea of such an algorithm is to walk down along the right and left part
of the boundary of the polygon starting from a highest vertex, adding diagonals as we
go along using a greedy type algorithm. Algorithm 17.6.1 sketches the main steps for
the case of a strictly y-monotone polygon.

Definition. A y-monotone polygon is said to be strictly y-monotone if it does not have
any horizontal edges.

At any rate, the complexity of Algorithm 17.6.1 is clearly linear in the number of
vertices of the polygon, so that we get.

17.6.4 Theorem. A strictly y-monotone polygon with n vertices can be triangulated
in O(n) time.

Proof. See [BKOS97].

Fortunately, although the y-monotone polygons obtained from Theorem 17.6.3
may not be strictly y-monotone, they are good enough so that Algorithm 17.6.1 works
on them also and so Theorems 17.6.3 and 17.6.4 lead to the following result:

17.6.5 Corollary. A polygon with n vertices can be triangulated in O(nlogn) time
using O(n) storage.

Corollary 17.6.5 is not the best that one can do. Chazelle ([Chaz91]) has shown
that one can triangulate polygons in linear time; however, the argument is rather com-
plicated. Other references for the (simple) polygon triangulation problem are
[Orou94] and [NarM95]. In some applications, such as finite element analysis, one is
not satisfied with just any triangulation. In particular, skinny triangles or triangles

718 17 Computational Geometry Topics

Figure 17.12. Finding y-monotone regions of a polygon.

with angles close to p are often undesirable and a lot of work has been done to get
more nicely shaped triangles in the end. As one example, we mention the paper
[BeMR94] that describes a way to get a triangulation so that no angle in the triangles
is larger than p/2. It starts by first packing the polygon with disks.

Finally, the triangulation algorithm we described above also applies to polygons
with holes and, more generally, for arbitrary planar subdivisions. For polygons with
holes see also the trapezoidation algorithm in Section 14.4 and [ZalC99].

17.6 Triangulating Polygons 719

Inputs: A strictly y-monotone polygon P specified by two chains of vertices
starting at the top vertex with one chain listing the vertices along the
right side of the polygon and the other listing the ones on the left

Outputs: A triangulation of P as an appropriately specified list of edges T

tagged vertex pi, p;
stack of tagged vertices S;
integer i;

Order the vertices of P by decreasing y-coordinate with vertices having the same
y-coordinate being ordered by increasing x-coordinate. Let p1, p2, º , pk be the
vertices listed in that order tagged by whether they are on the right or left side of P.

Initialize S to empty; Add all edges of P to T;
Push (p1,S); Push (p2,S);
for i:=3 to k-1 do

if pi and Top (S) lie on different sides of the polygon
then

begin
while |S| > 1 do

begin
p := Pop (S); Insert a diagonal from pi to p into T;

end
 Pop (S); Push (pi-1,S); Push (pi,S);

end
else

begin
p := Pop (S);
while diagonal from pi to Top (S) lies in P do

begin
p := Pop (S); Insert a diagonal from pi to p into T;

end;
Push (pi,S);

end;
Insert into T a diagonal from pk to all the vertices on S except the first and last;

Algorithm 17.6.1. The triangulation algorithm for y-monotone polygons.

17.7 Voronoi Diagrams

Voronoi diagrams are structures that get used in many places in geometric modeling
and computational geometry. This section will define them and summarize some of
their more important properties. Some good references for more information about
them are [Aure91], [BKOS97], [PreS85], and [Edel87].

The general problem that Voronoi diagrams address is:

For each point p in a given a set S of points of a space X, find all the points of X that are
closest to p.

We make this more precise. We shall only consider Voronoi diagrams for the plane,
that is, the case X = R2. This is the case that one encounters most often. At the end
of the section we shall make some comments about other cases.

Definition. Let p, q Œ R2, p π q. Define the halfplane h(p,q) by

It is easy to show that h(p,q) actually is a halfplane. See Figure 17.13. In fact, it
is the halfplane containing p determined by the perpendicular bisector of the segment
[p,q], that is,

This fact follows easily from the identity

Now let S be a finite set of points in R2. The elements of S will be called sites.

Definition. The Voronoi cell of a point p in S, denoted by V(p), is defined by

V hp p,q
q S p

() = ()
Œ -{ }

.I

pq r
p q pr rq

• .-
+Ê

Ë
ˆ
¯ =

-
2 2

2 2

h p q r R pq r
p q

, • .() = Œ -
+Ê

Ë
ˆ
¯ £ÏÌÓ

¸̋
˛

2

2
0

h p q r R pr rq, .() = Œ £{ }2

720 17 Computational Geometry Topics

Figure 17.13. A halfplane h(p,q).

Figure 17.14 shows a Voronoi diagram for six sites. Here are a few basic facts
about the sets V(p):

17.7.1 Proposition. Let S be a finite set of n points in the plane.

(1) Each V(p) is a nonempty convex set because it is an intersection of (convex)
halfplanes that contain p. It has a nonempty interior because it contains a small neigh-
borhood about p consisting of points that belong to no other Voronoi cell.

(2) The boundary of each V(p) is the union of at most n - 1 segments or halflines,
called the edges of V(p). (We assume that an edge is a maximal linear subset of the
boundary, that is, the lines determined by the edges are distinct, or, alternatively, no
two edges lie in the intersection of the same pair of Voronoi cells.) The boundary has
at most n - 1 vertices, where a vertex is the intersection of two edges.

(3) Each point in the interior of an edge of a V(p) is equidistant to precisely two
sites. Each vertex is equidistant to at least three sites.

(4) If p π q, then V(p) « V(q) is either empty or consists of a single edge.
(5) Every point of the plane belongs to at least one Voronoi cell V(p).

Proof. Easy. See [Aure91] or [BKOS97].

Definition. The Voronoi diagram of the set S, denoted by Vor(S), is the set of Voronoi
cells V(p), p Œ S, together with their edges and vertices.

Proposition 17.7.1(4) and (5) imply that Vor(S) defines a kind of partition of the
plane. The only reason that we cannot call it a cell complex is that it contains
unbounded sets that are homeomorphic to half-open disks. (Cell complexes are defined
in Section 7.2.4 in [AgoM05]. Their cells must be homeomorphic to closed disks.)

Definition. Given a point p, let CS(p) denote the largest circle centered at p that con-
tains no site of S in its interior.

17.7.2 Proposition. Let S be a finite set of n points in the plane.

(1) Vor(S) contains precisely n “2-cells.”
(2) The Voronoi diagram contains no vertices if and only if all sites are collinear.

17.7 Voronoi Diagrams 721

Figure 17.14. A Voronoi diagram.

(3) A point v is a vertex of Vor(S) if and only if CS(v) passes through at least three
sites in S. See Figure 17.15.

(4) Two Voronoi cells V(p) and V(q) determine an edge of Vor(S) if and only if
there is a point r so that CS(r) contains p and q in its boundary but no other site. See
Figure 17.15.

(5) If no four points of S lie on a circle, then every vertex of Vor(S) belongs to
precisely three edges of Vor(S).

(6) Vor(S) contains at most 3n - 6 edges and at most 2n - 5 vertices.

Proof. See [BKOS97]. (3) and (4) characterize the vertices and edges of Vor(S).

Next, we consider the question of how to compute the Voronoi diagram for n sites
efficiently. Because the problem of sorting n numbers can be reduced to computing a
Voronoi diagram, one should not expect any algorithm to be faster than O(nlogn).
Fortune’s algorithm ([Fort87]) is an algorithm that achieves this best complexity.

17.7.3 Theorem. The Voronoi diagram of a set of n points in the plane can be
computed in time O(nlogn) using O(n) space.

Proof. See [BKOS97].

Voronoi diagrams can be generalized to higher dimensions. It has been shown
that Voronoi diagrams for n sites in Rm can be computed in O(nlogn + nÈm/2˘) optimal
time. The important special case of Voronoi diagrams for three-dimensional linear
polyhedra has been studied extensively. A recent algorithm and implementation is
described in [EtzR99]. It separates the problem into two parts. First, a symbolic rep-
resentation called the Voronoi graph is computed and then the geometric part, namely,
the actual vertices and edges.

17.8 Delaunay Triangulations

Closely related to Voronoi diagrams are Delaunay triangulations. Again we shall
restrict ourselves to subsets of the plane.

722 17 Computational Geometry Topics

Figure 17.15. Characterizing vertices and edges of a
Voronoi diagram.

Definition. Let S be a finite set of points (sites) in the plane. The Delaunay graph
of S is the graph with vertex set S and whose edges are defined by the condition that
two vertices are connected by an edge if and only if the Voronoi cells associated
to those vertices share a common edge. The Delaunay cell complex of S is the two-
dimensional cell complex defined by the condition that its vertices and edges are the
vertices and edges of the Delaunay graph of S. The 2-cells are called the faces of the
Delaunay cell complex. By subdividing the faces of the Delaunay cell complex into tri-
angles, if they are not that already, one obtains a two-dimensional simplicial complex
called a Delaunay triangulation of S.

Figure 17.16 shows the Delaunay cell complex associated to the Voronoi diagram
in Figure 17.14. As we can see, it is in fact a Delaunay triangulation. Figure 17.17
shows a Delaunay cell complex defined by the four sites marked by circles. It consists
of a single face that is a quadrilateral and not a triangle. It admits two Delaunay
triangulations. Now, the fact that we always do get a real cell complex needs some
justification, which is provided by the properties of the Delaunay graph listed in the
following theorem.

17.8.1 Theorem. The Delaunay graph for a set S satisfies the following properties:

(1) The Delaunay graph G is the “dual graph” of the Voronoi diagram D in the
sense that a Voronoi cell in D becomes a vertex in G, an edge e in D defines an edge
in G between the two vertices in G that correspond to the Voronoi cells that have e
in common, and a vertex v in D defines the (triangular) region bounded by edges of
G which connect the Voronoi cells that have v in common. (Compare this to the
barycentric subdivision of a simplicial complex.)

17.8 Delaunay Triangulations 723

Figure 17.16. A Delaunay triangulation.

Figure 17.17. A nontriangular face of a Delaunay cell complex.

(2) An edge is orthogonal to the edge the Voronoi cells share but does not neces-
sarily intersect that edge.

(3) A Delaunay graph of a planar set is a planar graph.
(4) If no four points of S lie on a circle, then each face of the Delaunay cell

complex is a triangle.
(5) Three points of S are vertices of the same face of the Delaunay cell complex

if and only if the circle defined by them contains no point of S in its interior.
(6) Two points of S define an edge in the Delaunay graph if and only if there is a

closed disk that contains those points in its boundary and which contains no other
points of S.

(7) A Delaunay triangulation contains at most 3n - 6 edges and 2n - 4 faces.

Proof. See [Aure91] or [BKOS97]. Parts (5), (6), and (7) follow from Theorem
17.7.2(3), (4), and (6).

Definition. Let S be a finite set of points in R2. A triangulation of S is a simplicial
complex K whose vertex set is S and whose underlying space is the convex hull of S.

17.8.2 Theorem. Let S be a finite set of points in the plane and let K be a trian-
gulation of S. Then K is the Delaunay triangulation of S if and only if the circle cir-
cumscribing any triangle in K does not contain any point of S in its interior.

Proof. The theorem is an easy consequence of Theorem 17.8.1(5) and (6).

One of the important uses of Delaunay triangulations is to find a triangulation
of the convex hull of a set of points with the property that the triangles have as good
a shape as possible. For example, long thin triangles are undesirable in many
applications.

Definition. Let S be a finite set of points in the plane and let K be a triangulation
of S. If K has m triangles and if we order the 3m angles qi of these triangles in increas-
ing order so that qi £ qj if i < j, then the vector (q1,q2, . . . ,q3m) is called an angle vector
of K. The triangulation K is called angle-optimal for S if (q1,q2, . . . ,q3m) ≥ (t1,t2, . . . ,
t3m) for all angle vectors (t1,t2, . . . ,t3m) of triangulations of S.

17.8.3 Theorem. Let S be a finite set of points in the plane.

(1) Any angle-optimal triangulation of S is a Delaunay triangulation of S.
(2) Any Delaunay triangulation of S maximizes the minimal angle of the trian-

gles in any triangulation of S. If no four points of S lie on a circle, then the Delaunay
triangulation of S is angle-optimal.

Proof. See [BKOS97].

The property in Theorem 17.8.3(2) can be expressed in another way. Note that
there are two ways that a quadrilateral can be triangulated because we can choose
either of the two diagonals. Given a triangulation, consider quadrilaterals that consist
of two adjacent triangles in that triangulation. A Delaunay triangulation has the

724 17 Computational Geometry Topics

property that, for all such quadrilaterals, the minimum of the six angles in the two
triangles that triangulate it will not increase if one switches to the other triangulation
and replaces the diagonal that is the common edge by the other diagonal. Although
Delaunay triangulations maximize the minimal angle of triangles, it is easy to give
examples that it does not minimize the maximal angle.

17.8.4 Theorem. Using a Voronoi diagram a Delaunay triangulation can be com-
puted in O(n) time after a precomputation time of the Voronoi diagram of O(nlogn).

Proof. See [Aure91] or [BKOS97].

Rather than computing a Delaunay triangulation from a Voronoi diagram, which
involves computing and storing the vertices of that diagram, there are algorithms that
compute it directly. The three main approaches are divide-and-conquer ([GuiS85] and
[Dwye87]), sweepline ([Fort87]), and incremental ([GreS77], [ClaS89], [BDST92],
[FanP93], [BoiT93], [Lisc94], [BKOS97], [Devi98]). According to tests described in
[SuDr95] and [Shew96] the divide-and-conquer algorithms seem to be the fastest with
the sweepline algorithms the next fastest and the incremental algorithms the slowest,
although the simplest. An algorithm based on the divide-and-conquer approach that
also extends to higher dimensions can be found in [CiMS98].

Finally, if one wants to generalize to higher dimensions, one can build on what is
known for Voronoi diagrams in that case or again try to deal with the problem directly.
For a survey of this topic see [Aure91]. A specific implementation for a Delaunay tri-
angulation for three dimensions can be found in [FanP95].

17.8 Delaunay Triangulations 725

18.2 Basic Definitions

Definition. Let I(R) denote the set of closed intervals in R.

By identifying the real number a with the interval [a,a] we shall consider R
as a subset of I(R). Throughout this chapter we shall use capital letters to denote
intervals.

Definition. If A = [a,b] Œ I(R), then define

Next, here are the basic arithmetic operators of addition, subtraction, multipli-
cation, and division on intervals.

Definition. Let * Œ {+, -, ◊, /}. Let A, B Œ I(R). Define

In the case of /, we shall always assume that 0 does not belong to B. At times we shall
abbreviate the product A ◊B to AB.

18.2.1 Lemma. If A = [a,b] and B = [c,d], then the following holds:

(1) A + B = [a + c,b + d]
(2) A ◊B = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)]
(3) A - B = [a - d,b - c] = A + [-1,-1] ◊B
(4) A / B = [min(a/c,a/d,b/c,b/d), max(a/c,a/d,b/c,b/d)]

= [a,b] ◊ [1/d,1/c]

Proof. This is an easy exercise.

18.2.2 Examples. [-1,3] + [2,5] = [1,8]
[-1,3] - [2,5] = [-6,1]
[-1,3] ◊ [2,5] = [-5,15]
[-1,3] / [2,5] = [-1/2,3/2]

The next lemma summarizes some basic facts that, among other things, show that
the operations on I(R) act very much like they do on the reals R. The main fact that
keeps (I(R), +, ◊) from being a ring is that is does not have additive inverses.

18.2.3 Lemma. Let A, B, C, D Œ I(R). Then

(1) (Commutativity) A + B = B + A and A ◊B = B ◊A.
(2) (Associativity) (A + B) + C = A + (B + C) and (A ◊B) ◊C = A ◊ (B ◊C).
(3) (Identity) The intervals [0,0] and [1,1] are the unique additive and multi-

plicative identities, respectively. More precisely,

A B a b a A and b B* *= Œ Œ{ }

lb A a and ub A b() = () =, .

18.2 Basic Definitions 727

728 18 Interval Analysis

(4) I(R) has no zero divisors.
(5) The only elements [a,b] in I(R) that have an additive or multiplicative inverse

are those for which a = b. However, we do have

(6) A ◊ (B + C) + A ◊B + A ◊C (subdistributivity)
a ◊ (B + C) = a ◊B + a ◊C, a Œ R
A ◊ (B + C) = A ◊B + A ◊C if bc ≥ 0 for all b Œ B and c Œ C

(7) If A Õ C and B Õ D, then A*B Õ C*D, for * Œ {+, -, ◊, /}. This is often expressed
by saying that the standard interval arithmetic operators are inclusion isotone or inclu-
sion monotonic.

Proof. This is fairly straightforward. See [AleH83].

18.2.4 Example. The distributive law fails:

Property (7) in Lemma 18.2.3 is particularly important. In the context of compu-
tations, it tells us that as new errors creep into computations we can keep control of
them.

It is possible to define a metric on I(R).

Definition. Define

by

18.2.5 Lemma. The function d defines a metric on I(R).

Proof. This is easy to show directly, but actually it is the well-known Hausdorff
metric.

18.2.6 Example. d([-1,3],[2,5]) = max(|-1 - 2|,|3 - 5|) = 3.

18.2.7 Theorem.

(1) (I(R), d) is a complete metric space.
(2) The operations of addition, subtraction, multiplication, and division defined

on I(R) are continuous.

d a b c d a c b d, , , max , .[] []() = - -()

d I I: R R R() ¥ () Æ

1 2 11 1 1 0 0 1 2 11 1 2 1 1 11, , , , , , , , , .[] ◊ () + - -()[] = [] [] ◊ [] + [] ◊ - -[] = -[]but

0 1Œ - Œ Œ ()A A and A A Ifor all A R .

A X A A X

A Y A A Y

= + = + () = []
= ◊ = ◊ () = []

for all X in I if and only if X

for all Y in I if and only if Y

R

R

0 0

11

, .

, .

Proof. Easy.

Recall that every continuous function assumes its minimum and maximum value
on a closed interval, so that the next definition is well-defined.

Definition. Let f :R Æ R be a continuous function. The function

defined by

is called the induced function.

18.2.8 Theorem. The induced function of a continuous function is a continuous
function on I(R).

Proof. This is easy to prove from the definitions.

With this notation of induced maps we shall free to write expressions such as

Furthermore, from Theorem 18.2.8 all of these are continuous.

18.2.9 Example. If f(x) = 2x + 3, then fI([a,b]) = [2a + 3,2b + 3].

18.2.10 Example. If f(x) = x2, then

Definition. Define the absolute value of an interval A = [a,b] in I(R), denoted
by |A|, by

18.2.11 Example. |[-1,3]| = 3.

18.2.12 Lemma. Let A, B, C Œ I(R) and x Œ R. The absolute value function for
intervals has the following properties:

(1) |A| ≥ 0 and |A| = 0 if and only if A = [0,0].
(2) If A Õ B, then |A| £ |B|.
(3) |A + B| £ |A| + |B|.

A d A a b x x A= []() = () = Œ{ }, , max , max .0 0

f a b a b if a

b a if b

a b otherwise

I , , , ,

, , ,

,max , , .

[]() = [] ≥

= [] £

= ()[]

2 2

2 2

2 2

0

0

0

A e A A etck A, ,ln ,sin , .

f A f a f a for A II
a A a A

() = () () Œ ()
Œ Œ

[min , max], ,R

f I II : R R() Æ ()

18.2 Basic Definitions 729

(4) |xA| = |x||A|.
(5) |AB| = |A||B|.
(6) d(A,B) = |A - B|.
(7) d(xA,xB) = |x| d(A,B).
(8) d(AB,AC) £ |A| d(B,C).

Proof. Straightforward.

Definition. Let A = [a,b] Œ I(R). Define the width of the interval A, w(A), and the
midpoint of A, mid(A), by

and

18.2.13 Lemma. Let A, B Œ I(R).

(1) w(A) =

(2) If A Õ B, then w(A) £ w(B).
(3) w(A ± B) = w(A) + w(B).

Proof. Easy.

We generalize to Rn.

Definition. I(Rn) = I(R)n.

The elements of I(Rn) are products of intervals in R and clearly have the form

where ai £ bi. The elements of I(Rn) will be called intervals of Rn. We extend the
standard interval operations +, -, ◊, and / to the intervals of Rn in a coordinate-wise
manner.

Definition. If X Õ Rn, then

Definition. Let A = A1 ¥ A2 ¥ . . . ¥ An be an interval in Rn. Define the width of A,
w(A), and the midpoint of A, mid(A), by

and

Define the absolute value of A, |A|, by

mid A mid A mid A mid An() = () () ()()1 2, , . . . , .

w A w A w A w An() = () () ()()max , , . . . ,1 2

I A I AnX R X() = Œ () Õ{ }.

a b a b a bn n1 1 2 2, , . . . , ,[] ¥ [] ¥ ¥ []

max .
,x y A

x y
Œ

-

mid A a b() = +() 2.w A b a() = -

730 18 Interval Analysis

18.3 Inclusion Functions 731

Define

by

18.2.14 Lemma. The map d is a metric and (I(Rn),d) is a complete metric space.
The maps

are continuous functions with respect to that topology.

Proof. Easy.

In the future we shall assume that I(Rn) is a topological space with the topology
derived from the metric d. It is just the product topology defined from the topology
of I(R). Therefore, it makes sense to talk about topological notions such as conver-
gence. Also, we note that the properties we stated earlier for intervals in R have
obvious generalizations and hold for intervals in Rn. We shall not repeat them here.

Here is one last operation on intervals. It defines the smallest interval that
contains two intervals.

Definition. If A = [a,b] and B = [c,d] are two intervals in R, define

If A = A1 ¥ A2 ¥ . . . ¥ An and B = B1 ¥ B2 ¥ . . . ¥ Bn are intervals in Rn, define

18.3 Inclusion Functions

It is convenient to generalize the notion of an induced function.

Definition. Let X Õ Rm and f :X Æ Rn. An inclusion function for f is a function

with the property that for all A Œ I(X),

f F A for all x Ax() Œ () Œ, .

F I I n: X R() Æ ()

A B A B A B A Bn n⁄ = ⁄() ¥ ⁄() ¥ ¥ ⁄()1 1 2 2

A B a c b d⁄ = () ()[]min , , max , .

w I and mid In n n: :R R R R() Æ () Æ

d A B A B, .() = -

d I In n: R R R() ¥ () Æ

A A A An= ()max , , . . . , .1 2

The inclusion function F is called isotonic or inclusion monotonic if

It is said to be convergent if for each sequence of intervals A1, A2, . . . , in I(X)

Since induced functions are continuous by Theorem 18.2.8, they are certainly con-
vergent, because this only requires continuity at 0. An arbitrary inclusion function
may not be convergent however.

Inclusion functions allow us leeway in specifying accuracy. The induced functions
clearly have the tightest possible bounds. For that reason they are also often called
ideal functions. It is often interesting to know how far an inclusion function deviates
from the ideal one.

Definition. Using the notation of the previous definition, define the excess width of
the inclusion function F at A Œ I(Rn) to be

The inclusion function F is said to be of order k if

for all A Œ I(Rn).

Clearly, the higher the order is for an inclusion function for a function f, the tighter
it matches f.

Definition. Let X Õ Rm and f :X Æ Rn. We shall say that f satisfies a Lipschitz con-
dition if there exists an inclusion function F for f and a constant c > 0 so that

Let X Õ Rm and f, g :X Æ Rn. Let F and G be inclusion functions for f and g,
respectively. Let * Œ {+, -, ◊, /}. It is easy to show that F*G defined by

(18.1)

is an inclusion function for f*g. Although theoretically correct, this may not actually be
true on an actual computer because of round-off errors. It can be made to work on com-
puters that support the IEEE floating point standard though by using special rounding
modes called “round-to--•” and “round-to-+•.” See [Snyd92] for more details.

At any rate, equation (18.1) means that once we have inclusion functions on some
primitive functions we can compute inclusion functions for a great many other
functions either by applying arithmetic operators directly or by using recursion. We

F G A F A G A* *()() = () ()

w F A c w A I()() £ () Œ (), .for all A X

w F A w f A O w AI
k()() - ()() = ()()

w F A w f AI()() - ()().

lim lim .
i

i
i

iw A implies that w F A
Æ• Æ•

() = ()() =0 0

A B F BÕ () Õ ()implies that F A .

732 18 Interval Analysis

shall call an inclusion function obtained in this way from a function f the generic inclu-
sion function for f. In particular, we can get inclusion functions for all polynomial
functions in this way. For example, since the identity function on R has the identity
on I(R) as its inclusion function, the generic inclusion function F for a polynomial

is defined by

As a special case, the generic inclusion function F for f(x) = x2 is defined by

(18.2)

On the other hand, this formula gives us

when a > 0. Comparing this answer to what we would get in the case of the ideal func-
tion fI (see Example 18.2.10), we see that the inclusion function F for f is not as tight
as the ideal function. This shows that generic inclusion functions have their down-
side. It is usually better to do some things by hand using special properties of the
function. In particular, it helps to find the intervals on which the function is mono-
tone and use that information to define the inclusion functions over those intervals
separately.

So far we have dealt with vector-valued functions, but there is another important
class of functions, namely, Boolean functions. These can be included in interval analy-
sis by treating these functions as having range the set {0,1}, where 0 represents false
and 1 represents true. With this interpretation it is easy to associate natural inclusion
functions to the standard relational operators. For example, let

and let F and G be inclusion functions for f and g, respectively. Here is how we define
the inclusion function H for a relational operator

between f and g. Let A Œ I(Rn) and assume that F(A) = [a,b] and G(A) = [c,d].

The “less than” operator h(x) = (f(x) < g(x)) : Define

The “equality” operator h(x) = (f(x) = g(x)) : Define

H A if d a

if b c

otherwise

() = [] £
= [] <
= []

0 0

11

0 1

, , ,

, , ,

, , .

h n: ,R Æ { }0 1

f g n, : R RÆ

F a a a a-[] = -[](), , .2 2

F a b a b a b, , , .[]() = [] ◊ []

F a b c c a b c a bn
n

, , . . . , .[]() = + [] + + []0 1

f x c c x c xn
n() = + + +0 1 . . .

18.3 Inclusion Functions 733

734 18 Interval Analysis

Note that in the special case h(x) = (f(x) = 0), where we are simply testing for zeros
of f, then

We can also define Boolean operators between relational expressions. For
example, if

are relational expressions with inclusion functions R1 and R2, respectively, then an
inclusion function B for the logical and operator

is

for all A Œ I(Rn).
If one is going to use interval analysis, then all relevant theorems and their proofs

need to be reformulated in that context. As an example of this, we consider one impor-
tant theorem from calculus.

18.3.1 Theorem. (The Mean Value Theorem in Interval Analysis) Let f :Rm Æ Rn

be a differentiable function. Let Hij be an inclusion function for ∂fi/∂xj and H the
inclusion function for the Jacobian matrix defined by

Then there exists an inclusion function F for f satisfying

for all A Œ I(Rm) and x Œ A.

Proof. The theorem follows from basic facts about the Taylor expansion for f and
its error bounds.

F A F H A A() = []() + () -()x x x, ,

H Hij= ().

B A if R A R A

if R A R A

otherwise

() = [] () = []() () = []()
= [] () = []() () = []()
= []

0 0 0 0 0 0

1 1 1 1 1 1

0 1

1 2

1 2

, , , , ,

, , , , ,

, , ,

or

and

b b r rn: , , ,R x x and xÆ { } () = () ()0 1 1 2

r r n
1 2 0 1, : ,R Æ { }

H A a b but a b() = [] Œ[] [] π []0 1 0 0 0, , , , , .if and only if

H A if d a or b c

if a b c d

otherwise

() = [] < <
= [] = = =
= []

0 0

11

0 1

, , ,

, , ,

, , .

Definition. The function F in Theorem 18.3.1 is called a mean value form for the
function f.

[Snyd92] proves that if a function satisfies a Lipschitz condition, then its mean
value form is of order 2, which means that it matches the function very well as the
width of intervals decreases. On the other hand, this is not the case for large inter-
vals and suggests that one should use different inclusion functions depending on the
size of the intervals. The point of the mean value theorem is to get a (linear) approx-
imation to a function. Therefore, use it for small intervals, but on large intervals use
a more direct inclusion function for f (one obtained perhaps by formulas such as
(18.1)). One important way to get good inclusion functions that are close to being
ideal functions is to make use of the regions over which they are monotone. This is
what gave us an answer in Example 18.2.10.

18.4 Constraint Solutions

This section presents the first of three interval analysis algorithms described in
[Snyd92], which have applications to a number of important problems in geometric
modeling.

Constraints on a set of points in Rn can usually be translated into a function

with the property that

An inclusion function F for f will take on values [0,0], [1,1], or [0,1].

Definition. An element A Œ I(Rn) will be called an infeasible, feasible, or
indeterminate region for F if F(A) = [0,0], F(A) = [0,0], or F(A) = [0,1], respectively.

No points satisfy the constraints in an infeasible region, all points satisfy them in
a feasible region, and points may or may not satisfy the constraints in an indetermi-
nate region.

In applications it is also useful to have an additional function

called a set constraint function, which tells us whether to accept an indeterminate
region as a solution. Actually, we shall use an inclusion function H for h, called a
solution acceptance set constraint function. We have the following interpretation:

H A subdivide A

H A subdivide A

H A accept

() = []
() = []
() = []

0 0

0 1

11

, : ,

, : ,

, : A as a solution.

h I n: , ,R() Æ { }0 1

f ifx x() = 1, the point satisfies the constraints,

= 0, otherwise.

f n: R RÆ

18.4 Constraint Solutions 735

736 18 Interval Analysis

The case H(A) = [0,0] is usually best handled with the function F, because for isotone
functions no intervals B Õ A would ever be accepted. On the other hand, there are
functions, like w(A) < d, which are not isotone.

Algorithm 18.4.1 is a generic solution to the constraint solution problem. Variants
of the algorithm are useful in certain cases.

18.4.1 Theorem. If Algorithm 18.4.1 does not find a solution, then there is not one.
Also, the constraint solution algorithm converges to the actual solution if inclusion
functions in the equality and inequality constraint are convergent.

Proof. See [Snyd92].

Some issues addressed in [Snyd92] regarding the use of Algorithm 18.4.1 are

interval list function ConstraintSolution (inclusion function F, inclusion function H,
interval A)

{ F is the inclusion function for a constraint function f. H is the inclusion function
 for an solution acceptance set constraint function. }

begin
interval list S; { the solutions }
interval list L;
interval B, B1, B2;

S := f;
L := (A);
while not (Empty (L)) do

begin
B := AnyElementOf (L);
case F (B) of

[1,1] : Insert (B,S);
[0,0] : ; { Discard B }
[0,1] : if H (B) = [1,1]

then Insert (B,S)
else

begin
 Subdivide (B,B1,B2); { Subdivides the interval B }

Insert (B1,B2,L);
end

end
end;

return S;
end;

Algorithm 18.4.1. The constraint solution algorithm.

18.4 Constraint Solutions 737

(1) Since the algorithm needs to terminate, how do we handle indeterminate regions?
(2) How should we divide intervals?
(3) Some problem have a finite set of points as their solution. Our algorithm pro-

duces a collection of intervals. How can we group these intervals so that each
union of these groups contain a unique point from the solution?

The problem of indeterminacy is that indeterminate regions may contain a solu-
tion or they may not. Sometimes one way to handle this problem is to replace equal-
ity constraints with inequality constraints. For example, rather than checking for
collisions of objects, we could check if they get sufficiently close. Another approach
that works if we know that there are single solutions is to use a solution acceptance
set constraint based on the size of regions. We quit if they get small enough.

A typical approach to subdividing intervals is to divide along each individual coor-
dinate in a cyclic fashion. This means that we divide an interval in Rn by bisecting
the x1-axis interval in one iteration, then the x2-axis interval in the next iteration, and
so on. After we have subdivided the xn-axis interval, we start back with the x1-axis
interval again. Other methods can be used however.

The solution to Algorithm 18.4.1 is a collection S of intervals. It is often useful to
group these together into lists that make up the connected components of the solu-
tion set. The function Components in Algorithm 18.4.2 does that and also converts
the components into intervals, the list of which we then return. We are assuming that

interval list function Components (interval list S)
begin

interval list C;

Initialize C to empty;
for each A in S do C := Merge (A,C);
return C;

end;

interval list Merge (interval A, interval list C)
begin

for each B in C do
if (B « A) π f then

begin
A := A ⁄ B;
Delete (B,C);

end;
Insert (A,C);
return C;

end;

Algorithm 18.4.2. Merging intervals into components.

738 18 Interval Analysis

the components are sufficiently separated. The dashed rectangles in Figure 18.1 are
some sample rectangles returned by the algorithm.

Finally, [Snyd92] points out that interval Newton methods can be exploited to
improve the bounds on the set of solutions to the constraint problem. Furthermore,
such methods provide very robust methods for solving for zeros of sets of equations.

18.5 An Application: Implicit Curve Approximations

The goal of this section is to clarify Algorithm 18.4.1 by applying it to a concrete
problem. Before describing the general implicit curve algorithm we work through an
example.

18.5.1 Example. Let

The problem is to find an approximation to the part of the implicit curve in the plane
defined by

that lies in the unit square A = [0,1] ¥ [0,1]. See Figure 18.2(a).

Solution. The generic inclusion function F for f is

As solution acceptance set constraint function we choose

Figures 18.2(b)–(e) show several iterations of Algorithm 18.4.1. The shaded rectangles
are the rectangles that the algorithm generates and which are subdivided in the next
iteration. For example, as we move from Figure 18.2(d) to Figure 18.2(e) we lose
rectangle [1/2,3/4] ¥ [3/4,1] because the rectangle

F 1 2 3 4 3 4 1 3 16 7 16, , ,[] ¥ []() = []

H B w B d for B I() = () <() Œ () >, .R2 0and some fixed d

F a b c d c d a b c b d a, , , , , .[] ¥ []() = [] - [] = - -[]2 2 2

f x y,() = 0

f x y y x, .() = - 2

Figure 18.1. Component intervals.

18.5 An Application: Implicit Curve Approximations 739

does not contain 0. Note also how the rectangles got divided. In the first iteration
shown in Figure 18.2(b) we subdivided in the x-direction. In the next iteration in
Figure 18.2(c) we subdivided in the y-direction, and so on.

When Algorithm 18.4.1 stops we will have the list S of rectangles of width less
than d, which cover the curve we are after. (In the general algorithm, the rectangles
of S are called the “proximate intervals”). Next, we will approximate the curve in each
rectangle A of S and then piece these local solutions together to get complete answer.
Two facts that we use here are, first, that the curve intersects A in a set that is the
graph of a function, in this case a function of x and, second, that it intersects the
boundary of A in a finite set of points. To find the latter intersection points we run
Algorithm 18.4.1 again to find the intersection of the curve with each edge of the rec-
tangles. This amounts to many runs of Algorithm 18.4.1 with two constraints. One is

and the other is of the form

Each run will give us a set of one-dimensional solution intervals. For example, doing
this for rectangle [1/4,1/2] ¥ [0,1/4] in Figure 18.2(e) we would get two vertical inter-
vals around the points p and q. In our case the pieces of curve that we generate in
each rectangle will be straight line segments. These are then scanned to connect them
together correctly. This finishes the example.

The general implicit curve approximation algorithm, Algorithm 18.5.1, comes
from [Snyd92]. We assume that the implicit curve is a one-dimensional manifold
without boundary. The consequence of the no boundary part that we use is that the
curve has no endpoints in the interior of any interval. Step 1 has already been

x constant or y constant.= =

f x y,() = 0

Figure 18.2. Generating the proximate intervals.

740 18 Interval Analysis

explained in Example 18.5.1. The intervals one gets are called the proximate intervals.
For Step 2, recall that, given an equation of the form f(x,y) = 0, the implicit function
theorem (Theorem 4.4.7 in [AgoM05]) asserts conditions under which one can solve
for one variable in terms of the other in the neighborhood of a solution. Being able

The Implicit Curve Approximation Algorithm:

 Assume given a curve C in the plane defined by f (x,y) = 0, where f : R2 Æ R.
We assume further that

(1) C is a
(2) C meets vertical or horizontal lines transversally, that is, the intersection consists

of a finite set of points, possibly empty. Actually, this can be weakened and need
only hold for the boundary segments of the proximate intervals in Step 1 below.

Inputs: An interval A that contains the part of the curve C we are after.
 An inclusion function F for f defined on intervals in I(A).
 An approximation acceptance inclusion function H defined on I(A) which
 specifies whether an interval is small enough so that the part of the curve
 it contains can be classified appropriately topologically.

Output: A linked list of polygonal curves that approximate C on A.

Step 1: Use Algorithm 18.4.1 to compute the list of intervals in I(A) which satisfy H
and cover the curve.

Step 2: Check each proximate interval for global paramet rizability. Any interval that
does not satisfy this property is subdivided further until it does.

Step 3: Use Algorithm 18.4.1 again to find the intersection of C with the boundaries of
all the proximate intervals.

Step 4: Ensure that the intersection intervals we get from Step 3 are disjoint in the global
paramet rization coordinate.

Step 5: Determine the connection of the boundary intersections in each proximate interval.
An interval B does not contain any or just one intersection points can be
discarded. If B contains more than one intersection point, sort them in the global
paramet rization coordinate. For each successive pair of intersections in this
order use Algorithm 18.4.1 to see if the curve C intersects the line that is the
perpendicular bisector of the segment connecting the two points. If it does, then
the two intersections are connected in a list. In the end, each proximate interval
will have a list of point lists associated to it that correspond to the components
of the intersection of the curve with that interval.

Step 6: Find the set of disjoint polygonal curve pieces that correspond to the different
components of C on A. Make sure that the points of all these curves are ordered
in a globally consistent manner.

one-dimensional manifold without boundary.

e

e

which that

e

Algorithm 18.5.1. The implicit curve approximation algorithm.

18.5 An Application: Implicit Curve Approximations 741

to do so essentially means that the set defined by the equation can be represented as
the graph of a function locally. [Snyd92] defines a curve to be globally parameterizable
in the ith coordinate in a proximate interval if no two distinct points of the curve in
the interval have the same ith coordinate. See Figure 18.3. He gives an interval version
of the implicit function to be used for testing for that condition. He also describes a
heuristic test for this condition that avoids expensive computations with Jacobians.
In Example 18.5.1 we have global parameterizability in the y-coordinate because

We also have it in the x-coordinate, but because

vanishes when x is 0, we do not get this fact entirely from the implicit function
theorem. The way that this condition gets used in Algorithm 18.5.1 is that when it
holds, only adjacent pairs of points are connected by curve segments after the points
of intersection of the curve with the boundary of a proximate interval are ordered by
the ith coordinate. For Step 3 we need assumption (2) in the algorithm. By tagging
edges appropriately we can arrange it so that a computation is done only once for
each edge (not once for each of the two adjacent intervals, or four in the case of a
corner). See Figure 18.4. The disjointness of the intervals achieved in Step 4 is needed
to sort them. We need this ordering in Step 5.

Finally, [Snyd92] describes ways to relax the assumptions needed for Algorithm
18.5.1, namely, the assumption that the curve is nonsingular, that it have no endpoints
in the interior of proximate intervals, and that it is transverse to boundaries of
intervals.

∂
∂
f
x

x= -2

∂
∂
f
y

= π1 0.

Figure 18.3. Parameterizability in x.

742 18 Interval Analysis

18.6 Constrained Minimizations

[Snyd92] also describes a constrained minimization algorithm. Here we are given
functions

and we seek the minimum of f on the set defined by the equation g(x) = 0. We again
choose inclusion functions F and G for f and g, respectively, and a solution accept-
ance set constraint H. Algorithm 18.6.1 describes the constrained minimization algo-
rithm. The idea behind the algorithm is to progressively refine a least upper bound u
of the function f. As we look at different intervals B, they affect u in the following
way:

(1) If we know a feasible point p in B, then we can use f(p) as a new upper bound
for a global minimum for f. In particular, if B is a feasible region, then any
point in B will do.

(2) If we only know that B has a feasible point but do not actually know one, then
ub(F(B)) will serve as the new upper bound for a global minimum for f.

(3) If B is indeterminate so that we are unable to determine whether it contains
a feasible point, then u cannot be updated.

Algorithm 18.6.1 has some of the same problems that Algorithm 18.4.1 has, but
the following can be proved

18.6.1 Theorem. Let Bi(k) be the ith interval on the priority queue Q in Algorithm
18.6.1 after the kth iteration of the while loop in the algorithm and let lk = lb(F(B1(k))).
Assume that the set of feasible points for G is nonempty and let m be the minimum
of f on that set. If the inclusion functions F and G are isotone, then the numbers lk
converge to m as k goes to infinity.

Proof. See [Snyd92].

f g n, : R RÆ

Figure 18.4. Boundary intersection sharing.

18.6 Constrained Minimizations 743

interval list function ConstrainedMinimization (inclusion function G, inclusion function H,
inclusion function F, interval A)

{ G is the inclusion function for a constraint function g. H is the inclusion function
 for an solution acceptance set constraint function.
 F is the inclusion function for the function f we want to minimize. }

begin
interval list S; { the solutions }
interval priority queue Q;
real u; { upper bound }
interval B, B1, B2;
integer i;
point p;

S := f;
Q := CreateQueue (A);
u := +•;
while not (Empty (Q)) do

begin
B := DeQueue (Q);
if H (B) = [1,1]

then Insert (B,S);
else

begin
 Subdivide (B,B1,B2); { Subdivides the interval B }

for i:=1 to 2 do
if (G (Bi) π [0,0]) and (lb (F (Bi)) £ u) then

begin
EnQueue (Bi,Q); { based on lb (F (Bi)) }
if HasIdentifiableFeasablePt (Bi,p)

then u := min (u , f (p))
else if HasUnIdentifiableFeasablePt (Bi)

then u := min (u , ub (F (Bi)));
end

end
end;

return S;
end;

Algorithm 18.6.1. The constrained minimization algorithm.

18.7 Conclusions

Interval analysis has many advantages. It can be implemented on a computer in hard-
ware or software. The software only has to ensure that any rounding that takes place
goes outward from the interior of an interval. It can produce robust algorithms. In
fact, it has lead to new results that are not just extensions of the corresponding real
number result. A good example of this is the iterative Newton-Raphson method for
finding the zeros of a function f. If F is an inclusion function for f, then the interval
analysis Newton-Raphson method takes the form

This form is shown in [Moor66] to produce much better results than the usual
Newton-Raphson method.

Some disadvantages of interval analysis are:

(1) Interval arithmetic computations are slower than floating point operations,
roughly by a factor of three, although there are problems that are solved faster
when implemented using interval arithmetic.

(2) There are no additive or multiplicative inverses for intervals.
(3) We do not have a strict distributive law of multiplication over addition, only

subdistributivity (see Lemma 18.2.3(6)). One consequence of this is that gen-
eric inclusion functions do not give as tight a bound as would be desirable.

18.8 EXERCISES

Prove any or all of the unproved facts in Section 18.2.

A mid A
F A

F mid An n
n

n
+ = () -

()
¢ ()()1 .

744 18 Interval Analysis

the region of interest into a mesh of small subregions, but how these subregions are
used is quite different from difference methods. Furthermore, for the finite difference
method the mesh is defined by orthogonal rows and columns, whereas the finite
element method allows much more general meshes.

The mathematical foundations of the FEM actually date back to variational
methods introduced in the early 1900s. One can think of the FEM as modern
applications of the Ritz variational and the Galerkin weighted residual methods in
numerical analysis. The overall basic idea is that one subdivides problem domains
into small parts called (finite) elements with associated simple solutions. These ele-
ments are then assembled by means of interconnections at boundary points called
nodes. The collection of elements and nodes is called a finite element mesh. The simple
solutions corresponding to the elements are functions of unknown values at the nodes.
Let us expand on this a bit.

Suppose that we have a one-dimensional problem defined by a differential equa-
tion whose solution is a function f(x) defined over some interval [a,b]. See Figure
19.1(a). With the FEM what we do is subdivide the interval into subintervals [xi-1,xi],
where a = x0 < x1 < . . . < xn-1 < xn = b. Over each interval we define an approximation
to the solution to our problem. The positions xi are the nodes and we assume that
the relevant information about f is known at those points. We are free to choose our
approximations to f(x) over each subinterval (the elements). Typically, we would use
some sort of polynomial approximation. For example, if we choose linear approxi-
mations, then all we need to know are the values fi = f(xi) to define the elements (Figure
19.1(b)). From those we can define the polygonal approximation to f(x) correspon-
ding to the elements shown in Figure 19.1(c). Assembling the local solutions gives the
global approximation shown in Figure 19.1(d). On the other hand, we might want to
get a smoother approximation and try to use higher-degree polynomials. Of course,
the higher the degree of the polynomial, the more computationally expensive the solu-
tion is. In higher-dimensional problems even cubic polynomial can already get very

746 19 The Finite Element Method

Figure 19.1. Linear one-dimensional elements and nodes.

expensive. Suppose that one wanted to use quadratic polynomials. The values at the
endpoints of intervals would be insufficient to completely specify the polynomial since
it has three degrees of freedom. What one would do is introduce an extra node on the
interior of intervals. Figure 19.2 shows how a function is approximated by two quad-
ratic elements, each of which is defined by three nodes. For a cubic one would use
two extra interior nodes. As an aside, recall that a cubic is completely specified on an
interval if one knows the values and derivatives at the endpoints. It might therefore
occur to the reader that this would avoid the introduction of interior nodes. However,
having to find the value a derivative would be expensive computationally. In any case
what we have is a global solution (actually an approximation), which, being a collec-
tion of local solutions – the elements, depends on a finite set of unknowns, namely,
some to be specified data at the nodes. As we shall see, the local solutions will actu-
ally be indexed by the nodes, not the elements. To summarize, the key element to
getting solutions using the approach just described is having a ready collection of
interpolating splines on hand to serve as basis functions for each element. These basis
functions are called the local shape functions.

Higher-dimensional problems are handled in a similar fashion. For example, in
the two-dimensional case one is trying to approximate a function defined by a differ-
ential equation over a region A in the plane. This region could be arbitrary and does
not need to be rectangular. One has to subdivide the region by means of a mesh of
nodes. Typical shapes for the elements are quadrilaterals or triangles. Over each of
these regions with their associated nodes one defines approximations, which are
typically low-degree polynomials (splines). One ends up with a global approximation
that depends on a finite number of unknowns coming from values at the nodes. Again,
the choice of basis function for each element is up to the user. Figure 19.3(a) shows
a linear triangular element. Figure 19.3(b) shows a four-point interpolating surface
for a quadrilateral element (see Section 12.6, equation (12.17)).

19.3 The Mathematics Behind FEM

This section gives a brief overview of the mathematics behind the FEM. As we men-
tioned earlier, there are basically two approaches.

19.3 The Mathematics Behind FEM 747

Figure 19.2. Quadratic one-dimensional elements and nodes.

The Variational Method. Here one tries to get a solution to the differential equa-
tion by translating it into a minimization problem for an energy function F that is a
linear functional defined on a function space W. One has a problem of the form

(19.1)

In general, the functions v correspond to continuously changing quantities such as
displacements of elastic bodies, temperature, etc., and F is an energy function asso-
ciated to the problem. The space W is usually infinite dimensional and so one replaces
it with a finite dimensional approximation Wc generated by some “simple” functions.
The original problem (19.1) then becomes

(19.2)

The choice of space Wc is influenced by such factors as the particular formulation of
the variational problem, the desired accuracy of the solution, the regularity of the
exact solution, etc. It often consists of piecewise polynomial functions. The problem
in (19.2) then basically becomes one of solving a large system of linear or nonlinear
equations.

One issue here is whether the new solution uc in (19.2) is an adequate approxi-
mation to the actual solution u in (19.1). (Actually, there is also the mathematical
problem as to whether the variational problem (19.1) in fact has a solution in W,
because not all do since the space may not be closed. In our case, we are only inter-
ested in approximations and can choose a closed set Wc.)

The basic steps in the FEM using the variational approach are:

(1) Translate the problem involving the differential equation into a variational one.
(2) Discretize using the FEM. This amount to specifying the space Wc.
(3) Solve the discrete problem.

Doing (1) may involve defining an artificial functional for the problem. Solving the
variational problem may require less continuity than that of the actual solution. See
[MitW78].

Find a function uc so that F uc for all functions vŒ £ Œ() ()W Wc F v c.

Find a function u so that F u for all functions vŒ £ Œ() ()W WF v .

748 19 The Finite Element Method

Figure 19.3. Two-dimensional elements.

The Galerkin Method. In this method we start with an approximation g(x) to a
solution f(x), where g(x) is a linear combination of functions gi(x) which are indexed
by the nodes:

(19.3)

The gi(x) are typically B-spline type functions that are piecewise polynomials and
vanish everywhere except on the elements adjacent to the ith node. They are called
the global shape functions. Let

(19.4)

be the error function, also called the residual. It depends both on x and the unknowns
ai. The method of weighted residuals then tries to solve for the ai by solving

(19.5)

where D is the domain of the problem and the w(x) are one or more suitable “weight-
ing” functions. If one applies the boundary conditions of the problem one gets a
system of linear equations in the ai that is then solved to get the solution (19.3). The
Galerkin method uses the n global shape functions as weighting functions, that is,
wi(x) = gi(x). Requiring (19.5) to hold for these functions then gives n equation in the
n unknown ai.

Many of the problems to which the FEM is applied are a case of finding approx-
imations to functions u that

(1) solve equations of the form

where A is a linear differential operator satisfying boundary conditions, and

(2) minimize some linear functional of the form

where <,> is an inner product of two functions.

19.4 An Example

We shall work through a fairly standard example that is an application of the FEM
using the Galerkin method. Even though our one-dimensional example will be very
simple, it nevertheless shows how the FEM works and more complicated examples
do not involve anything different.

Our example is a one-dimensional heat conduction problem. See Figure 19.4.
What we have is a rod of constant cross section and length L. We assume a given heat

F u Au u u f() = () < > - < >1 2 , , ,

Au f= ,

w x R x a() () =Ú , .
D

0

R x a f x g x, .() = () - ()

g x a g x a g x a g xn n() = () + () + + ()1 1 2 2

19.4 An Example 749

flux q0 at one end, a constant temperature at the other, and no heat loss in between.
An example of this is an insulated wire. We wish to determine the temperature T(x)
along the rod. The well-known differential equation that describes this situation is

(19.6)

(19.7)

(19.8)

where K is the material’s thermal conductivity, Q is the heat generation in the rod per
unit volume, and

is the heat flux. We shall assume that K and Q are constant. For reasons we shall see
shortly, equation (19.6), along with the boundary conditions (19.7) and (19.8), is called
the strong form of the one-dimensional heat flow equation. It is easy to show that the
exact solution to this equation is

(19.9)

In general of course, one would not have an exact solution, so that having the solu-
tion (19.9) is not important. However, one is always interested in the accuracy of
approximations and so it is worthwhile comparing the solution we get using the FEM
to the one in (19.9).

Applying the Galerkin weighted residual method to (19.6) we get

(19.10)

The only problem now is the high degree of differentiability that using (19.10) would
require of any approximation. For example, dividing the domain [0, L] into elements
and looking for a solution of the form (19.3) with linear approximations over each

w x K
d T

dx
Q dx

L
() - -

Ê
ËÁ

ˆ
¯̃

=Ú0
2

2
0.

