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Sergei Abramov

PREFACE

The Waterloo Workshop on Computer Algebra (WWCA-2006) was held
on April 10-12, 2006 at Wilfrid Laurier University (Waterloo, Ontario,
Canada) hosted by CARGO (http://www.cargo.wlu.ca). The workshop
provided a forum for researchers and practitioners to discuss recent ad-
vances in the area of Computer Algebra. WWCA-2006 was dedicated to
the 60th birthday of Sergei Abramov (Computer Center of the Russian
Academy of Sciences, Moscow, Russia) whose influential contributions to
symbolic methods are highly acknowledged by the research community and
adopted by the leading Computer Algebra systems. The workshop attracted
world-renowned experts from both the academia and the software industry.
Presentations on original research topics or surveys of the state of the art
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advances in particular areas of Computer Algebra were made by

Sergei Abramov, CCRAS, Russia

Moulay Barkatou, University of Limoges, France

Jacques Carette, McMaster University, Canada

Robert Corless, University of Western Ontario, Canada

Jiirgen Gerhard, Maplesoft, Canada

Oleg Golubitsky, Queens University, Canada

Gaston Gonnet, ETH Zurich, Switzerland

Kevin Hare, University of Waterloo, Canada

Ilias Kotsireas, Wilfrid Laurier University, Canada

George Labahn, University of Waterloo, Canada

Ziming Li, Academy of Mathematics and System Sciences, China
Luc Rebillard, University of Waterloo, Canada

Bruno Salvy, INRIA Rocquencourt, France

Eric Schost, University of Western Ontario, Canada

Arne Storjohann, University of Waterloo, Canada

Serguei Tsarev, Krasnoyarsk State Pedagogical University, Russia
Mark van Hoeij, Florida State University, USA

Thomas Wolf, Brock University, Canada

Doron Zeilberger, Rutgers University, USA

Eugene Zima, Wilfrid Laurier University, Canada
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Presentations abstracts are published by the ACM Communications in
Computer Algebra, Volume 40, Number 2, June 2006, Issue 156, pp. 52-59.

Success of the workshop was also due to the support of the Academic
Development Fund, Office of the Vice-President Academic, Research Of-
fice, and Department of Physics and Computer Science of Wilfrid Laurier
University.

This book presents a collection of formally refereed selected papers sub-
mitted after workshop. Topics discussed in this book are the latest advances
in algorithms of symbolic summation, factorization, symbolic-numeric lin-
ear algebra and linear functional equations, i.e. topics of symbolic compu-
tations that were extensively advanced due to Sergei’s influencial works.

This book wouldn’t have been possible without the contributions and
hard work of the anonymous referees, who supplied detailed referee reports
and helped authors improve their papers significantly.

Eugene Zima, Ilias Kotsireas

Wilfrid Laurier University,

75 University Avenue West,

Waterloo, Ontario, Canada N2L 3C5 April 2007
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HYPERGEOMETRIC SUMMATION REVISITED

S. A. ABRAMOV*

Dorodnicyn Computing Centre, Russian Academy of Sciences,
Vavilova 40, Moscow GSP-1, 119991, Russia
E-mail: sabramov@ccas.ru

M. PETKOVSEK'

Faculty of Mathematics and Physics, Unwversity of Ljubljana,
Jadranska 19, SI-1000 Ljubljana, Slovenia
E-mail: marko.petkovsek@fmf. uni-lj.si

We consider hypergeometric sequences, i.e., the sequences which satisfy lin-
ear first-order homogeneous recurrence equations with relatively prime poly-
nomial coefficients. Some results related to necessary and sufficient conditions
are discussed for validity of discrete Newton-Leibniz formula 3"} t(k) =
u(w + 1) — u(v) when u(k) = R(k)t(k) and R(k) is a rational solution of
Gosper’s equation.

Keywords: Symbolic summation; Hypergeometric sequences; Discrete Newton-
Leibniz formula.

1. Introduction

Let K be a field of characteristic zero (K = C in all examples). If ¢(k) €
K (k) then the telescoping equation

u(k+1)—u(k) = tk) (1)

may or may not have a rational solution u(k), depending on the type of t(k).
Here the telescoping equation is considered as an equality in the rational-
function field, regardless of the possible integer poles that (k) and/or t(k)
might have.

An algorithm for finding rational u(k) was proposed in 1971 (see Ref. 1).
It follows from that algorithm that if ¢(k) has no integer poles, then a

*Partially supported by RFBR under grant 07-01-00482-a.
tPartially supported by MVZT RS under grant P1-0294.
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rational u(k) satisfying (1), if it exists, has no integer poles either, and the
discrete Newton-Leibniz formula

w

> t(k) = u(w+ 1) — u(v) (2)

k=v
is valid for any integer bounds v < w. Working with polynomial and ra-
tional functions we will write f(k)Lg(k) for f(k),g(k) € KIk] to indi-
cate that f(k) and g(k) are coprime; if R(k) € K(k), then den(R(k))
is the monic polynomial from K[k] such that R(k) = ﬁf% for some
7(k) € K[k], £(k) Lden(R(k)).

The problem of solving equation (1) can be considered for sequences.

If t(k) is a sequence, we use the symbol E for the shift operator w.r. to
k, so that Et(k) = t(k + 1). In the rest of the paper we assume that
the sequences under consideration are defined on an infinite interval I of
integers and either I = Z, or

I=Z>={keZ|k>1}, leZ

If a sequence t(k) defined on I is given, and a sequence u(k), which is also
defined on I and satisfies (1) for all k € I, is found (any such sequence is a
primitive of t(k)), then we can use formula (2) for any v < w with v, w € I.

Gosper’s algorithm,® which we denote hereafter by GA, discovered in
1978, focuses on the case where a given t(k) and an unknown u(k) are
hypergeometric sequences.

Definition 1.1. A sequence y(k) defined on an infinite interval I is hyper-
geometric if it satisfies the equation Ly(k) = 0 for all k € I, with

L =ay(k)E +ao(k) € K[k,E], ai(k)Lao(k). (3)

GA starts by constructing the operator L for a given concrete hypergeo-
metric sequence t(k), and this step is not formalized. On the next steps GA
works with L only, while the sequence ¢(k) itself is ignored (more precisely,
in the case of L = ay(k)E +ao(k), GA works with the certificate of t(k), i.e.,
with the rational function —%0(%-, but this is not essential). The algorithm
tries to construct a rational function R(k), which is a solution in K (k) of

Gosper’s equation
ao(k)R(k + 1) 4+ a1(k)R(k) = —a1(k) (4)

(such R(k), when it exists, can also be found by general algorithms from
Refs. 2,3). If such R(k) exists then

R(k + Dt(k + 1) — R(k)t(k) = t(k)
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is valid for almost all integers k. The fact is that even when (k) is defined
everywhere on I, it can happen that R(k) has some poles belonging to I,
and u(k) = R(k)t(k) cannot be defined in such a way as to make (1) valid
for all integers from I. One can encounter the situation where formula (2)
is not valid even when all of

t(w),tlv+1),...,t(w), u(v),u(w+1)

are well-defined. The reason is that (1) may fail to hold at certain points
k of the summation interval. However, sometimes it is possible to define
the values of u(k) = R(k)t(k) appropriately for all integers k, even though
R(k) has some integer poles. In such well-behaved cases (2) can be used to
compute Y t(k) for any v < w, v,w € I.

Example 1.1.
Gosper’s equation, corresponding to L = kE — (k + 1)2, has a solution
R = 1. The sequences

0, if k<0,
tl(k)_{k-k!,iszo

and

(=1D*k .
ta(k) = { TE=DI" if k<0,
0, ifk>0
both satisfy Ly =0 on I = Z.

Generally speaking, (2) is not applicable to ¢;(k), but is applicable to
t2(k). We can illustrate this as follows. Applying (2) to ¢1(k) with v =
—1,w =1, we have

1 1 1

t](—l) -{-t]_(O) + t]_(l) = Etl(k) |k=2 — Etl(k) |k=—1 = 5 4-0=2
which is wrong, because t1(—1) 4+ ¢1(0) + ¢1(1) =0+ 0+ 1 = 1. Applying
(2) to ta with the same v, w, we have

1 1

t2(=1) + t2(0) + t2(1) = £ ta(k) [k=2 — £ t2(k) lk=-1 =0~ (=1) =1

which is correct, because ta(—1) + t2(0) +t2(1) =14+0+0=1.

In this paper we discuss some results related to necessary and sufficient
conditions for validity of formula (2) when u(k) = R(k)t(k), and R(k) is a
rational solution of corresponding Gosper’s equation. If such R(k) exists,
then we describe the linear space of all hypergeometric sequences t(k) that
are defined on I and such that formula (2) is valid for v = Rt and any
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integer bounds v < w such that v,w € I. The dimension of this space is
always positive (it can be even bigger than 1). We will denote

e by H; the set of all hypergeometric sequences defined on I;

e by L the set of all operators of type (3};

e by Vi(L), where L € L, the K-linear space of all sequences t(k)
defined on I for which Lt(k) =0 for all k € I;

e by Wi(R(k), L), where L € L and R(k) € K (k) is a solution of the
corresponding Gosper’s equation, the K-linear space of all t(k) €
Vi(L) such that (2) with u(k) = R(k)t(k) is valid for all v < w
with v,w € [.

The paper is a summary of the results that have been published in Refs. 4,5.
In addition we consider the case where Gosper’s equation has non-unique
rational solution (Section 3.2). In Section 2 we consider individual hyperge-
ometric sequences while in Section 3 we concentrate on spaces of the type

Wi (R(k),L).

2. Validity conditions of the discrete Newton-Leibniz
formula

2.1. A criterion

Theorem 2.1.%° Let L € L, t(k) € Vi(L), and let Gosper’s equation
corresponding to L have a solution R(k) € K(k), with den(R) = g(k). Then
t(k) € Wi(R(k), L) iff there exists a t(k) € H; such that t(k) = g(k)t(k)
forallk e I.

Example 2.1. Consider again the sequences t;(k),t2(k) on I = Z from
Example 1.1. We have ta(k) = ktz(k), where

—pk
Fa(k) = J—(_k_l)!, if k<0,
0, ifk>0
is a hypergeometric sequence defined everywhere:
Eta(k) — (k+ 1)tz(k) = 0.
On the other hand, if ¢1(k) = kt;(k) for some sequence t;(k), then
0, if k<0,
hik)=3 ¢ k=0,

klLif k>0
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where ¢ € C. Notice that the sequence #;(k) is not hypergeometric on Z,
for any ¢ € C.

2.2, Summation of proper hypergeometric sequences

Definition 2.1. Following conventional notation, the rising factorial power
(a)x and its reciprocal 1/(0) are defined for o, 5 € K and k € Z by

k—1
[[a+m) k=0
m=0

(@) = K] 1

—, k<0 1,2,...,|k|;
Tn]‘__Ila_m‘ < 1a#v1 !||

undefined, otherwise;

k—1 1
, k>0, 0,-1,...,1—k;

e L

(B)e [TB-m). k<o

m=1
undefined, otherwise.

Note that if (a); resp. 1/(8)k is defined for some k € Z, then (a)r41
resp. 1/(8)k—1 is defined for that k as well. Thus (a); and 1/(8); are
hypergeometric sequences which satisfy

(@41 = (@+E) @)k, (B+kE)/(Bksr = 1/(Bk (5)

whenever (a); and 1/(8)r+1 are defined.

Example 2.2. Let t(k) = (k — 2)(—1/2)x/(4k!). This hypergeometric se-
quence is defined for all k € Z (note that ¢(k) = 0 for ¥ < 0) and
satisfies Lt(k) = 0 for all n € Z where L = ay(k)E + ag(k) with
ag(k) = —(k — 1)(2k — 1) and ay(k) = 2(k — 2)(k + 1). Gosper’s equa-
tion, corresponding to L, has a rational solution

2k(k+1)
R(k) = ~%_a3 (6)
Equation (1) indeed fails at k = 1 and k = 2 because u(k) = R(k)t(k) is
undefined at k = 2. But if we cancel the factor k — 2 and replace u(k) by
the sequence

k) = k(k+1)(—;£!2)’°,
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then equation

u(k + 1) — a(k) = t(k) (7)
holds for all k& € Z, and
> tk) = a(w+1) - av). (8)
k=v

The sequence t(k) from Example 2.2 is an instance of a proper hyperge-
ometric sequence which we are going to define now. As it turns out, there
are no restrictions on the validity of the discrete Newton-Leibniz formula
for proper sequences (Theorem 2.2).

Definition 2.2. A hypergeometric sequence t(k) defined on an infinite
interval I of integers is proper if there are

e a constant z € K,
e a polynomial p(k) € K|[k],
e nonnegative integers gq,r,
e constants ai,...,oq, B1,...,5- € K
such that
[Ti-s (o)
t(k) = p(k)z" == (9)
H —1(Bi)k
forall k € I.

Theorem 2.2.* Let t(k) be a proper hypergeometric sequence defined on I
and given by (9). Denote a(k) = z[T]_, (k + a:) and b(k) = [T;_, (k + B;)-
If a polynomial y(k) € K[k] satisfies

a(k)y(k +1) —b(k —1)y(k) = p(k) (10)
and if
— k Hzg( )
wlk) = (k)z HJ 1(161)k 1

for allk € 1, then equation (7) holds for all k € I, and the discrete Newton-
Leibniz formula (8) is valid for all v < w, when v,w € I.

Notice that (10) has a solution in K[k] iff Gosper’s equation, corre-
sponding to the operator from £, annihilating t(k), has a solution in K (k).
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Example 2.3. The hypergeometric sequence

2k—3
) = O, (1)

which is defined for all £ € Z can be written as

[ 2s(k), k<2,
t(k) = {s(k), k>2,

where

s(k) = (2 = k)

is the proper sequence from Example 2.2. For w > 1, one should first split
summation range in two

w

k=0 k=2
then the discrete Newton-Leibniz formula can be safely used to evaluate
the sum on the right. However, applying directly (2) to (11) with (6) we
obtain

(w+1)(w+2) (3

2(w — 1)4w

D tk) =(7) uw+1)—u(0) =

k=0

(12)

w

If we assume that the value of (2!:-3) is 1 when £k =0 and —1 when k =1
(that is natural from combinatorial point of view) then the expression on

the right gives the true value of the sum only at w = 0.

2.3. When the interval I contains no leading integer
stngularity of L

Definition 2.3. For a linear difference operator (3) we call M = max({k €
Zy a1(k —1) = 0} U {—o0}) the mazimal leading integer singularity of L,

Proposition 2.1.* Let R(k) be a rational solution of (4). Then R(k) has
no poles larger than M — 1.

Theorem 2.3.* Let L € £, M be the marimal integer singularity of L,
1> M, I=12Zx and t(k) € Vi(L). Let Gosper’s equation, corresponding to
L, have a solution R(k) in K (k). Then t(k) € Wi(R(k), L).
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Example 2.4. For the sequence (11) we have ag(k) = —(2k — 1)(k — 1),
ai(k) = 2(k + 1)(k — 2), R(k) = 2k(k+ 1)/(k — 2), and u(k) = 2k(k +
1)(*:%)/((k — 2)4%). Thus M = 3, and the only pole of R(k) is k = 2.
As predicted by Theorem 2.3, the discrete Newton-Leibniz formula is valid
when, e.g., 3 <v < w.

3. The spaces Vi(L) and W;(R(k), L)
3.1. The structure of Wi(R(k), L)

Theorem 3.1.° Let L € £ and Gosper’s equation, corresponding to L, have
a solution R(k) € K(k), den(R) = g(k). Then

Wi(R(k), L) = g(k) - Vi(pp(L o g(k))),

where the operator pp(L o g(k)) is computed by removing from L o g the
greatest common polynomial factor of its coefficients.

In addition, if R = ;ﬂ(%}l, f(k)Lg(k), then the space of the corresponding
primitives of the elements of Wi(R(k), L) can be described as f(k)-Vi(pp(Lo

g(k)))-
We will denote by L the operator pp(L o g(k)).

Example 3.1. Consider again the operator L = kE — (k + 1)? from Ex-
ample 1.1 with I = Z. We have R = §, and

Lok=kEok—(k+1)2k=k(k+1)E—(k+1)2k=k(k+1)(E-k—1),

L=E-(k+1).

The space Wi(R(k),L) is generated by f;, and, resp., the space k -
Wi(R(k), L) is generated by kfa. In accordance with Theorem 3.1 the space
Wi (R(k), L) coincides with k- V;(L).

It is possible to give examples showing that in some cases
dim Wi (R(k),L) > 1.

Example 3.2.
Let L = 2(k*—4)(k—9)E — (2k—3)(k—1)(k—8), I = Z. Then Gosper’s
equation, corresponding to L, has the rational solution
2(k-3)k+1)
T k-9
Here g(k) = k — 9 and L = 2(k® — 4)E — (2k — 3)(k — 1). Any sequence ¢
which satisfies the equation Lt = 0 has ¢(k) = 0 for k =2 or £ < —2. The

R(k) =
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values of £(1) and £(3) can be chosen arbitrarily, and all the other values are
determined uniquely by the recurrence 2(k*—4)#(k+1) = (2k—3)(k—1)(k).
Hence dim V7 (L) = 2.

At the same time, dim V7 (L) = 3. Indeed, if Lt = 0, then t(—2) = ¢(2) =
t(9) = 0. The value t(k) = 0 from k = —2 propagates to all k£ < —2, but on
each of the integer intervals [-1,0,1], [3,4,5,6,7,8] and [10,11,...) we can
choose one value arbitrarily, and the remaining values on that interval are
then determined uniquely. A sequence t(k) € V;(L) belongs to W(R(k), L)
iff 22¢(10) — 13¢(8) = 0. So dim Wi (R(k), L) = 2.

3.2. When a rational solution of Gosper’s equation is not
unique

We give an example showing that if L € £ and Gosper’s equation, cor-
responding to L, has different solutions R;(k), R2(k) € K(k), then it is
possible that Wi (Ry(k),L) # Wi(Ra(k), L). Moreover, these two spaces
can have different dimensions.

Example 3.3. If L = kE — (k+1), then Gosper’s equation, corresponding
to L, is

—(k+1)R(k+1) +kR(k) = —k,
and its general rational solution is
k—1 ¢ Kk2—-k+2¢

2 k 2k

Consider the solutions
k-1 k2 —k+2
Ri(k) = —5— (g1(k) =1), and Ro(k) = ———— (g2(k) = k).
We have L o g;(k) = L, and W;(R;(k),L) = V;(L). This space has a
basis that consists of two linearly independent sequences:

k, if k<0,
t““_{mﬁk>o

and

0,if k<0,
bw){&ﬁk>&

So this space contains, e.g., the sequence t(k) = |k|.
We have Loga(k) = k(k+1)(E—1), therefore W;(Ra(k), L) is generated
by the sequence t(k) = k.
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If Gosper’s equation, corresponding to L € £, has non-unique solution
in K(k), then the equation Ly = 0 has a non-zero solution in K (k).

3.3. If Gosper’s equation has a rational solution R(k) then
WI(R'.' L) 7é 0

Theorem 3.2.5 Let L € L and let Gosper’s equation, corresponding
to L, have a solution R(k) € K(k). Then Wi(R(k),L) # 0 (i.e,
dim Wy (R(k),L) > 1).

Example 3.4.

Let L = (k+2)E — k. The rational function W%HT is a solution in K (k)
of the equation Ly = 0. Here R(k) = —k — 1, and —1/k is a solution of the
corresponding telescoping equation:

| 1 1

Fr1 TR RELD

The rational functions
1 1
e
have integer poles. Nevertheless, by Theorem 3.2 it has to be Wi (R(k), L) #
0 even when I = Z. The space W(R(k), L) is generated by the sequence

1, ifk=-1,
t(k) =< —1,if k=0,
0, otherwise,

while the primitive of ¢(k) is

(—k — 1)t(k) = {

If I =Z>,, then W;(R(k), L) is generated by the sequence t'(k)

1,if k=0,
0, otherwise.

_ 1
— k(k+1)*

By Theorem 2.3, if M is the maximal integer singularity of L, I >
M, I = Z>;, and Gosper’s equation, corresponding to L, has a solution
R(k) in K(k), then V(L) = W;(R(k), L). As a consequence, dim V;(L) =
dim Wy (R(k),L) = 1.
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Dedicated to Sergei Abramov on becoming FIVE-dozen years old
Explicit Formulas vs. Algorithms

In the old days, when one had to find some sequence, a(n), there were two
extremes. In the lucky case, one had an explicit formula. For example,
the probability of tossing a fair coin 2n times and getting exactly n Heads,
equals (2n)!/(22"n!?). Sometimes, cheatingly, one considered as ‘explicit’
expressions in terms of sums (or multisums) or integrals (or multi-integrals).
The other extreme was to just have a numerical algorithm, that for each
(numeric!) input n, found the output. In that case the algorithm was rated
by its efficiency. Another compromise was an asymptotic formula, valid
(approximately!) for large n.

But what’s a formula?, it is a kind of algorithm. Of course, it is more than
that, theoretically, but from a practical point of view it should be judged
by the efficiency of the implied algorithm.

*Accompanied by Maple packages AppsWZ and AppsWZmulti downloadable from Zeil-
berger's website. Sample input and output can be viewed in:
http://wuw.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/appswz.html. The re-
search of the second author was supported in part by the NSF.
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The Holonomic Ansatz

Let’s look at the explicit formulas that are called ‘closed-form’, or more
precisely hypergeometric sequences. A sequence a(n) is called hypergeo-
metric if the ratio a(n + 1)/a(n) is a rational function of n, i.e. a quo-
tient P(n)/Q(n) where P(n) and Q(n) are polynomials. For example for
the above-mentioned probability of getting exactly n Heads when tossing
a fair coin 2n times, p(n) := (2n)!/(2?"n!?), we have p(n + 1)/p(n) =
(2n + 1)/(2(n + 1)), or, by cross-multiplying

2(n+1)p(n+1) — (2n + 1)p(n) = 0.

This is an example of a first-order linear recurrence equation with
polynomial coefficients. Once you have the trivial value p(0) = 1 you
can use it to compile a table of p(n) for n < N, for any desired N in O(N)
operations.

The same is true for solutions of any linear recurrence equation with poly-
nomial coefficients,

L
S ay(n)p(n +i) = 0,
i=0

of order L. The only difference is that we need L initial conditions,
p(0),p(1),...,p(L — 1). We also assume that az(n) = 0 has no positive
integer roots.

Such sequences were dubbed P-recursive by Richard Stanley in his seminal
paper,® but we prefer the name holonomic. Zeilberger® famously showed
that many sequences that arise in combinatorics, probability, and elsewhere
are holonomic, and this was made into a full-fledged algorithmic theory by
Wilf and Zeilberger.®

In our humble opinion, a holonomic representation of a sequence is to be
considered explicit, since it is almost as good as a closed-form (i.e. hyperge-
ometric). In the previous literature on WZ theory, there were few scattered
examples of potential applications, but the focus was on the theory and the
algorithms, not on specific applications.

Why this Paper?

The purpose of this paper is to fill this gap. We only list five such applica-
tions, but the reader can doubtless find many others. It is hoped that our
implementation of these five applications will aid the reader to implement
other ones that he or she might be interested in.
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The Maple packages AppsWZ and AppsWZmulti

This article is accompanied by two Maple packages. AppsWZ that does ap-
plications of the single-variable case (see Ref. 1), and AppsWZmulti that
does applications of the multi-variable case (see Refs. 2,6).

Asymptotics

Another nice feature of being a solution of a linear recurrence equation
with polynomial coefficients is that using the Birkhoff-Trijinski method (see
Ref. 7 for a lucid exposition), one can deduce the asymptotics to any desired
order. This algorithm has been implemented by us in Maple, and is part of
both packages.

First Application: Rolling a Die

If instead of tossing a coin m times, you roll a k-faced die, marked with
positive or negative numbers, and you win the amount shown on the landed
face (or lose, if it is a negative number). What is the probability that after
n rolls, you break even? More generally, how likely are you to win exactly
d dollars?

If the i*" face (i = 1...k) shows the amount m;, and lands with probability
pi, let the probability generating function of the die be defined by

k
P(x) := Zpimm*.
i=1

It is very well known (and very very easy to see), that the probability, let’s
call it aq(n), of winding up with d dollars after n rolls is the constant term
of

P(z)®

zd

But that’s exactly grist for the Almkvist-Zeilberger mill! In the pack-
age AppsWZ this is accompanied by the commands RecProbVisit and
RecProbVisitE.
For example, let a(n) be the probability of rolling a fair (standard) die
2n times and having the total score being ezactly the expected value 7n.
Then a(n) satisfies the following third-order linear recurrence equation with
polynomial coefficients

—4(54+2n)(2n+3)(2n+1)(7Tn+19)(5n+11)(7Tn+20) (Tn+13) (n+2) (n+1)a(n)

+4(Tn + 20)(5 + 2n)(2n + 3)(n + 2)
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(25480n° 422349611 4 7550661 4 122323312 4 9468891 + 279936 )a(n+1) —
(51 4 6)(5 + 2n)(6 + 7n)(499359n° + 6777015n° + 38079431n*
+113390385n° 4 18872398612 + 1664692807 + 60800544)a(n + 2)+
30(5n + 14)(5n + 13)(5n + 12)(7Tn + 12)

(5n 4+ 11)(5n + 6)(Tn + 13)(6 + 7Tn)(n + 3)a(n + 3) =0,
and the Birkhoff-Trijinksi method implies that the asymptotics is:
(.197833497170804)n~ 2/ %(1 — (111/1400) /n — (12037 /5488000) /n>

+(1367631,/1097600000) /n° + ...).

Readers can produce their own output for the scenario of their choice.

Second Application: How many ways to have r people chip in to
pay a bill of n cents

In George Pélya’s classic ‘picture writing’ paper,* he considers the problem
of figuring out how many ways can one person pay a bill of n cents using any
number of coins. If the denominations are {d1,...,dx} ({1, 5, 10,25, 50,100}
in the US), then the required number is the coefficient of 2™ in the gener-
ating function

1
=

i=1

Calling this number a(n), this entails, trivially, a linear recurrence equation
with constant coefficients of order ZLI d;. But by allowing polynomial
coefficients, one can get, thanks to Almkvist-Zeilberger, a recurrence of
order < lem(dy,...,d).
More generally, of a,(n) is the number of ways of breaking n cents with (up
to) 7 people participating (or equivalently, one person with r pockets in his
or her pants or dress), the generating function is

I'i[ 1

— pdi\r’
iy (L—zs)r

and applying Almkvist-Zeilberger to

k
1 1
| e
=1
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produces a linear recurrence, still with polynomial coefficients (but now
these are polynomials in both n and r) of the above order. On the other hand
if you stick to constant coefficients then the order would be T(ELI d;), and
would only make sense for (small!) numeric v, while within the holonomic
ansatz, one can have symbolic r without any increase in the order. The
procedure that takes care of this problem in the Maple package AppsWZ is
TeamEffortMoneyChanging. For example, entering:
TeamEffortMoneyChanging({1,5,10,25},n,N,1);

would tell you that if a.(n) is the number of ways of breaking n cents
with (up to) r people chipping-in, using only pennies, nickels, dimes, and
quarters, and denoting by N the shift operator in n: (Nz(n) := z(n + 1)),
it turns out that a,(n) is annihilated by the following 30**-order linear
recurrence operator with polynomial coefficients:

(=41r — n) + (=7r)N + (=r)N? 4+ (=r)N> + (-r)N*+
(—47r—n—5)N5 4+ (=2r )N + (=2r)N7+(=2r) N8 4+ (—2r)N® 4 (—22r)N10
+(=2r)N1 4 (=2r)N12 4 (—=2r)N13 4 (—2r) N1
+(=22r) N+ (=2r) N6 - (=27) N1+ (=27 ) N84 (—2r) N1 (—22r) N0+
(—2r)N2! + (—=2r)N?2 4 (=2r)N® + (=2r)N?* + (—6r + n + 25)N?°
+(—r)NZ 4 (—r)N?" 4 (—r)N® & (—r)N?® 4 (n + 30) N,

Third Application: Hidden Markov Models

In contemporary bicinformatics (see for example the fascinating and lucid
expository article by Lior Pachter and Bernd Sturmfels in the wonderful
book that they edited(see Ref. 3), one has to estimate probabilities from
output. The usual approach is maximum likelihood, that entails solving huge
systems of polynomial equations that are handled via Buchberger’s Grobner
Basis Algorithm. But, following Laplace, we can also use a Bayesian ap-
proach and get quotients of integrals. These integrals can be handled via the
multi- Almkvist-Zeilberger (see Ref. 2) algorithm. For any specific instance
one may want to use numerical integration. If one wants to compile a table
anticipating all possible outputs (of course up to a certain length), then the
recurrences supplied by Almkvist-Zeilberger are much more efficient.

Let’s illustrate it with the simple case of (only) two dice, that enables us
to stay within the single-variable Almkvist-Zeilberger (see Ref. 1).
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In the proverbial dishonest casino, suppose that there are two kinds of
(identically looking) dice, with the same possible outcomes (faces), let’s call
them {1,...,m}, each with a known probability distribution (p1,...,pm)
and (q1,...,9m). What is unknown is the probability, z, of using the first
die (and hence 1 — z for the other die). Judging from the sequence of
outcomes (or rather by the relative frequencies of the landed faces), one
has to estimate z. If the (hidden) probability of using the first die was
x, (whatever it is), then the probability of the output distribution being
a1y am 18 (@1 + -+ am)!/(a1!- - ap!) times

Lig)a= H(:cpi + (1 — x)g;)™.

i=1

The mazrimum-likelthood estimate is to mazimize L(x) by solving L'(x) =0
(with more dice one gets partial derivatives and systems of equations in
several variables). But, following the more democratic approach of Laplace,
that considers all scenarios (and that famously tells you that if so far you
succeeded m times and failed n times, then your estimated probability of
success in your next try is not m/(m + n) but rather (m+1)/(m+n+2)),
we would have not the root of L'(z) = 0 but rather

Jo 2 T (s + (1 = 2)a)* do.
fol i (ps + (1 — &) gs)™ dz

Calling the top quantity T(ei,...,am) and the bottom quantity
B(ai,...,am), we see that Almkvist-Zeilberger can manufacture pure lin-
ear recurrences (with pclynomial coefficients) in each of the discrete vari-
ables ai1,...,an (in Nature m = 4, or m = 20). The multi-dice analog
of this (which would employ the multi-variable Almkvist-Zeilberger, done
in Ref. 2) may be of interest to bioinformaticians. So far we have only
implemented the interface in the two-dice case.

The procedure that takes care of this problem in AppsWZ is
ExpProbFirstDie(Lp1,Lp2,a0), where Lpl, and LP2 are the probability
distributions and a0 is the list of respective outcome. The novelty here is
that both top and bottom integrals are not computed directly but via the
recurrences outputted by Almkvist-Zeilberger. With the option remember
it should be much more efficient if one wants to pre-compute a table of
estimated probability for each a0 of size less than some (lagre) pre-assigned
value.

For example, if there are two coins, one fair and one loaded with probability
of a Head being 1/3, and the outcome was 10 and 10 (which ML would say
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that the fair coin was used all the time),
evalf (ExpProbFirstDie([1/2,1/2],[1/3,2/3],[10,10])):
would estimate that the fair coin was used only %58.76 of the time.

Fourth Application: Lattice Paths Counting

We all know that the number of ways of walking from the origin (0, 0) to the
point (m, n) in the square lattice, with unit northbound and unit eastbound
steps {(0,1), (1,0)} is

(m+n)!

= mln!
This immediately implies (and is equivalent to) the fact that

Fim+1,n) m+n+1 Fmmn+1l) m4n+l
F(m,n)  m+1 "’ F(m,n)  n+1 '

and cross-multiplying yields

(m+1)F(m+1,n) — (m+n+1)F(m,n) =0,

(n+1)F(m,n+1)— (m+n+1)F(m,n) =0.

In other words the discrete function F'(m, n) satisfies pure linear recurrences
equations with polynomzial coefficients, that happen, in this simple case, to
be first-order. Recall that a recurrence is pure if only one of the variables
changes at a time. For example, F(m,n) trivially satisfies the “mixed”
(partial) recurrence F(m,n) = F(m —1,n) + F(m,n — 1).

An amazing consequence of Wilf-Zeilberger theory® is that this is still true
for an arbitrary set of (positive) steps, and in arbitrary dimension. Of course
the pure recurrences are no longer (usually) first-order, but as above, this
is a minor computational disadvantage.

Indeed, if we are walking in the d-dimensional (hyper)cubic lattice, starting
at the origin, and with a set of steps S (all with non-negative coordinates,
excluding the step 0 [staying in place]), the generating function is trivially
seen to be

ZF(ml!‘ st jmd)mlml . .xdmd
m

1

(1 - (51,-.-,2811)6312181 e _/L-de)
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So it follows that our discrete function of interest, F(m,...,mq) equals
the formal residue of

—-mi—1 —mg—1
:‘El ...Id

(1 — (3:“__§9d)e5"r181 S w Id&‘d)

If you are only interested in getting to points on the diagonal, then f(n) :=
F(n,n,...,n) is given by the formal residue of

—n—1 —-n—1
1"1 .--"L‘d

(1 B (31‘..2,1).5337131 o '.’L‘dsd)

and once again thanks to Wilf-Zeilberger theory, satisfies a linear recurrence
equation with polynomial coefficients.

7

This is implemented in the second Maple package accompanying
this paper, AppsWZmulti that is “powered” by the Maple
package  MultiAlmkvistZeilberger  that accompanied.?  The
relevant procedures (in AppsWZmulti) are LatticePaths and
LatticePathsDiagonal and for the verbose versions LatticePathsStory
and LatticePathsDiagonalStory.

For example, if you type LatticePaths({[0,1],[1,0],[1,1]1},m,M);
you would get that the following two operators annihilate F(my,ma),
the number of ways of going from (0,0) to (mi,m2) using the steps
{(0,1),(1,0),(1,1)} (where M;, My are the shift operators in the mi,ms
variables respectively)

[=(m1 +1)/(2 +m1) = (1 +2m2) /(2 + m1)) M1 + M7,

=(ma2 +1)/(2 4 m2) = (1 +2m1)/(2 + m2)) M + My],
which in everyday parlance means that F(mi, ms) satisfies

{m1 +2)F{m1 +2,m2}— (2m2+ 1)F(m1 +1,m2) s (m1 + l)F{ml,mg) =0,

(mg + 2)F(m1, mo +2) - (2?711 + 1}F(m1, ma+ 1) - (mz + 1)F(m1, mz) =0.
If you type LatticePathsDiagonal({[0,1],[1,0],[1,1]1},n,N); you
would get that f(n), the number of ways of getting from (0,0) to (n,n)
using the same set of steps is:

(n+2)f(n+2)-32n+3)f(n+ 1)+ (n+1)f(n) =0,
subject to the initial conditions f(0) = 1,f(1) = 3. Thanks to Birkhofl-
Trijinski, its asymptotics is

C(3+2%%)"n~12(1+ ((3/32)2Y/2 — 1/4) /n+ (113/1024 — (9/128)2/2) /n?
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+((1545/32768)21/2 — 245/4096) /n®),

for some constant C.

A more interesting example are the (old-time) basketball numbers, which
is the number of ways a basketball game that ended with the score n : n can
proceed. Recall that in the old days (before 1961), an atom of basketball-
scoring could be only of one or two points. Equivalently, this number
is the number of ways of walking, in the square lattice, from (0,0) to
(n,n) using the atomic steps {(1,0),(2,0),(0,1),(0,2)}. Entering this into
LatticePathsDiagonalStory yields that, calling this number F(n), it sat-
isfies the third-order linear recurrence:

(16/5)(2n + 3)(11n + 26)(1 + n)/((n + 3)(2 + n)(11n + 15))F(n)
—(4/5)(121n> + 64902 + 11350+ 646)/((n + 3)(2 + n)(11n 4 15))F(1 + n)

—(2/5)(176n% + 680n + 605)/((11n + 15)(n + 3))F(2 4+ n) + F(n+3) =0,
subject to the initial conditions:
F(0)=1,F(1) =2,F(2) = 14.

For the record, the first few terms are:

[1, 2, 14, 84, 556, 3736, 25612, 177688, 1244398, 8777612, 62271384,
443847648, 3175924636, 22799963576, 164142004184, 1184574592592,
8567000931404, 62073936511496, 450518481039956, 3274628801768744,
23833760489660324].

The asymptotics is:

(.37305616)(4 + 2(31/2))"n~1/2(1 + (67/1452)3'/2 — (119/484))/n
+((6253/117128) — (7163,/234256)3/2) /n?
+(—(32645,15460896)3/2 + (129625/10307264)) /n>),

or in floating-point:

(.37305616)(7.464101616)™n /2.

(1. — .1659453140/n + 42398086 - 10~%/n? + .8918933381 - 102 /n®).

Fifth Application: Random Walk in Higher Dimensions

This is the multivariate analog of the First Application. The rel-
evant procedures in AppsWZmulti are RandomWalkRecurrence and
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RandomWalkRecurrenceE. By now readers should be able to generate their
own examples. A few sample input and output files are given in the webpage

of this article.
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FACTORING SYSTEMS OF LINEAR FUNCTIONAL
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We present a simple method for computing factorizations for a large class of
matrix equations (matrix pseudo-linear equations) that includes, in particu-
lar, systems of linear differential, difference and g—difference equations. The
approach is based on the characterization of the properties (reducibility, decom-
posability, etc.) of matrix pseudo-linear equations in terms of their eigenrings.

Keywords: pseudo-linear equations, differential equations, difference equations,
g—difference equations, reducibility, decomposability, eigenrings, computer al-
gebra.

1. Introduction and notations

Throughout this paper, we let K be a commutative field of characteristic
zero, ¢ an automorphism of K, 6 a ¢—derivation, that isamap d : K — K
satisfying

d(a + b) = da + b and §(adb) = da b + a db for all a,b € K.

Note that when ¢ = 1g the identity map of K, § is simply a derivation;
otherwise, one can easily show that, é has to be of the form y(1x — ¢) for
some 7y € K.

By C we denote the field of constants of (K, ¢, 4d)

C ={ce K| ¢c=cand dc = 0}.

If M is a matrix (vector) in K, we define ¢ M (resp. 6 M) to be the matrix
(vector) obtained by applying ¢ (resp. ) to all components of M. We note

*This paper is a slightly expanded version of an unpublished paper? that goes back to
2001. The results have been extended to the case of positive characteristic in Refs. 10
and 4.
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that the operations on matrices (vectors) commute with ¢. If M, N are
matrices in K then

oM+ N)=0M+6N, 6(MN)=~6M¢pN + MEN.

By a matrix pseudo-linear equation over (K, ¢,d) we mean an equation of
the form

by = —Ady (1)
where A is an n x n matrix in K and where y is an unknown n—dimensional
column vector. A matrix pseudo-linear equation (1) will be denoted by [A].
We note the following well-known examples of matrix pseudo-linear equa-
tions

(a) Differential equation: K = C(z) or C((z)), ¢ = 1k and d = d%.

(b) Difference equation: K = C(z) or C((z7')), ¢ the
C—automorphism defined by gz =z —1and d =1 — ¢.

(c) g—Difference equation: K = C(z) or C((z7')), ¢ the

C—automorphism defined by ¢z =gz, g€ C* and § =1 — ¢.

Consider a matrix equation (1) and let P € GL(n, K). The substitution
y = Pz leads to the matrix equation

6z =—(P lAQP + P 16P)¢pz.

We say that two n X n matrices A, B in K are equivalent (notation: A ~ B)
if there exists a matrix P € GL(n, K) such that

B =P 'A¢P + P 14P.

We say that the pseudo-linear equations [A] and [B] are equivalent if their
matrices are equivalent.

A matrix pseudo-linear equation [A] is said to be reducible, if A is equivalent
to a block—triangular matrix

Bii 0 )
B = ; 2
(32,1 Bso 2
where B, ;, 1 = 1,2, is a square matrix of size n; < n. It is called decompos-
able if A is equivalent to a matrix of the form (2) with B, ; = 0. It is called

irreducible (indecomposable) if it is not reducible (decomposable). It is said
to be completely reducible, if A is equivalent to a block-diagonal matrix

Bll 0

BZBI,1®---@Bs,sd§f (3}

0 B; s
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where each equation [B;;], 1 < i < s, is irreducible. In particular, an
equation which is irreducible is completely reducible (take s = 1). Let
us note that an equation which is completely reducible and reducible is
necessarily decomposable.

The eigenring of the matrix pseudo-linear equation [A4] is defined as the set
of n x n matrices T' in K satisfying

6T =TA— A$(T).

We shall denote by £(A) the eigenring of [A]. It is a C—algebra which
has finite dimension, as vector space over C (cf. Sec. 2). Algorithms for
computing eigenrings of a differential (difference) systems over C(z) have
been presented in Refs. 8 and 6.

Our interest in eigenrings arises from the fact we shall establish later that
with their aid we can factor matrix pseudo-linear equations. By to factor a
pseudo-linear equation, we mean to compute an equivalent equation having
a block-triangular or block-diagonal form or to show that such an equation
does not exist.

The problem of testing reducibility of general matrix pseudo-linear equation
seems to be difficult and will not be discussed here. The reader who is in-
terested in this problem is referred to Refs. 12,15,16 for a discussion of this
problem in the differential case. When one considers restricted classes of
matrix pseudo-linear equations, the problem of factorization becomes more
tractable. In this paper we shall consider the class of matrix pseudo-linear
equations the eigenring of which is not a division ring. Our main results
are exposed in Section 3. We shall show that equations in this class are re-
ducible and give an elementary method to factor them. This class contains,
in particular, matrix pseudo-linear equations that are decomposable. We
shall see that a matrix pseudo-linear equation [A] is decomposable if, and
only if, its eigenring contains a matrix T" which has at least two distinct
eigenvalues (see Theorem 3.2). Furthermore, the equation can be factored
by finding a matrix P € GL(n, K) such that P~!T P have a block-diagonal
form. This yields a simple algorithm that, given A and £(A), determines if
the equation [A] is decomposable and, if the case arises, computes an equiv-
alent equation [B] of the form (3) where the [B; ;] are indecomposable. In
particular, this algorithm allows to factor equations that are completely
reducible and reducible.

The idea of using eigenrings in problems of factorization has been intro-
duced by Singer.!® It has been used by M. van Hgij to factor scalar differ-
ential equations.!” We have also already apply this idea to compute factor-
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izations of systems of linear differential (difference) equations.®® However,
what is new is that, in one hand, the results in the present paper are more
complete than those in Refs. 8 and 6 and improve them (for example The-
orem 3.2 was not in Refs. 6,8); on the other hand they are presented in
an unifying setting that permits us to treat simultaneously a large class of
matrix (or scalar) linear functional equations.

The rest of the paper is organized as follows. In Section 2 we list various
facts about matrix pseudo-linear equations that will be used in the others
sections. In Section 4 we generalize some of the results of Section 3. With
two matrix pseudo-linear equations [A], [B] of dimension m, n we associate
the set H(A, B) of n x m matrices T in K satisfying the equation

TA— B¢(T) = 4T.

It is a C—vector space of finite dimension. When A = B, one has H(A, B) =
E(A). We show how in a number of cases the equations [A] and [B] can be
factored using H(A, B).

For the sake of completeness we have added an appendix on the relationship
between matrix pseudo-linear equations and modules on the Ore polynomial
ring K[X; ¢, 8]. The language of modules throws a different light on matrix
pseudo-linear equations. However, the results we shall list in the appendix
will not be used in the first part of the paper. Using modules language the
proofs of some of our results though elementary could be further simplified.
However, since we are interested in algorithmic aspects, we prefer to state
and prove our results in matrix terms.

2. Preliminaries

In this section we list a few facts about matrix pseudo-linear equations that
will be used in later sections.

Consider a matrix pseudo-linear equation [A] over (K, ¢, d).

The solution space over K of [A] is defined as the set

Solg(A) = {ve K™|dv + A¢v = 0}.

We will show that it is a finite dimensional vector space over the field of
constants C. For this we need first the following

Lemma 2.1. If the vectors vi,...,vm € Solg(A) are linearly dependent
over K then they are linearly dependent over C.

Proof. We procced by induction on m. The case m = 1 is trivial. Let
m > 1 and let v1,...,vm € Solg(A) be linearly dependent over K. We
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may suppose that any proper subset of {vy, ..., v} is linearly independent
over K. Then there is a unique relation

m
v = Zaiv,;
=2
with all a; in K. Now

0= 5'01 + A(t)’b‘] = Z QSG,;(J’U,’ + Aqbvl-) + Z 60.1' v = Z (SG.,'_ V.
i=2 i=2 i=2
Thus all da; = 0. Now if ¢ = 1x we are done, otherwise § = y(1x — ¢) for
some v € K and hence ¢a; = a; for all i. Thus all a; belong to C. O

Proposition 2.1. Solg(A) is a vector space over the field of constants C
of dimension < n.

Proof. It is clear that Solk(A) is a vector space over C. Now any n + 1
vectors in Solg (A) are linearly dependent over K. According to the above
lemma, they are also linearly dependent over C. Hence the dimension of
Solg(A) over Cis < n. O

Let us note that algorithms for determining the space of solutions of a
matrix differential (difference) equation over C(z) have been developed in
Refs. 1,3,5,6,18. The case of matrix (g-)difference equations has been dis-
cussed in Ref. 2. The case of matrix differential equations over K = C((z))
has been considered in Ref. 9. Some of these algorithms have been imple-
mented in Maple.

The eigenring of A is the set £(A) of matrices T in K that are solutions of
the equation

§T = TA— A§(T).

This equation can be viewed as a system of n? first-order pseudo-linear
equations over (K, ¢, 8). Thus, £(A) is a C—vector space of finite dimension
< n?. On the other hand, a direct calculation shows that the product of two
elements of £(A) is also an element of £(A). Finally, the identity matrix I,
belongs to £(A). Thus, £(A) is an algebra over C and as a C—vector space
it has dimension < n2. As a consequence, we have the following

Proposition 2.2. Any element T of £(A) has a minimal polynomial with
coefficients in the field of constants C. In particular, when C is algebraically
closed, each matriz T € £(A) has all its eigenvalues in C.
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We conclude this section by the

Proposition 2.3. If two equations [A] and [B] are equivalent, their eigen-
rings £(A) and E(B) are isomorphic as C—algebras. In particular, one has
dimcf(A) = dimcé'(B)

Proof. Suppose that A ~ B then there exists a matrix P € GL(n, K)
such that B = P1A¢P + P~16P. A direct calculation shows that the map
T — P~1TP defines an isomorphism from £(A) into £(B). O

3. Eigenrings and reduction of pseudo-linear equations

We shall give some sufficient conditions for reducibility, decomposability
which are easy to check. The proofs of the following propositions are ele-
mentary and give effective methods to reduce (decompose) a given reducible
(decomposable) matrix pseudo-linear equation.

