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Preface

Computer algebra is the field of mathematics and computer science that is
concerned with the development, implementation, and application of algo-
rithms that manipulate and analyze mathematical expressions. This book
and the companion text, Computer Algebra and Symbolic Computation:
Mathematical Methods, are an introduction to the subject that addresses
both its practical and theoretical aspects. This book, which addresses
the practical side, is concerned with the formulation of algorithms that
solve symbolic mathematical problems, and with the implementation of
these algorithms in terms of the operations and control structures avail-
able in computer algebra programming languages. Mathematical Methods,
which addresses more theoretical issues, is concerned with the basic math-
ematical and algorithmic concepts that are the foundation of the subject.
Both books serve as a bridge between texts and manuals that show how
to use computer algebra software and graduate level texts that describe
algorithms at the forefront of the field.

These books have been in various stages of development for over 15
years. They are based on the class notes for a two-quarter course sequence
in computer algebra that has been offered at the University of Denver every
other year for the past 16 years. The first course, which is the basis for El-
ementary Algorithms, attracts primarily undergraduate students and a few
graduate students from mathematics, computer science, and engineering.
The second course, which is the basis for Mathematical Methods, attracts
primarily graduate students in both mathematics and computer science.
The course is cross-listed under both mathematics and computer science.

ix



x Preface

Prerequisites
The target audience for these books includes students and professionals
from mathematics, computer science, and other technical fields who would
like to know about computer algebra and its applications.

In the spirit of an introductory text, we have tried to minimize the
prerequisites. The mathematical prerequisites include the usual two year
freshman–sophomore sequence of courses (calculus through multivariable
calculus, elementary linear algebra, and applied ordinary differential equa-
tions). In addition, an introductory course in discrete mathematics is rec-
ommended because mathematical induction is used as a proof technique
throughout. Topics from elementary number theory and abstract algebra
are introduced as needed.

On the computer science side, we assume that the reader has had some
experience with a computer programming language such as Fortran, Pascal,
C, C++, or Java. Although these languages are not used in these books,
the skills in problem solving and algorithm development obtained in a be-
ginning programming course are essential. One programming technique
that is especially important in computer algebra is recursion. Although
many students will have seen recursion in a conventional programming
course, the topic is described in Chapter 5 of Elementary Algorithms from
a computer algebra perspective.

Realistically speaking, while these prerequisites suffice in a formal sense
for both books, in a practical sense there are some sections as the texts
progress where greater mathematical and computational sophistication is
required. Although the mathematical development in these sections can be
challenging for students with the minimum prerequisites, the algorithms
are accessible, and these sections provide a transition to more advanced
treatments of the subject.

Organization and Content
Broadly speaking, these books are intended to serve two (complementary)
purposes:

• To provide a systematic approach to the algorithmic formulation and
implementation of mathematical operations in a computer algebra
programming language.

Algorithmic methods in traditional mathematics are usually not pre-
sented with the precision found in numerical mathematics or conventional
computer programming. For example, the algorithm for the expansion of
products and powers of polynomials is usually given informally instead of
with (recursive) procedures that can be expressed as a computer program.
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The material in Elementary Algorithms is concerned with the algorith-
mic formulation of solutions to elementary symbolic mathematical prob-
lems. The viewpoint is that mathematical expressions, represented as ex-
pression trees, are the data objects of computer algebra programs, and by
using a few primitive operations that analyze and construct expressions,
we can implement many elementary operations from algebra, trigonometry,
calculus, and differential equations. For example, algorithms are given for
the analysis and manipulation of polynomials and rational expressions, the
manipulation of exponential and trigonometric functions, differentiation,
elementary integration, and the solution of first order differential equa-
tions. Most of the material in this book is not found in either mathematics
textbooks or in other, more advanced computer algebra textbooks.

• To describe some of the mathematical concepts and algorithmic tech-
niques utilized by modern computer algebra software.

For the past 35 years, the research in computer algebra has been con-
cerned with the development of effective and efficient algorithms for many
mathematical operations including polynomial greatest common divisor
(gcd) computation, polynomial factorization, polynomial decomposition,
the solution of systems of linear equations and multivariate polynomial
equations, indefinite integration, and the solution of differential equations.
Although algorithms for some of these problems have been known since the
nineteenth century, for efficiency reasons they are not suitable as general
purpose algorithms for computer algebra software. The classical algorithms
are important, however, because they are much simpler and provide a con-
text to motivate the basic algebraic ideas and the need for more efficient
approaches.

The material in Mathematical Methods is an introduction to the math-
ematical techniques and algorithmic methods of computer algebra. Al-
though the material in this book is more difficult and requires greater math-
ematical sophistication, the approach and selection of topics is designed so
that it is accessible and interesting to the intended audience. Algorithms
are given for basic integer and rational number operations, automatic (or
default) simplification of algebraic expressions, greatest common divisor
calculation for single and multivariate polynomials, resultant computation,
polynomial decomposition, polynomial simplification with Gröbner bases,
and polynomial factorization.
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Topic Selection

The author of an introductory text about a rapidly changing field is faced
with a difficult decision about which topics and algorithms to include in
the work. This decision is constrained by the background of the audience,
the mathematical difficulty of the material and, of course, by space limita-
tions. In addition, we believe that an introductory text should really be an
introduction to the subject that describes some of the important issues in
the field but should not try to be comprehensive or include all refinements
of a particular topic or algorithm. This viewpoint has guided the selection
of topics, choice of algorithms, and level of mathematical rigor.

For example, polynomial gcd computation is an important topic in
Mathematical Methods that plays an essential role in modern computer
algebra software. We describe classical Euclidean algorithms for both sin-
gle and multivariate polynomials with rational number coefficients and a
Euclidean algorithm for single variable polynomials with simple algebraic
number coefficients. It is well known, however, that for efficiency rea-
sons, these algorithms are not suitable as general purpose algorithms in
a computer algebra system. For this reason, we describe the more ad-
vanced subresultant gcd algorithm for multivariate polynomials but omit
the mathematical justification, which is quite involved and far outside the
scope and spirit of these books.

One topic that is not discussed is the asymptotic complexity of the time
and space requirements of algorithms. Complexity analysis for computer
algebra, which is often quite involved, uses techniques from algorithm anal-
ysis, probability theory, discrete mathematics, the theory of computation,
and other areas that are well beyond the background of the intended audi-
ence. Of course, it is impossible to ignore efficiency considerations entirely
and, when appropriate, we indicate (usually by example) some of the issues
that arise. A course based on Mathematical Methods is an ideal prerequi-
site for a graduate level course that includes the complexity analysis of
algorithms along with recent developments in the field1.

Chapter Summaries

A more detailed description of the material covered in these books is given
in the following chapter summaries.

1A graduate level course could be based on one of the following books: Akritas [2],
Geddes, Czapor, and Labahn [39], Mignotte [66], Mignotte and Ştefănescu [67], Mishra
[68], von zur Gathen and Gerhard [96], Winkler [101], Yap [105], or Zippel [108].
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Elementary Algorithms

Chapter 1: Introduction to Computer Algebra. This chapter is
an introduction to the field of computer algebra. It illustrates both the
possibilities and limitations for computer symbolic computation through
dialogues with a number of commercial computer algebra systems.

Chapter 2: Elementary Concepts of Computer Algebra. This
chapter introduces an algorithmic language called mathematical pseudo-
language (or simply MPL) that is used throughout the books to describe the
concepts, examples, and algorithms of computer algebra. MPL is a simple
language that can be easily translated into the structures and operations
available in modern computer algebra languages. This chapter also includes
a general description of the evaluation process in computer algebra software
(including automatic simplification), and a case study which includes an
MPL program that obtains the change of form of quadratic expressions
under rotation of coordinates.

Chapter 3: Recursive Structure of Mathematical Expressions.
This chapter is concerned with the internal tree structure of mathemati-
cal expressions. Both the conventional structure (before evaluation) and
the simplified structure (after evaluation and automatic simplification) are
described. The structure of automatically simplified expressions is impor-
tant because all algorithms assume that the input data is in this form.
Four primitive MPL operators (Kind, Operand, Number of operands,
and Construct) that analyze and construct mathematical expressions are
introduced. The chapter also includes a description of four MPL opera-
tors (Free of , Substitute, Sequential substitute, and Concurrent substitute)
which depend only on the tree structure of an expression.

Chapter 4: Elementary Mathematical Algorithms. In this chap-
ter we describe the basic programming structures in MPL and use these
structures to describe a number of elementary algorithms. The chapter
includes a case study which describes an algorithm that solves a class of
first order ordinary differential equations using the separation of variables
technique and the method of exact equations with integrating factors.

Chapter 5: Recursive Algorithms. This chapter describes recur-
sion as a programming technique in computer algebra and gives a number
of examples that illustrate its advantages and limitations. It includes a case
study that describes an elementary integration algorithm which finds the
antiderivatives for a limited class of functions using the linear properties of
the integral and the substitution method. Extensions of the algorithm to
include the elementary rational function integration, some trigonometric
integrals, elementary integration by parts, and one algebraic function form
are described in the exercises.
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Chapter 6: Structure of Polynomials and Rational Expres-
sions. This chapter is concerned with the algorithms that analyze and ma-
nipulate polynomials and rational expressions. It includes computational
definitions for various classes of polynomials and rational expressions that
are based on the internal tree structure of expressions. Algorithms based
on the primitive operations introduced in Chapter 3 are given for degree
and coefficient computation, coefficient collection, expansion, and rational-
ization of algebraic expressions.

Chapter 7: Exponential and Trigonometric Transformations.
This chapter is concerned with algorithms that manipulate exponential and
trigonometric functions. It includes algorithms for exponential expansion
and reduction, trigonometric expansion and reduction, and a simplification
algorithm that can verify a large class of trigonometric identities.

Mathematical Methods

Chapter 1: Background Concepts. This chapter is a summary
of the background material from Elementary Algorithms that provides a
framework for the mathematical and computational discussions in the book.
It includes a description of the mathematical psuedo-language (MPL), a
brief discussion of the tree structure and polynomial structure of algebraic
expressions, and a summary of the basic mathematical operators that ap-
pear in our algorithms.

Chapter 2: Integers, Rational Numbers, and Fields. This chap-
ter is concerned with the numerical objects that arise in computer algebra,
including integers, rational numbers, and algebraic numbers. It includes
Euclid’s algorithm for the greatest common divisor of two integers, the
extended Euclidean algorithm, the Chinese remainder algorithm, and a
simplification algorithm that transforms an involved arithmetic expression
with integers and fractions to a rational number in standard form. In ad-
dition, it introduces the concept of a field which describes in a general way
the properties of number systems that arise in computer algebra.

Chapter 3: Automatic Simplification. Automatic simplification
is defined as the collection of algebraic and trigonometric simplification
transformations that are applied to an expression as part of the evaluation
process. In this chapter we take an in-depth look at the algebraic compo-
nent of this process, give a precise definition of an automatically simplified
expression, and describe an (involved) algorithm that transforms mathe-
matical expressions to automatically simplified form. Although automatic
simplification is essential for the operation of computer algebra software,
this is the only detailed treatment of the topic in the textbook literature.
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Chapter 4: Single Variable Polynomials. This chapter is con-
cerned with algorithms for single variable polynomials with coefficients in
a field. All algorithms in this chapter are ultimately based on polynomial
division. It includes algorithms for polynomial division and expansion, Eu-
clid’s algorithm for greatest common divisor computation, the extended
Euclidean algorithm, and a polynomial version of the Chinese remainder
algorithm. In addition, the basic polynomial division and gcd algorithms
are used to give algorithms for numerical computations in elementary al-
gebraic number fields. These algorithms are then used to develop division
and gcd algorithms for polynomials with algebraic number coefficients. The
chapter concludes with an algorithm for partial fraction expansion that is
based on the extended Euclidean algorithm.

Chapter 5: Polynomial Decomposition. Polynomial decomposi-
tion is a process that determines if a polynomial can be represented as a
composition of lower degree polynomials. In this chapter we discuss some
theoretical aspects of the decomposition problem and give an algorithm
based on polynomial factorization that either finds a decomposition or de-
termines that no decomposition exists.

Chapter 6: Multivariate Polynomials. This chapter generalizes
the division and gcd algorithms to multivariate polynomials with coef-
ficients in an integral domain. It includes algorithms for three polyno-
mial division operations (recursive division, monomial-based division, and
pseudo-division); polynomial expansion (including an application to the
algebraic substitution problem); and the primitive and subresultant algo-
rithms for gcd computation.

Chapter 7: The Resultant. This chapter introduces the resultant
of two polynomials, which is defined as the determinant of a matrix whose
entries depend on the coefficients of the polynomials. We describe a Eu-
clidean algorithm and a subresultant algorithm for resultant computation
and use the resultant to find polynomial relations for explicit algebraic
numbers.

Chapter 8: Polynomial Simplification with Side Relations.
This chapter includes an introduction to Gröbner basis computation with
an application to the polynomial simplification problem. To simplify the
presentation, we assume that polynomials have rational number coefficients
and use the lexicographical ordering scheme for monomials.

Chapter 9: Polynomial Factorization. The goal of this chapter is
the description of a basic version of a modern factorization algorithm for
single variable polynomials in Q[x]. It includes square-free factorization
algorithms in Q[x] and Zp[x], Kronecker’s classical factorization algorithm
for Z[x], Berlekamp’s algorithm for factorization in Zp[x], and a basic ver-
sion of the Hensel lifting algorithm.
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Computer Algebra Software and Programs
We use a procedure style of programming that corresponds most closely
to the programming structures and style of the Maple, Mathematica, and
MuPAD systems and, to a lesser degree, to the Macsyma and Reduce
systems. In addition, some algorithms are described by transformation
rules that translate to the pattern matching languages in the Mathematica
and Maple systems. Unfortunately, the programming style used here does
not translate easily to the structures in the Axiom system.

The dialogues and algorithms in these books have been implemented
in the Maple 7.0, Mathematica 4.1, and MuPAD Pro (Version 2.0) sys-
tems. The dialogues and programs are found on a CD included with the
books. In each book, available dialogues and programs are indicated by the
word “Implementation” followed by a system name Maple, Mathematica,
or MuPAD. System dialogues are in a notebook format (mws in Maple, nb
in Mathematica, and mnb in MuPAD), and procedures are in text (ASCII)
format (for examples, see the dialogue in Figure 1.1 on page 3 and the pro-
cedure in Figure 4.15 on page 148). In some examples, the dialogue display
of a computer algebra system given in the text has been modified so that
it fits on the printed page.

Electronic Version of the Book
These books have been processed in the LATEX2ε system with the hyperref
package, which allows hypertext links to chapter numbers, section numbers,
displayed (and numbered) formulas, theorems, examples, figures, footnotes,
exercises, the table of contents, the index, the bibliography, and web sites.
An electronic version of the book (as well as additional reference files) in
the portable document format (PDF), which is displayed with the Adobe
Acrobat software, is included on the CD.
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1

Introduction to Computer Algebra

1.1 Computer Algebra and Computer Algebra Systems

The mathematical scientist models natural phenomena by translating ex-
perimental results and theoretical concepts into mathematical expressions
containing numbers, variables, functions, and operators. Then, using ac-
cepted methods of mathematical reasoning, these expressions are carefully
manipulated or transformed into other expressions that reveal new knowl-
edge about the phenomenon being studied. This mathematical approach
to understanding the world has been an important component of the scien-
tific method in the physical sciences since the time of Galileo and Descartes.
Following in the footsteps of these scientists, Isaac Newton used this ap-
proach to formulate an axiomatic, quantitative description of the motion of
objects. By using mathematical reasoning, he discovered the universal law
of gravitation and derived additional laws that describe the motion of the
tides and the orbits of the planets. Thus the science we call mechanics was
born, and the technique of manipulating and transforming mathematical
expressions was firmly established as an important tool for discovering new
knowledge about the physical world.

In the past fifty years, the computer has become an indispensable exper-
imental tool that greatly extends our ability to solve mathematical prob-
lems. Mathematical scientists routinely use computers to obtain numerical
and graphical solutions to problems that are too difficult or even impossible
to solve by hand. But computers are not just number crunchers. In fact, at
a basic level, computers simply manipulate symbols (0s and 1s) according
to well-defined rules, and it is natural to ask what other parts of the math-

1



2 1. Introduction to Computer Algebra

ematical reasoning process are amenable to computer implementation. Of
course, it is unreasonable to expect a machine to formulate the axioms
of mechanics as Newton did or derive from scratch the important results
of the theory. However, one part of the mathematical reasoning process,
the mechanical manipulation and analysis of mathematical expressions, is
surprisingly algorithmic. There are now computer programs that routinely
simplify algebraic expressions, integrate complicated functions, find exact
solutions to differential equations, and perform many other operations en-
countered in applied mathematics, science, and engineering.

In this book we are concerned primarily with the development and
application of algorithms and computer programs that carry out this me-
chanical aspect of the mathematical reasoning process. The field of mathe-
matics and computer science that is concerned with this problem is known
as computer algebra or symbol manipulation.

Computer Algebra Systems and Languages

A computer algebra system (CAS) or symbol manipulation system is a com-
puter program that performs symbolic mathematical operations. In Fig-
ure 1.1 we show an interactive dialogue with the Maple computer algebra
system developed by Waterloo Maple Inc. The statements that are pre-
ceded by the prompt (>) are inputs to the system that are entered at a
computer workstation. The commands factor, convert, compoly, and
simplify are examples of mathematical operators in the Maple system. In
response to these statements, the program performs a mathematical oper-
ation and displays the result using a notation that is similar to ordinary
mathematical notation.

In Figure 1.1, at the first two prompts, a polynomial is assigned (with
the operator “:=”) to a variable u1 and then factored in terms of irre-
ducible factors with respect to the rational numbers. (In other words, none
of the polynomials in the factored form can be factored further without
introducing radicals.) At prompts three and four, we enter a rational ex-
pression and then find its partial fraction decomposition. At the next two
prompts, Maple’s compoly command determines that the polynomial u3 is
a composite

u3 = f(g(x)), f(x) = x3 + 10 + 8 x+ 3 x2, g(x) = 3x+ x2.

The process of representing a polynomial as a composite of lower degree
polynomials is called polynomial decomposition. At the remaining prompts,
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> u1 := x^5-4*x^4-7*x^3-41*x^2-4*x+35;

u1 := x5 − 4x4 − 7 x3 − 41x2 − 4x+ 35
> factor(u1);

(x+ 1) (x2 + 2x+ 7) (x2 − 7x+ 5)

> u2 := (x^4+7*x^2+3)/(x^5+x^3+x^2+1);

u2 :=
x4 + 7x2 + 3

x5 + x3 + x2 + 1

> convert(u2,parfrac,x);

11

6

1

x+ 1
+

2

3
(4 + x)

x2 − x+ 1
− 3

2

x+ 1

x2 + 1

> u3 := x^6+9*x^5+30*x^4+45*x^3+35*x^2+24*x+10;

u3 := x6 + 9x5 + 30 x4 + 45x3 + 35 x2 + 24 x+ 10

> compoly(u3,x);

x3 + 10 + 8x+ 3x2, x = 3x+ x2

> u4 := 1/(1/a+c/(a*b))+(a*b*c+a*c^2)/(b+c)^2;

u4 :=
1

1

a
+

c

a b

+
a b c + a c2

(b+ c)2

> simplify(u4);

a

> u5 := (sin(x)+sin(3*x)+sin(5*x)+sin(7*x))/(cos(x)+cos(3*x)

+cos(5*x)+cos(7*x))-tan(4*x);

u5 :=
sin(x) + sin(3x) + sin(5x) + sin(7x)

cos(x) + cos(3 x) + cos(5 x) + cos(7 x)
− tan(4 x)

> simplify(u5);

0

Figure 1.1. An interactive dialogue with the Maple system that shows some
symbolic operations from algebra and trigonometry. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)
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> u6 := cos(2*x+3)/(x^2+1);

u6 :=
cos(2x+ 3)

x2 + 1

> diff(u6,x);

−2 sin(2x+ 3)

x2 + 1
− 2

cos(2x+ 3) x

(x2 + 1)2

> u7 := cos(x)/(sin(x)^2+3*sin(x)+4);

u7 :=
cos(x)

sin(x)2 + 3 sin(x) + 4

> int(u7,x);
2

7

√
7 arctan

W
1

7
(2 sin(x) + 3)

√
7

}
> u8 := diff(y(x),x) + 3*y(x) = x^2+sin(x);

u8 :=

W
∂

∂x
y(x)

}
+ 3 y(x) = x2 + sin(x)

> dsolve(u8,y(x));

y(x) =
1

3
x2 − 2

9
x+

2

27
− 1

10
cos(x) +

3

10
sin(x) + e(−3 x) C1

Figure 1.2. An interactive dialogue with the Maple system that shows some
symbolic operations from calculus and differential equations. (Implementation:
Maple (mws), Mathematica (nb), MuPAD (mnb).)

Maple simplifies an involved algebraic expression u4 and then verifies a
trigonometric identity1.

In Figure 1.2, we again call on Maple to perform some operations from
calculus and differential equations2. The diff command at the second

1Algebraic simplification is described in Sections 2.2 and 6.5, and trigonometric sim-
plification is described in Section 7.2.

For further study, the reader may consult Cohen [24]: algebraic simplification is dis-
cussed in Chapter 3, Section 6.3, and Chapter 8; partial fraction decomposition in Section
4.4; polynomial decomposition in Chapter 5; and polynomial factorization in Chapter 9.

2 We give algorithms in the book for all of these operations. Differentiation is de-
scribed in Section 5.2, elementary integration in Section 5.3, and the solution of differ-
ential equations in Section 4.3.
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prompt is used for differentiation and the int command at the fourth
prompt is for integration. Notice that the output of the int operator does
not include the arbitrary constant of integration. At the fifth prompt we
assign a first order differential equation3 to u7, and at the sixth prompt
ask Maple to solve the differential equation. The symbol C1 is Maple’s
way of including an arbitrary constant in the solution4.

We use the term computer algebra language or symbolic programming
language to refer to the computer language that is used to interact with a
CAS. Most computer algebra systems can operate in a programming mode
as well as an interactive mode (shown in Figures 1.1 and 1.2). In the pro-
gramming mode, the mathematical operators factor, simplify, etc. , are
combined with standard programming constructs such as assignment state-
ments, loops, conditional statements, and subprograms to create programs
that solve more involved mathematical problems.

To illustrate this point, consider the problem of finding the formula for
the tangent line to the curve

y = f(x) = x2 + 5x+ 6

at the point x = 2. First, we find a general formula for the slope by
differentiation

dy

dx
= 2x+ 5.

The slope at the point x = 2 is obtained by substituting this value into
this expression

m =
dy

dx
(2) = 2(2) + 5 = 9.

The equation for the tangent line is obtained using the point slope form
for a line:

y = m (x− 2) + f(2) = 9 (x− 2) + 20 (1.1)
= 9 x+ 2.

To obtain the last formula, we have expanded the right side of Equa-
tion (1.1).

In Figure 1.3 we give a general procedure, written in the Maple com-
puter algebra language that mimics these calculations. The procedure com-
putes the tangent line formula for an arbitrary expression f at the point

3Maple displays the derivative of an unknown function y(x) using the partial deriva-
tive symbol instead of ordinary derivative notation.

4Maple includes an arbitrary constant in the solution of a differential equation, but
does not include the arbitrary constant for an antidifferentiation. Inconsistencies of this
sort are commonplace with computer algebra software.
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1 Tangent_line := proc(f,x,a)

2 local

3 deriv,m,line;

4 deriv := diff(f,x);

5 m := subs(x=a,deriv);

6 line := expand(m*(x-a)+subs(x=a,f));

7 RETURN(line)

8 end:

Figure 1.3. A procedure in the Maple language that obtains a formula for the
tangent line. The line numbers are not part of the Maple program. (Implemen-
tation: Maple (txt), Mathematica (txt), MuPAD (txt).)

x = a. The operator diff in line 4 is used for differentiation and the
operator subs in line 5 for substitution. The expand operator in line 6 is
included to simplify the output. Once the procedure is entered into the
Maple system, it can be invoked from the interactive mode of the system
(see Figure 1.4).

> Tangent_line(x^2+5*x+6, x, 2);

9x+ 2

Figure 1.4. The execution of the Tangent line procedure in the interactive
mode of the Maple system. (Implementation: Maple (mws), Mathematica (nb),
MuPAD (mnb).)

Commercial Computer Algebra Systems

In the last 15 years, we have seen the creation and widespread distribution
of a number of large (but easy to use) computer algebra systems. The most
prominent of the commercial and University packages are:

• Axiom – a very large CAS originally developed at IBM under the
name Scratchpad. Information about Axiom can be found in Jenks
and Sutor [50].

• Derive – a small CAS originally designed by Soft Warehouse Inc. for
use on a personal computer. Derive has also been incorporated in the
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TI-89 and TI-92 handheld calculators produced by Texas Instruments
Inc. Information about Derive can be found at the web site

http://www.derive.com.

• Macsyma – a very large CAS originally developed at M.I.T. in the
late 1960s and 1970s. There are currently a number of versions of the
original Macsyma system. Information about Macsyma can be found
in Wester [100].

• Maple – a very large CAS originally developed by the Symbolic
Computation Group at the University of Waterloo (Canada) and now
distributed by Waterloo Maple Inc. Information about Maple is found
in Heck [45] or at the web site

http://www.maplesoft.com.

• Mathematica – a very large CAS developed by Wolfram Research
Inc. Information about Mathematica can be found in Wolfram [102]
or at the web site

http://www.wolfram.com.

• MuPAD – a large CAS developed by the University of Paderborn
(Germany) and SciFace Software GmbH & Co. KG. Information about
MuPAD can be found in Gerhard et al. [40] or at the web site

http://www.mupad.com.

• Reduce – one of the earliest computer algebra systems originally
developed in the late 1960s and 1970s. Information about Reduce is
found in Rayna [83] or at the web site

http://www.uni-koeln.de/REDUCE.

All of these packages are integrated mathematics problem solving sys-
tems that include facilities for exact symbolic computations (similar to
those in Figures 1.1, 1.2, and 1.3), along with some capability for (ap-
proximate) numerical solution of mathematical problems and high quality
graphics. The examples in this book refer primarily to the computer al-
gebra capabilities of the Maple, Mathematica, and MuPAD systems, since
these systems are readily available and support a programming style that
is most similar to the one used here.

http://www.derive.com/
http://www.maplesoft.com
http://www.wolfram.com
http://www.mupad.com
http://www.uni-koeln.de/REDUCE
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Mathematical Knowledge in Computer Algebra Systems

Computer algebra systems have the capability to perform exact symbolic
computations in many areas of mathematics. A sampling of these capabil-
ities includes:

• Arithmetic – unlimited precision rational number arithmetic, com-
plex (rational number) arithmetic, transformation of number bases,
interval arithmetic, modulo arithmetic, integer operations (greatest
common divisors, least common multiples, prime factorization), com-
binatorial functions.

• Algebraic manipulation – simplification, expansion, factorization,
substitution operations.

• Polynomial operations – structural operations on polynomials (de-
gree, coefficient extraction), polynomial division, greatest common
divisors, factorization, resultant calculations, polynomial decomposi-
tion, simplification with respect to side relations.

• Solution of equations – polynomial equations, some non-linear
equations, systems of linear equations, systems of polynomial equa-
tions, recurrence relations.

• Trigonometry – trigonometric expansion and reduction, verification
of identities.

• Calculus – derivatives, antiderivatives, definite integrals, limits, Tay-
lor series, manipulation of power series, summation of series, opera-
tions with the special functions of mathematical physics.

• Differential equations – solution of ordinary differential equations,
solution of systems of differential equations, solution using series,
solution using Laplace transforms, solution of some partial differential
equations.

• Advanced algebra – manipulations with algebraic numbers, group
theory, Galois groups.

• Linear algebra and related topics – matrix operations, vector
and tensor analysis.

• Code generation – formula translation to conventional program-
ming languages such as FORTRAN and C, formula translation to
mathematics word processing languages (LATEX).
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In addition, computer algebra systems have the capability to utilize this
mathematical knowledge in computer programs that solve other mathe-
matical problems.

Exercises

1. What transformation rules from algebra, trigonometry, or calculus must a
computer “know” to perform the following operations? Be careful not to
omit any obvious arithmetic or algebraic rules that are used to obtain the
result in a simplified form.

(a)
d(ax+ x ex2

)

dx
= a+ ex2

+ 2x2ex2
.

(b)
sec(x)

sin(x)
− sin(x)

cos(x)
− cot(x) = 0.

(c)
1

1/a+ c/(a b)
+

a b c+ a c2

(b+ c)2
= a.

2. All computer algebra systems include an algebraic expansion command
that obtains transformations similar to

(x+ 2)(x+ 3)(x+ 4) = x3 + 9x2 + 26x+ 24,

(x+ y + z)3 = x3 + y3 + z3 + 3x2y + 3x2z + 3y2x

+ 3y2z + 3z2x+ 3z2y + 6x y z,

(x+ 1)2 + (y + 1)2 = x2 + 2x+ y2 + 2y + 2,

((x+ 2)2 + 3)2 = x4 + 8x3 + 30x2 + 56x+ 49.

(In Maple, the expand command; in Mathematica the Expand command;
in MuPAD, the expand command.)

What algorithm would you use to perform this operation? It is not nec-
essary to give the exact algorithm. Rather describe some of the issues
that arise when you try to design a mechanical procedure for this opera-
tion. What mathematical and computational techniques are useful for this
algorithm?

3. The simplification of mathematical expressions is an important aspect of
the mathematical reasoning process and all computer algebra systems have
some capability to perform this operation (see Figure 1.1 on page 3). Al-
though simplification is described in elementary mathematics textbooks,
it is defined in a vague way. However, to give an algorithm that performs
simplification, we must have a precise definition of the term. Is it possible
to give a precise definition for simplification?
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1.2 Applications of Computer Algebra

The Purpose of Applied Mathematics
In the fascinating book Mathematics Applied to Deterministic Problems in
the Natural Sciences ([63], SIAM, 1988, pages 5-7), Lin and Segel describe
the purpose of applied mathematics in the following way:

The purpose of applied mathematics is to elucidate scientific
concepts and describe scientific phenomena through the use of
mathematics, and to stimulate the development of new mathe-
matics through such studies.

They discuss three aspects of this process that relate to the solution of
scientific problems:

(i) the formulation of the scientific problem in mathematical terms.

(ii) the solution of the mathematical problems thus created.

(iii) the interpretation of the solution and its empirical verification in
scientific terms.

In addition, they mention a closely related adjunct of this process:

(iv) the generation of scientifically relevant new mathematics through cre-
ation, generalization, abstraction, and axiomatic formulation.

In principle, computer algebra can help facilitate steps (i), (ii), and (iv)
of this process. In practice, computer algebra is primarily involved in step
(ii) and to a much lesser degree in steps (i) and (iv).

Examples of Computer Algebra
In the remainder of this section, we give four examples that illustrate the
use of computer algebra software in the problem solving process. All of the
examples are concerned with the solution of equations.

Example 1.1. (Solution of a linear system of equations.) A CAS
is particularly useful for calculations that are lengthy and tedious but
straightforward. The solution of a linear system of equations with symbolic
coefficients provides an example of this situation. The following system of
equations occurs in a problem in statistical mechanics5:

5 The author encountered this system of equations while working on a problem in
statistical mechanics in 1982. At that time the solution of the system with pencil and
paper (including checking and re-checking the result) took two days. Unfortunately,
the published result still contains a minor coefficient error. See Cohen, Haskins, and
Marchand [23].
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d0 + d1 + d2 + d3 + d4 = 1,
d1 + 2d2 + 3d3 + 4d4 = 2(1 −m),

3d0 − d2 + 3d4 = 2γ2,0 + γ1,1, (1.2)
φd0 + ψd1 − ψd3 − φd4 = m,

2φd0 + ψd1 + ψd3 + 2φd4 = 2γ1,0.

In this system the five unknown variables are d0, d1, d2, d3, and d4. The
coefficients of these variables and the right-hand sides of the equations
depend on the six parameters m,φ, ψ, γ1,0, γ1,1, and γ2,0, and the object is
to express the unknowns in terms of these parameters. Whether or not this
is a good problem for a CAS depends on the purpose of the computation. In
this case a solution is needed to help understand the effect of the various
parameters on the individual unknowns. What is needed is not just a
solution, but one that is compact enough to allow for an easy interpretation
of the result.

The symbolic solution of five linear equations with five unknowns has
the potential to produce expressions with hundreds of terms. In this case,
however, the coefficients are not completely random but instead contain
a symmetry pattern. Because of this there is reason to believe (but no
guarantee) that the solutions will simplify to expressions of reasonable size.

Figure 1.5 shows an interactive dialogue with the Mathematica system
that solves the system of equations. The input statements in Mathematica
are indicated by the label “In” followed by an integer in brackets and the
symbol “:=” (In[1]:=, In[2]:=, etc.). The symbols Out[1]=, Out[2]=, etc.,
are labels that represent the output produced by each input line. The other
equal sign in lines In[1] through In[6] is an assignment symbol and the
symbol “==” is used for equality in an equation. The command to solve
the system of equations is given in In[6] and the solution to the system
is displayed in the lines following Out[6]. As we suspected, the solution
simplifies to expressions of reasonable size. �

One application of computer algebra systems is the exact solution of
polynomial equations. For polynomial equations with degree less than or
equal to four it is always possible to obtain solutions in terms of expressions
with radicals, although for cubic and quartic equations these solutions are
often quite involved. For polynomials with degree five or greater, it is
theoretically impossible to represent the solutions of all such equations
using expressions with radicals6, although it is possible to solve some of
these equations.

6This statement follows from Galois theory, the algebraic theory that describes the
nature of solutions to polynomial equations.



12 1. Introduction to Computer Algebra

In[1 ] := eq1 = d[0] + d[1] + d[2] + d[3] + d[4] == 1

Out [1 ] = d[0] + d[1] + d[2] + d[3] + d[4] == 1

In[2 ] := eq2 = d[1] + 2 ∗ d[2] + 3 ∗ d[3] + 4 ∗ d[4] == 2 ∗ (1− m)

Out [2 ] = d[1] + 2d[2] + 3d[3] + 4d[4] == 2(1− m)

In[3 ] := eq3 = 3 ∗ d[0]− d[2] + 3 ∗ d[4] == 2 ∗ γ[2, 0] + γ[1, 1]

Out [3 ] := 3d[0]− d[2] + 3d[4] == γ[1, 1] + 2γ[2, 0]

In[4 ] := eq4 = φ ∗ d[0] + ϕ ∗ d[1]− ϕ ∗ d[3] − φ ∗ d[4] == m

Out [4 ] := φd[0] + ϕd[1]− ϕd[3]− φd[4] == m

In[5 ] := eq5 = 2 ∗ φ ∗ d[0] + ϕ ∗ d[1] + ϕ ∗ d[3] + 2 ∗ φ ∗ d[4] == 2 ∗ γ[1, 0]

Out [5 ] := 2φd[0] + ϕd[1] + ϕd[3] + 2φd[4] == 2γ[1, 0]

In[6 ] := Solve[{eq1, eq2, eq3, eq4, eq5}, {d[0], d[1], d[2], d[3], d[4]}]

Out [6 ] =
��

d[2] → − 1

2(φ − 2ϕ)
(3ϕ − 6γ[1, 0] + 2φγ[1, 1]− ϕγ[1, 1] + 4φγ[2, 0]

−2ϕγ[2, 0]),

d[0] → − 1

4(φ − 2ϕ)
(−2m+ ϕ+ 4mϕ − 2γ[1, 0] + ϕγ[1, 1] + 2ϕγ[2, 0]),

d[1] → − 1

2(φ − 2ϕ)
(2m − φ − 2mφ+ 4γ[1, 0]− φγ[1, 1]− 2φγ[2, 0]),

d[3] → − 1

2(φ − 2ϕ)
(−2m − φ+ 2mφ+ 4γ[1, 0]− φγ[1, 1]− 2φγ[2, 0]),

d[4] → − 1

4(φ − 2ϕ)
(2m+ ϕ − 4mϕ − 2γ[1, 0] + ϕγ[1, 1] + 2ϕγ[2, 0])

11

Figure 1.5. An interactive dialogue with the Mathematica system that solves a
system of linear equations. (Implementation: Maple (mws), Mathematica (nb),
MuPAD (mnb).)

Example 1.2. (Solution of cubic polynomial equations.) To exam-
ine the possibilities (and limitations) for symbolic solutions of polynomial
equations, consider the cubic equation

x3 − 2 a x+ a3 = 0 (1.3)
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where the symbol a is a parameter. We examine the nature of the solution
for various values of a using the Maple system7 in Figures 1.6, 1.7, and 1.8.
At the first prompt (>) in Figure 1.6, the equation is assigned to the vari-
able eq. At the second prompt, the equation is solved for x using Maple’s
solve command and stored in the variable general solution. The in-
volved solution, which contains three expressions separated by commas, is
expressed in terms of an auxiliary expression for which Maple has chosen
the name %1 and the symbol I which represents

√−1. In ordinary (and
more user friendly) mathematical notation the three solutions are

x =
1
6
r1/3 +

4 a
r1/3

,

− 1
12
r1/3 − 2 a

r1/3
+ 1/2 ı

√
3
(

1
6
r1/3 − 4 a

r1/3

)
,

− 1
12
r1/3 − 2 a

r1/3
− 1/2 ı

√
3
(

1
6
r1/3 − 4 a

r1/3

)
,

where
r = −108 a3 + 12

√
−96 a3 + 81 a6, ı =

√−1.

At the next prompt the subs command8 is used to substitute a = 1 in the
general solution to obtain the solution s1. In this form the expressions are
so involved that it is difficult to tell which roots are real numbers and which
ones have an imaginary part. Since a cubic equation with real number
coefficients can have at most two roots with non-zero imaginary parts, at
least one of the roots must be a real number. At the fourth prompt, we
attempt to simplify the solutions with Maple’s radsimp command, which
can simplify some expressions with radicals9. In this case, unfortunately,
it only transforms the solution to another involved form.

To determine the nature (real or not real) of the roots, at the next
prompt we apply Maple’s evalc command, which expresses the roots in

7For the Maple dialogues in this section, the Output Display is set to the Typeset

Notation option. Other options display output expressions in other forms.
8This input statement has one unfortunate complication. Observe that in the subs

command we have placed the set braces { and } about general solution. The reason
for this has to do with the form of the output of Maple’s solve command. For this
equation, general solution consists of three expressions separated by commas which is
known as an expression sequence in the Maple language. Unfortunately, an expression
sequence cannot be input for the Maple subs command, and so we have included the two
braces so that the input expression is now a Maple set which is a valid input. Observe
that the output s1 is also a Maple set.

9Another possibility is the Maple command radsimp(s1,ratdenom) which is an op-
tional form that rationalizes denominators. This command obtains a slightly different
form, but not the simplified form.



14 1. Introduction to Computer Algebra

> eq := x∧3-2*a*x+a∧3=0;
eq := x3 − 2 a x + a3 = 0

> general solution := solve(eq,x);

general solution :=
1

6
%1(1/3) +

4 a

%1(1/3)
,

− 1

12
%1(1/3) − 2 a

%1(1/3)
+

1

2
I
√

3 (
1

6
%1(1/3) − 4 a

%1(1/3)
),

− 1

12
%1(1/3) − 2 a

%1(1/3)
− 1

2
I
√

3 (
1

6
%1(1/3) − 4 a

%1(1/3)
)

%1 := −108 a3 + 12
√−96 a3 + 81 a6

> s1 := subs(a=1,{general solution});

s1 :=

M
1

6
%1 +

4i−108 + 12
√−15
J1/3

,

− 1

12
%1 − 2i−108 + 12

√−15
J1/3

+
1

2
I
√

3

~
1

6
%1 − 1i−108 + 12

√−15
J1/3

^
,

− 1

12
%1 − 2i−108 + 12

√−15
J1/3

− 1

2
I
√

3

~
1

6
%1 − 1i−108 + 12

√−15
J1/3

^r

%1 :=
i−108 + 12

√−15
J1/3

> radsimp(s1);1

6

Q
−108 + 12 I

√
15
w(2/3)

+ 24

3
�

−108 + 12 I
√

15
,

1

12

−%1(2/3) − 24 + I
√

3 %1(2/3) − 24 I
√

3

%1
,

− 1

12

%1(2/3) + 24 + I
√

3 %1(2/3) − 24 I
√

3

%1
,

r
%1 := −108 + 12 I

√
3
√

5

> simplify(evalc(s1))k
−1

3

√
2(
√

3 cos(%1) + 3 sin(%1)),−1

3

√
2(
√

3 cos(%1) − 3 sin(%1)),
2

3

√
2
√

3 cos(%1)

L

%1 := −1

3
arctan

W
1

9

√
3
√

5

}
+

1

3
π

Figure 1.6. An interactive dialogue with the Maple system for solving a cubic
equation. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)
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> eq2 := subs(a=1,eq);

eq2 := x3 − 2x + 1 = 0

> solve(eq2,x);

1, −1

2
+

1

2

√
5, −1

2
− 1

2

√
5

Figure 1.7. Solving a cubic equation with Maple (continued). (Implementation:
Maple (mws), Mathematica (nb), MuPAD (mnb).)

terms of their real and imaginary parts, and then apply the simplify
command, which attempts to simplify the result. Observe that the solutions
are now expressed in terms of the trigonometric functions sin and cos and
the inverse function arctan. Although the solutions are still quite involved,
we see that all three roots are real numbers. We will show below that the
solutions can be transformed to a much simpler form, although this cannot
be done directly with these Maple commands.

Actually, a better approach to find the roots when a = 1 is to substitute
this value in Equation (1.3), and solve this particular equation rather than
use the general solution. This approach is illustrated in Figure 1.7. At
the first prompt we define a new equation eq2, and at the second prompt
solve the equation. In this case the roots are much simpler since Maple can
factor the polynomial as x3 − 2 x + 1 = (x − 1) (x2 + x − 1) which leads
to simple exact expressions. On the other hand the general equation (1.3)
cannot be factored for all values of a, and so the roots in Figure 1.6 for
a = 1 are given by much more involved expressions.

This example illustrates an important maxim about computer algebra:

A general approach to a problem should be avoided when a par-
ticular solution will suffice.

Although the general solution gives a solution for a = 1, the expres-
sions are unnecessarily involved, and to obtain useful information requires
an involved simplification, which cannot be done easily with the Maple
software10.

Let’s consider next the solution of Equation (1.3) when a = 1/2. In
Figure 1.8, at the first prompt we define a new cubic equation eq3, and

10This simplification can be done with the Mathematica system using the
FullSimplify command and with the MuPAD system using the radsimp command.
There are, however, other examples that cannot be simplified by any of the systems.
See Footnote 6 on page 145 for a statement about the theoretical limitations of algorith-
mic simplification.



16 1. Introduction to Computer Algebra

> eq3 := subs(a=1/2,eq);

eq3 := x3 − x +
1

8
= 0

> s2:=solve(eq3,x);

s2 :=
1

12
%1 +

4

(−108 + 12 I
√

687)(1/3)
,

− 1

24
%1 − 2

(−108 + 12 I
√

687)(1/3)
+

1

4
I
√

3 (
1

6
%1 − 8

(−108 + 12 I
√

687)(1/3)
),

− 1

24
%1 − 2

(−108 + 12 I
√

687)(1/3)
− 1

4
I
√

3 (
1

6
%1 − 8

(−108 + 12 I
√

687)(1/3)
)

%1 := (−108 + 12 I
√

687)(1/3)

> s3 := radsimp({s2});

s3 :=

M
1

12

(−108 + 12 I
√

687)(2/3) + 48

(−108 + 12 I
√

687)(1/3)
,

1

24

−%1(2/3) − 48 + I
√

3%1(2/3) − 48 I
√

3

%1(1/3)
,

− 1

24

%1(2/3) + 48 + I
√

3 %1(2/3) − 48 I
√

3

%1(1/3)

r
%1 := −108 + 12 I

√
3
√

229

> simplify(evalc({s2}))k
2

3

√
3 cos(%1),−1

3

√
3 cos(%1) − sin(%1),−1

3

√
3 cos(%1) + sin(%1)

L

%1 := −1

3
arctan

W
1

9

√
3
√

229

}
+

1

3
π

> evalf(s3)

{.9304029266−.8624347141 10−10 I, −1.057453771+.4629268900 10−9 I,

.1270508443 − .2120100566 10−9 I}

Figure 1.8. Solving cubic equations with Maple (continued). (Implementation:
Maple (mws), Mathematica (nb), MuPAD (mnb).)

at the next three prompts solve it and try to simplify the roots. Again
the representations of the roots in s2 and s3 are quite involved, and it
is difficult to tell whether the roots are real or include imaginary parts.
Again, to determine the nature of the roots, we apply Maple’s evalc and
simplify commands and obtain an involved representation in terms of
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the trigonometric functions sin and cos and the inverse function arctan.
Although the solutions are still quite involved, it appears that all three
roots are real numbers.

In this case, nothing can be done to simplify the exact roots. In fact,
even though the three roots are real numbers, we can’t eliminate the symbol
ı =

√−1 from s2 or s3 without introducing the trigonometric functions
as in s4 . This situation, which occurs when none of the roots of a cubic
equation is a rational number11, shows that there is a theoretical limitation
to how useful the exact solutions using radicals can be. The exact solutions
can be found, but cannot be simplified to a more useful form.

Given this situation, at the last prompt, we apply Maple’s evalf
command that evaluates the roots s3 to an approximate decimal format.
The small non-zero imaginary parts that appear in the roots are due to
the round-off error that is inevitable with approximate numerical calcula-
tions. �

Example 1.3. (Solution of higher degree polynomial equations.)
Although computer algebra systems can solve some higher degree polyno-
mial equations, they cannot solve all such equations, and in cases where
solutions can be found they are often so involved that they are not useful
in practice (Exercise 2(a)). Nevertheless, computer algebra systems can
obtain useful solutions to some higher degree equations. This is shown in
the first two examples in the MuPAD dialogue in Figure 1.9.

At the first prompt (the symbol •) we assign a polynomial to the vari-
able u, and then at the next prompt solve u = 0 for x. In this case MuPAD
obtains the solutions by first factoring u in terms of polynomials with in-
teger coefficients as

u = (x− 1) (x2 + x+ 2) (x2 + 5 x− 4),

and then using the quadratic formula for the two quadratic factors.
At the third prompt we assign a sixth degree polynomial to v, and try to

factor it at the next prompt. Since MuPAD returns the same polynomial,
it is not possible to factor v in terms of lower degree polynomials that have
integer coefficients. At the next prompt, however, MuPAD obtains the six
roots to v = 0. In this case MuPAD finds the solutions by first recognizing
that the polynomial v can be written as a composition of polynomials

v = f(g(x)), f(w) = w3 − 2, w = g(x) = x2 − 2 x− 1.

11See Birkhoff and Mac Lane [10], page 450, Theorem 22. An interesting historical
discussion of this problem is given in Nahin [74].
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• u := x ∧ 5 + 5 ∗ x ∧ 4− 3 ∗ x ∧ 3 + 3 ∗ x ∧ 2− 14 ∗ x + 8;

−14 · x + 3 · x2 − 3 · x3 + 5 · x4 + x5 + 8

• solve(u = 0, x, MaxDegree = 5);M
1,−

√
41

2
− 5

2
,

√
41

2
− 5

2
,
Q
− ı

2

w
·
√

7 − 1

2
,
Q ı

2

w
·
√

7 − 1

2

r

• v := x ∧ 6− 6 ∗ x ∧ 5 + 4 ∗ x ∧ 3 + 9 ∗ x ∧ 4− 9 ∗ x ∧ 2− 6 ∗ x− 3;
− 6 · x− 9 · x2 + 4 · x3 + 9 · x4 − 6 · x5 + x6 − 3

• factor(v);

− 6 · x− 9 · x2 + 4 · x3 + 9 · x4 − 6 · x5 + x6 − 3

• solve(v = 0, x, MaxDegree = 6);
6

3√
2 + 2 + 1,−

6
3√

2 + 2 + 1,−

6
−8 · 3√2 + (−8 · ı) · 3√2 · √3 + 32

4
+ 1,

6
−8 · 3√2 + (−8 · ı) · 3√2 · √3 + 32

4
+ 1,

−
6

−8 · 3√2 + (8 · ı) · 3√2 · √3 + 32

4
+ 1,6

−8 · 3√2 + (8 · ı) · 3√2 · √3 + 32

4
+ 1


• w := x ∧ 8− 136 ∗ x ∧ 7 + 6476 ∗ x ∧ 6− 141912 ∗ x ∧ 5 + 1513334 ∗ x ∧ 4

− 7453176 ∗ x ∧ 3 + 13950764 ∗ x ∧ 2− 5596840 ∗ x + 46225;

− 5596840 · x + 13950764 · x2 − 7453176 · x3 + 1513334 · x4 − 141912 · x5

+ 6476 · x6 − 136 · x7 + x8 + 46225

• solve(w = 0, x, MaxDegree = 8);

RootOf
i−5596840 ·X1 + 13950764 ·X12 − 7453176 ·X13 + 1513334 ·X14

−141912 ·X15 + 6476 ·X16 − 136 ·X17 + X18 + 46225, X1
J

• r := (sqrt(2) + sqrt(3) + sqrt(5) + sqrt(7)) ∧ 2;Q√
2 +

√
3 +

√
5 +

√
7
w2

• expand(subs(w, x = r));

0

Figure 1.9. The solution of high degree polynomial equations using MuPAD.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

In this form the solution to v = 0 is obtained by solving w3 − 2 = 0 to
obtain

w = 21/3, − 21/3

2
+

21/331/2

2
ı, − 21/3

2
− 21/331/2

2
ı,
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and then solving the three equations

x2 − 2 x− 1 = 21/3,

x2 − 2 x− 1 = −21/3

2
+

21/3 31/2

2
ı,

x2 − 2 x− 1 = −21/3

2
− 21/3 31/2

2
ı.

For example, by solving the first of these equations we obtain the first two
roots of v = 0 in Figure 1.9.

Next, we assign an involved eighth degree polynomial to w, and attempt
to solve the equation w = 0. Even though the equation has the eight roots

x = (
√

2 ±
√

3 ±
√

5 ±
√

7)2, (1.4)

the MuPAD solve command is unable to find them, and returns instead a
curious expression that simply says the solutions are roots of the original
equation. At the next two prompts we assign to the variable r one of the
roots in Equation (1.4), and then use the subs and expand commands to
verify that it is a solution to the equation. �

A Word of Caution

It goes without saying (but let’s say it anyway), that there is more to
mathematical reasoning than the mechanical manipulation of symbols. It
is easy to give examples where a mechanical approach to mathematical
manipulation leads to an incorrect result. This point is illustrated in the
next example.

Example 1.4. Consider the following equation for x:
√
x+ 7 +

√
x+ 2 = 1, (1.5)

where we assume that the square root symbol represents a non-negative
number and x ≥ −2 so that the expressions under the radical signs are
non-negative. Suppose that the goal is to find all real values of x that
satisfy this equation. First transform the equation to

√
x+ 7 = 1 −√

x+ 2. (1.6)

Squaring both sides of this equation and simplifying gives

− 2 =
√
x+ 2. (1.7)
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By squaring both sides of this equation and solving for x, we obtain

x = 2. (1.8)

However, this value is not a root of the original Equation (1.5). What is
wrong with our reasoning?

In this case, the problem lies with the interpretation of the square root
symbol. If we insist that the square roots are always non-negative, there
are no real roots. However, if we allow (somewhat arbitrarily) the second
square root in Equation (1.5) to be negative, the value x = 2 is a root.
Indeed, the necessity of this assumption appears during the calculation in
Equation (1.7).

Let’s see what happens when we try to solve Equation (1.5) with a
computer algebra system. Consider the dialogue with the Macysma system
in Figure 1.10. The input statements in Macysma are preceded by the letter
c followed by a positive integer ((c1), (c2), etc.). The symbols ((d1),
(d2), etc.) are labels that represent the output produced by each input
line. The colon in line (c1) is the assignment symbol in Macysma. At
line (c1), we assign the equation to the variable eq1 and at (c2) attempt
to solve the equation for x. Observe that Macysma simply returns the
equation in a modified form indicating that it cannot solve the equation
with its solve command.

We can, however, help Macysma along by directing it to perform ma-
nipulations similar to the ones in Equations (1.6) through (1.8). At (c3),
(c4), (c5), and (c6) we direct the system to put the equation in a form
that can be solved for x at (c7). Again we obtain the extraneous root
x = 2. Of course, at (c8) when we substitute this value into the original
equation, we obtain an inequality since Macysma assumes that all square
roots of positive integers are positive.

This example shows that it is just as important to scrutinize our com-
puter calculations as our pencil and paper calculations. The point is mathe-
matical symbols have meaning, and transformations that are correct in one
context may require subtle assumptions in other contexts that render them
meaningless. In this simple example it is easy to spot the flaw in our rea-
soning. In a more involved example with many steps and involved output
we may not be so lucky. Additional examples of how incorrect conclusions
can follow from deceptive symbol manipulation are given in Exercises 10,
11, 12, and 13. �

Exploring the Capabilities of a CAS

An important prerequisite for successful use of a CAS is an understanding
of its capabilities and limitations. Since some symbolic operations are
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(c1) eq1 : sqrt(x+7)+sqrt(x+2)=1;

(d1)
√

x+ 7 +
√

x+ 2 = 1

(c2) solve(eq1,x);

(d2) [
√

x+ 7 = 1−√
x+ 2]

(c3) eq2 : eq1 - sqrt(x+2);

(d3)
√

x+ 7 = 1−√
x+ 2

(c4) eq3 : expand(eq2∧2);

(d4) x+ 7 = −2√x+ 2 + x+ 3

(c5) eq4 : eq3 - x - 3;

(d5) 4 = −2√x+ 2

(c6) eq5 : eq4∧2;

(d6) 16 = 4(x+ 2)

(c7) solve(eq5,x);

(d7) [x = 2]

(c8) subst(2,x,eq1);

(d8) 5 = 1

Figure 1.10. A Macsyma 2.1 dialogue that attempts to solve Equation (1.5) by
mimicking the manipulations in Equations (1.6) through (1.8).

quite involved, it may not be practical to list in detail all the capabilities
of a particular command. For this reason, it is important to explore the
capabilities of a CAS. Some of the exercises in this section and others
throughout the book are designed with this objective in mind.
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Exercises

For the exercises in this section, the following operators are useful:

• In Maple, the diff, int, factor, solve, simplify, radsimp, subs, and
evalf operators (Implementation: Maple (mws)).

• In Mathematica, the D, Integrate, Factor, Solve, Reduce, //N,

Simplify, FullSimplify, and ReplaceAll operators (Implementation:
Mathematica (nb)).

• In MuPAD the diff, int, Factor, solve, simplify, radsimp, subs, and
float operators (Implementation: MuPAD (mnb)).

1. Which of the following expressions can be factored with a CAS? Does the
CAS return the result in the form you expect?

(a) x2 − 1

4
.

(b) x2 − a2.

(c) x2 − (
√
2)2.

(d) x2 + 1 = (x − ı)(x+ ı).

(e) x y +
1

x y
+ 2 = (x+ 1/y) (y + 1/x).

(f) (exp(x))2 − 1 = exp(2x) − 1. (Notice that these two expressions
are equivalent. Can a CAS factor both forms?)

(g) x2n − 1 = (xn − 1)(xn + 1).

(h) xm+n − xn − xm + 1 = (xm − 1)(xn − 1).

(i) x2 +
√
3x+

√
2x+

√
2
√
3.

(j)
√
3x5 −√

6x4 +
√
2 x3 − 2x2 +

√
5x −√

10 = (x−√
2 )(

√
3 x4

+
√
2 x2 +

√
5 ).

(k) x4−10 x2+1 = (x+
√
2+

√
3)(x+

√
2−√

3)(x−√
2+

√
3)(x−√

2−√
3).

2. In this problem we ask you to explore the capability of a CAS to find the
exact solutions to equations. Since the solution of equations is an involved
operation, some computer algebra systems have either more than one com-
mand for this operation or optional parameters that modify the operation
of the commands. Before attempting this exercise, you should consult the
system documentation to determine best use the of the commands. In
addition, a CAS may return a solution in a form that includes advanced
functions that you may not be familiar with. Again, consult the system
documentation for the definitions of these functions.

Solve each of the following with a CAS.

(a) x4 − 3x3 − 7x2 +2x− 1 = 0 for x. Are the roots real or do they have
non-zero imaginary parts?
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(b) x8−8x7+28 x6−56x5+70x4−56 x3+28x2−8x−1 = 0 for x. Since
this equation has degree 8, a CAS finds the solution by using either
polynomial factorization or decomposition to reduce the problem to
the solution of lower degree polynomial equations. Which approach
does the CAS use in this case? Hint: See Example 1.3.

(c) x − π/2 = cos(x+ π) for x a real number. (Solution x = π/2.)

(d) sin(x) = 1 for x a real. (Solution x = π/2+2π n, n = 0,±1,±2, . . ..)
(e)

√
x = 1 − x for x ≥ 0. By squaring both sides of this equation

we obtain the equivalent equation x2 − 3x + 1 = 0 which has two
positive roots. However, only one of these roots is a root of the
original equation.

(f) 4(x2)2x = 8 for x a real number. By taking logarithms of both sides
of this equation, we obtain the equivalent equation 2x2 + x − 3 = 0.

(g) x2 = 2x for x a real number. (Solution x = 2, 4, x ≈ −.7666.)

(h) ex2−4 + x = 3 for x a real number. (Solution x = 2)

(i) i. x2−1
x+1

= 2 (Solution x = 3).

ii. x2 − 1 = 2 (x+ 1) (Solution x = 3,−1).
Notice that (i) and (ii) are algebraically equivalent except at the point
x = −1. (Strictly speaking, (i) is not defined at x = −1.) Does a
CAS distinguish between these two equations?

3. Let (x, y) be the rectangular coordinates of a point in the plane, and let
(r, θ) be the polar coordinates. Then

r2 = x2 + y2, tan(θ) = y/x, (1.9)

and
x = r cos(θ), y = r sin(θ). (1.10)

(a) Can a CAS solve (1.9) for x and y?

(b) Can a CAS solve (1.10) for r and θ?

4. Use a CAS system to find the antiderivative
	
1/ cos5(x) dx. Verify the

result with a CAS by differentiation and simplification.

5. The following integral is given in an integral table�
1

(x+ 1)
√

x
dx = −arcsin

W
1− x

1 + x

}
, x > 0. (1.11)

(a) Evaluate the integral with a CAS. (All seven computer algebra sys-
tems described in Section 1.1 return a form different from Equation
(1.11).)

(b) Is it possible to use a CAS to show that the antiderivative obtained
in part (a) differs by at most a constant from the one given by the
integral table?
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6. Consider the six equations with six unknowns {x1, x2, y1, y2, z1, z2}:

a =
m1x1 +m2x2

m1 +m2
,

b =
m1y1 +m2y2

m1 +m2
,

c =
m1z1 +m2z2

m1 +m2
,

r sin(θ) cos(φ) = x1 − x2,

r sin(θ) sin(φ) = y1 − y2,

r cos(θ) = z1 − z2.

Solve these equations with a CAS. Do you expect the solution to simplify
to expressions of reasonable size?

7. Use a CAS to help find the exact value of the bounded area between the
curves

u = 2x − 1

x
+

2

x2
,

v = x+ 2.

Assume that x > 0.

8. (a) Consider the equation x3 − a2 x2 + (a+ 3) x − a = 0. Use a CAS to
find a real value for a so that the equation has one root of multiplicity
2 and one of multiplicity 1. Hint: At a root x0 of multiplicity 2, both
the polynomial and its derivative evaluate to 0.

(b) Consider the equation x3 + a x2 + a2 x + a3 = 0. For a = 0 the
equation has the root x = 0 with multiplicity 3. Use a CAS to show
that it is impossible to find an a so that the equation has one root of
multiplicity 2 and one of multiplicity 1.

9. Give a general formula for the nth derivative of the product of two functions
f(x) and g(x). A CAS can be useful for this problem. Use a CAS to find
the nth derivative of the product f(x)g(x) for n = 1, 2, 3, 4. Use this
data to find a general expression for the pattern you observe.

10. In each of the following manipulations we ostensibly show that 1 = −1.
What is the fallacy in the reasoning in each case?

(a) 1 =
√
1 =

√
ı4 = ı2 = −1 where ı =

√−1.
(b) 1 =

√
1 =
�
(−1)(−1) = √−1√−1 = ı2 = −1.

11. In the following manipulations we ostensibly show that every complex num-
ber is real and positive. Let z = r eı θ be a complex number in the polar
representation where r > 0. Certainly, if θ = 0, then z = r which is real
and positive. If θ �= 0, then for α = eı θ,

α2 π/θ =
Q
eı θ
w2 π/θ

= e2 π ı = cos(2π) + ı sin(2π) = 1.
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Therefore,

α =
Q
α2 π/θ
wθ/(2 π)

= 1θ/(2 π) = 1.

Therefore z = r which is real and positive. What is wrong with our rea-
soning?

12. Consider the following sequence of steps that ostensibly shows that 2 = 1.
Let

a = b. (1.12)

Then

a2 = a b,

a2 − b2 = a b − b2,

(a+ b)(a − b) = b (a − b),

a+ b = b.

Substituting Equation (1.12) into this last expression we obtain 2b = b and
so 2 = 1. What is the fallacy in the reasoning?

13. Consider the indefinite integral �
dx

x ln(x)
.

To evaluate this integral we use the integration by parts formula
	

u dv =
u v − 	 v du with u = 1/ ln(x) and dv = dx/x and obtain�

dx

x ln(x)
= 1 +

�
dx

x ln(x)
.

Subtracting the integral from both side of this equation we obtain 0 = 1.
What is wrong with our reasoning?

14. Consider the system equations

(x2 + y2 + x)2 = 9 (x2 + y2), (1.13)

x2 + y2 = 1. (1.14)

(a) Solve this system of equations for x and y with a CAS.

(b) Let’s try to solve this system of equations using symbol manipulation.
Substituting Equation (1.14) in (1.13) we have (x + 1)2 = 9 and
so x = 2,−4. Substituting x = 2 in (1.13) we obtain after some
manipulation y2 (y2+3) = 0 which has the real root y = 0. However,
x = 2, y = 0 is not obtained by a CAS as a solution of Equation (1.14).
What is the fallacy in our reasoning?
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Further Reading

1.1 Computer Algebra and Computer Algebra Systems. Kline [54] gives
an interesting discussion of the use of mathematics to discover new knowledge
about the physical world.

Additional information on computer algebra can be found in Akritas [2],
Buchberger et al. [17], Davenport, Siret, and Tournier [29], Geddes, Czapor, and
Labahn [39], Lipson [64], Mignotte [66], Mignotte and Ştefănescu [67], Mishra
[68], von zur Gathen and Gerhard [96], Wester [100], Winkler [101], Yap [105],
and Zippel [108]. Two older (but interesting) discussions of computer algebra are
found in Pavelle, Rothstein, and Fitch [77] and Yun and Stoutemyer [107].

Simon ([90] and [89]) and Wester [100] (Chapter 3) give a comparison of com-
mercial computer algebra software. Comparisons of computer algebra systems are
also found at

http://math.unm.edu/~wester/cas_review.html .

Information about computer algebra and computer algebra systems can be
found at the following Internet sites.

• SymbolicNet:

http://www.SymbolicNet.org.

• Computer Algebra Information Network (CAIN):

http://www.riaca.win.tue.nl/CAN/ .

• COMPUTER ALGEBRA, Algorithms, Systems and Applications:

http://www-troja.fjfi.cvut.cz/~liska/ca/ .

