JMPUTER ALGORITRMS

ELLIS
HOROWITZ

SARTAJ
SAHNI

SANGUTHEVAR
RAJASEKARAN

COMPUTER ALGORITHMS

4 Revieved

EDITED BY
SHANKHA JANA
(crazy-readers.blogspot.in)

SHANKHA
Text Box
 EDITED BY
 SHANKHA JANA
 (crazy-readers.blogspot.in)

SHANKHA
Reviewed

COMPUTER SCIENCE PRESS

Alfred V. Aho, Columbia University

Jeffrey D Ullman, Stanford University
Foundations of Computer Science: Pascal Edition
Foundations of Computer Science: C Edition

Michael I. Clancy, University of California at
Berkeley

Marcia C. Linn, University of California at
Berkeley

Designing Pascal Solutions: A Case Study
Approach

Designing Pascal Solutions: Case Studies Using
Data Structures

A. K. Dewdney, University of Western Ontario

The New Turing Omnibus: 66 Excursions in
Computer Science

Introductory Computer Science: Bits of Theory,
Bytes of Practice

Robert Floyd, Stanford University

Richard Beigel, Yale University

The Language of Machines: An Introduction to
Computability and Formal Languages

Michael R. Garey, Bell Laboratories

David S. Johnson, Bell Laboratories

Computers and Intractability: A Guide to the
Theory of NP-Completeness

Judith L. Gersting, University of Hawaii at Hilo

Mathematical Structures for Computer Science,
Third Edition

Visual Basic® Programming: A Laboratory
Approach

Ellis Horowitz, University of Southern California

Sartaj Sahni, University of Florida

Fundamentals of Data Structures in Pascal,
Fourth Edition

Ellis Horowitz, University of Southern California

Sartaj Sahni, University of Florida

Susan Anderson-Freed, Illinois Wesleyan
University

Fundamentals of Data Structures in C

Ellis Horowitz, University of Southern California

Sartaj Sahni, University of Florida

Dinesh Mehta, University of Tennessee Space
Institute

Fundamentals of Data Structures in C++

Ellis Horowitz, University of Southern California
Sartaj Sahni, University of Florida

Sanguthevar Rajasekaran, University of Florida
Computer Algorithms

Ellis Horowitz, University of Southern California
Sartaj Sahni, University of Florida

Sanguthevar Rajasekaran, University of Florida
Computer Algorithms/C++

Thomas W. Parsons, Hofstra University
Introduction to Compiler Construction

Gregory J. E. Rawlins, Indiana University
Compared to What?: An Introduction to the
Analysis of Algorithms

Wei-Min Shen, Microelectronics and Computer
Technology Corporation
Autonomous Learning from the Environment

James A. Storer, Brandeis University
Data Compression: Methods and Theory

Steven Tanimoto, University of Washington
Elements of Artificial Intelligence Using Common
Lisp, Second Edition

Kim W. Tracy, Bell Labs/Lucent Technologies,
Inc.

Peter Bouthoorn, Griningen University

Object-Oriented Artificial Intelligence Using
C++

Jeftrey D. Ullman, Stanford University

Principles of Database and Knowledge-Base
Systems, Vol I: Classical Database Systems

Principles of Database and Knowledge-Base
Systems, Vol II: The New Technologies

COMPUTER ALGORITHMS

Ellis Horowitz
University of Southern California

Sartaj Sahni
University of Florida

Sanguthevar Rajasekaran
University of Florida

o

Computer Science Press
An imprint of W. H. Freeman and Company
New York

Acaqisitions Editor: Richard Bonacci

Project Editor: Penelope Hull

Text Designer: The Authors

Text [lustrations: The Authors

Cover Designer: A Good Thing

Cover Illustration: Tomek Olbinski

Production Coordinator: Sheila Anderson
Composition: The Authors

Manufacturing: R R Donnelley & Sons Company

Library of Congress Cataloging-in-Publication Data

Horowitz, Ellis.
Computer algorithms / Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran.
. cm.
Includes bibliographical references and index.
ISBN 0-7167-8316-9
1. Computer algorithms. 2. Pseudocode (Computer program language).
I. Sahni, Sartaj. II. Rajasekaran, Sanguthevar. III. Title.
QA76.9.A43H67 1998
005.1NDC21
97-20318
CIP

© 1998 by W. H. Freeman and Company. All rights reserved. No part of this book may

be reproduced by any mechanical, photographic, or electronic process, or in the form of a
phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise
copied for public or private use, without written permission from the publisher.

Printed in the United States of America
First printing, 1997

Computer Science Press

An imprint of W. H. Freeman and Company

41 Madison Avenue, New York, New York 10010
Houndmills, Basingstoke RG21 6XS, England

To my nuclear family,

MARYANNE, PIPI, CHANOCH, and IRA

— Ellis Horowitz

To,

NEETA, AGAM, NEHA, and PARAM

— Sartaj Sahni

To,

KEERAN, KRISHN A, PANDI, and PONNUTHAT

— Sanguthevar Rajasekaran

Contents

PREFACE

1 INTRODUCTION
1. WHAT IS AN ALGORITHM?
1.2 ALGORITHM SPECIFICATION

1.2.1
1.2.2

Pseudocode Conventions
Recursive Algorithms

1.3 PERFORMANCE ANALYSIS

1.3.1
1.3.2
1.3.3
1.34
1.3.5

Space Complexity
Time Complexity
Asymptotic Notation (O, 2, ©)
Practical Complexities
Performance Measurement

1.4 RANDOMIZED ALGORITHMS

14.1
1.4.2
1.4.3
1.44
1.4.5

Basics of Probability Theory
Randomized Algorithms: An Informal Description . .
Identifying the Repeated Element
Primality Testing
Advantages and Disadvantages

1.6, REFERENCES AND READINGS

2 ELEMENTARY DATA STRUCTURES
9.1 STACKS AND QUEUESo oo
22 TREES . .\ oo

221
2.2.2

Terminology
Binary Trees

2.3 DICTIONARIES

231
2.3.2

Binary Search Trees
Cost Amortization

vil

XV

v Ot = =

10
14
15
18
29
37
40
53
53
o7
59
61
65
68

viii

CONTENTS

2.4 PRIORITY QUEUES 91
241 Heaps e 92
24.2 Heapsort e 99

2.5 SETS AND DISJOINT SET UNION 101
25,1 Imtroduction 101
2.5.2 Union and Find Operations 102

26 GRAPHS 112
2.6.1 Introduction 112
2.6.2 Definitions oo o 112
2.6.3 Graph Representations. 118

2.7 REFERENCES AND READINGS 126
DIVIDE-AND-CONQUER 127
3.1 GENERALMETHOD 127
3.2 BINARYSEARCH 131
3.3 FINDING THE MAXIMUM AND MINIMUM 139
34 MERGESORT 145
3.5 QUICKSORT e 154
3.5.1 Performance Measurement 159
3.5.2 Randomized Sorting Algorithms 159

3.6 SELECTION 165
3.6.1 A Worst-Case Optimal Algorithm 169
3.6.2 Implementation of Select2 172

3.7 STRASSEN’S MATRIX MULTIPLICATION 179
3.8 CONVEX HULL, 183
3.8.1 Some Geometric Primitives 184
3.8.2 The QuickHull Algorithm 185
3.8.3 Graham’s Scan, 187
3.8.4 An O(nlogn) Divide-and-Conquer Algorithm 188

3.9 REFERENCES AND READINGS 193
3.10 ADDITIONAL EXERCISES 194
THE GREEDY METHOD 197
4.1 THE GENERAL METHOD 197
4.2 KNAPSACK PROBLEM 198
4.3 TREE VERTEX SPLITTING. 203
4.4 JOB SEQUENCING WITH DEADLINES 208
4.5 MINIMUM-COST SPANNING TREES 216

4.5.1 Prim’s Algorithm 218

CONTENTS ix

4.5.2 Kruskal’'s Algorithm 220
4.5.3 An Optimal Randomized Algorithm (x) 225
4.6 OPTIMAL STORAGE ON TAPES 229
4.7 OPTIMAL MERGE PATTERNS 234
4.8 SINGLE-SOURCE SHORTEST PATHS 241
4.9 REFERENCES AND READINGS 249
4.10 ADDITIONAL EXERCISES 250
5 DYNAMIC PROGRAMMING 253
5.1 THE GENERAL METHOD 253
52 MULTISTAGE GRAPHS 257
5.3 ALL PATRS SHORTEST PATHS 265
5.4 SINGLE-SOURCE SHORTEST PATHS:.
GENERAL WEIGHTS 270
5.5 OPTIMAL BINARY SEARCH TREES (*) 275
5.6 STRING EDITING 284
57 0/1-KNAPSACK, 287
58 RELIABILITY DESIGN 295
5.9 THE TRAVELING SALESPERSON PROBLEM 298
5.10 FLOW SHOP SCHEDULING 301
5.11 REFERENCES AND READINGS 307
5.12 ADDITIONAL EXERCISES 308
6 BASIC TRAVERSAL AND SEARCH TECHNIQUES 313
6.1 TECHNIQUES FOR BINARY TREES 313
6.2 TECHNIQUES FOR GRAPHS 318
6.2.1 Breadth First Search and Traversal 320
6.2.2 Depth First Search and Traversal 323
6.3 CONNECTED COMPONENTS AND SPANNING TREES . 325
6.4 BICONNECTED COMPONENTSAND DFS. 329
6.5 REFERENCES AND READINGS 338
7 BACKTRACKING 339
7.1 THE GENERAL METHOD 339
7.2 THE 8-QUEENS PROBLEM 353
7.3 SUMOFSUBSETS 357
74 GRAPH COLORING 360
7.5 HAMILTONIAN CYCLES 364
7.6 KNAPSACK PROBLEM 368

CONTENTS

7.7 REFERENCES AND READINGS 374
7.8 ADDITIONAL EXERCISES 375
BRANCH-AND-BOUND 379
81 THE METHOD 379
8.1.1 Least Cost (LC) Search 380
8.1.2 The 15-puzzle: An Example 382
8.1.3 Control Abstractions for LC-Search 386
814 Bounding 388
8.1.5 FIFO Branch-and-Bound 391
8.1.6 LC Branch-and-Bound 392

8.2 0/1 KNAPSACK PROBLEM 393
8.2.1 LC Branch-and-Bound Solution 394
8.2.2 FIFO Branch-and-Bound Solution 397

8.3 TRAVELING SALESPERSON (x) 403
8.4 EFFICIENCY CONSIDERATIONS 412
8.5 REFERENCES AND READINGS 416
ALGEBRAIC PROBLEMS 417
9.1 THE GENERAL METHOD 417
9.2 EVALUATION AND INTERPOLATION 420
9.3 THE FAST FOURIER TRANSFORM 430
9.3.1 An In-place Version of the FFT 435
9.3.2 Some Remaining Points 438

94 MODULAR ARITHMETIC 440
9.5 EVEN FASTER EVALUATION AND INTERPOLATION . 448
9.6 REFERENCES AND READINGS 456
10 LOWER BOUND THEORY 457
10.1 COMPARISON TREES 458
10.1.1 Ordered Searching 459
10.1.2 Sorting 459
10.1.3 Selection o 464

10.2 ORACLES AND ADVERSARY ARGUMENTS. 466
10.2.1 Merging o v v vt e e e e e e e 467
10.2.2 Largest and Second Largest 468
10.2.3 State Space Method 470
10.2.4 Selection 471

10.3 LOWER BOUNDS THROUGH REDUCTIONS 474

CONTENTS

10.3.1 Finding the Convex Hull
10.3.2 Disjoint Sets Problem
10.3.3 On-line Median Finding
10.3.4 Multiplying Triangular Matrices
10.3.5 Inverting a Lower Triangular Matrix
10.3.6 Computing the Transitive Closure
10.4 TECHNIQUES FOR ALGEBRAIC PROBLEMS (%)
10.5 REFERENCES AND READINGS

11 NP-HARD AND NP-COMPLETE PROBLEMS
11.1 BASIC CONCEPTS i
11.1.1 Nondeterministic Algorithms
11.1.2 The classes N P-hard and NP-complete
11.2 COOK’S THEOREM ()
11.3 N'P-HARD GRAPH PROBLEMS
11.3.1 Clique Decision Problem (CDP)
11.3.2 Node Cover Decision Problem
11.3.3 Chromatic Number Decision Problem (CNDP) . . .
11.3.4 Directed Hamiltonian Cycle (DHC) (x)
11.3.5 Traveling Salesperson Decision Problem (TSP) . . .
11.3.6 AND/OR Graph Decision Problem (AOG)
11.4 NP-HARD SCHEDULING PROBLEMS
11.4.1 Scheduling Identical Processors
11.4.2 Flow Shop Scheduling
11.4.3 Job Shop Scheduling
11.5 NP-HARD CODE GENERATION PROBLEMS
11.5.1 Code Generation With Common Subexpressions
11.5.2 Implementing Parallel Assignment Instructions
11.6 SOME SIMPLIFIED NP-HARD PROBLEMS
11.7 REFERENCES AND READINGS
11.8 ADDITIONAL EXERCISES

12 APPROXIMATION ALGORITHMS
12.1 INTRODUCTION e
1.2 ABSOLUTE APPROXIMATIONS
12.2.1 Planar Graph Coloring
12.2.2 Maximum Programs Stored Problem
12.2.3 NP-hard Absolute Approximations
12.3 e.APPROXIMATIONS

x1

475
475
477
477
478
480
484
494

495
495
496
504
508
517
018
519

. 521

522

. 525

926
533
534
536
538
540

. 542

546
550
553
553

xi1

12.4

12.5

12.6

12.7
12.8

CONTENTS

12.3.1 Scheduling Independent Tasks
12.3.2 Bin Packing oL
12.3.3 NP-hard e-Approximation Problems

POLYNOMIAL TIME APPROXIMATION SCHEMES

12.4.1 Scheduling Independent Tasks

1242 0/1 Knapsack
FULLY POLYNOMIAL TIME
APPROXIMATION SCHEMES
12.5.1 Rounding
12.5.2 Interval Partitioning
12.5.3 Separationo
PROBABILISTICALLY GOOD ALGORITHMS (x)
REFERENCES AND READINGS
ADDITIONAL EXERCISES

13 PRAM ALGORITHMS

13.1
13.2
13.3

13.4

13.5

13.6

13.7

INTRODUCTION
COMPUTATIONAL MODEL

FUNDAMENTAL TECHNIQUES AND ALGORITHMS

13.3.1 Prefix Computation
13.3.2 List Ranking
SELECTION
13.4.1 Maximal Selection With n? Processors
13.4.2 Finding the Maximum Using n Processors
13.4.3 Maximal Selection Among Integers
13.4.4 General Selection Using n? Processors
13.4.5 A Work-Optimal Randomized Algorithm ()
MERGING e
13.5.1 A Logarithmic Time Algorithm
13.5.2 Odd-Even Merge
13.5.3 A Work-Optimal Algorithm
13.5.4 An O(loglogm)-Time Algorithm
SORTINGo e e e
13.6.1 Odd-Even Merge Sort
13.6.2 An Alternative Randomized Algorithm
13.6.3 Preparata’s Algorithm
13.6.4 Reischuk’s Randomized Algorithm (x)
GRAPH PROBLEMS

13.7.1 An Alternative Algorithm for Transitive Closure

585
587
991
592
596
599
600

605
605
608

. 615

615
618
627
627
628
629
632
632
636
636
637
640
641
643
643
644
645
647
651

. 654

CONTENTS

13.8
13.9

13.7.2 All-Pairs Shortest Paths
COMPUTING THE CONVEX HULL
LOWERBOUNDS
13.9.1 A lower bound on average case sorting
13.9.2 Finding the maximum
13.10REFERENCES AND READINGS
13.11ADDITIONAL EXERCISES

14 MESH ALGORITHMS

14.1
14.2

14.3

114

14.5

14.6

147

14.8
14.9

COMPUTATIONAL MODEL
PACKET ROUTING
14.2.1 Packet Routing on a Linear Array
14.2.2 A Greedy Algorithm for PPR on a Mesh.
14.2.3 A Randomized Algorithm With Small Queues . . .
FUNDAMENTAL ALGORITHMS
14.3.1 Broadcasting
14.3.2 Prefix Computation
14.3.3 Data Concentration
14.3.4 Sparse Enumeration Sort
SELECTION
14.4.1 A Randomized Algorithm forn=p (x)
14.4.2 Randomized Selection Forn >p (x)
14.4.3 A Deterministic Algorithm Forn>p
MERGING
14.5.1 Rank Merge on a Linear Array
14.5.2 Odd-Even Merge on a Linear Array
14.5.3 Odd-Even Merge ona Mesh
SORTING o e e
14.6.1 Sorting on a Linear Array
14.6.2 Sortingona Mesh
GRAPH PROBLEMS
14.7.1 An n x n Mesh Algorithm for Transitive Closure . . .
14.7.2 All Pairs Shortest Paths
COMPUTING THE CONVEX HULL
REFERENCES AND READINGS
11.10ADDITIONAL EXERCISES

15 HYPERCUBE ALGORITHMS

15.1

COMPUTATIONAL MODEL

x1i1

655
656
659
660
662
663
665

667
667
669
670
674
676
679
681
681
685
686
691
691
692
692
698
698
699
699
701
701
703
708
710
711
713
718
719

723

x1v

INDEX

CONTENTS

15.1.1 The Hypercube 723
15.1.2 The Butterfly Network 726
15.1.3 Embedding Of Other Networks 727
152 PPRROUTING 732
15.2.1 A Greedy Algorithm 732
15.2.2 A Randomized Algorithm 733
15.3 FUNDAMENTAL ALGORITHMS 736
15.3.1 Broadcasting 737
15.3.2 Prefix Computation 737
15.3.3 Data Concentration 739
15.3.4 Sparse Enumeration Sort 742
15.4 SELECTION, 744
15.4.1 A Randomized Algorithm forn=p (x) 744
15.4.2 Randomized Selection Forn >p (x) 745
15.4.3 A Deterministic Algorithm Forn>p 745
15.5 MERGING o 748
15.5.1 Odd-Even Merge 748
15.5.2 Bitonic Merge 750
15,6 SORTING i it 752
15.6.1 Odd-Even Merge Sort 752
15.6.2 Bitonic Sorto oo 752
15.7 GRAPH PROBLEMS 753
15.8 COMPUTING THE CONVEX HULL 755
15.9 REFERENCES AND READINGS 757
15.10ADDITIONAL EXERCISES 758

PREFACE

If we try to identify those contributions of computer science which will be
long lasting, surely one of these will be the refinement of the concept called
algorithm. Ever since man invented the idea of a machine which could per-
form basic mathematical operations, the study of what can be computed and
how it can be done well was launched. This study, inspired by the computer,
has led to the discovery of many important algorithms and design methods.
The discipline called computer science has embraced the study of algorithms
as its own. It is the purpose of this book to organize what is known about
them in a coherent fashion so that students and practitioners can learn to
devise and analyze new algorithms for themselves.

A book which contains every algorithm ever invented would be exceed-
ingly large. Traditionally, algorithms books proceeded by examining only a
small number of problem areas in depth. For each specific problem the most
efficient algorithm for its solution is usually presented and analyzed. This
approach has one major flaw. Though the student sees many fast algorithms
and may master the tools of analysis, she/he remains unconfident about how
to devise good algorithms in the first place.

The missing ingredient is a lack of emphasis on design techniques. A
knowledge of design will certainly help one to create good algorithms, yet
without the tools of analysis there is no way to determine the quality of the
result. This observation that design should be taught on a par with analysis
led us to a more promising line of approach: namely to organize this book
around some fundmental strategies of algorithm design. The number of ba-
sic design strategies is reasonably small. Moreover all of the algorithms one
would typically wish to study can easily be fit into these categories; for exam-
ple, mergesort and quicksort are perfect examples of the divide-and-conquer
strategy while Kruskal’s minimum spanning tree algorithm and Dijkstra’s
single source shortest path algorithm are straight forward examples of the
greedy strategy. An understanding of these strategies is an essential first
step towards acquiring the skills of design.

Though we strongly feel that the emphasis on design as well as analysis
is the appropriate way to organize the study of algorithms, a cautionary
remark is in order. First, we have not included every known design principle.

XV

xvi PREFACE

One example is linear programming which is one of the most successful
techniques, but is often discussed in a course of its own. Secondly, the student
should be inhibited from taking a cookbook approach to algorithm design
by assuming that each algorithm must derive from only a single technique.
This is not so.

A major portion of this book, Chapters 3 through 9, deal with the dif-
ferent design strategies. First each strategy is described in general terms.
Typically a “program abstraction” is given which outlines the form that the
computation will take if this strategy can be applied. Following this there
are a succession of examples which reveal the intricacies and varieties of the
general strategy. The examples are somewhat loosely ordered in terms of
increasing complexity. The type of complexity may arise in several ways.
Usually we begin with a problem which is very simple to understand and
requires no data structures other than a one-dimensional array. For this
problem it is usually obvious that the design strategy yields a correct solu-
tion. Later examples may require a proof that an algorithm based on this
design technique does work. Or, the later algorithms may require more so-
phisticated data structures (e.g., trees or graphs) and their analyses may be
more complex. The major goal of this organization is to emphasize the arts
of synthesis and analysis of algorithms. Auxiliary goals are to expose the
student to good program structure and to proofs of algorithm correctness.

The algorithms in this book are presented in a pseudocode that resem-
bles C and Pascal. Section 1.2.1 describes the pseudocode conventions. Ex-
ecutable versions (in C++) of many of these algorithms can be found in our
home page. Most of the algorithms presented in this book are short and the
language constructs used to describe them are simple enough that any one
can understand. Chapters 13, 14, and 15 deal with parallel computing.

Another special feature of this book is that we cover the area of random-
ized algorithms extensively. Many of the algorithms discussed in Chapters
13, 14, and 15 are randomized. Some randomized algorithms are presented
in the other chapters as well. An introductory one quarter course on parallel
algorithms might cover Chapters 13, 14, and 15 and perhaps some minimal
additional material.

We have identified certain sections of the text (indicated with (*)) that
are more suitable for advanced courses. We view the material presented in
this book as ideal for a one semester or two quarter course given to juniors,
seniors, or graduate students. It does require prior experience with pro-
gramming in a higher level language but everything else is self-contained.
Practically speaking, it seems that a course on data structures is helpful, if
only for the fact that the students have greater programming maturity. For
a school on the quarter system, the first quarter might cover the basic design
techniques as given in Chapters 3 through 9: divide-and-conquer, the greedy
method, dynamic programming, search and traversal, backtracking, branch-
and-bound, and algebraic methods (see TABLEI). The second quarter would
cover Chapters 10 through 15: lower bound theory, NP-completeness and

PREFACE xvii

approximation methods, PRAM algorithms, Mesh algorithms and Hyper-
cube algorithms (see TABLE II).

[Week [| Subject [Reading [
1 Introduction 1.1 to 1.3
2 Introduction 14
Data structures 2.1, 2.2

3 Data structures 2.3 to 2.6

4 Divide-and-conquer Chapter 3
Assignment I due

D The greedy method Chapter 4
Exam I

[§ Dynamic programming Chapter 5

Search and traversal techniques || Chapter 6
Assignment IT due

8 Backtracking Chapter 7

9 Branch-and-bound Chapter 8

10 Algebraic methods Chapter 9
Assignment ITI due
Exam I1

TABLE I: FIRST QUARTER

For a semester schedule where the student has not been exposed to data
structures and O-notation, Chapters 1 through 7, 11, and 13 is about the
right amount of material (see TABLE III).

A more rigorous pace would cover Chapters 1 to 7, 11, 13, and 14 (see
TABLE IV).
An advanced course, for those who have prior knowledge about data

structures and O notation, might consist of Chapters 3 to 11, and 13 to 15
(see TABLE V).

Programs for most of the algorithms given in this book are available from
the following URL: http://www.cise.ufl.edu/"raj/BO0K.html. Please
send your comments to raj@cise.ufl.edu.

For homework there are numerous exercises at the end of each chapter.
The most popular and instructive homework assignment we have found is
one which requires the student to execute and time two programs using the
same data sets. Since most of the algorithms in this book provide all the
implementation details, they can be easily made use of. Translating these
algorithms into any programming language should be easy. The problem
then reduces to devising suitable data sets and obtaining timing results.
The timing results should agree with the asymptotic analysis that was done

xviii

PREFACE

[Week [Subject || Reading
1 Lower bound theory 10.1 to 10.3
2 Lower bound theory 10.4
NP-complete and NP-hard problems | 11.1, 11.2
3 NP-complete and NP-hard problems || 11.3, 11.4
4 NP-complete and N'P-hard problems || 11.5, 11.6
Approximation algorithms 12.1, 12.2
Assignment I due
5 Approximation algorithms 12.3 to 12.6
Exam [
6 PRAM algorithms 13.1 to 13.4
7 PRAM algorithms 13.5 to 13.9
Assignment IT due
8 Mesh algorithms 14.1 to 14.5
9 Mesh algorithms 14.6 to 14.8
Hypercube algorithms 15.1 to 15.3
10 Hypercube algorithms 15.4 to 15.8
Assignment ITI due
Exam II

TABLE II: SECOND QUARTER

PREFACE

XIX
| Week || Subject | Reading 1
1 Introduction 1.1 to 1.3
2 Introduction 14
Data structures 2.1, 2.2
3 Data structures 2.3 to 2.6
4 Divide-and-conquer 3.1to0 3.4

Assignment T due

5 Divide-and-conquer 3.5 to 3.7
Exam I

6 The greedy method 4.1 to 4.4

7 The greedy method 4.5 to 4.7
Assignment IT due

8 Dynamic programming 5.1t0 5.5

9 Dynamic programming 5.6 to 5.10

10 Search and traversal 6.1 to 6.4
Assignment III due
Exam 11

11 Backtracking 71t0 7.3

12 Backtracking 7.4 t0 7.6

13 NP-complete and NP-hard problems || 11.1 to 11.3
Assignment IV due

11 NP-complete and NP-hard problems [11.4 to 11.6

15 PRAM algorithms 13.1 to 13.4

16 PRAM algorithms 13.5 to 13.9
Assignment V due
Exam III

TABLE III: SEMESTER — Medium pace (no prior exposure)

PREFACE

XX
[Week [Subject | Reading [
1 Introduction 1.1 to 1.3
2 Introduction 1.4
Data structures 2.1, 2.2
3 Data structures 2.3 to 2.6
4 Divide-and-conquer 3.1 to 3.5
Assignment I due
5 Divide-and-conquer 3.6 to 3.7
The greedy method 4.1 to 4.3
Exam [
6 The greedy method 4.4 t04.7
7 Dynamic programming 5.1 to 5.7
Assignment II due
8 Dynamic programming 5.8 to 5.10
Search and traversal techniques 6.1 to 6.2
9 Search and traversal techniques 6.3, 6.4
Backtracking 71,72
10 Backtracking 7.3t0 7.6
Assignment IIT due
Exam II
11 NP-hard and N'P-complete problems {| 11.1 to 11.3
12 NP-hard and N'P-complete problems || 11.4 to 11.6
13 PRAM algorithms 13.1 to 13.4
Assignment IV due
14 PRAM algorithms 13.5 to 13.9
15 Mesh algorithms 14.1 to 14.3
16 Mesh algorithms 14.4 to 14.8
Assignment V due
Exam III

TABLE IV: SEMESTER - Rigorous pace (no prior exposure)

PREFACE xxi
| Week [Subject | Reading i
1 Divide-and-conquer 3.1t0 3.5
2 Divide-and-conquer 3.6, 3.7
The greedy method 4.1 to 4.3

3 The greedy method 4.4 to 4.7

4 Dynamic programming Chapter 5
Assignment T due

5 Search and traversal techniques Chapter 6
Exam I

6 Backtracking Chapter 7

7 Branch-and-bound Chapter 8
Assignment II due

8 Algebraic methods Chapter 9

9 Lower bound theory Chapter 10

10 N'P-complete and N'P-hard problems || 11.1 to 11.3
Exam II
Assignment 11

11 NP-complete and N'P-hard problems || 11.4 to 11.6

12 PRAM algorithms 13.1 to 13.4

13 PRAM algorithms 13.5 to 13.9
Assignment IV due

11 Mesh algorithms 14.1 to 14.5

15 Mesh algorithms 14.6 to 14.8

Hypercube algorithms 15.1 to 15.3

16 Hypercube algorithms 154 to 15.8
Assignment V due
Exam II1

TABLE V: SEMESTER - Advanced course (rigorous pace)

xxil PREFACE

for the algorithm. This is a nontrivial task which can be both educational
and fun. Most importantly it emphasizes an aspect of this field that is often
neglected, that there is an experimental side to the practice of algorithins.

Acknowledgements

We are grateful to Martin J. Biernat, Jeff Jenness, Saleem Khan, Ming-Yang
Kao, Douglas M. Campbell, and Stephen P. Leach for their critical comments
which have immensely enhanced our presentation. We are thankful to the
students at UF for pointing out mistakes in earlier versions. We are also
thankful to Teo Gonzalez, Danny Krizanc, and David Wei who carefully
read portions of this book.

Ellis Horowitz
Sartaj Sahni

Sanguthevar Rajasekaran
June, 1997

Chapter 1

INTRODUCTION

1.1 WHAT IS AN ALGORITHM?

The word algorithm comes from the name of a Persian author, Abu Ja'far
Mohammed ibn Musa al Khowarizmi (c¢. 825 A.D.), who wrote a textbook
on mathematics. This word has taken on a special significance in computer
science, where “algorithm” has come to refer to a method that can be used
by a computer for the solution of a problem. This is what makes algorithm
different from words such as process, technique, or method.

Definition 1.1 [Algorithm]: An algorithm is a finite set of instructions that,
if followed, accomplishes a particular task. In addition, all algorithms must
satisly the following criteria:

Input. Zero or more quantities are externally supplied.
Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous.

=W N

Finiteness. If we trace out the instructions of an algorithm, then for
all cases, the algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction must be very basic so that it can be
carried out, in principle, by a person using only pencil and paper. It
is not enough that each operation be definite as in criterion 3; it also
must be feasible. O

An algorithm is composed of a finite set of steps, each of which may
require one or more operations. The possibility of a computer carrying out
these operations necessitates that certain constraints be placed on the type
of operations an algorithm can include.

1

2 CHAPTER 1. INTRODUCTION

Criteria 1 and 2 require that an algorithm produce one or more outputs
and have zero or more inputs that are externally supplied. According to cri-
terion 3, each operation must be definite, meaning that it must be perfectly
clear what should be done. Directions such as “add 6 or 7 to 2" or “compute
5/0” are not permitted because it is not clear which of the two possibilities
should be done or what the result is.

The fourth criterion for algorithms we assume in this book is that they
terminate after a finite number of operations. A related consideration is
that the time for termination should be reasonably short. For example, an
algorithm could be devised that decides whether any given position in the
game of chess is a winning position. The algorithm works by examining all
possible moves and countermoves that could be made from the starting po-
sition. The difficulty with this algorithm is that even using the most modern
computers, it may take billions of years to make the decision. We must be
very concerned with analyzing the efficiency of each of our algorithms.

Criterion 5 requires that each operation be effective; each step must be
such that it can, at least in principle, be done by a person using pencil and
paper in a finite amount of time. Performing arithmetic on integers is an
example of an effective operation, but arithmetic with real numbers is not,
since some values may be expressible only by infinitely long decimal expan-
sion. Adding two such numbers would violate the effectiveness property.

Algorithms that are definite and effective are also called computational
procedures. One important example of computational procedures is the op-
erating system of a digital computer. This procedure is designed to control
the execution of jobs, in such a way that when no jobs are available, it
does not terminate but continues in a waiting state until a new job is en-
tered. Though computational procedures include important examples such
as this one, we restrict our study to computational procedures that always
terminate.

To help us achieve the criterion of definiteness, algorithms are written in a
programming language. Such languages are designed so that each legitimate
sentence has a unique meaning. A program is the expression of an algorithm
in a programming language. Sometimes words such as procedure, function,
and subroutine are used synonymously for program. Most readers of this
book have probably already programmed and run some algorithms on a
computer. This is desirable because before you study a concept in general,
it helps if you had some practical experience with it. Perhaps you had some
difficulty getting started in formulating an initial solution to a problem, or
perhaps you were unable to decide which of two algorithms was better. The
goal of this book is to teach you how to make these decisions.

The study of algorithms includes many important and active areas of
research. There are four distinct areas of study one can identify:

1. How to devise algorithms — Creating an algorithm is an art which
may never be fully automated. A major goal of this book is to study vari-

1.1. WHAT IS AN ALGORITHM? 3

ous design techniques that have proven to be useful in that they have often
yielded good algorithms. By mastering these design strategies, it will become
easier for you to devise new and useful algorithms. Many of the chapters
of this book are organized around what we believe are the major methods
of algorithm design. The reader may now wish to glance back at the table
of contents to sce what these methods are called. Some of these techniques
may already be familiar, and some have been found to be so useful that
books have been written about them. Dynamic programming is one such
techunigne. Some of the techniques are especially useful in fields other than
computer science such as operations research and electrical engineering. In
this book we can only hope to give an introduction to these many approaches
to algorithm formulation. All of the approaches we consider have applica-
tions in a variety of areas including computer science. But some important
design techniques such ags linear, nonlinear, and integer programming are not
covered here as they are traditionally covered in other courses.

2. How to wvalidate algorithms — Once an algorithm is devised, it is
necessary to show that it computes the correct answer for all possible legal
inputs. We refer to this process as algorithm wvalidation. The algorithm
need not as yet be expressed as a program. It is sufficient to state it in any
precise way. The purpose of the validation is to assure us that this algorithm
will work correctly independently of the issues concerning the programming
language it will eventually be written in. Once the validity of the method
has been shown, a program can be written and a second phase beging. This
phase is referred to as program proving or sometimes as program verification.
A proof of correctness requires that the solution be stated in two forms.
One form is usually as a program which is annotated by a set of assertions
about the input and output variables of the program. These assertions
are often expressed in the predicate calculus. The second form is called a
specification, and this may also be expressed in the predicate calculus. A
proof consists of showing that these two forms are equivalent in that for
every given legal input, they describe the same output. A complete proof
of program correctness requires that each statement of the programming
language be precisely defined and all basic operations be proved correct. All
these details may cause a proof to be very much longer than the program.

3. How to analyze algorithms — This field of study is called analysis
of algorithms. As an algorithm is executed, it uses the computer’s central
processing unit (CPU) to performm operations and its memory (both imme-
diate and auxiliary) to hold the program and data. Analysis of algorithms
or performance analysis refers to the task of determining how much com-
puting time and storage an algoritlim requires. This is a challenging area
which sometimes requires great mathematical skill. An important result of
this study is that it allows you to make quantitative judgments about the
value of one algorithm over another. Another result is that it allows you to
predict whether the software will meet any efficiency constraints that exist.

4 CHAPTER 1. INTRODUCTION

Questions such as how well does an algorithm perform in the best case, in
the worst case, or on the average are typical. For each algorithm in the text,
an analysis is also given. Analysis is more fully described in Section 1.3.2.

4. How to test a program — Testing a program consists of two phases:
debugging and profiling (or performance measurement). Debugging is the
process of executing programs on sample data sets to determine whether
faulty results occur and, if so, to correct them. However, as E. Dijkstra
has pointed out, “debugging can only point to the presence of errors, but
not to their absence.” In cases in which we cannot verify the correctness of
output on sample data, the following strategy can be employed: let more
than one programmer develop programs for the same problem, and compare
the outputs produced by these programs. If the outputs match, then there
is a good chance that they are correct. A proof of correctness is much more
valuable than a thousand tests (if that proof is correct), since it guarantees
that the program will work correctly for all possible inputs. Profiling or
performance measurement is the process of executing a correct program on
data sets and measuring the time and space it takes to compute the results.
These timing figures are useful in that they may confirm a previously done
analysis and point out logical places to perform useful optimization. A
description of the measurement of timing complexity can be found in Section
1.3.5. For some of the algorithms presented here, we show how to devise a
range of data sets that will be useful for debugging and profiling.

These four categories serve to outline the questions we ask about algo-
rithms throughout this book. As we can’t hope to cover all these subjects
completely, we content ourselves with concentrating on design and analysis,
spending less time on program construction and correctness.

EXERCISES

1. Look up the words algorism and algorithm in your dictionary and write
down their meanings.

2. The name al-Khowarizmi (algorithm) literally means “from the town
of Khowarazm.” This city is now known as Khiva, and is located in
Uzbekistan. See if you can find this country in an atlas.

3. Use the WEB to find out more about al-Khowarizmi, e.g., his dates, a
picture, or a stamp.

1.2. ALGORITHM SPECIFICATION 5

1.2 ALGORITHM SPECIFICATION

1.2.1 Pseudocode Conventions

In computational theory, we distinguish between an algorithm and a pro-
gram. The latter does not have to satisfy the finiteness condition. For ex-
ample, we can think of an operating system that continues in a “wait” loop
until more jobs are entered. Such a program does not terminate unless the
system crashes. Since our programs always terminate, we use “algorithm”
and “program” interchangeably in this text.

We can describe an algorithm in many ways. We can use a natural
language like English, although if we select this option, we must make sure
that the resulting instructions are definite. Graphic representations called
flowcharts are another possibility, but they work well only if the algorithm
is small and simple. In this text we present most of our algorithms using a
pseudocode that resembles C and Pascal.

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces: { and }. A compound
statement (i.e., a collection of simple statements) can be represented
as a block. The body of a procedure also forms a block. Statements
are delimited by ;.

3. Au identifier begins with a letter. The data types of variables are
not explicitly declared. The types will be clear from the context.
Whether a variable is global or local to a procedure will also be evident
from the context. We assume simple data types such as integer, float,
char, boolean, and so on. Compound data types can be formed with
records. Here is an example:

node = record
{ datatype_ 1l data.1;

datatype.n data.n;
node *link;

}

In this example, lsnk is a pointer to the record type node. Individual
data items of a record can be accessed with — and period. For instance
if p points to a record of type node, p — data.1 stands for the value of
the first field in the record. On the other hand, if ¢ is a record of type
node, q.data_1 will denote its first field.

CHAPTER 1. INTRODUCTION

. Assignment of values to variables is done using the assignment state-
ment

(variable) := (expression);

. There are two boolean values true and false. In order to produce
these values, the logical operators and, or, and not and the relational
operators <, <,=,#, >, and > are provided.

. Elements of multidimensional arrays are accessed using [and]. For
example, if A is a two dimensional array, the (7,j)th element of the
array is denoted as A[f, j]. Array indices start at zero.

. The following looping statements are employed: for, while, and repeat-
until. The while loop takes the following form:

while (condition) do

{

(statement 1)

(statement n)

}

As long as {(condition) is true, the statements get executed. When
(condition) becomes false, the loop is exited. The value of (condition)
is evaluated at the top of the loop.

The general form of a for loop is
for variable := valuel to value2 step step do

(statement 1)

(statement n)

}

Here valuel, value2, and step are arithmetic expressions. A variable
of type integer or real or a numerical constant is a simple form of an
arithmetic expression. The clause “step step” is optional and taken
as +1 if it does not occur. step could either be positive or negative.
variable is tested for termination at the start of each iteration. The
for loop can be implemented as a while loop as follows:

1.2. ALGORITHM SPECIFICATION 7

variable := valuel;

fin := value2;

incr = step;

while ((variable — fin) x step < 0) do

{

{staternent 1)

(statement n)
variable := variable + incr;

}

A repeat-until statement is constructed as follows:

repeat
(staternent 1)

(statement n)
until (condition)

The statements are executed as long as (condition) is false. The value
of (condition) is computed after executing the statements.

The instruction break; can be used within any of the above looping
instructions to force exit. In case of nested loops, break; results in
the exit of the innermost loop that it is a part of. A return statement
within any of the above also will result in exiting the loops. A return
statement results in the exit of the function itself.

8. A conditional statement has the following forms:

if (condition) then (statement)
if (condition) then (statement 1) else (statement 2)

Here (condition) is a boolean expression and (statement), (statement 1),
and (statement 2) are arbitrary statements (simple or compound).

We also employ the following case statement:

case

{

:(condition 1): (statement 1)

H{condition n): (statement n)
:else: (statement n+ 1)

8 CHAPTER 1. INTRODUCTION

Here (statement 1), (statement 2), etc. could be either simple state-
ments or compound statements. A case statement is interpreted as
follows. If {(condition 1) is true, (statement 1) gets executed and
the case statement is exited. If (statement 1) is false, (condition 2)
is evaluated. If (condition 2) is true, (statement 2) gets executed
and the case statement exited, and so on. If none of the conditions
(condition 1), ..., (condition n) are true, (statement n+1) is executed
and the case statement is exited. The else clause is optional.

9. Input and output are done using the instructions read and write. No
format is used to specify the size of input or output quantities.

10. There is only one type of procedure: Algorithm. An algorithm con-
sists of a heading and a body. The heading takes the form

Algorithm Name ({parameter list))

where Name is the name of the procedure and ({(parameter list)) is
a listing of the procedure parameters. The body has one or more
(simple or compound) statements enclosed within braces { and }. An
algorithm may or may not return any values. Simple variables to
procedures are passed by value. Arrays and records are passed by
reference. An array name or a record name is treated as a pointer to
the respective data type.

As an example, the following algorithm finds and returns the maximum
of n given numbers:

Algorithm Max(A4, n)
// A is an array of size n.

Result .= A[1];
for i :=2ton do

if A[i] > Result then Result := Ali];
return Result;

OO UL Wk —

}

In this algorithm (named Max), A and n are procedure parameters.
Result and ¢ are local variables.

Next we present two examples to illustrate the process of translating a
problem into an algorithm.

Example 1.1 [Selection sort] Suppose we must devise an algorithm that
sorts a collection of n > 1 elements of arbitrary type. A simple solution is
given by the following

1.2. ALGORITHM SPECIFICATION 9

From those elements that are currently unsorted, find the smallest
and place it next in the sorted list.

Although this statement adequately describes the sorting problem, it is
not an algorithm because it leaves several questions unanswered. For exam-
ple, it does not tell us where and how the elements are initially stored or
where we should place the result. We assume that the elements are stored
in an array a, such that the ¢th integer is stored in the ¢th position a[¢],
1 <4< n. Algorithm 1.1 is our first attempt at deriving a solution.

for::=1tondo

Examine a[i] to a[n] and suppose
the smallest element is at a[j];
Interchange a[i] and a[j];

SO W=

}

Algorithm 1.1 Selection sort algorithm

To turn Algorithm 1.1 into a pseudocode program, two clearly defined
subtasks remain: finding the smallest element (say a[j]) and interchanging
it with a[i]. We can solve the latter problem using the code

t = afil; ali] := aljl; alj] = &

The first subtask can be solved by assuming the minimum is afi], checking
ali] with a[i + 1],a[i + 2],..., and, whenever a smaller element is found,
regarding it as the new minimum. Eventually a[n] is compared with the
current minimum, and we are done. Putting all these observations together,
we get the algorithm SelectionSort (Algorithm 1.2).

The obvious question to ask at this point is, Does SelectionSort work
correctly? Throughout this text we use the notation afz : j] to denote the
array elements a[i] through aj].

Theorem 1.1 Algorithm SelectionSort(a,n) correctly sorts a set of n > 1
elements; the result remains in a[l : n] such that a[1] < a[2] <--- < a[n].

Proof: We first note that for any ¢, say ¢ = g, following the execution of
lines 6 to 9, it is the case that alg] < a[r], ¢ < r < n. Also observe that
when ¢ becomes greater than ¢, a[l : ¢g] is unchanged. Hence, following the
last execution of these lines (that is, i = n), we have a[1] < a[2] < --- < a]n].

We observe at this point that the upper limit of the for loop in line 4 can
be changed to n — 1 without damaging the correctness of the algorithm. O

10 CHAPTER 1. INTRODUCTION

1 Algorithm SelectionSort(a,n)

2 // Sort the array a[l : n| into nondecreasing order.
3

4 for ¢+ :=1to ndo

5 {

6 =1

7 for k:=:1+1tondo

8 if (alk] < a[j]) then j := k;
9 t:=alil; alt] := alj]; als] :=1;
10

11 }

Algorithm 1.2 Selection sort

1.2.2 Recursive Algorithms

A recursive function is a function that is defined in terms of itself. Similarly,
an algorithm is said to be recursive if the same algorithm is invoked in the
body. An algorithm that calls itself is direct recursive. Algorithm A is said to
be indirect recursive if it calls another algorithm which in turn calls A. These
recursive mechanisms are extremely powerful, but even more importantly,
many times they can express an otherwise complex process very clearly. For
these reasons we introduce recursion here.

Typically, beginning programmers view recursion as a somewhat mystical
technique that is useful only for some very special class of problems (such
as computing factorials or Ackermann’s function). This is unfortunate be-
cause any algorithm that can be written using assignment, the if-then-else
statement, and the while statement can also be written using assignment,
the if-then-else statement, and recursion. Of course, this does not say that
the resulting algorithm will necessarily be easier to understand. However,
there are many instances when this will be the case. When is recursion an
appropriate mechanism for algorithm exposition? One instance is when the
problem itself is recursively defined. Factorial fits this category, as well as
binomial coefficients, where

ny n—1 n—1 B n!
m) m * m—-1) ml(n—m)

The following two examples show how to develop a recursive algorithm.
In the first example, we consider the Towers of Hanoi problem, and in the
second, we generate all possible permutations of a list of characters.

1.2. ALGORITHM SPECIFICATION 11

Example 1.2 [Towers of Hanoi] The Towers of Hanoi puzzle is fashioned
after the ancient Tower of Brahma ritual (see Figure 1.1). According to leg-
end, at the time the world was created, there was a diamond tower (labeled
A) with 64 golden disks. The disks were of decreasing size and were stacked
on the tower in decreasing order of size bottom to top. Besides this tower
there were two other diamond towers (labeled B and C). Since the time
of creation, Brahman priests have been attempting to move the disks from
tower A to tower B using tower C for intermediate storage. As the disks are
very heavy, they can be moved only one at a time. In addition, at no time
can a disk be on top of a smaller disk. According to legend, the world will
come to an end when the priests have completed their task.

aiiil

Jﬂﬁ MH

Tower A Tower B Tower C

Figure 1.1 Towers of Hanoi

A very elegant solution results from the use of recursion. Assume that
the number of disks is n. To get the largest disk to the bottom of tower B,
we move the remaining n — 1 disks to tower C and then move the largest
to tower B. Now we are left with the task of moving the disks from tower
C to tower B. To do this, we have towers A and B available. The fact
that tower B has a disk on it can be ignored as the disk is larger than the
disks being moved from tower C and so any disk can be placed on top of it.
The recursive nature of the solution is apparent from Algorithm 1.3. This
algorithm is invoked by TowersOfHanoi(n,A,B,C). Observe that our solution
for an n-disk problem is formulated in terms of solutions to two (n — 1)-disk
problems. O

Example 1.3 [Permutation generator] Given a set of n > 1 elements, the
problem is to print all possible permutations of this set. For example, if
the sct is {a, b, ¢}, then the set of permutations is {(a,b, ¢), (a,c,b), (b,a,c),

12 CHAPTER 1. INTRODUCTION

1 Algorithm TowersOfHanoi(n, z,y, 2)

2 // Move the top n disks from tower z to tower y.
3

4 if (n > 1) then

5 {

6 TowersOfHanoi(n — 1,z, 2,y);

7 write ("move top disk from tower", z,
8 "to top of tower", y);

9 TowersOfHanoi(n — 1, z,y, z);

10

11 }

Algorithm 1.3 Towers of Hanoi

(b,c,a), (c,a,b), (c,b,a)}. Tt is easy to see that given n elements, there are
n! different permutations. A simple algorithm can be obtained by looking
at the case of four elements (a,b, c,d). The answer can be constructed by
writing

1. a followed by all the permutations of (b, c,d)
2. b followed by all the permutations of (a, ¢, d)
3. ¢ followed by all the permutations of (a, b, d)
4. d followed by all the permutations of (a, b, c)

The expression “followed by all the permutations” is the clue to recursion.
It implies that we can solve the problem for a set with n elements if we have
an algorithm that works on n — 1 elements. These considerations lead to
Algorithm 1.4, which is invoked by Perm(a,1,n). Try this algorithm out
on sets of length one, two, and three to ensure that you understand how it
works. O

EXERCISES

1. Horner’s rule is a means for evaluating a polynomial at a point zg
using a minimum number of multiplications. If the polynomial is A(x)

= a,2" + ap_12" 1 + -+ + a1z + ag, Horner’s rule is

1.2. ALGORITHM SPECIFICATION 13
1 Algorithm Perm(a, k,n)
2
3 if (k = n) then write (a[l : n]); // Output permutation.
4 else // alk : n] has more than one permutation.
5 // Generate these recursively.
6 for ¢ :=k tondo
7 {
8 t := alk]; alk] := a[i]; ali] := ¢
9 Perm(a,k + 1,n);
10 // All permutations of alk + 1 : n]
11 t:= alkl]; alk] := a[i]; a[i] := &
12 }

13}

Algorithm 1.4 Recursive permutation generator

(W2

A(zg) = (- (anmo+ apn_1)xo + -+ + a1)zo + ag

Write an algorithm to evaluate a polynomial using Horner’s rule.

Given n boolean variables z1,zs,..., and z,, we wish to print all
possible combinations of truth values they can assume. For instance,
if n = 2, there are four possibilities: true, true; true, false; false, true;

and false, false. Write an algorithm to accomplish this.

Devise an algorithm that inputs three integers and outputs them in
nondecreasing order.

. Present an algorithm that searches an unsorted array a[l : n] for the

element z. If x occurs, then return a position in the array; else return
Zero.

The factorial function n! has value 1 when n < 1 and value n* (n—1)!
when n > 1. Write both a recursive and an iterative algorithm to
compute n!l.

The Fibonacci numbers are defined as fo =0, fiy =1, and f;, = f;_1 +
fi—2 for ¢ > 1. Write both a recursive and an iterative algorithm to
compute f;.

Give both a recursive and an iterative algorithm to compute the bino-
mial coefficient (') as defined in Section 1.2.2, where (j) = () = 1.

14

8.

10.

11.

12.

CHAPTER 1. INTRODUCTION

Ackermann’s function A(m,n) is defined as follows:

n+1 itm=0
A(m,n) = Am—1, 1) ifn=20
A(m -1, A(m, n—1)) otherwise

This function is studied because it grows very fast for small values of m
and n. Write a recursive algorithm for computing this function. Then
write a nonrecursive algorithm for computing it.

. The pigeonhole principle states that if a function f has n distinct inputs

but less than n distinct outputs, then there exist two inputs a and b
such that o # b and f(a) = f(b). Present an algorithm to find ¢ and
b such that f(a) = f(b). Assume that the function inputs are 1,2, ...,
and n.

Give an algorithm to solve the following problem: Given n, a positive
integer, determine whether n is the sum of all of its divisors, that is,
whether n is the sum of all ¢ such that 1 <t < n, and ¢ divides n.

Consider the function F(z) that is defined by “if z is even, then F(z) =
z/2; else F(z) = F(F(3z + 1)).” Prove that F(z) terminates for
all integers z. (Hint: Consider integers of the form (2¢ + 1)2¥ — 1 and
use induction.)

If S is a set of n elements, the powerset of S is the set of all possible
subsets of S. For example, if S = (a,b,c), then powerset(S) = {(),
(a), (b), (¢), (a,b), (a,c), (b,c), (a,b,c)}. Write a recursive algorithm
to compute powerset(S).

1.3 PERFORMANCE ANALYSIS

One goal of this book is to develop skills for making evaluative judgments
about algorithms. There are many criteria upon which we can judge an
algorithm. For instance:

1.
2.

Does it do what we want it to do?

Does it work correctly according to the original specifications of the
task?

Is there documentation that describes how to use it and how it works?

1.3. PERFORMANCE ANALYSIS 15

4. Are procedures created in such a way that they perform logical sub-
functions?

5. Is the code readable?

These criteria are all vitally important when it comes to writing soft-
ware, most especially for large systems. Though we do not discuss how to
reach these goals, we try to achieve them throughout this book with the
pseudocode algorithms we write. Hopefully this more subtle approach will
gradually infect your own program-writing habits so that you will automat-
ically strive to achieve these goals.

There are other criteria for judging algorithms that have a more direct
relationship to performance. These have to do with their computing time
and storage requirements.

Definition 1.2 [Space/Time complexity] The space complezity of an algo-
rithm is the amount of memory it needs to run to completion. The time
complexity of an algorithm is the amount of computer time it needs to run
to completion. 0O

Performance evaluation can be loosely divided into two major phases:
(1) a priori estimates and (2) a posteriori testing. We refer to these as
performance analysis and performance measurement respectively.

1.3.1 Space Complexity

Algorithm abc (Algorithm 1.5) computes a+b+bxc+ (a+b—c)/(a+b)+4.0;
Algorithm Sum (Algorithm 1.6) computes ;" a[i] iteratively, where the
ali]’s are real numbers; and RSum (Algorithm 1.7) 1s a recursive algorithm
that computes > | a[d].

I lgorithm abc(a, b, ¢)
3
1

A
{

return a+b+bxc+ (a+b—c)/(a+b)+4.0;
}

Algorithm 1.5 Computesa +b+b*xc+ (a+b—c)/(a+b) +4.0

The space needed by each of these algorithms is seen to be the sum of
the following components:

16 CHAPTER 1. INTRODUCTION

1 Algorithm Sum(a,n)
2

3 s :=0.0;

4 for i:=1to ndo
5 s:= s+ ali;
6 return s;

7

}

Algorithm 1.6 Iterative function for sum

Algorithm RSum(a, n)

if (n <0) then return 0.0;
else return RSum(a,n — 1) + a[n|;

T Lo b =

}

Algorithm 1.7 Recursive function for sum

1.3. PERFORMANCE ANALYSIS 17

1. A fixed part that is independent of the characteristics (e.g., number,
size) of the inputs and outputs. This part typically includes the in-
struction space (i.e., space for the code), space for simple variables
and fixed-size component variables (also called aggregate), space for
constants, and so on.

2. A variable part that consists of the space needed by component vari-
ables whose size is dependent on the particular problem instance being
solved, the space needed by referenced variables (to the extent that this
depends on instance characteristics), and the recursion stack space (in-
sofar as this space depends on the instance characteristics).

The space requirement S(P) of any algorithm P may therefore be written
as S(P) = ¢+ Sp(instance characteristics), where ¢ is a constant.

When analyzing the space complexity of an algorithm, we concentrate
solely on estimating Sp(instance characteristics). For any given problem, we
need first to determine which instance characteristics to use to measure the
spacc requirements. This is very problem specific, and we resort to examples
to illustrate the various possibilities. Generally speaking, our choices are
limited to quantities related to the number and magnitude of the inputs to
and outputs from the algorithm. At times, more complex measures of the
interrelationships among the data items are used.

Example 1.4 For Algorithm 1.5, the problem instance is characterized by
the specific values of a, b, and ¢. Making the assumption that one word
is adequate to store the values of each of a, b, ¢, and the result, we see
that the space needed by abc is independent of the instance characteristics.
Conscquently, Sp(instance characteristics) = 0. O

Example 1.5 The problem instances for Algorithm 1.6 are characterized
by n, the number of elements to be summed. The space needed by n is one
word, since it is of type integer. The space needed by a is the space needed
by variables of type array of floating point numbers. This is at least n words,
since a must be large enough to hold the n elements to be summed. So, we
obtain Ssym(n) > (n+ 3) (n for a], one each for n, 4, and s). 0

Example 1.6 Let us consider the algorithm RSum (Algorithm 1.7). As in
the case of Sum, the instances are characterized by n. The recursion stack
space includes space for the formal parameters, the local variables, and the
return address. Assume that the return address requires only one word of
memory. Each call to RSum requires at least three words (including space
for the values of n, the return address, and a pointer to a[]). Since the depth
of recursion is n + 1, the recursion stack space needed is > 3(n + 1). 0O

18 CHAPTER 1. INTRODUCTION

1.3.2 Time Complexity

The time T'(P) taken by a program P is the sum of the compile time and
the run (or execution) time. The compile time does not depend on the
instance characteristics. Also, we may assume that a compiled program
will be run several times without recompilation. Consequently, we concern
ourselves with just the run time of a program. This run time is denoted by
tp(instance characteristics).

Because many of the factors tp depends on are not known at the time
a program is conceived, it is reasonable to attempt only to estimate tp. If
we knew the characteristics of the compiler to be used, we could proceed to
determine the number of additions, subtractions, multiplications, divisions,
compares, loads, stores, and so on, that would be made by the code for P.
So, we could obtain an expression for tp(n) of the form

tp(n) = ctADD(n) + ¢,SUB(n) + ¢,y MUL(n) + ¢4DIV (n) + - - -

where n denotes the instance characteristics, and ¢, ¢, ¢, ¢4, and so on,
respectively, denote the time needed for an addition, subtraction, multipli-
cation, division, and so on, and ADD, SUB, MUL, DIV, and so on, are
functions whose values are the numbers of additions, subtractions, multipli-
cations, divisions, and so on, that are performed when the code for P is used
on an instance with characteristic n.

Obtaining such an exact formula is in itself an impossible task, since the
time needed for an addition, subtraction, multiplication, and so on, often
depends on the numbers being added, subtracted, multiplied, and so on.
The value of tp(n) for any given n can be obtained only experimentally.
The program is typed, compiled, and run on a particular machine. The
execution time is physically clocked, and ¢p(n) obtained. Even with this
experimental approach, one could face difficulties. In a multiuser system,
the execution time depends on such factors as system load, the number of
other programs running on the computer at the time program P is run, the
characteristics of these other programs, and so on.

Given the minimal utility of determining the exact number of additions,
subtractions, and so on, that are needed to solve a problem instance with
characteristics given by n, we might as well lump all the operations together
(provided that the time required by each is relatively independent of the
instance characteristics) and obtain a count for the total number of opera-
tions. We can go one step further and count only the number of program
steps.

A program step is loosely defined as a syntactically or semantically mean-
ingful segment of a program that has an execution time that is independent
of the instance characteristics. For example, the entire statement

return a+b+bxc+ (a+b—c)/(a+b)+4.0;

1.3. PERFORMANCE ANALYSIS 19

of Algorithm 1.5 could be regarded as a step since its execution time is
independent of the instance characteristics (this statement is not strictly
true, since the time for a multiply and divide generally depends on the
numbers involved in the operation).

The number of steps any program statement is assigned depends on the
kind of statement. For example, comments count as zero steps; an as-
signment statement which does not involve any calls to other algorithms
is counted as one step; in an iterative statement such as the for, while, and
repeat-until statements, we consider the step counts only for the control
part of the statement. The control parts for for and while statements have
the following forms:

for i := (expr) to (exprl) do
while ({ezpr)) do

Each execution of the control part of a while statement is given a step
count equal to the number of step counts assignable to (expr). The step
count for each execution of the control part of a for statement is one, unless
the counts attributable to (expr) and (exprl) are functions of the instance
characteristics. In this latter case, the first execution of the control part
of the for has a step count equal to the sum of the counts for (expr) and
(exprl) (note that these expressions are computed only when the loop is
started). Remaining executions of the for statement have a step count of
one; and so omn.

We can determine the number of steps needed by a program to solve a
particular problem instance in one of two ways. In the first method, we
introduce a new variable, count, into the program. This is a global vari-
able with initial value 0. Statements to increment count by the appropriate
amount are introduced into the program. This is done so that each time a
statement in the original program is executed, count is incremented by the
step count of that statement.

Example 1.7 When the statements to increment count are introduced into
Algorithin 1.6, the result is Algorithm 1.8. The change in the value of count
by the time this program terminates is the number of steps executed by
Algorithm 1.6.

Since we are interested in determining only the change in the value of
count, Algorithm 1.8 may be simplified to Algorithm 1.9. For every initial
value of count, Algorithms 1.8 and 1.9 compute the same final value for
count. It is easy to see that in the for loop, the value of count will increase
by a total of 2n. If count is zero to start with, then it will be 2n + 3 on
termination. So each invocation of Sum (Algorithm 1.6) executes a total of
2n + 3 steps. O

20 CHAPTER 1. INTRODUCTION

1 Algorithm Sum(a,n)

2

3 s :=0.0;

4 count := count + 1; // count is global; it is initially zero.
5 for i :=1to n do

6 {

7 count := count + 1; // For for

8 s := s + alt]; count := count + 1; // For assignment
9

10 count := count 4+ 1; // For last time of for

11 count := count + 1; // For the return

12 return s;

13 }

Algorithm 1.8 Algorithm 1.6 with count statements added

Algorithm Sum(a,n)

for i := 1 to n do count := count + 2;
count ;= count + 3;

Tk N =

Algorithm 1.9 Simplified version of Algorithm 1.8

1.3. PERFORMANCE ANALYSIS 21

Example 1.8 When the statements to increment count are introduced into
Algorithm 1.7, Algorithm 1.10 is obtained. Let trgym(n) be the increase in
the value of count when Algorithm 1.10 terminates. We see that trgym(0)
= 2. When n > 0, count increases by 2 plus whatever increase results from
the invocation of RSum from within the else clause. From the definition of
trsum, 1t follows that this additional increase is trsym(n — 1). So, if the value
of count is zero initially, its value at the time of termination is 2+tgrgym(n—1),
n > (.

1 Algorithm RSum(a,n)

2

3 count := count + 1; // For the if conditional

4 if (n <0) then

5 {

6 count := count + 1; // For the return

7 return 0.0;

s}

9 else

10 {

11 count := count + 1; // For the addition, function
12 // invocation and return
13 return RSum(a,n — 1) + a[n];

14

15 }

Algorithm 1.10 Algorithm 1.7 with count statements added

When analyzing a recursive program for its step count, we often obtain
a recursive formula for the step count, for example,

. (2 ifn=0
Rsum() = 9 4 tpen(n—1) ifn >0

These recursive formulas are referred to as recurrence relations. One way
of solving any such recurrence relation is to make repeated substitutions for
each occurrence of the function tgsym on the right-hand side until all such
occurrences disappear:

22 CHAPTER 1. INTRODUCTION

2+ trsum(n — 1)
24+ 2+ trsum(n — 2)
2(2) + trsum(n — 2)

tRSum(n)

1(2) + trsum (0)
2n + 2, n>0

So the step count for RSum (Algorithm 1.7) is 2n + 2. O

The step count is useful in that it tells us how the run time for a program
changes with changes in the instance characteristics. From the step count for
Sum, we see that if n is doubled, the run time also doubles (approximately);
if n increases by a factor of 10, the run time increases by a factor of 10; and
8o on. So, the run time grows linearly in n. We say that Sum is a linear time
algorithm (the time complexity is linear in the instance characteristic n).

Definition 1.3 [Input size] One of the instance characteristics that is fre-
quently used in the literature is the input size. The input size of any instance
of a problem is defined to be the number of words (or the number of ele-
ments) needed to describe that instance. The input size for the problem
of summing an array with n elements is n + 1, n for listing the n elements
and 1 for the value of n (Algorithms 1.6 and 1.7). The problem tackled in
Algorithm 1.5 has an input size of 3. If the input to any problem instance
is a single element, the input size is normally taken to be the number of
bits needed to specify that element. Run times for many of the algorithms
presented in this text are expressed as functions of the corresponding input
sizes.

Example 1.9 [Matrix addition] Algorithm 1.11 is to add two m X n matrices
a and b together. Introducing the count-incrementing statements leads to
Algorithm 1.12. Algorithm 1.13 is a simplified version of Algorithm 1.12
that computes the same value for count. Examining Algorithm 1.13, we see
that line 7 is executed n times for each value of ¢, or a total of mn times;
line 5 is executed m times; and line 9 is executed once. If count is 0 to begin
with, it will be 2mn + 2m + 1 when Algorithm 1.13 terminates.

From this analysis we see that if m > n, then it is better to interchange
the two for statements in Algorithm 1.11. If this is done, the step count
becomes 2mn+2n+1. Note that in this example the instance characteristics
are given by m and n and the input size is 2mn + 2. O

The second method to determine the step count of an algorithm is to
build a table in which we list the total number of steps contributed by each
statement. This figure is often arrived at by first determining the number of

1.3. PERFORMANCE ANALYSIS 23

1 Algorithm Add(a,b,c,m,n)

2 |

3 for ::=1 to m do

4 for j:=1to ndo

5 cli, 7] :== ali, 3] + b[i, j];
6 }

Algorithm 1.11 Matrix addition

I Algorithm Add(a,b,c,m,n)

2 q

3 for i :=1to m do

T

5 count := count + 1; // For ‘for ¢’

6 for j:=1tondo

7

8 count := count + 1; // For ‘for j’

9 clirg] = afi,] + bl

10 count := count + 13 // For the assignment
11 }

12 count := count + 13/ / For loop initialization and
13 // last time of ‘for j’

14 }

15 count := count + 1; // For loop initialization and
16 // last time of ‘for 7’

17 }

Algorithm 1.12 Matrix addition with counting statements

24 CHAPTER 1. INTRODUCTION

Algorithm Add(a,b,c,m,n)
{
for i :=1 to m do
{
count := count + 2;
for j:=1to n do
count := count + 2;

}

count := count + 1;

= OO U kW —

0}

Algorithm 1.13 Simplified algorithm with counting only

steps per execution (s/e) of the statement and the total number of times (i.e.,
frequency) each statement is executed. The s/e of a statement is the amount
by which the count changes as a result of the execution of that statement.
By combining these two quantities, the total contribution of each statement
is obtained. By adding the contributions of all statements, the step count
for the entire algorithm is obtained.

In Table 1.1, the number of steps per execution and the frequency of
each of the statements in Sum (Algorithm 1.6) have been listed. The total
number of steps required by the algorithm is determined to be 2n + 3. It is
important to note that the frequency of the for statement is n 4+ 1 and not
n. This is so because ¢ has to be incremented to n + 1 before the for loop
can terminate.

Table 1.2 gives the step count for RSum (Algorithm 1.7). Notice that
under the s/e (steps per execution) column, the else clause has been given
a count of 1 + tgsum(n — 1). This is the total cost of this line each time
it is executed. It includes all the steps that get executed as a result of the
invocation of RSum from the else clause. The frequency and total steps
columns have been split into two parts: one for the case n = 0 and the other
for the case n > 0. This is necessary because the frequency (and hence total
steps) for some statements is different for each of these cases.

Table 1.3 corresponds to algorithm Add (Algorithm 1.11). Once again,
note that the frequency of the first for loop is m + 1 and not m. This is
so as 1 needs to be incremented up to m + 1 before the loop can terminate.
Similarly, the frequency for the second for loop is m(n + 1).

When you have obtained sufficient experience in computing step counts,
you can avoid constructing the frequency table and obtain the step count as
in the following example.

1.3. PERFORMANCE ANALYSIS 25
[Statement [s/e [frequency | total steps]
1 Algorithm Sum(a,n)] 0 - 0
2 0 - 0
3 s:=0.0; 1 |1 1
4 for i :=1to n do 1 n—+1 n—+1
5 s = s+ ali]; 1 n n
6 return s; 1 1 1
7} 0 — 0
[Total] [2n+3]
Table 1.1 Step table for Algorithm 1.6
frequency total steps
Statement s/e n=0 n>0|n=0 n>0
I Algorithm RSum(a,n) 0 — — 0 0
2
3 if (n <0) then 1 1 1 1 1
4 return 0.0; 1 1 0 1 0
) else return
6 RSum(a,n — 1) +an]; | 1+z | 0 1 0 1+
7} 0 — - o 0
[Total [[2 24z]

r = tRsum(n—l)

Table 1.2 Step table for Algorithm 1.7

26 CHAPTER 1. INTRODUCTION

[Statement | s/e | frequency | total steps |
1 Algorithm Add(a,b,c,m,n) |0 — 0
2 0 - 0
3 for i :=1to m do 1 m+1 m+1
4 for j:=1to n do 1 m(n+1) mn+m
5 i, j] :=ali, 7] + bli,7]; | 1 mn mn
6 0 - 0
[Total | | | 2mn+2m+1 |

Table 1.3 Step table for Algorithm 1.11

Example 1.10 [Fibonacci numbers] The Fibonacci sequence of numbers starts
as

0,1,1,2,3,5,8,13,21,34, 55, . ..

Each new term is obtained by taking the sum of the two previous terms. If
we call the first term of the sequence fg, then fo =0, f; = 1, and in general

fn = fnvl +fn—2, n > 2

Fibonacci (Algorithm 1.14) takes as input any nonnegative integer n and
prints the value f,.

To analyze the time complexity of this algorithm, we need to consider the
two cases (1) n =0o0r 1 and (2) n>1. When n =0 or 1, lines 4 and 5 get
executed once each. Since each line has an s/e of 1, the total step count for
this case is 2. When n > 1, lines 4, 8, and 14 are each executed once. Line
9 gets executed n times, and lines 11 and 12 get executed n — 1 times each
(note that the last time line 9 is executed, 7 is incremented to n+ 1, and the
loop exited). Line 8 has an s/e of 2, line 12 has an s/e of 2, and line 13 has
an s/e of 0. The remaining lines that get executed have s/e’s of 1. The total
steps for the case n > 1 is therefore 4n + 1. a

Summary of Time Complexity

The time complexity of an algorithm is given by the number of steps taken
by the algorithm to compute the function it was written for. The number of
steps is itself a function of the instance characteristics. Although any specific
instance may have several characteristics (e.g., the number of inputs, the
number of outputs, the magnitudes of the inputs and outputs), the number

1.3. PERFORMANCE ANALYSIS 27

1 Algorithm Fibonacci(n)
2 // Compute the nth Fibonacci number.
3

4 if (n <1) then

5 write (n);

6 else

7 {

] fnm2:=0; fanml := 1;

9 for 1:=2 to n do

10

11 fn:= faml 4+ fam2;
12 fnm2 = fnml; fnml .= fn;
13

14 write (fn);

15

16 }

Algorithm 1.14 Fibonacci numbers

of steps is computed as a function of some subset of these. Usually, we
choose those characteristics that are of importance to us. For example, we
might wish to know how the computing (or run) time (i.e., time complexity)
increases as the number of inputs increase. In this case the number of steps
will be computed as a function of the number of inputs alone. For a different
algorithm, we might be interested in determining how the computing time
increases as the magnitude of one of the inputs increases. In this case the
number of steps will be computed as a function of the magnitude of this
input alone. Thus, before the step count of an algorithm can be determined,
we need to know exactly which characteristics of the problem instance are
to be used. These define the variables in the expression for the step count.
In thie case of Sum, we chose to measure the time complexity as a function
of the number n of elements being added. For algorithin Add, the choice of
characteristics was the number m of rows and the number n of columns in
the matrices being added.

Once the relevant characteristics (n,m,p,q,r,...) have been selected, we
can define what a step 1s. A step is any computation unit that is independent
of thie characteristics (n,m,p,q,r,...). Thus, 10 additions can be one step;
100 multiplications can also be one step; but n additions cannot. Nor can
m /2 additions, p + g subtractions, and so on, be counted as one step.

28 CHAPTER 1. INTRODUCTION

A systematic way to assign step counts was also discussed. Once this has
been done, the time complexity (i.e., the total step count) of an algorithm
can be obtained using either of the two methods discussed.

The examples we have looked at so far were sufficiently simple that the
time complexities were nice functions of fairly simple characteristics like the
number of inputs and the number of rows and columns. For many algo-
rithms, the time complexity is not dependent solely on the number of inputs
or outputs or some other easily specified characteristic. For example, the
searching algorithm you wrote for Exercise 4 in Section 1.2, may terminate
in one step if z is the first element examined by your algorithm, or it may
take two steps (this happens if z is the second element examined), and so
on. In other words, knowing n alone is not enough to estimate the run time
of your algorithm.

We can extricate ourselves from the difficulties resulting from situations
when the chosen parameters are not adequate to determine the step count
uniquely by defining three kinds of step counts: best case, worst case, and
average. The best-case step count is the minimum number of steps that
can be executed for the given parameters. The worst-case step count is the
maximum number of steps that can be executed for the given parameters.
The average step count is the average number of steps executed on instances
with the given parameters.

Our motivation to determine step counts is to be able to compare the
time complexities of two algorithms that compute the same function and
also to predict the growth in run time as the instance characteristics change.

Determining the exact step count (best case, worst case, or average) of an
algorithm can prove to be an exceedingly difficult task. Expending immense
effort to determine the step count exactly is not a very worthwhile endeavor,
since the notion of a step is itself inexact. (Both the instructions z := y;
and z := y+ z + (z/y) + (z *y x z — z/z); count as one step.) Because of
the inexactness of what a step stands for, the exact step count is not very
useful for comparative purposes. An exception to this is when the difference
between the step counts of two algorithms is very large, as in 3n + 3 versus
100n + 10. We might feel quite safe in predicting that the algorithm with
step count 3n+3 will run in less time than the one with step count 10014 10.
But even in this case, it is not necessary to know that the exact step count
is 100n 4+ 10. Something like, “it’s about 80n or 85n or 75n,” is adequate to
arrive at the same conclusion.

For most situations, it is adequate to be able to make a statement like
an? < tp(n) < cpn? or to(n,m) = cin + com, where ¢; and c; are non-
negative constants. This is so because if we have two algorithms with a
complexity of ¢;n? + con and c3n respectively, then we know that the one
with complexity csn will be faster than the one with complexity c;n? + can
for sufficiently large values of n. For small values of n, either algorithm could
be faster (depending on ¢;, ¢2, and ¢3). If ¢; =1, ¢o =2, and ¢3 = 100, then

1.3. PERFORMANCE ANALYSIS 29

cen? F eon < esn for n < 98 and e1n® + con > czn for n > 98, If ¢ = 1,
¢o = 2, and ¢z = 1000, then ¢;n? 4+ con < e3n for n < 998.

No matter what the values of ¢;, c¢a, and c3, there will be an n beyond
which the algorithm with complexity cgn will be faster than the one with
complexity c1n? 4 con. This value of n will be called the break-even point.
If the break-even point is zero, then the algorithm with complexity czn is
always faster (or at least as fast). The exact break-even point cannot be
determined analytically. The algorithms have to be run on a computer in
order to determine the break-even point. To know that there is a break-even
point, it is sufficient to know that one algorithm has complexity c¢;n? + con
and the other c3n for some constants ¢1, co, and ¢3. There is little advantage
in determining the exact values of ¢;, ¢, and cs.

1.3.3 Asymptotic Notation (O, Q, ©)

With the previous discussion as motivation, we introduce some terminology
that cnables us to make meaningful (but inexact) statements about the time
and space complexities of an algorithm. In the remainder of this chapter,
the functions f and g are nonnegative functions.