T x T
q
K

L x
Q
K

L xL() = + -() + -()0 2 2

2
.

q x K
dT
dx

() = -

T T for x LL= = ,

- = =K
dT
dx

q for x and0 0,

- = < <K
d T

dx
Q for x L

2

2
0 ,

750 19 The Finite Element Method

Figure 19.4. Heat conduction along a rod.

element would not work since the function would not be differentiable at the nodes
and have zero second derivative on the interior of the elements. To get around this
problem we need to reformulate (19.10). One can show, using integration by parts,
that (19.10) is equivalent to

(19.11)

The advantage with (19.11) is that only the first derivative is involved. Equation (19.11)
is called the weak form of the one-dimensional heat flow equation. The term “weak” is
used because there is less of a differentiability requirement. Using linear approxima-
tions no longer causes a problem.

The next step is to decide how many elements we want to create. Suppose that
we use two. We also have to decide on basis functions. We shall use linear functions,
in fact, the linear B-splines or hat functions discussed in Section 11.5. See Figure
19.5(a). For an arbitrary interval [a,b], any linear functions h(x) can be expressed as
linear combinations of the two functions

namely,

See Figure 19.5(b). The functions ba(x) and bb(x) are the local (linear) shape function
basis for the interval [a,b]. Using functions like this we associate a global shape func-

h x h a b x h b b xa b() = () () + () ().

b x
x a
b a

and b x
x a
b a

b xa b a() = -
-
-

() =
-
-

= - ()1 1 ,

K
dw
dx

dT
dx

dx w x Qdx Kw x
dT
dx

L L
L

0 0 0
0Ú Ú- () - ()È

ÎÍ
˘
˚̇

= .

19.4 An Example 751

Figure 19.5. Local and global shape functions.

tion Ni(x) to the node xi. These functions are defined on all of R. Their graphs
are shown in Figures 19.5(c)–(e). The functions Ni(x) should have the following
properties:

(1) They are defined in terms of basis functions for the elements.
(2) Ni(x) is nonzero at the ith node but vanishes at all the other nodes. More pre-

cisely, we want

(3) Ni(x) vanishes on all elements other than the ones adjacent to the ith node.

If we had decided to use a higher degree approximation, then the only thing that
would change is the local shape function basis.

Our approximation to T(x) now has the form

(19.12)

and we solve for the Ti by substituting H(x) for T(x) and Ni(x) for w(x) into equation
(19.11). One will get three equations. Each integration will have to be broken up into
two parts, one for each element, since there is no one formula for the Ni(x) over whole
interval [0, L]. We get

(19.13)

Knowing the functions Ni(x), and hence also their derivatives, we can perform the
integration in (19.13). Finally, using facts about where the Ni(x) vanish and initial
conditions (19.7) and (19.8), the equations (19.13) simplify to

(19.14)

Note that the variable T3 does not appear since we know its value, which is TL. The
value of the heat flux at x = L is

(19.15)

Although we have omitted some details, which can be found in [PepH92], the steps
outlined above show the general thrust of the FEM. To summarize, our approximate
solution to (19.11) is the function H(x) in (19.12). The only unknowns in the formula

- () = - -() +K
dT
dx

L
K
L

T T T
QL

L6
16 2 14

62 1 .

K
L

T

T

QL q K
L

TL6
14 16

16 32 6
1

4 0 6
2

16
1

2

0-
-

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯ + Ê

Ë
ˆ
¯ +

-Ê
Ë

ˆ
¯.

K
dN
dx

dN

dx
T N Q dx N K

dT
dx

K
dN
dx

dN

dx
T N Q dx N K

dT
dx

i

i j

j
j i

L
i

L

i j

j
j i

L

L
i

L

L

=

=

ÂÚ

ÂÚ

Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

+ -Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

+

Ê
ËÁ

ˆ
¯̃

-
Ê
ËÁ

ˆ
¯̃

+ -Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

= =

1

3

0

2

0

2

1

3

2 2
0, 1 2 3, , .

H x T N x T N x T N x() = () + () + ()1 1 2 2 3 3 ,

N xi j ij() = d .

752 19 The Finite Element Method

for H(x) were the Ti and we found those by solving a system of linear equations (19.14),
which is straightforward.

Two-dimensional applications of the FEM proceed in essentially the same way.
The main difference is that the differential equations get more complicated. Figure
19.6 shows some linear two-dimensional local shape functions for triangular and
quadrilateral elements. Again, these functions, whether they are linear or not, have
the property that they vanish at all nodes except one.

19.5 Summary

We end with some general comments. The FEM is important because most real-world
problems are too complex to be solved in closed form. It is a very successful method
for solving nonlinear differential and integral equations numerically. The approxima-
tions are based on local shape functions, typically polynomials, for elements whose
solutions are specified by data at their nodes. This involves a choice of local shape
functions and a mesh. The accuracy of the solutions is measured with respect to some
suitable choice of definition for the distance between functions. Common distance
functions are based on the Lp norms || ||1, || ||2, and || ||• (see Section 21.4 for a defi-
nition). Although these are usually not easy to compute, one can find approximations
to them. Rectangular or triangular meshes are common and one often uses adaptive
meshes that change in size and are not uniform over the entire region of interest.
Getting good meshes is very important because numeric accuracy suffers otherwise,
for example, if triangles are skinny and have very large or small angles. So-called
multi-grid methods have provided some of the fastest solutions.

The basic steps in the FEM approach are:

(1) Find the equations that govern the physical phenomenon.
(2) Replace these equations with their “weak” formulation.
(3) Subdivide the domain into appropriate elements and decide on the basis func-

tions to use for each element.
(4) Combine the individual element solutions into a global solution according to

the Galerkin approximation to obtain global matrix equations.
(5) Solve these matrix equations using the given boundary conditions.

19.5 Summary 753

Figure 19.6. Local triangle and quadrilateral shape functions.

Johnson ([John87]) lists the following advantages of FEM over finite difference
methods:

(1) The FEM handles complicated geometry and boundary conditions better. It
avoids artificial complications, is clearer, and is easier to program.

(2) The FEM is more reliable and it is easier to analyze its accuracy.

One practical difficulty that is often encountered by anyone wanting to use the
FEM is finding the geometric model and physical constraints to which the analysis is
applied. The original geometry usually needs to be simplified. Automating the process
of producing sufficiently accurate analysis models, rather than relying on experts,
would be highly desirable. We leave the reader with one reference, [Arms94], for this
topic.

754 19 The Finite Element Method

Question 1. For which k does Rk admit a multiplicative structure?

Note that the cross-product in R3 gives R3 a multiplicative structure, but it has
zero divisors and there is no multiplicative identity and hence it makes no sense to
talk about multiplicative inverses. Therefore let us strengthen our question.

Question 2. For which k does Rk admit a multiplicative structure that is a divi-
sion algebra over R?

It turns out that there is a very precise answer to this.

20.2.1 Theorem. A bilinear map

without zero divisors exists if and only if n = 1, 2, 4, or 8. (We do not require asso-
ciativity or a unit element here. If associativity is required, then n must be 1, 2, or 4.)

Proof. A proof of the fact that a division algebra over R has rank 2k can be found in
[Shaf94]. The hard part of the theorem, namely, the only if part, is proved in [BotM58].
The product for the real numbers, the complex numbers, the quaternions, and the
octonions or Cayley numbers establishes the existence of the desired bilinear map for
n = 1, 2, 4, and 8, respectively. The quaternions will be described in this chapter. We do
not have time to describe the nonassociative algebra of Cayley numbers in this book,
but the reader can find a definition in [Stee51] and a very extensive discussion of its
properties and connections with other areas of mathematics in [Baez02]. There is an
interesting discussion of the exceptional nature of some numbers in [Stil98].

The result of Theorem 20.2.1 is related to the question of how many linearly inde-
pendent vector fields there are on Sn-1 (see Section 8.5 in [AgoM05]), but the latter
question is much harder however.

These introductory comments lead us to the subject of this chapter, quaternions,
and the fact that R4 is a division algebra over the reals. The simplest way to show that
is to write down the formula that defines the product of two 4-vectors.

Notation. The symbols 1, i, j, and k will denote the standard basis (1,0,0,0), (0,1,0,0),
(0,0,1,0), (0,0,0,1) of R4, respectively.

Definition. The (bilinear) product

with unit 1 defined by the equations

(20.1a)

(20.1b)

is called the quaternion product on R4.

ij k ji jk i kj ki j ik= = - = = - = = -, , and

i j k 12 2 2= = = - ,

R R R

a,b ab

4 4 4¥ Æ
() Æ

R R Rn n n¥ Æ

756 20 Quaternions

Note. In this chapter ab denotes the quaternion product and not the segment from
a to b as it does in the other parts of the book.

20.2.1 Proposition. Equations (20.1) in the definition of the quaternion product
on R4 define a well-defined associative product.

Proof. Exercise 20.2.1.

Note that the product is not commutative since, for example, ij = -ji. Also, the
identity i2 = j2 shows that a2 = b2 does not imply that a = ±b. Condition (20.1b) could
have been replaced by the single condition

and the assumption that we have an associative operation.

Definition. The vector space R4 together with the quaternion product is called the
quaternion algebra over R and is denoted by H.

For reasons which will become clearer as we go along, it is convenient to identify
the subspace of H generated by 1 with R and the subspace of H generated by i, j, and
k with R3. In other words, we shall feel free to use expressions of the form

to represent the quaternion

With this identification we have expressed H as a direct sum of R and R3. By
identifying

and

we shall consider both the reals and the complex numbers as being subsets of H, that
is, we have natural inclusions

Definition. Elements of H in the subspace generated by i, j, and k are called pure
quaternions. Let q be a quaternion and express q in the form r + v, where r Œ R and
v Œ R3. The number r is called the real part of q and the vector v is called the pure
part of q. To extract these parts, we define functions

re pu, : H HÆ

R C HÃ Ã .

a b with a b+ +i 1 i

r with r1

r v v v1 i j k+ + +1 2 3 .

r where r and v v v+ Œ = () Œv R v R, , , ,1 2 3
3

ijk = -1

20.2 Basic Facts 757

by

The direct sum decomposition of a quaternion into a real and pure part is the
analog of the real and imaginary parts of a complex number. Next, we introduce a
few standard definitions associated with quaternions and list some simple facts in
Propositions 20.2.2–20.2.6. The proofs are left as exercises. They are trivial and simply
involve expressing quaternions in terms of i, j, and k and then computing the appro-
priate expressions using the relevant definitions.

20.2.2 Proposition. A quaternion is real if and only if it commutes with every
quaternion.

Proof. Exercise 20.2.2.

Definition. If q = r + ai + bj + ck is a quaternion, then the conjugate of q, , is defined
by

The map ¯: H Æ H, which sends q to , is called the conjugation map of H. (Note that
this map restricts to the usual conjugation map of the complex numbers.)

20.2.3 Proposition. Let a,b Œ H and r Œ R. The conjugation map of H has the fol-
lowing properties:

(1)
(2)
(3)
(4)
(5) a Œ R if and only if = a.
(6) a Œ R3 if and only if = -a.
(7) re (a) = (a +)/2
(8) pu (a) = (a -)/2
(9) If • is the dot product in R4, then a•b = re (b). In particular, a•a = a.

Proof. This is straightforward and left as Exercise 20.2.3.

It follows from Proposition 20.2.3 (9) that a is a nonnegative real. Note that the
conjugate commutes with a, that is, a = a .

Definition. The norm or absolute value of a quaternion a, |a|, is defined by

It is easy to check that

(20.2a)r v v v r v v v+ + + = + + +1 2 3
2 2

1
2

2
2

3
2i j k

a aa= .

aaa
a

aa
a
a

a
a

ab ba=
a a=
r ra a=
a b a b+ = +

q

q q q i j k= () - () = - - -re pu r a b c .

q

re r and puq q v() = () = .

758 20 Quaternions

and

(20.2b)

By equation (20.2a) the norm of a quaternion is just the standard length when it is
thought of as a vector in R4, and

20.2.4 Proposition. Let a,b Œ H.

(1) |a| = | |.
(2) |ab| = |a| |b|.
(3) If a π 0, then a-1 exists and a-1 = |a|-2 . Furthermore, |a-1| = |a|-1.

Proof. Exercise 20.2.4.

Definition. A quaternion a is said to be a unit quaternion if |a| = 1.

20.2.5 Proposition. The set of unit quaternions is just the unit sphere S3 in R4. It
is a subgroup of H.

Proof. Exercise 20.2.5.

Definition. Let a and b be pure quaternions. The vector product a ¥ b of a and b is
defined by

Since we have identified pure quaternions with R3, we can think of the function
¥ as defining a product on R3. The next proposition justifies the notation since a ¥ b
agrees with the usual cross product. One way to look at this is to treat the new defi-
nition basically as an alternate algebraic definition for the cross product.

20.2.6 Proposition. Let a and b be pure quaternions.

(1) The map ¥: R3 ¥ R3 Æ R3 that sends (a,b) to a ¥ b is bilinear.
(2) ab = -a•b + a ¥ b
(3) a ¥ b = -(b ¥ a)
(4) a ¥ a = a•(a ¥ b) = b•(a ¥ b) = 0
(5) In terms of our identification of pure quaternions with R3, a ¥ b is just the

ordinary cross product of R3.

Proof. This is again a straightforward computation that is left as Exercise 20.2.6.

Proposition 20.2.6 (2) leads to an alternate definition in closed form of the quater-
nionic product where one uses only basic vector operations:

20.2.7 Corollary. If a = r + v and b = s + w are two quaternions, where r,s Œ R and
v,w Œ R3, then

ab v w w v v w= - ∑ + + + ¥()rs r s .

a b ab¥ = ()pu .

a

a

v v v v v v1 2 3
2

1
2

2
2

3
2i j k+ + = - + +().

20.2 Basic Facts 759

20.3 Quaternions as Transformations

The previous section discussed the basic properties of quaternions. Now we come
to the most important aspect of quaternions from the point of view of geometric
modeling, namely, their close relationship to rotations in 3-space.

20.3.1 Proposition. If q is a nonreal unit quaternion, then q can be represented
uniquely in the form

(20.3)

where 0 £ q £ p and n is a unit quaternion with n2 = -1.

Proof. Let q = r + v, r Œ R, v Œ R3. Since q has unit norm, -1 £ r £ 1 and so there
is a unique q in the stated range with cosq = r. It follows from equation (20.2a) that

or

But sinq ≥ 0 for 0 £ q £ p, so that |v| = sinq. Since q is not real, v π 0 and sinq π 0.
Let

Finally, equation (20.2b) implies that n2 = -1.

20.3.2 Corollary. Any quaternion q can be represented uniquely in the form

(20.4)

where 0 £ q £ p and n is a unit quaternion with n2 = -1.

Proof. This is obvious because r is just |q|.

The representation (20.4) should remind us of the polar form representation of
complex numbers.

Definition. The right hand side of equation (20.4) is called the polar form represen-
tation of the quaternion q.

20.3.3 Example. To find the polar form of the quaternion q = 1 + i + j + k.

Solution. Since |q| = 2 and cosq = 1/2 implies that q = p/3, we get that

q n= +()r cos sin ,q q

n v=
1

sin
.

q

v
2 2 21= - =r sin .q

1 2 2= = +q vr ,

q n= +cos sin ,q q

760 20 Quaternions

is the polar form of q.

We see that the polar form (20.4) of a quaternion is nothing startling but a useful
rewrite that associates an angle with a quaternion. However, there are other similar-
ities with the complex numbers. In fact, if we denote a quaternion q by the purely
formal exponential notation

(20.5)

where r, q Œ R and the pure quaternion n with n2 = -1 is defined by the polar form
(20.4) for q, then

20.3.4 Proposition.

(1) (reqn)(sehn) = rs e(q+h)n

(2) The inverse of eqn is e-qn.
(3) The De Moivre Theorem holds, that is,

Proof. This is straightforward and left as Exercise 20.3.1.

Finally, from the polar form (20.4) we also see that the complex numbers can be
imbedded in H in many ways, namely, we can use the imbedding

20.3.5 Proposition. Let q be any nonzero quaternion and z any pure quaternion.

(1) q z q-1 is a pure quaternion.
(2) The map

defined by

is an isometry of R3. In fact, it is a rotation through an angle 2q about the oriented
line L through the origin with direction vector n, where

is the polar form of q.

q q n= +()cos sinq q

sq z q z q() = -1

sq R R: 3 3Æ

C H

i n

Æ
+ Æ +a b a b

cos sin cos sin .q q q q+() = + ()n n
m

m m

q n= r eq

q n n i j k= +Ê
ËÁ

ˆ
¯̃ = + +()2

1
2

3
2

2

3
, ,where

20.3 Quaternions as Transformations 761

(3) Let sq(z) = z Mq, where Mq is the 3 ¥ 3 matrix that represents the linear trans-
formation sq. If

then

Proof. To prove (1), note that

by Proposition 20.2.4(3). Repeated use of (7), (4), and (3) in Proposition 20.2.3 shows
that

and (1) is proved.
The first part of (2) follows from the fact that

Next, observe that there is no loss in generality if we assume that q is a unit quater-
nion because the map sq stays the same if we replace q by any nonzero real multiple
of q. Therefore, let

where q and n are as described in Proposition 20.3.1.

Claim. sq fixes every point on the line L.

To prove the Claim, observe that

since n2 = -1. This clearly proves the Claim.
To prove the rest of (2), let

n i j k= + +n n ni 2 3 ,

s q q q q

q q q q q q
q q

q n n n n

n n n n

n n

n

() = +() -()

= - + -
= -()
=

cos sin cos sin

cos cos sin sin cos sin

cos sin

,

2 2 2 2 3

2 2 2

q n= +cos sin ,q q

s sq qz z q z z q q z z q z z1 2 1 2
1

1 2
1

1 2() - () = -() = - =- - .

re q z q
qzq qzq q z z q() =

+
=

+()
=

2 2
0,

q z q
q q

q z q- =
∑

1 1

M

b c rc ab ac rb

ab rc c a ra bc

rb ac bc ra a b
q =

- - + -
- - - +
+ - - -

Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

2 2

2 2

2 2

.

q i j k q= + + + =r a b c and 1,

762 20 Quaternions

and define

Clearly, n is orthogonal to u. We have

(20.6)

But by Proposition 20.2.6(2)

and

Therefore,

(20.7)

We also have

(20.8)

(the last equality is Exercise 20.2.7). If we substitute equations (20.7) and (20.8) into
equation (20.6), we get

(20.9)

Since u, n ¥ u, and n are an orthonormal basis for R3 and equation (20.9) is just the
equation of a rotation in the plane through the origin with basis u and n ¥ u, sq must
be the map we claimed it was.

Finally, to prove (3) note that the rows of Mq are just sq(i), sq(j), and sq(k). These
values are easily computed and shown to be as indicated. This finishes the proof of
the proposition.

Now the principal axis theorem (Theorem 2.5.5 in [AgoM05]) implies that every
rotation in R3 that fixes the origin is a rotation about some line through the origin.
Since that line has two unit direction vectors (one is the negative of the other), Propo-
sition 20.3.5(2) implies the following converse:

20.3.6 Proposition. Every rotation R of R3 that fixes the origin is of the form sq
for some non-zero quaternion q. In fact, we may assume that q is a unit quaternion
that is unique up to sign.

Proof. Let R be the rotation through an angle q about the directed line through the
origin with unit direction vector n. If

s q q q q
q q

q u u n u

u n u

() = -() + () ¥
= + ¥

cos sin sin cos

cos sin .

2 2 2

2 2

n u n n u n n u n n u n n= - ¥()∑ + ¥() ¥ = ¥() ¥ =

n u u n 2n u- = ¥ .

u n u n u n u n= - ∑ + ¥ = ¥ .

n u n u n u n u= - ∑ + ¥ = ¥

s q q q q q qq u u u n n u n u n() = - + -cos cos sin sin cos sin .2 2

u i j= - +n n2 1 .

20.3 Quaternions as Transformations 763

then R = sq.

Proposition 20.3.5 defines a map

(20.10)

which is an important and well-known map in topology. This map is two-to-one
because r(q) = r(-q). It is onto by Proposition 20.3.6. Using Proposition 20.3.4(1) we
also see that the map is multiplicative because the product of two unit quaternions
gets mapped to the composition of their associated rotations of R3. This, by the way,
gives an indirect proof of the fact that the composition of two rotations about two
lines is a rotation about another line. Finally, the two propositions show us how one
can easily pass back and forth between the matrix representation of a rotation in R3

that fixes the origin and its representation as a unit quaternion.

20.3.7 Example. To find the formula for the rotation R about the z-axis through
an angle of p/2 in terms of quaternions and to compute its action on i.

Solution. We use the notation in Proposition 20.3.5. Now n = k and 2q = p/2.
Therefore,

and

It is easy to show that R(i) = j, which reestablishes the fact that R sends the x-axis to
the y-axis. The matrix for R is

The fact that elements of the special orthogonal group SO(3) can be represented
as quaternions is significant to computer graphics because quaternions make for
a better representation for certain applications (see, for example, [Tayl79] and
[YanF64]). One reason is that a quaternion takes less space, namely, one only needs
to store four real numbers versus nine for a matrix. Another reason is that one needs

Mq = -
Ê

Ë
Á
Á

ˆ

¯
˜
˜

0 1 0

1 0 0

0 0 1

.

R z q z q k z k() = = +() -()-1 1
2

1 1 .

q k

q q k q

= +

= = - = ()()-

1

2

1

2
1

2

1

2
11

,

,using the fact that and Proposition 20.2.4 3

r : ,S SO

q q

3 3Æ ()
Æ M

q n H= + Œcos sin ,
q q
2 2

764 20 Quaternions

fewer arithmetic operations when making computations (see Table 2 in [Tayl79]). A
third reason has to do with the fact that round-off errors cause numerical instability
in matrices so that one needs to renormalize them periodically, which is not as much
of a problem with the quaternions.

We finish this section with two useful conversion formulas. Although quaternions
may have technical advantages, other representations such as Euler angles (defined
in Section 2.5.1 in [AgoM05]) may provide a more intuitive way to describe rotations.

20.3.8 Proposition. If [a,b,t] is the Euler representation of a rotation R of R3 with
center the origin, then R(z) = q z q-1, where q is the quaternion defined by

and

Conversely, if a rotation R of R3 with center the origin is defined by means of a
quaternion

then the Euler representation [a, b, t] of R is defined by

where

Proof. See [Kuip99].

Kuiper ([Kuip99]) also shows that the quaternion representation is very useful in
dealing with products of rotations and computing the rotation axis of the result.

m r a

m ab rc

m ac rb

m bc ra

m r c

11
2 2

12

13

23

33
2 2

2 2 1

2 2

2 2

2 2

2 2 1

= + -
= +
= -
= +
= + - .

tan , tan , tan ,a b t= = - =
m
m

m and
m
m

23

33
13

12

11

q i j k= + + +r a b c ,

r

a

b

c

= +

= -

= +

= -

cos cos cos sin sin sin

cos cos sin sin sin cos

cos sin cos sin cos sin

sin cos cos cos sin sin .

t b a t b a

t b a t b a

t b a t b a

t b a t b a

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

q i j k= + + +r a b c

20.3 Quaternions as Transformations 765

Shoemake ([Shoe91]) discusses how quaternions can be expressed as 4 ¥ 4 homoge-
neous matrices so that one can take advantage of fast matrix multiplication in hard-
ware.

20.4 EXERCISES

Section 20.2

20.2.1 Prove Proposition 20.2.1.

20.2.2 Prove Proposition 20.2.2.

20.2.3 Prove Proposition 20.2.3.

20.2.4 Prove Proposition 20.2.4.

20.2.5 Prove Proposition 20.2.5.

20.2.6 Prove Proposition 20.2.6.

20.2.7 Prove that if u, v Œ R2 are orthogonal unit vectors, them (u ¥ v) ¥ u = u.

Section 20.3

20.3.1 Prove Proposition 20.3.4.

20.3.2 Find a unit quaternion q that represents the rotation R of R3 about the origin with
matrix

M = -

-

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

1
3

1
3

1
3

1
2

1
2

0

1
6

1
6

2
6

.

766 20 Quaternions

unsatisfying results if we were to develop the subject in a thorough manner. Appen-
dix D in [AgoM05] has a little bit to say about that integral and gives references where
one can find more information. The hypotheses of some theorems in this chapter
would be cleaner if we were to use the Lebesgue integral. We shall not do so, but
needed to point this out for the mathematically minded reader because, as we have
done throughout this book, we always want to state results carefully with all the
correct hypotheses.

21.2 The Ubiquitous Laplace Equation

One of the most important differential equations in mathematics and science is the
Laplace equation

(21.1)

for a function u(x,y) of two variables. The solution of a great many problems lead to
this equation or some variant of it. Mathematically, one is lead to this equation right
from the start when studying analytic functions of a complex variable. If the function

is an analytic function, then u(z) and v(z) satisfy the Cauchy-Riemann equations

(Recall that C = R2 so that we can switch back and forth between thinking of a func-
tion as a function of a complex variable z or as a function of two real variables x and
y.) Therefore, by taking partial derivatives of these two equations we get

Since an analytic function is infinitely differentiable, one can show that the mixed
partials are equal, which leads immediately to the Laplace equation. A similar argu-
ment shows that the function v also satisfies the Laplace equation.

Definition. Any function u(x,y) of two real variables that has continuous partials up
to order two that satisfies the Laplace equation is called a harmonic function.

Harmonic functions satisfy a maximum principle like analytic functions, which
we should mention in passing.

21.2.1 Theorem. (The Maximum Principle) A harmonic function defined on a
closed and bounded set assumes its maximum and minimum value on the boundary
of this set.

∂
∂

=
∂

∂ ∂
∂
∂

= -
∂

∂ ∂

2

2

2 2

2

2u

x

v
x y

and
u

y

v
y x

.

∂
∂

=
∂
∂

∂
∂

= -
∂
∂

u
x

v
y

and
u
y

v
x

.

f z u z v z() = () + ()i

∂
∂

+
∂
∂

=
2

2

2

2
0

u

x

u

y

768 21 Digital Image Processing Topics

We have explained the mathematical basis for the importance of the Laplace equa-
tion, now we want to sketch solutions to some practical problems and show how they
also lead to this equation. In a sense, classical field theory of physics is a study of the
solutions to the equation. (Actually, we have only stated the two-dimensional Laplace
equation and we should include the three-dimensional version for the previous sen-
tence to hold.) The reader will have to look up in books on physics certain physical
laws to which we refer in the discussion if they are unfamiliar with them.

Steady Temperature. Assume the temperature of a body X is defined by a function
T(x,y). Basically, we are assuming that the temperature is the same on all planes par-
allel to the xy-plane, so that we have a two-dimensional problem. The rate at which
heat crosses a curve is proportional to the integral of the normal derivative of T along
the curve. Let us see what happens in a small rectangle of width Dx and height Dy.
See Figure 21.1. The rate of flow of heat to the right through the left edge of the rec-
tangle is approximately

where K is a thermal conductivity constant associated to the solid. Using the deriva-
tive of this function we can estimate the loss of heat as we pass from the left edge to
the right edge of the rectangle by

Similarly, we can estimate the loss of heat as we pass from the bottom edge to the top
edge of the rectangle by

Since we are assuming a steady state, the losses must sum to 0, and we get the
equation

-
∂
∂

K x
T

y
yD D

2

2
.

-
∂
∂

K y
T

x
xD D

2

2
.

-
∂
∂

K y
T
x

D ,

21.2 The Ubiquitous Laplace Equation 769

Figure 21.1. Analyzing a steady temperature
system.

(21.2)

The typical problem is then to solve this equation given some boundary conditions,
that is, the value of T(x,y) on the boundary of the body X.

Electric Potential. Coulomb’s law states that the force F between two point charges
located at p1 and p2 with charge q1 and q2, respectively, is defined by the equation

where

r = |p1p2| is the distance between the two charges,
u = (1/r) p1p2 is the unit direction vector from p1 to p2, and
e0 is a constant.

When using the centimeter/gram/second unit system

Now the electric field strength E at a point of an electric field due to a charge distri-
bution is the force exerted on a unit of positive charge placed at that point. It follows
that E is related to the force F on a charge q at a point by the equation

The Gauss flux law implies that

(21.3)

in empty space. Finally, the potential V(p) at a point p in space is defined as the work
per unit charge necessary to bring a small test charge from some arbitrary reference
point to p. One can show that

(21.4)

Equations (21.3) and (21.4) imply that any potential function V(x,y) derived from
some electrostatic distribution must satisfy the Laplace equation in empty space.

Two-dimensional Fluid Flow. Consider a two-dimensional fluid flow in R3,
meaning that the velocity of the fluid is the same in every plane parallel to the xy-
plane. We can represent the velocity of such a flow by a function

v x y v x y v x y, , , , .() = () ()()1 2

E = -—V.

— =E 0

F E= q .

4 10pe = .

F u=
q q

r
1 2

0
24pe

,

∂
∂

+
∂
∂

=
2

2

2

2
0

T

x

T

y
.

770 21 Digital Image Processing Topics

21.3 From Laplace to Fourier

Before defining Fourier series, the reader unfamiliar with the subject may find some
motivation helpful. To motivate some of the central ideas we start with the Laplace
equation.

One way to solve the Laplace equation is by expressing it in polar coordinates. If
we do this, equation (21.1) becomes

(21.5)

For simplicity assume that

(21.6)

Note that u(r,q + 2p) = u(r,q). These conditions are not enough to define u. Assume
that u satisfies the boundary condition

(21.7a)

for some periodic function f(q) with

(21.7b)

The problem of finding a function u(r,q) that satisfies (21.5)–(21.7) is called the Dirich-
let problem. One attempt to solve this problem involves using the “method of separa-
tion of variables” and to look for a solution of the form

This reduces the problem to solving two ordinary differential equation that have solu-
tions of the form

for some constants a, A, and B. Since any linear combination of solutions is also a
solution, one is led to suppose the more general solution

(21.8)

with boundary condition

u r a r en
n n

n

,q q() =
=-•

•

Â i

u r aA n

ar Ae Be n

n

n n n

, , ,

, ,

q
q q

() = =
= () +() >-

0

0i i

u r R r H, .q q() = () ()

f fq p q+() = ()2 .

u f1,q q() = ()

the function u r is continuous for r, .q() £ £0 1

∂
∂
∂

Ê
Ë

ˆ
¯

∂
+ -

∂
∂

= π
r

u
r

r r
u

r
1

0 0
2

2q
, .

772 21 Digital Image Processing Topics

(21.9)

The amazing thing is that all of this sort of works. It led Fourier to what are now
called Fourier series expansions for functions. Although we may be tempted to con-
clude that we can express an arbitrary function f(q) in the form (21.9), this is not quite
correct. The problem is with the convergence of the infinite series. Theorems 21.5.3
and 21.5.7 will shortly carefully state what is correct.

This concludes our bird’s eye view of what led up to Fourier series. See [Seel66]
for more details. There is one more topic to be dealt with before we are ready to deal
with the subject of Fourier series itself.

21.4 The Lp Function Spaces

In this section we introduce some function spaces and operators that play an impor-
tant role in functional analysis. We will also encounter some common terminology
that is worth knowing. However, the real motivation for getting into this topic is that
this chapter deals with operators that map functions to other functions and it is very
useful to have some notation for describing the domains of these operators and also
to learn about some of the properties of these function spaces. For simplicity we
restrict our discussion to functions of one variable, but similar definitions and facts
hold for functions of more variables.

Definition. Let [a,b] be an interval in R, either bounded or unbounded, and let 1 £
p < •. Define Lp([a,b]), the Lp space of functions on [a,b], as follows:

L1([a,b]) is the set of integrable functions on [a,b] .
Lp([a,b]), 1 < p < •, is the set of functions f on [a,b] whose integral Úba|f|p converges.

Functions in Lp([a,b]) are called Lp functions.

Note 1. The definition of Lp space assumed Riemann integration. If we had used the
Lebesgue integral, then we would not have had to make a special definition for p = 1.
Unfortunately, integrability does not imply absolute integrability in the case of the
Riemann integral, ergo the special case.

Note 2. We do not have to restrict ourselves to real-valued functions. Everything we
say about Lp([a,b]) would hold for complex-valued functions if p > 1. We could intro-
duce notation to distinguish between the two cases, but in what we will be doing here
it does not seem worthwhile to do so.

The function spaces Lp([a,b]) have a great many interesting properties. Proofs of
the facts we list below can, for example, be found in [Nata61].

Fact 1. Lp([a, b]) is an infinite dimensional vector space.

Definition. The Lp norm on Lp([a,b]), denoted by || ||p, is defined by

u a en
n

n

1, .q q() =
=-•

•

Â i

21.4 The LP Function Spaces 773

Fact 2. The Lp norm satisfies

(1) || f ||p ≥ 0.
(2) || f ||p = 0 if and only if Úbaf = 0.
(3) For every constant c, || cf ||p = |c| || f ||p.
(4) || f+g ||p £ || f ||p + || g ||p.

In other words, the norm acts very much like the absolute value function on reals.
We can use it to define a distance function.

Definition. If f,g Œ Lp([a,b]), define the Lp distance between f and g, denoted by
dp(f,g), by

The properties listed under Fact 2 above show that dp(f,g) is almost a metric on
Lp([a,b]), but not quite. It is only a pseudometric. It is symmetric and satisfies the tri-
angle inequality, but it is possible to have the distance between two functions be 0
without the functions being equal. If the functions were continuous, then this would
not happen, but we shall see later when we discuss the Fourier transform that the
assumption of continuity would be too restrictive. Therefore, let us use the standard
trick to get a metric from a pseudometric. Consider the equivalence relation ~ on the
space Lp([a,b]), where

The function dp(f,g) would induce a metric on the set of equivalence classes (see Exer-
cise 5.2.10 in [AgoM05]). With this equivalence relation we are saying that any func-
tion whose integral over [a,b] is zero is treated as if it were identical to the zero
function. In fact, this identification of functions with the corresponding equivalence
class is always made. In the future a statement such as “f = g” for two functions f and
g in Lp([a,b]) technically means that f ~ g. Because one does not want to introduce
new notation, the reader needs to remember that, although we refer to elements of
Lp([a,b]) as functions, technically

Lp([a,b]) is really considered to be a set of equivalence classes of functions!

It follows from what has just been said that it is legitimate to call dp(f,g) a metric on
Lp([a,b]). It is called the Lp metric.

Fact 3. (Lp([a,b]),dp) is a complete metric space.

We concentrate now on the space L2([a,b]), also called Hilbert space or the space
of square integrable functions, which is especially interesting because it admits an
inner product.

f g if f g
a

b
~ -() =Ú 0.

d f g f gp p, || ||() = -

|| || .f fp
p

a

b p

= ()Ú
1

774 21 Digital Image Processing Topics

Definition. Let f,g Œ L2([a,b]). Define the inner product of f and g, denoted by ·f,gÒ,
by

Since this notation depends on the interval [a,b], we shall write ·,Ò[a,b] if there is any
confusion.

Fact 4. ·f,gÒ is an inner product on the vector space L2([a,b]) and the usual length
and distance function associated to an inner product agree with the norm || ||2 and
distance function d2 as defined above.

There is also an L•([a,b]) space of function but its definition is special and so we
treat it separately. Because it involves some often seen terminology, it is worth defin-
ing here. The general definition would apply to “measurable” functions and everything
would be defined up to a set of measure 0, but too avoid technicalities with measure
that have not been satisfactorily dealt with in this book, we shall restrict out defini-
tions to continuous functions.

Definition. Let [a,b] be an interval in R, either bounded or unbounded. Define the
L• space, L•([a,b]), to be the set of bounded continuous functions on [a,b]. Its ele-
ments are called L• functions. The L• norm on L•([a,b]), denoted by || ||•, is defined
by

If f,g Œ L•([a,b]), define the L• distance between f and g, denoted by d•(f,g), by

With these definitions everything we said earlier about the Lp spaces holds here.
The function || ||• satisfies the four metric properties listed in Fact 2 above, the func-
tion d•(f,g) defines a metric on the equivalence classes of functions with respect to
the relation ~ , where

and the resulting metric space is complete.

21.5 Fourier Series

This section presents the relevant definitions and some basic theorems. Proofs are
omitted.

We start with some additional motivation. Recall that every element v of a vector
space can be expressed as a linear combination of basis vectors vj, that is,

f g if and only if f g~ - =•|| || ,0

d f g f g• •() = -, || || .

|| || sup .
,

f f x
x a b

•
Œ[]

= (){ }

< > = () ()Úf g f t g t dt
a

b
, .

21.5 Fourier Series 775

In general, to determine the coefficients aj one would have to solve some linear equa-
tions, but if the vj are an orthonormal basis, then

If the vj are only an orthogonal basis, then

In the case of infinite dimensional vector spaces we would get infinite sums, so
that one has to be a little careful here. However, one can make sense out of such sums
by introducing the notion of convergence. For example, polynomials of degree n such
as

form an n-dimensional vector space with basis the polynomials xj. As n goes to infin-
ity, one can ask which functions can be represented by (convergent) power series.

The trigonometric functions sin nt , cos nt , and eint are periodic L2 functions of
period 2p. They are also orthogonal sets of functions, but not of unit length (with
respect to the L2 inner product).

21.5.1 Theorem. Let I be any interval of length 2p.

(1) ·sin mt,sin ntÒ = 0 if m π n,
= p if m = n.

(2) ·cos mt,cos ntÒ = 0 if m π n,
= p if m = n .

(3) ·sin mt,cos ntÒ = 0.
(4) ·eimt,eintÒ = 0 if m π n,

= 2p if m = n.

Proof. See [Spie69].

Therefore, if one could represent a function f(t) by a series in the form

(21.10)

then, assuming one can do the integration on a term-by-term basis, one could, using
the above argument, solve for an, namely,

a en
nt

n

i

=-•

•

Â ,

p x a xj j

j

n

() =
=
Â

0

ak
k

k k
=

v v
v v

•
•

.

v v v v• • .k j
j

n

j k ka a= () =
=
Â

1

v v=
=
Âa j j
j

n

1

.

776 21 Digital Image Processing Topics

(21.11)

In any case,

Definition. The an defined by (21.11) are called the Fourier coefficients of f and the
series (21.10) is called the Fourier series for f (with respect to the functions eint).

The Fourier coefficient an intuitively says how much of the function eint appears
in f.

Since

the Fourier series for real functions is easily shown to be expressible in the form

(21.12)

where

(21.13)

21.5.2 Example. Consider the function f(x) = x2 on the interval (0,2p) and think of
it as a periodic function defined on the reals as shown in Figure 21.4. Then, carrying
out the relevant integrations using standard formulas for trigonometric integrals, the
Fourier series for f is found to be

See [Spie69] for this and other examples.

4
3

4 42

2
1

p p
+ -È

ÎÍ
˘
˚̇=

•

Â
n

nx
n

nx
n

cos sin .

a f t ntdt and b f t ntdtn n= () = ()
- -Ú Ú

1 1
p pp

p

p

p
cos sin .

a
a nt b ntn n

n

0

12
+ +()

=

•

Â cos sin ,

e nt ntnti i= +cos sin ,

a f e f t e dtn
nt nt= < > = ()-[]

-
-Ú

1
2

1
2p pp p p

p
, .,

i i

21.5 Fourier Series 777

Figure 21.4. The function f(x) of Exercise
21.5.2.

The basic question here is whether the Fourier series for a function f actually con-
verges to f. Substituting the formula for the an into equation (21.8) we can interchange
the integration with the summation when r < 1, since the series converges absolutely
there, and so we get

(21.14)

But the standard formula for geometric series gives us

and

so that (21.14) becomes

(21.15)

Definition. The function

is called the Poisson kernel.

We are finally ready to give an answer to the Dirichlet problem that we have been
studying and it is Fourier series that provide that answer.

21.5.3 Theorem.

(1) (Existence) If f(q) is a continuous periodic function of period 2p and if u(r,q)
is the function defined by equation (21.14), then

and the convergence is uniform in q.
(2) (Uniqueness) Let f(q) be a continuous periodic function of period 2p. If v(r,q)

is a function satisfying equations (21.5)–(21.7) and which converges uniformly in q to
f(q) as r increases to 1, then v is the function u(r,q) defined by equation (21.15).

Proof. See [Seel66].

lim , ,
r

u r f
Æ

() = ()
1

q q

P r
r

r r
,

cos
f

p f
() =

-
- +

1
2

1

1 2

2

2

u r
r

r t r
f t dt for r,

cos
.q

p qp

p
() =

-
- -() +

() <
-Ú

1
2

1

1 2
1

2

2

r e
re

re
n n t

n

t

t
- -()

=-

-• - -()

- -()Â =
-

i
i

i
q

q

q
1 1

,

r e
re

n n t

n
t

i
i

q
q

-()

=

•

-()Â =
-0

1

1

u r r e f t dtn n t

n

, .q
p

q
p

p
() = ()-()

=-•

•

- ÂÚ
1
2

i

778 21 Digital Image Processing Topics

Now that we have seen the usefulness of Fourier series in the context of a specific
application, we look at the general question of their existence and uniqueness. Fourier
series do not converge to any arbitrary function.

Definition. Let [a,b] be a finite interval. A function f defined on [a,b] is said to be
of bounded variation on [a,b] if there is a positive constant M so that

for all partitions a = x0 < x1 < . . . < xn = b of [a,b]. If f is of bounded variation, then
the total variation Vf(a,b) is defined by

where the supremum is taken over the sums associated to all possible partitions of
[a,b].

Here are some basic facts related to functions of bounded variation on finite
intervals.

21.5.4 Theorem. Let f be a function defined on a finite interval [a,b].

(1) If f is monotonic, then the set of points where it is discontinuous is countable.
(2) If f is monotonic, then it is of bounded variation.
(3) If f is continuous and f¢ exists and is bounded on (a,b), then f is of bounded

variation. It follows that if f has a continuous derivative on [a,b], then f is of bounded
variation.

(4) The function f is of bounded variation if and only if it can be expressed as the
difference of two increasing functions. Furthermore, if f is continuous, then f is of
bounded variation if and only if it can be expressed as the difference of two increas-
ing continuous functions.

Proof. See [Apos58]

21.5.5 Example. The function

is not of bounded variation on [0,1]. See Figure 21.5. We start with the graph of the
function cos(1/x), which wiggles “infinitely often” near 0. This function is not contin-
uous at 0. Multiplying by x decreases the magnitude of the wiggles (but not their
number) and turns it into a continuous function because

f x as x() Æ Æ0 0.

f x x x x

f

() = () < £
() =

cos , ,1 0 1

0 0

V a b f x f xf i i
i

n

, sup ,() = () - ()Ï
Ì
Ó

¸
˝
˛

-
=
Â 1

1

f x f x Mi i
i

n

() - () £-
=
Â 1

1

21.5 Fourier Series 779

With these preliminaries out of the way, we can get to the main theorems about
Fourier series.

21.5.6 Theorem.

(1) If f(t) is a periodic function of period 2p, which is absolutely integrable and
of bounded variation on [-p,p], then its Fourier series (21.10) converges to

for each t. (f(t±) refers to one-sided limits of f at t.) If the function is also continuous,
then the Fourier series converges to f(t) for each t.

(2) If two continuous periodic functions f and g of period 2p have the same
Fourier coefficients, then f = g.

Proof. See [Apos58] and [Seel66].

Theorem 21.5.6 deals with how Fourier series converge pointwise to the periodic
functions that defined them. However, we can also ask about convergence in the L2

norm. The other basic question is then answered by the following theorem:

21.5.7 Theorem. Let f be an arbitrary (not necessarily periodic) function in
L2([-p,p]). Then the Fourier series (21.10) converge in the L2 metric and is equal to f.
(Recall that equality here means that the integral of the difference is zero.)

Proof. See [Nata61]. The fact that f is not periodic is not a problem. Since we are
only interested in what happens in the interval [-p,p] we can forget whatever defini-
tion it might have outside that interval and, as Example 21.5.2 showed, we can make
it into a periodic function on R of period 2p with the formula f(t + 2kp) = f(t), where
k = 0 , ±1, ±2, . . . , and t Œ [-p,p] .

Note that Theorem 21.5.7 does not say that the Fourier series of f converges point-
wise to f. It may seem strange that one would be interested in non-pointwise conver-
gence, but in fact L2 convergence is a useful type of convergence.

Another variant of this theorem is

f t f t+ -() + ()
2

780 21 Digital Image Processing Topics

Figure 21.5. A function that is not of bounded
variation.

21.5.8 Theorem. If f Œ L2([-p,p]) and if ·f,eintÒ = 0 for all n π 0, then f = 0.

Proof. See [Nata61].

Rather than using the functions eint one often chooses normalized functions for
a basis for L2([-p,p]), such as, for example, the functions e2pint. Orthonormal bases
are, after all, the nicest types of bases. Additionally, one does not have to restrict
oneself to these exponential type functions. Other variations of these functions are
often used as an orthonormal basis. The specific choice of basis is dictated by what
is most convenient for a particular application.

This is as far as we shall take the subject of Fourier series here.

21.6 The Fourier Transform

Fourier series have to do with representing functions (periodic ones to be precise) as
series. The Fourier transform, on the other hand, attempts to represent functions as
integrals. One advantage Fourier integrals have is that they can represent fairly arbi-
trary functions, not just periodic ones. Since the domain of functions may now be all
of R, the standard trick for turning a function into a periodic one would not work.

Our discussion of the Fourier transform will concentrate on functions of one
variable and only briefly mention the two-variable case.

Definition. If f, G: R Æ R , then

(21.16)

is called the Fourier transform of f(x) and

is called the inverse Fourier transform of G. The functions F and g will be denoted by
FT(f) and FT-1(G), respectively.

Note 1. There is no uniform agreement in the literature as to what is called the
Fourier transform, although all the various definitions have the form

for suitable constants a and b.

Note 2. The formula for the Fourier transform should remind the reader of the
definition of the Fourier coefficients of a function. The similarity is not accidental.
Actually we could have also used the Laplace equation to motivate the definition. See
[Seel66]. In this case, rather than the region being a disk, we would be dealing with
a halfplane that has a function specified along its edge. If we were to work through

F u a f x e dxbux() = ()
-•

•
Ú i

g x G u e duux() = ()
-•

•
Ú 2pi

F u f x e dxux() = () -
-•

•
Ú 2pi

21.6 The Fourier Transform 781

this type of Dirichlet problem as we did for the disk, we would end up with a solu-
tion that looked like the Fourier transform. Notice, however, one difference between
the Fourier coefficient formula and the Fourier transform: the former had exponen-
tial functions einx where n was an integer, but now the “n” is allowed to be an arbi-
trary real number.

The obvious first question about the Fourier transform is for which functions f
does it and its inverse exist?

21.6.1 Theorem. If f is absolutely integrable, then its Fourier transform F exists
and is continuous.

Proof. The theorem follows from the fact that

Figure 21.6 shows the Fourier transforms of two functions. The function is on the
left and its Fourier transform on the right. The functions in the figure have the
following definitions:

F u F v f x e e dx f u vux vx() - () £ () - £ () -
-•

•

-•

•
Ú Ú2 2p pi i .

782 21 Digital Image Processing Topics

Figure 21.6. One-dimensional Fourier transforms.

The box function B(x): B (x) = 0, |x| > ,

= 1, |x| £ .

The function sinc(x): sinc x = 1, x = 0,

, x π 0.

The Gaussian function: . (With this notation s becomes the

standard deviation and s2 is the variance of f(x).

The Dirac delta “function” d(x): This is not really a function in the mathematical
sense. It is usually described by the strange-looking conditions

and

As stated this last integral expression is really nonsense. A precise mathematical def-
inition (see [Frie63]) defines d(x) as a generalized function, which is a linear functional
on an appropriate space of functions. On the other hand, the actual definition is not
as important as its properties, the most important of which is

(21.17)

An intuitive discussion of generalized functions can be found in [Brac86], where they
are explained in terms of limits of functions. The Dirac delta function is often called
the impulse signal or impulse function in Fourier analysis.

Now, we are after more than just the Fourier transform. We want what we called
the inverse Fourier transform to really be the inverse of the Fourier transform. In
order to state that theorem and its hypotheses, we need to extend the notion of a func-
tion being of bounded variation to functions defined on unbounded intervals.

Definition. Let I be an unbounded interval of the form R, [a,•), or (-•,b]. A func-
tion f defined on I is said to be of bounded variation on I if it is of bounded variation
on every finite subinterval and there is a positive constant M so that Vf(c,d) < M for
every finite subinterval [c,d] of I.

The next theorem states the most relevant extensions of Theorem 21.5.4.

21.6.2 Theorem. Let f be a function defined on R.

f x x x dx f x() -() = ()
-•

•
Ú d 0 0 .

d x dx() =
-•

•
Ú 1.

d x x() = π0 0, ,

f x
x() =

-Ê
ËÁ

ˆ
¯̃

exp
2

2s

=
sin p

p
x

x

1
2

1
2

21.6 The Fourier Transform 783

(1) If f is bounded and monotonic, then it is of bounded variation.
(2) The function f is bounded and of bounded variation if and only if it can be

expressed as the difference of two bounded increasing functions.

Proof. See [Apos58].

Theorem 21.6.2(1) implies that the following increasing function is of bounded
variation:

The Heaviside unit step function H(x): H (x) = 0, x < 0,
= 1, x ≥ 0.

Since the Heaviside function is of bounded variation, so is the box function B(x) since
it differs from

at the single point x = .

Here is the theorem we were after.

21.6.3 Theorem. Let f: R Æ R be an absolutely integrable function of bounded
variation, then

(21.18)

If f is also continuous, then the left hand side of equation (21.18) equals f(x), that is,
f = FT-1 (FT (f)).

Proof. See [Widd71] or [Apos58].

Theorem 21.6.3 is the fundamental theorem in the theory of Fourier transforms.
It says that if one thinks of the Fourier transform as a mapping of functions to func-
tions, then the inverse Fourier transform is basically the inverse of that mapping (if
one ignores the finite number of points of discontinuity that might exist). For example,
in Figure 21.4 the functions on the left are the inverse Fourier transform of the func-
tions on the right. There are different variants of Theorem 21.6.3. The problem is that
the hypotheses of the theorem are not satisfied by all the functions one might want
to deal with. For example, the sinc(x) function is not absolutely integrable. We have
defined what sometimes is called the “ordinary” Fourier transform. It is possible to
generalize the Fourier transform by defining it in terms of a convergent sequence of
integrals, but we shall not pursue this further here. At the end of the day, however, all
the functions that one wants to use are covered.

Using the different names “x” and “u” for the variables of a function and for its
Fourier transform, respectively, was a conscious decision. We shall do so throughout
the rest of this chapter. One considers functions f(x) as defined on a “spatial” domain

f x f x
f t e dt duu x t

+ -
-()

-•

•

-•

•() + ()
= ()()ÚÚ2

2pi .

1
2

H x H x+Ê
Ë

ˆ
¯ - -Ê

Ë
ˆ
¯

1
2

1
2

784 21 Digital Image Processing Topics

There are discrete versions of the Fourier transform and its inverse. We give the
one-dimensional version as an example.

Definition. If f(k) and G(u) are functions defined on the integers, then

is called the discrete Fourier transform of f and

is called the discrete inverse Fourier transform of G.

The Fourier transform is computationally very expensive to implement. Therefore,
it was quite a breakthrough when an efficient way to implement it, called the Fast
Fourier Transform (FFT), was published in 1965 in the paper [CooT65]. Thanks to the
FFT, many signal processing algorithms are now practical.

A real nice interpretation of the discrete Fourier transform can be found in
[Glas99]. It can be thought of as expressing an arbitrary polygon as a sum of basic
regular polygons.

21.7 Convolution

Definition. Given two functions f, g: R Æ R, define their convolution, f*g , by

We give some conditions for when the convolution exists.