Throughout this section we let [A] be a given matrix pseudo-linear equation
and we suppose that its eigenring £(A) is known.

Theorem 3.1. If £(A) is not a division ring then [A] s reducible and
the reduction can be carried out by a matric P € GL(n,K) that can be
computed explicitly.

Proof. We have to prove that if £(A) is not a division ring, one can con-
struct a transformation P € GL(n, K') such that

—1 —1 B1!1 0
P~ A¢pP + P 6P (Bz,l 32,2)
where By ; and By are square matrices of order < n.
Suppose that £(A) is not a division ring. Then one can choose an element
T € £(A) \ {0} which is not invertible. Let r denote the rank of T, then
0 < r < n. Performing Gaussian elimination on the columns of T one can
compute P € GL(n, K) such that the matrix defined by S = P~!TP be of

the form
o Sl,l 0
5= (52.1 0) ’

where Sy, is an 7 x r matrix in K, Sp,; an (n — ) x r matrix in K and

where (g;l) has rank 7. Let B = P~1(A¢P + 6P) then S € £(B), that
,1
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is S satisfies the equation SB — B¢S = 5. We decompose B in the same

form as S
By By 2)
B ShlTAY
(32,1 Bs 2
Then the relation SB — B¢$S = 65 implies

S 1)
"1 Bi2=0.
(5,21 1.3

3

Since (S 1*1) is of full rank, then By = 0.
S2,1
The proof of the following corollary is immediate.

Corollary 3.1. Given a matric pseudo-linear equation [A] one can con-
struct an equivalent matriz equation [B] having a block-triangular form

Bl,l 0 0
By1 By

: .0
Bk,l ap— Bk,k

where k is the mazimal possible, i.e. for each 1 < i < k, the eigenring of
the n; x n; matriz B, ; is a division ring.

Let us note that the condition “£(A) is not a division ring” implies
dimg E(A) > 1. Indeed, if T' € £(A) \ {0} is not invertible, then the fam-
ily {I,T} is linearly independent (over C) and hence dim¢ £(A) > 1. The
converse is true when the field of constants C is algebraically closed. In-
deed, suppose that dim¢ £(A) > 1 then there exists T € £(A) such that the
family {I,T} be linearly independent. Since C is algebraically closed, there
exists A € C such that det (T' — AI) = 0. Hence £(A) contains an element,
namely T' — AI, which is non-zero and non invertible.

To check the condition “£(A) is not a division ring”, in the case where the
field of constants C is not algebraically closed, one can proceed as follows.
Find a basis {T1,...,Ty} of £(A), and decide if there are constants ¢; € C

d
such that (e1,...,¢cq) # (0,...,0) and det (Z ;) =0,

=1
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Example 3.1. Let K = Q(z), ¢ the automorphism of K defined by ¢z =
z—1 and § = 1 — ¢. Consider the difference system [A] where A is given by

[—@—1)""—z+2 -2  =3z=2’ ]
(z-1)"" 0 1 3(@-1)7!
A= _liazz—.r _z—2 _:1:273.7:+2 _3+:czf:c
z(x—1) z z z(r—1)
| (z-1)"! z-2 1 —=ltsfods |

The eigenring of [A] is the set of matrices T of the form
c1 — 462 0 0 —4 Co
2¢c0 €1 0 2c¢o
i =
—2 Erz 0c1— 2 Ca —4 -65:2

202 0 0 262‘}“61

where ¢; and ¢; are arbitrary constants.
Here, det T = c?(c; — 2¢2)2. Choose ¢; =0 and ¢y = 1, then

-4 00 -4
2 00 2
T:
-2z710-2-4z!
2 00 2

One has rank T = 2. So, performing Gaussian elimination on the columns
of T, one finds

10-10

00 0 1

P=145,_1y

X

00 1 0

such that the matrix
—4 000
2 000
TP=| 51 500
x

2 000
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have its two first columns linearly independent. Now if we compute the
matrix B = P~1(A¢P + 6P) we get

0 -1 0 0
-1 -AEEE 0

b= -1 1 kmsdzg_ g
(-1 1 (z-17' o

Theorem 3.1 and its corollary give a method which allows to reduce a matrix
equation [A] whose eigenring £(A) is not a division ring. The following
proposition gives a sufficient condition for that £(A) not be a division ring.

Proposition 3.1. If [A] is decomposable then £(A) is not a division ring.

Proof. If [A] is decomposable then A is equivalent to a matrix B of the
form (3) with s > 1 and the B; ; indecomposable. Obviously, £(B) contains
all the matrices of the form

C1 Im 0
. (4)

0 csln,

where n; denotes the size of the block B; ;, I, the identity matrix of size

n; and where the ¢;’s are arbitrary constants. By taking ¢; = 0, one sees
that £(B), and then £(A), is not a division ring. o

Remark 3.1. If a system [A] is irreducible then, by Theorem 3.1, £(A) is
a division ring . The converse is not true. To see this, let K = C(z), ¢ the

automorphism of K defined by ¢z =z—1,§ =1—¢and A = (? 2) One

can show, by a direct calculation, that

£(4) = {(g 2) where ¢ € C}.

However, if [A] is a completely reducible equation which is reducible then
its eigenring £(A) is not a division ring. This follows from the fact that
an equation which is at the same time reducible and completely reducible
is necessarily decomposable, so by Proposition 3.1 its eigenring is not a
division ring.
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We have seen, in the proof of Proposition 3.1, that the eigenring of a decom-
posable equation [A] contains matrices that are similar to the matrices of
the form (4). Hence, the eigenring of a decomposable equation contains al-
ways a matrix which has at least two distinct eigenvalues. The next thorem
shows that the converse is true: if eigenring of [A] contains a matrix T which
has at least two distinct eigenvalues then [A] is decomposable; furthermore,
it can be decomposed by finding a matrix P € GL(n, K) such that P~1TP
have a block-diagonal form J; & - - - ® J; where the J; are constant matrices
with disjoint spectra.

For the sake of clarity we add the technical assumption that the field of
constants C is an algebraically closed field.

Theorem 3.2. Assume that the field of constants C is algebraically closed.
Let [A] be a matriz pseudo-linear equation whose eigenring contains an
element T which has s > 2 distinct eigenvalues Ay,..., s € C. Let P €
GL(n,K) such that the matriz J defined by J = P~1TP be of the form

J1®---®Js

where J; is an n; X n; matriz of the form

Ai 3 0

L withe =0 or 1.
Y e

0 0 X

Then the matriz B = P~1(A¢P + §P) has the form

B:B1,1®“‘@BS,S
where B;; is a square matrix of order n;.
Proof. In one hand, J € £(B), since T € £(A), so, J satisfies JB —
B¢J = éJ. On the other hand J is a constant matrix, so ¢(J) = J and
d0J = 0 and then the relation JB — B¢J = 4J reduces to JB = BJ.

Now let us decompose B in blocks following the same partition as J, i. e.
B = (B; j)1<i,j<s- Then the equation BJ = JB implies

JiB;; — Bi;J; =0, forall1 <i,j <s.

It then follows that B;; = 0 for i # j. a
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Remark 3.2. In fact, we have the following more precise result on the
structure of the matrix B in in Theorem 3.2. Let the block J; of J be
decomposed as J; = J; 1 @ -+ @ J;m, where J;  has the form

A1 0
" q

1

o

If B;; = (B::%k) is the partition in blocks of B;; consistent with the above
partition of J; then each block (Bill ;k) is an upper triangular Toeplitz matrix.
This follows from the fact that J; and B; ; commute and a well known result

of linear algebra (see Theorem S2.2 in Ref. 11, pp 345-347).

Mazximal Decompsition

Suppose that the field of constants C is algebraically closed. To factorize
a given matrix pseudo-linear equation [A] we proceed as follows. First we
determine a basis {Ti,...,T4} of £(A). Then, we choose a generic point
(e1,--.,¢cq) in C%, that is a point so that the number s of distinct eigenvalues
of T = e1T1 + ... + ¢qTy be the maximal possible. Then we determine
a nonsingular matrix P such that J := P~1TP be in Jordan canonical
form. Finally we compute the matrix B := P~1A¢P + P~1§P. Let us note
that the diagonal blocks of B will be necessarily indecomposable, since s is
maXimal.

We repeat that this method allows to compute factorizations of matrix
pseudo-linear equations that are both completely reducible and reducible.

We conclude this section with two examples to illustrate the above method.

Example 3.2. Take the matrices A and T of Example 3.1. Consider the
matrix
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One has
000 O
000 O
F=FYEP =
00-2 0
00 0 =2

Here we have s = 2 blocks of dimension 2. Now if we compute the matrix
B:= P lA¢P + P716P we get

[ 3 o =2 (s 0 0 T
- ol 0
B= 1 1
0 0 —(@-1)"'-@-1)"
142224 14z%-3
L 0 0 - +x:c—l £ - +£—1 £ d

Example 3.3. This example corresponds to a scalar differential equation
taken from Ref. 17 (see also Ref. 8). Let K = Q(z), ¢ = 1x and § = d%.
Consider the differential system [A] where A is given by

0 -1 0 0
0 0 -1 0
A=10 0 0o -1
1 3z2 -1 _22-1 1
5 2 5 2 - T 6
i T T i
The eigenring of A consists of the matrices T' of the form
Tea+e1 —2c9 — z09 cozt caz®
“‘% 4deg 401 TCo 0
3 fﬁ- -3 S5e+c1  xep
2 2 2_
-_02(12:; +1) 9 cz(3:4+2) _02(2;;:3 1) er |

Let us choose (c1,¢2) = (0,1)

7 23— gt gP
—x—3 4 x 0

T =
3z % —z~3 5 T

122241 3z%+2 2r%—1
- 3:7+ 2 a’?‘j‘ T8 0
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We compute the Jordan form of T

442 0 0 0
0 44+v2 0 0
J=FIrF=
0 0 —v2+4 0
0 0 0 —v2+4
where
P11P12)
P = 1L,
(P2,1P2,2
with

[(1/2+ v2) 2t +3/4v2+1/2 (1/2+ V2) m‘l}
P =
~1/4 %2 0

o (-v2+1/2)z* —3/4v2+1/2 (V2 +1/2) z*
Y 1/4 2 0

@ VZ+1/243/4¥2  1/2+2)
2,1 =

~7/2¥2 — 32 —1/4 %2 —7/2¥2 |
5 [ B+ 1/2 =348 —y3+1/2]
22=

722432 +1/42 1/2L2

Now if we compute the matrix B = P~1(AP+§P) then we get, as expected,
a block-diagonal matrix B = Bj; ® Byp2. Here the diagonal blocks are
respectively

(4 +3) 23 (44 v2) 2°
(~i—+/E) e+ I8 4 A0l (o — B o™ - 10

% (4~ 2) 2% (4 - V3)
(~4+V2)a® + 18 L 8B (—a4 VD) P+ 12|
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4. Spaces of homomorphisms and factorization

Let [A] and [B] be two matrix pseudo-linear equations of dimension m and
n respectively. We define H(A, B) as the set of n x m matrices T in K
satisfying the equation

TA - BH(T) = oT.

This equation can be viewed as a system of nm first order pseudo-linear
equations over (K, ¢,d). As a consequence, H(A, B) is a C—vector space
of finite dimension (< mn). Note that when A = B, H(A,B) = £(A). A
simple computation shows that if y satisfies [A] then Ty satisfies [B], for
all T € H(A, B). Thus, the elements of H(A, B) transform a solution of the
matrix pseudo-linear equation [A] into a solution of [B]. So, it is natural to
expect that the properties of H(A, B) will be useful in studying reducibility
of the equations [A] and [B].

Proposition 4.1, Let [A] and [B] be two matriz pseudo-linear eguations
of dimension m and n with m < n. Suppose that there exists T € H(A, B)
such that rankT = m. Then [B] is reducible and one can construct a trans-
formation P € GL(n,K) such that the matriz P~'(B¢P + 6P) have the

form
Cl,l 0
Ce1 A)
where Cy1 is an (n — m) X (n —m) matriz.

Proof. One can compute an n x (n —m) matrix S in K such that the nxn
matrix defined by P = (S T) be invertible. Let C = P~'(B¢P + §P).

Decompose C' as
Ci1 Gy 2)
o= (g2,
(02,1 Ca2

where C11 is a square matrix of size n — m. We shall show that Cy 2 = 0
and Cpp = A.
First, observe that the relation PC — B¢P = § P, implies

C12)
P ' = BoT — 4T.
(Cz,z 0

Since T' € H(A, B), one has B¢T — §T = T A. This can be rewritten as

Bq&T—JT_TA_P(EJ.
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Thus,

Cia 0
P “l=P .
( Ca2 ) ( A )
It then follows that Cj 2 =0 and Cz 2 = A, since P is invertible. 0O

Example 4.1. Let K = Q(z), ¢ the automorphism of K defined by ¢z =
z—1and § =1 — ¢ and consider the matrices

—x+2 -z
A= s
[*(:'3*1)'1 0 ]

-1 1

i
=
)

r—

s

-1

z—1

_22.'.—1 3—1x _73:Cix2i1

T (z—1)z

0

x—1

-1

_2112—2:1:

r—1

Here m = 2 and n = 4. H(A, B) consists in the matrices of the form

0 (851
0 —C1
=5l EL
Tz
0 —€1

where ¢; is an arbitrary constant. Let T be the element of H(A, B) obtained
by taking ¢y = 1. Then T has rank 2. We complete T in order to get an
invertible matrix P of size 4 :

10 0 1
01 0 -1
oot 2
00 0 -1
If we compute the matrix C := P~1(B@P + §P), we get as expected
(z—1)"" z-2 0 0
0 2—z 0 0
C =
2—z —zx43 2-2xz -x

0 —z+l—-(z—1)"10
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Let us note that the equation [B], of the above example, is reducible but
it cannot be reduced using the method exposed in section 3. Indeed, the
computation of the eigenring of B shows that dim(E(B)) = 1.

The following proposition is a generalization of Theorem 3.1.

Proposition 4.2, Let [A] and [B] be two pseudo-linear equations of dimen-
sion m and n with m < n. Suppose that there exists T € H(A, B) such that
0 < rankT = r < m. Then the systems [A] and [B] are reducible. More-
over, one can construct two matrices Q € GL(m,K) and P € GL(n, K)
such that

_1 _1 _ D1,1 0
QAQ +Q 6@—(]32‘1 Dm)

where Dy 1 is an T X 7 matriz, and
P'B P+P16P:( ’ )
¢ Cz1 Cop2

where Co 2 = Dy 1.

Proof. Since 0 < r = rank(T) < m, one can compute a matrix Q@ €

GL(m, K) such that
_ _ (5110
8:=7TQ = (52‘1 0),

where S is an 7 x r matrix. Let

Di= Q7 (A9Q +60) = (Dz 1 Dao

¥

Dy 1 being a square matrix of size 7. Then one has § = TQ € H(D, B).
Using the relation SD — Bg(S) = 45, one sees that

S1 1)
"1 D1o=0
( o) g

S1,1 ¢511) (55’11)
4 Dy g B _ [Onr
(52,1) 1 (¢S2,1 8821

The first equation implies that D 2 = 0, since the matrix U := (gl’l ) has
|

full rank r and the second equation implies that U € H(Dy,1, B). One can
apply Proposition 4.1 to the systems [D;,1] and [B] to achieve the proof.00

and
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Corollary 4.1. Assume that the field of constants C is algebraically closed.
If [A] and [B] are equivalent and dim H(A, B) > 1 then [A] and [B] are both
reducible.

Proof. Suppose that A ~ B then, there exists a nonsingular matrix
P € H(A,B). Let Q € H(A, B) such that the matrices @ and P be lin-
early independent over C (such a matrix exists since dimH(A,B) > 1).
Consider the matrix T = Q — AP where A is any eigenvalue of P~1Q.
Note that A € C for P7'Q € E(A). So, T € H(A, B). One has detT =
detPdet (P~'Q — AI) = 0. Thus, H(A, B) contains a non-zero matrix T
with rank < n (n being the order of the matrix A). Hence [A] and [B] are
reducible according to the above proposition. O

As a consequence we have the following result whose proof is immediate.

Corollary 4.2. Assume that the field of constants C is algebraically closed.
Let [A] and [B] be two pseudo-linear equations of dimension m and n with
m < n. Suppose that the equation [B] is irreducible. Then H(A,B) has
dimension 1 or 0, depending on whether [A] and [B] are equivalent or not.

Appendix A. K[X;¢,6—modules and matrix pseudo-linear
equations

In this section we shall see that a matrix pseudo-linear equation over
(K, ¢,0) can be thought of as a left module over the Ore polynomial ring
K[X;¢,6].'* This classical approach has the advantage of enabling one to
apply directly the general theorems on modules (like the Jordan-Hélder
theorem, Schur’s lemma, the Krull-Schmidt theorem'*) to matrix pseudo-
linear equations. This allows a better understanding of the problems arising
in the study of matrix pseudo-linear equations. However, the results we shall
recall in this section are not required for the rest of the paper.

Appendix A.1. Pseudo-linear operators

Let V be a vector space of finite dimension n over K. A pseudo-linear
operator on V with respect to (K,¢,4) is a C—linear map L : V — V
satisfying L(av) = ¢a Lv +dav forallae K,ve V.

Let L be a pseudo-linear operator on V' and (ey,...,e,) a basis of V. The
matrix of L w.r.t. this basis is defined as the n x n matrix A = (a;;) where
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n

Le; = Z&ijﬂi, for j = 1,...,n. If v = 3 we; is any vector in V and
=1

Lv =% w;e;, then

w1 (5?.?1 qbvl
= : |+4| : |]. (A1)
Wy, LR Pu,

Thus L is completely determined by its matrix in a fixed basis. Conversely,
if A is an n x n matrix in K the map v — Lv defined by (A.1) is a pseudo-
linear operator of V. Thus with any matrix pseudo-linear equation one can
associate a pseudo-linear operator and conversely.

Let (f1,...,fn) be a second basis of V related to (e1,...,en) by

(fl:'-'afn)z(elu'”yen)P

where P € GL(n, K). If A and B are respectively the matrices of L relative
to the bases (eq,...,e,) and (f1,...,fn) then

B =P 4¢P+ P15P.

Let us point out that pseudo-linear operators has been considered and stud-
ied by Jacobson in Ref. 13. He introduce the notion of elementary divisors
of pseudo-linear operators and shows that as in the theory of linear oper-
ators one can give criteria for similarity, reducibility, decomposability, and
complete reducibility in terms of elementary divisors. These results are not
used in the present paper.

Appendix A.2. Similarity, reducibility, decomposability and com-
plete reducibility

Let K[X; ¢, d] denote the ring of non-commutative polynomials in the inde-
terminate X with coefficients taken on the left in K with the usual addition
and in which multiplication is defined by Xa = (¢a)X + da for all a € K.
Let V' be a vector space of finite dimension n over K and L a pseudo-linear
operator on V' with respect to (K, ¢, 8). One can define Xv = L(v) for all
v € V. This makes V into a left K[X; ¢, d]—module. We shall denote this
module (V,L). Conversely, if V' is a left K[X;¢,d]—module and a finite
dimensional K-vector space, then by L(v) = Xwv for all v € V a pseudo-
linear operator is defined.

Thus with any matrix pseudo-linear equation one can associate a
K[X; ¢,8]—module and conversely.
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Two pseudo-linear operators on V', L and M, are said to be similar if (V, L)
is isomorphic, as a K[X;¢,§]—module, to (V, M). A simple computation
shows that L and M are similar if, and only if, their matrices, relative to a
given basis of V, are equivalent.

Let L be a pseudo-linear operator L on V. A subspace W C V is called
tnvariant if LW C W. One can see easily that W C V is invariant if, and
only if, W is a submodule of (V, L).

The operator L is called reducible if V" is reducible as a K[X; ¢, §]—module,
i.e. if there exists a submodule W of V' such that 0 # W # V. Otherwise,
L is called irreducible.

The operator L is called decomposable if V is decomposable as a
K[X;¢,8—module, i.e. if V = W; & Wo where W; # 0. Otherwise, L
is called indecomposable.

The operator L is called completely reducible if V' is completely reducible
as a K[X; ¢, 8)—module, i.e. if V is a direct sum of irreducible submodules.
In matrix terms: if A denotes the matrix of L w.r.t. a K— basis of V, then
L is reducible, decomposable or completely reducible if, and only if, the
matrix equation [A] is respectively reducible, decomposable or completely
reducible.

Now the general theorems on modules translated in matrix terms read:
Jordan-Holder. Any matrix pseudo-linear equation [A] is equivalent to a
matrix equation [B] having the form

Bii 0 0
By By

E .0
Br1 ... Bk,k

where for each 1 < i < k, the matrix equation [B; ;] is irreducible. Moreover,
the the set of integers {k,ny,...,nk}, where n; denotes the size of B ; is
uniquely determined by A.

Krull-Schmidt. Any matrix pseudo-linear equation [A] is equivalent to a
matrix equation [B] having the form

Bii 0
0 Ba,s

where for each 1 < i < k, the matrix equation [B; ;] is indecomposable.
Moreover, the the set of integers {s,ni,...,ns}, where n; denotes the size
of By, is uniquely determined by A.
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Krull-Schmidt theorem for completely reducible modules. If A is
equivalent to matrix of of the form (3) where the [B,;] are irreducible,
then the set of integers {s,n1,...,n,}, where n; denotes the size of B, ;, is
uniquely determined by A.

Appendix A.3. The ring of endomorphisms of a pseudo-linear
operator

Let V' be a vector space of finite dimension n over K and L a pseudo-linear
operator on V' with respect to (K, @, 6).

The ring of endomorphisms of L is by definition the ring of endomorphisms
of the module (V; L). Let £nd(L) denote this ring. It is not difficult to see
that a map u: V — V belongs to End(L) if, and only if, u is a K —linear
map of V satisfying u o L = L o u. This condition in term of the matrices
A,T of L,u, w.r.t. a K— basisof V, is

5T =TA — A$(T).

It follows that End(L) is isomorphic to £(A).

As a consequence we get that the eigenrins of two similar operators are
isomorphic.

Using Schur’s Lemma one can prove that if L is irreducible then £nd(L) is
a division ring (compare with our Theorem 3.1).

For more details on ring of endomorphisms see Ref. 13 (pp 502-503) where
a complete description of the ring of endomorphisms of an irreducible op-
erator is given.
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We give a modular algorithm to perform row reduction of a matrix of Ore
polynomials with coefficients in Z[t]. Both the transformation matrix and the
transformed matrix are computed. The algorithm can be used for finding the
rank and left nullspace of such matrices. In the special case of shift polynomi-
als, we obtain algorithms for computing a weak Popov form and for computing
a greatest common right divisor (GCRD) and a least common left multiple
(LCLM) of matrices of shift polynomials. Our algorithms improve on existing
fraction-free algorithms and can be viewed as generalizations of the work of Li
and Nemes on GCRDs and LCLMs of Ore polynomials. We define lucky ho-
momorphisms, determine the appropriate normalization, as well as bound the
number of homomorphic images required. Our algorithm is output-sensitive,
such that the number of homomorphic images required depends on the size of
the output. Furthermore, there is no need to verify the result by trial division or
multiplication. When our algorithm is used to compute a GCRD and a LCLM
of shift polynomials, we obtain a new output-sensitive modular algorithm.

1. Introduction

Ore polynomials provide a general setting for describing linear differential,
difference and g-difference operators.!® Systems of equations defined by
these operators can be represented by matrices of Ore polynomials. In this
paper we look at the problem of transforming such matrices into “simpler”
ones using only certain row operations. Examples of such transformations
include conversion to special forms, such as row-reduced and weak Popov
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normal forms.3:610:14

Performing row reductions on a matrix of Ore polynomials to these simpler
forms allows one to determine its rank and left nullspace, giving the mini-
mum number of equations needed to represent the system of equations.®
If the transformation is invertible, the normal form in fact gives the matrix
representing an equivalent system with a minimum number of equations.
When the leading coefficient is triangular (as in the weak Popov form), the
normal form allows one to rewrite high-order operators (e.g. derivatives) in
terms of lower ones (Example 2.1). These transformations can also be ap-
plied to the computation of greatest common right divisors (GCRDs) and
least common left multiples (LCLMs),3811-13 which represents the inter-
section and the union of the solution spaces of systems of equations.

The general problem of row reduction was discussed in Refs. 3 and 6. The
problem of defining and computing Popov forms over non-commutative
valuation domains such as rings of Ore polynomials was considered in Ref. 9,
but efficient computation of Popov forms is not considered. In practice,
row reductions can introduce significant coefficient growth which must be
controlled. This is important in the case of Ore polynomials as coefficient
growth is introduced in two ways—from multiplying on the left by powers
of the indeterminate and from elimination by cross-multiplication.
Fraction-free algorithms were given in Refs. 3 and 6 to compute the rank
and a left nullspace of matrices of Ore polynomials. When the matrix entries
are shift polynomials, we obtained fraction-free algorithms for computing
row-reduced and weak Popov forms, and for computing a greatest common
right divisor (GCRD) or a least common left multiple (LCLM) of matrices
of shift polynomials. It was shown that the fraction-free algorithms can
be viewed as a generalization of the subresultant algorithm of Lill12 to
the case of matrices. Fraction-free methods allow us to control the growth
of intermediate results at a reasonable cost, leading to polynomial time
algorithms.

Modular computation is generally faster than the corresponding fraction-
free computation in a number of problems.®!” In this paper we are inter-
ested in modular algorithms for row reduction of matrices of Ore polyno-
mials, as well as computing the associated transformation matrices. There
are traditionally three major issues that must be addressed: the problem
of “unlucky” homomorphisms, the number of images required for the re-
construction of the result, and the normalization of the result to compute
consistent images under different homomorphisms.

In the case of polynomial matrices, these issues are overcome by formulating
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the row reduction problem as a linear algebra problem. We obtained a mod-
ular algorithm which has a lower complexity than the fraction-free counter-
part.” The algorithm is output-sensitive, so that the number of homomor-
phic images required depends on the size of the output. Furthermore, there
is no need to verify the result by trial division or multiplication. We note
that in many modular algorithms, this verification step can be a significant
bottleneck. Experimental results showed that when the matrix entries are
the commutative polynomials with coefficients in Z[t], the output-sensitive
modular algorithm is significantly superior to the fraction-free algorithm.
For matrices of Ore polynomials, the obvious modular algorithm consists
of two parts. First, the problem in Z[t][Z; 0, d] are reduced to problems in
Zy[t](Z;0,8]. Next, evaluation maps ¢ +— a are applied to reduce the prob-
lems to ones whose coefficients are in Z,. However, such evaluations are
generally not Ore ring homomorphisms. As a result, it is not possible to
apply the same technique used in the polynomial matrix case.

For the problem of computing GCRDs and LCLMs of Ore polynomials, Li
mapped the problem into a linear algebra problem over Z, by applying the
evaluation map to the entries of the Sylvester matrix of the input polyno-
mials.’® In the case of Ore polynomial matrices, however, the dimensions
and the configuration of the final coefficient matrix (the striped Krylov
matrix®6) are not known a priori. Thus, the approach of Lil® cannot be
applied directly in our case.

The purpose of this paper is to overcome these difficulties for matrices of
Ore polynomials. We show how these issues are resolved by studying the
linear algebra formulation of the problem. We also extend the approach
of Cabay® to obtain output-sensitive algorithms which do not require trial
division or multiplication to verify the results. The complexity of the new
modular algorithm improves on the complexity of the fraction-free algo-
rithm. Furthermore, the algorithm can be significantly faster when the size
of output is small. We also obtain a new output-sensitive modular algorithm
for computing GCRDs and LCLMs of shift polynomials. Experimental re-
sults confirm the performance of the modular algorithm as predicted by the
complexity analysis.

The paper is organized as follows. In Sec. 2, we review the relevant defini-
tions of matrices of Ore polynomials as well as the fraction-free elimination
algorithm of Refs. 3 and 6. In Sec. 3, we give a linear algebra formula-
tion of the problem and illustrate the difficulties in obtaining a modular
algorithm. We then discuss the reduction Z[t][Z;0,d] — Z,|t][Z;0,4]. The
techniques are then extended to the reduction to linear algebra problems
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in Z, in the next section. In Sec. 6 we study the complexity of the algo-
rithms presented. Implementation considerations and experimental results
are discussed in Sec. 7. Concluding remarks are discussed in the closing
section.

2. Preliminaries
2.1. Notation

For any matrix A, we denote its elements by A; ;. For any sets of row and
column indices I and J, we denote by A j the submatrix of A consisting
of the rows and columns indexed by I and J. For convenience, we use * for
I or J to denote the sets of all rows and columns.

For any vector of integers (also called multi-indez) & = (w1,...,wp), we
denote by |&| = 37, w;. The function max(-,-) gives the vector whose
components are the maximum of the corresponding components of its input
vectors. We say that @ <jx W if ¥ = W or if the leftmost nonzero entry
in ¥ — W is negative. The vector € denotes the i-th unit vector (of the
appropriate dimension) such that (e;); = d;;; we also have € = (1,...,1)
(of the appropriate dimension). We denote by I,,, the m x m identity matrix,
and by Z% the diagonal matrix having Z“¢ on the diagonal.

2.2. Definitions

We first give some definitions on Ore polynomial matrices. These definitions
are similar to those given in our previous work.387

We denote by Z the ring of integers, Q the field of rational numbers, and
Zyp the finite field of p elements where p is prime.

Let k be any field and let o : Kk — k be an injective endomorphism of k.
Then, § : k — k is a derivation with respect to ¢ is an endomorphism of
the additive group of k satisfying

d(rs) = o(r)é(s) + 6(r)s

for all 7, s € k. In this paper, we will examine Ore polynomial rings with
coefficients in Z[t]. That is, the ring Z[t][Z; 0, 8] with o an automorphism,
§ a derivation and with the multiplication rule

Z-a=o0(a)Z + 6(a)

for all a € Z[t]. When § = 0, we call the polynomials shift polynomials.
For brevity, we will use Z[t][Z] when the specific choices of o and § are not
important.
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Let Z[t][Z]™*™ be the ring of m x n Ore polynomial matrices over Z[t]. We
shall adapt the following conventions for the remainder of this paper. Let
F(Z) € Z[t][Z]™*", N = deg F(Z), and write

N
F(Z) =) FYZI, with FU) e Zft]™".

=0

We also write ¢; (F(Z)) = FY) to denote the j-th coefficient matrix.

An Ore polynomial matrix F(Z) is said to have row degree ¥ = rdeg F(Z)
if the i-th row has degree v;. The leading row coefficient of F(Z), denoted
LCrow (F(Z)), is the matrix whose entries are the coefficients of ZV of the
corresponding elements of ZV'¢~7.F(Z). An Ore polynomial matrix F(Z) is
row-reduced if LCrow (F(Z)) has maximal row rank. We also recall that the
rank of F(Z) is the maximum number of Q[t|[Z]-linearly independent rows
of F(Z), and that U(Z) € Z[t][Z]™>™ is unimodular if there exists V(Z) €
Qlt][Z]™*™ such that V(Z) - U(Z) = U(Z) - V(Z) = 1,,. Some useful
properties of matrices of Ore polynomials, such as linear independence and
rank, can be found in Ref.?

Example 2.1. Consider the differential algebraic system

Yy () + (t+ 2)yi(t) + ys (t) +y2(t) +  y3(t) +ya(t) =0
() + yi(8) + 3un(t) + ¥50 () + 2u5(t) — va(t) + v$)(¢) — 2t%ys(t) = 0
Vi(t) +y1(t) + ¥ () + 2twh(t) — ya(t) + y$(t) = o.)
(1

Let D denote the differential operator on Q(t) such that D - f(t) = d%f(t}.
Then the matrix form of Eq. (1) is:

D?4+(t+2) D?+1 D+1 y1(t)
D>+ D+3 D3+2D -1 D3—2:2| - |y(t)| = 0. (2)
D+1 D3+2D+1 D4 y3(t)

The leading row coefficient (matrix of coefficients of the highest power of
the corresponding row) is upper triangular. This allows us to rewrite the
highest derivative in each row as a combination of other derivatives. For
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example, we can eliminate the highest derivatives of ya(t) as follows:
u(8) = — i (t) — i (t) — 3ua(t) — 204(2) + va(t) — u§¥ (t) + 2623 (t)
= — ((t +2)y1(t) —yz () — y2(t) — ya(t) — ws(t)) — y1(t) — 3ya(t)
— 203() + v () — 45" (1) + 2t%ys (1)

= — yi(t) — (t +5)ya(t) + y§(t) — 20h(t) + 2y2(t) — y52 (t) + ya(t)
+ (2% 4 1)ya(t).

2.3. The FFreduce Elimination Algorithm

We give a brief description of the FFreduce elimination algorithm®8 which
forms much of the basis of our work. In this algorithm, we are interested in
applying the following elementary row operations to the matrix F(Z):

(a) interchange two rows;
(b) multiply a row by a nonzero element in Z[t][Z];
(c) add a polynomial multiple of one row to another.

Formally, we may view a sequence of elementary row operations as a trans-
formation matriz U(Z) € Z[t][Z]™*™ with the result of these operations
given by T(Z) = U(Z) - F(Z). The application of these row operations do
not change the rank of F(Z).%% If the row multiplier of (b) is restricted
to elements of Z[t] then U(Z) is unimodular. By applying these operations
to eliminate low-order coefficients, one can compute the rank and the left
nullspace of F(Z).

The elimination problem can be formalized as follows. An Ore polynomial
vector P(Z) € Z[t][Z]'*™ is said to have order & with respect to F(Z)® if

P(Z)-F(Z)=R(Z)  Z° (3)

for some residual R(Z). The set of all vectors of a particular order &
forms a Q[t][Z]-module. The FFreduce algorithm computes a basis M(Z) €
Z[t)[Z]™>™ of row degree I for this module, called an order basis, such that

(1) every row, M(Z); ., has order & for all 1 <i < m;

(2) the rows of M(Z) form a basis of the module of all vectors of order
@. That is, every P(Z) € Q[t][Z)**™ of order & can be written as
P(Z) = Q(Z)-M(Z) for some Q(Z) € Q[t][Z]**™;

20rders in this paper will be with respect to F(Z) and it will not be explicitly stated
for the remainder of the paper.
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(3) the leading column coefficient is normalized. That is, there exists a
nonzero d € Z[t] such that

where deg L(Z)k; < pp — 1.

If M(Z) is row-reduced, we say that it is a reduced order basis. Condition
(3) implies that the row degree can be viewed as the number of times
each row of F(Z) has been used as a pivot in the elimination process (see
Example 3.2). An order basis of a particular order and degree, if it exists,
is unique up to a constant multiple (see Theorem 4.4 in Ref. 3). In the
FFreduce algorithm, the order is given as input but the degree of the order
basis computed is not known in advance. The final row degree reached
depends on the input and a pivoting scheme (also called a computational
path) to be described later.

Let R(Z) be the residual corresponding to an order basis M(Z) of order
W = o - € such that

M(Z) -F(Z)=R(Z)- Z° (4)

If ¢ = mN + 1, then the number of nonzero rows in R(Z) is rankF(Z),
and the rows in M(Z) corresponding to the zero rows in the residual gives
a basis of the left nullspace of F(Z).> The order basis computed has row
degree [ such that p; < (mN + 1)n. For the remainder of this paper, we
only consider the order basis problem in Eq. (4) with & = ¢ - €.

If F(Z) is a matrix of shift polynomials, we have || < o min(m,n), u; < o,
and the trailing coefficient of R(Z) has rank F(Z) nonzero rows. In fact,
the reduction can be terminated as soon as there are “enough” zero rows
in R(Z).236 In this case, one may perform row reduction on F(Z) - Z—V
using Z~! as the indeterminate. Reversing the coefficients of M(Z~1) and
R(Z71), we get

U(2)- A(2) = T(2) (5)

with U(Z) unimodular and T(Z) in row-reduced form. We can also choose
the pivot rows used in the last n steps of the algorithm to construct M(Z~1)
and R(Z~!) satisfying Eq. (4) with the trailing coefficient of R(Z~1) in
upper echelon form.%® Reversing the coefficients in this case yields a weak
Popov form.

Starting from M(Z) = I,, and & = 0, the FFreduce algorithm computes
order bases for increasing & until the desired order is reached. The recursion
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formulas to increase the order of an order basis from & to & + €; are given
by the following theorem (see Theorem 6.1 in Ref. 3):

Theorem 2.1. Let M(Z) be an order basis of order & and degree i, and
Te = Cuy (M(Z)-F(Z))e;). If re =0 for all £ = 1,...,m, then M(Z) is
an order basis of order & + €; and degree [i. Otherwise, we choose a pivot
7 such that

Tr:lénfglm{f:rg#o,pg—lgglm{ujITj#O}}, (6)
and let pe = cuy—146,, (M(Z)r¢). Then an order basis M(Z) of order
W + €; and degree [i + €r can be computed by

P M(Z)es = 7n -M(Z) g —7¢- M(Z)rs  for L4 7; (7
7 (pr) * M(Z)m = (1 - Z =6 (r2)) M(Z)ru — Y 0 (pe) - . (8)
£

When the coefficients of the Ore polynomials come from an integral domain
such as Z[t], no fraction is introduced while applying Eq. (7) and Eq. (8).
We also note that the degree of the order basis computed depends on the
pivot choices in Eq. (6) and cannot be predicted in advance.

3. Linear Algebra Formulation

Given row degree ji and order &, the coefficients in the order basis M(Z) can
be viewed as a solution to a linear system of equations over the coefficient
ring. By equating the coefficients of like powers, each row of the order basis
satisfies a system of equations of the form

70 . ZG;—é‘

r -

70 . Zuk—1481 . i Z0. Fk!.{Z) - b
[ o] O g0 ] ; ~o.
coe | ZBe—1401k Fk(Z)

(9)
More formally, for any P(Z) € Q[t][Z]™*™ we define

Py =[P ... P& |PS) ... PSP (10)
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We also define (recall that & = o - €)

[co( F(Z)14) -+ com1f F(Z)1,4)

(24 F(Zha) - ea(Z9 F(@))

o F(Dme) - cor(  F(Zmn)

Lco(Z“'m- FlZ)my) =+ o1(ZPmF(Z)me) |

Then the i-th row of the order basis satisfies

(Mix)g-ete,  K(f— €+ €,d) =0. (12)

The matrix K (f,d) has dimensions | + €] x |&J|, and is called a striped
Krylov matriz (with m stripes). This is a generalization of the well-known
Sylvester matrix when m = 2 and n = 1.

Example 3.1. Let g = (2,2), J = (3,3), and

272 4 3tZ+6t2 22 -Z+2
(t—1)Z +3t3 3tZ+t

with o(a(t)) = a(t) and §(a(t)) = %a(t}. Then

(622 3t -1 b 1
12t0(6t2+3 2 3t -1
12 0| 24t 0 |6t°+6 2
33| t—1 3t 0 0
0t2 1|33 +1¢t4+3] t—1 3t
18t0| 18> 2 |3t°+2¢+6]

F(Z) = € Z[t)|Z;0,08]*%%,  (13)

We also define the matrix K*(f,&) = K(ji,d).,s where J is the lexico-
graphically smallest set of column indices such that K*(on - €,d). g has
full column rank (this is called the rank profile in Ref. 16). An order basis
of degree [i and order & exists if K*(ji — &,&) is nonsingular,* and in that
case, Eq. (12) has a solution space of dimension one. The system can be
transformed into the following system with a unique solution:

Mi)g-e- K (G- &&) =d- [co (2" -F(Z)in) -+ o1 (2" - F(2)i4)]

(15)
where d = +det K*( — €,&). In other words, we are interested in the
Cramer solution of Eq. (15). Thus, the elements of the solution can be
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written as determinants of submatrices of K (&, ). If F(Z) € Z[t][Z]™*",
then the solution has entries in Z[t][Z] as well.

The FFreduce algorithm performs fraction-free elimination of the matrix
K(fi,&d) efficiently by taking advantage of the inherent structure in the
matrix K(f,d). Indeed the algorithm has the effect of maintaining only
one row in each of the m stripes. It can be shown that p, is the pivot in the
previous step in computing M(Z), in a way similar to fraction-free Gaussian
elimination of Bareiss.! The elements of M(Z) are Cramer solutions to
Eq. (15). The order basis M(Z) can be viewed as the transformation matrix
representing the row operations performed during fraction-free Gaussian
elimination.

Example 3.2. Let F(Z) be defined as in Example 3.1, so that we are
performing Gaussian elimination on K-, ). In the first step of FFreduce,
we choose m = 1 to eliminate the first column so that the row considered
in the first stripe is advanced to the second row of the stripe. This gives

M(Z) = [GtZZ— 12t 0 ] '

-3t3 62 (16)

We omit giving the residual explicitly due to coefficient growth. In the
second step, we again choose m = 1 to eliminate the second column. Note
that here, the first row in the second stripe is zero in the second column,
even though the remaining rows in the stripe have nonzero entries in the
column. The choice of pivot depends only on the current row of each stripe.
This gives an order basis of order (1,1) and degree (2,0):

—24tZ%2 4+ 24Z 0
M(2) = 12¢2 —24¢t| "

(17)
For the third column, the entry of the current row in the second stripe is
nonzero, so that we choose m = 2 as the pivot and obtain an order basis
of order (2,1) and degree (2,1). Thus, the first three elements of J are
1, 2, and 3. Note that at each step, we are solving a linear system whose
coefficient matrix grows column-wise (as the order increases) and row-wise
(as the degree of the order bases increases).

As we can see, the row degrees of the order bases computed correspond to
the number of times a row in each stripe is used as a pivot in the elimination
process. The column indices in J give the columns in which elimination is
performed (i.e. there is a nonzero entry in the current row of one of the
stripes).
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If we perform the same computation in Zs, we see that the first column is
zero and we will reach an order basis of order (2,1) and degree (1,1). Here,
the first two elements of J are 2 and 3. On the other hand, performing the
computation in Zs results in an order basis of order (2,1) and degree (1,1),
with the first two elements of J being 1 and 3. This shows that when a
prime is “unlucky”, the rank profile (and hence the set of column indices
J) as well as the sequence of row degrees of order bases constructed (the
computational path) can be different from the correct ones.

4. Reduction to Z,[t][Z]

In this section, we show how techniques used in modular algorithms for
polynomial matrices” can be extended to Ore polynomial matrices for the
reduction of Z[t][Z] to Z,[t][Z]. We omit proofs which are similar to the
polynomial matrix case and instead only highlight the differences. We refer
the reader to Ref. 7 for more details.

Given the Ore polynomial ring Z[t][Z;c,d] and a prime p, we define the
modular homomorphism ¢, by

¢p(A) = Amod p, for A€ Z[t][Z;0,0]. (18)

This gives a mapping from the Ore polynomial ring Z[t][Z; o, §] to the ring
Zy(t][Z; op, 5], where

op(dp(f)) = bp(a(f)) and 6p(¢p(f)) = ¢p(8(f)) for f € Z[t] . (19)

We are interested in reducing the computation over Z[t][Z; o, 8] to compu-
tations over Zy[t|[Z;0p, 8, for a certain number of primes p. The results
are then combined using Chinese remaindering to obtain the desired result
in Z[t][Z;0,8]. Three issues need to be addressed: normalization of the re-
sults in Z,[t][Z; 0p, 8,], the detection of unlucky primes, and a termination
criteria.

The main idea is that the computation of an order basis can be viewed as
the computation of solutions to linear systems of the form in Eq. (15). As
illustrated in Example 3.2,7; = OforallZ = 1,...,m in any one step implies
that the corresponding column in the matrix K(-,-) is linearly dependent.
Otherwise, the choice of 7 refers to pivot row used in the elimination.
Therefore, in order to be sure that the results computed in Zp[t][Z; op, 6] is
the same as those computed in Z[t][Z; ¢, §], we need to ensure that the same
systems of equations are solved (i.e. the rows and columns appearing in
K*(-,-) is the same) and that the sign of d in Eq. (15) is chosen consistently
across all primes p.



54 H. Cheng, G. Labahn

The sign of d can be computed consistently by applying the following for-
mula together with the recursion formulas in Eq. (7) and Eq. (8):

=1

{ek if r; =0 for all ¢,
€k+1 =

o ‘ 20
Ek.(_l}zizuu(”’“)l otherwise, )

where 7, and [i are the values of 7w and [ at the k-th step of the algorithm
(Lemma 5.1(c) in Ref. 4). Multiplying the results obtained using Eq. (7) and
Eq. (8) by € at each step, this normalization ensures that d = det K*(f —
€,&). If the results in Z,[t][Z; op, §,] are computed by some other means (see
Sec. 5), we simply need to ensure that the sign is consistent with Eq. (20).

4.1. Lucky Homomorphisms

Let he(f) be the leading coefficient of f € Z[t|[Z;0,6] in ¢t (the head co-
efficient). If ¢,(hc(o(t))) # 0, then o, is an Ore ring homomorphism and
Zytl[Z;0p, 8p] is an Ore polynomial ring.!"!® Thus, all primes p such that
¢p(he(o(t))) = 0 are immediately discarded.

Let { and J be the degrees and index set computed for an order basis of
order & in Z[t][Z; 0, 6], and [, and J, be those computed in Z,[t][Z; 0p, &,).
Also, let d be the constant in Eq. (15) computed in Z[t][Z; o, §]. To ensure
that the same systems of equations is solved in Eq. (15), we must ensure
that (&, J) = (Hp, Jp). This can be defined formally as follows.

Definition 4.1. The homomorphism ¢, is lucky if

(1) ép(d) # 0;
(2) 14| = |fp|; and
(3) @p(he(a(?))) # 0.

Otherwise, it is unlucky.

It can be shown that if ¢, is lucky, then (ii,J) = (jp, Jp).” In that case,
the order basis and residual computed in Z,[t][Z; 0p,0,] are images of the
desired results under ¢,. Moreover, if p is unlucky then it must divide
he(o(t)) or a minor of K(fi,&), so the number of unlucky homomorphisms
is finite.” More precisely, if & is a bound on the coefficients of Z¢. F(, j) for
0 < £ < mN +1, then the number of unlucky homomorphisms is at most

max (log2 he(o(t)), (mN + 1)%n? log, (m/(mN + 1)n)) (21)
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as we are only interested in minors of size up to (mN + 1)n. In practice,
however, this is a very pessimistic estimate and unlucky homomorphisms
are rarely encountered.