Definition 1.4 [Big “oh"] The function f(n) = O(g(n)) (read as “f of n is
big oh of g of n”) iff (if and only if) there exist positive constants ¢ and ng
such that f(n) < cx g(n) for all n, n > nyg. a

Example 1.11 The function 3n +2 = O(n) as 3n + 2 < 4n for all n > 2.
3n+3 =0(n) as3n+3 < 4n for all n > 3. 100n +6 = O(n) as
100n +6 < 101n for all n > 6. 10n? +4n+2 = O(n?) as 10n? +4n+2 < 11n?
for all n > 5. 1000n2 + 1001 — 6 = O(n?) as 1000n? 4 100n — 6 < 1001n? for
n > 100. 6x2"4+n2 = 0(2") as 6x2" +n? < 7+2" forn > 4. 3n+3 = O(n?)
as 3n+3 <3n?forn>2. 1002 +4n+2=0(n?) as 10n? +4n+2 < 10n4
for n > 2. 3n+2 # O(1) as 3n + 2 is not less than or equal to ¢ for any
constant ¢ and all n > ng. 10n? +4n +2 # O(n). O

We write O(1) to mean a computing time that is a constant. O(n) is
called linear, O(n?) is called quadratic, O(n®) is called cubic, and O(2")
is called exponential. If an algorithm takes time O(logn), it is faster, for
sufficiently large n, than if it had taken O(n). Similarly, O(nlogn) is better
than O(n?) but not as good as O(n). These seven computing times-O(1),
O(logn), O(n), O(nlogn), O(n?), O(n3), and O(2")-are the ones we see
most often in this book.

As illustrated by the previous example, the statement f(n) = O(g(n))
states only that g(n) is an upper bound on the value of f(n) for all n,
n > ng. It does not say anything about how good this bound is. Notice

30 CHAPTER 1. INTRODUCTION

that n = O(2"), n = O(n2‘), n = O(n?), n = O(2"), and so on. For
the statement f(n) = O(g(n)) to be informative, g(n) should be as small a
function of n as one can come up with for which f(n) = 0O(g(n)). So, while

we often say that 3n + 3 = O(n), we almost never say that 3n + 3 = O(n?),
even though this latter statement is correct.

From the definition of O, it should be clear that f(n) = O(g(n)) is not
the same as O(g(n)) = f(n). In fact, it is meaningless to say that O(g(n)) =
f(n). The use of the symbol = is unfortunate because this symbol commonly
denotes the equals relation. Some of the confusion that results from the use
of this symbol (which is standard terminology) can be avoided by reading

the symbol = as “is” and not as “equals.”

Theorem 1.2 obtains a very useful result concerning the order of f(n)
(that is, the g(n) in f(n) = O(g(n))) when f(n) is a polynomial in n.

Theorem 1.2 If f(n) = a,n™ + -+ - + a1n + ag, then f(n) = O(n™).

Proof: '
fln) < Xilglan®
< n™ it ladntT™
< nmYR ag forn>1
So, f(n) = O(n™) (assuming that m is fixed). m|

Definition 1.5 [Omega] The function f(n) = Q(g(n)) (read as “f of n
is omega of g of n”) iff there exist positive constants ¢ and ng such that
f(n) > exg(n) for all n, n > ny. O

Example 1.12 The function 3n +2 = Q(n) as 3n +2 > 3n for n > 1
(the inequality holds for n > 0, but the definition of £} requires an ng > 0).
3n+3=0Q(n)as3n+3 > 3nforn > 1. 100n+6 = Q(n) as 100n+6 > 100n
for n > 1. 1002 +4n +2 = Q(n?) as 10n?> + 4n + 2 > n? for n > 1.
6+ 2" +n? = Q(2") as 6 x 2" + n? > 2" for n > 1. Observe also that
3n+3=0(1), 10n? + 4n + 2 = Q(n), 10n? +4n + 2 = Q(1), 6 x 2" + n? =
Q(n190), 6% 2" + n? = Q(n3%2), 6x2" +n? = Q(n?), 6 x2" +n? = Q(n), and
6+ 2" +n? = Q(1). O

As in the case of the big oh notation, there are several functions g(n) for
which f(n) = Q(g(n)). The function g(n) is only a lower bound on f(n).
For the statement f(n) = Q(g(n)) to be informative, g(n) should be as large
a function of n as possible for which the statement f(n) = Q(g(n)) is true.
So, while we say that 3n + 3 = Q(n) and 6 * 2" + n? = Q(2"), we almost
never say that 3n +3 = (1) or 6 x 2" + n? = (1), even though both of
these statements are correct.

Theorem 1.3 is the analogue of Theorem 1.2 for the omega notation.

1.3. PERFORMANCE ANALYSIS 31

Theorem 1.3 If f(n) = amn™ +--- +ain+ ap and a,, > 0, then f(n) =
Q(?’Lm).

Proof: Left as an exercise. d

Definition 1.6 [Theta] The function f(n) = ©(g(n)) (read as “f of n is
theta of g of n”) iff there exist positive constants c;,cz, and ng such that
c1g(n) < f(n) < cag(n) for all n, n > nyg. O

Example 1.13 The function 3n +2 = ©(n) as 3n + 2 > 3n for all n > 2
anddn+2<4nforalln>2 soc; =3,co =4, and ng = 2. 3n+3 = O(n),
10n2 +4n+2 = O(n?), 62" +n? = O(2)anle*logn+4— O(logn).
3n+2#£0(1), 3n+3 # 0(n?), 10n? +4n +2 # O(n), 10n? +4n+27é®(),
6 * 2" +n? £ O(n?), 6 x 2" + n? # O(n1%), and 6 x 2" + n? #£ O(1). O

The theta notation is more precise than both the the big oh and omega
notations. The function f(n) = ©(g(n)) iff g(n) is both an upper and lower
bound on f(n).

Notice that the coefficients in all of the g(n)’s used in the preceding three
examples have been 1. This is in accordance with practice. We almost
never find ourselves saying that 3n +3 = O(3n), that 10 = O(100), that
10n2 +4n + 2 = Q(4n?), that 6 x 2" + n? = O(6 * 2"), or that 6 x 2" + n? =
©(4 % 2"), even though each of these statements is true.

Theorem 1.4 If f(n) = a;,n™ + -+ + a1n + ap and a,, > 0, then f(n) =
O(n™).

Proof: Left as an exercise. O

Definition 1.7 [Little “oh”] The function f(n) = o(g(n)) (read as “f of n
is little oh of g of n”) iff
f(n)

69 g(n)

O
Example 1.14 The function 3n + 2 = o(n?) since lim,_, 3%;—2 =0. 3n+
2 = o(nlogn). 3n+ 2 = o(nloglogn). 6% 2" +n? = o(3"). 62" +n? =
o(2™ logn). 3n 42 # o(n). 6% 2" +n? # o(2"). O

Analogous to o is the notation w defined as follows.

32 CHAPTER 1. INTRODUCTION

Definition 1.8 [Little omega] The function f(n) = w(g(n)) (read as “f of
n is little omega of g of n”) iff

g(n)

limn
w35 ()

a

Example 1.15 Let us reexamine the time complexity analyses of the pre-
vious section. For the algorithm Sum (Algorithm 1.6) we determined that
tsum(n) = 2n + 3. So, tsum(n) = O(n). For Algorithm 1.7, trsum(n) =
2n+2 = O(n). O

Although we might all see that the O, Q, and © notations have been used
correctly in the preceding paragraphs, we are still left with the question, Of
what use are these notations if we have to first determine the step count
exactly? The answer to this question is that the asymptotic complexity
(i.e., the complexity in terms of O, 2, and ©) can be determined quite
easily without determining the exact step count. This is usually done by
first determining the asymptotic complexity of each statement (or group of
statements) in the algorithm and then adding these complexities. Tables 1.4
through 1.6 do just this for Sum, RSum, and Add (Algorithms 1.6, 1.7, and
1.11).

[Statement | s/e [frequency | total steps ||
1 Algorithm Sum(a,n) [0 — 0(0)
2 { 0 |- ©(0)
3 s:=0.0; 1 1 0(1)
4 fori:=1tondo |1 n+1 O(n)
5 s:= s+ ali]; 1 |n O(n)
6 return s; 1 1 o(1)
7} 0 |- ©(0)
[Total | [6(n) I

Table 1.4 Asymptotic complexity of Sum (Algorithm 1.6)

Although the analyses of Tables 1.4 through 1.6 are carried out in terms
of step counts, it is correct to interpret tp(n) = O(g(n)), tp(n) = Q(g(n)),
or tp(n) = O(g(n)) as a statement about the computing time of algorithm
P. This is so because each step takes only ©(1) time to execute.

1.3. PERFORMANCE ANALYSIS 33
frequency total steps
Statement s/e n=0 n>0|n=0 n>0
I Algorithm RSum(a,n) 0 — — 0 o(0)
2 0 — - 0 ©
3 if (n <0) then 1 1 1 1 G
4 return 0.0; 1 1 0 1 G
5 else return
6 RSum(a,n — 1) +aln]); | 1+z | 0 1 0 O(1 + x)
7 0 — — 0 C]
[Total | l 2 01 +x) |
z = trsum(n —1)

Table 1.5 Asymptotic complexity of RSum (Algorithm 1.7).

[Statement

| s/e | frequency |

total steps ||

I Algorithm Add(a,b,c,m,n) |0 - 0(0)
2 0o |- 0(0)
3 for i :=1to m do 1 ©(m) ©(m)
1 for i :=1to n do 1 ©(mn) O(mn)
5 clivj) = aliyg] + i) | 1| Omn) | O(mn)
6 0 |- 9(0)
| Total | O(mn) |

Table 1.6 Asymptotic complexity of Add (Algorithm 1.11)

34 CHAPTER 1. INTRODUCTION

After you have had some experience using the table method, you will
be in a position to arrive at the asymptotic complexity of an algorithm by
taking a more global approach. We elaborate on this method in the following
examples.

Example 1.16 [Permutation generator] Consider Perm (Algorithm 1.4). When
k = n, we see that the time taken is ©(n). When k < n, the else clause is
entered. At this time, the second for loop is entered n — k + 1 times. Each
iteration of this loop takes ©(n + tperm(k + 1,n)) time. So, tperm(k, n) =
O((n—k+1)(n+tpem(k+1, n))) when k < n. Since tpem(k+1, n) is at
least n when k41 < n, we get tperm(k, 1) = O((n—k+1)tperm(k+1, n)) for
k < n. Using the substitution method, we obtain tperm(1l,n) = O(n(n!)),
n>1. O

Example 1.17 [Magic square] The next example we consider is a problem
from recreational mathematics. A magic square is an n X n matrix of the
integers 1 to n? such that the sum of every row, column, and diagonal is the
same. Figure 1.2 gives an example magic square for the case n = 5. In this
example, the common sum is 65.

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

Figure 1.2 Example magic square

H. Coxeter has given the following simple rule for generating a magic
square when n is odd:

Start with 1 in the middle of the top row; then go up and left,
assigning numbers in increasing order to empty squares; if you
fall off the square imagine the same square as tiling the plane
and continue; if a square is occupied, move down instead and
continue.

1.3. PERFORMANCE ANALYSIS 35

The magic square of Figure 1.2 was formed using this rule. Algorithm 1.15
is for creating an n x n magic square for the case in which n is odd. This
results from Coxeter’s rule.

The magic square is represented using a two-dimensional array having n
rows and n columns. For this application it is convenient to number the
rows (and columns) from 0 to n — 1 rather than from 1 to n. Thus, when the
algorithm “falls off the square,” the mod operator sets 7 and/or j back to
0ormn—1.

The time to initialize and output the square is ©(n?). The third for loop
(in which key ranges over 2 through n?) is iterated n? — 1 times and each
iteration takes ©(1) time. So, this for loop takes ©(n?) time. Hence the
overall time complexity of Magic is ©(n?). Since there are n? positions in
which the algorithm must place a number, we see that ©(n?) is the best
bound an algorithm for the magic square problem can have. O

Example 1.18 [Computing z"] Our final example is to compute z” for any
real number z and integer n > 0. A naive algorithm for solving this problem
is to perform n — 1 multiplications as follows:

power 1= I

for i :=1 to n — 1 do power := power x z;
This algorithm takes ©(n) time. A better approach is to employ the “re-
peated squaring” trick. Consider the special case in which n is an integral
power of 2 (that is, in which n equals 2% for some integer k). The following
algorithm computes z".

power 1= x;
for i := 1 to k do power := power?;

The value of power after ¢ iterations of the for loop is z2*. Therefore, this al-
gorithm takes only © (k) = O(logn) time, which is a significant improvement
over the run time of the first algorithm.

Can the same algorithm be used when n is not an integral power of 27
Fortunately, the answer is yes. Let bgby_1---b1by be the binary representa-
tion of the integer n. This means that n = ZSZO b,29. Now,

k .
" = $Zq=0 bg29 _ (:C)bo " (:1:2)b1 " ($4)b2 Kook ($2k)bk

Also observe that bg is nothing but n mod 2 and that |n/2] is bybg_;--- by
in binary form. These observations lead us to Exponentiate (Algorithm 1.16)
for computing z".

36 CHAPTER 1. INTRODUCTION

1 Algorithm Magic(n)

2 // Create a magic square of size n, n being odd.

3

4 if ((n mod 2) = 0) then

5 {

6 write ("n is even"); return;

7 }

8 else

9

10 for i :=0ton—1do // Initialize square to zero.
11 for j:=0ton—1do square[i,j] := 0;

12 square|0, (n — 1)/2] := 13 // Middle of first row
13 // (i,7) is the current position.

14 ji=(Mn-1)/2

15 for key :=2 to n? do

16 { :

17 // Move up and left. The next two if statements
18 // may be replaced by the mod operator if
19 // —1 mod n has the value n — 1.

20 if (1 >1) then k:=i—1;else k:=n—1;
21 if(j>1)thenl:=j—1;else l:=n—1;
22 if (squarelk,l] > 1) then i := (i + 1) mod n;
23 else // squarelk,l] is empty.

24

25 ii=kyji=1;

26

27 squareli, j] := key;

28 }

29 // Output the magic square.

30 for i:=0ton—1do

31 for j:=0to n — 1 do write (squarelt, j]);
32

33 }

Algorithm 1.15 Magic square

1.3. PERFORMANCE ANALYSIS 37

Algorithm Exponentiate(z,n)
// Return z" for an integer n > 0.

m = n; power 1= 1; z := x;
while (m > 0) do

while ((m mod 2) =0) do

m = |m/2]; z == 2%

=0 00U R W
Lomml—

{
}
m = m — 1; power = power x z;
12 }

13 return powers;

11}

Algorithm 1.16 Computation of z"

Proving the correctness of this algorithm is left as an exercise. The vari-
able m starts with the value of n, and after every iteration of the innermost
while loop (line 7), its value decreases by a factor of at least 2. Thus there
will be only ©(logn) iterations of the while loop of line 7. Each such itera-
tion takes ©(1) time. Whenever control exits from the innermost while loop,
the value of m is odd and the instructions m ;= m — 1; power := power * z;
are executed once. After this execution, since m becomes even, either the
innermost while loop is entered again or the outermost while loop (line

5) is exited (in case m = 0). Therefore the instructions m := m — 1;
power := power % z; can only be executed O(logn) times. In summary,
the overall run time of Exponentiate is ©(logn). a

1.3.4 Practical Complexities

We have seen that the time complexity of an algorithm is generally some
function of the instance characteristics. This function is very useful in de-
termining how the time requirements vary as the instance characteristics
change, The complexity function can also be used to compare two algo-
rithms I” and @ that perform the same task. Assume that algorithm P has
complexity ©(n) and algorithm @ has complexity ©(n?). We can assert that
algorithin P is faster than algorithm @ for sufficiently large n. To see the
validity of this assertion, observe that the computing time of P is bounded

38 CHAPTER 1. INTRODUCTION

from above by ¢n for some constant ¢ and for all n, n > ny, whereas that of
@ is bounded from below by dn? for some constant d and all n, n > ny. Since
en < dn? for n > c¢/d, algorithm P is faster than algorithm @ whenever n
> max{ni, ny,c/d}.

You should always be cautiously aware of the presence of the phrase “suf-
ficiently large” in an assertion like that of the preceding discussion. When
deciding which of the two algorithms to use, you must know whether the
n you are dealing with is, in fact, sufficiently large. If algorithm P runs in
10°n milliseconds, whereas algorithm @ runs in n? milliseconds, and if you
always have n < 10°, then, other factors being equal, algorithm Q is the one
to use.

To get a feel for how the various functions grow with n, you are advised
to study Table 1.7 and Figure 1.3 very closely. It is evident from Table 1.7
and Figure 1.3 that the function 2" grows very rapidly with n. In fact, if
an algorithm needs 2" steps for execution, then when n = 40, the number
of steps needed is approximately 1.1 * 10'?. On a computer performing one
billion steps per second, this would require about 18.3 minutes. If n = 50,
the same algorithm would run for about 13 days on this computer. When n
= 60, about 310.56 years are required to execute the algorithm and when n
= 100, about 4 % 10'? years are needed. So, we may conclude that the utility
of algorithms with exponential complexity is limited to small n (typically
n < 40).

lTlogn| nlnlogn| n*[n3] 2" |
0 1 0 1 1 2
1] 2 2 4 8 4
2] 4 8 16 64 16
3| 8 24 64 512 256
4| 16 64 256 | 4,096 65,536
5(32| 160 | 1,024 | 32.768 | 4,294,967.296

Table 1.7 Function values

Algorithms that have a complexity that is a polynomial of high degree
are also of limited utility. For example, if an algorithm needs n'? steps, then
using our 1-billion-steps-per-second computer, we need 10 seconds when n
= 10, 3171 years when n = 100, and 3.17 * 101 years when n = 1000. If the
algorithm’s complexity had been n? steps instead, then we would need one
second when n = 1000, 110.67 minutes when n» = 10,000, and 11.57 days
when n = 100,000.

1.3. PERFORMANCE ANALYSIS

39

60

50 L

40 |

30 |

20 |

10

n logn

Figure 1.3 Plot of function values

40 CHAPTER 1. INTRODUCTION

Table 1.8 gives the time needed by a one-billion-steps-per-second com-
puter to execute an algorithm of complexity f(n) instructions. You should
note that currently only the fastest computers can execute about 1 billion
instructions per second. From a practical standpoint, it is evident that for
reasonably large n (say n > 100), only algorithms of small complexity (such
as n, nlogn, n?, and n®) are feasible. Further, this is the case even if you
could build a computer capable of executing 10'? instructions per second.
In this case, the computing times of Table 1.8 would decrease by a factor of
1000. Now, when n = 100, it would take 3.17 years to execute n' instruc-
tions and 4 * 10'0 years to execute 2" instructions.

Time for f(n) instructions on a 107 instr/sec_computer 1
(0 n [fr)y=n] fm)=nlogon | flm)y=n’ [fin)=n% | fm)=n? [f)=n"" | fmy=2" ||
10 0T us 03 us T s T us 10 ps 10's s
20 .02 ps .09 ps 4 us 8 us 160 ps 2.84 hr 1 ms
30 .03 ps 15 ps 9 ps 27 us 810 us 6.83 d 1s
40 .04 us .21 us 1.6 ps 64 us 2.56 ms 121.36 d 18.3 min
50 .05 ps 28 us 2.5 pus 125 ps 6.25 ms 3.1 yr 13
100 1 ps .66 ps 10 ps 1 ms 100 ms 3171 yr 4*1013 yr
1,000 1 ps 9.96 us 1 ms 1s 16.67 min 3.17%1018 yr | 32*10283 yr
10,000 10 ps 130 us 100 ms 16.67 min 115.7 d 3.17%10%28 yr
100,000 100 s 1.66 ms 10s 11.57 d 3171 yr 3.17%1038 yr
1,000,000 1 ms 19.92 ms 16.67 min 31.71 yr 3.17%107 yr | 3.17%10%8 yr

Table 1.8 Times on a 1-billion-steps-per-second computer

1.3.5 Performance Measurement

Performance measurement is concerned with obtaining the space and time
requirements of a particular algorithm. These quantities depend on the
compiler and options used as well as on the computer on which the algorithm
is run. Unless otherwise stated, all performance values provided in this book
are obtained using the Gnu C++ compiler, the default compiler options, and
the Sparc 10/30 computer workstation.

In keeping with the discussion of the preceding section, we do not concern
ourselves with the space and time needed for compilation. We justify this
by the assumption that each program (after it has been fully debugged) is
compiled once and then executed several times. Certainly, the space and
time needed for compilation are important during program testing, when
more time is spent on this task than in running the compiled code.

We do not consider measuring the run-time space requirements of a pro-
gram. Rather, we focus on measuring the computing time of a program.
To obtain the computing (or run) time of a program, we need a clocking
procedure. We assume the existence of a program GetTime() that returns
the current time in milliseconds.

1.3. PERFORMANCE ANALYSIS 41

Suppose we wish to measure the worst-case performance of the sequential
search algorithm (Algorithm 1.17). Before we can do this, we need to (1)
decide on the values of n for which the times are to be obtained and (2)
determine, for each of the above values of n, the data that exhibit the worst-
case behavior.

1 Algorithm SeqSearch(a, z,n)

2 // Search for z in a[l : n]. a[0] is used as additional space.
3

4 i:=n; al0] := x;

5 while (a[i] # z) do i :=1 — 1;

6 return i;

7

}

Algorithm 1.17 Sequential search

The decision on which values of n to use is based on the amount of timing
we wish to perform and also on what we expect to do with the times once
they are obtained. Assume that for Algorithm 1.17, our intent is simply to
predict how long it will take, in the worst case, to search for z, given the
size n of a. An asymptotic analysis reveals that this time is ©(n). So, we
expect a plot of the times to be a straight line. Theoretically, if we know the
times for any two values of n, the straight line is determined, and we can
obtain the time for all other values of n from this line. In practice, we need
the times for more than two values of n. This is so for the following reasons:

1. Asymptotic analysis tells us the behavior only for sufficiently large
values of n. For smaller values of n, the run time may not follow the
asymptotic curve. To determine the point beyond which the asymp-
totic curve is followed, we need to examine the times for several values
of n.

2. Even in the region where the asymptotic behavior is exhibited, the
times may not lie exactly on the predicted curve (straight line in
the case of Algorithm 1.17) because of the effects of low-order terms
that are discarded in the asymptotic analysis. For instance, an al-
gorithm with asymptotic complexity ©(n) can have time complexity
can+ ¢ logn+c3 or, for that matter, any other function of n in which
the highest-order term is c¢yn for some constant ¢, ¢; > 0.

Tt is reasonable to expect that the asymptotic behavior of Algorithm 1.17
begins for some n that is smaller than 100. So, for n > 100, we obtain the

42 CHAPTER 1. INTRODUCTION

run time for just a few values. A reasonable choice is n = 200, 300, 400, ...
, 1000. There is nothing magical about this choice of values. We can just
as well use n = 500, 1,000, 1,500,...,10,000 or n = 512, 1,024, 2,048,...,
215 Tt costs us more in terms of computer time to use the latter choices,
and we probably do not get any better information about the run time of
Algorithm 1.17 using these choices.

For n in the range [0, 100] we carry out a more-refined measurement, since
we are not quite sure where the asymptotic behavior begins. Of course, if
our measurements show that the straight-line behavior does not begin in this
range, we have to perform a more-detailed measurement in the range [100,
200], and so on, until the onset of this behavior is detected. Times in the
range [0, 100] are obtained in steps of 10 beginning at n = 0.

Algorithm 1.17 exhibits its worst-case behavior when z is chosen such that
it is not one of the a[i]’s. For definiteness, we set a[i] = 4, 1 < i < n, and
z = 0. At this time, we envision using an algorithm such as Algorithm 1.18
to obtain the worst-case times.

1 Algorithm TimeSearch()

2

3 for j:=1 to 1000 do a[j] := j;
4 for j:=1to 10 do

5

6 n[j] := 10 % (§ — 1); n[j + 10] := 100 * 7;
7

8 for j:=1to 20 do

9

10 h := GetTime();

11 := SeqSearch(a, 0,n[4]);

12 hl := GetTime();

13 t:=hl — h;

14 write (n[j], t);

15

16 }

Algorithm 1.18 Algorithm to time Algorithm 1.17

The timing results of this algorithm is summarized in Table 1.9. The
times obtained are too small to be of any use to us. Most of the times are
zero; this indicates that the precision of our clock is inadequate. The nonzero
times are just noise and are not representative of the time taken.,

1.3. PERFORMANCE ANALYSIS 43

[n]time | n | time |
0 0 100 0
10 0 200 0
20 01 300 1
30 0 400 0
40 01 500 1
50 0 600 0
60 0 700 0
70 01l 800 1
80 01 900 0
90 0 || 1000 0

Table 1.9 Timing results of Algorithm 1.18. Times are in milliseconds.

To time a short event, it is necessary to repeat it several times and
divide the total time for the event by the number of repetitions.

Since our clock has an accuracy of about one-tenth of a second, we should
not attempt to time any single event that takes less than about one second.
With an event time of at least ten seconds, we can expect our observed times
to be accurate to one percent.

The body of Algorithm 1.18 needs to be changed to that of Algorithm 1.19.
In this algorithm, r[i] is the number of times the search is to be repeated
when the number of elements in the array is n[i]. Notice that rearranging
the timing statements as in Algorithm 1.20 or 1.21 does not produce the de-
sired results. For instance, from the data of Table 1.9, we expect that with
the structure of Algorithm 1.20, the value output for n = 0 will still be 0.
This is because there is a chance that in every iteration of the for loop, the
clock does not change between the two times GetTime() is called. With the
structure of Algorithm 1.21, we expect the algorithm never to exit the while
loop when n = 0 (in reality, the loop will be exited because occasionally the
measured time will turn out to be a few milliseconds).

Yet another alternative is shown in Algorithm 1.22. This approach can
be expected to yield satisfactory times. It cannot be used when the timing
procedure available gives us only the time since the last invocation of Get-
Time. Another difficulty is that the measured time includes the time needed
to read the clock. For small 7, this time may be larger than the time to run
SeqSearch. This difficulty can be overcome by determining the time taken
by the timing procedure and subtracting this time later.

44 CHAPTER 1. INTRODUCTION

1 Algorithm TimeSearch()

2

3 // Repetition factors

4 r[21] := {0, 200000, 200000, 150000, 100000, 100000, 100000,
5 50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000,
6 50000, 50000, 25000, 25000, 25000, 25000};

7 for 5 :=1 to 1000 do a[j] := j;

8 for j:=1to 10 do

9

10 nl[j] =10 (j — 1); n[j + 10] := 100 * j;

11

12 for j:=1to 20 do

13 {

14 h := GetTime();

15 for i :=1 to r[j] do k := SeqSearch(a,0,n[7]);
16 hl := GetTime();

17 t1:=hl — hy

18 t:=tl; t:=t/r[j);

19 write (n[j], t1, t);

20

21 }

Algorithm 1.19 Timing algorithm

1 ¢:=0;

2 for i:=1 to r[j] do

3 {

4 h := GetTime();

5 k := SeqSearch(a,0,n[7]);
6 hl:= GetTime();

7 t:=t+hl —h;

8}

9 t:=t/r[j];

Algorithm 1.20 Improper timing construct

1.3. PERFORMANCE ANALYSIS

45

1 t:=0;

9 while (t < DESIRED.TIME) do
3 {

4 h := GetTime();

5 k := SeqSearch(a,0,n[j])3

6 hl := GetTime();

7 t:=t+hl —h;

8

Algorithm 1.21 Another improper timing construct

h := GetTime(); t := 0;
while (t < DESIRED_TIME) do

k := SeqSearch(a, 0, n[7]);
hl := GetTime();
t:=hl—h;

O TU s W =

}

Algorithm 1.22 An alternate timing construct

46 CHAPTER 1. INTRODUCTION

Timing results of Algorithm 1.19, is given in Table 1.10. The times for n
in the range [0, 1000] are plotted in Figure 1.4, Values in the range [10, 100]
have not been plotted. The linear dependence of the worst-case time on n
is apparent from this graph.

Lol @] ¢ | n] 1 [t |
01 30810.002 1001683]0.034
10 | 923 | 0.005 || 200 | 3359 | 0.067
20 | 1181 | 0.008 || 300 | 4693 | 0.094
30 | 1087 | 0.011 || 400 | 6323 | 0.126
40 | 1384 | 0.014 || 500 | 7799 | 0.156
50 | 1691 | 0.017 || 600 | 9310 | 0.186
60 | 999 | 0.020 || 700 | 5419 | 0.217
70 | 1156 | 0.023 || 800 | 6201 | 0.248
80 | 1306 | 0.026 || 900 | 6994 | 0.280
90 | 1460 | 0.029 || 1000 | 7725 | 0.309

Times are in milliseconds

Table 1.10 Worst-case run times for Algorithm 1.17

The graph of Figure 1.4 can be used to predict the run time for other
values of n. We can go one step further and get the equation of the straight
line. The equation of this line is ¢ = ¢ + mn, where m is the slope and ¢
the value for n = 0. From the graph, we see that ¢ = 0.002. Using the point
n = 600 and ¢t = 0.186, we obtain m = (t —¢)/n = 0.184/600 = 0.0003067.
So the line of Figure 1.4 has the equation ¢t = 0.002 + 0.0003067n2, where ¢
is the time in milliseconds. From this, we expect that when n = 1000, the
worst-case search time will be 0.3087 millisecond, and when n = 500, it will
be 0.155 millisecond. Compared to the observed times of Table 1.10, we see
that these figures are very accurate!

Summary of Running Time Calculation

To obtain the run time of a program, we need to plan the experiment. The
following issues need to be addressed during the planning stage:

1. What is the accuracy of the clock? How accurate do our results have to
be? Once the desired accuracy is known, we can determine the length
of the shortest event that should be timed.

1.3. PERFORMANCE ANALYSIS 47

0.40 —

036 —

0.32

0.28

0.24

0.20

t 0le

0.12

0.08

0.04

0.00 N I S N N SN A S S B
0 100 200 300 400 S00 600 700 800 900 1000

n _—

Figure 1.4 Plot of the data in Table 1.10

48 CHAPTER 1. INTRODUCTION

2. For each instance size, a repetition factor needs to be determined. This
is to be chosen such that the event time is at least the minimum time
that can be clocked with the desired accuracy.

3. Are we measuring worst-case or average performance? Suitable test
data need to be generated.

4, What is the purpose of the experiment? Are the times being obtained
for comparative purposes, or are they to be used to predict run times?
If the latter is the case, then contributions to the run time from such
sources as the repetition loop and data generation need to be sub-
tracted (in case they are included in the measured time). If the former
is the case, then these times need not be subtracted (provided they are
the same for all programs being compared).

5. In case the times are to be used to predict run times, then we need to fit
a curve through the points. For this, the asymptotic complexity should
be known. If the asymptotic complexity is linear, then a least-squares
straight line can be fit; if it is quadratic, then a parabola can be used
(that is, t = ag + ain + aan?). If the complexity is ©(nlogn), then a
least-squares curve of the form t = a9 + ain + asnlogy n can be fit.
When obtaining the least-squares approximation, one should discard
data corresponding to small values of n, since the program does not
exhibit its asymptotic behavior for these n.

Generating Test Data

Generating a data set that results in the worst-case performance of an algo-
rithm is not always easy. In some cases, it is necessary to use a computer
program to generate the worst-case data. In other cases, even this is very
difficult. In these cases, another approach to estimating worst-case perfor-
mance is taken. For each set of values of the instance characteristics of
interest, we generate a suitably large number of random test data. The run
times for each of these test data are obtained. The maximum of these times
is used as an estimate of the worst-case time for this set of values of the
instance characteristics.

To measure average-case times, it is usually not possible to average over
all possible instances of a given characteristic. Although it is possible to do
this for sequential search, it is not possible for a sort algorithm. If we assume
that all keys are distinct, then for any given n, n! different permutations
need to be used to obtain the average time. Obtaining average-case data is
usually much harder than obtaining worst-case data. So, we often adopt the
strategy outlined above and simply obtain an estimate of the average time
on a suitable set of test data.

1.3. PERFORMANCE ANALYSIS 49

Whether we are estimating worst-case or average time using random data,
the number of instances that we can try is generally much smaller than
the total number of such instances. Hence, it is desirable to analyze the
algorithin being tested to determine classes of data that should be generated
for the experiment. This is a very algorithm-specific task, and we do not go
into it here.

EXERCISES

1. Compare the two functions n? and 2"/4 for various values of n. De-
termine when the second becomes larger than the first.

2. Prove by induction:
(a) iyt = n(n+1)/2, n>1
(b) ¥",i2 = nn+1)(2n+1)/6, n > 1
(€) Xios' = (@' -1)/(z-1), #1, n>0

3. Determine the frequency counts for all statements in the following two
algorithm segments:

1 i:=1
l for i:=1tondo 2 while (i <n) do
2 for j:=1toido 3 {
3 for k:=1to j do 4 ri=x+ 1
1 z:=z+ 1 5 t:=14+ 13

6 }

(a) (b)
4. (a) Introduce statements to increment count at all appropriate points

in Algorithm 1.23.

(b) Simplify the resulting algorithm by eliminating statements. The
simplified algorithm should compute the same value for count as
computed by the algorithm of part (a).

(¢) What is the exact value of count when the algorithm terminates?
You may assume that the initial value of count is 0.

(d) Obtain the step count for Algorithm 1.23 using the frequency
method. Clearly show the step count table.

5. Do Exercise 4 for Transpose (Algorithm 1.24).

6. Do Exercise 4 for Algorithm 1.25. This algorithm multiplies two n x n
matrices a and b.

50 CHAPTER 1. INTRODUCTION

1 Algorithm D(z,n)

2 |

3 1:=1;

4 repeat

5

6 zfi] = zli] + 25 i =i+ 2
7 } until (7 > n);

8 1:=1;

9 while (i < |n/2]) do

10

11 zft] == z[i] + 2[i + 1]5 i := 1 + 1;
12

13 }

Algorithm 1.23 Example algorithm

1 Algorithm Transpose(a,n)

2

3 { fori:=1ton—1do

4 for j:=7+1 ton do

5 {

6 t:=ali, jl; ali, j] :=aj,1l; alj, i ==
7 }

8 }

Algorithm 1.24 Matrix transpose

1.3. PERFORMANCE ANALYSIS 51

1 Algorithm Mult(a,b,c,n)

2§

3 for i:=1to ndo

4 for j:=1to ndo

5

6 clt, j] == 03

7 for k:=1to ndo

8 cli, 4] := cli, 4] + ali, k] % bfk,]
9 }

10}

Algorithm 1.25 Matrix multiplication

7. (a) Do Exercise 4 for Algorithm 1.26. This algorithm multiplies two
matrices a and b, where a is an m x n matrix and b is an n x p
matrix.

1 Algorithm Mult(a,b, c, m,n,p)

2

3 for i:=1 to m do

4 for j:=1to p do

)

6 c[i, j] := 03

7 for k:=1to ndo

8 cli, 4] = efé,] + ali, K] * blk, g3
9

10}

Algorithm 1.26 Matrix multiplication

(b) Under what conditions is it profitable to interchange the two out-
ermost for loops?

8. Show that the following equalities are correct:
(a) 5n? —6n = O(n?)
(b) n! = O(n™)
(¢) 2n22"+nlogn = O(n?2")
(d) Xioi* = O(n?)

92 CHAPTER 1. INTRODUCTION

)

)

)

h) 6n3/(logn +1) = O(n?3)

(i) 19! L plogn = O©(n'00)
) nfte 4 nklogn = O(nFTe) for all fixed k and ¢, k > 0 and € > 0
)
)
)

33n® +4n? = Q(n?)
33n3 +4n? = Q(n3)

9. Show that the following equalities are incorrect:

(a) 10n?2+9 = O(n)
(b) n?logn = O©(n?)
(c) n*/logn = ©(n?)
(d) n*2" 4+ 6n23" = O(n32")

10. Prove Theorems 1.3 and 1.4.
11. Analyze the computing time of SelectionSort (Algorithm 1.2).

12. Obtain worst-case run times for SelectionSort (Algorithm 1.2). Do this
for suitable values of n in the range [0, 100]. Your report must include
a plan for the experiment as well as the measured times. These times
are to be provided both in a table and as a graph.

13. Consider the algorithm Add (Algorithm 1.11).

(a) Obtain run times for n = 1,10,20,..., 100.
(b) Plot the times obtained in part (a).

14. Do the previous exercise for matrix multiplication (Algorithm 1.26).

15. A complex-valued matrix X is represented by a pair of matrices (A, B),
where A and B contain real values. Write an algorithm that computes
the product of two complex-valued matrices (A, B) and (C, D), where
(A,B) x(C,D) = (A+1B)* (C +iD) = (AC — BD) + i(AD + BC).
Determine the number of additions and multiplications if the matrices
arealln x n.

1.4. RANDOMIZED ALGORITHMS 33

1.4 RANDOMIZED ALGORITHMS

1.4.1 Basics of Probability Theory

Probability theory has the goal of characterizing the outcomes of natural or
conceptual “experiments.” Examples of such experiments include tossing a
coin ten times, rolling a die three times, playing a lottery, gambling, picking
a ball from an urn containing white and red balls, and so on.

Each possible outcome of an experiment is called a sample point and the
set of all possible outcomes is known as the sample space S. In this text
we assuine that S is finite (such a sample space is called a discrete sample
space). An event E is a subset of the sample space S. If the sample space
consists of n sample points, then there are 2" possible events.

Example 1.19 [Tossing three coins] When a coin is tossed, there are two
possible outcomes: heads (H) and tails (7). Consider the experiment of
throwing three coins. There are eight possible outcomes: HHH, HHT,
HTH, HTT, THH, THT,TTH, and TTT. Each such outcome is a sample
point. The sets {HHT, HTT, TTT}, {HHH, TTT}, and { } are three
possible events. The third event has no sample points and is the empty set.
For this experiment there are 2% possible events. O

Definition 1.9 [Probability] The probability of an event E is defined to be
J‘%, where S is the sample space. O

Example 1.20 [Tossing three coins] The probability of the event {HHT,
HTT.TTT} is 3. The probability of the event { HHH,TTT} is 3 and that
of the event { } is zero. O

Note that the probability of S, the sample space, is 1.

Example 1.21 [Rolling two dice] Let us look at the experiment of rolling

two (six-faced) dice. There are 36 possible outcomes some of which are

(1,1),(1,2),(1,3),.... What is the probability that the sum of the two faces

is 10?7 The event that the sum is 10 consists of the following sample points:

(1,9), (2.8), (3,7), (4,6), (5,5), (6,4), (7,3),(8,2), and (9, 1). Therefore, the
1

probability of this event is % = 3 |

Definition 1.10 [Mutual exclusion] Two events E; and E» are said to be
mutually ezclusive if they do not have any common sample points, that is,
if By N Ey =0, |

54 CHAPTER 1. INTRODUCTION

Example 1.22 [Tossing three coins] When we toss three coins, let E; be the
event that there are two H’s and let Ey be the event that there are at least
two T’s. These two events are mutually exclusive since there are no common
sample points. On the other hand, if F is defined to be the event that there
is at least one T, then E; and EY will not be mutually exclusive since they
will have THH, HTH, and HHT as common sample points. O

The probability of event E is denoted as Prob.[E]. The complement of
E, denoted FE, is defined to be § — E. If E; and E» are two events, the
probability of E; or Es or both happening is denoted as Prob.[E; U Es).
The probability of both E; and Ey occurring at the same time is denoted as
Prob.[E; N Ey]. The corresponding event is £y N Es.

Theorem 1.5

1. Prob.[E]
2. PT’Ob.[El U EQ]

= 1— Prob.[E].
= Prob.[E] + Prob.[Es] — Prob.[Ey; N Ey]
< PT’Ob.[El] + PT’Ob.[EQ]

Definition 1.11 [Conditional probability] Let E; and E, be any two events
of an experiment. The conditional probability of Ei given E,, denoted by

Prob. [Ey|Es], is defined as %%%%1_ .

Example 1.23 [Tossing four coins| Consider the experiment of tossing four
coins. Let Fq be the event that the number of H’s is even and let E5 be
the event that there is at least one H. Then, Es is the complement of the

event that there are no H’s. The probability of no H’s is %. Therefore,

Prob.[Ey] = 1 — % = %. Prob.[E1 N Eo) is % since the event E; N Ey
has the seven sample pomts HHHH, HHTT, HTHT, HITTH, THHT,
THTH, and TTHH. Thus, Prob.[E:|Ey] is 145 = 1. 0

Definition 1.12 [Independence] Two events E; and E; are said to be inde-
pendent if Prob.[E; N Es] = Prob.[E] * Prob.[Ey]. i

Example 1.24 [Rolling a die twice] Intuitively, we say two events E; and
FE, are independent if the probability of one event happening is in no way af-
fected by the occurrence of the other event. In other words, if Prob.[E}|Es] =
Prob.[E1], these two events are independent. Suppose we roll a die twice.
What is the probability that the outcome of the second roll is 5 (call this
event E), given that the outcome of the first roll is 4 (call this event E»)?
The answer is % no matter what the outcome of the first roll is. In this case

E; and E, are independent. Therefore, Prob.[Ey N Ey] = 2+ L = 3%. O

1.4. RANDOMIZED ALGORITHMS 35

Example 1.25 [Flipping a coin 100 times] If a coin is flipped 100 times what
is the probability that all of the outcomes are tails? The probability that the
first outcome is T is % Since the outcome of the second flip is independent
of the outcome of the first flip, the probability that the first two outcomes
are T"s can be obtained by multiplying the corresponding probabilities to
get %. Extending the argument to all 100 outcomes, we conclude that the

100
probability of obtaining 100 T’s is (& . In this case we say the outcomes
5 y

of the 100 coin flips are mutually independent. O

Definition 1.13 [Random variable] Let S be the sample space of an exper-
iment. A random wvariable on S is a function that maps the elements of S
to the set of real numbers. For any sample point s € S, X(s) denotes the
image of s under this mapping. If the range of X, that is, the set of values
X can take, is finite, we say X is discrete.

Let the range of a discrete random variable X be {ry,79,...,7,;,}. Then,
Prob.[X = ry, for any i, is defined to be the the number of sample points
whosc image is r; divided by the number of sample points in S. In this text
we arc concerned mostly with discrete random variables. |

Example 1.26 We flip a coin four times. The sample space consists of 2*
sample points. We can define a random variable X on S as the number
of heads in the coin flips. For this random variable, then, X (HTHH) = 3,
X(HHHH) = 4, and so on. The possible values that X can take are 0, 1,2, 3,
and 4. Thus X is discrete. Prob.[X = 0] is %, since the only sample point

whose immage is 0 is TTTT. Prob.[X = 1] is %, since the four sample points
HTTU, THTT, TTHT, and TTTH have 1 as their image. O

Definition 1.14 [Expected value] If the sample space of an experiment is
S = {s1,89,...,5n}, the expected value or the mean of any random variable

X is defined to be 7= ; Prob.[s;] * X (s;) = L 37 X(s;). 0

Example 1.27 [Coin tosses| The sample space corresponding to the exper-
iment of tossing three coins is S = {HHH, HHT, HTH, HTT, THH,
THT,TTH, TTT}. If X is the number of heads in the coin flips, then the

expected value of X is 2(3+2+2+14+2+1+1+40) =1.5. O

Definition 1.15 [Probability distribution] Let X be a discrete random vari-
able defined over the sample space S. Let {ri,rs,...,my} be its range.
Theun, the probability distribution of X is the sequence Prob.[X = ri],
Prob.[X =ry], ..., Prob[X = r,]. Notice that }7°, Prob.[X =r;] = 1.

a

56 CHAPTER 1. INTRODUCTION

Example 1.28 [Coin tosses| If a coin is flipped three times and X is the
number of heads, then X can take on four values, 0, 1, 2, and 3. The
probability distribution of X is given by Prob.[X = 0] = %, Prob X =1] =
3, Prob[X =2 =%, and Prob.[X =3] = {. O

Definition 1.16 [Binomial distribution] A Bernoulli trial is an experiment
that has two possible outcomes, namely, success and failure. The probability
of success is p. Consider the experiment of conducting the Bernoulli trial n
times. This experiment has a sample space S with 2" sample points. Let X
be a random variable on S defined to be the numbers of successes in the n
trials. The variable X is said to have a binomial distribution with parameters
(n, p). The expected value of X is np. Also,

Prob.[X =1i] = (?)pz(l —p)~
a

In several applications, it is necessary to estimate the probabilities at the
tail ends of probability distributions. One such estimate is provided by the
following lemma.

Lemma 1.1 [Markov's inequality] If X is any nonnegative random variable
whose mean is u, then

Prob.[X > z] <

8=

a

Example 1.29 Let u be the mean of a random variable X. We can use
Markov’s lemma (also called Markov’s inequality) to make the following
statement: “The probability that the value of X exceeds 2u is < %.” Con-
sider the example: if we toss a coin 1000 times, what is the probability that
the number of heads is > 6007 If X is the number of heads in 1000 tosses,
then, the expected value of X, E[X], is 500. Applying Markov’s inequality
with z = 600 and p = 500, we infer that P[X > 600] < %. O

Though Markov’s inequality can be applied to any nonnegative random
variable, it is rather weak. We can obtain tighter bounds for a number of
important distributions including the binomial distribution. These bounds
are due to Chernoff. Chernoff bounds as applied to the binomial distribution
are employed in this text to analyze randomized algorithms.

1.4. RANDOMIZED ALGORITHMS 57

Lemma 1.2 [Chernoff bounds] If X is a binomial with parameters (n, p),
and m > np is an integer, then

m
Prob.(X >m) < (ﬁ) elm=mp), (1.1)
m
Also, Prob.(X < [(1—epn]) < el=m/2) (1.2)
and Prob.(X > [(1 +¢e)np]) < e(—€*np/3) (1.3)
forall0 <e < 1. |

Example 1.30 Consider the experiment of tossing a coin 1000 times. We
want to determine the probability that the number X of heads is > 600. We
can use Equation 1.3 to estimate this probability. The value for ¢ here is
0.2. Also, n = 1000 and p = % Equation 1.3 now becomes

PIX > 600] < el=(0-2°(500/3)] — o=20/3 < (001273

This cstimate is more precise than that given by Markov’s inequality. a

1.4.2 Randomized Algorithms: An Informal Description

A randomized algorithm is one that makes use of a randomizer (such as a
random number generator). Some of the decisions made in the algorithm
depend on the output of the randomizer. Since the output of any random-
izer might differ in an unpredictable way from run to run, the output of a
randomized algorithm could also differ from run to run for the same input.
The cxecution time of a randomized algorithm could also vary from run to
run for the same input.

Randomized algorithms can be categorized into two classes: The first
is algorithms that always produce the same (correct) output for the same
input. These are called Las Vegas algorithms. The execution time of a Las
Vegas algorithm depends on the output of the randomizer. If we are lucky,
the algorithm might terminate fast, and if not, it might run for a longer
period of time. In general the execution time of a Las Vegas algorithm is
characterized as a random variable (see Section 1.4.1 for a definition). The
second is algorithms whose outputs might differ from run to run (for the same
input). These are called Monte Carlo algorithms. Consider any problem for
which there are only two possible answers, say, yes and no. If a Monte Carlo
algorithm is employed to solve such a problem, then the algorithm might give
incorrect answers depending on the output of the randomizer. We require
that the probability of an incorrect answer from a Monte Carlo algorithm be
low. Typically, for a fixed input, a Monte Carlo algorithm does not display

58 CHAPTER 1. INTRODUCTION

much variation in execution time between runs, whereas in the case of a Las
Vegas algorithm this variation is significant.

We can think of a randomized algorithm with one possible randomizer
output to be different from the same algorithm with a different possible
randomizer output. Therefore, a randomized algorithm can be viewed as a
family of algorithms. For a given input, some of the algorithms in this family
may run for indefinitely long periods of time (or may give incorrect answers).
The objective in the design of a randomized algorithm is to ensure that the
number of such bad algorithms in the family is only a small fraction of the
total number of algorithms. If for any input we can show that at least 1 — ¢
(€ being very close to 0) fraction of algorithms in the family will run quickly
(respectively give the correct answer) on that input, then clearly, a random
algorithm in the family will run quickly (or output the correct answer) on
any input with probability > 1 — ¢. In this case we say that this family of
algorithms (or this randomized algorithm) runs quickly (respectively gives
the correct answer) with probability at least 1 —e, where € is called the error
probability.

Definition 1.17 [The O()] Just like the O() notation is used to characterize

the run times of non randomized algorithms, O() is used for characterizing
the run times of Las Vegas algorithms. We say a Las Vegas algorithm has a
resource (time, space, and so on.) bound of O(g(n)) if there exists a constant
¢ such that the amount of resource used by the algorithm (on any input of
size n) is no more than cag(n) with probability > 1 — 7% We shall refer to
these bounds as high probability bounds.

Similar definitions apply also to such functions as é(), Q(), o(), etc. O

Definition 1.18 [High probability] By high probability we mean a probability
of > 1—n"? for any fixed a. We call a the probability parameter. |

As mentioned above, the run time T of any Las Vegas algorithm is typi-
cally characterized as a random variable over a sample space S. The sample
points of S are all possible outcomes for the randomizer used in the algo-
rithm. Though it is desirable to obtain the distribution of 7', often this is
a challenging and unnecessary task. The expected value of T often suffices
as a good indicator of the run time. We can do better than obtaining the
mean of T but short of computing the exact distribution by obtaining the
high probability bounds. The high probability bounds of our interest are of
the form “With high probability the value of T' will not, exceed Tj,” for some
appropriate Tj.

Several results from probability theory can be employed to obtain high
probability bounds on any random variable. Two of the more useful such
results are Markov’s inequality and Chernoff bounds.

1.4. RANDOMIZED ALGORITHMS 59

Next we give two examples of randomized algorithms. The first is of the
Las Vegas type and the second is of the Monte Carlo type. Other examples
are presented throughout the text. We say a Monte Carlo (Las Vegas) al-
gorithm has failed if it does not give a correct answer (terminate within a
specified amount of time).

1.4.3 Identifying the Repeated Element

Consider an array a[] of n numbers that has % distinct elements and 3

copies of another element. The problem is to identify the repeated element.

Any deterministic algorithm for solving this problem will need at least
L + 2 time steps in the worst case. This fact can be argued as follows:
éonsidor an adversary who has perfect knowledge about the algorithm used
and who is in charge of selecting the input for the algorithm. Such an
adversary can make sure that the first 5 + 1 elements examined by the
algorithm are all distinct. Even after having looked at § + 1 elements, the
algorithm will not be in a position to infer the repeated element. It will have
to examine at least § + 2 elements and hence take at least 4 + 2 time steps.

It contrast there is a simple and elegant randomized Las Vegas algorithm

that takes only O(logn) time. It randomly picks two array elements and
checks whether they come from two different cells and have the same value.
If they do, the repeated element has been found. If not, this basic step
of sainpling is repeated as many times as it takes to identify the repeated
element.

Tn this algorithm, the sampling performed is with repetitions; that is, the
first and second elements are randomly picked from out of the n elements
(each element being equally likely to be picked). Thus there is a probability
(equal to %) that the same array element is picked each time. If we just check
for the equality of the two elements picked, our answer might be incorrect
(in case the algorithm picked the same array index each time). Therefore, it
is essential to make sure that the two array indices picked are different and
the two array cells contain the same value.

This algorithm is given in Algorithm 1.27. The algorithm returns the
array index of one of the copies of the repeated element. Now we prove that
the run time of the above algorithm is O(logn). Any iteration of the while
loop will be successful in identifying the repeated number if 7 is any one the
5 array indices corresponding to the repeated element and j is any one of
the same 7 indices other than 7. In other words, the probability that the
algorithm quits in any given iteration of the while loop is P = %,
which is > % for all n > 10. This implies that the probability that the

algorithm does not quit in a given iteration is < %

60 CHAPTER 1. INTRODUCTION

RepeatedElement(a, n)
// Finds the repeated element from a[1 : n).

while (true) do
:= Random() mod n + 1; j := Random() mod n + 1;

1
// i and j are random numbers in the range [1,n].
if ((¢ # j) and (a[f] = a[j])) then return ¢;

O 00 ~JO ULk WH -

Algorithm 1.27 Identifying the repeated array number

Therefore, the probability that the algorithm does not quit in 10 iterations

10
is < (4) < .1074. So, Algorithm 1.27 will terminate in 10 iterations or

less with probability > .8926. The probability that the algorithm does not

100
terminate in 100 iterations is < (g—) < 2.04 10719, That is, almost

certainly the algorithm will quit in 100 iterations or less. If n equals 2 x 106,
for example, any deterministic algorithm will have to spend at least one
million time steps, as opposed to the 100 iterations of Algorithm 1.27!

In general, the probability that the algorithm does not quit in the first
calogn (c is a constant to be fixed) iterations is

< (4/5)calogn — n—calog (5/4)

which will be < n~% if we pick ¢ > m.

Thus the algorithm terminates in malogn iterations or less with
probability > 1 — n~%. Since each iteration of the while loop takes O(1)
time, the run time of the algorithm is O(logn).

Note that this algorithm, if it terminates, will always output the correct
answer and hence is of the Las Vegas type. The above analysis shows that
the algorithm will terminate quickly with high probability.

The same problem of inferring the repeated element can be solved using
many deterministic algorithms. For example, sorting the array is one way.
But sorting takes 2(n logn) time (proved in Chapter 10). An alternative is

n

to partition the array into [§] parts, where each part (possibly except for

one part) has three array elements, and to search the individual parts for

1.4. RANDOMIZED ALGORITHMS 61

the repeated element. At least one of the parts will have two copies of the
repeated element. (Prove this!) The run time of this algorithm is O(n).

1.4.4 Primality Testing

Any integer greater than one is said to be a prime if its only divisors are 1
and the integer itself. By convention, we take 1 to be a nonprime. Then
2,3,5,7,11, and 13 are the first six primes. Given an integer n, the problem
of deciding whether n is a prime is known as primality testing. It has a
number of applications including cryptology.

If a number n is composite (i.e., nonprime), it must have a divisor < |/n].
This observation leads to the following simple algorithm for primality testing:
Consider each number ¢ in the interval [2, | \/n]] and check whether ¢ divides
n. If none of these numbers divides n, then n is prime; otherwise it is
composite.

Assuming that it takes ©(1) time to determine whether one integer divides
another, the naive primality testing algorithm has a run time of O(y/n).
The input size for this problem is [(logn + 1)], since n can be represented
in binary form with these many bits. Thus the run time of this simple
algorithm is exponential in the input size (notice that \/n = 2%1°g").

We can devise a Monte Carlo randomized algorithm for primality testing
that runs in time O((logn)?). The output of this algorithm is correct with
high probability. If the input is prime, the algorithm never gives an incorrect
answer. However, if the input number is composite (i.e., nonprime), then
there is a small probability that the answer may be incorrect. Algorithms
of this kind are said to have one-sided error.

Before presenting further details, we list two theorems from number the-
ory that will serve as the backbone of the algorithm. The proofs of these
theorems can be found in the references supplied at the end of this chapter.

Theorem 1.6 [Fermat] If n is prime, then ¢! =1 (inod n) for any in-
teger a < n. a

Theorem 1.7 The equation z2 = 1 (mod n) has exactly two solutions,
namely 1 and n — 1, if n is prime. |

Corollary 1.1 If the equation 22 = 1 (mod n) has roots other than 1 and
n — 1, then n is composite. O

Note: Any integer which is neither 1 nor n — 1 but which satisfies 22 = 1
(mod n) is said to be a nontrivial square root of 1 modulo n.

Fermat’s theorem suggests the following algorithm for primality testing:
Randoinly choose an a < n and check whether "' = (mod n) (call this

62 CHAPTER 1. INTRODUCTION

Fermat’s equation). If Fermat’s equation is not satisfied, n is composite.
If the equation is satisfied, we try some more random a’s. If on each a
tried, Fermat’s equation is satisfied, we output “n is prime”; otherwise we
output “n is composite.” In order to compute a”~! mod n, we could employ
Exponentiate (Algorithm 1.16) with some minor modifications. The resultant
primality testing algorithm is given as Algorithm 1.28. Here large is a
number sufficiently large that ensures a probability of correctness of > 1 —
n-¢.

1 Primel(n,)

2 // Returns true if n is a prime and false otherwise.
3 // « is the probability parameter.

4

) g:=n-—1;

6 for i := 1 to large do // Specify large.
T

8 m:=gq;y:=1;

9 a := Random() mod g + 1;

10 // Choose a random number in the range [1,n — 1].
11 Z = a;

12 // Compute a"~! mod n.

13 while (m > 0) do

14

15 while (m mod 2 =0) do

16 {

17 z:= z? mod n3; m := [m/2];

18 }

19 m:=m—1; y:= (y* z) mod n;

20 }

21 if (y # 1) then return false;

22 // Ifa® ! mod n is not 1, n is not a prime.
23 }

24 return true;

25 }

Algorithm 1.28 Primality testing: first attempt

If the input is prime, Algorithm 1.28 will never output an incorrect an-
swer. If n is composite, will Fermat’s equation never be satisfied for any a
less than n and greater than one? If so, the above algorithm has to examine
just one a before coming up with the correct answer. Unfortunately, the

1.4. RANDOMIZED ALGORITHMS 63

answer {o this question is no. Even if n is composite, Fermat’s equation may
be satisfied depending on the a chosen.

Is it the case that for every n (that is composite) there will be some
nonzero constant fraction of a’s less than n that will not satisfy Fermat’s
equation? If the answer is yes and if the above algorithm tries a sufficiently
large number of a’s, there is a high probability that at least one a violating
Fermat’s equation will be found and hence the correct answer be output.
Here again, the answer is no. There are composite numbers (known as
Carniichael numbers) for which every a that is less than and relatively prime
to n will satisfy Fermat’s equation. (The number of a’s that do not satisfy
Fermat’s equation need not be a constant fraction.) The numbers 561 and
1105 are examples of Carmichael numbers.

Fortunately, a slight modification of the above algorithm takes care of
these problems. The modified primality testing algorithm (also known as
Miller-Rabin’s algorithm) is the same as Prime0 (Algorithm 1.28) except
that within the body of Prime0, we also look for nontrivial square roots of n.
The modified version is given in Algorithm 1.29. We assume that n is odd.

Miller-Rabin’s algorithm will never give an incorrect answer if the input
is prine, since Fermat’s equation will always be satisfied and no nontrivial
squarc root of 1 modulo n can be found. If n is composite, the above
algorithin will detect the compositeness of n if the randomly chosen a either
leads to the discovery of a nontrivial square root of 1 or violates Fermat’s
equation. Call any such a a witness to the compositeness of n. What is the
probability that a randomly chosen a will be a witness to the compositeness
of n? This question is answered by the following theorem (the proof can be
found in the references at the end of this chapter).

Theorem 1.8 There are at least %l witnesses to the compositeness of n

if n is composite and odd. O

Assume that n is composite (since if n is prime, the algorithm will always
be correct). The probability that a randomly chosen a will be a witness is

> "——2—;', which is very nearly equal to % This means that a randomly chosen

a will fail to be a witness with probability < %

Therefore, the probability that none of the first arlogn a’s chosen is a

. . 1 alogn
witness 18 < (5)

give an incorrect answer with only probability < n™¢.

The run time of the outermost while loop is nearly the same as that of

Exponentiate (Algorithim 1.16) and equal to O(logn). Since this while loop

is executed O(logn) times, the run time of the whole algorithm is O(log? n).

= n~% In other words, the algorithm Prime will

66

CHAPTER 1. INTRODUCTION

5. Given a 2-sided coin. Using this coin, how will you simulate an n-sided

coin

(a) when n is a power of 27.
(b) when n is not a power of 27.

6. Compute the run time analysis of the Las Vegas algorithm given in

Algorithm 1.30 and express it using the O() notation.

OO Ui+

LasVegas()
while (true) do

i := Random() mod 2;
if (¢ > 1) then return;

Algorithm 1.30 A Las Vegas algorithm

7. There are \/n copies of an element in the array c¢. Every other element

10.

11.

of ¢ occurs exactly once. If the algorithm RepeatedElement is used to

identify the repeated element of ¢, will the run time still be 6(log n)?
If so, why? If not, what is the new run time?

What is the minimum number of times that an element should be
repeated in an array (the other elements of the array occurring exactly

once) so that it can be found using RepeatedElement in O(log n) time?

n

. An array a has 7 copies of a particular unknown element z. Every

other element in a has at most % copies. Present an O(logn) time
Monte Carlo algorithm to identifgy z. The answer should be correct
with high probability. Can you develop an O(logn) time Las Vegas
algorithm for the same problem?

Consider the naive Monte Carlo algorithm for primality testing pre-
sented in Algorithm 1.31. Here Power(z,y) computes z¥. What should
be the value of ¢ for the algorithm’s output to be correct with high
probability?

Let A be a Monte Carlo algorithm that solves a decision problem 7 in
time T. The output of A is correct with probability > 5. Show how

1.4.

RANDOMIZED ALGORITHMS 67

Primel(n)

{
// Specify t.
for i:=1to t do

m := Power(n,0.5);

j := Random() mod m + 2;

if ((n mod j) = 0) then return false;
// If j divides n, n is not prime.

ST Ok W =

10 }

1L return true;
12}

Algorithm 1.31 Another primality testing algorithm

12.

13.

you can modify A so that its answer is correct with high probability.
The modified version can take O(T logn) time.

[n general a Las Vegas algorithm is preferable to a Monte Carlo algo-
rithin, since the answer given by the former is guaranteed to be correct.
There may be critical situations in which even a very small probability
of an incorrect answer is unacceptable. Say there is a Monte Carlo
algorithm for solving a problem 7 in 7} time units whose output is
correct with probability > % Also assume that there is another algo-
rithm that can check whether a given answer is valid for 7 in T time

units. Show how you use these two algorithms to arrive at a Las Vegas
algorithm for solving 7 in time O((T} + T2) log n).

The problem considered here is that of searching for an element z in
an array a[l : n]. Algorithm 1.17 gives a deterministic ©(n) time
algorithm for this problem. Show that any deterministic algorithm
will have to take Q(n) time in the worst case for this problem. In
contrast a randomized Las Vegas algorithm that searches for z is given
in Algorithm 1.32. This algorithm assumes that z is in o[]. What is

the O() run time of this algorithm?

68 CHAPTER 1. INTRODUCTION

Algorithm RSearch(a,z,n)
// Searches for z in a[l : n]. Assume that z is in a[].

while (true) do
¢ := Random() mod n + 1;

// 1 is random in the range [1,n].
if (afi] = z) then return i;

H OO Tk WN —

Algorithm 1.32 Randomized search

1.5 REFERENCES AND READINGS

For a more detailed discussion of performance analysis and measurement,
see Software Development in Pascal, Third Edition, by S. Sahni, NSPAN
Printing and Publishing, 1993.

For a discussion on mathematical tools for analysis see Concrete Mathe-
matics: A Foundation for Computer Science, by R. L. Graham, D. E. Knuth,
and O. Patashnik, Addison-Wesley, 1989.

More details about the primality testing algorithm can be found in Intro-
duction to Algorithms, by T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
MIT Press, 1990.

An excellent introductory text on probability theory is Probability and
Random Processes, by G. R. Grimmet and D. R. Stirzaker, Oxford University
Press, 1988. A proof of Lemma 1.1 can be found in this book. For a proof
of Lemma 1.2 see Queueing Systems, Vol. 1, by L. Kleinrock, John Wiley &
Sons, 1975.

A formal treatment of randomized algorithms and several examples can
be found in “Derivation of randomized algorithms for sorting and selection,”
by S. Rajasekaran and J. H. Reif, in Parallel Algorithm Derivation and
Program Transformation, edited by R. Paige, J. H. Reif, and R. Wachter,
Kluwer Academic Publishers, 1993, pp. 187-205. For more on randomized
algorithms see Randomized Algorithms by R. Motwani and P. Raghavan,
Cambridge University Press, 1995.

Chapter 2

ELEMENTARY DATA
STRUCTURES

Now that we have examined the fundamental methods we need to express
and analyze algorithms, we might feel all set to begin. But, alas, we need
to make one last diversion, and that is a discussion of data structures. One
of the basic techniques for improving algorithms is to structure the data
in such a way that the resulting operations can be efficiently carried out.
In this chapter, we review only the most basic and commonly used data
structures. Many of these are used in subsequent chapters. We should be
familiar with stacks and queues (Section 2.1), binary trees (Section 2.2), and
graphs (Section 2.6) and be able to refer to the other structures as needed.

2.1 STACKS AND QUEUES

One of the most common forms of data organization in computer programs
is the ordered or linear list, which is often written as a = (a1,a2,...,a,).
The «;’s are referred to as atoms and they are chosen from some set. The
null or empty list has n = 0 elements. A stack is an ordered list in which all
insertions and deletions are made at one end, called the top. A queue is an
ordercd list in which all insertions take place at one end, the rear, whereas
all deletions take place at the other end, the front.

The operations of a stack imply that if the elements A, B, C, D, and E
are inserted into a stack, in that order, then the first element to be removed
(deleted) must be E. Equivalently we say that the last element to be inserted
into the stack is the first to be removed. For this reason stacks are sometimes
referrcd to as Last In First Out (LIFO) lists. The operations of a queue
require that the first element that is inserted into the queue is the first one
to be removed. Thus queues are known as First In First Out (FIFO) lists.
See Figure 2.1 for examples of a stack and a queue each containing the same

69

70 CHAPTER 2. ELEMENTARY DATA STRUCTURES

E <— top
D
C A B C D E
° T T
A

front rear
stack

queue

Figure 2.1 Example of a stack and a queue

five elements inserted in the same order. Note that the data object queue
as defined here need not correspond to the concept of queue that is studied
in queuing theory.

The simplest way to represent a stack is by using a one-dimensional array,
say stack[0 : n — 1], where n is the maximum number of allowable entries.
The first or bottom element in the stack is stored at stack[0], the second at
stack[1], and the ith at stack[i —1]. Associated with the array is a variable,
typically called top, which points to the top element in the stack. To test
whether the stack is empty, we ask “if (top < 0)”. If not, the topmost
element is at stack[top]. Checking whether the stack is full can be done by
asking “if (top > n — 1)”. Two more substantial operations are inserting
and deleting elements. The corresponding algorithms are Add and Delete
(Algorithm 2.1).

Each execution of Add or Delete takes a constant amount of time and is
independent of the number of elements in the stack.

Another way to represent a stack is by using links (or pointers). A node
is a collection of data and link information. A stack can be represented by
using nodes with two fields, possibly called data and link. The data field
of each node contains an item in the stack and the corresponding link field
points to the node containing the next item in the stack. The link field of
the last node is zero, for we assume that all nodes have an address greater
than zero. For example, a stack with the items A, B, C, D, and E inserted
in that order, looks as in Figure 2.2.

2.1. STACKS AND QUEUES

71

QOO W —

—
w N — =

Nelio oBEN ey R e SR JUN IR

10

12
13

Algorithm Add(itemn)
// Push an element onto the stack. Return true if successful;
// else return false. item is used as an input.

if (top > n — 1) then

write ("Stack is fulll"); return false;
}
else

{
}

top := top + 1; stack[top] := item; return true;

}

Algorithm Delete(itemn)

// Pop the top element from the stack. Return true if successful

// else return false. itern is used as an output.
if (top < 0) then

write ("Stack is empty!"); return false;

}

else

{

itemn := stack[top]; top := top — 1; return true;

}

Algorithm 2.1 Operations on a stack

stack

i

e |

data | Eﬁk

Figure 2.2 Example of a five-element, linked stack

72 CHAPTER 2. ELEMENTARY DATA STRUCTURES

// Type is the type of data.
node =record

Type data; node xlink;

}

1 Algorithm Add(item)

2 {

3 // Get a new node.

4 temp := new node;

5 if (temp # 0) then

6

7 (temp — data) := item; (temp — link) := top;
8 top 1= temp; return true;
9

10 else

11

12 write ("Out of space!");

13 return false;

14 }

15 }

1 Algorithm Delete(item)

2 {

3 if (top = 0) then

4

5 write ("Stack is empty!");
6 return false;

7 }

8 else

9

10 item := (top — data); temp := top;
11 top := (top — link);

12 delete temp; return true;
13

14 }

Algorithm 2.2 Link representation of a stack

2.1. STACKS AND QUEUES 73

The variable top points to the topmost node (the last item inserted) in
the list. The empty stack is represented by setting top := 0. Because of the
way the links are pointing, insertion and deletion are easy to accomplish.
See Algorithm 2.2.

In the case of Add, the statement temp := new node; assigns to the
variable temp the address of an available node. If no more nodes exist, it
returus 0. If a node exists, we store appropriate values into the two fields of
the node. Then the variable top is updated to point to the new top element
of the list. Finally, true is returned. If no more space exists, it prints an
error inessage and returns false. Refering to Delete, if the stack is empty,
then trying to delete an item produces the error message "Stack is empty!"
and false is returned. Otherwise the top element is stored as the value of
the variable item, a pointer to the first node is saved, and top is updated
to point to the next node. The deleted node is returned for future use and
finally true is returned.

The use of links to represent a stack requires more storage than the se-
quential array stack[0 : n — 1] does. However, there is greater flexibility
when using links, for many structures can simultaneously use the same pool
of available space. Most importantly the times for insertion and deletion
using either representation are independent of the size of the stack.

An efficient queue representation can be obtained by taking an array
g[0 : n — 1] and treating it as if it were circular. Elements are inserted by
increasing the variable rear to the next free position. When rear =n — 1,
the next element is entered at ¢[0] in case that spot is free. The variable
front always points one position counterclockwise from the first element in
the queue. The variable front = rear if and only if the queue is empty
and we initially set front := rear := 0. Figure 2.3 illustrates two of the
possible configurations for a circular queue containing the four elements J1
to J4 with n > 4.

To insert an element, it is necessary to move rear one position clockwise.
This can be done using the code

if (rear = n — 1) then rear := 0;
else rear := rear + 1;

A more elegant way to do this is to use the built-in modulo operator which
computes remainders. Before doing an insert, we increase the rear pointer
by saying rear := (rear + 1) mod n;. Similarly, it is necessary to move
front one position clockwise each time a deletion is made. An examination
of Algorithm 2.3(a) and (b) shows that by treating the array circularly,
addition and deletion for queues can be carried out in a fixed amount of
time or O(1).

One surprising feature in these two algorithms is that the test for queue
full in AddQ and the test for queue empty in DeleteQ are the same. In the

74 CHAPTER 2. ELEMENTARY DATA STRUCTURES

4 [4]
. [n-4] B3] [4]

2] (n-3] 2] [n-3)

8] [n-2] tl QB [n-2)

[0] [n-1] [0] [n-1]

front =0; rear=4 front = n-4; rear=0

Figure 2.3 Circular queue of capacity n — 1 containing four elements J1,
J2, J3, and J4

case of AddQ, however, when front = rear, there is actually one space free,
g[rear], since the first element in the queue is not at ¢[front] but is one
position clockwise from this point. However, if we insert an item there, then
we cannot distinguish between the cases full and empty, since this insertion
leaves front = rear. To avoid this, we signal queue full and permit a
maximum of n — 1 rather than n elements to be in the queue at any time.
One way to use all n positions is to use another variable, tag, to distinguish
between the two situations; that is, tag = 0 if and only if the queue is empty.
This however slows down the two algorithms. Since the AddQ and DeleteQ
algorithms are used many times in any problem involving queues, the loss
of one queue position is more than made up by the reduction in computing
time.

Another way to represent a queue is by using links. Figure 2.4 shows
a queue with the four elements A, B, C, and D entered in that order. As
with the linked stack example, each node of the queue is composed of the
two fields data and link. A queue is pointed at by two variables, front and
rear. Deletions are made from the front, and insertions at the rear. Variable
front = 0 signals an empty quene. The procedures for insertion and deletion
in linked queues are left as exercises.

EXERCISES

1. Write algorithms for AddQ and DeleteQ, assuming the queue is repre-
sented as a linked list.

2.1. STACKS AND QUEUES 75

1 Algorithm AddQ(item)

2 // Insert item in the circular queue stored in ¢[0 : n — 1].
3 // rear points to the last item, and front is one

4 // position counterclockwise from the first item in q.

]

6 rear := (rear + 1) mod n; // Advance rear clockwise.
7 if (front = rear) then

8

9 write ("Queue is full!");

10 if (front = 0) then rear :=n — 1;

11 else rear := rear — 1;

12 // Move rear one position counterclockwise.

13 return false;

11 }

1h else

16

17 g[rear] := item; // Insert new item.

18 return true;

19 }
20 }

(a) Addition of an element

1 Algorithm DeleteQ(itemn)
2 // Removes and returns the front element of the queue ¢[0 : n — 1].
3
4 if (front = rear) then
5
6 write ("Queue is empty!");
7 return false;
8 }
9 else
10 {
11 front := (front 4+ 1) mod n; // Advance front clockwise.
12 iterm := g[front]; // Set item to front of queue.
. return true;

—_
-
—t

15 }

(b) Deletion of an element

Algorithm 2.3 Basic queue operations

76 CHAPTER 2. ELEMENTARY DATA STRUCTURES

data link
1 A B C D| O
front rear

Figure 2.4 A linked queue with four elements

2. A linear list is being maintained circularly in an array ¢[0 : n — 1] with
f and r set up as for circular queues.

(a) Obtain a formula in terms of f,r, and n for the number of elements
in the list.

(b) Write an algorithm to delete the kth element in the list.

(c) Write an algorithm to insert an element y immediately after the
kth element.

What is the time complexity of your algorithms for parts (b) and (c)?

3. Let X = (z1,...,2,) and Y = (y1,...,ym) be two linked lists. Write
an algorithm to merge the two lists to obtain the linked list Z =
($1»y17$27y27 s Tms Yms Tmt 1y - - - ,In) ifm<norZ = (xlvylvx%y?v
"'7xn7yn7yn+17"'7ym) ifm>n.

4. A double-ended queue (deque) is a linear list for which insertions and
deletions can occur at either end. Show how to represent a deque in a
one-dimensional array and write algorithms that insert and delete at
either end.

5. Consider the hypothetical data object X2. The object X2 is a linear
list with the restriction that although additions to the list can be made
at either end, deletions can be made from one end only. Design a linked
list representation for X 2. Specify initial and boundary conditions for
your representation.

2.2 TREES

Definition 2.1 [Tree] A tree is a finite set of one or more nodes such that
there is a specially designated node called the root and the remaining nodes
are partitioned into n > 0 disjoint sets T1,...,T,, where each of these sets
is a tree. The sets T71,...,T,, are called the subtrees of the root. O

2.2. TREES 77

2.2.1 Terminology

There are many terms that are often used when referring to trees. Consider
the tree in Figure 2.5. This tree has 13 nodes, each data item of a node being
a single letter for convenience. The root contains A (we usually say node
A), and we normally draw trees with their roots at the top. The number of
subtrees of a node is called its degree. The degree of A is 3, of C is 1, and of
F is 0. Nodes that have degree zero are called leaf or terminal nodes. The
set {K, L, F, G, M, I, J} is the set of leaf nodes of Figure 2.5. The other
nodes are referred to as nonterminals. The roots of the subtrees of a node
X are the children of X. The node X is the parent of its children. Thus the
children of D are H, I, and J, and the parent of D is A.

level

A>\\\\) 1
p- N,
ONORRONE

Q/I/ 4

Figure 2.5 A sample tree

Children of the same parent are said to be siblings. For example H, I,
and J are siblings. We can extend this terminology if we need to so that we
can ask for the grandparent of M, which is D, and so on. The degree of a
tree is the maximum degree of the nodes in the tree. The tree in Figure 2.5
has degree 3. The ancestors of a node are all the nodes along the path from
the root to that node. The ancestors of M are A, D, and H.