21.7.1 Theorem. If f, g: R Æ R, then the convolution integral

converges absolutely for all x under either of the following two conditions:

(1) The function f is absolutely integrable and g is bounded.
(2) Both f and g are absolutely integrable and both belong to L2(R).

If both f and g are also continuous, then the convolution integral is also continuous
under either condition (1) or (2).

Proof. See [Seel66] or [Apos58].

21.7.2 Example. Figure 21.8 shows the convolution of the two functions

f t g x t dt() -()
-•

•
Ú

f g x f t g x t dt*()() = () -()
-•

•
Ú .

g k G u
uk

N
where k N

k

N

() = () Ê
Ë

ˆ
¯ £ £ -

=

-

Â
0

1 2
0 1exp , ,

pi

F u
N

f k
uk

N
where u N

k

N

() = () -Ê
Ë

ˆ
¯ £ £ -

=

-

Â1 2
0 1

0

1

exp , ,
pi

786 21 Digital Image Processing Topics

The graphs of the functions f(t) and g(t) are shown in Figures 21.8(a) and (b), respec-
tively. Figures 21.8(c) and (d) show the stages of computing g(x-t). The shaded regions
in Figure 21.8(e) and (f) show the areas computed by the convolution integral that

f t t g t t

t t

() = Œ[] () = Œ[]

= œ[] = œ[]

1 0 1
1
2

0 1

0 0 1 0 0 1

, , , ,

, , , ,

21.7 Convolution 787

Figure 21.8. An example of convolution.

define (f*g)(x). Although f and g were not continuous functions, we see that f*g is. Its
formula is

Two easily checked properties of convolution are:

(1) (commutativity) f*g = g*f
(2) (linearity) f*(g + h) = f*g + f*h

21.7.3 Theorem. (The Convolution Theorem) Let f, g: R Æ R be two absolutely
integrable functions. Then

(1) FT (f*g) = FT (f) · FT (g).
(2) If additionally either the Fourier transform of g converges or both f and g

belong to L2(R), then FT (f · g) = FT (f)*FT (g).

Proof. See [Apos58] and [Seel66]. For weaker conditions on f and g, see [Widd71].

What Theorem 21.7.3 says is that multiplying functions in the spatial domain cor-
responds to doing a convolution in the frequency domain and vice versa.

Although we will not elaborate about this here, similar results hold in two dimen-
sions and also for the discrete case.

21.8 Signal Processing Topics

We are ready to apply what we have learned so far. Image enhancement or recon-
struction are two of the major applications of the Fourier transform. This leads us to
the basic problem in sampling theory, which is to determine how many samples one
must take so that no information is lost. Recall our discussion in Section 2.6.

Definition. A function f(x) whose Fourier transform F(u) vanishes outside a finite
interval is called a band-limited function. If F(u) = 0 for |u| > w, where

then w is called the cutoff frequency of f(x).

Figure 21.9 shows a key idea behind reconstructing functions. The functions are
shown in the left column and their Fourier transforms in the right column. In (a) we
have the signal f(x) that we are trying to analyze. As we can see from its Fourier trans-
form F(u) on the right, it is a band-limited function that vanishes outside the inter-
val [-w,w]. The sampling function s(x) in (c) is applied to (a) to get (e). What you see
in (e) is all that we know about the real function in (a). It is the function sampled at
intervals of width d. The question is whether we can reconstruct (a) from (e). If the
Fourier transform of (e) is as shown in (f), then we cannot. It is periodic with period

w c F u for u c= () = >{ }inf ,0

f g x x x

x x

elsewhere

*()() = Œ[]

= - Œ[]

=

1
2

0 1

1
1
2

1 2

0

, ,

, ,

, .

788 21 Digital Image Processing Topics

21.8 Signal Processing Topics 789

Figure 21.9. Reconstructing functions.

1/d and the repetitions of F(u) overlap. However, if we had sampled more often and
used (g) where we have a smaller sampling width d, then we can get (a) back in two
steps as follows:

Step 1. Multiply the Fourier transform F(u)*S(u) of f(x)s(x) by the box function

to get the function H(u) in (k) which has isolated one copy of F(u).

Step 2. Take the inverse Fourier transform of H(u) to recreate f(x) as shown in (j).

It follows that if we have a band-limited function, then we can recover a function
by sampling sufficiently often. This is the Whittaker-Shannon sampling theorem.

21.8.1 Theorem. (Whittaker-Shannon Sampling Theorem) Let f(x) be a band-
limited function with cutoff frequency w, so that its Fourier transform vanishes
outside the interval [-w,w]. Then f(x) can be reconstructed exactly from samples at
intervals d provided that the sampling frequency 1/d is at least 2w.

Proof. See [Glas95].

Definition. The frequency w in Theorem 21.8.1 is called the Nyquist frequency of
f(x).

If the sampling frequency is not high enough, then we get the phenomena called
aliasing. The two-dimensional situation is similar, but in practice one must sample a
lot more because of limitations of available reconstruction algorithms. Unfortunately,
in real life we usually do not have such band-limited functions, so that all this is of
theoretical value only. Nevertheless, it does show us what is going on and helps us
determine ways that one can mitigate the sampling problems. Actually, there is one
additional complication to the reconstruction of signals. An important implicit
assumption in our analysis so far has been that we took an infinite number of samples.
This is of course an unrealistic assumption. We therefore need to study the problem
further and ask what would be different if we only take a finite number of samples.

See Figure 21.10. In (a) we again show a function that is about to be sampled and
reconstructed. The mathematical effect of sampling only a finite number of times is
to multiply the function in (e) by a box-like function. Suppose that we only sample
over the interval [0,a]. Let

This “windowing” function vanishes outside of [0,a]. See (g). Its transform H(u) is
shown in (h). Our actual samples, represented by the function h(x)[s(x)f(x)], is shown
in (i) and its Fourier transform H(u)*[S(u)*F(u)] in (j). Since H(u) has components
that extend to infinity, this has the effect of introducing a distortion in the frequency
domain representation of the function that was sampled over the finite interval. The
unfortunate conclusion is that it is in general impossible to faithfully reconstruct a

h x B
x
a

() = -Ê
Ë

ˆ
¯

1
2

.

G u B
u
w

() = Ê
Ë

ˆ
¯2

790 21 Digital Image Processing Topics

function that has only been sampled over a finite range. No function that is nonzero
over only a finite interval can be band-limited and, conversely, any band-limited func-
tion is nonzero over an unbounded domain.

To summarize, in the context of computer graphics, what typically happens is that
we start with a signal (the signal derived from a scene that we are trying to display)
and then this signal is passed through a sequence of filters before it ends up on the
display. (A filter means simply anything that modifies a signal.) Multiplying a function
by another, such as a box function, is an example of filtering. We can apply a filter
either in spatial or frequency domain. The latter is common. Some standard types of
filters are

21.8 Signal Processing Topics 791

Figure 21.10. Reconstruction of finitely-sampled functions.

Low-pass filter: A filter that cuts off all frequencies above a threshold and lets
those below it pass through.

High-pass filter: This is the opposite of a low-pass filter. A filter that cuts off all
frequencies below a threshold and lets those above it pass through.

Band-pass filter: A filter that cuts off all frequencies outside of a range of
frequencies.

We have come across these filters in our earlier discussion. We can use Figure 21.9
to help us understand a typical definition-to-display path of a signal. The original
signal is shown in (a). Some equally spaced pulses and the sampled signal are shown
in (c) and (e), respectively. The assumption is that we can get our hands on only the
sampled signal. (If we really “had” the original signal, then none of this work we are
describing would be necessary.) At this point, our goal is to reconstruct the original
signal. To accomplish this one chooses a suitable “reconstruction” filter and convolves
it with the sampled signal. Next, our goal is to display the resulting signal S. The
display may have some finitary constraints, such as a monitor that can only show
something at a finite number of pixels. For this reason, one typically uses another
filter, perhaps a low-pass filter, to eliminate frequencies that one cannot display. One
convolves the signal S with such a filter. Finally, this signal is sampled and recon-
structed with another “reconstruction” filter to produce our displayed signal. For a
good discussion of this process see [Glas95].

21.9 Wavelets

Digital image processing has two components. One deals with the representation or
analysis of a function. That is what the Fourier transform was about. It represented
a function in terms of their frequency content. The other part of digital image pro-
cessing is concerned with putting it all back together again and reconstructing a func-
tion from its inherent frequencies. So the Fourier transform computed the Fourier
coefficients, which gave us the representation or analysis of the function, and then
the Fourier series reconstructed the function using these Fourier coefficients. One
problem with the Fourier transform though is that it is based on the sine and cosine
functions that do not have compact support. That is why, if we want to represent a
function that has compact support, its representation in the frequency domain will
not also be a function with compact support but involve an infinite number of fre-
quencies. We saw that in the case of the box function and the impulse function. This
is where wavelets come in.

This section will only give a brief glimpse of wavelets. We shall make no attempt
to give a formal definition of what they are but simply discuss them in the context of
examples. Wavelets are functions that can have compact support. By analyzing func-
tions using wavelets, one can get a better handle on those functions with compact
support. Additionally, they give one the means of specifying the amount of detail one
wants from the analysis based on the number of samples taken. There is no unique
set of wavelet basis functions. We briefly describe the Haar basis and some of its prop-
erties. For simplicity we restrict ourselves to analyzing functions defined on [0,1].

Define functions f, fj,i , Y , Yj,i: R Æ R by

792 21 Digital Image Processing Topics

and

See Figure 21.11. Let Vj Ã L2(R) be the vector subspace with basis (fj,i}i . Clearly,

If Wj is the orthogonal complement of Vj in Vj+1, then

and the {Yj,i}i are an orthogonal basis of Wj. It follows that

Definition. The functions fj,i(x) are called scaling functions. Each function Yj,i(x) is
called a Haar wavelet and for each fixed j, the collection of these wavelets is called the
one-dimensional Haar wavelet basis functions.

Now the functions fj,i and Yj,i are not unit vectors in L2(R). To make them unit
vectors one must multiply them by 2j/2. We did not do this here is because it would
cause some ugly coefficients in Example 21.9.1 below and obscure what is going on.
Nevertheless, this is normally done because orthonormal bases are desirable, so that
the terms “scaling function” and “wavelet” usually refer to the normalized versions of
the functions we are using here.

The next example shows how wavelets are used to represent functions up to a
desired resolution.

V V W W Wj j+ = ≈ ≈ ≈ ≈1 0 0 1

V V Wj j j+ = ≈1

V V V0 1 2Ã Ã Ã

y

y y

x for x

for x

elsewhere

x x i for ij i
j j

() = £ <

= - £ <

=
() = -() = -

1 0
1
2

1
1
2

1

0

2 0 1 2 1

,

,

,

, , . . . , .,

f

f f

x for x

elsewhere

x x i for ij i
j j

() = £ <
=

() = -() = -

1 0 1

0

2 0 1 2 1

,

,

, , . . . , ,,

21.9 Wavelets 793

Figure 21.11. Box and wavelet basis functions.

21.9.1 Example. Consider the function f(x) in Figure 21.12(a). If the function was
sampled at four evenly spaced points with values 1, 5, 7, and 3, then its approxima-
tion would be the step function

(21.21)

We show how this representation can be obtained with wavelets.

Step 1. The first two sample values average to 3. To get the actual values back from
this difference we have to add -2 and +2, respectively. To put this another way,

(21.22)

as is easily checked. See Figure 21.12(b). Similarly, the second two sample values
average to 5. To get the actual values back from this difference we have to add +2 and
-2, respectively. Again, this means that

(21.23)

See Figure 21.12(c). Substituting (21.22) and (21.23) into (21.21) shows that

(21.24)g x x x x x() = () + () - () + ()3 5 2 21 0 11 1 0 11f f y y, , , , .

7 3 5 22 2 2 3 11 11f f f y, , , , .x x x x() + () = () + ()

1 5 3 22 0 21 1 0 1 0f f f y, , , , ,x x x x() + () = () - ()

g x x x x x() = () + () + () + ()1 5 7 32 0 21 2 2 2 3f f f f, , , , .

794 21 Digital Image Processing Topics

Figure 21.12. Approximating with wavelets.

Step 2. We repeat this process with the two averages 3 and 5. Their average is 4 and
to get the actual values back we have to add +1 and -1, respectively. In other words,

(21.25)

See Figure 21.12(d). Substituting (21.25) into (21.24) finally gives

(21.26)

This is the wavelet representation of g(x) that we were looking for.

Example 21.9.1 really describes how one can find the wavelet approximation to
sampled functions in general by successively taking averages of adjacent values and
specifying the differences between the actual and average values. This is the basis for
a compression algorithm since the differences, called detail coefficients, are smaller
numbers than the actual ones and so it takes fewer bits to represent the sampled values
of the function. For example, the sequence 4, -1, -2, +2 completely represents the
samples 1, 5, 7, 3 if one understands it: From 4 and -1 one forms 3 and 5, then from
the sequence 3, 5, -2, +2, one gets 1, 5, 7, 3.

Now in the definitions of fj,i and Yj,i above we had some constraints on the range
of i and j, but that was only because we were temporarily interested in functions
defined on [0,1]. The definitions actually make sense for all integers i and j and we
need to allow this if we want to analyze functions defined on R. The following holds:

21.9.2 Theorem. The functions 2j/2 Yj,i, i, j Œ Z , form an orthonormal basis for
L2(R).

Proof. See [GomV98].

One extremely nice feature of wavelets is that they allow a multi-resolution analy-
sis of functions, which means that one can specify the degree of detail that one wants
to capture. This should be clear from the above. To get higher resolutions, we simply
increase the j above so that we are approximating with smaller-width step functions.
See [GomV98] or [Glas95] for a definition of what is meant by a multi-resolution
representation. For multi-resolution analysis on arbitrary surfaces, not just R2, see
[LoDW97].

The Haar wavelet basis and the associated spaces Vj are only one possible choice.
We can use smoother functions. For a continuous basis one can use hat functions or,
more generally, one can use higher-order B-splines for more smoothness. See
[Four95]. They would play the role of the fj,i above. Aside from the particular wavelet
basis, the basic constructions would stay the same. One does lose orthogonality,
however. Once one has a basis, then the analysis of a function in L2(R) is simply to
take the orthogonal projection of the function onto the space spanned by the wavelet
basis.

Definition. Given an orthonormal wavelet basis Yj,i of functions in L2(R), the
discrete wavelet transform WT is defined on a function f in L2(R) by

g x x x x x() = () - () - () + ()4 1 2 20 0 0 0 1 0 11f y y y, , , , .

3 5 4 11 0 11 0 0 0 0u x u x u x w x, , , , .() + () = () - ()

21.9 Wavelets 795

Theorem 21.9.2 implies that if the discrete Haar wavelet transform (computing
the coefficients of a function with respect to the Haar basis functions) is known, then
one can reconstruct the function.

Finally, with regard to higher dimensions, in dimension two we can take the
“tensor product” of one-dimensional wavelets to get the obvious extension. Wavelets
are a very active field of research currently with many applications in a great variety
of fields, in particular, computer graphics.

21.10 EXERCISES

Section 21.5

21.5.1 Verify that the following Fourier series are correct on (-p,p).

(a)

(b)

(c) x x x
n nx

n

n

n

cos sin
sin

= - +
-()

-=

•

Â1
2

2
1

12
2

x
nx

n

n

n

2
2

2
13

4
1

= +
-()

=

•

Âp cos

x
nx

n

n

n

=
-() -

=

•

Â2
1 1

1

sin

WT f i j w f f x x dxj i j i()() = < > = () ()
-•

•
Ú, , ., ,y

796 21 Digital Image Processing Topics

an initial point x0 in X (the start state), and
an analysis of the sequence of points xn, n = 1,2, . . . , defined by

(22.1)

This section will look at some aspects of such dynamical systesm.
Consider a map f: X Æ X.

Definition. The k-fold composite or k-fold iterate of f, fk: X Æ X, is defined recur-
sively by

Note that with this notation the sequence defined by equation (22.1) can also be
defined by

Definition. The set {x,f1(x), . . . ,fn(x), . . . } of iterates of the point x is called the orbit
of x with respect to f. A point x is said to be periodic of period k if x = fk (x).

The kinds of questions to which we want answers are

Question 1. Do the points xn above converge to some x?
Question 2. Does the sequence of xns become cyclic?
Question 3. If one perturbs the initial point x0 a little to a point x0¢, then how

different are the orbits of these two points?

The answer to Question 3 is particularly important to computer science because of the
inherent problem with round-off errors. If small changes to initial conditions for a
problem lead to large changes in the solution to the problem, then one would have to
be very skeptical of any solutions to the problem obtained with the help of a computer.
Unstable problems would require much extra care. An example of an unstable system
is the case of a pendulum that is pointed straight up. The pendulum will stay in that
position indefinitely (assuming that no force acts on it), but if it is moved ever so
slightly to either side, then it will immediately fall to that side and start to swing wildly
back and forth until it eventually settles on the bottom. Users who are asked to input
the initial top position to a program would potentially get radically different results.

Unfortunately, many real-life problems involve “unstable” systems. It is important
that one can recognize them.

Definition. Let (X,d) be a metric space. A map f: X Æ X is said to have sensitive
dependence on initial conditions if there is a d > 0 with the property that for all x Œ X
and all neighborhoods U of x, there is a y Œ U and an n ≥ 0 such that d(fn(x),fn(y)) >
d. The map f is topologically transitive if for every pair of open sets U, V Õ X there is
an n > 0 so that fn(U) « V π f. The map f is said to be chaotic on X if

(1) it has sensitive dependence on initial conditions,
(2) it is topologically transitive, and
(3) its periodic points are dense in X.

x xn
nf= ()0 .

f and f f f for kk k0 1 0x x x x() = () = ()() >- .

x xn nf+ = ()1 .

798 22 Chaos and Fractals

Saying that a map f has sensitive dependence on initial conditions means that
there are points arbitrarily close to any given point x which separate from x by some
fixed d under iterations of f. See Figure 22.1(a). Saying that a map f is topologically
transitive means that every neighborhood has points that are eventually moved into
any other neighborhood under iterates of the map. See Figure 22.1(b). If all orbits are
dense, then the map is topologically transitive. The converse is true for compact
subsets of R or S1.

The definition of a chaotic map is the well-known definition from [Deva86]. It
turns out however that conditions (1)–(3) in the definition are not independent. It is
shown by Banks et al. ([BBGDS92]) that conditions (2) and (3) imply (1), so that being
chaotic is a purely topological property and does not depend on a metric. Further,
Vellekoop and Berglund ([VelB94]) proved that in the case of connected subsets of R
condition (2) implies (3). They also showed that (1) and (3) do not imply (2). Nor do
(1) and (2) imply (3). Therefore, for connected sets of R, a map is chaotic if and only
if it satisfies condition (3) alone. It follows that the essential condition is topological
transitivity. Crannell ([Cran95]) looks at alternatives to that condition that are more
intuitive.

Chaotic maps are maps that we would prefer not to have to deal with, but some
very simple maps are chaotic.

22.2.1 Example. If we parameterize the points of the unit circle by the angle they
make with the x-axis, then the map

is chaotic. Any small arc eventually covers all of the circle, some points move apart,
and the periodic points are dense.

22.2.2 Example. Another simple chaotic map is the map

f

f x x x

: , ,

.

0 1 0 1

4 1

[] Æ []
() = -()

f S S

f

: 1 1

2

Æ
() =q q

22.2 Dynamical Systems and Chaos 799

Figure 22.1. Properties of maps with respect to iteration.

See [Deva86] for a much more thorough discussion of these ideas. It turns out
that almost any nonlinear feedback process of this type leads to an interesting dynam-
ical system. In particular, let us look at rational maps of the complex plane C. These
provide a rich source of chaotic maps

Consider the map

defined by

(22.2)

This map was studied by Mandelbrot [Mand83] and looks innocent enough, but looks
are deceiving. We have the sequence

The trivial case where c = 0 is easy to analyze. If |z| < 1, then the zn will converge to
0. If |z| > 1, then the zn will converge to •. On the other hand, things are not so simple
for may other values of c. For example, Figure 22.2 shows the case where c = 0.31 +
0.04i. Iterates of points in the interior of the black region converge to the point labeled
“attractive fixed point” (the terminology will be explained shortly) and those of points
outside the region converge to •. The boundary curve of the black region is a very
wild curve.

We need some more definitions. Assume f: Rn Æ Rn. (This includes the important
special case of complex maps since the complex plane can be identified with R2.)

Definition. A fixed point p of f is a repelling fixed point of f if f ¢(p) has eigenvalues
larger than 1. The point p is an attractive fixed point of f if f ¢(p) has eigenvalues smaller
than 1. If p is a periodic point of period k, then p is called an attractive periodic point
if it is an attractive fixed point of fk.

Definition. If p is an attractive fixed point of f, then its basin of attraction, A(f,p), is
defined by

A f p f as kk, .() = () Æ Æ •{ }x x p

z z z ccn n nf+ = () = +1
2

.

fc z z c() = +2 .

fc C C: Æ

800 22 Chaos and Fractals

Figure 22.2. The map z2 + (0.31 + 0.04i).

For example, the “point” • is always an attractive fixed point of the map fc defined
by equation (22.2), so that we always have a basin of attraction in this case which we
shall denote by A(fc,•). It turns out that for some values of c (for example, for c with
|c| much smaller than 1) there is a second attractive fixed point and that for other values
of c (for example, for c with |c| much larger than 1) • is the only attractive fixed point.
With regard to the case c = 0.31 + 0.04i and Figure 22.2, there is one finite attractive
fixed point and its basin of attraction is the interior of the black region in the figure.

One can show that A(f,p) is invariant under f. Some basic questions in the theory
of dynamical systems are:

(1) What does the boundary of A(f,p) look like?
(2) How “nice” a set is this boundary?
(3) What is its dimension?

Except for certain special cases such as the Julia set Jc = ∂A(fc,•), few answers are
known in general. Usually the only way to get some information is via approximation.

Let A = A(f,p). No point of ∂A can converge to p, but points arbitrarily close to ∂A
will. Furthermore, roughly speaking, the closer a point is to ∂A, the longer it will take
to converge to p. Thus what one can do is to take small disks D around p and ask
which points will end up in D after k iterations. Let us call this set Ak. It is an approx-
imation for A. The larger k, the better the approximation. The “level sets”

are approximations to ∂A.
Finally,

Definition. The set

is called the Mandelbrot set.

See Figure 22.3. Today there are probably very few people, if any, who work with
computers who have not seen some of the beautiful computer-generated images of

M c= () Æ • Æ •{ }f as kc
k

0

Lk k k= - -A A 1

22.2 Dynamical Systems and Chaos 801

Figure 22.3. The Mandelbrot set.

this set. It was popularized by B. Mandelbrot’s work on fractals [Mand83]. So what
is a fractal? This leads us to the next topic.

22.3 Dimension Theory and Fractals

The concept of dimension, as obvious as it might seem, is something that only began
to be studied seriously in recent times. Of course, everyone is aware of the fact that
we seem to live in a three-dimensional world, but this idea remained vague, intuitive,
and was relatively unexplored until the late nineteenth century, although the concept
of n dimensions was introduced earlier in that century by A. Cayley, H. Grassmann,
and B. Riemann. At that time the concept meant quantities that needed, in some
unspecified way, a minimum of n real parameters to describe their points. Cantor’s
discovery in 1878 that there was a bijective function between R and R2 showed that
“dimension” had nothing to do with the “number” of points involved. A few years later
in 1890, Peano proved the existence of a continuous map from [0,1] onto the unit
square [0,1] ¥ [0,1], so that “dimension” could in fact not be defined in terms of the
least number of continuous parameters required to describe a space. It was only at
the beginning of the twentieth century that satisfactory definitions of dimensions were
developed as a result of work of H. Poincaré, L.E.J. Brouwer, K. Menger, and P.
Urysohn. These definitions were essentially inductive definitions that involved looking
at the lower-dimensional subsets of a space that disconnect it. Many other definitions
of dimensions have been given since then. They are all equivalent for “nice” spaces
but can differ in other cases.

One of the first most basic results was the proof by Brouwer of the topological
invariance of what one calls the dimension of Euclidean space.

22.3.1 Theorem. (Brouwer) If n π m , then Rn is not homeomorphic to Rm.

Proof. This is Theorem 7.2.3.5(2) in [AgoM05].

Here is how dimension is defined in [HurW48]. One starts off defining the empty
space to have dimension -1 and then recursively defines the dimension of the space
to be the least integer n for which every point has arbitrarily small neighborhoods
whose boundaries have dimension less than n. More precisely,

Definition. The topological dimension of a space X, denoted by dimX, is an integer
n satisfying the following conditions:

(1) The empty set and only it has dimension -1.
(2) X has dimension £ n (n ≥ 0) at a point p if p has arbitrarily small neigh-

borhoods whose boundaries have dimension £ n - 1 .
(3) X has dimension £ n if X has dimension £ n at each of its points.
(4) X has dimension n at a point p if it is true that X has dimension £ n at p and

it is false that X has dimension £ n - 1 at p.
(5) X has dimension n if dimX £ n is true and dimX £ n - 1 is false.
(6) X has dimension • if dimX £ n is false for all n.

802 22 Chaos and Fractals

See [HurW48] for how this rather complicated definition can be used to prove
some standard facts about the dimension function. In particular, Rn has dimension n
in this new sense and a subset of Rn is n-dimensional if and only if it contains an open
subset of Rn. Boundaries of nice n-dimensional sets like manifolds are (n - 1)-
dimensional. Subsets of dimension less than n - 1 cannot disconnect Rn.

Another approach to the concept of dimension is via measure theory. This fact
should not be surprising when one considers how different words such as “length”
and “area” are used to measure the “size” of one- and two-dimensional sets, respec-
tively. Note also how length is obtained by approximations using finite segments. The
sum of the individual segment lengths (raised to the power 1) is the approximating
value. In the two-dimensional case, one could use a union of squares (or rectangles)
to approximate the region, so that the area would be approximated by a sum of terms
each of which is a length squared. A two-dimensional region could be thought of as
an infinite union of segments, but defining its area by adding up the lengths of these
segments (raised to the power 1) would give the value infinity. One could say that
a two-dimensional region has infinite “length” and zero “volume.” Only areas, the
measure of rectangles, lead to a nontrivial finite result. In general, the “correct”
measure is the power n that one needs so that adding up the individual measures
leads to a non-trivial result. In 3-space, we need cubes, but covering an area with
cubes would take an arbitrarily small volume.

In order to motivate the next definition of dimension, we change our viewpoint
slightly and also try to make things more precise. It takes 1/e intervals of length e to
cover the interval [0,1]. It takes 1/e2 squares of width e to cover [0,1] ¥ [0,1]. More
generally, one would expect that the number, n(e), of d-dimensional cubes of width e
needed to cover a nonempty compact d-dimensional set X in Rn should be defined by
a formula of the form

where c is a constant that depends on the set. Solving for d gives

We are interested in what happens when e gets small. In that case the term

goes to zero. These intuitive comments lead to the following.

Definition. Let e > 0 and let n(X,e) be the smallest number of closed balls of radius
e whose union covers X. Define the fractal dimension of X, dimF X, by

dim lim
ln ,

ln
,F

n
X

X
=

()
Æe

e
e0 1

ln
ln

c
1 e()

d
n c

=
() -

()
ln ln

ln
.

e
e1

n c
d

e
e

() = Ê
Ë

ˆ
¯

1
,

22.3 Dimension Theory and Fractals 803

provided that this limit exists.

We should point out that we are using Barnsley’s terminology ([Barn88]) here, but
there does not seem to be any universal agreement for the name “fractal dimension.”
For example, in Alligood et al. ([AlSY97]) it is called the “box-counting dimension.”
Alligood et al. use d-dimensional boxes instead of closed balls, but that is an unim-
portant difference.

We shall describe one more notion of dimension. Although we restrict ourselves
to subsets of Rn, what we say next applies to subsets of an arbitrary metric space.

Let X be a nonempty bounded subset of Rn. Let p be an arbitrary real number, 0
£ p < •. If 0 < e, define

and

Definition. The quantity mp(X) is called the Hausdorff p-dimensional measure of X.

The interesting property of the function mp(X) is that, as a function of p, it
assumes only three possible values, namely, 0, •, or a single finite value.

22.3.2 Theorem. There is a unique real number dH, 0 £ dH £ n, so that

Proof. See [Fede69] or [Falc85].

Definition. The number dH appearing in Theorem 22.3.2 is called the Hausdorff-
Besicovitch dimension of X and will be denoted by dimH X.

The various dimensions can be related.

22.3.3 Theorem. If X is a bounded subset of Rn, then dimX £ dimHX £ dimFX £ n.

Proof. See [HurW48] and [Barn88].

On “nice” spaces these definitions of dimension lead to the same integer dimen-
sion. One final definition of dimension will be given in the next section.

What we have here is a good example of where some topic that people used to
think was of interest only to hardcore mathematicians, all of a sudden got some very
practical importance. After all, who would have thought that weird spaces with non-
integer dimensions would ever be relevant to the “real” world. Of course, most people
might not even have been aware of weird-dimensional spaces because dimension
theory is typically only encountered by graduate students in mathematics. Perhaps a

m if p d

if p d

p H

H

X() = • <
= >0 .

m mp pX X() = () >{ }sup , .e e 0

m diam and diamp i
p

i i
i

i
i

X U U X U X U, inf , ,e e() = ()() Ã = () <
Ï
Ì
Ó

¸
˝
˛=

•

=

•

Â
11

I

804 22 Chaos and Fractals

more meaningful example, which shows the kind of reactions that mathematicians
encounter from nonmathematicians, has to do with the existence of continuous but
nowhere differentiable functions. A typical nonmathematics major would quickly put
this out of his/her mind as being totally irrelevant.

Here is how Mandelbrot defined a fractal.

Definition. A fractal is a set whose Hausdorff-Besicovitch dimension is larger than
its topological dimension.

This definition is not totally satisfactory as even Mandelbrot pointed out. There
are spaces that have “fractal”-type properties that are not fractals. The definition has
therefore evolved into a more visual one, namely, that a fractal set should exhibit one
or more of the following: a complicated structure over a wide range of scales, self-
similarity (see Section 22.4), and/or have a noninteger type of dimension.

A well-known simple example of a fractal is the triadic Koch curve. See Figure
22.4. One starts with an equilateral triangle and successively replaces each straight
line segment of length e by four smaller segments, each of length e/3, as indicated in
the figure. If L(e) is the length of the curve when the length of each edge is e, then
one can show that this function satisfies the recurrence relation

This leads to a solution L(e) = e1-d, where

and the logarithm is to any base. Rewriting L(e) as

we see that the term e-d can be thought of as the number of sides in the Koch curve
if one uses edges of length e. Since the only product

e ed p-

L e e ed() = - ,

d = =
log
log

.
4
3

1 2618

L
e

L e
3

4
3

Ê
Ë

ˆ
¯ = ().

22.3 Dimension Theory and Fractals 805

Figure 22.4. Four stages of the triadic Koch curve.

which stays finite as e approaches 0 is where p = d, the Koch curve is a fractal of
dimension d. See [Mand83] for an interesting connection between the Koch curve and
the coastline of Britain (they both have the same dimension). The Koch curve is only
one example of a space that can be defined by recursive substitution. See Glassner’s
overview ([Glas92]) of constructions of this type and how they can create interesting
objects that can be viewed at different scales.

Looking at the concept of dimension from a slightly different point of view, one
notices that, in real life, dimension is relative to a particular context. Mandelbrot
refers to this everyday notion of dimension as the effective dimension. For example,
consider a 10-centimeter-wide ball of 1-millimeter thread. The dimension associated
to it would depend on the distance of the viewer to the object:

Distance to object Effective dimension

• 0 (one sees a point)
10 cm 3 (one sees a solid ball)
10 mm 1 (one sees the threads)
0.1 mm 3 (the threads look like columns)
0.01 mm 1 (one sees the fibers in the threads)

Finally, what do fractals have to do with dynamical systems and chaos? In a sense,
not much. The Mandelbrot set above is a fractal, however, and so the connection
between the two is that the sets important to the study of a dynamical system, in par-
ticular chaotic ones, often are fractals.

22.4 Iterated Function Systems

This section gives a very brief overview of iterated function systems. A good reference
for this topic is [Barn88] and our discussion here basically touches on some high-
lights from that book. We start with two examples.

Consider transformations w1, w2, . . . , wk of the plane of the form

where the Ai are 2 ¥ 2 matrices and the pi are fixed points. We are interested in what
happens to points as we repeatedly apply the transformations wi to them. For example,
consider the transformations w1, w2, and w3, where

(22.3)

and

(22.4)

Consider Algorithm 22.4.1. What the algorithm does is start out with a white rectan-
gle [1,50] ¥ [1,50] that has a black boundary and then successively applies the trans-

p p p1 2 311 1 50 50 50= () = () = (), , , , , .and

A A A1 2 3
0 5 0

0 0 5
= = = Ê

Ë
ˆ
¯

.

.

w Ai i ip p p() = + ,

806 22 Chaos and Fractals

formations w1, w2, and w3 to all the points of the rectangle. Figure 22.5 shows the pic-
tures after the first seven iterations in Algorithm 22.4.1.

Algorithm 22.4.1 is what Barnsley calls a deterministic algorithm. We can intro-
duce some chance into the algorithm by picking our transformations wi randomly.
This and a slight generalization of Algorithm 22.4.1 leads to the nondeterministic
Algorithm 22.4.2. We start off with q0 = (0,0) and then generate the sequence of points

22.4 Iterated Function Systems 807

integer array x[1..100,1..100], y[1..100,1..100], p1[1..2], p2[1..2], p3[1..2] ;
real array A1[1..2,1..2], A2[1..2,1..2], A3[1..2,1..2];
integer i, j;

 Assuming that 1 corresponds to the color white and 0 to black, initialize the array x
so that

 x[i,j] := 0 if i = 1,100 or j = 1,100 ,
 := 1 , otherwise

Draw x;
Initialize the arrays Ai and pi to the values shown in (22.3) and (22.4), respectively.

loop
Initialize the array y to all 1s.
for i:=1 to 100 do

for j:=1 to 100 do
if x[i,j] = 0 then

begin
y[[i,j]A1+p1] := 0; { We truncate coordinates to integers }
y[[i,j]A2+p2] := 0;
y[[i,j]A3+p3] := 0;

end;
x := y;
Draw x;

endloop;

Algorithm 22.4.1. A deterministic iterated function system.

Figure 22.5. Results of a deterministic iterated function system ([Barn88]).

qi, i > 0, using the formula qi = T(qi-1), where T is one of the transformations w1, w2,
. . . , wm chosen at random (with possibly different probabilities) at each stage. The
scaled and offset points are plotted on the screen as we go along, except that the first
few are discarded and not plotted because they would introduce some initial “noise”
into the picture. Figure 22.6 shows the result after a sufficient number of iterations
using the following data with m = 4 from [Barn88]:

808 22 Chaos and Fractals

real array A1[1..2,1..2], A2[1..2,1..2], º , Am[1..2,1..2], p1[1..2], p2[1..2], º , pm[1..2];
real array s[1..m];
real x, y, newx, newy;
integer numIterations, n, ix, iy;

Initialize the arrays Ai, pi, and s;

Set the screen to white;
 (x,y) := (0,0); numIterations := Desired number of iterations;

for n:=1 to numIterations do
begin

k := one of the indices {1,2, º ,m}, where probability of picking index i is s[i];
(newx,newy) := [x,y]Ak+pk;
(ix,iy) := round (scale factor)*(newx,newy)+(screen center) to integers;
if n > 10 then SetPixel (ix,iy,black); { Skip first 10 iterations }

 (x,y) := (newx,newy);
end;

Algorithm 22.4.2. A nondeterministic iterated function system.

Figure 22.6. Results of a nondeterministic iterated function system.

As we can see, the picture looks like a fern. The question arises as to how one could
generate some other natural phenomena. To answer this question we first need to
develop the mathematical setting in which the iterated function systems referred to
in the figures will be defined. Some of the definitions and theorems will sound pretty
abstract, but hopefully the reader will look beyond that and see the intuitive ideas
they are trying to capture.

Let (X,d) be a complete metric space.

Notation. Let H(X) denote the set of nonempty compact subsets of X.

Define a map

by

22.4.1 Lemma. The function dH is a metric on H(X).

Proof. See [Barn88].

Definition. The metric dH is called the Hausdorff metric on H(X).

Barnsley calls the metric space (H(X),dH) the space of fractals.

22.4.2 Theorem. (H(X),dH) is a complete metric space.

Proof. See [Barn88].

Definition. Let (X,d) be a metric space. A map f: X Æ X is called a contraction
mapping, or simply a contraction, of X if there exists a constant c, 0 £ c < 1 , so that

for all x, y Œ X. The constant c is called a contractivity factor of f.

The simplest examples of contraction mappings are the radial transformation f:
Rn Æ Rn, f(p) = cp, with 0 £ c < 1.

22.4.3 Theorem. (The Contraction Mapping Theorem) Any contraction mapping
f of a complete metric space X has a unique fixed point. In fact, if x is any point of
X, then the sequence of points x, f(x), f2(x), . . . converges to that fixed point.

Proof. The proof follows from the easily proved observation that the sequence of
points x, f(x), f2(x), . . . is a Cauchy sequence.

d f f cdx y x y() ()() £ (), ,

d dist distH A B A B B A, max , , , .() = () ()()

d H HH: X X R() ¥ () Æ

A A A A1 2 3 4

1 2 3 4

0 0

0 0 16

0 85 0 04

0 04 0 85

0 2 0 23

0 26 0 22

0 15 0 26

0 28 0 24

0 0 0 1 6 0 1 6 0 0 44

= Ê
Ë

ˆ
¯ =

-Ê
Ë

ˆ
¯ =

-
Ê
Ë

ˆ
¯ =

-Ê
Ë

ˆ
¯

= () = () = () =

.
,

. .

. .
,

. .

. .
,

. .

. .
,

, , , . , , . , , .p p p p ()

[] = [] = [] = [] =

,

. , . , . , . .s s s s1 0 01 2 0 85 3 0 07 4 0 07

22.4 Iterated Function Systems 809

We can now describe a way to generalize Algorithms 22.4.1 and 22.4.2 (and also
the chaos game construction in Programming Project 1.5.5). The key elements are
captured by the following definition:

Definition. An iterated function system, or IFS for short, is a pair ((X,d),W), where
(X,d) is a complete metric and W = {w1,w2, . . . ,wk} is a finite set of contraction maps
wi: X Æ X. The contractivity factor c of this system is defined by

where ci is the contractivity factor of wi. An iterated function system with probabilities
is a tuple ((X,d),W,P}, where ((X,d),W) is an IFS and P = {p1,p2, . . . ,p|W|} is a set of
probabilities, that is,

22.4.4 Theorem. Let ((X,d),W) be an IFS with contraction factor c. Define

by

Then the map wW is a contraction map on (H(X),dH) with contractivity factor c. Fur-
thermore, the unique fixed point A of wW, called the attractor of the IFS ((X,d),W),
satisfies

(1) A = , and

(2) A = for any B Œ H (X).

Proof. See [Barn88].

It is the theory behind Theorem 22.4.4 that explains the “deterministic” Algorithm
22.4.1. We refer the reader to Barnsley’s book for the theorem that corresponds to
Theorem 22.4.4 in the case of iterated function systems with probabilities and the “non-
deterministic” Algorithm 22.4.2. It involves technicalities of measure theory that would
take us past the level of our presentation here. Nevertheless, it is the study of iterated
function systems with probabilities that really leads to an understanding of fractals.

We move on in our discussion of “deterministic” IFSs in order to state the fun-
damental theorem in this topic.

Definition. Let (X,d) be a complete metric space and let A Œ H(X) . The map w:
H(X) Æ H(X) defined by w(B) = A, B Œ H(X), is called a condensation transformation
of X and A is called its condensation set.

lim
n

W
n

w
Æ•

()B

w
w W

A()
Œ
U

w wW
w W

B B() = ()
Œ
U .

w H HW : X X() Æ ()

p and p p pi w> + + + =0 11 2

c c c ck= { }max , ,. . . , ,1 2

810 22 Chaos and Fractals

It is easy to check that a condensation transformation on X is a contraction
mapping on H(X) that has contractivity factor 0 and that its unique fixed point is its
condensation set.

Definition. If ((X,d),W) is an IFS and w is a condensation transformation of X, then
((X,d),W » {w}) is called an IFS with condensation.

22.4.5 Theorem. (The Collage Theorem) Let (X,d) be a complete metric space and
assume that we are given an L Œ H(X) and an e > 0. Let ((X,d),W) be any IFS, or IFS
with condensation, so that

where dH is the Hausdorff metric on H(X). If c is the contractivity factor of the IFS
and A is its attractor, then

or equivalently,

Proof. See [Barn88].

The importance of the Collage Theorem is that it tells us how we can find an IFS
whose attractor is close to a given set. Specifically, it means that if we want to gen-
erate a particular type of shape, say a tree, we do not have to try lots of contraction
mappings at random. On the other hand, one needs to realize that IFSs are not used
to reproduce any specific object. Furthermore, they define an image and not individ-
ual objects in an image. A useful fact is that small changes to the contraction maps
will lead to small changes in the attractor and that the attractor depends in a “con-
tinuous” way on the contraction maps. Changing one contractive map may make parts
of objects appear or disappear in the image.

We return now to the topic of dimension. What is the dimension of the attractors
of IFSs? To answer this question, we first define the “address” of a point in its attrac-
tor. Given an IFS ((X,d),W), one of the things one does is take points x of X and look
at what happens to them under successive transformations via elements of W, that is,
one deals with points

where wi Œ W. If W consists of the maps w1,w2, . . . ,wk, then

for some index ji and so y is completely specified by the sequence of indices j1, j2, . . . ,
jm. It is useful to introduce some notation.

wi jw i=

y x= ()()w w w1 2o o o. . . ,m

d
c

d w for all HH H
w W

L A L L L X, , .() £
-

()Ê
ËÁ

ˆ
¯̃ Œ ()

Œ

1
1 U

d
cH L A, ,() £

-
e

1

d wH
w W

L L, ,()Ê
ËÁ

ˆ
¯̃ £

Œ
U e

22.4 Iterated Function Systems 811

Definition. The code space of an IFS ((X,d),W) is defined to be the metric space
(S,dS), where S is the space of all infinite sequences (s1,s2, . . .), si Œ {1,2, . . . , |W|), and
dS is defined by

One can show that the map dS in the definition of a code space is in fact a metric.

Definition. Let (S,dS) be the code space of the IFS ((X,d),W). Let W = {w1,w2, . . .
wk}. For m = 1,2, . . . , define

by

22.4.6 Theorem. Let ((X,d),W) be an IFS with code space (S,dS) and attractor A.
Then

exists for all s Œ S and x Œ X and its value is independent of x and lies in A. In other
words, there is a well-defined map

defined by

(22.5)

The map j is continuous and onto A.

Proof. See [Barn88].

Given a point in the attractor A, there may be many ways that one might con-
verge to it under compositions of maps from W.

Definition. Let ((X,d),W) be an IFS with code space (S,dS) and attractor A. Let j: S
Æ A be the map defined by equation (22.5). Let a Œ A. Any element of j-1(a) is called
an address of a. The IFS is said to be totally disconnected if each point of A has a
unique address. It is just touching if it is not totally disconnected and A has an open
set O so that

(1) w(O) « w¢(O) = f for all w, w¢ Œ W with w π w¢, and
(2) .w

w W

O O() Õ
Œ
U

j s j s() = ()
Æ•

lim , .
m

m x

j : S Æ A

lim ,
m

m
Æ•

()j s x

jm s s ss s w w wm m1 2 1 1, ,. . . ,()() = ()()-x xo o o

jm : S ¥ ÆX X

d s s t t
s t

W

i i
i

i
S 1 2 1 2

1 1
, ,. . . , , ,. . . .() ()() =

-

+()=

•

Â

812 22 Chaos and Fractals

The IFS is said to be overlapping if it is neither just touching nor totally disconnected.

22.4.7 Theorem. Let ((Rn,d),W) be an IFS where the elements of W are similarity
transformations. Let W = {w1,w2, . . . ,wk}, let ci be the contraction factor of wi, and let
D, D Œ [0,•) , be the unique solution to the equation

Let A be the attractor of the IFS and let dimF A and dimH A be its fractal and Haus-
dorff-Besicovitch dimension.

(1) If the IFS is totally disconnected or just-touching, then D £ n and D = dimF A
= dimH A.

(2) If the IFS is overlapping, then dimF A £ D .

Proof. See [Barn88].

Barnsley explains how one can use Theorem 22.4.7 to estimate the fractal dimen-
sion of an attractor of an IFS. The integer D in the theorem actually has a name.

Definition. A set X Õ Rn is said to be invariant for a set {w1,w2, . . . ,wk} of contrac-
tions of Rn if

If the contractions are similarity transformations of Rn and if for some integer s,
the Hausdorff s-dimensional measure ms(X) > 0 but

then the set X is said to be self-similar and the similarity dimension of X, dimS X, is
the integer D defined by the equation

(22.5)

where ci is the contraction factor of wi.

For a more thorough discussion of self-similarity and a proof of the fact that the
similarity dimension is well-defined see [Falc85]. Intuitively, a self-similar set is a set
that is built up out of parts that are similar to the entire set. For example, a cube is
self-similar because it can be divided into four smaller cubes, each of which can be
divides into four smaller cubes, and so on. The triadic Koch curve is also a self-similar
set. The next corollary, which states that the fractal, Hausdorff-Besicovitch, and sim-

ci
D

i

k

=
Â =

1

1,

m w w for i js i jX X() ()() = π, , ,0

X X= ()
=

wi
i

k

1
U .

ci
D

i

k

=
Â =

1

1.

22.4 Iterated Function Systems 813

ilarity dimension are the same in certain situations, is an immediate consequence of
Theorem 22.4.7.

22.4.8 Corollary. Let ((Rn,d),W) be a totally disconnected IFS where the elements
of W are similarity transformations. If A is the attractor of this IFS, then

This finishes our brief overview of iterated function systems. It should have at
least given the reader an idea of how one can compute fractals very easily and the
kind of mathematics that is involved in proving the properties that one hopes to be
true.

dim dim dim .F H SA A A= =

814 22 Chaos and Fractals

Bn(p,r) = {q Œ Rn | |pq| < r}
Bn (r) = Bn(0,r)
Bn = Bn(0,1)

= the open (n-dimensional) unit disk in Rn

Dn (p,r) = {q Œ Rn | |pq| £ r}
= an n-dimensional closed disk

Dn = Dn(0,1)
= the closed (n-dimensional) unit disk in Rn

Sn-1 = {q Œ Rn | |q| = 1}
= the (n - 1)-dimensional unit sphere in Rn

S+
n-1 = Sn-1 « Rn

+
= the upper hemisphere

S-
n-1 = Sn-1 « Rn

-
= the lower hemisphere

Pn = n-dimensional projective space

There are natural inclusions: 0 = R0 � R1 � R2 � . . .
Similarly for the other spaces above.

Xk = the k-fold Cartesian product of the set X

X D Y = (X - Y) » (Y - X) (symmetric difference)

H± (f) = halfspace associated to function f
H (p,n) = halfplane defined by plane containing point p and with normal

vector n
iH (p,n) = interior of halfplane H (p,n)
P (p,n) = hyperplane ∂H(p,n)

inf X = infimum or greatest lower bound of the set X of real numbers
sup X = supremum or least upper bound of the set X of real numbers

cl (X) = closure of X
int (X) = interior of X
rX = regularization of X
op* = regularized set operator, where op = », «, -, c (complement), and

D (symmetric difference)

aff (X) = affine hull of X
conv (X) = convex hull of X

f (a+) = right-handed limit of f at a
f (a-) = left-handed limit of f at a
f(d) (x) = the dth derivative of f

X X X¥ ¥ ¥. . .
k

1 244 344

816 Appendix A Notation

I = In = n ¥ n identity matrix which consists of 1s along the diagonal and
0s elsewhere

AT = transpose of the matrix A

GL (n,k) = the linear group of nonsingular n ¥ n matrices over k = R or C
O (n) = the group of real orthogonal n ¥ n matrices
SO (n) = the group of real special orthogonal n ¥ n matrices

R (f,g) = RX (f,g) = the resultant of polynomials f(X) and g(X)
= the complex conjugate of the complex number or quaternion z

T (A,B, . . .) = (A¢,B¢, . . .): This means that T (A) = A¢, T (B) = B¢, . . .

1X = the identity map on the set X
cA = the characteristic function of a set A as a subset of a given larger

set X (XA(x) = 1 if xŒA and 0 otherwise.)

f-1 (y) = {x | f(x) = y}

|| ||p = Lp norm
<f,g> = the inner product of f and g in L2([a,b])

a | b = a divides b

Sign (x) = +1 if x ≥ 0 and -1 otherwise (returns an integer)
Sign (s) = sign of permutation s

= +1 if s is an even permutation, -1 if s is an odd permutation

Trunc (x) = greatest integer £x (returns a real value)
Floor (x) = greatest integer £x (returns an integer value)

exp (x) = ex

k (s) = curvature function
t (s) = torsion function

Let p(u) be a parametrized curve:

Let p(u,v) be a parametrized surface:

p p a b p
p
u

p
p
u

a b p
p
v

p
p
v

a b

p
p

u v
p

p
u v

a b

ab
u

ab
u v

ab
v

uv
ab
uv

= () = = () = = ()

= = ()

, , , , , , ,

, ,

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂ ∂

2 2

p p c p p
dp
du

p p cc
u

c
u= () = ¢ = = ¢(), ,

z

Appendix A Notation 817

Commutative Diagram. In general, if one has a directed graph where the nodes are
sets and the arrows correspond to maps between these sets, then this is said to con-
stitute a commutative diagram if, whenever two directed paths start and end at the
same points, the corresponding composition of maps is equal. Commutative diagrams
are nice to have and the terminology is useful in many areas of mathematics. As an
example, consider the diagram

If G(g(a)) = F(f(a)) for all a Œ A , then the diagram is said to be commutative.

A B

g F

C D

f

G

æ Ææ
Ø Ø

æ Ææ

818 Appendix A Notation

Standard Abstract Data Types:

integer, real, string, etc.,
array, list, tree, graph, etc.
integer array, real list, etc.

These are defined by their operations (not some lower level data structure).
At lower levels, to describe implementations, there is also a record type that
combines known data types to produce other types. For example,

employee = record
string name;
integer age;

.
.

end;
employee e;

Fields of a record are referenced using the standard dot notation, as in “e.name”.
Alternatively, we shall use the capitalized field name as an operator to access the
field. For example, Name(e) will be used to denote e.name.

All pointer variables will end in “Ptr” and we shall sometimes use the convention
that if <z>Ptr is a declared pointer variable, then <z> is the item to which the
pointer points.

Pointers are often implementation artifacts, but if really needed in an abstract
program, we use operations such as PointerTo, ValueOf, SetValueOf, and Pointer-
ToFirst, as in

integer i, k;
integer pointer iPtr;
integer list L;

iPtr := PointerTo (i);
k := ValueOf (iPtr);
SetValueOf (iPtr,7);
iPtr := PointerToFirst (L);

If Ptr is a pointer to a record, as in

employee pointer Ptr;

we use the notation PtrÆage to denote the “age” field of the record pointed to by
Ptr. For example,

PtrÆage := 45;
i := PtrÆage;

820 Appendix B Abstract Program Syntax

Procedures/Functions:

procedure p (<parameters>);
<return type> function f (<parameters>);

Reference parameters, that is, parameters that are passed by address, are indi-
cated by “ref”. Any other parameters will be assumed to be value parameters by
default. For example,

integer function (ref real r, integer i);

indicates that the parameter r is passed by address and i, by value.