We note that the sequence of row degrees of the order bases constructed
during the FFreduce algorithm represents the choice of pivots (see Exam-
ple 3.2). We call this sequence a computational path. If we define the path
W = {Wk}k=0,1,2,... by Wy = 0 and Wk+1 = Wk + €k mod m+1, then W is
the sequence of degrees followed by the FFreduce algorithm if r; # 0 for all
¢ at every step. It was shown that the final degree [ is the unique closest
normal point to w (see Theorem 7.3 in Ref. 4). That is, if K*(¢ — €,d) is
nonsingular for some ¥ such that |7 = |f|, then

| max(0, @ — @) < | max(0, @ — 7)]| for all k > 0. (22)

Since ji and J are not known a priori, we need criteria to compare the
results computed under two homomorphisms and determine if one of them
is unlucky. This is similar to the case for polynomial matrices.” This allows
one to incrementally compute homomorphic images and detect unlucky
homomorphisms by comparing the current image against the previous ones.

Theorem 4.1. Suppose ¢,(hc(o(t))) # 0, ¢p(F) # 0, and ¢q(F@) # 0.
Then ¢p is unlucky tf one of the following holds:

(1) |ﬁpl = [ﬁq| and Jp >lex Jqs'
(2) |fp| = g, Jp = Jq, and jiq is closer to W than [i,;
(3) |ip| < |-

We remark that this theorem is used only to detect unlucky homomorphisms
and cannot be used to detect lucky ones.

Assuming that we can compute the order basis M,(Z) (and the cor-
responding row degree [, and column index set J,) for ¢,(F(Z)) over
Zyt)[Z;0p,0,], Theorem 4.1 allows the results computed under two differ-
ent homomorphisms be compared to detect unlucky homomorphisms.

4.2. Termination

As all coefficients in M(Z) are Cramer solutions of the linear systems in
Eq. (15), they can be written as determinants of the coefficient matrices.*
Using Hadamard’s inequality, we can bound the size of the coefficients and
terminate the modular algorithm when the product of the moduli exceeds
this bound. Unfortunately, the Hadamard bound can be extremely pes-
simistic. A common approach is to reconstruct the results incrementally one
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prime at a time using Garner’s algorithm,® and verify the results when they
do not change for a certain number (e.g. one) of additional homomorphisms.
The verification step typically involves trial division or multiplication.

An approach of Cabay® was first used for solving systems of linear equations
with a modular algorithm without the need for verification. This was ex-
tended to the case of polynomial matrix normal form computations.” This
technique can be extended to Ore polynomial matrices.

Theorem 4.2. Let ||f(t)]|oo = max; |[f@| where f(t) =3, fPt'. Suppose
that forall1 <i<m,1<j<n, 0<k<mN4+1,and 0 << mN +1,
we have

deg; (ck (Zé . F(Z)i,j)) <T; (23)
lex (2* - F(2)i5) [ o0 < K. (24)

Suppose the primes are ordered such that py < ps < ---, and that
((mN + DT +1) <p1---pr (25)

for all j = 1,...,n. If M(Z) and R(Z) are the reconstructed results in
the modularNalgom'thm and have not changed for 7 additional primes, then
M(Z) and R(Z) give a solution to Eq. (4).

Proof. The proof of this theorem follows that of Theorem 6.1 in Ref. 7.
We note that the coefficients of M(Z) are solutions to the linear systems of
equations in Eq. (15), where the size of the matrix K*({i — €,d) is (mN +
1)n. The only difference here is that we need to note that by Hadamard’s
inequality, deg,(f) < (mN + 1)nT where f is a coefficient in M(Z), and
that || fgllec < (min(deg,(f), deg,(g)) + 1)||flloollgllco- =

The early termination criteria is most useful if 7 is small. In particular, if
7 = 1 then the proposed criteria is clearly an improvement over a tradi-
tional modular algorithm. This is often true in practical cases.” In the worst
case, the termination condition of Eq. (25) is satisfied when the traditional
Hadamard bound is reached. Thus, the early termination strategy is no
worse than the traditional one.

Remark 4.1. The bound in Eq. (25) is based on the norm of a column in
K*(fi — €,). In specific cases where ¢ and § are known, the bound can be
refined.
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5. Reduction to Z,

While we do not suffer coefficient growth in the size of the integer coeffi-
cients when solving the problems in Z,[t][Z;0p, 8], the growth of the de-
grees of the coefficients with respect to t still needs to be controlled. In this
section, we show how the computation of an order basis in Z,[t][Z; op, d,)
can be transformed into a number of linear algebra problems over Z,.

It has been shown that the evaluation homomorphisms ¢ «— o are usually
not Ore ring homomorphisms because Ore polynomial rings over Z, must be
commutative.'11% As a result, it is not possible to apply the same technique
in the previous section to obtain a modular algorithm to compute order
bases in Z[t]|[Z; op, 6,] by reducing the problem into ones with coefficients
in Zp|Z]. However, when the problem in Z,[t][Z; op,0p] is viewed as the
linear algebra problem in Eq. (15) over Z,[t], each entry in the striped
Krylov matrix can be reduced by an evaluation homomorphism to obtain
a number of linear algebra problems in Z,. This is essentially the approach
taken to compute a GCRD and a LCLM of Ore polynomials''3—the image
of the coefficient matrix over Z, is constructed and Gaussian elimination is
performed on this matrix over Zj.

In the Ore polynomial case, the coefficient matrix in Eq. (15) is the well-
known Sylvester matrix and the computational path corresponds directly
to the degree sequence of the polynomial remainder sequence.® In the Ore
polynomial matrix case, however, we do not know of such a correspondence
and neither the computational path nor the final configuration of the striped
Krylov matrix is known a priori. Thus, it is not sufficient to simply construct
the coefficient matrix and then operate on it.

Our modular algorithm to compute order bases in Z,[t|(Z; 0,,dp] consists
of the following steps:

(1) Choose a number of evaluation points .

(2) For each evaluation point, apply the evaluation homomorphism t «— «
and solve the reduced linear algebra problem over Z,.

(3) Combine the results obtained from lucky evaluation points by polyno-
mial interpolation.

This is the traditional framework for modular algorithm. However, the ap-
plication of the evaluation homomorphism and solution to the linear algebra
problem is non-trivial.



58 H. Cheng, G. Labahn

5.1. Applying Evaluation Homomorphisms and
Computation in Z,

Our approach can be seen as a generalization of the modular algorithm for
Ore polynomials.!!13 Instead of constructing the entire coefficient matrix
K(-,&) in Z, and performing Gaussian elimination on this matrix, we will
incrementally construct the striped Krylov matrix. Whenever we choose the
pivot 7 in an elimination step, the row corresponding to Z#=*! . F(Z), .
needs to be added to the striped Krylov matrix. Once the row is added,
elimination must be performed so that the new row also has the required
order. However, this is not completely straightforward as the next example
shows.

Example 5.1. Let F(Z) be defined as in Example 3.1. Applying the eval-
uation t «— 0, the image of the striped Krylov matrix K(i,&) over Zs
is

[02(04|21]
00(32]04
20/00([12
0o(40[00
01(13|40

[00[02]21]

When the third row in the first stripe is finally added to the matrix, we
notice that the first column is linearly independent. In fact, there is no need
to perform elimination on the added row.

The sequences of pivot rows and columns over Zs is different from those
over Zs|t], but the set of pivot rows and columns used at the end are the
same in this case as K has full rank. After appropriate normalization, the

solutions computed over Zg are images of the corresponding solutions in
Zs|t].

We now describe the process by which the elimination is performed. The
computation of quantities such as i and 7 are similar to the FFreduce al-
gorithm; they will not be given explicitly here. We will keep the striped
Krylov matrix K in the form of matrix of coefficients in Z,. The entries in
the transformation matrix T(Z) will be kept in polynomial form to simplify
the manipulations required when a new row is added. In addition, we main-
tain a matrix C(Z) where C(Z); .« = Z* -F(2);,« € Zplt][Z;0p,8p)1*™. The
vector C(Z);,. represents the last row of stripe ¢ added to K and allows us
to quickly add the next row.
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The algorithm proceeds as follows.

(1) Initially, set C(Z) = F(Z). Also initialize K to include the m rows
consisting of coefficients of F(Z);« up to order & evaluated at t = a,
and a transformation matrix T(Z) = L.

(2) For each elimination step, the residuals r; in Theorem 2.1 can be ob-
tained by examining the appropriate row and column in K based on [
and ¢ and the form of the striped Krylov matrix in Eq. (11). If r; # 0
for some 1 < ¢ < m, add the step number j to set of column indices J.
Once the pivot row is chosen, we apply standard row operations in Z,
(non-fraction-free) to eliminate all other rows of K for that column. We
also need to add the next row for stripe m:

(a) C(Z)re + Z - C(Z)r. This operation is performed in
Zp[t][Z; 0, by

(b) Evaluate C(Z), « at t = a. Add the coefficients as a new row to
K, and perform row interchanges so that the stripes in K are in
the form in Eq. (11). Add a corresponding row to T(Z), whose only
nonzero entry is Z#**! in column 7.

(c) Perform row operations to eliminate the added row up to column j
using all rows that have previously been used as pivots. The same
row operations are applied to T(Z). During the reduction, if the
added row introduces a new linearly independent column, add the
column index to J and repeat steps 2a to 2c.

(3) When the row reductions are complete, let K* be the triangular sub-
matrix of K. j consisting of all but the last added row for each stripe.
Compute the determinant d = det K* as a product of the diagonal el-
ements. Adjust the sign of d based on the row interchanges performed
(see Eq. (20)).

(4) The i-th row of the order basis M(Z) and the residual R(Z) can be
extracted from the rows corresponding to Z*+ - F(Z);. in d- T(Z) and
d-K.

Although we have lost the ability of FFreduce to take advantage of the
structure of the striped Krylov matrix, we gained the ability to control co-
efficient growth. Note that coefficient growth is not completely eliminated,
since the computation of C(Z) may introduce growth in the degree in ¢
when Z* . F(Z). However, the growth arising from Gaussian elimination is
eliminated. Furthermore, the degree in ¢t does not grow when multiplying
by Z in many practical cases (see Remark 6.3).
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Example 5.2. Continuing from Example 5.1, we first start with

020421
K[oo 40 oo]' (@7)

Eliminating the second column with pivot 7 = 1 requires no row operation.
The next row for the first stripe is added to obtain

K (28)

In the next step, we choose m = 2 to eliminate the third column. Adding
the next row and eliminating gives

02
00
00
00

(29)

Next, we choose m = 1 to eliminate the fourth column. After adding the
next row for the first stripe, we get:

02[04|21
00lo2/04
K=|20{00[12]. (30)

The new row introduces a new linearly independent column. The next row
for the first stripe will be added immediately. Continuing in this manner
gives the coefficients of the residual R(Z) as the last row of each stripe.

5.2. Lucky Homomorphisms and Termination

Since our definition of lucky homomorphisms is originally based on the lin-
ear algebra formulation of the order basis problem, the same definition can
be easily applied to the reduction of the linear algebra problem from Z,|t]
to Zyp. In particular, Definition 4.1 and Theorem 4.1 can be applied simply
by changing ¢, and ¢, to the appropriate evaluation homomorphisms.

Similarly, the termination criteria is also originally based on the linear al-
gebra formulation in Eq. (15). Again, we may apply Hadamard’s inequality
to obtain bounds on the size (degrees in t) of the coefficients in the solu-
tions, but we prefer to have an early termination condition that is sensitive
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to the size of the output. Since we are now dealing with linear systems of
equations, we can apply the technique of Cabay® directly after modifying
the theorem to use the degree measure as the coefficient norm.

Theorem 5.1. Suppose that foralll <i<m,1<j<n,0<k<mN+1,
and 0 < £ < mN + 1, we have

deg, (cx (2°-F(2):;)) < T. (31)

Suppose that M(Z) and R(Z) are the reconstructed results in the modular
g_{gor&thm agd have not changed for T additional evaluation points. Then
M(Z) and R(Z) give a solution to Eq. (4) in Zp[t][Z;0,6].

6. Complexity Analysis

To compare the new modular algorithm against the fraction-free FFreduce
algorithm, we need to give the complexity of FFreduce in our context, as
the analysis in our previous work®® are for general coefficient domains and
can be refined. The proof is similar to the ones in our previous work and is
omitted.

Theorem 6.1. Suppose that foralll1 <¢<m,1<j<n,0<k<mN+1,
and 0 <€ <mN + 1, we have

degt (Ck (Zé . F(Z)i,j)) S T; (32)

||Ck (Ze . F(Z)i,j) “oo S K. (33)

Then an order basis and a residual of order & = (mN+1)-€ over Z[t][Z; o, d]
can be computed in O((m+n)(mnN)*T?M(mnN (log(Tk)))) bit operations

by the FFreduce algorithm, where O(M(K)) is the complexity of multiply two
k-bit integers.

We now analyze the complexity of our algorithm. We first examine the
complexity of the computation of the order basis over Z,[t|[Z; op, ;).

Theorem 6.2. LetT be a bound on the degree of the coefficients in t, such
that

dege (ck (2°-F(Z)i;)) < T (39)
for 1 <i<m,1<j<n,0<k<mN+1, and0 <l <mN+1. We
also assume that two polynomials in Z,[t] of degree d can be multiplied in
O(dlogd) operations in Z,. Then an order basis and a residual of order & =
(mN +1) - € over Z,[t][Z; 05,0, can be computed in O((mnN)3mT(nN +
T(logmnNT)?)) operations in Z,.
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Proof. Since the dimensions of the coefficient matrix in the system of
equations in Eq. (15) is (mN+1)nx (mN+1)n, it follows that the entries of
the order basis and the residual have degrees in ¢ bounded by (mN+1)nT as
they can be written as determinants of submatrices of the coefficient matrix.
This implies that O(mnNT) lucky evaluation points are needed. For each
evaluation point, the evaluation can be done in O((mnN)2T) operations in
Z,. The elimination can be done in O((mnN)?) operations. Finally, each
coefficient can be interpolated in O(PM(mnNT)log(mnNT)) operations,'”
and we have O(m?nN) nonzero coefficients in M(Z) and O(mnN) nonzero
coefficients in R(Z), where PM(d) is the complexity for multiplying two
degree d polynomials. The desired result now follows from the assumption
on polynomial multiplication. O

Remark 6.1. In the analysis we have ignored the occurrences of unlucky
homomorphisms as they rarely occur in practice. Also, we assumed that
p is chosen large enough such that polynomial multiplication for degree d
polynomials can be performed in O(dlogd) operations.

We are now ready to give the complexity of the complete algorithm.

Theorem 6.3. Suppose that foralll <i<m,1<j<n,0<k<mN+1,
and 0 <€ < mN + 1, we have

deg (cr (2°-F(2):;)) < T; (35)
ek (2°- F(2)5) ||, < & (36)

Then an order basis and a residual of order & = (mN+1)-€ over Z[t][Z; 0, §]
can be computed in

O(m(mnN)3T(nN + T(logmnNT)? 4 loglog Tx)M(mnN log Tk))

bit operations by our modular algorithm.

Proof. By Hadamard’s inequality, Eq. (15), and the inequality || fg|loo <
(min(deg, (1), deg,(9)) + 1)T || ogllocs we see that | cx (M(2),,

Hck (R(Z)i’j) ” have O(mnN log Tk)) bit length. Choosing primes of size

o0

O(log T'k), it follows that O(mnN) lucky primes are needed. For each prime,
the reduction modulo p can be done in O(mnNT) operations in Z,, and the
computation of the order basis and residual in Z,[t][Z; o, 6] can be done in
O((mnN)P*mT (nN+T (logmnNT)?)) operations in Z, by Theorem 6.2. We
note that each operation can be performed in O(M(log T'x)) bit operations.

and
oo
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Finally, there are O(m?nN) nonzero coefficients in M(Z) and O(mnN)
nonzero coefficients in R(Z), each of which has degree O(mnNT) in t. Each
coefficient can be reconstructed in O(M(mnN log Tx) log(mnN log Tk)) bit
operations by Chinese remaindering.!” O

Remark 6.2. We see that the complexity of the modular algorithm im-
proves on the complexity of the fraction-free algorithm, but the advantage
of the reduced coefficient growth is offset by the use of a larger striped
Krylov matrix. In the analysis we have used the worst case bound that
the number of rows in the striped Krylov matrix can be a factor of niV
greater than that of R(Z) and M{(Z) in Ore polynomial matrix form. In
practice, however, the striped Krylov matrix usually never grows to its full
size because there can be many zero rows, or because we can terminate
the elimination earlier in the case of matrices of shift polynomials. The
advantage of the modular algorithm is more significant in these cases.

Remark 6.3. In many practical applications, deg,(c(a)),deg,(6(a)) <
deg,(a) for all a € Z[t]. In these cases, one can simplify Eq. (35) to

deg, (cx (F(2)i;)) < T. (37)

7. Implementation Considerations and Experimental
Results

The modular algorithm has been implemented in Maple 9.5. Although the
modular algorithm has a better complexity than the fraction-free algorithm,
the modular algorithm has a larger overhead especially for small inputs. As
a result, a careful implementation is needed for the modular algorithm to
perform better than the fraction-free algorithm on inputs of reasonable size.
We list below some optimizations used. Although they are straightforward,
these optimizations have significant effect on the running time of the algo-
rithm.

e Memory allocation and deallocation can be a significant overhead in
the algorithm. To minimize memory management, we allocate one large
matrix K for each prime p and use the same matrix for different eval-
uation points. There is also no need to reallocate the matrix when a
new row is added, as long as the original matrix is large enough. In
addition, we may augment the matrix K with the identity matrix to
represent the coefficients of the order basis.



64 H. Cheng, G. Labahn

e When a new row is added to K, we do not perform row interchanges
to maintain the coefficient matrix K in striped Krylov matrix form.
Instead, we simply add the new row to the bottom and maintain a list
of row indices to refer to the correct row. This reduces data movements
in the algorithm.

e The computations on C(Z) for keeping track of the next row to be
added to K are identical for all evaluation points o under Z,. Therefore,
we compute the sequence of C(Z) only once for each prime p and reuse
the results for all evaluation points.

e The LinearAlgebra:-Modular package is used to efficiently perform
linear algebra operations in Z,,.

We compare the performance of the modular algorithm and the fraction-
free algorithm (FFreduce) below. The experiments were performed on a
computer with a Xeon 2.70GHz processor and 16GB of RAM. In the ex-
periments, we generated random matrices of Ore polynomials such that
a(a(t)) = a(t) and §(a(t)) = %a(t). The results are given in Table 1 and
Table 2. As expected, we see that the modular algorithm performs better
than the fraction-free algorithm as the input size increases. Also, we show

that using rational arithmetic in Q[¢] to perform row reduction is imprac-
tical.

Table 1. Comparison between modular and fraction-free algorithms
for various input sizes (x = 5, T' = 1). Also shown are timings when
the rational arithmetic in Q[t] is used (n/a means no result is com-
puted after 7200 seconds).

m,n N | FFreduce (s) Modular (s) | Ratio | Rational (s)
2 1 0.037 0.178 0.208 3.073
2 2 0.089 0.278 0.320 n/a
2 4 1.453 3.226 0.449 n/a
2 8 21.984 26.789 0.821 n/a
2 16 75.048 118.796 0.630 n/a
3 1 0.564 1.150 0.490 n/a
3 2 3.928 6.032 0.652 n/a
3 4 64.498 55.991 1.150 n/a
3 8 401.708 339.383 1.190 n/a
4 2 54.213 46.776 1.160 n/a
4 4 1018.963 589.687 1.730 n/a
4 6 5107.881 3123.530 1.640 n/a
5 2 564.498 289.937 1.940 n/a
5 4 7770.646 4554.689 1.710 n/a
8 1 2434.662 1182.519 2.060 n/a
10 1 17124.143 11146.557 1.540 n/a
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Table 2. Comparison between modular and frac-
tion-free algorithms for various input sizes (k = 5,

T =2);
m,n N | FFreduce (s) Modular (s) | Ratio
2 2 0.496 1.848 0.268
2 4 5.618 11.368 0.493
2 8 95.759 111.925 0.855
2 16 1723.170 1709.175 1.010
3 2 16.488 24.198 0.682
3 4 330.956 291.985 1.130
3 6 1373.799 1225.103 1.110

Although the modular algorithms is faster than the fraction-free algorithm
for larger inputs, there were instances where the ratio between the running
times of the fraction-free algorithm and the modular algorithm decreases
slightly when the input size is increased. In these cases, the larger inputs
actually gave output that are smaller than expected because the rank of the
striped Krylov matrix is not full. Hence, the recurrence formulas in Eq. (7)
and Eq. (8) are not applied as often, resulting in less coefficient growth in
the output. Also, for larger inputs the overhead of garbage collection for
the results computed under different evaluation points and different primes
become more important. This is confirmed by observing that the running
time for the modular algorithm improves significantly when the frequency of
garbage collection is reduced®. A decision has to be made based on available
memory in order to reduce running time while using a reasonable amount
of memory.

8. Concluding Remarks

In this paper, we showed how to design an output-sensitive modular algo-
rithm for performing row reductions on matrices of Ore polynomials. By
examining the problem as a linear algebra problem in Z,[t] and subsequently
in Z,,, we overcome the various issues in designing a modular algorithm—
detection of unlucky homomorphisms, normalization, and termination. We
have also shown that the modular algorithm is faster than the fraction-free
algorithm for larger inputs both theoretically and experimentally.

A limitation in both the fraction-free and modular algorithms is that row
reduction is performed on the low order terms. When the elements of the
input matrix are shift polynomials, one may perform substitution to reverse

bChanging the kernel variable gcfreq to 5000000 from the default value of 1000000
reduces the running times by as much as 3 times in some cases.
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the coefficients. However, this cannot be done for general Ore polynomials.
We believe that it is possible to formulate row reduction based on high
order terms as a nullspace computation, so that the modular algorithm
described here can be applied to control coefficient growth for the compu-
tation of normal forms that are defined by leading coefficients such as the
row-reduced form.
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This paper is based on a talk given at WWCA (Waterloo Workshop on Com-
puter Algebra) held at Wilfird Laurier University, April 2006. This paper gives
a history of beta-expansions, and surveys some of the computational aspects of
beta-expansions. Special attention is given to how these beta-expansions relate
to Pisot and Salem numbers. This paper also gives an overview of the compu-
tational issues that arose in the recent investigation of Allouche, Frougny and
Hare,? upon which the talk at WWCA was based.
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1. Introduction and History

People have represented numbers in a varieties of different bases. By far
the most common today is base 10, the current system inherited from the
Arabics. Some other bases that have been used historically include the
base 60 (mixed representation) of the Babylonians, and the base 20 (mixed
representation) of the Mayans (Katz3!). More recently, base 2 and 16 have
become more common, with modern day computer science.

Let us consider the standard base 10 representation for now. Assume for
convenience that z € [0,1). We say

o0
%3

T = 0.&10.2&3--- = - ﬁ (1)
i=1

Here the a; € {0,1,---,9}. The middle expression of Eq. (1) is called a base
10 representation of z. We say a representation of an = € [0, 1) is eventually

*Research of K. G. Hare supported, in part by NSERC of Canada
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periodic if it can be written as

z=0.a1a2 - ar(Qrr10k4+2 - - an)”.

If we assume further than ay # a, and that the period has minimal length,
then we say that the representation has a pre-period of length k and a period
of length (n — k). If the period has length 1 and a, = 0, then we say that
the representation is finite and we omit the 0 in the representation to get
z = 0.a10z - Q.

An elementary result about decimal numbers is that the representation of a
number is eventually periodic or finite if and only if it represents a rational
number. It is easy to see that this is true for any base ¢ € Z, with ¢ > 2.
An immediate question presents itself. What happens if ¢ ¢ Z7

Rényi,*! was among the first to study representations of a value x with a
non-integer base 3. These have come to be known as beta-expansions. To
this end we define the beta-expansion of a number z.

Definition 1.1. Let z € [0, —[gJ:Tl) satisfy

oo
T
n=1

where a,, € {0,1,--+,[B] — 1}. Then ajazas--- is a beta-expansion for
.

For the purposes of this paper, 3 is always a real non-integer, and ¢ is
always an integer. Furthermore, we always assume that § and ¢ are strictly
greater than 1. Note, for convenience, we omit the “0.” in front of ajaz - -.
This is done first, to be consistent with the literature on beta-expansions,
and secondly, because it is more natural to think of a beta-expansion as
an infinite word, for which a number of the results have a more elegant
description.

We now consider our first example with a non-integer base.

Example 1.1. Consider [ the golden ratio, 3 ~ 1.618, the larger root of

2—-p—-1=0.
Then
1=j+ o
B o
T+ @t gttt
BT g ph T gE TR '

So the beta-expansions of 1 include

1104 = 11, 1011, and (10)“.
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As we can see from this example, it is possible to have multiple beta-
expansions for the same number. In fact, in the case of the golden ratio, 1
has an infinite number of beta-expansions. The number of expansions of 1
has been studied in Erdés et al.,?2 where they showed that forall 1 < N < w
there exists 2% real numbers 3 € (1,2) for which 1 has exactly N different
beta-expansions.

Problems relating to the structure of a general beta-expansion can be found
in Jod et al®® In particular, they related the properties of these beta-
expansions to particular properties of the spectrum of 3 defined as

k
Y(8) = {Zﬁ""‘ tkeN,n; € Nyn; <n1+1} ={0=yo<y1<y2< -}
i=0

The two specific constants ¢(3) = liminf(y, — yn—1) and L(3) =
lim sup(yn — yn—1) related to this spectrum have received much attention
recently. See for example Borwein et al.,>'° Bugeaud,!® Feng et al.,>* Garth
et al.?” and Hare.?*

If we have multiple beta-expansions for a value, then we can order these
beta-expansions lexicographically. Of particular interest are the largest and
the smallest beta-expansions lexicographically. We begin with the largest,
which has received the most attention in the literature. This is called the
greedy expansion. (The name is suggested by the fact that the algorithm
used to compute this expansion is a greedy algorithm.)

Definition 1.2. If dg(z) = ajas0a3--- is the maximal beta-expansion for
z (lexicographically) then we say that ajagas-- - is the greedy expansion
for z with base 5.

It should be noted that in some literature when they talk about the beta-
expansion of z, they mean the greedy expansion of z. To avoid confusion, we
will always specify an expansion as a greedy expansion or a lazy expansion
if it is one of these expansions. The lazy expansion is the smallest beta-
expansion lexicographically. In this paper, when we say beta-expansion we
are not assuming that it is the greedy expansion, but instead that it is a
general expansion of the form given in Definition 1.1.

The beta-expansions that Rényi studied were these greedy expansions. The
majority of his paper was studying more general expansions such as the
continued fraction expansion, or the regular g-adic expansion, where q € Z,
with ¢ > 2.

Rényi studied expansions of the form

z=cot fle+ fleate) )
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with digits €,. In the case of the g-adic expansion we have f(z) = x/q¢, and
in the case of the continued fraction expansion we have f(z) = 1/z. We can
compute the digits by letting ¢(z) = ¢-z (or ¢(z) = 1/x respectively) be the
inverse of f(z), and defining r,(z) = ¢(rn—1(z)) mod 1. Then the digits
are computed by €, = |¢(rn—1(z))|. Rényi showed that for an algorithm
such as the continued fraction, or ¢g-adic expansion algorithm, the digits
are independent. He then considered the obvious extension of the g-adic
expansion to the greedy expansion given by f(z) = z/8 with 8 € R\ Z,
3 >1and ¢(z) = 3+ mod 1. He observed that for the greedy expansion,
the digits were not independent. An easy example of this is the case of 8 =
1.618 - - the greater root of 22 —xz—1. The greedy expansion cannot contain
as a substring “011”. Assume to the contrary that the greedy expansion for
some z contains the substring “011”. If we replace the substring “011” with
“100” then we get an equally valid beta-expansion for the same number,
but the latter is lexicographically bigger, contradicting the assumption that
the original beta-expansion was the greedy expansion.

Algorithmically, it is straightforward to compute the greedy expansion. If
the greedy expansion is eventually periodic, then it is possible to detect this,
and give the complete expansion. (This requires maintaining the symbolic
representation of r, to allow for exact comparisons. See the discussion in
Section 3.) If the greedy expansion is not eventually periodic, then it is pos-
sible to compute any number of terms of the expansion, relatively quickly.

Algorithm 1.1 (Greedy Algorithm). Set rq := z. Set rn, = 3 - 7Tn_1
(mod 1) and an = |3 rn—1]. Then ajazas - - is the greedy expansion of z.

Some implementation issues are discussed in Section 3. Some examples of
greedy expansions are given in Table 1.

We see that one of the key computations in Rényi’s study (and the greedy
algorithm) is rn(z) = ¢(rn—1(2)) (mod 1). From this we define the operator
Ts(z) as Tg(z) = B - = (mod 1). We see that a necessary and sufficient
condition for the greedy expansion being periodic or finite is that Tén)(:c)
is eventually periodic or eventually 0. To that end we define

Definition 1.3. We define Fin(f) as the set of all z such that 7" (z) is
eventually 0.

Definition 1.4. We define Per(3) as the set of all x such that Tén)(m) is
eventually periodic.

We see that if Tﬁ(”) (z) is eventually 0, then it is eventually periodic, with a
period of length 1, and period “0”. Hence Fin(3) C Per(8). We notice that
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Table 1. Table of some greedy and lazy expansions

4 Greedy Expansions Lazy Expansions

3 = 1.618 the root of g% — 3 — 1
1/5  (00010010101001001000)%  000(01101°0110101011)

2/5  (0109100101010010)« 0(0101011011016011)«

3/5 (0101010010010810)« 0(01%0110101011011)*

4/5  (1001001081001010) 0(11011010101101101111)*
1 11 0(1)v

22 1.325 theroot of 33 — f — 1

1/5 (0510810%)v 0%(110111101111015015)«
2/5  (00010°10000109)« 07(1%01%015015)«
3/5  (010'°10610000)¥ 0510111(111101120150)«
4/5  1000(07100001000010%1)%  0000(10180113)«
1 10001 0000(1)«
=2
1/5  (0011)# (0011)*
2/5 (0110)¥ (0110)~
3/5 (1001)¥ (1001)*
4/5  (1100) (1100)%
1 (1~ b

if B is an integer, then Fin(f) is exactly the set of numbers E“,; withn € Z
and Per((3) is the rationals.

One interesting difference between Fin(3) and Per(3) from when 3 is an
integer, and when {3 is a general real number, is that when 3 is an integer,
both of Fin(3) and Per(j3) are necessarily closed under addition and multi-
plication. Moreover tight bounds upon the length of the fractional part can
be given, based on the lengths of the fractional parts of the two terms to be
added or multiplied. It is not necessarily true that these sets are closed un-
der addition or multiplication for a general real number 3. For some specific
real numbers 3 with special algebraic properties, this can still be done. See
for example Ambroz® for results and software. An obvious question occurs.
What do Fin(3) and Per(3) look like in general, when 3 is not an integer?
When can we say Per(8) contains Q7 Before discussing this, we need to
introduce some standard definitions from algebraic number theory.

Definition 1.5. A number « is an algebraic integer if it is the root of a
monic integer polynomial. There is a unique monic integer polynomial p(z),
called the minimal polynomial, for which « is a root and the degree of
p(z) is minimal.
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Definition 1.6. If « is an algebraic integer, and p(z) is its minimal poly-
nomial, then we say that all of the other roots of p(z) are the conjugates
of a.

Definition 1.7. A Pisot number « is a real algebraic integer o > 1 such
that all of s conjugates are strictly less than 1 in modulus.

Definition 1.8. A Salem number « is a real algebraic integer o > 1 such
that all of a's conjugates are less than or equal to 1 in modulus, and at
least one conjugate is equal to 1 in modulus.

Example 1.2. An example of an algebraic integer is 1 + v/2 + /3 with
minimal polynomial z* — 4% — 422 + 16z —8. The conjugates of 1 ++/2++/3
are 1 4++/2 + /3.

An example of a Pisot number is, 1.325- - -, the root of z® — z — 1. The two
conjugates of this Pisot number are both of modulus 0.8689.-- < 1.
An example of a Salem number is 1.7221 - - -, the root of 2* — 2% — 22 — 241,

the other conjugates have modulus 1,1 and 0.5807---.

The structure of the set of all Pisot numbers is well understood. The set is
known to be closed (Salem*?), with a smallest value of 1.324-- -, the real
root of 23 —z — 1 (Smyth**). Amara® gave a complete description of the set
of all limit points of the Pisot numbers. Boyd!?!3 has given an algorithm
that will find all Pisot numbers in an interval, where, in the case of limit
points, the algorithm can detect the limit points and compensate for them.
Both of these results were exploited for the computational exploration of
beta-expansions of Pisot numbers given in Allouche et al., (see Section 2
for more details).

The set of Salem numbers is not as well understood. It is known that every
Pisot number is the limit of Salem numbers from both above and below.
No smallest value in the set of Salem numbers is known. In fact, a major
open conjecture is if there is a smallest Salem number, and if so, what
is it? See for example Borwein® for more discussion of this and related
conjectures. The smallest known Salem number is 1.1762---, the root of
210429 — 27— 28— 25 — 2% — 234 2+ 1, which was found in 1933 by Lehmer.3”
Despite numerous computer searches since then, no better example has been
found. See for example Boyd!!'!* and Mossinghoff.3°

So, now that we have some of the basic tools, we can talk about what Fin(3)
and Per(3) look like when (3 is a non-integer. In Bertrand,” it is shown that
if 3 is a Pisot number then a necessary and sufficient condition for z to have
an eventually periodic beta-expansion, is that z € Q(f). Schmidt*® showed
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that Q@ N [0,1) C Per(B) implies that § is a Pisot or a Salem number.
Moreover, he showed that if § is not a Pisot nor a Salem number, then
Per(3) N Q is nowhere dense in [0,1). An important conjecture, that has
motivated a lot of later work is that

Schmidt’s Conjecture. We have QN [0,1) C Per(8) if and only if B is a
Pisot or a Salem number.

One direction is known already, namely that [0,1) N Q C Per(3) U Fin(3)
implies that § is a Salem or Pisot number. The other direction is shown
only for the Pisot number case. All that remains to show is that [ being a
Salem number implies that QN [0,1) C Per(3).

A related question to this, first investigated by Parry,*® concerns when
1 € Per(8). Another way to phrasing this is determining for which 3 do we
have dg(1) is either eventually periodic or finite. We say that [ is a beta-
number if dg(1) is eventually periodic, and we say that [ is a simple beta-
number if dg(1) is finite. Much like the situation with Schmidt’s conjecture,
it is known that if A is a Pisot number, then 3 is a beta-number. A very
simple argument of Boyd’s'* shows that if 3 is a Salem number, then dj(1)
cannot be finite, and hence cannot be a simple beta-number. But this raised
the question, how often can Salem numbers be beta-numbers?

Motivated by this Boyd looks at the greedy expansion of 1. Boyd'* shows
that if 8 is a Salem number of degree 4 then 1 € Per(3). In fact, he proved
if B is a degree 4 Salem number, then dg(1) had a pre-period of length 1
and a period of length 3, 5, 9 or an even number. Furthermore, the length of
the period is bounded by 23 + 3. He gave heuristical evidence to show that
if B is a Salem number then § would be a beta-number for degree six, but
for higher degrees, 3 would not be a beta-number a positive proposition of
the time.

Consider the expansion dg(1) = ajas - - - a if the greedy expansion is finite,
and dg(1) = a1ag- - ag(ak+1 -+ - ap)® if the greedy expansion is eventually
periodic. Define P;(z) = z* — a12*~! — ... — a;. We define the companion
polynomial as:

P, (z) if dg(1) is finite
P,(z) — Py(z) if dz(1) is eventually periodic

mn—{

By considering 3 as a beta-number (or simple beta-number), we see that
R(z) is a well defined monic integer polynomial. Moreover R(3) = 0.
Thus we see that # must be an algebraic integer. Let p(x) be the mini-
mal polynomial for 3, then we see that p(z)|R(z). In fact we can write
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R(z) = p(z)Q(z). Here Q(z) is called the co-factor of the beta-expansion,
where as R(z) is called the companion polynomial.

An equivalent analysis can be done for dg(@) by defining P;(z) = oz’ —
a1z ! — ... — a;. To complete this analysis we would have to look at the
algebraic properties of @ as well as #. This means we may not be able to
restrict our attention to algebraic integers. For the purposes of this paper,
we assume that we are considering the greedy expansion of 1, and hence
a=1.

The study of the companion polynomial, such as the location of its roots
was initiated by Parry. In particular Parry*® showed the roots of R(z),
other than 3 are in |z| < min(2,3). This was improved to |z| < L‘?ﬁ by
Solomyak?® and independently by Flatto et al.?®

Boyd proved that the co-factor is reciprocal and cyclotomic when 3 is a
d!®17 also gave heuristics to show that this is
true for degree 4 and 6, but not true for a positive proportion of degree
8 or more. Boyd!® did a massive computation to check the degree 6 case.
He checked the co-factors of 11836 degree 6 Salem numbers (of reasonably
small trace).

degree 4 Salem number. Boy

Based on preliminary experimental evidence, it was conjectured that
the complementary factor was always cyclotomic (and hence reciprocal).
Boyd'® showed that this is false for Pisot numbers, by doing a large search
over a particular set of Pisot numbers. In particular, he looked at:

All Pisot numbers up to degree 50 in [1.9, 2]

All Pisot numbers up to degree 60 in [1.96, 2]

All Pisot numbers up to degree 20 in [2, 2.2]

All irregular Pisot numbers in [1,1.9324] U [1.9333, 1.96]
Pisot numbers associated with the first 8 limit points.

(See Theorem 2.1 and Table 2 for a discussion of regular and irregular Pisot
numbers, as well as for the structure of the limit points of Pisot numbers.)
Boyd found examples of Pisot numbers whose co-factors were both non-
reciprocal as well as reciprocal but non-cyclotomic. He also found infinite
families of examples of each of these.

Most of our discussion so far has been derived from properties of the greedy
expansion (the maximal expansion lexicographically.) At this point, we
need to introduce the other important beta-expansion. Namely, the minimal
beta-expansion lexicographically, the lazy expansion.

Definition 1.9. If £g(z) = a1azas - - - is the minimal beta-expansion for =
(lexicographically) then we say that ajazas - - is a lazy exzpansion.
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Algorithmically, the lazy expansion is easy to compute, with the same
caveat as before that if the expansion is not eventually periodic or finite,
then the best we can hope for is to be able to compute a large number of
terms.

Algorithm 1.2 (Lazy Algorithm). Consider a sequence

a1 as ax ?
where the ay,--- ,ar have previously been determined, and we wish to de-
termine agt1. We choose agy1 € {0,1,---,[G] — 1}, minimal such that
a1 az Qg Ak+1 [B] -1 [8] —1 8] -1
F+F+°"+E+ﬁk+l + Bk+2 + BE+3 + B+ to 2o

The expansion is denoted by {z(c).

Implementation issues are discussed in Section 3. Some examples of lazy
expansions are given in Table 1.

There has been a study of numbers 3 such that the greedy and lazy ex-
pansions of 1 are equal. In Erdos et al.,?! a combinatorial method of deter-
mining when an expansion is greedy or unique is given. We call a number
B univogue if dz(1) = £3(1) (or equivalently, if 1 has a unique expansion
base (). The set of all such numbers is defined by U. Of the set of uni-
voque numbers, I{, there is a smallest such number (Komornik et al.3?),
k = 1.787231 ... Moreover, & is transcendental (Allouche et al.!) and is
not isolated (Komornik et al.3¢). Komornik et al.®> showed that I{ is a per-
fect set, and moreover, that since I{ has measure 0, then I{ is a Cantor set.
In the case when the expansions are periodic or finite, this method can be
made algorithmic (Allouche et al.?). In particular, in Allouche et al.? the
authors look at Pisot numbers with respect to these expansions. This is
explained in more detail in Section 2.

When the greedy and lazy expansions are not equal, occasionally there are
an infinite number of different general beta-expansions. In Dajani et al.'®
and de Vries et al.? it is shown how to create “quasi-greedy” expansions,
which will fall in between the greedy and the lazy expansions.

Another, even more general idea is given in Komornik et al.,3* where they
generalized the idea of expansions to Y ¢;-p; where ¢; € Z, 0 < ¢; < m; and
p; — 0. This is the same as the standard beta-expansion when p; = g~*
and m; = [[]. Another interesting variation on the idea of beta-expansions
includes the situation where the base 3 is a complex number. For example,
see Chapter 7 or Lothaire,®® Ambroz et al.,’ and Komornik et al.3?
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2. Univoque Pisot Numbers

The goal of the talk at WWCA was to discuss some recent work of the
author with Allouche and Frougny concerning their investigation of uni-
voque Pisot numbers. Recall a Pisot number is a real root greater than 1
of a monic integer polynomial, such that all of its conjugates have mod-
ulus strictly less than 1. A number 3 is univoque if the greedy and lazy
expansions of 1 are the same. The main questions of the investigation were:

Are there any univoque Pisot numbers?

Is there a smallest univoque Pisot number?

Are there any infinite families of univoque Pisot numbers?

What sort of structure does the set of univoque Pisot numbers have?

The answer to the first three questions were all yes. Before discussing the
last question (and how we arrived at the first three answers) we need to
discuss the structure of the set of Pisot numbers in more detail.

We denote the set of Pisot numbers by S. Amara® has determined all the
limit points of S smaller than 2.

Theorem 2.1. The limit points of S in (1,2) are the following:
=1 <p2<Pr<Eps<x<YP3<pa< - <Ypr<Pry1 <0 <2
where

the minimal polynomial of ¢, is ®p(z) = 2™t — 22" + 2 — 1,
the minimal polynomial of Y is Up(x) =™ — 2" — . —x — 1,

the minimal polynomial of x is X(z) = z* — 2® — 22% + 1.

The first few limit points are:

o 1 =1 =~ 1.618033989, the root in (1,2) of ¥y(z) = &;(z) = 22—z -1
o oy = 1.754877666, the root in (1,2) of Up(z) = 2° — 22 + 2 — 1

e 1/ = 1.839286755, the root in (1,2) of Ua(z) = 2% — 22—z —1

e (3 =~ 1.866760399, the root in (1,2) of ®3(z) =z? —22% + 2 -1

e x ~ 1.905166168, the root in (1,2) of X(z) = z* — 23 — 222 +1

e 13 =~ 1.927561975, the root in (1,2) of ¥3(z) =a* — 2% —2? —z -1

A description of the Pisot numbers approaching these limit points was given
by Talmoudi.*® Regular Pisot numbers are defined as the Pisot roots of the
polynomials in Table 2. Pisot numbers that are not regular Pisot numbers
are called irregular Pisot numbers. For each of these limit points (yr, ¥r
or x), there exists an ¢, (dependent on the limit point) such that all Pisot
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Table 2. Regular Pisot numbers

Limit Points  Defining polynomials

or O (x)z™ £ (" —x" 1 +1)
O (x)z™ k(2" —x + 1)
$ . (z)z" £ (27 4+ 1)(z — 1)

Py Tp(z)z™ £ (z7H1 - 1)
Vp(z)z £ (2" - 1)/(z — 1)
X X(z)z" £ (¥ + 22 -z 1)

X(z)x™ + (z* — 2% +1)

numbers in an e-neighbourhood of this limit point are these regular Pisot
numbers. The Pisot root of the defining polynomial approaches the limit
point as n tends to infinity. The defining polynomials for these regular Pisot
numbers are given in Table 2. It should be noted that these polynomials are
not necessarily minimal, and may contain some cyclotomic factors. Also,
they are only guaranteed to have a Pisot number root for sufficiently large
n (although for our purposes, n =1 or 2 normally is sufficiently large).

The key observation used for this study was that “nice” sequences of regular
Pisot numbers approaching a limit point give “nice” sequences of greedy
and lazy expansions. This meant that it was possible to determine infinite
classes of Pisot numbers as being univoque or not univoque. Along with the
observation that y was a univoque Pisot number, our new goal became:

e Find the greedy and lazy expansions of all regular Pisot numbers ap-
proaching limit points less than or equal to x.

¢ Find all Pisot numbers less than y by Boyd’s algorithm, removing from
the search those regular Pisot numbers accounted for in the previous
step. After this, determine which of these Pisot numbers are univoque.

Table 3. Greedy and lazy B-expansions of real numbers in 5" N (1, 2).

Minimal Pisot Greedy Lazy Comment
Polynomial Number expansion expansion

2t 2"tz -1 o T W T

g YT IS, | P 1r+1 (1mo)w

zt— 23 - 222 +1 X 11(10)% 11(10)« Univoque

Some examples of the types of patterns found are given in Table 3 and 4.
For a more complete list, see Allouche et al.? Table 3 shows us that y is a
univoque Pisot number. Moreover, we see from Table 4 that y is the limit
point of univoque Pisot numbers. Using a similar analysis, it was shown
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Table 4. Greedy and lazy expansions for some regular Pisot numbers.

Case Greedy expansion Lazy expansion Comment

Uy (z)z™ — (z+ 1)

n=1 Root bigger than 2
n= 1110011 (1110010)«
n=3k+1 11100(000)k-111 (11(011)5—11001(101)k—1p)w

Xx)z™ — (¥ +x2-2-1)
n=2 Root bigger than 2
n=2k+2 111(01)*=11011((10)*—10111(01)k—11000)« Univoque
111(01)*=11011((10)*=10111(01)*~1 1000)*

that there were no other regular Pisot numbers approaching a limit point
less that ¥ that was univoque. Using Boyd’s method,'%1? all relevant Pisot
numbers, not accounted for above, less than y were enumerated and tested
to see if they were univoque. (Some intervals of Pisot numbers could be
eliminated based on combinatorial arguments that are not of interest to
this survey.) This gives us the result that there are exactly two univoque
Pisot numbers less than . They are

e 1.880000- - - the root in (1,2) of the polynomial z4 — 2213 4 11 — 210 —
2"+ 2% —2* + 2% — 2+ 1 with univoque expansion 111001011(1001010)~.

e 1.886681 - the root in (1, 2) of the polynomial z'? — 221! 4 7' — 229 +
28 — 2% + 2% — x + 1 with univoque expansion 111001101(1100)*

3. Algorithms and Implementation Issues

One of the main computations needed for computing the greedy expansion
is the calculation of a, = |8 rp—1]. This must be done as a floating
point calculation, as Maple is unable to determine which integer this should
be symbolically. Unfortunately the introduction of floating point numbers
allows for the introduction of rounding error. To protect against rounding
error, we test |a, — - r—1| to a tolerance tol. For our purposes, we use
tol as 10~ DPis/2 where Digits is the number of digits of accuracy we are
computing to. If we have that |a, —3-7,| < tol then we assume that we are
not working with a high enough accuracy, and we double Digits, recompute
(3 to this higher degree of accuracy, and then redo the calculation.

