
V. E. Wolfengagen

Combinatory
Logic

in Programming

Library “JurInfoR”
Founded in 1994

Series: Computer Science and Information
Technologies

Project: Applicative Computational Systems

Project Leader, Dr.

L. Yu. Ismailova

Published on the occasion of 60th anniversary of Moscow Engineering
Physics Institute

Institute for Contemporary Education
“JurInfoR-MSU”

Department of Advanced Computer Studies
and Information Technologies

V. E. Wolfengagen

COMBINATORY
LOGIC

in PROGRAMMING

Computations with objects through examples and exercises

2nd edition

•
Moscow

“Center JurInfoR” Ltd.
2003

•

LBC 32.97
UDC 004
B721

Library of “JurInfoR”
Founded in 1994

Series: Computer Science and Information
Technologies

V. E. Wolfengagen

Combinatory logic in programming. Computations with ob-
jects through examples and exercises. — 2-nd ed. — Moscow.:
Center “JurInfoR”, 2003. — X+337 p.

ISBN 5-89158-101-9

The book is intended for computer science students, programmers
and professionals who have already got acquainted with the basic
courses and background on discrete mathematics. It may be used
as a textbook for graduate course on theoretical computer science.

The book introduces a reader to the conceptual framework for think-
ing about computations with the objects. The several areas of the-
oretical computer science are covered, including the following: type
free and typed λ-calculus and combinatory logic with applications,
evaluation of expressions, computations in a category. The topics,
covered in the book accumulated much experience in teaching these
subjects in graduate computer science courses.

A rich set of examples and exercises, including solutions, has been
prepared to stimulate the self studying and to make easier the job of
instructor.

ISBN 5-89158-101-9
c© V. E. Wolfengagen, 1987–2003
c© Center “JurInfoR”, 1997–2003

Center “JurInfoR”
Institute for Contemporary Education “JurInfoR-MSU”
Fax: +7 (095) 956-25-12. E-mail: vew@jmsuice.msk.ru

Contents

Preface of the editors of the series 1

Special Preface 3

The spectrum of problems 5

Preface to the first edition 7

Preface to the second edition 12

Introduction 18

1 Preliminaries 27
1.1 The spectrum of ideas 29
1.2 Layout of a chapter 30
1.3 State-of-the-art in an area 32
1.4 Typical task . 35
1.5 Variants of task . 37
1.6 A recommended order of solving the tasks 44

2 Derivation of Object 45
2.1 Principle of combinatory completeness 46

2.1.1 Combinatory characteristic 46
2.1.2 Systems of concepts 47

V

VI CONTENTS

2.1.3 Combinatory completeness 47
2.1.4 Elementary combinatory logic 49

2.2 Deriving main combinators: tasks 51
2.3 Historical remark . 62

3 Fixed Point 65
3.1 Theoretical background. 65

3.1.1 Abstraction 66
3.1.2 Multiabstraction 66
3.1.3 Local recursion 67

3.2 Main tasks . 68
Exercises . 73

4 Extensionality 75
4.1 Theoretical background 75
4.2 Tasks . 77
Exercises . 79

5 Numerals 81
5.1 Numbers and numerals 81
5.2 Combinatory arithmetic 82
5.3 Tasks . 87
Exercises . 91

6 Typed combinators 93
6.1 Notion of a type . 93

6.1.1 Combinatory terms 96
6.1.2 λ-terms . 97

6.2 Tasks . 97

7 Basis I, K, S 113
7.1 Theoretical background 113
7.2 Tasks . 114
Exercises . 115

CONTENTS VII

8 Basis I, B, C, S 117
8.1 Theoretical background 117
8.2 A property of being basic 118
8.3 Elementary examples 120
Exercises . 121

9 Applications of fixed point combinator Y 123
9.1 Fixed point theorem 123
9.2 Elements of recursive computations 124
9.3 Using the combinator Y 125
9.4 Evaluation of a function 127
Exercises . 131

10 Function list1 133
10.1 Theoretical background 133
10.2 Tasks . 134
10.3 Functor-as-object 137
Exercises . 138

11 Isomorphism of c.c.c. and ACS 139
11.1 Theoretical background 139
11.2 Tasks . 141

12 Currying 143
12.1 Theoretical background 143

12.1.1 Operators and functions 143
12.1.2 Comprehension 144
12.1.3 Connection between operators and functions . 144

12.2 Tasks . 145
Exercises . 147

13 Karoubi’s shell 149
13.1 Theoretical background 149
13.2 Tasks . 150

VIII CONTENTS

Exercises . 154

14 Products and projections 157
14.1 Theoretical background 157
14.2 Task . 157
14.3 Product and cartesian closed category 161

15 Embedding Lisp into ACS 163
15.1 Theoretical background 163
15.2 A main task . 164
15.3 Concluding remarks 170

16 Supercombinators 171
16.1 Theoretical background 171

16.1.1 Notion of supercombinator 172
16.1.2 Process of compiling 174
16.1.3 Transformation to supercombinators 175
16.1.4 Eliminating redundant parameters 177
16.1.5 Ordering of the parameters 178
16.1.6 The lambda-lifting with a recursion 182
16.1.7 Execution of the lambda-lifting algorithm . . 185
16.1.8 Other ways of lambda-lifting 188
16.1.9 Full lazyness 190
16.1.10Maximal free expressions 192
16.1.11Lambda-lifting with MFE 194
16.1.12Fully lazy lambda-lifting with letrec 196
16.1.13Compound example 197

16.2 Task . 200
16.3 Answers to exercises 202

17 Lazy implementation 211
17.1 Tasks . 211
Exercises . 214

CONTENTS IX

18 Permutation of parameters 215
18.1 Task . 215
Exercises . 219
Test . 219

19 Immediate computations 221
19.1 Task . 221
Exercises . 223
Test . 224

20 de Bruijn’s encoding 225
20.1 Tasks . 225
Exercises . 230

21 Abstract machine: CAM 233
21.1 Theoretical background 233

21.1.1 CAM structure 233
21.1.2 Instructions 235

21.2 Tasks . 239
Exercises . 240

22 Optimizing CAM-computations 243
22.1 Task . 243
Exercises . 252
Test . 253

23 Variable objects 255
23.1 Models . 255

23.1.1 Applicative structure 256
23.1.2 Typed models 259
23.1.3 Partial objects 267
23.1.4 Data object models 270

23.2 The main task . 274
23.2.1 Elementary types 275

X CONTENTS

23.2.2 Typed variable objects 276
23.2.3 Computational models 278
23.2.4 Indexed objects 280

23.3 Interpretation of evaluating environment 288

Bibliography 289

Index 309

Glossary 313

Practical work 329

Dissertations 333

About the Author 336

PREFACE OF THE EDITORS OF THE SERIES 1

Preface of the editors of the series

Computer science and information technologies have become om-
nipresent and continue to promise changes that more and more in-
volve, practically speaking, all the spheres of our life. First of all, the
new technologies make it easier to get access to diverse information
and produce masses of information in electronic form, changing by
this both the character of work and its results. Indeed, many products,
being of great demand, are produced in the form of a sequence of bits,
with an exceptionally high tempo of their changes.

Changes involve both separate professions, and the whole bran-
ches of industry and knowledge. In real state of things, the develop-
ment of information technologies has led to the appearance of virtual
reality. Contemporary society is just beginning to get adapted to vir-
tual reality, the capabilities of which are being appropriated quickly
enough.

While at its early stages of development programming was a kind
of art with a programmer creating a program in order to solve a def-
inite task and providing it with more or less detailed documentation.
By now, a powerful industry of programming has been created, com-
plete with accompanying software engineering. At present, in the
research in the field of programming or in the sphere of computer sci-
ences, as a rule, support is given to works in which a slight improve-
ment is introduced in the solution of the already well-known problem.
At the same time no attention is paid to really important and basic re-
search, being the way to search for new computation concepts, while
insufficient attention is given to accumulation of knowledge in the
field of programming.

This series of volumes is meant as a continuing row of publi-
cations in the field of computer science, information technologies
and programming, promoting the accumulation of knowledge in the
above-mentioned fields. It is assumed that these publications may
be used for presentation of separate courses and can also promote

2 PREFACE OF THE EDITORS OF THE SERIES

scientific research. As a rule, the volumes of the series are meant to
satisfy the needs of readers of various levels, starting with students
that have the aim of getting initial familiarization with the subject
itself, up to specialists in different branches of computer sciences.

Thus, the publications of the planned series are meant to reflect
the current status of the given field and also to provide the basis for
systematic study of different sections of computer sciences, informa-
tion technologies and programming.

The Editors of The Series

SPECIAL PREFACE 3

Special Preface

One of the virtues of combinatory logic is that it provides a smart
universe of discourse to computer scientists, programmers, applied
theoreticians, practitioners. In practice, however, a sophisticated ap-
plied theoretician and an applied programmer must have a thorough
grasp of what the system of objects does in response to an evaluation
request. To make the most transparent use of the evaluation sys-
tem, one must have insight of such things as what kind of thing is
an object or data structure, how to optimize the execution plan of a
program for given set of objects, to understand the impact of avoiding
the bound variables on a program code, the importance of sub- and
super-partitioning of an object set, etc. When used or studied, all
these trends are interrelated and involve some self contained local
universes of mathematical ideas.

This book covers the commonly used computational ideas related
to combinatory logic.

Nevertheless, the lifting from undergraduate to graduate teach-
ing of applicative computations topics initiates unusual didactic chal-
lenges which can be explained by the visible distance between the
rigorous mathematical apparatus and applied research papers.

This volume addresses this problem by providing a graduate text-
book which covers the principle topics for classroom teaching. In
this book the gradual progression of topics is supported by examples
and exercises. By solving them, the students are introduced to the
research issues at the forefront of computer science. The book is
written by the author who is a specialist in the covered areas, and
who has accumulated a rich experience in teaching graduate courses
in those areas.

To use this book a minimal knowledge of theoretical computer
science is needed to reach the following aims:

• to provide an introduction to the principle areas of current research
in computer science in order to give students the needed knowl-

4 SPECIAL PREFACE

edge and intuition for more advanced study and research;

• to provide both the practitioners and researchers with a conceptual
background of computational ideas that are expected to be used in
applied computer science in the coming years.

To achieve the second aim the author has used the general notations
of mappings between the classes of objects, in order to bring in more
independency from a particular formal system. Most of attention is
paid to the main computational ideas and their implementation within
a formal framework.

Nobody argues that λ-calculus is a theory of functions. This the-
ory gives a philosophy and reasons to view the idealized entities as
functions. It is more important that λ-calculus is related to other
theories and the kind of these relations gives important insight into
how to build different models of computation.

The spectrum of other theories usually starts with set theory. The
question is how set theory provides a theory of functions. E.g., Zer-
melo’s theory has a limited view of sets observing separate set A as
extremely small with respect to the size of V , the universe of all sets.
Any particular map f : A → B from one set A into other set B gives
no information concerning maps from V to V , thus the classes of
operations on all sets are hardly ever known within set theory. Usual
assumption takes set A as an element of V , A ∈ V in spite of class
B which is subcollection of V , B ⊆ V . The connections between
λ-calculus and class theory have been established and studied. This
does not mean that λ-calculus depends on the set theory.

If we want a theory of functions be not derived from the set theory
we need a pure theory of functions within which functions are ob-
served as particular entities. A category theory gives a universe of
discourse for selected functions, or better: functional entities. The
middle way between pure category theory and a set theory is given by
cartesian closed categories.

THE SPECTRUM OF PROBLEMS 5

The spectrum of problems

“It has long been my personal view that the separation of practical
and theoretical work is artificial and injurious. Much of the practical
work done in computing, both in software and in hardware design, is
unsound and clumsy because the people who do it have not any clear
understanding of the fundamental design principles of their work.
Most of the abstract mathematical and theoretical work is sterile be-
cause it has no point of contact with real computing. One of the central
aims of the Programming Research Group [in Oxford University] as a
teaching and research group has been to set up an atmosphere in which
this separation cannot happen.”

Christopher Strachey

http://vmoc.museophile.com/pioneers/strachey.html

From the moment of their emergence, combinatory logic and lambda-
calculus are referred to as “non-classical” by logicians. The point is
that combinatory logic appeared in the 20-ies, while lambda-calcu-
lus, in the 40-ies, as a branch of mathematics with sufficiently clear-
cut purpose of rendering foundation to mathematics. It means that,
having constructed the required “applied” mathematical theory, i.e.
object theory, reflecting processes and phenomena in real environ-
ment, it is possible to make use of a “pure” metatheory as a shell for
finding out the capabilities and properties of the object theory.

Combinatory logic and lambda-calculus are such formal systems
in which the central elaborated essence is the concept of an object.
Within the framework of the first of them, i.e. the combinatory logic,
the mechanism of binding variables is absent in its explicit form, while
being present in the second one. The presence of this explicit mecha-
nism of binding assumes both the presence of bound variables (how-
ever, in this case, free variables are also assumed), as well as mech-
anisms of replacement of formal parameters, i.e. bound variables, by
actual parameters, that is substitution.

The initial purpose of combinatory logic was namely the analysis
of this substitution process. In the capacity of its essences, it was

http://vmoc.museophile.com/pioneers/strachey.html

6 THE SPECTRUM OF PROBLEMS

planned to use objects as combinations of constants. Lambda-
calculus was assigned the role of means for specifying the notions of
an algorithm and computability. As a consequence, combinatory
logic provides a tool for analysis of the process of substitution. After
a short period of time, it turned out that both the systems could be
treated as programming languages.

Both the systems, in which objects are computed, are calculi or
languages of higher order, i.e., there are means for describing map-
pings or operators, which are defined on a set of mappings or oper-
ators, while also generating mappings and operators as a result of
it. The most important thing is that it is precisely mapping that is
considered to be an object. This constitutes its basic difference from
the whole variety of other systems, for which the notion of set and its
elements is usually taken as their primary basics.

Currently, both these languages have become the basis for the
whole domain of research in the field of computer science and are
also widely used in the theory of programming. The development
of computational power of computers has led to the automation of
a considerable part of theoretical – both logical and mathematical, –
knowledge, while combinatory logic together with lambda-calculus
are recognized as a basis for considerations in terms of objects.

Without the mastering of their methods, it is impossible to fully
develop the basic technique of computations with objects, since the
set-theoretic style, still widely used in the object-oriented languages
of programming and development, makes it difficult to avoid getting
buried in masses of secondary details and, as a result, losing sight of
the really important issues of the interaction of objects.

PREFACE TO THE FIRST EDITION OF THE VOLUME 7

Preface to the first edition of the volume

Whom is the volume addressed to?

This volume has been written to assist those readers who study com-
puter science or are engaged in this sphere of activity, who want to
systemize their knowledge and have another look at the spectrum of
ideas they have to deal with in their everyday work. The volume is
meant to help in reading and studying the original research publica-
tions in the field of system and theoretical programming, as well as,
if need be, to effect accurate mathematical analysis of newly created
programming mechanisms and data models. The detailed explana-
tions and a great number of analyzed examples and problems will
assist the reader in getting the message without any considerable
effort of making a good choice of the required literature and starting
own research work in this interesting and promising field. That is
promoted by a considerable amount of independence in the study of
separate sections, which is reasonable in view of the specific character
of the mathematical discipline itself, i.e. combinatory logic. A more
experienced reader in the field of mathematics may be interested in the
applied aspects of the theory.

Why should objects be calculated?

Work with computers provided with a shell, which can take over upon
itself the control of software objects, lays the basis for the utmost
state-of-the-art technique of programming. Presently, hundreds of
applied programs, such as Windows, AutoCAD, Designer and many
others deal with objects. On the other hand, the instrumental systems
of programming, such as Small Talk, C++, Actor and some others
require a programmer to exercise systematic speculations in terms
of objects and relationship between them, which, in their turn, can
be treated as objects. Programming in terms of objects requires the
development and maintenance of their own mathematical culture that

8 PREFACE TO THE FIRST EDITION OF THE VOLUME

provides the whole spectrum of stimulating ideas. In the process of
solving a specific task, a programmer becomes a researcher, who is
required to create his own language with its own capabilities. Such
capabilities are not always intuitively self-evident and may require
purely mathematical evaluation of their expressive abilities. Apart
from that, very often it is not only necessary to create a certain pro-
gram code but also to fulfill its optimization without losing the prop-
erties of its equivalence to the initial code. For doing careful and
professional work, it is required to have its own “mathematical shell”,
supporting all significant and interesting mathematical applications.

The principal thing is the adequate way of thinking

It is a well-known fact that in the practice of programming, different
approaches, developing in different directions, have taken shape. The
most evident differences manifest themselves in the difference in com-
prehension and writing of programs. The major part of programmers
is engaged in procedure-oriented programming. Apart from that,
there exist rule-oriented programming, logical programming, par-
allel programming, visual programming, and programming in terms
of dataflows. If need be, this list can be continued, but, evidently, it will
be incomplete without also including object-oriented programming,
displaying a vividly expressed tendency for growth.

Approaches and styles of programming. Approaches and styles
of programming are numerous, which reflects the tendency of up-
grading and propagating of still newer computer architectures. The
emerging new architectures are oriented at new approaches to pro-
gramming that are still taking shape in research laboratories.

The abundance and great variety of approaches to programming
in computer science are reflected in the development and propaga-
tion of different approaches to mathematics. And indeed, surpris-
ingly many mathematical theories have been built, each of them being

PREFACE TO THE FIRST EDITION OF THE VOLUME 9

an absolutely unique language of communication for a comparatively
narrow circle of specialists who understand each other perfectly well.
At the same time, any attempt of an “uninitiated” person to under-
stand practical usefulness and significance of the new mathematical
language meets with obstacles. It turns out that, first of all, it is
necessary to change one’s own way of thinking so as to be able to
have a different look at certain difficulties. Thus, the spread of object-
oriented programming also requires the use of different ways of rea-
soning, which more often than not radically differ from the stereotypes
of reasoning adopted in procedure-oriented programming.

Speculations in terms of objects. Similarly, only just few and
comparatively young mathematical theories are oriented at specula-
tion in terms of objects rather than in terms of operators, as goes
from the experience in studying mathematical analysis at the majority
of universities, including those technically or computer oriented. Un-
fortunately, a programmer has no opportunity to attend a university
course that might lay down the basis of mathematical thinking in
terms of objects. At best, only some information about purely mathe-
matical results is given, which are obtained in the framework of com-
binatory logic, lambda-calculus or category theory and which are
far from being easy to apply to practical programming, if you are not
versed in theory.

It is possible to assert that combinatory logic has had a consider-
able influence on the contemporary status of programming. Coming
into life as a science about the nature of substitutions in mathe-
matical theories, it has then given birth to functional programming,
programming in terms of supercombinators, as well as some other
highly productive approaches to programming. In particular, only
after one really understands the very spirit of combinatory logic, it
is possible to fully comprehend and put into practice the system of
programming, having no predetermined set of instructions.

10 PREFACE TO THE FIRST EDITION OF THE VOLUME

Computation theory. The programming paradigms of the 90-ies
emerged, to a great extent, from the mathematical way of consider-
ations, adopted in the computation theory. In particular, one of its
initial premises was the concept of ‘information flow’ along a certain
‘possible’ channel, which gave rise to the appearance of a very fruitful
concept of a program, controlled by a data flow. Another example has
to do with the idea of using a certain part of combinatory logic by
building special instructions-objects within it. Those objects form a
system of commands of a categorical abstract machine, which can
successfully serve as a foundation of quite practical (albeit, object-
oriented) systems of programming. More than that, the rules of com-
binatory logic make it possible to optimize the compiled program
code by reducing it to a certain normal form. For a specialist in
combinatory logic, it was something taken for granted from the very
beginning, since that was one of the aims for developing combinatory
logic as a mathematical discipline.

The contemporary research in the field of computer science has
shown that combinatory logic and its various categorial dialects be-
come an indispensable mathematical language of the programmer,
used for exchanging ideas between colleagues. The point is that one
of the subject matters of its research is the study of objects and devel-
opment of different calculuses of objects, satisfying a set of aspects of
each applied task. In other words, the solution of any particular task
requires the creation of a specific exact language. As is well known
by programmers, that is the language of the software interface. In
terms of a computer science specialist, it is a specialized dialect of
combinatory logic.

Objects and a systemic approach

If a programmer chooses an object-oriented approach to the develop-
ment, it would most probably be a mistake to adjust the task under
solution to a certain already known mathematical model. Probably,

PREFACE TO THE FIRST EDITION OF THE VOLUME 11

it would be much better to look for some nonstandard solution that
adequately matches the specific features related to the very nature of
the applied domain. In computer science, the metatheory is cho-
sen for this purpose, within the framework of which the research is
done and which is “adjusted” to the specific character of the applied
domain. One of the means for such an adjustment is to embed the
applied theory (a “smaller” theory) into pure metatheory (a “bigger”
theory). Besides, from the mathematical viewpoint, within the frame-
work of combinatory logic, it is convenient to build up sub-theories,
i.e. special mathematical modules which in their finished form preset
the computation mechanisms having a value of their own. Such rea-
soning can easily find response with a programmer who has to deal
with a big software project, when the advantages of considerations
in terms of objects and their properties become especially evident.
Combinatory logic makes it possible, by using mathematically ideal-
ized objects, to preliminarily “play out” all the most complicated and
delicate issues of interactions of mechanisms within a big software
project.

The City of Moscow
September 1994 V.E. Wolfengagen

12 PREFACE TO THE SECOND EDITION

Preface to the second edition

Applicative Computing Systems. The systems of calculuses of
objects, based on combinatory logic and lambda-calculus, are tradi-
tionally treated as applicative computing systems, or ACS. The only
thing that is being essentially developed within such systems is the
notion of an object. In combinatory logic the only meta-operator
is application, or, within a different system of terms, the using the
action of one object to another . Lambda-calculus has two meta-
operators, i.e. application and functional abstraction that makes it
possible to bind one variable within one object.

Objects arising in such systems behave as functional entities, dis-
playing the following features:

• a number of argument places, or the arity of an object, is not fixed
in advance but manifests itself gradually in interaction with other
objects;

• in designing a composite object, one of the initial objects, i.e. a
function, is applied to another object, i.e. an argument, while in
other contexts they may exchange their roles, meaning that func-
tions and arguments are equally treated as objects;

• self-applicability of functions is allowed, i.e. an object can be ap-
plied to itself.

Computing systems with this most general and least restrictive qual-
ities turn out to be the center of attention of the contemporary com-
puter science community. It is precisely these systems that cur-
rently ensure the required meta-theoretical means, making it possible
to study the properties of target applied theories, provide the basis
for building semantic means of programming languages and ensure
means for building data/metadata models within the informational
systems.

PREFACE TO THE SECOND EDITION 13

The second half of the 70-ies – the beginning of the 80-ies wit-
nessed an explosion in the development of applicative computing sys-
tems, which has led to the progress in a whole range of trends of
research and brought about an abundance of scientific publications.
They were written in a special language, their reading and under-
standing, to say nothing about mastering the very essence of the mat-
ter, required a considerable theoretical background. There were a few
reasons for that.

In the first place, back in 1980 the theory of applicative compu-
tations was still being actively developed, while one of the purposes
of the authors of the publications was to arouse interest and involve
mathematically talented students into the research in that field.

In the second place, in the course of time, the role and place,
assigned to the applicative systems in the curriculum, have changed
with time. If earlier, in order to master the most important ideas, it
was necessary to get closely familiar with a whole set of mathematical
disciplines, now the study of basic elements of applicative computa-
tions is included into a standard curriculum, being compulsory for
the students in the first and second years. It means that, in writing
a volume, preference should be given to the intensional method of
presentation of the material, which involves only basic means in order
to make the subject matter easily understood.

In the third place, in the meantime, the courses in computer
science have changed from purely mathematical and conceptual into
a fairly prescriptional ones, giving something similar to a “quick
overview” of a mass of ready-made solutions, methods, technologies
and recommendations for use.

In the fourth place, the attitude towards computer science has be-
come, to a great extent, purely practical and even that of a consumer.
In the majority of cases, it is expected that the mastering of this or
that branch of computer science should immediately bring about a
certain return. Students even display quite evident unwillingness to
do exercises or solve tasks of creative or theoretical character, being

14 PREFACE TO THE SECOND EDITION

of a fundamental importance. In order to preserve the required level of
education in applicative computations, the present volume contains
examples and exercises of different character in the field of program-
ming and their solutions are given by using basic means, without
assuming any preliminary mathematical background.

The required level of background. In this volume the main set
of problems is presented using basic means and, as is expected, will
cause no difficulties for students familiar with logic and the principles
of proof methods. It is assumed that the reader is also familiar with
the basics of programming, having a certain knowledge of data struc-
tures. At the same time, the presentation of the material as a whole
and partly inside separate sections is built following the ever growing
degree of complexity, meaning to please those advanced readers who
avoid books intended for “easy reading”. The mastering of a number
of sections will help the readers to achieve the level of the up-to-date
research and stimulate their own scientific studies.

Examples and exercises. The volume contains series of examples
and exercises, the major part of which is provided with directions and
solutions. As a rule, the solution itself includes a sufficient store of
theoretical knowledge that will help not only understand the solution,
but also look for other options. It stands to reason that such a book
cannot be completely free from mistakes. In case you detect any
mistakes or in case you have any suggestions as to how they should
be corrected, please, do not hesitate to inform the author about it. If
you have new tasks and exercises, the author will be especially glad
to learn about it. However, if you decide to send them over, please,
provide them with solutions before submitting them to the following
e-mail address: vew@jmsuice.msk.ru.

Source material and laboratory exercises. This volume is based
on a course of lectures, delivered by the author at the Moscow En-

PREFACE TO THE SECOND EDITION 15

gineering and Physical Institute (MEPhI). The courses of lectures,
delivered at the MEPhI on the basis of the present volume, are pro-
vided with Laboratory Exercises. The Laboratory Exercises prod-
uct is compatible with the IBM PC and is distributed on machine-
readable media.

Acknowledgements. The author highly appreciates the contribu-
tion made by Dr. R.V. Khrapko, and N.P. Masliy, A.S. Afanasyev,
T.V. Syrova, who displayed a high level of interest in and profound
professional understanding of the problems involved and their great
erudition. In developing software, they strived to use applicative or
purely object technologies and solutions, as well as the technique of
dynamic formation of objects.

The conditions and possibilities for application of the object ap-
proach to software development were provided by V.V. Ivanchenko,
who did his best to organize the scientific research process.

I.V. Papaskiry’s assistance and well-meaning attention made it
possible to establish a permanently acting workshop, as well as a
unique atmosphere of scientific debates during which the main range
of ideas presented in the volume were discussed.

Prof. L.T. Kuzin paid considerable attention to the methods and
means for work with abstract objects, promoting research in that di-
rection, its development, application and extension to the solution of
various tasks in the field of cybernetic simulation. A whole number of
results obtained was discussed at scientific workshops of the “Applied
Problems of Cybernetics” Section, chaired by him, while their appli-
cation was presented within the framework of a cycle of disciplines,
headed by him, for the students of the Cybernetics faculty of MEPhI
as part of training engineers-mathematicians, specializing in applied
mathematics.

Sincere gratitude is due to K.A. Sagoyan for the preparation and
check-up of solutions of all the examples, given in Section 6, that
were also used in the Preprint publications. His thoroughness, hard

16 PREFACE TO THE SECOND EDITION

work and resourcefulness evoke genuine admiration. Various vari-
ants of their solutions were tested by him in the course of conduction
of laboratory exercises with the students at the MEPhI Cybernetics
Department.

Enormous patience and readiness to show a whole range of ap-
plications for object calculus were shown by I.V. Chepurnova, who
took upon herself the responsibility for the publication of the Preprint
version of this volume. It would be impossible to overestimate her
work of many years in organizing and conducting workshops for the
MEPhI full-time students and for the post-graduate students of the
MEPhI enhancement courses. Her special courses were based on the
sections contained in the present volume, which were updated and
extended at her suggestions.

I.A. Goryunova took upon herself a difficult assignment in picking
up tasks for Section 16. Enthusiasm, displayed by her, and pro-
found understanding of the mechanism of dynamic formation of ob-
jects made it possible to select exercises, provided with solutions.