All procedure/function names will be capitalized. All variables will start with a
lowercase letter.

Appendix B Abstract Program Syntax 821

C.2 A Sample IGES File 823

Figure C.1. Part of a sample IGES file.

824 Appendix C IGES

Columns 74–80 of every line must contain a right-justified sequence number that starts
with 1 for the first line in every section and increases sequentially by 1 up to the last
line in that section. The number can have leading zeros. Column 73 in every line must
contain one of the letters “S,” “G,” “D,” “P,” or “T” depending on whether that line
belongs to the Start, Global, Directory Entry, Parameter Data, or Terminate section,
respectively. Check out these parts in Figure C.1. In the rest of the discussion we shall
only describe the contents of columns 1–72.

IGES files use two single-character delimiters. One separates parameters within
a record and the other separates records. The defaults for these delimiters are the
comma and the semicolon, respectively. Real constants consist of basic decimal nota-
tion real numbers or such numbers followed by an exponent that is defined by an “E”
followed by a signed integer or a “D,” for double precision, followed by a signed
integer. String constants have the form nHx, where n is a character count and x is a
string of n characters. For example, on line 4 of the file in Figure C.1, “4HINCH” rep-
resents the string “INCH.” Pointer constants of one to seven digit integers refer to a
line number in the file.

The Start Section. Columns 1–72 of each line in this section can contain any text
whatsoever, formatted in any way whatsoever.

The Global Section. This section consists of a collection of 22 parameters that
describe the origin of the file and information needed to interpret the file. In partic-
ular, the first two string parameters define the parameter and record delimiter. The
two commas at the beginning of the global section in our sample file indicate that
we are using the defaults (comma and semicolon). Several of these parameters are
described below:

Parameter Field type Description

1 String Parameter delimiter
2 String End of record delimiter
3 String Product identification from sending system
4 String File name
.
7 Integer Number of bits for integer representation
8 Integer Number of bits in a single precision floating point exponent
9 Integer Number of bits in a single precision floating point mantissa
10 Integer Number of bits in a double precision exponent
11 Integer Number of bits in a double precision mantissa
.
14 Integer Unit flag
15 Integer Units: 4HINCH for unit flag = 1 and 2HMM for unit flag = 2

(Other unit flags and units are possible)
.
18 String Date and time of file generation of the form 13HYYMMDD.HHNNSS

In our sample file, parameters 7–11 are 16, 8, 24, 8, and 56, respectively.

The Directory Entry Section. There is one directory entry for each entity in the file
and each consists of two lines that are subdivided into 8-bit fields. The object of the
section is to provide a list of all entities and to specify their attributes. The ordering
of the entries can be arbitrary except that certain definition entities must precede their
instances. In our sample file in Figure C.1 there are actually 73 entities although we
have only shown some of them. Figure C.2 shows the fields in the directory entry lines
and their names. We describe the more interesting ones.

Entity Type Number. Each entity has a unique number. Numbers 100 through
199 are reserved for geometric entities. The nongeometry entities come in two
flavors: annotation entities and structure entities. The entities and their numbers
will be discussed in more detail in Sections C.3 and C.4

Parameter Data. This pointer specifies the number of the line in the parameter
data section where the data for this entity starts. For example, the data for the 124
entity starts at line 1 and that of the 110 entity starts at line 19 in the parameter data
section.

Transformation Matrix. This points to a transformation entity (entity number
124). All geometric points need to be transformed by this transformation. For
example, entities 110, 100, 112, 106, and 108 all use the transformation entity
specified in directory entry line number 1.

Status. This field consists of four 2-digit values whose meaning is shown in
Figure C.3. For example, in our file entity 406 is a physically dependent definition.

Parameter Line Count. The number of lines used by this entity in the parameter
data section. In our file, entity 100 used two lines of data and entity 106 used six.

C.2 A Sample IGES File 825

Figure C.2. The Directory Entry Section.

Form Number. Some entities have different interpretations. The interpretation
numbers are specified in the entity descriptions. In our file, entity 106 specified
interpretation 2, which means that data points are presented as coordinate triples.

Parameter Data Section. This section contains the data associated to each entity.
The data is entered in free format on each line in columns 1–64, except that the first
field of the first line of data for an entity must be the entity type number. For example,
in our file note the number 124 at the beginning of the first line of the parameter data
section indicating that this is data for some entity of type 124 that was specified in
the directory entry section. Column 65 should be blank. Columns 66–72 on each
parameter data line contains the sequence number of the directory entity that uses
this data. In our file, note the number 1 in the first three lines of the parameter data
section. Two groups of parameters can come at the end of the specified parameters
for each entity unless the record delimiter appears first. The first group of parameters
may contain pointers to associativity instances, general notes, and/or text template
entities. The second group of parameters may contain pointers to one or more prop-
erties. For example, see parameters 8 to 9 + n + m for arc entity number 100 in Figure
C.6. Section C.4 will explain these extra parameters more. Any desired comments may
be added after the record delimiter and these can run over several lines. See Figure
C.4 for an outline of the structure of the parameter data section.

826 Appendix C IGES

Digits : 1-2 3-4 5-6 7-8
æææææææææææææææææææææææææææææææææææææææ
Meaning: Blank status Subordinate entity switch Entity use flag Hierarchy

00 visible 00 independent 00 geometry 00 Global top down
01 blanked 01 physically dependent 01 annotation 01 Global defer

02 logically dependent 02 definition 02 Use hierarchy
03 both (01) and (02) 03 other property

 04 logical

Figure C.3. The Directory Entry Status field.

Figure C.4. The Parameter Data Section for one entity.

Terminate Section. This section consists of only one line consisting of ten 8-
character-long fields. The first four fields start with “S,” “G,” “D,” and “P” correspon-
ding to the start, global, directory entry, and parameter data sections, respectively, fol-
lowed by the number of lines in that section right-justified in the field. For example,
in our file in Figure C.1 we can see that there were 2, 3, 146, and 159 lines in the start,
global, directory entry, and parameter data sections, respectively. Columns 33–72 are
not used.

C.3 The IGES Geometric Types

This section discusses a few of the geometric entities in IGES and their parameter
specification. Figure C.5 lists some of the available entities. We describe those that
appear in our sample file in Figure C.1.

Entity Number 124. This transformation matrix entity defines a 3 ¥ 4 matrix of the
form

C.3 The IGES Geometric Types 827

Entity type # Entity type Entity type # Entity type
æææææææææææææææææ æææ æææææææææææææææææ

100 Circular arc 132 Connect Point
102 Composite curve 134 Node
104 Conic arc 136 Finite element
106 Copious data 138 Nodal displacement and rotation

Centerline 140 Offset surface
Linear path 142 Curve on a parametric surface

ection line 144 Trimmed parametric surface
Si
S

mple closed area
Witness line CSG Types:

108 Plane
110 Line 150 Block
112 Parametric spline curve 152 Right angular wedge
114 Parametric spline surface 154 Right circular cylinder
116 Point 156 Right circular cone frustrum
118 Ruled surface 158 Sphere
120 Surface of revolution 160 Torus
122 Tabulated cylinder 162 Solid of revolution
124 Transformation matrix 164 Solid of linear extrusion
125 Flash 168 Ellipsoid
126 Rational B-spline curve 180 Boolean tree
128 Rational B-spline surface 184 Solid assembly
130 Offset curve

Figure C.5. Table of some geometric IGES entities.

with the entries stored in row major form in the parameter data section. The matrix
(rij) is assumed to be an orthogonal matrix. The entity corresponds to a transforma-
tion defined in terms of column vectors by

Our entity had form number 0. Its data started at line number 1 of the parameter data
section, used three lines, and defined the identity transformation. Using other form
numbers allows one to pass additional information.

Note. As we list the data for the geometric entities below, keep in mind that nor-
mally it would have to be transformed by the transformation matrix associated to the
entity to get the “real” data. In our case, we are dealing with the identity transfor-
mation so that this is not necessary and we shall not keep pointing that out.

Entity Number 110. A line entity defines a segment between two points (x1,y1,z1)
and (x2,y2,z2) whose coordinates are stored in a sequential manner in the parameter
data section. In our case the data was stored in parameter data line number 19 and
defined the segment [(0,0,0),(0,3,0)].

Entity Number 100. The data for this circular arc entity consists of two lines start-
ing with parameter data line number 39. Figure C.6 describes the meaning of the data.
The first number on line 39 is the entity number. The rest of the fields have the fol-
lowing values:

In other words, our arc lies in the plane z = -4 parallel to the xy-plane. It has center
(2,1,-4), starts at (2.5,1,-4), and ends at (2,1.5,-4). The fact that a semicolon follows
the x3 and y3 values means that there are no extra pointers, that is, n = m = 0.

Note. The fields 8 through 9 + n + m in Figure C.6 are potentially present in most
entities, although we shall no longer bother to mention them if they have not been
given any values.

Entity Number 112. The parametric spline curve entity corresponds to a spline
curve

p u x u y u z u() = () () ()(), ,

zt E

x y x y x y

= - = -

() = () () = () () = ()
0 4000000 01 4 0

1 1 2 0 1 0 2 2 2 5 1 0 3 3 2 0 1 5

. . ,

, . , . , , . , . , , . , . .

x

y

z

r r r

r r r

r r r

x

y

z

t

t

t

Ê

Ë
Á
Á

ˆ

¯
˜
˜

Æ
Ê

Ë
Á
Á

ˆ

¯
˜
˜

Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
Ê

Ë
Á
Á

ˆ

¯
˜
˜

11 12 13

21 22 23

31 32 33

1

2

3

.

r r r t

r r r t

r r r t

11 12 13 1

21 22 23 2

31 32 33 3

Ê

Ë
Á
Á

ˆ

¯
˜
˜

828 Appendix C IGES

some of whose parameter data fields are described in Figure C.7. In particular,

for

and

The coefficients D or the coefficients D and C will be zero if the polynomials are of
degree 2 or 1, respectively. If the curve is planar, then the Z coefficients will be zero,
except that AZ(i) will specify the plane z = AZ(i) that contains the curve. So that one
can get the value and the first, second, and third derivative at the end point of the
curve without computing the polynomial at u = T(N + 1), these values, divided by
appropriate factorials, are included in the parameter data at the end of the coefficient
data. The entity in our example has its data in parameter data lines 41 through 53.
We see that

s u T i= - ().

T i u T i i N() £ £ +() =1 1 2, , , . . . , ,

x u AX i BX i s CX i s DX i s

y u AY i BY i s CY i s DY i s

z u AZ i BZ i s CZ i s DZ i s

() = () + () + () + ()
() = () + () + () + ()
() = () + () + () + ()

2 3

2 3

2 3

C.3 The IGES Geometric Types 829

Parameter Name Type Description
æææææææææææææææææææææææææææææææææ

1 zt Real Parallel zt displacement of arc from xt, yt plane
2 x1 Real Arc center x-coordinate
3 y1 Real Arc center y-coordinate
4 x2 Real Start point x-coordinate
5 y2 Real Start point y-coordinate
6 x3 Real Terminate point x-coordinate
7 y3 Real Terminate point y-coordinate
8 n Integer Number of back pointers (to associativity entities)/

text pointers (to general note entities)
9 DE Pointer .
. Pointers to associativities or general notes
. .
8 + n DE Pointer
9 + n m Integer Number of properties

 10 + n DE Pointer

.

.
. Pointers to properties
. .

 9 + n + m DE Pointer .

Figure C.6. Parameter data for circular arc entity #100.

In other words the entity defines a cubic planar spline that is continuous and has slope
continuity at the six breakpoints T(i) = i, i = 0, 1, . . . , 5.

AY BY CY DY E E

TPZ TPZ TPZ TPZ

1 1 1 1 3 0 0 1481045 01 0 2384186 06 3784813 0

0 1 2 3 0 0 0 0

() () () ()() = - + - -()

() = ()

, , , . , . , . ,. , ,

, , , . ,. ,. ,. .

M

CTYPE H NDIM N T i i i

AX BX CX DX

= = = = () = =

() () () ()() = -()
3 1 2 5 0 1 5

1 1 1 1 3 0 8722851 0000003576279 01331125

, , , , , , , . . . , ,

, , , . ,. ,. , . ,

830 Appendix C IGES

Parameter Name Type Description
æææææææææææææææææææææææææææææææææææ

1 CTYPE Integer Spline type
1 = linear 4 = Wilson-Fowler
2 = quadratic 5 = modified Wilson-Fowler
3 = cubic 6 = B-spline

2 H Integer Continuity with respect to arc length at breakpoints
1 = curve is continuous and has slope continuity
2 = curve is continuous and has both slope and

curvature continuity
3 NDIM Integer 2 = planar

3 = non-planar
4 N Integer Number of segments
5 T(1) Real Break points of piecewise polynomial
.

5+N T(N+1) Real
 6+N AX(1) Real x-Coordinate polynomial
 7+N BX(1)

8+N CX(1)
9+N DX(1)

 10+N AY(1) . y-Coordinate polynomial
.

 13+N DY(1)
 14+N AZ(1) . z-Coordinate polynomial

.
 18+N AX(2)

. .
6+13N TPX0 . Terminate point x-value

. TPX1 . Terminate point x-value of 1st derivative
TPX2 Terminate point x-value of 2nd derivative/2!
TPX3 Terminate point x-value of 3rd derivative/3!
TPY0 . Terminate point y-value

. .

Figure C.7. Parameter data for parametric spline curve entity #112.

Entity Number 106. The copious data entity has multiple meanings depending on
its form number. Figure C.8 describes some of the fields of its parameter data. When
the form number is 1, 2, or 3, then the IP field takes on the same value and they both
have the same meaning. Its data starts in parameter data line number 70 and consists
of 3 lines altogether. In our case

and we have five data points

How the points are interpreted is usually determined by the entity that refers to this
one as we shall see when we discuss the next entity.

Entity Number 108. This is the plane entity. There is one parameter data line for
it and that line has number 73. Figure C.9 describes some, but not all, parameters
that can be associated to it. In our case we have

0 34 0 1 0 34 0 1 0 34 1 0 1 0 34 1 0 1 0 34 0 1, , . , , , . , , . , . , , . , . , , , . .-() () () -() -()

form number = = =IP N2 5, ,

C.3 The IGES Geometric Types 831

Parameter Name Type Description
ææææææææææææææææææææææææææææ

1 IP Integer Interpretation flag
IP = 1 x, y pairs, common z
IP = 2 x, y, z triples
IP = 3 x, y, z coordinates

 i, j, k vector coordinates
2 N Integer Number of n-tuples

Case IP = 2:
3 Æ 2+3N Sequence of x, y, z tuples of data values

Figure C.8. Partial parameter data for copious entity #106.

Parameter Name Type Description
ææææææææææææææææææææææææææææææææææ

1 A Real Corresponds to plane
2 B Real
3 C Real Ax + By + Cz = D
4 D Real
5 DE Pointer Pointer to directory entry of closed curve entity or 0

Figure C.9. Partial parameter data for plane entity #108.

Because DE is nonzero, we have a closed curve in our plane that happens to be the
copious data entity described above consisting of five points in the plane x = 0.

C.4 The IGES Nongeometric Types

Figure C.10 lists the nongeometric entity types for IGES version 3.0.

Entity Number 406. Property entities can contain numerical or textual data. The
form number specifies the type of property at hand. Low numbers are predefined and
numbers 5001–9999 are left for a user to define. In our case, the form number 5555
is a user-defined property. The first number in the parameter data section after the
entity number is the number of properties. In our case, it is 1 and the property is the
string “01”.

Entity Number 410. A view entity specifies how an object should be viewed. The
projection is assumed to be a parallel orthographic projection. In the view coordinate
system the view plane is assumed to be the plane z = 0 with the origin being the origin
of the view plane. The view direction is along the positive z-direction. The positive y-
axis is the “up” direction. One can also specify a view volume and scale factor. Figure
C.11 shows the layout of the view volume. In the case of our entity, the fact that the
status is physically dependent and the entity use flag is “other” means that a drawing
entity number 404 points to it. See Figure C.12 for a description of the fields in the
parameter data. In our case,

A B C D DE= = = = =1 0 0 0 51, , , , .

832 Appendix C IGES

Annotation Entities Structure Entities
Entity type # Entity type Entity type # Entity type
ææææææææææææææææææ æææ æææææææææææææææææ

202 Angular dimension entity 302 Associativity definition entity
106 Centerline entity 402 Associativity instance entity
206 Diameter dimension entity 404 Drawing entity
208 Flag note entity 304 Line font definition entity
210 General label entity 306 MACRO definition entity
212 General note entity 600-699 MACRO instance entity
214 Leader (arrow) entity 406 Property entity
216 Linear dimension entity 308 Subfigure definition entity
218 Ordinate dimension entity 408 Singular subfigure instance entity
220 Point dimension entity 412 Rectangular array subfigure
222 Radius dimension entity instance entity
106 Section entity 414 Circular array subfigure instance
106 Witness line entity entity

310 Text font definition entity
410 View entity

Figure C.10. Some IGES annotation and structure entities.

A view volume has been specified. In general, a zero would indicate no clipping in a
particular direction. We analyzed the XVMIN clipping plane corresponding to entity

VNO SCALE

XVMINP YVMAXP XVMAXP

YVMINP ZVMINP ZVMAXP

= =
= = =
= = =

1 1 0

53 57 61

65 69 73

, . ,

, , ,

, , .

C.4 The IGES Nongeometric Types 833

Figure C.11. The view volume for entity number 410.

Parameter Name Type Description
ææææææææææææææææææææææææææææææææææ

1 VNO Integer View number
2 SCALE Real Scale factor (default = 1.0)
3 XVMINP Pointer Pointer to left side of view volume (XVMIN plane) or 0
4 YVMAXP Pointer Pointer to top of view volume (YVMAX plane) or 0
5 XVMAXP Pointer Pointer to right side of view volume (XVMAX plane) or 0
6 YVMINP Pointer Pointer to bottom of view volume (YVMIN plane) or 0
7 ZVMINP Pointer Pointer to back of view volume (ZVMIN plane) or 0
8 ZVMAXP Pointer Pointer to front of view volume (ZVMAX plane) or 0

Figure C.12. Partial parameter data for plane entity #410.

Parameter Name Type Description
ææææææææææææææææææææææ

1 N Integer Number of entries
2 DE Pointer Pointer to entity 1
. . . .

N+1 DE Pointer Pointer to entity N

Figure C.13. Parameter data for associativity instance entity #402 with form number 1.

53 in the last section. Our view entity has no pointers to associativity instances,
general notes, or text template entities and one pointer to a property (on directory
section line number 75).

In closing, we mention one other handy entity, the associativity instance entity
with number 402. There are a number of variants of it depending on the form number.
The so-called group associativities are particularly useful because they allow a col-
lection of a set of entities to be maintained as a single, logical entity. A common one
of these is the case where the form number is 1. This requires an (unordered) group
of back pointers as the parameter data. The general structure for its data is shown in
Figure C.13.

834 Appendix C IGES

[Taub94] Taubin, Gabriel, “Rasterizing Algebraic Curves and Surfaces,” CG&A, 14(2), March 1994,
14–23.

Algebraic Geometry
[Arno83] Arnon, D.S., “Topologically Reliable Displays of Algebraic Curves,” SIGGRAPH 83, 17(3), July

1983, 219–227.
[Shaf94] Shafarevich, Igor R., Basic Algebraic Geometry I, 2nd Edition, Springer-Verlag, 1994.

Algebraic Topology
(See also Topology).

[BotM58] Bott, R., and Milnor, J., “On the Parallelizability of the Spheres,” Bull. AMS, 64, 1958, 87–89.
[DelE95] Delfinado, Cecil Jose A., and Edelsbrunner, Herbert, “An Incremental Algorithm for Betti

Numbers of Simplicial Complexes on the 3-Sphere,” CAGD, 12(7), November 1995, 771–784.
[Matv03] Matveev, S., Algorithmic Topology and Classification of 3-Manifolds, Springer-Verlag, 2003.
[Stee51] Steenrod, Norman, The Topology of Fiber Bundles, Princeton Univ. Press, 1951.

Analytic Geometry
[Full73] Fuller, Gordon, Analytic Geometry, 4th Edition, Addison-Wesley Publ. Co., 1973.
[Limi44] Liming, R.A., Practical Analytical Geometry with Applications to Aircraft, MacMillan, 1944.

Antialiasing
(See also Visible Surface Detection)

[AbWW85] Abram, G., Westover, L., and Whitted, T., “Efficient Alias-free Rendering Using Bit-masks and
Look-up Tables,” SIGGRAPH 85, 19(3), July 1985, 53–59.

[Crow77a] Crow, Franklin C., “The Aliasing Problem in Computer-generated Shaded Images,” CACM,
20(11), 1977, 799–805.

[Will83] Williams, Lance, “Pyramidal Parametrics,” SIGGRAPH 83, 17(3), July 1983, 1–11.

Blending
[AllD97a] Allen, Seth, and Dutta, Debasish, “Cyclides in Pure Blending I,” CAGD, 14(1), January 1997,

51–75.
[AllD97b] Allen, Seth, and Dutta, Debasish, “Cyclides in Pure Blending II,” CAGD, 14(1), January 1997,

77–102.
[AllD97c] Allen, Seth, and Dutta, Debasish, “SuperCyclides and Blending,” CAGD, 14(7), September

1997, 637–651.
[BloW89a] Bloor, M.I.G., and Wilson, M.J., “Generating Blend Surfaces Using Partial Differential

Equations,” CAD, 21(3), April 1989, 165–171.
[BloW89b] Bloor, M.I.G., and Wilson, M.J., “Blend Design as a Boundary-Value Problem,” in [StrS89],

221–234.
[Chiy87] Chiyokura, H., “An Extended Rounding Operation for Modeling Solids with Free-Form

Surfaces,” in Computer Graphics, Kunii, T.L., editor, Springer, 1987, 249–268.
[ChiK83] Chiyokura, H., and Kimura, F., “Design of Solids with Free-Form Surfaces,” SIGGRAPH 83,

17(3), July 1983, 289–298.
[ChoJ89] Choi, B.K., and Ju, S.Y., “Constant Radius Blending in Surface Modeling,” CAD, 21(4), May

1989, 213–220.
[ElbC97] Elber, Gershon, and Cohen, Elaine, “Filleting and Rounding Using Trimmed Tensor Product

Surfaces,” in [HofB97], 206–216.
[HofH85] Hoffmann, Christoph M., and Hopcroft, John E., “Automatic Surface Generation in Computer

Aided Design,” The Visual Computer, 1, 1985, 95–100.
[HofH87] Hoffmann, Christoph M., and Hopcroft, John E., “The Potential Method for Blending

Surfaces and Corners,” in [Fari87], 347–365.
[HsuT98] Hsu, Kun Lung, and Tsay, Der Min, “Corner Blending of Free-form N-Sided Holes,” CG&A,

18(1), January/February 1998, 72–78.

836 Bibliography

[Prat89] Pratt, M.J., “Cyclide Blending in Solid Modelling,” in [StrS89], 235–245.
[RoaM92] Roach, P.A., and Martin, R.R., “Production of Blends and Fairings by Fourier Methods,” in

Curves and Surfaces in Computer Vision and Graphics III, Warren, J.D., editor, SPIE, 1992,
162–173.

[RocO87] Rockwood, Alyn P., and Owen, John C., “Blending Surfaces in Solid Modeling,” in [Fari87],
367–384.

[RosR84] Rossignac, A.R., and Requicha, A.A.G., “Constant Radius Blending in Solid Modeling,”
Computers in Mechanical Engineering, July 1984, 65–73.

[Shen98] Shene, Ching-Kuang, “Blending Two Cones with Dupin Cyclides,” CAGD, 15(7), July 1998,
643–673.

[Shen00] Shene, Ching-Kuang, “Do Blending and Offsetting Commute for Dupin Cyclides?” CAGD,
17(9), October 2000, 891–910.

[Szil91] Szilvasi-Nagy, M., “Flexible Rounding Operation for Polyhedra,” CAD, 23(9), November 1991,
629–633.

[VaMV89] Várady, T., Martin, R.R., and Vida, J., “Topological Considerations in Blending Boundary
Representation Solid Models,” in [StrS89], 205–220.

[VaVM89] Várady, T., Vida, J., and Martin, R.R., “Parametric Blending in a Boundary Representation
Solid Modeller,” in [Hand89], 171–197.

[ViMV94] Vida, Janos, Martin, Ralph R., Várady, Tamas, “A Survey of Blending Methods that Use
Parametric Surfaces,” CAD, 26(5), May 1994, 341–365.

[Wood87] Woodwark, J.R., “Blends in Geometric Modelling,” in [Mart87], 255–298.

Clipping
[CyrB78] Cyrus, M., and Beck, J., “Generalized Two- and Three-Dimensional Clipping,” Computers and

Graphics, 3(1), 1978, 23–28.
[GreH98] Greiner, GÜnther, and Hormann, Kai, “Efficient Clipping of Arbitrary Polygons,” ACM TOG,

17(2), 1998, 71–83.
[LiaB83] Liang, You-Dong, and Barsky, Brian A., “An Analysis and Algorithm for Polygon Clipping,”

CACM, 26(11), Nov., 1983, 868–877, and Corrigendum, CACM, 27(2), February 1984, 151.
[LiaB84] Liang, You-Dong, and Barsky, Brian A., “A New Concept and Method for Line Clipping,” ACM

TOG, 3(1), January 1984, 1–22.
[Mail92] Maillot, Patrick-Gilles, “A New, Fast Method for 2D Polygon Clipping: Analysis and Software

Implementation,” ACM Trans. on Graphics, 11(3), July 1992, 276–290.
[NiLN87] Nicholl, Tina M., Lee, D.T., and Nicholl, Robin A., “An Efficient New Algorithm For 2-D Line

Clipping: Its Development and Analysis,” SIGGRAPH 87, 21(4), July 1987, 253–262.
[SutH74] Sutherland, I.E., and Hodgman, G.W., “Reentrant Polygon Clipping,” CACM, 17(1), January

1974, 32–42.
[Vatt92] Vatti, Bala R., “A Generic Solution to Polygon Clipping,” CACM, 35(7), July 1992, 56–63.
[Weil80] Weiler, K., “Polygon Comparison Using a Graph Representation,” SIGGRAPH 80, 14(3), July

1980, 10–18.

Color
[AgoG87] Agoston, G.A., Color Theory and its Application in Art and Design, 2nd Edition, Springer-Verlag,

1987.
[Blin93] Blinn, James F., “NTSC: Nice Technology, Super Color,” CG&A, 13(2), March 1993, 17–23.
[Fish90a] Fishkin, Ken, “A Fast HSL-To-RGB Transform,” in [Glas90], 448–449.
[GerP90] Gervautz, Michael, and Purgathofer, Werner, “A Simple Method for Color Quantization:

Octree Quantization,” in [Glas90], 287–293.
[Hall89] Hall, Roy, Illumination and Color in Computer Generated Imagery, Springer-Verlag, 1989.
[Heck82] Heckbert, P.S., “Color Image Quantization for Frame Buffer Display,” SIGGRAPH 82, 16(3),

July 1982, 297–307.
[Paet90] Paeth, Alan W., “Mapping RGB Triples Onto Four Bits,” in [Glas90], 233–245.
[WuXi92] Wu, Xialin, “Color Quantization by Dynamic Programming and Principal Analysis,” ACM

TOG, 11(4), Oct., 1992, 348–372.

Bibliography 837

Computational Geometry
[Aure91] Aurenhammer, Franz, “Voronoi Diagrams—A Survey of a Fundamental Geometric Data

Structure,” ACM Computing Surveys, 23(3), September 1991, 345–405.
[BKOS97] de Berg, Mark, van Kreveld, Marc, Overmars, Mark, and Schwarzkopf, Otfried, Computational

Geometry: Algorithms and Applications, Springer-Verlag, 1997.
[BeMR94] Bern, Marshall, Mitchell, Scott, and Ruppert, Jim, “Linear-Size Nonobtuse Triangulation of

Polygons,” in Proc. of the 10th Annual Symp. on Computational Geometry, Stony Brook, New
York, June 6–8, 1994, 221–230.

[BDST92] Boissonnat, J.-D., Devillers, O., Schott, R., Teillaud, M., and Yvinec, M., “Applications of
Random Sampling to On-line Algorithms in Computational Geometry,” Discrete Comp.
Geom., 8, 1992, 51–71.

[BoiT93] Boissonnat, J.-D., and Teillaud, M., “On the Randomized Construction of the Delaunay Tree,”
Theoret. Comp. Sci., 112, 1993, 339–354.

[Chaz91] Chazelle, B., “Triangulating a Simple Polygon in Linear Time,” Discrete Comput. Geom., 6,
1991, 485–524.

[CiMS98] Cignoni, P., Montani, C., and Scopigno, R., “DeWall: A Fast Divide and Conquer Delaunay
Triangulation Algorithm in Ed,” CAD, 30(5), April 1998, 333–341.

[ClaS89] Clarkson, K.L., and Shor, P.W., “Applications of Random Sampling in Computational Geom-
etry,” Discrete Comp. Geometry, 4, 1989, 387–421.

[Devi98] Devillers, Olivier, “Improved Incremental Randomized Delaunay Triangulation,” in Proc. of
the 14th Annual Symp. on Computational Geometry, Minneapolis, Minnesota, June 7–10, 1998,
ACM Press, 106–115.

[Dwye87] Dwyer, Rex A., “A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangu-
lations,” Algorithmica, 2(2), 1987, 137–151.

[Edel87] Edelsbrunner, Herbert, Algorithms in Combinatorial Geometry, Springer-Verlag, New York,
1987.

[EtzR99] Etzion, Michal, and Rappoport, Ari, “Computing the Voronoi Diagram of a 3-D Polyhedron
by Separate Computation of its Symbolic and Geometric Parts,” in [BroA99], 167–178.

[FanP93] Fang, Tsung-Pao, and Piegl, Les A., “Delaunay Triangulation Using a Uniform Grid,” CG&A,
13(3), May 1993, 36–47.

[FanP95] Fang, Tsung-Pao, and Piegl, Les A., “Delaunay Triangulation in Three Dimensions,” CG&A,
15(5), September 1995, 62–69.

[Fort87] Fortune, Stephen J., “A Sweepline Algorithm for Voronoi Diagrams,” Algorithmica, 2(2), 1987,
153–174.

[GJPT78] Garey, M.R., Johnson, D.S., Preparata, F.P., and Tarjan, R.E., “Triangulating a Simple
Polygon,” Inform. Process. Lett., 7, 1978, 175–179.

[GreS77] Green, P.J., and Sibson, R., “Computing Dirichlet Tessellations in the Plane,” Computer
Journal, 21(2), 1977, 168–173.

[GuiS85] Guibas, Leonidas J., and Stolfi, Jorge, “Primitives for the Manipulation of General Subdivi-
sions and the Computation of Voronoi Diagrams,” ACM Trans. on Graphics, 4(2), April 1985,
74–123.

[LBDW92] Lavender, David, Bowyer, Adrian, Davenport, James, Wallis, Andrew, and Woodwark, John,
“Voronoi Diagrams of Set-Theoretic Solid Models,” CG&A, 12(5), September 1992, 69–77.

[LeeP77] Lee, D.T., and Preparata, F.P., “Location of a Point in a Planar Subdivision and its Applica-
tion,” SIAM J. Comp., 6. 1977, 594–606.

[LinM96] Lin, Ming C., and Manocha, Dinesh, editors, Applied Computational Geometry: Towards
Geometric Engineering, Springer Verlag, 1996.

[Lisc94] Lischinski, Dani, “Incremental Delaunay Triangulation,” in [Heck94], 47–59.
[Mulm94] Mulmuley, Ketan, Computational Geometry: An Introduction Through Randomized Algorithms,

Prentice-Hall, Inc., 1994.
[NarM95] Narkhede, Atul, and Manocha, Dinesh, “Fast Polygon Triangulation Based on Seidel’s

Algorithm,” in [Paet95], 394–397.
[Orou94] O’Rourke, Joseph, Computational Geometry in C, Cambridge Univ. Press, 1994.
[PreS85] Preparata, Franco P., and Shamos, Michael I., Computational Geometry: An Introduction,

Springer-Verlag, 1985.
[Shew96] Shewchuk, Jonathan Richard, “Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator,” in [LinM96], 203–222.

838 Bibliography

[SuDr95] Su, Peter, and Drysdale, Robert L. Scot, “A Comparison of Sequential Delaunay Triangulation
Algorithms,” in Proc. of the 11th Annual Symp. on Computational Geometry, Vancouver, British
Columbia, Canada, June 5–7, 1995, ACM Press, 61–70.

[ZalC99] Zalik, Borut, and Clapworthy, Gordon J., “A Universal Trapezoidation Algorithm for Planar
Polygons,” Computers & Graphics, 23, 1999, 353–363.

Conics
[Blin87] Blinn, James F., “How Many Ways Can You Draw a Circle,” CG&A, 7(8), August 1987,

39–44.
[Blin88a] Blinn, James F., “Jim Blinn’s Answer,” CG&A, 8(3), May 1988, 12.
[Galt89] Galton, Ian, “An Efficient Three-Point Arc Algorithm,” CG&A, 9(6), November 1989,

44–49.
[JoLH73] Jordan, B.W., Lennon, W.J., and Holm, B.D., “An Improved Algorithm for the Generation of

Nonparametric Curves,” IEEE Trans. Computers, Volume C-22, 1973, 1052–1060.
[Kap85] Kappel, M.R., “An Ellipse-Drawing Algorithm for Raster Displays,” in [Earn85], 257–280.
[Pitt85] Pitteway, M.L.V., “Algorithms of Conic Generation,” in [Earn85], 219–237.
[VanA84] Van Aken, J.R., “An Efficient Ellipse-Drawing Algorithm,” CG&A, 4(9), September 1984,

24–35.
[Wils87] Wilson, Peter R., “Conic Representations for Shape Description,” CG&A, 7(4), April 1987,

23–30.

Constructive Solid Geometry
[LaTH86] LaidLaw, David II, Trumbore, W. Benjamin, and Hughes, John F., “Constructive Solid Geom-

etry for Polyhedral Objects,” SIGGRAPH 86, 20(4), August 1986, 161–168.
[RosV89] Rossignac, J., and Voelcker, H., “Active Zones in CSG for Accelerating Boundary Evaluation,

Redundancy Elimination, Interference Detection, and Shading Algorithms,” ACM TOG, 8(1),
January 1989, 51–87.

[ShaV91a] Shapiro, Vadim, and Vossler, Donald L., “Construction and Optimization of CSG Represen-
tation,” CAD, 23(1), January/February 1991, 4–20.

[ShaV91b] Shapiro, Vadim, and Vossler, Donald L., “Efficient CSG Representations of Two-dimensional
Solids,” Trans. ASME, Journal of Mechanical Design, 113(3), September 1991, 292–305.

[ShaV93] Shapiro, Vadim, and Vossler, Donald L., “Separation for Boundary to CSG Conversion,” ACM
TOG, 12(1), January 1993, 35–55.

Contours
[DLTW90] Dobkin, David P., Levy, Silvio V.F., Thurston, William P., and Wilks, Allan R., “Contour Tracing

by Piecewise Linear Approximations,” ACM TOG 9(4), October 1990, 389–423.
[Dowd85] Dowd, P.A., “Algorithms for Three-dimensional Interpolation Between Planar Slices,” in

[Earn85], 531–554.
[FuKU77] Fuchs, H., Kedem, Z.M., and Uselton, S.P., “Optimal Surface Reconstruction from Planar

Contours,” CACM, 20(10), October 1977, 693–702.
[GanD82] Ganapathy, S., and Dennehy, T.G., “A New General Triangulation Method for Planar

Contours,” SIGGRAPH 82, 16(3), July 1982, 69–75.
[MeSS92] Meyers, David, Skinner, Shelley, and Sloan, Kenneth, “Surfaces from Contours,” TOG, 11(3),

July 1992, 228–258.
[ParK96] Park, Hyungjun, and Kim, Kwangsoo, “Smooth Surface Approximation to Serial Cross-

sections,” CAD, 28(12), December 1996, 995–1005.
[Preu86] Preusser, Albrecht, “Computing Area Filling Contours for Surfaces Defined by Piecewise

Polynomials,” CAGD, 3(4), December 1986, 267–279.
[Sabi85] Sabin, M.A., “Contouring—The State of the Art,” in [Earn85], 411–482.
[Sutc80] Sutcliffe, D., “Contouring over Rectangular and Skewed Rectangular Grids—An Introduc-

tion,” in [Brod80], 39–62.

Bibliography 839

Convex Sets
[Rock70] Rockafellar, R. Tyrrell, Convex Analysis, Princeton University Press, Princeton, New Jersey,

1970.
[Vale64] Valentine, Frederick A., Convex Sets, McGraw-Hill Book Co., 1964.

Curvature
[Ande93] Andersson, Roger K.E., “Surfaces With Prescribed Curvature I,” CAGD, 10(5), October 1993,

431–452.
[KakG96] Kaklis, P.D., and Ginnis, A.I., “Sectional-Curvature Preserving Skinning Surfaces,” CAGD,

13(7), October 1996, 601–619.
[KrLM98] Krsek, P., Lukács, G., and Martin, R.R., “Algorithms for Computing Curvatures from Range

Data,” in [Crip98], 1–16.
[MeeW00] Meek, D.S., and Walton, D.J., “On Surface Normal and Gaussian Curvature Approximations

Given Data Sampled from a Smooth Surface,” CAGD, 17(6), July 2000, 521–543.
[Miur00] Miura, Kenjiro T., “Unit Quaternion Integral Curve: A New Type of Fair Free-Form Curves,”

CAGD, 17(1), January 2000, 39–58.
[Sapi92] Sapidis, Nickolas S., “Controlling the Curvature of a Quadratic Bézier Curve,” CAGD, 9(1),

May 1992, 85–91.
[TheF97] Theisel, Holger, and Farin, Gerald, “The Curvature of Characteristic Curves on Surfaces,”

CG&A, 17(6), November/December 1997, 88–96.
[Woll00] Wollmann, Christian, “Estimation of the Principle Curvatures of Approximated Surfaces,”

CAGD, 17(7), August 2000, 621–630.
[WolT92] Wolter, Franz-Erich, and Tuohy, Séamus T., “Curvature Computations for Degenerate Surface

Patches,” CAGD, 9(4), September 1992, 241–270.
[Ye96] Ye, Xiuzi, “The Gaussian and Mean Curvature Criteria for Curvature Continuity Between

Surfaces,” CAGD, 13(6), August 1996, 549–567.

Curve Algorithms
[Figu95] de Figueiredo, Luiz H., “Adaptive Sampling of Parametric Curves,” in [Paet95], 173–178.
[Grav95] Gravesen, Jens, “The Length of Bézier Curves,” in [Paet95], 199–205.
[GueP90] Guenter, Brian, and Parent, Richard, “Computing the Arc Length of Parametric Curves,”

CG&A, 10(3), May 1990, 72–78.
[KopM83] Koparkar, P.A., and Mudur, S.P., “A New Class of Algorithms for the Processing of Paramet-

ric Curves,” CAD, 15(1), January 1983, 41–45.
[LiCr97] Li, Yong-Ming, and Cripps, Robert J., “Identification of Inflection Points and Cusps on Ratio-

nal Curves,” CAGD, 14(5), June 1997, 491–497.
[ManC90] Manocha, Dinesh, and Canny, John F., “Polynomial Parameterizations for Rational Curves,”

in Ferrari, Leonard A., and de Figueiredo, Rui J.P., editors, Curves and Surfaces in Computer
Vision and Graphics, Proceedings SPIE – The International Society for Optical Engineering,
February 13–15, 1990, Santa Clara, CA, Volume 1251, 151–162.

[ManC92a] Manocha, Dinesh, and Canny, John F., “Detecting Cusps and Inflection Points in Curves,”
CAGD, 9(1), May 1992, 1–24.

[RouB96a] Roulier, John A., Piper, Bruce, “Prescribing the Length of Parametric Curves,” CAGD, 13(1),
February 1996, 3–22.

[RouB96b] Roulier, John A., Piper, Bruce, “Prescribing the Length of Rational Bézier Curves,” CAGD,
13(1), February 1996, 23–43.

[ShaT82] Sharpe, Richard J., and Thorne, Richard W., “Numerical Method for Extracting an Arc Length
Parameterization from Parametric Curves,” CAD, 14(2), March 1982, 79–81.

[WolF97] Wolters, Hans J., and Farin, Gerald, “Geometric Curve Approximation,” CAGD, 14(6), August
1997, 499–513.

840 Bibliography

Cyclides
[AlbD97] Albrecht, Gudrun, and Degen, Wendelin L.F., “Construction of Bézier Rectangles and Trian-

gles on the Symmetric Dupin Horn Cyclide by Means of Inversion,” CAGD, 14(4), May 1997,
349–375.

[Boeh89] Boehm, Wolfgang, “Some Remarks on Cyclides in Solid Modeling,” in [StrS89], 247–252.
[Boeh90] Boehm, Wolfgang, “On Cyclides in Geometric Modeling,” CAGD, 7(1–4), June 1990, 243–255.
[ChDH89] Chandru, V., Dutta, D., and Hoffmann, C.M., “On the Geometry of Dupin Cyclides,” The Visual

Computer, 5(5), October 1989, 277–290.
[Dege94] Degen, W.L.F., “Generalized Cyclides for Use in CAGD,” in [Bowy94], 349–363.
[Dege98] Degen, W.L.F., “On the Origin of SuperCyclides,” in [Crip98], 297–312.
[DuMP93] Dutta, Debasish, Martin, Ralph R., and Pratt, Michael J., “Cyclides in Surface and Solid

Modeling,” CG&A, 13(1), January 1993, 53–59.
[John93] Johnstone, John K., “A New Intersection Algorithm for Cyclides and Swept Surfaces Using

Circle Decomposition,” CAGD, 10(1), February 1993, 1–24.
[KraM00] Krasauskas, R., and Mäurer, C., “Studying Cyclides with Laguerre Geometry,” CAGD, 17(2),

February 2000, 101–126.
[Mart82] Martin, R.R., “Principal Patches for Computational Geometry,” PhD thesis, Engineering

Department, Cambridge University, U.K., 1982.
[MaPS86] Martin, R.R., de Pont, J., and Sharrock, T.J., “Cyclide Surfaces in Computer Aided Design,”

in [Greg86], 253–267.
[PalB98] Paluszny, Marco, and Boehm, Wolfgang, “General Cyclides,” CAGD, 15(7), July 1998, 699–710.
[Prat90] Pratt, M.J., “Cyclides in Computer Aided Geometric Design,” CAGD, 7(1–4), June 1990,

221–242.
[Prat95] Pratt, M.J., “Cyclides in Computer Aided Geometric Design II,” CAGD, 12(2), March 1995,

131–152.
[Prat96] Pratt, M.J., “Dupin Cyclides and Supercyclides,” in [Mull96], 43–66.
[Prat97] Pratt, M.J., “Quartic Supercyclides I: Basic Theory,” CAGD, 14(7), September 1997, 671–692.

Differential Geometry
[Bish75] Bishop, R.L., “There Is More than One Way to Frame a Curve,” Am. Math. Monthly, 82(3),

March 1975, 246–251.
[Bloo90] Bloomenthal, Jules, “Calculation of Reference Frames Along a Space Curve,” in [Glas90],

567–571.
[Fors12] Forsyth, A.R., Lectures on Differential Geometry of Curves and Surfaces, Cambridge Univ. Press,

1912.
[Gray98] Gray, Alfred, Modern Differential Geometry of Curves and Surfaces with MATHEMATICA, 2nd

Edition, CRC Press, 1998.
[YuPM00] Yu, Guoxin, Patrikalakis, Nicholas M., and Maekawa, Takashi, “Optimal Development of

Doubly Curved Surfaces,” CAGD, 17(6), July 2000, 545–577.

Digital Image Processing
[Glas95] Glassner, Andrew S., Principles of Digital Image Synthesis, Volume 1 & 2, Morgan Kaufmann

Publ., Inc., 1995.
[GonW87] Gonzalez, Rafael C., and Wintz, Paul, Digital Image Processing, 2nd Edition, Addison-Wesley

Publ. Co., 1987.
[RosK76] Rosenfeld, Azriel, and Kak, Avinash C., Digital Picture Processing, Academic Press, 1976.

Engineering Applications
[Crai88] Craig, John J., “CompStation Design: November 88 Report,” SILMA Inc. (now part of Adept

Technology, Inc.), 1988.
[RosG64] Rosato, D.V., and Grove, C.S., Jr., Filament Winding: Its Development, Manufacture, Applica-

tions, and Design, Interscience Publishers, 1964.
[Schw97] Schwartz, Mel M., Composite Materials, Volume II: Processing, Fabrication, and Applications,

Prentice Hall PTR, 1997.

Bibliography 841

Finite Element Method
[Arms94] Armstrong, Cecil G., “Modelling Requirements for Finite-Element Analysis,” CAD, 26(7), July

1994, 573–578.
[Buch95] Buchanan, George R., Finite Element Analysis, Schaum’s Outline Series, McGraw-Hill, Inc.,

1995.
[Heck93] Heckbert, Paul S., “Introduction to Finite Element Methods,” Course Notes, Volume 42,

SIGGRAPH 93, August 1993.
[HoLe88] Ho-Le, K., “Finite Element Mesh Generation Methods: A Review and Classification,” CAD,

20(1), January/February 1988, 27–38.
[John87] Johnson, Claes, Numerical Solutions of Partial Differential Equations by the Finite Element

Method, Cambridge Univ. Press, 1987.
[MitW78] Mitchell, A.R., and Wait, R., The Finite Element Method in Partial Differential Equations, John

Wiley & Sons, Inc., 1978.
[OttP92] Ottosen, Niels, and Petersson, Hans, Introduction to the Finite Element Method, Prentice Hall,

1992.
[PepH92] Pepper, Darrell W., and Heinrich, Juan C., The Finite Element Method: Basic Concepts and

Applications, Hemisphere Publ. Corp., 1992.

Fourier Series and Transforms
[Brac86] Bracewell, Ronald N., The Fourier Transform and Its Applications, 2nd Edition, McGraw-Hill,

1986.
[CooT65] Cooley, James W., and Tukey, John W., “An Algorithm for the Machine Calculation of Complex

Fourier Series,” Mathematics of Computation, 19(90), April 1965, 297–301.
[Four95] Fournier, Alain, Organizer, Wavelets and Their Application to Computer Graphics, Course

Notes, Volume 26, SIGGRAPH, August 1995.
[Frie63] Friedman, Avner, Generalized Functions and Partial Differential Equations, Prentice-Hall, Inc.,

1963.
[Glas99] Glassner, Andrew., “Fourier Polygons,” CG&A, 19(1), January/February 1999, 84–91.
[GomV98] Gomez, Jonas, and Velho, Luiz, Organizers and Lecturers, From Fourier Analysis To Wavelets,

Course Notes, Volume 6, SIGGRAPH, July 1998.
[LoDW97] Lounsbery, Michael, DeRose, Tony D., and Warren, Joe, “Multiresolution Analysis for

Surfaces of Arbitrary Topological Type,” ACM TOG, 16(1), January 1997, 34–73.
[Seel66] Seeley, Robert, An Introduction to Fourier Series and Integrals, W.A. Benjamin, Inc., 1966.
[Widd71] Widder, D.V., An Introduction to Transform Theory, Academic Press, 1971.

Fractals
[AlSY97] Alligood, Kathleen T., Sauer, Tim D., and Yorke, James A., Chaos: An Introduction to Dynam-

ical Systems, Springer-Verlag, 1997.
[BBGDS92] Banks, J., Brooks, J., Gairns, G., David, G., and Stacey, R., “On Devaney’s Definition of Chaos,”

Amer. Math. Monthly, 99, 1992, 332–334.
[Barn87] Barnsley, Michael F., “Fractal Modelling of Real World Images,” Course Notes, Volume 15,

SIGGRAPH, July 1998.
[Barn88] Barnsley, Michael F., Fractals Everywhere, Academic Press, 1988.
[Cran95] Crannell, Annalisa, “The Role of Transitivity in Devaney’s Definition of Chaos,” Amer. Math.

Monthly, 102(9), 1995, 788–793.
[Deva86] Devaney, Robert L., An Introduction to Chaotic Dynamical Systems, The Benjamin/Cummings

Publ. Co., 1986.
[DevK89] Devaney, Robert L., and Keen, Linda, editors, Chaos and Fractals: The Mathematics Behind

the Computer Graphics, Proceedings of Symposia in Applied Mathematics, Volume 39, AMS,
1989.

[Falc85] Falconer, K.J., The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.
[Fede69] Federer, H., Geometric Measure Theory, Springer-Verlag, 1969.
[FoFC82] Fournier, Alain, Fussell, Don, and Carpenter, Loren, “Computer Rendering of Stochastic

Models,” CACM, 25(6), June 1982, 371–384.
[Glas92] Glassner, Andrew S., “Geometric Substitutions: A Tutorial,” CG&A, 12(1), January 1992, 22–36.
[Lind68] Lindenmayer, Aristid, “Mathematical Models for Cellular Interactions in Development, Parts

I and II, J. of Theoretical Biology, 18, 1968, 280–315.

842 Bibliography

[Mand83] Mandelbrot, Benoit B., The Fractal Geometry of Nature, W.H. Freeman and Co., 1983.
[Reev83] Reeves, William T., “Particle Systems—A Technique for Modeling a Class of Fuzzy Objects,”

ACM TOG, 2(2), 91–108.
[ReBl85] Reeves, William T., and Blau, R., “Approximate and Probabilistic Algorithms for Shading and

Rendering Particle Systems,” SIGGRAPH 85, 19(3), July 1985, 313–322.
[Smit84] Smith, Alvy Ray, “Plants, Fractals, and Formal Languages,” Course Notes, Volume 15,

SIGGRAPH 84, July 1984, 1–10.
[VelB94] Vellekoop, M., and Berglund, R., “On Intervals, Transitivity = Chaos,” Amer. Math. Monthly,

101, 1994, 353–355.

General Computer Graphics
[Ange00] Angel, Edward, Interactive Computer Graphics: A Top-down Approach with OpenGL, 2nd

Edition., Addison-Wesley Longman, Inc., 2000.
[BalB82] Ballard, D.H., and Brown, C.M., Computer Vision, Prentice-Hall, 1982.
[BeaB82] Beatty, J.C., and Booth, K.S., editors, Tutorial: Computer Graphics, 2nd Edition, IEEE Comp.

Society Press, 1982.
[Boot79] Booth, Kellogg S., Tutorial: Computer Graphics, IEEE Computer Society, 1979.
[Earn85] Earnshaw, R.A., editor, Fundamental Algorithms for Computer Graphics, Springer-Verlag, 1985.
[FVFH90] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., Computer Graphics: Principles and

Practice, 2nd Edition, Addison-Wesley Publ. Co., 1990.
[Free80] Freeman, H., editor, Tutorial and Selected Readings in Interactive Computer Graphics, IEEE

Comp. Society Press, 1980.
[Hill90] Hill, F.S. Jr., Computer Graphics, MacMillan Publ. Co., 1990.
[Hill01] Hill, F.S. Jr., Computer Graphics Using OpenGL, 2nd Edition, Prentice Hall, 2001.
[JGMH88] Joy, Kenneth I., Grant, Charles W., Max, Nelson L., and Hatfield, Lansing, Tutorial: Computer

Graphics: Image Synthesis, IEEE Computer Society Press, 1988.
[MagT87] Magnenat-Thalmann, Nadia, and Thalmann, Daniel, Image Synthesis: Theory and Practice,

Springer-Verlag, 1987.
[Miel91] Mielke, Bruce, Integrated Computer Graphics, West Publishing Co., 1991.
[PokG89] Pokorny, Cornel K., and Gerald, Curtis F., Computer Graphics: The Principles Behind the Ar nd

Science, Franklin, Beedle and Associates, 1989.
[Roge98] Rogers, David F., Procedural Elements for Computer Graphics, 2nd Edition, McGraw-Hill,

1998.
[Watt90] Watt, A., Fundamentals of Three Dimensional Computer Graphics, Addison-Wesley Publ. Co.,

1990.