The level of a node is defined by initially letting the root be at level one.
If a node is at level p, then its children are at level p + 1. Figure 2.5 shows
the levels of all nodes in that tree. The height or depth of a tree is defined
to be the maximum level of any node in the tree.

A forest is a set of n > 0 disjoint trees. The notion of a forest is very close
to that of a tree because if we remove the root of a tree, we get a forest. For
example, in Figure 2.5 if we remove A, we get a forest with three trees.

78 CHAPTER 2. ELEMENTARY DATA STRUCTURES

Now how do we represent a tree in a computer’s memory? If we wish
to use a linked list in which one node corresponds to one node in the tree,
then a node must have a varying number of fields depending on the number
of children. However, it is often simpler to write algorithms for a data
representation in which the node size is fixed. We can represent a tree using
a fixed node size list structure. Such a list representation for the tree of
Figure 2.5 is given in Figure 2.6. In this figure nodes have three fields: tag,
data, and link. The fields data and link are used as before with the exception
that when tag = 1, data contains a pointer to a list rather than a data item.
A tree is represented by storing the root in the first node followed by nodes
that point to sublists each of which contains one subtree of the root.

NERNE NEE——N0
o [FL o] [l Felo] (o F=[T [6]
RO HE=NA

The tag field of a node is one if it has a down-pointing arrow; otherwise
it is zero.

Figure 2.6 List representation for the tree of Figure 2.5

2.2.2 Binary Trees

A binary tree is an important type of tree structure that occurs very often.
It is characterized by the fact that any node can have at most two children;
that is, there is no node with degree greater than two. For binary trees we
distinguish between the subtree on the left and that on the right, whereas
for other trees the order of the subtrees is irrelevant. Furthermore a binary
tree is allowed to have zero nodes whereas any other tree must have at least
one node. Thus a binary tree is really a different kind of object than any
other tree.

Definition 2.2 A binary tree is a finite set of nodes that is either empty
or consists of a root and two disjoint binary trees called the left and right
subtrees. 0O

Figure 2.7 shows two sample binary trees. These two trees are special
kinds of binary trees. Figure 2.7(a) is a skewed tree, skewed to the left.

2.2. TREES 79

There is a corresponding tree skewed to the right, which is not shown. The
tree in Figure 2.7(b) is called a complete binary tree. This kind of tree is
defined formally later on. Notice that for this tree all terminal nodes are on
two adjacent levels. The terms that we introduced for trees, such as degree,
level, height, leaf, parent, and child, all apply to binary trees in the same
way.

level

\
) 5 ©
;D 4
D 5
(a)

Figure 2.7 Two sample binary trees

Lemma 2.1 The maximum number of nodes on level ¢ of a binary tree is
271 Also, the maximum number of nodes in a binary tree of depth & is
28— 1,k > 0. o

The binary tree of depth % that has exactly 2 — 1 nodes is called a
full binary tree of depth k. Figure 2.8 shows a full binary tree of depth 4.
A very clegant sequential representation for full binary trees results from
sequentially numbering the nodes, starting with the node on level one, then
going to those on level two, and so on. Nodes on any level are numbered
from left to right (see Figure 2.8). A binary tree with n nodes and depth &
is complete iff its nodes correspond to the nodes that are numbered one to n
in the full binary tree of depth k£. A consequence of this definition is that in
a complete tree, leaf nodes occur on at most two adjacent levels. The nodes

80 CHAPTER 2. ELEMENTARY DATA STRUCTURES

of an n-node complete tree may be compactly stored in a one-dimensional
array, tree[l : n], with the node numbered 7 being stored in ¢ree[i]. The next
lemma shows how to easily determine the locations of the parent, left child,
and right child of any node 4 in the binary tree without explicitly storing
any link information.

Figure 2.8 Full binary tree of depth 4

Lemma 2.2 If a complete binary tree with n nodes is represented sequen-
tially as described before, then for any node with index i, 1 < ¢ < n, we
have:

1. parent(i) is at |i/2] if ¢ # 1. When ¢ = 1,7 is the root and has no
parent.

2. lchild(i) is at 2¢ if 2¢ < n. If 2 > n, 4 has no left child.
3. rchild(i) isat 20+ 1if2i+1 < n. If 2i+ 1 > n, 7 has no right child. O

This representation can clearly be used for all binary trees though in
most cases there is a lot of unutilized space. For complete binary trees
the representation is ideal as no space is wasted. For the skewed tree of
Figure 2.7, however, less than a third of the array is utilized. In the worst
case a right-skewed tree of depth k requires 2¥ — 1 locations. Of these only
k are occupied.

Although the sequential representation, as in Figure 2.9, appears to be
good for complete binary trees, it is wasteful for many other binary trees. In
addition, the representation suffers from the general inadequacies of sequen-
tial representations. Insertion or deletion of nodes requires the movement

2.3. DICTIONARIES 81

tee | Al B|-|C|- |- —rD’—' ‘EJ

tree | A B| C | D E|F| G| H|I

M 2 @G G 7D 6 9 c. (16)

Figure 2.9 Sequential representation of the binary trees of Figure 2.7

of potentially many nodes to reflect the change in level number of the re-
maining nodes. These problems can be easily overcome through the use of a
linked representation. Each node has three fields: [child, data, and rchild.
Although this node structure makes it difficult to determine the parent of a
node, for most applications it is adequate. In case it is often necessary to be
able to determine the parent of a node, then a fourth field, parent, can be
included with the obvious interpretation. The representation of the binary
trees of Figure 2.7 using a three-field structure is given in Figure 2.10.

2.3 DICTIONARIES

An abstract data type that supports the operations insert, delete, and search
is called a dictionary. Dictionaries have found application in the design of
numerous algorithms.

Example 2.1 Consider the database of books maintained in a library sys-
tem. When a user wants to check whether a particular book is available, a
search operation is called for. If the book is available and is issued to the
user, a delete operation can be performed to remove this book from the set
of available books. When the user returns the book, it can be inserted back
into the set. O

It is essential that we are able to support the above-mentioned opera-
tions as efliciently as possible since these operations are performed quite
frequently. A number of data structures have been devised to realize a dic-
tionary. At a very high level these can be categorized as comparison methods
and direct access methods. Hashing is an example of the latter. We elaborate
only on binary search trees which are an example of the former.

82 CHAPTER 2. ELEMENTARY DATA STRUCTURES

tree

e e []
=) [= [=]

o
Lo |
=1

(@) (b)

Figure 2.10 Linked representations for the binary trees of Figure 2.7

2.3. DICTIONARIES 83

2.3.1 Binary Search Trees

Definition 2.3 [Binary search tree] A binary search tree is a binary tree. It
may be empty. If it is not empty, then it satisfies the following properties:

1. Every element has a key and no two elements have the same key (i.e.,
the keys are distinct).

2. The keys (if any) in the left subtree are smaller than the key in the
root.

3. The keys (if any) in the right subtree are larger than the key in the
root.

4. The left and right subtrees are also binary search trees. O

A binary search tree can support the operations search, insert, and delete
among others. In fact, with a binary search tree, we can search for a data
element both by key value and by rank (i.e., find an element with key z,
find the fifth-smallest element, delete the element with key x, delete the
fifth-smallest element, insert an element and determine its rank, and so on).

There is some redundancy in the definition of a binary search tree. Prop-
erties 2, 3, and 4 together imply that the keys must be distinct. So, property
1 can be replaced by the property: The root has a key.

Somce examples of binary trees in which the elements have distinct keys
are shown in Figure 2.11. The tree of Figure 2.11(a) is not a binary search
tree, despite the fact that it satisfies properties 1, 2, and 3. The right subtree
fails 1o satisfy property 4. This subtree is not a binary search tree, as its
right subtree has a key value (22) that is smaller than that in the subtree’s
root (25). The binary trees of Figure 2.11(b) and (c) are binary search trees.

Searching a Binary Search Tree

Since the definition of a binary search tree is recursive, it is easiest to describe
a recursive search method. Suppose we wish to search for an element with
key x. An element could in general be an arbitrary structure that has as one
of its ficlds a key. We assume for simplicity that the element just consists
of a key and use the terms element and key interchangeably. We begin at
the root. If the root is 0, then the search tree contains no elements and the
search is unsuccessful. Otherwise, we compare x with the key in the root. If
z equals this key, then the search terminates successfully. If x is less than
the key in the root, then no element in the right subtree can have key value
z, and only the left subtree is to be searched. If z is larger than the key
in the root, only the right subtree needs to be searched. The subtrees can
be scarched recursively as in Algorithm 2.4. This function assumes a linked

84 CHAPTER 2. ELEMENTARY DATA STRUCTURES

(=) OO
OGO () ® (o)
CRONERONO ORO

() (b) (©

Figure 2.11 Binary trees

representation for the search tree. Each node has the three fields [child,
rchild, and data. The recursion of Algorithm 2.4 is easily replaced by a
while loop, as in Algorithm 2.5.

Algorithm Search(t, z)

if (¢t = 0) then return 0;
else if (x =t — data) then return ¢;
else if (z <t — data) then
return Search(t — Ichild, x);
else return Search(t — rchild, z);

0O~ ULk Wk —

Algorithm 2.4 Recursive search of a binary search tree

If we wish to search by rank, each node should have an additional field
leftsize, which is one plus the number of elements in the left subtree of the
node. For the search tree of Figure 2.11(b), the nodes with keys 2, 5, 30,
and 40, respectively, have leftsize equal to 1, 2, 3, and 1. Algorithm 2.6
searches for the kth-smallest element.

As can be seen, a binary search tree of height h can be searched by key
as well as by rank in O(h) time.

2.3. DICTIONARIES 85

1 Algorithm |Search(z)

2 {

3 found := false;

4 1 :=tree;

5 while ((t # 0) and not found) do

6

7 if (x = (¢t — data)) then found := true;
8 else if (z < (¢t — data)) then ¢t := (t — lchild);
9 else t:= (t — rchild);

10

11 if (not found) then return 0;

12 else return {;

13}

Algorithm 2.5 Iterative search of a binary search tree

1 Algorithm Searchk(k)

2 {

3 found := false; t := tree;

4 while ((t # 0) and not found) do

5

6 if (k = (t — leftsize)) then found := true;
7 else if (k < (t — leftsize)) then ¢ := (t — [child);
8 else

9 {

10 k:=k—(t — leftsize);

11 t:= (t — rchild);

12 }

13

14 if (not found) then return 0;

15 else return ¢;

16 }

Algorithm 2.6 Searching a binary search tree by rank

86 CHAPTER 2. ELEMENTARY DATA STRUCTURES

Insertion into a Binary Search Tree

To insert a new element x, we must first verify that its key is different from
those of existing elements. To do this, a search is carried out. If the search is
unsuccessful, then the element is inserted at the point the search terminated.
For instance, to insert an element with key 80 into the tree of Figure 2.12(a),
we first search for 80. This search terminates unsuccessfully, and the last
node examined is the one with key 40. The new element is inserted as the
right child of this node. The resulting search tree is shown in Figure 2.12(b).
Figure 2.12(c) shows the result of inserting the key 35 into the search tree
of Figure 2.12(b).

“’

(a) (b) (c)

Figure 2.12 Inserting into a binary search tree

Algorithm 2.7 implements the insert strategy just described. If a node
has a leftsize field, then this is updated too. Regardless, the insertion can
be performed in O(h) time, where h is the height of the search tree.

Deletion from a Binary Search Tree

Deletion of a leaf element is quite easy. For example, to delete 35 from the
tree of Figure 2.12(c), the left-child field of its parent is set to 0 and the
node disposed. This gives us the tree of Figure 2.12(b). To delete the 80
from this tree, the right-child field of 40 is set to 0; this gives the tree of
Figure 2.12(a). Then the node containing 80 is disposed.

The deletion of a nonleaf element that has only one child is also easy.
The node containing the element to be deleted is disposed, and the single
child takes the place of the disposed node. So, to delete the element 5 from
the tree of Figure 2.12(b), we simply change the pointer from the parent
node (i.e., the node containing 30) to the single-child node (i.e., the node
containing 2).

2.3. DICTIONARIES 87

O oL~ CUk oo —

10
11
12
13

11
15
16
17
18
19
20
21
22
23
21
25
2}

Algorithm Insert(x)
// Insert z into the binary search tree.

found := false;
p = tree;

/ Search for z. ¢ is the parent of p.
while ({(p # 0) and not found) do

q:=p; [/ Save p.

if (x = (p — data)) then found := true;

else if (z < (p — data)) then p:= (p — lchild);
else p:= (p — rchild);

}

// Perform insertion.
if (not found) then

p = new TreeNode;
(p = lchild) := 03 (p — rchild) := 0; (p — data) := z;
if (tree # 0) then
{
if (z < (¢ = data)) then (¢ — Ichild) := p;
else (q — rchild) := p;

else tree := p;

Algorithm 2.7 Insertion into a binary search tree

88 CHAPTER 2. ELEMENTARY DATA STRUCTURES

When the element to be deleted is in a nonleaf node that has two children,
the element is replaced by either the largest element in its left subtree or the
smallest one in its right subtree. Then we proceed to delete this replacing
element from the subtree from which it was taken. For instance, if we wish
to delete the element with key 30 from the tree of Figure 2.13(a), then we
replace it by either the largest element, 5, in its left subtree or the smallest
element, 40, in its right subtree. Suppose we opt for the largest element in
the left subtree. The 5 is moved into the root, and the tree of Figure 2.13(b)
is obtained. Now we must delete the second 5. Since this node has only one
child, the pointer from its parent is changed to point to this child. The tree
of Figure 2.13(c) is obtained. We can verify that regardless of whether the
replacing element is the largest in the left subtree or the smallest in the right
subtree, it is originally in a node with a degree of at most one. So, deleting it
from this node is quite easy. We leave the writing of the deletion procedure
as an exercise. It should be evident that a deletion can be performed in O(h)
time if the search tree has a height of A.

@ﬁ@ @/@

(a) (b) (©)

Figure 2.13 Deletion from a binary search tree

Height of a Binary Search Tree

Unless care is taken, the height of a binary search tree with n elements can
become as large as n. This is the case, for instance, when Algorithm 2.7 is
used to insert the keys [1, 2, 3, ..., n], in this order, into an initially empty
binary search tree. It can, however, be shown that when insertions and
deletions are made at random using the procedures given here, the height of
the binary search tree is O(logn) on the average.

Search trees with a worst-case height of O(log n) are called balanced search
trees. Balanced search trees that permit searches, inserts, and deletes to be
performed in O(logn) time are listed in Table 2.1. Examples include AVL
trees, 2-3 trees, Red-Black trees, and B-trees. On the other hand splay trees

2.3. DICTIONARIES 89

take O(logn) time for each of these operations in the amortized sense. A
description of these balanced trees can be found in the book by E. Horowitz,
S. Sahni, and D. Mehta cited at the end of this chapter.

[Data structure [search [insert | delete |
Binary search tree | O(n) (wc) O(n) (wc) O(n) (wc)
O(logn) (av) | Oflogn) (av) | O(logn) (av)
AVL tree O(logn) (wc) | O(logn) (we) | O(logn) (wc)
2-3 tree O(logn) (wc) | O(logn) (we) | O(logn) (wc)
Red-Black tree O(logn) (we) | O(logn) (we) | O(logn) (wc)
B-tree O(logn) (we) | O(logn) (wc) | O(logn) (wc)
ﬂ)lay tree O(logn) (am) | O(logn) (am) | O(logn) (am)

Table 2.1 Summary of dictionary implementations.

Here (wc) stands for

worst case, (av) for average case, and (am) for amortized cost.

2.3.2 Cost Amortization

Suppose that a sequence 11, 12, D1, 13, 14, 15, 16, D2, 17 of insert and delete
operations is performed on a set. Assume that the actual cost of each of the
seven inserts is one. (We use the terms cost and complezity interchangeably.)
By this, we mean that each insert takes one unit of time. Further, suppose
that the delete operations D1 and D2 have an actual cost of eight and ten,
respectively. So, the total cost of the sequence of operations is 25.

In an amortization scheme we charge some of the actual cost of an oper-
ation to other operations. This reduces the charged cost of some operations
and increases that of others. The amortized cost of an operation is the total
cost charged to it. The cost transferring (amortization) scheme is required
to be such that the sum of the amortized costs of the operations is greater
than or equal to the sum of their actual costs. If we charge one unit of the
cost of a delete operation to each of the inserts since the last delete operation
(if any), then two units of the cost of D1 get transferred to I1 and I2 (the
charged cost of each increases by one), and four units of the cost of D2 get
transferred to I3 to 16. The amortized cost of each of I1 to 16 becomes two,
that of I7 becomes equal to its actual cost (that is, one), and that of each of
D1 and D2 becomes 6. The sum of the amortized costs is 25, which is the
same as the sum of the actual costs.

Now suppose we can prove that no matter what sequence of insert and

delete operations is performed, we can charge costs in such a way that the
amortized cost of each insertion is no more than two and that of each deletion

90 CHAPTER 2. ELEMENTARY DATA STRUCTURES

is no more than six. This enables us to claim that the actual cost of any
insert/delete sequence is no more than 2 % i + 6 % d, where ¢ and d are,
respectively, the number of insert and delete operations in the sequence.
Suppose that the actual cost of a deletion is no more than ten and that of
an insertion is one. Using actual costs, we can conclude that the sequence
cost is no more than 7 + 10 * d. Combining these two bounds, we obtain
min{2 *x i + 6 x d, i + 10 x d} as a bound on the sequence cost. Hence,
using the notion of cost amortization, we can obtain tighter bounds on the
complexity of a sequence of operations.

The amortized time complexity to perform insert, delete, and search op-
erations in splay trees is O(logn). This amortization is over n operations.
In other words, the total time taken for processing an arbitrary sequence
of n operations is O(nlogn). Some operations may take much longer than
O(logn) time, but when amortized over n operations, each operation costs
O(logn) time.

EXERCISES

1. Write an algorithm to delete an element x from a binary search tree ¢.
What is the time complexity of your algorithm?

2. Present an algorithm to start with an initially empty binary search
tree and make n random insertions. Use a uniform random number
generator to obtain the values to be inserted. Measure the height of
the resulting binary search tree and divide this height by log,n. Do
this for n = 100, 500, 1,000, 2, 000, 3, 000,...,10,000. Plot the ratio
height/logy, n as a function of n. The ratio should be approximately
constant (around 2). Verify that this is so.

3. Suppose that each node in a binary search tree also has the field
leftsize as described in the text. Design an algorithm to insert an
element z into such a binary search tree. The complexity of your algo-
rithm should be O(h), where h is the height of the search tree. Show
that this is the case.

4. Do Exercise 3, but this time present an algorithm to delete the element
with the kth-smallest key in the binary search tree.

5. Find an efficient data structure for representing a subset S of the in-
tegers from 1 to n. Operations we wish to perform on the set are

e INSERTY(:) to insert the integer ¢ to the set S. If ¢ is already in
the set, this instruction must be ignored.

e DELETE to delete an arbitrary member from the set.
e MEMBER(:) to check whether 7 is a member of the set.

2.4. PRIORITY QUEUES 91

Your data structure should enable each one of the above operations in
constant time (irrespective of the cardinality of S).

6. Any algorithm that merges two sorted lists of size n and m, respec-
tively, must make at least n + m — 1 comparisons in the worst case.
What implications does this have on the run time of any comparison-
based algorithm that combines two binary search trees that have n and
m elements, respectively?

7. It is known that every comparison-based algorithm to sort n elements
must make O(nlogn) comparisons in the worst case. What implica-
tions does this have on the complexity of initializing a binary search
tree with n elements?

2.4 PRIORITY QUEUES

Any data structure that supports the operations of search min (or max),
insert, and delete min (or max, respectively) is called a priority queue.

Example 2.2 Suppose that we are selling the services of a machine. Each
user pays a fixed amount per use. However, the time needed by each user
is different. We wish to maximize the returns from this machine under the
assumption that the machine is not to be kept idle unless no user is available.
This can be done by maintaining a priority queue of all persons waiting to
use the machine. Whenever the machine becomes available, the user with the
smallest time requirement is selected. Hence, a priority queue that supports
delete min is required. When a new user requests the machine, his or her
request is put into the priority queue.

If each user needs the same amount of time on the machine but people
are willing to pay different amounts for the service, then a priority queue
basect on the amount of payment can be maintained. Whenever the machine
becoines available, the user willing to pay the most is selected. This requires
a delcte max operation. O

Example 2.3 Suppose that we are simulating a large factory. This factory
has many machines and many jobs that require processing on some of the
machines. An event is said to occur whenever a machine completes the
processing of a job. When an event occurs, the job has to be moved to the
queuc for the next machine (if any) that it needs. If this queue is empty,
the job can be assigned to the machine immediately. Also, a new job can be
scheduled on the machine that has become idle (provided that its queue is
not empty).

To determine the occurrence of events, a priority queue is used. This
queuc contains the finish time of all jobs that are presently being worked on.

92 CHAPTER 2. ELEMENTARY DATA STRUCTURES

The next event occurs at the least time in the priority queue. So, a priority
queue that supports delete min can be used in this application. 0O

The simplest way to represent a priority queue is as an unordered linear
list. Suppose that we have n elements in this queue and the delete max
operation is to be supported. If the list is represented sequentially, additions
are most easily performed at the end of this list. Hence, the insert time
is ©(1). A deletion requires a search for the element with the largest key,
followed by its deletion. Since it takes O(n) time to find the largest element
in an n-element unordered list, the delete time is ©(n). Each deletion takes
©(n) time. An alternative is to use an ordered linear list. The elements are
in nondecreasing order if a sequential representation is used. The delete time
for each representation is ©(1) and the insert time O(n). When a maz heap
is used, both additions and deletions can be performed in O(logn) time.

2.4.1 Heaps

Definition 2.4 [Heap] A maz (min) heap is a complete binary tree with the
property that the value at each node is at least as large as (as small as) the
values at its children (if they exist). Call this property the heap property.

0

In this section we study in detail an efficient way of realizing a priority
queue. We might first consider using a queue since inserting new elements
would be very efficient. But finding the largest element would necessitate
a scan of the entire queue. A second suggestion might be to use a sorted
list that is stored sequentially. But an insertion could require moving all
of the items in the list. What we want is a data structure that allows both
operations to be done efficiently. One such data structure is the max heap.

The definition of a max heap implies that one of the largest elements is
at the root of the heap. If the elements are distinct, then the root contains
the largest item. A max heap can be implemented using an array af].

To insert an element into the heap, one adds it “at the bottom” of the
heap and then compares it with its parent, grandparent, greatgrandparent,
and so on, until it is less than or equal to one of these values. Algorithm
Insert (Algorithm 2.8) describes this process in detail.

Figure 2.14 shows one example of how Insert would insert a new value
into an existing heap of six elements. It is clear from Algorithm 2.8 and
Figure 2.14 that the time for Insert can vary. In the best case the new
element is correctly positioned initially and no values need to be rearranged.
In the worst case the number of executions of the while loop is proportional
to the number of levels in the heap. Thus if there are n elements in the heap,
inserting a new element takes ©(logn) time in the worst case.

2.4. PRIORITY QUEUES

93

1 Algorithm Insert(a,n)

2

3 // Inserts a[n] into the heap which is stored in a[l : n — 1].
4 i := n; item := alnl;

5 while ((: > 1) and (a[|¢/2]] < item)) do

6

7 ali) = alli/2)}; 1 = 1i/2];

8 }

9 a[i] := item; return true;

10 }

Algorithm 2.8 Insertion into a heap

80 80

5w s W
Wm0 e @ Gy @

Figure 2.14 Action of Insert inserting 90 into an existing heap

94 CHAPTER 2. ELEMENTARY DATA STRUCTURES

To delete the maximum key from the max heap, we use an algorithm
called Adjust. Adjust takes as input the array a[| and the integers i and n.
It regards a[l : n] as a complete binary tree. If the subtrees rooted at 2¢ and
2i+1 are already max heaps, then Adjust will rearrange elements of a[| such
that the tree rooted at ¢ is also a max heap. The maximum element from the
max heap a[l : n] can be deleted by deleting the root of the corresponding
complete binary tree. The last element of the array, that is, a[n], is copied
to the root, and finally we call Adjust(a,1,n —1). Both Adjust and DelMax
are described in Algorithm 2.9.

1 Algorithm Adjust(a,i,n)

2 // The complete binary trees with roots 24 and 2i + 1 are
3 // combined with node i to form a heap rooted at i. No
4 // node has an address greater than n or less than 1.

)

6 j = 2i; item := ali];

7 while (7 <n) do

8

9 if ((j <n) and (a[j] < a[j +1])) then j :=j + 1;
10 // Compare left and right child

11 // and let j be the larger child.

12 if (item > a[j]) then break;

13 // A position for item is found.

1 allj/2)] = aljl; § = 2;

16 a[lj/2]] := item;

17 '}

1 Algorithm DelMax(a,n,)

2 // Delete the maximum from the heap a[l : n] and store it in .
3

4 if (n =0) then

5 {

6 write ("heap is empty"); return false;
7}

8 z = all]; a[l] = a[n];

9 Adjust(a, —1); return true;

10 }

Algorithm 2.9 Deletion from a heap

24. PRIORITY QUEUES 95

Note that the worst-case run time of Adjust is also proportional to the
height of the tree. Therefore, if there are n elements in a heap, deleting the
maxiinum can be done in O(logn) time.

To sort n elements, it suffices to make n insertions followed by n deletions
from a heap. Algorithm 2.10 has the details. Since insertion and deletion
take ((logn) time each in the worst case, this sorting algorithm has a time
complexity of O(nlogn).

Algorithm Sort(a,n)
// Sort the elements a[l : n].

for i :=1 to n do Insert(a,1);
fori:=ntol step —1do

DelMax(a, i,); ali] := x;

}

C L~ Tl LN

}

Algorithm 2.10 A sorting algorithm

It turns out that we can insert n elements into a heap faster than we can
apply Insert n times. Before getting into the details of the new algorithm,
let us consider how the n inserts take place. Figure 2.15 shows how the
data (40, 80, 35, 90, 45, 50, and 70) move around until a heap is created
when using Insert. Trees to the left of any — represent the state of the array
a[l :] before some call of Insert. Trees to the right of — show how the array
was altered by Insert to produce a heap. The array is drawn as a complete
binary tree for clarity.

The data set that causes the heap creation method using Insert to behave
in the worst way is a set of elements in ascending order. Each new element
rises to become the new root. There are at most 2~ nodes on level i of
a complete binary tree, 1 < ¢ < [logy(n + 1)]. For a node on level ¢ the
distance to the root is ¢ — 1. Thus the worst-case time for heap creation
using Insert is

3 (i — 1)2°7" < [logy(n + 1)]2M°82"+D1 — O(nlog n)
1< i< [logy (n+1)]

A surprising fact about Insert is that its average behavior on n random in-
puts is asymptotically faster than its worst case, O(n) rather than O(n logn).

96 CHAPTER 2. ELEMENTARY DATA STRUCTURES

ﬁ
@ & W ®
(a) (b) (©)

(g)

Figure 2.15 Forming a heap from the set {40, 80, 35,90, 45, 50, 70}

2.4. PRIORITY QUEUES 97

This implies that on the average each new value only rises a constant number
of levels in the tree.

It is possible to devise an algorithm that can perform n inserts in O(n)
time rather than O(nlogn). This reduction is achieved by an algorithm
that regards any array a[l : n] as a complete binary tree and works from the
leaves up to the root, level by level. At each level, the left and right subtrees
of any node are heaps. Only the value in the root node may violate the heap
property.

Given n elements in a[l : n], we can create a heap by applying Adjust. It
is easy to see that leaf nodes are already heaps. So we can begin by call-
ing Adjust for the parents of leaf nodes and then work our way up, level by
level, until the root is reached. The resultant algorithm is Heapify (Algo-
rithm 2.11). In Figure 2.16 we observe the action of Heapify as it creates
a heap out of the given seven elements. The initial tree is drawn in Fig-
ure 2.16(a). Since n = 7, the first call to Adjust has i = 3. In Figure 2.16(b)
the threc elements 118, 151, and 132 are rearranged to form a heap. Sub-
sequently Adjust is called with ¢ = 2 and ¢ = 1; this gives the trees in
Figure 2.16(c) and (d).

Algorithm Heapify(a,n)
// Readjust the elements in a[l : n] to form a heap.

for i:=|n/2] to 1 step —1 do Adjust(a,i,n);

Tk Lo N =

Algorithm 2.11 Creating a heap out of n arbitrary elements

For the worst-case analysis of Heapify let 2571 < n < 2% where k =
[log(r + 1)], and recall that the levels of the n-node complete binary tree
are numbered 1 to k. The worst-case number of iterations for Adjust is k —4
for a node on level i. The total time for Heapify is proportional to

o2 M k—i) = > i2l<n Y i/2°<2n=0(n) (21)

1<i<k 1<i<k—1 1<i<k—1

Comparing Heapify with the repeated use of Insert, we see that the former
is faster in the worst case, requiring O(n) versus O(n log n) operations. How-
ever, Heapify requires that all the elements be available before heap creation
begins. Using Insert, we can add a new element into the heap at any time.

Our discussion on insert, delete, and so on, so far has been with respect
to a max heap. It should be easy to see that a parallel discussion could have

98 CHAPTER 2. ELEMENTARY DATA STRUCTURES

(100 (100
() @3 () () (@) (3 [y @3
(100 (173
(9 (1 (9 () (o) (1 (15 ([

Figure 2.16 Action of Heapify(a,7) on the data (100, 119, 118, 171, 112,
151, and 132)

2.4. PRIORITY QUEUES 99

been carried out with respect to a min heap. For a min heap it is possible
to delcte the smallest element in O(logn) time and also to insert an element
in O(logn) time.

2.4.2 Heapsort

The best-known example of the use of a heap arises in its application to sort-
ing. A conceptually simple sorting strategy has been given before, in which
the maximum value is continually removed from the remaining unsorted el-
ements. A sorting algorithm that incorporates the fact that n elements can
be inserted in O(n) time is given in Algorithm 2.12.

1 Algorithm HeapSort(a,n)

2 // a[l : n] contains n elements to be sorted. HeapSort
3 // rearranges them inplace into nondecreasing order.
4

5 Heapify(a,n); // Transform the array into a heap.
6 // Interchdnge the new maximum with the element
7 // at the end of the array.

8 for i:=nto 2 step —1do

9

10 t:= afil; afi] = al1; all] i= 5

11 Adjust(a,1,i — 1);

12 }

13 }

Algorithm 2.12 Heapsort

Though the call of Heapify requires only O{n) operations, Adjust possibly
requircs O(logn) operations for each invocation. Thus the worst-case time
is O(nlogn). Notice that the storage requirements, besides a[1 : n], are only
for a few simple variables.

A nunber of other data structures can also be used to implement a prior-
ity queue. Examples include the binomial heap, deap, Fibonacci heap, and
so on. A description of these can be found in the book by E. Horowitz, S.
Sahni, and D. Mehta. Table 2.2 summarizes the performances of these data
structures. Many of these data structures support the operations of deleting
and scarching for arbitrary elements (Red-Black tree being an example), in
addition to the ones needed for a priority queue.

100

CHAPTER 2. ELEMENTARY DATA STRUCTURES

[Data structure | insert [delete min |
Min heap O(logn) (we) | O(logn) (we)
Min-max heap | O(logn) (wc) | O(logn) (wc)
Deap Oflogn) (we) | O(logn) (wc)
Leftist tree O(log n) (wc)

Binomial heap | O(logn) (wc) [O(logn) (wc)
' O(1) (am) | O(logn) (am)
Fibonacci heap | O(logn) (wc) | O(logn) (wc)

O(1) (am Oflogn) (am)
2-3 tree O(logn) (wc) | O(logn) (wc)
Red-Black tree | O(logn) (wc) | O(logn) (wc)

Table 2.2 Performances of different data structures when realizing a pri-
ority queue. Here (wc) stands for worst case and (am) denotes amortized

cost.

EXERCISES

1.

Verify for yourself that algorithm Insert (Algorithm 2.8) uses only a
constant number of comparisons to insert a random element into a
heap by performing an appropriate experiment.

(a) Equation 2.1 makes use of the fact that the sum > 72, 2—’; con-
verges. Prove this fact.

(b) Use induction to show that 3% 2= (k —4) = 28 — k — 1,k > 1.

. Program and run algorithm HeapSort (Algorithm 2.12) and compare

its time with the time of any of the sorting algorithms discussed in
Chapter 1.

. Design a data structure that supports the following operations: IN-

SERT and MIN. The worst-case run time should be O(1) for each of
these operations.

. Notice that a binary search tree can be used to implement a priority

queue,

(a) Present an algorithm to delete the largest element in a binary
search tree. Your procedure should have complexity O(h), where
h is the height of the search tree. Since A is O(logn) on average,
you can perform each of the priority queue operations in average
time O(logn).

2.5. SETS AND DISJOINT SET UNION 101

(b) Compare the performances of max heaps and binary search trees
as data structures for priority queues. For this comparison, gen-
erate random sequences of insert and delete max operations and
measure the total time taken for each sequence by each of these
data structures.

6. Input is a sequence X of n keys with many duplications such that the
number of distinct keys is d (< n). Present an O(n logd)-time sorting
algorithm for this input. (For example, if X = 5,6,1,18, 6,4,4,1,
5,17, the number of distinct keys in X is six.)

2.5 SETS AND DISJOINT SET UNION

2.5.1 Introduction

In this section we study the use of forests in the representation of sets.
We shall assume that the elements of the sets are the numbers 1,2, 3,...,n.
These numbers might, in practice, be indices into a symbol table in which the
names of the elements are stored. We assume that the sets being represented
are pairwise disjoint (that is, if S; and S}, ¢ # 7, are two sets, then there is no
element that is in both S; and S;). For example, when n = 10, the elements
can be partitioned into three disjoint sets, S1 = {1,7,8,9}, S2 = {2,5,10},
and Sy = {3,4,6}. Figure 2.17 shows one possible representation for these
sets. In this representation, each set is represented as a tree. Notice that for
each sct we have linked the nodes from the children to the parent, rather than
our usual method of linking from the parent to the children. The reason for
this change in linkage becomes apparent when we discuss the implementation

of set operations.
S2 S3

Figure 2.17 Possible tree representation of sets

102 CHAPTER 2. ELEMENTARY DATA STRUCTURES

The operations we wish to perform on these sets are:

1. Disjoint set union. If S; and S; are two disjoint sets, then their
union S; U S; = all elements z such that z is in S; or S;. Thus, S; US>
={1,7,8,9,2,5,10}. Since we have assumed that all sets are disjoint,
we can assume that following the union of §; and §j, the sets S; and
S; do not exist independently; that is, they are replaced by S; US; in
the collection of sets.

2. Find(¢). Given the element ¢, find the set containing ¢. Thus, 4 is in
set S3, and 9 is in set Sy,
2.5.2 Union and Find Operations

Let us consider the union operation first. Suppose that we wish to obtain
the union of S; and S (from Figure 2.17). Since we have linked the nodes
from children to parent, we simply make one of the trees a subtree of the
other. S1 U S; could then have one of the representations of Figure 2.18.

S]US2 or S]US2

Figure 2.18 Possible representations of S; U S

To obtain the union of two sets, all that has to be done is to set the parent
field of one of the roots to the other root. This can be accomplished easily
if, with each set name, we keep a pointer to the root of the tree representing
that set. If, in addition, each root has a pointer to the set name, then to
determine which set an element is currently in, we follow parent links to the
root of its tree and use the pointer to the set name. The data representation
for S1, S2, and S5 may then take the form shown in Figure 2.19.

In presenting the union and find algorithms, we ignore the set names and
identify sets just by the roots of the trees representing them. This simplifies

2.5. SETS AND DISJOINT SET UNION 103

set
name pointer | |
e e—
S P /\L
[5) 3
|
N /> <\
A — :
L ONORO o)
I N
S5 _

Figure 2.19 Data representation for Sq,.S5. and S3

the discussion. The transition to set names is easy. If we determine that
element 4 is in a tree with root j, and 7 has a pointer to entry k£ in the
set name table, then the set name is just namelk]. If we wish to unite
sets S, and S, then we wish to unite the trees with roots FindPointer(sS;)
and FindPointer(S;). Here FindPointer is a function that takes a set name
and determines the root of the tree that represents it. This is done by an
examination of the [set name, pointer] table. In many applications the set
name is just the element at the root. The operation of Find(i) now becomes:
Deterinine the root of the tree containing element 5. The function Union(i, j)
requires two trees with roots ¢ and j be joined. Also to simplify, assume that
the set elements are the numbers 1 through n.

Since the set elements are numbered 1 through n, we represent the tree
nodes using an array p|[l : n], where n is the maximum number of elements.
The ith clement of this array represents the tree node that contains element
i. This array element gives the parent pointer of the corresponding tree
node. Figure 2.20 shows this representation of the sets Sy, S2, and S3 of
Figure 2.17. Notice that root nodes have a parent of —1.

TR B
p|—1]5 -1

[4] [[5] [16 [[71 [8]] [9] | [10]
3| -1[3[1]1]1]5

Figure 2.20 Array representation of Sy, Sy, and S3 of Figure 2.17

104 CHAPTER 2. ELEMENTARY DATA STRUCTURES

We can now implement Find(i) by following the indices, starting at i
until we reach a node with parent value —1. For example, Find(6) starts at
6 and then moves to 6’s parent, 3. Since p[3] is negative, we have reached
the root. The operation Union(i,j) is equally simple. We pass in two trees
with roots ¢ and 7. Adopting the convention that the first tree becomes a

subtree of the second, the statement p[i] := j; accomplishes the union.
1 Algorithm SimpleUnion(3, j)
2
3 p[l] =1
4}

Algorithm SimpleFind(7)

while (p[i] > 0) do ¢ := p[i];
return i

U O N =

}

Algorithm 2.13 Simple algorithms for union and find

Algorithm 2.13 gives the descriptions of the union and find operations
just discussed. Although these two algorithms are very easy to state, their
performance characteristics are not very good. For instance, if we start with
q elements each in a set of its own (that is, S; = {i}, 1 < i < g), then the
initial configuration consists of a forest with ¢ nodes, and p[i] =0,1 <7 <q.
Now let us process the following sequence of union-find operations:

Union(1,2), Union(2,3), Union(3,4), Union(4,5),..., Union(n —1,n)
Find(1), Find(2),..., Find(n)

This sequence results in the degenerate tree of Figure 2.21.

Since the time taken for a union is constant, the n — 1 unions can be
processed in time O(n). However, each find requires following a sequence of
parent pointers from the element to be found to the root. Since the time
required to process a find for an element at level i of a tree is O(7), the total
time needed to process the n finds is O(31 i) = O(n?).

We can improve the performance of our union and find algorithms by
avoiding the creation of degenerate trees. To accomplish this, we make use
of a weighting rule for :Union(i, j).

2.5. SETS AND DISJOINT SET UNION 105

Figure 2.21 Degenerate tree

Definition 2.5 [Weighting rule for Union(3,j)] If the number of nodes in the
tree with root ¢ is less than the number in the tree with root j, then make
J the parent of ¢; otherwise make ¢ the parent of ;. |

When we use the weighting rule to perform the sequence of set unions
given hefore, we obtain the trees of Figure 2.22. In this figure, the unions
have been modified so that the input parameter values correspond to the
roots of the trees to be combined.

To implement the weighting rule, we need to know how many nodes there
are in every tree. To do this easily, we maintain a count field in the root
of every tree. If i is a root node, then count[i] equals the number of nodes
in that tree. Since all nodes other than the roots of trees have a positive
number in the p field, we can maintain the count in the p field of the roots
as a negative number.

Using this convention, we obtain Algorithm 2.14. In this algorithm the
time required to perform a union has increased somewhat but is still bounded
by a constant (that is, it is O(1)). The find algorithm remains unchanged.
The maximum time to perform a find is determined by Lemma 2.3.

Lemma 2.3 Assume that we start with a forest of trees, each having one
node. Let T be a tree with m nodes created as a result of a sequence of
unions each performed using WeightedUnion. The height of T is no greater
than |logom| + 1.

Proof: The lemma is clearly true for m = 1. Assume it is true for all
trees with ¢ nodes, i < m — 1. We show that it is also true for ¢ = m.

106 CHAPTER 2. ELEMENTARY DATA STRUCTURES

@@ooo@ g@."@ @...@

initial
Union(1,2) Union(1,3)

OROMMO (1)
OROR0 OJOROMYO

Union(1,4) Union(1,n)

Figure 2.22 Trees obtained using the weighting rule

1 Algorithm WeightedUnion(i, 5)

2 // Union sets with roots 7 and j, ¢ # j, using the
3 // weighting rule. p[i] = —count[¢] and p[j] = —count[j].
4

5 temp = pli] +pll;

6 f (pli] > p[j]) then

7 { // i has fewer nodes.

8 pli] := j; plj] := temp;

9 }

10 else

11 { // j has fewer or equal nodes.

12 plj] =45 pli] := temp;

13

14 }

Algorithm 2.14 Union algorithm with weighting rule

2.5. SETS AND DISJOINT SET UNION 107

Let T be a tree with m nodes created by WeightedUnion. Consider the
last union operation performed, Union(k,j). Let a be the number of nodes
in trec j, and m — a the number in k. Without loss of generality we can
assume 1 < a < 7. Then the height of T is either the same as that of k&
or is one more than that of j. If the former is the case, the height of T is
< |logy(m —a)] + 1 < |logy m| + 1. However, if the latter is the case, the
height of T is < [logya] +2 < [logy B +2 < [logym] + 1. O

Example 2.4 shows that the bound of Lemma 2.3 is achievable for some
sequetice of unions.

Example 2.4 Consider the behavior of WeightedUnion on the following se-
quence of unions starting from the initial configuration p[i] = —count[i] =
S1,1<i <8 =n

Union(1,2), Union(3,4), Union(5,6), Union(7,8),
Union(1,3), Union(5,7), Union(1,5)

The trees of Figure 2.23 are obtained. As is evident, the height of each tree
with 1n nodes is |log, m| + 1. O

From Lemma, 2.3, it follows that the time to process a find is O(logm) if
there are m elements in a tree. If an intermixed sequence of v — 1 union and
f find operations is to be processed, the time becomes O(u + flogu), as no
tree has more than u nodes in it. Of course, we need O(n) additional time
to initialize the n-tree forest.

Surprisingly, further improvement is possible. This timme the modification
is macle in the find algorithm using the collapsing rule.

Definition 2.6 [Collapsing rule]: If j is a node on the path from ¢ to its root
and p|i] # root[i], then set p[j] to rootli]. O

CollapsingFind (Algorithm 2.15) incorporates the collapsing rule.

Example 2.5 Consider the tree created by WeightedUnion on the sequence
of unions of Example 2.4. Now process the following eight finds:

Find(8), Find(8),..., Find(8)

If SimpleFind is used, each F'ind(8) requires going up three parent link fields
for a total of 24 moves to process all eight finds. When CollapsingFind is used,
the first F'ind(8) requires going up three links and then resetting two links.
Note that even though only two parent links need to be reset, CollapsingFind
will reset three (the parent of 5 is reset to 1). Each of the remaining seven
finds requires going up only one link field. The total cost is now only 13
moves. a

108 CHAPTER 2. ELEMENTARY DATA STRUCTURES

C1 G0 E0
ORONOBONONONO

(a) Initial height-1 trees

[2] [2] [2]
{(b) Height-2 trees followmg Unzon(1,2), (3,4), (5,6), and (7,8)

(4] (4]

(c) Height-3 trees following Union(1,3) and (5,7)

-8

—
—_—

(D
@ 3 [5)
@ © @
®

(d) Height-4 tree following Union(1,5)

Figure 2.23 Trees achieving worst-case bound

2.5. SETS AND DISJOINT SET UNION 109

1 Algorithm CollapsingFind(3)

2 // Find the root of the tree containing element i. Use the
3 // collapsing rule to collapse all nodes from i to the root.
4

5 =13

6 while (p[r] > 0) do r :=p[r]; // Find the root.

7 while (i # r) do // Collapse nodes from ¢ to root r.
8 {

9 s 1= pli]; pli] ;=13 i := s;

10 }

11 return r;

12}

Algorithm 2.15 Find algorithm with collapsing rule

In the algorithms WeightedUnion and CollapsingFind, use of the collaps-
ing rule roughly doubles the time for an individual find. However, it reduces
the worst-case time over a sequence of finds. The worst-case complexity of
processing a sequence of unions and finds using WeightedUnion and Collaps-
ingFind is stated in Lemma 2.4. This lemma makes use of a function a(p, q)
that is related to a functional inverse of Ackermann’s function A(i, j). These
functions are defined as follows:

A(l,5) =2 for j > 1
A(i,1) = At — 1,2) for i > 2

a(p,q) = min{z > 1[A(z, ng) >logyqt, p>qg>1

The function A(i,j) is a very rapidly growing function. Consequently,
a grows very slowly as p and ¢ are increased. In fact, since A(3,1) = 16,
a(p,q) < 3 for ¢ < 215 = 65,536 and p > ¢. Since A(4,1) is a very large
number and in our application g is the number n of set elements and p is
n+ f (f is the number of finds), a(p, g) < 4 for all practical purposes.

Lemina 2.4 [Tarjan and Van Leeuwen] Assume that we start with a forest
of trecs, each having one node. Let T(f,u) be the maximum time required
to process any intermixed sequence of f finds and u unions. Assume that
u > 5. Then

110 CHAPTER 2. ELEMENTARY DATA STRUCTURES

kiln+ fa(f +n,n)] S T(f,u) < kzln + fo(f +n,n)]
for some positive constants &, and ks. O

The requirement that v > % in Lemma 2.4 is really not significant, as

when 4 < g, some elements are involved in no union operation. These
elements remain in singleton sets throughout the sequence of union and
find operations and can be eliminated from consideration, as find operations
that involve these can be done in O(1) time each. Even though the function
aff,u) is a very slowly growing function, the complexity of our solution to
the set representation problem is not linear in the number of unions and
finds. The space requirements are one node for each element.

In the exercises, we explore alternatives to the weight rule and the col-
lapsing rule that preserve the time bounds of Lemma 2.4.

EXERCISES

1. Suppose we start with n sets, each containing a distinct element.

(a) Show that if u unions are performed, then no set contains more
than u + 1 elements.

(b) Show that at most n — 1 unions can be performed before the
number of sets becomes 1.

(c) Show that if fewer than [3] unions are performed, then at least
one set with a single element in it remains.

(d) Show that if u unions are performed, then at least max{n—2u,0}
singleton sets remain.

2. Experimentally compare the performance of SimpleUnion and Sim-
pleFind (Algorithm 2.13) with WeightedUnion (Algorithm 2.14) and
CollapsingFind (Algorithm 2.15). For this, generate a random sequence
of union and find operations.

3. (a) Present an algorithm HeightUnion that uses the height rule for
union operations instead of the weighting rule. This rule is defined
below:

Definition 2.7 [Height rule] If the height of tree i is less than
that of tree j, then make j the parent of i; otherwise make ¢ the
parent of 7. O

Your algorithm must run in O(1) time and should maintain the
height of each tree as a negative number in the p field of the root.

2.5. SETS AND DISJOINT SET UNION 111

(b)

Show that the height bound of Lemma 2.3 applies to trees con-
structed using the height rule.

Give an example of a sequence of unions that start with n single-
ton sets and create trees whose heights equal the upper bounds
given in Lemma 2.3. Assume that each union is performed using
the height rule.

Experiment with the algorithms WeightedUnion (Algorithm 2.14)
and HeightUnion to determine which produces better results when
used in conjunction with CollapsingFind (Algorithm 2.15).

Write an algorithm SplittingFind that uses path splitting, defined
below, for the find operations instead of path collapsing,.

Definition 2.8 [Path splitting] The parent pointer in each node
(except the root and its child) on the path from ¢ to the root is
changed to point to the node’s grandparent. O

Note that when path splitting is used, a single pass from 7 to the
root suffices. R. Tarjan and J. Van Leeuwen have shown that
Lemma, 2.4 holds when path splitting is used in conjunction with
either the weight or the height rule for unions.

Experiment with CollapsingFind (Algorithm 2.15) and SplittingFind
to determine which produces better results when used in conjunc-
tion with WeightedUnion (Algorithm 2.14).

Design an algorithm HalvingFind that uses path halving, defined
below, for the find operations instead of path collapsing.

Definition 2.9 [Path halving] In path halving, the parent pointer
of every other node (except the root and its child) on the path
from i to the root is changed to point to the nodes grandparent.

a

Note that path halving, like path splitting (Exercise 4), can be
implemented with a single pass from ¢ to the root. However, in
path halving, only half as many pointers are changed as in path
splitting. Tarjan and Van Leeuwen have shown that Lemma 2.4
holds when path halving is used in conjunction with either the
weight or the height rule for unions.

Experiment with CollapsingFind and HalvingFind to determine which
produces better results when used in conjunction with Weighte-
dUnion (Algorithm 2.14).

112 CHAPTER 2. ELEMENTARY DATA STRUCTURES

2.6 GRAPHS

2.6.1 Introduction

The first recorded evidence of the use of graphs dates back to 1736, when
Leonhard Euler used them to solve the now classical Konigsberg bridge prob-
lem. In the town of Konigsberg (now Kaliningrad) the river Pregel (Pre-
golya) flows around the island Kneiphof and then divides into two. There
are, therefore, four land areas that have this river on their borders (see Fig-
ure 2.24(a)). These land areas are interconnected by seven bridges, labeled a
to g. The land areas themselves are labeled A to D. The Konigsberg bridge
problem is to determine whether, starting at one land area, it is possible
to walk across all the bridges exactly once in returning to the starting land
area. One possible walk: Starting from land area B, walk across bridge a to
island A, take bridge e to area D, take bridge g to C, take bridge d to A,
take bridge b to B, and take bridge f to D.

This walk does not go across all bridges exactly once, nor does it return
to the starting land area B. Euler answered the Konigsberg bridge problem
in the negative: The people of Kénigsberg cannot walk across each bridge
exactly once and return to the starting point. He solved the problem by
representing the land areas as vertices and the bridges as edges in a graph
(actually a multigraph) as in Figure 2.24(b). His solution is elegant and
applies to all graphs. Defining the degree of a vertex to be the number of
edges incident to it, Euler showed that there is a walk starting at any vertex,
going through each edge exactly once and terminating at the start vertex if
and only if the degree of each vertex is even. A walk that does this is called
Eulerian. There is no Eulerian walk for the Konigsberg bridge problem, as
all four vertices are of odd degree.

Since this first application, graphs have been used in a wide variety of
applications. Some of these applications are the analysis of electric cir-
cuits, finding shortest routes, project planning, identification of chemical
compounds, statistical mechanics, genetics, cybernetics, linguistics, social
sciences, and so on. Indeed, it might well be said that of all mathematical
structures, graphs are the most widely used.

2.6.2 Definitions

A graph G consists of two sets V and E. The set V is a finite, nonempty
set of vertices. The set E is a set of pairs of vertices; these pairs are called
edges. The notations V(G) and E(G) represent the sets of vertices and edges,
respectively, of graph G. We also write G = (V, E) to represent a graph. In
an undirected graph the pair of vertices representing any edge is unordered.
Thus, the pairs (u,v) and (v, u) represent the same edge. In a directed graph
each edge is represented by a directed pair (u,v); u is the tail and v the

2.6. GRAPHS 113

O
B

Figure 2.24 Section of the river Pregel in Konigsberg and Euler’s graph

114 CHAPTER 2. ELEMENTARY DATA STRUCTURES

head of the edge. Therefore, (v,u) and (u,v) represent two different edges.
Figure 2.25 shows three graphs: G1, G, and G3. The graphs G; and G5 are
undirected; G3 is directed.

NN
" © © © O

(@ G (®) G, () G3

Figure 2.25 Three sample graphs

The set representations of these graphs are

() {1,2 3, 4} E(G) {() (1,3),(),(2,3),(2,),(
() {1, 3} E(Gs) {< > (2, 1>,< >}

Notice that the edges of a directed graph are drawn with an arrow from the
tail to the head. The graph G5 is a tree; the graphs G and G5 are not.

Since we define the edges and vertices of a graph as sets, we impose the
following restrictions on graphs:

1,4
2,4
2,3

1. A graph may not have an edge from a vertex v back to itself. That is,
edges of the form (v, v) and (v,v) are not legal. Such edges are known
as self-edges or self-loops. If we permit self-edges, we obtain a data
object referred to as a graph with self-edges. An example is shown in
Figure 2.26(a).

2. A graph may not have multiple occurrences of the same edge. If we
remove this restriction, we obtain a data object referred to as a multi-
graph (see Figure 2.26(b)).

The number of distinct unordered pairs (u,v) with u # v in a graph with

. . —1 .o . .
n vertices is =1 This is the maximum number of edges in any n-vertex,

p)
undirected graph. An n-vertex, undirected graph with exactly - (" D! edges

is said to be complete. The graph G of Figure 2.25(a) is the complete graph

2.6. GRAPHS 115

J

3/

3

(a) Graph with a self edge (b) Multigraph

Figure 2.26 Examples of graphlike structures

on four vertices, whereas GG and G5 are not complete graphs. In the case of
a directed graph on n vertices, the maximum number of edges is n(n — 1).

If (u,v) is an edge in E(G), then we say vertices u and v are adjacent and
edge (u,v) is incident on vertices u and v. The vertices adjacent to vertex 2
in Gy are 4, 5, and 1. The edges incident on vertex 3 in G4 are (1,3), (3,6),
and (3,7). If (u,v) is a directed edge, then vertex u is adjacent to v, and v
is adjacent from u. The edge (u,v) is incident to v and v. In G35, the edges
incident to vertex 2 are (1,2), (2,1), and (2,3).

A subgraph of G is a graph G’ such that V(G') C V(G) and E(G') C
E(G). Figure 2.27 shows some of the subgraphs of G; and Gj.

A path from vertex u to vertex v in graph G is a sequence of vertices
Uy 1592, - -+, 0k, U, such that (u,i1), (41,42),..., (ix,v) are edges in E(G). If
G’ is directed, then the path consists of the edges (u,1), (i1,42),. .., (ik, V)
in E(G'). The length of a path is the number of edges on it. A simple path
is a path in which all vertices except possibly the first and last are distinct.
A path such as (1,2), (2,4), (4,3), is also written as 1, 2, 4, 3. Paths 1, 2, 4,
3 and 1, 2, 4, 2 of G are both of length 3. The first is a simple path; the
second is not. The path 1, 2, 3 is a simple directed path in Gz, but 1, 2, 3,
2 is not a path in G3, as the edge (3,2) is not in E(G3).

A cycle is a simple path in which the first and last vertices are the same.
The path 1, 2, 3, 1 is a cycle in G7 and 1, 2, 1 is a cycle in G3. For directed
graphs we normally add the prefix “directed” to the terms cycle and path.

In an undirected graph G, two vertices u and v are said to be connected iff
there is a path in G from u to v (since G is undirected, this means there must
also be a path from v to u). An undirected graph is said to be connected iff
for every pair of distinct vertices u and v in V(G), there is a path from u to
v in (/. Graphs G and G5 are connected, whereas G4 of Figure 2.28 is not.

116 CHAPTER 2. ELEMENTARY DATA STRUCTURES

{

@ (i1) (iii)
(a) Some of the subgraphs of G,

@ @

@ (i) (i)
(b) Some of the subgraphs of G,

Figure 2.27 Some subgraphs

2.6. GRAPHS 117

A connected component (or simply a component) A of an undirected graph
is a mazimal connected subgraph. By “maximal,” we mean that G contains
no other subgraph that is both connected and properly contains H. G4 has
two components, H, and Hy (see Figure 2.28).

Hi (1) 5) H,
3] 2 O

(1

i\

o
\\

Gy

Figure 2.28 A graph with two connected components

A tree is a connected acyclic (i.e., has no cycles) graph. A directed graph
G is said to be strongly connected iff for every pair of distinct vertices u
and v in V(G), there is a directed path from « to v and also from v to
u. The graph G35 (repeated in Figure 2.29(a)) is not strongly connected,
as there is no path from vertex 3 to 2. A strongly connected component
is a maximal subgraph that is strongly connected. The graph G35 has two
strongly connected components (see Figure 2.29(b)).

The degree of a vertex is the number of edges incident to that vertex.
The degree of vertex 1 in G is 3. If G is a directed graph, we define the
in-degree of a vertex v to be the number of edges for which v is the head.
The out-degree is defined to be the number of edges for which v is the tail.
Vertex 2 of G has in-degree 1, out-degree 2, and degree 3. If d; is the degree
of vertex i in a graph G with n vertices and e edges, then the number of
edges is

o= <Zd> /2

In the remainder of this chapter, we refer to a directed graph as a digraph.
When we use the term graph, we assume that it is an undirected graph.

118 CHAPTER 2. ELEMENTARY DATA STRUCTURES

; ®

(a) (b)

Figure 2.29 A graph and its strongly connected components

2.6.3 Graph Representations

Although several representations for graphs are possible, we study only the
three most commonly used: adjacency matrices, adjacency lists, and ad-
jacency multilists. Once again, the choice of a particular representation
depends on the application we have in mind and the functions we expect to
perform on the graph.

Adjacency Matrix

Let G = (V, E) be a graph with n vertices, n > 1. The adjacency matrix
of G is a two-dimensional n x n array, say a, with the property that afi, j]
= 1 iff the edge (i,j) ({i,j) for a directed graph) is in E(G). The element
afi,j] = 0 if there is no such edge in G. The adjacency matrices for the
graphs G, G3, and G4 are shown in Figure 2.30. The adjacency matrix for
an undirected graph is symmetric, as the edge (i,) is in E(G) iff the edge
(4,1) is also in E(G). The adjacency matrix for a directed graph may not be
symmetric (as is the case for G3). The space needed to represent a graph
using its adjacency matrix is n? bits. About half this space can be saved in
the case of an undirected graph by storing only the upper or lower triangle
of the matrix.

From the adjacency matrix, we can readily determine whether there is
an edge connecting any two vertices 7 and j. For an undirected graph the
degree of any vertex i is its row sum:

2.6. GRAPHS 119

1 23456 7 8

1/01 10000 0l

210010000]

3]1 0010000

1 2 3 4 4/0 1100000

170 11 1! 1 2 3 500 0000100

21 01 1 1[0 1 0] 600001010{

3,11 01 211 0 1 710 00001 01

4[771110\7\ 3000 SOOOOOOI(L[
@) G, (b) G5 (©) G4

Figure 2.30 Adjacency matrices

>l

For a directed graph the row sum is the out-degree, and the column sum is
the in-degree.

Suppose we want to answer a nontrivial question about graphs, such as
How many edges are there in G?7 or Is G connected? Adjacency matrices
require at least n? time, as n? — n entries of the matrix (diagonal entries
are zcro) have to be examined. When graphs are sparse (i.e., most of the
terms in the adjacency matrix are zero), we would expect that the former

question could be answered in significantly less time, say O(e +n), where e

is the number of edges in G, and e < n’ Such a speedup is made possible
through the use of a representation in which only the edges that are in G are
explicitly stored. This leads to the next representation for graphs, adjacency
lists.

Adjacency Lists

In this representation of graphs, the n rows of the adjacency matrix are
represented as n linked lists. There is one list for each vertex in G. The
nodes in list ¢ represent the vertices that are adjacent from vertex ¢. Each
node has at least two fields: vertex and link. The vertex field contains the
indices of the vertices adjacent to vertex ¢. The adjacency lists for G;, G3,

120 CHAPTER 2. ELEMENTARY DATA STRUCTURES

head nodes

vertex link
[1] — 4 2 30|
[2] — 3 4 1] 0]
Bl | —F 2] +—={4] F—={1]0]
@ {1 {2 3] 0]
(@) G,
head nodes
m | ——{770]
@ — 3] 419}
[3] 0
() G
head nodes
m| 3 20
e —— {4 {1 0]
[3] o 1 40
[4] — 2 3]0
s 0]
6| {7 {51 0]
m| e[0]
s — 7 70]
(©) G4

Figure 2.31 Adjacency lists

2.6. GRAPHS 121

and (/4 are shown in Figure 2.31. Notice that the vertices in each list are
not required to be ordered. Each list has a head node. The head nodes are
sequential, and so provide easy random access to the adjacency list for any
particular vertex.

For an undirected graph with n vertices and e edges, this representation
requires n head nodes and 2e list nodes. Each list node has two fields. In
terms of the number of bits of storage needed, this count should be multiplied
by log n for the head nodes and logn + loge for the list nodes, as it takes
O(logm) bits to represent a number of value m. Often, you can sequentially
pack the nodes on the adjacency lists, and thereby eliminate the use of
pointers. In this case, an array node [1 : n + 2e + 1] can be used. The
node[i] gives the starting point of the list for vertex ¢, 1 < i < n, and
node[n + 1] is set to n + 2e + 2. The vertices adjacent from vertex i are
stored in node[i],...,node[i +1] — 1, 1 < i < n. Figure 2.32 shows the
sequential representation for the graph G4 of Figure 2.28.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

[10{12 14!16 18!19 21’23 24’3 2 (4|1 |14 |2]13|6]7|516 (87

Figure 2.32 Sequential representation of graph Gy:
Array node[l : n + 2e + 1]

The degree of any vertex in an undirected graph can be determined by
just counting the number of nodes in its adjacency list. So, the number of
edges in G can be determined in O(n + e) time.

For a digraph, the number of list nodes is only e. The out-degree of any
vertex can be determined by counting the number of nodes on its adjacency
list. Hence, the total number of edges in G can be determined in O(n + e)
time. Determining the in-degree of a vertex is a little more complex. If there
is a need to access repeatedly all vertices adjacent to another vertex, then
it may be worth the effort to keep another set of lists in addition to the
adjacency lists. This set of lists, called inverse adjacency lists, contains one
list for cach vertex. Each list contains a node for each vertex adjacent to the
vertex it represents (see Figure 2.33).

Oue can also adopt a simpler version of the list structure in which each
node has four fields and represents one edge. The node structure is

[tail | head [column link for head [row link for tail |

Figure 2.34 shows the resulting structure for the graph G3 of Figure 2.25(c).
The head nodes are stored sequentially.

122 CHAPTER 2. ELEMENTARY DATA STRUCTURES

m| 20|
2| 1[0
o 210]

Figure 2.33 Inverse adjacency lists for G5 of Figure 2.25(c)

o= 1T 1] [Tz HEnE
HRNE 20 o |

Figure 2.34 Orthogonal list representation for G5 of Figure 2.25(c)

2.6. GRAPHS 123

Adjacency Multilists

In the adjacency-list representation of an undirected graph, each edge (u,v)
is represented by two entries, one on the list for u and the other on the list
for v. In some applications it is necessary to be able to determine the second
entry for a particular edge and mark that edge as having been examined.
This can be accomplished easily if the adjacency lists are maintained as
multilists (i.e., lists in which nodes can be shared among several lists). For
each cdge there is exactly one node, but this node is in two lists (i.e., the
adjacency lists for each of the two nodes to which it is incident). The new
node structure is

[m [vertexl [vertex2 [listl | list2 |

wherc m is a one-bit mark field that can be used to indicate whether the edge
has been examined. The storage requirements are the same as for normal
adjacency lists, except for the addition of the mark bit m. Figure 2.35 shows
the adjacency multilists for G| of Figure 2.25(a).

head nodes
[EI«% NI[[12 N2 N4| edge(12)
(214 //j N2 1 [3[N3[N4] edge(13)
E‘} [Nsu 1] 4Lo J@ edge (1,4)
N4] J 23 }Ns \@ edge (2,3)
NSL 21470 !Nq edge (2,4)
N6| [3]4[0]0] edge(34

The lists are vertex 1: N1 > N2 —> N3
vertex 2: N1 —» N4 — N5
vertex 3: N2 —> N4 - N6
vertex 4: N3 > N5 - N6

Figure 2.35 Adjacency multilists for G| of Figure 2.25(a)

124 CHAPTER 2. ELEMENTARY DATA STRUCTURES

Weighted Edges

In many applications, the edges of a graph have weights assigned to them.
These weights may represent the distance from one vertex to another or the
cost of going from one vertex to an adjacent vertex. In these applications,
the adjacency matrix entries a7, j] keep this information too. When adja-
cency lists are used, the weight information can be kept in the list nodes by
including an additional field, weight. A graph with weighted edges is called
a network.

EXERCISES

1. Does the multigraph of Figure 2.36 have an Eulerian walk? If so, find
one.

Figure 2.36 A multigraph

2. For the digraph of Figure 2.37 obtain

the in-degree and out-degree of each vertex
its adjacency-matrix representation

)
)
¢) its adjacency-list representation
) its adjacency-multilist representation
)

its strongly connected components

3. Devise a suitable representation for graphs so that they can be stored
on disk. Write an algorithm that reads in such a graph and creates its
adjacency matrix. Write another algorithm that creates the adjacency
lists from the disk input.

4. Draw the complete undirected graphs on one, two, three, four, and
five vertices. Prove that the number of edges in an n-vertex complete

. n(n—1)
graph is =5

2.6. GRAPHS 125

Figure 2.37 A digraph

5. [s the directed graph of Figure 2.38 strongly connected? List all the
siinple paths.

Figure 2.38 A directed graph

6. Obtain the adjacency-matrix, adjacency-list, and adjacency-multilist
representations of the graph of Figure 2.38.

7. Show that the sum of the degrees of the vertices of an undirected graph
is twice the number of edges.

8. Prove or disprove:

If G(V, E) is a finite directed graph such that the out-degree
of each vertex is at least one, then there is a directed cycle
in G.

9. (a) Let G be a connected, undirected graph on n vertices. Show
that G must have at least n — 1 edges and that all connected,
undirected graphs with n — 1 edges are trees.

126 CHAPTER 2. ELEMENTARY DATA STRUCTURES

(b) What is the minimum number of edges in a strongly connected
digraph with n vertices? What form do such digraphs have?

10. For an undirected graph G with n vertices, prove that the following
are equivalent:

(a) G is a tree.

(b) G is connected, but if any edge is removed, the resulting graph is
not connected.

(c) For any two distinct vertices u € V(G) and v € V(G), there is
exactly one simple path from u to v.

(d) G contains no cycles and has n — 1 edges.

11. Write an algorithm to input the number of vertices in an undirected
graph and its edges one by one and to set up the linked adjacency-list
representation of the graph. You may assume that no edge is input
twice. What is the run time of your procedure as a function of the
number of vertices and the number of edges?

12. Do the preceding exercise but now set up the multilist representation.

13. Let G be an undirected, connected graph with at least one vertex of
odd degree. Show that G contains no Eulerian walk.

2.7 REFERENCES AND READINGS

A wide-ranging examination of data structures and their efficient implemen-
tation can be found in the following:

Fundamentals of Data Structures in C++, by E. Horowitz, S. Sahni, and D.
Mehta, Computer Science Press, 1995.

Data Structures and Algorithms 1: Sorting and Searching, by K. Mehlhorn,
Springer-Verlag, 1984.

Introduction to Algorithms: A Creative Approach, by U. Manber, Addison-
Wesley, 1989.

Handbook of Algorithms and Data Structures, second edition, by G. H.
Gonnet and R. Baeza-Yates, Addison-Wesley, 1991.

Proof of Lemma 2.4 can be found in “Worst-case analysis of set union
algorithms,” by R. Tarjan and J. Van Leeuwen, Journal of the ACM 31; no.
2 (1984): 245-281.

Chapter 3

DIVIDE-AND-CONQUER

3.1 GENERAL METHOD

Given a function to compute on n inputs the divide-and-conquer strategy
suggests splitting the inputs into £ distinct subsets, 1 < k& < n, yielding &
subproblems. These subproblems must be solved, and then a method must
be found to combine subsolutions into a solution of the whole. If the sub-
problems are still relatively large, then the divide-and-conquer strategy can
possibly be reapplied. Often the subproblems resulting from a divide-and-
conquer design are of the same type as the original problem. For those cases
the reapplication of the divide-and-conquer principle is naturally expressed
by a recursive algorithm. Now smaller and smaller subproblems of the same
kind are generated until eventually subproblems that are small enough to be
solved without splitting are produced.

To be more precise, suppose we consider the divide-and-conquer strategy
when it splits the input into two subproblems of the same kind as the original
problem. This splitting is typical of many of the problems we examine
here. We can write a control abstraction that mirrors the way an algorithm
based on divide-and-conquer will look. By a control abstraction we mean
a procedure whose flow of control is clear but whose primary operations
are specified by other procedures whose precise meanings are left undefined.
DAndC (Algorithm 3.1) is initially invoked as DAndC(P), where P is the
problem to be solved.

Small(P) is a Boolean-valued function that determines whether the input
size is sinall enough that the answer can be computed without splitting. If
this is so, the function S is invoked. Otherwise the problem P is divided
into smaller subproblems. These subproblems P, P, ..., Py are solved by
recursive applications of DAndC. Combine is a function that determines the
solution to P using the solutions to the k subproblems. If the size of P is n
and the sizes of the k subproblems are ny,no,...,ng, respectively, then the

127

128 CHAPTER 3. DIVIDE-AND-CONQUER

Algorithm DAndC(P)

if Small(P) then return S(P);
else

divide P into smaller instances Py, Ps,..., P, k > 1;
Apply DAndC to each of these subproblems;
return Combine(DAndC(P;),DAndC(FP,),...,DAndC(F%));

}
0}

= O 0-~ITSH TN

Algorithm 3.1 Control abstraction for divide-and-conquer

computing time of DAndC is described by the recurrence relation

n n small
T(n) = { gT((n)l) +T(ng) +---+T(ng) + f(n) otherwise (3.1)

where T'(n) is the time for DAndC on any input of size n and g(n) is the time
to compute the answer directly for small inputs. The function f(n) is the
time for dividing P and combining the solutions to subproblems. For divide-
and-conquer-based algorithms that produce subproblems of the same type
as the original problem, it is very natural to first describe such algorithms
using recursion.

The complexity of many divide-and-conquer algorithms is given by recur-
rences of the form

T(1 n=1
7600 ={ atugpy + 5y 751 @2

where a and b are known constants. We assume that T'(1) is known and n
is a power of b (i.e., n = b*).

One of the methods for solving any such recurrence relation is called the
substitution method. This method repeatedly makes substitution for each
occurrence of the function 7' in the right-hand side until all such occurrences
disappear.

3.1. GENERAL METHOD 129

Example 3.1 Consider the case in which ¢ = 2 and b = 2. Let T(1) = 2

and f(n) =n. We have
T(n) 2T (n/2) +n

22T (n/4) +n/2] +n

AT (n/4) + 2n

42T (n/8) +n/4] +2n

8T (n/8) + 3n

In general, we see that T'(n) = 2'T(n/2") + in, for any log,n >4 > 1. In
particular, then, T(n) = 29827 (n/2!°82") 4 nlog, n, corresponding to the
choice of i = logyn. Thus, T'(n) = nT(1) + nlogy,n = nlogyn + 2n. a

Beginning with the recurrence (3.2) and using the substitution method,
it can be shown that

T(n) = n'°8 2 [T(1) + u(n)]

where u(n) = Zle h(¥) and h(n) = f(n)/n'°€ %, Table 3.1 tabulates the
asymptotic value of u(n) for various values of h(n). This table allows one to
easily obtain the asymptotic value of T'(n) for many of the recurrences one
encounters when analyzing divide-and-conquer algorithms. Let us consider
some examples using this table.

- h(n) | u(n)]l
)

On"), r<0 o
O((logn)"), i >0 | ©((logn)"*"/(i + 1))
Qn), >0 B(h(n))

Table 3.1 u(n) values for various h(n) values

Example 3.2 Look at the following recurrence when n is a power of 2:

T(1 =1
T(n) = { Tgn)/Z) +c Z> 1

130 CHAPTER 3. DIVIDE-AND-CONQUER

Comparing with (3.2), we see that a = 1, b= 2, and f(n) = ¢. So, log,(a) =
0 and h(n) = f(n)/n'8 ¢ = ¢ = c(logn)® = O((logn)°). From Table 3.1, we
obtain u(n) = ©(logn). So, T(n) = nl°%%[c + O(logn)] = O(logn). O

Example 3.3 Next consider the case in which a = 2, b = 2, and f(n) = cn.
For this recurrence, log, a = 1 and h(n) = f(n)/n = ¢ = ©((logn)°). Hence,
u(n) = O(logn) and T(n) = n[T(1) + O(logn)] = O(nlogn). a

Example 3.4 Asanother example, consider the recurrence T'(n) = 7T (n/2)+
18n2, n > 2 and a power of 2. We obtain a = 7, b = 2, and f(n) = 18n2.
So, log,a = logy, 7 =~ 2.81 and h(n) = 18n?/nl827 = 18n271627 = O(n"),
where r = 2 —log, 7 < 0. So, u(n) = O(1). The expression for T'(n) is
T(n) = nl827[T(1) + O(1)]
— @(nlogz 7)

as T'(1) is assumed to be a constant. O

Example 3.5 As afinal example, consider the recurrence T'(n) = 97'(n/3)+
4n8, n > 3 and a power of 3. Comparing with (3.2), we obtaina =9, b= 3,
and f(n) = 4n8. So, logya = 2 and h(n) = 4n8/n? = 4n* = Q(n*). From
Table 3.1, we see that u(n) = O(h(n)) = ©(n*). So,

T(n) = n?[T(1)+6(n*)]
= O(n®)

as T'(1) can be assumed constant. O

EXERCISES

1. Solve the recurrence relation (3.2) for the following choices of a, b, and
f(n) (c being a constant):
(a) a=1, b=2,and f(n) =c
(b) a =5, b=4, and f(n) = cn?
(c) a=28, b=3,and f(n) = cn®

2. Solve the following recurrence relations using the substitution method:

(a) All three recurrences of Exercise 1.
(b)
1 n <4

T(n):{ T(y/n)+c n>4

3.2. BINARY SEARCH 131

(©
T(n) = { 1 n <4

2T(y/n) +logn n >4
()

T _ 1 n <4
(n) = 2T (V) + b n >4

3.2 BINARY SEARCH

Let a;, 1 <14 < n, be alist of elements that are sorted in nondecreasing order.
Consider the problem of determining whether a given element z is present in
the list. If z is present, we are to determine a value j such that a; = z. If x
is not in the list, then j is to be set to zero. Let P = (n,a;,...,ay, z) denote
an arbitrary instance of this search problem (n is the number of elements in
the list, a;, ..., a¢ is the list of elements, and z is the element searched for).

