A

S

\‘:}\\";‘

Computer Arithmetic

Mircea Vliiddutiu

Computer
Arithmetic

Algorithms and Hardware
Implementations

@_ Springer

Mircea Vidduiu

Faculty of Automation and Computers
“Politehnica” University of Timigoara
Timigoara, Timis, Romania

ISBN 078-3-642-18314-0 ISBN 978-3-642-18315-7 (¢Book)
DOL 10.1007/978-3-642-18315-7
Springer Heidelberg New York Dordrecht London

Library of Coagress Control Number: 2012648627
ACM Computing Classification {19938); B.2, B.6,B.3

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. Al rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadeasting, reproductzon on microfilms or in any other physical way, and tansmission or information
storage and retrieval, electronic adaptation, computer software, or by simitar or dissimitar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this pablication or parts thereof is permitied only under the provistons of the Copyright Law of the
Publisher’s location, in ##s cusrent version, and permission for use maust always be obtained from Springer.
Permissions for use may be obtained through RighisLink at the Copyright Clearance Center. Viclations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective taws and regojations and therefore free for generad use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com}

Contents

1 The Representation of Numbers in Computing Systems

i1
1.2

i3

Information Classification
The Representation of Fixed Point Numbers
1.2.1 The Representation of Fixed Point Binary Numbers

1.2.2 The Representation of Fixed Point Decimal Numbers

The Representation of Floating Point Numbers

Functional Analysis and Synthesis of Binary and Decimal Adding

and Subtracting Devices 00000000

2.1
2.2

3.1
3.2
33

34
35

3.6
37

Seriab Adders L
Parallel Adders and Subtracters
2.2.1 Binary Adders Based on Serial Carry Propagation
2.2.2 Decimal Adders Based on Serial Carry Propagation

2.2.3 Subtracters Based on Serial Carry/Borrow Propagation . . .
224 Carry-Lookahead Adders
2235 Carry-SkipAdder,
226 Carry-SelectAdder o o o 0L
227 Conditional-Sum Adder oo
228 Carry-Save Addero oo oo
2.2.9 Binary Adders with Panity Control

Functional Analysis and Synthesis of Binary Multiplication Devices .

Binary Muitiplication Methodso 00 L.
Sequential Sign-Magnitude Binary Multplier
Sequential Two's Complement Binary Multiplier Based on
Robertson’sProcedure
Sequential Two's Complement Binary Multiplier Based on
Booth’sProcedureso L
Binary Multiplication Process Speedup by Increasing Radix Value
Binary Multiplication Speedup Using a Single Carry-Save Adder
Binary Multiphication Speedup Based on Radix 4 and a Carry-Save
Adder. . . . 0L oL

24
21
25
25
3%
35
38
43
49
53
57
58

67
67
70

78
83
99
104

108

vi

Contents

3.8 About “Parallelizing” of the Sequential Devices for Binary

Multiplication 110
3.9 Combinational Array Structures for Binary Mulgplication 113
3.10 Combinational Tree Structures for Binary Multiplication 126
3.11 Other Binary Multiplication Methods 137
4 Functional Analysis and Synthesis of Binary Division Devices 143
4.1 BinaryDivisionMethodso 000000 143
4.1.1 Restoring Division oL oL, 145
41,2 WNop-restoring Division, 147
4.2 Sequeniial Binary Divider for Unsigned Integers 149
4.3 Combinational Array Structures for Binary Division 154
4.3.1 Combinational Array Structure Based on Non-restoring
Pivision L o 154
4.3.2 Combinational Array Structure Based on Restoring
Division L 160
44 SRT Procedures for Binary Daviston L 163
441 Radix2SRT Procedure 163
442 Radix4SRTProcedure 173
4.5 Binary Division Based on Fast Convergence 185
4.5.1 The Newton-Raphson Method 186
452 Goldschmidt'sMethod oL 189
5 Functional Analysis and Synthesis of Floating Peint Arithmetic
Deviees L 165
5.1 Characteristics of the Floating Point Operation 195
511 Classification of Data Processing Units 195
5.1.2 Problems Regarding Floating Point Operations 198
5.2 Floating Point Addition and Subtraction 208
5.2.1 Floating Point Addition and Subtraction Without Rounding 208
5.2.2 Floating Point Addition and Subtraction with Rounding . . 211
523 Speeding Up the Floating Point Addition/Subtraction
Process L L 220
5.3 Floating Point Multiplicationand Division 240
Appendix A Hardware Description Elements 247
Appendix B Control Units SynthesisElements 2514

References 265

Chapter 1
The Representation of Numbers in Computing
Systems

1.1 Information Classification

In computers, information is made up of binary digit sequences organized in words,
which are the representation units in Computer Architecture and characterized by
their fength, let 1t be n, given in bits (short for “binary digit”). The value of n s
established mainly by computer hardware considerations. Although during the evo-
fution of computer systems there have been many attempts to establish a value of
n, the values of this parameter have been stabilized to multiples of 8 bits (usually
representing one byte). The information stored in words s, according to the tree-like
diagram from Fig. 1.1 {Haye98], of two types, instructions and data.

To clearly define the main target of our concerns, we specify from the very be-
ginning that we shall not refer to those instructions which represent the information
analyzed and interpreted by that part of a control unit which 1s frequently referred
to as the program controf unit [Stal99, Haye98]. Instead, we shall approach the data
analysis and processing through that part of a confrol unit which is referred to as
the data processing unit. Mention should also be made that we shall not refer to
non-numerical data except for logical operations (presented in Chap. 5), for whose
representation there are conventionally accepted dedicated codes, of which we men-
tion ASCII (American Standard Code for Information Interchange), EBCDIC (Ex-
tended Binary Coded Pecimal Interchange Code) and Unicode Standard {Stal99].
We shall however approach, in more detail, the branch of numbers from Fig. 1.1, in
order to refer to their representation, as well as to thelr processing.

When it comes to choosing a proper number representation for the purpose of
using it in a computer, such factors as those given below need to be taken into
account:

I. The specification of the type of number to be represented, because, for instance,
the so-called formats or codes for integers differ from those for real numbers;
2. The range of values that has to be covered by the representation;

M. Viidutiv, Computer Arithmetic, 1
DO 10.1007/978-3-642-18315-7 _}, © Springer-Verlag Berlin Heidelberg 2012

2 | The Representation of Numbers in Computing Systems

Fig. 1.} Information

Instmctlons /" Bimary
taxonemy

Fixed-poist
Infonnatlon

\ / Numbers /' \‘ Decimal
Data F]oaﬁmg point

\

3. The precision of the representation consisting of the maximum accuracy that has
to be assured by the format or code;
4. The estimation of the hardware complexity required by the representation.

‘Nonnumerical Data

The perspective offered by these factors allows a clear distinction between the
representation of fixed point numbers and floating point numbers. Roughly, the for-
mer allows for the representation of integers, but also of sub-unitary fractional num-
bers, covering a limited range of values, with the precision of their representation
depending on the number of the word bits. Moreover, it entails a moderate hardware
circuitry investment. On the other hand, the latter allows for the representation of
real number ranges, and covers a larger range of values, as opposed to the former;
this time the precision is given by the number of bits of one part of the representation
(the so-called mantissa), with hardware requirements suitably increased if compared
to the former [ErLa04].

When, regarding the fixed point format, we cover the problems connected with
binary numbers, as well as those of decimal numbers—which are important for
certain applications—the references to floating point will be restricted to binary
numbers,

1.2 The Representation of Fixed Point Numbers

1.2.1 The Representation of Fixed Point Binary Numbers

It is known that a number can be expressed, in a number system with radix », by
means of a polynomial function of the following form:

X= 3" xr (1.1

where the coefficients, 1.e. the digits, are denoted by x;. their values being restricted
to the range defined by (0 <x; < r).

The number X from (.1} has n digits in the integer part, and m digits in the
fractional one, each of them associated with an (r ') weight whose value strictly
depends on the position of the digit within the number. The digits of the integer
part are separated from the fractional part by a point, and those on the left of the
point correspond to integer with weights increasing to the left part, starting with

1.2 The Represeatation of Fixed Point Numbers 3

the (r") weight for the least significant digit, and with the (r "~ 1) weight for the
most significant digit. Likewise, the digits on the right of the point correspond to the
fractional part of the number and have decreasing weights starting with (1), for
the digit immediately on the right of the point, and (r™™) for the “farthest” digit to
the right relative to the point. Writing X in the form given in (1.1) justifics the use
of the term positional notation for the number.

For instance, if r = 0, by applying (1.1), the decimal, ordinary representation
of X will be obtained. Likewise, if r = 2, the binary representation of X will be ob-
tained, using only the binary digits (0 and 1}. It should be mentioned that the expres-
sion from Eq. (1.1}, with v = 2, does not correspond, 1n fact, to an actual computer-
represented binary number. This is because the position of the point, which is gen-
erally variable, requires a binary digit for its specification, which—if it could be
omitted-—would contribute to increasing the representation precision. This is the
reason why, to avoid “sacrificing” du.urdcy, nuinbers which are rcpresented in com-
puters are either integers X =Y m(} x;2', or fractional X = Y0 %2", The two
categories do not require the specification of the point’s position, which is imphe-
itly placed either to the right of the least significant bit (Isb), in case of integers, or
to the left of the most significant bit {(msb), or between this and the following one,
in case of fractional numbers. Regarding the latter, the former corresponds to un-
signed fractional numbers, and the latter corresponds to signed fractional numbers.
1n other words, the representation of the two categories of numbers is accomplished,
in positional notation, by admitting the point position as implicit, fixed.

When it comes to signed numbers, conventionaily the leftmost bit, msb, corre-
sponding to the sign, will have the value O for positive numbers and 1 for negative
numbers. This rule holds for both integers and fractions. Thus, the first representa-
tion form of fixed point numbers, the so-called sign-magnitude format or code (in
short, SM) is obtained. According to this representation, number X appears as a se-
quence of 7 bits of the form X = xp—1X,-2... % ... X1xg, where the msb x,..1 is
assigned to the sign, and the other digits have assigned weights whose values de-
crease by one unit for each position to the right, thus having the 2"~ % value for x,,_7
and 2% for xp when referring to integers, as well as 271 for xp.p and 2771 for xg
when referring to fractions. Using the well-known identity Z””l 2% =27~ 1, we
see that the value range for integers in SM is (0 < 1 X] < 271 — 1), where | X] is the
absolute value of X, Likewise, the value range for fractional numbers in SM will be
(0 <|X] <1 =277 [ErLa04],

As far as precision is concerned, regarding words of #1 bits, in SM 2! binary
numbers can be represented, each of them having the magnitude part specified on
r — 1 bits at the most. Their correspondents, in the more familiar number system
with r = 10, and if the logarithmic radix transformation is used, will have at most
[EOE i(}} decimal digits, where the bars [] signify the least integer whose value is
greater or equal to that calculated for the expression between bars,

The advantages of SM representation of binary numbers consist of their concep-
tual simplicity, symmetrical value range, simple negation through sign bit inversion,
as well as the low cost of the implementations which adhere to this format, as results,
for instance, in the synthesis of multiplication devices. However, the SM code has

4 | The Representation of Numbers in Computing Systems

Sig:i 21 2t 241 55?22 21 2u
X=43, =001 1, X=-3,=1.011,
V=13, =0.011gy © Y=-3,=1.011, "
=0 110, =56, Z= X0.110,,=+6,(!)
a b
S.l-iﬂ 22 5:;5‘1122 2
X=43,=0.01 Lo, X=+1,=0.00 1,
Vo3, =1.011, * Y=-6,=1.110,,
Z=1.110,,=6,(! ST T T T, (1)
c d

Fig. 1.2 Sign-magnitude addition examples

two important disadvantages, of which the first refers to the addision operation. It is
known that this operation is very often resorted to, because most of the algorithms
for complex operations are finally reduced to addition. On the other hand, one of the
fundamental principles of computer design stipulates using technical solutions that
favor those parts of the system which are most often requested ("Make the common
case fast”™) [HePa03] to obtain the best performance possibie. The quantitative esti-
mation of the acceleration obtained by applying this principle is determined through
the so-called Amdahl’s law, according to which, the addition operation should be
favored by finding solutions that make its implementation as easy as possible, and
implicitly, as efficient as possible. But addition in SM may cause problems because
its execution when the operands have the same sign differs from the sitoation when
they have different signs. Thus, for # = 4 and integers, Fig. 1.2a presents the case
when both operands are positive and there are enough bits for the representation of
the result (the special situation of “overflow” has been avoided), when, as it can be
observed, the sum is obtained correctly.

The first problem occurs when the operands have the same sign, both of them
being negative (Fig. 1.2b). Although addition of the magnitude parts is correctly
executed, the sign bit cannot be treated as an ordinary hit, instead requiring to be
set up separately on the basis of the previous testing of the numbers’ signs. This
requires an additional operation, which has to be executed for the other two example
additions from Fig. 1.2¢ and Fig. 1.2d, as well. In the last two cases, where the
operands’ signs differ, the addition must be substituted by subtraction, which has
to be preceded by the comparison of the magnitude parts of the operands. To avoid
the occurrence of erroneous results for SM addition, the structure of the addition
device must be supplemented with a magnitude comparator, a separate subtraction
scheme, and methods for testing the operands’ signs. Such a solution will entail not
only a supplementary hardware investment, but also a degradation of the operation’s
execution performance, the latter aspect being more important than the former, in
the light of Amdahl’s law. The solution based on selective precomplementation and
postcomplementation may also be apphied [Parh00], but this resorts to additional
circuits and delays, as well.

1.2 The Represeatation of Fixed Point Numbers 5

Besides the disadvantage of the difficuities mentioned regarding the addition op-
eration, there 1s one more disadvantage, t.e. in SM there are two representations for
0((+)0,1e. 0.0...00and ()0, r.e. 1.0...00). Since testing whether result is equal
to U 1s a frequently used operation that comparisons are usually based upon, its im-
plementation should be made as simple as possible. In order to achieve this, there
shouid be only one representation for 0, which is impossible in a binary system with
a symmetrical range of values.

The above-mentioned drawbacks of SM representation can be avoided by first in-
troducing the one’s complement (C1) format or code. Used in some older computers
of the mainframe age, this code maintains its importance through its contribution to
forming the two’s complement representation, this latter consisting the real com-
petitor for the SM code {Parh00].

The C1 representation of a number X on n bits, is denoted by X, with its value
given by:

- j0xa0. o x. o xxp forX=0 _
X = V35, % 5% for X <0, whereX=1~x; (1.2)

According 1o (1.2), in Cl the positive numbers have a representation which is
identical o that in SM, and as far as the negative numbers are concerned, each bi-
nary digit from the SM format will be substituted with its one’s complement. Men-
tion should also be made that the arithmetic relation ¥7 = | — x; is equivalent to the
togical operation X7 = | @ x; where @ represents the EXCLUSIVE-OR operator
or modulo 2 sum (the following pairs being excluded: (x;, 37} = (0, 0) and (1, 1)).
Thus, C1 can be formed in a simple way by starting from the SM form, by process-
ing this representation through a level of EXCLUSIVE-OR gates, one gate for each
bit of X, all the gates having one common input, to which a 0 is applied (without
effect in terms of EXCLUSIVE-OR) when X > 0 and a | (with complementing
effect) when X < (0 [Omon94].

The representations in SM and C1 have simalar characteristics concerning the
range of vatues and the precision, but they are fundamentally different due to the
fact that no positional notation specific to a weighted code corresponds to the neg-
ative numbers from C1. However, if the behavior of C1 format is analyzed in com-
parison with the shortcomings pointed out for the SM representation, regarding
the addition of two positive numbers {refer also to Fig. 1.2), there are no differ-
ences. Supposing, for instance, that #7 = 4 and we are dealing with integer numbers,
Fig. 1.3 presents significant situations which may appear on the addition of the
numbers represented in C1. Thus, the case from Fig. 1.3a corresponds to the addi-
tion of two numbers of opposite signs, when the negative number is, in its absolute
value, greater or equal to the positive one, i.e. without 1oss of generality, we have
X < |¥], where X = Xy = 0.X5,, = X¢) (inFig. 1.3a, X = Xgy = 0.0t = X
with X, = 01D and ¥V = Yy = 1.Y{,, and Yoy =2" — | ~ 0.¥g, (in Fig. 1.3a,
You = 1.100 with Yg,, = 100, and Yo = 2% 10100 = L1LL~0.100 = 101 1)
where Xgu and Yy notations have been used for the representations of the two
operands in SM, having the magnitude parts X§,, and ¥(,, (concatenated at the

6 | The Representation of Numbers in Computing Systems

Fig. L3 Oae's complement SN, e
addition examples X3, ﬁ"é“‘ (2) % 125»4. =001 1,
Fe-d, = 11004 =101 1~
Z=1110,=10014~-1
a
sign

2
Ketd =0, 1 (g, =01 0 0, N
Y=23,=1.011_,=1.100,
end-around carry
0.000 end

1
Z=0.0 0 1,,=0.001, =+1,
b
Sigﬂzz 298
X=3,=1.011,=1.100,
Y=-4,=1.100,=1.011."
0.111 end-around carry
1

Z=1.000,-1.11 14,7,

(4

sign bits), and X and Yoy for the representations of the two operands in Cl.
Considering that X§,, < Yg, the sum Zey results: Zey = Xcy + Yoy = 0.Xg, +
20— = 0¥y =20 1~ (Y — Xy a value in Cl (no carry is generated
from the sign bit. In Fig. 1.3a, Zgy = 1L.ULE = (100 — 011} = L. 110, which is the
one’s complement of the decimal number (—1). But, if X > [¥] i.e. X’SM > Ybf‘M
as in the example case from Fig. 1.3b (X = Xy = 0100 = X, X, = 100,V =
Your = 1011, ¥, = 011, Yoy = 2% 10011 = 1111 — 0.011 = 1.100) the sum
Zey results: Zey = X¢y + You = a value greater than 27 (since X(,, > Y{,,, then
X — sl‘M > 1), which brings about a carry from the sign bit, forcing it to be-
come 0, consequently the sum will be positive (with the same representation in SM
and C1). The correct sum can be obtained by annihilating the effect of the (~1)
subtraction by compensating the corrective addition of a binary umt. In Fig. 1.3b,
Zey =Xy 4 Yoy =2 — 1 (100 — 011) = 10.000 ~ 1 + 1(correction) -+ (100 —
O011) = 0.000 -+ 001 = 0.001, being the representation of the decimal number (4-1)).
The correction in this case consists of the addition of a 1, which is also called end-
around carry addition {Haye98}, as if the carry from the sign bit comes back being
added to the Isb position of the sum. Finally, on the addition of two sumbers of
opposite signs in one’s complement, mention should also be made that overflow
never occurs because, supposing X > 0 and ¥ < 0, the whole range of values cor-
responding to the sum (ranging for integers and n = 4 between the minimum valoe
1.000¢; = ~Tio and the maximum value 0.111 = +7) can be entirely represented
in CL.

1.2 The Represeatation of Fixed Point Numbers 7

Consider now, the case of two negative numbers corresponding to the example
from Fig. 1.3¢, 1.e. when, by gencralization, we have X = Xgpy = | .Xfw and Xy =
2% | - 0.X¢,, (in Fig. L3¢, Xy = L.O1E, with X, =011, and Xy = L1 ~
0.011 = 1.100) and ¥ = ¥Ygur = 1.¥g,, and Yy = 2" — 1 - 0.¥g, (in Fig. 1.3c,
Your = 1.100 with YéM = 100, Yoy = Li1E — (L1000 = 1.011). I the overflow is
avoided (X, + Y, < 21 by, the Zey sum resufts: Zey =27 — | — 0. XG5 +
2P =1 = 0¥, =20+ (27 — 1~ (X, + Y, — 1), where the first 2% value is
equivalent to a carry from the sign bit, and the (Xg,, -+ ¥,,) sum requires at most
{rn — 1) bits for its representation. The correct result is the one’s complemented value
(2 = 1= (X gy -+ Y1, which requires the corrective addition of a compensatory
binary ugnit for the subtraction of 1 from the Z¢; expression. Since the addition of
I only occurs when we carry from the (n ~ 1) binary position, the above-mentioned
carry can be interpreted as the same with the corrective addition of 1, and 1tis usually
referred to as an end-around carry. Mention should also be made that, by adding the
two bits of 1 corresponding to the signs, if carry had not been generated from the
{n — 2) binary position, the sum would not be negative, which is correct. But this
carry is always present, because (2" — 1 — (X, + Yo = (27 -1 - (ol
1)) = 221, being generated either during the preliminary addition, or during that
of the end-around carry. I (X, + Yo,) > 27 =1 . 1 then the conditions for the
overflow occurrence are created, and it can be detected by observing the absence
of the carry from the (n# — 2} position before or after the addition of the end-around
carry. Actually, at the limit, when X, + Yg,, = 27V wehave Zey =20 4+ (20 =1 —
2=y =20 (277 — 1 — 1), where, again, the first valae 2% corresponds to the
carry from the sign bit, and the expression between parentheses can be represented
on {m — 2) bits, without bringing about any carry from the (n — 2)-th binary position,
not even after the addition of the end-around carry.

If we refer to the second disadvantage pointed out for the SM representation, i.e.
the disadvantage in “0 testing”, it should be mentioned that the C1 format also has
this drawback, the operation requiring the comparison with two values instead of
one, namely with 0.0, . .00, for (4+0), and with 1.1... 11, for (-0).

Both major deficiencies, pointed out for the SM format, and also present in the
C1 representation, can be removed if the two’s complement (C2) format or code is
resorted to. Regarding its forming, for a number X on n bits, of integer type, if the
representation in C2 is denoted by {— X)), we have:

K= {{).x,-,wg...x,'...xzxg for X = 0 (13)

(135, .5 .55+ D mod 2 for X <0

where mod 2" significs the sum is executed modulo 27.
Similarly, if number X on n bits is of fractional type, then its two's complement

is given by:
Y e Oxpen. . X5 .. X109 for X =0 (1.4)
T TS X ER A0 00D med 2T for X <0 a

where, again, mod 2 signifies the sum is executed modulo 2.

8 | The Representation of Numbers in Computing Systems

Fig. 1.4 Two's complement

.. 31g7 47 41 50
addition examples 222

X=43 =001 1,0.011,20.01 1,
Yo 4,1, 100,=1.011,=1.100,
Z=1T11.-1.001,~-1,

SIER 1 g1 g0
Xx+4m*0 190,0.100,=0.100,
F=-3,1.011,~1.100,=1.101,

77000 1,=0. 00 1,,~+1,,

sign
~—22
X=3,71.011,1.100,=1.101,
Y=-4,~1.100,=1.011,=1.100,
ZHI00T =111 1y -Te

As it can be seen from (1.3) and (1.4), the representation of positive numbers
is identical to that from SM and C1. For negative numbers, the representation in
C1 is formed first, and then a binary unit is added at its ish position. During this
fast operation the incidental carry from the msb position corresponding to the sign
bits is ignored, as specified in (1.3) and {1.4), by making the sums modulo 2%, and
modulo 2 respectively. It should be mentioned that there is also a practical rule for
the forming of two’s complement, according to which the starting point is the SM
representation, which is run through from right to left by maintaining all the 0 bits,
as well as the first 1 bit encountered, and then the other bits will be substituted by
their binary complementary values, Le. all the 0 bits become 1 bits, and all the 1 bits
become 0.

The C2 format has the consequence that a summing device which enables the
addition of a | to the Ish of Cl is added to the EXCLUSIVE-OR layer of circuits,
which enabie the generation of one’s complement. The conclusion is that forming
C2 is more compticated than that of the other two representations, i.e. SM and Cl1,
which is a disadvantage. Another fact that can be mentioned here is that C2 does
not represent a weighted code in accordance with the positional notation for the
negative numbers.

These aspects which are not favorable for the two's complement are, however,
counterbalanced by the easy solving of the problems of addition and testing, jus-
tifying the competition between C2 and SM for the implementation of the various
procedures regarding numbers. Thus, as concerns addition, the effect of end-around
carry from C1 is taken over in advance by the binary unit added to the forming of
C2. Figure 1.4 includes the examples from Fig. 1.3, but this time executed in C2.
First, considering the case when no end-around carry s generated in C1 and assum-
ing, without foss of generality, that X 15 positive and ¥ is negative, with X < |Y|, and
using the previously introduced notations, we have for the two operands X¢q and

1.2 The Represeatation of Fixed Point Numbers 9

Yea, expressed in C2, the following relations: X = Xgy = (}.X’SM =Xep = Xe
(nFg. lda, X = Xqr =0.011 = X¢| = X with X"MMO' Dand ¥ = Yy =
LY and Yoo = 2% — 1 = 0¥, + 1 =27 — 0.¥,, (in Fig. 1.4a, Yoy = 1.100
with Y = 100, and Yy = 2% — 0.100 = 10.000 — (.100 = 1.100). Considering
that XgM < Y5y, for the sum Zcy there resubts Zeo == X¢o -+ Yoo = 0.X5, + 2" ~
0. YSM w2~ {YSM X gag) 1€ 4 value expressed in C2 (no carry 1s generated from
the sign bit) (in Fig. Lda, Z¢g = 10.000 — {100 — 011} = .11, this representing
the two's complement of the decimal number (~1). But, if X > Y] Le. XgM > YéM
as shown in the example from Fig. 1.4b (X = Xgu = 0100 = Xy = X2, XE;M =
100, Y = Yo = 1011, Y5, =011, Yoo = 24— 0.011 = 10.000 — 0.011 = 1.10D),
there results Zcg = X¢g + Yeg = 0.Xg, + 27 — 0L¥gy, = 27 4+ (X, — Yo, Le
a value greater than 2", and thus 2" represents a carry from the sign bit, forcing
it to become 0, the obtained sum being positive (with the same representation in
SM and in C2). Igr;oréng the carry from the sign bit, sum Zcgp 15 correctly ob-
tained as O(X } (inFig. 14db, Zer = Xea + Yor = 24 (100 — 011) =
10.000 4 0, {)01 = 0 00] being the representation of the decimal number (4-1)).
The addition of two numbers of opposite signs in C2 is similar to that in Cl, i.e.
overflow never occurs, and the entire range of values corresponding to the sum can
be represented in C2.

If we now consider the case where both numbers are negative, as in the ex-
ample from Fig. L.4c, i.e. when, by generalization, we have X = Xgy = 1.X{,,
and X¢g = 2" — 0.X5,, (in Fig. 1.4c, Xgy = 1011 with X5, = 011 and X¢; =
10.000—0.011 = £.101)and ¥ = Ygur = 1Yy, and Yoo =27 —0.Y,, (in Fig. 1 4c,
Youg = F.100, with Yb’-M = P00 and Yeq = 10.000 — 0,100 = 1,100}, and if the con-
dition for overflow avoidance (XEM + YéM < 21 1Y is fulfilled, there resules
Zea =20 —0.X, +2" = 0.Y gy = 27+ (2" — (XY, + Yiy)) where the first value 27
is equivalent to a carry from the sign bit, which, if ignored, leads to the correct result
in the form of two’s complemented vafue 27 — (X7, + ¥g,0). It should also be men-
tioned that by adding the two | bits corresponding to the signs, the sum would not
be correctly negative, if there were no carry from the binary position (# — 2). That
carry, however, always exists because {27 — (XSM + Y_;M}} > (20 e (277 e 1)) =
221 11 = 201 and is absent only when the condition of overflow is fulfilled
(namely when X, + Yy, > 2771~ 1), but only if Xy, + Yy, > 2771, when Z¢a =
20— (Xl + Yy < 271 In this context, it has to be pointed out that when X{,, +
Yip = 2771, Zeg = 2% — 2071 = 22~ wiil be obtained, all the bits of the two’s
complemented sum being (), except the sign bit which is 1, an exceptional situation
due to the asymmetry of two’s complement, an issue which will be discussed later.

The above presentations, along with the examples included, show that in addition
in C2, the sign bit can be treated like any other ordinary bit of the number, and that
the devices for sign testing, magnitudes comparison, and subtraction, or selective
pre- and post-complementing required for the correct execution of addition in $M,
are not necessary. The consequence of the operation mode in C2 is that subtraction
is reduced to addition, this consisting of the addition of the two’s compiement cor-
responding to the subtrahend to the minuend. It is therefore possible to implement
the two fundamental operations through the same digital device which is adequately

HY | The Representation of Numbers in Computing Systems

Fig. 1.5 Fixed point : e
encoding examples for Decimal Fixed-point binary codes
decimal numbers number SM Ci C2
+7 0111 0111 0111
+6 0110 0110 6110
+2 0010 0010 0010
+1 Q00 6001 0001
+)0 0000 0000
000G
()0 1000 1111
-1 1001 1114 1111
-2 1010 1101 1110
-6 1110 1001 1010
-7 1111 1000 001
8) . 1000

controlled. If these considerations are reviewed with regard o the perspective of-
fered by Amdahl’s law, the C2 fixed point representation is more suitable than the
other ones, SM and C1.

As far as O testing is concerned, it can be observed that the two’s complement
format determines a unique representation for {0, thus requiring only one compari-
son. In Fig. 1.5 [Haye98], using n = 4 as previously, the fixed point binary codes
for some of the decimal digits are given for comparison. The unique representation
for 0 in C2 allows the combination of 1 followed to the right by Os, a number whose
code in C2 is the number itself. This asymmetry of the range of values, also known
as the two's complement anomaly, presents a certain disadvantage as compared to
the other two codes, both of them being symmetrical.

There are also other forms for the two’s complement representation which differ
from those given by (1.3) and (1.4), and shall be used in the Robertson multipli-
cation procedure presented in Chap. 3. Thus, starting from (1.3), for the integer
negative numbers we first have that Xep = (L35 .0 8. .37 X0+ 1) mod 27 =
L, _5...x/ . xjxy where x/ (i =0, 1,...,n — 1} is the notation for the values
obtained through one’s complement and the addition of the binary unit, which is
specific for C2 forming. Separating the sign, we arrive at X2 = 1.0...0...00 +
0X,_5.ox) o xx] = (10.0,..0...00 ~ 1.0...0,..00 + Y77 x/2)) mod 2" =
-y Z:-:g“ x/2" or at the more general X¢p = ~x,1277 1 + Z;’;& x/20If
xp—1 = 0 the values x;" are replaced by x; and the form corresponding to a positive
number is obtained, and if x,.: = I, the form of a negative number is obtained,
which enables a convenient forming of the product for the Robertson multiplication
process, as will be shown below. Let us consider, for instance, the decimal num-
ber X = —89y with the forms Xgy = [L101100] and Xy = 10100111, the latter

1.2 The Represeatation of Fixed Point Numbers 11

value being obtained by using the above relation, through Xy = (~1)27 4+ (1.2% +
12241284129 = ~ 128 4+ 39 = 89, Similarly, starting from (1.4), for frac-
tional numbers, we have X = (13,77, .37, .7 30+ 0.0...0...01) mod2" =
L, o0/ xjxg=10...0...004+0x ,...x/. .. x/x;= {E() G...0...00~

10,0004+ Y7 x/ 27 mod 20 = ~20 4 0 ! ! or the more

et il

general X¢o = —x, 2% + }:":;l x, 27

Below, we shail globally refer to thc fixed point formats, highlighting the fact that
as a limited number of bits {let it be n) are available for representation, the values
can be affected by errors. Thus, an operation invelving numbers on # bits frequently
produces a result on more than . bits, If, for instance, we multiply two operands on
n bits, up to 2n bits are necessary for product representation, but, since only n bits
are available, the result of the operation will be affected by error. This may happen
due to the total omission of some bits, such as the less significant 1 bits of a product
of 2n bits. Consequently, a so-called truncation error will be generated {RaCa06].
The effect of this category of errors can be mitigated by resorting to a supplemen-
tary operation called rounding, which shall be described in detail in Chap. 5, that
transforms this type of error into a roundoff error. Successive calculations affected
by truncation or roundoff errors can result in an intolerable accumulation of errors.
Therefore, the choice of fixed point formats has to be made so that there is sufficient
precision, and, in some cases, when for certain resulis the representation on several
words in the so-called multiple precision arithmetic is allowed, the calculations have
to be executed with a higher degree of precision [Parh00}.

1.2.2 The Representation of Fixed Point Decimal Numbers

As a rule, usually, the world outside the computer uses decimal arithmetic, as op-
posed o the computer which employs the binary number system. Consequently,
data entry requires a conversion operation from the decimal system into the binary
one, while extracting the results requires a reverse conversion, i.e. from the binary
system into the decimal system. The conversion operations from the decimal system
into the binary system are executed by means of the well-known remainder method
for the integer part of the numbers, and through the multiplication method for the
fractional part of the numbers, while the conversion from the binary system into
the decimal system is made through polynomial evaluations [Parh(0]. Although the
application of these methods is essentially simple, they require a significant calcu-
lation time, and there are certain applications, ¢.g. from within the banking field,
where conversion operations prevail, besides which they are only simple compu-
tations. These applications, based on the same Amdahi’s law, require particularly
simple conversion operations which enable a rapid execution, thus improving the
computations as a whole [Omon94].

The above-mentioned requirements are satisfied by those numerical codes whose
characteristic is the conversion of each decimal digit separately, in a binary combi-
nation, thus enabling the rapid execution of the operation. There exists a great fam-
ily of such codes, also called decimal codes, but we shall refer only to the decimal

i2 | The Representation of Numbers in Computing Systems

Fig. 1.6 Fixed point decimal

cades for decimat digits Decimal Fixed-point decimal codes
digit BCD E3 | 2-out-of§
0 0000 00 11000
1 06001 4100 00011
2 0010 0101 0001
3 0011 0116 00110
4 0100 0111 41001
5 0101 1000 01010
6 0110 1001 ¢1100
7 0111 1010 10001
8 1000 1011 10010
9 1001 1100 10100

representations with binary codes {(binary-coded decimal, BCD), excess-three (E3)
and two-out-of-five, (2-cut-of-5), whose binary equivalents of the decimal digits are
given in Fig. 1.6 [Haye98]. The name BCD suits the three codes, and, generally,
the decimal representations, because each decimal digit is coded in binary. How-
ever, this name is usually reserved for that code which assigns a binary tetrad {four
binary digits) to each decimal digit, whose bits have various weights associated to
them. BCDE421 code, BCD for short, is most often used, whose most significant
bit has 2% = § weight assigned to it, whose least significant bit has 29 = | weight
assigned to it. Thus, the conversion from decimal into BCD is immediate, instance,
93744 is converted to 1001 0011 01 1 0100zcp without resorting to any arithmetic
operation, just by consulting the table from Fig. 1.6. As far as BCD code is con-
cerned, it should be noticed that it is a positional code, each bit having a weight
of 102/, where the i exponent corresponds to a decimal digit, its aumbering be-
ing increased towards the left, starting with [= 0 for the least significant decimal
digit, and the f exponent corresponds to a bit of the tetrad, its numbering being in-
creased towards the left, from O to 3. Thus, the weight of the marked bit from the
BCD representation of the number 23, 00010 0011, is 10'2! = 20. Generally, the
decimal codes use more bits than the binary code for the conversion of a number.
For instance, considering words made up of n bits which enable the binary coding
of 27 unsigned numbers, the above mentioned BCD code aliows the coding of only
107 = 20837 pymbers. Mention should also be made that the BCD numbers opera-
tion is usually made in SM format, and addition requires the selective adjustment of
some of the tetrads of the result through the so-called “correction of 67, due to the
fact that the weight variation between two bits that are positionally adjacent is not
always 2, being sometimes (for adjacent bits situated at the interface between two
decimal digits) 10/1129/10/2° = 10/8, as wili be shown in Chap. 2.

As far as E3 decimal code is concerned, as can be observed in Fig. 1.6, it is
formed by adding the value of 31y = 00117 to the BCD code for each decimal digit,
this representing the so-called excess or bias, which justifies the name of the repre-
sentation. Thus, the number which has been used above as an example, i.e. 93749,

1.3 The Represeatation of Floating Point Numbers 13

has its E3 representation given by 1100 0110 1010 O] g5 If given n words, and
using also four bits for the coding of a decimal digit, E3 code allows the representa-
tion of only approximately 28" unsigned numbers. Although it is not a weighted
code, B3 representation has a certain importance because it somewhat simplifies the
addition operation as compared to that executed in BCD, as will be seen in Chap. 2.

Finally, the decimal code 2-out-of-5 assigns five bits, of which two have the
value 1, and the other three have the value 0, for the coding of each decimal digit.
Thus, the same number, 1.¢ 937449, has the two-out-of-five representation given by
1010000110 10001 01001 . For the same dimension (1) of the word, this code allows
the representation of fewer numbers (approximately 2%-9¢) as compared to the other
two, BCD and E3, and, moreover, it is not a positional, weighted code. These draw-
backs are counterbalanced by its ability to allow the detection of a single bit error,
also facilitating its location at the level of a binary guintet (five bits) which encodes
a dectmal digit. Any single bit error changes the sum of the binary units of a quintet,
a fact which can be checked and detected, in a simple way, through a tree-like dia-
gram of EXCLUSIVE-OR circuits, by executing the modulo 2 sum corresponding
to the five bits. By providing such a tree for every decimal digit and executing an OR
operation between the outputs of all trees, the error can be highlighted. Tn this way,
we have a representation belonging to the family of error-detecting and correcting
codes, which are of increasing importance within the ever acute requirements for
information security.

1.3 The Representation of Floating Point Numbers

The range of values covered by the fixed point numbers is, generally, not suffi-
cient for applications, mainly those which resort to scientific calculations, where
very small and very large values are frequently encountered. The positional nota-
tion is no longer used for their description, a different notation being necessary,
which is known as the scientific notation. The essential requirements to which it
answers consist in covering an extended range of real number values, for which the
point posifion is shiding, and in demanding a relatively restricted number of bits
for representation. Consequently, for a floating point number X, the scientific nota-
tion provides the following form: X = Xy BXE where Xy represents the so-called
mantissa, B represents the so-called base, and X g represents the so-called exponent.

Out of the three numbers which contribute to the description of X, base 5 is
usually equal to 2 or, more rarely, to a power of 2. Siace it is constant, it is not
necessary £o include 1t in the format of floating point numbers; instead it is implicitly
considered to be built into the circuits. But there stiil remain the other two numbers,
the exponent X ¢ and the mantissa Xy, both of them being encoded in fixed point
and binary representation. Usually, X p is an integer, and Xy is a fractional number,
both of them represented in either SM or C2 formats.

As far as the range covered by X numbers is concerned, it is determined by the
values of B and Xg. A floating point format of » bits allows, ignoring the sign, the

i4 | The Representation of Numbers in Computing Systems

Fig. 1.7 Floating point

n
general format /—%HHJ&———HW%\

B S
[i)

representation of 27 npumbers which have a certain distribution within the tolerated
value field. If B or X are increased, the range can be significantly increased, but
this implies larger intervais between numbers (a more rare distribution), the total of
the potential represenfations remaining the same. On the other hand, the precision
of floating point representagion is determined by the number of bits assigned to
the mantissa, the larger the number of bits representing Xy, the more accurate the
precision, but this would require reducing the number of bits assigned to Xg.

On the basis of what has been presented so far, the word corresponding o a
general floating point format can be configured. As shown in Fig. 1.7 [Haye98],
it comprises the following fields: the § field, of one bit, which specifies (in the
convention described for fixed point) the sign of the mantissa; the X g field, of ¢ bits,
where the exponent number is represented in fixed point; and the X7, field, of m bits,
where the number which, concatenated with 8, forms the mantissa Xy = 5. X ;’;4, is
represented in fixed point.

We shall further analyze the peculiarities of the values that can be represented in
the fields of the format from Fig. 1.7. Referring first to the number from the X g field,
fet us suppose that, during the calculations, we should have obtained an intermediate
result with the mantissa X equal to 0, but, due to truncation, rounding, or other
errors, that result shows a mantissa of some small value, however different from (.
Under these circumstances, if X g is very large, an adequately amplified error will
be obtained instead of the requested 0 value, which is quite different from 0. In order
to obtain, within the above mentioned conditions, an ever smaller error, the smallest
number which can be represented in the e bits, or, otherwise, the largest negative
number will be stored in the exponent field. In SM, in the exponent field, numbers
belonging to the closed interval {(—2°7% 4 1), (+2¢71 — 1}] can be represented,
with two representations for 0, and in C2 numbers belonging to the closed interval
[{(=2¢7%Y, (42¢71 — D] can be represented, with a single representation for 0. Con-
sequently, to the Xp field there is assigned the value (~2¢=1 4 1) for the numbers
representation in SM, and the value (—2¢71) for the numbers representation in C2.
Mention should also be made that when the mantissa becomes 0, the exponent field
shall aiso be 0. Thus, zero wiil have the same representation in the fixed and float-
ing point formats, the “0 testing” instructions being more easily implemented. This
requirement suggests that the floating point exponents should be represented in an
excess code of (42971 — 1), and of (=271}, an excess which is also called the bias.
Thus, in order to favorably solve the problem of representation, the value from the
X field will consist of the sum of the exponent real value and the bias value, and
the number thus obtained is called the biased exponent, or, sometimes, the char-
acteristic. Supposing that ¢ = 8, the table from Fig. 1.8 [Haye98] presents several
exponent bit patterns with the corresponding unsigned values and signed values, the

1.3 The Represeatation of Floating Point Numbers 15

Fig. 1.8 Unsigned and -

signed values for § bit Exponent | Unsigned Signed value

CXPORENE paterns bitpattern | value | poo=127 | Bias= 128
1111EEEY 255 +128 +127
jiiine 254 +127 +126
160000061 129 +2 +1
10000000 128 +1 0
01111111 127 0 -1
01111110 126 -1 -2
00000001 1 -126 -127
Q0000000 0 -127 -128

latter being presented in two Situations, 1.e. with the bias equal to 28t] 127,
and with the bias equal to 2581 = 128,

Besides the exponent floating point characteristics, there are also certain char-
acteristics of the mantissa. They are determined by the inherent redundancy of the
representation, namely there are several forms for one and the same number (thus,
0.110-2% = 1.100 - 22 = 0.011 - 2% = ... Even if the form of the floating point
numbers is not restricted during the computer’s internal processing, a unique, nor-
mal form of representation has been imposed which depends on the SM or C2 fixed
point code corresponding to the mantissa, for the data entered into the computer, as
well as for the data extraction from computer. Thus, in case of a fractional number
in 8M, the normalized form requires that the most significant bit of X7, i.e. the
bit positioned immediately on the right side of the point (the point is supposed t©
be between the sign bit and the msb of X7},). be 1. Consequently, leading 0s, situ-
ated between the 1 bit and the first bit of 1 of X7}, at the passing through of X7},
from left to right, are eliminated. Similarly, if the mantissa is a fractional number
in C2, the normalized form requires the sign bit to have a different value from that
of X,’s msh, through which, for negative numbers, the leading 1s are eliminated.
We also mention that the normalized forms are obtained through shift operations to
the left and through the corresponding decrease of the exponent, or through shift
operations to the right and the corresponding increase of the exponent. The shift
of the mantissa to the left by one position is equivalent to the multiplication of its
value by 2, thus a unit shall be subtracted from the value of the exponent so as not
to modify the number’s value, Similagly, the shift of the mantissa to the right by one
position is equivalent to the division of its value by 2, thus a unit shall be added to
the value of the exponent not so as to modify the number’s value. The mantissa in its
normalized form is also called “a packed mantissa”, so that when entering and ex-
tracting data the normalized, packed forms are required, while, during computation,
numbers can be processed in their unnormalized, unpacked form. Mention should

i6 | The Representation of Numbers in Computing Systems

aiso be made that, through the normalization operation, the range of values for the
mantissa representation is restricted to ((+1/2) < | Xyl < (1)

To be more precise, we shall further refer {o the standard format TEEE 754
[Kaha%7] meant for the representation of floating point numbers, which is a set
of conventions that appeared at a certain moment when the variety of the “rules”
applied by various software producers for the fioating point number representation
rendered difficult, even impossible, software portability between computers. At that
moment, the IEEE organization (Institute of Electrical and Electronics Engineers)
financed the creation of a standard, conventions which are nowadays considered by
almost ali the computer manufactarers. The IEEE 754 standard refers to three float-
ing point formats, on 32 bits, on 64 bits, and on 80 bits, We shall further refer to the
first two formats [BrO'HO3, Kuli2].

According to the IEEE 7534 standard on 32 bits, the farthest bit to the left is al-
located to the sign (S from Fig. 1.7), being followed, to the right, by the exponent
field on 8 bits, where there are represented excess-127 binary integers (refer also to
Fig. 1.8), and the remaining 23 bits are assigned to the mantissa. A specification is
required as regards Fig. 1.7, namely, in this case, the mantissa represents a fractional
part of the sign-magnitude binary significand with a hidden integer bit. First of all,
let us explain that the hidden bit has been resorted to because the normalized num-
bers in SM have in the msb position of X3, (Fig. 1.7) a 1, and, consequently, this bit
is not necessary to explicitly represent in its packed form, this bit being considered
implicitly {(wherefrom the name “hidden” given to it), like the value 2 for the base B.
The significand field is extended with this bit, and, thus, the precision of the floating
point numbers representation increases.

Having made these specifications, and according to the IEEE 754 standard on 32
bits, a number X is given by:

X o (152X X (1.5)

where the restriction O < X g < 255 is required, the following notations having been
used: § for the sign bit, X g for the biased exponent with {27 bias, and Xy for the
mantissa, and (1.X) represents the significand number.

The limited range of values due to normalization ({(+1/2) < | X py| < (41)) refers
now to the significand, covering, due to the hidden bit, the range {((-+-1) < [1. Xy <
(+21). Let us further evaluate the Hmits of the variation field within which values
for floating point numbers in compliance with the TEEE 754 standard are tolerated.
Thus, Fig. 1.9 presents the number line with four number values on it, denoted from
Xy to X4, and the value 0. Numbers smaller than X; or greater than X4 cannot
be represented, since they exceed the available capacity in the negative direction
{negative overflow), and in the positive direction (positive overflow) respectively.
On the other hand, the numbers ranging between X» and 0, and those ranging be-
tween (b and X5 cannot be represented either, as per (1.5), because the available
capacity 1s underexceeded in the negative direction {negative underflow), and in the
positive direction (positive underflow) respectively. However, some numbers whose
normalized representations lie in the underflow zones may have denormalized rep-
resentations. In determining the values corresponding to the intervals’ ends, one can

1.3 The Representation of Floating Point Numbers 17

negative i negative R positive positive
overflow " underfiow | underflow overflow
p Number
X X, i X, X, line

Fig. 1.9 Overflow and snderflow regions

first observe the symmetry of the positioning with respect to 0, on the number line.
We have {—X | = X4 and |~ Xo! = X3, the evaluation of only two numbers being
required. Regarding X;, we have § = 1 (being in the negative part), Xy =254 (the
largest value tolerated for the exponent) and Xy represented by 23 bits of 1 (the
largest representable value). At the unpacking of the above-described format, there
also appears the hidden bit, so that, by taking it into account {1.5), the following can
be written:

Xl :(AI_)]2254W127(1+2M] +2w~2+.“+2m23) zmz]Z?(zﬁszi‘i) {i.6)

Converting the value obtained through (1.6) into the more familiar power system
of 10, there results approximately (—3.4 - 10™), much larger than that correspond-
ing to the end of the representation zone of the SM format on 32 bits, because we
have =231 + 1 22,15 - 10° [Haye98] for it.

On the other hand, as regards X», we have § = |, X = | (the smallest value
tolerated for the exponent) and Xy represented by 23 hits of 0 (the smallest repre-
sentable value). At the format unpacking, there also appears, as mentioned above,
the hidden bit, so that, by taking into account (1.3), the following can be written:

sz(_;)lzlmlff(i_§_O_§_O+...+O)$~_2ml26 (2_7)

Converting the value obtained through (1.7) into the more familiar power system
of 10, there results approximately (—1.18 . 1073,

Passing on to the format on 64 bits, its configuration provides the farthest bit
to the left for the sign, followed by an exponent field on 11 bits, where excess-
1023 bhinary integers are represented and the remaining 52 bits are allotted for the
mantissa. A number X in the IEEE 754 standard format on 64 bits is given by the
following:

X = (~D52%e- 103 ¥ (1.8)

where the restriction O < Xg < 2047 is required, the same notations from (1.5}
having been used, but for the X g biased exponent, the excess value is now 1023,
Regarding the IEEE 754 standard, to which we return in more details in Chap. 5,
mention shouid also be made that it enables signalling of four exception sitzations,
for whose coding the exponent limit values are used, values which are not ased for
ordinary numbers, i.e. 0 and 255 for the format on 32 bits, and 0 and 2047 for the
format on 64 bits. Thus, when the intermediate or final results are not valid floating
point numbers—such as, for instance, the result of a division by O—we have the ex-
ception situation called Not a Number (NaN). At the occurrence of such an anomaly,

i8 | The Representation of Numbers in Computing Systems

the exponent field is set up at the value of 255 for the format on 32 bits, and at the
value of 2047 for the format on 64 bits, and the mantissa field can have any value
different from (. However, if one of the results belongs to one of the overflow zones
(Fig. 1.9), then the exponent field is set at the same values as above, but the field
of the mantissa is brought to §. The third exception corresponds to the case when
a result belongs to one of the underflow zones (Fig. 1.9). In this case, the exponent
field is set o O for both formats, and the mantissa field can take any value differ-
ent from . The result is coded through the so-called denormalized form [ScSTO05],
whose characteristic is the reduction of the underflow effect (gradual underflow)
through a systematic loss of precision [HePa03]. A number X in denormalized form
on 32 bits is given by:

X ={(=1)%2"50.X») (1.9)

while the denormalized form, representation on 64 bits is given by:
X= (~1)°27192(0.X) (1.10)

In both relations, the bias, equal to 127 and to 1023 respectively, is subtracted from
the minimum value (1} of the biased exponent. The loss of precision can be ob-
served through the fact that the previous hidden bit 1 becomes 0. The last exception
corresponds to the case when one of the resuits is 0, when both fields, that of the
exponent and that of the mantissa, are set to 0, but the sign bit may also be 1.

To have a comparison refercnce for the IEEE 754 standard, we refer fo the IBM
floating point formats used in mainframe computers (5/360 and 5/370). There are
three formats—on 32, 64 and 128 bits—whose farthest bit to the left is allocated
for the sign of the mantissa, this bit being succeeded by an exponent field on 7 bits
which has the same dimension for all three formats, and where excess-64 integers
can be represented. These formats differ in the number of bits left for the mantissa
(24,56 and 112, the last of them having a subfield of 8 bits which is not used), whose
field is allotted (together with the sign bit) for representing fractional numbers in
SM. However, there is a major difference from the JEEE 754 standard, namely that
base B is equal to 16, and the mantissa aumber Xy is interpreted in the radix r = 16
number system, in which i#s normalization is made, as well.

Consequently, a number X represented tn IBM formats, regardless of the number
of bits, is given by:

X o= (= DY16YE %0 X0 (.11

The formats differ through the number of hexadecimal digits (6, 14, and 28) of
the Xy mantissa. The IBM representation rules do not cover the NaN, overflow, and
denormalization exceptions, having only one correspondent for the representation
of 0. Due to the large value of the base, the covered range is much larger than that
of the IEEE 754 standard, having, for the format on 32 bits, the limiting values
X;%54. 1077 and X = 7.24 1077 for the positive variation interval (refer to
Fig. 1.9) [Haye98].

Let us finally make, for instance, the hexadecimal signs sequences which cor-
respond to the decimal number X = ~724.40623, tn compliance, on the one hand

1.3 The Represeatation of Floating Point Numbers 19

with the IEEE 754 standard, and, on the other hand, with the IBM rules, both of
them for formats on 32 bits. First of all, the number will be converted into binary by
applying the residue method for the integer part of X, and the multiplicative method
for its fractional part, with the resuit X = —1011010100.01101. In order to obtain
the representation in IEEE 754 standard, X is brought into the form given by (1.5),
with the resuit that X = (~1)! - 2% . 1.01101010001101. For packing, the hidden
bit will be omitted, and the value {9 + 127 = 136) results for the biased exponent.
Consequently, under the IEEE 754 standard we have the following binary sequence:
11006100001 101010001 1010, . .0, which, if converted into the hexadecimal sys-
teny, leads to X == C4351A00. On the other hand, the representation in compliance
with IBM rules can be obtained by bringing X into the form given by (1.11), through
which the following will result: X = (=1)' - 167 -0.00101101010001 101. For pack-
ing, the value (3 + 64 = 67) results for the biased exponent, so that the following
binary sequence will be obtained: 1.100001100H011010100011010. .., which, if
converted into the hexadecimal system, feads to X = C32D4680.

Chapter 2
Functional Analysis and Synthesis of Binary
and Decimal Adding and Subtracting Devices

2.1 Serial Adders

If we have two operands which consist of two binary vectors, they can be passed (o
an adding/subtracting device either bit by bit, in serial manner, or with all the bits at
the same time, in paratlel manner. Otherwise, the device inputs are supplied, under
the control of a CLOCK pulse train, either with a pair of bits at every pulse, i.e. with
one bit from each of the operand vectors, or with all the bits of both vectors at every
pulse. First of all, we shall refer to the serial operating mode for binary addition.
The device which executes this operation will be called a serial adder, to distinguish
it from the concurrent technical solution based on the parallel operation which is
calied a parallel adder. At a rough analysis, the serial adder has a great disadvantage,
as far as its performance is concerned, because it requires for addition, when the two
operand vectors have n bits, a time interval consisting of » periods of the CLOCK
train, while its parallel alternative requires the interval of only one CLOCK pericd.
Even if this aspect can be attenuated to a certain extent, through the superposed
execution of the operations, which are normaily executed successively, the paratlel
variant is favored, but not decisively, because, besides the cost factor, which favors
the serial solution, there have to be taken into account implementation aspects, such
as reducing the number of interconnections for signals transmission and simplifying
the interfaces between the devices, which resulis in saving infegrated circuit area,
and in reducing the dissipated energy {ErLa04]. Consequently, the serial arithmetic
operation, in general, and addition, in particular, becomes an attractive solution for
those applications which tolerate an increased latency. Within the same dispute,
“serial versus parallel” we shall refer only o the serial version in this section, but
hybrid selutions, in which some inputs and outputs are serial and others are paraliel,
are also of interest.
Typically, there are two serial operation modes, depending on the first pair of
digits, namely [ErLa04]:
{a} The “least-significant digif first” mode {LSDF), characterized by the fact that
addition begins with the least significant pair of bits, it being implied when
“serial arithmetic” syntagma is used, because it was the first used.

M. Viadutiv, Computer Arithmetic, 21
DO 10.1007/978-3-642-18315-7 2, © Springer-Verlag Berlin Heidelberg 2012

22 2 Binary and Decimal Adding and Subtracting Devices

Input
- X gctnr LA Sta::p‘ﬁm’ *xs
L A g "D#‘Z State L 10| [varw w | o 1| e
X———» adder s, 8, 5 S, 0 0
g % e irdIvd o 44 LA 0A
§ 5 b 5 0 1 H 1
croek TS 5 Ty f) i o 1 3 o 1 P
i@ [d
ol oLe I3 type flip-flop J-K type flip-flop
wit+1)=D wit+ = Switoriowt
L Inputs Quiputs Inputs Quipits
o0+ ilw | x | x, D1z wlx |l olslrlz
o0/ 00 0 VR o]0 [i] 60| d |90
0 0 1 0| d 1
1o 150 0 01]o1
b ol1 o] ol el3]ojeld]|l
0 1 1 1419 0 H 1 i d]
wx;x; 60 | o1 1 |0 110 1] 011 i 0|0 jd |1 1
i 0 1 1 9 i 0 1 d | 0]
o 0
H 1 0 119 H H 0 d |0 Q
; ¢ D TTTT7 T 777 11 |d|o]|1
D=xawtxwtxx,
4 e f
z J K
Xi Xy XX, X Xy
w 00 | 0t 11 | 10 w 00 |0t 11 | 10 w 00 | 01 n |19
) 1 1 0 (M 0 |(4) | 4 |a |2
1] 1 t e Jalleg]a 1|l

XXM OF XX OF XX OF KXW+
=, @Bx,pw ar 5% w J=xx, K= 3,
=(x x Jow=xBx Bw

A i i

Fig. 2.} Scquence of design steps for a serial adder

(b) The “most-significant digit first” mode (MSDF), characterized by the fact that,
first, the most significant pair of bits is addressed, this arithmetic being known as
“online arithmetic™ [ErLa04]. The MSDF mode uses redundancy in the number
representation system, based on flexibility in the output digit estimation, which
requires only partial information about inputs. This enables several forms for
a certain value, the best-known representation systems being the signed-digits
system and the carry save system, which will be presented and used in the next
chapter.

In order to get familiarized with the serial operation, we shall present the syn-
thesis of a simple LSDF adder. which enables the addition of two binary unsigned
numbers, represented on r bits, which have the format X = (x,_1, x,—2, ..., X1, X0}
and ¥ = (Y1, ¥p2, - -5 ¥1, ¥o). It is assumed that cach of them is stored in a shift
register, and the sum result £ = {z,_1, Za—2. .- ., 21, 2o} 15 stored in a shift register,
as well. Figure 2.1 presents such a serial adder. Starting with the least significant bit
(1sb), a pair of bits will be supplied, one belonging to operand X and the other to

2.1 Serial Adders 23

operand Y, at each CLOCK pulse, and the sum of the two bits is calculated taking
into account the potential carry generated in the preceding time quantum at the ap-
plication of the previous CLOCK puise (Fig. 2.1a). In other words, the serial adder
appears as a sequential circuit which has to memorize the carry generated at the ad-
dition of the previous pair of bits, and thus has to be able to enter into two distinct
internal states, one which will be denoted Sp, where no carry is generated, and the
other one which will be denoted Sy, where a carry is generated. The graph consisting
of the state diagram associated with the sequential circuit represented by the serial
adder is given in Fig. 2.1b, by using a Mealy states notation [Wake00, Yarb97}, and
Fig. 2.1¢ presents the corresponding state table. It can be observed that a node is
associated with each internal state of the graph, and pairs of vectors of xy/z type are
associated with the arcs which represent the transitions between the states, where x,
', z represent the Boolean variables assigned to the X and ¥ input operands, and to
the output result Z respectively. Thus, for instance if the serial adder is supposed to
be in the current internal state Sp, and xy = 11 vector is applied to its inputs, then
the first CLOCK pulse determines the transition to the next internal state Sy, and
the vector, of a single element, 7 = (0 will be generated at the output. Correspond-
ingly, in the state table there is assigned a line for each current internal state of the
serial adder, and a column for each input vector xy. At the intersection of a line with
a column, there are two elements, the next internal state, into which the sequential
circuit passes when a CLOCK pulse is applied to it, separated by /" from the vector
supplied at the circuit’s observable output. In fact, the state table represents another
form of the functional behavior description which has been represented in the state
diagram. In a successive design stage, the state variables are assigned to the internal
states, symbolized in an abstract way | Yarb97}. In the case of the serial adder, when
there are only two internal states, i.e. Sp and 3y, a single state variable, noted w, is
sufficient. The coding of this vartable associates the value 0 with Sy, and the value |
with Sy; there results the so-called transition table { Yarb97} from Fig. 2.1d.

The synthesis goes on by choosing the storage element, and we have chosen, for
comparison reasons, two distinct technical solutions, namely the D type flip-flop,
and the J-K type flip-flop [Wake0, Yarb97}. With cach of these flip-flop types is
associated a characteristic equation, which expresses the state of the storage element
after the active front of the CLOCK has been applied, denoted, in our case, by
wdt -+ 1), as a function of the state before the active front of the CLOCK has been
applied, denoted, in our case, by w(r), and the logical values applied to the so-called
synchronous inputs [, and J and K respectively. Thus, for the D type flip-flop we
have the characteristic equation w(t 4 1} = D and for the J-K flip-flop we have
the characteristic equation w{f + 1) = Jm or "Imfw(r}. Under these circumstances,
starting from the transition table, and taking into account the characteristic equations
that are specific to each flip-flop, the so-called excitation tables [Yarb97] for the
two solutions result, i.e. with the D flip-flop (Fig. 2.1e), and with the J-K flip-flop
(Fig. 2.11), where d stands for the don’t care logical value.

Following the serial adder design process, from the excitation table the excita-
tion equations can be deduced for each flip-fiop type, and also the cutput eguations
[Yarb971. In the tables from Fig. 2.1e, and Fig. 2.1f, we can identify the minterms

24 2 Binary and Decimal Adding and Subtracting Devices

EX-OR px.0R

EX-OR px_oR

W
b !

P T | . :
Serial Adder . J Serial Adder
- o Wor
NAND P _
: AND
NAND | NAND D ;

RESET CLOCK RESET CLOCK
a b

Fig. 2.2 Gate level implementation versions for a serial adder

(those product terms which contain each input variable only once) which determine
the logical value 1 for a certain Boolean function in the canonical sum of products
form [WakeO0, Yarb97]. In order to obtain the excitation and output logical equa-
tions in minimized form, the number of inputs and state variables being reduced,
we appeal to Karnaugh maps (where a square corresponds to a certain minterm).
Thus, if we follow up the maximization of the logically adjacent minterm groups,
the favorable covering of the binary units leads to the minimized Boolean expres-
sions for the synchronous inputs D (Fig. 2.1g), under the form D = wx gr xy or vz,
and J (Fig. 2.11), under the form J = xv, and K (Fig. 2.1j), under the form K =X ¥
(certain don’t care minterms have also been used to form the prime implicants from
the corresponding equations). Regarding the output function z, obviously identical
for the two solutions of serial adder, it should be mentioned that all its minterms
form essential prime implicants, so that the Boolean equation for z (Fig. 2.1h} is
z=Xw¥ or WyX of Wx¥ of wxy, which, by using properties of the EXCLUSIVE-
OR operator, can be rewritten in the form z = w ® x @ v. The implementations of
the combinational logic parts corresponding to the previously deduced Boolean ex-
citation and output equations are presented, by using NAND and EXCLUSIVE-OR
gates, and inverter {(NOT), AND and EXCLUSIVE-OR gates, in Fig. 2.2a for the se-
rial adder with D flip-flop, and in Fig. 2.2b for one with J-K flip-flop. Both versions,
which do not differ essentially in terms of the elementary circuits used for synthesis,
or the aumber of connections, form simple sequential diagrams which function in a
synchronized way by means of a CLOCK train (they are initialized by activating the
RESET line). Bven if, due to the fact that the signals have to cross a reduced sumber

2.2 Parallel Adders and Subtracters 25

of logic levels, the CLOCK frequency can be high, the maximum adding time-the
parameter used to judge the performance of an adder—that results through the cu-
mulation of the n pulse periads, becomes, however, prohibitive for practical values
of n. Consequently, those applications for which performance is important require a
parallel adder solution.

2.2 Parallel Adders and Subtracters

2.2.1 Binary Adders Based on Serial Carry Propagation

Unlike serial adders, paraliel adders generally require one CLOCK cycle {period)
for addition. The simplest, but also the sfowest adder of this type consists of the
connection of n (number of operands bits) so-called full adder cells (FAC), through
which the carry propagates from FAC to FAC, in a serial mode, wherefrom the name
ripple carry adder (RCA). Thus, Fig. 2.3 presents the block diagram of such a de-
vice to which, as inputs, the operand vectors X = (x—1, Xn—2, ..., Xiv .-, X1, X0)
and ¥ = {y,_1.¥n—2,..., ¥, ..., ¥, yo) and, eventually, the input carry ¢y, = ¢,
are supplied, and which supply, after a CLOCK cycle, the result vector Z =
(Zp1s 224+ 20y - -2 21, 2o} and, eventually, the output carry ¢,y = ¢,. During
the computations the carry vector C = (O, ey ooy Cipbs Oy - -2 €2, €1} I8 gENET-
ated whose carry bits propagate from right to left, in a serial mode, and the CLOCK
period has to cover, in time, the carry crossing the most unfavorable (the longest)
chain of logic levels. Regarding FACs, their synthesis is based on the already known
Boolean equations, which, according to the i rank of the RCA (Fig. 2.3), have the
CXPressions Z; = X; ¥, C; OF X[W6 OF Xi ¥ €; OF X;¥i¢; = X; @ ¥; ©¢; (the last form be-
ing also called the odd parity function) for the sum output, and ¢; 11 = x; ¥; OF ¥i¢; Of
c;x; (also called the majority function {Parh00}) for the carry output to the nextrank.
Starting from these expressions, the implementation can be done in several ways, de-
pending on the available elementary circuits [Wake00]. Thus, Fig. 2.4a presents the
direct iransposition version of the equations by using the smallest number of logic
levels with inverter and NAND gates. Alternatively, starting from the carry equation
as a fanction of the minterms, ¢;41 = X[¥i¢; OF X; ¥, ¢ OF X; V€5 OF X; y;¢;, after some
simple processing the ¢ = {87y of x;37)¢; or xiy{Ci or ¢y = {x; © vy or
x; v; form will be obtained. On this basis, the implementations with EXCLUSIVE-
OR and NAND gates (Fig. 2.4b), and with EXCLUSIVE-OR, AND and OR gates
(Fig. 2.4¢) respectively, are achieved, both of them being multilevel, and taking into
account the EXCLUSIVE-OR gate involvement {Erl.a04]. Figure 2.4d presents the
implementation with seven inverters and two 4 to 1 multiplexers, which is suited for
CMOS technology with transmission gates [Parh00]. The Boolean equations which
stand af the basis of the synthesis are equivalent forms of the initial ones, namely,
T =X VGO0 X VG OF Xy Yicy oF X vy, and iy = X Yo of Xiyicq of xpyi. Ob-
viously, to the versions from Fig. 2.4 {Parh00] the implementation under the form
given by the combinational part of the serial adder from Fig. 2.2a will be added.

26 2 Binary and Decimal Adding and Subtracting Devices

YVur X Yoz X v, X y, ¥, T
| | |
& FAC <= FAC dm.afai FAC e FAC W% FAC |
1 1 1 L

Fig. 2.3 Block diagram of a ripple cary adder

EX'@‘ EX-0 - l MUX ooz,

NOT

NAND

NAND

Co = (XY 08 XY, -
a NOT NOT
d

BEXYC OF XY, OF XV E; O X3'6,
o XFE, QL VS, OF X,

Fig. 2.4 Gae level implementation versions for a full adder cell

A certain reduction of the total delay on the critical path of the carry propagation,
consisting of the chaining of all the ranks, can be obtained by substituting the FAC
corresponding to the Ish (the farthest to the right, Fig. 2.3) with one so-called half-
adder cell (HAC). This may happen only when the ¢, input is not used (in most
cases), namely when ¢, = cp = 0, a situation in which the FAC-specific equations
can be simplified, becoming zp = Tpyo or X030 = xo © yo for the sum output, and
¢y = xp¥g for the carry output to the second rank. On the basis of these Boolean
equations, Fig. 2.5 {Parh00] presents some possible implementations for a single
HAC, using EXCLUSIVE-OR and AND gates (Fig. 2.5a), inverter and NOR gates
(Fig. 2.5h), and inverter and NAND gates (Fig. 2.5¢) {Parh(0}.

Let us mention that by means of FACs and HACs a variety of arithmetic func-
tions can be achieved [Parh00]. Thus, a serial adder synthesized with D flip-flops
represents an example of a FAC attachment to a storage clement {Fig. 2.2a). FACs
and HACs can be used in a multitude of chips, integrated on medium and large

2.2 Parallel Adders and Subtracters 27

o x, NAND
X NOR
%oy EXOR 2 AND NAND
Y et ’ 2y
AND NAN
e ¥, NOT
’% > G cl
a b c
Fig. 2.5 Guate leve! implementation versions for a half adder cell
Fig. 2.6 Logical function 10 d 1 ¢ b a

impiementation example
ustng FACs and HACs i l i i i i J'
ahcord FAC _‘abcgg;d FAC *{1_{7“? HAC ab HAC

12
g
B
=

scale, designed to implement various arithmetic functions [Wake00, Yarb97}. But it
is not this usage that we want 0 point out now, it is the fact that by means of FACs
and HACs nop-arithmetic functions can be computed, such as the logic function
fla, b, c,d) = abe or d and its complement (Fig. 2.6). It can be observed that, on
the carry chain, there are generated, in turn, the logic subfunctions ab, abc, abe or d
(the term abcd is absorbed), (abc or d) - 1, and at the sum output of msb rank the
logic function generated is {1 § 0 & (abc or d)), i.e. the negation abe or d.

In reference to the carry propagation problem, it should be mentioned that, in
fact, there are three critical paths, namely: the first begins from the inputs xp and yp
and finishes at the msh of the output sum, z,..¢ (Fig. 2.3), the second begins at the
¢ tnput {when the Isb is a FAC, not a HAC, which correspond to some usages of
the adder) and ends at the same z,,_, and the third begins at ¢, and ends at the gy
output of the adder’s msb, Out of these three, whose values can differ depending on
the technology of implementation, let us refer to the third. This delay between the
moment the signal is applied to the ¢;; input of the Isb rank and the moment when
the answer is received at the ¢,y output of the msb rank is directly propertional
to the number r of ranks and if is the target to reduce through various improved
solutions. Let us denote the unfavorable value of this parameter with D and let us
suppose the implementation of the carry chain is with NAND gates (Fig. 2.2a or
Fig. 2.4a), for each of which we accept the same delay d, no matter the number of
inputs. Then for an RCA made up of FACs only, there results I = 2nd, and if the
lsbis a HAC, then D = (2n — 1)d. In terms of complexity [ErLa04}, one may affirm
that RCA latency is (3{r}, which has been found to be typical for a serial adder
as well. However, the proportiopality constant of a serial adder is larger due to the
additional sime intervals required by the state transition through multiple CLOCK
pulses, as well as by the storage of values. The concerns related to the carry chain
length are justified because the delay on the chain represents the essential objective
to be investigated in case performance improvements are wanted regarding parallel
adder solutions.

28 2 Binary and Decimal Adding and Subtracting Devices

On the other hand, when included in data processing units, adders supply, be-
sides the resuit of the operation, some additional information about it, which enable
flags to be set. These storage elements are alien, being reunited together with flags
for other purposes in what is known as the status register of a computer. The bi-
nary configuration from this register, or only a part of it, is used in the investigation
of some exception status, as well as for the implementation of conditional jump in-
structions {HePa03], which brings cut, dependent on the flag from the status register,
the passing through of one or another branch of a program. Regarding the operation
of an adder, such condition/exception flags are represented by “c., ", indicating that
the result has a 1 at the ¢,y output of the msb, while “negative” and “zero” indicate
that the result of the operation is negative and zero respectively, and “overflow”,
which indicates an exception, when the result does not represent the correct sam.
Since the first three states do not require additional comments, we shall concentrate,
to a certain extent, upon the state signaled by the “overflow” flag.

Thus, we shall mention, first of alf that, if unsigned numbers are added, the oc-
currence of a ¢, = | at the msh of the result means that it exceeds the value of
the register capacity, which requires the setting of the “c,,,” and “overfiow” flags.
But, if two numbers in two’s complement are added, the exceptional state of over-
flow has to be highlighted when the operands’ signs are the same, but differ from
the sign of the result. If we denote by v the Boolean variable associated with the
overflow, which determines the setting of the homonymous flag, then, for v, the
logic equation v = ¥,77 ¥, Yoy 0F x5_1¥n—1Cp_ results, where x,_y and ¥,
represent the sign bits of the two numbers that are being added, and ¢,,_| represents
the carry to the sign bit {refer also to Fig. 2.3). By using the Boolean identity A ¢r
B =A@ B & AB [Wake(}], we transform the v equation, so that, after the elimina-
tion of the term consisting of a logic product of complementary variables, it results
that:

Vo Xy Yp1Cn—1 B Xp— Y1 Ch
= (Xl V] © X Yo 1)Ci 1 B X Pt (2.1)

Since the operations OR and EXCLUSIVE-OR of the terms of the coincidence
expression (EXCLUSIVE-NOR) are equivalent, we can substitute (3,7 ¥,.1 @
X1 Y1) BY X @ ¥u1» and by (3.1 @ ¥,1 @ 1) respectively, which allows
us, after reordering the terms, to obtain the following:

V=Xg-1 ¥n—1 Bxg 161D Vi1 Cr—1 D eyt (22)

On account of the fact that in two’s complement the bit sign is not distinguished
from an ordinary bit of the number, we have for the carry from the bit sign, ¢,,
the Boolean equalion ¢, = Xp—1 Yu—1 OF Xpei Cpei OF Yuoi Cn1. if the previous
Boolean identity is applied twice to this expression, it results that ¢ = %51 Vo1 ©
Xpe1 Cpm 1 B Y| €n—1 Which, substituted in (2.2}, leads to the form we are interested
in:

Vo Cy oy (2.3)

2.2 Parallel Adders and Subtracters 29

}i,_] TM yig ?.g i} icj)ig X,
_carry-out Sl PAC 4t FAC K22 %4 pac e CUFACT G o
HAC
a EX-OR
overflow 7 |
*““"@a
_negative b4
b 4
ZET0 « g 3
[ai 4 b 4
v ¥ kA 4 L 4
NOR zﬁ.; 2_,'_2 Z[20

Fig. 2.7 Testing of exception conditions for an adder

Under these circumstances, the overflow for two’s complement addition is detected
by operating with EXCLUSIVE-OR on the carry variables of the most significant
two ranks of the adder. 1t alse should be mentioned that for the same addition in
two’s complement, ¢, has no significance. Thus, Fig. 2.7 presents an RCA which
aflows the addition of unsigned numbers, as well as of those represented in two's
complement, having attached additional fogic for setting the condition and exception
flags from the status register [Parh00]. There is an excessive number of inputs of
NOR gates which test the zero result, whose implementation usually requires an
OR gate tree succeeded by an inverter gate.

We already saw that the worst case delay varies lincarly with respect to the
operands’ dimension n but the probability of this worst case scenario is reduced.
Consequently one method to reduce the critical parameter represented by addi-
tion’s Jatency consists of the use of fast components for the implementation of
the carry propagation chain. Thus, the so-called Manchester chain is obtained,
and the adder which includes it is called a Manchester (Kilburn) adder (MA)
[Omon94]. More precisely, the Manchester chain consists, for each rank, of three
switches controlled through variables deduced from the input bits. Regarding the
binary position § with x; and y; inputs, the following variables are obtained:
the generation variable g; = x;);, which signifies that, when the input vecior is
{x;, ¥} = (1, 1), on the carry propagation chain a | is generated; the propagation
variable p; = x; ¥ or X7¥; = x; @ y;, which signifies that, when the input vectors are
(o vy = (1,0) or (xy, vi) = (0, 1), from the carry input of rank { a | may be prop-
agated towards the carry output of this rank; finally, the annihilation or absorption
variable a; = X7 37, which signifies that, when the input vector 1s (x;, v} = {0, 0},
even if at the carry input of rank / a 1 has been passed, at the carry output of this rank,
a 0 will be transmitted, and therefore carry annihilation {absorption) takes place. At
any moment, one and only one of the three variables takes the value 1, “closing
the contact”” of the switch, letiing the current pass through. Figure 2.8a presents the
generation of g;, p; and @; variables in an implementation with logic gates, as well

30 2 Binary and Decimal Adding and Subtracting Devices

AND '@ ..4_1:‘?):M xsn-l oz Xz y.r 3:1 Yo X
L4 !

logie 0" | c

NOR)
S R Oy

T EX-OR

cC cc

Fig. 2.8 Conceptual diagram of a Manachester adder celi and their interconnection

as the controlled switches representing the elements of the carry control chain (CC).
Figure 2.8b presents the connections of the CCs to the carry path corresponding to
a Manchester adder of n ranks.

Regarding a2 Manchester chain of n bits, the total delay consists of the following
time components: f1—reguired to obtain the control signals for switches (g;, pi, &),
to—required for setting the switches (the switches of all bits shall be simultaneously
set), and fz—representing the delay concerning the signal propagation through the
carry path. The first two components, 1) and #7, are small, and they are generally con-
stant. The dominani component is f3, which, in the best case, depends only linearly
on . In CMOS technotogy, the implementation of the switches is best achieved
through so-called pass transistors [Parh00, Omon94], but their series connection
may lead to delay proportional with n?, making the Manchester principle applicable
only to chains containing a small number of bits (up to 8 bits [Parh00]). For this
reason, the MA solution is usually applied combined with other principles in adders
forming hybrid configurations.