A.G. Panteleev offered a number of valuable comments on Sec-
tion 15.

Wu-Hoang Ham indicated other possible variants of solutions for
some examples.

Profs. B.V. Biryukov and A.S. Kuzichev, who chaired the scien-
tific workshop in the history and methodology of natural sciences at
the Moscow State University (MSU), provided valuable recommen-
dations in selecting bibliography. Prof. V.A. Smirnov indicated addi-
tional possible areas of applications of intensional methods in combi-
nation with object calculuses.

Prof. S.Kh. Aytyan provided remarks for parts of the volume ma-
terial in the course of its writing. Some aspects of object applications
were discussed with Prof. G.G. Belonogov, Prof. G.Ya. Voloshin,
Prof. S.N. Seletkov, and Prof. E.N. Syromolotov.

Prof. P.-L. Curien of Université Paris VII, LITP, one of the au-
thors of the categorical abstract machine concept, was very kind to

PREFACE TO THE SECOND EDITION 17

provide me with a number of his publications, which made it possible
to speed up the work on the first publication of the volume.

Dr. V.Ya. Yatsuk, shared his procedures and experience he gained
while presenting object calculi in the courses, delivered by him.
I.V. Mazhirin indicated some possibilities in developing versions of
abstract machines. Dr. G.S. Lebedev, initiated the teaching of de-
ductive extensions of object calculi.

E.M. Galstyan rendered technical support in the preparation of
the preliminary version of the volume text.

The preparation of the present volume for publication was stret-
ched in time and became feasible thanks to collaboration with the
following numerous interested specialists, who took part in the work
of scientific workshops held on the problems of computer science
and information technologies at the Moscow Engineering and Phys-
ical Institute, as well as organized practical lessons for students of
different years of education, and supervised their course and diploma
projects: Yu.G. Gorbanev, V.I. Vasiliyev, O.V. Voskresenskaya,
M.Yu. Chuprikov, O.V. Barinov, I.A. Alexandrova, G.K. Sokolov,
S.V. Kosikov, I.A. Volkov, S.K. Saribekyan, K.A. Sagoyan,A.I. Mih-
kaylov, T.V. Volshanik, Z.I. Shargatova, I.A. Goryunova, A.V. Gav-
rilov, L.V. Goltseva, E.V. Burlyaeva, V.A. Donchenko, I.V. Chepur-
nova, A.V. Myasnikov, K.E. Aksyenov, S.I. Dneprovsky, S.V. Bryz-
galov, S.V. Zykov, Ye.S. Pivovarova, A.Yu. Rukodanov, S.A. Kasta-
nov, L.A. Dmitrieva, Yu.Yu. Parfenov, R.K. Barabash, A.I. Odrova,
A.L. Brin, R.V. Snitsar, A.L. Zabrodin, A.M. Grigoryev, G.G. Pogo-
daev, B.B. Gorelov, M.L. Faybisovich, K.V. Pankin, N.V. Pishchimo-
va, A.I. Vaizer.

Finally, it has become possible to issue the present volume “Com-
binatory Logic in Programming” only thanks to the enormous time
and energy, rendered by the employees of the Institute for Contempo-
rary Education “JurInfoR-MSU”.

The City of Moscow
January 2003 V.E. Wolfengagen

18 INTRODUCTION

Introduction

Objects and modes of combining the objects represent all that is es-
sential in combinatory logic. Combination of objects with some other
objects is implemented by initial identification of objects-constants,
called combinators. There are just a few such initial combinators,
however, by using them one can build such well-known formal sys-
tems as the logic of statements, the logic of predicates, arithmetic
systems1 and a whole number of others. In the past ten years, combi-
natory logic has become one of the basic metamathematical tech-
niques of computer science, having shown its capabilities in the
sphere of programming. There has appeared a whole family of func-
tional programming languages. Miranda, ML, KRC, being suffi-
ciently well known to programmers, give us an idea of their possible
application. However, the object-oriented approach to programming
and designing of applied systems as a whole, which has already
displayed its overall potential, raises fundamental questions, refer-
ring to the method of operation itself in terms of objects. For this
purpose, a preselected universe of discourse is required, being a sort
of theoretical shell that guarantees mathematical fruitfulness of the
performed investigation. This is felt especially acutely in the process
of implementation of large software projects when the choice of a
systematic method of representation and operation of objects acquires
decisive importance.

Discussion of the volume structure

The structure of this volume and the layout of separate sections are
implemented in such a way as to enable the reader to fully concentrate
the attention on the matter of computations with objects being of
fundamental importance.

1More rigorously: the systems of numerals

INTRODUCTION 19

• Synthesis of a new object

One of the most important tasks, solved within the framework of
combinatory logic, is formulated as a task of synthesis of an object
with preset properties out of the available objects by using the already
known modes of combining. At the initial stage, the availability of
only three objects-combinators is assumed: I, K, S, as well as that
of their properties, preset by characteristic equations. To preserve
the intuitive clarity, one can assume that there exists a system of
programming with these three instructions and, using exclusively
these instructions, one will have to build up a system of programming,
being rich enough in its expressive capabilities. The resultant system
will contain solely objects-combinators.

• Characteristics of a fixed point combinator

The transparency of combinatory logic makes it rather easy to study.
After the first steps, it may seem that within it we always have to deal
with simple and finite in their nature objects. However, that impres-
sion is deceptive, and, by using combinators, it is possible to represent
processes, including loop computations, which are problems with a
recursion stack, being well known in programming.

• The use of the extensionality principle

The characteristic feature of combinatory logic is that it is possible to
build and apply functions within it, having a number of arguments
that is not fixed a priori. It means that one should be cautious
enough while answering the question about how many argument po-
sitions the applied function-object has in reality. Indeed, careful use
of sufficiently simple principles of extensionality (expansibility) makes
it possible to overcome that indefiniteness.

20 INTRODUCTION

• Numerals and their properties

Note that, from the very beginning, there are no . . . numerals among
primary objects in combinatory logic. The point is that the concept of
a numeral can be developed independently, by using known combi-
nators. In such a case, numerals present themselves in a somewhat
unusual aspect, being objects, which display their arity, depending on
the used system of postulates. In the same way, arithmetical opera-
tions are successfully developed in the form of combinators. In other
words, arithmetical entities are built into combinatory logic. This
situation is well known in object-oriented programming, i.e. an ap-
plication (arithmetical objects with their rules) is built into a software
environment (combinatory logic).

• Study of properties of combinators with types

The concept of a class is one of the most important in object-oriented
speculations. In this case, a class is understood as a sample for cre-
ating specimens of concrete objects. Moreover, classes themselves
can be treated as objects. Similarly, combinators are classified or
typified. The high order of functional spaces turns out to be important
for combinators. Nevertheless, the intuitive clarity of the work with
combinators as objects does not get lost.

• Expansion of terms in the I, K, S basis

Let us concentrate on the simplest system of programming with only
three instructions: I, K, S. It is possible to synthesize a new object
by a purely mechanical use of the algorithm of expansion in the basis,
being quite similar to the process of compilation.

• Expansion of terms in the I, B, C, S basis

As it turns out, the I, K, S basis is not the only one, and the set of
combiners I, B, C, S also displays the property of a basis. Compila-

INTRODUCTION 21

tion (expansion) of an object in that basis also resolves the problem of
synthesis of an object with preset properties. Evidently, it is possible
to use the freedom of selecting a basis, depending on some criteria.

• Expression of function definition using the fixed point opera-
tor Y

The case of recursive definitions of objects is considered. By using the
fixed point theorem, being fundamental for functional programming,
recursive definitions can be successfully reduced to the conventional
equational form.

• Study of properties of the list1 function

Capabilities for building a function-object in a parameterized form are
shown. By assigning particular values to arguments – and functions
can also be these particular values, – it is possible to get a whole
family of definitions for particular functions.

• Establishment of isomorphism for the Cartesian closed cate-
gory and applicative computation system

Now, we begin to move into the depths of mathematical abstractions
and start coordinating the operational way of thinking with combi-
natory approach. Note that within combinatory logic, use is made
of only one operator, i.e. the application operator, or the operator
of application of one object to another. The system of computations,
arising as a result of it, is called an applicative computation sys-
tem. It is linked up with the conventional computation system, being
represented by a special object, i.e. the Cartesian closed category.

22 INTRODUCTION

• Building of representation, currying the n-ary function

Within combinatory logic, n-ary functions-operators, used in opera-
tional programming, have images in the form of objects, which inherit
all their substantial properties.

•Deriving of basic properties of the Karoubi’s Shell

A special category, called the Karoubi’s shell, makes it possible to
laconically express a whole body of knowledge, related to operators,
in terms of combinatory logic. In this case, the types are also encoded
by objects. As a result, we implement the immersion or embedding of
the typed application into the type free software environment.

• Cartesian product and projections: embedding into ACS

The final completion of the started process of embedding is achieved
by the introduction of ordered populations of objects into considera-
tion. It has turned out that applicative computations also allow their
representation.

• Lisp Representation by means of lambda-calculus or combi-
natory logic

A non-trivial application is built into the applicative computation sys-
tem: a considerable and, actually, complete fragment of the well-
known Lisp system of programming.

• Implementation of computation of expressions values with
the help of supercombinators

It is discussed how the object-oriented systems, built into combina-
tory logic, work. Thus, it is possible to directly satisfy the need in
denotational computation of instructions of programming languages,

INTRODUCTION 23

when objects are used to express the functional meaning of a pro-
gram. It is significant that computation begins with a certain a priori
known set of instructions. In the process of the program value com-
putation, new instructions dynamically arise, being earlier unknown
but indispensable in the process, which are additionally fixed in the
system of programming.

• Fully lazy implementation of supercombinators

When the dynamic formation of objects is performed ”on-fly”, the
efficiency of the resulting code may be lost because of the need to
repeatedly calculate the value of one and the same object. The ap-
plication of the mechanism of lazy evaluations makes it possible to
avoid it: once the value of an object has been calculated, this already
calculated value will always be used further on.

• Optimization of computation process by permutation of pa-
rameters

The use of combinators makes it possible to build up an optimized
program code, while, in the course of synthesis of the resulting object,
analyzing the order of the possible substitution of formal parameters
with actual ones.

• Implementation of direct computations of expressions of
programming languages

The technique of evaluating the expressions is reconsidered in the
view of systematic build-up of both syntactic and semantic equa-
tions, implementing the selected paradigm of object-oriented com-
putations.

24 INTRODUCTION

• Evaluation of the de Bruijn’s code

A technique for re-designation of bound variables (formal param-
eters) is introduced into consideration, which makes it possible to
avoid binding collisions in replacing formal parameters by actual
ones. This technique of re-designation is called de Bruijn’s encod-
ing and allows, in fact, the lambda-calculus apparatus to be used on
the same legal basis as for the combinatory logic apparatus.

• Implementation of machine instructions of the categorical
abstract machine (CAM)

A special version of the theory of computation, named categorical
abstract machine, is being built. For this purpose, a special fragment
of combinatory logic, i.e. categorical combinatory logic, is introduced
into consideration. It is represented by a set of combinators, each of
which being of a self-sustained significance as an instruction of the
system of programming. Thus, one more useful application, i.e. the
system of programming, based on the Cartesian closed category, is
being built into combinatory logic. It allows the connection between
the operative and applicative styles of programming to be reconsid-
ered once again but at a new level.

• Capabilities of optimization in computation on the CAM

The use of Cartesian closed category opens up additional capabilities
for the optimization of the resulting program code. In addition to the
properties of combinatory logic per se, used as a shell, it is allowed to
use special categorical equations, borrowed from the Cartesian closed
category, as from an application.

• Variable objects

The concluding part of considering the calculi of objects deals with
generic questions of mathematical representation of objects. It is

INTRODUCTION 25

shown that the use of the concept of the functor-as-an-object allows
the basic laws of the object-oriented computations to be reviewed in
a compact and laconic form. In particular, the emphasis is laid on
the systems of changing (variable) notions-concepts, which are con-
ventional objects of combinatory logic but display properties, being
useful for programming. For example, with the help of variable con-
cepts, the theory of computations is built without any complications,
as well as the semantics of the programming systems and the models
of data objects. The data-as-objects display new degrees of freedom
in computer considerations.

Short recommendations about the order of studying the
volume

It is possible to outline the order for reading of the given volume.
Stand-alone reading of Sections 2–4, 6 requires only minor efforts on
the part of a reader. This material gives you a feeling about flexibility
and impressibilities of the language of combinatory logic.

To this preliminary part, Sections 5, 9, 7–8 can be added, which
deal with numerals, recursion, and expansions in basis.

Then, one may read Sections 10, 15–18, introducing a body of
concepts for programming by means of combinators with the dy-
namic system of instructions.

Other sections can be added to one’s taste. In particular, a more
detailed acquaintance with the categorial abstract machine in Sec-
tions 19–22 will require one to refer to the literature cited in the bib-
liography. Sections 11–14 are aimed at those readers, who want to
independently begin reading original research papers in the field of
computer science. Having mastered the basic ideas of the theory
of computation, one can start reading papers, devoted to this topic.
On the other hand, Section 23 may of interest to those readers, who
would like to go deeper into the very essence of creating “built-in
applications”, requiring modification of the software environment. In

26 INTRODUCTION

such a case, the researcher encounters variable notions or, in other
terms, variable concepts.

Chapter 1

Preliminaries

Nowadays the theoretical studies in an area of computer science are
grounded at the stable main mathematical means. As it happened,
this is just the several interrelated branches, giving rise both to logic
and computer science. Among them are λ-calculus, combinators,
type systems, category theory and programming languages.

λ-calculus. In this branch those modes of constructing the pure
calculus of functional abstraction and application of functions are
studied, that obtain the application areas in metamathematics, logic
and computer science.

Combinatory logic. In developing this branch it has been shown,
that bound variables can be excluded without lost of expressive power
of the formal system. The most important applications of combinatory
logic have been found in constructing the foundations of mathemat-
ics, and in constructing methods and and tools for implementing the
programming languages.

Type systems. Currently, λ-calculus gives the main means for
studying the type systems, and its results gave an important insights

27

28 CHAPTER 1: PRELIMINARIES

both for the foundations of mathematics and for the practice of con-
structing and applying of programming languages.

Category theory. This branch, from a mathematical point of view,
deals just with two entities – objects and mappings, – but the last,
in turn, can be considered as objects. Applying the methods of cate-
gory theory seems especially important in case of research, develop-
ment and application of the object programming systems.

Programming languages. It is rather difficult to consider these
three main branches: λ-calculus, combinatory logic and type sys-
tems, – singularly, separated each from others. They are interrelated,
and current point of view is in their mutual studies. Moreover, namely
these three branches give a sound ground to construe the program-
ming languages.

Currently, there are more and more reasons to add to this list, on
equal rights, one more branch – category theory, which involves the
only notion, namely: representation of an abstract object that covers
the mappings as well.

At a first look, a spectrum of ideas, covered in these branches,
is not homogeneous, resulting in growth of seemingly disparate for-
malisms and mathematical means. Actually, it happens even more:
every current research, as a rule, includes the constructing of its own
mathematical means. Rather often, the main mathematical ideas,
used by the author, are hidden by the complicated evaluations.

Studying of the branches, mentioned above, helps to discover the
intrinsic unity of the disparate researches, and their regular appli-
cation supplies a researcher or developer by both the conceptually
transparent and flexible and powerful theoretical means.

CHAPTER 1: PRELIMINARIES 29

1.1 The spectrum of ideas

Currently, after more careful consideration, it appears that the fulfilled
in an area of computer science researches use some or other ideas
either of category theory, or of combinatory logic, or of calculi of
λ-conversions, or of all these three disciplines altogether.

Importance of getting acquainted the knowledge of these bran-
ches of mathematics is so evident, that, opening practically occa-
sional proceedings of any conference in computer science, you can
find not only pure nominal usage of λ-notations, but actual con-
structing of own mathematical language, which is based on using
the applications and abstractions. Nevertheless, the attempts of self-
studying the foundations of λ-calculus or combinatory logic meet the
difficulties from the very early steps: a known effort is needed “to fit
a way of thinking” from operational point of view of mathematical
notations to applicative one, when there is no generic separation of
mathematical entities into ‘functions’ and ‘arguments’, but there are
the only ‘objects’. It is interesting to observe, that the same object,
depending on a context, can be used in different roles, sometimes
playing the role of an argument and sometimes – the role of a func-
tion.

From the syntax point of view, the objects are indicated either by
the notations with parentheses, or by using an agreement of omitting
the non-significant parentheses, when they, by need, can be restored
without any ambiguity. Another significant feature is to establish a
property of being basic for some pre-specified objects. Any time it
is evident, that newly introduced object can be rather suitably repre-
sented by combining of generic objects, which, under such a circum-
stance, can be called the combinators. It is difficult to overestimate
this ability to disassemble the arbitrary introduced object into basis:
in place of studying of properties of complicated applied theory with
a great amount of distinct objects, it could be possible to study the
properties just of several objects, without any loss of generality of the

30 CHAPTER 1: PRELIMINARIES

obtained result.
For a specialist in computer science this is rather desirable prop-

erty. It is evident, that the basic combinators can be assumed as a
system of commands of some abstract computing system, and the
rest of the objects can be expressed, i.e. “programmed”, by using
namely this set of commands. In spite of seeming evidence, this abil-
ity of means of the combinatory logic is not yet properly applied in
practice of computer studies.

1.2 Layout of a chapter

A discussion of philosophical, pure mathematical or technical aspects
of applicative computations can lead far distant to the side of founda-
tions of mathematics. Nevertheless, there is rather acceptable way.
For a beginning, it can be reasonable to restrict yourself by solving
some – however, for a first look, abstract, – problems, and after that
make a conclusion, if is it needed to move further, in depth of ideas of
applicative computations.

This chapter is to be assumed as some kind of menu, in which the
main questions are indicated, and interaction of which, at first, could
be seen immediately, but after that, in detailed study, getting clear its
deeper essence.

The current chapter contains the sets of variants of the tasks,
which are recommended to use in self studying.

In case of organizing the studying in the classes of λ-calculus
and combinatory logic, it can be recommended to select out the spe-
cial units of tasks by variants, allowing to make not “so large”, but
rather acceptable steps in learning of new mathematical, or, better,
computational ideas. These variants of the tasks are arranged in the
Table 1.1. The tasks for self studying are composed by such a way,
that covers most of the chapters in this volume.

CHAPTER 1: PRELIMINARIES 31

Table 1.1: The variants of tasks

Variant No Recommended unit of tasks

1 1.1 2.6 3.3 4.7 5.1 6-1◦

2 1.2 2.5 3.1 4.6 5.2 6-2◦

3 1.3 2.4 3.2 4.5 5.3 6-3◦

4 1.4 2.3 3.3 4.4 5.4 6-4◦

5 1.5 2.2 3.1 4.3 5.1 6-5◦

6 1.6 2.1 3.2 4.2 5.2 6-6◦

7 1.7 2.5 3.3 4.1 5.3 6-7◦

8 1.8 2.4 3.1 4.7 5.4 6-8◦

9 1.9 2.3 3.2 4.6 5.1 6-9◦

10 1.10 2.2 3.3 4.5 5.2 6-1◦

11 1.11 2.1 3.1 4.4 5.3 6-2◦

12 1.12 2.5 3.2 4.3 5.4 6-3◦

13 1.1 2.4 3.3 4.2 5.1 6-4◦

14 1.2 2.3 3.1 4.1 5.2 6-5◦

15 1.3 2.2 3.2 4.7 5.3 6-6◦

16 1.4 2.1 3.3 4.6 5.4 6-7◦

17 1.5 2.5 3.1 4.5 5.1 6-8◦

18 1.6 2.4 3.2 4.4 5.2 6-9◦

19 1.7 2.3 3.3 4.3 5.3 6-1◦

20 1.8 2.2 3.1 4.2 5.4 6-2◦

21 1.9 2.1 3.2 4.1 5.1 6-3◦

22 1.10 2.5 3.3 4.7 5.2 6-4◦

23 1.11 2.4 3.1 4.6 5.3 6-5◦

24 1.12 2.3 3.2 4.5 5.4 6-6◦

25 1.1 2.2 3.3 4.4 5.1 6-7◦

26 1.2 2.1 3.1 4.3 5.2 6-8◦

27 1.3 2.5 3.2 4.2 5.3 6-9◦

28 1.4 2.4 3.3 4.1 5.4 6-1◦

29 1.5 2.3 3.1 4.7 5.1 6-2◦

30 1.6 2.2 3.2 4.6 5.2 6-3◦

31 1.7 2.1 3.3 4.5 5.3 6-4◦

32 CHAPTER 1: PRELIMINARIES

1.3 State-of-the-art in an area

For advanced and deeper learning of the chapters of this volume, for
those, who will not be satisfied with rather elementary level, some
papers and books can be recommended. A part of them is quite acces-
sible as a material for the first reading, while others have a character
of originally performed research. In the last case, a possibility to be in
touch with that, what is done like a mathematical theory in computer
science, is left. For this purpose best of all is to use the originally
published works in its author’s edition, to read and understand which
it can be quite possible to get ready by solving the recommended
tasks.

Pioneer for the computer science research has been conducted
by J. McCarthy (J. McCarthy, [101]). He constructed a language
for list processing Lisp, which is quite object-oriented and, in addi-
tion, a functional programming language. During the years, Lisp was
one of the most popular programming systems in an area of artificial
intelligence, getting acquainted the name of ‘knowledge assembler’.
Note, that Lisp is a computer implementation of λ-calculus, giving to
a programmer practically all the means of this powerful mathematical
theory. An effective implementation of the Lisp-interpreter, done by
A.G. Panteleev (A.G. Panteleev, [32]; M.A. Bulkin, Yu.R. Gabovich,
A.G. Panteleev, [4]), have revealed a lot of details, concerning the
implementation of object and functional languages, and the ways and
methods of their efficient usage. The methods of implementing the
mechanisms of binding the variables, the data structures, the pro-
cedures, the functions and recursion, established in works on this
project, have been stimulated the entire direction of research activity
in a programming.

In the books (L.T. Kuzin, [25], [26]) it can be found a short and
acceptable for an engineer introduction to the notations in λ-calculus
and combinatory logic. A complete covering of all the spectrum of
mathematical ideas is in the book (H. Barendregt, [2]), however, to

CHAPTER 1: PRELIMINARIES 33

learn it, a preliminary mathematical background is needed. Clas-
sic, very detailed, transparent and circumstantial discussion of log-
ical means of applicative computational systems, given in the book
(H. Curry, [6]), will help to form a vision, possibly, of all the object-
oriented approach, which was developed in the mathematical bran-
ches of computer science. It ought to have in mind, that due to the
efforts of H. Curry, combinatory logic has been formulated not only as
a general mathematical discipline, but as the necessary foundation for
computer studies.

Different assistance in methods of solving the problems, giving
insight for applications of applicative computational systems (ACS),
can be found, e.g., in (A.A. Stogniy, V.E. Wolfengagen, V.A. Kushni-
rov, V.I. Sarkisyan, V.V. Araksyan, and A.V. Shitikov, [39]), (V.E. Wol-
fengagen,[41]), (V.E. Wolfengagen and V.Ya. Yatsuk, [42]), (V.E. Wol-
fengagen and K.A. Sagoyan, [43]), (V.E. Wolfengagen, K.E. Aksenov,
L.Yu. Ismailova, and T.V. Volshanik, [44]), (A.A. Ilyukhin, L.Yu. Is-
mailova, and Z.I. Shargatova, [12]), (K.E. Aksenov, O.T. Balovnev,
V.E. Wolfengagen, O.V. Voskresenskaya, A.V. Gannochka, and
M.Yu. Chuprikov, [1]).

Research work (V.E. Wolfengagen and V.Ya. Yatsuk, [45]) reflects
the early state-of-the-art and contains the detailed constructions for
several variants of applied applicative systems, valuable for solving
the applied problems aimed to development of information systems.

A distinctive place is occupied by the work (D. Scott, [115]). Its
soundness and a range of influence for several generations of the-
oreticians in computer science hardly ever might be overestimated.
Evidently, far not all the ideas from this paper have found its imme-
diate application. In particular, an idea to construe the systems of
combinators for special classes of computations stimulates the deep
and vital studies.

The papers (G. Cousineau, P.-L. Curien, and M. Mauny [75]),
(P.-L. Curien, [76], [77]) contain the constructing of a special kind
of combinatory logic called categorical combinatory logic. It gave

34 CHAPTER 1: PRELIMINARIES

a foundation for constructing the abstract machine, which is both
an enhanced notion of computation and self standing programming
system, aimed to pursue the research in an area of programming.

Several supplementary works, given in bibliography, will assist
to start with your own research in various applied areas, using the
possibilities of applicative computational systems. In (R.B. Banerji,
[62]), (V. Wolfengagen, [128]) the applications in artificial intelligence
could be found.

A particular attention could be paid to the research papers by
D. Scott (D. Scott, [110], [111], [112], [113], [114], [115], [116], [117],
[118]). These (and many other) of his works gave not only the math-
ematical foundations, but all the contemporary system of thinking in
computer science. Computation theory, semantic of programming
languages, object based computations – this is far not complete list
of research directions, inspired by this mathematician.

An introduction to mathematical problems of combinatory logic
and λ-calculus can be found in a series of papers (A.S. Kuzichev,
[16],[17], [18], [19],[20], [21], [22], [23],[24]). In theses papers a re-
search experience of expressive power of the systems with operators
of application and (functional) abstraction is covered. The elementary
basics of combinatory logic are covered in (J. Hindley, H. Lercher, and
J. Seldin, [93]).

The research works by N. Belnap could be useful in constructing
a theory of computattional information systems (N. Belnap, [3], [64],
[65]). Similar topics are covered in (M. Coppo, M. Dezani, G. Longo,
[74]).

The programming systems in terms of objects, based on applica-
tive computations, with various details are covered in [5], [54], [59],
[60], [67], [84], [85], [91], [95], [102], [105], [124]. As an introduction
into the spectrum of ideas, how to develop a semantic of programming
languages, the book (V.E. Wolfengagen, [51]) can be used.

As a source work – for supercombinator programming, – a par-
ticular attention could be paid to the research (R.J.M. Hughes, [95])

CHAPTER 1: PRELIMINARIES 35

and (S.L. Peyton Jones, [105]).
The advance in formal methods is in (R. Amadio and P.-L. Curien,

[56]), (J. Lambek and P. Scott, [99]), and, in application to event-
driven computations, is in (V. Wolfengagen, [130]).

The rest of the citations, given in the bibliography, could assist to
get intuitive vision in the adjacent to mentioned here questions and
start with your own research in applicative computing.

1.4 Typical task

General advice to solving a typical task.

Task formulation. Derive via K and S the object with combinatory
characteristic:

Ia = a, (I)

using postulates α, β, µ, ν, σ, τ , ξ of λ-conversion.

Solution.

I–1. List the postulates, which determine a relation of conver-
sion ‘=’ :

(α) λx.a = λz.[z/x]a; (β) (λx.a)b = [b/x]a;

(ν)
a = b

ac = bc
; (µ)

a = b

ca = cb
;

(ξ)
a = b

λx.a = λx.b
; (τ)

a = b; b = c

a = c
; (σ)

a = b

b = a
.

I–2. Define the combinatory characteristics of the objects K
and S:

v (Kxy) = v x, (K)
v (Sxyz) = v (xz(yz)), (S)

which are expressible in λ-calculus by the equalitiesK = λxy.x
and S = λxyz.xz(yz).

36 CHAPTER 1: PRELIMINARIES

I–3. Using schemes (K) and (S), get confidence in that:

a = Ka(Ka) (K)
= SKKa. (S)

Checking. Make sure, that actually I = SKK. Let v = empty
(empty object).

I–1. SKKa = Ka(Ka), because in scheme (S) can be set
x = K, y = K, z = a. Then it is evident, that by postulate (α):

Sxyz = SKKa, xz(yz) = Ka(Ka), SKKa = Ka(Ka).

I–2. Using in a similar way the scheme (K), conclude, that
Ka(Ka) = a.