Divide-and-conquer can be used to solve this problem. Let Small(P) be
true il . = 1. In this case, S(P) will take the value i if z = q;; otherwise it
will take the value 0. Then g(1) = ©(1). If P has more than one element, it
can be divided (or reduced) into a new subproblem as follows. Pick an index
g (in the range [4,4]) and compare z with a,. There are three possibilities:
(1) z = a4 In this case the problem P is immediately solved. (2) z < ag:

In this case z has to be searched for only in the sublist a;, aj+1,...,aq-1.
Therefore, P reduces to (¢ —i,a;,...,aq—1,%). (3) £ > a4: In this case the
sublist to be searched is ag1,...,as. P reduces to (¢ —q, ag+1,...,a4,).

In this example, any given problem P gets divided (reduced) into one
new subproblem. This division takes only ©(1) time. After a compari-
son with a4, the instance remaining to be solved (if any) can be solved
by using this divide-and-conquer scheme again. If ¢ is always chosen such
that «, is the middle element (that is, ¢ = |(n + 1)/2]), then the result-
ing search algorithm is known as binary search. Note that the answer to
the new subproblem is also the answer to the original problem P; there
is no need for any combining. Algorithm 3.2 describes this binary search
method, where BinSrch has four inputs a[|, 4,1, and z. It is initially invoked
as BinSrch(a, 1,n, z).

A nonrecursive version of BinSrch is given in Algorithm 3.3. BinSearch
has three inputs a,n, and x. The while loop continues processing as long
as there are more elements left to check. At the conclusion of the procedure
0 is rceturned if z is not present, or j is returned, such that a[j] = «.

Is BinSearch an algorithm? We must be sure that all of the operations
such as comparisons between z and a[mid] are well defined. The relational
operators carry out the comparisons among elements of a correctly if these
operators are appropriately defined. Does BinSearch terminate? We observe

132 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm BinSrch(a,i,l,)

2 // Given an array afi : I] of elements in nondecreasing
3 // order, 1 <i <, determine whether z is present, and
4 // if so, return j such that « = a[j]; else return 0.

5

6 if (I =¢) then // If Small(P)

7

8 if (z = a[i]) then return ¢;

9 else return 0;

10 }

11 else

12 { // Reduce P into a smaller subproblem.

13 mid == (i +1)/2];

14 if (z = a[mid)]) then return mid;

15 else if (z < a[mid]) then

16 return BinSrch(a, ¢, mid — 1, z);

17 else return BinSrch(a,mid + 1,1, z);

18

19 }

Algorithm 3.2 Recursive binary search

1 Algorithm BinSearch(a,n,x)

2 // Given an array a[l : n] of elements in nondecreasing
3 // order, n > 0, determine whether x is present, and
4 // if so, return 7 such that = = a[j]; else return 0.

5

6 low := 15 high := n;

7 while (low < high) do

8

9 mid := | (low + high)/2];

10 if (z < a[mid]) then high := mid — 1;

11 else if (z > a[mid]) then low := mid + 1;
12 else return mid;

13

14 return 0;

15 }

Algorithm 3.3 Tterative binary search

3.2. BINARY SEARCH 133

that low and high are integer variables such that each time through the loop
either x is found or low is increased by at least one or high is decreased by
at least one. Thus we have two sequences of integers approaching each other
and eventually low becomes greater than high and causes termination in a
finite number of steps if is not present.

Example 3.6 Let us select the 14 entries

15,6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151
place them in a[l : 14], and simulate the steps that BinSearch goes through
as it searches for different values of . Only the variables low, high, and

mid need to be traced as we simulate the algorithm. We try the following
values for x: 151, —14, and 9 for two successful searches and one unsuccessful

search. Table 3.2 shows the traces of BinSearch on these three inputs. O
z =101 low high mid z=—14 low high mid
1 14 7 1 14 7
8 14 11 1 6 3
12 14 13 1 2 1
14 14 14 2 2 2
found 2 1 not found
z=9 low high mid
1 14 7
1 6 3
4 6 5
found

Table 3.2 Three examples of binary search on 14 elements

These examples may give us a little more confidence about Algorithm
3.3, but they by no means prove that it is correct. Proofs of algorithms are
very useful because they establish the correctness of the algorithm for all
possible inputs, whereas testing gives much less in the way of guarantees.
Unforlunately, algorithm proving is a very difficult process and the complete
proof of an algorithm can be many times longer than the algorithm itself.
We content ourselves with an informal “proof” of BinSearch.

Theorem 3.1 Algorithm BinSearch(a, n, z) works correctly.

Proof: We assume that all statements work as expected and that compar-
isons such as x > a[mid] are appropriately carried out. Initially low = 1,
high == n, n > 0, and a[1] < a[2] < --- < a[n]. If n = 0, the while loop is

134 CHAPTER 3. DIVIDE-AND-CONQUER

not entered and 0 is returned. Otherwise we observe that each time through
the loop the possible elements to be checked for equality with & are allow],
allow + 1], ..., a[mid], ..., a[high]. If x = a[mid], then the algorithm ter-
minates successfully. Otherwise the range is narrowed by either increasing
low to mid 4+ 1 or decreasing high to mid — 1. Clearly this narrowing of
the range does not affect the outcome of the search. If low becomes greater
than high, then z is not present and hence the loop is exited. O

Notice that to fully test binary search, we need not concern ourselves with
the values of a[l : n]. By varying x sufficiently, we can observe all possible
computation sequences of BinSearch without devising different values for a.
To test all successful searches, x must take on the n values in a. To test all
unsuccessful searches, x need only take on n + 1 different values. Thus the
complexity of testing BinSearch is 2n + 1 for each n.

Now let’s analyze the execution profile of BinSearch. The two relevant
characteristics of this profile are the frequency counts and space required for
the algorithm. For BinSearch, storage is required for the n elements of the
array plus the variables low, high, mid, and z, or n+ 4 locations. As for the
time, there are three possibilities to consider: the best, average, and worst
cases.

Suppose we begin by determining the time for BinSearch on the previ-
ous data set. We observe that the only operations in the algorithm are
comparisons and some arithmetic and data movements. We concentrate on
comparisons between x and the elements in a[|, recognizing that the fre-
quency count of all other operations is of the same order as that for these
comparisons. Comparisons between z and elements of a| | are referred to
as element comparisons. We assume that only one comparison is needed to
determine which of the three possibilities of the if statement holds. The
number of element comparisons needed to find each of the 14 elements is

a: 1] 2] {31 {4 (5] [6] [7] {8 [9] f{10] {11] ([12] [13] [14]
Elements: —-15 —6 0 7 9 23 54 82 101 112 125 131 142 151
Comparisons: 3 4 2 4 3 4 1 4 3 4 2 4 3 4

No element requires more than 4 comparisons to be found. The average
is obtained by summing the comparisons needed to find all 14 items and
dividing by 14; this yields 45/14, or approximately 3.21, comparisons per
successful search on the average. There are 15 possible ways that an unsuc-
cessful search may terminate depending on the value of z. If x < a[l], the
algorithm requires 3 element comparisons to determine that x is not present.
For all the remaining possibilities, BinSearch requires 4 element comparisons.
Thus the average number of element comparisons for an unsuccessful search
is (3 + 14 x 4)/15 = 59/15 ~ 3.93.

The analysis just done applies to any sorted sequence containing 14 ele-
ments. But the result we would prefer is a formula for n elements. A good

3.2. BINARY SEARCH 135

way to derive such a formula plus a better way to understand the algorithm
is to consider the sequence of values for mid that are produced by BinSearch
for all possible values of x. These values are nicely described using a binary
decision tree in which the value in each node is the value of mid. For ex-
ample, if n = 14, then Figure 3.1 contains a binary decision tree that traces
the way in which these values are produced by BinSearch.

Figure 3.1 Binary decision tree for binary search, n = 14

The first comparison is z with a[7]. If z < a[7], then the next comparison
is with «[3]; similarly, if # > a[7], then the next comparison is with a[11].
Fach path through the tree represents a sequence of comparisons in the
binary scarch method. If z is present, then the algorithm will end at one
of the circular nodes that lists the index into the array where z was found.
If is not present, the algorithm will terminate at one of the square nodes.
Circular nodes are called internal nodes, and square nodes are referred to as
external nodes.

Theorem 3.2 Ifnisinthe range [2¥~!, 2¥), then BinSearch makes at most k
element comparisons for a successful search and either k—1 or £ comparisons
for an unsuccessful search. (In other words the time for a successful search
is O(logn) and for an unsuccessful search is O(logn)).

Proof: Consider the binary decision tree describing the action of BinSearch
on n clements. All successful searches end at a circular node whereas all
unsuccessful searches end at a square node. If 26~! < n < 2% then all
circular nodes are at levels 1,2, ...,k whereas all square nodes are at levels

136 CHAPTER 3. DIVIDE-AND-CONQUER

k and k£ + 1 (note that the root is at level 1). The number of element
comparisons needed to terminate at a circular node on level i is i whereas
the number of element comparisons needed to terminate at a square node at
level ¢ is only 7 — 1. The theorem follows. O

Theorem 3.2 states the worst-case time for binary search. To determine
the average behavior, we need to look more closely at the binary decision tree
and equate its size to the number of element comparisons in the algorithm.
The distance of a node from the root is one less than its level. The internal
path length I is the sum of the distances of all internal nodes from the root.
Analogously, the external path length E is the sum of the distances of all
external nodes from the root. It is easy to show by induction that for any
binary tree with n internal nodes, F and I are related by the formula

E=1I+2n

It turns out that there is a simple relationship between E, I, and the
average number of comparisons in binary search. Let A (n) be the average
number of comparisons in a successful search, and A, (n) the average number
of comparisons in an unsuccessful search. The number of comparisons needed
to find an element represented by an internal node is one more than the
distance of this node from the root. Hence,

Asn) =1+1/n

The number of comparisons on any path from the root to an external node
is equal to the distance between the root and the external node. Since every
binary tree with n internal nodes has n + 1 external nodes, it follows that

Ay(n) = E/(n +1)
Using these three formulas for E, A;(n), and A,(n), we find that
Ag(n) = (1+1/n) Ay(n) — 1

From this formula we see that As(n) and A,(n) are directly related. The
minimum value of As(n) (and hence A,(n)) is achieved by an algorithm
whose binary decision tree has minimum external and internal path length.
This minimum is achieved by the binary tree all of whose external nodes are
on adjacent levels, and this is precisely the tree that is produced by binary
search. From Theorem 3.2 it follows that E is proportional to n logn. Using
this in the preceding formulas, we conclude that As(n) and Ay(n) are both
proportional to log n. Thus we conclude that the average- and worst-case
numbers of comparisons for binary search are the same to within a constant

3.2. BINARY SEARCH 137

factor. The best-case analysis is easy. For a successful search only one
element comparison is needed. For an unsuccessful search, Theorem 3.2
states that |logn] element comparisons are needed in the best case.

In conclusion we are now able to completely describe the computing time
of binary search by giving formulas that describe the best, average, and
worst cases:

successful searches unsuccessful searches
©(1), O(logn), ©O(logn) O(logn)
best, average, worst best, average, worst

Can we expect another searching algorithm to be significantly better than
binary search in the worst case? This question is pursued rigorously in
Chapter 10. But we can anticipate the answer here, which is no. The
method for proving such an assertion is to view the binary decision tree as
a general model for any searching algorithm that depends on comparisons
of entire elements. Viewed in this way, we observe that the longest path to
discover any element is minimized by binary search, and so any alternative
algorithm is no better from this point of view.

Before we end this section, there is an interesting variation of binary
search that makes only one comparison per iteration of the while loop.
This variation appears as Algorithm 3.4. The correctness proof of this vari-
ation is left as an exercise.

BinSearch will sometimes make twice as many element comparisons as
BinSearchl (for example, when x > a[n]). However, for successful searches
BinSearchl may make (logn)/2 more element comparisons than BinSearch
(for example, when z = a[mid]). The analysis of BinSearchl is left as an ex-
ercise. It should be easy to see that the best-, average-, and worst-case times
for BinSearchl are O(logn) for both successful and unsuccessful searches.

These two algorithms were run on a Sparc 10/30. The first two rows in
Table 3.3 represent the average time for a successful search. The second set
of two rows give the average times for all possible unsuccessful searches. For
both successful and unsuccessful searches BinSearchl did marginally better
than BinSearch.

EXERCISES

1. Run the recursive and iterative versions of binary search and compare
the times. For appropriate sizes of n, have each algorithm find every
clement in the set. Then try all n + 1 possible unsuccessful searches.

2. Prove by induction the relationship E = I 4+ 2n for a binary tree with
n internal nodes. The variables F¥ and I are the external and internal
path length, respectively.

138 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm BinSearchl(a,n,z)

2 // Same specifications as BinSearch except n > 0
3

4 low = 1; high :==n+ 13

5 // high is one more than possible.

6 while (low < (high — 1)) do

7

8 mid := | (low + high)/2];

9 if (z < a[mid]) then high := mid;

10 // Only one comparison in the loop.
11 else low := mid; // z > a[mid]

12

13 if (z = a[low]) then return low; // z is present.
14 else return 0; // z is not present.

15 }

Algorithm 3.4 Binary search using one comparison per cycle

[Array sizes | 5,000 [10,000 | 15,000 | 20,000 | 25,000 | 30,000 ||
successful searches

BinSearch 51.30 | 67.95 | 67.72 | 73.85 | 76.77 | 73.40

BinSearchl | 47.68 | 53.92 | 61.98 | 67.46 | 68.95 | 7I1.11

unsuccessful searches

BinSearch 50.40 | 66.36 | 76.78 | 79.54 | 78.20 | 81.15

BinSearchl | 41.93 | 52.65 [63.33 | 66.86 | 69.22 [72.26

Table 3.3 Computing times for two binary search algorithms; times are in
microseconds

3.3. FINDING THE MAXIMUM AND MINIMUM 139

3. In an infinite array, the first n cells contain integers in sorted order
and the rest of the cells are filled with co. Present an algorithm that
takes z as input and finds the position of z in the array in ©(logn)
time. You are not given the value of n.

4. Devise a “binary” search algorithm that splits the set not into two sets
of (almost) equal sizes but into two sets, one of which is twice the size
of the other. How does this algorithm compare with binary search?

5. Devise a ternary search algorithm that first tests the element at posi-
tion n/3 for equality with some value x, and then checks the element
at 2n/3 and either discovers z or reduces the set size to one-third the
size of the original. Compare this with binary search.

6. (a) Prove that BinSearchl works correctly.

(b) Verify that the following algorithm segment functions correctly
according to the specifications of binary search. Discuss its com-
puting time.

low := 15 high = n;

repeat {
mid = |(low + high)/2];
if (z > a{mid]) then low := mid;
else high := mid;

} until ((low + 1) = high)

3.3 FINDING THE MAXIMUM
AND MINIMUM

Let us consider another simple problem that can be solved by the divide-
and-conquer technique. The problem is to find the maximum and minimum
items in a set of n elements. Algorithm 3.5 is a straightforward algorithm
to accomplish this.

In analyzing the time complexity of this algorithm, we once again con-
centrate on the number of element comparisons. The justification for this
is that the frequency count for other operations in this algorithm is of the
same order as that for element comparisons. More importantly, when the
elements in a[l : n] are polynomials, vectors, very large numbers, or strings
of characters, the cost of an element comparison is much higher than the
cost ol the other operations. Hence the time is determined mainly by the
total cost of the element comparisons.

StraightMaxMin requires 2(n — 1) element comparisons in the best, aver-
age, and worst cases. An immediate improvement is possible by realizing

140 CHAPTER 3. DIVIDE-AND-CONQUER

Algorithm StraightMaxMin(a, n, maxz, min)
// Set max to the maximum and min to the minimum of a[l : n].

maz = min = a[l];

for i :=2 to n do

{
if (a[¢] > maz) then mazx := a[i;
if (a[i] < min) then min = a[i];

}

= OISk W~

0}

Algorithm 3.5 Straightforward maximum and minimum

that the comparison a[i] < min is necessary only when a[i] > maz is false.
Hence we can replace the contents of the for loop by

if (a[¢] > maz) then maz = a[i;
else if (a[i] < min) then min := a[i];

Now the best case occurs when the elements are in increasing order.
The number of element comparisons is n — 1. The worst case occurs when
the elements are in decreasing order. In this case the number of element
comparisons is 2(n — 1). The average number of element comparisons is less
than 2(n — 1). On the average, a[| is greater than maz half the time, and
so the average number of comparisons is 3n/2 — 1.

A divide-and-conquer algorithm for this problem would proceed as fol-
lows: Let P = (n,ali],...,a[j]) denote an arbitrary instance of the problem.
Here n is the number of elements in the list a[i],...,a[j] and we are inter-
ested in finding the maximum and minimum of this list. Let Small(P)/ be
true when n < 2. In this case, the maximum and minimum are a[i] if n = 1.
If n = 2, the problem can be solved by making one comparison.

If the list has more than two elements, P has to be divided into smaller
instances. For example, we might divide P into the two instances P, =
(In/2],a[l],..., a[[n/2]]) and P, = (n — |n/2] ,a[[n/2] +1],...,a[n]). At
ter having divided P into two smaller subproblems, we can solve them by
recursively invoking the same divide-and-conquer algorithm. How can we
combine the solutions for P, and P, to obtain a solution for P? If MAX(P)
and MIN(P) are the maximum and minimum of the elements in P, then
MAX(P) is the larger of MAX(P;) and MAX(P,). Also, MIN(P) is the
smaller of MIN(P;) and MIN(P,).

3.3. FINDING THE MAXIMUM AND MINIMUM

Algorithm 3.6 results from applying the strategy just described. MaxMin
is a recursive algorithm that finds the maximum and minimum of the set
of elements {a(i),a(i + 1),...,a(j)}. The situation of set sizes one (i = j)
and two (¢ = j — 1) are handled separately. For sets containing more than
two elements, the midpoint is determined (just as in binary search) and two
new subproblems are generated. When the maxima and minima of these
subproblems are determined, the two maxima are compared and the two

minima are compared to achieve the solution for the entire set.

OO0 -3 UL W

— e e e e e e
XTI mw N -

19
20
21
22
23
21
25
26
27
28
29

Algorithm MaxMin(i, j, max, min)

// a[l : n] is a global array. Parameters 7 and j are integers,
// 1 <1< j <n. The effect is to set maz and min to the
// largest and smallest values in a[i : j|, respectively.

if (¢ = j) then maz := min := a[i]; // Small(P)
else if (i = j — 1) then // Another case of Small(P)

if (a[i] < a[j]) then

maz = alj]; min = a[i;
}
else

{
}

maz = a[i]; min = a[j;

}

else
{ // If Pis not small, divide P into subproblems.
// Find where to split the set.
mid == [(i + 7)/2];
// Solve the subproblems.
MaxMin(i, mid, max, min);
MaxMin(mid + 1, 7, maxl, minl);
// Combine the solutions.
if (maz < mazxl) then maz := mazxl;
if (min > minl) then min := minl;

}

Algorithm 3.6 Recursively finding the maximum and minimum

142 CHAPTER 3. DIVIDE-AND-CONQUER

The procedure is initially invoked by the statement
MaxMin(1,n,z,y)
Suppose we simulate MaxMin on the following nine elements:

a: (1] 2] [3] [4] [5] [6] [7] [8] [9]
22 13 -5 -8 15 60 17 31 47

A good way of keeping track of recursive calls is to build a tree by adding a
node each time a new call is made. For this algorithm each node has four
items of information: ¢, j, maz, and min. On the array a[| above, the tree
of Figure 3.2 is produced.

®

19,608
) ®
15228 6.9,60,17
13225 4,5.15-8 6.7.60.17 8.9.4731
o T~ o
12,22.13 33-5-5

Figure 3.2 Trees of recursive calls of MaxMin

Examining Figure 3.2, we see that the root node contains 1 and 9 as the
values of ¢ and j corresponding to the initial call to MaxMin. This execution
produces two new calls to MaxMin, where ¢ and j have the values 1, 5 and
6, 9, respectively, and thus split the set into two subsets of approximately
the same size. From the tree we can immediately see that the maximum
depth of recursion is four (including the first call). The circled numbers in
the upper left corner of each node represent the orders in which maz and
man are assigned values.

3.3. FINDING THE MAXIMUM AND MINIMUM 143

Now what is the number of element comparisons needed for MaxMin? If
T'(n) represents this number, then the resulting recurrence relation is

1 n =2
0 n=—1

{ T([n/2]) + T([n/2]) +2 n>2
T(n) =

When n is a power of two, n = 2% for some positive integer &, then
T(n) 2T(n/2) + 2

2(2T(n/4) +2) + 2

AT(n/4) +4+2

(3.3)

= 2F17(2) + 21<i<k—1 2!
= 2k lyp2k_9-3n/2-2

Note that 3n/2 — 2 is the best-, average-, and worst-case number of com-
parisons when n is a power of two.

Compared with the 2n — 2 comparisons for the straightforward method,
this is a saving of 25% in comparisons. It can be shown that no algorithm
based on comparisons uses less than 3n/2 — 2 comparisons. So in this sense
algorithm MaxMin is optimal (see Chapter 10 for more details). But does
this imply that MaxMin is better in practice? Not necessarily. In terms
of storage, MaxMin is worse than the straightforward algorithm because it
requires stack space for 4, j, max,min,mazl, and minl. Given n elements,
there will be |log; n| +1 levels of recursion and we need to save seven values
for each recursive call (don'’t forget the return address is also needed).

Let. us see what the count is when element comparisons have the same
cost as comparisons between ¢ and j. Let C(n) be this number. First, we
observe that lines 6 and 7 in Algorithm 3.6 can be replaced with

if (6 >4 1) {// Small(P)

to achieve the same effect. Hence, a single comparison between ¢ and j — 1
is adequate to implement the modified if statement. Assuming n = 2% for
some positive integer k, we get

C(n) = { ;C(n/2) +3 Zz;

144 CHAPTER 3. DIVIDE-AND-CONQUER

Solving this equation, we obtain

C(n) 2C(n/2) +3

4C(n/4) +6 +3

hoH

26-1C(2) +3 Y220
2% +3%2F1 3
5n/2 -3

il

ol

The comparative figure for StraightMaxMin is 3(n — 1) (including the com-
parison needed to implement the for loop). This is larger than 5n/2 — 3.
Despite this, MaxMin will be slower than StraightMaxMin because of the
overhead of stacking ¢, 7, max, and min for the recursion.

Algorithm 3.6 makes several points. If comparisons among the elements

of a[| are much more costly than comparisons of integer variables, then the
divide-and-conquer technique has yielded a more efficient (actually an opti-
mal) algorithm. On the other hand, if this assumption is not true, the tech-
nique yields a less-efficient algorithm. Thus the divide-and-conquer strategy
is seen to be only a guide to better algorithm design which may not always
succeed. Also we see that it is sometimes necessary to work out the con-
stants associated with the computing time bound for an algorithm. Both
MaxMin and StraightMaxMin are ©(n), so the use of asymptotic notation is
not enough of a discriminator in this situation. Finally, see the exercises
for another way to find the maximum and minimum using only 3n/2 — 2
comparisons.
Note: In the design of any divide-and-conquer algorithm, typically, it is a
straightforward task to define Small(P) and S(P). So, from now on, we only
discuss how to divide any given problem P and how to combine the solutions
to subproblems.

EXERCISES

1. Translate algorithm MaxMin into a computationally equivalent proce-
dure that uses no recursion.

2. Test your iterative version of MaxMin derived above against Straight-
MaxMin. Count all comparisons.

3. There is an iterative algorithm for finding the maximum and minimum
which, though not a divide-and-conquer-based algorithm, is proba-
bly more efficient than MaxMin. It works by comparing consecutive
pairs of elements and then comparing the larger one with the current
maximum and the smaller one with the current minimum. Write out

3.4. MERGE SORT 145

the algorithmn completely and analyze the number of comparisons it
requires.

4. In Algorithm 3.6, what happens if lines 7 to 17 are dropped? Does the
resultant function still compute the maximum and minimum elements
correctly?

3.4 MERGE SORT

As another example of divide-and-conquer, we investigate a sorting algo-
rithm that has the nice property that in the worst case its complexity is
O(nlogn). This algorithm is called merge sort. We assume throughout that
the elements are to be sorted in nondecreasing order. Given a sequence of
n elements (also called keys) a[l],...,a[n], the general idea is to imagine
them split into two sets a[l],.. [Ln/2J] and a[[n/2] +1],...,a[n]. Each
set is individually sorted, and the resulting sorted sequences are merged to
produce a single sorted sequence of n elements. Thus we have another ideal
example of the divide-and-conquer strategy in which the splitting is into two
equal-sized sets and the combining operation is the merging of two sorted
sets into one.

MergeSort (Algorithm 3.7) describes this process very succinctly using
recursion and a function Merge (Algorithm 3.8) which merges two sorted
sets. Before executing MergeSort, the n elements should be placed in a[1 : n].
Then MergeSort(1,n) causes the keys to be rearranged into nondecreasing
order in a.

Example 3.7 Consider the array of ten elements o[l : 10] = (310, 285, 179,
652, 351, 423, 861, 254, 450, 520). Algorithm MergeSort begins by splitting
a[| into two subarrays each of size five (a[l : 5] and a[6 : 10]). The elements
in a[l : 5] are then split into two subarrays of size three (e[l : 3]) and two
(a[4 : 5]). Then the items in a[l : 3] are split into subarrays of size two
(a[l : 2]) and one (a[3 : 3]). The two values in a[l : 2] are split a final
time into one-element subarrays, and now the merging begins. Note that
no movement of data has yet taken place. A record of the subarrays is
implicitly maintained by the recursive mechanism. Pictorially the file can
now be viewed as

(310 | 285 | 179 | 652, 351 | 423, 861, 254, 450, 520)

wherc vertical bars indicate the boundaries of subarrays. Elements a[1] and
a[2] are merged to yield

(285, 310 | 179 | 652, 351 | 423, 861, 254, 450, 520)

146 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm MergeSort(low, high)

2 // allow : high] is a global array to be sorted.

3 // Small(P) is true if there is only one element
4 // to sort. In this case the list is already sorted.
5

6 if (low < high) then // If there are more than one element
7

8 // Divide P into subproblems.

9 // Find where to split the set.

10 mid := | (low + high)/2];

11 // Solve the subproblems.

12 MergeSort(low, mid);

13 MergeSort(mid + 1, high);

14 // Combine the solutions.

15 Merge(low, mid, high);

16

17 }

Algorithm 3.7 Merge sort

Then a[3] is merged with a1 : 2] and

(179, 285, 310 | 652, 351 | 423, 861, 254, 450, 520)
is produced. Next, elements a[4] and a[5] are merged:

(179, 285, 310 | 351, 652 | 423, 861, 254, 450, 520)
and then a[l : 3] and a[4 : 5]:

(179, 285, 310, 351, 652 | 423, 861, 254, 450, 520)

At this point the algorithm has returned to the first invocation of MergeSort
and is about to process the second recursive call. Repeated recursive calls
are invoked producing the following subarrays:

(179, 285, 310, 351, 652 | 423 | 861 | 254 | 450, 520)

Elements a[6] and a[7] are merged. Then a[8] is merged with a[6 : 7]:

3.4. MERGE SORT 147

Nelio olN Jler i G C NN

U
XD T W N —

19
20
21
22
23
24
25
26
27
28
29
30
31

Algorithm Merge(low, mid, high)

// a[low : high] is a global array containing two sorted

// subsets in allow : mid] and in a[mid + 1 : high]. The goal
// is to merge these two sets into a single set residing

// in af[low : high]. b] is an auxiliary global array.

h = low; i := low; 7 == mid + 1;
while ((h < mid) and (5 < high)) do

if (a[h] < a[j]) then

bli] :== alh];h := h + 1;

}

else

t o
bl :=aljl; j =7 +1;

=141

}
if (h > mid) then
for k£ := j to high do

{
bl¢] := alk]; i : =1+ 15
}
else
for k£ := h to mid do
{

b[¢] :==alk]; i =1+ 1;

}
for k := low to high do a[k] := b[k];
}

Algorithm 3.8 Merging two sorted subarrays using auxiliary storage

148 CHAPTER 3. DIVIDE-AND-CONQUER

(179, 285, 310, 351, 652 | 254, 423, 861 | 450, 520)
Next a[9] and a[10] are merged, and then a[6 : 8] and a[9 : 10]:
(179, 285, 310, 351, 652 | 254, 423, 450, 520, 861)

At this point there are two sorted subarrays and the final merge produces
the fully sorted result

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

(3] [44] [55)

Figure 3.3 Tree of calls of MergeSort(1,10)

Figure 3.3 is a tree that represents the sequence of recursive calls that are
produced by MergeSort when it is applied to ten elements. The pair of values
in each node are the values of the parameters low and high. Notice how
the splitting continues until sets containing a single element are produced.
Figure 3.4 is a tree representing the calls to procedure Merge by MergeSort.
For example, the node containing 1, 2, and 3 represents the merging of
all : 2] with a[3]. m]

If the time for the merging operation is proportional to n, then the com-
puting time for merge sort is described by the recurrence relation

T(n) =1 @ n = 1,0 a constant
(n) = 2T'(n/2) + ecn n > 1,c a constant

3.4. MERGE SORT 149

When n is a power of 2, n = 2% we can solve this equation by successive
substitutions:

T(n) 2(2T(n/4) + cn/2) + cn
4T (n/4) + 2cn

4(2T(n/8) + cn/4) + 2¢cn

I

28T (1) + ken
an + cnlogn

It is easy to see that if 28 < n < 2541 then T'(n) < T(2F*!). Therefore

T(n) = O(nlogn)

Figure 3.4 Tree of calls of Merge

Though Algorithm 3.7 nicely captures the divide-and-conquer nature of
merge sort, there remain several inefficiencies that can and should be elimi-
nated. We present these refinements in an attempt to produce a version of
merge sort that is good enough to execute. Despite these improvements the
algorithm’s complexity remains O(nlogn). We see in Chapter 10 that no
sorting algorithm based on comparisons of entire keys can do better.

One complaint we might raise concerning merge sort is its use of 2n
locations. The additional n locations were needed because we couldn'’t rea-
sonably merge two sorted sets in place. But despite the use of this space the

150 CHAPTER 3. DIVIDE-AND-CONQUER

algorithm must still work hard and copy the result placed into bllow : high]
back into a[low : high] on each call of Merge. An alternative to this copying
is to associate a new field of information with each key. (The elements in
a[] are called keys.) This field is used to link the keys and any associated
information together in a sorted list (keys and related information are called
records). Then the merging of the sorted lists proceeds by changing the link
values, and no records need be moved at all. A field that contains only a link
will generally be smaller than an entire record, so less space will be used.

Along with the original array a[|, we define an auxiliary array link[l : n]
that contains integers in the range [0,n]. These integers are interpreted as
pointers to elements of a[|. A list is a sequence of pointers ending with a
zero. Below is one set of values for link that contains two lists: (@ and R.
The integer (Q = 2 denotes the start of one list and R = 5 the start of the
other.

link: 11 [2] [3] [4] [5] [6] [7] [8]
6 4 7 8 0

The two lists are @ = (2, 4, 1, 6) and R = (5, 3, 7, 8). Interpreting these lists
as describing sorted subsets of a[l : 8], we conclude that a[2] < a[4] < a[l]
< a[6] and a[5] < a[3] < a[7] < a[8].

Another complaint we could raise about MergeSort is the stack space that
is necessitated by the use of recursion. Since merge sort splits each set into
two approximately equal-sized subsets, the maximum depth of the stack is
proportional to log n. The need for stack space seems indicated by the top-
down manner in which this algorithm was devised. The need for stack space
can be eliminated if we build an algorithm that works bottom-up; see the
exercises for details.

As can be seen from function MergeSort and the previous example, even
sets of size two will cause two recursive calls to be made. For small set sizes
most of the time will be spent processing the recursion instead of sorting.
This situation can be improved by not allowing the recursion to go to the
lowest level. In terms of the divide-and-conquer control abstraction, we are
suggesting that when Small is true for merge sort, more work should be done
than simply returning with no action. We use a second sorting algorithm
that works well on small-sized sets.

Insertion sort works exceedingly fast on arrays of less than, say, 16 el-
ements, though for large n its computing time is O(n?). Its basic idea for
sorting the items in a[l : n] is as follows:

for j:=2to ndo {
place a[j] in its correct position in the sorted set a[l : j —1];

3.4. MERGE SORT 151

Though all the elements in a[1 : j—1] may have to be moved to accommodate
alj], for small values of n the algorithm works well. Algorithm 3.9 has the
details.

Algorithm InsertionSort(a,n)
// Sort the array a[l : n] into nondecreasing order, n > 1.

{

for j:=2ton do
{
// a[l: 7 — 1] is already sorted.
item :=alj]; t:=7 — 13
while ((« > 1) and (item < a[i])) do
{

[= SR A S VU N

ali + 1] :=afil; i :=¢ — 13
11

12 ali 4+ 1] := item;

13

1}

Algorithm 3.9 Insertion sort

The statements within the while loop can be executed zero up to a
maximum of 7 times. Since 7 goes from 2 to n, the worst-case time of this
procedure is bounded by

Z j=n(n+1)/2—1=06(n?
2<j<n

Its best-case computing time is ©(n) under the assumption that the body of
the while loop is never entered. This will be true when the data is already
in sorted order.

We are now ready to present the revised version of merge sort with the
inclusion of insertion sort and the links. Function MergeSortl (Algorithm
3.10) is initially invoked by placing the keys of the records to be sorted in
a[l : n] and setting link[1 : n] to zero. Then one says MergeSortl(1,n). A
pointer to a list of indices that give the elements of a] | in sorted order is
returned. Insertion sort is used whenever the number of items to be sorted
is less than 16. The version of insertion sort as given by Algorithm 3.9 needs
to be altered so that it sorts a[low : high] into a linked list. Call the altered
version InsertionSortl. The revised merging function, Mergel, is given in
Algorithm 3.11.

152 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm MergeSortl(low, high)

2 // The global array a[low : high] is sorted in nondecreasing order
3 // using the auxiliary array link[low : high]. The values in link
4 // represent a list of the indices low through high giving a[] in
5 // sorted order. A pointer to the beginning of the list is returned.
6

7 if ((high — low) < 15) then

8 return InsertionSort1(a, link, low, high);

9 else

10 {

11 mid := |(low + high)/2];

12 q := MergeSortl(low, mid);

13 r := MergeSortl(mid + 1, high);

14 return Mergel(q,r);

15

16 }

Algorithm 3.10 Merge sort using links

Example 3.8 As an aid to understanding this new version of merge sort,
suppose we simulate the algorithm as it sorts the eight-element sequence (50,
10, 25, 30, 15, 70, 35, 55). We ignore the fact that less than 16 elements would
normally be sorted using InsertionSort. The link array is initialized to zero.
Table 3.4 shows how the l¢nk array changes after each call of MergeSortl
completes. On each row the value of p points to the list in link that was
created by the last completion of Mergel. To the right are the subsets of
sorted elements that are represented by these lists. For example, in the last
row p = 2 which begins the list of links 2, 5, 3, 4, 7, 1, 8, and 6; this implies
al2] < a[5] < a[3] < a[4] < a[7] < a[l] < a[8] < a[6]. 0

EXERCISES

1. Why is it necessary to have the auxiliary array b[low : high] in function
Merge? Give an example that shows why in-place merging is inefficient.

2. The worst-case time of procedure MergeSort is O(nlogn). What is its
best-case time? Can we say that the time for MergeSort is ©(n logn)?

3. A sorting method is said to be stable if at the end of the method,
identical elements occur in the same order as in the original unsorted

3.4. MERGE SORT 153

OO~ Ui Wi —

10
11
12
13
14
15
16
17
18
19
20)
21
22
23
21 }

Algorithm Mergel(q,r)

// q and r are pointers to lists contained in the global array

// link[0 : n]. link[0] is introduced only for convenience and need
// not be initialized. The lists pointed at by ¢ and r are merged
// and a pointer to the beginning of the merged list is returned.

1:=q;5:=71; k:=0;
// The new list starts at link|0].
while ((# 0) and (j # 0)) do
{ // While both lists are nonempty do
if (a[i] < alj]) then
{ // Find the smaller key.
link[k] == 5 k := 1; ¢ := link[i];
// Add a new key to the list.

else
link[k] == j; k == j; 7 == link[j];
1 ‘ _
if (i = 0) then link[k] := j;

else link[k] == ¢
return /ink[0];

Algorithm 3.11 Merging linked lists of sorted elements

154 CHAPTER 3. DIVIDE-AND-CONQUER

©© @O @ 3 @ 6 6 (O ©
a: 50 100 25 30 15 35 55
link: 0 0 o0 0 0 0 0 0 O
arp
122 2 0o 1 0 0O 0O 0 0 0 (10,50
343 3 0 1 4 0 0 0 0 0 (10, 50), (25, 30)
232 2 0 3 4 1 0 0 0 0 (10,25 30, 50)
565 5 0 3 4 1 6 0 0 0 (10,2530, 50), (15, 70)
787 7 0 3 4 1 6 0 8 0 (10,25,30,50), (15, 70), (35, 55)
575 5 0 3 4 1 7 0 8 6 (10,2530, 50) (15, 35, 55, 70)
252 2 8 5 4 7T 3 0 1 6 (10,15, 25, 30,35, 50, 55, 70)

MergeSortl applied to a[l : 8] = (50, 10, 25, 30, 15, 70, 35, 55)

Table 3.4 Example of link array changes

set. Is merge sort a stable sorting method?

4. Suppose a[l : m] and b[1 : n] both contain sorted elements in non-
decreasing order. Write an algorithm that merges these items into
¢[l : m + n]. Your algorithm should be shorter than Algorithm 3.8
(Merge) since you can now place a large value in a[m + 1] and b[n + 1].

5. Given a file of n records that are partially sorted as z1 < 29 < --- <z,
and T4 < --- < zp, is it possible to sort the entire file in time O(n)
using only a small fixed amount of additional storage?

6. Another way to sort a file of n records is to scan the file, merge consec-
utive pairs of size one, then merge pairs of size two, and so on. Write
an algorithm that carries out this process. Show how your algorithm
works on the data set (100, 300, 150, 450, 250, 350, 200, 400, 500).

7. A version of insertion sort is used by Algorithm 3.10 to sort small
subarrays. However, its parameters and intent are slightly different
from the procedure InsertionSort of Algorithm 3.9. Write a version of
insertion sort that will work as Algorithm 3.10 expects.

8. The sequences X1, Xa, ..., Xy are sorted sequences such that Efil | X;| =
n. Show how to merge these ¢ sequences in time O(nlog?).

3.5 QUICKSORT

The divide-and-conquer approach can be used to arrive at an efficient sorting
method different from merge sort. In merge sort, the file a[l : n] was divided

3.5. QUICKSORT 155

at its midpoint into subarrays which were independently sorted and later
merged. In quicksort, the division into two subarrays is made so that the
sorted subarrays do not need to be merged later. This is accomplished by
rearranging the elements in a[l : n] such that a[i] < a[j] for all ¢ between 1
and 7n and all j between m + 1 and n for some m, 1 < m < n. Thus, the
elements in afl : m] and a[m +1 : n] can be independently sorted. No merge
is necded. The rearrangement of the elements is accomplished by picking
some element of af |, say ¢ = a[s], and then reordering the other elements
so that all elements appearing before ¢ in a[l : n] are less than or equal to
t and all elements appearing after ¢ are greater than or equal to . This
rearranging is referred to as partitioning.

Function Partition of Algorithm 3.12 (due to C. A. R. Hoare) accomplishes
an in-place partitioning of the elements of a[m : p — 1]. It is assumed that
a[p] > a[m] and that a[m] is the partitioning element. Ifm =1 and p—1 = n,
then a[n + 1] must be defined and must be greater than or equal to all
elements in a[l : n]. The assumption that a[m] is the partition element is
merely for convenience; other choices for the partitioning element than the
first item in the set are better in practice. The function Interchange(a, i, j)
exchanges at] with a[j].

Example 3.9 As an example of how Partition works, consider the following
array of nine elements. The function is initially invoked as Partition(a, 1, 10).
The ends of the horizontal line indicate those elements which were inter-
changed to produce the next row. The element a[1] = 65 is the partitioning
element and it is eventually (in the sixth row) determined to be the fifth
smallest element of the set. Notice that the remaining elements are unsorted
but partitioned about a[5] = 65. O

() 2 B @ () (6)) (9 (10)
65 70 80 85 60 50 45 +o00 2 9

~—
—

-1
~—

ot

[S2
P
=

(@2

65 45 75 80 8 60 55 50 70 +o00 3 8

65 45 50 8 8 60 55 7 70 400 4 7

65 45 50 55 8 60 80 T 70 +o00 5 6

65 45 50 55 60 8 8 75 70 400 6 5

60 45 50 55 65 8 80 T 70 + oo

Using Hoare’s clever method of partitioning a set of elements about a
chosen element, we can directly devise a divide-and-conquer method for
completely sorting n elements. Following a call to the function Partition,
two sets 57 and Sy are produced. All elements in S are less than or equal

156 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm Partition(a, m, p)

2 // Within a[m],alm + 1],...,a[p — 1] the elements are
3 // rearranged in such a manner that if initially ¢t = a[m],
4 // then after completion a[g] = ¢ for some g between m
5 [J/andp—1,alk] <tform <k <gq,andalk] >t

6 // for g <k <p. qisreturned. Set a[p] =

7 |

8 v:=a[ml; i :=m; j := p;

9 repeat

10

11 repeat

12 Q=141

13 until (a[f] > v);

14 repeat

15 ji=3—1

16 until (a[j] < ’U)

17 if (i < j) then Interchange(a, i, j);

18 } until (i > j);

19 a[m] := alj]; alj] := v; return j;

20 }

1 Algorithm Interchange(a, 1, j)

2 // Exchange a[i] with alj].

3 {

4 = alil;

5 [] = aljl; aly] := p;

6 }

Algorithm 3.12 Partition the array a[m : p — 1] about a[m)]

3.5. QUICKSORT 157

to the elements in S3. Hence S; and S can be sorted independently. Each
set is sorted by reusing the function Partition. Algorithm 3.13 describes the
complete process.

1 Algorithm QuickSort(p, q)

2 // Sorts the elements a[p], ..., a[q] which reside in the global
3 // array al : n] into ascending order; a[n + 1] is considered to
4 // be defined and must be > all the elements in a[l : n].

5

6 if (p < ¢) then // If there are more than one element

7

8 // divide P into two subproblems.

9 j := Partition(a,p,q + 1);

10 // j is the position of the partitioning element.
11 // Solve the subproblems.

12 QuickSort(p, 5 — 1);

13 QuickSort(j + 1, q);

14 // There is no need for combining solutions.

r

16}

Algorithm 3.13 Sorting by partitioning

In analyzing QuickSort, we count only the number of element comparisons
C(n). It is easy to see that the frequency count of other operations is of the
same order as C(n). We make the following assumptions: the n elements to
be sorted are distinct, and the input distribution is such that the partition
element v = a[m] in the call to Partition(a, m, p) has an equal probability of
being the ith smallest element, 1 <¢ <p—m, inalm:p—1].

First, let us obtain the worst-case value Cy(n) of C(n). The number of
element comparisons in each call of Partition is at most p —m + 1. Let r
be the total number of elements in all the calls to Partition at any level of
recursion. At level one only one call, Partition(a,1,n+1), is made and r = n;
at level two at most two calls are made and r = n — 1; and so on. At each
level of recursion, O(r) element comparisons are made by Partition. At each
level, r is at least one less than the r at the previous level as the partitioning
elements of the previous level are eliminated. Hence Cy,(n) is the sum on r
as r varies from 2 to n, or O(n?). Exercise 7 examines input data on which
QuickSort uses (n?) comparisons.

The average value Ca(n) of C(n) is much less than Cy(n). Under the
assumptions made earlier, the partitioning element v has an equal probability

158 CHAPTER 3. DIVIDE-AND-CONQUER

of being the ith-smallest element, 1 < i < p —m, in a[m : p — 1]. Hence the
two subarrays remaining to be sorted are a[m : j] and a[j + 1 : p — 1] with
probability 1/(p — m),m < j < p. From this we obtain the recurrence

Ca(n) e > [Ca(k—1)) + Ca(n — k)] (3.5)
1<k<n

The number of element comparisons required by Partition on its first call
is n + 1. Note that C4(0) = C4(1) = 0. Multiplying both sides of (3.5) by
n, we obtain

nCa(n) =n(n+1) +2[Ca(0) + Ca(1) +--- + Ca(n —1)] (3.6)
Replacing n by n — 1 in (3.6) gives
(n—=1)Ca(n —1) =n(n—1) + 2[Ca(0) + - -- + Ca(n — 2)]

Subtracting this from (3.6), we get

nCa(n) —(n —1)Ca(n—1) = 2n+2C4(n—1)
Ca(n)/(n+1) = Ca(n—1)/n+2/(n+1)

Repeatedly using this equation to substitute for Ca(n — 1), Ca(n — 2),...,
we get

Ca(n _ CA!n—2!+2_+ 2

n+1 - n—1 n n+1

Ca(n—-3) 2 2 2
An—2 +h‘—_1+ﬁ+n+1

(3.7)
Ca(l

_ 1
= 5 22 3<k<nil %
= 2 E3§k§n+1 k

Since

1 n+l |
Z —S/ — dz = log,(n + 1) —log, 2
k 2 T

(3.7) yields

3.5. QUICKSORT 159

Ca(n) < 2(n+ 1)[log,(n + 2) —log, 2] = O(nlogn)

Even though the worst-case time is O(n?), the average time is only O(n logn).
Let us now look at the stack space needed by the recursion. In the worst case
the maximum depth of recursion may be n — 1. This happens, for example,
when the partition element on each call to Partition is the smallest value in
a[m : p—1]. The amount of stack space needed can be reduced to O(logn)
by using an iterative version of quicksort in which the smaller of the two
subarrays a[p : j — 1] and a[j + 1 : ¢] is always sorted first. Also, the second
recursive call can be replaced by some assignment statements and a jump
to the beginning of the algorithm. With these changes, QuickSort takes the
form of Algorithm 3.14.

We can now verify that the maximum stack space needed is O(logn). Let
S(n) be the maximum stack space needed. Then it follows that

s<n>g{g+s<un—1>/2n n>1

which is less than 2 log 7.

As remarked in Section 3.4, InsertionSort is exceedingly fast for 1 less than
about 16. Hence InsertionSort can be used to speed up QuickSort2 whenever
g —p < 16. The exercises explore various possibilities for selection of the
partition element.

3.5.1 Performance Measurement

QuickSort and MergeSort were evaluated on a SUN workstation 10/30. In
both cases the recursive versions were used. For QuickSort the Partition func-
tion was altered to carry out the median of three rule (i.e. the partitioning
element was the median of a[m/], a[| (m +p—1)/2|] and a[p—1]). Each data
set cousisted of random integers in the range (0, 1000). Tables 3.5 and 3.6
record the actual computing times in milliseconds. Table 3.5 displays the
average computing times. For each n, 50 random data sets were used. Table
3.6 shows the worst-case computing times for the 50 data sets.

Scanning the tables, we immediately see that QuickSort is faster than
MergeSort for all values. Even though both algorithms require O(nlogn)
time on the average, QuickSort usually performs well in practice. The exer-
cises discuss other tests that would make useful comparisons.

3.5.2 Randomized Sorting Algorithms

Though algorithm QuickSort has an average time of O(n logn) on n elements,
its worst-case time is O(n?). On the other hand it does not make use of any

160 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm QuickSort2(p, q)

2 // Sorts the elements in a[p : q].

3

4 // stack is a stack of size 2log(n).

5 repeat

6

7 while (p < g) do

8

9 J := Partition(a, p,q + 1);

10 if ((j—p) < (g - §)) then

12 Add(5 +1); // Add j + 1 to stack.

13 Add(q); ¢ :=3j —1; // Add q to stack
14

15 else

16 {

17 Add(p); // Add p to stack.

18 Add(j — 1);p:=75+1; // Add j — 1 to stack
19

20 } // Sort the smaller subfile.

21 if stack is empty then return;

22 Delete(q); Delete(p); // Delete ¢ and p from stack.
23 } until (false);

24

Algorithm 3.14 Iterative version of QuickSort

additional memory as does MergeSort. A possible input on which QuickSort
displays worst-case behavior is one in which the elements are already in
sorted order. In this case the partition will be such that there will be only
one element in one part and the rest of the elements will fall in the other
part. The performance of any divide-and-conquer algorithm will be good if
the resultant subproblems are as evenly sized as possible. Can QuickSort be
modified so that it performs well on every input? The answer is yes. Is the
technique of using the median of the three elements a[p], a[|(¢ +p)/2]], and
alg] the solution? Unfortunately it is possible to construct inputs for which
even this method will take €2(n?) time, as is explored in the exercises.

The solution is the use of a randomizer. While sorting the array alp : ¢,
instead of picking a[m], pick a random element (from among a[p], ... ,a[g])
as the partition element. The resultant randomized algorithm (RQuickSort)

3.5. (QUICKSORT 161

R [1000 | 2000 | 3000 | 4000] 5000 |
MergeSort | 72.8 | 167.2 | 275.1 | 378.5 | 500.6
QuickSort | 36.6 | 85.1 | 138.9 | 205.7 | 269.0
2 [6000 | 7000 | 8000 | 9000] 10000 |

MergeSort | 607.6 | 723.4 | 811.5 | 949.2 | 1073.6
uickSort | 339.4 | 411.0 | 487.7 | 556.3 | 645.2

Table 3.5 Average computing times for two sorting algorithms on random
inputs

T [1000 | 2000 | 3000 | 4000 [5000 |

MergeSort | 105.7 | 206.4 | 335.2 | 422.1 | 589.9
QuickSort | 41.6 | 97.1 | 158.6 | 244.9 | 397.8

B [6000 | 7000] 8000 [9000 | 10000 |

MergeSort | 691.3 | 794.8 | 889.5 | 1067.2 | 1167.6
QuickSort | 383.8 [497.3 [569.9 | 616.2 | 738.1

Table 3.6 Worst-case computing times for two sorting algorithms on ran-
dom inputs

162 CHAPTER 3. DIVIDE-AND-CONQUER

works on any input and runs in an expected O(nlogn) time, where the
expectation is over the space of all possible outcomes for the randomizer
(rather than the space of all possible inputs). The code for RQuickSort is
given in Algorithm 3.15. Note that this is a Las Vegas algorithm since it
will always output the correct answer. Every call to the randomizer Random
takes a certain amount of time. If there are only a very few elements to
sort, the time taken by the randomizer may be comparable to the rest of the
computation. For this reason, we invoke the randomizer only if (¢ — p) > 5.
But 5 is not a magic number; in the machine employed, this seems to give
the best results. In general this number should be determined empirically.

1 Algorithm RQuickSort(p, q)

2 // Sorts the elements a[p],. .., a[g] which reside in the global
3 // array o[l : n] into ascending order. a[n + 1] is considered to
4 // be defined and must be > all the elements in a[l : n].

)

6 if (p < ¢) then

7

8 if ((¢ —p) > 5) then

9 Interchange(a, Random() mod (q — p + 1) + p, p);
10 j := Partition(a,p,q + 1);

11 // j is the position of the partitioning element.
12 RQuickSort(p, j — 1);

13 RQuickSort(j + 1, q);

14

15 }

Algorithm 3.15 Randomized quick sort algorithm

The proof of the fact that RQuickSort has an expected O(nlogn) time
is the same as the proof of the average time of QuickSort. Let A(n) be the
average time of RQuickSort on any input of n elements. Then the number of
elements in the second part will be 0,1,2,...,n—2, or n—1, all with an equal
probability of % (in the probability space of outcomes for the randomizer).
Thus the recurrence relation for A(n) will be

A(n) = 1 Z (Alk—1)+ A(n—k))+n+1
"1 <k<n
This is the same as Equation 3.4, and hence its solution is O(n logn).

RQuickSort and QuickSort (without employing the median of three ele-
ments rule) were evaluated on a SUN 10/30 workstation. Table 3.7 displays

3.5. (QUICKSORT 163

the times for the two algorithms in milliseconds averaged over 100 runs. For
each n, the input considered was the sequence of numbers 1,2,...,n. As
we can sce from the table, RQuickSort performs much better than QuickSort.
Note that the times shown in this table for QuickSort are much more than
the corresponding entries in Tables 3.5 and 3.6. The reason is that Quick-
Sort makes ©(n?) comparisons on inputs that are already in sorted order.
However, on random inputs its average performance is very good.

[71000 | 2000 | 3000 | 4000 | 5000 |

QuickSort 195.5 | 759.2 | 1728 | 3165 | 4829
RQuickSort | 9.4 21.0 130.5 | 41.6 | 52.8

Table 3.7 Comparison of QuickSort and RQuickSort on the input afi] =
i, 1 < ¢ < n; times are in milliseconds.

The performance of RQuickSort can be improved in various ways. For
example, we could pick a small number (say 11) of the elements in the
array a[| randomly and use the median of these elements as the partition
element. These randomly chosen elements form a random sample of the
array clements. We would expect that the median of the sample would also
be an approximate median of the array and hence result in an approximately
even partitioning of the array.

An even more generalized version of the above random sampling technique
is shown in Algorithm 3.16. Here we choose a random sample S of s elements
(where s is a function of n) from the input sequence X and sort them using
HeapSort, MergeSort, or any other sorting algorithm. Let £, 45, ..., 45 be the
sorted sample. We partition X into s 4+ 1 parts usiug the sorted sample as
partition keys. In particular X1 = {z € X|z <4 }; X; ={z € X|{{;i-1 <z <
¢}, fori=2,3,... s and X1 = {x € X|z > £;}. After having partitioned
X into s+ 1 parts, we sort each part recursively. For a proper choice of s, the
number of comparisons made in this algorithm is only 7 logn + o(nlogn).
Note the constant 1 before nlogn. We see in Chapter 10 that this number
is very close to the information theoretic lower bound for sorting.

Choose s = Eg—’—lyﬁ The sample can be sorted in O(slogs) = O(logn
and comparisons if we use HeapSort or MergeSort. If we store the sorted
sample clements in an array, say 8] |, for each z € X, we can determine
which part X; it belongs to in < logn comparisons using binary search on
b[]. Thus the partitioning process takes nlogn + O(n) comparisons. In the

exercises you are asked to show that with high probability the cardinality

) time

164 CHAPTER 3. DIVIDE-AND-CONQUER

Algorithm RSort(a,n)
// Sort the elements a[l : n].

Randomly sample s elements from a[J;

Sort this sample;

Partition the input using the sorted sample as partition keys;
Sort each part separately;

XIS W=

}

Algorithm 3.16 A randomized algorithm for sorting

of each X; is no more than 6(% logn) = O(log®n). Using HeapSort or
MergeSort to sort each of the X;’s (without employing recursion on any of
them), the total cost of sorting the X;’s is

gy s+1
i; O(1Xi]log| Xil) = max {log | X;} ; oUIXi))

Since each | X;| is O(log® n), the cost of sorting the s+1 parts is O(n log log n) =
o(nlogn). In summary, the number of comparisons made in this randomized
sorting algorithm is nlogn + o(n logn).

EXERCISES

1. Show how QuickSort sorts the following sequences of keys: 1, 1, 1, 1,
1,1,1 and 5, 5, 8, 3, 4, 3, 2.

2. QuickSort is not a stable sorting algorithm. However, if the key in a[¢]
is changed to ali] * n + i — 1, then the new keys are all distinct. After
sorting, which transformation will restore the keys to their original
values?

3. In the function Partition, Algorithm 3.12, discuss the merits or de-
merits of altering the statement if (i < j) to if (i < 7). Simulate both
algorithms on the data set (5, 4, 3, 2, 5, 8, 9) to see the difference in
how they work. ‘

4. Function QuickSort uses the output of function Partition, which returns
the position where the partition element is placed. If equal keys are
present, then two elements can be properly placed instead of one. Show

3.6. SELECTION 165

how you might change Partition so that QuickSort can take advantage
of this situation.

5. In addition to Partition, there are many other ways to partition a set.
Consider modifying Partition so that ¢ is incremented while a[i] < v
instead of ali] < v. Rewrite Partition making all of the necessary
changes to it and then compare the new version with the original.

6. Compare the sorting methods MergeSortl and QuickSort2 (Algorithm
3.10 and 3.14, respectively). Devise data sets that compare both the
awverage- and worst-case times for these two algorithms.

7. (a) On which input data does the algorithm QuickSort exhibit its
worst-case
behavior?

(b) Answer part (a) for the case in which the partitioning element is
selected according to the median of three rule.

8. With MergeSort we included insertion sorting to eliminate the book-
keeping for small merges. How would you use this technique to improve
QuickSort?

9. Take the iterative versions of MergeSort and QuickSort and compare
them for the same-size data sets as used in Section 3.5.1.

10. Let S be a sample of s elements from X. If X is partitioned into
s+ 1 parts as in Algorithm 3.16, show that the size of each part is

O(%logn).

3.6 SELECTION

The Partition algorithm of Section 3.5 can also be used to obtain an efficient
solution for the selection problem. In this problem, we are given n elements
a[l : n] and are required to determine the kth-smallest element. If the
partitioning element v is positioned at a[j], then j —1 elements are less than
or equal to a[j] and n — j elements are greater than or equal to a[j]. Hence
if k& < j, then the kth-smallest element is in [l : j — 1]; if £ = j, then
a[f] is the kth-smallest element; and if k£ > j, then the kth-smallest element
is the (b — j)th-smallest element in a[j + 1 : n]. The resulting algorithm
is function Selectl (Algorithm 3.17). This function places the kth-smallest
element into position alk] and partitions the remaining elements so that
ali] < alk], 1 <i<k,and ali] > alk], k <i<mn.

Example 3.10 Let us simulate Selectl as it operates on the same array
used to test Partition in Section 3.5. The array has the nine elements 65, 70,

166 CHAPTER 3. DIVIDE-AND-CONQUER

1 Algorithm Selectl(a,n, k)

2 // Selects the kth-smallest element in a[l : n] and places it

3 // in the kth position of a[]. The remaining elements are

4 // rearranged such that a[m] < a[k] for 1 <m < k, and

5 [/ a[m] > alk] for k <m <mn.

6

7 low:= 15 up :=n+1;

8 a[n + 1] := oo; // a[n + 1] is set to infinity.

9 repeat

10

11 // Each time the loop is entered,

12 [/ 1<low<k<up<n+1.

13 J := Partition(a, low, up);

14 // j is such that a[j] is the jth-smallest value in af].
15 if (k = j) then return;

16 else if (k < j) then up:=j; // j is the new upper limit.
17 else low:=j+1; // 7+ 1 is the new lower limit.
18 } until (false);

19 }

Algorithm 3.17 Finding the kth-smallest element

75, 80, 85, 60, 55, 50, and 45, with a[10] = co. If £ = 5, then the first call of
Partition will be sufficient since 65 is placed into a[5]. Instead, assume that
we are looking for the seventh-smallest element of a, that is, k = 7. The
next invocation of Partition is Partition(6, 10).

a: (5) (6) (1) () (9) (10)
65 8 80 75 70 +oo

65 70 80 75 8 +4oo

This last call of Partition has uncovered the ninth-smallest element of a. The
next invocation is Partition(6,9).

a: (5) (6) (1) (8) (9) (10)
- 65 70 80 75 85 +oo

66 70 80 75 85 +4oo

This time, the sixth element has been found. Since k # j, another call to
Partition is made, Partition(7,9).

3.6. SELECTION 167

a: (5) (6) (1) (8) (9 (10)
65 70 80 75 85 oo

65 70 75 80 85 +4oo

Now 81) is the partition value and is correctly placed at a[8]. However, Selectl
has still not found the seventh-smallest element. It needs one more call to
Partition, which is Partition(7, 8). This performs only an interchange between
a[7] and a[8] and returns, having found the correct value. O

In analyzing Selectl, we make the same assumptions that were made for
QuickSort:

1. The n elements are distinct.

2. The input distribution is such that the partition element can be the
ith-smallest element of a[m : p — 1] with an equal probability for each
1, 1 <i<p—m.

Partition requires O(p — m) time. On each successive call to Partition,
either m increases by at least one or j decreases by at least one. Initially
m = | and j = n + 1. Hence, at most n calls to Partition can be made.
Thus, the worst-case complexity of Selectl is O(n?). The time is Q(n?), for
example, when the input a[l : n] is such that the partitioning element on
the ith call to Partition is the ith-smallest element and £ = n. In this case,
m increases by one following each call to Partition and j remains unchanged.
Hence, 7 calls are made for a total cost of O(37i) = O(n?). The average
computing time of Selectl is, however, only O(n). Before proving this fact,
we specify more precisely what we mean by the average time.

Let T%(n) be the average time to find the kth-smallest element in a[1 : n].
This average is taken over all n! different permutations of n distinct elements.
Now define T4 (n) and R(n) as follows:

Ta(n) == Y Ti(n)

1<k<n
and

R(n) = max {T% (n)}

T'4(n) is the average computing time of Selectl. It is easy to see that Tx(n) <
R(n). We are now ready to show that T4(n) = O(n).

Theorem 3.3 The average computing time T4(n) of Selectl is O(n).

168 CHAPTER 3. DIVIDE-AND-CONQUER

Proof: On the first call to Partltlon the partltlomng element v is the ith-
smallest element with probablhty 2.1 < i < n (this follows from the as-
sumption on the input dlstrlbutlon) The time required by Partition and the
if statement in Selectl is O(n). Hence, there is a constant ¢, ¢ > 0, such that

TE(n) < cn+ [ThYn—i)y+ Y Ti(i-1)], n>2
1<z<k k<i<n
So, R(n) < en+— max{z (n—1)+ Z (i —1)}
1<i<k k<i<n
n-—1
R(n) < en+ max{ Z + Y R(>#)}, n>2 (3.8)
n—k+1 k

We assume that ¢ is chosen such that R(1) < ¢ and show, by induction on
n, that R(n) < 4cn.
Induction Base: For n = 2, (3.8) gives

R(n)

IN

1
2¢c+ 5 max {R(1), R(1)}
< 2.5¢ < 4en

Induction Hypothesis: Assume R(n) < 4cn for all n,2 <n < m.
Induction Step: For n = m, (3.8) gives

m—k+1 k

m~—1 m—1
R(m) <em + % max { Z R(i) + ZR(Z)}

Since we know that R(n) is a nondecreasing function of n, it follows that

m—1 m-—1
> R(G)+ Y R(i)
m-—k+1 k

is maximized if k = % when m is even and k = m—;l when m is odd. Thus,

if m is even, we obtain

R(m) < em+ — ZR
m/2

3.6. SELECTION 169

8cm=l
cm + —)
—2

<
m/2
< 4em
9 m-—1
If misodd,R(im) < em+ — Z R(3)
™ (mt1)/2
< 8¢ mgél
cm + —
" (m1)/2
< 4em

Since T4(n) < R(n), it follows that T4(n) < 4cn, and so Tx(n) is O(n). O
The space needed by Selectl is O(1).

Algorithm 3.15 is a randomized version of QuickSort in which the partition
element is chosen from the array elements randomly with equal probability.
The same technique can be applied to Selectl and the partition element can
be chosen to be a random array element. The resulting randomized Las
Vegas algorithm (call it RSelect) has an expected time of O(n) (where the
expectation is over the space of randomizer outputs) on any input. The
proof of this expected time is the same as in Theorem 3.3.

3.6.1 A Worst-Case Optimal Algorithm

By choosing the partitioning element v more carefully, we can obtain a se-
lection algorithm with worst-case complexity O(n). To obtain such an al-
gorithin, v must be chosen so that at least some fraction of the elements
is smaller than v and at least some (other) fraction of elements is greater
than ». Such a selection of v can be made using the median of medians
(mm) rule. In this rule the n elements are divided into |n/r| groups of r
elements each (for some r,7 > 1). The remaining n — r [n/r| elements are
not used. The median m; of each of these |n/r] groups is found. Then, the
median mm of the m;’s, 1 < i < |n/r|, is found. The median mm is used
as the partitioning element. Figure 3.5 illustrates the m;’s and mm when
n = 35 and r = 7. The five groups of elements are B;,1 < ¢ < 5. The
seven clements in each group have been arranged into nondecreasing order
down the column. The middle elements are the m;’s. The columns have
been arranged in nondecreasing order of m;. Hence, the m; corresponding
to column 3 is mm.

Since the median of r elements is the [r/2]th-smallest element, it follows
(see Figure 3.5) that at least [[n/r] /2] of the m;’s are less than or equal to
mm and at least [n/r|—[|n/r] /2] +1 > [|n/r] /2] of the m;’s are greater
than or equal to mm. Hence, at least [r/2][|n/r| /2] elements are less than

170 CHAPTER 3. DIVIDE-AND-CONQUER

elements < mm nondecreasing order

r—-—---- -7 M

| |

| |

| |

| |

| |

| |

| | .

{ {
. | ri_\ 77777 B
medians — = . - om !
A |
| |
| |
| |
| |
| |
| |
| |
L - - - - _

B, B, By B, Bjs

Figure 3.5 The median of medians whenr =7, n = 35

or equal to (or greater than or equal to) mm. When r = 5, this quantity is
at least 1.5 [n/5]. Thus, if we use the median of medians rule with r = 5 to
select v = mm, we are assured that at least 1.5 |n/5| elements will be greater
than or equal to v. This in turn implies that at most n—1.5 [n/5] < .7Tn+1.2

elements are less than v. Also, at most .7n 4+ 1.2 elements are greater than
v. Thus, the median of medians rule satisfies our earlier requirement on v.

The algorithm to select the kth-smallest element uses the median of me-
dians rule to determine a partitioning element. This element is computed by
a recursive application of the selection algorithm. A high-level description
of the new selection algorithm appears as Select2 (Algorithm 3.18). Select2
can now be analyzed for any given r. First, let us consider the case in which
r =5 and all elements in af | are distinct. Let T'(n) be the worst-case time
requirement of Select2 when invoked with up —low+1 = n. Lines 4 to 9 and
11 to 12 require at most O(n) time (note that since r = 5 is fixed, each m][¢]
(lines 8 and 9) can be found in O(1) time). The time for line 10 is T'(n/5).
Let S and R, respectively, denote the elements a[low : j—1] and a[j+1 : up].
We see that |S| and |R| are at most .7n + 1.2, which is no more than 3n/4
for n > 24. So, the time for lines 13 to 16 is at most T'(3n/4) when n > 24.
Hence, for n > 24, we obtain

3.6. SELECTION 171

1 Algorithm Select2(a, k, low, up)

2 // Find the k-th smallest in allow : up].

3

4 n:=up — low+ 1;

5 if (n < r) then sort allow : up] and return the k-th element;
6 Divide a[low : up] into n/r subsets of size r each;

7 Ignore excess elements;

8 Let m[i], 1 <i < (n/r) be the set of medians of

9 the above n/r subsets.

10 v := Select2(m, [(n/r)/2],1,n/7);

11 Partition a[low : up] using v as the partition element;
12 Asgsuine that v is at position j;

13 if (k = (j —low + 1)) then return v;

14 elseif (k < (j —low + 1)) then

15 return Select2(a, k, low,j — 1);

16 else return Select2(a,k — (j — low + 1), 5 + 1, up);
17 }

Algorithm 3.18 Selection pseudocode using the median of medians rule

T(n) <T(n/5) +T(3n/4) +cn (3.9)

where ¢ is chosen sufficiently large that
T(n) <cen forn<24

A proof by induction easily establishes that T(n) < 20cn for n > 1.
Algorithin Select2 with r = 5 is a linear time algorithm for the selection
problein on distinct elements! The exercises examine other values of r that
also yield this behavior. Let us now see what happens when the elements of
a[] are not all distinct. In this case, following a use of Partition (line 11), the
size of S or R may be more than .7n 4+ 1.2 as some elements equal to v may
appear in both S and R. One way to handle the situation is to partition a[|
into three sets U, S, and R such that U contains all elements equal to v, S
has all elements smaller than v, and R has the remainder. Lines 11 to 16
become:

Partition a[| into U, S, and R as above.
if (|S| > k) then return Select2(a, k, low,low + | S| — 1);
else if ((|S| + |U|) > k) then return v;

else return Select2(a, k — |S| — |U|, low + | S| + |U|, up);

172 CHAPTER 3. DIVIDE-AND-CONQUER

When this is done, the recurrence (3.9) is still valid as [S| and |R| are <
.7n + 1.2. Hence, the new Select2 will be of linear complexity even when
elements are not distinct.

Another way to handle the case of nondistinct elements is to use a different
r. To see why a different r is needed, let us analyze Select2 with r = 5 and
nondistinct elements. Consider the case when .7n+1.2 elements are less than
v and the remaining elements are equal to v. An examination of Partition
reveals that at most half the remaining elements may be in 5. We can verify
that this is the worst case. Hence, |S| < .7n +1.2+(.3n—1.2)/2 = .85n+.6.
Similarly, |R| < .85n + .6. Since, the total number of elements involved in
the two recursive calls (in lines 10 and 15 or 16) is now 1.05n + .6 > n, the
complexity of Select2 is not O(n). If we try r = 9, then at least 2.5 [n/9]
elements will be less than or equal to v and at least this many will be
greater than or equal to v. Hence, the size of S and R will be at most
n—2.5[n/9] +1/2(2.5[n/9]) =n—1.25 [n/9] <31/36n +1.25 < 63n/72
for n > 90. Hence, we obtain the recurrence

T(n) <

T(n/9) + T(63n/72) +cin n > 90
can n < 90

where ¢; is a suitable constant. An inductive argument shows that T'(n) <
72¢in,n > 1. Other suitable values of r are obtained in the exercises.

As far as the additional space needed by Select2 is concerned, we see
that space is needed for the recursion stack. The recursive call from line
15 or 16 is easily eliminated as this call is the last statement executed in
Select2. Hence, stack space is needed only for the recursion from line 10.
The maximum depth of recursion is log n. The recursion stack should be
capable of handling this depth. In addition to this stack space, space is
needed only for some simple variables.

3.6.2 Implementation of Select2

Before attempting to write a pseudocode algorithm implementing Select2,
we need to decide how the median of a set of size r is to be found and where
we are going to store the [n/r] medians of lines 8 and 9. Since, we expect
to be using a small r (say r = 5 or 9), an efficient way to find the median
of r elements is to sort them using InsertionSort(a,%,j). This algorithm is
a modification of Algorithm 3.9 to sort a[i : j]. The median is now the
middle element in af¢ : j]. A convenient place to store these medians is at
the front of the array. Thus, if we are finding the kth-smallest element in
allow : up], then the elements can be rearranged so that the medians are
a[low], a[low+1], a[low+2], and so on. This makes it easy to implement line
10 as a selection on consecutive elements of a[. Function Select2 (Algorithm
3.19) results from the above discussion and the replacement of the recursive
calls of lines 15 and 16 by equivalent code to restart the algorithm.

3.6. SELECTION 173

O XS W=

29
30

Algorithm Select2(a, k, low, up)
// Return ¢ such that a[i] is the kth-smallest element in
// allow : upl; r is a global variable as described in the text.

}

repeat

n:= up — low + 1; // Number of elements
if (n <r) then

InsertionSort(a, low, up);
return low + k — 1;

for i :=1to [n/r| do

InsertionSort(a, low + (i — 1) xr, low +1+r —1);
// Collect medians in the front part of allow : up].
Interchange(a, low + 1 — 1,

low+ (i —1)xr+[r/2] —1);

}

j = Select2(a, [|n/r|/2], low, low+ |n/r| —1); // mm

Interchange(a, low, j);

j := Partition(a, low, up+ 1);

if (k = (j —low + 1)) then return j;

else if (k < (j —low + 1)) then up:=j —1;
else

{

k:=k—(j—low+1);low:=j+1;

}
} until (false);

Algorithm 3.19 Algorithm Select2

174 CHAPTER 3. DIVIDE-AND-CONQUER

An alternative to moving the medians to the front of the array a[low :
up] (as in the Interchange statement within the for loop) is to delete this
statement and use the fact that the medians are located at low + (1 — 1)r +
[r/2] — 1,1 <i < |n/r]. Hence, Select2, Partition, and InsertionSort need to
be rewritten to work on arrays for which the interelement distance is 6,6 > 1.
At the start of the algorithm, all elements are a distance of one apart, i.e.,
a[l],al2], ..., a[n]. On the first call of Select2 we wish to use only elements
that are r apart starting with a[[r/2]]. At the next level of recursion, the
elements will be 72 apart and so on. This idea is developed further in the
exercises. We refer to arrays with an interelement distance of b as b-spaced
arrays.

Algorithms Selectl (Algorithm 3.17) and Select2 (Algorithm 3.19) were
implemented and run on a SUN Sparcstation 10/30. Table 3.8 summarizes
the experimental results obtained. Times shown are in milliseconds. These
algorithms were tested on random integers in the range [0, 1000] and the
average execution times (over 500 input sets) were computed. Selectl out-
performs Select2 on random inputs. But if the input is already sorted (or
nearly sorted), Select2 can be expected to be superior to Selectl.

Tn [1,000 [2,000]3,000 | 4,000]5000 |
Selectl | 7.42 | 23.50 | 30.44 | 39.24 | 52.36
elect? | 49.54 | 104.02 | 174.54 | 233.56 | 288.64
n 6,000 | 7,000 | 8,000 |9,000 | 10,000
Selectl | 70.88 | 83.14 | 95.00 | 101.32 | 111.92
Select? | 341.34 | 414.06 | 476.98 | 532.30 | 604.40

Table 3.8 Comparison of Selectl and Select2 on random inputs

EXERCISES

1. Rewrite Select2, Partition, and InsertionSort using b-spaced arrays.

2. (a) Assume that Select2 is to be used only when all elements in a are
distinct. Which of the following values of r gnarantee O(n) worst-
case performance: r = 3,5,7,9, and 11?7 Prove your answers.

(b) Do you expect the computing time of Select2 to increase or de-
crease if a larger (but still eligible) choice for r is made? Why?

3.6.

10.

11.

12.

SELECTION 175

. Do Exercise 2 for the case in which ¢ is not restricted to distinct

clements. Let r = 7,9,11,13, and 15 in part (a).

. Section 3.6 describes an alternative way to handle the situation when

a[] is not restricted to distinct elements. Using the partitioning ele-
ment v, a]] is divided into three subsets. Write algorithms correspond-
ing to Selectl and Select2 using this idea. Using your new version of
Select2 show that the worst-case computing time is O(n) even when

= O.

. Determine optimal r values for worst-case aud average performances

of function Select2.