A last problem, regarding RCA adders, consists of the potential optimiza-
tion of the structure when one of the operands to be added is a constant. We
start from the observation that in addition of constant ¥ to operand X, ¥ may
be odd, or else it consists of the concatenation of an odd Y', having at the
right side a number § of zeros, which makes Y an even number. In this last
case, at addition, the § least significant bits of X can be found in the sam,
and the operation is executed between X and odd Y. Let us consider. for in-
stance, § = 2, and the constant ¥ = (0, 1, 1,..., 1,0, 1,0, to be added to X =
(Xpts XnZa Xnm3s -0 -y X4 X3, X2, X1, X0), Where we obtain the sum Z in the form
o= (2 Zn 2y Zn_3y -+, 24, 23, X2, X1, X0). The two least significant bits of X are
found in the same positions in Z, and the bit from Z, corresponding to the first value
of I when passing through Y from right to left, z;, becomes equal to ¥7. More-
over, {from this rank, carry ¢3 = x7 is generated to the left. The other bits of Z are
obtained through an RCA of special construction, made up either from half-adder
cells (HAC), when y; = 0 {we have 7z; = x; & ¢; and ¢;4| = x;¢;), or from modi-
fied half-adder cells (HAC*), when y; = 1 (we have z; = x; @ 1 D ¢; =% S ¢; and
Cig} = X; OT ¢; OF X;¢; = X; OF ¢;), as shown in Fig. 2.9. Thus, Fig. 2.9a and Fig. 2.9b

2.2 Parallel Adders and Subtracters 31

H
EX-OR | | EX-OR|
x, 4‘—'% 2 X, — i .
¢, » I ! (4 : » \ !
| AND | ; OR |
A M«) e ey I <
I |
HAC ! HAC* !
a b
Xpr Vui Xs Yo X Yus X, Y X ¥
LI A SR ISR
Couy Ert % | Sez P N) * T4
= HAC HAC* «* HAC* «* — «Z HAC*«* HAC
Lo s
¢

Fig. 2.9 Elements of addition of a constant to an operand

show potential implementations for HAC cells, and for HAC* cells respectively, and
Fig. 2.9¢ shows the chaining of these cells in the particular case when to the operand
X the constant ¥ given above is added.

2.2.2 Decimal Adders Based on Serial Carry Propagation

We specify, from the beginning, that we refer only to pure BCD (binary-code deci-
mal), with the weights 8421, and excess-3 BCD code. Also the operation discussed
is addition, and as operands, only unsigned numbers are admitted. Generally, addi-
tion in BCD can be done in two ways, namely, either by converting the operands into
pure binary code, and executing the operation, and then by reconverting the result
into BCD, or by executing the operation, directly, in BCD code. If this last method
is employed, and if BCD8421 code is taken info account, we should mention that
on the conversion of the numbers from binary into BCD through the well-known
method of left shift (multiplication by two) {KeSc03, Omon94], for certain deci-
mal digits the addition of the corrective value 0110y = 619 shall be applied. Thus,
multiplication by 2 of the decimal digits ranging between O and 4 gives the values
from 0O to 8, having binary correspondents from 0000 to 1000, which in BCD8421
correspond fo the required values from O to 8, without any correction. However, if
the decimal digits from 5 to 9 are multiplied by 2, even numbers from 10 to 18 will
be obtained which have the most significant digit | with 10" weight in the decimal
nuntber system, but with 2% = 16 weight in the binary number system. This requires
the addition of the correction (110, = 6;¢ to the binary equivalents from {010 to

32 2 Binary and Decimal Adding and Subtracting Devices
Fig. .10 BCD8421 code L X=4735,=0100 OI1 001 010l
addition example Y=2918,=0010 1001 0001 1000,
Z=7653,,=0110,] 0000, OO0 1101
* e T [t
oIt 6ito 141 0011
' N et

7 F 0+00101 173

Cm’t{
olie 175
3

out

10010, obtaining the values from 10000 to 11000 to which the required numbers
from 10 to 18, in BCD8421, correspond. As well as this, if the binary equivalents
of two decimal digits are added, for instance, 01115 = 7y with 1000, = 8yp, the
result will be 11117 = 1549, which, in the decimal system, has a carry (10! weight)
towards the addition of the next pair of decimal digits, being equivalent to the sub-
traction from 11117 of 10107 = 10)p. But this subtraction is executed by adding the
two's complement, i.e. the addition of 0110y = 64¢, there being obtained the binary
equivalent 0101, = 5;¢ and the expected carry-out with the value 1. Generally, any
time the addition of the binary equivalents corresponding to two decimal digits for
the sum binary equivalent results in values ranging within 1010 and {111, the cor-
rection 0110 has to be added and the resulting carry-out has to be transmitted to
contribute to the addition of the binary equivalents corresponding to the next pair
of decimatl digits. On the other hand, by adding, this time, the binary equivalents of
the decimal digits 8ip = 1000 and 919 = 10013, a carry-out and the binary eguiv-
alent of the value 0001 will be obtained. {n this situation, transformation between
the number systems has caused 6 units o become lost. This requires the addition of
0110, so that the four bits (tetrad) of the sum are corrected to 01112 = 710. Conse-
quently, the addition in BCD8421 code is executed by adding, from right o left, the
binary tetrads corresponding to the pairs of decimal digits, and the selective correc-
tion of the sum binary equivalents by adding 0110 in the above-mentioned cases,
namely, when for the sum tetrad binary numbers from 1010 to 1111 are obtained,
and when, evaluating the sum tetrad, carry-out results. Thus, Fig. 2.10 presents an
example of addition between X = 4735y and ¥ = 2918, where all the tetrad ad-
ditions are considered to take place simultaneously, having initially, all of them, the
carry inputs ¢, set on zero (a facility which can be assured in certain technologies,
such as, for instance, CMOS, through precharging [HePa03}). It can be observed
that on the addition of the tetrads corresponding to the two least significant decimal
digits, the binary number 1101 is obtained, a value which has to be corrected with
0110, an operation which results in ¢y = 1. This camry has to be added, secondly, to
the sum tetrad corresponding to the second (from right to left) pair of decimal digits.
The correction 0110 also has to be applied 1o the addition of the binary equivalents
of decimal digits 7 and 9, but this time because of the generation of ¢,y = 1, a carry
which will be afterwards added to the most significant sum tetrad. 1t also should
be mentioned that the sum Z = 0111 0110 0101 00l lgep = 7653y is obtained
gradually, in time steps, following the operation of all the possible carries cqy be-
tween tetrads, a fact suggested through the presentation “in steps” of the operation
execution in Fig. 2.10.

2.2 Parallel Adders and Subtracters 33

X, ¥, X Y. X F XY X 5
A LI & AT ANIE L CORLI o
eome| Dedigit |, | idigic o | Ldigit
¥ BCD 8421 €| BCD 8421 =7« ~"'| BCD 8421

t-digit | 1-digit e
e BeD 8421 W BCD 8421 0 "

A
htd

adder adder adder adder adder
&4 i4 £4 f4 i4
2o et Z Z, z,

Fig. 2.11 RCA version of an BCD8421 decimal adder block diagram

A decimal adder which operates with unsigned numbers in BCD8421 coding can
be synthesized according to the example addition from Fig. 2.10, in RCA mode, by
seriaily chaining adders meant to operate on one tetrad from each operand, X and ¥,
obtaining a sum digit of the BCD8421 coding (l-digit BCD8421 adder), as shown
in Fig. 2.11 [Haye98]. Each such adder, such as, for instance, the one which adds
the tetrads X; and Y;, is composed of one level which achieves the conventional
binary sum Z; and a second one which allows the selective adding of the correc-
tive value (110, The activation of the second level takes place through the Boolean
function Z; (Fig. 2.12a), obtained through minimization, using a Karnaugh map,
of the expression consisting of the logic sum of the minterms corresponding to the
sum tetrads from z;‘_gz;_zz;_ 12 = 1010 o z;ﬁz;’zz;!iz;!@ = 1111, or through cl’.Jrl ,
which represents the carry ¢,y of the conventional binary adder (Fig. 2.12b). Oth-
erwise, for the carry ¢;, to the tetrad which calculates the binary equivalent Z;
corresponding to the next decimal digit, we have the Boolean equation:

. o o ’ o
Cil = Cppy OF 403841 8L 3103342 24

When, based on relation (2.4), ¢;1 = | results, this value is applied to the internal
FACs of the second addition level, so that it may add to the tetrad Z,’. the value
22 21 = 6y, the corrected tetrad Z; is obtained.

It should be mentioned that in the configuration of both the tetrad adders
(Fig. 2.12), and the global adder for BCD8421 numbers (Fig. 2.11), for perfor-
mance improvement methods of speeding up the addition process can be used of
the type that will be presenied in the following sections. Nevertheless, the penalties
in the computation speed caused by the result correction determines a limited ap-
plicability, even for the adders of this most widely used decimal code represented
by BCD8421, and much more for devices implementing far more complex oper-
ations, such as multiplication or division. However, there are several applications
where the quantities fo be processed are small and where conversions prevail at
data introduction and extraction from/to human interfaces, and for which solutions
based on decimal arithmetic, in general, and in particular on BCD8421 adders, are
suited.

Within the same context of decimal adders, we shall briefly refer to the addition
of decimal numbers represented in excess-3 BCD code, due to one of its interesting

34 2 Binary and Decimal Adding and Subtracting Devices

):’u x{.’.; Yz Xiz Yo Xir Yio X0
W
2 FAC +‘ FAC o) FAC (e
z’i; z’i,;‘ z’iﬂ
L8
= 2
Ay
z A
] 1 e 2 1]

EAC M| FAC M 0

=zl er e,
€™ €, 00 2,

a b

Fig. .12 Synthesis of a tetrad adder used in BCD8421 addition

Fig. 2.13 BCDE3 code JAm4T35,= 0111 1010 0110 10000
addition example Y=2918,= 010 1100 0100 1011,
7= 7653, =41 L01G01 [0*@1011+ 0011
¢ lmll
1010 1001 1600 0110
1 6 35 3

property. We shall start from the fact that each decimal digit has a bias of 3, which
feads, for the addition of such two digits, to the correct generation of carry-out,
even in the critical cases when, in BCD8421 code, the sum tetrads result in values
ranging between 1010 and 1111, because the correction 3 + 3 = 6 is implicitly
assured. Thus, carry-out is correctly produced on the addition of the excess-3 BCD
representations of any two decimal digits, and, consequently, the addition of two
numbers in excess-3 BCD can be achieved through a conventional binary adder.
But, in order to obtain the sum representation in excess-3 BCD code, correction of
ail the tetrads is required after the execution of the addition operation. Thus, if on the
addition of excess-3 BCD representations of two decimal digits ¢,y = 1 is obtained,
then the value 0011, shall be added to the binary sum fetrad, for compensation, and,
if on the given addition ¢y = 0 is obtained then the value 0011, (corresponding to
one of the two biases) shall be subtracted from the binary sum tetrad. Figure 2.13
shows the operation of the same example from Fig. 2.10, this time, in excess-3
BCD (BCDE3). The carry values between tetrads are pointed out, values which
determine, as the case requires, the addition or the subtraction of the corrective
value 001 I = 3¢ of the sum tetrads. It should also be mentioned that this operation
requires only two passes, one to obtain the conventional binary sum and one for
correction, being better than that executed in BCDE842] code, as far as performance
is concerned.

2.2 Parallel Adders and Subtracters 35

Fig. .14 Block diagram of a Y X s
binary adder/subtracter n (from control unit)
EX-0OR
wordgate
"
o) Parallel adder Cin
i3

HXP0)+0=Y+X

Y+ (XD D= R+ =YX

2.2.3 Subtracters Based on Serial Carry/Borrow Propagation

The binary subtraction operagion is mainly executed by using an adder which al-
tows the addition of the subtrahend, adeguately negated, to the minuend. Thus, the
most often used implementation of subtraction corresponds to the operands’ rep-
resentation in two’s complement, when the subtrahend is one’s complemented and
then added to the minuend together with a binary unit which has also to be added to
the least significant rank. The operation can be executed by using a parallel binary
adder, regardless its type, to which the minuend Y is supplied, along with the subtra-
hend X, after it has passed through a layer of EXCLUSIVE-OR gates, on the whole
word length (EX-OR wordgate), as shown in Fig. 2.14 [Haye981. The binary unit is
added to the least significant rank by means of the carry-in input (cs} that remains
available, by applying to it the variable s (from “subtract™), which also controls one
of the inputs of all the EXCLUSIVE-OR gates of the wordgate. The control unit has
the task to establish the logic value corresponding to s, configuring the parallel adder
as a subtracter (¥ — X) when s = 1, and leaving its function {¥ + X) unchanged
when s =0,

But there are cases, such as the combinational array structure multiplication
for multiplication based on Booth recoding from Sect. 3.9 (refer to Fig. 3.48), to
which combinational array structures dedicated to binary division can also be added
[Omon94], when it is useful to assure a conventional subtraction as a separate op-
eration, executed by an independent device called a binary subtracter. The funda-
mental structural element of such a device is, by analogy with the full adder cell
(FAC) of an RCA binary adder, a full subtracter cell (FSC). The logic design of
an FSC is based on the behavioral description in the truth table from Fig. 2.15a,
elaborated for some rapk [of a structure which performs the subtraction between

36 2 Binary and Decimal Adding and Subtracting Devices

zl
Tnputs Ouipuis
P ki 38 00 L oot | | 10
Yi X b, z b,
0 1 1
0 0 0
1 1 i
0 I i 1
0 1 0 i 1 b
0 1 : 0 1 by,
1 0 0 i 0 5550 00 | o 1 10
R N B RO I
1 1 0 o 0 1 \; j
1 1 i i 1 ‘

Fig. 2,15 Tables used for logical equations” synthesis corresponding to a full subtracter cell’s
outpuis

the subtrahend X and the minuend Y. As the inputs are the variables, y; and x;, as
well as the borrow input by, requested by the previous rank {{ — 1), and the outputs
are represented by the difference functions z;, as well as the borrow output b1,
requested to the next rank (¢ + 1). The completion of the logic values for the out-
puts z; and b;; from the truth table (Fig. 2.15a) has been obtained by adding the
values corresponding to the variables x; and b;, the resulting sum being subtracted
from the value of y;. Thus, for instance, for the triplet (x;, v, z;) = 010, we have
x; 4+ b = 1 4 0 =1, which, if subtracted from y; = 0, leads to the difference bit
zi = | and to the borrow bit by = 1. The elaboration of the Boolean equations
corresponding to the FSC output logic functions have been obtained by using Kar-
naugh maps represented in Fig. 2.15b for z;, and in Fig. 2.135¢ for b;.1. It should
also should be mentioned that the Boelean expression for the difference output z;
is given by the same odd parity function z; = x; @ v @ b; corresponding to the
sum output z; of a FAC, if the carry variable ¢; is substituted by the borrow vari-
able b;. This will help us to reconfigure a FAC into a FSC, when needed (refer to
the combinational array structure from Fig. 3.48). On the other hand, the covering
of the binary units from Fig. 2.15¢ leads, for ;4. to an expression similar to that
for the carry to the next rank, ¢;41, namely by = x;¥; or x;b; or ¥ib;. We also
mention that for the synthesis of the borrow function b1, we may also use the ex-
pression by 4y = X7 ¥b; or x; V7 b; or x;Vib; or x;vib; =Vi(Xib; or x;b;) or x;b; =
{(x; @ b))V} or x;b;. Based on the Boolean equations for z; and by, the FSC syn-
thesis results, which can be used in the configuration of binary subtracters, one of
the solutions being, for instance, the concatenation in cascade of the FSCs in an
RCA manner.

Finally, we shall refer to the subtraction of operands represented in BCD8421
code. By analogy to the operation executed with binary numbers which consists of
the addition to the minuend of the subtrahend’s two’s complement, in this case we
will resort to an addition, as well, but the one’s complement is substituted by the

2.2 Parallel Adders and Subtracters 37

Fig. 2.16 BCD8421 code Y=4735, =01060 0111 0011 0101,
subtraction example X=2918, 0010 1001 0001 1000,

i

Y=4735, =0100 0111 0011 0101y
F=7081, =0111 0000 1000 000

X1817, =1011+ 0111+ 1011+ 0110+

+1

[6110] 0110 e
Xp001 «10001 0111
T 1 1000 T 1 7
fad 8
ot »
Fig. .17 Truth tablke for — Output
syathesis of a code translator apats utputs
for the nine’s complement Xis Xy | W | X | XS OER | OED | OFL
implementation o o 0 o | 0 0 i
0 [4] 1 i 4] 4] 0
o | o } 6o | o i }
0 ¢ H 1 0 i H 0
[¢] i 0 1] 1] i 0 1
i) i Q 1 1] i 0 0
0 i H 0 0 0 i 1
0 i i 1 4] 4] i 0
1 0 0 [1] 4] 4] 1
1 0 0 1 1] 1] 4] 0

more expensive (as far as generation is concerned) nine’s complement, to which a
binary unit {similar to the two’s complement case) is added. Thus, Fig. 2.16 presents
the subtraction of the numbers added in Fig. 2.10 and Fig. 2.13, an operation in
which from the minuend Y = 4735y the subtrahend X = 2918, is subtracied. In
fact, this operation consists of the addition fo Y of the nine’s complement corre-
sponding to X, namely X~ == 70810, and one more unit. The addition operation
is executed in the mode described in the example from Fig. 2,10, with the selec-
tive application of the correction (110, The addition implementation can be done
with the adder from Fig. 2.11, detailed in Fig. 2.12. The carry decimal digit ¢} ,.
in our case ¢}, == I, shall be ignored, according to the binary operation model.
As for the nine’s complement implementation, it has to be executed separately for
each decimal digit. In this case, an adder/subtracter on 4 bits can be used or a code
translator having at the base of synthesis the truth table from Fig. 2.17 which is pre-
sented for a decimal digit X; of the subtrahend. The translator synthesis can casily
be done, resulting in the Boolean equations for the bits corresponding to the nine’s
complement of the decimal digit, by taking into account the fact that the unused

38 2 Binary and Decimal Adding and Subtracting Devices

bmmy configurations in Fig. 2.17 were employed at minimization, f()] instance X*

XFy = RN W = WO ORI 8, = 600 @ X)), ’c , = X7.3%; and

Xi0 = A6

2.2.4 Carry-Lookahead Adders

An adder is a combinational circuit generally with n output functions z, ,,....z;,

... 21, 20. Such a function can be expressed in the form of a logic sum of
logic products (SOP). Thus, as already seen above, we have, for instance, z; =
T Vic; or XiviT; or x;y; T or x;yep (refer also to the implementation from
Fig. 2.4a). For all the logic products, the values of the input variables x; and
are initially known, but the value of variable ¢; is only known when it has propa-
gated serially, from rank to rank, as has been seen in the adders based on the RCA
priaciple. In order to accelerate the addition process, the sum bits will not be formed
until the arrival of the carry, and the carry bits shall be anticipatorily generated, by
directly using the values of the input variables of the previous ranks of the adder.
Thus, an adder based on a principle which differs from that applied in the RCA will
result, L.e. a carry-lookahead adder (CLA) [Stal99]. Let us start from the already
known expression which corresponds to the carry generated in the rank i, namely
Ciwl = X; ¥ OF Xic; or vici, and let us rewrite it as a function of the already used
generation variables, g; = x;y;, and propagation variables, p; = x; or ¥, so that the
recurrent relation ¢;4; = g; or pi¢; will be obtained. This expression shows that if
gi = | we have a carry-out at rank [whether or not the carry comes from the previ-
ous rank. Otherwise, if p; = 1, then ¢; 1y = ¢;, and the carry propagation is obfained.
But an equation of similar form can also be written for ¢;, i.e. ¢; = g1 OF Pj1€i1,
and, recursively, the following can be obtained:

Cipl =g OF Py == g oF pi{gia Qf_Piwlc.iwl)
= gi or pi{giz or pi1(gi—2 or pi—aci—2)) =

=L -1 OF PiPi-1Ri-200 L OF PiPi . IS0 O PE Pt L P POCO
(2.5)

where the values of all the variables g and p are obtained using the input variables x
and y.

To be more exact, et us suppose that { = 3, and let us claborate, by using (2.5),
the Boolean equations corresponding to the carries from the first four ranks. Thus,
we have:

Cy == 80 2F Pocy
2 = g1 oF P1ga oF P Poco
(2.6)
=gy OF PRy OF prpige oF P2 Pt Poco

= RION P3R2 OF Papgy aF P3P P80 OF Papr P Poco

2.2 Parallel Adders and Subtracters 39

¥s % ¥ % I & I ¥

Cour™C

G ORY AND
it TR B &
I
I
|

[S
AND
Ok D
AND
E
A
&5 &
o
P
8 4%
P
Bl

Fig. 2.18 Block diagram of a 4-bit conventional CLA and one of iis gate level implementaiion
versions

The implementation of these equations is assured by a carry-tookahead circuit, while
the CLA adder also includes an adder cell (AC) for each rank. Unlike a FAC, the AC
performs the sum function and generates the variables g and p. As far as the case
taken into account s concerned, when § = 3, Fig. 2.18a presents the block diagram
of the CLA adder, and Fig. 2.18b presents an implementation version using AND
and OR gates for the carry-lookahead circuit, and EXCLUSIVE-OR gates for the
sum function generation {according to the model from Fig. 2.4b, and Fig. 2.4c).
A CLA adder, such as the adder presented in Fig. 2.18, which maintains the unitary
carry generation mode, s also called a full carry-lookahead adder [Parh00].

If the CLA configuration from Fig. 2.18 is analyzed from the point of view of
its performance, one can easily find out that on the path of the signals from the
primary inputs, to which operands are applied, to the outputs where the sum bits
are available, there are, in the worst case, four gate levels {the OR gate for the
propagation variable forming, the AND and OR gates for the carry forming, and the
EXCLUSIVE-OR final gate for the sum rank forming, the last one being considered
to represent one fogic level). Obviously, as compared to the delay on 2r logic levels
characteristic for an RCA adder with # ranks, the reduction to only four logic levels,

40 2 Binary and Decimal Adding and Subtracting Devices

whatever the number »n of the ranks, which characterizes a CLA adder, makes this
tast solution a clearty superior one from the point of view of its performance.

However, the above-mentioned analysis has not taken into account the fact that,
the more we advance towards the more significant ranks, the gates’ {fan-in increases,
s0 that, according to the rank i, an AND gate and an OR gate used in the genera-
tion of a carry have a fan-in of (i -+ 2). But it is known [Wake(0] that the fan-in
increase results in the degradation of certain dynamic parameters of the gate, our
interest, in this context, being the propagation time 7pp. Besides this aspect, the li-
braries of integrated circuit manufacturers comprise gates with a limited aumber
of inputs, so that for practical n values (e.g. n = 32), the functions achieved by
the above mentioned AND and OR circuits require, for implementation, tree-like
networks which lead to increased cost, and, more important, to increased latency.
Moreover, signal p; from relation (2.5) has an excessive fan-out, its application be-
ing necessary o {i +) AND gates, and, consequently, requiring a power control
solution with consequences, unfavorable as well, as regards performance. Finally,
to the above mentioned aspects there is added apother one which is essential when,
for implementation purposes, the very large scale integration technology (VLSI) is
used. A structure of the type from Fig. 2.18b is not regular, and there cannot be
defined blocks with ordered interconnections because of the presence of alternating
short and fong connections. Consequently, the construction of full carry-lookahead
adders is not practical, especially when n is large and justifies concern for the vm-
proved usage of the CLA principle, aimed at the avoidance, at least partly, of the
above-mentioned disadvantages.

The method most frequently resorted to in practice {Kore02, Parh00} is based on
the increase of the logic levels, wherefrom its name of multilevel lookahead, aim-
ing to obtain an ordered structure characterized by regularity, that can be executed
favorably in VLST technology. This method is based on the {act that the carry gener-
ation and propagation can be done gradually, in steps, these functions being assured
by means of some generation and propagation blocks. Thus, starting from the sim-
plest equation of (2.6), i.e. ¢1 = go or poce, let us also keep this form of equation
for ¢7, substituting into the expression from (2.6) to get ¢p = Go,y or Pojco, where
Go.l = g1 or pigo signifies the fact that the carry is generated in the block made
up of the first two ranks, 0 and 1, and Fy 1 = pi po signifies the fact that the carry
propagates through the given block.

Generalizing the above-mentioned aspects, et us take into account some indexes,
i,jand k, with i < j and j 4 1 < k, and let us elaborate, according to the model
of ¢z, the Boolean equation for ¢r.1. We shall obtain ¢p41 = G or P i, where
Gig = Gy or Py p Gy osignifies the fact that the carry is generated in the
block consisting of the ranks from / to k, either through its generation in the subblock
consisting of the more significant ranks, from (j + 1) to &, or through its generation
in the subblock consisting of the less significant ranks, from { to j, and then its
propagation through the subblock consisting of the more significant ranks, from
(j+ D tok, while P = P; ;i1 k. signifies the fact that the carry propagates
through the given subblocks [HePa03]. In order to arrive from blocks consisting of
several ranks at blocks corresponding to one rank, we shall set up G;; = g;, and

2.2 Parallel Adders and Subtracters 41

UL A I I
A Al A ‘ AllaA AllAl]aA
By 1P B e B lP:ﬂ P. gjupjj P 8, lp:ﬂ Pa
B B 3 B B
Gory | Por G, P, Gyl (P G, P

B [B [
Gy y P Go |Ps
g It

Pt P,
Gﬂ*: I*J.kQI}]J-.“rGU R ”rPu

Fig. 2.19 Binary tree structuve [or building the generation and propagation functions of an 8-bit
multilevel CLA

P ;= p;, when the above-mentioned Boolean equations imply the adjustment of
the relations between indexes atf < j < k.

For instance, let us take into account the block made up of the ranks from 0
to 3, and let us deduce the equation of ¢4, given by (2.6), starting {from the form
o4 = Gp3z or Pyaco. Thus, fet us suppose, first of all, that the block is made
up of the subblocks to which there correspond the ranks (0 and I, and 2 and 3.
By setting i =0, j = 1 and &k = 3, we can write Gg3 = Ga3 or P3Gy, and
FPoz = P3P, respectively. Then, arriving at blocks to which there correspond
individual ranks, and setting, for instance, { == j == 2 and k == 3, we have Gz3 =
63_3 or P}(_}Gg_g. Since G3‘3 = g1, Gz‘z = g2 and P}(_} = [y, WE rewrite Gz}} T
g3 or pagy. In case a similar procedure is applied to Py 3, Go,y and Py i, the fol-
lOWiﬂg will be obtained: Gggg = G‘3!3 oFr P}_gGg.g or Py PQ_Q(GH or P]’; Go_@)
83 O p3g2 O papagy oF papapigo, and Po3z = Posho = PrabPaPa Py =
P3p2pPo.

Following these specifications, let us present the construction of a multilevel
CLA, considering, to be more concrete, that operands X and ¥ have eight ranks.
Starting from the individual bits, we form, first of all, generation and propagation
variables with which we shall first compose G and P functions corresponding to the
subblocks, and, finally, to the entire block. Then, the given functions will be used
for the evaluation of the carries. Thus, Fig. 2.19 presents the part of the genera-
tion of (G and P functions in a binary tree type structure, in which the functions use
two types of cells, A and B. Their internal configurations are detailed in Fig. 2.19,
and they compute g; = x;y; and p; = x; or ¥ functions in cells of type A, and
G =G 0 PiyypGiyand Py = Py P functions in cells of type B.

i

42 2 Binary and Decimal Adding and Subtracting Devices

¢, € ¢, c, €

e £ e

r 11 Tj

C C C C = Gq‘g P{jct

Tcg £y ;E Cy
T A——

C
ch lC o

)

Fig. 2.20 Binary irce structure for building the carries of an 8-bit muliilevel CLA

On the other hand, Fig. 2.20 presents a second binary tree structure meant to
supply carries. It uses a third cell, of type C, implementing the Boolean equation
cipr = Uy ; or Py jo;. In the diagram from Fig. 2.19, the signals “flow” down-
wards, but in the diagram from Fig. 2.20, also a tree diagram, the signals “flow”
in the reverse direction, the ¢p signal being applied at its basis, all the carry bits
being gradually generated. Each type C cell has to “know™ the corresponding pair
of values (G; ;, F; ;), but it can be seen that there is a one-to-one correspondence
between the cells of type B from Fig. 2,19 and the cells of type C from Fig. 2.20,
sa that, through their combination, there are obtained the pairs of values we are in-
terested in (G ;, P ;). Figure 2.21 presents the multilevel CLA structure, by over-
tapping the two tree diagrams from Fig. 2.19 and Fig. 2.20. There can be observed
the combined cells {B -+ (), which, as shown in the detailed diagram, combine the
implementations of the separate diagrams, as well as the AC cells representing ex-
pansions of the cells of type A from Fig. 2.19 with the circuits that generate the
sum bit {in our case, represented, for simplicity, by two EXCLUSIVE-OR gates).
The operands to be added are applied in the upper part of the diagram, and the sig-
nals propagate downwards to combine with the carry ¢g, and then they propagate
upwards for the computation of the sum bits.

The analysis of the multilevel CLA structure from Fig. 2.21 as regards the per-
formance/cost impact shows, first of all, that the signals have to cross, in the worst
case, on the path from the input operands to the sum result, a total of 12 logic lev-
els (I for the generation of the pairs (g, p), {2 2) for the generation of the pairs
(G, P), (3 -2) for the generation of the carries, and 1 for the sum forming, if, again,
the contribution of the EXCLUSIVE-OR final gate of one logic level is taken into
account). If compared to the 2n =2 - 8 = 16 logic levels corresponding to an RCA
with operands of the same dimension, the improvement is smail, but it may become
considerable when n has greater values. This is because the number of the cell levels
(B + C) equal to 3 == log, 8 in Fig. 2.21, is, generally, log; n, a situation in which
the number of logic levels through which the signals propagate, in the worst case,

2.2 Parallel Adders and Subtracters

$T190 §31 JO sUORTIBAULd (9421 918 PUR YD) [ARNINW 11g-g Ue o weaderp yoorg 17T Sl

f1 P4 Ty ,

fany 1oy J04 THy Y iy

IS TS NEYS '
D iyt =ty

...................................... - 5N

10ty Tty e £ ¥i+l ¥iely
ur. d 30y =10 . “Mau o Uo+m
iy T.QU ¥y h.“.mv
¥ |
?i
M [m.eb wm mwb SU
S el
M @9 g1y Igty g8y mm I rg 5y g
7 oV 7 oV 7 v
Ty 111 MZ 39 39 .:é T
O Oy O iy lz il iz Hwrr xSz MW v

44 2 Binary and Decimal Adding and Subtracting Devices

Y15:17) X(15:12) YOLS) AR Y74y X(T4) HI0) (RO
4 4 4 4 14 4 4 4
G s 4 bits . 4 bits le-5x.] 4 bits e St 4 bits W&2C
CLA CLA CLA CLA
i z e 2
Z(15:12) Z(1LE) Z(7:4) Z3:0)

Fig. 2.22 Block diagram of a 16-bit hybrid adder consisting in connecting 4-bit CLA segments in
a4 RCA manner

becomes equal to (1 + (2logyn — 2) + 2log, n + 1} = 4log, n, under the same as-
sumptions. When, for instance, n = 64, there result 24 logic levels, a much reduced
number as compared to the 128 levels corresponding to an RCA of the same di-
mension. Regarding the aspects connected with the latency of the addition, let us
increase the block dimension from two to four ranks. In this case, the height of the
cell (B + C) tree decreases from logs n to logy n, and the number of logic levels,
under the same assumptions as above, becomes 4logyn. This might lead, for the
particular case when n = 64, to only 12 logic levels, but, in fact, the improvement is
smalfer due {o the increased delay on the gates which have, in this case, an increased
fan-in {Pach(0].

If we refer to the cost of a multilevel CLA, and consider, roughly, the AC and
(B + C) cells of the same complexity, also equal to the complexity of a FAC, men-
tion should be made that, as compared to an RCA,, the number of cells is almost dou-
bled. Thus, in case n = 8, we have 15 cells in the multilevel CLA from Fig. 2.21, as
compared to only 8 cells in the RCA with the same dimension. This issue 18 not so
dramatic since, in terms of VLSI technology, the investment consists of the silicon
substrate area needed for structure integration. As concerns this aspect, the com-
plexity of the area for a multilevel CLA layout of n ranks may be considered, to a
good approximation, to be {nlog, n) and not 2n [HePa03].

The deficiencies of both the RCA and CLA principles can be overcome, taking
into account the technological factors introduced on account of the fact that certain
technologies favor either one principle or the other, by appealing o hybrid solutions
which combine the two methods. Thus, when there is available a certain technol-
ogy where the CLA variant is easily implemented, it is suggested to serialize the
segments built on the basis of this principle {Haye98]. For instance, let us consider
n = 16, and CLA segments of four ranks, of the type presented in Fig. 2.18, in
cascade connection, so that the structure from Fig. 2.22 is obtained. As shown in
Fig. 2.18b, 4 - 2 = 8 logic levels are crossed on the channel between ¢ and ¢y,
and if we refer to the latency, measured in terms of logic levels, between the in-
put operands and the sum result, the value 10 will be obtained (I for the forming
of p3, 2 in each of the 4 segments for forming the carries, and 1 represented by the
EXCLUSIVE-OR gate for the formation of the sum bits in the last segment). The
multtlevel synthesis can also be applied to the configuration of CLA segments,

Alternatively, when technologies favorable to the RCA principle are available,
a hybrid solution can be synthesized to generate the carries in multilevel CLA mode

45

2.2 Parallel Adders and Subtracters

IDULRLY YLD B UL SIowiSes v 1G- Suoauuod w Sunsisuod 1appe pugiy ng-gi B 3o weilen yooig €777 iy

ol

H Oo+d
iy ¥ i ta| 518 gl $riry
D+4 N a2+ <
.aﬂw M..QU Nww& nh‘u N.ng _..Xmu _‘N%m\ h&.wwm
a a a
byt 101ttt P T TOTOFOT T 1 1 Pojeat _togf 11 tegt tas
i*Uxﬁvlvw*U«ﬁ_NIvTU«EI*Oﬁﬁ S VA0V oDV]+ 0Vi | ‘WTWU/N'M — VI [0 VA DV l*O<mI*U<mI*U<mI*O¢E
A s A s A o e A o e o

oy

K

'y

"

Iy

o

K

40 2 Binary and Decimal Adding and Subtracting Devices

for FAC cells segments interconnected in RCA mode. Thus, Fig. 2.23, presents, for
the previous particular case, i.e. r = 16, the structure of the second type of hybrid
adder. In the superior stage, the carries are serially transmitted between the FAC*
cels, representing FAC cells (Fig. 2.4) to which an AND gate and an OR gate for
{g, p) pair forming are added. To each four ranks there is atfached, this time, a D
type cell meant for {G, P} pair generation for four ranks, in a similar mode to what
has been presented above. The diagram also comprises three cells of type (B + C),
identical from the constructive point of view to those from Fig. 2.21. The adder
outputs are omitted for clarity reasons. The latency of such a construction is near to
that corresponding o a multilevel CLA adder only when the carry serial propagation
has delay values comparable with those corresponding to a cell of type (5 -+ C).

2.2.5 Carry-Skip Adder

The design solutions of the adders based on RCA and CLA classical principles rep-
resent extreme ones, both in terms of performance, and cost. Between them, some
hybrid solutions can be adopted which combine the two concepts, as can a solution
which is based on the omission of carry serial propagation, known as the carry-skip
adder (the short form CSA has been atiributed to the adder based on the carry save
principle, called the carry save adder, so we shall use for this adder the short form
CSkA)} [HePa03]. The construction of CSkA starts from the analysis of the Boolean
equations for the functions & and P which, in case of the least significant segment
of 4 bits, have the known expressions (g3 = g3 0 pagz 0r pap2g: OF. P3P2pP120,
and Py 3 = p3p2 pi po respectively. Out of the two equations, the calculation of Py 3
is much easier than that of Gy 3, it requires only an AND gate with four inputs. This
feature can be exploited in the construction of a CSkA, namely when the propaga-
tion signal corresponding to one block becomes active, the carry does not propagate
serially, from rank to rank, as happens in the RCA adder, instead a bypass of the
block is created which skips the transmission of the carry between ranks. Thus,
Fig. 2.24a schematically presents an RCA adder on 16 bits, and Fig, 2.24b shows it
transformed into a CSkA adder. The omission of a block is achieved through AND
gates which allow the passage of the carries ¢4 and ¢g when the functions Py 7 and
Pq 11 respectively have the logic value 1, each of them being obtained through the
logic product (AND gate) of four propagation variables p, which, in their turn, are
obtained through an OR gate from the input variables x and y. The additional logic
circuits mentioned are considered to be included in RCA* blocks, which are thus
different from RCA ones (Fig. 2.24).

Mention should be made that the bypass principle becomes practical only when a
technology is available which allows easy deletion of the carry signals for each adder
block at the beginning of each operation. Precharging in CMOS technology enables
the achievement of this requirement, allowing the avoidance of some non-authentic
carry-out signal generation at each block. Starting from the initial state with all the
block carries on 0, the carries will propagate serially, simultaneously and in parallel

47

2.2 Parallel Adders and Subtracters

VASD UG-G B jO WRISRD Yooig $0T 0

ONV ANV

j

11 A1
SR AT S S S 1 S N A
1A A 1 A 1 1

48 2 Binary and Decimal Adding and Subtracting Devices

on each block. Thus, if a carry is generated in a certain block, then the carry-out
of the given block is correctly obtained, even if the carry-in at that block has not
yet reached the correct value. In a way, the block carry-outs are assimilated to the
(7 functions which are specific to the multilevel CLA concept. Once the carry-out
of a certain block i1s gencrated, as shown in Fig. 2.24b, if is applied not only to the
next more significant block, but also to the AND gate meant to facilitate its bypass,
when the P function associated with the given block allows it. Thus, in the CSkA
from Fig. 2.24b, the worst case of the carry propagation delay is obtained when the
carry is generated in the least significant 0 rank, passing serially through the ranks
from 1 to 3, and then bypassing the following two blocks through AND-OR pairs
of gates and also being serially propagated through the ranks from 12 to 15. This
amounts fo (4-24+2-243.24 1) = 19 gate levels until the moment the sum
bit 235 is correctly obtained. Consequently, there results an important performance
improvement as compared to the {2+ 15 4 1) = 31 gate levels of the RCA of the
same dimension {Fig. 2.24a).

1f the example from Fig. 2.24 is generalized, the worst propagation delay, corre-
sponding to a CSkA of n ranks divided into blocks of b ranks, is obtained for the
carry generation in the Ish rank and its propagation until the correct msb sum bit re-
sults. This also includes the addition of the 2b logic levels from the least significant
block to which are added the 2{{n/b} — 2) gate levels corresponding to the blocks
situated between the extreme ones and bypassed through AND-OR gate pairs and
the (2{b — 1)+ 1) gate levels for the serial propagation through the msb block up to
the msb rank, including the EXCLUSIVE-OR final gate for the msb sum bit. Denot-
ing by L the latency of a CSkA of n ranks with blocks of length D, in case the same
delay d is assumed on the gates, no matter their type, the following will be obtained
for this performance parameter:

Lo={2b+42((n/b) — 2) 4 2(b ~ 1) - 1)d = (2(n/h) -+ 4b ~ 5)d 2.7

Starting from (2.7), let us determine the optimum dimension, b(,ﬁt, for CSkA struc-
ture blocks, which occurs when the derivative of L wort. b is 0, obtaining:

dlL nd fn
BT =0 = b= [(2.8)

Substituting (2.8) in {2.7), there results the worst defay corresponding to CSkA seg-
mentation in blocks of optimum length, namely:

Lo == (4320 — 5)d (2.9)

For example, let us consider the construction of a CSkA with n = 32 ranks, for
which there results, in accordance with (2.8), bﬁp! == 4 and, in accordance with (2.9),
Lope = 27d, which represents a performance of almost 2.3 times better than that
corresponding to the RCA of the same dimension.

On the other hand, starting from the observation that, depending on the position
of the block within the adder, a carry generated in one of the blocks has fo cross

2.2 Parallel Adders and Subtracters 49

a different number of logic levels, this feads to the idea that a variable number of
ranks with serial propagation can be assigned to the bocks. As regards the num-
ber of blocks with different length and their dimension, analysis is required which,
however most of the time makes simplifying hypotheses which are not confirmed
by engineering practice [Parh(0]. One of the factors which decisively influences the
optimization of a CSkA design 18 the technological factor, which, unfortunately, is
usually proprietary information until it becomes obsolete [ErLa04, ParkO0]. With-
out strict formal support, there are successful experiments for rank partitioning in
blocks of variable dimension, such as a CSkA of 20 bits divided into 5 blocks of
2,5,6,5 and 2 ranks [HePa03]. The worst latency, in terms of fogic levels, for this
CSkA wmplies signal propagation through 2 - 6 = 12 gates of the median block (the
time interval required for the propagation of a possible carry generated in the Ish
rank of this block is considered equal to that required for the propagation of a pos-
sibie carry from the 1sh rank of the previous block, of 3 ranks, which has to cross
the OR-AND pair, as well), to which is added the OR gate from the median block
output, the AND-OR pair of gates associated with the more significant block of 3
ranks, as well as the three gates (AND, OR and EXCLUSIVE-OR) from the last
segment, the one with 2 ranks. There results a total of 18 logic levels, substantially
fewer than the 39 required by an RCA of the same dimension, and also fewer than
the solution of the CSkA partitioned into five blocks of the same dimension, of 4
ranks, for which, applying (2.7), L =21 gate levels is obtained.

Finally, we also mention the possibility to configure multileve] CSkA where the
carry bypassing of more blocks is allowed [Parh00}. Thus, the skip signals from the
AND gate outputs are applied to an AND gate from a superior level, the number of
inputs corresponding fo it being equal to that of the bypassed blocks. Also, the OR
gate connected to the output of the bypassed blocks group has an additional input.
In this way, there results a layered structure with two levels, for which the problem
of the optimum configuration remains open.

2.2.6 Carry-Select Adder

To achieve the target of logarithmic latency, typical for the CLA principle, for the
CSkA adders, we appeal to parallel computations. The same fundamental idea, but
applied in a different way, stands at the basis of the configuration of some adders, in
which addition is performed by conditioning the sum through the carry vatues, the
so-called conditional-sum addition algorithm [Parh00]. Essentially, this algorithm
foresces that blocks of ranks compute the sum simultancously, in parallel, in two
vartants, accepting a priori the values 0 and | respectively, for the carry-in in the
given blocks, and selecting the correct sums from their outputs, subsequently, when
the real, true value of the carry becomes known. Thus, the sum is computed on
blocks in advance, in two variants, the correct sum being chosen by the value of the
carry when it arrives, through serial propagation, at each pair of blocks. There are
two categories of adders which function on the basis of this algorithmm, namely those

50 2 Binary and Decimal Adding and Subtracting Devices

¥ 'E? .T g)i: 'E: Y4 xf
€ ¢’ =}
ey RCA
¥ Xy Jf xf)i{ "E
}I ‘T Yo T Vs X¢ }I T Ci7Con BCA
. T
—n RCA L z, z z,
Z"(

Fig. .25 Block diagram of an 8-bit CSeA

having the sum selected through the value of the carry, the so-called carry-select
adders (for short CSeA, for the same reasons explained in the previous section on
CSkA), and those having the sum conditioned by the value of the carry, the so-called
conditional-sum adders (CSuA), which will be analyzed in the next section. The two
types of adders have similar principles, but they differ in their implementation.
Analyzing the CSeA adders, we consider, without Joss of generality, an RCA on
n bits which we divide into two parts, and the part corresponding to the n/2 least
significant ranks directly computes the n/2 bits of the sum. The other part of the n/2
more significant ranks is substituted by two RCA adders, each of which computes,
at the same time as the RCA for the least significant part, the sum and the carry-out
in two different situations, namely by applying value 0 to the carry-in input at one of
the RCAs, and value 1 to the other RCA respectively. The three adders, functioning
in parallel, finish the computations approximately at the same time, when the real
carry-out generated by the RCA corresponding to the least significant bits of the sum
becomes known, and it selects, out of the two previously computed values of the sum
(and of the carry-out), only the correct one. Thus, for instance, Fig. 2.25 presents a
CSeA on n = 8 ranks consisting of three adders on 4 ranks, assumed to be of RCA
type. It can be observed that the more significant bits of the sum are computed in
parallel for two cases, namely, for the case when cgn == {}, resulting in the bits from zi,}
to z7, and for the case when ¢, = 1, resulting in the bits from zj to z7. The selection
between the two sum binary subvectors is made under the control of the carry-out

2.2 Parallel Adders and Subtracters 51

{c4) generated by the RCA adder corresponding to the least significant part of the
sum by means of a layer of multiplexers M, one of which is detailed at a gate level
in Fig. 2.25. If this new adder configuration is compared to the RCA reference, we
can observe that {o the delay corresponding {o the worst serial propagation on the
least significant RCA (generally 2n/2 = n gate levels) there is added the delay on
multipiexer M (which is considered to be of two logic levels), Otherwise, the latency
expressed in logic levels 18 equal to (n 4 2) as compared to 2n which corresponds
to the RCA of the same dimension. The performance difference between the two
solutions is more obvious when # takes larger values, tending to reduce the latency
to a half (of course, this estimation is foo optimistic when the three adder segments
are not of RCA type). Mention should be made that the above estimation shall be
amended because the carry-out signal generated by the least significant RCA adder
(in our case, cq) generally confrols a large number of multiplexers’ select input,
which, with certain technologies, may lead to serious performance degradation. On
the other hand, if cost is estimated in terms of number of gates, the doubling of the
RCA adder for the more significant sum bits and the multiplexers layer, roughly
tends to double the cost for the CSeA as compared to that for the RCA. But these
estimations are decisively influenced by the technological factor [HePa03].

The carry-select principle applied above in the adder partitioning into halves can
be exiended by dividing the adder into quarters, or by continuing the division, in
which way further accelerations in the sum computation can be achieved. Moreover,
the segments into which the adder is divided shall not contain the same number
of ranks, it being of variable dimension. Such a technical solution starts from the
observation that, on a doubled block of b ranks, we have a latency given by 2b
gate levels to which are added the levels of the logic for obtaining the inter-block
carries. For the synthesis of this latter logic, if we are to refer to the carry-outs,
o and ¢, for the cireuit in Fig. 2.26 [HePa03], we start from the observation
that ¢, == C,, OF p7pspsps, where we have p; = x; or v, fori =4 t0 7. In
these conditions, by considering exhaustively the configurations corresponding to
the three variables (C:;m, (';}m, ¢4), from the eight possible ones, we may exclude the
triplets (0,1.0) and (0,1.1), whose appearance is impossible, and which can be used
to obtain the minimum form of the Beolean equation for the inter-block carry-out
function, denoted by ¢,y If we take into consideration that, only for the triplets
(1O 1), (11,0} and (1,11}, ¢,y becomes 1, then, the minimized Boolean equation
fOr £y 18 Of the form: ¢, = ¢, 0F ¢, 4. In consequence, in the synthesis of the
logic circuit for the generation of the inter-blocks carry a pair of AND-OR logic
circuits is involved, in other words, two levels, which are added to the 2b levels
corresponding to a block. Since (2h + 2 = 2{b + 1)), it follows that the next block in
the direction of the carry propagation can have (b 1) ranks, one rank more than the
previous one, Thus, let us extend the adder of n = 8 ranks from Fig. 2.25, obtaining
the configuration from Fig. 2.26, which presents, for the ranks from 4 to 18, the
part of the diagram which is doubled and consists of three blocks of parallel adders
{PA) that have, towards the more significant bits, one more rank each. Each block is
doubled, having a superior stage where the carry-in is 0, and an inferior one (for the
sake of clarity, at the latter stage the inputs have been omitted, they being the same

YOS B J0) UODOSUU00siu] sjusuies 97+ By

Binary and Decimal Adding and Subtracting Devices

2

g erororootel
e

*

mw nw NN ~N bN EN EN .<«N :N \?N :N w.,N :N !N
M anv 3
O
. M . ﬂ . ﬂ . H . MY e
]
3 4z ey & o L “ ooy By ooy s] e LY 2y Wy
v "y F— F¥d —n yd -
ww mw NH k\ﬂ‘ »H\ mw. aH MH. QHEH. KW:H. w«MS.M. :M?W IWEH m—wﬂm“w n.Hu-H. N_Hh_w. .:Mew\H
vz ‘z “z 7 vz “z | Pz "z "z "z w20 szl vz
‘vd w5 9 et Lvd 0 —» *¥d —
1ol IR Lo

2.2 Parallel Adders and Subtracters 53

as those from the superior stage) where the carry-in is 1. The choice of the sum
subvectors is achieved through the M multiplexers, which select the result z; or 2]
depending on the value of the carry-out which arrives from the previous block. The
first block, the one corresponding to the least significant sum bits zp to z3 (which
is not doubled), has not been presented in the figure, for the sake of clarity, it being
identical to the block from Fig. 2.25. Mention should be made that, this time, the
constructive principte which has to be restricted in RCA, has not been restricted, it
being considered a general PA, no matter the method which stands at the basis of
its synthesis. The moment the carry-out (¢4) from the first block is known, new sum
binary subvectors can be sclected depending on the activation of the block carry-out
signals, whose generation is assured through the AND-OR pairs of gates.

In a similar way, carry-select adders can be configured from blocks of variable
dimension, in a similar way to carry-skip adders. In the same way also, both of them
can have multilevel structures. In case of carry-select adders, a possibe such con-
struction divides the n ranks info blocks of n/4 ranks, of which that corresponding to
the least significant ranks is not doubled, and the other three are doubled, function-
ing as already presented, with the carry-in inputs connected to 0, and logic | respec-
tively {Parh00]. The implementation on two levels refers to the multiplexing part,
more precisely, to the selection of the more significant half of the sum bits. Such a
configuration may lead to a favorable implementation of the arithmetic pipeline but,
in this case, as well, the option to appeal to the muitilevel constructive principle is
decisively influenced by the manufacturing technology [ErLa04, Parh00].

2.2.7 Conditional-Sum Adder

As presented in the previous paragraph, the CSuA adders are related to the CSeA
ones, having at their basis the same algorithm, and they could be looked upon as a
generalization of the latter, more exactly of the multitevel variant [Yele(3]. Thus,
on the first level one bit {rom each operand is added, resulting in two pairs of carry-
swm values, one corresponding o the case when the carry-in in the given rank is 0,
the other to the case when the carry-in is 1, similar to the model of the two blocks of
the CSeA, with the stipulation that now the blocks are reduced to only one rank. On
the second level, blocks made up of two ranks are taken into account. Within them
the corresponding carry-sum pair of values is chosen by means of the real value of
the interface carry between the two ranks of the block. On the third level, the blocks
now have four ranks with the same selection described above achieved through the
real value of the interface carry between the blocks made up of two ranks. This
procedure will continue in a binary free type manner uatil the dimension of a block,
doubled at each level, is equal to that of the operands. In this way, a hierarchical
construction of log, 2 height (n being the operands’ dimension) will be obtained to
which one more logic level for the forming of the generation (g) and propagation
(p) variables is added.

54 2 Binary and Decimal Adding and Subtracting Devices

Sum bits Carry bits
z, =Xy, (c,.=c,=0) O TR, T 8 (€ T G T Y
z; = (xj@y)a or (x, By o, € = X,Y,0, OF (X, QL ¥)¢, = g6, 91 picy
e €5 = a0, OF (X, OF V0, = g2, 0F oty
z, = (. BpJE, o (LB, ¢ =(parc)i oy, orc) =

= X0, QF XLOF V.0, = 1,0, OF PL.C,

Z;:(xjﬂ?ydagﬁ(xs@yﬁcfﬁ c =x3y5 or {x, er e, =
s '5Cz QF (X, QR YS/C;

= ((%%@z ar (x;@y)xp.ie, = (o1, X5) OF (X, O Y% 1,00
or. ((xsésyx)(ng.’:.zz) or (xaﬂ%ya)(xiatyz))‘q = or ey x, or) on (x, or yHE, or vije, =
= ((Dyslg, or (5, ByJg)c; or = (2.8, 0L PS8,IC, OF (8.5 OF pyp.JC;

(0 @yp, or (x By p.jc,

Fig. 2.27 Logical equations for a 4-bit CSuA synihesis

For the synthesis of the hierarchical structure made up of a CsuA, it is neces-
sary to rewrite the Boolean equations corresponding to the various ranks fo al-
low the carry signals to act as they did as control signals in the multiplexers
of the CSeA (refer to the signal carry ¢g from Fig. 2.25). Thus, the following
cquations will be applied: z; = x; @ ¥ @ ;= {x; & ¥)T or (X © y)¢;, and
Cip | = X¥iCr OF Xp¥iC; OF Xp¥iCp OF Xy ¥i€j = X; ¥; ¢ oF (x; 0F ¥i)e; = gi&f 0F Pici,
where ¢; acts in the same way as ¢4 from the detail of multiplexer M (Fig. 2.25).
These specifications being made, Fig. 2.27 presents the Boolean equations that are
important for the sum bits, and for the carry bits corresponding to the first four
ranks of a CSuA. The dertvation of the expressions s done to obtain the forms of
the control signals for a muitiplexer M, first of all, as a function of ¢ variables, and,
subsequently, as a function of the variables p and g. Consequently, we mention the
covering in the expression of €3 of the term X2 37 by ¥2V: ¢7 and (x2 or ¥2)¢3. On
the basis of the equations from Fig. 2.27, Fig. 2.28 presents the synthesis, at the level
of logic gates, of a CSuA which generates the sum bits from zp to z3. The synthesis
tevels of the constructive hierarchy of a CSuA are highlighied; these are then rep-
resented schematicaily, in Fig. 2.29, for the extension to an adder with n = 8 ranks.
in this figure the blocks are identified by means of two indexes, B;;, where { iden-
tifies the block level on the vertical, the numbering being made downwards starting
with 0, and j aliows the identifies of the blocks within the same level, the numbering
being made from right to left starting with 0. Studying the details from Fig. 2.28
of some of the blocks of the schematic structure from Fig. 2.29, it can be observed
that on block level O we have only a single level of gates, and, after this, the levels
have similar constructions, of multiplexer type circuit, being implemented through
a fayer of AND gates (AND level) and one of OR gates (OR level). The connections
between the blocks of the structure from Fig. 2.29 can be casily found in the defails
from Fig. 2.28; the figure does not contain other notations which might have made it
to intricate. We also note that the number of block levels with multiplexer type struc-
ture, excepting the one with i = 0, is log, #, which allows the simple estimation of
a CSuA’s performance, as well as the estimation of #s cost.

As an example, Fig. 2.30 presents the addition of some operands, without loss of
generality, on 16 ranks, the block levels i being pointed out, with ¢;; denoting the

2.2 Parallel Adders and Subtracters

’z

¥NSD G- © 10T SISAIEAS [242] 0 RT'T “BL

‘z 4 4 3
A w
! ozg
! 1A2] O
;
: 19A9]
: ¥ OanNy
i
I e < T = B T = S
7,
ola| g

18As] HO

10A8]
(N,

PATHEO

10a0]
(INV

F

56 2 Binary and Decimal Adding and Subtracting Devices

Bm BBG Bos Bm Ba} | Bo:! ” Bai Boo

Py Es Py & Ps 8 P4 84 P & 7 & P18 £

. h b v a L, . 2. | h. b Y. ¥ A 9 b Y b

BIJ B!2 Bli Bu}
i
i le ‘ i Bz&}
£,
BEO
O O

L L ¥ ¥
2y s Zs 2 Zy z 1 2y

Range | 15 | 4] 13 1z inlw|9ois | 716 | s5]alala2liloao
X tle t ot 1]elrlojolalt]e! 110]1
Y o |6+t toe |1t tlolttoltle]] 110}1
BlocglCamyle ge g Sc sc Sc ¢ S¢ Sc se Sc o sc s se Sc
o Lo 00 to gt oo e it oo o do o do do o fr oo i a
=it oo o ol ot iy ot o de H1 o ot 1 ue 1 :
Cofe=Ofo o ot o r e oo i e 1l oo i i o oo i o
s O O O O O I .) g oo 1
pp Vo 6 o i o o toma oo f it o o i o
Clactle i i o o] i e oo 1 i 9o 4
pple e o o o of o i wo if i of e o e 1 0
o =to 1 1 HIE | ¢ o
i=4 | =00 1 1 i op o 0 i 1 1 I 9 8 o o R

Fig. 2.30 CSuA manner addition exampie of some 16-bit operands

input carry in a block, with each block level required to have both valoes O and 1.
Also, C and § denote the carry and sum bits, and, for each level, the Mocks have
been delimited through double partition lines. Starting with ¢, = 0 in rank 0, it can
be observed that at each block level crossing, the number of the correct sum bits is
doubled.

2.2 Parallel Adders and Subtracters 57

i X W, Yoox, ow, Yo% w, Yo oW, Yxw
L J | . ; b
i1 FAC |+ 5= FAC FAC G CSA
e
[0l V4

v, |z, ¥, v, |z 14
l ¥ l v l v {4/4 4
L FAC |« 1| BAC FAC CSA
d [P
414
zl;' zl 7 z; } . [ol A

Fig. 2.31 FACs interconnections imto a CSA structuse

2.2.8 Carry-Save Adder

We have left the carry-save adder {CSA), which, as a matter of fact, is appliedona
targe scale, to be presented at the end of the chapter dedicated to the adders, because
it does not realize a sum of two operands in the conventional meaning, but facilitates
the addition of several operands (multioperand addition), as is required, for instance,
in a multiplication operation [HuEr05). This is the reason why the problems which
are specific to this type of adder, are presented in extenso, in Sects. 3.6 to 3.10.
Now, we introduce the CSA by mentioning only that, having operands of # bits, it
is made up of n full adder cells (FAC) which are not connected to each other as
an RCA, instead being disjoint. The carry-in inputs thus remain unconnected, and a
third operand can be supplied to them, according to the mode] presented in Fig. 2.31.
Thus, the first CSA level performs the addition of the operand vectors W, X and ¥,
generating two vectors, the sum Z°, and carry C' vectors. After this CSA level,
there can follow others, to which the carry vector has to be applied shifted by one
binary rank to the left. Thus, the flow addition of several operand vectors {VeEN(2]
is possible, as shown schematically in Fig. 2.32 [Haye98], where, without loss of
generality multioperand addition is used to perform binary multiplication, Without
insisting upon the characteristics of this last operation, we shall consider the num-
bers represented by the multiplier X and the multiplicand ¥ to be unsigned integers.
Following decoding of the multiplier X and one bit product forming, of the type
M; = x; Y2, through maltiplicand gating, there follows the addition of these one
bit products, for instance, from My to Ms. In fact, this case has been presented to
exemplify the implementation of multioperand addition by means of a CSA tree
structure, each adder supplying a pair of carry and sum vectors.

Mention should be made that a certain bit of the sum vector is obtained without
carry propagation, adding three bits no matter the result of this operation executed in
the neighbor rank on the right. What is pot sufficiently clear in Fig. 2.32 is how the

58 2 Binary and Decimal Adding and Subtracting Devices

Fig. 2.32 Block diagram of a Y X
binary multiplier with CSA l i
levels

‘ Muitiplier decoding and multiplicand gating

connections between the CSAs on vartous levels for carry vector transmission are
made. To allow the necessary carry propagation, this vector is applied shifted by one
rank to the left, as suggested in Fig. 2.31. Another aspect that has to be pointed out
in connection with multioperand addition through CSA levels is that the last carry-
sum pair is added, conventionally, through one of the parallel adders (PA} presented
in the previous sections, and in this way product P = XY is obtained. To highlight
the carry connections for the simpler case when the operands have the dimension
n =4, Fig. 2.33 presents the two CSAs detailed at FAC level. The functioning of
the structure from Fig. 2.33 is exemplified in Fig. 2.34 for the operands X = 1315
and Y = 14yo. The CSA adder from the first level adds the partial products Mg, M,
and Mz, and the carry vector (€7 is applied fo the next level shifted by one rank to
the left, which is equivalent to the doubling of its value (2C"). Then, the next CSA
adds, in carry-save mode, the sum (27) and carry (2C7) vectors, that have come from
the first level, to the fourth product of one bit, M1, and thus there is obtained the pair
of sum (Z")—carry (C'") vectors, which has to be added conventionally. In case of
the structure {rom Fig. 2.33, this last operation is performed by an RCA haviag as
inputs Z” and shifted C” (2C") vectors.

The sections of Chap. 3 refer to performance and cost aspects that are specific
to CSAs. They also contain various configurations that can be produced with this
category of adders.

2.2.9 Binary Adders with Parity Control

Looking for solutions to improve performance and/or cost, adder designers have
combined the above-mesntioned constructive principles, arriving at various hybrid

2.2 Parallel Adders and Subtracters 59
X ¥y XY X% 0 Xy XY, Ay XY, a4 xy, Xo¥y
I r I 2 S 4
FAC ‘] FAC | FAC FAC }J
2 Tz T z / xfo) I ' z 7
FAC FAC FAC FAC
- - - 7, 2 o
¥ k.. ¥
FAC FAC FAC FAC [0}
l i l l ¥ v v
J: P s Py 2 B P Pe

Fig. 2.33 Deuwiled FACs interconnections {or a 4-bit operands binary multiplier having two CSA
levels and an RCA level

Fig. 2.34 4-bit operands

X%, %,
multiplication example vsing X=1101
. Y=1110
two CSA levels
M, =x, ¥2=0000LL10
M, =x, Y2=0000000
M, =x, ¥2001110
Z2’=00110110
e C'= 00001000
Z'=00110110
2C°=00010000
M, =x,¥2=01110
“"=01010110
C"=00110000
Z'=01010110
207=031100000
P=10110110

combinations, of RCA-CLA type, but also of CLA-CSeA, CLA-CSuA, CSeA-MA
types, a.0. [Kore02, Kuli02, Parh00]. Often, in these structures, such attributes as
reliability, maintainability, availability, and, generally, dependability are relegated
to secondary status, or they are grafted on to solutions which are optimized for
performance-cost [ALRLO4]. We point out that in order to obtain “optimized” so-
tutions with respect to these desiderata, which are of growing importance, it is nec-
essary to address them as early as possible in the design process COPRO6]. On the
other hand, since adders represent one of the most often used structural elements
of a computer, extrapolating Amdahl’s law [HePa03} to dependability aspects, we
may say that design solutions favorable to the above mentioned attributes need to be

60 2 Binary and Decimal Adding and Subtracting Devices

applied to adders. This is the reason why, at the end of this chapter, we refer to one
of the multiple existing methods to facilitate checking of such devices.

To introduce the promised strategy, we mention that parity control and its gen-
eralizations are widely used in the checking of information transfer and storage op-
erations {AbBF90]. But, different methods are used for arithmetic operations, such
as, among others the use of residual codes [VeENO02, RaTy98]. Consequently, the
tendency to apply checking with reference both to information transfer and stor-
age operations, and to arithmetic operations, has been found to be of major interest.
Thus, we present a possible approach, namely the extension of parity control code
to addition through so-called parity-checked adders (PCA). For the construction of
such a device, there will be attached to each of the two operands, X and ¥, as well
as to the sum result Z, a parity bit, estimated on the basis of the following relations:

Xp == X Brp 2B BB -Bx; By
Yp =Y 1B¥02@ BB - Endw (2,10
Ip=Zp DIy 2@- Bz, B Dy D

where @ represents the EXCLUSIVE-OR operator (equivalent to the moduifo 2
SLm),

Since we have from above z; = x; ® ¥; @ ¢; , by making the substitution in (2,10}
for each rank, from 0 to {n — 1), the following will be obtained:

Z[aﬁxp@)’p@cnmlEBC!:M2@"‘®C§@(70 (210

Relation (2.1 1) stands, predictively, at the basis of the generation of the sum parity
bit, which is compared to that actually formed of the sum bits and computed through
the equation for 7, from (2.10). The synthesis of the checking thus described feads
to the so-called parity checker diagram, essentially made up of an EXCLUSIVE-
OR {EX-OR) tree. In fact, we have two subirees, one of them implementing (2.11)
{EX-OR tree 1), while the second implements the generation of the sum parity bit
7 based on the equation for z,, from (2.10).

Figure 2.35 presents an adder, which, for the sake of example, is of RCA type
(but it may be, with the adequate amendments, of any type presented above) and the
attached parity checker. The outputs of the two subtrees, EX-OR tree | and EX-OR
tree 2, are passed to the EX-OR gate, which, in case of inequality, signals the oc-
currence of an error. The question is whether the parity-checker from Fig. 2.35 is
sufficient to detect alf the singular errors, which, it is well-known [RaFuB9], repre-
sents the target of the parity control code. It is sure that any singular fault regarding
the part of the circuits that are specific to the generation of a sum bit z; (which
exchudes the circuits for the evaluation of the carry bit ¢, —refer also to the imple-
mentation versions in Fig. 2.4) bring about an error which changes the parity given
by z, i (2.10) as compared to that which is predictively computed through (2.11),
and, consequently, will be detected by determining ERROR = 1.

But the situation changes when the fault occurs in the chain of circuits which
enables carry propagation, such as, for instance, the stuck-at-0 of NAND gate out-
put [ABBFO0] which generates carry ¢;4; (Fig. 2.4a,b}. In such a case, the fauttmay

2.2 Parallel Adders and Subtracters Gl

Yy ¥ X x

A

=

- EX-OR checker |

P tree !

Coi | |

RCA ! EX-OR |
! | ERROR

m | D

1 |

1 I

— EX-OR !

I tree !

»...2 I

Zoi |

A 2

Z z,

Fig. 2.35 Block diagram of a parity checked adder

Xy X6 X5 X¢ X5 X7 X1 Xg XXXy Xq X3 X2 X1 Xp
+Xﬁ01101I10m>xp=1 X=011901110=x,=]
Y=00110101=0)=0=%=0 "y=00110101 =dr,=0r=2=~1
CﬁIlIliOOOﬂrbcpzl‘n}emr!! C=11 000 edc,=0 0 efrar 1t
Z=10100011=2=0 Z=1 011 enz=]

a b

Fig. 2.36 RCA binary addition example with masked singular faudt presence on the carry chain

bring about the error not only at the given carry bit, but also at the sum bit, suc-
cessively, and, due to propagation, more sum and carry bits can be affected. But
mention should be made that their total number is always even, because the number
of the erroneous sum and carry bits is equal. Figure 2.36 presents an example of ad-
dition of two unsigned integer numbers, X = 110;¢ and ¥ == 53¢, and, in the correct
addition {Fig. 2.36a), the sum Z = 163y results. The sum parity bits, computed by
means of relations (2.10}, and (2.11) {in this case, we have used 7, = X, & ¥p B cp,
where we noted ¢p = ¢y D B B B0y B cp), result, in both cases,
zp = 0. On the other hand, accepting the stuck-at-0 fault of the final NAND gate
which generates carry ¢3, Fig. 2.36b presents, on the addition of the same operands,
the number of erroneous bits brought about by the given fault. Thus, erroneous ¢3
determines the introduction of errors into 53 and ¢4, and erroneous ¢4 determines
the introduction of errors into 54 and ¢s, the latter affecting only 55, not ¢g, because
in rank 5, through x5 = y5 = 1, the conditions for the generation of a new carry
are created, no matter the propagation of the carry, in our case, erroneous, which
came from the previous ranks. The presence of the fault modifies the bits ¢, as well
as zp as compared to the situation from Fig. 2.36a. Consequently, the two values
computed for z, are again equal, no malfunction being signaled, and the fault is
not detected. Thus, the parity checker diagram is not sufficient to assure correct-

62 2 Binary and Decimal Adding and Subtracting Devices

ness of the adder in case of singular faults through the parity control code. Mention
should be made that the analysis made for the stuck-at-0 fault can also be extended
to stuck-at-1 faults (when a pair of bits (0,0} of the operands stops the propagation of
the erroneous carry bit), as well as to other types of faults [RaFu89]. To highlight the
possible singular faults on the chain of circuits which implement the carry propaga-
tion, it is necessary to appeal to supplementary circuits added to the parity checker.
All these circuits, in fact redundant related to an economic design, are meant to as-
sure the checking of the adder. There are two technical solutions for the additional
circuits, namely, carry chain duplication, and changing the adder into a special one,
i.e. the so-called carry-dependent sum adder (CDSA) [RaFu89]. Regarding the first
solution, as its name shows, this provides, instead of ope route for carry transmis-
sion, the provision of two such chains of circuits. The part of the circuits involved
in the sum bits generation is not doubled. The use of this procedure is due to the
fact that the fault being singular, it wili affect the functioning of only one of the
two routes, so that its effect may be detected by connecting to the parity checker
the carries generated by only one propagation chain. Thus, Fig. 2.37a presents the
duplication applied to an RCA and Fig. 2.37h, presents the same principle applied
to a hybrid solution, CLA-RCA: more precisely, the carry chain, made in RCA
maode, is attached, together with the parity checker, to a CLA full adder [RaFu89].
in Fig. 2.37a, the following notations have been used: SC (sum circuit) for that part
of the circuits of a FAC which generates a sum bit, CC {carry circuit) for that part
of the circuits of a FAC which generates a carry bit, and CC¥ for the duplication
of a CC. Otherwise, for any combination SC + CC, and SC + CC¥* respectively,
a FAC is obtained. As mentioned above, the singular fault on the carry chain cap be
detected by connecting only one of the carry vectors to the parity checker. On the
other hand. in Fig. 2.37b, the following notations have been used: AC, for an adder
cell which implements the sum function and generates g and p variables (refer to
Fig. 2.18) which are specific to a CLA structure, and CC* with the same signifi-
cance as above, representing the duplication of that part of a FAC which generates
a carry bit.

Regarding the CDSA solution, it is necessary to redesign the fundamental struc-
ture element of the adder, represented by the adding cell. The approach to its syn-
thesis is an additional reason for taking into account the design criteria favorable to
dependability in as early a phase of design as possible. The basic idea consists of
creating an “imbalance” between, on the one hand, the number of erroncous carry
bits and, on the other hand, the number of erroneous sum bits. Thus, by adding the
two numbers, there will result an odd value, which is detected by means of the parity
control code. For clarity reasons, let us suppose that the singular fault determines,
as the first erroneous bit, ¢;4.1, this bringing about the passing into error of the bits
Zi+1 and c;op and then, let us suppose that the error propagates as far as the bits
¢i4; and z;1 ;, the other carry and sum bits remaining unaffected. The total num-
ber of the erroneous bits, resulting from the example given in Fig. 2.36b, is even,
which does not allow fault detection. Therefore, we shall induce the above men-
tioned “imbalance” by designing an adder cell (particularly, cell {) in such a manner
that, when, because of the fault’s presence, the carry-out bit (¢; 1) is errongous, in

2.2 Parallel Adders and Subtracters 63

YuiXor VarXa: ¥ X Yo %o

i

Zny Z; Zy

Lv) 4 Lv h 4 Lv h 4
5C 5C
I

C
LCC‘

AT

B

% CE 9}

C:: d anz CZ c1
CC* iy CC* OOt e
ZN-IZ?LZ z} Zﬂ
Yo —> Parity checker ‘
X, EX-OR tree
ERROR
4]
Carry-lookahead circuit —
Doy Cni ProBas (%) P& o, Do
A ky,.% Yoo VX YV
ZH—(‘ L‘»J anz i%ﬁz— ZI W zo
= AG,, T-AC,,.Z L AC, L AC, —
L 2K A i v aganes
ot . e € . <} o
ZyiZgr Z1 2y CC,o CC, i« CC, e
Yo b Parity checker -
K ¥ EX-OR tree
v
ERRCR
b

Fig. 2.37 Single tauht detection solutions based on carry chain duphication

an artificial way, the sum bit (5;) also becomes erroneous, a bit which otherwise
would have been correct. Thus, the total number of erroneous bits becomes odd,
ensuring the fault detection through the parity code. In this way, the design of an

64 2 Binary and Decimal Adding and Subtracting Devices

Fig. 2.38 Truth table for the

syathesis of a CDSA rank Yo i X G EGn | 2
0 0 0 0 0
ojofolMID
0 [t} 1 0 i
oioi 1 OO
0 1] 0 1
oi1io (@
EEEEE IO} O]
0 1 1 i 0
i G 0 0 i
1iolo OO
1jol1 @D
1 0 1 i 0
tltriof@|@®
1 1 0 H 0
RN IO O]
11111 ¥ 1

Fig. 2.39 Minimization of G

the sum output’s logica

equation of a CDSA rank @ m
X
OO
¥

adding cell for CDSA is done on the basis of the truth table from Fig. 2.38. The
inputs are represented, first of all, by the vadables x;, y; and ¢;, there resulting two
values for ¢; 4.1, of which one is correct and the other is erroneous, the latter being
marked by encircling. Then, the values for output z; are deduced by assuming as in-
puts, besides the triplet (¥, x;, ¢;). also ¢;41, in which way, when ¢;..1 18 erroneous,
z; (marked by encircling) becomes incorrect, as well. For instance, let us consider
the triplet {y;, x;, ¢;) = (0, 1, 1) which, in normal operation, determines the dou-
blet (civq, z;) == (1,0}, but when ¢;.1 becomes 0, in an erroneous way, z; = | will
be induced through the circudt, i.e. an incorrect value. Starting from the truth table
from Fig. 2.38, and using the Karnaugh map from Fig. 2.39, following the favorable

2.2 Parallel Adders and Subtracters G5

Carry —lookahead circuit
Civz Piviivy Lis < P 8i

A * k
F

& Y

s
Parity checker
EX-OR tree
ERROR

Fig. 2.40 Block diagram of a CDSA with gate level details for the ranks { and § + 1

grouping of the binary units, the Boolean expression given below will be obtained
for the sum output function z;:

Zi == XiCj Ciyy OF YiCi iyt OF XiciCiql OF §iciCigy OF Xi §i CiCivt OF X; Yi€iCigs
(2.12)
Taking into account the variables g; and p; which are specific to a synthesis of a
CLA adder, relation (2.12) can be brought to the following form:

Zi = PiCi Ciql OF BiCiCit] OF Pi CiCig] OF BiCiCi+] (2.13)

Using (2.13} and appealing to an implementation with AND-OR gates, Fig. 2.40
presents, in one of the possible synthesis variants, the CDSA successive cells i and
({ + 1) together with an acceleration circuit for the carry generation specific to a
CLA, with the corresponding parity checker.

Chapter 3
Functional Analysis and Synthesis of Binary
Multiplication Devices

3.1 Binary Multiplication Methods

The multiplication operation is generally performed over the operands made up of
the multiplier and the multiplicand, denoted, for consistency, by X and Y. Under-
going computer processing the operands are represented by binary numbers which
are considered, first of all for simplicity, integers without sign. The desired result
consists of the product denoted by P, which, as is wel known in conventional arith-
metic, is obtained by repeatedly resorting to the fundamental operation of addition.

In the beginning we present the attempt to produce P by adding operand Y to it-
self X times. Translating this procedure in terms of hardware description language,
which we shall use below, and whose characteristic elements are presented in Ap-
pendix A, we shall obtain the code sequence from Fig. 3.1 (adapted after {Haye98]).
Generally, we consider the operands’ dimension and implicidy that of the bus, as-
sumed to be “split” into INBUS and OUTBUS, of § hits each. The multiplier device
contains register CQ, for the initial storage of X, and register M, for the storage of ¥
during the entire length of the computation process. Product P will be stored in reg-
ister CP, naturally provided to be of double dimension. At the presented registers’
configuration is also added CM, a companion of M, whose initial content ¥ can be
decremented. CM is periodically refreshed with the value Y, stored in M, at the be-
ginning of each addition of Y. Following the operands’ loading and the initialization
of CP’s content {which are elementary operations executed at two different CLOCK
pulses labeled by BEGIN), it is tested whether one or both operands are zero (la-
beled by TEST1). This terminates the loop implied by the method. Each Y is added
to CP’s content unit by unit, under the controf of CM’s content (labeled by ADD and
TEST2). Following the addition of a ¥, the content of CQ is decremented and that
of CM is restored (labeled SUB). Thus, X is gradually reduced, unit by unit, until it
becomes O (determined through TEST3), and the operation ends with the returning,
first of all, of the most significant part of the product and, then, at the following
CLOCK puise, of the less significant part of the product (labeled OUTPUT).