Geodesics
[AgHK00] Agarwal, Pankaj K., Har-Peled, Sariel, and Karia, Meetesh, “Computing Approximate Short-

est Paths on Convex Polytopes,” in Proc. of the 16th Annual Symp. on Computational Geome-
try, Hong Kong, June 12–14, 2000, ACM Press, 270–279.

[CheH90] Chen, Jindong, and Han, Yije, “Shortest Paths on a Polyhedron,” in Proc. of the 6th Annual
Symp. on Computational Geometry, Berkeley, California, June 6–8, 1990, ACM Press, 360–369.

[Kapo99] Kapoor, S., “Efficient Computation of Geodesic Shortest Paths,” Proc. 31st Annual ACM Symp.
Theory of Comput., Atlanta, Georgia, 1999, 770–779.

[KSHS03] Kumar, G.V.V., Ravi, Srinivasan, Prabha, Holla, V., Devaraja, Shastry, K.G., and Prakash, B.G.,
“Geodesic Curve Computations on Surfaces,” CAGD, 20(2), May 2003, 119–133.

[MiMP87] Mitchell, Joseph S.B., Mount, David M., and Papadimitrious, Christos H., “The Discrete
Geodesic Problem,” SIAM J. Computing, 16(4), August 1987, 647–668.

[ShaS86] Sharir, M., and Schorr, A., “On Shortest Paths in Polyhedral Spaces,” SIAM J. Computing,
15(1), February 1986, 193–215.

Geometric Modeling Books
[AllG90] Allgower, E.L., and Georg, K., Numerical Continuation Methods: An Introduction, Springer

Verlag, 1990.
[Barn92] Barnhill, Robert E., editor, Geometry Processing for Design and Manufacturing, SIAM, 1992.
[BarB83] Barnhill, Robert E., and Boehm, Wolfgang, editors, Surfaces in Computer Aided Geometric

Design, North-Holland, 1983.

Bibliography 843

[BarR74] Barnhill, Robert E., and Riesenfeld, Richard F., editors, Computer Aided Geometric Design,
Academic Press, 1974.

[Beac91] Beach, Robert C., An Introduction to the Curves and Surfaces of Computer-Aided Design, Van
Nostrand Reinhold, 1991.

[Bezi72] Bézier, P., Numerical Control: Mathematics and Applications, John Wiley & Sons, Inc, 1972.
[BoeP94] Boehm, Wolfgang, and Prautzsch, Hartmut, Geometric Concepts for Geometric Design, A K

Peters, Ltd., 1994.
[Bowy94] Bowyer, Adrian, editor, Computer-aided Surface Geometry and Design: The Mathematics of

Surfaces IV, Clarendon Press, Oxford, 1994.
[Brod80] Brodlie, K. W., Mathematical Methods in Computer Graphics and Design, Academic Press,

1980.
[BroA99] Bronsvoort, Willem F., and Anderson, David C., editors, Proceedings of Fifth Symposium on

Solid Modeling and Applications, ACM Press, June 9–11, 1999.
[Chiy88] Chiyokura, Hiroaki, Solid Modeling with DESIGNBASE: Theory and Implementation, Addison-

Wesley Publ. Co., 1988.
[Crip98] Cripps, Robert, editor, The Mathematics of Surfaces VIII, Information Geometers, 1998.
[Earn88] Earnshaw, Rae, A., editor, Theoretical Foundations of Computer Graphics and CAD, Springer-

Verlag, 1988.
[Fari87] Farin, Gerald, editor, Geometric Modeling: Algorithms and New Trends, SIAM, 1987.
[Fari97] Farin, Gerald, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,

4th Edition, Academic Press, Inc., 1997.
[FauP79] Faux, I.D., and Pratt, M.J., Computational Geometry for Design and Manufacture, Halsted

Press, a division of John Wiley & Sons, Inc., 1979.
[Fish94] Fisher, R.B., editor, Computer-aided Surface Geometry and Design: The Mathematics of Surfaces

V, Clarendon Press, Oxford, 1994.
[Gall00] Gallier, Jean, Curves and Surfaces in Geometric Modeling: Theory and Algorithms, Morgan

Kaufmann Publ., 2000.
[Gass83] Gasson, Peter C., Geometry of Spatial Forms, Ellis Horwood, a division of John Wiley and

Sons, 1983.
[GHSV93] de Miranda Gomez, Jonas, Hoffmann, Christoph, Shapiro, Vadim, and Velho, Luiz, Organiz-

ers, Modeling in Computer Graphics, Course Notes, Volume 40, SIGGRAPH, August 1993.
[Greg86] Gregory, J.A., editor, The Mathematics of Surfaces, Clarendon Press, Oxford, 1986.
[HaFN95] Hagen, H., Farin, G., and Noltemeier, H., editors, Geometric Modelling: Dagstuhl 1993,

Computing Suppl. 10, Springer-Verlag, 1995.
[Hand89] Handscomb, D.C., editor, Computer-aided Surface Geometry and Design: The Mathematics of

Surfaces III, Clarendon Press, Oxford, 1989.
[Hoff89] Hoffmann, Christoph M., Geometric and Solid Modeling: An Introduction, Morgan Kaufmann

Publ. Inc., 1989.
[HofB97] Hoffmann, Christoph, and Bronsvort, Wim, editors, Proceedings of Fourth Symposium on

Solid, Modeling Foundations and Applications, ACM, May 14–16, 1997.
[HofR95] Hoffmann, Chris, and Rossignac, Jarek, editors, Proceedings of Third Symposium on Solid

Modeling and Applications, ACM Press, May 17–19, 1995.
[HosL93] Hoschek, Josef, and Lasser, Dieter, Fundamentals of Computer Aided Geometric Design, A. K.

Peters, Wellesley, Mass., 1993.
[LanS86] Lancaster, Peter, and Salkauskas, Kestutis, Curve and Surface Fitting: An Introduction,

Academic Press, 1986.
[LorW86] Lord, E. A., and Wilson, C. B., The Mathematical Description of Shape and Form, Ellis Horwood

Limited, 1986.
[LycS89] Lyche, Tom, and Schumaker, Larry L., Mathematical Methods in Computer Aided Geometric

Design, Acacemic Press, Inc., 1989.
[Mant88] Mäntylä, Martti, An Introduction to Solid Modeling, Computer Science Press, 1988.
[Mart87] Martin, R.R., editor, The Mathematics of Surfaces II, Clarendon Press, Oxford, 1987.
[Mort85] Mortenson, Michael E., Geometric Modeling, John Wiley & Sons, Inc., 1985.
[Mull96] Mullineux, G., editor, The Mathematics of Surfaces VI, Oxford Univ. Press, 1996.
[RogE90] Rogers, David F., and Earnshaw, Rae, A., editors, Computer Graphics Techniques: Theory and

Practice, Springer-Verlag, 1990.
[RosT91] Rossignac, Jaroslaw, and Turner, Joshua, editors, Proceedings of Symposium on Solid Model-

ing Foundations and CAD/CAM Applications, ACM Press, June 5–7, 1991.

844 Bibliography

[Salo99] Salomon, David, Computer Graphics and Geometric Modeling, Springer-Verlag, 1999.
[ShaM95] Shah, Jami J., and Mäntylä, Martti, Parametric and Feature-Based CAD/CAM: Concepts, Tech-

niques, and Applications, John Wiley & Sons, Inc., 1995.
[Snyd92] Snyder, John M., Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design

Using Interval Analysis, Academic Press, Inc., 1992.
[StrS89] Strasser, Wolfgang, and Seidel, Hans-Peter, editors, Theory and Practice of Geometric Model-

ing, Springer Verlag, 1989.
[SuLi89] Su, Bu-qing, and Liu, Ding-yuan, Computational Geometry: Curve and Surface Modeling,

Academic Press, Inc., 1989.

Geometric Modeling Papers
[AllG93] Allgower, E.L., and Georg, K., “Continuation and Path Following,” Acta Numerica, 1993, 1–64.
[Amat96] Amato, Nancy M., “Equipping CAD/CAM Systems with Geometric Intelligence,” ACM

Computing Surveys, 28(4es), December 1996, Article #17.
[BagW95] Bagali, Siddarameshwar, and Waggenspack, Warren N., Jr., “A Shortest Path Approach to

Wireframe to Solid Model Conversion,” in [HofR95], 339–349.
[Baum72] Baumgart, B.G., “Winged-edge Polyhedron Representation,” Technical Report STAN-CS-320,

Computer Science Dept., Stanford University, Stanford, CA, 1972.
[Baum75] Baumgart, B.G., “A Polyhedron Representation for Computer Vision,” NCC 75, 589–596.
[Bézi71] Bézier, P.E., “Example of an Existing System in the Motor Industry,” Proc. Royal Soc. London

Ser. A, 321, 1971, 207–218.
[Bier95] Bieri, H., “Nef Polyhedra: A Brief Introduction,” in [HaFN95], 43–60.
[Binf71] Binford, T.O., “Visual Perception by Computer,” in Proceedings of the IEEE Conference on

Systems and Control, Miami, Florida, December 1971.
[Blin82] Blinn, James F., “A Generalization of Algebraic Surface Drawing,” ACM TOG, 1(3), 235–256.
[BlSS89] Blum, Lenore, Shub, Mike, and Smale, Stephen, “On a Theory of Computation and

Complexity over the Real Numbers: NP-Completeness, Recursive Functions and Universal
Machines,” Bulletin of the AMS, 21(1), July 1989, 1–46.

[BoFK84] Böhm, Wolfgang, Farin, Gerald, and Kahmann, Jürgen, “A Survey of Curve and Surface
Methods in CAGD,” CAGD, 1(1), January 1984, 1–60.

[Boeh87] Boehm, Wolfgang, “Smooth Curves and Surfaces,” in [Fari87], 175–184.
[BrHS80] Braid, I.C., Hillyard, R.C., and Stroud, I.A., “Stepwise Construction of Polyhedra in Geomet-

ric Modeling,” in [Brod80], 123–141.
[CavM89] Cavaretta, Alfred, and Micchelli, Charles A., “The Design of Curves and Surfaces by Subdivi-

sion Algorithms,” in [LycS89], 115–153.
[Coon67] Coons, S.A., “Surfaces for Computer Aided Design of Space Forms,” MIT Project Mac,

TR-41, MIT, Cambridge, MA, June 1967.
[DehZ91] DeHaemer, Jr., M.J., and Zyda, M.J., “Simplification of Objects Rendered by Polygonal Approx-

imations,” Computer & Graphics, 15, 1991, 175–184.
[EdaL99] Edalat, Abbas, and Lieutier, André, “Foundation of a Computable Solid Modeling,” in

[BroA99], 278–284.
[EdeM90] Edelsbrunner, Herbert, and Mücke, Ernst Peter, “Simulation of Simplicity: A Technique to

Cope with Degenerate Cases in Geometric Algorithms,” ACM TOG, 9(1), January 1990,
66–104.

[Elsa83] Elsaesser, Fritz, “Surfaces and Their Applications at Opel,” in [BarB83], 157–162.
[Fari83] Farin, Gerald, “Some Aspects of Car Body Design at Daimler-Benz,” in [BarB83], 93–98.
[Ferg64] Ferguson, J.C., “Multivariable Curve Interpolation,” J. ACM, 11, 1964, 221–228.
[FilB89] Filip, Daniel J., and Ball, Thomas W., “Procedurally Representing Lofted Surfaces,” CG&A,

9(6), November 1989, 27–33.
[FiMM86] Filip, D., Magedson, R., and Markot, R., “Surface Algorithms Using Bounds on Derivatives,”

CAGD, 3(4), 1986, 295–311.
[FolR93] Foley, Thomas, and Rockwood, Alyn, Organizers, Curve and Surface Design: From Geometry

to Applications, Course Notes, Volume 82, SIGGRAPH 93, August 1993.
[Fort95] Fortune, Steven, “Polyhedral Modelling with Exact Arithmetic,” in [HofR95], 225–233.
[GeCG99] Ge, Jian-Xin, Chou, Shang-Ching, and Gao, Xiao-Shan, “Geometric Constraint Satisfaction

Using Optimization Methods,” CAD, 31(14), December 1999, 867–879.

Bibliography 845

[Gord69] Gordon, William J., “Distributive Lattices and the Approximation of Multivariate Functions,”
in Approximations with Special Emphasis on Spline Functions, edited by I.J. Schoenberg,
Academic Press, 1969, 223–277.

[Gord71] Gordon, William J., “Blending Function Methods of Bivariate and Multivariate Interpolation
and Approximation,” SIAM J. Numer. Anal., 8(1), 1971, 158–177.

[GorR74a] Gordon, W.J., and Riesenfeld, R.F., “Bernstein-Bézier Methods for the Computer Aided Design
of Free-form Curves and Surfaces, J.ACM, 21, 1974, 293–310.

[Greg89] Gregory, John A., “Geometric Continuity,” in [LycS89], 353–371.
[Heck97] Heckbert, Paul S., Organizer, Multiresolution Surface Modeling, Course Notes, Volume 27,

SIGGRAPH 97, August 1997.
[HecG97] Heckbert, Paul S., and Garland, Michael, “Survey of Polygonal Surface Simplification

Algorithms,” in [Heck97].
[Hoch83] Hochfeld, Hans-Joachim, “Surface Description in the Application at Volkswagen,” in

[BarB83], 35–42.
[HoHK89] Hoffmann, Christoph M., Hopcroft, John E., and Karasick, Michael S., “Robust Set Opera-

tions on Polyhedral Solids,” CG&A, 9(6), 1989, 50–59.
[Hopp96] Hoppe, Hugues., “Progressive Meshes,” SIGGRAPH 96, August 1996, 99–108.
[HuaM02] Huang, J., and Menq, C.H., “Combinatorial Manifold Mesh Reconstruction and Optimization

from Unorganized Points with Arbitrary Topology,” CAD, 34(2), February 2002, 149–165.
[HutH96] Hutchinson, Dave, and Hewitt, Terry, “Rapidly Visualizing Isophotes,” J. of Graphics Tool,

1(3), 1996, 7–12.
[JiMa97] Ji, Qiang, and Marefat, Michael M., “Machine Interpretation of CAD Data for Manufacturing

Applications,” ACM Computing Surveys, 29(3), September 1997, 264–311.
[Just92] Juster, N.P., “Modelling and Representation of Dimensions and Tolerances: A Survey,” CAD,

24(1) January 1992, 3–17.
[KimK03] Kim, Ku-Jin, “Minimum Distance Between a Canal Surface and a Simple Surface,” CAD,

35(10), September 2003, 871–879.
[Klas80] Klass, R., “Correction of Local Surface Irregularities Using Reflection Lines,” CAD, 12(2),

1980, 73–77.
[Kobb96] Kobbelt, Leif, “A Variational Approach to Subdivision,” CAGD, 13(8), November 1996, 743–761.
[Kost91] Kosters, “Curvature-dependent Parameterization of Curves and Surfaces,” CAD, 23(8),

October 1991, 569–578.
[Kypr80] Kyprianou, L.K., “Shape Classification in Computer Aided Design,” Ph.D. Dissertation,

University of Cambridge, Cambridge, England.
[LanR80] Lane, J.M., and Riesenfeld, R.F., “A Theoretical Development for the Computer Generation

and Display of Piecewise Polynomial Surfaces,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-2(1), January 1980, 35–46.

[LiON02] Li, W.D., Ong, S.K., and Nee, A.Y.C., “Recognizing Manufacturing Features from a Design-by-
Feature Model,” CAD, 34(11), September 2002, 849–868.

[LiHS02] Li, Yan-Tao, Hu, Shi-Min, and Sun, Jia-Guang, “A Constructive Approach to Solving 3-D
Geometric Constraint Systems Using Dependence Analysis,” CAD, 34(2), February 2002,
97–108.

[LicS87] Lichten, Larry, and Samek, Marcel, “Integrating Sculptured Surfaces into a Polyhedral Solid
Modeling System,” in [Fari87], 109–121.

[LWZL02] Liu, G.H., Wong, Y.S., Zhang, Y.F., and Loh, H.T., “Adaptive Fairing of Digitized Point Data
with Discrete Curvature,” CAD, 34(4), April 2002, 309–320.

[Lueb01] Luebke, David P., “A Developer’s Survey of Polygonal Simplification Algorithms,” CG&A,
21(3), May/June 2001, 24–35.

[MäNS96] Mäntylä, Martti, Nau, Dana, and Shah, Jami, “Challenges in Feature-based Manufacturing
Research,” CACM, 39(2), February 1996, 77–85.

[Mart94] Martin, R.R., “The Geometry of the Helical Canal Surface,” in [Bowy94], 17–32.
[MarS89] Martin, R.R., and Stephenson, P.C., “Swept Volumes in Solid Modellers,” in [Hand89],

391–404.
[Mill86] Miller, James R., “Sculptured Surfaces in Solid Models: Issues and Alternative Approaches,”

CG&A, 6(12), December 1986, 37–48.
[Nasr87] Nasri, Ahmad. H., “Polyhedral Subdivision Methods for Free-Form Surfaces,” ACM TOG, 6(1),

January 1987, 29–73.
[NiBl94] Ni, Xiujun, and Bloor, M. Susan, “Performance Evaluation of Boundary Data Structures,”

CG&A, 14(6), November 1994, 66–77.

846 Bibliography

[NowR83] Nowacki, Horst, and Reese, Dirk, “Design and Fairing of Ship Surfaces,” in [BarB83],
121–134.

[OckS84] Ocken, S., and Schwartz, J.T., “Precise Implementation of CAD Primitives Using Rational
Parametrizations of Standard Surfaces,” in Pickett, M.S., and Boyse, J.W., editors, Solid Mod-
eling by Computers: From Theory to Applications, Plenum Press, 1984, 259–273.

[PaPV95] Paoluzzi, Alberto, Pascucci, Valerio, and Vicentino, Michele, “Geometric Programming: A Pro-
gramming Approach to Geometric Design,” ACM TOG, 14(3), July 1995, 266–306.

[PePR99] Peternell, Martin, Pottmann, Helmut, and Ravani, Bahram, “On the Computational Geome-
try of Ruled Surfaces,” CAD, 31(1), January 1999, 17–32.

[Podg02] Podgorelec, D., “A New Constructive Approach to Constraint-Based Geometric Design,” CAD,
34(11), September 2002, 769–785.

[Pösc84] Pöschl, T., “Detecting Surface Irregularities Using Isophotes,” CAGD, 1(2), 1984, 163–168.
[Prat87a] Pratt, M.J., “Form Features and Their Applications in Solid Modeling,” Course Notes, Volume

26, SIGGRAPH 87, July 1987.
[Prat87b] Pratt, M.J., “Recent Research in Form Features,” Course Notes, Volume 26, SIGGRAPH 87,

July 1987.
[PraW85] Pratt, M.J., and Wilson, P.R., “Requirements for the Support of Form Features in a Solid Mod-

eling System,” Report No. R-85-ASPP-01, CAM-I, Arlington, Texas.
[RanR91] Rando, T., and Roulier, J.A., “Designing Faired Parametric Surfaces,” CAD, 23, 1991, 492–497.
[RenE03] Renner, Gábor, and Ekárt, Anikó, “Genetic Algorithms in Computer Aided Design,” CAD,

35(8), July 2003, 709–726.
[Requ80] Requicha, A.A.G., “Representations for Rigid Solids: Theory, Methods, and Systems,” ACM

Computing Surveys, 12(4), December 1980, 437–464.
[Requ96] Requicha, Aristides A.G., “Geometric Reasoning for Intelligent Manufacturing,” CACM, 39(2),

February 1996, 71–76.
[ReqV82] Requicha, A.A.G., and Voelcker, H.B., “Solid Modeling: A Historical Summary and Contem-

porary Assessment,” CG&A, 2(2), March 1982, 9–24.
[ReqV83] Requicha, A.A.G., and Voelcker, H.B., “Solid Modeling: Current Status and Research Direc-

tions,” CG&A, 3(7), October 1983, 25–37.
[ReqV85] Requicha, A.A.G., and Voelcker, H.B., “Boolean Operations in Solid Modeling: Boundary

Evaluation and Merging Algorithms,” Proc. of the IEEE, 73(1), January 1985, 30–44.
[Roll95] Roller, D., “Solid Modeling with Constrained Form Features,” in [HaFN95], 275–284.
[Sabi90] Sabin, Malcolm, “Sculptured Surface Definitions—A Historical Survey,” in [RogE90],

285–337.
[SaRE76] Samuel, N.M., Requicha, A.A.G., and Elkind, S.A., “Methodology and Results of an Industrial

Part Survey,” TM-21, Production Automation Project, Univ. of Rochester, July 1976.
[Sede87] Sederberg, Thomas W., “Algebraic Geometry for Surface and Solid Modeling,” in [Fari87],

29–42.
[SeWZ89] Sederberg, Thomas W., White, S.C., and Zundel, A.K., “Fat Arcs: A Bounding Region with

Cubic Convergence,” CAGD, 6, 1989, 205–218.
[SéCM95] Séquin, C.H., Chang, P.-Y., and Moreton, H.P., “Scale-Invariant Functionals for Smooth Curves

and Surfaces,” in [HaFN95], 303–321.
[Shap91] Shapiro, Vadim, “Representations of Semi-Algebraic Sets in Finite Algebras Generated by

Space Decompositions,” Ph.D. thesis, Cornell University, Cornell Programmable Automation,
Ithaca, NY, 1991.

[ShaV95] Shapiro, Vadim, and Vossler, Donald L., “What Is a Parametric Family of Solids?” in [HofR95],
43–54.

[ShiS98] Shin, Byeong-Seok, and Shin, Yeong Gil, “Fast 3D Solid Model Reconstruction from Ortho-
graphic Views,” CAD, 30(1), January 1998, 63–76.

[ShiK91] Shinagawa, Yoshihisa, and Kunii, Tosiyasu L., “Constructing a Reeb Graph Automatically
from Cross Sections,” CG&A, 11(6), November 1991, 44–52.

[ShKK91] Shinagawa, Yoshihisa, Kunii, Tosiyasu L., and Kergosieu, Yannick L., “Surface Coding Based
on Morse Theory,” CG&A, 11(5), September 1991, 66–78.

[SodT94] Sodhi, Rajneeet, and Turner, Joshua U., “Towards Modelling of Assemblies for Product
Design,” CAD, 26(2),February 1994, 85–97.

[SuHH99] Suri, S., Hubbard, P.M., and Hughes, J.F., “Analyzing Bounding Boxes for Object Intersec-
tion,” TOG, 18(3), July 1999, 257–277.

[Tilo80] Tilove, R.B., “Set Membership Classification: A Unified Approach to Geometric Intersection
Problems,” IEEE Trans. on Computer, C-29(10), October 1980, 874–883.

Bibliography 847

[VanW96] Van Overveld, C.W.A.M., and Wyvill, B., “Banishing Bad Buckling,” J. of Graphics Tools, 1(3),
1996, 13–28.

[VSBJ98] Volpin, O., Sheffer, A., Bercovier, M., and Joskowicz, L., “Mesh Simplification with Smooth
Surface Reconstruction,” CAD, 30(11), September 1998, 875–882.

[Wats89] Watson, L.T., “Globally Convergen Homotopy Methods: A Tutorial,” Appl. Math. Comput., 31,
1989, 369–396.

[Weil85] Weiler, Kevin, “Edge-Based Data Structures for Solid Modeling in Curved-Surface Environ-
ments,” CG&A, 5(1), January 1985, 21–40.

[WooT85] Woo, T.C., “A Combinatorial Analysis of Boundary Data Structure Schemata,” CG&A, 5(3),
March 1985, 19–27.

[Yu92] Yu, Jiaxun, “Exact Arithmetic Solid Modeling,” PhD thesis, Technical Report CSD-TR-92-037,
Comp. Science Dept., Purdue Univ., West Lafayette, Indiana, 47907-1398, USA, June 1992.

Graphical User Interfaces
[Micr94] Microsoft Corp., The Windows Interface Guidelines for Software Design, Microsoft Press, 1995.
[Pedd92] Peddie, Jon, Graphical User Interfaces and Graphic Standards, McGraw-Hill, Inc., 1992.

Graphics Pipeline
[Blin88b] Blinn, James F., “Where Am I? What Am I Looking At,” CG&A, 8(4), July 1988.
[Blin91a] Blinn, James F., “A Trip Down the Graphics Pipeline: Line Clipping,” CG&A, 11(1), January

1991.
[Blin91b] Blinn, James F., “A Trip Down the Graphics Pipeline: Pixel Coordinates,” CG&A, 11(4), July

1991.
[Blin91c] Blinn, James F., “A Trip Down the Graphics Pipeline: Subpixelic Particles,” CG&A, 11(5),

September 1991.
[Blin92] Blinn, James F., “A Trip Down the Graphics Pipeline: Grandpa, What Does ‘Viewport’ Mean,”

CG&A, 12(1), January 1992.
[FauL01] Faugeras, Olivier, and Luong, Quang-Tuan, The Geometry of Multiple Images, the MIT Press,

2001.

Graphics Standards
[ANSI85] ANSI (American National Standards Institute), American National Standard for Information

Processing Systems – Computer Graphics – Graphical Kernel System (GKS) Functional Descrip-
tion, ANSI X3.124-1985, ANSI, New York, 1985.

[ANSI88] ANSI (American National Standards Institute), American National Standard for Information
Processing Systems – Programmer’s Hierarchical Interactive Graphics System (PHIGS) Func-
tional Description, Archive File Format, Clear-Text Encoding of Archive File, ANSI X3.144-1988,
ANSI, New York, 1988.

[BarD98] Bargen, Bradley, and Donnelly, Peter, Inside DirectX, Microsoft Press, 1998.
[BeBF78] Bergeron, R.D., Bono, P.R., and Foley, J.D., “Graphics Programming Using the Core System,”

ACM Computing Surveys, 10(4), December 1978, 389–443.
[BDDH95] Brodlie, Ken W., Damnjanovic, Ljiljana B., Duce, David A., and Hopgood, F. Robert, “GKS-

94: An Overview,” CG&A, 15(6), November 1995, 64–71.
[Cars98] Carson, George S., “The History of Computer Graphics Standards Development,” Computer

Graphics, 32(1), 1998, 34–38.
[EnKP84] Enderle, G., Kansy, K., and Pfaff, G., Computer Graphics Programming: GKS – The Graphical

Kernel System, Springer-Verlag, 1984.
[Glid97] Glidden, Rob, Graphics Programming with Direct3D, Addison-Wesley Developers Press, 1997.
[GSPC77] Graphics Standards Planning Committee, “Status Report of the Graphics Standards Planning

Committee,” Computer Graphics, 11, 1977.
[GSPC79] Graphics Standards Planning Committee, “Status Report of the Graphics Standards Planning

Committee,” Computer Graphics, 13(3), 1979.
[IGES88] Initial Graphics Exchange Specification (IGES), Version 4.0, U.S. Department of Commerce,

National Bureau of Standards, Washington, DC, 1988.

848 Bibliography

[ISO 88] International Standards Organization, International Standard Information Processing Systems
Computer Graphics – Graphical Kernel System for Three Dimensions (GKS-3D) Functional
Description, ISO Document Number 8805:1988(E), American National Standards Institute,
New York, 1988.

[KemF97] Kempf, Renate, and Frazier, Chris, Editors, OpenGL Reference Manual, 2nd Edition, Addison-
Wesley Developers Press, 1997.

[Timm96] Timmins, Bret, DirectDraw Programming, M&T Books, 1996.
[VanD88] van Dam, A., “PHIGS + Functional Description, Revision 3.0,” Computer Graphics, 22(3), July

1988, 125–218.
[WNDS99] Woo, Mason, Neider, Jackie, Davis, Tom, and Shreiner, Dave, OpenGL Programming Guide,

3rd Edition, Addison Wesley Longman, 1999.
[WriS00] Wright, Richard S., Jr., and Sweet, Michael, OPENGL SuperBible, 2nd Edition, Waite Group

Press, 2000.

Hodographs
[Faro92] Farouki, Rida T., “Pythagorean-Hodograph Curves in Practical Use,” in [Barn92], 3–33.
[KimD93] Kim, Deok-Soo, “Hodograph Approach to Geometric Characterization of Parametric Cubic

Curves,” CAD, 25(10), October 1993, 644–654.
[Moon99] Moon, Hwan Pyo, “Minkowski Pythagorean Hodographs,” CAGD, 16(8), September 1999,

739–753.
[SaWS95] Saito, Takafumi, Wang, Guo-Jin, and Sederberg, Thomas W., “Hodographs and Normals of

Rational Curves and Surfaces,” CAGD, 12(4), June 1995, 417–430.
[SedW87] Sederberg, T., and Wang, X., “Rational Hodographs,” CAGD, 4(4), 1987, 333–335.

Implicit Curves and Surfaces
[AllG87] Allgower, E.L., and Gnutzmann, S., “An Algorithm for Piecewise Linear Approximations of

an Implicitly Defined Two-Dimensional Surfaces,” SIAM J. Numerical Analysis, 24(2), April
1987, 452–469.

[AllG91] Allgower, E.L., and Gnutzmann, S., “Simplicial Pivoting for Mesh Generation of Implicitly
Defined Surfaces,” CAGD, 8(4), October 1991, 305–325.

[AllS85] Allgower, E.L., and Schmidt, P.H., “An Algorithm for Piecewise-Linear Approximations of an
Implicitly Defined Manifold,” SIAM J. Numerical Analysis, 22(2), April 1985, 322–346.

[Bloo88] Bloomenthal, Jules, “Polygonization of Implicit Surfaces,” CAGD, 5(4), November 1988,
341–355.

[Bloo97] Bloomenthal, Jules, editor, Introduction to Implicit Surfaces, Morgan Kaufmann Publ., 1997.
[Chan88] Chandler, Richard E., “A Tracking Algorithm for Implicitly Defined Curves,” CG&A, 8(2),

March 1988, 83–89.
[GarZ79] Garcia, C.B., and Zangwill, W.I., “Finding All Solutions to Polynomial Systems and Other

Systems of Equations,” Math. Programming, 16(1979), 159–176.
[GonN02] Gonzalez-Vega, Laureano, and Necula, Ioana, “Efficient Topology Determination of Implic-

itly Defined Algebraic Plane Curves,” CAGD, 19(9), December 2002, 719–743.
[Hoff93] Hoffmann, Christoph M., “Implicit Curves and Surfaces in CAGD,” CG&A, 13(1), Jan., 1993,

79–88.
[Morg83] Morgan, A.P., “A Method for Computing All Solutions to Systems of Polynomial Equations,”

ACM Trans. on Math. Software, 9(1983), 1–17.
[NinB93] Ning, Paul, and Bloomenthal, Jules, “An Evaluation of Implicit Surface Tilers,” CG&A, 13(4),

November 1993, 33–41.
[SeZZ89] Sederberg, Thomas W., Zhao, Junwu, and Zundel, Alan K., “Approximate Parameterization

of Algebraic Curves,” in [StrS89], 33–54.
[VeVC94] Verschelde, Jan, Verlinden, Pierre, and Cools, Ronald, “Homotopies Exploiting Polytopes for

Solving Sparse Polynomial Systems,” SIAM J. Numer. Anal., 31(3), June 1994, 915–930.
[Wats86] Watson, Layne T., “Numerical Linear Algebra Aspects of Globally Convergent Homotopy

Methods,” SIAM Review, 28(4), December 1986, 529–545.
[Wrig85] Wright, A.H., “Finding All Solutions to a System of Polynomial Equations,” Math. of Com-

putation, 44(1985), 125–133.

Bibliography 849

Intersection Algorithms
[AbdY96] Abdel-Malek, Karim, and Yeh, Harn-Jou, “Determining Intersection Curves Between Surfaces

of Two Solids,” CAD, 28(6/7), June/July 1996, 539–549.
[AbdY97] Abdel-Malek, Karim, and Yeh, Harn-Jou, “On the Determination of Starting Points for Para-

metric Surface Intersections,” CAD, 29(1), January 1997, 21–35.
[Aste88] Asteasu, C., “Intersection of Arbitrary Surfaces,” CAD, 20(9), November 1988, 533–538.
[AzBB90] Aziz, Nadim. M., Bata, Reda., and Bhat, Sudarshan, “Bézier Surface/Surface Intersection,”

CG&A, 10(1), 1990, 50–58.
[BHLH88] Bajaj, C.L, Hoffmann, C.M., Lynch, R.E., and Hopcroft, J.E.H., “Tracing Surface Intersec-

tions,” CAGD, 5(4), November 1988, 285–307.
[BajX92] Bajaj, Chanderjit, and Xu, Gualiang, “NURBS Approximation of Surface/Surface Intersec-

tion Curves,” Technical Report CSD-TR-92-036, Comp. Science Dept., Purdue Univ., West
Lafayette, Indiana, 47907-1398, USA, June 1992.

[BFJP87] Barnhill, R.E., Farin, G., Jordan, M., and Piper, B.R., “Surface/Surface Intersection,” CAGD,
4(1), January 1987, 3–16.

[BarK90] Barnhill, R.E., and Kersey, S.N., “A Marching Method for Parametric Surface/Surface Inter-
section,” CAGD, 7(1–4), June 1990, 257–280.

[Boen91] Boender, E., “A Survey of Intersection Algorithms for Curved Surfaces,” Computers and
Graphics, 15, 1991, 109–115.

[BurS93] Bürger, Heiko, and Schaback, Robert, “A Parallel Multistage Method for Surface/Surface
Intersection,” CAGD, 10, 1993, 277–291.

[Carl82] Carlson, Wayne E., “An Algorithm and Data Structure for 3D Object Synthesis Using Surface
Patch Intersections,” Computer Graphics, 16(3), July 1982, 255–263.

[ChaK87] Chandru, Vidaya, and Kochar, Bipin S., “Analytic Techniques for Geometric Intersection Prob-
lems,” in [Fari87], 305–318.

[ChBA94] Chang, Long Chyr, Bein, Wolfgang W., and Angel, Edward, “Surface Intersection Using Par-
allelism,” CAGD, 11(1), February 1994, 39–69.

[CheO88] Chen, J.J., and Ozsoy, T.M., “Predictor-Corrector Type of Intersection Algorithm for C2 Para-
metric Surfaces,” CAD, 20(6), July/Aug, 1988, 347–352.

[Chen89] Cheng, Koun-Ping, “Using Plane Vector Fields to Obtain All the Intersection Curves of Two
General-Surfaces,” in [StrS89], 187–204.

[CycW92] Cychosz, Joseph M., and Waggenspack, Warren N. Jr., “Intersecting a Ray with a Quadric
Surface,” in [Kirk92], 275–283.

[CycW94] Cychosz, Joseph M., and Waggenspack, Warren N. Jr., “Intersecting a Ray with a Cylinder,”
in [Heck94], 356–365.

[DoSY89] Dokken, T., Skytt, V., Ytrehus, A.-M., “Recursive Subdivision and Iteration in Intersections
and Related Problems,” in [LycS89], 207–214.

[Fari92b] Farin, Gerald, “An SSI Bibliography,” in [Barn92], 205–207.
[Faro87] Farouki, Rida T., “Direct Surface Section Evaluation,” in [Fari87], 319–334.
[FaNO89] Farouki, R.T., Neff, C.A., and O’Connor, M.A., Automatic Parsing of Degenerate Quadric-

Surface Intersection,” TOG, 8(3), July 1989, 174–203.
[GarW89] Garrity, Thomas, and Warren, Joe, “On Computing the Intersection of a Pair of Algebraic Sur-

faces,” CAGD, 6(2), May 1989, 137–153.
[GolM87] Goldman, Ronald N., and Miller, James R., “Combining Algebraic Rigor with Geometric

Robustness for the Detection and Calculation of Conic Sections in the Intersection of Two
Natural Quadric Surfaces,” in [Fari87], 221–231.

[GolS87] Goldman, R.N., and Sederberg, T.W., “Analytic Approach to Intersection of All Piecewise Para-
metric Rational Cubic Curves,” CAD, 19(6), July/August 1987, 282–292.

[GraK97] Grandine, T.A., and Klein IV, F.W., “A New Approach to the Surface Intersection Problem,”
CAGD, 14(2), February 1997, 111–134.

[Gree94] Greene, Ned, “Detecting Intersection of a Rectangular Solid and a Convex Polyhedron,” in
[Heck94], 74–82.

[HaAG83] Hanna, S.L., Abel, J.F., and Greenberg, D.P., “Intersection of Parametric Surfaces by Means
of Look-Up Tables,” CG&A, 3(5), October 1983, 39–48.

[HeKE99] Heo, Hee-Seok, Kim, Myung-Soo, and Elber, Gershon, “The Intersection of Two Ruled Sur-
faces,” CAD, 31(1), January 1999, 33–50.

[Hohm91] Hohmeyer, Michael E., “A Surface Intersection Algorithm Based on Loop Detection,” in
[RosT91], 197–207.

850 Bibliography

[HEFS85] Houghton, Elizabeth G., Emnett, Robert F., Factor, James D., Sabharwal, Chaman L., “Imple-
mentation of a Divide-and-Conquer Method for Intersection of Parametric Surfaces,” CAGD,
2(1–3), 1985, 173–183.

[HMPY97] Hu, Chun-Yi, Maekawa, Takashi, Patrikalakis, Nicholas M., and Ye, Xiuzi, “Robust Interval
Algorithm for Surface Intersections,” CAD, 29(9), September 1997, 617–627.

[HMSP96] Hu, Chun-Yi, Maekawa, Takashi, Sherbrooke, Evan C., and Patrikalakis, Nicholas M., “Robust
Interval Algorithm for Curve Intersections,” CAD, 28(6/7), June/July 1996, 495–506.

[KlaK92] Klass, Reinhold, and Kuhn, Bernhard, “Fillet and Surface Intersections Defined by Rolling
Balls,” CAGD, 9(3), August 1992, 185–193.

[Klas94] Klassen, R. Victor, “Intersecting Parametric Cubic Curves by Midpoint Subdivision,” in
[Heck94], 261–277.

[Kopa91] Koparkar, P., “Surface Intersection by Switching from Recursive Subdivision to Iterative
Refinement,” The Visual Computer, 8(1991), 47–63.

[KrPW92] Kriezis, G.A., Patrikalakis, N.M., and Wolter, F-E., “Topological and Differential-Equation
Methods for Surface Intersections,” CAD, 24(1), January 1992, 41–55.

[KrPP90] Kriezis, G.A., Prakash, P.V., and Patrikalakis, N.M., “Method for Intersecting Algebraic Sur-
faces with Rational Polynomial Patches,” CAD, 22(10), December 1990, 645–654.

[KriM97] Krishnan, Shankar, and Manocha, Dinesh, “An Efficient Surface Intersection Algorithm Based
on Lower-Dimensional Formulation,” ACM TOG, 16(1), January 1997, 74–106.

[LamM95] Lamure, Hervé, and Michelucci, Dominique, “Solving Geometric Constraints by Homotopy,”
in [HofR95], 263–269.

[LamM96] Lamure, Hervé, and Michelucci, Dominique, “Solving Geometric Constraints by Homotopy,”
IEEE Trans. on Visualization and Comp. Graphics, 2(1), March 1996, 28–34.

[Luka89] Lukács, Gábor, “The Generalized Inverse Matrix and the Surface-Surface Intersection
Problem,” in [StrS89], 167–185.

[LuMM95] Luo, Ren C., Ma, Yawei, and McAllister, David F., “Tracing Tangential Surface-Surface Inter-
sections,” in [HofR95], 255–262.

[MaLe98] Ma, Yawei, and Lee, Yuan-Shin, “Detection of Loops and Singularities of Surface Intersec-
tions,” CAD, 30(14), December 1998, 1059–1067.

[ManD94] Manocha, Dinesh, and Demmel, J., “Algorithms for Intersecting Parametric and Algebraic
Curves I: Simple Intersections,” TOG, 13(1), January 1994, 73–100.

[ManK97] Manocha, Dinesh, and Krishnan, Shankar, “Algebraic Pruning: A Fast Technique for Curve
and Surface Intersection,” CAGD, 14(9), December 1997, 823–845.

[MarM89] Markot, R.P., and Magedson, R.L., “Solutions of Tangential Surface and Curve Intersections,”
CAD, 21(7), September 1989, 421–429.

[MarM91] Markot, R.P., and Magedson, R.L., “Procedural Method for Evaluating the Intersection Curves
of Two Parametric Surfaces,” CAD, 23(6), July/Aug, 1991, 395–404.

[Mill87] Miller, J.R., “Geometric Approaches to Nonplanar Quadric Surface Intersection Curves,” TOG,
6(4), 1987, 274–307.

[OweR87] Owen, J.C., and Rockwood, A.P., “Intersection of General Implicit Surfaces,” in [Fari87],
335–345.

[Patr92] Patrikalakis, Nicholas M., “Interrogation of Surface Intersections,” in [Barn92], 161–185.
[Patr93] Patrikalakis, Nicholas M., “Surface-to-Surface Intersections,” CG&A, 13(1), Jan., 1993, 89–95.
[PhiO84] Phillips, M.B., and Odell, G.M., “An Algorithm for Locating and Displaying the Intersection

of Two Arbitrary Surfaces,” CG&A, 4(9), September 1984, 48–58.
[Pieg92] Piegl, Les A., “Constructive Geometric Approach to Surface-Surface Intersection,” in

[Barn92], 137–159.
[Powe72] Powell, M.J.D., “Problems Related to Unconstrained Optimisation,” in Murray, W., editor,

Numerical Methods for Unconstrained Optimisation, Academic Press, 1972.
[PraG86] Pratt, M.J., and Geisow, A.D., “Surface/Surface Intersection Problems,” in [Greg86], 117–

142.
[Rock90] Rockwood, A.P., “Accurate Display of Tensor Product Isosurfaces,” in Kaufman, A., editor,

Visualization ‘90, IEEE Computer Society Press, 1990, 353–360.
[Sede89] Sederberg, T.W., “Algorithm for Algebraic Curve Intersection,” CAD, 21(9), November 1989,

547–554.
[SeCK89] Sederberg, T.W., Christiansen, H.N., and Katz, S., “Improved Test for Closed Loops in Surface

Intersections,” CAD, 21(8), October 1989, 505–508.
[SedM88] Sederberg, Thomas W., and Meyers, Ray J., “Loop Detection in Surface Patch Intersections,”

CAGD, 5(2), July 1988, 161–171.

Bibliography 851

[SedN90] Sederberg, Thomas W., and Nishita, T., “Curve Intersection Using Bézier Clipping,” CAD,
22(9), November 1990, 538–549.

[SedP86] Sederberg, Thomas W., and Parry, S.R., “A Comparison of Three Curve Intersection Algo-
rithms,” CAD, 18(1), January/February 1986, 58–63.

[SheJ87] Shene, Ching-Kuang, and Johnstone, John K., “On the Planar Intersection of Natural
Quadrics,” in [Fari87], 233–242.

[Shen94] Shene, Ching-Kuang, “Computing the Intersection of a Line and a Cylinder,” in [Heck94],
353–355.

[Shen95] Shene, Ching-Kuang, “Computing the Intersection of a Line and a Cone,” in [Paet95], 227–231.
[Stoy92] Stoyanov, Tz.E., “Marching Along Surface/Surface Intersection Curves with an Adaptive Step

Length,” CAGD, 9(6), December 1992, 485–489.
[Timm77] Timmer, H.G., “Analytical Background for Computation of Suface Intersections,” Douglas Air-

craft Company Technical Memorandum, C1-250-CAT-77-036, April 1977.
[Turn88] Turner, Joshua U., “Accurate Solid Modeling Using Polyhedral Approximations,” CG&A, 8(3),

May 1988, 14–28.
[Wang92] Wang, K.Y., “Parametric Surface Intersections,” in [Barn92], 187–204.
[WilM93] Wilf, Itzhak, and Manor, Yehuda, “Quadric-Surface Intersection Curves: Shape and Struc-

ture,” CAD, 25(10), October 1993, 633–643.
[WuAn99] Wu, Shin-Ting, and Andrade, Lenimar N., “Marching Along a Regular Surface/Surface Inter-

section with Circular Steps,” CAGD, 16(4), May 1999, 249–268.
[YeMa99] Ye, Xiuzi, and Maekawa, Takashi, “Differential Geometry of Intersection Curves of Two Sur-

faces,” CAGD, 16(8), September 1999, 767–788.
[ZhoS99] Zhou, Y., and Suri, S., “Analysis of a Bounding Box Heuristic for Object Intersection,” J. of

the ACM, 46(6), November 1999, 833–857.

Interval Analysis
(See also [Snyd92])

[AleH83] Alefeld, Götz, and Herzberger, Jürgen, Introduction to Interval Computations, Academic Press,
1983.

[Garl85] Garloff, J., “Interval Mathematics. A Bibliography,” Freiburger Interval-Berichte, 1985,
Volume 6, 1–122.

[Garl87] Garloff, J., “Bibliography on Interval Mathematics. Continuation,” Freiburger Interval-
Berichte, 1987, Volume 2, 1–50.

[HuPY96a] Hu, Chun-Yi, Patrikalakis, Nicholas M., and Ye, Xiuzi, “Robust Interval Solid Modelling, Part
I: Representations,” CAD, 28(10), October 1996, 807–817.

[HuPY96b] Hu, Chun-Yi, Patrikalakis, Nicholas M., and Ye, Xiuzi, “Robust Interval Solid Modelling, Part
II: Boundary Evaluation,” CAD, 28(10), October 1996, 819–830.

[Moor66] Moore, Ramon E., Interval Analysis, Prentice-Hall, Inc., 1966.
[Moor79] Moore, Ramon E., Methods and Applications of Interval Analysis, SIAM, 1979.
[Snyd92a] Snyder, John M., “Interval Analysis for Computer Graphics,” SIGGRAPH 92, 26(2), July 1992,

121–130.

Mathematics for Geometric Modeling
[AgoM05] Agoston, Max K., Computer Graphics and Geometric Modeling: Mathematics, Springer, 2005.
[BowW83] Bowyer, A., and Woodwark, J., A Programmer’s Geometry, Butterworths, 1983.
[Hogg92] Hoggar, S.G., Mathematics for Computer Graphics, Cambridge Univ. Press, 1992.
[Mort89] Mortenson, M.E., Computer Graphics: An Introduction to the Mathematics and Geometry,

Industrial Press, 1989.
[RogA90] Rogers, D.F., and Adams, J.A., Mathematical Elements for Computer Graphics, 2nd Edition,

McGraw-Hill, 1990.

Medial Axes
[BBGS99] Blanding, Robert, Brooking, Cole, Ganter, Mark, and Storti, Duane, “A Skeletal-Based Solid

Editor,” in [BroA99], 141–150.

852 Bibliography

[Blum67] Blum, H., “A Transformation for Extracting New Descriptors of Shape,” in Wathen-Dunn,
Weinant, editor, Models for the Perception of Speech and Visual Form, MIT Press, 1967,
362–381.

[Blum73] Blum, H., “Biological Shape and Visual Science, Part I,” J. Theoretical Biology, 38, 1973,
205–287.

[BluN78] Blum, H., and Nagel, R.N., “Shape Description Using Weighted Symmetric Axis Features,”
Pattern Recognition, 10, 1978, 167–180.

[Bran92] Brandt, J.W., “Describing a Solid with the Three-Dimensional Skeleton,” in Warren, J.D.,
editor, Proceedings of the International Society for Optical Engineering Volume 1830, Curves
and Surfaces in Computer Vision and Graphics III, SPIE, Boston, Massachusetts, 1992,
258–269.

[CalH68] Calabi, L., and Hartnett, W.E., “Shape Recognition, Prairie Fires, Convex Deficiencies and
Skeletons,” Amer. Math. Monthly, 75, 1968, 335–342.

[Chia92] Chiang, Ching-Shoei, “The Euclidean Distance Transform,” PhD thesis, Technical Report CSD-
TR 92-050, Comp. Science Dept., Purdue Univ., West Lafayette, Indiana, 47907-1398, USA,
August 1992.

[ChCM97] Choi, Hyeong In, Choi, Sung Woo, and Moon, Hwan Pyo, “Mathematical Theory of Medial
Axis Transform,” Pacific J. of Math., 181(1), November 1997, 57–88.

[CuKM99] Culver, Tim, Keyser, John, and Manocho, Dinesh, “Accurate Computation of the Medial Axis
of a Polyhedron,” in [BroA99], 179–190.

[ElbK99] Elber, Gershon, and Kim, Myung-Soo, “Rational Bisectors of CSG Primitives,” in [BroA99],
159–166.

[FarJ94] Farouki, R.T., and Johnstone, J.K., “Computing Point/Curve and Curve/Curve Bisectors,” in
[Fish94], 327–354.

[FarR98] Farouki, Rida T., and Ramamurthy, Rajesh, “Degenerate Point/Curve and Curve/Curve
Bisectors Arising in Medial Axis Computations for Planar Domains with Curved
Boundaries,” CAGD, 15(6), June 1998, 615–635.

[GelD95] Gelston, Sean M., and Dutta, Debasish, “Boundary Surface Recovery from Skeleton Curves
and Surfaces,” CAGD, 12(1), February 1995, 27–51.

[GibB85] Giblin, P.J., and Brassett, S.A., “Local Symmetry of Plane Curves,” Amer. Math. Monthly,
92(10), December 1985, 689–707.

[Hoff91] Hoffmann, Christoph M., “Computer Vision, Descriptive Geometry, and Classical Mechanics,”
Technical Report CSD-TR-91-073, Comp. Science Dept., Purdue Univ., West Lafayette,
Indiana, 47907-1398, USA, October 1991, also in Proceedings of the Eurographics Workshop,
Computer Graphics and Mathematics, edited by Falcidieno, B., Hermann, I., and Pienovi, C.,
Genoa, Italy, October 1991, 229–244.

[Hoff94] Hoffmann, Christoph M., “How to Construct the Skeleton of CSG Objects,” in [Bowy94],
421–437.

[LazV99] Lazarus, Francis, and Verroust, Anne, “Level Set Diagrams of Polyhedral Objects,” in
[BroA99], 130–140.

[LaCJ94] Lazarus, Francis, Coquillart, Sabine, and Jancène, “Axial Deformations: An Intuitive
Deformation Technique,” CAD, 26(8), August 1994, 607–613.

[Nack82] Nackman, Lee R., “Curvature Relations in Three-Dimensional Symmetric Axes,” CGIP, 20(1),
September 1982, 43–57.

[RamG03] Ramanathan, M., and Gurumoorthy, B., “Constructing Medial Axis Transform of Planar
Domains with Curved Boundaries,” CAD, 35(7), June 2003, 619–632.

[RedT95] Reddy, Jayachandra, and Turkiyyah, George M., “Computation of 3D Skeletons Using a
Generalized Delaunay Triangulation Technique,” CAD, 27(9), September 1995, 677–694.