. |Shamos] Let z[1 : n] and y[1 : n] contain two sets of integers, each

sorted in nondecreasing order. Write an algorithm that finds the me-
dian of the 2n combined elements. What is the time complexity of
your algorithm? (Hint: Use binary search.)

. Let S be a (not necessarily sorted) sequence of n keys. A key k in §

is said to be an approzimate median of S if |{k' € S: K <k}| > %

and [{k' € S+ K >k} > 2. Devise an O(n) time algorithm to find
all the approximate medians of S.

. Input are a sequence S of n distinct keys, not necessarily in sorted

order, and two integers m; and mg (1 < mj;,my < n). For any z in
S, we define the rank of z in S to be |{k € S: k < z}|. Show how
to output all the keys of S whose raunks fall in the interval [m;, ms] in
((n) time.

. 'The kth guantiles of an n-element set are the & — 1 elements from the

set that divide the sorted set into k equal-sized sets. Give an O(n log k)
time algorithm to list the kth quantiles of a set.

Input is a (not necessarily sorted) sequence S = ky,ko,...,k, of n
arbitrary numbers. Consider the collection C of n? numbers of the
form min{k;, k;}, for 1 < ¢,j < n. Present an O(n)-time and O(n)-
space algorithm to find the median of C.

Given two vectors X = (z1,...,2,) and Y = (y1,...,9,), X < Y if
there exists an 4,1 <7 < n, such that z; = y; for 1 <7 <¢and z; < y;.
Given m vectors each of size n, write an algorithm that determines the
minimum vector. Analyze the time complexity of your algorithm.

Present an O(1) time Monte Carlo algorithm to find the median of
an array of n numbers. The answer output should be correct with
probability > %

176

13.

14.

15.

CHAPTER 3. DIVIDE-AND-CONQUER

Input is an array a[| of n numbers. Present an O(logn) time Monte
Carlo algorithm to output any member of o[] that is greater than or
equal to the median. The answer should be correct with high proba-
bility. Provide a probability analysis.

Given a set X of n numbers, how will you find an element of X whose

rank in X is at most ?%, using a Monte Carlo algorithm? Your

algorithm should run in time O(f(n)logn). Prove that the output
will be correct with high probability.

In addition to Selectl and Select2, we can think of at least two more
selection algorithms. The first of these is very straightforward and
appears as Algorithm 3.20 (Algorithm Select3). The time complexity
of Select3 is

O(nmin {k,n — k + 1})

Hence, it is very fast for values of k close to 1 or close to n. In the worst
case, its complexity is O(n?). Its average complexity is also O(n?).

Another selection algorithm proceeds by first sorting the n elements
into nondecreasing order and then picking out the kth element. A com-
plete sort can be avoided by using a minheap. Now, only %k elements
need to be removed from the heap. The time to set up the heap is O(n).
An additional O(klogn) time is needed to make k deletions. The total
complexity is O(n + klogn). This basic algorithm can be improved
further by using a maxheap when & > n/2 and deleting n — k + 1 ele-
ments. The complexity is now O(n+lognmin {k,n—k+1}). Call the
resulting algorithm Select4. Now that we have four plausible selection
algorithms, we would like to know which is best. On the basis of the
asymptotic analyses of the four selection algorithms, we can make the
following qualitative statements about our expectations on the relative
performance of the four algorithms.

¢ Because of the overhead involved in Selectl, Select2, and Select4
and the relative simplicity of Select3, Select3 will be fastest both
on the average and in the worst case for small values of n. It
will also be fastest for large n and very small or very large k, for
example, k =1,2,n, or n — 1.

e For larger values of n, Selectl will have the best behavior on the
average.

e Asfar as worst-case behavior is concerned, Select2 will out-perform
the others when n is suitably large. However, there will probably
be a range of n for which Select4 will be faster than both Se-
lect2 and Select3. We expect this because of the relatively large

3.6. SELECTION

177

CXC~IT kW=

16
17
18
19
20
21
22
23
24
25
26

Algorithm Select3(a,n, k)
// Rearrange a[| such that a[k] is the k-th smallest.

if (k < |n/2]) then
for i :=1 to k do

{ o .
q :=1; min := a[il;
for j:=7+1tondo
if (a[j] < min) then

q := j; min = a[jl;

Interchange(a, ¢, 7);

}

else
for i :=n to k step —1 do

{ | .
q := 13 mazx = ali];
for j:=(i—1)to 1 step —1 do
if (a[j] > maz) then

q = j; maz := alj];

Interchange(a, ¢, 7);

Algorithm 3.20 Straightforward selection algorithm

if (n < ¢1) then return Select3(a, m, p, k);
else if (n < ¢2) then return Selectd4(a, m, p, k);

overhead in Select2 (i.e., the constant term in O(n) is relatively
large).
As a result of the above assertions, it is desirable to obtain com-
posite algorithms for good average and worst-case performances.
The composite algorithm for good worst-case performance will
have the form of function Select2 but will include the following
after the first if statement.

Since the overheads in Selectl and Select4 are about the same, the
constants associated with the average computing times will be about

178

CHAPTER 3. DIVIDE-AND-CONQUER

the same. Hence, Selectl may always be better than Select4 or there
may be a small ¢3 such that Select4 is better than Selectl for n < c3.
In any case, we expect there is a ¢4, ¢4 > 0, such that Select3 is faster
than Selectl on the average for n < cq.

To verify the preceding statements and determine c¢1, ¢z, ¢3, and ¢y, it
is necessary to program the four algorithms in some programming lan-
guage and run the four corresponding programs on a computer. Once
the programs have been written, test data are needed to determine
average and worst-case computing times. So, let us now say some-
thing about the data needed to obtain computing times from which
¢, 1 <1 <4, can be determined. Since we would also like information
regarding the average and worst-case computing times of the resulting
composite algorithms, we need test data for this too. We limit our
testing to the case of distinct elements.

To obtain worst-case computing times for Selectl, we change the al-
gorithm slightly. This change will not affect its worst-case computing
time but will enable us to use a rather simple data set to determine
this time for various values of n. We dispense with the random selec-
tion rule for Partition and instead use a[m] as the partitioning element.
It is easy to see that the worst-case time is obtained with a[i] = 1,
1 <i<n,and k = n. As far as the average time for any given n
is concerned, it is not easy to arrive at one data set and a k that ex-
hibits this time. On the other hand, trying out all n! different input
permutations and k = 1,2, ..., n for each of these is not a feasible way
to find the average. An approximation to the average computing time
can be obtained by trying out a few (say ten) random permutations
of the numbers 1,2,...,n and for each of these using a few (say five)
random values of k. The average of the times obtained can be used
as an approximation to the average computing time. Of course, using
more permutations and more k values results in a better approxima-
tion. However, the number of permutations and k values we can use is
limited by the amount of computational resources (in terms of time)
we have available.

For Select2, the average time can be obtained in the same way as for
Selectl. For the worst-case time we can either try to figure out an input
permutation for which the number of elements less than the median of
medians is always as large as possible and then use £k = 1. A simpler
approach is to find just an approximation to the worst-case time. This
can be done by taking the max of the computing times for all the
tests used to obtain the average computing time. Since the computing
times for Select2 vary with r, it is first necessary to determine an r
that yields optimum behavior. Note that the r’s for optimum average
and worst-case behaviors may be different.

3.7. STRASSEN’S MATRIX MULTIPLICATION 179

We can verify that the worst-case data for Select3 are afi] = n+1 —1,
n

for 1 <4 <n,and k= 5. The computing time for Select3 is relatively
insensitive to the input permutation. This permutation affects only the
number of times the sccond if statement of Algorithm 3.20 is executed.
On the average, this will be done about half the time. This can be
achieved by using afi] = n4+1—14, 1 < i < n/2, and a[i] = n+ 1,
n/2 < i < n. The k value needed to obtain the average computing
time is readily seen to be n/4.

a) What test data would you use to determine worst-case and aver-
y Yy
age times for Select4?

(b) Use the ideas above to obtain a table of worst-case and average
times for Selectl, Select2, Select3, and Select4.

16. Program Selectl and Select3. Determine when algorithm Selectl be-
comes better than Select3 on the average and also when Select? better
than Select3 for worst-case performance.

17. [Project] Program the algorithms of Exercise 4 as well as Select3 and
Select4. Carry out a complete test along the lines discussed in Exercise
15. Write a detailed report together with graphs explaining the data

sels, test strategies, and determination of ¢1,...,¢cs. Write the final
composite algorithms and give tables of computing times for these
algorithms.

3.7 STRASSEN’S MATRIX MULTIPLICATION

Let A and B be two n x n matrices. The product matrix C = AB is also an
n X n matrix whose ¢, jth element is formed by taking the elements in the
1th row of A and the jth colurnn of B and multiplying them to get

Cli,j) = > A(i,k)B(k,j) (3.10)

1<k<n

for all 4 and j between 1 and n. To compute C(7,) using this formula,
we need n multiplications. As the matrix C has n? elements, the time
for the resulting matrix multiplication algorithm, which we refer to as the
conventional method is ©(n?).

The divide-and-conquer strategy suggests another way to compute the
product of two n X n matrices. For simplicity we assume that n is a power
of 2, that is, that there exists a nonnegative integer k such that n = 2%, In
case 1 is not a power of two, then enough rows and columns of zeros can be
added to both A and B so that the resulting dimensions are a power of two

180 CHAPTER 3. DIVIDE-AND-CONQUER

(see the exercises for more on this subject). Imagine that A and B are each
partitioned into four square submatrices, each submatrix having dimensions
n

2 x . Then the product AB can be computed by using the above formula
fzor tﬁe product of 2 x 2 matrices: if AB is

[A Ap] [B11 B] _ [Cui Ciz] (3.11)
Ao Ago By By | G Cox '
then
Cii = AuBu+ A2Boy
Ci2 = AuBia+ AaBo (3.12)
Co1 = A By + ABoy '
Ca = A2 Bia+ AypBoo

If n = 2, then formulas (3.11) and (3.12) are computed using a multipli-
cation operation for the elements of A and B. These elements are typically
floating point numbers. For n > 2, the elements of C' can be computed
using matriz multiplication and addition operations applied to matrices of
size n/2 x n/2. Since n is a power of 2, these matrix products can be recur-
sively computed by the same algorithm we are using for the n x n case. This
algorithm will continue applying itself to smaller-sized submatrices until n
becomes suitably small (n = 2) so that the product is computed directly.

To compute AB using (3.12), we need to perform eight multiplications
of n/2 x n/2 matrices and four additions of n/2 x n/2 matrices. Since two
n/2 x n/2 matrices can be added in time c¢n? for some constant ¢, the overall
computing time 7T'(n) of the resulting divide-and-conquer algorithm is given
by the recurrence

b n <2
T(n) = { 8T (n/2) +cn? n > 2

where b and ¢ are constants.

This recurrence can be solved in the same way as earlier recurrences to
obtain T(n) = O(n?). Hence no improvement over the conventional method
has been made. Since matrix multiplications are more expensive than matrix
additions (O(n?) versus O(n?)), we can attempt to reformulate the equations
for Cj; so as to have fewer multiplications and possibly more additions.
Volker Strassen has discovered a way to compute the C;;’s of (3.12) using
only 7 multiplications and 18 additions or subtractions. His method involves
first computing the seven n/2 x n/2 matrices P, @, R, S, T, U, and V as
in (3.13). Then the Cj;’s are computed using the formulas in (3.14). As
can be seen, P, @, R, S, T, U, and V can be computed using 7 matrix
multiplications and 10 matrix additions or subtractions. The C;;’s require
an additional 8 additions or subtractions.

3.7. STRASSEN’S MATRIX MULTIPLICATION 181

P = (Ay + Ag)(Bi1 + By)
Q = (A2 + Ax)By
R = An(By2 — Bx)
S = Ax(Bsy — By)) (3.13)
T = (A + A2)Boo
U = (A — An)(Bi + Bi2)
V. = (A2 — An)(Ba + By)
Ci, = P+5-T+V
Co = R+T
Co = Q+8 (3.14)
Cy = P+R-—Q+U
The resulting recurrence relation for T'(n) is
b n <2)
Tn) = { TT(n/2) +an? n>2 (3.15)

wherc a and b are constants. Working with this formula, we get

T(n)

an®[L+ 7/4 4 (7/4) + -+ + (7/4)F)+ 7*T(1)
< en®(7/4)19827 4 70821 ¢ 4 constant

C”log.z 4+log, 7T—log, 4 + nlog2 7

O(n'*827) = O(n*®")

fl

EXERCISES

1.

Verify by hand that Equations 3.13 and 3.14 yield the correct values
for Ci1, Ci2,Ca1, and Cya.

Write an algorithm that multiplies two n x n matrices using O(n?) op-
erations. Determine the precise number of multiplications, additions,
and array element accesses.

If k£ is a nonnegative constant, then prove that the recurrence

k n=1
In) = { 3r(n/2) +kn n>1
has the following solution (for n a power of 2):

T(n) = 3knl°®2% — 2kn (3.17)

(3.16)

184 CHAPTER 3. DIVIDE-AND-CONQUER

Figure 3.6 Convex hull: an example

(1) obtain the vertices of the convex hull (these vertices are also called ez-
treme points), and (2) obtain the vertices of the convex hull in some order
(clockwise, for example).

Here is a simple algorithm for obtaining the extreme points of a given
set S of points in the plane. To check whether a particular point p € S
is extreme, look at each possible triplet of points and see whether p lies in
the triangle formed by these three points. If p lies in any such triangle, it
is not extreme; otherwise it is. Testing whether p lies in a given triangle
can be done in O(1) time (using the methods described in Section 3.8.1).
Since there are ©(n?) possible triangles, it takes ©(n?) time to determine
whether a given point is an extreme ZPoint or not. Since there are n points,
this algorithm runs in a total of ®(n*) time.

Using divide-and-conquer, we can solve both versions of the convex hull
problem in O(nlogn) time. We develop three algorithms for the convex hull
in this section. The first has a worst-case time of @(n?) whereas its aver-
age time is ©(nlogn). This algorithm has a divide-and-conquer structure
similar to that of QuickSort. The second has a worst-case time complexity
of O(nlogn) and is not based on divide-and-conquer. The third algorithm
is based on divide-and-conquer and has a time complexity of ©(nlogn) in
the worst case. Before giving further details, we digress to discuss some
primitive geometric methods that are used in the convex hull algorithms.

3.8.1 Some Geometric Primitives

Let A be an n X n matrix whose elements are {a;;}, 1 <1i, j <n. The ijth
minor of A, denoted as Aj;;, is defined to be the submatrix of A obtained
by deleting the ith row and jth column. The determinant of A, denoted

3.8. (CONVEX HULL 185

det(A), is given by

[an n=1
det(A) = { a1 det(Au) — ao det(Au) R (_1)n—1 det(Aln) n>1

Consider the directed line segment (p;, p2) from some point p1 = (x1,y1)
to some other point pa = (z9,y2). If ¢ = (x3,y3) is another point, we say ¢
is to the left (right) of (p1,p2) if the angle pipoq is a left (right) turn. [An
angle is said to be a left (right) turn if it is less than or equal to (greater
than or equal to) 180°.] We can check whether ¢ is to the left (right) of
(p1,p2) by evaluating the determinant of the following matrix:

Ty To I3
Y Y2 Y3
1 1 1

If this determinant is positive (negative), then ¢ is to the left (right)
of (p1,p2). If this determinant is zero, the three points are colinear. This
test can be used, for example, to check whether a given point p is within a
triangle formed by three points, say p1,pe2, and p3 (in clockwise order). The
point p is within the triangle iff p is to the right of the line segments (p1,ps),
(p2,p3), and (p3,p1)-

Also, for any three points (21,y1), (x2,y2), and (x3,y3), the signed area
formed by the corresponding triangle is given by one-half of the above
determinant.

Let p1,p2,...,pn be the vertices of the convex polygon @ in clockwise
order. Let p be any other point. It is desired to check whether p lies in
the interior of) or outside. Consider a horizontal line h that extends from
—00 to oo and goes through p. There are two possibilities: (1) & does not
interscct any of the edges of @, (2) h intersects some of the edges of Q. If
case (1) is true, then, p is outside Q. In case (2), there can be at most two
points of intersection. If h intersects () at a single point, it is counted as
two. Count the number of points of intersections that are to the left of p.
If this munber is even, then p is external to (); otherwise it is internal to Q.
This method of checking whether p is interior to @ takes ©(n) time.

3.8.2 The QuickHull Algorithm

An algorithm that is similar to QuickSort can be devised to compute the
convex hull of a set X of n points in the plane. This algorithm, called
QuickHull, first identifies the two points (call them p; and ps) of X with
the smallest and largest z-coordinate values. Assume now that there are no
ties. Later we see how to handle ties. Both p; and py are extreme points
and part of the convex hull. The set X is divided into X; and X5 so that

186 CHAPTER 3. DIVIDE-AND-CONQUER

X1 has all the points to the left of the line segment (p1,p2) and Xo has all
the points to the right of (p1,p2). Both X; and X5 include the two points
p1 and py. Then, the convex hulls of X; and X5 (called the upper hull and
lower hull, respectively) are computed using a divide-and-conquer algorithm
called Hull. The union of these two convex hulls is the overall convex hull.

If there is more than one point with the smallest z-coordinate, let p} and
pY be the points from among these with the least and largest y-coordinates,
respectively. Similarly define pf, and p4 for the points with the largest z-
coordinate values. Now X; will be all the points to the left of (pf,ph)
(including pY and pf4) and X, will be all the points to the right of (p},p5)
(including p) and p}). In the rest of the discussion we assume for simplicity
that there are no ties for p; and pe. Appropriate modifications are needed
in the event of ties.

We now describe how Hull computes the convex hull of X;. We determine
a point of X; that belongs to the convex hull of X; and use it to partition
the problem into two independent subproblems. Such a point is obtained by
computing the area formed by p1,p, and py for each p in X; and picking the
one with the largest (absolute) area. Ties are broken by picking the point p
for which the angle ppips is maximum. Let p3 be that point.

Now X is divided into two parts; the first part contains all the points of
X that are to the left of (p1,p3) (including p; and p3), and the second part
contains all the points of X; that are to the left of (p3, p2) (including p3 and
p2) (see Figure 3.7). There cannot be any point of X; that is to the left of
both (p1,p3) and (p3,p2). Also, all the other points are interior points and
can be dropped from future consideration. The convex hull of each part is
computed recursively, and the two convex hulls are merged easily by placing
one next to the other in the right order.

If there are m points in X, we can identify the point of division p3 in
time O(m). Partitioning X; into two parts can also be done in O(m) time.
Merging the two convex hulls can be done in time O(1). Let T(m) stand
for the run time of Hull on a list of m points and let m; and ms denote the
sizes of the two resultant parts. Note that mq + mo < m. The recurrence
relation for T'(m) is T'(m) = T'(m1) + T (m2) + O(m), which is similar to the
one for the run time of QuickSort. The worst-case run time is thus O(m?)
on an input of m points. This happens when the partitioning at each level
of recursion is highly uneven.

If the partitioning is nearly even at each level of recursion, then the run
time will equal O(mlogm) as in the case of QuickSort. Thus the average
run time of QuickHull is O(nlogn), on an input of size n, under appropriate
assumptions on the input distribution.

3.8. CONVEX HULL 187

5 X

Figure 3.7 Identifying a point on the convex hull of X;

3.8.3 Graham’s Scan

If S is a set of points in the plane, Graham’s scan algorithm identifies the
point p from S with the lowest y-coordinate value (ties are broken by picking
the leftinost among these). It then sorts the points of S according to the
angle subtended by the points and p with the positive z-axis. Figure 3.8
gives an example. After having sorted the points, if we scan through the
sorted list starting at p, every three successive points will form a left turn
if all of these points lie on the hull. On the other hand if there are three
successive points, say pi, P2, and p3, that form a right turn, then we can
immediately eliminate ps since it cannot lie on the convex hull. Notice that
it will be an internal point because it lies within the triangle formed by p, p1,
and pj.

We can eliminate all the interior points using the above procedure. Start-
ing from p, we consider three successive points pi, p2, and p3 at a time. To
begin with, p; = p. If these points form a left turn, we move to the next
point in the list (that is, we set p; = po, and so on). If these three points
form a right turn, then py is deleted since it is an interior point. We move
one point behind in the list by setting p; equal to its predecessor. This
process of scanning ends when we reach the point p again.

Example 3.11 In Figure 3.8, the first three points looked at are p, 1, and 2.
Since these form a left turn, we move to 1,2, and 3. These form a right turn
and hence 2 is deleted. Next, the three points p, 1, and 3 are considered.
These form a left turn and hence the pointer is moved to point 1. The points

188 CHAPTER 3. DIVIDE-AND-CONQUER

P

Figure 3.8 Graham’s scan algorithm sorts the points first

1,3, and 4 also form a left turn, and the scan proceeds to 3,4, and 5 and
then to 4,5, and 6. Now point 5 gets deleted. The triplets 3,4,6; 4,6,7;
and 6, 7,8 form left turns whereas the next triplet 7,8,9 forms a right turn.
Therefore, 8 gets deleted and in the next round 7 also gets eliminated. The
next three triplets examined are 4,6,9; 6,9, 10; and 9, 10, p, all of which are
left turns. The final hull obtained is p, 1,3,4,6,9, and 10, which are points
on the hull in counterclockwise (ccw) order. a

This scan process is given in Algorithm 3.21. In this algorithm the set of
points is realized as a doubly linked list ptslist. Function Scan runs in O(n)
time since for each triplet examined, either the scan moves one node ahead
or one point gets removed. In the latter case, the scan moves one node back.
Also note that for each triplet, the test as to whether a left or right turn is
formed can be done in O(1) time. Function Area computes the signed area
formed by three points. The major work in the algorithm is in sorting the
points. Since sorting takes O(nlogn) time, the total time of Graham’s scan
algorithm is O(n logn).

3.8.4 An O(nlogn) Divide-and-Conquer Algorithm
In this section we present a simple divide-and-conquer algorithm, called

DCHull, which also takes O(nlogn) time and computes the convex hull in
clockwise order.

3.8. CONVEX HULL 189

point = record{
float x; float y;
point «prev; point *next;

}s

1 Algorithm Scan(list)

2 // list is a pointer to the first node in the input list.

3

4 xp = list; xpl := listy

) repeat

6 {

7 p2:= (pl — next);

8 if ((p2 — next) # 0) then p3 := (p2 — next);

9 else return; // End of the list

10 temp := Area((pl — z), (pl = y), (p2 — x),

1 (p2 = y), (p3 —), (P3 = Y));

12 if (ternp > 0.0) then pl := (pl — next);

13 // I pl,p2,p3 form a left turn, move one point ahead;
14 // If not, delete p2 and move back.

15 else

16

17 (pl — next) := p3; (p3 — prev) := pl; delete p2;
18 pl:= (pl — prev);

19

20) } until (false);

21}

1 Algorithm ConvexHull(ptslist)

2

3 // ptslist is a pointer to the first item of the input list. Find
4 // the point p in ptslist of lowest y-coordinate. Sort the

) // points according to the angle made with p and the z-axis.
6 Sort(ptslist); Scan(ptslist); PrintList(ptslist);

7}

Algorithm 3.21 Graham’s scan algorithm

190 CHAPTER 3. DIVIDE-AND-CONQUER

Given a set X of n points, like that in the case of QuickHull, the problem
is reduced to finding the upper hull and the lower hull separately and then
putting them together. Since the computations of the upper and lower hulls
are very similar, we restrict our discussion to computing the upper hull. The
divide-and-conquer algorithm for computing the upper hull partitions X into
two nearly equal halves. Partitioning is done according to the x-coordinate
values of points using the median z-coordinate as the splitter (see Section 3.6
for a discussion on median finding). Upper hulls are recursively computed
for the two halves. These two hulls are then merged by finding the line of
tangent (i.e., a straight line connecting a point each from the two halves,
such that all the points of X are on one side of the line) (see Figure 3.9).

Figure 3.9 Divide and conquer to compute the convex hull

To begin with, the points p; and po are identified [where p; (p2) is the
point with the least (largest) z-coordinate value]. This can be done in O(n)
time. Ties can be handled in exactly the same manner as in QuickHull. So,
assume that there are no ties. All the points that are to the left of the
line segment (p1,p2) are separated from those that are to the right. This
separation also can be done in O(n) time. From here on, by ”input” and
" X” we mean all the points that are to the left of the line segment (p1,p3).
Also let | X| = N.

Sort the input points according to their z-coordinate values. Sorting
can be done in O(Nlog N) time. This sorting is done only once in the
computation of the upper hull. Let ¢, ¢o, ..., gy be the sorted order of these

3.8. CONVEX HULL 191

points. Now partition the input into two equal halves with q1,¢2,...,qn/2
in the first half and gn/241,qn/242,- > qn in the second half. The upper
hull of each half is computed recursively. Let H; and Hy be the upper hulls.
Upper hulls are maintained as linked lists in clockwise order. We refer to
the first element in the list as the leftmost point and the last element as the
rightmost point.

The line of tangent is then found in O(log? N) time. If (u,v) is the line
of tangent, then all the poiunts of H; that are to the right of u are dropped.
Similarly, all the points that are to the left of v in Hy are dropped. The
remaining part of Hy, the line of tangent, and the remaining part of Hs
form the upper hull of the given input set.

If T(N) is the run time of the above recursive algorithm for the upper
hull on an input of IV points, then we have

T(N) = 2T(N/2) + O(log® N)

which solves to T(N) = O(N). Thus the run time is dominated by the initial
sorting step.

The only part of the algorithm that remains to be specified is how to find
the line of tangent (u,v) in O(log? N) time. The way to find the tangent is
to start from the middle point, call it p, of H;. Here the middle point refers
to the middle element of the corresponding list. Find the tangent of p with
Hj. Let (p,q) be the tangent. Using (p,q), we can determine whether u is
to the left of, equal to, or to the right of p in H;. A binary search in this
fashion on the points of H; reveals . Use a similar procedure to isolate v.

Lemma 3.1 Let Hy and Hs be two upper hulls with at most m points
each, If p is any point of Hy, its point ¢ of tangency with Hs can be found
in O(log m) time.

Proof. If ¢’ is any point in Hy, we can check whether ¢’ is to the left of,
equal to, or to the right of ¢ in O(1) time (see Figure 3.10). In Figure 3.10,
x and y are the left and right neighbors of ¢’ in Ha, respectively. If Zpq¢'x is
a right turn and /pq'y is a left turn, then ¢ is to the right of ¢’ (see case 1 of
Figure 3.10). If Zp¢'z and /pq'y are both right turns, then ¢’ = g (see case
2 of Figure 3.10); otherwise ¢ is to the left of ¢’ (see case 3 of Figure 3.10).
Thus we can perform a binary search on the points of Hs and identify ¢ in
O(logm) time., O

Lemma 3.2 If H; and H; are two upper hulls with at most rn points each,
their common tangent can be computed in O(log® m) time.

Proof. Let v € H; and v € Hy be such that (u,v) is the line of tangent.
Also lot p be an arbitrary point of H, and let ¢ € Hs be such that (p,q) is a

192 CHAPTER 3. DIVIDE-AND-CONQUER

PN case 1
p case 2
p case 3

Figure 3.10 Proof of Lemma 3.1

tangent of Hy. Given p and ¢, we can check in O(1) time whether u is to the
left of, equal to, or to the right of p (see Figure 3.11). Here z and y are left
and right neighbors, respectively, of p in Hy. If (p,q) is also tangential to
Hy, then p = u. If Zxpq is a left turn, then u is to the left of p; otherwise u
is to the right of p. This suggests a binary search for u. For each point p of
H{ chosen, we have to determine the tangent from p to Hs and then decide
the relative positioning of p with respect to v. We can do this computation
in O(logm x logm) = O(log?m) time. O

In summary, given two upper hulls with % points each, the line of tangent
can be computed in O(log? N) time.

Theorem 3.4 A convex hull of n points in the plane can be computed in
O(nlogn) time. ‘ O

3.9. REFERENCES AND READINGS 193

Figure 3.11 Proof of Lemma 3.2

EXERCISES

1. Write an algorithm in pseudocode that implements QuickHull and test
it using suitable data.

2. Code the divide-and-conquer algorithm DCHull and test it using ap-
propriate data.

3. Run the three algorithms for convex hull discussed in this section on
various random inputs and compare their performances.

4. Algorithm DCHull can be modified as follows: Instead of using the
median as the splitter, we could use a randomly chosen point as the
splitter. Then X is partitioned into two around this point. The rest of
the function DCHull is the same. Write code for this modified algorithm
and compare it with DCHull empirically.

5. Let § be a set of n points in the plane. It is given that there is only a
coustant (say ¢) number of points on the hull of S. Can you devise a
convex hull algorithm for S that runs in time o(nlogn)? Conceive of
special algorithms for ¢ = 3 and ¢ = 4 first and then generalize.

3.9 REFERENCES AND READINGS

Algorithin MaxMin (Algorithm 3.6) is due to I. Pohl and the quicksort algo-
rithm (Algorithm 3.13) is due to C. A. R. Haore. The randomized sorting
algorithin in Algorithm 3.16 is due to W. D. Frazer and A. C. McKeller and

194 CHAPTER 3. DIVIDE-AND-CONQUER

the selection algorithm of Algorithm 3.19 is due to M. Blum, R. Floyd, V.
Pratt, R. Rivest and R. E. Tarjan.

For more on randomized sorting and selection see:

“Expected time bounds for selection,” by R. Floyd and R. Rivest, Commu-
nications of the ACM 18, no. 3 (1975): 165-172.

“Samplesort: A Sampling Approach to Minimal Storage Tree Sorting,” by
W. D. Frazer and A. C. McKellar, Journal of the ACM 17, no. 3 (1970):
496-507.

“Derivation of Randomized Sorting and Selection Algorithms,” by S. Ra-
jasekaran and J. H. Reif, in Parallel Algorithm Derivation and Program
Transformation, edited by R. Paige, J. H. Reif, and R. Wachter, Kluwer
Academic Publishers, 1993, pp. 187-205.

The matrix multiplication algorithm in Section 3.7 is due to V. Strassen.
For more information on the matrix multiplication problem see “Matrix mul-
tiplication via arithmetic progressions,” by D. Coppersmith and S. Wino-
grad, Journal of Symbolic Computation 9 (1990): 251-280. A complex
O(n?37) time algorithm for multiplying two n X n matrices is given in this

paper.

For more applications of divide-and-conquer see:

Computational Geometry, by F. Preparata and M. I. Shamos, Springer-
Verlag, 1985.

Computational Geometry: An Introduction Through Randomized Algorithms
by K. Mulmuley, Prentice-Hall, 1994.

Introduction to Algorithms: A Creative Approach, by U. Manber, Addison-
Wesley, 1989.

3.10 ADDITIONAL EXERCISES

1. What happens to the worst-case run time of quicksort if we use the
median of the given keys as the splitter key? (Assume that the selection
algorithm of Section 3.6 is employed to determine the median).

2. The sets A and B have n elements each given in the form of sorted
arrays. Present an O(n) time algorithm to compute AU B and AN B.

3. The sets A and B have m and n elements (respectively) from a linear
order. These sets are not necessarily sorted. Also assume that m < n.
Show how to compute AU B and AN B in O(nlogm) time.

4. Consider the problem of sorting a sequence X of n keys where each
key is either zero or one (i.e., each key is a bit). One way of sorting

3.10. ADDITIONAL EXERCISES 195

X is to start with two empty lists Lg and L. Let X = ki, ko,...,kp.
For each 1 <4 < n do: If k; = 0, then append k; to Ly. If k; = 1, then
append k; to L. After processing all the keys of X in this manner,
output the list Ly followed by the list L.

"The above idea of sorting can be extended to the case in which each key
is of length more than one bit. In particular, if the keys are integers in
the range [0, m—1], then we start with m empty lists, Lo, L1, ..., L1,
one list (or bucket) for each possible value that a key can take. Then
the keys are processed in a similar fashion. In particular, if a key has
a value £, then it will be appended to the £th list.

Write an algorithm that employs this idea to sort n keys assuming that
cach key is in the range [0, m — 1]. Show that the run time of your
algorithm is O(n + m). This algorithm is known as the bucket sort.

5. Consider the problem of sorting n two-digit integers. The idea of radiz
sort can be employed. We first sort the numbers only with respect to
their least significant digits (LLSDs). Followed by this, we apply a sort
with respect to their second L.SDs. More generally, d-digit numbers
can be sorted in d phases, where in the 7th phase (1 < ¢ < d) we
sort the keys only with respect to their sth LSDs. Will this algorithm
always work?

As an example, let the input be k; = 12,ky = 45,k = 23, k4 =
14, ks = 32, and kg = 57. After sorting these keys with respect to their
1.SDs, we end up with: ks = 32,k; = 12,ky = 23, ky = 14, ky = 45,
and kg = 57. When we sort the resultant sequence with respect to
the keys’ second LSDs (i.e., the next-most significant digits), we get
k1 =12, ky = 14, k3 = 23, ks = 32,ky = 45, and kg = 57, which is the
correct answer!

But note that in the second phase of the algorithm, ky = 14,k =
12, ks = 23, ks = 32,ky = 45, kg = 57 is also a valid sort with respect
to the second LSDs. The result in any phase of radix sorting can be
forced to be correct by enforcing the following condition on the sorting
algorithm to be used. “Keys with equal values should remain in the
same relative order in the output as they were in the input.” Any
sorting algorithm that satisfies this is called a stable sort.

Note that in the above example, if the algorithm used to sort the
keys in the second phase is stable, then the output will be correct.
In summary, radix sort can be employed to sort d-digit numbers in d
phases such that the sort applied in each phase (except the first phase)
is stable.

More generally, radix sort can be used to sort integers of arbitrary
length. As usual, the algorithm will consist of phases in each of which
the keys are sorted only with respect to certain parts of their keys.

196

CHAPTER 3. DIVIDE-AND-CONQUER

The parts used in each phase could be single bits, single digits, or
more generally, £ bits, for some appropriate £.

In Exercise 4, you showed that n integers in the range [0, m — 1] can
be sorted in O(n + m) time. Is your algorithm stable? If not, make
it stable. As a special case, your algorithm can sort n integers in the
range [0,n — 1] in O(n) time. Use this algorithm together with the
idea of radix sorting to develop an algorithm that can sort n integers
in the range [0,n¢ — 1] (for any fixed ¢) in O(n) time.

. Two sets A and B have n elements each. Assume that each element is

an integer in the range [0,n!%]. These sets are not necessarily sorted.
Show how to check whether these two sets are disjoint in O(n) time.
Your algorithm should use O(n) space.

Input are the sets S1,.59,..., and Sy (where £ < n). Elements of these
sets are integers in the range [0,n° — 1] (for some fixed ¢). Also let
¢ 118i]| = n. The goal is to output S; in sorted order, then S,
in sorted order, and so on. Present an O(n) time algorithm for this
problem.

. Input is an array of n numbers where each number is an integer in the

range [0, N] (for some N >> n). Present an algorithm that runs in the
worst case in time O (nl—l%gg%) and checks whether all these n numbers
are distinct. Your algorithm should use only O(n) space.

. Let S be a sequence of n? integers in the range [1,n]. Let R(i) be

the number of i’s in the sequence (for ¢ = 1,2,...,n). Given S, we
have to compute an approximate value of R(¢) for each 4. If N(z) is an
approximation to R(i),7 = 1,...,n, it should be the case that (with
high probability) N(i) > R(i) for each i and 1| N(i) = O(n?).
Of course we can do this computation in deterministic O(n?) time.
Design a randomized algorithm for this problem that runs in time

O(nlog®M n).

Chapter 4

THE GREEDY METHOD

4.1 THE GENERAL METHOD

The greedy method is perhaps the most straightforward design technique we
consider in this text, and what’s more it can be applied to a wide variety of
problems. Most, though not all, of these problems have n inputs and require
us to obtain a subset that satisfies some constraints. Any subset that satis-
fies these constraints is called a feasible solution. We need to find a feasible
solution that either maximizes or minimizes a given objective function. A
feasible solution that does this is called an optimal solution. There is usu-
ally an obvious way to determine a feasible solution but not necessarily an
optimal solution.

The greedy method suggests that one can devise an algorithm that works
in stages, considering one input at a time. At each stage, a decision is made
regarding whether a particular input is in an optimal solution. This is done
by considering the inputs in an order determined by some selection proce-
dure. If the inclusion of the next input into the partially constructed optimal
solution will result in an infeasible solution, then this input is not added to
the partial solution. Otherwise, it is added. The selection procedure itself
is basced on some optimization measure. This measure may be the objective
function. In fact, several different optimization measures may be plausible
for a given problem. Most of these, however, will result in algorithms that
generate suboptimal solutions. This version of the greedy technique is called
the subsct paradigm.

We can describe the subset paradigm abstractly, but more precisely than
above, by considering the control abstraction in Algorithm 4.1.

The function Select selects an input from a[| and removes it. The selected
input’s value is assigned to xz. Feasible is a Boolean-valued function that
determines whether x can be included into the solution vector. The function
Union combines z with the solution and updates the objective function. The

197

198 CHAPTER 4. THE GREEDY METHOD

1 Algorithm Greedy(a,n)

2 // a[l:n] contains the n inputs.

3

4 solution := (; // Initialize the solution.
5 for ::=1to ndo

6

7 x := Select(a);

8 if Feasible(solution, z) then

9 solution := Union(solution, z);
10 }

11 return solution;

12 }

Algorithm 4.1 Greedy method control abstraction for the subset paradigm

function Greedy describes the essential way that a greedy algorithm will look,
once a particular problem is chosen and the functions Select, Feasible, and
Union are properly implemented.

For problems that do not call for the selection of an optimal subset, in the
greedy method we make decisions by considering the inputs in some order.
Each decision is made using an optimization criterion that can be computed
using decisions already made. Call this version of the greedy method the
ordering paradigm. Sections 4.2, 4.3, 4.4, and 4.5 consider problems that fit
the subset paradigm, and Sections 4.6, 4.7, and 4.8 consider problems that
fit the ordering paradigm.

EXERCISE

1. Write a control abstraction for the ordering paradigm.

4.2 KNAPSACK PROBLEM

Let us try to apply the greedy method to solve the knapsack problem. We
are given n objects and a knapsack or bag. Object ¢ has a weight w; and the
knapsack has a capacity m. If a fraction z;, 0 < z; < 1, of object ¢ is placed
into the knapsack, then a profit of p;x; is earned. The objective is to obtain
a filling of the knapsack that maximizes the total profit earned. Since the
knapsack capacity is m, we require the total weight of all chosen objects to
be at most m. Formally, the problem can be stated as

4.2. KNAPSACK PROBLEM 199

maximize Z DiLi (4.1)
1<i<n
subject to Z w;T; < m (4.2)
1<i<n
and 0 <z; <1, 1<i<n (4.3)

The profits and weights are positive numbers.

A feasible solution (or filling) is any set (z1, ..., z,) satisfying (4.2) and
(4.3) above. An optimal solution is a feasible solution for which (4.1) is
maxiniized.

Example 4.1 Consider the following instance of the knapsack problem:
n = 3,m = 20,(p1,p2,p3) = (25,24,15), and (w1, ws, w3) = (18,15,10).
Four feasible solutions are:

(w1, z2,73) dWiT;) Pty
1 (1/2,1/3,1/4) 165 24.25
2. (1,2/15,0) 20 28.2
3. (0,2/3,1) 20 31
4 (0.1,1/2) 20 31.5

Of these four feasible solutions, solution 4 yields the maximum profit. As
we shall soon see, this solution is optimal for the given problem instance. O

Lemma 4.1 In case the sum of all the weights is < m, then z; = 1, 1 <
i < n is an optimal solution. O

So let us assume the sum of weights exceeds m. Now all the z;’s cannot
be 1. Another observation to make is:

Lemma 4.2 All optimal solutions will fill the knapsack exactly. O

Lemma 4.2 is true because we can always increase the contribution of
some object i by a fractional amount until the total weight is exactly m.

Note that the knapsack problem calls for selecting a subset of the ob-
jects and hence fits the subset paradigm. In addition to selecting a subset,
the knapsack problem also involves the selection of an x; for each object.
Several simple greedy strategies to obtain feasible solutions whose sums are
identically m suggest themselves. First, we can try to fill the knapsack by in-
cluding next the object with largest profit. If an object under consideration
doesn’t fit, then a fraction of it is included to fill the knapsack. Thus each
time an object is included (except possibly when the last object is included)

200 CHAPTER 4. THE GREEDY METHOD

into the knapsack, we obtain the largest possible increase in profit value.
Note that if only a fraction of the last object is included, then it may be
possible to get a bigger increase by using a different object. For example, if
we have two units of space left and two objects with (p; = 4, w; = 4) and
(pj = 3,w; = 2) remaining, then using j is better than using half of i. Let
us use this selection strategy on the data of Example 4.1.

Object one has the largest profit value (p; = 25). So it is placed into the
knapsack first. Then z1 = 1 and a profit of 25 is earned. Only 2 units of
knapsack capacity are left. Object two has the next largest profit (p2 = 24).
However, wo = 15 and it doesn’t fit into the knapsack. Using xzo = 2/15 fills
the knapsack exactly with part of object 2 and the value of the resulting
solution is 28.2. This is solution 2 and it is readily seen to be suboptimal.
The method used to obtain this solution is termed a greedy method because
at each step (except possibly the last one) we chose to introduce that object
which would increase the objective function value the most. However, this
greedy method did not yield an optimal solution. Note that even if we change
the above strategy so that in the last step the objective function increases
by as much as possible, an optimal solution is not obtained for Example 4.1.

We can formulate at least two other greedy approaches attempting to
obtain optimal solutions. From the preceding example, we note that consid-
ering objects in order of nonincreasing profit values does not yield an optimal
solution because even though the objective function value takes on large in-
creases at each step, the number of steps is few as the knapsack capacity is
used up at a rapid rate. So, let us try to be greedy with capacity and use it
up as slowly as possible. This requires us to consider the objects in order of
nondecreasing weights w;. Using Example 4.1, solution 3 results. This too
is suboptimal. This time, even though capacity is used slowly, profits aren’t
coming in rapidly enough.

Thus, our next attempt is an algorithm that strives to achieve a balance
between the rate at which profit increases and the rate at which capacity is
used. At each step we include that object which has the maximum profit
per unit of capacity used. This means that objects are considered in order
of the ratio p;/w;. Solution 4 of Example 4.1 is produced by this strategy. If
the objects have already been sorted into nonincreasing order of p;/w;, then
function GreedyKnapsack (Algorithm 4.2) obtains solutions corresponding to
this strategy. Note that solutions corresponding to the first two strategies
can be obtained using this algorithm if the objects are initially in the appro-
priate order. Disregarding the time to initially sort the objects, each of the
three strategies outlined above requires only O(n) time.

We have seen that when one applies the greedy method to the solution
of the knapsack problem, there are at least three different measures one can
attempt to optimize when determining which object to include next. These
measures are total profit, capacity used, and the ratio of accumulated profit
to capacity used. Once an optimization measure has been chosen, the greedy

4.3. TREE VERTEX SPLITTING 203

2. [0/1 Knapsack] Consider the knapsack problem discussed in this sec-
tion. We add the requirement that z; =1 or z; = 0, 1 <7 < n; that
is, an object is either included or not included into the knapsack. We
wish to solve the problem

n
max E PiL;
1

n
subject toz w;r; <m
1

and z; =0o0rl, 1 <i<n

Onme greedy strategy is to consider the objects in order of nonincreasing
density p;/w; and add the object into the knapsack if it.fits. Show that
this strategy doesn’t necessarily yield an optimal solution.

4.3 TREE VERTEX SPLITTING

Consider a directed binary tree each edge of which is labeled with a real
number (called its weight). Trees with edge weights are called weighted
trees. A weighted tree can be used, for example, to model a distribution
network in which electric signals or commodities such as oil are transmitted.
Nodes 1n the tree correspond to receiving stations and edges correspond to
transmission lines. It is conceivable that in the process of transmission some
loss occurs (drop in voltage in the case of electric signals or drop in pressure
in the case of oil). Each edge in the tree is labeled with the loss that occurs
in traversing that edge. The network may not be able to tolerate losses
beyond a certain level. In places where the loss exceeds the tolerance level,
boosters have to be placed. Given a network and a loss tolerance level, the
Tree Vertez Splitting Problem (TVSP) is to determine an optimal placement
of boosters. It is assumed that the boosters can only be placed in the nodes
of the tree.

The TVSP can be specified more precisely as follows: Let T = (V, E, w)
be a weighted directed tree, where V is the vertex set, F is the edge set, and
w is the weight function for the edges. In particular, w(i, j) is the weight of
the edge (1,7) € E. The weight w(7,) is undefined for any (z,7) ¢ E. A
source vertex is a vertex with in-degree zero, and a sink vertex is a vertex
with out-degree zero. For any path P in the tree, its delay, d(P), is defined
to be the sum of the weights on that path. The delay of the tree T, d(T), is
the maximum of all the path delays.

Let T'/X be the forest that results when each vertex u in X is split into
two nodes u' and «° such that all the edges (u,j) € E ({(j,u) € E) are

204 CHAPTER 4. THE GREEDY METHOD

@

Figure 4.1 A tree before and after splitting the node 3

replaced by edges of the form (u?, j) ({(j,u%)). In other words, outbound
edges from u now leave from «° and inbound edges to u now enter at u’.
Figure 4.1 shows a tree before and after splitting the node 3. A node that
gets split corresponds to a booster station. The TVSP is to identify a set
X C V of minimum cardinality for which d(T/X) < 4§, for some specified
tolerance limit d. Note that the TVSP has a solution only if the maximum
edge weight is < 4. Also note that the TVSP naturally fits the subset
paradigm.

Given a weighted tree T(V, F, w) and a tolerance limit d, any subset X of
V is a feasible solution if d(T'/X) < 4. Given an X, we can compute d(7T'/X)
in O(|V]) time. A trivial way of solving the TVSP is to compute d(T/X)
for each possible subset X of V. But there are 2!V! such subsets! A better
algorithm can be obtained using the greedy method.

For the TVSP, the quantity that is optimized (minimized) is the number
of nodes in X. A greedy approach to solving this problem is to compute for
each node v € V, the maximum delay d(u) from u to any other node in its
subtree. If u has a parent v such that d(u) + w(v,u) > 4, then the node
u gets split and d(u) is set to zero. Computation proceeds from the leaves
toward the root.

In the tree of Figure 4.2, let § = 5. For each of the leaf nodes 7,8,5,9,
and 10 the delay is zero. The delay for any node is computed only after the
delays for its children have been determined. Let u be any node and C(u)
be the set of all children of w. Then d(u) is given by

d(u) = vrer&}q(‘){d(v) + w(u,v)}

Using the above formula, for the tree of Figure 4.2, d(4) = 4. Since
d(4) + w(2,4) = 6 > 4, node 4 gets split. We set d(4) = 0. Now d(2) can be

4.3. TREE VERTEX SPLITTING 205

Figure 4.2 An example tree

computed and is equal to 2. Since d(2) + w(1,2) exceeds §, node 2 gets split
and d(2) is set to zero. Then d(6) is equal to 3. Also, since d(6)+w(3,6) > 4,
node 6 has to be split. Set d(6) to zero. Now d(3) is computed as 3. Finally,
d(1) is computed as 5.

Figure 4.3 shows the final tree that results after splitting the nodes 2,4,
and 6. This algorithm is described in Algorithm 4.3, which is invoked as
TVS(root,), root being the root of the tree. The order in which TVS visits
(i.e., computes the delay values of) the nodes of the tree is called the post
order and is studied again in Chapter 6.

()
& (5)
Wy O

Figure 4.3 The final tree after splitting the nodes 2, 4, and 6

206 CHAPTER 4. THE GREEDY METHOD

Algorithm TVS(T, ¢)
// Determine and output the nodes to be split.
// w() is the weighting function for the edges.

if (T # 0) then

d[T] := 05
for each child v of T do

LIS i W

TVS(v,6);
d[T) = max{d[T], dlo] + w(T,)}

if ((T is not the root) and
(d[T] + w(parent(T),T) > J)) then

write (T); d[T] := 0;
}

= b e e e e b e
CO-TITDDUTERWN=O
Sy

Algorithm 4.3 The tree vertex splitting algorithm

Algorithm TVS takes ©(n) time, where n is the number of nodes in the
tree. This can be seen as follows: When TVS is called on any node T, only
a constant number of operations are performed (excluding the time taken
for the recursive calls). Also, TVS is called only once on each node T in the
tree.

Algorithm 4.4 is a revised version of Algorithm 4.3 for the special case
of directed binary trees. A sequential representation of the tree (see Section
2.2) has been employed. The tree is stored in the array tree[| with the root
at tree[l]. Edge weights are stored in the array weight[|. If tree[i] has a tree
node, the weight of the incoming edge from its parent is stored in weight|i].
The delay of node ¢ is stored in d[i:]. The array d[| is initialized to zero
at the beginning. Entries in the arrays tree[| and weight|] corresponding
to nonexistent nodes will be zero. As an example, for the tree of Figure
4.2, tree[| will be set to {1,2,3,0,4,5,6,0,0,7,8,0,0,9,10} starting at cell
1. Also, weight[| will be set to {0,4,2,0,2,1,3,0,0,1,4,0, 0,2,3} at the
beginning, starting from cell 1. The algorithm is invoked as TVS(1,). Now
we show that TVS (Algorithm 4.3) will always split a minimal number of
nodes.

4.3. TREE VERTEX SPLITTING 207

1 Algorithm TVS(i,4)

2 // Determine and output a minimum cardinality split set.
3 // The tree is realized using the sequential representation.
4 // Root is at tree[l]. N is the largest number such that

5 // tree[N] has a tree node.

6

7 if (treefi] # 0) then // If the tree is not empty

8 if (2¢ > N) then d[i] :==0; // i is a leaf.

9 else

10 {

11 TVS(2i,6);

12 d[i] := max(d[i], d[2t] + weight[2i]);

13 if (224+1 < N) then

14 {

15 TVS(2i + 1, 6);

16 d[i] := max(d[t], d[2i + 1] + weight[2i + 1]);
17

18 }

19 if ((treefi] # 1) and (d[¢] + weight[i] > §)) then
20 {

21 write (tree[i]); d[i] := 03

22 }

Algorithm 4.4 TVS for the special case of binary trees

Theorem 4.2 Algorithm TVS outputs a minimum cardinality set U such
that d(T'/U) < 4 on any tree T, provided no edge of T has weight > é.

Proof: The proof is by induction on the number of nodes in the tree. If the
tree has a single node, the theorem is true. Assume the theorem for all trees
of size < n. We prove it for trees of size n + 1 also.

Let T be any tree of size n+ 1 and let U be the set of nodes split by TVS.
Also let W be a minimum cardinality set such that d(T/W) < §. We have
to show that |U| < |W|. If |U| = 0, this is true. Otherwise, let z be the first
vertex split by TVS. Let T, be the subtree rooted at z. Let T” be the tree
obtained from T by deleting T, except for z. Note that W has to have at
least one node, say y, from T,. Let W/ = W — {y}. If there is a W* such
that |W*| < |W'| and d(T'/W*) < 6, then since d(T/(W* +{z})) <&, W is
not a minimum cardinality split set for T. Thus, W’ has to be a minimum
cardinality split set such that d(T"/W’') < 4.

208 CHAPTER 4. THE GREEDY METHOD

If algorithm TVS is run on tree T”, the set of split nodes output is U —{z}.
Since T" has < n nodes, U — {z} is a minimum cardinality split set for 7.

This in turn means that |W’| > |U| — 1. In other words, [W| > |U|. O
EXERCISES
1. For the tree of Figure 4.2 solve the TVSP when (a) § = 4 and (b)
6 = 6.

2. Rewrite TVS (Algorithm 4.3) for general trees. Make use of pointers.

4.4 JOB SEQUENCING WITH DEADLINES

We are given a set of n jobs. Associated with job 7 is an integer deadline
d; > 0 and a profit p; > 0. For any job ¢ the profit p; is earned iff the job is
completed by its deadline. To complete a job, one has to process the job on
a machine for one unit of time. Only one machine is available for processing
jobs. A feasible solution for this problem is a subset J of jobs such that each
job in this subset can be completed by its deadline. The value of a feasible
solution J is the sum of the profits of the jobs in J, or >~ ; p;. An optimal
solution is a feasible solution with maximum value. Here again, since the
problem involves the identification of a subset, it fits the subset paradigm.

Example 4.2 Let n = 4, (p1,p2, p3, pa) = (100, 10, 15,27) and (dy, dz, d3, ds)
(2,1,2,1). The feasible solutions and their values are:

feasible processing

solution sequence value
1, 2) 2,1 110
3) 1,3o0r 3,1 115
4,1 127
2,3 25
4,3 42
1 100
2 10
3 15
4 27

LRI W =

Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and
the value is 127. These jobs must be processed in the order job 4 followed
by job 1. Thus the processing of job 4 begins at time zero and that of job 1
is completed at time 2. O

4.4. JOB SEQUENCING WITH DEADLINES 209

To formulate a greedy algorithm to obtain an optimal solution, we must
formulate an optimization measure to determine how the next job is chosen.
As a first attempt we can choose the objective function 3, ; p; as our op-
timization measure. Using this measure, the next job to include is the one
that increases) ;- ; p; the most, subject to the constraint that the resulting
J is a feasible solution. This requires us to consider jobs in nonincreasing
order of the p;’s. Let us apply this criterion to the data of Example 4.2. We
begin with J =0 and >, ; p; = 0. Job 1 is added to J as it has the largest
profit and J = {1} is a feasible solution. Next, job 4 is considered. The
solution J = {1,4} is also feasible. Next, job 3 is considered and discarded
as J = {1,3,4} is not feasible. Finally, job 2 is considered for inclusion into
J. It is discarded as J = {1,2,4} is not feasible. Hence, we are left with
the solution J = {1,4} with value 127. This is the optimal solution for the
given problem instance. Theorem 4.4 proves that the greedy algorithm just
described always obtains an optimal solution to this sequencing problem.

Before attempting the proof, let us see how we can determine whether
a given J is a feasible solution. One obvious way is to try out all possible
permutations of the jobs in J and check whether the jobs in J can be pro-
cessed in any one of these permutations (sequences) without violating the
deadlines. For a given permutation o = 11,49,13,...,%;, this is easy to do,
since the earliest time job i,,1 < ¢ < k, will be completed is g. If ¢ > d;_,
then using o, at least job ¢, will not be completed by its deadline. However,
if |J| = i, this requires checking i! permutations. Actually, the feasibility
of a set J can be determined by checking only one permutation of the jobs
in J. This permutation is any one of the permutations in which jobs are
ordered in nondecreasing order of deadlines.

Theorem 4.3 Let J be a set of k jobs and o = i1,49,...,i; a permutation
of jobs in J such that d;;, <d;, <--- <d;, . Then J is a feasible solution iff
the jobs in J can be processed in the order o without violating any deadline.

Proof: Clearly, if the jobs in J can be processed in the order o without
violating any deadline, then J is a feasible solution. So, we have only to
show that if J is feasible, then o represents a possible order in which the
jobs can be processed. If J is feasible, then there exists o' = ry,7o,..., 7%
such that dr, > ¢, 1 < ¢ < k. Assume ¢’ # 0. Then let a be the least index
such that r, # i,. Let r, = i,. Clearly, b > a. In ¢’ we can interchange
re and ry. Since d,, > d,,, the resulting permutation o” = s1,59,..., 5
represents an order in which the jobs can be processed without violating
a deadline. Continuing in this way, ¢’ can be transformed into o without
violating any deadline. Hence, the theorem is proved. O

Theorem 4.3 is true even if the jobs have different processing times ¢; > 0
(see the exercises).

210 CHAPTER 4. THE GREEDY METHOD

Theorem 4.4 The greedy method described above always obtains an opti-
mal solution to the job sequencing problem.

Proof: Let (p;,d;),1 < i < n, define any instance of the job sequencing
problem. Let I be the set of jobs selected by the greedy method. Let J
be the set of jobs in an optimal solution. We now show that both I and J
have the same profit values and so I is also optimal. We can assume I # J
as otherwise we have nothing to prove. Note that if J C I, then J cannot
be optimal. Also, the case I C J is ruled out by the greedy method. So,
there exist jobs @ and b such that a € I, a € J, be J, and b & I. Let a be
a highest-profit job such that a € I and a & J. It follows from the greedy
method that p, > py for all jobs b that are in J but not in I. To see this,
note that if p, > p,, then the greedy method would consider job b before job
a and include it into I.

Now, consider feasible schedules S; and S; for I and J respectively. Let
¢ be a job such that : € I and 7 € J. Let 7 be scheduled from ¢ to t + 1 in
Srand ¢ tot' +1in Sj. If t < ¢/, then we can interchange the job (if any)
scheduled in [#,#' + 1] in Sy with 4. If no job is scheduled in [#',# + 1] in I,
then 7 is moved to [t',#' +1]. The resulting schedule is also feasible. If t' < ¢,
then a similar transformation can be made in S;. In this way, we can obtain
schedules S} and S’; with the property that all jobs common to I and J are
scheduled at the same time. Consider the interval [t4,t, + 1] in S} in which
the job a (defined above) is scheduled. Let b be the job (if any) scheduled
in S’ in this interval. From the choice of a,p, > pp. Scheduling a from ¢,
to t, + 1 in S} and discarding job b gives us a feasible schedule for job set
J' = J— {b} U{a}. Clearly, J' has a profit value no less than that of J and
differs from I in one less job than J does.

By repeatedly using the transformation just described, J can be trans-
formed into I with no decrease in profit value. So I must be optimal. O

A high-level description of the greedy algorithm just discussed appears
as Algorithm 4.5. This algorithm constructs an optimal set J of jobs that
can be processed by their due times. The selected jobs can be processed in
the order given by Theorem 4.3.

Now, let us see how to represent the set J and how to carry out the test
of lines 7 and 8 in Algorithm 4.5. Theorem 4.3 tells us how to determine
whether all jobs in J U {i} can be completed by their deadlines. We can
avoid sorting the jobs in J each time by keeping the jobs in J ordered by
deadlines. We can use an array d[1 : n] to store the deadlines of the jobs
in the order of their p-values. The set J itself can be represented by a one-
dimensional array J[1 : k] such that J[r], 1 < r < k are the jobs in J and
d[J[1]] <d[J[2]] £ --- < d[J[k]]. To test whether JU{:} is feasible, we have
just to insert ¢ into J preserving the deadline ordering and then verify that
d[J[r]] £r,1 <r <k+1. The insertion of ¢ into J is simplified by the use
of a fictitious job 0 with d[0] = 0 and J[0] = 0. Note also that if job 7 is
to be inserted at position ¢, then only the positions of jobs J[g|, J[¢ + 1],

4.4. JOB SEQUENCING WITH DEADLINES 211

Algorithm GreedyJob(d, J,n)
// J is a set of jobs that can be completed by their deadlines.

J:={1};
for i := 2 to n do

if (all jobs in J U {7} can be completed
by their deadlines) then J := J U {i};

H QOO0 ULk LN —

Algorithm 4.5 High-level description of job sequencing algorithin

., J[k] are changed after the insertion. Hence, it is necessary to verify
only that these jobs (and also job 7) do not violate their deadlines following
the insertion. The algorithm that results from this discussion is function
JS (Algorithm 4.6). The algorithm assumes that the jobs are already sorted
such that p; > py > --- > pp. Further it assuines that n > 1 and the deadline
d[i] of job ¢ is at least 1. Note that no job with d[i] < 1 can ever be finished
by its deadline. Theorem 4.5 proves that JS is a correct implementation of
the greedy strategy.

Theorem 4.5 Function JS is a correct implementation of the greedy-based
method described above.

Proof: Since d[i] > 1, the job with the largest p; will always be in the
greedy solution. As the jobs are in nonincreasing order of the p;'s, line
8 in Algorithm 4.6 includes the job with largest p;. The for loop of line
10 considers the remaining jobs in the order required by the greedy method
deseribed earlier. At all times, the set of jobs already included in the solution
is maintained in J. If J[¢], 1 < i < k, is the set already included, then J is
such that d[J[i]] < d[J[i +1]], 1 < i < k. This allows for easy application
of the feasibility test of Theorem 4.3, When job i is being considered, the
while loop of line 15 determines where in J this job has to be inserted. The
use of a fictitious job 0 (line 7) allows easy insertion into position 1. Let w
be such that d[J[w]] < d[i] and d[J[q]] > d[i], w < ¢ < k. If job 7 1s included
into J, then jobs J[q], w < q¢ < k, have to be moved one position up in J
(line 19). From Theorem 4.3, it follows that such a move retains feasibility
of J iff d[J[q]] # g, w < ¢ < k. This condition is verified in line 15. In
addition, ¢ can be inserted at position w + 1 iff d[i] > w. This is verified in
line 16 (note r» = w on exit from the while loop if d[J[q]] # ¢, w < ¢ < k).
The correctness of JS follows from these observations. O

212 CHAPTER 4. THE GREEDY METHOD

1 Algorithm JS(d, j,n)

2 //d[i]] >1,1< i< nare the deadlines, n > 1. The jobs

3 // are ordered such that p[1] > p[2] >--- > p[]. J[i]

4 // is the ith job in the optimal Solutlon 1 <<k,

5 // Also, at termination d[J[i]] < d[J[i + 1], 1 <i < k

6

7 d[0] := J[0] := 0; // Initialize.

8 J1]:=1;// Include job 1.

9 k:=1;

10 for +:=2 to n do

11 {

12 // Consider jobs in nonincreasing order of p[i]. Find
13 // position for i and check feasibility of insertion.

14 7= k;

15 while ((d[J [7"]] > d[i]) and (d[J[r]] # 7)) dor:=r—1;
16 if ((d[J[r]] < d[i]) and (d[i] > r)) then

17

18 // Insert ¢ into JJ].

19 for g:=k to (r+1) step —1do J[g+ 1] := J[q];
20 Jr+1l:=45k:=k+1;

21

22

23 return k;

24 }

Algorithm 4.6 Greedy algorithm for sequencing unit time jobs with dead-
lines and profits

For JS there are two possible parameters in terms of which its complexity
can be measured. We can use n, the number of jobs, and s, the number of
jobs included in the solution J. The while loop of line 15 in Algorithm 4.6 is
iterated at most k times. Each iteration takes ©(1) time. If the conditional
of line 16 is true, then lines 19 and 20 are executed. These lines require
©(k — r) time to insert job i. Hence, the total time for each iteration of
the for loop of line 10 is ©(k). This loop is iterated n — 1 times. If s is
the final value of k, that is, s is the number of jobs in the final solution,
then the total time needed by algorithm JS is ©(sn). Since s < n, the
worst-case time, as a function of n alone is ©(n?). If we consider the job
set p =d; =n—1i+1, 1 <i < n, then algorithm JS takes ©(n?) time
to determine J. Hence, the worst-case computing time for JS is ©(n?). In
addition to the space needed for d, JS needs ©(s) amount of space for J.

4.4. JOB SEQUENCING WITH DEADLINES 213

Note that the profit values are not needed by JS. It is sufficient to know that
Pi 2 Pit1, 1 <1 <n.

The computing time of JS can be reduced from O(n?) to nearly O(n)
by using the disjoint set union and find algorithms (see Section 2.5) and a
different method to determine the feasibility of a partial solution. If J is a
feasible subset of jobs, then we can determine the processing times for each
of the jobs using the rule: if job ¢ hasn’t been assigned a processing time,
then assign it to the slot [« — 1,«], where a is the largest integer r such
that 1 < r < d; and the slot [@ — 1,q] is free. This rule simply delays the
processing of job ¢ as much as possible. Consequently, when J is being built
up job by job, jobs already in J do not have to be moved from their assigned
slots to accommodate the new job. If for the new job being considered there
is no « as defined above, then it cannot be included in J. The proof of the
validity of this statement is left as an exercise.

Example 4.3 Let n = 5,(p1,...,p5) = (20,15,10,5,1) and (dy,...,ds)
= (2,2,1,3,3). Using the above feasibility rule, we have

J assigned slots job considered action profit
0 none 1 assign to [1, 2] 0
{1} 1, 2] 2 assign to [0, 1] 20
{1, 2} [0, 1], [1, 2] 3 cannot fit; reject 35
{1, 2} [0, 1], [1, 2] 4 assign to [2, 3] 35
{1,2,4} [0,1],[1, 2], [2, 3] 5 reject 40
The optimal solution is J = {1,2,4} with a profit of 40. O

Since there are only n jobs and each job takes one unit of time, it is
necessary only to consider the time slots [1 — 1,i], 1 < i < b, such that
b=min {n,max {d;}}. One way to implement the above scheduling rule is
to partition the time slots [¢ — 1, 4], 1 < ¢ < b, into sets. We use ¢ to represent
the time slots [¢ — 1,4]. For any slot 7, let n; be the largest integer such that
n; < 7 and slot n; is free. To avoid end conditions, we introduce a fictitious
slot [—1,0] which is always free. Two slots ¢ and j are in the same set iff
n; = n;. Clearly, if < and j, ¢ < j, are in the same set, then4,i+1,0+2,...,j
are in the same set. Associated with each set k of slots is a value f(k). Then
f(k) = n; for all slots 7 in set k. Using the set representation of Section 2.5,
each set is represented as a tree. The root node identifies the set. The
function f is defined only for root nodes. Initially, all slots are free and we
have b+ 1 sets corresponding to the b+ 1 slots [¢ — 1,i], 0 < i < b. At this
time f(i) =14, 0 < i < b. We use p(i) to link slot i into its set tree. With
the conventions for the union and find algorithms of Section 2.5, p(i) = —1,
0 < i < b, initially. If a job with deadline d is to be scheduled, then we need
to find the root of the tree containing the slot min{n,d}. If this root is j,

214 CHAPTER 4. THE GREEDY METHOD

then f(j) is the nearest free slot, provided f(j) # 0. Having used this slot,
the set with root j should be combined with the set containing slot f(j)— 1.

Example 4.4 The trees defined by the p(i)’s for the first three iterations

in Example 4.3 are shown in Figure 4.4. O

trees coni(i)ctl)ere daction

J f 0 1 2 3 4 5 1d,=2 select
@ b & O D D D
p©) p(1) p2) pB p@ pO)

{1} f 0 1 3 4 5 2,d,=2 select
D) D D D
p(0) D p(3) p@) p()

p(2)
{1,2} f(1)=0 f(3)=3 f(4)=4 f(5)=5 3,d;=1 reject
D D

p3) p@® pS)

Figure 4.4 Fast job scheduling

The fast algorithm appears as FJS (Algorithm 4.7). Its computing time
is readily observed to be O(na(2n,n)) (recall that «(2n,n) is the inverse
of Ackermann’s function defined in Section 2.5). It needs an additional 2n
words of space for f and p.

4.4. JOB SEQUENCING WITH DEADLINES 215

1 Algorithm FJS(d,n,b,j)

2 // Find an optimal solution J[1 : k]. It is assumed that
3 // pll] >pl2] > - > p[n] and that b = min{n, max;(d[z])}.
4

5 // Initially there are b + 1 single node trees.

6 for i := 0 to b do f[i] :=1;

7 k :=0; // Initialize.

8 for ::=1to n do

9 { // Use greedy rule.

10 g := CollapsingFind(min(n, d[i]));

11 if (f[g] # 0) then

12

13 k:=k+1; Jk] :=i; // Select job i.

14 m := CollapsingFind(f[g] — 1);

15 WeightedUnion(m, ¢);

16 flg] :== flm]; // q may be new root.

17

18

19 }

Algorithm 4.7 Faster algorithm for job sequencing

EXERCISES

1. You are given a set of n jobs. Associated with each job i is a processing
time ¢; and a deadline d; by which it must be completed. A feasible
schedule is a permutation of the jobs such that if the jobs are processed
in that order, then each job finishes by its deadline. Define a greedy
schedule to be one in which the jobs are processed in nondecreasing
order of deadlines. Show that if there exists a feasible schedule, then
all greedy schedules are feasible.

2. [Optimal assignment] Assume there are n workers and n jobs. Let v;;
be the value of assigning worker i to job j. An assignment of workers to
jobs corresponds to the assignment of 0 or 1 to the variables z;;, 1 <,
j < n. Then z;; =1 means worker 1 is assigned to job j, and z;; = 0
means that worker ¢ is not assigned to job j. A valid assignment is
one in which each worker is assigned to exactly one job and exactly
one worker is assigned to any one job. The value of an assignment is

226 225 VijTij-

216 CHAPTER 4. THE GREEDY METHOD

For example, assume there are three workers w,, we, and ws and three
jobs j1,jo, and j3. Let the values of assignment be vy = 11, vys = 5,
U3 = 8, Vo1 = 3, Vo9 — 7, V93 — 15, U3l = 8, Usg — 12, and v33 = 9.
Then, a valid assignment is £12 = 1, 93 = 1, and 237 = 1. The rest of
the z;;'s are zeros. The value of this assignment is 5 + 15 + 8 = 28.

An optimal assignment is a valid assignment of maximum value. Write
algorithms for two different greedy assignment schemes. One of these
assigns a worker to the best possible job. The other assigns to a job the
best possible worker. Show that neither of these schemes is guaranteed
to yield optimal assignments. Is either scheme always better than the
other? Assume v;; > 0.

3. (a) What is the solution generated by the function JS when n =
77 (p17p27"'7p7) - (37 57 207]‘87]‘767 30)7 and (d17d27"'7d7) -
(1,3,4,3,2,1,2)7

(b) Show that Theorem 4.3 is true even if jobs have different process-
ing requirements. Associated with job i is a profit p; > 0, a time
requirement ¢; > 0, and a deadline d; > ¢;.

(¢) Show that for the situation of part (a), the greedy method of this
section doesn’t necessarily yield an optimal solution.

4. (a) For the job sequencing problem of this section, show that the
subset J represents a feasible solution iff the jobs in J can be
processed according to the rule: if job 7 in J hasn’t been assigned
a processing time, then assign it to the slot [— 1, @], where « is
the least integer r such that 1 < r < d; and the slot [— 1,¢] is
free.

(b) For the problem instance of Exercise 3(a) draw the trees and give
the values of f(i),0 < i < n, after each iteration of the for loop
of line 8 of Algorithm 4.7.

4.5 MINIMUM-COST SPANNING TREES

Definition 4.1 Let G = (V, E) be an undirected connected graph. A sub-
graph t = (V. E') of G is a spanning tree of G iff t is a tree. O

Example 4.5 Figure 4.5 shows the complete graph on four nodes together
with three of its spanning trees. O

Spanning trees have many applications. For example, they can be used
to obtain an independent set of circuit equations for an electric network.
First, a spanning tree for the electric network is obtained. Let B be the
set of network edges not in the spanning tree. Adding an edge from B to

4.5. MINIMUM-COST SPANNING TREES 217

0o IS ol
N

Figure 4.5 An undirected graph and three of its spanning trees

the spanning tree creates a cycle. Kirchoff’s second law is used on each
cycle to obtain a circuit equation. The cycles obtained in this way are
independent (i.e., none of these cycles can be obtained by taking a linear
combination of the remaining cycles) as each contains an edge from B that
is not contained in any other cycle. Hence, the circuit equations so obtained
are also independent. In fact, it can be shown that the cycles obtained by
introducing the edges of B one at a time into the resulting spanning tree
form a cycle basis, and so all other cycles in the graph can be constructed
by taking a linear combination of the cycles in the basis.

Another application of spanning trees arises from the property that a
spanning tree is a minimal subgraph G’ of G such that V(G') = V(G) and G’
is connected. (A minimal subgraph is one with the fewest number of edges.)
Any connected graph with n vertices must have at least n — 1 edges and all
connected graphs with n — 1 edges are trees. If the nodes of G represent
cities and the edges represent possible communication links connecting two
cities, then the minimum number of links needed to connect the n cities is
n — 1. The spanning trees of G represent all feasible choices.

In practical situations, the edges have weights assigned to them. These
weights may represent the cost of construction, the length of the link, and
so on. Given such a weighted graph, one would then wish to select cities to
have minimum total cost or minimum total length. In either case the links
selected have to form a tree (assuming all weights are positive). If this is not
so, then the selection of links contains a cycle. Removal of any one of the
links on this cycle results in a link selection of less cost connecting all cities.
We are therefore interested in finding a spanning tree of G with minimum
cost. (The cost of a spanning tree is the sum of the costs of the edges in
that tree.) Figure 4.6 shows a graph and one of its minimum-cost spanning
trees. Since the identification of a minimum-cost spanning tree involves the
selection of a subset of the edges, this problem fits the subset paradigm.

218 CHAPTER 4. THE GREEDY METHOD

Figure 4.6 A graph and its minimum cost spanning tree

4.5.1 Prim’s Algorithm

A greedy method to obtain a minimum-cost spanning tree builds this tree
edge by edge. The next edge to include is chosen according to some optimiza-
tion criterion. The simplest such criterion is to choose an edge that results
in a minimum increase in the sum of the costs of the edges so far included.
There are two possible ways to interpret this criterion. In the first, the set
of edges so far selected form a tree. Thus, if A is the set of edges selected
so far, then A forms a tree. The next edge (u,v) to be included in A is a
minimum-cost edge not in A with the property that A U {(u,v)} is also a
tree. Exercise 2 shows that this selection criterion results in a minimum-cost
spanning tree. The corresponding algorithm is known as Prim’s algorithm.

Example 4.6 Figure 4.7 shows the working of Prim’s method on the graph
of Figure 4.6(a). The spanning tree obtained is shown in Figure 4.6(b) and
has a cost of 99. a

Having seen how Prim’s method works, let us obtain a pseudocode algo-
rithm to find a minimum-cost spanning tree using this method. The algo-
rithm will start with a tree that includes only a minimum-cost edge of G.
Then, edges are added to this tree one by one. The next edge (i,j) to be
added is such that i is a vertex already included in the tree, j is a vertex not
yet included, and the cost of (i,7), cost[i,j], is minimum among all edges
(k,1) such that vertex k is in the tree and vertex [is not in the tree. To
determine this edge (i, j) efficiently, we associate with each vertex j not yet
included in the tree a value near[j]. The value near[j] is a vertex in the tree
such that cost[j,near[]] is minimum among all choices for near[j]. We de-
fine near[j] = 0 for all vertices j that are already in the tree. The next edge

4.5. MINIMUM-COST SPANNING TREES 219

® D 3 ONEURNE @3
25\ 25",
5 5
e 9 B30
(a) (b) (©)

,\ D ON
* A T
p /\(\ .
s D3 ® © 3 6

A2

25) 25 A2 25 12
5 O 5
22 \@ 24 224

(d) ©) t))

Figure 4.7 Stages in Prim’s algorithm

to include is defined by the vertex j such that near[j] # 0 (5 not already in
the tree) and cost[j, near(j]] is minimum.