The analysis of the performance/cost impact reveals that this procedure does not
suffer much, as far as the investment in circuitry is concerned, because the specific

M. Viadutiv, Computer Arithmetic, 67
DO 10.1007/978-3-642-18315-7 3, © Springer-Verlag Berlin Heidelberg 2012

68 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fxg 3.1 Dc.:sc'r;p('lon of the multiplier |

binary multiplication as declare register CQ[7:0], M{7:0}, CM[7:6], CP{15:0];
addition of the multiplicand declare bus INBUS[7:0], OUTBUS{7:0}%;

to itself by a number of times BEGIN: CP=0, M:=INBUS;

equal to the value of the CQ=INBUS, CM:=M;

muliiplier TEST: if CO=0 or M=0 then go to OUTPUT,

ADD: CP:=CP+1, CM:=CM-1;
TEST2: if CM*0 then go to ADD,
SUB: CQ:=CQ-1, CM:=M;
TFEST3: if CQ#0 ther go to ADD;
OUTPUT: QGUTBUS[7:0]:=CP[15:8};
QUTPUT: QUTBUS[7:0]=CP[7:01,

END:
Fig. 3.2‘ “'Papt.‘,r and pencil” F110=ypyy=Y
conventional binary 1101 =xxxx=X
multiplication example 1110507
0000..x¥Y

1110....x¥7
1110 Y2

3
10110110 P=2xY2

part of this multiplication device (the companion register CM, the double dimension
of CP, as well as the fact that all the registers that have the prefix letter C from
“Count” are provided with the counting function) may be considered to be roughly
in balance with the characteristics of other multipliers, as presented below. What
restricts the area of application of this method, almost exclusively to the didactic
field, is the prohibitive computation time which, leaving aside the tnput operands’
loading and the returning of the result, requires, in terms of CLOCK pulses, an
O(n*) complexity, n being the assumed dimension of the operands.

Unlike the above-mentioned method, we present below the conventional multi-
plication method, suggestively called “paper and pencil” [HePa(3, Stal99, Haye98],
which in its computer implementation version, does not appeal only to the iteration
of the simple addition steps seen above, but also to some more complex addition-
shift ones. But fet us presend, first of all, the classical multiplication operation, in
binary version, this time appealing to an example which involves operands X =
x3xoxixp = 1310 = 1101s and ¥ = y3yay1vp = Idyg = 1110n, where x; ((=0, 3)
and y; (j =0, 3) represent the binary digits of the two numbers (Fig. 3.2}. The
procedure is based on the previous forming of the one bit products of the operand
Y (x; Y}, their progressive one bit Jeft-shift (x; ¥2h starting with the least significant
bit of X (xp), and, finally, the addition of the one bit shifted products (x; ¥203. This
method is inadequate for compuier implementation, because the intermediate stor-
age of the one bit shifted products makes excessive use of the memory resource,
requiring in practical cases large amounts of memory.

A first improvement regarding the case presented above consists of the sequen-
tial forming of a cumulative partial product, which is initially 0, and to which are
successively added one bit products of Y adequately left-shifted (Fig. 3.3). Thus, it

3.1 Binary Multiplication Methods

Fig. 3.3 Herative binary
multiplication example with
unchanged position of partial
and final products and
lefi-shified one bit products
ot the multiplicand

Fig. 3.4 THterative binary
multiplication example with
unchanged posidon of one bit
products of the multiplicand

69

Ho=yuwy =¥
1 =xxxx, =X
Pl
1110...x,¥2°
P =P Y
0000......x, 72’
[000TTTd....Po=P, +x, Y2
0.5, ¥
OIOG0TT0.... P =P, +x, Y2
1100k, ¥

[OLI0II0,.. P, =P, 5, Y2 = P

111 0=yyyy5Y
110 =xx 337X

00000000 Po=
110

and right-shifted partial ¢ g g g {1) } : ? 6"“""'""?”??”
roducts [ETTTVINY S '
P (G000, ¥
X E I SO oy e
00001110.....P=2'P,
L1100 .Y

CLOOOL IOP =P+ Y
01000110...P.=2'P,
T30y
10110110...°P =P +xF
10110110..P,=2'P=P

can be observed that, recurrently, the following iteration given for step (7 4 1) is
used:

Py = P x Y2 3.1

where Py is the new partial product obtained by adding to the previous (P} the
one bit product of ¥, adequately left-shifted, this last operation being equivalent to
multiplication by 2 (x; Y29). The result (P = 10110110, = 182;y) is obtained after
the last iteration. During the operation, according to (3.1), each Heration requires
the storage of only two numbers (P and x;V 24y, avoiding the above-mentioned
deficiency of the classical method. This procedure is characterized by the fact (seen
in Fig. 3.3) that all partial products, including the final one, maintain their position
unchanged, the one bit products of ¥ being progressively left-shifted.

A second improvement, equivalent to the above from the point of view of storage
space, is also based on the same sequential forming of a cumulative partial product,
which inigially is 0 as wel, but which has no fixed position. This time it is shifted
to the right and to it are successively added one bit products of Y, with unchanged
position throughout the entire operation (Fig. 3.4). Thus, it can be observed that,
recurrently, the following compound iteration given for step £ + 1 is used:

Pi= P+ xY
} (3.2
Py =275

70 3 Functional Analysis and Syathesis of Binary Multiplication Devices

where F; | is the new partial product obtained by right-shifting (equivalent to divi-
sion by 2, e 21 FP;) the previous product P;, to which has been added the one bit
product of the non-shifted ¥ (x; ¥).

Although equivalent, as meationed above, the two procedures differ regarding
implementation, because the procedure based on iteration of (3.1) requires, at feast
at the first analysis, a 2r bits adder (n being, again, the dimension of the operands),
while the procedure based on iteration of (3.2) requires a configuration artifice, pre-
sented in detail below, which will allow the conservation of the adder’s rank number,
maintaining it at the more reasonable dimension of n.

3.2 Sequential Sign-Magnitude Binary Multiplier

Supposing, without loss of generality, that the binary numbers are, this time, sub-
unifary fractions represented in sign-magnitude, namely on 8 bits, let us present the
procedure based on iteration (3.2) for this case. Thus, we have the following input
operands:

4
X =xyxg...X; ... 20 =Xx7 inziw'i
i=0
(3.3

6
Y= yve. ¥ ya=yr p vl
j=0

where the most significant bits (x7 and y7) represent the numbers’ signs and the
other bits represent the magnitude part. The aim is to obtain the product result:

i4

P=PisPia-.. Pi...pipo=pis p_ pr2t (34)
k==l

where, obviously, pys is the sign given by the EXCLUSIVE-OR operation, ps =
x7 @ y7, the other binary digits being the magnitude part with the maximum di-
mension of 14 bits {ranging from pys to pr), to which is added the “harmless”,
regarding, the value of P, pp = 0, an artifice accepted to operate on 8 bit numbers
or, more generally, a number of bits which are a multiple of 8 (consequently, in our
case, P is on 16 bits). Except the operands’ loading and the returning of the result,
the essential part of the algorithm is represented by repeating the addition-shift (to
the right) steps, given by (3.2), a number of times equal to the dimension in bits of
the magnitude part, (in our case 7), and the evaluation, finally, of the product’s siga.

Translated in terms of the same descriptive language (refer to Appendix A} the
multiplication procedure can be associated the code sequence from Fig. 3.5 which in
its turn corresponds o the hardware configuration of the multiplication device rep-
resented in Fig. 3.6 (adapted from [Haye98}). The essential feature of this device is
the fact that the operation is executed by means of a series of CLOCK pulses, which

s
51

Sequential Sign-Magnitude Binary Multiplier 1

multiplier 2
declare register A[7:0], Q[7:0%, M[7:0], COUNT|[2:0%;
declare bus INBUS[7:0}, OUTBUS[7:0];

BEGIN: A=0, COUNT:=0, } T
INPUT: M:=INBUS; {et
Q=INBUS; - ---omvrmmene oo {c,}
TEST!: jf Q030 then go to RIGHTSHIFT,
ADDE ALT0]=ALGOHMIE0]; €nmnememmeememommmoemmenannnn (e
RIGHTSHIFE: A[7]:=0, A[6:01.0=A.0[7211, } e (e}
INCREMENT: COUNT:=COUNT+1; :

TEST2: f COUNT7*1 then go to TESTI,

SIGN: A[71=Q[0] ex-or M[7}, Q[0]:=05€ - - ----ooo oo i)
QUTPUT: OUTBUS A € fe,}
OQUTBUSm0; v v s s {e}

BN » {END}

Fig. 3.5 Description of sign-magnitude binary multiplication

% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, = ’E:??@

?‘,’“‘ Accumudator oy Multiplier register | I S i_M?}Lipp_i_igmzl_zggi_s_.tsz ______
osgaATE A AgeQTE Q) ‘M["fi M §Mw#

: ot

c, ‘ 7 7 9

Cy----- DSI 7777777777 _‘\

2 18 Counger 8
8
¢, Parallel adder Ci 0
C’MKE DOUIBUS c‘v'? gee countr §¢ %
\ |

8- bit

data

bus ‘

Extemal | BEGIN----—— . Tnsernal
conirol < CLOCK—=~~----» Control control
sigaals END -~ umt signals

Fig. 3.6 Block diagram of a sequential sign-magnitude binary multiplicr

we assume arrive from outside the device (they are included in the set of External
control signals), from the Central Processing Unit (CPU). Regarding the structure
registers we have, first of all, the two registers where are stored the initial operands,
namely, the multiplier X in register (@ and the multiplicand ¥ in register M. Although
of secondary importance, the denotation by letter (@ of this register is somehow stan-
dard [Haye98). The name "multiplicr” would have justified the denotation of the
register by the letter M, but this letter has been preferred for the multiplicand regis-

72 3 Functional Analysis and Syathesis of Binary Multiplication Devices

ter which has the same initial fetter M. Since the device from Fig. 3.6, with certain
modifications which do not affect the register’s configuration, can also be used for
the implementation of binary division, a case when the multiplier register is used
for the storage of the “quotient”, the given register has been denoted by the initial
letter from the English term, L.e. Q. We also have a third register denoted by A, from
“accumuiator”. The A register makes up, together with 3, a double length register
{in our case 16 bits} provided with the function of left-shifting (refer to the arrow
which unites A with Q in Fig. 3.6) and where the partial products described by (3.2)
are formed as welil as the final one. Through a “flexible” association from the func-
tional point of view, “the accumulator” syntagma has been taken from the adder of
some obsolete computers {Haye88], having not only the function of executing the
combinational operation of addition, but also that of the cumulative memorizing of
the partial and final resulis.

The device also includes a COUNT register provided with a counting function
meant to count the iterations, in order to ensure control of termination of the oper-
ation. Taking into account (3.3) and (3.4), the executed number of iterations (3.2)
for a complete multiplication is 7 (& case when C{2]JC[1}C[0} = 111, and signal
COUNT7 == 1 is generated), which requires {log, 7 = 37 ranks for the iteration
counter COUNT, where the bars [represent, again, the smallest integer with value
greater or equal to the expression between the bars | Yarb97}. All the specified regis-
ters are adequately declared in the sequence from Fig. 3.5, where the bus declaration
is also found. In fact the bus is bidirectional, but for didactical purposes, i.e. for high-
lighting the application of the control signals ¢; (I = 0,...,6), it has been “split”
into the input bus INBUS and the output bus OUTBUS, each of them on 8 bits.

Before discussing the algorithm, we mention that the structure also contains,
besides the clements specified above, a parallel adder which represents a combina-
tional circuit of one of the types studied in the previous chapter, as well as a control
unit. The adder enables the addition of two numbers with dimension corresponding
to the magaitude parts of the two operands. lts carry input ¢y, (carry-in) is set to 0
fogic (this connection corresponds to the case of the algorithm described above, but
the given input may be connected, through reconfiguration, to a controf signal ¢;
which will transforn the adder into a subtracter, for another algorithm). The carry
output ¢,y 18 connected to the most significant rank of A {A}71]), because on the
addition of two numbers, one represented by the more significant magnitude of a
partial product (refer to Fig. 3.4), and the other represented by the magnitude of ¥
from M, there may result a carry from the msb rank (cay = 1)

Regarding the control unit, giving a more general character to this problem, we
may associate to a local control unit, such as the control unit for our multiplica-
tion device (Fig. 3.6), the block diagram from Fig. 3.7 (adapted after [Haye98] and
[Patef6}). The control unit represents a sequential fogic circuit to whose inputs
are applied, besides the already mentioned CLOCK pulses, two categories of input
signals, The first category comes from the CPU and consists of the signals from
the outputs of the operation code decoder {or opcode decoder, for short) of the in-
structions from the dedicated instruction register. Our multiplier (Fig. 3.6) has only
one signal belonging to this category, namely BEGIN (Fig. 3.7), which s activated

3

51

Sequential Sign-Magnitude Binary Multiplier 73

Fig. 3.7 Block diagram of a .
local control unit of a CLOCK Control
sequential binary multiphier unit S id C_cmtrol
[P T — 0] L1} Cfnnnnn »| signals
signals e COUNT 7 . {0
&0 : . - — | device
devir::le {Se;que_mtla.l o S » J(multiplier)
(maltiplien\)] 0gic)
END: -~
BEGIN :
4 :
T A *,
Opcode decoder
! MULT §M
I gy
| A A
Instruction
register
Central Processing Unit

when the code of a multiplication instruction of MULT SM (Muitiplication Sign-
Magnitude) type is supplied to the opcode decoder. The second category of input
signals corresponds to the states of the controlled device. The signals important for
our device (Fig. 3.6) are, as results from the algorithm description (Fig. 3.5), two
state signals, i.e. the signal corresponding to rank Q0] of register Q, and the above
mentioned COUNTT. Emphasizing the signal Q[0], depending on the state 0, re-
spectively 1, of the Q[0] bit, the addition provided by the ADD label (Fig. 3.5) is
omitted or executed. This implementation means a certain deviation from the “ad
litteram” one of the algorithm based on (3.2) and exemplified in Fig. 3.4, because,
as can be observed, when the current bit x; from Q{0] is 0, the useless, but lengthy,
additions to the partial product of O are avoided (i.e., P, = P; + () and it passes
directly 1o the right-shift operation provided by the RIGHTSHIFT label (Fig. 3.5).
On the other hand, a control unit supplies as outputs the so-called control signals,
which can also be divided into two categories. Some of them, usually denoted by ¢;,
are applied to the internal structure elements of the device (internal control signals),
Fig. 3.6, but also in the more general Fig. 3.7, where there have been marked, using
the same signal names, the particular inputs and outputs corresponding to the device
from Fig. 3.7. The sequential generation, synchronized through CLOCK, of these
signals allows the concatenation of the microoperations provided by the algorithm.
The synthesis of the control unit, tending towards an as good as possible solution
of the performancc/cost impact, aims to attribute the microoperations to the control
signals so that the number of the latter may be minimized, while ensuring the avoid-
ance of any logic conflicts. Also to be taken into account are the loadings of the
circuits cutputs (fan-out { Yarb97}) which generate these control signals. Regarding
the algorithm from Fig. 3.5, mention should be made that to the signal ¢ has been
attributed the son-conflicting microoperations for the initialization of the registers A

74 3 Functional Analysis and Syathesis of Binary Multiplication Devices

and COUNT {A := 0, COUNT := 0), and for the loading into register M of the mul-
tiplicand from the INBUS (M = INBUS). The next operand, the multiplier, being
taken from the same INBUS, is loaded into register Q@ under the control of a distinct
control signal (1), whose generation has to wait for the bus release from the multi-
plicand for the multiphier to be placed on the bus. Figure 3.6 presents the registers
and the data lines controlled through the signals ¢;. Otherwise, regarding the second
category of control signals, which are externally sent from the device {the external
control signals), these consist, in our case, of only the END signal (Fig. 3.6), which
is meant to inform the CPU, in an asynchronous manner, that the operation has fin-
ished. However, if the waiting time interval covers the longest execution {involving
the “worst case” operands), the signal END (and other signals “related” to i) no
tonger have to be generated.

The representation and functional conventions of Fig. 3.6, which we intend to
rigorously apply to the other diagrams, are syatheticaily summarized below:

(a) The connections used for the data signals’ transmission (including the state sig-
nals), which are marked with a solid line, are clearly distinguishable from the
connections used for the transmission of the control signals, which are marked
with a dotted line [Haye98].

(b) Generally, a number is associated with the data connections (refer to Fig. 3.6,
value 8 corresponding to the connection between INBUS and register M), which
is equal to that of the physical lines. The number may be missing, which means
that there is only one physical line (refer to Fig. 3.6, the connection between the
EX-OR gate and rank A[7}). Within the same context, certain data connections
may branch off, possibly unequally, in which case the point for the specification
of the branch is used, and on each branch the number of physical wires will be
marked. To a bundle of connections other connections can also be added. In this
case the connections” reunion will not be marked using the point, but a “milder”
unification, such as the model of the eighth wire’s attachment, corresponding to
rank A{7], to the bundle of seven output connections of register A to OUTBUS
(Fig. 3.6).

{c) On certain data connections circlets are provided and to them a control sig-
nal is applied, which signifies the validation of the information loading and/or
downloading. For instance this may happen into and/or from a register, but it
may take place in only one of its ranks. According to the technology of the
available circuitry, there can be imagined various technical implementation so-
futions such as, for instance, the loading of register M with the multiplicand
operand from INBUS by applying, to all the CLOCK inputs of M, the common
control signal ¢p. Another solution may be fo appeal 1o an AND logic circuits
“layer” which has the common signal cg and which, when activated, allows
the information to penetrate from INBUS towards M. Finally, if we take into
account a bidirectional bus of IOBUS type, the implementation can be done
by means of three-state circuits, according to the model! presented in Fig. 3.8
for bidirectional information traffic (from the lines of the IOBUS bus to the
synchronous inputs of register Q ranks, and between the latched outputs of Q

s
51

Sequential Sign-Magnitude Binary Multiplier 75

Synchronous inputs of register Q

4 Qutputs of register Q

Cgoo o

Fig. 3.8 Implementation of a bidirectional bus using tristate circuits

and the lines of the IOBUS bus) controlled through the same control signals ¢
and ¢q (Fig. 3.6).

() Regarding the parallel adder and, generally, any combinational circuit, only the
circuit ouiputs are strobed through a common control signal {in our case ¢z), the
signals’ modifications on inputs being of no importance.

(e) At the content’s initialization of a register (such as those of registers A and
COUNT through ¢p, from Fig. 3.6), it is considered that the control signal
is simultaneously applied to all the memorizing elements, for instance on the
asynchronous reset input. A control signal is also applied to all ranks when
this control signal implements a shift or count function such as ¢z in Fig. 3.6.

{f) Unless stated to the confrary, we shall consider that the implementation allows
the “usage” of both edges of a control signal, for example, that on the rising
edge the reading of the state of a memory element or of a register can be per-
formed, and on the falling edge a new logic value can be written. It is assumed
that the given signal has sufficient length so that these operations will not be
mutually disturbed. This convention applies in case of the controf signal c¢q,
which through the label SIGN (Fig. 3.5) allows both the reading of Q[0], for
the establishing of the result sign in A[7], and the writing of the logic value 0
in Qf0].

These stipulations being made, let us discuss the multiplication algorithm de-
scribed in Fig. 3.5. Except the declared statements of the structure of the registers
and of the bus communication, three parts of the procedure can be distinguished.
Thus, at the labels BEGIN and INPUT, under the control of the signals ¢y and ¢y,
the initialization of those registers (A and COUNT) which may remain with un-
wanted values from a previous fraversal of the algorithm is achieved and the two
input operands are loaded info the registers dedicated fo them (M and Q). Besides
this initial part, we also have a final one given by the labels SIGN and OUTPUT,
which under the control of signals from ¢4 t0 ¢g, implements many elementary oper-
ations. First, the result sign is evaluated through the EXCLUSIVE-OR operation of
the operands’ signs, that of the multiplicand from M[7] and of the multiplier which
has arrived, following the shifts, at the end in Q{0]. Second the result correction is

76 3 Functional Analysis and Syathesis of Binary Multiplication Devices

made through the annuliing of Q0] in case of a negative multiplier (because the
product (3.4) on 16 bits is achieved with the harmless pg = 0). Finally, the result, in
two portions of 8 bits each, is returned on the OUTBUS.

Between the two extremes there is the essential part of the algorithm, ie. its
body, which provides the repeating of the iteration (3.2) a number of times equal
to that of the magnitude bits. Iteration (3.2) is applied in a form which avoids the
addition to the current partial product of the binary equivalent corresponding to
digit 0. Thus, as shown above, the value from Q0] is tested at the line labelled
TESTI, proceeding to the addition, provided by ADD, only if Q[01 = 1. This oper-
ation, which is executed when the control signal ¢; is activated, has 7 bit operands
(AI6:0], M[6:0]), but the result may be on 8 bits (A[7:0]), because, depending on
the value of the added numbers, there may result ¢, = | (Fig. 3.5, Fig. 3.6). Then,
whatever the value of the multiplier’s current bit {from Q{0]) is, the right-shift op-
eration (the RIGHTSHIFT label in Fig. 3.5) is executed, controlled by c3. In bit
A[7] the harmiess 0 is introduced, which, anyway, does not take part in the sub-
sequent addition, and the bit of the multiplier that has just been tested (at TEST1)
will be lost. But the given value, which passes through Q[0} due to its right-shift
capacity, is no longer necessary, because it has already been used. In fact this is
the key to the implementation solution for the procedure exemplified in Fig. 3.4,
because as the multiplier’s length progressively decreases bit by bit, the cumula-
tive partial product’s fength increases, in the samme progressive way seen in the ex-
ample. This artifice enables the use of a parallel adder whose number of ranks is
equal fo that of the magnitude in bits of the operands, and not equal to the mag-
nitude in bits of the product. Being nonconflicting with the right-shift operation,
the incrementing of the iteration counter COUNT (label INCREMENT) is con-
trolled by the same signal ¢3. Label TEST2 checks whether the required number
of iterations {in our case 7) has been executed, which is true when the decoded
contents of COUNT (C[2IC[1IC[(H] = 111} generates the signal COUNT7 = 1. At
this moment the multiplier’s sign has arrived in Q[0], so that the result’s sign can
be evaluated (through SIGN}. As long as COUNT7 = 0, the procedure is looped
between TESTH and TESTZ2, which delimits the central part {the body) of the algo-
rithm.

Obviously, it might be interesting to study the synthesis of the control unit which
allows the generation of the control signal sequence. In Appendix B several solu-
tions are presented regarding this synthesis, starting from a different algorithm but
similar to the above-mentioned one, namely Robertson’s algorithm meant for the
multiplication of binary numbers represented in two’s complement. Robertson’s al-
gorithm has been chosen because it enables the highlighting of more characteristic
elements of the varicus synthesis methods. Mention should be made that any of
these methods can also be applied to the control unit from Fig. 3.6.

We shall now present an example (Fig. 3.9) that has been chosen in such a way
that it permits the illustration, by comparison, of the specific aspects of the various
algorithms. As regards the operands, we take the decimal values X = ~89.2~7 and
¥ = —105 - 27, which, translated into binary using the sign-magnitude code, lead

3.2 Seguential Sign-Magnitude Binary Multiplier 77
A Q M COUNT internai control
signals activated
000000004~ ---------- [i#101007« - --000+ - G,
| HomeE c,
1101001 \
B .
01004 J - IO U B ¢
GQrioitte ot} a
Q0011010 - 011104} - 0904t -neeev e,
000011014 DO1QTA- - - ---- YRS N e
1101001
Q110110 -+~) S N e,
0011101 4-D00MYGRq- -+~ b----- - 100~ e,
| *1101001
01007004 - S N S S o
010100104 - 000114 ---- foeeeef e L R R B e
| 00101007« "000007f34- - oo T R R e,
1101001 =
T TIET1% CEPRRRRRR NI IO, + G OO e e
01001001¢ - DO000OTIH - -/} T D T c
5 SCOUNTF=1
¢90010014 -~ S AN (RN MR c,
10010074 -~~~ - mmmmmoe b e,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <

Fig. 3.9 Example of a binary multiplication in sign-magnitude code with microoperations’ controt
stgnals activation

to the following representations Xoy = 11011001 = (271 273 4274 4277y =
—89 - 277, and Yy = 11101001. Figure 3.9 presents in a table the contents of
the structure registers, as well as the control signals which have to be activated
to release a certain elementary operation. The values captured from the bus for
the input operands, as well as the two halves of the product downloaded in the
bus, are presented in frames. The values from rank Q[01. the generation moments
of ¢y and COUNT7, the shift operation are highlighted. To obtain the product
Psyr = 010010010000001 = +9345 . 27 requires the activation of the parallel
adder circuits four times, i.e. once for each binary unit from the magnitude part
of X, there being necessary, as expected, seven right-shift operations.

Analyzing the procedure and if taking into account the worst case of a mult-
plier X with the magnitude containing only binary units and if the preliminary and
final operations of operand leading and returning the result are ignored, the algo-
rithm presented above may be characterized, in terms of CLOCK pulses, to have the
complexity ((n), this being a substantial improvement, as compared to the above-
presented algorithm based on counters,



78 3 Functional Analysis and Syathesis of Binary Multiplication Devices

3.3 Sequential Two’s Complement Binary Multiplier Based on
Robertson’s Procedure

Let us now use the stractural elements of the multiplication device from Fig. 3.6 to
compute, by an easily achieved reconfiguration, the product of the binary numbers
given in both the fixed point representations of interest, the sign-magnitude (SM)
and the two’s complement (C2). Mention should be made that, unlike the case pre-
sented in the previous section, this time only numbers in C2 code are carried on the
buses, both for the input operands and for the product result.

We shall analyse the entire use of the muldplier from Fig. 3.6 transforming the
negative input operands from C2 into SM, and, if the final product is negative, it
will be transformed ta reverse order, from SM into C2. The worst case which has
to be covered regarding this aspect involves the multiplication of contrary signs
operands, when the resulting product is negative, This case reqguires three comple-
menting operations {one for the negative operand and two for the product, the latter
being returned in two separate parts). When both operands are negative, only two
complementings are necessary, because the product is obviously positive and does
not require complementing. But, as it is already known, a two’s complementing re-
quires at least the time for an addition, besides the operations for the signs’ testing.
Consequently, this solution leads to performance degradation caused by the addi-
tional complementing and recomplementing operations, which 18 why we shall use
an approach which will not imply code transformations.

Thus, we shall start from the second form given in the previous chapter for the C2
representation, attributed to James Robertson {ErlLa04, Stai99, Haye981, according
to which, for a binary number X = x,_1X,-2...x; ... x1x, code C2 15 given by the
following relations:

-2
Xea = —xq 12" 4 Zx_,f?.ﬂ for X integer (3.5
F=0)
n—1
Xeg=—x, 20+ Z,x;,{.,,z"“*', for X fractional (3.6)

[£3

where the bits xf and x:lwew} coincide with x; and x,; 1, in case of positive num-
bers {x,..1 = 0} and correspond to the bits of the C2 code of X in case of negative
numbers (x,.; = 1)

Taking into account relations (3.5) and (3.6), we shall adopt the binary configu-
ration used in Fig. 3.9 for multiplier X, t.e. Xgp = 17x5 ... X; .. . xyxp = 11011001,
If the well-known procedure for converting into C2 code is applied to this config-
uration, to it will correspond Xc¢g = 745 ... % ... x %) = 10100111, On the other
hand, if X7 is interpreted as an integer, on the basis of relation (3.5), we have

4]
Xeg = =274 3 42 e w27 4 (20 427 4 21 4 27) = -89,
j =0}



3.3 Seguential Two's Complement Binary Muldplier 9

However, if X is interpreted as fractional, on the basis of relation (3.6), we have

,
Xepm==204) x5 27 =l (27242754270 4 27Ty = 89277,

i=1

Regarding the use of the structure from Fig. 3.6 with as few modifications as pos-
sibie for the multiplication of binary numbers in C2, we highlight the fact that on
the multiplication of binary numbers in SM we have to parse multiplier X, bit by
bit, from right to left, starting with the iterations (3.2) with the least significant bit,
and advancing towards the sign bit. In fact, each bit of X is brought, by right-shift,
into Q[0], where following the analysis of the bit value, it is eliminated. Depending
on the bit value in Q0] there is executed either a shift (if Q[0} = 0) or both an
addition and a shift (if Q[0} = 1). It has to be poinied out that by representing X in
one of the forms (3.5} or (3.6), the desideratum of enabling the implementation of
the procedure based on steps is achieved. These steps are based cither on shifting
or on both addition and shifting, while X running through the multiplier, from right
to left, when X is represented in C2. According to the sign of X two cases can be
distinguished:

(@) When X is positive (x,..1 = (0 and x; =x;, with i =0, ..., n ~ 2 for integers,
and with i = 1,...,n — | for fractional numbers), the treatment of X is abso-
tutely similar to that given by the procedure from Fig. 3.5.

(A) When X is negative (x;..; = | and the bits x_!f correspond to the representation
of Xin C2, with i =0,....n ~ 2 for integers, and with { = 1,...,n — | for
fractional numbers} it will run through the bits xi_f, the same way as in case o,
by applying the iteration (3.2) and avoiding the addition of 0, until the sign bit
is reached. Thus, there will be obtained the cumulative partial products P

2
P'= Y x¥2, for X integer (3.7
{=(}
n—1
Pl "x, Y27, for X fractional (3.8)
I

The values P’ thus obtained shall undergoe an additional subtraction operation
(in case of negative numbers, when x, .1 = 1) corresponding to the sign bit,
according to (3.5} and (3.6), which makes the correction for the fact that the
bits x; do not belong to a direct, sign-magnitude, representation, but to the rep-
resentation in C2. If (3.7) and (3.8) are taken into account, the final products P
resuit through the final correction step which consists of the subtraction, prop-
erly aligned, of ¥ from the values of P

22
P=p —¥2 1= ((Z,xng) - xmz”“‘)y = XY, for X integer

)
(3.9



80 3 Functional Analysis and Syathesis of Binary Multiplication Devices

n—1
PPl ¥ = Zx;,,.,lsz — xp120 ¥ = XY, for X fractional
=1

G.10

Through the correction step based on subtraction, an additional element has
appeared in comparison with the algorithm from Fig. 3.5, which had only ad-
ditions. But the subtraction can be performed by adding the two’s complement
and exccuting the artifice of transforming the parailel adder into a subtracter by
adding, on inputs, an EX-OR circuits layer, and through the addition of a bi-
nary unit using the input ¢;,. Thus, the paralle]l adder from Fig. 3.6 can be used
with the above-mentioned circuitry supplementations. Appealing to this techni-
cal solution, the sign bit does not require special treatment (as in Fig. 3.5), but it
undergoes the same operations as any other, ordinary, bit of the representation,
which is the reason for the extension by one rank of the parallel adder and of
the connections corresponding to it (Fig. 3.6).

There is one more problem connected with the representation in C2, this time
with the representation of the multipticand ¥ = y, 1 ¥,.2...%; ...y 3. When ¥
is positive {v,—; = 0) no special aspects appear, because we are dealing with the
multiplication of two positive numbers (recall that in case of a negative X, as well,
the part of X corresponding to the bits x] is considered a positive number, as fong
as the sign bit is not included). Consequently, the partial products are positive
numbers, This is important when the given products are right-shifted, because a
harmless 0 as regards the shifted value is introeduced in the most significant rank.
But, if ¥ is negative (y,..; = 1), the problem changes. Namely, when on running
through X from right to left, the first | bit encountered, since X is “still” posi-
tive, resulis, because of {3.2), in a negative partial product. This determines, un-
til the sign of X is interpreted, the perpetuation of negative values for the cumu-
fative partial product (given by (3.7) and (3.8) respectively). However, if a neg-
ative number is right-shifted at the most significant bit, this time, a harmiess 1
has to be introduced. It can be said that the partial products undergo an arith-
metic shift {Haye98, Yarh97]. For the less significant bits of X, which have the
value 0, whatever the value of Y is, null partial products result, which, through the
right-shift, have to remaia null. The consideration of the above mentioned cases in
the synthesis of the multiplication device leads to the addition of a flag F, which
will supply the binary value infroduced in the most significant rank of the par-
tial product. Consequently, depending on the operands’ signs, the muluplication
algorithm of the binary numbers represented in C2 has to activate, as applicable,
the additional correction and the arithmetic shift functions, presented in Fig. 3.10.
Following this description, we shall present in Fig. 3.11, using the same descrip-
tive language as before, the code sequence corresponding to the procedure for the
multiplication of binary numbers given in C2, according to the method elaborated
by James Robertson [Haye98]. Then synthesis of the multiplication device named
Robertson, whose characteristics are similar to that from Fig. 3.6, is presented in
Fig. 3.12.



3.3 Seguential Two's Complement Binary Muldplier 81

Fig. 3.10 Correction and

arithmetic shift steps Signs | correction Arithmetic
depending on the operands’ %, | v, step shift
signs for the binary
multiplication by the 6|0 no no
Robertson’s procedure 0 1 10 yes

1 4] yes no

i i yes yes

multiplier 3
declare register A[7:01, QI7.0], M{7:0], COUNTI{2:0], F;
declare bus INBUS[7.01, OUTBUS[7:.0%;

BEGIN: A:=0, COUNT:=0, Fi=(, }4_ _____________________________ {c,}
INPUT: M=INBUS; ¢

Qu=INBUS - - - {e,}
TESTL: if Q[0]=0 then go to RIGHTSHIFT,

ADD: Ar=A+M, Fr=(QI0} and M[7]) or Fye=-vnmnsmraresnmnnns fe,}
RIGHTSHIFT: A[7]:=F, A[6:01.Q:=A.Q{7:1], } e (e
INCREMENT: COUNT:=COUNT+1; ?

TEST2: if COUNT7+1 then goto TESTH,
TEST3: if Q[0]=0 then go to OUTPUT,
CORRECTION: A:=A-M, QI05E=0; € --~oommmmmmmome oo {e,c,}
OUTPUT: QUTBUSSA; €« vmmmmmmeremmomoo oo {e}
QUTBLIS=(); #--==vmamvmsrsomme s s fo,}
2 1 » {END}

Fig. 3.11 Description of the two’s complement binary multiplication based on Robertson’s pro-
cedure

The new procedure {Fig. 3.11) is presented by comparison with that from
Fig. 3.5, and, as regards the new device (Fig. 3.12), by taking into account the
minute presentation already detailed, we will insist only on modifications that differ
from the diagram given in Fig. 3.6. First of all, we shall mention the declaration
of flag F, which is initialized by ¢p together with A and COUNT. F is set by ¢3 at
the same time as the addition (A+M), these two operations not being conflictive. In
agreement with what has been presented above, when Y is negative (M[7} = 1) and
the first binary unit occurs in Qf0], we have (Qf0] =1 and M[7} = 1) and F is set
to 1, being maintained in this state (with or F) until the sign bit is reached. Thus,
the flag F ensures the implementation of the arithmetic shift (through A[7] :=F).
On the other hand, it can be observed that the parallel adder has cight ranks, the
sign bit being treated in the same way as the other bits. Finally, as regards again the
parallel adder, we mention the presence of EX-OR gates on the entire word length
(wordgate), which allow the forming of the two’s complement for ¥ when signal ¢4
is activated; signal c4 being also applied to the input ¢;, of the adder. Consequently,
to the ope’s complemented value of Y a | is added and the two’s complement for
Y ig formed. By its addition to the more significant bits (from A) of the cumula-
tive partial product, when X is negative (Q[0] = ), the correction step is performed
(labeled CORRECTION, on which, nonconflictually, on the falling edge of ¢4, the



82 3 Functional Analysis and Syathesis of Binary Multiplication Devices

<z AND
,,,,,,,,,,, OR. 1
. OC("_—{T —— ;
A 3
eon
Ty .. Accumutator Muitiplier repister Multiplicand register
0 a—af ALT) HAl0po-»QL7] Ql : M|
Al7) A AlopsgQ7E Qo M7t M Mo
: I ‘ é I ‘ wordgate : I ‘
“ 8 8 qg(:*—fL—J
EXOR
¢, Parallel adder c" SETE EEPE - Cigl C[l_ll('{j
. P k8 8
e "
b 4
€ ’f OUTRUS “ *('E e Qe-y
LOUTBLE
] \
8- bit
data
bus INBUS l
External | BEGIN----- -+ > Internal
control | CLOCK------- Comgrol control
signals | END 4o unit signals

Fig. 3.12 Block diagram of a sequential twe's complement binary muitiplier based on Robertson’s
proceduse

removal of the negative sign from Q0] is also performed). As can easily be ob-
served, for the correction subtraction, it is necessary to generaie two controf sig-
nals, ¢, ensuring the addition microoperation, and, ¢4 ensuring the complementing
one.

Figure 3.13 presents the actions of the circuit from Fig. 3.12 on the example from
Fig. 3.9. The same fractional values for the two operands, X = —89-2 7 and ¥ =
—105 - 277 are taken into account, but this time their representations are captured
from the bus in C2, i.e. X¢og = 10100111, and Yo = 10010111, Product P is the
same as that from Fig. 3.9, but this happens because, under these circumstances, P
is positive. If P had been negative, because it had been obtained in C2, then its value
would have been different from that obtained by the device from Fig. 3.6.

As mentioned above, Appendix B presents the synthesized versions of the con-
trol unit from a Robertson device, versions which generate the signals indicated in
Fig. 3.13. Finally, mention should be made that the procedure presented in Fig, 3.1
does not differ, in terms of the above-indicated complexity, from the multiplication
procedure for binary numbers in sign-magnitude, but it is more efficient than the
procedure presented at the beginning of this section.



3.4 Seguential Two's Complement Binary Multiplier 83

internal control
F A Q M COUNT signals activated
0+-{--000000004 -~~~ 00101 13|4f -~ 000 4+~~~ e,
N e c,
1/ Y10010111 k%}m
«{-- 1001011 ¢ - - A c,
130010114 110100314 R P c,
10010111
R L LA A S L R R ¢,
10110001 HT1010014 - ---------1 SRR Y, VI S e,
Y10010111
14-{-201001000% - - - - -~ - oo oo mm oo mo e on e e,
LN \*\* = ¥y ¥
R IR ) — SR R c,
LY RN Y
b A PP
110100104 Q00 11Q704 ----------- e 1004 <o e,
PR WAl L
111010014- D000 -~~~ SR, DN B e,
¥ . Ll
110010111
L L s T S o T e e,
\1\' \.Q" {ﬁ
1100000Q4- 00001104 ----------- T P S e,
13100000 | “DODOOOTH4 -+ - R T TERI RSP ¢
” SCOUNTZ=A Z
“10010111 | i
010010014 %-%------- e ey C.
BA0B100 4 -~ mmmem g 5
BO0000TOH- -~~~ bommmmmmm e mmocee e,

Fig. 3.13 Example of a binary muitiplication in two’s complement code by the Robertson’s pro-
cedure with microoperations” control signals activation

3.4 Sequential Two’s Complement Binary Multiplier Based on
Booth’s Procedures

It can easily be observed that the increase of the number of binary units in the
structure of the multiplier X, whether it is represented in 8M or in C2, results in the
increase of the number of ¢; signals that have to be activated (Fig. 3.9 and Fig. 3.13),
the time of the multiplication process being implicitly increased. Aiming to reduce
the effect of the above-mentioned disadvantage, Andrew Booth has proposed, for
binary numbers in C2, a method [ErLaf4, BoTi05, Parh00, HePa(3] which is not
based on the inspection, at a certain time, of just ope bit of the multiplier (that
one in the Q0] rank, Fig. 3.12), but on inspection of the values of two bits with
adjacent positions. First of all, let us denote the two bits by x;x;.-1 and let us point
out that the simuitaneous inspection is meant to detect a transition (O to | and | to
O respectively) at the interface of the two bits. The transition’s presence or absence
shall be corroborated with an clementary mathematical speculation whose effect
will be followed up by supposing, without loss of generality, that multiplier X is a



84 3 Functional Analysis and Syathesis of Binary Multiplication Devices

positive integer and that X* is a binary sequence, included in X and consisting of an
uninterrupted sequence of binary units with a 0 at both ends, t.e.

X BN o S NG I (P S N R S [ 4 F S R 01, 110 (3.} 1)

Based on Robertson’s procedure the contribution of the X™ sequence to the prod-
uct P = XY is given, in the case specified by (3.11), by the part of the product P
which we denote by P*, and whose value is given below, if we take into account the
weights associated with the bits in a similar way to that presented in Fig. 3.3:

Pr=0. Y2t Lyt Lyt Ly it
+1-¥20 0. y2 ]
=Y(25+k+2i+kfl+“.+2¢5+1+25)
=Y (202 2t )
=y (28 )2l =y 2 Ly (3.12)

where the well-known identity 2¢ — 1 = (2 — 1)(2¢7 ' 4. - + 1) has been used, with
a a positive infeger.

Interpreting (3.12), we have (k + 1) additions required by the computation of the
contribution to the product P of part X*, which can be substituted by just two oper-
ations, an addition and a subtraction. When the binary sequence X* is run through
from left to right and a transition from 0 to 1 is met, i.e. we have the binary pair
xixi.3 = 01, an addition is executed. In a similar way, when a transition from | to 0
is encountered, i.e. we have the binary pair x;x;_; = 10, a subtraction is executed.
When there are no transitions and the bits form sequences with identical binary val-
ues (through (3.12) the case of a binary unit sequence has been presented, but it can
easily be shown that a binary zero sequence behaves in a similar way), i.e. when the
binary pair is either x;x;..1 = 00 or x;x;1 = 11, peither addition nor subtraction is
executed.

With the aim of pointing out other characteristics, again without loss of general-
ity, let us suppose that we have a fractional negative number of the following form:

Xeo==1xy X, .. xix[_ ... xpxy=100...00...001 (3.13)
in this case, if (3.6) is taken into account, for the final product P can be written:
P=Xc¥ =(=Dy2Y+1.y27+*! (3.14)

On one hand relation {3.14) confirms the previous suppositions, and, on the other
hand, it shows that the evaluation of P can be correctly made, namely that:

P o= (=yy27nrt(nh )
g(_y)z--t’.‘“\‘i{z_ E)(2I1“2+2II“3+-‘+2+ 1)
= (=127 2T 2 ) = (XY (3.15)



3.4 Seguential Two's Complement Binary Multiplier 85

Fig. 3.14 Example of

. . gel Ko | Kol Xy | Ko Xo| X X 0%, | X,
multiplier’s Booth recoding umbi~, | 37| 37| 3 2% 2% 27| 2%] 27| 2%
X~ 11 ]1]0]tl1]0]0]1
Xo={tle|l1]lojol1]1i1]0
X= {1 [1|T|0i1 0|01

As regards (3.13), one more stipulation concerning the Isb inspection has to be
made. We began by exploring the values of pairs of bits from left to right, but when
the Isb is reached, it remains alone. This situation implies the extension of multipher
X with one zero bit to the right of the Ish. Thus the value is not affected and, in fact,
for X7 from (3.13), we have:

Xeg = Ix,;fz .. .xi-'x;fl . ..x;xéxml_ = 10...00...010 (3.16)

where x..1 = (0 is the added bit.

Synthesizing the above presentation and taking into account the extension of X
with x_; = 0 to the right, we can infroduce Booth's recoding, as the literature calls
it [Parh00, Haye98, KaGa06, HePaO3]. This consists of recoding the multiplier in
the so-called signed digit form, characterized by the fact that the multipher digits
are provided with sign. Consequently, we appeal to the convention according to
which the multiplier X is scanned from left to right {a fact also suggested by the
notation of the pair of bits x;x; .1, starting thercfore with { = n — 1 and ending with
i =0, x; being the current bit), so that, when the pair x;x;_ = (1 is encountered,
for the current bit of the recoded form we use 1 (in fact (+1)), and when the pair
x;x; -1 == 10 1s encountered, for the cwrrent bit of the recoded form we use 1 {in fact,
{—1}). In the other two cases, when x;x;..1 = 00 and x; %, = 1}, for the current
bit of the recoded form we use 0. Thus, if the multiplier of our example operation is
considered (refer to Fig. 3.9 and Fig. 3.13}, its Booth recoded form, denoted by X g,
is obtained as shown in Fig. 3.14. The following computation shows that the value of
Xpiscorrect: Xp= =2V +271 =224 27 =277 oo (227420 223 4 28 )27 =
~89.277,

Recording of the multiphier is at the basis of the Booth multiplication procedure.
Namely, it indicates the microoperations which the multiplication device has 1o ex-
ecute at a certain moment {(a 1 bitin X p (Fig. 3.14) means that an addition followed
by a shift has to be exccuted, T bit means that a subtraction followed by a shift has
to be executed, and a O bit shows that only a shift has to be executed). Mention
should be made that, unlike Robertson’s procedure where a single subtraction was
made, and this only for a negative multiplier X, Booth’s procedure, as described,
will appeal more frequently to subtraction. But this is not an inconvenience due
to the simple implementation of this operation through the addition of numbers in
two’s complement {Fig. 3.12}. However, one aspect regarding the subtractions must
be mentioned namely that during the procedure there may occur, alternately, de-
pending on the operands” values, both positive and negative partial products, a fact
which is important in connection with the right-shift operagion. This operagion re-
quires the introduction of a binary value in the msb without the modification of the



86 3 Functional Analysis and Syathesis of Binary Multiplication Devices

multiplier 4
declare yegister A[7:01, Q[7:-1], M{7:0], COUNTI[2:0};
declare hus INBUS[7:0], CUTBUS{7.0};

BEGIN: A=), COUNT:=0, } - fe)
INPUT: M:=INBUS; ¢
QI7:0):=INBUS{T:01, Q[-1}:70; €---rrreneomnmmmmmnonnee fe}
TESTI: if QI0IQ{-13=01 then Ar=A+M, goto TEST2; €---onvnvnen {e:}
else if Q{0IQ[-13=10 then Ar=A-M; 4----oovommmoneones {ca oi}
TEST2: if COUNT7=1 then go to OUTPUT,
RIGHTSHIFT: A[7]:=A[7], Al6:01.Q:=AQ[7:0], } e fe}
INCREMENT: COUNT:=COUNT+1, go to TESTI; *
QUTPUT: QUTBUS:=A, Q[O]:=0; - -nvmmsmmmesmenesmeemcea {e}
QUTBUS[7:03:=Q[T:0%; w-----mmmmmmrmmo oo fe
1 3 > {END}

Fig. 3.15 Description of the two's complement binary muliiplication based on Booth’s procedure

number (0 for a partial positive product, and 1 for a partial negative one). This re-
quirement can be fulfilled through a simple technical solution, i.e. the recirculation
of the binary value of the msb.

Figure 3.15 presents the code sequence corresponding to the Booth procedure
{adapted from [Haye98}) for comparison with the procedures mentioned above, in
terms of the usual hardware description language. Connected with this presentation,
Fig. 3.16 contains the hardware device in whose synthesis we have made as few
modifications as possible as compared to the other diagrams (Fig. 3.6, Fig. 3.12),
sa that the reconfiguration may be executed as simply as possible. Regarding the
algorithm, we mention the declaration of register Q, to which, as compared to the
homologous register from the other versions, the rank Q1] is added, to make a
pair with Q[0], thus assuring the simultancous inspection of two bits. The right-shift
function of register QQ also extends over this 8th rank (refer to label RIGHTSHIFT).
The state of Q[—1} has to be initialized, as established, by deleting its content, an
action attributed to signal ¢y, which controls the loading of the other ranks of register
Q with multiplier X from INBUS. The ranks of Q have to be specified at the input,
but they shall also be specified at the output, to show which of the ( ranks contain
the fess significant part of the product which has to be returned, under the control of
¢g, to OUTBUS.

The essential and distinctive characteristic is the simultaneous testing of the val-
ues of a pair of bits starting with the two least significant bits and going on, bit by
bit, towards the sign bit, as the multiplier is right-shifted. Mention should also be
made of the recirculation of the msb rank contents of register A (A[7] := A[7]) and
that, in the code writing (Fig. 3.15), the treatment of the sign bit has been attributed
to the central part of the procedure (i.e. to the body of the procedure), not to its
final part (through the labels SIGN, in Fig. 3.5, and CORRECTION, in Fig. 3.11).
The right-shift with the conservation of the sign of the number ensures, in fact, the
arithmetic shift.

Figure 3.17 presents, for the new procedure, the same multiplication example
given in Fig. 3.9, and in Fig. 3.13 respectively. First, we mention that the sequence of
operations, including that of control signals, corresponds exactly to the binary struc-
ture of the recoded multiplier (Fig. 3.14). Secondly, we remark that the complexity



3.4 Seguential Two's Complement Binary Muldplier 87

¢ Multiplier &

H Accumulator register

R , ‘

Cy - b

Multiplicand register

:

A el g e i

: 3 g e 2 wordgate g l
3 8 T
Ef;q§g::__r
; Counter
8 . } COUNT
: Gy ¥ i 5
- ¢,, Parallel adder o Cl2p Cl1] 1 Cfo]
8 18 TOMMQ QIQ Q0 Q 8
gy
pe 1 |
O e AND
- 2 Vv‘l N
& ’f LUIBUS "3"? el ! COUNT? el
8- bit |
data '
bus INBUS : ‘
External | BEGIN----- > e tatermat
control { CLOCK -------4 » Control - tey control
signais END €= vvvnee uit R olc.  signals
L3

Fig. 3.16 Block diagram of a sequeatial two’s complement binary multiplier based on Booth's
procedure

of the method depends on the number of the generated control signals, which give
a measure of the throughput, and implicitly the procedure performance. Regarding
the particular example adopted, multiplier X contains, both in SM code and in C2
code, the same number of binary units (3) (and, implicitly, the same number of ze-
ros (3)). Consequently, the procedures from Fig. 3.5 and Fig. 3.11 do not, normally,
show differences, as far as performance is concerned. We should have expected an
acceleration of the muitiplication process by Booth’s algorithm, but, as evaluated
by the number of distinct control signals, this does not happen. The reason for this
fact can be found if we analyse the particular form of X g from Fig. 3.14, involving
the samme number of activations of the adder (five) that has been needed for the other
methods. it is of no importance that some activations of the adder (three), of the total
of five activations, use it as a subtracter. This is because the complementing signals
(c2) and the addition signals (¢7) can be derived from the same CLOCK pulse, even
if they are slightly shifted—c3 precedes co—so that the strobing (through ¢} of the
result at the combinational diagram output, which is the adder, may be done cor-
rectly. Consequently, Booth's procedure does not bring a performance improvement
for the example from Fig. 3.17 due to the particular binary configuration of multi-
plier X. But, when X has significant sequences of binary units or of binary zeros,



83 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Internat control
A Q M COUNT signals activated
000000004 - 40010117~ 000 €~~~ —---- €
BOGLT
T L L e e R ,

10010111

011010014 || e N Cx G,
001101004 110100 -+~ L R e
300110104 Q010G -~ - R —— ¢
r\({ \ Q’\ ‘
000011014 00110100 -~ L c
- i 1 b
Ys0010113

T A o e e e ¢,
A ELE NN AL

110100104-000110 {4~~~ 4004-- - o
abi EEEE R L]

1101001400001 1004 -~~~ |-~ $04epes s e,
¥10010111

0107007Qg—+--- e o e e g,
wq EAEERAS

T Moe— 2
¥10010113

T e A —— E— Y
bkl EEIE R AL

111000004-000000 10+~~~ LD IR R e,

FCOUNTT
Yiogt0141 "1
010010014 -------oer A AR Rt bRt M Gy G
01007007 - ------- R e o
i C A Vg0 L] EEURS N - e,

Fig. 3.17 Example of a binary multplication in two’s complement code by the Booth's procedure
with microoperations” control signals activation

then, in the corresponding recoded form X g, the number of zeros increases and this
leads to the improvement of the throughput capacity of the procedure.

However, it is possible for a certain multiplier X2 to have frequent alternations
of the bits {of type ...0101...), when there may occur, not the expected improve-
ment, but, on the contrary, a degradation of the performance, which may even be
dramatic. Thus, if within X we have a 1 with a 0 on both sides (010), then in terms
of Robertson’s procedure only one addition operation (corresponding to the 1) is
required, while, in terms of Booth’s procedure, an addition {cosresponding to the
pair 01) is required, followed immediately by a subtraction (corresponding to the
pair 10}. However, if the triplet X7., = 010 is more minutely analyzed, we have the
situation from Fig. 3.18, where by X} we have desoted Booth’s recoding, according
to Fig. 3.14. It can easily be observed that the two operations corresponding to X5
can be substituted by an addition. Namely, when at X¢; scanning the triplet X7.,
is encountered, only one addition operation has to be made, as presented for Xjp.
Simifarly, when X7 is scanned and the triplet X :‘C‘E = 1{H is encountered, only one



3.4 Seguential Two's Complement Binary Multiplier 89

Fig. 3.18 Justifving the

Booth’s procedure Range it i li-t

modification for multiplier Number

patiern consisting of a 1

flanked by Os X = 0 1 0
'X;;m 1 i =2.‘vi-2i=2{m
Ko™ 1  —

Fig. 3.19 Justifying the
Booth’s procedure Range i1 i i-1
Bearon Fo S ar Number

madification for multiplie

patiern consisting of a @ -

flanked by 1s Xer = 1 0 1
X;,m z 1 m~25+1+2.m~25_‘
X, = 1 «

subtraction has to be made, as presented for X5 in Fig. 3.19. The two new forms
Xy and X35, correspond to a new recoding of the multiplier, the so-called canon-
ical multiplier recoding, to which corresponds the so-called canonical signed digit
form {Haye88]. This new recoding stands at the basis of a new procedure attributed
to Booth, which, to distinguish it from the previous one, has been called the mod-
ified Booth’s algorithin {Parh00, Haye98, BoTi03] (wherefrom the indexes MB of
the previous forms from Fig. 3.18 and Fig. 3.19). The canonical recoding maintains
the rules used in the previous form Xp (the correspondences for the binary pairs
from Xeg 108 => |, 10> T and 00 > 0, and 11 = 0 respectively are maintained),
except for their application o the isolated values of 1 and 0, when the coding is
performed according to Fig. 3.18 and Fig. 3.19. As mentioned above, two bits are
simulianeously inspected, but the right-shift is made, each time, by only one binary
position. Conseqguently, to detect whether a bit is isolated or not, the “history” of the
scanned binary values has to be stored. Thus, a flag which distinguishes between the
isolated bits and a run of 1s or of Os made up of two or several identical bits is used.
The flag is denoted by R {from “run”, to distinguish it from F used in Robertson’s
procedure) specifying the following conventions for its setting up:

I, Initially, R is setto O,

2. This time, multiplier X¢ is scanned from right to left, two bits being simul-
tancously inspected as before, but in the opposite direction as compared to the
previous Booth procedure. This implies the extension of the multiplier by one bit
to the left of its msh, doubling the sign bit, which does not affect the value of
multiplier Xco.

3. If in the previcusly mentioned scanning of multiplier Xco the pair of bits
xi11X; = 01 is met, the state of R does not have to be changed. But, i the pair



90 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.20 Synthesis of the

rles {or obtaining the Inputs Qutpuis

multiplier’s canonical X = | R’ |x R

recoding el -
¢ |0 ¢ 0|0
010 |1 10
010 1 ¢
0 1 i 0 |1
i 0|0 0| 0
11011 |1
pp1 0 1|1
1 1 1 ¢ 1

xi41X; = 11 is encountered, then the state of R has to be changed, the flag being
set to 1.

4. If the multiplier X 2 scanning continues and the pair of bits x; 1% = 10is mef,
the state of R shall not be changed. But, if the pair x;.4.1x; = 00 is encountered,
the state of R has to be changed, the flag being reset to 0.

5. Cenventions 3 and 4 are applied alternately and repeatedly until the entire binary
sequence corresponding to X ¢ is scanned.

If we synthesize all the rufes referring to the obtaining of the multiplier’s canon-
ical recoding, the table from Fig. 3.20 results, where the inputs are represented by
the mspected pair of bits x;..1x;, made of the current bit x; and the next bit to the
teft x;3, as well as the current value of the flag R. The outputs are represented by
the current value of the bit x;yp (with sign) of the recoded form and by the new
state of the flag R, denoted by R*. In this table, the wiplets €0, 1,0) and (1,0, 1) can
be observed to correspond o binary values with some opposed values in their bits,
and that only one operation is executed, of addition (x;yp = 1) in case of an isolated
1. and of subtraction (x;yg = 1) in case of an isolated 0. Then triplets (0, 0, 1} and
{1, I, 0) mark the beginning of sequences of Os and 1s when toggling of flag R takes
place. As regards triplets (0, 1, 1) and (1, 0, 0}, there is uncertainty whether the tran-
sition, which exists in both cases, corresponds fo an isolated bit or {o a sequence of
bits. Consequently, no operation will be executed {x;p = 0} and the flag’s state
will be maintained. This will also happen in case of the extreme triplets (0, 4, )
and (1,1, D).

Let us apply the rules contained in Fig. 3.20 ro the multiplier comresponding to
the example from Fig. 3.9, Fig. 3.13 and Fig. 3.17 and thus the states of flag R and
the canonical recoding X yp from Fig. 3.21 will be obtained. The multiplier X¢ is
scanned from right to left, the first triplet (1,1, 0) being made upof xy = Lxg = |
and R = 0 (initial value), and it determines, according to Fig. 3.20, x;5 = T and
R =1, and then the following triplet is xp = 1, x; = | and R = 1, etc. Interpreting



3.4 Seguential Two's Complement Binary Muldplier 91

Fig. 3.21 Example of T

] N 1' o . 1 B h 2 s | X7 'x6 Xy Xy x} x, Xy Xy
:f(clz{)[;?nli;l § Canonical 800t Numbe 20 2-1 2-2 2—3 7 2-5 24, 2-7
g X = 111011 11ilelo]1l
= i l1te |1 oo |00 R

= 110|000 1| I]NUN
Xoo™ Tiofl1fe|t|o]o|1

the configuration obtained for Xup we have: Xuyp = 20 42724274 = 277 =

(2T =2 P 2T = -89 27T,

The table given in Fig. 3.20 can also be used for the easy deduction of the
Boolean egquation corresponding to the setting up of the flag R, which we denote
by Sk« and which, in terms of the input variables, is the following:

Spr = X1 x4 K+ xR (3.17)

Regarding the new recoding of X, mention should be made that isolated values
may lead to the repetition of a certain binary unit with sign (1 and T) until the bi-
nary unit of opposite sign is encountered (refer also to the example from Fig. 3.21,
where between the two extreme 1 there appear two 1s). This differs radically from
the previous Booth recoding which is characterized by the fact that binary units with
sign alternate (they may or may not be separated by 0 values, refer also to the ex-
ample from Fig. 3.14). As far as the operations are concerned, the above-mentioned
alternation of additions and subtractions excludes the possibility of overflow, i.e. the
register’s capacity being exceeded. However, in the new Booth recoding, as well as
in Robertson’s method, overflow may occur, due to the feature mentioned above.
In both procedures, the overflow phenomenon is important from the point of view
of the value which is introduced, through right-shift, in the most significant rank
of register A (in this case, A[71). Regarding Robertson’s algorithm, the occurrence
of overflow (for instance, by multiplying X = +127.277 by ¥ = +97 . 277 there
oceurs, in cascade, six cases of overflow in all additions, except the first one) is “be-
nign”, i.e. the value introduced in A{7} is pre-established, as shown above, and, con-
sequently, the phenomenon can be ignored. In case of the new Booth procedure, the
overflow requires a special analysis, its occurrence being closely correlated with the
signs of the values operated upon—in Al7] for the partiaf products, and in M[7} for
the multiplicand—as well as with the “history” of the operations recorded through
the state of the flag R. As far as flag R is concerned, we can observe in Fig. 3.20
that by scanning X in the convenient direction, when R becomes (0, an addition is
executed followed by a shift and, as long as R remains 0, additions can be executed
(but only additions, and no subtractions) followed by shifts, or only shifts. Similarly,
if X is scanned in the same convenient direction, when R becomes 1, a subtraction
is executed followed by a shift and, as long as R remains 1, substractions can be
executed (but only subtractions, and no additions) followed by shifis, or only shifts.

Before analysing the cases that may occur, in the given context, we should like
to add some notations to the above observations. Thus, by R we denote the status
of the historic flag, by OVR the status of an imaginary flag indicating the status of



92 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.22 Tuble synthesizing

the specific cases of the R OVR ATt ME7] NALI

modified Booth’s procedure 0 0 0 0 0
0 0 0 1 0
0 0 1 0 1"
0 4] 1 1 1
0 1 0 0 -
0 1 0 1 1
0 1 3 0 0
0 1 3 1 -
1 0 0 0 o
1 o] 0 1
1 o] 3 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 -
1 1 1 9 -
1 1 1 4 0

overflow, by A[7} the status of the most significant rank {sign) of a partial prod-
uct, all these three statuses being considered at the final moment of an addition or
subtraction step and, finaily, by M}{7] we denote the perpetual state, during multi-
plication, of the sign rank of the multiplicand. Through the exhaustive examination
of the binary combinations of these variables, we obtain the table from Fig. 3.22.
The last column of this table corresponds to the variable associated with the next
value which s introduced in A[7} (next A[7], NA{7]) within the right-shift process.
The values corresponding to NAJ7] are obtained through investigations executed
according to the model described below. Thus, let us consider, to begin with, the
case of additions (R = 0) and associate (0 with the old value {previous to addition)
from rank A[7], as well as with the (perpetual) value from rank M7}, combining
these with ali the possible pairs (0, (3), (0, 1), (1,0) and (1, 1)) for Aj6] and M[6],
under circumstances in which, on their addition, carry is captured or not (carry = 1,
and ( respectively). The result consists of the four situations from Fig. 3.23, the new
value (following addition) of A{7], as well as the OVR variable (by operating EX-
OR on the carry values that result from ranks 6 and 7) being evaluated for each of
them. For the pair (OVR, AI7]) (0, 0) and (1, 1) will be obtained in both situations,
because if two positive aumbers are added, the result has to be positive, which is
obvicus for the pair (0, 0). ln the other case, {1, 1), the result is negative (the new
Al7] = 1), but OVR = 1 is also generated, which prevents NA[7] from becoming }
and, consequently, for both cases, NA[7] = 0 {refer to the quartets (0,0, 0,0) and



3.4 Seguential Two's Complement Binary Muldplier 93

{76l {7He] {71i6] [7]{6]
A d 0,0 A0 0 0 A0t 0 A0 1 O
{M.,..'fo 0% Y v o v 5 Y Moo o] TV m e 1 Y] Y
0 001 0/10/11/0 /1 0711/ N
ovrR” [ Tam ovng@“/“ﬁ;\?i?} ovr%)/ef/""ﬁ??{ﬁ ovR” | AT
i
NA[T]-»0 Q<NA[7]H0 OeNA[7]%0 NA[T}+0

Fig. 3.23 Detailed analysis for two particular cases specific to the modified Booth’s procedure

Fig. 3.24 Minimization of AlT]

the fogical equation of NA[7] Y

as fuaction of A{7] and OVR
/d | N d
N

OVR

{0, 1, 1,0) from Fig. 3.22). The above-described investigation for the combination
(0}, 0} corresponding to the pair (old A[7], M[7]) shall be repeated, when R = 0, also
for the other combinations ((0, 1), (1, ) and (1, 1)), and then the entire operation
has to be repeated for R = |. Things can be simplified to a certain extent, because
case R = I (subtraction) and M{7] = | may be conflated with R = () and M{7] =0,
but, generally, it is recommended that these investigations be made with computer
aid.

Column NA[7} from Fig. 3.22 contains some defined logical values of O and |,
some of which have been marked with ™ to which we will return. On the other
hand, for some of the tnput binary guartets {R, OVR, A{7}, M[7]} the sign “~7”
highlights impossible situations, namely that in these cases overflow cannot be gen-
erated. If we insist, for instance, on the quariet (0, 1,0, 0), it can be observed that
for M{7] == 0, when A[7} = 0 OVR == 0 results, the same way as, when Al7] = 1,
OVR = | results, so that the occurrence of the ((OVR, A{7]) = (10)) combination is
excluded {a fact partly demonstrated in Fig. 3.23). If we adopt, corresponding to the
given quartets, a don’t care, d, logic value, we can obtain the minimized Boolean ex-
pression of NA{7} using the Karnaugh map from Fig. 3.24. The favorable covering
of the binary units in combination with the d value leads to the following expression
for NA[T}]:

NA[7] = A[7}- OVR + A[7]- OVR = A[7] & OVR (3.18)

The conclusion synthesized in relation (3.18) could be anticipated, namely that
in A{7] the previous value from the respective rank is recirculated according to the
model and with the motivation from the first Booth procedure, except in case of
overflow. Corresponding to this fast case, the obtained value, after the execution of
the addition or subtraction, in A[7] is not correct {on the addition of two positive
numbers Al7] = 1 results, and on the addition of two negative numbers A[71 =0



94 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.25 Detailed analysis [7][6] carry [7]116} carry 7] 6]
of impossible particular cases ALOD ¥ A v A 9 1,0 a
specific 1o the modified M. 'i 1 -l M+l (}w M1 1 %1 carry
Booth's procedure 000 0060 0 00/1
Val
OVR AlT] OVR Al7] OVR  A[7]
a b c

Fig. 3.26 Minimizaticn of Al

the logical equation of NA[7]
as function of R and M{7}

|
N A
EZENRANS

results), but this anomaly is surmounted by application of the EX-OR operation (o
the respective value with OVR = 1.

Let us indicate for the mechanisms specific to the new Booth procedure, an in-
sight by which we aim to obtain some synthesis variants, at least equivalent as far
as performance is concerned. Thus, let us refer to the binary quartets whose val-
ues for NA[71 have been marked with “* in Fig. 3.22 and, for these cases, let us
perform analyses of the type accomplished in Fig. 3.23. Even if for NA[7] defined
logic values result, the respective binary combinations cannot appear during the
procedure’s execution, due to the impossibility of overflow generation as in the case
of the quartets to which corresponds “—". Let us consider, for instance, the com-
bination (0,0, 0, 1) from Fig. 3.22, which, if approached according to the model
from Fig. 3.23, leads to the restriction of the cases of interest to those presented
in Fig. 3.25, but none of them can appear in reality. Thus, if we concentrate on
the situation a (Fig. 5.25) we find out that, through right-shift, the absolute value
of the partial product will be equal to half of the respective value, at the most, for
all the practical situations when R = (0 (in fact, the value of multiplicand Y is sub-
tracted from a value which is, anyway, smaller than Y). Thus the occurrence of
carry = | is excluded, which implies the elimination of the combipation of R = 0
and M7} = I with OVR = and A[7} = 0. Through similar reasoning the impossi-
bility of the appearance of the cases b and c can be stated, as well (Fig. 3.25), as they
would correspond to some previous conditions of overflow (A[7]A[6] = 01 follow-
ing the shift of A). Since, also, the other quartets with values marked with “*” for
NA[7] (Fig. 3.22)—namely (0, 0, 1,0} behaviorally equivalent to (1,0, 1, 1), and
(1,0,0,0) behaviorally equivalent to the previously discussed (0, G, 0, 1)—subject
to similar apalysis, lead to the same conclusion of the impossibility of their appear-
ance during the procedure, the synthesis for the Boolean function NA[7] can be
modified. Figure 3.26 presents the new Karnaugh map where, for the previous bi-
nary units corresponding to the quartets {1, 0, 1, 0) apd (1,0, 1, 1)} appear, following



3.4 Seguential Two's Complement Binary Multiplier 95

muitinhier 5
declare register A[7:0], Q[8:0], M[7:0], COUNT[2:0], R;
declare bus INBUS[7:0], OUTBUS{7:0];

BEGIN: A=0, COUNT:=0, R:=D, } e e
INPUT: M:=INBUS; ?
Q[7:0]:=INBUS[7:0], Q[8:=INBUS[7]: - ~{e}
ZEROTEST: if ORQ=0 then go to OUTPUT,
if ORM=0 then go to TESTL, ¢lse Q:=0, go to OUTPYT, ¢ {e}

TESTH: if ( M[7}=1 and Q[0}=0 ) then
A[T)=0, A[6:01.Q:=A.Q{R:1], COUNT=COUNT+!, go to TEST}, * 1 €}
TEST2: if R=0 then begin

if Q[1IQ[03=0F then As=A+M; et
if Q[1IO[0T=11 then A=A-M, Ri=1, glse go to TESTS, & mmr 1€ €5 €5}
end
if R=1 then begin
if Q[LIOMOI=00 then A=A+M, R=0; * {€, 5}
else if Q[1IQ[03=10 then A:=A-M; - fen o}
end

# COUNT7=1 then go to OUTPUT,

TEST3: A[7E=R ex-or M7}, A[6:0].Q:=A.Q[8:1],
RIGHTSHIFT: COUNT:=COUNT+1, go to TEST2; } Ao s e {e, o}
INCREMENT: OUTBUS=A, Q[1]=0; ¥ e ~{Cu}
OUTPUT: QUTBUSIT:0]:=Q[8:1};% e ~fe,}
END: *7 - - END}

Fig. 3.27 Description of two’s complement binary multiplication based on modified Booth’s pro-
cedure

the above presentation, don’t care logic values d, values which also appear for the
pair of quartets (0,0,0, 1) and (1, 0,0, 0). Using the 4 symbols in a different way
as compared to that suggested for Fig. 3.24, the covering of the binary units feads to
the following expression for NA[7}:

NA[7} =R -M[7]+R-M[7] =R & M{7] (3.19)

In accordance with {3.19), the occurrence of overfiow is completely masked, and
can be totally ignored in the synthesis of the multiplication device. Obviously, in
terms of circuitry, the gain is not spectacular {(in the last analysis, an EX-OR gate),
but, on the whole, if performance is taken into account (the slowness of EX-OR
gates as compared to other gates being known, whatever the technology {Wake00]),
and by using {3.19), an improvement may result. This may be partially or totally
lost when we have a negative multiplicand ¥V (M{7] = 1) and multiplier X has in
its least significant positions one or several ) bits. Under these conditions, through
successive shifts of X until #ts first | bit is reached, in A[7] O should be introduced
(NA[7} =0}, but through (3.19) it results NA[7} =0 & | = | and, an error is intro-
duced, which must be avoided by special measures by the multiplier.

Having discussed the specific aspects regarding the modified Booth procedure,
we present in Fig. 3.27, in terms of the already familiar language, the code sequence
for the new method. The result of the synthesis of the associated hardware device
is given in Fig. 3.28. In comparison with the other multiplication devices, it can be
noticed that register Q is on 9 bits, the same as in Fig. 3.16. This time, the additional



96 3 Functional Analysis and Syathesis of Binary Multiplication Devices

ORQ
¢ & EX-OR ﬁ OR

Cq
OR Muitiplien Multiplicand
? Accumuiator ¢ register | [ ? 0 register
bl O L. SR b ¢ IR D
oA :A“’L?*QUI:QNE: Q ‘augo)  MiTMie} M MM
4 H . : i T H H T i
r € ¥ wordgate I
& ' 8 8 ’ 3 18 gc_*&_J
x o
S : Counter
P R Qe 8 E COUNT
~ I
€ " Q + ¢,, Parallel adder c, e 1111 C{Z_}_E C[EEC[?}
8 LPEFe Qe Qou 8
t 15
e (] ; ’
i s :
& ¢, ! AND
). 4 [

C"JMT LUTBUS e ’? e | count?  §¢G
8-bit |
data :
btis | INBUS ' |

i
External | BEGIN-------~ - w10 Internal
confrol § CLOCK----- - Control e condrol
signals | END 4eeeeene unit 0. signals
i

Fig. 3.28 Biock diagram of a sequential two’s complement binary multiplier based on modified
Booth’s procedure

rank is Q[8} and it is intercalated between registers A and Q, being used for the ini-
tial storage of the sign. In fact, the sign of multiplier X is doubled, appearing from
the beginning in the ranks Q[8} and Q{7]. On the other hand, in this algorithm a
test has been introduced to check whether one of the operands is zero, a situation in
which the zero result is delivered directly to the OUTBUS bus. If ¥ =0 and X #£0
there shall be executed the additional operation of nitial clearing of the content of
the register (3, through the signal ¢z, on account of the fact that the result is in the
double register A.Qi8:1]. Following these operations, provided at ZEROTEST, it
will be checked whether we are in the previously noficed case of the multiplica-
tion of a negative multiplicand ¥ (M[7} = 1} by an X which has in its “tail” one
or several zeros. Thus, at statement TESTI, rank Q[0} is tested and when it is 0
then tn A{7] a O has to be introduced through rightshift. But the essential loop of
the algorithm (the loop which begins at TEST?2) implies, as required by both Booth
procedures, the checking, at a certain moment, of the binary pair {from the least sig-
nificant ranks of Q and, consequently, the testing operation has not been modified.
Finally, the last distinctive element of the synthesis from Fig. 3.28 is represented by
the flag R. Based on Eqg. (3.19) the state of flag R is operated on by EX-OR along



3.4 Seguential Two's Complement Binary Muldplier 97
itiplier 57

ZEROTEST: ......

e e fepd

TEST3: ...
RIGHTSHIFT: A[7J=OVR ex-or A[7], A[6:01.Q:=A Q[8:1],

- } - {e,pd

INCREMENT: COUNT:=COUNT+1, go to TEST Z;

EX-OR j : T .
:)D”’?W’Amé A EA[G]»Q’Q[BEZQ[T]} Q EQU]}Q[Gl

' L ; 1
C;

é

OVR ¢, Parallel adder O e Cs
e G P i

Fig. 3.29 Aliernasives to the description and block diagram corresponding to the modified Booth's
procedure

with the state of M{7], giving the particular value which is introduced to A[7]. More
precisely, in the rank A[7] (whose state is initialized by ¢, fogether with the other
ranks of A) either O, through c4, or the value produced by EX-OR, through ¢y, is
introduced. These two control signals are provided to occur, at timely moments, si-
multancously with ¢3. This last signal has the task to "push” to the right the binary
chain starting with the bit stored in A{7] and ending with the one from Q[1]. Besides
these operations which refer to register A (Fig. 3.28) the particular implementation
of Boolean equation (3.17) should also be mentioned. Thus, without loss of gen-
erality, a flip-flop of type D is chosen using its asynchronous inputs of set (8} and
reset (R) (Fig. 3.28), this representing, obviously, only one of the possible solutions.
Having in view the investigation of the alternative synthesis solutions, let us turn to
account the conclusions of the previous debate regarding the value 1o be introduced
in A[7]. The modifications required are “grafted” both onto the code sequence from
Fig. 3.27 and the synthesis from Fig. 3.28. These are summed up in Fig. 3.29. Thus,
as far as the code is concerned, the statement provided by label TESTI, implicitly
the signal ¢4, is given up. This can be done becaunse the problem of shifting over the
Os "from the tail” of X, when Y is negative is correctly solved by Eq. (3.18), OVR
being 0. Certainly, in the statement RIGHTSHIFT, (3.19) is substituted by (3.18),
with the elimination of ¢g. The shift on the entire length A.Q, including the shift to-
ward rank A[7], is assured through ¢ {refer to the circuit fragment from Fig. 3.29).
This technical solution, at first sight simpler, can cause a global performance degra-
dation, because the chain of two EX-OR gates (the first generating the variable OVR
through EX-OR operation on ¢, and the carry input in the sign bit, ¢3, and the sec-



98

3 Functional Analysis and Syathesis of Binary Multiplication Devices

internal contro}
R OWR A Q M COUNT signals activated
O} --0t-| 000000004 == --- oo - [BOTBT 14| - --000- - - e
LT YT L E1E SN IUUUSUU SN c,
-10010111
B T E 1L 1T F R L] LTI I ESS USRS Co Co C;
! \ gy 4
C,
01500110100 4110100 (e oo T I ¢y Co
5000110104 011101001 -~~~ ST U E— ey G
(oo LYK T
Y [5>0000110%4-001510100¢- -+ e o] P CT R B ¢y Co
1| +10010111 |
Q{9 L -10 1001004 ------ S G U S Co Gy
—~ 5 TR ¥
= T$110100104-0001H10{06f---o-emvmvenfome 1004+ on- £y G
11101001 400001110 T -~~~ SRR, PP R ¢,
+10010711
EERTATIAT 770 R SRR U AU USUUSERUSRE SURSR c.
A Ao ¥ b4 "
%, 11000000+ 0000011106} --------=-{----- 1104- 1o - ey G
L L] B b b
1 111000004 0000001 i~~~ -- ==~ --- g ey G
_ ~10010111 |
1e oo --0100100 145 Foomm e R T e SR Cs Cp Gy
510010074 - % F N U R e
(T eTrET: ") R U B e

Fig. 3.30 Example of a binary mukiplication ia two's complement code by the madified Booth's
procedure with microoperations’ control signals activation

ond implementing (3.18)), might require an increase of the CLOCK pulse period.
From the point of view of a reliable operation, mention should be made that an OVR
flag in the dotted position in Fig. 3.29 is recommended. Its setting would be done, at
each activation of the parallel adder, through a signal ¢5 {properly shified to ensure
the covering of the signal propagation on the worst paths). Consequently, if the two
versions are compared, mention should be made that they are in a quasiequilibrium,
the decisive factor in the choice being the available circuitry technology.