I–3. By rule of transitivity (τ), if the equalities SKKa =
Ka(Ka) and Ka(Ka) = a are valid, then SKKa = a.

Answer. Object I with given combinatory characteristic Ia = a is
SKK, i.e. I = SKK.

CHAPTER 1: PRELIMINARIES 37

1.5 Variants of task

‡ Work 1. Derive via K and S the objects with given combinatory
characteristics:

1) Babc = a(bc),
2) Cabc = acb,
3) Wab = abb,
4) Ψabcd = a(bc)(bd),
5) C [2]abcd = acdb,
6) C[2]abcd = adbc,

7) B2abcd = a(bcd),
8) Y a = a(Y a) (prove, that Y = WS(BWB)),
9) C [3]abcde = acdeb,
10) C[3]abcde = aebcd,

11) B3abcde = a(bcde),
12) Φabcd = a(bd)(cd).

‡ Work 2. Determine a combinatory characteristic of the following
objects:

1) (λx.(P (xx)a))(λx.(P (xx)a)) = Y,
2) Y = S(BWB)(BWB),

where B = λxyz.x(yz), S = λxyz.xz(yz), W = λxy.xyy,
3) Y = WS(BWB),

where Wab = abb, Sabc = ac(bc), Babc = a(bc),
4) Y0 = λf.X(X), where X = λx.f(x(x)),
5) Y1 = Y0(λy.λf.f(y(f))),

where Y0 = λf.X(X), X = λx.f(x(x)).
(Hint: prove, that Yia = a(Yia).)

38 CHAPTER 1: PRELIMINARIES

‡Work 3. Prove, that:

1) X = λx.Xx, x 6∈ X,
2) Y0 = λf.f(Y0(f)), where Y0 = λf.X(X),

X = λx.f(x(x)),
3) Y1 = λf.f(Y1(f)), where Y1 = Y0(λy.λf.f(y(f))),

Y0 = λf.X(X), X = λx.f(x(x)).

‡Work 4. Determine a combinatory characteristic of the following
objects1 (prove it!):

1) Ξ = C(BCF)I,
2) F = B(CB2B)Ξ,
3) P = ΨΞK,
4) & = B2(CΞI)(C(BB2P)P),
5) ∨ = B2(CΞI)(C(B2B(B(Φ&))P)P),
6) ¬ = CP (ΠI),
7) ∃∗ = B(W (B2(ΦP)CΞ))K, where ∃[a] = ∃∗[a], ∃ = ∃[I].

Hints.

1) Cabc = acb, Ia = a, Babc = a(bc).
2) Babc = a(bc), B2abcd = a(bcd), Ξab = FabI.
3) Ψabcd = a(bc)(bd), Kab = a.
4) Babc = a(bc), B2abcd = a(bcd), Ia = a, Cabc = acb.
5) Babc = a(bc), B2abcd = a(bcd), Ia = a,

Φabcd = a(bd)(cd), &ab = Ξ(B2(Pa)Pb)I.
6) Cabc = acb, Ia = a, Π = ΞWΞ, Wab = abb.
7) Prove, that ∃[b]a = P (Ξa(Kb))b.

1 Notations: P – implication, Ξ – formal implication, F – operator of function-
ality, & – conjunction, ∨ – disjunction, Π – universal quantifier, ¬ – negation, ∃ –
existential quantifier. The objects Ξ, F , P , &, ∨ are two placed, and the objects ¬,
Π, ∃ are one placed.

CHAPTER 1: PRELIMINARIES 39

Use the following equalities:

Babc = a(bc), B2abcd = a(bcd), Wab = abb,
Cabc = acb, Φabcd = a(bd)(cd).

‡ Work 5. Verify the validity of the the following combinatory char-
acteristics:

1) S(KS)Kabc = a(bc),
2) S(BBS)(KK)abc = acb,
3) B(BW (BC))(BB(BB))abcd = a(bc)(bd),
4) B(BS)Babcd = a(bd)(cd).

Hint. Kab = a, Sabc = ac(bc), Babc = a(bc), Cabc = acb, Wab =
abb.

‡Work 6. Perform the following target studies:

6-1◦ study a disassembling of terms into the basis I, K, S;

6-2◦ study a disassembling of terms into the basis I, B, C, S;

6-3◦ express definitions of the functions, using a fixed point combi-
nator Y ;

6-4◦ study the properties of the function:

list1 a g f x = if null x
then a
else g(f(car x)) (list1 a g f(cdr x));

6-5◦ establish the isomorphism between a cartesian closed category
(c.c.c.) and applicative computational system (ACS);

6-6◦ derive the mapping, which corresponds to the currying mapping
of a function (for n-ary function);

6-7◦ derive the main properties of Karoubi’s shell;

40 CHAPTER 1: PRELIMINARIES

6-8◦ determine the encoding of a product of n objects (n ≥ 5) by
terms of type free λ-calculus and derive the corresponding ex-
pressions for projections;

6-9◦ represent the main functions of the applicative programming
language Lisp by means of λ-calculus and combinatory logic.

Formulation of the tasks for corresponding target studies in the
Work 6, p. 39.

6-1◦ Let the definition of term λx.P be given by induction on con-
structing P :

1.1) λx.x = I,
1.2) λx.P = K P, if x 6∈ FV (P),
1.3) λx.P ′P ′′ = S(λx.P ′)(λx.P ′′).

Exclude all the variables from the following λ-expressions:

λxy.xy, λfx.fxx, f = λx.B(f(Ax)).

6-2◦ Let the definition of term M such, that x ∈ FV (M), be given
by induction on constructing M :

2.1) λx.x = I,

2.2) λx.PQ =



(a) BP (λx.Q), if x 6∈ FV (P)
and x ∈ FV (Q),

(b) C(λx.P)Q, if x ∈ FV (P)
and x 6∈ FV (Q),

(c) S(λx.P)(λx.Q), if x ∈ FV (P)
and x ∈ FV (Q).

Exclude all the variables from the following λ-expressions:

λxy.xy, λfx.fxx, f = λx.B(f(Ax)).

CHAPTER 1: PRELIMINARIES 41

6-3◦ Using the fixed point function Y , represent the following defini-
tions of functions, given by examples:

length(a5, a2, a6) = 3,
sum(1, 2, 3, 4) = 10,
product(1, 2, 3, 4) = 24,
append(1, 2)(3, 4, 5) = (1, 2, 3, 1, 1),
concat((1, 2), (3, 4), ()) = (1, 2, 3, 4),
map square(1, 2, 3, 4) = (1, 4, 9, 16).

For the examples, given above, perform a detailed verification of
the steps of computations.

6-4◦ Using definition of the function list1 and the following defi-
nitions: Ix = x, Kxy = x, postfix x y = append y(ux),
where (ux) is the notation of a singular list, containing a single
element x, express the functions, given below:

(a) length, sumsquares, reverse, identity;

(b) sum, product, append, concat, map.

6-5◦ Derive the following equalities:

h = ε◦ < (Λh) ◦ p, q >,
k = Λ(ε◦ < k ◦ p, q >),

where:

[x, y] = λr.rxy,
< f, g > = λt.[f(t), g(t)] = λt.λz.z(ft)(gt),

h : A×B → C,
k : A→ (B → C),

εBC : (B → C)×B → C, x : A, y : B,
ΛABC : (A×B → C)→ (A→ (B → C)),

p : A×B → A,
q : A×B → B,

ε◦ < k ◦ p, q > : A×B → C.

42 CHAPTER 1: PRELIMINARIES

6-6◦ Concerning a family of functions h:

h2 : A×B → C,
h3 : A×B × C → D,
h4 : A×B × C ×D → E,
. . . : . . . ,

find the family of mappings

ΛABC , Λ(A×B)CD, Λ(A×B×C)DE , . . . ,

which make currying of the functions above, i.e. transform the
functions from “operator” form to applicative form.

6-7◦ By Karoubi’s shell we mean the category, which contains for
a ◦ b = λx.a(bx):

sets of

objects: {a | a ◦ a = a},
morphisms: Hom(a, b) = {f | b ◦ f ◦ a = f},

and morphisms of

identity: id a = a,
composition: f ◦ g.

Assume, that

[x, y]≡ λr.rxy,
< f, g >≡ λt.[f(t), g(t)] ≡ λt.λz.z(ft)(gt).

Verify, that:

h = ε◦ < (Λh) ◦ p, q >, k = Λ(ε◦ < k ◦ p, q >),

CHAPTER 1: PRELIMINARIES 43

where

h : A×B → C,
k : A→ (B → C),

εBC : (B → C)×B → C, x : A, y : B,
ΛABC : (A×B → C)→ (A→ (B → C)),

p : A×B → A,
q : A×B → B,

ε◦ < k ◦ p, q > : A×B → C.

(Hint. Use the encoding of functions as f : A → B by the
termsB◦f ◦A = λx.B(f(Ax)). Next, use the equality: A◦A =
A(= λx.A(A(x))). Take into account, that Λh = λxy.h[x, y].)

6-8◦ Derive a term of lambda-calculus, which corresponds to the
product of n objects. In addition, derive such n terms, that
behave as the projections.
(Hint. In case of n=2:

A0 ×A1 = λu.[A0(uK), A1(u(KI))],
π2

0 = λu.(A0 ×A1)(u)K,
π2

1 = λu.(A0 ×A1)(u)(KI).)

6-9◦ Represent via combinators the following set of function of the
language Lisp:

{Append, Nil, Null, List, Car, Cdr}.

(Hint. For Append ≡_ and for Nil ≡<>:

(1) A _ (B _ C) = (A _ B) _ C
(2) A _<>=<>_ A = A

(3) Null A=
{

1, if A = Nil,
0, if A 6= Nil,

(4) List x=< x >,
(5) Car < x1, x2, . . . , xn >= x1,
(6) Cdr < x1, x2, . . . , xn >=< x2, . . . , xn > .)

44 CHAPTER 1: PRELIMINARIES

1.6 A recommended order of solving the tasks

1) By a variant number, select out the corresponding formulation of a
task.
2) Learn of the solution of a typical task, included in the text. Sim-
ilar to the solution of a typical task, perform the steps of the needed
derivation.
3) Check the correctness of the obtained result (answer), performing
the computations in a reversed order.

Chapter 2

Derivation of Object

A question what are the ‘data’ or what is the ‘program’ is so nice
that we would not even make an attempt to answer it. It’s possible
to assume that “a data structure complexity is exchanging for an
algorithmic complexity”, but this needs to determine what are the
representations for algorithm and data structure. Any case, usually
the programs are observed vs data, but not always.

Possibly, of course, that there is a need to deal with the objects.
Then a chance to consider programs by the same way as data still
exists.

One of the most important issues in combinatory logic is to deter-
mine how to derive from the available objects an object with the given
properties by applying the known combining modes. At a starting
stage only three objects-combinators are available: I, K, S, along
with their properties given by their characteristic equalities. For rea-
sons of intuitive clarity, assume that there is a programming system
with these three instructions, using only which a rather rich in ex-
pressive power programming system will be constructed. A resulting
system will contain only the objects-combinators.

45

46 CHAPTER 2: DERIVATION OF OBJECT

2.1 Principle of combinatory completeness

2.1.1 Combinatory characteristic

As known, the system of combinators I, K, S allows to construe
such a programming system, or, in other words, it has a property of
combinatory completeness.

Definition 2.1 (combinatory completeness). The set of combina-
tors X1, . . . , Xm, which is determined by the proper conversions,
is assumed combinatory, or functionally complete, if for any ob-
ject X , combined from distinct variables x1, . . . , xn, there is such a
combinator U , expressible in terms of X1, . . . , Xm, and such, that

Ux1 . . . xn = X. (U)

The property (U) can be considered as a characteristic rule for
conversion of combinator U , or combinatory characteristic of U .

Thus, the system I, K, S gives a guarantee of possibility to con-
strue such an object U , i.e. it is possible to construe, or

derive a “program”, or “procedure”U , which, when it is called
on the actual parameters x1, . . . , xn, results in X – and this
is a combination of variables x1, . . . , xn.

While dealing with an applicative computational system, note the
conventions concerning the notations in use. Assume by agreement
that

U x1x2 . . . xn ≡ ((. . . ((︸ ︷︷ ︸
n ones

U x1)x2) . . .)xn),

i.e. the omitted parentheses are to be restored by association to the
left.

Example 2.1.
Ux1x2x3 ≡ (((Ux1)x2)x3).

CHAPTER 2: DERIVATION OF OBJECT 47

2.1.2 Systems of concepts

Untyped combinatory logic is a main mathematical mean to construe
the calculi for objects, which are abstract in their nature. In fact,
combinatory logic is a pure calculus of concepts, making it possible
by need to generate or modify “on the fly” its own system of con-
cepts. Studying the systems of “variable” concepts has a priority
in all the valid applied areas including the development of object-
oriented programming systems. In spite of visible simplicity, – in fact,
combinatory logic could be used just after learning only the combi-
nators K and S, – a deep understanding of all the possibilities within
combinatory calculus needs a special computational experience. First
of all this is caused by namely the applicative style of notations in use.
However, this is not unexpected: a forty years practical experience
with programming system Lisp had already prepared a ground for re-
thinking of “minimal theoretical knowledge of programmer” which
contains combinatory logic as well as λ-calculus and some other top-
ics from logic, traditionally mentioned as non-classic logics.

2.1.3 Combinatory completeness

Combinatory logic is a branch of mathematical logic which stud-
ies combinators and their properties. More details can be found in
the book (H. Curry, [6]). Combinators and the similar operators can
be defined in terms of λ-conversion, and that is why the diversity of
calculi of λ-conversion is assumed as a part of combinatory logic.

Principle of combinatory completeness

The calculi of λ-conversion and systems of combinatory logic are
combinatory complete theories.

Definition 2.2 (combinatory completeness). Combinatory com-
pleteness in the calculi of λ-conversion is determined by the axiom

48 CHAPTER 2: DERIVATION OF OBJECT

scheme (β):

(λx.a)b = [b/x]a, (β)

where λ is an abstraction operator, expression ‘[b/x]a’ denotes a re-
sult of substituting object b for each free occurrence of variable x in
object a, and ‘=’ is a symbol of relation of conversion.

Given an arbitrary object a in the systems of combinatory logic, a
new object can be constructed

U ≡ [x1, . . . , xn]a,

via K, S, I, where [x1, . . . , xn] for n > 0 has a role of abstraction
operator by the variables x1, . . . , xm. The principle of combinatory
completeness:

Ub1 . . . bn ≡ ([x1, . . . , xn]a)b1 . . . bn
= [b1, . . . , bn/x1, . . . , xn]a,

can be proved for abstraction operator, where the expression ‘[b1, . . . ,
bn/x1, . . . , xn]a’ denotes a result of simultaneous substituting the
objects b1, . . . , bn in the object a instead of the corresponding occur-
rences of graphically distinct variables x1, . . . , xn for n > 0.

An intuitive interpretation is as follows:

“procedure” U with a formal, or substitutional parameters

x1, . . . , xn

is called with the actual parameters b1, . . . , bn, resulting in

[b1, . . . , bn/x1, . . . , xn]a.

CHAPTER 2: DERIVATION OF OBJECT 49

2.1.4 Elementary combinatory logic

Systems of combinators serve the same functions that the systems of
λ-conversion, but without using the bound variables. Thus, the tech-
nical difficulties caused by a substitution and congruence, disappear.

Introducing a concept by the combinator

Combinators can be used to determine a concept which corresponds
to some law. In other words, This law is comprehended to a concept
– this is one of the most important virtues of combinatory logic as a
metatheory.

Consider a commutativity law in arithmetics:

∀x, y.x+ y = y + x.

This law can be rewritten without any usage of bound variables x and
y by defining

∀x, y.A(x, y) = x+ y

and introducing metaoperator C:

∀f, x, y.(C(f))(x, y) = f(y, x).

This law is written as follows:

CA = A.

Metaoperator C can be called as a ‘combinator’ which repre-
sents a commutativity law for the operation A.

In below, instead of indicating these metaoperators in bold face, the
italics is used.

Exercise 2.1. Write, without using the variables, a commutativity
law for multiplication.

50 CHAPTER 2: DERIVATION OF OBJECT

Simplest combinators

To begin with, list the combinators which are most usable in practice.

Identity. A simplest combinator is the identity combinator I :

If = f.

Compositor. Elementary compositor :

Bfgx = f(gx)

determines a composition of the functions f and g.

Duplicator. Elementary duplicator W :

Wfx = fxx

duplicates the second argument.

Permutator. The combinator , mentioned earlier, is called elemen-
tary permutator and is re-written as C:

Cfxy = fyx.

Connector. Elementary connector S is defined by the rule:

Sfgx = fx(gx).

Cancellator. Elementary cancellator

Kcx = c

determines the constant (constant function) as a function of x.

CHAPTER 2: DERIVATION OF OBJECT 51

Example 2.2. Let f ≡ sin be the function ‘sine’, g ≡ exp5 be the
function of fifth power. Then Bfg is the sine of x to the fifth power:

Bfgx = B sin exp5 x = sin(exp5 x) = sin x5,
Bgf is the fifth power of sine,
Bgfx = B exp5 sin x = exp5(sin x) = sin5x.

Example 2.3. If Q is the second power operation, then BQQ or
WBQ is the fourth power operation:

WBQ x
W= BQQ x

B= Q(Q x) = x4.

Example 2.4. From the equation (conversion):

B(Bf) g x y = Bf (gx) y = f(gxy),

it follows, that if f is a differentiation operator D, then B(Bf) is that
for the function of two arguments:

B(BD) g x y = BD (gx) y = D (gxy).

2.2 Deriving main combinators: tasks

Let now to acquire the technical experience of establishing (and case
studies) of a newly generated concept. Select the practically used
combinators as those concepts. The general problem is to establish
the concept/combinator by the specified combinatory characteris-
tics (see p. 46).

Task 2.1. Specify the combinator B .

Task formulation. Specify the object with the given combinatory
characteristics by K and S:

Babc = a(bc), (B)

using the postulates α, β, µ, ν, σ, τ , ξ from the calculus of λ-
conversions.

52 CHAPTER 2: DERIVATION OF OBJECT

Solution.

B–1. Give the formulation of the postulates for relation ‘=’:

(α) λx.a = λz.[z/x]a; (β) (λx.a)b = [b/x]a;

(ν)
a = b

ac = bc
; (µ)

a = b

ca = cb
;

(ξ)
a = b

λx.a = λx.b
; (τ)

a = b; b = c

a = c
; (σ)

a = b

b = a
.

B–2. Establish the combinatory characteristics of the objects
K and S:

x(Kyz) = xy, (K)
x(Syzw) = x(yw(zw)), (S)

which within the λ-calculus are expressed by: K = λxy.x and
S = λxyz.xz(yz).

Indeed, by postulate (β):

x(Kyz) ≡ x((λxy.x)︸ ︷︷ ︸
≡K

yz)
(β)
= xy,

x(Syzw) ≡ x((λxyz.xz(yz))︸ ︷︷ ︸
≡S

yzw)
(β)
= x(yw(zw)),

B–3. The schemes (K) and (S) result in:

a(bc) = Kac(bc) (K)
= S(Ka)bc (S)
= KSa(Ka)bc (K)
= S(KS)Kabc. (S)

Checking. A verification that B = S(KS)K is given below.

CHAPTER 2: DERIVATION OF OBJECT 53

B–1. S(KS)Kabc = KSa(Ka)bc, because in the scheme (S)
it can be assumed that y ≡ (KS), z ≡ K, w ≡ a. Then:

Syzw = S(KS)Ka, yw(zw) = (KS)a(Ka),

i.e. S(KS)Ka = (KS)a(Ka). Omitting the non-significant
parentheses results in S(KS)Ka = KSa(Ka). Twice applying
of postulate (ν) to this expression, results in: S(KS)Kabc =
KSa(Ka)bc.

B–2. The same reasons by scheme (K) give KSa = S. Tak-
ing into account postulate (ν), obtainKSa(Ka)bc = S(Ka)bc.

B–3. The same way successive applying of schemes (S) and
(K), and postulate (ν) and omitting the nonsignificant paren-
theses leads to the equations:

S(Ka)bc = Kac(bc); (Kac)bc = a(bc).

B–4. Repeatedly using the transitivity (τ), obtain
S(KS)Kabc = a(bc). (This equation is valid for if S(KS)Kabc
=KSa(Ka)bc andKSa(Ka)bc= S(Ka)bc, then S(KS)Kabc
= S(Ka)bc etc.)

Answer. The object B with a combinatory characteristic Babc =
a(bc) is S(KS)K, i.e. B = S(KS)K.

Task 2.2. Specify an expression for combinator C.

Task formulation. Using K, S and other predefined objects derive
the object with combinatory characteristic:

Cabc = acb, (C)

by postulates α, β, µ, ν, σ, τ , ξ of λ-calculus.

Solution.

54 CHAPTER 2: DERIVATION OF OBJECT

C–1. List the postulates which determine a conversion rela-
tion ‘=’ (see task given above).

C–2. Recall the combinatory characteristics of the objects in
use:

(K) Kxy = x, (S) Sxyz = xz(yz),
(I) Ix = x, (B) Bxyz = x(yz).

Note that the scheme (B), derived in task 2.1 on p. 51 is added
to already known schemes (K), (S) (I). As was shown, this
newly derived scheme can be expressed in terms of schemes
(K) and (S).

C–3. Applying these schemes to (acb), obtain:

acb = ac(Kbc) (by scheme (K))
= Sa(Kb)c (by scheme (S))
= B(Sa)Kbc (by scheme (B))
= BBSaKbc (by scheme (B))
= BBSa(KKa)bc (by scheme (K))
= S(BBS)(KK)abc. (by scheme (S))

Using transitivity postulate (τ), obtain:

S(BBS)(KK)abc = acb,

i.e. C = S(BBS)(KK).

Answer. The object with a combinatory characteristic Cabc = acb is
C = S(BBS)(KK).

Task 2.3. Derive combinator W .

Task formulation. Derive combinatorW with the following charac-
teristic:

Wab = abb. (W)

CHAPTER 2: DERIVATION OF OBJECT 55

Solution.

W–1. Write down the characteristics of objects in use as fol-
lows:

(S) Sxyz = xz(yz), (I) Ix = x, (C) Cxyz = xzy.

W–2. Apply these schemes to abb:

abb = ab(Ib) (by (I))
= SaIb (by (S))
= CSIab. (by (C))

Using the postulates, obtain: CSIab = abb. Thus, W = CSI .

W–3. The additional two variants of derivations for W are as
follows:

abb = ab(Kba) abb = ab(Kb(Kb))
= ab(CKab) = ab(SKKb)

Sa(CKa)b = Sa(SKK)b
= SS(CK)ab = Sa(K(SKK)a)b

= SS(K(SKK))ab.

Answer. The objectW with a characteristicWab = abb is as follows:
W = CSI (= SS(CK) = SS(K(SKK))).

Task 2.4. Derive the expression for combinator Ψ.

Task formulation. Derive combinator Ψ with the following charac-
teristic:

Ψabcd = a(bc)(bd). (Ψ)

Solution.

Ψ–1. List the postulates for conversion relation.

56 CHAPTER 2: DERIVATION OF OBJECT

Ψ–2. Recall the combinatory characteristics of the objects in
use:

(C) Cxyz = xzy, (W) Wxy = xyy, (B) Bxyz = x(yz).

Ψ–3. Applying these schemes to a(bc)(bd), obtain:

a(bc)(bd) = B(a(bc))bd (B)
= BBa(bc)bd (B)
= B(BBa)bcbd (B)
= BB(BB)abcbd (B)
= C(BB(BB)ab)bcd (C)
= BC(BB(BB)a)bbcd (B)
= W (BC(BB(BB)a))bcd (W)
= BW (BC)(BB(BB)a)bcd (B)
= B(BW (BC))(BB(BB))abcd. (B)

Using the needed postulates, conclude that:
B(BW (BC))(BB(BB))abcd = a(bc)(bd), i.e.
Ψ = B(BW (BC))(BB(BB)).

Answer. The object Ψ with the combinatory characteristic Ψabcd =
a(bc)(bd) is Ψ = B(BW (BC))(BB(BB)).

Task 2.5. Derive the expression for combinator B2.

Task formulation. Derive via K and S and other predefined objects
the object with the following combinatory characteristic:

B2abcd = a(bcd). (B2)

Solution.

B2–1. List the postulates for relation of conversion.

B2–2. Recall a combinatory characteristic of the object in use:
(B) Bxyz = x(yz).

CHAPTER 2: DERIVATION OF OBJECT 57

B2–3. Applying this scheme to a(bcd), obtain:

a(bcd) = Ba(bc)d (by scheme (B))
= B(Ba)bcd (by scheme (B))
= BBBabcd. (by scheme (B))

Using the postulates, obtain: BBBabcd = a(bcd), i.e. B2 = BBB.

Answer. The object B2 with a combinatory characteristic B2abcd =
a(bcd) is B2 = BBB.

Task 2.6. Specify the expression for combinator B3.

Task formulation. Derive via K and S and other predefined objects
an object with combinatory characteristic:

B3abcde = a(bcde). (B3)

Solution.

B3–1. Use the postulates which determine a relation of con-
version.

B3–2. Combinatory characteristics of the objects in use are
the following: (B) Bxyz = x(yz), (B2) B2xyzw = x(yzw).

B3–3. Using these schemes to a(bcde), obtain:

a(bcde) = B2a(bc)de (by scheme (B2))
= B(B2a)bcde (by scheme (B))
= BBB2abcde. (by scheme (B))

Using the postulates, obtain: BBB2abcde = a(bcde), i.e.
B3 = BBB2.

Answer. The objectB3 with a combinatory characteristicB3abcde =
a(bcde) is B3 = BBB2.

58 CHAPTER 2: DERIVATION OF OBJECT

Task 2.7. Specify the expression for combinator C [2].

Task formulation. Derive via K and S and other predefined objects
the object with a combinatory characteristic:

C [2]abcd = acdb. (C [2])

Solution.

C [2]–1. Use the postulates, which determine a relation of con-
version.

C [2]–2. Recall the combinatory characteristics of the objects
in use:

(B) Bxyz = x(yz), (C) Cxyz = xzy.

C [2]–3. Using these schemes with acdb, obtain:

acdb = C(ac)bd (by scheme (C))
= BCacbd (by scheme (B))
= C(BCa)bcd (by scheme (C))
= BC(BC)acbd. (by scheme (B))

From the postulates, conclude: BC(BC)acbd = acbd, i.e C [2] =
BC(BC).

Answer. The object C [2] with given combinatory characteristic
C [2]abcd = acbd is C [2] = BC(BC).

Task 2.8. Specify an expression for combinator C[2].

Task formulation. Derive, using K and S and other predefined ob-
jects an object with combinatory characteristic:

C[2]abcd = adbc. (C[2])

CHAPTER 2: DERIVATION OF OBJECT 59

Solution.

C[2]–1. Use the needed postulates.

C[2]–2. Write down the combinatory characteristics of the ob-
jects in use:

(B2) B2xyzw = x(yzw), (C) Cxyz = xzy.

C[2]–3. Using these schemes with adbc, obtain:

adbc = Cabdc (by scheme (C))
= C(Cab)cd (by scheme (C))
= B2CCabcd. (by scheme (B2))

From the postulates, obtain: B2CCabcd = adbc, i.e. C[2] = B2CC.

Answer. The object C[2] with given combinatory characteristic
C[2]abcd = adbc is C[2] = B2CC.

Task 2.9. Derive an expression for combinator C [3].

Task formulation. Derive using K and S and other predefined ob-
jects an object with combinatory characteristic:

C [3]abcde = acdeb. (C [3])

Solution.

C [3]–1. Select out the needed postulates.

C [3]–2. Write down the combinatory characteristics of objects
in use:

(C) Cxyz = xzy, (B) Bxyz = x(yz),
(C [2]) Cxyzw = xzwy.

60 CHAPTER 2: DERIVATION OF OBJECT

C [3]–3. Using these schemes to acdeb, obtain:

acdeb = C [2](ac)bde (by scheme (C [2]))
= BC [2]acbde (by scheme (B))
= C(BC [2]a)bcde (by scheme (C))
= BC(BC [2])abcde. (by scheme (B))

From the postulates, obtain: BC(BC [2])abcde = acdeb, i.e. C [3] =
BC(BC [2]).