In function Prim (Algorithm 4.8), line 9 selects a minimum-cost edge.
Lines 10 to 15 initialize the variables so as to represent a tree comprising
only the edge (k,1). In the for loop of line 16 the remainder of the spanning
tree is built up edge by edge. Lines 18 and 19 select (j, near[j]) as the next
edge to include. Lines 23 to 25 update near] .

The time required by algorithm Prim is O(n?), where n is the number of
vertices in the graph G. To see this, note that line 9 takes O(|E|) time and
line 10 takes ©(1) time. The for loop of line 12 takes ©(n) time. Lines 18
and 19 and the for loop of line 23 require O(n) time. So, each iteration of
the for loop of line 16 takes O(n) time. The total time for the for loop of
line 16 is therefore O(n?). Hence, Prim runs in O(n?) time.

220 CHAPTER 4. THE GREEDY METHOD

If we store the nodes not yet included in the tree as a red-black tree (see
Section 2.4.2), lines 18 and 19 take O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). The
for loop of line 23 has to examine only the nodes adjacent to j. Thus its
overall frequency is O(|E|). Updating in lines 24 and 25 also takes O(logn)
time (since an update can be done using a delete and an insertion into the
red-black tree). Thus the overall run time is O((n + |E|) log n).

The algorithm can be speeded a bit by making the observation that a
minimum-cost spanning tree includes for each vertex v a minimum-cost edge
incident to v. To see this, suppose t is a minimum-cost spanning tree for G =
(V,E). Let v be any vertex in ¢t. Let (v, w) be an edge with minimum cost
among all edges incident to v. Assume that (v,w) ¢ E(t) and cost[v,w] <
cost|v, z] for all edges (v,z) € E(t). The inclusion of (v,w) into ¢ creates
a unique cycle. This cycle must include an edge (v,z), # w. Removing
(v,z) from E(t)U{(v,w)} breaks this cycle without disconnecting the graph
(V.E(t)U{(v,w)}). Hence, (V, E(t) U{(v,w)} —{(v,2)}) is also a spanning
tree. Since cost[v,w] < cost[v, z], this spanning tree has lower cost than ¢.
This contradicts the assumption that ¢ is a minimum-cost spanning tree of
G. So, t includes minimum-cost edges as stated above.

From this observation it follows that we can start the algorithm with a
tree consisting of any arbitrary vertex and no edge. Then edges can be added
one by one. The changes needed are to lines 9 to 17. These lines can be
replaced by the lines

9 mincost := 0;

10 for i := 2 to n do near[i] := 1;
1r // Vertex 1 is initially in ¢.
12’ near|[1] := 0

13-16° for i:=1ton—-1do

17 { // Find n — 1 edges for ¢.

4.5.2 Kruskal’s Algorithm

There is a second possible interpretation of the optimization criteria men-
tioned earlier in which the edges of the graph are considered in nondecreasing
order of cost. This interpretation is that the set ¢ of edges so far selected for
the spanning tree be such that it is possible to complete t into a tree. Thus
t may not be a tree at all stages in the algorithm. In fact, it will generally
only be a forest since the set of edges ¢ can be completed into a tree iff there
are no cycles in . We show in Theorem 4.6 that this interpretation of the
greedy method also results in a minimum-cost spanning tree. This method
is due to Kruskal.

4.5. MINIMUM-COST SPANNING TREES 221

1 Algorithm Prim(E, cost,n,t)

2 // E is the set of edges in G. cost[l : n,1:n] is the cost

3 // adjacency matrix of an n vertex graph such that cost|[i,] is
4 // either a positive real number or oo if no edge (¢, j) exists.

5 // A minimum spanning tree is computed and stored as a set of
6 // edges in the array t[1 :n —1,1:2]. (¢[i,1],¢[¢,2]) is an edge in
7 // the minimum-cost spanning tree. The final cost is returned.
8

9 Let (k,1) be an edge of minimum cost in E}

10 mincost := costlk,];

11 t[1,1] == k; t[1,2] := {5

12 for i :=1to n do // Initialize near.

13 if (costli,l] < costli, k]) then near[i] := I3

14 else near[i] := k;

15 near[k] := near|l] := 03

16 for i:=2ton—1do

17 { // Find n — 2 additional edges for ¢.

18 Let j be an index such that near[j] # 0 and

19 cost[7, near[j]] is minimum;

20 t{i, 1] :== j; t[i, 2] := near(jl;

21 mincost := mincost + cost[j, near|[j]];

22 near[j] := 03

23 for k£ := 1 to n do // Update near| |.

24 if ((near[k] # 0) and (cost[k,near[k]] > cost[k, j]))
25 then nearlk] := j;

26 }

27 return mincost;

28 }

Algorithm 4.8 Prim’s minimum-cost spanning tree algorithmn

222 CHAPTER 4. THE GREEDY METHOD

Example 4.7 Consider the graph of Figure 4.6(a). We begin with no edges
selected. Figure 4.8(a) shows the current graph with no edges selected. Edge
(1,6) is the first edge considered. It is included in the spanning tree being
built. This yields the graph of Figure 4.8(b). Next, the edge (3,4) is selected
and included in the tree (Figure 4.8(c)). The next edge to be considered is
(2,7). Its inclusion in the tree being built does not create a cycle, so we get
the graph of Figure 4.8(d). Edge (2,3) is considered next and included in
the tree Figure 4.8(e). Of the edges not yet considered, (7,4) has the least
cost. It is considered next. Its inclusion in the tree results in a cycle, so this
edge is discarded. Edge (5,4) is the next edge to be added to the tree being
built. This results in the configuration of Figure 4.8(f). The next edge to be
considered is the edge (7,5). It is discarded, as its inclusion creates a cycle.
Finally, edge (6,5) is considered and included in the tree being built. This
completes the spanning tree. The resulting tree (Figure 4.6(b)) has cost 99.

O

For clarity, Kruskal’s method is written out more formally in Algorithm
4.9. Initially E is the set of all edges in G. The only functions we wish
to perform on this set are (1) determine an edge with minimum cost (line
4) and (2) delete this edge (line 5). Both these functions can be performed
efficiently if the edges in E are maintained as a sorted sequential list. It is
not essential to sort all the edges so long as the next edge for line 4 can be
determined easily. If the edges are maintained as a minheap, then the next
edge to consider can be obtained in O(log|E|) time. The construction of the
heap itself takes O(|E|) time.

To be able to perform step 6 efficiently, the vertices in G should be
grouped together in such a way that one can easily determine whether the
vertices v and w are already connected by the earlier selection of edges. If
they are, then the edge (v, w) is to be discarded. If they are not, then (v, w)
is to be added to ¢. One possible grouping is to place all vertices in the same
connected component of ¢ into a set (all connected components of ¢ will also
be trees). Then, two vertices v and w are connected in ¢ iff they are in the
same set. For example, when the edge (2,6) is to be considered, the sets are
{1,2},{3,4,6}, and {5}. Vertices 2 and 6 are in different sets so these sets
are combined to give {1,2,3,4,6} and {56}. The next edge to be considered
is (1,4). Since vertices 1 and 4 are in the same set, the edge is rejected. The
edge (3,5) connects vertices in different sets and results in the final span-
ning tree. Using the set representation and the union and find algorithms
of Section 2.5, we can obtain an efficient (almost linear) implementation of
line 6. The computing time is, therefore, determined by the time for lines 4
and 5, which in the worst case is O(|E|log|E|).

If the representations discussed above are used, then the pseudocode of
Algorithm 4.10 results. In line 6 an initial heap of edges is constructed. In
line 7 each vertex is assigned to a distinct set (and hence to a distinct tree).
The set t is the set of edges to be included in the minimum-cost spanning

4.5. MINIMUM-COST SPANNING TREES 223

(@ (b) (©)

o o)
2 2 2
10 10 10

14 14/ \16 14/ \16
@/ ff SING ﬁ/@ GIRE
ol 5 @”

(d)) ®

Figure 4.8 Stages in Kruskal’s algorithm

tree and 4 is the number of edges in ¢. The set ¢ can be represented as a
sequential list using a two-dimensional array ¢[1 : n—1,1 : 2]. Edge (u,v) can
be added to t by the assignments t[i, 1] := w; and ¢[i, 2] := v;. In the while
loop of line 10, edges are removed from the heap one by one in nondecreasing
order of cost. Line 14 determines the sets containing u and v. If j # k, then
vertices u and v are in different sets (and so in different trees) and edge
(u,v) is included into t. The sets containing « and v are combined (line 20).
If u = v, the edge (u,v) is discarded as its inclusion into ¢ would create a
cycle. Line 23 determines whether a spanning tree was found. It follows
that ¢ # n — 1 iff the graph G is not connected. One can verify that the
computing time is O(|E|log |E|), where E is the edge set of G.

Theorem 4.6 Kruskal’s algorithm generates a minimum-cost spanning tree
for every connected undirected graph G.

224 CHAPTER 4. THE GREEDY METHOD
1 t:=0
2 while ((¢ has less than n — 1 edges) and (E # () do
3 A
4 Choose an edge (v, w) from E of lowest cost;
5 Delete (v, w) from Ej
6 if (v, w) does not create a cycle in ¢ then add (v,w) to t;
7 else discard (v, w);
8 1}

Algorithm 4.9 Early form of minimum-cost spanning tree algorithm due

to Kruskal
1 Algorithm Kruskal(E, cost, n,t)
2 // E is the set of edges in G. G has n vertices. cost[u,v] is the
3 // cost of edge (u,v). t is the set of edges in the minimum-cost
4 // spanning tree. The final cost is returned.
5
6 Construct a heap out of the edge costs using Heapify;
7 for i := 1 to n do parent[i] :== ~1;
8 // Each vertex is in a different set.
9 i := 035 mincost := 0.0;
10 while ((i <n — 1) and (heap not empty)) do
11
12 Delete a minimum cost edge (u,v) from the heap
13 and reheapify using Adjust;
14 J = Find(u); k := Find(v);
15 if (j # k) then
16
17 i=1i+1;
18 t[i, 1] := w3 t[i, 2] := v
19 mincost := mincost + costlu, v];
20 Union(j, k)3
21 }
22
23 if (i # n — 1) then write ("No spanning tree");
24 else return mincost;
25 }

Algorithm 4.10 Kruskal’s algorithm

4.5. MINIMUM-COST SPANNING TREES 225

Proof: Let G be any undirected connected graph. Let ¢ be the spanning tree
for G generated by Kruskal’s algorithm. Let ¢’ be a minimum-cost spanning
tree for G. We show that both ¢ and ¢’ have the same cost.

Let E(t) and E(t') respectively be the edges in ¢t and t'. If n is the number
of vertices in G, then both ¢ and ¢ have n — 1 edges. If E(t) = E(t'), then
t is clearly of minimum cost. If E(t) # E(t'), then let ¢ be a minimum-cost
edge such that ¢ € E(t) and ¢ € E(t'). Clearly, such a g must exist. The

inclusion of ¢ into ' creates a unique cycle (Exercise 5). Let q,ej,ea,..., e
be this unique cycle. At least one of the ¢;’s, 1 < ¢ < k, is not in E(t) as
otherwise ¢ would also contain the cycle g, ey, ez,...,e;. Let e; be an edge

on this cycle such that e; € F(t). If e; is of lower cost than ¢, then Kruskal’s
algorithm will consider e; before ¢ and include e; into t. To see this, note
that all edges in E(t) of cost less than the cost of ¢ are also in E(t') and do
not form a cycle with e;. So cost(e;) > cost(q).

Now, reconsider the graph with edge set E(#') U {q}. Removal of any
edge on the cycle g, e, es,..., e, will leave behind a tree ¢ (Exercise 5). In
particular, if we delete the edge ¢;, then the resulting tree ¢ will have a
cost no more than the cost of t' (as cost(e;) > cost(e)). Hence, t" is also a
minimuin-cost tree.

By repeatedly using the transformation described above, tree t' can be
transformed into the spanning tree ¢ without any increase in cost. Hence, ¢
is a minimum-cost spanning tree. ad

4.5.3 An Optimal Randomized Algorithm (x)

Any algorithm for finding the minimum-cost spanning tree of a given graph
G(V, E) will have to spend Q(|V| + |E|) time in the worst case, since it
has to examine each node and each edge at least once before determining
the correct answer. A randomized Las Vegas algorithm that runs in time
O(|V|+ |E|) can be devised as follows: (1) Randomly sample m edges from
G (for some suitable m). (2) Let G’ be the induced subgraph; that is, G’
has V as its node set and the sampled edges in its edge set. The subgraph
G’ need not be connected. Recursively find a minimum-cost spanning tree
for each component of G’. Let F' be the resultant minimum-cost spanning
forest of G'. (3) Using F', eliminate certain edges (called the F'-heavy edges)
of G that cannot possibly be in a minimum-cost spanning tree. Let G” be
the graph that results from G after elimination of the F-heavy edges. (4)
Recursively find a minimum-cost spanning tree for G”. This will also be a
minimum-cost spanning tree for G.

Steps 1 to 3 are useful in reducing the number of edges in G. The al-
gorithim can be speeded up further if we can reduce the number of nodes
in the input graph as well. Such a node elimination can be effected using
the Borivka steps. In a Boruvka step, for each node, an incident edge with
minimum weight is chosen. For example in Figure 4.9(a), the edge (1,3) is

226 CHAPTER 4. THE GREEDY METHOD

chosen for node 1, the edge (6,7) is chosen for node 7, and so on. All the
chosen edges are shown with thick lines. The connected components of the
induced graph are found. In the example of Figure 4.9(a), the nodes 1, 2,
and 3 form one component, the nodes 4 and 5 form a second component,
and the nodes 6 and 7 form another component. Replace each component
with a single node. The component with nodes 1, 2, and 3 is replaced with
the node a. The other two components are replaced with the nodes b and c,
respectively. Edges within the individual components are thrown away. The
resultant graph is shown in Figure 4.9(b). In this graph keep only an edge
of minimum weight between any two nodes. Delete any isolated nodes.

Since an edge is chosen for every node, the number of nodes after one
Boruvka step reduces by a factor of at least two. A minimum-cost span-
ning tree for the reduced graph can be extended easily to get a minimum-
cost spanning tree for the original graph. If E’ is the set of edges in the
minimum-cost spanning tree of the reduced graph, we simply include into
E' the edges chosen in the Boruvka step to obtain the minimum-cost span-
ning tree edges for the original graph. In the example of Figure 4.9, a
minimum-cost spanning tree for (c) will consist of the edges (a,b) and (b, c).
Thus a minimum-cost spanning tree for the graph of (a) will have the edges:
(1,3),(3,2),(4,5),(6,7),(3,4), and (2,6). More details of the algorithms are

given below.

Definition 4.2 Let F be a forest that forms a subgraph of a given weighted
graph G(V, E). If u and v are any two nodes in F', let F'(u,v) denote the path
(if any) connecting u and v in F' and let Fcost(u,v) denote the maximum
weight of any edge in the path F'(u,v). If there is no path between u and
v in F, Fcost(u,v) is taken to be co. Any edge (z,y) of G is said to be
F-heavy if cost[z,y] > Fcost(z,y) and F-light otherwise. O

Note that all the edges of F' are F-light. Also, any F-heavy edge cannot
belong to a minimum-cost spanning tree of G. The proof of this is left as
an exercise. The randomized algorithm applies two Boruvka steps to reduce
the number of nodes in the input graph. Next, it samples the edges of G and
processes them to eliminate a constant fraction of them. A minimum-cost
spanning tree for the resultant reduced graph is recursively computed. From
this tree, a spanning tree for GG is obtained. A detailed description of the
algorithm appears as Algorithm 4.11.

Lemma 4.3 states that Step 4 can be completed in time O(|V] + |E|).
The proof of this can be found in the references supplied at the end of this
chapter. Step 1 takes O(|V|+|E|) time and step 2 takes O(|E|) time. Step 6
takes O(|E|) time as well. The time taken in all the recursive calls in steps 3
and 5 can be shown to be O(|V|+|E|). For a proof, see the references at the
end of the chapter. A crucial fact that is used in the proof is that both the
number of nodes and the number of edges are reduced by a constant factor,
with high probability, in each level of recursion.

4.5. MINIMUM-COST SPANNING TREES 227

(b) (©)

Figure 4.9 A Boruvka step

Lemma 4.3 Let G(V, E) be any weighted graph and let F' be a subgraph
of G that formus a forest. Then, all the F-heavy edges of G can be identified

in time O(|V| + | E)). O
Theorem 4.7 A minimum-weight spanning tree for any given weighted
graph can be computed in time O(|V| + |E|). O
EXERCISES

1. Compute a minimum cost spanning tree for the graph of Figure 4.10
using (a) Primn’s algorithm and (b) Kruskal’s algorithm.

2. Prove that Prim’s method of this section generates minimum-cost
spanning trees.

228

CHAPTER 4. THE GREEDY METHOD

Step 1. Apply two Boruvka steps. At the end, the number of
nodes will have decreased by a factor at least 4. Let the resultant

graph be G(V, E).

Step 2. Form a subgraph G/(V', E') of G, where each edge of G
is chosen randomly to be in E’ with probability % The expected
\E

number of edges in E' is 5.

Step 3. Recursively find a minimum-cost spanning forest F' for
G

Step 4. Eliminate all the F-heavy edges from G. With high

probability, at least a constant fraction of the edges of G will be
eliminated. Let G” be the resultant graph.

Step 5. Compute a minimum-cost spanning tree (call it T")
for G" recursively. The tree T" will also be a minimum-cost

spanning tree for G.

Step 6. Return the edges of T” together with the edges chosen in
the Boruvka steps of step 1. These are the edges of a minimum-
cost spanning tree for G.

Algorithm 4.11 An optimal randomized algorithm

3.

4.

5.

(a) Rewrite Prim’s algorithm under the assumption that the graphs

are represented by adjacency lists.

(b) Program and run the above version of Prim’s algorithm against
Algorithm 4.9. Compare the two on a representative set of graphs.

(c) Analyze precisely the computing time and space requirements of

your new version of Prim’s algorithm using adjacency lists.

Program and run Kruskal’s algorithm, described in Algorithm 4.10.
You will have to modify functions Heapify and Adjust of Chapter 2. Use
the same test data you devised to test Prim’s algorithm in Exercise 3.

(a) Show that if ¢ is a spanning tree for the undirected graph G, then
the addition of an edge q, ¢ ¢ E(t) and g € E(G), to t creates a

unique cycle.

4.6. OPTIMAL STORAGE ON TAPES 229

Figure 4.10 Graph for Exercise 1

(b) Show that if any of the edges on this unique cycle is deleted from
E(t) U{q}, then the remaining edges form a spanning tree of G.

6. In Figure 4.9, find a minimum-cost spanning tree for the graph of part
(c) and extend the tree to obtain a minimum cost spanning tree for the
graph of part (a). Verify the correctness of your answer by applying
either Prim’s algorithm or Kruskal’s algorithm on the graph of part

(a).
7. Let G(V, E) be any weighted connected graph.

(a) If C is any cycle of G, then show that the heaviest edge of C
cannot belong to a minimum-cost spanning tree of G.

(b) Assume that F' is a forest that is a subgraph of G. Show that any
F-heavy edge of G cannot belong to a minimum-cost spanning
tree of G.

8. By considering the complete graph with n vertices, show that the num-
ber of spanning trees in an n vertex graph can be greater than 2" ~!—2.

4.6 OPTIMAL STORAGE ON TAPES

There are n programs that are to be stored on a computer tape of length
I. Associated with each program i is a length /;,1 < ¢ < n. Clearly, all
programs can be stored on the tape if and only if the sum of the lengths of

230 CHAPTER 4. THE GREEDY METHOD

the programs is at most . We assume that whenever a program is to be
retrieved from this tape, the tape is initially positioned at the front. Hence,
if the programs are stored in the order I = iy,1o,...,%,, the time ¢; needed
to retrieve program i; is proportional to >>;cy<;li,. If all programs are
retrieved equally often, then the expected or mean retrieval time (MRT) is
(1/n) ¥ 1<j<ntj- In the optimal storage on tape problem, we are required
to find a permutation for the n programs so that when they are stored
on the tape in this order the MRT is minimized. This problem fits the
ordering paradigm. Minimizing the MRT is equivalent to minimizing d(I) =
21<j<n 21<k<; big-

Example 4.8 Let n = 3 and (I1,ls,l3) = (5,10,3). There are n! = 6
possible orderings. These orderings and their respective d values are:

ordering I d(I)
1,2,3 5+5+104+5+10+3 = 38
1,3,2 5+5+3+5+3+10 = 31
2,1,3 10+104+5+10+5+3 = 43
2,3,1 0+10+3+10+3+5 = 41
3,1,2 3+3+5+3+54+10 = 29
3,2,1 3+3+104+3+104+5 = 34
The optimal ordering is 3,1, 2. |

A greedy approach to building the required permutation would choose
the next program on the basis of some optimization measure. One possible
measure would be the d value of the permutation constructed so far. The
next program to be stored on the tape would be one that minimizes the
increase in d. If we have already constructed the permutation 1,io,...,1%,,
then appending program j gives the permutation iy,%9,...,%,,%-4+1 = j. This
increases the d value by > 1.« l;, +1;. Since Y} <, l;, is fixed and in-
dependent of j, we trivially observe that the increase in d is minimized if
the next program chosen is the one with the least length from among the
remaining programs.

The greedy algorithm resulting from the above discussion is so simple
that we won’t bother to write it out. The greedy method simply requires us
to store the programs in nondecreasing order of their lengths. This ordering
can be carried out in O(nlogn) time using an efficient sorting algorithm
(e.g., heap sort from Chapter 2). For the programs of Example 4.8, note
that the permutation that yields an optimal solution is the one in which the
programs are in nondecreasing order of their lengths. Theorem 4.8 shows
that the MRT is minimized when programs are stored in this order.

4.6. OPTIMAL STORAGE ON TAPES 231

Theorem 4.8 If [<[y < --- < [, then the ordering i; = 5,1 < 7 < n,
minimizes

over all possible permutations of the ;.

Proof: Let I =iy,1i9,...,1i, be any permutation of the index set {1,2,...,n}.
Then
n k n
dI) ="l => (n—k+ 1l
k=1j=1 k=1

If there exist a and b such that a < b and [;, > [;,, then interchanging i,
and i, results in a permutation I’ with

d(I) = [S"(n—k+ Dl | +(n—a+ D, +(n—b+ 1),
A':E
Kb

Subtracting d(I') from d(I), we obtain

d([) — d([’) = (n —a+ 1)(lz'a - lib) + (’IL —b+ 1)(lib — lia)
= (()b~(1)(li(L —lib)
>

Hence, no permutation that is not in nondecreasing order of the [;’s can
have minimum d. It is easy to see that all permutations in nondecreasing
order of the [;’s have the same d value. Hence, the ordering defined by
i; = J,1 < j < n, minimizes the d value. O

The tape storage problem can be extended to several tapes. If there are
m > 1 tapes, Ty,..., T, 1, then the programs are to be distributed over
these tapes. For each tape a storage permutation is to be provided. If I;
is the storage permutation for the subset of programs on tape j, then d(Ijg
is as defined earlier. The total retrieval time (I'D) is Y o< j<m—1 d(Ij). The
objective is to store the programs in such a way as to minimize T D.

The obvious generalization of the solution for the one-tape case is to
consider the programs in nondecreasing order of /;’s. The program currently

232 CHAPTER 4. THE GREEDY METHOD

Algorithm Store(n, m)
// n is the number of programs and m the number of tapes.

j:=0; // Next tape to store on
for i :=1ton do

write ("append program", i,
"to permutation for tape", j);
j:=({ +1) mod my
0
1}

— = OG0~ Ui W —

Algorithm 4.12 Assigning programs to tapes

being considered is placed on the tape that results in the minimum increase
in T'D. This tape will be the one with the least amount of tape used so
far. If there is more than one tape with this property, then the one with
the smallest index can be used. If the jobs are initially ordered so that I; <
I < --- <y, then the first m programs are assigned to tapes Tg, ..., Tm_1
respectively. The next m programs will be assigned to tapes Tg,...,Tm—1
respectively. The general rule is that program ¢ is stored on tape Tj mod m-
On any given tape the programs are stored in nondecreasing order of their
lengths. Algorithm 4.12 presents this rule in pseudocode. It assumes that
the programs are ordered as above. It has a computing time of ©(n) and
does not need to know the program lengths. Theorem 4.9 proves that the
resulting storage pattern is optimal.

Theorem 4.9 If I; < [, < --. < [, then Algorithm 4.12 generates an
optimal storage pattern for m tapes.

Proof: In any storage pattern for m tapes, let r; be one greater than the
number of programs following program i on its tape. Then the total retrieval
time T'D is given by

In any given storage pattern, for any given n, there can be at most m pro-
grams for which 7; = j. From Theorem 4.8 it follows that T'D is minimized
if the m longest programs have r; = 1, the next m longest programs have

4.6. OPTIMAL STORAGE ON TAPES 233

r; = 2, and so on. When programs are ordered by length, that is, {; <[, <
-+« < lp, then this minimization criteria is satisfied if r; = [(n — i+ 1)/m)].
Observe that Algorithm 4.12 results in a storage pattern with these r;’s. O

The proof of Theorem 4.9 shows that there are many storage patterns
that minimize TD. If we compute r; = [(n — 4+ 1)/m] for each program i,
then so long as all programs with the same r; are stored on different tapes
and have r; — 1 programs following them, T'D is the same. If n is a multiple
of m, then there are at least (m!)”/ ™ storage patterns that minimize T'D.
Algorithm 4.12 produces one of these.

EXERCISES

1. Find an optimal placement for 13 programs on three tapes Ty, T}, and
T5, where the programs are of lengths 12,5,8,32,7,5,18, 26,4, 3,11, 10,
and 6.

2. Show that replacing the code of Algorithin 4.12 by

for i :=1to n do
write ("append program", i, "to permutation for
tape", (i — 1) mod m);

does not aftfect the output.

3. Let P1, Py, ..., P, be aset of n programs that are to be stored on a tape
of length [. Program P; requires a; amount of tape. If Y a; <[, then
clearly all the programs can be stored on the tape. So, assume > a; > [.
The problem is to select a maximum subset @ of the programs for
storage on the tape. (A maximum subset is one with the maximum
number of programs in it). A greedy algorithm for this problem would
build the subset @ by including programs in nondecreasing order of a;.

(a) Assume the P; are ordered such that a) < as < --- < a,. Write
a function for the above strategy. Your function should output
an array s[1 : n] such that s[f] = 1 if P, is in @ and si] = 0
otherwise.

(b) Show that this strategy always finds a maximum subset () such
that ZP;‘EQ a; <.

(¢) Let @ be the subset obtained using the above greedy strategy.
How small can the tape utilization ratio (3_p.cq ai)/l get?

(d) Suppose the objective now is to determine a subset of programs
that maximizes the tape utilization ratio. A greedy approach

234

CHAPTER 4. THE GREEDY METHOD

would be to consider programs in nonincreasing order of a;. If
there is enough space left on the tape for P;, then it is included in
(. Assume the programs are ordered so that a; > as > -+ > a,.
Write a function incorporating this strategy. What is its time and
space complexity?

(e) Show that the strategy of part (d) doesn’t necessarily yield a
subset that maximizes (3_pcgai)/l. How small can this ratio
get? Prove your bound.

4. Assume n programs of lengths ly,ls,...,1, are to be stored on a tape.

Program i is to be retrieved with frequency f;. If the programs are
stored in the order ¢1,1i9,...,i,, the expected retrieval time (ERT) is

[Z(fij S,)} /Y fi
J k=1

(a) Show that storing the programs in nondecreasing order of I; does
not necessarily minimize the ERT.

(b) Show that storing the programs in nonincreasing order of f; does
not necessarily minimize the ERT.

(¢) Show that the ERT is minimized when the programs are stored
in nonincreasing order of f;/l;.

Consider the tape storage problem of this section. Assume that two
tapes T1 and T2, are available and we wish to distribute n given
programs of lengths {y,[s,...,0, onto these two tapes in such a manner
that the maximum retrieval time is minimized. That is, if A and B are
the sets of programs on the tapes T'1 and T2 respectively, then we wish
to choose A and B such that max { Y ;c4li, > ;epli } is minimized. A
possible greedy approach to obtaining A and B would be to start with
A and B initially empty. Then consider the programs one at a time.
The program currently being considered is assigned to set A if 3 ;- 4 l;
=min { Y ;cali,>cpli }; otherwise it is assigned to B. Show that
this does not guarantee optimal solutions even if [< [y < --. < [,
Show that the same is true if we require iy > 1o > -+ > [,.

4.7 OPTIMAL MERGE PATTERNS

In Section 3.4 we saw that two sorted files containing n and m records
respectively could be merged together to obtain one sorted file in time O(n+
m). When more than two sorted files are to be merged together, the merge
can be accomplished by repeatedly merging sorted files in pairs. Thus, if

4.7. OPTIMAL MERGE PATTERNS 235

files z,, 2, z3, and z4 are to be merged, we could first merge z; and zo
to get a file y;. Then we could merge y; and z3 to get yo. Finally, we
could merge y» and z4 to get the desired sorted file. Alternatively, we could
first merge z; and xy getting y;, then merge z3 and x4 and get ys, and
finally merge y; and yo and get the desired sorted file. Given n sorted files,
there are many ways in which to pairwise merge them into a single sorted
file. Different pairings require differing amounts of computing time. The
problem we address ourselves to now is that of determining an optimal way
(one requiring the fewest comparisons) to pairwise merge n sorted files. Since
this problem calls for an ordering among the pairs to be merged, it fits the
ordering paradigm.

Example 4.9 The files 2, 25, and z3 are three sorted files of length 30, 20,
and 10 records each. Merging x, and z» requires 50 record moves. Merging
the result with z3 requires another 60 moves. The total number of record
moves required to merge the three files this way is 110. If, instead, we first
merge x9 and 3 (taking 30 moves) and then z; (taking 60 moves), the total
record moves made is only 90. Hence, the second merge pattern is faster
than the first. ad

A greedy attempt to obtain an optimal merge pattern is easy to formulate.
Since merging an n-record file and an m-record file requires possibly n +
m record moves, the obvious choice for a selection criterion is: at each
step merge the two smallest size files together. Thus, if we have five files
(x1,...,z5) with sizes (20, 30, 10,5, 30), our greedy rule would generate the
following merge pattern: merge x4 and x3 to get 21 (]z1] = 15), merge z; and
x1 to get zo (Jz2| = 35), merge z9 and x5 to get 23 (23] = 60), and merge
7o and z3 to get the answer z4. The total number of record moves is 205.
One can verify that this is an optimal merge pattern for the given problem
instance.

The merge pattern such as the one just described will be referred to
as a two-way merge pattern (each merge step involves the merging of two
files). The two-way merge patterns can be represented by binary merge
trees. Figure 4.11 shows a binary rerge tree representing the optimal merge
pattern obtained for the above five files. The leaf nodes are drawn as squares
and represent the given five files. These nodes are called external nodes. The
remaining nodes are drawn as circles and are called internal nodes. Each
internal node has exactly two children, and it represents the file obtained
by merging the files represented by its two children. The number in each
node is the length (i.e., the number of records) of the file represented by that
node.

The external node z4 is at a distance of 3 from the root node z4 (a node
at level i is at a distance of 4 — 1 from the root). Hence, the records of file
x4 are moved three times, once to get 21, once again to get zo, and finally
one more time to get z4. If d; i1s the distance from the root to the external

236 CHAPTER 4. THE GREEDY METHOD

X 4 X3

Figure 4.11 Binary merge tree representing a merge pattern

node for file z; and g;, the length of z; is then the total number of record
moves for this binary merge tree is

n
> dig;
i=1

This sum is called the weighted ezxternal path length of the tree.

An optimal two-way merge pattern corresponds to a binary merge tree
with minimum weighted external path length. The function Tree of Algo-
rithm 4.13 uses the greedy rule stated earlier to obtain a two-way merge
tree for n files. The algorithm has as input a list list of n trees. Each node
in a tree has three fields, lchild, rchild, and weight. Initially, each tree in
list has exactly one node. This node is an external node and has [child and
rchild fields zero whereas weight is the length of one of the n files to be
merged. During the course of the algorithm, for any tree in list with root
node ¢, t — weight is the length of the merged file it represents (t — weight
equals the sum of the lengths of the external nodes in tree ¢). Function Tree
uses two functions, Least(list) and Insert(list,t). Least(list) finds a tree in
list whose root has least weight and returns a pointer to this tree. This tree
is removed from [ist. Insert(list,t) inserts the tree with root ¢ into list. The-
orem 4.10 shows that Tree (Algorithm 4.13) generates an optimal two-way
merge tree.

4.7. OPTIMAL MERGE PATTERNS 237

treenode = record {
treenode * [child; treenode x rchild,
integer weight;

}

1 Algorithm Tree(n)

2 // list is a global list of n single node

3 // binary trees as described above.

4

5 fori:=1ton—-1do

6 {

7 pt ;= new treenode; // Get a new tree node.

8 (pt — lchild) := Least(list); // Merge two trees with
9 (pt — rchild) := Least(list); // smallest lengths.

10 (pt — weight) := ((pt — lchild) — weight)

11 +((pt — rchild) — weight);

12 Insert(list, pt);

13

14 return Least(list); // Tree left in list is the merge tree.
15 }

Algorithm 4.13 Algorithm to generate a two-way merge tree

Example 4.10 Let us see how algorithm Tree works when [ist initially rep-
resents six files with lengths (2,3,5,7,9,13). Figure 4.12 shows list at the
end of each iteration of the for loop. The binary merge tree that results at
the end of the algorithm can be used to determine which files are merged.
Merging is performed on those files which are lowest (have the greatest
depth) in the tree.

The main for loop in Algorithm 4.13 is executed n — 1 times. If list
is kept in nondecreasing order according to the weight value in the roots,
then Least(list) requires only O(1) time and Insert(list,t) can be done in
O(n) time. Hence the total time taken is O(n?). In case list is represented
as a minheap in which the root value is less than or equal to the values of
its children (Section 2.4), then Least(list) and Insert(list,t) can be done in
O(logn) time. In this case the computing time for Tree is O(nlogn). Some
speedup may be obtained by combining the Insert of line 12 with the Least
of line 9.

238 CHAPTER 4. THE GREEDY METHOD

Theorem 4.10 If [¢st initially contains n > 1 single node trees with weight
values (q1,92,...,qn), then algorithm Tree generates an optimal two-way
merge tree for n files with these lengths.

Proof: The proof is by induction on n. For n = 1, a tree with no internal
nodes is returned and this tree is clearly optimal. For the induction hypoth-
esis, assume the algorithm generates an optimal two-way merge tree for all
(g1,92,---,qm), 1 <m < n. We show that the algorithm also generates op-
timal trees for all (q1,qo,...,q,). Without loss of generality, we can assume
that ¢ < ¢o < --- < ¢, and ¢ and ¢ are the values of the weight fields
of the trees found by algorithm Least in lines 8 and 9 during the first itera-
tion of the for loop. Now, the subtree T of Figure 4.13 is created. Let T"
be an optimal two-way merge tree for (¢1,492,...,qn). Let p be an internal
node of maximum distance from the root. If the children of p are not ¢;
and ¢o, then we can interchange the present children with ¢; and g with-
out increasing the weighted external path length of 7'. Hence, T is also a
subtree in an optimal merge tree. If we replace 7' in 77 by an external node
with weight ¢; + ¢o, then the resulting tree T is an optimal merge tree for
(g1 + 92,93, ---,Gn). From the induction hypothesis, after replacing T' by the
external node with value q; + g9, function Tree proceeds to find an optimal
merge tree for (q; + ¢2,43,...,q,). Hence, Tree generates an optimal merge
tree for (q1,q9,...,qn)- O

The greedy method to generate merge trees also works for the case of k-
ary merging. In this case the corresponding merge tree is a k-ary tree. Since
all internal nodes must have degree k, for certain values of n there is no
corresponding k-ary merge tree. For example, when k = 3, there is no k-ary
merge tree with n = 2 external nodes. Hence, it is necessary to introduce
a certain number of dummy external nodes. Each dummy node is assigned
a g¢; of zero. This dummy value does not affect the weighted external path
length of the resulting k-ary tree. Exercise 2 shows that a k-ary tree with
all internal nodes having degree k exists only when the number of external
nodes n satisfies the equality n mod(k—1) = 1. Hence, at most k£ —2 dummy
nodes have to be added. The greedy rule to generate optimal merge trees
is: at each step choose k subtrees with least length for merging. Exercise 3
proves the optimality of this rule.

Huffman Codes

Another application of binary trees with minimal weighted external path
length is to obtain an optimal set of codes for messages My, ..., My,4;. Each
code is a binary string that is used for transmission of the corresponding
message. At the receiving end the code is decoded using a decode tree.
A decode tree is a binary tree in which external nodes represent messages.

4.7. OPTIMAL MERGE PATTERNS 239

after
iteration

initial 2] 9]

SEEORRLE L
2 3

list

2 (10} 7] 9] [13
5
el

Figure 4.12 Trees in [ist of Tree for Example 4.10

240 CHAPTER 4. THE GREEDY METHOD

T

q1 q2

Figure 4.13 The simplest binary merge tree

Figure 4.14 Huffman codes

The binary bits in the code word for a message determine the branching
needed at each level of the decode tree to reach the correct external node.
For example, if we interpret a zero as a left branch and a one as a right
branch, then the decode tree of Figure 4.14 corresponds to codes 000, 001,
01, and 1 for messages M, My, M3, and M, respectively. These codes are
called Huffman codes. The cost of decoding a code word is proportional to
the number of bits in the code. This number is equal to the distance of
the corresponding external node from the root node. If g; is the relative
frequency with which message M; will be transmitted, then the expected
decode time is)1 ;<41 ¢idi, where d; is the distance of the external node
for message M; from the root node. The expected decode time is minimized
by choosing code words resulting in a decode tree with minimal weighted
external path length! Note that >, .1 ¢id; is also the expected length
of a transmitted message. Hence the code that minimizes expected decode
time also minimizes the expected length of a message.

4.8. SINGLE-SOURCE SHORTEST PATHS 241

EXERCISES

1. Find an optimal binary merge pattern for ten files whose lengths are
28,32,12,5,84,53,91,35,3, and 11.

2. (a)

Show that if all internal nodes in a tree have degree &, then the
number n of external nodes is such that n» mod (k —1) = 1.

Show that for every n such that n mod (k —1) = 1, there exists a
k-ary tree T with n external nodes (in a k-ary tree all nodes have
degree at most k). Also show that all internal nodes of T' have
degree k.

Show that if » mod (k — 1) = 1, then the greedy rule described
following Theorem 4.10 generates an optimal k-ary merge tree for
all (q1,42,---,qn)-

Draw the optimal three-way merge tree obtained using this rule
when (ql, qo. ... ,qu) = (3, 7, 8, 9, 15, 16, 18, 20, 23, 25, 28)

4. Obtain a set of optimal Huffman codes for the messages (M,..., M7)
with relative frequencies (qi,...,q7) = (4,5,7,8,10,12,20). Draw the
decode tree for this set of codes.

5. Let T be a decode tree. An optimal decode tree minimizes > ¢;d;. For
a given set of ¢’s, let D denote all the optimal decode trees. For any tree
T € D, let L(T) = max {d; } and let SL(T') = }_d;. Schwartz has shown
that there exists a tree T* € D such that L(T*) = mingep {L(T)}
and SL(T*) = minyep {SL(T)}.

(a)
(b)
()

For (¢q1,...,q8) = (1,1,2,2,4,4,4,4) obtain trees T'1 and T2 such
that L(T1) > L(T2).

Using the data of a, obtain T'1 and T2 € D such that L(T1) =
L(T2) but SL(T1) > SL(T2).

Show that if the subalgorithm Least used in algorithm Tree is such

that in case of a tie it returns the tree with least depth, then Tree
generates a tree with the properties of 1.

4.8 SINGLE-SOURCE SHORTEST PATHS

Graphs can be used to represent the highway structure of a state or country
with vertices representing cities and edges representing sections of highway.
The edges can then be assigned weights which may be either the distance
between the two cities connected by the edge or the average time to drive
along that section of highway. A motorist wishing to drive from city A to B
would be interested in answers to the following questions:

242 CHAPTER 4. THE GREEDY METHOD

Path Length
11,4 10
2) 1,4,5 25
3) 1,4,5,2 45
4) 1,3 45
(a) Graph (b) Shortest paths from 1

Figure 4.15 Graph and shortest paths from vertex 1 to all destinations

e [s there a path from A to B?

e If there is more than one path from A to B, which is the shortest path?

The problems defined by these questions are special cases of the path
problem we study in this section. The length of a path is now defined to
be the sum of the weights of the edges on that path. The starting vertex
of the path is referred to as the source, and the last vertex the destination.
The graphs are digraphs to allow for one-way streets. In the problem we
consider, we are given a directed graph G = (V, E), a weighting function
cost for the edges of G, and a source vertex vg. The problem is to determine
the shortest paths from vy to all the remaining vertices of G. It is assumed
that all the weights are positive. The shortest path between vy and some
other node v is an ordering among a subset of the edges. Hence this problem
fits the ordering paradigm.

Example 4.11 Consider the directed graph of Figure 4.15(a). The numbers
on the edges are the weights. If node 1 is the source vertex, then the shortest
path from 1 to 2 is 1,4,5,2. The length of this path is 10 + 15 + 20 = 45.
Even though there are three edges on this path, it is shorter than the path
1,2 which is of length 50. There is no path from 1 to 6. Figure 4.15(b)
lists the shortest paths from node 1 to nodes 4, 5,2, and 3, respectively. The
paths have been listed in nondecreasing order of path length. m]

To formulate a greedy-based algorithm to generate the shortest paths,
we must conceive of a multistage solution to the problem and also of an
optimization measure. One possibility is to build the shortest paths one by

4.8. SINGLE-SOURCE SHORTEST PATHS 243

one. As an optimization measure we can use the sum of the lengths of all
paths so far generated. For this measure to be minimized, each individual
path must be of minimum length. If we have already constructed ¢ shortest
paths, then using this optimization measure, the next path to be constructed
should be the next shortest minimum length path. The greedy way (and also
a systematic way) to generate the shortest paths from vy to the remaining
vertices is to generate these paths in nondecreasing order of path length.
First, a shortest path to the nearest vertex is generated. Then a shortest
path to the second nearest vertex is generated, and so on. For the graph
of Figure 4.15(a) the nearest vertex to vg = 1 is 4 (cost[1,4] = 10). The
path 1,4 is the first path generated. The second nearest vertex to node 1
is 5 and the distance between 1 and 5 is 25. The path 1,4,5 is the next
path generated. In order to generate the shortest paths in this order, we
need to be able to determine (1) the next vertex to which a shortest path
must be generated and (2) a shortest path to this vertex. Let S denote the
set of vertices (including vg) to which the shortest paths have already been
generated. For w not in S, let dist[w] be the length of the shortest path
starting from vg, going through only those vertices that are in S, and ending
at w. We observe that:

1. If the next shortest path is to vertex u, then the path begins at v,
ends at u, and goes through only those vertices that are in §. To prove
this, we must show that all the intermediate vertices on the shortest
path to u are in §. Assume there is a vertex w on this path that is not
in S. Then, the vy to u path also contains a path from vg to w that is
of length less than the vy to u path. By assumption the shortest paths
are being generated in nondecreasing order of path length, and so the
shorter path vy to w must already have been generated. Hence, there
can be no intermediate vertex that is not in S.

2. The destination of the next path generated must be that of vertex u
which has the minimum distance, dist[u], among all vertices not in S.
This follows from the definition of dist and observation 1. In case there
are several vertices not in § with the same dist, then any of these may
be selected.

3. Having selected a vertex u as in observation 2 and generated the short-
est vy to u path, vertex u becomes a member of S. At this point the
length of the shortest paths starting at vy, going though vertices only
in S, and ending at a vertex w not in S may decrease; that is, the
value of dist[w] may change. If it does change, then it must be due
to a shorter path starting at vg and going to » and then to w. The
intermediate vertices on the vy to u path and the u to w path must
all be in S. Further, the vy to v path must be the shortest such path;
otherwise dist[w] is not defined properly. Also, the u to w path can
be chosen so as not to contain any intermediate vertices. Therefore,

244 CHAPTER 4. THE GREEDY METHOD

we can conclude that if dist[w] is to change (i.e., decrease), then it is
because of a path from vy to u to w, where the path from vy to u is
the shortest such path and the path from u to w is the edge (u,w).
The length of this path is dist[u] + cost[u, w].

The above observations lead to a simple Algorithm 4.14 for the single-
source shortest path problem. This algorithm (known as Dijkstra’s algo-
rithm) only determines the lengths of the shortest paths from vy to all other
vertices in G. The generation of the paths requires a minor extension to this
algorithm and is left as an exercise. In the function ShortestPaths (Algorithm
4.14) it is assumed that the n vertices of G are numbered 1 through n. The
set S is maintained as a bit array with S[¢] = 0 if vertex ¢ is not in S and
S[i) = 1if it is. It is assumed that the graph itself is represented by its cost
adjacency matrix with cost[i, j]’s being the weight of the edge (i,7). The
weight cost|i, 7] is set to some large number, oo, in case the edge (i, j) is not
in E(G). For i = j, cost[i, j| can be set to any nonnegative number without
affecting the outcome of the algorithm.

From our earlier discussion, it is easy to see that the algorithm is correct.
The time taken by the algorithm on a graph with n vertices is O(n?). To
see this, note that the for loop of line 7 in Algorithm 4.14 takes ©(n) time.
The for loop of line 12 is executed n — 2 times. Each execution of this loop
requires O(n) time at lines 15 and 16 to select the next vertex and again
at the for loop of line 18 to update dist. So the total time for this loop is
O(n?). In case a list ¢ of vertices currently not in s is maintained, then the
number of nodes on this list would at any time be n — num. This would
speed up lines 15 and 16 and the for loop of line 18, but the asymptotic
time would remain O(n?). This and other variations of the algorithm are
explored in the exercises.

Any shortest path algorithm must examine each edge in the graph at
least once since any of the edges could be in a shortest path. Hence, the
minimum possible time for such an algorithm would be (| E|). Since cost
adjacency matrices were used to represent the graph, it takes O(n?) time
just to determine which edges are in G, and so any shortest path algorithm
using this representation must take €(n?) time. For this representation then,
algorithm ShortestPaths is optimal to within a constant factor. If a change
to adjacency lists is made, the overall frequency of the for loop of line 18 can
be brought down to O(|E|) (since dist can change only for vertices adjacent
from u). If V — S is maintained as a red-black tree (see Section 2.4.2), each
execution of lines 15 and 16 takes O(logn) time. Note that a red-black
tree supports the following operations in O(logn) time: insert, delete (an
arbitrary element), find-min, and search (for an arbitrary element). Each
update in line 21 takes O(logn) time as well (since an update can be done
using a delete and an insertion into the red-black tree). Thus the overall run
time is O((n + |E|) log n).

4.8. SINGLE-SOURCE SHORTEST PATHS 245

1 Algorithm ShortestPaths(v, cost, dist, n)

2 // dist[j], 1 < j <mn,is set to the length of the shortest
3 // path from vertex v to vertex j in a digraph G with n
4 // vertices. dist[v] is set to zero. G is represented by its
5 /] cost adjacency matrix cost[l : n,1 : n].

6

7 for ::=1 to n do

8 { // Initialize S.

9 S[t] := false; dist[i] := cost[v, i];

10

11 S[v] := true; dist[v] := 0.0; // Put v in S.

12 for num:=2ton—1do

13 {

14 // Determine n — 1 paths from v.

15 Choose v from among those vertices not

16 in S such that dist[u] is minimum;

17 S[u] :=true; // Put win S.

18 for (each w adjacent to u with S[w] = false) do
19 // Update distances.

20 if (dist[w] > dist[u] + cost[u,w])) then

21 dist{w] := dist[u] + cost[u, w];

22

23}

Algorithm 4.14 Greedy algorithm to generate shortest paths

Example 4.12 Consider the eight vertex digraph of Figure 4.16(a) with
cost adjacency matrix as in Figure 4.16(b). The values of dist and the
vertices selected at each iteration of the for loop of line 12 in Algorithm 4.14
for finding all the shortest paths from Boston are shown in Figure 4.17. To
begin with, § contains only Boston. In the first iteration of the for loop
(that is, for num = 2), the city u that is not in S and whose dist[u] is
minimum is identified to be New York. New York enters the set S. Also the
dist[] values of Chicago, Miami, and New Orleans get altered since there are
shorter paths to these cities via New York. In the next iteration of the for
loop, the city that enters S is Miami since it has the smallest dist[] value
from among all the nodes not in S. None of the dist[| values are altered.
The algorithm continues in a similar fashion and terminates when only seven
of the eight vertices are in S. By the definition of dist, the distance of the
last vertex, in this case Los Angeles, is correct as the shortest path from
Boston to Los Angeles can go through only the remaining six vertices. O

246 CHAPTER 4. THE GREEDY METHOD

Boston

Chicago 1500
« 250
New York

900

San Francisc%

by
300 enver
1000 1700

1
Los Angeles New Orleans
Miami
(a) Digraph
1 2 3 4 5 6 7 8
1 [o0]
2 300 0
3 100 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0

(b) Length-adjacency matrix

Figure 4.16 Figures for Example 4.12

One can easily verify that the edges on the shortest paths from a ver-
tex v to all remaining vertices in a connected undirected graph G form a
spanning tree of G. This spanning tree is called a shortest-path spanning
tree. Clearly, this spanning tree may be different for different root vertices
v. Figure 4.18 shows a graph G, its minimum-cost spanning tree, and a
shortest-path spanning tree from vertex 1.

4.8. SINGLE-SOURCE SHORTEST PATHS 247

i Distance
Iteration ' § Vertex LA SF DEN CHI BOST NY MilA NO
selected ‘ (1] 2] [3] (4] 51 (6] (7] (8]
Initial = -- — r +o0 +oo +oo 1500 0 250 +o0 oo |
1| {5} 6 oo 400 400 1250 0 250 1150 1650
2 1 {56) 7 400 400 oo 1250 0 250 1150 1650
3. {567} ‘ 4 +o0 +eo 2450 1250 0 250 1150 1650
4 | {5,6,7.4} 8 3350 +oo 2450 1250 0 250 1150 1650
5 {56,748} f 3 3350 3250 2450 1250 0 250 1150 1650
6 {5,6,74.8,3} 2 3350 3250 2450 1250 0 250 1150 1650
6,7,4,8,3,2
| {5,6,7, } ’ i

Figure 4.17 Action of ShortestPaths

EXERCISES

1. Use algorithin ShortestPaths to obtain in nondecreasing order the lengths
of the shortest paths from vertex 1 to all remaining vertices in the di-
graph of Figure 4.19.

2. Using the directed graph of Figure 4.20 explain why ShortestPaths will
not work properly. What is the shortest path between vertices v; and
vy 7

3. Rewrite algorithm ShortestPaths under the following assumptions:

(a) G is represented by its adjacency lists. The head nodes are
HEAD(1),..., HEAD(n) and each list node has three fields: VER-
TEX, COST, and LINK. COST is the length of the corresponding

edge and n the number of vertices in G.

(b) Instead of representing S, the set of vertices to which the shortest
paths have already been found, the set T = V(G) — S is repre-
sented using a linked list. What can you say about the computing
time of your new algorithm relative to that of ShortestPaths?

4. Modify algorithm ShortestPaths so that it obtains the shortest paths
in addition to the lengths of these paths. What is the computing time
of your algorithm?

248 CHAPTER 4. THE GREEDY METHOD

(c) Shortest path spanning tree from vertex 1.

Figure 4.18 Graphs and spanning trees

Figure 4.19 Directed graph

4.9. REFERENCES AND READINGS 249

Figure 4.20 Another directed graph

4.9 REFERENCES AND READINGS

The linear time algorithm in Section 4.3 for the tree vertex splitting problem
can be found in “Vertex upgrading problems for VLSI,” by D. Paik, Ph.D.
thesis, Department of Computer Science, University of Minnesota, October
1991.

The two greedy methods for obtaining minimum-cost spanning trees are
due to R. C. Prim and J. B. Kruskal, respectively.

An O(eloglogv) time spanning tree algorithm has been given by A. C.
Yao.

The optimal randomized algorithm for minimum-cost spanning trees pre-
sented in this chapter appears in “A randomized linear-time algorithm for
finding minimum spanning trees,” by P. N. Klein and R. E. Tarjan, in Pro-
ceedings of the 26th Annual Symposium on Theory of Computing, 1994, pp.
9-15. See also “A randomized linear-time algorithm to find minimum span-
ning trees,” by D. R. Karger, P. N. Klein, and R. E. Tarjan, Journal of the
ACM 42, no. 2 (1995): 321-328.

Proof of Lemma, 4.3 can be found in “Verification and sensitivity analysis
of minimum spanning trees in linear time,” by B. Dixon, M. Rauch, and R. E.
Tarjan, STAM Journal on Computing 21 (1992): 1184-1192; and in “A simple
minimum spanning tree verification algorithm,” by V. King, Proceedings of
the Workshop on Algorithms and Data Structures, 1995.

A very nearly linear time algorithm for minimum-cost spanning trees ap-
pears in “Efficient algorithms for finding minimum spanning trees in undi-
rected and directed graphs,” by H. N. Gabow, Z. Galil, T. Spencer, and
R. E. Tarjan, Combinatorica 6 (1986): 109-122.

250 CHAPTER 4. THE GREEDY METHOD

A linear time algorithm for minimum-cost spanning trees on a stronger
model where the edge weights can be manipulated in their binary form is
given in “Trans-dichotomous algorithms for minimum spanning trees and
shortest paths,” by M. Fredman and D. E. Willard, in Proceedings of the
31st Annual Symposium on Foundations of Computer Science, 1990, pp.
719-725.

The greedy method developed here to optimally store programs on tapes
was first devised for a machine scheduling problem. In this problem n jobs
have to be scheduled on m processors. Job i takes ¢; amount of time. The
time at which a job finishes is the sum of the job times for all jobs preced-
ing and including job i. The average finish time corresponds to the mean
access time for programs on tapes. The (m!)™/™ schedules referred to in
Theorem 4.9 are known as SPT (shortest processing time) schedules. The
rule to generate SPT schedules as well as the rule of Exercise 4 (Section 4.6)
are due to W. E. Smith.

The greedy algorithm for generating optimal merge trees is due to D.
Huffman.

For a given set {q1,...,q,} there are many sets of Huffman codes mini-
mizing > ¢;d;. From amongst these code sets there is one that has minimum
> d; and minimum max {d;}. An algorithm to obtain this code set was
given by E. S. Schwartz.

The shortest-path algorithm of the text is due to E. W. Dijkstra.

For planar graphs, the shortest-path problem can be solved in linear time
as has been shown in “Faster shortest-path algorithms for planar graphs,”
by P. Klein, S. Rao, and M. Rauch, in Proceedings of the ACM Symposium
on Theory of Computing, 1994.

The relationship between greedy methods and matroids is discussed in
Combinatorial Optimization, by E. Lawler, Holt, Rinehart and Winston,
1976.

4.10 ADDITIONAL EXERCISES

1. [Coin changing] Let A, = {a1,a2,...,a,} be a finite set of distinct
coin types (for example, a; = 50¢, az = 25¢, a3z = 10¢, and so on.) We
can assume each a; is an integer and a; > a9 > -+ > a,. Each type is
available in unlimited quantity. The coin-changing problem is to make
up an exact amount C using a minimum total number of coins. C is
an integer > 0.

4.10. ADDITIONAL EXERCISES 251

(a) Show that if a,, # 1, then there exists a finite set of coin types and
a C for which there is no solution to the coin-changing problem.

(b) Show that there is always a solution when a, = 1.

(¢) When a, = 1, a greedy solution to the problem makes change
by using the coin types in the order aq,a9,...,a,. When coin
type a; is being considered, as many coins of this type as possible
are given. Write an algorithm based on this strategy. Show that
this algorithm doesn’t necessarily generate solutions that use the
minimum total number of coins.

(d) Show that if A, = {k"1 k"2 ... k%) for some k > 1, then the
greedy method of part (c) always yields solutions with a minimum
number of coins.

2. [Set cover] You are given a family S of m sets S;,1 < i < m. Denote
by |A| the size of set A. Let |S;| = ji; that is, S; = {s1,52,...,5;}.
A subset T = {11,15,..., T} of § is a family of sets such that for
each 1,1 < i <k, T; = S, for some r,1 < r < m. The subset T is
a cover of S iff UT; = US;. The size of T, |T|, is the number of sets
in 7. A minimum cover of § is a cover of smallest size. Consider
the following greedy strategy: build T' iteratively, at the kth iteration
T ={T1,...,Tx_1}, now add to T a set S; from S that contains the
largest number of elements not already in 7", and stop when UT; = US;.

(a) Assume that US; = {1,2,...,n} and m < n. Using the strategy
outlined above, write an algorithim to obtain set covers. How
much time and space does your algorithm require?

(b) Show that the greedy strategy above doesn’t necessarily obtain a
minimum set cover.

(¢) Suppose now that a minimuin cover is defined to be one for which

5% | ITi| is minimum. Does the above strategy always find a
minimum cover?

3. [Node cover] Let G = (V, E) be an undirected graph. A node cover of
G is asubset U of the vertex set V such that every edge in E is incident
to at least one vertex in U. A minimum node cover is one with the
fewest number of vertices. Consider the following greedy algorithm for
this problem:

252

CHAPTER 4. THE GREEDY METHOD

Algorithm Cover(V, E)

U .= 0
repeat

Let ¢ be a vertex from V of maximum degree;
Add ¢ to U; Eliminate ¢ from V;
E := E — {(z,y) such that x = q or y = q};

} until (E =0); // U is the node cover.

=000 =1 U kW —

0}

Does this algorithm always generate a minimum node cover?

[Traveling salesperson] Let G be a directed graph with n vertices. Let
length(u,v) be the length of the edge (u,v). A path starting at a given
vertex vg, going through every other vertex exactly once, and finally
returning to vy is called a tour. The length of a tour is the sum of the
lengths of the edges on the path defining the tour. We are concerned
with finding a tour of minimum length. A greedy way to construct
such a tour is: let (P, v) represent the path so far constructed; it starts
at vg and ends at v. Initially P is empty and v = vy, if all vertices in G
are on P, then include the edge (v,v¢) and stop; otherwise include an
edge (v,w) of minimum length among all edges from v to a vertex w
not on P. Show that this greedy method doesn’t necessarily generate
a minimum-length tour.

Chapter 5

DYNAMIC
PROGRAMMING

5.1 THE GENERAL METHOD

Dynamic programming is an algorithm design method that can be used
when the solution to a problem can be viewed as the result of a sequence of
decisions. In earlier chapters we saw many problems that can be viewed this
way. Here are some examples:

Example 5.1 [Knapsack] The solution to the knapsack problem (Section
4.2) can be viewed as the result of a sequence of decisions. We have to
decide the values of x;,1 <12 < n. First we make a decision on z1, then on
T2, then on z3, and so on. An optimal sequence of decisions maximizes the
objective function Y p;z;. (It also satisfies the constraints > w;z; < m and
0<z; < 1.) O

Example 5.2 [Optimal merge patterns] This problem was discussed in Sec-
tion 4.7. An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequence of decisions is a least-cost sequence.

O

Example 5.3 [Shortest path] One way to find a shortest path from vertex
1 to vertex j in a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex j
is reached. An optimal sequence of decisions is one that results in a path of
least length. O

253

254 CHAPTER 5. DYNAMIC PROGRAMMING

For some of the problems that may be viewed in this way, an optimal
sequence of decisions can be found by making the decisions one at a time
and never making an erroneous decision. This is true for all problems solvable
by the greedy method. For many other problems, it is not possible to make
stepwise decisions (based only on local information) in such a manner that
the sequence of decisions made is optimal.

Example 5.4 [Shortest path] Suppose we wish to find a shortest path from
vertex i to vertex j. Let A; be the vertices adjacent from vertex ¢. Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wish to find
a shortest path from vertex i to all other vertices in GG, then at each step, a
correct decision can be made (see Section 4.8). g

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequence is to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the time and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision. a

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that i, 1,9, ...,4,j is a shortest path from 7 to j. Starting
with the initial vertex 7, a decision has been made to go to vertex i;. Fol-
lowing this decision, the problem state is defined by vertex i; and we need
to find a path from 7; to j. It is clear that the sequence 41,19, .. ,%k,j must
constitute a shortest ¢; to j path. If not, let ¢1,71,72,...,74,j be a shortest
i1 to j path. Then 4,41,71,--+,7rq,j s an ¢ to j path that is shorter than the
path 7,41,19,...,1k,j. Therefore the principle of optimality applies for this
problem. O

5.1. THE GENERAL METHOD 255

Example 5.6 [0/1 knapsack] The 0/1 knapsack problem is similar to the
knapsack problem of Section 4.2 except that the x;’s are restricted to have
a value of either 0 or 1. Using KNAP(!, j,y) to represent the problem

maximize <, < ; piT;
subject t0 3, ;< wiz; <Y (5.1)
z;=00r 1, 1 <1<y

the knapsack problem is KNAP(1,n,m). Let y1,¥2,...,yn be an optimal

sequence of 0/1 values for zy,x9,...,z,, respectively. If y; = 0, then
Y2,Y3, - . ., Y, must constitute an optimal sequence for the problem KNAP(2,
n, m). If it does not, then yi,ys,...,y, is not an optimal sequence for

KNAP(1,n,m). If y; = 1, then ys,...,y, must be an optimal sequence
for the problem KNAP(2,n,m — wy). If it isn’t, then there is another 0/1
sequence 29, 23, ..., 2y such that o, e, wizs <m —wy and > ocicp, iz >
S o<i<n Pi¥i- Hence, the sequence yq,29,23,...,2, is a sequence for (5.1)
with greater value. Again the principle of optimality applies. O

Let Sy be the initial problem state. Assume that n decisionsd;, 1 <i < n,
have to be made. Let D; = {r1,72,...,7;} be the set of possible decision
values for d;. Let S; be the problem state following the choice of decision
r;, 1 <4 < j. Let I'; be an optimal sequence of decisions with respect to the
problem state S;. Then, when the principle of optimality holds, an optimal
sequence of decisions with respect to Sy is the best of the decision sequences
rivriv 1 < 1 < .7

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
1. For each vertex k € A;, let I'y be a shortest path from & to j. Then, a
shortest ¢ to j path is the shortest of the paths {i,T'x|k € A;}. O

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(j + 1,n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n,m). The possible decisions for z; are 0 and 1 (D; = {0,1}).
From the principle of optimality it follows that

go(m) = max {gi(m), g1(m —wi) +p1} (5.2)
O

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path] Let k be an intermediate vertex on a shortest
1 to j path 4,4q,%2,...,k,p1,p2,---,J- The paths ¢,41,...,k and k,p1,....7J
must, respectively, be shortest ¢ to k and k to j paths. a

256 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.10 [0/1 knapsack] Let yi,ys,...,yn be an optimal solution to
KNAP(1,n,m). Then, for each j, 1 < j < n, y1,...,y;, and yj41,...,yn
must be optimal solutions to the problems KNAP(1, 7, 2o1<i<y w;y;) and
KNAP(j +1,n,m— 37, <;<; wiy;) respectively. This observation allows us to
generalize (5.2) to

gi(y) = max {gi+1(y), git1(y — wit1) + pi+1} (5.3)
O

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge g,(y) = 0 for all y > 0 and
gn(y) = —oo for y < 0. From g,(y), one can obtain g,—1(y) using (5.3) with
i = n — 1. Then, using g, 1(y), one can obtain g,_2(y). Repeating in this
way, one can determine 91(y) and finally go(m) using (5.3) with ¢ = 0.

Example 5.11 [0/1 knapsack] Consider the case in which n = 3, w; =
2,wy =3, w3 =4, p1 = 1,p2 = 2,p3 = 5, and m = 6. We have to compute
90(6). The value of go(6) = max {g1(6), g1(4) + 1}.

In turn, ¢,(6) = max {g2(6), g2(3)+2}. But g2(6) = max {g5(6), g3(2)+
5} = max {0,5} = 5. Also, ¢2(3) = max {g3(3), ¢3(3 — 4) 5} =
max {0,~oc} = 0. Thus, ¢;(6) = max {5,2} = 5.

Similarly, g1(4) = max {g2(4), g2(4 — 3) +2}. But g»(4) = max {gs(4),
g3(4—4) + 5} = max {0,5} = 5. The value of go(1) = max {g3(1), g3(1 —
4) + 5} = max {0,—oc} = 0. Thus, g1(4) = max {5,0} =5.

Therefore, go(6) = max {5,5+ 1} = 6. O

Example 5.12 [Shortest path] Let P; be the set of vertices adjacent to ver-
tex j (that is, k € P; iff (k,j) € E(G)i For each k € P;, let 'y, be a shortest
7 to k path. The principle of optimality holds and a shortest ¢ to j path is
the shortest of the paths {I'y, jlk € P;}.

To obtain this formulation, we started at vertex j and looked at the last
decision made. The last decision was to use one of the edges (k,j), k € P;.
In a sense, we are looking backward on the 7 to j path. O

Example 5.13 [0/1 knapsack] Looking backward on the sequence of deci-
sions x1,Zs,---,Zn, we see that

fily) = max {f;_1(y), fi—1(y —wj) +ps} (5.4)

where f;(y) is the value of an optimal solution to KNAP(1, j,v).

5.2. MULTISTAGE GRAPHS 257

The value of an optimal solution to KNAP(1,n,m) is f,(m). Equation 5.4
can be solved by beginning with fo(y) = 0 for all y, y > 0, and fo(y) = —o0,
for all ¢, y < 0. From this, fi, f2,..., fn can be successively obtained. O

The solution method outlined in Examples 5.12 and 5.13 may indicate
that one has to look at all possible decision sequences to obtain an optimal
decision sequence using dynamic programming. This is not the case. Be-
cause of the use of the principle of optimality, decision sequences containing
subsequences that are suboptimal are not considered. Although the total
number of different decision sequences is exponential in the number of deci-
sions (if there are d choices for each of the n decisions to be made then there
are d" possible decision sequences), dynamic programming algorithms often
have a polynomial complexity.

Another important feature of the dynamic programming approach is that
optimal solutions to subproblems are retained so as to avoid recomputing
their values. The use of these tabulated values makes it natural to recast
the recursive equations into an iterative algorithm. Most of the dynamic
programming algorithms in this chapter are expressed in this way.

The remaining sections of this chapter apply dynamic programming to a
variety of problems. These examples should help you understand the method
better and also realize the advantage of dynamic programming over explicitly
enumerating all decision sequences.

EXERCISES

1. The principle of optimality does not hold for every problem whose
solution can be viewed as the result of a sequence of decisions. Find
two problems for which the principle does not hold. Explain why the
principle does not hold for these problems.

2. For the graph of Figure 5.1, find the shortest path between the nodes
1 and 2. Use the recurrence relations derived in Examples 5.10 and
5.13.

5.2 MULTISTAGE GRAPHS

A multistage graph G = (V, E) is a directed graph in which the vertices are
partitioned into k > 2 disjoint sets V;, 1 <14 < k. In addition, if (u,v) is an
edge in E, then u € V; and v € V4 for some 4,1 < i < k. The sets V; and
Vi are such that |Vi| = |Vi| = 1. Let s and ¢, respectively, be the vertices in
Vi and Vi. The vertex s is the source, and ¢ the sink. Let c(i, j) be the cost
of edge (i,7). The cost of a path from s to ¢ is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

258 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.1 Graph for Exercise 2 (Section 5.1)

path from s to t. Each set V; defines a stage in the graph. Because of the
constraints on F, every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4, and so on, and eventually terminates in
stage k. Figure 5.2 shows a five-stage graph. A minimum-cost s to ¢ path is
indicated by the broken edges.

Many problems can be formulated as multistage graph problems. We give
only one example. Consider a resource allocation problem in which n units
of resource are to be allocated to r projects. If j, 0 < j < n, units of the
resource are allocated to project i, then the resulting net profit is N(4,7).
The problem is to allocate the resource to the r projects in such a way as to
maximize total net profit. This problem can be formulated as an r+ 1 stage
graph problem as follows. Stage i, 1 <4 < r, represents project :. There are
n+1 vertices V(¢,7), 0 < j < n, associated with stage 7, 2 <4 < r. Stages 1
and r+ 1 each have one vertex, V(1,0) = s and V(r+1,n) = t, respectively.
Vertex V(i,7), 2 < i < r, represents the state in which a total of j units
of resource have been allocated to projects 1,2,...,4 — 1. The edges in G
are of the form (V(i,5),V (i 4+ 1,1)) for all j <l and 1 <4 < r. The edge
(V(i,7),V(i+ 1,1), j <1, is assigned a weight or cost of N(i,! — j) and
corresponds to allocating [— 7 units of resource to project ¢, 1 <¢ <. In
addition, G has edges of the type (V(r.j),V(r + 1,n)). Each such edge is
assigned a weight of maxg<p<n—;j{N(r,p)}. The resulting graph for a three-
project problem with n =4 is shown in Figure 5.3. Tt should be easy to see
that an optimal allocation of resources is defined by a maximum cost s to
t path. This is easily converted into a minimum-cost problem by changing
the sign of all the edge costs.

5.2. MULTISTAGE GRAPHS 259

|4 1 Vz V3 V4 V5

Figure 5.2 Five-stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to t path is the result of a sequence
of k — 2 decisions. The ¢th decision involves determining which vertex in
Vit1, 1 <i <k —2, is to be on the path. It is easy to see that the principle
of optimality holds. Let p(7, j) be a minimum-cost path from vertex j in V;
to vertex t. Let cost(7,) be the cost of this path. Then, using the forward
approach, we obtain

cost(i, j) = ln&in {c(4,1) + cost(i + 1,1)} (5.5)
€v;
<j,l>éré
Since, cost(k — 1,7) = ¢(4,t) if (j,t) € E and cost(k — 1,5) = oo if
(7,t)¢E, (5.5) may be solved for cost(1,s) by first computing cost(k — 2, j)
for all j € Vi_o, then cost(k— 3,7) for all j € Vi_3, and so on, and finally
cost(1, s). Trying this out on the graph of Figure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9),5 + cost(4,10)}
= 7

cost(3,7) = min {4+ cost(4,9),3 + cost(4,10)}
= 5

260 CHAPTER 5. DYNAMIC PROGRAMMING

V(2,0 V3,0
(2,0 N2.0) (3,0

s=V(1,0) t=V(4,4)

V(2,4) V(3,4)
X =max{N@G3,0),N3,1}
Y=max{N3,0),N(3,1),N(3,2)}

Figure 5.3 Four-stage graph corresponding to a three-project problem

5.2, MULTISTAGE GRAPHS 261

cost(3,8) = T

cost(2,2) = min {4+ cost(3,6),2 + cost(3,7),1 + cost(3,8)}
= 7

cost(2,3) = 9

cost(2,4) = 18

cost(2,5) = 15

cost(1,1) min {9 + cost(2,2),7 + cost(2,3),3 + cost(2,4),

2+ cost(2,5)}
= 16

Note that in the calculation of cost(2,2), we have reused the values of
cost(3,6), cost(3,7), and cost(3,8) and so avoided their recomputation. A
minimum cost s to ¢ path has a cost of 16. This path can be determined
easily if we record the decision made at each state (vertex). Let d(,j) be
the value of [(where ! is a node) that minimizes c(j,1) + cost(i + 1,1) (see
Equation 5.5). For Figure 5.2 we obtain

d(3,6) = 10; d(3,7) = 10: d(3,8) = 10;
d2,2) = 77 d(2,3) = 6 d(2,4) = 8 d(25) = 8
a(1,1) = 2

Let the minimum-cost path be s = 1, v9,v3,...,vg_1,t. It is easy to see
that vo = d(1,1) = 2,v3 = d(2,d(1,1)) = 7, and v4 = d(3,d(2, d(1,1))) =
d(3,7) = 10.

Before writing an algorithm to solve (5.5) for a general k-stage graph, let
us impose an ordering on the vertices in V. This ordering makes it easier
to write the algorithm. We require that the n vertices in V' are indexed 1
through n. Indices are assigned in order of stages. First, s is assigned index
1, then vertices in V5 are assigned indices, then vertices from V3, and so on.
Vertex ¢ has index n. Hence, indices assigned to vertices in V11 are bigger
than those assigned to vertices in V; (see Figure 5.2). As a result of this
indexing scheme, cost and d can be computed in the order n—1,n—2,...,1.
The first subscript in cost, p, and d only identifies the stage number and is
omitted in the algorithm. The resulting algorithm, in pseudocode, is FGraph
(Algorithm 5.1).

The complexity analysis of the function FGraph is fairly straightforward.
If G is represented by its adjacency lists, then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G has
|E| edges, then the time for the for loop of line 7 is O(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is O(|]V |+ |E|). In
addition to the space needed for the input, space is needed for cost[], d[|,
and pl].

262 CHAPTER 5. DYNAMIC PROGRAMMING

1 Algorithm FGraph(G,k,n,p)

2 // The input is a k-stage graph G = (V, E) with n vertices
3 // indexed in order of stages. F is a set of edges and c[t, j]
4 // is the cost of (i,7). p[l: k] is a minimum-cost path.

5

6 cost[n] := 0.0;

7 for j:=n—1to 1 step —-1do

8 { // Compute cost[j].

9 Let r be a vertex such that (j,7) is an edge

10 of G and ¢[j, 7] + cost[r] is minimum;

11 cost(j] == ¢[j,r] + cost[r];

12 d[j] :==r;

13

14 // Find a minimum-cost path.

15 pll)=1; plk] == n;

16) for j:=2 to k —1 do p[j] :=d[p[j — 1];

17

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i,j) be a minimum-cost path from vertex s to a vertex j
in V;. Let bcost(i, j) be the cost of bp(i, j). From the backward approach we
obtain

beost(i,7) = ,n‘l,in {beost(i — 1,1) + c(l,7)} (5.6)
€ev;_
(l,j)e}z“
Since beost(2,7) = ¢(1,7) if (1,5) € E and becost(2,5) = oo if (1,5)¢FE,
bcost(i,j) can be computed using (5.6) by first computing bcost for ¢ = 3,
then for 7 = 4, and so on. For the graph of Figure 5.2, we obtain

bcost(3,6) = min {bcost(2,2) + ¢(2,6),bcost(2,3) + ¢(3,6)}
min {9 +4,7+ 2}

=9
beost(3,7) = 11
beost(3,8) = 10

bcost(4,9) = 15

5.2. MULTISTAGE GRAPHS 263

bcost(4,10) = 14
becost(4,11) = 16
bcost(5,12) = 16

The corresponding algorithm, in pseudocode, to obtain a minimum-cost
s — t path is BGraph (Algorithm 5.2). The first subscript on bcost, p, and
d are omitted for the same reasons as before. This algorithm has the same
complexity as FGraph provided G is now represented by its inverse adjacency
lists (i.e., for each vertex v we have a list of vertices w such that (w,v) € E).