Similar to the other muitiplication methods, in Fig. 3.30 the moditied Booth pro-
cedure is applied to the same example presented in Fig. 3.9, Fig. 3.13 and Fig. 3.17.
The sequence of operations is exactly in accordance with the binary structure of the
canonically recoded multiplier Xyp (Fig. 3.21), scanned from Ish to msh. We also
mention that in Fig. 3.30 the OVR column has been provided, although this exam-
ple is subject to the procedure from Fig. 3.27. The value of the OVR variable has
no longer been marked, in the case of the example it maintains the initial value 0,
which, operated on by EX-OR with the value of the bit Af7}, is unchanged, this
value being introduced {as NA[7]) in the most significant rank of A,

Finally, as far as the complexity and performance of the modified Booth proce-
dure is concerned, mention should be made that it belongs to the same class as the



3.5 Binary Multiplication Process Speedup by Increasing Radix Value 99

already presented algorithms, but it may lead to substantial increases of throughput
capacity in case of favorable binary structures (as regards canonical recoding) of
the multiplier (mainly, on a large number of bits, the probability to turn to account
the acceleration characteristics of the method increases). Such an improvement, al-
though reduced, i.e. consisting of the elimination of one activation of the parallel
adder, can also be observed in the example from Fig. 3.30.

3.5 Binary Multiplication Process Speedup by Increasing Radix
Value

Modern circuitry for arithmetic does not directly use Booth recodings, but they are
the basis for the understanding of and approach to these problems in number systems
with radix value larger than 2, the so-called higher radix Booth’s recoding {Parh00,
SeMMOS5, HePa03}. Obviously, the increase of radix r results in the reduction of
the number of digits and an aigorithm which achieve the multiplication in a digit-
at-a-time manner will require a smaller number of cycles, as r increases. Thus, an
operand on 7 bits can be interpreted as having [n/27 digits in r = 4, [1n/3] digits in
r = 8, etc., where the bars | ] signity the smallest integer larger or equal to the value
between the bars. However, depending on the increased value of r, the algorithm has
to ensure the simultaneous inspection of several digits, 2 atr =4, 3 atr = 8§, etc.

Supposing, to begin with, r = 4 and integers, let us adapt the iteration (3.2} to
the new conjuncture:

Fri= P 4 x Y,

PRt (3.20)

where, besides the aiready specified notations, mention should be made that this
time x; may take the values 0, [, 2 and 3.

1f the forming of the multiples by 0, | and 2 of Y is easy to achieve (2 represents
the binary configuration of Y shifted by one bit to the left), as regards the value
3Y, it requires at least a supplementary addition, because 3Y = ¥ + 2¥. A first
implementation option for the algorithm based on (3.20) consists of the preceding
computation of 3Y and its storage in a register for subsequent use.

Before the detailed presentation of a procedure based on (3.20), it is time to
mention that, as regards the fundamental algorithms, we have appealed to the em-
ployment of a detailed presentation both of the algorithms and of the hardware de-
vices which achieve their implementation. This strategy has been used 1o enable
understanding of the tnner workings of the mechanisms, so that things may be as
transparent as possible for their immediate physical-electronical implementation.
Attempiing to ensure as consistent a presentation as possible, we shall take over the
notations that have become recognized in this work, but we shall adhere, from now
on, (o a more synthetical presentation, insisting, also to avoid monotony, only upon
the elements that are specific to the various methods or diagrams. However, we shall
endeavour to render the work a degree of clarity which, together with the inserted



100 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.31 Conaceptoal Multiplier
diagram for radix-4 binacy ; T
multiplication Q forn iQ[G]

—» 2 bits shift

3¥ X x;
g ¥ 2y

06701 101 Y

MUX A
to the parallel adder
f;z%xc?(:?ezrlsgzgl(:f‘;;::hrtgx2 e X T wskell W Wi
and radix-4 Booth’s recoding ¢ 0 0 0 0 ¢
0 ] 1 0 1 1
0 i 0 1 1 1
¢ 1 1 1 ¢ 2
1 0 0 T 0 2
1 0 1 1 1 1
1 1 0 0 E) 1
1 i 0 ¢ 0

details, may allow, from case to case, a deeper understanding of the problems up to
the level of the employed technology.

Thus, the multiplication procedure in radix 4, based on the precomputation of
3Y and on the iteration (3.20), can be associated with the diagram from Fig. 3.31
[Park00]. In if, the control of the selection inputs of a multiplexer, MUX, can be
observed through the pair of bits, i.e. the current one x;, and its left neighbour, x;.1,
both stored in the least significant ranks of a register alias Q. Through MUX pass
towards the parallel adder, depending on the combination from Q[ 1Q[0], the multi-
plesof ¥ (0, ¥, 2Y or 3Y} to be added, according to (3.20), to the partial cumulative
product. Thus, the precomputed value 3V, stored in an additional register, is added
to the content of a register alias A, when x;.x; = 1. It is also important that the
shift, when r = 4, is made by 2 bits (2-bits shift) to the right, which considerably
accelerates the process.

The peculiarities of the r = 4 operation being pointed out, let us analyse, for this
value of the number system radix, what is implied by Booth recoding of the mui-
tiplier X, namely the first such transformation, which is exemplified in Fig. 3.14.
Thus, we consider a triplet of successive bits of X—-which we denote by xp.4.1, %1,
x;_—then a pair of successive bits of X g—which we denote by xp; 11, xpi—
associated with those from the triplet and, finally, we denote by x4p;/2 the bit as-
signed to the pair and which belongs to the Booth recoded form with radix 4, Xqp.



3.5 Binary Multiplication Process Speedup by Increasing Radix Value 104

Fig. 3.33 Example for ) , i . . P . . )
obtaining radix-4 Booth Weight | 20 20| 2% 2 072
recoding - - -

X, = 1 1 1 0 1 0 0 1

K= 1 3 2 i

@
Range EA ko X X, X X, Xy % X,
X, = H 0 i 0 0 1 1 i 0
b 4 ) 4 ¥ l
Xo= i i p T
b

Exhaustively scanning the combinations of the triplet bits, results in the values from
the table presented in Fig. 3.32. If we consider that each triplet is independent,
the values from columns xpg;.1 and xp; can be immediately obtained according
to the rules established for Booth recoding (refer also to Fig. 3.14). The values
from the last column, xgp; 2, resuit, first, from the values xp;4; and xp; by taking
into account the weights assigned to them, as well as their signs. Thus, for the pair
xpipixp = 1= (=12 4 (+1)27 = —27, which leads, according to vank i (it
has the weight 27) of recoding in radix 4, to the value xgp; = 1. S:mt!arly, for the
pair Xpgip1Xp; = = 10 = (=20 = (=227 we obtain Xigij2 = 2. In order to per-
form Booth recoding radix 4, Booth recoding bits radix 2 are grouped in pairs and
the correspondences that exist in the table from Fig. 3.32 are used. For instance, let
us consider our multiplier X = (~89)277 and its Booth recoding radix 2 (Fig. 3.14),
a situation in which, in Fig. 3.33a, is obtained, according to the established rules,
its recoded form radix 4, X4p. But, passing through the recoded form radix 2 is
not necessary, because the code conversion can be done directly by taking into ac-
count the triplets (xj4.1, X;, ;1) and xqp; from the last column (Fig. 3.32). Here
occurs an aspect connected to the particular value of the radix, namely the way in
which the bits of the form X7 are grouped in triplets. Since r = 4, the jump must
be made over 2 bits and consequently the need appears to overlap the triplets at
the level of one bit. We recall that, for this type of Booth recoding in radix 2 the
extension of the form Xz with a O bit to the right of the Isb (x_, = 0) is typical.
This bit is part of the rightmost {riplet, being its 1sh. The extension by one bit (o
the right, correlated with the use of the digits &2 in the recoding in r = 4 (which
requires the extension by one bit to the left of the most significant part of the cu-
mulative product and of the adder, as will be seen below), requires the correction
of the Booth recoded form radix 4, for fractional numbers, through multiplication
by 2. Thus, in Fig. 3.33h, are presented the overlapping triplets [HePa94] in the
case of our example multiplier, whose weighted value X4p 15 computed, under the



102 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Multiplier X Muttiplicand ¥
] Q  QQIe QL] M
I
2 bits shift Ko X X .
Recoding ;
logic
neg zemi two. vY v2Y
a 0 1
Shift Select \, Multiplexer
controt MUX
(e, Fig.3.16
Subtract n+li/4"~ Yor2¥
controt
{c,, Fig.3.16) to parafel adder

Fig. 3.34 Concepisal diagram for implementing the procedure based on radix-4 Booth's recoding

specified conditions, by: Xup = (=4~ + (=472 + (4243 + (=14 2 =
= (el (2347 (F2M - 1277 = (890277,

In Booth recoded form radix 4, there may be observed {(e.g. in Fig. 3.33) the
reduction by half of the number of digits (obviously, with favorable consequences
as regards the performance of the procedure), but aiso the requirement of gener-
ating only the multiples (Y, (1YY, (£2)Y {which are obtained through simple
operations of complementing and/or shift). Consequently, we do not need muitiple
3Y (it can be obtained only through a considerable time investment, implying the
above mentioned addition) which is required by the previous multiplication proce-
dure radix 4.

A possible implementation of the algorithm based on Booth recoding radix 4 is
given in Fig. 3.34 (adapted from [Parh00]). In it registers @ and M can be recog-
nized, at register Q being pointed out the 3 ranks we are interested in-—Q[ 1], Qi0]
and Q[—1}—where, at a certain moment, the triplet to be analysed (xpp1.0:,%.1)
appears, as well as the fact that, at each shift, the contents of the double register
A.Q is shifted by two bits to the right. The outputs of the three least significant
ranks of Q are applied to the recoding logic. Its synthesis, executed according to
the table from Fig. 3.32 (except columns xp;.1, xp;), can be achieved in a sim-
ple and efficient way, by generating three output functions, namely: “zero”, ob-
tained through the OR function between the decoded combinations corresponding
to the first line (Q[171Q[0IQ[—11) and to the last line (Q{11Q[OJQ{—11]) of the ta-
ble (Fig. 3.32), which activates the shift control (i.e. signal c4—Fig. 3.16), “neg”,
obtained through the OR function (minimized) between the combinations corre-
sponding to the triplets (1,0,0), (1,0, D) and (1, I, 0)—having associated negative
values for x4p; o—which activate the subtract conirel (i.e. signal ca—Fig. 3.16} and,
finally, “two”, obtained through the OR function between the combinations corre-
sponding to the tiplets (0, 1, 1) and (1, 0, 0) (Fig. 3.32)—having associated values
2 for x4p; ;—which activate the select signal of the multiplexer MUX, The mul-
tiplexer consists of (n + 1) cells of the type from Fig. 3.33, allowing to pass towards
the (1 -+ 1) inputs of the parallel adder, whea “two” is active (1}, the logical val-



3.5 Binary Multiplication Process Speedup by Increasing Radix Value 103

Fig. 3.35 Detailed diagram _ AND
for the MUK mubiplexer gl M[ir1]

OR to parallel

NOT, adder
MIi] - input
Select
(two)
Fig. 3.36 Example of a Q
binary multiplication by the A M COUNT
procedure based on radix-4 - | 1] | Qo3| Qf-1]
Booth's recoding 00000000 10010111| 00
01001 | 1| 1] ©
110010111
Q07101001 |
000011070 | 011010 | 0 | ‘1 | ™ 01
+100101110
101001000
o b1 hi X
111010010 | 000110 | 1 | © | O 10
-100101110
010100100
000101001 | 000001 | 1 | © | 1 14
-110010111
010010010
01001001
6160008t g | o | 1

ues of the outputs of the ranks shifted by one bit to the left of the multiplicand ¥
from register M {i.e. those which correspond to 2Y), and, when “two” is not active
{0, the logical values from the outputs of the M ranks {i.e. those which correspond
to ¥). Index i varies between (—1) and (n), with M{—1} = M[n] = 0 and M}0] to
Min — 1] representing the n bits of M, so that to the parallel adder are connected
{n+ 1) lines with the contents of M (i.e. ¥, when two = () or, as applicable, with the
contents from M shifted to the left {i.e. 2¥, when two = 1), Besides the additional
adding cell in the paraliel adder, one more rank also has to be added to the register
used for forming the cumulative product, alas register A (Fig. 3.16). The fact that ¥
penetrates through the MUX when we have multiple 0 (¥ = (), does not disturb us
at all because, in this situation, the control unit is designed in such a way that it will
not generate the homologous signal of ¢7 from Fig. 3.16, but only that one which
corresponds to the shift (cg).

In Fig. 3.36, we have applied the procedure based on Booth recoding radix 4 to
the example treated by the previous methods. There can be observed the exiension
of register A by one bit to the left (to enable the addition or subtraction of the valucs
of 2Y}, which implies, for the operation with (1), the extension of the sign bit by



104 3 Functional Analysis and Syathesis of Binary Multiplication Devices

one position to the left. Similarly to the algorithm from Fig. 3.15, and the device
from Fig. 3.16 respectively, the right-shift is achieved through the recirculation,
in the most significant rank of A, of its old contents. it can also be observed that
when right-shift is performed, it is done, each time, on 2 bits, which implies the
saving of one rank at the iterations counter COUNT. A last remark refers to the
returning of the result obtained in the 16 ranks of register A.Q (9 from A, and 7,
the most significant ones, from Q). This fact is connected with the above-mentioned
correction that has been employed in the computation of value X4p (Fig. 3.33).

Multiplication devices that use radices r farger than 4 (8, 16, or even larger) can
be synthesized, according to the schematic model from Fig. 3.31, but the hardware
required for the generation of the multiples (3Y, 5Y and 7Y, in case r = 8) becomes
complex, annulling through the delays on it, either mostly, or even totaily, the gain
in speed due to the smaller number of cycles. However, attractive hardware imple-
mentation solutions are also possible in situations when the radix of the number
system is larger than 4 [ErLa04].

3.6 Binary Multiplication Speedup Using a Single Carry-Save
Adder

As has already been seen, for a parallel adder, created even in the form of a binary
tree based on the CLA {carry lookahead adder) approach, when the numbers that
need to be added have a considerable number of bits, the time required for the execu-
tion of the operation, which has to be covered by the CLOCK period, becomes pro-
hibitive. Thus, supposing that the numbers have 64 bits, when the multilevel carry
lookahead approach implemented through a CLA tree adder is used, the time inter-
val required, evaluated in 2.2.4 for specified hypothetical conditions, corresponds
to the delay on 4log, 64= 24 logical levels, a value which is significant even when
rapid technologies are available. The studied sequential algorithms activate such an
adder for a significant number of times, which, as has already been seen, depends
on the particular binary structure of multiplier X. Moreover, these algorithms, which
require variable times for the multiplication process, create problems in the synchro-
nization with the CPU, in the efficient application of the pipelining design method,
and in compiler optimizations {HePa031.

The above-signalled drawbacks can be greatly reduced by including a carry save
adder (CSA) in the multiplication device structure, according to the model from
Fig. 3.37. The CSA, as we already know and may be observed in the figure, consists
of n independent full adder cells (FAC), n being the number of bits in the operands.
Each FAC has three inputs (one bit for each number to be added, and one carry
bit from the previous rank) and two outputs (one for the sum bit and another for
the carry bit towards the next rank). The fogical values which exist at the two out-
puts of the # FACs are stored in two registers of » bits, one dedicated to the sum
bits, denoted in Fig. 3.37 by A (by analogy with the Accumulator register from
the already studied devices), and the other dedicated to the carry bits, denoted in



3.6 Binary Multiplication Speedup Using a Single Carry-Save Adder 05

Accumuiator registers
ACI0],.... :

Muitiplter register

FAC ol EAC (-2 0 Perallel acider
‘ (Ripple carry adder)

Cy Paraliel adder
(Rippic camry adder}

EX-OR
wordgaty  Comtrol signal

{e)

| Mz ‘M{“'zl e | MIZ ‘ M1} E M{0} ‘ ;Muiﬁplicmdregister

Fig. 3.37 Block diagram of a sequeatial binary multiplier with a single CSA for the Robertson’s
procedure implementation version

Fig. 3.37 by AC. The contents of the two registers are added to obtain the value
of the more significant half of the partial cumulative product. The AC register ap-
pears as an additional hardware investment, redundant in comparison to the already
presented solutions, a fact which justifies naming this multiplication procedure re-
dundant [HePa03}.

We shall discuss the implementation version corresponding o the Robertson
method (Fig. 3.37), but the modifications to adapt it to the Booth procedures are
minor, and they can easily be imagined. In a similar way to other devices, initially
multiplier X is loaded in register Q, and multiplicand Y is loaded in register M,
where it will remain throughout the entire development of the procedure. Also ini-
tially, the contents of accamulator registers (A and AC) will be cleared, as will that
of the iterations counter COUNT, which can be observed in our example, presented
in Fig. 3.38. In this case, as well, A and Q form a double length register, having the



106 3 Functional Analysis and Synthesis of Binary Multiplication Devices

right-shift capacity. We have a layer of AND logical circuits on the entire length of
the word, whose role is to allow the application as input to the CSA, depending on
the momentary value existing in Q{0], either of the contents of M, or of the value
00 ...00. The other two binary vectors, also representing inputs to the CSA, are the
one contained in register A following the rightshift (refer to A.Q27!, Fig. 3.38) and
that from register AC.

In this way, to the current value from A, the value from M or 0 is added, as
well as the carry vector generated by the previous rank. At the CSA outputs, there
are available the sum and carry words (to the next rank) after the signais cross only
two logic levels, specific for a FAC—whatever the value of n—which is a substantial
gain as compared to the 24 levels, for 1 = 04, specific for a CLA tree adder solution.
Muoreover, a fact which can also be observed from the example (Fig. 3.38), al] the
steps—except, possibly, the last two ones, which will be discussed later—have the
same duration, enabling the surmounting of the previously mentioned disadvantage
regarding the dependence on the binary configuration of the muitiplier X operand.

The gain in performance and organization brought about by the use of CSA is
partially balanced by the AC “redundant” register, as well as by the two supple-
mentary conventional parallel adders, which, to mainfain a minimum clarity of the
figure, have been represented as the ripple carry adder (RCA) type in Fig. 3.37. The
first of them, denoted by RCA |, is meant to add, in the last step of the procedure,
to the shifted sum binary vector from register A (refer to A.Q2™ !, Fig. 3.38), the
carry vector (from register AC), to obtain, in this way, the more significant part of
the product. More precisely, if we refer to the example from Fig. 3.38, it is the 7 bits
from A that we are talking about (the msb is ignored because an additional rightshift
is required--COUNT = 1000, as compared to the usual COUNT = il 1--to enable
the exccution of the ordinary final addition, with carry propagation), they being
concatenated to the 8 bits from Q to form the final product. Within this context, we
underline the need to return, as such, the result of the multiplication operation to the
output bus. Mention should also be made that, for the same reason of minimum clar-
ity as regards the circuitry from Fig. 3.37, the outputs of RCA (Afn — 1], ..., A[OD
have not been “sent back™ to register A. On the other hand, the second parallel adder,
denoted by RCA;, allows, together with the EX-OR wordgate layer, when the con-
trol signal ¢4 is activated (denoted this way because it has the same functional role
as its homonym from Fig. 3.12), the two’s compicmenting of the contents of regis-
ter M. This value is needed only in case of a negative muitiplier X, corresponding to
the correction step {in cur case, the last but one step) from the Robertson procedure,
when, in fact, the number stored in M has o be subtracted (actually, this number is
added as M*, after the contents of an imaginary COUNT becomes 111—Fig. 3.38).

We also mention that the use of multiplexers and additional logic which enables
recopfiguration, makes possible the saviag of an RCA in the circuitry from Fig. 3.37,
but we prefer to keep both of them for greater clarity of the informational flow. Nat-
urally, Fig. 3.37 lacks some structural elements, as well as the logic part meant to
facilitate the application of the signals generated by the control unit, which is also
missing. Regarding the example from Fig. 3.38, besides the already made observa-
tions, note the marking with braces of the contents of the three registers (the shifted



3.6 Binary Multiplication Speedup Using a Single Carry-Save Adder

Registors | Ziccumulator Q M COUNT
registers
AC 00000000 ) 1010011 16016111 0000
A + 00000000 | | ]
M T10010111 e ! !
AC 00000000
A 10010131
AQ2 11001011 11010010 0001
AC + 00000000+ \ \ ‘
M + 10010111 e } 1
AC 10000611
A Q101110D -]
AQY 00101110 [y [ 01101000 0010
AC + 10000011« \ \
M + 10010111 ‘< \ i
AC 10000111
A 0111010~
AQ2" 00011101 |, 00110100 0011
AC + 10000111+ |
0 + 00000000 <
AC 00000101 l
A 106011016+
AQ2 1001101 |, [ * 000110 0100
AC +00000101+ | \ \
0 + 00000000 < , !
AC 00000101 l l
A 11001000 -
A0 11160100 e 000011000 0101
AC + (0000101« 3 \
M +10010111 [« | s
AC 10000101 l
A 0131103110
AQ2 onit1otl [, 00006110 0110
AC 10000103+ |
0 + 00000000+
AC 00000001
A 10111110
AQY 11611311 |5 [ 0000001 0111
AC + 00000001+ | \ \
M +01101001 < ! !
AC 01001001
A 10110111
AQY HOMI0H ) [ 10000001 1600
AC + 01001001
P 00100100 10000001]

107

Fig. 3.38 Binary multiplicasion example by a sequential multiplier with a single CSA for the
Robertson’s procedure implementation version

A, AC and M or 0) added in CSA mode, a fact which requires the re-writing of the

AC contents.

Obviously, the technical solution from Fig. 3.37, with the corresponding exam-
ple from Fig. 3.38, can have varicus implementation solutions {besides the above-
mentioned ones, for instance, the A.Q rightshift can be replaced by an AC leftshift,



108 3 Functional Analysis and Syathesis of Binary Multiplication Devices

and, consequently, the precaution of returning the final product in the bus can he
aveided), our choice taking into account, for the already mentioned reasons, the
clarity of the informational flow. Even with this version, which is unfavorable re-
garding performance, the gain in speed, as compared to the previous solutions, is
unguestionable, due to the consistent reduction of the time length of each step (cy-
cie). Let us examine, below, the combination of this improvement with that specific
to the previous method based on the increase of the value of the number system
radix, consisting of the reduction of the number of steps (cycles).

3.7 Binary Multiplication Speedup Based on Radix 4 and
a Carry-Save Adder

Let us combine the two speedup approaches presented above to obtain as substantial
a performance gain as possible, Thus, adopting, this time, a synthetical presentation
of the type given in Fig. 3.34, but referring to the structural elements from Fig. 3.37,
int Fig. 3.39 a multiphication device radix 4 with CSA is outlined (after [Parh001).

Regarding the new configuration, mention should first be made that the recod-
ing logic is controiled by the samne three bits from the ranks Qf1], Q[0 and Q[—1]
of a corresponding multiplier Q register. It has the same three outputs as that from
Fig. 3.34, with similar observations regarding the logic synthesis. But there are cer-
tain differences, namely “zero” is applied to the authorization input “Enable” of
multiplexer MUX, which has to be provided with such an input (such as, for in-
stance, the integrated circuit MUX 7415153 {Yarb971). Also, a “zero” output does
not directly execute the shift control ¢4, as in Fig. 3.34, but, when it is not acti-
vated, the MUX supplies, at its {# -+ 1) outputs, the binary vector made up, ex-
clusively, of Os. This, together with vectors ¥ and 2V, generated in the manner sug-
gested in Fig. 3.33, is supplied to a binary subtracter, synthesized through an EX-OR
wordgate layer and a parallel adder, e.g. of RCA type, which, when its “peg” con-
nection is active, forms, as preseted in Fig. 3.37, the two's complement for {(—))
and {—2Y). Thus, at one of the three sets of CSA inputs the vectors corresponding
to all the multiptes provided in the table from Fig. 3.32 are available, i.e. 0, Y, (— V),
2Y¥ and (—2Y). To the other two sets of inputs are supplied the sum and carry vec-
tors which are temporarily stored in registers A and AC of the Accumulator registers
block with the general configuration given in Fig. 3.37.

However, the operation based on the Booth recoding in radix 4 requires certain
distinctive elements as compared to the structure from Fig. 3.37. Thus, only the most
significant (n — 1) bits of the sum binary vector from the CSA output are loaded
into the corresponding bits of register A, and in its two least significant ranks (Af1]
and A[0]) the binary values from the outputs of an additional paralle! adder (AA),
represented in Fig, 3.39 of RCA type, are introduced. To the AA inputs, there are
supplied, on the one hand, the two least significant bits of the sum vector, and, on
the other hand, the feast significant bit of the carry binary vector concatenated, to the
right, with the bit stored in a carry flip-flop (CFF). This memorizes the binary value



3.7 Binary Multiplication Speedup Based on Radix 4 and a Carry-Save Adder 109
Multiplier X' Multiplicand ¥
—{ Q Q1] QI0}—>QI-1] M
—»
2 bits shift g X Xii n
Recoding b 4
togic
negt Zercr Iwod
Y 2Y
Setect; MOI - 177
Enahle u {1}_) CXCT
A O MUX
E.
i ntly«—0,Yor2Y
o PA Cos 1% » EX-OR wordgate
- & RCA
b 1 bl ontd
A nti G.Y{-N,2Y
s l o 2ny
AC
Accumulator . o CSA Carry - save
ist r A dde
TEgEsiers A A{i] A[O} a T
E—
2 bits shift T n-1 i
ntl nt+l
mmmmmmmmmm oy 2
Carry o ! AA L
flip-flop [~| CFF ¢~ FAC— FAC /4 "
F LMTJ}WMMMA“%MJ

-
Additional adder (2 bits)

Fig. 3.39 Conceptual diagram of a sequential binary multiplicr with a single CSA using radix-4

from the ¢, output of the AA adder, a carry which may occur in the generation
of those final bits of the product which are “pushed”, during the right-shift process,
from A into Q. These last bits are formed by adding to the two least significant bits
of the CSA sum vector the least significant bits of the CSA carry vector, shifted
by one position to the left and having attached, to the right, the memorized value
(in the CFF) of the carry that has resulted from the previous activation of the CSA
and AA adders. Consequently, the CTF output is applied to the Isb rank of AA, but
also to the ¢y input of the parallel adder (PA), which enables the obtaining—finally,
through ordinary addition of the two last vectors, the sum and carry ones—of the
part from A of the result. The loading of registers A and AC, as well as of the flip-
flop CFFE, has been arranged to be executed synchronously, which implies a latency
covering the time interval required by the signal’s propagation on the worst path
(usually, the one that passes through the largest number of logic levels) from the
combinational logic AA. Regarding the previous observation related to the gener-
ation of the real sum vector from the sum and camry CSA words, we also mention



110 3 Functional Analysis and Synthesis of Binary Multiplication Devices

that at the end of each step (cycle) of the procedure, register A.(Q is arithmetically
shifted by two positions o the right, while register AC has to be shifted by only one
position, also arithmetically, in the same direction. Consequently, unlike register AC
from Fig. 3.37, register AC has to be provided with shifting capacity. Of course, if
the above-described procedure 18 precisely respected, other implementation versions
can be imagined as well.

The application of the above-described procedure can be followed up on the same
example operation used to illustrate the other procedures, in Fig. 3.40. Mention
should be made that we have resorted to the same denotation and representation con-
ventions used in Fig. 3.38 (M* for the two’s complemented contents of M, AC2™!
for the one position right-shift of AC’s contents, and, by analogy, A.Q4~ for the
two positions right-shift of the contents of the A.Q double register, as well as the
brace that marks the three binary vectors added in a CSA manner), and in Fig. 3.36
{for the identification of the bits triad Q[1IQI0]Q[-1] investigated at a certain mo-
ment). Moreover, there appear CFF and AA columns which illustrate the added pairs
of bits, as well as the ¢, generated by the addition and stored in CFF. The two east
significant bits from A are presented in the same row of the given register, but in the
column AA, and the sum bits from AA have no longer been “sent back™ to the ranks
Al1] and A{0} of register A, this time they have been “pushed” directly to register Q,
this only fo ensure a minimum clarity of the informational flow from Fig. 3.40.

3.8 About “Parallelizing” of the Sequential Devices for Binary
Muttiplication

One common feature that has occurred in the studied procedure implementations
was the execution of the binary multiplication operation through a sequence of con-
trol signals, each of them requiring, in principle, 8 CLOCK pulse. Regarding the
possible solutions, on one hand, there are the so-called “one-bit-at-a-time” proce-
dures (which take the decision for addition-shift, or only for shift, depending on the
value of a single bit at a certain moment} in radix 2, whose implementations are
the most expensive in terms of number of CLOCK pulses. On the other hand, there
are the implementations which require only one such pulse, the operation execution
being so-called “completely parallelized”™. But these solutions require the time inter-
vals needed for the signals’ worst paths propagation to be covered by the CLOCK
period, as well as the largest number of circuits, and, implicitly, the largest inte-
gration area. Between these two extreme possibilities there are procedures which,
in comparison to the purely sequential ones, increase the degree of the paralielism,
thus enabling the acceleration of the operation execution, and which, as compared
to the purely parailel ones, reduce the circuits and integration area. “Parallelization”
is obtained, starting with Booth recodings, by simultaneously investigating two bits
and, then, as the number system radix increases, an ever larger number of bits. Thus,
as has been seen at r = 4, three bits arc inspected, with the use of multiples of ¥ in
the integers value range [~2, +2], similagly, for r = 8, four bits are simultaneously



3.8 About “Parallelizing” of the Sequential Devices for Binary Multiplication 111
Registers Aice‘;‘i’:f;f;“ CFF | AA f?{l} ol M
AC 000000000 0 101001 NEREERI
A +000000000
M* +00L10L00L
AC 000000000 b0
A FOOEEOLO 0+z
\ \ 6 | 02
AQH 0000110190 M i010 ‘NR 1
AC2 +000000000
M +10010E110 )
AC 000001010 b 09
A 1001101 0+0
\ \ 0 | 00
AQ4 111001101 So0110 NE 0
AC2 +000000101
IM* +011010010 ]
AC 0110001080 0
A 1000110 :0
RN \
AQ4 L11000110 oot N ¥
AC?? +001100010
M +001101001
AC 001100010 ol
A 1110011 0+i
RN Y \
AQ n‘ilmoﬁl STooooo | o 1]
AC2 +000110001f
P 00100100 ioooo | o | 1 | 0

Fig. 3.40 Binary multiplication example by a scquential multiplier with a single CSA and using

radix-4



112 3 Functional Analysis and Syathesis of Binary Multiplication Devices

analyzed, the iteger interval of ¥ multiples becoming [—4, +4}, and for r = 16 the
number of simultaneously consulted bits is increased to five, and the interval of ¥
multiples is increased to |8, 81 In principle, as the value of » increases, the es-
sential structural elements remain the same as those from Fig. 3.39, with the caveat
that the recoding logic becomes more intricate, its synthesis being based on the cor-
responding extension of a table of the type from Fig. 3.32. Certainly, the multiplexer
MUX must also be correspondingly extended fo be adapted to the number of posi-
tive multiples {plus 0). The blocks EX-OR wordgate & RCA, Accumulator registers
(A and AC) and PA are maintained, with the observation that they are constructively
dependent only on the value of n. The number of ranks in the AA adder must be
modified, as well; for ¥ = 8, this will be equal t0 3, and for r = 16, it will be 4.
Obviously, whatever the value of r, ¢,y will be kept in a CFF.

Special attention shall be given to the second fundamental speedup element
which contributes, together with the increase in r, to the improvement of the par-
aflelized solutions’ performance, 1.e. the CSA adder. The gain obtained through the
use of CSA adders is undoubtable in comparison to other synthesis methods. How-
ever, mention should be made that, as the values of radix » and, implicitly, of the
multiples of ¥ increase, CSA addition requires a larger number of levels. CSA tree
arrangements [ErLa(4, Oliv0l] are often resorted to, which, as will be seen be-
low, reduce the performance improvement. Thus, we have highlighted the tradeoffs
which favors the choice of a certain solution. Practically, there is no reason to limit
the radix, for instance, to r = 16, in {Parh00] there being discussed a multiplier with
r = 256. The choice of an “optimum” (in reality “better”) solution is not a sim-
ple task, it being influenced by a multitude of factors, of which the decisive role is
played by the circuit technology available, as well as by the use of various artifices
for exploiting the CLOCK parameters {three-phase clock [Parh00]).

We should like to refer fo the integration complexity of the very large scale inte-
gration level (VLSI) of the implementations for the above presented multiplication
devices [ITRSO1]. Their structural components include, resulting from the various
configurations, and mainly that from Fig. 3.39, registers, multiplexers, CSA adders,
and a fast parallel adder (which, in Fig. 3.37, has been taken to be of RCA type only
for the sake of a simple representation}, as well as a generally reduced quantity of
random logic for the control synthesis. Among these components, the CSA adder
tree has an tmportant influence over the VLSI complexity. Without loss of general-
ity, referring to multipliers without Booth recoding of radix r = 2%, the forming of
the sum and carry vectors cotresponding to the final product require £ CSA adders.
Thus, if r = 4, and since, as can aiso be seen in Fig. 3.31, it is necessary to generate
multiple 3Y, it results that we have four input vectors (Y, 2Y, and the sum and carry
vectors from the previous partial cumulative product) whose CSA addition requires
k = 2 adders. Similarly, when r = 16, it results that in order to form~—by means
of muitiples ¥, 2¥, 4Y and 8¥-—all the multiples, it is necessary that we use k =4
CSA adders, which, as shown below, can be interconnected in a tree arrangement,
for instance, of Wallace or Dadda type [Parh(0}. Generally, such a CSA tree has
{k 4+ 2) inputs and the height by CSA levels can be approximated by {log, k1, where
the bars | 7 have the known significance, indicating the smallest integer number,
farger at least equal, fo the value of the argument,



3.9 Combinational Array Structures for Binary Multiplication i13

As regards the integration of such a CSA tree arrangement, one of the decisive
factors is the complexity of the silicon wafer area, which will be denoted by A,
this presenting the dependence A = O (kn), where # is the number of bits in each
operand to be multiplied. Since, related to A, the CSA tree prevails in comparison to
the other structural elements, the final fast adder included, the silicon area require-
ment for the entire muliiplication configuration can be estimated by:

A= Otkn) (3.213

On the other hand, investigating the performance, the time complexity corre-
sponding to a CSA tree of Wallace type is given by O([log; £7) and, since it is
activated (n/%) times during a multiplication operation (refer also to the example
from Fig. 3.40, even if, in this case, Booth recoding is used), we obtain, for the
time component specific to this element of the multiplier device, the dependence
Ty = O({n/ k}log, k)7). 1f to this we add the required component, in the fast mode
(e.g. CLA), of final addition given by T2 = O({log, n1}, then, for the time complex-
ity of the entire multiplier, we have the following dependence:

T = O((n/k)[log, k1 + [logy nl) (3.22)

Starting from (3.21) and (3.22), and trying fo evaluate the integration efficiency,
we shall use the well-known metrics AT [Parh00, ErLa04] which, in the case of our
multipliers, will have the following form:

AT = O(n? tog, k1 + kn[log, n) (3.23)

At the lower limit of the complexity spectrum, when &k = |, we have AT =
O{nflog, n1), this being the case of the slower multipliers radix 2. But, if, we re-
fer to the realm of the accelerated devices, for instance & = 2, there resulis AT =
O(n*), and for k = n (this being the completely parallel case, when all the bits of
multiplier X are simultaneously inspected), there results AT = O(n? [logy nl). But,
it being known that, for an “optimum” design AT is, in the limit, proportional o
na/n [Parb00], and since none of the intermediate designs, between the extreme
ones mentioned before, allows us to obtain better values for AT, the conclusion is
that the multiplication devices remain asymptoticaily suboptimal for the entire value
range of the parameter n.

3.9 Combinational Array Structures for Binary Multiplication

As mentioned in the previous section, opposite to “one-bit-at-a-time” procedures are
those where, in the entirely parallel mode, all the bits of multiplier X are simultane-
ously investigated, the operation being executed in only one CLOCK pulse. Thus, in
this case, one of the implementation solutions uses the so-called combinational ar-
ray structures [Haye98]. To arrive at the synthesis of such multiphiers, let us analyse
once more the how the product is formed.



114 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Without loss of generality, and for brevity of expression, let us consider the two
operands X and ¥ representing two integers without sign, of 4 bits, i.e.

3 3
X = Xx3xx X0 = Zx,;Zi and Y =wymyviy = Zijf (3.24)
i=0 i=0

On the one hand, product P = XY is formed, if the weight of each bit is taken
into account, by means of the following expansion:

) ()

i=0 =0 =0 \j=0
=2%(x0y02% + x0312" + %0322 + x0¥32?)

+2! (x;ygf) + a2t 2t a2’

A+ 2 (302" 4 a3 2+ o v2? 4 xpvs27)

+ 27 (33027 + x3312" + x33927 + 3133327} (3.25)

1f in the form (3.25) the terms are rearranged by grouping the one bit products of
the same weight, we will reach:

P =3 2® + (ooys -+ x332) 27 + (e ys -+ a2y + xay)2!
+ (xo¥3 + X1 y2 + X2yt + 1356027 + (oy2 + 111 + x230)27
+ (ko1 + x1y62 4 xpyp2° (3.20)

Relation (3.26) stands at the basis of multiplier synthesis as a combinational ar-
ray sfructure. This structure is made up of two circuit matrixes, of which the first
is meant to form the terms of x;¥; type. Since, at the level of a single bit, the
arithmetic product coincides with the logic product, one of the matrixes consists
of #n - »n AND logic circuits, according to the model from Fig. 3.41. The outputs
of these AND gates are applied to a second matrix formed, this time, of full adder
celis (FAC), which, adequately interconnected, are meant to configure several RCA
adders whose inputs are the single bit products x;¥;. Their shifted addition, re-
quired by the multiplication process and highlighted in relations (3.25) and (3.26)
by the various weights of 2, is achieved through the spatial arrangement of FAC
celis, as shown in Fig. 3.42. Mention should be made that, in the additions of the
sum terms given by the parentheses from (3.26), carries may be generated, so that py
bits (where k& = 0,7) of the product are obtained by taking into account the potential
carry bits from the previous ranks, as well [Haye98}.

Obviously, in a similar way to the other diagrams, the pulse period which strobes
the supply of the two operands, X and ¥, to the combinational array structure has
to cover the time interval required by the signals to pass the worst path, involving
the largest number of logic circuits. But, in the diagram from Fig. 3.42, it can be



3.9 Combinational Array Structures for Binary Multiplication

Fig. 3.41 AND logic gates
matrix of a combinational
array structure for 4-bit
operands multiplication

-

Pz P

Xy

Xy

s

Ya

¥

E1S

Ye

AND

AND

AND

D

Py

E o

P

D‘%‘M D EA

X 8 Aabo

v

P Py

Fig. 3.42 FACs matrix of a combinational array structure for 4-bit operands multiplication

easily observed that the chaining {in an RCA) of the six shaded FACs is the longest
path for the propagation of a possible carry, covering the worst case. It we denote
by d the delay on a FAC and assume operands on » bits, for the matrix homologous
to that from Fig. 3.42 the time Trac, corresponding o the above-mentioned circuits
chain, results from the following relation:

Tpao=m—Dd+(n— Dd=2n—1d

(3.27)



it6 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.43 Coaceptoal LY 2
diagram and symbol for a
multiplication cell

Y | [If
| i [T e MC G
LR 7

symbol

Cou

To this interval, there must also be added the delay, denoted by &', on an AND
gate from the matrix represented in Fig. 341, Since all single bit products are formed
in Tanp = d’, we have, for the entire structure, the time Ty given by the following:

Ts = Tpac + Tawp = 2(n ~ Dd +d’ (3.28)

Since, if we suppose, for the sake of simplicity, that the delay d' is the same for
all logic gates, whatever their type, then, if we assume d == 24', according to (3.28),
we have Tg == (dn — 3)d” and, consequently, a time complexity Te, as a function of
the delay on an elementary logic circuit, of To = 4n — 3.

On the other hand, as regards the cost of the circuitry, and of the integration area,
implicitly, the FACs matrix prevails, but its synthesis generally requires n{nm — 1)
FAC cells (Fig. 3.42). Consequently, the integration complexity, in terms of required
circuitry or silicon area, can be estimated by T = Q(n®).

Mention should also be made that the entire array structure is an ordered one,
which favours the use of the VLSI integration technology. This aspect also te-
sults from the "flow” of the interconnections (refer o Fig. 3.41, but especially to
Fig. 3.42) between the cells, but the integrated structure is not homogeneous, it
being made up of two completely distinct arrays. This drawback of the VLST in-
tegrafion can be surmounted by associating the AND circuitry from the first ma-
trix (Fig. 3.41) to the FAC cells from the second matrix (Fig. 3.42). Thus there are
formed so-called muitiplier cells (MC), of which one is schematically presented in
Fig. 3.43 together with the corresponding symbol. The inputs x; and y; are bit val-
ues of the two operands, X and Y, and z is an ioput usually connected to the output
w of another MC [Haye981.

Using the new MC cells, let us configure the combinational array stracture from
Fig. 3.44 for the same multiplication operation whose product is given by the rela-
tion (3.26). It can be observed that the MCs from the first stage are used only for the
AND gates which they include, forming the one bit products with x as one of the
factors. This “sacrifice” of circuitry is compensated through the more regular inter-
connections between the cells, which leads, globaily, to a better management of the
area available for the integration process. Then, the MCs contribute to the forming
of the sums between the parentheses of the expression (3.26). It can be also ob-
served that the MCs from the lower stage, which, essentially “collect” carries, have
modified connections tn comparison fo those from other stages, namely because the



3.9 Combinational Array Structures for Binary Multiplication 117

Xg¥s X0 A *aQ

W e W

7 / v

wfa/m/zf]
/g
fﬁ/ e ﬁ(
T T T Lo

Fig. 3.44 Combinational array structuse implemented with multiplication cells for 4-bit operands
multiplication

operands bits are exhausted, the inputs x; and y; are both connected o the output w
of a cell of the upper stage. Certainly, the interconnections from the physical layout
of the structure might differ from those provided in Fig. 3.44, where the connec-
tions have been ordered to present a minimum number of crossings, which, as a
matter of fact, is, generally, the primary requirement for the technological design of
a VLS layout. We can also observe the increase of the cells number to ni(n 4+ 1),
but this “price rise” of the implementation is only an apparent one on account of the
performance features of such a structure in VLSI technology [VIEd821

Following the presentation of the implementation of muitiplication through com-
binational matricial structures, lef us propose a more complex synthesis, namely, let
us admit that the operands are integers with sign, and, moreover, let us suppose the
procedures based on Booth recodings in radix 2 [Haye98]. Since it is known that
both recodings apply both to addition and subtraction, as well as to no operation
(NOP), the multiplier cell, as a fundamental element of the new structure, will differ
from that used in Fig. 3.44. It shall be able to be configured, as applicable, so that,
for the outputs w and ¢,y (we have adopted the notations used in Fig. 3.43), the
Boolean equations given in the table from Fig. 3.45 will be achieved. At the output
w of the new multiplier cell, which has been noted with MCB (the suffix letter B
comes from Booth), the same Jogic function is executed for addition and subtrac-
tion, and in case of NOP it has to reproduce the input z representing the output
of the MCB from the upper stage. Just as with the MC, y; represents a bit of the
multipiicand Y, but ¢y, as well as cgy,r, represent the input carry variable in MCB,
and the output carry variable from MCB, enly for addition, because for subtraction



118 3 Functional Analysis and Synthesis of Binary Multiplication Devices

Fig. 3.45 OQutput functions

of a multiplication cell of the Operation Output

combinational array W Cou
structures implementing -

Booth's procedures Addition WEY, EXZOT 2 €X-01 C, | C,,™ ¥Z OF €, 0T C,);

Subtraction | W=V,€X-0F Z €X-0F €, | C,0™ VE QF ZC, OF €Y,

No operation w=z irvelevant
Fig. 3.46 Cosatrol variables

e Control

encoding for a MCB Variab!
Operation anabies
a £
Addition 1 0
Subtraction 1 1
No operation H} d

the carry variables have {o be substituted by borrows, for which, for simplification
reasons, we have taken over the same notations ¢, and ¢,y from Fig. 3.43. Mention
should be made that in case of NOP, ¢,,; is irrelevant, because, anyway, w = Z, Coy
being obtained either by the relation corresponding to the addition or by the relation
corresponding to the subtraction.

In order to distinguish between w corresponding to addition and substraction and
w corresponding to NOP, we use a confrol vartable that is denoted by o, and to
distinguish between ¢,y corresponding to addition and ¢y, corresponding 1o sub-
straction, we use a sccond control variable denoted by 8. Thus, for o and 8, we
adopt the conventions from Fig. 3.46, where d comes from “don’t care” and rep-
resents an indifferent logic value. With the variables already specified and aiming,
through parailelization, to obtain the equations from Fig. 3.45, for w and ¢y, the
following Boolean expressions result without any difficulty:

w=z@ay; ®cin)
(3.29;
Cout = (2 B fs)(}’j OF Cin} OF ¥ i€

Based on (3.29), for the MCB cell there results a possible implementation at the
gate level given in Fig. 3.47, which contains the cell representation symbol, as well.

Let us consider, from now on, the same two operands X and ¥, given by (3.24),
by mentioning that, this time, the most significant bits x3 and y; represent the signs
of the two numbers. In this case we have a combinational array structure with the
trapezoidal arrangement of MCBs from Fig. 3.48. At the upper stage there can be
observed, first of all, the four MCBs to which the four bits of the multiplicand ¥
are passed. Up to the dimension of the final product, we have an extension of the
sign, i.e. in the remaining three MCBs from the same upper stage ¥3 is repeatedly
supplied. This is because in the multiplication of two operands represented in C2,
each operated partial product is a signed number, the extension of the last of which



3.9 Combinational Array Structures for Binary Multiplication 119

Fig. 3.47 Detailed diagram
at the gate level and the
symbot of a MCB

A A

TR

corresponds to the arithmetic shift. Consequently, the rhombus form structures from
Fig. 3.42 and from Fig. 3.44 are reconfigured vnder trapezoid form for the ana-
tyzed case (Fig. 3.48). Mention should also be made that at each stage the rightmost
MCBs from each stage have the input ¢, = 0, and that all the MCBs belonging to
a cerfain stage (line) { are crossed by control lines «; and f;, the value of index i
increasing, for our example, from O to 3, downwards. The pair of Boolean functions
{or;, B;) corresponding to stage [ is generated by means of the combinational logic
circuitry CL;, to whose tnputs the bits of multiplier X are supplied. The configura-
tion of CL; circuitry establishes through (g, £} together with the bits of the partial
products (z3, and of the multiplicand Y (y;), and the carries/borrows ¢y, the logic
values for the functions w and ¢, supplied by each MCB cell. One special mention
is made relative to the sign bit of the product (py for the particular case of Fig. 3.48),
which, according to the specifics of the Booth's procedure, is given by the extension
of the most significant bit of the product (pg for the particular case of Fig. 3.48).
in the same context, we will exclude from our considerations, based on a test real-
ized, for example, through software routines, the extreme case corresponding (o
the multiplication of the smallest negative numbers, to which correspond codes
associated with two’s complement anomaly (for the particular case of Fig. 3.48,
X =Y = ~8 = 1000, for which the product P results as 11600000¢; = —64 in-
stead of the correct value 01000000 = +64).

Let us analyse the synthesis of CL; circuitry for the particular case of our exam-
ple. Thus, we elaborate, for each of the Booth recodings, & truth table, these tables
being presented in Fig. 3.49, and in Fig. 3.50 respectively. The filling tn of the ta-
bles begins by obtaining, from the set of input variables, the Booth recoded forms by
applying the known rules (refer to the examples from Fig. 3.14 and Fig. 3.21 respec-
tively). Then, for each variable x; p and x;ap the corresponding columns o; and f;,
and o and 8] respectively will be filled in, where / = 0,3. All this is based on con-
ventions that are in accordance with those specified in Fig. 3.46 with the mention
that we considered for the variable 8; the don’t care value ¢ to be equal to G.

Since they are the same for both tables, and if we refer only to Fig. 3.49, we
have:

I Ifxip=0theng; = b =0,
2. Mxip=1,theng; =1 and b; =0.
3 xp=1,theng, =t and b; = L.



Functional Analysis and Synthesis of Binary Multiplication Devices

3

120

uoneardnnw spueiado NG 0] SGIIN I SIMPRLS ARLE [RUONREIQIIOD) 88'€ i3

g rd s




3.9 Combinational Array Structures for Binary Multiplication

Input variables | Booth recoding Control lines variables
X | X | X | X || Xag | Xap | X | X b Bl i Bl el By
olojoje|o o o|ofojojoi0oiojoj0io0
Glo|o|1 |6 0611 | 1}0{0/0|0]1 [0t 1
glo|t|e|o 1 T |ofojoj1ioiti1]{0}l0
oloft|t|joitjo|Tfojoi1i0{0i0i1 1
Gltjojo| 1T 0] 0f1/0{1]1i0/0[0]0
olt|oflt |1 F | F | T]1ioiti1iti0181
oflt|tjo|tio | T |0f1{0i0{0{3i1i0]0
Glt|t|t|tioeio | 1}1(0i0 |0 0011
t{ojojo|i oo |o0of1i1i0i0i0{0]0 0
tlofjolt|Tlolt | Tptl1iololit]lolt]t
tjoj1|o| T {1 T |of1j1]1jo]ti1i0]o0
o110 111t i1i0oi00% 1
tjtjelejoltjolojoiol1 10000
tjrjoli|e T | Tjojoj1]1]8ti0 1)1
t{t|j1jelojoi1|o0f0l0 0l0 E 100
tlejtjejoiaeio | T]0i0i0 0 01018 1

Fig. 349 Truth table based on Booth’s recoding for the syathesis of the logic circuits generating

the controt variables w; and §;

Following the elaboration of the control lines values columns, we can elaborate,
for each function separately, the Boolean equation that will stand at the basis of the
syathesis of the corresponding CL; circuitry. Conseqguently, without loss of gener-
ality, we shall appeal to Karnaugh maps to obtain the minimized forms for each
function. Thus, in Fig. 3.5 the Karnaugh maps for oz and the binary units covering
mode are presented. From Fig. 3.51, the following Boolean expression results, by
means of which CLj is partly synthesized:

o3 = x3Xg 0F X3X7 = X3 B xo

(3.30)



122 3 Functional Analysis and Synthesis of Binary Multiplication Devices

Modified

Booth recoding Control lines variables

Input variables

? r y r r r r il
x} xl x! xﬂ ijE xZMH x!Mﬂ xﬂMB a.? ﬂ 3 a} ﬂ 2 a! ﬂ T a!}‘ ﬂ (4

(o6 (0|00 00 | 0C}0;00;00:0;0:0

¢g|ojo|t|oe ;00| 10000 0010

Fig. 3.50 Truth table based on canonical Booth’s recoding for the syathesis of the logic circuits
generating the control variables of and §]

In a similar way, for the other control functions, as well, we obtain the following:

B3 = x3X7

oo = Xy DXy

B2 = xaX7

oy = X1 P xg (3.3
By = x; 3

g == g = X0 B0
fo=xp=x0-0

We should like to make a secondary observation regarding the last two equa-
tions from (3.31), where neutral element 0 intervenes for modularity purposes (all



3.9 Combinational Array Structures for Binary Multiplication 123

Fig. 3.51 Minimizaticn of
the logical equation

correspoading to the control —
variable o3
1|1 11
<l AN
x!
11 1|1
x

o; variables are identically synthesized, but with different input variables, the same
observation applying to f; variables, as well), namely that this favors the imple-
mentation technology. If for the variable 8; we make use of the don’t care value
d in accordance to those presented in Fig. 3.46, then the logical equations for j;,
obtained based on a table from Fig. 3.49 correspondingly modified, can be further
simplified, resulting Sy = x3, fr =x2(=%7), Bi =x1 and fp = L.

On the other hand, regarding the modified Booth recoding, if a similar operating
procedure is adopted, the following control functions will be obtained:

oy = x3¥7 X7 o x3X1 X5 or ¥ixpx) By = xaX5 ¥ or xa3¥1 X5

o = Xx2X7 or ¥3X1%0 By = x3x2%1 or X3%7x1 X0 130
o) =X X B\ = x2x1 %0 (332
0, = Xp B = x1x0

Consequently, the synthesis given by (3.30) and (3.31) is more homogeneous
than that given by (3.32), but we consider that the difference is not decisive. More-
over, for the relations given in (3.32), if for ! we make use of the don’t care value
d in accordance to those presented in Fig. 3.46, then the logical equations for fi],
obtained based on a table from Fig. 3.530 correspondingly modified, can be further
simplified, resulting 8 = ] = x3, B] =xp and f, = x;.

Finally, as in the case of the other multiplication devices, we shall refer to the
performance and cost of the structure of the type given in Fig. 3.48. First of all,
we should fike fo point out that, similar to the multiplier from Fig. 3.44, the new
combinational array structure is regular, the circuits’ interconnection between the
MCBs being ordercd, which resulis in a fayout without major problems, that favors
the VLS integration. On the other hand, as regards the time factor, the longest path
that has to be run through by the signals is given by the shaded MCBs chaining with
CLg (Fig. 3.48). If we suppose, again, the same delay 4’ on a logic gate, whatever its
type (which represents a rather rough approximation, it being known, for instance,
that EX-OR gates are slower as compared to others {Yarb97]), then on an MCB
we have the delay d = 34’ (the worst case, refer to Fig. 3.47). Thus, for the entire
structure from Fig. 3.48, there results T = 10d 4 d' = 314, considering that ClLy
has only one logic level, according to (3.31) or (3.32). However, if we suppose, just
on the line, that the delay on ClLg is the same as the delay on an MCB, then, in terms



124 3 Functional Analysis and Syathesis of Binary Multiplication Devices

of d, for the general case, we have T = (n+ (n — 2) +n -+ 1)d, or a time complexity
of Te=3n—1.

We shall retnain within the sphere of multipliers for signed integers, represented
in C2, and which can be implemented with combinational array structures, but, this
time, we shall present, at the level of principles the Baugh-Wooley method which is
favorable for practical execution under certain circumstances {Parh00}. To investi-
gate this method, let us consider again the operands given by (3.24), where x3 and
vy are sign bits, and let us use (3.5) to interpret the negative numbers. Under these
circumstances, the product given by (3.26) becomes:

P =x332° 4 (—x2y3 — x3¥2)2° + (—x1 33 + xpy2 — x3y1)2"
A4 (= Xoy3 -+ X1 7 -+ Xz )1~ X3¥0)2° -+ (xo¥2 + X131 + x2¥0)2”
+ (xoy1 +x130)2" + x0y02° (3.33)
It (3.33) is used, certain weighted terms will become negative, and the Baugh-
Wooley method aims to avoid them. Consequently, the one bit negative products

from (3.33) are subject to some simple transformations, such as the ones made, for
instance, for (—xp¥3):

—xp¥3 = (1 — Xxp)y3 — ¥3 = 30¥3 — ¥3 (3.34)

Applying transformations of the type from (3.34) to all the negative terms from
(3.33), the following form will be obtained:

P =x33320 4 (FTy3 = y3 ++ 1355 — 13)2° + (FTy3 = ¥3 + 522
+ 2377 — x3)2% + (Fys — ¥3 + 2132 + xay; + 070 — x3)2°
+ (xo¥2 + X131 + 1250027 + (xoy1 +x1¥0)2" + x0y02” (3.35)
We modify the parenthesis with weight 2% by adding and subtracting the value
(x3 -+ y3), so that:
Iy — vt a2ty ok -1
= X0y — ¥a -k X1y2 + X2yt -+ x3¥e — X3+ (3 -b ya) - (%3 + y3)
=Xpy3 + X1y + X201 + 2330 + 13+ v3 = 20z + 1) (3.36)
The addition of the first six terms from (3.36) gives a nonnegative value, and, due
to the multiplication by 2, the value (~(x3 - y3)) is “pushed” into the parenthesis
weighted with 24 which becomes:
XTyz = ¥3 4 Xp¥2 4 X3¥) - X3 - (03 -+ 1)

= X1 Y3 A Xo ¥y A+ X3V - 203+ 3) (3.37)



3.9 Combinational Array Structures for Binary Multiplication 125

Analyzing (3.37), it can be observed that, in a similar way to (3.36), the first three
added terms give a nonnegative value, and the value (—{x3 -+ y3}) is “pushed” into
the parenthesis weighted with 2°, wherefrom it arrives at the last term, weighted
with 28, which undergoes the following transformation:

yy - (y+y=xyy-x3-y3-+ 1412

=xnn+l-s)+0-m)-2=nn+G+33 -2 338

The value (—2) from (3.38) can be substituted by (1) in the position with the
weight 27, which can be substituted, in its turn, by 1 and a borrow from the next
rank, it being non-existent. Under these circumstances, from (3.33) we have arrived
at the form of the Baugh-Wooley product, given by the following expression:

P20 (o3ys o+ F5 4 TD2°  (8y3 + 435927 F (F7ys + xoyn + a3 ¥0)28
+ (Foys + 2132 + 1231 + 030 + x3 + ¥3)27 + (xoy2 + x1y1 + x2y0)2
+ (xoyy + 2150020+ xoy02° (3.39)

Similar to Booth procedures, besides the original Baugh-Wooley procedure, there
is & modified Baugh-Wooley procedure. It is based on a new form of the product P,
performing certain transformations over relation (3.39). Thus, referring again {o the
parenthesis with the weight 2° provided from (3.39), we execute the following easily
visihle modifications:
Xoya -+ xiyvy +x2y -+ xa¥o+Hx3+ v

= (1~ xp)¥s + xy ¥+ a0y + X3 ~ 39) + x5+ ¥3

= —xpy3+x1y2toy -y 2ty +Hl+1-2

= (1= xoy3) + x1y2 + x2y1 + (L= x330) + 2(x3 + y3 — 1}

= X033 + X1 y2 + Xoy + T30 + 2y - 1) (3.40)

The first four added terms from {3.40} lead to a non-negative value, and the paren-
thesis (x3 + y3 — 1)} is “pushed” into that with the weight 2%, which undergoes some
similar processing, so that the following will be obtained:

vz xoye +xayi+ x5+ vy — 1
= —xhya+xy+aall -y +x+y -1
= =X Y3 b X2y~ 03y + 200+ ) - 1+ P4~ 2
= (1= x1y3) 4 x2y2 4 (1= x31) + 2(x3 + y3) + 1 = 27
=XV b oy b FV - Lok 20k b vy~ 2) (3413

Analysing (3.41), parenthesis (x3 + y3 — 2} can be “pushed” into the parenthe-
sis with the weight 2°, which, following a similar treatment as above, becomes



126 3 Functional Analysis and Synthesis of Binary Multiplication Devices

(X2 %3 + X3v3) and the same value (x3 + vy — 2} is “pushed” into the parenthesis
with the weight 2°. Operating at the level of this parenthesis, there results:

i+ +n4d -ty -2=xaym+l 41 -2 =x33 (3.42)

Synthesizing these transformations, from (3.39) we achieve the form of the
Baugh-Wooley modified product, given by the following expression:

P =27 a2 b (B5F -+ D27+ GV 4 o
+ T+ D2 T+ a2+ xay + 570020
+ Ceoyy A+ 1y x2v0)28  Croys + xpv)2 + xpyp2” (3.43)

Both Baugh-Wooley forms, expressed through (3.39) and (3.43), allow the imple-
mentation of combinational array structures according to the model run throngh for
the solutions from Fig. 3.41 and Fig. 3.42, and from Fig. 3.44 respectively, mention-
ing, obviously, that the numbers to be multiplied are now signed numbers. Compar-
ing the two forms and analysing within them the parentheses with the largest sumber
of added terms, it can be seen that we have, on the one hand, the value 6 in (3.39)
(corresponding to the parenthesis with the weight 2%) and, on the other hand, the
value 4 in (3.43) (corresponding to the parentheses with the weights 2% and 2%). The
above-mentioned numbers give the measure of the “height” of the array structure,
and, implicitly, of the number of levels that have to be run through, and, conse-
quently, of the delay, and finally, of the performance. The modified Baugh-Wooley
form appears more favorable under this aspect, saving two terms at the “critical”
parenthesis, even if it increases from three to four the number of terms from the
parenthesis with the weight 2, because the maximum value 4 is not exceeded.

Mention should also be made that, as far as implementation is concerned, the
Baugh-Wooley procedures allow simpler structures than those based on negative
weighted terms, such as the terms from relation (3.33). The Baugh-Wooley formns
can also be used for the synthesis of parallel multiplication devices that are imple-
mented not by means of FAC celis chained in RCA manner, but by means of CSA
trees, as presented in the next section.

Finally, we shall once more refer to the solutions of multipliers implemented
through combinational array structures, namely, we shall refer, without loss of gen-
erality, to a structure of the type from Fig. 3.42. More precisely, for the same exam-
ple of numbers from (3.24), the design from Fig. 3.42 can be represented, at block
diagram level, as a CSA adders chain, as can be observed in Fig. 3.52. Mention-
ing that the three pairs of carry-sum binary vectors (_C(i), SO where i =1,2,3)
are passed from stage to stage as presented in Fig. 342, let us specify that the last
level, at whose output product P appears, is made up of a carry propagate adder
{CPA). Even if, as regards the latency of the multiplication process, the solutions
from Fig. 3.52 and Fig. 3.37 {that with only one CSA adder) do not differ essentially,
there being executed, as a principle, the same number of additions, the version with
more CSA adders is more favorable because the operation can be pipelined, which



3.9 Combinational Array Structures for Binary Multiplication 127

Fxg 3.52 chncep%;xlal. ¥ ¥ 1 ¥ x ¥ 0
diagram of a combinational
array multiplier implemented l
through CSAs chaining

Carry save
adder

Carry save
adder CS4,

Carry save
adder €84,

Carry
propagate CPA
adder

increases of the throughput, and thus this version becomes atiractive for application
in array processors [HuErQ51

Thus, between the CSA levels there are interposed layers of latches L, where
i = 1,2, 3. Following the storage of the CY) and $' vectors in the corresponding
fatches, L;, the vectors from the CSA; inputs can be modified. Thus, it is possible to
execute, in overlapped manner, more operations that are in various phases of their
execution. Similar to the overlapped execution of the mstructions by a pipelined
control [HePa03], the arithmetic operations, particularly maultiplication, can be ex-
ecuted by a so-called arithmetic pipeline {Poll90, Kuli(2]. Following its filling up,
the number of operations that are simultaneously being executed at a certain mo-
ment represents the parameter called the pipeline depth, it being a measure of the
“speedup” brought about by the approach. In fact, the operations are not executed
more rapidly, but more can be executed, e.g. multiplications, within a preestablished
time interval in the above-described overlapped manner.



128 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.53 Conaceptoal
diagram of a combinational (x,¥2% i i
array multiplier implemented ER 'S AR A
through CSAs chaining and
two passes application of the
aperands
{?gj} CSA
3
(x¥2))
4
ER S cvl g |
CSA
cy, 8™l
Csa ‘

&3} 3}
C h 4 5 kL

CPA

Indisputably, a design of the type given in Fig. 3.52 usually requires a large area
of idtegration. When this last factor is represents a critical one, a solution may be
the CSA adders chain which allows the execution of multiplication by appealing to
two passes through the structure presented schematically in Fig. 3.53 [HePa03}. We
suppose that, unlike the configuration from Fig. 3.32, which enables the multiplica-
tion of some numbers on four bits, this time the operands’ dimension is 8 bits. At the
first pass through the chain of the three CSAs there are added, in CSA manner, five
one bit products, namely xo¥ 2% to x4 ¥ 2%, obtaining the binary vectors ) and §©)
which replace x; Y21 and Xo ¥2°, while simultaneously the other one bit products,
x5¥2%t0 x7¥27, substitute the previous, x¥2% to x4 ¥ 2%, Following the signal prop-
agation at the second pass, new values result for the vectors C® and 89 , which are
added in the conventional manner by the CPA, with carry propagation. This tech-
nical solution, which is very attractive as regards the saving of the silicon substrate
area, comes up against certain difficulties. Thus, the time interval required for the
signals passing the array structure, made up of CSAs, must be strictly monitored to
aftow the substitution of one bit products for the second pass at the proper moment.
Then, mention should be made that the number of ranks is larger than in a structure



3.10  Combinational Tree Structures for Binary Multiplication 129

of the type presented in Fig. 3.52 (the reference is made at the multiplication of un-
signed numbers). But the greatest disadvantage of the solution from Fig. 3.53 is that
it does not allow the operation to be pipelined, the intermediate storage in of partial
results in latches not being possible.

Consequently, the combinational array structures made up of CSA adder chains
sometimes called “one-sided CSA trees” [Parh00], lead to solutions which are gen-
erally slower but more regular, and, implicitly, with a reduced chip area, as com-
pared to the genuine tree structures which will be presented below. However, some-
times the choice may favour the above-presented configurations due to the opera-
tion’s large throughput when they can be executed in arithmetic pipeline manner.

3.10 Combinational Tree Structures for Binary Multiplication

If the operation latency of the previous array structures is quasipropostional to the
dimension n of the operands, a substantial reduction of the multiplication time, as
well as bringing it to an approximate dependence on [log, n], is possible by appeal-
ing to tree structures of CSA adders. Obviously, the new configurations are much
more expensive, but they are justified by those applications where the speed of the
operation’s execution is the critical factor.

A first solution which uses combinational tree structures is given in Fig. 3.54
[ParhQ0]. The idea which stands at the basis of this construction consists in the par-
allel execution of CSA additions by reducing, in comparison {o the solution from
Fig. 3.52, the paths to be run through by certain binary flows. Moreover, the synthe-
sis may be done using modules of the type presented in Fig. 3.54 in dotted frames,
which, as can be observed, have four tnput vectors and two output vectors, including
two CSA levels. This configuration, as regards its implementation with the so-called
4-t0-2 reduction modules, becomes a binary tree of the type presented in Fig. 3.55.
This structure is characterized by the regularity of the interconnections, which feads
to a more efficient layout [Parh00], compensating for the disadvantage that might re-
sult from the greater “height” of the diagram. Obviously, for a large », a structure of
the type presented in Fig. 3.54, and Fig. 3.55 respectively, may have a larger aumber
of CSA levels, as compared to other tree structures, such as Wallace or Dadda frecs
(e.g., for n = [28, the binary trees solution of 4-t0-2 reduction modules presents
6-2 = 12 C8A levels, while a Wallace tree, as will be seen below, allows the saving
of one such level).

Aiming to achieve a structure that can be integrated in VLSI technology, as
casily as possible, with as simple a layout as possible, as discussed above, we
present belfow another multiplier version, which presents a binary tree configuration
[TaYY85]. Asregards this structure, the addition operation implies certain problems
because it has to be executed by special adder cells of (2, 1) type, these having at
each input a digit and producing at output only one sum digit. They differ from the
“classical” FACs, which are of (3, 2) type, presenting, in addition, an input and an
output that are both of them dedicated to the carry. In order to use the adder cells



130 3 Functional Analysis and Synthesis of Binary Multiplication Devices

Y2 x¥2 ¥ x¥2 %72 72’

[

: iy
\ |

\ |

\ |

\ ¢ i 402 || l i 4102
| o P reduction | | Poi & reduction
‘ [ iree
\ |

\ |

]
\
\
\
\
\
\
CSA |
\

l ‘i Ato2 |
foia Aok 50 reduction |
free

Fig. 3.54 Combinational tree structure for binary multiplication with CSAs grouped in 4-t0-2
reduction modules

Fig. 3.55 Block diagram for Y2 %72 2 32 x,¥2 ¥ Y2 Y2 ¥
a combinational tree structure ‘L i # ‘
implemented with 4-10-2
reduction modules “t.O -2 4-t'0-2
reduction tree reduction tree
\w - (/
4-10-2
reduction tree
'y Pk 4
CPA

;

(2, 1), where the operands’ binary coding s of no benefit, we shall resort to a differ-
ent coding, i.e. to the signed-digit representation, which is used for Booth recodings,
and which, as it is knowan, is characterized by tolerating the digits 0, 1 and 1.



3.10  Combinational Tree Structures for Binary Multiplication 131

Fig. 3.56 Addition i 0 1 la
conventions upon which is +1 +0 +1 +048
based the syathesis of the 10 00 10 It ifaef0,1]and fe{0,1}
binary-signed digit adders / \ 0 1.......otherwise
sum -
dign,  digit 1 Ta
Ci+i 5 "5'1 +Oﬁ

¢o 01...ifaef0,1]and fe 0,13
11.......otherwise

As concerns the addition algorithm, its elaboration takes advantage of the signed-
digit redundancy, there being generated several rules to execute the required carry
propagation inhibition. The operation proper is executed in two stages, the first be-
ing dedicated to the addition of a pair of digits, each one belonging to one operand.
Consequently, the conventions from Fig. 3.56 [HePa03] are employed, obtaining, for
cach pair, a carry digit ;1 and a sum digit 5;. In the second stage of the addition
operation the digits s; and ¢; are added, for each rank, when, due to the previously
apphied rules (Fig. 3.56) no carry 18 generated. Some of these rules are obvious (such
as 141 =10 or T+ T = 10}, and for the pairs (1 + 0) and (T + 0) the values of
the digits concatenated to the right and denoted generically with o and f have been
taken into account. When o and § take the value 0 or |, and neither of them is
T, 1 +0= E?, while T + 0 = 07, and for all the cases when one of the variables
a or B, or both of them, take the valuc T,wehave | +0 =01, and T+ 0=11.
These constraining conventions enable us to easily check that the carry inhibition
requirement is fulfilled in the addition (5; + ¢;) [HePa03}. Mention should also be
made that in order to obtain a sum digit (2, 1), it is necessary to simultancously in-
vestigate three bits of the operands, i.e. the current bit and two bits that precede it
{running through the operands from right to left). After specifying this, it is possible
to achieve the synthesis of some binary-signed digit (BSD) adders, which will sub-
stitute the above-mentioned CSAs and enable the configuration of the binary tree
[Parh00].

The specific operating mode of such a structure is presented in Fig. 3.57, where,
for simplicity reasons, two unsigned operands have been adopted. One can observe
the parallc] computation of the sums (x; Y2 4 x0 Y29 to (x7¥27 4 x4 ¥2%), by the
BSD adders from the first level, with the corresponding shift of one bit products.
Then, also by pairs and with the correspending shift, there are added the results of
the additions, denoted by X;. The right side of Fig. 3.57 presents, schematically, the
entire configuration of a binary {ree. It can be seen that the last sum {in our case,
25) is passed to a BSD-to-binary converter, which consists, essentially, of a fast
conventional subtracter that subtracts the negative component (., Fig. 3.57) of
the BSD form from the positive one (X7, Fig. 3.57) to obtain the binary form of
product P.

Certainly, one of the decisive factors in choosing a certain multiplier sfructure is,
and now we repeat what has already been mentioned above, the VLSI implementa-
tion technology. Consequently, the favoured ones are the iterative or recursive con-
figurations of binary tree type, which enable the efficient achievement of computer-



132 3 Functional Analysis and Syathesis of Binary Multiplication Devices

X=103,~011001 11, Y=87,~01010111,

x F2*=0000000000000:=0000000000000 X, Y2=001010111=01T1710070
X ¥2°=0101011100000=111 1100160000 £¥2=010101110=111 1100100

T

3 ~1 111100100000 —__Hq__yf?_i

I 4 N

%Y25=001010111000000=01 1111001000000 a0
" oo W o
¥, F27=000000000000060=000006000000600 —
L.~011171001000000 ““““”:“"“QQ“. ik 5““““'“;: i
3 =01111100100000 e IEEIAAN

Qlyvyvvvey

J Z=0L0001I11T_

{ x,¥2=00101011100=011 11100700
{ x,Y2=00000000000=00000000000
3.,=01111100100

¥.=00100017111
01117100700

Glyvvrvvvsvrevy
3, ~010001111100000
¥ =000001010100011
¥ =0100011111 00000

¥ ~001010100011

x,n’xlyz‘ xfz’xllfz‘ Y25 ¥ 5 Y2 % Y2

85D BSD BSD BSD
adder adder adder adider

““““
ir !

ODvvryvyvrryryvyy

T 0110011 100000011

3., ~0100010100000010

5 =001000 100000000
P=001000 00000001 =896

Fig. 3.57 Binary muitiplication example using a binary tree of BSD adders and the block diagram
corresponding to the muliiptier

aided syntheses. Due to their regularity, the connections and the signal propagation
paths do not significantly vary in length, which reduces the probability of the oc-
currence of logic hazards or shifted receipt of the same signal (the so-called signal
skew), with favorable implications as regards both performance, and power con-
sumption {RaPe%6). However, there are applications where the above-mentioned
aspects are left in the background, and as great a reduction as possible has the pri-



3.10  Combinational Tree Siructures for Binary Multiplication 133

Fig. 3.58 Combinational tree x Y2 x Y2 x Y22 Y2, Y2 x,¥2x, Y2 x, 72
struciure with CSAs in a
Wallace manner i l l l 1 1
interconneciion CSA, | | CSA,
Pod Iﬂ o5
CSA, | CsA, |

CPA
P

ority, tending towards a time performance logarithmic in the “height” of the tree
structure. 1t 1s apother way of forcing a better performance, even sacrificing the reg-
ularity of the circuitry, with a unfavorable influence on obtaining a simpler and more
efficient layout. Such a solution is represented by the configuration in the so-called
Wallace tree of CSA adders [Kub02, Parh(00, PaHe96]. For our particular case of
numbers on 8 bits, with the notations introduced by us and the above-mentioned
observations, a possible structure of a Wallace free is given in Fig. 3.58. The final
sum (S and carry (C®y yectors are added by means of a fast conventional adder
with carry propagation (CPA). What is of interest in the construction of such a tree
structure, s the smallest number of CSA levels for a certain value corresponding to
the dimension n of the operands, or, otherwise, the minimum height m of the tree
for the number. also equal to a, of input vectors. This number is reduced at every
CSA level by 3/2, so that the recurrent decrease from n, CSA level by CSA level of
the input and output numbers can be followed by consulting the table from Fig. 3.59
[Parh00]. We have denoted by o; the number of outputs in level /, which are inputs
in the next level, and by r;—where r; belongs to the integer interval [0, 1, 2}-the
residues of n and then o; divisions by 3. As regards these divisions, we take into
account only the integer value of the quotient, the rest being ignored, a fact marked
by the bars | }. At the basis of such a tree structure (level m) there is always one
CSA adder, obviously with 3 inputs and 2 outputs. If Fig. 3.59 is taken into account,
it results without difficulties that, for n = 64, the number m of CSA Tevels is 10, and,
for n = 128, mis 11. We can also determine the intervals of n to which there corre-
sponds a certain value of m, to be found in the table from Fig. 3.60 [Parh00]. If these
data are interpreted, it results, for instance, that for any n within the integer interval
[43, 63], we have m == 9. Similarly, if the table is extended, forany n € [212,316] it
results that m = 13, this also covers the value particular of interest n = 236,



i34 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.59 Evaluation of the
number of CSA tevels Na_smber of | Level Number of outputs
corresponding to a mputs ! O
combinational Wallace free a
struciure n 1 §J2 + =0
oy 2 E—sz +Fy T 0,
3
o 3 ffé_J;)_ +ry = Oy
3
G, =3 m a, =2
Fig. 3.60 Table with the
correspondence between the B " n " n "
mmber 01.: inputs and fr%c 3 ; 13 5 &3 9
number of CSA tevels fora
Wallace tree structure 4 2 19 6 94 10
6 3 28 7 141 11
9 4 42 8 211 12

We have insisted upon the table from Fig. 3.60 because it is the starting point
in the controversy between two implementation versions of combinational tree
structures, namely that which recommends instead of the above-presented Wallace
tree the so-called Dadda tree. Specific to the Dadda strategy {GoSA06], is that, in
comparison with a Wallace solution, if maintains the same number of levels m in
the structure, but reduces the number of inputs in the tree configuration 1o a value
which corresponds to a combinational array diagram of tree type with a chain of
CSAs (Fig. 3.42, Fig. 3.52). Both methods minimize the number of adder cells and
appeals, any time the diagram aliows 1t, to half adder cells (HAC), and using full
adder cells (FAC) only when their employment cannot be avoided. It should be
pointed out that the elements of the controversy between the two solutions, Wallace
versus Dadda, are represented by the numbers of FACs and HACs, as well as by
the number of bhits in the final CPA adder (Fig. 3.58). Within this context, mention
should be made that some of the FAC cells of the CSAs have an input connected to 0
(refer also to Fig. 3.52, and Fig. 3.42 respectively), so that they can be substituted by
HACs, and we again point out that the number of bits in the CPA (it being the carry
propagation adder) decisively influences the performance of the entire configuration
{Parh00, Omon94].