In contrast to this, the calculation for r, is always done symbolically. This
is done for two reasons. The first is that it prevents the accumulation of
round-off error through successive calculations. The second reason is that it
allows for the detection of the beta-expansion begin periodic or finite, as we
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compare Ty, to all 7y with k < n. Similar issues needed to be addressed for
computing the lazy expansion. An example of the code being run is given
below. The code itself can be found at author’s webpage.?®

Example 3.1. The code below assumes that 3 is the unique root of the
polynomial between 1 and 2. Also, as Pisot numbers are known to be beta-
numbers, they are always completely determined. When the polynomial
does not have a Pisot root, then there is no guarantee that the root is a
beta-number, so the greedy or lazy expansion may not have a nice closed
form. For this reason, only the first 60 digits are computed. If in the first
60 digits, the expansion is determined to be periodic, then this information
is presented, otherwise, only the first 60 digits are presented. By default,
the expansion of 1 is given.

> read all;
> PPGreedy(x~3-x-1);
"10001(0) "omega"

> PPLazy(x"3-x-1);
"0000(1) “omega"

> PPGreedy(x~4-x-1);
"Warning: Polynomial is not Pisot. Only Computing first 60 terms"
"100000001000000000000100000000100000000001000000000000000001 . . . "

> PPLazy(x"4-x-1);
"Warning: Polynomial is not Pisot. Only Computing first 60 terms"

"0000000111011111141111101414441410414141111101411111141111111..."

One interesting observation made, which allows for the classification of
regular Pisot numbers is that “nice” sequences of regular Pisot numbers
give “nice” sequences of beta-expansions.

Example 3.2.

> read all;

> for n from 1 to 5 do n, ‘PPGreedy‘(x”(n+1)-2*x"n+x-1); od;
1, "11(0) “omega"
2, "1101(0) “omega"

3, "111001(0) “omega"

4, "11110001(0) “omega"
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5, "1111100001(0) “omega"

> for n from 1 to 5 do n, ‘PPLazy‘(x"(n+1)-2*x"n+x-1); od;
1, "0(1) “omega"

2, "10(1) “omega"
3, "110(1) “omega"
4, "1110(1) “omega"

5, "11110(1) “omega"

Now some sequences of expansions are “nicer” than others, and it would be
time consuming and prone to errors to find all of these patterns by hand.
For that reason, algorithms were developed that:

¢ Predicted the sequences of expansions based upon the first few terms
in the sequence.

e Based upon this prediction, predicted the sequence of companion poly-
nomials.

e Based upon these companion polynomials, showed that the defining
polynomial divides the companion polynomial, thus showing that the
predicted sequences gives a valid sequence of expansions. This actually
required the prediction of the co-factor polynomials.

s Use combinatorial properties (not discussed here) to show that these
predicted sequences of expansions are greedy or lazy expansions as nec-
essary, (see Allouche et al.? for more details).

Example 3.3. In the next example, we first have a strange definition of P,
as every other defining polynomial has a cyclotomic factor of z + 1. When
we list six terms, no patterns becomes apparent for the lazy expansion. But
if we look at the every third expansion, a pattern does present itself, and
it is easy to prove this pattern.

> read all;

> P := (n,x)->"if‘(type(n, odd),
(x"3=-x"2=-x=-1)*x"n-x"3+1,
simplify (((x"3-x"2-x-1)*x"n-x"3+1}/(x+1))):

> for n from 3 to 8 do n, PPGreedy(P(n,x)), PPLazy(P(n,x));od;
3, "111(110) “omega", "111(110)"omega"
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4, "111(0110) “omega", "111(0110) omega"
5, "111(00110) “omega", "1110010111(11110) “omega"
6, "111(000110) “omega", "110111(110) omega"
7, "111(0000110) "omega", "110111(0110110) “omega"
8, "111(00000110) “omega", "1101110011010111(11011110) “omega"

> for n from 3 to 18 by 3 do n, PPGreedy(P(n,x)), PPLazy(P(n,x));od;
3, "111(110) “omega", "111(110) omega"

6, "111(000110) “omega", "110111(110) “omega"
9, "111(000000110) “omega", "110110111(110) “omega"
12, "111(000000000110) "omega", "110110110111(110) omega"
15, "111(000000000000110) “omega", "110110110110111(110) "omega"
18, "111(000000000000000110) “omega", "110110110110110111(110) " omega"

> CompleteConj2(n->P(n, x), 6, 3, k, x);
Looking at n = 3 k + 3

Greedy Expansion: 111((000)~ (k) 110) omega
- Univoque Exceptions: k = 0 is univoque
- Greedy Expansion valid for k >= 0

Lazy Expansion: 11(011)~ (k) 1(110) omega

- Lazy Expansion is valid for k >= 0

The way the output from CompleteConj2 should be interpreted is

e Let 3, be the Pisot root of (z3 — 2% —z —1)z" — 23 + 1.
Then the greedy expansion for Bax43 is 111((000)%110)~.
The lazy expansion for Bax43 is 11(011)%1(110)%.

Both of these expansions are valid for all k.

In the case k = 0 this expansion is univoque.

e @ o o

4, Conclusions and Open Questions

For convenience we restate the three conjectures that were given in this
paper.

Schmidt’s Conjecture. We have QN [0,1) C Per(3) if and only if B is a
Pisot or a Salem number.
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Boyd’s Conjecture. The greedy expansion dg(1) is eventually periodic for
Salem numbers 3 of degree 6, but the expansion is not eventually periodic
for a positive proportion of Salem numbers of higher degrees.

Lehmer’s Conjecture. The smallest Salem number is 1.1762-- -, the root
of 0+ 29 — " — 28 — 5 — gt — 2 4z 4+ 1.

Some other interesting questions worth investigating are:

e In general, are the greedy/lazy [3-expansions periodic for Salem num-

bers? (This is not known to be true, see Boyd'® for more details.)

It is known that Pisot numbers can be written as a limit of Salem
numbers, where if P(z) is the minimal polynomial of a Pisot number,
then P(z)xz™ £+ P*(z) has a Salem number as a root, which tends to the
root of the Pisot number. Some preliminary and somewhat haphazard
investigation suggests that we might be able to find a “nice” looking
expression for the greedy (resp. lazy) beta-expansion of these Salem
numbers, which tends towards the greedy (resp. lazy) beta-expansion
of the Pisot number. If true, then this could have implications towards
questions concerning the beta-expansions of Salem numbers being even-
tually periodic.
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This article is devoted to the (one-dimensional) logarithmic functional with
argument being one-dimensional cycle in the group (C*)2. This functional gen-
eralizes usual logarithm, that can be viewed as zero-dimensional logarithmic
functional. Logarithmic functional inherits multiplicative property of the log-
arithm. It generalizes the functional introduced by Beilinson for topological
proof of the Weil reciprocity law. Beilinson’s proof is discussed in details in
this article.

Logarithmic functional can be easily generalized for multidimensional case. It's
multidimensional analog (see Ref. 6) proves multidimensional reciprocity laws
of Parshin. I plan to return to this topic in upcoming publications.

1. Introduction

We start introduction with a brief discussion of classic results related to this
paper: reciprocity law, its topological proof and multidimensional general-
ization. Further we comment on the logarithmic functional and its relation
to the Beilinson functional. We end introduction with layout of material.

1.1. The Weil reciprocity law

Given two polynomials of degrees n and m with leading coefficients equal
to one, the following equality holds: the product of values of the first poly-
nomial over the roots of the second one is equal to the product of values of
the second polynomial over the roots of the first one, multiplied by (—1)™".
André Weil has found further generalization of this equality called the reci-
procity law. The Weil reciprocity law applies to any pair of non-zero ra-
tional functions f, g on arbitrary irreducible algebraic curve X over an
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algebraically closed field K. In this paper we will consider only the case
of the field K being the field of complex numbers C. We will give exact
statement of the reciprocity law for K = C in Section 2. Now we just give
general comments.

The law is as follows. For each point a € X some non-zero element [f, g], of
the field K is defined, that is called the Weil symbol of functions f, g at the
point a. The Weil symbol depends on functions f, g skew-symmetrically,
ie. [f,9la = lg,f]z! Besides the Weil symbol is multiplicative in each
argument, i.e. for any triplet of non-zero rational functions f,g,¢ and
any point @ € X the following equalities hold [f, gla = [f, glal®, g]a and
[f©8]e = [f, glalfs ¢la- Let O be the union of supports of divisors of func-
tions f and g. Weil symbol of functions f, g can differ form 1 only at points
o of the finite set O. Therefore the product of Weil symbols over all points a
of curve X is well defined: it is equal to the product of symbols [f, g], over
finite set of points a € O. The Weil reciprocity law states that the product
of Weil symbols [f, gla over all point of the curve X is equal to one.

1.2. Topological explanation of the reciprocity law over the
field C

In the case of K = C Beilinson! proved the Weil reciprocity law topologi-
cally and has found topological generalization of the Weil symbols. Similar
construction was independently obtained by Pierre Deligne, but has been
published much later.? Let f, g be non-zero rational functions on connected
complex algebraic curve X and let O C X be finite set containing support
of divisors of functions f and g. Consider piecewise-smooth oriented closed
curve v : [0,1] — X \ O, ¥(0) = (1) on the manifold X that does not
contain points of set 0. Beilnson introduced a functional that associates a
pair f,g and curve v with an element B, (f,g) of the group C/Z (i.e. some
complex number defined up to an integer additive term). He showed that:
1) For fixed f,g the functional B,(f,g) considered as a function of cycle
v gives an element of one-dimensional cohomology group of the manifold
X \ O with coefficients in group C/Z, i.e. for homologous to zero in X \ O
integer-valued linear combination ) k;7y; of oriented curves v; the equality
> kiB~(f,g) = 0 holds.

2) The functional skew-symmetrically depends on f and g, i.e. By(f,g) =
_B'Y (gs f)

3) The functional has the following property of multiplicativity: for any
three rational functions f, g, ¢ not having zeros and poles in the set X \ O
and for any curve v C X \ O, equalities B+ (f¢,g) = By(f,9) + By(¢,9)
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and By (f,¢g) = By(f,9) + B,(f,¢) hold.

4) The functional B,(f,g) is related to Weil symbols as follows: for any
point a € O and small curve v C X \ O “running around point a”, equality
[f, 9la = exp2miBy(f,g) holds.

In accordance with 4) Weil symbols correspond to the values of Beilinson
functional on special curves related to the points of the set O. The sum of
those curves over all points in O is homologous to zero in X \ O, which
gives the Weil reciprocity law (see Section 5).

Summarizing, Beilinson functional explains the Weil reciprocity law over
field C, and also provides an analog of Weil symbols for arbitrary cycles in
X\ O, not necessary related to the points of the set O.

1.3. Multi-dimensional reciprocity loaws

AN. Parshin (Refs. 3,8,9) has found remarkable multi-dimensional gen-
eralization of the reciprocity law. It applies to an arbitrary collection
f = {fi,....fat1} of n + 1 nonzero rational functions f; on irreducible
n-dimensional manifold M over arbitrary algebraically closed field K. In
multi-dimensional generalization instead of point on manifold M one con-
siders flag F = {My € My C --- C M, = M} consisting of a chain
of embedded germs M; of algebraic manifolds of increasing dimensions,
dim M; = j, locally irreducible in the neighborhood of the point My. Each
collection of functions f and flag F' is associated with nonzero element [f]
of the field K, which is called Parshin symbol. Reciprocity laws state that for
some chosen (precisely described) finite sets of flags L the product [] [f]r
FEL

is equal to 1.

Let n = 1 and manifold M be nonsingular algebraic curve. In this case:

1) flag F = {My C M} is defined by point a = My,

2) Parshin symbol [f] ¢ of the pair of functions f = f,, f2 on flag F' coincides
with Weil symbol [f1, f2]a,

3) the only chosen set of flags L is equal to the union of supports of the
divisor of functions fi, fa,

4) reciprocity law for this set coincides with the Weil reciprocity law.

In the case of K = C Brylinski and McLaughlin” proved multidimen-
sional multiplicity laws topologically and found topological generalization
of Parshin symbols. Their topological construction heavily uses sheaf theory
and is not intuitive.

About 10 years ago I have found® explicit formula for the product of roots of
a system of algebraic equations with general enough set of Newton polyhe-
drons in the group (C*)™. This formula (which is multi-dimensional gener-



88 A. Khovanskii

alization of Vieta formula) uses Parshin symbols. Its proof however is based
on simple geometry and combinatorics and does not use Parshin theory.

1.4. The logarithmic functional

The search for formula for the product of the roots of a system of equations
convinced me that for K = C there should be intuitive geometric explana-
tion of Parshin symbols and reciprocity laws. Such explanation based on
multidimensional logarithmic functional was finally found in Ref. 6.

This paper is devoted to one-dimensional case. One-dimensional logarith-
mic functional (word “one-dimensional” we will omit further) associates
each one-dimensional cycle v in one-dimensional complex X and piecewise-
smooth mapping (f,g) : X — (C*)? into group (C*)? with a complex
number, defined up to an integer additive term (i.e., with an element of the
group C/Z). Logarithmic functional is direct generalization of usual loga-
rithm. Zero-dimensional logarithmic functional (see Section 7.1) reduces to
the usual logarithmic function. All theorems about logarithmic functional
translate almost automatically to multidimensional case. I started presen-
tation from one-dimensional case because of the following reasons:

1) The Weil reciprocity law is formulated much simpler than Parshin reci-
procity laws. That’s why the introduction of the logarithmic functional is
much clearer in one-dimensional case.

2) Properties of logarithmic functional and methods of their prove become
apparent enough already in one-dimensional case.

3) In one-dimensional case there already exist simple Beilinson functional
giving clear topological proof of the reciprocity law. It has only one draw-
back: it is not transparent how to generalize it for multi-dimensional case.
One of the goals of this publication is to compare logarithmic functional and
Beilinson functional. The later is defined for a pair of rational functions f, g
and one-dimensional cycle v on complex algebraic curve X. Generalizing
Beilinson functional we define logarithmic functional in Beilinson form, or in
short LB-functional, for a pair of smooth functions f, g and one-dimensional
cycle on real manifold M.

LB-functional has many properties of Beilinson functional, however there
are some differences too: when functions f, g are fixed, LB-functional not
always gives a class of one-dimensional cohomology group of the manifold
M. For this it is required that the form df A dg is identical to zero on the
manifold M. For the rational functions f, g on complex curve X the identity
df Adg = 0 holds automatically. This fact plays a key role in the proof of
the reciprocity law with the help of LB-functional.
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We show that logarithmic functional is always representable as LB-
functional. This representation relates logarithmic functional with Beilinson
functional.

1.5. Organization of material

In Section 2 the Weil reciprocity law is given. In section 3 LB-functional
is defined for a pair of complex-valued function on a circle. In Section 4
LB-functional is defined for a mapping (f,g) : M — (C*)? of the manifold
M into group (C*)? and closed oriented curve on manifold M. Section 5
discusses Beilinson’s proof of the Weil theorem. In Section 6 LB-functional
is defined for the mapping (f,g) : M — (C*)? and one-cycle on the man-
ifold M, being an image of one-cycle v in one-dimensional complex X of
piecewise-smooth mapping ¢ : X — M. Section 7 defines logarithmic func-
tional and proves its main properties. Section 8 shows that logarithmic
functional can always be represented in the form of LB-functional.

2. Formulation of the Weil reciprocity law

Let I" be a connected compact one-dimensional complex manifold (another
words, I is irreducible regular complex algebraic curve). Local parameter
u near point @ € I' is defined as an arbitrary meromorphic function u
with zero of multiplicity 1 at the point a. Local parameter is a coordinate
function in small neighborhood of the point a.

Let ¢ be a meromorphic function on the curve I and ), ., cnu™ be a
Laurent series with respect to local parameter u near point a. We will
call the leading monomial the first nonzero term of the series, i.e. x(u) =
cxu®. The leading monomial is defined for any meromorphic function ¢ not
identical to zero.

For every pair of meromorphic functions f, g not identical to zero on a curve
I', and every point ¢ € I' the Weil symbol [f, g], is defined. It is nonzero
complex number given by

[f:9la = (=1)""ag,by™,

where a,,u™ and b,u™ are leading monomials on parameter u of functions
f and g at the point a. Weil symbol is defined with the help of parameter
u but it does not depend on the choice of this parameter.

Let v be another local parameter near point a and let cv be the leading
monomial of the function u on parameter v, i.e. u = cv+.... Then a,, ™0™
and b,c™v" are leading monomials of functions f and g on parameter v.
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The equality alb,™ = (amc™)™(bnc™®)™™ proves the correctness of the
definition of Weil symbol.

As it is seen from the definition Weil symbol multiplicatively depends on
functions f and g. Multiplicativity on f means that if f = f;f2 then
[f,9la = [f19)alf29]a. Multiplicativity with respect to g is defined analo-
gously.

For every pair of meromorphic functions f,g not identical to zero on a
curve I', the Weil symbol [f, g], differs from one only in finite set of points
a. Indeed Weil symbol can differ from one only on the union of supports o
the divisors of functions f and g.

The Weil reciprocity law. (see ...) For every pair of meromorphic func-
tions f,g not identical to zero on an irreducible algebraic curve I', the
equality

H[fvg]a, =1

holds. Here product is taken over all points a of the curve I'.

Infinite product above makes sense since only finite number of terms in it
are different from one.

Simple algebraic prove of the law can be found in Ref. 4. Simple topological
proof based on properties of LB-functional described in Sections 3 and
4, can be found in Section 5 (this proof is reformulation of Beilinson’s
reasoning from Ref. 1).

3. LB-functional of the pair of complex valued functions of
the segment on real variable

Let J be a segment @ < x < b of the real line. For any continuous on
segment J function having non-zero complex values f : J — C*, where
C* = C\ 0, denote by In f any continuous branch of the logarithm of f.
Function In f is defined up to an additive term 2kwi, where k is an integer.
If f(a) = f(b) then we can define an integer number deg; Tj:_l ~ degree
of mapping I'% : J/8J — S of the circle J/8J, obtained from segment
J by identifying its ends a and b, to the unit circle S' ¢ C. Obviously,
deg; 1y = 57 (In f(0) — In f(a)).

Consider a pair of piecewise-smooth complex-valued functions f and g,
having no zero values on the segment J, and f(a) = f(b), g(a) = g(b).
For such pair of functions we will call LB-functional the complex number
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LB;(f,g) given by formula

LBy(f,9) @mi)? / f ngfllﬂg()

Lemma 3.1. LB-functional is defined up to an integer additive term and
s well defined element of the group C/Z.

b
Proof. Function In f is defined up to an additive term 2kmi, f%‘z =

a
27t deg %ﬁ, and deg Iég% is an integer number. This means that the number

b
(2—;1.)7 [In _f%’i is defined up to an integer additive term. The value In g(b) is
a

defined up to an additive term 2mmi and deg; ﬁ‘fT is an integer number. This

means that the number —ﬁ deg ; Tjﬂ In g(b) is defined up to an integer. O

Now we give slightly more general formula for LB-functional. Let a =
T9 < T1+-+ < T, = b be an increasing sequence of points on the seg-
ment [a,b]. Given a continuous function f : J/8J — C* we construct a
discontinuous function ¢, which is equal to one of continuous branches
In; f of the logarithm of f on each interval J; defined by inequalities
T; < T < xjy1. Let jump of function ¢ at point z; be an integer num-
ber my(z;) = 27”( hm é(x) — tlim_ ¢(z)) for y=1,...,n—1, and at point

T, — an integer number Ml )= 2m( hm #(z) — lim ¢(x)).
vﬂxﬂ t*—'EG

Lemma 3.2. Let for functions f, g and segment J LB-functional be de-
fined. Then the equality

o dg 1 «
LB;(f,9) = me /¢5? ~om z;m¢($i)lng($i)
J F=
holds.

Proof. First show that LB;(f,g) =

d n—1
2m Z/lﬂwf g +Zh'11(931 )Ing(x;) Zlnz(xzﬂ Ing(xz;)

Let’s change funcmon ¢ on interval J; by adding to the branch of In; f
number 2k7i leaving ¢ without changes on other intervals. As the re-
sult the value of LB-functional above is incremented by the number
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(gfgf f—-‘l +1Ing(z;) —Ing(z;+1) |, which is equal to zero. Since the
change of the branch of the logarithm on any of the intervals J; does
not affect the result, we can assume that the function ¢ is taken as a
continuous branch of the logarithm of function f on the whole segment
J = [a,b]. In this case the formula for the LB-functional holds (it coin-
cides with the definition of the LB-functional). The claim of lemma fol-
lows, since 2mwimgy(z;) = In; f(z;) — Inj4q f(z;) for j =1,...,n—1, and
2mimy(zn)(4) = Inp f(zn) —Ino f(z0) o

If one of functions f or g is constant then it is easy to compute LB-
functional. The following is obvious

Lemma 3.3. Let for functions f, g and segment J LB-functional be
defined. If f = C then LBy(f,9) = 5=InCdeg; g If g = C then

LBj(f,9) = —55; InC deg; 5.

The following obvious lemma shows that under change of variable LB-
functional behaves as an integral of a differential form.

Lemma 3.4. Let for functions f, g and segment J functional LB;(f,g)
be defined, and let ¢ : J; — J be a piccewise-smooth homeomorphism of
segment J1 into segment J. Then functional LB, (f o ¢,g 0 ¢) is defined.
Additionally, if ¢ preserves orientation then LBy, (fo¢,go¢) = LBy(f,q),
and if ¢ changes orientation then LBy, (f o ¢,g0¢) = —LB;(f,g).

Now we discuss how the LB-functional changes under homotopy of the pair
of functions f,g. Let I be the unit segment 0 <t <land F:I x J— C*,
G : I x J — C* be piecewise-smooth functions such, that F(¢,a) = F(t,b),
G(t,a) = G(t,b) for every fixed t. Let fo(z) = F(0,z), fi(z) = F(1,z),
go(z) = G(0,2), g1(z) = G(1,z).

Theorem 3.1. The equality holds:

1 dFF dG
LBy (f1,01) = LB3(fo,00) = s f A

IxJ

Proof. Differential of the form In F% is equal to % A %. Using Stokes
formula we get
1

G ]If /fdgo _/(lnF(t,b)—lnF(t,a))%.

IxJ 0
(1)
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Since the degree of the mapping is homotopy invariant, the difference
In F'(¢,b) — In F(t, a) does not depend on parameter ¢ and is equal to both
numbers 2mideg; ‘—-‘% and 27ideg; T}% Therefore

1
f(lnF(t, b) —In F(t, a))fi—g = 2mi deg; 2Ll Ing;(a) — 2mideg, Jo In go(a)
J G A 7o

(2)

and the statement of the theorem follows. O

Corollary 3.1. Let f and g be piecewise-smooth functions on real line
periodic with period A = b — a with values in C* and let J. be a segment
a+c<xz<b+c of the length A. Then LB (f,g) does not depend on the
choice of the point c.

Proof. Consider homotopy F(t,z) = f(t+z), G(¢t,z) = g(t + z). This ho-
motopy preserves LB-functional since dF' AdG = 0. From previous theorem
the proof follows. a

Lemma 3.5. The equality LB;(f,g9) = —LBs(g, f) holds.
Proof. Using equalities In(b) = In(a) + 2mi deg; I_%’ Ing(b) = Ing(a) +
2mideg; l%l and Newton-Leibnitz formula we get:

b
fd{ln flng] = 2mideg, % Ing(a) + 27mideg, % In f(a)+ (3)

. f g
27i)% deg; — deg; .
(2mi)" deg 77 degs

On the other hand
b

jd[lnflng] =fblng%+/lnf%.

a a

b
Two expressions for the integral [ d[ln flng] must coincide.

O

Lemma 3.6. For any piecewise-smooth function f : J — C*, having equal
values at the end-points a and b of the segment J, LB;(f, f) = %dng TfLI



94 A. Khovanskii

Proof. Substituting g = f in (3) we obtain

b
d
Zf%m-lnf%ZQngJﬁlnf{C)Jr?mdeg?,%_

a

The claim follows, since deg? |—§T = deg; ‘—% mod 2. |

Lemma 3.7. For any three piecewise-smooth functions f,p, g with values
in the group C* on segment J with end-points a and b, such that f(a) =

fb), pla) = ¢(b), g(a) = g(b), the equality
LB;(fp,g) = LBy(f,9) + LBj(p,9)
holds.

Proof. In order to prove this it is enough to use the following facts:
1) in group C/Z the equality 5= In(f¢) = 3= In f + 3= In ¢ holds.
2) for any pair of continuous functions f and ¢ that do not have zero values

and f(a) = f(b), w(a) = ¢(b), the equality deg; T‘;%I = deg; ‘-% + deg; I{;T
holds. O

The following lemma is obvious and we only give a formulation of it.

Lemma 3.8. Let segment J with end-points a and b is split by a point ¢
(a < ¢ < b) into two segments: J, with end-points a, ¢ and Jo with end-
points ¢, b. Let f,g be a pair of piecewise-smooth functions on J with values
in group C* such, that f(a) = f(c) = f(b), g(a) = g(c) = g(b). Then the
functionals LB;(f,q), LBy, (f,q), LBy, (f,g) are defined and

LBJ(fag) = LBJ‘. (f,g) + LBJz(f,g)‘

4. LB-functional of the pair of complex valued functions
and one-dimensional cycle on real manifold

Let M be a smooth real manifold and K(M) - multiplicative group with
elements being smooth complex-valued functions on M not having values
of 0. Let v : J — M be piecewise-smooth closed curve on M. Element
I;(v*f,v*g) of the group C/Z will be called LB-functional of the pair of
functions f,g € K(M) and oriented closed curve v and will be denoted as
LB’Y(f! g) *

Lemma 4.1. LB-functional of the pair of functions f,g € K(M) and
oriented closed curve v does not change under orientation preserving re-
parametrization of the curve 7.
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Proof. For re-parametrization of the curve v preserving the end-point
¥(a) = (b) the statement is proved in Lemma 3.4. Independence of the
LB-functional from the choice of point v(a) = «y(b) is proved in Corollary
3.1. O

An element LB, (f,g) of the group C/Z, defined by formula LB, (f,g) =
> kLB, (f,g), is called LB-functional of pair of functions f,g € K(M)
and cycle vy = 3 ki7i, where k; € Z and -y, parameterized closed curves on
manifold M.

For any cycle v in manifold M and any function f € K(M) denote by
deg,, |-3’;T the degree of mapping Tle : v — S of the cycle v into unit circle
5L,

Theorem 4.1. For any cycle v in the manifold M the following equalities
hold:

1) LB, (f,g) = —LB,(g, f) for any pair of functions f,g € K(M).

2) LBy(fp,9) = LBy(f,9) + LB,(y,g) for any f,p,9 € K(M).

3) LB,(f, f) = 1 deg, lr for any f € K(M).

4) LB,(C,f) = —LB,(f,C) = lnCdengfL| for any function f € K(M)
and any non-zero constant C.

Proof. Statement 1) follows from Lemma 3.5, statement 2) follows from

Lemma 3.7, statement 3) — from Lemma 3.6 and statement 4) - from Lemma
3.3. D

Theorem 4.2. If for a pair of functions f,g € K(M) on manifold M the
equality df Adg = 0 holds, then LB-functional LB.(f,g) depends only on
homology class of the cycle v =3 kiv;.

Proof. According to Theorem 3.1 under conditions of Theorem 4.2 LB-
functional along closed curve does not change under homotopy of the curve.
By homotopying if necessary every component of the cycle v it is possible
to assume that cycle consists from closed curves, passing through the fixed
point ¢. Consider the fundamental group m (M, ¢) of the manifold M with
basis point c. For functions f and g satisfying condition of the theorem, the
mapping I : m1 (M, ¢) —» C/Z of the closed curve y € m; (M, c) into element
I,(f, g) of group C/Z is defined correctly and is group homomorphism. Any
homomorphism of the fundamental group into Abel group is passed trough
the homomorphism of the fundamental group into group of one-dimensional
homologies. |
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5. Topological proof of the Weil reciprocity law

Beilinson’s functional is a particular case of LB-functional, in which f, g is
a pair of analytic functions on one-dimensional complex manifold, and -y
is one-dimensional real cycle on this manifold. Under this restrictions we
will call LB-functional Beilinson’s functional and write B,(f,g) instead of

LB,(f,9).

Example 5.1. (Beilinson, see Ref. 1) Let M be one-dimensional complex
manifold and K,(M) C K(M) be a subgroup of group K (M) consisting of
analytic functions not equal to 0 anywhere. For any two functions f,g €
K, (M) the equality df Adg = 0 holds. In accordance with Theorem 4.2, for
any pair of functions f,g € K,(M) one-dimensional co-chain on manifold
M, that associates with a cycle v element B, (f,g) € C/Z, is an element
of HY(M,,C/Z). According to Theorem 4.1, this class has the following
properties:

1) B,(f,9) = —B,(g, f) for any pair of functions f,g € K.(Ma,).

2) By(fp,9) = By(f,g) + By(,g) for any f, ¢, 9 € Koa(M,).

3) Bulf, f) = %deg,y TJ;—‘ for any f € Ko(M,).

4)B,(C, f) = —=B,(f,C) = InCdeg, T% for any function f € K,(M,) and
arbitrary nonzero constant C.

Let X be a connected compact one-dimensional complex manifold with a
boundary, and f, g be nonzero meromorphic functions on the manifold X,
that are regular on the boundary v = 8X of manifold X and not equal to
zero in the points of boundary 8X. Under these assumptions the following
lemma holds.

Lemma 5.1. Let a single valued branch of the function In f exists on the
manifold X. Then B-functional B(f,g) of functions f,g and of boundary

of the manifold X is equal to 5 orda,gi% In f(a), where ord,g is order of
peX
meromorphic function g at the point a. (The infinite sum appearing above

is well defined since only finitely many terms in this sum are not equal to
zero.)

Proof. The statement follows from the equality

IO j e -5 g 2 (0rds0) ()

O

Let U C C be a simply-connected domain with smooth boundary =, con-
taining point 0 € U. Let f,g be meromorphic functions in the domain U,
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such that their restrictions on punctured domain U \ 0 are analytic func-
tions, not taking values of 0. Let a;z*, az™ be leading terms of Laurent
series of functions f and ¢ at the point 0: f = a125+...,and g = asz"+....

Lemma 5.2. Under the listed above assumptions

Bitf.4) = k7m+mlna1—klna2.

Proof. Represent f,g as f = fi1z*, g = g12™, where f1, g1 are analytic
in the domain U. Observe, that f1(0) = a1 # 0, g1(0) = a2 # 0. Using
multiplicativity property of B-functional we get B,(f,g) = kmB,(z, z) +
mB,(f1,2)+kBy(2,91)+B(f1,91). Using Lemma 5.1 and skew-symmetric
property of B-functional we get B,(f1,z) =Inai, By(z,91) = —Inas and

B, (f1,91) = 0. Further B,(z,2) = } deg, = 3. o

Topological proof of the Weil theorem is actually completed. We just need to
reformulate obtained results. Group C/Z is isomorphic to the multiplicative
group C* of the field of the complex numbers. Required isomorphism is
given by mapping 7 : C/Z — C* defined by formula 7(a) = exp(27ia). For
any one-dimensional cycle 7 in the manifold M and for any pair of functions
f,g € K(M) we call exponential B-functional éw( f,g) an element of the
group C*, defined by formula B, (f,g) = exp(27iB,(f,9)).

Using the notion of exponential B-functional the last Lemma can be refor-
mulated as follows

Lemma 5.3. Under assumptions of Lemma 5.2, exponential B-functional
By (f,g) coincides with the Weil symbol [f, glo of functions f and g at point
0.

Let I' be a compact complex curve, f, g — meromorphic functions on I' such
that they are not identical to zero on any connected component of I', D — a
union of supports of divisors of functions f and g. Let U, be a small open
disk containing point p € D, and 7, = U, be the border of disk U, U =

U Up, 7= . 7p. Consider manifold W = M \ U. Cycle v homologically
peD peED
equals to zero on manifold W, since W = —+v. Therefore, the equality

By(f,9) = 0 holds and exp(2miB,(f,g)) = [I exp(2miB,,(f,g)) = 1.
P

pe
By Lemma 5.3 we have exp(2miB, (f,g)) = [f, g]p which proves the Weil
theorem.
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6. Generalized LB-functional

In this section we will give another (more general, but in fact equiva-
lent) definition of LB-functional. It will be easier to generalize to multi-
dimensional case. Any one-dimensional cycle in (C*)? (as in any other man-
ifold) can be viewed as integer combination of oriented closed curves, i.e. as
integer combination of images of oriented circle. Therefore, it is sufficient to
define LB-functional for a pair of functions on a standard circle, as it was
done above. When n > 1 n-dimensional cycle in manifold M can be viewed
as an image of the mapping F': X — M of some n-dimensional cycle 7y in
some n-dimensional simplicial complex X . Here we give a definition of LB-
functional for an image in the group (C*)? of one-dimensional cycle, laying
in one-dimensional simplicial complex X under mapping F : X — (C*)2.
Let X be one-dimensional simplicial complex. Let us fix orientation on each
edge of complex X. Denote by S(A;,Q,) the incidence coefficient between
edge A; and vertex Q. It is equal to zero if and only if vertex @, does not
belong to the edge Aj;, and it is equal to +1 or -1 depending on the sign of
Qp as a boundary of oriented edge A;.

For any continuous function f : X — C* on edges of complex X it is
possible to choose single-valued branches of function In f. We will need a
definition of jump function for such a collection of branches of function
In f on one-dimensional cycle v = > k;A; of complex X. Let a single-
valued branch In; f : A; — C* of the multi-valued function In f be fixed
on the edge A; of complex X. Denote by ¢ a collection of branches In f;.
We will view collection ¢ as discontinuous function on complex X (the
collection ¢ defines a function on the complement of complex X to the set
of its vertices, but at vertices of complex X this function is multi-valued).
Define on vertices of complex X jump function for function ¢ and cycle 7.
If vertex @, is adjacent to the edge A; then on the vertex @, a restriction
of function In; f given on the edge A; is defined. We define the value of the
jump function my ., for function ¢ and cycle v = >~ k;A; at the vertex Q,
of complex X by formula

1
my~(Q@p) = s Z S(A;, Qp)k; Inj f(Qp),
where summation is done over all edges A; of complex X.

Lemma 6.1. The jump function is an integer valued function on the ver-
tices of compler X.

Proof. On every edge A; adjacent to the vertex @, we can choose branches
In; f so they are equal at Q. With such choice of the function ¢ the number
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me~(Qp) is equal to zero, because the chain v = 3 k; A7 is a cycle. With
the change of branches In; f the change in the value of jump function is
integer number. O

Consider piecewise-smooth mapping (f,g) : X — (C*)? of one-dimensional
complex X and one-dimensional cycle v = Y~ k;A; in X. Let ¢ = {In; f}
be a collection of single-valued branches of function In f on edges A; of
complex X. For pair of functions f, g and cycle v we will call LB-functional
the complex number LB, (f, g) defined by formula

d
LB,(£,9) = s [ 92~ 577 2 men(@ (@)

QeVv

where summation is over set V of all vertices of complex X and my - is
jump function for function ¢ and cycle =.
The following lemmas a proved similarly to Lemma 3.1 and 3.2.

Lemma 6.2. LB-functional LB, (f,g) is defined up to an integer additive
term and is correctly defined element of the group C/Z.

Lemma 6.3. LB-functional LB,(f,g) for the mapping (f,g) : X — (C*)?
does not change under a simplicial subdivision of the complex X .

Let discuss the change of LB-functional under homotopy of the mapping
(f,9). Let I be a unit segment 0 < ¢ < 1 and (F,G): I x X — (C*)? be
a piecewise-smooth mapping, which coincides with the mapping (fo, go) :
X — (C*)? when t = 0 and with the mapping (f1,91) : X — (C*)? when
t = 1. Similarly to the Theorem 3.1 we can prove

Theorem 6.1. The equality

d
LB,(f1,01) — LBy (fo, o) = (2;)2 / g

I'xy

holds.

7. Logarithmic function and logarithmic functional

In this section we define logarithmic functional, formulate and prove its ma-
jor properties. Definitions and results of this section can be easily extended
to the multi-dimensional case and we plan to return to this topic in future
publications.
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7.1. Zero-dimensional logarithmic functional and logarithm

In order to highlight an analogy between logarithm and logarithmic func-
tional we will define zero-dimensional functional here.
Consider group C* with coordinate z. Group C* is homotopy-equivalent to
the circle T, defined by the equation |z| = 1. Denote by e = 1 the unit
element of the group C*.
Let X be finite set of points and K (X ) — multiplicative group with elements
being complex-valued functions on X having no 0 values. Thus element f
of the set K(X) is a mapping f: X — C*.
Let D be zero-dimensional cycle from the group Hy(X, Z), i.e. D is a linear
combination of points from the set X with integer coefficients: D = 3" k;z;,
where k; € Ziz; € X.
Any mapping f : X — (C*)? of the finite set X into group C* is homotopic
to the mapping of X into point e since group C* is connected.
We will call zero-dimensional logarithmic functional a functor that asso-
ciates with the pair f, D, consisting of function f € K (M) and zero-
dimensional cycle D =} k;z;, the complex number
i dz
In(f, D)= o— | —
Y

where 7 is arbitrary piecewise-smooth curve in group C* with the boundary
0y equal to 3k, f(z;) — (2 Kj)e.

Obviously, the number In(f, D) is defined up to an additive integer term
and is correctly defined element of the group C/Z. The following formula
holds

In(f, D) = ﬁzkj In §(z;),

where In f(x;) is any of values of multi-valued function In f at point x;.
Thus zero-dimensional logarithmic functional reduces to the usual loga-
rithmic function. It has the following multiplicativity property: for any
pair of functions f,g € K(X) and any zero-dimensional cycle D the
equality In(fg,D) = In(f, D) + In(g, D) holds. For any fixed function
f € K(X) and any pair of zero-dimensional cycles Dy, Dy the equality
In(f, (D1 + D2)) = In(f, D1) + In(f, D2) holds. Another words, for fixed
function f functional In(f, D) is zero-dimensional co-chain with the values
in group C/Z.

Let M be real manifold and f : X — C* be a continuous mapping. Let’s
associate with every zero-dimensional cycle D = > k;z; (k; € Z, =; €
M) on the manifold M an element In(f, D) of the group C/Z defined by
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formula In(f, D) = 5= 3" k;In f(z;). It is obvious that co-chain In(f, D)
defines an element of zero-dimensional cohomology group of manifold M
with coefficients in group C/Z if and only if df =0 (i.e. if and only if the
function f is constant on each connected component of the manifold M).

7.2. Properties of one-dimensional logarithmic functional

In this subsection we define one-dimensional logarithmic functional and for-
mulate its important properties. As before we will use the term “logarithmic
functional” skipping word “one-dimensional”.

Consider group (C*)? with co-ordinate functions z; and zs. Group (C*)? is
homotopy equivalent to the torus T2 C (C*)?, defined by equations |z | =
|z2| = 1. On group (C*)? there is remarkable 2-form

1 d21 de
Ww=-—s—AN—.
(2mi)? 2 29

Restriction of form w to the torus T2 is real 2-form
1
w|p2 = Ed(arg z1) Ad(arg z2),

that is not equal to zero nowhere. Integral of form w over the torus 72,
oriented by the form d(argz;) A d(argzz), is equal to 1. Define by Id a
subset of group (C*)? consisting of points (21, 22) such, that one of co-
ordinates is equal to 1, i.e. Id = {21 =1} U {22 = 1}.

Let X be one-dimensional simplicial complex and let ¥ = > k; A be integer
linear combination of its oriented edges A; which constitutes a cycle, i.e.
0y =0. Let (f,g) : X — (C*)? be a piecewise-smooth mapping of complex
X into the group (C*)2.

Logarithmic functional is a functor, that associates with the mapping (f, g) :
X — (C*)? and one-dimensional cycle 7y on X an element In(f, g,v) of the
group C/Z, defined by formula

ln(.frgs'Y):;/ﬁ/\dﬂ:/wa

(27i)? 71 Z2

where o is 2-chain in (C*)2, with the boundary 8o equal to the difference
of the image f.(y) of cycle v under mapping f = (f,g) and some cycle v,
lying in the set Id.

We list the major properties of the logarithmic functional:

1) The value of the logarithmic functional is correctly defined element of
the group C/Z.

2) Logarithmic functional skew-symmetrically depends on components f
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and g, ie. ]-n(f,g,’}') —== ]'n(ga fs'Y)
3) Logarithmic functional multiplicatively depends on components f and

g, le.

In(fé,9,v) = In(f,9,7) + In(¢,g,7), In(f, g6,7) = In(f,9,7) + In(f, ¢, 7).

4) Logarithmic functional has the following topological property. Let M be a
real manifold and (f, g) : M — C* be a smooth mapping. One-dimensional
cycle 4 on manifold M can be viewed as an image under some piecewise-
smooth mapping ¢ : X — M of some one-dimensional cycle v = 3 k;A;
on some one-dimensional complex X, where k; € Z and A; are edges of
complex X. Associate with the cycle 4 on manifold M an element In(f o
¢, g o ¢,7) of group C/Z. Obtained with this association one-dimensional
co-chain gives a class of one-dimensional cohomology group of manifold M
with coefficients in group C/Z if and only if df Adg = 0 (i.e. if and only
if the differential of the mapping (f,g) : M — (C*)? degenerates at each
point of manifold M).

5) The equality In(f, g,v) = LB,(f,g) holds. One one hand, this equality
gives a formula for logarithmic functional that does not use auxiliary 2-chain
o. On the other hand, this equality gives geometric sense to LB-functional
and shows that LB-functional is analog of logarithm.

7.3. Prove of properties of logarithmic functional

This subsection will give prove of properties 1)-4). Property 5) will be
proved in next section.

It is easy to see that sets Id (defined in previous subsection) and (C*)?
have the following topological properties:

1) The set Id is homotopy equivalent to the boucquet of two circles, 71 (Id)
— free group with two generators and H;(Id,Z) = Z + Z.

2) The set (C*)? is homotopy equivalent to the real torus T2 and
71((C*)?) = H1((C*)%,Z) = Z+ Z.

3) Enclosure 7 : Id — (C*)? induces isomorphism of one-dimensional ho-
mologies and mapping “onto” of the fundamental groups of sets Id and
().

It follows from item 3) that any continuous mapping f : X — (C*)? of
one-dimensional simplicial complez X into group (C*)? is homotopic to the
mapping of complex X into the set Id C (C*)2. We now prove more precise
statement.
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Let V be a set of vertices of one-dimensional complex X and F be the
set of its edges. Fix inside each edge 7; € E two different points A; and
B;. Points A;, B; split edge 7; into three segments, which intersect at the
ends only — central segment with endpoints A; and B; and two boundary
segments. Fix also in each edge 7; point O;, laying inside central segment
[4;, B;].

Denote by X; the union of all central segments on all edges 7;, and by X
— the union of all extreme segments on all edges 7;. As it is seen from this
construction, every connected component of the set X; is a central segment
of one of the edges 7;. Every connected component of the set Xy contains
one of the vertices of complex X and is the union of all extreme segments,
containing this vertex. So, every connected component of the sets Xy and
X, is contractible.

Lemma 7.1. Any continuous (piecewise-smooth) mapping (f,g) : X —
(C*)? of one-dimensional complez X into group (C*)? is homotopic
(piecewise-smoothly homotopic) to the mapping (f1,91) : X — (C*)? such,
that function fi is equal to 1 on the set Xy and function g, is equal to 1
on the set Xjy.

Proof. First we will homotopically change function f without changing
function g¢. Since the set C* is connected we can assume that the following
condition is satisfied: f(O;) = 1 at the chosen point O; on every edge ;. If
this is not so, then we can homotopically change function f in such a way,
that in the process of homotopy f; values f,(O;) move along the curves
connecting points O, with 1. Let this condition holds. It is possible to
construct a homotopy ¢; : X — X of the identity mapping of the complex X
into itself such, that it leaves intact every vertex of the complex, translates
every edge 7; into itself and contracts every central segment [A;, B;] into
the point O;. Homotopy f; = f o ¢; translates function f into function fi
which is equal to 1 on the set X;. Analogously, without changing function
f, we can homotopically change function g into the function g; having
required properties. We can assume, that function g is equal to 1 at every
vertex (otherwise it can be homotopically changed into the function having
this property). It is possible to construct homotopy ¥ : X — X of the
identity mapping of the complex X into itself such, that it leaves intact
every vertex of the complex, translates every edge 7; into itself and contracts
each of boundary segments into the vertex that is contained in this segment.
Homotopy g = g o 9, translates function g into function g; which is equal
to 1 on the set Xj. 0O
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On group (C*)? there is remarkable 2-form

WY
Co(emi)? z oz

Lemma 7.2. For any 2-cycle o in (C*)? integral fc w 15 an integer number.

Proof. Consider projection p : (C*)? — T2 of the group (C*)? into torus
T2, given by formula p(z;,22) = (B 1z21) It is clear, that integral [ w
is equal to the degree of the mapping p : ¢ — T2, which is restriction of
projection p onto cycle o. Thus, this integral is an integer number. a

Theorem 7.1. The value In(f,g,v) of the logarithmic functional is cor-
rectly defined element of the group C/Z (i.e. when 2-chain o in the defini-
tion of functional changes, the value can be incremented by integer number
only).

Proof. Since embedding 7 : Id — (C*)? induces isomorphism 7, of groups
Hy(Id,Z) and Hy((C*)?,Z), for the image (f,g).7y of cycle ~ there exists
homological cycle 4, laying in the set Id, i.e. there exists 2-chain o such,
that (f,g)«y —v1 = 8o1. Let 2 be another cycle in Id that is homological
to the cycle (f, g)«v and o2 be such 2-chain, that (f, g).y —v2 = dos. Since
isomorphism =, has no kernel, cycles v; and - are homological in the set
Id, i.e. there exists a chain o3 laying in Id such, that v; — v = do3. By the
construction the chain ¢ = 03 — 01 — o3 has zero boundary and therefore
is a 2-cycle in (C*)?. By Lemma 7.2 integral [ w is an integer number. On
the other hand [ w = [ w~— [ w~— [ w. The chain o3 is laying in the
set Id. Restriction of the form w on Id is identically equal to zero, therefore
J,, w= 0. Thus, the difference [, w — [ w is an integer number. ]

Theorem  7.2. Logarithmic functional is skew-symmetrical, i.e.