Answer. The objectC [3] with a combinatory characteristicC [3]abcde
= acdeb is C [3] = BC(BC [2]).

Task 2.10. Specify an expression for combinator C[3].

Task formulation. Derive via K and S and other predefined objects
an object with combinatory characteristic:

C[3]abcde = aebcd. (C[3])

Solution.

C[3]–1. Select out the postulates.

C[3]–2. Write the combinatory characteristics of objects in
use:

(B2) B2xyzw = x(yzw), (C) Cxyz = xzy,
(C[2]) C[2]xyzw = xwyz.

Using these schemes with aebcd, obtain:

aebcd = Cabecd (by scheme (C))
= C[2](Cab)cde (by scheme (C[2]))
= B2C[2]Cabcde. (by scheme (B2))

From the postulates, obtain: B2C[2]Cabcde = aebcd, i.e. C[3] =
B2C[2]C.

CHAPTER 2: DERIVATION OF OBJECT 61

Answer. The object C[3] with a combinatory characteristic C[3]abcde
= aebcd is C[3] = B2C[2]C.

Task 2.11. Specify an expression for combinator Φ.

Task formulation. Derive using K and S and other predefined ob-
jects an object with combinatory characteristic:

Φabcd = a(bd)(cd). (Φ)

Solution.

Φ–1. Use the postulates for a relation of conversion.

Φ–2. The combinatory characteristics of the objects in use are
as follows:

(B2) B2xyzw = x(yzw), (B) Bxyz = x(yz),
(S) Sxyz = xz(yz).

Φ–3. Using these schemes with a(bd)(cd), obtain:

a(bd)(cd) = Babd(cd) (by scheme (B))
= S(Bab)cd (by scheme (S))
= B2SBabcd. (by scheme (B2))

From the postulates, obtain: B2SBabcd = a(bd)(cd), i.e. Φ =
B2SB.

Answer. The object Φ with a combinatory characteristic Φabcd =
a(bd)(cd) is Φ = B2SB.

Task 2.12. Specify an expression for combinator Y .

Task formulation. Derive using K and S and other predefined ob-
jects an object with combinatory characteristic:

Y a = a(Y a). (Y)

62 CHAPTER 2: DERIVATION OF OBJECT

Solution.

Y –1. Use the postulates for a relation of conversion.

Y –2. Write down the combinatory characteristics of the ob-
jects in use:

(S) Sxyz = xz(yz), (W) Wxy = xyy, (B) Bxyz = x(yz).

Y –3. Prove, that Y = WS(BWB).

Y a = WS(BWB) a (by assumption)
= S(BWB)(BWB) a (by scheme (W))
= BWBa(BWBa) (by scheme (S))
= W (Ba)(BWBa) (by scheme (B))
= Ba(BWBa)(BWBa) (by scheme (W))
= a(BWBa(BWBa)) (by scheme (B))
= a(S(BWB)(BWB) a) (by scheme (S))
= a(WS(BWB) a) (by scheme (W))
= a(Y a). (by assumption)

Hence, one of the representations of object Y is as follows: Y =
WS(BWB).

Answer. The object Y with a combinatory characteristic Y a =
a(Y a) is Y = WS(BWB).

2.3 Historical remark

Purely chronologically, combinatory logic as a mathematical mean
was introduced by Moses Shönfinkel in 1920. His paper was pub-
lished in 1924 with a title “On building blocks of mathematical logic”.
In those years an idea to reduce logic to simplest possible basis of
primitives was attractive, however, in our days this seems not so im-
portant. It has been shown in this paper that the logic can be avoided

CHAPTER 2: DERIVATION OF OBJECT 63

of the usage of bound variables. The higher order functions made it
possible to reduce logic to a language with a single constructor –
applying function to argument, – and three primitive constants –
U , C (which in our days is denoted as K) and S. Function is called
‘higher order function’, if its argument can in turn be a function, or
results in a function. All these three constants are the higher order
functions. The formal definitions are as follows.

Constant C, defined by

Cxy = (C(x))(y) = x,

is a constant function, which for any x returns x.
Constant S, defined by

Sfgx = ((S(f))(g))(x) = (f(x))(g(x)),

is a combination of two functions f and g. For x it results in a value, which
is obtained as an application of function f of argument x to function g of
argument x.

Constant U , defined by

UPQ = (U(P))(Q) = ∀x.¬(P (x) ∧Q(x)),

is a generalization of Sheffer’s operation. This operation is applied to two
predicates, and results in a universal generalization of negated conjunction
of these two predicates.

Note. These combinators are sufficient to express the arbitrary first order
predicates without bound variables, which are used in first order logic with
quantification. The same result can be achieved, when the algorithm of
translation the λ-expressions to combinators is used. In this case the rest-
rictions for the first order of the predicates in use is eliminated. However,
an unlimited using of this translation for the typed objects can violate a
consistency. Combinatory logic tends to get rid of the typed system and
the associated restrictions to overcome the strict requirements to preserve
consistency.

The paper by M. Shönfinkel is an introduction to combinatory
logic, which gives a clear vision, what are the initial motivations for
its advances.

64 CHAPTER 2: DERIVATION OF OBJECT

Chapter 3

Fixed Point

Conceptual transparency of combinatory logic makes it rather easy to
learn of. After the first advances it may seems, that objects in use are
always simple and finite in there nature. But this is just imaginable,
and combinators can be used to represent processes, and, among
them, the computations with cycles, which represent the known in
programming manipulation with stack of recursion.

These cyclic computations are the mappings, which contain a
fixed point.

3.1 Theoretical background.

Computations with a fixed point are the representations of the cycles
in programs. One of the main results of λ-calculus is the Theo-
rem 3.1, concerning a fixed point.

Theorem 3.1. For any object F there is the object X such, that X =
F X :

∀F∃X (X = FX).

Proof. See [2], p. 140. Let P ≡ λx.F (xx) and X ≡ PP . Then

X ≡ (λx.F (xx))P = F (P P) ≡ FX,

65

66 CHAPTER 3: FIXED POINT

and this turns X into a fixed point of F .

The feature of this proof is in starting from term X and convert-
ing it to F X , but not vice versa. Combinatory logic gives a special
concept-combinator Y , called as fixed point combinator, a mathe-
matical meaning of which is a cycle in computations – given a map
F , it returns its fixed point (Y F).

3.1.1 Abstraction

For any termM and variable x the term [x]M , called the abstraction
M of x, is defined by1 induction on constructing the term M :

(i) [x]x = I;
(ii) [x]M = KM , if x does not belong to M ;

(iii) [x]Ux = U , if x does not belong to U ;
(iv) [x](UV) = S([x]U)([x]V), if neither (ii), nor (iii) are valid.

Example 3.1. [x]xy
(iv)
= S([x]x)([x]y)

(i)
= SI([x]y)

(ii)
= SI(Ky).

Theorem 3.2 (comprehension principle). For any objects M , N
and variable x an application of abstraction ([x]M) to object N is
comprehended by a principle: ‘substitute N for each free occurrence
of x in M ’:

∀M,N, x : ([x]M)N = [N/x]M.

Proof. See in [93].

3.1.2 Multiabstraction

For any variables x1, . . . , xm (not obviously distinct) define:

[x1, . . . , xm]M def= [x1]([x2](. . . ([xm]M) . . .)).

Example 3.2. [x, y]x = [x]([y]x)
(ii)
= [x](Kx)

(iii)
= K.

1The term ‘[x]M ’, or ‘[x].M ’ for our purposes can, for a while, be considered
similar to the term ‘λx.M ’.

CHAPTER 3: FIXED POINT 67

3.1.3 Local recursion

An important application of a fixed point combinator is given by the
programs with recursive definitions. Consider a local recursion with
the elementary means. A local recursion of

E1 where x = . . . x . . .

transforms into
([x]E1)(Y ([x](. . . x . . .))),

where Y is a fixed point combinator, which is defined by the equation:

Y f = f(Y f).

For function f the expression Y f is a fixed point of f .
When a mutual recursion is used with where-clauses in the text

of program

E1 where f x = ... g ...
g y = ... f ...

then it is, first of all, transformed into the expression:

E1 where f = [x] (... g ...)
g = [y] (... f ...),

where all free occurrences of variables x and y are omitted. After that
these two recursive definitions are transformed into general recursive
definition:

E1 where (f,g) = ([x](... g ...), [y](... f ...)),

which can be compiled into expression:

([f,g]E1) (Y ([f,g]([x](... g ...), [y](... f ...))))

using already known rule.

68 CHAPTER 3: FIXED POINT

3.2 Main tasks

Task 3.1. Learn of properties of the object

Y ≡ (λx.(P (xx)a))(λx.(P (xx)a)).

Task formulation. Find out a combinatory characteristic of the ob-
ject, using postulates α, β, µ, ν, σ, τ , ξ of calculus of λ-conversions
and schemes (K), (S):

Y = (λx.(P (xx)a))(λx.(P (xx)a)). (Y)

Solution.

Y–1. The expression for object Y is already known:

Y ≡ (λx.(P (xx)a))(λx.(P (xx)a)).

Y–2. Using rule of substitution (β) for its representation gives
the following:

Y = (λx.(P (xx)a))(λx.(P (xx)a))
= (P ((λx.(P (xx)a))(λx.(P (xx)a)))a (β)
= P (Y)a.

Thus, Y = PY a = P (PY a)a =

Answer. Combinatory characteristic of the initial object
Y = (λx.(P (xx)a))(λx.(P (xx)a)) is: Y = PY a.

Task 3.2. Learn of properties of the object:

Y ≡ S(BWB)(BWB).

Task formulation. Find out a combinatory characteristic of the ob-
ject, using postulates α, β, µ, ν, σ, τ , ξ of calculus of λ-conversions
and schemes (K), (S):

Y = S(BWB)(BWB). (Y)

CHAPTER 3: FIXED POINT 69

Solution.

Y–1. The object Y is determined by: Y = S(BWB)(BWB).

Y–2. Write down combinatory characteristics of the following
objects: Babc = abc, Sabc = ac(bc), Wab = abb.

Y–3. Make an application of object Y to a:

Y a ≡ S(BWB)(BWB)︸ ︷︷ ︸
≡Y

a (by Df.)

= BWBa(BWBa) (by scheme S)
= W (Ba)(BWBa) (by scheme B)
= Ba(BWBa)(BWBa) (by scheme W)
= a(BWBa(BWBa)) (by scheme B)
= a(S(BWB)(BWB)︸ ︷︷ ︸

≡Y

a) (by scheme S)

≡ a(Y a). (by Df.)

Thus, Y a is a fixed point for a.

Answer. Combinatory characteristic of the initial object
Y = S(BWB)(BWB) is: Y a = a(Y a).

Task 3.3. Learn of properties of the object:

Y ≡WS(BWB).

Task formulation. Find out a combinatory characteristic of the ob-
ject, using postulates α, β, µ, ν, σ, τ , ξ of calculus of λ-conversions
and schemes (K), (S):

Y = WS(BWB). (Y)

Solution.

Y–1. The object Y is determined by: Y = WS(BWB).

70 CHAPTER 3: FIXED POINT

Y–2. Write down combinatory characteristics of the following
objects:

Babc = abc, Sabc = ac(bc), Wab = abb.

Y–3. By scheme (W), we obtain:

Y ≡WS(BWB) = S(BWB)(BWB).

Thus, object Y has the same combinatory characteristic as the
object Y from the previous task.

Y–4. Make an application of object Y to a:

Y a ≡ S(BWB)(BWB)a (by Df.)
= BWBa(BWBa) (by scheme S)
= W (Ba)(BWBa) (by scheme B)
= Ba(BWBa)(BWBa) (by scheme W)
= a(BWBa(BWBa)) (by scheme B)
= a(S(BWB)(BWB)a) (by scheme S)
≡ a(Y a) (by Df.).

Y–5. Finally, we obtain Y a = a(Y a).

Answer. Combinatory characteristic of the object Y ≡ S(BWB) is:
Y a = a(Y a).

Task 3.4. Learn of properties of the object:

Y0 ≡ λf.XX, where X ≡ λx.f(xx). (Y0)

Task formulation. Find out a combinatory characteristic of the ob-
ject, using postulates α, β, µ, ν, σ, τ , ξ of calculus of λ-conversions
and schemes (K), (S):

Y0 ≡ λf.XX, where X ≡ λx.f(xx).

CHAPTER 3: FIXED POINT 71

Solution.

Y0–1. The object Y0 is as follows: Y0 = λf.XX, where X =
λx.f(xx).

Y0–2. At first, consider the object (XX).

XX = (λx.f(xx))(λx.f(xx)) (by Df.)
= f((λx.f(xx))(λx.f(xx))) (by β)
= f(XX). (by Df.)

Hence,
XX = f(XX). (∗)

Y0–3. Now the object Y0 is applied to any object a:

Y0a ≡ (λf.XX)a (by Df.)
= (λf.f(XX))a (by (*))
= (λf.f((λx.f(xx))(λx.f(xx))))a (by Df. X)
= a((λx.a(xx))(λx.a(xx))) (by β)
= a((λf.((λf.f(xx))(λx.f(xx))))a) (by β, ξ)
= a((λf.(XX))a) (by Df. X)
≡ a(Y0a). (by Df. Y0)

Using transitivity τ , we obtain: Y0a = a(Y0a).

Answer. Combinatory characteristic of object Y0 is as follows: Y0a =
a(Y0a).

Task 3.5. Learn of properties of the object:

Y1 ≡ Y0(λy.λf.f(yf)), where Y0 ≡ λf.XX, X = λx.f(xx).

Task formulation. Find out a combinatory characteristic of the ob-
ject, using postulates α, β, µ, ν, σ, τ , ξ of calculus of λ-conversions
and schemes (K), (S):

Y1 ≡ Y0(λy.λf.f(yf)), where Y0 ≡ λf.XX, X = λx.f(xx). (Y1)

72 CHAPTER 3: FIXED POINT

Solution.

Y1–1. The object Y1 is as follows: Y1 = Y0(λy.λf.f(yf)),
where the equalities Y0 = λf.XX , and X = λx.f(xx) are valid.

Y1–2. Hence, Y0a = a(Y0a),

Y1a = Y0(λy.λf.f(yf))a (by Df.)
= (λy.λf.f(yf))(Y0(λy.λf.f(yf)))a (by (Y0))
= (λyf.f(yf))Y1a (by (Y1))
= a(Y1a). (by β)

Thus, the equality Y1a = a(Y1a) is derived.

Answer. Combinatory characteristic of object Y1 is as follows: Y1a=
a(Y1a).

Task 3.6. Use function Y for representing a circular list L.

Task formulation. Circular list L, which is defined by

L = (1 : 2 : 3 : L),

results in an infinite periodic list

L = 1, 2, 3, 1, 2, 3, 1, 2, 3,

Find out a finite representation for this data structure, which does not
use the self referenced definitions.

Solution. This circular construction gives L as a list, where the first
element is 1, second element is 2, third element is 3, fourth element is
1 and so on.

L–1. Consider a chain of transformations:

L = (1 : 2 : 3 : L)
= (λL.(1 : 2 : 3 : L))L. by (β)

CHAPTER 3: FIXED POINT 73

L–2. Whenever L 6∈ (λL.(1 : 2 : 3 : L)), then, by fixed point
theorem,

L = Y (λL.(1 : 2 : 3 : L)).

Answer. L = Y (λL.(1 : 2 : 3 : L)).

Exercises

Exercise 3.1. Consider a circular definition

s(n,k) =
if k = 1
then 1
else if k = n

then 1
else s(n - 1, k - 1) + k * s(n - 1, k)

of Stirling numbers of the second kind. Find out a finite representa-
tion for this function, which does not contain self referenced defini-
tions.

Hint. As, for instance, we have

s(4,2) = s(3,1) + 2 * s(3,2)
= 1 + 2 * (s(2,1) + 2 * s(2,2))
= 1 + 2 * (1 + 2 * 1) = 7,

then we deal with recursive computations. Try to determine the λ-
abstraction of n and k, and, after that, to use a fixed point theorem.

Exercise 3.2. Avoid the cycles in the following definitions:

74 CHAPTER 3: FIXED POINT

length x =
if null x
then 0
else 1 + length (tail x)

factorial n =
if zero n
then 1
else n× factorial (n - 1)

Hint. A circular definition can be transformed into a standard form,
where a left part is the identifier, and a right part is the expression.
This can be done by self referenced function, which involves the fixed
point function Y . Characteristic property of this function is as follows:
Y f = f(Y f).

Self referencing definition of the function is determined by the
equality f = Ef , where expression E does not contain free occur-
rences of f . One of the solutions for this equation is f = Y E.

Chapter 4

Extensionality

Combinatory logic has a specific feature that allows to construe and
use the functions with a priori not fixed number of arguments. This
means that the answering for a question, how many argument places
has the function-object in actual use, needs some care. Nevertheless,
a careful using of rather simple principles of extensionality enables
overcoming of this uncertainty.

4.1 Theoretical background

The model M , as a rule, needs in validation of some property. In par-
ticular, let object F be built from, at most, free variables x0, . . . , xn−1

using the modes of combining. Besides namely these free variables
F does not contain any other free variables. Then combinatory com-
pleteness of modelM is understood as existing in it of such an object
(concept) f , that for any variables x0, . . . , xn−1 the following equality
is valid:

fx0 . . . xn−1 = F.

In other words, a self standing concept f does explicitly exist – as an
object in the model, – having the same meaning as F-combination

75

76 CHAPTER 4: EXTENSIONALITY

of other objects (with a restriction on the usage of free variables).
The models, in which the equality of functions f and g, evaluated

with an arbitrary argument d, implies an equality of these functions
as the objects, are practically often used:

∀d ∈ D.(fd = gd)
f = g

, (ext)

where, by agreement, assume, that fd = (fd) and gd = (gd). This
kind of models is called the extensional models (ext).

In case of applicative structures, a stronger version of combina-
tory completeness is valid: there is such a concept f that for any
free in F variables x0, . . . , xn−1:

fx0 . . . xn−1 = F (x0, . . . , xn−1),

or, formally:

If.∀x0 . . .∀xn−1(fx0 . . . xn−1 = F (x0, . . . , xn−1)).

In this statement a symbol of the description ‘I’ is used as an ab-
breviation for ‘such . . . , that . . . ’. This, in fact, is a principle of
comprehension:

combination of objects F , among which as the free variables
the only x0, . . . , xn−1 are used, is comprehended to a single
object (concept) f with those and only properties, that are
attributive to the combination F (x0, . . . , xn−1).

This is true only for extensional applicative structures and allows to
transform the complicated expression into a single object, decreasing
the complexity of reasoning.

The postulate
λx.Xx = X, x 6∈ X, (η)

plays an important role and, as will be shown, is similar to extension-
ality in applicative structure.

CHAPTER 4: EXTENSIONALITY 77

4.2 Tasks

Task 4.1. Prove the equality:

λxy.xy = λx.x.

Task formulation. Prove, that equality:

λxy.xy = λx.x (1)

is derivable in ηξ-calculus of λ-conversion (the symbol ‘=’ represents
a relation of conversion).

Proof.

η–1. The following postulates are used:

(η) λx.Xx = X, x 6∈ X, (ξ)
a = b

λx.a = λx.b
,

(τ)
a = b, b = c

a = c
.

Here: ‘x 6∈ X ’ is the same as ‘x has no free occurrences in X ’.

η–2. Using the postulates, we obtain:

(1) λxy.xy ≡ λx.(λy.xy), (by definition)
(2) λy.xy = x, (by scheme (η))
(3) λx.(λy.xy) = λx.x, ((2), (ξ))
(4) λxy.xy = λx.x. ((1), (3); (τ))

Thus, in ηξ-system the equality λxy.xy = λx.x is derivable.

An abbreviated form of this proof could be given as a tree-like deriva-
tion, which is growing in the direction ‘from-top-to-bottom’. Its

78 CHAPTER 4: EXTENSIONALITY

premises are written above the horizontal line, and conclusions –
below. The line is understood as a replacement of the word ‘therefore’:

λy.xy x

λy.xy = x

λxy.xy = λx.x
(ξ)

(η)

Task 4.2. Using λ-notations ([]-notations), define a construction:

f(x) + f(f(7)) where f(x) = sqr(x) + 3

Task formulation. This task assumes that the constructions

M where f(x) = N or let f(x) = N M,

will be used, whose particular cases

M where x = N or let x = N M,

could be represented by the λ-term:

(λx.M)N.

Solution. Construction where corresponds to a programming ‘from-
top-to-bottom’, when, at first, it is supposed that the objects exist,
and after that they are defined. Construction let corresponds to a
programming ‘from-bottom-to-top’, when the objects are defined be-
fore they are used.

η–1. Each of these expressions consists of two parts:

1) expression M, called main expression, or body;

2) definition of one of the forms:

where f(x) = N or let (x) = N.

η–2. In a general case, the expression

CHAPTER 4: EXTENSIONALITY 79

M where f(x) = N

can be transformed into expression with operator/operand, us-
ing two stages:

1) at first, we establish the expression

M where f = λx.N;

2) at second, we obtain the expression

(λf.M) (λx.N).

η–3. Thus, for objects

M≡ f(x) + f(f(7)), N≡ sqr(x) + 3

we obtain, that

(λf.f(x) + f(f(7))) (λx.sqr(x) + 3).

Answer. The initial construction of programming language can be
represented by:

(λf.f(x) + f(f(7))) (λx.sqr(x) + 3),

or, in other notations:

([f].f(x) + f(f(7))) ([x].sqr(x) + 3).

Exercises

Exercise 4.1. Learn of a solution for task 4.2 and find, where and in
what context the postulate (η) is used.

Exercise 4.2. Re-formulate a self referenced definition

80 CHAPTER 4: EXTENSIONALITY

length x =
if null x
then 0
else 1 + length (tail x)

to standard form, where the definable identifier in written in the left
part, and the defining expression – in the right.

Hint. A chain of transformations:

length = [x].if null x
then 0
else 1 + length (tail x)

= ([length].[x].if null x
then 0
else 1 + length (tail x))length

= Y([length].[x].if null x
then 0
else 1 + length (tail x))

could be determined. Postulate (η) is used. Now the definition has a
standard form, and its right part does not contain the definable iden-
tifier length, because the variable length is bound.

Chapter 5

Numerals

We pay your attention that from the very beginning combinatory
logic does not contain . . . numbers – among the generic objects. This
is so, because the notion of a number can be constructed using the
known combinators. Then the numbers look like some unusual enti-
ties – they are the objects with their arity depending on the involved
postulates. Similarly, the arithmetic operations could be derived us-
ing combinators. In other words, arithmetic entities are embedded
into combinatory logic. This is the known ability of object-oriented
programming – an application (the arithmetic objects with their as-
sociated rules) is embedded into programming environment (combi-
natory logic).

5.1 Numbers and numerals

As known, one of the generic concepts in mathematics is a notion of
number. Using the numbers, an investigator can establish other ob-
jects, that are more meaningful to represent the concepts in a problem
domain. In the theoretical studies this is a “good manner” to reduce
an applied theory to some predefined arithmetic system.

A question is that is it so necessary to use as a generic concept

81

82 CHAPTER 5: NUMERALS

the notion of a number. This is one of the most intriguing question in
modern mathematics, the attempts to get an answer for which lead to
the far growing research conclusions.

Nevertheless, combinatory logic or λ-calculus among the generic
objects has no numbers. Is an expressive power of these systems
rich enough? As known, combinatory logic or λ-calculus allows the
introducing of those combinators or, respectively, λ-terms, whose
behavior is similar to that of numbers. These representations of the
numbers are called numerals. Numerals, as combinators, conform to
all the laws of combinatory logic. Moreover, the combinators, which
represent the arithmetic operations, for instance, addition, can be de-
fined. The research in this area is yet far from final stage.

5.2 Combinatory arithmetic

The constructing of arithmetic usually starts with an introducing the
natural numbers (see A.S. Kuzichev, [18]). For this purpose in a com-
binatory logic two objects are introduced and use the abstraction op-
erator (see point 3.1.1 on page 66 and so forth):

Z0 ≡ [xy]y σ̂ ≡ [xyz](y(xyz)).

First of them is a representation of the number 0, and second – is a
representation of operation of adding one ‘+1’ and is called the suc-
cessor combinator.

Combinatory numbers, or numerals are generated step by step,
by induction on constructing, or by structural induction:

i) Z0 is a combinatory number;

ii) combinatory number Zk+1, as a representation of the natural
number k + 1, assumed to be equal to σ̂Zk for k ≥ 0.

Statement 5.1. It can be shown that combinator Zn has a property:

ZnXY = X(X(. . . X(X︸ ︷︷ ︸
n

Y) . . .)),

CHAPTER 5: NUMERALS 83

where X and Y are the objects, and n ≥ 0.

Proof. By induction on n.

i) Z0 = [xy]y, and Z0XY = ︸︷︷︸
0

Y ;

ii) Z1 = σ̂Z0, and

Z1XY = σ̂Z0XY
= ([xyz](y(xyz)))([xy]y)XY
= X(([xy]y)XY)
= X︸︷︷︸

1

Y ;

and so on.

For introducing other arithmetic objects the pairing combinator
is needed

D ≡ [xyz](z(Ky)x)

with the following properties:

1) DXY Z0 = X ;

2) DXY (σ̂U) = Y for objects X , Y U .

To construe more representative arithmetic, some other arith-
metic objects are to be added.

Predecessor

Operation of obtaining a predecessor ‘−1’ is denoted by π and is de-
fined by

π ≡ [x](xσ(KZ0)Z1),

where σ ≡ [x](D(σ̂(xZ0))(xZ0)). ‘Predecessor’ combinator π can be
viewed as the reversed operation of obtaining ‘successor’ σ̂.

Some of the properties of combinator π are listed below. These
properties can be proved by induction on n, where n ≥ 0:

84 CHAPTER 5: NUMERALS

1) πZ0 = Z0;

2) Znσ(KZ0)Z0 = Zn;

3) πZn+1 = Zn.

Modified subtraction

Operation of modified, or cut subtraction in usual arithmetic is de-
noted by ‘−� ’ and defined by:

a−� b =
{
a− b, a > b;
0, a ≤ b.

For representing cut subtraction in combinatory arithmetic the com-
binator L is used, and is defined by

L ≡ [xy](yπx),

and has the following properties:

1) LZnZ0 = Zn;

2) LZnZm+1 = π(LZnZm).

Operation of minimum

Using the combinator L of cut subtraction, the combinator min,
which represents in a combinatory arithmetic the function of mini-
mum min(a, b), can be established. Combinator min is defined by

min ≡ [xy](Lx(Lxy)),

where

minZnZm =
{
Zn, n ≤ m;
Zm, n > m.

Combinator of minimum, in turn, can be used for constructing other
arithmetic objects.

CHAPTER 5: NUMERALS 85

Example 5.1. Assume, that

α ≡ minZ1.

It is obvious, that:

1) αZ0 = Z0;

2) αZm = Z1 for m > 0.

Addition

Combinator A, which represents an operation of addition, is defined
by

A ≡ [x](EEx),

where

E ≡ [xy](Uy[z](xxz)), U ≡ [x](C(MxZ1)x),
C ≡ [x](xCZ0TV), V ≡ [xy](xyI),

T ≡ [xyz](σ̂(y(πx)z)).

Exercise 5.1. Verify, that combinator A has all the properties of op-
eration of addition ‘+’, i.e., for n, m ≥ 0:

AZ0Zm = Zm; AZn+1Zm = σ̂(AZnZm).

Symmetric difference

Symmetric, or positive difference in usual arithmetic is the oper-
ation ‘(x−� y) + (y−� x)’. Combinator R, representing a symmetric
difference, is defined by

R ≡ [xy](A(Lxy)(Lyx)).

86 CHAPTER 5: NUMERALS

Multiplication

Combinator of multiplication M is defined similar to the combinator
of addition A with the exception, that combinator V is replaced by
combinator V ′:

V ′ ≡ [xy](xy(KZ0)),

and combinator T is replaced by combinator T ′:

T ′ ≡ [xyz](A(y(πx)z)z).