These aspects being specified, we highlight the fact that a Wallace tree tends
to obtain the sums of the one bit products (x;y;) corresponding to the final re-
sult (P) digits as early as possible, aiming at the fastest solution, while the Dadda



3.10  Combinational Tree Siructures for Binary Multiplication

135

X, X K¥s XV XX, s X5, Xy
Iy I i i
FAC W% FAC W FAC HAC |+%0 |Level 1
a) Wallace
tree
X2¥z
Il :
FAC (¢ FAC A HAC [0 Level 2
x{yj
l Co CPA (4 bits) ¢, e Level 3
| | | ! ,
2 P Ps Py P P, 2 By
T I s Xy ¥ X P X o
v I
&) Dadda FAC & FAC S Level 1
tree
s x:g)’n
+ * .
FAC }3‘2’1 HAC [0 Fac & Level 2
s/ !
€0 CPA (6 biis} C“F”O Level 3
I H { ¥ ¥ i v v
7 P s Py 2 P 2 o
H 3 4 3 2 i 1 2 3 4 3 Z H
e Levetl . FAC FAC FAC HAC Levell ~ ~ FAC EAC
H 3 2 3 2 1 H 1 3 2 2 3 2 H
Level2 ~ FAC HAC FAC HAC —— fevelZ  FAC HAC HAC FAC
| 1 1 H 2 27 2 1 2] 1
Levetd  4abisCPA  Llevwl3  ebisCPA
1t 1t 1 1 1 1 P11t 1 1 1 1
Pr Pe P P B 2 P Po Pr P Ps B B P B By
Wallace tree Dadda tree

Fig. 3.61 Comparison in terms of number of FACs, HACs and CPA’s ranks between the Wallace
and Dadda tree structures

strategy, which keeps the length of the critical path in the CSA tree, postpones, as
much as possibie, the obtaining of these sums, usually leading to a simpler CSA
structure, but possibly with a CPA which has an increased number of bits. For in-
stance, let us consider the two options of tree devices for the case of 4-4 bits un-
signed multiplication, presented in Fig. 3.61. Certainly, both of them start from the
16 one it products x;y; that have been obtained through an AND logic array, of



136 3 Functional Analysis and Syathesis of Binary Multiplication Devices

the type given in Fig. 3.41. In both designs, the HAC cells do not have the in-
put connected to 0, marked as such in Fig. 3.61a and b. As regards the Wallace
strategy (Fig. 3.61a), one can observe the exploitation of the early opportunity to
combine the one bit products (refer to the FAC cell from the first level to which
x3¥] 1s passed), so that, finally, for this solution five FAC cells, three HAC cells,
and a CPA on 4 bits are necessary, For the same tree, Fig. 3.61¢ contains “a table”
presentation where to cach of the 16 one bit products (x;y;) corresponds a point
in a special notation, the so-called “dot notation” [ErLa(04]. These points are dis-
tributed to the final product digits, making up a “triangle” whose height is 4 (for
Xp¥a, X1y, X2yy and x3yg) corresponding to p3. The adding cells (FAC and HAC)
from the first two levels (level | and level 2} with the corresponding input num-
bers, as well as the 4 bit CPA from level 3 are also presented. One can foliow
the connections reduction on levels, which results in the 4 ranks carry propaga-
tion adder. On the other hand, as regards the version based on the Dadda strategy
(Fig. 3.61b), the addition of certain one bit products is delayed, being “pushed”
to the structure depth (the case of the pairs {xp¥yp, x;¥1) and {(xgyv1, x1¥0) in level
2, and level 3 respectively), by which is obtained a saving of two cells in the first
two levels (four FACs and two HACs in ali, as compared to the five FACs and
three HACs in the Wallace tree). This is counterbalanced by the increase by two
ranks (from 4 to 6) of the carry propagation adder, making its construction attrac-
tive only when a very fast solution for the addition implementation s available,
The way we arrive at the 6 bit CPA can be followed for the Dadda tree, as well, in
Fig. 3.61c.

Mention should also be made that, by applying the product xpy1 to the free input
{where there is 0, Fig. 3.61b) of the CPA rank with the output py, as well as the
product x13yp to the input ¢, of the CPA, the total number of bits of the CPA can
be reduced from 6 to 5. We also add that, as far as multiplier tree structures are
concerned, hybrid solutions between the Wallace and Dadda trees may exist, which
can lead to good performance-cost tradeofts [Parh00].

At the end of this section, we shall synthetically refer to the combinational tree
structures implementation of the Baugh-Wooley strategy. If we compare, for in-
stance, expressions (3.26) and {3.39) concerning the parentheses with the largest
number of terms (four at (3.26), as compared to six at (3.39)}, it results that, in ac-
cordance with the values from Fig. 3.60, the Baugh-Wooley product form requires
an additional CSA level (three as compared to two) with the consequential effects
on performance. Within this context, trying to simphfy the multiplier tree struc-
ture implementation, it is entirely justified to reduce the largest number of terms
corresponding to the parentheses, as well as the height of the CSA construction
implicitly, obtained by means of the Baugh-Wooley modified product form. Thus,
investigating relation (3.43), we find that the parentheses weighted with 2% and 2%
have only four terms, so that, according to Fig. 3.60, the reduction of the number of
CSA Jevels (from three to two) can be achieved, which will result in a corresponding
performance improvement,



311 Other Binary Multiplication Methods 137
3.11 Other Binary Multiplication Methods

In this section we shall briefly present some alternative trends in the construction of
multiplication devices, compensating the section’s concise form through the indica-
tion of an increased number of bibliographical works.

1. For many of the above-mentioned applications, but especiaily for array multi-
plications, computations of the type w = xy + z frequently occur, implying a
multiplication followed by an addition. Aiming to accelerate of such computa-
tions, many processors {HePa03, Haye98} are provided with special instructions
regarding these multiply-add operations, as well as dedicated hardware units
{combined multiply-add units) which enable the efficient implementation, as far
as cost is concerned, of two operations. Similarly, many digital signal processors
(BSPs) have built-in hardware facilities for multiply-add, as well as for multiply-
accumulate operations {DaTa03, Erl.a04], the latter representing a multiply-add
option usetul for the estimation of a sum of products.

One efficient solution for the implementation of these units consists of appeal-
ing to so-called additive multiply modules [Parh00], whose feature is the inclu-
sion of operand z, which is to be added after the xy multiplication process, Thus,
there are constructions that comprise, for the mulaplication operation, a CSA
tree structure of the type seen above, which, before executing the final addition
through a CPA, provides a supplementary CSA level for the addition of operand
z. Alternatively, the multiply-add computation process is not executed in the CSA
form in a successive way, buf through a merged muluply-add operation. This last
eperation does not distinguish between the one bit products x;y; and the terms
zx, of the same weight, of operand z that has fo be added, but treats them in the
same unitary way [ErLa04].

2. The construction of multiplication devices may involve the synthesis of such a
device that realizes multiplication with operands of 21 x 2r dimension when
n x n multipliers are available. The solution consists of applying the “divide-
and-conguer” strategy [Parh00]. Its nature is that it starts from the two operands
on 2n bits, X and Y, which it considers to be halved, i.e., for multplier X, we
have the parts Xy and X (with indexes from “high” for the more significant
part, and “low” for the less significant part), and for multipticand Y, we have the
parts ¥y and Yy . Depending of how much the operation is parallelized, by means
of one to four n x n muluaphiers the four partial products X, ¥;, X ¥y, Xg¥y
and Xy Yy are computed, as presented 1n Fig. 3.62 [Parh00, DaTa05]. These
four values have (o be added in order to obtain the final product. Rearranging
the partial products as shown on the right side of Fig. 3.62, and considering that
XuYy and X ¥ —since they do not overlap—form one number, we have t©
add, in fact, only three values. Consequently, the initial problem of the synthesis
of a 2n x 2n multiplier has been reduced to that of an n x n multiplier and an
adder of three operands.

Obviously, in a similar manner, one can configure multipliers for 3a x 3n bits,
4n x 4n bits, etc., on the basis of constructive blocks for # x r bit multiplication
{ErLa04].



138

Fig
apel

3

3 Functional Analysis and Syathesis of Binary Multiplication Devices

Rearranged partial products in

Y Y, ¥, 2nx2n multiplication
X X 2n bits n bits

| o
A :
e i R

XY,

HEH

| > | :%4 3In bits

. 3,62 Application of the “divide-and-conquer” strafegy (o the multiplication of 2s-bit
rands with an n-bit multiplier

A special case is squaring, and, by extension, exponentiation. Any of the pre-
sented multiplication devices can execute the operation P = X?, where we have
the multiplicand ¥ = X. However, in case squaring and, generally, exponenti-
ations are more frequent, it is usually worth investing in a dedicated multiplier
“built in” to the hardware, because its cost is reduced and its delay is lower than
that of a universal multiplication device.

The simplification brought about by a device dedicated to squaring can be as-
certained if we revert to the example given by (3.24), where ¥ will be substituted
by X, let us intervene in relation {3.26) by taking into account that x;x; = x; and
x;x; = x;x;. Consequently, the following will be obtained:

P o= x320 4 (raxs + x2x3)2%  (nyx3 + %2 4+ x1x03)2% + (roxs + 1z

x4 x0x3)20 4 (roxa 4+ Xy 4+ xox2)2% 4 (xox) 4 xpx )2+ xp2°
(3.44)

If, in (3.44), we take into account that the multiplication of product x;x; by 2
means, in fact, iis moving into the parenthesis associated with the next larger
weight, then we have:

P xoxy + xg)Z{) + X1X325 + (xpxy+x1x2 + x2)24
A+ x0x22%  (rpxy + x1)2% 4 xp2” (3.45)

Relation (3.45) can still be changed if the following obvicus identities are
taken into account:

Xoxt b xy = 2xoxy +xy ~ xoxy = 2xx b {1~ xo)xy = 2xgxy + Fox; (340
It (3.46) is applied twice, (3.45) becomes:
P == (opxs + x3)2° 4+ Gopg + 11 x3)2° + (xoxs + Xap)2*

+ (XX + Xox2)2" + T 2% 4 12V (3.47)



311 Other Binary Multiplication Methods 139

The above-mentioned changes have a benefic effect because they reduce the
number of terms from the parenthesis weighted with 2% (from three in relation
(3.45) to two in (3.47)), thus enabling the saving of a CSA level in the synthesis
realised, for instance, through a Wallace tree (Fig. 3.61a). Mention should also
be made that (3.46) might have been applied to the parenthesis weighted with 28,
as well, but the consequence would not have been a favorable one, but the op-
posite. Generally, speculations such as those seen above may result in improved
solutions as far as performance and cost are concerned (reductions of the num-
ber of CSA levels, as well as of the number of CPA adder ranks may also result,
when implementations with combinational tree structures are executed).

As regards squaring, we should like to point out that it may contribute o mul-
tiplication implementation by means of an artifice, namely use of the so-called
“arithmetic lookup tables” [ErLa04, Omon94). By means of this method, for
numbers represented on 1 bits, the products are stored as elements of 2n bits in
a table whose lines are the 2 possible values of, for instance, multiplier X, and
whose columas are the 2" possible values of multiplicand Y. in these conditions,
for such a lookup table meant for multiplication, there results a prohibitive di-
mension (roughly estimated at 2 x 2" x 2n bits), which, for practical values
of n, makes the lookup process very difficult. This impasse is surmounted by
squaring, whose lookup table, for the same number # of bits, has a much reduced
dimension {estimated, under the same hypotheses, at 2% x 2n bits) with favorable
conseqguences, both as regards the saving of memory area, and lookup simplifi-
cation. Following this specification, let us appeal to an obvious identity, which
presents the product of numbers X and Y as a difference of squares, namely:
XY =((X+YY¥ —(X - Y)z)/4. If an adder/subtracter is activated twice {for
the computations (X + ¥}, (X ~ ¥)), and than if two lookups in the table with
sguared values are executed (to determine (X 4 Y}z,(X - Y}Z}, the difference
(X +¥)? — (X — ¥)?) is taken, and, finally, if a right-shift by two ranks of this
difference is executed, the intended value of product XY is obtained.

Let us also refer to exponentiation of the form X%, where o is an unsigned
number. This can be executed through a sequence of squaring steps or through
combinations of such steps with some multiplication ones. For instance, we have
XH — X{X(XZ)Z)Z

4. A special case is represented by the residue numbers which have various ap-
plications in the ficld of computation, of which mention should be made of
error detection and correction for arithmetic operations. The multiplication of
these numbers is done by using special devices, the so-called modular muli-
pliers [Parh00, KaTa05, RaFu89]. Such a multiplier allows the obtaining of the
modulo product related to a fixed, constant value, called the module and denoted
by w. One of the implementation solutions is represented by attaching to the out-
put of a binary multiplier, of the studied type, a diagram which will enable the
residue to be obtained when the resulting product value is divided by e, execut-
ing the so-called modular reduction operation. The disadvantage of this solution
is the requirement of the intermediate storage of some values, generally implying
a significant number of bits. This disadvantage can be mitigated by combining



140 3 Functional Analysis and Syathesis of Binary Multiplication Devices

Fig. 3.63 Identification of A SR LR LR LI LI o
one bit products in terms of : ; : : : : :
. . : ; I
dot notation and their ; i Eoxgy,
regrouping in order to L e e
synthesize a modulo 15 4-bit R ¥ R4

operands multiplier s e
XV X, XY,

e & & @
Xy XVy Xg¥y XYy

4

22 2 2 7

¢« o o ®
Xy Xy XgVy XV
¢ o o @
Xy XV, Xy XYy
« o o ®
Xy XVa XV, Xo¥,
L] ] L] ]
XVe Xy Xy X,

c

the moduiar reduction with the accumulation of the partial products, an aspect
upon which we shall insist below.

The synthesis of modular multipliers depends, decisively, upon the value of
the module . Without detailing the discussion connected with the choosing of 1
{EfVNO3, Viid86], we show that, especially the cases when p = 2" and u =
2% — 1, where, again, n represents the dimension of the operands, are cases of
interest on account of being simple. Without loss of generality, we shall refer
to unsigned integer operands. Thus, accumulating partial products through CSA
addition, for ¢t = 2, the carry output from the most significant adder cell {(n — 1}
shall be ignored, while for ;¢ = 2" — 1, the same carry ocutput shall be applied to
the least significant adder celi 0 from the next stage. We mention, without farther
discussion [RaFu891}, that if it is supposed that n = 4, then for p = 2% = 16, the
carry from rank 3 of the CSA represents the value 16, but 16 mod 16 = 0, which
justifies us to ignore it. Similarly, for p = 2% — 1 = 13, the same carry of value



311 Other Binary Multiplication Methods 141

xT/J xfz XgVz xf( Xos xI/o XTB XI’J
L5 ) l XV l Xy X¥z

Level 1 o 5 o
FAC FAC FAC FAC
Iz}
C: o &0 5 o
b {j}% ¥ ( X3Vs ¥ ( XV, Yy j&yr
o e o
Level2 p ; 5
FAC FAC FAC FAC
C ;w sjw Szm s,w Sﬂw
Tevel 3 .
FAC FAC FAC FAC
end-
arcssnd| _vj"” SZGJ s,”” s,,“)
carry
E v v v
2 P n oy

Fig. 3.64 FACs interconnections inio a modulo 15 4-bit operands binary multiplier

16 teads, due to 16 mod 15 = 1, to one binary unit being added to rank 0 of the
next CSA level.

Referring to the same example, and adopting = 2% — 1 = 15, if we ap-
peal to dot notation, according to relation {3.26), and aiso to Fig. 3.61c, we
have the distribution of the dots that correspond to one bit products, as pre-
sented in Fig. 3.63a, marking, through the triangle plotted with a solid Hne, those
dots corresponding to the products, which, if added, have the weights 20(x0 Yo,
Zl(xoy] -+ x1vp) and 22{);9y2 + xyvy + xoyp). Since the weights of the given
sums do not change, they can be moved to the vacant places marked by the tri-
angle with a dotted line, so that the dots distribution from Fig. 3.63b is obtained.
Mention should be made that for the weights corresponding to the dots marked
with the triangle plotted with a solid line in Fig. 3.63b, we have the following
equalities: 2% mod 15 = 16 mod 15 = 1 (weight 29}, 2° mod 15 == 32 mod 15 =2
(weight 21), and 2° mod 15 = 64 mod 15 = 4 (weight 2%). This justifies the given
movement of dots into the vacated positions marked by the tiangle plotted with
dotted line in Fig. 3.63b. Consequently, the dots have been redistributed, result-
ing in the matrix configuration from Fig. 3.63c, which shows the new positions
of some of the one bit products, and the way they have to be added in order to
obtain modulo 15 partial products.

If we foresee an implementation through CSA vector computations, then the
FACS’ structure corresponds to the distribution of dots from Fig. 3.63¢, the rhom-
boid form of the structure from Fig. 3.42 being substituted by a rectangular one,
as presented in Fig. 3.64. As mentioned above, one can observe the connection



142 3 Functional Analysis and Syathesis of Binary Multiplication Devices
Fig. 3.65 Example of a ¥=14,= 1110,
madulo 13 4-bit binary Xo= 13, = O = xpxx,

multiplication
x,¥2" mod 15 = 1110
x,¥2 mod 15=0000} Levell
x,¥2  mod 15 = 1011
— §=0101
"= 1010
bt S = 101
—+2C" mod 15 = 0101 } Level 2
x,¥2' mod 15=0111

57 =0111
C* = 0101

59 = 0111
~#2C" mod 15 = 1010

5 m@(ﬁi
end around carry 1

P=pmod 15 =

} Level 3

of the carry-out Hnes {c,y) from the msb rank of a CSA level to the Isb rank
of the next CSA level, as well as the end-around carry connection to the CPA,
which has been assumed to be of RCA type, for simplicity reasons.

For instance, in Fig. 3.65, we have taken into account the multiplication
XY =13 x 14, whose product P = 182 leads, if modulo 15 is used, to the value
00109 = 2;p. As can be seen, it has not been obtained by computing the product
in extenso, i.e. the value 1821y = 10110110,, and, then by applying to it the mod-
ular reduction, but this last operation has been combined with the accamuiation
of the partial products.

The statements applied to the previous rudimentary case can be extended o var-
ious values of the module p, granting, by means of the residual codes, an important
alternative for the checking of arithmetic operations, in general, and for binary mul-
tiplication, in particular.



Chapter 4
Functional Analysis and Synthesis of Binary
Division Devices

4.1 Binary Division Methods

1t is specified from the beginning that this chapter refers 1o the execution problems
of binary division especially in fixed point, some of the solutions being applicable
also to floating point units. The operands are made up of the dividend ¥ and the
divisor X, and the resuits of the operation are represented by the guotient Q and the
remainder K. If these numbers are integers, then they are in the correlation known
as the identity of division, according to which:

Y=X0+R @1

where the sign of the remainder R is the same as that of the dividend ¥ and
IR} < | X, the bars | | signifying absolute values, and R may also be (0 {ErLa(4,
HePa03, Parh00].

To get accustomed o the problems specific to this operation, we shall first refer
to the simpler case of unsigned integers, whose division is, obviously, completely
defined by relation (4.1). Thus, let us consider the case where the values X, G and R
are represented on n = 4 bits, while ¥ has double the number of bits, 2n = 8. The
operation development according to the well-known conventional method “paper
and pencil” [Wake(0, Hayc981, which, in the sequential way, allows the quotient to
be obtained one bit at a time, can be followed in Fig. 4.1. The dividend ¥ = 153yp =
16011001 is divided by divisor X = 119 = 1011,, the operation being executed
through a sequence of sieps sequence, in each of which the subtraction given by:

Ripi =R —gpq- 27X (4.2)

is executed where R; and R;,; represent the current partial remainder and the next
one, while ¢, | _; represents the current binary digit of the quotient Q.

If the difference between the remainder R; and the divisor X, adequately shifted
to the right, R; — 21X, is negative (refer to the value 1 of the borrow from the
position of the “sign”, in Fig. 4.1}, then to the current bit of the quotient, g,—j—;, is
allocated the value 0, and when it is zero or when it is positive (refer to the value

M. Viadutiu, Computer Arithmetic, 143
DO 10.1007/978-3-642-18315-7 _4, © Springer-Verlag Berlin Heidelberg 2012



144 4 Functional Analysis and Syathesis of Binary Division Devices

Q

.K’;f;(q 12X 4 ‘?2 4 t{o

e G B, G P

Ro=Rg2X e

g 2X=12% e

R eRg2X P

g2 X= P

R

BT 1515 CO—————————— -

LREReg2X I
D e B T 4

R=Ri=Req2X

Fig. 4.1 “Paper and pencil” conventional binary division exampic

{ of the borrow from the position of the “sign”, Fig. 4.1}, then to the current bit
of the quotient, gy.-1..;, is allotted the value 1. Characteristic of this procedure is
the fact that the partial remainders (in Fig. 4.1, only the bits of interest have been
specified at each moment) maintain their fixed position during the entire procedure,
while divisor X is subiect o a right-shift at every step by one binary position.

Undoubtedly, the central problem of division operation is to determine the cur-
rent digit of the quotient. If we have a number system with radix r, then this problem
requires the execution of r comparisons of the r multiples of divisor X with the cur-
rent partial remainder K;. In the binary case, when r = 2, the two comparisons can
be substituted by the subtraction, given by (4.2), through which it is tested whether
to the quotient current bit can be allocated the value 1, a fact due to which this
operation is, sometimes {Omon94, Haye98], called trial subtraction.

Our aim being the implementation of the binary division operation through fast
hardware mechanisms, in as economical a way as possible, let us try to make use
of the same structural elements which have been used in the binary multplication
device. This being our priority, we shall make certain changes in the conventional
division procedure, which uses iteration (4.2) and is exemplified in Fig. 4.1. Adopt-
ing & procedure similar {o that of multiplication, we shall maintain the fixed position
of divisor X and shall shift, this time to the left, the partial remainders. Anticipat-
ing the same preseatation manner based mainly on examples, let us reconsider the
case from Fig. 4.1. The operation development can be followed in Fig. 4.2. The
commeniaries will be made by comparison. Thus, there is a difference between the
consideration of the initial partial remainder, namely Y := Ry in the conventional
method, and Y := 2Ry in the new procedure. The iteration is also changed, as com-
pared to that described in (4.2), namely:

Rip1 =2R — gp1 i X (4.3)

where, besides the notations with the same significance as in (4.2), 2R; appears
which is the current partial remainder shifted by one binary position to the left,



4.1 Binary Division Methods 145

Fig. 4.2 Binary division example with unchanged position of the divisor and left-shifted partial
remainders

Even if the quotient bits are generated in the same order, in Fig. 4.2 it can be
observed that they are subject to a shift, at each iteration, by one position to the left.
Correlated with this, the final remainder R does not coincide with that which has
been obtained at the end of the last iteration (R4}, as in Fig. 4.1, but represents the
remainder R shifted to the left, in our case (Fig. 4.2), by three binary positions, i.e.
Ry:=7R.

In the two figures we have tried to show the iaformation flow at the bit level,
which is why we shall not give a commentary on the procedure. However, we should
like to reveal the iteration that corresponds to the determining of the bit gy, when
the attempt {o set its value to 1 fails, a sitvation which requires 2R to be used as the
value of the partial remainder. Mention shouid also be made that the values of the
quotient ) = F101; = 130, and of the final remainder R = 1010, = 10} coincide
in the two procedures, and these values together with those of the operands X and ¥,
precisely satisty the identity (4.1).

It is just the failed attempt to set the current bit of the quotient to | which requires
different solutions {o the problem of restoring the deteriorated remainder through
the corresponding trial subtraction. The specific ways this problem is solved is the
difference between the fundamental procedures of binary division. Essentially, there
are two such procedures, namely with and without restoring the remainder, whose
characteristics will be analyzed below.

4.1.1 Restoring Division

Referring to the favesable computer implementation procedure, whose iferative
steps are described in (4.3) and which is exemplified in Fig. 4.2, let us suppose
that in step { it has resulted, following the frial subtraction, that 2K; < X. This im-
plies the assigning of value 0 to the current bit of the quotient, g,_;_;, but in the



146 4 Functional Analysis and Syathesis of Binary Division Devices

[

|

X=101110011001 A=2R,
-10t1
@ 1000001, R.=2R-X
10600001
-1 011
GO0 1 810t R=2R-X
Cio1ot
-1011
@i L1 BT o R=2R X
+1011
01010 1. e R=R X
19161 Restoring addifion
-10611
] TR J— R;=2R-X

Fig. 4.3 Restoring binary division example

meantime, to the next partial remainder, R; 41, there has been attributed the value of
the difference (2R; — X). According to (4.3), and since ¢p—3.; = 0, the remainder
R;.41 has to return to the value 2R;, which can be done by the immediate addition
of divisor X to the difference (ZR; — X), when 2R, < Xie Ry =2R — X+ X
or, otherwise, Ry = Riqp1 + X. This is the case of remainder 2R3 from Fig. 4.2,
which from 01010, through the subtraction of X, becomes 11111 and has to be re-
stored to the old value, which requires a restoring addition, as shown in Fig. 4.3. As
can be observed, the current value of a bit of the quotient is given by the comple-
ment of the borrow bit from the msb position of the partial remainder. When this
bit obtains the value 1, restoring addition becomes necessary. Mention should also
be made that, unlike the presentation from Fig. 4.2, the partial remainders have no
longer been completed with Os at the right side of the isb of dividend Y. We have pro-
ceeded in this way, anticipating the procedure implementation, to “create a place”
for the quotient bits which will be put into the released binary positions.

Nonetheless, the restoring additions increase the number of elementary opera-
tions corresponding to the procedure, increasing the latency required by division.
Thus, if we suppose, generally, the quotient has n bits and that on average half
of its binary digits are 0, this means that we require of 3n/2 activations of an
adder/subtracter by the division device configuration, because fo the n trial sub-
tractions there are added n/2 restoring additions.

The situation can be improved by appealing to the method known as the “non-
performing division”, whose cssential characteristic consists in the storage of the
partial remainders until the result of the trial subtraction is known. Thus, the re-
mainder 2R; is kept in a register, and in case 2R; < X, instead of restoring the
remainder by a restoring addition, the value is taken from the register where it has
been stored. Obviously, this selution saves an addition for each 0 bit of the quotient,
but requires a supplementary investment in the mechanism of remainder conserva-
tion. Some references in the literature [Omon94]} consider nonperforming division
as a distinet division method, but most of them {ErLa04, HePa03, Parh00] treat it as



4.1 Binary Division Methods 147

B 2
X=101 1|110001111 001 .. Y=2R, 99:9: 9%
‘@W@"ﬁ"@"m _ R:=2R,-X P ﬁ
1000001 P
.1011 W
?{310101 o Rp=2RX
010101
1011
@11111, L R=2RAX
1ti11
+1011
? 10710 R =2R X

Fig. 4.4 Non-restoring binary division example

an alternative to restoring division, with which it has all the elements in common,
except the way in which the remainder is restored.

4.1.2 Non-restoring Division

To introduce this procedure, let us suppose that in step (i — 1), which precedes
the current one, the value O has resulted for the quotient bit, i.e. g,_; = 0, which,
according to restoring division, requires the restoring of the remainder through
R; = R; 4+ X. Respecting the procedure, it follows the shift to the left by one posi-
tion of the current remainder (2R;) and, then, immediately, the trial subtraction, 1.¢.
Riyy == 2R; — X, where, through the merging of the two relations, the following
will be obtained:

Rip1 =2(Ri+ Xy~ X :=2R; + X (4.4)

Otherwise, after assigning the value 1 to the quotient bit {g,..; = 1), we have, as
we have had so far, a subtraction (R, 4.; := 2R, — X)) followed by the left-shift, but,
after attributing value 0 to the guotient bit {g,.; == 0}, we have, and here appears the
difference from the restoring method, an addition {R; 3 = 2R; + X, followed, this
time, as well, by a left-shift. Since it is no longer necessary to restore the remainder,
the new procedure has been called non-restoring division. Figure 4.4 resumes the
example used to illustrate the other methods according to the new procedure condi-
tions, where the saving of one activation of the adder/subtracter can be observed for
the quotient bit ¢y = 0. Generally, if we suppose the hypothetical case mentioned
before, when the probabilities for the occurrence, in the quotient binary configura-
tion, of & and | bits are equal, the non-restoring division method requires only n
activations of the adder/subtracter, saving, on the one hand, the n/2 additions from
the restoring division, and, on the other hand, the storage and shifting mechanisms
{when we have quotient bits of 0) of the partial remainders from the non-performing
division, but the non-restoring division requires a more complex control,



148 4 Functional Analysis and Syathesis of Binary Division Devices

: » 2R,
32X ..X i
. ,,,,,,,,,, Vx restoring
algorithm
a
R

x nonrestoring
g,.1.=0 algorithm

b

Fig. 4.5 Robertson diagrams corresponding to the restoring and non-restoring algorithms

One more minor complication appears in the non-restoring algorithm, namely in
that particular case when the last but one partial shifted remainder is smaller than
divisor X, i.e. when the final remainder is “negative” (if numbers without sign are
operated on, this situation shall be avoided). Correctively, one has to return to the
value of the last but one partial shifted remainder, by using a supplementary addition
of X to the final “negative” remainder.

Let us try to highlight the differences between the two methods, restoring and
non-restoring, appealing to the graphical form associated with each of them, also
called the Robertson diagram [Omon94]. This consists of a rectanguiar system of
axes, with the current shifted partial remainder represented in the abscissa {2 R;), and
the next partial remainder represented in the ordinate (R;;1). Within this system



4.2 Sequential Binary Divider for Unsigned Integers 149

are traced the lines corresponding o (4.3), the result being the dependences from
Fig. 4.5a for the restoring algorithin, and the dependences {corresponding to the
two different equations) from Fig. 4.5b for the non-restoring algorithm. In Fig. 4.5a,
the two lines (for g,——; = 0, and for g,_1_; = | respectively) are dotted in the
region of the negative partial remainders R; .y, to take into account the effect of
the previously specified restoring additions. By taking inio accouni the variation
intervals of the partial remainders, for both procedures, the lower ends of these
lines, unlike their upper ends, were marked using emphasized dots.

Coming back to some aspects of general character that are specific to division, we
should like to point out that, as regards quotient () represented op n bits, its largest
value may be (27 — 1), which, corroborated with condition B < X and by applying
(4.1}, leads to the restriction ¥ < (27 — DX 4 X = 27X, This means that the value
corresponding to the most significant 7 bits of dividend Y shall be, strictly, smaller
than that of divisor X. The above-mentioned restriction has to be tested before apply-
ing the division algorithm proper, representing the so-called overflow check, which
may appear af the quotient level—the quotient overflow [ErLa(4]. Mention should
aiso be made that through this test is detected, in the case of unsigned division, the
anomaly of the divide-by-0 (zero) condition.

Up to now, we have referred to the division of operands representing unsigned
integers, but if the operands are signed integers then no essential differences ap-
pear. Regarding signed fractional numbers, things must be reworded to a certain
extent. Thus, if both members of relation (4.1) are multiplied by 272" there results
{Parh00]:

Y2 = (X27"Q27) + R27T, e
Y frac = (X frac Q_ﬁmc') + Rf'rm.‘zm”

where the index frac has been used fo specify fractional values,

Otherwise, the same procedures can be applied both to integers and to fractions,
with the specification that the final remainder has to be shifted by n positions to
the right in the case of fractional numbers. Mention should also be made that one
must avoid quotient overflow, which, in the case of unsigned integers, has the form
¥] < 2" X1, and in the case of signed fractions, has the form [Yireel < Xpac.

(4.5

4.2 Sequential Binary Divider for Unsigned Integers

We shall start this section by mentioning that as regards multiplication and division
there are, besides inherent differences, certain similarities. In the sequential version,
there is generated one bit of the result (product and guotient) at cach iteration of
the procedure, in a similar manner, through steps that imply arithmetic operations
succeeded by steps that provide shifts. If we refer to the basic procedures and not
to their improvements, then we may say that the arithimetic operations differ, i.e.
in the case of multiplication there have to be made repeated additions, while in the
case of division there have to be made repeated subtractions. The direction of shifts



150 4 Functional Analysis and Syathesis of Binary Division Devices

also differs. In multiplication, the partial products are shifted to the right, while in
division, the partial remainders and the quotient are shified to the left. There are also
certain less obvious differences, such as the supplementary problem encountered by
division and which consists of the selection or, as will be seen below, the estimation
of the quotient digits. There is one more aspect in connection with the fact that the
multiplication of two numbers of » bits will always give a product represented on 2n
bits, while the quotient, on the division of a number of 2n bits by one of n bits, may
result of a fength longer than » bits (which requires the overflow check, including
the divide-by-0 condition testing). But the essential aspect, as far as the objective
of this section is concerned, is that the implementations corresponding to the two
operations have many constructive elements in commeon, which, by reconfiguring
the structures, enables the synthesis of some most favorable arithmetic units, as
regards cost.

We also add that our references include the implementation of the better perform-
ing algorithm, which, as has already been seen, 13, generally, the non-restoring one
[ErLa04, Parh00]. We construct the presentation in the manner that has been used
with the multiplication devices, supposing, the general character being still main-
tained, that the length of the registers is 8 bits. Thus, Fig. 4.6 presents, in terms of
the adopted description language, the code sequence associated with the hardware
configuration of the division device given in Fig. 4.7 (after [Haye98]). As regards
the description and the diagram, mention should be made that, for simplicity rea-
sons, there have been omitted the overflow check and the divide-by-0 condition
testing, which are supposed fo be solved through software routines. The registers’
structure can be recognized from the multiplication devices, but the registers’ func-
tions change. Thus, dividend ¥ is loaded into the double register A.QQ, with the most
significant bits in A. We appeal to one more simplification, namely, in order to set
the first bit of the guotient in Q[0], we consider that the dividend is restricted, as
regards its dimension, to 15 bits, and, generally, to (2r — 1) bits. Obviously, the
problem of the storage of the first binary digit of the quotient can be solved in other
ways, as well, for instance, that which starts with an iteration with one step shift
to the feft {Omon94]. Due to the bus width, the loading of ¥ into the double reg-
ister A.(} is controiled through the successive signals ¢y and ¢). Subsequently, the
partial remainders and the quotient are formed in register A.Q, so that, finally, in
Q we shall obtain the quotient, while the remainder will be obtained in A. Register
A.Q is provided with left-shift capacity, as required by the algorithm (Fig. 4.4), the
partial remainders being diminished, at each iteration, by one bit, the quotient bits
being “pushed” into the released positions. There can also be observed a certain re-
semblance with the multiplication operation, where, through right-shift, there have
been “lost” multiplier X bits, there being “gained” bits of the partial products, and,
in the division operation, through left-shift, there have been “lost” bits of the partial
remainders, there being “gained” bits of quotient Q. Consequently, the double reg-
ister A.Q must be provided with bidirectional shifting capacity in order to be used
in both operations [51al99].

As regards register A, mention should be made that it is extended o the left by
one rank {8), which could have been denoted A[B}, but to which has been assigned



4.2 Sequential Binary Divider for Unsigned Integers 151

divider 1
declare register A[7:0], Qi7:0], Mi{8:0), COUNT{2:0}, 5;
declare bus INBUS{7:0], CUTBUSET:0);

BEGIN: COUNT:=0, §:=0, } e e
INPUT: A=INBUS ; o

QET F]mINB TS T: 1t o cmercr emrm e e e e et e o e e e e {c}
MI7:0]:=INBUS]T:0], MIBJ0; v i e}

SUBTRACT! S. A At o oo o o {ouel}
TEST: if =0 then
begin
Qe fo;}

if COUNT7=1 then go to CORRECTION; glse
begin COUNT=COUNT+1,8.A.Qf7: 1=
5.A:=8.A-M, go 1o TEST,;«

engd
else
begin
T — e
if COUNT7=1 then go to CORRECTION,; ¢lse
begin COUNT=COUNT+1,SAQ[T1]=AQ ende—— ——————— ic,
S AR AM, g0 10 TEST oo oo oo o o {c,}
end
CORRECTION: 1 5= fhen 8. A S A M oo e et ot o ottt e {o;}
QUTPUT: OUTBUS=Q¢————— o e e 4o,
oymsusS A} e ———— ——— —— e}
ENDr-———— e e * {END}

Fig. 4.6 Description of the restoring binary division for unsigned integers

the name S, from “sign”, to highlight its function. At each iteration, through left-
shift, the msh of the current partial remainder is placed in S. Then, S contributes to
the operation (addition or subtraction), and stores the sign of the result represented
by the next partial remainder. The value thus obtained is tested and, depending on
the result is set up in QO], the quotient current bit, a fact suggested in Fig. 4.7 by
passing the control signals 5 and ¢v to the asynchronous inputs of the flip-flop Q{0]
{Set(5¥) and Reset (R)). As has been established above, the lefi-shift is performed
on the double register A.Q, with the extension 8 included, i.e. on 8.A.Q, an cle-
mentary operation which is under the control of signal cq, which also controls the
incremeniding of the iterations counter COUNT, this being a nonconflictual opera-
tion.

The other operand represented by divisor X, whose position remains fixed during
the entire division, is loaded in register M. Like A, M has an extension to the left
by one rank, (M{8]), this being set to 0, controlied through ¢, synchronously with
the loading of X into the other ranks of M. Bit M{8] represents the correspondent of
the previously specified bit S attached to A, so that, for the extended operand X will
be obtained, by the EX-OR wordgate, and controlled by ¢4, the two’s complement.
In the case of subtraction, it will be added, under the control of ¢3, to the most
significant past of the partial shifted remainder from S.A. On the other hand, in the
case of addition, the value 0 (i.. the positive “sign” of the number without sign X}
from M[81 has no effect.

After trial subtraction (provided by SUBTRACT), and depending on the value
of 8, follows the setting of the quotient current bit {(Qf0]), when there are two al-
ternative subsequences (provided by TEST). Both of them also include operations



152 4 Functional Analysis and Syathesis of Binary Division Devices

0

Accumulator Quotient register ¢ & Divisor register

A A apbeeat Q iQ%}j MEMTE M v
I S g M

£y 3 L
878 j
9 9 8
M 9
g Counter 8
8 N COUNT
; Parallef L L ST ek oy oy
™ adder / subtracter 03Qo Q0
< % """""
~ Bed , AND |
Cr v Bety csd pae @ ey |
T OHUIBUS g % coUND e
8- bit I
data INBU P |
sy INBUS % |
control < CLOCK -+ Control e R £
signais END A uni signais

Fig. 4.7 Block diagram of a scqueatial binary divider for unsighed integers based on restoring
procedure

that test the end of the division (when COUNT7 == 1), that increment the iterations
counter COUNT, as well as left-shift operations by one binary position of the par-
tial remainder and of the quotient (S.A.Q[7:1} := A.Q). The new partial remainder
is also formed, which, according to Fig. 4.4, implies, when the current bit of the
quotient is set 1o |, a subtraction (5. A 1= §.A — M), and, when the current bit of the
quotient is set to §, an addition (5.A := S.A + M). If the final result is “negative”
(S = 1), then it will be adjusted by adding to it the divisor, an operation provided by
the label CORRECTION. The results, consisting of the quottent and the “shifted”
remainder, are delivered to the bus under the control of signals ¢g and ¢y,

As has happened in most of the multiplication methods, let us consider an ex-
ample in this case as well. We shall adopt the example that has been used in
the illustration of multiplications, but this time we shall process integers without
sign. Thus, let us suppose dividend ¥ = 93450 = 10010010000001, and divisor
X = 8% = 01011001,. The division process can be followed in Fig. 4.8. Before
the setting of the values of §, let us mention that the values corresponding to Q0]
are marked with an underline, signifying the fact that, anyway, they wiil be overwrit-
ten. After the computation process, which can be foHowed at the bit level, quotient
(0 = 01101001, = 105,y and remainder R = 0 will be obtained.

Finally, mention should be made that as regards the implementation from
Fig. 4.7, an alternative solution may consist of merging the control signals ¢5 and ¢,



4.2 Sequential Binary Divider for Unsigned Integers

Fig. 4.8 Binary division
example of unsigned integers
by the non-restoring
procedure with
microoperations’ contro
stgnals activation

153

internal control
s A Q M COUNT | ignals activated
0401001001 | | 000« —q,
0000001 _4 -+ - ee e fo o,
0010110014 |- ¢,
o] 01011001
T 100004 -~ - d e
i f
v
000000104 -~ = m oo oo e b
1'4 a]'»nggggg.,,o‘oooo-m—.k,u.,u.,u e QO gy
o 01011601
I R e e Lo,
i
3
000001044 - v oo oo b gy
140110016 - 00001014~ e QAQ b P
o 01011601
I e e R s
1 i
3
(VI ETIEE SOUPPSPSY ISP B e
3 -001100104-0001011_+----------- S ¥ TP N 2
o/ 01011001
I i I it R e s
i
y
0TI L R e ¢
14-101100104-0010110_1 BT I R &
001011001
I R S R St e c,
{
v
07s T T N S g,
04-000101104-0101101_4----------- B DI - ,
o] 01011001
I L L R i it M 6.t
{
v
ETVECT: 1 S S S ¢,
14-01111010 4-1011010_4----------- B DI - ,
o] 01011001
I L s ] s Saat c,
i
v
EUVEETog1v' X SR (S A ¢,
11-10100111 1-0110100 - I Tt M ,
SCOUNT T
0 01011001
I T e,
PRI Tt E ECECTSpuEy IOUDUUPRNSN BRSPS Py
e e R B &
--------------------------------- &

on the one hand, and ¢y and ¢ on the other hand by making use, through an elab-
orate design, of both fronts of the CLOCK pulse. However, the elimination of a
control signal might require the extension of the CLOCK period, and, consequently,
the best solution depends, decisively, on the available technology.



154 4 Functional Analysis and Synthesis of Binary Division Devices

We also add that the changes required by the restoring procedure and by its al-
ternative, the nonperforming procedure, are obvious, and they can easily be grafted
onto both the behavioural description from Fig. 4.6, and the diagram presented in
Fig. 4.7, so we shall not discuss this aspect.

4.3 Combinational Array Structures for Binary Division

Before considering other binary division methods, let us present, for the fundamen-
tal procedures that have been introduced, synthesis versions alternative to the “one-
bit-at-a-time” sequential ones, of the type presented in the previous section, aiming
to obtain—in a totally parailel way-—all the bits of the quotient and of the remainder
through only one CLOCK pulse. As for binary multiplication, we appeal to combi-
national array structures for this purpose.

We shall present one solution for the remainder non-restoring procedure and one
solution for the restoring one. In both solutions, the problems of overflow check and
divide-by-zero will be considered to be solved through the corresponding software
routines. In order to cover as many difficulties met with at implementation as possi-
ble, we shall suppose, for the non-restoring case, fractional operands provided with
signs, and for the restoring case, operands which are integers without signs.

4.3.1 Combinational Array Structure Based on Non-restoring
Division

The operands being provided with signs, as mentioned above, we shall first point
out the specific aspects of this case. We shall gradually arrive at the synthesis of
a combinational array structure, presenting, first of all, the description associated
with a sequential variant of the non-restoring algorithm, according to the model
from Fig. 4.6. The general character being still maintained, we shall consider the
fractional numbers represented on 5 bigs, of which the msb represents the sign. Aim-
ing, in fact, at the synthesis of the parallel variant, we shall ignore the control sig-
nals which are specific to the sequential implementation. These specifications being
made, the description is given by the code sequence from Fig. 4.9 {VIPe94].

In a similar way to that which has been adopted in the sequentiat procedure de-
scribed in the previous section, we maintain the restriction that the dividend Y have
9 bits at the most, of which, sow, the msb represents the sign. As regards the sign,
it is maintained during the entire procedure in the flip-flop denoted by S, it being
finally necessary in establishing the correction. The signs of the partial remainders
are stored in the rank A[4}1, whose initial value coincides with that of 5, while that
of the divisor is in M[4}. As a function of the signs of the two operands, an aspect
checked by TESTI, the operation begins with a trial subtraction (indicated by SUB-
TRACT) when the signs are equal, and with a trial addition (indicated by ADD}
when the signs differ.



4.3 Combinational Array Structares for Binary Division 155

Fig. 4.9 Description of the divider 2
division provedure for signed declare register A[4:0], Q{4:0], M[4:0], COUNT{2:0}, 5;
fractional b.inary numbers . BE GIN:%{?!BUSH:O}, OUTBUS[4:0);
corresponding 1o a sequential INPUT: A==INBUS, S<INBUS[4];
implementation Q[4:1]:=INBUSI4: 1];

M:=INBUS;

TEST1: if (A{4Jex-no:Mi4])=1 then go to SUBSTRACT,
ADD: A=A+M, go to TEST2;
SUBTRACT: Ar=A-M;
TEST 2: if (Al4jex-0:M[4D=1 then go to ALT,
begin
QIo}:=1,
if COUNT4=1 then ge to CORRECTION; else
begin COUNT:=COUNT+1,A.Q[4:1}:=A[3:01.Q; end

Ar=AM,go to TESTZ;

end
ALT: begin
Q[o]:=0,
 COUNT4=1 then go to CORRECTION; else
begin COUNT=COUNT+HELA.QI4:11:=A]3:01Q; end
A=A+M. go to TEST2,
end
CORRECTION: if (S gxzor M[41)=} then Q:=Q+0.0001,
if ((A[4] and S and M{4]) or (AT4] and 5 and Mi4D)=1
then A=A+M, . _—
if ((A[4] ard S and M{4]) or (A[4] and S and MidD}=1
then A=AM;
OUTPUT: OUTBUS=Q;
QUTBUS:=A;
END:

Subsequently, the decision to assign the value for the current bit of the quotient is
taken as a function of the signs’ coincidence, on the one hand of the current partial
remainder, and, on the other hand of the divisor, a checking operation provided by
the label TEST 2. The two subsequences corresponding to the assigning of a 1 to the
bit Q[0}. and to the assigning of the alternative value (indicated by the label ALT)
together with the successive microoperations, are identical to those of the procedure
described in Fig. 4.6. Obviously, the iterattons counter COUNT is tested for its limit
status COUNTY and not COUNT7.

An essential difference of the sequential procedure in Fig. 4.9, as compared
to that from Fig. 4.6, relates to the probiem of correction, which, starting from
the requirement that the sign of the final remainder R coincide with that of the
dividend Y, is consequently more complicated in the new circumstances. But, to
get used to this problem according to the same style of presentation followed
throughout the book, let us appeal to an example, which, as a function of the
operands’ signs, will be run through in two edifying hypostases. Thus, let us divide
Y= 186278 = 101000110, by X = 13 .2% = 10011, (Fig. 4.10a), and then
fet us divide the same ¥ by X = +13- 274 = 01101, (Fig. 4.10b). The division’s
execution has been performed in the manner iliustrated in Fig. 4.8, but only the
contents of registers A and Q are illustrated. Both the operands and the results are
represented in two's complement. At the end of each operation corrections marked
by “¢” are made. Thus, when COUNT#4 = 1 is reached, for the computations from
Fig. 4.10a, the remainder is K = 01001 = +9 - 2-8 but the sign A{4] = 0 does not
coincide with that of ¥, i.e. S = 1. Consequently, to make the remainder have the



156 4 Functional Analysis and Synthesis of Binary Division Devices

Fig. 4.10 Sigaificant
division examples o mark out A Q A Q
the corrections nceded to
assure the same sign for 5-+10100 0110 8-»10100 G110
dividend and remainder 10014 +01101
00001 01100 00001 01101
AR s A Al
T ¢4 <
00010 1100 00010 1101
+10011 01101
10101 11001 10101 11010
Wi ! ’_f IIJ?» Lf / ' i[ L[J‘
T N
01011 100%_ 01014 1010
-1001% +(1101
11800 10019 11000 16100
IF{ F’ T I[? }f’ ?f f[ fl?
mrs s
10001 0011 10001 0100
-10011 +01101
11110 00111 11119 01000
14 { ’f Ifl’» Lf i ' fi ’I.T
i i/
14100 1000
+(31101
?3001 16001
AT
¢ 01101 t 00001
11100 10010
Re & Re 4 14
2 2 2
386 13114 1 4 186 _13/14 | 4
25 2"} 2 *(2"} 2 7 ‘ 2‘*}*{28}
A[4]=0; S=1; Mi4}=1 Al4]=0; §=1; M[4]=0
a b

same sign as ¥, X is added, the procedure, adapted to this situation, is similar to that
described in Fig. 4.6. On the other hand, in the operation from Fig. 4.10b we obtain
the same remainder (R = 49 - 3-8y, Consequently, Ai4] = 0 does not coincide with
S in this case, as well, ¥ being negative. This time, the correction shall be applied
not only to the remainder, but also to the quotient. The latter requires an adjustment
through the addition of a binary unit to its ish. Before the correction, the identity
(4.5) has the following form: —186 - 278 w (413 - 274 (=15 - 274 4+ (49 . 278y,
being thus fulfilled, but the sign of the remainder differs from that of ¥. In order to
satisfy this last requiremnent, X will be subfracted from the value of the remainder,
but this requires a compensation, namely to add 1 to the 1sb of Q to fulfill the di-
vision identity in the form ¥ = X(Q + 1) + R — X. The new form of the identity
{4.5) can be seen in Fig. 4.10b together with the values of the essential bits that
are involved in the correction mechanism (A[4], S and Mi4]). All these, together



4.3 Combinational Array Structares for Binary Division 157

Fig. 4.11 Truth table

corresponding to the Inputs Outprsts

s s [t st a-c-onen

and remainder 0 0 4] 0 G 0
1] 0 i 0 0 i
0 i 0 0 1 i
1] 1 1 1 4 1]
i 0 ] i G 0
i 0 i 0 1 i
i i [¢] 0 G i
i i 1 0 G 0

with those presented in Fig. 4.10a, can be found in the truth table from Fig. 4.1}
[VIPeS4}. The first two output columns (A := A + M, and A := A — M) represent
immediate consequences of the transposition of the CORRECTION statement from
the description, given in Fig. 4.6, in the case of signed operands. The third column
(Q = Q-+ 0.0001) comprises the adjustment of the guotient value, when the signs
of the operands differ. either in cases such as that presented in Fig. 4.10b, or in the
casily checked cases when the signs of the dividend (S) and of the final remainder
{Ai4]) coinade.

Starting {from the description given in Fig. 4.9, let us configure the combinational
array structure by using the so-calied division D cells as “building blocks”, the dia-
gram at the logic gate level and the suggested representation symbol for one of them
being given in Fig. 4.12. The primary condition in the synthesis of D consists of the
requirement that it can be used both in construction of an adder, and in that of a
subtracter. Consequently, we shall start from a full adder cell (FAC) to which there
will be added an EX-OR gate controlled through the tnput O*[j], so that, when
OF[j] =0, the D cell is a genuine FAC, and, when Q*{jl== 1, the D cell may be
configured as a binary subtracter based on the addition of the two’s complement.

The Boolean equations which stand at the basis of D synthesis are given by the
following:

Ry jiilit=(Ry;li = 11 @ clil & (M1 & O7[/1)) (4.6)
cli + 1= Ry jli — Helit or c[i1(M1i1® Q*[j1} or Ry ;i — H{MLi] & Q*[/1)
4.7

where by R, ;i —1]and R, ;11i} two of the current and next remainder bits have
been denoted, and by cfi] and c¢[i + 1] the current and next carries/borrows have
been denoted, while by M7} the contents of a rank of the register where divisor X is



i58 4 Functional Analysis and Synthesis of Binary Division Devices

Q*(jl

cfi+1]

Roil M

symbol

R, M

Fig. 4.12 Detailed diagram at the gate level and the symbol of a divider cell for a non-restoring
combinational array division structure

loaded have been denoted, and by Q™[ 7] the signal which controls whether addition
or subtraction operations are performed by a certain cell has been denoted {VIPe94].

As regards relations (4.6) and (4.7), certain specifications are required. The firstis
connected with the indexes notations that have been employed. In principle, index
i 15 used to indicate a certain column of D cells, and index j is used to indicate a
certain row of P cells. For the purpose of a unitary ordered notation of the partial
remainders and of the quotient digits, by convention, index [ takes values within the
integer range [0, 4], increasing from right fo left, and j takes values within the integer
range {0, 5], decreasing from the top downward (Fig. 4.13). Moreover, we suppose
that # = 3 and that for the inputs o the superior level we have R, ;{f — 11 = A[i],
which imples Ro[—1} = A[0}, as well as Ro[3] = A[4] = S, because, initially, as
stated above, A[4} and § coincide.

On the other hand, relations (4.6} and (4.7} allow the sum to be obtained when
Q%1 j] = 0, and the difference ¢ be obtained when Q%[ == 1. Menticn should
be made that the subtraction is executed by adding the two’s complement, which
implies the supplementary addition of 1 to the isb cell of the subtracter. As a function
of the value 0| j1, the Boolean equation (4.7) corresponds to the carry (@[ f] = 0)
or to the borrow (Q%fj]=1)

These specifications being made, the combinational array stracture for the non-
restoring procedure is presented in Fig, 4. 13, comprising, at its left side, the quotient
corrector (through the addition, as applicable, of 1 to the Isb}, and, in its lower part,
the remainder corrector {through the addition or subtraction, as applicable, of X).
The synthesis transposes exactly, by means of D cells, the description from Fig. 4.9.
Thus, taking over the registers notations which are already familiar to us, we con-
sider dividend Y to be stored in a register of 9 ranks (generally, 2n — 1), the first 5
being denoted by A[4] to A[01, and the last 4 being denoted by Q[4] to Q[1]. Divisor
X is considered to be stored in register M whose contents remain unchanged, while,
as presented in Fig. 4.13, the contents of registers A and Q change: in A arrives
the final remainder, and in Q arrives the quotient of the operation. This solution is



4.3 Combinational Array Structares for Binary Division 159

BX-0R

5 AMHIMI4 Al
g

{

FIME3] ALZEM(Z] A{IIM{TE AlOIM{O}

¥y

» e 0

EX-GR

Fig. 4.13 Non-restoring combinational division structure for 5-bit signed fractions

intended to entirely use the notations from Fig. 4.9, but, obviously, A and Q may be
distinct registers, which ailows the conservation of the dividend [VIPe94].

Commenting upon the synthesis, mention should be made of the fact that signal
O*[51 = A[4] @ M[4] corresponds to TESTI (Fig. 4.9), namely, when it is {, the
first row of D cells is configured as a subtracter (it being also applied to the input
¢t} of the Isb cell), and when Q7{5] = 0, the first row of D cells is configured as
an adder. Subsequently, as regards the following D cells levels, we have for O%[ /]
{we have denoted by **” the corresponding uncorrected values of the binary digits
Q11 of the quotient, except Q*[5], for which there is no corresponding bit @[51),
according to the TEST! statement (Fig. 4.9), the following dependence on the msb
of the partial remainder, and on the sign of X:

Q"1=Ro— 1141 ® M4] = Rp j 41 [4] & M[4] (4.8)

On the other hand, as regards K, _;;14], we shall consider, for the sake of sim-
plicity, the particular case of the msb of the first partial remainder, for which, ac-
cording to (4.6), we have the following:

R[4 = A[4] P c[4] @ (M[4] @ A[4] & M[4]) = c[4] (4.9)
Applying (4.7) to the same D cell for carryfborrow, resuits in:
c[5] = Al41el4] or [41(M[4] @ A[4T & MT41) or Al41(M[4] @ AT4] & MT4])
= Al4]ci4] or cl41A[4] gr. AI41AT4] = c[4} (4.10)



160 4 Functional Analysis and Synthesis of Binary Division Devices

It can be demonstrated that relations (4.9) and (4.10) are also applicable to the
other stages of the array structure, and thus we have Ry jpi{d] = E—H—j = ¢{5},
which, if (4.8} is taken into account, leads us to Q% {4] = ¢[5] & M[4]. This Boolean
equation justifies the layer of EX-OR gates which generates, in the most favor-
able way, as far as performance is concerned, the uncorrected bits of the quotient.
Regarding the correcting circuit of the quotient @, using modularity, we use five
{generally n) D cells for configuring an adder, which adds, according to Fig. 4.9 and
Fig. 4.11, 1 to the Isb of the quotient when S & M[4] == 1.

As concerns the remainder-correcting circuit, between the inferior level of the ar-
ray structure proper and the adder/subtracter -obtained with the same D cells- which
enables the remainder corrected value to be obtained, the AND gates layer has been
inserted, all such gates conditioned by the value Rs[4] @ §. Since Rs{4] represents
the uncorrected value of the last remainder msb, and according to Fig. 4.11, the
value of divisor X passes through the AND gates only when this value has to be
added or subtracted for correction. In order to configure this row of cells to perform
subtraction in the appropriate cases, a circuit has been provided which implements
the logic conditions from Fig. 4.9, and Fig. 4.11, when the correction is expressed
by A = A — M. In this case, as well, in order to avoid the delay on a negation gate,
in the synthesis the cutput ¢[5] is used, i.e. 7@21"]" corresponding to the D cell that
generates the msb of the uncorrected remainder.

Referring, finally, to the performance and cost aspects of the non-restoring com-
binational divider from Fig. 4.13, we shall make a rough evaluation, considering the
delay d on a logic gate, whatever its function. Thus, if we take into account the oper-
ations which can be executed in parallel, but without appealing to improvements of
the pipeline arithmetic type, it resulis that the CLOCK period T has, for the general
case, to exceed the value of 2(n? + 2n + 2)d. In particular, for the case n = 3, the
condition T > 74d results. Otherwise, if the performance complexity is estimated
by means of the specified terms, we appreciate that we have O (r%). Similarly, if cost
is roughly estimated by means of the number of D cells, a complexity of (n* 4 n)
cels results.

4.3.2 Combinational Array Structure Based on Restoring Division

As mentioned before, we shall refer to the synthesis of a combinational array divider
which enables the restoring division of integer operands without sign for which the
overflow check and the divide-by-zero conditions have been tested by other means.
The general character being still maintained, we shall consider that the operands’
dimension is n == 4 bits,

We shall aim at a syathesis of the non-performing version of the restoring al-
gorithm, which, in sequential manner, provided, at each step, the execution of a
subtraction and the conservation of the partial remainder in order to avoid restoring
it through addition. We shall adequately appeal to a division cell whose construction
differs from that of Fig. 4.12, to enable the execution of the subtraction operation



4.3 Combinational Array Structares for Binary Division i6l

& L-1] Mi)

Qu “Z wwwwwwwwwwwwwww O R, 1)
| i
§ AN*D el R\l M[
E : ' + ajl
i OR AND Ny t o= - >
cfit1]e (C exon | L5 D+ |
é AND NOT AND g cfi+1]e ; i e~ cfi]
| < | Roofi M)
Evg)“* “““““““““““““““ F: )E-E) - J symbot
Rl M

Fig. 4.14 Detailed diagram at the gate level and the symbol of a divider cell for a restoring com-
binational array division structure

and the inhibition of any other operagion. Such a cell is presented in Fig. 4.14, which,
to distinguish it from that of Fig. 4.12, will be denoted by D*, but for which we shall
generally maintain the notations of the input and output variables. Mention should
be made that ¢fi] and ¢fi 4+ 1] no longer represent carries, but only borrows. Thus,
in this case, the equations homologous to (4.6) and (4.7) have the following forms:

Ry jpili]l = Ry ;i = & QUIIMI[i] @ cli]) 411
cff + 1] = Ry ;[ ~ [IMU] gr Ry jli — Ueli] or c[{1M[{] (412

Mention should be made that unlike the relation (4.6) in which the uncorrected
quotient bit 01} intervenes, in (4.11) the variable Q[/] intervenes representing a
bit of the final quotient.

In relation {(4.11), when @Qfj] =0, the current remainder becomes the next re-
mainder, and when Q| j]= 1, the divisor assumed to be in register M will be sub-
tracted from the current remainder, a case in which (4.11) together with (4.12) en-
sures the implementation of a binary subtracter.

Denoting the partial remainders in an ordered and unitary manner by taking over
most of the notations used in Fig. 4.12, mention should be made, however, that
certain modifications are required regarding Fig. 4.14. Thus, the range of integer
values for index [ is extended by one unit (it being, in case of Fig. 4,135, {0,4], except
for the first level, where it s {0,3]) similar to the extensions by one rank of registers
A and M and of the adder/subtracter from Fig. 4.7. Then, index j varies, in our case,
only within the range of integers {0.3], because any bit of the quotient determines,
according to {4.11), the operation executed in the given level, not in the next one,
as in Fig, 4.13. The change referring to j requires, in order to maintain the already
introduced conventions, a restriction of the value n, which, in this case, represents
the number of ranks diminished by one unit, i.e. for Fig. 4.15, n’ = 3, where n’
substitutes n in the notations from the previous section.

Besides the specifications regarding the notations, we also mention certain dif-
ferences of the structure from Fig. 4. 13 (adaptations according to [Haye98]) as com-



162 4 Functional Analysis and Synthesis of Binary Division Devices

AIM3] ALZIME2ZY A[1IM{I] A[0]M(0]

L .
n* "+ D* ™ De * [T ot
- <g<§‘ - - : e - N L.‘MD eve
Q3 R4l ~~5‘\'\;~$ ~«¥$\ e QU3
. ~ v oW
|- » - -
D* nx D* i Dt o et o e LEVEL D
Ridly %‘v I S ‘$w Ty
Dt | 1 pr pr | | Dt T D e Lervel 3
>
P Level 4

¢ ¢4Nl ¢‘W§l ﬁk.&% : l .

Af3] Af2] Al Af0}

Fig. 4.15 Restoring combinational division structure for 4-bit unsigned integers

pared to that from Fig. 4.13, some of which have already been presented regarding
the modifications of the indexes’ values. Moreover, in Fig. 4.15, the quotient and
remainder corrections are missing, the restoring algorithm not requiring any correc-
tion. Condition ¢[0} = Q1] is also missing from the structure given in Fig. 4.13,
it being substituted by ¢[0] = 0, because in Fig. 4.15 the subtraction is executed
directly and not through the addition of twe’s complement. Mention should also be
made that the quotient bits represent, as expected, the negated “sign” binary digits,
according to each logic fevel.

For instance, et us divide ¥ = 72p = 1001000; by X = 13;5 = 1101,. First of
all, the overfiow check condition shows that 72 < 13 - 15 4 12 == 207 where, by
adopting the representation on 4 bits, it results that values 15(1111), and 12 (12 <
X = 13) represent the largest possible ones for the quotient, and for the remainder
respectively, Figure 4.16 presents the binary configurations corresponding to the
various levels of the division cells D* of the structure from Fig. 4.15. The partial
remainders from the levels’ outputs are given before {marked by “Level {7} and after
(marked by “Level i””) the signal stabilization. There can be observed the borrows
generation (“Borrow” column) from the msb ranks of the partial remainders which
establish the values of the quotient bits (Q{ /). There can also be seen the right-shift,
at each level, of the divisor {marked by M). Finally, the results {the quotient and the
remainder) are obtained which lead to the satisfaction of the division identity.

In this case, as well, we make rough quantitative estimates as regards perfor-
mance and cost aspects, similar to those for the previous array structure, If the op-
erations which are executed in parallel are taken into account, and the hypothesis
according to which all the logic gates have the same delay, the CLOCK period T
results, which has to exceed the value (for the general case of the same number n
of the quotient and remainder ranks) of 2(n® -+ 3n — 1)d. In particular, for the case
n =4, the condition T > 544 resuits, Otherwise, if performance is estimated by



4.4  SRT Procedures for Binary Division i63

Fig. 4.16 Binary division
example for unsigned integers Qfil | Value | Borrow A Q
ustng a restoring
combinational array division 100 4 Level 1
structure 1101 € prres M
Q3] O ---14--|--1100 A fomvvemmmsfornnnes Level '
1001 L Level 2
0110 | I+ M2
Q[2]} 1<-F---04--1--0010 I o#pomos Level 2
010 10€ e Level 3
011 Dl -t M2*
Q[i]| O%-f-—--14-----1T1 ITIPTERS CRRRPRE Level 3'
10 L Level 4
ot FOL - feee M2
QO] le-f---Oa-joe-- 117/ R T 5 § (I A Level 4
Al - AY
R=7
T2=13-5+7

means of the already specified terms, we have a complexity which is comparable
with that obtained for the non-restoring structure.

On the other hand, if cost is estimated, in the same rough manner, by taking into
account the number of division cells B and by generalizing the configuration from
Fig. 4.15 for an n bit quotient and remainder, a synthesis results which requires
(n+ (n+ 1 — 1)) cells, i.e. a complexity of (n° +n — 1} cells.

4.4 SRT Procedures for Binary Division

4.4.1 Radix 2 SRT Procedure

As regards non-restoring division, at each step of the algorithm, a subtraction or
addition operation is executed, as applicable. Let us select the quotient digits from
aset {1, 1}, where L corresponds to a subtraction, and | corresponds to an addition,
Under these circumstances, and temporarily ignoring the problem of corrections as
regards fractional operands (according to Fig. 4.9), and taking into account the dif-
ferences pointed out in (4.5}, a recurrence relation of the type given by (4.3} can be
applied. Using this relation, the quotient obtained with digits from the set {1, T} has
to be transformed into a conventional value with digits belonging to the set {0, 1}.
Let us analyse how the quotient conversion is done from the signed digit form, ex-
pressed with digits ¢/ € {1, 1}, into the conventional form, expressed with binary
digits ¢; € {0, 1], when the latter is given by the two’s complement. Consequently,
we can see, af first, that between the digits g7 and g; there is the obvious relation
g} = 2q; — 1, and if quotient Q is assumed to be an integer, the signed digit form of



o4 4 Functional Analysis and Syathesis of Binary Division Devices

O may undergo the following transformations:

-1 a1 -1 fl- i
Q=q iy gl qias =2 ¢ =) Qg -2 =23 g2 -~ 2
() {=al} f==) ==}
(4.13)

If in (4.13) we take into account the identity Z?;{Ji 2 == 2% — 1, and rearrange
the terms, then the following will be obtained:

R 2
O = Zgizi—i—! e g e +g”m12” e qu_25+l a1
i=0 i=0
n—2
sl g D27 Y g2 (4.14)
i =0

If we take into account that 1 — ¢,—; = §,_1, as well as relation {3.5) about the
expression of an integer in two’s complement, (4.14) may be written in the following
form [Parh0(]:

Q=8 gn-2...4i...q1gpl (4.15)

According to (4.15), guotient {2 can be conventionally obtained by substituting,
first of all, each value of T by one of 0, and then by complementing the msb of Q,
and finally attaching a 1 bit to the right side of the Ish. Thus, the signed digit form of
the quotient being obtained, the conversion to the conventional form will be simple.

On the other hand, an alternative to nop-restoring division is the algorithm
where for the O quotient digits only shifts (without any other operation} are ex-
ccuted, a procedure known as “the non-restoring division with shifting over (s”
[HePa(3, Parh00, ErL.a04]. The method is based on the observation that when the
values of 2R; belong to the interval [— X, +X) {the value (—X) corresponds to the
next partial remainder for which R, = (), by adding or subtracting X, the sign
of the next partial remainder changes anyway. In this case, for the curreat digit of
the quotient (g,..1-;. from relation (4.3)), we can choose value 0, a situation which
requires only the shift of the partial remainder, without executing any other oper-
ation. Otherwise, if 0 < 2R; < 2X, then gy.1—; = I and R4y := 2R, — X, sini-
barly, if (—2X) <2R; <0, then q— | = 1 and Ry =2R; + X, and, finally, if
{(—X) <2R; < {+X), then gu-1.; = 0, and no operation (NOP) will be executed.
The Robertson diagram for the sitnation when the quotient is represented in signed-
digit form is given in Fig. 4.17 {Parh00], where can be observed the overlapping
intervals as regards the choosing of the guotient digits, making this process a redun-
dant one. Thus, for a certain overlapping region, it does not matter which digit is
chosen for the quotient (? or {3, and O or 1). This fact is a favorable one, because
an "error” made in choosing is subsequently corrected, it being, therefore, tolerated
{KoMu(6]. Consequently, the comparisons provided by the rules for the selection
of the quotient digits may be approximated, their exact, precise execution not being
necessary. The previously mentioned tolerance regarding the choice of the quotient



4.4 SRT Procedures for Binary Division i65

Fig. 4.17 Robertson diagram
for the noge-restoring division
with a signed-digit quotient

» 2R,
Fig. 4.18 Roberison diagram
for the non-restoring division
with shifting over 0s

»2R

digit urges the priority selection of digit 0 for the overlapped intervals, because,
in this case, as shown before, it is not necessary to execute any arithmetic opera-
tion, except the shift. Due to this selection criterion, the above-described procedure
may be changed, namely, if (—X) <2R; < (+X), then, in the same way as before,
gn—1-i = O and NOP, but the setting of g,..;; = 1 and the subsequent subtrac-
tion Ry = 2R; — X take place only when X < 2R; < 2X, while the setting of
Gpolmi = T and the subsequent addition Ry 1= 2R; + X take place only when
{(—2X) < 2R; < {(—X). The new situation correspond to the pon-restoring division
with shifting over Us procedure whose appropriately modified Robertson diagram is
presented in Fig. 4.18 [Parh00}, where changes that have been made as compared to
the diagram corresponding to the conventional non-restoring procedure (Fig. 4.5b)
can clearly be observed.

As has been observed in the above-presented method, certain steps consist only
of shifts, a fact which can be employed in an asyachronous design option, which
may take advantage of the fact that the adder is only selectively activated. Taking
advantage of the steps in which the adder is not involved (concerning both addition
and subtraction), an implementation version characterized by an average division
speed superior to that of the non-restoring method can be obtained. There is, how-
ever, & major problem, namely to find out whether the value of the shifted partial
remainder does or does not belong to the interval [~ X, 4+ X). A possible solution
consists in making trial subtractions, but the time required by these operations may



166 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.19 Robertson diagram AR,
correspording to the quotient
digit setection for the SRT

e P (N N
division o

~2‘X§ -1 ~X§/*‘z E : » 2R

LA

4,7t A

exceed the time saved by avoiding the arithmetic operations when 2R; € [ X, +X).
Consequently another solution is needed, and it has been offered, independently, by
D. Sweeney, J.E. Robertson and K.D. Tocher, in honour of whom the resuitant al-
gorithm has been called SRT fErLa04, Parh001.

The SRT procedure will be presented, the general character being stiif main-
tained, by adopting certain hypotheses. Thus, we consider the operands to be subuni-
tary fractional numbers, because the treatment of integer operands may be reduced
to that which is specific for {ractions, by applying appropriate scaling {Omon94].
Conseguently, ¥ would belong to the interval [—1, < 1), but, to avoid quotient over-
flow, we proceed by restricting the value range for ¥, te. ¥ € [—X, +X). Moreover,
divisor X will be considered a normalized fractional number, according to the model
of floating point operation, i.e. when taking into account its absolute value its msb
is 1, which implies [ X} = 1/2. In order to fulfill this hypothesis, an initial shift of X
might be necessary, which requires additional shifts, namely, an initial shift of ¥, as
weil as the final, recurrent, shift of R.

These stipulations being made, we shall reconsider now the problem of precise
comparisons, on the entire length of the words, between 2R; and X, and (—X).
But, due to the overlapping shown in the Robertson diagram from Fig. 4.17, precise
comparisons are not strictly required, and thus, instead of making comparisons with
reference to X and (— X} they can be made regarding other values, which we call
X* and (—X"). Since [ X} is normalized, having the minimum value (4+1/2), the
SRT algorithm, in standard form {Korn03, Parh00], assumes the value X* = +1/2.
Imitially, the partial remainder represented by ¥, which has been supposed to belong
to the value range [~ X, - X ), may not belong to the interval {—1/2, 41/2), which
requires the shift of ¥ by one position to the right. To compensate this initial shift,
finally, the doubling of the quotient and the remainder will be required.

As mentioned before, the algorithim is based on the fact that, when (+1/2) <
2R; < +1, we have ¢p.j~; = | and Riy; = 2R, — X, similarly, when (1) <
2R; < (—1/2), we have g1 =1 and Riy1 =2R; + X, and when (~1/2) <
2R; < {+1/2), we have gy..i.; = 0 and R4y = 2R; (NOP). Figure 4.19 {Parh(00]
presents the Robertson diagram corresponding to the new selection rules. 1t can be
observed that over the dependences of the quotient digits from Fig. 4.18, marked
with a broken line in Fig. 4.19, are superposed the variations corresponding to



4.4  SRT Procedures for Binary Division i67

Fig. 4.20 Correspondence AQ
between the A.Q register M 2R,
contents and the values on the 01 |51 nn :: "
shifted partial remainders axis
for the SRT procedure do=
i
0t 0.0 ------ et ek
007 1.1 ) 2
00 /0.0 - 00 2 40
11 ]L.1
i
11 10.6 - Ny
1011
o™ 1
19]0.6 o -1

the new procedure, marked with a solid line. Once the initial partial remainder ¥
has been adjusted in such a way (through rightshift) as to belong to the interval
[~1/2,+1/2), all the following partial remainders can be maintained within the
value range [—1/2, +1/2), which is delimited by the rectangle traced with a solid
line in Fig 4.19.

Reverting to the approach introduced for the sequential device from Fig. 4.7, the
remainder R; is stored in the double register A.Q, its dimension being restricted by
one bit at each step, so that the final remainder takes up only register A. Thus, in
Fig. 4.20 are represented the contents corresponding to the double register A.Q and
the axis of shifted partial remainders (2R;) are represented by the marking of the
significand values (negatives values are represented in two's complement).

There are also delimited the value intervals associated with the current bit of
the quotient, and which can be identified from the two most significant bits of A,
the msbh corresponding to the sign. Thus, when the given doublet is 01, we have
gp—-1—i = +, and when it is 10, we have ¢p1-; = 1: stmilarly, if the two bits are
identical (00 or 11}, we have ¢y1..; = 0.

Figure 4.21 presents, in the adopted hardware description language, and by us-
ing the same structure elements from Fig. 4.7, the code sequence corresponding (o
the description of one of the possible implementations, in sequential version, of the
SRT algorithm. We shall only comment upon the differences as compared to what
has already been presented regarding the conventional non-restoring algorithm. As
can be seen from the very beginning, a companion counter (COUNTC) of the well-
known iteration counter {COUNT) exists. The presence of COUNTC is required by



168 4 Functional Analysis and Syathesis of Binary Division Devices

divider3
declare register A[7:0], QI7:0}, MI7:0}, COUNT[3:0], COUNTC[2:0}
declare bus INBUS[7:0], OUTBUS{7.0];
BEGIN: COUNT =0, COUNTC:=0,
INPUT: A[7:0]:=INBUS{7:0}
Q[7:0):=INBUS{T:0}
Mi7:0%:=INBUS[7:0];
NORMALIZE: if M{7]=1 then go fo TESTI,
Mi7:11=ME6:0}, A.Q[7:1]:=A[6:01.Q, COUNTC=COUNTC+1, go 1o NORMALIZE;
TEST!: if (A{7] ex-nor Af6])=1 then
AQ[7 11=A[6:01.Q, COUNT:=COUNT+1, Q*[0]:=0, go.to TEST;
ifA[7}=1 then
begin )
AQ[T1]=A[6:0].Q, COUNT:=COUNT+1, Q*[0]:=1;
A=pA+M, go to TESTZ;
end
glsg
begin
AQ[T1]=A[6:0].Q, COUNT:=COUNT+1, Q*[0]:=1;
A=A
end
TEST2: if COUNTS%1 then go to TESTI,
CORRECTION: if Aj7}+1 then A=A+M, Q:=Q-0.00..01;
TESTS: if COUNTC#0 then A[6:01:=A[T: 1], COUNTC:=COUNTC-1, go to TEST3,
OUTPUT: OUTBUS:=Q;
QUTBUS =A;
END:

Fig. 4.21 Description of the SRT division in one of the possible seguential implementation ver-
sions

the normalization process of divisor X, because the number of bits by which X and ¥
are shifted fo the left has to be counted. This is the task of COUNTC, which counts
the leading Us eliminated during the lefishift process, ustil M[7] becomes 1. The
content of COUNTC is needed at the end of the procedure, because the last remain-
der has to be shifted by the same number of bits, this time to the right, an operation
indicated by label TEST3. Thus, COUNTC shall be provided with capacity both to
increment and decrement of its contents, and register A shall be provided with bidi-
rectional shifting capacity. Within the normalization operation, register Q {together
with A) needs to be able to be lefi-shifted (in a similar way as in the device from
Fig. 4.7}, but register M, whose contents have been fixed in the previous approaches,
shall also have the left-shifting capacity.