1n(.f,g"7) = —lﬂ(g,f,’)f).

Proof. Let R: (C*)? — (C*)? be a mapping that swaps co-ordinates, i.e.
let R(z1,22) = (2z2,21). Under this mapping the form w changes the sign,
i.e. R*w = —w. Mapping R translates the set Id into itself. Let o be a
2-chain in (C*)? such, that the cycle (80) — (f, g) () is contained in the
set Id. Then In(f,g,v) = [ w. Further, In(g, f,7) fR(g)w = [ At =

—[,w=—In(f,9,7) O



Logarithmic Functional and the Weil Reciprocity Law 105

Theorem 7.3. Logarithmic functional has the following multiplicative
properties:

]'H(.f(loig”r) = ln(f’917)+]-n(‘P!g17)! ln(fsg‘pv 7) = ln(f! 977)+1n(f7 @1‘7)

Proof. Since the functional is skew-symmetrical, it is sufficient to prove
the first equality In(fe,g,v) = In(f,9,v) + In(w, g,7). For evaluation of
In(f,g,v) and In(p,g,v) we will choose specific 2-chains o; and og. Let
X = XoU X, be a covering of the complex X by two closed sets with
contractible connected components the same as in Lemma 7.1.

We describe the choice of the chain oy first. Let I = [0, 1] be a unit segment,
W =1Ix X and (F,G) : W — (C*)? be a piecewise-smooth homotopy
of the mapping (f, g) discussed in Lemma 7.1. Another words, let (F,G)
be such mapping, that: 1) restriction (F,G)|{1yxx of the mapping (F,G)
on the set {1} x X coincides with the mapping (f,g) when sets X and
{1} x X are identified, 2) restriction F|(o}xx, of function F' on the set
{0} x X, identically equals to 1, 3) restriction G|{g}xx, of function G on
the set {0} x Xo identically equals to 1. For the cycle v = > k;A; take
o1 = Y ki(F,G)«({ x A;). By construction the boundary of the chain oy
is equal to (f,g).«(y) — 71, where 7 is a cycle laying in the set Id. Thus

In(f,9,7) = [ w.

Chain o3 is constructed analogously. Let (®,G) : W — (C*)? be piecewise-
smooth mapping, with component G the same as in above described ho-
motopy, and component ® having the following properties: 1) restriction
®H1} x X coincides with function ¢, 2) restriction ®|;o3xx, of function
® on the set {0} x X, identically equals to 1. For cycle v = 3 k;A; take
oz = 3 ki(®,G).(I x A;). By construction the boundary of the chain o3
is equal to (¢, g)«(¥) — Y2, where v, is a cycle laying in the set Id. Thus
In(p,9,7) = fw

Now we construct chain ¢3. Consider the mapping (F®,G) : W — (C*)?
with first component being the product of functions F and ®, and second
component equal to function G. Take o3 = > ki(F®,G).(I x A;). By
construction the boundary of the chain o3 is equal to the difference of the
cycle (fe, g)«(y) and the cycle laying in the set Id. Therefore, In(fy, g,7) =

J w. Thus we have the following equalities
a3

dF dG
n(fom =5k [ T

IxA,
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i® dG
In(p,g9,7) = Zk ]_A?’
IxA;

In(fp,9,7) = Z f F@)

IxA;
Equality In(fy, g,v) = In(f, g,7) + In(y, g, ¥) now follows from the identity

d(F®) _dF  d®
(F®) F ' & =

Let real manifold M and smooth mapping (f,g) : M — (C*)? be given.
With each triple, consisting of one-dimensional complex X, one-dimensional
cycle v on X and piecewise-smooth mapping ¢ : X — M, we will associate
an element In(f o ¢,g o @,) of group C/Z. In order to prove topological
property 4) of the logarithmic functional described in previous subsection
it is sufficient to prove the following theorem.

Theorem 7.4. Let form df Adg be identically equal to zero on the manifold
M and let cycle ¢.y homologically equals to zero. Then In(fod, gog,v) = 0.
Conversely, if from homological equality to zero of the cycle ¢.v follows
equality In(f o ¢,g o ¢,v) = 0 then on the manifold M form df A dg is
identically equal to zero.

Proof. If cycle ¢.y homologically equals to zero, then on the manifold M
there exists piecewise-smooth 2-chain o such that 8o = ¢ o~. By definition

1 df  dg
In(fog,gog,v)= W i
If form df A dg is identically equal to zero, then integrand is equal to zero.
Thus, In(f o ¢,g9 0 @,7) = 0.
Conversely, let on some bi-vector v at some point a of manifold M form df A
dg is not equal to zero. Consider arbitrary smooth mapping ¢ : (R?,0) —
(M,a) of the standard plane R? into manifold M that translates point 0
into point @ € M, and differential d¢ is nonsingular at point 0 and maps
plane R? into subspace of the tangent space 7'M, at the point a, containing
bi-vector v. Let S. be a square —¢ < z < &,—¢ < y < € on the plane R?,
and X, = 3S; be its boundary. Let ¥ be a cycle geometrically coinciding
with X, and oriented as boundary of the square S.. Obviously, for small
enough € element In(fo¢, gog,~y) of group C/Z is not equal to zero, however
cycle ¢,y by construction is homologically equal to zero. O
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8. Logarithmic functional and generalized LB-functional

In this section we prove the following theorem.
Theorem 8.1. The equality In(f,g,v) = LB,(f,g) holds.
We first prove auxiliary result.

Lemma 8.1. Let Xo, X7 C X be subsets of complex X defined in Lemma
7.1, (f,9) : X — (C*)? - piecewise-smooth mapping such, that restric-
tion of function f on X and restriction of function g on Xy tdentically

equal to 1. Then for any one-dimensional cycle 7y in complex X the equality
LB, (f,g) =0 holds.

Proof. Consider the following subpartition of complex X: every edge 7; of
complex X is split into three edges by points A;, B; belonging to the bound-
aries of sets Xy and X;. Choose collection ¢ of the branches of function
In f on the edges of sub-partitioned complex X that satisfies the following
two conditions: 1) on every edge that is connected component of set X,
the branch of function In f is identically equal to zero; 2) branches In f on
the union of edges, that are connected components of the set Xy, define on
this component continuous function. Condition 2) can be satisfied because
every connected component of the set X is contractible. By the definition
of LB-functional we have

1 dg 1
LB,(£,9) = Gz [ 02 ~ 57 2 moa(PYIng(P),
W Pev

where summation is over set V of all vertices of sub-partitioned complex
X. Now, fqb%g- = 0, because integrand is equal to zero. Indeed, on every
Y

edge from set X; function ¢ is equal to zero. On every edge from set X
function ¢ is identically equal to 1 and thus dg/g = 0. At the vertex P of
the original complex X (before subpartition), coefficient m - is equal to
0, because function ¢ is continuous at such point P. At every vertex P,
belonging to the boundary of sets Xy and X, the number In g is equal to
2km, where k € Z, because function g is equal to 1 on the set Xj. Therefore,
the number ﬁ Y- mg(P)Ing(P) is integer. From all this it follows that

PeV
element LB (f, g) of group C/Z equals to zero. 0O

Proof. (of Theorem 8.1). By Lemma 7.1 the mapping (f,g) : X — (C*)?
is homotopic to the mapping (f1,91) : X — (C*)?, for which restriction of
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function f; on X and restriction of function g; on Xy are identically equal
to 1. Let W = I x X and (F,G) : W — (C*)? be homotopy connecting
mappings (f,g) and (f1,¢1). By Theorem 6.1

LB, (f,g) — LB, (f1,g1) = j v,

a

where ¢ — 2-chain on W that is equal to I x-y. By Lemma 8.1 LB, (f1,91) =
0. By construction d¢ = « — 7y, where cycle ; is laying in the set Id.
Therefore, LB, (f,g) = In,(f, g). |

The author would like to thank Eugene Zima for his help during preparation
of this paper.
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We summarize some recent results on partial linear functional systems. By as-
sociating a finite-dimensional linear functional system to a Laurent-Ore mod-
ule, Picard—Vessiot extensions are generalized from linear ordinary differential
(difference) equations to finite-dimensional linear functional systems. A gener-
alized Beke's method is also presented for factoring Laurent—Ore modules and
it will allow us to find all “subsystems”whose solution spaces are contained in
that of a given linear functional system.

Keywords: Linear functional systems; Fully integrable systems; Laurent—Ore
algebras; Modules of formal solutions; Picard—Vessiot extensions; Fundamental
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1. Introduction

This paper provides a survey of the work by M. Bronstein and the au-
thors in a France-Sino Scientific Cooperation Project from 2002 to 2005.
Our project concerns finite-dimensional linear functional systems, and its
outcome includes: a generalization of Picard-Vessiot extensions of linear

2This joint project is supported in part by the French Government Scholarship (BGF
no. 2002915), an INRIA-CAFE Project Funding and two National Key Projects of China
(no. 1998030600, 2004CB31830).
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ordinary differential (difference) equations, the notion of modules of formal
solutions, algorithms for computing the dimension of solution spaces and
for reducing linear functional systems to fully integrable ones, and general-
izations of Beke’s factorization algorithm and of the eigenring method. The
emphasis of this paper is on descriptions of these results. Precise references
are given for proofs and technical details.

A (partial) linear functional system consists of linear partial differential,
shift, and g-shift operators, or any mixture thereof. By a finite-dimensional
linear functional system, or a d-finite system for short, we mean a linear
functional system whose module of formal solutions has finite dimension
(see Definition 4.1). Intuitively, a system is d-finite if and only if its solution
space has finite dimension. Below is an example:

P'(z, k) - 2% P'(z, k) + HE2P(e, k) =0 @
P(z, k+2) - EEP(z, k+1) + &L P(z, k) = 0.

The sequence of the Legendre polynomials { P(z, k)}72, is a solution of (1)
with the initial conditions

{P(0,0)=0, P'(0,0)=0, P(0,1)=0, P'(0,1)=1}.

Given a linear functional system L, we are interested in the following ques-
tions: (i) Does L have a nonzero solution? (ii) Is there a ring containing
“all” the solutions of L7 (iil) How does one compute the dimension of the
solution space of L? (iv) How does one find (if it exists) a “subsystem”
whose solution space is properly contained in that of L? (v) Determine
whether the solution space of L can be written as a direct sum of those of
its subsystems?

Our work is intended for answering these questions algorithmically for 8-
finite systems. In terms of modules of formal solutions (Definition 4.1) and
Picard—Vessiot extensions (Definition 4.2), the above questions translate
respectively to: (i) Is a module M of formal solutions trivial? (ii) Does there
exist a Picard—Vessiot extension for a given system? (see Section 4) (iii) How
does one compute the dimension of M7 (see Section 5) (iv) How does one
find a nontrivial submodule of M7 (see Section 6) (v) Is M decomposable?
(see Section 6)

Many of the results in this paper are straightforward generalizations of their
counterparts from linear ordinary differential or difference equations. These
generalizations are however necessary in view of their wider applicability
and the complications caused by the appearance of several differential and
difference operators.
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Throughout the paper, rings are not necessarily commutative and have
arbitrary characteristic. Ideals, modules and vector spaces are all left ones.
Fields are always assumed to be commutative. Denote by RP*? the set of
all p x ¢ matrices with entries in a ring R, and by e;,, for 1 < i < n,
the unit vector in R'™ with 1 in the ith position and 0 elsewhere. The
notation ““p” means “isomorphic as R-modules”. We use (-)7 to denote
the transpose of a vector or matrix, and 1,, to denote the identity matrix of
size n. Vectors are represented by the boldfaced letters u, v, w etc. Vectors
of unknowns are denoted x,y,z, etc. The symbol C denotes the field of
complex numbers.

The paper is organized as follows. In Section 2, we present some prelim-
inaries and define the notion of linear functional systems. In Section 3,
we construct Picard—Vessiot extensions for fully integrable systems, which
are a common special case of J-finite systems. In Section 4, modules of
formal solutions are defined and Picard-Vessiot extensions are generalized
for O-finite systems. In Section 5, we present some techniques for computing
linear dimension of a linear functional system. In Section 6, we generalize
Beke’s algorithm and the eigenring approach to factor Laurent-Ore mod-
ules. Concluding remarks are made in Section 7.

2. Preliminaries

Let R be aring and A be a finite set of commuting maps from R to itself.
A map in A is assumed to be either a derivation or an automorphism.
Recall that a derivation 4 is an additive map satisfying the multiplicative
rule 8(ab) = ad(b)+6(a)b for all a,b € R. The pair (R, A) is called a A-ring,
and it is a A-field when R is a field.

For a derivation § € A, an element ¢ of R is called a constant with respect
to d if §(¢) = 0. For an automorphism o € A, ¢ is called a constant with
respect to o if o(¢) = ¢. An element ¢ of R is called a constant if it is a
constant with respect to all maps in A. The set of constants of R, denoted
by Cg, is a subring. The ring Cg is a subfield if R is a field.

Let (F,A) be a A-field. By reordering the indices, we can always assume
that A = {61,...,0¢,0041,-..,0m} for some ¢ > 0, where the §;’s are
derivation operators on F' and the o;’s are automorphisms of F. The Ore
algebra® over F is the polynomial ring S := F[d1,...,0m] in 8; with the
usual addition and the multiplication defined as follows:

6-_;3]' = 53-61-, 530, = aa., + 53((1,), Bta = O’t(ﬂ)at,

forany1<i,j<m,1<s<{{<t<manda€F.
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Remark that 0;(a), where a is an element of a A-ring, is meant to be §;(a)
if 0; is associated to a derivation operator 4;, and to be o;(a) if 9; is asso-
ciated to an automorphism ¢;; while d;a, where a is an element of the Ore
algebra &, means the product of 9; and a.

Definition 2.1. Let (F, A) be a A-field. A linear functional system over F'
is a system of the form A(z) = 0 where A is a p X ¢ matrix with entries in
the Ore algebra § and z is a column vector of ¢ unknowns.

Example 2.1. The system (1), satisfied by the Legendre polynomials, can
be rewritten as A(z) = 0 where

A=(63~ 2 o kEtD) o (@43 k+1>’

1— 22 =+ 1—-22 % k42 k+2

with 8, the differentiation with respect to x and §; the shift operator with
respect to k.

Let F' be a A-field. A commutative ring R containing F is called a A-
extension of F' if all the maps in A can be extended to R in such a way
that all derivations (resp. automorphisms) of F' become derivations (resp.
automorphisms) of R and the extended maps commute pairwise.

By a solution of a linear functional system A(z) = 0 over F, we mean a
vector (s1,...,84)" over some A-extension of F' such that A(sy,...,sq)"=0,
i.e., the application of the matrix A to the vector is zero.

3. Fully integrable systems

A common special case of linear functional systems consists of fully inte-
grable systems, which are of the form {0;(2z) = A;z}1<i<m and correspond
to the linear functional system A(z) = 0 where the matrix A is given by
the stacking of blocks of the form (8, - 1, — A;). Fully integrable systems
are of interest to our study, since to every d-finite system, we can associate
a fully integrable system whose solution space is isomorphic to that of the
original system. (see Section 4.3)

Definition 3.1. A system of the form
5.5(2):14;‘2, ]-stga Ji(z}:Aiza £+152Sm! (2}

where A; € F™*™ and z is a column vector of n unknowns, is called an
integrable system of size n over F if the following compatibility conditions
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are satisfied:
6i(A;) = 0;(Ai), 1<i<j<y,
oi(A;)A; = 0;(A;)A, f<i<j<m, (3)
oi(A)A; = AiA; +68:(A;), 1<i<i<j<m.

The integrable system (2) is said to be fully integrable if the matri-
ces Agy1,..., A, are invertible.

Using Ore algebra notation, we write {9;(z) = Aiz}1<i<m for the system (2)
where the action of 8; is again meant to be §; for ¢ < ¢ and to be o;
for i > {. Observe that the conditions (3) are derived from the condi-
tion 0;(9;(z)) = 0;(0;(z)) and are exactly the matrix-analogues of the com-
patibility conditions for first-order scalar equations in Ref. 10. For a linear
ordinary difference equation, we often assume that its trailing coeflicient
is nonzero, while, for a first-order matrix difference equation, we assume
that its matrix is invertible. These assumptions lead to the condition on
invertibility of A¢y1,..., Am in Definition 3.1.

Example 3.1. Let F = C(z,k), d; be the differentiation with respect to x
and o the shift operator with respect to k. Then

A:{d:(z) = Azz, ok(z) = Axz }

is a fully integrable system where

z?—kz—k z? —kz43k—2z
A z(z—k)(z—1) kz(z—k)(z—1)
L k(kz+az—2®—2k) 23422 kz?-2242k
(z—k)(z—1) z(z—k)(z—1)
and
k41+ka® —zk®—z _ktlikz—k*-a
A = (z—k)(z-1) k(z—k)(z—1)
k= 2kt 1) (kt14ks—k%—2) (k+1)(22—2kz—z+k?)
(z—k)(z—1) k(z—k)(z—1)

In what follows, we generalize fundamental matrices and Picard—Vessiot
extensions of linear ordinary differential (difference) equations to fully in-
tegrable systems.

A square matrix with entries in a commutative ring is said to be invertible
if its determinant is a unit in that ring.

Let F be a A-field and {0;(z) = Aiz}1<i<m be a fully integrable system of
size n over F. We define

Definition 3.2. An n x n matrix U with entries in a A-extension of F' is
a fundamental matriz for the system {0;(z) = A;z}1<i<m if U is invertible
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and 8;(U) = A;U for each i, i.e., each column of U is a solution of the
system.

A two-sided ideal I of a commutative A-ring R is said to be invariant
if 8;(1) C I for ¢ < £ and o;(f) C I for § > £. The ring R is said to be
simple if its only invariant ideals are (0) and R.

Definition 3.3. A Picard-Vessiot ring for a fully integrable system is a
(commutative) ring F such that:

(i) E is a simple A-extension of F.

(ii) There exists some fundamental matrix U with entries in F for the
system such that E is generated by the entries of U and det(U)™!
over F.

Definitions 3.2 and 3.3 are natural generalizations of their analogues in the
purely differential case [22, (pages 12, 415)] and the ordinary difference
case [21, (Errata)).

The existence of fundamental matrices and Picard—Vessiot extensions for
fully integrable systems is stated in the following

Theorem 3.1. Fvery fully integrable system over F has a Picard—Vessiot
ring E. If F has characteristic 0 and Cr is algebraically closed, then
Cg = Cp. Furthermore, that extension is minimal, meaning that no proper
subring of E satisfies both conditions in Definition 3.3.

A detailed proof of the above theorem is found in Ref. 6.

Consequently, if F' has characteristic zero and an algebraically closed field
of constants, then all the solutions of a fully integrable system in its Picard—
Vessiot ring form a Cp-vector space whose dimension equals the size of the
system.

We now present two examples for Picard—Vessiot extensions. The reader is
referred to [24, Section 2.2] for detailed verifications.

Example 3.2. Consider the fully integrable system of size one:
0;(z) =a;z wherea; € Fandi=1,...,m.

This is an extension of Example 1.19 in Ref. 22.

Let E = F[T,T~!] be the A-extension such that §(T) = a;T for i < ¢
and 0;(T) = a;T for j > £. Then E is a Picard-Vessiot ring of the given
system if there does not exist an integer £ > 0 and a nonzero r € F such
that &;(r) = kasr for i < £ and o;(r) = afr for j > £. Otherwise, assume
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that the integer k£ > 0 is minimal so that there exists a nonzero r € F
satisfying d;(r) = ka;r for i < £ and o;(r) = afr for j > £. Then E/(T* —7)
is a Picard—Vessiot ring of the given system.

Example 3.3. Consider the system A in Example 3.1. Note that the
change of variable® z = My where

=k 42
M= ((:cmk)k :1:2k)’

transforms A into another fully integrable system

B:{6:(y) = Bzy, ok(y) = Bry }

10 10
Bm_(OO) and Bk—(ok).
It suffices to find a Picard—Vessiot ring of B. We get that
e 0
V= (7o)

is a fundamental matrix for B, and thus MV is for A. More-
over, F[e*,I'(k),e~%,T'(k)"!] is a Picard-Vessiot extension for A.

with

4. O-finite systems

In this section, we first discuss generic solutions of linear algebraic equations
over arbitrary rings, then introduce the notions of Laurent-Ore algebras
and modules of formal solutions. These two notions allow us to generalize
the results in Section 3 to J-finite systems.

4.1. Generic solutions of linear algebraic equations

Let R be an arbitrary ring. Denote by Z(R) the center of R, i.e. the set
of all elements that commute with every element in R. Then Z(R) is a
subring of R. Consider a p x ¢ matrix A = (a;;) with entries in R. For
any R-module N, we can associate to A a Z(R)-linear map A : N9 — NP
given by

T

q q
Ei=(Cn, &) A=Y ag, 0 Y apsg
i=1

=1

bwhich can be found, for example, by computing the hyperexponential solutions of the
system10:14,24
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We therefore say that £ € N9 is a solution “in N” of the system A(z) =0
if A(§) = 0, and write soly(A(z) = 0) for the set of all solutions in N.
Clearly, soly(A(z) = 0) is a Z(R)-module. Note that A is in general not R-
linear since R is noncommutative.

As in the case of D-modules,'® we can associate to A € RP*? an R-
module as follows: A induces the R-linear map p : R'*P — R!X9 given
by (r1,...,rp) = (r1,...,7p)A. Let M = R'4/(R'PA), which is the quo-
tient of R1*9 by the image of the map p. We call M the R-cokernel of A and
denote it by cokerg(A). Clearly, cokerr(A) is an R-module. Let €1y, ..., €pp
and ey, ..., €qq be the canonical bases of R'*? and R!*9, respectively. De-
note by 7 the canonical map from R'*? to cokerg(A), and set e; = 7(ej,)
for 1 < j < q. Since 7 is surjective, M is generated by eq,...,e,; over R.
Note that p(e;p) is the i-th row of A. Hence

g q g
0=m(plep)) =m Za,;jejq = Za,;j?r(ejq) = Zaijej, for 1 <i<p,
=1

j=1 i=1

which implies that (e;,...,e;)7 is a solution of A(z) =0 in M.

Given two R-modules N and N3, denote by Hompg (N7, N2) the set of all R-
linear maps from N; to Na. Clearly, Hompg(Ny, No) is a Z(R)-module.

As illustrated by the following theorem, Proposition 1.1 of Ref. 15 remains
true when D is replaced by an arbitrary ring R.

Theorem 4.1. Let M = RY9/(R'¥PA). Then for any R-module N,
Hompg(M, N) and soly(A(z) = 0) are isomorphic as Z(R)-modules.

Remark 4.1.

(i) The proof of Proposition 1.1 in Ref. 15 can be adapted to this theorem
in a straightforward way (see Ref. 6) and also, an elementary proof is
given in [24, Theorem 2.4.1].

(ii) The proof of Theorem 4.1 reveals that the vector e := (ey,...,e,)" €M
specified above is a “generic” solution of the system A(z) = 0 in the
sense that any solution (s1,...,84)7 of that system in N is the image
of e under the map in Homg(M, N) sending e; to s;.

4.2. Laurent-Ore algebras

Let F be a A-field and § = F[d,,...,0,] be the corresponding Ore alge-
bra. In the differential case, an S-module is classically associated to a linear
functional system.!®22 In the difference case, however, S-modules may not
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have appropriate dimensions, as illustrated by the following counterexam-
ple.

Example 4.1. Let ¢ # 1 be an automorphism of F and § = F[d] be
the corresponding Ore algebra. The equation 8(y) = 0 cannot have a
fundamental matrix (u) in any difference ring extension of F, for other-
wise, 0 = d(u) = o(u), thus u = 0. Therefore d(y) = 0 has only trivial
solution. However, the S-module §/58 has dimension one as an F-vector
space.

In [21, page 56], modules over Laurent algebras are used instead to avoid the
above problem. It is therefore natural to introduce the following extension
of S:let @41, ...,0,, be indeterminates independent of the ;. Since the aj_l
are automorphisms of F, § = F[d1,...,0m,0e+1,...,0x) is also an Ore
algebra in_which the 6; are associated to the UJ,TI. Note that d;6; is in the
center of S since

(8;8;)a = 8;0; (a)0; = 0 (05 ' (a))8;6; = ad;b;,

for all @ € F and j > {£. Therefore the left ideal T= Z eyl S5(0;0;—1)
is a two-sided ideal of &, and we call the factor ring £ = S/T the
Laurent-Ore algebra over F. Identifying 8; with the image of 8; in £
and writing 5;1 for the image of #; in £, we can write £ (by conven-
tion) as £ = F|[dy,...,0m,0;,...,05'] and view it as an extension of
S. For linear ordinary dlﬁ'erence equations, £ = F|o,07'] is the algebra
used in Ref. 21, while for linear partial difference equations with constant
coefficients, L is the Laurent polynomial ring in Refs. 17,25.

Except for the purely differential case where £ = 0, a Laurent-Ore alge-
bra £ = F[dy,... ,Bm,é?[:l,. ..,0-1] is not an Ore algebra since 8j6;1 =
&8 =1

When revisiting Example 4.1 with Laurent—Ore algebras, we get that the
left ideal generated by @ in £ = F[8,07'] is L, therefore the dimension
of L/(L0) over F, which is zero, equals that of the solution space of (y) = 0
in any difference ring extension.

In the sequel, a module over a Laurent-Ore algebra that is finite-
dimensional over the ground field is called a Laurent—Ore module for short.

4.3. Modules of formal solutions

Let F be a A-field, and & and £ be the corresponding Ore and Laurent-Ore
algebras. Replacing R with £ in Theorem 4.1 yields
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Theorem 4.2. Let A € S§P*7 and M=cokerz(A). Then soly(A(z)=0)
and Homg (M, N) are isomorphic as Cp-vector spaces for any £-module N.

From Remark 4.1(ii) in which we replace arbitrary ring R with L,
cokerz(A) describes the properties of all the solutions of A(z) = 0 “any-
where”. This motivates us to define

Definition 4.1. Let A € §7*9. The L-module M = LY9/(L1*PA) is
called the module of formal solutions of the system A(z) = 0. The dimension
of M as an F-vector space is called the linear dimension of the system.
The system is said to be of finite linear dimension, or simply, 8-finite,
if 0 <dimp M < +o00.

Note that we choose to exclude systems with dimp M = 0 in the above
definition since such system has only trivial solution in any £-module, par-
ticularly, in any A-extension of F.

Remark 4.2. For any A € &P*? we can construct both its &-
cokernel cokers(A) and L-cokernel cokerg(A). Viewing L as a right S-
module and cokers(A) as a left S-module, we can define the tensor
product!® £ ®s cokers(A), which is a right S-module and a left £-
module. Lemma 2.4.10 in Ref. 24 shows that cokerz(A4) and £ ®s
cokers(A) are isomorphic as £-modules. Thus dimg cokers(A) does not
exceed dimp cokers(A).

Let A(z) = 0 with A € 879 be a system of linear dimension n and M
be its module of formal solutions with an F-basis by,...,b,. Suppose
that Bz-(bl,... ,bn)T = Bi(bl,...,bn}‘r where B; € F"*"™ for 1 < ¢ < m.
By a straightforward verification, {8;(x) = B;X}1<i<m is a fully integrable
system, which is called the integrable connection of A(z) = 0 with respect
to the basis by,...,b, of M.

O-finite and fully integrable systems are connected by the next proposition
whose proof is given in [6, Proposition 2] and [24, Proposition 2.4.12].

Proposition 4.1. Let A,by,...,b,, B1,..., B, be as above, and B be the
stacking of the blocks (8; - 1, — B;). Then

(i) cokerg(A) =2, cokers(B).
(ii) Let {e1,...,e;} be the set of L-generators of M satisfying
Aleq,...,eq)” =0 and P € FI*" be given by

(el,...,eq)T :P(bl,...,bn)T.



Solutions of Linear Functional Systems and Factorization of Laurent—Ore Modules 119

Then for any A-extension E of F, the correspondence £ — P¢
is an isomorphism of Cg-modules between solg({0;(x) = BiX}1<i<m)
and solg(A(z) = 0).

Remark that the inverse of the correspondence in Proposition 4.1 (ii) is
given by n — @Qn, where @ is a matrix in £"*? such that

(b1, .. ,bn)" = Qe1,...,eq)".
From Proposition 4.1 (ii), all the solutions of the system A(z) = 0 can
be obtained from those of its integrable connection {9;(x) = B;X}1<i<m,
and vice versa. Figure 1 illustrates such a relationship, and it also suggests
reducing the problem of solving O-finite systems to that of solving fully
integrable systems.

Module of formal solutions
M=="Le1+ -+ Leg
=Fb1@&---@®Fb,
9;(b1,...,bs)" = Bi(by,...,by)7,
{€1500008)T = Pib1,cosnbu)ts P EFIR

System Integrable connection
A(z) =0 (P, {0:(y) = Biy})
sol(A(z) = 0) sol(8;(y) = Biy)
P 1ot ¢

Fig. 1. Relationships among Systems, Modules and Solutions

4.4. Fundamental matrices and Picard-Vessiot extensions

Based on the discussion in Section 4.3, we generalize the notions and results
of fundamental matrices and Picard—Vessiot extensions for J-finite systems.

Definition 4.2. Let A(z) = 0 with A € §7*7 be a J-finite system, M
be its module of formal solutions, {e1,...,e,} be a set of L-generators
of M and by,...,b, be an F-basis of M such that A(eq,...,e;)" = 0
and (er,...,eq)" = P(by,...,b,)” where P € FI*™,

A gxnmatrix V with entries in a A-extension F of F' is called a fundamental
matriz for A(z) = 0if V = PU where U € E™*" is a fundamental matrix
of the integrable connection of A(z) = 0 with respect to by,...,bx.



120 M. Wu, Z. Li

A Picard-Vessiot ring for an integrable connection of A(z) = 0 is called a
Picard-Vessiot ring for A(z) = 0.

As a consequence of Theorem 3.1, we have

Theorem 4.3. Every 0-finite system A(z) = 0 over F has a Picard-
Vessiot ring E. If F has characteristic 0 and Cr is algebraically closed,
then Cg = Cp.

Assume that F' has characteristic 0 with an algebraically closed field of
constants. If E is a Picard-Vessiot ring for the system A(z) = 0 then
the dimension of solg(A(z) = 0) as a Cr-vector space equals the linear
dimension of A(z) = 0, whenever the latter is finite.

Example 4.2. Let F,d.,0k be as in Example 3.1, and
A= {5,(2) = Agz, on(z) = Axz}

where
z+1 k{z+1—k) _k z+1—k)
T z2(k—1) z2(k—1)
_ rk—k®422° 4 ka®+hk—1 _ zk—k*422%4ka?
Az = | z+1 z(k—1) a(k—1) ,
z+1 cht+2x®4ka®—2k* 4k _ zhkt2z24ka®-2k241
z(k—1) z(k—1)
k+1 k+l—zk—=z zhktr—k—1
k z(k-1) x(k—1)
A = z(k+1) 1-2z+k—zk+z® 2z+4zk—2°—k—1
k k k—1 k1 ’
z(k+1) 1-22k—2z4k+x® 2zk42z—k—2—1
3 k—1 k—1

and z = (z1,22,23)". Note that Ay is singular, so A is integrable but not
fully integrable. We will show in Example 5.2 that all solutions of A can be
found by a change of variable z = Py where

1 0
P = 0 1
r(k—1 Iz—k
zP-1 zP-1
and y is a solution of the fully integrable system
B : {6z(y) = Bzy, ox(y) = Bry}

with

—z—zktz®—1—a*+k*—kz? —k®+zk+tkz®+4+32%—1
z?-1 z(z?-1)

—ztzi— 142 —zk—k4k? k(z+1—k)
B, = z(z?-1) z3(z2-1)
=
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and
a:k+a:4(—k2+)2k+1 _ (k+l)
_ k(z+1 z(x+1
By = _ (kx?—z—k*—2k—Dz g?4z—1-k |-
k(x+1) +1

So it suffices to compute a Picard—Vessiot. extension of B. The same method
to construct a fundamental matrix for the system in Example 3.1 yields a
fundamental matrix for B:

U— cke® —kz*k
= \ kx2e® (22 — k —1)zk+1 )
hence PU is a fundamental matrix for .A. In addition, a Picard—Vessiot
ring C(z, k)[e®, e, z%, 27| for B is a Picard-Vessiot ring for A.

5. Computing linear dimension

We now describe how to compute linear dimension for a given linear func-
tional system A(z) = 0.

Let N be a submodule of a free £L-module £9 with a finite set of generators.
One can compute a Grébner basis of N over £ (see Refs. 26 and [24, Chap-
ter 3]), which gives rise to an F-basis of £9/N. Thus, one can determine
whether a linear functional system is J-finite, and construct an F-basis of
its module of formal solutions.

The following proposition indicates that the same goal may be achieved by
Grébner basis computation over Ore algebra S (see Ref. 8) if cokerg(A)
has finite dimension over F. Notice that the linear dimension of A(z) =0
never exceeds dimp cokers(A) by Remark 4.2.

Proposition 5.1. Let N be a left submodule of S'™ such that S'" /N
has finite dimension over F and N the submodule generated by N in £L1*™.
Then SY*™ /(N N S¥™™) and L1*™/N are isomorphic as F-vector spaces.

The proof to Proposition 5.1 can be found in [24, Proposition 2.4.6].
Another useful fact is described in the next proposition whose proof is found
in [24, Proposition 2.4.11(ii)].

Proposition 5.2. Suppose that cokers(A) with A € §P*9 has a finite F-
basis fy,...,f4 and 0;(fy, ... ,f4)" = Dy(f1,...,£4)" where D; € Faxd Tet D
be the stacking of the blocks (8; - 14 — D;). Then cokers(A) =5 cokers(D)
and cokerp(A) = cokerg (D).

The above proposition reveals that, to compute linear dimension of a sys-
tem A(z) = 0 such that cokers(A) has finite dimension over F, it suffices to
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compute linear dimension of the (integrable) system {8;(y) = Diy}i<i<m
where y = (y1,...,Y4)"-

In the situation described in Proposition 5.2, let Hy be the set of row vectors
of D, Ny the submodule generated by Hy over §, and N the submodule
generated by Hy over £. We proceed as follows to compute a Grébner basis
of N over £, which gives rise to an F-basis of £L¢/N, the module of formal
solutions of {9;(y) = Diy}1<i<m-

Compute the rank of D; for each j with £41 < j < m. If each D; has full
rank, then {0;(y) = Diy}1<i<m is fully integrable and so Hp is already a
Grobner basis of N over L (see [24, Example 3.2.4]). Otherwise, the row vec-
tors of some D; satisfy certain linear relations over F', which, together with
9ij(y) = D,y, implies F-linear relations among 9;(y1),...0;(y4). Assume
that one of the relations is

f105(y1) + -+ + fa0;(ya) =0

where j € {£+1,...,m} and fi,... fq € F, not all zero. Applying 83-_1 to
it yields

o (f)yr+- -+ 07 (fa) va = 0. (4)

Hence the vector (crj_l(fl), i ,O'j_l(fd)) belongs to the L-submodule N,
but it does not belong to Ny. Adding to Hy the new vectors obtained from
the linear relations of the form (4), we have a new set H; of generators
for N. Now we compute a Grobner basis of N over £ using H;. By Lem-
mas 2.5.1 and 2.5.2 in Ref. 24, such a basis can be computed by merely
rank computation, Gaussian elimination and the “Reduce All”trick. It is
unnecessary to form any S-polynomials. This simplification is due to the
integrability of {0;(y) = Diy}1<i<m. A detailed description of this process
is formulated as an algorithm named LinearReduction in [24, Section 2.5].
We now give some examples to illustrate how to compute linear dimensions.

Example 5.1. Let Ay,..., A, be in F™*™ and
-1, — A
A — 5 E Sm'ﬂx'ﬂ. .
Om -1 — Am
The system A(z) = 0 corresponds to the system {0:(z) = AizZ}i<icm.
Let M be the module of formal solutions of A(z) = 0, and e4,...,e, be
the respective images of ei,...,enn in M. For e := (e1,...,e,)7 € M™,

we have A(e) = 0 or 9;(e) = A;e for each 7. Since the entries of A; are
in F, 8(e;) € ¥5_, Fe, for all i,j, thus Le; C Y., Fe, for all j.
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So M = 3" _ Ley, = 5 »_, Fe,. In particular, dimg M < n. Observe
that dimp M = n if and only if the system {0;(z) = Aiz}1<i<m is fully
integrable (see [24, Proposition 2.4.9]).

Example 5.2. Let F, d,, 0 and the system 4 be given in Example 4.2. We
follow the idea of the algorithm LinearReduction to compute linear dimen-
sion of A. Note that Ay, is singular. Solve the linear system (v, va,v3)Ax =0
in vy, v2,v3. A nontrivial solution of this system yields

xk 2—k—1

oi(23) = ——ok(z ok (22).
k(23) = g ow(a1) + —5—7—0or(=)
By applying crgl, we get
z(k—1) z? -k
23 = z z2,
B 2—1 ' 21"
thus
21 1 0
z
Z9 = 0 1 ( 1 ) .
z(k—1) z2—k z2
23 z2—1 x2-1
P
Substitute this relation into A, we get d;(z1,22)7 = Bg(z1,22)"
and ok (21, 22)7 = Bg(z1, 22)” where
—ztad—14x2%—zk—k+k? k(x+1—k)
B. — z(z?-1) zZ(z2—1)
TN —z—zktz®—1-2?4k%—ka® —k*tzktkz®43z%-1
z2—1 z(r2-1)
and
zkta4k®4+2k4+1 _ k1
B K(z+1) (@ +D)
k= (kz?—z—k?—2k—1)z z?+z—1—k
- k(z+1) z+1

A straightforward calculation verifies that the first-order system B given
by B; and By is fully integrable, so B has linear dimension two by Exam-
ple 5.1. According to the algorithm LinearReduction, all the solutions z of A
can be obtained from the solutions y of B via a change of variable z = Py,
and the modules of formal solutions for A and for B are the same. Hence A
has linear dimension two. O

The following example shows that there are o-finite systems whose S-
cokernels are infinite-dimensional over F'.
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Example 5.3. Let L; = 6132(81+1), Lo = 8182(62+1), A= (Ll, Lz)‘r, J
the ideal in S generated by L; and Lo, and M = cokers(A). Since &4 and 0o
are invertible in £, then M = L/(£(01 + 1) 4+ L£(02+ 1)), thus dimp M = 1.
However, §/J is infinite-dimensional over F.

We now conclude how to determine whether a linear functional system
is @-finite. As seen in Examples 5.1 and 5.2, when the system is given as
an integrable system, we have a set of generators of M over F', so com-
puting dimg M can be done by linear algebra. When A(z) = 0 is given
by a finite-rank ideal in S, Proposition 5.1 shows that either M = 0 (if
the ideal contains a monomial in d¢11,...,8,) or an F-basis of M can
be computed via Grobner bases of ideals in §. There are algorithms and
implementations for this task.”® For a more general matrix A € SP*9, one
can use the Grobner basis technique developed in [24, Chapter 3] for com-
puting F-bases of £-modules. However, to compute the linear dimension
of A(z) = 0 for which cokerg(A) is finite-dimensional it suffices to compute
the linear dimension of an integrable system according to Proposition 5.2.
The algorithm LinearReduction supplies a tool for the latter task. There-
fore, Grobner basis techniques in £ are necessary only when cokers(A) is
infinite-dimensional over F.

6. Factorization of Laurent—Ore modules

The work of this section is motivated by the algorithm FactorWithSpec-
ifiedLeaders in Refs. 12,13, where the idea of associated equations is ex-
tended to factor linear partial differential equations with finite-dimensional
solution spaces. In terms of modules over an Ore algebra & = F[d4,...,0n)
where { = m, the problem solved by their algorithm can be formulated
as follows: given a submodule N of 8™ such that M = S™/N is finite-
dimensional over the field F, finds all submodules of 8™ that contain N.
Such a submodule is called a factor of IV since all its solutions are solutions
of N. In their algorithm a factor is represented by a Grobner basis with
respect to a pre-chosen monomial order. Observe that, for a (right) factor
of a given order, there is only one possibility for its leading derivative in
the ordinary case, whereas, there are many possibilities in the partial case.
Due to this complication, the algorithm has to check every possibility to
compute all the factors of a given order. In this ideal-theoretic approach
the quotient module M does not come into play.

In the module-theoretic approach to be described in this section, we com-
pute all submodules of the above quotient module M, and then recover
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the “factors”of N in the sense of Refs. 12,13 via the canonical map from
8™ to M. As all submodules of M are represented by linear bases over F,
the problem of guessing leading derivatives goes away. The same idea car-
ries over to Laurent—-Ore modules and results in a factorization algorithm
for O-finite systems.

6.1. Constructions with modules over Laurent—Ore algebras

Given a ring R, we first review some notions of reducibility of R-modules
defined in Ref. 19.

An R-module M is reducible if M has a submodule other than 0 and M.
Otherwise, M is irreducible or stmple. An R-module M is completely re-
ducible or semisimple if for every submodule N; there exists a submod-
ule N3 such that M = N; @ N,. Note that an irreducible module is com-
pletely reducible as well. An R-module M is decomposable if M can be
written as Ny @ Ny where N7 and N3 are nontrivial submodules of M.
Otherwise, M is indecomposable. Clearly, an R-module M is reducible if it
is decomposable, and M is irreducible when it is both indecomposable and
completely reducible. By factoring an R-module, we mean finding its R-
submodules.

As before, let F' be a A-field with C the field of constants, S = F[d,, ..., Om)
ahld L= FlBy0050m; [+11, ..., 0] be the corresponding Ore algebra and
Laurent-Ore algebra, respectively. In the sequel, unless otherwise speci-
fied, F' has characteristic 0 and C is algebraically closed.

Clearly, ordinary and partial differential modules in Ref. 22 are special cases
of £-modules. The constructions in [22, §2.2] can be carried on £-modules
in a similar way.

Let M be an £-module and N a submodule of M. The F-vector space M/N
with the induced actions:

Oi(w+ N)=08;(w)+N and 8 '(w+N)=0; (w)+N
for1<i<mand ¢+ 1<j<1m,is the quotient module.
The direct sum of two L-modules M, and M> is M; & M> equipped with
the actions:

Bz-(wl + Wg) = a,;(wl) + 32(W2) and (9;1(“’1 + Wz) == afl(wl) + 3;1(“{2}

forl1<i<mandf+1<j<m.
The tensor product My ® M of two L£-modules M; and M> is M1 ®p Ma
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equipped with the actions:
9i(w1 @ wa) = 8;(w1) @ wa + Wy ® 8;(wa) fori < ¥,
B (w1 @ wy) = 8% (w1) ® 8% (wz) for j>{and v € {-1,1}.

The d-th exterior power A*M of an L-module M is the F-vector space AL M
provided with the actions given by the formulas

d
Bi(Wi A AWa) =Y WiA-ABiws) A+ Awa,
a=1

B (Wi A~ Awg) = 8% (w1) A~ A B (wa),

fori<éf,j>fandve {-1,1}.
Exterior powers of Laurent—Ore modules play an important role in the next
section.

6.2. A module-theoretic approach to factorization

We now describe an idea on factoring Laurent—Ore modules.

Recall that a decomposable® element w € A?M is an exterior product of d
elements in M, i.e., w=wj A+ - A wy.

The following theorem generalizes Lemma 10 in Ref. 9 or the corresponding
statement in [22, page 111]:

Theorem 6.1. A Laurent-Ore module M has a d-dimensional submod-
ule if and only if A°M has a one-dimensional submodule generated by a
decomposable element.

Remark that the operators 8;,-_1 are indispensable in the proof of Theorem
6.1 (see also [24, Theorem 4.3.1]), and this proof yields a correspondence
between d-dimensional submodules and one-dimensional submodules gen-
erated by decomposable elements: if a d-dimensional submodule of M has
an F-basis vy,..., vy, then the linear subspace generated by vi A+ - A vy
in AM is a one-dimensional submodule; conversely, if a one-dimensional
submodule of AYM is generated by a decomposable element vy A« -- A vy,
then the F-linear subspace generated by vi,...,vg in M is a d-dimensional
submodule.

Let M be a Laurent—-Ore module with an F-basis {e;,...,e,} and set g =
(7). Then the module A®M has an F-basis {f1,...,f;}. Let

e=(ey...,en) and f=/(f,..., ).

By Theorem 6.1, the problem of finding d-dimensional submodules of M is
converted into that of finding one-dimensional submodules of AYM whose
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generators are decomposable, and thus the factorization problem is reduced
to two “subproblems”: finding one-dimensional submodules and deciding
the decomposability of their generators.

The first subproblem can be solved by a recursive method!# for determin-
ing one-dimensional submodules of a Laurent-Ore module. Applying the
method to AM yields several finite subsets Si,...,S; C F¢ with the fol-
lowing properties:

(a) The elements of each Sy are C-linearly independent.

(b) A one-dimensional F-space of AYM is a submodule if and only if it
is an F-space generated by the product of f and a nontrivial C-linear
combination of elements of some Sk.

Now we deal with the second subproblem. Let S be one of the S; with ¢
elements, and w be the product of f and a C-linear combination of elements
of S, in which the coefficients are unspecified constants ci, ..., ¢q. Consider
the map ¢w : M — AT M given by v — v A w. By Theorem 1.1 in [16,
Chapter 4] and the proof of Theorem 6.1, w is decomposable if and only
if ker(¢w ) is of dimension d. The latter is equivalent to the condition that
the matrix P of ¢, has rank (n — d). Hence, testing the decomposability
of w amounts to a rank computation of P, i.e., identifying the unspecified
constants ¢y, . .., ¢q such that the rank of P is (n—d). This further amounts
to solving several systems consisting of homogeneous polynomial equations
and inequations in e, ..., ¢; over F. Using a linear basis of F' over C,
we can translate every such system into finitely many subsystems over C.
Each subsystem has two portions: a set of polynomial equations and an
inequation. If none of the subsystems has a solution, then the product of f
and any C-linear combination of elements of S is not decomposable and thus
does not lead to any d-dimensional submodule of M. Otherwise, substitute
a solution into the matrix P, and compute a basis ry,...,ry of the rational
kernel of P where r; € F™. Set u; = er; for j = 1,...,d. Then @leFuj
is a d-dimensional submodule of M.