Exercise 5.2. Prove, that combinator M has the properties of multi-
plication operator for arithmetic objects:

MZ0Zm = Z0; MZn+1Zm = A(MZnZm)Zm.

Combinatory definable functions

Addition and multiplication are the instances of the class of combi-
natory definable functions. Necessary constructions see, e.g., in
(A.S. Kuzichev, [18]; H. Barendregt, [2]). The notions that are most
significant for combinatory definable functions are listed below.

Definition 5.1 (combinatory definability). The function φ of n
arguments is called combinatory definable, if there is an object X
such, that for any set of n natural numbers r1, . . . , rn, for which

φ(r1, . . . , rn) = r,

where r is a natural number, the equality

Xr1 . . . rn = r

is valid for n ≥ 0. Here: for n = 0 we have X = r; arithmetic objects
(numerals), representing the natural numbers ri are overlined – ri.

Thus, an overline is observed as mapping:

: o 7→ o, (o) = o,

which, for object o, builds corresponding arithmetic object o.

CHAPTER 5: NUMERALS 87

Primitive recursion

The way of constructing the combinators, which represent addition
and multiplication, can be generalized to arbitrary functions, definable
by the scheme of primitive recursion:

φ(0, r1, . . . , rn) = ψ(r1, . . . , rn);
φ(r + 1, r1, . . . , rn) = ψ(r, φ(r, r1, . . . , rn), r1, . . . , rn),

where φ and ψ are predefined functions of corresponding number of
arguments.

Indeed, it can be assumed that φ and ψ are combinatory definable
by the objects g andH respectively. As an object, which combinatory
defines the function φ, that is defined by the recursion scheme, we can
select

E ≡ [x](E∗E∗x),

where:

E∗ ≡ [xy](Uy[z](xxz)), U ≡ [x](C∗(min x 1)x),
C∗ ≡ [x](xC0TV), V ≡ [xy](xyg),

T ≡ [xyz1 . . . zn]H(πx)(y(πx)z1 . . . zn)z1 . . . zn.

For this choice, it can be shown that:

g 0 r1 . . . rn = ψ(r1, . . . , rn),
g r + 1 r1 . . . rn = ψ(r, φ(r, r1, . . . , rn), r1, . . . , rn).

5.3 Tasks

Task 5.1. Define the objects with the properties of natural numbers
(numerals) and learn of their properties.

Task formulation. Numerals are the following objects:

n
def= λxy.(xn)y,

88 CHAPTER 5: NUMERALS

where n is a natural number from the set {1, 2, 3, . . . }. Show, that
numerals are the objects with characteristics:

n = (SB)n(KI). (n)

Solution.

n–1. The notion of xny is defined by induction:

(i) x0y = y,
(ii) xn+1y = x(xny), n ≥ 0.

Thus, x4y = x(x(x(xy))).

n–2. A behavior of the objects n = (SB)n(KI) for n = 0, 1 is
verified by:

0 = (SB)0(KI) = KI,

0ab = KIab = Ib = b = (λxy.y)ab,
1 = SB(KI),
1ab = SB(KI)ab = Ba(KIa)b = BaIb

= a(Ib) = ab = (λxy.xy)ab.

n–3. A behavior of n = (SB)n(KI) in a general case is verified
by:

nab = (SB)n(KI)ab
= SB((SB)n−1(KI))ab (by Df.)
= Ba((SB)n−1(KI)a)b (by (S))
= a((SB)n−1(KI)ab) (by (B))
= a(n− 1ab) (by Df.)
= a(an−1b) (by Df.)
= anb = (λxy.xny)ab. (by Df.)

Answer. Numerals n = (λxy.xny) are the objects as (SB)n(KI).

CHAPTER 5: NUMERALS 89

Task 5.2. Determine an object representing the operation of ‘+1’ on
a set of numerals and learn of its properties.

Task formulation. Show, that σ = λxyz.xy(yz) determines the
‘successor’ function (‘adding of one’) on a set of numerals:

σn = n+ 1. (σ)

Solution.

σ–1. Combinatory characteristic of the numerals is as
follows:

nab = anb.

σ–2. The function σ can be applied to the numeral n in
a general case:

σnab = (λxyz.xy(yz))nab (by Df.)
= na(ab) (by (β))
= an(ab) (by Df. (n))
= an+1b (by Df.)
= n+ 1ab. (by Df.)

Thus, σnab = n+ 1ab, i.e. σn = n+ 1.

Answer. Function σ = λxyz.xy(yz) is the successor function for
numerals n = λxy.xny.

Task 5.3. Determine an object, which returns the length of a finite
sequence (list).

Task formulation. Show, that the function

Length = λxy.Null x 0(σ(Length(Cdr x))y)

is a function, which returns the length of a list x:

Length < a1, a2, . . . , an >= n (Length)

90 CHAPTER 5: NUMERALS

Solution.

Length–1. The auxiliary functions Null and Cdr can be in-
troduced:

Null x =


1, x=NIL = 〈 〉

(x is an empty list),
0, otherwise;

(Null)

1 = λxy.xy = λx.x = I, (1)
0 = λxy.y = KI, (0)
σ n = n+ 1,

Cdr x =


NIL = 〈 〉, for x = 〈a1〉,
〈a2, . . . , an〉, for

x= 〈a1, a2, . . . , an〉.
(Cdr)

Length–2. The function Length is applied to the empty list
Nil:

Length Nil =
= λy.Null Nil 0(σ(Length(Cdr Nil))y) (by (β))
= λy.1 0(σ(Length(Cdr Nil))y) (by (Null))
= λy.I(KI)(σ(Length(Cdr Nil))y) (by (0), (1))
= λy.KI(σ(Length(Cdr Nil))y) (by (I))
= λy.I (by (K))
= λy.(λz.z) (by (I))
= λyz.z = 0. (by (0))

Thus, the function Length is sound relatively application to the
empty list, i.e. Length Nil = 0.

CHAPTER 5: NUMERALS 91

Length–3. The function Length can be applied to the list x,
consisting of a single element: x = 〈a〉:

Length x =
= λy.Null x0(σ(Length(Cdr x))y) (β)
= λy.0 0(σ(Length Nil)y) (Null), (Cdr)
= λy.KI(KI)(σ0y) (0)
= λy.I(σ0y) (K)
= λy.σ0y (I)
= λy.1y (σ)
= λy.Iy = λy.y = I = 1.

Thus, the function Length is sound relatively application to the
list, consisting of a single element, i.e. it equals to 1.

Length–4. At last, the function Length will be verified in a
general case, for non empty list x of length n: x 6= Nil, where
symbol ‘6=’ means ‘is not convertible to’:

Length x = λy.Null x 0(σ(Length(Cdr x))y)
= λy.0 0(σ(Length(Cdr x))y)
= λy.σ(Length(Cdr x))y
= λy.σn− 1 y
= λy.ny

= λy.(λxz.xnz)y = λy.λz.ynz = λyz.ynz = n.

Answer. The function Length actually returns the length of a list.

Exercises

Confirm or neglect the following.

Exercise 5.3. Addition is defined by the λ-expression

λmnfx.mf(nfx).

92 CHAPTER 5: NUMERALS

Exercise 5.4. Multiplication is defined by the λ-expression

λmλnλf.m(nf).

Exercise 5.5. Exponentiation is defined by the λ-expression

λmλn.nm,

because, for instance, Z3Z2fx = (Z2)3fx = f8x.

Chapter 6

Typed combinators

The notion of a class is one of the most basic in object-oriented rea-
sonings. In this case the class is understood as a pattern for con-
structing the instances of the particular objects. Moreover, classes
themselves could be considered as the objects. The same way, com-
binators could be classified, or typed. The higher orders of func-
tional spaces are significant for combinators. Nevertheless, an in-
tuitive clarity of manipulations with the combinators as with objects
is not lost.

6.1 Notion of a type

The non-formal discussion, what kind of entity is a type, exempli-
fies rather transparent idea. Each function has a domain and range.
Hence, not all the arguments are of interest, but those of them that
belong to the indicated domain. This means, that the arguments as
objects are type assigned.

93

94 CHAPTER 6: TYPED COMBINATORS

Pure type systems

It is assumed, that pure type systems are the families of typed λ-
calculi, every member of which is characterized by a triple 〈S,A,R〉,
where:

S is a subset of constants from the system, that are the sorts;

A is a subset of axioms like
c : s,

where c is a constant, and s is a sort;

R is a set of triples of sorts, each of them determines, what of the
functional spaces could be constructed in the system and on
what sorts each of functional spaces is constructed.

Each of the pure type systems is a formal system with sentences, that
are constructed as the derivable statements like this:

context ` type assignment.

Using these statements, the type in this context is assigned to a term
of λ-calculus.

Constructing a class of the types

A class of the types is generated as follows. At a starting point, there
is a finite or infinite set of the basic types:

δ1, δ2, δ3, . . . δn, . . . ,

and every of them has an intuitive interpretation as the associated set.
Next, the inductive class of types is generated:

i) a basic type is a type;

CHAPTER 6: TYPED COMBINATORS 95

ii) if a and b are the types, then (a→ b) is a type:

a − type, b − type
(a→ b) − type

.

An intuitive interpretation for ‘(a → b)’ is a ‘set of all the mappings
from a to b’. By agreement, the notations ‘(a → b)’, ‘(a b)’, ‘(a, b)’
are assumed as having the same meaning. The parentheses, omitted
from the notation of a type, can be restored by association to the
right. This agreement is exemplified as follows:

Example 6.1.

(a (b c) d)≡ (a ((b c) d))≡ (a→ ((b→ c)→ d)),
(a b c d)≡ (a b (c d)) ≡ (a(b(c d))),

i.e. ‘(a (b c) d)’ means ‘(a → ((b → c) → d))’, and ‘(a b c d)’ means
‘(a→ (b→ (c→ d)))’, and they are distinct types.

A central notions in applicative computational systems are not
the domains of the functions, but the functions themselves as the
general correspondences. In fact, namely these correspondences are
the entities in the calculus, they are concepts of the functions, i.e.,
the objects in their own meaning. In this case, more augmented rea-
sonings are needed to capture a sense of types. Indeed, combinators
represent the functions, functions of functions, functions of functions
of functions, . . . , i.e. they are higher order functions, or functionals.
The task of establishing a type of the object becomes non-trivial, and
the types are generated in accordance with the definite rules. The
resulting domains become strongly interrelated. The contradictions
could be observed in corresponding logical constructions.

All of this needs more rigorous background. At first, a ground
notation of a type

‘a→ b’

96 CHAPTER 6: TYPED COMBINATORS

has a diversity of equal notational variants:

a b, ba, F a b

and some others.

6.1.1 Combinatory terms

For a combinatory term X , i.e. for such a term, that is derived by the
postulates of combinatory logic, we say that

‘a type a is assigned to combinator X ’,

or,

` #(X) = a

if and only if this statement is derived from the following axioms and
the rule:

Axiom schemes:
` #(I) = (a, a), (FI)
` #(K) = (a, (b, a)) = (a, b, a), (FK)
` #(S) = ((a, (b, c)), ((a, b), (a, c))). (FS)

Rule:
` #(X) = (a, b), ` #(U) = a

` #(XU) = b
. (F)

Note, that according to the rule (F), type scheme is assigned to the
application (XU) of object X to object U , when the type schemes
of these component objects are known. An object X is viewed as a
function from a to b, and U – as an argument of this function, which
is taken from the domain (of) a. Then the values of a result (X U) of
applying X to U are taken from the range (of) b.

CHAPTER 6: TYPED COMBINATORS 97

6.1.2 λ-terms

Note, that in case of λ-terms a type assigning for objects can be
suitably done, using the following to rules:

Rules:
` #(x) = a, ` #(X) = b

` #λx.X = (a, b)
, (λ)

` #(X) = (a, b), ` #(U) = a

` #(XU) = b
, (F)

where X , U are λ-terms, and x is a variable.
Note, that according the rule (F), an assignment of type scheme

of application (X U) of object X to object U can be obtained, when
the type schemes of these last objects are known. An object X is
viewed as a function from a to b, and U – as an argument of this
function, which is taken from the domain (of) a. Then the values of a
result (X U) of applying X to U are taken from the range (of) b.

In accordance with the rule (λ), for known type scheme a, as-
signed to variable x, and known type scheme b, assigned to term X ,
the type scheme (a, b) is introduced, and this type scheme is assigned
to the term λx.X , and this term is interpreted as a function from a to
b.

6.2 Tasks

Using the axioms and rule (F), find the type assignments for the
main combinators, that are listed in Table 6.1. During the process
of solving these tasks, get more knowing in that, what are the math-
ematical functions, how to obtain their composition, and how to con-
struct the simplest programs, using the method of composing. Each
combinator gives an idealization of a program as a “black box”. This
means, that the knowing of intrinsic structure of a program is not
so important to be determined, but it is more important to establish

98 CHAPTER 6: TYPED COMBINATORS

Table 6.1: The list of main combinators.

(1) #(B), where B = S(KS)K,
(2) #(SB),
(3) #(Z0), where Z0 = KI,
(4) #(Z1), where Z1 = SB(KI),
(5) #(Zn), where Zn = (SB)n(KI),
(6) #(W), where W = CSI,
(7) #(B2), where B2 = BBB,
(8) #(B3), where B3 = BBB2,

(9) #(C [2]), where C [2] = BC(BC),
(10) #(C [3]), where C [3] = BC(BC [2]),
(11) #(C[2]), where C[2] = B2CC,

(12) #(C[3]), where C[3] = B2C[2]C,

(13) #(Φ), where Φ = B2SB,
(14) #(Y), where Y = WS(BWB),
(15) #(D), where D = C[2]I,

(16) #(C), where C = S(BBS)(KK).

CHAPTER 6: TYPED COMBINATORS 99

the behavior of a program, knowing, what are its input and output
values. Combinations (compositions), constructed from the combi-
nators, give an ability to observe the arbitrary programs as applicative
forms. Applicative forms have a simple structure: its counterparts
drop down to the left part and the right part, so that a binary tree is
the representation of applicative form. Note, that particular branches
of this tree can be evaluated independently of others, giving rise to
ability of parallel computations.

Task 6.1. Assign a type to the object: #(B).

Hint. The construction of S(KS)K can be represented by a tree,
which is as follows:

Exp 1 = (a1, (b1, a1))
Exp 2 = a1

Exp 3 = ((b1, a1), ((a2, b2), (a2, c2)))
Exp 4 = (b1, a1)
Exp 5 = ((a2, b2), (a2, c2))
Exp 6 = (a2, b2)
Exp 7 = (a2, c2)

` #(K) = Exp 1 ` #(S) = Exp 2

` #(S) = Exp 3 ` #(KS) = Exp 4
(F)

` #(S(KS)) = Exp 5 ` #(K) = Exp 6

` #(S(KS)K) = Exp 7
(F)

(F)

Solution.

#(B)–1. Let a, b, c be the known types. As, by scheme (FK),
the type assignment is ` # (K) = (a1, (b1, a1)), and, by
scheme (FS) : ` # (S) = a1, then by rule (F) : ` # (KS) =
(b1, a1), where a1 = ((a, (b, c)), ((a, b), (a, c))).

#(B)–2. Next, the type is assigned by scheme (FS):

` # (S) = ((b1, a1), ((a2, b2), (a2, c2))),

100 CHAPTER 6: TYPED COMBINATORS

where b1 = a2, a1 = (b2, c2), i.e. b2 = (a, (b, c)), c2 =
((a, b), (a, c)).

#(B)–3. From ` # (KS) = (b1, a1) and rule (F) it follows,
that:

` # (S(KS)) = ((a2, b2), (a2, c2)).

By scheme (FK) the type is: ` # (K) = (a3, (b3, a3)), where
a3 = a2, (b3, a3) = b2, i.e. b3 = a, a3 = (b, c).

#(B)–4. Thus, a2 = a3 = (b, c). From ` # (S(KS)) =
((a2, b2), (a2, c2)) and rule (F) we obtain:

` # (S(KS)K) = (a2, c2) = ((b, c), ((a, b), (a, c))).

Answer. B has a type: # (B) = ((b, c), ((a, b), (a, c))).

The other types that should be assigned to the rest of the combi-
nators will be defined similarly.

Task 6.2. Assign a type to the object: # (SB).

Solution.

#(SB)–1. Building of the tree:

Exp 1 = ((a1, (b1, c1)), ((a1, b1), (a1, c1)))
Exp 2 = (a1, (b1, c1))
Exp 3 = ((a1, b1), (a1, c1))

` #(S) = Exp 1 ` #(B) = Exp 2
` #(SB) = Exp 3

(F)

#(SB)–2. A type scheme for B is as follows: ` # (B) =
((b, c), ((a, b), (a, c))), but ` # (B) = (a1, (b1, c1)), i.e. a1 =
(b, c), b1 = (a, b), c1 = (a, c).

Thus, ` # (SB) = (((b, c), (a, b)), ((b, c), (a, c))).

CHAPTER 6: TYPED COMBINATORS 101

Answer. (SB) has a type (((b, c), (a, b)), ((b, c), (a, c))).

Task 6.3. Assign a type to the object: #(Z0).

Solution.

#(Z0)–1. Z0 = KI.

#(Z0)–2.

` #(K) = (a1, (b1, a1)) ` #(I) = a1

` #(KI) = (b1, a1)
(F)

#(Z0)–3. By scheme (FI) :` #(I) = a1, where a1 = (a, a);
the type of b1 is distinct from a1, i.e. b1 = b (here: a, b are the
known types).

Thus, ` #(KI) = (b, (a, a)).

Answer. Z0 = KI has the type (b, (a, a)).

Task 6.4. Assign a type to the object: #(Z1).

Solution.

#(Z1)–1. Z1 = SB(KI).

#(Z1)–2. (F (KI)) : ` #(KI) = (b, (a, a));
(F (SB)) : ` #(SB) = (((b, c), (a, b)), ((b, c), (a, c))).

#(Z1)–3. Exp 1 = (((b1, c1), (a1, b1)), ((b1, c1), (a1, c1)))
Exp 2 = ((b1, c1), (a1, b1))
Exp 3 = ((b1, c1), (a1, c1))

` #(SB) = Exp 1 ` #(KI) = Exp 2
` #(SB(KI)) = Exp 3

(F)

#(Z1)–4. By (F (KI)) : ` #(KI) = ((b1, c1), (a1, b1)), where
(b1, c1)) = b, a1 = a, b1 = a. Type c1 differs from a and b,
c1 = c.

102 CHAPTER 6: TYPED COMBINATORS

Thus, the type is as follows: ` #(Z1) = ((a, c), (a, c)). Note, that the
statement ` # (Z1) = ((a, b), (a, b)) is valid as well (the difference is
just notational).

Answer. Z1 = SB(KI) has the type ((a, b), (a, b)).

Task 6.5. Assign a type to the object: #(Zn).

Solution. At first, a type #(Z2) is to be established.

#(Z2)–1. Z2 = SB(SB(KI)).

#(Z2)–2. (FZ) : ` #(Z1) = ((a, b), (a, b)).

#(Z2)–3. Exp 1 = (((b1, c1), (a1, b1)), ((b1, c1), (a1, c1)))
Exp 2 = ((b1, c1), (a1, b1))
Exp 3 = ((b1, c1), (a1, c1))

` #(SB) = Exp 1 ` #(Z1) = Exp 2
` #(Z2) = Exp 3

(F)

#(Z2)–4. By scheme (FZ) : ` #(Z1) = ((b1, c1), (a1, b1)),
where a pair of equalities should be valid simultaneously:
(b1, c1) = (a, b), (a1, b1) = (a, b), i.e.:

b1 = a, c1 = b,
a1 = a, b1 = b.

}
(∗)

These equalities (*) are valid if and only if (iff) a1 = b1 = c1 =
a = b. Thus, ` # (Z2) = ((a, a), (a, a)).

Now type #(Zn) should be determined.

#(Zn)–1. Zn = (SB)n(KI) = SB((SB)n−1(KI)),
where n > 2.

#(Zn)–2. (FZ2) : ` #(Z2) = ((a, a), (a, a)).

CHAPTER 6: TYPED COMBINATORS 103

#(Zn)–3. Exp 1 = (((b1, c1), (a1, b1)), ((b1, c1), (a1, c1)))
Exp 2 = ((b1, c1), (a1, b1))
Exp 3 = ((b1, c1), (a1, c1))

` #(SB) = Exp 1 ` #(Z2) = Exp 2
` #(Z3) = Exp 3

(F)

#(Zn)–4. By scheme (F) : ` #(Z2) = ((b1, c1), (a1, b1)),
b1 = a, c1 = a, a1 = a, i.e. ` #(Z3) = ((a, a), (a, a)). The
following equality is obtained: #(Z2) = #(Z1).
By induction, adding the step for n, it can be derived that `
#(Zn) = ((a, a), (a, a)), where n > 1.

Answer. The objects Zn = (SB)n(KI), where n > 1, have been
assigned the same type: ((a, a), (a, a)).

Task 6.6. Assign a type to the object: #(W).

Solution.

#(W)–1. W = CSI .

#(W)–2. (FC) : ` #(C) = ((b, (a, c)), (a, (b, c))). This
statement will be proved below (see Task 6.16).

#(W)–3. Exp 1 = ((b1, (a1, c1)), (a1, (b1, c1)))
Exp 2 = (b1, (a1, c1))
Exp 3 = (a1, (b1, c1))
Exp 4 = (a1)
Exp 5 = (b1, c1)

` #(C) = Exp1 ` #(S) = Exp 2
` #(CS) = Exp 3 ` #(I) = Exp 4

` #(SCI) = Exp 5
(F)

(F)

104 CHAPTER 6: TYPED COMBINATORS

#(W)–4. By scheme (FS) : ` #(S) = (b1, (a1, c1)), however
` # (S) = ((a, (b, c)), ((a, b), (a, c))).
Thus, b1 = (a, (b, c)), a1 = (a, b), c1 = (a, c). Similarly, the
following is valid: (FI) : ` # (I) = a1. But ` #(I) = (a, a),
i.e. a1 = (a, a) a = b. The following equalities are valid: a =
b, a1 = (a, a), b1 = (a, (a, c)), c1 = (a, c).

Thus, ` # (W) = ((a, (a, c)), (a, c)), and this is equal to:
` # (W) = ((a, (a, b)), (a, b)).

Answer. W = CSI has the type ((a, (a, b)), (a, b)).

Task 6.7. Assign a type to the object: #(B2).

Solution.

#(B2)–1. B2 = BBB.

#(B2)–2. (B) : ((bc)((ab)(ac))).
Here and thereafter it is assumed that a notion of:

‘` #(X) = (a, (b, c))’

is similar to:

‘(X) : (a(b c))’.

In the following commas “,” will be omitted, i.e.

‘(X) : (a, (b, c))’

is the same as

‘(X) : (a(b c))’.

CHAPTER 6: TYPED COMBINATORS 105

#(B2)–3. Find, at first #(BB):

(B) : ((b1 c1)((a1 b1)(a1 c1))) (B) : (b1 c1)
(BB) : ((a1 b1)(a1 c1))

(F)

where b1 = (b2 c2), c1 = ((a2 b2)(a2 c2)),
(BB) : ((a1(b2 c2))(a1((a2 b2)(a2 c2)))).
Assume: a1 = a, b2 = b, c2 = c, a2 = d. Then (BB) :
((a(b c))(a((d b)(d c)))).

Find now #(BBB).

(BB) : ((a1(b1 c1))(a1((d1 b1)(d1 c1)))) (B) : (a1(b1 c1))
(BBB) : (a1((d1 b1)(d1 c1)))

, (F)

where (a1(b1 c1)) = ((b c)((a b)(a c))), i.e.: a1 = (b c), b1 =
(a b), c1 = (a c). Let d1 = d.
Thus, (BBB) : ((b c)((d(a b))(d(a c)))).

Answer. B2 = BBB has the type ((b c)((d(a b))(d(a c)))).

Task 6.8. Assign a type to the object: #(B3).

Solution.

#(B3)–1. B3 = BBB2.

As

(BB) : ((a1(b1 c1))(a1((d1 b1)(d1 c1)))) (B2) : (a1(b1 c1))

(BBB2) : (a1((d1 b1)(d1 c1)))
, (F)

where (a1(b1 c1)) = ((b c)((d(a b))(d(a c)))), then a1 = (b c), b1 =
(d(a b)), c1 = (d(a c)).
Let d1 = e. Then (BBB2) : ((b c)((e(d(a b)))(e(d(a c))))).

Answer. B3 = BBB2 has the type ((b c)((e(d(a b)))(e(d(a c))))).

Task 6.9. Assign a type to the object: #(C [2]).

106 CHAPTER 6: TYPED COMBINATORS

Solution.

#(C [2])–1. C [2] = BC(BC).

#(C [2])–2. Find the type #(BC).

(B) : ((b1 c1)((a1 b1)(a1 c1))) (C) : (b1 c1)
(BC) : ((a1 b1)(a1 c1))

, (F)

where (b1 c1) = ((a(b c))(b(a c))), i.e. b1 = (b(c d)), c1 =
(c(b d)). a1 = a. Thus, (BC) : ((a(b(c d)))(a(c(b d)))).

#(C [2])–3. Exp 1 = ((a1(b1(c1 d1)))(a1(c1(b1 d1))))
Exp 2 = (a1(b1(c1 d1)))
Exp3 = (a1(c1(b1 d1)))

(BC) : Exp 1 (BC) : Exp 2
(BC(BC)) : Exp 3

, (F)

where (a1(b1(c1 d1))) = ((a(b(c d)))(a(c(b d)))), i.e. a1 =
(a(b(c d))), b1 = a, c1 = c, d1 = (b d).

Thus, (BC(BC)) : ((a(b(c d)))(c(a(b d)))).

Answer. C [2] = BC(BC) has the type ((a(b(c d)))(c(a(b d)))).

Task 6.10. Assign a type to the object: #(C [3]).

Solution.

#(C [3])–1. C [3] = BC(BC [2]).

#(C [3])–2. Exp 1 = ((b1 c1)((a1 b1)(a1 c1)))
Exp 2 = (b1 c1)
Exp 3 = ((a1 b1)(a1 c1))
Exp 4 = ((b2 c2)((a2 b2)(a2 c2)))
Exp 5 = (b2 c2)
Exp 6 = ((a2 b2)(a2 c2))

CHAPTER 6: TYPED COMBINATORS 107

As

(B) : Exp 1 (C) : Exp 2

(BC) : Exp 3
(F)

(B) : Exp 4 (C [2]) : Exp 5

(BC [2]) : Exp 6
(F)

(BC(BC [2])) : (a1 c1)
(F),

where (b1 c1) = ((a3(b3 c3))(b3(a3 c3))),
(b2 c2) = ((a(b(c d)))(c(a(b d)))), (a1 b1) = ((a2 b2)(a2 c2)), then
a3 = a2 = e, c2 = (b3 c3), b3 = c, c3 = (a(b c)).

Thus, a1 = (a2 b2) = (e(a(b(c d)))), c1 = (b3(a3 c3)) =
(c(e(a(b d)))), i.e. (BC(BC [2])) : (a1 c1).

Answer. #(C [3]) = #(BC(BC [2])) = ((e(a(b(c d))))(c(e(a(b d))))).

Task 6.11. Assign a type to the object: #(C[2]).

Solution.

#(C[2])–1. C[2] = B2CC.

#(C[2])–2. Exp 1 = ((b1 c1)((d1(a1 b1))(d1(a1 c1))))
Exp 2 = (b1 c1)
Exp 3 = ((d1(a1 b1))(d1(a1 c1)))
Exp 4 = (d1(a1 b1))
Exp 5 = (d1(a1 c1))

As

(B2) : Exp 1 (C) : Exp 2

(B2C) : Exp 3 (C) : Exp 4

(B2CC) : Exp 5
(F)

, (F)

where
(d1(a1 b1)) = ((a2(b2 c2))(b2(a2 c2))),

(b1 c1) = ((a(b c))(b(a c))),

108 CHAPTER 6: TYPED COMBINATORS

then
b1 = (a(b c)),
c1 = (b(a c)),
a1 = b2,
d1 = (a2(b2 c2)),
b1 = (a2 c2).