Before commenting upon the algorithin proper. which begins at TEST{, mention
should be made that in Fig. 4.21 no reference is made regarding the overflow or
divide-by-0 condition checking, which are supposed to be previously solved through
adequate software routines. The description of the procedure is precisely based on
Fig. 4.20. Thus, when the most significant two bits from A are identical, which
is tested through the coincidence function of A{7] and A[6], the current bit of the
quotient shall be set to .

We also add that, if the two bits A[7] and A{6] are different, the current bit of the
quotient will be either 1 or E, but the three values (0. 1 or T) cannot be stored in a
flip-flop, which is why in Fig. 4.21 we have set up a fictitious rank Q[0], denoted by



4.4  SRT Procedures for Binary Division 169

Q*[0]. The conversion from the signed digit form into the conventional binary one
cannot be made by applying the solution based on the relation {4.15), because, now,
instead of two digits with sign (1, 1), we have three (0,1, ). A possibie solution to
this problem consists in using two quotient Q registers where 1 bits are loaded in
one of the registers in the positions corresponding to their occurrence in the quotient,
while in the other register 1 bits corresponding to the occurrence in the quotient of
1 digits are loaded. Finally, after all the quotient bits have been determined, but be-
fore the result is corrected, indicated by the CORRECTION statement, the binary
version of guotient ¢ will be obtained by subtracting the contents of the two reg-
isters where the positive and negative digits have been stored. Thus, according to
this solution for signed digit-binary conversion, we have a supplementary activation
of the adder/subtracter, which increases the total latency of the execution. This sit-
uation can be avoided by appealing to an algorithm which performs the conversion
in a serial manner, as the quotient digits are generated, the final subtraction opera-
tion being unnecessary. This algorithm has been suggestively called an “on-the-fly”
conversion algorithm [ErLa0G4], and we shall discuss it later. Finally, as regards the
precedure proper, mention should be made that the distinction between the two dou-
blets from the most significant two ranks of A, by means of which there is chosen
the current digit of the quotient among gp1—; = | and ¢peiy = T, can be made
using the sign bit A[7] of the partial remainder.

We also refer to the statement labeled CORRECTION, which has to be appealed
when the last remainder is negative, i.e. having a sign opposed to that of the div-
idend, a step also met with in the conveniional non-restoring procedure (Fig. 4.6).
But now, besides the supplementary addition of X, the compensatory adjustment of
the quotient value Q s also provided, by subtracting from it a binary unit (in the Isb
position). In a manner similar to the correction recommended in the algorithm from
Fig. 49, we have ¥ = X{@ — 1)+ (R + X).

We shall refer below to the on-the-fly conversion problem [ErLa04]. Thus, if we
consider a subunitary fractional quotient, and maintain the conventional notation of
the indexes associated with its digits, for the signed digit vector G{j — 1) made up
of the most significant {j — 1) bits of (), except the sign bit, there resulis:

-1
QU = D=gr 2 hgr 224l 27 =g 27 @)

i=1

where ¢ _, , represents the ith digit with sign of the quotient, the counting begin-
ning from the left side with |,
Let us consider now the next jth digit with sign q,’;‘wimj, and let us add it to
Q(j — 1), then, according to its value, the following will be obtained:
. ¥ —j - _
oGy =] SY T D F G 2 cy Bae =0l
Q(JI = 1)y-2"Y 42~ Eq‘vrmlmji)z / ﬁq"mlm.j =1

where the bars || signify the abselute value.



170 4 Functional Analysis and Synthesis of Binary Division Devices

But in (4.17), the subtraction Q(j — 1} — 2~U~1 gccurs, which may require
the propagation of a borrow, it being, consequently, slow. This operation can be
avoided by updating, for each digit of the quotient, a value representing the differ-
ence Qp(j — 1) = Q(j — 1) —27Y~Y an update which is made by taking into
account (4.17) and the potential values of qulmj, by means of the following oper-
atons:

Opljy=Q(j)~277

QD(JW1}+(} WEQ:wlw‘ji)zi‘l ﬁqzulw;x}le .
Starting from (4.17), the signed digit-binary conversion implics the execution of
the computations given by:

j o )y gt 27 itgt ., =00rl
0(j) = QU ) ) H - . y .".q'jj"i"”f ——_— (4.19)
QD{J“])%“{z““Ignm;ij)z h Hgnm;w.jxi
But the additions from (4.19) represent only concatenations, so that the time
costly carry and borrow propagations are avoided. In rerms of concatenations, the
conversion algorithin is as follows:

) QG ~Dugy i) gy ., =0orl
- , iT2 4.2
o) {(Qbu—i),(z—|q,fwgwl,-;)) ifgr =1 (420
and
. (O - 1)»(‘],?,‘_;_j = 1)) ifQ’,::_l_j = |
= oo - 4.21
Qo) {(Qo(jm1),(1"~Eq,’§wlm‘f§)) itgl . =Tero @3

We also assume the initial conditions Q{0) = Qp(0) = O for a positive guo-
tient. Figure 4.22 exemplifies the on-the-fly conversion for the particular case of
the signed-digit quotient Q% = OL1TOTE0 = 21 4 273 o 273 23 20 =
01001 £10;.

Regarding the conversion implementation, it requires two registers, which will
be denoted Q and Qp. provided with lefishift capacity (Fig. 4.23), different from
register () from Fig. 4.21. In a possible solation, we suppose that the statements of
begin Q*{01 =0, 1 or 1 type from Fig. 4.21 exclusively determine the value of one
of the flag flip-flops A for 0, B for 1, and C for 1 (a fact suggested by the controls
on the asynchronous inputs of set and reset of the three flags, Fig. 4.23). Each of the
registers J and Qp has a special multiplexing circuit attached to it which enables the
loading (as applicable) of the contents of the two registers shifted to the left by one
rank. Without loss of generality, the registers have been considered of eight ranks
each, in the Isb positions the binary values which correspond to relations (4.19) and
(4.18) being loaded. Thus, according to (4.19), in Q[0] is introduced q;fulmj if this



4.4 SRT Procedures for Binary Division 71

Fig. 4.22 Quotient

conversien example from J 9o Q4) O5(D
stgned-digit form into the
binary conventional form by g 0 0
the on-the-fly procedure
1 i 0.1 0.0
2 1 0.11 0.10
3 H 0.101 0.100
4 0 4.1010 0.1001
5 i 0.10011 010010
6 i 0.100111 0.100110
7 4] 0.1001110 0.1001101

bitisOor i, and (2 — l‘]:mim.ig)’ if q,’fml_mj =1, when Q[0} is setto 2 — 1] = 1.
Because when qg‘f i_; = 0, Q[0} must be set to logical 0, and when qg‘f i istor 1,
Q[0] must be set to at logical 1, it results that in the selection of a signed digit, the
given input of the Ish rank of register Q is controlled by Q{0]=B or C. Similarly,
in Qpl0] there is introduced (‘L’fmiwj — 1y if q:wiw‘/ = I, rank Qpl0] being set to
1 — 1 =0, the same way as in Qpl0] there is introduced value (1 — lq,ffiij), if
gy is T or 0, rank Qp[0] being setto | —0 =1, and on | — |T| = 0. Taking
into account all these situations, for the Ish rank input of register Qp, there results
Qpid] = A.

As regards the validations of the parallel loadings in the two registers, with refer-
ence to €, and based on relations (4.19) and {4.20), the contents of this register are
shifted to the left when q;;‘__w isGor 1, namely when (A or B = 1), as it is loaded
with the shifted contents from register Qp when g, |, = 1, i.e. when the variable
C = 1 is set. Similarly, in Qp, based on relations (4.18) and (4.21), the shifted con-
tents from register Q is loaded when g, _, _ i= 1, i.e. when variable B = | is set, the

same way as the shifted contents from the same register Qp is loaded when G i ;

is 1 or 0, Le. when (A or C=1).

The diagram from Fig. 4.23 can easily be combined with the description from
Fig. 4.21, resulting in a high-performance implementation which implies, for the
quotient conversion, a worst delay of three logic gates at the most, as well as the
set up of two flip-flops, at each digit of the quotient, avoiding the final subftraction
whose borrow propagation may consistently degrade the performance of the entire
operation.

These statements being made, let us consider the example from Fig. 4.24 in
which we refer to the division of the binary equivalents corresponding to dividend
Y = 53519 by divisor X = 79, an operation after which quotient @ = 19 and
remainder R = 3 result. Mention should be made that taking into account the re-
strictive conditions regarding the operands, we have ¥ = 535/2'% and X = 7/27, so
that the procedure stagts with ¥ & [(~F/2), (+-1/2)) and X € [{(4+1/2), (1)), The



172 4 Functional Analysis and Synthesis of Binary Division Devices

Qls] Qu[6] Q5] Qof3] Q{0 Qof0] OR
; “
U
@
AN IAND AN
OR g
¥
5
QA7) Q6] Qregxster Qi) A
¢ R
« Shift t@i
1
1 OR
Qf6] Qol6l Q5] Qei5) Q0] Qo[ v
f S
(_@ B(1)
AN OR 1;
&
T()R
4
QS
Qn[7} Qof6) Qnm:giste'r Qn[1} w{o} o
« Shift

)
i

o

OR

Fig. 4.23 Bilock diagram of the on-the-fiy quotieat conversion implementation from the
signed-digit form into the birary cosventional form

assurance of the initial conditions has implied the left-shift of the three registers A.Q
and M by 4 bits, and, finally, the right-shift of the remainder from register A by the
same number of bits.

Before analyzing the specific problems of the SRT radix 4 procedure, end our
examination of the SRT radix 2 method by comparing it with the common version
of the non-restoring method (Fig. 4.6 and Fig. 4.7), pointing out the following dif-
ferences:

{2} Since the decision regarding the value of the quotient bit s taken according to
the sign of the partial remainder, in the non-restoring method, registers A, M
and, consequently the adder/subtracter, contain one more rank as compared to
the same structural elements from the device which implements the SRT radix
2 procedure.

(b) The value of the current bit of the quotient is chosen, in the non-restoring pro-
cedure, as a function of the value of one bit {the sign bit), while in the SRT radix
2 procedure it is necessary to investigate the value of the most significant two
bits corresponding to the partial remainders.

{c} As regards the final quotient, in the non-restoring procedure, it results directly,
by chaining the values that have resulted by means of the signs of the partial re-



4.4  SRT Procedures for Binary Division i73

Fig. 4.24 SRT binary
division example A Q M

BBBZ0010 | 00010111 | BEBE1110

) — . —
001060001 | 01110000 | 11100000
M /

gj 000010 | 11100000
10000101 [ 1100006

10100101

01001011 | 10000817
+11100000 |
00161011

o]

01910111 000001 10

10101110 | 00001101
-11160000 |
11001110

10011100 |00f11010
g

00111000 | a@n10107

+11100000 |
00011000
Lo}

00118889 (1701070
oo i

(00008011 |[007100140
.._..“2‘3“16* 52?
535 7 18 . 3 _ 133 3

216 - 27’ 2? + 216 =

ot + 57

mainders, while in the SRT radix 2 procedure extra work is necessary in the
conversion of the signed digit form into the conventional binary one, either
in “on-the-fly” manner, or by appealing to a supplementary activation of the
adder/subtracter.

(d) Supposing that an asynchronous design style is considered [Poli90] which takes
advantage, as regards time, of the adder/subtracter non-activation, the SRT radix
2 procedure is the more rapid than the non-restoring one, the more the particular
binary configurations of the operands generate a large number of 0 bits for the
quotient.

4.4.2 Radix 4 SRT Procedure

In order to arrive af the problems that are specific to the SRT radix 4 procedure, we
shall first appeal t0 two elements. The first consists of the diagram known as the P-
D plot {ErLa04, Parh03, Kore93], and sometimes as the PR-D plot {Omon94]. This
represents a graphical means of investigating the process of the selection of quotient
digits, being made up of a rectangular system of axes with divisor D associated with



174 4 Functional Analysis and Synthesis of Binary Division Devices

the abscissa, and the shifted partial remainder P associated with the ordinate. The
P-D plot [Korn(5} is useful when, in the choice of the current quotient bit g1,
there are alternative values (as there exist, for instance, in Fig. 4.17) which means
that the option for a certain value does not require full precision comparisons, but
only low precision ones.

Thus, let us suppose that we want to perform the division operation in a pumber
system with the general radix r, a case in which, by adapting (4.3), the following
recurrence relation will be obtained:

Riyy=rRi = qn-y-i X (4.22)

On the other hand, as regards the quotient digits, when signed digits have been
used in the conventional non-restoring method with r = 2, we had ¢,,..1; = | when
(—2X) <2R; <0,and gp.i; = | when 0 €2R; < 2X, which, by extension, when
the radix is 7, become:

Fe1 ifrR e[(r—2)X,rX)

ifrR; € [X,3X)
ifrR € [0,2X)
ifFR; € [~2X,0)
ifrR € [~3X, ~X)

(4.23)

Gr—1-i =

Yo | e B2

r—1 rRe[—rX, —(r —21X)

In this way, at each step, the arithmetic operation is either a subtraction, or an
addition of the r multiples depending on whether the partial remainder is positive or
negative.

If we denote by ¢, the absolute maximum value which may be taken by the
quotient digit, then we have ((r — 1)/2) < g < (r — 1}, and if 0 is added to the
set of guotient digits, as is needed tor the SRT procedure, then (4.23) changes into
[Erla04}:

G R € Hgimar = DX, (Gunax + 1X)
Gy — | :‘,eri € H{gmax — X, Grnax X}

iFrR €1X,3X)

i rR; €10,2X)

rR el—X, X) (4.24)
ifrR; €[—2X,0)

i rR € 13X, —X)

Grotmi =

Bl e

Frax — | imerr' € [ ~Gmax X, —(Gmax — 22 X)
Gmax 7R € b gmar + DX, —{gmax — 11 X)




4.4  SRT Procedures for Binary Division 175

ot

Fig. 4.25 Roberison diagram for a certain radix binary division

The Robertson diagram for (4.24) is presented in Fig. 4.25 [Parh00], where the
overlapping zones corresponding to the guotient digits can be observed, giving it
the already-mentioned redundant character. If, within this context, we define the
redundancy factor p by p = guuy/(r — 1) [ErLa04], then {1/2) < p <1, and the
restriction —pX < R4y < pX will act on the next partial remainder. Using this
restriction, as well as (4.22), the range of variation {olerated for r R; will be obtained,
namely: {(~p + ¢,-1-)X 2rR, <{p+ gn_1-1}X.

These remarks being made, the P-D plot is used to present graphically the varia-
tion zones for r R;, with g,_;_; increasing from unit to unit from the value (~¢uey)
O G-

For instance, fet us consider the SRT radix 4 algorithm of minimum redundancy,
i.e. the algorithm to which corresponds ¢, = 2, having associated the Robertson
diagran from Fig. 4.26, and the P-D plot from Fig. 4.27 {ErLa04, HePa03, Parh00].
Thus, on the basis of what has been presented above, for Fig. 4.26, we have p = 2/3,
and then:

2 AR €[(-3+ X (+F+DX)
IOH4R el(=3+ DX (+5+DX)

Gu-tei =40 4R €[(~3 + DX, (+5F+0X) (4.25)
U 4R el(—3+ DX (+5 +DX)

2 4R €[(-F+DX (54 DX)

Following the computations from (4.25), the range of variation of the remain-
ders R; corresponding to the various values of the digits of quotient ¢,—; _; will be
obtained:

2 iR e[+5.+3)
LR e+ +3)
Gu-t-i =40 HRe[-F,+F) (4.26)
U ifRel~3, )
2 fRe[-H )



176 4 Functional Analysis and Syathesis of Binary Division Devices

Rw = 4Ra' - qn-IuPX
A

'
'

Fig. 4.26 Robertson diagram for the SRT radix-4 division of minimum redundancy

The lines corresponding to the dependences Ry = f(&;) (in the abscissa the
representation of remainder R; has been preferred, and not of the value 4R;, as
required by the genuine Robertson diagram) for each possible digit of the guotient,
with the variation intervals specified by (4.26), can be observed in Fig. 4.26. In
the lower part of the figure, are highlighted (through hachure) the intervals of the
remainder R;, to which two values for the quotient digit correspond.



4.4  SRT Procedures for Binary Division E77

> X(D)

Fig. 4.27 P-D plot for the SRT radix-4 division of minimum redundancy

On the other hand, Fig. 4.27 presents the P-D plot modified to some exient,
namely, on the P axis appears the partial remainder R; in place of the shifted partial
remainder 4R;, thus having, with the notations used, the R; — X plot for the same
case SRT radix 4 with g4, = 2. The lines which delimit the zones of the remainder
values corresponding to the possible digits of the quotient are marked with “max”
(for the maximum values), and with "min” {for the minimum values). The overlap-
ping zones are also marked (with hatched areas) to which correspond two values
of the quotient digits. As regards these zones, by means of P-D plot a certain digit
of the guotient can be sefected. Moreover, this selection process does not require
exact values for the remainders (whose computations require long latencies} and for
the divisor, but only truncated values. Consequently, a second important problem
consists of determining a sufficient number of bits which have to be exact for the
remainders and for the divisor. Thus, we appeal o a staircase selection function,
which is in principle simifar o that in Fig. 4.28 [ErLa04, LaAn03, Parh00]. In this
figure, divisor X is divided (following normalization) into intervals [X;, X; 3], with



178 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.28 Staircase selection

v "y

function representation
s -1
1 (o-1) e
pi4) L
(2.3
1)
PO ‘
i i ‘ ‘ ‘ LD
2 @
B aammmee s 2

Xo=1/2and X;| = X; - 2%, so that an interval is represented by the most sig-
nificant § fractional hits of X. Within each interval, the delimitation between the
values of gy-1.; and (gy..1~; — 1) for the quotient digit is made using p(i) con-
stants. They are equal to the values of the truncated remainders at the integer bits
to which the most significant 7 fractional bits are added, and they correspond to
one interval [X;, X;1;) {as is the case for p{Q), p(1) or p{4)) or to several intervals
{as is the case for p(2, 3), to two intervals). Under the circumstances, to satisfy the
containment and continuity conditions the selection of any digit g, _; > 0 of the
quotient shall satisfy the following correlation [ErLa04]:

(‘]i‘!fifi)mm(xi + 2”3) =Py =gn-1-i = D (X0 (4.27)

Similarly, the selection of any digit g,-.1-; <0 of the quotient shall satisfy the
following correlation:

(gt hmim X)) S pU) £ Gn-1i — }-)mux(xi + 2ma) (4.28)

Both relations, (4.27) and {4.28), have to be fulfilled for all i values.

The design problem consists of finding the selection constants p(i) and the divi-
sion intervals so that 7 and § will result with minimum values. Unfortunately, as can
be graphically observed, at the reduction of 8, 7 increases, and vice versa. A possi-
ble optimization criterion could be the minimization of the sum (7 4 §). Anyway,
if the sign bit is also taken into account, the integer part of the partial remainders
generally requires (1 + log,(pr X)) bits, i.e. there is an upper bound, because p < 1
and X € [—1, 1), which is equal to (1 + log, r) bits. In cur particular case (7 = 4),



4.4 SRT Procedures for Binary Division 179

this implies the value 3 for the maximum number of bits corresponding to the rep-
resentation of the integer part of the partial remainders [ErLa041.

On the other hand, in order to determine the minimum number & of bits of the
divisor, which is needed in the selection process, we observe that for two adjacent
digits of the quotient, the values of the partial remainders corresponding fo these
digits are required to display an overlapping region. Thus, starting from (4.27), fora
digit g i = 0 {(case gy..y; <0 supports a similar approach starting from (4.28))
the overlapping region is generally guaranteed by the following condition:

{gn—1—i = Dmar(X;) — (C[n—i—i)mm(xi + 2U6) =0 (4.29;

But, if we take into account the range of variation tolerated for r R;, and previ-
ously secn, namely (~p + gy1-3X <rR; <{p + gy~ X, relation (4.29) be-
comes:

(@n-ti = L+ 0 Xi = (-1 = pHX: +27°) 20 (4.30)
Following certain obvious rearrangements of (4.30), we have:

(2o~ DXi 2 (gn1- — p)2~° (4.31)

Condition {4.31) has to be fulfilled for ali intervals of divisor X and for all
gu—1—i = gu—i—; digits of the quotient, the worst case being when the interval
has the smallest value and g,..;.; has the largest value. Since X > (1/2) and
Gre1—i = Gmax. PUL A1SO 0 = e/ (F — 1), (4.31) becomes:

27 < 2p -1 _ 20 -1
Hmar — P) 20(r - 2)

But the use of the minimum value, given by {4.32), for §, may lead to large
numbers for &, i.e. many bits required for the shifted remainder. Limitation (4.32)
is usecful, because it reduces the number of alternatives to be taken info account,
but when choosing the values for § and 7 a decisive factor is represented by the
technological peculiarities of the implementation [ErLa04].

Reverting to our case (¥ = 4, gmay = 2, and consequently p = 2/3), (4.32) gives
us the required limitation on 4, L.e.

2p—1 1

e > §523 (4.33)
z(q.wmx ~ ) 8

(4.32)

According to (4.33), a truncated divisor of at feast three bits is needed. But, in
this case, a large value for r resuits. For instance, for ¢g,—1—; = 2, corresponding
to the divisor part between 4/8 and 5/8, and taking into account (4.29) and (4.30),
there results:

234 5
(Q'nwiwi o i}mu.x’(Xi) = (_q.vzw}wi -1+ P}Xi = (1 + "é‘) 'é' = '6 (434)

- _ 2\5 5
(%wlwi}nriu(xi 42 Ei) = ((Jriwlwi - P}(Xf +2 5) = (2 - %“) g = ’6 (4.353



180 4 Functional Analysis and Syathesis of Binary Division Devices

Otherwise, (4.34) and (4.353) show the presence of only one selection constant,
which requires total precision, without truncation. This is the reason why we cannot
work with the minimum value of 3 bits, but this number is increased to 4. Knowing
now that 8 = 4, let us determine the minimum value of 7, namely fo determine those
p{i) constants which satisty, for all ¢,_;_; and X, the conditions (4.27) and (4.28),
and, moreover, have the minimum number of bits.

Taking into account ¢,—|—; = 2, 1.e. the overlapping zone between {gn—1—; Jmin =
2imin a0d (g1 — Dmar = lmay (Fig. 4.27), and because § =4, Xp=8/16, X1 =
9/16,.... X7 = 15/16, condition (4.27) requires value restrictions which will be
estimated (with p = 2/3) for each interval {X;, X; + 2% according to the following
model:

L & 9 G 8 .
o for{Xp, X1} = o6/ we have 2, T < p(0) < Ly I3 ie.

2 5
(2——)'{'6‘§P(0)_( ")""“O “_P(0}<"
3
1

6
and we choose p(0) = - = 3 (4.36)

Executing computations similar to (4.36) for all [X;, X; + 278y intervals, the
following will be obtained:

e for 9 10) wehavei§p(})§i’r—5—andwechoose p(l)mz;
16 16 6 48 8
» for ““"1“9! -1—3) we have —l—i <p(2)< 2—5- and we choose p(2) =1 = §;
16 16 12 24 8
» for _‘%‘l! ’1”%) we have I < p(3) < > and we choose p(3) = | = §;
L1616 48 8
s for —i%, ;—z), we have % < p{d) < g and we choose p(4) = —gé; (4.37)
s for i 13, E), we have z < p3)r < éi and we choose p(5) = i T et
167 16 6" 48 4
e for l—% j—i) we have j < p{6) < :5—%— and we choose p(6) = j B
1616 47 24 4
e for 15 16) we have f <p(h =< -22 and we choose p(7) = g = -%
16 16 3 16 2 8

From (4.36) and (4.37), it results that p{i) constant values can be found with 3
fractional bits at the most {for p(1) = 7/8). The P-D plot diagram corresponding to
the analyzed overlapping zone can be followed in Fig. 4.29 [ErLa04]. Similar inves-
tigations have to be made for the other overlapping zones ({Oyar. Linin ), (T mezes Omin)



4.4 SRT Procedures for Binary Division i81

Pyl =

PR ! |
I 1
| |
PPt i -
|
A_z i |
=g ! - -
-] . | 1
6 | | I
o A r
s A L
3 é | F | ‘ f ‘
H ] I I | 1 |
L S XD
e 7 - > X0/
2 i6 16 16 16 16 16 16

Fig. 4.29 P-D plot corresponding fo the overlapping region between (¢ — Diar = L and

Cmin = Lnin

and {Emm, T,m-n)}, as well, (Fig. 4.27). The resulis of these analyses lead to the same
value 3 for the maximum number of fractional bits required for the representation of
the partial remainders [ErL.a04, HePa03]. If these 3 bits are concatenated with the
3 bits corresponding to the integer part, it follows that it is sufficient to determine
the most significant 7 = 6 bits of the partial remainders, which, together with the
most significant § = 4 bits of the divisor, assure the correct execution of the quotient
bits selection process.

The same result can be obtained by applying reasoning based on trial and error.
Thus, let us suppose that, together with § = 4, 7 = 5 would be sufficient. Under the
circumstances, let us consider the case of the shifted partial remainder 4R; . Taking
into account these conditions, we will consider the particular case when the shifted
partial remainder 4 R; has its value included in the interval [{3/4), (4/4)), thus hav-
ing, in binary representation, the form 0.0011... (the msb being assigned to the
sign), and when the divisor X has a value in the interval {(9/16), (10/16)}, thus
having, in binary representation, the form 0.1001 ... (the sign is ignored because
the divisor is considered to be non-negative). By determining the unfavorable range
of variation of (R;/ X", the lower bound of the range is (0.0011/0.1010) == (3/10)
and the upper bound is (0.100/0.1001} = (4/9). Returning to Fig. 4.26 and de-
tailing the overlapping region corresponding to the digits 1 (for the upper bound
(R;/ X}y =(5/12)) and 2 {for the lower bound (R;/ X) = (1 /3}), the intervals spec-
ified in Fig. 4.30 are obtained. In the figure are shown also the range of variation
for {(R;/ X)*, represented by the interval ((3/10). (4/9)), as well as the range of
variation for {R;/ X} corresponding to the chosen constant, according to (4.37), for



182 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.30 Significant values LG,
resulting from the analysis of o .
the overlapping region of the P R =
quotient digits 1 and 2 g, 1= ~§
%2 =% =
L A A A g R,
6 410 3 20 18 i2 92 X

a divisor in the iaterval {(9/16), (10/16)), namely p(1) = (7/8). From Fig. 430
it results that the range of variation ((7/20), (7/18)) corresponding to the constant
p(1) = (7/8) is entirely covered by the overlapping region of the digits | and 2,
whereas the hatched regions of the (R;/ X" interval exceed the overlapping area. It
can be concluded that the selection process for the quotient bits, based on fruncation
to i =5 bits of the partial remainders and to § = 4 bits of the divisor, does not
benefit redundancy, being insufficiently precise.

By extending the truncation of the partial remainders to 7 = 6 bits, as previ-
ously presented, together with the § = 4 precision bits of the divisor, by means
of computer-assisted investigation, the data presented in the table of Fig. 4.31
[HePa03} are obtained. These have been obtained through computer-aided inves-
tigation and comprise, for the divisor values given in Fig. 4.29, the selection of the
current signed digit g7, . of the quotient as a function of the value interval corre-
sponding to the partial remainder R;. The table has used integers from 8 to 15 for the
fractional values from (1/2) to (15/16) of the divisor X. A similar interpretation can
also be applied to the integers associated with the limits —R;, and Rypq—of the
ranges of variation the partial remainders R;. Thus, to the value {—12), from the first
line of the table, corresponds the binary representation 110100 which is the twe's
complement for 101100 and which, in the interpretation with implicit binary point
separating three bits at a time, corresponds to (—3/2). Under the circumstances, if,
for instance, X = (13/16) and R; is within the interval from Ry, = 101101, which
corresponds to (—19/8), 10 Ry = 110101, which corresponds to (—11/8), then
for the quotient digit the value 2 will be chosen.

Having made these remarks, let us, for instance, follow the SRT radix 4 proce-
dure applied to the division of the binary equivalents corresponding to the integer
decimal numbers ¥ = 535y and X = 7p. Mention should be made that, since to the
shifted partial remainder from register A it is possible to add or subtract the value
2X, theregisters A and M, as well as the adder/subtracter, are extended by one rank,
while in the msb of M, the value 0 is permanently present. Thus, if we suppose that
we work on the 8 bits standard fength, A and M will contain 9 ranks (Fig. 4.32).
Following the elimination of the 5 bits of  through the operand’s left-shift, the pro-
cedure proper starts with the investigation of the most significant 6 bits of A, (o
which, in the already mentioned terms, the value (-8} corresponds. This value will
have to be introduced in one of the | R;nin, Rimax} intervals corresponding to X = 14
(the value 0 from the msb of M will be ignored). Since {+-8) belongs to the inter-
val [+3, +10], the first digit of the quotient becomes 1, and, from the left-shifted
partial remainder (by two positions, because we operate in r = 4) is subtracted X,



4.4 SRT Procedures for Binary Division 183

R, . R, .
X q s X q wia
R, R, R, R
8 -12 7 7 12 -18 -10 ]
8 -6 3 T 12 -10 4 T
8 -2 +1 0 12 -4 +1 0
8 +2 +5 1 12 +3 +9 i
8 +6 +11 2 12 9 +3i7 2
9 -14 -8 3 13 -19 -1 3
9 -7 ] i 13 -10 -4 i
9 3 +2 G 13 -4 +3 0
9 42 +6 1 13 +3 +9 1
9 +7 +13 2 13 +10 +318 2
10 -15 5 y) 14 -20 o11 z
10 -8 3 T 14 -1 -4 H
10 -3 +2 0 14 -4 +1 0
10 +2 +7 1 14 +3 +10 t
10 +8 14 2 14 +10 +19 2
i -16 -9 2 15 22 -12 2z
i -9 -3 T 15 -12 -4 T
i 3 +2 't 15 -5 +4 0
i1 +2 +8 1 15 +3 +11 t
il +8 +15 2 15 +11 +21 2

Fig. 4.31 Table for the sclection of the current signed digit value of the quotient digit depending
on the divisor value and the value interval corresponding to the partial remainder

and then, the above-described procedures will be repeated. At a certain moment,
for the remainder R; the binary number 111001 results, which represents the two's
complement for 100111 = —7. This value belong to the interval [—11, —4}, con-
sequently the quotient digit equal to T will be chosen. We also mention that the
remainder Ry = 000011 = 43 corresponds both to the interval {—4, +31, having as-
saciated the quotient digit O, and o the interval [+3, +10], having associated the
quotient digit 1. Digit (0 is preferred, because it does not imply the activation of the
adder/subtracter, with the corresponding time saving. Generally, when the choice



184 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.32 SRT radix-4 binary
division example A Q M
OH.HBRBCI0 | 000i0111 O BRERg 1

£01000.010 1 11100000 | 0.11100000
77

/*’8 77

Ld K
10000101t 1000887
-(311190000

Q0010101
i s

¥ ¥
010101110 | 060011
«011100000
J1I001110

10011 Loy
100111000 | oont{
+0311100000
D00011000
+3 —
001 1EEENE | 1170

000000011
=3 1-4'+1-4%-14"
=76

535=T7-76+3

may be made among the digits 0 and {, or 1 (and the table from Fig. 4.31 contains
other such cases), it is recommended fo choose digit 1. Finally, mention should be
made that it is necessary {o right-shift the last remainder by the same number (5) of
bits initially used to bring divisor X into the interval [(+-1/2), (1)}, and also that
the quotient has been obtained in signed-digit form, wherefrom the conversion into
the conventional binary forin has to be made, as specified above.

There is one more aspect to be discussed, namely the obtaining of the partial
remainder estimated value which enables the execution of the selection process
{ErLa04, HePa03, Parh00}. The method’s implementation’s performance decisively
depends on the speed with which the estimated partial remainder is generated.
This problem can be efficiently solved by appealing to redundant representations
of carry-save or signed-digit type, which are produced by fast adders and are carry-
free. Thus, one of the methods to accelerate binary multiplication is based, as secen
above, on the use of one or several carry-save adders by which sum and carry vec-
tors of the word’s length are rapidly generated, enabling the product efficient to be
obtained. Such a carry-save adder can also be used in the implementation of binary
division, it enabling the generation of the two vectors, sum and carry, for each of
the partial remainders. Through the addition of these vectors by means of a carry
adder the exact value of the partial remainders may be obtained, but this addition
process requires substantial latencies, whatever the synthesis method used for the
adder. Moreover, in the selection process of the quotient bits there is no need for
exact values, i.e. of complete precision, of the partial remainders, but only for some
truncated ones at the most significant, generally, 7 bits. Consequently, there will be
taken into account only these m bits of the two vectors, and there will be obtained,



4.5 Binary Division Based on Fast Convergence i85

by means of them, the estimated, not the exact, value of the partial remainder, and
based on this value the current bit of the guotient wiil be chosen. Obviously, this re-
mainder can be obtained by appealing to a  bit carry propagation adder, for which
more efficient synthesis solutions exist, the smaller the value of o is. But a selution
with even better performance can be obtained by using a table of {327 ) bits capac-
ity, where ¥ represents the number of bits required for the coding of all the quotient
digits. In this table can be found all the combinations of the (7w + 7} bits from the
two vectors, L.e. sum and carry, with the associated values of the quotient bits, Thus,
when r = 4, with 77 = 6 and g,y = 2, which implies y = 3 bits for the coding of
the 5 digits of the quoticnt, the table requires 2% = 4096 combinations, a value on
3 bits corresponding to cach of them. As regards the implementation of such a tabie,
it can be efficiently done through a Programablie Logic Array (PLA), generally with
2 inputs. This solation is preferred, mainly when the table has a regular structure,
to the alternative one based on a Read Only Memory (ROM) [HePa03}. Whatever
the implementation, the use of a table requires, at each procedure iteration, a delay
which, essentially, is caused by the so-called “table lookup” operation {Parh00].

Finaily, as regards SRT radix 4 division, mention should be made that the Intel
Pentium processor uses this algorithm, the implementation being based on a PLA.
Within this context, we recall that in the first Pentium chips there was a failure
which came to be known as the “division bug”. Essentially, this failure appeared
after the P-D plot generation, in the quotient lookup table transposition in the PLA,
namely in the optimization of this implementation starting from the hypothesis that
certain elements of the table wiil never be accessed. This design error materialized
through the return, when reading from the PLA at the “optimized” locations, of digit
O instead of +2 {HePa03, Parh00, ALMNO3].

Consequently, generalizing the problems of radix r division, r > 2, it can be
asserted that the reduction of the number of iterations is counterbalanced by the
complexity of the quotient digit selection process. It can be somewhat simplified
when we appeal to a redundant set of digits for the quotient, because truncated
valaes of the remainder and of the divisor can be used. In [Erla04] the increase
of value r is investigated, and the conclasion is that the direct implementation of
the selection function proves to be practical for r = 8, but, for r = 16, a suitable
implementation is represented by the overlapping of two stages with r =4,

4.5 Binary Division Based on Fast Convergence

The fundamental characteristic of the methods based on fast convergence con-
sists of the fact that, starting from an initial approximation, they estimate a func-
tion which they improve in an iterative way. Unlike the previously studied algo-
rithms, characterized by the recurrent obtaining of a quotienf digif at each iter-
ation, i.e. having a linear convergence, the new methods double the number of
correct bits in the approximation at each iteration, presenting a quadratic conver-
gence [HePa03, Erl.a04, ObF197]. Consequently, the number of iterations required
to reach a certain accuracy is smaller in division by convergence.



186 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.33 Graduad search for YA
the root f{x) =0
corresponding to 1/ X )

F

Jle ¢ X

On the other hand, the conventional division methods, based on the recurrence
of digits, imply, at cach iferation, the selection of a digit, its multiplication by the
divisor, and a subtraction or an addition, while in division by convergence, the prin-
cipal operation, which is involved in each iteration, is multiplication. That is why
these methods are also called muiltiplicative methods [ErLa(4]. However, the mul-
tiplication operations require high precision, and thus the fatency corresponding to
an iteration, generally, is longer than that corresponding to the recurrence-based
division methods.

As regards applicability, the methods of diviston by convergence prove atiractive
for the floating point units of a processor.

4.5.1 The Newton-Raphson Method

Division by the Newton-Raphson method obtains quotient Q = Y/ X by first de-
termining the reciprocal value 1/ X, the result being then multiplied by dividend
Y. Thus, the reciprocal 1/ X will be computed by using the Newton-Raphson itera-
tion for determining roots, in which a function obtains value 0. Let us consider the
non-linear function f(x) from Fig. 4.33 [HePa03], for which we graduaily, namely
iteration by iteration, look for the root f{x) = 0 corresponding to 1/X. Thus, we
start from an initial approximation xp, and from point (xg, f(xo)), we draw the
tangent to the curve which is the graphical representation of the function f{x).
The tangent crosses axis Ox at the abscissa point x1, a value which represents a
better approximation for 1/ X than the initial one, (xp). After repeating the above-
described procedures, we shall successively obtain the values x7, xa. ..., and, given
x;, the next value x; .1 results by using the analytical equation of the tangent at point
{x;, f(x;)), given by the following expression:

¥ )= fxx —x) (4.38)

where f/{x;) represents the derivative of the function f(x} with respect to x, evalu-
ated for the abscissa x;.



4.5 Binary Division Based on Fast Convergence 187

Making y = 0 in (4.38), we obtain, for the next better approximation, the expres-
sion given below:

x =iy = - L0 (439)
Frix)

This general method is applied to determine the reciprocal value 1/ X by appeal-
ing to the function f(x)= % — X, whose root is x = 1/ X. Under these circum-
stances, if the values f(x;) = v;} —~ X and f'{x;) = —«:]5 are introduced in (4.39),
the following will be obtained: !

R
Xigl = X S = i (2 - 5 X) (4.40)

3
X

From the computational point of view, each ieration requires, according to
(4.40), two muitiplications and a two’s complementing step.

In order to demonstrate that this method has a quadratic convergence, we shall
start from the error corresponding to the iteration ¢ expressed by g; = )I(— —x;.Conse-
quently, for the error corresponding to the iteration (i 4+ 1) we have g5, = ;(— —Xigly
which, if (4.40) is taken into account, leads us to:

1 1 : )
85+1x}mx!‘(zmx,‘X)mX(me;) = Xe7 (4.4

From (4.41), for X € [{+1/2}, (+1)), it results that &;,1 < 8?, thus demonstrating
the quadratic copvergence.

One of the important problems of this method is represented by the choice of the
initial approximation xg, because its accuracy determines the number of iterations
required. Some of the alternatives for this choice are as follows [ErLa04}):

(a) The use of a constant whose value is independent from that of the divisor X

(b) The use of an initial approximation of the form xp = a ~ b X, where ¢ and b are
constants. I & is a power of 2, then the implementation will be simple. If now
X e [{(+1/2}, (1)), a good choice of the two constants is as follows: a = 2,928
and b =12.

{c} The use of a lookup table which consists of a set of constants that represent
truncated values of 1/ X, one for each interval of 1/X. The determining of the
number of bits in the truncated values has to be correlated with the resulting
errors, an important requirement being error minimization.

Another problem specific fo the Newton-Raphson method is represented by the
computations’ accuracy, more precisely that of the multiplications provided by
(4.40}. They are intended to be executed in complete precision, increasing the num-
ber of bits in the product at each iteration. If we denote by m the number of bits of
the initial approximation xp, divisor X being assumed to be of n bits, then the width
of the two products corresponding to { iterations is given in the table from Fig. 4.34



188 4 Functional Analysis and Syathesis of Binary Division Devices

Fig. 4.34 Table with the

pumnber of bits corresponding i X, xX X, 7x£2-x.X}
to a Newton-Raphson
iteration as a function of the 0 m m+n 2m+n
iteration’s count
13 2m+n 2m+2n 4m +3n
2 dm+3n | dm+4n Bm + Tn

{Erl.a04]. In the table, we can observe the excessive increase of the pumber of ranks
for the intermediate and final results, which makes the implementation impossible.
Consequently, the products are truncated or rounded, so that the effect of these op-
erations over the final error is as small as possible. Implementations are based either
on a floating point multiplier which enables rounded products to be obtained, of the
type that will be presented in the next chapter, or a muitiplier as a rectangular com-
binational array of mn capacity, similar to that of quadratic type presented in the
previous chapter.

Having made these remarks, the binary division operation based on the Newton-
Raphson method develops according to the following steps:

Step 1. If necessary, divisor X is scaled, being brought into the intended interval
through the corresponding shift of both operands, and then, the first approximation
xg of 1/X is chosen, for instance through table lookup.

Step 2. The computations provided by (4.40) are iterated, until a value x,_; of
sufficient accuracy is arrived at.

Step 3. x,..1Y is computed.

On the other hand, the Newton-Raphson method can stand at the basis of a pro-
cedure for the calculation of the square root [ErLa04}. Thus, we shall use the same
relation {4.39), but this time we shall use the function f(o) = ol — 7, one of whose
roots is 0 = +/Z. Since fH{o) =20, the following iteration will be obtained:

o fey  op-Z z
iy = O = f"(()’j) =g e 2—(}’! = 2 oy + E (442)

According to (4.42}, each iteration requires a division, an addition, and a right-
shift. It would be favorable if we could substitute the division by multiplication and
two's complementing operations, according to the model of the previous use of the
Newton-Raphson method (refer to relation (4.40)). Thus, we shall first compute the
reciprocal value of the square root, and finally multiply it by Z. Thus, we shall use
function f{p) = ;}%‘ - Z, one of whose roots is }0« = /7. Since f'(p) = ““"5‘_’{, the
following iteration will be obtained:

flpi} o= =2 (3~ pZ) (4.43)

Pist = P — S =
l e _—



4.5 Binary Division Based on Fast Convergence 189

Regarding the subtraction operation from relation (4.43), we foresee its trans-
formation into 3 — ,on w4+ (2 - pi.z ZY, where (2 — p!?‘Z) represents the two’s
complement of product p?Z, which, it is already known, is obtained through the
flipping of the bits of pf‘Z (by one’s complementing) and the addition of a binary
unii to the Isb of the value thus obtained. Ignoring this binary unit, as well as that
which has been added to the two's complement, we obtain the approximation of dif-
ference (3 — ,of Z} by complementing the bits of product p? Z [ErLa04], thus greatly
stmplifying the assessment provided in (4.43).

The other considerations inserted in the presentation of the division operation can
be similarly extended to the square root extraction, so that, at the above description
of the steps of the algorithm, an essential change has to be made, i.e. iteragion (4.40)
shall be substituted by {(4.43) in step 2.

4.5.2 Goldschmidt’s Method

The characteristic of the second method based on fast convergence, sometimes
called Goldschmidt’s algorithm {HePaO3, PiBr02], other times the multiplicative
normalization method {Erla04], or division by repeated multiplications [Parh00],
consists of determining two multiplicative recurrences, of which one causes a con-
vergence towards |, and the other a convergence towards the intended function rep-
resented by the quotient ¢ of ¥ divided by X. Thus, in order to compute (&, we shall
multiply both ¥ and X by a sequence of multiplication factors rg, ry, ..., Fp 2. 180

Y Y?‘(})’; s Fpe2

0 =

= (4.44)
X Xi’()l"|~~~f'p_2

If now the choice of the values rg, ry, ..., rp_2, is made $o that the denomina-
tor from (4.44) tends towards 1, then the product from the numerator will converge
towards (. Consequently, the method starts from vy = ¥ and xp = X and com-
putes, at cach iteration, values of v 41 = r; v, and x;.11 = rpx; types, so that the ratio
»}fﬁ == %} ez u}% remains constant, Choosing rp_ 7 so that x, ; tends towards 1,
¥p1 will tend towards (. This process does not allow a remainder to be obtained,
but, if necessary, it can be computed by using the relation R =¥ — X, implying
suppiementary operations which consist of a multiplication and a subtraction.

A first problem regarding this method is the choice of r; multipliers. To solve it,
et us consider that divisor X is represented by a normalized fraction belonging (o
the interval {(-+1/2), (++1)). Obviously, if this condition is not initially fulfilled, then
we perform shifts on operands ¥ and X until the condition is satisfied. Then, yg = ¥
and xp = X will be set, and divisor X will be presented in the form X = 1 — ¢,
where ¢ < 1. Under these circumstances, if multiplier ry is chosen in such a way
as to represent the two’s complement of xg, 1.e. rp = 2 — xp = | + ¢, then there
results xy =rmpxo={1+ @)l —@}=1-— (pz. Then, to determine ry, we appeal
to the same two's complementing, so that ry =2 — x| = [ + ¢, and, consequently,



190 4 Functional Analysis and Syathesis of Binary Division Devices

xy=rix; = (1 +¢")(1 —¢*) =1 —¢*, whichis succeeded by ry =2 —x3 = | +¢*
etc. Cbviously, since ¢ < 1, x,,; will tend towards 1, and y,; will result through:

Ypot = Fp2¥p-2 = (1 + ‘pzp”)ypwﬁ = (1 +{1 - X)zﬂ'"»)}_pmz (4.45)

If the quantities yg, ¥1, ..., ¥p—3, ¥p—2 are gradually replaced in (4.45), the fol-
lowing expression will finally be obtained for y, :

)

Yoo = Y{E+ (= XN (1 =X+ (= X0%) - (14 (1= X)) (4.46)

A second problem of the Goldschmidt method is connected with the speed with
which the denominator from (4.44) converges towards 1, or, in other words, the
problem consists of determining the number of multiplications required to exe-
cute division. Thus, we find that x;41 = rix; = (2 — x)x = 1 — (I — x;)%, ie.
P — x4 = (1 — _"Cj)z. In other words, if x; is already close to 1 (for instance,
I — x; < &, ¢ representing the deviation), then x;..; will be closer to 1 {for in-
stance, | — x;41 < &%), This feature is known as quadratic convergence [Parh(00],
and it leads to a logarithmic number (p — 1) of iterations. To justify this aspect,
we recall that X e [+1/2, +1), thus | — xg < 21 then, through successive itera-
tions, wehave | —x; <272, 1 —x <274 . 1 —x,; < 22" In case the word
tength is # bits, the closeness to | is limited by the value (1 — 277), Consequently,
the iteration can stop when 277! is equal to or larger than n, wherefrom the num-
ber of iterations p — 1 = [log, n} resuits, with the same well known significance
of the bars | 7. Within the same confext, we mention that, on operands of # bits,
the p -~ I = [log, a] iterations require (2p - 3) multiplications and (p ~ I) two’s
complementing operations [Parh00}.

Certain statements have to be made regarding the initial approximation from
which the algorithm starts. Thus, if ¢ is not close to 0, X being far from 1, it is
recorynendable to search, through table lookup, for an approximation X* for the
reciprocal value of X. Under these circumstances, the desired evaluation Y/ X is
substituted by Y X*/ X X* evaluation, which now has the denominator X X* close
to 1, ensuring a faster convergence.

Mention should be made that in this case, as well, the computations are affected
by errors brought about by truncations and roundings, and sometimes errors com-
pensation is necessary {HePa03, Kuli02].

Having made these statements, and taking into account the quadratic convergence
given by the (p — 1) Herations specified above, the binary division operation based
on the Goldschmidt method develops according to the following steps:

Step 1. If necessary, X is scaled, being brought into the desired interval through the
corresponding shift of both operands, and then, for instance through table lookup,
the approximation X* of 1/X is chosen.

Step 2. vo == Y X" and xp = X X* are set.



4.5 Binary Division Based on Fast Convergence 191

Step3. Fori =0,1,..., p — 2, the computations given in the following loop are
iterated.
Loop
rp== 2y
Yier = FiYis
Kipy == 11,

End loop

As with the Newton-Raphson method, the Goldschmidt procedure can be used
for square root extraction. Thus, we start from xp = Z and vy = Z, computing,
at each iteration, values of yipy = rryy, and x;0 = rfx,— types, so that the ratio

2 1

n e - . . .

r’,*‘ : = = = --- = £ remains constant. The evaluation of the square root § will be
Xy ¥

done by using a relation similar to (4.44), namely:

2 y2p2p200 00
&m%m—%%}—%ﬁ (4.47)
Xrgry SR
Choosing rj—z so that x| tends towards 1, y;,—y will tend towards V7. As with
division, we now have to choose the multipliers ;. This can be done by ensuring
the quadratic convergence, namely if we have the deviations g; = 1 — x;, and ;41 =
I —xp41,then g4 = Ei?' is required, ie. x; =1 — (I —x;)* = rl.zx,-, wherefrom it
results 7y = /2 — x;. If we appeal to the Taylor serial expansion of the r; function
at the point xp = 1, and limi{ ourselves to the more significant terms, the following
will be obtained for r;:

Fp= 1 27 - xy) (4.48)

Thus, r; is obtained through the (one’s) complementing of x;, the fractional part
shifting by one bit to the right, and a subsequent addition of a binary unit.

With these considerations the consistency step 3 from the Goldschmidt division
algorithm changes into the following step for square root assessment:

Step 3%, Fori =0,1,..., p—2, the computations given in the following loop (rg is
an initial approximation of V' Z) are iterated

Loep
I’i2 =Firis
Yigl = Vi Xig] xf',-zxf;
ripr = 127N = xi);
End loop

It can be observed that each iteration implies three multiplications, but two of
them can be executed in paralle] or in pipeline manner.

As regards the implementations, we shall limit our considerations to the divi-
sion operation, but they can be extended without difficulties to the square root. In



192 4 Functional Analysis and Syathesis of Binary Division Devices

both methods, Newton-Raphson and Goldschmidt, an initial step of table lookup is
required, followed, in each iteration, by two successive multiplications and by the
truncations of the intermediate results,

As concerns the choice of the initial approximation, the table lookup is the more
efficient, the smailer is the table dimension. This requirement can be satisfied by
appealing, for instance, to the storage of the reciprocal values for fewer points, and
by using linear or higher order interpolation methoeds to compute, usually through a
multiply-add operation, the imitial approximation {Parh(0, Ober99],

Division methods based on fast convergence usually require an efficient parallel
multiplier built using a tree structure with CSAs. In the Goldschmidt algorithm, be-
cause in each division step two independent multiplications are executed by the
same device, they can be overlapped through a solution based on an arithmetic
pipeline with two stages. This solution cannot be applied to the Newton-Raphson
method, because, according to iferation (4.40}, the second multiplication with x;
requires the result of the first one {Parh00].

Since we want to finally characterize the two methods together, the Newton-
Raphson and the Goldschmidt one, let us first mention that there is a correlation
between them. Thus, we start from the particularization of relation (4.40) in the form
xy = xp(2 — xpX), and, by means of some obvious successive transformations, we
obtain the following for xq and x3:

x2 =212~ 01 X) = x0(2 = x0X)(1 + (1 ~ x6X)%)

2 ,- (4.49)
x3 = 122 — 12 X) = x0(2 — 2o X) | [(1 + (1 =20 X))

fa

where we have used the sign [ to denote the product of the parentheses correspond-
ingtoi=1andi=2.
Then, let us apply inductive reasoning, considering valid the folowing relation:

-1

X = x0(2 = x0X) [ (14 (1 = x0 X)) (4.50)
i=1

Assuming that (4.50) is fulfilled, it 15 necessary to demonstrate the following
extended relation:
n ;
Kar = x0(2 = x0 X | [{1+ (1 = x0X)%) (4.50)
i=1

Anyway, we have x,41 = x,(2 — x, X), and the parenthesis (2 — x, X) will be
changed as follows:



4.5 Binary Division Based on Fast Convergence 193

n—1
2 xX = 2= xpX (2 - x0X) P (1 + (1~ x0X)7)
[£3
-1 ‘
=2— (1= T+ 2xX = xgXT [ {1+ (1 = x5 0%)
i=1
1

=2~ (1= (1 =208 [](1 + (1 = x020%)

fa]
w2 L (L= xp X)) =1+ (1 — xpX)* (4.52)

If (4.52) is replaced in (4.51), the following will result for x,,4.1:

i1

Xpg = (X()(Q -~ xpX) n(l -+ {1 - qu)zi))(l 4 {1 - X()X)zn)
i=t

=x02 —xX) [ J(1+ (1 —x0X)%) (4.53)

IE ]

Form (4.53) shows the validity of the anticipated relation (4.51), proving that
for the Newton-Raphson method we certainly have the following value of quotient
(J;.4.1, obtained afier the {i 4+ 1) iteration:

izt = 2Y (2= 20 X){(1 + (1 = x0 )P {1+ (1 = x020Y) - (1 4+ (1 = xX)¥)
(4.54)

On the other hand, according to (4.46), and after the same number (f + 1) of
iterations, the following will result for the Goldschmidt method corresponding to
the value of quotient ;. :

Qi1 =Y {1+ (1= X1+ (1 =001+ =N {1+ - X7 455

1f in (4.54), xp X is substituted by X, i.e. xp == 1, then (4.54) and (4.55) coincide,
which means that both methods deliver the same sequence of Q.. values.

Following these observations, we shall refer to the two methods together, show-
ing that they have the advantage of doubling the number of correct bits of the quo-
tient af cach iteration, presenting quadratic convergence. Moreover, they do not re-
quire dedicated hardware for the division operation, the multiplication device being
sufficient, however with an increased confrol circuit complexity {HePa03].

On the other hand, the two methods have two drawbacks. The first consists of
the fact that they do not allow the direct evaluation of the remainder. It can be ob-
tained only through supplementary computations, as seen before in the Goldschmidt
algorithm. This is the more unfavourable the more almost all high level languages
imply remainder division with operations. The second disadvantage is connected



194 4 Functional Analysis and Syathesis of Binary Division Devices

with a problem which will be developed in the next chapter, namely the problem of
rounding. According to IEEE standards, the rounding operation shall be executed
with certain exigencies regarding precision, which are only partly fulfilled by both
multiplicative division methods [HePa03]. Moreover, within the same context of
rounding, mention should be made that since the Newton-Raphson algorithm com-
putes first the value 1/ X, which it subsequently multiplies by ¥, it is possible that
even when [/ X is correctly rounded, the result ¥/ X may not be correctly rounded.
Let us, for instance, consider the division (in the more familiar decimal number sys-
tem} of number ¥ = 11 by X = 47 working with p = 2 decimal numbers. Thus,
for 1/47 we obtain the value .021276 ..., which is rounded to (.02, Multiplying it
by b1, we will have 0.22 for the result of the division operation. However, dividing
11 by 47, resuits the value 0.234042 .. which is rounded to 0.23, presenting a sig-
nificant difference (0.01) as compared to that obtained using the Newton-Raphson
multiplicative procedure.



Chapter 5
Functional Analysis and Synthesis of Floating
Point Arithmetic Devices

5.1 Characteristics of the Floating Point Operation

5.1.1 Classification of Data Processing Units

By specifying from the beginning some elements of terminology, we show that, in
compliance with many acknowledged literature landmarks, such as {HePa03, S:al99,
Haye98], the Central Processing Unit (CPU), may be considered to be composed
of two essential components, 1.e. the so-called Program Control Unit (PCU) and
the Data Processing Unit (DPU). On the one hand, the PCU is meant to capture,
decode, and interpret that information which consists of the program’s instructions,
releasing the sequence of microoperations signals whose concatenation leads to the
execution of each instruction and, implicitly, of the program. However it is not the
PCU-specific range of problems that is the object of the analysis in this chapter,
but that which corresponds to the other structural component represented by the
DPU. As can be seen from its name, this latter unit is meant to process that part of
information represented by data. Since these data can also be non-numerical ones,
it ts time to specify that our interest is mainly connected with BPUs which process
nuntbers.

Essentially, a DPU contains the circuits for the implementation of arithmetic op-
erations and logic functions, as well as a fast memory and a local control unit. A first
criterion, decisive in the DPU’s faxonomy, consists in the technological factor, on
the basis of which there can be distinguished, on one hand, Arithmetic-Logic Units
(ALUs), and, on the other hand, Arithmetic Processors (APs). The former are char-
acteristic of that stage of technological development specific to medium scale in-
tegrated circuits and large scale integrated circuits when chips including more and
more complex structures were created, starting with simple adders and subtracters
up to muitioperation units, that can be met within the ASIC families (Application-
Specific Integrated Circuits) [ITRSO1, WakeQ0]. On the other hand, the AP cate-
gory belongs to the technological era of large scale and very large scale integration.
They included in chips (which were, at first, independent) the circuitry of whole

M. Viadutiu, Computer Arithmetic, 195
DO 10.1007/978-3-642-18315-7 _5, © Springer-Verlag Berlin Heidelberg 2012



196 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

processors dedicated to the assessment of arithmetic and logic functions. They were
available, at first, under the miniature forn of some sequential logical circuits, and,
after that, they received more and more of the CPU’s proper attributes. As photo-
lithographical procedures {which are employed in the technological process of inte-
grated circuits manufacturing) become more refined, and due to the need to reduce
delays on the wiring conductors (which, although microscopical, become “long”
in the presence of the “vertical” increase of the signals frequency), AP’s circuitry
migrates from independent chips inside those of the processors, being identified as
istands in the “ocean” represented by the silicon wafer.

Regarding ALUs, based on the technological criterion, they can be divided into
the obsolete class of ALU bit shice circuits, and the conventional class of ALU com-
ponents circuits. Since, at a certain moment, the packaging density of the compo-
nents within a chip was limited to the integration of the circuits corresponding to
a reduced number of bits (e.g., 4), the strategy of juxtaposing several such “shices”
chips was used, the words being obtained through the concatenation of these slices
{Poil90]. On the other hand, conventicnal ALUs can be divided, in their turn, into
the older types with dedicated registers (such as, for instance, the accumutator), and
those based on general registers.

The Arithmetic Processors (APs) can also be divided on the basis of the techno-
logical factor, but also on the basis of a functional one, into Peripheral Arithmetic
Processors (PAPs) and Arithmetic Coprocessors (ACs). On the one hand, PAPs are
independent of CPUs, being connected with them through a set of communication
registers. Thus, a CPU executes instructions for data transfer, sending to the PAP’s
registers the set of operands, but also the control information, the latter being also
treated as a data. The PAP decodes the control information, executes the operation,
and finally places the result again in one of the communication registers, accessible
to the CPU. Either on the initiative of PAP, through an interrupt signal, or on the
initiative of the CPU, by consulting a state register. the CPU finds out that the PAP
has finished the execution of the operation and takes over the result of the arithmetic
operation from the PAP, through the same type of data transfer instructions. On the
other hand, ACs are not independent, being “tailored” for a certain family of CPUs.
Thus, each CPU is provided both with interfacing circuits with the ACs, ensuring
the control of the connection between the two of them, and with special instructions
meant to be executed by the AC. Usually, the CPU and the AC are tightly coupled,
i.e. between the two of them there are direct communication lines which have the
role of allowing their rapid entry into synchronism. This is because the AC is, usu-
ally, in a latent state of expectation, and has to be “awakened™ when a coprocessor
instruction is required to be executed. Technologically, the CPU and the AC were
made up of two distinet chips, interconnected through a special socket, but at present
the whole arithmetic and logic operation circuitry is integrated in the same silicon
wafer corresponding to the whole processor.

Whether we deal with ALUs or APs, they can both be divided into two c¢lasses
regarding the domain of values of the numbers on which they operate: a fixed point
one, with a more restricted range of numbers, but also with simpler circuitry, and
a floating point or mobile one, with a more extended range of numbers, but with



5.1  Characteristics of the Floating Point Operation 197

Systemn bus
Accurmulator Multiplier-guotient [-—-- | {Memory) data
A register @ | register M
~ 2
l l i ¢ Control signals

RRTYIIILY)

Parallet adder and (oo ‘

logic circwits Aﬁm Controt unit

Fig. 5.1 Synthetic block diagram of an ALU

more complex circuitry, as well. In order to highlight the distinctive elements of the
two classes, let us refer to the simpler case of an ALU with the synthetic diagram
from Fig. 5.1 [Haye98), which covers the arithmetic operations treated in the pre-
vious chapters. There are recognized the three registers for which there have been
maintained dedicated names, but which can be considered to belong to the gen-
eral registers fite. Al three of them are bidirectionatly connected to the system bus,
while the M register, which houses one of the operands no matter the operation, is
considered to belong to the memory unif. Besides the parallel adder with the asso-
ciated logic circuits, the figure also contains the flags block, representing flip-flops
which are set to 1 for the fulfillment of certain conditions, such as overflow, most
significant bit (msb) carry, zero or negative result, ete. The control unit generates
control signals (with dotted marking) whose concatenation ensures the implemen-
tation of the algorithms, which, for the sake of concrete rendering and without any
loss of penerality, are considered sequential, The typical way of using the registers
consists of: A 1= A + M for addition, A := A — M for subtraction, AQ: =Q x M
for multiplication, and A.Q 1= A.Q/M for division. These operations are performed
with numbers, but the operations can also be extended over some logic functions,
that can be performed by using non-numerical operands, as well. One of their char-
acteristics is the operation on bit pairs, involving the following typical usage of
registers: A = A gnd M for AND logic function, A := A or M for OR logic func-
tion, A = A ex —or M for EXCLUSIVE-OR logic function, A 1= not A for the
complementation logic function. The functions’ implementation is simple, imply-
ing wordgates on the whole words” length. Thus, in Fig. 5.2 is presented one of the
possibifities of accomplishing the logic operations part of an AL, such as the one
presented in Fig. 5.1 {Haye98]. In registers A and M are kept operands X and ¥,
which are supplied, in accordance with the implemented function, to the gates of
the Togic leved of the six wordgates. At their outputs are obtained the subfunctions
which, negated by the wordgate from the second logic level, lead to the desired re-
sults. The four logic functions are controlled through the combination of values of



198 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

[110]
mmmmmmmmmmmmmm 9 1-out-of-4 [--%
b R i% decoder - —C;

6 wordgates

wordgate
n

Fig. 5.2 Implementation version of the ALU part responsible for the logical operations

two control signals (cg, ¢1) that come from the CPU and which are decoded by the
I-out-of-4 decoder. Each output of the decoder controls the wordgates correspond-
ing to a certain logic function (one wordgate for gnd and not and twoe wordgates
for or and ex — or) and i determines, being activated on 1 (all the other outputs
remain €), the accomplishment of the given function. Mention should be made that
at the wordgates’ outputs from the first logic level there have been marked the sub-
functions in terms of X and Y, the conditionings through the decoder’s outputs being
ignored (it can be observed how or and ex — or functions are obtained by applying
De Morgan laws).

With the observations made regarding the ALU logic subunit which, corrobo-
rated with the presentation from the previous chapters of the arithmetic subunit,
enabie the outline of the extent of ALU circuitry with fixed point operation, we
shall highlight the differcnces between such a unit and a floating point one. They
refer only to the arithmetic part, and, to highlight them, let us analyse the execution
of the fundamental floating point operations in a more detailed way.

5.1.2 Problems Regarding Floating Point Operations

We shall refer, from the beginning, to the representation convention of floating point
numbers, as well as to the system of notations we adher fo. Thus, let us consider a
number X which in the scientific notation is of the form X = Xy BYE, where B
represents the base of the number system (implicitly it is equal to 2), and Xy and
X are the fixed point numbers representing the mantissa and the exponent. It is
known that the conventions of IEEE the 754 standard’s format [BrO’ H0O3] presents
fields having vartable numbers of bits, so we shall assume that a word used to rep-
resent a floating point pumber is made up, from left to right, of a bit assigned to



5.1 Characteristics of the Floating Point Operation 199

the sign, followed by ¢ bits representing the exponent, and by m bits assigned to the
mantissa. As concerns exponent X g, this is a binary integer represented biased in
an <:x<:ess»(2"“1 — 1} code, which, particularized for the TEEE 754 standard on 32
bits with ¢ = §, consists of the excess- 127 code. Coaventionally, in order fo accept
exceptions simifar to those which correspond to the IEEE 754 standard, we also as-
sume the value restriction 0 < Xg < 2% — 1. On the other haad, as far as mantissa
X3, is concerned, it is represented by the fractional part of the so-called significand,
of the form Xy == 1.X7,, which is a sign-magnitude binary number with the “hid-
den” integer bit (1). This “i” bit, meant to increase the representation precision,
does not explicitly occur in the “packed” form of the number, as it appears as input
data or as output results. For operation purposes, the floating point number has to
be unpacked, which requires the corresponding insertion of the hidden bit. Mention
should also be made that, as input data, and, also, as output results, floating point
numbers occur in normalized form (implying the restriction | £ 11X L.E < 2}, but,
within computations, they are usuaily operated on in their unnormalized form.

The representation conventions being established, the fundamental addition, sub-
traction, multiphication and division operations between floating point numbers
X = X 2% and ¥ = Yy 2'% are given by:

XA ¥ = (X -+ ¥ 2826258 where X = Y

X—Y={(Xpy— Y225 where Xp = Y
(5.1)
XY = (X Yay)2¥etre

Y/X = (Y Xa)2 E7XE

A first observation consists of the fact that in (5.1} only fixed point operations
take place. Then, mention should be made that, although more complicated in fixed
point arithmetic, multiplication and division are now simpler than addition and sub-
traction. The latter imply a spread out execution which is formed of the exponents
comparison of the (through subtraction), then the correspoading alignment of the
significand numbers and, finally, the carrying out of the operation proper. An exam-
ple in the more familiar decimal system is as follows:

3.158 - 1019 47,936 - 10° = (3.158 4 7.936 - 168 10)101°
= (3.158 + 0.07936)10'" = 3.23736 - 10"

From (5.1), it results that, for the exponents, only additions and subtractions are
performed, while for the significands, all the fundamental operations are performed,
from addition to division. Obvicusly, an ALU structure of the type presented in
Fig. 5.1 could cover all the above mentioned operations, but it would suppose their
execution in a serial manner, this resulting in performance degradations. Therefore,
the solution usuvally used for the arithmetic part of a floating point ALU consists
of in appealing to a configuration with two subunits, one of them dedicated to the
exponents, and the other one dedicated to the significands. The communication be-
tween the two of them can be ensured only by means of a bus, this solution being



200 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

! Exponent unit - Significand unit :
I - i
| . P i
I El ‘ ‘ E2 ‘ Qo ‘ A m Q ‘ ‘ M ‘!
I I ¢
! Y ry D Y 3 & |
I L_] EJ . 4 I |
| i | i
| i | 1
I P i
I - !
| Paraife] i Parallel i
: adder/subtracter i } addet/subtracter i
I 1 i 2 i
I §o |
I P i
| i | i
| i | 1
I P i
I - !
I P i

Fig. 5.3 Block diagram corresponding to the loosely coupled version of a floating point ALU

calied “loosely coupled”, or, in general, besides the bus lines, by means of a small
number of direct connections, that assure a rapid but expensive communication, this
salution being called “tightly coupled”. In Fig. 5.3 is presented a block diagram that
corresponds to the loosely coupled solution, while in the following section we will
present a tightly coupled version for a floating point addition unit [Haye98}. The
figure presents the exponent unit consisting of three registers, two of them (E; and
Eq) for the input exponents (X p and Yg) and one (E) for the result exponent, and a
parallel adder/subtracter (the parallel adder/subtracter 1), as well as the significand
unit whose configuration is similar to that presented in Fig. 5.1.

But, floating point operation is faced, with a major problem, namely the round-
ing which is necessary to convert high precision values or results of intermediary
computations with additional digits to formats of lower precision for memoriz-
ing purposes and/or output of final results. According to the IEEE 754 standard
[Kaha97, ##%08}], there are four rounding modes [Parh00, EvSe00}: round {o near-
est even number, for short round to nearest, round toward 0 (inward), round toward
400 (upward), and round toward —oco (downward).

To familiarize the reader with the rounding modes, we shall consider, without
toss of generality, the number X, with its integer and fraction parts in the follow-
ing forms: X = x,1Xp-2 ... X1X0X-1X-2 ... X, which has to be rounded to the
integer value X* =x ;x5 _,...x{x;. The simplest method is represented by trun-
cation or chopping, which consists of the giving up of the less significant m bits, the
result being X7 == x,_1x,—2 ... x1xp. On the other hand, it is important to notice that
the effect of truncation on numbers represented in sign-magnitude form is different
from that on the numbers represented in two’s complement form. The differences
are highlighted by the representations from Fig. 5.4 [Parh00]. In Fig. 5.4a is shown
the effect of truncation on a number represented in sign-magnitude form, and it can
be observed that the magnitude of the truncated number, denoted by chop(X), is
always smaller, in its absolute value, than the non-truncated aumber X, a fact due
to which the rounding type is called “round toward 0. By contrast, in Fig, 5.4b is



5.1  Characteristics of the Floating Point Operation 201

Fig. 5.4 Representations  chep(X
intended to mark out the PoroE ‘
“round toward 0" (a) and the
“round toward —o0” (b)
rounding modes

shown the effect of truncation on a number in two's complement form, and it can
be observed that the value of the truncated number, chop(X), is always smaller than
that of the non-truncated number X, a fact due to which the rounding type is called
“round toward —oc.”

Regarding the “round to nearest” rounding mode of X, denoted as rin(X), if to
a positive integer X is added a fractional part smaller than (1/2), then the rounded
value of X remains unchanged, while the addition to X of a fractional part equal
or greater than (1/2) determines the rounding of X o the following integer value
greater by one unit, as highlighted in Fig. 5.5a {Parh00]. By modifying the sign
of the landmark value (1/2) (into (—1/2)), the previously enunciated rule can be
extended over the whole range of numbers X with sign-magnitude representation
(Fig. 5.5a). But, if the numbers are represented in two’s complement, then a mod-
ification in Fig. 5.5 occurs only to the negative values of X, i.e. the dots will move
from the ends on the right side of the bolded lnes to those on the left side, Whatever
the representation format, sign-magnitude or two’s complement, the assigning of
the value from the middie of the interval (the dots from Fig. 5.5a for instance) to a
certain fractional part (in case of Fig. 5.5a, to the part greater than (1/2)).results in
a certain imbalance which can create problems through accumulation of errors. In
order to bring out the effect of this imbalance, let us suppose that we want to round
number X = x,_1X,—7...X1XpX—x—7 (o ifs integer value X™ =x7 ,x7 ... xx].
Depending on the values of the two bits from the fractional part, we have the follow-
ing four cases together with the associated € errors: x..1x..2 = 00, downward round-
ing (since x..1 = 0, consequently x.yx.2 < {1/2}and & = O x..1x.2 = 01, down-
ward rounding (since x_j =0, consequently x_;x_; < (1/2}) and & = (~1/4);
x_1x_5 = 10, upward rounding and ¢ = (1/2); x_jx_2 = 11, upward rounding and
& = {1/4). If the four cases are equiprobable, there is an average error &y, = {1/8).
If, in practice, it is proved that the probability to obtain the value corresponding to
the middle of the range (x..;x..2 = 10) is greater than the others, this results in a
greater average error with respect to that computed (Speqn = (1/8)).

A way of surmounting the above problem is represented by always rounding to
an even (or odd) integer, by rounding the middle values (x_j1x—3 = 10) upward
and downward with the same probability. In Fig. 5.5b [Parh00} is presented the
rounding of X' numbers, represented in sign-magnitude, to the even integers through
the “round to nearest even” mode, values noted by rime(X}. Regarding the numbers



202 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

‘rme“()r)

Fig. 5.5 Representations intended to mark out the “round to nearest” {a) and the “round to nearest
even” (b} rounding modes

Fig. 5.6 Representation up (X)
intended to mark out the [ R §
“round toward -+-00”
rouading mode

in the two’s complement format, the dependence from Fig. 5.5b is unchanged, since,
for instance, (—1.5) is rounded to (-2} corresponding to both representations. The
{EEE 754 standard prefers the solving of the “halfway” cases by resorting to “round
to nearest even” mode, and not “round to nearest odd” mode.

Finally, according to IEEE 754 standard, there is one more rounding mode,
namely “round toward 4-oc” {Fig. 5.6 [Parh00]), characterized by the fact that the
rounded value of a number X, which is denoted by up(X) (from upward-directed
rounding}, is obtained by always choosing the value of the integer upper end of the
range to which X belongs.

In certain applications, such as those corresponding to ingerval arithmetic
[ErLa04, Kuh02, Parh00], it is necessary that the computation errors be forced
in a certain known direction. For instance, if we want to assess an upper bound for
a certain quantity, then only the values which are greater than the correct one are
accepted, which corresponds to upward rounding, i.e. “round toward +-o00”. Obvi-
ously, in a similar way, it we want to assess a lower bound for a certain guantity,
then only the values which are smaller than the correct ope are accepted, which



5.1  Characteristics of the Floating Point Operation 203

Kie F XX XX XX, before mantissa
Y TVutVor oo ¥V ViV alignment
X, =X, % o XX, X, X, J after mantissa
Y, = =% 3 Vo VI TR T atignment
s YotVmzeos YulVmiiVmidVmidVmig Y iVo X, - Y, = mei-1

[e— —

P r— S —
Zy =22 ZZ,; e Z,z, £ F S§S=Y _0F. Qryory,

m-] “med

Fig. 5.7 Highlighting the g, r and 5 rounding bits

corresponds to, the previously mentioned downward rounding, i.e. “round toward
—ox” (Fig. 5.4b). Both rounding modes are applied in interval arithmetic.

Below, let us analyse in more details the performance of rounding [Kuli02]. Thus,
if reference is made to addition/subtraction, according to (5.1), the operation proper
is preceded by the previously mentioned comparison of exponents apd the necessary
alignment of the significands. If we suppose that the dimension of the mantissa field
1s of m bits and if we have, asin (5.1}, Xg > Yg, then, in the case when Xp — Yp >
m, the sum result will be equal to one of the operands, in our case to X. However,
if Xg — Y < m, then, following the right shifting of an operand—in our case Y—
there shall be executed the operation proper, which, in case it is executed in an exact
mode, may require, in the worst case, an adder of (2m — 1) bits, which represents a
major disadvantage due to its cost, and still more to its performance. But the adopted
salution is not based on the ideal algorithm consisting of the exact sum assessment
and the subsequent rounding. An adder of only m bits will be used and a number
of additional bits will be attached to the shifted operand and situated to the right
of the non-shifted operand’s least significant bit; these bits will be obtained during
the alignment shift and will be used for rounding purposes. The rounding shall be
executed without precision loss, relative to the operation execution according {o the
ideal algorithm. The number of additional bits to the m bits of the mantissa is three,
noted by g, r and 5. The first bit, situated, following the shift, to the right of the Isb of
the shifted mantissa—denoted ¥;;—, is called the guard bit and is denoted by g. It is
the last bit which, during the process of alignmest of the mantissas, leaves the m bits
initially assigned to V5. Leaving aside the operands’ signs, in Fig. 5.7 is presented
the situation of the two mantissas before and after the alignment process, where it
has been assumed that the right shift has been made with Xg ~ Ygp =m ~ i —~ 1 bits
and g coincides with yy, ;3.

The second bit, sitvated immediately to the right of g (in the example case from
Fig. 5.7 1t 18 Yiy—;-3), is called the round bit and is depoted by r. It is the bit which

leaves the m bits initially assigned to Y, before g. Finally, the third bit, called the
sticky bit s, has the value obtained as a result of an OR logic operation, executed,
during the shift process, among the less significant, in our case, (;m — i — 3) bits of
Yy, and, in general, among the bits that Jeave the m bits initially assigned to Y},
except g and r,



204 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

If an alignment is executed to the right by one bit position, g will retain the
shifted bit, “guarding” against precision loss. Following the process of alignment by
two positions right shift, the significand of the shifted operand will have magnitude
belonging to the value range [0, (+1/2)). Since the significand of the non-shifted
operand is included, as is already known, within the [{-1), (+2}) range, the worst
situation occurs when the difference between the non-shifted significand and the
shifted one, belongs to the range {{(+1/2), (4+2)). Consequently, firstly, it follows
that, in order to normalize the result, this has to be shifted to the left by one binary
position at the most, so that, secondly, the g bit is adequate to assure protection
against precision loss in this case as well.