[ShAR95] Sheehy, D.J., Armstrong, C.G., and Robinson, D.J., “Computing the Medial Surface of a Solid
from a Domain Delaunay Triangulation,” in [HofR95], 201–212.

[ShAR96] Sheehy, Damian J., Armstrong, Cecil G., and Robinson, Desmond J., “Shape Description by
Medial Surface Construction,” IEEE Trans. on Visualization and Comp. Graphics, 2(1), March
1996, 62–72.

[ShPB95] Sherbrooke, Evan C., Patrikalakis, Nicholas M., and Brisson, Erik, “Computation of the
Medial Axis Transform of 3-D Polydedra,” in [HofR95], 187–200.

[ShPB96] Sherbrooke, Evan C., Patrikalakis, Nicholas M., and Brisson, Erik, “An Algorithm for the
Medial Axis Transform of 3-D Polyhedral Solids,” IEEE Trans. on Visualization and Comp.
Graphics, 2(1), March 1996, 44–61.

Bibliography 853

[STGLS97] Storti, D., Turkiyyah, G., Ganter, M., Lim, C.T., and Stal, D., “Skeleton-based Modeling
Operations on Solids,” in [HofB97], 141–154.

[TaJS99] Tate, S.J., Jared, G.E.M., Swift, K.G., “Detection of Symmetry and Primary Axes in Support
of Proactive Design for Assembly,” in [BroA99], 151–158.

[TSGCV97] Turkiyyah, George M., Storti, Duane W., Ganter, Mark, Chen, Hao, and Vimawala,
Munikumar, “An Accelerated Triangulation Method for Computing the Skeletons of Free-form
Solid Models,” CAD, 29(1), January 1997, 5–19.

[Verm94] Vermeer, P.J., “Medial Axis Transform to Boundary Representation Conversion,” PhD thesis,
Comp. Science Dept., Purdue Univ., West Lafayette, Indiana, 47907-1398, USA, 1994.

[Wolt95] Wolter, F.E., “Cut Locus and Medial Axis in Global Shape Interrogation and Representation,”
CAGD, 1995.

[YuGD91] Yu, Xinhua, Goldak, John, and Dong, Lingxian, “Constructing 3-D Discrete Medial Axis,” in
[RosT91], 481–492.

Miscellaneous
[AbeD81] Abelson, Harold, and diSessa, Andrea A., Turtle Geometry: The Computer as a Medium for

Exploring Mathematics, the MIT Press, 1981.
[Arvo91] Arvo, James, editor, Graphics Gems II, Academic Press, 1991.
[Bado90] Badouel, Didier, “An Efficient Ray-Polygon Intersection,” in [Glas90], 390–393.
[Chas78] Chasen, Sylvan H., Geometric Principles and Procedures for Computer Graphic Applications,

Prentice-Hall, Inc., 1978.
[Chin95] Chin, Normal, “A Walk Through BSP Trees,” in [Paet95], 121–138.
[Ferw01] Ferwerda, James A., “Elements of Early Vision for Computer Graphics,” CG&A, 21(5),

September/October 2001, 22–33.
[Fium89] Fiume, E.L., The Mathematical Structure of Raster Graphics, Academic Press, 1989.
[Geor92] Georgiades, Príamos, “Signed Distance from Point to Plane,” in [Kirk92], 223–224.
[Glas90] Glassner, A.S., editor, Graphics Gems, Academic Press, 1990.
[Gold90] Goldman, Ronald, “Matrices and Transformations,” in [Glas90], 472–475.
[Hain94] Haines, Eric, “Point in Polygon Strategies,” in [Heck94], 24–46.
[Heck94] Heckbert, Paul S., editor, Graphics Gems IV, Academic Press, 1994.
[Herm98] Herman, Gabor T., Geometry of Digital Spaces, Birkhäuser,1998.
[Hodg92] Hodges, Larry F., “Tutorial: Time-Multiplexed Stereoscopic Computer Graphics,” CG&A,

12(2), March 1992, 20–30.
[Kirk92] Kirk, David, editor, Graphics Gems III, Academic Press, 1992.
[Mill99] Miller, James R., “Applications of Vector Geometry for Robustness and Speed,” CG&A, 19(4),

July/August 1999, 68–73.
[Morr91] Morrison, Jack C., “Distance from a Point to a Line,” in [Arvo91], 10–13.
[Paet95] Paeth, Alan W., editor, Graphics Gems V, Academic Press, 1995.
[Pavl82] Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science Press, 1982.
[Pras91] Prasad, Mukesh, “Intersection of Line Segments,” in [Arvo91], 7–9.
[Rose79] Rosenfeld, A., Picture Languages, Academic Press, 1979.
[SchS95] Schlick, Christophe, and Subrenat, Gilles, “Ray Intersection of Tessellated Surfaces:

Quadrangles Versus Triangles,” in [Paet95], 232–241.
[VanG95] Van Gelder, Allen, “Efficient Computation of Polygon Area and Polyhedron Volume,” in

[Paet95], 35–41.
[WatP98] Watt, Alan, and Policarpo, Fabio, The Computer Image, Addison-Wesley, 1998.
[Weil94] Weiler, Kevin, “An Incremental Angle Point in Polygon Test,” in [Heck94], 16–23.

Numerical Methods
[ConD72] Conte, S.D., and de Boor, C., Elementary Numerical Analysis: An Algorithmic Approach,

McGraw-Hill Book Co., 1972.
[DahB74] Dahlquist, G., and Bjorck, A., Numerical Methods, Prentice-Hall, Inc., 1974.
[Horn75] Hornbeck, Robert W., Numerical Methods, Quantum Publishers, Inc., 1975.
[McCa98] McCartin, Brian J., “Seven Deadly Sins of Numerical Computation,” Amer. Math. Monthly,

105(10), December 1998, 929–941.

854 Bibliography

[PFTV86] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The Art
of Scientific Computing, Cambridge Univ. Press, 1986.

[Wall90] Wallis, Bob, “Tutorial on Forward Differencing,” in [Glas90], 594–603.

Offset Curves and Surfaces
[BarF95] Barnhill, R.E., and Frost, T.M., “Parametric Offset Surface Approximation,” in [HaFN95],

1–34.
[Brec92] Brechner, Eric L., “General Offset Curves and Surfaces,” in [Barn92], 101–121.
[ElLK97] Elber, Gershon, Lee, In-Kwon, and Kim, Myung-Soo, “Comparing Offset Curve Approxima-

tion Methods,” CG&A, 17(3), May–June 1997, 62–71.
[Faro85] Farouki, R.T., “Exact Offset Procedures for Simple Solids,” CAGD, 2(4), December 1985,

257–279.
[Faro86] Farouki, R.T., “The Approximation of Non-degenerate Offset Surfaces,” CAGD, 3(1), May

1986, 15–43.
[FarN90a] Farouki, R.T., and Neff, C.A., “Analytic Properties of Plane Offset Curves,” CAGD, 7(1990),

83–99.
[FarN90b] Farouki, R.T., and Neff, C.A., “Algebraic Properties of Plane Offset Curves,” CAGD, 7(1990),

101–127.
[FarS95] Farouki, Rida T., and Sederberg, Thomas W., “Analysis of the Offset to a Parabola,” CAGD,

12(6), September 1995, 639–645.
[Fors95] Forsyth, Mark, “Shelling and Offsetting Bodies,” in [HofR95], 373–381.
[HMSV99] Hartquist, E.E., Menon, J.P., Suresh, K., Voelcker, H.B., and Zagajac, J., “A Computing Strat-

egy for Applications Involving Offsets, Sweeps, and Minkowski Operations,” CAD, 31(3),
March 1999, 175–183.

[KuSP02] Kumar, G.V.V. Ravi, Shastry, K.G., and Prakash, B.G., “Computing Non-self-intersecting
Offsets of NURBS surfaces,” CAD, 34(3), March 2002, 209–228.

[KuSP03] Kumar, G.V.V. Ravi, Shastry, K.G., and Prakash, B.G., “Computing Constant Offsets of a
NURBS B-Rep,” CAD, 35(10), 935–944.

[Lü95] Lü, Wei, “Offset-rational Parametric Plane Curves,” CAGD, 12(6), September 1995, 601–616.
[Maek99] Maekawa, Takashi, “An Overview of Offset Curves and Surfaces,” CAD, 31(3), March 1999,

165–173.
[MaeP93] Maekawa, Takashi, and Patrikalakis, Nicholas M., “Computation of Singularities and

Intersections of Offsets of Planar Curves,” CAGD, 10(5), October 1993, 407–429.
[MeeW90] Meek, D.S., and Walton, D.J., “Offset Curves of Clothoidal Splines,” CAD, 22(4), May 1990,

199–201.
[Pham92] Pham, B., “Offset Curves and Surfaces: A Brief Survey,” CAD, 24(4), April 1992, 223–229.
[Pott95] Pottmann, H., “Rational Curves and Surfaces with Rational Offsets,” CAGD, 12(2), March

1995, 175–192.
[RosR86] Rossignac, Jaroslaw R., and Requicha, Aristides A.G., “Offsetting Operations in Solid

Modeling,” CAGD, 3(1986), 129–148.
[SaPD88] Saeed, S.E.O., de Pennington, A., and Dodsworth, J.R., “Offsetting in Geometric Modelling,”

CAD, 20(2), March 1988, 67–74.
[TilH84] Tiller, W., and Hanson, E., “Offsets of Two Dimensional Profiles,” CG&A, 4(9), September

1984, 36–46.

PC Oriented Computer Graphics
[Ferr94] Ferraro, R.F., Programmer’s Guide to the EGA, VGA, and Super VGA Cards, 3rd Edition,

Addison-Wesley Publ. Co., 1994.
[Wilt87] Wilton, R., Programmer’s Guide to PC & PS/2 Video Systems, Microsoft Press, 1987

Physically Based Modeling
[BaraW98] Baraff, David, and Witkin, Andrew, Organizers, Physically Based Modeling, Course Notes,

Volume 13, SIGGRAPH 98, July 1998.
[BarrA87] Barr, Alan H., Organizer, Topics in Physically-Based Modeling, Course Notes, Volume 16,

SIGGRAPH 87, July 1987.

Bibliography 855

[BarrA89] Barr, Alan H., editor, Topics in Physically Based Modeling, Addison-Wesley, 1989.
[Barze92] Barzel, Ronen, Physically-Based Modeling for Computer Graphics, Academic Press, 1992.
[KassB93] Kass, Michael, and Baraff, David, Organizers, An Introduction to Physically Based Modeling,

Course Notes, Volume 60, SIGGRAPH 93, August 1993.

Polygonization Algorithms
(See also Implicit Curves and Surfaces)

[Cuil98] Cuillière, J.C., “An Adaptive Method for the Automatic Triangulation of 3D Parametric
Surfaces,” CAD, 30(2), February 1998, 139–150.

[DeSB92] Dey, Tamal K., Sugihara, Kokichi, and Bajaj, Chanderjit, “Triangulations in Three Dimensions
with Finite Precision Arithmetic,” Technical Report CSD-TR-92-001, Comp. Science Dept.,
Purdue Univ., West Lafayette, Indiana, 47907-1398, USA, January 1992.

[Fili86] Filip, Daniel J., “Adaptive Subdivision Algorithms for a Set of Bézier Triangles,” CAD, 18(2),
March 1986, 74–78.

[HerB87] Von Herzen, B., and Barr, A.H., “Accurate Triangulations of Deformed, Intersecting Surfaces,”
SIGGRAPH 87, 21(4), July 1987, 103–110.

[Hiro74] Hironaka, H., “Triangulations of Algebraic Sets,” in Algebraic Geometry, ARCATA 1974, Proc.
of Symposia in Pure Mathematics, AMS, Providence, R.I., 1975.

[LiSH92] Lindgren, Terence, Sanchez, Juan, and Hall, Jim, “Curve Tessellation Criteria Through
Sampling,” in [Kirk92], 262–265.

[Schu93] Schumaked, Larry L., “Triangulations in CAGD,” CG&A, 13(1), January 1993, 47–52.
[ShiG95] Shimada, Kenji, and Gossard, David C., “Bubble Mesh: Automated Triangular Meshing of

Non-Manifold Geometry by Sphere Packing,” in [HofR95], 409–419.
[StaH97] Stander, Barton T., and Hart, John C., “Guaranteeing the Topology of an Implicit Surface

Polygonization for Interactive Modeling,” SIGGRAPH 97, August 1997, 279–286.
[VeDG99] Velho, L., De Figueiredo, L.H., and Gomes, J., “A Unified Approach for Hierarchical Adaptive

Tessellation of Surfaces,” TOG, 18(4), October 1999, 329–360.
[ZheS00] Zheng, Jianmin, and Sederberg, Thomas W., “Estimating Tessellation Parameter Intervals for

Rational Curves and Surfaces,” TOG, 19(1), January 2000, 56–77.

Projective Geometry and Transformations
[Egga98] Eggar, M.H., “Pinhole Cameras, Perspective, and Projective Geometry,” Amer. Math. Monthly,

105(7), August–September 1998, 618–630.
[PenP86] Penna, M.A., and Patterson, R.R., Projective Geometry and its Applications to Computer

Graphics, Prentice-Hall, 1986.

Quadrics
[Barr81] Barr, A.H., “Superquadrics and Angle-Preserving Transformations,” CG&A, 1(1), January

1981.
[Barr92] Barr, A.H., “Rigid Physically Based Superquadrics,” in [Kirk92], 137–159.
[Gold83] Goldman, Ronald N., “Quadrics of Revolution,” CG&A, 3(3), March/April 1983, 68–76.

Quaternions
[Baez02] Baez, John C., “The Octonions,” Bull. of the AMS, 39(2), April 2002, 145–205.
[BCGH92] Barr, Alan H., Currin, Bena, Gabriel, Steven, and Hughes, John F., “Smooth Interpolation of

Orientations with Angular Velocity Constraints Using Quaternions,” SIGGRAPH 92, 26(2),
July 1992, 313–320.

[Brad82] Brady, Michael, “Trajectory Planning,” in Robot Motion: Planning and Control, edited by
Michael Brady, John M. Hollerbach, Timothy L. Johnson, Tomas Lozano-Perez, and Matthew
T. Mason, The MIT Press, 1982.

[Brou84] Brou, Philippe, “Using the Gaussian Image to Find the Orientation of Objects,” The
International Journal of Robotics Research, 3(4), Winter, 1984, 89–125.

[CouH53] Courant, R., and Hilbert, D., Methods of Mathematical Physics, Volume I, Interscience
Publishers, Inc., New York, 1953.

856 Bibliography

[Hami69] Hamilton, William R., Elements of Quaternions, 3rd Edition, Chelsea Publ. Co., New York,
1969. Also in Lectures on Quaternions (1853): Republished in The Mathematical Papers of Sir
William Rowan Hamilton, Volume III, Algebra, Cambridge Univ. Press, London, 1967.

[HaMa95] Hanson, Andrew J., and Ma, Hui, “Quaternion Frame Approach to Streamline Visualization,”
IEEE Trans. on Visualization and Computer Graphics, 1(2), June 1995, 164–174.

[HarA02] Harada, Koichi, and Anzai, Takeshi, “Multiple Sweeping Using Quaternion Operations,” CAD,
34(11), September 2002, 815–822.

[Hers75] Herstein, I.N., Topics in Algebra, 2nd Edition, John Wiley and Sons, Inc., New York, 1975.
[KaLL83] Kane, Thomas R., Likins, Peter W., and Levinson, David A., Spacecraft Dynamics, McGraw-

Hill, Inc., 1983.
[Kuip99] Kuipers, Jack B., Quaternions and Rotation Sequences, Princeton Univ. Press, 1999.
[MacB79] MacLane, Saunders, and Birkhoff, Garrett, Algebra, 2nd Edition, MacMillan Publ. Co., Inc.,

New York, 1979.
[MiTW73] Misner, Charles W., Thorne, Kip S., and Wheeler, John Archibald, Gravitation, W. H. Freeman

and Co., San Francisco, Chapter 41 – Spinors, 1973.
[MitR68] Mitchell, E.E.L., and Rogers, A.E., “Quaternion Parameters in the Simulation of a Spinning

Rigid Body,” in Simulation the Dynamic Modeling of Ideas and Systems with Computers, John
McLeod, P.E., editor, 1968.

[PicS83] Pickert, G. and Steiner, H.-G., “Chapter 8 – Complex Numbers and Quaternions,” in Funda-
mentals of Mathematics, Volume I – Foundations of Mathematics: The Real Number System and
Algebra, H. Behnke, F. Bachmann, K. Fladt, and W. Suss, editors, Translated by S.H. Gould,
1983.

[Port81] Porteous, Ian R., Topological Geometry, 2nd Edition, Cambridge Univ. Press, Cambridge, 1981.
[Shoe85] Shoemake, Ken, “Animating Rotation with Quaternion Curves,” Computer Graphics,

SIGGRAPH 85, 19(3), July 1985, 245–254.
[Shoe91] Shoemake, Ken, “Quaternions and 4 ¥ 4 Matrices,” in [Arvo91], 351–354.
[Shoe93] Shoemake, Ken, “Quaternions,” Course Notes, Volume 60, SIGGRAPH 93, August 1993.
[Stil98] Stillwell, John, “Exceptional Objects,” Amer. Math. Monthly, 105(9), November 1998,

850–858.
[Tayl79] Taylor, Russell H., “Planning and Execution of Straight Line Manipulator Trajectories,” IBM

J. Res. Develop. 23, No. 4, July 1979, 424–436. Also in Robot Motion: Planning and Control,
edited by Michael Brady, John M. Hollerbach, Timothy L. Johnson, Tomas Lozano-Perez, and
Matthew T. Mason, The MIT Press, 1982.

[YanF64] Yang, A.T., and Freudenstein, F., “Application of Dual-Number Quaternion Algebra to the
Analysis of Spatial Mechanisms,” J. Appl. Mech., Trans. ASME 86, 1964, 300–308.

Radiosity
[CCWG88] Cohen, M.F., Chen, S.E., Wallace, J.R., and Greenberg, D.P., “A Progressive Refinement

Approach to Fast Radiosity Image Generation,” SIGGRAPH 88, 22(4), August 1988, 75–84.
[CohG85] Cohen, M.F., and Greenberg, D.P., “A Radiosity Solution for Complex Environments,”

SIGGRAPH 85, 19(3), July 1985, 31–40.
[CohW93] Cohen, Michael F., and Wallace, John R., Radiosity and Realistic Image Synthesis, Academic

Press, 1993.
[NeuN95] Neumann, Laszlo, and Neumann, Attila, “Radiosity and Hybrid Methods,” ACM TOG, 14(3),

July 1995, 233–265.
[WaCG87] Wallace, J.R., Cohen, M.F., and Greenberg, D.P., “A Two-Pass Solution to the Rendering

Equation: A Synthesis of Ray Tracing and Radiosity Methods,” SIGGRAPH 87, 21(4), July
1987, 311–320.

Raster Algorithms
[AckW81] Ackland, Bryan, and Weste, Neil, “The Edge Flag Algorithm—A Fill Method for Raster Scan

Displays,” IEEE Trans. on Computers, Vol C-30, January 1981.
[ArcM75] Arcelli, C., and Massarotti, A., “Regular Arcs in Digital Contours,” CGIP, 4(1975), 339–360.
[BoLZ75] Bongiovanni, G., Luccio, F., and Zorat, A., “The Discrete Equation of the Straight Line,” IEEE

Trans. Comp., 24(1975), 310–313.

Bibliography 857

[BoyB00] Boyer, Vincent, and Bourdin, Jean-Jacques, “Auto-Adaptive Step Straight-Line Algorithm,”
CG&A, 20(5), September/October 2000, 67–69.

[Bres65] Bresenham, J.E., “Algorithm for Computer Control of a Digital Plotter,” IBM Systems Journal,
4(1), 1965, 25–30.

[Bres77] Bresenham, J.E., “A Linear Algorithm for Incremental Digital Display of Circular Arcs,”
CACM, 20(2), February 1977, 100–106.

[DeFL87] DeFanti, Tom, Frankel, Rick, and Leske, Larry, “A Call for the Publishing of Blt-Stones,”
CG&A, 7(10), October 1987, 39–49.

[Fish90b] Fishkin, Ken, “Filling a Region in a Frame Buffer,” in [Glas90], 278–284.
[FisB85] Fishkin, K.P., and Barsky, B.A., “An Analysis and Algorithm for Filling Propagation,” Proc.

Graphics Interface 1985, 203–212.
[Free69] Freeman, H., “A Review of Relevant Problems in the Processing of Line-drawing Data,” in

Automatic Interpretation and Classification of Images, edited by A. Grasselli, Academic Press,
1969.

[GupS81] Gupta, S., and Sproull, R.E., “Filtering Edges for Gray-Scale Displays,” SIGGRAPH 81, 15(3),
August 1981, 1–5.

[Heck90a] Heckbert, Paul S., “What Are the Coordinates of a Pixel?” in [Glas90], 246–248.
[Heck90b] Heckbert, Paul S., “A Seed Fill Algorithm,” in [Glas90], 275–277.
[Heck90c] Heckbert, Paul S., “Digital Line Drawing,” in [Glas90], 99–100.
[Mcil92] McIlroy, M. Douglas, “Getting Raster Ellipses Right,” ACM TOG, 11(3), July 1992, 259–275.
[Morr90] Morrison, Jack C., “Fast Anti-aliasing Polygon Scan Conversion,” in [Glas90], 76–83.
[Pitt67] Pitteway, M.L.V., “Algorithm for Drawing Ellipses or Hyperbolae with a Digital Plotter,”

Computer J., 10(3), November 1967, 282–289.
[PitW80] Pitteway, M.L.V., and Watkinson, D.J., “Bresenham’s Algorithm with Grey-Scale,” CACM,

23(11), November 1980, 625–626.
[RoWW90] Rokne, J.G., Wyvill, Brian, and Wu, Xiaolin, “Fast Line Scan-Conversion,” ACM TOG, 9(4),

October 1990, 376–388.
[Smit79] Smith, A.R., “Tint Fill,” SIGGRAPH 79, 13(2), August 1979, 276–283.
[SteL00] Stephenson, Peter, and Litow, Bruce, “Why Step When You Can Run,” CG&A, 20(6),

November/December 2000, 76–84.
[Thom90] Thompson, Kelvin, “Rendering Anti-Aliased Lines,” in [Glas90], 105–106.
[VanN85] Van Aken, Jerry, and Novak, Mark, “Curve-Drawing Algorithms for Raster Displays,” ACM

TOG, 4(2), April 1985, 147–169.
[Wüth98] Wüthrich, Charles A., “A Model for Curve Rasterization in n-Dimensional Space,” Computers

& Graphics, 22(2–3), 1998, 153–160.
[Wyvi90] Wyvill, Brian, “Symmetric Double Step Line Algorithm,” in [Glas90], 101–104.

Ray Tracing
[Aman84] Amantides, J., “Ray Tracing with Cones,” SIGGRAPH 84, 18(3), July 1984, 129–136.
[Cook86] Cook, Robert L., “Stochastic Sampling in Computer Graphics,” ACM TOG, 5(1), January 1986,

51–72.
[Cook89] Cook, Robert L., “Stochastic Sampling and Distributed Ray Tracing,” in [Glas89], 161–199.
[CoPL84] Cook, Robert L., Porter, Thomas, and Carpenter, Loren, “Distributed Ray Tracing,”

SIGGRAPH 84, 18(3), July 1984, 137–145.
[FuTI86] Fujimoto, A., Tanaka, T., and Iwata, K., “ARTS: Accelerated Ray Tracing System,” CG&A, 6(4),

April 1986, 16–26.
[Glas84] Glassner, Andrew S., “Space Subdivision for Fast Ray Tracing,” CG&A, 4(10), October 1984,

15–22.
[Glas86] Glassner, Andrew S., “An Overview of Ray Tracing,” in [Glas89], 1–31.
[Glas89] Glassner, A.S., editor, An Introduction to Ray Tracing, Academic Press, 1989.
[Hain89] Haines, Eric., “Essential Ray Tracing,” in [Glas89], 33–77.
[Hanr89] Hanrahan, Pat., “A Survey of Ray-Surface Intersection Algorithms,” in [Glas89], 79–119.
[HKBZ97] Havran, Vlastimil, Kopal, Tomáš, Bittner, Jiři, and Žára, “Fast Robust BSP Tree Traversal Algo-

rithm for Ray Tracing,” J. of Graphics Tools, 2(4), 1997, 15–23.
[HecH84] Heckbert, Paul S., and Hanrahan, Pat, “Beam Tracing Polygon Objects,” SIGGRAPH 84, 18(3),

July 1984, 119–128.
[Kapl85] Kaplan, Michael R., “Space-Tracing, a Constant Time Ray-Tracer,” Course Notes, Volume 11,

SIGGRAPH 85, July 1985.

858 Bibliography

[KayK86] Kay, Timothy L., and Kajiya, James T., “Ray Tracing Complex Scenes,” SIGGRAPH 86, 20(4),
August 1986, 269–278.

[Lind92] Lindley, Craig A., Practical Ray Tracing in C, John Wiley & Sons, Inc., 1992.
[Ritt90] Ritter, Jack, “A Simple Ray Rejection Test,” in [Glas90], 385–386.
[Roth82] Roth, Scott D., “Ray Casting for Modeling Solids,” CGIP, 18(2), February 1982, 109–144.
[SunS92] Sung, Kelvin, and Shirley, Peter, “Ray Tracing with the BSP Tree,” in [Kirk92], 271–274.
[WaCF92] Watkins, Christopher D., Coy, Stephen B., and Finlay, Mark, Photorealism and Ray Tracing in

C, M&T Publ., Inc., 1992.

Real Analysis
[Nata61] Natanson, I.P., Theory of Functions of a Real Variable, translated from the Russian by Leo F.

Boron, Frederick Ungar Publ. Co., 1961.
[Spie69] Spiegel, Murray R., Theory and Problems of Real Variables, Schaum’s Outline Series, McGraw-

Hill, Co., 1969.

Rendering
[Debe99] Debevec, Paul, organizer, Image-Based Modeling, Rendering, and Lighting, Course Notes,

Volume 39, SIGGRAPH 99, August 1999.
[ElbC96] Elber, Gershon, and Cohen, Elaine, “Adaptive Isocurve-based Rendering for Freeform

Surfaces,” ACM TOG, 15(3), July 1996, 249–263.
[Gree99] Greenberg, Donald P., “A Framework for Realistic Image Synthesis,” CACM, 42(8), August

1999, 45–53.
[Kaji86] Kajiya, James T., “The Rendering Equation,” SIGGRAPH 86, 20(4), August 1986, 143–150.
[MölH99] Möller, Tomas, and Haines, Eric, Real-Time Rendering, A.K. Peters, Ltd., 1999.
[WatW92] Watt, Alan, and Watt, Mark, Advanced Animation and Rendering Techniques: Theory and

Practice, ACM Press, Addison-Wesley Publ. Co., 1992.
[Whit85] Whitted, T., “The Hacker’s Guide to Making Pretty Pictures,” Course Notes, Volume 12,

SIGGRAPH 85, July 1985.

Robotics
[Crai89] Craig, John J., Introduction to Robotics: Mechanics & Control, 2nd Edition, Addison-Wesley

Publ. Co., 1989.
[DenH55] Denavit, J., and Hartenberg, R.S., “A Kinematic Notation for Lower-Pair Mechanisms Based

on Matrices,” Journal of Applied Mechanics, June 1955, 215–221.
[Feat87] Featherstone, Roy, Robot Dynamics Algorithms, Kluwer Academic Publishers, 1987.
[HwaA92] Hwang, Yong K., and Ahuja, Narendra, “Gross Motion Planning – A Survey,” ACM Computin

urveys, 24(3), September 1992, 219–291.
[Paul82] Paul, Richard P., Robot Manipulators: Mathematics, Programming and Control, The MIT Press,

1982.

Shading and Illumination (Early Work)
[AtWG78] Atherton, P.R., Weiler, K., and Greenberg, D., “Polygon Shadow Generation,” SIGGRAPH 78,

12(3), August 1978, 275–281.
[BisW86] Bishop, G., and Weimer, D.M., “Fast Phong Shading,” SIGGRAPH 86, 20(4), August 1986,

103–106.
[Blin77] Blinn, J.F., “Models of Light Reflection for Computer Synthesized Pictures,” SIGGRAPH 77,

11(2), Summer, 1977, 192–198. Also in [Free80], 316–322.
[Bouk70] Bouknight, W.J., “A Procedure for Generation of Three-Dimensional Half-Toned Computer

Graphics Presentations,” CACM, 13(9), September 1970, 527–536. Also in [Free80], 292–301.
[BuiT75] Bui-Tuong, Phong, “Illumination for Computer Generated Pictures,” CACM, 18(6), June 1975,

311–317. Also in [BeaB82], 449–455.
[CooT82] Cook, Robert L., and Torrance, K.E., “A Reflectance Model for Computer Graphics,” ACM

TOG, 1(1), January 1982, 7–24. Also in [JGMH88], 244–253.
[Crow77b] Crow, F.C., “Shadow Algorithms for Computer Graphics,” SIGGRAPH 77, 11(2), Summer,

1977, 242–247. Also in [BeaB82], 442–448.

Bibliography 859

[Duff79] Duff, T., “Smoothly Shaded Renderings of Polyhedral Objects on Raster displays,” SIGGRAPH
79, 13(2), August 1979, 270–275.

[GoTG84] Goral, C., Torrance, K.E., and Greenberg, D.P., “Modeling the Interaction of Light Between
Diffuse Surfaces,” SIGGRAPH 84, 18(3), July 1984, 212–222.

[Gour71] Gouraud, H., “Continuous Shading of Curved Surfaces,” IEEE Trans. on Computers, C-20(6),
June 1971, 623–629. Also in [Free80], 302–308.

[TorS67] Torrance, K.E., and Sparrow, E.M., “Theory for Off-Specular Reflection from Roughened
Surfaces,” J. of the Optical Society of America, 56(7), September 1967, 1105–1114.

[Whit80] Whitted, T., “An Improved Illumination Model for Shaded Display,” CACM, 23(6), June 1980,
343–349. Also in [JGMH88], 132–138.

[Will78] Williams, L., “Casting Curved Shadows on Curved Surfaces,” SIGGRAPH 78, 12(3), August
1978, 270–274.

[WoPF90] Woo, Andrew, Poulin, Pierre, and Fournier, Alain, “A Survey of Shadow Algorithms,” CG&A,
10(6), November 1990, 13–32.

Spatial Data Structures
[DocT81] Doctor, L., and Torborg, J., “Display Techniques for Octree-Encoded Objects,” CG&A, 1(3),

29–38.
[Meag82a] Meagher, D., “Geometric Modeling Using Octree Encoding,” CGIP, 19(2), June 1982, 129–147.
[Meag82b] Meagher, D., “Efficient Synthetic Image Generation of Arbitrary 3-D Objects,” in Proc. of th

EEE Computer Society Conference on Pattern Recognition and Image Processing, IEEE
Computer Society Press, 1982.

[Same84] Samet, Hanan, “The Quadtree and Related Hierarchical Data Structures,” ACM Computing
Surveys, 16(2), June 1984, 187–260.

[Same90a] Samet, Hanan, Design and Analysis of Spatial Data Structures, Addison-Wesley Publ. Co., 1990.
[Same90b] Samet, Hanan, Applications of Spatial Data Structures: Computer Graphics, Image Processing,

and GIS, Addison-Wesley Publ. Co., 1990.
[SamW88] Samet, Hanan, and Webber, Robert E., “Hierarchical Data Structures and Algorithms for

Computer Graphics: Part I: Fundamentals,” CG&A, 8(3), 1988, 48–68.
[YKFT84] Yamaguchi, K., Kunii, T.L., Fujimura, K., and Toriya, H., “Octree Related Data Structures and

Algorithms,” CG&A, 4(1), 1984, 53–59.

Splines
[BarG89] Barry, P.J., and Goldman, R.N., “What Is the Natural Generalization of a Bézier Curve?,” in

[LycS89], 71–86.
[BaDD87] Barsky, B.A., DeRose, T.D., and Dippe, M.D., “An Adaptive Subdivision Method with Crack

Prevention for Rendering Beta-spline Objects,” Univ. of California, Berkeley, Computer
Science Division, Technical Report UCB/CSD 87/348, 1987.

[Bars88] Barsky, Brian A., Computer Graphics and Geometric Modeling Using Beta-splines,
Springer-Verlag, 1988.

[BarD89] Barsky, Brian A., and DeRose, Tony D., “Geometric Continuity of Parametric Curves: Three
Equivalent Characterizations,” CG&A, 9(6), November 1989, 60–68.

[BarD90] Barsky, Brian A., and DeRose, Tony D., “Geometric Continuity of Parametric Curves:
Construction of Geometrically Continuous Splines, CG&A, 10(1), January 1990, 60–68.

[BaBB87] Bartels, Richard H., Beatty, John C., and Barsky, Brian A., An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, 1987.

[Bézi74] Bézier, P., “Mathematical and Practical Possibilities of UNISURF,” in [BarR74], 127–152.
[Blin89a] Blinn, James F., “How many different cubic curves are there?,” CG&A, 9(3), May 1989, 78–83.
[Blin89b] Blinn, James F., “Cubic curve update,” CG&A, 9(6), November 1989, 70–73.
[Blin99] Blinn, James F., “How many rational parametric cubic curves are there? Part 1: Inflection

points,” CG&A, 19(4), July/August 1999, 84–87.
[Blin00a] Blinn, James F., “How many different parametric cubic curves are there? Part 2: The same

game,” CG&A, 19(6), November/December 1999, 88–92. Correction in CG&A, 20(1),
JanuaryFebruary 2000, 69.

[Blin00b] Blinn, James F., “How many rational parametric cubic curves are there? Part 3: The Catalog,”
CG&A, 20(2), March/April 2000, 85–88.

860 Bibliography

[BloK02] Blomgren, Robert M., and Kasik, David J., “Early Investigation, Formulation and Use of
NURBS at Boeing,” Computer Graphics, 36(3), August 2002, 27–32.

[Boeh80] Boehm, Wolfgang, “Inserting New Knots into B-spline Curves,” CAD, 12(4), July 1980, 199–201.
[CatR74] Catmull, Edwin, and Rom, Raphael, “A Class of Local Interpolating Splines,” in [BarR74],

317–326.
[CoLR80] Cohen, E., Lyche, T., and Riesenfeld, R.F., “Discrete B-splines and Subdivision Techniques in

Computer Aided Geometric Design and Computer Graphics,” CGIP, 14(2), October 1980,
87–111.

[DanD89] Daniel, M., and Daubisse, J., “The Numerical Problem of Using Bézier Curves and Surfaces
in the Power Basis,” CAGD, 6(2), 1989, 121–128.

[deBo78] de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.
[Fari89] Farin, Gerald, “Rational Curves and Surfaces,” in [LycS89], 215–238.
[Fari92a] Farin, Gerald, “Degree Reduction Fairing of Cubic B-spline Curves,” in [Barn92], 87–99.
[Fari95] Farin, Gerald, NURB Curves and Surfaces: From Projective Geometry to Practical Use, A.K.

Peters, 1995.
[Faro91] Farouki, Rida T., “Computing with Barycentric Polynomials,” The Mathematical Intelligencer,

13(4), 1991, 61–69.
[FarR87] Farouki, R.T., and Rajan, V.T., “On the Numerical Condition of Polynomials in Bernstein

Form,” CAGD, 4(1987), 191–216.
[FarR88] Farouki, R.T., and Rajan, V.T., “Algorithms for Polynomials in Bernstein Form,” CAGD, 5,

1988, 1–26.
[Forr72] Forrest, A., “Interactive Interpolation and Approximation by Bézier Polynomials,” The Com-

puter J., 15(1), 1972, 71–79. Also in CAD 22(9), 1990, 527–537.
[GorR74b] Gordon, William J., and Riesenfeld, Richard F., “B-Spline Curves and Surfaces,” in [BarR74],

95–126.
[Greg74] Gregory, John A., “Smooth Interpolation Without Twist Constraints,” in [BarR74], 71–87.
[LanR83] Lane, J.M., and Riesenfeld, R.F., “A Geometric Proof for the Variation Diminishing Property

of B-spline Approximation,” J. Approx. Theory, 37, 1983, 1–4.
[LeeE82] Lee, E.T.Y., “A Simplified B-Spline Computation Routine,” Computing, 29, 1982, 365–371.
[LiuW02] Liu, Ligang, and Wang, Guojin, “Explicit Matrix Representation for NURBS Curves and Sur-

faces,” CAGD, 19(6), June 2002, 409–419.
[LooD89] Loop, Charles T., and DeRose, Tony D., “A Multisided Generalization of Bézier Surfaces,” ACM

TOG, 8(3), July 1989, 204–234.
[LukC96] Luken, William L., and Cheng, Fuhua (Frank), “Comparison of Surface and Derivative

Evaluation Methods for the Rendering of NURB Surfaces,” ACM TOG, 15(2), April 1996,
153–178.

[Malc77] Malcolm, Michael A., “On the Computation of Nonlinear Spline Functions,” SIAM J. Numer.
Anal., 14(2), April 1977, 254–282.

[Mehl74] Mehlum, Even, “Nonlinear Splines,” in [BarR74], 173–207.
[Niel74] Nielson, Gregory M., “Some Piecewise Polynomial Alternatives to Splines Under Tension,” in

[BarR74], 209–235.
[Pieg91] Piegl, Les, “On NURBS: A Survey,” CG&A, 11(1), January 1991, 55–71.
[PieT95] Piegl, Les, and Tiller, Wayne, The NURBS Book, Springer, 1995.
[PieT00] Piegl, Les, and Tiller, Wayne, “Reducing Control Points in Surface Interpolation,” CG&A,

20(5), September/October 2000, 70–74.
[PraG92] Prautzsch, H., and Gallagher, T., “Is There a Geometric Variation Diminishing Property for

B-spline or Bézier Surfaces?,” CAGD, 9(2), 1992, 119–124.
[Rams88] Ramshaw, Lyle, “Béziers and B-Splines as Multiaffine Maps,” in [Earn88], 757–776.
[Rams89] Ramshaw, Lyle, “Blossoms Are Polar Forms,” CAGD, 6(4), 1989, 323–359.
[Rasa90] Rasala, Richard, “Explicit Cubic Spline Interpolation Formulas,” in [Glas90], 579–584.
[Rock93] Rockwood, Alyn, “A Brief Introduction to Blossoming,” Course Notes, Volume 82, SIGGRAPH

93, August 1993.
[Roge01] Rogers, David F., An Introduction to NURBS with Historical Perspective, Morgan Kaufmann

Publ., 2001.
[Scho46] Schoenberg, I.J., “Contributions to the Problem of Approximation of Equidistant Data by Ana-

lytic Functions,” Quart. Appl. Math., 4, 1946, 45–99.
[Scho67] Schoenberg, I.J., “On Spline Functions,” in Inequalities, edited by O. Shisha, Academic Press,

1967, 255–291.

Bibliography 861

[Seid89] Seidel, Hans-Peter, “A New Multiaffine Approach to B-Splines,” CAGD, 6(1), 1989, 23–32.
[Seid93] Seidel, Hans-Peter, “An Introduction to Polar Forms,” CG&A, 13(1), January 1993, 38–46.
[ShaB84] Shani, U., and Ballard, D.H., “Splines as Embeddings for Generalized Cylinders,” Computer

Vision, Graphics and Image Processing, 27, 1984, 129–156.
[StoD89] Stone, Maureen C., and DeRose, Tony D., “A Geometric Characterization of Parametric Cubic

Curves,” ACM TOG, 8(3), July 1989, 147–163.
[SuLi83] Su, Bu-qing, and Liu, Ding-yuan, “An Affine Invariant and Its Application in Computational

Geometry,” Scientia Sinica, 26, 1983, 259–272.
[Till83] Tiller, Wayne, “Rational B-Splines for Curve and Surface Representation,” CG&A, 3(5),

September 1983, 61–69.
[Wang81] Wang, C.Y., “Shape Classification of the Parametric Cubic Curve and Parametric B-spline

Cubic Curve,” CAD, 13(4), 1981, 199–206.
[Wern79] Werner, Helmut, “An Introduction to Non-Linear Splines,” in Polynomial and Spline

Approximation: Theory and Applications, Sahney, B.N., D. Reidel Publ. Co., 1979, 247–307.

Subdivision Curves and Surfaces
[CatC78] Catmull, E., and Clark, J., “Recursively Generated B-spline Surfaces on Arbitrary Topological

Meshes,” CAD, 10(6), Nov. 78, 350–355.
[Chai74] Chaikin, G.M., “An Algorithm for High Speed Curve Generation,” CGIP, 3, Dec. 74, 346–349.
[DooS78] Doo, D.W.H., and Sabin, M.A., “Behavior of Recursive Subdivision Surfaces Near Extra-

ordinary Points,” CAD, 10(6), Nov. 78, 356–360.
[Loop87] Loop, Charles, “Smooth Subdivision Surfaces Based on Triangles,” Masters thesis, University

of Utah, Department of Mathematics, 1987.
[Nasr00] Nasri, Ahmad H., “Recursive Subdivision of Polygonal Complexes and Its Applications in

Computer-Aided Geometric Design,” CAGD, 17(7), August 2000, 595–619.
[Pete95] Peters, Jörg, “Smoothing Polyhedra Made Easy,” ACM TOG, 14(2), April 1995, 162–170.
[PetR97] Peters, Jörg, and Reif, Ulrich, “The Simplest Subdivision Scheme for Smoothing Polyhedra,”

ACM TOG, 16(4), October 1997, 420–431.
[Reif95] Reif, Ulrich, “A Unified Approach to Subdivision Algorithms Near Extraordinary Vertices,”

CAGD, 12(2), March 1995, 153–174.
[Ries75] Riesenfeld, R., “On Chaikin’s Algorithm,” CGIP, 4(3), 1975, 304–310.
[Stam98] Stam, Jos, “Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter

Values,” SIGGRAPH 98, July 1998, 395–404.
[ZorS99] Zorin, Denis, and Schröder, Peter, Organizers, Subdivision for Modeling and Animation, Course

Notes, Volume 37, SIGGRAPH 99, August 1999.

Surfaces and Manifolds
[ACDL00] Amenta, N., Choi, S., Dey, T.K., and Leekha, N., “A Simple Algorithm for Homeomorphic

Surface Reconstruction,” in Proc. of the 16th Annual Symp. on Computational Geometry, Hong
Kong, June 12–14, 2000, ACM Press, 213–222.

[BeFH86] Beck, James M., Farouki, Rida T., and Hinds, John K., “Surface Analysis Methods,” CG&A,
6(12), December 1986, 18–36.

[BoiC00] Boissonnat, Jean-Daniel, and Cazals, Frédéric, “Smooth Surface Reconstruction via Natural
Neighbour Interpolation of Distance Functions,” in Proc. of the 16th Annual Symp. on Com-
putational Geometry, Hong Kong, June 12–14, 2000, ACM Press, 223–232.

[HagH95] Hagen, H., and Hahmann, St., “Stability Concept for Surfaces,” in [HaFN95], 189–198.
[Hage92] Hagen, H., Hahmann, S., Schreiber, T., Nakajima, Y., Wördenweber, B., and Hollemann-

Grundstedt, P., “Surface Interrogation Algorithms,” CG&A, 12(5), September 1992, 53–60.
[MorS92] Moreton, Henry P., and Séquin, Carlo H., “Functional Optimization for Fair Surface Design,”

SIGGRAPH 92, 26(2), July 1992, 167–176.
[Sarr98] Sarraga, Ramon F., “Recent Methods for Surface Shape Optimization,” CAGD, 15(5), May

1998, 417–436.
[YuMS01] Yu, Xiaohua, Morse, Bryan S., and Sederberg, Thomas W., “Image Reconstruction Using Data-

Dependent Triangulation,” CG&A, 21(3), May/June 2001, 62–68.

862 Bibliography

Texture
[BieS86] Bier, Eric A., and Sloan, Kenneth R., Jr., “Two-Part Texture Mappings,” CG&A, 6(9), Septem-

ber 1986, 40–53.
[BliN76] Blinn, J.F., and Newell, M.E., “Texture and Reflections in Computer Generated Images,”

CACM, 19(10), 1976, 542–547.
[Blin78] Blinn, J.F., “Simulation of Wrinkled Surfaces,” SIGGRAPH 78, 12(3), August 1978, 286–292.

Also in [JGMH88].
[Gree86] Greene, Ned., “Environment Mapping and Other Applications of World Projections,” CG&A,

6(11), November 1986, 21–29.
[Hara79] Haralick, R.M., “Statistical and Structural Approaches to Texture,” Proc. IEEE, 67(5), May

1979, 786–804.
[Heck86] Heckbert, Paul S., “Survey of Texture Mapping,” CG&A, 6(11), November 1986, 56–67. Also

in [JGMH88].
[Jule62] Julesz, B., “Visual Pattern Discrimination,” IRE Trans. on Information Theory, Volume 8,

February 1962, 84–92.
[JulB81] Julesz, B., and Bergen, J.R., “Textons, The Fundamental Elements in Preattentive Vision and

Perception of Textures,” in Readings in Computer Vision: Issues, Problems, Principles, and
Paradigms, edited by Martin A. Fischler and Oscar Firschein, Morgan Kaufman Publ., Inc.,
1987, 243–256.

[Neva82] Nevatia, Ramakant, Machine Perception, Prentice-Hall, Inc., 1982.
[WeiD97] Weinhaus, Frederick M., and Devarajan, Venkat, “Texture Mapping 3d Models of Real-World

Scenes,” ACM Computing Surveys, 29(4), December 1997, 325–365.
[WooA98] Woo, Andrew, “Chordlength Texturing of Spline Surfaces,” Journal of Graphics Tools, 3(2),

1998, 15–19.

Topology
(See also Algebraic Topology)

[BurM71] Burgesser, H., and Mani, P., “Shellable Decompositions of Cells and Spheres,” Math. Scand.,
29, 1971, 197–205.

[HurW48] Hurewicz, Witold, and Wallman, Henry, Dimension Theory, Princeton Univ. Press, 1948.

Trimmed Surfaces
[AnGC99] Anglada, Marc Vigo, Garcia, Núria Pla, and Crosa, Pere Brunet, “Directional Adaptive Surface

Triangulation,” CAGD, 16(2), February 1999, 107–126.
[Brun95] Brunnett, G., “Geometric Design with Trimmed Surfaces,” in [HaFN95], 101–115.
[Casa87] Casale, Malcom S., “Free-form Solid Modeling with Trimmed Surface Patches,” CG&A, 7(1),

January 1987, 33–43.
[CaBU92] Casale, M.S., Bobrow, J.E., and Underwood, R., “Trimmed-patch Boundary Element: Bridging

the Gap Between Solid Modeling and Engineering Analysis,” CAD, 24(4), 1992, 193–198.
[Chew93] Chew, L.P., “Guaranteed Quality Mesh Generation for Curved Surfaces,” in Proceedings of the

ACM Symposium on Computational Geometry, 1993, 274–280.
[CMPP99] Cho, W., Maekawa, T., Patrikalakis, N.M., and Peraire, J., “Topologically Reliable Approxi-

mation of Trimmed Polynomial Surface Patches,” Graphical Models and Image Processing,
61(1), 1999.

[ChPP98] Cho, Wonjoon, Patrikalakis, Nicholas M., and Peraire, Jaime, “Approximate Development of
Trimmed Patches for Surface Tessellation,” CAD, 30(14), December 1998, 1077–1087.

[KumM94] Kumar, S., and Manocha, D., “Interactive Display of Large Scale Trimmed NURBS Models,”
Technical Report TR94-008, Dept. of Comp. Sci., University of North Carolina, USA, 1994.

[KumM95] Kumar, S., and Manocha, D., “Efficient Rendering of Trimmed NURBS Surfaces,” CAD, 27(7),
1995, 509–521.

[LasB95] Lasser, D., and Bonneau, G.P., “Bézier Representation of Trim Curves,” in [HaFN95], 227–242.
[Luke96] Luken, William L., “Tessellation of Trimmed NURB Surfaces,” CAGD, 13(2), March 1996,

163–177.
[Peter94] Peterson, John W., “Tesselation of NURB Surfaces,” in [Heck94], 286–320.

Bibliography 863

[PieR95] Piegl, L.A., and Richard, A.M., “Tessellating Trimmed NURBS Surfaces,” CAD, 27(1), January
1995, 16–26.

[PieT98] Piegl, L.A., and Tiller, W., “Geometry-Based Triangulation of Trimmed NURBS Surfaces,”
CAD, 30(1), January 1998, 11–18.

[RoHD89] Rockwood, A., Heaton, K., and Davis, T., “Real-Time Rendering of Trimmed Surfaces,” SIG-
GRAPH 89, 23(3), July 1989, 107–117.

[SheH92] Sheng, X., and Hirsch, B.E., “Triangulation of Trimmed Surfaces in Parametric Space,” CAD,
24(8), August 1992, 437–444.

[VigB95] Vigo, M., and Brunet, P., “Piecewise Linear Approximation of Trimmed Surfaces,” in
[HaFN95], 341–356.

Virtual Reality
[Broo99] Brooks, Frederick P., Jr., “What’s Real About Virtual Reality,” CG&A, 19(6), November/Decem-

ber 1999, 16–27.
[CMBZ00] Capps, Michael, McGregor, Don, Brutzman, Don, and Zyda, Michael, “NPSNET-V:A New

Beginning for Dynamically Extensible Virtual Environments,” CG&A, 20(5),
September/October 2000, 12–15.

[CrSD93] Cruz-Neira, C., Sandin, D.J., and DeFanti, T.A., “Surround-Screen Projection-Based Virtual
Reality:The Design and Implementation of the CAVE,” SIGGRAPH 93, August 1993, 135–142.

[HalM63] Hall, M.R., and Miller, J.W., “Head-Mounted Electro-Ocular Display: A New Display Concept
for Specialized Environments,” Aerospace Medicine, 34(4), April 1963, 316–318.

[Suth65] Sutherland, I.E., “The Ultimate Display,” invited lecture, IFIP Congress 65, see also Proceed-
ings IFIP Congress 65, Volume 2, Kalenich, W.A., editor, Spartan Books and MacMillan,
506–508.

[VFLL00] Van Dam, Andries, Forsberg, Andrew S., LaidLaw, David H., LaViola, Joseph J., Jr., and
Simpson, Rosemary M., “Immersive VR For Scientific Visualization: A Progress Report,”
CG&A, 20(6), November/December 2000, 26–52.

Visible Surface Detection
[Appe67] Appel, Arthur, “The Notion of Quantitative Invisibility and the Machine Rendering of Solids,”

Proc. ACM Nat. Conf., 1967, 387–393. Also in [Free80], 214–220.
[Blin81] Blinn, James, F., “A Scan Line Algorithm for Displaying Parametrically Defined Surfaces,”

SIGGRAPH 81 tutorials #L, also in Computer Graphics, Vol 12 (supplement to SIGGRAPH
78), also in [Boot79], 348–354.

[Carp84] Carpenter, L., “The A-buffer, an Antialiased Hidden Surface Method,” SIGGRAPH 84, 18(3),
July 1984, 103–108.

[Catm74] Catmull, Edwin, “A Subdivision Algorithm for Computer Display of Curved Surfaces,” Ph.d.
thesis, University of Utah, 1974. Also as UTEC-CSc-74-133, Computer Science Dept., Univer-
sity of Utah, Salt Lake City, UT, December 1974.

[Catm75] Catmull, Edwin, “Computer Display of Curved Surfaces,” in Proc. IEEE Conf. on Computer
Graphics, Pattern Recognition and Data Structures, May 1975. Also in [Free80], 309–315.