• sci.math.symbolic discussion site:

http://mathforum.org/discussions/about/sci.math.symbolic.html

The Association for Computing Machinery (ACM) has a Special Interest
Group on Symbolic and Algebraic Manipulation (SIGSAM). This group publishes
a quarterly journal the SIGSAM Bulletin which provides a forum for exchanging
ideas about computer algebra. In addition, SIGSAM sponsors an annual con-
ference, the International Symposium on Symbolic and Algebraic Computation
(ISSAC). Information about SIGSAM can be found at the Internet site

http://www.acm.org/sigsam.

The main research journal in computer algebra is the Journal of Symbolic
Computation published by Academic Press. Information about this journal can
be found at

http://www.academicpress.com/jsc.

http://math.unm.edu/~wester/cas_review.html
http://www.SymbolicNet.org
http://www.riaca.win.tue.nl/CAN/
http://www-troja.fjfi.cvut.cz/~liska/ca/
http://mathforum.org/discussions/about/sci.math.symbolic.html
http://www.acm.org/sigsam
http://www.academicpress.com/jsc
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Computers have also been used to prove theorems. See Chou [20] for an
introduction to computer theorem proving in Euclidean geometry.

Computers have even been used to generate mathematical conjectures or
statements which have a high probability of being true. See Cipra [21] for details.

There has also been some work to use artificial intelligence symbolic programs
to help interpret the results of numerical computer experiments and even to
suggest which experiments should be done. See Kowalik [58] for the details.

See Kajler [51] for a discussion of research issues in human-computer inter-
action in symbolic computation.

1.2 Applications of Computer Algebra. The article by Nowlan [76] has a
discussion of the consequences a purely mechanical approach to mathematics.
Stoutemyer [94], which describes some problems that arise with CAS software,
should be required reading for any user of this software.

Bernardin (see [7] or [8]) compares the capability to solve equations for six
computer algebra systems. Some of the equations in Exercise 2 on page 22 are
from these references.

Exercise 11 on page 24 is from The College Mathematics Journal, Vol. 27,
No. 4, Sept. 1996, p. 283. This journal occasionally has examples of faulty
symbolic manipulation in its section Fallacies, Flaws, and Flimflam. See

http://www.maa.org/pubs/cmj.html .

http://www.maa.org/pubs/cmj.html
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Elementary Concepts of
Computer Algebra

In this chapter we introduce a language that is used throughout the book
to describe the concepts, examples, and algorithms of computer algebra.
The language is called mathematical pseudo-language or simply MPL. In
Sections 2.1 and 2.2 we describe the form of an MPL mathematical ex-
pression and discuss what happens to an expression during the evaluation
process. In Section 2.3 we consider elementary MPL programs and give
a case study that illustrates the concept. Finally, in Section 2.4 we de-
scribe MPL lists and sets, which are two ways to represent collections of
mathematical expressions.

2.1 Mathematical Pseudo-language (MPL)

Mathematical pseudo-language (MPL) is a symbolic language that is used
in this book to describe the concepts, examples, and algorithms of com-
puter algebra. The term pseudo-language is used to emphasize that MPL
is not a real CAS language that has been implemented on a computer.
Although MPL is similar in spirit to real computer algebra languages, it
is less formal and utilizes both mathematical symbolism and ordinary En-
glish when appropriate. The reader should have little difficulty following
discussions in MPL.

The reader may wonder, why introduce another algorithmic language?
Why not use the programming language associated with a particular CAS?

29
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One reason has to do with the current state of language and system de-
velopment in the computer algebra field. There is now a proliferation of
computer algebra systems, and, undoubtedly, there will be new ones in
the future. Each system has its strong points and limitations, and its own
following among members of the technical community. The systems are
distinguished from each other by the nature of the mathematical knowl-
edge encoded in the system and the language facilities that are available
to access and extend this knowledge. However, at the basic level, there are
more similarities than differences, and the organization of mathematical
concepts and language structures do not differ significantly from system to
system. By using a generic pseudo-language we are able to emphasize the
concepts and algorithms of symbolic computation without being confined
by the details, quirks, and limitations of a particular language.

Perhaps the most important role for MPL is that it provides a way to
evaluate and compare computer algebra systems and languages. In fact,
a useful approach to this chapter is to read it with one or more computer
algebra systems at your side and, as MPL concepts and operations are
described, implement them in real software. Although you will find that
MPL’s style is similar to real software, you will also find differences be-
tween it and real languages, and especially subtle differences between the
languages themselves.

Mathematical Expressions in MPL

To use a computer algebra system effectively, it is important to have a
clear understanding of both the structure and meaning of mathematical
expressions. Since there is much to say about this subject, mathematical
expressions will occupy much of our attention in this chapter and Chapter
3. In Chapter 4 we introduce other elements of the MPL language.

Let’s begin by looking at the various forms an MPL expression can have.
Roughly speaking, MPL expressions are similar to those found in ordinary
mathematical symbolism with some allowance made to accommodate the
need for more precision in a computational environment. MPL expressions
are constructed using the following symbols and operators:

Integers and fractions. Software that performs the exact manipula-
tion of mathematical expressions must have the capability to perform exact
arithmetic. Real floating point arithmetic, which is used by conventional
programming languages for purely numerical work, involves round-off er-
ror and is not appropriate for most computer algebra computation. Indeed,
even the small numerical errors that are inevitable with floating point arith-
metic can alter the mathematical properties of an expression. To illustrate



2.1. Mathematical Pseudo-language (MPL) 31

this point, consider the following two expressions which are identical except
for a small change in one coefficient:

f =
x2 − 1
x− 1

, g =
x2 − .99
x− 1

.

Although the numerical values of f and g are nearly the same for most
values of x, the mathematical properties of the two expressions are different.
First of all, f simplifies to the polynomial x + 1 when x �= 1 while g does
not. Consequently, their antiderivatives differ by a logarithmic term:∫

f dx = x2/2 + x+ C, x �= 1,∫
g dx = x2/2 + x+ .01 ln(x− 1) + C, x �= 1.

Furthermore, the graph of g has an asymptote at x = 1, while f is simply
undefined at x = 1.

To avoid these discrepancies, MPL utilizes exact arbitrary precision ra-
tional number arithmetic for most numerical computations rather than ap-
proximate floating point arithmetic. The term arbitrary precision means
an integer or fraction can have an arbitrary number of digits. Examples
include

2/3, − 1/4, 123456789/987654321, 2432902008176640000.

Arithmetic calculations are performed using the ordinary rules for rational
number arithmetic.

All computer algebra systems utilize this type of arithmetic, however,
because a computer is a finite machine, there is a maximum number of
digits permitted in a number. This bound is usually quite large and rarely
a limitation in applications.

Real numbers. In MPL, a real number is one that has a finite number
of digits, includes a decimal point, and may include an optional power of
10. Examples include

467.22, .33333333, 6.02 · 1023. (2.1)

Real number arithmetic is similar to real floating point arithmetic in a
conventional programming language. Since this mode of computation may
involve round-off error, it is, in general, inexact. Most computer algebra
systems support real numbers, and some systems allow for choice of nu-
merical precision.
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The definition of an MPL real number should not be confused with the
mathematical concept of a real number. Since all MPL real numbers have
a finite number of digits, they are really rational numbers in the mathe-
matical sense. In mathematics, a real number that is not rational is called
an irrational number. For example,

√
2, π, and e are irrational numbers,

and it is hard to imagine doing symbolic computation without them. Since
irrational numbers require an infinite decimal representation which is not
possible in a computational setting, they are represented instead using re-
served symbols (e, π), algebraic expressions (2 ∧ (1/2)), or function forms
(ln(2)), all of which are described below.

Identifiers. In MPL, an identifier is a string of characters constructed
with English letters, Greek letters, the digits 0, 1, . . . , 9, and the underscore
symbol “ ”. An identifier begins with an English or Greek letter. The
following are examples of MPL identifiers:

x, y1, α, general solution, ∆x.

Identifiers are used in MPL as programming variables that represent the re-
sult of a computation, as function, operator, or procedure names, as mathe-
matical symbols that represent indeterminates (or variables) in a mathemat-
ical expression, and as reserved symbols. All computer algebra languages
use identifiers in this way although the characters allowed in an identifier
name vary from system to system.

Algebraic operators and parentheses. The algebraic operators in
MPL are listed in Figure 2.1. Parentheses are used as they are in math-
ematics to alter the structure of an expression. Examples of expressions
that include the operators, numbers, and identifiers described so far are

(n−m)!, x ∧ 2 − 5 ∗ x+ 6, ((x+ ∆x) ∧ 2− x ∧ 2)/∆x.

Mathematical Operation MPL Operator
addition, subtraction +, −

multiplication, division ∗, /
power ∧

factorial !

Figure 2.1. Algebraic operators in MPL.

Reserved symbols. A reserved symbol is an identifier or other mathe-
matical symbol that has mathematical meaning. In MPL, the reserved sym-
bols include π, e, ı (for

√−1), ∞, and the logical constants true and false.
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MPL Maple Mathematica MuPAD

π Pi Pi PI
e exp(1) E E
ı I I I
∞ infinity Infinity infinity
true true True TRUE
false false False FALSE

Figure 2.2. MPL reserved symbols in Maple, Mathematica, and MuPAD.

A few more reserved symbols are introduced in later sections. The corre-
sponding reserved symbols in three computer algebra systems are given in
Figure 2.2.

In a CAS, reserved symbols acquire mathematical meaning through the
actions of the transformation rules encoded in the system. For example,
most computer algebra systems recognize the simplifications

sin(π/2) → 1, (2.2)

arctan(1) → π/4, (2.3)

ln(e ∧ 2) → 2, (2.4)

ı ∧ 2 → −1,

e ∧ (−ı ∗ π) → −1

as either part of the evaluation process or the output of a simplification
operator. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

Function forms. In MPL, function forms are used for mathemat-
ical functions (sin(x), exp(x), arctan(x), etc.), mathematical operators
(Expand(u), Factor(u), Integral(u, x ), etc.), and undefined functions (f(x),
g(x, y), etc.).

In a CAS, mathematical functions acquire meaning through the ac-
tions of transformation rules encoded in the system. For example, most
computer algebra systems obtain function transformations similar to the
simplifications (2.2), (2.3), and (2.4) above.

Function forms that manipulate and analyze mathematical expressions
are called mathematical operators. Although computer algebra systems
contain hundreds of mathematical operators, we use only a small number
of them in this book. Figure 2.3 gives some of the MPL operators used in
the examples, algorithms, and exercises in this chapter, and Figure 2.4
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Mathematical MPL Example
Operation Operator

Absolute value, |u| Absolute value(u) Absolute value(−2) → 2
Evaluate rational Decimal(u) Decimal(1/4) → .25

numbers, arithmetic Decimal(x + 1/4) → x + .25
operations, and Decimal(sin(2) + 1/2) → 1.409297

numerical functions
in an expression u

to a real value
Substitution Substitute(u, t = r) Substitute(2 ∗ x + 1, x = b + 1)
in u of each → 2 (b + 1) + 1

occurrence of t
by r

ith operand in Operand (u, i) Operand(a + b + c, 2) → b
an expression u Operand({a, b, c}, 3) → c

Operand(a = b, 2) → b
Degree in x Degree(u,x) Degree(x ∧ 2 + 5 ∗ x + 7, x)

of a polynomial → 2
expression u
Coefficient of Coefficient(u, x, j) Coefficient(x ∧ 2 + 5 ∗ x + 7, x, 1)

xj in a → 5
polynomial

expression u
Algebraic Algebraic expand(u) Algebraic expand(
expansion (x + 2) ∗ (x + 3))

→ x2 + 5 ∗ x + 6
Polynomial Factor(u) Factor(x ∧ 2 + 5 ∗ x + 6)

factorization → (x + 2) (x + 3)
Solution of Solve(u, x) Solve(a ∗ x = b, x)
an equation → x = b/a

u for x
or a set of Solve({u1, . . . , un}, Solve(
equations {x1, . . . , xn}) {2 ∗ x + 4 ∗ y = 3, 3 ∗ x− y = 7},

for a set of {x, y})
variables → {x = 31/14, y = −5/14}

lim
x→a

u Limit(u, x, a) Limit(1/x, x,∞) → 0

d u

d x
Derivative(u, x) Derivative(sin(x), x) → cos(x)

	
u dx Integral(u, x) Integral(cos(x), x) → sin(x)

Solution of Solve ode(u, x, y) Solve ode(
a differential Derivative(y(x), x) = y(x), x, y)
equation u → C ∗ exp(x)

for y(x)

Figure 2.3. Some mathematical operators in MPL. In column 3, the expression
to the right of the evaluation symbol → is the result obtained by evaluating the
operator. The corresponding operators in three computer algebra systems are
giving in Figure 2.4.
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MPL Maple Mathematica MuPAD

Absolute value(u) abs(u) Abs[u] abs(u)

Decimal(u) evalf(u) u//N float(u)

Substitute(u, t = r) subs(t=r,u) ReplaceAll[u,t->r] subs(u,t=r)

Operand(u, i) op(i,u) Part[u,i] op(u,i)

Degree(u, x) degree(u,x) Exponent[u,x] degree(u,x)

Coefficient(u, x, j) coeff(u,x,j) Coefficient[u,x,j] coeff(u,x,j)

Algebraic expand(u) expand(u) Expand[u] expand(u)

Factor(u) factor(u) Factor[u] expr(factor(u))

Solve(u, x) solve(u,x) Solve[u,x] solve(u,x)

Limit(u, x, a) limit(u,x=a) Limit[u,x->a] limit(u,x,a)

Derivative(u, x) diff(u,x) D[u,x] diff(u,x)

Integral(u, x) int(u,x) Integrate[u,x] int(u,x)

Solve ode(u, x, y) dsolve(u,y(x)) DSolve[u,y[x],x] solve(ode(u,y(x)))

Figure 2.4. The operators in the Maple, MuPAD, and Mathematica systems that
correspond most closely to the MPL operators in Figure 2.3. (Implementation:
Maple (mws), Mathematica (nb), MuPAD (mnb).)

gives the operators in the Maple, Mathematica, and MuPAD systems that
correspond most closely to these operators.

Another important function form is the undefined function which is an
expression in function notation (e.g., f(x), g(x, y), h(n + 1)), where the
function is undefined. In a computational setting this means there are no
transformation rules or other properties associated with the function be-
yond the implied dependence of the function name on the expressions in
parentheses. In ordinary mathematical notation, dependency relationships
of this sort are usually understood from context. In the computational set-
ting, however, more precision is required, and undefined functions provide
one way to represent this dependency.

One use of undefined functions is in expressions that involve arbitrary
or unknown functions. For example, in the differentiation

Derivative(f(x) ∗ g(x), x) → df(x)
dx

g(x) + f(x)
dg(x)
dx

,

MPL’s Derivative operator uses the dependency information to obtain a
general form of the product rule. Without this information, the Derivative
operator assumes that f and g do not depend on x, and so Derivative(f ∗
g, x) evaluates to 0.

All computer algebra systems use function forms in the three ways
described above. In Figure 2.5, we give a Mathematica dialogue which
obtains the solution of the differential equation

dy

dx
+ y = x+ exp(−2x) (2.5)
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In[1 ] := u = D[y[x], x] + y[x] == x + Exp[−2 ∗ x]

Out [1 ] = y[x] + y′[x] == e−2 x + x

In[2 ] := DSolve[u, y[x], x]

Out [2 ] = {{y[x] → e−x(−e−x + ex (−1 + x)) + e−x C[1]}}

Figure 2.5. A Mathematica dialogue which obtains the solution of a differential
equation. The Mathematica language uses the brackets [ and ] to represent
function forms. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

which illustrates this point. At the first prompt In[1], we enter the differ-
ential equation using the function notation y[x] to represent the depen-
dency of y on x, and at Out[1], the system returns an expression where the
derivative is represented in symbolic form as y′[x]. At In[2], we enter the
command to solve the differential equation and obtain the general solution
in Out[2]. Observe that Mathematica represents the arbitrary constant in
the solution by C[1].

Relational operators and expressions. In MPL, a relational ex-
pression is one that expresses a relationship between two expressions using
one of the relational operators

=, �=, <, ≤, >, ≥ .

Examples include x ∧ 2 + 2 ∗ x− 1 = 0, i < n, and ∆p ∗ ∆x ≥ h.

Logical operators and expressions. An MPL logical expression is
one constructed using logical constants (true and false), relational expres-
sions, and identifiers combined together with one or more of the logical
operators and, or, and not. As with algebraic expressions, parentheses
are used to alter the structure of an expression. Examples include

(true and false) or true, not (p and q), 0 ≤ x and x ≤ 1.

All computer algebra languages provide relational and logical expressions
(see Figure 2.6) although their roles in the languages vary from system to
system1

1We return to this point in Section 3.2 (see pages 97-99).
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MPL Maple Mathematica MuPAD

true true True TRUE

false false False FALSE

= = == or === =

�= <> != or =!= <>

< < < <

≤ <= <= <=

> > > >

≥ >= >= >=

and and && and

or or || or

not not ! not

Figure 2.6. Relational operators, logical constants, and logical operators in
Maple, Mathematica, and MuPAD.

Sets and lists. In MPL, both sets and lists are used to represent
collections of mathematical expressions. A set is expressed using the braces
{ and } and a list using the brackets [ and ]. Examples include

{2 ∗ x+ 4 ∗ y = 3, 3 ∗ x− y = 7}, [1, x, x ∧ 2 , x ∧ 3].

In MPL, a set or a list is considered a mathematical expression rather than
a data structure that contains mathematical expressions2. In fact, a set
or a list can be a sub-expression of another mathematical expression. For
example, the expression

Solve({2 ∗ x+ 4 ∗ y = 3, 3 ∗ x− y = 7}, {x, y})
which contains sets, is used to obtain the solution of a system of linear equa-
tions. Although both sets and lists are used for collections of expressions,
they have different mathematical properties and are used in different ways
in our examples and algorithms. In Section 2.4, we discuss these differences
and describe the operations that are appropriate for each of them.

Most computer algebra languages provide lists and sets.

MPL mathematical expressions. An MPL mathematical expres-
sion is any valid mathematical expression that is formed using integers,
fractions, real numbers, identifiers, reserved symbols, function forms, sets,
lists, and the algebraic, relational and logical operators described above.
(A few additional operators are introduced in later sections.) For our pur-
poses, any expression with appropriate operands for each operator and

2A data structure is a programming language structure that is used to organize data.
An array is an example of a data structure.



38 2. Elementary Concepts of Computer Algebra

balanced parentheses is valid. For example, {a, b, c}∗y is not valid because
the first operand of ∗ is not appropriate. The expression (a+ b) ∗ c) is not
valid because there is a dangling right parenthesis.

Although this description of mathematical expressions is sufficient for
our purposes, a theoretician would rightfully complain that we haven’t
given a definition at all since the word valid is not precisely defined. A
more formal definition would include a set of syntax or grammar rules that
define when a sequence of symbols is a valid expression in our language.
The syntax rules would tell us, for example, that the expression m ∗ x+ b
is a valid expression, while (a+ b) ∗ c) is not.

The syntax rules for expressions are quite involved, even for expressions
as simple as those considered here. A precise listing of the rules is essential
for the designer of a computer algebra system, who must determine which
expressions are valid statements in a language. The syntax rules are en-
coded in a program called a parser that determines if an input expression is
a valid expression in the language, determines its structure, and translates
it into an internal form that is used by the CAS to manipulate and analyze
the expression. The structure of an expression involves the relationships
between the operators and operands that make up the expression. For ex-
ample, the expression m ∗ x+ b has the structure of a sum with operands
m ∗ x and b rather than a product with operands m and x+ b.

Although syntax rules and parsing algorithms are important topics for
system design, they are not essential to the understanding of computer
algebra and are not addressed in this book. On the other hand, since
an understanding of expression structure is essential for computer algebra
programming, we examine this topic in detail in Chapter 3.

Variable Initialization and Assignment

In MPL (as in a CAS), all variables are initially undefined symbols. This
assumption allows a variable to fulfill its traditional role as an indetermi-
nate symbol in a mathematical expression.

A variable that is used in the programming sense to represent the result
of a computation is given a value with an assignment statement. In MPL,
the assignment operator is a colon followed by an equal sign (:=), and an
assignment statement has the form:

variable := mathematical expression.

An assignment statement causes two actions to occur. First, the expression
to the right of the assignment symbol is evaluated giving a new expression.
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Next, this new expression is assigned to the variable to the left of the
assignment symbol. For example in

y := Factor(x ∧ 2 + 5 ∗ x+ 6)

the right side evaluates to (x+2)∗ (x+3), which is assigned to the variable
y. In future manipulations, this expression is the value of y.

All computer algebra languages provide assignment statements that
operate in this way3.

Role of Mathematical Expressions in MPL

One aspect of computer algebra programming that distinguishes it from
conventional programming is the role of mathematical expressions. In
MPL, mathematical expressions have two (somewhat overlapping) roles
as either program statements that represent a computational step in a pro-
gram or as data objects that are processed by program statements. For
example, suppose x is an unassigned variable and consider the statement

f := x ∧ 2 + 5 ∗ x+ 6. (2.6)

In this statement the polynomial expression which is assigned to f is a data
object that can be manipulated or analyzed by other program statements.
On the other hand, in

g := Substitute(Derivative(f, x), x = c) ∗ (x − c)
+ Substitute(f, x = c), (2.7)

the expression to the right of the assignment operator is a program state-
ment that obtains the formula for the tangent line to f at x = c, and assigns
the result to the variable g. For example, if c is assigned the expression
1/2 and f is given by the statement (2.6), then g is assigned the new data
object, the expression 6 ∗ (x− 1/2) + 35/4.

Although this description of the role of expressions is useful for empha-
sizing their dual nature, the distinction should not be taken too literally.
Indeed, the role of an expression can depend on other actions that have oc-
curred in a computation. For example, in Statement (2.6), the polynomial
is a data object as long as x has not been assigned. On the other hand,
if x has been assigned the integer 3, the polynomial in Statement (2.6)
can be viewed as a program statement which upon evaluation obtains the
expression 30 which is then assigned to f .

3In Maple and MuPAD, the assignment symbol is the colon followed by the equal
sign (:=); in Mathematica, the assignment symbol is the equal sign (=).
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<1>Algebraic expand((x+ 2)2 ∗ (x+ 3));

→ x3 + 7 x2 + 16x+ 12

<2> Factor(2 ∗ x3 + 7 ∗ x2 ∗ y + 4 ∗ x2 + 14 ∗ x ∗ y + 18 ∗ x+ 63 ∗ y);

→ (x2 + 2x+ 9)(2x + 7y)

<3> Integral(x ∗ sin(x), x);

→ sin(x)− x cos(x)

Figure 2.7. An MPL dialogue. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

Most computer algebra languages employ expressions as both program
statements and data objects, although a language may restrict the use of
some expression types to certain contexts4.

MPL Dialogues

An MPL dialogue which mimics the interactive dialogues found in real
computer algebra systems is given in Figure 2.7. In this simulation, the
prompt is represented by a positive integer surrounded by the symbols <
and > and the mathematical expression following each prompt represents
an input to our imaginary system. Following the practice in some computer
algebra systems, each input statement is terminated by a semicolon5. The
arrow “→” to the left of the centered expressions means “evaluates to” and
indicates the result of evaluating the preceding input expression.

MPL Notation versus Ordinary Mathematical Notation

The notation for MPL expressions closely resembles the notation used for
input expressions in most computer algebra systems. However, as with
most programming notations, it is notoriously unreadable for large ex-
pressions. On the other hand, ordinary mathematical notation, which is

4The Maple, Mathematica and MuPAD systems allow all the expressions described
here both as program statements and data objects. On the other hand, the Macsyma
system does not permit some logical expressions as data objects. For example, the
logical expression p and q, with p and q undefined symbols, cannot be entered in the
interactive mode in that system.

5The Mathematica system does not require a termination symbol at the end of an
expression. Most systems allow a choice of terminating symbol to provide an option to
display or not display a result.
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far more understandable, lacks the precision of MPL notation and is un-
suitable in some computational contexts. Since there is clearly a place for
both notations, we adopt the following strategy for using and intermingling
the two:

• We usually use MPL notation for input to MPL dialogues and for
statements, procedures, and examples that involve manipulations in
a computational context. However, in some of these situations, MPL
notation is unwieldy and for clarity we resort to ordinary mathemati-
cal notation. For example, in the MPL dialogue in Figure 2.7, we use
raised exponents for powers in the inputs <2> and <3> instead of
using the ∧ operator.

• We usually use ordinary mathematical notation in theorems, exam-
ples, and discussions that are not in a computational context. In
addition, since most computer algebra systems display output in a
form similar to ordinary mathematical notation, we use this form for
output in MPL dialogues as well (see Figure 2.7). There are, however,
some instances where the conciseness of MPL notation invites its use
in purely mathematical contexts.

We assume the reader can readily translate between the two notations.

Translating Mathematical Discourse into MPL

We conclude this section with an example that shows how a sequence of
operations in ordinary mathematical discourse is translated into a sequence
of statements in MPL.

Example 2.1. Consider the following equation which defines y implicitly as
a function of x:

exp(x) + y4 = 4 x2 + y. (2.8)

Let’s consider the manipulations that are used to compute implicitly the
derivatives

dy

dx
and

d2y

dx2
.

First, differentiating both sides of Equation (2.8) with respect to x, we have

exp(x) + 4 y3 dy

dx
= 8 x+

dy

dx
. (2.9)

Solving for dy
dx , we obtain

dy

dx
=

−exp(x) + 8 x
4 y3 − 1

. (2.10)
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To obtain the second derivative, we differentiate this expression

d2y

dx2
=

−exp(x) + 8
4 y3 − 1

− 12
(−exp(x) + 8 x) y2 dy

dx

(4 y3 − 1)2
, (2.11)

and then substitute the right side of Equation (2.10) for dy
dx to obtain

d2y

dx2
=

−exp(x) + 8
4 y3 − 1

− 12
(−exp(x) + 8 x)2 y2

(4 y3 − 1)3
. (2.12)

Let’s consider now the MPL operations that produce the manipulations
in Equations (2.8) through (2.12). Three operations are required: differ-
entiations in (2.9) and (2.11), a solution of a linear equation in (2.9), and
a substitution in (2.12). These manipulations are readily translated into
a sequence of statements in MPL (see Figure 2.8). We begin at <1> by
assigning Equation (2.8) to u, where an undefined function y(x) is used
to represent the dependence of y on x. At statement <2>, we use the
Derivative operator to differentiate both sides of u and assign this result

<1> u := exp(x) + y(x)4 = 4x2 + y(x);

→ exp(x) + y(x)4 = 4 x2 + y(x)

<2> v := Derivative(u, x);

→ exp(x) + 4 y(x)3
dy(x)

dx
= 8x+

dy(x)

dx

<3> First derivative := Solve(v,Derivative(y(x), x));

→ dy(x)

dx
=

−exp(x) + 8x

4 y(x)3 − 1

<4> w := Derivative(First derivative , x);

→ d2y(x)

dx2
=

−exp(x) + 8

4 y(x)3 − 1
− 12

(−exp(x) + 8x) y(x)2 dy(x)
dx

(4 y(x)3 − 1)2

<5> Second derivative := Substitute(w,First derivative);

→ d2y(x)

dx2
=

−exp(x) + 8

4 y(x)3 − 1
− 12

(−exp(x) + 8x)2 y(x)2

(4 y(x)3 − 1)3

Figure 2.8. The MPL manipulations that correspond to Equations (2.8) through
(2.12).
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to v. At <3>, we use the Solve operator to solve the equation v for the
expression

dy(x)
dx

and assign this result to First derivative . To obtain the second derivative,
at <4> we apply the Derivative operator to both sides of First derivative
and assign this result to w. Finally, at <5> we use the Substitute operator
to apply the substitution defined by First derivative to w and assign this
result to Second derivative . �

Interactive Dialogues with Real Computer Algebra Systems

MPL provides a way to express a sequence of symbolic calculations in a
form that resembles the statements and operations in a real CAS. Although
the MPL dialogues indicate in a general way the sequence of manipulations
needed for a calculation, we caution the reader not to take the input state-
ments and outputs in the dialogues too literally. The actual implementation
of a dialogue in a real CAS language will vary from system to system.

To illustrate this point, we implement the MPL dialogue in Figure 2.8
in the Maple, Mathematica, MuPAD languages (see Figures 2.9, 2.10, and
2.11). These dialogues use each system’s versions of MPL’s Derivative,
Solve, and Substitute operators along with each system’s version of MPL’s
selection operator Operand(u, i) which returns the ith operand of the ex-
pression u. For example, this operator obtains

Operand(a+ b+ c, 2) → b,

Operand({a, b, c}, 3) → c,

Operand(a = b, 2) → b.

Although this operator was not needed in the MPL dialogue, it is re-
quired to handle the various forms of the input and output of the Solve
and Substitute operators in a real CAS.

Maple

The Maple implementation of Figure 2.8 is given in Figure 2.9. The state-
ments at the first two prompts are similar to those in the MPL dialogue,
although Maple displays the results as assignments and displays the deriva-
tive with partial derivative notation. At the third prompt, Maple solves
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> u := exp(x)+y(x)^4=4*x^2+y(x);

u := ex + y(x)4 = 4x2 + y(x)

> v := diff(u,x);

v := ex + 4 y(x)3
W

∂

∂x
y(x)

}
= 8x +

W
∂

∂x
y(x)

}
> d := solve(v,diff(y(x),x));

d :=
−ex + 8x

4 y(x)3 − 1

> First_derivative := diff(y(x),x) = d;

First derivative :=
∂

∂x
y(x) =

−ex + 8 x

4 y(x)3 − 1

> w := diff(First_derivative,x);

w :=
∂2

∂x2
y(x) =

−ex + 8

4 y(x)3 − 1
− 12 (−ex + 8x) y(x)2 ( ∂

∂x
y(x))

(4 y(x)3 − 1)2

> subs(First_derivative,w);

∂

∂x

−ex + 8x

4 y(x)3 − 1
=

−ex + 8

4 y(x)3 − 1
− 12 (−ex + 8x)2 y(x)2

(4 y(x)3 − 1)3

> Second_derivative := diff(y(x),x,x) = subs(First_derivative,op(2,w));

Second derivative :=
∂2

∂x2
y(x) =

−ex + 8

4 y(x)3 − 1
− 12 (−ex + 8x)2 y(x)2

(4 y(x)3 − 1)3

Figure 2.9. A Maple implementation of the MPL dialogue in Figure 2.8. (Imple-
mentation: Maple (mws).)

the equation v for diff(y(x),x), where the solution is returned as an
expression

−ex + 8 x
4 y(x)3 − 1

, (2.13)

rather than, as in the MPL dialogue, as an equation with the derivative
symbol on the left side. We compensate for this at the fourth prompt by
entering an equation with the derivative symbol on the left side. At the
fifth prompt, we differentiate both sides of the equation First derivative,
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and at the sixth prompt apply Maple’s subs command to substitute Ex-
pression (2.13) for the first derivative symbol in the previous expression.
Unfortunately, we get a little more than we bargained for, since the left side
of the equation is returned as a first derivative symbol applied to an ex-
pression rather than as a second derivative symbol. The reason for this has
to do with Maple’s internal representation of the second derivative symbol
as nested first derivatives

∂

∂x

(
∂

∂x
y(x)

)
.

Since Maple’s subs operator replaces all occurrences of the first derivative
symbol with Expression (2.13), we obtain the result shown in the dialogue.
Finally, at the seventh prompt, we compensate for this by using Maple’s
operator op (which selects operands of an expression) to select the right
side of w and by applying the subs operator to the resulting expression.
In addition, to obtain the MPL result, we include the second derivative
symbol on the left side of an equation.

Mathematica

The Mathematica implementation of Figure 2.8 is given in Figure 2.10. The
statements at In[1 ] and In[2 ] are similar to those in the MPL dialogue.
Observe that Mathematica uses the equal sign (=) for assignment, two
equal signs (==) for an equal sign in an equation, and the D operator for
differentiation. At In[3 ], Mathematica’s Solve operator is used to solve
the equation v for the derivative, where the result is returned as a set which
contains another set which contains the solution. The expression

y′[x] → −ex + 8x

−1 + 4 y[x]3
, (2.14)

which is known as a transformation rule in the Mathematica language, is
the form Mathematica uses for the substitution operation later in the dia-
logue. However, if we insist that the solution be displayed as an equation,
we can obtain this form by using Mathematica’s Part operator which selects
operands of an expression. At In[4 ], the expression Part[s,1] removes
the outer set braces, the next Part operation removes the inner set braces,
and the outer Part operation selects the right side of Expression (2.14).
We obtain the desired form by entering an equation with the derivative
symbol on the left side and then assign the result to FirstDerivative6.

6Since the underscore character ( ) has special meaning in Mathematica, we
use the identifiers FirstDerivative and SecondDerivative instead of the identifiers
First derivative and Second derivative used in the MPL dialogue.
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In[1 ] := u = exp[x] + y[x]ˆ4 == 4 ∗ xˆ2+ y[x]

Out [1 ] = ex + y[x]4 == 4x2 + y[x]

In[2 ] := v = D[u, x]

Out [2 ] = ex + 4y[x]3 y′[x] == 8x + y′[x]

In[3 ] := s = Solve[v, D[y[x], x]]

Out [3 ] = {{y′[x] → −ex + 8x

−1 + 4 y[x]3
}}

In[4 ] := FirstDerivative = D[y[x], x]] == Part[Part[Part[s, 1], 1], 2]

Out [4 ] = y′[x] ==
−ex + 8x

−1 + 4y[x]3

In[5 ] := w = D[FirstDerivative, x]]

Out [5 ] = y′′[x] ==
8−ex

−1 + 4 y[x]3
− 12 (−ex + 8x) y[x]2 y′[x]

(−1 + 4y[x]3)2

In[6 ] := SecondDerivative = ReplaceAll[w, Part[Part[s, 1], 1]]

Out [6 ] = y′′[x] == −12 (−ex + 8x)2 y[x]2

(−1 + 4 y[x]3)3
+

8−ex
−1 + 4y[x]3

Figure 2.10. A Mathematica implementation of the MPL dialogue in Figure 2.8.
(Implementation: Mathematica (nb).)

To obtain the second derivative, at In[5 ] we differentiate both sides of
the equation FirstDerivative, and at In[6 ], we obtain the substitution
with Mathematica’s ReplaceAll command. The substitution is defined by
Part[Part[s,1],1] which selects the expression (2.14).

MuPAD

The MuPAD implementation of Figure 2.8 is given in Figure 2.11. The
statements at the first two prompts are similar to those in the MPL dia-
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• u := exp(x) + y(x) ∧ 4 = 4 ∗ x ∧ 2+ y(x);

ex + y(x)4 = y(x) + 4 · x2

• v := diff(u, x);

ex + 4 · y(x)3 · ∂

∂x
y(x) = 8 · x+ ∂

∂x
y(x)

• v2 := subs(v, diff(y(x), x) = Dy);

ex + 4 ·Dy · y(x)3 = 8 · x+Dy

• d := solve(v2, Dy, IgnoreSpecialCases);k
8 · x − ex

4 · y(x)3 − 1

L
• First derivative := diff(y(x), x) = op(d, 1);

∂

∂x
y(x) =

8 · x − ex

4 · y(x)3 − 1

• w := diff(First derivative, x);

∂2

∂x2
y(x) =

−ex + 8

4 · y(x)3 − 1
− 12 · y(x)2 · ∂

∂x
y(x) · (8 · x − ex)

(4 · y(x)3 − 1)2

• Second derivative := subs(w, First derivative);

∂2

∂x2
y(x) =

−ex + 8

4 · y(x)3 − 1
− 12 · y(x)2 · (8 · x − ex)2

(4 · y(x)3 − 1)3

Figure 2.11. A MuPAD implementation of the MPL dialogue in Figure 2.8.
(Implementation: MuPAD (mnb).)

logue. The next three prompts, however, correspond to the single state-
ment <3> in the MPL dialogue. At the third prompt, we use MuPAD’s
subs operator to replace the derivative diff(y(x),x) in the previous ex-
pression by the symbol Dy. This step is required because MuPAD’s solve
operator cannot solve for the expression diff(y(x),x), even though it can
solve for other function forms. At the fourth prompt, MuPAD’s Solve
operator solves the equation v2 for Dy. Notice that we have included the
option IgnoreSpecialCases because, without this, the system performs
a more detailed analysis of the equation and also includes solutions for
which the denominator 4 · y(x)3 − 1 = 0. These special solutions are not
required in our dialogue. At the fifth prompt, we use MuPAD’s op opera-
tor (which selects operands of an expression) to extract the solution from
the set d and include diff(y(x), x) on the left side of an equation so that
First derivative corresponds to the output of <3> in the MPL dialogue.



48 2. Elementary Concepts of Computer Algebra

The operations at the next two prompts are the same as those at <4> and
<5> in the MPL dialogue.

Exercises
For the exercises in this section, the following operators are useful:

• In Maple, the expand, diff, subs, solve, op, and dsolve operators. (Im-
plementation: Maple (mws).)

• In Mathematica, the Expand, D, ReplaceAll, Solve, Part, and DSolve

operators. (Implementation: Mathematica (nb).)

• In MuPAD, the expand, diff, subs, solve, op, and ode operators. (Im-
plementation: MuPAD (mnb).)

1. In this exercise we ask you to give an interactive dialogue in a CAS similar
to the one in Figure 2.8 that simulates the mathematical discourse in Fig-
ure 2.12. Use a CAS’s command for solving a differential equation to obtain
the general solution as in Expression (2.16), but don’t use this command
to obtain the arbitrary constant in the solution. Rather, use statements
similar to those in Figure 2.8 to set up an equation for the arbitrary con-
stant and solve the equation. The last statement in the dialogue should
return an equation similar to Expression (2.19).

Consider the differential equation and initial condition:

dy

dx
+ y = x+ exp(−2x), y(1) = 3. (2.15)

The general solution to this equation is given by

y = x − 1− exp(−2x) + c exp(−x), (2.16)

where c is an arbitrary constant. To find c, we substitute the initial condition
y(1) = 3 into Equation (2.16) and obtain an equation for c:

3 = −e−2 + c e−1. (2.17)

Solving for c, we obtain
c = 3 e+ e−1. (2.18)

Substituting Equation (2.18) into Equation (2.16), we obtain the particular so-
lution to the differential equation:

y = x − 1− exp(−2x) + (3 e+ e−1) exp(−x). (2.19)

Figure 2.12. A mathematical discourse that obtains the arbitrary constant in
the solution of a differential equation.



2.2. Expression Evaluation 49

2. Consider the second order differential equation

d2y(x)

dx2
+ 5

dy(x)

dx
+ 6 y(x) = sin(x), y(0) = 2.

dy

dx
(0) = 1.

This equation has a general solution that involves two arbitrary constants
which are found by substituting the two initial conditions into both the
general solution and its derivative and then solving the resulting system of
linear equations.

Give an interactive dialogue in a CAS similar to the one in Figure 2.8,
which finds the general solution to the differential equation, sets up the
equations for the arbitrary constants, solves for the arbitrary constants,
and then substitutes them back into the general solution. Use a CAS’s
command for solving a differential equation to obtain the general solution
to the differential equation, but don’t use this command to obtain the
arbitrary constants in the solution. Rather, use statements similar to those
in Figure 2.8 to obtain the arbitrary constants. The last statement in the
dialogue should return an equation equivalent to

y(x) = (1/10) sin(x)− (1/10) cos(x) + (36/5)e−2 x − (51/10) e−3 x.

3. (a) Consider the polynomial y = ax3 + b x2+ c x+ d. Give an interactive
dialogue in a CAS that finds the coefficients a, b, c, and d such that
at x = 2,

y = 5,
dy

dx
= −2, d2y

dx2
= 2,

d3y

dx3
= −3.

The last statement should return the polynomial with the numerical
values for the coefficients.

(b) Use the dialogue to show there are infinitely may expressions of the
form y = (a x+ b)/(c x+ d) that satisfy the conditions in part (a).

(c) Use the dialogue to show it is impossible to find an expression of the
form y = (a x+ b)/(c x+ d) that satisfies the conditions

y = 1,
dy

dx
= 2,

d2y

dx2
= 3,

d3y

dx3
= 4.

2.2 Expression Evaluation

The term expression evaluation (or just evaluation) refers to the actions
taken by a CAS in response to an input expression. These actions include:

1. the analysis of the structure of an expression and the translation
of this structure into an internal form that is used by the CAS to
represent the expression;
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2. the evaluation of assigned variables and mathematical operators that
appear in an expression; and

3. the application of some elementary algebraic and trigonometric sim-
plification rules.

In this section we consider the evaluation of variables and operators,
and take a brief look at the simplification process. Expression structure is
described in detail in Chapter 3.

Variable and Operator Evaluation

Figure 2.13 shows an MPL dialogue that gives some examples of variable
and operator evaluation. At <1> the expression t+ 1 is assigned to x and
at <2> a polynomial in x is assigned to y. Since x has been assigned, its
value is included in the expression for y. In a similar way at <3>, the
values for x and y are included in the expression and the Factor operator
is evaluated. Statements <4> and <5> show that the evaluation process
applies to function names as well as other variables in an expression.

But now, what happens when the value of an assigned variable is an-
other expression which also contains assigned variables? Statements <6>
through <9> illustrate what can happen in this situation. At <6>, <7>,
and <8>, the variables u, v, and w are assigned values where all variables
to the right of the assignment symbols are unassigned. What is the value of
u2 after the execution of these assignments? Statement <9> contains two
responses that illustrate two different approaches to variable evaluation.
In the first approach, called single-level evaluation, the value of u is the
value it was originally assigned (v + 2), and the assigned value of v in this
expression is ignored. In other words, with single-level evaluation only one
level of active assignments is used.

In the second approach, called multi-level evaluation, the evaluation
process uses all active assignments. In this case, the value of u2 is obtained
using three levels of assignments

u2 → (v + 2)2 → (w2 + 2)2 → ((t+ 3)2 + 2)2. (2.20)

Since some systems provide a way to control the evaluation level, MPL
provides the Evaluate operator for this purpose. At <10>, we evaluate u2

using two levels of assignments.
Occasionally, it is useful to suppress the evaluation of a variable or

operator. We denote this operation in MPL by placing the variable or
operator name in quotes. For example, at <11> we suppress evaluation of
the Derivative operator and at <12> suppress evaluation of the assigned
variable w. Finally, there are times when it is necessary to unassign or
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<1> x := t+ 1;
→ x := t+ 1;

<2> y := x2 + 4 ∗ x+ 4;

→ y := (t+ 1)2 + 4(t+ 1) + 4

<3> x ∗ Factor(y);
→ (t+ 1)(t+ 3)2

<4> z := f ;
→ f ;

<5> z(x);
→ f(t+ 1)

<6> u := v + 2;
→ u := v + 2;

<7> v := w2;
→ v := w2;

<8> w := t+ 3;
→ w := t+ 3

<9> u2;

→ (v + 2)2 (single-level evaluation)
→ ((t+ 3)2 + 2)2 (multi-level evaluation)

<10> Evaluate(u2, 2);
→ (w2 + 2)2

<11> ”Derivative”(t2, t);

→ d (t2)

d t

<12> Derivative(”w”, t);
→ 0

<13> Unassign(w);
→ w

<14> Algebraic expand((w + 1) ∗ (w + 2));

→ w2 + 3w + 2

Figure 2.13. An MPL dialogue that shows examples of variable and operator
evaluation. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)
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MPL Maple Mathematica MuPAD

multi-level multi-level multi-level multi-level
(dialogues), (interactive mode), in (interactive mode),
single-level single-level interactive mode single-level

(in procedures) (in procedures) and (in procedures)
procedures

control
evaluation

level
Evaluate(u, n) eval(u,n) not available level(u,n)

suppress
evaluation
”u” ’u’ HoldForm[u] hold(u)

”Derivative”(u, x) ’diff’(u,x) HoldForm[D][u,x], hold(diff)(u,x)

and release
suppressed
evaluation

with
ReleaseHold[u]

Unassign(u) unassign(’u’) u = . delete(u)

Figure 2.14. Evaluation concepts in Maple, Mathematica, and MuPAD.

remove the value of an assigned variable. In MPL, the Unassign operator
is used for this purpose. At <13>, we apply Unassign to w, which means
at <14> w acts as a symbol in the mathematical expression.

In Figure 2.14, we summarize the evaluation concepts considered above
in the Maple, Mathematica, and MuPAD systems. Observe that all three
systems use multi-level evaluation in the interactive mode, while both
Maple and MuPAD switch to single-level evaluation inside procedures7. In
MPL, we also use multi-level evaluation in dialogues, and following Maple
and MuPAD, use single level evaluation in procedures.

Automatic Simplification

The term automatic (or default) simplification refers to the mathematical
simplification rules that are applied to an expression during the evaluation
process. In computer algebra systems, this usually involves the “obvious”
simplification rules from algebra and trigonometry that remove extraneous
symbols from an expression and transform it to a standard form.

7Procedures in a CAS language are like procedures or functions in a conventional
programming language. A procedure in the Maple language is given in Figure 1.3 on
page 6. We consider procedures in Chapter 4.
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<1> 2 + 3/4 + 5/6;

→ 43

12
<2> x+ y + 2 ∗ x;

→ 3x+ y

<3> x ∗ y ∗ x2;
→ x3y

<4> 1 ∗ x3 + a ∗ x0 + b ∗ x1 + 0 ∗ x2;

→ a+ b x+ x3

<5> x ∗ y + 3 ∗ y ∗ x;
→ 4x y

<6> sin(π/2);
→ 1

<7> ln(e2);
→ 2

<8> arctan(1);
→ π/4

<9> ı2;
→ − 1

<10> e(−ı∗π);
→ − 1

<11> 0 ≤ 1 and 1 ≤ 2;
→ true

<12> P and P and Q;
→ P and Q

Figure 2.15. An MPL dialogue that shows some examples of automatic simplifi-
cation. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

The MPL dialogue in Figure 2.15 illustrates some of these obvious sim-
plifications. Example <1> shows a simplification that involves the sum
of rational numbers. Example <2> shows that automatic simplification
combines numerical coefficients of like terms. The next example <3> illus-
trates a similar simplification in which integer exponents of the common
base x are combined. Example <4> illustrates some simplification rules
that involve the integers 0 and 1. Notice that after evaluation, the x3 term
appears at the right end of the expression. This reordering, which is an
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application of the commutative law of addition, serves to put the result in
a more readable form and, in some cases, contributes to the simplification
process8. The next example <5> illustrates this point. To simplify this
expression, the term 3 ∗ y ∗ x is first reordered (using the commutative law
for multiplication) to 3 ∗ x ∗ y after which the coefficients of the two like
terms are combined. Examples <6>, <7>, and <8> illustrate automatic
simplification rules that involve known functions, while Examples<9> and
<10> illustrate simplification rules that involve reserved symbols.

Examples <11> and <12> illustrate the automatic simplification rules
that are applied in some systems to logical expressions as data objects9. In
Example <12>, P and Q are unassigned identifiers and the simplification
follows from the general logical rule P and P → P.

The examples in Figure 2.15 are roughly similar to what happens in a
real computer algebra system. However, since there is no consensus about
which simplification rules should be included in automatic simplification,
the process can vary somewhat from system to system.

Figure 2.16 shows an interactive dialogue with the Macsyma system
that shows what happens when automatic simplification is suppressed. At
the prompt (c1) we assign an expression to u and at (c2) turn off the
automatic simplifier by assigning the value false to the variable simp. At
(c3) we differentiate u and obtain an expression that is so involved it is
difficult to interpret10. At (c4) we turn the automatic simplifier back on
and at (c5) obtain a much more reasonable form for the derivative.

In MPL (as in a CAS), all expressions in dialogues and computer pro-
grams operate in the context of automatic simplification. This means:

• All input operands to mathematical operators are automatically sim-
plified before the operators are applied.

• The result obtained by evaluating an expression is in automatically
simplified form.

Since automatic simplification is so central to the programming process, it
is a good idea to understand which simplification rules are applied by the
process and which are not. For now, the exercises in this section can be
used to explore the automatic simplification process in a CAS.

8The reordering process in Mathematica and MuPAD is similar to what is described
here. The reordering process in Maple is handled in a different way (see Cohen [24],
Section 3.1).

9Maple obtains <11> and <12>. Mathematica obtains <11>, but not <12>. Mu-
PAD obtains <12>, but not <11>.

10Notice that Macsyma uses logarithmic differentiation to differentiate ex2
. Logarith-

mic differentiation provides a way to differentiate general powers of the form f(x)g(x).
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(c1) u : a*x + x*exp(x∧2);

(d1) x ex2
+ a x

(c2) simp : false;

(d2) false

(c3) diff(u,x);

(d3) 1 a+ 0 x+ ex2 (
e−1x2 0 + log(e) (2x)

)
x+ 1 ex2

(c4) simp : true;

(d4) true

(c5) diff(u,x);

(d5) 2 x2 ex2
+ ex2 + a

Figure 2.16. An interactive dialogue with the Macsyma system that shows what
happens when automatic simplification is suppressed.

In Chapter 3, we show how automatic simplification modifies the struc-
ture of expressions, which in turn leads to simpler algorithms and programs.
In Cohen [24], Chapter 3, we give the formal algebraic properties of au-
tomatically simplified expressions and describe an algorithm that obtains
the simplified form.

Exercises

1. (a) Consider the following transformations of powers11:

i. x2 x3 → x5.

ii. x1/2 x1/3 → x5/6.

iii. xa xb → xa+b.

11Some of the power transformations in this problem are only valid in certain (real or
complex) contexts.
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iv. (x2)3 → x6.

v. (xa)2 → x2 a.

vi. (x2)1/2 → |x|.
vii. (x1/2)2 → x.

viii. (x2)a → x2 a.

ix. (x y)2 → x2 y2.

x. (x y)1/3 → x1/3 y1/3.

xi. (x y)a → xa ya.

Which of these transformations is obtained with automatic simplifi-
cation?

(b) Based on the data obtained in part (a), give a summary of how the
power translations are applied in automatic simplification.

2. The algebraic operations addition and multiplication obey the following
distributive laws:

a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c

(a) Consider the following transformations which are based on these laws:

i. 2 x+ 3x → 5x.

ii. (1 + x) + 2 (1 + x) → 3 (1 + x).

iii. 2 x+
√
2x → (2 +

√
2)x.

iv. a x+ b x → (a+ b) x.

v. (a+ b)x → a x+ b x.

vi. 2 (x+ y) → 2x+ 2 y.

vii. −(x+ y) → −x − y.

viii. a (x+ y) → ax+ a y.

Which of the these transformations are obtained with automatic sim-
plification?

(b) Based on the data obtained in part (a), give a summary of how the
distributive laws are applied in automatic simplification.

3. (a) Consider the following transformations of the sin function:

i. sin(0) → 0.

ii. sin(π/2) → 1.

iii. sin(π/5) →
√

2 5−
√

(5)

4
.

iv. sin(π/60) →
√

5+
√

5

8
−

√
5+

√
5
√

3

8
− −

√
5

4 +1/4
√

2

4

−
√

5
4 +1/4

√
2
√

3

4
.

v. sin(15π/16) → sin(π/16).

vi. sin(−x) → − sin(x).

vii. sin(−x+ 1) → − sin(x − 1).
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viii. sin(x+ π/2) → cos(x) .

ix. sin(x+ 2π) → sin(x).

x. sin(a+ b) → sin(a) cos(b) + cos(a) sin(b).

xi. sin(a) cos(b) + cos(a) sin(b) → sin(a+ b).

xii. sin2(x) + cos2(x) → 1.

Which of the these transformations is obtained with automatic sim-
plification?

(b) Based on the data obtained in part (a), give a summary of the trans-
formation rules for the sin function which are obtained with automatic
simplification.

4. In this problem we ask you to explore how the indeterminate forms 0/0
and 00 are handled in automatic simplification.

(a) Enter each of the following expressions in the interactive mode of a
CAS.

i. 0/0.

ii. 00.

iii. (a (x+ y)− ax − a y)/(x − x).

iv. (x − x)/(a (x+ y)− ax − a y).

v. (x − x)a (x+y)−a x−a y.

vi. (a (x+ y)− ax − a y)x−x.

(b) Based on the data obtained in part (a), give a summary of how inde-
terminate forms are handled by automatic simplification.

5. Enter each of the following expressions in the interactive mode of a CAS:

−b, a − 2 ∗ b, 1/a2, a/b.

Although each of the expressions is returned in the form it was entered,
some “hidden”transformations have been applied. In other words, the
internal form used by the CAS is different from the displayed form. Use
the operand selection operator in a CAS to determine the internal form.
(Use op in Maple and MuPAD, and Part in Mathematica.)

6. This exercise refers to the Macsyma dialogue in Figure 2.16 on page 55.
What simplification rules are used to obtain (d5) instead of (d3)?

7. Consider a CAS such as Mathematica or MuPAD where terms in a sum
or factors in a product are reordered as part of automatic simplification.
Experiment with the CAS to determine how it carries out the ordering pro-
cess. Try polynomials such as <4> in Figure 2.15 as well as more involved
expressions. For example, are any terms or factors ini

1 + z y2 + (a+ 1) b+ c
J
(a+ 1)

reordered by automatic simplification?
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2.3 Mathematical Programs

Simply put, an MPL mathematical program (or mathematical algorithm) is
a sequence of statements in the MPL language that can be implemented
in terms of the operations and control structures available in a computer
algebra programming language. The design and implementation of math-
ematical programs is a major theme of this book.

In a sense, the MPL dialogue in Figure 2.8 is an example of a simple
interactive program. What we really have in mind, however, are more
involved programs that have the following features:

1. The statements in the program are viewed collectively as a unit which
either is entered at a single prompt or input region in the interactive
mode or, for larger programs, is contained in a text file that is loaded
into the system.

2. The program statements include mathematical expressions, assign-
ment statements, decision statements, iteration statements, and func-
tion and procedure definitions12.

3. As with conventional programs, some statements serve as input state-
ments, some statements are for intermediate calculations for which
the output is not displayed, and some statements serve as output
statements that display the result of a computation.

4. The program is designed in a general way so that it performs a cal-
culation for a class of problems rather than for a single problem.

For an example of a program that incorporates some of these points,
let’s consider again the computation of the first and second derivatives of
an implicitly defined function such as

exp(x) + y3 = 4 x2 + y.

This problem, which was considered in Section 2.1, involves the manip-
ulations in Equations (2.8) through (2.12), and an MPL dialogue that
performs the calculations is given in Figrue 2.8 on page 42. This dialogue
assumes that x is the independent variable, y is the dependent variable,
and requires that y be expressed as the function form y(x).

In this section we modify the program to permit a choice of mathe-
matical variable names and do not require that the dependent variable be

12Decision statements, iteration statements, and function and procedure definitions
are described in Chapter 4.
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1 u in := exp(s) + t4 = 4 ∗ s2 + t :
2 x var := s :
3 y var := t :
4 u new := Substitute(u in, y var = y var(x var)) :
5 u p := Derivative(u new, x var):
6 F irst derivative := Solve(u p,Derivative(y var(x var), x var);
7 u pp := Derivative(F irst derivative, x var) :
8 Second derivative := Substitute(u pp, First derivative);

Figure 2.17. An MPL mathematical program that obtains the first and second
derivatives of an implicit function. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

expressed as a function form. By simply modifying the input statements,
we can obtain

dy

dx
,

d2y

dx2
or

dx

dy
,

d2x

dy2
,

or, for that matter, if the input expression is expressed in terms of the
variables s and t as exp(s) + t3 = 4 s2 + t, the derivatives

dt

ds
,

d2t

ds2
or

ds

dt
,

d2s

dt2
.

An MPL program that performs these calculations is given in Fig-
ure 2.17. Observe that some statements are terminated by a colon (lines 1,
2, 3, 4, 5, and 7) and some by a semicolon (lines 6 and 8). This notation
is interpreted as follows: statements that end with a colon suppress the
display of the output, while those that end with a semicolon display the
output. Most computer algebra systems allow control of output display,
although the termination symbols vary from system to system13.

Lines 1 through 3 serve as input statements for the program. Since the
program is designed to allow a choice of mathematical variable names, we
have chosen programming variable names (u in, x var , y var , etc.) that are
unlikely to be used as mathematical variables. At line 1 we assign an input
expression, and at lines 2 and 3, we initialize two programing variables
x var and y var which contain the mathematical variables (s and t for

13 In both Maple and MuPAD, statements that are terminated with a colon suppress
the output, while those that are terminated with a semicolon display the output. In
Mathematica, statements that are terminated with a semicolon suppress the output,
while those without a terminating symbol display the output.
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this input) which serve as the independent and dependent variables. With
these two assignments, the output of the program is the derivatives

dt

ds
and

d2t

ds2
.

The derivative operations at lines 5 and 7 require that the dependent vari-
able t be expressed as the function form t(s). Since this is not done in line
1, we account for this at line 4 with a substitution that replaces each t in
u in by t(s). Except for changes in notation, lines 5 through 8 are similar
to those in Figure 2.8. With the choice of input, the outputs from lines 6
and 8 are

dt(s)
ds

=
−exp(s) + 8 s

4 t(s)3 − 1
, (2.21)

d2t(s)
ds2

=
−exp(s) + 8
4 t(s)3 − 1

− 12
(−exp(s) + 8 s)2 t(s)2

(4 t(s)3 − 1)3
. (2.22)

Observe that the dependent variable t is expressed in function notation
t(s), even though this is not done in the input at line 1. In Exercise 1 we
describe a modification of the program that removes this function notation
from the output.

Case Study: General Quadratic Equations and Rotation of Axes

We conclude this section with a more involved MPL program that ob-
tains the change of form of a quadratic equation under rotation of coordi-
nate axes.

A general quadratic equation in x and y has the form

Ax2 +B xy + C y2 +Dx+ E y + F = 0, (2.23)

where the coefficients are rational numbers and at least one of the coef-
ficients A,B,C �= 0. This equation represents one of the following eight
graphs in the plane:

1. a circle (such as x2 + y2 − 1 = 0).

2. an ellipse (such as x2 + 2 y2 − 1 = 0).

3. a single point (such as x2 + y2 = 0 or (x, y) = (0, 0)).

4. an empty graph (such as x2 + y2 = −1).
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5. a hyperbola (such as x2 − y2 = 1).

6. a parabola (such as x2 − y = 0).

7. two intersecting lines (such as x2 − y2 = 0 or x = ±y).
8. a single line (such as x2 + 2 x y + y2 = (x+ y)2 = 0 or x = −y).

If B = 0 in Equation (2.23), it is a simple matter to determine the
type of graph and some of its important features by using the techniques of
analytical geometry. If B �= 0, the analysis is more involved. However, by
rotating the coordinate system, it is possible to transform Equation (2.23)
into a general quadratic equation in terms of new variables (u, v) so that
the coefficient of the u v term is zero.

Consider the coordinate rotation shown in Figure 2.18, where the (u, v)
coordinate system is rotated by an angle α from the (x, y) system. To find
a relationship between the (x, y) and (u, v) coordinates, we have

x = r cos(α+ β) y = r sin(α+ β) (2.24)

and
u = r cos(β) v = r sin(β). (2.25)

x

y

y uv

P (x, y) or (u, v)

x

u

α

β

v

Figure 2.18. The point P in the (x, y) and (u, v) coordinate systems.



62 2. Elementary Concepts of Computer Algebra

By expanding the trigonometric expressions in Equations (2.24), we obtain

x = r cos(α) cos(β) − r sin(α) sin(β), (2.26)
y = r sin(α) cos(β) + r cos(α) sin(β). (2.27)

Substituting Equations (2.25) into Equation (2.27), we obtain the coordi-
nate transformation

x = u cos(α) − v sin(α), y = u sin(α) + v cos(α). (2.28)

By substituting Equations (2.28) into the original Equation (2.23), we ob-
tain a quadratic equation in the (u, v) system

A′ u2 +B′ u v + C′ v2 +D′u+ E′ v + F ′ = 0, (2.29)

where

A′ = A cos2(α) +B cos(α) sin(α) + C sin2(α),
B′ = B (cos2(α) − sin2(α)) + 2 (C −A) sin(α) cos(α),
C′ = A sin2(α) −B sin(α) cos(α) + C cos2(α), (2.30)
D′ = D cos(α) + E sin(α),
E′ = −D sin(α) + E cos(α),
F ′ = F.

To find an α so that the coefficient of the u v term B′ = 0, we use the
trigonometric reduction rules

2 sin(α) cos(α) = sin(2α), cos2(α) − sin2(α) = cos(2α),

so that the second equation in (2.30) becomes

B′ = B cos(2α) + (C −A) sin(2α).

Setting B′ = 0, we obtain when B �= 0

cot(2α) =
A− C

B
. (2.31)

(When B = 0, a rotation is not needed and so α = 0.) When 0 < α < π/2,
the function cot(2α) takes on all real values. Therefore, Equation (2.31)
defines a unique rotation α in this interval.

Example 2.2. Consider the quadratic equation x2 + 2 x y + y2 = 0. Since
the left side can be factored as (x+ y)2, the quadratic equation represents
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the straight line y = −x. To find the equation of the line in the (u, v)
system, we have from Equation (2.31)

cot(2α) =
A− C

B
=

1 − 1
2

= 0

and so α = π/4. Using Equation (2.30), we obtain the simple equation
u = 0 for the line in the new coordinate system. �

To apply Equation (2.30) in more involved situations, we need expres-
sions for sin(α) and cos(α). Since 0 < 2α < π, cos(2α) has the same sign
as cot(2α). Therefore Equation (2.31) implies

cos(2α) =
B

|B|
A− C√

(A− C)2 +B2
(2.32)

where B/|B| is included so that cos(2α) has the correct sign. We obtain
values for sin(α) and cos(α) with Equation (2.32) and the identities

cos(α) =

√
1 + cos(2α)

2
, sin(α) =

√
1 − cos(2α)

2
.

By using these identities together with Equation (2.32), we obtain the
coefficients in Equation (2.30) in the new system without finding α.

Before giving a program that performs these calculations, we describe
two polynomial operators that are available in most computer algebra sys-
tems. Consider the polynomial in x

w = wnx
n + wn−1x

n−1 + · · · + w0, (2.33)

where the coefficients wj can be integers, fractions, symbols, or even more
involved expressions, x represents a variable or a more involved expres-
sion, and n is a non-negative integer. Recall, the largest power of x in a
polynomial is called the degree of the polynomial.

The two most important operators for polynomials are the Degree and
Coefficient operators14. The operator Degree(w, x) returns the degree of
the polynomial w with respect to an expression x.

Example 2.3.
Degree(3 x2 + x+ 5, x) → 2,

Degree(a sin2(x) + b sin(x) + c, sin(x)) → 2.
14 The Degree and Coefficient operators are described in greater detail in Chapter

6. In Chapter 6, these operators are called Degree gpe and Coefficient gpe, where the
suffix gpe stands for general polynomial expression (see Definition 6.14 on page 223).
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Observe that in the second example the expression is considered a polyno-
mial in the function form sin(x). (Implementation: Maple (mws), Mathe-
matica (nb), MuPAD (mnb).) �

The operator Coefficient(w, x, j) returns the coefficient wj of xj in
Equation (2.33).

Example 2.4.
Coefficient(3 x2 + x+ 5, x, 2) → 3,

Coefficient(a sin2(x) + b sin(x) + c, sin(x), 2) → a,

Coefficient(a x+ b x+ c, x, 1) → a+ b,

Coefficient(Coefficient(2 x2 + 3 x y + 4 y2 + 5 x+ 6 y + 7, x, 1), y, 0) → 5.

In the last example, the inner application of the Coefficient operator obtains
3 y+5 and the outer application obtains the value 5. Maple (mws), Math-
ematica (nb), MuPAD (mnb).) Maple (mws), Mathematica(nb), MuPAD
(mnb).) �

The degree and coefficient operations in Maple, Mathematica and Mu-
PAD are given in Figure 2.4 on page 35.