A few words need to be said about those subsystems derived from the rank
condition for P, since they may have infinitely many solutions after deho-
mogenization. We require that the substitution of any solution of a subsys-
tem into P not only yields the required rank for P, but also makes a fixed
(n—d) x (n—d) minor nonzero. An (n — d) x (n — d) minor may correspond
to several subsystems. This requirement can always be fulfilled, and will
help us describe all d-submodules of M by a finite amount of information.
We proceed as follows. Let T be such a subsystem. Using the nonzero minor
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corresponding to T' and Cramer’s rule, we may find a basis ry,...,rq of the
rational kernel of P where the entries of the r; are in F(cy,...,¢q) and
their denominators divide the given minor. Set u; = er; for y = 1,...,d.
Then @;‘z 1Fu; represents all d-dimensional submodules obtained by substi-
tuting solutions of T for ¢1,...,¢cq into uy, ..., ug. Note that we may check
the set of solutions of T' by techniques from computational algebraic geom-
etry. These considerations lead to a method for computing all submodules
of M, which is described stepwise in [24, Section 4.4].

Remark 6.1. The above representation for d-dimensional submodules
of M is rather naive and has a lot of redundancy. To have more concise rep-
resentations, one would partition d-dimensional submodules with respect to
module isomorphism, and generalize the techniques given in [22, page 112].

We present two examples for factoring Laurent—Ore modules.

Example 6.1. [Legendre’s system] Let F,d,,0x be as given in Exam-
ple 3.1 and £ = F[3;, Ok, B;l} be the Laurent-Ore algebra. A Grébner basis
of the ideal generated by the Legendre’s system (1), is

g1 = zh+z+(x?-1)8,—(k+1)3 and gy = k+1+(k+2)0% —(2xk+3z)0k.

Let A = (g1,92)" € L2*', M = L/(Lg1 + Lg2) and ej, e, be the images
of 1 and J in M, respectively. Then e;,e; form a basis of M over F and,
in addition,

—zk—x k+1 0 1
8, (el) _ zZ-1 z2-1 (81) O (91) _ (81) _
e o )\ e Tz k) \e
Apply the algorithm in Ref. 14, we find that M has no one-dimensional
submodules, so M is irreducible.

Example 6.2. Let F,d,,0; be as in Example 3.1 and £ = F[Bx,c'?k,ak_l]
the Laurent-Ore algebra. Let M be an L-module with an F-
basis {e1, ez, e3,e4} satisfying 9,(e;,ez,e3,64)” = Az(e1,e2,e3,e4)” and
Ok(e1,ez,e3,e4)” = Ag(e1,e2,e3,€4)” where

01
a; a
0
0

—
[+

00
00
Az = 01

o O

asz a4
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with
. _ —*— 2’k + 2% + zk + K2+ K2 + kB . 2z -z —k?)
b z?(—z + k) T T @k
—z% — 22k + 2% + 3zk + 2z + k*z + 4k® + 5k + 2 + kB
a‘3 = 2 7
z2(—z+k+1)
A—x?+x+k2+2k+1)
a4 = — 1
(—z+k+1)x
and
0 0 1 0
0 0 0 1
Ak: = _(x—k z2 0 2r(z—k—1) 0
r—k—2 r—k—2
_ 2x(z®—2xk-3z+k*+2k)  (z—k)a? 2(z?—2ok—do+k®+3k+2) 2z(z—k-1)
(x—k—2)2 r—k-2 (x—k—2)2 r—k—2

Let us compute all two-dimensional submodules of M. Clearly,
fl = e1/\eg, fz = e;A\eg, f3 = ej\ey, f4 = eg/\es, f5 = egAey, fﬁ = esey

form a basis of A2M over F. By the algorithm in Ref. 14, every one-
dimensional submodule of A>M has a generator of the form

6
w = (f1,fz, 3, f4,f5, fo) (Z cm)
i=1

where
—z2 + 2zk — k2
_ 264 k%22 a4 kY 20%k?  3xk 4 3k 4z ktat
1-3
z+22* + k3 4+ 20k +k? 322k —3z?
3.:2
Vi =
1 —ozk+k+k® +22k+2k? —z— 2k x ’
I2
_ ktk 42 _r_22k
xr
_ x*—2rk—2x+k%42k+1
1-2
and the other expressions va,...,vs are quite big and are given in [24,
pages 70-71].

It remains to determine the decomposability of w. Consider the map M —
A3M given by v — v Aw, whose matrix is some P € F**4 (we do not write
down this matrix explicitly due to its big size). The matrix P has rank 2
if and only if all its 3 x 3 minors are zero and there exists a nonzero 2 x 2
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minor. This yields four sets of solutions for the ¢;:

{ei=c1, c@=cz, 3=0, ca=cs, c5=0, =0},

—— —— —
9]

(33(264 + 3c3 — 465)
1 —

C1=C1,C2=—

303

co=c¢, C=C, C3=¢3 C4=——, c5=0, Ca=0},

2

, C2 = €2, €3 = C3, C4 = (4, C5 = Cs, Cﬁ:o )
4cs

8ecges—2c304 —3c§#4csr:4 —20c3ce—4cice+4ercs+4ezes—24c2
dcg

C3=0C3, €4=0C4 C5=0C5 C5=0Cp)-

Therefore M has two-dimensional submodules if and only if the ¢; in w
satisfy one of these four relations.

Substitute these four relations into P respectively and compute the cor-
responding F-bases for the rational kernel of P. Finally, we get all two-
dimensional submodules:

N; = {a1u;1 + agus2 | ar,a0 € F}, i=1,2,3,4,

where

ujj

up 2

= (2c17%k + c1k%z + c42® + c12? + 2e12* + cox?k — 2230k — 3x3cik
—2z%csk + x2e2k? + xkier + xien + c4rPk? — coz® — 2e42* — 30128
+eq23 4 2¢47%k) [ (x(2012 — 122 + 217k — 2c0k — c2k? + k3cs + 2cax
—eox? + 2k%cs — 201k — 1k? + 2c0xk — 2keqr — 2k%cax + keax? + key
—c1 — ¢2))e1—(caz® + c12? — keaz? — eqz? — cizk — e1z)(z — k) /(2012
—c122 + 2¢12k — 200k — e9k? + k3cq + 2¢0x — cox? + 2k%cq — 21k
—c1k? 4 2catk — 2keqx — 2k%cqz + keqx? + keg — 1 — ca)en + e3,

= (c12* — 2122 + c42° + e17 — 2047 — 17° — 4zt + cox® — 2¢02?

+2¢472% + e1k? + 2¢1Kk3 + c1k* — 2¢022k + 3e1k?x — derx?k + Skeyz?
+k2eqx + cozk + 3c1zk — dear®k — 2042°k2 — 20122k2 + 2c4zk?
+3c42%k? 4 cqzk? + co7k?) /(2(2017 — 122 + 2017k — 2c2k — czk?
+k3cq + 200 — cax? + 2k%cs — 201k — c1k? + 2¢caxk — 2kcyr — 2k264ﬂ?
+k04$2 +keg —c1 — Cg))el = (C4$3 — Czl‘z + kC4.’E2 + coxk — 2k264.’1,‘
+epx — 2xey + c1xk — dkeax — 1 — e1k? — 2¢1k)(z — k)/((2e12 — 172
+2c12k — 200k — cok? + k3cyq + 2007 — cox? + 2k%cq — 201k — 1k
+2comk — 2kcyx — 2k%cax + keaz® + keqg — 1 — ¢2))en + e4.

The submodules given by the last three solutions of the ¢;’s are more com-
plicated (see [24, Example 4.4.1]).
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6.3. FEigenrings and decomposition of Laurent—Ore modules

We discuss another approach to factoring Laurent—-Ore modules, which is
not based on the associated equations method. This method is first intro-
duced in Ref. 20 to factor linear ordinary differential operators using eigen-
rings of the operators. Three algorithms are presented there for computing
eigenrings. Significant improvements on these algorithms are described in
Refs. 4,23. Although the eigenring method does not always factor reducible
operators, it often yields factors quickly. This method has been generalized
in Refs. 1,5 for systems of linear difference equations, and in Ref. 3 recently
for systems of linear partial differential equations in positive characteristic.
We will generalize this method for factoring Laurent—Ore modules.

Let R be an arbitrary ring and M be an R-module. Recall that Endg(M)
is the set of all R-linear maps on M. Clearly, Endg(M) becomes a ring
with the usual addition and the composition of maps adopted as the mul-
tiplication.

Definition 6.1. Let M be an R-module. A set of elements my,..., 7,
of Endg(M) is called a set of orthogonal idempotents if they satisfy

38
Zm =1 and m7m; =0 wheneveri# j, (5)
i=1

where 1 and 0 are the identity map and the zero map on M, respectively.

Although it is not stated in Definition 6.1, the maps m; are all idempotent.
Indeed, the condition (5) implies that

7;2.2 = E Ty =Ty E m; | =mi, for each i.

It is stated in Exercise 7 of [11, (Chapter 1, §1)] that

Proposition 6.1. Let M be an R-module. If Endg(M) has a set of orthog-
onal idempotents wi,...,m, then M = @I_;mi(M). Conversely, if M can be
written as a direct sum of submodules M = N1 @ --- @ N, then {m,..., 7}

is a set of orthogonal idempotents of Endgr(M) where w; is the projection
from M to N;.

For any R-module M, Endgr(M) always has a set of orthogonal idempo-
tents {0, 1}, which is called the trivial orthogonal idempotents of Endg(M).
As a direct consequence of Proposition 6.1, an R-module M is decomposable
if and only if Endg (M) contains a nontrivial set of orthogonal idempotents.
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Let F be a A-field with C the field of constants and £ =
B[Oy ¢4 o5 0m, 5[_‘_11, ...,0.1] the Laurent-Ore algebra over F. Here we do
not assume that C is algebraically closed.

For an L-module M, the endomorphism ring End (M) is called the
eigenring of M and denoted £(M). Then a map ¢ € Endp(M) belongs
to £(M) if and only if ¢ commutes with the d; and Bj_l for all 4,7 with
1<i<mand £+1 < j < m. However, since M is an L-module on
which the d;° ! act, the commutativity of ¢ with the 8; for £+1< j <m
implies 0; o ¢ 0 Bfl(w) = ¢(w) and further ¢ o Bj_l(w) = Bj_l o ¢(w) for
w € M. Hence, ¢ € Endp (M) belongs to £(M) if and only if ¢ commutes
with all the 8; for 1 <i < m.

Let M be a Laurent-Ore module with an F-basis {ej,...,e,}. Suppose
that 0;(e1,...,en)” = Bj(e1,...,e,)” where B; € F"*" for 1 < i < m
and the B; are invertible for j > £. In practice, the maps in £(M) can
be interpreted in terms of the B;. Let ¢ € Endp(M) and P € F™*™ be
its transformation matrix given by (¢(e1),...,¢(en))” = Pley,...,e,)7".
Let w= 31", a;e; € M where a; € F. Then

T

$(w) =Y aidle;) = (a1,...,an)(p(€1), ..., $(en))"

i=1
5

=y s 5 Q) PBL; 5 80 )
One can verify that the conditions d;(¢(w)) = ¢(9;(w)) hold for w € M and
1 < i <mifandonlyif §;(P) = BiP—PB; fori < {and 0;(P) = BjPBj_1
for j > £. Hence the eigenring £(M) can be defined equivalently to be

E(M)={Pe€ F"" | §;(P)= B;P— PB;,i < {,0;(P) = BjPBj_l,j >}

(6)
Clearly, the identity matrix 1,, € E(M) and £(M) is a C-subalgebra
of F™*" of dimension not greater than n?. Moreover, C - 1, C (M)
where C - 1,, denotes the set of all matrices of the form ¢-1,, where c € C.
As a natural generalization of the results in Ref. 22, [20, Proposition 2.13]
or Ref. 2 for the case of linear ordinary differential equations, we have

Theorem 6.2. Let M be an L-module of dimension n. Then

(i) If E(M) # C -1, then M is reducible.
(i) If M is decomposable then E(M) # C - 1,,.
(i) If M is completely reducible, then M is irreducible if and only
if E(M)=C-1,.
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Given a Laurent—-Ore module M of dimension n, we now use the for-
mula (6) to compute £(M). Let P € £(M) be a matrix of n? indeter-
minates z;;. From (6), we get a system 0;(z) = A;z where A; € Frltund
and 2 = (211,.-.s2Iny+-+yZnly---12nn) . This system is clearly O-finite,
so its rational solutions can be found by a specialized version of the
method in Ref. 14. A C-basis of all rational solutions of this system yields
a C-basis {P,..., P} of all rational solutions of £(M). Without loss
of generality, we assume that P, = 1,. Therefore £E(M) = &]_,C - B.
If r = 1, then £(M) is trivial and M is indecomposable by Theorem 6.2 (ii).
Otherwise, each eigenvalue A of a nontrivial P € £(M) will produce a
submodule {w € M | Pw = Aw} of M. If £(M) has a set of non-
trivial orthogonal idempotents y,...,7;, then we derive a decomposi-
tion M =m(M)®---®7(M). If M is furthermore completely reducible,
a maximal decomposition of M can be obtained by applying the eigenring
method recursively on the submodules in the above decomposition.

Example 6.3. Let F,d,, 0% be as given in Example 3.1, £ = F[0;, Ok, 6,:1]
the Laurent—Ore algebra and M an L-module of dimension two. Sup-
pose that {e;,e;} is a basis of M satisfying 8,(e;,e3)” = Bg(ei,ez)”
and Ox(e1,e2)” = By(e1,ez)” where

10 10
BI—(OO) and Bk_(Ok)'

We now compute the eigenring of M. Let P € £(M) be a 2 x 2 matrix with
indeterminate entries z11, 212, 221 and zs23. The conditions

8;(P) = B,P -~ PB, and ox(P)= B.PB;!

yields a system A : {4,(z)=A,2z,0k(z)=Arz} where z = (211, 212, 221, 222)7,

k +k—
0 (r—k)E:c—l) xix—k)k(:-:—l) 0

_ ntk-=z 2% —kx? 224 3k+tkx 0 ntk—z
A — z(z—k)k(z—1) z(z—k)(z—1) z(z—k)k(z—1)
A I 0 z®—kz?®—2z43k+kz kn
(z—k){(z—1) z(z—Fk)(z—1) (z—k)(xz—1)

kn +hk—
0 T ERE-1) [ _Ta:—ijk(i—l) 0
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and
¥ ees  -f F
A = 1 ROR+D) c‘Tgl _mgkjﬁi *k(_z-%)
7| sanse oy pgrp Bibe st
£ w8 EF O F
withn =z —kx—}—Zk —r,a= k+1+k$ —k2z—z, 8 =k+1+kz—k?*—z,v=
(r—k)(z—k—1)(z—1)? and & = 2% — 2kz — z + k2. All rational solutions

of A are of the form

(cl —cx cg—c¢ (c1—c)rk ar—oc

z—1 " k(z—-1) -1 ' z-1 )’ for 1, e2 € C.

So

Ca—C1T
z—1 r—1

i 1 S - SRR M
_C(z Y )@C TR
z—1 z—1 Tz—1 z—1

Recall that the necessary condition for {P,..., Ps} C £(M) being a set of
orthogonal idempotents is that P2 = P; for each i. Substitute

c1—Cr  C3—cC]

z—1 k(z—1

P= fe—1)
ci1—c2)zk cp—cyz

z—1 z—1

C] —CZZE kCE—Cll
E(M) = (clf;;}xk -1} for any c1,c0 € C

into the relation P? = P, we obtain three solutions:

; 1 z 1
k(z— =1 EG—1)
By =i, B e k -1 (:r:m ) , Py = :ckxl k(zl .
Tz-1 z-1 z-1 ~ z-1

Among which, we find /P, =0 and P, + P, = 15. So {P, P} is a set of
nontrivial orthogonal idempotents of £(M). We have

Pi(M) ={P(w)|we M}

1
= {(al,ag)Pl(el,eg)T | a,az € F} =F. (el = EEQ)

and
Py (M) = {Py(w) | w € M}

1
= {(a1,a2)Ps(ey,e2)" | @1,00 € F} =F - (e1 - E;ez) .
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Therefore, Pi(M) & P2(M) is a decomposition of M into two nontrivial
submodules.

The eigenring method, however, may fail to find any factor of a Laurent-
Ore module even this module is reducible. This happens when the module
is not completely reducible and its eigenring is trivial.

7. Concluding remarks

In this paper we have discussed how to solve and factor d-finite systems.
A key technique described here is to use the notion of modules of formal
solutions to connect J-finite systems with fully integrable systems, while
the latter systems are very similar to linear ordinary differential (difference)
equations. This technique naturally gives rise to Picard—Vessiot extensions
for O-finite systems. Since Picard—Vessiot extensions are a stepping-stone
to introduce Galois groups, it would be interesting to extend (part of) the
Galois theory for linear ordinary (difference) equations to d-finite systems.
We presented some methods for determining linear dimension of a linear
functional system. We also generalized Beke’s method and the eigenring
approach to factor Laurent—Ore modules. The work on factoring Laurent-
Ore modules is however preliminary, because efficiency and applications of
these two methods have not yet been considered.
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The final step of some algebraic algorithms is to reconstruct the common de-
nominator d of a collection of rational functions v, /d from their polynomial
images modulo m. Using elementwise rational reconstruction requires that
degm > N + D, where N and D are such that degv. < N and degd < D.
We present an algorithm, based on minimal approximant basis computation,
that can perform the reconstruction for many problem instances even when
the modulus has considerably smaller degree, for example degm > N + D/k
for k a small constant.

Keywords: Rational function reconstruction

1. Introduction

Many algorithms in computer algebra that compute with polynomials from
Klz], K a field, use a homomorphic imaging scheme to avoid intermedi-
ate expression swell, to allow for simple course-grained parallelization, or
to incorporate an output sensitive approach. Often, the last step of these
algorithms is to reconstruct the common denominator d of a collection
of rational functions (v;/d)i<i<n from their polynomial images (u;)1<i<n
modulo m. The images modulo m are typically computed by combining
multiple smaller images using either Chinese remaindering (m = pipa2 -+ pr)
or p-adic lifting (m = p').

Typically, the overall cost of an algorithm that uses homomorphic imaging
depends on [, the number of images computed, which is directly related to
deg m. Ideally, the algorithm computes just enough images to allow recon-
struction of the common denominator d. We first recall how elementwise
rational function reconstruction can be applied, and then discuss our vec-
tor based variant that for some applications can save close to half of the
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required image computations.

The rational function reconstruction problem takes as input a nonzero mod-
ulus m € K|[z], a single image polynomial u € K[z] with degu < deg m, and
degree bounds 0 < N < degm and 0 < D < degm. A solution to the
problem is a pair of polynomials (d, v) such that

du=vmodm, degd<D, degu<N. (1)
If (d,v) is a solution to (1) that satisifies ged(d, m) = 1, then
uzgmodm, degd < D, degu < N. (2)

For convenience, in order to avoid some special cases, we have used the
weaker condition (1) to define a solution to the problem rather than (2).
The vector generalization of the problem is defined similarly except with u
replaced by [u1,...,u,] € K[z]'*™. A solution to the vector version is then
a pair (d, [v1,...,vn]) such that

dlur, uz, ..., U] = [U1,V2,...,05) mod m, degd < D, deguv. <N. (3)

Similarly, if ged(d, m) = 1 we have
U1 U2 Un
Tdd
The link between solutions of (1) and certain rows of the traditional ex-
tended Euclidean algorithm has been well studied.'® In general, we require
degm > N+ D to ensure that the solution space is uniquely generated, that
is, that every solution can be expressed as a polynomial multiple of a single
generating solution (d, v). Let Ratrecon(u, m, N, D) denote a function that
takes as input an instance of the problem with degm > N + D, and returns
as output the first component d (possibly the zero polynomial) of a gener-
ating solution. The approach taken in various software libraries®8:1%:17 to
compute the common d of the vector version of the problem is as follows:

(185 W s aey Uiy} = | ] mod m, degd< D, deguv.<N. (4)

Choose N > 0 and D > 0 such that degm > N + D;
di=1;
for i from 1 to n do
d := d x Ratrecon(du; mod m, m,N, D)
od;

return d

The choice of N and D will depend on the particular application. Sup-
pose that the v; and d shown in (4) are the actual target solution to a
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particular problem. On the one hand, if N and D are a priori bounds sat-
isfying (4), then we know a priori that the output of the code fragment
will be the same denominator d (up to normalization). On the other hand,
if an output sensitive approach is being used, and N and D are guesses
which may or may not satisfy (4), then the output must be assayed for
correctness. If determined to be incorrect, the modulus m is augmented
and the reconstruction attempted again. Implementations of Ratrecon, us-
ing either the algorithm of this paper or an approach based on half-ged,'®
have running time bounded by O(B(deg m)) operations in K, where B is a
cost function for gcd-like operations®. Thus, the code fragment above will
solve the vector version of the problem with O(n B(degm)) operations in K.
Note that the running time for the reconstruction is pseudo-linear in the
size of the input; in typical applications the cost of computing the images
[t1y...,um] mod m will dominate, even to the extent that the time for the
reconstruction is negligible in comparison. To save on the number of im-
ages that are computed and thus speed up the overall computation we must
relax the condition degm > N + D.

Suppose degm > N + D/k for some k € Z~o. We present an algorithm
that computes a complete basis of solutions to (3) using

O(nk“~! B(degm)) (5)

operations in K, where 2 < w < 3 is a feasible exponent for matrix mul-
tiplication. By a basis we mean a set of solutions (d¥),v(¥);<;<,, each
d® € K[z] and v € K[z]'*", such that every solution admits a unique
decomposition as a K[z]-linear combination of basis elements. The algo-
rithm is similar to the approach based on Ratrecon above, except with
the loop iterating only n/k times, each iteration dealing with a block of
k images simultaneously. The approach works because we can show that
the solution basis for all subproblems will have dimension bounded by k.
Actually, for many problem instances the solution space will be uniquely
generated (s < 1) whenever degm > N + D/n. Next we give an example
of an application that generates such problem instances.

Suppose we want to compute A~ € K(z)"*! for a nonsingular A €
Klz]**™ and b € K[z]**! from the image A~'bmod m for some m. For
simplicity, assume that degb = deg A. Let N be a bound for the degree of
the numerators of A~'b. For example, the a priori bound N = ndeg A will
be tight for a generic problem instance. From the assumption that degb =

#We can take B(t) = M(t)logt where M is a multiplication time for K[z|, see [18,
Def. 8.26].
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deg A it follows that the denominator of A~1b also has degree bounded by
N. To apply elementwise reconstruction we need the image A~'b mod m
with degm > 2N. However, in Ref. 16 it was observed that output of
the vector rational reconstruction problem with input A~!b mod m will be
uniquely generated whenever degm > N + deg A. Thus, using the vector
reconstruction algorithm it will suffice to have degm > N + N/k for any
k € Zsqo that satisfies N/k > deg A. For k a small constant, say k = 5,
the reconstruction will still be relatively fast (compare with (5)) but the
required lower bound N + N/5 for the modulus degree is a factor of 0.6
smaller than the bound 2N required for the elementwise approach.

We defined the rational function and vector rational function reconstruction
problem to take as input bounds N and D. We remark that algorithms for
a variant of the first problem called maximal quotient rational function
reconstruction are given in Refs. 12,15. The maximal quotient problem
takes as input u and m but not N and D, and returns as output the most
likely candidate for v/d. The maximal quotient algorithms are useful in
conjunction with an output sensitive approach when the difference between
deg v and deg d may be large, but unknown. In particular, the approach is
likely to succeed when deg m is modestly larger than deg v+deg d, compared
to the required degm > 2 max(deg v, deg d) when a common bound N = D
is specified.

The rest of this paper is organised as follows. Sections 2 and 3 recall the no-
tion of a reduced basis and minimal approximant bases. Section 3 also gives
an algorithm for a special type of simultaneous matrix Padé approximation,
the basis of the vector rational function reconstruction algorithm presented
in Sec. 4. In Sec. 5 we show how the vector reconstruction algorithm may be
applied to rational system solving over K[z]. For more background on the
definitions and concepts introduced in Secs. 2 and 3 we refer to Refs. 1-4.

Fundamental notions and algorithms for polynomial matrices can be found
in Refs. 5,11.

2. Reduced bases

Let A € K[z]®*™ have rank r. Let £(A) denote the lattice generated
by the set of all K[z]-linear combinations of rows of A. In many appli-
cations we are interested in the subset of a lattice comprised of all rows
w € K[z]*™ that satisfy a degree constraint specified by a fixed multi-
index 7 = (n1,n2,...,Nmy) € Z™:

<n; < <nm
w=[8,%7,..., %) € Klafxm (©)
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Following [1, Def. 3.1], the defect of a row w = [wy,wa, ..., wn] € Klz]1*™
with respect to 7 is defined by

det(w) = det(w,7) := min{n; + 1 — degw;}, (7)

where the zero polynomial has degree —oo. The notion of defect measures
the gap between w and the degree constraint 7i: w satisfies (6) if and only
if det(w) is positive. The following definition is similar to 3, Def. 5.1].

Definition 2.1. A matrix B = [b7 |63 |...|bT )T € K[z]"™*™ is a reduced
basis of type 7i for A € K[z]"*™ if the following conditions are satisfied:

(i) B has full row rank and £(B) = L(A). [basis property]
(ii) Each w € L£(B) admits a unique decomposition w = Y_7_, ¢;b; with
¢; € K[z], dege; < det(b;) — det(w), 1 <i <r. [reduced property]

The reduced bases are precisely those with maximal defect.

By positive part of a reduced basis we mean the submatrix comprised of the
rows with positive defect. All w € £(A) that satisfy the degree constraint
7t are generated by the positive part of a reduced basis for A: if det(b;) <0
and det(w) > 0, then the ¢; of Def. 2.1 has dege; < det(b;) — det(w) < 0
and thus ¢; is the zero polynomial.

Suppose B is a basis for A, rows permuted so that defects are nonincreas-
ing. Then reduced bases are precisely those with (det(b1),...,dct(b,)) lex-
icographically maximal among all bases for A whose rows are similarly
permuted. Thus, up to row permutation, any two reduced bases of type 7i
for A will have the same tuple of defects. It follows that the number of rows
in the positive part of a reduced basis is an invariant of A.

3. Minimal approximant bases
Let G € K[z]**™, fi € Z", and d € Z3xg.

Definition 3.1. An order d minimal approzimant of type 7i for G is a
reduced basis M of type 7 for the lattice {w € K[z]'*" | wG = 0 mod z¢}.

Note that a minimal approximant M as in Def. 3.1 will necessarily have
dimension n x n, be nonsingular, and satisfy MG = 0 mod z¢.

The following is restatement of [9, Theorem 2.4]. We remark that Ref. 9
gives more precise cost estimates in terms of certain ad hoc cost functions.
We will use the exponent w and cost function B.

Theorem 3.1. There exists an algorithm MinBasis that takes as in-
put (G,d,) € (K[z]"*™,Z50,Z™) and returns as output (M,§) €
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(K[z]™*™,Z™), an order d minimal approzimant M of type @i for G to-
gether with a tuple § = (61,...,0,) of the defects of rows of M. If m < n,
the cost of the algorithm is O(n® B(d)) operations in K.

For brevity, we will say that (M, d) in Theorem 3.1 solves the minimal ap-
proximant problem with input (G, d, 7@). By PosMinBasis(G, d, @) we mean
the output of MinBasis(G,d, fi) restricted to the rows with positive defect;
this may be a 0 x n matrix.

We now give two technical lemmas that follow from the definition of min-
imal approximant and the properties of reduced bases. The first lemma
states that zero rows in an input matrix can be ignored as far as minimal
approximant basis computation is concerned.

H

2] oo

Lemma 3.1. Let H € K[z]**™ have its last k rows zero and let i =
(N1, ynn). If M € Klz)r=B)X(=k) s an order d minimal approzimant
of type (n1,...,Mn—k) for the first n — k row of H, then diag(M, Ix) is an
order d the minimal approzimant of type 7t for H.

The next lemma follows as a special case of [2, Theorem 5.1], which gives
a general result regarding the recursive computation of minimal approxi-
mants. Let 1 denote the tuple (1,1,...,1) of appropriate length.

Lemma 3.2. Let H € K[z]"*™ and H' € K[z]**™. If (M,8) =
MinBasis(H,d,7) and (M’,4") :== MinBasis(M H’,d,§—1), then (M'M,d")
solves the minimal approzimant problem with input ([H|H'],d, ).

The —1 in the second call to MinBasis in Lemma 3.2 is due to the +1 in
the definition of defect (see (7)). For example, in the special case where H
is the zero matrix, an order d minimal approximant of type 7 for H is given
by I, with row defects § = 77 4+ 1. For more details we refer to [2, Sections
3 and 4].

As noted after Def. 2.1, if w € £(MinBasis(H,d, 7)) has positive defect with
respect to i, then w € £(PosMinBasis(H,d,)). Since L(M'M) C L(M),
any row in M’'M with positive defect with respect to 7 is comprised of a
linear combination of rows of PosMinBasis(H,d, 7). We get the following
as a corollary.

Corollary 3.1. Lemma 3.2 still holds if MinBasis is replaced by
PosMinBasis and “minimal approzimant” is replaced by “positive part min-
imal approximant.”
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3.1. An algorithm for simultaneous Padé approzimation

We describe an algorithm to compute an order d minimal approximant of
type 7i for an input matrix G that can be decomposed as

GilEal- 16
E

G = E E K{I](m+tn)xnk, (8)

E

each G; € K[z]™** and E € K[z]***. We will assume that 7i = (7}, fia, .”.
,Tig) with 7y € ZT, and 7y € Z&,, but remark that the algorithm we present
can be adapted to work for an arbitrary degree constraint 7 € Zm*ttn,
Actually, our goal is to compute only the first m columns of the positive part
of an order d minimal approximant of type 7. Lemma 3.1 and Corollary 3.1
suggest an iterative approach that works in stages for i = 1,2,...,n. The
approach can be understood by considering stage 2. Suppose we have the
first m columns M € K[z]**™ of the positive part [ M | *] € K[z]**(m+1) of
an order d minimal approximant of type (7, 7z) for
[%] c K[I](m+t)Xk,

together with a corresponding tuple § € Z%, of defects. By Lemma 3.1,
diag([ M | #], I), with defect tuple (8,72 + 1), is the the positive part of an
order d minimal approximant of type (1, fia, fi2) for the first k columns H
of

G1|Ga
[H'H’] - E c K[$](m+2t}><2k. (9)
E

By Corollary 3.1, if
(M’,8") := PosMinBasis(diag([ M | ], I,)H',d, (6,72 + 1) — 1),

then M'diag([ M |*],I,) will be the positive part of an order d minimal
approximant of type (fiy,a,2) for [ H | H']. The key observation is that
the first argument of PosMinBasis is given by

2] -
I |+ E
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so we don’t need to know the unknown block * of [ M | *]. Once M’ is com-
puted, the first m columns of the positive part of a minimal approximant
for [H | H’] can be computed as M'M. Stages i = 3,4,...,n are similar.
This gives the following algorithm.

Algorithm: SimPade([Gy,...,Gy], E, d, i1, 72)

Input: G, € K[z]™**, E € K[z]***, d € Zxo, 7ty € ZT,, iz € Zh,.
Output: (M,§), M the first m columns of an M such that (M, ) is a
valid output of PosMinBasis(G,d, (7i1, 7z, .".,fi2)), with G as in (8).

(Mré-) = (Im-:ﬁl + 1)a
for i from 1 to n do

§:= (4,72 + 1);
(M', ) := PosMinBasis ([MEGi] ,d,8 — 1);
M :=M'M

od;

return (M, §)

The cost of algorithm SimPade will depend on the row dimensions of the
first argument to the n calls to PosMinBasis. In the next section we will
see that for some inputs to the algorithm we can be sure that M will never
have more than k rows.

Theorem 3.2. Algorithm SimPade is correct. If t = O(k) and the dimen-
sion of M remains bounded by k throughout, the cost of the algorithm is
O((nk +m)k“~1B(d)) operations in K.

4. Vector rational function reconstruction
Fix the following quantities throughout this section:
¢ a nonzero modulus m € K|z],

e an input vector u € K[z]'*™ with degu < degm, and
o degree bounds NV and D with 0 < N < degm and 0 < D < degm.

A vector [d|v] € K[z]'*™+) (d € K[z], v € K[z]'*™) solves the vector
rational function reconstruction problem if du = v mod m, with degd < D
and degv < N. The complete set of solutions is thus

S = {[d|v] € K[z]"*™*V) | du = v mod m, degd < D, degv < N}.
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Consider the lattice generated by the nonsingular matrix

e [1 mt;n] € K[z)mtx(nt1), (10)
Any vector in L£(A) with degree strictly less than degm has the form
[d|du mod m] for d € Klz] with degd < degm: the rows of A con-
taining ml, serve to reduce modulo m the last n entries in d [1|u] If
we set degree constraints (D, N,...,N), then [d|v] € S if and only if
[d|v] € L(A) with det([d|v]) > 0. Thus, S is generated by the posi-
tive part B = [bT |2 | ... |bT|T € K[z]**(™+1) of a reduced basis of type
(D,N,...,N) for A.

Theorem 4.1. S = {}°]_; ¢ibi | ¢ € Kz], dege; < det(b;), 1 <i < s}

Corollary 4.1. If e € K[z|**! is the first column of the positive part of a
reduced basis of type (D, N,...,N) for A, then [e|eu mod m] € K[z]**" is
the positive part of a reduced basis of type (D,N,...,N) for A.

The next theorem gives an a priori upper bound on s, the number of rows
in the positive part of a reduced basis of type (D, N,...,N) for A. Since
the bound does not depend on 7, it also applies for the number of rows in
the positive part of a reduced basis of type (D, N,...,N) for the leading
j % j submatrix of A, for any j with 2 < j <n 4 1.

Theorem 4.2. s <k for k € Zo minimal such that degm > N + D/k.

Proof. Assume for now that N > D. Then R is a reduced basis of type
(D,N,...,N) for A if and only if R’ := Rdiag(zVP,I,) is a reduced
basis of type (N, N,...,N) for A’ := Adiag(zV ", I,). Thus, s is equal
to the number of rows in R’ with degree at most N. A reduced basis of
type (N,N,...,N) for A’ will have degree at most deg A, so deg R’ <
deg A’ = deg m. Using the fact that the determinant of a polynomial matrix
is bounded by the sum of the row degrees now gives
degdet R' < sN + (n+1— s) degm. (11)
Using the fact that det R’ is a scalar multiple of det A" gives
degdet R’ = degdet A’ = N — D + ndegm. (12)

Combining (11) and (12) and solving for degm gives

D
d <N4 ——.
egm < +s—l
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It follows that s — 1 < k. The case D > N is similar. O
Let
U
G = I, | € K[I}(ZnJrl)xn.
ml,

Dependant on the assumption that degu < degm, each [d|v] € § can be
extended with 7 := —(du — v)/m € K[z]*" such that degr < D —1 and
[d|v|r]G = 0. Conversely, if [d|v|r] € K[z]'*3+1) gatisfies [d|v|r]G =
0 mod zP*4e8™ and (deg d,degv,degr) < (D, N, D—1), then du—v+mr =
0 mod zP*4e8™ with deg(du—v+mr) < D+degm, implying du—v+4mr =
0 and thus [d|v] € §. Thus, the first n 4 1 columns of the positive part of
an order D + deg m minimal approximant of type

(D,N,.»,N,D—1,.». D—1) (13)

for G is a reduced basis of type (D, N,..., N) for A. By Corollary 4.1, it will
suffice to compute only the first column of such a minimal approximant.
To apply algorithm SimPade we need to adjust the matrix G slightly. Let
k be either n or as in Theorem 4.2, whichever is minimal. Assume for now
that k divides n and write w = [uy|uz| ... |unsk], each u, € Kz]'*k.
Permute the last 2n rows of G so that

[ uy | up "'un/k_
_Ik
mIk
-1
G = mIk c K[$](2n+l)xn_
—Ik
i mlj |

In the special case when m is a power of x, the vector rational reconstruction
problem is a simultaneous Padé approximation problem: the positive part
of a reduced basis for A shown in (10) is the positive part of an order deg m
minimal approximant of type (D, N,...,N) for

U | Uz |"* | Un/k
=E

oo |_ [k € Ka]m+Dxn,

-
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This shows correctness of the following algorithm.

Algorithm: VectorRecon(u,m, N, D)

Input: u € K[z]'*", nonzero m € K{z|, N € Z>q, D € Zxo.
Output: An e € K[z]**! as in Corollary 4.1.

Condition: N < degm, D < degm, degu < degm.

k ;= min{n, min{t € Z-q | degm > N + D/t}};
Augment u with at most k — 1 zeros so that k | n;
if m = z9%¢™ then

E:= ﬁfk;

flg = (N, .5 N);

d:= degm
else

-

B [t

fig:=(N,.*,N,D—1,.%,D—-1);

d:=D+ degm
fi;
iy := (D);
Write u = [uy [ug| ... |upn/k], each u; € Klz]1%*;
(e,*) := SimPade([u1, ua,...,un)), E, d, fi1, 72);
Normalize each entry in e to be monic;
return e

Theorem 4.3. Algorithm VectorRecon is correct. The cost of the algo-
rithm is O(nk“~1 B(degm)) operations in K, where k € Zso is minimal
such that degm > N + D/k.

5. Application to linear solving

Let a nonsingular A € K[z]**" and b € K[z]"*! be given. Let d € K|z]
be the denominator of A~!b, that is, the minimal degree monic polynomial
such that v := dA~'b is over K[z]. One of the most effective methods to
compute d is to iteratively compute

u:= A"'b mod pl =g + c1p + c2p? +"'+Ct—1pl_la (14)

each ¢; € K[z|"*! with dege; < degp, for larger and larger [ using p-
adic lifting™!4 for some p with ged(p,det A) = 1, and then apply rational
reconstruction. If desired, v can be computed as du mod m once d is found.
In the following theorem m plays the role of p'.
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Theorem 5.1. Ifdegm > max(N-+deg A, D+degb) andu = A~'b mod m
then the output of VectorRecon(u”,m, N, D) is either:

(i) e =[d] € K[z]'*!, if N > degv and D > degd, or
(ii) e € K[z]°*1, if at least one of N < degv or D < degd.

Proof. Suppose ¢ = [ej,ez,...,e5)7 € K[z]**! is the output of
VectorRecon, and for 1 < i < s let v; := e;A~1b mod m. The s vectors [e; |
v! ] € Klz]'*(™+1) are linearly independent and satisfy Av; = e;b mod m.
Since max(deg Av;,dege;b) < max(N + deg A, D + degh) < degm, we ac-
tually have Av; = e;b. Parts (i) and (ii) now follow by noting that the
dimension of the solution space for these cases are 1 and 0, respectively. O

Suppose N and D are a priori bounds: N > degv and D > degd. Standard
rational function reconstruction!® can be used to recover d in O(n B(deg m))
field operations but requires degm > N + D. By Theorem 5.1, Algo-
rithm VectorRecon can recover d in O(nk“~! B(degm)) field operations
where degm > max(N + deg A, D + degh, N + D/k).

Algorithm VectorRecon can also be used in conjuction with an output
sensitive approach. Let m = p' and suppose we have u as in (14). Set N
to be the maximal integer such that degm > N + max(deg A4, degbh, N /k).
According to Theorem 5.1, the call VectorRecon(uT,m, N,I\_f) will either
recover the denominator d or determine that max(degd,degv) > N.

6. Conclusion

The approach we have described here for reconstructing a vector of ratio-
nal functions with common denominator can be adapted to the problem
of reconstructing a vector of rational numbers with a common denomina-
tor. This requires the use of integer lattice basis reduction'® and will be
described in a future paper.

References

1. B. Beckermann and G. Labahn, STAM Journal on Matriz Analysis and Ap-
plications 15, 804 (1994).

2. B. Beckermann and G. Labahn, Journal of Computational and Applied Math
77,5 (1997).

3. B. Beckermann, G. Labahn and G. Villard, Shifted normal forms of polyno-
mial matrices, in Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC 99, ed. S. Dooley (ACM Press, New York, 1999).



o

10.

11.
12.

13.
14.

15.

16.

17.

18.

The Vector Rational Function Reconstruction Problem 149

B. Beckermann, G. Labahn and G. Villard, Normal Forms for General Poly-
nomial Matrices, Research Report 2002-1, ENS Lyon (France, 2002).

D. Bini and V. Y. Pan, Polynomial and Matriz Computations, Vol 1: Pun-
damental Algorithms (Birkhauser, Boston, 1994).

Z. Chen and A. Storjohann, A BLAS based C library for exact linear al-
gebra on integer matrices, in Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’05, ed. M. Kauers (ACM Press, New York, 2005).

J. D. Dixon, Numer. Math. 40, 137 (1982).

J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen,
B. D. Saunders, W. J. Turner and G. Villard, LinBox: A generic library for
exact linear algebra., in Proc. First Internat. Congress Math. Software I[CMS
2002, Beijing, China, eds. A. J. Cohen and N. Gao, X.-S. andl Takayama
(World Scientific, Singapore, 2002).

P. Giorgi, C.-P. Jeannerod and G. Villard, On the complexity of polyno-
mial matrix computations, in Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC 08, ed. R. Sendra (ACM Press, New York, 2003).

P. Giorgi, Arithmetic and algorithmic in exact linear algebra for the LinBox
library, PhD thesis, Ecole normale superieure de Lyon, LIP, (Lyon, France,
2004).

T. Kailath, Linear Systems (Prentice Hall, Englewood Cliffs, N.J., 1980).

S. Khodadad and M. Monagan, Fast rational function reconstruction, in Proc.
Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC 05, ed. 1.-G.
Dumas (ACM Press, New York, 2006).

A. K. Lenstra, H. W. Lenstra and L. Lovasz, Math. Ann. 261, 515 (1982).
R. T. Moenck and J. H. Carter, Approximate algorithms to derive exact
solutions to systems of linear equations., in Proc. EUROSAM ’79, volume 72
of Lecture Notes in Compute Science, (Springer-Verlag, Berlin-Heidelberg-
New York, 1979).

M. Monagan, Maximal quotient rational reconstruction: an almost optimal
algorithm for rational reconstruction, in Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC 04, ed. J. Gutierrez (ACM Press, New York,
2004).

T. Mulders and A. Storjohann, Rational solutions of singular linear systems,
in Proc. Int'l. Symp. on Symbolic and Algebraic Computation: ISSAC 00,
ed. C. Traverso (ACM Press, New York, 2000).

V. Shoup, NTL: A Library for Doing Number Theory, (2005). http://wiw.
shoup.net/ntl/.

J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 2 edn. (Cam-
bridge University Press, 2003).



150

FAST ALGORITHM FOR COMPUTING MULTIPOLE
MATRIX ELEMENTS WITH LEGENDRE POLYNOMIALS

V.YU. PAPSHEV, S.YU. SLAVYANOV

Department of Computational Physics, St-Petersburg State University,
Botanicheskaya 1, 198506, St-Petersburg, Russia,
E-mail: slav@ss2034.spb.edu

The differential equation for the product of Legendre polynomials provides
a recursive algorithm for calculation succeeding multipole matrix elements
with them. Non-multipole matrix elements as, for instance, particular Clebsh-
Gordon coefficients also can be computed on the basis of this algorithm.

Keywords: matrix elements, Legendre polynomials, Clebsh-Gordon coefficients

Introduction

By multipole matrix elements are meant integrals of the form

b b
< ylz*lu >:/ yn(m)um(m)mkdm:f Unm(z)zFdz. (1)

Here yn(x) um - are different eigenfunctions of an appropriate singular
Sturm-Liouville problem considered on an interval [a,b] where (@ and b -
are singularities of the differential equations for y, and un,). In those cases,
when initial equations are given in a not self-adjoint form integrals (1) are
substituted for

b b
< y|zF|u >=/ w(m}yﬂ(z)um(z)mkdﬂ::/ W(Z)Vnm(x)zfdz, (2)

where w(z) - is the weight function which helps to transform the equation
into the self-adjoint form and appears in the orthogonality condition for
the corresponding eigenfunctions.

Any other matrix element of the form

b b
<olflu>= [ gala)un(o)f(@)do = [ vem(@)f(@)dz.  (3)

a
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can be precisely calculated if an algorithm for multipole matrix elements
(1) for successive k is known and the function f(z) can be substituted for
truncated Taylor series valid on the interval [a,b]. The accurate estimate
for the error can also be obtained.

The knowledge of the differential equation for the function v(z) (further
called the equation for the product) enables to fasten calculation of integrals
(1), (2). The scheme of calculation is as following: firstly, the equation for
the product is subjected to an integral transform. The selection of this
integral transform depends on the character of the singular points a the b.
If these points are Fuchsian (regular) a certain modification of the Hilbert
transform is taken. If the equation includes an irregular singularity a certain
modification of the Laplace transform is taken. The cases referred to Laplace
transform have been studied in other publications of the authors.:® In this
paper the case of Hilbert transform is studied.

The transformed differential equation is also characterized by singularities
and as it is shown below the coefficients of Taylor series of an appropriate
solution of this equation near an appropriate (Fuchsian) singularity appear
to be the defined above multipole matrix elements. These coefficients for
different integer values of k are connected one with another by recursions.
In the case of two-term recursions explicit expressions for multipole matrix
elements are obtained beginning with the first which could be the nor-
malization integral or the dipole matrix element. In the case of three-term
recursions, four-term recursions ets. the arbitrary multipole matrix element
is expressed in terms of several basic multipole matrix elements.
Sometimes the differential equation for the product includes a parameter
which can be considered as small (large). Asymptotics for matrix elements
can be obtained approximately expanding the recursions in degrees of this
parameter (cf. Ref. 5).

There are several other ways to find the discussed recursions, for instance,
based on generalized Wronskian! or algebra of commutators.® However the
authors hope that their method is the most general and straightforward.