[Catm78] Catmull, Edwin, “A Hidden-Surface Algorithm with Anti-aliasing,” SIGGRAPH 78, 12(3),
August 1978, 6–11.

[Clar79] Clark, J.H., “A Fast Algorithm for Rendering Parametric Surfaces,” SIGGRAPH 79, 13(2),
August 1979, 174 (abstract only). Also in [JGMH88], 88–93.

[FuAG83] Fuchs, H., Abram, G.D., and Grant, E.D., “Near Real-Time Shaded Display of Rigid Objects,”
SIGGRAPH 83, 17(3), July 1983, 65–69.

[FuKN80] Fuchs, H., Kedem, Z.M., and Naylor, B.F., “On Visible Surface Generation by a Priori Tree
Structures,” SIGGRAPH 80, 14(3), July 1980, 124–133.

[Grif75] Griffiths, J.G., “A Data-Structure for the Elimination of Hidden Surfaces by Patch Subdivi-
sion,” CAD, 7, July 1975, 171–178.

[Grif78a] Griffiths, J.G., “A Surface Display Algorithm,” CAD, 10(1), January 1978, 65–73.
[Grif78b] Griffiths, J.G., “Bibliography of Hidden-Line and Hidden-Surface Algorithms,” CAD, 10(3),

1978, 203–206.
[LCWB80] Lane, Jeffrey M., Carpenter, Loren C., Whitted, Turner, and Blinn, James F., “Scan Line

Methods for Displaying Parametrically Defined Surfaces,” CACM, 23(1), January 1980, 23–34.
Also in [JGMH88], 94–105.

864 Bibliography

[NeNS72] Newell, M.E., Newell, R.G., and Sancha, T.L., “A New Approach to the Shaded Picture
Problem”, Proc. ACM National Conference, 1972.

[Robe63] Roberts, L.G., “Machine Perception of Three Dimensional Solids,” Lincoln Laboratory, TR
315, MIT, Cambridge, MA, May 1963. Also in Tippet, J.T., et al., editors, Optical and Electro-
Optical Information Processing, MIT Press, Cambridge, MA, 1964, 159–197.

[SBGS69] Schumacker, R.A., Brand, B., Gilliland, M., and Sharp, W., Study for Applying Computer-Gen-
erated Images to Visual Simulation, Technical Report AFHRL-TR-69-14, NTIS AD700375, U.S.
Air Force Human Resources Lab., Air Force Systems Command, Brooks AFB, TX, Septem-
ber 1969.

[SuSS74] Sutherland, I.E., Sproull, R.F., and Schumacker, R.A., “A Characterization of Ten Hidden
Surface Algorithms,” ACM Computing Surveys, 6(1), March 1974, 1–55. Also in [BeaB82].

[Warn69] Warnock, J., A Hidden-Surface Algorithm for Computer Generated Half-Tone Pictures, Techni-
cal Report TR 4–15, NTIS AD-753 671, Computer Science Department, University of Utah,
Salt Lake City, UT, June 1969.

[Watk70] Watkins, G.S., A Real Time Visible Surface Algorithm, Ph.D. thesis, Technical Report UTEC-
CSc-70-101, NTIS AD-762 004, Computer Science Department, University of Utah, Salt Lake
City, UT, June 1970.

[WeiA77] Weiler, K., and Atherton, P., “Hidden Surface Removal Using Polygon Area Sorting,” SIG-
GRAPH 77, 11(2), Summer, 1977, 214–222. Also in [JGMH88], 209–217.

Visualization
[Banc95] Banchoff, Thomas F., Beyond the Third Dimension: Geometry, Computer Graphics, and Higher

Dimensions, Scientific American Library, 1996.
[Gunn93] Gunn, Charlie, “Discrete Groups and Visualization of Three-Dimensional Manifolds,” SIG-

GRAPH 93, August 1993, 255–262.
[HanH92] Hanson, Andrew J., and Heng, Pheng A., “Illuminating the Fourth Dimension,” CG&A, 12(4),

July 1992, 54–62.
[HaMF94] Hanson, Andrew J., Munzner, Tamara, and Francis, George, “Interactive Methods for

Visualizable Geometry,” Computer, 27(7), July 1994, 73–83.
[Week85] Weeks, J., “Hyperbolic Structures on 3-Manifolds,” Ph.D. Dissertation, Princeton University,

1985.

Volume Rendering
[CohK97] Cohen-Or, Daniel, and Kaufman, Arie, “3D Line Voxelization and Connectivity Control,”

CG&A, 17(6), November/December 1997, 80–87.
[DrCH88] Drebin, Robert A., Carpenter, Loren, and Hanrahan, Pat, “Volume Rendering,” Computer

Graphics, 22(4), August 1988, 65–74.
[Elvi92] Elvins, T. Todd, “A Survey of Algorithms for Volume Visualization,” Computer Graphics, 26(3),

August 1992, 194–201.
[FTAT00] Fujishiro, Issei, Takeshima, Yuriko, Azuma, Taeko, and Takahashi, Shigeo, “Volume Data

Mining Using 3D Field Topology Analysis,” CG&A, 20(5), September/October 2000, 46–51.
[Kalv92] Kalvin, A.D., “A Survey of Algorithms for Constructing Surfaces from 3D Volume Data,” IBM

Research Report RC 17600 (#77606), IBM, Yorktown Heights, NY, January 1992.
[Kauf98] Kaufman, Arie, Organizer, Advances in Volume Visualization, Course Notes, Volume 24, SIG-

GRAPH 98, July 1998.
[KaCY93] Kaufman, Arie, Cohen, Daniel, and Yagel, Roni, “Volume Graphics,” Computer, 26(7), July

1993, 51–64.
[LacL94] Lacroute, P., and Levoy, Marc, “Fast Volume Rendering Using a Shear-Warp Factorization of

the Viewing Transformation,” SIGGRAPH 94, July 1994, 451–458.
[Levo88] Levoy, Marc, “Display of Surfaces from Volume Data,” CG&A, 8(3), May 1988, 29–37.
[Levo90] Levoy, Marc, “A Hybrid Ray Tracer for Rendering Polygon and Volume Data,” CG&A, 10(2),

March 1990, 33–40.
[LiCN98] Lichtenbelt, Barthold, Crane, Randy, and Naqvi, Shaz, Introduction to Volume Rendering,

Prentice Hall PTR, 1998.
[LorC87] Lorensen, William E., and Cline, Harvey E., “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm,” SIGGRAPH 87, 21(4), July 1987, 163–169.

Bibliography 865

[NFMD90] Ney, Derek R., Fishman, Elliot K., Magid, Donna, and Drebin, Robert A., “Volumetric
Rendering,” CG&A, 10(2), March 1990, 24–32.

[RhyT01] Rhyme, Theresa-Marie, and Treinish, Lloyd, editors, “Visualization Viewpoints: The Transfer
Function Bake-Off,” CG&A, 21(3), May/June 2001, 16–22.

[ScML98] Schroeder, Will, Martin, Ken, and Lorensen, Bill, The Visualization Toolkit, 2nd Edition,
Prentice Hall PTR, 1998.

[StFF91] Stytz, M.R., Frieder, G., and Frieder, O., “Three-Dimensional Medical Imaging: Algorithms
and Computer Systems,” ACM Computing Surveys, 23(4), December 1991, 421–499.

[THBP90] Tiede, Ulf, Hoehne, Karl Heinz, Bomans, Michael, Pommert, Andreas, Riemer, Martin, and
Wiebecke, Gunnar, “Investigation of Medical 3d-Rendering Algorithms,” CG&A, 10(2), March
1990, 41–53.

[West90] Westover, L., “Footprint Evaluation for Volume Rendering,” SIGGRAPH 90, 24(4), August
1990, 367–376.

[WilV90a] Wilhelms, Jane, and van Gelder, Allen, “Octrees for Faster Isosurface Generation,” Computer
Graphics, 24(5), November 1990, 57–62.

[WilV90b] Wilhelms, Jane, and van Gelder, Allen, “Topological Considerations in Isosurface Generation,”
Computer Graphics, 24(5), November 1990, 79–86.

[WyMW86] Wyvill, B., McPheeters, C., and Wyvill, G., “Data Structures for Soft Objects,” The Visual Com-
puter, 2(4), August 1986, 227–234.

[YaCK92] Yagel, Roni, Cohen, Daniel, and Kaufman, Arie, “Discrete Ray Tracing,” CG&A, 12(5), 1992,
19–28.

[YooT98] Yoo, Terry, Organizer, 3D Visualization in Medicine, Course Notes, Volume 23, SIGGRAPH 98,
July 1998.

866 Bibliography

868 Index

AR, 687
Arc

in medial axis, 184
Arc length, 633, 638

Ck continuity, 455
computation of, 635
for Bézier curves, 637

Arc-length parametrization, 634, 637, 638,
652

Arctic region, 667
Area

of parallelogram, 249
of set in picture, 25
of polygon, 250
of subtended region, 251
of triangle, 250

Area sampling, 265
Artificial intelligence, 688
Artzy’s algorithm

for volume rendering, 362
Aspect ratio, 120

hardware, 120
Assembly features, 194
Assignment

of points on trimlines, 680
Asymptotic curve, 526
Attractor

of iterated function system, 810
Augmented reality, 687
Axis-parallel box, 697
Axonometric projection, 133
Axonometric view, 133

B
Back clipping plane, 5
Back edge, 266
Back face, 267

removal of, 267
Background

of set in picture, 25
Balanced binary search tree, 698, 718
Band-limited function, 44, 788
Barnhill-Kersey algorithm, 561, 569, 573

comparison with others, 566
data structures for, 565
hunting phase for, 561
relaxing points in, 562
sorting phase for, 566
tolerances in, 562, 563, 565
tracing phase for, 563

Barycentric coordinate property
of affine maps, 418

Barycentric coordinate test, 233
Base frame, 142
Base surface, 679
Basic fill algorithm, 29
Basin of attraction, 220, 579, 800
Basis function, 375
Basis functions, 385, 455, 751

Haar wavelet, 793
properties of, 387
wavelet, 792

Beam tracing, 343
Bernstein polynomial, 398, 507, 549
Bessel end condition, 388
Beta constraint, 454
Beta-spline, 455
Beveling, 222
Bézier basis function, 399
Bézier clipping, 547
Bézier coefficients, 397, 501
Bézier control net, 508
Bézier curve, 398, 403, 432, 466

2nd derivative of, 402
advantages of, 403
affinely invariant, 403
as B-spline curve, 418
blossom of, 422, 469
convex hull property of, 399
cubic, 398
degree elevation of, 452
derivative of, 402, 459
derivatives of, 424
differences with B-spline curve, 466
disadvantages of, 403
invariant under affine parameter

transformations, 403
numerical stability of, 467
piecewise, 404
properties of, 399, 402, 403
rational, 432
similarities with B-spline curve, 466
subdivision, 451
use of, 403
variation diminishing property of, 466

Bézier matrix, 397
Bézier patches

geometric continuity of, 522
Bézier point, 399, 422
Bézier polygon, 399

Index 869

Bézier polynomials, 422
Bézier representation

of polynomial, 422
Bézier surface, 487, 502

affinely invariant, 502
as B-spline surface, 505
control points of, 502
convex hull property of, 502
cubic, 501
partial derivatives of, 502
rational, 512
triangular, 508

Bézout’s theorem, 572
BFA, 29
BGI, 10, 13, 15
Bias, 454
Bicubic patch, 496, 499

affinely invariant, 499
Bicubic patches

geometric continuity of, 523
Bilinear surface, 486, 488
Binary search tree

balanced, 698
Binary space partitioning, 270
Biquintic Bézier mesh, 645
Bit block transfer, 60
Bit map, 59
Bit plane extraction, 65
BitBlt, 60, 66, 181
Blending, 222, 504, 517, 598, 672, 673

based on parametric surfaces, 679, 680
as boundary value problem, 682
extent constraints of, 673
Fourier methods for, 682
global, 673
of atoms, 673
polyhedral, 673, 681
potential method for, 676
range constrained, 676
rolling ball, 678, 681
superelliptic, 676
superficial, 672
surface, 672
using conics, 674, 677
variable radius rolling ball, 678
volume bounded, 674
volumetric, 673

Blending arc, 680
Blending curve, 222
Blending function, 386

Blending functions, 392
Blending surface, 222, 679
Blinn visible surface algorithm, 266

summary of, 289
Blossom, 419, 420, 521

of Bézier curve, 469
tensor product, 505
triangular, 506

Blossoming theorem, 419
Body sheet

in medial axis, 184
Boolean sum operator, 490
Border

of set in picture, 25
Border following algorithm, 26
Borland graphics interface, 10
Bouknight reflectance model, 312, 333
Boundary, 29
Boundary data structures, 199

comparison of, 202
Boundary evaluation

of CSG object, 170, 557
Boundary fill, 28
Boundary representation, 166, 175, 183, 221,

224
advantages of, 220, 198
conditions for validity, 167
data structures of, 199
disadvantages of, 220

Boundary value problem
for geodesics, 655
in blending, 682

Bounded rational arithmetic, 213
Bounded variation, 779, 783
Bounding box, 228, 340, 544, 545, 562, 573

generalized, 230
oriented, 573

Bounding object, 228, 340
Bounding object hierarchy, 340
Bounding sphere, 230, 322
Box, 228

axis-parallel, 697
Box function, 783, 784, 785, 790, 791, 792
Branch node

of machine, 218
Branch point, 564
Branching problem

for skinning, 631
B-rep, 166, 187, 188, 194, 195, 198, 210, 673
B-rep-to-CSG conversion, 208, 210

870 Index

Bresenham
circle-drawing algorithm, 56
improved circle-drawing algorithm, 58
line-drawing algorithm, 39, 41, 362

Bridging, 668
Brightness

perceived, 296
Brilliance

perceived, 296
BSP algorithm, 265, 266, 270, 332

orthogonal, 273
BSP tree, 270, 273, 342

construction of, 270
orthogonal, 273
traversal of, 271

B-spline, 408
barycentric coordinate property of, 418
compact support of, 411
definitions of, 404
desirable properties of, 406
differentiability of, 411
linear, 405
of degree m, 408
of order k, 408
properties of, 411
recursive definition of, 407

B-spline basis function, 408
see B-spline

B-spline coefficients, 415
B-spline curve, 411, 432, 466

as Bézier curves, 427, 428
clamped, 408, 411
closed cubic uniform, 416
closed quadratic uniform, 416
control polygon, 411
convex hull property of, 417
derivatives of, 438
differences with Bézier curve, 466
differences with Hermite curve, 467
domain of, 411
evaluation of, 438
knot insertion, 428
local control property, 411
local convex hull property, 417
matrix of, 414
nonperiodic, 409
nonuniform, 408, 411
nonuniform rational, 433
of degree m, 411
of order k, 411

open uniform, 408
periodic, 408, 411
properties of, 417
rational, 432
segment of, 411
similarities with Bézier curve, 466
unclamped, 408, 411
uniform, 408, 411
variation diminishing property of, 430

B-spline matrix
cubic periodic/uniform, 414
quadratic periodic/uniform, 414

B-spline surface, 504
bicubic, 504
convex hull property of, 504
degree, 504
domain of, 504
evaluation of, 514
local control of, 504
local convex hull property of, 504
order, 504
partial derivatives of, 515
rational, 512
u-knot, 504
v-knot, 504

Bubble meshing, 603
Buckle

in interpolating spline, 459
Buffer

frame, 8
refresh, 8
stencil, 9
texture, 9, 325
z-, 9, 275

BUILD, 172, 194, 196
Bump map, 328, 329
Buttock

of ship, 533
By-polygon rendering, 330
By-scan-line rendering, 330

C
CAD, v, 156, 169, 180, 181, 190, 191, 212,

445, 467, 588, 601, 614, 649, 686, 687,
688, 714, 822

CADD, 175
CAGD, v, 181, 373, 377, 378, 445, 456, 480,

487, 495, 517, 520, 521, 649, 674, 687,
714, 822

CAM, 180, 588, 687, 688

Index 871

Camera, 4, 113
pinhole, 113
synthetic, 113

Camera calibration, 139, 141
Camera coordinate system, 4, 113, 131
Camera data, 113
Camera frame, 113
Camera-to-clip-space transformation, 122,

124, 622
CAM-I, 194, 195
Canal surface, 678
Canonical intersection term, 209
Canonical subset, 706
Carpenter-Lane visible surface algorithm,

290
Cartesian product surface, 472, 495
Category, 225
Cathode ray tube, 7
Catmull visible surface algorithm, 284
Catmull-Clark subdivision algorithm, 529,

530
Cauchy-Riemann equations, 768
CAVE, 686
Cayley numbers, 756
Cel painter, 28
Cell decomposition, 178
Cell decomposition approach

in surface tiling, 595
CGA, 8, 9
Chaikin curve subdivision algorithm, 465,

527
Chamfer, 672
Chamfering, 222
Chaos game, 21, 810
Chaotic map, 798, 799
Characteristic function

of a set, 817
Characteristic point, 545, 641
Characteristic polygon, 399
Chordal deviation, 589
Chord length, 632, 633
Chromaticity diagram

CIE, 299, 300
Maxwell triangle, 298

Chromaticity values, 297, 298
CIE color specification, 299
CIE illuminants, 297
CIE tri-stimulus values, 297
Circle

parametrization of, 54

Circle drawing algorithms
Bresenham, 55
DDA approach to, 54
other, 57

Circle of latitude
of surface of revolution, 475

Ck

function vs set, 374
Clamped end condition, 388
Clark visible surface algorithm, 290
Clip, 69
Clip coordinate system, 122

homogeneous, 122
Clip polygon, 69
Clip space, 122

homogeneos, 122
Clipping, 5

Bézier, 547
Blinn, 125
bogus edges in, 84, 85, 87, 98
Cohen-Sutherland, 71
Cyrus-Beck, 73
generalized Cohen-Sutherland,

73
Greiner-Hormann, 106
Liang-Barsky, 77, 86
Maillot, 89
Nicholl-Lee-Nicholl, 81
Sutherland-Hodgman, 84
text, 110
Vatti, 98
Weiler, 85

Clipping plane
back, 5
far, 5, 138
front, 5, 130
hither, 5
near, 5, 138
yon, 5

Clothoid, 447, 643, 650
application of, 447
generalized, 447

Cluster, 268
CMY color model, 299
Coefficients

algebraic, 391, 496
geometric, 391, 496
Hermite, 391

Cohen-Sutherland line clipping, 71, 80, 89,
93, 97, 125, 126, 356

872 Index

Coherence, 49, 285, 291, 632
area, 273
depth, 291
edge, 276, 291
face, 291
frame, 291
geometric, 291
object, 291
point-to-point, 278
scan line, 51, 291
spatial, 342

Collage theorem, 811
Color

achromatic, 296
aperture, 296
chromatic, 296
definition of, 295
film, 296
misconceptions of, 294
nonspectral, 297
perceived, 295
spectral, 297

Color cube, 299
Color cycling, 65
Color model

CMY, 299
cube, 299, 300
HSL triangle, 301
HSV hexcone, 301
RGB, 299, 300
YIQ, 300

Color models
conversion between, 303

Color response, 297
Colorimetry, 295, 297
Combinatorial topology, 167, 171
Combinatorial validity, 171, 173
Commutative diagram, 818
Compatibility condition, 494,

504
Complement

of set in picture, 25
Component, 24
Composite

k-fold, 798
of two curves, 453

Composite functions
representation of, 614

Composite material, 655, 667
Compositing, 360

Computable map
over ring R, 219

Computation, 219
length of, 219

Computation node
of machine, 218

Computational geometry, 199, 697
Compute function

with machine, 219
Computed tomography, 181
Computer vision, 338
Condensation set, 810
Condensation transformation, 810
Condition number

of matrix, 570, 619
Cone, 483

infinite, 664
truncated, 476

Cone receptor cell
in eye, 295

Cone tracing, 343
Conic

as projection of parabola, 431
as rational curve, 431
general equation of, 59
representation of, 215

Conic drawing algorithms, 57
Conjugation map

of quaternions, 758
Connected, 24
Connecting pwl curve, 660
Constrained minimization, 619, 742
Constraint-based modeling, 191, 193
Constraint graph, 198
Constraints

interpolatory, 376
orthogonality, 377
shape, 377
variational, 377

Constraint solutions, 735
Constructive solid geometry, 157,

167
Contact curve, 598, 674
Continuation method, 570
Contour, 361, 362, 624

as implicit representation, 624
of set, 553

Contour algorithm, 362, 554, 625
higher dimensional, 630

Contour line, 526

Index 873

Contour problem, 624
discrete, 625

Contraction map, 809
contractility factor of, 809

Contraction mapping theorem, 809
Control net

Bézier, 508
triangular, 508

Control points
of Bézier curve, 399
of Bézier surface, 502
of B-spline curve, 411
of B-spline surface, 504
of Gregory patch, 503
of polynomial, 422
of rational Bézier curve, 433
of rational Bézier surface, 512
of rational B-spline curve, 433
of rational B-spline surface, 512

Control polygon, 544
Bézier curve, 399
B-spline curve, 411

Convex hull property
see Bézier/B-spline/NURBS

curve/surface
for Doo-Sabin surfaces, 528

Convexity test
for polygon, 239

Convolution, 186, 786
properties of, 788

Convolution theorem, 788
Coons patch, 489

bicubic, 491
bilinearly blended, 489, 499
generalized bicubic, 492
triangular, 494

Coons surface, 487, 489
affinely invariant, 491
bicubic, 491
bilinearly blended, 489, 491
generalized bicubic, 492

Coordinate system, 111
Core, 11
Cornea, 295
Corner cutting

subdivision algorithm, 465, 526, 527
Corner point

of superellipse, 448
Cornu spiral, 447

generalized, 447

Correpondence problem
for skinning, 631

Correspondence rule
for directrix-generator representation, 473

Cox-de Boor B-spline definition, 407, 438,
516

Coxeter triangulation, 627
Cranfield object, 679
Critical angle, 322
Cross-ratio, 435
Crossing curve

for blending surface, 680
Crossings test, 234
CRT, 7, 46, 63, 66, 121, 334
CSG, 157, 167, 177, 181, 193, 195, 210, 220,

557, 598, 673
CSG object, 186, 206, 207

medial axis representation, 186
ray tracing, 348
Voronoi diagram, 186

CSG representation, 168, 198, 208, 209, 221,
224

advantages of, 169, 220
disadvantages of, 170, 220

Csg-rep, 168, 178
CSG-to-b-rep conversion, 205
CSG-tree, 168, 226
CT, 181, 362, 593, 594
Curry-Schoenberg theorem, 430
Cursor, 9, 61
Curtain fold, 288
Curvature, 188, 455, 460, 526, 590, 599, 604,

639, 645, 649, 668
and curves, 650
and surfaces, 651
for degenerate patches, 651
for polygonal objects, 652, 657
from discrete data, 650
line, 520

Curvature continuous curve, 455
Curvature continuous surfaces, 651

along curve, 651
Curve, 24, 373

bias of, 454
cubic, 377, 390
curvature continuous, 455
digital/discrete, 24
evolute of, 641
fair, 460
four point, 395

874 Index

Gk continuous, 453
globally parameterizable, 741
Hermite, 385, 391
implicit, 177
interrogation of, 460
Lagrange, 378, 379
linear, 377
offset, 177
parametric, 373
piecewise linear, 657
polynomial, 377
projection on surface, 671
pwl, 657
quadratic, 377
recursive subdivision, 465
spline, 377
subdivision algorithm for, 465
subdivision problem for, 449
tension of, 454
tracing, 615
unit quaternion integral, 650

Curve-bounding area, 546
Curve fitting problem, 461
Curve intersection algorithm

algebraic, 551
divide-and-conquer, 547
Newton-Raphson, 546
planar Bézier, 547
recursive subdivision, 547

Curve simplification, 597
Cusp, 456, 645

extraordinary, 641
ordinary, 641

Cusp line, 458
Cutoff frequency

of band-limited function, 788
Cutting and pasting, 171, 172
Cyclical overlap of figures, 270
Cyclide, 517, 678

Bézier parameterization of, 521
central, 517, 519, 520
characteristic lines of, 520
horned, 520
intersection of, 579
inversion of, 520
principal patch of, 520
ring, 519, 520
spindle, 520

Cylinder, 476, 483
Cyrus-Beck line clipping, 73, 125, 346

D
Data classification

in volume rendering, 358
Data structures

for boundary representations, 199
for cell complexes, 199
for volumes, 203

D-border, 26
DDA, 37, 54, 58

simple, 38
symmetric, 38

de Boor algorithm, 426
de Boor point, 411, 425
de Boor polygon, 411
de Casteljau algorithm, 401, 452, 469,

550, 593
for triangular patches, 508, 509,

521
Decidable set, 219
Decimation, 597, 687
Decomposition scheme, 178

adaptive, 178
object based, 178
space based, 178, 180
uniform, 178

Degree elevation, 632
Degrees of freedom, 142
Delaunay cell complex, 723, 724

face of, 723
Delaunay graph, 723, 724
Delaunay tetrahedralization, 603
Delaunay triangulation, 185, 201, 603,

604, 722, 723, 724, 725
direct computation of, 725

De Moivre theorem, 761
Denavit-Hartenberg notation, 146
Depth sorting, 269, 274, 292
Design

by feature, 196
extensional view of, 687
intentional view of, 687

Design stage
for boat, 532

DESIGNBASE, 173
Detail coefficients, 795
Developable surface, 483, 668
Deviation criterion

for surface triangulation, 600
Device independent, 10
Device independent code, 10

Index 875

Diagonal
of polygon, 715

Diagonal map, 419, 420
Diagonally dominant, 390
Differential equation

first order, 36
for circle, 54
for ellipse, 58
for straight line, 37

Digital differential analyzer, 37
Digital image processing, 767, 792
Dimension, 802

box-counting, 804
effective, 806
fractal, 803, 804
Hausdorff-Besicovitch, 804
similarity, 813
topological, 802

Dimensioning, 223
Dirac delta function, 783
Direct access

to adjacency information, 200
Direct3D, 11
DirectDraw, 11
Directrix

of surface, 473
Directrix-generator representation

of surfaces, 473
DirectX, 11, 14, 15, 64
Dirichlet problem, 772, 778, 782
Discrete geodesic problem, 659
Discrete line

attributes of, 35
Discrete topology, 22, 362
Discretize, 588
Disk

n-dimensional, 816
Distance, 25

between L• functions, 775
between Lp functions, 774
Euclidean, 25
from line to line, 248
from point to line, 245
from point to plane, 246
max, 25
taxicab, 25

Distance algorithms, 245
curve-curve, 583
curve-surface, 586
overview of, 583

point-curve, 583
point-surface, 585
surface-surface, 586

Distance function
for medial axis, 184, 186

Distributed ray tracing, 344
Dither

ordered, 48
Dither matrix, 48
Dithering, 48
Divide-and-conquer, 169, 551, 566, 631, 725
Division algebra, 755
D-move, 55
Domain

of B-spline curve, 411
of B-spline surface, 504

Doo-Sabin subdivision algorithm, 527
improved, 529
properties of, 528

DOS, 10, 11, 13, 14, 15
Double buffering, 66
Double-Blutel surface, 521
Doubly ruled surface, 483, 489
Douglas-Peucker algorithm, 598
Draw procedure, 15, 16
DrawLine procedure, 16
Dropping curve

on surface, 670
Dupin cyclide, 517, 521, 650
Dupin indicatrix, 651
Dynamical system, 797, 806

E
Edge fill algorithms, 32, 291
Edge sequence, 660

defined by pwl curve, 660
shortest, 663
simple, 660

Edge sequence tree, 665
Edge tracker, 286
Edge-adjacent faces, 660

sequence of, 660
simple sequence of, 660

Editing operations
in modelers, 222
with medial axis, 187

EGA, 8, 9
Eigenvalue, 578
Element

in FEM, 746

876 Index

Elementary collapse, 171
Elementary expansion, 171
Elementary interval, 706
Elementary subdivision

of pwl curve, 658
proper, 658

Ellipse
parametrization of, 58

Ellipse drawing algorithm, 57
Elliptic paraboloid, 480, 514
Embedding method, 576
End condition

Bessel, 388
clamped, 388
natural, 388
periodic, 388

End conditions
comparison of, 389

End-effector, 142
Endoskeleton, 186
Energy function approach

to curve fitting, 461
Entering list

in Weiler polygon clipping, 85
Entry value

for Liang-Barsky line clipping, 78
Envelope, 646

of curves, 646
Environment mapping, 327
Equator, 667
Erase procedure, 15
Erep, 221
Error function, 55
Euclidean metric, 26
Euclidean space

n-dimensional, 815
Euler angle, 765
Euler characteristic, 171, 172
Euler operation representation, 172
Euler operations, 171, 681
Euler theorem, 650
Euler’s method, 36
Evolute, 641
Exact arithmetic, 185
Exit value

for Liang-Barsky line clipping, 78
Exoskeleton, 186
Expert system, 688
Exponential notation

of pure quaternion, 761

Extended real numbers, 815
Extreme point

of convex set, 714
Extrusion, 222, 483
Eye coordinate system, 131

F
Face

back, 267
definition of, 170
front, 267
representation of, 171
shadowed, 664

Faceted display, 165
Faceted representation, 165, 223
Faceted surface sectioning algorithm, 555
Fair

curve, 460
set of points, 461

Fairing curves, 460, 650
quadratic Bézier, 650

Fairing stage
for boat, 534

Fairing surfaces, 521, 525, 526, 650, 651,
672

discrete surface, 526
isophote method, 526
reflection line method, 525
subdivision surface, 526
using variational approaches, 525

Far clipping plane, 5, 138
Far plane, 229
Fast Fourier transform, 786
Fat arc, 547
Fat line, 547
Fat plane, 547, 573
FEA, 745
Feasable region, 735
Feature, 194

characteristics of, 194
Feature-based modeling, 192, 687
Feature mapping, 195, 198
Feature model, 194
Feature recognition, 198
Feature validation, 195, 196
FEM, 745
Ferguson patch, 499, 681
FFT, 786
Filament winding, 667

helical, 668

Index 877

polar, 668
Fill algorithms

antialiasing in, 32, 53
boundary fill, 28
comparison of, 53
edge filling, 28, 32
flood fill, 28
ordered edge list, 51
parity check, 32
pixel based, 28
polygon based, 28, 50
seed fill, 28
types of,

Fillet, 222, 598, 672, 678
Filleting, 222
Film color, 296
Filter, 791

band-pass, 792
high-pass, 792
low-pass, 792
reconstruction, 792

Finite difference method, 745
Finite element

in FEM, 746
Finite element analysis, 592, 718
Finite element mesh

generation of, 188, 592
in FEM, 746

Finite element method, 745
advantages of, 754
basic steps of, 753
Galerkin, 749, 750
variational, 748

Finite element modeling, 179, 588
Fishkin seed fill algorithm, 32, 33
Fixed point

attractive, 800
repelling, 800

Flatness of curves/surfaces, 561,
573, 589, 591, 601, 602, 635,
649

Flood fill, 28
Floor function, 817
Floyd-Steinberg algorithm, 48
Fluid

circulation free, 771
circulation of, 771
incompressible, 771
irrotational, 771
nonviscous, 771

Fluid flow
stationary, 771
steady, 771

Folded edge, 286
Font, 109

bit-mapped, 109
outline, 109
vector, 109

Form factors, 351, 355
Form features, 194
Forward difference operator

rth, 423
Forward differences, 423
Forward kinematics, 142
Four point matrix, 396
Fourier coefficients, 777, 781
Fourier methods

in blending and fairing, 682
Fourier series

convergence of, 780
for a function, 777

Fourier transform, 44, 324
discrete, 786
of function of one variable, 781
of function of two variables, 785

Fractal, 3, 188, 216, 579, 805
Fractal dimension, 803, 804
Fractal space, 809
Fractional cascading, 702, 703
Frame

camera, 113
in Rn, 111
link, 143

Frame buffer, 8, 64
Free-form surface, 643
Frenet frame, 461, 484, 485, 643
Frenet frame continuity, 456
Frequency domain, 785
Fresnel integral, 447
Fresnel reflection law, 314, 315
Front clipping plane, 5, 130
Front face, 267
Functional features, 194
Functor, 225

G
Galerkin method, 746, 749, 753
Gamma correction, 335
Gamut, 299

natural, 299

878 Index

Gauss curvature, 484, 525, 591, 644, 645,
650, 651, 668, 669

Gaussian function, 46, 314, 783
standard deviation, 314, 783
variance, 783

Gauss map, 580
Gaussian quadrature, 635, 636
Gauss-Seidel algorithm, 352, 353
Gauss-Seidel radiosity algorithm, 353
GDI, 11, 14
General sweep, 174
Generalized bounding box, 230, 348
Generalized cylinder, 175
Generalized function, 783
Generalized geodesic, 670
Generalized inverse matrix,
Generative model, 175, 484
Generative modeling, 177
Generative modeling representation, 177
Generator

for blending surface, 680
generative model, 175

Generator rule
for directrix-generator representation, 473

Generic halfspace, 159
Generic inclusion function, 733
Genetic algorithms, 199
GENMOD, 172, 175, 177, 726
Geodesic, 652, 668, 669, 670, 671

discrete, 659
from tessellation, 655
generalized, 670
kinematic definition, 652
static force definition, 652

Geodesic path, 652, 654
GEOMED, 172
Geometric coefficients

of bicubic patch, 496
of cubic curve, 391

Geometric continuity
kth order, 453, 522
of Bézier curves, 455
of Bézier patches, 522, 523
of bicubic patches, 523

Geometric features, 194
Geometric matrix

for bicubic patch, 496
Geometric modeling, 157

geometrically intelligent, 688
intrinsic, 684
things left to do in, 687, 688

Geometrical optics, 310
Gk continuity, 453, 522
GKS, 11
Global scaling, 135, 136
Global shape function, 749
Globally parametrizable, 741

in ith coordinate, 741
Gordon surface, 494
Gouging

of NC cutter, 639
Gouraud shading, 316, 331, 352
GQ, 635
Graftal, 190, 216
Grammar-based model, 190
Graphical user interface, 13, 375
Graphics device interface, 11
Graphics mode, 13
Graphics standards

hardware, 8
Grassfire algorithm, 185
Gregory patch, 503, 531, 681

control points of, 503
convex hull property of, 503

Gregory square, 494
Greiner-Hormann polygon clipping, 70, 71,

98, 106
Grid method

for sections, 554
Grid test, 238
Gröbner basis, 575, 619
GUI, 13
Gupta-Sproull algorithm, 46
GWB, 173

H
Haar transform, 796
Haar wavelet, 793
Haar wavelet basis, 793
Halfplane, 711, 720

lower, 815
open, 711
upper, 815

Halfspace, 159
generic, 159

Halftoning, 48
Halting set, 219
Handle decomposition

of manifold, 179, 188, 624
Haptic system, 182, 686
Hard area flooding, 32
Harmonic function, 768

Index 879

Hat function, 405, 751, 795
Hausdorff metric, 728, 809
Hausdorff p-dimensional measure, 804,

813
Hausdorff-Besicovitch dimension,

804
Head-mounted display, 685
Heat flow equation

strong form, 750
weak form, 751

Heaviside function, 784
Hemicube method, 355
Hercules graphics standard, 8, 9
Hermite

basis functions, 383, 384, 491
coefficients, 391
interpolating curve, 385, 391
interpolation problem, 383
matrix, 383, 392, 501

Hessian, 288
Hexcone color model, 301
Hidden line removal, 266
Hidden surface removal, 264

see visible surface removal
Hilbert space, 774

inner product of, 775
Hither clipping plane, 5
HMD, 685
Hodograph, 459
Holes

of set in picture, 25
Homogeneous clip coordinate system,

122
Homogeneous clip space, 122
Homogeneous coordinates

pro and con, 134
problems with, 137

Homotopy continuation method, 570
Homotopy method, 570
Horizontal retrace, 7
HSL triangle color model, 301
HSV hexcone color model, 301
Hue

nonspectral, 297
perceived, 296
spectral, 297
unique, 296
unitary, 296

Hunting phase
in surface intersection computations, 558,

559, 561

Hyperbolic paraboloid, 483, 484, 514
Hyperboloid, 481

of one sheet, 480, 483, 484
of revolution, 480

Hypercube, 693

I
IBM, PC, 8, 59
Ideal function

in interval analysis, 732
Identity matrix, 817
IFS, 810
IGES, 205, 211, 467, 822
Illumination model, 308
Illumination models

overview, 309
Illumination pipelines

global, 332
local, 330

Image-based lighting, 338
Image-based modeling, 338
Image-based rendering, 338
Image enhancement, 788
Image precision algorithm, 264

area sampling, 265
point sampling, 265

Image reconstruction, 633, 788
Image synthesis, 308
Implicit curve algorithm

marching method, 615
problems with, 621
rasterization, 614
using algebraic geometry, 615
via interval analysis, 740

Implicit function theorem, 259
Implicit representation

and contours, 624
versus parametrization, 259

Implicit surface
parameterization of, 574
nendering of, 622

Implicit surface algorithm
marching, 624
using interval analysis, 624
via handle decomposition, 624

Impulse signal or function, 783, 792
In-betweening, 147
Inclusion function, 731

convergent, 732
excess width of, 732
generic, 733

880 Index

Inclusion isotone, 728
Inclusion monotonic, 728, 732

isotonic, 732
order k, 732

Indeterminate region, 735
Index of refraction, 315, 321
Induced function

in interval analysis, 729
Inf, 816
Infeasable region, 735
Infinite precision arithmetic, 213
Inflection point, 456, 641
Inner product

on L2([a,b]), 775
Input node

of machine, 218
Input-output map, 219
Instancing, 169
Integral curve, 36

unit quaternion, 650
Interior

of set in picture, 25
Interior angle

at vertex of polygon, 716
Intermediate surface

for texture mapping, 326, 327
Interpolating plane, 487
Interpolating spline

buckling, 459
Interpolating surface

four point, 486
plane, 487

Interpolation
bicubic, B-spline, 516
cubic Bézier, 444
cubic B-spline, 441
higher-order B-spline, 445
Lagrange, 378
piecewise Hermite, 383, 384
spline, 388, 389

Interpolatory constraints, 376
Interpolatory refinement scheme,

461
Intersection

as zeros of function, 538
block-polyhedron, 578
comparison of methods, 579
curve-curve, 545
curve-surface, 552
facet-plane, 554

finding significant points for, 570
line-cone, 578
line-cylinder, 578
line-plane, 241
of convex hulls, 540
of CSG objects, 579
of intervals, 710
of parametric cubics, 578
of parallelopipeds, 562
of rectangles, 710
of segments, 240
plane-surface (section/contour), 554
projection approach to, 577
ray-bounding box, 348
ray-circle, 244
ray-cone, 346
ray-curve, 543, 544
ray-cylinder, 345, 578
ray-facet, 346
ray-faceted surface, 348
ray-polygon, 346
ray-quadric surface, 578
ray-quadrilateral, 347
ray-slab, 348
ray-sphere, 345
ray-surface, 552
representation of, 539
substitution approach to, 574
surface-surface, 553, 557

Intersection curves
jumping components, 580
misordered components, 580
properties of, 580

Interval
absolute value of, 729, 730
of Rn, 730
midpoint of, 730
width of, 730

Interval analysis, 177, 213, 545, 579, 615,
624, 726

disadvantages of, 744
Newton-Raphson method for, 744

Interval tree, 704
Invariant

with respect to contractions, 813
Inverse Fourier transform

discrete, 786
of function of one variable, 781
of function of two variables, 785

Inverse kinematics, 142

Index 881

Inward layout, 666
Inward pointing normal, 239
Inward pointing normal test, 239
Isolated point

of set in picture, 25
Isoline, 624
Isophote, 526
Isosurface, 362, 624
Isosurface generation algorithm, 593
Isovalue, 624
Iterated function system, 190, 810

attractor for, 810
code space for, 812
contractivity factor of, 810
deterministic, 807, 810
just-touching, 812
nondeterministic, 808, 810
overlapping, 813
totally disconnected, 812
with condensation, 811
with probabilities, 810

IVR, 686

J
Jittering, 344
Joint, 142

prismatic, 142
revolute, 142

Joint angle, 142, 143
Joint offset, 142, 143
Julia set, 220, 801
Junction

in medial axis, 184

K
K (kilobyte, = 210), 9
k-adjacent, 24
Kd-tree, 702
k-fold composite, 798
k-fold iterate, 798
Kinematics, 142

forward, 142
inverse, 142

k-neighbor, 24
Knot, 387, 608

multiplicity of, 387
Knot insertion, 428, 593
Knot spacing

centripetal, 444
chord-length/chordal, 444

comparison of, 444
uniform, 444

Knot vector, 387, 408, 411, 504
clamped, 408
length of, 387
nonuniform, 408
open uniform, 408
periodic, 408
standard clamped uniform, 409
standard uniform, 409
unclamped, 408
uniform, 408

Koch curve, 188
triadic, 805, 813

Kronecker delta, 815

L
L•

distance, 775
function, 775
norm, 775
space, 775

Lagrange
basis functions, 379, 490
interpolation, 378
polynomial, 378, 379

Lambert’s law, 311
Laplace equation, 768, 781

for electric potential problem, 770
for fluid flow, 770
for steady temperature problem, 769
in blending and fairing, 682

Lattice evaluation method
for sections, 554

LCD, 7
Least squares approximation, 376
Least squares method, 619

in curve fitting, 461, 533
Leaving list

in Weiler polygon clipping, 85
Lebesgue integral, 767, 773
Left turn

of vectors, 238
Length

of computation, 219
of discrete curve, 24
of knot vector, 387
of pwl curve, 657

Lens
of eye, 295

882 Index

Level curve, 624, 630
Level set, 801

as shape descriptor, 188
Liang-Barsky line clipping, 70, 77, 80, 125,

126
entry value, 78
exit value, 78

Liang-Barsky polygon clipping, 70, 71, 86,
87, 98

Light, 297
ambient, 310
diffuse, 310
monochromatic, 297
specular, 310

Light intensity
clipping, 334
scaling, 334

Light map
view-dependent, 309
view-independent, 309, 323

Lightness
perceived, 296

Line clipping, 69
Cohen-Sutherland, 70, 71, 81, 89, 93, 97,

125
Cyrus-Beck, 70, 73, 77, 125
Liang-Barsky, 70, 77, 81, 125
Nicholl-Lee-Nicholl, 70, 81

Line drawing algorithms
Bresenham, 39, 41
DDA approach to, 37
midpoint, 40
n-step, 40
run-based, 43

Line of curvature, 520, 526, 651
Linearly separable sets, 711

strictly, 712
Link, 142
Link curve, 598, 674
Link frame, 143
Link length, 143
Link parameters, 143
Link twist, 143
Lipschitz condition, 732, 735
Liquid crystal display, 7
List priority algorithm, 264, 265, 268, 269,

330, 332
Local control

for B-spline curve, 411
for B-spline surface, 504

for Doo-Sabin surfaces, 528
for NURBS curve, 436
for NURBS surface, 514

Local convex hull property
for B-splines, 417
for NURBS curve, 436
for NURBS surface, 514

Local deformation, 222
Local scaling, 135
Local shape function, 747
Lofted surface, 483, 487
Lofting, 387, 472, 473, 630

conic, 533
Logical screen, 5
Lookup table

for colors, 64
Loop, 456, 627, 628
Loop detection, 570, 579
Loop subdivision algorithm, 530
Lower halfplane, 815
Lower hemisphere, 816
Lp

distance, 774
function, 773
metric, 774
norm, 753, 773
pseudometric, 774
space, 773

LU-decomposition, 516
Luminous object, 295
Luminance, 301, 334, 335

M
M (megabyte, = 220), 9
MA, 183
Machine

branch node of, 218
computation node of, 218
input node of, 218
input space of, 218
next node of, 218
output node of, 218
output space of, 218
over ring, 218
state space of, 218

Machine representation, 163, 192
Magnetic resonance imaging, 181
Maillot polygon clipping, 70, 71, 86, 87, 88,

89
Mandelbrot set, 801

Index 883

Manipulator, 142
degrees of freedom, 142

Manifold, 159, 166, 169, 188, 453, 454, 624,
633, 658, 689, 690, 692, 693, 739, 803

Marching cube algorithm, 362, 365, 594,
625

Marching method, 558, 561, 566, 567, 579
problems with, 567
step constraint approach in, 566
step direction and size for, 568

Marching square algorithm, 369
MAT, 185
Material features, 194
Matrix

in filament winding, 667
Max metric, 26
Maximal disk

in set, 183
Maximum principle

for harmonic functions, 768
Maxwell triangle chromaticity diagram,

297
Mean curvature, 525, 591, 644, 645, 650,

651
Mean value form, 735
Mean value theorem

in interval analysis, 734
Mechanical spline, 445
Medial axis, 183

arc, 184
body sheet, 184
junction, 184
seam, 184
sheet, 184
wing sheet, 184

Medial axis representation, 185
for CSG objects, 186

Medial axis transform, 185
Medial surface, 183
Median cut palette quantization, 333
Median cut scheme

in ray tracing, 342
Medical imaging, 181
Meridian

of surface, 473
of surface of revolution, 475, 656

Mesh
Bezier, 645
Hermite, 645

Method of weighted residuals, 749

Metric
Euclidean, 26
Hansdorff, 809
max, 26
taxicab, 26

Meusnier theorem, 650
Microsoft Windows, 11, 14, 121
Midedge subdivision algorithm, 529
Midpoint

of interval, 730
Midpoint line-drawing algorithm, 40, 362,

363, 365
Milling machine, 174, 456, 642, 643

numerically controlled, 582
Minimax test

for box intersections, 229
Mip-mapping, 327
Mirror direction, 310, 312, 313
Mirror operation, 223
Mode, 9
Model simplification, 592
Monohedral triangulations

generated by reflections, 627
Monotone polygon, 716
Moore-Penrose inverse, 539
Morse function, 624
MRI, 181, 593, 594
Multiaffine map, 418
Multigrid method, 753
Multiplicative structure, 755, 756
Multiresolution analysis, 795
Multiresolution modeling, 598

N
Natural end condition, 388
Natural path

for tape, 669
Natural spline, 388
Navier-Stokes equations, 182
NC cutter, 557
NC machine, 162, 582, 646

two-axis, 639, 642
NC programming, 194
NDC, 5, 121, 130
Near clipping plane, 5, 138
Near plane, 229
Nef polyhedron, 225
Neighbors

18-, 23
26-, 23

884 Index

4-, 23
6-, 23
8-, 23
k-, 24

Nerve cells
in eye, 295

Newell-Newell-Sancha visible surface
algorithm, 265, 266, 269, 292

Newton-Raphson method, 286, 287, 544,
552, 553, 558, 559, 560, 562, 563,
566, 567, 568, 569, 570, 572, 579, 583,
594, 615, 617, 624, 637, 638, 672,
744

interval analysis version of, 744
overview of, 539

Nicholl-Lee-Nicholl line clipping, 70, 81
Node

in FEM, 746
Nondegenerate

planar cubic curve, 457
Nondestructive testing, 182
Nonluminous object, 295
Nonuniform rational B-spline surface,

513
Normal

induced, 239, 240
inward-pointing, 239
outward-pointing, 239

Normal curvature, 525, 651
Normal vector field, 462

relatively parallel, 462
Normalized device coordinates, 5, 121
Normals test, 232, 238
NTSC, 301
Numerically controlled machine, 162
Numerical stability, 467, 531, 539, 578
NURBS

history of term, 534
NURBS curve, 378, 433, 434, 435, 531, 599,

600
advantages of, 467
derivatives of, 438
disadvantages of, 467
evaluation of, 438
local control of, 436
local convex hull property, 436
order of, 433
projective invariance of, 436
properties of, 436
variation diminishing property, 436

NURBS surface, 221, 474, 513, 531, 599, 600,
645

evaluation of, 515
local control of, 514
local convex hull property, 514
partial derivatives of, 515
projective invariance of, 514
properties of, 513

Nyquist frequency, 790
Nyquist limit, 45

O
Object of revolution, 474
Object precision algorithm, 264
Object reconstruction, 139, 140
Oblique parallel projection, 133
Oblique view, 133
Octonion, 756
Octree, 185, 205, 362, 594
Octree visible surface algorithm, 266,

283
Offset, 638

geodesic, 638
Offset curve, 177, 638, 646

approximation of, 643
of space curve, 643
planar, 640, 641
rational, 644

Offset surface, 177, 186, 520, 638, 644,
646, 681

approximation of, 645
One-point perspective, 118
One-sided power function, 404
Op mode, 9
Opacity, 360
OpenGL, v, 11, 14, 15, 64, 138, 293,

340
Optic nerve, 295
Orbit, 798
Ordered edge list fill algorithm, 51
Ordering

induced, 240
Orientation

induced, 240
induced by normal, 239
of polygon, 239

Oriented bounding box, 573
Oriented polygon, 239
Origin

of view plane, 5

Index 885

Origin registers, 64
Orthogonal projection, 133, 187
Orthogonal projection assumption, 266
Orthogonality constraints, 377
Orthographic projection, 133
Orthographic view, 133
Oslo algorithm, 429
Output node

of machine, 218
Outward pointing normal, 239
Outward pointing normal test, 239
Overcut

of NC cutter, 639

P
PADL-1, 157
Painter’s algorithm, 63, 268, 320
Palette, 332

choosing one, 332
Palette quantization

fixed, 333
median cut, 333
octree, 333
popularity, 333
uniform, 333

Pan feature
of hardware, 64

Parabolic cyclide, 519
Parabolic cylinder, 514
Parabolic point, 458
Paraboloid

elliptic, 480, 514
hyperbolic, 484, 514
of revolution, 480, 655

Parallel curve, 639
Parallel graph grammar, 190
Parallel projection, 132
Parallel surface, 644
Parallel transport frames, 461, 463
Parametric blending

polyhedral, 681
rolling ball, 681
spine-based, 681
trimline-based, 681
with n-sided patches, 681

Parametric curve, 373
Parametric model, 192

versus variational model, 193
Parametric representation, 178, 221

versus implicit definition, 259

Parameterization, 373
Parameterized surfaces

implicitization of, 574
Parity check

in fill algorithms, 28, 51, 52
Parity test, 102, 234, 238, 319,

610
Particle system, 190
Partition of unity, 387
Pattern analysis, 188
Patterning, 48
PC, 8, 9, 13, 59, 66, 337
Penumbra, 320
Perceived color

characteristics of, 296
Periodic B-spline matrix, 414
Periodic end condition, 388
Periodic point, 220, 798

attractive, 220, 800
period of, 798

Perspective view, 113, 118
one-point, 118
two-point, 118
three-point, 118

PHIGS, 11
Phong shading, 317, 331, 332, 369
Phong specular reflectance model, 313, 314,

333
simplified, 313

Photorealism, 308, 310, 361
Physically based algorithm, 603
Physically based modeling, 191
Picture, 25
Piecewise linear curve, 657; see pwl

curve
Piecewise polynomial, 387
Pinhole camera, 113
Pitteway-Watkinson algorithm, 46
Pixel, 8

choosing coordinates of, 49
Pixel ray, 339
Place

of curve, 615, 616
Planar unfolding, 661
PMC, 206
Point sampling, 265
Point set topology, 167
Poisson distribution

minimum-distance, 344
Poisson kernel, 778

886 Index

Polar form, 419, 420
of quaternion, 760
tensor product, 505
triangular, 506

Polar form theorem, 419
Pole

of polynomial, 422
Polygon, 714

as B-spline, 405
diagonal of, 715
end vertex of, 717
interior angle at vertex, 716
merge vertex of, 717
monotone with respect to line, 716
regular vertex of, 717
shadow, 318
simple, 715
split vertex of, 717
start vertex of, 717
strictly y-monotone, 718
triangulation of, 714, 718, 719
turn vertex of, 716
y-monotone, 716