1 Algorithm BGraph(G, k,n,p)

2 // Same function as FGraph

3

4 beost[1] := 0.0;

5 for j :=2 to n do

6 { // Compute beost[j].

7 Let r be such that (r,j) is an edge of
8 G and bcost[r] + c[r, j] is minimum;
9 beost[g] := beost[r] + c[r, j;

10 d[j] =3

11

12 // Find a minimum-cost path.

13 pl1] := 15 p[k] := n;

14 for j:=k —1 to 2 do p[j] :=d[p[j + 1]];
15 }

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

It should be easy to see that both FGraph and BGraph work correctly even

on a more generalized version of multistage graphs. In this generalization,
the graph is permitted to have edges (u,v) such that v € Vi,v € V}, and
1 < 7.
Note: In the pseudocodes FGraph and BGraph, bcost(i,7) is set to oo for
any (i,7) € E. When programming these pseudocodes, one could use the
maximum allowable floating point number for co. If the weight of any such
edge is added to some other costs, a floating point overflow might occur.
Care should be taken to avoid such overflows.

264 CHAPTER 5. DYNAMIC PROGRAMMING

EXERCISES

1. Find a minimum-cost path from s to ¢ in the multistage graph of
Figure 5.4. Do this first using the forward approach and then using
the backward approach.

Figure 5.4 Multistage graph for Exercise 1

2. Refine Algorithm 5.1 into a program. Assume that G is represented
by its adjacency lists. Test the correctness of your code using suitable
graphs.

3. Program Algorithm 5.1. Assume that G is an array G[1 : e, 1 : 3].
Each edge (i, j), i < j, of G is stored in GJg|, for some g and G[g, 1] =
i, Glg,2] = j, and GJg, 3] = cost of edge (i,7). Assume that G|g,1] <
Glg+ 1,1] for 1 < g < e, where e is the number of edges in the
multistage graph. Test the correctness of your function using suitable
multistage graphs. What is the time complexity of your function?

4. Program Algorithm 5.2 for the multistage graph problem using the
backward approach. Assume that the graph is represented using in-
verse adjacency lists. Test its correctness. What is its complexity?

5. Do Exercise 4 using the graph representation of Exercise 3. This time,
however, assume that Glg,2] < Glg+ 1,2] for 1 < ¢ <e.

6. Extend the discussion of this section to directed acyclic graphs (dags).
Suppose the vertices of a dag are numbered so that all edges have the
form (7,7), 1 < j. What changes, if any, need to be made to Algorithm
5.1 to find the length of the longest path from vertex 1 to vertex n?

5.3. ALL-PAIRS SHORTEST PATHS 265

7. [W. Miller] Show that BGraphl computes shortest paths for directed
acyclic graphs represented by adjacency lists (instead of inverse adja-
cency lists as in BGraph).

Algorithm BGraphl(G,n)

beost[1] := 0.0;
for j := 2 to n do beost[j] := oo;
for j:=1ton—-1do
for each r such that (j,r) is an edge of G do
beost[r] := min(bcost[r], becost]j] + clj,7]);

CO~JO Uk o —

}

Note: There is a possibility of a floating point overflow in this function.
In such cases the program should be suitably modified.

5.3 ALL-PAIRS SHORTEST PATHS

Let G = (V,E) be a directed graph with n vertices. Let cost be a cost
adjacency matrix for G such that cost(i,7) = 0, 1 < 4 < n. Then cost(i, j)
is the length (or cost) of edge (i,7) if (i,j) € E(G) and cost(i,j) = oo if
i # j and (i,j) € E(G). The all-pairs shortest-path problem is to determine
a matrix A such that A(7,j) is the length of a shortest path from i to j.
The matrix A can be obtained by solving n single-source problems using
the algorithm ShortestPaths of Section 4.8. Since each application of this
procedure requires O(n?) time, the matrix A can be obtained in O(n?) time.
We obtain an alternate O(n®) solution to this problem using the principle
of optimality. Our alternate solution requires a weaker restriction on edge
costs than required by ShortestPaths. Rather than require cost(i,j) > 0,
for every edge (i,7), we only require that G have no cycles with negative
length. Note that if we allow G to contain a cycle of negative length, then
the shortest path between any two vertices on this cycle has length —oc.

Let us examine a shortest ¢ to j path in G, ¢ # 5. This path originates
at vertex i and goes through some intermediate vertices (possibly none) and
terminates at vertex j. We can assume that this path contains no cycles
for if there is a cycle, then this can be deleted without increasing the path
length (no cycle has negative length). If £ is an intermediate vertex on this
shortest path, then the subpaths from 7 to £ and from & to 7 must be shortest
paths from i to k and k& to j, respectively. Otherwise, the 7 to 7 path is not
of minimum length. So, the principle of optimality holds. This alerts us to
the prospect of using dynamic programming. If k is the intermediate vertex
with highest index, then the ¢ to & path is a shortest 7 to & path in G going
through no vertex with index greater than k — 1. Similarly the k£ to j path
is a shortest k£ to j path in G going through no vertex of index greater than

266 CHAPTER 5. DYNAMIC PROGRAMMING

k — 1. We can regard the construction of a shortest ¢ to j path as first
requiring a decision as to which is the highest indexed intermediate vertex
k. Once this decision has been made, we need to find two shortest paths,
one from 7 to k and the other from k to j. Neither of these may go through a
vertex with index greater than k£ — 1. Using A*(i, j) to represent the length
of a shortest path from 7 to 5 going through no vertex of index greater than
k, we obtain

A(4,§) = min {1?]321”{,4’“*1(1', k) + A* 1k, §)}, cost(i, §)} (5.7)

Clearly, A%(i,j) = cost(i,j), 1 < i < mn, 1 < j < n. We can obtain
a recurrence for A¥(i,) using an argument similar to that used before. A
shortest path from ¢ to 7 going through no vertex higher than k either goes
through vertex k or it does not. If it does, A*(i,j) = A*~1(3, k) + AF~L(k, j).
If it does not, then no intermediate vertex has index greater than k—1. Hence
Ak(i, §) = AF=1(3, 7). Combining, we get

AR,) = min {4716, 5), AFTN6R) + AFTNE,)Y, E>1 0 (5.8)

The following example shows that (5.8) is not true for graphs with cycles of
negative length.

Example 5.14 Figure 5.5 shows a digraph together with its matrix A°. For
this graph A?(1,3) # min{A'(1,3), A'(1,2) + A!(2,3)} = 2. Instead we see
that A%(1,3) = —oo. The length of the path

1,2,1,2,1,2,...,1,2,3

can be made arbitrarily small. This is so because of the presence of the cycle
1 2 1 which has a length of —1. i

Recurrence (5.8) can be solved for A" by first computing A!, then A?
then A2, and so on. Since there is no vertex in G with index greater than n,
A(i,j) = A™(i,7). Function AllPaths computes A™(¢,j). The computation
is done inplace so the superscript on A is not needed. The reason this
computation can be carried out in-place is that A¥(i,k) = A*~!(i,k) and
AF(k, 5) = A*=1(k, j). Hence, when A* is formed, the kth column and row do
not change. Consequently, when A* (i, j) is computed in line 11 of Algorithm
5.3, A(i, k) = AF=1(4, k) = A¥(i, k) and A(k,j) = A*~1(k,7) = A¥(k,7). So,
the old values on which the new values are based do not change on this
iteration.

5.3. ALL-PAIRS SHORTEST PATHS 267

-2
———— 01 o
o 1
ORN OO 20

Figure 5.5 Graph with negative cycle

0 Algorithm AllPaths(cost, A,n)

1 /] cost[l :n,1:n]is the cost adjacency matrix of a graph with
2 // n vertices; Ali, j] is the cost of a shortest path from vertex
3 // ito vertex j. cost[i,i] = 0.0, for 1 <7 < n.

11

5 for ::=1to ndo

6 for j:=1to n do

7 Ali,] := costli, jl; // Copy cost into A.

8 for k:=1to ndo

9 for i :=1to ndo

10 for j:=1to n do

i; } A[lvj] = min(A[ivj]v A[’Lv k] + A[k:,]]);

Algorithm 5.3 Function to compute lengths of shortest paths

268 CHAPTER 5. DYNAMIC PROGRAMMING

Example 5.15 The graph of Figure 5.6(a) has the cost matrix of Fig-
ure 5.6(b). The initial A matrix, A, plus its values after 3 iterations
AW A@ and A®) are given in Figure 5.6. m|

A1 2 3 A1 2 3
110 4 11 110 4 11
2,16 0 2 216 0 2
313 e 0 33 7 0
(a) Example digraph (b) A° (c)A!
A1 2 3 A1 2 3
110 4 6 110 4 6
2,6 0 2 215 0 2
313 7 0 33 7 0
(d)A? (e) A’

Figure 5.6 Directed graph and associated matrices

Let M = max {cost(i,7)|(i,7) € E(G)}. It is easy to see that A™(ij) <
(n — 1)M. From the working of AllPaths, it is clear that if (i,j) ¢ F(G)
and i # j, then we can initialize cost(i,j) to any number greater than
(n — 1)M (rather than the maximum allowable floating point number). If,
at termination, A(7,j) > (n — 1)M, then there is no directed path from i to
j in G. Even for this choice of 0o, care should be taken to avoid any floating
point overflows.

The time needed by AllPaths (Algorithm 5.3) is especially easy to deter-
mine because the looping is independent of the data in the matrix A. Line
11 is iterated n3 times, and so the time for AllPaths is ©(n3). An exercise
examines the extensions needed to obtain the i to j paths with these lengths.
Some speedup can be obtained by noticing that the innermost for loop need
be executed only when A(i, k) and A(k,j) are not equal to oo.

5.3. ALL-PAIRS SHORTEST PATHS 269

EXERCISES

1. (a) Does the recurrence (5.8) hold for the graph of Figure 5.77 Why?

Figure 5.7 Graph for Exercise 1

(b) Why does Equation 5.8 not hold for graphs with cycles of negative
length?

2. Modify the function AllPaths so that a shortest path is output for each
pair of vertices (7, j). What are the time and space complexities of the
new algorithm?

3. Let A be the adjacency matrix of a directed graph G. Define the
transitive closure A" of A to be a matrix with the property A*(4,5) = 1
iff G has a directed path, containing at least one edge, from vertex ¢
to vertex j. At (4,7) = 0 otherwise. The reflexive transitive closure A*
is a matrix with the property A*(i,j) = 1 iff G has a path, containing
zero or more edges, from 7 to j. A*(i,j) = 0 otherwise.

(a) Obtain A" and A* for the directed graph of Figure 5.8.

e 3

Figure 5.8 Graph for Exercise 3

(b) Let A%(i,j) = 1 iff there is a path with zero or more edges from i
to j going through no vertex of index greater than k. Define A°
in terms of the adjacency matrix A.

270 CHAPTER 5. DYNAMIC PROGRAMMING

(c) Obtain a recurrence between A* and A*~! similar to (5.8). Use
the logical operators or and and rather than min and +.

(d) Write an algorithm, using the recurrence of part (c), to find A*.
Your algorithm can use only O(n?) space. What is its time com-
plexity?

(e) Show that AT = A x A*, where matrix multiplication is defined
as AT (i,7) = VR_,(A(i,k) A A*(k,7)). The operation V is the
logical or operation, and A the logical and operation. Hence A™
may be computed from A*.

5.4 SINGLE-SOURCE SHORTEST PATHS:
GENERAL WEIGHTS

We now consider the single-source shortest path problem discussed in Section
4.8 when some or all of the edges of the directed graph G may have negative
length. ShortestPaths (Algorithm 4.14) does not necessarily give the correct
results on such graphs. To see this, consider the graph of Figure 5.9. Let
v = 1 be the source vertex. Referring back to Algorithm 4.14, since n = 3,
the loop of lines 12 to 22 is iterated just once. Also v = 3 in lines 15 and
16, and so no changes are made to dist[]. The algorithm terminates with
dist[2] = 7 and dist[3] = 5. The shortest path from 1 to 3 is 1,2,3. This
path has length 2, which is less than the computed value of dist[3].

Figure 5.9 Directed graph with a negative-length edge

When negative edge lengths are permitted, we require that the graph
have no cycles of negative length. This is necessary to ensure that shortest
paths consist of a finite number of edges. For example, in the graph of Figure
5.5, the length of the shortest path from vertex 1 to vertex 3 is —oo. The
length of the path

1,2,1,2,1,2,---,1,2,3

can be made arbitrarily small as was shown in Example 5.14.

When there are no cycles of negative length, there is a shortest path
between any two vertices of an n-vertex graph that has at most n — 1 edges

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 271

on it. To see this, note that a path that has more than n — 1 edges must
repeat at least one vertex and hence must contain a cycle. Elimination of
the cycles from the path results in another path with the same source and
destination. This path is cycle-free and has a length that is no more than
that of the original path, as the length of the eliminated cycles was at least
zero. We can use this observation on the maximum number of edges on a
cycle-free shortest path to obtain an algorithm to determine a shortest path
from a source vertex to all remaining vertices in the graph. As in the case
of ShortestPaths (Algorithm 4.14), we compute only the length, dist[u], of
the shortest path from the source vertex v to u. An exercise examines the
extension needed to construct the shortest paths.

Let dist[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most ¢
edges. Then, dist![u] = cost[v,u], 1 < u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist" ![u] is the length of an
unrestricted shortest path from v to .

Our goal then is to compute dist™ ![u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from » to uw with at most k, £ > 1, edges has no
more than k& — 1 edges, then dist*[u] = distk=1[u].

2. If the shortest path from v to u with at most k&, & > 1, edges has
exactly k£ edges, then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has k — 1
edges, and its length is dist*~1[j]. All vertices ¢ such that the edge
(7,u) is in the graph are candidates for j. Since we are interested in a
shortest path, the 7 that minimizes dist*~1[i] 4 cost[i,u] is the correct
value for ;.

These observations result in the following recurrence for dist:

dist*[u] = min {dist* '[u], min {dist* [i] + cost[i,u]}}
)

This recurrence can be used to compute dist® from dist*=1, for k = 2.3,...,
n — 1.

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist®, k = 1,...,6. These arrays were computed using the equation
just given. For instance, dist*[1] = 0 for all k since 1 is the source node.
Also, dist![2] = 6,dist[3] = 5, and dist![4] = 5, since there are edges from

272 CHAPTER 5. DYNAMIC PROGRAMMING

1 to these nodes. The distance dist![] is oo for the nodes 5,6, and 7 since
there are no edges to these from 1.

dist?[2)] min {dist'[2], min; dist![i] + cost[i, 2]}
min {6,0+6,5— 2,5+ 00,00 4+ 00,00 + 00,00 + 00} = 3

Here the terms 0+ 6,5 — 2,5 + 00, 00 + 00, 00 + 00, and oo + 0o correspond
to a choice of 1 = 1,3,4,5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. u
dist*[1..7]
ki1 2 3 45 6 7
1|0 6 5 5 00 00 o
210 3 3 55 4 o
3101 3 5 2 4 7
410 1 3 5 0 4 5
5001 3 5 0 4 3
6|0 1 350 4 3
(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

An exercise shows that if we use the same memory location dist[u] for
dist*[u], k = 1,...,n — 1, then the final value of dist[u] is still dist"~![u].
Using this fact and the recurrence for dist shown above, we arrive at the
pseudocode of Algorithm 5.4 to compute the length of the shortest path
from vertex v to each other vertex of the graph. This algorithm is referred
to as the Bellman and Ford algorithm.

Each iteration of the for loop of lines 7 to 12 takes O(n?) time if adja-
cency matrices are used and O(e) time if adjacency lists are used. Here e
is the number of edges in the graph. The overall complexity is O(n3) when
adjacency matrices are used and O(ne) when adjacency lists are used. The
observed complexity of the shortest-path algorithm can be reduced by not-
ing that if none of the dist values change on one iteration of the for loop
of lines 7 to 12, then none will change on successive iterations. So, this
loop can be rewritten to terminate either after n — 1 iterations or after the

5.4. SINGLE-SOURCE SHORTEST PATHS: GENERAL WEIGHTS 273

1 Algorithm BellmanFord(v, cost, dist,n)

2 // Single-source/all-destinations shortest

3 // paths with negative edge costs

4

5 for i := 1 to n do // Initialize dist.

6 dist[i] := cost[v,];

7 for k:=2ton—1do

8 for each u such that u # v and v has

9 at least one incoming edge do
10 for each (i,u) in the graph do

11 if dist[u] > dist[i] + cost[i, u] then
12 distu] := dist[i] + cost[i, u;
13 }

Algorithm 5.4 Bellman and Ford algorithim to compute shortest paths

first iteration in which no dist values are changed, whichever occurs first.
Another possibility is to maintain a queue of vertices ¢ whose dist values
changed on the previous iteration of the for loop. These are the only values
for ¢ that need to be considered in line 10 during the next iteration. When
a queue of these values is maintained, we can rewrite the loop of lines 7 to
12 so that on each iteration, a vertex ¢ is removed from the queue, and the
dist values of all vertices adjacent from ¢ are updated as in lines 11 and 12.
Vertices whose dist values decrease as a result of this are added to the end
of the queue unless they are already on it. The loop terminates when the
queue becomes empty. These two strategies to improve the performance of
BellmanFord are considered in the exercises. Other strategies for improving
performance are discussed in References and Readings. i

EXERCISES

1. Find the shortest paths from node 1 to every other node in the graph
of Figure 5.11 using the Bellman and Ford algorithm.

2. Prove the correctness of BellmanFord (Algorithm 5.4). Note that this
algorithm does not faithfully implement the computation of the recur-
rence for dist®. In fact, for k < n—1, the dist values following iteration
k of the for loop of lines 7 to 12 may not be dist®.

3. Transform BellmanFord into a program. Assume that graphs are repre-
sented using adjacency lists in which each node has an additional field

274

CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.11 Graph for Exercise 1

called cost that gives the length of the edge represented by that node.
As a result of this, there is no cost adjacency matrix. Generate some
test graphs and test the correctness of your program.

Rewrite the algorithm BellmanFord so that the loop of lines 7 to 12
terminates either after n — 1 iterations or after the first iteration in
which no dist values are changed, whichever occurs first.

Rewrite BellmanFord by replacing the loop of lines 7 to 12 with code
that uses a queue of vertices that may potentially result in a reduction
of other dist vertices. This queue initially contains all vertices that are
adjacent from the source vertex v. On each successive iteration of the
new loop, a vertex ¢ is removed from the queue (unless the queue is
empty), and the dist values to vertices adjacent from 7 are updated as
in lines 11 and 12 of Algorithm 5.4. When the dist value of a vertex
is reduced because of this, it is added to the queue unless it is already
on the queue.

(a) Prove that the new algorithm produces the same results as the
original one.

(b) Show that the complexity of the new algorithm is no more than
that of the original one.

. Compare the run-time performance of the Bellman and Ford algo-

rithms of the preceding two exercises and that of Algorithm 5.4. For
this, generate test graphs that will expose the relative performances of
the three algorithms.

5.5. OPTIMAL BINARY SEARCH TREES (x) 275

7. Modify algorithm BellmanFord so that it obtains the shortest paths, in
addition to the lengths of these paths. What is the computing time of
your algorithm?

5.5 OPTIMAL BINARY SEARCH TREES (%)

(for) (for
- N - \

o ;’wiiil@ (do) ;<
(it) (i) (while)
) / (b)
Cit)
(a)

Figure 5.12 Two possible binary search trees

Given a fixed set of identifiers, we wish to create a binary search tree
(see Section 2.3) organization. We may expect different binary search trees
for the same identifier set to have different performance characteristics. The
tree of Figure 5.12(a), in the worst case, requires four comparisons to find
an identifier, whereas the tree of Figure 5.12(b) requires only three. On the
average the two trees need 12/5 and 11/5 comparisons, respectively. For
example, in the case of tree (a), it takes 1,2,2 3, and 4 comparisons, respec-
tively, to find the identifiers for, do, while, int, and if. Thus the average
number of comparisons is JERES S pE 12 " This calculation assumes that
each identifier is searched for with equal probability and that no unsuccessful
searches (i.e., searches for identifiers not in the tree) are made.

In a general situation, we can expect different identifiers to be searched
for with different frequencies (or probabilities). In addition, we can expect
unsuccessful searches also to be made. Let us assume that the given set
of identifiers is {a;,az,...,an} with a; < a2 < --- < a,. Let p(¢) be the
probability with which we search for a;. Let ¢(¢) be the probability that
the identifier being searched for is such that a; < z < a;11, 0 < i < n
(assume ag = —oo and ap+1 = +00). Then, > <;<, ¢(i) is the probability of

276 CHAPTER 5. DYNAMIC PROGRAMMING

an unsuccessful search. Clearly, >, <, P(1) + > o<i<n ¢(¢) = 1. Given this
data, we wish to construct an optimal binary search tree for {a1,az,...,an}-
First, of course, we must be precise about what we mean by an optimal
binary search tree.

In obtaining a cost function for binary search trees, it is useful to add a
fictitious node in place of every empty subtree in the search tree. Such nodes,
called external nodes, are drawn square in Figure 5.13. All other nodes are
internal nodes. If a binary search tree represents n identifiers, then there
will be exactly n internal nodes and n + 1 (fictitious) external nodes. Every
internal node represents a point where a successful search may terminate.
Every external node represents a point where an unsuccessful search may
terminate.

Figure 5.13 Binary search trees of Figure 5.12 with external nodes added

If a successful search terminates at an internal node at level [, then [iter-
ations of the while loop of Algorithm 2.5 are needed. Hence, the expected
cost contribution from the internal node for a; is p(¢) * level(a;).

Unsuccessful searches terminate with ¢t = 0 (i.e., at an external node) in
algorithm |Search (Algorithm 2.5). The identifiers not in the binary search
tree can be partitioned into n + 1 equivalence classes F;,0 < ¢ < n. The
class Fy contains all identifiers z such that z < a;. The class E; contains
all identifiers x such that a; < z < a;;,1, 1 < ¢ < n. The class E,, contains
all identifiers z, = > an. It is easy to see that for all identifiers in the same
class E;, the search terminates at the same external node. For identifiers in
different E; the search terminates at different external nodes. If the failure

5.5. OPTIMAL BINARY SEARCH TREES (x) 277

node for E; is at level [, then only [— 1 iterations of the while loop are
made. Hence, the cost contribution of this node is g(i) * (level(F;) — 1).

The preceding discussion leads to the following formula for the expected
cost of a binary search tree:

> pli) xlevel(a)) + > q(i) * (level(B;) — 1) (5.9)
1<i<n 0<i<n
We define an optimal binary search tree for the identifier set {a1, as,...,a,}

to be a binary search tree for which (5.9) is minimum.

Example 5.17 The possible binary search trees for the identifier set (a;,
ag,a3) = (do, if, while) are given if Figure 5.14. With equal probabilities
p(1) = q(¢r) = 1/7 for all ¢, we have

cost(tree a) = 15/7 cost(tree b) = 13/7

cost(tree c) = 15/7 cost(treed) = 15/7

cost(tree e) = 15/7
As expected, tree b is optimal. With p(1) = .5, p(2) = .1, p(3) = .05,
q(0) = .15, ¢(1) = .1, ¢(2) = .05 and ¢(3) = .05 we have

cost(tree a) = 2.65 cost(treeb) = 1.9

cost(treec) = 1.5 cost(tree d) = 2.05

cost(tree e) 1.6

For instance, cost(tree a) can be computed as follows. The contribution
from successful searches is 3x0.5+2+%0.1+0.05 = 1.75 and the contribution
from unsuccessful searches is 3 * 0.15 + 3 * 0.1 + 2% 0.05 + 0.05 = 0.90. All
the other costs can also be calculated in a similar manner. Tree ¢ is optimal
with this assignment of p’s and ¢’s. O

To apply dynamic programming to the problem of obtaining an optimal
binary search tree, we need to view the construction of such a tree as the
result of a sequence of decisions and then observe that the principle of op-
timality holds when applied to the problem state resulting from a decision.
A possible approach to this would be to make a decision as to which of the
a;’s should be assigned to the root node of the tree. If we choose aj, then
it is clear that the internal nodes for a1, a9,...,ax_1 as well as the external
nodes for the classes Fy, F1, ..., Ex_1 will lie in the left subtree [of the root.
The remaining nodes will be in the right subtree r. Define

cost(l) = Z p(7) * level(a;) + Z * (level(E;) — 1)
1<i<k 0<i<k

278 CHAPTER 5. DYNAMIC PROGRAMMING

(©) (d) (e)

Figure 5.14 Possible binary search trees for the identifier set {do, if,
while}

5.5. OPTIMAL BINARY SEARCH TREES (+) 279

and
cost(r Z p(7) * level(a;) + Z * (level(E;) — 1)
k<i<n k<i<n

In both cases the level is measured by regarding the root of the respective
subtree to be at level 1.

@)
AN

Figure 5.15 An optimal binary search tree with root ag

Using w(4,j) to represent the sum ¢(7) + Zl i+1(q(D) + p(1)), we obtain
the following as the expected cost of the search tree (Figure 5.15):

p(k) + cost(l) + cost(r) + w(0,k — 1) + w(k,n) (5.10)

If the tree is optimal, then (5.10) must be minimum. Hence, cost(l)
must be minimum over all binary search trees containing a1, asg, ...,a;_1 and
Ey,Ey,..., Ex_y. Similarly cost(r) must be minimum. If we use c(i, j) to
represent the cost of an optimal binary search tree ¢;; containing a; 11, ..., a;
and E;, ..., E;, then for the tree to be optimal, we must have cost(l) =
¢(0,k — 1) and cost(r) = ¢(k,n). In addition, & must be chosen such that

p(k) +¢(0,k — 1) + c(k,n) + w(0,k — 1) + w(k, n)

is minimum. Hence, for ¢(0,n) we obtain

c(0,n) = 121}6121”{0 0,k — 1)+ c(k,n) + p(k) + w(0,k — 1) + w(k,n)} (5.11)

We can generalize (5.11) to obtain for any ¢(i, j)

C(Zaj) = lg}clg]{c(k— 1) +C(k7]) +p(k) + w(z,k - 1) + w(k7])}

280 CHAPTER 5. DYNAMIC PROGRAMMING

c(i,j) = ig}cigj{c(i, k—1)+c(k,5)} +w(i,j) (5.12)

Equation 5.12 can be solved for ¢(0,n) by first computing all ¢(3, j) such
that j — ¢ = 1 (note ¢(i,7) = 0 and w(z,i) = ¢q(i), 0 < i < n). Next we
can compute all ¢(7, j) such that j — ¢ = 2, then all ¢(4,5) with j —¢ = 3,
and so on. If during this computation we record the root (i, j) of each tree
ti;, then an optimal binary search tree can be constructed from these (i, j).
Note that r(i,5) is the value of k£ that minimizes (5.12).

Example 5.18 Let n = 4 and (a1, a2,a3,a4) = (do, if, int, while). Let
p(l:4) =(3,3,1,1) and ¢(0: 4) = (2,3,1,1,1). The p’s and ¢’s have been
multiplied by 16 for convenience. Initially, we have w(i,i) = ¢(i),c(i,7) =0
and r(i,i) = 0,0 <3 < 4. Using Equation 5.12 and the observation w(i,j) =
p(3) + a(j) + W, — 1), we get

w(0, 1) p(1) +¢(1) + w(0,0) =8

c(0,1) = w(0,1) + min{c(0,0) +¢(1,1)} = 8
r(0,1) = 1

w(l,2) = p(2)+q(2)+w(l,1) = 7

c(1,2) = w(l,2) +min {c(1,1) +¢(2,2)} = 7
r(0,2) = 2

w(2,3) = pB3)+4q3)+w(2,2) = 3

¢(2,3) = w(2,3)+min {c(2,2) +¢(3,3)} = 3
r(2,3) = 3

w(3,4) = p(4)+q4)+w(3,3) = 3

c(3,4) = w(3,4) + min {c(3,3) +c(4,4)} = 3
r(3,4) 4

Knowing w(i,7 4+ 1) and ¢(i,i + 1), 0 < i < 4, we can again use Equation
5.12 to compute w(i,i+2), ¢(i,+2), and (4,74 2), 0 < i < 3. This process
can be repeated until w(0,4), ¢(0,4), and r(0,4) are obtained. The table
of Figure 5.16 shows the results of this computation. The box in row i and
column j shows the values of w(j,j+1), ¢(j,7 +1) and (3, j +1) respectively.
The computation is carried out by row from row 0 to row 4. From the table
we see that ¢(0,4) = 32 is the minimum cost of a binary search tree for
(a1,a2,a3,a4). The root of tree ty4 is az. Hence, the left subtree is tp; and
the right subtree to4. Tree ty; has root a1 and subtrees too and £11. Tree fo4
has root ag; its left subtree is 99 and its right subtree t34. Thus, with the
data in the table it is possible to reconstruct to4. Figure 5.17 shows fp4. O

5.5. OPTIMAL BINARY SEARCH TREES (*) 281

0 1 2 3 4
wo =2 | wi =3 wn=1|wy=1 wy=1
0 C00=O C11=O C22=O C33=O C44=O
roo=0 | rin=0|rn= riz=0 | ry =0
wor =8 | wpp=7 | wy =3 wys=
1 C01=8 C12=7 C23:3 C34=3

7'01:1 r12=2 r23=3 r34=4

Wo2 = 12 Wiz = 9 Woyq :5
2 C02=19 C13=12 C24=8
rp= 1r3= 2| ru=3

W03=14 W14=11
3 C03:25 Cyq 19
r3= 2| rig= 2

W04—l6
4 C04=32
Yoga = 2

Figure 5.16 Computation of ¢(0,4), w(0,4), and (0, 4)
}/ifk

(do) (int
(@hi@

Figure 5.17 Optimal search tree for Example 5.18

282 CHAPTER 5. DYNAMIC PROGRAMMING

The above example illustrates how Equation 5.12 can be used to deter-
mine the ¢’s and r’s and also how to reconstruct ¢y, knowing the r’s. Let us
examine the complexity of this procedure to evaluate the ¢’s and r’s. The
evaluation procedure described in the above example requires us to compute
c(i,j) for (j —i) = 1,2,...,n in that order. When j — i = m, there are
n—m+ 1 ¢(i,7)’s to compute. The computation of each of these ¢(i,5)’s
requires us to find the minimum of m quantities (see Equation 5.12). Hence,
each such ¢(7,j) can be computed in time O(m). The total time for all
c(i,7)’s with j —i = m is therefore O(nm — m?). The total time to evaluate
all the ¢(7, j)’s and r(i,j)’s is therefore

Z (nm — m?) = O(n?)

1<m<n

We can do better than this using a result due to D. E. Knuth which shows
that the optimal £ in Equation 5.12 can be found by limiting the search to
the range r(¢,j — 1) < k < r(i + 1,7). In this case the computing time
becomes O(n?) (see the exercises). The function OBST (Algorithm 5.5) uses
this result to obtain the values of w(i, j), r(¢,7), and ¢(i,5), 0 < i < j < mn,
in O(n?) time. The tree to, can be constructed from the values of r(i,) in
O(n) time. The algorithm for this is left as an exercise.

EXERCISES

1. Use function OBST (Algorithm 5.5) to compute w(7,j), r(i,5), and
c(i,7), 0 < i < j < 4, for the identifier set (ai1,as,a3,a4) = (cout,
float, if, while) with p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) =
1/20, ¢(0) = 1/5, q(1) = 1/10, q(2) = 1/5, q(3) = 1/20, and q(4) =
1/20. Using the r(i, j)’s, construct the optimal binary search tree.

2. (a) Show that the computing time of function OBST (Algorithm 5.5)
is O(n?).

(b) Write an algorithm to construct the optimal binary search tree
given the roots r(¢,7),0 <14 < j < n. Show that this can be done
in time O(n).

3. Since often only the approximate values of the p’s and ¢’s are known, it
is perhaps just as meaningful to find a binary search tree that is nearly
optimal. That is, its cost, Equation 5.9, is almost minimal for the
given p’s and ¢’s. This exercise explores an O(nlogn) algorithm that
results in nearly optimal binary search trees. The search tree heuristic
we use is

5.5. OPTIMAL BINARY SEARCH TREES (x) 283

1 Algorithm OBST(p,q,n)

2 // Given n distinct identifiers a1 < a3 < -+ < a,, and probabilities
3 //pli], 1 <i<n,and ¢[i], 0 <i<n, this algorithm computes
4 // the cost c[i, j] of optimal binary search trees ¢;; for identifiers
5 // ai+1,...,a;. It also computes [z, 5], the root of ¢;;.

6 // wli,j] is the weight of ¢;;.

7 A

8 for ;:=0ton—1do

9 {

10 // Initialize.

11 wli,1] := q[i]; r[s,4] := 05 c[i, 1] := 0.0

12 // Optimal trees with one node

13 wlt,i + 1] := q[i] + q[i + 1] + p[i + 1];

14 rli, i+ 1] =1+ 15

15 cfi, i + 1] := q[]+q[z‘+1]+p[z‘+1];

16 }

17 wn, n] := q[nl; rin,n] := 05 ¢[n,n] := 0.0;

18 for m :=2 to n do // Find optimal trees with m nodes.
19 for i :=0ton—-mdo

20 {

21 Ji=1+m;

22 wli, g] == wli, j — 1] + p[j] + qls];

23 // Solve 5.12 using Knuth’s result.

24 k := Find(c,7,1,75);

25 // A value of { in the range rli,j—1] <1

26 // <r[i+1,7] that minimizes c[I —1]+ [,];
27 cli, j] = [z 31+ ik — 1] + clk. s

28 jl=

29

30 write (c[0,n], w[0,n], r[0,n]);

31 }

1 Algorithm Find(c,7,1,7)

2

3 AN = 003

4 for m:=r[i,j — 1] to r[i+ 1, j] do

5 if (c[i,m — 1] + ¢[m, j]) < min then

6

7 min = cfi,m — 1] + ¢[m, j|; | := m;

8

9 return /;

10 }

Algorithm 5.5 Finding a minimum-cost binary search tree

284 CHAPTER 5. DYNAMIC PROGRAMMING

Choose the root k such that |w(0,k — 1) — w(k,n)| is as
small as possible. Repeat this procedure to find the left and
right subtrees of the root.

(a) Using this heuristic, obtain the resulting binary search tree for
the data of Exercise 1. What is its cost?

(b) Write an algorithm implementing the above heuristic. Your algo-
rithm should have time complexity O(nlogn).

5.6 STRING EDITING

We are given two strings X = z1,22,...,2, and Y = y1,99,...,Ym, where
z;, 1 <4 <n,and y;, 1 <j < m, are members of a finite set of symbols
known as the alphabet. We want to transform X into Y using a sequence
of edit operations on X. The permissible edit operations are insert, delete,
and change (a symbol of X into another), and there is a cost associated with
performing each. The cost of a sequence of operations is the sum of the costs
of the individual operations in the sequence. The problem of string editing
is to identify a minimum-cost sequence of edit operations that will transform
X into Y.

Let D(z;) be the cost of deleting the symbol z; from X, I(y;) be the cost
of inserting the symbol y; into X, and C(z;,y;) be the cost of changing the
symbol z; of X into y;.

Example 5.19 Consider the sequences X = z1,x2, 3,%4,2Z5 = a,a,b,a,b
and Y = y1,y2,y3,y4 = b,a,b,b. Let the cost associated with each insertion
and deletion be 1 (for any symbol). Also let the cost of changing any symbol
to any other symbol be 2. One possible way of transforming X into Y is
delete each z;,1 < ¢ < 5, and insert each y;,1 < j < 4. The total cost of
this edit sequence is 9. Another possible edit sequence is delete 1 and 9
and insert y4 at the end of string X. The total cost is only 3.]

A solution to the string editing problem consists of a sequence of decisions,
one for each edit operation. Let £ be a minimum-cost edit sequence for
transforming X into Y. The first operation, O, in £ is delete, insert, or
change. If &’ = £ — {0} and X' is the result of applying O on X, then &’
should be a minimum-cost edit sequence that transforms X’ into Y. Thus
the principle of optimality holds for this problem. A dynamic programming
solution for this problem can be obtained as follows. Define cost(1, j) to be
the minimum cost of any edit sequence for transforming x1,x2,...,x; into
Y1,Y2,...,y; (for 0 < i < nand 0 <j <m). Compute cost(i,j) for each ¢
and j. Then cost(n,m) is the cost of an optimal edit sequence.

For i = j = 0, cost(i,j) = 0, since the two sequences are identical (and
empty). Also, if j = 0 and i > 0, we can transform X into Y by a sequence of

5.6. STRING EDITING 285

deletes. Thus, cost(i,0) = cost(i—1,0)+D(z;). Similarly, ifi = 0 and 5 > 0,
we get cost(0,5) = cost(0,5 — 1) + I(y;). If i # 0and j # 0, z1,%2,...,%;
can be transformed into y1,y2,...,y; in one of three ways:

1. Transform z1,z2,...,z; 1 1nto y1,¥2,...,¥y; using a minimum-cost edit
sequence and then delete ;. The corresponding cost is cost(i — 1,7) +

2. Transform x1,%2,...,%;—| into y1,y2,...,y; 1 using a minimum-cost
edit sequence and then change the symbol z; to y;. The associated
cost is cost(i — 1,7 — 1) + C(zi, y;).

3. Transform z1, xz9,. Ce g into y1, Y2, -5 Y51 using a minimum—cos‘g e_dit
sequence and then insert y;. This corresponds to a cost of cost(i,j —

The minimum cost of any edit sequence that transforms xq,zs,...,%;
into y1,y2,...,y; (for + > 0 and 5 > 0) is the minimum of the above three
costs, according to the principle of optimality. Therefore, we arrive at the
following recurrence equation for cost(i, j):

0 1=7=0
.) cost(i—1,0)+ D(z;) j=0,1>0
cost(i,J) =4 cost(0,j — 1) + I(y;) i=0, j >0 (5.13)
cost' (i, j) i>0,j>0
where cost'(i,7) = min { cost(i — 1,7) + D(z;),
cost(i — 1,j — 1) + C(zs, y5),
cost(i,j — 1) + I(y;) }

We have to compute cost(i, j) for all possibles values of i and j (0 < i <n
and 0 < j <m). There are (n + 1)(m + 1) such values. These values can be
computed in the form of a table, M, where each row of M corresponds to a
particular value of ¢ and each column of M corresponds to a specific value
of j. M(i,5) stores the value cost(i,j). The zeroth row can be computed
first since it corresponds to performing a series of insertions. Likewise the
zeroth column can also be computed. After this, one could compute the
entries of M in row-major order, starting from the first row. Rows should
be processed in the order 1,2,...,n. Entries in any row are computed in
increasing order of column number.

The entries of M can also be computed in column-major order, starting
from the first column. Looking at Equation 5.13, we see that each entry of
M takes only O(1) time to compute. Therefore the whole algorithm takes
O(mn) time. The value cost(n,m) is the final answer we are interested in.
Having computed all the entries of M, a minimum edit sequence can be

286 CHAPTER 5. DYNAMIC PROGRAMMING

obtained by a simple backward trace from cost(n,m). This backward trace
is enabled by recording which of the three options for ¢ > 0,5 > 0 yielded
the minimum cost for each ¢ and j.

Example 5.20 Consider the string editing problem of Example 5.19. X =
a,a,b,a,band Y = b,a,b,b. Each insertion and deletion has a unit cost and
a change costs 2 units. For the cases 1 = 0,5 > 1, and j = 0,7 > 1, cost(s,)
can be computed first (Figure 5.18). Let us compute the rest of the entries
in row-major order. The next entry to be computed is cost(1,1).

cost(1,1) min {cost(0,1) + D(z1), cost(0,0) + C(z1,y1),cost(1,0) + I(y1)}
min {2,2,2} =2

Next is computed cost(1,2).

cost(1,2) = min {cost(0,2) + D(z1),cost(0,1) + C(z1,y2),cost(1,1) + I(y2)}
= min {3,1,3} =1

The rest of the entries are computed similarly. Figure 5.18 displays the
whole table. The value cost(5,4) = 3. One possible minimum-cost edit
sequence is delete x1, delete x5, and insert y4. Another possible minimum
cost edit sequence is change z1 to y2 and delete z4. O

NTo o1 2 3 4

il T T T]

o— 0 1 2 3 4

1— 1 2 1 2 3

72— 2 3 2 3 4

31— 3 2 3 2 3

4— 4 3 2 3 4

s— 5 4 3 2 3

Figure 5.18 Cost table for Example 5.20

5.7. 0/1 KNAPSACK 287

EXERCISES

1. Let X = a,a,b,a,0,b,a,b,a,a and ¥ = b,a,b,a,a,b,a,b. Find a
minimum-cost edit sequence that transforms X into Y.

2. Present a pseudocode algorithm that implements the string editing
algorithm discussed in this section. Program it and test its correctness
using suitable data.

3. Modify the above program not only to compute cost(n,m) but also to
output a minimum-cost edit sequence. What is the time complexity of
your program?

4. Given a sequence X of symbols, a subsequence of X is defined to be any
contiguous portion of X. For example, if X = x1,z9, 23, 24, T5, T2, T3
and 1, z9, x5 are subsequences of X. Given two sequences X and Y,
present an algorithin that will identify the longest subsequence that
is common to both X and Y. This problem is known as the longest
common subsequence problem. What is the time complexity of your
algorithm?

5.7 0/1 KNAPSACK

The terminology and notation used in this section is the same as that in
Section 5.1. A solution to the knapsack problem can be obtained by making
a sequence of decisions on the variables 1, x2,...,%,. A decision on variable
x; involves determining which of the values 0 or 1 is to be assigned to it. Let
us assume that decisions on the z; are made in the order z,,zn_1,...,21.
Following a decision on x,, we may be in one of two possible states: the
capacity remaining in the knapsack is m and no profit has accrued or the
capacity remaining is m — wy and a profit of p, has accrued. It is clear that
the remaining decisions z,_1,...,2; must be optimal with respect to the
problem state resulting from the decision on x,. Otherwise, z,,...,z; will
not be optimal. Hence, the principle of optimality holds.

Let f;(y) be the value of an optimal solution to KNAP(1, j,y). Since the
principle of optimality holds, we obtain

fa(m) = max {fn_1(m), fn-1(m —wy) + pn} (5.14)
For arbitrary f;(y), ¢ > 0, Equation 5.14 generalizes to

fily) = max {fi_1(y), fi-1(y — wi) + pi} (5.15)

Equation 5.15 can be solved for f,(m) by beginning with the knowledge fo(y)
= 0 for all y and f;(y) = —o0,y < 0. Then f1, fo,..., fn can be successively
computed using (5.15).

288 CHAPTER 5. DYNAMIC PROGRAMMING

When the w;’s are integer, we need to compute f;(y) for integer y, 0 <
y < m. Since f;(y) = —oo for y < 0, these function values need not be
computed explicitly. Since each f; can be computed from f;_; in ©(m) time,
it takes ©(mn) time to compute f,. When the w;’s are real numbers, f;(y) is
needed for real numbers y such that 0 < y < m. So, f; cannot be explicitly
computed for all y in this range. Even when the w;’s are integer, the explicit
©(mn) computation of f, may not be the most efficient computation. So,
we explore an alternative method for both cases.

Notice that f;(y) is an ascending step function; i.e., there are a finite
number of ¥’s, 0 = y; < y2 < --- < yg, such that f;(y1) < fi(y2) < --- <
filye)s fily) = —oo, y < yi; fily) = f(ur), ¥ = yws and fily) = filyy),
y; <y < yj+1. So, we need to compute only fi(y;), 1 < j < k. We use the
ordered set S* = {(f(y;),y;)|1 < j <k} to represent f;(y). Each member of
S'is a pair (P, W), where P = f;(y;) and W = y;. Notice that S® = {(0,0)}.
We can compute S*T! from S* by first computing

St = {(P,W)|(P —pi,W —w;) € 5} (5.16)

Now, S**! can be computed by merging the pairs in S and S} together.
Note that if S**! contains two pairs (P;, W) and (P, W) with the property
that P; < P, and W; > Wy, then the pair (P;, W;) can be discarded because
of (5.15). Discarding or purging rules such as this one are also known as
dominance rules. Dominated tuples get purged. In the above, (P, Wy)
dominates (P, W;).

Interestingly, the strategy we have come up with can also be derived by
attempting to solve the knapsack problem via a systematic examination of
the up to 2" possibilities for z;,z2,...,z,. Let S* represent the possible
states resulting from the 2* decision sequences for xq,...,x;. A state refers
to a pair (P;,W;), W; being the total weight of objects included in the
knapsack and P; being the corresponding profit. To obtain Sl we note
that the possibilities for x;+1 are z;+; = 0 or ;41 = 1. When z;1; = 0, the
resulting states are the same as for S*. When ;1 = 1, the resulting states
are obtained by adding (p;+1,w;;1) to each state in %, Call the set of these
additional states St. The S! is the same as in Equation 5.16. Now, S*"! can
be computed by merging the states in S* and S} together.

Example 5.21 Consider the knapsack instance n = 3, (wy, wq, w3) = (2,3,4),
(p1,p2,p3) = (1,2,5), and m = 6. For these data we have

S = {(0,0)};8) = {(1,2)}

S' = {(0,0),(1,2)} 5] ={(2,3),(3,5)}

S = {(0,0),(1,2),(2,3),(3,5)}; 57 = {(5,4),(6,6),(7,7),(8,9)}
S = {(0,0),(1,2),(2,3),(5,4),(6,6),(7,7),(8,9)}

5.7. 0/1 KNAPSACK 289

Note that the pair (3, 5) has been eliminated from S3 as a result of the
purging rule stated above. o

When generating the S*’s, we can also purge all pairs (P, W) with W > m
as these pairs determine the value of f,(z) only for z > m. Since the
knapsack capacity is 7n, we are not interested in the behavior of f, for z > m.
When all pairs (P;, W;) with W; > m are purged from the Ss, f,(m) is
given by the P value of the last pair in S™ (note that the S*’s are ordered
sets). Note also that by computing S™, we can find the solutions to all the
knapsack problems KNAP(1,n,z), 0 < z < m, and not just KNAP(1,n,m).
Since, we want only a solution to KNAP(1,n,m), we can dispense with the
computation of . The last pair in S™ is either the last one in S?~! or it is
(P; + pn, W; + wy,), where (P;, W;) € S"~! such that W, + w, < and W;
is maximum.

If (P1,W1) is the last tuple in S™, a set of 0/1 values for the z;’s such
that > pix; = Pl and Y w;z; = W1 can be determined by carrying out
a search through the S's. We can set z,, = 0 if (P1,W1) € S* ' 1If
(P1,W1) ¢ S* 1, then (P1 — p,, W1 —w,) € S* ! and we can set =, = 1.
This leaves us to determine how either (P1, W1) or (P1—p,, W1 -—w,) was
obtained in $"~!'. This can be done recursively.

Example 5.22 With m = 6, the value of f3(6) is given by the tuple (6, 6)
in $% (Example 5.21). The tuple (6, 6) ¢ S?, and so we must set z3 = 1.
The pair (6, 6) came from the pair (6 — p3,6 — w3) = (1,2). Hence (1, 2)
€ S2. Since (1,2) € S', we can set 2o = 0. Since (1, 2) ¢ S°, we obtain
x1 = 1. Hence an optimal solution is (z1,z2,z3) = (1,0, 1). |

We can sum up all we have said so far in the form of an informal algorithm
DKP (Algorithm 5.6). To evaluate the complexity of the algorithm, we
need to specify how the sets S* and S! are to be represented; provide an
algorithm to merge S* and S!; and specify an algorithm that will trace
through S"!,...,S! and determine a set of 0/1 values for z,..., 2.

We can use an array pair| | to represent all the pairs (P, W). The P values
are stored in pair[].p and the W values in pair| .w. Sets S°,S1,... 8§71
can be stored adjacent to each other. This requires the use of pointers b[i],
0 < i < n, where b[i] is the location of the first element in S%, 0 < i < n,
and b[n] is one more than the location of the last element in S™~1.

Example 5.23 Using the representation above, the sets S, S', and S? of
Example 5.21 appear as

290 CHAPTER 5. DYNAMIC PROGRAMMING

Algorithm DKP(p,w,n,m)
{

S0 :={(0,0)};
fori:=1ton—1do

ST = {(PW)|(P — pi,W —w;) € 5" and W < m};
S* := MergePurge(S*~1, Si71);

C 00~ S Ul Ww N

}

(PX,WX) :=last pair in sl

10 (PY,WY) := (P + p,, W' + w,) where W' is the largest W in
11 any pair in 571 such that W + w, < m;

12 // Trace back for z,,z,_1,...,21.
13 if (PX > PY) then z, := 0;

14 else z, := 1;
15 TraceBackFor(z,,—1,...,21);
16 }

Algorithm 5.6 Informal knapsack algorithm

pair[lp O 0 1 0 1 2 3

pair[lw 0 0O 2 0 2 3 5

The merging and purging of S~ and S{"l can be carried out at the same
time that S{'l is generated. Since the pairs in S°~! are in increasing order
of P and W, the pairs for S° are generated in this order. If the next pair
generated for S¢7! is (PQ,WQ), then we can merge into S* all pairs from

Si~1 with W value < WQ. The purging rule can be used to decide whether
any pairs get purged. Hence, no additional space is needed in which to store

si—1,

DKnap (Algorithm 5.7) generates S from S?~! in this way. The S%'s are
generated in the for loop of lines 7 to 42 of Algorithm 5.7. At the start
of each iteration ¢t = b[i — 1] and h is the index of the last pair in S*~!.
The variable k points to the next tuple in Si~1 that has to be merged into
S*. In line 10, the function Largest determines the largest ¢, t < q < h,

5.7. 0/1 KNAPSACK 291

for which pair[q].w + w[i] < m. This can be done by performing a binary
search. The code for this function is left as an exercise. Since u is set
such that for all W;,h > j > w, W; + w; > m, the pairs for Si—l are
(P(4) + pi, W(j) + w;), 1 <j <wu. The for loop of lines 11 to 33 generates
these pairs. Each time a pair (pp, ww) is generated, all pairs (P, W) in §*~!
with W < ww not yet purged or merged into S* are merged into S*. Note
that none of these may be purged. Lines 21 to 25 handle the case when the
next pair in S*°! has a W value equal to ww. In this case the pair with
lesser P value gets purged. In case pp > P(next — 1), then the pair (pp, ww)
gets purged. Otherwise, (pp, ww) is added to S*. The while loop of lines 31
and 32 purges all unmerged pairs in Si—1 that can be purged at this time.
Finally, following the merging of Si~! into S, there may be pairs remaining
in S°! to be merged into S’. This is taken care of in the while loop of
lines 35 to 39. Note that because of lines 31 and 32, none of these pairs
can be purged. Function TraceBack (line 43) implements the if statement
and trace-back step of the function DKP (Algorithm 5.6). This is left as an
exercise.

If |S?| is the number of pairs in S, then the array pair should have a
minimum dimension of d = 3, .,,_1 |S?|. Since it is not possible to predict
the exact space needed, it is necessary to test for next > d each time next
is incremented. Since each S%, i > 0, is obtained by merging S*~! and Sfl
and |S{7!| < |81, it follows that |S?| < 2|S*~!|. In the worst case no pairs
will get purged and

Yo 8= > =201

0<i<n—1 0<i<n—1

The time needed to generate S* from S*~' is @(|S~!|). Hence, the time
needed to compute all the $’s, 0 < i < n, is O(3 |S*!|). Since |S?| < 2¢,
the time needed to compute all the S¥s is O(2"). If the p,’s are integers,
then each pair (P, W) in S’ has an integer P and P < 2 1<j<iPj- Similarly,
if the w;’s are integers, each W is an integer and W < m. In any S the
pairs have distinct W values and also distinct PP values. Hence,

’Si| <1+ Z D
1<5<i
when the p;’s are integers and

1S <1+ min { z wj, m}
1<

292 CHAPTER 5. DYNAMIC PROGRAMMING

PW = record {float p; float w; }

1 Algorithm DKnap(p,w,z,n,m)

2

3 { // pair[] is an array of PW’s.

4 b0] := 1; pair(1].p := pair[l].w :=0.0; // S°

5 t:=1; h:=1; // Start and end of S°

6 b[1] := next := 2; // Next free spot in pair| |

7 fori:=1ton-1do

8 { // Generate S,

9 ko=t

10 u := Largest(pair,w,t, h,i,m);

11 for j:=1 to udo

12 { // Generate S; ! and merge.

13 pp = pair[j].p + pli]s ww := pair(j].w + w(i];

14 // (pp,ww) is the next element in S}~".

15 while ((k < 7) and (pair(k].w < ww)) do

16

17 pair[next].p := pair[k].p;

18 pair[next|.w := pair(k].w;

19 next :=next+ 15 k:= k+ 1;

20 }

21 i{f ((k < h) and (pair[k].w = ww)) then

22

23 if pp < pair[k].p then pp := pair[k].p;

24 k:=k+1;

25 }

26 if pp > pair[next — 1].p then

27

28 pair[next].p := pp; pair[nexrt].w = ww;

29 next :=next + 13

30 }

31 while ((k < h) and (pair|k].p < pair[next — 1].p))

32 do k:=k+1;

33

34 // Merge in remaining terms from S 1.

35 while (k < h) do

36

37 pair|next].p = pair|k].p; pai [newt].w := pair[k].w;

38 next :=next+ 13 k:=k+1

39 }

40 // Initialize for S**1.

41 t:=h+1; h:=next — 1; bfi + 1] := next;

42

43 TraceBack(p, w, pair, x, m,n);

44 }

Algorithm 5.7 Algorithm for 0/1 knapsack problem

5.7. 0/1 KNAPSACK 293

when the w;’s are integers. When both the p;’s and w;’s are integers, the
time and space complexity of DKnap (excluding the time for TraceBack)
is O(min{2", n3>,,<, pi;nm}). In this bound 37, ;., pi can be replaced

by > i<i<npi/ged (p1y....pn) and m by ged (wi,wa, ..., w,,m) (see the
exercises). The exercises indicate how TraceBack may be implemented so as
to have a space complexity O(1) and a time complexity O(n?).

Although the above analysis may seem to indicate that DKnap requires
too much computational resource to be practical for large n, in practice
many instances of this problem can be solved in a reasonable amount of
time. This happens because usually, all the p’s and w’s are integers and m
is much smaller than 2". The purging rule is effective in purging most of the
pairs that would otherwise remain in the S*’s.

Algorithm DKnap can be speeded up by the use of heuristics. Let L
be an estimate on the value of an optimal solution such that f,(m) > L.
Let PLEFT(i) = ¥, <, pj- If S contains a tuple (P, W) such that P +

PLEFT(i) < L, then (P,W) can be purged from S°. To see this, observe
that (P, W) can contribute at best the pair (P + Yici<n P W+ ici<n w)
to S77'. Since P + Yicj<nPj = P+ PLEFT(i) < L, it follows that this
pair cannot lead to a pair with value at least L and so cannot determine an
optimal solution. A simple way to estimate L such that L < f,(m) is to
consider the last pair (P,W) in S*. Then, P < f,(m). A better estimate is
obtained by adding some of the remaining objects to (P, W). Example 5.24
illustrates this. Heuristics for the knapsack problem are discussed in greater
detail in the chapter on branch-and-bound. The exercises explore a divide-
and-conquer approach to speed up DKnap so that the worst case time is

o(2n/?).

Example 5.24 Counsider the following instance of the knapsack problem:
n =6, (p17p27p37p47p57p6) = (11)1,11)2,11)3,’11)4,11)5, UJ@) = (1007 90, 20, 10, 7,
3), and m = 165. Attempting to fill the knapsack using objects in the order
1, 2, 3,4, 5, and 6, we see that objects 1, 2, 4, and 6 fit in and yield a profit
of 163 and a capacity utilization of 163. We can thus begin with L = 163 as
a value with the property L < f,(m). Since p; = w;, every pair (P,W) € 5*,
0 <17 <6 has P=W. Hence, each pair can be replaced by the singleton P
or W. PLEFT(0) = 190, PLEFT(1) = 90, PLEFT(2) = 40, PLEFT(3) =
20, PLEFT(4) = 10, PLEFT(5) = 3, and PLEFT(6) = 0. Eliminating from
each S* any singleton P such that P+ PLEFT(i) < L, we obtain

§°={0}; S} = {100}
S' ={100}; Si = {150}
5% ={150}; Sf=¢

294 CHAPTER 5. DYNAMIC PROGRAMMING

53 = {150}; S? = {160}
St ={160}; St=¢
5% = {160}

The singleton 0 is deleted from S! as 0 + PLEFT(1)< 163. The set S?
does not contain the singleton 150 + 20 = 170 as m < 170. S® does not
contain the 100 or the 120 as each is less than L — PLEFT(3). And so on.
The value fg(165) can be determined from S°. In this example, the value of
L did not change. In general, L will change if a better estimate is obtained
as a result of the computation of some S*. If the heuristic wasn’t used, then
the computation would have proceeded as

50 = {0}
s' = {0,100}
5% = {0,50, 100,150}

195)
&
I

{0, 20,50, 70, 100, 120, 150}

{0,10,20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160}
$% = {0,7,10,17,20,27,30, 37,50, 57, 60, 67, 70, 77, 80, 87, 100,
107,110,117, 120, 127, 130, 137, 150, 157, 160}

19!
=
Il

The value fg(165) can now be determined from S°, using the knowledge
(p67w6) - (37 3) o

EXERCISES

1. Generate thesets S*, 0 < i < 4 (Equation 5.16), when (wq, w2, w3, wy) =
(107 157679) and (p17p27p37p4) = (2757871)

2. Write a function Largest(pair, w,t,h,1,m) that uses binary search to
determine the largest ¢, t < ¢ < h, such that pair[ql.w + w[i] < m.

3. Write a function TraceBack to determine an optimal solution z1, z2, . . .,
Zn to the knapsack problem. Assume that S* 0 < i < n, have already
been computed as in function DKnap. Knowing b(i) and b(i + 1),
you can use a binary search to determine whether (P',W') € S

Hence, the time complexity of your algorithm should be no more than
O(nmax;{log |S*}) = O(n?).

4. Give an example of a set of knapsack instances for which |S?| = 27,
0 <1 <n. Your set should include one instance for each n.

5.8. RELIABILITY DESIGN 295

5. (a) Show that if the p;’s are integers, then the size of each S, 8¢, in
the knapsack problem is no more than 1437, ., pi/gcd(pi,p2,-. .

pn), where ged(p1,p2,...,pn) 18 the greatest common divisor of
the p;’s.

(b) Show that when the w;’s are integer, then [S'| < 14+ min{}",_,_;
wj, m}/ged(w, wa, ..., w,, m).

6. (a) Using a divide-and-conquer approach coupled with the set gener-

ation approach of the text, show how to obtain an 0(2”/ 2) algo-
rithm for the 0/1 knapsack problem.

(b) Develop an algorithm that uses this approach to solve the 0/1
knapsack problem,

(c) Compare the run time and storage requirements of this approach
with those of Algorithm 5.7. Use suitable test data.

7. Consider the integer knapsack problem obtained by replacing the 0/1
constraint in (5.2) by z; > 0 and integer. Generalize f;(z) to this
problem in the obvious way.

(a) Obtain the dynamic programming recurrence relation correspond-
ing to (5.15).

(b) Show how to transform this problem into a 0/1 knapsack problem.
(Hint: Introduce new 0/1 variables for each z;. If 0 < z; < 27,
then introduce j variables, one for each bit in the binary repre-
sentation of x;.)

5.8 RELIABILITY DESIGN

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let r; be the reliability of device D; (that is, r; is the
probability that device ¢ will function properly). Then, the reliability of the
entire system is Ilr;. Even if the individual devices are very reliable (the
r;’s are very close to one), the reliability of the system may not be very
good. For example, if n = 10 and r; = .99, 1 < ¢ < 10, then IIr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

If stage ¢ contains m; copies of device D;, then the probability that all
m; have a malfunction is (1 — r;)™. Hence the reliability of stage 7 becomes

296 CHAPTER 5. DYNAMIC PROGRAMMING

oA m - o]

Figure 5.19 n devices D;, 1 <14 < n, connected in series

stage 1 stage 2 stage 3 stage n
D, Ds D,
D, D,
D, — — D, ——
D D, D5 D
1 D3 n

Figure 5.20 Multiple devices connected in parallel in each stage

1 — (1 —r;)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
29999, In any practical situation, the stage reliability is a little less than
1— (1 —r;)™ because the switching circuits themselves are not fully reliable.
Also, failures of copies of the same device may not be fully independent (e.g.,
if failure is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(m;), 1 < n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) The reliability of the system of
stages is II1<j<n;(m;).

Our problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let ¢; be the
cost of each unit of device ¢ and let ¢ be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize Il <;<n ¢;(m;)
subject to Z cim; < ¢ (5.17)
1<i<n

m; > 1 and integer, 1 <7< n

5.8. RELIABILITY DESIGN 297

A dynamic programming solution can be obtained in a manner similar to
that used for the knapsack problem. Since, we can assume each ¢; > (, each
m; must be in the range 1 < m; < u;, where

w; = {(C +ci— Zc_j)/CiJ
1

The upper bound u; follows from the observation that m; > 1. An optimal
solution mi,ma,...,m, is the result of a sequence of decisions, one decision
for each m;. Let f;(x) represent the maximum value of Il < j<; ¢(m;) subject
to the constraints Zl<j<7j c;mj <z and 1 <mj <uj, 1 <3 <4 Then, the
value of an optimal solution is f,(c). The last decision made requires one to
choose m,, from {1,2,3, ..., u,}. Once a value for m,, has been chosen, the
remaining decisions must be such as to use the remaining funds ¢ — ¢,m, in
an optimal way. The principal of optimality holds and

fule) = max {¢n(mn)fr1(c—cnmy)} (5.18)

1§mn§un

For any f;(x), ¢ > 1, this equation generalizes to

filz) = max {¢y(m;)fim1(z —ceymy)} (5.19)
1<m,<u;

Clearly, fo(xz) =1 for all z, 0 < z < ¢. Hence, (5.19) can be solved using
an approach similar to that used for the knapsack problem. Let S* consist
of tuples of the form (f,z), where f = f;(x). There is at most one tuple for
each different x that results from a sequence of decisions on my, msa,...,m,.
The dominance rule (f1,z1) dominates (fe, z2) iff f1 > f2 and 21 < x5 holds
for this problem too. Hence, dominated tuples can be discarded from S°.

Example 5.25 We are to design a three stage system with device types
Dy, Dy, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. The reliability of each device type is
.9, .8 and .5 respectively. We assume that if stage ¢ has m; devices of type i
in parallel, then ¢;(m;) = 1—(1—7;)™:. In terms of the notation used earlier,
¢t =30,¢0 =15,¢3 =20,¢ =105, =.9, r9 = .8, r3 = .b,u; =2,uy =3,
and uz = 3.

We use S to represent the set of all undominated tuples (f,z) that
may result from the various decision sequences for mi,mo,...,m;. Hence,
f(z) = fi(x). Beginning with S° = {(1,0)}, we can obtain each S* from S~}
by trying out all possible values for m; and combining the resulting tuples
together. Using S} to represent all tuples obtainable from S~ by choosing

m; = j, we obtain S} = {(.9, 30)} and S = {(.9, 30),(.99,60)}. The set

298 CHAPTER 5. DYNAMIC PROGRAMMING

52 = {(.72,45),(.792,75)}; S2= {(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from S7 as this leaves only
$10. This is not enough to allow m3 = 1. The set S7 = {(.8928,75)}. Com-
bining, we get 5% = {(.72,45), (.864, 60), (.8928, 75)} as the tuple (.792, 75) is
dominated by (.864, 60). The set S? = {(.36,65), (432, 80), (.4464,95)}, S5
= {(.54,85),(.648,100)}, and S5 = {(.63,105)}. Combining, we get S* =
{(.36,65), (.432, 80), (.54, 85), (.648,100)}.

The best design has a reliability of .648 and a cost of 100. Tracing back
through the S*’s, we determine that m; = 1, mg = 2, and m3 = 2. O

As in the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S%s. There is no need to retain any tuple (f,z) in S* with z value
greater that ¢ — 3, ;. ¢; as such a tuple will not leave adequate funds
to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,z) in S°.
If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f,z) can be eliminated from S°.

EXERCISE

1. (a) Present an algorithm similar to DKnap to solve the recurrence
(5.19).

(b) What are the time and space requirements of your algorithm?

(c) Test the correctness of your algorithm using suitable test data.

5.9 THE TRAVELING SALESPERSON
PROBLEM

We have seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2" different subsets of n objects (n! > 2"). Let G = (V, E)
be a directed graph with edge costs ¢;;. The variable c;; is defined such that
cij > 0 for all i and j and ¢;; = oo if (i,5) € E. Let |V| = n and assume
n > 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimum cost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

5.9. THE TRAVELING SALESPERSON PROBLEM 299

boxes located at n different sites. An n + 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (4, j) is assigned a cost
equal to the distance from site i to site j. The route taken by the postal van
is a tour, and we are interested in finding a tour of minimum length.

As a second example, suppose we wish to use a robot arm to tighten
the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

Our final example is from a production environment in which several com-
modities are manufactured on the same set of machines. The manufacture
proceeds in cycles. In each production cycle, n different commodities are
produced. When the machines are changed from production of commodity
i to commodity 7, a change over cost ¢;; is incurred. It is desired to find a
sequence in which to manufacture these commodities. This sequence should
minimize the sum of change over costs (the remaining production costs are
sequence independent). Since the manufacture proceeds cyclically, it is nec-
essary to include the cost of starting the next cycle. This is just the change
over cost from the last to the first commodity. Hence, this problem can be
regarded as a traveling salesperson problem on an n vertex graph with edge
cost ¢;;'s being the changeover cost from commodity 4 to commodity j.

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k € V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V — {1, k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k£ to 1 path going through all vertices
in V. — {1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex 4, going through all vertices in
S, and terminating at vertex 1. The function g(1,V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

Generalizing (5.20), we obtain (for i € S)
g(i, §) = min{ci; +g(j, S — {71} (5.21)
jES

Equation 5.20 can be solved for g(1,V — {1}) if we know g(k,V —{1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

300 CHAPTER 5. DYNAMIC PROGRAMMING

g(i, @) = ¢;1, 1 <1 < n. Hence, we can use (5.21) to obtain g(i,S) for all S
of size 1. Then we can obtain g(7, S) for S with |S| = 2, and so on. When
|S] < n — 1, the values of < and S for which g(¢, S) is needed are such that
1#1,1¢ 85 andigsS.

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

10 15 20
10
13 0 12

0w N wnm O
o
e

(b)

Figure 5.21 Directed graph and edge length matrix ¢

Thus ¢g(2,¢) = c21 = 5,9(3,¢) = ¢31 = 6, and g(4,¢) = c41 = 8. Using
(5.21), we obtain

9(2,{3})) = c+9B,¢) = 15 g(2,{4}) = 18
9(37 {2}) = 18 9(37 {4}) = 20
9(47 {2}) = 13 9(47 {3}) = 15
Next, we compute ¢(7,S) with [S|=2,i# 1,1 ¢ Sand i ¢ S.
9(2,{3,4}) = min {co3 +9(3,{4}),co0a + g(4,{3})} = 25
9(37 {274}) = min {032 + 9(27 {4})7 €34 + 9(47 {2})} = 25
9(4,{2,3}) = min {ca2 +9(2,{3}),ca3 + 9(3,{2})} = 23
Finally, from (5.20) we obtain
9(1,{2,3,4}) = min{ci2 + 9(2,{3,4}),c13 + 9(3,{2,4}),c14 + g(4,{2,3})}

min {35, 40, 43}
35

5.10. FLOW SHOP SCHEDULING 301

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(¢,.S) the value of
J that minimizes the right-hand side of (5.21). Let J(4,S) be this value.
Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from ¢(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2,4). The remaining tour is for g(4, {3}). So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. O

Let N be the number of g(4, S)’s that have to be computed before (5.20)
can be used to compute g(1,V — {1}). For each value of |S| there are n — 1
choices for i. The number of distinct sets S of size k not including 1 and ¢

n—2
is < k) Hence

N = g(n - 1) (nlf) = (n—1)2"?

k=0

An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require ©(n?2") time as the computation of g(i, S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumerating all
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

EXERCISE

1. (a) Obtain a data representation for the values g(i, S) of the traveling
salesperson problem. Your representation should allow for easy
access to the value of g(i, S), given 7 and S. (i) How much space
does your representation need for an n vertex graph? (ii) How
much time is needed to retrieve or update the value of g(i, S)?

(b) Using the representation of (a), develop an algorithm correspond-
ing to the dynamic programming solution of the traveling sales-
person problem.

(c) Test the correctness of your algorithm using suitable test data.

5.10 FLOW SHOP SCHEDULING

Often the processing of a job requires the performance of several distinct
tasks. Computer programs run in a multiprogramming environment are in-
put and then executed. Following the execution, the job is queued for output

302 CHAPTER 5. DYNAMIC PROGRAMMING

and the output eventually printed. In a general flow shop we may have n
jobs each requiring m tasks T3, T5;,..., Ty, 1 < 1 < n, to be performed.
Task T}; is to be performed on processor P;, 1 < j <m . The time required
to complete task Tj; is tj;. A schedule for the n jobs is an assignment of tasks
to time intervals on the processors. Task T}; must be assigned to processor
P;. No processor may have more than one task assigned to it in any time
interval. Additionally, for any job i the processing of task Tj;, j > 1, cannot
be started until task T;_1; has been completed.

Example 5.27 Two jobs have to be scheduled on three processors. The
task times are given by the matrix J

2 0
J = 3 3
5 2
Two possible schedules for the jobs are shown in Figure 5.22. O
time 0 2 5 6 10 12
P, T, | 1
|
Py Ty T Ty !
P T3 T
(a)
time 0 2 3 5 6 11
T l
Ty Ty
T T3
(b)

Figure 5.22 Two possible schedules for Example 5.27

5.10. FLOW SHOP SCHEDULING 303

A nonpreemptive schedule is a schedule in which the processing of a task
on any processor is not terminated until the task is complete. A schedule
for which this need not be true is called preemptive. The schedule of Fig-
ure 5.22(a) is a preemptive schedule. Figure 5.22(b) shows a nonpreemptive
schedule. The finish time f;(S) of job i is the time at which all tasks of job
i have been completed in schedule S. In Figure 5.22(a), f1(S) = 10 and
f2(S) = 12. In Figure 5.22(b), f1(S) = 11 and f2(S) = 5. The finish time
F(S) of a schedule S is given by

F(S) = max {f;(S)} (5.22)

The mean flow time MFT(S) is defined to be

MFT(S):% S A(S) (5.23)

1<i<n

An optimal finish time (OFT) schedule for a given set of jobs is a non-
preemptive schedule S for which F(S) is minimum over all nonpreemptive
schedules S. A preemptive optimal finish time (POFT) schedule, optimal
mean finish time schedule (OMFT), and preemptive optimal mean finish
(POMFT) schedule are defined in the obvious way.

Although the general problem of obtaining OFT and POFT schedules for
m > 2 and of obtaining OMFT schedules is computationally difficult (see
Chapter 11), dynamic programming leads to an efficient algorithm to obtain
OFT schedules for the case m = 2. In this section we consider this special
case.

For convenience, we shall use a; to represent ty;, and b; to represent
t2;. For the two-processor case, one can readily verify that nothing is to
be gained by using different processing orders on the two processors (this is
not true for m > 2). Hence, a schedule is completely specified by providing
a permutation of the jobs. Jobs will be executed on each processor in this
order. Each task will be started at the earliest possible time. The schedule
of Figure 5.23 is completely specified by the permutation (5, 1, 3, 2, 4).
We make the simplifying assumption that a; # 0, 1 <4 < n. Note that if
jobs with a; = 0 are allowed, then an optimal schedule can be constructed
by first finding an optimal permutation for all jobs with ¢; # 0 and then
adding all jobs with a; =0 (in any order) in front of this permutation (see
the exercises).

It is easy to see that an optimal permutation (schedule) has the property
that given the first job in the permutation, the remaining permutation is
optimal with respect to the state the two processors are in following the
completion of the first job. Let a1, 09, ..., 0, be a permutation prefix defining
a schedule for jobs T1,T5, ..., T}. For this schedule let f; and f2 be the times
at which the processing of jobs TY,T5,...,T} is completed on processors P;

304 CHAPTER 5. DYNAMIC PROGRAMMING

Figure 5.23 A schedule

and P, respectively. Let t = fo — f1. The state of the processors following
the sequence of decisions 11,15, ..., T} is completely characterized by ¢. Let
g(S,t) be the length of an optimal schedule for the subset of jobs S under
the assumption that processor 2 is not available until time ¢. The length of
an optimal schedule for the job set {1,2,...,n} is g({1,2,...,n},0).

Since the principle of optimality holds, we obtain

g({1727 Tt 7n}70) = 1r§nzl§nn{al + g({1727 e,n} - {Z}abl)} (5-24)

Equation 5.24 generalizes to (5.25) for arbitrary S and ¢. This general-
ization requires that g(¢,t) = max{t,0} and that a; # 0, 1 <i < n.

9(5,4) = min {a; +g(S — {i}, b; + max{t - a;,0})} (5.25)

The term max {f— a;,0} comes into (5.25) as task Th; cannot start until
max{a;,t} (P, is not available until time ¢). Hence fo— fi1 = b;+max{a;,t}—
a; = b; + max{t — a;,0}. We can solve for g(S,t) using an approach similar
to that used to solve (5.21). However, it turns out that (5.25) can be solved
algebraically and a very simple rule to generate an optimal schedule obtained.