An MPL program that obtains an expression for the polynomial in the
(u, v) coordinate system is given in Figure 2.19. The input to the program
is given in the assignment at line 1. Notice that we permit both sides
of the equation to contain terms of the polynomial and combine the two
sides using the Operand selection operator. The output of the program
is the equation obtained by evaluating the expression in line 17. For the
expression in line 1, the output is the equation (1/2)u2 − (1/2) v2 − 1 = 0.

The programs considered so far are quite elementary. In later chapters
we introduce other MPL mathematical operators and language features
that enable us to construct more involved and interesting programs.

Exercises
For the exercises in this section, the following operators are useful:

• In Maple, the coeff, expand, abs, diff, subs, solve, op, int, and dsolve

operators. (Implementation: Maple (mws).)

• In Mathematica, the Coefficient, Expand, Abs, D, Derivative,
ReplaceAll, Solve, Part, Integral, and DSolve operators. (Imple-
mentation: Mathematica (nb).)

• In MuPAD, the coeff, expand, abs, diff, subs, solve, op, int, and ode

operators (Implementation: MuPAD (mnb).)
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1 eq := x ∗ y = 1 :
2 w := Operand(eq, 1) −Operand(eq, 2) :
3 A := Coefficient(w, x, 2) :
4 B := Coefficient(Coefficient(w, x, 1), y, 1) :
5 C := Coefficient(w, y, 2) :
6 D := Coefficient(Coefficient(w, x, 1), y, 0) :
7 E := Coefficient(Coefficient(w, y, 1), x, 0) :
8 F := Coefficient(Coefficient(w, x, 0), y, 0) :

9 g := B/Absolute value(B) ∗ (A − C)/((A − C)2 +B2)1/2 :

10 ca := ((1 + g)/2)1/2 :

11 sa := ((1− g)/2)1/2 :
12 Ap := A ∗ ca2 +B ∗ ca ∗ sa+ C ∗ sa2 :
13 Cp := A ∗ ca2 − B ∗ ca ∗ sa+ C ∗ sa2 :
14 Dp := D ∗ ca+ E ∗ sa :
15 Ep := −D ∗ sa+ E ∗ ca :
16 Fp := F :
17 Ap ∗ u2 + Cp ∗ v2 +Dp ∗ u+ Ep ∗ v + Fp = 0;

Figure 2.19. An MPL program that transforms a quadratic polynomial in x and
y to a quadratic polynomial in u and v without the u ∗ v term. (Implementation:
Maple (mws), Mathematica (nb), MuPAD (mnb).)

1. The output of the program in Figure 2.17 is given in Equations (2.21) and
(2.22). Observe that the dependent variable t is displayed as a function
form. Modify the program so that the output is displayed without function
forms including the function forms that appear in the derivative symbols.

2. An implicit equation f(x, y) = K defines a family of curves that depends
on the parameter K. We define two families f(x, y) = K and g(x, y) = C
to be orthogonal trajectories if, whenever a curve f(x, y) = K intersects a
curve g(x, y) = C, the tangent lines (derivatives) to the curves at the point
of intersection are perpendicular. For example, the circles x2 + y2 = K
(with K > 0) and the straight lines y/x = C are orthogonal trajectories.
Indeed, using implicit differentiation, a circle has a tangent with slope

dy

dx
= −x/y,

while the straight line has slope

dy

dx
= y/x.

Therefore, at a point of intersection, the circle and line have derivatives
that are negative reciprocals and so they intersect at a right angle.
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For a given family f(x, y) = K, we can find the family of curves that is
orthogonal to it by solving a differential equation. For example, for the
family of parabolas f(x, y) = y− x2 = K, we first differentiate (implicitly)
to obtain a differential equation satisfied by the family of curves

dy

dx
− 2x = 0.

Next, we obtain the differential equation for the orthogonal family by re-
placing the derivative symbol by its negative reciprocal. Therefore, the
orthogonal family to the parabolas satisfies the differential equation

dy

dx
+ 1/2 x = 0.

Solving this equation we obtain the orthogonal family g(x, y) = log |x| +
2y = C.

Now let u represent a family of curves in the form f(x, y) = K. Give
a program that finds the orthogonal family to f(x, y) = K. Test your
program for the families x2 + y2 = K, y − x2 = K, and x2 − y2 = K.

3. Let w be a general quadratic Equation (2.23) in x and y with A �= 0, C �= 0
and B = 0. Give a program that completes the square in x and y. For
example, the program should transform 2x2 + 3 y2 − 4x − 12 y + 10 = 0
to 2 (x − 1)2 + 3 (y − 2)2 − 4 = 0. (Do not use the Factor operator in this
program.)

4. A first order linear differential equation has the form

dy

dx
= p(x) y + q(x). (2.34)

It is shown in books on differential equations that the general solution to
this equation is

y = (1/u)

W�
u q dx

}
+ C (1/u), (2.35)

where

u = exp

W
−
�

p(x) dx

}
and C is an arbitrary constant. The arbitrary constant is found by substi-
tuting an initial condition y(x0) = y0 into the general solution and solving
for the constant. Give a program that finds the general solution to a lin-
ear differential equation and uses an initial condition to find the arbitrary
constant. For example, for

dy(x)

dx
= x y(x) + x, y(1) = 2, (2.36)

the solution returned is equivalent to

y(x) = −1 + 3 exp(−1/2) exp((−1/2) x2).

Assume the input to your program is similar to Equations (2.36).
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5. A linear differential Equation (2.34) has a general solution of the form

y = f(x) + C g(x) (2.37)

where C is an arbitrary constant (see Equation (2.35) above). In this
problem, we are given an expression in the form (2.37) and find the first
order linear differential equation which has the expression as a general
solution. For example, given

y = x ln(x) + C x, (2.38)

we can find the differential equation by first solving Equation (2.38) for
the arbitrary constant

C =
y − x ln(x)

x
. (2.39)

Differentiating Equation (2.38) we obtain

dy

dx
= 1 + ln(x) + C,

and substituting the value for C in Equation (2.39) into this expression we
obtain

dy

dx
= y/x+ 1.

Give a program that finds the differential equation using steps similar to
the ones in this example. Assume the input expression has the form (2.37)
where g(x) �= 0. Test your program for the functions y = x ln(x) + C x,
y = x+C sin(x), and y = exp(x) +C sin(x).

6. A linear second order differential equation has the form

d2y

dx2
= p(x)

dy

dx
+ q(x) y + r(x). (2.40)

This equation has a general solution of the form

y = c1 f(x) + c2 g(x) + h(x), (2.41)

where c1 and c2 are arbitrary constants. In this problem, we are given
an expression in the form (2.41) and find a second order linear differential
equation which has the expression as a general solution. For example, for

y = c1 x+ c2 x2 + x3,

we obtain
d2y

dx2
= (2/x)

dy

dx
− (2/x) y + 2x.

Give a program that has an expression of the form Equation (2.41) as input
and finds the differential equation. The approach is similar to the one used
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in Exercise 5, except now we must eliminate two arbitrary constants c1 and
c2 from the second derivative of the input expression. This problem involves
the solution a system of two equations for the two unknowns c1 and c2, and
to guarantee a solution to the system, assume that f(x) g′(x)− f ′(x) g(x)
is not identically 0.

7. The method of Lagrange multipliers is a technique for finding the maximum
and minimum values of a function of several variables when the independent
variables are subject to one or more constraints15. For example, to find
the maximum and minimum values of f(x, y) where x and y are subject to
the side relation g(x, y) = c, form a new function

L(x, y, λ) = f(x, y)− λg(x, y),

where the variable λ is called the Lagrange multiplier. Next solve the
following three simultaneous equations for the unknowns x, y, and λ:

∂L

∂x
= 0,

∂L

∂y
= 0,

∂L

∂λ
= 0. (2.42)

The maximum and minimum values (if they exist) occur at the points (x, y)
that are solutions to this system. For example, if f = x − x y + 2 and the
side relation is the line x−2 y = 1, then Equations (2.42) have the solution

λ = 3/4, x = 3/2, y = 1/4,

and the maximum value of f occurs at this point. Give a program that
sets up the equations in (2.42) and finds their solution.

8. Let w be a general quadratic equation in x and y with A = −C �= 0.

(a) Show there is a rotation of axes α that gives A′ = 0 and C′ = 0.

(b) Give a program that finds the equation in the (u, v) system defined
by the rotation in part (a).

(c) Use the algorithm in part (b) to find the equation for x2+xy−y2−1 =
0 in the (u, v) system.

2.4 Sets and Lists

In computer algebra languages both sets and lists are used to represent
collections of mathematical expressions. In this section we give the math-
ematical properties of sets and lists, and describe the operations that are
applied to each of them.

15See Simmons [88] for an elementary discussion of the method.
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Sets

In mathematics, a set is defined as simply a collection of objects. In MPL,
a set is a finite collection of expressions that is surrounded by the braces {
and }. For example, the expression

{x+ y = 1, x− y = 2}

represents a set with two members, the equations x+ y = 1 and x− y = 2.
Following mathematical convention, MPL sets satisfy the two proper-

ties:

1. The contents of a set does not depend on the order of the elements in
the set. This means that {u, v} and {v, u} are the same set.

2. The elements of a set are distinct. In other words, a set cannot
contain duplicate elements.

In MPL, sets are used in situations where the order of expressions in the
set is not significant. For example, sets are used in the expression

Solve({2 x+ 4 y = 3, 3 x− y = 7}, {x, y}),

since the order of both the equations and the variables does not change the
result of the operation.

Algebraic Operations On Sets

Let A and B represent sets and let x represent an arbitrary expression.
The following operations are defined for sets:

• Union of Sets, A ∪ B. The union of sets A and B is a new set that
contains all the elements in A or in B or in both sets. For example,

{a, b, c, d} ∪ {c, d, e, f} → {a, b, c, d, e, f}.

• Intersection of Sets, A ∩ B. The intersection of sets A and B is a
new set that contains all the elements that are in both A and B. For
example,

{a, b, c, d} ∩ {c, d, e, f} → {c, d}.

• Difference of Sets, A ∼ B. The difference of sets A and B is a new
set that contains all the elements that are in A but not in B. For
example,

{a, b, c, d} ∼ {c, d, e, f} → {a, b}.
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MPL Maple Mathematica MuPAD

set notation
{a, b, c} {a,b,c} {a,b,c} {a,b,c}

∅ { } { } { }
A ∪ B A union B Union[A,B] A union B

A ∩ B A intersect B Intersection[A,B] A intersect B

A ∼ B A minus B Complement[A,B] A minus B

x ∈ A member(x, A) MemberQ[x,A] contains(A,x)

Figure 2.20. Set operations in Maple, Mathematica, and MuPAD. (Implementa-
tion: Maple (mws), Mathematica (nb), MuPAD (mnb).)

• Set membership, x ∈ A. The expression x ∈ A evaluates to true if x
is in A, and otherwise evaluates to false. For example,

a ∈ {a, b, c, d} → true,
e ∈ {a, b, c, d} → false.

In the course of manipulating sets, we might obtain the empty set or
the set with no elements. Following mathematical convention, we represent
this set with the reserved symbol ∅. For example, {a, b, c} ∩ {d, e, f} → ∅.

Most computer algebra systems provide sets along with the algebraic
operations described above (see Figure 2.20).

Set Operations on Symbols
Some computer algebra systems allow variable symbols as operands of the
set operations ∪, ∩, and ∼, and obtain general set identities as either part
of the automatic simplification process or as the output of an operator.
This facility is illustrated in the MuPAD dialogue in Figure 2.21. At the
first three prompts, automatic simplification obtains the identities

A ∪A ∪B = A ∪B,

A ∩ ∅ = ∅,
(A ∩B) ∼ (B ∩A) = ∅,

and at the fourth prompt, the expand operator obtains the distributive law
for sets

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C).

Similar results are obtained with the Maple system.
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• A union A union B;

A ∪B

• A intersect{ };
∅

• (A intersect B) minus (B intersect A);

∅
• expand(A intersect (B union C));

A ∩B ∪A ∩ C

Figure 2.21. General set identities in MuPAD (Implementation: Maple (mws),
MuPAD (mnb).)

Lists

An MPL list is a finite collection of expressions that is surrounded by the
brackets [ and ]. For example, the expression [y(x) = 3, x = 1] is a
list with two equations. The empty list, which contains no expressions, is
represented by [ ].

Lists are distinguished from sets by the following two properties:

1. The order of expressions in a list is significant. This means the ex-
pressions [y(x) = 3, x = 1] and [x = 1, y(x) = 3] represent different
lists.

2. Duplicate elements are permitted in a list. This means the expressions
[x, y] and [x, y, y] represent different lists.

In MPL, lists are used in situations where the order or duplication of
expressions is significant. For example, Figure 2.22 illustrates the effect of
order on the sequential substitution operation. The Sequential substitute
operator shown in the dialogue performs a sequence of substitutions. Since
the outcome of this operation depends on the order of substitutions, a list
is used to indicate this order. In <1>, the substitution y(x) = 3 occurs
before x = 2 while in <2> this order is reversed. Multiple substitutions,
including the Sequential substitute operator, are described in greater detail
in Section 3.3.
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<1> Sequential substitute(y(x) = m ∗ x+ b, [y(x) = 3, x = 2]);

→ 3 = 2m+ b

<2> Sequential substitute(y(x) = m ∗ x+ b, [x = 2, y(x) = 3]);

→ y(2) = 2m+ b

Figure 2.22. An MPL dialogue that illustrates the effect of order in a list on the
Sequential substitute operation. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

Primitive Operations on Lists

Let L, M , and N represent lists and let x represent an arbitrary expression.
The MPL operations for lists reflect the order preserving property:

• First(L). If L contains one or more expressions, the operator returns
the first expression in L. If L = [ ], the operator returns the symbol
Undefined. For example,

First([a, b, c]) → a.

• Rest(L). If L contains one or more expressions, the operator returns
a new list that contains all expressions in L except the first expression.
The original list L is not changed by this operation. If L = [ ], the
operator returns the symbol Undefined. For example,

Rest([a, b, c]) → [b, c].

• Adjoin(x, L). The operator returns a new list that contains the ex-
pression x followed by expressions in L. The original list L is not
changed by this operation. For example,

Adjoin(d, [a, b, c]) → [d, a, b, c].

• Join(L,M, . . . , N). The operator returns a new list that contains the
expressions in the list L followed by the expressions in M and so on.
For example,

Join([a, b], [b, c], [c, d, e]) → [a, b, b, c, c, d, e].
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MPL Maple Mathematica MuPAD

list notation
[a, b, c] [a,b,c] {a,b,c} [a,b,c]

empty list
[ ] [ ] { } [ ]

First(L) op(1,L) First[L] op(L,1)

Rest(L) [op(2..nops(L),L)] Rest[L] [op(L,2..nops(L)]

Adjoin(x, L) [x,op(L)] Prepend[L,x] append(L,x)

Join(L,M) [op(L),op(M)] Join[L,M] concat(L,M)

Reverse(L) see Fig. 2.24 Reverse[L] see Fig. 2.25
Delete(x, L) see Fig. 2.24 Delete[L, listlib ::

Position[L,x]] setDifference(L, [x])
x ∈ L member(x,L) MemberQ[x,L] contains(L,x)

Figure 2.23. List operations in Maple, Mathematica, and MuPAD. (Implemen-
tation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

• Reverse(L). The operator returns a new list with elements of the
list L in reverse order. The original list L is not changed by this
operation. For example,

Reverse([a, b, c]) → [c, b, a].

• Delete(x, L). This operator returns a new list with all instances of x
removed from L. The original list L is not changed by this operation.
For example,

Delete(b, [a, b, c, b]) → [a, c].

• List membership, x ∈ L. The operator returns true if x is in L, and
otherwise returns false. For example,

b ∈ [a, b, c] → true.

Most computer algebra languages provide lists and most of the list
operations described above (see Figure 2.23). Although Maple does not
provide the Reverse and Delete operators, and MuPAD does not provide
the Reverse operator, these operations can be defined with procedures (see
Figures 2.24 and 2.25).

Exercises
1. Let A = {a, b, c, d}, B = {b, d, e, f}, and C = {a, c, e, f}.

(a) Evaluate

i. A ∪ B.

ii. A ∩ B ∩ C.
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Reverse:=proc(L)
#Input
# L: a list
#Output
# a new list with the elements of L in reverse order
if L = [ ] or nops(L)=1 then RETURN(L)
else RETURN([op(Reverse([op(2..nops(L),L)])),op(1,L)])
fi
end:

Delete:=proc(x,L)
#Input
# L: a list
#Output
# a new list with all instances of x removed from L
local position;
if member(x,L,position) then
RETURN([op(1..position-1,L),

op(Delete(x,[op(position+1..nops(L),L)]))])
else RETURN(L)
fi
end:

Figure 2.24. Maple procedures for Reverse and Delete. (Implementation: Maple
(txt).)

iii. (A ∪ B) ∩ C.

iv. (A ∪ B) ∼ C.

v. d ∈ A.

(b) Implement each of the operations in part (a) with a CAS.

2. Let L = [a, b, c, d], M = [b, d, e, f ] and N = [a, c, e, f ].

(a) Evaluate

i. Rest(Join(L,M,N)).

ii. Adjoin(First(L),M).

iii. Join(Delete(a, L),Reverse(N)).

(b) Implement each of the operations in part (a) with a CAS.
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Reverse := proc(L)

/*Input

L: a list

Output

a new list with the elements of L in reverse order */

begin

if L = [ ] or nops(L)=1 then return(L)

else return([op(Reverse([op(L,2..nops(L))])),op(L,1)])

end_if

end_proc:

Figure 2.25. A MuPAD procedure for Reverse. (Implementation: MuPAD
(txt).)

3. Let M = [a, b, c, d].

(a) Give a sequence of MPL statements that performs each of the follow-
ing operations:

i. Obtain the last element of M .

ii. Form a new list with the expression e added to the end of M .

iii. Form a new list with the second expression removed from M .

(b) Implement each of the operations in part (a) with a CAS.

Further Reading
2.2 Expression Evaluation. The evaluation process in computer algebra sys-
tems is described in Fateman [37]. Evaluation in Maple is described in Heal,
Hansen, and Rickard [44]. Evaluation in Mathematica is described in Wolfram
[102]. Evaluation in MuPAD is described in Gerhard et al. [40].

2.3 Mathematical Programs. Programming in Maple is described in Mon-
agan et al. [69]. Programming in Mathematica is described in Wolfram [102].
Programming in MuPAD is described in Gerhard et al. [40].

2.4 Sets and Lists. Sets and set operations are described in Maurer and Ral-

ston [65].





3

Recursive Structure of
Mathematical Expressions

This chapter is concerned with the structure of mathematical expressions.
Since mathematical expressions are the data objects in computer algebra,
an understanding of this structure is essential for computer algebra pro-
gramming.

In Section 3.1 we introduce the concept of recursion and describe a
number of ways it is used in mathematics and mathematical algorithms.
In this chapter, recursion’s main role is to describe the structure of ex-
pressions. Since recursion is also an essential programming technique in
computer algebra, this topic is covered in detail in Chapter 5.

In Section 3.2 we describe two structural forms for mathematical ex-
pressions that correspond to the internal forms used by computer algebra
systems before and after automatic simplification. In addition, we intro-
duce four primitive operators that provide a way to analyze and construct
expressions. Finally, in Section 3.3 we describe a number of operators, in-
cluding the Free of and Substitute operators, for which the actions depend
primarily on the structure of an expression.

3.1 Recursive Definitions and Algorithms
In mathematics, a recursive definition or algorithm is one that is defined
in terms of a simpler version of itself or sometimes in terms of just an-
other version of itself. The recursion concept is fundamental to nearly all
of computer algebra. Indeed, recursiveness in one form or another plays
a crucial role in the implementation of many standard operations in com-
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puter algebra including simplification, substitution, factorization, solution
of equations, differentiation, and integration. In this section, we give a
brief introduction to recursion, and explain why it plays such an important
role in the manipulation of expressions.

For a simple example, let’s consider the operation n! which we first
define in a non-recursive way:

n! =
{

1 if n = 0,
1 · 2 · · · (n− 1) · n if n > 0. (3.1)

For n ≥ 1, the factorial operation is defined as the product of all integers
from 1 to n. This description does not apply for n = 0. Instead, we
define 0! = 1. This convention is a convenient and consistent one for many
applications that involve the factorial operation1.

As a consequence of the definition (3.1), for n > 0, n! = n · (n − 1)!.
This relationship forms the basis for a recursive definition of the factorial
operation:

n! =
{

1 if n = 0,
n · (n− 1)! if n > 0. (3.2)

This definition is recursive since for n > 0, n! is defined in terms of a
simpler factorial (n − 1)!. In this case the adjective simpler refers to the
factorial operation for a smaller integer value.

The approach in (3.2) is more than just another way to define the
factorial operation; it actually suggests another way to implement the cal-
culation. To see what we mean by this, consider first a computation based
on the non-recursive definition (3.1). An MPL procedure that performs
this calculation is given in Figure 3.1.

The procedure is expressed in the MPL notation and terminology that is
used throughout the book to describe mathematical algorithms. Although
we will have much to say about this aspect of our pseudo-language in
Chapter 4, the examples in this section are simple enough to be understood
without a detailed description of the language.

Here is a brief description of the terminology we use in the procedure.
A procedure definition in MPL is similar to a function definition in a con-
ventional programming language. The procedure declaration at the top of
Figure 3.1 gives the name Iter fact to the sequence of statements in lines 1
through 7. The procedure can be invoked by a statement such as

Iter fact(4) → 24.
1 For example, by defining 0! = 1, the binomial theorem can be expressed in the

compact form

(x + y)n =
n�

i=0

n!

i! (n− i)!
xn−iyi.
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Procedure Iter fact(n);
Input

n : non-negative integer;
Output

n!;
Local Variables

f, i;
Begin

1 if n = 0 then
2 Return(1)
3 else
4 f := 1;
5 for i = 1 to n do
6 f := f ∗ i;
7 Return(f)

End

Figure 3.1. An MPL iterative procedure for n!. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

Communication with the procedure is through the input parameter (n in
this case) and the Return statements in lines 2 and 7. The if-then-else
statement provides a way to select the appropriate course of action as
required by the definition (3.1), and the for statement provides a loop that
performs the computation. Since this procedure is based primarily on this
looping process, it is called an iterative procedure.

Let’s compare the iterative procedure to a factorial procedure based on
the recursive definition (3.2). First, observe how a numerical computation
based on (3.2) proceeds:

4! = 4(3!) = 4(3(2!)) = 4(3(2(1!))) = 4(3(2(1(0!))))
= 4(3(2(1(1)))) (3.3)
= 24.

To perform the calculation, we repeatedly apply the definition (3.2) until
the case n = 0 is encountered. Once this point is reached, the value 0!
is replaced by the value 1, and the numerical computation proceeds as
indicated by the parentheses in the second line of Equation (3.3).

Although this computation has an iterative ring to it, we can give an
MPL procedure that is a direct translation of the recursive definition which
does not utilize an explicit iteration statement (see Figure 3.2). For n > 0,



80 3. Recursive Structure of Mathematical Expressions

Procedure Rec fact(n);
Input

n : non-negative integer;
Output

n!;
Local Variables

f ;
Begin

1 if n = 0 then
2 f := 1
3 else
4 f := n ∗ Rec fact(n − 1);
5 Return(f)

End

Figure 3.2. An MPL recursive procedure for n!. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

the operator simulates the looping operation by calling on itself (line 4) to
perform a simpler version of the calculation. A procedure that calls itself
directly (as in this example) or indirectly through a sequence of procedures
is called a recursive procedure. The case n = 0 (lines 1 and 2) is referred
to as a termination condition for the procedure since it is defined directly
and does not require further calls on Rec fact . As in Equation (3.3), for
n > 0 the calculation is eventually reduced to the termination condition
that stops the process. Each recursive procedure must have one or more
termination conditions.

The Rec fact procedure is presented to illustrate simply what is meant
by recursion in mathematics and to show how a recursive procedure is
expressed in MPL. However, there is more to recursive programming than
is shown by this example, and the topic will be discussed in greater detail
in Chapter 5.

Recursive Structure of Expressions

One reason recursion is essential to symbolic computation has to do with
the recursive structure of mathematical expressions. This structure is de-
scribed using the terms in the following definition:

Definition 3.1. Mathematical expressions are classified as either atomic
expressions or compound expressions:
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1. An atomic expression is an integer, real, symbol, or reserved symbol
(e, ∞, true, etc.). The atomic expressions are the atoms or basic
building blocks of more involved mathematical expressions.

2. A compound expression is composed of an operator with operands.
The operator can be an algebraic operator (+, −, etc.), a relational
operator (=, <, etc.), a logical operator (and, or, not), a set oper-
ator ( ∪, ∩, ∼), a function or operator name, or the terms set or
list. An operand of an operator can be either an atomic expression
or another compound expression. Depending on the operator, each
operator can have one or more operands. �

Example 3.2. Consider the expression m ∗ x + b. Since it is common
practice in mathematics to give higher precedence to ∗ than +, we view
the expression as a sum with two operands: the compound expression m∗x
and the atomic expression b. The operator ∗ has two operands, the atomic
expressions m and b. In a similar way, the equation y = m ∗ x+ b has the
operator = with two operands, the atom y and the compound expression
m ∗ x+ b. �

Example 3.3. The expression n! has one operator ! with one operand the
symbol n. �

Example 3.4. Consider the expression Integral(sin(x), x). The Integral
operator has two operands, the compound expression sin(x) and the symbol
x. The function sin(x) has the operator sin with the single operand the
symbol x. �

Example 3.5. Consider the list [a, b, c]. In MPL, a list is viewed as a math-
ematical expression with the term list as the operator and the members
of the list, a, b, and c, as operands. It may seem odd to think of the term
list as an operator since it is not as “action oriented” as an operator like
+. However, this view of lists gives a uniform structure for all compound
expressions. In a similar way, the set {a, b, c} is a compound expression
with operator set. �

Definition 3.1 is a recursive description of a mathematical expression
since a compound expression is constructed with an operator and simpler
expressions (the operands) that are either compound expressions them-
selves or termination symbols (atomic expressions). Although it may sound
as if we are using a recursive definition to state the obvious, we shall see that
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the recursive structure of expressions implies that a recursive algorithm is
appropriate (or even essential) for many mathematical operations.

Recursion in Mathematics

Although the recursion concept is discussed in textbooks on computer sci-
ence, it is rarely mentioned in textbooks on algebra, trigonometry, and
calculus. Therefore, you may find it surprising that you often use recursion
when doing pencil and paper manipulations. For example, consider the
algebraic simplification of the expression

3 · (x+ x) + x2/x → 7 · x (3.4)

using the simplification rules ordinarily found in automatic simplification.
To simplify the sum we first simplify each of its operands. And to simplify
the first operand

3 · (x+ x), (3.5)

we first simplify each of its operands 3 and x + x. The expression 3 is an
atom and requires no further simplification. To simplify x + x, we first
simplify its operands (the two x symbols which are atoms and require no
simplification) and then apply a simplification rule to obtain 2 · x. At this
point Expression (3.5) has been transformed to the form 3 · (2 · x), and we
apply simplification rules to obtain 6 · x for the first term in Expression
(3.4). In a similar way, we simplify the second term in (3.4) to x and apply
the simplification rules to 6 · x+ x to obtain 7 · x.

An outline of the Automatic simplify procedure2 we have used to sim-
plify this expression is shown in Figure 3.3. This simplification process
is recursive since a compound expression u is simplified by first applying
Automatic simplify (line 4) to each of its operands (the simpler expres-
sions) followed by an application of the appropriate rules. In fact, any
mathematical operation that involves a systematic examination of all parts
of an expression is most likely recursive.

Recursion can arise in computer algebra for another reason. Many
mathematical problems are solved by transforming the original problem
into another problem. If the new problem involves the same operation as
the original problem, then the process is recursive. For example, consider
the evaluation of the indefinite integral

∫
x sin(x2) dx. Using the substitu-

tion u = x2, the integral is transformed to∫
x sin(x2) dx =

∫
sin(u)

2
du.

2The interested reader may consult Cohen [24], Section 3.2, for the full version of the
Automatic simplify algorithm.
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Procedure Automatic simplify(u);
Input

u : an algebraic expression;
Output

A simplified version of u;
Begin

1 if u is an atomic expression then
2 Return(u)
3 else
4 v := the new expression formed by applying the

Automatic simplify procedure to each operand of u;
5 w := the new expression formed by applying the

appropriate simplification rules to v;
6 Return(w)

End

Figure 3.3. An outline of an MPL recursive simplification procedure.

To evaluate the original integral, the Integral operator must choose the
proper substitution and apply itself to a new integral. Since the integration
is defined in terms of another (simpler) integration, the process is recursive.
In Section 5.3 we describe a recursive algorithm for a basic Integral operator
that can evaluate integrals similar to the one above.

Exercises

1. Explain why each of the operations can be viewed as a recursive process,
and give a termination condition for the recursion:

(a) The differentiation operation.

(b) The operation lim
x→a

f(x).

(c) Polynomial division.

(d) The expansion of products and powers of polynomials. For example,

i
(x+ 1)2 + 2

J2
(x+ 3) → x5 + 7 x4 + 22x3 + 42 x2 + 45x+ 27.

2. Describe (in words) a recursive algorithm that finds the set of symbols in
an expression.
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3.2 Expression Structure and Trees3

Although Definition 3.1 provides a descriptive language for the recursive
structure of an expression, it does not give a scheme for associating a
unique structure with an expression. For example, what is the structure of
x+ y+ z? Is it the sum of x+ y and z, or the sum of x and y+ z, or even
a sum with three operands x, y, and z? Since mathematical expressions
are the data objects in computer algebra programming, an understanding
of the relationships between their operators and operands is essential. In
this section we describe two views of expression structure. The first, which
is called the conventional structure, corresponds to the structure in both
mathematics and conventional programming languages. The second view,
which is called the simplified structure, corresponds to the structure after
automatic simplification.

To simplify matters, we focus initially on the algebraic expressions de-
scribed in the following definition.

Definition 3.6. An algebraic expression u is one that satisfies one of the
following rules:

1. u is an integer.

2. u is a symbol.

3. u is a sum, product, power, difference, quotient, factorial, or function
form, where each operand of u is also an algebraic expression. �

The algebraic expressions are the ones we manipulate using the trans-
formation rules of elementary algebra. Notice that the definition is recur-
sive because Rule (3) requires that the operands of a compound algebraic
expression are algebraic expressions.

Example 3.7. The expressions

2, 1/2, sin(x), x ∧ 2 + cos(x), f(x, y, z)

are algebraic expressions, while

[a, b, c], x+ 1 = 2, a and b

are not. �
3In this section, to help clarify expression structure, we use ∗ for the multiplication

operator and ∧ for the power operator.
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Operator Classification

The following terminology for operators is used to describe expression struc-
ture.

Definition 3.8. Two operators in an algebraic expression u are at different
parentheses levels if one of the operators is inside a pair of matching
parentheses, while the other is not. On the other hand, when two operators
are not at different levels, they are considered at the same parentheses
level.

Example 3.9. In a∗(b+c), the operators ∗ and + are at different parentheses
levels. In a ∗ (b + c)/d, the operators ∗ and / are at the same level, while
+ is at a different level from either one of them. �

Operators in an expression are also classified according to the number
of operands and the location of the operands relative to an operator. These
properties are described with the following terminology:

• A unary postfix operator is one with one operand that immediately
precedes the operator. For example, in n!, the factorial operator is a
unary postfix operator.

• A unary prefix operator is one with one operand that immediately
follows the operator. For example, in −x, the difference operator is
a unary prefix operator.

• A function prefix operator is an expression in function notation with
one or more operands. For example, in f(x, y), the function name f
is a function prefix operator with two operands x and y.

• A binary infix operator is one with two operands, one that immedi-
ately precedes the operator and the other that immediately follows
the operator. For example, in a+ b, the + is a binary infix operator.
Furthermore, with the conventional view of expressions (described
below), both + operators in a + b + c are binary infix operators. In
this view, the first + has operands a and b, and the second + has
operands a+ b and c.

• An n-ary infix operator is one with two or more operands that are
adjacent to some occurrence of the operator at the same parentheses
level. For example, in the simplified view of algebraic expression
structure (described below), both + and ∗ are n-ary infix operators.
In this view, a+ b+ c+ d is an n-ary sum with four operands a, b, c,
and d.
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Conventional Structure of Algebraic Expressions

The conventional structure of an expression is similar to the structure as-
sumed in both mathematics and conventional programming languages, and,
in some computer algebra languages, corresponds to the structure before
automatic simplification. The following structural assumptions (Defini-
tion 3.10) and precedence rules (Definition 3.11) describe the conventional
structure of an expression.

Definition 3.10. (Structural assumptions for conventional algebraic
expressions.) Let u be an algebraic expression. The algebraic operators
in u satisfy the following structural assumptions:

1. The operators + and − are either unary prefix or binary infix opera-
tors.

2. The operators ∗, /, and ∧ are binary infix operators.

3. The operator ! is a unary postfix operator.

The relationship between operators and operands is defined by the fol-
lowing operator precedence rules.

Definition 3.11. (Conventional precedence rules.) Let u be an alge-
braic expression.

1. The relative precedence of operators in u at the same parentheses level
is given by the precedence hierarchy4

(highest level)
function names

!
∧

∗, /
+, −

(lowest level).

If one operator is below another in the table, that operator has lower
precedence. If two algebraic operators in u are at the same level in
the table, the relative precedence is determined by the following rules:

(a) If the operators are + or − operators, ∗ or / operators, or !
operators, then the operator to the right has lower precedence.

4 Some authors assign unary + and − higher precedence than ∗ and /. We do not
make this distinction here.
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(b) If the operators are ∧ operators, then the operator to the left has
lower precedence.

2. For two operators at different parentheses levels, the operator outside
a pair of parentheses has lower precedence than the operator inside
the parentheses.

When an expression is adjacent to two operators, it is an operand of
the operator with highest precedence.

Example 3.12. In m ∗ x + b, the operator + has lower precedence than ∗
which implies the expression is equivalent to (m ∗ x) + b.

In a ∗ b ∗ c, both operators operate in a binary fashion and the ∗ on the
right has lower precedence than the ∗ on the left. From the conventional
viewpoint, this expression is equivalent to (a ∗ b) ∗ c.

In 2 ∗ sin(x + 1), the operator ∗ has lowest precedence, the function
name sin is next, and the operator + has highest precedence.

Finally, in a ∗ b ∧ c ∧ d ∗ e, the operators in order of lowest to highest
precedence are: the ∗ on the right, the ∗ on the left, the ∧ on the left,
and the ∧ on the right. From a conventional viewpoint, this expression is
equivalent to (a ∗ b ∧ (c ∧ d)) ∗ e. �

Expression Trees
The structure of an expression comprises the relationships between its op-
erators and operands. An expression tree is a diagram that displays this
structure. For example, the expression

c+ d ∗ x ∧ 2 (3.6)

is represented by the expression tree in Figure 3.4.
Each operator and atom in an expression is represented by a position or

node in the tree. The contents of the nodes and the relationships between
the nodes are determined by the operator precedence rules. The operator
with lowest precedence in an expression appears at the top of the tree.
This top node is called (oddly enough) the root node of the tree. According
to the precedence rules, the operator + has lowest precedence in c + d ∗
x ∧ 2, and so appears at the root. This root operator is also called the
main operator of the expression, a designation that emphasizes that c +
d ∗ x ∧ 2 is viewed as a sum with two operands c and d ∗ x ∧ 2. The lines
that emanate below an operator node connect the operator to each of its
operands, and the part of the tree that represents an operand is called a
branch or sub-tree. In this case, the first operand of + is the symbol c,
which is represented by the left branch with a node containing c. The right
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Figure 3.4. The conventional expression tree for c+ d ∗ x ∧ 2.

branch, which represents the expression d∗x∧2, is constructed by applying
the above process (recursively) to this sub-expression. The main operator
of this branch is ∗, and the two branches correspond to the operands d and
x∧ 2. Continuing in this fashion, we construct the tree that represents the
structure of the expression5.

Example 3.13. Figure 3.5(a) contains the expression tree for −a ∗ (b + c).
Notice that the operator − has lower precedence than ∗ and therefore
appears at the root node of the tree.

Figure 3.5(b) contains the expression tree for Integral(sin(x), x). The
operator Integral , which has lowest precedence, appears at the root node
of the tree, and the two operands sin(x) and x are branches that emanate
from this node. In a similar way, the function name sin appears at the root
of the branch for sin(x).

Figure 3.5(c) contains the expression tree for 1/(a ∗ x ∗ y). In the con-
ventional view, both ∗ operators act in a binary fashion. �

5In Mathematica, the operator TreeForm[u] displays the tree structure of an expres-
sion. However, the displayed structure corresponds to the simplified structure described
in Definition 3.14 and Definition 3.16.

In MuPAD, the operator prog::exprtree displays the tree structure. The con-
ventional structure is obtained with prog::exprtree(hold(u)), while the simpli-
fied structure (described in Definition 3.14 and Definition 3.16) is obtained with
prog::exprtree(u). In MuPAD, the conventional structure is similar to the structure
described here with two modifications. First, both + operators and ∗ operators are
represented as n-ary operators. Next, numerical fractions have a special form with the
operator DOM RAT at the root.

The current release of Maple (7) does not have an operator to display the tree. How-
ever, the tree structure can be obtained using the structure operators (see Figure 3.18
on page 106).
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Figure 3.5. Conventional expression trees.
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Simplified Structure of Algebraic Expressions

Since mathematical expressions encountered as data objects in computer
algebra programs are in automatically simplified form, the structure of
these expressions is particularly important to us. This simplified structure
(described below) simplifies the programming process by eliminating ex-
traneous operators from an expression and by providing easier access to
its operands. The following structural assumptions (Definition 3.14) and
precedence rules (Definition 3.16) describe some properties of simplified ex-
pressions.

Definition 3.14. ( Structural assumptions for simplified algebraic
expressions) Let u be an automatically simplified algebraic expression.
The operators in u satisfy the following structural assumptions:

1. The operator + is an n-ary infix operator with two or more operands
and none of its operands is a sum. In addition, at most one operand
of + is an integer or fraction.

In the simplified view, the expression a+b+c is viewed as a sum with three
operands a, b, and c rather than the conventional view as a binary sum
with operands a+ b and c (see Figure 3.6(a)). Furthermore, the expression
a+(b+c) is not in automatically simplified form because one of the operands
of the main operator + is also a sum. Indeed, the automatically simplified
form of this expression is a+ b+ c. Finally, Rule (1) implies that the unary
sum +x is not automatically simplified because a sum must have at least
two operands. The simplified form of +x is x.

2. The operator ∗ is an n-ary infix operator with two or more operands
and none of its operands is a product. In addition, at most one
operand of ∗ is an integer or fraction, and when an integer or fraction
is an operand of a product, it is the first operand 6.

This rule implies the simplified form of a ∗ 2 ∗ (b ∗ c) is the n-ary product
2 ∗ a ∗ b ∗ c.

3. The unary operator − and the binary operator − do not appear in
simplified expressions.

6In both Maple and Mathematica, an integer or fraction operand in a product is the
first operand.

In MuPAD, however, an integer or fraction operand in a product is represented inter-
nally as the last operand even though the displayed form indicates it is the first operand.
Since some algorithms in later chapters assume an integer or fraction in a product is the
first operand, the MuPAD implementations are modified to account for this difference.
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Figure 3.6. Conventional and simplified expression trees.
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This rule implies the expression −x is not automatically simplified. The
simplified form of this expression is the product (−1) ∗x, where the − sign
in the parentheses is not considered a unary operator, but instead is part
of the integer negative one. In a similar way, the automatically simplified
form of the expression a− 2 ∗ b is a+ (−2) ∗ b (see Figure 3.6(b)).

4. The binary operator / does not appear in simplified expressions.

Simplified quotients are represented using products, powers, and special
forms for fractions (described below). For example, the simplified form for
1/c is c−1 and the simplified form for c/d2 is c ∗ d−2.

5. Numerical fractions satisfy the following:

(a) A quotient that represents a fraction c/d, where c �= 0 and d �= 0
are integers is represented by an expression tree with operator
the symbol fraction, first operand c, and second operand d.

(b) A negative fraction has a negative numerator and positive de-
nominator.

This rule implies that the expression 1/2 is not viewed as a quotient but
instead as an expression with operator fraction and operands 1 and 2. In
addition, the expression −1/2 has the operator fraction and operands −1
and 2.

6. The operator ∧ is a binary operator. In addition, if u = v ∧n, where
n is an integer, then v cannot be an integer, fraction, product, or
power.

This rules implies the following: (a ∗ b)∧ 2 has the simplified form (a∧ 2) ∗
(b∧ 2); (x∧ 2)∧ 3 has the simplified form x∧ 6; and 3−1 has the simplified
form the fraction 1/3.

7. The operator ! is a unary postfix operator whose operand is not a
non-negative integer.

This rule implies that the simplified form of 3! is 6.

Example 3.15. Consider the conventional expression−x∗y/3. Figure 3.6(c)
shows the expression trees for the conventional and simplified forms of
this expression. Using Rules (3) and (4), the unary minus and quotient
operators are removed. Therefore, using the Rules (2), (5), and (6), the
simplified structure is ((−1)/3) ∗ x ∗ y, where ∗ is an n-ary operator with
three operands, the − is part of the integer −1, and the fraction (−1)/3
has main operator fraction. �
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Definition 3.16. (Simplified precedence rules) Let u be an automati-
cally simplified algebraic expression.

1. The relative precedence of operators in u at the same parentheses level
is given by the precedence hierarchy

(highest level)
function names

fraction
!
∧
∗
+

(lowest level)

If two ! operators are at the same parentheses level, then the one to
the right has lower precedence. If two ∧ operators are at the same
parentheses level, then one to the left has lower precedence.

2. For operators at different parentheses levels, operators outside a pair
of parentheses have lower precedence than operators inside the paren-
theses.

Because of the structural assumptions, the precedence rules for simpli-
fied expressions are simpler than those for conventional expressions. For
example, since multiple occurrences of the + operator at the same paren-
theses level coalesce to a single operator in an expression tree, there is no
need to account for this situation in the precedence rules. Notice that the
fraction operator has higher precedence than ∗, ∧, and ! so that a frac-
tion is isolated as an operand relative to these operators. This point is
illustrated in Figure 3.6(c).

Using the structural assumptions in Definition 3.14 and the precedence
rules in Definition 3.16, the definition of an algebraic expression can be
modified in the following way.

Definition 3.17. An expression u is an automatically simplified alge-
braic expression (ASAE) if it satisfies one of the following rules:

1. u is an integer.

2. u is a fraction c/d where c �= 0, d �= 0 are integers.

3. u is a symbol.
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4. u is a sum, product, power, factorial, or function form, where each
operand of u is also an automatically simplified algebraic expression.

Although the structural assumptions and precedence rules describe
some important properties of automatically simplified expressions, they
are not by any means a complete description of these expressions. For
example, the structural assumptions do not describe all the ordering prop-
erties of operands in sums and products, the properties of powers or the
special rules involving the integers 0 and 1. Since a complete description
of automatically simplified expressions is quite involved, it is not included
here7. At this point our intent is to give a description that is sufficient to
begin computer algebra programming. Additional structural rules can be
found by experimentation with computer algebra software (see Exercise 3).

Most computer algebra systems use an internal form for automatically
simplified algebraic expressions that is similar to the one described here,
although the displayed form may disguise the actual structure. We illus-
trate this point in Figure 3.7, which shows a Mathematica session together
with the simplified structure of a/b + c − d. The command TreeForm at
In[2 ] displays a representation of the expression tree. Observe that the dis-
played form of the simplified expression at Out [1 ] includes the quotient and
difference operators, even though the Mathematica internal tree structure
does not.

Since the simplified structure of an expression may not be apparent
from its displayed form, an operator may transform an expression in an
unexpected way. To illustrate this point, consider the Maple dialogue in
Figure 3.8 that obtains the derivative of f(x)/g(x). Since the simplified
form of this expression is f(x) ∗ g(x)(−1), the derivative is obtained with
the differentiation product and power rules rather than the quotient rule.
Similar results are obtained with both Mathematica and MuPAD.

Functions Transformations for Exponential Functions
and Powers in Automatic Simplification

In ordinary mathematical notation, the expressions ex and exp(x) are two
forms that are used to represent the exponential function. Some computer
algebra systems allow both representations for input but may use only
one form in automatically simplified expressions. In a similar way, a CAS
may allow both

√
x (or sqrt(x)) and x1/2 for the square root function, but

7For this description, consult Cohen [24], Chapter 3, where a complete description
is needed for an algorithm that transforms an algebraic expression to automatically
simplified form.
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In[1 ] := a/b+ c− d

Out [1 ] =
a

b
+ c− d

In[2 ] := TreeForm[a/b + c− d]

Out[2] //TreeForm=

Plus [ | , c, | ]
Times [a, | ] Times [−1, d]

Power [b, −1]

Times Times

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
��

❡
❡

❡❡

�
�

��

❅
❅❅

❅
❅

❅

�
�

�

Plus

Power

−1

−1a

b

c

d

Figure 3.7. A Mathematica session with the simplified structure for the expres-
sion a/b+ c − d.

choose one internal simplified form for both. In MPL, we represent the
exponential function with the function form exp(x) and the square root
function with the power x1/2. In Figure 3.9, we give the representations of
these functions in Maple, Mathematica, and MuPAD.
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> u := f(x)/g(x);

u :=
f(x)
g(x)

> diff(u,x);

∂
∂x f(x)
g(x)

− f(x) ( ∂
∂x g(x))

g(x)2

Figure 3.8. A Maple dialogue that shows that the derivative of f(x)/g(x) is
obtained with the product rule and power rule.

expression MPL Maple Mathematica MuPAD
exp(x) exp(x) exp(x) Ex exp(x)
ex exp(x) exp(1)x Ex exp(x)√
x x1/2 x1/2 x1/2 x1/2

x1/2 x1/2 x1/2 x1/2 x1/2

Figure 3.9. Simplified structure of the exponential and power functions in MPL,
Maple, Mathematica, and MuPAD.

Simplified Structure for Non-Algebraic Expressions

We describe briefly some issues related to the structure of expressions that
include relational operators, logical operators, lists, and sets. For these
expressions, the internal forms are more involved and, in some cases, vary
from system to system.

Relational expressions. For expressions with one relational operator
(=, <, etc.), most systems use a binary structure with relative precedence
levels for relational operators below the levels for algebraic operators. Fig-
ure 3.10 gives the simplified structure for the expression for x + 1 < 2 ∗ x.
Maple, Mathematica, and MuPAD use a similar internal form for this ex-
pression.

Both the Mathematica and MuPAD systems provide for more involved
relational expressions that contain two or more relational operators. For ex-
ample, in Figure 3.11 we show the internal form for the expression x < y < z
in these systems. Observe that Mathematica represents the expression us-
ing an n-ary form, while MuPAD uses a nested binary form.
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�

❅
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❅
❅

❅
❅
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�

❅
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�

2x

+

x

∗

<

1

Figure 3.10. The MPL simplified structure for the expression x+ 1 < 2 ∗ x.

Figure 3.12 gives the internal forms in Mathematica and MuPAD for
the expression x ≤ y < z, which has two different relational operators.
Observe that Mathematica represents the expression using a form that
includes relational operators as operands of the main operator Inequality,
while MuPAD represents this expression using a nested binary form.

Finally, in both the Maple and MuPAD systems, expressions with >
and ≥ are converted by automatic simplification to equivalent expressions
with < and ≤. For example, in both of these systems, a > b is simplified
to b < a.

Logical expressions. The relative precedence levels of the logical
operators is

(lowest)
not
and
or

(highest),

and the logical operators have lower precedence than relational operators.
Although logical expressions are used primarily as Boolean tests in both

decision and looping structures, some computer algebra languages allow
logical expressions as program statements or data objects. For example,
the expression

p or not q and r

is a mathematical expression with structure shown in Figure 3.13(a).
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�
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�

❅
❅

❅
❅

Less

x y z

(a) Mathematica

❅
❅

❅
❅

�
�

�
�

�
�

�
�

❚
❚
❚
❚

less

less

x y

z

(b) MuPAD

Figure 3.11. The internal form for x < y < z in Mathematica and MuPAD.
(Implementation: Mathematica (nb), MuPAD (mnb).)

In Figure 3.13(b), we show the structure of an expression with logical,
relational, and algebraic operators. Maple, Mathematica, and MuPAD
allow expressions to be used in this way8.

In Mathematica and MuPAD, logical expressions have simplified forms
in which both the and and or operators are n-ary infix operators with

8 In Maple, there is one curious exception to this statement. Suppose x, y, and
z are unassigned symbols. Although, in this system, the expression x < y and y < z

is not changed by automatic simplification, the similar expression x < y and y = z is
transformed to false. This occurs since, in this context, y = z evaluates to false because
y and z are distinct symbols. On the other hand, the expression y = z by itself remains
unchanged by automatic simplification.
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(a) Mathematica

❅
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❚
❚
❚
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leequal

less

x y

z

(b) MuPAD

Figure 3.12. The internal form for the expression x ≤ y < z in Mathematica and
MuPAD. (Implementation: Mathematica (nb), MuPAD (mnb).)

operands of a different type. (For example, the operator and cannot have
an operand that is also an and.) In Figure 3.14(a),(b), we give Mathemat-
ica and MuPAD representations of the simplified form of the expression

w or x and y or not z (3.7)

which has two or operators at the same level.
On the other hand, in the Maple system, the simplified forms for and

and or remain as binary operators. The internal form for Expression (3.7)
in this system is shown in Figure 3.14(c).
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not
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or

(a) The MPL simplified structure for the expression p or not q and r.
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and

<

x +y

x y

1

<

(b) The MPL simplified structure for the expression x < y and x+ y < 1.

Figure 3.13. MPL structures for logical expressions.

Sets and Lists. In MPL, both sets and lists are viewed as expressions
with main operator set or list along with operands that are the expressions
in the set or the list. In addition, the expression tree for the empty set ∅ or
empty list [ ] is the tree with a single node set or list. Figures 3.15(a),(b)
illustrate the tree structures for expressions with sets and lists. Both Maple
and MuPAD represent sets and lists in this way. Mathematica, which uses
the brace notation { and } for both sets and lists, uses the symbol List as
the main operator for these expressions



3.2. Expression Structure and Trees 101

Or

✔
✔✔

	
		

◗
◗

◗
◗

◗◗







NotAnd

zyx

w

(a) Mathematica
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(b) MuPAD
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✜
✜✜

❚
❚❚

✡
✡✡

x

and

y

not

w z

(c) Maple

Figure 3.14. The simplified structure of the expression w or x and y or not z
in Mathematica, MuPAD, and Maple.
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✏✏✏✏✏
✁✁ ❆❆ �����
set

a b c d

(a) The MPL simplified structure for the set {a, b, c, d}.

�
�

❅
❅

❅
❅

�
�

list

ba

c+

(b) The MPL simplified structure for the list[a+ b, c].

Figure 3.15. Expression tress for a set and a list.

In some CAS languages, the set operators (∪, ∩, ∼), can have symbols
(instead of sets) as operands and these expressions can act as data objects.
When used in this way, these expressions have a simplified form where
∪ and ∩ are n-ary operators with operands of a different type, and ∼ is
a binary operator. (For example, in simplified form, ∪ cannot have an
operand that is also a ∪.) Both Maple and MuPAD allow set expressions
to be used in this way, although the operator precedence levels are not
the same. In Figure 3.16, we give the relative precedence levels of these

MPL

∩
∼
∪

Maple

intersect
union, minus

MuPAD

intersect
minus
union

Figure 3.16. The relative precedence of set operations in MPL, Maple, and
MuPAD.
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operators in MPL, Maple, and MuPAD. Observe that in both MPL and
MuPAD the operators are at three different levels, while in Maple union
and minus are at the same level.

In Figure 3.17, we give the simplified representations in Maple and Mu-
PAD for the expression

A ∪B ∪ C ∩D ∼ E.

C D

✪
✪✪

❅
❅❅

✜
✜✜

❧
❧❧

✪✪ ❡❡

E

∼

A

∪

∩B

(a) Maple

C D

✜
✜✜

❧
❧❧

❡❡

✔✔ ❏❏

✪✪

A B

E∩

∪

∼

(b) MuPAD

Figure 3.17. The structure of the expression A ∪ B ∪ C ∩ D ∼ E in Maple and
MuPAD.
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Observe that the meaning of the expression in Maple is

(A ∪B ∪ (C ∩D)) ∼ E,

while the meaning in MuPAD is

A ∪B ∪ ((C ∩D) ∼ E).

Primitive Operations on Simplified Mathematical Expressions

In order to analyze and manipulate a mathematical expression, we must
access its operators and operands. MPL uses three primitive operators to
perform these tasks.

Definition 3.18. The operator

Kind(u)

is defined by the following rules:

1. If u is an atomic expression, Kind(u) returns the type of expression
(e.g., integer, real, or symbol).

2. If u is a compound expression, Kind(u) returns the operator at the
root of the expression tree.

Example 3.19.

Kind(x) → symbol,
Kind(3) → integer,

Kind(2.1) → real,
Kind(π) → symbol,

Kind(m ∗ x+ b) → +,
Kind((a+ b) ∗ sin(x ∧ 2)) → ∗,

Kind((a/b) → ∗,
Kind(2/3) → fraction,

Kind(sin(x)) → sin,
Kind(a = b) → =,

Kind({a, b, c, d}) → set,
Kind(x and y) → and,

Kind(x− x+ 2) → integer.
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In the last example, the operand is simplified by automatic simplification to
the integer 2. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).) �

Definition 3.20. If u is a compound expression, the operator

Number of operands(u)

returns the number of operands of the main operator of u. If u is not a
compound expression, then Number of operands returns the global symbol
Undefined.

Example 3.21.

Number of operands(m ∗ x+ b) → 2,
Number of operands(f(x, y)) → 2,

Number of operands({a, b, c, d}) → 4,
Number of operands(n!) → 1,
Number of operands(x) → Undefined.

In the last example, the input expression x is not a compound expression.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �

Definition 3.22. If u is a compound expression, the operator

Operand(u, i)

returns the ith operand of u. If u is not a compound expression or u
does not have an ith operand, then Operand returns the global symbol
Undefined.

Example 3.23.

Operand(m ∗ x+ b, 2) → b,

Operand(x ∧ 2, 1) → x,

Operand(Operand(m ∗ x+ b, 1), 2) → x,

Operand({a, b, c, d}, 2) → b,

Operand(x− x, 1) → Undefined,

Operand(2/(−3), 2) → 3.

The last two examples are based on the simplified form of the expression.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)
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MPL Maple Mathematica MuPAD

Kind(u) whattype(u) Head(u) type(u)

and and
op(0,u) op(u,0)

for function for undefined
names function names

Operand(u, i) op(i,u) Part[u,i] op(u,i)

and Numerator[u]

and Denominator[u]

for fractions
Number of operands(u) nops(u) Length[u] nops(u)

Construct(f, L) see Figure 3.19 Apply[f,L] see Figure 3.20

Figure 3.18. The primitive MPL structural operators in Maple, Mathematica,
and MuPAD.

Keep in mind, because automatic simplification in a computer algebra
system may apply the commutative law to reorder the operands in a sum
or product, the Operand operator may obtain an unexpected result. For
example, if b+ a is reordered to a+ b, we obtain

Operand(b + a, 2) → b. �

The operators Kind , Number of operands , and Operand are the three
basic operations that are used to analyze and manipulate mathematical
expressions, and most computer algebra systems have versions of these
operators (see Figure 3.18).

Construction of Expressions
In some instances, we need to construct an expression with a given operator
and list of operands. The MPL operator Construct is used for this purpose.

Definition 3.24. Let f be an operator ( +, ∗, =, etc.) or a symbol, and let
L = [a, b, . . . , c] be a list of expressions. The operator

Construct(f, L)

returns an expression with main operator f and operands a, b, . . . , c.

Example 3.25.

Construct(” + ”, [a, b, c]) → a+ b+ c,

Construct(” ∗ ”, [a+ b, c+ d, e+ f ]) → (a+ b) ∗ (c+ d) ∗ (e+ f),
Construct(g, [a, b, c]) → g(a, b, c),

(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �
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Construct := proc(f,L)

local g,s;

if f = ‘!‘ then RETURN(op(L)!);

elif member(f,{‘and‘,‘or‘}) then RETURN(convert(L,f))

elif f = ‘not‘ then RETURN(not op(L))

elif f = set then RETURN({op(L)})

elif f = list then RETURN(L)

else s := subsop(0=f,g(op(L))); RETURN(eval(s))

fi

end:

Figure 3.19. A Maple procedure to implement MPL’s Construct operator. (Im-
plementation: Maple (txt).)

Construct := proc(f,L)

begin

if f = _divide then return(op(L,1)/op(L,2))

elif f = _subtract of f = _negate then return(op(L,1)-op(L,2))

elif f = DOM_SET then return({op(L)})

elif f = DOM_LIST then return(L)

else return(f(op(L)))

end_if

end_proc:

Figure 3.20. A MuPAD procedure to implement MPL’s Construct operator.
(Implementation: MuPAD (txt).)

While Mathematica has an operator that constructs expressions (see
Figure 3.18), Maple and MuPAD do not. However, in both of these lan-
guages, the operation can be simulated with a procedure (see Figures 3.19
and 3.20).

Exercises

1. Experiment with a CAS to determine the simplified structure of the ex-
pressions in Figure 3.6. Are the structures the same as those shown in the
figure?
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2. For each of the following, give the conventional and simplified structures
of the expression. In addition, for each of the expressions, compare the
simplified structure based on the rules in the text to the simplified internal
structure in a CAS.

(a) a/b − c/d.

(b) (x ∧ a) ∧ 3.

(c) (x ∧ 2) ∧ (1/2).

(d)
3

2 ∗ a ∗ (x − 1)
.

(e) (−2 ∗ x) ∧ (−3).
(f) ((x − y) + z) + w.

(g) ((x − y) ∗ y/2) ∧ 2.

(h)
x ∧ 2− 1

x − 1
.

(i) 1
x ∧ y .

(j)
−x ∗ (a/b)

c
.

(k)
2

a+ b
∗ 3

c+ d
.

(l) x ∧ 2 + cos(1/x − 2).

(m) x =
−b+ (b ∧ 2− 4 ∗ a ∗ c) ∧ (1/2)

2 ∗ a
.

3. Experiment with a CAS to determine some additional structural rules that
describe automatically simplified algebraic expressions. For example:

(a) Can a sum or product have two identical operands?

(b) How are operands in sums and products combined?

(c) Can the first operand of the power operator ∧ also be a power?

(d) What are the special rules that involve 0 and 1? For example, can a
0 or 1 be an operand of a sum, product, power, or factorial?

Exercise 1 on page 55 is helpful for this exercise. For further discussion of
structural assumptions for automatically simplified algebraic expressions,
see Cohen [24], Chapter 3.

3.3 Structure-Based Operators

In this section we describe four operators for which the operations are based
only on the simplified structure of an expression. First, we introduce the
terminology that is used in the definitions of these operators.
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Figure 3.21. A simplified expression tree for sin(a) ∗ (1 + b+ c ∧ 2).

Complete Sub-Expressions

Definition 3.26. Let u be an automatically simplified expression. A com-
plete sub-expression of u is either the expression u itself or an operand
of some operator in u.

In terms of expression trees, the complete sub-expressions of u are either
the expression tree for u or one of its sub-trees.

Example 3.27. Consider the expression

sin(a) ∗ (1 + b + c ∧ 2), (3.8)

which has the expression tree shown Figure 3.21. This expression contains
the following complete sub-expressions:

sin(a) ∗ (1 + b+ c ∧ 2), sin(a), a,

1 + b+ c ∧ 2, 1, b, c ∧ 2, c, 2.

There are some parts of an expression that are sub-expressions in a math-
ematical sense but are not complete sub-expressions. For example in Ex-
pression (3.8), 1 + b is not a complete sub-expression since it is not the
operand of an operator. �
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The Free of Operator
The Free of operator determines if an expression u is free of an expression t
(or does not contain t).

Definition 3.28. Let u and t (for target) be mathematical expressions. The
operator

Free of (u, t)

returns false when t is identical to some complete sub-expression of u and
otherwise returns true.

Example 3.29.

Free of (a+ b, b) → false,

Free of (a+ b, c) → true,
Free of ((a+ b) ∗ c, a+ b) → false,

Free of (sin(x) + 2 ∗ x, sin(x)) → false,
Free of ((a+ b+ c) ∗ d, a+ b) → true, (3.9)
Free of ((y + 2 ∗ x− y)/x, x) → true, (3.10)

Free of ((x ∗ y)2, x ∗ y) → true. (3.11)

In Statement (3.9), a+b is not a complete sub-expression of (a+b+c)∗d and
so the operator returns true. In Statement (3.10), automatic simplification
simplifies the first operand to 2 and so the expression no longer contains an
x. In a similar way, in Statement (3.11) automatic simplification transforms
(x ∗ y)2 to x2 ∗ y2 which gives the output true. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).) �

To perform Free of (u, t), each complete sub-expression of u is checked
to determine if it is structurally identical to the target t. This is easily done
using a recursive search through the expression tree. Briefly, the process
goes as follows: first compare u to t, and if u = t the search is done and
false is returned. If u �= t and u is an atom, there is nowhere else to
search and so true is returned. On the other hand, if u �= t and u is
a compound expression, the search continues by recursively applying the
process just described to each of the (simpler) operands of u. Continuing
in this fashion, we compare t to each of the complete sub-expressions of u.
For example, if u = 3 ∗ x + y ∗ (z + 2), the scheme compares a target t to
the complete sub-expressions of u in the following order:

3 ∗ x+ y ∗ (z + 2), 3 ∗ x, 3, x, y ∗ (z + 2), y, z + 2, z, 2.
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MPL Maple Mathematica MuPAD

Free of(u, t) not(has(u,t)) FreeQ[u,x] not(has(u,t))

Substitute(u, t = r) subs(t=r,u) ReplaceAll[u,t->r] subs(u,t=r)

or

u /.t->r

Sequential substitute
(u, [t1 = r1, t2 = r2])

subs(t1 = r1,
t2 = r2, u)

u /. t1 -> r1
/. t2 -> r2

subs(u, t1 = r1,
t2 = r2)

Concurrent substitute
(u, {t1=r1, t2 = r2})

subs([t1 = r1,
t2 = r2], u)

u /. {t1 -> r1,
t2 -> r2}

subs(u, [t1 = r1,
t2 = r2])

Figure 3.22. Structural operators in Maple, Mathematica, and MuPAD that
correspond most closely to MPL’s structural operators.

An MPL procedure for the Free of operator is given in Section 5.2. An
operator similar to Free of is available in most computer algebra systems
(see Figure 3.22).

The Substitute Operator
Substitution is one of the essential operations used to manipulate and sim-
plify mathematical expressions. The Substitute operator performs a par-
ticularly simple form of substitution, called structural substitution, that is
based solely on the tree structure of an expression.

Definition 3.30. Let u, t, and r be mathematical expressions. The struc-
tural substitution operator has the form

Substitute(u, t = r).

It forms a new expression with each occurrence of the target expression
t in u replaced by the replacement expression r. The substitution occurs
whenever t is structurally identical to a complete sub-expression of u.

Keep in mind that Substitute does not change u, but instead creates
an entirely new expression. Some examples of the use of the operator are
given in the MPL dialogue in Figure 3.23.

The statements at <1>, <2>, and <3> illustrate that u is not changed
by the substitution operation. In <6>, the substitution does not occur
since a+ b is not a complete sub-expression of a+ b+ c. However, in <7>,
we obtain the substitution intended in <6> by modifying the form of the
substitution.