1. Hilbert transform for solutions of the equation for the
product

We introduce an integral transform, which is a particular case of Hilbert
transform. Let f(z) be a function defined on an interval [-1;1] with the
following properties

suppf(z) = [~1,1], (4)
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f(z) € C=[-1,1], (5)

/1 f(z)dz=0. (6)
L

The last condition is related to orthogonality condition for eigenfunctions.
The space of such functions is denoted as S. Clearly that S is a linear space.
On the functions f out of S the following transform is determined

9(0) = HIf(2)]: g(¢) = f(’”) L 1e > 1. (7)

12—
Functions g(¢) are holomorphic functions of the complex variable ¢ outside
unique circle including infinity. The set of these functions constitute the
linear space S. In the vicinity of infinity such functions can be expanded in
a Taylor series in inverse degrees of

o0
9(Q) =) a7+ (8)
k=0
where [ is a nonnegative integer which value is chosen from the condition

1 ‘ 1
fsz(z)dz:o,j:o,1,...¢_1, /z‘f(z)dz;éo. (9)
-1 -1

The following properties of the transform (7) can be easily verified with the
help of integration by parts

Hlf)=g', H[zfl={(g. (10)
They follow from (4-6) and slightly differ from the properties of the con-
ventional Hilbert transform.
Let f(z) — be a product of two eigenfunctions on [-1,1], multiplied by the
weight function w(z), i.e. f(2) = y(2)u(z)w(z), z € [-1,1]. Assume that
w(z) is a polynomial. Outside [-1,1] the function f(z) is defined to be zero.
Clearly, such function belongs to S.
Formula (7) can be transformed to

00= " s =L [" 03 (2 )dez

k=0

S
k=0 —o0

Thus matrix elements (1) (or (2)) are coefficients of the expansion of the
solution of the equation for the product in the vicinity of infinity. However
it is important to choose the proper solution out of four lineary independent
solutions.
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2. Equation for the product of Legendre polynomials and
its Hilbert transform

The equation for the product of Legendre polynomials has been obtained in
the previous publication of the authors.? Let vym(z) = Pn(z)Pn(z), then
the equation for the product would be

(r(r"))" + a((rv)” + (r")) + A%y =0, (12)
where
r=1-2z% ¢ =n(n+1)+m(m+ 1), A? = (nmm)z(n+m+1)2

and n and m are degrees of Legendre polynomials.

After Hilbert transform we obtain the same equation as (12) ( but with
other independent variable (). Its four solutions are characterized by the
following behavior at infinity

<n+m Cn—m—l Cm—'n.—l C—n—m—Z

U~ 3 Ug ~ 3 vz ~ 3 Ugq ~

Let m > m, then the solutions v;,vs are not decreasing and the solutions
vs, v4 are decreasing at infinity. All solutions of Eq. (12) have no branching
point at infinity and and therefore the point z = oo is an apparent singu-
larity for Eq. (12). The solutions v; and vy can not be generated by Hilbert
transform, since they are not holomorphic at infinity.

Any Legendre polynomial P,(z) is orthogonal to any polynomial of the
degree less than n

1
/ 27 P (2)P(2)dz =0, j < n—m.
-1

Hence the value of ! in (9) is equal to n — m, and only vs is character-
ized by the corresponding behavior at infinity and is generated by Hilbert
transform.

From the tables of integral transforms? it is known that

v3 = AP (C)Qn(C) (13)

where A — is the appropriate constant (actually its value is A = 2). The
solution v3 can be searched in the form of a series

o0
Ck
U3 = Z (n—mEktL (14)
k=0

The coefficients cx can be found according (13) by multiplication of a poly-
nomial by infinite series. However it is not the fastest algorithm. Our goal
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is to obtain a three-term recursion. Such recursions for coefficients c, are
found by substitution of series (14) into Eq. (12).

((@+k+DI+E2(+k—-1) =200+ k)% + A%)et —

200+ k) +k-12 -o(l+K)(1+k—1))ck_z+
(+E)(I+k-1({I+k-2)(1+k—3)ck-4=0 (15)
The coefficient ¢y should be calculated explicitly, then from (15) the coeffi-
cient ¢y is found and further from recursion (15) the succeeding coefficient

c4, Cg, . . . are calculated.

Since Legendre polynomials are either even or odd with respect to zero the
recursion (15) at even n — m associates even polynomials and at odd n—m

associates odd polynomials.
Here is an elementary calculation of ¢g.

1
C[):f ER R B &) Pl E)dE.
)

From orthogonality of Legendre polynomials it follows

1
2m!
co = [1 mnPn(m)—zm(m1)2dx

where the numerical factor corresponds to the coefficient in front of the
highest degree of P, (z). By use of Rodrigues formula we obtain

om! 1 [t gn
[ - . ol . 2yn —
c 2m(ml)2 2”71!/; o dx”( z)da

2m!  (=1)"(n!)22"
2m(mN)2  (2n+41)!

The difference second order equation (15) belongs to Poincaré-Perron type.
Dividing all coefficients by k* we get

akck — 20kck—2 + Ykck—4 =0 (16)
with
o =140k, Be=1-3/k+0(k™%), v =1—6/k+O(k™2).

The corresponding to Eq. (16) characteristic equation has doubly degen-
erated root equal to unity. The correcting terms move both roots by a
quantity of order O(k~?) in such a way that one solution increases and the
second solution does not increase.
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Example: Let m = 0 and n = 2, so that [ = 2. The first nonzero matrix

element is ¢y = -+. Recurrence (15) in this case is written as
5"

(k+2)%((k +2)% —1) — 12(k + 2)% + 36)ck —
2(k + 2)(k + 1)((k + 1)? — 6)ck—2 +

k(k—1)(k+1)(k + 2)ck—q =0, (17)
and we find from Eq. (17) other matrix elements ¢z, ¢4, cg, - . .
8416w
REF AT AT g BT g W

Calculated in this way cx coincide with matrix elements computed with
MAPLE. The slight decrease of matrix elements in k is determined by the
standard normalization of Legendre polynomials. If they are normalized as

1
/ P2dz =1,
-1

the decrease would be factorial. Although formula (13) seems to be simple,
calculations with its help are more complex than the calculations according
to recursion (17). It is known that multiplication of two polynomials takes
time more than of order O(nlnn), where n is the degree of the polynomial.
The recurrent calculations (because of its band structure) take the time of
order O(k) 4+ O(n), where k is the number of matrix element. Calculations
with MAPLE show that, for instance, at n = 20 and k = 500 the recurrent
calculations take at least three times less time than other calculations.

3. Calculation of particular cases of Clebsh-Gordon
coeflicients

Clebsh-Gordon coefficients is a set of numbers characterized by six indexes
arising as a result of integration of three spherical functions. They often
appear with respect to summation of angular momentum in quantum me-
chanics. There exist explicit formulae for Clebsh-Gordon coefficients but
they have sufficiently complicated structure and include generalized hyper-
geometric function. Each formula can be applied for a single coefficient but
it hardly can be used for calculation of a set of coefficients. Here a particular
case of Clebsh-Gordon coefficients is considered when spherical functions
are reduced to Legendre polynomials. We introduce the following integrals

/ Po( z)Pe(z )dm—z(’gg’g)g. (18)
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Sometimes another notation is used

mky D o
(ooo)m( 00[mnk0). (19)

In fact these integrals can be considered as a particular case of (3) with f
being a particular polynomial.
Hence, the calculation of the Clebsh-Gordon coefficients can be reduced to
a finite summation of those matrix elements which were defined above. The
largest benefit in time is obtained if we take maximal integer of m, n, k (let it
be k) for outer summation. The following formula for Legendre polynomials
is valid

[k/2]

Brl) = Z djf'cizj =
§=0

[%é] (#1)j272j(2k - 25— 1}”1:3:—2]'

3!(k — 25)! ’

(20)

=0
where [k/2] is the integer part. Hence we obtain for the square of Clebsh-
Gordon coefficients an expression in the form of a series

000/ 2«

2

mnk 2 I[km
( n ) d; < Pu(@)|z*~% | Py(z) > . (21)
=0

The coefficients d; should be calculated recursively.

Example. Let n = 8, m = 6. The first nonzero matrix element is ¢y =
f_ll 22 P, (2) P (z)dz = 112/3315. Then the Clebsh-Gordon coefficients can
be calculated with the help of (21) based on the known matrix elements
< P,(z)|2*=%|Py(z) > and the coefficients d;.

56 - 1008 - 700
)= 1105 (4) = 46189’ (6) = 46189’

" 1200 - 5544
CC®) = gozrr €C10) = oogss’

% 2088 - 22022
CE(la)= 185725’ (14) = 1077205

The proposed method can be generalized to more complicated cases includ-
ing, for instance, Heun polynomials.

One of the authors (S.Yu.S.) is grateful to thank Professor S.A. Abramov
for permanent friendly support during many years and for the invitation to
participate in this Proceedings.
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Considering an arbitrary family of hypergeometric polynomials {P,} and a
linear differential operator with polynomial coefficients L, we present an algo-
rithm, based on the manipulation of hypergeometric families, that generates a
recurrence relation for the coefficient sequence {cn } satisfying L(3" cnPn(z)) =
0.

1. Introduction

Let {P,}nen be a family of hypergeometric polynomials (HPF) and let
f be a function satisfying a linear differential equation with polynomial
coeflicients

> pr(z)D* f(z) = q(z), (1)
k=0

where D := d/dz is the ordinary derivative operator. We are looking for a
recurrence relation

‘C’(Cn) =qn, V20, (2)

satisfied by the sequence of coefficients ¢ = (¢, )n>0 in a formal series ex-
pansion

Flw = ¥ e, Pale), (3)
n=0
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where the sequence (g, )n>0 depends only on the right-hand side g(z). If the
family {P,} is orthogonal on the support I with respect to a weight function
p, the coefficient ¢, is the n-th Fourier coefficient of f in the expansion with
respect to the {P,} basis.

Some well-known special cases of this problem are:

(1) connection problems, where f := Qmn, m € N, and {Qm} is another
(classical orthogonal) polynomial family or a classical associated poly-
nomial family; in particular, inversion problems, where f := z™ (see
Refs. 4,10-12,21,22)

(2) linearization problems, where f := HT:I Py;, m,k; € N, and in partic-
ular, f:= P (see Refs. 4,13,22)

(3) solutions of differential equations by T-methods (see Refs. 5,6,17)

Recently, different methods for the construction of a recurrence relation
have been developed. Lewanowicz’ algorithm”!2 is applicable to any clas-
sical orthogonal family and uses certain identities involving the Fourier
coefficients of a function f to construct a recurrence relation for the coef-
ficients. Another method was proposed by the NAVIMA group?'?? where
orthogonality is not required, however the recurrence relation obtained by
this method is not always minimal.

A third approach based on the manipulation of formal series of hyper-
geometric polynomials has been presented in Refs. 19 and 20 and imple-
mented in the package ORTHOGONALSERIES of the computer algebra sys-
tem MAPLE!* (since version MAPLE7). Given a formal series expanded with
respect to an arbitrary family {P,} of hypergeometric polynomials and a
linear differential operator L with polynomial coefficients of order r, one
can build a recurrence operator £ such that

I (i %Pﬂ) = i L(c,) P (4)
n=0 n=0

where {PTET)} is a family of hypergeometric polynomials proportional to the
r-th derivatives of the F,,. And by expanding - when possible - the function
q as

¢=) @GP (5)

we obtain a recurrence through term-by-term identification. In this paper,
we improve the process for applying differential operators on a series of hy-
pergeometric polynomials presented in Refs. 19,20 and obtain the following
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general formula

o0 o0
L (Z cnPn) =N Be.) P00 (6)
n=0 n=0
where {PS*”}, with suitable i,j € Z, is a HPF related to the original one.
In (6) the order of the operator £ is smaller or equal to the order of £ if
the expanding basis { P )} is cleverly chosen. Hence we build a recurrence
L(cy) = §n, Where

oo
0= 3 0P, o
n=0

Remark 1.1. In fact, legitimacy of this identification requires normal con-
vergence results for series appearing in (4) and (7), and independency (or-
thogonality implies it) of the family {P,(J)}. However, in most applications
(see above) the right-hand side g is a polynomial (often zero) and the
searched solution of (1) is also a polynomial, so that the expansion (3)
exists, no convergence problems occur and identification does not require
orthogonality. For this reason, in the rest of this paper, we deal with formal
series without consideration of convergence and with generic HPF without
consideration of orthogonality.

The structure of the paper is as follows: In Section 2 we introduce nota-
tions and briefly recall the basic properties of hypergeometric families. We
also present the method implemented in the package ORTHOGONALSERIES
in more details as it was introduced in an unpublished PhD Thesis.!® In
Section 3 we introduce special HPFs {Pf(,i'j)} associated to {P,} family
and define differential and recurrence operators relating P, and P In
Section 4 we show that different expansion basis {PS’”} can be used and
how the order of the operator £ depends on a chosen basis. We also estab-
lish which expansion basis (we call it the minimal expansion basis and it is
uniquely determined) has to be used to compute £ of the lowest order. In
Section 5 we describe the algorithm that rewrites the differential operator
in a special form (depending on the given hypergeometric family) suitable
for the construction of a recurrence relation satisfied by the coefficient se-
quence of the hypergeometric series. The derived recurrence is sometimes

of lower order than the one obtained by Lewanowicz’ method (see Example
51}.
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2. Notations and basic properties

Let o and 7 be polynomials of degrees not higher than two and one, respec-
tively, and let us associate to them the values

"
Ap = —1 ('r'+('n— 1)%) .

If the function n — A, is injective for positive integers, then for all n € N
(N denotes the set of nonnegative integers) the hypergeometric differential
equation

o(z)y" (z) + 7(2)y' () + Any(z) =0 (8)

has a polynomial solution P, of degree exactly n. The polynomials P, are
called hypergeometric polynomials and are determined by the Rodrigues’
type formula!®

Pa(s) = 225 D" [p(@)o" (@),

where B, is an arbitrary normalization coefficient and the function p is a
solution of the Pearson differential equation

(op)' = Tp. (9)
Therefore a hypergeometric family {P,} is entirely determined by the
triplet [o, 7, By], which will be denoted by
Pﬂ — {J:T: Bﬂ]

Every HPF satisfies (see Refs. 15,16,19) the three-term recurrence relation,
the structure relation and the derivative representation , respectively,

zPp(z) = 21(n) Prt1(z) + zo(n)Pa(z) + z-1(n)Pa_1(z), (10)
0(z)DP,(z) = 01(n)Pry1(z) + oo(n) Pa(z) + 0_1(n) Pa_1(2), (11)
Pu(z) = p1(n)DPat1(z) + po(n)DPo(x) + p-1(n) DPr1(2), (12)

where we conventionally assume that P_; = 0. Coefficients z;,0;, p; are
functions of n and depend only on o,7 and B, (see Refs. 15,16,19). In

particular, these functions are rational in n if B, is hypergeometric. Let us
introduce the notation

/
Tn = T+ No’,

'
K = Tl
2

T = —TL(Ol.

n ’
Tn
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Then we have the explicit formulas for coefficients xz;, oy, p;:

Bn__fin -, n>0,
Bnji1 KanT),
z1(n) =
EJ_ n= 0
Bl’.""', o
n—1(0 (0
n’ ,1( ) f(n-l-l)T (, ), n >0,
Tn—l Tn
zo(n) =
), e
2
nB'R T:L—la-(m:l.—l}
- ) n> 01
z_1(n) = By Kon
0, n =0,
o1(n) = 30"z (n), p1(n) = F71(n),
ao(n) = — 57 (zo()) = —37(0(n)), po(n) = —53;7 (zo(n)),
o-1(n) = —knz_1(n), p-1(n) = —gZ—z-1(n).

Let E denote the shift operator acting on sequences {Zn}n>0 by Fz, =
Zpy1. Define E~1 by E~'z, = 2,1 for n > 1 and E~'z¢ = 0. By intro-
ducing recurrence operators

X = .i,"l(ﬂ)E + .’L‘o(ﬂ) + I-](TL)E_I,

S = 01(n)E + oo(n) + U—l(n)Eﬁl:

R = p1(n) + po(n)E~" + p_1(n) E2,

we can rewrite (10) — (12) in a more compact form

2P, = XP,, (13)
o{@) DF, =8P, : (14)
B =RBPist. (15)

The derivatives of hypergeometric polynomials are still hypergeometric,®
namely D P, 1 is a solution of

a(z)y"(z) + [r(z) + o' (@)]y' () + [Ant1 + 7' (2)]y(z) = O,
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and is characterized by

)‘ﬂ B’ﬂ n n
DPyin(z) = = oo D [p(@)o™ (@), (16)
hence
DPny1 — [0,7 40", =Ant1Bnt1]. (17)

More generally, the family {D*P, .} is a family of hypergeometric poly-
nomials and it can be easily shown that

D*P, .y — [o,7%, B¥)

with a suitable normalization constant Bik). Of course, with any other
(non zero) normalization coefficient we obtain a family of hypergeometric
polynomials proportional to the D* P, ,; that satisfies

a(z)y" (z) + m(x)y' () + APy(z) =0 (18)
with

O,H
AR — _p (T}; +(n— 1)—2—) .

For convenience and consistency of notations in the rest of the paper we
introduce the polynomial P of degree n defined by

P «— (0,7, Bn). (19)

It can be easily verified that

PO = B, (20)
B
(1) — _ L 1
Pn An+an+1DPn+1? (2 )
B
plo) — _ n ppk-1) (22)
n it +1
D By

Applying the results presented for P, at the beginning of this section, for
each positive integer k there exist recurrence operators X(¥), §(x) R(*) and
D) such that
:cPék) = X% P,,Ek),
o(z)DPR = s plk)
Pr(lk) — R(k)Prr(¢k+1):
DPT{lk) - D(k}P£k+1),

~ o~~~
[\ R ]
(=52 S

PRt i s SN
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where

AP B,

n—1

D® = B

In particular, for k = 0, X =X, 8(® = § and R©® = ~R\n41Bn+1/Bn.
At this stage, we have a set of formulas that allow us to perform some
elementary operations on hypergeometric polynomials. For a given differ-
ential operator L of order r with polynomial coefficients we are now able
to find a corresponding recurrence operator L such that LP, = LP\" and
the adjoint operator enables the construction of a recurrence relation for
the coefficient sequence that we are looking for.

Let us recall that for a recurrence operator L

L= Zlk(n)Ek, r,s € Z,
k=r
its adjoint operator L* is defined by (see Refs. 1,18,19)
L' = Y li(n+k)E*.

k=—s

Note that L** = L and (LM)* = M*L*. For brevity and clearness in pres-
ence of superscripts we use script style letters to denote adjoint operators.
Therefore the adjoint operator of a generic recurrence operator L will be de-
noted by £ := L*. Having two sequences of functions (a,)rez and (b, )nez
it can be readily checked that

Y anL(ba) = Y L(an)bn, (27)

nez nez

where the two sums are treated as formal series.
Therefore for a differential operator L with polynomial coefficients px

L= n@)D*, — 28)
k=0

there exists a recurrence operator L and its adjoint operator £ such that

o0 oo o0
L (Z cnPn) =3 eqLBi =Y £(er) P, (29)
n=0 n=0 n=0
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Indeed,

LP, =) pi(@)D*P =) pi(z)DODWD ... D1 plk)
k=0 k=0

= pk(m)D(U}D(U o 3 D(k—l)R(k) - R(rfl)PT{lr}
0

_ Z DODM ... pE-DRK) .. -R(T‘I)pk{X(T))P,E‘”

k=0
hence the result follows
™
L= Zpk(;\{(f})ﬁ(r—l) R DE=1) | p(0) (30)
k=0

This is the method used in the ORTHOGONALSERIES package. A drawback
of this straightforward and simple procedure is that the resulting recurrence
operator L is not always of minimal order. This happens, for example, when
the leading coefficient p, of L has roots in common with o. We illustrate
this fact hereafter.

Example 2.1. If L = o(z) D+z then by (30) we obtain £ = ¢(X1)D© 4
XMRO of order 4. Note that the expansion basis in this case is {P,E_l)}.
However, if we consider the structure relation (14) we obtain the operator
L = 8+ X of order 2 due to the fact that the expansion basis is now {Py}.
It can be computed that £ = RO L. Let us illustrate this remark in the
case of Laguerre polynomials with parameter . Hence the result of the
'vperation

oC
[zD + z] Z u, L (z)
n=1

using the general ORTHOGONALSERIES process is

oo
CLE (@) + 3 CnLie ()

n=1
with
Co=(24+a)ug— (6 +3a)u1 + (44 2a)us
Cn=(a+2+4n)un — (6+5n+3a)ups1 —nun—1 + (2a+ 4+ 2n)unta
whereas the result obtained by taking account of the structural derivation is

o0
DoL{M (@) + 3 DaLi? (2)

n=1
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with
Do = (1+ a)ug — (2 + 2)uy
Dn=0Bn+a+1u, —nup—1— (2n+ 20+ 2)untq.

In the rest of the paper we show how the ORTHOGONALSERIES method can
be improved in order to lower the order of resulting operators. In partic-
ular, it will be proved that, as shown in the previous example, the order
of the constructed recurrence operator depends strongly on the expansion
basis {P,gk)} used. The lower k is, the lower the order of the resulting op-
erator is. Namely, if LP, = LIP,ik) and LP, = Lngng}, then by (25)
L;R®™ = L,. So £5 = R®) £, and £; has lower order than £5. This indi-
cates another theoretically interesting approach to recurrence construction.
Since we know which are possible redundant factors on the left (operators

k) ), one can try to factor the recurrence obtained by the general process.
However, from the computational point of view this method has a defect.
In general, the order of the recurrence obtained by the general process is
large and, especially when working with symbolic parameters (e.g. in the
case of Jacobi family { PT(LO"E }}), the factorization attempt is very time and
space consuming.

3. Associated families

In this section we introduce new families of hypergeometric polynomials
related to {P,} which will be used in the improved algorithm to lower the
order of a recurrence relation whenever possible. Let o be a polynomial of
degree 2 and let £; and &> be the roots of o (not necessarily distinct).

Definition 3.1. Let {P,} be a HPF determined by the triplet [o, 7, B, ]
For each pair (7,7) of integers we introduce the associated family {P( 0y
of hypergeometric polynomials determined by

P [o,7 + (i(z — &) + j(z — €2))0” /2, B).
In particular,
BN — B,
P,S}"” — |o,7 + (z — &1)d" /2, By,
POV« [o,7 + (z — &)0" /2, Bnl,
PLY [o,7 + ¢, By

Here we must verify if the polynomials P,gi’j ) are well defined. In section
2 we mentioned that the polynomials P, are well defined if the function
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n — A, is injective on N. As the degree of o is 2, this is equivalent to

27!

¢N.

O-H'
Therefore, P{"? is well-defined if

rt s (z+j) =2
—2 O.H B —i—j¢N

Then, if the polynomials P, are well defined then two cases can occur

(1) —27’ & Z then polynomials P(i’j) exist for any ¢ and j in Z.

(2) _27 = k € Z — N then polynomials Pn 29) exist, for any i and j in Z

o

such that i + 7 > k.

Without a big loss of generality, we will assume in the rest of this article
that any polynomial pia) appearing in further results is well-defined.
Note that, because of the identity ¢’ = "T"[(:E —&1) + (z — &)], we have

PR — p® asin (19) and by (21) we have

B,

py — 7m0
" Ant1Bnp1

n

PPt (31)

Definition 3.2. Let 0 = o'(z — &1)(z — £2)/2 and let {P,} be a HPF
determined by the triplet [o,7,B,|. For 4,5 € Z we define differential
operators

"

UE) = oD+ 1+ [~ e —&)+ (- Dz - &)

¢ = (@ — &) (f)) -1, (FaAE)
T3 = (e~ ) 4o (if & #&),

a'(€2 ’
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and recurrence operators

nB,

D) — !‘-‘.n+i+jE71?
n—1
6D — gy ((fl) +i G a#&),
T = ( (if & # &),
S(lf,i) - Tn1+j(51)) ,
Hzn+z+3 'ﬂ+1
S _ Tn—1+z‘(£2)) )
H2n+z+g Bn i1
R _ K 4@ 1 B 16 )E~!
1 Ra+itj T L G By T O
(2,3) _ 1 ( 7 HB 1)
R — K 7 + T '
# Kantig \ 0 2 Buoy )

In the rest of the section we show how these operators relate the elements
of different associated families. As all the statements appear in symmetrical
pairs (one for each root of o), we only prove one of them.

Lemma 3.1.

B n

PO = P+ 2 "%(m—mpf v, (32)
nB, o’

PO = p, + B (@ z — &) P, (33)

Proof. Let p* be a solution of the Pearson differential eqﬁation associated
with P9, By (9)
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hence op* = const(z — &) exp ([ 7/0 dzx) and we obtain p* = (z — &)p.
Using the Rodrigues’ type formula for P{"? it follows that

B,
PO — % DM(z — &)po™
B
“(—*““*)*[(93 €)D" (po™) +nD" ! (po™)]
on
=Py s ﬁ——P’
(z - 52)
nB, o , }
,PnJr-Bnlg(.’E—&)P s
where we used (16) and (31) in the last two lines. o

Remark 3.1. If the polynomials P, are orthogonal with respect to the
weight p (solution of the Pearson equation) then prO (resp. P,&O*”) is
the kernel polynomial P} (&2;x) (resp. Py(£1;x)) using definition and
notation introduced by Chihara? in section 7 of chapter 1.

Lemma 3.2.

(x — &) P9) = §{BD) plii=1), (34)
(z— &)P&) = 8PN pH-1a), (35)

Proof. In view of (31), (13) and (14) multiplying (33) by (z — &;) results
in

n
(2~ &)POY = (2= €1)Pa = 5-0DPy = (X — &1 = 3= 8)Pa.
T '

Calculating (note that 7, (z) = 7, - * + 7, (0))

n

X—gl—%sz(p"';zj)zl(n)EJr( o(n) — & — (:io(n)))
Bn p (&)

n

we obtain

(z — &)POY = (BBH E - Tn(&)) By

n+1Th, T

Now replace P, by P,si’j_l) which means that P,ﬁ“'”, i and Tn(£1) are

replaced by P{"7, T4+i(x —€1)0" 2+ (G — 1)z — )" /2, Thiirio1))2
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and Tn4;-1(£1), respectively. Therefore

i\ B Tnij—1(£1) i
(z —&)P! J)_( E- "4 Pi—1),

Bﬂ+1T;+(i+j—1)/2 T;l+(i+j—1)/2 -

Lemma 3.3.
Pl — R(z‘,j) Pt (36)
PT(:,;,-) _ R(‘ J)P(h.ﬂ“l) {37)

Proof. By Lemma 3.2, for i = j = 1 we have

B, _ Tn—1(£1 0
(&)Y = oot _paoy Thotles) po,
nTh_1/2 T 1/2

Combining this with Lemma 3.1 we obtain

Po=p0_ MBn o'l B pao o) puo
Bn-1 2 | Bn Tno1/2 Tno1/2
— (71— no” (1 0)+ ﬂB o’ Tn— 1({1)})(1 0)
277’14/2 Bn_1 2 % —1/2 L

Note that 21';171/2 —no' = ZTEnﬁl-)fz.AReplace P, by P hence PM?,
ra-1(€1) and 7, are replaced by P9, 71, (1) and 7/ i, 1 1, respec-
tively, and the first statement is proved. m|

Proposition 3.1. For HPF {P,} determined by [0, T, B, the following are
true:

DP{~1i-1) — pli-1i-1) plg) (38)
ytd pia) = B ppl-14-1). (39)
Bn+1

Proof. Let T =1+ " (i —1)(z— &)+ (7 — 1)(z — &)]. Then we have
pU-Li-1) [0,1', By and P «— [0,7 4 o', By
In view of (17) we obtain '
DPYW ™D — [0,7 + 0", (n+ 1)7, ;3 Br1l,

hence replacing n by n — 1 results in

nBn

DPU-1i-1) = T(n+1—+—_7 _ayjp BLP{) = Dli=Li=1) plid),
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As P,gi—l‘j ~D satisfies a hypergeometric differential equation
(@D* + 7D+ Ai~1i D)y =0,

it follows that U ppE—1d-1 nﬁn_ﬂ;ﬂ_zﬂ(f*l’j*l), hence by (38) we
obtain (39). m

Lemma 3.4.

P, = P70
+5— B o'(61) P}

n—1

_P(ll) (01)
Py +B o'(€2)P,

Proof. To prove the first statement, we write (36) for i = 0,5 = 0 and (37)
for i = 1,7 = —1, and subtract

Pu— P =R — R pio

_ nBn, J_”Tn—l(fl) - Tn{EE)P(l,O)
Bn1 2 Tho1/2 e

As Tn—1(&1)—Tn(62) = (£1—E2)7"+(2n—1)0’(£1) and (§1—&2) = 207(61)/0”,
the proof is concluded. O

Lemma 3.5.

(x —&)DP, =nP, —

nBp (10
Ty P
B, 1(£1)
nB,
(2= &)DPy = nPo— g 1(€) P22

Proof. Put ¢ = j = 1 in (34) and keep in mind (38). Then we subtract
(36) (put 2 = j = 0) multiplied by n and the result follows. O

Lemma 3.6. Let & # & be distinet roots of o. Then

TI(O,O)PTl _ Tgﬂ,O)PéLfU,
9 p, =9 p-Ly,
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Proof. In view of Lemma 3.5 and Lemma. 3.4 we write

T p=
=P~ g )P + (T8 —1) [P 4 2P Pt
- (Z 1) 0 [P st - rl60) + o) PR
= (2 1) R0 [P - PP
= (n + ;(éll)) - 1) PL-D), -

Proposition 3.2, Let & and & be distinct roots of . Then
Tl(i’j)Py(Li’j) — Tgiaj)Péi+1,j—l),
Téi,j)Péi,j) _ T;"',J')P?gi—l,j-&-l)‘

Proof. As7(4)(g;) = T(§1}+j%”(€1—£2) = 7(&1)+jo’ (&1) and T (€5) =
7-(52)4»3'%"({2—&1) = 7(&2)+i0’'(£2) in view of Lemma 3.6 the result follows

Example 3.1. The Jacobi polynomials Pfg"’ﬁ) are determined by the
triplet [1 — 22,8 — a — (a + B + 2)z, (—1)*/(2"n!)]. Moreover, the asso-
ciated family with parameters (7, 5) is still a family of Jacobi polynomials
P}f’“’ﬁ”) as we can check from its defining triplet (we put & = —1,& = 1)

[1-2*—a—-i+j—(a+B+2+i+7)z,(-1)"/2"n)].
Therefore, by Proposition 3.2 and

ntatfB+1 ,@+1,8-1)

9 n—1
we obtain two (apparently new) recurrence relations between Jacobi poly-
nomials

DPTE.Q”G} —

1

n+a -21- B8+ it 1)Pr(£q;1,ﬁ+1) 4 ﬁPr(la"B) =(n+ ﬁ)Pr(,,aH’ﬁ_l},
. .

ik oniud ; By 1Pl | op@d) — (1 o)ple-1h+D),

4. Depression of the order

As mentioned at the end of Section 2 the order of the operator constructed
by the ORTHOGONALSERIES method can sometimes be lowered. We will use
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the families and the operators introduced in the previous section to do this.
Let us consider a linear differential operator L with polynomial coefficients

.
L= pi(z)D*
k=0

acting on a hypergeometric polynomial series Y ¢, P, (z), where a family
{P,} is determined by the triplet [o, 7, B,]. Suppose that there exist a HPF
{P,Si’j }} (one can always use {P,Er‘r)} as we have seen in Section 2) and a
recurrence operator L such that LP, = LP,gi’j). Then by (27)

L(Y cnPa(®)) =3 el PP (@) = 3 Len) PE(2)

where L is the adjoint operator of L. If we are solving L(}_ ¢, P,,) = ¢ and
4=>rs (}nP,gi’j ), then we obtain the recurrence relation £(c,) = §, for
the coefficient sequence. Note that the order of £ is the same as the order
of L. If we want to minimize the order of the operator £ we have to choose
an appropriate expansion basis !PTS” )} and the corresponding recurrence
operator L such that LP, = LPRI’J) will have the lowest possible order. In
the rest of the section we show that the order of L depends on a chosen
basis and is the lowest when the sum ¢ + j is minimal.

Definition 4.1. Let L be a differential operator with polynomial coeffi-
cients and {P,} a HPF. A HPF {P,gi’j)} is a feasible expansion basis for L
if there exists a recurrence operator L such that LP, = LPS’j ),

A feasible expansion basis {P,-(f’j )} is a minimal expansion basis for L if for
any other feasible expansion basis {P?gk’”} for L we have k+1 >4+ 3.

In view of (36) and (37) it is obvious that if {pT(fJ )} is a feasible expan-
sion basis for L then for any two nonnegative integers k and ! the family
{P,SHM Jr“} is also a feasible expansion basis for L. In the next lemma
we show that such a change of the expansion basis will only increase the
order of a recurrence operator. Hence, our goal is to reduce the indices of
the expansion basis as much as possible. In (29) we established that for a
differential operator L of order r {Pf(f’r)} is a feasible expansion basis, and
we know how to construct operator L such that LP, = LP,ET‘T). But if by
chance we have L = f_.Rgr_l’r), (36) implies LP,, = LP{ 1) so the order
of the recurrence reduces by one.

Lemma 4.1. Let L be a differential operator of order r with polynomial
coefficients, let { P,} be a HPF and let {P,Ei’j)} be a feasible expansion basis
for L such thati <r and j <r. Then LP, = L, P and LB, = LB
tmplies ord(L;) = ord(L) — 2r + 4 + j.
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Proof. By (36) and (37) we have
Pr(;i’j) — Rgi'j)Rgi+l’j) L. R(lr—lyj)RgT,j)Rg‘J‘i'l) . _RgTsT—l)Pér.r)’
hence
LPn — LIR(lfsj)R(li+1aj) . RET*IJ}Réﬂj)Rgﬂj+1) - Rg";"'—l)P?g‘r,T}-
On the other hand LP, = LP,ET’T), therefore we conclude that
L= Llei'j) . R(lrfl»j)Rgﬂj) . Ré"ﬂ"* 1)'

As the operators Rgc"'), k = 1,2, are all of order one, the result follows. O

Corollary 4.1. Let {P,E_” )} and {PT(lk’”} be feasible expansion bases for L
and let LP, = LiP"" and LP, = LyPY. Then ord(Ly) < ord(Ly) iff
i+j<k+1

This means that the order of a recurrence operator is the lowest when
we use the minimal expansion basis for L. Next we show that for a given
differential operator only one minimal basis exists.

Lemma 4.2. Let & # & If {PS‘”I)} and {PSHY} are feasible ezpan-
sion bases for L, then {P,gt’”} is a feasible expansion basis for L.

Proof. Let LP, = LiP{"™) and LP, = LyP%*Y) Then by (36) and
(37) we have L := LleiH’j) = LgRgi’jH). After dividing L from the right
by R = R(li’j)RgH’j} = Rg'j)Rgi’jH} we obtain L = KR + O for some
recurrence operators K and O. As L and R are divisible from the right by
R(li'j 1 and Rgﬂ’j ) (which are not identical operators), the same is true
for O. However, the remainder O is of order at most one, therefore O = 0,
then Ly = KR{"" and LP, = KP{"". O

Proposition 4.1. Let L be a differential operator with polynomial coeffi-
cients and {P,} a HPF. Then the minimal ezpansion basis for L is uniquely
determined.

Proof. Let {P,g”k‘j)} and {P,Sf‘”k)} with £ > 1 be two minimal ex-
pansion bases for L. Then {P,gi+k_1’j+k}} is a feasible expansion ba-
sis (FEB) for L. Assume that {Pn,(,i+k_1’j+k_m+l)} where 1 < m < k
is a FEB. Since {P{"™*7} is a FEB, so is {P{'*"**"™}  Hence, by
Lemma 4.2, {Pé“k_l’”k_m)} is a FEB. By induction on m it follows that
{PYHF=1itk=m)} 4o 5 FEB for all 0 < m < k. Taking m = k we conclude
that { Pé”k#l’j)} is a FEB, contradicting the minimality of {P,ng'j ) }. o
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Therefore the set of all feasible expansion bases for L consists of its minimal
expansion basis {P{*"’} and all HPF of the form {P{""*/*Y} where k and
[ are nonnegative integers.

5. Normal form of a differential operator

The next step is to find a form of an operator L that will suggest its minimal
expansion basis {Pf?’j )} and the recurrence operator L such that LP, =
LP,ﬂi’j ). To this end we will use special differential operators introduced in
Section 3 that reduce the expansion basis.

Proposition 5.1. The following identities hold fori,j € Z
Tl(i—laj—l)U(z',j) — U(¢+1.j—1)T1(i,j)
Tz(i—l,j—l)U(z‘,j) — U(i—l,j+1)T2(i,j)
(@ - &)U =yti-D(z —g)
(x— gz)U{é.j) = pli-Lj) (z — &)
(z - )T =TV (@ — &)

_eypld) il o ey

(@-&)T " =T " (x—-§&)-(z-&)
(z- )T =T DV (z - &) - (2~ &)
(z- T =T (z - g3)
pUGI) = gi+Li+t) D 4 const.
T2(5+1‘j_1)T1(1’j) == Tl(i_l’jﬂ}Tg(i’j) + const.
DT =T D fork=1,2
(¢—&)D =D(@—&)—1, fork=1,2

We omit the straightforward proof.

As an example, look at the first identity of the Proposition 5.1. For both

operators T\~ ™ D7(43) and UE+Li-DT{) | when acting on P9 the

expansion basis is {P,gf" 72)}. Therefore these “commutation rules” allow

us to use operators in generic order. We will denote

U = U(—u—l,—u—l) L U(—l,—l)U(0,0}1
T;i _ Tl(—u+t171‘—u—t1+1) . _T](fu%kl.fufl)Tl(#uﬁu},

thz _ T2(~u+!.]—t;+l,—'u.—t1+t2—l) . Tl(—u-+-t1—1,—u—t1+1)T1(—u+t1,*u7t1)

¥

and write
Qr = (z - &)*(z - &)1 DT T Uvgr (). (40)
Differential operator L, of order r with the leading coeflicient
pr(@) = ¢r(2)z — &)z~ &)’y (&) #0k=12  (41)
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can be written in the form L, = @, + L._; so that L,_; is of order less
than r under the following conditions

fhi+ti+u<a,
f2 + t2 +u S b1
d+t1+t2+u:'r.
The expansion basis for Q. is {P,,@”'j““)} with i, = —fo+d+t1—to—u, j, =
—fi+d—t, +ty —u. By means of Linear Programming? it can be verified
that both ¢, and j, are minimal by setting
u = min{a, b}, d=1—u—t; —t,
t1 = min{r —u,a—u}, ri=a—-u-—t, (42)
to =min{r —u,b—u}, fo=b—u—ts.
In this way among all operators with the leading coefficient (41) we have
found the one with the minimal expansion basis.

Definition 5.1. Differential operator L of order r is written in the normal
formif L = E;=0 Qy, where Qi,k=r,7 —1,...,0, are formed recursively
as described in (40) and (42).

Proposition 5.2. If a differential operator L = ELO Qx is written in

the normal form and {Péi"‘j")} is a minimal expansion basts for Qy then
{P,Eg‘J )} is the minimal expansion basis for L where

t=mox {ix} and §'= max U},
Proof. Let {P,,(f’j)} be the minimal expansion basis for L, := L. By the
construction of (), and denoting its minimal expansion basis {P,-(f‘"’h)}) we
have that i, <17 and jx < j, hence {Pr(f’J )} is a feasible expansion basis for
L,._1:= L, —Q,. By the same argument ¢,_; <4,5,—1 <7,...,50 < i,J0 <
j which concludes the proof. a

Example 5.1. We are looking for a recurrence relation for the coefficients
¢n, in a Chebyshev series expansion

L(f}ﬂuﬂ)zo
n=0

where L = (z +1)2D? — (z +1)D + z + 7/4. The normal form for L is (we
set {1 = —1,6&2=1)

L:(w+nD—§)((+UD——)+m+1_ﬂL1WPm+m+1
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therefore the minimal expansion basis for L is {T,(f‘_l)}. For the operator
L = (n—3/2)(n—1/2)RZ ™ 4+ SCURCVREY we find its adjoint
operator and after cancelling the denominators we obtain the recurrence of
order 3

(4n — 2)cpy2 + (8n® +28n% + 10n — 13)cnys
+(2n + 3)(4n% — 8n 4 1)en + 2(2n 4 3)en_1 =0

while the recurrence obtained by the Lewanowicz algorithm is of order 4.
The algorithm Hyper!® returns that neither the above recurrence nor its ad-
joint pair have hypergeometric solutions therefore the obtained recurrence
is of minimal order.

5.1. o has a double root &, = &2

In this case operators Tl(i‘j) are not defined (since o’(£;) = 0). Therefore
we use the operator T = (z—£;)D instead and, by (34) and (38), TP =
D(i’j)s(ltﬂ’ﬁl)f’r(lz“’ﬂ. The normal form of L = 3 Q) consists of terms

Qk = (z — &)/ DTV gy (2)
where the leading term of the operator Ly is
pr(z) = gr(z)(z - £1)°D*,  qe(€1) #0
and we set

u = min{k, $]}, d=k—-u-—t,
t =min{k —u,a —2u}, f=a—-2u—t.

Example 5.2. Bessel polynomials Y, (x) are annihilated by (see Ref. 2,
pg. 181)

Lm =2°D? + [(a 4+ 2)x 4+ 2]D — m(m + o + 1).
As the normal form of L,, with respect to ngﬁ) is

Ly = DU 4 (o — ;)T — m(m + a + 1),
we obtain

Lo = (n+ 1)7fn_0)2RYY + (@ = HDOISTY — m(m + o+ R

which is of order one. Therefore the connection coefficients ¢, in

Y o) (z Z emn Y, P (z)

satisfy a first order recurrence relatlon in n.
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5.2. o is of degree one
The associated families are now defined by
PY «— (0,7 +i0’, By]

and we only have operators R*) as in (25) to change the basis. When
transforming L to the normal form we determine Qy as

Qr = o* DU gi ()
where we write the leading coeffficient of Ly, as py(z) = gx(z)0®D¥ and set

u=min{a,k}, d=k—u, e=a—u.

Example 5.3. Laguerre polynomials 5ol (x) are annihilated by (see Ref. 2,
pg. 149)

Ly =2D?4 (a4 1—2)D +m,
and since the normal form of L,, with respect to L,(F) is
Lym=DU®Y 4 (0 —B)D +m+1,

the coefficients ¢y, » in

m
LR E) =Y tnaLi ()
n=0

satisfy the first order recurrence relation in n

[@—=B+(1—E H(m—n)lcmn =0.

6. Conclusion

This paper has presented some properties of the hypergeometric polynomi-
als (in the continuous case) that are not exploited in the package ORTHOG-
ONALSERIES and has proven these results in the “hypergeometric way”
inspired by the works of A. Nikiforov.

The results will be integrated in a future version of GRTHOGONALSERIES
in order to provide more compact results in the generation of recurrences
with all the advantages that this represents in applications to connection
or linearization problems, or closed form solutions of differential equations.
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We describe a method of obtaining closed-form complete solutions of certain
second-order linear partial differential equations with more than two indepen-
dent variables. This method generalizes the classical method of Laplace trans-
formations of second-order hyperbolic equations in the plane and is based on
an idea given by Ulisse Dini in 1902.
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1. Introduction

Factorization of linear partial differential operators (LPDOs) is often used
in modern algorithms for solution of the corresponding differential equa-
tions. In the last 10 years a number of new modifications and gener-
alizations of classical algorithms for factorization of LPDOs were given
(see e.g. Refs. 2,10,11,13,16,18-20). Such results have also close links with
the theory of explicitly integrable nonlinear partial differential equations,
cf. Refs. 1,17,22.

As one can see from simple examples (cf. Tsarev!® and Sec. 2 below) a
“naive” definition of factorization of a given LPDO L as its representation
as a composition L = L; o Ly of lower-order operators does not enjoy good
properties and in general is not related to existence of a complete closed-
form solution.

On the other hand, for second-order hyperbolic linear equations in the plane

*On leave from: Krasnoyarsk State Pedagogical University, Russia. Partial financial sup-
port was provided by RFBR grants 04-01-00130 and 06-01-00814.



182 &. P. Tsarev

we have a well established and deep theory of “generalized” factorization.
This theory is known since the end of the XVIII century under the name of
Laplace cascade method or Laplace transformations. As proved in Ref. 18,
existence of a complete solution of a given second-order hyperbolic equation
in the plane in explicit form is equivalent to some “generalized factorizabil-
ity” of the corresponding operator which in turn is equivalent to finiteness
of the chain of Laplace transformations ending in a “naively” factorizable
operator. We give a short account of this method in Sec. 2.

There were some attempts to generalize Laplace transformations for higher-
order operators or larger number of independent variables, both in the clas-
sical time (cf. Refs. 12,14,15) and in the last decade (Refs. 2,19). A general
definition of generalized factorization comprising all known practical meth-
ods was given in Tsarev.'® Unfortunately the theoretical considerations of
Tsarev!® did not provide any algorithmic way of establishing generalized
factorizability of a given LPDO.

In this paper we move a bit further, extending the algorithmic methods for
generalized factorization to the case of second-order operators in the space
of more than two independent variables following an approach proposed by
Ulisse Dini*® in 1902.

The paper is organized as follows. In the next Section we give an exposition
of the classical theory of Laplace transformations. In Sec. 3 we work out
an example which demonstrates the idea of Dini transformations and in
Sec. 4 we prove a new general result showing that this idea gives a practical
method applicable to arbitrary hyperbolic second-order linear equation in
the three-dimensional space provided the principal symbol of the operator
factors. The last Section is devoted to discussion of algorithmic problems
encountered in the theory of Laplace and Dini transformations, their re-
lations to the theoretical basis given by Tsarev.!® Some conjectures on
possibility of generalized factorization and existence of complete solutions
in closed form are given.

2. Laplace and generalized Laplace transformations

The cascade method of Laplace (also called the method of Laplace trans-
formations) is until the present date the most general method of finding
closed-form complete solutions of hyperbolic second-order linear partial dif-
ferential equations with two independent variables. Here we briefly sketch
this classical theory in a form convenient for our purpose. The complete
account may be found for example in Refs. 8,9.

Let a general second-order linear operator L with two independent variables
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x and y be given:

piDiDY + ay(z,y) Dy + as(@,y) Dy + c(z,y), (1)

|
M~

i=0

pi = pi(z,y), D, = d/0z, ij = 0/0y. Hereafter we will always suppose
that the operator (1) is strictly hyperbolic, i.e. the characteristic equation
A2pg — Ap1 + p2 = 0 for the principal symbol of (1) has two distinct real
roots A1(Z,y), Az(z,y), so we can introduce two first-order characteristic
operators X; = mj(z,y)Dy + ni(z ,y)Dy, i=1,2, mi/n; = X\ (X; are
defined up to rescaling X; — vi(z,y)X:).