The following is valid: d1 = (a(b2(b c))), a1 = b2, c1 = (b(a c)). Let
b2 = d. Then (B2CC) : (d1(a1 c1)) = ((a(d(b c)))(d(b(a c)))).

Answer. C[2] = B2CC has the type ((a(d(b c)))(d(b(a c)))).

Task 6.12. Assign a type to the object: #(C[3]).

Solution.

#(C[3])–1. C[3] = B2C[2]C.

#(C[3])–2. Exp 1 = ((b1 c1)((d1(a1 b1))(d1 (a1 c1))))
Exp 2 = (b1 c1)
Exp 3 = ((d1(a1 b1))(d1 (a1 c1)))
Exp 4 = (d1(a1 b1))
Exp 5 = (d1(a1 c1))

(B2) : Exp 1 (C[2]) : Exp 2
(B2C[2]) : Exp 3 (C) : Exp 4

(B2C[2]C) : Exp 5
(F)

, (F)

where (b1 c1) = ((a(b(c d)))(b(c(a d)))), (d1 (a1 b1)) =
((a2 (b2 c2))(b2 (a2 c2))).

The following is valid: d1 = (a2(b2 c2)) = (a(b2(b(c d)))), a1 =
b2, c1 = (b(c(a d))). Let b2 = e. Substitute e in place of b2, and in
place of d1, a1, c1 the corresponding expressions are to be substi-
tuted, resulting in type: (B2C[2]C) : (d1(a1 c1)).

Answer. C[3] = B2C[2]C has the type ((a(e(b(c d))))(e(b(c(a d))))).

CHAPTER 6: TYPED COMBINATORS 109

Task 6.13. Assign a type to the object: #(Φ).

Solution.

#Φ–1. Φ = B2SB.

#Φ–2. Exp 1 = ((b1 c1)((d1(a1 b1))(d1(a1 c1))))
Exp 2 = (b1 c1)
Exp 3 = ((d1(a1 b1))(d1(a1 c1))))
Exp 4 = (d1(a1 b1))
Exp 5 = (d1(a1 c1))

As

(B2) : Exp 1 (S) : Exp 2
(B2S) : Exp 3 (B) : Exp 4

(B2SB) : Exp 5
(F)

, (F)

where
(b1 c1) = ((a(b c))((a b)(a c))),

(d1(a1 b1)) = ((b2 c2)((a2 b2)(a2 c2))),

then d1 = (b2 c2) = (b2(b c)), a1 = (a2 b2) = (a b2), c1 =
((a b)(a c)). Let b2 = d; then

(B2SB) : (d1(a1 c1)) = ((d(b c))((a d)((a b)(a c)))).

Answer. Φ = B2SB has the type ((d(b c))((a d)((a b)(a c)))).

Task 6.14. Assign a type to the object: #(Y).

Solution.

#Y –1. Use the equality Y = WS(BWB).

#Y –2. The type schemes are restricted by the following cor-
respondences:

(W) : ((a1(a1 b1))(a1 b1)) (S) : (a1(a1 b1))
(WS) : (a1 b1)

, (F)

110 CHAPTER 6: TYPED COMBINATORS

As #(S) = (a(b c))((a b)(a c)), then a1 = (a(b c)), a1 = (a b),
b1 = (a c). It follows, that b = (b c), but it is impossible in a
finite form. Hence, the assumption of existing a type #(WS) is
invalid. In addition,

(B) : ((b2 c2)((a2 b2)(a2 c2))) (W) : (b2 c2)
(BW) : ((a2 b2)(a2 c2))

. (F)

As #(W) = (a1(a1 b1))(a1 b1), then b2 = (a1(a1 b1)), c2 =
(a1 b1). Next,

(BW) : ((a2 b2)(a2 c2)) (B) : (a2 b2)
(BWB) : (a2 c2)

, (F)

But #(B) = (a3 b3)((c3 a3)(c3 b3)), Hence, a2 = (a3 b3), b2 =
(c3 a3)(c3 b3), b2 = a1(a1 b1), c2 = (a1 b1). It follows from
these equalities, that, in particular, a1 = (c3 a3) and at the same
time a1 = c3, i.e. c3 = (c3 a3), but this is impossible in a finite
form. Therefore, the assumption of existing a type #(BWB) is
invalid as well.

It follows, that it is impossible to assign type to the expression
WS(BWB). Hence, as Y = WS(BWB), then it is impossible
to assign type for a combinatory representation of Y .

#Y –3. Nevertheless, consider the following reasonings. It is
known, that Y x = x(Y x), i.e. #(Y x) = #(x(Y x)).
Let #(x) = a, #(Y x) = b, then, according to the rule (F) :
#(Y) = (a, b), because

(Y) : (a, b) (x) : a
(Y x) : b

(F)

Next, taking into account, that #(x(Y x)) = #(Y x) = b, we
obtain #(x):

(x) : (b, b) (Y x) : b
(x(Y x)) : b

(F)

CHAPTER 6: TYPED COMBINATORS 111

Therefore, a = (b, b), (Y) : (a, b) = ((b, b), b).

Answer. Y has the type ((b, b), b), but WS(BWB) has no type.

Task 6.15. Assign a type to the object: #(D).

Solution.

#D–1. D = C[2]I .

#D–2.

(C[2]) : ((a(d(b c)))(d(b(a c)))) (I) : (a(d(b c)))
(C[2]I) : (d(b(a c)))

, (F)

where (I) : (a1, a1), i.e. a = (d(b c)).

Thus, #(C[2]I) = (d(b((d(b c))c))).

Answer. D = C[2]I has the type: (a, (b, ((a, (b, c)), c))).

Task 6.16. Assign a type to the object: #(C).

Solution.

#C–1. C = S(BBS)(KK).

#C–2. (S) : (a b c)((a b)(a c)), (B) : (b c)((a b)(a c)), (K) :
(a(b a)).

#C–3.

(B) : (b2 c2)((a2 b2)(a2 c2)) (B) : (b2 c2)
(BB) : (a2 b2)(a2 c2)

(BB) : (a2 b2)(a2 c2) (S) : (a2 b2)
(BBS) : (a2 c2)

(S) : (a3(b3 c3))((a3 b3)(a3 c3)) (BBS) : (a2 c2)
S(BBS) : (a3 b3)(a3 c3)

112 CHAPTER 6: TYPED COMBINATORS

(K) : (a4(b4 a4)) (K) : a4

(KK) : (b4 a4)

S(BBS) : (a3 b3)(a3 c3) (KK) : (b4 a4)
S(BBS)(KK) : (a3 c3)

,

where:

(a3 b3) = (b4 a4),
(b2 c2) = ((b6 c6), ((a6 b6), (a6 c6))), scheme forB is taken

a4 = (a5(b5 a5)), scheme for K is
taken

(a2 c2) = (a3(b3 c3)),
(a2 b2) = (a b c)(a b)(a c). scheme for S is taken

The following is derived:
a3 = a2 = (a b c) = b4,

c2 = (b3 c3) = (a6 b6)(a6 c6),
b2 = (a b)(a c) = (b6 c6),
b3 = a4 = (a5 b5 a5).

Next,

c6 = (a c),
b6 = (a b),
b3 = (a6 b6) = (a6 a b) = (b a b), because

b3 = (a5 b5 a5).

Thus, c3 = (a6 c6) = (b c6) = (b a c). The only thing is left to write
the type (a3, c3).

Answer. C = S(BBS)(KK) has the type: ((a, (b, c)), (b, (a, c))).

Chapter 7

Basis I, K, S

In constructing a combinatory logic, one of the generic tasks was to
declare a minimum amount of primitive objects, which are atomic
in their origin, and to declare the modes of their combining, which
give the sufficiently rich mathematical means. These primitive ob-
jects should have the same behavior as the constant functions, and,
from a point of view of computer science give the primitive core sys-
tem for programming, which should grow by “self-evolving”. This
means, that more comprehensive objects are constructed using the
more primitive ones, and then they are joined to the system and, in
turn, can be used as the elements in other constructions.

Let fix an attention at the most primitive programming system,
which consists of just three instructions: I, K, S. A new object can
be generated by purely routine applying of algorithm of disassembling
into a basis, that is quite similar to compiling.

7.1 Theoretical background

It will be shown, that an object, which is denoted by λ-term (source
representation), can be represented by the combinatory term (target
representation). A procedure of transforming the object from source

113

114 CHAPTER 7: BASIS I , K , S

to target representation can be significantly simplified in case a pre-
defined set of combinators is in use. To achieve this goal the set I,
K, S, will be fixed, which, as known, conforms the property of being
a basis.

7.2 Tasks

Task 7.1. Express the termλx.P via combinators I, K, S.

Task formulation. Let the definition of term λx.P be given by in-
duction on constructing P :

(1) λx.x = I,
(2) λx.P = KP, if x does not belong to FV (P),
(3) λx.PQ = S(λx.P)(λx.Q) otherwise.

Exclude all the variables from the following λ-expressions:

1. λxy.yx; 2. λfx.xx; 3. f = λx.B(f(Ax)).

Solution.

P–1. λxy.yx
def
= λx.(λy.yx))
(3)
= λx.(S(λy.y)λy.x))

(1), (2)
= λx.SI(Kx)
(3)
= S(λx.SI)(λx.Kx)
(2)
= S(K(SI))(S(λx.K)(λx.x))

(1), (2)
= S(K(SI))(S(KK)I)

CHAPTER 7: BASIS I , K , S 115

P–2. λfx.fxx
def
= λf.(λx.fxx)
(3)
= λf.(S(λx.fx)(λx.x))

(1), (3)
= λf.S(S(λx.f)(λx.x))I

(1), (2)
= λf.S(S(Kf)I)I
(3)
= S(λf.S(S(Kf)I))(λf.I)

(2), (3)
= S(S(λf.S)(λf.S(Kf)I))(KI)

(2), (3)
= S(S(KS)(S(λf.S(Kf))(λf.I)))

(KI)
(2), (3)

= S(S(KS)(S(S(λf.S)
(λf.Kf)))(KI)))(KI)

(2), (3)
= S(S(KS)(S(S(KS)(S(λf.K)

(λf.f))(KI)))(KI)
(1), (2)

= S(S(KS)(S(S(KS)(S(KK)I)
(KI)))(KI)

P–3. f
def
= λx.b(f(ax))
(3)
= S(λx.b)(λx.f(ax))

(2), (3)
= S(Kb)(S(λx.f)(λx.ax))

(2), (3)
= S(Kb)(S(Kf)(S(λx.a)(λx.x)))

(2), (1)
= S(Kb)(S(Kf)(S(Ka)I))

Exercises

Exercise 7.1. Express the combinator W mult of second power of
function in terms of combinators I, K, S.

Exercise 7.2. For the combinator Φ with a characteristic

Φfabx = f(ax)(bx)

116 CHAPTER 7: BASIS I , K , S

do the following:

1◦ write the predicate
1 < x < 5

without a variable.

Hint. To get this, introduce a construction, which conforms
Φ and (greater 1) (less 5);

2◦ express the combinator

Φ and (greater 1) (less 5)

in terms of combinators I, K, S.

Exercise 7.3. Express a combinator, representing the function of
sum of sines of two numbers, in terms of combinators I, K, S.

Hint. It is possible, for instance, to use the combinator Φ and write

Φ plus sin sin.

Try to transform this expression, using the combinators for elimina-
tion of duplicate occurrence of ‘sin’. E.g.,

Φ plus sin sin = W (Φ plus) sin = . . .

etc.

Chapter 8

Basis I, B, C, S

As was established, the basis I, K, S is not a unique, and a set of
combinators I, B, C, S has a property of being a basis as well. Com-
piling (disassembling) of an object using this basis gives a solution
of a task to generate the object with given properties. Obviously, a
selection of basis is of free choice depending of some criteria.

8.1 Theoretical background

As could be assured, representing terms by compiling them into basis
I, K, S, there is a regular or even mechanical way to transit from one
object representation to another. Increasing the number of distinct
combinators leads to reducing a number of steps in applying the com-
piling algorithm. Of course, as was awaited, not all the sets of combi-
nators consist of a pairwise independent combinators. In particular,
combinator I can be expressed in terms of K and S, hence, strictly
speaking, this combinator is excessive and not necessary. Neverthe-
less, its usage gives some technical advantages.

There are other sets of combinators, using which one can get a
representation of any well formed term. Such sets of combinators are
considered as basic, or, as accepted to speak, conform a basis. As

117

118 CHAPTER 8: BASIS I , B, C , S

previously, combinator is an object which if constructed from basic
combinators using application. Hence, the combinatory basis is not
to be obviously unique, and the multiple representations of the same
object are awaited. Depending on the aims, one or another represen-
tation can be selected1.

8.2 A property of being basic

A huge variety of disparate combinators can be generated, but, as it
appears, these combinators are not independent. Part of them can be
determined via the set of combinators called basic. Combinator can
be thought as an object being constructed from the basic combinators
by its applications.

Consider two basic systems of combinators C, W , B, K and S,
K:

Cxyz = xyz, Sxyz = xz(yz),
Wxy = xyy, Kxy = x.
Bxyz = x(yz),
Kxy = x;

For any syntactic object V , constructed from distinct variables x1,. . . ,
xn by its applications, one can determine a combinator X , composed
from basic combinators, such that:

X x1, . . . , xn = V.

For instance, if V = xz(yz), then there is the combinator X con-
structed of the instances from basic system S, K, such that X xyz =
xz(yz). It is not difficult to conclude, that this is the combinator S,
i.e. X = S.

1For example, besides the bases I , K, S and I , B, C, S, used here, the other
bases can be introduced. In particular, the set C, W , B, K has a property of being
basic as well.

CHAPTER 8: BASIS I , B, C , S 119

In general, a generation of combinatorX is given by the following
actions:

1) using B to eliminate the parentheses in V ;
2) using C to re-order the variables;
3) using W to eliminate multiple occurrences of the variables;
4) using K to bring in the variables which are not present in V .

Example 8.1. Let to construe, in the first of the basic systems, a
combinator X with the property

ac(bc) = X abc :

(ac)︸︷︷︸
x

(b︸︷︷︸
y

c︸︷︷︸
z

) = B︸︷︷︸
x

(a︸︷︷︸
y

c︸︷︷︸
z

)b c

B= (BBa)︸ ︷︷ ︸
x

c︸︷︷︸
z

b︸︷︷︸
y

c

C= (C(BBa)b)︸ ︷︷ ︸
x

c︸︷︷︸
y

c︸︷︷︸
y

W= W︸︷︷︸
x

(C(BBa)︸ ︷︷ ︸
y

b︸︷︷︸)zc

B= (BW)︸ ︷︷ ︸
x

(C︸︷︷︸
y

(BBa)︸ ︷︷ ︸
z

)bc

B= (B(BW)C)︸ ︷︷ ︸
x

((BB)︸ ︷︷ ︸
y

a︸︷︷︸
z

)bc

B= B(B(BW)C)(BB)abc.

In this example, under the objects, to which the known scheme
can be applied, the variables have been written – in the same order as
in the corresponding combinatory characteristic. Thus,

X = B(B(BW)C)(BB).

120 CHAPTER 8: BASIS I , B, C , S

8.3 Elementary examples

Consider examples of disassembling the object into basis. Let the
source terms be the same as in the occasion of disassembling into ba-
sis I, K, S. The resulting expressions can be compared to conclude,
what of the bases could be preferred2.

Task 8.1. Represent the term M = λx.PQ, using the only combina-
tors I, B, C, S.

Task formulation. Let the definition of such a term M that the vari-
able x occurs in a set of free in (PQ) variables, i.e. x ∈ FV (PQ),
be given by induction on constructing M (here: ‘∈’ means ‘belongs’,
and ‘ 6∈’ means ‘does not belong’):

(1) λx.x = I,

(2) λx.PQ=



(a) BP (λx.Q), if x 6∈ FV (P) and
x ∈ FV (Q),

(b) C(λx.P)Q, if x ∈ FV (P) and
x 6∈ FV (Q),

(c) S(λx.P)(λx.Q), if x ∈ FV (P) and
x ∈ FV (Q).

Exclude all the variables from the following λ-expressions:
1. λxy.yx; 2. λfx.fxx.

Solution.

2 The solving of the task of disassembling an object into the basis can be viewed
differently. As any combinator is a notion and even a concept in a mathematical
sense, then a source object is ‘under investigation’, or ‘under knowing’, basis is a
‘system of known concepts’, and a procedure of disassembling into basis is ‘knowl-
edge representation’ of the source object in terms of already known concepts. Similar
reasons in its essence are used in applications of object-oriented approach.

CHAPTER 8: BASIS I , B, C , S 121

M–1. λxy.yx = λx.(λy.yx)
(2)(b)
= λx.(C(λy.y)x)
(1)
= λx.CIx

(2)(a)
= B(CI)(λx.x)
(1)
= B(CI)I.

Checking. B(CI)Ixy = CI(Ix)y = Iy(Ix) = Iyx = yx.

M–2. λfx.fxx = λf.(λx.fxx)
(2)(c)
= λf.S(λx.fx)(λx.x)

(1), (2)(a)
= λf.S(Bf(λx.x))I
(1)
= λf.S(BfI))

(2)(b)
= C(λf.S(BfI))I

(2)(a)
= C(BS(λf.BfI))I

(2)(b)
= C(BS(C(λf.Bf)I))I

(2)(a)
= C(BS(C(BB(λf.f))I))I
(1)
= C(BS(C(BBI)I))I.

Exercises

Exercise 8.1. Prove, that a set of combinators C, W , B, K has a
property of being basic, i.e. is the basis.

Hint. Use a definition of basis in a general form (see. [2], p. 172):

Definition 8.1 (basis). (i) Let X be a subset of all the λ-terms Λ,
X ⊂ Λ. Denote by X+ a set of terms, generated by X . Set
X+ is the least set Y , such that:

1) X ⊆ Y ,

2) if terms M,N ∈ Y , then their application (M N) ∈ Y .

122 CHAPTER 8: BASIS I , B, C , S

(ii) Consider a subset of λ-terms A ⊆ Λ. A set of terms X ⊆ Λ is
called basis ofA, if

(∀M ∈ A)(∃N ∈ X+).N = M.

(iii) Set X is called basis, if X is a basis of the set of closed terms.

Exercise 8.2. Represent the combinatorW mult of the second power
of a function in terms of combinators I, B, C, S.

Exercise 8.3. For the combinator Φ with the a characteristic

Φfabx = f(ax)(bx),

do the following:

1◦ write the predicate 1 < x < 5 without a variable.

Hint. To achieve this goal, bring in a suitable construction
Φ and (greater 1) (less 5);

2◦ represent combinator Φ and (greater 1) (less 5) in terms of com-
binators I, B, C, S.

Exercise 8.4. Express a combinator, representing the function of
sum of sines of two numbers, in terms of combinators I, B, C S.

Hint. It is possible, for instance, to use combinator Φ and write

Φ plus sin sin.

Try to transform this expression, using the combinators for elimina-
tion of twofold occurrence of ‘sin’. E.g.,

Φ plus sin sin = W (Φ plus) sin = . . .

etc.

Chapter 9

Applications of fixed point
combinator Y

The recursive definitions of the objects are considered in this chapter.
Using a fundamental for functional programming fixed point theo-
rem, the recursive definitions are succeeded in reducing to the usual
equational form.

9.1 Fixed point theorem

The tasks, considered in this chapter, are composed as a small self-
contained study. Aim is to establish the relationships of the pro-
gramming language constructions with the notions of calculus of λ-
conversion.

A characteristic equality for the function Y is as follows:

Y f = f(Y f).

Theorem 9.1 (fixed point). Self referencing definition of the func-
tion f :

f = E f

123

124 CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y

where f has no free occurrence in E, f 6∈ E, can be found as:

f = Y E.

Proof. Evidently, if in the definition:

f︸︷︷︸
=Y E

= E f︸︷︷︸
=Y E

replace f by (Y E), then obtain Y E = E(Y E).

9.2 Elements of recursive computations

A function is assumed as recursive, if its defining expression contains,
at least, one reference to the definable function itself.

Consider a recursive definition of the factorial function:

FAC = (λn.IF (= n 0) 1 (×n FAC(− n 1)))

When this definition is applied directly, then the following transfor-
mations occur:

FAC = (λn.IF (= n 0)1
(×n FAC(− n 1))) =

FAC = (λn.IF (= n 0)1
(×n (λn.IF (= n 0)1

(×n FAC(− n 1)))(− n 1))) =
FAC = (λn.IF (= n 0)1

(×n (λn.IF (= n 0)1
(×n(λn.IF (= n 0)1

(×n FAC(− n 1)))(− n 1)))(− n 1))) =
.

It is not difficult to view, the a chain of these transformations never
completes. In the notations above the name FAC is assigned to the

CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y 125

λ-term. This notion is natural and suitable, but does not conform to a
syntax of calculus, because there is no function referencing in the λ-
calculus. In a connection with this, an expression is to be translated
in the language of λ-calculus, i.e. to express a recursion in its pure
form (without self referencing). As it happened, this translation is
possible, and without violation a framework of the combinatory logic.

9.3 Using the combinator Y

As a main sample, whose evaluation exemplifies the principal effects
of computations with a fixed point, use the factorial function FAC.
The notion of this function FAC in an abbreviated form is as follows:

FAC = λn.(. . . FAC . . .). (9.1)

Using λ-abstraction, obtain:

λfac.FAC fac = (λfac.(λn.(. . . fac . . .)))FAC. (9.2)

By rule (η), conclude that:

λfac.FAC fac = FAC,

and the definition (9.2) can be written as follows:

FAC = (λfac.(λn.(. . . fac . . .)))FAC. (9.3)

Assuming H = λfac.(λn.(. . . fac . . .)), obtain:

FAC = H FAC. (9.4)

The definition of H is a usual λ-abstraction, which does not use a
recursion. A recursion is expressed only in a form of equality (9.4).
The definition (9.4) is similar to a mathematical equation. E.g., to
solve the equation (x2 − 2) = x means to find out the values of x,

126 CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y

which satisfy this equation: (x = −1, x = 2). Similarly, to solve
(9.4), means to find out the λ-abstraction for FAC, which satisfies
(9.4). The equation FAC = H FAC expresses the fact, that when
the function H is applied to the argument FAC, its results in FAC
again. That is why FAC is called a fixed point of the function H .

Example 9.1. The numbers 0 and 1 are the fixed points of the function
f = λx.× x x, i.e. f 0 = 0 and f 1 = 1. Actually,

f 0 = (λx.× x x)0 = (β)
= × 0 0 = 0,

f 1 = (λx.× x x)1 = (β)
= × 1 1 = 1.

Thus, it is needed to find out a fixed point of the function H . Evi-
dently, this point depends only of H . Introduce the function Y , which
conforms the following scheme:

getting input function as its argument, the function Y
generates as an output the fixed point of this function.

It means, that we obtain Y H = H(Y H), where Y is a fixed point
combinator. If we find out such Y , then we obtain a solution of the
equation (9.4):

FAC = Y H.

During a performance of this solution a rather general method is used.
It is based on the principal in a theory of recursive computations fixed
point theorem (see Theorem 9.1). In fact, it was given its particular
“proof” for the function FAC. The obtained solution gives the non-
recursive definition of FAC. An essence of the fixed point theorem is
namely in a assuring the transition from recursive in its notations def-
initions to non-recursive in its notations definitions. In the last case
an effect of cycling in the definition (and corresponding computation)
is hidden by the combinator Y .

CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y 127

Example 9.2. To get assured, that thus defined function FAC prop-
erly works, let’s apply it to some argument, e.g., to 1:

FAC 1 = Y H 1 = H(Y H)1 (FAC), (Y)
= (λfac.λn.IF (= n 0)1(×n(fac(− n 1))))(Y H)1 (H)
= (λn.IF (= n 0)1(×n((Y H)(− n 1))))1 (β)
= IF (= 1 0)1(×1((Y H)(− 1 1))) (β)
= ×1((Y H)0) = ×1(H(Y H)0) (Y)
= ×1((λfac.λn.IF (= n 0)1(×n(fac(− n 1))))(Y H)0) (H)
= ×1((λn.IF (= n 0)1(×n((Y H)(− n 1))))0) (β)
= ×1(IF (= 0 0)1(×0(Y H(− 0 1)))) (β)
= ×1 1
= 1.

9.4 Evaluation of a function

Consider the examples of definitions for most often used in practice
of programming functions. Note, that for simplicity, the functions,
which use lists as their arguments, are selected out. As usually, the
list is understood as a finite sequence.

Task 9.1. Using the fixed point function Y , express the definitions of

128 CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y

the following functions:

2) sum = λx.if null x
then 0
else (car x) + sum(cdr x),

3) product = λx.if null x
then 1
else (car x) × product(cdr x),

4) append = λx.λy.if null x
then y
else (list((car x)(append(cdr x)y)),

5) concat = λx.if null x
then ()
else append(car x)(concat(cdr x)),

6) map = λfλx.if null x
then ()
else list((f(car x))(map f(cdr x))).

length(a1, a2, a3) = 3;
sum(1, 2, 3, 4) = 10;
product(1, 2, 3, 4) = 24;
append(1, 2)(3, 4, 5) = (1, 2, 3, 4, 5);
concat((1, 2), (3, 4), ()) = (1, 2, 3, 4);
map square (1, 2, 3, 4) = (1, 4, 9, 16).

For examples of “calls” of each of the functions perform its checking.

Starting up to work with lists, it is possible to estimate the abil-
ities of the programming system Lisp1. This system makes no dis-
tinction between “programs” and “data”: both of them are the objects

1 In its ground Lisp has, practically, all the abilities of untyped lambda-calculus.
Depending on a dialect in use, the outer notation of the objects can be varied. Pay
attention one more, that this language has no operators. The only kind of its objects
in use are the functions. The implemented mechanism of recursion from a mathe-
matical point of view illustrates an effect of the fixed point computations. Usually,
a language is supplied with the additional non-recursive means of organizing the
cycled, or iterative computations.

CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y 129

on equal rights. A great interest to the programming system Lisp is
completely justified. Having clear and short mathematical founda-
tions, this programming system overcomes a barrier between a prac-
tical program encoding of a task and its mathematical understanding.

Solution. As an example, give the corresponding computations for
the function length (getting the length of a list) and map (the func-
tional, “distributing” an action of function-argument along the list).
During the evaluation of these functions, the main features of recur-
sive computations over lists reveal.

length–1. For the function length its initial definition

length = λx.if null x
then 0
else 1 + length(cdr x),

is to be re-written as:

length = (λf.λx.if null x
then 0
else 1 + f(cdr x))length.

length–2. It follows from this, that

length = Y (λf.λx.if null x
then 0
else 1 + f(cdr x)).

Thus, an awaited combinatory characteristic is derived.

length–3. Make a checking of the definition for list of length

130 CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y

2, i.e. let x = (a1, a2):

length(a1, a2) = Y (λfλx.if null x
then 0
else 1 + f(cdr x))(a1, a2)

= (λfλx.if null x
then 0
else 1 + f(cdr x))(Y (. . .))(a1, a2)

= if null (a1, a2) then 0 else 1 + (Y (. . .))(cdr (a1, a2))
= 1 + (Y (. . .))(cdr (a1, a2))
= 1 + (λfλx.if null x then 0

else 1 + f(cdr x))(Y (. . .))(a2)
= 1 + if null (a2) then 0 else 1 + (Y (. . .)) nil
= 1 + (1 + (Y (. . .)) nil)
= 1 + (1 + (λfλx.if null x then 0

else 1 + f(cdr x))(Y (. . .)) nil)
= 1 + (1 + (0)) = 2.

map–1. For the function map its initial definition

map = λf.λx. if null x
then ()
else (f(car x)) : (map f(cdr x))

is to be re-written as:

map = (λm.λf.λx.if null x
then ()
else (f(car x)) : (mf(cdr x))) map.

It follows from this, that

map = Y (λm.λf.λx. if null x
then ()
else (f(car x)) : (mf(cdr x))).

CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y 131

Checking. Checking for f = square, x = (2, 3) (outline):

map square (2, 3) =
= (λmλfλx.if null x

then ()
else (f(car x)) : (mf(cdr x)))(Y (. . .))square (2, 3)

= (square 2) : ((Y (. . .)) square (3))
= (square 2) : ((λm.λf.λx. . . .)(Y (. . .)) square (3))
= (square 2) : ((square 3) : ((Y (. . .)) square ())
= (square 2) : ((square 3) : ())
= (4, 9).

In this case the symbol ‘:’ is used to denote an infix form of the
function list, therefore, as a notational agreement, is accepted, that
x : (y : (z : ())) ≡ 〈x, y, z〉 ≡ (x, y, z).

Exercises

Exercise 9.1. Write a function, implementing the algorithm of dis-
assembling into basis I, K and S.

Hint. As known, all the λ-terms can be avoided by replacing with the
constructions, formed of combinators I, K and S, and combinator I
can be replaced by the construction SKK.

The function, forming a combination, can be denoted, e.g., by
combine. Now, for instance, the function, which eliminates the iden-
tifier x from an expression E, can be determined in a form of self ref-
erencing definition. Next, using a fixed point theorem, this definition
can be transformed to a standard form by eliminating an occurrence
of extract from the right part of the definition:

132 CHAPTER 9: APPLICATIONS OF FIXED POINT COMBINATOR Y

def rec extract x E
if identifier E
then if E = x

then ‘I’
else combine ‘K’ E

else if lambdaexp E
then extract x (extract (bv E)(body E))
else let F = extract x (rator E)

let A = extract x (rand E)
combine ‘S’ (combine F A)

Exercise 9.2. Write the program, which transforms a λ-term into
combinatory form, checking the occurrence of a variable in the oper-
ator or operand:

1) if the operator does not depend on x, then combinator B is
introduced:

Bfgx = (f)(gx);

2) if the operand does not depend on x, then combinator C is in-
troduced:

Cfgx = (fx)g;

3) if neither operator, nor operand does not depend on x, then the
combinator is not introduced:

fg = (f)(g);

4) if g = I, then

SfIx = (fx)(Ix) = fxx = Wfx,
BfIx = (f)(Ix) = fx;

5) if f = K, then

SKgx = (Kx)(gx) = Ix,
CKgx = (Kx)(g) = Ix.

Hint. See, for instance, [5], p. 45-46.

Chapter 10

Function list1

This chapter describes the abilities of constructing a parameterized
function-object. Assigning the particular values to the arguments –
and, as this particular value, can be the functions, – a whole family of
definitions of particular functions can be derived.

10.1 Theoretical background

The function list1 is defined as follows:

list1 a g f x = if (null x)
then a
else g(f(car x))(list1 a g f(cdr x)).

This is a sample of a function of rather general kind, from which,
given a particular value of parameters, the whole sequence of “sim-
pler” functions can be generated. It could be noted, that many of
functions, acting over the lists, have some “shared part”. A question
is, if is it possible for the class of functions over lists, to determine
such a generalized function, from which, by different choice of pa-
rameters, the particular representatives of the class of functions can

133

134 CHAPTER 10: FUNCTION list1

be generated. As one of such generalized functions, the function list1
is presented below.

The main construction in use is a list, which can be either empty
or non-empty. In the last case it has a “head” and “tail”, which, in
turn, can be the lists. The following operations can be performed over
lists:

null : list→ boolean,
car : non-empty list→ (list + atom),
cdr : non-empty list→ list,
list : (atom + list)→ (list→ list).

These operation are interrelated as follows:

null () = true,
null (list x y) = false,
car (list x y) = x,
cdr (list x y) = y,

list (car z)(cdr z) = z.

In addition, use an abbreviation:

list x y = x : y,

and, thus, for n ≥ 2 apply this agreements to the construction below:

〈x1, x2, x3, . . . , xn〉 = x1 : (x2 : (x3 : (. . . xn) : . . . () . . .)).

10.2 Tasks

Task 10.1. Study the properties of the function

list1 a g f x = if (null x)
then a
else g(f(car x))(list1 a g f(cdr x)).

CHAPTER 10: FUNCTION list1 135

Using the following definitions:

Ix = x, Kxy = x, postfix x y = append y (ux),

where (ux) is a list, which contains a singular element x, express the
following functions:

(a) length, sumsquares, reverse, identity;

(b) sum, product, append, concat, map.

Task formulation. Use the following definitions of the functions:

(a) ux = x : (),

length x = if null x then 0 else 1 + length (cdr x),

sumsquares x = if null x
then ()
else(square(car x)) + sumsquares(cdr x),

reverse x = if null x then ()
else append(reverse(cdr x))(ux),

identity x = x,

square x = if null x then 0 else x × x;

136 CHAPTER 10: FUNCTION list1

(b) sum x = if null x
then 0
else (car x) + sum(cdr x),

product x = if null x
then 1
else (car x) × product(cdr x),

append x y = if null x
then y
else list (car x)(append(cdr x)y),

concat x = if null x
then ()
else append(car x)(concat(cdr x)),

map f x = if null x
then ()
else (f(car x)) : (map f(cdr x)).

Perform steps of the algorithms for the following samples:

sum (1, 2, 3, 4) = 10,
product (1, 2, 3, 4) = 24,

append (1, 2)(3, 4, 5) = (1, 2, 3, 4, 5),
concat ((1, 2), (3, 4), ()) = (1, 2, 3, 4),
map square (1, 2, 3, 4) = (1, 4, 9, 16).

Solution. Assume, that

postfix x y = append y (ux).

list1–1. Consider case (a):

length = list1 0 plus (K 1),
sumsquares = list1 0 plus square,

reverse = list1 () postfix I,
identity = list1 () list I.

CHAPTER 10: FUNCTION list1 137

list1–2. Consider case (b):

sum = list1 0 plus I,
product = list1 1multiply I,

append x y = list1 y list I x,
concat = list1 () append I,
map f = list1 () list f.

To complete this solution, we need to substitute the parameters
and perform the detailed computations. In addition, it is assumed that
the steps of checking the samples should be performed.

10.3 Functor-as-object

Concluding, pay your attention to some features of the method of
solving the task. First of all, the function list1 is a functional (and
even a functor). Having defined this function, actually, a significantly
more volume of job, than needed, was performed. More precisely,
list1 reveals a significant dependency on parameters: varying the pa-
rameters, we result in a whole family of particular functions, every of
which has a rather general presentation. By these means, a definition
of list1 establishes a notion, or concept. As a concept is given by
the description, then the intensional is determined. Selecting out
different values of parameters, or referencing the assignments, ac-
tually, we obtain a whole family of individual functions. Counting the
elements of this family, we obtain an extensional of the concept list1.

The functions, similar to list1, represent in programming an im-
portant idea, which has a distinctive name ‘functor-as-object’. As
could be seen, a program, composed of such objects, has a high de-
gree of generality.

138 CHAPTER 10: FUNCTION list1

Exercises

Exercise 10.1. Determine the types of arguments of list1.

Hint. Consider a definition of list1 and will carry it into effect step by
step.

1) Apply the function (list1 a g f) to a list. Assume, that it has
the following structure:

list either is an empty element (null), or has a first
element (head) and the rest of elements (tail), which,
in turn, is a list.

Assume, that this list has a type A. Thus,

(list1 a g f) ∈ (A→ B);

2) conclude, that arguments a should be taken from B;

3) the function f is applied to elements of A, and its values range
C:

f ∈ (A→ C);

4) thus, the function g should be applied to elements of C, and an
effect of applying (list1 a g f) to elements of A ranges B; from
this it follows, that

g ∈ (C → (B → B)).

More details of analysis see in [5], p. 110-111.

Chapter 11

Isomorphism of c.c.c. and
ACS

In this chapter we start to move deeper in the mathematical abstrac-
tions and will conform the operator thinking to combinatory thinking.
Note, that there is the only operator in combinatory logic – operator
of application, or the operator of acting of one object on another.
The induced system of computations is called the applicative com-
putational system, or ACS. This system conforms to a traditional
operator computational system, which is represented by a special ob-
ject – the cartesian closed category, or c.c.c.

11.1 Theoretical background

An idea of constructing a functional language, which contains no
variables, is based on using of combinatory logic. Refusing of vari-
ables, a developer of programming language begins to use in opera-
tions arbitrary objects, which, in constructing a program, are allowed
to be applied to each other. Evidently, this is the most purified form of
using the objects.

139

140 CHAPTER 11: ISOMORPHISM OF C.C.C. AND ACS

As known, for proper using the objects, it is needed to stay within
some variant of combinatory logic, which plays a role of shell theory.
A set of combinators from this shell forms the “set of instructions”
of an abstract computational system. It seems, that this set is not
restricted by anything. In this case its mathematical properties stay
unrevealed and potentially contain some form of contradiction.

Select as a shell theory the category theory. Fix in it a set of com-
binators, which have completely safe mathematical behavior: produce
a cartesian closed category. Note, that in a cartesian closed cate-
gory (c.c.c.) the functions are understood as operators, acting on
its operands, which are written by positions. On the other hand, in
applicative computational system there is the only operation – oper-
ation of application, which is interpreted as an acting of one object to
another. The question is, are there any losses as a result of transition
from a system of notions and definitions of c.c.c. to the system of
notions and definitions of ACS and visa versa.

Use the following notational agreement:

[x, y]≡ λr.rxy,
< f, g >≡ λt.[f(t), g(t)] ≡ λt.λz.z(f(t))(g(t)).

The fact, that f is a mapping from A to B (in an intensional sense) is
denoted by f : A→ B. Take into use the following mappings:

h : A × B → C x : A, y : B,
ΛABCh : A→ (B → C),
ΛABC : (A × B → C)→ (A→ (B → C)),

k : A→ (B → C),
εBC : (B → C) × B → C,

ε◦ < k ◦ p, q > : A × B → C,
p : A × B → A, q : A × B → B.

In the following these mappings will often be used without explicit
indication of their types, only if there is no ambiguity in reasoning.

CHAPTER 11: ISOMORPHISM OF C.C.C. AND ACS 141

11.2 Tasks

Task 11.1. As in the Karoubi’s shell it is derivable, that:

h = ε◦ < (Λh) ◦ p, q >,

and is derivable:
k = Λ(ε◦ < k ◦ p, q >),

then, first of all, from the previously given definitions it is needed to
derive both of the equalities by yourself.

Solution.

Λ–1. At first, show, how to construct a translation of expres-
sions from operator form to applicative one, i.e. find such a
function h′, that h[x, y] = h′xy. This can be obtained in the
following way:

h = ε◦ < (Λh) ◦ p, q >;
h[x, y] = (εBC◦ < (Λh) ◦ p, q >)[x, y]

= εBC(< (Λh) ◦ p, q > [x, y])
= εBC [((Λh) ◦ p)[x, y], q[x, y]]
= εBC [(Λh)(p[x, y]), q[x, y]]
= εBC [((Λh)x), y]
= (((Λh)x)y) = Λ h x y
≡ h′ x y.

The computations above need in proper type assignment for the
objects1. Hence, h′ x y = (Λh)x y.

Λ–2. At second, show, how to construct a translation from
applicative form to operator form, i.e. find the function k′ such,

1The expression ((Λh)x) has the type B → C. The expression y has been
assigned type B. The expression (((Λh)x)y) obtains the type C.

142 CHAPTER 11: ISOMORPHISM OF C.C.C. AND ACS

that k x y = k′[x, y]. This can be obtained in the following way:

k = Λ(ε◦ < k ◦ p, q >);
kxy = Λ(ε◦ < k ◦ p, q >)xy

= (λu.λv.(ε◦ < k ◦ p, q >)[u, v])xy
= ε◦ < k ◦ p, q > [x, y]
≡ k′[x, y].

Thus, k′ = ε◦ < k ◦ p, q > and Λk′ = k. It is left to note,
that by ‘=’ is denoted the relation of ηξ-convertibility: it is reflective,
symmetric and transitive. Hence, it is a relation of equivalency. The
last circumstance allows to make a conclusion, that

(A × B → C) ∼= (A→ (B → C)),

where symbol ‘∼=’ is to be read as ‘isomorphic’.

Chapter 12

Currying

The n-ary functions-operators, used in an operator programming, in
the combinatory logic have the images as the objects, which inherit
all their essential properties.

12.1 Theoretical background

12.1.1 Operators and functions

In a programming, it is often needed to establish a distinction be-
tween the notion of ‘operator’ and the notion of ‘function’. In the
first case the algebraic ideas are followed, when any operator is in
advance assumed to have arity (the known number of arguments,
called operands). This number of operands is known beforehand,
and it is connected with a kind of particular operator. The arity also
reveals itself in a manipulation with the functions, which though have
an arbitrary character, but for every of them its number of arguments
is known in advance. This is an old traditional way to consider the
computations and creation of calculi. A relative opposing the symbol
of function or operator, on one hand, to the symbols of arguments on
other hand, is put in its basis. It is assumed silently, that the objects

143

144 CHAPTER 12: CURRYING

do exist, but they are not on equal rights: the objects-operators are
used by separate rules, and objects-operands – by other. The most
often assumption in use deals with a replacement of one objects by
others. In a framework of first order formalizations, the operands can
be replaced by other objects, while operators can not. All of this has a
sense of restriction, laid on the substitution in this systems. The first
order systems are called the systems with a restricted principle of
comprehension, because a particular accepted definition of substitu-
tion operation implements and idea of comprehension.

12.1.2 Comprehension

During the manipulation with arbitrary in reality functions, the rea-
soning concerning the computations should be carry out in terms of
applying a symbol of function to the corresponding symbol of argu-
ment. Even more homogeneity in treating the functions and argu-
ments can be achieved, if consider them as objects – without any
additional reserve, – and reduce the study of a computation process
to reasonings of acting (applying) of one object to another. In this
case it is possible do not superimpose the burdensome restrictions on
executing of a substitution, that gives rise to higher order formalisms.
In case the order of such a theory is not restricted, then this is a theory
with unrestricted principle of comprehension.

12.1.3 Connection between operators and functions

The disparate connections between both of the kinds of systems can
be established, revealing the potential possibilities of both the ap-
proaches. In particular, consider a question, how by means of ACS
(using operators of application and abstraction), to express an inten-
sional representation of 2-ary, 3-ary, . . ., n-ary functions, considered

CHAPTER 12: CURRYING 145

as operators. Use the following notational agreement:

[x, y] = λr.rxy,
h : A × B → C,

CurryABC : (A × B → C)→ (A→ (B → C)).

Hence, h is assumed to be the usual two placed operator, while
Curry is a transformation from operator to applicative notation1:

CurryABCh = λxy.h[x, y],
λxy.h[x, y] : A→ (B → C).

12.2 Tasks

Task 12.1. Consider a family of functions h:

h2 : A×B → C,
h3 : A×B × C → D,
h4 : A×B × C ×D → E,
. . . :

Find the family of mappings:

CurryABC , Curry(A×B)CD, Curry(A×B×C)DE , . . . ,

which make currying of these functions, i.e. transform them into an
applicative form.

Solution. As an example, consider the currying of h3 and h4 .

Curry–1. Indeed, let h3 : (A × B) × C → D. Then
Λ(A × B)CDh3 = λxy.h3[x, y] : A × B → (C → D). Now
it can be assumed that Λ(A ×B)CDh3 = h′2, and therefore the

1In theoretical studies, instead notation of ‘Curry’ is often used the notation ‘Λ’;
thereafter this last notation will be used.

146 CHAPTER 12: CURRYING

next idea is to replace the first variable by the ordered pair of
variables, i.e.

ΛAB(C→ D)(Λ(A × B)CDh3) =
= λuv.(Λ(A × B)CDh3)[u, v]
= λuv.(λxy.h3[x, y])[u, v]
= λuv.(λy.h3[[u, v], y])
= λuvy.(h3[[u, v], y]) : A→ (B → (C → D))
= (ΛAB(C→ D) ◦ Λ(A×B)CD) h3.

Curry–2. Let now h4 : A × B × C × D → E, where it is
assumed, that

A×B × C ×D = (A×B × C)×D = ((A×B)× C)×D.

Then consider the transformation of currying step by step.

Step 1:

Λ((A×B)×C)DEh4 = λxy.h4[x, y] : ((A×B)×C)→ (D → E).

Step 2:

Λ((A×B)C(D→E)(Λ((A×B)×C)DEh4) =
= λuv.(Λ((A×B)×C)DEh4)[u, v]
= λuvy.h4[[u, v], y] : A×B → (C → (D → E)).

Step 3:

ΛAB(C→ (D→ E)(λuvy.h4[[u, v], y]) =
= λx y.(λuvy.h4[[u, v], y])[x, y]
= λx yvy.h[[[x, y], v], y].

In discussing the solution, obtained in (Curry-1) and (Curry-2),
it could be noted, that the currying functions are as follows:

Λ(A×B×C)DE = ΛAB(C→(D→E)) ◦ Λ(A×B)C(D→E) ◦ Λ(A×B)×C)DE .

CHAPTER 12: CURRYING 147

For a purpose of finding out the solution in a general case, rewrite this
equality as follows:

Λ(A1×A2×A3)A4B =
= ΛA1A2(A3→(A4→B)) ◦ Λ(A1×A2)A3(A4→B) ◦ Λ((A1×A2)×A3)A4B.

Exercises

Exercise 12.1. It is left to the reader to derive corresponding equality
for n-ary functions.

Hint. This can be done by induction on the number of argument
places.

Exercise 12.2. Establish a connection between carried and uncur-
ried functions.

Solution. For any function

f : [D1 ×D2 × · · · ×Dn]→ D

there is a curried function, which is equivalent to this function

Curry f : D1 → [D2 → [. . . [Dn → D] . . .]]

Using the λ-notations, it is not difficult to conclude, that

Curry f = λx1x2 . . . xn.f(x1, x2, . . . , xn)

Next, Curry, in turn, is a higher order function:

Curry : [[D1 ×D2 × · · · ×Dn]→ D]
→ [D1 → D2 → · · · → Dn → D]

Curry = λf.λx1x2 . . . xn.f(x1, x2, . . . , xn)
= λfx1x2 . . . xn.f(x1, x2, . . . , xn)

148 CHAPTER 12: CURRYING

Example 12.1.

plusc = λx1x2.+ x1 x2

= λx1x2.plus(x1, x2)
= (λf.λx1x2.f(x1, x2))plus
= (λfx1x2.f(x1, x2))plus
= Curry plus

For the function Curry it can be possible to find the unCurry
with a reversed effect:

unCurry : [D1 → D2 → · · · → Dn → D]
→ [[D1 ×D2 × · · · ×Dn]→ D]

unCurry = λf.λ(x1, x2, . . . , xn).fx1x2 . . . xn

Example 12.2.

plus = λ(x1, x2).+ [x1, x2]
= λ(x1, x2).plusc x1 x2

= (λf.λ(x1, x2).f x1 x2)plusc
= unCurry plusc.

This example is generalized without any difficulty and results in
the following.

Statement 12.1. If Curry h = k, then:

unCurry(Curry h) = h
Curry(unCurry k) = k

Chapter 13

Karoubi’s shell

A special category, called Karoubi’s shell, allows laconic expression
of all the available knowledge store, concerning operators, in terms
of combinatory logic. In addition, the types are also encoded by the
objects. By this way an embedding of typed application into type free
programming environment is performed.

13.1 Theoretical background

A research work in programming often starts with a choice of the host
theory, i.e. the shell theory, within which it is suitable to represent
and study newly constructed mechanisms. By need of establishing
and support of type system, a necessity of using such a shell theory
arises, that allows to establish and consider various ideas, concerning
the types. Possibly, within a shell it is better to avoid any a priori idea
of types. In other words, a type free theory arises to deal with, and a
good sample of this kind is the untyped λ-calculus.

In this chapter the establishing of connection of category theoretic
notions with the notions of untyped λ-calculus is studied. Let L be
a set of the terms of some calculus of λ-conversion. Karoubi’s shell
for L, denoted by C(L), will be assumed to be a category, defined as

149

150 CHAPTER 13: KAROUBI’S SHELL

follows. Let
a ◦ b ≡ λx.a(bx)

for a, b belonging to L, where ‘◦’ is a sign of composition of the
functions.

In addition, use the following notations:

{a ∈ L|a ◦ a = a} − set of objects in a category,
{f ∈ L|b ◦ f ◦ a = f} − set of morphisms, Hom(a, b),

id − identity morphism, id a = a
f ◦ g − composition of morphisms.

13.2 Tasks

Task 13.1. Show, that C(L) is a category. This is left to verify by
the reader, making a concordance with any form of definition of a
category.

Task formulation. Assume the following definitions, needed for
studying the objects. Remind, that in this case the necessity of
carrying out the following equalities is presupposed:

A= λx.A(A(x)) = A ◦A,
F = λx.B(f(A(x))) = B ◦ f ◦A.

(A)
(f)

1. Cartesian product:

A × B = λuλz.z(A(u(λxλy.x)))(B(u(λxy.y))).

2. Projections onto the first and second element respectively:

pAB = λu.(A×B)(u)(λxλy.x), pAB : A×B → A;
qAB = λu.(A×B)(u)(λxλy.y), qAB : A×B → B.

CHAPTER 13: KAROUBI’S SHELL 151

3. Couple of functions:

< f, g >= λtλz.z(f(t))(g(t)) = λt.[f(t), g(t)],
f : C → A, g : C → B, < f, g >: C → (A×B).

4. A set of mappings (a functional space):

(A→ B) = λf.B ◦ f ◦A.

5. Application (acting by a function on an argument):

εBC = λu.C(u(λxy.x)(B(u(λxy.y)))),
εBC : (B → C)×B → C.

6. The function of currying, i.e. the translation of the “usual”
functions into applicative form, is called in honor of H. Curry
(Remind one more: this function is often denoted by ‘Curry’;
in the current context it is assumed, that Curry ≡ Λ, i.e. the
currying function is denoted by ‘Λ’):

ΛABCh = λxλy.h(λz.z(x)(y)),
h : (A×B)→ C, ΛABCh : A→ (B → C).

It is needed to prove the following:

• Properties of the projections:

pAB◦ < f, g >= f, qAB◦ < f, g >= g,
< pAB ◦ h, qAB ◦ h >= h.

• Let h : (A×B)→ C, k : A→ (B → C). Then

ε◦ < (Λh) ◦ p, q >= h,
Λ(ε◦ < k ◦ p, q >) = k,

152 CHAPTER 13: KAROUBI’S SHELL

where Λ = ΛABC , p = pAB , ε = εBC , q = qAB .

Solution. A proof is reducible to the verifying the properties of the
introduced objects.

C(L)–1. Note, that the mapping h : (A×B)→ C has a trans-
lation into the term of λ-calculus, with the following equality:

h = λx.C(h((A×B)(x))),

where x = [x1, x2]. This is an immediate corollary of the equal-
ity (f).

C(L)–2. Determine a combinatory characteristic h:

h[x1, x2] = C(h((A×B)[x1, x2]))
= C(h(λz.z(A([x1, x2]K))(B([x1, x2](KI)))))
= C(h(λz.z(A x1)(B x2))) = C(h[A x1, B x2]).

Thus, h[x1, x2] = C(h[A x1, B x2]).

C(L)–3. Again, pay attention to a necessity of taking into ac-
count the following equalities:

x = λz.a(x(1 z)) = A ◦ x,
f = λz.B(f(A z)) = B ◦ f ◦A,

where 1 = λy.y = I .

C(L)–4. It is not difficult to see (prove yourself!), that

(A×B) = λu.[A(u K), B(u(K I))],

where K = λxy.x, I = λx.x. Then a straightforward compu-
tation gives the following combinatory characteristic of a carte-
sian product:

(A×B)[u, v] = λz.z(A([u, v]K))(B([u, v](K I)))
= λz.z(A u)(B v)
= [Au,Bv].

CHAPTER 13: KAROUBI’S SHELL 153

C(L)–5. Verification of properties of the projections leads to
the following characteristics:

pAB([u, v]) = (A×B)[u, v]K = [Au,Bv]K = A u,
qAB([u, v]) = (A×B)[u, v](K I) = [A u,B v](K I) = B v.

C(L)–6. Considering the ordered pair [f, x], show how using
the mapping εBC result in an application of f to x:

εBC([C ◦ f ◦B,B ◦ x]) = εBC([f, x])
= C([C ◦ f ◦B,B ◦ x]K(B([C ◦ f ◦B,B ◦ x](K I))))
= C((C ◦ f ◦B)(B(B ◦ x)))
= C(f(B x))
= (C ◦ f ◦B)(x)
= f(x).

Note a necessity of taking into account properties of a compo-
sition.1 Essentially, a simple equality:

ΛABC h x y = h([x, y])

will be proved below (see chapter 12, where a currying function
is defined).

C(L)–7. Let t be represented by an ordered pair, i.e. t = [t1, t2].
Then

(ε ◦ < (Λ h) ◦ p, q >)t = ε[(Λ h)(p t), q t]
= ε[(λxy.h[x, y])(pt), qt]
= ε[(λxy.h[x, y])t1, t2]
= ε[λy.h[t1, y], t2]
= (λy.h[t1, y])t2
= h[t1, t2].

This is a derivation of a characteristic equality:

ε◦ < (Λ h) ◦ p, q >= h.

1Remind, that C ◦ f = f , B ◦ x = x.

154 CHAPTER 13: KAROUBI’S SHELL

C(L)–8. Now derive the second characteristic equality, where
#(t1) = A, #(t2) = B, #(t) = A×B, and t = [t1, t2], i.e. t is
represented by an ordered pair; by ‘#’ the function of ‘evaluating
the type’ is denoted:

Λ(ε◦ < k ◦ p, q >)t1 t2 = (ε◦ < k ◦ p, q >)([t1, t2])
= ε[k(p t), q t] = ε[kt1, t2]
= (λu.C(uK(B(u(K I)))))[k t1, t2]
= C(k t1(B(t2)))
= C(k t1 t2)
= k t1 t2.

By this2 the characteristic equality

Λ(ε◦ < k ◦ p, q >) = k.

is proved.

All the introduced equalities actually take place, and this com-
pletes a proof.

Exercises

Exercise 13.1. Give the representation of a metadata object, using
combinators.

Solution. Assume, that a reader is familiar with the technique of
variable objects (see, e.g., chapter 23 of the current volume). The
constructing of metadata object will be done step by step, using a
comprehension principle.

(1) Using a comprehension. For given the data objects, a compre-
hension generates the metadata object. Next, a superscript is used
for indicating a relative level of generality. Thus, metaobject of level

2Take in mind, that B(t2) = t2.

CHAPTER 13: KAROUBI’S SHELL 155

j + 1 is generated by the objects of level j. Note, that comprehension
involves the description, so that metaobject zj+1 is identified by xj+1.

xj+1 ≡ Izj+1 : [. . . [︸︷︷︸
j+1 times

D] . . .]∀xj : [. . . [︸︷︷︸
j times

D] . . .](zj+1(xj)↔ Φj)

(2) Encoding a comprehension. Let be the following:

• truth values [] represent a variable domain;
• the function g is a predicate function g : U → [] ≡ [U], hence, a
predicate concept is the object

c ≡ λA.λg.x2 ◦ g ◦A ∈ [U];

• j-th concept is determined by the following:

xj ≡ Izj : [. . . [︸︷︷︸
j times

D] . . .]∀xj−1 : [. . . [︸︷︷︸
j−1 times

D] . . .](zj(xj−1)↔ Φj−1)

≡ {xj−1 | Φj−1}
⊆ {xj−1 | xj−1 : A→ xj}
= Hxj (A) ≡ [U]A;

• variable domain [U]A is encoded by the expression

λg.xj+1 ◦ g ◦A;

• augmenting by the ‘instances of a time’ results in:

c ≡ λA.((λh.[] ◦ h ◦A)︸ ︷︷ ︸
[]A

◦ c ◦ (λxj−1.xj ◦ xj−1 ◦A)︸ ︷︷ ︸
UA

);

(3) The final steps of encoding. To complete the encoding of com-
prehension, assume the following:

• fixing A and varying the parameters f, B results in a predicate
concept

c ∈ [U]A, cf ⊆ UB;

156 CHAPTER 13: KAROUBI’S SHELL

• data object cf is defined as a variable predicate

cf ≡ {t ∈ UB | [t/xj−1](‖ Φj ‖f (B))}

for the evolvent f : B → A;
•metaobject cf is encoded by

cf ∈ λc.[U]B ◦ (c ◦ f) ◦B.