Like the Free of operator, the Substitute operator searches an expres-
sion u in a recursive manner and compares each complete sub-expression
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<1> u := a+ b;
→ u := a+ b

<2> v := Substitute(u, b = x);

→ v := a+ x

<3> u/v;

→ a+ b

a+ x

<4> Substitute(1/a+ a, a = x);

→ 1

x
+ x

<5> Substitute((a+ b)2 + 1, a+ b = x);

→ x2 + 1

<6> Substitute(a+ b+ c, a+ b = x);

→ a+ b+ c

<7> Substitute(a+ b+ c, a = x − b);

→ x+ c

Figure 3.23. An MPL dialogue that illustrates the use of the Substitute operator.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

of u to the target t. (See Exercise 10 on page 195 for an MPL proce-
dure for the operator.) Most computer algebra systems have a form of the
Substitute operator (see Figure 3.22).

Substitution and Evaluation
In both the Maple and MuPAD systems, structural substitution may re-
turn an expression with an operator in unevaluated form. This point is
illustrated in the Maple dialogue in Figure 3.24, which gives a sequence of
statements to verify the solution of a differential equation. At the first
prompt, we assign a differential equation to w, and at the second prompt,
substitute a specific function for y(x). Notice that the differentiation op-
erator in the second display has not been evaluated. At the third prompt,
we force this evaluation by applying Maple’s eval operator to the out-
put of the subs operator. The MuPAD system also requires this forced
evaluation.
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> w := diff(y(x),x) + 2*y(x)=5*sin(x);

w :=

W
∂

∂x
y(x)

}
+ 2y(x) = 5 sin(x)

> subs(y(x) = -cos(x)+2*sin(x)+exp(-2*x),w);

W
∂

∂x
(−cos(x) + 2 sin(x) + e(−2 x))

}
− 2 cos(x) + 4 sin(x) + 2 e(−2 x) = 5 sin(x)

> eval(subs(y(x) = -cos(x)+2*sin(x)+exp(-2*x),w));

5 sin(x) = 5 sin(x)

Figure 3.24. A Maple dialogue that verifies the solution of a differential equation.
(Implementation: Maple (mws), MuPAD (mnb).)

Although the Mathematica system does not, in general, require a forced
evaluation after substitution, the substitution of a specific function for an
undefined function in a derivative requires a special form. This point is
illustrated in the Mathematica dialogue in Figure 3.25. At In[1], we as-
sign a differential equation to w, and at In[2], use the ReplaceAll op-
erator to substitute a specific function in the differential equation. No-
tice that the substitution has not occurred in the derivative term y′[x].
The issue here is that Mathematica represents y[x] with the internal form
Derivative[1][y][x] which does not contain the function form y[x]. To
obtain the substitution, it is necessary to represent the specific function in
a form that Mathematica calls a pure function:

Function[x, −Cos[x] + 2 ∗ Sin[x] + Exp[−2 ∗ x]],

and substitute this expression for the function name y. We have performed
this substitution at In[3], and then at In[4], verified the solution of the
differential equation by using the Expand operator to simplify the left side
of the previous equation9.

9 The Expand operator in In[4] is not required in either Maple or MuPAD. In both
of these systems, automatic simplification obtains the distributive transformation

2 (exp(−2 x) − cos(x) + 2 sin(x)) → 2 exp(−2 x) − 2 cos(x) + 4 sin(x).

This transformation is not obtained by automatic simplification in Mathematica.
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In[1]:= w = D[y[x], x] + 2 ∗ y[x] == 5 ∗ Sin[x]

Out[1]= 2 y[x] + y′[x] == 5Sin[x]

In[2]:= ReplaceAll[w, y[x] → −Cos[x] + 2 ∗ Sin[x] + Exp[−2 ∗ x]]

Out[2]= 2 (e−2 x −Cos[x] + 2 ∗ Sin[x]) + y′[x] == 5 Sin[x]

In[3]:= z = ReplaceAll[w, y → Function[x, −Cos[x] + 2 ∗ Sin[x] + Exp[−2 ∗ x]]]

Out[3]= −2 e−2 x + 2Cos[x] + Sin[x] + 2 (e−2 x − Cos[x] + 2 ∗ Sin[x]) == 5Sin[x]

In[4]:= Expand[Part[z, 1]]

Out[4]= 5 Sin[x]

Figure 3.25. A Mathematica dialogue that verifies the solution of a differential
equation. (Implementation: Mathematica (nb).)

Multiple Substitution

A multiple structural substitution is one in which a collection of structural
substitutions is applied to an expression with a single operation. Since
the individual substitutions may not be independent (i.e., one substitution
may affect the action of another one), both the order of the substitutions
and the mechanics of the process may affect the result. We describe below
two models for multiple substitution, sequential substitution and concurrent
substitution.

Definition 3.31. Let u be an expression and let L be a list of equations

L = [t1 = r1, t2 = r2, . . . , tn = rn]

where the targets ti are distinct. The sequential structural substitution
operator has the form

Sequential substitute(u, L).

The operator returns the expression un that is defined by the sequence of
structural substitutions

u1 := Substitute(u, t1 = r1);
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u2 := Substitute(u1, t2 = r2);
...

un := Substitute(un−1, tn = rn);

Example 3.32.

Sequential substitute(x+ y, [x = a+ 1, y = b+ 2]) → a+ b+ 3,
Sequential substitute(x+ y, [x = a+ 1, a = b+ 2]) → b+ 3 + y,

Sequential substitute(f(x) = a ∗ x+ b, [f(x) = 2, x = 3])
→ 2 = 3 ∗ a+ b, (3.12)

Sequential substitute(f(x) = a ∗ x+ b, [x = 3, f(x) = 2])
→ f(3) = 3 ∗ a+ b. (3.13)

The operations (3.12) and (3.13) show that sequential substitution is de-
pendent on the order of the substitutions. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).) �

Example 3.33. Consider the three polynomials

u(x) = x2 + x+ 2, v(x) = x2 + 3 ∗ x− 7, w(x) = x2 − 5 ∗ x+ 4.

In Figure 3.26 we give an MPL dialogue that obtains the functional com-
positions u(v(w(x))) and u(w(v(x))). Since the composition operation is a
not commutative, we use sequential substitution to determine the order of
the compositions. �

Definition 3.34. Let u be an expression and let S be the set of equations

S = {t1 = r1, t2 = r2, . . . , tn = rn},
where the targets t1, t2, . . . , tn are distinct. The concurrent structural sub-
stitution operator has the form

Concurrent substitute(u, S).

The operator returns a new expression defined in the following way: recur-
sively search through the expression tree of u and compare each complete
sub-expression v to each of the (distinct) targets t1, t2, . . . , tn. If v is iden-
tical to some ti, substitute the corresponding replacement ri for v.

Since each complete sub-expression of u is identical to at most one
target, the order of the substitutions is not significant, and so concurrent
substitution is defined in terms of a set S rather than a list.
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<1> u := x2 + x+ 2;

→ u := x2 + x+ 2

<2> v := x2 + 3 ∗ x − 7;

→ v := x2 + 3 ∗ x − 7;

<3> w := x2 − 5 ∗ x+ 4;

→ w := x2 − 5x+ 4

<4> Algebraic expand(Sequential substitute(u, [x = v, x = w]));

→ x8 − 20 x7 + 172 x6 − 830 x5 + 2439 x4 − 4390 x3 + 4573 x2 − 2365 x+ 464

<5> Algebraic expand(Sequential substitute(u, [x = w, x = v]));

→ x8 + 12 x7 + 16 x6 − 234 x5 − 407 x4 + 2202 x3 + 1479 x2 − 10089 x+ 7834

Figure 3.26. An MPL dialogue that obtains a composition of polynomials us-
ing sequential substitution. (Implementation: Maple (mws), Mathematica (nb),
MuPAD (mnb).)

Example 3.35.

Concurrent substitute((a+ b) ∗ x, {a+ b = x+ c, x = d}) → (x+ c) ∗ d.

In this case, the complete sub-expression a+ b is replaced by x+ c and the
complete sub-expression x is replaced by d. Notice since the replacement
x + c is not part of the original expression, its x is not replaced by d. If
this additional substitution is intended, it is obtained with

Sequential substitute((a+ b) ∗ x, [a+ b = x+ c, x = d]) → (d+ c) ∗ d.

Another example is

Concurrent substitute(f(x) = a∗x+ b, {x = 3, f(x) = 2}) → 2 = 3∗a+ b.

In this case, the substitution x = 3 does not affect the substitution f(x) = 2
as it does with sequential substitution. (Compare this with Expression
(3.13) where the order of the substitutions affects the result). (Implemen-
tation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �
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Most computer algebra systems allow some form of multiple structural
substitution (see Figure 3.22). In Exercise 10 on page 195 we describe MPL
procedures for these operators.

Since structural substitution is obtained by simply comparing a tar-
get expression to the complete sub-expressions of an expression, it cannot
obtain all substitutions which occur in symbolic calculations. For more
information about algorithms for general substitution operations based
on polynomial division, the reader may consult Cohen [24], Sections 4.1
and 6.2.

Exercises
1. For each of the following, give the set of complete sub-expressions of the
automatically simplified form of the expression:

(a) a ∗ b/c.

(b) (a+ b) + (c − d).

(c) 1/(2 ∗ x).

(d) ((x − y) ∗ y/2)2.

(e) x =
−b+ (b2 − 4 ∗ a ∗ c)1/2

2 ∗ a
.

2. (a) Explain why the operation Free of(a ∗ (b/c), b/c) returns true.

(b) Explore the capacity of the Free of operator in a CAS (see Fig-
ure 3.22). Does the operator have the same capacity as the Free of
operator in the text?

(c) One extension of the Free of operator is to allow a target to be a
function name or an algebraic operator. Experiment with a CAS to
see if the Free of operator in that system has this capability.

3. (a) Explore the capacity of the substitution operator in a CAS (see Fig-
ure 3.22). Does the operator have the same capacity as the Substitute
operator in the text?

(b) One extension of the Substitute operator is to allow a target to be an
algebraic operator or a function name. For example, in this case

Substitute(a+ b, ” + ” = ” ∗ ”) → a ∗ b.

Can a CAS do this with its substitution operator?

(c) Perform each of the following substitutions with a single application
of the Substitute operator. (In each case, it is necessary to find a
“clever” substitution.)

i. Replace a ∗ b by x in a ∗ b ∗ c to get x ∗ c.

ii. Replace u+ 1 by x in (u + 1)2 + u+ 1 to get x2 + x.

iii. Replace a+ b by 1 in a ∗ (a+ b) + b to get 1.
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(d) Is it possible to replace all occurrences of the tan function in an
expression with its representation in terms of sin and cos with a sin-
gle application of the Substitute operator? For example, is it possi-
ble to obtain the transformation tan(x) + tan(y) → sin(x)/ cos(x) +
sin(y)/ cos(y) with a single substitution? (Don’t use a multiple sub-
stitution here.)

4. Can the Solve operator in a CAS solve an equation for a complete sub-
expression? Can the Solve operator solve an equation for an expression that
is not a complete sub-expression? In Maple use solve, in Mathematica use
Solve, and in MuPAD use solve.

5. Evaluate each of the following:

(a) Sequential substitute(x ∗ (x+ y), [x = 2, x+ y = 3]).

(b) Concurrent substitute(x ∗ (x+ y), {x = 2, x+ y = 3}).
(c) Sequential substitute(x+ y2, [x = y, y = x]).

(d) Concurrent substitute(x+ y2, {x = y, y = x}).
(e) Sequential substitute(a+ b+ c, [a = b, b = c, c = a]).

(f) Concurrent substitute(a+ b+ c, {a = b, b = c, c = a}).
6. (a) Let u be an algebraic expression. Give a sequence of statements

that gives a new expression with each occurrence of x replaced by y
and each occurrence of y replaced by x. For example, x2 + 2 ∗ y is
transformed to y2 + 2 ∗ x. (Don’t use a multiple substitution here.)

(b) Is it possible to do the operation in part (a) with a single statement
that involves a multiple substitution?

7. Let u be a mathematical expression and suppose t1, r1, t2, r2 are distinct
symbols. Prove or disprove:

Sequential substitute(u, [t1 = r1, t2 = r2]) =

Sequential substitute(u, [t2 = r2, t1 = r1]).

Further Reading

3.1 Recursive Definitions and Algorithms. Recursion for algorithms is
discussed in Maurer and Ralston [65]. An interesting popular account of recursion
is found in Hofstadter [48].

3.2 Expression Trees and Primitive Operations. Expression trees in a

conventional programming context are discussed in most books on data structures

and algorithms. For example, see Weiss [98]. Expression trees in the Mathematica

system are discussed in Wolfram [102].



4

Elementary Mathematical
Algorithms

In this chapter we extend the concept of a mathematical algorithm to in-
clude function and procedure definitions, decision structures, and iteration
structures. In Section 4.1 we discuss the general concept of a mathematical
algorithm and examine some properties of mathematical operators that are
used in an algorithm. In Section 4.2 we describe the basic programming
structures that are used in MPL and give examples of procedures that
use these structures. Finally, in the case study in Section 4.3 we describe a
more involved algorithm that finds the solution of some first order ordinary
differential equations.

4.1 Mathematical Algorithms

Broadly speaking, a mathematical algorithm is a step by step process for
solving a mathematical problem that is suitable for computer implemen-
tation. Although this definition includes much of what is found in math-
ematics texts, it is too broad to be useful in practice. We are primarily
interested in those algorithms that can be expressed in terms of a computer
program using the operators and programming structures available in CAS
languages.

119



120 4. Elementary Mathematical Algorithms

Properties of an Algorithm

Computer scientists are quite explicit about the properties a process must
have to be called an algorithm. Ideally, a mathematical algorithm should
have the following properties.

1. Each step in the algorithm is precisely defined.

2. Each step in the algorithm is effective which means it is sufficiently
basic so that it can be performed with finite computational resources
(time and memory).

For example, the operation of multiplying two rational numbers is
effective while the operation of multiplying two (mathematical) real
numbers that are represented by infinite decimals is not.

3. The algorithm terminates in a finite number of steps for an appro-
priate class of input expressions.

Computer algebra programming differs from conventional programming
because the programs contain statements that mimic the symbolic manip-
ulations that are done with pencil and paper calculations. While many
of these operations are conceptually well-defined, they are not always al-
gorithmically well-defined in either a theoretical or practical sense. For
example, suppose that an algorithm requires the solution of an equation
f(x) = 0. The algorithm may fail because it is impossible to find a solution
for f(x) = 0 in terms of a specific class of functions or simply because of
the limitations of a CAS’s operator for solving equations. One way to re-
solve the problem is to restrict the algorithm’s input to expressions where
all operations in the algorithm are well-defined and produce meaningful
results. In many cases, however, this is not practical because a description
of the valid input would be too involved to be useful.

In some instances, subtle differences in the evaluation process or the
actions of operators may cause implementations of an algorithm to per-
form differently in various computer algebra systems. For example, in Sec-
tion 7.2 we give a procedure Simplify trig(u) that can verify a large class
of trigonometric identities. Implementations of the algorithm in Maple,
Mathematica, and MuPAD obtain the simplification

(cos(x) + sin(x))4 + (cos(x) − sin(x))4 + cos(4 x) − 3 → 0.

On the other hand, while the Maple and Mathematica implementations
obtain the simplification

sin3(x) + cos3
(
x+

π

6

)
− sin3

(
x+

π

3

)
+

3 sin(3 x)
4

→ 0,
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the MuPAD implementation obtains

→ − sin(x− y)
2

− sin(−x+ y)
2

. (4.1)

This discrepancy is explained by the observation that in both Maple and
Mathematica the automatic simplification process transforms

sin(−x+ y) → − sin(x− y), (4.2)

which simplifies the expression (4.1) to zero, while the automatic simplifi-
cation process in MuPAD does not obtain the transformation (4.2).

If we were to strictly adhere to the formal requirements for an algorithm,
we would severely restrict the range of problems that would be attempted
in a computer algebra context. Therefore, in describing mathematical al-
gorithms, we take a middle ground between the computer scientist’s need
for precision and the mathematical scientist’s need for practical approaches
for solving a problem. In this spirit, we try as much as possible to adhere
to the guidelines set down by computer scientists, but also accept that for
some input, the theoretical or practical limitations of an operation may
cause the algorithm to return an inappropriate result in some instances.

Mathematical Operators in Algorithms

Large computer algebra systems contain more than a thousand mathemat-
ical operators in a wide variety of areas. For the algorithms and exercises
in this book, we use only a small subset of these operators that perform
the basic operations from arithmetic, algebra, trigonometry, calculus, ele-
mentary logic, and set theory.

The mathematical operators that are utilized in MPL algorithms are
listed below. Some of these operators have been defined informally in
previous chapters, and some additional ones are described below.

Algebraic Operators. These are +, −, ∗, /, ∧, and !.

Relational and Logical Operators. The relational operators are =, <, ≤,
>, ≥, and �=, and the logical operators are and, or, and not. (See Section
2.1 and Figure 2.6 on page 37.)

Set Operators. These are ∪, ∩, ∼, and ∈. (See Section 2.4 and Fig-
ure 2.20 on page 70.)

List Operators. These are First, Rest, Adjoin, Join, Reverse, Delete,
and ∈. (See page 72 and Figure 2.23 on page 73.)
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Primitive Structure Operators. These include the structural operators
Kind, Operand, Number of operands, and Construct. (See pages 104-106
and Figure 3.18 on page 106.)

Structure-based Operators. These include the structure-based operators
Free of, Substitute, Sequential substitute, and Concurrent substitute which
are based on the tree structure of an expression. (See pages 110-115 and
Figure 3.22 on page 111.)

Integer Operators. These operators perform the basic operations on
integers. For integers a and b �= 0, using integer division, we obtain a unique
quotient q and remainder r with 0 ≤ r ≤ |b| − 1, such that a = q · b + r.
The following operators obtain q and r:

Iquot(a, b) → q, Irem(a, b) → r.

In addition, the operator Integer gcd(a, b) obtains the greatest common di-
visor of a and b. For further discussion of these operators, see Cohen [24],
Section 2.1. The corresponding operators in Maple, Mathematica, and Mu-
PAD are given in Figure 4.1. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

Calculus Operators. These include the operators Limit, Derivative, and
Integral. (See page 34 and Figure 2.4 on page 35.)

Solution Operators. These are the operator Solve that obtains the so-
lutions to some polynomial equations, some systems of polynomial equa-
tions, and some algebraic and trigonometric equations, and the operator
Solve ode that obtains the solutions to some ordinary differential equations.
(See page 34 and Figure 2.4 on page 35.)

Structure Operators for Polynomials. These are the operators Degree
and Coefficient. (See page 63 and Figure 2.4 on page 35.)

Algebraic Manipulation Operators for Polynomials. These include the
operators Factor and Algebraic expand. (See page 34 and Figure 2.4 on
page 35.)

Structure Operators for Rational Expressions. A rational expression
is defined as a quotient u = p/q where p and q are polynomials. Two
important structural operators for rational expressions are

Numerator(u) → p, Denominator(u) → q.
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For example,

Numerator(x/(x+ 1)) → x, Denominator(x2 + 4 x) → 1.

The last expression shows that a polynomial is considered a rational expres-
sion with denominator 1. The Numerator and Denominator operators are
described in greater detail on page 260, and the corresponding operators
in Maple, Mathematica, and MuPAD are given in Figure 4.1. (Implemen-
tation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

Simplification Operators. Simplification is such an involved process that
it cannot be adequately described in a brief space. For now we utilize two
simplification operators. The first one is automatic simplification which is
part of the evaluation process described in Sections 2.2 and 3.2. The second
one is Rational simplify which transforms an algebraic expression to the
form of a rational expression with no common factors in the numerator and
denominator.

Example 4.1.

Rational simplify(1/a+ 1/b) → a+ b

a b
,

Rational simplify
(
x2 − 1
x− 1

)
→ x+ 1,

Rational simplify

(
1

1/a+ c/(ab)
+
abc+ ac2

(b+ c)2

)
→ a.

(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �

The corresponding operators in Maple, Mathematica, and MuPAD are
given in Figure 4.1. For more detail on the Rational simplify operator,
consult Cohen [24], Section 6.3.

Numerical Operators. The operator Absolute value(u) obtains the ab-
solute value of u. The operator Decimal(u) transforms numerical sub-
expressions of an expression to a decimal format. For example, Decimal(x+
1/2) → x+ .5. (See page 34 and Figure 2.4 on page 35.)

Most of these operators and many others are described in greater detail
in later chapters.
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MPL Maple Mathematica MuPAD

Iquot(a, b) iquo(a, b) Quotient[a, b] iquo(a, b)

Irem(a, b) irem(a, b) Mod[a, b] irem(a, b)

Integer gcd(a, b) igcd(a, b) GCD[a, b] igcd(a, b)

Numerator(u) numer(u) Numerator(u) numer(u)

Denominator(u) denom(u) Denominator(u) denom(u)

Rational simplify(u) normal(u) Together(u) normal(u)

Figure 4.1. The operators in Maple, Mathematica, and MuPAD that correspond
most closely to the MPL operators that are introduced in this section.

Operator Selection

It often happens that a CAS has a number of mathematical operators that
can perform a mathematical operation. For example, suppose that a step
in a program requires simplifications similar to

x2 − 1 − (x+ 1) (x− 1) → 0. (4.3)

In Figure 4.2 we give a Mathematica dialogue that shows three commands
that can obtain this simplification. First, the Expand operator, which

In[1 ] := u = xˆ2− 1− (x+ 1) ∗ (x− 1)

Out [1 ] = −1 + x2 − (−1 + x) (1 + x)

In[2 ] := Expand[u]

Out [2 ] = 0

In[3 ] := Together[u]

Out [3 ] = 0

In[4 ] := Simplify[u]

Out [4 ] = 0

Figure 4.2. A Mathematica dialogue that shows a number of mathematical oper-
ators that perform an algebraic simplification. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).)
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is Mathematica’s version of MPL’s Algebraic expand operator, applies the
distributive law to products and positive integer powers in an algebraic
expression. Next, the Together operator, which is similar to MPL’s
Rational simplify operator, performs algebraic expansion as well as more
involved operations such as the cancellation of common factors in the nu-
merator and denominator of a rational expression. Finally, the Simplify
operator is a general purpose simplification operator that applies a large
number of algebraic and trigonometric simplification rules to an expression.
Similar choices are available in both Maple and MuPAD.

When selecting mathematical operators, to obtain simpler and more
efficient programs, we subscribe to the following minimal power principle:

Always use the least powerful mathematical operator that per-
forms a given mathematical operation.

For example, if we know that our program will only encounter simplifica-
tions similar to Expression (4.3), the CAS’s version of the Algebraic expand
operator is the most appropriate one to use.

Finally, there are situations where it is clearly inappropriate to use a
particular operator in a program. For example, in Section 4.3 we describe
a program that finds the solutions to some first order differential equations.
It goes with out saying that a CAS’s analogue of the Solve ode operator
should not be used in this program.

Semantic Capacity of Mathematical Operators

The capability of a mathematical operator can vary from system to sys-
tem (sometimes dramatically) and may change significantly when a new
version of a system is introduced. For example, most computer algebra
systems have the capability to compute the limit of a function or an infi-
nite sequence. In mathematics, the limit operation is used in many different
contexts, some very concrete and some very abstract. For example:

lim
x→∞

x2

ex
= 0, (4.4)

lim
x→∞

xn

ex
= 0, (n an unassigned symbol), (4.5)

lim
∆x→0

f(x+ ∆x) − f(x)
∆x

=
df

dx
, (4.6)

lim
n→∞

n∑
j=1

f(j/n)
n

=
∫ 1

0

f(x) dx, (4.7)
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lim
n→∞r

n =




0 −1 < r < 1,
1 r = 1,
∞ r > 1,
undefined r < −1.

(4.8)

For which limit operations should we expect a CAS to obtain a correct re-
sult? (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

To create programs in a CAS language, we must have a clear idea about
the capabilities of its mathematical operators. We use the term semantic
capacity (or just capacity) to refer to the mathematical capabilities of an
operator. Since the algorithms for mathematical operations can be quite
involved, it is often difficult to describe semantic capacity in a simple way.
Nevertheless, the concept is an important one even if it cannot be described
precisely in some instances. In practice, a useful approach is simply to
experiment with a CAS to see what an operator can do. (See Exercise 1
on page 22, Exercise 2 on page 22, and the exercises at the end of this
section.)

The following two concepts, properly posed operations and simplifica-
tion context, describe some aspects of operator capacity that are useful for
understanding the capacity of an operator.

Properly Posed Operations

Informally speaking, a mathematical operation is properly posed if all the
information needed to perform the operation in an unambiguous manner
is available. If an operation is not properly posed, a CAS may not perform
the operation, may request additional information, or may return a result
that is only correct in some contexts.

In Figure 4.3, we give a Maple dialogue that illustrates three examples
of operations that are not properly posed and show how they are handled
by this system. At the first prompt, Maple evaluates the indefinite integral∫

xndx

where n is a symbol. This statement is improperly posed because the result
depends on whether or not n �= −1 which is unknown at this point. Notice
that Maple assumes that n �= −1 and returns the form of the integral for
this case.

At the next prompt, we assign to u a second order differential equa-
tion with the unassigned symbols a, b, and c, and at the third prompt
ask Maple to solve the differential equation. This statement is improperly
posed because the form of the solution depends on the value of b2 − 4 a c.
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> int(x^n, x);

x(n+1)

n + 1

> u := a*diff(y(x),x,x) + b*diff(y(x),x) + c*y(x) = 0;

u := a

W
∂2

∂x2
y(x)

}
+ b

W
∂

∂x
y(x)

}
+ c y(x) = 0

> dsolve(u, y(x));

y(x) = C1 e
−1/2

(b−
√

b2−4 a c) x

a
+ C2 e

−1/2
(b+

√
b2−4 a c) x

a

> w := exp(-s*t)*sin(t);

w := e(−s t) sin(t)

> int(w, t = 0..infinity);

Definite integration: Can’t determine if the integral is convergent.
Need to know the sign of −−> s
Will now try indefinite integration and then take limits.

lim
t→∞

−e(−s t) cos(t) + s e(−s t) cos(t)− 1

s2 + 1

> assume(s>0);

> normal(int(w, t = 0..infinity));

1

s 2
˜ + 1

Figure 4.3. A Maple interactive dialogue that demonstrates statements that are
improperly posed. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

In this case, Maple returns the form of the solution when b2 − 4 a c > 0,
although when b2 − 4 a c = 0, the correct form is

y(x) = c1 e
−b/2a x + c2 x e

−b/2a x.
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At the next two prompts, we ask Maple to evaluate the improper
integral ∫ ∞

0

exp(−s t) sin(t) dt.

This integral is not properly posed because the convergence of the integral
depends on the sign of s. When s > 0, the integral converges, and otherwise
it diverges. Observe that following the fifth prompt, Maple displays a
message indicating that it can’t evaluate the integral because it doesn’t
know the sign of s and then returns an unevaluated limit. At the next
prompt, we use Maple’s assume command to assign the positive property
to the symbol s, and at the last prompt we reevaluate the integral and
simplify the result with Maple’s normal command1.

Similar results are obtained with Mathematica and MuPAD for all three
examples.

The question of when an operation is properly posed is an important
aspect of operator capacity. A CAS will often make assumptions about the
nature of variables in an expression, which means the result returned by
an operator may not be correct in all contexts. This can be particularly
troubling in an involved program when one of these exceptional situations
occurs early in the calculations, remains undetected, and contaminates later
calculations. Unfortunately, many mathematical operations that involve
general expressions with arbitrary symbols are not properly posed (Exercise
1), and if we try to avoid these situations at all costs our programs will be
unnecessarily complicated.

Simplification Context

For efficiency reasons, it is unreasonable to expect a CAS to apply all its
simplification rules during the course of a computation. The designer of
a CAS must choose which simplification rules are appropriate for a par-
ticular operator. We use the term simplification context to refer to those
simplification rules that are applied during the evaluation of a mathemat-
ical operator. The simplification context often determines the form of the
output of an operator and in some cases determines whether or not a CAS
can even correctly perform an operation.

For example, consider the Maple interactive dialogue in Figure 4.4. At
the first prompt, u is assigned a polynomial in x in factored form, and
at the second prompt, we ask Maple to obtain the degree of u in x. In
this case algebraic expansion (with respect to the symbol x) is part of the

1 Observe that the symbol s in the output of the normal command is followed by a
tilde (˜). The Maple system includes this symbol to indicate that s has been given a
property.
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> u := (x+1)*(x+2);

u := (x+ 1)(x+ 2)

> degree(u,x);

2

> v := (y^2-1-(y+1)*(y-1))*x^2+x+1;

v := (y2 − 1− (y + 1)(y − 1)) x2 + x+ 1

> degree(v,x);

2

Figure 4.4. A Maple interactive dialogue that demonstrates a simplification
context. (Implementation: Maple (mws), Mathematica (nb) MuPAD (mnb).)

simplification context of the degree operator which returns the value 2.
At the third prompt, v is assigned a polynomial in x with one coefficient
that is a polynomial in y (in unexpanded form), and at the next prompt,
we ask Maple to obtain the degree of v in x. Notice that the value 2 is
returned even though the coefficient of x2 simplifies to 0. For this system,
expansion with respect to the auxiliary symbol y is apparently not part of
the simplification context of the degree operator. On the other hand, both
Mathematica’s Exponent operator and MuPAD’s degree operator evaluate
the degree of v to 1.

Figure 4.5 shows how the simplification context of the numerator oper-
ator can vary from system to system. First, for the expression (a x+b x)/c,
Maple returns the numerator in a factored form, while Mathematica returns
an expanded form. Next, consider the expression 1/a+ 1/b. In Maple the
terms in the sum are combined over a common denominator, and a + b is
returned as the numerator. On the other hand, in Mathematica the terms
in the sum are not combined, and the entire expression is returned as the
numerator.

Simplification context is a rather loosely defined concept. For exam-
ple, does it refer to the simplification rules that are applied before, during,
or after an operation? In addition for some operators a simplification rule
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> u := (a*x+b*x)/c;

u :=
ax+ b x

c

> numer(u);

(a+ b) x

> u := 1/a+1/b;

‘ u :=
1

a
+

1

b

> numer(u);

a+ b

(a) Maple.

In[1 ] := u = (a ∗ x + b ∗ x)/c

Out [1 ] =
a x + bx

c

In[2 ] := Numerator[u]

Out [2 ] = a x + bx

In[3 ] := u = 1/a+ 1/b

Out [3 ] =
1
a

+
1
b

In[4 ] := Numerator[u]

Out [4 ] =
1
a

+
1
b

(b) Mathematica.

Figure 4.5. Interactive dialogues in Maple and Mathematica that show different
simplification contexts of the numerator operation. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)
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may be applied in some situations while not in others or may even depend
on other options or settings used in a session. Nevertheless, the concept
is an important aspect of operator capacity and serves as a warning that
unwarranted assumptions about the actions of an operator may cause a
program to fail.

Exercises.

1. Explain why the following operations are not properly posed without addi-
tional information about the arbitrary symbols that appear in the expres-
sions. Implement each operation in a CAS. Is the solution obtained correct
for all values of the arbitrary symbols?

(a)

�
dx

x2 + 2 ax+ 1
.

(b)

�
sin(nx) sin(mx) dx.

(c) Solve the differential equation
dy2

dx2
− y = exp(a x).

(d)

� 1

0

1

xn
dx.

Use int and dsolve in Maple, Integrate and DSolve in Mathematica, and
int and ode (with solve) in MuPAD.

2. Experiment with a CAS to determine the simplification context of the
following operators.

(a) The Coefficient operator. For example, can the operator obtain co-
efficients if the input polynomial is not in expanded form? Is the
result returned in expanded form? Is rational simplification part of
the simplification context? (Use coeff in Maple and MuPAD and
Coefficient in Mathematica.)

(b) The Solve operator. For example, can this operator determine that
the quadratic equation (a2−1− (a+1)(a−1))x2+x−1 = 0 is really
a linear equation and return the solution x = 1? How about the
equation (sin2(a)+cos2(a)−1)x2+x−1 = 0? Is rational simplification
applied before and/or after a solution to the equation is found? (Use
solve in Maple and MuPAD and Solve in Mathematica.)

3. Is rational simplification part of the simplification context of the differ-
entiation operator in a CAS? (Use diff in Maple and MuPAD and D in
Mathematica.)

4. Describe the semantic capacity of the factor operation in a CAS. The ex-
amples in Exercise 1, page 22 are useful for this exercise. (Use factor in
Maple and MuPAD and Factor in Mathematica.)
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5. Some CAS software has the capability to differentiate and integrate expres-
sions with undefined functions. In this exercise we ask you to explore the
capacity of differentiation and integration operators in a CAS to handle
undefined functions.

(a) Apply the differentiation operator to the following expressions:

u(x),
du(x)

dx
u(x)v(x), u(x)/v(x), (4.9)

sin(u(x)), u(v(x)), x3 du(x)

dx
− 3x2u(x) + x2/2.

Does the CAS obtain the results you expect? (Use diff in Maple
and MuPAD and D Mathematica.)

(b) Suppose that you are given the derivatives of the expressions in
(4.9). Can a CAS integrate these derivatives to obtain the expres-
sions in (4.9) (up to a constant)? (Use int in Maple and MuPAD
and Integrate in Mathematica.)

6. An important aspect of semantic capacity is what an operator does when it
is unable to perform the operation. Experiment with a CAS to determine
what each of the of the following operators does in this situation.

(a) Degree.

(b) Solve.

(c) Integral.

(d) Solve ode.

For example, what does Degree(u, x) operator return when the input ex-
pression u is not a polynomial in x? (In Maple use degree, solve,

int, and dsolve; in Mathematica use Exponent, Solve, Integrate, and
DSolve; and in MuPAD use degree, solve, int, and ode (with solve).)

4.2 MPL’s Algorithmic Language

In this section we describe the basic language structures that are used in
MPL to control the flow in an algorithm.

Function Definitions

In ordinary mathematical discourse, the statement, “let f(x) = x2 + 4,”
defines a computational scheme and does not perform a computation. A
computation occurs when the function is invoked with a statement such as
f(2) → 8. In MPL, a function definition is used to mimic this operation.
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In MPL, a function definition has the form

f(x1, . . . , xl)
function

:= u,

where f is the function name, x1, . . . , xl is a sequence of symbols called the
formal parameters, and u is a mathematical expression. As with ordinary
mathematical notation, a function is invoked with an expression of the form

f(a1, . . . , al), (4.10)

where a1, . . . , al is a sequence of mathematical expressions called the actual
parameters. When this expression is evaluated, each ai is evaluated and
substituted for the corresponding xi in u, and then u is evaluated, and the
resulting expression is returned as the evaluated form of (4.10).

Example 4.2. Consider the function definition

f(x)
function

:= x2 + 4.

The function is invoked with an expression such as f(2). When this state-
ment is evaluated, the actual parameter 2 replaces formal parameter x in
x2 + 4, and f(2) → 8. �

Example 4.3. Consider the function definition

T (y, x)
function

:= Derivative(y, x) + y.

The function is invoked with an expression such as T (sin(t)+ t2, t). When
this statement is evaluated, the actual parameters sin(t) + t2 and t are
substituted for the formal parameters y and x, and we obtain

T (sin(t) + t2, t) → cos(t) + 2 t+ sin(t) + t2. �

In Figure 4.6 we give function definitions in Maple, Mathematica, and
MuPAD that implement the MPL definitions in Examples 4.2 and 4.3.

Procedure Definitions

MPL procedures extend the function concept to mathematical operators
that are defined by a sequence of statements. The general form of a pro-
cedure is given in Figure 4.7. The first line of the procedure gives the
procedure name and a sequence of formal parameters. The Input section
contains each of the formal parameters xi along with a brief description
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f := x -> x^2+4;

T := (y,x) -> diff(y,x)+y;

(a) Maple.

f[x_] := x^2 + 4

T[y_, x_] := D[y, x] + y

(b) Mathematica.

f := x -> x^2+4;

T := (y,x) -> diff(y,x)+y;

(c) MuPAD.

Figure 4.6. Function definitions in Maple, Mathematica, and MuPAD that corre-
spond to the MPL definitions in Examples 4.2 and 4.3. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)

of the type of expression that replaces it when the procedure is invoked.
MPL procedures always return a mathematical expression as output, and
the Output section contains a brief description of this expression.

The Local Variables section contains a sequence of local variables that
are known and used only by the procedure. The formal parameters and
the local variables make up the local environment of a procedure. In a real
CAS, each time a procedure is invoked, the variables in this environment are
given storage locations in the computer’s memory, and when the procedure
terminates, these locations are released back to the system.

The statements between the delimiters Begin and End represent the
body or the executable statements of the procedure. Each statement Sj is
either a mathematical expression, an assignment statement, or a decision
or iteration structure both of which are defined later in this section.

A procedure is invoked like a function with an expression of the form
(4.10). When the procedure is invoked, each actual parameter ai is evalu-
ated and then substituted for the corresponding formal parameter xi, after
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Procedure f(x1, . . . , xl);
Input

x1 : description of input to x1;
...

xl : description of input to xl;
Output

description of output;
Local Variables

v1, . . . , vm;
Begin

S1;
S2;
...

Sn−1;
Sn

End

Figure 4.7. The general form of an MPL procedure.

which each statement Sj in the body is evaluated. In most cases, at least
one of the Sj includes a return statement that has the form

Return(u),

where u is a mathematical expression. When this statement is encountered,
three actions occur: first, the procedure immediately terminates; second,
the evaluated form of u is returned as the evaluated form of Expression
(4.10); and finally, control is transferred back to the statement that invoked
the procedure. If a Return statement is not included, the actions are similar,
but now the evaluated form of the last statement Sn is returned by the
procedure. We always include a Return statement to emphasize what is
returned by the procedure.

Example 4.4. We illustrate this concept by defining a procedure that ob-
tains the equation of a tangent line to a function f(x) at the point x = a.
Recall that the expression for the tangent line is given by

df

dx
(a)(x− a) + f(a). (4.11)

The procedure definition in Figure 4.8 is an algorithmic view of what is
done to obtain this expression in expanded form. We invoke the procedure
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Procedure Tangent line(f, x, a);
Input

f : an algebraic expression (formula for a mathematical function);
x : a symbol (independent variable);
a : an algebraic expression (point of tangency);

Output
an algebraic expression that is the formula for the tangent line;

Local Variables
deriv ,m, line;

Begin
1 deriv := Derivative(f, x);
2 m := Substitute(deriv , x = a);
3 line := Algebraic expand(m ∗ (x − a) + Substitute(f, x = a));
4 Return(line)
End

Figure 4.8. An MPL procedure that obtains the formula for a tangent line.

with an expression such as

Tangent line(1/z, z, 3). (4.12)

When this expression is evaluated, the three actual parameters 1/z, z, and
3 are substituted for the corresponding formal parameters f , x, and a, and
then the statements in the procedure are evaluated:

deriv := Derivative(1/z, z) → −1/z2,
m := Substitute(−1/z2, z = 3) → −1/9,
line := Algebraic expand

(
(−1/9) ∗ (z − 3) + Substitute(1/z, z = 3)

)
→ (−1/9) z + 2/3.

Therefore
Tangent line(1/z, z, 3) → (−1/9) z + 2/3.

When we invoked the procedure in Expression (4.12), for clarity we
intentionally chose names for mathematical symbols that were different
from the formal parameter names of the procedure. There is no reason,
however, to restrict the actual parameters in this way. For example, the
procedure can also be invoked with

Tangent line(1/x, x, 3) → (−1/9)x+ 2/3. (4.13)
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Keep in mind, however, that the actual parameter x in Statement (4.13)
and the formal parameter x in the procedure declaration

Procedure Tangent line(f, x, a) (4.14)

are different symbols even though they have the same name. When State-
ment (4.13) is evaluated, each actual parameter is substituted for the cor-
responding formal parameter which means that f is replaced by 1/x, the
formal parameter x in (4.14) by the actual parameter x in (4.13), and a
by 3. Therefore, the differentiation at line 1 is

Derivative(1/x, x) → −1/x2,

where the x that appears here is the one in (4.13). Similar comments apply
to the other statements in the procedure. �

Maple, Mathematica, and MuPAD provide procedures that operate
as described above. In Figures 4.9 and 4.10 we give implementations of
Tangent line in these languages.

Global Symbols. A symbol that appears in a function or a procedure that
is not a formal parameter or a local variable is called a global symbol.
Global symbols, which are accessible to both the interactive mode and other
functions and procedures, provide another way to pass data to and from a
procedure without using the formal parameters or a Return statement.

For a simple example, consider a modification of the Tangent line pro-
cedure in which the variable deriv has been removed from the local section
and therefore is considered global. In this case, after evaluating Statement
(4.12) the global variable deriv has the value −1/z2 which can now be used
by other functions, procedures, or the interactive mode.

In our MPL procedures, global symbols are used primarily to return
information about the status of an operation. For example, in Figure 4.14
on page 144 we give a procedure that tries to determine if a mathematical
function is even or odd. The procedure returns one of the global symbols
Even or Odd when the input expression is even or odd, or the global symbol
Unknown when the procedure cannot determine the property.

Use of Local Variables in MPL. Procedures provide a way to isolate part of
a computation so that programming variables in the local environment do
not conflict with variables with the same name in other functions, proce-
dures, or the interactive mode. However, in some systems local variables
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Tangent_line := proc(f,x,a)

#Input

# f: an algebraic expression (formula for a mathematical function)

# x: a symbol (independent variable)

# a: an algebraic expression (point of tangency)

#Output

# an algebraic expression that is the formula for the tangent line

local

deriv,m,line;

deriv := diff(f,x);

m := subs(x=a,deriv);

line := expand(m*(x-a)+subs(x=a,f));

RETURN(line)

end:

(a) Maple.

TangentLine[f_,x_,a_] := Module[

(*Input

f: an algebraic expression (formula for a mathematical function)

x: a symbol (independent variable)

a: an algebraic expression (point of tangency)

Output

an algebraic expression that is the formula for the tangent line

Local*)

{deriv,m,line},

deriv = D[f,x];

m = ReplaceAll[deriv,x->a];

line = Expand[m*(x-a)+ ReplaceAll[f,x->a]];

Return[line]

]

(b) Mathematica.

Figure 4.9. Implementations of the MPL procedure in Figure 4.8 in Maple and
Mathematica. (Implementation: Maple (txt), Mathematica (txt).)
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Tangent_line := proc(f,x,a)

/*Input

f: an algebraic expression (formula for a mathematical function)

x: a symbol (independent variable)

a: an algebraic expression (point of tangency)

Output

an algebraic expression that is the formula for the tangent line

*/

local

deriv,m,line;

begin

deriv := diff(f,x);

m := subs(deriv,x=a);

line := expand(m*(x-a)+subs(f,x=a));

return(line)

end_proc:

Figure 4.10. A MuPAD implementation of the MPL procedure in Figure 4.8.
(Implementation: MuPAD (txt).)

can also act as mathematical symbols in an expression, and when this hap-
pens, name conflicts can occur that are not encountered with conventional
programming languages.

For example, suppose that a symbol x is declared local in a procedure,
and suppose that it is used as a mathematical symbol in an expression
that is returned by a procedure. When this happens, does x lose some
of its local characteristics? For example, when this x is returned to the
interactive mode, is it the same as a mathematical symbol x used elsewhere
in the interactive mode?

In Figure 4.11 we show how this situation is handled by the Maple
system. At the first prompt, we define a procedure F(a) that returns the
expression a ∗ x2 with the local x. At the second prompt, we call on the
procedure and assign the output to u. At the third prompt, we differentiate
u with respect to x and obtain what appears to be an incorrect result. The
problem here is the local x in the procedure and the x in the diff command
are different symbols even though they have the same displayed name in
the interactive mode.

In Mathematica, local variables in a procedure can act as mathemati-
cal symbols, although a procedure similar to the Maple procedure in Fig-
ure 4.11 returns the expression a x2 with the symbol name x replaced by
another system-generated name.
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> F := proc(a)

local x;

RETURN(a*x^2)

end:

> u := F(3);

u := 3x2

> diff(u,x);

0

Figure 4.11. A Maple dialogue in which a local mathematical symbol is returned
from a procedure. (Implementation: Maple (mws), Mathematica (nb), MuPAD
(mnb).)

The MuPAD system avoids this situation altogether by not permitting
unassigned local variables in a procedure to act as mathematical symbols.
To avoid conflicts of this sort and to provide a system-independent pro-
gramming style, we follow MuPAD’s lead and adopt the following conven-
tion:

In MPL procedures, an unassigned local variable cannot appear
as a symbol in a mathematical expression.

In other words, in MPL procedures local variables can only act as program-
ming variables and must be assigned before they appear in a mathematical
expression. In situations where a procedure requires a local mathemati-
cal symbol, we either pass the symbol through the parameter list or use a
global symbol.

Use of Formal Parameters in MPL. In conventional programming languages,
a procedure’s formal parameters can be used both to transmit data to and
from a procedure and as local variables. The situation with CAS languages
is more involved, however, because the actual parameters in a procedure
call can be mathematical expressions as well as variables. Because of this,
the language mechanism that is used to bind the formal parameters with
the actual parameters can be rather involved and can vary from system
to system. For this reason, the use of formal parameters for anything but
the transmission of data into a procedure is system dependent. Since our
goal is to present a system-independent programming style, we adopt the
following convention:
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Formal parameters in MPL procedures are used only to transmit
data into a procedure and not as local variables or to return data
from a procedure.

When we need to return more than one expression from a procedure, we
return a list of expressions.

Decision Structures

Decision structures provide a way to control the flow in an algorithm.
MPL provides three decision structures. The simplest one is the if struc-
ture which has the general form shown in Figure 4.12-(a). The expression

if condition then

T1;

T2;

...

Tm;

(a) The if structure.

if condition then

T1;

T2;

...

Tm

else

F1;

F2;

...

Fn;

(b) The if-else structure.

Figure 4.12. The general form of the MPL if and if-else decision structures.
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condition is a logical (or relational) expression that evaluates to one of the
logical constants true or false. Each Ti is either a mathematical expres-
sion, an assignment statement, another decision structure, or an iteration
structure (described below).

The if structure usually operates in the following way: when condition
evaluates to true, the indented2 statements T1, T2, . . . , Tm are evaluated,
and when condition evaluates to false these statements are skipped. The
exception to this scheme arises when the if statement is included in a
procedure, and one of the indented statements includes a Return. In this
case, when condition is true, the statements controlled by the if are
evaluated until the Return is encountered, at which point the procedure
terminates, and the evaluated form of the argument to Return is returned
by the procedure. This exception also applies to the other decision and
iteration structures described below.

A more general decision structure is the if-else structure which al-
lows for two alternatives. It has the general form3 shown in Figure 4.12-
(b). When the expression condition evaluates to true, the statements
T1, T2, . . . , Tm are evaluated, and when condition evaluates to false, the
statements F1, F2, . . . , Fn are evaluated.

Example 4.5. Here is a simple example of an if-else structure:

if 0 ≤ x and x ≤ 1 then
f := x2 + 4 (4.15)

else

f := x2 − 1;

(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �

The most general MPL decision structure is the multi-branch decision
structure which allows for a sequence of conditions. It has the general
form shown in Figure 4.13. In this generality, the structure contains zero
or more elseif sections and an optional else section. Upon evaluation, the
logical expressions condition1, condition2 , . . . are evaluated in sequence. If
condition i is the first one that evaluates to true, then the statements in
that section Si1, . . . , Simi are evaluated while all the other statements are

2Some computer algebra languages require a termination symbol (such as end if, fi,
or ]) to indicate the extent of statements controlled by the if structure. In MPL, these
statements are indicated by indentation without a termination symbol.

3 As is common practice in some programming languages, in MPL we omit the
semicolon at the end of a statement that precedes an else, an elseif (defined below),
and an End.



4.2 MPL’s Algorithmic Language 143

if condition1 then
S11;
S12;
...
S1m1

elseif condition2 then
S21;
S22;
...
S2m2

...

elseif conditionn then
Sn1;
Sn2;
...
Snmn

else
F1;
F2;
...
Fr;

Figure 4.13. The MPL multi-branch structure that provides for a sequence of
alternatives.

skipped. If none of the tests evaluate to true, the statements in the else
section (if included) are evaluated.

All computer algebra languages provide if structures and if-else struc-
tures, and some languages provide a version of the multi-branch decision
structure4.

The procedure in the next example utilizes a multi-branch structure.
4 In Maple and MuPAD, use the if statement to implement MPL’s if, if-else, and

multi-branch structures. In Mathematica, use the If statement to implement MPL’s
if and if-else structures and the Which statement to implement MPL’s multi-branch
structure.
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Example 4.6. Recall that a mathematical function u(x) is even if

u(x) − u(−x) = 0

and odd if
u(x) + u(−x) = 0.

For example, u(x) = x2 − 1 is even, u(x) = x3 is odd, while u(x) = x2 + x3

is neither even nor odd.
A procedure that tries to determine if an algebraic expression u is even

or odd is given in Figure 4.14. The procedure is interesting for both what
it can do and what it cannot do. Observe that the procedure operates in
the simplification context of automatic simplification, and in this context
it can determine the nature (even or odd) of the first two examples given
above.

Notice that when the procedure is unable to determine that u is even
or odd, it returns the symbol Unknown, rather than a symbol indicating
that the expression is neither even nor odd. We do this because automatic
simplification applied at lines 2 and 4 may not simplify an expression to
zero even though the expression simplifies to zero in a mathematical sense.
For example, suppose that u is the even expression (x + 1) (x − 1), and

Procedure Even odd(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
one of the global symbols Even, Odd , or Unknown ;

Local Variables
v;

Begin
1 v := Substitute(u, x = −x);
2 if u − v = 0 then
3 Return(Even)
4 elseif u + v = 0 then
5 Return(Odd)
6 else
7 Return(Unknown)

End

Figure 4.14. An MPL procedure that attempts to determine if u is even or odd.
(Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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let’s assume that algebraic expansion is not included in automatic simpli-
fication5. In this case, v is the expression (−x + 1) (−x − 1), and u − v
is the expression (x + 1) (x − 1) − (−x+ 1) (−x− 1), which does not sim-
plify to 0 with automatic simplification. Although we can remedy this by
applying the Algebraic expand operator at lines 2 and 4, there are other
expressions that are not handled in this simplification context. For ex-
ample, 1/(x − 1) − 1/(x + 1) is even, but this cannot be determined by
algebraic expansion and automatic simplification. In this case, rational
simplification (with Rational simplify) is required at lines 2 and 4. But
then, sin(x/(x + 1)) + sin(x/(x − 1)) is even, but this is not handled by
rational simplification.

While it is possible to increase the simplification power at lines 2 and
4 to handle all of the above expressions, it is theoretically impossible to
increase the simplification power to a level that the procedure can always
determine if an algebraic expression is even or odd6. �

Iteration Structures

MPL contains two iteration structures that allow for repeated evaluation
of a sequence of statements. The first iteration structure is the while
structure which has the general form

while condition do
S1; (4.16)
S2;
...

Sn;

where condition is a logical (or relational) expression. This structure is
evaluated by first evaluating condition , and if it is to true, the indented
statements S1, S2, . . . , Sm are evaluated. Once this is done, the process
repeats, and again if the logical condition is true, the indented statements
are evaluated. The process continues in this way checking if condition is
true and if so, evaluating the indented statements. On the other hand once

5In Maple, Mathematica, and MuPAD, algebraic expansion is not part of automatic
simplification.

6 The problem to determine if an expression simplifies to 0 is known as the zero
equivalence problem. D. Richardson has shown that for the class of algebraic expres-
sions constructed with rational numbers, the symbol x, the real numbers π and ln(2),
the sin, exp, and absolute value functions, and sums, products, and powers with in-
teger exponents, it is impossible to give an algorithm that can always determine if an
expression simplifies to 0 (see Richardson [84]).
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condition evaluates to false, the indented statements are not evaluated, and
the structure terminates.

Example 4.7. The sum of the first n + 1 terms of a Taylor series for a
function u(x) about x = a is given by

n∑
i=0

u(i)(a)
i!

(x− a)i (4.17)

where u(i) is the ith derivative of u(x), and u(0) = u(x). When n is a
non-negative integer, the sum (4.17) is obtained with the following MPL
statements:

1 i := 1;
2 s := Substitute(u, x = a);
3 while i ≤ n do
4 u := Derivative(u, x);
5 s := s+ Substitute(u, x = a)/i! ∗ (x− a)i;
6 i := i+ 1;

The substitution in line 2 initializes s to u(0)(a) = u(a), and each traversal
through the while loop adds one additional term of the Taylor series to s
and increases the counter i by 1. Eventually i = n+1, and so the condition
i ≤ n is false, and the while structure terminates.

For example, if u = sin(x), n = 3, and a = 0, after executing the loop
we obtain s = x − x3/6. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).) �

The second iteration structure is the for structure which has the general
form

for i := start to finish do
S1; (4.18)
S2;
...

Sn;

where i is a variable and start and finish are expressions that evaluate to
integer values. When start ≤ finish, the indented statements are evaluated
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for each integer value of i = start, start+1, . . . , f inish. If start > finish,
the indented statements are not evaluated7

Example 4.8. The sum of the first n+1 terms of the Taylor series can also
be obtained using a for structure:

1 s := Substitute(u, x = a);
2 for i := 1 to n do
3 u := Derivative(u, x);
4 s := s+ Substitute(u, x = a)/i! ∗ (x− a)i;

(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).) �

All computer algebra languages provide iteration structures similar to
while and for8.

Evaluation of Logical Expressions. In MPL, the value (true or false) of a
logical expression with main operator and or main operator or is obtained
by evaluating each of the operators in a left to right manner until the
value of the entire expression is determined. In some cases this value is
obtained without evaluating all the operands of the logical expression. For
example, consider the following decision structure which tests if n is a
positive integer:

if Kind(n) = integer and n > 0 then (4.19)
...

Observe that the second relational expression only evaluates to true or
false when n has a numerical value. When n is not an integer, however,
the value of the entire logical expression (false) is determined by the test
Kind(n) = integer, and there is no need to evaluate the expression n > 0.

Most computer algebra systems evaluate logical expressions in decision
and iteration structures in a similar way9.

7 Some of our procedures contain For loops that include a Return statement. (For
example, see lines 5-6 in the procedure Polynomial sv in Figure 6.2 on page 218.) In
this case, we intend that both the loop and the current procedure terminate when the
Return is encountered, and that the value returned by the procedure is the value of the
operand of the Return statement. The for statements in both Maple and MuPAD work
in this way. However, in Mathematica, a Return in a For statement will only work in
this way if the upper limit contains a relational operator (e.g., i<=N). (Implementation:
Mathematica (nb).)

8 In Maple and MuPAD, use the while and for statements. In Mathematica, use the
While and For statements.

9Maple, Mathematica, and MuPAD use this approach to evaluate logical expressions
in decision and iteration structures.
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The procedure in the next example uses the concepts described in this
section.

Example 4.9. It is often necessary to separate the operands of a product
into two classes, those that depend on an expression (say x) and those
that do not. For example, this operation is needed when we use the linear
property of the integral to move the factors of a product that do not depend
on the integration variable x outside of the integral sign:∫

c x sin(x)
2

dx =
c

2

∫
x sin(x)dx. (4.20)

A procedure Separate factors that performs the separation operation
is given in Figure 4.15. The procedure takes two algebraic expressions u

Procedure Separate factors(u, x);
Input

u, x : algebraic expressions;
Output

a list with two algebraic expressions;
Local Variables

f, free of part , dependent part , i;
Begin

1 if Kind(u) = ” ∗ ” then
2 free of part := 1;
3 dependent part := 1;
4 for i := 1 to Number of operands(u) do
5 f := Operand(u, i);
6 if Free of(f, x) then
7 free of part := f ∗ free of part
8 else
9 dependent part := f ∗ dependent part ;
10 Return([free of part , dependent part ])
11 else
12 if Free of(u, x) then
13 Return([u, 1])
14 else
15 Return([1, u])

End

Figure 4.15. An MPL procedure that separates factors in a product that depend
on x from those that do not. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt).)
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and x as input and returns a two-element list. The first member of the
list contains the product of the factors of u that are free of x, while the
second member contains the product of the remaining factors. If there are
no factors in a category, the integer 1 is returned for that category.

The procedure can be applied to both products and non-products.
When u is a product, the Free of operator is applied to each factor which
is then placed in the appropriate category (lines 6-9). When u is not a
product, it is reasonable to apply Free of to the entire expression which
is then placed in the appropriate category (lines 12-15). The procedure is
invoked with an expression such as

Separate factors
(
c x sin(x)

2
, x

)
→ [c/2, x sin(x)]. �

Comparison of the MPL and CAS Languages

In Chapters 2, 3, and this chapter we have introduced the main elements
of the MPL algorithmic language. The description includes the following
elements.

1. The MPL mathematical operators. A summary of these operators is
given on pages 121-123 of this chapter. In later chapters many of
these operators are described in greater detail and many others are
introduced.

2. A description of the evaluation process including automatic simpli-
fication. All calculations in our programs are done in the context
of automatic simplification. Automatic simplification is described in
Chapters 2 and 3. For a more detailed discussion of automatic sim-
plification consult Cohen [24], Chapter 3.

3. The structure of mathematical expressions. Mathematical expres-
sions are the data objects of computer algebra. The form of these
expressions in the context of automatic simplification is described in
Chapter 3.

4. The MPL algorithmic structures. Functions, procedures, decision
structures, and iteration structures are described in this section, and
a few additional ones are described in later chapters.

Although MPL is similar to real CAS languages, it models only a small
subset of these languages. Large CAS languages contain over 1000 mathe-
matical operators and other language features that provide greater mathe-
matical power, facilitate the programming process, and enhance the com-
putational efficiency of programs.
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There is, however, much to be gained from MPL’s simplicity. MPL’s
algorithms can be implemented (usually with only minor modifications)
in many real CAS languages using only the basic operations of these lan-
guages. In fact, many mathematical operations can be formulated in terms
of the analogues of MPL’s primitive operators (Kind, Operand, etc.) or
in terms of other operators that are defined in terms of these primitive
operators.

Exercises

Unless otherwise noted, each of the functions and procedures in the exercises
should be expressed in terms of a CAS’s version of the mathematical operators
given on pages 121-123.

1. Consider the function f(x) =
1

1− x
.

(a) Show that f(f(f(x))) = x with pencil and paper.

(b) Define this function using a function definition in a CAS language.

(c) Use a CAS to show that f(f(f(x))) = x.

2. (a) The curvature of a function f(x) is given by

k(x) =
|f ′′(x)|

(1 + (f ′(x))2)3/2
.

Give a procedure Curvature(f, x) that computes the curvature of an
algebraic expression f at x.

(b) Apply the Curvature operator to the function

f(x) =
�
4 − x2.

Since this function represents the positive semicircle of radius 2, the
curvature result simplifies to the value 1/2. Can you obtain this
simplification with a CAS?

3. Let u be an equation that represents a straight line in x and y, and let p
be a two-element list of rational numbers that represents the coordinates
of a point.

(a) Give a procedure Perpendicular line(u, x, y, p) that returns the equa-
tion of a line perpendicular to u that passes through the point p.
Be sure to include the cases for horizontal and vertical lines. For
example,

Perpendicular line(2x+3 y = 4, x, y, [1, 2]) → y− 2 = (3/2) (x− 1).
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(b) Give a procedure

Distance point line(u, x, y, p)

that returns the shortest distance from the point p to the line u. For
example,

Distance point line(2x+ 3 y = 4, x, y, [1, 2]) → (4/13)
√
13.

4. Let u be a mathematical expression. Give a procedure Operand list(u) that
returns the operands of a compound expression in a list. (The operands
in the list should be in the same order as the operands in u.) If u is not a
compound expression, return the global symbol Undefined. If u is a list,
return u. For example,

Operand list(a+ b+ c) → [a, b, c].

5. Let u be an equation of the form f = g where f and g are polynomials in
x with coefficients that are rational numbers such that f − g has degree
≤ 2. Give a procedure Solve quadratic(u, x) that finds the roots of the
equation f = g. Be sure to check if f − g is a constant, linear, or quadratic
polynomial. Do not use a CAS’s solve operator in this problem.

6. Let S be a set of polynomials in x. Give a procedure Find min deg(S, x)
that returns a polynomial of smallest degree in S. If S = ∅, return the
global symbol Undefined.

7. The set product of sets A and B is the set of all lists [x, y] where x ∈ A
and y ∈ B. This set is represented by A × B. If either A = ∅ or B = ∅,
then, by definition, A × B = ∅. Give a procedure Set product(A,B) that
returns A × B. For example,

Set product({a, b}, {c, d}) → {[a, c], [a, d], [b, c], [b, d]}.
8. Let x be a symbol, and let u be a polynomial in x with rational number

coefficients. Give a procedure Linear factors(u, x) that returns the product
of the linear factors of u. If u has no linear factors, return 1. Use the factor
operator in a CAS to obtain the factorization of u. For example,

Linear factors(x2+x, x) → x (x+1), Linear factors(x3+1, x) → x+1,

Linear factors(x2 +1, x) → 1, Linear factors(x2 +2 x+1, x) → (x+1)2.

9. Let u be a polynomial in x and y with rational number coefficients. A
polynomial u is symmetric if it is not changed when the variables x and
y are interchanged. For example, the polynomial u = x2 + 2 x y + y2 is
symmetric. Give a procedure Symmetric(u, x, y) that returns true if u is
symmetric and false otherwise.

10. Let L be a list. Give a procedure Remove duplicates(L) that returns a new
list with all members that are identical to a previous member of the list
removed from u. For example, Remove duplicates([a, b, c, a, c]) → [a, b, c].
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11. Let u be an algebraic expression. The numerical coefficient part of u is
defined in the following way:

(a) If u is a rational number, the numerical coefficient part of u is u.

(b) If u is a product, the numerical coefficient part is the operand of u
that is a rational number. If this operand does not exist, then the
numerical coefficient part is 1.

(c) If u is any other type of expression, then the numerical coefficient
part is 1.

Let n be the numerical coefficient part of an expression. Give a proce-
dure Numerical coefficient(u) that returns a two-element list [n, u/n]. For
example, Numerical coefficient(2/3 x sin(x)) → [2/3, x sin(x)].

12. Let u be an algebraic expression. Give a procedure Separate sin cos(u)
that returns a two-element list [r, s] that is defined using the following
rules.

(a) If u is a product, then s is the product of the operands of u that are
sines, cosines, or positive integer powers of sines and cosines, and r is
the product of the remaining operands of u. (If there are no operands
in a category, return 1 for that category.)

(b) If u is a sine, cosine, or a positive integer power of a sine or cosine,
then s = u and r = 1.

(c) In all other cases, r = u and s = 1.

For example,

Separate sin cos(3 sin(x) cos(y)) → [3, sin(x) cos(y)],

Separate sin cos(1 + sin(x)) → [1 + sin(x), 1].

This procedure is used in the procedure Contract trig rules in Figure 7.7,
page 297.

13. Let u be an algebraic expression, and let x and y be symbols. Give a
procedure

Separate variables(u, x, y)

that determines if an expression u can be factored in the form u = p · q,
where p is free of y, and q is free of x. Use the factor operator in a CAS
to obtain the factorization of u. If u can be factored in this form, return a
list [p, q], otherwise return false. For example,

Separate variables(3x y + 3x, x, y) → [3x, y + 1],

Separate variables(x+ y, x, y) → false.

This procedure is used in the procedure Separable ode described in Exercise
5 on page 168.
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14. Let P = [[x1, y1], . . . , [xr+1, yr+1]] be a list of 2 element lists, where xi

and yi are rational numbers. The Lagrange interpolation polynomial that
passes through these points is given by

L(x) =
r+1�
i=1

yiLi(x).

where

Li(x) =
(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xr+1)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xr+1).

Give a procedure Lagrange polynomial(P, x) that returns the polynomial
L(x). For example,

Lagrange polynomial([[1, 1], [2,−1]], x) → −2x+ 3.