Polygon clipping, 69
Greiner-Hormann, 70, 71, 98, 106
Liang-Barsky, 70, 71, 86, 87, 98
Maillot, 70, 71, 86, 87, 88, 89
Sutherland-Hodgman, 70, 71, 84, 86, 87,

98, 105
turning point based, 71
Vatti, 70, 71, 98, 106, 108
Weiler, 70, 71, 85, 98, 106

Polygonization, algorithms
see also tiling algorithms
adaptive, 589, 591
by refinement, 598
comparison of, 593
for Bézier and B-spline objects, 593
for Bézier triangles, 591
for curves, 588, 593
for surfaces, 591, 593
properties of, 588
step size in, 593

Polygonize, 588
Polyhedral blending, 673
Popularity palette quantization, 333
Portable code, 10
Postfiltering, 46, 47
Potential method

in blending, 676

Preferred polarity approach
in surface tiling, 595

Prefiltering, 46
Primary color, 298

imaginary, 298
real, 298
transmission, 301

Primary colors
additive, 297
subtractive, 299

Primitive function, 375
Primitive instancing, 165
Principal curvatures, 591, 650, 651
Principal normal curvatures, 525, 645
Principal patches, 651
Prismatic joint, 142
Procedural model, 190
Procedural modeling, 215
Production Automation Project

University of Rochester, 157
Profile curve

for blending surface, 680, 681
Progressive refinement, 353
Progressive transmission, 597
Projecting cone

of space curve, 579
Projecting curves

to surface, 671
Projection

axonometric, 133
oblique parallel, 133
of one set on another, 664
of point along vector, 712
of set along vector, 712
orthogonal, 133
orthographic, 133
parallel, 132

Projection approach
for surface intersections, 577

Projection operator, 490
Projections

taxonomy of, 134
Projective invariance

of NURBS curves, 436
of NURBS surfaces, 514

Proximate interval, 740
Pupil, 295
Pwl curve, 657

angle at vertex, 662
closed, 657

Index 887

connecting, 661
elementary subdivision of, 658
induced by interval, 658
length of, 657
part of path of, 659
path of, 657
simple, 657
standard parameterization of, 658
subdivision of, 658
underlying space of, 657

Q
Quadratic form, 579
Quadric

as projection of paraboloid, 514
as rational surface, 514

Quadric surface, 480, 514, 622, 678
Quadtree, 185, 204, 561, 565, 566, 592, 594, 604
Quantitative invisibility of point, 266
Quasi-disjoint, 159
Quaternion

absolute value of, 758
as rotation, 763
conjugate of, 758
exponential notation of, 761
norm of, 758
polar form of, 760
pure, 757
pure part of, 757
real part of, 757
unit, 759

Quaternion algebra, 757
Quaternion product, 756
Quaternions

for curve frames, 465
in sweeping, 175
vector product of, 759

R
Radial transformation, 809
Radiosity, 318, 320, 323, 351

antialiasing in, 357
Radiosity equation, 351
Radiosity method, 350
Radius function

for medial axis, 183
Range parameter

for blend, 679
Range tree, 700, 703
Raster, 8

Raster scan CRT, 7
Rational basis functions, 433, 512
Rational Bézier curve, 432

control point of, 433
weight of, 433

Rational Bézier surface, 512
control point of, 512
weight of, 512

Rational B-spline curve, 432
control point of, 433
rational basis functions for, 512
weight of, 433

Rational B-spline surface, 512
control point of, 512
rational basis functions for, 512
u-knot of, 512
v-knot of, 512
weight of, 512

Rational tensor product surface, 512
Ray casting, 358, 369
Ray theory, 310
Ray tracing, 265, 266, 309, 318, 319, 322

adaptive supersampling, 343
beam tracing, 343
cone tracing, 343
distributed ray tracing, 344
minimum-distance Poisson distribution,

344
jittering, 344
stochastic sampling, 344
supersampling, 343

Ray tracing program, 338
Realism in graphics, 337
Realization

of CSG-tree, 168
Receptor cells

in eye, 295
Reconstruction

of camera data, 139, 141
of objects, 139, 140

Rectangle
how specified on screen, 12

Recursive subdivision curve, 465
Recursive subdivision surface, 526, 530, 681

affinely invariant, 528
Recursively enumerable set, 219
Reeb graph, 188
Ref, 821
Refinement, 597
Reflectance, 310

888 Index

Reflectance factor
diffuse, 311

Reflectance model, 308
distance factor in, 315

Reflection coefficient
ambient, 311
diffuse, 311
specular, 312

Reflection coefficients
suggestions for, 334

Reflection line, 525, 526
Reflection mapping, 328
Reflection ray, 339
Reflection rule

in Coxeter triangulation, 627
Refleshing object

from medial axis, 186
Refresh buffer, 8
Region

feasable, 735
indeterminate, 735
infeasible, 735
subtended by curve from point, 251

Regular set, 158
Regular vertex

of polygon, 717
Regularization

of set, 158
Regularization operator, 158
Regularized set operator, 160
Relatively parallel

adapted frame field, 463
normal vector field, 462
tangential vector field, 463
vector field, 463

Relaxation method, 352, 603, 604
Relaxing points, 539

in Barnhill-Kersey algorithm, 562
to surface,

Removing singularity
with quadratic transformation, 617

Render, 10
Rendering

by-polygon, 330
by-scan-line, 330
smooth surfaces, 330

Rendering equation, 323
Rendering pipeline, 330
Reparameterization

of curves, 396, 453
of surfaces, 522

Representation, 161
medial axis, 185
symantically correct, 161
syntactically correct, 161
valid, 161

Representation scheme, 157, 161, 223
complete, 161
domain of, 161, 162
informal properties of, 163
object, 163
unambiguous, 161
unique, 161
validity problem of, 162

Residual, 352, 749
Resolution, 8
Resultant, 575, 577, 578
Retina, 295
Revolute joint, 142
RGB color model, 299
RGB color values, 64
Riemann integral, 767, 773
Right turn

of vectors, 238
Ritz method, 746
R-move, 55
Robot, 639, 646, 670
Robot path planning, 188, 639
Robustness

issues with respect to, 213, 726, 738, 798
Rod receptor cell

in eye, 295
Romberg integration, 637
Rotate operation, 223
Rotation

via quaternion, 763
Rotational sweep, 174
Rotations

composition of, 764
Rounding, 187, 222, 672
R-set, 157, 158
Rubber banding, 62
Ruled surface, 482, 483

directrix-generator representation of, 473
Run-length encoding, 360

S
Sampling problem, 44, 767, 788
Sampling frequency, 45
Saturation

perceived, 296
Scaling function, 793

Index 889

Scaling operation, 223
Scan conversion, 10, 49, 50
Scan line, 7, 8
Scan line algorithm, 276, 289, 290, 291, 292,

309, 317, 318, 330, 598, 622
Scene analysis, 598
Schumacker visible surface algorithm, 265,

266, 268, 270, 292
Screw sweep surface, 485
Sculptured surface, 220, 472
Seam

in medial axis, 184
Section

of set, 553
of ship, 553

Section algorithm, 554
Sederberg-Nishita Bézier clipping, 551
Seed fill algorithm, 28
Segment, 228, 276

of B-spline curve,
Segment tree, 707
Segmentation

in volume rendering, 361
Segre characteristic, 579
Self-relation

of cells, 200
Self-similar, 813
Semialgebraic set, 159, 579
Semianalytic set, 159
Sensitive dependence

on initial conditions, 798
Separable function, 785
Separating hyperplane, 711

strictly, 712
Separating plane, 208, 270
Separation of variable method, 772
Set constraint function, 735

solution acceptance, 735
SetColor procedure, 15
SetMode procedure, 15
Shading

constant, 316
Gouraud, 316
Phong, 317

Shading model, 308
Shadow

of point, 664
of point on edge, 664

Shadow algorithm
hard, 320
soft, 320

Shadow algorithms, 318
Shadow polygon, 318
Shadow ray, 339
Shadow volume, 318
Shadow z-buffer, 318, 319
Shadowed face, 664
Shape, 112
Shape analysis, 393
Shape constraints, 377
Shape coordinate system, 112
Shape function

global, 749, 751
local, 751, 752, 753

Shape optimization, 188
Shape recognition, 188
Shape parameter, 454
Shape preserving surface, 651
Shear, 136
Sheet

in medial axis, 184
Shellable n-cell, 174
Shelling

closed, 645
open, 645

Shininess, 313
Shooting

of light, 354
Shortest edge sequence, 663
Shrink wrapping, 327
Sign function, 817
Signal processing, 44, 767, 788

definition-to-display, 792
Significant point

of intersection curve, 570
Silhouette, 285
Simple

edge sequence, 660
edge-adjacent sequence, 660

Simplicial complex, 167, 224, 723, 724
Simplification problem, 597

decimation, 597
refinement, 598

Simply connected set in picture, 25
Sinc function, 783, 785
Singularity

of curve, 456, 615
removal of, 617

Site, 720
Size criterion

for surface triangulation, 600
Skeletal line, 651

890 Index

Skeleton, 183
exterior, 186
interior, 186

Skinning, 223, 361, 557, 630, 633
branching problem for, 631
correpondence problem for, 631
for B-spline curves, 632
surface-fitting problem for, 631
tiling problem for, 631

Skinning curves, 630
Skinning surface, 517, 630, 633, 651

properties of, 630
Slab, 229, 348, 573, 708

induced from unit vector, 229
Smith seed fill algorithm, 29, 30
Smoothing, 672
Smoothness conditions, 377
Snell’s law, 320
SO(2), 755, 817
SO(3), 764, 817
Soft area flooding, 32
Solid, 158, 159, 176, 178

tricubic parametric, 178, 224
Solid modeling, 157
Solid sweep, 174
Sorting phase

in surface intersection computations, 558,
561, 566

Span, 276, 387
sample, 278

Sparse polynomial, 572
Spatial coherence, 342
Spatial domain, 784
Spatial occupancy enumeration, 179, 180,

183
Sphere

n-dimensional, 816
parameterization of, 478

Spine curve, 679, 681
Splatting, 359
Spline, 387

see also B-spline curve
cubic, 387
geometric, 468
in tension, 468
knot of, 387
linear, 387, 445
mechanical, 445
natural, 388
nonlinear, 445

physical, 387, 445
quadratic, 387
shape preserving, 468
wooden, 445

Spline curve,
interpolating, 390

Spline interpolation problem, 388
Splitting node, 699
Sprites, 66
Square integrable functions, 774

inner product of, 775
Standard trace direction, 619
STEP, 198, 211, 467
Stereo views, 131
Stereolithography, 601, 603
Stochastic sampling, 344
Subdistributive, 728
Subdivision

adaptive, 177, 178, 573, 589
cyclic, 737
of cubic curve, 449, 451
of Bèzier curve, 451
of B-spline curve, 452
of pwl curve, 658
of triangle, 592
proper, 658
recursive, 465, 526
triangular surface, 521
uniform, 177, 178

Subdivision algorithm
Catmull-Clark, 529
Chaikin, 465
corner cutting, 465, 526, 527
cracks in, 599, 600, 601, 603, 604,

608
Doo-Sabin, 527
Loop, 530
midedge, 529
trapezoidal, 606
vertex insertion, 526, 530

Subdivision problem, 449, 521
Subject polygon, 69
Subtractive primary colors, 299
Sup, 816
Super VGA, 8, 9
Supercyclide, 521, 678
Superellipse, 448, 482, 676

corner point, 448
superness, 448

Superficial blending, 672

Index 891

Superness
of superellipse, 448

Superposition, 472
Superquadric surface, 482
Supersampling, 47, 291, 343

scaling factor, 47
Support, 406

compact, 387
Surface, 472

bilinear, 486
developable, 483
doubly curved, 484
doubly ruled, 483
dull, 313
four-point interpolating, 486
free-form, 472
glossy, 313
implicit, 177, 481
interrogation of, 526
lofted, 483
NURBS, 513
offset, 177, 186
rational Bézier, 512
rational B-spline, 512
rational tensor product, 512
recursive subdivision, 526
sculptured, 472
singly curved, 484
superquadric, 482
sweep, 484, 485
trimmed, 177

Surface blending, 672
Surface-fitting problem, 625

for skinning, 631
Surface of revolution, 474, 475, 667, 668

circle of latitude of, 475
directrix-generator representation of,

473
full, 475
meridian of, 475
problems for, 475, 476
standard parameterization of, 475

Surface patch, 472
Surface reconstruction, 633
Surface rendering, 358
Surface simplification, 597
Surface tiler

continuation approach, 594
enumeration approach, 594
subdivision approach, 594

Surface-surface intersection, 557
comparison of methods, 579
hunting phase for, 558
sorting phase for, 558
tangential, 579
tracing phase for, 558
via algebraic methods, 574
via continuation method, 570
via divide-and-conquer, 572
via embedding method, 570
via homotopy method, 570
via lattice evaluation, 558
via marching method, 558
via recursive subdivision, 572
via Timmer algorithm, 558
via tracing method, 558

Surrounding test
evaluation of, 238
for quadrilateral, 347
using angle counting, 235
using barycentric coordinates, 233
using crossings, 234
using equations, 233
using normals, 232
using parity, 234
using wedges, 233

Sutherland-Hodgman polygon clipping, 70,
71, 84, 86, 87, 98, 105

Sweep operation, 174, 222, 678, 679,
681

Sweep representation, 175, 177
Sweep surface, 484, 485

screw, 485
Sweep vector, 483
Symmetric curve, 399
Symmetric axis, 183
Symmetric difference, 816
Synthetic camera, 113

T
Tangent plane continuity, 522
Tangential vector field, 462

relatively parallel, 463
Tape laying, 667, 668
Tape path, 669
Taxicab metric, 26
Templated discrete ray

in volume rendering, 358
Tension, 454
Tensor product blossom, 505

892 Index

Tensor product polar form, 505
Tensor product surface, 472, 495, 505

Bézier, 501
bicubic, 496
B-spline, 504
rational, 512
subdivision of, 521

Terminating point, 564, 565
Tesselate, 588
Text clipping, 110
Texture

aliasing problems for, 326, 327
distortion problems for, 326
physical, 324
shrink wrapping approach to, 327
statistical measures for, 324
structural measures for, 325
visual, 324

Texture coordinates, 325
Texture mapping, 325

2-dimensional, 325
3-dimensional, 327
intermediate surface for, 326, 327
using chordlength, 326

Three-point perspective, 119
Thresholding, 48
Thumbweight

of profile curve, 680
Tile, 588
Tiling algorithm; see also polygonization

algorithms
adaptive, 594, 596
approaches to, 594
continuation approach to, 594
continuous, 593
discrete, 593
enumeration approach to, 594
implicit, 593
subdivision approach to, 594

Tiling problem
for skinning, 631

Timmer algorithm, 558, 559, 563, 569,
615

hunting phase for, 559
ordering phase for, 561
tracing phase for, 559

Tint fill, 32
Tolerance features, 194
Tolerancing, 223

Tomography, 180
Tool frame, 142
Topologically adequate

data structure, 200
Topologically transitive, 798
Topology inference approach

in surface tiling, 595
Toroidal graph, 631
Torrance-Sparrow specular reflectance

model, 314
Torus

parameterization of, 478
Total angle

for surrounding test, 236
Total internal reflection, 322

critical angle of, 322
Total variation, 779
Trace direction, 619, 620, 621

standard, 619, 620
Tracing method, 558
Tracing phase

in surface intersection computations, 558,
559, 563

Tracing seams and sheets, 185
Trajectory generation, 142
Transfer function

in volume rendering, 360
Transfinite interpolant, 488
Transforming

implicit representation, 260
parametric representation, 260

Translational sweep, 174
Transmission primary, 301
Transparency, 310, 320
Transparency ray, 339
Trapezoidation problem

for planar regions, 605
Trapezoidation algorithm, 606
Tree structure encoding,
Triangular Bézier surface, 508, 509

evaluation, 508
partial derivatives of, 511

Triangular blossom, 506
Triangular control net, 508
Triangular domain

advantage, 531
disadvantage, 532

Triangular polar form, 506
Triangulating polygons, 714, 718, 719

Index 893

Triangulation, 600, 601, 602, 603, 604, 626,
627

angle-optimal, 724
angle vector for, 724
Coxeter, 627
deviation criterion, 600
local, 627
monohedral, 627
of planar point set, 724
size criterion, 600

Triangulation algorithm
for y-monotone polygons, 718, 719
via locally isometric approximations,

605
Triangulation problem

for planar regions, 605
Tricubic parametric solid, 178
Trim curve, 674
Trimmed surface, 596, 598
Trimline

for blending surface, 679, 681
Trimming, 638, 642
Trimming algorithm, 599, 600, 601, 603,

604, 606, 611
Trimming curve, 598, 599, 600, 614, 674
Tripod 6-connected line algorithm, 365
Tri-stimulus theory of light, 297
Trunc function, 817
Truncated cone, 476
Truncated power function, 404
Tunnel

in discrete 3d set, 362
Turning point, 71, 86, 87, 641

of intersection curve, 570
Twist vectors, 496, 499, 533

Adini, 499
Two-point perspective, 118, 136,
Typeface, 109

U
Umbra, 320
Undecidable set, 219
Undercut

of NC cutter, 639
Undersampled, 45
Undoing

an editing operation, 222
Unfolding map, 661
Unfolding of set, 661

Uniform B-spline matrix, 414
Uniform subdivision, 178
Unit cube, 815
Unit disk

closed, 816
open, 816

Unit quaternion integral curve, 650
Unit sphere, 816
Unstable system, 798
Up direction, 113
Upper halfplane, 815
Upper hemisphere, 816
User representation, 163, 192

informal issues, 164
Uv-monotone region, 599, 600

V
Valid representation, 161
Validity problem

for representation schemes, 162
of boundary representation, 166
of CSG representation, 169
of Euler operation representation, 171,

173
of feature models, 195, 196

Vanishing point
of line for view, 118

Variation diminishing property, 430, 502,
505, 514, 544, 547

Variational constraints, 377
Variational method

for FEM, 748
Variational model, 192

versus parametric model, 193
Vatti polygon clpping, 70, 71, 98, 106, 108,

606
VE, 685
Vector

transforming, 259
Vector field, 36, 177, 756

along curve, 462
normal to curve, 462
relatively parallel, 463
tangential to curve, 462

Vector product
of quaternions, 759

Vernier acuity, 45
Vertex, 641

of convex set, 714

894 Index

Vertex insertion
subdivision algorithm, 526, 530

Vertex ordering
induced, 240

Vertical retrace, 7, 63
VGA, 8, 9
View

axonometric, 133
oblique, 133
orthographic, 133
perspective, 113

View direction, 5, 113
View plane, 4
View plane coordinate system, 4, 117
View pyramid, 5

truncated, 5
View volume, 5

truncated, 5
Viewpoint, 4
Viewport, 5, 119
Viewport-to-pixel-space transformation, 121
Virtual environments, 685

interaction in, 686
Virtual reality, 685

immersive, 686
passive, 686

Visible human project, 182
Visible line determination, 266
Visible radiant energy, 297
Visible surface algorithm

Blinn, 285
BSP, 270
Carpenter-Lane, 290
Catmull, 284
Clark, 290
curved surface 284
list priority, 268, 269, 283
Newell-Newell-Sancha, 269
Octree, 283
Schumacker, 268
Warnock, 273
Watkins, 278
Weiler-Atherton, 274
Whitted, 290
Z-buffer, 275

Visible surface algorithms
comparison, 292
image precision, 264
list priority, 264
object precision, 264

Visible surface determination, 264
overview of algorithms, 264

Vitreous humor, 295
Volume

of parallelopiped, 249
shadow, 318
of tetrahedron, 251

Volume data structures, 203
Volume graphics, 180
Volume modeling, 180
Volume rendering, 180, 358, 625, 685

Artzy’s algorithm, 362
data classification for, 358, 360
image precision, 358
marching cube algorithm, 362, 365
object precision, 359
shear warp, 360

Volume thinning, 185
Volume visualization, 180
Volumetric blending, 673
Volumetric data, 180
Voronoi cell, 720, 723, 724

edge of, 721
vertex of, 721

Voronoi diagram, 185, 232, 603, 666, 667,
720, 721, 722, 723, 725

Fortune’s algorithm for, 722
Voronoi graph, 722
Vorticity

of fluid, 182
VoxBlt, 181
Voxel, 179
Voxel block transfer, 181
VR, 658

W
Warnock visible surface algorithm, 265, 266,

273, 291, 292, 614
Waterline

of ship, 533
Watkins visible surface algorithm, 265, 266,

278, 292
Wavelet, 792

approximation, 795
compression, 795

Wavelet transform
discrete, 795, 796

Wedge test, 233, 238
Weierstrass approximation theorem,

398

Index 895

Weight
of rational Bézier curve, 433
of rational Bézier surface, 512
of rational B-spline curve, 433
of rational B-spline surface, 512

Weights
geometric interpretation of, 435

Weiler polygon clipping algorithm, 70, 71,
85, 98, 106

entering list, 85
leaving list, 85

Weiler-Atherton shadow algorithm, 318
Weiler-Atherton visible surface algorithm,

266, 274
Whittaker-Shannon sampling theorem, 44,

790
Whitted visible surface algorithm, 290
Width

of interval, 730
Winding number, 106, 235
Window, 5, 6, 119, 273
Window-to-device pipeline, 6
Window-to-viewport transformation, 12
WinG, 11
Wing sheet

in medial axis, 184
Winged edge data structure, 202

Winged edge representation, 173, 201, 203
Wireframe display, 165
Wireframe representation, 164
Wooden spline, 445
Workspace, 142
World coordinate system, 4, 6, 112
World-to-camera transformation, 115,

622
Write procedure, 16

X
XOR mode, 9

moving objects with, 9
X-ray, 181

Y
YIQ color model, 300
Yon clipping plane, 5

Z
Z-buffer, 9, 275

Shadow, 319
Z-buffer algorithm, 265, 266, 275, 291, 292,

319, 330, 598, 606
scan line, 276

Zoom feature
of hardware, 64

Bibliographic Index 897

[Barn87], 21, 842
[Barn88], 190, 804, 806, 807, 808, 809, 810,

811, 812, 813, 842
[Barn92], 843, 849, 850, 851, 852, 855, 861
[BarR74], 844, 860, 861
[Barr81], 482, 856
[Barr92], 482, 856
[BarrA87], 191, 855
[BarrA89], 856
[Bars88], 860
[Barze92], 856
[Baum72], 201, 845
[Baum75], 172, 201, 845
[BBGDS92], 799, 842, 852
[BBGS99], 184, 185, 186, 187
[BCGH92], 149, 856
[BDDH95], 11, 848
[BDST92], 725, 838
[BeaB82], 843, 859, 865
[Beac91], 389, 844
[BeBF78], 848
[BeFH86], 651, 862
[BeMR94], 719, 838
[Bézi71], 533, 845
[Bézi72], 459, 844
[Bézi74], 860
[BFJP87], 558, 566, 850
[BHLH88], 568, 569, 615, 850
[Bier95], 226, 845
[BieS86], 326, 863
[Binf71], 175, 845
[Bish75], 461, 462, 463, 464, 841
[BisW86], 317, 859
[BKOS97], 699, 701, 702, 704, 706, 708, 709,

715, 716, 718, 720, 721, 722, 724, 725, 838
[Blin00a], 459, 860
[Blin00b], 459, 860
[BliN76], 325, 326, 328, 863
[Blin77], 313, 314, 315, 859
[Blin78], 328, 863
[Blin81], 284, 864
[Blin82], 673, 845
[Blin87], 57, 839
[Blin88a], 59, 839
[Blin88b], 111, 848
[Blin89a], 459, 860
[Blin89b], 459, 860
[Blin91a], 111, 125, 848
[Blin91b], 111, 848
[Blin91c], 111, 848

[Blin92], 111,121, 848
[Blin93], 301, 837
[Blin99], 459, 860
[BloK02], 534, 861
[Bloo88], 624, 849
[Bloo90], 461, 841
[Bloo97], 187, 337, 594, 596, 622, 623, 849
[BloW89a], 682, 836
[BloW89b], 682, 836
[BlSS89], 217, 219, 220, 845
[Blum67], 183, 853
[Blum73], 183, 853
[BluN78], 853
[Boeh80], 429, 861
[Boeh87], 456, 845
[Boeh89], 841
[Boeh90], 517, 519, 521, 841
[Boen91], 538, 850
[BoeP94], 164, 844
[BoFK84], 845
[BoiC00], 633, 862
[BoiT93], 725, 838
[BoLZ75], 35, 857
[Boot79], 843, 864
[BotM58], 756, 836
[Bouk70], 309, 311, 859
[BowW83], 258, 852
[Bowy94], 841, 844, 846, 853
[BoyB00], 40, 858
[Brac86], 767, 783, 842
[Brad82], 856
[Bran92], 185, 853
[Brec92], 638, 646, 855
[Bres65], 39, 858
[Bres77], 39, 858
[BrHS80], 172, 845
[BroA99], 838, 844, 845, 852, 853, 854
[Brod80], 839, 844, 845
[Broo99], 685, 686, 864
[Brou84], 856
[Brun95], 863
[Buch95], 745, 842
[BuiT75], 309, 310, 313, 317, 859
[BurM71], 174, 863
[BurS93], 558, 850

[CaBU92], 863
[CalH68], 853
[Carl82], 547, 573, 850
[Carp84], 291, 864

898 Bibliographic Index

[Cars98], 11, 848
[Casa87], 863
[CatC78], 529, 862
[Catm74], 326, 572, 864
[Catm75], 284, 290, 864
[Catm78], 276, 291, 864
[CatR74], 861
[CavM89], 465, 526, 845
[CCWG88], 351, 353, 355, 357, 857
[Chai74], 465, 862
[ChaK87], 557, 850
[Chan88], 59, 614, 849
[Chas78], 258, 854
[Chaz91], 718, 838
[ChBA94], 538, 850
[ChCM97], 853
[ChDH89], 517, 519, 841
[CheH90], 660, 666, 667, 843
[Chen89], 567, 850
[CheO88], 569, 850
[Chew93], 863
[Chia92], 853
[ChiK83], 681, 836
[Chin95], 273, 854
[Chiy87], 681, 836
[Chiy88], 173, 494, 502, 504, 681, 844
[ChoJ89], 681, 836
[ChPP98], 604, 614, 863
[CiMS98], 725, 838
[Clar79], 290, 573, 864
[ClaS89], 725, 838
[CMBZ00], 687, 864
[CMPP99], 863
[CohG85], 351, 857
[CohK97], 363, 365, 865
[CohW93], 351, 857
[CoLR80], 430, 861
[ConD72], 37, 390, 745, 854
[Cook86], 344, 858
[Cook89], 344, 858
[Coon67], 488, 533, 845
[CooT65], 786, 842
[CooT82], 859
[CoPL84], 344, 858
[CouH53], 856
[Crai88], 670, 841
[Crai89], 142, 146, 859
[Cran95], 799, 842
[Crip98], 841, 844
[Crow77a], 291, 836

[Crow77b], 318, 859
[CrSD93], 686, 864
[Cuil98], 592, 856
[CuKM99], 185, 213, 853
[CycW92], 578, 850
[CycW94], 578, 850
[CyrB78], 73, 837

[DahB74], 37, 854
[DanD89], 467, 861
[Debe99], 338, 859
[deBo78], 388, 404, 861
[DeFL87], 59, 858
[Dege94], 521, 841
[Dege98], 521, 841
[DehZ91], 591, 845
[DelE95], 836
[DenH55], 146, 859
[DeSB92], 215, 855
[Deva86], 799, 800, 842
[Devi98], 725, 838
[DevK89], 190, 842
[DLTW90], 626, 627, 628, 629, 839
[DocT81], 860
[DooS78], 527, 862
[DoSY89], 538, 579, 850
[Dowd85], 625, 839
[DrCH88], 865
[Duff79], 317, 860
[DuMP93], 521, 841
[Dwye87], 725, 838

[Earn85], 839, 843
[Earn88], 844, 861
[EdaL99], 215, 845
[Edel87], 540, 720, 838
[EdeM90], 215, 845
[Egga98], 164, 856
[ElbC96], 330, 859
[ElbC97], 681, 836
[ElbK99], 186, 853
[ElLK97], 643, 644, 855
[Elsa83], 532, 845
[Elvi92], 358, 865
[EnKP84], 11, 848
[EtzR99], 722, 838

[Falc85], 804, 813, 842
[FaNO89], 557, 579, 850
[FanP93], 725, 838

Bibliographic Index 899

[FanP95], 725, 838
[Fari83], 532, 845
[Fari87], 836, 837, 844, 845, 846, 847, 850,

851, 852
[Fari89], 436, 514, 861
[Fari92a], 460, 861
[Fari92b], 557, 850
[Fari95], 433, 512, 861
[Fari97], 389, 399, 411, 417, 424, 441, 444,

452, 455, 467, 494, 505, 514, 517, 522, 535,
844

[FarJ94], 853
[FarN90a], 641, 642, 643, 855
[FarN90b], 643, 855
[Faro85], 855
[Faro86], 855
[Faro87], 557, 850
[Faro91], 467, 861
[Faro92], 459, 644, 849
[FarR87], 467, 861
[FarR88], 467, 861
[FarR98], 188, 853
[FarS95], 644, 855
[FauL01], 139, 848
[FauP79], 522, 844
[Feat87], 146, 859
[Fede69], 804, 842
[Ferg64], 533, 845
[Ferr94], 8, 855
[Ferw01], 295, 854
[Figu95], 590, 840
[FilB89], 633, 845
[Fili86], 521, 591, 592, 856
[FiMM86], 558, 573, 591, 592, 845
[FisB85], 53, 858
[Fish90a], 303, 837
[Fish90b], 29, 32, 858
[Fish94], 844, 853
[Fium89], 4, 854
[FoFC82], 842
[FolR93], 526, 845
[Forr72], 459, 861
[Fors12], 519, 841
[Fors95], 645, 855
[Fort87], 722, 725, 838
[Fort95], 213, 845
[Four95], 795, 842
[Free69], 858
[Free80], 843, 859, 860, 864
[Frie63], 783, 842

[FTAT00], 188, 865
[FuAG83], 270, 864
[FuKN80], 270, 864
[FuKU77], 631, 839
[Full73], 836
[FuTI86], 342, 858
[FVFH90], 46, 47, 59, 88, 264, 284, 290, 308,

351, 843

[Gall00], 505, 506, 508, 521, 530, 844
[Galt89], 839
[GanD82], 632, 839
[Garl85], 726, 852
[Garl87], 726, 852
[GarW89], 558, 850
[GarZ79], 571, 849
[Gass83], 844
[GeCG99], 845
[GelD95], 186, 188, 853
[Geor92], 248, 854
[GerP90], 333, 837
[GHSV93], 206, 209, 211, 215, 216, 217, 221,

223, 224, 844
[GibB85], 853
[GJPT78], 716, 838
[Glas84], 342, 858
[Glas86], 858
[Glas89], 858
[Glas90], 837, 841, 854, 858, 859, 861
[Glas92], 806, 842
[Glas95], 44, 310, 767, 790, 792, 795, 841
[Glas99], 786, 842
[Glid97], 11, 848
[Gold83], 480, 579, 856
[Gold90], 150, 854, 855
[GolM87], 579, 850
[GolS87], 850
[GomV98], 795, 842
[GonN02], 621, 849
[GonW87], 44, 767, 841
[Gord69], 846
[Gord71], 846
[GorR74a], 534, 846
[GorR74b], 861
[GoTG84], 323, 860
[Gour71], 316, 860
[GraK97], 557, 558, 565, 850
[Grav95], 637, 840
[Gray98], 519, 841
[Gree86], 328, 863

900 Bibliographic Index

[Gree94], 578, 850
[Gree99], 337, 859
[Greg74], 861
[Greg86], 841, 844, 851
[Greg89], 456, 522, 846
[GreH98], 106, 837
[GreS77], 725, 838
[Grif75], 557, 864
[Grif78], 557
[Grif78a], 864
[Grif78b], 864
[GSPC77], 11, 848
[GSPC79], 11, 848
[GueP90], 635, 636, 638, 840
[GuiS85], 725, 838
[Gunn93], 693, 865
[GupS81], 46, 858

[HaAG83], 557, 850
[HaFN95], 844, 845, 847, 855, 862, 863
[Hage92], 526, 862
[HagH95], 525, 862
[Hain89], 579, 858
[Hain94], 238, 854
[Hall89], 294, 308, 309, 334, 837
[HalM63], 685, 864
[HaMa95], 461, 465, 857
[HaMF94], 693, 865
[Hami69], 857
[Hand89], 837, 844, 846
[HanH92], 693, 865
[Hanr89], 579, 858
[HarA02], 175, 857
[Hara79], 863
[HecG97], 597, 846
[HecH84], 343, 858
[Heck82], 333, 837
[Heck86], 325, 863
[Heck90a], 49, 858
[Heck90b], 32, 858
[Heck90c], 40, 858
[Heck93], 842
[Heck94], 838, 850, 851, 852, 854, 863
[Heck97], 846
[HEFS85], 566, 573, 591, 851
[HeKE99], 579, 850
[HerB87], 592, 855
[Herm98], 4, 23, 24, 26, 362, 854
[Hers75], 857
[Hill01], 340, 843

[Hill90], 340, 843
[Hiro74], 160, 856
[HKBZ97], 342, 858
[HMPY97], 537, 557, 579, 851
[HMSP96], 537, 546, 851
[HMSV99], 855
[Hoch83], 532, 846
[Hodg92], 132, 854
[HofB97], 836, 844, 854
[Hoff89], 213, 215, 538, 568, 569, 577, 615,

619, 620, 621, 710, 844
[Hoff91], 853
[Hoff93], 849
[Hoff94], 186, 853
[HofH85], 676, 836
[HofH87], 676, 836
[HofR95], 844, 845, 847, 851, 853, 855,

856
[Hogg92], 146, 149, 852
[HoHK89], 213, 215, 846
[Hohm91], 570, 580, 850
[HoLe88], 842
[Hopp96], 597, 846
[Horn75], 745, 854
[HosL93], 178, 444, 445, 446, 448, 460, 461,

468, 494, 502, 522, 526, 538, 546, 579, 625,
643, 672, 844

[HsuT98], 681, 836
[HuaM02], 633, 846
[HuPY96a], 213, 852
[HuPY96b], 213, 852
[HurW48], 802, 803, 804, 863
[HutH96], 526, 846
[HwaA92], 859

[IGES88], 822, 848
[ISO88], 11, 849

[JGMH88], 843, 859, 860, 863, 864, 865
[JiMa97], 196, 846
[John87], 745, 754, 842
[John93], 521, 579, 841
[JoLH73], 839
[JulB81], 863
[Jule62], 863
[Just92], 223, 846

[KaCY93], 180, 358, 865
[Kaji86], 309, 323, 859
[KakG96], 651, 840

Bibliographic Index 901

[KaLL83], 857
[Kalv92], 594, 865
[Kap85], 839
[Kapl85], 273, 858
[Kapo99], 660, 843
[KassB93], 856
[Kauf98], 182, 865
[KayK86], 230, 340, 859
[KemF97], 11, 849
[KimD93], 459, 849
[KimK03], 587, 846
[Kirk92], 850, 854, 856, 859
[KlaK92], 678, 681, 851
[Klas80], 525, 846
[Klas94], 578, 851
[Kobb96], 461, 846
[Kopa91], 558, 851
[KopM83], 545, 547, 551, 840
[Kost91], 593, 846
[KraM00], 517, 521, 841
[KriM97], 579, 580, 851
[KrLM98], 650, 840
[KrPP90], 570, 851
[KrPW92], 567, 851
[KSHS03], 655, 657, 843
[Kuip99], 765, 857
[KumM94], 600, 863
[KumM95], 600, 863
[KuSP02], 645, 855
[KuSP03], 645, 855
[Kypr80], 194, 846

[LaCJ94], 853
[LacL94], 360, 865
[LamM95], 579, 851
[LamM96], 579, 851
[LanR80], 544, 545, 547, 551, 572, 573, 592,

602, 846
[LanR83], 430, 861
[LanS86], 844
[LasB95], 614, 863
[LaTH86], 206, 839
[LazV99], 188, 853
[LBDW92], 186, 838
[LCWB80], 290, 572, 573, 864
[LeeE82], 438, 439, 861
[LeeP77], 716, 838
[Levo88], 865
[Levo90], 362, 865
[LiaB83], 71, 86, 837

[LiaB84], 77, 837
[LiCN98], 182, 358, 865
[LiCr97], 458, 840
[LicS87], 591, 846
[LiHS02], 193, 846
[Limi44], 674, 836
[Lind68], 190, 842
[Lind92], 333, 334, 859
[LinM96], 215, 838
[LiON02], 198, 846
[Lisc94], 725, 838
[LiSH92], 591, 856
[LiuW02], 531, 861
[LoDW97], 795, 842
[LooD89], 532, 861
[Loop87], 530, 862
[LorC87], 365, 368, 865
[LorW86], 844
[Lü95], 644, 855
[Lueb01], 597, 846
[Luka89], 538, 566, 851
[LukC96], 438, 516, 861
[Luke96], 600, 863
[LuMM95], 579, 851
[LWZL02], 461, 846
[LycS89], 844, 845, 846, 850, 860

[MacB79], 857
[Maek99], 638, 855
[MaeP93], 639, 643, 855
[MagT87], 290, 291, 843
[Mail92], 89, 93, 837
[Malc77], 445, 446, 861
[MaLe98], 570, 580, 851
[ManC90], 840
[ManC92a], 458, 840
[ManC92b], 835
[Mand83], 190, 800, 801, 806, 843
[ManD94], 551, 578, 851
[ManK97], 551, 578, 851
[MäNS96], 688, 846
[Mant88], 173, 844
[MaPS86], 521, 579, 841
[MarM89], 567, 579, 851
[MarM91], 558, 851
[MarS89], 846
[Mart82], 517, 521, 841
[Mart87], 837, 844
[Mart94], 846
[Matv03], 693, 836

902 Bibliographic Index

[McCa98], 211, 854
[Mcil92], 58, 858
[Meag82a], 860
[Meag82b], 860
[MeeW00], 650, 840
[MeeW90], 643, 855
[Mehl74], 445, 446, 861
[MeSS92], 630, 632, 839
[Micr94], 15, 848
[Miel91], 59, 843
[Mill86], 846
[Mill87], 579, 851
[Mill99], 150, 854
[MiMP87], 660, 662, 663, 667, 843
[MitR68], 857
[MiTW73], 857
[MitW78], 748, 842
[Miur00], 650, 840
[MölH99], 859
[Moon99], 460, 849
[Moor66], 726, 744, 852
[Moor79], 726, 852
[Morg83], 571, 849
[Morr90], 53, 858
[Morr91], 246, 854
[MorS92], 526, 862
[Mort85], 160, 178, 522, 559, 844
[Mort89], 852
[Mull96], 841, 844
[Mulm94], 838

[Nack82], 188, 853
[NarM95], 718, 838
[Nasr00], 530, 862
[Nasr87], 529, 573, 846
[Nata61], 773, 780, 781, 859
[NeNS72], 269, 865
[NeuN95], 358, 857
[Neva82], 324, 863
[NFMD90], 866
[NiBl94], 201, 202, 203, 846
[Niel74], 468, 861
[NiLN87], 81, 84, 837
[NinB93], 594, 595, 849
[NowR83], 532, 847

[OckS84], 579, 847
[Orou94], 718, 838
[OttP92], 842
[OweR87], 579, 851

[Paet90], 333, 837
[Paet95], 838, 840, 852, 854
[PalB98], 841
[PaPV95], 193, 847
[ParK96], 630, 632, 839
[Patr92], 538, 851
[Patr93], 538, 851
[Paul82], 146, 859
[Pavl82], 26, 32, 854
[Pedd92], 15, 848
[PenP86], 139, 164, 856
[PepH92], 752, 842
[PePR99], 483, 847
[Pete95], 526, 862
[Peter94], 602, 863
[PetR97], 529, 862
[PFTV86], 654, 855
[Pham92], 638, 855
[PhiO84], 567, 851
[PicS83], 857
[Pieg91], 433, 512, 861
[Pieg92], 557, 851
[PieR95], 601, 864
[PieT00], 517, 861
[PieT95], 409, 411, 430, 433, 436, 438, 445,

502, 512, 514, 516, 517, 531, 632,
861

[PieT98], 601, 864
[Pitt67], 40, 858
[Pitt85], 839
[PitW80], 46, 858
[Podg02], 193, 847
[PokG89], 85, 266, 415, 843
[Port81], 857
[Pösc84],526, 847
[Pott95], 644, 855
[Powe72], 567, 851
[PraG86], 538, 554, 557, 567, 570, 851
[PraG92], 502, 505, 861
[Pras91], 241, 854
[Prat87a], 198, 847
[Prat87b], 198, 847
[Prat89], 837
[Prat90], 517, 520, 521, 679, 841
[Prat95], 521, 841
[Prat96], 521, 841
[Prat97], 521, 841
[PraW85], 194, 847
[PreS85], 232, 233, 720, 838
[Preu86], 839

Bibliographic Index 903

[RamG03], 186, 853
[Rams88], 419, 420, 861
[Rams89], 469, 861
[RanR91], 526, 847
[Rasa90], 444, 861
[ReBl85], 190, 843
[RedT95], 853
[Reev83], 190, 843
[Reif95], 527, 862
[RenE03], 199, 847
[Requ80], 847
[Requ96], 688, 847
[ReqV82], 160, 847
[ReqV83], 847
[ReqV85], 205, 208, 847
[RhyT01], 361, 866
[Ries75], 465, 862
[Ritt90], 345, 859
[RoaM92], 682, 837
[Robe63], 266, 865
[Rock70], 711, 840
[Rock90], 551, 630, 851
[Rock93], 418, 861
[RocO87], 676, 837
[RogA90], 134, 164, 388, 389, 433, 512, 852
[Roge01], 433, 512, 534, 861
[RogE90], 844, 847
[Roge98], 32, 46, 48, 58, 235, 266, 276, 284,

290, 291, 294, 307, 365, 843
[RoHD89], 599, 600, 601, 606, 864
[Roll95], 196, 847
[Rose79], 854
[RosG64], 668, 841
[RosK76], 26, 28, 44, 184, 185, 767, 841
[RosR84], 678, 837
[RosR86], 557, 855
[RosT91], 844, 850, 854
[RosV89], 206, 839
[Roth82], 348, 349, 859
[RouB96a], 638, 840
[RouB96b], 638, 840
[RoWW90], 40, 858

[Sabi85], 625, 839
[Sabi90], 473, 526, 532, 847
[Salo99], 360, 494, 502, 845
[Same84], 860
[Same90a], 860
[Same90b], 860
[SamW88], 860

[SaPD88], 855
[Sapi92], 650, 840
[SaRE76], 169, 847
[Sarr98], 525, 862
[SaWS95], 460, 849
[SBGS69], 268, 865
[Scho46], 861
[Scho67], 408, 534, 861
[SchS95], 347, 854
[Schu93], 856
[Schw97], 668, 841
[ScML98], 181, 182, 367, 369, 866
[SeCK89], 570, 580, 851
[SéCM95], 461, 525, 847
[Sede87], 847
[Sede89], 551, 851
[SedM88], 570, 580, 851
[SedN90], 538, 547, 548, 551, 852
[SedP86], 538, 545, 551, 852
[SedW87], 459, 849
[Seel66], 767, 773, 778, 780, 781, 786, 788,

842
[Seid89], 411, 418, 422, 425, 426, 429, 430,

862
[Seid93], 418, 862
[SeWZ89], 547, 847
[SeZZ89], 615, 849
[ShaB84], 461, 862
[Shaf94], 756, 836
[ShaM95], 192, 193, 194, 195, 197, 198, 211,

687, 845
[Shap91], 224, 847
[ShAR95], 185, 853
[ShAR96], 184, 185, 853
[ShaS86], 664, 666, 843
[ShaT82], 637, 638, 840
[ShaV91a], 209, 211, 839
[ShaV91b], 211, 839
[ShaV93], 209, 211, 839
[ShaV95], 221, 847
[SheH92], 601, 864
[SheJ87], 579, 852
[Shen00], 679, 837
[Shen94], 578, 852
[Shen95], 578, 852
[Shen98], 679, 837
[Shew96], 725, 838
[ShiG95], 603, 604, 856
[ShiK91], 188, 847
[ShiS98], 139, 847

904 Bibliographic Index

[ShKK91], 188, 847
[Shoe85], 147, 857
[Shoe91], 766, 857
[Shoe93], 146, 149, 857
[ShPB95], 185, 853
[ShPB96], 185, 853
[Smit79], 29, 32, 858
[Smit84], 190, 843
[Snyd92], 175, 177, 615, 624, 726, 732, 735,

736, 738, 739, 741, 742, 845
[Snyd92a], 726, 852
[SodT94], 192, 847
[Spie69], 776, 777, 859
[Spiv65], 249, 835
[StaH97], 596, 624, 856
[Stam98], 530, 862
[Stee51], 756, 836
[SteL00], 43, 858
[StFF91], 181, 866
[STGLS97], 186, 187, 188, 854
[Stil98], 756, 857
[StoD89], 456, 458, 459, 862
[Stoy92], 568, 852
[StrS89], 836, 837, 841, 845, 849, 850,

851
[SuDr95], 725, 839
[SuHH99], 228, 847
[SuLi83], 456, 457, 862
[SuLi89], 456, 460, 525, 526, 845
[SunS92], 342, 859
[SuSS74], 264, 293, 865
[Sutc80], 554, 839
[Suth65], 685, 864
[SutH74], 84, 837
[Szil91], 681, 837

[TaJS99], 854
[Taub94], 614, 836
[Tayl79], 764, 765, 857
[THBP90], 369, 866
[TheF97], 526, 840
[Thom90], 46, 858
[TilH84], 644, 855
[Till83], 435, 862
[Tilo80], 160, 208, 847
[Timm77], 559, 852
[Timm96], 11, 849
[TorS67], 314, 860
[TSGCV97], 854
[Turn88], 545, 557, 852

[Vale64], 711, 840
[VaMV89], 672, 837
[VanA84], 839
[VanD88], 11, 849
[VanG95], 249, 854
[VanN85], 40, 57, 58, 858
[VanW96], 459, 848
[Vatt92], 98, 837
[VaVM89], 672, 837
[VeDG99], 596, 597, 856
[VelB94], 799, 843
[Verm94], 185, 854
[VeVC94], 572, 849
[VFLL00], 685, 686, 864
[VigB95], 603, 604, 864
[ViMV94], 672, 679, 681, 683, 837
[VSBJ98], 592, 848

[WaCF92], 859
[WaCG87], 357, 857
[Wall90], 423, 855
[Wang81], 456, 457, 862
[Wang92], 580, 852
[Warn69], 273, 865
[Watk70], 278, 865
[WatP98], 185, 327, 854
[Wats86], 571, 849
[Wats89], 848
[Watt90], 843
[WatW92], 146, 149, 290, 291, 308, 318, 323,

327, 342, 351, 365, 859
[Week85], 693, 865
[WeiA77], 85, 274, 865
[WeiD97], 325, 863
[Weil80], 85, 837
[Weil85], 200, 201, 202, 848
[Weil94], 235, 237, 854
[Wern79], 445, 862
[West90], 359, 866
[Whit80], 322, 337, 343, 860
[Whit85], 343, 859
[Widd71], 784, 788, 842
[Will78], 318, 860
[Will83], 327, 836
[WilM93], 579, 852
[Wils87], 215, 839
[Wilt87], 8, 855
[WilV90a], 362, 866
[WilV90b], 367, 866
[WNDS99], 11, 849

Bibliographic Index 905

[WolF97], 650, 840
[Woll00], 650, 840
[WolT92], 651, 840
[Wolt95], 854
[WooA98], 326, 863
[Wood87], 672, 673, 674, 837
[WooT85], 202, 848
[WoPF90], 318, 860
[Wrig85], 571, 849
[WriS00], 11, 849
[WuAn99], 569, 852
[Wüth98], 23, 858
[WuXi92], 837
[WyMW86], 365, 595, 866
[Wyvi90], 40, 858

[YaCK92], 365, 866
[YanF64], 764, 857
[Ye96], 651, 840
[YeMa99], 580, 852
[YKFT84], 860
[YooT98], 866
[Yu92], 213, 848
[YuGD91], 854
[YuMS01], 633, 862
[YuPM00], 484, 841

[ŽalC99], 606, 719, 839
[ZheS00], 593, 856
[ZhoS99], 228, 852
[ZorS99], 526, 530, 862

Index of Algorithms 907

Converting RBG to HSL, 305
Algorithm 8.6.4

Converting HSL to RGB, 306
Algorithm 10.2.1

ray tracing program, 340
Algorithm 10.2.2

shade function, 341
Algorithm 10.2.3.1

CSG ray intersection, 350
Algorithm 10.3.1

Gauss-Seidel radiosity algorithm, 353
Algorithm 10.3.2

progressive refinement for radiosity,
354

Algorithm 10.4.1.1
26-connected line drawing, 364

Algorithm 10.4.1.2
6-connected tripod line drawing, 366

Algorithm 11.4.1
de Casteljau algorithm, 401

Algorithm 11.5.2.1
de Casteljau algorithm, 424

Algorithm 11.5.2.2
de Boor algorithm, 426

Algorithm 11.5.4.1
B-spline span finding algorithm, 437

Algorithm 11.5.4.2
B-spline evaluation algorithm, 439

Algorithm 11.5.4.3
NURBS curve evaluation algorithm, 441

Algorithm 11.5.4.4
NURBS curve derivatives algorithm, 442

Algorithm 12.12.2.1
de Casteljau algorithm, 508

Algorithm 13.2.1
are convex sets disjoint, 541

Algorithm 13.4.3.1
faceted surface sectioning, 555

Algorithm 14.3.1
adaptive curve subdivision algorithm,

590
Algorithm 14.3.2

Outline for implicit tilers, 594

Algorithm 14.4.1
trapezoid creation algorithm, 607

Algorithm 14.5.1.1
Incremental curve tiling algorithm, 616

Algorithm 14.7.1
B-spline skinning algorithm, 632

Algorithm 14.7.2
Procedural skinning algorithm, 634

Algorithm 14.8.1
arc length algorithm, 635

Algorithm 14.8.2
arc length table building algorithm, 636

Algorithm 15.3.2.1
generating edge sequences, 665

Algorithm 17.2.1
Finding the splitting node, 699

Algorithm 17.2.2
A 1d range query algorithm, 700

Algorithm 17.2.3
Building a range tree, 701

Algorithm 17.2.4
A 2d range query algorithm, 702

Algorithm 17.3.1
The interval tree query algorithm, 705

Algorithm 17.3.2
The segment tree query algorithm, 707

Algorithm 17.3.3
Segment tree insertion algorithm, 708

Algorithm 17.6.1
Triangulation algorithm for monotone

polygons, 719
Algorithm 18.4.1

constraint solution, 736
Algorithm 18.4.2

Merging intervals into components, 737
Algorithm 18.5.1

Implicit Curve Approximation, 740
Algorithm 18.6.1

constrained minimization, 743
Algorithm 22.4.1

Deterministic IFS, 807
Algorithm 22.4.2

Nondeterministic IFS, 808