In case of normalizing the result with one binary position left shift, thus g becom-
ing the mantissa’s Ish, and when “round to nearest” rounding mode is applied, the
rounding direction (upward or downward) of the resulting significand is determined
by the value of the r bit. More precisely, if r = 0, i.e. the part eliminated through the
alignment right shift is smaller than (1/2), the rounding will be made downward,
and if r = 1, the part eliminated through the alignment right shift is greater or equal
to (1/2), and the rounding is made upward. It also needs 0 be established whether
the part eliminated through the alignment right shift is exactly equal to (1/2) or not,
because some of the rounding modes use this information. 1t is given by the s bit
which is the result of an OR operation on all the bits from the right side of r and
indicates the fact that, when r = 1 and 5 = 1, the magnitude of the eliminated part
exceeds (1/2), and when r = | and 5 = 0, the respective magnitude is exactly equal
to (1/2). In other words, if during the alignment right shift, 5 bits extend beyond the
lsb of the non-shifted operand, then s will be set to the value that resuits following
an OR operation on the 3 bits following the g and r positions.

Let us suppose that following the execution of an operation, such as an addition,
the preliminary significand Zy; is obtained with the corresponding mantissa Z7,.
Since Zy; can be obtained in unnormalized form, Zys has to undergo the corre-
sponding shifts for normalization purpose before passing to the rounding operation,
with the compulsory exponent adjustments, accordingly. Following the normaliza-
tion process, the bits of interest for the rounding are the round bit—situated imme-
diately to the right of the lIsb of the normalized significand—denoted by R, and the
sticky bit—representing the result of an OR operation among all the bits situated
to the right of the Isb of the normalized significand, except the first one (i.e. R)}—
denoted by S,

If all the potential normalization cases are taken into account, the expressions for
R and § given in Fig. 5.8 can be obtained. Thus, the less significant bits (z; and zp
mantissa of Z%, from Fig. 5.7 are presented before and after the one position right
shift (Fig. 5.8a), the one position left shift (Fig. 5.8b), the two positions left shift
(Fig. 5.8¢), a case which also corresponds to several positions left shift, and the sit-
vation when Zy is already normalized, its shifting not being necessary (Fig. 5.8d).
it can be observed, for instance, that when 23, is shifted during the normalization
process by one bit to the right (Fig. 5.8a), R becomes equal to the Isb (zg) of the
non-shifted significand Zy, and § is obtained through an OR operation executed
between the old s, g and r bits.



5.1 Characteristics of the Floating Point Operation 205

Fig. 5.8 Determining the
values of the round bit R and Zybefore shifting e | Bl L] BoLOF 8
the sticky bit § by taking into ¥ ;

o AN Zafter 1-bit e
account potential cases of right-shift normalizing | Z; 5 zZ, |[gorrors

normalization 5 vk g——_
R S
R=z,
S=gorrors
a
Zbefore shifting I -1 - B2 A
Zyafter 1-bit
ieﬁ-sgiﬁ normalizing BB LT serf
R S
R=p
S=gs
b
Z, before shifting R -7 -0 S S
Z yafter 2 bits AT g%
left-shift normalizing | | £ | 0| O 0
= -
R=0
§=0
¢
Z-before shifting AR AR
, " VTV
Z,, is normalized | & E ) 8 rars
S
R=g
{ S=rors
d

A special case is represented by the one in Fig. 5.8¢ where rounding is not neces-
sary because the situation when Zy is shifted, during normalization, by two or more
hits to the left corresponds to the obtaining of the exact sum significand, with the
conservation of full precision. For instance, as can be seen for the case f of Fig. 5.12,
this special situation corresponds to the addition of two numbers of different signs
and with near absolute values, when the alignment of the shifted operand implies
only a one position right shift, a situation in which the r and s bits are 0. The analysis
constructed for addition can be extended for other operations as well, for instance
multiplication will be treated in Sect. §.3.

These observations with regard to R and § bit adjustments being made, we shall
pass to the effective implementation of the rounding modes. Thas, if we have a pos-
itive normalized result, then it can be rounded “to nearest even”” by testing, first of
all, the value of the R bit, which, if equal to 0, leaves the result unchanged. The same



206 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Rounding Mode Z.z0 Z <0
toward - fRorS=14hen 7, -1
toward
toward e fRorS=14hen 7, + 1
toward LRz, or Sy=1} if (R(z,, or S¥=1)
nearest even then 7, +1 then Z,, -1

Fig. 5.9 The conditions for the rounding operations

situation is obtained if the Ish of the normalized result, denoted by zg,, and the § bit
are both 0, since, if zg, = 0, the normalized result is even, and it has to remain even,
as well, according to Fig. 5.3b, when R = | and § = 0 too. Otherwise, by consider-
ing things in reversed order. if the logic condition R{zg, or S = | is fulfilled, then
for rounding purpose, a binary unit is added to the value of the normalized signit-
icand, which is denoted by Zu,, namely to the Isb position zg, of Zag,. A similar
conclusion is obtained regarding the same rounding mode for pegative normalized
significand numbers as well, but, in this case, the binary unit has to be subtracted
from Zpy, FOmon94].

On the other hand, if we refer to the rounding mode “toward 400", then, accord-
ing to Fig. 5.6, the addition of a binary unit o the Isb position zg, of the normalized
significand Zyy, takes place when either of the bits situated to the right of the zp,
are |, namely when the logic condition Ror S = | is fulfilled. The same logic condi-
tion need to be fulfilled when referring to the rounding mode “toward —o0”, when,
according to Fig. 5.4b the binary unit have to be subtracted from Zy,. The synthe-
sis of what has been presented with regarding the rounding modes corresponding to
1EEE norms, enables us to obtain the rules given in the table from Fig. 5.9 [HePa03].
A blank field in the table means that the result obtained following normalization re-
mains unchanged. Mention should also be made that, by performing the rounding
according to the rules from Fig. 5.9, it is possible to obtain a carry-out (¢, ) from
the msb of the adder, which implies one more shifting, to the right, of the rounded
significand, together with the corresponding adjustment of the exponent.

Besides the rounding problem, the floating point operation also confronts that
of the exceptions handling. As far as this aspect is concerned, the 1EEE standard
defines five exceptions associated with overflow, underflow, divide-by-0, invalid
operation, or inexact result [HePa03, Parh006]. On their occurrence, each of these
exceptions sets up a flag and returns a special value of +00, 0 or NaN {(not a num-
ber) type, with which the computations go on. In case such a special value occurs as
operand in an arithmetic operation, its result is specified on the basis of some defined
rules which are part of the standard. Thus, for instance, NaN + ordinary number =
NaN, {£o0) - ordinary number = £o¢ or ordinary number/ (o) = 4-0. As has
afready been seen, special codes are assigned for special values, thus enabling the
propagation of the exceptions to the end of the computations, so as not to cause



5.1  Characteristics of the Floating Point Operation 207

stopping or aborting. The implementation of the exceptions mechanisms may in-
clude, for each of the above mentioned five types, one exception handling program,
a so-called trap handler {FrlLa04], which can be appealed to when it is authorized.

The overflow and underfiow exceptions can easily be detected through diagrams
after the exponents” adjustment. The overflow may occur only when the execution
of a right shift, for normalization purposes, is required, or when a right shift is
required by a rounding that resulted in a carry-out. On the other hand, the underfiow
may occur only when normalization requires left shifts.

As concerns divide-by-(), the flag associated with this exception is set to | if
an ordinary number has fo be divided by 0, a situation when, as a function of the
sign of the number, (<00} or {(~co0) will be returned. If square root has to be per-
formed on a negative operand, then the “invalid” flag will be set to 1, and, for the
computations going on, NaN is returned. As a matter of fact, the invalid operation
exception occurs not only for the square root of a negative number, but also on addi-
tion, when (+oc¢) 4+ (—oo) occurs, or on multiplication, when 0 - 0o oceurs, as well
as on division, for 3/0 or oo/0c. Usually, the “invalid operation” exceptions return
the NaN special value and they are treated by the unpacking and packing circuits
from, respectively the packing circuits into the IEEE standard format.

Finally, the “inexact” exception, an unusual one, has to be signalled when the
result of an operation or of a conversion cannot be exactly represented and has to
be rounded. However, such situations occur quite frequently and therefore “inexact”
is not really an exceptional condition. As an example, let us suppose that we have
m = 4 bits assigned for the mantissa and that we have to multiply (1.0011 -272)
by (1.1001 - 2% Eminy obtaining the product 11.1011011 - 2X&win=3_ Since m == 4 and,
on the other hand, R = 0 and § = 1, the obtained rounded result is 0.0111 . 2X &ain |
which determines the setting to 1 of the “inexact result” flag. In particular, it can
also be observed that the obtained result is denormalized [ScSTO05]. As has already
been presented, the denormalized numbers are defined without the hidden 1 bit and
as having the smallest possible value for the exponent, being adopted to make the
underflow effect less abrupt. Otherwise, when certain small values, which cannot be
represented as normalized numbers, and, consequently, would have 1o be rounded to
0, are encountered during the computations they are represented, with a loss of pre-
cision, as denormalized numbers. Thus, we have a “gradual underflow” {sometimes
called a “graceful underflow” [Parh00]), which requires special precautions when
setting up the underflow exception fiag. Mention should also be made of the fact
that the implementation of the gradual underflow mechanism leads to performance
and cost penalties, so that certain implementations do not accept denormalized num-
bers, choosing the faster, but less precise so-called “flush {0 zero” operation mode
[SeSTO3.

A last observation, as far as exceptions are concerned, is made with reference to
the detection of a zero result and its coding, because it cannot be represented as a
number with normalized significand. In the IEEE standard format, zero consists of
a sequence of 0 bits, except the sign one which may be positive (0) or negative (1).

Besides the problems of rounding and those of exception handling, there is also
the problem of the representation precision. Thus, besides the formats on 32 bits,



208 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

denoted “single/short” precision, and on 64 bits, denoted “double/long” precision,
the 1EEE standard also defines extended formats |ErLa04, HePa03, Parh00}. They
enable implementations with these formats to execute higher precision computa-
tions reducing the effect of accumulated errors. The two extended formats consist
of “single-extended” with > 11 bits for the exponent and with > 32 bits for the sig-
nificand (the bias is not specified, but the exponent range has to be included in the
[{(—1022), (+1023)] range) and of “double-extended” with > 15 bits for the expo-
nent and with > 64 bits for the significand (the bias is not specified, but the exponent
has to be included in the [(—16382), (4+16383)] range). As far as extended formats
are concerncd, mention should be made that they prove their utility in the control
of error propagation when several arithmetic operations are executed in sequence.
Thus, let us suppose that we have to add several floating point numbers, a situation
in which, to reduce computational errors, it is favorable to add, on the one hand, the
positive values and, on the other hand, the negative values, and, finally, to subtract
the two subtotals. If we have, for instance, to add a lot of numbers, it is possible
to obtain overflow in the computation of one or both subtotals. But appealing to
an extended format (“single extended” for simple precision operands, and “double
extended” for double precision operands), the probability of overfiow occurrence is
greatly reduced [HePa031.

5.2 Floating Point Addition and Subtraction

5.2.1 Floating Point Addition and Subtraction Without Rounding

We prefer a gradual presentation of the problems regarding floating point addition
and subtraction operations, not dealing, at the beginning, with aspects connected
with rounding, as well as the unpacking of the operands from/packing the result into
a standard format. Thus, we will assume a structure of the type preseated in Fig. 5.3,
in which we consider that the operands arrive in unpacked form (with explicit hidden
bit), i.e. the bus dimension is of (m - ¢ 4+ 2) bits, namely ¢ for the exponent, s for
the mantissa, one for the sign and one for the hidden bit. As compared to what was
presented regarding the significand unit from Fig. 5.3, we also assume that not only
the A register has the capacity of right-shifting {(we suppose A can also support the
left shift operation), but also the M register. The two registers, A and M, have each
{m + 2) bits, thus being abie to store the significand numbers together with their
signs. Register A has also, assoctated with it, a flag, A_COUT, which is implicitly
setto 1, when a carry {c,,) is obtained from the msb of the adder/subtracter.
Regarding the exponent unit, the comparison of the contents of the two exponent
registers, E1 and E2, each of them of e bits, is achieved using a subtraction, whose
result is loaded in register E, also of e bits. This last register has the capacity to
increment and decrement its content, operations encountered both in the alignment
of the significand numbers, and in the result normalization, obviously, except on the
occurrence of overfiow or underflow situations. Mention should be made that in E is



5.2 Floating Point Addition and Subtraction 209

adder/subtracter 1
declare repister AlGmet 100], MG+ 130], Ei[{e-1):0], BE2f(e-1):0},
Efte-1%0], A_COUT, ERROR;

declare bus INBUS[{etmet 100}, OUTBUS[(e-+me+1):0);

BEGIN: A_COUT:=0, ERROR:=0,

INPUT: EL'=INBUS(X,), A:=INBUS(X,);
E2:=INBUS(Y ), M=INBUS(Y,);

COMPARE: E=E] - E2;
ALIGN: if E<0 then Ac=qight-shift(A), E=E+1,

2o to ALIGN;
if B>0 then Mi=right-shifti(M), Er=f-1,
2o to ALIGN;

ADD/SUBTRACT: A=A =M, Eesmax{E, E2);
OVERFLOW.: if A COUT=! then begin
L E=E,,« then go 1o ERROR,
Ac=pight-shifi(A), E:=E+1, go to END; end
ZERO: if A=0 then E:=0; go to END;

NORMALIZE: if A is normalized then go to END;

UNDERFLOW. if E>E,,, then A=lef-shift(A), B:=E-1,
g0 to NORMALIZE;

ERROR: ERROR:=1;
END:

Fig. 5.10 Decscription of the addition/subtraction without rounding impiemented on a loosely cou-
pled fioating point ALU

foaded, following the alignment completion, the value of the greater exponent from
among the contents of E1 and E2, which fest is supposed to be done in a hardwired
mode.

Following these remarks, Fig. 5.10 (adapted from [Haye98]) presents in the usual
description language the code sequence corresponding to the addition/subtraction
procedure, from which have been totally omitted the problems of rounding, all the
bits which, through shifts, leave the registers being considered fruncated, lost ones.
Mention should be made of the fact that in the description, when loading the reg-
isters with the input operands (the INPUT statements), the INBUS bus bits that
contribute to the exponent part and to that of the mantissa have not been detailed,
only the operands being specified (X and Xy, and ¥ and Yy, respectively). Also,
the left and right shifting operations, as well as those for verifying that the result is
normalized have not been explicitly presented. We have resorted, in the same way,
to other simplifications as well, such as the exceptions that have been summed up
only in some possible situations of overflow and underflow, as well as in zero re-
sult situations. Thus, one single flag, ERROR, is provided which is set to | when a
right shift of the result significand in A is required and the exponent already has the
maximum value that can be represented, i.e. Eyax.

Referring to the procedure presented in Fig. 5.10, following the loading of the
operands, and before the exponents comparison, it is recommended to perform a
zero test on both significand operands, because if either is zero then the result may
be anticipated without going through the whole procedure. As for the rest, the el-
ementary operations are connected according to (5.1), namely that following the
comparison-through subtraction——of the exponents, the alignment of the mantis-
sas is performed, an operation for which an intervention in the procedure to stop



210 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Input Bus

‘ El E2 M1 ’ M2 ”
¥ " Exponent
4 , COmparison
>—l i—< and mantissa
o alignment
Adder] Shifter]
i El-E2 l
,,,,,,,,,,,,,,,,,,,, |
Yy Mantissa
Adder? addition/
sabtraction
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Yoo
A
Register R
o | Zero digit] Y
v ¥ ,L = | checker | \
o Result
Adder3 7 Shifter2 | pommalization
¥ k.
E3 M3
AAAAAAAAAAAAAAA L JUUTUN. 4

Fig. 5.11 Tightly coupled floating point adder/subtracter with hardware mechanisms for speeding
up the additon/subtraction process

the shifts for alignment purposes is possible after {m -+ 1) steps and not after £
steps. This is because we may have |E] > (m + 1} and then the number of steps
given by the difference ([E] — m — 1) is useless, the shifted significand becoming,
anyway, zero. The procedure being followed after the alignment of the significand
numbers, the operation proper will be executed, which is followed by normaliza-
tion of the result for its packing, with the nccessary testing for exception cases.
To this description of the addition/subtraction procedure, there corresponds, almost
exactly, the block diagram of a famous computer in the age of medium and large ca-
pacity systems, of mainframe type, namely the IBM/5360 model 91. This machine
includes two separate floating point units, one intended for addition and subtrac-
tion (add unit), and the other for multiplication and division (multiply/divide unit)
[Haye98]. We shall refer only to the add unit which enables the addition/subtraction
of numbers on 32 bits and on 64 bits. The reason for introducing the biock dia-
gram corresponding to this unit (Fig. 5.11 {Haye98]) in this chapter is to highlight
some hardware mechanisms for speeding up the addition process, besides the fact
that it represents a synthesis of what is shown in a more detailed way in Fig. 5.10.



5.2 Floating Point Addition and Subtraction 211

Thus, the two exponents are stored in registers El and E2, and the difference be-
tween their contents, assessed using Adder 1, determines which of the mantissas
(the notion of significand was not yet known), stored in registers M1 and M2, has
to be shifted to the right for alignment purposes. Mention should also be made of
the fact that the radix of the number system, corresponding to the whole product
line to--which belongs the above-mentioned computer, is r = 16. If it results that
El - E2 =k, because £ is a hexadecimal number, the shift to the right has to be
made by 4k binary positions. This whole process of mantissa alignment is acceler-
ated through a combinational shifting circuit, denoted Shifter 1, which enables the
simultaneous execution of this operation for the 44 bits. Then, the shifted mantissa
is added tofsubtracted from the non-shifted mantissa using Adder 2, representing
an addeg/subtracter on 56 bits (the value that results from the subtraction of the
sign bit and of the 7 bits assigned to the exponent field from the dimension of the
64 bit format) implemented with several carry-lockahead levels. The preliminary
sum/difference is temporarily stored in register R, whose content is investigated by
the combinational circuit called the Zero digit checker, having the function to de-
termine the number of hexadecimal digits equal to zero, the so-called leading zeros,
that must be eliminated through the normalization process. The value established
through this second structural element intended for the acceleration of addition,
constituted by the Zero digit checker, determines, on the one hand, the number of
hexadecimal positions by which the sunm/difference preliminary mantissa from R
has fo be left shifted. On the other hand, the number determined by the Zero digit
checker has 1o be subtracted, using Adder 3, from that found to be greater in the
comparison of the exponents, thus completing the normalization process with refer-
ence to the exponent by storing its final value in E3. Regarding the mantissa from R,
its left shifting by the number of positions established using the Zero digit checker is
ensured by a third structural acceleration element represented by the shifting com-
binational circuit Shifter 2, at whose outputs the final mantissa is obtained, which is
stored in register M3. Obviously, the three acceleration circuits, as well as the radix
r =16, determine some of the differences between the block diagram from Fig. 5.1
and the description from Fig. 5.10, to which there are added the direct cominuni-
cation lines between the exponent and the mantissa units, outlining a rather tightly
coupled technical solution as compared to one where the communication is predom-
inantly done via a bus.

5.2.2 Floating Point Addition and Subtraction with Rounding

Before presenting the addition procedure, we resume owr examination, by using ex-
amples, of rounding problems. We recall that given, for instance, mantissa X3, of m
bits and significand Xy with sign and having (m + 2 bits, then the sum/difference
result Z will have (m - 6) bits, being of the form 2.241240-Zm—12m—7 - . - 21 Z0&TS,
where, from left to right, z. represents the potential carry-out bit (A_COUT in
Fig. 5.10), z41 and zjp represents the value resulting from the operation on the hid-
den and sign bits of the two significand numbers, z,,_1Zm—7 .. .21 20 fepresent the



212 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

m bits assigned to the mantissa and, finally, g, r and s represent the known guard,
round and sticky bits used for rounding. As concerns these last three, in Fig. 5.12
are given illustrative examples of their use in the rounding process.

We can observe the comparison, it being the primary aim, between the results
of the operations, first executed exactly, with infinite precision, and subsequently
rounded (column “Operation with infinite precision and followed by rounding” in
Fig. 5.12) and the results of the operation with direct rounding (column “Operation
with rounding” in Fig. 5.12), executed on the bits length of an operand to which the
three bits g, v and s are added. The examples from the “Operation with rounding”
column particularly highlight the changes in the g, r and s bit positions. However,
mention should be made that in order to obtain the g, r, and 5 rounding bits, the
steps of the procedure to be described befow were not applied ad ltteram. Moreover,
a top-down examination of the example operations, from case ¢ fo case f, highlights
the fact that corresponding to a decreasing difference between the two floating point
numbers, the positions of the rounding bits (g, r and 5) change. But mention should
be made that in order to obtain the g, . and 5 rounding bits, the steps of the procedure
that will be described below have not been applied ad fitteram. The motivation for
the presented examples, from case ¢ to case f, was to render evident the mechanisms
by which the relevant bits with respect to the rounding (g, r, and s5) are modified
as the difference between the two floating point numbers decreases. Nonetheless,
all the resuits in the “Operation with rounding” column are consistent with those
obtained by applying ad litteram the steps of the algorithm. In Fig. 5.12 there are
also presented, in the last colwmn, the ¢ errors consisting of the difference between
the rounded result values and those corresponding to the exact operation (in the
column “Operation with infinile precision and followed by rounding™), both of them
computed in decimal, in accordance with the IEEE 754 standard’s rules in order to
find a systematic correlation between the decreasing difference of the operands and
the error £. As it can be observed, such a correlation does not exist.

In connection with the guard bit g, the example cases ¢ to ¢ highlight its necessity
because the first bit of the intermediate result becomes 0 and, through the successive
normalization operation, one position left shifting is required, thus g becomes the
Ish of the normalized result. Instead of the old g bit we have, through left shifting,
r, while r will be substituted by s.

Mention should be made that for the examples presented in Fig. 5.12 (except
case f where the result is exact), “toward nearest even” rounding mode (Fig. 5.9)
has been used. We now recall that s binary values have been obtained through OR
operation of all the right-shifted (in the alignment process) significand bits {except
the g and r bits) which are situated to the right of the non-shifted operand’s Ish.

Hereinafter we point out that example f (Fig. 5.12) can be used to answer the
hypothetical question whether only one g guard bit is sufficient. As the difference
between the two operands decreases, it can be chserved that in the first instance
two 0 bits (subsequently, more 0 bits) occur in the most significant positions of the
intermediate result, and, at a first analysis, it would require more than one guard
bit. However, this is not confirmmed because, when the operands are of close abso-
tute values, the result representing the difference becomes exact (referring to the



5.2 Floating Point Addition and Subtraction

. Operation with infinite precisi o .
Case] Example operation p?:é“f)gu\gl wefbﬁ;uﬁz;:im Operation with rounding)  Brrore
1.000 i- 1.000
1006 -0.000001011 11/512 - 0.000001 s01_ 11
10113 GTIg0I0]  (s01/51 (1’31% 5127 313
1.11 -
a " 1 s y + lgr"\s
\1)0 000 — 1. 000 (I-Z'Zi) 10.0060 — 1000
cmﬁl
1.900 1- 1.000
-0, 0000101 ] 11256 - 0.000011
11-3‘;?.2.5 0. 11110001 (12‘5723 138
P 1111
'y =0
131 ((1%)-2") 256" 51
1.000
1.900 1.
Looo -0, 0001011 11/128 E 5-??{“‘“ 1%
' 4 0. 111030 117/128 )
e -1.011-2 111006 11X :wgw(_g;]
‘ +_ Igrs 2% 7512
+ 1 rs -
T (0+h2) LI
1.000 1- 1.000 13.53
o | o (g | am | Y
PAeg - 53/64 - ool -8
d | -Loi2 1.101@ 1.1 (AN v
ry grs
1 1701 ((14%)'2“) 1101
1.900 1- 1.000 5 o1
L 000 %glm{n; 1132 - 0.010110 25
e | -loil 3 1'})1@” 21732 I e
m 32 7512
610 ((1 A,mjf-}»z“)
{ 1- ) 1.000
11/16 - 0.101100 5 .5 .
L.o0G T6 "6 =0
PR YiE 3 16 oo
- =
.J,i_ ~ Bgrs
010 {0 ,4)-22) (610
1.100 32+ 1100
+0,1011 116 + 0.101 9 35_ 1
1.100 n éO. 00 35/i6 10.00 4 16 16
g | 101132 ], OO 1.00
+ 1w 1 + 1 s
1.001 — {1.001 ((1%}-2) 101> 1061

Fig. 5.12  Analysis of some edifying example cases for realizing the rounding process



214 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

example case f (Fig. 5.12), when r and s are 0 and r is shifted to the Ish position of
the result, so that ¢ = 0 is obtained), and thus the rounding is no longer necessary.
Consequenty, in order to avoid loss of precision as compared to a result obtained
exactly and then rounded, one guard g bit is necessary, but also sufficient.

The g example in (Fig. 5.12) highlights the possibility that when adding two
significand numbers, carry (cay) from the msh of the result may occur, which, for
normalizing purposes, imples one position right shifting of the sum. But this de-
termines a modification, in the reverse order as compared to the previous example
cases, of the g, r and s bits, » being substituted by the 1sh of the result, and the new
s being obtained through an OR logic operation on the old r and s bits.

Passing below to the detailed description, in steps, of the floating point addi-
tion/subtraction algorithm, we wiil suppose X and Y numbers as input operands
represented in compliance with the IEEE 754 standard.

Step 1 As the Hrst operation, there will be performed, according to the previous
presentation, the unpacking of the operands, which implies, for each operand, first of
ail, the separation of the sign, of the exponent, and of the mantissa with the explicit
insertion of the hidden 1 bit of the significand, then the conversion of the operands to
the internal format (the extended formats, single-extended or double-extended may
be appealed to} and, finally, the testing for the special operands and for exceptions
(for instance, the recognition of NaN inputs or of the adder bypassing cases when
one or both operands are equal to 0).

Step 2 The computation of the difference between X and Yy exponents follows
in order to determine the quantity based on which the alignment operation of Xy
and Yy significands will be executed. To save circuitry, right shifting for alignment
purposes is often perforined for only one of the operands [HePa03, Parh00]. Thus,
assuming that the only register used for the imitial storage of Yy has the presented
preshifting capacity, then, if Xg < Yg, the swapping of the operands is performed.
In this way, the exponents’ difference of d = X — ¥ becomes = 0 and the result
exponert Zp will be set to the value Zg = X, according to {5.1).

Step3 The operation in this step applies only in case the signs of the two operands,
sign(X) and sign(Y'), differ. This situation corresponds to the case when the content
of one of the significand registers, let us assume the one provided with the capac-
ity of right shifting, is substituted by i#s two’s complement. By further discussing
this aspect, we show that certain implementation solutions provide complementation
fogic in a selective mode (according to some authors [Parh(0}, if one operand is not
preshifted, this is to shorten, in terms of time, the critical path). If, for instance, the
operand is negative {sign(X} = 1) and only the register storing Yy has complemen-
tation logic, where sign{¥) = 0, then Yy is two’s complemented and the sign of X
is ignored. The result obtained is (X — ¥) instead of {(—X -+ ¥, a fact which will be
taken into account when establishing the sign of the final result. As concerns the de-
scribed procedure, we assume that the register provided with preshifting capacity is
also provided with complementation logic, the sign of the result being established,



5.2 Floating Point Addition and Subtraction 215

when sign{X) = sign(Y'}, at the end of the procedure, in step 9. If the signs of the
operands coincide, then the common sign is ignored until the end when it is attached
to the result.

Step4 The register provided with complementation logic consists of (m + 3) bits
(1 {sign bit) + 1 (hidden bit) + m (bits assigned t0 the mantissa) + 3 (bits for
rounding)). The significand from this register is right-shifted by d = X — ¥ binary
positions, an operation in which, if the two’s complemeniation has taken place in the
previous step, 1s instead of Os will be introduced, evidently, through the left side of
the register. As a result of this right shifting, in the first rounding bit, the guard bit,
comes {0 be the last bit shifted out of the (m + 2} bits of the register proper, in
the second rounding bit, the r round bit, comes to be the bit which, through shifting,
feaves the (m --2) bits of the register before the bit that has become g, and in the third
rounding bit, the sticky bit 5, comes to be the result of the OR operation, assessed
during shifting, all applied to the bits that leave the (m + 2) bits of the register,
except those which have become g and r.

Step 5 This step is dedicated to the computation of the preliminary result sig-
nificand, 7y, through the addition/subtraction of the {m - 1) bits {(hidden bit) +
m (bits assigned to the mantissa)) of the significand, possibly complemented (in
step 2} and/or right-shifted (in step 3). to the (m -+ 1) bits of the non-shifted sig-
nificand. As a result of the preliminary addition/subtraction operation it is possible
to obtain from the adder’s msb a carry (¢) which is required to be stored-—{or
a subsequent test—in a flip-flop Hag, to be attached to the memory ranks storing
the result significand. Following the operation execution, it will be tested whether
sign(X) # sign(Y} when if, moreover, the msb of the result significand Z ;g has be-
come | without baving generated carry-out, then Zu is undoubtedly negative and
has 0 be subject to an additional two’s complementation. If the example cases a to f
from Fig. 5.12 are transposed in terms of the described algorithm, it can be derived
that any me ¢,y is generated, the msb of result Zyy is O (this msh may also be 1 if
the first operand were, for instance, of the form 1.11...). The necessary condition
for no ¢gyr is for the msb of the complemented operand to be {0, but this implies no
preshifting in step 4 or, in other words, d = 0. Morcover, when the conditions of the
analysed case are observed, it can easily be seen out that the subtracted operand is,
in its absolute value, greater than the minuend. Hence Z,y, which is negative, has
to be substituted by its two’s complement, to return to the expected sign-magnitude
form (as is required by the IEEE 754 standard).

As concerns the adder implementation, a fast version of the carry-lookahead type
is recommended that enables the execution of the operation in two’s complement
within a logarithmic time interval {Parh00]. The potential two’s complement of Zy
obtained through the, in this work widely used, implementation of passing the com-
plemented bits through the EXCLUSIVE-OR wordgate (which gates, having one of
the inputs connected to 1, assures the one’s complementing) applying them to an
adder whose ¢, input is also setto .



216 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Step 6 This step is dedicated to pre-normalization operations on the resuilt signif-
icand Zyy. This may not be the final normalization because, in a subsequent oper-
ation (step 8), carry-out may possibly be generated (refer to the example case 4,
Fig. 5.12), requiring an additional normalization operation.

Obviously, if sign{X) = sign(¥) and if, in the addition/subtraction step, carry-
out was generated (refer to the example case g, Fig. 5.12), then Zy will be shifted
by a binary position to the right, by introducing the carry-out bit as the msb of Zy.
1t is also required to adjust—by increment—the value of the result exponent Zg, as
a consequence.

In case there is no agreement with the above described situation, £y shifts to the
feft until the pormalized form of the significand is obtained. When the shift is made
by one position o the left, the value of g will be introduced in the Ish of Zyy (refer
to the example cases a to e, Fig. 5.12). If, for normalization purposes, if s necessary
to shift Zyy to the left by two or more binary positions, then Os will be introduced in
the “tail” of g (refer also to case f, Fig. 5.12). Each of these situations requires the
adjustment—hby decrement—of the value of the result exponent Zg, in the proper
mode.

Below, we will refer to the implementation of the shifting mechanism for nor-
malization purposes, which, in principle, is similar to that for the alignment of the
significands, used in step 4. In this conlext, it is {o be noted that the alignment mech-
anism is required to produce a shift to the right by m bits (we take into consideration
the procedure’s stopping condition when d is equal to or exceeds the length of the
non-shifted operand), while the normalization mechanism has to produce either a
shift to the right of one bit or a shift to the left by anything from 1 to m bits. Re-
ferring to the normalization shifter, one hardware implementation alternative could
be the endowment of the result storage registers with bidirectional shift capabili-
ties. However, the variable number of CLOCK pulses required, which can be as
high as s, can become prohibitive for practical formats. This observation makes the
above solution impractical in terms of the incurred costs. Another implementation
option for the normalization shifter consists of using of two separate devices, one
used for shifting to the right, the other for shifting to the left, but there is also the
solution of combining the two functions by using a combinational shifter. In order to
present the constructive characteristics of such a device, Fig. 5.13 presents the sim-
plified case of a 4-bit register with ranks named as z3 to zo. The register’s content
can be shifted, as observed from Fig. 5.13a, by 1, 2 or 3 bits to the left, and by 1 bit
to the right respectively. Each of these operations have an associated control signal,
namely [y, Iz and /3 for controiling the shift to the left by 1, 2 and 3 bits respectively,
and r1 for controlling the shift to the right by 1 bit, while [/ry corresponds to the
binary value’s conservation for a particular rank, for the case of that rank not be-
ing shifted. The Boolean equations corresponding to the shifted ranks z3, to zg, are
depicted in Fig. 5.13b while a potential encoding of the selection signals for an im-
plementation alternative using 5-to-1 multiplexers is given in Fig. 5.13c¢. Thus, from
the three variables associated with the selection signals, r is used to distinguish the
shift direction, with r = 1 for the generation of the signal ry = 1 which commands
the 1 bit right shift and with r = 0 for the left shifts or for the no shift case. The left



5.2 Floating Point Addition and Subtraction 217

inputs Outputs
L L L,
Ty Ry Fig Fopn glei0j0(06|l010 1
B E G F o U e il a0y, |00 100010
B 0l z,, = 2, & zpl bz e or 00, 0ot olololtiolo
Z % 00 z,, = 2.l + 2l e GO, T
00 0 2y = 2k v pr LA 0L G 0 0100
0 2z 2 - 1o 01|00 00
a b 1o 1]0/0]0o/0|o0
1| 1{040 00100
% B A O tjtjt1yojoflolo|o
¢
¥ A 4 L 4 y_ ¥ l ¥ ¥
00 K0 001 O0r0 Oif Mg 4 10 [T
d rg 5tol ; ; 5tol
s MUX S MUX
,
I
I
! A 4 v v L J
3 s &g Zpe

]

Fig. 5.13 Implementation of a bidirectional normalization shifter in a 4-bif simplified version
using muktiplexers

shift amount is encoded by the binary combinations of the variables denoted by I}
and 7 (Fig. 5.13c), allowing the generation at each multiplexer’s decoder output of
the four signals: from /3 = 1 {associated with a 3 bits left shift) to [/rg = 1 (when
no shift is requived). Using the content of the table in Fig. 5.13¢, a potential imple-
mentation of the equations from Fig. 5.13b is represented by the technical solution
using 5-to-1 multiplexers as presented in Fig. 5.13d. At each of the data inputs of
the four multiplexers are marked the binary combinations for the triplet (+/]1]} that
open the multiplexer's channel for passing the input signal z; (where | =0 to 3) or
0 to the outputs z;, (where j = 0 to 3},

By extrapolating the suggested simplified solution in Fig. 5.13 to the number
of bits employed by the IEEE 754 standard’s formats it can be observed that this
technical solution raises some difficult signal loading problems {see for example in
Fig. 5.13d the fan-out corresponding to the zg and z; outputs of the result storage
register). One possible solution to the loading problem can be achieved by the use
of the multitevel multiplexers approach [Parh00], which, on the other hand causes
additional latencies and increased power consumption. In any case, achieving a bet-
ter performance/cost/power trade-off for a particular shifting device determines the
number of levels for the multiplexers,



218 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Another problem, specific to the shifting process, consists of the determining the
number of bits to be shifted. As far as the shift for the alignment of the significands is
concerned, problems occur only when the exponents difference d is negative, but by
means of operands swapping, this can be avoided. Concerning the right shifting for
normalization purposes, this is triggered, when sign(X) = sign(¥), by the 1 status
of the carry-out flag, set during the previous step. Obviously, if this flag is not set,
and if the hidden bit is 1, no normalization shift is required. However, if the result
from step 5 has leading Us, these have to be eliminated through left shifting until
the hidden position has a logic 1. From the technical point of view, the solution
consists in a leading zero counter or, more elaborate, in the prediction of the leading
I bit position of the result concurrently with the operation computation. In the latter
case, the delay introduced by the leading | detector on the critical path is eliminated
[VILGO6, Erl.a04].

As a last remark connected with the technical solution for shifting, we show
that the shifters, one for the aligninent of the significand numbers, and the other
for normalization, may be combined, for an economical implementation, in one
device with bidirectional shifting capacity. If for performance purposes we aim at
an arithmetic pipeline, then separate preshift and postshift devices are recommended
[Parh00].

As also shown for the adding/subtraction algorithm without rounding (Fig. 5.10),
through the right-shift for normalization purposes and the necessary incrementing
of the result exponent Z g, a larger than the maximal allowed biased value might be
yielded {254 in single-precision, and 2046 in double-precision, respectively), which
requires the signalling of the overflow exception status. Within the same context,
if a denormalized value is obtained as the result, an amendment to the procedure
is required, namely that the normalization operation through left shifting, with the
corresponding Zp exponent decrement, is carried out only until its biased value
reaches the limit (1 being the still tolerated value). Under these circumstances, the
msb of the result significand equaling 1 represents a normalized number, while the
0 msb stands for the case when the number becomes denormalized, which requires
the signaling of this exception status. If following normalization, Zp has obtained
value 1 and, moreover, all Zy bits have become 0, then the underflow exception
status has been reached and it must be signalled appropriately [ScST03, Kore()2].

Step 7 The operations in this step are dedicated to the adjustment of the values of
round bit R and sticky bit §, with the aim of preparing the rounding in the following
step.

Thus, if the result significand 7y has been shifted, for normalization purposes in
the previous step, by one position o the right, then, according to Fig. 5.8a, R = z
(R takes the value of the Isb of Zy before shifting} and S = g or r or s, where g,
r and s represent the values of the rounding bits before shifting {refer also to the
example case g, Fig. 5.12).

But if the result significand Zyy did not require shifting for normalization pur-
poses, then, according to Fig. 5.8d, R = g and § = r or 5 where g, r and s are the
old values of the rounding bits.



5.2 Floating Point Addition and Subtraction 219

Fig. 5.14 Table for

establishing the sign of the swap | compl | sign(X) | sign(¥) | sign(Z)
addition result f'qr the cases Yes + ~ i
when operands sigas differ
Yes - + +
No No + - +
No No - + -

If, in the normalization step, Zy has been shifted by one position to the left,
then, according to Fig. 5.8b, R and § maintain their old values, ie. R =r and S =35
{(refer alse to the example cases a to e, Fig, 5.12).

Finally, if Z5s has been shifted in the previous step by two or more positions (o
the left, then, according to Fig. 5.8¢, R = 0 and § = { {(refer also to the example
case f, Fig. 5.12).

Step 8 This step is dedicated to the rounding of the result significand Zy, which,
having passed through normalization, will be denoted by Zy,. This operation is
executed based on the table from Fig. 5.9, by using the R and § values determined
in the previous step, and consists of the addition of a binary unit to the i1sb position
of Zy,. If the rounding causes a carry-out at the msb, then the new value of the
significand has to be shifted fo the right by one binary position and, also, the value
of the result exponent Zg has to be adjusted by incrementing. To this case there
also applies the observation from step 6 related to the necessity (o test the potential
occurrence of the overflow exception status.

Step 9 The sign of the result will be added, in this step, to the finite values of the
previously computed exponent and significand. Obviously, if the X and ¥ operands
have the same sign (sign(X)} = sign(Y)), this sign will also be the sign of the resuls
(sign{Z}). If the signs differ (sign(X) 5 sign(¥)), and reference is made to addi-
tion, then the sign of the result (sign(Z)) will be obtained by means of the table
from Fig. 5.14 [HePa(3}1, as a function of the operands’ signs and by taking into
account whether swapping of the operands took place during step 2 {(swap column)
and whether two's complementation of the preliminary result significand Zjy; took
place during step 5 (comp! column). The empty fields in the table represent the fack
of any operation. A first comment concerning the table elements refers o the cases
when swapping of the operands is needed, cases when sign(Z) coincides with the
sign of that operand of the two whose absolute value is greater. the operand whose
significand will not be shifted in the alignment operation. On the other hand, when
there is no swapping and no two’s complementation in step 5, if reference is made,
for instance, to the third row of the table, the significand of the operand ¥ will be
two’s complemented in step 3, and thus, it will have 0 in the hidden bit position.



220 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Since the significand of the operand X has | in the hidden bit position and the com-
plement of two is not performed in step 3, this means that in the addition ¢, will
be generated from the hidden bit position, the absolute value of the significand Xy
being greater than that of the significand ¥y, therefore the sign of operand X (+) is
preserved (this situation corresponds (o the example cases a to f, Fig. 5.12). Through
similar reasoning other result signs can be justified as presented by the table from
Fig. 5.14.

Step 1¢ The result packing is performed during the last step of the procedure,
which tmplies the removal of the hidden bit and the combination of the fields of the
sign, exponent and significand, as well as testing for special values or exceptions
{e.g. zero result, overfiow or underflow). Special attention is dedicated to the con-
version of the operands (at unpacking—step 1) and to the conversion of the results
(at packing) between the ordinary and extended representation formats. Thus, the
packing of a significand resuit an extended format, with several bits, into one with
fewer bits, would require an additional rounding step. This might be avoided by us-
ing the procedure’s rounding step to obtain the compressed result significand at the
desired precision level [Parh00]. It is worth mentioning that if, following the nor-
malization and rounding operations, the biased value of the exponent Zp > 1 and
if the hidden bit of the result significand Zyy is |, then the packing is executed nor-
mally, with the omission of the respective 1 bit. However, if Zp =1 and the value
of the bit from the hidden position is 0, the result is a denormalized number, and, in
packing, its exponent field has to be set 10 0.

Below, we illustrate the application of the steps of the presented algorithm on
two examples described in paraltel (Fig. 5.15). Both of them correspond to cases
from Fig. 5.12, namely ¢ and g, respectively. In example 1, we execute the passing,
this time ad litteram, through the addition procedure. In example 2, as compared t©
case g from Fig. 5.12, the signs of the operands appear changed. Mention should
be made that in Fig. 5.15, there appear some additional notations; they are obvious,
besides those which have already been introduced, such as ¥y which represents
the two's complement of significand Yy, ¥ayo which represents the shifted value of
Yy for alignment purpose, as well as Yyen, which represents the two's complement
shifted value of ¥y Also, 20, represents the Isb of the normalized result significand
Zain, a bit yielding the rounding mode “toward nearest even” used for the examples
taken into account.

5.2.3 Speeding Up the Floating Point Addition/Subtraction Process

The problems related to the improvement of floating point additions and subtrac-
tion performance are tackled by analyzing the time-consuming operations from the
algorithm described in the previous section. Among all the operations in the proce-
dure, the additions and shifts appear as critical [HePa03} and need to be thoroughly
studied.



o
[+

5.2 Floating Point Addition and Subtraction

Step Example 1 Example 2
! X=1.01124 X,=4; X,~1.011 =112 X=1; X, ~1.011
HY=+1,0002"> ¥=0; ¥,=1.000 F¥=1.1002" > Y0; ¥,~1.100
dd(d —3-swapping d=-1-0=-1 - swapping
) X=+1.000-2°-»X,=0; X ~1.000 =.1.100-2% % X,~0; X,~1.100
F=10112" ¥ ~4; ¥,=1.011 Pol 0112 Y 1 ¥, 21 011
d=0-{-4y=4+4>0; Z,=X,=0 d=0-(-1)=+1>0; Z,=X=0
3 ~» sign(X)#sign(Y) -» ~» sign(X)=sign{¥Y)-»
Yo=0.100 | el
Y,,,Cfiﬁl()i@'%rj) YM,=Q£011
4 1 ? Fa=§=0
M4
gr s g
5 < 1ow- £t
5 Yo = 111 T 002
Zm Cor  Zg
a o Z,=1.000; Z=0+1=+1
6 Z,=1110; Z,0-1=1 LA L
7 R=p=} R=z~1
Se=ye=] S=gorrors=l gr0or(=1
R(z, 0r8) =10 or 1) =1-» R(z, 0r §)=1(0 gr 1) = 1—>
o from Fig.5.9 —» Z,= 1.110+ from Fig.5.9—» Z,= 1.000+
1 1
1.ilt 1.061
g swap=Yes, sign{X)y= -, sign(¥Yj=+ sign(X)=sign({Y)= -
- from Fig.5.14 —»sign(Z)=+ e SIgR{Z)=
10 Z=+1.111%" Z=-1.001-2"

Fig. 5.13 Examples of applying the steps of the floating point addition/subtraction algorithm with
rounding

Thus, first the additions, which appear in steps 3 (in the assessment of two’s
complement), 5 {(in the computation of the preliminary sun/difference and in the
possible two's complementation of the preliminary result significand) and 8 (in the
addition of a binary unit for rounding) will be considered. Apparently we might be
confronted with four activations of the adder, but, as noted at the presentation for
step 5, when the conditions which require the two’s complementing of Zy are ful-
filled, we have d = 0, consequently, addition/subtraction are exccuted exactly, and
the rounding from step 8 is no longer necessary. Otherwise, the presented algorithm
implies, for the worst case, three activations of the adder at most. Anyway, these ac-
tivations require a considerable latency, when taking into account the fact that they



222 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

are executed on (m -+ 1) bits, and have, according to the TEEE 754 standard, m = 23
bits for single-precision, and m = 52 bits for double-precision respectively.

On the other hand, if reference is made to the shifts, they are, obviously, the
more critical as they are performed on more binary positions. As mentioned before,
apparently, such shifts on multiple bits are required for step 4 (in the alignment of
the significands), and for step 6 {dedicated to the preliminary normalization of the
result significand), while in the final normalization after the rounding from step 8
only a shift by one position to the right may appear. Let us lay out this analysis as
a function of the absolute value of the difference d of the exponents, namely, let
us consider, first of all, the sitwation when [d| < | and consequently, in step 4, we
have a shift—to the right—of one position at the most. Under these circumstances,
in step 6 there may result a shift-—to the left—of two (refer to the example case f
from Fig. 5.12) or more binary positions. Butif |d{ > 1, in step 4 we have a shift—to
the right—of several bits, a situation when in step 6, as has already been observed,
a shift—1to the left—1iakes place, of one bit at most (refer also to the example cases
a to e from Fig. 5.12). To sums up, shifts by two or more binary positions cannot
appear in both steps 4 and 6, but only in one of them.

A Concerning the presented situation, a first possibility to speed up the addi-
tion/subtraction process consists of employing the arithmetic pipeline approach,
according to which the performance improvement comes from the throughput in-
crease. This means that, by overlapping parts of the addition/subtraction process
for vartous such concatenated operations, rather than executing these parts in se-
guence, more additions/subtractions can be executed within the same time inter-
val. The application of the pipeline overlapped execuation method to the operations
implies the requirement that they be divided info suboperations assigned to some
so-called stages or segments, whose time length shall be as balanced as possible
and shall not produce resource or data conflicts according to the processor’s execu-
tion model for overlapped instructions [HePa03]. A general diagram of a pipeline
structure for arithmetic is presented in Fig. 5.16 [Haye98].

Each S; stage has been assigned a latch register R;, usually a multiword one,
for data storage, and a processing unit C; consisting, usually, of a combinational
circuit. The R; registers retain the partially processed results as they move forward
through the pipeline, but they are also used as buffers between neighbouring stages
to prevent the interference of the information. The status changes at R; registers take
place synchronously, under the control of a common CLOCK signal. Each R; reg-
ister obiains an input data set that comes from the previous stage S;_y (except Ry,
to which data from the external source is supplied), data that represent the results
of some computations made by C;..1, in the previous CLOCK cycle. The operation
takes place on these registers using C; in the current CLOCK cycle, forwarding the
output data of the new processing to the following S; 4 stage. Thas, in each CLOCK
cycle, each stage transfers the previous resuits to the following stage and computes
a new sef of output data. In other words, in each stage a part of the computations is
yielded, and the final result is obtained after a set of operands goes through all the
pipeline stages. An increase in the throughput is obtained when more concatenated



5.2 Floating Point Addition and Subtraction 223

Fig. 5.16 Concepival
diagram of a pipelined Control Unit
structure intended for

arithmetic l l l
Daigly | ¢, Gl o oalr,  |Daia
n out
|

CLOCK ¥y &_—Y%}

Stage §; Stage S, Stage S,

@]

operations are executed, because a stage which, in the current CLOCK cycle, exe-
cutes a specific processing task over a set of operands, becomes available to execute
the same processing task over the next set of operands. Thus, at a certain moment,
for the ideal case corresponding o no resource or data conflicts, up to s operations
can be overlapped in the execution, m being considered the so-called pipeline depth.

Any operation that can be decomposed into a sequence of suboperations of ap-
proximately the same complexity becomes suitable, as has been seen in the case of
multiplication with combinational arrays (Fig. 3.51), using a pipeline structure of
the type presented in Fig. 5.16. If we refer {o the addition procedure from the previ-
ous section, a hypothetical division of the suboperations into potential work stages
would be that depicted in Fig. 5.17. Thus, in the allocation of stages, the worst case
has been taken into account, i.e., for instance, to stage Sy there have been assigned
the compulsory operand unpacking and exponent comparison suboperations, but
alsa, only in certain cases, if necessary, the operand swapping ones.

In stage Sq, the two’s complementing of one of the operands is performed only
when their signs differ, but significand shifting is necessary in all the cases, except
when d = (. In stage Sy, the adding/subtraction operation proper of the significand
numbers is executed, while, in stage 54, the result significand two’s complementing
is required only when this result is negative and the signs of the operands differ.
By comparison, the sum/ditference significand normalizing is, usually, a suboper-
ation frequently resorted to. To the last stage, i.e. stage Ss, the potential rounding
suboperations of the result significand, and the suboperations of its possible new
normalization, as well as the compulsory packing of the result have been assigned.

Following the analysis of the way the addition/subtraction process suboperations
have been assigned to the five stages, it can be noticed that in this case we have as
balanced & length as possible for each stage when loaded with the most unfavorable
(the greatest) number of suboperations. Furthermore, if 18 worth noticing that based
on the available technology, a different grouping for the suboperations from that in
Fig. 5.17 can also be considered, as shown, for instance, in [HePa03] implementa-
tion options for addition/subtraction units from some commercial chips.

In case of the so-called complete pipelining of the functional subunits (adders/
subtracters, shifting devices, etc.), i.e. the adding/subtraction unit structure includes
sufficient resources that the simultaneous execution of as many operations of a cer-
tain type as they are required can be fulfilled, then the ideal shifted overlapped con-
catenation can be executed as in Fig. 3,18, But if, for a certain functional subunit,



224 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Operand 5 . Opetand
vapacking |.. Two's » Two's roundiog
& i comple- - conmple- &
i o Significand il L&
| Exponent || g, | RRE R adding T Significad 2,
! comparison L& { | subtracting & normalizing
¥ & i | Significand Significand &
~* Operand |- ¥ shiftiog |- -» normalizing - Result
S\_’vapping H ‘ ‘ packing
/ S / S /
g ~ ~ ~ ~
Stage 8, Stage 8, Stage S, Stage §, Stage S,

Fig. 5.17 Pipelined structure with a hypothetical partitioning on working stages of the floating
point addition algorithm with rounding

Fig. 5.18 Chaining with
ideat shifted overlapping of
the stages corresponding o an
arithmetic pipeline structure

[ ¥ ¢V

. 8§08, 0 8.8 | 8¢
Operation 1 - - - e

P8, 0 8 ! 8 .8 -8

Operation 2-------— ammn e o
Operation 3 - LS &8 88!
Operationd . L T 5 L 8 F 5

e.g. an adder, there are insufficient copies of this subunit, then the activity at the
level of the corresponding subunit has to be serialized (it is said that there is a struc-
tural hazard), this causing inevitable degradation of the throughput, as compared to
the ideal situation.

B Besides the solutions based on the arithmetic pipelining principle, the addi-
tion/subtraction process speedup can be accomplished by using the paralielism ap-
proach, particularly when reference is made to the simultaneous, parallel execution
of two addition/subtraction processes [SeEv04, SeEv01}. Without losing generality,
we will focus on addition, the adaptation o subtraction being easy to perform. Also,
for precision purposes, we assume, regarding rounding, that the accepted mode is
that “toward nearest even” (Fig. 5.9). As concerns the analysis of the acceleration
based on paratlelism, expressed as a function of the operands’ signs and of the ex-
ponents’ difference value, the following three cases have to be considered,

Before taking into consideration the analysis of these cases, an important obser-
vation should be made, that the following implementations are exclusively hardware
solutions precisely in order to emphasize the dominance of the speed factor with
respect to paralielization-based acceleration techaiques. At the expense of imple-
mentation accuracy the proposed solutions consist of only combinational circuitry.
The presentation concentrates on the problems associated with the paralielization
of the procedure, and for the purpose of practical implementations a variety of
combinational-sequential logic or hardware-software trade-offs can be resorted to.
Mention should be made that the architectures to be presented in the following can
be obtained by means of reconfiguration under the control of the command signals



5.2 Floating Point Addition and Subtraction 225

appropriately generated by a control unit, signals which, for the sake of the circuits’
clarity, were generally omitted.

B1 The case when the signs of the two operands, X and Y, are identical (sign(X) =
sign(Y)).

The previously described algorithun shows that, for this sitvation, the two’s com-
plementing from steps 3 and 3 is avoided (refer to example 2, Fig. 5.15), conse-
quently the adder that has to be employed in these suboperations is not activated, the
activation being compuisory for the preliminary addition from step 5 and possible in
the rounding step 8. The problem occurs in the addition from step 3 because, in this
operation, carry-oul may (¢, = 1) or may not (¢, = 0) be generated. Therefore,
the position of the sum msb is not a priori known. For a more detailed consideration,
let us consider the case, in Fig. 5.19, corresponding to which, for the sake of illustra-
tion, without oss of generality, the exponents’ difference was assumed to be d = 3.
However, mention should be made that, in general, 4 is a variable quantity and its
range of possible values must be taken into consideration. In order to accomplish
this, one possible solution can be represented by a combinational circuit for which
the control is provided by the outputs of the decoder of the content of the register
storing the value d. Reverting to the two alternatives, in Fig. 5.19a is presented the
case when the ¢,y output of the paralle] adder is 0, and in Fig. 5.19b respectively is
presented the case when the ¢, output of the parallel adder is 1. In both situations
the rounding bits R and § can be generated in advance without needing to wait for
the completion of the addition operation. In order to accomplish this, the structure
takes advantage of the inputs ¢;, corresponding to the two adders, but in a different
manner. More precisely, in Fig. 5.19a, the shifted significand ¥y, (referring to all
but the last bits ¥ t0 v of the significand Yy corresponding to the particular case)
is added to the non-shifted significand Xy, so that when ¢, = 0, the rounding bits
can be determined in advance, namely R = y; and § = v or w. In this situation,
by taking into consideration the general rounding function R{zg, or 5) (Fig. 5.9)
and identifying the sum significand corresponding to this situation by Zyy, the fol-
towing is obtained:

Zyo = Xy + Yy + v2(zp o1 yy or ¥o)2™" (5.2)

where the multiplication by 27 suggests that the bit generated by rounding is added
to the sum’s 1sh (to the bit zp), because the significand’s mantissa is subunitary.

On the other hand, when gy = 1 (Fig. 5.19b), the context is to some extent more
complex because in the rounding function, in this case, two bits of the sum take part,
namely z; and zg, and the sum requires to be shifted one position to the left. Taking
into consideration these remarks the adder in Fig. 5.19b s divided into two parts, the
one constituted by 2 HAC and intended for adding the least significant bits xp and—
for this particular case-—y3, and the other part used for adding the X', and Y,
segments representing the significand numbers Xy and Yy, without their 1sb ranks.
By taking into consideration the new particularities R = zp and S == vy or ¥y 0F Y,
and the rank (with the output z;) to which the bit generated by rounding is applied,



5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

226

udis awes sy aawy spueiado oyl waum oD 21 SunIaa0d 10} vonriedo [apeied girm S19ppE oMl Jo uenrIndyuon g1's Hid

)
Eg 7 o L " A
% woxat T & woxaf T A X
L — % % ) “‘ E
.MMO r v .NMO Y v .”momz< Yy h 4
OVH OVeliso  20ppe PRERg Euqv - YV isey  39ppE [apjRIRg ey
et LT AT w :
(oLl Ls W- 7 7 Lo l.‘u_ w_uNW wy A..Wmv il M«l 2 ﬁm NENW n<NM LON
> e , apSpiom
vINV ANy
& T -N ~EnN H
"z
& 1 IS B
S S— 5 A, b s
U A, oy H H\ Ta5 R H W
HO ANV ‘e MO O qNy
U<U\HU& "o JODPR [{{BIRG "] 7 Yo I9ppe aRIed ™o
"]
v v Y
‘z A T L ‘7 'z z "z
MB.N . E{N -
: 2 ; 2
a«ﬁ\ﬁ‘?&mw e 0T = a%,\ﬂm\ﬂ_um\m R T P
1=
ERRE P 1,

oy PO



5.2 Floating Point Addition and Subtraction 227

and labeling by Zy the sum significand corresponding o the case ¢,y = 1, the
following is obtained:

Zygi = Xy + Yig, + 20(z1 or vy or 31 or yp)27"*! (5.3)

The two sections of the adder in Fig. 5.15b are connected by an OR gate with the
output connected to the ¢y, input of the parallel adder. The inputs for this gate are
mutually exclusive since to one of the inputs is applied the Boolean sub-function
zo€zy or 8}, with 7o = xp @ v3. and to the other input is applied the Boolean sub-
function xp¥y1, so that when xgys = 1 it follows that zp = 0 and when zo = | it
results that xg vy = 0 respectively. In other words, the position of the respective OR
gate allows for the correct covering of both the addition operation of the significands
Xy and Yy, as well as, in an anticipative manner, the possible rounding.

The circuits in Fig. 5.19a and Fig. 5.19b respectively were claborated for the
sale purpose of emphasizing the mechanisms covering the addition and anticipa-
tive rounding operations for the two distinet sifuations. The feedback connections
intervening in both these circuits, which were expected to be combinational, can
determine the apparition of oscillations intolerable for reliable functioning. As a
consequence the transition to the cumulative version of the circuit in Fig. 5.19%¢
was required, in which the lsb ranks of the adders in Fig. 5.19a and Fig. 5.19b were
separated out. These design decisions were adopted in order to highlight the connec-
tion mechanism for the EXCLUSIVE-OR gates intended for doubling the respective
gates of the FACs in order to avoid the feedback connections introduced into the cir-
cuits of Fig, 5.1%a and Fig. 5.19b respectively. The two adders of Fig. 5.19¢ operate
concurrently, and obtain two results, potentially different, of which only one is cor-
rect. The proper result is selected based on the value which results for ¢y, namely,
if this value is O the resuit of the left adder is chosen whereas if it is 1, the result of
the right adder is chosen. Aside from some special cases, to be discussed below, the
value of ¢,y coincides for the two adders. Thus, by marking the ¢, value of the
adder on the left side with ¢0, and with ¢, the ¢y value of the adder on the right
side, whenever ¢ouo = Copy = 0, the control for selecting the result of the left-side
adder is assured by satisfying the logical condition (couo © Comi Yeomo = 1, where
by © we denote the coincidence function. By simplifying this logical condition
we obtain: Tome - Conr1 = 1. However this does not cover the, previously remarked,
timit situations derived from the simplified case of adding operands X = 1.010. 2%
(=5/4 in decimal) and ¥ = —1.010- 27 (= —5/8 in decimal). By making use of
the described addition algorithm, the adder on the left of Fig. 5.19¢ provides the
result significand consisting of only 1s, namely Zy = 1111 (= 15/8 in decimal)
and 50 = 0, while the adder on the right provides the result significand consisting
of a single 1 bit(cou = 1) followed by Os to the right, namely Zy = 1.000- 21
(== 16/8 in decimal). It can easily be seen that the deviation from the result’s ex-
act value is smaller for Zuo, and this is the case for all cases similar to the one
presented above since for all these cases the value of the rounding bit R is 0 for
the adder on the right, and 1 for the adder on the left. These observations justify
the decision of selecting the result significand Zyo whenever one of the special



228 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

cases is encountered. In consequence the result is determined based on the logi-
cal condition {0 B Cour Yommd = Com0 - Cowrr = 1. By combining the effect of the
two logical conditions covering the disclosed cases, it follows that the condition
for delivering the left adder’s result is Ty = 1. justifving the fact that the layer
of AND gates allowing Zyo (Fig. 5.19¢) to pass is conditioned by variable Coup0.
On the other hand, when cgu0 = Coury = 1 the control for delivering the result Zg
of the right-side adder {Fig. 5.19¢) is assured by satisfying the logical condition
(Court © Courl owrt = Cour) * Coml = 1. Since the case cope = | and cpy = 0 can
easily be shown to not oceur, the condition copo - Cane1 = | can be further simplified,
finally obtaining ¢4 = 1. As a result the layer of AND gates, ensuring the delivery
of Zys1. has the variable ¢,y supplied to it. In this manner, by ignoring the balanc-
ing of the connections’ latencies, we obtain the united implementation of the two
adders operating in parallel, for which the sum significand Z3, is delivered by the
OR gates layer implementing the cumulative Jogical function:

ZL = ZM0 - Comt + ZM1 Coumd (54)

As concerns the case sign(X) = sign(Y), it can be concluded that by appealing to
the simmultancous, parallel execution of the two additions, in terms of the computa-
tion’s latency, the pessimistic interval required by the three adder activations, which
results at first analysis, can be reduced to that corresponding fo only one activation,
representing a consistent acceleration of the operation execution.

B2 The case when the signs of the two operands, X and ¥, differ {sign(X)
sign(Y}), but they have the same exponent (Xg = Yg).

The previously described algorithm shows that, in this case, the two’s comple-
menting from step 3, as well as the preliminary addition from step 5 are compulsory,
and this addition can be followed, under the condition that the sum’s msb is 1 and
there is no carry-out, by a new two’s complementing, now of the resulting signifi-
cand. Obviously, the sum results exactly, making the rounding from step 8 useless.
However, this situation requires, for the worst case, three activations of the paratlel
adder, if we assume that this adder is used to obtain the two’s complement by adding
a 1 via the carry-in input o the value of the one’s complement. This pessimistic sit-
sation can also be overcome by using two adders that operate simultaneously and
execute the operations suggested in Fig. 5.20.

For simplicity, it is specified that the same notations Xy and Yy have also
been used for the signed significand numbers, and that the binary unit which is
added o the ksb digits has been denoted by 1, without taking into account its
weight. We also remark that on the left side (Fig. 5.20a) the Xy 4+ (~Yy) =
Xy -+ Yyor + 1 operation 15 executed, and on the right side (Fig. 5.20b) the
(—Xp)+ Yy = Xper + Yagr + 1 operation is executed, where Xy and Yy rep-
resent the one’s complement values obtained by significands Xy and Yy passing
through the EXCLUSIVE-OR wordgates, with the control signal ¢ set {¢y = 1) by
the controf unit, when the condition {d == 0&{(sign{X} & sign(¥} == 1}) is fulfilled.
By supplying ¢} = | to the ¢y, inputs of the two adders as well, the two’s comple-
ments are yielded, so that we have the resuits of Xy -+ (V) and (X} 4+ ¥Yag,



5.2 Floating Point Addition and Subtraction

]
B
B

Case: [X,| > Yy

si@l(’x_i‘ddcn
Xm0 lx, X X)X,

~~
+ K= X, X e XX, Ko =0.%,,%, 0 X)X,

Yier™ 0-;»..5”.2--------)"0’0 Fo= 1 Yoy Ypgvonne. YVe
+ 1 +

Bt ™ By B T B sZg WA S S AU 14
Z, Lz

e e, e e,
Zig Eopy 4 Zip Ty L

[1-11 1111

I#-C,, Paraliel adder C» 0+ €., Parallel adder .

X Y, ¢(d = 0 & sign(X} = sign(¥}) X, Cfd = 0 & sign(X} = sign(Y})
a . b
Zy

OR
wordgate

AND
wordgate e

-
12 |7a %

IS ) 1%
Cow Parallel adder Cu

X,  Yeodd =0 & sign(X}) = signi¥)) X, c(d = 0 & sign(X} = sign(¥})
<

»

Cos  Paraliel adder Cu

Fig. 5.20 Configuration of two adders with parallel operation for covering the case whes the
operands have ditferent signs but have the same exponent value

additions which lead to the sums Zyy and Zyyco, respectively, the latter representing
the two's complement of the former. Thus, the two’s complement from step 3 and
the addition from step 3 have been compressed into only ope operation, followed
by the establishment of the resuit’s sign. In addition to this, it 1s worth mentioning
that one sum result, Zyy, is positive, namely, the one for which ¢y, = 1, and the
other one, Zyco. is negative, namely, that for which ¢,y = 0. Zycr needs to be
subjected to an additional two’s complementing in order to obtain the desired sign-
magnitude form of the resuit significand. Consequently, value Z,; is selected from



230 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

the adder satistying ¢, = 1. By taking into consideration the aspects mentioned, in
Fig. 5.20c is presented the cumulative structure implying the parallel operation of
the two adders, adders which also appear in Fig. 5.19¢ but which are now configured
differently through the corresponding control signals provided by the control unit,
signal, which, for the sake of circuits’ clarify, were omitted. It is worth noting, also,
the control of the AND gate layers associated with the adders by means of the ¢,
control signal derived from the adder itsclf. 1n this manner, toward the layer of OR
gates, which delivers the final result significand Z73, at its outputs, can pass only that
result significand for which ¢ = 1.

The conclusion that can be drawn for this case is similar to that from B1, namely
that the process of addition can be accelerated by using two adders {instead of one)
which function simultaneously, there being required only the length of time comre-
sponding to one activation of the adder instead of the worst case where the time
fength of three activations is needed.

B3 The case when the signs of the two operands, X and ¥, differ {sign(X) #
sign(Y}), the values of the exponents being also different (X g # Vi)

We suggest the splitting of the analysis corresponding to this situation as a func-
tion of the absolute value of the difference between the exponents values, namely
ldi=1|Xg - Ygl

B3a The subcase sign(X) £ sign(Y) and |d] = 1.

As far as this subcase is concerned, first of all, mention should be made that the
two’s complementing from step 3, as well as the preliminary addition from step 5 are
compulsory. This is related to the rounding from step 8, which becomes unnecessary
if the sum has two or more leading Os (refer also to the example case f, Fig. 5.12); the
bits involved in rounding become 0 due to the left-shift, thus the addition is executed
exactly. There are situations when upward rounding might be necessary, namely
when the leading bit 1 of the result coincides, as far as its position is concerned,
with that of the operand significand not being shifted. Consequendly, the result is
normalized and needs no additional shifting. It is also the case when, continuing the
same simplified analysis, the addition is performed, for example, on the operands
X =1.110. 2%= 7/4 in decimal) and ¥ = —1.001 - 27V (= 9/16 in decimal), for
which the non-rounded sum is 1.001. However since for this case R = 1, and the
sum’s Isb is also 1, the rounded result, obtained without shifting, is equal to 1.010(=
5/4 in decimal, as opposed to 19/16 in decimal obtained by exact calculation).

Although the sticky bit §is 0, because R and zg (the Isb of the result) can be 1, ac-
cording to Fig. 5.9, it is possible to have an upward rounding in step 8. For speedup
purposes, fet us cumulate, first of all, the operations from steps 3 and 5, computing,
by activating the control signal ¢ (|d] = [ &{sign(X) 5 sign(Y)}), the difference
between the significand numbers Xy and Y, (representing the significand Yy less
its Isb vp), as presented in Fig. 5.21. Without loss of generality, it offers an example
for the case when sign{X) = 0 and sign(}¥} = 1. In the adder from Fig. 5.21a can
be observed the situation in which the bit from the hidden position of the result sig-
nificand 7y has the logic value 1, the same as the homelogous bit of the operand



5.2 Floating Point Addition and Subtraction 23

sign hidden

2= 02, g B

#-{c,,,  Paraliel adder Cal %J o 2
R
EX-OR
& wordgate
3
K Yoo dldi= 1 & sign (X} # sign (¥)} Ay Yic, (|d) = I & sign (X} # sign (¥))
a b
2y
Jrror st s
Fpp T T
o é é é é
wordgate
AND
wondgatd y 3 wﬁgm 4 e 2
LT L) z e z B ap
e—écm,, Parallel asdder Cy Yo »—{C,M Paraliel adder Yo
EX.OR
werdgate
T Xo¥s J = : .
X, Yoo dd =1 & sign) = signiv)) Ko Yol =1 & sign(z) = sign(y))

<

Fig. 5.21 Configuration of two adders with parallel operation for covering the case when the
operands have different signs and the absolute value of their exponents difference is equal to §

significand Xy, when, if we also have yg (alias R} = z¢ = 1, it results that upward
rounding is necessary. This operation can be combined with the two operations from
steps 3 and 5, all of them being executed during step 5, because Zjyy normalization
(step 6y is no longer necessary (there is a | in the hidden position zxp) and neither is
the adjustment of values R and § (step 7). Further remarks refer to the complement-
ing operation from step 3, which is executed simultaneously with the preliminary



232 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

addition from step 3, consequently, the order of the execution of steps 3 and 4 from
the aigorithm described in the previous section is reversed. From the technical point
of view, the combining of rounding with the other operations requires the logical cir-
cuit implemented on the adder input ¢;,, which executes the OR function between
the AND operations between yg and zo (upward rounding) on the one hand, and ¥
and ¢ {the addition of 1 to ¥) on the other hand. The justification for using the OR
gate is based on the fact that the terms ypzp and Fgop cannot have the logic value |
simultaneousty.

But, if the 70 bitof sum’s significand Zyy is 0, then the normalization step 6 can-
not be omitted; furthermore, through the normalization R becomes 0 and the round-
ing doesn’t have to be executed, the result being exact. Otherwise, no rounding is
executed by the adder from Fig. 5.21b, and, after £y assessmeni and normalization,
v (alias R) becomes a bit of the significand Zyy.

For the result’s delivery the cumulative structure of Fig. 5.2{c was elaborated.
For the case that yp = 0, the results supplied by the two adders coincide. However,
if the results provided by the two adders differ, the correct resuit selection from the
two results obtained in parallel is performed based on the value of their hidden bit
zpo. Accordingly, if zpo = 1. the result delivered by the left-side adder is chosen
{with Zuy being potentially upward rounded) for which the aveidance of oscillating
behavior is realized by the supplementary EXCLUSIVE-OR gate implementing the
function xq @ ¥3. The delivery of the result significand to the OR gates layer in
order 0 become the final result significand, Z%,, is accomplished by conditioning
the AND gate layer with the value of 7. On the other hand, provided that zp9 = 0,
the result significand provided by the adder on the right is chosen (Z), is not rounded
but needs 1o be normalized) for which the condition for penetration through the OR
gates layer is realized by applying signal Zzg to the fayer of AND gates associated
with the adder. In this way, again, the three adder activations are reduced, for the
described parallel solution, to one activation, with the corresponding decrease in
computation time.

B3b  The subcase sign(X) # sign(¥) and id} > 1.

As far as this subcase is concerned, again, the two’s complementing from step 3
and the preliminary addition from step 5 are compulsory. Also, the conditions from
Fig. 5.9 determines whether to execute the rounding from step 8 (refer also to the
example cases a to e, Fig. 5.12). On the basis of the previous analyses, correspond-
ing to this situation, the position of the leading bit 1 of the difference can be only
one of two, namely, the hidden bit position of the non-shifted operand or the one
immediately adjacent to the right. In order to accelerate the execution of the oper-
ation, we stipulate, in this case as well, the combining of the two's complementing
from step 3 with the preliminary addition from step 3 through a similar solation to
that from subcase B3a, this combined step being preceded by step 4 (of significand
numbers atigning). First, let us analyze the effects of interchanging steps 3 and 4 on
the values of the g, r and s rounding bits. Thus, regarding s it can easily be seen that,
no modifications occur, s having the same value for both sign-magnitude and the
two’s complement representations. Things differ for g and r. In order to obtain their



5.2 Floating Point Addition and Subtraction 233

D SV oS S X, %, X,
Yy = L Yoo YV s V231 Vo

yoory, ory, = yoory, ory, = 1

Ay = Lk, X, Xy Kpeeeenenn XX, %y P P N S S S P X, %, %,
e =11 1 0 P o yerii 11l 4 e = L1 1 0 P, Yoy P01
+ = 1) 41 + = i1

2, =X+ Vo + 1 600 2= X+ Vi t1g

Fig. 5.22 Analysis of a subtraction example relevant for the case when the operands have different
signs and the absolute value of their exponents difference is greater than i

correct values, an additional investment consisting of the extension of the adder used
inthe Zy computation by two bits to the right is required. First of all, some remarks
need to be made in connection with this extension concerning the accomplishment
of the exampie difference from Fig. 5.22. Mention should be made that, when all
the binary digits of ¥y situated to the right of the {m - 1} binary digits of operand
Xy are O (in Fig. 5.22, yp = vy = yp == 0), then the T bit, added to the bit ¥g = 1
of the one’s complement (Y ) corresponding to Yy, propagates as carry, being
added, ultimately, to the Ish pair out of the (m 4 1) bits of the operands Xy and
Yuer. Thus, the sum Zar on (1 -+ 1) bits, consists of Zy = X + Yoy + 1. On the
other hand, if ope or more bits of Yy, situated to the right of those {m + 1) bits of
the operand Xy are 1 {(in Fig. 5.22, we consider the case ¥y = | and y2 = yo =),
then the carry propagation, provoked by the addition to the bit ) = | of the one’s
complement (¥yc1) corresponding to Yy is blocked, so that to the Isb pair of the
(m 4+ 1) bits of the operands Xy and Yycr. a 0 1s added, so that the sum, Zy, on
(m -+ 1) bits, becomes Zy = Xy + Yy

Taking into account the previous observation, fet us return to the adder extended
with two binary positions to the right of the (m + 1) bits with the purpose of ob-
taining the correct values for the g and r rounding bits. For this, let us present the
alternative situations from Fig. 5.23. We have supposed that Yy, shifted for align-
ment purposes, is subtracted from Xy, for which we considered, without losing
generality, the case when g == y3, r = y; and 5 = y; or yo. Operand Xy is extended
with two Os fo the right of the Ish position {xg), becoming Xz, and operand Yus's
one’s complement has g and 7 bits, in the positions corresponding to the two Us
of Xy, becoming Yyc1.. The two alternative situations occur as a function of the
value of the preliminary sticky bit, 5, established correctly in step 4 of the presented
addition algorithm. Thus, when s = 0, it can be observed that the addition of a }
to § yields the propagation of a carry to the Isb of the adder, obtaining, in com-
pliance with the addition from the left side of Fig. 5.22, the sum significand Zy,,
also extended by the two corresponding binary positions to the right, in the form
Zpte = Xpte + Yoo -+ 1. Similarly, when s = 1, by adding a | t0 ¥ no carry 1s gen-
erated to the adder’s Isb, so that, according to the right side addition from Fig. 5.22,



234 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

LI Tl B - T A - PR X%,

-Y, = Foyp e, yy, e rs
I
Y ¥ ¥, ALYy
5=1

X ™ X X X Ko Ko g x%, 0 0 RO B S A A S xx,0 Oi
+ Ve 11 1 1 05y 37,870 YA L1 11 05, 33 g7 1
+ 15| + st
Ly T Z By o o woee By By B "p Z, %zmzm,z,,,;,z,,,z,,,;,,j....“....zjzag r 1
ZM’:: T:XM?: + YMCN + E ZMe = XMe + YMC}z

Fig. 5.23 Obtaining the correct values of the rounding bits g and r for the case when the operands
have different signs and the absolute value of their exponents difference is greater than |

Zre 18 obtained, this time, in the form Zy, = Xy + Yaycie. What is essential is
the fact that, in both situations, the bits from Zy.’s extended positions have correct
values (z..; and r when s = (1, g and 7 respectively, when s = 1), and thus, rounding
can be executed in accordance with the presented algorithm’s requirements.