15. Let u be an equation that involves x and y, and suppose that it is possible
to solve the equation for y as a linear expression in x using algebraic op-
erations such as rational simplification and expansion. Give a procedure
Line(u, x, y) that solves the equation for y and returns the result in the
form y = mx+ b. Do not use the solve operator in a CAS in this exercise.
For example, your procedure should obtain the following transformations:

Line
Qx
2
+

y

3
= 1, x, y

w
→ y = (−3/2) x+ 3,

Line
Qx

a
=

x+ y

b
, x, y
w
→ y =

b − a

a
x,

Line

W
y/x − 2

1− 3/x
= 6, x, y

}
→ y = 8x − 18.

16. A Taylor series for a function u(x, y) about the point (a, b) is given by

T (x, y) =
∞�

i=0

ui(x, y)/i!, (4.21)

where

ui(x, y) =
i�

j=0

i!

(i − j)!j!

∂iu(a, b)

∂xi−jyj
(x − a)i−j(y − b)j .

For example, for u = exp(x) cos(y) and (a, b) = (0, 0), the Taylor series is

T (x, y) = 1 + x+ (1/2)(x2 − y2) + (1/6)(x3 − x y2)− (1/3) x y2 + · · ·
Let u, a, and b be algebraic expressions, x and y be symbols, and n a non-
negative integer. Give a procedure Taylor 2 (u, x, y, a, b, n) that obtains
the sum of the first n+1 terms of the series (4.21). Note: A more efficient
procedure is obtained by using the expression ui−1(x, y) to obtain the next
expression ui(x, y).
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17. Consider the differential equation and initial condition

dy(x)

dx
= f(x, y(x)), y(a) = b. (4.22)

A Taylor series solution to this equation, which has the form

y(a) +
dy(x)

dx
(a) (x − a) +

d2y(x)

dx2
(a)

(x − a)2

2!
+ · · · ,

is found in the following way. The constant term in the series is given by
the initial condition in (4.22), and the second term is obtained using the
differential equation in (4.22)

dy(x)

dx
(a) (x − a) = f(a, y(a)) (x − a).

The third term is obtained by differentiating both sides of the differential
equation

d2y(x)

dx2
=

df(x, y(x))

dx
,

and which gives

d2y(x)

dx2
(a)

(x − a)2

2!
=

df(x, y(x))

dx

EEEE
x=a

(x − a)2

2!
.

The next term in the series is obtained in a similar way with the second
derivative of f(x, y(x)). For example, for the differential equation and
initial condition

dy(x)

dx
= f(x, y(x)) = x3 +

1

y(x)
+ 3, y(0) = 2,

the first term is y(0) = 2, and the second term is f(0, y(0)) (x−0) = 7/2 x.
To obtain the third term, we first obtain an expression for the second
derivative using the differential equation

d2y(x)

dx2
=

df(x, y(x))

dx
= 3x2 −

dy(x)

dx
y(x)2

= 3x2 − x3 + 1/y(x) + 3

y(x)2
,

and then using the substitutions y(x) = 2 and x = 0 to obtain

d2y(x)

dx2
(0) (x − 0)2/2! = −7/16 x2.

In a similar way the fourth term of the series is 35/64 x3.

Let w be a differential equation in the form (4.22), x and y be symbols,
a and b be algebraic expressions, and n be a non-negative integer. Give a
procedure

Taylor ode(w, x, y, a, b, n)
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that obtains the sum of the first n + 1 terms of the Taylor series solution
to the differential equation. Note: Under suitable conditions on f(x, y) the
Taylor series converges to y(x) for x in an interval about x = a. In this
case the polynomial obtained by Taylor ode is an approximation to the
true solution to the differential equation.

18. Consider the two infinite series

F =
∞�

n=0

fn(t − t0)

n!
, G =

∞�
n=0

gn(t − t0)

n!
, (4.23)

where the functions fn = fn(t) and gn = gn(t) are defined by the relations

fn =
dfn−1

dt
− µ(t) gn−1, (4.24)

gn = fn−1 +
dgn−1

dt
, (4.25)

with the initial functions given by

f0 = 1, (4.26)

g0 = 0. (4.27)

The two series in 4.23) are known in astronomy as the F and G series
where they are used for orbit calculations.

The computation in this problem is one of the early (1965) applications of
computer algebra that used the FORMAC computer algebra system devel-
oped at IBM (Bond et al. [11]). In this problem we restrict our attention to
the symbolic computation problem associated with the computation of the
functions fn and gn. Observe that Equation (4.24) contains an undefined
function µ(t), which implies that fn and gn also depend on t, and therefore
the differentiations in Equations (4.24) and (4.25) make sense. Using the
relations in (4.24) and (4.25) and the initial terms (4.26) and (4.27), the
next two terms of each sequence are given by

f1 = 0, g1 = 1, f2 = −µ(t), g2 = 0. (4.28)

For larger values of n, it is customary in astronomical calculations to define
two additional functions σ(t) and ε(t) and to make the substitutions

dµ(t)

dt
= −3µ(t)σ(t), dσ(t)

dt
= ε(t)−2σ(t)2,

dε(t)

dt
= −σ(t) (µ(t)+2ε(t)),

(4.29)
whenever these derivatives appear in the calculations. For example, to
compute f3, we use Equations (4.24), (4.28), and (4.29) to obtain

f3 =
df2

dt
− µ(t) g2 =

d(−µ(t))

dt
− µ(t) · 0 = 3µ(t)σ(t).
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In a similar way, we have

g3 = −µ(t), f4 = −15µ(t)σ(t)2 + 3µ(t) ε(t) + µ(t)2, g4 = 6µ(t)σ(t).

For larger values of n, the algebra becomes much more involved, and so
this is a good candidate for computer algebra.

(a) Using Equations (4.24), (4.25), (4.26), (4.27), and (4.28), show that

f5 = 105 σ(t)3 µ(t)− 45µ(t) ε(t)σ(t)− 15σ(t)µ(t)2,

g5 = −45σ(t)2 µ(t) + 9 ε(t)µ(t) + µ(t)2.

(b) Let n be a positive integer, and let t be a symbol. Give a procedure
FG(n, t) that returns the list [fn, gn], where fn and gn are expressed
in terms of µ(t), σ(t), and ε(t).

4.3 Case Study: First Order Ordinary Differential
Equations

In this section we describe an algorithm that finds a solution to some
first order differential equations using techniques similar to those found
in an elementary differential equations textbook. A first order ordinary
differential equation is one in which the highest order derivative is a first
derivative. For example,

x
dy

dx
+ y2 = x− 1

is a first order differential equations, while

d2y

dx2
+ y = sin(x)

is not. Although first order differential equations are very difficult to solve
in general, there are some specific forms that are solvable.

The solution technique we use involves the method of separation of
variables and the method of exact equations using integrating factors. In
the next few pages we describe these approaches in enough detail to allow
us to formulate our procedures. Additional theory and examples can be
found in most differential equations textbooks10.

10For example, see Simmons [87], Chapters 1 and 2, Boyce and DiPrima [12], Chapter
2, or Derrick and Grossman [32], Chapter 2.



4.3 Case Study: First Order Ordinary Differential Equations 157

Separation of Variables

A differential equation that can be expressed in the form

dy

dx
= f(x) g(y) (4.30)

is called a separable differential equation. In this case, the notation implies
that the expression to the right of the equal sign can be factored as a
product of an expression that is free of y and one that is free of x. To solve
the equation, divide both sides by g(y) and integrate with respect to x∫

1
g(y)

dy

dx
dx =

∫
f(x) dx.

By the chain rule, this is equivalent to∫
dy

g(y)
=
∫

f(x) dx.

By integrating both sides of this equation, we obtain an implicit solution
to the differential equation.

Example 4.10. Consider the differential equation,
dy

dx
= 2 x y2. An implicit

solution is given by ∫
dy

y2
=

∫
2 x dx,

−1
y

= x2 + C.

In this case, by solving for y we obtain an explicit solution

y =
−1

x2 + C
. (4.31)

In most cases, however, it is difficult (or impossible) to express the solution
in explicit form. For this reason, our algorithm returns the result in implicit
form. �

Exact Differential Equations and Integrating Factors

This technique applies to differential equations that can be transformed to
the form

M(x, y) +N(x, y)
dy

dx
= 0. (4.32)
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Our goal is to find an implicit solution to this equation that has the form

g(x, y) = C, (4.33)

where C is an arbitrary constant. To obtain a solution algorithm, let’s
suppose this expression is a solution to Equation (4.32). Considering y as
a function of x, differentiating Equation (4.33) with the chain rule gives

dg

dx
=

∂g

∂x
+
∂g

∂y

dy

dx
= 0. (4.34)

Comparing this equation to Equation (4.32), we obtain

∂g

∂x
= M(x, y),

∂g

∂y
= N(x, y), (4.35)

and find the solution to Equation (4.32) by solving these two equations for
g(x, y).

Example 4.11. Consider the differential equation

2 x+ 3 y2 + (6 x y + y2)
dy

dx
= 0. (4.36)

We find a solution by solving the equations

∂g

∂x
= 2 x+ 3 y2,

∂g

∂y
= 6x y + y2. (4.37)

Integrating the first of these equations with respect to x, we obtain

g(x, y) =
∫

∂g

∂x
dx =

∫
2 x+ 3 y2 dx = x2 + 3 x y2 + h(y). (4.38)

Since this operation inverts the partial differentiation operation, we assume
that y is fixed during the integration and obtain a constant of integration
h(y) that may depend on y, but is free of x. To find h(y), using Equation
(4.38) we differentiate g(x, y) with respect to y,

∂g(x, y)
∂y

=
∂(x2 + 3 x y2 + h(y))

∂y
= 6 x y + h′(y),

and compare this result with the second equation in (4.37). Therefore,

6 x y + h′(y) = 6 x y + y2,



4.3 Case Study: First Order Ordinary Differential Equations 159

which implies h′(y) = y2. Integrating with respect to y, we obtain h(y) =
y3/3, and therefore an implicit solution to the differential equation is

g(x, y) = x2 + 3 x y2 + y3/3 = C. (4.39)

We can also start the process by integrating the second equation in (4.37)
with respect to y:

g(x, y) =
∫

∂g

∂y
dy =

∫
6 x y + y2 dy = 3 x y2 + y3/3 + k(x),

where now the constant of integration depends on x. Differentiating this
expression with respect to x and comparing the result with the first ex-
pression in (4.37), we obtain k(x) = x2, which gives again the solution in
Equation (4.39). �

The next example shows that the method does not always work.

Example 4.12. Consider the differential equation

2 + 3 y/x+ (3 + 3 y2/x)
dy

dx
= 0, x > 0. (4.40)

We try to find a solution by solving the equations

∂g

∂x
= 2 + 3 y/x,

∂g

∂y
= 3 + 3 y2/x. (4.41)

Integrating the first equation with respect to x, we obtain

g(x, y) =
∫

∂g

∂x
dx =

∫
(2 + 3 y/x) dx = 2 x+ 3 y ln(x) + h(y). (4.42)

To find h(y), we differentiate this expression with respect to y

∂(2 x+ 3 y ln(x) + h(y))
∂y

= 3 ln(x) + h′(y)

and compare this result with the second equation in (4.41). We obtain
3 ln(x) + h′(y) = 3 + 3 y2/x, which implies h(y) is not free of x and so
the technique does not work. In addition, if we start the process by first
integrating

∂g

∂y
= 3 + 3 y2/x

with respect to y and then differentiating g(x, y) with respect to x, we
find that the constant of integration k(x) is not free of y and so again the
technique does not work. �
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As we saw in the last example, for the technique to work the constants
of integration (h(y) or k(x)) must be free of the other variable (x or y).
Equations for which this happens are called exact differential equations.
There is a simple test that determines if an equation is exact. It can be
shown11 that an equation is exact if and only if

∂M

∂y
=

∂N

∂x
. (4.43)

Using this relation, we can easily check that Equation (4.36) is exact, while
Equation (4.40) is not.

When the equation is not exact, it may be possible to transform the
equation to one that is exact. We illustrate this in the next example.

Example 4.13. Consider again the differential equation from the last ex-
ample

2 + 3 y/x+ (3 + 3 y2/x)
dy

dx
= 0,

where x > 0. If we multiply both sides of the equation by u(x, y) = x, we
obtain a new differential equation

2 x+ 3 y + (3 x+ 3 y2)
dy

dx
= 0. (4.44)

Since
∂M

∂y
= 3 =

∂N

∂x
,

Equation (4.44) is exact, and the solution technique for exact equations
gives the implicit solution x2 + 3 x y + y3 = C. �

The expression u(x, y) in the previous example is called an integrating
factor for the differential equation. Although an integrating factor always
exists in theory, it may be very difficult to find in practice12. Two cases
where simple integrating factors can be found are described in the following
theorem.

Theorem 4.14. Consider the differential equation

M(x, y) +N(x, y)
dy

dx
= 0.

11See Simmons [87], pp. 51-52, Boyce and DiPrima [12], page 84, Derrick and Gross-
man [32], page 41.

12For example, see Boyce and DiPrima [12], page 87, where it is shown that the
integrating factor is a solution to a partial differential equation. Unfortunately, it may
be very difficult to solve the partial differential equation.
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1. Let

F =

∂M

∂y
− ∂N

∂x

N
. (4.45)

If F is free of y, then an integrating factor is u = exp
(∫

F dx
)
.

2. Let

G =

∂N

∂x
− ∂M

∂y

M
. (4.46)

If G is free of x, then an integrating factor is u = exp
(∫

G dy
)
.

In either case, uM + uN
dy

dx
= 0 is an exact differential equation.

Example 4.15. Consider again the inexact equation

2 + 3 y/x+ (3 + 3 y2/x)
dy

dx
= 0, x > 0.

We have

F =

(
∂M
∂y − ∂N

∂x

)
N

=
3/x+ 3y2/x2

3 + 3 y2/x
= 1/x, (4.47)

where the expression on the right is obtained with rational simplification.
Since this expression is free of y, u = exp(

∫
1/x dx) = x is an integrating

factor and we obtain the exact form of Equation (4.44).
On the other hand, since

G =

(
∂N
∂x − ∂M

∂y

)
M

=
−3 y2/x2 − 3/x

2 + 3 y/x
=

−3 x− 3 y2

2 x2 + 3 x y

is not free of x, this approach does not obtain an integrating factor that is
free of x. �

The Solve ode Algorithm
An MPL algorithm that attempts to solve a first order differential equation
is given in Figures 4.16 and 4.17. The algorithm returns either an implicit
solution to the differential equation, which may include some unevaluated
integrals, or the global symbol Fail if it cannot find a solution using the
methods described in this section. The main procedure of the algorithm is
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Procedure Solve ode(w, x, y);
Input

w : a differential equation that can be transformed by

rational simplification to the form M +N
dy

dx
= 0,

where the derivative
dy

dx
is represented by the function form d(y, x);

x, y : symbols;
Output

An implicit solution to the differential equation or the global symbol Fail;
Local Variables

p,M,N, F ;
Begin

1 p := Transform ode(w, x, y);
2 M := Operand(p, 1);
3 N := Operand(p, 2);
4 F := Separable ode(M,N, x, y);
5 if F = Fail then
6 F := Solve exact(M,N, x, y)
7 Return(F )

End

Procedure Transform ode(w, x, y);
Input

same as Solve ode ;
Output;

the list [M,N ];
Local Variables

v, n,M,N ;
Begin

1 v := Rational simplify(Operand(w, 1)−Operand(w, 2));
2 n := Numerator(v);
3 M := Coefficient(n, d(y, x), 0);
4 N := Coefficient(n, d(y, x), 1);
5 Return([M,N ])

End

Figure 4.16. The MPL procedures Solve ode and Transform ode . (Implementa-
tion: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Procedure Solve exact(M,N, x, y);
Input

M,N : algebraic expressions;
x, y: symbols;

Output
An implicit solution to the differential equation or the global symbol Fail;

Local Variables
My ,Nx , d, u, F,G, g, h, hp;

Begin
1 if N = 0 then
2 Return(Fail)
3 elseif M = 0 then
4 Return(y = C);
5 My := Derivative(M,y);
6 Nx := Derivative(N,x);
7 d := My −Nx ;
8 if d = 0 then
9 u := 1
10 else
11 F := Rational simplify(d/N);
12 if Free of(F, y) then
13 u := exp(Integral(F, x));
14 d := 0
15 else
16 G := Rational simplify(−d/M);
17 if Free of(G, x) then
18 u := exp(Integral(G, y));
19 d := 0;
20 if d = 0 then
21 g := Integral(u ∗ M,x);
22 hp := u ∗ N −Derivative(g, y);
23 h := Integral(hp, y);
24 Return(g + h = C)
25 else
26 Return(Fail)

End

Figure 4.17. The MPL Solve exact procedure. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)
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Solve ode(w, x, y), where w is the differential equation with the derivative
symbol

dy

dx

represented by the function form13 d(y, x).
At line 1, we invoke the Transform ode procedure which does some

preliminary manipulation of the equation and returns the list [M,N ] with
the expressions M(x, y) and N(x, y) in (4.32). This procedure, which is
shown in the bottom of Figure 4.16, permits some flexibility in the form of
the input equation. For example, by preprocessing the equation with this
procedure we can handle equations with forms like

1 − (2 x+ 1) d(y, x) = 0, 1 − 2 xd(y, x) = −d(y, x),
or even

1/d(y, x) = 2 x+ 1. (4.48)

At line 1 of Transform ode we subtract the right side of the equation from
the left side and then simplify this expression using the Rational simplify
operator. Next, line 2 selects the numerator of v. For example, if w is given
by Equation (4.48), then after executing lines 1 and 2 we have

n := 1 − 2 xd(y, x) − d(y, x). (4.49)

In lines 3 and 4 we view n as a polynomial in d(y, x) and retrieve M and
N by selecting coefficients of this polynomial. For example, for Equation
(4.48) the procedure returns [1,−2 x− 1].

At this point, control is returned to Solve ode which obtains M and N
and then calls on Separable ode to find a solution (lines 2, 3, and 4). This
procedure attempts to solve

dy

dx
= −M/N

using the separation of variables technique. (The Separable ode procedure
is described in Exercise 5.) If this method fails, the Solve exact procedure,
which attempts to solve the differential equation using the method of exact
equations, is invoked at line 6.

The Solve exact procedure is shown in Figure 4.17. To begin, two simple
cases are considered in lines 1-4. First, if N = 0, there is no first derivative

13 In Maple and MuPAD we represent the derivative with d(y, x), while in Mathematica
we use d[y, x]. We use this notation instead of the derivative operator in a CAS because
the details of the Solve ode algorithm are somewhat simpler with this representation.
This representation for the derivative is also used in Exercise 15 on page 197 and Exercise
15 on page 240.
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term in the equation, and so the procedure returns the global symbol Fail.
Next, if N �= 0 and M = 0, the differential equation is equivalent to

dy

dx
= 0,

and so the constant solution is returned. Lines 5 and 6 compute the partial
derivatives in Expression (4.45) and line 7 evaluates the difference of these
derivatives so we can test if the equation is exact14. At line 8, if d = 0
the equation is exact and an integrating factor is not required. Therefore,
u is assigned the expression 1 at line 9, and control is transferred to line
20. On the other hand, if at line 8 d �= 0, we assume the equation is not
exact and compute and test F to determine if there is an integrating factor
that is free of y. Notice we apply the Rational simplify operator in line
11 since automatic simplification may not remove the symbol y from F
(see Example 4.15 above). The free-of test is done in line 12, and if it is
successful we compute the integrating factor in line 13. The assignment in
line 14 allows the procedure to proceed with the solution technique in line
20. If the test in line 12 fails we compute and test G to determine if there
is an integrating factor that is free of x (lines 18 - 19).

In line 20, if d = 0, we apply the method of exact equations (lines 21-23)
and return an implicit solution at line 24. If at line 20, d �= 0 an integrating
factor has not been found, and so we return the symbol Fail in line 26.

Theory versus Practice
In a theoretical sense, a separable equation can be solved using the method
of exact equations by expressing Equation (4.30) in the exact form

−f(x) +
1

g(y)
dy

dx
= 0.

In practice, however, the manipulations in the procedure Transform ode
may transform a separable equation in exact form to a non-exact equation
that cannot be solved by Solve exact. This point is illustrated in the next
example.

Example 4.16. Consider the separable equation

−x
x+ 2

+
y

y + 1
dy

dx
= 0.

14Observe that d is computed in the context of automatic simplification. Although
this context is sufficient when M and N are polynomials in x and y, it is possible to
construct equations where additional simplification power is needed.
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For this equation, the manipulations in Transform ode obtainM = −y x−x
and N = x y+2 y which gives a differential equation in non-exact form. In
addition, at lines 11 and 16 in Solve exact, we obtain F = −(x+ y)/(x y+
2 y) which is not free of y and G = −(x+ y)/(x y + x) which is not free of
x. Therefore, Solve exact cannot find an integrating factor and so it cannot
find a solution to the equation. �

Unfortunately, there are other (non-separable) exact equations that
loose their exactness in Transform ode and cannot be solved with
Solve exact (see Exercise 3).

Appraisal of the Algorithm
Given appropriate input, the Solve ode algorithm finds the general solution
to many first order differential equations found in textbooks on ordinary dif-
ferential equations. In addition, another approach for the integrating factor
and special techniques for homogeneous equations and Bernoulli equations
that extend the capacity of the algorithm are described in Exercises 4, 6,
and Exercise 16 on page 241. However, compared to the differential equa-
tion solver found in a CAS, the algorithm is quite limited. The operators
in these systems include additional techniques for many special forms and
other general techniques15.

In some cases the implicit solution that is found by our algorithm does
not describe all solutions to the differential equation.

Example 4.17. Consider the differential equation

dy

dx
= 2 x y2 (4.50)

given in Example 4.10. Our algorithm finds the solution in the form −x2−
1/y = C which has the explicit form y = −1/(x2 +C). Observe that y = 0
is also a solution of the differential equation, but does not fit the general
pattern. This solution, which is not found by our algorithm, is called a
singular solution of the differential equation. �

In order for the MPL algorithm to produce an appropriate result, the
input differential equation must have a form that can be analyzed correctly

15In the Maple system, to see the methods used by the dsolve command, assign
infolevel[dsolve] := 3. Try this for the differential equation

dy

dx
=

x + y + 4

x− y − 6

that cannot be solved by the algorithm in this section (including the additional tech-
niques in the exercises), but which can be solved by Maple.
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by the Transform ode procedure. A suitable form is one that can be trans-
formed by the operations in lines 1 and 2 of this procedure to a form where
the actions of the Coefficient operator in lines 3 and 4 are well-defined and
able to obtain the entire structure of the equation. If this is not so, the
output of the algorithm may be meaningless. For example, for the equation

(
dy

dx

)1/2

+ x = y,

the expression n = (d(y, x))∧ (1/2)+ x− y at line 2 is not a polynomial in
d(y, x) and so the coefficient operations in lines 3 and 4 are undefined. In
addition, for differential equations that contain higher order derivatives or
an integer power of a derivative, the coefficient operations may be defined
but the output is meaningless since the algorithm does not apply to equa-
tions that include these forms. It is possible to modify Transform ode so
that is does a more thorough analysis of the input equation to determine
if the equation has an appropriate form (see Exercise 14 on page 240).

Exercises

1. Consider the differential equation

(2y − x2) + (2x − y2)
dy

dx
= 0.

Solve the equation using the algorithm in the text.

2. Consider the differential equation (y − 1/x)
dy

dx
+ y/x2 = 0.

(a) Show that the equation is exact.

(b) Show that the manipulations in the Transform ode procedure trans-
form the equation to a non-exact equation.

(c) Show that the Solve exact procedure can find the solution to the new
equation obtained in part (b) by finding an integrating factor.

3. Consider the differential equation
1

x3y2
+

W
1

x2y3
+ 3y

}
dy

dx
= 0.

(a) Show that the equation is exact.

(b) Show that the manipulations in the Transform ode procedure trans-
form the equation to a non-exact equation.

(c) Show that the Solve ode procedure is unable to solve this equation
because it is unable to find an integrating factor for the equation in
part (b). (However, see Exercise 4.)
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4. Let R = (∂M/∂y−∂N/∂x)/(N ·y−M ·x) and suppose that R is a function
of the product x y. In this case, it can be shown that for z = x y,

u(x, y) = exp

W�
R(z) dz

}
is an integrating factor16. For example, for the differential equation

y + (x+ 3x3y4)
dy

dx
= 0, x > 0, y > 0,

we have R = −3/(x y) = −3/z and u = 1/(x y)3. Extend the Solve exact
procedure so that it determines when this integrating factor is appropriate
and when this is so, uses it to find a solution. Test the procedure on the
above equation. Hint: Let S = Substitute(R, x = z/y). If R has the proper
form, then S is free of y.

5. Give a procedure Separable ode(M,N, x, y) that tries to determine if a
differential equation (4.32) can be transformed to the form of Equation
(4.30), and, when this is so, obtains an implicit solution using the separable
approach. If this technique does not apply, return the global symbol Fail.
Hint: The Separate variables procedure described in Exercise 13 on page
152 is useful in this exercise.

6. A differential equation that can be transformed to the form

dy

dx
= f(y/x) (4.51)

is called a homogeneous17 differential equation. For example, the equation

dy

dx
= exp(y/x) + y/x

is homogeneous. A homogeneous differential equation can be solved by
defining a new variable z = y/x and transforming the differential equation
to one in terms of z. Using the relation y = x z, we have

dy

dx
= x

dz

dx
+ z

and Equation (4.51) becomes

dz

dx
= (f(z)− z)/x. (4.52)

This equation can be solved by separating the variables x and z. Then,
we obtain the solution to Equation (4.51) by substituting z = y/x into the
solution to Equation (4.52). Give a procedure Homogeneous(M,N, x, y)

16 See Simmons [87], Exercise 1 on page 59.
17 The term homogeneous has a number of meanings with regard to differential equa-

tions. For example, two different meanings are given in Exercises 6 and 7.
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that determines if a first order differential equation (4.32) is homogeneous
and, if so, solves the equation using the approach outlined above. If the
equation is not homogeneous, return the global symbol Fail. Hint: First,
represent the differential equation in the form

dy

dx
= −M/N,

and let r = Substitute(f, y = z x). If r is free-of x, the original equation is
homogeneous. Note that the equation

dy

dx
=

x+ y

x − y

is homogeneous (divide the numerator and denominator by x). In this case
r = (x+ x z)/(x− x z), and so we must apply a Rational simplify operator
to r to remove the x.

7. Consider the second order linear differential equation

a
d2y

dx2
+ b

dy

dx
+ c y = f, (4.53)

where a, b, and c are rational numbers and f is an algebraic expression
that is free of y.

(a) If f = 0, the equation is called a homogeneous17 equation and two
linearly independent solutions to the differential equation y1 and y2

are obtained as follows: let D = b2 − 4ac. If D > 0, then

y1 = exp((−b+
√

D)/(2a)x), y2 = exp((−b−
√

D)/(2a)x).

If D = 0, then

y1 = exp(−b/(2a)x), y2 = x exp(−b/(2a)x).

If D < 0, then

y1 = exp(−b/(2 a) x) sin(
√−D/(2 a)x),

y2 = exp(−b/(2 a) x ) cos(
√−D/(2 a)x).

Give a procedure
Homogeneous 2(a, b, c, x)

that returns the list [y1, y2].

(b) A particular solution yp to Equation (4.53) is obtained using the
method variation of parameters. Using this technique, yp = v1 y1 +
v2 y2 where y1 and y2 are the two linearly independent solutions to
the homogeneous equation (described above) and the derivatives v′

1

and v′
2 satisfy the linear system

v′
1 y1 + v′

2 y2 = 0, v′
1 y′

1 + v′
2 y′

2 = f/a.
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The expressions v1 and v2 are obtained from their derivatives by
integration. Give a procedure Variation of param(y1, y2, f, a, x) that
obtains yp.

(c) The general solution to the differential equation is given by

y = d y1 + e y2 + yp, (4.54)

where d and e are symbols that represent arbitrary constants. Give a
procedure Solve ode 2 (a, b, c, f, x, y) that obtains the general solution
to Equation (4.53). You should return the result as an equation y = u
where u is the expression on the right side of Equation (4.54). A
related operator is considered in Exercise 15 on page 240.

8. See Exercise 14 on page 240 and Exercise 16 on page 241.

Further Reading

4.2 MPL’s Algorithmic Language. The Taylor series solution to a differential
equation described in Exercise 17 on page 154 is discussed in Zwillinger [109],
Section 140. See Sconzo et al. [86] for a discussion of the classical hand calculation
of F and G series (see Exercise 18 on page 155) and a summary of the results
obtained with a CAS.

4.3 Case Study: Solution of First Order Ordinary Differential Equa-

tions. The techniques used in this section are described in Simmons [87], Boyce

and DiPrima [12], and Derrick and Grossman [32]. Zwillinger [109] and Murphy

[72] describe many techniques for finding analytical solutions to differential equa-

tions. Postel and Zimmermann [81] summarizes techniques for solving differential

equations in a computer algebra context.
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Recursive Algorithms

In this chapter we examine how recursion is used to implement algorithms
in computer algebra. We begin, in Section 5.1, by describing how a sim-
ple recursive procedure is implemented by a CAS. In Section 5.2, we give
recursive procedures for a number of operators and describe an approach
using transformation rules that provides a simple way to implement some
recursive operations. Finally, in Section 5.3 we describe a recursive algo-
rithm for a simple version of the Integral operator that utilizes some basic
integration rules together with the substitution method.

5.1 A Computational View of Recursion
In Chapter 3 we gave the following recursive definition for the factorial
operation:

n! =
{

1, if n = 0,
n · (n− 1)!, if n > 0. (5.1)

For n = 4, the computation based on this definition (5.1) proceeds as
follows:

4! = 4(3!) = 4(3(2!)) = 4(3(2(1!))) = 4(3(2(1(0!))))
= 4(3(2(1(1)))) (5.2)
= 24.

To perform the calculation, we repeatedly apply (5.1) until n = 0 is en-
countered. Once this point is reached, 0! is replaced by the value 1, and
the numerical computation proceeds as indicated by the parentheses in the
second line of Equations (5.2).

171



172 5. Recursive Algorithms

Procedure Rec fact(n);
Input

n : non-negative integer;
Output

n!;
Local Variables

f ;
Begin

1 if n = 0 then
2 f := 1
3 else
4 f := n ∗ Rec fact(n − 1)
5 Return(f)

End

Figure 5.1. An MPL recursive procedure for n!. (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

Figure 5.1 shows an MPL recursive procedure that performs this calcu-
lation. For the case n > 0, the procedure calls on itself (line 4) to perform
a “simpler” version of the calculation. A procedure that calls on itself di-
rectly (as in this example) or indirectly through a sequence of procedures
is called a recursive procedure. The case n = 0 (lines 1, 2) is called a ter-
mination condition for the procedure, since it is defined directly and does
not require further calls on Rec fact . For each positive integer n, the cal-
culation is eventually reduced to the termination condition which stops the
recursion. Each recursive procedure must have one or more termination
conditions.

Let’s trace the execution of the procedure in response to the evaluation
of Rec fact(4) from the interactive mode. When the procedure is invoked,
a CAS allocates a block of computer memory that includes storage loca-
tions for the local variable f , the input variable n, and the next statement
executed by the system once Rec fact is done. The storage allocation for
Rec fact(4) (before the calculation in line 4) is shown in Figure 5.2(a). At
this point, the local variable f has not been assigned, and the “next state-
ment executed” refers to the interactive mode that invoked the procedure
and will display the result once the operation is done.

The actual calculation is done in line 4. But before this can be done, we
need the value for Rec fact(3), and this requires another call on the pro-
cedure. To invoke Rec fact(3), a CAS again allocates a block of memory
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n f next statement
executed

4 interactive
mode

(a) The storage allocation stack for Rec fact(4)
before calculation on line 4.

n f next statement
executed

3 Rec fact , line 4
(n = 4 case)

4 interactive
mode

(b) The storage allocation stack for Rec fact(3)
and Rec fact(4). The local variable f has not

been assigned a value in either block.

n f next statement
executed

0 1 Rec fact , line 4
(n = 1 case)

1 Rec fact , line 4
(n = 2 case)

2 Rec fact , line 4
(n = 3 case)

3 Rec fact , line 4
(n = 4 case)

4 interactive
mode

(c) The storage allocation stack for
the sequence of Rec fact procedure
calls before the recursion unwinds.

Figure 5.2. The storage allocation stack for the procedure Rec fact at various
points in the computation of 4!.

to store the information associated with this procedure call. Figure 5.2(b)
illustrates the memory allocation for Rec fact at this point in the calcula-
tion. There are now two separate blocks of memory, one for the current
case n = 3 and one for the previous case n = 4 which is not yet done and
remains in memory. Notice that each block has its own storage locations
for the input variable n and the local variable f . In the computer’s mem-
ory, these two blocks reside in an internal data structure known as a stack.
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Briefly, a stack is a data structure for which data (or blocks of data) can
only be inserted or removed from the top of the stack1. In this case, the
top of the stack (n = 3) contains the active version of Rec fact , and lower
levels of the stack contain previous versions of Rec fact , which have been
invoked but are not yet done. For n = 3, the local variable f has not been
assigned, and “next statement executed” refers to line 4 in the previous
version Rec fact(4) which invoked Rec fact(3).

Now, to compute Rec fact(3), we need the value of Rec fact(2), which
means we again invoke Rec fact and assign yet another block of memory
to the procedure. To complete the calculation, we continue invoking the
procedure for successively smaller integer values until the termination con-
dition n = 0 is reached. The memory allocation stack at this point is shown
in Figure 5.2(c). Observe that the currently active version (n = 0) is at the
top of the stack, and the other levels of the stack represent the previous
procedure calls that led to this place in the calculation. At this point, the
variable f (for the n = 0 case) is assigned the value 1 (with lines 1, 2),
and this value is returned as the value of Rec fact(0). Once this is done,
the block of memory allocated for Rec fact(0) is no longer needed and is
removed from the top of the stack. Control is now transferred back to line
4 in Rec fact(1) which performs the multiplication and assignment:

f := 1 ∗ Rec fact(0) → 1 ∗ 1 → 1 (calculation in Rec fact(1)).

This value is returned to Rec fact(2) which invoked Rec fact(1), and the
memory allocated for Rec fact(1) is removed from the top of the stack.
The recursive process continues to unwind in this fashion, performing the
multiplication and assignment in line 4 for the different versions of Rec fact :

f := 2 ∗ Rec fact(1) → 2 ∗ 1 → 2 (calculation in Rec fact(2)),
f := 3 ∗ Rec fact(2) → 3 ∗ 2 → 6 (calculation in Rec fact(3)),
f := 4 ∗ Rec fact(3) → 4 ∗ 6 → 24 (calculation in Rec fact(4)).

In each case, once an expression has been returned by Rec fact(n − 1) to
the calling procedure Rec fact(n) (or the interactive mode), the block of
memory associated with Rec fact(n − 1) is removed from the top of the
stack. After the last calculation, the expression 24 is returned as the value
of Rec fact(4).

The Rec fact procedure is presented to illustrate simply what is meant
by a recursive procedure and to show how it is evaluated by a CAS. In
practice, the recursive procedure for n! is less efficient in terms of computer
time and memory than a non-recursive iterative procedure.

1A useful metaphor for a stack data structure is a stack of food trays. For safety’s
sake, we always remove a tray from the top of the stack and add a tray to the stack by
placing it on the top.
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Infinite Recursive Loops

A call to Rec fact(n) terminates as long as n is a non-negative integer.
However, if n is a negative integer (or any expression that does not evaluate
to a positive integer), the termination condition in line 1 is never satisfied,
and so the process does not terminate. For example, when n = −1, we
obtain the infinite sequence of procedure calls:

Rec fact(−1), Rec fact(−2), Rec fact(−3), . . . .

Since this problem is similar to the infinite loops that can arise with itera-
tion structures, it is called an infinite recursive loop.

Exercises
1. Let n be a positive integer. The harmonic number H(n) is defined by the

sum:
H(n) = 1 + 1/2 + · · ·+ 1/n.

Give a recursive procedure for H(n). The procedure should not use a for
structure or a while structure.

2. The Fibonacci number sequence f0, f1, f2, . . . is defined using the recursive
definition:

fn =

k
1, when n = 0 or n = 1,
fn−1 + fn−2, when n > 1.

(5.3)

(a) Compute f4.

(b) Here is a recursive MPL procedure that computes the Fibonacci num-
bers:

Procedure Fibonacci (n);
Input

n : non-negative integer;
Output

fn;
Local Variables

f, g, r;
Begin

1 if n = 0 or n = 1 then
2 r = 1
3 else
4 f := Fibonacci(n − 1);
5 g := Fibonacci(n − 2 );
6 r := f + g;
7 Return(r)

End
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Trace the flow of the Fibonacci procedure for n = 4 showing all
changes in the storage allocation stack during the course of the com-
putation.

(c) Give a non-recursive procedure that uses iteration to compute fn.

(d) The Fibonacci computation is not a particularly good use of recursion
since the non-recursive approach requires fewer additions than the
recursive approach. Explain why this is so.

3. Let S be a non-empty set that contains n expressions, and for 0 ≤ k ≤ n
let C(n, k) be the number of distinct subsets of size k of S. We can obtain
C(n, k) using the familiar combination formula

C(n, k) =
n!

k!(n − k)!
.

C(n, k) can also be obtained recursively using the recurrence relation

C(n, k) =

k
1, if k = 0 or k = n,
C(n − 1, k − 1) +C(n − 1, k), otherwise.

(5.4)

Give a procedure for C(n, k) that is based on Expression (5.4). Do not use
the factorial operation in this procedure.

5.2 Recursive Procedures

In this section we give a number of examples that illustrate the possibili-
ties and limitations of recursion as an algorithmic approach for computer
algebra.

The Complete sub expressions Operator
In this example we describe a procedure that obtains the set of complete
sub-expressions of an expression u. Since the solution of this problem
involves a systematic traversal of the expression tree for u, a recursive
procedure is the natural choice.

An MPL procedure that performs this operation is given in Figure 5.3.
Lines 1-2, which apply to atomic expressions, provide the termination con-
dition for the recursion. For compound expressions, the statements in lines
4-7 obtain the set of sub-expressions by forming the set union of {u} and
the sets of sub-expressions of the operands of u.

Let’s see how the procedure works for u = a ∗ (x + 1) + 3 ∗ cos(y),
which is represented by the expression tree in Figure 5.4. The flow of the
computation in response to the statement

Complete sub expressions(a ∗ (x + 1) + 3 ∗ cos(y)) (5.5)
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Procedure Complete sub expressions(u);
Input

u : a mathematical expression;
Output

the set of complete sub-expressions of u;
Local Variables

s, i;
Begin

1 if Kind(u) ∈ {integer, symbol, real} then
2 Return({u})
3 else
4 s := {u};
5 for i := 1 to Number of operands(u) do
6 s := s ∪ Complete sub expressions(Operand(u, i));
7 Return(s)

End

Figure 5.3. An MPL procedure that finds the set of complete sub-expressions of
u. (Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Figure 5.4. An expression tree for a ∗ (x+ 1) + 3 ∗ cos(y).

is shown in Figure 5.5. The arrows that point downward on solid lines
represent a recursive call to a procedure, and those that point upward on
dashed lines represent a return to the calling procedure. The expressions at
the nodes represent the input expression u on various calls of the procedure,
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a

{a ∗ (x + 1), a,

{1}

1

{x}

x + 1

a ∗ (x + 1)

{x + 1, x, 1}

{a ∗ (x + 1) + 3 ∗ cos(y), a ∗ (x + 1),

x + 1, x, 1}

cos(y), y}
a, x + 1, x, 1, 3 ∗ cos(y), 3,

Interactive Mode

a ∗ (x + 1) + 3 ∗ cos(y)

x

{3 ∗ cos(y), 3, cos(y), y}

3 ∗ cos(y)

{3}

3

{cos(y), y}{a}

y

cos(y)

{y}

Figure 5.5. The sequence of recursive calls that obtains the set of complete
sub-expressions of a ∗ (x+ 1) + 3 ∗ cos(y).

and the sets of expressions to the right of the dashed lines above the nodes
represent the output of that call.

By tracing the path along the solid and dashed lines, we observe the
entire path of the computation. For example, to evaluate Expression (5.5),
the procedure must first evaluate

Complete sub expressions(a ∗ (x + 1)), (5.6)
Complete sub expressions(3 ∗ cos(y)). (5.7)

Observe that the entire computation associated with (5.6) is done before
(5.7) is invoked, and to obtain (5.6), the procedure must evaluate
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Complete sub expressions(a),
Complete sub expressions(x+ 1).

Continuing in this fashion, we systematically build up the set of sub-
expressions of a ∗ (x+ 1) + 3 ∗ cos(y) to obtain

{a ∗ (x+ 1) + 3 ∗ cos(y), a ∗ (x+ 1), a, x+ 1, x, 1, 3 ∗ cos(y), 3, cos(y), y}.

The Free of Operator
The procedure for the Free of(u, t) operator (see Definition 3.28, page 110)
is another example that utilizes the recursive tree structure of an expres-
sion. Recall that the operator returns false when t is syntactically equal
to a complete sub-expression of u, and otherwise returns true.

An MPL procedure for the Free of operator is given in Figure 5.6. Lines
1 and 3 serve as terminating conditions for the procedure. If the condition
in line 3 is true, the procedure returns true because the condition in line
1 is false and u does not have any operands. The loop (lines 7-10) applies

Procedure Free of (u, t);
Input

u, t : mathematical expressions;
Output

true or false;
Local Variables

i;
Begin

1 if u = t then
2 Return(false)
3 elseif Kind(u) ∈ {symbol, integer, real} then
4 Return(true)
5 else
6 i := 1;
7 while i ≤ Number of operands(u) do
8 if notFree of Operand(u, i), t) then
9 Return(false);
10 i := i + 1;
11 Return(true)

End

Figure 5.6. An MPL procedure for the Free of operator. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)
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the procedure recursively to each operand of u. Notice when a recursive
call on some operand returns false, there is no need to check the remaining
operands and so the value false is returned immediately. If all operands of
u are free of t, the procedure returns true (line 11).

In the current form, the Free of operator cannot determine if an expres-
sion is free of an algebraic operator or function name. A modification of
the procedure that handles these cases is described in Exercise 1(b).

A useful extension of the Free of operation is to check if u is free of
each expression in a set (or list) S of expressions. The procedure for
Set free of(u, S) that performs this operation is a simple modification of
the one for Free of (u, t). The details of this extension are left to the reader
(Exercise 1(c)).

Pattern Matching, the Linear form Operator

Many operations in mathematics depend on recognizing that an expression
has a particular form. In this example we describe Linear form(u, x), a
simple pattern-matching procedure that checks if an algebraic expression
u has the form a x+ b, where the expressions a and b are free of x. When
this is so, the procedure returns the list [a, b], and otherwise returns the
global symbol Fail. We interpret this form in a broad sense to include
more involved sums (e.g., a x+ 2 x+ b+ 3) as well as expressions that are
not sums (e.g., 3, x, 2 x, x/a).

An MPL procedure for this operation is shown in Figure 5.7. Lines 1-4
handle two simple cases that have the required form. Lines 5-11 check the
form of a product, where lines 8-9 check if the symbol x is an operand of
the product. In lines 12-21, recursion is used to check if the operands of a
sum have the proper form. To do this, we apply the operator to the first
operand of the sum (line 13) and the remaining operands (line 17), and
then combine the results (line 21). If some operand of the sum does not
have the proper form, the symbol Fail is returned (lines 15, 19). Lines 22-
25 handle other expression types (e.g., powers, function forms, factorials),
which only have the proper form when they are free of x.

There are two places in this procedure where recursion is used, lines 13
and 17. We can eliminate this recursion by using an iteration structure to
check the operands of a sum and by repeating the statements for the tests
in lines 1-11 and 22-25. Although recursion can be eliminated here, it is
used as a matter of convenience to obtain a shorter procedure.

Pattern-matching procedures are given for quadratic polynomials in
Exercise 8, and for more general polynomials in Chapter 6.
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Procedure Linear form(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
the list [a, b], where a and b are algebraic expressions, or the global
symbol Fail;

Local Variables
f, r;

Begin
1 if u = x then
2 Return([1, 0])
3 elseif Kind(u) ∈ {symbol, integer, fraction} then
4 Return([0, u])
5 elseif Kind(u) = ” ∗ ” then
6 if Free of(u, x) then
7 Return([0, u])
8 elseif Free of(u/x, x) then
9 Return([u/x, 0])
10 else
11 Return(Fail)
12 elseif Kind(u) = ” + ” then
13 f := Linear form(Operand(u, 1), x);
14 if f = Fail then
15 Return(Fail)
16 else
17 r := Linear form(u −Operand(u, 1), x);
18 if r = Fail then
19 Return(Fail)
20 else
21 Return([Operand(f, 1) +Operand(r, 1),

Operand(f, 2) +Operand(r, 2)])
22 elseif Free of(u, x) then
23 Return([0, u])
24 else
25 Return(Fail)

End

Figure 5.7. An MPL procedure that determines if u is a linear expression in x.
(Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Transformation Rule Sequences, the Derivative Operator
In this example we describe an algorithm that computes the derivative of
a function. Since the differentiation rules for sums, products, powers, and
composite functions obtain the derivative of an expression in terms of the
derivatives of its operands, the algorithm is recursive.

For this example, we describe the algorithm using a transformation
rule sequence rather than an MPL procedure. The description is somewhat
simpler in this format, and the transformation rules can be easily trans-
lated into an MPL procedure. In addition, some CAS languages have the
capability to implement transformation rules directly as a program.

Let u be an algebraic expression and let x be a symbol. The operator
Derivative(u, x), which evaluates the derivative of u with respect to x, is
defined by the following transformation rules:

DERIV-1. If u = x, then Derivative(u, x) → 1.

DERIV-2. If u = vw, then

Derivative(u, x) → (5.8)
w ∗ vw−1 ∗ Derivative(v, x) + Derivative(w, x) ∗ vw ∗ ln(v).

This rule applies to expressions that are powers and accounts for expres-
sions where either v or w may depend on x. (The rule is derived using
logarithmic differentiation (Exercise 12).) Since the Derivative operator
appears on the right side of the rule, DERIV-2 is recursive. When w is free
of x, the rule reduces (with automatic simplification) to the familiar power
rule

d(vw)
d x

= w · vw−1 d(v)
d x

.

DERIV-3. Suppose u is a sum and let v = Operand(u, 1) and w = u− v.
Then

Derivative(u, x) → Derivative(v, x) + Derivative(w, x).

DERIV-4. Suppose u is a product and let v = Operand(u, 1) and w =
u/v. Then

Derivative(u, x) → Derivative(v, x) ∗ w + v ∗ Derivative(w, x).

Rules DERIV-3 and DERIV-4 are the sum and product differentiation
rules. Again, the rules are recursive because the right side of each rule
refers to the Derivative operator. Notice that we obtain the derivative of
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a sum by differentiating both the first operand and the remaining part of
the sum, which is obtained by subtracting the first operand from u with
automatic simplification. A similar approach is used for a product.

A typical rule for a known function looks like the following:

DERIV-5. If u = sin(v), then Derivative(u, x) → cos(v)∗Derivative(v, x).

Again, the chain rule implies the rule is recursive.

DERIV-6. If Free of(u, x) = true, then Derivative(u, x) → 0.

This rule applies to integers, fractions, symbols, and compound expressions
(such as f(a) or n!) that are free of the differentiation variable x. Notice
that powers, sums, and products are not checked by this rule because they
are handled by one of the earlier rules DERIV-2, DERIV-3, or DERIV-4.
For example, if b and e are symbols (�= x), then

Derivative(be, x) → 0

is obtained by first applying DERIV-2, which applies DERIV-6 (recur-
sively) to both b and e.

We have placed DERIV-6 at this point in the rule sequence to avoid
redundant calls on the Free of operator. The reason for this has to do
with the recursive nature of Free of . If DERIV-6 were at the beginning
of the rule sequence, then to compute the derivative (with respect to x) of

u = (1 + a)2 + x2,

the algorithm would first check if u were free of x, which involves the
comparison of each complete sub-expression of u to x until the symbol x
is found. Since this step would return false, we would next apply the sum
rule which obtains the derivative in terms of the derivatives of the two
operands (1 + a)2 and x2. To find the derivative of (1 + a)2, we would
check (for the second time) if this expression were free of x. By placing
the Free of operation later in the rule sequence, we avoid this redundant
calculation.

The final transformation rule applies to any expression that is not cov-
ered by the earlier rules:

DERIV-7. Derivative(u, x) → ”Derivative”(u, x).

In other words, if none of the earlier rules apply to u, the expression is re-
turned in the unevaluated form Derivative(u, x ). The Derivative operator
on the right is quoted to prevent a recursive evaluation of the operator be-
cause, without the quotes, the transformation leads to an infinite sequence
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of recursions. By including this rule, we obtain a representation for the
derivative of expressions that include undefined functions such as

Derivative(f(x) ∗ g(x), x) → Derivative(f(x), x) ∗ g(x) (5.9)
+f(x) ∗Derivative(g(x), x),

where the derivatives of f(x) and g(x) remain in unevaluated form. (See
Exercise 13(c) for an extension of this situation.)

Notice that the differentiation quotient rule is not included in our rule
sequence because we assume that automatic simplification transforms quo-
tients to products or powers. In some instances, however, the quotient rule
returns the derivative of a quotient in a more useful form. Since it is not
difficult to check when a product is a quotient, this is a useful extension of
the algorithm (Exercise 13(b)).

The DERIV rules are an example of a transformation rule sequence.
When describing an algorithm in this way, we assume that a rule is checked
only when all earlier rules do not apply. This approach simplifies the pre-
sentation because conditions that are handled by earlier rules need not be
repeated (in a negative sense) in a later rule.

It is a simple matter to express the DERIV rule sequence as an MPL
procedure. We leave the details of the procedure to the reader (Exercise 13).

Rule-Based Programming
Some CAS languages have the capability to implement a transformation
rule sequence directly.

Mathematica. Figure5.8 shows an implementation of the DERIV rules in
the Mathematica pattern matching language. Since Derivative is a pre-
defined operator in this system, we have used the name Deriv instead.

Deriv[x_, x_ ] := 1;

Deriv[ v_^w_, x_] := w*v^(w-1)*Deriv[v,x] + Deriv[w,x]*v^w*Log[v];

Deriv[ u_ + v_, x_ ] := Deriv[u,x] + Deriv[v,x];

Deriv[ u_ * v_, x_ ] := Deriv[u,x]*v + Deriv[v,x]*u;

Deriv[Sin[u_], x_ ] := Cos[u]*Deriv[u,x];

Deriv[u_,x_] := 0 /; FreeQ[u,x] === True;

Figure 5.8. A rule-based program for the Derivative operator in the Mathematica
pattern matching language. Since Derivative is a predefined operator in the
Mathematica language, we have used the name Deriv instead. (Implementation:
Mathematica (nb).)
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In Mathematica, an underscore character ( ) after a variable name
means the variable can stand for an arbitrary expression. The symbol
/; (in the last line) stands for the word “whenever,” and so the free of
condition following this symbol must hold for the rule to apply. Mathe-
matica keeps re-applying the rules to an expression until changes do not
occur. For this reason, even though the sum and product rules are listed
with only two operands, the operator can differentiate sums or products
with more than two operands as well. Notice that we have omitted the
last rule DERIV-7 because if u does not satisfy one of the input patterns,
Mathematica returns the operator in the unevaluated form Deriv[u,x].

Once the transformation rules have been entered in a Mathematica
session, they are applied during evaluation whenever the Deriv operator
appears in an expression. In Mathematica, the execution order for rules
does not depend on the order in which they are listed. Rather, the system
applies more specific rules before it applies more general rules. For this
example, however, the rule that involves the FreeQ operator is checked
after the other rules.

Maple. Figure 5.9 shows an implementation of the DERIV rules in the
Maple pattern matching language. Notice that each symbol (x, u, v, and
w) is followed by two colons (::) and one of the designations

name, algebraic, nonunit(algebraic)

which defines the class of expressions that can replace the variable. The
form nonunit(algebraic) is included so that an expression is not matched

define(Derivative,

Derivative(x::name,x::name)=1,

Derivative(v::nonunit(algebraic)^w::nonunit(algebraic),x::name)

=w*v^(w-1)*Derivative(v,x)+Derivative(w,x)*v^w*ln(v),

Derivative(u::nonunit(algebraic)+v::nonunit(algebraic),x::name)

=Derivative(u,x)+Derivative(v,x),

Derivative(u::nonunit(algebraic)*v::nonunit(algebraic),x::name)

=Derivative(u,x)*v+Derivative(v,x)*u,

Derivative(sin(u::algebraic),x::name)=cos(u)*Derivative(u,x),

conditional(Derivative(u::algebraic,x::name)

=0,_type(u,freeof(x)))

);

Figure 5.9. A rule-based program for the Derivative operator in the Maple
pattern-matching language. (Implementation: Maple (mws).)
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by an inappropriate rule. For example, this form is included in the product
rule so that the Maple’s pattern matching algorithm does not consider the
expression sin(x) to be a product 1∗ sin(x). (Without this designation, the
execution of Derivative(sin(x), x) results in an infinite recursive loop.)
The nonunit designation also permits sums and products in rules 3 and 4
to have more than two operands. The conditional statement in the last
rule implements the Free of test in DERIV-6. Notice that DERIV-7 is not
needed because when u does not match any of the rules, Derivative(u, x)
is returned in unevaluated form.

In Maple, the transformation rules are checked in the order they are
listed, and once the rules have been entered in a session, the system creates
a recursive procedure with the name Derivative.

Rule-based programming usually gives smaller programs because much
of the program logic is handled by the CAS’s pattern matching program.
On the other hand, because program logic is handled by the system, we give
up some control of the process. In addition, the approach requires a good
understanding of the workings (and limitations) of the pattern matching
program, and, in some cases, it can be difficult (or even impossible) to
express a transformation in the required form.

The Trig substitute Operator
Let u be an algebraic expression. The operator Trig substitute(u) forms a
new expression, with all instances of the functions tan, cot, sec, and csc in
u replaced by the equivalent representations in terms of sin and cos.

The operator utilizes the four transformation rules:

TRIGSUB-1. tan(v) → sin(v)
cos(v)

.

TRIGSUB-2. cot(v) → cos(v)
sin(v)

.

TRIGSUB-3. sec(v) → 1
cos(v)

.

TRIGSUB-4. csc(v) → 1
sin(v)

.

The easiest way to obtain these transformations is with the rule-based
operations that are available in some CAS languages. It is instructive,
however, to obtain the transformations with MPL procedures. We describe
two approaches, one based on the Construct operator described in Section
3.2 and the other based on the Map operator described below.
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Procedure Trig substitute(u);
Input

u : an algebraic expression;
Output

a new expression, with all instances of the functions
tan, cot, sec, and csc replaced by the representations
using sin and cos;

Local Variables
s, i, L;

Begin
1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 L := [ ];
5 for i := 1 to Number of operands(u) do
6 L := Join(L, [Trig substitute(Operand(u, i))]);
7 if Kind(u) ∈ {tan, cot, sec, csc} then
8 s := Operand(L, 1);
9 if Kind(u) = tan then
10 Return(sin(s)/ cos(s));
11 if Kind(u) = cot then
12 Return(cos(s)/ sin(s));
13 if Kind(u) = sec then
14 Return(1/ cos(s));
15 if Kind(u) = csc then
16 Return(1/ sin(s))
17 else
18 Return(Construct(Kind(u), L))

End

Figure 5.10. An MPL procedure for Trig substitute that uses the Construct
operator. (Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

A Trig substitute procedure2 that uses the Construct operator is given
in Figure 5.10. Lines 1-2 provide a termination condition for the recursion.
In lines 4-6, we construct a list L that contains the expressions obtained

2 This procedure will not work in the Mathematica system using this system’s trigono-
metric functions (Sin[x], Cos[x], Tan[x], etc.) because the automatic simplification
rules cancel the operations of the procedure. For example, in this system, automatic
simplification obtains the inverse transformation replacing Sin[x]/Cos[x] with Tan[x].
To implement the procedure, it is necessary to override the automatic simplification
rules by using different names for these functions. One possibility is to use function
names that begin with lower case characters. (Implementation: Mathematica (nb).)
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by applying Trig substitute to each operand of u. Lines 7-16 apply the
TRIGSUB transformations where, for these cases, the operand list L has
only one operand. For all other compound expressions, we construct (line
18) a new expression using the same main operator as u and the operands
of L.

For expressions whose main operator is an algebraic operator (+, ∗, ∧,
or !), it is not necessary to use the Construct operator and the iteration
structure in lines 5-6. For example, for sums we obtain the same result by
returning the expression

Trig substitute(Operand(u, 1)) + Trig substitute(u − Operand(u, 1)).

However, we have used the Construct operator because each operator re-
quires its own statement similar to this one. In addition, we must use
Construct for function forms (such as f(tan(x), sec(x) + 1)) that can have
an arbitrary number of operands but don’t satisfy an algebraic relation.

The Map Operator
A basic operation in the Trig substitute procedure is the creation of a
new expression with the same main operator as u and operands that are
obtained by recursively applying the procedure to each operand of u. Since
this operation occurs frequently in computer algebra, it is useful to have an
MPL primitive operator that performs the operation. The Map operator
serves this purpose.

Definition 5.1. Let u be a compound expression with

n = Number of operands(u),

and let F (x) and G(x, y, . . . , z) be operators. The Map operator has two
forms:

Map(F, u), (5.10)

Map(G, u, y, . . . , z). (5.11)

The statement Map(F, u) obtains the new expression with main operator
Kind(u) and operands

F (Operand(u, 1)), F (Operand(u, 2)), . . . , F (Operand(u, n)).

The statement Map(G, u, y, . . . , z) obtains the new expression with main
operator Kind(u) and operands

G(Operand(u, 1), y, . . . , z), G(Operand(u, 2), y, . . . , z), . . . ,
G(Operand(u, n), y, . . . , z).
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MPL Maple Mathematica MuPAD

Map(F, Map(F,a+b) Map[F,a+b] Map(a+b,F)

a+ b)

Map(G, Map(G,a+b,d,e) Map[G[#,d,e]&,a+b] Map(a+b,G,d,e)

a+ b, d, e)

Figure 5.11. The syntax of Map operators in Maple, MuPAD, and Mathematica.
(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

If u is not a compound expression, the Map operator returns the global
symbol Undefined.

Example 5.2. For the operator

F (x)
function

:= x2,

we have
Map(F, a+ b) → a2 + b2.

For the operator
G(x, y, z)

function
:= x2 + y3 + z4,

we have

Map(G, a+ b, c, d) → G(a, c, d) +G(b, c, d)
=

(
a2 + c3 + d4

)
+
(
b2 + c3 + d4

)
= a2 + b2 + 2 c3 + 2 d4. �

Most CAS languages have some form of the Map operator (Figure 5.11).

A procedure3 for trigonometric substitution that uses the Map operator
is given in Figure 5.12.

Computation of Legendre Polynomials

This example provides another simple example of the mechanics of recur-
sion and reveals one of its limitations.

The Legendre polynomials are the sequence of polynomials pn(x), n =
0, 1, 2, . . . that are defined by the relations

p0(x) = 1, (5.12)
p1(x) = x, (5.13)

pn(x) =
1
n

((2n− 1)x pn−1(x) − (n− 1) pn−2(x)), n ≥ 2. (5.14)
3Mathematica users see footnote 2 on page 187.
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Procedure Trig substitute map(u);
Input

u : an algebraic expression;
Output

a new expressions where all instances of the functions
tan, cot, sec, and csc are replaced by the representations
using sin and cos;

Local Variables
U ;

Begin
1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 U := Map(Trig substitute map, u);
5 if Kind(U) = tan then
6 Return(sin(Operand(U, 1))/ cos(Operand(U, 1)));
7 if Kind(U) = cot then
8 Return(cos(Operand(U, 1))/ sin(Operand(U, 1)));
9 if Kind(U) = sec then
10 Return(1/ cos(Operand(U, 1)));
11 if Kind(U) = csc then
12 Return(1/ sin(Operand(U, 1)))
13 else
14 Return(U)

End

Figure 5.12. An MPL procedure for trigonometric substitution that uses theMap
operator. (Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

The polynomials are named in honor of the French mathematician Adrien-
Marie Legendre (1752-1833), who first used them in 1785 to study the
gravitational attraction of solids of revolution. Today they have applica-
tions in numerical integration, the solution of differential equations, and
engineering.

The expression for pn(x) is called a recurrence relation because for n ≥
2, pn(x) is defined in terms of the lower order polynomials pn−1(x) and
pn−2(x). The polynomials p0 and p1 serve as termination conditions for
the recursion. Using this definition, each succeeding polynomial (n ≥ 2) is
computed as follows:

p2(x) =
1
2
((2(2) − 1)x p1(x) − (2 − 1) p0(x)) =

3
2
x2 − 1

2
,
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p3(x) =
1
3
((2(3)− 1)x p2(x) − (3 − 1) p1(x) =

5
2
x3 − 3

2
x,

...
etc.

A recursive procedure for pn(x) is given in Figure 5.13. Lines 6-7 contain
recursive calls of the procedure, and line 8 contains an Algebraic expand
operator so that the polynomial is returned in expanded form.

Unfortunately, the Legendre procedure performs an excessive amount
of redundant calculation that makes it unsuitable for large values of n. A
trace of the recursive calls for Legendre(4, x) indicates why this is so (see
Figure 5.14). To compute Legendre(4, x), the procedure must compute re-
cursively Legendre(3, x) and Legendre(2, x). Observe that all recursive cal-
culations for Legendre(3, x) are done before any of the calculations for this
version of Legendre(2, x). In addition, to compute Legendre(3, x), the pro-
cedure must compute another version of Legendre(2, x) and Legendre(1, x).
The computation continues in this fashion until it encounters one of the
terminating conditions n = 0 or n = 1. The cause of the redundant cal-
culations is apparent from the sequence of procedure calls shown in Fig-

Procedure Legendre(n, x);
Input

n : a non-negative integer;
x: a symbol;

Output
pn(x);

Local Variables
f, g;

Begin
1 if n = 0 then
2 Return(1)
3 elseif n = 1 then
4 Return(x)
5 else
6 f := Legendre(n − 1, x);
7 g := Legendre(n − 2, x);
8 Return(Algebraic expand((1/n) ∗ ((2 ∗ n − 1) ∗ x ∗ f − (n − 1) ∗ g)))

End

Figure 5.13. Computation of Legendre polynomials using recursion. (Implemen-
tation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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n = 1 n = 0n = 1

n = 2

n = 1 n = 0

n = 2

n = 3

n = 4

Interactive Mode

Figure 5.14. The sequence of recursive calls for Legendre(4, x). An arrow that
points downward on a solid line represents a recursive call, and those that point
upward on a dashed line represent a return to the calling procedure.

ure 5.14. Observe that there are two calls on Legendre(2, x), three calls
on Legendre(1, x), and two calls on Legendre(0, x). In each instance, the
procedure is not aware that the value is computed more than once. In gen-
eral, the number of recursive calls on the procedure increases exponentially
with n.