The corresponding equation Lu = 0 now may be rewritten in one of two
characteristic forms:

(X1X2+a1X1+a2X2+a3) (2)
(X2X1 +Oc1X1 +a2X2+a3) =0,

where o; = o;(z, y). Since the operators X, do not necessarily commute we
have to take into consideration in (2) and everywhere below the commuta-
tion law

[Xth] Z)A(lXQ")A(QXl :P(.’E,y)Xv1 +Q{$,y)Xg (3)
Using the Laplace invariants of the operator (2)
h=2Xi(on) +anoz—as, k=2X(a)+@a: — as,

we represent the original operator L in two possible partially factorized
forms:

L=(Xi+a)Xs+a1))—h= X +a) (X +a) — k. (4)

From these forms we see that the equation Lu = 0 is equivalent to any of
the following two first-order systems

Xou=—oqu+wv, Xiu = —tu + w,
5
(51): {le—hu—agv & (&) {X w=ku — ow. (5)

If at least one of the Laplace invariants h or k vanishes identically, then the
operator L factors (in the “naive” way) into composition of two first-order
operators and the corresponding system in (5) becomes triangular. So the
problem of integration of the original second-order equation is reduced to
a much easier problem of integration of linear first-order equations. The
latter problem is essentially reducible to finding the complete solution of a
(nonlinear!) ODE, see below Section 5.
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If h # 0, k # 0, one can take one of the systems (5) (to fix the notations we
choose the left system (S;)), express u using the second equation of (5;)

u = (X0 + opv) /h (6)

and substitute this expression into the first equation of (51) in (5); as the
result one obtains a X-transformed equation L(;yv = 0. It has different
Laplace invariants (cf. Anderson!)

hay = 2h — kX1 Xolnh + QX2 lnh + X2(Q) — X1(P) +2PQ,
k(l) = h.

If h(1) = 0, we can solve this new equation in quadratures and using the
same differential substitution (6) we obtain the complete solution of the
original equation Lu = 0.

If again h(;) # 0, apply this X;-transformation several times, obtaining
a sequence of second-order operators fﬂ(z), f,(g), ... of the form (2). If on
any step we get h() = 0, we solve the corresponding equation ﬁ(k)u(k} =
0 in quadratures and, using the differential substitutions (6), obtain the
complete solution of the original equation. Alternatively one may perform
X,-transformations: rewrite the original equation in the form of the right
system (S3) in (5) and using the substitution u = (Xpw + @ w)/k obtain
the equation f}(_l)w = 0 with Laplace invariants

h’(—l) = kv

. ) . ; (7
k(—l) =2k—h—- XX Ink—-PX, lnk—+—X2(Q) = Xl(P) + 2PQ).

In fact this Xo-transformation is a reverse of the X;-transformation up to
a gauge transformation (see Anderson!). So we have (infinite in general)
chain of second-order operators

e o B2 i gy B2 iy B E BB 2 By 4., 8)
As one may prove (see e.g. Goursat®) if the chain (8) is finite in both
directions (i.e. we have hyy = 0, h(_g) = 0 for some N > 0, K > 0)

one may obtain a quadrature-free expression of the general solution of the
original equation:

u=coF +c1F' +...+enFN) + doG +diG' + ... +dg_1GE~D  (9)

with definite ¢;(%,7), di(Z,7) and F(Z), G(y) — two arbitrary functions
of the characteristic variables and vice versa: existence of (a priori not
complete) solution of the form (9) with arbitrary functions F, G of char-
acteristic variables implies h¢) = 0, h(_yy =0 for some s < N, r < K — L.
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So the complexity of the answer (9) (number of terms in it) is equal to
the number of steps necessary to obtain vanishing Laplace invariants in the
chain (8) and consequently naively-factorable operators. If (8) is finite in
one direction only, one can still obtain a closed-form expression for the com-
plete solution of the original equation; however, it will have one of the free
functions F' or G inside a quadrature expession. More details and complete
proofs of these statements may be found in Refs. 8,9 for the case X; = D,
Xs= Dy, for the general case cf. Goursat [9, p. 30] and Anderson.!
Ezample 1. As a straightforward computation shows, for the equation uzy —
?f:;)lg)u = 0 the chain (8) is symmetric (h¢;y = h(—;—1)) and has length n in
either direction. So the complexity of the answer (9) may be very high and
depends on some arithmetic properties of the coefficients of the operator L
for the equation 1z, — mu = 0 the chain (8) will be infinite unless the
constant ¢ = n(n + 1).
Recently a generalization of this classical method was given by Tsarev.!® In
is applicable to strictly hyperbolic linear equations of arbitrary order with
two independent variables x, y only.
Dini? proposed a simple generalization of Laplace transformations formally
applicable to some second-order operators in the space of arbitrary dimen-
sion. Namely, suppose that such an operator L has its principal symbol
Sym = aii,(£) Dz, Da,

1,12

T

which factors (as a formal polynomial in formal commutative variables
D) into product of two first-order factors: Sym = X1 X (now X; =
2 by (Z)Ds,) and moreover the complete operator L may be written at
least in one of the forms given in (2). This is very restrictive since the two
tangent vectors corresponding to the first-order operators X; no longer span
the complete tangent space at a generic point (Zp). (3) is also possible only
in the case when these two vectors give an integrable two-dimensional dis-
tribution of the tangent subplanes in the sense of Frobenius, i.e. when one
can make a change of the independent variables (&) such that X; become
parallel to the coordinate plane (z;,z2); thus in fact we have an operator
L with only D:m 13),:2 in it and we have got no really significant generaliza-
tion of the Laplace method. If one has only (2) but (3) does not hold one
can not perform more than one step in the Laplace chain (8) and there is
no possibility to get an operator with a zero Laplace invariant (so naively
factorizable and solvable).

In the next section we demonstrate, following an approach proposed in
another paper by U. Dini,® that one can find a better analogue of Laplace
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transformations for the case when the dimension of the underlying space
of independent variables is greater than two. Another particular special
transformation was also proposed in Ref. 2,21; it is applicable to systems
whose order coincides with the number of independent variables. The results
of Ref. 2,21 lie beyond the scope of this paper.

3. Dini transformation: an example
Let us take the following equation:
Lu=(D.Dy,+2D.D, - Dyu=0. (10)

It has three independent derivatives Dy, Ey, D,, so the Laplace method is
not applicable. On the other hand its principal symbol splits into product
of two first-order factors: £1&, + x€1&3 = £1(&2 + x€3). This is no longer a
typical case for hyperbolic operators in dimension 3; we will use this special
feature to introduce two characteristic operators X = f)x, Xy = f)y +zD,.
We have again a nontrivial commutator [)2' 1,)2' 9] = D, = X3. The three
operators X; span the complete tangent space at every point (z, y, z). Using
them one can represent the original second-order operator in one of two
partially factorized forms:

L = X2X1 ”}’\(3 == f(l)zg —2)2-3.

Let us use the first one and transform the equation into a system of two
first-order equations:

Xiu=w,

Lu=0 {Xau=sz. (11)
Here comes the difference with the classical case dim = 2: we can not ex-
press u as we did in (6). But we have another obvious possibility instead:
cross-differentiating the left hand sides of (11) and using the obvious iden-
tity [X'l,f{g] = [ij, ﬁz] = 0 we get X1 Xou = Dm(by+$bz)v = Xsv=D,v
or 0 = f)x(by + zf)z)v - D= (Brby + mﬁrﬁz)v = (Dy - xﬁz)f?z’v =
XQX’]TJ.

This is precisely the procedure proposed by Dini.> Since it results now in
another second-order equation which is “naively” factorizable we easily find

its complete solution:

v = ]qb(z,:t:y —z)dz +¥(y, z)

where ¢ and 1 are two arbitrary functions of two variables each; they give
the general solutions of the equations Xa¢p = 0, X119 = 0.
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Now we can find u:
u= / (v dr + (ﬁy + :csz)v dz) +8(y),

where an extra free function # of one variable appears as a result of inte-
gration in (11).

So we have seen that such Dini transformations (11) in some cases may pro-
duce a complete solution in explicit form for a non-trivial three-dimensional
equation (10). This explicit solution can be used to solve initial value prob-
lems for (10).

4. Dini transformation: a general result for dim = 3,
ord =2

Dini did not give any general statement on the range of applicability of his
trick. In this section we investigate this question. Obviously one can make
different transformations similar to the transformation demonstrated in the
previous section, here we concentrate on the simplest case of second-order
linear equations with three independent variables whose principal symbol
faetors.

AAAAA

ulo lower-order operators) with (non-commuting) first-order operators Sy,
Sa; S1 # Mz, y,2)S2. Then in the generic case there exist two Dint trans-
formations Ly, L_y) of L.

Proof. One can represent L in two possible ways:
L=2588+T+a(z,y,z) = 8528 + U + a(z,y, 2) (12)

with some first-order operators T', U/. We will consider the first one obtain-
ing a transformation of L into an operator L;y of similar form.

In the generic case the operators 5’1, 5'2, T span the complete 3-dimensional
tangent space in a neighborhood of a fixed point (x,y, z). Precisely this re-
quirement will be assumed to hold hereafter; operators L with this property
will be called generic.

Let us fix the coefficients in the expansions of the following commutators:

[5’2, T] = K(z,y, 2)5'1 + M (z, y,z)S'z + N(z,v, z)T. (13)

[S1, 8a] = P(z,y,2)51 + Q(z,y, 2)S2 + R(z, y, 2)T. (14)
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First we try to represent the operator in a partially factorized form: L =
(81 + a)(8; + B) + V + b(z, y, z) with some indefinite & = a(z,y,2), 8 =

(m y,z} a.ndV ﬁSl—aSQ, fa—aﬁ Sl(ﬁ)
Then introducing v = (S5+ 3)u we get the corresponding first-order system:
(512 + ﬁ)u =,
Lu=0<+= - - 1
’ {(V+b>u——(31 +a)y us)

Next we try to eliminate u by cross-differentiating the left hand sides, which
gives

[(V +b), (82 + B)]u = (S2+ B)(S1 + a)v + (V + b)u. (16)

If one wants u to disappear from this new equation one should find out when
[(V +b), (52 + B)]u can be transformed into an expression involving only v,
i.e. when this commutator is a linear combination of just two expressions

(S3+ ) and (V + b):
(V +0),(S2+ B)] = pu(z,y,2)(S2 + B) + v(z,y,2)(V +b).  (17)

One can achieve this choosing the free functions a(z, v, z), 8(z, y, z) appro-
priately. In fact, expanding the left and right hand sides in (17) in the local
basis of the initial fixed operators Sy, S2, T and the zeroth-order operator
1 and collecting the coefficients of this expansion, one gets the following
system for the unknown functions o, 3, y, v

K +BP — 5(8) = v,

M — Sy(a) + 6Q = va — u,

N+ pBR=—v,

B51(8) — T(B) + Sz2(a) — BS2(a) — S2(51(8)) = —v(e —aB — 5:1(8)) —

After elimination of v from its first and third equations we get a first-order
non-linear partial differential equation for 3:

52(8) = B’R+ (N + P)B+ K. (18)

This Riccati-like equation may be transformed into a second-order linear
PDE via the standard substitution 3 = S5(v)/7. Taking any non-zero so-
lution @ of this equation and substituting u = va + Sy(a) — fQ — M
(taken from the second equation of the system) into the fourth equation
of the system we obtain a first-order linear partial differential equation for
o with the first-order term 3S3(c). Any solution of this equation will give
the necessary value of . Now we can substitute [(V + b),(S2 + B)Ju =
(S + B)u+ v(V + b)u = pv — v(S1 + a)v into the left hand side of (16)
obtaining the transformed equation L(;yv = 0.
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If we would start the same procedure using the second partial factorization
in (12) we would find the other transformed equation L(_;yw = 0. |

As a rule neither of the obtained new operators L(;), L(_1) factors into
a product of first-order operators as was the case for the operator L =
(Dxby +2zD,D, — ﬁz) in the previous section. Then one can repeat the
described process due to the fact that the principal symbol of the trans-
formed equations is still 5’15'2. Thus we have in the case treated in this
section an infinite chain of Dini transformations

o ok L(_Q) — L(*l) — L — L(l) =2 L(Z) —Hu

If some of the L ;) is factorizable we can obtain its complete solution (under
the assumption that one can solve the corresponding first-order equations
explicitly) and solving the system (15) w.r.t. u step through this chain back
(this again requires solution of linear first-order equations) finally obtaining
the complete solution of the original equation Lu = 0.

5. Open problems

In the previous three sections we tacitly assumed that the problem of solu-
tion of first-order linear equations

(Z bi(%) Dy, + bo(f>) w=0 (19)

(Z bi(%) Da, + bo(f)) u = ¢(T) (20)

can be solved at least for polynomial b;(Z). In fact it is well known that
even in the case dim = 2 the problem of complete solution of (b;(z, y)ﬁx +
ba(z,y)Dy)u = 0 is equivalent to finding a nontrivial conservation law for
the corresponding nonlinear autonomous ODE system or a non-autonomous
first-order ODE:

dx

E = bl(x1 y}) dy — bz(m’ y) (21)
dy d:ﬂ bl(l": y)
Zi? = bZ(wa y)’

(or, equivalently, finding their general solutions). For polynomial b;(z,y)
this is one of the famous fields of research: study of polynomial vector fields
in the plane. Recently an essential advance was made in Refs. 3,6,7; one
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may hope that a complete algorithm may be found. Still the problem of
finding complete solutions of (19) in a suitable “constructive” differential
field algorithmically is a challenging problem, as well as the problem of
finding solutions for the equation (18).

Another challenging problem is to establish a connection between the gen-
eral theoretic definition given by Tsarev'® and the exposed above practical
methods based of Laplace and Dini transformations. The known cases sug-
gest the following conjectures presumably valid for operators of arbitrary
order and any number of independent variables:

e Conjecture 1. If a LPDO is factorizable in the generalized sense of
Tsarev,'® then its principal symbol is factorizable as a commutative
polynomial in formal variables D,,.

e Conjecture 2. If a LPDO of order n is solvable (i.e. the corresponding
linear homogeneous equation has an explicit closed-form solution) then
its principal symbol splits into product of n linear factors.

One may also suggest to define the principal symbol of a LPDO using dif-
ferent weights for different D,,; this would imply for example generalized
irreduciblity of parabolic operators similar to D2 — f)y and potentially pro-
vide a powerful criterion of (un)solvability.

One should point out that the methods for solution of LPDEs given in the
previous sections can not be called completely algorithmic: even for the
classical case of Laplace transformations and the simplest possible charac-
teristic operators )2'1 = ﬁx, X’g = Dy we do not have any bound on the
number of steps in the chain (8). Example 1 given in Section 2 suggests
that such bounds or other hypothetic stopping criteria would depend on
rather fine arithmetic properties of the coefficients of LPDOs.

A more general theoretic treatment suitable for arbitrary (even under- or
over-determined systems, cf. Refs. 13,20) based on the language of abelian
categories will be exposed in a later publication.

A link to the theory of Darboux-integrable nonlinear PDEs established in
Refs. 1,17,22 in our opinion can be extended to other types on nonlinear
PDEs. In this connection a generalization of Laplace invariants for higher-
dimensional and higher-order cases started in Refs. 2,16,19,21 would be of
extreme importance.
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We consider multivariate polynomials with exponents that are themselves
integer-valued multivariate polynomials, and we present algorithms to compute
their GCD and factorization. The algorithms fall into two families: algebraic
extension methods and interpolation methods. The first family of algorithms
uses the algebraic independence of x, ™, 3:”2, ™™, etc, to solve related prob-
lems with more indeterminates. Some subtlety is needed to avoid problems
with fixed divisors of the exponent polynomials. The second family of algo-
rithms uses evaluation and interpolation of the exponent polynomials. While
these methods can run into unlucky evaluation points, in many cases they can
be more appealing. Additionally, we also treat the case of symbolic exponents

. ; 2 o
on rational coefficients (e.g. 4" +™ — 81) and show how to avoid integer fac-
torization.

1. Introduction

We wish to work with polynomials where the exponents are not known in
advance, such as 22" — 1. There are various operations we may want to
perform, such as squaring the value to get 2" — 222" + 1, or differentiating
it to get 2nz?"~!. Expressions of this sort arise frequently in practice, for
example in the analysis of algorithms, and it is very difficult to work with
them effectively in current computer algebra systems.

We may think of these objects as sets of polynomials, one for each value of
n, or we may think of them as single values belonging to some new ring.
In the ring setting, we wish to perform as many of the usual polynomial
operations on these objects as possible. Many computer algebra systems
will allow one to work with polynomials with symbolic exponents. They do
this, however, either by falling back on some form of weak manipulation
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of general expressions or by treating all symbolic powers as independent.
There are therefore certain operations and simplifications they cannot per-
form as the relationship between exponents may be non-trivial. We would
like, for example, to factorize symbolic polynomials such as

ot —6n® 41107 —6(n+2m-3) _ 1000000™ —
g 12 o (PP TP TR L TGP i (2P 1Omx2m)
X (2% — 10MzP2™ 4 107 z4™) x (2P — 10™2°™)
p= 1/6n*—n®4+11/6n>-n+3

and perform operations on symbolic integers
1671 _ Slm — (2” _ Sm)(zn 4 37n.)(22n 4 32m)‘

This paper examines the problem of working with such symbolic polyno-
mials. The principal contributions are:

¢ to introduce a useful formulation of symbolic polynomials,

¢ to show this leads to a well-defined multiplicative structure, with unique
factorization

e to present two families of algorithms to compute GCDs, factorizations,
ete.,

e to extend the notion of symbolic polynomials to allow symbolic opera-
tions on the coefficients.

This extends ideas presented in an earlier paper.”

The remainder of the paper is organized as follows: Section 2 gives the def-
inition that we shall use as our model for symbolic polynomials. Section 3
discusses the multiplicative properties of symbolic polynomials and shows
they have a well-defined unique factorization structure. Section 4 presents
a family of algorithms to compute values based on the multiplicative struc-
ture of symbolic polynomials. The two examples given are greatest common
divisor and factorization. These algorithms are based on the algebraic in-
dependence of x, z, m”z, ete and work in extensions of polynomial rings.
Section 5 presents a second family of algorithms for the same problems,
but this time based on projection methods. These methods are based on
evaluation and interpolation of the exponent variables. Section 6 addresses
technical problems that can arise in term identification in projection meth-
ods. Section 7 discusses a number of generalizations of symbolic polynomi-
als. One problem discussed there is treating elements of the coefficient ring
with symbolic exponents without having to perform factorizations there.
Finally, Section 8 concludes the paper.
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2. Symbolic Polynomials

We can imagine a number of models for symbolic polynomials that have
desirable properties. Most generally, we could say that any set S, which
under an evaluation map gives a polynomial ring R[ri,...,z,], represents
symbolic polynomials. This would allow such forms as

ged(z" — 1,2 —-1)+1 (1)

or

(z—1)) 2" (2)
i=0

Working in terms of explicit ring operations will be useful to us, so we begin
by generalizing to symbolic exponents only. This excludes expressions such
as (1) and (2).
We recall the concept of a group ring: A monoid ring is a ring formed from
a ring R and monoid M with elements being the finite formal sums

Z?‘imi,n € R,m; € M.

2

A monoid ring has a natural module structure, with basis M, and addition
defined in terms of coefficient addition in R. Multiplication is defined to sat-
isfy distributivity, with 7ymy X roma = (rir2)(mims). When the monoid M
is a group, then the algebraic structure is called a group ring. For example,
the Laurent polynomials with complex coefficients may be constructed as
the group ring C[Z], viewing Z as an additive group.
We now define a useful class of symbolic polynomials.

Definition 2.1. The ring of symbolic polynomials in x,, ..., T, with expo-
nents in ny, ...,np over the coefficient ring R is the ring consisting of finite
sums of the form

§ cia:illx;i? - x;'in
i

where ¢; € R and e;; € Intn, n,,.. n,)(Z). Multiplication is defined by

»)

Clmiu . _‘,Eim 1% 0213?21 o x\;ﬂlzf: — CICZW?I +ea1 | _I;1n+ﬁzn

We denote this ring R[n1, ..., np; 1, ..., Ty ).

We make use of the integer-valued polynomials, Intfm,__.ﬂpl(D). For an inte-
gral domain D with quotient field K, univariate integer-valued polynomials,
usually denoted Int(D), may be defined as

Intjx (D) = {f(X) | f(X) € K[X] and f(a) € D, for all a € D}
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For example %n2 - é—n € Intj,(Z). Integer-valued polynomials have been
studied by Ostrowski® and Pélya,® and we take the obvious multivariate
generalization.

Our definition of symbolic polynomials is isomorphic to the group ring
R[(Int{nl,m,np](Z))v]. We view Int(n, ., (Z) as an abelian group under
addition and use the identification

Il

210 %2 -, S (61, e ,ev) S (IIlt[ﬂl'm'ﬂw](Z))v

We note that R[;zy,...,zy] = R[z1,..., 2y, —Z1,..., —Tp|. Also, under any
evaluation ¢ : {n1,...,np} — Z, we have

@ B U Bl s Bg) —5 Blbts sses iy 5o B

That is, ¢ evaluates symbolic polynomials to Laurent polynomials. It would
be possible to construct a model for symbolic polynomials that, under eval-
uation, had no negative variable exponents. This, however, would require
keeping track of cumbersome domain restrictions on the exponent variables.
By definition, these symbolic polynomials have a ring structure. What is
more interesting is that they also have a useful unique factorization struc-
ture that can be computed effectively.

Symbolic polynomials, in the sense we have defined them, can be related
to exponential polynomials®$ through the transformation ;™ - e™ 108%:,
With exponential polynomials, however, it is awkward to capture the notion
that the exponents of z; must be integer valued.

There has also recently been some work on computing Grébner bases with
parametric exponents*® and systems of algebraic equations with paramet-
ric exponents.? One of the questions asked in this setting is to classify all
special cases under evaluation of the parameters. We ask an easier question.
Instead, we seek to compute results that are correct under every specializa-
tion. This allows us to obtain algorithms for the multiplicative structure of
the symbolic polynomials, something that had not been investigated earlier
in the parametric setting.

3. Multiplicative Properties

We now show the multiplicative structure of our symbolic polynomials. For
simplicity we treat the case when R = Q.
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Theorem 3.1. Q[ny,...,np;x1, ..., 2y] s @ UFD, with monomials being
units.

Proof. We first consider the case when exponents are in Z[ny, ..., n,|. The
2

fact that x,z™,z™ , ... are algebraically independent can be used to remove

exponent variables inductively. We observe that

h
e, >, hayni I\ h
= - II (Izl ) - I |$k3' ?y hi € Zng, - mp).
J J

This gives the isomorphism

Q[n1,n2, ...y Np; T1, - Ty =

Q[HZ) "'!n‘p; 5910) Illyx125 "'xld]! "'xvoaxvlamvzy "'x‘vd;l]

where d; is the maximum degree of n; in any exponent polynomial and x;;

3 . : : :
corresponds to x;'" . Repeating this process p times, we obtain
Q[n1, 12y 0y Np; T1, - 20) = Q[ Z10...05 -1 Tudy ...dp)s

which is a ring of multivariate Laurent polynomials with the desired prop-
erties.

When the exponents come from the integer-valued polynomials
Int,,, . n,)(Z), as opposed to Z[ny,...np|, care must be taken to find the
fixed divisors of the exponent polynomials. These fixed divisors are given
by the content when polynomials are written in a binomial basis. So to
show explicitly unique factorization with exponents in Int,, . n./(Z), we

()0

make the change of variables x;, " — Xkiy..i,- Note that the Xp;, i,
are in one to one correspondence with xy;,  ;, and so are therefore also
algebraically independent. O

Symbolic polynomials can be related to exponential polynomials, which also
have a UFD structure.?

4. Extension Algorithms

The proof of Theorem 3.1 introduces new variables to replace z}', z}2,
niy na

.’L‘.‘( z ), e 3%( : ), etc. This idea may be used to obtain algorithms for

GCD, factorization, square-free decomposition and similar quantities over

Q[n1, ...np; T1,..., Ty). We illustrate with algorithms for greatest common

divisors and factorization.
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Extension Algorithm for Symbolic Polynomial GCD

INpPUT: Symbolic polynomials fi, fo € Q[ny,...1p; 21, .., Ty)-
OUTPUT: g = ged(f1, f2) € Q[na, ...np; T1, ..., Toy]

(1) Put the exponent polynomials of f; and f; in the basis (’;‘)

(2) Construct polynomials F1, F> € Q[X10...0, .-y Xvd,...a,), Where d; is the
maximum degree of n; in any exponent of fi or fo, using the corre-
spondence

()2
'73-7%1 ? ’_’sz‘l...i,,-
(3) Compute G = ged(Fy, Fa).
(4) Compute g = v~ 1(G).

Under any evaluation map on the exponents, ¢ : Int(,, .. »,1(Z) — Z, we
have that ¢(g) | ged(e(f1),@(f2)). This g is the maximal uniform ged in
the sense that any other polynomial ¢’ € Q[ny,...np; z1,...,Zy] such that
@(9") | ¢(F1) and ¢(g’) | #(F2), for all ¢, also satisfies g’ | g.

Extension Algorithm for Symbolic Polynomial Factorization

INPUT: A symbolic polynomial f € Q[ny,...np; z1, ..., T, .
OutpuT: The factors g1, ..., gn such that []. g; = f, unique up to units.

(1) Put the exponent polynomials of f in the basis (TJ')
(2) Construct polynomial F' € Q[X1q...0, -, Xvd,...d,), Where d; is the max-
imum degree of n; in any exponent of f, using the correspondence
L T L
’}/ . I£11) (1p) — .inll__ip.
(3) Compute the factors G; of F.
(4) Compute g; = v~ 1(Gy).

Under any evaluation map on the exponents, ¢ : Int,, . n(Z) — Z, if
¢(f) factors into fy1,..., f4r these factors may be grouped to give the fac-
tors ¢(g;). That is, there is a partition of {1,...,7} into subsets I; such
that ¢(g:) = [1 ¢y, fo;- This factorization into g; is the maximal uniform
factorization in the sense that any other factorization g; has V;3;g; | g;.

It may be that under every evaluation map there is a finer factorization.
Erich Kaltofen gives the example (z” — 1) x (y™*! —1). For each n, either
the first or second factor is a difference of squares and therefore factors
further. There is no further factorization, however, valid for all values of n.
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Examples

We use the following pair of polynomials for our examples:

2 2_ 2 2
p= 8" +6n+44m*—m __ 21,271 +7n+2mnyn +3n (3}

_ Smn2+3n+2mnyﬂ2+3n + 12$4+m2—m+2n

Yy
2 2 2 2
4 2r™ +4n _ 14z™ +S'n.+2y4'n —4n s GIm +6m

= 4;1:712+4m+1'n2 +6m 281‘712 +8n+m2+6m+2_ 4n?—4n (4)

2 2_ 2.
— 49p™ +6m+4n+2y4n in 921 4an 4nm4n+2 + 3.

Yy
We demonstrate the computation of the GCD of p and ¢ and the factor-

ization of p. To begin, we note that the exponents of z in p and ¢ are
polynomials in m and n of maximum degree 2. We therefore use

{(?:) (T) ‘ b<inge 2} _ {l,n,m, n(n2— 1),nm’ m(mz— l)}.

as a basis for the exponents of x. Likewise we note that the exponents of y
are polynomials in n alone and are of maximum degree 2. For them we use

the basis
{C’”) } O<z’<2} = {1n"(”T_1)}

Now we make the change of variables

’Y:{IHA, ;z;“HB, m(g)p_;c‘, ™ D, 2™ s E, x(r;),_,f‘,

y- G, y"— H, yG) > 1}
to give:
p=8ABTC?F? — 2B°C*E?H*I? — 3BC2E?H*I? + 12A*B*F?

g=4B5C2D"F? — 28A2B°C?D"F?I8 + 2B°C? — 14A2B%C2 8
+6D7F2 — 42A2B4DF2% _2142B418 4+ 3.
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We then obtain the GCD of p and ¢ as
g=2B%C?+3
and the factorization of p as
p=B? x (2B°C* + 3) x (2A*F — BCEIH?) x (2A’F + BCEIH?) .

1

Applying v~ we have the desired results:

g= 2xn2+4n +3
p=a® x (22" +4 1 3)

s (2$1/2m2—1/2m+2 _ gl/2n?+mnt1/2n 1/2n2+3/2n)

Y

5 (2$1/2m271/2m+2 i I1/2n2+mn+1/2ny1/2n2+3/2n) _

Remarks

We have described this transformation as though the exponent polynomials
were dense, in which case transforming from a power basis to binomial basis
introduces no new terms. This is often not the case, so blindly changing to
a binomial basis is not always the best strategy.

In the worst case, the number of variables in the new polynomials will be
v(D + 1)P, where v is the number of base variables, z;, p is the number
of exponent variables, n;, and D is the degree bound on the n; in the
exponents. In practice, it is often the case that the number of variables
occurring in exponents will be small and the exponent polynomials will
be of low degree so the introduction of new variables may be acceptable.
In other cases, such as when the exponent polynomials are sparse, other
approaches may be preferable.

5. Projection Methods

If the number of exponent variables is large and the exponent polynomials
are sparse, then it may be advantageous to use an evaluation/interpolation
approach. Exponent polynomials may be mapped to integers at several
points, the problem solved, and the images combined via interpolation. We
illustrate with algorithms for greatest common divisors and factorization.
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Projection Algorithm for Symbolic Polynomial GCD
(Dense Version)

INPUT: Symbolic polynomials fi, fo € Q[n1,...np; 21, ..., Ty).
OuTPUT: g = ged(f1, f2) € Q[n1,...np; 21, ..oy To)]

(1) If p = 0 solve problem in Q[z1, ..., zu,mfl, ...y T, . Return result.

(2) Let d be the degree bound of n; in any exponent of f; or f,.

(3) Choose d + 1 distinct evaluation points e; € Z.
Let ¢; be the evaluation map n; — e;.

(4) Compute d + 1 GCD images g; = ged(¢i(f1),8:(f2)) €
Q[ng, ..., np; 1, ..., Ty] by recursive application of this algorithm.

(5) Identify corresponding terms in the g;.

(6) Choose one set of corresponding terms and normalize the polynomials
so these terms are equal (e.g. make those terms 1).

(7) For each set of corresponding terms, interpolate the exponent polyno-
mial to form the corresponding term of g, the GCD.

(8) Return g.

This gives the same GCD as the Extension Algorithm for GCD.

If an evaluation gives a GCD image that is “larger” than the other images,
then it is a special case evaluation and should be discarded and another
point chosen. If an evaluation point gives a GCD image that is “smaller”
than the other images, then the previous evaluations were all unlucky and
new points must be chosen.

An important problem is that in step 5 it is not always straightforward to
identify corresponding terms. We discuss this in Section 6.

Projection Algorithm for Symbolic Polynomial
Factorization (Dense Version)

INPUT: A symbolic polynomial f € Q[ny, ...np; Z1, ..., Ty).
Ovutput: The factors gy, ..., g, such that [], gi = f, unique up to units.

(1) If p = 0 solve problem in Q[zy, ..., z,, 27, ..., z; !]. Return result.

(2) Let d be the degree bound of n; in any exponent of f.

(3) Choose d + 1 distinct evaluation points e; € Z.
Let ¢; be the evaluation map n; — e;.

(4) Compute d + 1 factorization images g1; x +++ X gni = factor(¢;(f)) €
Qlna, ..., np; 21, ..., Z,,| by recursive application of this algorithm.

(5) Identify corresponding factors in the images, and terms within the fac-
tors.
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(6) For each set of corresponding polynomial images, choose one set of
corresponding terms and normalize the polynomials so these terms are
equal.

(7) For each term interpolate the exponent polynomial to form the corre-
sponding term of g, the k" factor.

(8) Return g1,-- ,gn.

This gives the same factorization, up to units, as the Extension Algorithm
for Factorization. As with the GCD computation, there is the problem is
that in step 5 it may be difficult to identify corresponding terms. This
is discussed later. As with other factorization algorithms, it may be the
case that image factorizations have different numbers of factors and that
combinations must be tried to form the gy;.

Sparse Algorithms

With naive dense interpolation, a number of problems exponential in the
number of variables must be solved in Q[z,, ..., z,]. Using sparse interpola-
tion techniques, this is not always necessary. The sparse versions of these
algorithms use sparse interpolation of the individual exponent polynomials.

Examples

We use the same p and q as before, defined by equations (3) and (4), and
compute the GCD of p and ¢ and the factors of p. The maximum power
of m or n in any exponent is 2. For simplicity, we use dense interpolation
with m € {1,2,3} and n € {1,2,3}. Letting p;; denote p evaluated at
m = i,n = j, we have:

p11 = —2muy4 + 8z — 325y* 4 1225
pra = —2020y10 4 8220 _ 314,10 | 19,8

__2$45 18+8$ 31,24 18+12 10

P13

P21 = *2$13y + 8213 3m8y + 1248
- 2.7;30 10 | 8222 _ 3418,10 | 19,10
pag = 225y 18, 2,33 — 3230418 | 19512
p31 = 255'153;4 + 8217 — 3210 4 + 12212
P32 2z34y10 + 826 3m22 104 19,1

paz = 57y18 + 83’; 36y18 + 121_
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Similarly, letting ¢;; denote ¢ evaluated at m = i,n = j gives:

g11 = 4% — 2828 + 225 — 142" 4 627 — 42213 + 3 — 2125

q12 = 4z° — 282%%8 + 2212 — 142%%® + 627 — 42217y® + 3 — 219821°

q13 = 4228 — 2827274 1 2221 — 142%5y%* 4 627 — 4222192 + 3 — 21924214
go1 = 422 — 282%7 + 22° — 142" + 62'% — 422%% + 3 — 2148

goz = 4228 — 282%%% + 2212 — 142228 1 621 — 4227648 + 3 — 2148210

a23 = 4z°7 — 28251y 4 252! _ 14z35y24 166 _ 42:::301/24 13- 2192%14
ga1 = 4z°% — 2828 + 22° — 142! + 6277 — 422°% + 3 — 212°

q32 = 423 - 28:::491;B +2r'? 14;1:22y8 +62°7 — 42;19373;8 +3 - 21ysx10

gs3 = 4°® — 2825224 + 2021 — 1427592 + 6277 — 42241y 4+ 3 — 217414

Then we calculate g;; = ged(ps;, gi5):

g11 = 22° + 3 912 =222 +3 g13 =221 +3
go1 = 2z° 4+ 3 gon = 2z1? +3 go3 = 272! +3
g31 = 22" +3 g3 =2:"% +3 g33 = 2¢°' +3

This gives one exponent polynomial to interpolate and we obtain
g= 2z +Hin 4 3,

We now turn our attention to factoring p. We factor the image polynomials
in Z[z,y]:

p11 = —ab (y2 - 2) (y2 ES 2) (3 # 2;;5)

—a® (3+22") (2%° - 2) (=% +2)
~2'(3+ 29:21) (=7y° - 2) (s7y° +2)
P =g (y2 ~2) (gﬂ +2) (3 +22°)

~2'0 (34 22'2) (2% - 2) (+%° +2)
~2'? (3+227) (a%° - 2) (%" +2)
par =3 (3+20%) (22— 9?) (2 +v°)

—a' (3+221%) (o%y® —2) (a° +2)
thag s (3+ 2:(:21) (zloyg = 2) (wloyg 4 2)

We determine which factors correspond by inspection. We let f; be the
factor with coefficients {2,3}, f2 with {+1,F2}, f3 with {1,2} and u the
monomial.

P12

P13

P22

P23

Il

p32
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Recall that, in the ring of symbolic polynomials, and in Q[z,y,z~1,y~1],
monomials are invertible and factorization is unique up to units. We pick
an arbitrary monomial in each of f; to be the constant term and normalize.
(In principle we could normalize the constant term to 1, but it is convenient
here to divide through only by the power product z*1y*2.) The resulting
factors are shown in the following table.

m | n Y N fa f3
1|1 —2% | 225+3 1 =9 y2+2
1|2 —z8 | 221243 | %5 -2 3y® + 2
13| -z 222t +3 $7y9 -2 a:7yg +2
2 | 1| —2® | 22°+3 -2 3= 42
2 |2 20 | 221243 | #4952 | 2%i+2
2 | 3| -2 | 222! +3 zgyg -2 :cgyg +2
31| 22| 22°+3 a:_lyz#? m_1y2+2
32| —z| 22243 :1:4y5 -2 :1:4y5 +2
33| 21| 22 +3 | 21%° -2 | 21%° +2

Interpolating the exponent polynomials, we obtain

2
u = _:L,4+m —m+2n

fi=2z"H40 1 3
for= :Ef1/2m2+mn+1/2112+l/2m+1/2n72y1/2n2+3/2n _9

fa= £—1/2m2+mn+1/2n2+1/2m+1/2n—2 1/2n%43/2n +92.

Y

This gives the factorization

p=ux f1 X fa x f3,

which is the same, up to units, as what we obtained with the extension
algorithm. To see this, let e = m? — m + 4 and multiply u by —z~¢, fa by
—2¢/2 and f3 by z¢/2.

6. Finding Corresponding Terms

In general, problems may arise in projection methods when identifying sets
of terms for interpolation. In computing GCDs, for example, this amounts
to determining which terms correspond in the GCD images. There are three
problems that arise:

¢ The first problem is that, under certain evaluations of the exponent vari-
ables, exponent polynomials become equal and terms of the result com-
bine. If there is only one exponent variable, then this can occur for at
most DT(T — 1)/2 evaluation points, where T is the number of terms



Two Families of Algorithms for Symbolic Polynomials 205

in the GCD and D is the degree bound on the exponent variable. This
is because there are up to T(T — 1)/2 pairs of distinct exponent poly-
nomials, each pair having at most D common values. For multivariate
exponents, terms may combine at an unlimited number of points, but
choosing random evaluation points effectively avoids the problem.

e The second problem is that, even if terms do not combine, it may still not
be obvious which terms correspond. For example the GCD may have mul-
tiple terms with the the same coefficient and variables. If the coefficient
ring is not large enough, then this can occur with high probability.

o The third problem is that one or more evaluation points may give special
case results. This is the exceptional case, however. Depending on the
problem, the special case results might give an interesting short-cut to a
solution or they might be useless and simply be discarded.

In computing factorizations, we have the above problems as well as the

usual problem of factor identification.
We illustrate the problem of difficulty identifying corresponding exponents

under evaluation with another GCD example, using u and v given as:

2 2 3, .2 2 3
2 21.311 —4n+8 +9.’L‘2n +4+ " +n‘—4n+4 e 14™ +4n o 9z (5)

2 2 3.2 2 3
v 2223” +8 _+_8$2n +4n+4 + " +n +4 + 7" +8n -|—£En +4n. (6)

The exponent polynomials are of degree at most 3, so we evaluate at four
points.

n=1= ged(u,v) = 2% + 72° + 2
n=2= ged(u, v) = 8z'2 4 28
n=3= ged(u, v) = 227 + 222 4 72
n=4= ged(u, v) = 284 + 2% 4 7232,

We see that the different evaluations give polynomials with different num-
bers of terms. It appears that there are three terms in the symbolic poly-
nomial, and that the evaluation at n = 2 made two of the exponents equal,
giving terms z'2 and 7z'2.

When the image has three terms, two of the coefficients are the same so it
is not clear how to assign the images to symbolic terms for interpolation.
Note that the evaluation does not necessarily preserve term order: for n = 1
the term with coefficient 7 is of middle degree, for n = 2 it is of highest
degree and for n = 3 and n = 4 it is of lowest degree. We must therefore
consider the possibility that the terms with coefficient 1 may appear in any
order. Thus, even with only two terms having equal coefficients, we have a
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number of cases to consider exponential in the degree of n. These are shown
in the table below. The entries are lists of values for the exponents e; at
n=[1,2, 3, 4] respectively.

Model Term 1 Term 2 Term 3
1 x z® 1 st 7 x ¢

1 [6,12,27,64] [1,8,22,36] [5,12,21,32]

2 [6,12,27,36] [1,8,22,64] [5,12,21,32]

3 [6,12,22,64] [1,8,27,36] [5,12,21,32]

4 [6,12,22,36] [1,8,27,64] [5,12,21,32]

5 6,8,27,64]  [1,12,22,36] [5,12,21,32]

6 6,8,27,36] [1,12,22,64] [5,12,21,32]

i 6,8,22,64] [1,12,27,36] [5,12,21,32]

8 6,8,22,36] [1,12,27,64] [5,12,21,32]

To discover which is the correct combination, we evaluate at one extra
point.

n=>5= ged(u,v) = 2'2° + 2% + 72

At n =5 either (a) e; = 125, ea = 54 or (b) e; = 54, e5 = 125. Interpolating
each model with both choices, we see that model 4 with (b) gives e; =
2n? + 4 and ey = n® with degrees < 3 as required. All other combinations
give interpolants of degree 4. We therefore have

ged(u,v) = 2+ 4 " i 7"’ +an

If there are T terms and N evaluation points, then there will be (7)1
possible assignments of evaluation points to terms. One of them will give in-
terpolants satisfying the degree bound. Unless T and N are very small, this
strategy will obviously be infeasible and another approach will be needed.
We also observe that if there is only one exponent variable, then there will
be some value beyond which evaluations give images that have a consistent
order. This is because a finite set of univariate polynomials will have a finite
set of points that make two of the polynomials equal. If this bound can be
determined, in principle it avoids the problem of determining which images
correspond. In practice, however, it may be too large to be useful (at least
in the case of factorization).

Interpolation of Symmetric Functions

There is a better alternative to address the problem of term identification.
If there are terms that cannot be distinguished, then we may take advan-



Two Families of Algorithms for Symbolic Polynomials 207

tage of the symmetry and interpolate symmetric functions of the exponent
polynomials.

If t4,...,tT are the terms that cannot be distinguished, then we interpolate
S;(t1,...,tr) for different j, where S; is the j-th elementary symmetric
function. We then use one evaluation point to break the symmetry and
solve for the exponents of the ;.

We use this method to compute the GCD of « and v given by equations (5)
and (6). We wish to determine the exponents of the two terms z4(™ and
2B} where

A(n) = asn® + aon? + a1n + ao
B(n) = ban® + bayn® + byn + by

To do this we interpolate Si;(A(n),B(n)) = A(n) + B(n) and
S2(A(n), B(n)) = A(n) x B(n). The polynomial for S, will be of degree
< 6, so we need three extra points. We compute:

n=>5= ged(u,v) = 22 + 254 4 724
n=6= ged(u, v) = 2216 4 778 4 7250
neT= ged(u, v) = 23 4 2192 4 7577

‘We now have

n A(n)+ B(n) | A(n) x B(n)

1 1+6 1x6

2 8§+ 12 8x 12

3 22 4+ 27 22 x 27

4 36 + 64 36 x 64

5 54 x 125

6 76 x 216

7 102 x 343
Interpolation | n® +2n? +4 | 2n°+4n3

To break the symmetry, we arbitrarily assign A(1) = 1 and B(1) = 6.
Additionally, we equate coefficients in

A(n) + B(n) =n®*42n* +4
A(n) x B(n) = 2n® + 4n?
to obtain 13 equations in the 8 unknowns {a;, b;}. Solving, we obtain:
ag=20 a3 =0 as =10 az =1
by = 4 bi =0 by =2 bs =0

This determines the two exponents.



208 S. M. Watt

7. Generalizations

As mentioned earlier, we may contemplate other algebraic structures to
encompass a wider class of expressions. Without going to the most general
model of polynomial-valued integer functions, we may consider

e Allowing exponent variables to also appear as regular variables. To do
this we can work in R[ny, ..., Np; N1, ..., Np, T1, ..., Ty). This is useful if we
require formal derivatives.

e Symbolic exponents on coefficients. We discuss these more below.2?

¢ Non-uniform problems. That is, we may ask how to partition Z” as | J; D;
to obtain more specialized factorizations, ged, etc, valid when restricted
to substitutions on individual domains, ¢ : (n4,...,np) — D;.

¢ Symbolic polynomials as exponents, or richer structures.

e Other polynomial forms, such as exponential polynomials

e Other problems, e.g. Grébner bases of symbolic polynomials.®?

Let us examine more closely the question of symbolic exponents on co-
efficients. Suppose we wish to factor a polynomial of the form z*m — 247,
Assuming m and n may take on only integer values, the factorization over Q
is (2™ 4227)(z™ +2™)(z™ — 2"). This, however is equivalent to 4™ — 16,
which is not manifestly the difference of fourth powers. So how can we
approach symbolic integer coefficients?

If the coefficient ring is a principal ideal domain, then we may extend our
definition to allow symbolic exponents on prime coefficient factors:

Definition 7.1. The ring of symbolic polynomials in x4, ..., x, with expo-
nents in ny, N2, ..., Ny, and symbolic coefficients over the coefficient ring R, a
PID with quotient field K, is the ring consisting of finite sums of the form

i €il €42 €i
E ki-ch ~ gt e giin
i 7

where each product has a finite number of nonzero d;;, k; € K, c; are primes
€ R, d;i,j = Int[m,nz,”_,ﬂp] (Z}\Z and eij € Int[m’nz,__qnp] (Z) Multiplication
is defined by

d d d
ket "'Cﬁ;"‘Ei“ ceezBin x kgclm_._cnfmwiz] cooglin =

klkzctlf11+d21 . cfrim+d2m$ill +ear | xi1n+32n

We consider the case of integer coefficients and initially restrict our at-
tention to the situation where the ¢; are prime so relationships among
symbolic coefficients are apparent. We may use the algebraic independence
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3 v:x)...(;}k ) ) .
of p', p?", etc to treat p, ¥ as new variables, as before, in algorithms
for factoring, GCD, and related operations.

This straightforward approach requires factoring each integer that appears
with a symbolic exponent. In practice we do not want to factor the constant
coefficients. Instead, we can form, for any particular problem, a GCD-free
basis.! For example, if 70" and 105" appear, then using the basis {X; =
2", Xy = 3™, X3 = 35"} avoids factoring. Such a basis may be computed
efficiently using only integer GCD and k-th roots.

8. Conclusions

We see a mathematically rich and practically important middle ground
between the usual approaches of “symbolic computation” and “computer
algebra.” In this light, we have explored how to usefully work with symbolic
polynomials — polynomial-like objects where the exponents can themselves
be integer-valued polynomials.

We have modeled symbolic polynomials using the formal structure of a
group ring. These are able to represent the kinds of symbolic polynomials
we have seen in practice, for example in the analysis of algorithms. This al-
gebraic structure allows us to perform arithmetic on symbolic pelynomials,
to simplify and transform them. We find, moreover, a UFD structure that
admits algorithms for factorization, GCD, etc.

We have sketched two families of algorithms for symbolic polynomials. One
puts the exponent polynomials in to a basis that makes their fixed divisors
manifest, and then introduces new variables for the symbolic powers. The
second family of algorithms is based on evaluation/interpolation, where
multiple image problems are solved and the images combined. This ap-
proach sometimes has a technical problem in determining which images
correspond to do the interpolation. Interpolating symmetric functions of
the desired exponent polynomials can avoid some of these difficulties.

We have experimental implementations of both the extension and sparse
projection methods, but it is too early to say which method will be most
useful in practice.
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