With these amendments, let us try, for the sake of speeding up the addition pro-
cess, to combine the three previously mentioned suboperations in one operation, by
taking into account the two presented sifuations, namely when the 7,0 (hidden) bit
of Zuye is 0 or 1 respectively. Thus, for zpe = 0, in Fig. 5.24a and in Fig. 5.24b,
the separate alternatives corresponding to s = 0 and s = | are presented, by making
an anafogy with Fig. 5.23. In both cases, the paraliel adders have been extended to
the right with two full adder cells (FAC) interconnected in ripple carry adder (RCA)
manner. Since we assumed that 7,9 1s equal to 0, the final sum significand Zy needs
to be normalized through left shifting by one binary position. This suboperation can
be avoided if we take the shifted bits of 2y, and thus the hidden bit (z50 = 1) moves
one binary position to the right, thus the Isb of Zyy becomes z..;. Before analyzing
the two configurations, we select, again, the “toward nearest even” rounding mode
(Fig. 5.9), with R == z_» and § = 5, by taking into account the preliminary values
of the g, r and s bits determined in the alignment step (step 4), which now precedes
the significand Yy complementing step (step 3). Under these conditions, the addi-
tion of a binary unit, for rounding purposes, fo the least significant position of Zy
{z_y), has to be executed only when R(z_; or S} =1, i.e. whenz_z{z_jors)=1.
With these stipulations, let us configure the paraliel adders so that the complement-
ing from step 3 and the addition from step 3, as well as the possible rounding from
step 8, are covered by one activation. For Fig. 5.24a and Fig. 5.24b, the set of EX-OR
gates will be poticed, which, in accordance with Fig. 5.23, enable Yycy, to be ob-



5.2 Floating Point Addition and Subtraction 235

X = X, X X, X X e X,x; . R R NS T A XX, |

+ " il
2 ¥, = L Yy P00 -Y, = L Pug il g i1

’ <1

R Tl VS TV S AU P P XX 0 O D O 35 APS PSS s e e AUN

+ Y=l 1 1 0 Vs Fs Ve £ ) t V=1 1 1 1 0y . yye 8

+ H + 0

AL 1 I8 V- - - - O z,zazw;z{ o= 12,2, 32,0 B B2 BT

Zy

0lz,, Z,2,Z,

. g :
M Yocy(d > I & sign (X) # (¥)) X, Yoo, (> 1 & sign (X} = (7))
¢ d

Fig. 5.24 Configuration of two adders with parallel operation for covering the case whes the
operands have different signs, the absolute value of their exponents difference is greater than T and
the hidden bitis 0

tained (by Y;!/l we have denoted only those bits of Y which are aligned with the
bits of X3y and for which there has been provided the EX-OR wordgate) and which
are all controlled by the ¢3 signal that comes, when |d| > | and sign{X) # sign(Y'},
from the control unit. The extended result significands were denoted by Z a0 (for
zpo =0 and & = () and Z;w@(} {for zpp = 0 and s = 1) respectively, while the result
significands were denoted by Zyo and Z7,, respectively.

The same ¢1 signal is also applied, when s = 0 (Fig. 5.24a), to the carry-in
input{c_z) of the rightmost FAC, so that its sum and carry-out outputs become
equal to z_p = r, and C‘Ll = F, respectively. Since, after the signal stabilization,



236 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

it is impossible to have | at both inputs of the OR gate (because the AND gate is
conditioned by r, and ¢, = F), we hereby justity the choice for logic synthesis of
this gate type. Looking for a solution to eliminate the respective OR gate from the
critical path, we can cbserve the fact that the AND gate output can be applied to
that FAC input with z_; sum output, where actually there is O (which is the reason
why the two least significant FACs of the two adders are not substituted by HACs).
Otherwise, the Boolean equation ¢y = (z..1r gr, F}§ is applied to the camry-in in-
put of the adder cell which generates the sam bit z_;, when 5 = 0. On the other
hand, the alternative right side circuif (Fig. 5.24b) corresponding to the case when
s = |, presents certain distinctive elements, namely that ¢..» = 0 and, consequently,
72 =7 and CL] = 0, and the Boolean rounding function R(z-; ¢r 5} becomes,
since § = § = |, equal 0 R = r. Otherwise, the Boolean equation ¢..y = Fs is ap-
plied to the carry-in input of the cell which generates the sum bit z_y, when 5 = 1.
Since the Boolean subfunctions with input ¢y, as it can casily be chserved, can
only take the logic value | one at a time, the synthesis that reunites the alternatives
from Fig. 5.24a and Fig. 5.24b can use the OR gate from Fig. 5.24a provided with an
additional input for the subfunction from Fig. 5.24b. Thus, the circuit represented in
Fig. 5.24¢ will be obtained, while the conditioning with 5, and s, additionally occurs
as the case requires.

Taking into account the necessity to avoid in the above-mentioned manner the
osciliations of the circuit, the Boolean function applied to the carry-in input, labeled
¢, belonging to the FAC with the Z{l; output, is processed as follows:

cr={(g@alr o F)SorFs = (g @earSorF=(g®c)§orF (5.3

Obviously, when c3 = 1, ¢_, given by (5.5), becomes ¢_; = F¥F or F. Using this
Tast form, the implementation from Fig. 5.24d is obtained.

¥ we now take into account the alternative 70 = 1, the essential distinctive as-
pect consists of the fact that the normalizing operation from step 6 is no longer
necessary. Of course, the final sum significand Z )y has zpg = | as msb and 79 as
Isb, requiring, velative to the circuits from Fig. 5.24a and Fig. 5.24b respectively,
the modifications from Fig. 5.25a (corresponding to s = 0), and from Fig. 5.24b
(corresponding to 5 = 1), depending on the value of the preliminary sticky bit s (de-
termined, in advance, in step 4). Before analyzing the two configurations, we recall
that we resort to the "toward nearest even” rounding mode (Fig. 5.9), with R = z._;
and § = z..7 or 5. [tis assumed that the preliminary values of the g, r and s bits have
been determined in the alignment step (step 4) which now precedes the compliemen-
tation step of the significand Yy (step 3). Under these conditions, the addition of a
binary unit, for rounding purposes, to the least significant position of Z{zp)} has to
be executed only when R{zp or §) = 1, i.e. when z..1(zp 0r z..7 or 8) = 1. As be-
fore, we shall configure the parallel adders so that they cover, with only one time ac-
tivation, both the complementing from step 3, and the addition from step 3, as well as
the possible rounding from step 8. Similar to the circuits from Fig. 5.24, those from
Fig. 5.25 also have the set of EX-OR gates with the same purpose, being confrolled
by the same c3 controf signal. In the situation from Fig. 5.23a, which corresponds to



5.2 Floating Point Addition and Subtraction 237

B L Ve G e RO XX RAP L T . S S S nx
B A 1. ¥ e Vs Y £ 1O RS 1y eV, € 1
Koo ™ 1 X Xy X i X X Xy, = ]‘Xﬂlrixlwé‘xmn?xm-(xm-.i““““‘xfxﬂ()(}g
Hemld 110, z =L UL L0 S BB T
+ L + 0:
™ 121y 2o B B e 2,2, zl,gi Zarer = V2 1B Brs B B Z:’Z;g_f_‘
Z ZE:
L Za
I ¢ z r g, Aan z 7
. u i ORS/] CE—I j
1 Coue :;,?ie: f~ “s.] BAC 4“_‘ FAC |44 +—C,., P;EZE;:; A £2=0
* ¥
EX.OR 0 X-ORy X-0OR EX-OR 0O X—ORO EX-OR
wordgate wordgate &3

g ]
Xy Yec: d | > I & sign(X) = sz’gn(Y)ﬁ

FACREFAC 5

&5 e 0
éwordgate Ef{-(}R EX-OR
vh

¥ s

4 Vi
d] > 1 & stgn(X) * Stgn(Y)) X B, (\d] > 1 & signiX) + sign(T})
d

X

Fig. 5,25 Configuration of iwo adders with paraliel operation for covering the case when the
operands have different signs, the absolute value of their exponents difference is greater thas | and
the hidden bitis 1

the case when s =0, ¢3 is also applied, according to Fig. 5.23, to the carry-in input

of the full adder cell {c.2) in the rightmost position, so that its sum and carry-out

outpufs become equal to z..p = r, and c..; = F respectively, and, through the carry

propagation to the following adder cell, consequently, 2| = § & F = g §r and
o == & F are obtained.

This last logic subfunction (c’(’J) is passed to the parallel adder input ¢y, and it
ensures the simultanecus execution of the complementation of significand Yy, and
the preliminary addition, required by the algorithm in steps 3 and 5. However, it is
mandatory to overlap the rounding operation of step 8, for which is generated, when
s == {), the following Boolecan function:

cg =z.{zoorz.aor ) =(g ®Brizgorr) (3.6)



238 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

In Fig. 5.25a, the implementation of tunction (5.5} was realized by two gates, OR
and AND. Since (g & r)r = gr, (5.6) can be rewritten in the following form:

co = (g ®rizo or gr (5.7

It can easily be observed that the signals ¢ = ¥ and ¢, given by (5.7}, cannot
have the value 1 simultaneously, which justifies the selection out of several possible
solutions of the one connecting o the ¢z, input of the parallel adder an OR gate with
the inputs ¢, and ¢;.

On the other hand, for the alternative structure of Fig. 5.25b, according to
Fig. 5.23, when s = 1, the complementation of Yy, executed concurrently with
the preliminary sum, prevents the contro} signal ¢3 = 1 from being connected {o the
carry-in input of the rightmost FAC, in other words ¢.2 = {}. This in turn, determines
7.y =7 and c..; = 0, as well as the cascaded propagation, 7.y =g and ¢j = 0. By
taking into consideration the rounding function (?3 = z..1 {Zp OF z..2 OF §), since
s = L it follows that ¢ = z_| = g, which is supplied to the ¢;, input of the paral-
el adder. By integrating the circuits in Fig. 5.25a and Fig. 5.25b, and by using the
conditionality with 5, respectively with s, depending on the particular case, the cu-
mulative structure of Fig. 5.25¢ is obtained. For this circuit, the OR gate connected
to the ¢ tnput of the adder has now, in addition to the two inputs from Fig. 5.25a,
a third input, originating in Fig. 5.25b, but a logic value of | can appear, at a given
moment, only on one of these inputs. The Boolean function implemented by the
above-mentioned OR gate is therefore:

Cin = (g ®r)zy or Tr)T or §F5 or §s (5.8)

By executing on (5.8) some simple Boolean transformations, the following is
obtained:

Cin =20 FSor @ (3.9

Provided that in (5.9) z(‘} is substituted by xg @ 37 in order to eliminate the po-
tential oscillating behavior which could be triggered by the feedback link of the zg
connection, the following expression of interest for implementation is obtained:

Cin="{x0®Varsorg (5.10

By using the notation Yy, for the significand ¥, excluding its feast significant
rank and by taking into consideration (5.10), the circuit of Fig. 5.25¢ is transformed
into the structure of Fig. 5.25d.

In conclusion, for the case that |d] > | and sign(X) # sign(Y), and the configu-
ration being established under the control of the signal ¢3, of the two results Z;m,
supplied by the circuit in Fig. 5.24d, and Z3,,, delivered by the circuit in Fig. 5.254,
it is selected as the correct result that one for which the value obtained for the bit
zro corresponds. As a consequence the cumulative structure in Fig. 5.26 results, in

which the resulting significand Z},; is equal to Z},, when 7,0 =0, and is equal to
Z:;/Il when zp0 = 1. Moreover, an analysis is required in order to cover also extreme



5.2 Floating Point Addition and Subtraction 239

znozm! EN

AND Wordgateé g% tg; %
wordgateé é
é AND
NOT wordgatey

Tru, |sz, 70 ...'\z‘g’ Z.

0. Parallel adder C.FAC +-1Cq  Paralle] adder ©n

BX-OR OR EX-OR
ordgate AND2 wordgate
g " \ ¥
X Voo,(idi > [ & sign(X) = sign(¥}) X, Ve (i) > 1 & sign(X) = sign(¥}j

Fig. 5.26 Cumalative configuration of two adders with paraliel operation {for covering the case
whes the operands have different signs and the absolute value of their exposents difference is
greater than 1

situations similar to those, exemplified in a simplified manner, such as the addition
of the operands X = [.00101 - 20 (= 37/32 in decimal) and ¥ = —1.01011 -2
{=43/256 in decimal). The exact result of the operationis O.FFEL1 10T (= 253/256
in decimal) whereas that obtained by applying the addition algorithm, adapted to the
dimension of the example, is 1.11111 271 (= 63/64 in decimal = 252/256). This
time, the value propagated through the layer of AND gates attached to the adder
on the left (Fig. 5.26) is 1.11111 with the corresponding “implicit” normalization,
representing the correct result, while the value penetrating the AND gates layer at-
tached to the adder on the right (Fig. 5.26) is 1.00000 {= 1 in decimal = 256/256).
In the typical case only one of the AND gates layers is passed through by the sum
result significand, either the one on the left (when zpo = () or the one on the right
(when zp1 = 1). For the particular extreme sitvations exemplified above, both AND
gates layers are crossed by the sum result significand, but the final result Z3; is
not affected, when taking into account the fact that it is obtained at the outputs of
the OR gates layer. Furthermore, it can be noticed that the deviation from the exact
result, as well as the deviation from the result obtained by applying the algorithm,
is smaller for the sum significand obtained by the adder on the left, and this fact
can be demonstrated without difficulty. In order to generalize the passing through
the AND gates layer of a single result, and also in order to increase the structure’s
reliability, the AND gates attached to the adder on the right will have one of their
inputs connected to the output of an additional AND gate having zpo and z;, as its
inputs, thus implementing the Boolean function {240 & 2'40)2), = 240 * Zhg-
Consequently, in this subcase as well, the three concatenated activations of an
adder, are reduced, in terms of fime, to only one activation of two adders that func-
tion in parallel, the same as in all the other analyzed sitvations. 1n an economic
design version, the reconfiguration of the adders’ circuits can be applied as a func-
tion of the operands’ signs, and of the value of the exponents’ difference. Thus, there



240 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

results a technicad solution that may become a keen competitor for the option based
on the pipeline approach.

5.3 Floating Point Multiplication and Division

if in fixed point arithmetic, muitiplication and division represent operations obvi-
ously more complicated than addition and subtraction, in floating point the situation
is reversed, therefore these two operations will be treated together. As has been men-
tioned from the beginning, relation (5.1) shows that the multiplication/division of
two floating point operands, X and Y, consists of two fixed point operations, i.e. the
multiplication/division of the significands, and the addition/subtraction of the expo-
nents. A generic block diagram for both operations is given in Fig. 5.27 [Parh00],
but it does not include the part of the circuits involved in the operation of special val-
ues {0, & o0, etc.). Regarding the unpacking of the operands (X and Y) (unpack--
Fig. 5.27), as well as the packing of the resulf (product P/quotient @) (pack—
Fig. 5.27), those methods used for addition/subtraction are still valid. Concerning
the sign of result Sz, it is obtained, in a simple way, by operating EXCLUSIVE-OR
{(EX-OR-—Fig. 5.27) with the signs Sy and Sy as operands, i.e. Sz = Sy & Sy.

The problem of the operation on exponents consists in the fact that, in compli-
ance with the IEEE 754 standard, their values X and Y are biased, representing
numbers expressed in excess of a value of the bias which depends on the represen-
tation format’s precision (with the value 127 at single-precision, and with the value
1023 at double-precision). In multiplication, when the two biased exponents, Xg
and Yg, have to be added in order to obtain the preliminary value of the result ex-
ponent, Zg, it is necessary to subtract the bias from the sum {X g + Yi) (to obtain a
value which has the bias added only once). On the other hand, in division, when the
two biased exponents are subtracted, the non-biased difference Zp is obtained and,
obviously, the value of the bias has to be added to the difference.

Thus, supposing that we adopt the IEEE 754 single-precision standard charac-
terized by bias = 127, we shall consider the multiplication and the division of the
non-standardized operands, X, = (-1 277 and ¥, = (+ D2, Referring to the bi-
ased, standardized values of the exponents, we have Xp = —7 + 127 = +120, and
Yg = +54 127 = 4132, which leads to the operations from Fig. 5.28, where for the
product and quotient resulis P and (, indexes have been used, and the nonstandard-
ized operands and nonstandardized results have been denoted by n, and the packed
operands and the packed results have been denoted by p. We can observe the sub-
traction of the bias in the computation of the product exponent Zgp {executed by
the addition of the two's complement form of the bias), as well as the addition of
the bias in the computation of the quotient exponent Zgg (executed by the addition
of the sign-magnitude form of the bias).

The described operations are executed in the block Add/Substract exponents
(Fig. 5.27), in connection with which we also mention that, regarding the imple-
mentation of the operations pointed out in Fig. 5.28, some simplifications to the



5.3 Floating Point Multiplication and Division 241

Fig. 5.27 Block diagram of a Floating point operands

floating poing X
multiplier/divider i l
Unpack
S 98 Koy N Ky T
Add/Substract Multiply/Dividel
EX-OR EXponems significands
5, Zey Zye
Preliminary | Prelimmary
adjust exponent] normalize

Round
Final adjust | Final
exponent | normalize

Pack

!

Product P/Quotient O

circuitry are employed [ErLa04, Parh00]. Thus, the subtraction of the bias 127, in
multiplication, s equivalent to the addition of a 1, by means of the ¢, input on
the exponents’ adder and the subtraction from the sum of 128, which is equiv-
alent fo the swilching of the msh of the product exponent Zgp; in other words
the operation Zgp = Xg + ¥Yg -+ 1 — 128 is executed. On the other hand, the ad-
dition of the bias 127, in division, implies the accomplishment of the operation
Zeg=Xgp ~Yp 4+ 127 = Xg 4+ Yper + 127 = Xg + (Ypor + 1) 4+ (128 — 1) =
X+ Yeer + 128 where by Ygey is denoted the one’s complement, and by Yo
the two’s complement, of the exponent operand Yp, between these two existing the
known relationship Yeea = Yeer + 1. Otherwise, Zpg is obtained by adding Yy
{Ypc is applied to an EX-OR wordgate) and by adding the value 128 through the
switching of the msb of the sum (X g -+ Yecr ).

Regarding the significand numbers, Xy and Yy, they are multiplied/divided in
the most complex and the slowest part (Multiply/Divide significands—VFig. 5.27) of
the entire multiplication/division device. Since Xy € {-+1. +2)and Yy € E41, +2),
the product of the two significand numbers without sign belongs to the [+1, +4)
range, just as the ratio of the two significand numbers without sign belongs to the
(-+(1/2), (+2)) range. Consequently, in order to obtain the result significand, nor-
malization is required by one position right shifting of the product with the corre-
sponding incrementing of the value of the preliminary exponent, and by one posi-
tion Jeft shifting of the quotient with the corresponding decrementing of the value of
the preliminary exponent (Preliminary normalize & Preliminary adjust exponent—
Fig. 5.27).



242 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

X =(-N2" - » X= (—1)12”2”(\1/.0) """ » X = 1.01111000.0....0

Mecovecersrsesmyncecorcooec? ammmmigammnmd

hidden sign  expoment manfissa
Y= (+1)2 o> Y=(12"%1T0) > ¥,=0.10000100.0....0
Z,=(-1)°"2%(1.0) Zy= (1) 2%0(1.0)
L= +120+132-127 Zp=+120-132+127
bias bias
X.=01111000 X, = 0111000
+¥, = 10060100 + Y = 01111100
+127.,= 10000001 +127, = 01111111
Zepy=01111101 =-+125 Z,, = 01110011 = +115
Z,, =1.01111101.0....0 Z,, = 1.01110011.0...0
sign  exponent  toantissa sign exponent  mantissa
Zy = (1027 = (-1)2° Zy, = (12" = (12"

Fig. 5.28 Implementation examples for exponents addition/subiraction

X, = 4740;¥, 3269 X, = 1,234:Y, = 6,789 X, =3.618; ¥, =2,770
X, ¥, =4740 3269 = X ¥, =1,234 6,789= X, ¥, =36102,7H0=
= 15,495060 = =8377626 =~ =9.999700 =
(notmalization) = 1,5495060-10’ RS R
RS = 8,377 =0,999
= 1,549:10' (rounding)__+ 1 (rounding)__+___1
{rounding) _+ i 8,378 carry out ~» 10,000
1,550-10' {normalization) = 1,000-10"
2 b [

Fig. 5.29 Angalysis of rounding situations for the floating point multiplication based on examples
adopted from the decimal sumber system

Following the suboperations’ flow, the described preliminary normalization is
succeeded by rounding, which has specific aspects for the two operations, Thus,
referring first to multiplication, we shall resort to some examples which will be
adopted from the more familiar decimal number system. If we suppose, by analogy
with the IEEE 754 standard, that we have a “hidden” decimal digit and three deci-
mal digits that form the mangissa, i.e. m = 3, in Fig. 5.29 three potential situations
for multiplication are presented. In case a, the product Xy ¥y results in (n + 1) +
(m -+ 1)) = (2m -+ 2) decimal digits and it has first to be brought into the “nor-
malized” form with one digit in the “hidden” position. The rounding suboeperation
follows, for which purpose, to the right of the (m -+ 1) digits (value 1.549) the dig-
its involved in the rounding are identified, R {round digit) and § (sticky digit). By
analogy with what has been presented in binary, in Fig. 5.8a, these digits have the
values R = 5 and § = 0 (8 = 0, only when all the digits to the right of R are 0).
Since § # 0, the rounding is made upwards by the addition of one unit to the least
significant digit of the normalized “significand”, according to the rounding model



5.3 Floating Point Multiplication and Division 243

of the “toward nearest even” mode from Fig. 5.9 (§ £ 0 is equivalent to S = | in
binary; if § had been 9, we would have chosen, between 1.549 and 1.550, the even
one, 1.550, i.e. the same result as those from Fig. 5.29, because the digit 9, the least
significant as a result of the “normalization” is odd, which is equivalent to zp, = }
(Fig. 5.9) whereas if this digit were even, then zg, would be (). As previously de-
scribed, the “significand” result has been obtained on the same number of digits as
the operand “significands”. On the other hand, case b is similar to the one already
described, with the cobservation that the Xy ¥y product results, according to the
second possible alternative, in only (2m 4+ 1) digits, a situation in which the nor-
malization, by right shifting as in case 4, is no longer necessary. Consequently the
rounding suboperation will follow (in a similar way to the one presented before), by
identifying the R and § digits. Since, in this case, R = 6, having a value superior o
5 (which, being at the midpoint of the interval, requires the additional investigation
of §), thus, the investigation of § becomes superfluous, and the upward rounding is
compulsory. Mention should also be made that the position of the digit to which the
rounding unit is added, relative to the point of the initial product X gy ¥y, differs be-
tween cases a and b. Finally, case ¢ develops in a similar way to case b, including the
rounding suboperation, in which, after adding the unit to the least significant deci-
mal digit, carry out results for the most significant digit. This requires an additional
normalization suboperation, this time through right shifting (Final normalization &
Final adjust exponents—Fig. 5.27). Obviously, in both normalization cases, pre- and
post-rounding, it is necessary to properly adjust the value of the result exponent.
Using as a model the examples given in decimal and extending our analysis to
binary numbers, we specify that, in this case as well, the product, which can result
in (Zm + 2) or (Z2m + 1) bits, has to be rounded to (m + 1) bits to correctly pack
the result, in compliance with the IEEE 754 standard. As far as the number of the
product bits is concerned, mention should be made that the product can be obtained,
on the one hand, in the extended form, on (2m + 2) bits, and subsequently, in the
end, the rounding operation is applied. But, on the other hand, the additional bits
can be gradually eliminated, as they are produced {Parh00}. Thus, we can imagine a
multiplication device, e.g. a sequential one, of the type presented in Chap. 3, which
results in a product on (2m < 2) bits, with the more significant part in a register A
{on (m + 1) bits), and the less significant part in a register Q {on (m + 1) bits}, as
product P is presented Fig. 5.30. Since product X ¥y lies in the range of values
[(1), (+4)), the most significant two bits of the product, denoted by zj,; and zj0,
may have values differing from 9, a situation in which the Isb of the product (zg)
exceeds the capacity of the first result register (A}, and it has to be retained in the
msh position of the second result register (Q). Thus, the position of the guard bit g
is occupied by zg, and to the right of zg, we have, in the usual manner, the round bit
r and the rest of the (m — 1} less significant bits of the product (from register Q).
which have the role of the sticky bits 5. On the other hand, because it is known that
a sequential multiplication device generates the product bits in order, starting with
the Ish and ending with msh, there is enough time to OR operate the less significant
{m — 1) bits, thus to finally obtain the compressed product form P, from Fig. 5.30,
which has only (m - 1) bits for zp12a02m—1 - .. 21 0 which are added the 3 bits for



244 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

{m+1)bits {mr+1)bits
Product P: Ly Zpgn Lo BBy Egb 5 8.8 8

(m-1)sticky bits
{m+1)bits 3 bits

Product P.; Lyl BBz igly  Zg 08
(m+1)bits / l l

Case a: z,,=0 Zir o o omg - ZiZe | R S R=r, §=5
(mr+1)bits l

Case b: z,=1 Zypye By B a2, R S—® R=z S=ror s

Fig. 5.30 Determining the rounding bits for fleating point muliiptication

Zor's, consequently, in total, (m -+ 4) bits. Whatever the form in which the product is
obtained, P or F., to execute the rounding suboperation, it is necessary fo identify
the R and § bits, as well as the 1sh of the result, bits which are used, as in Fig. 5.30, in
the chosen rounding mode implementation. Thus, it is necessary to make a distinc-
tion between cases a and b from Fig. 5.30. Consequently, case a, when zp; = 0, cor-
responds to examples b and ¢ from Fig. 5.29, to which there corresponds an extended
product on (2m 4+ 1) bits, a situation in which, if we suppose the position of the reg-
ister A msb to be hidden, we require, for normalization purposes, a one position feft
shifting of the resuilt significand Zyy (as compared with the & and ¢ examples from
Fig. 5.29, a difference appears because in these examples the position of the most
significant digits of the products are considered to be correct, without shifting, so
they become “hidden”). Thus, the result significand is Zyy = 2p0Zm -1 Zm-2 - - - T120»
and R =r and § = 5, where by s is denoted the cumulative sticky bit obtained fol-
towing an OR operation, at the end of the multiplication of the significand numbers
or during it, on the less significant (m — 1) bits of the preliminary product. At the
end of the rounding suboperation, carry-cut may be generated, similar to example
¢ from Fig. 5.29, when a post-normalization, after rounding, is required, by a one
position right shifting of the result significand, and the adjustinent, through incre-
menting, of the exponent. On the other hand, case b from Fig. 5.30, with z5; = 1,
corresponds to example a from Fig. 5.29, when a product on (2m - 2) bits is ob-
tained, and, to obtain the normalized form, is necessary to move the point by one
position to the left, which is equivalent to a one position right shifting. Thus, the
product significand results in the form Zy = 241 200Zm—~12m—2 - .- 2221 and, at the
same time, it is necessary, for compensation purposes, (o increment the exponent
value, as well as to modify—as compared to the previous case—the values of the
bits that are used in the rounding. Thus, R = zg and S = r or s, and the Isb of the
product significand becomes z;. After establishing the values of the bits involved
in rounding, the upward rounding will or will not be applied, as a function of the
fulfillment of the conditions specified in the table from Fig. 5.9.



5.3 Floating Point Multiplication and Division 245

One more observation has to be made regarding signalling the overflow when
the rounded result is too great and cannot be represented. Such a situation occurs in
single-precision, when the non-biased exponent exceeds the value of 127, Asthe X
and Yp biased exponents have values within the range of integers {(+1), (+254)1,
according to Fig. 5.28, the range of the tolerated values field for the exponent of
the result product Zpp = Xp -+ ¥p — 127 is between {1 4 | — [27) = —125 and
(254 + 254 — 127) = +381. Since the two numbers can be represented on 9 bits, it
results that by using a 9 bit adder in the assessment of the result exponent, we can
casily detect the exception status represented by overflow [HePa(3}.

Referring, more briefly, to the rounding suboperation that corresponds to division
[ObFI97], we now recall that for the quotient values result within the [{+1/2}, (4+2))
range, which might require a one position left shift, for normalization. But in this
case the same problems discussed for addition appear (refer o Fig. 5.8b), which,
syntheticaily, require the concatenation to the quotient, to the right of the 1sb digit,
of two more bits having the roles of guard {g), and round () bits. Without devel-
oping this aspect, we also mention that, in those solutions for division for which a
remainder is also generated, its final form is used to deduce the value of the sticky
bit [Parh(6]. Therefore, the division methods based on convergence have problems
concerning rounding, as they do not generate a remainder.

Finally, we shall discuss some aspects regarding the speeding up of the multi-
plication and division operations. As far as the former is concerned [QuTFO4], we
start from the fact that the multiplication suboperation on the significands requires a
rather high proportion of the total time required by the operation. The idea of not in-
serting the rounding step as a separate one, after the completion of the preliminary
multiplication, but of including the rounding circuitry in the multiplier hardware,
parallelizing the suboperations, appears natural. Thus, there is a favorable aspect,
that has afready been mentioned, according to which the bits involved in the round-
ing are produced early in the operation cycle. However, the necessity of normaliza-
tion through one position right shifting comes to be known near to or at the end
of multiplication. Since there are only two possibilities, namely, of the postshifting
existing or not, after the model covered in detail for addition, two versions of the
rounded product are generated at the same time, the correct option being selected in
the final step. We can also compute in advance the adjusted exponent values for the
two possibilities, the selection of the correct one being made at the moment when it
is known whether the normalization postshifting is necessary or not, the last solution
being applicable both for multiplication and for division [Parh00}. Alternatively, in
multiplication, the rounding can be substituted by the more rapid truncation, but,
compensatorily, i is necessary to inject some corrective terms during the operation
[EvSe00, IPIHO4].

Within the same context of the two operations’ performance improvement, we in-
sert the solution according to which increased throughput may be obtained, namely
that based on the arithmetic pipeline approach {Poll90}. Thus, both operations con-
sist of several stages or suboperations executed sequentially, and the structure from
Fig. 5.27 enables the insertion of some latch devices separating the blocks pointed
out in the diagram, so that the various stages can be superposed as presented in



246 5 Functional Analysis and Synthesis of Floating Point Arithmetic Devices

Fig. 5.17, and in Fig. 5.18. Moreover, for the block which multiplies the signifi-
cands, the idea of separating it into stages and of their superposed functioning can
be perpetuated inside the block which is composed of a combinational array repre-
sented by a concatenation of CSA adders {Fig. 3.52).

A final observation regarding the implementation of the floating point multipli-
cation and division units, as has resulted from the presentation of the corresponding
devices for integers, is that they can have in common a great part of the circuitry
[Kata0s, LaAn03], which happens mainly when the division of the significand
numbers is performed through methods based on rapid convergence [PiBr02]. In
this case, a relatively small quantity of hardware is needed in order fo transform a
floating point multiplication device into a floating point maltiplication/division unit,



Appendix A
Hardware Description Elements

Hardware description practice uses dedicated languages such as VHDL (Very
high speed integrated circuits Hardware Description Language), Verilog or System
C {Wake(OO, Haye98], to mention only some of the more widely used ones. This ap-
pendix proposes to point out the complexity supported by the use of such a language,
thus justifying the choice—{or the description of the diagrams in this work—of a
pseado-language meant to make it easy to follow the diagrams’ functional aspects.

Thus, choosing the VHDL language (IEEE 1076 standard), we adopt, as the ob-
jective of our description, the very simple circuit of a half_adder, some possible
implementations of which are given in Fig. 2.5, The probiem can be approached on
two levels, the entity one, and the architecture one.

Regarding the entity part, this enables the description of the structural element
at the highest level, as if the entity represented only one component, without de-
tailing, in any way, its internal architecture. We are interested only in the intercon-
nection interface with other external devices, as in the formal specification from
Fig. A.1 {Haye98]. This confers on the adder the name of “half_adder”, and names
the interconnection signals, of the input and the output, accepted as ports. The dif-
ference between inputs and outputs is made by means of the key words in and out.
The dimension of each input-output (IO) port, representing the number of signal
lines associated with it, is specified through the key word bit, corresponding to one
bit. In other words, the half _adder entity from Fig. ALl has two inputs of one bit,
calied x and ¥, and two outputs of one bit, calied sum and carry. The figure also con-
tains the same information given in graphical form. Regarding this representation,
the inputs are placed on the left side, and the outputs are placed on the right side, by
convention, it not being necessary to use arrows to indicate the signals’ {ransmission
direction.

As concerns the architecture part, the VHDL language enables the specification
of both the logical behavior, and the internal structure of the described element. We
shall refer first to the behavior part, the description of the example half-adder being
given in Fig. A.2 {Haye98]. The pair begin-end is used to comprise items which are
related between them. From the behavioural poing of view, the structure clement is
perceived as a primitive module or a “black box”, whose internal structure is either

M. Viadutiu, Computer Arithmetic, 247
DO 10.1007/978-3-642-18315-7, © Springer-Verlag Berlin Heidelberg 2012



248 A Hardware Description Elements

port {x,3: In hit; sum,carry: ot bit);
end half adder;

entity half adder is x Stn
half adder
carry

Fig. A.1 VHDL entity level description of a half adder cel}

architecture behavior of haif adder is Inputs Outputs
begin
SUm <= X X0 ¥ x ¥ sum cary
carry <= x and ; 0 ) ) o
end behavior;
4] 1 1 4
1 0 1 G
1 i 0 1

Fig. A.2 VHDL architecture level description of the behaviour of a half adder cell

unknown or is of no interest. The functions corresponding to the two outputs, sum
and carry, are specified through two Boolean equations, xor (EXCLUSIVE-OR)
and and (AND), which are pre-defined within the VHDL language [Haye98]. The
symbol <= is used for the signals assignment, and it indicates the fact that the value
of the expression on the right side of the sign is assigned to the signal on the left
side of the sign.Thus, carry <= x and y shows that to the carry signal the Boolean
function AND between the variables x and ¥ is assigned. But the language has a
certain richness, i.e. it can express the same information in different ways. Thus,
the previous statement corresponding fo carry can be substituted by the following
one: if xy =" 11" then carry <= | else carry «= 0, which corresponds o the in-
formation specified graphically in the form of a truth table (Fig. A.2). The VHDL
language also allows the communication of performance characteristics, and infor-
mation about the signals timing respectively. For instance, fo indicate that the cagry
signal appears after a time interval of 5 nsec since the arrival of inputs x and y, there
exists the possibility of appealing to a statement structured as follows: carry <= x
and y after 5 nsec.

Finally, when the interest is in the internal structure of the element, the descrip-
tion can be achieved in a manner similar to the entity part, by specifying, first of
all, the components used in the practical tmplementation of the diagrams. Thus, for
the example haif-adder we have the description of the structural architecture from
Fig. A3 [Haye98]. There can be identificd two types of components described by
VHDL statements of component type, that have a simifar form to the entity state-
ments. They enable the specification of the component type name (xor_circuit and
nand_gate, i.e. an EXCLUSIVE-OR circuit, and a NAND gate respectively), as
well as the names and types of 10 signals. The internal connections are specified
by signal statements, such as the one bit alpha signal line (Fig. A.3). There fol-
lows the description of the architecture comprised between parentheses (begin-end),
where all the copies of each component used in the implementation diagram are pre-



A Hardware Description Elements 249

architecture structure of half adder is
component Xor_cirouit port(e, buin bit; crout bit), end cormponent;
component nand_gate pori(d, e:in bif; fout bit): end component;
signal alpha: bit,

begin
XOR: xor_cireuit port mapla=>x, b=>y, c=>sum);
NAND: nand_gate port map(d=>x, e=>y, f=>alpha),
NAND2: nand_gate port seap(d=">alpha, e=>alpha, { =>carry),

end structure;
hatf-adder
* 4 xor_circuit
b }—{ OR Sum
r alpha p
nand_gate nand_gate
e nao St e waw S i
Fig. A.3 VHDL architecture level description of the structure of a hatf adder celi
Fig. A4 Registers declare register A[7:0], F;
description using a declare
type statement i AT} ‘ A ‘ Alo] ‘ g F ‘

sented, by specifying their individual name and their 10 connections. This descrip-
tion, which also results from the graphical part given in Fig. A3, corresponds {o the
wiring information which is, in fact, the netlist between the components. Thus, for
instance, the NANDI component is of the nand_gate type, and at its J and ¢ inputs
the variables x and y are supplied, and its output is represented by the alpha line.

The above VHDL description for the simple element consisting of a half-adder
highlights the richness of the language but shows that ability is required in its han-
dling, which, for most of the diagrams from the previous sections, raises follow
up difficulties. Thus, we have appealed to a pseudo-language for the hardware de-
scription, which has been inspired by [Haye98], and whose essential characteristic
consists in its simpleness. The main rules and conventions of the language used in
the description of a large part of the diagrams from this work are as follows:

I. The structural elements consisting of registers are specified through declare
register type statements, where the name, the number of ranks and the num-
bering of the ranks are specified. For instance, Fig. A4 presents the declaration
of two registers, A and F Regarding register A, it has 8 ranks numbered between
O and 7, with rank A{7] situated at the extreme left end, and rank A0} situated
at the extreme right end respectively. Regarding ¥, it represents a register made
up of only cne storage element (e.g. a flag), whose specification is made only
through its name. On the other hand, the declaring of a double length register is
also possible, it being given by the juxtaposition of the two names separated by a
dot, such as register A.Q. These names are used mainly for shift registers, when
the contents of one register is shifted into the other.



250 A Hardware Description Elements

2.

A similar description is also made for the bus lines, such a specification hav-
ing the following form: declare bus IOBUS[15:0}, i.e. the bus named 10BUS
has 16 lines, numbered from 0 to 15. Within this context, we mention that the
buses are bidirectional, but to make if easier to follow the informational flow,
we consider, sometimes, that there are, in fact, two separate buses, INBUS and
OGUTBUS, which, actually, are merged.

. In the description, the elementary operations (the microoperations) are expected

to take place in the order provided by the procedure. The non-conflicting oper-
ations are separated only by a comma {,) this signifying that they can be issued
by the same CLOCK pulse. The microoperations which lead to logic conilicts,
if they are not synchronously executed, shall be delayed, i.e. controlled through
successive CLOCK pulses, which requires, formally, their separation by a semi-
colon (0.

. In order to assign a certain value or a value corresponding to an expression to

a cerfain structure element or to a signal, the sign (i=) is used. For instance,
through the A := statement, the initialization microoperation {the adjustment to
0) of the contents of register A s described, controlling, through the signal asso-
ciated with the microoperation, all the RESET asynchronous inputs of the storage
elements of which register A is configured. The above-described microoperation
may, selectively, refer to only certain ranks of the register, when they have to
be explicitly specified. On the other hand, the microoperation F 1= {Q{0]and
M{7hor F assigns to flag F the value of the expression from the right side of
the equality sign, requiring its previous assessment. 1n the expression there act
the Boolean functions and and or, which are considered to be hardwired in the
diagram in wiring form.

. During the description, there can be used statements of unconditioned jump, of

go o type, and of conditioned jump, implemented by constructions of if {condi-
tion} then type. The target of the jump can be indicated by using labels, which
can also be used to aid the clarity of the procedure. An example is the statement
if CM £ 0 then go to ADD, having the significance that when the contents of
register CM is different from 0, a jump to label ADD is made, otherwise the
sequential execution of the microoperations is respected.

. Statements of type Al7] = Q[0} ex-or M[7], Q[0] := {; are allowed, where the

rank Q[0} is both read and written, apparently creating a conflicting situation.
But the reading is considered to be executed on the rising edge of the CLOCK
pulse, and the writing is considered to be executed on the falling one. The pulse
period is assumed to be sufficiently long, so that the microoperations, separated
only by comimas, are not mutually disturbed.

Mention should also be made that, by convention, in the diagram representations

a distinction between data paths and confrol paths has been made, namely for the
former solid lines have been used, while for the latter, i.e. for the control signals,
dotted lines have been used,



Appendix B
Control Units Synthesis Elements

We stipulate the presentation of certain synthesis methods which are suited to mod-
erate size control units, of the Kind encountered as local elementary operations (mi-
crooperations) sequencers, inciuded in various devices, such as, for instance, the
arithmetic ones described within the above sections. We insert in this appendix only
some synthesis elements meant to make it possible to follow the generation of con-
trol signals which trigger microoperations that are specific to the arithmetic algo-
rithms. Such local contrel units are encountered in very many of the block diagrams,
starting with that provided in Fig. 3.6 for the sequential multiplication device for
binary numbers represented in sign-magnitude, and up to the cumulative diagram
from Fig. 5.1 corresponding to an independent arithmetic and logic unit. Without
loss of generality, we shall actually refer to the control anit from Fig. 3.12, corre-
sponding to the sequential multiplication device for binary numbers represented in
two’s complement through James Robertson’s procedure.

For clarity reasons, we specify that we aim at the synthesis of the logic which
sequences the control signals ¢y, ..., cg (refer also to Fig. 3.7), according to the
algorithm formally described in Fig. 3.11. As is already known [HePa03, Stal99,
Poll9(}}, the synthesis of the control units can in principle be performed through
methods based on hardwired fogic, and on microprogrammed logic respectively. We
shall limit our considerations to the hardwired methods: more precisely, we shall
refer to state-table methods, one-hot, and to sequence counter methods [Haye98].
They enable, unlike the computer aided design program products dedicated to farge
control units [DeMi94], the manual synthesis of control diagrams for the sequencers
needed by arithmetic applications.

Roughly characterized, the state-table method allows the most economic design
regarding the storage elements required by the synthesis to be obtained. But the
combinational logic part is rather intricate and hard to follow and, consequenty,
the entire solution s not attractive as far as the potential troubleshooting of the
diagrams is concerned. The other two methods have a heuristic character, being
less rigorous than the previous one and leading to less economic solutions. But
the diagrams are easy to follow, justifying, in many cascs, the preference for these
syathesis approaches [HayeY8].

M. Viadutiu, Computer Arithmetic, 251
DO 10.1007/978-3-642-18315-7, © Springer-Verlag Berlin Heidelberg 2012



252 B Conwrol Units Synthesis Elements

No Yes
WWWWWWWWWWW C¥es |l YNe i
| S, N Cy S, H L)
i A=t COUNT=0, A=A+M,
! Fr=0, M:==INBUS Fo=(Qf8] and M{7) or F
! -
. SO 9 S

S é‘ [N

A[TISF,
AlE010:=A.Q[T:13,
COUNT.=COUNT+]

Cyele &

Cyele 1o 7

Cycle 8

&
7y
A3
&

Fig. B.1 Flowchart description of the two’s complement binary multiptication based on Robert-
son's procedure

The starting point of the three methods is common, and consists of the func-
tional description of the algorithin, in our case an arithmetic one, in the form of a
flow chart, preferred to a formal description. Thus, the procedure from Fig. 5.11 is
presented in Fig. B.1 in its graphical description version [Haye98].

The commentaries regarding the flow chart shall be correlated with those made
in Sects. 3.2 and 3.3, i.e. to the operative blocks (marked by rectangles in Fig. B.1)
there correspond nonconflictual elementary operations (microoperations), separated
by commas in Fig. 3.11, which can be triggered by one and the same contro] sig-
nal ¢;. Besides the operative blocks, the flow chart also comprises some testing
blocks for a certain condition fulfillment and/or for the activation of a certain state
signal (marked by rhombuses in Fig. B.1), they being associated, in our particular
case, with the signals BEGIN, Q[0}, and COUNT7 (refer to Fig. 3.7). The third
category of blocks is represented by the input (Begin) blocks and the output (End)
blocks. On the other hand, through it is not compulsory, it is recommended that the
blocks are structured in such a manner that they may be partitioned by attributing
to a central body of the flow chart those operations that are repetitively executed,
1t is recommended that this body be flanked on the left by some preparatory blocks
for the supply of input data, while on the right there are provided blocks meant to
adjust and present the result data. Mention should be made that the elementary oper-



B Control Units Synthesis Elements 253

ations allocated to the blocks from the two flanks are executed once, not repeatedly.
There are cases in which the requirement of structuring mentioned above cannot
be satisfied, but it can be easily fulfiled by the blocks from Fig. B.1, where the
repetitive operations corresponding o the cycles | to 7 are flanked by those which
are exccuted once in the cycles O and 8 respectively. Following the recommended
block structuring, or following an arbitrary ope, (o each operative blocks shall be
attributed a so-called phase, the total number of phases being determined by the
number of operative blocks corresponding to that part (cycle) of the flow chart with
most such blocks. If the number of phases, thus established, exceeds, for a certain
part (cycie) of the flow chart, the number of operative blocks, they are allocated
to phases in an arbitrary way, or so that the phases may have allocated a balanced
number of blocks {which will lead to a balanced loading of the circuits in imple-
mentations). Regarding the example from Fig. B.1, the maximum number (three)
of phases (denoted from ¢g to ¢) corresponds to cycle 8, and the allocation of the
operative blocks from the other cycles has been made only at the first two phases.
Obviously, a more judicious assigning, as per the above specification, would have
been to attribute one of the operative blocks from cycles 0 or 1 up to 7 to phase 2
{¢h2), balancing the phase signal loading (in the case from Fig. B.1, this problem is
not crifical, but it may become important as the size of the control unit increases).

Regarding the first of the synthesis methods, namely the state-table one, whose
procedure steps have also been discussed in the serial adder design (Sect. 2.1), it
starts by elaborating the so-called state-table. Thus, to each operative block there
is assigned an internal state (denoted by §; in Fig. B.1) of the future sequential
circuit represented by the control unit. There is also an initial state denoted by So,
corresponding to the Begin and End blocks. To each such internal state, considered
as current, a line in the state-tabie is attributed, while to each potential primary
inpuf vector a columa is assigned. Since, in the example considered, this vector
contains three signals (BEGIN, Q{0}, COUNT7—Fig. 3.7), the state-table will have
2} = § columns and, incidentally, the number of internal states is also eight (from
Sy through to S7).

The state-table may be claborated in the more general form corresponding t a
Mealy machine {Wake00, Yarb97], where the elements that are at the intersection of
a line with a column are comprised of the next internal state and of the observable
vector presented at the outputs of a machine that is in the current internal state
corresponding to the line, to which, at the primary inputs, the vector corresponding
to the column and a pulse of the CLOCK train is supplied. However, if the output
vectors depend only on the current internal states, not on the input combinations, as
well, the form of the state-table corresponds to a Moore machine {Wake(0), Yarh97].
Thus, regarding the example of the control unit under consideration, the two forms
of state-table are given in Fig. B.2a for a Mealy machine, and in Fig. B.2b for a
Moore machine respectively. Mention should be made that, except in the case of
state S5, when two control signals (¢p and ¢4) are activated, at the other output
vectors only one such signal is active.

Following the filling in—-on the basis of the functional description through a flow
chart (Fig. B.1)—of the state-table elements in one of the forms from Fig. B.2, for



254 B Conwrol Units Synthesis Elements

State Inpust BEGIN, Q{0], COUNT?
Code Vector ( » Q{ ]: )
v ¥ ¥o) | State 080 001 [tHH 011 100 Hel 110 111
060 5 50 Sy S5 Sp 8t 5 8t 8t
0 END END ENG END cp g g e
s Sz A>3 h) 82 A>3 h) by Sz
ool 1 [J] eF € of eF € eF eF
010 s ¢ S¢ Sz Sz S¢ S4 53 53
! 2 c3 €3 ] 3 €3 3 &7 &7
" 5 S 8¢ By Sz 8¢ By 8¢ 8¢
0 3 €3 c3y <3 €3 c3y <3 <3 c3y
150 5 4 Sg 33 s Ss S5 83 Sy
4 c3 [+13 [ [ XoF 3 s} (%3 c2 2,04
s 85 S5 55 S5 S5 55 S5 Sg
i d %) P13 5 cs P13 5 5 e
& 57 57 8 57 57 Sy Sz
io S6 8 =] =3 =3 =] =3 =] =]
1 5 S Sy 8 Sy Sg 8 Sg Sg
7 END END END END END END END END
a
State Irpat
Code ngm (BEGIN, Q[0], COUNTT) Qutputs
(Vs Y1, Yo} || State 000 | 001 | 010 | 011|100 10F | 130 [ 131 | ¢ | e | & | & | < | & | o |END
00 S Sp| Sp| So| Sp| SrioSp| S S| |0 Q 4 0 ¢ o i
G0l 57 Sy| 82| 82| 82| S22 Sz 820 82| 4 4 0 [N [ [
010 82 Sg| Sg| S3| S3| Se Sg| Sz 83| @ ! 4 g0 g |0 a
o1t S3 Se| S¢| Se| Sq| St Sq| Sel S| O g 7 [ 4] 1] a /]
100 54 Sy| Ss| S3| S5| Sq41 S| S3iSs| oo 0|0 0|00
101 S5 S| 85| S6| S6| S61 56| S5 S| o | 0 ! 1] i [t} [} [
10 S5 S| S7| &7 | Sz | Sy 87| Spi 87| 0 0 0 G 0 I 0 0
1 87 So| So| So| Sp| So|So| SoiSp| 6|0 0|60 0| 1]|8
b

Fig. B.2 Mealy and Moore state tables corresponding to the local control uait of a sequential two’s
complemeni binary multiplier based on Robertson’s procedure

the in general n states, the number [logan] of the state variables y; are determined,
which enable the coding of these states, where the bars [ ] signify the least integer
which is larger or equal to the value between the bars. In the particular case ana-
byzed n = 8 and log,8 = 3, and thus three state variables (¥, ¥, yo) are sufficient.
Since the eight internal states exhaust all the codes which can be formed with three



B Controf Units Synthesis Elements 255

Inputs Qutputs

BEGIN|QEI|COUNTT ¥, t Vi t Vo (G | € | G| Gl 81 G Co ENDH U, LK, LU LK | 4 | K,

Fig. B.3 Excitation table comresponding to the local control unit of a sequential twe’s complement
binary multiplier based on Robertson’s procedure

variables, regarding our example, the coding (column “State code” in the tables
from Fig. B.2) is achieved by associating, with each state, the code corresponding
to the state index. But, there are, generally, recommendations for favorable cod-
ings, mainly when the number of combinations which can be generated for the state
variables exceeds the number of internal states [Haye98].

The synthesis goes on with the choosing of the type of the storage elements, to
each of them corresponding a state variable. Taking into account the state-table, as
well as the characteristic equation of the chosen storage element, the design process
goes on with the elaboration of the so-called excitation table. It has as inputs the
untion of the primary inputs subvector (in our case, BEGIN, Q[0} and COUNTT)
with the state subvector (in our case, yp through o yp), and it has as outputs the
union of the observable outputs subvector (in our case, from ¢q through to ¢p and
ENDY with the so-called excitation variables subvector, this latter representing the
synchronous inputs of the storage elements. Thus, in case flip-flop JK is chosen,
with its characteristic equation w{r 4+ 1) =J wlr) or Kw(t) (where J and K are the
synchronous inputs, and w(f) and w{r 4+ 1) represent the current and the next states,
after the CLOCK pulse}, a part of the excitation table (having in its complete form
26 == 64 lines) is given in Fig. B.3, where the synchronous inputs, and the flip-flops’
outputs have been denoted by (Ja, K2), (g, K1), (Jo, Ko}, and (¥, ¥y, yo), and a
don’t care logic value has been denoted by 4.

Starting from the excitation table, for each output {from ¢ through to K¢—
Fig. B.3) the Boolean equations are written in normal disjunctive form, thus con-



256 B Conwrol Units Synthesis Elements

|y C

Fig. B.4 Conceptoal BEGINM}
jul
—*END

. -y
diagram corresponding fo the Q[0]—| {'"mtry observable}-»c;
state table design version for COUNT 7| npu output

the focal control unit of a Combinationat
Robertsor multiplier Logic (CL)

sfate  excitation
ariables variables {77

By

C
Q. K
QR

A A

[

RESET CLOCK

necting, through an OR cperation, all the canonical terms which correspond to the
binary units (the don’t care terms included) from the column of each output. In our
case, there wiil result 14 such Boolean equations, one of which, for instance, for the
control signal c3, has the following form:

3 = BEGIN 010] COUNTT Yoy 35 or BEGIN O[0] COUNTT F3y1yv00r ... (B.1)

To cach Boolean eguation of type (B.1) minimization methods are applied
[WakeOO0, Yarb97], which enable economic expressions to be obtained, on the basis
of which the practical implementation can be made. Thus, the combinational logic
part results corresponding to the sequential circuit which is the control unit. Con-
sequenty, for our example we have the principle diagram from Fig. B.4. The stor-
age elements, denoted from By through to By, are controlled either synchronously,
in cadence with the CLOCK, through the excitation variables, or asynchronously,
through the RESET signal. Equation (B.1) type equations, following the minimiza-
tion operation, stand at the basis of the technological implementation of the combi-
national togic (CL) circuit from Fig. B .4, a part of the control unit.

Commenting hereafter on the state-table, let us resume the synthesis activity from
the stage at which the storage element was chosen, the choice being this time a flip-




B Controf Units Synthesis Elements 257

flop of type D (whose characteristic equation is w(z + 1) = D). Then the elaboration
of the excitation table follows, which can be done rigorously according to the de-
scription given in Fig. B.3, but which can also be done by starting, for instance,
from the state-table from Fig. B.2b and from the characteristic equation of the cho-
sen storage element, and in a less rigorous, ad hoc manner. The motivation of such
a procedure also consists in the fact that, in the performance achieved by modemn
manufacturing technology of integrated circuits regarding the packing density of the
electronic components, the minimization criterion of the Boolean equations synthe-
sis loses its importance, becoming secondary. Thus, for our example the ad hoc
excitation table given in Fig. B.5 results. The generation of this table has been done
in a minimized form by following of the transitions corresponding to the cugrent
internal states. It can be observed that the first line of the table from Fig. B.5 corre-
sponds to the Hine Sy (001 of the table from Fig. B.2, which, for any combination
of the input variables (BEGIN, Q[0], COUNTY), performs a transition into the state
S2 (010); consequently, the respective variables can be omitted. The internal states
from Fig. B.2b are marked, in Fig. B.5, in the order of the number of transitions
into various next internal states which they bring about. In this way, in Fig. B.5, the
kast four lines are dedicated to the state 5y which passes through four different next
states {(from Sy through to S¢). Starting from the excitation table from Fig. B.5, the
Boolean equations for cutputs in a near minimal form can be deduced. Thus, for
instance, for the control signal ¢, there results:

€2 == ¥2Y1 Y0 oF Y2¥i Yo {B.2)

The equations of type (B.2) can, possibly, undergo certain supplementary minimiza-
tion processings, being followed by the practical implementation executed in the
manner stipulated in Fig. B.4.

Passing 0o the one-hot method, the synthesis starting point is represented by the
same functional description flow chart from Fig. B.1. As mentioned above, the state-
table method, sometimes also called the classic method [Haye98), is characterized
by the fact that it minimizes the number of storage elements, but the structure of
the combinational logic, also called random logic, is generally intricate, the post-
execution maintenance being rather difficult to accomplish. Alternatively, the one-
hot method is generally based on the assigning of a storage element to each state
from the description flow chart (Fig. B.1). Consequently, 2 “waste” results, which
is compensated by the rather simple structure of the random logic. At a certain mo-
ment, only one of the storage elements is in the logic state 1 (i.e. only one element
is in “hot” state—one-hot), the others being in the logic state 0. There being, gen-
erally, a one-to-one correspondence between the number of states and that of the
storage elements, this method can be favorably applied only to designs with a small
number of states. The important characteristic of the synthesis consists of the fact
that the equations for the next internal states, as well as those for the observable out-
puts, can be directly deduced from the functional description flow chart. Applying
this method to our example, we shall use, as storage elements, fip-flops of type D,
whose outputs (Q) will be denoted by By through to By, and thus the states coding



258 B Conwrol Units Synthesis Elements

Inputs Outputs

BEGIN : QO] [COUNTT | vy | w7 ¢ vo [l ot e | €2 x| ¢ i s | wg |END| By | B | By

0 - - 0 0 0 g 0 0 0 g 0 0 1 g 0 0
1 - - 0 0 & g 0 0 & g 0 0 1 g 0 1
. 0 - 0 1 & g 1 0 & g 0 0 0 1 0 0

1 - 1] 1 o 4 1 4] o 4 0 4] 0 4 1 1
- 1] 1] i 0 o 4 1] 4] 1 4 0 4] 0 1 0 1]
- [ 1 1 0 6 0 [ 0 1 0 0 0 0 1 1 [
- 1 [ 1 0 6 0 [ 0 1 0 0 0 0 0 1 1
- 1 1 1 0 L g 0 0 1 g 0 0 0 1 0 1

Fig. B.5 Ad-hoc excitation table corresponding to the local control unit of a Robertson multiplier

will immediately result, on the basis of what has been specified above. Thus, to the
state Sp the state vector (Bg, By, Bz, ..., By} = (1,0,0...,0) corresponds, while
to the state Sy the state vector (Bo, By, Ba, ..., By) = (0, 0,0..., 1) corresponds.
Based on the transitions between the operative blocks corresponding to the states
from Fig. B.1, the Boolean equations for the synchroncus inputs (D)} of the state



B Controf Units Synthesis Elements 259

storage clement, as well as the Boolean equations for the observable outputs result:

D{) ﬁB() BEGENQ{"- B',' C(}ﬁB}

Dy =By BEGIN € =Bs

Dy =By 3 == By or Bs

D3 =87 Q[0]or B4 Q0] COUNT7 c3 =By (B3
Dy =B, Q[0]or B2 QO] COUNTT 0rBs ¢4 = Bs '
Ds = B4 Q0] COUNTY ¢5 = Bg

Dg = B4 Q[0]COUNT7 or Bs 6 = By

D7 = B4 END = By

In Egs. (B.3), it can be observed that the control signal ¢p, which is generated
in 53 and in S5, has two terms, the other output equations having only one term
represented by the storage element which is set up in the corresponding internal
state. Based on Eqgs. (B.3), the synthesis of the logic diagrams corresponding to the
control unit results immediately, it being given, for our case, in Fig. B.6, where, for
the implementation of Egs. (B.3), AND and OR gates have been used.

As can be observed in Fig. B.6, the resulting random logic is simple, this
representing an important advantage. However, the synthesis sclutions obtained
through the one-hot method suffer, mainly when there is a large number of states,
because the synchronous application of the CLLOCK to all the storage elements may
present the undesired phenomenon of clock skew, due to the delays that can occur on
long wires. This clock skew determines the delayed control of the storage elements,
which leads to the diagram’s unsteady and unreliable operation. This phenomenon
is more npoticeabie for a variation of the one-hot method, known as the delay clement
method [Haye9g].

Passing to the third version of wired synthesis, that based on the sequence
counter method, mention should be made that this also enables a logic diagram
whose random part is easy to follow to be obtained, but implies a larger invest-
ment in the storage elements as compared to the classical method of the state-
table [Haye88]. The central structure component of the synthesis is the so-called
sequence counter, which also gives its name to the method. Its function consists of
the generation of so-called phase pulses, whose essential characteristic is that they
are non-overlapping, and which are separated by a CLOCK train period. At block
level, the sequence counter contains the components given in Fig. B.7a, and there
can be identified the Start/Stop (5/S) flip-flop of type SR, the modulo-m counter,
and the 1-out-of-m decoder, Thus, the modulo-m counter is initialized either when
the 5/S flip-flop changes to Stop (End is activated on input R), or on an external
Reset signal, and then it counts the CLOCK pulses only when the S/S flip-flop
changes fo Start (Begin is activaied on input S). Each state of the counter is de-
coded at a CLOCK pulse, so that at the decoder outputs, denoted from ¢ through
10 ¢y-1, the phase pulses are obtained. Figure B.7b presents the symbol of the
modula-m sequence counter, and in Fig. B.7c are given the pulse trains from ¢
through to ¢y,..;, delayed by the period T of the CLOCK, and which are non-
overlapping.



260 B Conwrol Units Synthesis Elements

» o END
» »aC,
» »oC;
OR
Q6] ~p » D> Qi-» =} .
o @) e
- »C T Q
R
—
AND —j"
> »D Q) »o 0y
o
*—C Q
o R
(S WA
 —
> D Qs > »ol,
AND OR
»C Q
R
L S —
AND
) » »oC,
* oR
> C Q
COUNT 7 R
E » 1} Q > »o
$>C T Q
:
CLOCK RESET

Fig. B.6 Detailed diagram at the gate level corresponding to the one-hot design version for the
local control unit of a Robertson mudtiplier



B Controf Units Synthesis Elements 261

decoder

gi Begint—,
e Count enable Erd— Modulo-m
CLOCK ] sequence
End | Modulo-m counter Reset ) counter
Reset l l l l
S B I
Reset - out-of o m ‘ )

el el

Fig. B.7 Structural elements of a sequence counter

The design activity starts by dimensioning the sequence counter. The number of
delayed pulses is given by the number of phases identified on the functional flow
chart (Fig. B.1). Regarding our example, we have only the phases from ¢y through
o ¢, consequently, the counter from Fig. B.7a will be modulo 3, synthetized with
two storage elements. The design goes on by the assigning-to each partition that
resutted after the How chart structuring—of an SR type flip-flop, so that, at a certain
moment, only one of them is set, all the others being reset. In the flow chart from
Fig. B.1, which is divided info the three recommended partitions, the three necessary
SR flip-flops result.

Then, the synthesis stage of the randem logic follows, which consists, essentially,
of AND gates that must have as inputs a phase pulse and an outpuf corresponding to
the SR flip-flop associated with the flow chart partitions. As applicable, also among
the inputs to the AND gates inputs may be external signals, which are primary inputs
for the control unit. By means of AND gates the control signals representing the
observable outputs are generated. If a certain control signal corresponds to two or
more states, that signal is obtained through an OR gate. Applying what has been
specified to the example of the contro] unit for the Robertson multiplication device,
the design version from Fig. B.8 (after [Haye88}) results. The three SR flip-flops
have been denoted by By through to B;, By being set by the external signal BEGIN,
which also starts the CLOCK counting by the modulo-3 sequence counter. For the
resetting of By, at the same time as the setting of By, and for the subsequent resetting
of By and setting of By, AND gates controlled through the phase pulse ¢, have been
used. Incidentally, this is because in the functional flow chart operative blocks are
not provided, consequently phase pulse ¢, is not used. The AND gates [evel, which



262

B Conwrol Units Synthesis Elements

Fig. B.8 Detailed diagram at Begln »
. »  Modulo-3
the gate level corresponding CLOCK ] coumer
to the sequence counter @b, [P, AND
design vergort for the loca BEGIN tevet
control unit of a Rebertson po—p 5 Q ED -
multiplier > '
» R 6 L
Qo]
[ OR
" S Q =D
HR Q-
. e (PR
COUNT 7
8 Q
T
R QL
D
NOT NOT . “
END
et oo

generates the control signals, implements the following logic equations

eq = By do
c1 = Bo ¢y
ez = By o Q0]

eq = By i Q0]
o5 == Be ¢y
cg = Ba oy

3= By ¢1 Q0ior B; ¢ Q01 =B ¢

(B.4)

In their elaboration, the functional particularities of the controlled device have to
be taken into account. Thus, in case of the equations (B.4), for ¢; and ¢3, there has
not been provided conditioping through COUNTY7, because we have assumed that
the CLOCK period covers the interval between the application of the increment-
ing signal ¢3 to the iterations counter COUNT and the generation of the COUNT7?
signal (Fig. 3.12). In this way, through COUNT7 there is ensured the output from
the repetitive cycle, and the input in the final cycle, conditioning the AND gate
which resets By and sets up By, In case the values of the parameters used in the
implementation do not warrant the hypothesis, the equations (B.4) undergo certain
modifications. We should also like to mention the way the END signal is generated,



B Controf Units Synthesis Elements 263

which, besides the signalling completion of the operation performed by to the exte-
rior of the device, also determines the reset of the B cycle storage element, and the
reset of the sequence counter (through the reset of the S/S flip-flop). This signal has
been obtained from cg through the delay assured by the serialization of two inverter
gates, through which, it has been assumed, covers the time interval required to anni-
hilate the effect determined by the signal cg (the bus delivery of the less significant
part of the product). H this hypothesis is not confirmed by the catalogue data of the
employed circuits, the delay shail be, again, lengthened by supplementary pairs of
inverter gates.

The last comments are meant to highlight the flexibility of the design solution
offered by the sequence counter method, as well as the requirement to correlate it
with the technology of the circuits used in the implementation, an aspect which, as
a matter of fact, is common also to the other synthesis methods.



References

[ABBFO0]

{ALMNO3]

[ALRLO4]

{Br(¥HO3]
[BoTi03]

[COPROG]

[DATa05]
[DeMio4]

FETVNG3]

[ErLao4]
{Erk.a04)

[EvSe00]

[GoSA06]
[Hayc88]
[Haye93]

[HePab4]

Miron Abramovici, Melvin Breuer, Arthur Friedman: “Digital Systern Testing and
Testable Design” Computer Science Press, New York, 1990

Elisardo Antelo, Tomas Lang, Paolo Montuschi, Alberte Napnarelii: “Digit-
Recurrence Dividers with Reduced Logical Depth” IEEE Trans. Compul., vol. 54,
no. 7, 2005, pp. 837-851.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randeil, Carl Landwehr: “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing™ IEEE Trans. Dependable
Secure Comput., vol. 1, no. 1, 2004, pp. 11-33,

Randal E. Bryant, David O Hallaron: “Computer Systems. A Programmer’s Perspec-
tive” Pearson Education International, Upper Saddle River, 2003,

Nicolas Boullis, Arnaud Tisserand: “Some Optimizations of Hardware Multiplication
by Constant Matrices” IEEE Trans. Comyput,, vol. 34, go. 10, 2003, pp. 12711282,
Gian Carlo Cardarili, Marco Ottavi, Salvatore Portarelli, Marco Re, Adelio Salsano:
“Fault Localization, Error Correction, and Graceful Degradation in Radix 2 Signed
Digit-Based Adders” IEEE Trans. Comput., vol. 55, no. 5, 2006, pp. 534-539.
Albert Danysh, Dimitrt Tan: “Architecture and Implementation of & Vector/SIMD
Multiply-Accumulate Unit” IEEE Trans. Comput., vol. 54, no. 3, 2005, pp. 284-293.
Giovanni De Micheli: “Synthesis and Optimization of Digital Circuits” McGraw-Hili
Enternational Editions, New York, 1994,

Costas Efstathiou, Haridimos T. Vergos, Dimitris Nikolos: “Medulo 27 = | Adder
Pesiga Using Select-Prefix Blocks” IEEE Trans. Compul., vol. 52, no. 11, 2003, pp.
1399-1406.

Milos D. Ercegovac, Tomas Lang: "Division and Square Root: Digit Recurrence Al-
gorithms and Implemeatations™ Kluwer Academic, Dordrecht, 1994,

Miled D, Ercegovae, Tomas Lang: “Digital Arithmetic” Morgan Kausfmansa, San Ma-
teo, 2004,

Guy Even, Peter-Michael Seidel: “A Comparison of Three Rounding Algorithms for
IEEE Floating-Point Multiptication™ IEEE Trans. Comput., vol, 45, go. 7, 2000, pp.
638630,

Mustafa Gok, Michael J. Schulte, Mark G, Arnold: “Integer Multipliers with Overflow
Detection” FEEE Trans. Comput., vol. 55, no. 8, 20006, pp. 1062-1066.

Johr P. Hayes: “Computer Architecture and Organization” McGraw-Hill, New York,
Second Edition, 1988.

Joha P. Hayes: “Computer Architecture and Organization” McGraw-Hil, New York,
Third Edition, 1998.

Johe L. Heanessy, David A. Patterson: “Computer Organization and Design. The
Hardware/Software Inferface” Morgan Kaufmann, San Mateo, 1994,

M. Viadutiu, Computer Arithmetic, 2635
DO 10.1007/978-3-642-18315-7, © Springer-Verlag Berlin Heidelberg 2012



266

[HePa03]

[HuF:05]
[FTRSO1]
[IPFHO4]
{KaGal6)

[Kahao7]

[KaTa03]
[KeScO5]
[KolMul6)]
fKore93]
fKore02]
[Kors03]
[Korn(5]
[Kuli02]

[LaAn03]

[Ober®9]

[ObFI197]

{Hiv01]

{Omon94]

[PaHe96]

{Park00)]

{Park03]

[PiBe02]

References

Johr L. Hennessy, David A. Patterson: “Computer Architecture. A Quantitative Ap-
proach” Morgan Kaufmann, San Mateo, Third Edition, 2003; Appendix H: Computer
Arithmetic by David Goldberg,

Zhijun Huang, Milo§ D. Ercegovac: “High-Performance Low-Power Left-to-Right
Array Multiplier Design™ IEEE Trans. Comput., vol. 34, no. 3, 2003, pp. 272-283.
International Technology Roadmap for Semiconductors-Interconnect, 2001,
Jong-Chul Jeong, Woo-Chan Park, Woong Jeong, Tack-Don Han, Moon-Key Lee:
“A Cost-Elfective Pipelined Divider with a Small Lookup Table” IEEE Trans. Com-
put., vol. 533, no. 4, 2004, pp. 480-495.

Jung-Yup Kang, Jean-Lue Gaudiot: “A Simple High-Speed Multipter Design™ IEEE
Trans. Comput., vol. 35, no. 10, 2006, pp. 1233-1258.

W. Kahan: “Lecture Notes on the Status of 1EEE Standard 754 for Binary
Floating-Point  Arithmetic™ October 1997, http/fiwww.cs berkeley.edu/~wkahan/
icce754status/IEEET 54 PDF.

Marcelo E. Kaihara, Naofumi Takagi: “A Hardware Algorithm for Modular Mukipli-
cation/Bivision” IEEE Trans, Comput,, vol, 34, no. 1, 2003, pp. 12-21,

Robert D. Kenney, Michael §. Schulte: “High-Speed Multioperand Decimal Adders”
IEEE Trans. Comput., vol. 54, no. 8, 2005, pp. 953-963.

Peter Koraerup, Jean-Michel Muller: “Leading Guard Digits in Finite Precision Re-
dundant Representations™ IEEE Trans, Comput., vol. 53, no. 5, 2006, pp. 541-548.
israel Korer: “Computer Arithinetic Algorithms” Prentice Hall International, Engle-
wood Cliffs, 1993,

israel Koren: “Computer Arithmetic Algorithms™ A K. Peters, Wellesley, Second Edi-
tion, 2002.

Peter Kornerup: “Revisiting SRT Quotient Digit Selector” Proc. 16th IEEE Symp.
Computer Arithmetic, 2003, pp. 38-43,

Peter Kornerup: “Digit Selection for SRT Division and Square Root” IEEE Trans.
Comput., vol. 34, no. 3, 2005, pp. 294-303.

Ulrich W. Kulisch: “Advanced Arithmetic for the Digital Computer. Design of Arith-
metic Unis” Springer, Berlin, 2002,

Tomas Lang, Elisardo Antelo: “Radix-4 Reciprocal Square Root and Its Combination
with Division and Square Root” IEEE Trans. Comput., vol. 52, no, 9, 2003, pp. 1100-
it14.

Stuart F. Oberman: *Floating Point Division and Square Root Algorithms and imple-
meatation in the AMD-K7 Microprocessor” Proc. 14th Symp. Computer Arithmetic
{ARITH 14), 1999, pp. 106113,

Staart . Oberman, Michael J. Flynn: “Division Algorithms and Implementations”™
IEEE Trans. Comput., vol. 46, no. 8, 1997, pp. §33-854.

Mauro Ofivieri: “Design of Synchronous and Asynchronous Variable-Latency
Pipelined Multipliers” EEE Trans, Very Large Scale Integr. (VESD Syst., vel. 9, no.
2, 2001, pp. 363-370.

Amos R. Omondi: “Compater Arithmetic Systems. Algorithms, Architecture and Im-
plementations”™ 1994, C.A.R. Hoare Series Editor.

David A, Patterson, John L. Hennessy: “Computer Architecture, A Quantitative Ap-
proach” Morgan Kaufmann, Dordrecht, Second Edition, 1996; Appeadix A: Com-
puter Arithmetic by David Goldberg,

Behrooz Parhami: “Computer Arithmetic. Algorithms and Hardware Designs™ Ox-
ford University Press, London, 2000.

Behrooz Parhami: “Tight Upper Bounds on the Migimum Precision Required of the
Divisor and the Partial Remainder in High-Radix Division™ IEEE Trans. Comput.,
vol, 32, no. 11, 2003, pp. 13091514,

Jose-Alejandro Pificiro, Javier D. Bruguera: “High-Speed Double-Precision Compu-
tation of Reciprocal, Division, Square Root and Inverse Square Root” TEEE Trans.
Comput., vob. 31, no. 12, 2002, pp. 13771388,



References

Pollon]

FQuTFO4]

{RaCa06]

{RaFu8%]
[RaPeS6)
[RaTy98]

[SeSTO3]

{ScSTO3]

[SeMMO3]

[SeEv(1]

[SeEvD4]
[Sea199]

{TaYY85]

[VeEN(2]

[VILGO6]

[VI15d82]
[V1adse]

[ViPeld]

[Wake00)
[Yarb97]
[Yele03]

267

L. Howard Pollard: “Cormputer Design and Architecture”™ Prentice-Hall Internationat,
Englewood Clifts, 1990,

Nhon T. Quach, Naofumi Takagi, Michael 1. Flynn: "Systematic IEEE Rounding
Method for High-Speed Floating-Point Multiptiers™ IEEE Trans. Very Large Scale
Infegr. (VLS Syst., vol. 12, no. 5, 2004, pp. 511-321.

Sridhar Rajagopal, Joseph R, Cavaltaro: “Truncated On-line Arithmetic with Appli-
cations to Cominunication Systems” IEEE Trans. Comput., vol. 53, no. 10, 2006, pp.
1240-1252.

T.R.N. Rao, E. Fujiwara: “Error-Controt Coding for Computer Systems” Prentice-
Hall International, Englewood Clilfs, 1989,

Jan M. Rabacy, Massored Pedram: “Low Power Design Methodologies” Kluwer Aca-
demic, Dordrecht, 1996,

Janusz Rajski, Jerzy Tyszer; “Arithmetic Buili-In Self-Test for Embedded Systems™
Prentice Hall, New York, 1998,

Eric M. Schwarz, Martin Schmookler, Son Dac Trong: “Hardware Implementations
of Denominalized Numbers” Proc. 16th IEEE Symposium or Computer Arithmetic
{Arith 10), 2003, pp. 70-78.

Eric M. Schwarz, Martin Schmockler, Son Dao Trong: “FPU Implemeniations with
Benormatised Numbers™ IEEE Trans, Comput., vol. 54, po. 7, 2003, pp. 825-836.
Peter-Michaet Seidel, Lee D. McFearin, David W. Massla: “Secondary Radix Record-
ings for Higher Radix Multipliers” IEEE Trans. Comput., vol. 54, no. 2, 2005, pp.
FE1-123.

Peter-Michael Seidel, Guy Even: “On the Desiga of Fast IEEE Floating-Point
Adders” Proc 15th IEEE Symposivm on Computer Arithmetic (Arith 15), 2001, pp.
184194,

Peter-Michael Seidel, Guy Even: “Delay-Optimized Implementation of IEEE
Floating-Point Addition” FEEE Trans. Comput., vol. 53, so. 2, 2004, pp. 97-113.
William Stallings: “Computer Organization and Architecture. Designing for Perfor-
mance” Preatice Hall International, Eaglewood Cliffs, 1999,

N. Takagi, N.H. Yasuura, S. Yajima: “High-Speed VSLI Multiplication Algorithm
with a Redundant Binary Addition Tree” IEEE Trans, Comput., vol. 34, no, 9, 1983,
pp. 780-796.

Haridimos T. Vergos, Costas Efstathiou, Dimitris Nikolos: “Piminished-One Moduio
27 -+ 1 Adder Design™ IEEE Trans. Comput., vol. 5, no. 12, 2002, pp. 1389-1399.
Julio Villalba, Tomas Lang, Mario A. Gonzales: “Double-Residue Modular Range
Reductton for Floating-Point Hardware Implementations”™ IEEE Trans. Comput., vol
35, o, 3, 2006, pp. 254-267.

Mircea Vladutiu: “Tehnologie de ramurd §i fiabilitate™ Litografia Institutuisi Po-
litehnic, Timisoara, 1982,

Mircea Viddafiv: “Tehnica testdrii sistemelor de caleu!” Litografia Institututui Po-
litehnic, Timigoara, 1986.

M. Viddutiu, N, Petrakis: “Adapted Combinational Array for Exact Binary Division
with Signed Operands” International Conference on Techrical Informatics, Proceed-
ings vol. 5, Timigoara, 1994, pp. 1-10.

John . Wakerly: “Digital Design. Principles and Practices™ Preatice-Hali, New York,
2000.

Joha M. Yarbrough: “Digital Logic. Application and Design™ West Publishing Com-
pany, Eagan, 1997,

Wen-Chang Yeh, Chein-Wei Jen: “Generalized Earliest-First Fast Addition Algo-
rithm” IEEE Trans. Comput., vol. 32, no. 10, 2003, pp. 1233-1242.

“1EEE Standard for Floating Point Arithmetic” htip://ali.ayad. free fe/1EEE_2008.pdf.