For this computation, it is a simple matter to avoid the redundant cal-
culation by avoiding recursion altogether and using an iterative procedure.
This is done by replacing lines 6-8 in Figure 5.13 by the iteration:

f := 1;
g := x;
for i := 2 to n do

p := (1/i) ∗ ((2 ∗ i− 1) ∗ x ∗ g − (i− 1) ∗ f ;
f := g;
g := p;

Return(Algebraic expand(p));

After executing the loop, pn(x) is contained in the variable p, which is
then expanded in the last line. Although the iterative version is based on
the recurrence relation in Equation (5.14), it is not considered a recursive
algorithm because it does not call itself directly or indirectly.
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Legendre_remember := proc(x,n)

local f,g;

option remember;

if n = 0 then

RETURN(1)

elif n = 1 then

RETURN(x)

else

f := Legendre_remember(x,n-1);

g := Legendre_remember(x,n-2);

RETURN(expand((1/n)*((2*n-1)*x*f - (n-1)*g)))

fi

end:

Figure 5.15. Computing Legendre polynomials with Maple using the option
remember. The option is also available in Mathematica and MuPAD. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)

Since the potential for redundant calculations occurs frequently in com-
puter algebra, it is useful to have a way to perform a calculation in a recur-
sive manner that avoids the redundant calculation. For example, the Maple
language has a feature called option remember that makes this possible (see
Figure 5.15). When this option is declared within a Maple procedure, the
system keeps a table of input/output expressions for all calls on the proce-
dure. When the procedure is invoked, a check is made to see if the current
input is identical to the input of a previous procedure call. When this is so,
the output is returned from the value in the table. If the input expression
is not in the table, the output is calculated in the usual way and the new
input/output pair is stored in the table. Both Mathematica and MuPAD
also have remember options for procedures.

For the computation of Legendre polynomials, the remember option dra-
matically reduces the redundant calculation. In many situations, however,
redundant calculations can be eliminated by either avoiding recursion or by
modifying the algorithm. For example, we avoided redundant calculations
with the Derivative operator by placing the Free of operation at the end of
the transformation sequence (see page 183). For this reason, the remember
feature is not used by any of the algorithms this book.

Recursive Chains
The procedures described so far are recursive because each procedure is
defined directly in terms of another version of the same procedure. Recur-
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sion may also come about indirectly. For example, suppose a procedure
u1 does not call on itself directly, but calls on another procedure u2 which
then calls on u1. In this case, u1 is considered recursive because it calls
on itself indirectly through the intervening procedure u2. An example of a
recursive chain is given in the case study in Section 5.3.

Exercises
1. (a) Trace the flow of the computation in response to the statement

Free of(a (x+ 1) + 3 cos(y), x).

(b) Modify the Free of(u, t) operator so that it returns false when u
contains a target t that is an algebraic operator or function name.
For example,

Free of (f(x) + y, f) → false,

Free of (y + z, ” + ”) → false.

(c) Give a procedure Set free of (u, S) that determines if u is free of all
expressions in a set (or list) S. The Set free of operator is used in
the Monomial gpe procedure in Figure 6.5 on page 227.

2. Give a procedure
Trig free of (u)

that returns the symbol true if an algebraic expression u is free of trigono-
metric functions (sin, cos, tan, cot, sec, csc) and the symbol false other-
wise.

3. Let u be a mathematical expression. Give a procedure Symbols(u) that
returns the set of symbols in u.

4. Give a procedure

Contain parameters(u, x)

that returns true if the algebraic expression u contains any symbols other
than the symbol x and false otherwise.

5. Let u be a mathematical expression. Give a procedure

Algebraic expression(u)

that returns true if u is an algebraic expression and false if it is not
algebraic. (See Definition 3.17 on page 93.)

6. Let u be a polynomial in x with rational number coefficients. An efficient
way to evaluate a polynomial numerically is to rewrite the polynomial in
a nested form by introducing extra parenthesis. For example,

u = 2x3 + 3x2 + 4x+ 6 = ((2x+ 3) x+ 4) x+ 6.
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In numerical methods texts, this method for evaluating a polynomial is
called Horner’s method (see Epperson [35]). Give a recursive procedure
Horner(u, x) that transforms a polynomial from the expanded form to the
nested form.

7. A numerical expression u is one that is defined by the rule sequence:

NUM-1. u is an integer or a fraction.

NUM-2. u is one of the symbols π or e.

NUM-3. u is a compound expression with main operator +, ∗, ∧, or a
function name (sin, f, etc.) such that each operand of u is a numerical
expression.

For example, the following are numerical expressions

2 + 21/2, sin(3), f(3), 2 · π1/3, 3 + e.

Give a procedure Numerical(u) that returns true if an algebraic expression
u is a numerical expression and otherwise returns false.

8. Let u be an algebraic expression and let x be a symbol. Give a procedure
Quadratic form(u, x) that determines if u has the form ax2+b x+c where
a, b, and c are free of x. If u has the proper form return [a, b, c], otherwise
return Fail. Interpret this form in a broad sense to include more involved
sums (e.g., a x2 + 2x2 + b x + 3x + 4) as well as expressions that are not
sums (e.g., x2, 2x, x/a, a b, and 3). The point of this exercise is to imple-
ment the procedure in terms of primitive operators (Kind, Operand, etc.)
and structure-based operators (Free of), and not in terms of polynomial
operators (Degree, Coefficient).

9. Let u be an algebraic expression. Define the tree-size of u as the num-
ber of symbols, integers, algebraic operators, and function names that oc-
cur in u. For example, the expression (x + sin(x) + 2) ∗ x3 consists of
x,+, sin, x, 2, ∗, x,∧, and 3 and so has a tree-size of 9. Give a procedure
Tree size(u) that obtains the tree-size of u.

10. Give procedures for each of the following operators. In each case the pro-
cedures should be defined in terms of the primitive operators as was done
in the text with the Trig substitute and Trig substitute map operators.

(a) Let u be a mathematical expression and v an equation. Give a pro-
cedure for the operator Substitute(u, v) that performs structural sub-
stitution. (See Definition 3.30 on page 111.)

(b) Let u be a mathematical expression and L a list of equations. Give
a procedure Sequential substitute(u,L) that performs sequential sub-
stitution. (See Definition 3.31 on page 114.)

(c) Let u be a mathematical expression and S a set of equations. Give a
procedure Concurrent substitute(u, S) that performs concurrent sub-
stitution. (See Definition 3.34 on page 115.)
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11. (a) Let S be a set of mathematical expressions and let k be an integer
with 0 ≤ k ≤ Number of operands(S). Give a procedure Comb(S, k)
that returns the set of all k element subsets of S. For example, if
S = {a, b, c, d}, then

Comb(S, 2) → {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

The procedure can be defined by the following recursive transforma-
tion rule sequence.

i. If k = Number of operands(S), then Comb(S, k) → {S}.
ii. Comb(S, 0) → {∅}.
iii. Let x = Operand(S, 1), T = S ∼ {x}, and D = Comb(T, k − 1).

For D = {S1, . . . , Sn}, let E = {S1 ∪ {x}, . . . , Sn ∪ {x}}. Then

Comb(S, k) → Comb(T, k) ∪ E.

(b) The power set of a set S is the set of all subsets of S. Give a procedure
Power set(S) that obtains the power set of a set S.

12. Derive the general differentiation power rule in DERIV-2. Hint: Let y = vw

and take logs of both sides of the expression.

13. Let u be an algebraic expression, and let x be a symbol.

(a) Give a procedure Derivative(u, x) that utilizes the DERIV rules de-
scribed in this section.

(b) Although quotients are represented as powers or products, it is pos-
sible to recognize when an expression is a quotient and apply the
quotient rule instead of the product rule. Modify the Derivative pro-
cedure so that it recognizes when an expression is a quotient and,
when this is so, applies the quotient rule.

(c) Although the DERIV transformation rules allow for the differenti-
ation of some expressions with undefined functions (see Statement
(5.9)), the rules don’t handle expressions with compositions of un-
defined functions such as f(g(x)) or h(x, g(x)) in an adequate way.
For these expressions the Derivative operator is returned in unevalu-
ated form instead of with a representation that utilizes the chain rule.
Some computer algebra systems give representations of derivatives for
these expressions that utilize the chain rule. Experiment with a CAS
to see how derivatives of these expressions are handled, and modify
the Derivative procedure to handle these derivatives.

(d) The DERIV transformation rules provide for the differentiation of
any algebraic expression including factorials. (According to the rules,
Derivative(x!, x) is now returned in unevaluated form.) Although x!
is defined only when x is a non-negative integer, there is a general-
ization of the factorial operation that involves the gamma function
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(Γ(x+1) = x!) where x is no longer restricted in this way4. With this
generalization, we can define transformation rules for the differentia-
tion of factorial expressions. Experiment with a CAS to see how the
differentiation operator handles factorials, and modify the Derivative
procedure to handle these expressions.

14. Let u be an equation with both sides of the equation algebraic expressions,
x and y are symbols, and n is a non-negative integer. Give a recursive
procedure

Implicit derivative(u, y, x, n)

that obtains the nth derivative of y with respect to x. If n= 0, return
u. Use either the differentiation operator in a CAS or the Derivative op-
erator in Exercise 13 to perform the differentiations. (If a CAS has the
capability to perform implicit differentiation, do not use this capability.)
Assume that y is represented in the equation in function notation y(x)
and that Free of(u, y(x)) is false. Do not use an iteration structure in this
procedure. For example,

Implicit derivative(x2 + y(x)2 = 1, y, x, 3) → −3 x
i
x2 + y(x)2

J
y(x)5

.

15. Let u be an algebraic expression, and let x and y be symbols. Give a
procedure

Derivative order (u, x, y)

that determines the maximum order of the derivatives of y with respect
to x in u. In this exercise d(y,x) represents the first derivative and for
an integer n ≥ 2, d(y, x, n) represents the derivative of order n. (We use
this representation rather than a representation such as Derivative(y(x), x)
to conform with the presentation in Section 4.3.) In addition, the order
of the symbol y is 0, and the order of expressions without a y is −1.
To simplify matters, if u contains function forms with the name d that
contain operands different from those in d(y, x) and d(y, x, n), return the
global symbol Undefined. For example,

Derivative order(d(y, x, 2) + x d(y, x) + 4 y, x, y) → 2,

Derivative order(x+ y, x, y) → 1,

Derivative order(x, x, y) → −1,
Derivative order (d(y2, x), x, y) → Undefined,

Derivative order (d(y, b), x, y) → Undefined.

Note in the last two examples, the symbol Undefined is returned because
the operands of the function form d are inappropriate.

The Derivative order operator is used in Exercise 14 on page 240.

4See Spanier and Oldham [92], Chapter 43 for a description of the gamma function
and its derivative.
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16. (a) Let S be a set of rational numbers. Give a procedure Max(S) that
returns the maximum value in S. If S is empty, return the global
symbol Undefined.

(b) Suppose now that S is a finite set of algebraic expressions. Generalize
the procedure Max so that it determines the maximum value of the
expressions in S that can be compared. For the purposes of this
exercise two expressions f and g are comparable if f − g is an integer
or fraction, and f > g when f − g > 0 in automatic simplification.
If all the expressions in S are pairwise comparable, then return the
maximum expression. If two or more expressions cannot be compared,
then return an unevaluated form of Max . For example,

Max ({a, 2, 3}) → Max({a, 3}),
Max({m,m+ 1}) → m+ 1,

Max({3,Max({2, x}), }) → Max(3, x),

Max({−5, m,m+ 1, 2, 3,
√
2}) → Max({3, m+ 1,

√
2}).

Note that in the last example 3 and
√
2 cannot be compared because

3−√
2 is not an integer or fraction in automatic simplification.

This procedure returns a reasonable result as long as the input data
is appropriate. For example, if some of the expressions in S are
complex number expressions, then the input is not appropriate (e.g.,
S = {2,√−1}).

The Max operator is used in Exercise 17 below and Exercise 13, page 239.

17. Let u be an algebraic expression and x a symbol. Give a procedure

Max exponent(u, x)

that returns the largest exponent of x in u. If some exponents of x are not
integers or fractions, return an unevaluated Max function as described in
Exercise 16. For example,

Max exponent (x2 + x3, x) → 3,

Max exponent(x+ x−1, x) → 1,

Max exponent (sin(x2 + xm, x) → Max({2, m}),
Max exponent(x(x2), x) → Max({2, x2}).

18. The absolute value function satisfies the following four properties:

(a) |a · b| → |a| · |b|.
(b) For n an integer, |an| → |a|n.
(c) For ı =

√−1, |ı| → 1.

(d) If an expression has the form a+ ı b, where a �= 0 and b �= 0 are free
of ı, then |a + b ı| → (a2 + b2)1/2.
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Let u be an algebraic expression. Give a procedure Absolute value(u) that
obtains the absolute value of integers and fractions and applies the above
rules when u is not an integer or fraction. If u is not an integer or fraction
or one the above forms, return the unevaluated form ”Absolute value”(u).
For example,

Absolute value(−1/2) → 1/2,

Absolute value(−2x) → 2Absolute value(x),

Absolute value(x+ y) → Absolute value(x+ y),

Absolute value(x+ 2 ı) → (x2 + 4)1/2.

This procedure returns a reasonable result as long as the input data is
appropriate. For example, since the procedure does not perform an analysis
of involved expressions with radicals, it may return an inappropriate result
such as

Absolute value

~�
1−
6
2−

√
5 + ı

^
→
�
2−
6
2−

√
5,

which is a complex number.

5.3 Case Study: An Elementary Indefinite Integration
Operator

In this case study we describe an algorithm that evaluates
∫
f(x) dx for

a limited class of functions encountered in elementary calculus. The algo-
rithm utilizes the following:

1. an integration table,

2. the linear properties of the indefinite integral,

3. the “substitution” or “change of variable” method that is based on
the inversion of the chain rule, and

4. both expanded and unexpanded forms of the integrand f(x).

For example, the algorithm can evaluate the integrals
∫

5 x sin
(
x2
)
cos
(
x2
)
dx,

∫
(cos(x) + 2) (sin(x) + 3) dx.
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The Integration Table

The integration table includes the following standard elementary forms.

1. Expressions that are free of the integration variable x.

2. Powers xn, where n is free of the integration variable x. Since most
computer algebra systems return

∫
x−1 dx = ln(x) (rather than the

more general form ln |x|), we include this form in the table.

3. The functions exp(x) and ln(x) and the power bx, where b is free of
the integration variable x.

4. The trigonometric functions.

5. More involved expressions that occur as derivatives of the trigonomet-
ric functions or their inverses. For example, sec(x) tan(x) appears in
the table because it is the derivative of sec(x).

Linear Properties

When the integrand is a product f(x) = c g(x) with c free of x, the algo-
rithm applies the linear property∫

f dx =
∫

c g dx = c

∫
g dx (5.15)

and then evaluates recursively
∫
g dx. In some cases when the substitution

method is used to evaluate an integral, this step may seem counterproduc-
tive (see Equations (5.19)-(5.21) below). It is required, however, to match
expressions in the integration table, and its application does not hinder the
substitution method algorithm (see Example 5.4 below).

When f is a sum, the algorithm applies the linear property∫
f dx =

∫ n∑
i=1

fi dx =
n∑

i=1

∫
fi dx (5.16)

and then evaluates recursively each
∫
fi dx.

The Substitution Method

The substitution method is a basic technique for evaluating integrals that
most readers are undoubtedly familiar with from the study of calculus. The
method depends on the inversion of the chain rule∫

u(v(x)) v′(x) dx =
∫

u(v) dv = U(v(x)), (5.17)
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where U ′(v) = u(v). It has the potential to obtain an anti-derivative when-
ever the integrand is a product of the form

f = u(v(x)) v′(x). (5.18)

Once such a representation is chosen, the success of the method depends
on the evaluation of the new integral

∫
u(v) dv. For example, to evaluate∫

2 x cos
(
x2
)
dx, (5.19)

let
v(x) = x2, u(v) = cos(v). (5.20)

Since v′ = 2x,∫
2x cos

(
x2
)
dx =

∫
cos(v) dv = sin(v) = sin

(
x2
)
. (5.21)

Notice that we have omitted the arbitrary constant of integration as is done
in most CAS software as well as the procedures in this section.

Although this example illustrates a general approach, the technique is
more involved in practice. The difficulty involves deciding how to choose
a substitution that eliminates the original integration variable x. In some
instances it is possible to represent the integrand in the form (5.18) in
a number of ways and in others it may not be possible at all. For our
algorithm, we need a set of trial substitutions and a way to test if a sub-
stitution is appropriate. Figure 5.16 shows some typical substitutions used
to evaluate integrals using this method.

These examples suggest four possible forms for the substitution v(x).

1. Function forms. In∫
(x+ 1) ln(cos((x+ 1)2)) sin((x+ 1)2)

cos((x + 1)2)
dx, (5.22)

the expressions

ln(cos((x+ 1)2)), sin((x+ 1)2), cos((x + 1)2)

are function forms.

2. Arguments of function forms. In (5.22), the expressions

cos((x + 1)2), (x+ 1)2

are arguments of function forms.
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Integral Substitution�
sin(x) cos(x) dx =

sin2(x)

2
v = sin(x)

�
2x cos
i
x2J dx = sin

i
x2J v = x2

�
2 x
i
x2 + 4
J5

dx =
i
x2 + 4
J6

/6 v = x2 + 4

�
cos(x)2 sin(x) dx =

2 sin(x)

ln(2)
v = sin(x)

Figure 5.16. Evaluation of integrals using the substitution method.

3. Bases of powers. In (5.22), the expressions

cos((x+ 1)2), x+ 1

are bases of powers. The first expression is a base because the de-
nominator of the integrand in (5.22) has the internal representation

(cos((x+ 1)2))−1.

4. Exponents of powers. In cos(x) 2 sin(x), the expression sin(x) is an
exponent of a power. In (5.22), −1 and 2 are also exponents, but
don’t give useful substitutions.

Using these substitution forms, the trial substitutions for the integrand in
(5.22) are

ln(cos((x+ 1)2)), cos((x + 1)2), (x + 1)2,

x+ 1, sin((x+ 1)2), − 1, 2. (5.23)

The first four expressions give substitutions that transform the integrand
to the form in (5.18), while the last three do not. For example, the first
substitution

v = ln(cos((x + 1)2)),

transforms the integral to a form that is easily evaluated
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∫
(x+ 1) ln(cos (x+ 1)2) sin((x+ 1)2)

cos((x+ 1)2)
dx

= −(1/2)
∫

v dv = (−1/4) v2 = (−1/4)
(
ln(cos((x+ 1)2))

)2
.

Substitutions using the next three expressions in (5.23) also lead to simpler
integrals although each one requires at least one additional substitution for
evaluation. For example, if the substitution is v(x) = cos((x+ 1)2), then

∫
(x+ 1) ln(cos((x+ 1)2)) sin((x+ 1)2)

cos((x + 1)2)
dx

= −(1/2)
∫

ln(v)
v

dv,

where the last integral is evaluated with another substitution w = ln(v).
A procedure for the substitution method must perform the following

steps.

1. Form the set P of possible substitutions that contains the function
forms, function arguments, and bases and exponents of powers in f .

2. Check each v(x) in P to determine if it is an appropriate substitu-
tion. There are two expressions that may be in P , but which can
be eliminated immediately. They are v(x) = x which is really no
substitution at all, and the expressions v(x) that are free of x. If f
has the factored form

f = u(v(x)) · v′(x)

for some v(x) in P , the new integrand u(v) is obtained by eliminating
the factor v′(x) from f and substituting a symbol v for the expression
v(x). This operation is obtained by

u(v) = Substitute
(

f

v′(x)
, v(x) = v

)
, (5.24)

where the division operation is obtained with automatic simplifica-
tion. For the process to work, the substitution and division must
eliminate the original integration variable x from the integrand. This
condition is verified by checking that u(v) is free of x. If this is so, we
complete the integration by evaluating recursively

∫
u(v) dv, and by

substituting v(x) for v. Because of the division in Expression (5.24),
the substitution method is also called the derivative divides method.
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Example 5.3. Consider again∫
2 x cos

(
x2
)
dx.

The possible substitutions are

P = {x, 2, x2, cos
(
x2
)}. (5.25)

Since the first two expressions x and 2 are not useful substitutions, the third
one v(x) = x2 is tried. In this case Expression (5.24) gives u(v) = cos(v),
which is free of x, and so the anti-derivative is obtained with

Substitute
(∫

cos(v) dv, v = x2

)
→ sin

(
x2
)
.

On the other hand, with the fourth expression v(x) = cos
(
x2
)

in P , Ex-
pression (5.24) gives

u(v) =
− cos(v)
sin (x2)

,

which is not free of x and so this substitution does not work. �

Expanded versus Unexpanded Integrands

There are instances where expansion of the integrand is required for evalu-
ation and others where expansion leads to more a difficult integration. For
example, to evaluate ∫

(x+ 1) (x+ 2) dx, (5.26)

it is necessary to expand the integrand. On the other hand, while the
unexpanded form ∫

(2 x+ 1) cos
(
x2 + x

)
dx (5.27)

is easily evaluated with the substitution v(x) = x2 + x, by expanding and
applying the linear property (5.16), we obtain∫

(2 x+ 1) cos
(
x2 + x

)
dx =

∫
2 x cos

(
x2 + x

)
dx+

∫
cos
(
x2 + x

)
dx,

where the two integrals on the right cannot be evaluated using the elemen-
tary functions encountered in calculus.

To handle both (5.26) and (5.27), the algorithm first tries to evaluate
an integral without expanding f , and if it is not successful, tries again after
expanding f .
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The Integration Algorithm

The Integral procedure, which serves as a main procedure for the algo-
rithm, is shown in Figure 5.17. The procedure returns either

∫
f dx or the

global symbol Fail if it is unable to evaluate the integral. It calls on three
procedures (lines 1, 3, and 5) that also return either an evaluated integral
or the symbol Fail. The statement at line 1 invokes the Integral table pro-
cedure, which compares f to a number of standard forms and serves as a
termination condition for the recursion. The procedure Integral table is left
to the reader (Exercise 3(a)).

If f is not in the table, then at lines 2-3 the procedure Linear properties
determines if either Equation (5.15) or Equation (5.16) can be applied, and,
if so, applies the appropriate rule. This procedure is recursive because
it calls on Integral to evaluate the new integrals produced by the linear
properties. The procedure Linear properties is left to the reader (Exercise
3(b)).

If this step fails, the Substitution method procedure is applied at line 5.
This step is recursive because this procedure also calls on Integral . If this
step fails, the integrand is expanded (at line 7), and if this produces a new
expression, the procedure Integral is applied recursively at line 9.

The Substitution method procedure is shown in Figure 5.17. Notice that
the procedure uses a global mathematical symbol v to avoid using a lo-
cal variable that would be used without being assigned. At line 1, the
Trial substitutions procedure creates a set P of possible substitutions (Ex-
ercise 3(c)). In lines 4-10, we check each candidate g in P as a possible
substitution. Once one is found, the loop terminates and the procedure
returns the evaluated integral. The procedure is recursive because it calls
on Integral at line 9, which allows another check of the integration table
and further application of the linear properties, substitution method, and
expansion, all of which may be needed (Exercise 1).

There are two ways that the Substitution method procedure can fail
to obtain the integral: first, when none of the possible substitutions in P
works, and next, when the free-of test at line 8 succeeds but the Integral
operator at line 9 is unable to evaluate the new integral. In either case, the
symbol Fail is returned at line 11.

Example 5.4. Consider the evaluation of∫
2 x cos

(
x2
)
dx.

Figure 5.18 shows the sequence of procedure calls that indicates the path
taken by the algorithm to evaluate the integral. (There are other procedure
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Procedure Integral (f, x);
Input

f : an algebraic expression;
x : a symbol;

Output	
f dx or the global symbol Fail;

Local Variables F, g;
Begin

1 F := Integral table(f, x);
2 if F = Fail then
3 F := Linear properties(f, x);
4 if F = Fail then
5 F := Substitution method(f, x);
6 if F = Fail then
7 g := Algebraic expand(f);
8 if f �= g then
9 F := Integral (g, x);
10 Return(F )

End

Procedure Substitution method(f, x);
Input

f : an algebraic expression;
x : a symbol;

Output	
f dx or the global symbol Fail;

Local Variables P, F, i, u, g;
Global v;
Begin

1 P := Trial substitutions(f);
2 F := Fail;
3 i := 1;
4 while F = Fail and i ≤ Number of operands(P ) do
5 g := Operand(P, i);
6 if g �= x and not Free of(g, x) then
7 u := Substitute(f/Derivative(g, x), g = v);
8 if Free of(u, x) then
9 F := Substitute(Integral(u, v), v = g);
10 i := i + 1;
11 Return(F )

End

Figure 5.17. The MPL Integral and Substitution method procedures. (Imple-
mentations: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Operator Integrand Integration
Variable

1 Integral 2 x cos
i
x2
J

x

2 Linear properties 2 x cos
i
x2
J

x

3 Integral x cos
i
x2
J

x

4 Substitution method x cos
i
x2
J

x

5 Integral (1/2) cos(v) v

6 Linear properties (1/2) cos(v) v

7 Integral cos(v) v

8 Integral table cos(v) v

Figure 5.18. The sequence of procedure calls that contribute to the evaluation
of
	
2x cos

i
x2
J

dx.

calls that return Fail and don’t contribute to the evaluation.) At step 1,
Integral calls on Linear properties (step 2) where the leading constant 2 is
removed. At step 3, Linear properties passes the new expression x cos

(
x2
)

to Integral which, at step 4, calls on Substitution method. This step intro-
duces a new leading constant 1/2 and passes a new integrand to Integral
(step 5). At step 6, the leading constant 1/2 is removed by another call
to Linear properties which again passes a new integrand to Integral (step
7). Finally, at step 8, Integral calls on Integral table which terminates the
recursion and returns sin(v). At this point the recursion unwinds to give∫

2 x cos
(
x2
)
dx = sin

(
x2
)
. �

Appraisal of the Algorithm

The algorithm can evaluate many integrals that depend on the application
of the linear properties and the inversion of the chain rule, but cannot
evaluate all such integrals. For example, for the integral∫

2x
x4 + 1

dx = arctan
(
x2
)
,

the set of possible substitutions obtained by the algorithm is

P =
{
x4 + 1,−1, x, 4

}
.

Since this integral is evaluated using the substitution v = x2, which is not
in P , the integration is not obtained with the algorithm5.

5The reader wishing to explore substitutions of this type should consult Cohen [24],
Section 4.4, Exercise 10(d).
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In other cases, although the substitution is in P , the algorithm cannot
evaluate the integral because of the form of the integrand. For example,
consider the integral ∫

dx

exp(x) + exp(−x) .

In this form the substitution set is

P = {exp(x) + exp(−x), exp(x), exp(−x), x, − x} .

Although this integral can be evaluated with v(x) = exp(x), this substitu-
tion will not work with the integrand in this form. However, by multiplying
the numerator and denominator of the integrand by exp(x), we obtain∫

exp(x)
(exp(x))2 + 1

dx = arctan(exp(x)),

which is evaluated with the substitution v(x) = exp(x). Since our algorithm
does not perform the transformation

1
exp(x) + exp(−x) → exp(x)

(exp(x))2 + 1
,

it cannot evaluate the integral.
Some extensions of the algorithm are described in Exercises 4, 6, 8,

and 9.

Exercises
1. For each of the following integrals, give the sequence of procedure calls

that shows the path taken by the algorithm to evaluate the integral. For
some integrals, the sequence of procedure calls depends on the order of the
expressions in the substitution set P .

(a)

�
sec3(x) tan(x) dx.

(b)

�
(sin(x) + 4)3 cos(x) dx.

(c)

�
x ·
~W

x2

2 c
+ 1

}3

+ 2

^
dx.

(d)

�
(sin(x) + 1) (cos(x) + 1) dx.

2. Explain why each of the following integrals can be evaluated with substi-
tution but cannot be evaluated by the algorithm in this section.
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(a)

�
x+ 2

x2 + 4 x+ 2
dx, let v = x2 + 4x+ 2.

(b)

�
sin
i
ax2 + b x2J x dx, let v = ax2 + b x2.

(c)

�
1

(2x+ 3)
�
4x+ 5)

dx = arctan(
√
4x+ 5), let v =

√
4x+ 5.

3. (a) Give a procedure for Integral table(f, x). If f is not in the table,
return the global symbol Fail.

(b) Give a procedure for the Linear properties(f, x) operator.

When f is a product, apply Equation (5.15) by separating the operands
that are free of x from f using the Separate factors procedure (see
page 148) and integrating the remaining expression with a recursive
call to Integral. If none of the operands of f is free of x, this prop-
erty does not contribute to the evaluation of the integral, and so the
procedure returns the global symbol Fail.

When f is a sum, apply Equation (5.16) by evaluating the integral
of each operand using Integral. However, if some operand cannot be
integrated, then return Fail because the algorithm cannot integrate
the entire sum.

Finally, if f is not a product or a sum, return Fail.

(c) Give a procedure Trial substitutions(f) that finds all functions, ar-
guments of functions, and bases and exponents of powers that occur
in f . The result should be returned as a set.

4. This exercise describes a procedure that evaluates integrals of rational ex-
pressions of the form �

r x+ s

a x2 + b x+ c
dx, (5.28)

where a �= 0, b, c, r, and s are free of x. The algorithm for this integral is
divided into two cases. First, when the integrand has the form

f =
1

q
, q = ax2 + b x+ c,

then

�
dx

q
=



2

arctan

W
2 a x+b√
4 a c−b2

}
√
4 a c − b2

, if b2 − 4 a c < 0,

−2
arctanh

W
2 a x+b√
b2−4 a c

}
√

b2 − 4 a c
, if b2 − 4 a c > 0,

− 2

2 a x+ b
, if b2 − 4 a c = 0.

(5.29)
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Next, when the integrand has the form f =
r x+ s

q
, then�

r x+ s

q
dx = α ln(q) + β

�
dx

q
,

where α = r/(2 a), β = s − r b/(2 a), and the integral on the right is
evaluated with Equation (5.29).

(a) Give a procedure Rational form(f, x) that checks that f has the
proper form and obtains the integral. If b2 − 4 a c is not an inte-
ger or fraction, which means that it cannot be compared to 0, return
the arctan form in (5.29). If f does not have the form in (5.28), re-
turn the global symbol Fail. Hint: The Linear form procedure (see
Figure 5.7 on page 181) and the Quadratic form procedure (Exercise
8, page 195) are useful for this exercise.

(b) Modify the Rational form procedure so that it also evaluates integrals
of the form �

r x+ s

b x+ c
dx,

where b �= 0 and r �= 0. (The cases b = 0 or r = 0 are handled by
other cases in Integral.)

(c) Modify the main Integral procedure so that it calls on Rational form.

(For further exploration of this operator and its generalization, the reader
may consult Cohen [24], Section 4.4, Exercise 10.)

5. Use the Integral operator together with the Rational form operator in Ex-
ercise 4 to evaluate �

cos(x)

sin2(x) + 3 sin(x) + 4
dx.

6. This exercise describes a procedure that evaluates integrals of the form�
1

(a x+ b)
√

r x+ s
dx,

where a �= 0, b, r �= 0, and s are free of x.

(a) Show that the integral can be transformed by the substitution v =√
r x+ s to�

1

(a x+ b)
√

r x+ s
dx = 2

�
1

a v2 − a s+ b r
dv.

The new integral is evaluated using the Rational form operator (Ex-
ercise 4).

(b) Give a procedure Radical form(f, x) that checks if f has the proper
form, and, if so, applies the above transformation and returns the
result in terms of x. If f does not have the proper form, return the
global symbol Fail.
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(c) Modify the main Integral procedure so that it calls on Radical form
procedure.

7. Use the Integral operator together with the Radical form operator (Exercise
6) to evaluate �

3 cos(x)

(5 sin(x) + 1)
�
4 sin(x) + 7

dx.

8. This exercise describes a procedure that evaluates integrals of the form�
f dx =

�
sinm(x) cosn(x) dx, (5.30)

where m and n are non-negative integers. Integrals of this form can be
evaluated using the reduction formulas�

cosn(x) dx = (1/n) cosn−1(x) sin(x) +
n − 1

n

�
cosn−2(x) dx, (5.31)

�
sinm(x) cosn(x) dx = − sinm−1(x) cosn+1(x)

m+ n
(5.32)

+
m − 1

m+ n

�
sinm−2(x) cosn(x) dx.

Notice that repeated use of Equation (5.32) reduces the integrand in (5.30)
to the form sin(x) cosn(x) (when m is odd) or to cosn(x) (when m is
even). In the first case, the remaining integral is evaluated by a call to
Substitution method and, in the second case, with Equation (5.31).

(a) Give a procedure Trig form(f, x) that checks if f has the proper form
and if so obtains the integral. If f does not have the proper form,
return the global symbol Fail.

(b) Modify the main Integral procedure so that it calls on Trig form.

Another approach for these integrals is described in Exercise 10, page 306.

9. Let n be a positive integer and let a and b be free of x. The following
recurrence relations are derived using integration by parts:�

xn exp(ax+ b) dx = (5.33)

xn/a exp(ax+ b)− n/a

�
xn−1 exp(a x+ b) dx,�

xn sin(a x+ b) dx = (5.34)

−xn/a cos(a x+ b) + n/a

�
xn−1 cos(ax+ b) dx,�

xn cos(ax+ b) dx = (5.35)

xn/a sin(ax+ b)− n/a

�
xn−1 sin(a x+ b) dx.
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(a) Give a procedure By parts(f, x) that checks if the integrand is one
of these forms and when this is so evaluates the integral using the
appropriate recurrence relation. If f does not have one of these forms,
return the global symbol Fail.

(b) Modify the main Integral procedure so that it calls on the By parts
procedure.

Further Reading

5.1 A Computational View of Recursion. A more detailed discussion of
how recursion is implemented in a computer system is given in Pratt [82].

5.2 Recursive Procedures. Rule-based programming in Mathematica is de-
scribed in Gaylord et al. [38] and Gray [41].

5.3 Case Study: An Elementary Indefinite Integration Operator. Moses

[70] discusses the derivative divides method of integration. Symbolic integration

is a very difficult mathematical and computational problem. Geddes, Czapor,

and Labahn [39], Chapter 11 is a good introduction to the subject. Bronstein

[13] gives a theoretical discussion of the subject.



6

Structure of Polynomials and
Rational Expressions

In Chapter 3 we described the tree structure of an expression. An ex-
pression also has a semantic structure that is related to its mathematical
properties. For example, the expression 3x2+4 x+5/2 can be viewed both
as an expression tree and semantically as a polynomial in x with degree 2
that has rational number coefficients.

In this chapter, we describe the polynomial structure and rational ex-
pression structure of an algebraic expression. For polynomials, we give
three definitions of increasing generality: first for single variable polynomi-
als (Section 6.1); next for multivariate polynomials (Section 6.1); and finally
for general polynomial expressions (Sections 6.2 and 6.3). The definitions
are more involved than those found in mathematics textbooks, since they
focus on computational concerns as well as the mathematical concept of
a polynomial. Along with these definitions, we give MPL procedures that
determine the polynomial structure of an expression. In Section 6.4, we
use these structural concepts to describe the goals of two transformations,
coefficient collection and algebraic expansion, and give MPL algorithms for
these operations. Finally, in Section 6.5 we describe the rational expression
structure of an algebraic expression and give an algorithm that transforms
an expression to a particular rational form.

Although operators that determine the structure of polynomials and
rational expressions are available in most computer algebra languages, their
capacity varies from system to system. The concepts in this chapter provide
a framework to analyze and compare how these concepts are implemented
in various CAS languages.

213
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6.1 Single Variable Polynomials

We begin by considering polynomials in a single variable with rational
number coefficients.

Definition 6.1. (Mathematical Definition) A polynomial u in a
single variable x is an expression of the form:

u = unx
n + un−1x

n−1 + . . .+ u1x+ u0, (6.1)

where the coefficients uj are rational numbers, and n is a non-negative
integer. If un �= 0, then un is called the leading coefficient of u and n is
its degree. The expression u = 0 is called the zero polynomial; it has
leading coefficient 0 and, according to mathematical convention has degree
−∞. The leading coefficient is represented by lc(u, x) and the degree by
deg(u, x). When the variable x is evident from context, we use the simpler
notations lc(u) and deg(u).

Observe that we have distinguished the zero polynomial from other
constant polynomials because it has no non-zero coefficients, and so the
general definitions for leading coefficient and degree do not apply1.

Example 6.2.

u = 3x6 + 2 x4 − 5/2, deg(u) = 6, lc(u) = 3,

u = x2 − x+ 2, deg(u) = 2, lc(u) = 1, (6.2)

u = 2x3, deg(u) = 3, lc(u) = 2, (6.3)

u = 3, deg(u) = 0, lc(u) = 3. (6.4)

�

Although Definition 6.1 defines the concept of a polynomial in a math-
ematically precise way, it requires some interpretation and is not adequate
for computational purposes. For example, in the previous example, the
definition is interpreted in a broad sense to include expressions that have
coefficients that are understood to be ±1 (as in Equation (6.2)) and those
that have a single term (as in Equations (6.3) and (6.4)). The following
definition, which captures the essence of a single variable polynomial in a

1 For the polynomial u = 0, both Maple’s degree operator and Mathematica’s
Exponent operator return a degree of −∞. On the other hand, MuPAD’s degree operator
returns a degree of 0.
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computational setting, can be easily expressed as an MPL procedure that
recognizes when an expression is a polynomial.

Definition 6.3. (Computational Definition) A monomial in a single
variable x is an algebraic expression u that satisfies one of the following
rules.

MON-1. u is an integer or fraction.

MON-2. u = x.

MON-3. u = xn, where n > 1 is an integer.

MON-4. u is a product with two operands that satisfies either MON-1,
MON-2, or MON-3.

A polynomial in a single variable x is an expression u that satisfies one
of the following rules.

POLY-1. u is a monomial in x.

POLY-2. u is a sum, and each operand of u is a monomial in x.

Primitive Operations on Polynomials

The Monomial sv and Polynomial sv Operators. The operators that are de-
scribed in the next definition recognize when an expression is a monomial
or a polynomial.

Definition 6.4. Let u be an algebraic expression. The operator

Monomial sv(u, x)

returns true when u is a monomial in x and otherwise returns false. (The
suffix “sv” stands for “single variable.”) The operator

Polynomial sv(u, x)

returns true when u is a polynomial in x and otherwise returns false.

Example 6.5.

Monomial sv(2 x3, x) → true,
Monomial sv(x+ 1, x) → false,

Polynomial sv(3 x2 + 4 x+ 5, x) → true,
Polynomial sv(1/(x+ 1), x) → false,

Polynomial sv(a x2 + b x+ c, x) → false.
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The expression a x2+b x+c is not a polynomial in x because the coefficients
are not rational numbers. It is, however, a multivariate polynomial (Defini-
tion 6.12, page 221), and a general polynomial expression (Definition 6.14,
page 223). �

The operators described in Definition 6.4 are understood to operate
within a computational environment defined by an evaluation process that
includes automatic simplification. Since this process is applied to the input
arguments before the actual tests are done, an expression u is a polynomial
in x if the evaluation process transforms it to an expression that satisfies
Definition 6.3. In this sense, sin(x)+x−sin(x) is a polynomial in x, because
the sin(x) terms are eliminated by automatic simplification.

But now the question arises, should the operators apply any other trans-
formation rules to u before the tests are done? In other words, in what
simplification context should we interpret our polynomial definition? For
example, each of the expressions

(x+ 1)(x+ 3), x2 + sin2(x) + cos2(x),
x2 − 1
x− 1

, cos(2 arccos(x))

can be transformed to a polynomial in the sense of Definition 6.1. However,
if we assume a simplification context of automatic simplification, they are
not considered polynomials in x because the required transformation rules
are not applied by this process.

The question of which simplification transformations to include in the
definition of Polynomial sv does not have a simple answer. For example, if
the operator Algebraic expand were applied, the expression (x + 1)(x + 3)
would be a polynomial in x. There are, however, some cases when it is
not useful to apply Algebraic expand (for example, see Expression (6.9) on
page 224). For now, we take the conservative view that the these procedures
as well as the others in this section operate within the context of only
automatic simplification.

Procedures for Monomial sv and Polynomial sv are given in Figures
6.1 and 6.2. In Monomial sv , the four MON tests are done in lines 1-11.
Notice that MON-4 (lines 10-11) is handled with two recursive calls on
the procedure. Any expression that is not handled by lines 1-11 is not
a monomial in x, and so false is returned (line 12). In a similar way,
Polynomial sv tests the two POLY rules in lines 1-7. Any expression not
handled here is not a polynomial, and so false is returned at line 8.

The operators in the next three definitions provide a way to analyze
the polynomial structure of an expression.
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Procedure Monomial sv(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
true or false;

Local Variables
base, exponent ;

Begin
1 if Kind(u) ∈ {integer, fraction} then
2 Return(true)
3 elseif u = x then
4 Return(true)
5 elseif Kind(u) = ” ∧ ” then
6 base := Operand(u, 1);
7 exponent := Operand(u, 2);
8 if base = x and Kind(exponent) = integer and exponent > 1 then
9 Return(true)
10 elseif Kind(u) = ” ∗ ” then
11 Return(Number of operands(u) = 2 and Monomial sv(Operand(u, 1), x)

and Monomial sv(Operand(u, 2), x));
12 Return(false)

End

Figure 6.1. An MPL monomial recognition procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

The Degree sv Operator

Definition 6.6. Let u be an algebraic expression. If u is a polynomial in x,
the operator

Degree sv(u, x)

returns deg(u, x). If u is not a polynomial in x, the operator returns the
symbol Undefined.

Example 6.7.

Degree sv(3x2 + 4x+ 5, x) → 2,
Degree sv(2x3, x) → 3,

Degree sv ((x+ 1)(x+ 3), x) → Undefined,

Degree sv(3, x) → 0. �
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Procedure Polynomial sv(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
true or false;

Local Variables
i;

Begin
1 if Monomial sv(u, x) then
2 Return(true)
3 elseif Kind(u) = ” + ” then
4 for i := 1 to Number of operands(u) do
5 if Monomial sv(Operand(u, i), x) = false then
6 Return(false);
7 Return(true);
8 Return(false)

End

Figure 6.2. An MPL polynomial recognition procedure. (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

Procedures for the operator Degree sv(u, x), similar to the ones for
Monomial sv and Polynomial sv, are given in Figures 6.3 and 6.4. In this
case, the procedure Degree monomial sv(u, x) gives the degree for mono-
mials, and Degree sv(u, x) is defined in terms of this procedure. Observe
that in Degree monomial sv at line 17, we use the structural assumption
that a constant in a product is the first operand (Rule 2, page 90)2.

The Coefficient sv Operator

Definition 6.8. Let u be an algebraic expression. If u is a polynomial in x,
the operator

Coefficient sv(u, x, j)

returns the coefficient uj of xj in Equation (6.1). If j > deg(u, x), Coefficient sv
returns 0. If u is not a polynomial in x, the operator returns the symbol
Undefined.

2This assumption holds in both Maple and Mathematica. In MuPAD, however, since
the constant is the last operand in a product, line 17 is replaced by Return(s).
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Procedure Degree monomial sv(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
deg(u, x) or the global symbol Undefined;

Local Variables
base, exponent , s, t;

Begin
1 if u = 0 then
2 Return(−∞)
3 elseif Kind(u) ∈ {integer, fraction} then
4 Return(0)
5 elseif u = x then
6 Return(1)
7 elseif Kind(u) = ” ∧ ” then
8 base := Operand(u, 1);
9 exponent := Operand(u, 2);
10 if base = x and Kind(exponent) = integer and exponent > 1 then
11 Return(exponent)
12 elseif Kind(u) = ” ∗ ” then
13 if Number of operands(u) = 2 then
14 s := Degree monomial sv(Operand(u, 1), x);
15 t := Degree monomial sv(Operand(u, 2), x);
16 if s �= Undefined and t �= Undefined then
17 Return(t)
18 Return(Undefined)

End

Figure 6.3. An MPL procedure for Degree monomial sv . (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

Example 6.9.

Coefficient sv(x2 + 3x+ 5, x, 1) → 3,
Coefficient sv(2x3 + 3x, x, 4) → 0,

Coefficient sv(3, x, 0) → 3,
Coefficient sv((x+ 1)(x+ 3), x, 2) → Undefined. �

The Coefficient sv operator is implemented with procedures similar to
those for Polynomial sv and Degree sv (Exercise 6).
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Procedure Degree sv(u, x);
Input

u : an algebraic expression;
x : a symbol;

Output
deg(u, x) or the global symbol Undefined;

Local Variables
d, i, f ;

Begin
1 d := Degree monomial sv(u, x);
2 if d �= Undefined then
3 Return(d)
4 elseif Kind(u) = ” + ” then
5 d := 0;
6 for i := 1 to Number of operands(u) do
7 f := Degree monomial sv(Operand(u, i), x);
8 if f = Undefined then
9 Return(Undefined)
10 else
11 d := Max({d, f})
12 Return(d);
13 Return(Undefined)

End

Figure 6.4. An MPL procedure for Degree sv . (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

The Leading coefficient sv Operator

Definition 6.10. Let u be an algebraic expression. If u is a polynomial in
x, the operator

Leading coefficient sv(u, x)

returns lc(u, x) (Definition 6.1, page 214). If u is not a polynomial in x,
the operator returns the symbol Undefined.

Example 6.11.

Leading coefficient sv(x2 + 3 x+ 5, x) → 1,
Leading coefficient sv (3, x) → 3. �
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The Leading coefficient sv operator can be obtained with a composition
of the Degree sv and Coefficient sv operators. For example, if u = 3 x2 +
4 x+ 5, the leading coefficient is obtained with

Coefficient sv(u, x,Degree sv(u, x)) → 3.

Another approach is to obtain it directly with procedures similar to those
for Degree sv (Exercise 7).

Multivariate Polynomials

Polynomials that contain more than one variable are called multivariate
polynomials.

Definition 6.12. (Mathematical Definition) A multivariate poly-
nomial u in the set of symbols {x1, x2, . . . , xm} is a finite sum with (one
or more) monomial terms of the form

c xn1
1 xn2

2 · · ·xnm
m ,

where the coefficient c is a rational number and the exponents nj are non-
negative integers.

Example 6.13. The following are multivariate polynomials:

p+ 1/2 ρ v2 + ρ g y, a x2 + 2 b x+ 3 c, x2 − y2, m c2, 3 x2 + 4. �

Although it is possible to give a computational definition for multivari-
ate polynomials that is similar to Definition 6.3 and to extend the primitive
operations to this setting (Exercise 2), it is more convenient to do so in the
context of general polynomial expressions, which are defined in the next
section.

Exercises
For the exercises in this section, do not use the polynomial operators in a CAS.

1. The height of a polynomial is the maximum of the absolute values of its
coefficients. Let u be an algebraic expression. Give a procedure

Polynomial height(u, x)

that returns the height of a polynomial. If u is not a polynomial in x,
return the global symbol Undefined.

2. (a) Give a computational definition for multivariate polynomials that is
similar to Definition 6.3.
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(b) Give a procedure

Polynomial mv(u, S)

that returns true if an algebraic expression u is a multivariate poly-
nomial in a set S of symbols and otherwise returns false.

3. Give a definition for a polynomial that includes expressions that contain
products and positive integer powers of expressions that satisfy Definition
6.3. For example,

x3+(x+1) (x+2)+4, (x2+x+1)3, 1+(x+1) (x+2)2, ((x+1)2+1)2

are polynomials according to this new definition. Give a procedure

Polynomial sv unexp(u, x)

that returns true if an algebraic expression is a polynomial in this sense
and otherwise returns false. Do not use the Algebraic expand operator as
part of the definition or the procedure.

4. Consider the class of expressions that are polynomials in y with coeffi-
cients that are polynomials in x with rational number coefficients. For
example, u = (1 + x2) y3 + (2x − 1) y is in this class. Give a procedure
Polynomial xy(u, x, y) that returns true if an algebraic expression is in
this class and otherwise returns false.

5. Consider the class of expressions that are polynomials in x with coefficients
that have the form c + d

√
2 where c and d are rational numbers. For

example, the expressions x3 + (1−√
2)x2 + 3 +

√
2 and 2

√
2 x − 1 are in

this class. Give a procedure Polynomial sq2 (u, x) that returns true if an
algebraic expression is in this class, and otherwise returns false.

6. Give a procedure for Coefficient sv(u, x, j). Hint: First give a procedure

Coefficient monomial sv(u, x)

that returns a list [c,m], where m is the degree of the monomial and c is
the coefficient of xm. If u is not a monomial, return the global symbol
Undefined.

7. Give a procedure for Leading coefficient sv(u, x) that does not use the
Degree sv or Coefficient sv operators. Hint: Modify the procedures for
Degree sv. First give a procedure

Leading coefficient monomial sv(u, x)

that returns a list [c,m], where m is the degree of the monomial and c is
the coefficient of xm. If u is not a monomial, return the global symbol
Undefined.
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8. Let u be an algebraic expression. When u is a polynomial in x, the pro-
cedure Coefficient list(u, x) returns the list of coefficients of powers of x
in u. When u is not a polynomial in x, the procedure returns the global
symbol Undefined. For example,

Coefficient list(2x5 + 3x2 + 4x+ 5, x) → [2, 3, 4, 5].

Give a procedure for Coefficient list(u, x).

9. A rational expression in x is an expression of the form p/q, where p and
q are polynomials with rational number coefficients. The following are
rational expressions:

1

x+ 3
,

x+ 5

x2 − 2
, x2 − 1,

where, in the third example, q = 1. Let u be an algebraic expression. Give
a procedure

Rational sv(u, x)

that returns true when u is a rational expression in x and otherwise returns
false. Use the numerator and denominator operators in a CAS to obtain
p and q (Figure 4.1 on page 124).

6.2 General Polynomial Expressions

There are many expressions that are polynomials in a computational con-
text that are not included in the previous definitions for polynomials. For
example, it is reasonable to consider the expression

u =
a

(a+ 1)
x2 + b x+

1
a

as a polynomial in x, even though it does not satisfy the definitions in
Section 6.1. Indeed, a CAS views this expression as a polynomial when it
solves the quadratic equation u = 0 for x. In addition, it is reasonable to
view the expressions sin3(x) + 2 sin2(x) + 3 and (x + 1)3 + 2 (x + 1)2 + 3
as polynomials in terms of a complete sub-expression (sin(x) or (x + 1)).
On the other hand, the expression (3 sin(x))x2 + (2 ln(x))x + 4 is not a
polynomial in x because the coefficients of the powers of x also depend
on x.

The next definition includes the more general polynomial expressions
given above.

Definition 6.14. (Mathematical Definition) Let c1, c2, . . . , cr be al-
gebraic expressions and let x1,x2,. . . ,xm be algebraic expressions that are
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not integers or fractions. A general monomial expression (GME) in
{x1, x2, . . . , xm} is an expression of the form

c1 c2 · · · cr xn1
1 xn2

2 · · ·xnm
m , (6.5)

where the exponents nj are non-negative integers and each ci satisfies the
independence property

Free of(ci, xj) → true, for j = 1, 2, . . . ,m. (6.6)

The expressions xj are called generalized variables because they mimic
the role of variables, and the expressions ci are called generalized coeffi-
cients because they mimic the role of coefficients. The expression

xn1
1 · · ·xnm

m

is called the variable part of the monomial, and if there are no generalized
variables in the monomial, the variable part is 1. The expression c1 · · · cr is
called the coefficient part of the monomial, and if there are no generalized
coefficients in the monomial, the coefficient part is 1. An expression u is a
general polynomial expression (GPE) if it is either a GME or a sum
of GMEs in {x1, x2, . . . , xm}.

Example 6.15. The following are general polynomial expressions:

x2 − x+ 1, (x1 = x),
x2 y − x y2 + 2, (x1 = x, x2 = y),

a

(a+ 1)
x2 + b x+

1
a
, (x1 = x), (6.7)

sin3(x) + 2 sin2(x) + 3, (x1 = sin(x)), (6.8)
(x+ 1)3 + 2 (x+ 1)2 + 3, (x1 = x+ 1), (6.9)√

2x2 +
√

3 x+
√

5, (x1 = x). (6.10)

The definition is quite general. It includes the single variable polyno-
mials (Definition 6.3), multivariate polynomials (Definition 6.12) and allows
the more general Expressions (6.7), (6.8), (6.9), and (6.10). Notice that Ex-
pression (6.10) is a GPE, but not a single variable polynomial in the sense
of Definition 6.1 because the coefficients are not rational numbers. On the
other hand, the expression (sin(x))x2+(ln(x))x+4 is not a GPE in x alone
because the coefficients sin(x) and ln(x) do not satisfy the independence
property in Equation (6.6).

The definition is also quite flexible because it allows for a choice of which
parts of an expression act as variables and which parts act as coefficients.
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For example, the expression 2 a x2 + 3 b x + 4 c can be viewed as a poly-
nomial in {a, b, c, x} with integer coefficients or as a polynomial in x with
coefficients 2 a, 3 b and 4 c. In fact, it is possible to view the expression as
a polynomial in another variable (say z) with the entire expression as the
coefficient part of z0. In addition, since a sum can be a generalized vari-
able, we can even designate the entire expression as a generalized variable
and view it as a polynomial in terms of itself. �

The following definitions for a GME and GPE are more suitable for
computational purposes.

Definition 6.16. (Computational Definition) A general monomial
expression (GME) in a set of generalized variables

S = {x1, x2, . . . , xm}
is an algebraic expression u that satisfies one of the following rules.

GME-1. Free of(u, xj) → true, for j = 1, . . . ,m.

GME-2. u ∈ S.

GME-3. u = xn, where x ∈ S and n > 1 is an integer.

GME-4. u is a product, and each operand of u is a GME in S.

A general polynomial expression (GPE) in a set S of expressions
is an algebraic expression u that satisfies one of the following rules.

GPE-1. u is a GME in S.

GPE-2. u is a sum and each operand of u is a GME in S.

This definition is similar to Definition 6.3 for single variable polynomi-
als. In this case, however, rule GME-1, which expresses the independence
property in Equation (6.6), replaces rule MON-1, which only allows for
integers or fractions as coefficients. Although the definition is in terms of
a set S of generalized variables, a list L of distinct generalized variables
would serve as well. There are a few instances in later sections where we
refer to a polynomial in a list of variables.

Primitive Operations for General Polynomial Expressions

The operators described in the following definitions obtain the polynomial
structure of an expression.
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The Monomial gpe and Polynomial gpe Operators

Definition 6.17. Let u be an algebraic expression, and let v be either a
generalized variable x or a set S of generalized variables. The operator

Monomial gpe(u, v)

returns true whenever u is a GME in {x} or in S, and otherwise returns
false. The operator

Polynomial gpe(u, v)

returns true whenever u is a GPE in {x} or in S, and otherwise returns
false.

Example 6.18.

Monomial gpe(a x2 y2, {x, y}) → true,

Monomial gpe(x2 + y2, {x, y}) → false,
Polynomial gpe(x2 + y2, {x, y}) → true,

Polynomial gpe(sin2(x) + 2 sin(x) + 3, sin(x)) → true,
Polynomial gpe(x/y + 2 y, {x, y}) → false,

Polynomial gpe((x + 1) (x+ 3), x) → false. �

Procedures for the operators Monomial gpe and Polynomial gpe are
given in Figures 6.5 and 6.6. Although the procedures are based on the
rules in Definition 6.16, there are two modifications that are designed to
avoid redundant recursive calls on the Set free of operator. (The Set free of
operator determines if u is free of all of the expressions in a set S (Exercise
1, page 194).) First, in the Monomial gpe procedure the independence
property GME-1 is checked at the end of the procedure in line 14 instead
of at the beginning. The reason for this has to do with the recursive call in
Monomial gpe when u is a product (line 11), together with the recursive
nature of Set free of. If GME-1 were at the beginning of the procedure,
the Set free of operator would test the operands of a product in GME-1,
and might need to re-check them again because of the recursive calls on
Monomial gpe at line 11. By placing the rule at the end of the procedure
we avoid this redundancy.

Next, in the Polynomial gpe procedure, we check rule GPE-1 directly
only when u is not a sum (lines 2-3). Since a sum can be a monomial (for
example, u = a+b and S = {a+b}), we check for this possibility separately
at line 5. By doing this we avoid redundant calls on Set free of which would
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Procedure Monomial gpe(u, v);
Input

u : an algebraic expression;
v : a generalized variable or a set of generalized variables;

Output
true or false;

Local Variables
i, S, base , exponent ;

Begin
1 if Kind(v) �= set then S := {v} else S := v;
2 if u ∈ S then
3 Return(true)
4 elseif Kind(u) = ” ∧ ” then
5 base := Operand(u, 1);
6 exponent := Operand(u, 2);
7 if base ∈ S and Kind(exponent) = integer and exponent > 1 then
8 Return(true)
9 elseif Kind(u) = ” ∗ ” then
10 for i := 1 to Number of operands(u) do
11 if Monomial gpe(Operand(u, i), S) = false then
12 Return(false);
13 Return(true);
14 Return(Set free of(u, S))

End

Figure 6.5. An MPL procedure for the recognition of GMEs. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

occur if Monomial gpe were used to check if a sum is a monomial and then
applied again through Monomial gpe at line 7.

The Variables Operator. The polynomial structure of a GPE depends on
which expressions are chosen for the generalized variables. The operator
in the next definition defines a natural set of generalized variables for an
expression.

Definition 6.19. Let u be an algebraic expression. The operator

Variables(u)

is defined by the following transformation rules.
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Procedure Polynomial gpe(u, v);
Input

u : an algebraic expression;
v : a generalized variable or a set of generalized variables;

Output
true or false;

Local Variables
i, S;

Begin
1 if Kind(v) �= set then S := {v} else S := v;
2 if Kind(u) �= ” + ” then
3 Return(Monomial gpe(u, S))
4 else
5 if u ∈ S then Return(true);
6 for i := 1 to Number of operands(u) do
7 if Monomial gpe(Operand(u, i), S) = false then
8 Return(false);
9 Return(true)

End

Figure 6.6. An MPL procedure for the recognition of GPEs. (Implementation:
Maple (txt), Mathematica (txt), MuPAD (txt).)

VAR-1. If u is an integer or a fraction, then

Variables(u) → ∅.

VAR-2. Suppose u is a power. If the exponent of u is an integer that is
greater than 1, then

Variables(u) → {Operand(u, 1)}
(the base of u), otherwise

Variables(u) → {u}.

VAR-3. Suppose u is a sum. Then Variables(u) is the union of the gen-
eralized variables of each operand of u obtained using rules VAR-1,
VAR-2, VAR-4, or VAR-5.

VAR-4. Suppose u is a product. Then Variables(u) contains the union
of the generalized variables of each operand of u determined by rules
VAR-1, VAR-2, or VAR-5, as well as any operand that is a sum.
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Observe that for a product we include an operand that is a sum in the
variable set (see Expression (6.11) below) even though a sum by itself is
not in the variable set (VAR-3).

VAR-5. If u is not covered by the above rules, then

Variables(u) → {u}.

The last rule covers symbols, function forms, and factorials.

Example 6.20. For a multivariate polynomial, the operator returns the set
of variables in the expression:

Variables(x3 + 3 x2 y + 3 x y2 + y3) → {x, y}.

Other examples include

Variables(3 x (x+ 1) y2zn) → {x, x+ 1, y, zn}, (6.11)

Variables(a sin2(x) + 2 b sin(x) + 3 c) → {a, b, c, sin(x)},
Variables(1/2) → ∅,

Variables(
√

2x2 +
√

3x+
√

5) → {x,
√

2,
√

3,
√

5}.
The last example shows that the Variables operator also selects expressions
that do not vary in the mathematical sense, but still act as natural place
holders in the expression. In fact, any algebraic expression u is always
a GPE in terms of Variables(u), and when it is viewed in this way, the
coefficient part in each monomial is an integer or fraction (Exercise 7). �

The procedure for Variables(u) is left to the reader (Exercise 6).

The Degree gpe Operator. In the next definition we generalize the degree
concept to generalized polynomial expressions.

Definition 6.21. Let S = {x1, . . . , xm} be a set of generalized variables. Let

u = c1 · · · cr · xn1
1 · · ·xnm

m

be a monomial with non-zero coefficient part. The degree of u with respect
to the set S is the sum of the exponents of the generalized variables:

deg(u, S) = n1 + n2 + · · · + nm.
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By mathematical convention, the degree of the 0 monomial is defined to
be −∞.

If u is a GPE that is a sum of monomials, then deg(u, S) is the max-
imum of the degrees of the monomials. If S contains a single generalized
variable x, we use the simpler notation deg(u, x), and if the generalized
variables are understood from context, we use deg(u).

Example 6.22.
deg(3wx2 y3 z4, {x, z}) = 6,

deg(a x2 + b x+ c, x) = 2,

deg(a sin2(x) + b sin(x) + c, sin(x)) = 2,

deg(2 x2 y z3 + w xz6, {x , z}) = 7. �

Definition 6.23. Let u be an algebraic expression, and let v be a generalized
variable x or a set S of generalized variables. The degree operator has the
form:

Degree gpe(u, v).

When u is a GPE in v, the operator returns deg(u, v). If u is not a GPE
in v, the operator returns the global symbol Undefined.

Procedures for Degree gpe, which are similar to the ones for the oper-
ators Monomial gpe and Polynomial gpe in Figures 6.5 and 6.6, are left to
the reader (Exercise 8).

Definition 6.24. Let u be an algebraic expression, and let

S = Variables(u).

The operation deg(u, S) is called the total degree of the expression u.

Example 6.25. If u = a x2 + b x + c, then S = {a, b, c, x}, and the total
degree is deg(u, {a, b, c, x}) = 3. �

The Coefficient gpe Operator

Definition 6.26. Let u be an algebraic expression. If u is a GPE in a
generalized variable x and j ≥ 0 is an integer, then the operator

Coefficient gpe(u, x, j)

returns the sum of the coefficient parts of all monomials of u with variable
part xj . If there is no monomial with variable part xj , the operator returns
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0. If u is not a polynomial in x, the operator returns the global symbol
Undefined.

Example 6.27.

Coefficient gpe(a x2 + b x+ c, x, 2) → a,

Coefficient gpe(3 x y2 + 5 x2y + 7 x+ 9, x, 1) → 3 y2 + 7,
Coefficient gpe(3 x y2 + 5 x2y + 7 x+ 9, x, 3) → 0,

Coefficient gpe((3 sin(x))x2 + (2 ln(x))x + 4, x, 2) → Undefined.

�

Procedures that obtain coefficients are shown in Figures 6.7 and 6.8.
When u is a GME in x, the Coefficient monomial gpe procedure returns a
list [c,m], where m is the degree u in x and c is the coefficient part of the
monomial. If u is not a monomial in x, the global symbol Undefined is
returned. The case where u is a product is handled in lines 8-18. In lines
9 and 10, the assignments for c and m assume initially that the degree is
zero and u is the coefficient part. These values are only changed if some
operand of u is a monomial in x with positive degree (lines 15-17). Since u
is an automatically simplified product3, this can happen with at most one
operand of u. Nevertheless, we must check each operand to determine that
u is a monomial in x.

The Coefficient gpe procedure shown in Figure 6.8 is similar to the
Polynomial gpe procedure (Figure 6.6).

Although the Coefficient gpe operator is only defined with respect to a
single generalized variable x, the coefficient part of a more general mono-
mial can be obtained by composition. For example, if u = 3 x y2 + 5 x2y +
7 x+ 9, the coefficient of x y2 can be found with

Coefficient gpe(Coefficient gpe(u, x, 1), y, 2) → 3.