Consider any schedule R for a subset of jobs S. Assume that Ps is not
available until time ¢. Let ¢ and j be the first two jobs in this schedule.
Then, from (5.25) we obtain

a; + g(S — {i},b; + max {t —a;,0})
a; +a; +9(S—{i,7},b; + max {b; + max {t—a;,0} —a;,0})
(5.26)

=N
nn
s
1]l

5.10. FLOW SHOP SCHEDULING 305

Equation 5.26 can be simplified using the following result:

ty; = bj—f-max {b,-—f-max {t—a,—,O}—a~,0}
= bj+b —a; +max {max {t—ai,Oi,aj — b} (5.27)
= bj+b; —a; + max {t— a;,a; — b;,0} ’
tij = bj+bi—a;—a;+max {t,a; +a; —b;,a;}

If jobs i and j are interchanged in R, then the finish time ¢'(S,¢) is

g'(S,t) = a;+aj +g(S - {iaj}7tji)

where tj; = bj +b; —aj — a; + max {t,a,j +a; — bj,aj}

Comparing ¢(S,t) and ¢'(S,t), we see that if (5.28) below holds, then
9(8,t) < ¢'(S,1).

max {t,a; +a; — b;,a;} < max {t,a; +a; — bj,a;} (5.28)
In order for (5.28) to hold for all values of ¢, we need

max {a; +a; — b;,a;} < max {a; +a; —b;,a;}

or a; +aj+ max {—b;,—a;} <a; +a; +max {—bj,—a;}

or min {b;,a;} > min {b;,a;} (5.29)

From (5.29) we can conclude that there exists an optimal schedule in
which for every pair (4,7) of adjacent jobs, min{b;,a;} > min{b;,q;}. Ex-
ercise 4 shows that all schedules with this property have the same length.
Hence, it suffices to generate any schedule for which (5.29) holds for every
pair of adjacent jobs. We can obtain a schedule with this property by making
the following observations from (5.29). If min{ay,as,...,a,,b1,b2,...,b,}
is a;, then job i should be the first job in an optimal schedule. If min{a;, ag,

vy Gpy b1, ba, o by} is by, then job j should be the last job in an optimal
schedule. This enables us to make a decision as to the positioning of one
of the n jobs. Equation 5.29 can now be used on the remaining n — 1 jobs
to correctly position another job, and so on. The scheduling rule resulting
from (5.29) is therefore:

306 CHAPTER 5. DYNAMIC PROGRAMMING

1. Sort all the a;’s and b;’s into nondecreasing order.

2. Consider this sequence in this order. If the next number in the sequence
is a; and job j hasn’t yet been scheduled, schedule job j at the leftmost
available spot. If the next number is b; and job j hasn’t yet been
scheduled, schedule job j at the rightmost available spot. If j has
already been scheduled, go to the next number in the sequence.

Note that the above rule also correctly positions jobs with a; = 0. Hence,
these jobs need not be considered separately.

Example 5.28 Let n =4, (a1,a2,a3,a4) = (3, 4, 8, 10), and (b1, bo, b3, bg) =
(6, 2, 9, 15). The sorted sequence of a’s and b’s is (ba, a1, a9, b1, a3, bs, aq, by)
= (2, 3,4, 6, 8,9, 10, 15). Let 01,09,03, and o4 be the optimal schedule.
Since the smallest number is by, we set 04 = 2. The next number is a; and
we set 07 = aj. The next smallest number is a;. Job 2 has already been
scheduled. The next number is b;. Job 1 has already been scheduled. The
next is as and we set g3. This leaves o3 free and job 4 unscheduled. Thus,
o3 = 4. g

The scheduling rule above can be implemented to run in time O(nlogn)
(see exercises). Solving (5.24) and (5.25) directly for g(1,2,...,n,0) for the
optimal schedule will take 2(2") time as there are these many different S’s
for which ¢(S,t) will be computed.

EXERCISES

1. N jobs are to be processed. Two machines A and B are available. If
job % is processed on machine A, then a; units of processing time are
needed. If it is processed on machine B, then b; units of processing time
are needed. Because of the peculiarities of the jobs and the machines,
it is quite possible that a; > b; for some ¢ while a; < b; for some
j, 7 # 1. Obtain a dynamic programming formulation to determine
the minimum time needed to process all the jobs. Note that jobs cannot
be split between machines. Indicate how you would go about solving
the recurrence relation obtained. Do this on an example of your choice.
Also indicate how you would determine an optimal assignment of jobs
to machines.

2. N jobs have to be scheduled for processing on one machine. Associated
with job 7 is a 3-tuple (p4, i, d;). The variable ¢; is the processing time
needed to complete job i. If job 7 is completed by its deadline d;, then
a profit p; is earned. If not, then nothing is earned. From Section 4.4
we know that J is a subset of jobs that can all be completed by their

5.11. REFERENCES AND READINGS 307

deadlines iff the jobs in J can be processed in nondecreasing order of
deadlines without violating any deadline. Assumed; < d;y1,1 <i < n.
Let f;(z) be the maximum profit that can be earned from a subset J
of jobs when n = 4. Here f,(d,) is the value of an optimal selection of
jobs J. Let fo(x) = 0. Show that for = < ¢,

filz) = max {f;_1(z), fi-1(z —t;) +pi}

3. Let I be any instance of the two-processor flow shop problem.

(a)

(b)
()

Show that the length of every POFT schedule for [is the same
as the length of every OFT schedule for 1. Hence, the algorithm
of Section 5.10 also generates a POFT schedule.

Show that there exists an OFT schedule for I in which jobs are
processed in the same order on both processors.

Show that there exists an OFT schedule for I defined by some
permutation o of the jobs (see part (b)) such that all jobs with
a; = 0 are at the front of this permutation. Further, show that the
order in which these jobs appear at the front of the permutation
is not important.

4. Let I be any instance of the two-processor flow shop problem. Let
o = g109 -+ 0, be a permutation defining an OFT schedule for 1.

(a)

(b)
(¢)

Use (5.29) to argue that there exists an OFT o such that
min {b;,a;) > min {b;,a;} for every i and j such that i = o}
and j = o1 (that is, 2 and j are adjacent).

For a o satisfying the conditions of part (a), show that min{b;,a;} >
min{b;,a;} for every ¢ and j such that i = o4 and j = o,k <.

Show that all schedules corresponding to o’s satisfying the con-
ditions of part (a) have the same finish time. (Hint: use part (b)
to transform one of two different schedules satisfying (a) into the
other without increasing the finish time.)

5.11 REFERENCES AND READINGS

Two classic references on dynamic programming are:

Introduction to Dynamic Programming, by G. Nemhauser, John Wiley and
Sons, 1966.

Applied Dynamic Programming by R. E. Bellman and S. E. Dreyfus, Prince-
ton University Press, 1962.

308 CHAPTER 5. DYNAMIC PROGRAMMING

See also Dynamic Programming, by E. V. Denardo, Prentice-Hall, 1982.

The dynamic programming formulation for the shortest-paths problem
was given by R. Floyd.

Bellman and Ford’s algorithm for the single-source shortest-path problem
(with general edge weights) can be found in Dynamic Programming by R. E.
Bellman, Princeton University Press, 1957.

The construction of optimal binary search trees using dynamic program-
ming is described in The Art of Programming: Sorting and Searching, Vol.
3, by D. E. Knuth, Addison Wesley, 1973.

The string editing algorithm discussed in this chapter is in “The string-
to-string correction problem,” by R. A. Wagner and M. J. Fischer, Journal
of the ACM 21, no. 1 (1974): 168-173.

The set generation approach to solving the 0/1 knapsack problem was
formulated by G. Nemhauser and Z. Ullman, and E. Horowitz and S. Sahni.

Exercise 6 in Section 5.7 is due to E. Horowitz and S. Sahni.

The dynamic programming formulation for the traveling salesperson prob-
lem was given by M. Held and R. Karp.

The dynamic programming solution to the matrix product chain problem
(Exercises 1 and 2 in Additional Exercises) is due to S. Godbole.

5.12 ADDITIONAL EXERCISES

1. [Matrix product chains | Let A, B, and C be three matrices such that
C = A x B. Let the dimensions of 4, B, and C respectively be m x
n,n x p, and m x p. From the definition of matrix multiplication,

n

k=1

(a) Write an algorithm to compute C directly using the above for-
mula. Show that the number of multiplications needed by your
algorithm is mnp.

(b) Let My x My x -+ x M, be a chain of matrix products. This
chain may be evaluated in several different ways. Two possibilities
are (((M1 X MQ) X Mg) X M4) X) X Mr and (M1 X (MQ X
(--- x (My_1 x M;)--+). The cost of any computation of M; x

5.12. ADDITIONAL EXERCISES 309

(e)

My x --+ x M, is the number of multiplications used. Consider
the case r = 4 and matrices M; through M, with dimensions
100 x 1,1 x 100,100 x 1, and 1x 100 respectively. What is the
cost of each of the five ways to compute M; x My x Mz x My
? Show that the optimal way has a cost of 10,200 and the worst
way has a cost of 1,020,000. Assumne that all matrix products are
computed using the algorithm of part (a).

Let M;; denote the matrix product M; X M; 1 x -+ x M;. Thus,
My=M,1<i<r. §=DP,P,...,P-_1is a product sequence
computing Mj, iff each product Py is of the form M;; x M, 4,
where M;; and Mj,;, have been computed either by an ear-
lier product P, < k, or represent an input matrix M. Note
that M;; x M;,1, = M;,. Also note that every valid com-
putation of Mj, using only pairwise matrix products at each
step is defined by a product sequence. Two product sequences
Sl = Pl, PQ, Caey PrAl and SQ = U1, UQ, [Urvl are dzﬁ”erent if
P; # U; for some i. Show that the number of different product
sequences if (r — 1)!

Although there are (r — 1)! different product sequences, many of
these are essentially the same in the sense that the same pairs
of matrices are multiplied. For example, the sequences S; =
(M1 X MQ), (M3 X M4), (M12 X M34) and SQ = (M3 X M4), (M1 X
Ms), (Mo x Msy) are different under the definition of part (c).
However, the same pairs of matrices are multiplied in both 57 and
S2. Show that if we consider only those product sequences that
differ from each other in at least one matrix product, then the
number of different sequences is equal to the number of different
binary trees having exactly » — 1 nodes.

Show that the number of different binary trees with n nodes is

1 2n
n+1l\n

2. [Matrix product chains | In the preceding exercise it was established
that the number of different ways to evaluate a matrix product chain
is very large even when r is relatively small (say 10 or 20). In this
exercise we shall develop an O(r?) algorithm to find an optimal product
sequence (that is, one of minimum cost). Let D(7),0 < 7 < r, represent
the dimensions of the matrices; that is, M; has D(i — 1) rows and D(3)
columns. Let C(4,j) be the cost of computing M;; using an optimal
product sequence for M;;. Observe that C(i,i) = 0,1 < i < r, and
that C(i,i + 1) = D(i — 1)D(&)D(i + 1),1 < i < r.

310

CHAPTER 5. DYNAMIC PROGRAMMING

(a) Obtain a recurrence relation for C(4,7),5 > 4. This recurrence
relation will be similar to Equation 5.14.

(b) Write an algorithm to solve the recurrence relation of part (a) for
C(1,7). Your algorithm should be of complexity O(r?).

(c) What changes are needed in the algorithm of part (b) to deter-
mine an optimal product sequence. Write an algorithm to deter-
mine such a sequence. Show that the overall complexity of your
algorithm remains O(r3).

(d) Work through your algorithm (by hand) for the product chain
of part (b) of the previous exercise. What are the values of
C(i,7),1 <i<randj>i? What is an optimal way to compute
Mq4?

3. There are two warehouses W7 and Wy from which supplies are to be

shipped to destinations D;,1 < i < n. Let d; be the demand at D,
and let r; be the inventory at W;. Assume ri +ry = Y d;. Let ¢;;(z45)
be the cost of shipping z;; units from warehouse W; to destination D;.
The warehouse problem is to find nonnegative integers z;;,1 <1 <2
and 1 < j <n, such that z1;+x9; = dj, 1 <j <n, and 3, ; ¢55(xy5) is
minimized. Let g;(z) be the cost incurred when W7 has an inventory
of x and supplies are sent to D;,1 < j <1, in an optimal manner (the
inventory at Wa is 3 <<, dj — z). The cost of an optimal solution to
the warehouse problem is g (7).

(a) Use the optimality principle to obtain a recurrence relation for
9i().

(b) Write an algorithm to solve this recurrence and obtain an optimal
sequence of values for z;;,1 <7 <2,1 <j <n.

. Given a warehouse with a storage capacity of B units and an initial

stock of v units, let y; be the quantity sold in each month, i,1 < i < n.
Let P; be the per-unit selling price in month i, and z; the quantity
purchased in month i. The buying price is ¢; per unit. At the end of
each month, the stock in hand must be no more than B. That is,

vt Y (z)<B, 1<j<n
1<i<y

The amount sold in each month cannot be more than the stock at
the end of the previous month (new stock arrives only at the end of a
month). That is,

Yi <o+ i—Y), 1<i<n
1§]<z

5.12. ADDITIONAL EXERCISES 311

Also, we require x; and y; to be nonnegative integers. The total profit
derived is

n
Z PiY; — ¢T;)

The problem is to determine z; and y; such that P, is maximized.
Let f;(v;) represent the maximum profit that can be earned in months
i+ 1,7+ 2,...,n, starting with v; units of stock at the end of month
i. Then fy(v) is the maximum value of P,.

(a) Obtain the dynamic programming recurrence for f;(v;) in terms
of fir1(vi).

(b) What is fn(v;)?

(¢) Solve part (a) analytically to obtain the formula

filvi) = aiz; + by,

for some constants a; and b;.
(d) Show that an optimal P, is obtained by using the following strat-
egy:
Lop>¢
A. If b1 > ¢, then y; = v; and x; = B.
B. If b;y1 < ¢, then y; = v; and z; = 0.
. ¢; > p;
A. If b1 > ¢, then y; =0 and z;, = B — v;.
B. If b1 < p;, then y; = v; and z; = 0.
C. Ifp, <by1 <, then y; =0 and z; = 0.
(e) Use the p; and ¢; in Figure 5.24 and obtain an optimal decision
sequence from part (d).

i 1 2 3 45 6 7 8
pi 8 8 2 3 4 3 2 5
¢ 3 6 7 1 4 5 1 3

Figure 5.24 p; and ¢; for Exercise 4

Assume the warehouse capacity to be 100 and the initial stock to
be 60.

312

CHAPTER 5. DYNAMIC PROGRAMMING

(f) From part (d) conclude that an optimal set of values for z; and y;
will always lead to the following policy: Do no buying or selling
for the first £ months (k may be zero) and then oscillate between
a full and an empty warehouse for the remaining months.

5. Assume that n programs are to be stored on two tapes. Let [; be

the length of tape needed to store the ith program. Assume that
S, < L, where L is the length of each tape. A program can be
stored on either of the two tapes. If S; is the set of programs on tape
1, then the worst-case access time for a program is proportional to
max{};cq, li; 2igs, li}. An optimal assignment of programs to tapes
minimizes the worst-case access times. Formulate a dynamic program-
ming approach to determine the worst-case access time of an optimal
assignment. Write an algorithm to determine this time. What is the
complexity of your algorithm?

. Redo Exercise 5 making the assumption that programs will be stored

on tape 2 using a different tape density than that used on tape 1. If
l; is the tape length needed by program ¢ when stored on tape 1, then
al; is the tape length needed on tape 2.

Let L be an array of n distinct integers. Give an efficient algorithm to
find the length of a longest increasing subsequence of entries in L. For
example, if the entries are 11,17,5,8,6,4,7,12,3, a longest increasing
subsequence is 5,6,7,12. What is the run time of your algorithm?

Chapter 6

BASIC TRAVERSAL AND
SEARCH TECHNIQUES

The techniques to be discussed in this chapter are divided into two categories.
The first category includes techniques applicable only to binary trees. As
described, these techniques involve examining every node in the given data
object instance. Hence, these techniques are referred to as traversal methods.
The second category includes techniques applicable to graphs (and hence also
to trees and binary trees). These may not examine all vertices and so are
referred to only as search methods. During a traversal or search the fields
of a node may be used several times. It may be necessary to distinguish
certain uses of the fields of a node. During these uses, the node is said to be
visited. Visiting a node may involve printing out its data field, evaluating
the operation specified by the node in the case of a binary tree representing
an expression, setting a mark bit to one or zero, and so on. Since we are
describing traversals and searches of trees and graphs independently of their
application, we use the term “visited” rather than the term for the specific
function performed on the node at this time.

6.1 TECHNIQUES FOR BINARY TREES

The solution to many problems involves the manipulation of binary trees,
trees, or graphs. Often this manipulation requires us to determine a vertex
(node) or a subset of vertices in the given data object that satisfies a given
property. For example, we may wish to find all vertices in a binary tree with
a data value less than x or we may wish to find all vertices in a given graph
G that can be reached from another given vertex v. The determination
of this subset of vertices satisfying a given property can be carried out by
systematically examining the vertices of the given data object. This often
takes the form of a search in the data object. When the search necessarily

313

314 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

treenode = record

{

Type data; // Type is the data type of data.
treenode xlchild; treenode xrchild;

-

1 Algorithm InOrder(t)

2 // tis a binary tree. Each node of ¢ has
3 // three fields: lchild, data, and rchild.
4

5 if t # 0 then

6

7 InOrder(t — Ichild);

8 Visit(t);

9 InOrder(t — rchild);

10

11}

Algorithm 6.1 Recursive formulation of inorder traversal

involves the examination of every vertex in the object being searched, it is
called a traversal.

We have already seen an example of a problem whose solution required a
search of a binary tree. In Section 5.5 we presented an algorithm to search
a binary search tree for an identifier z. This algorithm is not a traversal
algorithm as it does not examine every vertex in the search tree. Sometimes,
we may wish to traverse a binary search tree (e.g., when we wish to list out
all the identifiers in the tree). Algorithms for this are studied in this chapter.

There are many operations that we want to perform on binary trees. One
that arises frequently is traversing a tree, or visiting each node in the tree
exactly once. A traversal produces a linear order for the information in a
tree. This linear order may be familiar and useful. When traversing a binary
tree, we want to treat each node and its subtrees in the same fashion. If
we let L, D, and R stand for moving left, printing the data, and moving
right when at a node, then there are six possible combinations of traversal:
LDR, LRD, DLR, DRL, RDL, and RLD. If we adopt the convention that
we traverse left before right, then only three traversals remain: LDR, LRD,
and DLR. To these we assign the names inorder, postorder, and preorder.
Recursive functions for these three traversals are given in Algorithms 6.1
and 6.2.

6.1. TECHNIQUES FOR BINARY TREES 315

1 Algorithm PreOrder(t)

2 / t is a binary tree. Each node of ¢ has
3 // three fields: lchild, data, and rchild.
4

5 if t # 0 then

6

7 Visit(t);

8 PreOrder(t — Ichild);

9 PreOrder(t — rchild);

10 }

11 }

1 Algorithm PostOrder(t)

2 // tis a binary tree. Each node of ¢ has
3 // three fields: Ichild, data, and rchild.
4

5 if ¢ #0 then

6

7 PostOrder(t — [child);

8 PostOrder(t — rchild);

9 Visit(t);

10

11 }

Algorithm 6.2 Preorder and postorder traversals

Figure 6.1 shows a binary tree and Figure 6.2 traces how InOrder works
on it. This trace assumes that visiting a node requires only the printing
of its data field. The output resulting from this traversal is FDHGIBEAC.
With Visit(t) replaced by a printing statement, the application of Algorithm
6.2 to the binary tree of Figure 6.1 results in the outputs ABDFGHIEC and
FHIGDEBCA, respectively.

Theorem 6.1 Let T'(n) and S(n) respectively represent the time and space
needed by any one of the traversal algorithms when the input tree ¢ has
n > 0 nodes. If the time and space needed to visit a node are ©(1), then
T(n) = ©(n) and S(n) = O(n).

Proof: Each traversal can be regarded as a walk through the binary tree.
During this walk, each node is reached three times: once from its parent (or
as the start node in case the node is the root), once on returning from its left

316 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(&)
Q C
. ®
& G
® O

Figure 6.1 A binary tree

call of value

InOrder in root action

main A
1 B
2 D
3 F
4 — print (‘F’)
4 — print (‘D’)
3 G
4 H
5 — print (‘H’)
5 print (‘G’)
4
5 print (‘I’)
5 — print (‘B
2 E
3 — print (‘E’)
3 — print (‘A’)
1 C
2 — print (‘C’)
9 _

Figure 6.2 Inorder traversal of the binary tree of Figure 6.1

6.1. TECHNIQUES FOR BINARY TREES 317

subtree, and once on returning from its right subtree. In each of these three
times a constant amount of work is done. So, the total time taken by the
traversal is ©(n). The only additional space needed is that for the recursion
stack. If ¢ has depth d, then this space is ©(d). For an n-node binary tree,
d <mn and so S(n) = O(n). O

EXERCISES

Unless otherwise stated, all binary trees are represented using nodes with
three fields: lchild, data, and rchild.

1. Give an algorithm to count the number of leaf nodes in a binary tree
t. What is its computing time?

2. Write an algorithm SwapTree(t) that takes a binary tree and swaps the
left and right children of every node. An example is given in Figure 6.3.
Use one of the three traversal methods discussed in Section 6.1.

o

SwapTree (t)

Figure 6.3 Swapping left and right children

3. Use one of the three traversal methods discussed in Section 6.1 to
obtain an algorithm Equiv(¢,u) that determines whether the binary
trees t and u are equivalent. Two binary trees ¢ and u are equivalent
if and only if they are structurally equivalent and if the data in the
corresponding nodes of ¢ and u are the same.

4. Show the following:

(a) Inorder and postorder sequences of a binary tree uniquely define
the binary tree.

(b) Inorder and preorder sequences of a binary tree uniquely define
the binary tree.

318 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

10

11.

(c) Preorder and postorder sequences of a binary tree do not uniquely
define the binary tree.

In the proof of Theorem 6.1, show, using induction, that T'(n) < con+
¢1 (where ¢, is a constant > 2¢;).

Write a function to construct the binary tree with a given inorder
sequence I and a given postorder sequence P. What is the complexity
of your function?

Do Exercise 6 for a given inorder and preorder sequence.

Write a nonrecursive algorithm for the preorder traversal of a binary
tree t. Your algorithm may use a stack. What are the time and space
requirements of your algorithm?

Do Exercise 8 for postorder as well as inorder traversals.

[Triple-order traversal] A triple-order traversal of a binary tree t is
defined recursively by Algorithm 6.3. A very simple nonrecursive algo-
rithm for such a traversal is given in Algorithm 6.4. In this algorithm
P, ¢, and r point respectively to the present node, previously visited
node, and next node to visit. The algorithm assumes that ¢ # 0 and
that an empty subtree of node p is represented by a link to p rather
than a zero. Prove that Algorithm 6.4 is correct. (Hint: Three links,
lchild, rchild, and one from its parent, are associated with each node
s. Each time s is visited, the links are rotated counterclockwise, and
so after three visits they are restored to the original configuration and
the algorithm backs up the tree.)

[Level-order traversal] In a level-order traversal of a binary tree ¢ all
nodes on level ¢ are visited before any node on level ¢ + 1 is visited.
Within a level, nodes are visited left to right. In level-order the nodes
of the tree of Figure 6.1 are visited in the order ABCDEFGHI. Write
an algorithm Level(t) to traverse the binary tree ¢ in level order. How
much time and space are needed by your algorithm?

6.2 TECHNIQUES FOR GRAPHS

A fundamental problem concerning graphs is the reachability problem. In
its simplest form it requires us to determine whether there exists a path in
the given graph G = (V, E) such that this path starts at vertex v and ends
at vertex u. A more general form is to determine for a given starting vertex
v € V all vertices u such that there is a path from v to w. This latter problem
can be solved by starting at vertex v and systematically searching the graph
G for vertices that can be reached from v. We describe two search methods
for this.

6.2. TECHNIQUES FOR GRAPHS 319

Algorithm Triple(?)
if ¢ #0 then

Visit(t);
Triple(t — lchild);
Visit(t);
Triple(t — rchild);
Visit(t);

0

1}

== O 00O Ut W =

Algorithm 6.3 Triple-order traversal for Exercise 10

1 Algorithm Trip(¢);

2 // It is assumed that lchild and rchild fields are > 0.

3

5 while (p # —1) do

6

7 Visit(p);

8 r:= (p — lchild); (p — lchild) := (p — rchild);
9 (p — rchild) :==q; q:=p; p =13

10

11 }

Algorithm 6.4 A nonrecursive algorithm for the triple-order traversal for
Exercise 10

320 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

6.2.1 Breadth First Search and Traversal

In breadth first search we start at a vertex v and mark it as having been
reached (visited). The vertex v is at this time said to be unexplored. A
vertex is said to have been explored by an algorithm when the algorithm has
visited all vertices adjacent from it. All unvisited vertices adjacent from v
are visited next. These are new unexplored vertices. Vertex v has now been
explored. The newly visited vertices haven’t been explored and are put onto
the end of a list of unexplored vertices. The first vertex on this list is the next
to be explored. Exploration continues until no unexplored vertex is left. The
list of unexplored vertices operates as a queue and can be represented using
any of the standard queue representations (see Section 2.1). BFS (Algorithm
6.5) describes, in pseudocode, the details of the search. It makes use of the
queue representation given in Section 2.1 (Algorithm 2.3).

Example 6.1 Let us try out the algorithm on the undirected graph of Fig-
ure 6.4(a). If the graph is represented by its adjacency lists as in Figure
6.4(c), then the vertices get visited in the order 1, 2, 3, 4, 5, 6, 7, 8. A
breadth first search of the directed graph of Figure 6.4(b) starting at vertex
1 results in only the vertices 1, 2, and 3 being visited. Vertex 4 cannot be
reached from 1. O

Theorem 6.2 Algorithm BFS visits all vertices reachable from v.

Proof: Let G = (V, E) be a graph (directed or undirected) and let v € V.
We prove the theorem by induction on the length of the shortest path from
v to every reachable vertex w € V. The length (i.e., number of edges) of the
shortest path from v to a reachable vertex w is denoted by d(v, w).

Basis Step. Clearly, all vertices w with d(v,w) < 1 get visited.

Induction Hypothesis. Assume that all vertices w with d{v,w) < r get
visited.

Induction Step. We now show that all vertices w with d(v, w) = r+1 also
get visited.

Let w be a vertex in V such that d(v,w) = r + 1. Let u be a vertex that
immediately precedes w on a shortest v to w path. Then d(v,u) = r and so
u gets visited by BFS. We can assume u # v and r > 1. Hence, immediately
before u gets visited, it is placed on the queue ¢ of unexplored vertices. The
algorithm doesn’t terminate until ¢ becomes empty. Hence, u is removed
from ¢ at some time and all unvisited vertices adjacent from it get visited in
the for loop of line 11 of Algorithm 6.5. Hence, w gets visited. O

6.2. TECHNIQUES FOR GRAPHS 321

1 Algorithm BFS(v)

2 // A breadth first search of G is carried out beginning

3 // at vertex v. For any node ¢, visited[i] = 1 if 7 has

4 // already been visited. The graph G and array visited| |
5 // are global; visited|] is initialized to zero.

6

7 u:= w3 // q is a queue of unexplored vertices.

8 visited[v] := 13

9 repeat

for all vertices w adjacent from u do
if (visited|w] = 0) then

Add w to ¢; // w is unexplored.
visited[w] := 1;

}

if ¢ is empty then return; // No unexplored vertex.
Delete u from ¢q; // Get first unexplored vertex.
} until(false);

[I N e e el et
NP OO Uk W~ O
At

Algorithm 6.5 Pseudocode for breadth first search

Theorem 6.3 Let T(n,e) and S(n, e) be the maximum time and maximum
additional space taken by algorithm BFS on any graph G with n vertices
and e edges. T(n,e) = O(n + ¢e) and S(n,e) = O(n) if G is represented
by its adjacency lists. If G is represented by its adjacency matrix, then
T(n,e) = O(n?) and S(n,e) = O(n).

Proof: Vertices get added to the queue only in line 15 of Algorithm 6.5. A
vertex w can get onto the queue only if visited[w] = 0. Immediately following
w’s addition to the queue, visited[w] is set to 1 (line 16). Hence, each vertex
can get onto the queue at most once. Vertex v never gets onto the queue and
so at most n—1 additions are made. The queue space needed is at most n—1.
The remaining variables take O(1) space. Hence, S(n,e) = O(n). If G is an
n-vertex graph with v connected to the remaining n—1 vertices, then all n—1
vertices adjacent from v are on the queue at the same time. Furthermore,
©(n) space is needed for the array visited. Hence S(n,e) = ©(n). This
result is independent of whether adjacency matrices or lists are used.

322 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(b) Directed graph
(a) Undirected graph G
head nodes
m[2] F{3]0]
@ T 4T {50
B AT 6] 3 A7
W {2 5] 0]
o [{2 1 H8]0]
6 — 3] 3]0
(71 — 3 8]0
[8] —_ = 5 6 70
(c) Adjacency list for G

Figure 6.4 Example graphs and adjacency lists

6.2. TECHNIQUES FOR GRAPHS 323

Algorithm BFT(G,n)
// Breadth first traversal of G

for i := 1to n do // Mark all vertices unvisited.
visited[i] := 03

for i:=1tondo
if (visited[i] = 0) then BFS(:);

RIS W =

Algorithm 6.6 Breadth first graph traversal

If adjacency lists are used, then all vertices adjacent from « can be de-
termined in time d(u), where d(u) is the degree of u if G is undirected and
d(u) is the out-degree of u if G is directed. Hence, when vertex u is being
explored, the time for the for loop of line 11 of Algorithm 6.5 is ©(d(u)).
Since each vertex in G can be explored at most once, the total time for
the repeat loop of line 9 is O(3" d(u)) = O(e). Then visited[i] has to be
initialized to 0, 1 < ¢ < n. This takes O(n) time. The total time is there-
fore O(n + e). If adjacency matrices are used, then it takes ©(n) time to
determine all vertices adjacent from v and the time becomes O(n?). If G
is a graph such that all vertices are reachable from v, then all vertices get
explored and the time is at least O(n + e) and O(n?) respectively. Hence,
T(n,e) = ©(n+e) when adjacency lists are used, and T'(n,e) = ©(n?) when
adjacency matrices are used. g

If BFS is used on a connected undirected graph G, then all vertices in G
get visited and the graph is traversed. However, if GG is not connected, then
at least one vertex of G is not visited. A complete traversal of the graph can
be made by repeatedly calling BFS each time with a new unvisited starting
vertex. The resulting traversal algorithm is known as breadth first traversal
(BFT) (see Algorithm 6.6). The proof of Theorem 6.3 can be used for BFT
too to show that the time and additional space required by BFT on an n-
vertex e-edge graph are ©(n + ¢) and O(n) respectively if adjacency lists are
used. If adjacency matrices are used, then the bounds are ©(n?) and ©(n)
respectively.

6.2.2 Depth First Search and Traversal

A depth first search of a graph differs from a breadth first search in that the
exploration of a vertex v is suspended as soon as a new vertex is reached. At

324 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

Algorithm DFS(v)

// Given an undirected (directed) graph G = (V, E) with
// m vertices and an array visited]] initially set

// to zero, this algorithm visits all vertices

// reachable from v. G and visited| | are global.

visited[v] := 13
for each vertex w adjacent from v do

Nole BN Bl SISO

if (visited[w] = 0) then DFS(w);

—_ ==
N = O
o~

Algorithm 6.7 Depth first search of a graph

this time the exploration of the new vertex u begins. When this new vertex
has been explored, the exploration of v continues. The search terminates
when all reached vertices have been fully explored. This search process is
best described recursively as in Algorithm 6.7.

Example 6.2 A depth first search of the graph of Figure 6.4(a) starting at
vertex 1 and using the adjacency lists of Figure 6.4(c) results in the vertices
being visited in the order 1, 2, 4, 8, 5, 6, 3, 7. O

One can easily prove that DFS visits all vertices reachable from vertex v.
If T'(n, e) and S(n, e) represent the maximum time and maximum additional
space taken by DFS for an n-vertex e-edge graph, then S(n,e) = O(n)
and T(n,e) = ©(n + e) if adjacency lists are used and T'(n,e) = O(n?) if
adjacency matrices are used (see the exercises).

A depth first traversal of a graph is carried out by repeatedly calling
DFS, with a new unvisited starting vertex each time. The algorithm for this
(DFT) differs from BFT only in that the call to BFS(7) is replaced by a call
to DFS(z). The exercises contain some problems that are solved best by BFS
and others that are solved best by DFS. Later sections of this chapter also
discuss graph problems solved best by DFS.

BFS and DFS are two fundamentally different search methods. In BFS a
node is fully explored before the exploration of any other node begins. The
next node to explore is the first unexplored node remaining. The exercises
examine a search technique (D-search) that differs from BFS only in that

6.3. CONNECTED COMPONENTS AND SPANNING TREES 325

the next node to explore is the most recently reached unexplored node. In
DFS the exploration of a node is suspended as soon as a new unexplored
node is reached. The exploration of this new node is immediately begun.

EXERCISES

1. Devise an algorithm using the idea of BFS to find a shortest (directed)
cycle containing a given vertex v. Prove that your algorithm finds
a shortest cycle. What are the time and space requirements of your
algorithm?

2. Show that DFS visits all vertices in G reachable from v.
3. Prove that the bounds of Theorem 6.3 hold for DFS.

4. Tt is easy to see that for any graph G, both DFS and BFS will take
almost the same amount of time. However, the space requirements
may be considerably different.

(a) Give an example of an n-vertex graph for which the depth of re-
cursion of DFS starting from a particular vertex v is n —1 whereas
the queue of BFS has at most one vertex at any given time if BFS
is started from the same vertex v.

(b) Give an example of an n-vertex graph for which the queue of BFS
has n — 1 vertices at one time whereas the depth of recursion of
DFS is at most one. Both searches are started from the same
vertex.

5. Another way to search a graph is D-search. This method differs from
BFS in that the next vertex to explore is the vertex most recently
added to the list of unexplored vertices. Hence, this list operates as a
stack rather than a queue.

(a) Write an algorithm for D-search.

(b) Show that D-search starting from vertex v visits all vertices reach-
able from wv.

(c) What are the time and space requirements of your algorithm?

6.3 CONNECTED COMPONENTS AND
SPANNING TREES

If G is a connected undirected graph, then all vertices of G will get visited
on the first call to BFS (Algorithm 6.5). If G is not connected, then at

326 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

least two calls to BFS will be needed. Hence, BFS can be used to determine
whether G is connected. Furthermore, all newly visited vertices on a call to
BFS from BFT represent the vertices in a connected component of G. Hence
the connected components of a graph can be obtained using BFT. For this,
BFS can be modified so that all newly visited vertices are put onto a list.
Then the subgraph formed by the vertices on this list make up a connected
component. Hence, if adjacency lists are used, a breadth first traversal will
obtain the connected components in ©(n + ¢€) time.

BFT can also be used to obtain the reflexive transitive closure matrix of
an undirected graph G. If A* is this matrix, then A*(i,7) = 1 iff either
i =7jori# jand 7 and j are in the same connected component. We can
set up in ©(n + e) time an array connec such that connecli] is the index
of the connected component containing vertex ¢, 1 < i < n. Hence, we
can determine whether A*(4,7), i # 7, is 1 or 0 by simply seeing whether
connec[i] = connec[j]. The reflexive transitive closure matrix of an undi-
rected graph G with n vertices and e edges can therefore be computed in
O (n?) time and O(n) space using either adjacency lists or matrices (the space
count does not include the space needed for A* itself).

As a final application of breadth first search, consider the problem of
obtaining a spanning tree for an undirected graph G. The graph G has a
spanning tree iff G is connected. Hence, BFS easily determines the existence
of a spanning tree. Furthermore, consider the set of edges (u, w) used in the
for loop of line 11 of algorithm BFS to reach unvisited vertices w. These
edges are called forward edges. Let ¢ denote the set of these forward edges.
We claim that if G is connected, then ¢ is a spanning tree of G. For the graph
of Figure 6.4(a) the set of edges ¢t will be all edges in G except (5, 8), (6, 8),
and (7, 8) (see Figure 6.5(b)). Spanning trees obtained using a breadth first
search are called breadth first spanning trees.

(a) DFS(1) spanning tree (b) BFS(1) spanning tree

Figure 6.5 DFS and BFS spanning trees for the graph of Figure 6.4(a)

6.3. CONNECTED COMPONENTS AND SPANNING TREES 327

Theorem 6.4 Modify algorithin BFS by adding on the statements ¢ := {;
and ¢t := t U {(u,w)}; to lines 8 and 16, respectively. Call the resulting
algorithm BFS*. If BFS* is called so that v is any vertex in a connected
undirected graph G, then on termination, the edges in ¢ form a spanning
tree of G.

Proof: We have already seen that if G is a connected graph on n vertices,
then all n vertices will get visited. Also, each of these, except the start vertex
v, will get onto the queue once (line 15). Hence, ¢ will contain exactly n — 1
edges. All these edges are distinct. The n — 1 edges in ¢ will therefore define
an undirected graph on n vertices. This graph will be connected since it
contains a path from the start vertex v to every other vertex (and so there
is a path between each two vertices). A simple proof by induction shows
that every connected graph on n vertices with exactly n — 1 edges is a tree.
Hence t is a spanning tree of GG. O

As in the case of BFT, the connected components of a graph can be
obtained using DFT. Similarly, the reflexive transitive closure matrix of an
undirected graph can be found using DFT. If DFS (Algorithm 6.7) is modified
by adding ¢ := (5 and ¢ := t U {(v,w)}; to line 7 and the if statement of
line 10, respectively, then when DFS terminates, the edges in ¢ define a
spanning tree for the undirected graph G if G is connected. A spanning
tree obtained in this manner is called a depth first spanning tree. For the
graph of Figure 6.4(a) the spanning tree obtained will include all edges in G
except for (2,5), (8,7), and (1,3) (see Figure 6.5(a)). Hence, DFS and BFS
are equally powerful for the search problems discussed so far.

EXERCISES

1. Show that for any undirected graph G = (V, E), a call to BFS(v) with
v € V results in visiting all the vertices in the connected component
containing v.

2. Rewrite BFS and BFT so that all the connected components of the
undirected graph G get printed out. Assume that G is input in adja-
cency list form.

3. Prove that if G is a connected undirected graph with n vertices and
n — 1 edges, then G is a tree.

4. Present a D-search-based algorithm that produces a spanning tree for
an undirected connected graph.

ot

(a) The radius of a tree is its depth. Show that the forward edges used
in BFS(v) define a spanning tree with root v having minimum
radius among all spanning trees, for the undirected connected
graph G having root v.

328 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

6.

10.

11.

(b) Using the result of part (a), write an algorithm to find a minimum-
radius spanning tree for G. What are the time and space require-
ments of your algorithm?

The diameter of a tree is the maximum distance between any two ver-
tices. Let d be the diameter of a minimum-diameter spanning tree for
an undirected connected graph G. Let r be the radius of a minimum-
radius spanning tree for G.

(a) Show that 2r — 1 <d < 2r.

(b) Write an algorithm to find a minimum-diameter spanning tree
for G. (Hint: Use breadth-first search followed by some local
modification.)

(c¢) Prove that your algorithm is correct.
(d) What are the time and space requirements of your algorithm?

A bipartite graph G = (V, E) is an undirected graph whose vertices
can be partitioned into two disjoint sets Vi and Vo = V — V; with
the properties that no two vertices in V; are adjacent in G and no
two vertices in Vo are adjacent in G. The graph G of Figure 6.4(a)
is bipartite. A possible partitioning of V is Vi = {1,4,5,6,7} and
Vo = {2,3,8}. Write an algorithm to determine whether a graph G is
bipartite. If (G is bipartite, your algorithm should obtain a partitioning
of the vertices into two disjoint sets V; and V; satisfying the properties
above. Show that if GG is represented by its adjacency lists, then this
algorithm can be made to work in time O(n + e), where n = |V| and
e=|E|

. Write an algorithm to find the reflexive transitive closure matrix A*

of a directed graph G. Show that if G has n vertices and e edges and
is represented by its adjacency lists, then this can be done in time
©(n? + ne). How much space does your algorithm take in addition to
that needed for G and A*? (Hint: Use either BFS or DFS.)

. Input is an undirected connected graph G(V, E) each one of whose

edges has the same weight w (w being a real number). Give an O(|E|)
time algorithm to find a minimum-cost spanning tree for G. What is
the weight of this tree?

Given are a directed graph G(V,E) and a node v € V. Write an
efficient algorithm to decide whether there is a directed path from v
to every other node in the graph. What is the worst-case run time of
your algorithm?

Design an algorithm to decide whether a given undirected graph G(V, E)
contains a cycle of length 4. The running time of the algorithm should
be O(|V]3).

6.4. BICONNECTED COMPONENTS AND DFS 329

12. Let G(V, E) be a binary tree with n nodes. The distance between two
vertices in GG is the length of the path connecting these two vertices.
The problem is to construct an n xn matrix whose ijth entry is the dis-
tance between v; and v;. Design an O(n?) time algorithm to construct
such a matrix. Assume that the tree is given in the adjacency-list
representation.

13. Present an O(|V]) time algorithm to check whether a given undirected
graph G(V,E) is a tree. The graph G is given in the form of an
adjacency list.

6.4 BICONNECTED COMPONENTS AND DFS

In this section, by “graph” we always mean an undirected graph. A vertex
v in a connected graph G is an articulation point if and only if the deletion
of vertex v together with all edges incident to v disconnects the graph into
two or more nonempty components.

Example 6.3 In the connected graph of Figure 6.6(a) vertex 2 is an artic-
ulation point as the deletion of vertex 2 and edges (1,2),(2,3),(2,5),(2,7),
and (2,8) leaves behind two disconnected nonempty components (Figure
6.6(b)). Graph G of Figure 6.6(a) has only two other articulation points:
vertex 5 and vertex 3. Note that if any of the remaining vertices is deleted
from G, then exactly one component remains. O

A graph G is biconnected if and only if it contains no articulation points.
The graph of Figure 6.6(a) is not biconnected. The graph of Figure 6.7 is
biconnected. The presence of articulation points in a connected graph can
be an undesirable feature in many cases. For example, if G represents a com-
munication network with the vertices representing communication stations
and the edges communication lines, then the failure of a communication sta-
tion i that is an articulation point would result in the loss of communication
to points other than i too. On the other hand, if G has no articulation
point, then if any station ¢ fails, we can still communicate between every
two stations not including station 4.

In this section we develop an efficient algorithm to test whether a con-
nected graph is biconnected. For the case of graphs that are not biconnected,
this algorithm will identify all the articulation points. Once it has been de-
termined that a connected graph G is not biconnected, it may be desirable
to determine a set of edges whose inclusion makes the graph biconnected.
Determining such a set of edges is facilitated if we know the maximal sub-
graphs of G that are biconnected. G' = (V', E') is a maximal biconnected
subgraph of G if and only if G has no biconnected subgraph G" = (V", E")

330 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

(a) Graph G (b) Result of deleting vertex 2

Figure 6.6 An example graph

such that V/ C V" and E' ¢ E”. A maximal biconnected subgraph is a
biconnected component.

The graph of Figure 6.7 has only one biconnected component (i.e., the
entire graph). The biconnected components of the graph of Figure 6.6(a)
are shown in Figure 6.8.

Figure 6.7 A biconnected graph

It is relatively easy to show that

Lemma 6.1 Two biconnected components can have at most one vertex in
common and this vertex is an articulation point. O

Hence, no edge can be in two different biconnected components (as this
would require two common vertices). The graph G can be transformed into
a biconnected graph by using the edge addition scheme of Algorithm 6.8.

6.4. BICONNECTED COMPONENTS AND DFS 331

Since every biconnected component of a connected graph G contains at
least two vertices (unless G itself has only one vertex), it follows that the v;
of line 5 exists.

Example 6.4 Using the above scheme to transform the graph of Figure
6.6(a) into a biconnected graph requires us to add edges (4, 10) and (10, 9)
(corresponding to the articulation point 3), edge (1,5) (corresponding to the
articulation point 2), and edge (6,7) (corresponding to point 5). O

Q)

s
&

OO,
w0

Figure 6.8 Biconnected components of graph of Figure 6.6(a)

Note that once the edges (v;,v;,1) of line 6 (Algorithm 6.8) are added,
vertex a is no longer an articulation point. Hence following the addition

for each articulation point a do

{
Let By, B, ..., Bj, be the biconnected
components containing vertex a;
Let v;,v; # a, be a vertex in B;, 1 <1 < k;
Add to G the edges (vs,vi41), 1 <1 < k;

O UL N~

Algorithm 6.8 Scheme to construct a biconnected graph

332 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

of the edges corresponding to all articulation points, G has no articulation
points and so is biconnected. If G has p articulation points and b bicon-
nected components, then the scheme of Algorithm 6.8 introduces exactly
b — p new edges into G. One can show that this scheme may use more
than the minimum number of edges needed to make G biconnected (see the
exercises).

Now, let us attack the problem of identifying the articulation points and
biconnected components of a connected graph G with n > 2 vertices. The
problem is efficiently solved by considering a depth first spanning tree of G.

Figure 6.9(a) and (b) shows a depth first spanning tree of the graph of
Figure 6.6(a). In each figure there is a number outside each vertex. These
numbers correspond to the order in which a depth first search visits these
vertices and are referred to as the depth first numbers (dfns) of the vertex.
Thus, dfn[l] = 1, dfn[4] = 2, dfn[6] = 8, and so on. In Figure 6.9(b) solid
edges form the depth first spanning tree. These edges are called tree edges.
Broken edges (i.e., all the remaining edges) are called back edges.

(b)

Figure 6.9 A depth first spanning tree of the graph of Figure 6.6(a)

Depth first spanning trees have a property that is very useful in identifying
articulation points and biconnected components

6.4. BICONNECTED COMPONENTS AND DFS 333

Lemma 6.2 If (u,v) is any edge in G, then relative to the depth first span-
ning tree ¢, either u is an ancestor of v or v is an ancestor of u. So, there are
no cross edges relative to a depth first spanning tree ((u,v) is a cross edge
relative to ¢ if and only if u is not an ancestor of v and v is not an ancestor

of u).

Proof: To see this, assume that (u,v) € E(G) and (u,v) is a cross edge.
Then (u,v) cannot be a tree edge as otherwise u is the parent of v or vice
versa. So, (u,v) must be a back edge. Without loss of generality, we can
assume dfn[u] < dfn[v]. Since vertex w is visited first, its exploration cannot
be complete until vertex v is visited. From the definition of depth first
search, it follows that u is an ancestor of all the vertices visited until v is
completely explored. Hence u is an ancestor of v in ¢ and (u,v) cannot be a
cross edge. O

We make the following observation

Lemma 6.3 The root node of a depth first spanning tree is an articulation
point iff it has at least two children. Furthermore, if u is any other vertex,
then it is not an articulation point iff from every child w of u it is possible
to reach an ancestor of v using only a path made up of descendents of w and
a back edge. O

Note that if this cannot be done for some child w of u, then the deletion of
vertex u leaves behind at least two nonempty components (one containing
the root and the other containing vertex w). This observation leads to a
simple rule to identify articulation points. For each vertex u, define L[u] as
follows:

Lu}] = min {dfn[u], min {L[w]|w is a child of u}, min {dfnw] |
(u,w) is a back edge}

It should be clear that L[u] is the lowest depth first number that can be
reached from u using a path of descendents followed by at most one back
edge. From the preceding discussion it follows that if u is not the root, then
u is an articulation point iff u has a child w such that L{w] > dfn[u].

Example 6.5 For the spanning tree of Figure 6.9(b) the L values are L[1 :
10] = {1,1,1,1,6,8,6,6,5,4}. Vertex 3 is an articulation point as child 10
has L[10] = 4 and dfn[3] = 3. Vertex 2 is an articulation point as child 5
has L[5] = 6 and dfn[2] = 6. The only other articulation point is vertex 5;
child 6 has L[6] = 8 and dfn[5] = 7. O

L[u] can be easily computed if the vertices of the depth first spanning
tree are visited in postorder. Thus, to determine the articulation points,

334 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

it is necessary to perform a depth first search of the graph GG and visit the
nodes in the resulting depth first spanning tree in postorder. It is possible to
do both these functions in parallel. Pseudocode Art (Algorithm 6.9) carries
out a depth first search of G. During this search each newly visited vertex
gets assigned its depth first number. At the same time, L[i] is computed for
each vertex in the tree. This algorithm assumes that the connected graph
G and the arrays dfn and L are global. In addition, it is assumed that the
variable num is also global. It is clear from the algorithm that when vertex
u has been explored and a return made from the function, then L[u] has
been correctly computed. Note that in the else clause of line 15, if w # v,
then either (u,w) is a back edge or dfn[w] > dfn[u] > L[u]. In either case,
Llu] is correctly updated. The initial call to Art is Art(1,0). Note dfn is
initialized to zero before invoking Art.

1 Algorithm Art(u,v)

2 // uis a start vertex for depth first search. v is its parent if any
3 // in the depth first spanning tree. It is assumed that the global
4 // array dfn is initialized to zero and that the global variable

5 // num is initialized to 1. n is the number of vertices in G.

6

7 dfnu] := numy Llu] := num; num = num + 1;

8 for each vertex w adjacent from u do

9 {

10 if (dfn[w] = 0) then

11

12 Art(w, u); // w is unvisited.

}Z L[U] = min(L[u], L[w]);

15 else if (w # v) then L[u] := min(L[u],dfn[w]);

16

17 }

Algorithm 6.9 Pseudocode to compute dfn and L

Once L[1 : n] has been computed, the articulation points can be identified
in O(e) time. Since Art has a complexity O(n + e), where e is the number of
edges in G, the articulation points of G can be determined in O(n + ¢) time.

Now, what needs to be done to determine the biconnected components of
G? If following the call to Art (line 12) L{w] > dfn[u], then we know that u
is either the root or an articulation point. Regardless of whether u is not the
root or is the root and has one or more children, the edge (u, w) together with

6.4. BICONNECTED COMPONENTS AND DFS 335

all edges (both tree and back) encountered during this call to Art (except
for edges in other biconnected components contained in subtree w) forms
a biconnected component. A formal proof of this statement appears in the
proof of Theorem 6.5. The modified algorithm appears as Algorithm 6.10.

O OO UU W =

Algorithm BiComp(u,v)

// u is a start vertex for depth first search. v is its parent if
// any in the depth first spanning tree. It is assumed that the
// global array dfn is initially zero and that the global variable
// num is initialized to 1. n is the number of vertices in G.

dfnfu] == num; Llu] := num; num := num + 1;
for each vertex w adjacent from v do

if (v £ w) and (dfnfw] < dfnlu]))then
add (u,) to the top of a stack s;
f (dfn[w] = 0) then

if (L{w] > dfn[u]) then

write ("New bicomponent");
repeat

Delete an edge from the top of stack s;
Let this edge be (z,y);
write (z, y);

} until (((z,y) = (u,w)) or ((z,y) = (w,u)));

BiComp(w, u); // w is unvisited.
L{u] := min(L[u], L[w]);

else if (w # v) then L[u] := min(L[u], dfn[w]);

Algorithm 6.10 Pseudocode to determine bicomponents

One can verify that the computing time of Algorithm 6.10 remains O(n +
e). The following theorem establishes the correctness of the algorithm. Note
that when G has only one vertex, it has no edges so the algorithm generates

336 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

no output. In this case G does have a biconnected component, namely its
single vertex. This case can be handled separately.

Theorem 6.5 Algorithm 6.10 correctly generates the biconnected compo-
nents of the connected graph G when G has at least two vertices.

Proof: This can be shown by induction on the number of biconnected com-
ponents in GG. Clearly, for all biconnected graphs G, the root u of the depth
first spanning tree has only one child w. Furthermore, w is the only ver-
tex for which L[w] > dfn[u] in line 11.1 of Algorithm 6.10. By the timne
w has been explored, all edges in G have been output as one biconnected
component.

Now assume the algorithm works correctly for all connected graphs G with
at most m biconnected components. We show that it also works correctly
for all connected graphs with m + 1 biconnected components. Let G be any
such graph. Consider the first time that L{w] > dfn[u] in line 11.1. At
this time no edges have been output and so all edges in G incident to the
descendents of w are on the stack and are above the edge (u,w). Since none
of the descendents of u is an articulation point and u is, it follows that the set
of edges above (u,w) on the stack forms a biconnected component together
with the edge (u,w). Once these edges have been deleted from the stack
and output, the algorithm behaves essentially as it would on the graph G,
obtained by deleting from G the biconnected component just output. The
behavior of the algorithim on G differs from that on G’ only in that during
the completion of the exploration of vertex u, some edges (u,r) such that
(u,r) is in the component just output may be considered. However, for all
such edges, dfn[r] # 0 and dfn[r] > dfn[u] > L[u]. Hence, these edges only
result in a vacuous iteration of the for loop of line 8 and do not materially
affect the algorithm.

One can easily establish that G’ has at least two vertices. Since in addition
G’ has exactly m biconnected components, it follows from the induction
hypothesis that the remaining components are correctly generated. O

It should be noted that the algorithm described above will work with
any spanning tree relative to which the given graph has no cross edges.
Unfortunately, graphs can have cross edges relative to breadth first spanning
trees. Hence, algorithm Art cannot be adapted to BFS.

EXERCISES

1. For the graphs of Figure 6.10 identify the articulation points and draw
the biconnected components.

2. Show that if G is a connected undirected graph, then no edge of G can
be in two different biconnected components.

6.4. BICONNECTED COMPONENTS AND DFES 337

Figure 6.10 Graphs for Exercise 1

10.

. Let G; = (V;, E;),1 < i < k, be the biconnected components of a

connected graph G. Show that

(a) If i # 7, then V; N V; contains at most one vertex.

(b) Vertex v is an articulation point of G iff {v} = V; NV} for some i
and j, ¢ # j.

Show that the scheme of Algorithm 6.8 may use more than the mini-
mum number of edges needed to make G biconnected.

Let G be a connected undirected graph. Write an algorithm to find
the minimum number of edges that have to be added to G so that
G becomes biconnected. Your algorithm should output such a set of
edges. What are the time and space requirements of your algorithm?

. Show that if ¢ is a breadth first spanning tree for an undirected con-

nected graph G, then G may have cross edges relative to t.

. Prove that a nonroot vertex u is an articulation point iff L[w] > dfn[u]

for some child w of wu.

Prove that in BiComp (Algorithmm 6.10) if either v = w or dfn[w] >
dfnlu], then edge (u,w) is either already on the stack of edges or has
been output as part of a biconnected component.

Let G(V,E) be any connected undirected graph. A bridge of G is
defined to be an edge of G which when removed from G, will make it
disconnected. Present an O(|£]|) time algorithm to find all the bridges
of G.

Let S(V,T) be any DFS tree for a given connected undirected graph
G(V, E). Prove that a leaf of S can not be an articulation point of G.

338 CHAPTER 6. BASIC TRAVERSAL AND SEARCH TECHNIQUES

11. Prove or disprove: “An undirected graph G(V, E) is biconnected if and
only if for each pair of distinct vertices v and w in V there are two
distinct paths from v to w that have no vertices in common except v
and w.”

6.5 REFERENCES AND READINGS

Several applications of depth first search to graph problems are given in
“Depth first search and linear graph algorithms,” by R. Tarjan, STAM Jour-
nal on Computing 1, no. 2 (1972): 146-160.

The O(n + €) depth first algorithm for biconnected components is due to
R. Tarjan and appears in the preceding paper. This paper also contains an
O(n + e) algorithm to find the strongly connected components of a directed
graph.

An O(n + e) algorithm to find a smallest set of edges that, when added

to a graph G, produces a biconnected graph has been given by A. Rosenthal
and A. Goldner.

For an extensive coverage on graph algorithms see:

Data Structures and Network Algorithms, by R. E. Tarjan, Society for In-
dustrial and Applied Mathematics, 1983.

Algorithmic Graph Theory, by A. Gibbons, Cambridge University Press,
1985.

Algorithmic Graph Theory and Perfect Graphs, by M. Golumbic, Academic
Press, 1980.

Chapter 7

BACKTRACKING

7.1 THE GENERAL METHOD

In the search for fundamental principles of algorithm design, backtracking
represents one of the most general techniques. Many problems which deal
with searching for a set of solutions or which ask for an optimal solution
satisfying some constraints can be solved using the backtracking formulation.
The name backtrack was first coined by D. H. Lehmer in the 1950s. Early
workers who studied the process were R. J. Walker, who gave an algorithmic
account of it in 1960, and S. Golomb and L. Baumert who presented a very
general description of it as well as a variety of applications.

In many applications of the backtrack method, the desired solution is
expressible as an n-tuple (z,,...,z,), where the z; are chosen from some
finite set S;. Often the problem to be solved calls for finding one vector
that maximizes (or minimizes or satisfies) a criterion function P(z1,...,zy).
Sometimes it seeks all vectors that satisfy P. For example, sorting the array
of integers in a[l : n] is a problem whose solution is expressible by an n-
tuple, where z; is the index in a of the ith smallest element. The criterion
function P is the inequality a[z;] < a[z; 1] for 1 <i < n. The set S; is finite
and includes the integers 1 through n. Though sorting is not usually one of
the problems solved by backtracking, it is one example of a familiar problem
whose solution can be formulated as an n-tuple. In this chapter we study a
collection of problems whose solutions are best done using backtracking.

Suppose m; is the size of set S;. Then there are m = mimg---my n-
tuples that are possible candidates for satisfying the function P. The brute
force approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions P;(z1,...,z;) (sometimes called

339

340 CHAPTER 7. BACKTRACKING

bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this method is this: if it is realized that
the partial vector (z1,z2,...,2;) can in no way lead to an optimal solution,
then m;,; - -- my, possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: ezplicit and implicit.

Definition 7.1 Explicit constraints are rules that restrict each z; to take
on values only from a given set. m

Common examples of explicit constraints are

{all nonnegative real numbers}

{0,1}

{a:ligagui}

z; >0 or S;
z; =0 or 1 or S;
li<zi<wu; or S

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of I satisfy the criterion function. Thus
implicit constraints describe the way in which the z; must relate to each
other. O

Example 7.1 [8-queens] A classic combinatorial problem is to place eight
queens on an 8 X 8 chessboard so that no two “attack,” that is, so that no
two of them are on the same row, column, or diagonal. Let us number the
rows and columns of the chessboard 1 through 8 (Figure 7.1). The queens
can also be numbered 1 through 8. Since each queen must be on a different
row, we can without loss of generality assume queen : is to be placed on
row i. All solutions to the 8-queens problem can therefore be represented
as 8-tuples (z1,...,zs), where z; is the column on which queen i is placed.
The explicit constraints using this formulation are S; = {1,2,3,4,5,6,7, 8},
1 < i < 8. Therefore the solution space consists of 8 8-tuples. The implicit
constraints for this problem are that no two z;'s can be the same (i.e., all
queens must be on different columns) and no two queens can be on the same
diagonal. The first of these two constraints implies that all solutions are
permutations of the 8-tuple (1, 2, 3, 4, 5, 6, 7, 8). This realization reduces
the size of the solution space from 8% tuples to 8! tuples. We see later how to
formulate the second constraint in terms of the z;. Expressed as an 8-tuple,
the solution in Figure 7.1 is (4, 6, 8, 2, 7, 1, 3, 5). O

7.1. THE GENERAL METHOD 341

column
1 2 3 4 5 6 7 8
! Q
2 Q
row 3 Q
4 Q
3 Q
61Q
7 Q
8 Q

Figure 7.1 One solution to the 8-queens problem

Example 7.2 [Sum of subsets] Given positive numbers w;, 1 <7 < n, and
m, this problem calls for finding all subsets of the w; whose sums are m.
For example, if n = 4, (w1, w2, w3, ws) = (11, 13, 24, 7), and m = 31, then
the desired subsets are (11, 13, 7) and (24, 7). Rather than represent the
solution vector by the w; which sum to m, we could represent the solution
vector by giving the indices of these w;. Now the two solutions are described
by the vectors (1, 2, 4) and (3, 4). In general, all solutions are k-tuples
(Z1,22,...,2%), 1 <k <n, and different solutions may have different-sized
tuples. The explicit constraints require x; € {j | j is an integer and 1 <
j < n}. The implicit constraints require that no two be the same and that
the sum of the corresponding w;’s be m. Since we wish to avoid generating
multiple instances of the same subset (e.g., (1, 2, 4) and (1, 4, 2) represent the
same subset), another implicit constraint that is imposed is that z; < z;11,
1<i<k.

In another formulation of the sum of subsets problem, each solution subset
is represented by an n-tuple (z1,z9,...,z,) such that z; € {0,1},1 <i < n.
Then z; = 0 if w; is not chosen and z; = 1 if w; is chosen. The solutions
to the above instance are (1, 1, 0, 1) and (0, 0, 1, 1). This formulation
expresses all solutions using a fixed-sized tuple. Thus we conclude that
there may be several ways to formulate a problem so that all solutions are
tuples that satisfy some constraints. One can verify that for both of the
above formulations, the solution space consists of 2" distinct tuples. O

342 CHAPTER 7. BACKTRACKING

Backtracking algorithms determine problem solutions by systematically
searching the solution space for the given problem instance. This search is
facilitated by using a tree organization for the solution space. For a given
solution space many tree organizations may be possible. The next two ex-
amples examine some of the ways to organize a solution into a tree.

Example 7.3 [n-queens] The n-queens problem is a generalization of the 8-
queens problem of Example 7.1. Now n queens are to be placed on an n x n
chessboard so that no two attack; that is, no two queens are on the same row,
column, or diagonal. Generalizing our earlier discussion, the solution space
consists of all n! permutations of the n-tuple (1,2,...,n). Figure 7.2 shows
a possible tree organization for the case n = 4. A tree such as this is called
a permutation tree. The edges are labeled by possible values of x;. Edges
from level 1 to level 2 nodes specify the values for z,. Thus, the leftmost
subtree contains all solutions with 1 = 1; its leftmost subtree contains all
solutions with 1 = 1 and z9 = 2, and so on. Edges from level ¢ to level i +1
are labeled with the values of z;. The solution space is defined by all paths
from the root node to a leaf node. There are 4! = 24 leaf nodes in the tree
of Figure 7.2. O

4 3 4 2 3

Q0O OOWIODODODOOODOODIIDE

Figure 7.2 Tree organization of the 4-queens solution space. Nodes are
numbered as in depth first search.

7.1. THE GENERAL METHOD 343

Example 7.4 [Sum of subsets] In Example 7.2 we gave two possible formu-
lations of the solution space for the sum of subsets problem. Figures 7.3 and
7.4 show a possible tree organization for each of these formulations for the
case n = 4. The tree of Figure 7.3 corresponds to the variable tuple size
formulation. The edges are labeled such that an edge from a level ¢ node to
a level 7 + 1 node represents a value for z;. At each node, the solution space
is partitioned into subsolution spaces. The solution space is defined by all
paths from the root node to any node in the tree, since any such path corre-
sponds to a subset satisfying the explicit constraints. The possible paths are
() (this corresponds to the empty path from the root to itself), (1), (1,2),
(1,2,3), (1,2,3,4), (1,2,4), (1,3,4), (2), (2,3), and so on. Thus, the left-
most subtree defines all subsets containing wy, the next subtree defines all
subsets containing ws but not wi, and so on.

The tree of Figure 7.4 corresponds to the fixed tuple size formulation.
Edges from level 7 nodes to level i + 1 nodes are labeled with the value of
x;, which is either zero or one. All paths from the root to a leaf node define
the solution space. The left subtree of the root defines all subsets containing
wi, the right subtree defines all subsets not containing w, and so on. Now
there are 2* leaf nodes which represent 16 possible tuples. O

Figure 7.3 A possible solution space organization for the sum of subsets
problem. Nodes are numbered as in breadth-first search.

At this point it is useful to develop some terminology regarding tree
organizations of solution spaces. Fach node in this tree defines a problem

344 CHAPTER 7. BACKTRACKING

state. All paths from the root to other nodes define the state space of the
problem. Solution states are those problem states s for which the path from
the root to s defines a tuple in the solution space. In the tree of Figure 7.3 all
nodes are solution states whereas in the tree of Figure 7.4 only leaf nodes are
solution states. Answer states are those solution states s for which the path
from the root to s defines a tuple that is a member of the set of solutions (i.e.,
it satisfies the implicit constraints) of the problem. The tree organization of
the solution space is referred to as the state space tree.

Figure 7.4 Another possible organization for the sum of subsets problems.
Nodes are numbered as in D-search.

At each internal node in the space tree of Examples 7.3 and 7.4 the
solution space is partitioned into disjoint sub-solution spaces. For example,
at node 1 of Figure 7.2 the solution space is partitioned into four disjoint
sets. Subtrees 2, 18, 34, and 50 respectively represent all elements of the
solution space with z; = 1, 2, 3, and 4. At node 2 the sub-solution space with
x1 = 1 is further partitioned into three disjoint sets. Subtree 3 represents
all solution space elements with 1 = 1 and z2 = 2. For all the state space
trees we study in this chapter, the solution space is partitioned into disjoint
sub-solution spaces at each internal node. It should be noted that this is

7.1. THE GENERAL METHOD 345

not a requirement on a state space tree. The only requirement is that every
element of the solution space be represented by at least one node in the state
space tree.

The state space tree organizations described in Example 7.4 are called
static trees. This terminology follows from the observation that the tree
organizations are independent of the problem instance being solved. For
some problems it is advantageous to use different tree organizations for dif-
ferent problem instances. In this case the tree organization is determined
dynamically as the solution space is being searched. Tree organizations that
are problem instance dependent are called dynamic trees. As an example,
consider the fixed tuple size formulation for the sum of subsets problem (Ex-
ample 7.4). Using a dynamic tree organization, one problem instance with
n = 4 can be solved by means of the organization given in Figure 7.4. An-
other problem instance with n = 4 can be solved by means of a tree in which
at level 1 the partitioning corresponds to zo = 1 and 2o = 0. At level 2
the partitioning could correspond to 1 = 1 and z1 = 0, at level 3 it could
correspond to x3 = 1 and x3 = 0, and so on. We see more of dynamic trees
in Sections 7.6 and 8.3.

Once a state space tree has been conceived of for any problem, this prob-
lem can be solved by systematically generating the problem states, deter-
mining which of these are solution states, and finally determining which
solution states are answer states. There are two fundamentally different
ways to generate the problem states. Both of these begin with the root
node and generate other nodes. A node which has been generated and all
of whose children have not yet been generated is called a live node. The
live node whose children are currently being generated is called the E-node
(node being expanded). A dead node is a generated node which is not to
be expanded further or all of whose children have been generated. In both
methods of generating problem states, we have a list of live nodes. In the
first of these two methods as soon as a new child C of the current E-node
R is generated, this child will become the new FE-node. Then R will become
the E-node again when the subtree C' has been fully explored. This corre-
sponds to a depth first generation of the problem states. In the second state
generation method, the E-node remains the F-node until it is dead. In both
methods, bounding functions are used to kill live nodes without generating
all their children. This is done carefully enough that at the conclusion of the
process at least one answer node is always generated or all answer nodes are
generated if the problem requires us to find all solutions. Depth first node
generation with bounding functions is called backtracking. State generation
methods in which the E-node remains the E-node until it is dead lead to
branch-and-bound methods. The branch-and-bound technique is discussed
in Chapter 8.

The nodes of Figure 7.2 have been numbered in the order they would be
generated in a depth first generation process. The nodes in Figures 7.3 and

346 CHAPTER 7. BACKTRACKING

7.4 have been numbered according to two generation methods in which the
E-node remains the £-node until it is dead. In Figure 7.3 each new node is
placed into a queue. When all the children of the current E-node have been
generated, the next node at the front of the queue becomes the new E-node.
In Figure 7.4 new nodes are placed into a stack instead of a queue. Current
terminology is not uniform in referring to these two alternatives. Typically
the queue method is called breadth first generation and the stack method is
called D-search (depth search).

Example 7.5 [4-queens| Let us see how backtracking works on the 4-queens
problem of Example 7.3. As a bounding function, we use the obvious criteria
that if (z1,z9,...,2;) is the path to the current E-node, then all children
nodes with parent-child labelings z;, are such that (x1,...,z;+1) represents
a chessboard configuration in which no two queens are attacking. We start
with the root node as the only live node. This becomes the F-node and
the path is (). We generate one child. Let us assume that the children are
generated in ascending order. Thus, node number 2 of Figure 7.2 is generated
and the path is now (1). This corresponds to placing queen 1 on column
1. Node 2 becomes the E-node. Node 3 is generated and immediately
killed. The next node generated is node 8 and the path becomes (1, 3).
Node 8 becomes the E-node. However, it gets killed as all its children
represent board configurations that cannot lead to an answer node. We
backtrack to node 2 and generate another child, node 13. The path is now
(1, 4). Figure 7.5 shows the board configurations as backtracking proceeds.
Figure 7.5 shows graphically the steps that the backtracking algorithm goes
through as it tries to find a solution. The dots indicate placements of a
queen which were tried and rejected because another queen was attacking.
In Figure 7.5(b) the second queen is placed on columns 1 and 2 and finally
settles on column 3. In Figure 7.5(c) the algorithm tries all four columns
and is unable to place the next queen on a square. Backtracking now takes
place. In Figure 7.5(d) the second queen is moved to the next possible
column, column 4 and the third queen is placed on column 2. The boards in
Figure 7.5 (e), (f), (g), and (h) show the remaining steps that the algorithm
goes through until a solution is found.

Figure 7.6 shows the part of the tree of Figure 7.2 that is generated.
Nodes are numbered in the order in which they are generated. A node that
gets killed as a result of the bounding function has a B under it. Contrast
this tree with Figure 7.2 which contains 31 nodes. O

With this example completed, we are now ready to present a precise
formulation of the backtracking process. We continue to treat backtracking
in a general way. We assume that all answer nodes are to be found and not
just one. Let (z1,z2,...,z;) be a path from the root to a node in a state space
tree. Let T(z1,z2,...,z;) be the set of all possible values for z;11 such that
(z1,Z2,...,Ti41) 18 also a path to a problem state. T(zy,z2,...,2,) = 0.

7.1. THE GENERAL METHOD 347

1 1] 1 1
2 I 2 2
3
(a) (b) (©) (d)
1 1 1 1
2 2 2
3 K
] 4
(e) (H (g) (h)

Figure 7.5 Example of a backtrack solution to the 4-queens problem

Figure 7.6 Portion of the tree of Figure 7.2 that is generated during back-
tracking

348 CHAPTER 7. BACKTRACKING

We assume the existence of bounding function B; 11 (expressed as predicates)
such that if B;y1(z1,%2,...,%i41) 18 false for a path (zy,z9,...,2:41) from
the root node to a problem state, then the path cannot be extended to
reach an answer node. Thus the candidates for position 7 4+ 1 of the solution
vector (z1,...,Z,) are those values which are generated by T and satisfy
B;i1. Algorithm 7.1 presents a recursive formulation of the backtracking
technique. It is natural to describe backtracking in this way since it is
essentially a postorder traversal of a tree (see Section 6.1). This recursive
version is initially invoked by

Backtrack(1);

1 Algorithm Backtrack(k)

2 // This schema describes the backtracking process using
3 // recursion. On entering, the first kK — 1 values

4 /[z[1],z[2],...,z[k — 1] of the solution vector

5 // z[1: n] have been assigned. z[] and n are global.

6

7 for (each z[k] € T(z[1],...,z[k —1]) do

s

9 if (By(z[1],z[2],...,z[k]) # 0) then

10

11 if (z[1),2[2],...,z[k] is a path to an answer node)
12 then write (z[1 : k]);

13 if (k < n) then Backtrack(k + 1);

14 }

15

16 }

Algorithm 7.1 Recursive backtracking algorithm

The solution vector (z1,...,z,), is treated as a global array z[1 : n]. All
the possible elements for the kth position of the tuple that satisfy By are
generated, one by one, and adjoined to the current vector (zi,...,Tx_1).
Each time zj is attached, a check is made to determine whether a solution
has been found. Then the algorithm is recursively invoked. When the for
loop of line 7 is exited, no more values for z; exist and the current copy of
Backtrack ends. The last unresolved call now resumes, namely, the one that
continues to examine the remaining elements assuming only k& — 2 values
have been set.

7.1. THE GENERAL METHOD 349

Note that this algorithm causes all solutions to be printed and assumes
that tuples of various sizes may make up a solution. If only a single solution
is desired, then a flag can be added as a parameter to indicate the first
occurrence of success.

1 Algorithm [Backtrack(n)

2 // This schema describes the backtracking process.

3 // All solutious are generated in z[1 : n] and printed

4 // as soon as they are determined.

)

6 k:=1;

7 while (k # 0) do

8

9 if (there remains an untried z[k] € T(z[1],z[2],.. .,
10 z[k — 1)) and Bg(z[1],...,z[k]) is true) then
11

12 if (z[1],...,z[k] is a path to an answer node)
13 then write (z[1: k]);

14 k:=k +1; // Consider the next set.

15 }

16 else k := k —1; // Backtrack to the previous set.
17

18 }

Algorithm 7.2 General iterative backtracking method

An iterative version of Algorithm 7.1 appears in Algorithm 7.2. Note that
T() will yield the set of all possible values that can be placed as the first
component z, of the solution vector. The component z, will take on those
values for which the bounding function Bj(z1) is true. Also note how the
elements are generated in a depth first manner. The variable k is continually
incremented and a solution vector is grown until either a solution is found or
no untried value of zy remains. When k is decremented, the algorithm must
resume the generation of possible elements for the kth position that have
not yet been tried. Therefore one must develop a procedure that generates
these values in some order. If only one solution is desired, replacing write
(z[1: k]); with {write (z[1 : k]); return;} suffices.

The efficiency of both the backtracking algorithms we’ve just seen de-
pends very much on four factors: (1) the time to generate the next zy, (2)
the number of zj satisfying the explicit constraints, (3) the time for the
bounding functions By, and (4) the number of zj satisfying the By. Bound-

354 CHAPTER 7. BACKTRACKING

1 Algorithm Place(k,1)

2 // Returns true if a queen can be placed in kth row and
3 // ith column. Otherwise it returns false. z[] is a

4 // global array whose first (k — 1) values have been set.
5 // Abs(r) returns the absolute value of r.

6

7 for j:=1to k—1do

8 if ((z[j] = i) // Two in the same column

9 or (Abs(z[j] —i) = Abs(j — k)))

10 // or in the same diagonal

11 then return false;

12 return true;

13 }

Algorithm 7.4 Can a new queen be placed?

1 Algorithm NQueens(k,n)

2 // Using backtracking, this procedure prints all
3 // possible placements of n queens on an n X n
4 // chessboard so that they are nonattacking.

5

6 for i:=1tondo

7

8 if Place(k,) then

9

10 z[k] = 1;

11 if (k = n) then write (z[1 : n));
12 else NQueens(k + 1,n);

13 }

14

15 }

Algorithm 7.5 All solutions to the n-queens problem

7.2. THE 8-QUEENS PROBLEM 355

At this point we might wonder how effective function NQueens is over the
brute force approach. For an 8 x 8 chessboard there are (684) possible ways to
place 8 pieces, or approximately 4.4 billion 8-tuples to examine. However, by
allowing only placements of queens on distinct rows and columns, we require
the examination of at most 8!, or only 40,320 8-tuples.

We can use Estimate to estimate the number of nodes that will be gener-
ated by NQueens. Note that the assumptions that are needed for Estimate
do hold for NQueens. The bounding function is static. No change is made
to the function as the search proceeds. In addition, all nodes on the same
level of the state space tree have the same degree. In Figure 7.8 we see five
8 x 8 chessboards that were created using Estimate.

As required, the placement of each queen on the chessboard was chosen
randomly. With each choice we kept track of the number of columns a queen
could legitimately be placed on. These numbers are listed in the vector
beneath each chessboard. The number following the vector represents the
value that function Estimate would produce from these sizes. The average
of these five trials is 1625. The total number of nodes