However, if there are dependencies between the generalized variables, then
the order of the coefficient operations is significant. For example, if

u = 3 sin(x)x2 + 2 ln(x)x+ 4,

then to obtain the coefficient of ln(x)x, we apply

Coefficient gpe(Coefficient gpe(u, ln(x), 1), x, 1) → 2.
3We assume here that the power transformation xm xn → xn+m, for m and n in-

tegers, is applied during automatic simplification, and so a product can have at most
one operand that is a power with base x. This transformation is obtained in Maple,
Mathematica, and MuPAD.
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Procedure Coefficient monomial gpe(u, x);
Input

u : an algebraic expression;
x : a generalized variable;

Output
The list [c,m] where m is the degree of the monomial and
c is the coefficient of xm or the global symbol Undefined;

Local Variables
base , exponent , i, c,m, f ;

Begin
1 if u = x then
2 Return([1, 1])
3 elseif Kind(u) = ” ∧ ” then
4 base := Operand(u, 1);
5 exponent := Operand(u, 2);
6 if base = x and Kind(exponent) = integer and exponent > 1 then
7 Return([1, exponent ])
8 elseif Kind(u) = ” ∗ ” then
9 m := 0;
10 c := u;
11 for i := 1 to Number of operands(u) do
12 f := Coefficient monomial gpe(Operand(u, i), x);
13 if f = Undefined then
14 Return(Undefined)
15 elseif Operand(f, 2) �= 0 then
16 m := Operand(f, 2);
17 c := u/xm;
18 Return([c,m]);
19 if Free of(u, x) then
20 Return([u, 0])
21 else
22 Return(Undefined)

End

Figure 6.7. An MPL procedure for the Coefficient monomial gpe operator. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

The reverse operation

Coefficient gpe(Coefficient gpe(u, x, 1), ln(x), 1)

does not work because the inner coefficient operation returns Undefined.
It is always possible, however, to order the coefficient operations to deter-
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Procedure Coefficient gpe(u, x, j);
Input

u : an algebraic expression;
x : a generalized variable;
j : a non-negative integer;

Output
The coefficient of xj in the polynomial u or the global symbol Undefined;

Local Variables
i, c, f ;

Begin
1 if Kind(u) �= ” + ” then
2 f := Coefficient monomial gpe(u, x);
3 if f = Undefined then Return(Undefined)
4 else
5 if j = Operand(f, 2) then Return(Operand(f, 1))
6 else Return(0)
7 else
8 if u = x then
9 if j = 1 then Return(1) else Return(0);
10 c := 0;
11 for i := 1 to Number of operands(u) do
12 f := Coefficient monomial gpe(Operand(u, i), x);
13 if f = Undefined then Return(Undefined)
14 elseif Operand(f, 2) = j then c = c+Operand(f, 1);
15 Return(c)

End

Figure 6.8. An MPL procedure for the Coefficient gpe operator. (Implementa-
tion: Maple (txt), Mathematica (txt), MuPAD (txt).)

mine the desired coefficient (Exercise 8, page 247). Of course, if u is a GPE
in both expressions, then the order of the coefficient operations does not
matter.

The Leading coefficient gpe Operator

Definition 6.28. Let u be an algebraic expression. If u is a GPE in x, then
the leading coefficient of u with respect to x is defined as the sum of the
coefficient parts of all monomials with variable part xdeg(u,x). The leading
coefficient is represented by lc(u, x), and when x is understood from context,
by the simpler notation lc(u).

For example, lc(3 x y2 + 5 x2y + 7 x2 y3 + 9, x) = 5 y + 7 y3.
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Definition 6.29. Let u be a GPE in x. The operator

Leading coefficient gpe(u, x)

returns lc(u, x). If u is not a GPE in x, the operator returns Undefined.

Leading coefficient gpe can be obtained by composition of the operators
Degree gpe and Coefficient gpe or directly with procedures similar to those
for Degree gpe (Exercise 11).

An Appraisal of the GPE

General polynomial expressions have been defined so that many expres-
sions that are clearly polynomials are included in the definition and many
expressions that are not are excluded. In addition, the primitive oper-
ators associated with the definition work well in most contexts where it
is necessary to examine the polynomial structure of an expression. Since
some computer algebra systems have similar operators, the definitions are
a good starting point to evaluate and compare the polynomial capacity of
CAS software (Exercise 1).

However, the definition has some limitations. The limitations are asso-
ciated with the restricted notion of coefficient independence as expressed
by the Free of operator in Equation (6.6) and are magnified by the simplifi-
cation context of automatic simplification in which the operators perform.
The following examples illustrate these points.

Example 6.30. Consider the following operations:

Polynomial gpe(x (x2 + 1), x) → false, (6.12)

Polynomial gpe(y2 (y4 + 1), y2) → true. (6.13)

In Expression (6.12), the Polynomial gpe operator concludes that the ex-
pression is not a polynomial in x. In this instance the coefficient of x (the
expression x2 + 1) is not free of x. Expression (6.13) is obtained from
Expression (6.12) with the structural substitution x = y2. In this case,
however, the expression is a polynomial in y2. This follows because y2 is
not a complete sub-expression of y4 + 1 which means that y4 + 1 can act
as a coefficient of y2. The problem here has to do with the limited view
of the coefficient part of a monomial which is based on the actions of the
Free of operator together with the actions of automatic simplification. �
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Example 6.31. Consider the expression u = a (x2 + 1)2 + (x2 + 1) which
we want to consider as a polynomial in x2 + 1. However,

Polynomial gpe(u, x2 + 1) → true, (6.14)

Degree gpe(u, x2 + 1) → 2, (6.15)

Coefficient gpe(u, x2 + 1, 1) → 0, (6.16)

Coefficient gpe(u, x2 + 1, 0) → x2 + 1. (6.17)

In this case the simplified form of u is

a (x2 + 1)2 + x2 + 1. (6.18)

At this point the expression is still a GPE in x2 + 1 with degree 2 (Ex-
pressions (6.14) and (6.15)), although some of its polynomial structure has
been changed (Expressions (6.16) and (6.17)). The problem here is the
sum on the right in Expression (6.18) x2 + 1 is no longer a complete sub-
expression of the entire polynomial. Since both x2 and 1 are free of x2 +1,
they are relegated to the role of a coefficient even though the expression u
is a polynomial in the complete sub-expression x2 + 1. �

Example 6.32. Consider the expression u = 2 (x2)2 + 3 (x2) and consider
the operations:

Polynomial gpe(u, x2) → true,

Degree gpe(u, x2) → 1,

Coefficient gpe(u, x2, 2) → 0,

Coefficient gpe(u, x2, 1) → 3,

Coefficient gpe(u, x2, 0) → 2 x4. (6.19)

Automatic simplification transforms u to 2 x4 + 3 x2 which is still a poly-
nomial in x2, but now the degree is 1, and the polynomial structure has
been changed. Indeed, since x4 is free of x2 it is considered a coefficient
part in Expression (6.19). �

What can we conclude from these examples? First, the definition works
best when the generalized variables are symbols, function forms or facto-
rials. When the generalized variables are restricted to expressions of this
type, general polynomial expressions are similar to multivariate polynomi-
als with coefficients that are more involved expressions.

The definitions are less reliable, however, when a generalized variable is
a sum because the polynomial structure of the expression may be altered
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by automatic simplification (see Example 6.31). One solution, of course, is
simply to modify the GPE definition so that a generalized variable cannot
be a sum. We have resisted doing this because the current definition is use-
ful for defining the actions of the Algebraic expand operator in Section 6.4.

The situation is even more discouraging when a generalized variable is
a power (see Example 6.32 above) or a product (Exercise 2). Although, we
rarely get satisfactory results in these cases, we have included them in the
definition because there are a few instances when the primitive operators
described here give satisfactory results.

Extensions of the Basic Definitions and Procedures

There are a number of ways that we can remove some of the limitations
of our polynomial model. First, we could restrict the class of generalized
variables to expressions that are in the set Variables(u). It is noteworthy
that the set Variables(u) never contains a product or a power with integer
exponent ≥ 2, although it can contain a sum. Another possibility is to
extend the capabilities of the operators by performing a more involved
analysis of an expression. (For a more detailed discussion of this extension,
consult Cohen [24], Sections 4.1 and 6.2.)

There are two other extensions of the polynomial model that require
only minor modifications to the definitions and basic procedures. One pos-
sibility is to allow generalized variables to have negative integer exponents
even though this is not ordinarily done in mathematical definitions for poly-
nomials. For example, when this is done the expression 2/x + 3/x2 is a
polynomial with deg(u) = −1. When negative exponents are allowed, it
is also useful to define the operation low deg(u, x) that returns the lowest
power of x in the expression. For example, low deg(2/x+ 3/x2, x) = −2.

A particularly useful modification of the model is to drop the indepen-
dence Free of condition GME-1 in Definition 6.16. When this is done an
expression such as (x + 1)x2 + ln(x)x + sin(x) is a polynomial in x even
though the coefficients x+ 1, ln(x), and sin(x) are not free of x. Although
this modification causes expressions to lose some of their polynomial struc-
ture, it does allow the degree and coefficient operations to be applied in
some useful situations. The definitions and procedures for the basic oper-
ators for this model are described in Exercise 12.

Exercises

1. In this exercise we ask you to explore the polynomial capabilities of a CAS.
For a CAS, consider its versions of MPL’s Polynomial gpe, Degree gpe and
Coefficient gpe operators.



6.2. General Polynomial Expressions 237

(a) In Maple consider the type command with polynom option, and the
degree and coeff operators.

(b) In Mathematica consider the operators PolynomialQ, Exponent, and
Coefficient.

(c) In MuPAD consider the type operator with the PolyExpr option, and
the degree and coeff operators.

Consider the following questions.

(a) Does the polynomial model in a CAS employ the same coefficient
independence condition as the MPL model?

(b) Are sums, products, or powers permitted as generalized variables?

(c) Are negative integer exponents permitted in the polynomial model?

(d) Is expansion part of the simplification context?

(e) Does the model extend the MPL model in significant way?

2. Explain why it is usually not meaningful to view an expression u as a
polynomial in terms of an expression v that is a product.

3. Let u be and algebraic expression and let S be a set of generalized variables.
Give a procedure

Coeff var monomial(u, S)

that returns a two element list with the coefficient part and variable part
of u. If u is not a GME in S, the procedure returns the global symbol
Undefined. (This procedure is used in the Collect terms procedure (see
Figure 6.9 on page 249).)

4. Give a procedure

Bilinear form(u, x, y)

that returns true when an algebraic expression u has the form a x+b y+c,
where x and y are symbols and a, b, and c are free of x and y. If u
does not have this form, return false. Interpret the form broadly to allow
2x+ c x+ 3 y + d y + 4 to be in this form.

5. What is returned by the Variables operator, and what is the total degree
for each of the following?

(a) (x+ 1)(x+ 2) + (x+ 3).

(b)
(x+ 1)2

(1−x)2
.

(c)
x2

a2
+

x

a
+ b.

(d) xm + sin(x)x+ 1/(x y).

6. Let u be an algebraic expression. Give a procedure for Variables(u).
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7. Suppose an algebraic expression u is viewed as a GPE in V ariables(u).
Explain why the coefficient part of a monomial in u must be an integer or
a fraction.

8. Let u be an algebraic expression, and let v be a generalized variable or a
set of generalized variables. In this exercise we ask you to give procedures
to compute deg(u, v) (see Definition 6.23). First, give a procedure

Degree monomial gpe(u, v)

that finds the degree of a monomial and then a procedure Degree gpe(u, v).

9. Let u be an algebraic expression. Give a procedure Total degree(u) that
returns the total degree of u. To make the exercise interesting, do not use
the Degree gpe or Variables operators.

10. Let u be a multivariate polynomial in x and y with rational number co-
efficients. The polynomial is called a homogeneous polynomial if every
monomial term has the same total degree. For example, the polynomial
u = x2 + 2x y + y2 is homogeneous. Give a procedure

Homogeneous polynomial(u, x, y)

that returns true if u is homogeneous in x and y and false otherwise.

11. Let u be an algebraic expression, and let x be a generalized variable.

(a) Give a procedure for Leading coefficient gpe(u, x) that does not use
the Degree gpe or Coefficient gpe operators. If u is not a GPE in x,
return the global symbol Undefined.

(b) Give a procedure Leading coeff degree gpe(u, x) that returns the list

[lc(u, x),deg(u, x)].

If u is not a GPE in x, return the global symbol Undefined. Do not
use the Degree gpe or Coefficient gpe operators in this exercise.

12. Let x be a symbol. In this exercise we give an alternate definition of a
polynomial that does not require the coefficients of powers of x to be free
of x.

An algebraic expression u is an alternate general monomial expres-
sion in x if it satisfies one of the following rules.

GMEALT-1. u = x.

GMEALT-2. u = xn where n > 1 is an integer.

GMEALT-3. u is a product, and each operand of u is either a sum or
satisfies one of the rules GMEALT-1, GMEALT-2, or GMEALT-4.

GMEALT-4. u is an algebraic expression that is not sum and does not
satisfy rules GMEALT-1, GMEALT-2, or GMEALT-3.
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Rules GMEALT-1 and GMEALT-2 give monomials of positive degree, and
rule GMEALT-3 gives a monomial of positive degree if one of the operands
satisfies GMEALT-1 or GMEALT-2 and otherwise has degree 0. Rule
GMEALT-4 gives monomials with degree 0 in x such as

2, 3/2, a2, sin(x), 1/(x+ 1).

In addition, according to this rule a sum is not a monomial of degree 0.
On the other hand, in GMEALT-3 a sum is allowed as an operand in a
product that is a monomial. This means that the following are monomials
in x:

(a+ 1) x2, (x+ 1) x2, (x+ 1) (x+ 2), (x+ 1)2,

where the first two expressions have degree 2 in x and the last two expres-
sions have degree 0.

An algebraic expression u is alternate general polynomial expression
in x if it satisfies one of the rules:

GPEALT-1. u is an alternate general monomial expression in x.

GPEALT-2. u is a sum, and each operand of u is an alternate general
monomial expression in x.

With this definition

u =
x2

x+ 1
+ sin(x)x+ c

is a polynomial in x and operations such as deg(u, x) = 2 are well defined.
Give procedures

Degree alternate(u, x), Coefficient alternate(u, x, j)

that obtain the degree and coefficient operations in this context.

13. Let u be an algebraic expression, and let x be a symbol. In this exercise
we extend the basic definitions for monomials and polynomials so that
exponents of x can be any algebraic expressions that are free of x. For
example, in this context the expression

u = xm+1 + 3xn + 4x3 + 5 x+ 6x−1

is a polynomial in x. Give a procedure Degree general(u, x) that obtains
the degree of these polynomial expressions. If u is not a polynomial in this
sense (e.g., xx), then return the global symbol Undefined. For the above
polynomial u,

Degree general(u,x) → Max({m+ 1, n, 3}).

In other words, in instances where Degree general is unable to actually
find the maximum, an unevaluated Max function form is returned. A
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version of Max that obtains this operation is described in Exercise 16 on
page 198.

The Mathematica Exponent operator performs an operation similar to the
one described here.

14. The first step in the Solve ode algorithm (see Figure 4.16 on page 162)
transforms a differential equation to the form

M +N
dy

dx
= 0. (6.20)

This operation is performed by the Transform ode procedure which re-
turns a list [M,N ]. The Transform ode assumes that the equation can be
transformed to this form but does not check that this is so. Modify the
Transform ode procedure so that it checks that the transformed equation
has the form of Equation (6.20), where M and N do not contain the func-
tion form named d, and when this is so returns [M,N ]. If the expression
cannot be transformed to this form, return the symbol Fail. For example,

Transform ode(x2 = d(y, x) + y, x, y) → [x2 − y,−1],
Transform ode(x2 = d(y, x, 2), x, y) → Fail.

The procedures described in this section and the Derivative order proce-
dure (see Exercise 15 on page 197) are useful for this problem.

15. (a) A linear differential operator is an expression of the form

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0 y + f

where ai and f are algebraic expressions that are free of y. Let u be
an algebraic expression. Give a procedure

Linear derivative order (u, x, y)

that determines if u is a linear differential operator and, when this is
so, returns the order of the highest derivative of y in u. If u is linear
in y but contains none of its derivatives, the procedure returns 0. If u
does not contain y or its derivatives, the procedure returns −1. If u
is not a linear differential operator, the procedure returns the global
symbol Undefined. As in Section 4.3, represent the derivative

d y

dx

with the function notation d(y, x) and higher order derivatives

dny

dxn
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with d(y, x, n). To simplify matters, if u contains any function forms
with the name d that contain operands different from those in d(y, x)
and d(y, x, n), return the symbol Undefined. For example,

Linear derivative order (d(y, x, 2) + 2x, x, y) → 2,

Linear derivative order (2 y + 3x, x, y) → 0,

Linear derivative order (2x+ 3, x, y) → −1,
Linear derivative order(d(y, x) + y2, x, y) → Undefined,

Linear derivative order(d(b), x, y) → Undefined.

(b) In Exercise 7, page 169 we describe a procedure Solve ode 2(a, b, c, f)
that obtains a solution to the differential equation

a
d2y

dx2
+ b

dy

dx
+ c y = f, (6.21)

where a, b, and c are rational numbers and f is an algebraic expression
that is free of y. Give a procedure Transform ode 2 (w, x, y) that de-
termines if an equation w can be transformed to the form of Equation
(6.21) by rational simplification and if so returns the list [a, b, c, f ]. If
w cannot be transformed to this form, then return Fail. Hint: This
procedure is similar to the procedure Transform ode in Exercise 14
above. For example,

Transform ode 2 (2 d(y, x, 2) + 3 y = x2, x, y) → [2, 0, 3, x2],

Transform ode 2

W
x2

d(y, x, 2)
− 3 = 0, x, y

}
→ [−3, 0, 0,−x2],

Transform ode 2 (xd(y, x, 2) + 3 y = x2, x, y) → Fail.

16. A differential equation that has the form

dy

dx
= P y +Qyn (6.22)

where P �= 0 and Q �= 0 are free of y and n �= 1 is free of x and y is called
a Bernoulli equation. For example

dy

dx
= y + x y3

is a Bernoulli equation. This equation is solved by defining a new variable

z = y1−n (6.23)

that transforms the equation to

1

1− n

dz

dx
= P z +Q. (6.24)

Once we solve this equation, we obtain the solution to Equation (6.22) with
the substitution in Expression (6.23).
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(a) Show that Equation (6.24) can be solved using the algorithm in Sec-
tion 4.3.

(b) Give a procedure Bernoulli(u, x, y) that tries to determine if a dif-
ferential equation u is a Bernoulli equation and if so uses the proce-
dure Solve ode (see Figure 4.16 on page 162) to find the solution to
Equation (6.24) and then obtains the solution in terms of y with the
substitution in Expression (6.23).

6.3 Relationships Between Generalized Variables4

In this section we state and prove a number of mathematical properties of
the Free of operator and use these properties to investigate the indepen-
dence of generalized variables.

Mathematical Properties of the Free of Operator

Theorem 6.33. Let u, v, and w be mathematical expressions.

1. If u �= v, then (Free of(u, v) or Free of(v, u)) → true.

2. (Transitive Property) If Free of(u, v) → false and Free of(v, w) →
false, then Free of(u,w) → false.

Proof: Both statements are easily proved. To show (1), if Free of(u, v)
and Free of(v, u) are both false, then v is a complete sub-expression of u,
and u is a complete sub-expression of v. The only way this can happen is
for u = v. However, u �= v, and so either Free of(u, v) or Free of(v, u) must
be true. (Of course, both can be true.)

To show (2), the hypothesis states that v is a complete sub-expression
of u, and w is a complete sub-expression of v. Therefore, w is a complete
sub-expression of u and Free of(u,w) → false. �

The next theorem extends Theorem 6.33(1) to a set S of expressions.

Theorem 6.34. Let S = {x1, x2, . . . , xm} be a set of mathematical expres-
sions (with m ≥ 2). Then, there is an xj in S such that

Free of(xk, xj) → true, for k = 1, 2, . . . , j − 1, j + 1, . . . ,m.

4 This section is more theoretical than the previous sections.
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Proof: The theorem is proved with mathematical induction. First, for
the base case m = 2, the theorem follows from Theorem 6.33(1). Next,
suppose the theorem is true for S ∼ {xm}. This implies that there is an
xj , with 1 ≤ j ≤ m− 1, such that

Free of(xk, xj) → true, for k = 1, 2, . . . , j − 1, j + 1, . . . ,m− 1. (6.25)

To show that the theorem holds for S, we consider the two cases where
Free of(xm, xj) is either true or false. In the first case, Free of(xm, xj) is
true, and this assumption, together with the induction hypothesis (6.25),
implies that xj satisfies the theorem for S as well.

For the second case, we assume that

Free of(xm, xj) → false, (6.26)

and show that xm satisfies the conclusion of the theorem. First, Theorem
6.33(1) applied to Expression (6.26) implies that

Free of(xj , xm) → true. (6.27)

To complete the proof we must show that

Free of(xk, xm) → true, for k = 1, 2, . . . , j − 1, j + 1, . . . ,m− 1. (6.28)

However, if for some k, Free of(xk, xm) were false, then this fact, together
with Expression (6.26), would imply that Free of(xk, xj) is false which
contradicts the induction hypothesis (6.25). Therefore, (6.28), together
with (6.27), shows that xm satisfies the conclusion of the theorem. �

Example 6.35. If x1 = sin(x), x2 = ln(sin(x)), and x3 = x, then j = 2 and

Free of(x1, x2) = Free of(sin(x), ln(sin(x))) → true,

Free of(x3, x2) = Free of(x, ln(sin(x))) → true. �

Theorem 6.36. Let S = {x1, x2, . . . , xm} be a set of (distinct) mathematical
expressions. Then, there is a permutation (reordering) of S,

[xj1 , xj2 , . . . , xjm ]

such that (for i < m)

Free of(xk, xji) → true, for k = ji+1, . . . , jm.
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The involved notation makes the theorem seem more complicated than
it is. It simply states that we can rearrange the expressions in S into a list
so that any expression in the list is free of all expressions that precede it
in the list.

Proof: [Theorem 6.36] Let the first expression in the list xj1 be the expres-
sion described in the conclusion of Theorem 6.34. Then all expressions xk

in S ∼ {xj1} satisfy the property Free of(xk, xj1) → true. In general, de-
fine xji to be the expression from the set S ∼ {xj1 , . . . , xji−1} that satisfies
the conclusion of Theorem 6.34. �

Example 6.37. Suppose x1 = sin(x), x2 = x, and x3 = ln(sin(x)). A re-
ordering that satisfies the conclusion of the theorem is i1 = 3, i2 = 1, i3 = 2
or

[ln(sin(x)), sin(x), x].

In other words

Free of(xi2 , xi1) = Free of(sin(x), ln(sin(x))) → true,
Free of(xi3 , xi1) = Free of(x, ln(sin(x))) → true,

Free of(xi3 , xi2) = Free of(x, sin(x)) → true. �

In Exercise 2 we describe a procedure that finds the permutation of the
expressions guaranteed by Theorem 6.36.

Relationships Between Generalized Variables

Although the definition of a GPE requires the coefficients ci be independent
of the generalized variables xj , it does not require the generalized variables
be independent of each other. For example, the expression

2 x (ln(x))2 + 3 x2 ln(x) + 4 (6.29)

is a polynomial in {x, ln(x)}, even though the two expressions are not
independent (e.g., ln(x) depends on x). When a dependence relationship
like this exists, it is not possible to view the expression as a polynomial
in one of the generalized variables. For example, although the expression
(6.29) is a polynomial in {x, ln(x)} and in ln(x) alone, it is not a polynomial
in x alone. In this regard, we have the following two theorems.

Theorem 6.38. If u is a GPE in each of the expressions x1, x2, . . . , xm

individually, then it is also a GPE in {x1, x2, . . . , xm}.
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Theorem 6.39. Suppose u is a GPE in S = {x1, x2, . . . , xm}, and suppose
that for some j

Free of(xk, xj) → true, k = 1, 2, . . . ,m, k �= j.

Then u is a GPE in xj alone.

The proofs of the theorems are left to the reader (Exercises 4 and 5).
However, if u is a polynomial in a set of expressions, then it must also

be a polynomial in at least one of the generalized variables.

Theorem 6.40. Let u be a GPE in the expressions S = {x1, x2, . . . , xm}.
Then u is also a GPE in some xj.

Proof: This theorem follows from Theorem 6.34 and Theorem 6.39. �

Sometimes it is useful to replace the generalized variables in an expres-
sion by symbols. This can be done with concurrent substitution. Let u be a
GPE in S = {x1, x2, . . . , xm} and let y1, y2, . . . , ym be unassigned symbols.
The substitution

Concurrent substitute(u, [x1 = y1, x2 = y2, . . . , xm = ym])

creates a multivariate polynomial with each generalized variable xi replaced
by a symbol yi.

With sequential substitution, however, we may not obtain the intended
substitution. This point is illustrated in the next example.

Example 6.41. Consider the expression u = s sin(s) ln(sin(s)) as a poly-
nomial in S = {s, sin(s), ln(sin(s))}. We obtain a multivariate polynomial
with the substitutions

Sequential substitute(u, [x = ln(sin(s)), y = sin(s), z = s]) → z y x.

On the other hand, if the order of substitutions is

Sequential substitute(u, [y = sin(s), z = s, x = ln(sin(s))]) → z y ln(y),

we don’t eliminate all generalized variables. �

However, Theorem 6.36 implies that we can find a re-ordering of the
generalized variables [xj1 , xj2 , . . . , xjm ] so that the substitution

Sequential substitute(u, [xj1 = y1, xj2 = y2, . . . , xjm = ym])
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creates a multivariate polynomial with each generalized variable xji re-
placed by a symbol yi.

By substituting symbols for generalized variables, we alter some of the
polynomial structure of an expression. For example, the new expression
will be a GPE in each yj individually even though the original polynomial
may not be a GPE in terms of each of the generalized variables.

Exercises
1. Suppose

Free of(u, v) → true, Free of(v, w) → true.

Does this imply that Free of(u, w) → true?

2. Let S = {x1, x2, . . . , xm} be a set of (distinct) mathematical expressions.
Give a procedure Free of sort(S) that returns the list of re-ordered expres-
sions described in Theorem 6.36. Hint: Any elementary sorting algorithm
(insertion sort, bubble sort, selection sort) will do where v precedes u in
the list if Free of(u, v) → true.

3. Let S be a set of symbols, and suppose u is a GPE in S. Show that u is a
polynomial in each member of S.

4. Prove Theorem 6.38.

5. Prove Theorem 6.39.

6. Let u be an algebraic expression, and consider u as a GPE in Variables(u).
Give a procedure GPE to mult(u) that transforms u to a multivariate
polynomial. Note: This problem requires an arbitrary number of variable
names. The CAS must have the capability to generate variable names5 or
provide subscripted variables.

7. (a) Let L be a list of symbols and let u be a multivariate polynomial in
the symbols of L with rational number coefficients. The operator

Leading numer coeff (u,L)

obtains the leading numerical coefficient of an expression which is
defined using the following rules.

LNC-1. If L = [ ], then

Leading numer coeff (u,L) → u.

LNC-2. Let x = First(L, 1) and l = Leading coefficient gpe(u, x).
Then,

Leading numer coeff (u,L) → Leading numer coeff (l,Rest(L)). (6.30)

5For example, in Mathematica the Unique command creates symbol names, or in
Maple the cat command concatenates variable names and integer values. (Implementa-
tion: Maple (mws), Mathematica (nb).)
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For example,

Leading numer coeff (2x2y + 3x y2, [x, y]) → 2,

Leading numer coeff (2x2y + 3x y2, [y, x]) → 3.

Notice that the leading numerical coefficient depends on the order of
the symbols in L. Give a procedure for Leading numer coeff (u,L).

(b) Let s = Leading numer coeff (u,L). If u �= 0, define the polyno-
mial sign of u with respect to L as the sign (1 or −1) of s. In
addition define the polynomial sign of 0 as 0. Give a procedure for
Polynomial sign(u,L) that returns the polynomial sign.

(c) Give a procedure Polynomial sign var(u) which obtains the polyno-
mial sign of u with respect to the expressions in Variables(u). For
this operation it is necessary to replace the generalized variables in u
with symbols because the coefficient computation in (6.30) may cre-
ate new generalized variables (Exercise 6). For example, this happens
with u = −c∗ (x+y) which has the generalized variables c and x+y.
However, by automatic simplification the coefficient of c is −x − y
which has two new generalized variables x and y.

Since the polynomial sign depends on the order of the expressions in
the set Variables(u), it is useful to create a list of the generalized vari-
ables in a standard order. (For more information on an order relation
that can be used for this purpose, consult Cohen [24], Section 3.1.)

8. Suppose that u is a GPE in S = {x1, x2, . . . , xm}, and let n1, . . . nm be
non-negative integers.

(a) Explain why it is always possible to obtain the coefficient of

xn1
1 xn2

2 · · ·xnm
m

using a composition of Coefficient gpe operators.

(b) Give a procedure Coefficient vars(u,L) where

L = [[x1, n1], [x2, n2], . . . , [xm, nm]]

that implements the statement in part (a).

6.4 Manipulation of General Polynomial Expressions

In this section we describe two operators that manipulate general polyno-
mial expressions. Both of the operators are based on the two distributive
transformations:

a (b+ c) = a b+ a c, (a+ b) c = a c+ b c. (6.31)
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The Collect terms Operator
The collection of coefficients of like terms in a polynomial occurs frequently
in algebraic manipulation. During automatic simplification this operation
is applied only to monomials with coefficient parts that are rational num-
bers. The collection of (rational and non-rational) coefficients is obtained
with the Collect terms operator. The goal of this operator is given in the
next definition.

Definition 6.42. An algebraic expression u is in collected form in a set
S of generalized variables if it satisfies one of the following properties:

1. u is a GME in S.

2. u is a sum of GMEs in S with distinct variable parts.

The definition is similar to Definition 6.16 for general polynomial ex-
pressions (page 225), except now property (2) requires that the variable
parts be distinct.

Example 6.43. The expression

(2 a+ 3 b)x y + (4 a+ 5 b)x (6.32)

is in collected form in S = {x, y}, where the two distinct variable parts are
x y and x. On the other hand, the expanded form of Expression (6.32)

2 a x y + 3 b x y + 4 a x+ 5 b x (6.33)

is not in collected form (in S) because there are two monomials with vari-
able part x y and two with variable part x.

The collected form depends, of course, on which expressions are taken
as the generalized variables. For example, if S = {a, b}, the collected form
of Expression (6.33) is (2 x y+4 x) a+(3 x y+5 x) b. If S = {a, b, c, d, x, y},
then Expression (6.33) is already in collected form because the four mono-
mials in the sum have distinct variable parts. �

Example 6.44. Strictly speaking, automatic simplification prevents the
transformation of some expressions to collected form. For example, when
S = {x}, the collected form of a x + b x + c + d is (a + b)x + (c + d).
However, the automatic simplification rules remove the parentheses from
(c+d), giving two monomials c and d with variable part the integer 1. Given
that our procedures operate within the context of automatic simplification,
this situation is unavoidable. �
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Procedure Collect terms(u, S);
Input

u : an algebraic expression;
S: a non-empty set of generalized variables;

Output
the collected form of u or the global symbol Undefined if u is
not a GPE in S;

Local Variables
f, combined , i, j,N, T, v;

Begin
1 if Kind(u) �= ” + ” then
2 if Coeff var monomial(u, S) = Undefined then
3 Return(Undefined)
4 else Return(u)
5 else
6 if u ∈ S then Return(u);
7 N := 0;
8 for i := 1 to Number of operands(u) do
9 f := Coeff var monomial(Operand(u, i), S);
10 if f = Undefined then Return(Undefined)
11 else
12 j := 1;
13 combined := false;
14 while not combined and j ≤ N do
15 if Operand(f, 2) = Operand(T [j], 2) then
16 T [j] := [Operand(f, 1) +Operand(T [j], 1),Operand(f, 2)];
17 combined := true;
18 j := j + 1;
19 if not combined then
20 T [N + 1] := f ;
21 N := N + 1;
22 v := 0;
23 for j := 1 to N do
24 v := v +Operand(T [j], 1) ∗Operand(T [j], 2);
25 Return(v)

End

Figure 6.9. An MPL procedure that transforms an algebraic expression to col-
lected form. (Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

A procedure Collect terms that obtains a collected form is given in
Figure 6.9. The procedure returns either a collected form or the symbol
Undefined when u is not a GPE in S.
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This procedure uses an array T that keeps track of the coefficients of
the various monomials. Most computer algebra languages allow arrays to
be used in this way. In addition, at lines 2 and 9, the procedure uses the
operator Coeff var monomial(u, S) which is described in Exercise 3, page
237. When u is a GME in S, this operator returns a two element list with
the coefficient and variable parts of u and otherwise returns the symbol
Undefined.

Collect terms begins (lines 1-5) by checking if an expression u, which is
not a sum, is a monomial and when this is so, returns u which is in collected
form (Definition 6.42(1)). The remainder of the procedure applies to sums.
At line 6 we check if the sum u is in S, which means it is in collected
form. In lines 7-21, we create an array T with entries that are two operand
lists that contain the coefficient and distinct variable parts obtained so far.
For each operand of u, we obtain, at line 9, a list f with its coefficient
and variable parts, and then check if the variable part corresponds to the
variable part of some earlier operand of u that is in T (lines 12-18). If the
variable part of f corresponds to an earlier variable part, the appropriate
element of T is reassigned (line 16), and combined is assigned the symbol
true, which terminates the while loop. If the variable part of f does not
correspond to the variable part of some T [j], for 1 ≤ j ≤ N , it is added
to the array T (lines 19-21). Finally, in lines 22-24, we use T to create the
new expression v that is the collected form.

Observe that Definition 6.42 and Collect terms require that u be a poly-
nomial in S. This means, for u = a x+ sin(x)x+ b, the operator is unable
to collect coefficients in x because the expression is not even a polynomial
in x. We can avoid the limitation by eliminating the free-of tests from the
procedure Coeff var monomial that is called in lines 2 and 10. We leave
these modifications to the reader (Exercise 3).

The Algebraic expand Operator

In an algebraic sense, the Algebraic expand operator applies the two dis-
tributive transformations in (6.31) in a left to right fashion to products
and powers that contain sums. With these transformations, the operator
obtains manipulations such as:

(x+ 2) (x+ 3) (x+ 4) → x3 + 9 x2 + 26 x+ 24, (6.34)
(x+ y + z)3 → x3 + y3 + z3 + 3 x2 y + 3 x2 z + 3 y2 x

+ 3 y2 z + 3 z2 x+ 3 z2 y + 6 x y z, (6.35)
(x+ 1)2 + (y + 1)2 → x2 + 2 x+ y2 + 2 y + 2, (6.36)

((x+ 2)2 + 3)2 → x4 + 8 x3 + 30 x2 + 56 x+ 49. (6.37)
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The last two examples show that Algebraic expand is recursive.
There are, however, other instances where it is less certain what the

operator should do. For example, should Algebraic expand perform the
following manipulations?

a

(x+ 1) (x+ 2)
→ a

x2 + 3 x+ 2
, (6.38)

(x+ y)3/2 → x (x+ y)1/2 + y (x+ y)1/2. (6.39)

The first example differs from those above because a denominator contains
a product of sums, while the second example involves non-integer expo-
nents.

The next definition gives the form of the output of our Algebraic expand
operator.

Definition 6.45. An algebraic expression u is in expanded form if the
set Variables(u) does not contain a sum.

According to this definition, the expressions on the left in (6.34)-(6.37)
are in unexpanded form, while those on the right are in expanded form.
For example,

Variables((x+ 2) (x+ 3) (x+ 4)) → {x+ 2, x+ 3, x+ 4},

while for the expanded form of this expression,

Variables(x3 + 9 x2 + 26 x+ 24) → {x}.

On the other hand, the expressions on the left in (6.38) and (6.39) are
already in expanded form, and so our Algebraic expand operator does not
obtain the manipulations shown for these expressions.

Definition 6.45 only makes sense if it is understood in the context of
automatic simplification. Without this context, some expressions that
are obviously not in expanded form satisfy the definition. For example,
u =

(
(x+ 1)2

)2 is certainly not in expanded form, and since automatic
simplification obtains the transformation

(
(x+ 1)2

)2 → (x+ 1)4, (6.40)

we have Variables (u) = {x + 1}. On the other hand, without the trans-
formation in (6.40), Variables(u) = {(x + 1)2}, which does not contain a
sum.
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The Integer Exponent Case. We describe first a simplified version of the
Algebraic expand algorithm which applies to algebraic expressions u with
the restriction that all powers in u have integer exponents.

Procedures for expansion in this setting are given in Figures 6.10 and
6.11. The procedure Algebraic expand(u) first recursively expands the
operands of sums, products, and powers with positive integer exponents
(lines 3, 6, and 11), and then calls on Expand product and Expand power
to apply the distributive laws to products and powers (lines 6 and 11). Line
12 is invoked when u is not a sum, product, or power.

The procedure Expand product(r, s), which expands the product of two
expanded expressions, uses a recursive approach to apply the right and left
distributive laws. If r is a sum, it applies the right distributive law (line
3), and if s is a sum, it apples the left distributive law by a recursive call
with the operands interchanged (line 5). (If both r and s are sums, both
distributive laws are applied through recursion.) Line 7, which serves as
a termination condition for the recursion, applies when neither r nor s is
a sum. The assumption that all exponents are integers is essential here
because without it the output of the procedure may not be in expanded
form (see Expression (6.43) below).

The procedure Expand power (u, n), which expands an expanded ex-
pression u to an integer power n ≥ 2, is given in Figure 6.11. When u is a
sum, the expanded form is obtained by letting

f = Operand(u, 1), r = u− f,

and applying the binomial expansion

un = (f + r)n =
n∑

k=0

((
n!

k!(n− k)!
fn−k

)
rk

)
.

Observe that the automatically simplified form of the expression

n!
k! (n− k)!

fn−k

is in expanded form. Indeed, fn−k is in expanded form because f is in
expanded form (by recursion), and f is not a sum because it is the operand
of a sum. The assumption that all exponents are integers is used here
because without it fn−k may not be in expanded form (see Expression
(6.45) below). On the other hand, the base of rk can be a sum, and so
this power must be expanded recursively. This operation is performed in
line 7, where Expand product is used to expand the product of these two
expressions.
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Procedure Algebraic expand(u);
Input

u : an algebraic expression where all exponents of powers are integers;
Output

the expanded form of u;
Local Variables

v, base , exponent ;
Begin

1 if Kind(u) = ” + ” then
2 v := Operand(u, 1);
3 Return(Algebraic expand(v) + Algebraic expand (u − v))
4 elseif Kind(u) = ” ∗ ” then
5 v := Operand(u, 1);
6 Return(Expand product(Algebraic expand(v),Algebraic expand(u/v)))
7 elseif Kind(u) = ” ∧ ” then
8 base := Operand(u, 1);
9 exponent := Operand(u, 2);
10 if Kind(exponent ) = integer and exponent ≥ 2 then
11 Return(Expand power(Algebraic expand(base), exponent));
12 Return(u)

End

Procedure Expand product (r, s);
Input

r,s : expanded algebraic expressions, where all exponents of powers are
integers;

Output
the expanded form of r ∗ s;

Local Variables
f ;

Begin
1 if Kind(r) = ” + ” then
2 f := Operand(r, 1);
3 Return(Expand product(f, s) + Expand product(r − f, s));
4 elseif Kind(s) = ” + ” then
5 Return(Expand product(s, r))
6 else
7 Return(r ∗ s)

End

Figure 6.10. MPL procedures for Algebraic expand and Expand product . (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Procedure Expand power(u, n);
Input

u : an expanded algebraic expression where all exponents of powers are
integers;

n : a non-negative integer;
Output

the expanded form of un;
Local Variables

f, r, k, s, c;
Begin

1 if Kind(u) = ” + ” then
2 f := Operand(u, 1);
3 r := u − f ;
4 s := 0;
5 for k := 0 to n do
6 c := n!/(k! ∗ (n − k)!);

7 s := s+ Expand product(c ∗ fn−k,Expand power (r, k));
8 Return(s)
9 else
10 Return(un)

End

Figure 6.11. An MPL procedure for Expand power . (Implementation: Maple
(txt), Mathematica (txt), MuPAD (txt).)

The Non-integer Exponent Case. If u contains powers with non-integer ex-
ponents, the Algebraic expand operator may return an expression that is
not in expanded form. To see how this happens, let’s suppose that the
transformations

uv uw = uv+w, (6.41)
(uv)n = un v, n an integer, (6.42)

are applied from left to right during automatic simplification6. (The two
transformations hold for both the real and complex interpretations of the

6 In Maple, automatic simplification obtains the transformation (6.41), when v and
w are rational numbers, and (6.42), when v is a rational number.

In Mathematica, automatic simplification obtains the transformations (6.41) and
(6.42).

In MuPAD, automatic simplification obtains the transformation (6.41), when v and
w are rational numbers, and (6.42).

For a summary of the power transformations in Maple, Mathematica, and MuPAD,
see Cohen [24], Section 3.1.
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power operation.) In this context, Algebraic expand together with the
transformation (6.41) obtains

Algebraic expand
(
(x (y + 1)3/2 + 1) (x (y + 1)3/2 − 1)

)
→ x2 (y + 1)3 − 1 (6.43)
= x2 y3 + 3 x2 y2 + 3 x2 y + x2 − 1, (6.44)

and together with the transformation (6.42) obtains

Algebraic expand
(
(x (y + 1)1/2 + 1)4

)
→ x4 (y + 1)2 + 4 x3(y + 1)3/2 (6.45)

+6 x2(y + 1) + 4 x (y + 1)1/2 + 1
= x4 y2 + 2 x4 y + x4 + 4 x3 (y + 1)3/2 (6.46)

+6 x2 y + 6 x2 + 4 x (y + 1)1/2 + 1.

Algebraic expand obtains Expressions (6.43) and (6.45), and the expanded
forms are shown in Expressions (6.44) and (6.46). In both examples, the
output of Algebraic expand is not in expanded form, because in each case
the output of the Variables operator contains the generalized variable y+1.
In the first example, the input to Algebraic expand is a product, and the
output contains a new product and a new power that are not in expanded
form. This situation arises from line 7 in Expand product when r = s =
x (y+ 1)3/2, and so by the transformation (6.41), r ∗ s = x2 (y+ 1)3 which
is not in expanded form. In the second example, the input is a power, and
the output contains new products and powers that are not in expanded
form. This situation arises from line 7 in Expand power. For example,
when f = x (y + 1)1/2 and n − k = 4, the transformation (6.42) implies
fn−k = x4 (y + 1)2 which is not in expanded form.

One way to expand an expression u0 with non-integer exponents is to
apply a sequence of expansions

u1 := Algebraic expand(u0),
u2 := Algebraic expand(u1),

...
ui := Algebraic expand(ui−1),

...

where the process stops when ui = ui−1. The problem with this approach
is that it performs unnecessary work by trying to expand parts of an ex-
pression that are already in expanded form. Another approach is to modify



256 6. Structure of Polynomials and Rational Expressions

the algorithm in Figures 6.10 and 6.11 so that new unexpanded products
and powers obtained with Expand product and Expand power are expanded,
although we must take care to avoid introducing redundant recursion or
infinite recursive loops. We leave the details of this modification to the
reader (Exercise 9(a)).

Extensions of the Algebraic expand Operator. There are two extensions of
the Algebraic expand operator that obtain manipulations beyond the ex-
panded form described in Definition 6.45. The first extension is based on
the expand operator in the Macsyma system which returns an expression
with the following properties.

1. Each complete sub-expression of an expression is in expanded form,

2. The denominator of each complete sub-expression in an expression is
in expanded form.

These properties include Definition 6.45 and imply the following expan-
sions:

sin(a (b + c)) → sin(a b+ a c), (6.47)
a

b (c+ d)
→ a

b c+ b d
. (6.48)

In each of these examples, the expression on the left satisfies Definition 6.45
because

Variables(sin(a (b + c))) → {sin(a (b+ c))},
Variables

(
a

b c+ b d

)
→ {a, 1/b, 1/(c+ d)}.

However, in Expression (6.47), sin(a (b+ c)) has a complete sub-expression
that is not in expanded form, and in Expression (6.48), the denominator of

a

b (c+ d)

is not in expanded form. An extension of the Algebraic expand operator
that obtains these transformations is described in Exercise 8.

The second extension of Algebraic expand, which has to do with frac-
tional exponents, is based on the Expand operator in Mathematica. Let
u be an algebraic expression, and let f be a positive fraction (that is not
an integer). According to Definition 6.45, the expression uf is in expanded
form. However, another expanded form for uf is obtained by separating f
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into the sum of an integer and a fraction m with 0 < m < 1. We obtain
this representation with

f = �f� +m,

where
�f� = largest integer ≤ f, m = f − �f�.

The function �f� is called the floor function of f . We have

uf = um u�f�, (6.49)

and obtain an expanded form by expanding u�f� and multiplying each term
of this expansion by um. For example, with �5/2� = 2, we have

(x+ 1)5/2 = (x+ 1)1/2 (x+ 1)2

= (x+ 1)1/2 x2 + 2 (x+ 1)1/2 x+ (x+ 1)1/2. (6.50)

An extension of Expand power that obtains this transformation is described
in Exercise 9(b).

Exercises
1. Suppose u is in collected form with respect to a set S.

(a) Is u also in collected form with respect to a subset of S?

(b) Is each complete sub-expression of u also in collected form with re-
spect to S?

2. Let u be a sum. A common algebraic operation is to combine terms that
have denominators with the same variable part into a single term. For
example,

a

2 b c
+

d

3 b c
=

a/2 + d/3

b c
. (6.51)

In this example, both denominators have the variable part b c. Give a pro-
cedure Combine(u) that combines terms in a sum u whose (non-constant)
denominators differ by at most a rational number factor into a single term.
If u is not a sum, then return u. This exercise requires a Denominator
operator. Most CAS languages have this operator (see Figure 4.1 on page
124), and transformation rules for the operator are given in Section 6.5.
Hint: This operation can be performed by the Collect terms(u, S) proce-
dure with the appropriate generalized variables in S.

3. Let u be an algebraic expression, and let S be a set of generalized variables.
Give a procedure Collect terms 2 (u, S) that collects coefficients in S but
doesn’t require that u be a GPE in S. For example,

Collect terms 2 (ax+ sin(x)x+ b, {x}) → (a+ sin(x))x+ b.
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4. Explore the capacity of the algebraic expand operator in a CAS. How does
it compare with the version of the operator described in this section? (Use
expand in Maple and MuPAD, and Expand in Mathematica.)

5. Let u be an algebraic expression. The operator Distribute(u), which pro-
vides a fast way to apply the distributive transformation, can replace
Algebraic expand in some situations. It is defined using the following rules.

(a) If u is not a product, then

Distribute(u) → u.

(b) If u is a product, then

i. If u does not have an operand that is a sum, then

Distribute(u) → u.

ii. Suppose u has an operand that is a sum, and let v be the first
such operand. Form a new sum by multiplying the remaining
operands of u by each operand of v. Return this sum.

For example,

Distribute (a (b+ c) (d+ e)) → a b (d+ e) + a c (d+ e),

Distribute

W
x+ y

x y

}
→ 1/y + 1/x.

Give a procedure for Distribute(u).

6. Give a procedure Expand main op(u) that expands only with respect to
the main operator of u. In other words, the operator does not recursively
expand the operands of sums, products, or powers before it applies the
distributive transformations. For example,

Expand main op
i
x
i
2 + (1 + x)2

JJ → 2x+ x (1 + x)2,

Expand main op
Qi

x+ (1 + x)2
J2w → x2 + 2x (1 + x)2 + (1 + x)4.

7. Let T be a set of expressions that are sums. Give procedures for an
operator Expand restricted (u, T ) which applies the distributive laws as
Algebraic expand does, except that it does not apply the laws to members
of T . For example, for u = (x+ a)2 (x+ b),

Expand restricted (u, {x+ a}) → (x+ a)2x+ (x+ a)2 b,

Expand restricted(u,{x+ b}) → (x+ b) x2 + 2 a (x+ b)x+ a2(x+ b),

Expand restricted (u, {x+ a, x+ b}) → (x+ a)2(x+ b).
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8. Let u be an algebraic expression. Modify the expand algorithm so that it
returns an expression with properties (1) and (2) on page 256. Your proce-
dure should obtain the expansions in (6.38), (6.47), and (6.48). Since these
properties require the expansion of denominators, there is the possibility
that a denominator expands and simplifies to 0. For example, this occurs
with

1

x2 + 1− x (x+ 1)
.

Make sure your procedures check for this situation and return the global
symbol Undefined when it occurs. This exercise requires the Numerator
and Denominator operators. Most CAS languages have these operators
(see Figure 4.1 on 124), and transformation rules for these operators are
given in Section 6.5.

9. (a) Modify the Algebraic expand algorithm so that it obtains the ex-
panded form when the input expressions include powers with fraction
exponents. Assume that the transformations in (6.41) and (6.42) are
included in automatic simplification.

(b) Modify the Expand power procedure in part (a) so that it also obtains
the expansions using the decomposition of fraction powers in (6.49)
and (6.50). Most computer algebra languages have an operator to
compute �N�. (In Maple and MuPAD use floor, and in Mathematica
use Floor.)

6.5 General Rational Expressions

In a mathematical sense, a rational expression is defined as a quotient of two
polynomials. In this section we discuss the rational expression structure
of an algebraic expression and describe an algorithm that transforms an
expression to a particular rational form.

Definition 6.46. (Mathematical Definition) Let S = {x1, . . . , xm} be a
set of generalized variables. An algebraic expression u is a general ratio-
nal expression (GRE) in S if it has the form u = p/q, where p and q are
GPEs in S.

Example 6.47.

x2 − x+ y

x+ 4
, S = {x},

x2 sin(y) − x sin2(y) + 2 (z + 1)
x+ sin(y)

, S = {x, sin(y)},

x2 + b x+ c, S = {x}.
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For each example, we have given one possible choice for S. Notice that the
definition is interpreted in a broad sense to include GPEs for which the
denominator is understood to be 1. �

The Numerator and Denominator Operators. To determine if an expression
is a GRE, we must define precisely the numerator and denominator of the
expression. The Numerator and Denominator operators, which are used
for this purpose, are defined by the following transformation rules.

Definition 6.48. Let u be an algebraic expression.

ND-1. If u is a fraction, then

Numerator(u) → Operand(u, 1),
Denominator(u) → Operand(u, 2).

ND-2. Suppose u is a power. If the exponent of u is a negative integer or
a negative fraction, then

Numerator(u) → 1, Denominator(u) → u−1,

otherwise

Numerator(u) → u, Denominator (u) → 1.

ND-3. Suppose u is a product and v = Operand(u, 1). Then

Numerator(u) → Numerator(v) ∗ Numerator(u/v),

Denominator (u) → Denominator(v) ∗ Denominator(u/v).

ND-4. If u does not satisfy any of the previous rules, then

Numerator(u) → u, Denominator (u) → 1.

Example 6.49. Consider the expression u = (2/3)
x (x+ 1)
x+ 2

yn. Then

Numerator (u) → 2 x (x+ 1) yn, Denominator (u) → 3 (x+ 2). �

The Numerator and Denominator operators are defined in terms of
the tree structure of an expression and are interpreted in the context of
automatic simplification. Although the operators are adequate for our
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purposes, the next two examples show in some cases they give unusual
results.

Example 6.50. Consider the expression

1
x

+
1
y
.

Certainly, if we transform the expression to

x+ y

x y
,

it is clear which expression is the numerator and which is the denominator.
The definition, however, does not include this transformation as part of the
simplification context, and so the numerator is

1
x

+
1
y

and the denominator is 1. �

Example 6.51. Consider the expression x−r2−4 r−5. In this case, the expo-
nent is negative for all real values of r. However, since the exponent of the
expression is not a negative integer or fraction, the numerator is x−r2−4 r−5

and the denominator is 1. �

Modifications of the Numerator and Denominator operators that ad-
dress the issues in the last two examples are described in Exercise 4.

We give next a definition of a general rational expression that is more
suitable for computational purposes.

Definition 6.52. (Computational Definition) Let S = {x1, . . . , xm}
be a set of generalized variables. An algebraic expression u is a general
rational expression (GRE) in S if Numerator(u) and Denominator(u)
are GPEs in S.

The Rational gre Operator

Definition 6.53. Let u be an algebraic expression, and let v be either a
generalized variable x or a set S of generalized variables. The operator

Rational gre(u, v)

returns true whenever u is a GRE in {x} or S and otherwise returns false.
The operator is defined by the following transformation rule:
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Rational gre(u, v) →
Polynomial gpe(Numerator(u), v) and Polynomial gpe(Denominator(u), v)

where the Polynomial gpe operator is given in Figure 6.6 on page 228.

Example 6.54.

Rational gre
(

x2 + 1
2 x+ 3

, x

)
→ true,

Rational gre
(

1
x

+
1
y
, {x, y}

)
→ false. (6.52)

�

The Rational variables Operator. The Rational variables operator defines
a natural set of generalized variables for a rational expression.

Definition 6.55. Let u be an algebraic expression. The operator

Rational variables(u)

is defined by the transformation rule:

Rational variables(u) →
Variables(Numerator(u)) ∪ Variables(Denominator(u)),

where the Variables operator is given in Definition 6.19 on page 227.

Example 6.56.

Rational variables
(

2 x+ 3 y
z + 4

)
→ {x, y, z},

Rational variables
(

1
x

+
1
y

)
→

{
1
x
,
1
y

}
.

There is a natural way to view (2 x + 3 y)/(z + 4) as a GRE in x, y, and
z. On the other hand, 1/x+ 1/y is not a GRE in x and y (see Expression
(6.52)) but can be viewed as a GRE in the two generalized variables 1/x
and 1/y. �

Rationalization of Algebraic Expressions

The rationalization process, which is based on the transformation that
combines operands in a sum over a common denominator, transforms an
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algebraic expression to a form with a more appropriate set of generalized
variables. When the process is applied (in a recursive manner), it obtains
the following transformations:

a

b
+

c

d
→ a d+ b c

b d
,

1 +
1

1 + 1/x
→ 2 x+ 1

x+ 1
,

1(
1 +

1
x

)1/2
+
(

1 +
1
x

)3/2

→ x2 + (x+ 1)2

x2

(
x+ 1
x

)1/2
. (6.53)

The goal of rationalization is described in the following definition.

Definition 6.57. An algebraic expression u is in rationalized form if it
satisfies one of the following properties:

1. u is an integer, fraction, symbol, factorial, or function form.

2. u is any other type, and consider u as a rational expression in

S = Rational variables(u).

Then,

(a) each expression v in S is in rationalized form with

Denominator(v) = 1,

(b) the coefficient part of each of the monomials in Numerator(u)
and Denominator(u) is an integer.

Observe that Rule 2(a) is recursive. As usual, we interpret this defini-
tion in the context of automatic simplification.

Some examples will help clarify the definition.

Example 6.58. The expression a/b+c/d is not in rationalized form because

Rational variables(a/b+ c/d) → {a, 1/b, c, 1/d, },
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and so property 2(a) of Definition 6.57 is not satisfied. However, (a d +
b c)/(b d) is in rationalized form because

Rational variables
(
a d+ b c

b d

)
→ {a, b, c, d},

and the coefficient part of each of the monomials a d, b c, and b d is 1.
The expression

1 +
1

1 + 1/x

is not in rationalized form because

Rational variables
(

1 +
1

1 + 1/x

)
→
{

1
1 + 1/x

}
,

and so property 2(a) of Definition 6.57 is not satisfied. This expression can
be transformed to

2 x+ 1
x+ 1

,

which is in rationalized form because

Rational variables
(

2 x+ 1
x+ 1

)
→ {x},

and the coefficient parts of all monomials in the numerator and denomina-
tor are integers.

The expression a+b/2 is not in rationalized form because the coefficient
part of b/2 is not an integer, and so property 2(b) in Definition 6.57 is not
satisfied. However, its sum (2 a+ b)/2 is in rationalized form. �

The Rationalize expression Operator. The operator

Rationalize expression(u)

n transforms an algebraic expression u to an equivalent expression in ra-
tionalized form. The operator is understood to operate in an automatic
simplification context that includes the power transformations7

7 In Maple, automatic simplification obtains the transformation (6.54) when v and
w are rational numbers, (6.55) when v is a rational number, and (6.56).

In Mathematica, automatic simplification obtains the transformation (6.54), (6.55),
and (6.56).

In MuPAD, automatic simplification obtains the transformation (6.54) when v and w
are rational numbers, (6.55), and (6.56).

For a summary of power transformation rules in Maple, Mathematica, and MuPAD,
see Cohen [24], Section 3.1.
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Procedure Rationalize expression(u);
Input

u : an algebraic expression;
Output

a rationalized form of u;
Local Variables f, g, r;
Begin

1 if Kind(u) = ” ∧ ” then

2 Return
Q
Rationalize expression(Operand(u, 1))Operand(u,2)

w
3 elseif Kind(u) = ” ∗ ” then
4 f := Operand(u, 1);
5 Return(Rationalize expression(f) ∗ Rationalize expression(u/f))
6 elseif Kind(u) = ” + ” then
7 f := Operand(u, 1);
8 g := Rationalize expression(f);
9 r := Rationalize expression(u − f);
10 Return(Rationalize sum(g, r))
11 else
12 Return(u)

End

Procedure Rationalize sum(u, v);
Input

u, v : algebraic expressions in rationalized form;
Output

an algebraic expression in rationalized form;
Local Variables m,n, r, s;
Begin

1 m := Numerator(u);
2 r := Denominator(u);
3 n := Numerator(v);
4 s := Denominator(v);
5 if r = 1 and s = 1 then
6 Return(u + v)
7 else
8 Return(Rationalize sum(m ∗ s, n ∗ r)/(r ∗ s))

End

Figure 6.12. An MPL algorithm that rationalizes an algebraic expression. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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uvuw → uv+w, (6.54)
(uv)n → uv n, (6.55)
(u v)n → unvn, (6.56)

where u, v, and w are algebraic expressions and n is an integer. These
transformations hold for both the real and complex interpretations of the
power operation.

Procedures that transform an expression to rationalized form are given
in Figure 6.12. In the main procedure Rationalize expression, in lines 1-2 a
power is rationalized by recursively rationalizing its base. For example,

Rationalize expression
(
(1 + 1/x)2

)→ (x+ 1)2

x2
,

where the transformation is obtained by rationalizing the base 1+1/x and
then using the transformation (6.56). Notice that we rationalize the base
even when the exponent is not an integer because the base may appear with
an integer exponent later in the computation as a result of the rational-
ization process (see Example 6.59 below). Unfortunately, this means that
some expressions that are already in rationalized form are transformed to
another rationalized form. For example,

Rationalize expression
(
(1 + 1/x)1/2

)
→
(
x+ 1
x

)1/2

.

In lines 3-5, a product is rationalized by recursively rationalizing each
of its operands.

In lines 6-10, a sum is rationalized by first rationalizing its operands
and then combining the operands over a common denominator (line 10).
The actual sum transformation occurs in the Rationalize sum procedure
that performs the transformation

m/r + n/s → ms+ n r

r s
. (6.57)

Notice that Rationalize sum is recursive (line 8) because the sum in the
numerator of the right side of (6.57) may not be in rationalized form (see
Example 6.59 below). The termination condition for the recursion is in
lines 5-6. We have separated the computation into two procedures to avoid
some redundant recursion.

Example 6.59. In this example we outline the steps in a rationalization that
requires both the rationalization of powers with non-integer exponents and
the recursive step in Rationalize sum. Consider the expression8

8 For clarity, we use notation with the quotient operator even though quotients are
transformed to products and powers by automatic simplification.
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1(
1 +

1
x

)1/2
+
(

1 +
1
x

)3/2

.

Rationalizing the two operands of the sum, we obtain

1(
x+ 1
x

)1/2
+
(
x+ 1
x

)3/2

.

Applying the sum transformation in (6.57) followed by the power transfor-
mations in (6.54) and (6.55), we obtain

1 +
(x + 1)2

x2(
x+ 1
x

)1/2
,

where the sum in the numerator is not in rationalized form. Again apply-
ing the transformation (6.57) to the numerator, we obtain with automatic
simplification

x2 + (x+ 1)2

x2

(
x+ 1
x

)1/2
,

which is in rationalized form. �

Example 6.60. In order for the algorithm to obtain a rationalized form, dis-
tributive transformations that undo a rationalization cannot be included in
automatic simplification. A problem arises with both the Maple and Mu-
PAD systems in which integers and fractions are automatically distributed
over sums. For example, in Maple or MuPAD, implementations of the al-
gorithm attempt to transform a + b/2 to (2 a + b)/2, but then automatic
simplification transforms it back to a+ b/2. �

Rational-Expanded Form

Since algebraic expansion is not part of the simplification context of ratio-
nalization, the Rationalize expression operator may return an expression
with the numerator or denominator in unexpanded form. For example,

Rationalize expression(a/b+ c/d+ e/f) → a d f + b (c f + d e)
b d f

.
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The following definition combines rationalization and expansion.

Definition 6.61. An algebraic expression u is in rational-expanded
form if it satisfies the following two properties:

1. u is in rationalized form.

2. Numerator(u) and Denominator(u) are in algebraic expanded form.

The next example shows that there is an involved interaction between
the rationalization and expansion operations.

Example 6.62. Consider the expression

(√
1

(x+y)2+1 + 1
)(√

1
(x+y)2+1 − 1

)
x+ 1

.

This expression is in rationalized form, but not rational-expanded form.
Expanding the numerator we obtain

1
(x+ y)2 + 1

− 1

x+ 1
,

which is not in rationalized form. Transforming this expression to ratio-
nalized form we obtain

− (x+ y)2(
(x+ y)2 + 1

)
(x+ 1)

,

which again is not in rational-expanded form. Expanding the numerator
and denominator, we obtain

−x2 − 2 x y − y2

x3 + x2 + 2 x2 y + 2 x y + x y2 + y2 + x+ 1
,

which is in rational-expanded form. �

The operator Rational expand(u) transforms an algebraic expression u
to rational-expanded form. The procedure for this operator is left to the
reader (Exercise 3).
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Normal Simplification Operators

Let M represent the set of algebraic expressions that do not contain fac-
torials, function forms, or powers with non-integer exponents. For this
class of expressions, the Rational expand operator together with automatic
simplification can always determine if an expression simplifies to 0. An
operator with this property is called a normal simplification operator or a
zero equivalence operator for the class M. For example,

Rational expand

(
1

1/a+ c/(a b)
+
a b c+ a c2

(b+ c)2
− a

)
→ 0.

On the other hand, rationalization alone does not obtain this transforma-
tion:

Rationalize expression

(
1

1/a+ c/(a b)
+
a b c+ a c2

(b+ c)2
− a

)

→
(b+ c)2 a2 b+

(
a b c+ a c2 − a (b+ c)2

)
(a b+ c a)

(a b+ c a) (b+ c)2
.

Rational Simplification

Although the Rationalize expression operator transforms an expression to
rationalized form, it often introduces extraneous common factors into the
numerator and denominator. For example, the operator obtains

Rationalize expression(x/z + y/z2) → z2 x+ z y

z3
,

where an extraneous common factor z appears in the numerator and de-
nominator. Although it is possible to modify the algorithm to avoid this,
it is better to eliminate the common factors after rationalization because
other common factors can be eliminated then as well. In Exercise 6, we
describe an operator that eliminates the explicit common factors that arise
during rationalization as well as some other explicit common factors.

The more interesting problem, however, involves the elimination of com-
mon factors that are implicit or hidden. For example, it is not so obvious
that the expression

2 a3 + 22 a b+ 6 a2 + 7 a+ 6 b a2 + 12 b2 + 21 b
7 a2 − 5 a b2 − 2 b a2 − 5 a+ 21 a b+ 3 b3 − 15 b

(6.58)

has a common factor a+3 b in the numerator and denominator and can be
simplified to

2 a2 + 4 b+ 6 a+ 7
7 a− 2 a b− 5 + b2

. (6.59)
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The process of eliminating explicit and implicit common factors from the
numerator and denominator of a rational expression is called rational sim-
plification. One way to obtain this simplification is by factoring the nu-
merator and denominator and cancelling the common factors. Since fac-
torization is a time consuming process, this is usually done instead with a
greatest common divisor algorithm. Since the topic is beyond the scope of
this chapter, the reader may consult Cohen [24], Sections 4.2 and 6.3, for
more information on this problem.

Since rational simplification is an important aspect of simplification,
most computer algebra systems have some capability to perform this oper-
ation (Exercise 5).

Exercises
1. Explore the capacity of the numerator and denominator operators in a

CAS. What is the simplification context of these operators in the CAS?
Are the operators defined with the same transformations as the ones given
in the text? (See Figure 4.1 on page 124.)

2. Let u be an algebraic expression. Give procedures for each of the following
operators:

(a) Numerator(u) (Definition 6.48).

(b) Denominator(u) (Definition 6.48).

(c) Rational gre(u, v) (Definition 6.53).

(d) Rational variables(u) (Definition 6.55).

3. Let u be an algebraic expression. Give a procedure Rational expand(u)
that transforms u to rational-expanded form (Definition 6.61). Since ratio-
nal expansion includes the expansion of denominators, there is the possi-
bility that a denominator expands and simplifies to 0. For example, this
occurs with

1

x2 + x − x (x+ 1)
.

Make sure your procedure checks for this situation and returns the global
symbol Undefined when it occurs. Your procedure should obtain the
rational expansion in Example 6.59.

4. In this exercise we describe two modifications of the operators Numerator
and Denominator.

(a) Give procedures for Numerator (u) and Denominator(u) that ratio-
nalize u before obtaining the numerator and denominator.

(b) Let u be an algebraic expression, and let L be a list of distinct sym-
bols. In addition, suppose the exponent of each power in u is a
multivariate polynomial in the variables in L. A modification of
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the definition for the Numerator and Denominator operators is ob-
tained by determining the sign of the exponent of a power using the
Polynomial sign operator described in Exercise 7 on page 246. In this
case, Rule ND-2 is replaced by the following rule.

ND-2. Suppose that u is a power, and let z = Operand(u, 2). If

Polynomial sign(z,L) < 0,

then

Numerator (u, L) → 1,

and

Denominator (u,L) →
Operand(u, 1) ∧ Algebraic expand(−1 ∗ z),

otherwise

Numerator (u,L) → u, Denominator(u,L) → 1.

Notice that the list L appears as an input parameter because the
polynomial sign depends on the order of the symbols in L. Give
procedures Numerator (u,L) and Denominator(u,L) that obtain the
numerator and denominator of u with this modification to the ND
rules.

5. Explore the rational simplification capability of a CAS. For example can
the rational simplification operator in a CAS simplify Expression (6.58) to
Expression (6.59)? How about the transformation

x3 +
i√

2 +
√
3
J
x2 +
i
2
√
2
√
3− 5
J
x+

√
2−√

3

x3 +
i−√

2 +
√
3
J
x2 +
i−5− 2

√
2
√
3
J
x −√

2−√
3

→ x+
√
2−√

3

x −√
2−√

3
,

which is more involved because it includes radical expressions? (See Fig-
ure 4.1 on page 124.)

6. Let u be an algebraic expression in rationalized form. In this exercise we
outline an algorithm for an operator Cancel(u) that performs a limited
version of rational simplification. The operator can eliminate extrane-
ous common factors introduced by the Rationalize expression operator as
well as some other explicit common factors. The cancellation is obtained
through automatic simplification after performing a limited version of fac-
torization on the numerator and denominator of u. The operator is based
on the following operators:
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(a) Let u and v be algebraic expressions. The operator

Common factors(u, v)

finds some factors that are common to u and v. It is defined using
the following transformation rules.

CF-1. If u and v are integers then Common factors(u, v) returns
the greatest (positive) common divisor of u and v. Most com-
puter algebra systems have an operator that obtains the greatest
common divisor of integers (see Figure 4.1 on page 124).

CF-2. If u is a product, let

f = Operand(u, 1), r = Common factors(f, v).

Then

Common factors(u, v) → r ∗ Common factors(u/f, v/r).

CF-3. If v is a product then

Common factors(u, v) → Common factors(v, u).

CF-4. If none of the previous rules apply, then define

base(u) =

k
Operand(u, 1) if Kind(u) = ” ∧ ”,
u otherwise,

exponent(u) =
�
Operand(u, 2) if Kind(u) = ” ∧ ”,
1 otherwise.

If base(u) = base(v) and both exponent(u) and exponent(v) are
positive rational numbers, then

Common factors(u, v) →
base(u)Min({exponent(u),exponent(v)}),

otherwise Common factors(u, v) → 1.

For example, the operator obtains

Common factors
i
6x y3, 2x2 y z

J→ 2x y,

Common factors(x+ y, a (x+ y)) → x+ y.

Give a procedure for this operator.

(b) Let u be an algebraic expression. The operator Factor out(u) per-
forms a limited version of factorization. It is defined using the fol-
lowing transformation rules.

FO-1. If u is a product then Factor out(u) → Map(Factor out , u).
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FO-2. If u is a power then

Factor out(u) → Factor out(Operand(u, 1))Operand(u,2).

FO-3. Suppose that u is a sum with n operands, and let

s = Map(Factor out , u).

If s is not a sum, then

Factor out(u) → s.

Otherwise, suppose that s is a sum with operands s1, . . . , sn,
and let c be the common factor of all the si obtained using the
Common factors operator described in part (a). Then

Factor out(u) → c (s1/c + · · ·+ sn/c),

where the divisions are obtained with automatic simplification.

FO-4. If none of the previous rules apply, then Factor out(u) → u.

For example,

Factor out
i
(x2 + x y)3

J→ x3(x+ y)3,

Factor out(a (b+ b x)) → a b (1 + x),

Factor out
Q
21/2 + 2

w
→ 21/2(1 + 21/2),

Factor out(a b x+ a c x+ b c x) → (a b+ a c+ b c) x,

Factor out(a/x+ b/x) → a/x+ b/x.

In the last example, 1/x is not isolated because the Common factors
operator in FO-3 retrieves only powers with positive rational expo-
nents (see CF-4). Give a procedure for this operator.

(c) Let u be an algebraic expression in rationalized form. Give a pro-
cedure for the operator Cancel(u) that is defined by the following
transformation rule.

Let n = Numerator(u) and d = Denominator(u). Then

Cancel (u) → Factor out(n)/Factor out(d).

For example,

Cancel

W
(a+ b) c + (a+ b) d

a e+ b e

}
→ c+ d

e
. (6.60)

Note: Cancel(u) does not remove all explicit common factors. For
example, although

a (a+ b)− a2 − a b+ r s+ r t

r2
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has a common factor of r in the numerator and denominator and sim-
plifies to (s+ t)/r, this is not obtained with Cancel . However, if the
expression is first transformed to rational-expanded form, the sim-
plification is obtained with Cancel. On the other hand, if the input
to Cancel in Expression (6.60) is transformed to rational-expanded
form, the common factor is not removed. For further discussion of
common factors in these cases and implicit common factors, see Co-
hen [24], Section 6.3.
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Exponential and Trigonometric
Transformations

This chapter is concerned with the manipulation of algebraic expressions
that contain exponential or trigonometric functions. In Section 7.1 we
describe expansion algorithms that expand these functions with respect to
their arguments. These algorithms obtain the transformations

exp(2 x+ y) → (exp(x))2 exp(y), (7.1)

sin(2 x+ y) → 2 cos(y) sin(x) cos(x) + 2 sin(y) (cos(x))2 (7.2)

− sin(y).

In Section 7.2 we describe contraction algorithms that invert the trans-
formations in (7.1) and (7.2). In addition, we describe a simplification
algorithm that can verify a large class of trigonometric identities.

7.1 Exponential and Trigonometric Expansion

In this section we describe algorithms that expand the exponential and
trigonometric functions that appear in an expression.

275
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Exponential Expansion

Let u, v, and w be algebraic expressions. The exponential function satisfies
the following properties1:

exp(u + v) = exp(u) exp(v), (7.3)
exp(w u) = exp(u)w. (7.4)

The operation that applies these transformations in a left to right manner
is called exponential expansion, and the operation that applies the trans-
formations in a right to left manner is called exponential contraction2. In
this section we describe procedures for exponential expansion. Procedures
for exponential contraction are described in Section 7.2.

The goal of exponential expansion is described in the next definition.

Definition 7.1. An algebraic expression u is in exponential-expanded
form if the argument of each exponential function in u

1. is not a sum;

2. is not a product with an operand that is an integer.

Although Equation (7.4) provides a way to remove any operand of a
product from the argument of an exponential function, it doesn’t specify
which operand should be removed. To eliminate this ambiguity, we only
remove an integer operand from the argument3. This point is illustrated
in the next two examples.

Example 7.2. Consider the manipulation

exp(2wx+ 3 y z) = exp(2wx) exp(3 y z)
= exp(w x)2 exp(y z)3.

1Property (7.3) is valid in either a real number of complex number context. Property
(7.4) is valid in a real context but is only valid in a complex context when w is an
integer. For example, if u = (3/2) π ı (where ı =

√−1) and w = 1/2, by using the
principal value of the square root function, we have (exp(u))w =

√
2 /2 − √

2/2 ı and
exp(wu) = −√

2/2+
√

2/2 ı. For a discussion of the exponent relationships in a complex
setting, see Pennisi [78], pages 112-113. (Implementation: Maple (mws), Mathematica
(nb), MuPAD (mnb).)

2During automatic simplification the Mathematica system transforms the function
form Exp[u] to the power Eu and also applies the contraction EuEv → Eu+v. In addition,
it applies the contraction (Eu)n → En u when n is an integer. Therefore, to implement
the expansion and contraction procedures described in this chapter in this system, it is
necessary to use another representation for the exponential function. (Implementation:
Mathematica (nb).)

3 In Maple and Mathematica, an integer operand in a product is the first operand.
In MuPAD, an integer operand in a product is the last operand.
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The exponential on the left has an operand that is a sum and so is
not in exponential-expanded form. Applying Equation (7.3), we obtain
two new exponentials, which are also not in expanded form. Applying
Equation (7.4) to each exponential, we obtain the expanded form of the
expression. �

Example 7.3. Consider the manipulation

exp( 2 (x+ y)) = exp(x+ y)2

= exp(x)2 exp(y)2.

The exponential on the left has an operand that is a product with an integer
operand and so is not in exponential-expanded form. Applying Equation
(7.4), we obtain a new exponential that has an operand that is a sum and so
is not in expanded form. Applying Equation (7.3), we obtain the expanded
form of the expression. �

A procedure that transforms an expression to exponential-expanded
form is given in Figure 7.1. At line 4, the Map operator calls on the proce-
dure recursively to search all operands of the expression for exponentials. If
the resulting expression is an exponential (line 5), the procedure attempts
to apply Equation (7.3) (lines 7-9) or Equation (7.4) (lines 10-13). At line
9, two new exponentials are created that may not be in expanded form, and
so the procedure is called recursively to reapply the rules. (This recursion
is needed in Example 7.2.) For the same reason, the procedure is applied
recursively4 to the new exponential created in line 13. (This recursion is
needed in Example 7.3.)

Unfortunately, because recursion is used in two ways, to traverse all
operands of the expression tree and to reapply the rules to newly created
exponentials, Expd exp creates some redundant recursion. To see how this
happens, consider the expansion of the expression exp(2wx + 3 y z) de-
scribed in Example 7.2. In this case, there are 28 procedure calls with the
following inputs:

exp(2wx+ 3 y z), 2wx+ 3 yz, 2wx, 2, w, x, 3 y z, 3, y, z, (7.5)
exp(2wx), 2wx, 2, w, x, (7.6)

exp(w x), w x, w, x, (7.7)
exp(3 y z), 3 y z, 3, y, z, (7.8)

exp(y z), y z, y, z. (7.9)
4In the Maple and MuPAD systems an expression like exp(2 (x + y)) is transformed

to exp(2 x + 2 y) by automatic simplification, and so the recursive call at line 13 is not
needed. (Implementation: Maple (mws), MuPAD (mnb).)
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Procedure Expd exp(u);
Input

u : an algebraic expression;
Output

an algebraic expression in exponential-expanded form;
Local Variables

v,A, f ;
Begin

1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 v := Map(Expd exp, u);
5 if Kind(v) = exp then
6 A := Operand(v,1);
7 if Kind(A) = ” + ” then
8 f := Operand(A, 1);
9 Return(Expd exp(exp(f)) ∗ Expd exp(exp(A − f)))
10 elseif Kind(A) = ” ∗ ” then
11 f := Operand(A, 1);
12 if Kind(f) = integer then
13 Return(Expd exp(exp(A/f))f );
14 Return(v)

End

Figure 7.1. An MPL procedure that transforms an algebraic expression to
exponential-expanded form. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt). In the MuPAD implementation, the statement at line 11 assigns
the last operand of A to f .)

The inputs associated with the tree traversal of exp(2w x+3 y z) from line
4 are given in (7.5). Since there are no exponentials in 2wx + 3 y z, the
next recursive step occurs when the new exponential exp(2 w x) is created
at line 9, which leads to the inputs for the next sequence of calls in (7.6).
Observe that redundant recursion occurs (from line 4) because all sub-
expressions of 2wx are traversed for a second time. In a similar way, the
next sequence of inputs is given in (7.7) when the procedure attempts at line
13 to expand the new exponential exp(w x). Once again, more redundant
recursion arises (from line 4) as the sub-expressions of w x are traversed
for a third time. Finally, more redundant recursion occurs (from lines 9
and 13) with expansion of the new expressions exp(3 y z) and exp(y z) (see
(7.8) and (7.9)).
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One simple way to eliminate the redundant recursion is to implement
the procedure in a language that remembers the input-output values of pro-
cedure calls. Another approach is to separate the two roles for recursion by
using two procedures. The procedures that perform exponential expansion
in this way are shown in Figure 7.2. Notice that there is an outer main
procedure Expand exp and an inner procedure Expand exp rules. The re-
cursion that is used to traverse all operands of the expression tree is ob-
tained with the Map operator at line 4 of Expand exp. This procedure also
calls on Expand exp rules at line 6, which takes as input the argument of
an exponential function and applies the transformation rules (Equations
(7.3) and (7.4)). Notice that the reapplication of the rules is obtained in
Expand exp rules at lines 3 and 7. Since Expand exp rules only applies re-
cursion when a rule is applied, some redundant recursion is eliminated. For
example, to obtain the expanded form of exp(2wx + 3 y z), the sequence
of inputs to Expand exp is still given in (7.5), while the sequence of inputs
for Expand exp rules is given by

2wx+ 3 y z, 2wx, w x, 3 y z, y z.

Using the two procedures in Figure 7.2, there are 15 procedure calls, while
using the single procedure in Figure 7.1, there are 28 procedure calls.

Appraisal of Expand exp. In the present form, the algorithm encounters a
division by zero whenever an application of a transformation rule together
with automatic simplification transforms a denominator to zero. This oc-
curs, for example, with

1
exp(2 x) − exp(x)2

.

A modification of the algorithm that recognizes this and returns the symbol
Undefined is described in Exercise 2.

Since Expand exp is applied in the simplification context of automatic
simplification, it is unable to obtain some transformations that require
additional algebraic operations. For example, the manipulation

exp((x + y) (x− y)) = exp(x2)/ exp(y2) (7.10)

is not obtained with exponential expansion unless the argument of the
exponential on the left is first algebraically expanded. A modification of
the algorithm that obtains this transformation is described in Exercise 3.
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Procedure Expand exp(u);
Input

u : an algebraic expression;
Output

an algebraic expression in exponential-expanded form;
Local Variables

v;
Begin

1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 v := Map(Expand exp, u);
5 if Kind(v) = exp then
6 Return(Expand exp rules(Operand(v, 1)))
7 else
8 Return(v)

End

Procedure Expand exp rules(A);
Input

A : an algebraic expression that is the argument of an exponential
function;

Output
the exponential-expanded form of exp(A);

Local Variables
f ;

Begin
1 if Kind(A) = ” + ” then
2 f := Operand(A, 1);
3 Return(Expand exp rules(f) ∗ Expand exp rules(A − f))
4 elseif Kind(A) = ” ∗ ” then
5 f := Operand(A, 1);
6 if Kind(f) = integer then
7 Return(Expand exp rules(A/f)f );
8 Return(exp(A))

End

Figure 7.2. Two MPL procedures that separate the two roles for recursion
in exponential expansion. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt). In the MuPAD implementation, the statement at line 5 of
Expand exp rules assigns the last operand of A to f .)
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Trigonometric Expansion

The sin and cos functions satisfy the identities:

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ), (7.11)
cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ). (7.12)

The trigonometric expansion operation applies these identities in a left to
right manner to all sin and cos functions in an expression. We also obtain
expanded forms for sin(n θ) and cos(n θ) (n a positive integer) by viewing
the argument n θ as a sum with n identical operands θ and repeatedly ap-
plying the rules. In addition, by applying the identities sin(−θ) = − sin(θ)
and cos(−θ) = cos(θ), we obtain expanded forms for sin(nθ) and cos(nθ)
when n is a negative integer as well.

The goal of trigonometric expansion is described in the next definition.

Definition 7.4. An expression u is in trigonometric-expanded form if
the argument of each sin and cos function in u

1. is not a sum;

2. is not a product with an operand that is an integer.

The definition is given only in terms of sine and cosine functions be-
cause the other trigonometric functions can be expressed in terms of these
functions. (See the Trig substitute procedure in Figure 5.12 on page 190.)

Example 7.5. Consider the manipulation

sin(2 x+ 3 y) = sin(2 x) cos(3 y) + cos(2 x) sin(3 y) (7.13)
= 2 sin(x) cos(x)

(
cos3(y) − 3 cos(y) sin2(y)

)
(7.14)

+
(
cos2(x) − sin2(x)

) (
3 cos2(y) sin(y) − sin3(y)

)
.

The sin on the left is not in trigonometric-expanded form because its ar-
gument is a sum. Applying the identity (7.11), we obtain two new sines
and two new cosines that are also not in expanded form. By reapplying
the rules, we obtain the final expanded form in Expression (7.14). �

Example 7.6. Consider the manipulation

sin(2 (x+ y)) = 2 sin(x+ y) cos(x+ y) (7.15)
= 2 (sin(x) cos(y) + cos(x) sin(y))(cos(x) cos(y)

− sin(x) sin(y)). (7.16)
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The sin on the left is not in trigonometric-expanded form because its argu-
ment is a product with an integer operand. Applying the identity (7.11),
we obtain a new sine and a new cosine that are not in expanded form. By
reapplying the rules, we obtain the expanded form in Expression (7.16).

�

Because of the identity

sin2(θ) + cos2(θ) = 1, (7.17)

an expression can have a number of trigonometric-expanded forms. For
example, our algorithm (shown in Figure 7.3) obtains the expanded form

cos(5 x) = cos5(x) − 10 cos3(x) sin2(x) + 5 cos(x) sin4(x). (7.18)

By using the identity (7.17), however, we can remove sin2(x) and sin4(x)
from the expression and obtain another expanded form that involves only
cosines

cos(5 x) = 16 cos5(x) − 20 cos3(x) + 5 cos(x). (7.19)

Although a simple expansion algorithm is obtained by repeatedly ap-
plying the identities (7.11) and (7.12), a straightforward implementation
can involve excessive recursion. We describe next three modifications to
this process that reduce some of this recursion.

First, as with exponential expansion, recursion is used two ways: to
examine all the operands of an expression tree and to reapply the transfor-
mations (7.11) and (7.12) when a new sine or cosine is created. To reduce
redundant recursion, we divide the computation into two procedures that
handle each of the recursive tasks.

The next example shows another way that redundant recursion can
arise.

Example 7.7. Consider the trigonometric expansion of sin(a + b + c + d).
First, we apply the identity (7.11) with θ = a and φ = b+ c+ d to obtain

sin(a+ b+ c+ d) = sin(a) cos(b + c+ d) + cos(a) sin(b+ c+ d).

Next, apply the identities (7.11) and (7.12) recursively to cos(b+c+d) and
sin(b+ c+ d) with θ = b and φ = c+ d. to obtain

cos(b + c+ d) = cos(b) cos(c+ d) − sin(b) sin(c+ d),

sin(b+ c+ d) = sin(b) cos(c+ d) + cos(b) sin(c+ d).

Because both of the expressions on the right require expansions for cos(c+d)
and sin(c + d), the next recursive application of the rules leads to some
redundant recursion. Using this approach, this example requires seven
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Procedure Expand trig(u);
Input

u: an algebraic expression;
Output

an algebraic expression in trigonometric-expanded form;
Local Variables v;
Begin

1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 v := Map(Expand trig , u);
5 if Kind(v) = sin then
6 Return(Operand(Expand trig rules(Operand(v, 1)), 1))
7 elseif Kind(v) = cos then
8 Return(Operand(Expand trig rules(Operand(v, 1)), 2))
9 else
10 Return(v)

End

Procedure Expand trig rules(A);
Input

A: an algebraic expression that is the argument of a sin or cos;
Output

a two element list [s, c] where s and c are the
trigonometric-expanded forms of sin(A) and cos(A);

Local Variables f, r, s, c;
Begin

1 if Kind(A) = ” + ” then
2 f := Expand trig rules(Operand(A, 1));
3 r := Expand trig rules(A −Operand(A, 1));
4 s := Operand(f, 1) ∗Operand(r, 2) +Operand(f, 2) ∗Operand(r, 1);
5 c := Operand(f, 2) ∗Operand(r, 2)−Operand(f, 1) ∗Operand(r, 1);
6 Return([s, c])
7 elseif Kind(A) = ” ∗ ” then
8 f := Operand(A, 1);
9 if Kind(f) = integer then
10 Return([Multiple angle sin(f,A/f), Multiple angle cos(f, A/f)]);
11 Return([sin(A), cos(A)])

End

Figure 7.3. MPL procedures that transform an algebraic expression to
trigonometric-expanded form. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt). In the MuPAD implementation, the statement at line 8
of Expand trig rules assigns the last operand of A to f .)
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applications of the rules. In general, if a sin or cos has an argument that
is a sum of n symbols, the number of rule applications grows exponentially
as 2n−1 − 1 (Exercise 6(a)). �

There are a number of ways to eliminate this redundant recursion. One
way is simply to implement the algorithm in a language that remembers the
input-output values of procedure calls. Another approach, which we use
here, is to obtain sin(A) and cos(A) simultaneously. (See the discussion on
page 285 and the procedure Expand trig rules in Figure 7.3.) This approach
requires only 2 (n− 1) rule applications to expand a sin or cos of a sum of
n symbols (Exercise 6(b)).

Another improvement to the algorithm is based on the following repre-
sentations for multiple angle expansions. For n a positive integer,

cos(n θ) =
n∑

j = 0
j even

(−1)j/2

(
n

j

)
cosn−j(θ) sinj(θ), (7.20)

sin(n θ) =
n∑

j = 1
j odd

(−1)(j−1)/2

(
n

j

)
cosn−j(θ) sinj(θ). (7.21)

For example, the expansion in Equation (7.18) is obtained using the first
formula.

These representations are derived using the exponential representations
for sin and cos and the binomial theorem. For example to obtain the sum
(7.20),

cos(n θ) =
exp(ı n θ) + exp(−ı n θ)

2
=

exp(ı θ)n + exp(−ı θ)n

2

=
(cos(θ) + ı sin(θ))n + (cos(θ) − ı sin(θ))n

2

= (1/2)


 n∑

j=0

(
n

j

)
cosn−j(θ)ıj sinj(θ)

+
n∑

j=0

(
n

j

)
cosn−j(θ)(−ı)j sinj(θ)




= (1/2)
n∑

j=0

(
n

j

)
cosn−j(θ) sinj(θ) ıj(1 + (−1)j).
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However, using

ıj(1 + (−1)j) =
{

2 (−1)j/2, j even,
0, j odd,

we obtain the representation (7.20).
Another approach for expanding sin(n θ) and cos(n θ) that uses recur-

rence relations is described in Exercise 10.
Procedures that transform an expression to trigonometric-expanded

form are given in Figure 7.3. The main procedure Expand trig applies
the process to the operands of an expression using the Map operator in
line 4 and, if the resulting expression is a sin or cos, invokes the procedure
Expand trig rules to apply the expansion rules (lines 6 and 8).

Expand trig rules(A) returns a two element list with the trigonometric-
expanded forms of sin(A) and cos(A). When A is a sum, the procedure is
applied recursively to both Operand(A, 1) and to A − Operand(A, 1) (line
2-3) after which the identities (7.11) and (7.12) are applied to the result-
ing expressions (lines 4-5). (This recursion is needed in Example 7.5.)
When A is a product with an integer operand, the procedure invokes the
Multiple angle sin and Multiple angle cos procedures, which apply the mul-
tiple angle representations given in (7.21) and (7.20). (These procedures
are left to the reader (Exercise 5).) This step is also recursive because these
procedures invoke Expand trig rules. (This recursion is needed in Exam-
ple 7.7.) Finally, when neither transformation rule applies, the procedure
returns [sin(A), cos(A)] (line 11).

Appraisal of Expand trig. In the present form the algorithm encounters a
division by zero whenever an application of a transformation rule together
with automatic simplification transforms a denominator to zero. For ex-
ample, this occurs with the expression 1/(sin(2 x) − 2 sin(x) cos(x)). A
modification of the algorithm that recognizes this and returns Undefined
is described in Exercise 7.

Since the Expand trig algorithm does not include algebraic expansion, it
misses some opportunities to apply the trigonometric expansion rules. For
example, the expression sin((x + y)2) is not expanded because (x + y)2 is
not in (algebraic) expanded form. In addition, the output for an expression
like sin(a+ b+ c+d) is cumbersome because it is returned in a nested form
rather than in an algebraic expanded form. In Exercise 8, we describe
modifications of the procedures that handle these problems.

In some instances, Expand trig distorts the mathematical meaning of
an expression. Consider the expression

sin(2 x) − 2 sin(x) cos(x)
(sin(x))2 + (cos(x))2 − 1

.
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Strictly speaking, this expression is an indeterminate form because both the
numerator and denominator simplify to 0. However, Expand trig simplifies
the expression to 0 because the expanded form of the numerator is 0 while
the denominator is already in expanded form and is not changed. In Section
7.2, we describe the Simplify trig operator that recognizes the problem for
this expression and indicates that it is undefined. However, because it is
theoretically impossible to give an algorithm that can always determine if
an algebraic expression simplifies to 0, it is impossible to avoid this problem
in all cases5.

Exercises

1. Give the exponential-expanded form of the expression

exp((exp(2x)− exp2(x) + 1) (2 x+ 3 y)).

2. The Expand exp algorithm encounters a division by zero if the transfor-
mation rules transform a sub-expression in a denominator to zero. For
example, this occurs with 1/(exp(2x)− exp(x)2). Modify the procedure so
that it recognizes this situation and returns the global symbol Undefined
when it occurs.

3. Modify the definition of an exponential-expanded expression u given in
Definition 7.1 so that it includes properties 1 and 2 from that definition
as well as the property that each complete sub-expression of u is in alge-
braic expanded form. Modify the procedures in Figure 7.2 to obtain an
expression in this form. For example, your procedures should obtain

Expand exp
i
exp
i
(x+ y)2

JJ→ exp
i
x2J (exp(x y))2 exp

i
y2J .

4. Let u, v, and w be algebraic expressions. The natural logarithm function
satisfies the following two properties:

ln(u v) = ln(u) + ln(v), (7.22)

ln(uw) = w ln(u). (7.23)

An algebraic expression is in log-expanded form if the argument of each
logarithm is not a product or a power. For example, the manipulation

ln((w x)a) + ln(yb z) → a (ln(w) + ln(x)) + b ln(y) + ln(z).

transforms the expression on the left to log-expanded form. An expression
can be transformed to log-expanded form by applying Equations (7.22)
and (7.23) in a left to right manner. Give a procedure Expand log(u) that
transforms an algebraic expression u to log-expanded form.

5 See footnote 6 on page 145.
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5. Let θ be an algebraic expression, and let n be an integer. Give procedures

Multiple angle sin(n, θ), Multiple angle cos(n, θ)

that find the expansions for sin(n θ) and cos(n θ) using Equations (7.20)
and (7.21). Keep in mind when θ is a sum, sin(θ) and cos(θ) are not in
expanded form. (This situation occurs in Example 7.6.) In this case it is
necessary6 to expand these expressions with Expand trig rules.

Be sure to account for the possibility that n is a negative integer. Although
most computer algebra systems apply transformations such as sin(−2 y) →
− sin(2 y) during automatic simplification, this situation will arise in our
algorithm with sin(x − 2 y) because Expand trig rules takes the argument
of a sin or cos as input rather than the function form.

6. Consider the expansion of sin(A) and cos(A) where A is a sum of n symbols.

(a) Show that to expand sin(A) or cos(A) using the approach in Example
7.7 requires 2n−1 − 1 rule applications.

(b) Show that to expand sin(A) and cos(A) simultaneously using the
algorithm in Figure 7.3 requires 2 (n − 1) rule applications.

7. The Expand trig algorithm may encounter a division by zero if the trans-
formation rules transform a sub-expression in a denominator to zero. For
example, this occurs with 1/(sin(2x) − 2 sin(x) cos(x)). Modify the pro-
cedure so that it recognizes this situation and returns the global symbol
Undefined when it occurs.

8. Suppose we modify the definition of a trigonometric-expanded expression
u in Definition 7.4 so that it includes properties (1) and (2) in that defini-
tion as well as the property that each complete sub-expression of u is in
algebraic expanded form. Modify the procedures in Figure 7.3 to obtain an
expression in this form. For example, your procedures should obtain

Expand trig
i
sin
i
(x+ y)2

JJ→
sin(x2)

ii
(cos(x y))2 − (sin(x y))2

J
cos(y2)

− 2 cos(x y) sin(x y) sin(y2)
J

+cos(x2)
i
2 cos(x y) sin(x y) cos(y2)

+
i
(cos(x y))2 − (sin(x y))2

J
sin(y2)
J
.

9. In this exercise we describe an extension to the Expand trig algorithm to
include the sinh and cosh functions. These functions satisfy the identities

sinh(θ + φ) = sinh(θ) cosh(φ) + cosh(θ) sinh(φ),

cosh(θ + φ) = cosh(θ) cosh(φ) + sinh(θ) sinh(φ),

6In the Maple and MuPAD systems, it is not necessary to invoke Expand trig rules
here because an integer is distributed over the operands of a sum by automatic simpli-
fication, and so θ cannot be a sum.
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sinh(−θ) = − sinh(θ), cosh(−θ) = cosh(θ),

cosh(n θ)± sinh(n θ) = (cosh(θ)± sinh(θ))n, (7.24)

where n is a positive integer.

(a) Using the identity (7.24) it follows that

cosh(n θ) = 1/2 ((cosh(θ) + sinh(θ))n + (cosh(θ)− sinh(θ))n) ,

sinh(n θ) = 1/2 ((cosh(θ) + sinh(θ))n − (cosh(θ)− sinh(θ))n) .

Use these formulas to derive representations similar to those in Equa-
tions (7.20) and (7.21) for sinh(n θ) and cosh(n θ).

(b) Extend the Expand trig algorithm so that it also expands the sinh
and cosh functions.

10. This exercise describes another approach that finds the expanded form for
sin(n θ) and cos(n θ) that uses recurrence relations.

(a) Show that for n ≥ 2, pn = sin(n θ) satisfies the recurrence relation

pn = 2 cos(θ) pn−1 − pn−2, p1 = sin(θ), p0 = 0.

(b) Show that for n ≥ 2, qn = cos(n θ) satisfies the recurrence relation

qn = 2 cos(θ) qn−1 − qn−2, q1 = cos(θ), q0 = 1.

Notice that this recurrence relation gives the expansion in (7.19).

(c) Give procedures that find the expanded forms for sin(n θ) and cos(n θ)
using the recurrence relations in parts (a) and (b). Be sure to account
for the possibility that n is negative and θ is a sum. (See the discussion
in Exercise 5 above.)

11. In this exercise we ask you to give a procedure for trigonometric expansion
of the tangent function that is based on the identity

tan(θ + φ) =
tan(θ) tan(φ)

1− tan(θ) tan(φ)
. (7.25)

(a) Let n be a positive integer. Show that

tan(n θ) =

n�
j = 1
j odd

(−1)(j−1)/2

~
n

j

^
tanj(θ)

n�
j = 0
j even

(−1)j/2

~
n

j

^
tanj(θ)

. (7.26)

(b) Give a procedure Expand tan(u) that is based on Equations (7.25)
and (7.26).
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7.2 Exponential and Trigonometric Contraction

In this section we describe the exponential and trigonometric contraction
operators and a trigonometric simplification operator that can verify a large
class of trigonometric identities.

Exponential Contraction

Exponential contraction applies the two transformation rules7

exp(u) exp(v) → exp(u+ v), (7.27)
exp(u)w → exp(w u). (7.28)

The goal of this operation is described in the following definition.

Definition 7.8. An algebraic expression u is in exponential-contracted
form if it satisfies the following properties.

1. Each product in u contains at most one operand that is an exponential
function.

2. Each power in u does not have an exponential function for its base.

3. Each complete sub-expression of u is in algebraic-expanded form.

Properties (1) and (2) are obtained by applying the transformations
(7.27) and (7.28). We have included property (3) because algebraic expan-
sion creates new opportunities to apply these rules. This point is illustrated
in the next example.

Example 7.9. Consider the manipulation

exp(x) (exp(x) + exp(y)) = (exp(x))2 + exp(x) exp(y)
= exp(2 x) + exp(x+ y).

The expression on the left is not in contracted form because it is not in
algebraic-expanded form. Algebraic expansion gives a new sum with two
operands, a new power and a new product, that are not in contracted form.
Applying the transformations (7.27) and (7.28) we obtain the contracted
form. �

7See footnote 1 on page 276 for some remarks about the validity of these transfor-
mations in real and complex contexts.
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Procedure Contract exp(u);
Input

u : an algebraic expression;
Output

an algebraic expression in exponential-contracted form;
Local Variables

v;
Begin

1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 v := Map(Contract exp, u);
5 if Kind(v) ∈ {” ∗ ”, ” ∧ ”} then
6 Return(Contract exp rules(v))
7 else
8 Return(v)

End

Figure 7.4. The main MPL procedure that transforms an algebraic expression to
exponential-contracted form. (Implementation: Maple (txt), Mathematica (txt),
MuPAD (txt).)

Example 7.10. Consider the manipulation

exp(exp(x))exp(y) = exp(exp(x) exp(y))
= exp(exp(x+ y)).

The expression on the left is not in contracted form because it is a power
with an exponential for a base. Applying Equation (7.28) we obtain an
expression with a new product that is not in contracted form. Applying
Equation (7.27) we obtain the contracted form. �

Procedures8 for exponential contraction are shown in Figures 7.4 and
7.5. Notice that there is an outer main procedure Contract exp and an inner
procedure Contract exp rules. We have divided the computation in this
way to account for the two types of recursion that occur in the algorithm
and to indicate clearly where algebraic expansion or a reapplication of the
rules is required.

The recursion that is used to traverse all operands of the expression tree
is obtained with the Map operator in line 4 of Contract exp. At line 6, this

8See footnote 2 on page 276 concerning the Mathematica implementation of these
procedures.
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Procedure Contract exp rules(u);
Input

u : an algebraic expression that is sent by either Contract exp
or a recursive call of this procedure;

Output
an algebraic expression in exponential-contracted form;

Local Variables v, b, s, p, i, y;
Begin

1 v := Expand main op(u);
2 if Kind(v) = ” ∧ ” then
3 b := Operand(v, 1);
4 s := Operand(v, 2);
5 if Kind(b) = exp then
6 p := Operand(b, 1) ∗ s;
7 if Kind(p) ∈ {” ∗ ”, ” ∧ ”} then
8 p := Contract exp rules(p);
9 Return(exp(p))
10 else
11 Return(v)
12 elseif Kind(v) = ” ∗ ” then
13 p := 1;
14 s := 0;
15 for i := 1 to Number of operands(v) do
16 y := Operand(v, i);
17 if Kind(y) = exp then
18 s := s+Operand(y, 1)
19 else
20 p := p ∗ y;
21 Return(exp(s) ∗ p)
22 elseif Kind(v) = ” + ” then
23 s := 0;
24 for i := 1 to Number of operands(v) do
25 y := Operand(v, i);
26 if Kind(y) ∈ {” ∗ ”, ” ∧ ”} then
27 s := s+ Contract exp rules(y)
28 else
29 s := s+ y;
30 Return(s)
31 else
32 Return(v)

End

Figure 7.5. The inner MPL procedure for exponential contraction. (Implemen-
tation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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procedure calls on Contract exp rules which applies algebraic expansion
and the transformation rules (Equations (7.27) and (7.28)). Notice that
we only invoke Contract exp rules when v is a product or a power.

The second type of recursion occurs when either algebraic expansion or
an application of one of the contraction rules creates a new sum, product,
or power that is not in contracted form. This recursion is invoked at lines 8
and 27 of Contract exp rules. At line 1 we algebraically expand the input
expression. To avoid redundant recursion, we use the Expand main op op-
erator that does not recursively expand its operands (Exercise 6, page 258).
When v is power (line 2) with an exponential function at its base (line 5),
we apply Equation (7.28) to obtain a new operand p of the exponential.
Then, if p is a product or a power (by automatic simplification), we recur-
sively contract this expression (lines 7 and 8). (This recursion is required
in Example 7.10.) If the base is not an exponential, no transformation is
possible and we return v (line 11).

Next, if v is a product (line 12), we loop through its operands (lines
13-20) combining exponentials with Equation (7.27). Lines 22-30 handle
the case when v is a sum. (This part is only invoked when a sum is created
by the expansion in line 1.) In this case, we loop through the operands and
recursively contract when an operand is a product or power. Finally, lines
31 and 32 apply to any other type of expression that was created by the
expansion at line 1. For example, for u = (

√
2 + 1) (

√
2− 1) the expansion

at line 1 assigns 1 to v which is returned at line 32.

Appraisal of Contract exp. Although exponential contraction acts as an
expression simplifier for many expressions with exponentials, it does not
simplify all such expressions. For example, consider the exponential con-
traction

Contract exp
(

1
exp(x) (exp(y) + exp(−x)) − exp(x+ y) − 1

(exp(x+ y))2 − 1

)
(7.29)

→ exp(−x)
exp(y) + exp(−x) − exp(x+ y)

(exp(x+ y))2 − 1
+

1
(exp(x + y))2 − 1

.

Although the (uncontracted) expression in (7.29) simplifies to 0, this simpli-
fication is not obtained with Contract exp. There are two reasons for this.
First, since the first term in (7.29) has the internal form exp(x)−1 (exp(y)+
exp(−x))−1 which is in algebraic-expanded form, the contraction operation
does not distribute exp(x) over the sum exp(y) + exp(−x). Next, in the
second term in (7.29), the numerator and denominator have a common fac-
tor exp(x + y) − 1 that is not eliminated by exponential contraction. One
way to simplify the expression in (7.29) is to first rationalize it using the
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Rationalize expression operator described in Section 6.5 and then contract
the numerator of the resulting expression. An operator that obtains the
simplification in this way is described in Exercise 4.

Trigonometric Contraction

The sin and cos functions satisfy the identities:

sin(θ) sin(φ) =
cos(θ − φ)

2
− cos(θ + φ)

2
, (7.30)

cos(θ) cos(φ) =
cos(θ + φ)

2
+

cos(θ − φ)
2

, (7.31)

sin(θ) cos(φ) =
sin(θ + φ)

2
+

sin(θ − φ)
2

. (7.32)

The trigonometric contraction operation applies these identities in a left to
right manner. By repeatedly applying the identities (7.30) and (7.31), we
also obtain contracted forms for sinn(θ) and cosn(θ) (for an integer n > 1).
The goal of this operation is given in the following definition.

Definition 7.11. An expression u is in trigonometric-contracted form
if it satisfies the following properties.

1. A product in u has at most one operand that is a sine or cosine.

2. A power in u with a positive integer exponent does not have a base
that is a sine or cosine.

3. Each complete sub-expression of u is in algebraic-expanded form.

Notice that the definition does not refer to the tan, cot, sec, and csc
functions because these functions can be expressed in terms of sin and cos.
We have included property (3) because algebraic expansion creates new
opportunities to apply the contraction rules. This point is illustrated in
the next two examples.

Example 7.12. Consider the manipulation

(sin(x) + cos(y)) cos(y) = sin(x) cos(y) + cos2(y)

=
sin(x+ y)

2
+

sin(x− y)
2

+
1
2

+
cos(2 y)

2
.
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The expression on the left is not in contracted form because it is not in
algebraic-expanded form. By expanding the expression, we obtain a new
sum with two operands, a new product and a new power, that are not in
contracted form. By applying the identities (7.32) and (7.31), we obtain
the contracted form. �

Example 7.13. Consider the manipulation

sin2(x) cos2(x) =
(

1
2
− cos(2 x)

2

) (
1
2

+
cos(2 x)

2

)
(7.33)

=
1
4
− cos2(2 x)

4
(7.34)

=
1
4
− 1/2 + cos(4 x)/2

4

=
1
8
− cos(4 x)

8
.

The expression on the left is not in contracted form because it contains a
sine and cosine to positive integer powers. Applying the identities (7.30)
and (7.31), we obtain a new product that is not in contracted form because
it is not in algebraic-expanded form. Algebraically expanding the right
side of Equation (7.33), we obtain in (7.34) a new sum that again is not
in contracted form because it contains a positive integer power of a cosine.
Applying the identity (7.31) and algebraically expanding, we obtain the
contracted form. �

A simple algorithm for trigonometric contraction is obtained by repeat-
edly applying the identities (7.30), (7.31), and (7.32) although the approach
involves an excessive amount of recursion. As with exponential contraction,
we can reduce the redundant recursion by dividing the operation into two
procedures. Another improvement involves the contraction of positive in-
teger powers of sines and cosines using the following representations. For
n a positive integer,

cosn(θ) =




(
n

n/2

)
2n

+
1

2n−1

n/2−1∑
j=0

(
n

j

)
cos((n− 2j)θ), n even,

1
2n−1

�n/2�∑
j=0

(
n

j

)
cos((n− 2j)θ), n odd,

(7.35)
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sinn(θ) =


(−1)n
(

n
n/2

)
2n

+
(−1)

n
2

2n−1

n/2−1∑
j=0

(−1)j

(
n

j

)
cos((n− 2j)θ), n even,

(−1)
n−1

2

2n−1

�n/2�∑
j=0

(
n

j

)
(−1)j sin((n− 2j)θ), n odd,

(7.36)

where the floor function �n/2� is the largest integer ≤ n/2. We verify the
representation for cosn(θ) for n odd. Using the exponential representation
for cos(θ) and the binomial theorem, we have

cosn(θ) =
(
eiθ + e−iθ

2

)n

=
1
2n

n∑
j=0

(
n

j

)
(eiθ)n−j(e−iθ)j

=
1
2n

n∑
j=0

(
n

j

)
ei(n−2j)θ

=
1
2n


�n/2�∑

j=0

(
n

j

)
ei(n−2j)θ +

n∑
j=�n/2�+1

(
n

j

)
ei(n−2j)θ


 ,

where the two sums in the last expression have the same number of terms.
We can combine these two sums by expressing the second sum in terms
of a new summation index k = n − j. Observe that since n is odd, n =
2�n/2�+1, and this implies that k = �n/2� when j = �n/2�+1. Therefore,
by reversing the order of summation in the second sum and using the
identity (

n

n− k

)
=
(
n

k

)
,

we have

cosn(θ) =
1
2n


�n/2�∑

j=0

(
n

j

)
ei(n−2j)θ +

�n/2�∑
k=0

(
n

k

)
ei(n−2(n−k))θ




=
1
2n

�n/2�∑
j=0

(
n

j

)
(ei(n−2j)θ + e−i(n−2j)θ)
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=
1

2n−1

�n/2�∑
j=0

(
n

j

)
cos((n− 2j)θ).

The derivations for the other cases are similar (Exercise 6).

Example 7.14. Using Equation (7.35) we have

cos4(x) = 1/8 cos(4 x) + 1/2 cos(2 x) + 3/8. �

Procedures for trigonometric contraction are given in Figures 7.6, 7.7,
and 7.8. The recursion that is used to traverse all operands of an expression
tree is obtained with the Map operator in line 4 of Contract trig. At
line 6, this procedure calls on Contract trig rules, which applies algebraic
expansion and calls on other procedures that apply the transformation rules
in (7.30), (7.31), and (7.32).

The second type of recursion occurs when either algebraic expansion
or an application of one of the contraction rules creates a new sum, prod-
uct, or power that is not in contracted form. This recursion is invoked
in Contract trig rules at line 15 through Contract trig product and directly
at line 21. At line 1 of Contract trig rules, we algebraically expand the

Procedure Contract trig(u);
Input

u : an algebraic expression;
Output

an algebraic expression in trigonometric-contracted form;
Local Variables

v;
Begin

1 if Kind(u) ∈ {integer, fraction, symbol} then
2 Return(u)
3 else
4 v := Map(Contract trig , u);
5 if Kind(v) ∈ {” ∗ ”, ” ∧ ” } then
6 Return(Contract trig rules(v))
7 else
8 Return(v)

End

Figure 7.6. The main MPL procedure that transforms an algebraic expression
to trigonometric-contracted form. (Implementation: Maple (txt), Mathematica
(txt), MuPAD (txt).)
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Procedure Contract trig rules(u);
Input

u : an algebraic expression (sum, product, power) that is sent by
either Contract trig, Contract trig power, or a recursive call
of this procedure;

Output
an algebraic expression in trigonometric-contracted form;

Local Variables
v, s, c, d, i, y;

Begin
1 v := Expand main op(u);
2 if Kind(v) = ” ∧ ” then
3 Return(Contract trig power(v))
4 elseif Kind(v) = ” ∗ ” then
5 s := Separate sin cos(v);
6 c := Operand(s, 1);
7 d := Operand(s, 2);
8 if d = 1 then
9 Return(v)
10 if Kind(d) ∈ {sin, cos} then
11 Return(v)
12 elseif Kind(d) = ” ∧ ” then
13 Return(Expand main op(c ∗ Contract trig power(d)))
14 else
15 Return(Expand main op(c ∗ Contract trig product(d)))
16 elseif Kind(v) = ” + ” then
17 s := 0;
18 for i := 1 to Number of operands(v) do
19 y := Operand(v, i);
20 if Kind(y) ∈ {” ∗ ”, ” ∧ ”} then
21 s := s+ Contract trig rules(y)
22 else
23 s := s+ y;
24 Return(s)
25 else
26 Return(v)

End

Figure 7.7. The inner MPL procedure for trigonometric contraction. (Imple-
mentation: Maple (txt), Mathematica (txt), MuPAD (txt).)
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Procedure Contract trig product(u);

Input
u: a product of sines, cosines, and positive integer powers

of sines and cosines;
Output

the trigonometric-contracted form of u;
Local Variables

A,B, θ, φ;
Begin

1 if Number of operands(u) = 2 then
2 A := Operand(u, 1);
3 B := Operand(u, 2);
4 if Kind(A) = ” ∧ ” then
5 A := Contract trig power(A);
6 Return(Contract trig rules(A ∗ B))
7 elseif Kind(B) = ” ∧ ” then
8 B := Contract trig power(B);
9 Return(Contract trig rules(A ∗ B))
10 else
11 θ := Operand(A, 1);
12 φ := Operand(B, 1);
13 if Kind(A) = sin and Kind(B) = sin then
14 Return(cos(θ − φ)/2− cos(θ + φ)/2)
15 elseif Kind(A) = cos and Kind(B) = cos then
16 Return(cos(θ + φ)/2 + cos(θ − φ)/2)
17 elseif Kind(A) = sin and Kind(B) = cos then
18 Return(sin(θ + φ)/2 + sin(θ − φ)/2)
19 elseif Kind(A) = cos and Kind(B) = sin then
20 Return(sin(θ + φ)/2 + sin(φ − θ)/2)
21 else
22 A := Operand(u, 1);
23 B := Contract trig product(u/A);
24 Return(Contract trig rules(A ∗ B))

End

Figure 7.8. The MPL procedure Contract trig product that contracts products
whose operands are sines, cosines, or positive integer powers of sines or cosines.
(Implementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

input expression using the operator Expand main op (Exercise 6, page 258).
When v is a power (lines 2-3), we contract using Contract trig power which
checks if v is a positive integer power of a sine or cosine and if so, applies
Equation (7.35) or Equation (7.36) (Exercise 7).
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Next, in lines 4-15, when v is a product we first apply Separate sin cos
(Exercise 12, page 152) which returns a two element list with the operands
of v separated into two categories: the product of the operands that are
sines, cosines, or positive integer powers of sines and cosines (represented
by d), and the product of the remaining operands (represented by c). At
lines 8-9, when d = 1, there are no opportunities for contraction, and so v
is returned. In a similar way, at lines 10-11, when d is a sine or cosine, there
are no opportunities for contraction, and so v is returned. At lines 12-13,
when d is a positive integer power of a sine or cosine, we contract using
Contract trig power which applies Equation (7.35) or Equation (7.36) (Ex-
ercise 7). Because this procedure returns a sum, we algebraically expand to
distribute c over the sum so that property (3) in Definition 7.11 is satisfied.
Line 15 handles the case when d is a product of sines, cosines, or positive in-
teger powers of sines and cosines using the procedure Contract trig product
which is described below. Again, expansion is required because the output
of this procedure is a sum.

Lines 16-24 handle the case when v is a sum, and lines 25-26 handle
other types of expressions that may arise because of the expansion at line 1.

Contract trig product, which contracts a product of sines, cosines and
positive integer powers of sines and cosines, is shown in Figure 7.8. The
case where u has two operands is handled in lines 1-20. When one of the
operands is a power, this power is contracted (line 5 or 8), and the new
product is contracted with a recursive call to Contract trig rules (line 6 or
9). At lines 11-20, both A and B are either sines or cosines, and so we
apply the transformations in (7.30), (7.31), or (7.32). The case when u
has three or more operands is handled in lines 21-24. In this situation, the
product with the first operand removed is contracted recursively (line 23),
and then the new product is contracted with Contract trig rules (line 24).

Simplification of Trigonometric Expressions

We now have all the building blocks that are needed to construct an oper-
ator that can verify a large class of trigonometric identities.

Automatic Simplification of Trigonometric Functions. Because our simplifica-
tion operator performs in the context of automatic simplification, we con-
sider first the trigonometric transformations that are applied in this setting.
These include the following transformations.

1. Evaluation of trigonometric functions. Let f(x) be a trigono-
metric function. Typically, automatic simplification evaluates f(k π/n)
where k and n �= 0 are integers and n is small (usually n = 1, 2, 3, 4, 6).
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Although the values f(k π/n) can always be expressed using radicals, the
representations are quite involved for large values of n. For example

sin(π/60) =

√
5 +

√
5

8
−
√

5 +
√

5
√

3
8

−
(
−

√
5

4 + 1/4
)√

2

4

−
(
−

√
5

4 + 1/4
)√

2
√

3

4
. (7.37)

Because it is rarely useful to evaluate f(k π/n) for large values of n, these
evaluations are usually not performed during automatic simplification (Ex-
ercise 3, page 56).

2. Transformation to argument with positive sign and other
standard forms. In most computer algebra systems, automatic simplifi-
cation transforms a trigonometric function to an equivalent form with an
argument with positive sign. This includes transformations such as

sin(−2/3) → − sin(2/3), sin(−x) → − sin(x), cos(−2 a b) → cos(2 a b).

In addition, in both Maple and Mathematica automatic simplification trans-
forms trigonometric functions so that arguments that are sums are trans-
formed to a standard form, although each system uses its own scheme to
determine the standard form. For example, the Maple system obtains the
transformation

sin(1 − x) → − sin(x− 1),

while the Mathematica system obtains the opposite transformation

Sin[x− 1] → −Sin[1− x].

3. Transformations to arguments in the first quadrant. In some
systems, automatic simplification transforms a trigonometric function with
an argument that includes a rational multiple of π to an equivalent function
where the multiple of π is between 0 and π/2. Typical transformations are

sin(15π/16) → sin(π/16), sin(x+ 2π/3) → cos(x+ π/6).

4. Elementary trigonometric expansions. In some systems, au-
tomatic simplification applies a limited form of trigonometric expansion
when the argument of a trigonometric function is a sum with an operand
of the form k π/2 where k is an integer. For example,

sin(x+ π/2 + y) → cos(x+ y), cos(x+ 2π) → cos(x).
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MPL Maple Mathematica MuPAD

sin(π/3)

→ √
3/2

√
3/2

√
3/2

√
3/2

sin(−x)
→ − sin(x) −sin(x) −Sin[x] −sin(x)

sin(1− x)
→ − sin(x − 1) −sin(x− 1) Sin[1− x] sin(−x+ 1)

sin(−1 + x)
→ sin(−1 + x) sin(−1+ x) −Sin[1− x] sin(x− 1)

sin(15π/16)
→ sin(π/16) sin(π/16) Sin[15π/16] sin(π/16)

sin(x+ 2π/3)
→ cos(x+ π/6) cos(x+ π/6) Sin[2 π/3+ x] sin(x+ 2π/3)

sin(x+ π/2 + y)
→ cos(x+ y) cos(x+ y) Cos[x+ y] sin(x+ y+ π/2)

cos(x+ 2 π)
→ cos(x) cos(x) Cos[x] cos(x)

sin(x)/ cos(x)
→ sin(x)/ cos(x) sin(x)/cos(x) Tan[x] sin(x)/cos(x)

Figure 7.9. Examples of trigonometric transformations in automatic simplifi-
cation in Maple, Mathematica, and MuPAD. (Implementation: Maple (mws),
Mathematica (nb), MuPAD (mnb).)

However, for other rational multiples of π (such as sin(x + π/6)), the ex-
pansion does not occur.

5. Function transformations. The Mathematica system obtains the
following function transformations in automatic simplification:

Sin[x]/Cos[x] → Tan[x],
Cos[x]/Sin[x] → Cot[x],

1/Sin[x] → Csc[x],
1/Cos[x] → Sec[x].

These transformation are not obtained by automatic simplification in either
Maple or MuPAD.

Examples of trigonometric transformations in automatic simplification
in Maple, Mathematica, and MuPAD are given in Figure 7.9.

The Simplification Algorithm. To motivate the simplification algorithm, let’s
consider a number of examples.
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Example 7.15. Consider the expression

(cos(x) + sin(x))4 + (cos(x) − sin(x))4 + cos(4 x) − 3. (7.38)

The trigonometric contraction algorithm simplifies this expression to 0.
On the other hand, the trigonometric expansion algorithm described

in Section 7.1 (together with algebraic expansion) does not simplify Ex-
pression (7.38) to 0. These operations obtain the trigonometric-expanded
form

3 cos4(x) + 6 cos2(x) sin2(x) + 3 sin4(x) − 3. �

Example 7.16. Consider the expression

sin(x) + sin(y) − 2 sin(x/2 + y/2) cos(x/2 − y/2).

Again, the contraction algorithm simplifies this expression to 0. On the
other hand, trigonometric expansion gives the expanded form

sin(x) + sin(y) −
(
2 (sin(x/2) cos(y/2) + cos(x/2) sin(y/2))

(cos(x/2) cos(y/2) + sin(x/2) sin(y/2))
)
. �

These examples suggest that trigonometric contraction is a more pow-
erful simplifier than trigonometric expansion. However, the next example
shows that both expansion and contraction play a role in simplification.

Example 7.17. Consider the expression

sin3(x) + cos3(x+
π

6
) − sin3(x+

π

3
) +

3 sin(3 x)
4

. (7.39)

Although this expression simplifies to 0, this is not obtained with trigono-
metric contraction, which obtains

3
4

sin(x) +
3
4

cos
(
x+

π

6

)
− 3

4
sin
(
x+

π

3

)
.

The problem here is that the simplification requires the trigonometric ex-
pansion of cos(x+π/6) and sin(x+π/3) and evaluation of the resulting sin
and cos functions at π/3 or π/6. The simplification to 0 is obtained by first
expanding Expression (7.39) and then contracting the resulting expression.

�

Example 7.18. Consider the identity

sin(x) + sin(3 x) + sin(5 x) + sin(7 x)
cos(x) + cos(3 x) + cos(5 x) + cos(7 x)

= tan(4 x).
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Procedure Simplify trig(u);
Input

u : an algebraic expression;
Output

either an algebraic expression in trigonometric contracted form
or the global symbol Undefined;

Local Variables
v, w, n, d;

Begin
1 v := Trig substitute(u);
2 w := Rationalize expression(v);
3 n := Expand trig(Numerator(w));
4 n := Contract trig(n);
5 d := Expand trig(Denominator(w));
6 d := Contract trig(d);
7 if d = 0 then
8 Return(Undefined)
9 else
10 Return(n/d)

End

Figure 7.10. The MPL procedure Simplify trig . (Implementation: Maple (txt),
Mathematica (txt), MuPAD (txt).)

We verify the identity by subtracting the right side from the left side and
showing this expression simplifies to 0. Our algorithm does this by replacing
tan(4x) with sin(4x)/ cos(4x), rationalizing the resulting expression, and
then contracting the numerator of the rationalized form. In this case the
numerator of the rationalized expression is

cos(4 x) (sin(x) + sin(3 x) + sin(5 x) + sin(7 x))
− (cos(x) + cos(3 x) + cos(5 x) + cos(7 x)) sin(4 x),

which has 0 as a contracted form. �

A procedure that obtains the simplifications in the above examples is
given in Figure 7.10. At line 1 we form a new expression by replacing the
tan, sec, cot, and csc functions with equivalent forms with sin and cos using
the Trig substitute operator9 (given in Section 5.2), and at line 2 we ratio-

9 These substitutions do not occur in Mathematica because automatic simplification
performs the inverse transformations (see footnote 2, page 187). Our implementation of
the algorithm in this system does not include the step in line 1.
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nalize the resulting expression. At line 3, we trigonometrically expand the
numerator of w so that a rational multiple of π that appears as an operand
of a sum in an argument of a sin or cos now appears directly as the argu-
ment of a sin or cos. This operation together with automatic simplification
obtains the numerical representation of some sines and cosines. (This op-
eration is required in Example 7.17.) At line 4, we contract the numerator
and in lines 5 and 6 apply expansion and contraction to the denominator.
Finally, at line 7 we check if the denominator has been simplified to 0, and,
if so, return the global symbol Undefined. Otherwise, we return n/d.

Appraisal of Simplify trig. The Simplify trig operator can verify many trig-
onometric identities that appear in trigonometry textbooks. In this role,
it is most effective by showing that the difference of the two sides of an
identity simplify to 0, as was done in Example 7.18. For expressions that
do not simplify to 0, however, it is less successful. For example, for the
identity

sin(x) + sin(3 x) + sin(5 x) + sin(7 x)
cos(x) + cos(3 x) + cos(5 x) + cos(7 x)

=
sin(4 x)
cos(4 x)

,

the smaller expression on the right is a simpler form than the one on the
left. However, Simplify trig does not change either side of this expres-
sion because the numerators and denominators on both sides are in con-
tracted form.

In addition, identities that require other (non-trigonometric) transfor-
mations might not be verified with Simplify trig. For example, although
the expression

sin2

(
x+ 1
x+ 2

)
+ cos2

(
1 + 1/x
1 + 2/x

)
simplifies to 1, this is not obtained by our algorithm because it does not
recognize the arguments of sin and cos as equivalent expressions.

The algorithm depends, of course, on the transformations applied to
trigonometric functions during automatic simplification. For example, both
the Maple and Mathematica implementations of the algorithm simplify
Expression (7.39) to 0. On the other hand, the MuPAD implementation
obtains

− sin(x− y)
2

− sin(−x+ y)
2

because arguments of sines that are sums are not transformed to a stan-
dard form in this system. In a similar way, both the Maple and MuPAD
implementations simplify

sin(x) + sin(3 x) + sin(5 x) + sin(7 x)
cos(x) + cos(3 x) + cos(5 x) + cos(7 x)

− tan(4 x)
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to 0, while the Mathematica implementation does not because automatic
simplification does not permit the transformation

tan(4 x) → sin(4 x)/ cos(4 x).

Exercises
1. Determine if each of the following expressions is in exponential-contracted

form. If the expression is not in exponential-contracted form, transform it
to this form.

(a)
1

(1 + exp(x))(1 + exp(y))
.

(b) exp((x+ y)(x − y)).

(c) exp((a+ b) exp(x))exp(y).

2. An algebraic expression u is in log-contracted form if it satisfies the follow-
ing two properties.

(a) A sum in u has at most one operand that is a logarithm.

(b) A product in u that has an operand that is a logarithm does not also
have an operand that is an integer or fraction.

For example, a ln(x) + a ln(y) + (ln(x))2 is in log-contracted form, while
ln(x) + ln(y) + 2 ln(x) is not. An algebraic expression can be transformed
to log-contracted form by applying the transformations

ln(u) + ln(v) → ln(u v), (7.40)

n ln(u) → ln(un), (7.41)

where n is an integer or fraction. If a product contains more than one
logarithm, (7.41) is applied to the first operand that is a logarithm. Give
a procedure Contract log(u) that transforms an algebraic expression u to
log-contracted form.

3. The Contract exp algorithm encounters a division by 0 if the transformation
rules transform a sub-expression in a denominator to 0. For example, this
occurs with 1/(exp(2x) − (exp(x))2). Modify the algorithm so that it
recognizes this situation and returns the global symbol Undefined when
it occurs.

4. Let u be an algebraic expression. Give a procedure for Simplify exp(u)
which rationalizes u and then exponentially contracts the numerator and
denominator of the resulting expression. If the denominator contracts to
0, the procedure returns the global symbol Undefined. Your procedure
should simplify Expression (7.29) to 0.

5. Find the trigonometric-contracted form of sin(x) cos2(x) cos(2x).

6. Verify Equation (7.35) for n even and Equation (7.36) for n even and n
odd.
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7. Let u be a power. Give a procedure Contract trig power(u) that does the
following.

(a) If the exponent of u is a positive integer and the base is a sine or
cosine, then contract u using Equation (7.35) or Equation (7.36).
The floor function is obtained in Maple and MuPAD with floor and
in Mathematica with Floor.

(b) If the exponent of u is not a positive integer or the base is not a sine
or cosine, then return u.

8. The Contract trig algorithm encounters a division by 0 if the transforma-
tion rules transform a sub-expression in a denominator to 0. For example,
this occurs with 1/(sin(2x) − 2 sin(x) cos(x)). Modify the algorithm so
that it recognizes this situation and returns the global symbol Undefined
when it occurs.

9. (a) State and derive the formulas similar to Equation (7.35) or Equation
(7.36) for sinhn(θ) and coshn(θ).

(b) Modify the algorithm Contract trig so that it also contracts the hy-
perbolic functions sinh and cosh.

Identities for sinh and cosh are given in Exercise 9, page 287.

10. This exercise refers to the Trig form operator described in Exercise 8, page
211. Modify this procedure so that it evaluates

	
sinm(ax) cosn(ax) dx by

transforming sinm(a x) cosn(ax) to contracted form and then applying the
Integral operator to the contracted form.

11. Each of the following expressions simplifies to 0. Is this simplification
obtained by Simplify trig? If 0 is obtained, then explain how this is done.
If not, explain why not.

(a) tan(x/2)− (sin(x)/(1 + cos(x))).

(b) sin2(15π/16) + cos2(π/16)− 1.

(c) sin2(x2 − 1) + cos2
i
1− x2J− 1.

(d) sin2

W
x+

1

x

}
+ cos2
W

x2 + 1

x

}
− 1.

(e) sin
Q
x
Q
1 +

π

6x

ww
−

√
3/2 sin(x)− 1/2 sin(x).

(f) sin
Q i

sin2(x) + cos2(x)
J
(x+ π/6)

w
−

√
3/2 sin(x)− 1/2 sin(x).

(g) 8 cos3(2π/7) + 4 cos2(2π/7) − 4 cos(2π/7)− 1.

Further Reading

See Hobson [47] for other approaches to trigonometric expansion and contraction.

Gutierrez and Recio [42] discuss new algorithms for trigonometric simplification

and some applications to robotics.
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