Note. The usage of Karoubi’ shell attracts the same ideas as the considered
in chapter 10 in analysis of function list1. Actually, λ-calculus gives a wide
range of various terms. Among them, only those are selected, a syntax
form of which is specially restricted. A set of these restrictions, listed in the
beginning of the current chapter, determines an assignment. A type free
λ-calculus is taken as a concept theory (general shell), which is observed
as a computation theory. As a result of its applying to the assignment,
an individual theory is generated, which in turn has the properties of a
shell. In particular, a special class of computations – categorical compu-
tations, – are representable within it. In this case a question of comparing
the expressive power of the concept theory and the individual theory has a
mathematical nature.

Chapter 14

Products and projections

A finalization of the started process of embedding can be achieved by
introducing the ordered tuples of objects. As turns out, the applicative
computations permit to get their representation.

14.1 Theoretical background

A problem of embedding the objects of one theory into other theory
arises in considering the intensionally determined mappings, when it
is needed to perform their translation in applicative (functional) lan-
guage.

To fulfil this task, a small store of given definitions is needed:

K = λxy.x, I = λx.x, [x, y] = λr.rxy

(ordered pair).

14.2 Task

Task formulation. Obtain the term of λ-calculus, corresponding to
a cartesian product of n objects. In addition, determine such n terms,

157

158 CHAPTER 14: PRODUCTS AND PROJECTIONS

that are the projections.
Hint. In case of n = 2 obtain

A0 ×A1 = λu.[A0(u K), A1(u(K I))],
π2

0 = λu.(A0 ×A1)(u)K,
π2

1 = λu.(A0 ×A1)(u)(K I).

Solution. First of all we will try to find out a regularity in constructing
the term.

× π–1. Consider the case of n = 3.

A0 ×A1 ×A2 = (A0 ×A1)×A2

= λu.[(A0 ×A1)(u K), A2(u(K I))]
= λu.[(λv.[A0(v K), A1(v(KI))])(uK), A2(u(K I))]
= λu.[[A0((u K)K), A1((u K)(K I))], A2(u(K I))].

Indeed, by a straightforward computations it can be derived,
that

((A0 ×A1)×A2)[[x0, x1], x2] = [[A0(x0), A1(x1)], A2(x2)].

To establish corresponding projections, let the following rather
simple statement be formulated, and perform its verification.

Statement 14.1.
π3

0 = λu.(A0 ×A1 ×A2)(u)(K)(K),
π3

1 = λu.(A0 ×A1 ×A2)(u)(K)(K I),
π3

2 = λu.(A0 ×A1 ×A2)(u)(KI).

Proof.

π3
0[[x0, x1], x2] = [[x0, x1], x2]K K

= K[x0, x1]x2K
= [x0, x1]K
= x0;

π3
1[[x0, x1], x2] = [[x0, x1], x2]K(K I)

= K[x0, x1]x2(K I) = x1;
π3

2[[x0, x1], x2] = [[x0, x1], x2](K I)
= (KI)[x0, x1]x2 = I x2 = x2.

CHAPTER 14: PRODUCTS AND PROJECTIONS 159

Indeed, for a kind of projection, defined above, the family of
objects π3

j , j = 0, 1, 2 has a behavior of projections.

× π–2. Consider the case of n = 4.

A0 ×A1 ×A2 ×A3 = (A0 ×A1 ×A2)×A3

= λu.[(A0 ×A1 ×A2)(u K), A3(u(K I))]
= λu.[[[A0(((u K)K)K), A1(((u K)K)(K I))],

A2((u K)(K I))], A3(u(K I))].

Statement 14.2.

π4
0 = λu.(A0 ×A1 ×A2 ×A3)(u)(K)(K)(K),
π4

1 = λu.(A0 ×A1 ×A2 ×A3)(u)(K)(K)(K I),
π4

2 = λu.(A0 ×A1 ×A2 ×A3)(u)(K)(K I),
π4

3 = λu.(A0 ×A1 ×A2 ×A3)(u)(K I).

Proof.

π4
0[[[x0, x1], x2], x3] = [[[x0, x1], x2], x3]K K K = x0,
π4

1[[[x0, x1], x2], x3] = [[[x0, x1], x2], x3]K K(K I) = x1,
π4

2[[[x0, x1], x2], x3] = [[[x0, x1], x2], x3]K(K I) = x2,
π4

3[[[x0, x1], x2], x3] = [[[x0, x1], x2], x3](K I) = x3.

Now a generalization of the product will be done.

Statement 14.3 (generalization). By induction it can be
proved, that:

π1
0 = I, π0 = λy.y K, π1 = λy.y(K I);
πn+1

n = λy.y(K I), i ≤ 1; πn+1
j = πn

j ◦ π0, 0 ≤ j ≤ n− 1.

Proof. Left to a reader.

160 CHAPTER 14: PRODUCTS AND PROJECTIONS

Hint. List some considerations, concerning the proof of gener-
alization. The particular cases:

n = 1 (ordered 2-tuples).
π2

1 = π1, π
2
0 = π1

0 ◦ π0 = I ◦ π0 = π0.

n = 2 (ordered 3-tuples).
π3

2 = λy.y(KI) = π1,
π3

1 = π2
1 ◦ π0 = π1 ◦ π0,

π3
0 = π2

0 ◦ π0 = π1
0 ◦ π0 ◦ π0.

n = 3 (ordered 4-tuples).
π4

3 = π1,
π4

2 = π3
2 ◦ π0 = π1 ◦ π0,

π4
1 = π3

1 ◦ π0 = π2
1 ◦ π0 ◦ π0 = π1 ◦ π0 ◦ π0,

π4
0 = π3

0 ◦ π0 = π2
0 ◦ π0 ◦ π0 = π1

0 ◦ π0 ◦ π0 ◦ π0

= π0 ◦ π0 ◦ π0.

Particular cases of projections of cartesian product in a trans-
formed form are as follows:

n = 2.
π2

1 = λy.y(K I),
π2

0 = λy.y K.

n = 3.
π3

2 = λy.y(KI),
π3

1 = λy.π1(π0 y)
= λy.π1(y K)
= λy.(y K)(K I),

π3
0 = λy.π0(π0 y)

= λy.π0(y K)
= λy.(yK)K.

CHAPTER 14: PRODUCTS AND PROJECTIONS 161

n = 4.
π4

3 = λy.y(KI),
π4

2 = λy.π1(π0 y) = λy.π1(y K) = λy.(y K)(K I),
π4

1 = λy.π1(π0(π0 y)) = λy.π1(π0(y K))
= λy.π1((y K)K) = λy.y((y K)K)(K I),

π4
0 = λy.π0(π0(π0 y)) = λy.π0(π0(y K))

= λy.π0((y K)K) = λy.y((y K)K)K.

Non-formal consideration of the solved problem is reduced to the
following reasons. Ordered n-tuples are well known, in particular,
they are used to constitute the relations of a relational data base.
Remind, that a data manipulation language of relational data base
management systems deals with the sets of n-tuple as particular ob-
jects, called relations. An often used query to data base is to cut the
available relations, and can be reduced to projection operations. To
execute these operations, the implemented query language is needed.

In this case the ACS is used as a programming system. More
exact reasoning assumes the assumptions, that, as a shell system,
the Karoubi’s shell is used (see chapter 13). Both the objects-as-
products and objects-as-projections are built in this shell. In turn,
they consist of the objects-as-combinators. The programming is per-
formed completely in terms of objects.

14.3 Product and cartesian closed category

In this section restrict the consideration by giving the definition a
cartesian closed category, or c.c.c. This definition is important for
better understanding the matters, covered in chapter 11, to reading of
which it is recommended to go back one more time.

Let C be a category. The identity morphism of the object A will be
denoted by idA.
C is called a cartesian closed category, if the following condi-

tions are valid:

162 CHAPTER 14: PRODUCTS AND PROJECTIONS

1) in C there is a terminal object T such, that for any objectA ∈ C
there is the unique morphism !A : A→ T ;

2) for any objects A1, A2 ∈ C there is the object A1 × A2, their
Cartesian product, equipped with morphisms pi : A1 × A2 ×
Ai, the projections, such, that for any fi : C → Ai for i = 1, 2
there is the only morphism 〈f1, f2〉 : C → A1 × A2 such, that
pi ◦ 〈f1, f2〉 = fi;

3) for A,B ∈ C there is the object BA ∈ C, power, BA ≡ A→ B
with the morphism

ε = εAB : BA ×A→ B,

such, that for any f : C ×A→ B there is the only

Λf : C → BA,

satisfying the equality f = ε ◦ (Λf × idA).

A discussion of fruitfulness of this definition needs to be familiar with
the chapters 11-12, as well as with the chapters 19-22, in which
one of the most promising applications of c.c.c. to constructing the
abstract machine is given.

Chapter 15

Embedding Lisp into ACS

Non-trivial application – significant and, essentially, complete frag-
ment of the known programming system Lisp (List processing), – is
embedded into an applicative computational system.

15.1 Theoretical background

One of the most difficult problems in developing the user (language)
interface is in proper and suitable embedding of the application into
programming environment. The application of an object approach,
and, naturally, an object-oriented programming, as known, promote
the success in its solving. In practice, a special set of the classes,
which exports the methods for applied programs, is defined.

In mathematic, this mode is known as an embedding, when in a
host theory, named a metatheory, the objects, a set of which consti-
tutes the embedded theory, are constructed. Metatheory is assumed
as a shell, and the objects of embedded theory can be accommodated
by need, without violating a framework of the metatheory. Consider
a using of this method by example. As a metatheory, the type free
combinatory logic will be used. It will be assumed as a shell of the
objects. The system of objects with their characteristic equalities,

163

164 CHAPTER 15: EMBEDDING LISP INTO ACS

which implement the interface of Lisp, i.e. constitute a functionally
complete universe of discourse around the lists and atoms, will be
used as an embedded system. By a list of objects, as usually, we mean
a finite sequence of objects, among which the other lists can be.

Language Lisp is, essentially, the type free language. Its main
constructions are the same as the constructions of type free λ-cal-
culus. It is well known, that these constructions are expressible by
means of combinatory logic. The aim of this study is to establish
the combinatory characteristics of some functions of programming
language.

For this purpose, the ηξ-calculus of λ-conversions will be used.
The postulates of a relation of conversion ‘conv’ (denoted by the sym-
bol ‘=’) are listed below:

(α) λx.a = λz.[z/x]a, (β) (λx.a)b = [b/x]a,

(ν)
a = b

ac = bc
, (µ)

a = b

ca = cb
,

(τ)
a = b; b = c

a = c
(σ)

a = b

b = a
(ρ) a = a

(η) λx.bx = b, x 6∈ b. (ξ)
a = b

λx.a = λx.b

15.2 A main task

Task 15.1. Using the combinators, represent the following set of
functions of the Lisp-system:

{Append, Nil, Null, List, Car, Cdr}. (Lisp)

Task formulation. Consider the properties of these functions of Lisp
language.

CHAPTER 15: EMBEDDING LISP INTO ACS 165

• A concatenation of two lists is constructed by the function
Append. This function has a property of associativity:

A _ B _ C = (A _ B) _ C, (Append)

where A, B, C are arbitrary lists, symbol ‘_’ is an infix form of
notation of the function Append.

• Empty list is denoted by < > and is equal to the object Nil.
Evidently,

A _<>=<>_ A = A. (Nil), (<>)

• The function Null recognizes an empty list:

Null A =
{

1, if A = Nil,
0, otherwise.

(Null)

• The function List constructs from atom a list of length 1:

List x =< x >, (List)

where x is an atom, and < x1, x2, . . . , xn > is a list of length
n.

• The function Car selects the first element from a list:

Car < x1, x2, . . . , xn >= x1. (Car)

• The function Cdr deletes the first element from a list:

Cdr < x1, x2, . . . , xn >=< x2, . . . , xn > . (Cdr)

166 CHAPTER 15: EMBEDDING LISP INTO ACS

Using these properties, the following axiom schemes are formulated:

Append a (Append b c) = Append(Append a b)c, (15.1)

Append Nil a = Append a Nil, (15.2)

Null Nil = 1, (15.3)

Null(Append(List a)b) = 0, (15.4)

Car(Append(List a)b) = a, (15.5)

Cdr(Append(List a)b) = b, (15.6)

where a, b, c are any objects. Prove, that the axioms (15.1)–(15.6)
are derivable in ηξ-calculus of λ-conversion.

Solution. Perform a successive translation of the intensional equal-
ities (15.1)–(15.6) into the terms and formulae of combinatory logic.

Lisp–1. It will be shown, that the function Append corre-
sponds to the object B with a combinatory characteristic (B) :
Babc = a(bc) (axiom scheme (15.1)):

Ba(Bbc)x = a(Bbcx) (by (B))
= a(b(cx)) (by (B))
= Bab(cx) (by (B))
= B(Bab)c x. (by (B))

Using the rule of transitivity (τ), it can be derived:

Ba(Bbc)x = B(Bab)c x.

In ηξ-calculus it is derivable, that for a variable x:

z1x = z2x

z1 = z2
,

or, in a linear notation, z1x = z2x ⇒ z1 = z2, i.e., assuming

CHAPTER 15: EMBEDDING LISP INTO ACS 167

z1 = Ba(Bbc) z2 = B(Bab)c, obtain the following:

(1) z1x = z2x⇒ λx.z1x = λx.z2x, (by (ξ))
(2) λx.z1x = z1, (by (η))
(3) z1 = λx.z1x, (by (σ), (2))
(4) λx.z2x = z1, (by (τ), (1), (3))
(5) z2 = λx.z2x, (by (η))
(6) z1 = z2. (by (τ), (4), (5))

Thus, the axiom scheme (15.1) is verified.

Lisp–2. The axiom scheme (15.2) will be proved, taking, that
Nil↔ I is valid1, while (I) : Ia = a.

BIax = I(ax) (by (B))
= ax (by (I))
= a(Ix) (by (I))
= BaI x. (by (B))

As BIax = BaIx, then BIa = BaI . This conclusion is
established by the method, similar to those, used in deriving
the previous axiom. Since it will be involved rather often, the
corresponding rule is to be especially formulated:

(ν−1) :
ux = vx

u = v
.

This rule turns out working in the case, when x is a variable. If
this rule matches with one of the monotonicity rules (ν), then
it can be observed, that its premise and conclusion have been
changed their positions. From this reason (in case, when x is
a variable) this rule (ν−1) can be named as a rule of reversed
monotonicity.

1The symbol ‘↔’ denotes a one-to-one correspondence.

168 CHAPTER 15: EMBEDDING LISP INTO ACS

Lisp–3. The axiom scheme (15.3) will be re-written as the
equality 1 = Null Nil (by the rule (σ)), where Nil = I, 1 is
a numeral with a combinatory characteristic 1ab = ab, or, in
terms of λ-calculus, 1 = λxy.xy. Note, that

(D) : Dabc = cab,
(0) : 0ab = b, or 0↔ λxy.y.

It is needed to be taken into consideration, that KI ↔ 0, i.e.
KI = 0. Now, an object, corresponding to the function Null
will be found:

1 = λxy.xy (by Df. 1)
= λx.x (provable λxy.xy = λx.x)
= I (by Df. I)
= KI(K(K0)) (by scheme (K))
= I(KI)(K(K0)) (by scheme (I))
= D(KI)(K(K0))I (by scheme (D))
= D0(K(K0))I. (by scheme (0))

Comparing the obtained expression D0(K(K0))I = 1 and the
schemeNull Nil = I (or, more rigorously, schemeNull Nil =
1), conclude, that D0(K(K0))I ↔ Null Nil.

Lisp–4. The following transformations are to be performed:

0 = K0(b0) (by scheme (K))
= K(K0)a(b0) (by scheme (K))
= Da(b0)(K(K0)) (by scheme (D))
= B(Da)b0(K(K0)) (by scheme (B))
= D0(K(K0))(B(Da)b). (by scheme (D))

Compare the derived expression D0(K(K0))(B(Da)b) = 0
with the axiom scheme (15.4): Null(Append(List a)b) = 0.
If take into consideration, that D0(K(K0)) ↔ Null, B ↔
Append, then D ↔ List.

CHAPTER 15: EMBEDDING LISP INTO ACS 169

Lisp–5. The same way as above, find an object, corresponding
to the function Car:

a = Ka(bc) (by scheme (K))
= Da(bc)K (by scheme (D))
= B(Da)bcK (by scheme (B))
= DcK(B(Da)b). (by scheme (D)).

Evidently, that DcK ↔ Car.

Lisp–6. Using the same way, construct an object, correspon-
ding to the function Cdr:

b z = I(bz) (by scheme (I))
= KIa(bz) (by scheme (K))
= Da(bz)(KI) (by scheme (D))
= B(Da)bz(KI) (by scheme (B))
= (λxy.xy(KI))(B(Da)b) z. ((β), (σ))

Since

b z = (λxy.xy(K I))(B(Da)b) z,

then

(λxy.xy(K I))(B(Da)b) = b

for a variable z (the reversed monotonicity rule is applied), i.e.

λxy.xy0↔ Cdr.

Answer. The results of representing the main functions of the pro-
gramming system Lisp are arranged in a table below:

170 CHAPTER 15: EMBEDDING LISP INTO ACS

No Function of Lisp Object of combinatory logic
by order or λ-calculus

1 Append B
2 Nil I
3 Null D0(K(K0))
4 List D
5 Car DcK
6 Cdr λxy.xy0

15.3 Concluding remarks

A solution of the formulated problem, undoubtedly, is done by the
method of embedding. In can be re-formulated in terms of objects.

The system of equalities (15.1)–(15.6), as a set, is considered as
an assignment, for which a shell theory is individualized. This shell
theory is a concept, while a result of individualizing will be dependent
on a choice of the concept. For instance, select as a shell the ηξ-
calculus of λ-conversions. Then every of the concept objects

Append, Nil, Null, List, Car, Cdr

will result in, under performing the assignment, a corresponding in-
dividual object

B, I, D0(K(K0)), D, DcK, λxy.xy0.

The individual objects constitute an individual theory, that is similar
to Lisp language (and is a shell). The ηξ-calculus of λ-conversions
reveals one remarkable feature: both the concept objects and individ-
ual objects relatively the assignment (15.1)–(15.6) remain within the
same universe.

Chapter 16

Supercombinators

Supercombinators constitute a purely object programming system,
embedded into combinatory logic. This immediately satisfies the
needs in denotational computation of instruction of programming
language, when a functional meaning of the program is expressed
by the objects. It is essentially, that a computation begins with some
beforehand known set of instructions. During an evaluation of the
program, the instructions, which are needed in a computation, but
are beforehand unknown, arise in dynamics, and they are fixed in the
programming system in addition.

16.1 Theoretical background

There are two approaches to use the supercombinators for implemen-
tation of applicative programming languages. In the first of them a
program is compiled by the fixed set of supercombinators (in a non-
optimal variant they are S, K, I) with beforehand known definitions.
But the second approach, in which the definitions of supercombina-
tors are generated by a program itself in a process of compiling, is
primarily considered.

171

172 CHAPTER 16: SUPERCOMBINATORS

16.1.1 Notion of supercombinator

Definition 16.1. Supercombinator $S of arity n is the lambda-exp-
ression

$S def= λx1.λx2. . . . λxn.E,

or, equally, the abstraction of a kind:

$S def= [x1].[x2]. . . . [xn].E,

where E is not an abstraction. Thus, all the “leading” symbols of
abstraction [·]. are related only to x1, x2, . . . , xn, and at the same
time the following conditions are valid:

(1) $S does not contain any free variables;

(2) every abstraction in E is a supercombinator;

(3) n ≥ 0, i.e. the availability of symbols ‘[·].’ is not necessary.

Supercombinator redex is the application of a supercombinator to
n arguments, where n is its arity. A substitution of the arguments
in the body of supercombinator instead of free occurrences of corre-
sponding formal parameters is called a reduction of the supercombi-
nator.

This definition could be compared with a definition of combinator.
In other words, we can say, that the combinator is such a lambda-
abstraction, which does not contain any free occurrences of the vari-
ables. Some of the lambda-expressions are the combinators, and
some of the combinators are the supercombinators.

Example 16.1. The expressions

3, + 2 5, [x].x, [x].+ x x, [x].[y].xy

are the super combinators.

Example 16.2. The following terms are not the supercombinators:

CHAPTER 16: SUPERCOMBINATORS 173

[x].y – (the variable y has a free occurrence),
[y].- y x – (the variable x has a free occurrence).

Example 16.3. The term [f].f([x].f x 2) is a combinator, be-
cause all the variables (f and x) are bound, but is not a supercom-
binator, because the variable f is free in the inner abstraction and
condition (2) of the definition 16.1 is violated. In accordance with this
definition, the combinators S, K, I, B, C are the supercombinators.
Hence, SK-machine, represented in a theory of categorical compu-
tations, implements one of the methods of using the supercombina-
tors.

Supercombinators of arity 0 are the constant applicative forms
(CAF).

Example 16.4. The expressions:

a) 3, b) + 4 6, c) + 2

are the CAFs.

The point c) shows, that CAF can be the function, though it does
not contain the abstractions. Since CAF has no symbol of the ab-
straction, the code is not compiled for them.

Exercise 16.1. Show, that the following expressions are the super-
combinators:

1 0, [x].+ x 1, [f].([x].+ x x).

Exercise 16.2. Explain, why the following expressions are not the
supercombinators:

[x].x y z, [x].[y].+ (+ x y) z.

Exercise 16.3. Give an example of the combinator, which is not a
supercombinator.

174 CHAPTER 16: SUPERCOMBINATORS

16.1.2 Process of compiling

The actual programs contain a significant number of the abstractions.
The program is to be transformed so that to contain the only super-
combinators. Accept, that the names of the supercombinators start
with the symbol ‘$’, e.g.:

$XY = [x].[y].- y x.

To stress the features of supercombinatros, this definition is rewritten
as:

$XY x y = - y x.

The selected strategy is in a transforming the abstraction, which
should be compiled into:

(i) the set of supercombinator definitions,

(ii) the evaluated expression.

This will be written by:

Definitions of supercombinators
.............................
.............................

Evaluating expression

Example 16.5. The expression ([x].[y].− y x)3 4 can be represented
by:

$XY x y = - y x

$XY 3 4

CHAPTER 16: SUPERCOMBINATORS 175

Example 16.6. The expression ($XY 3) is not a redex and cannot be
evaluated. Thus, the definitions of supercombinators are determined
as a set of rewriting rules. The reduction is in rewriting the expression,
which matches a left part of the rule, replacing it by the expression,
which is the right part. These systems are known as term rewriting
systems.

Exercise 16.4. Is it possible to evaluate the expressions:

$XY 5, $XY 5 7, $XY 3 4 7 ?

16.1.3 Transformation to supercombinators

Supercombinators are easy to compile. Give a description of the al-
gorithm of transforming the abstraction into combinators. Consider
a program, which does not contain any supercombinator:

([x].([y].+ y x) x) 4.

Select the most inner abstraction, i.e. such an abstraction that has
no other abstractions:

([y].+ y x).

It has a free occurrence of the variable x, therefore this abstraction is
not a supercombinator.

(1) The following supercombinator is obtained by a simple transfor-
mation – usual β-reduction:

([x].[y].+ y x)x.

(2) Substitute it in the source program:

([x].([w].[y].+ y w) x x)4.

(3) Assign to this supercombinator the name $Y.

176 CHAPTER 16: SUPERCOMBINATORS

(4) Now it can be seen, that [x].-abstraction is also a supercombi-
nator. It is assigned the name $X (the abstraction is compiled)
and put into compiled code:

$Y w y = + y w
$X x = $Y x x

$X 4

The resulting program can be executed, using a reduction of super-
combinators:

$X 4 --> $Y 4 4 = + 4 4 = 8.

Thus, an algorithm, transforming the abstractions into supercombi-
nators, is as follows:

LOOP-while: is an abstraction?

(1) select any abstraction, which has no other abstractions,

(2) shift all the free in this abstraction variables as extraparameters,

(3) assign to this abstraction a name (e.g., $X34),

(4) replace an occurence of the abstraction in the program by the
name of supercombinator, which should be applied to free vari-
ables,

(5) compile the abstraction and assign a name to this compiled
code.

END-while

During these transformations a volume of this program increased.
This is a payment for the simplicity of reduction rules. Note that this
transformation procedure reduces the source program to the follow-
ing layout:

CHAPTER 16: SUPERCOMBINATORS 177

... Definitions of supercombinators ...

E

Since the expression E is the evaluated expression of the highest level,
then it contains no free variables. It can be considered the a super-
combinator of arity 0, i.e. CAF:

... Definitions of supercombinators ...
$Prog = E

$Prog

The procedure of transforming the abstractions into supercombina-
tors is called lambda lifting, because all the abstractions are lifted to
the higher level.

Exercise 16.5. Transform and execute the following programs:
1) ([x].([y].- y x) x) 5,
2) ([z].+ z(([x].([y].× y x) x) 4)) 2.

16.1.4 Eliminating redundant parameters

Consider a simple optimization of lambda-lifting algorithm. Let:

[x].[y].- y x.

be written. Although it is a supercombinator, apply to it the lambda-
lifting algorithm.

(1) Select the innermost abstraction [y].- y x. The variable x has
a free occurrence. Shift it as an extraparameter:
([x].[y].- y x) x.

Let:

$Y = [x].[y].- y x.

Thus:

178 CHAPTER 16: SUPERCOMBINATORS

$Y x y = - y x

[x].$Y x

(2) Let $X = [x].$Y x. Then:

$Y x y = - y x
$X x = $Y x

$X

(3) In this case the definiton of $X is simplified to $X = $Y (by η-
reduction).

Thus, the supercombinator $X is redundant and can be replaced by
$Y:

$Y x y = - y x

$Y

This results in the availability of two optimizations:

1) eliminating the redundant parameters from the definitions by
η-reduction,

2) eliminating the redundant definitions.

16.1.5 Ordering of the parameters

In all the programs considered above the order of lifting the variables
as extraparameters was arbitrary. For instance, consider the program:

..........
(...

([x].[z].+ y (× x z))
...),

CHAPTER 16: SUPERCOMBINATORS 179

where ‘. . .’ denotes the outer for the [x].-abstraction context. Let us
start with the lambda-lifting algorithm.

(1) Select out the innermost abstraction

[z].+ y(× x z).

This abstraction is not a supercombinator, because it contains
two free variables x and y. At the next step of algorithm the free
variables are to be shifted as extraparameters.

A question is, in what order should the variables be arranged: it is
possible at first put the x, and then y, or at first put y, and then x.
Both the variant are performed.

Variant 1.

(2) Lift the variables, arranging them in the order x, y:

([x].[y].[z].+ y(× x z))x y.

(3) Assign to obtained supercombinator the name:

$S = ([x].[y].[z].+ y(× x z)).

(4) Substitute $S into the source program:

$S x y z = + y(× x z)

(...
([x].$S x y)

...)

The expression [x].$S x y is not a supercombinator, therefore, in
turn, the lambda-lifting algorithm should be applied to it.

180 CHAPTER 16: SUPERCOMBINATORS

(2) Lift the free variable y:

([y].[x].$S x y)y.

(3) Assign to a supercombinator the name $T y x = $S x y.

(4) Substitute the combinator into the program:

$T y x = $S x y

$T y.

Turn to the main algorithm, in which now obtain:

$S x y z = + y(× x z)
$T y x = $S x y
(... $T y ...).

Variant 2.

(2) Lift the variables, arranging them in the order y, x:

([y].[x].[z].+ y(× x z)) y x.

(3) Assign to the obtained supercombinator a name:

$S = ([y].[x].[z].+ y(× x z)).

(4) Substitute $S into the source program:

$S y x z = + y(× x z)

(...
([x].$S y x)

...)

CHAPTER 16: SUPERCOMBINATORS 181

The expression [x].$S y x is not a supercombinator, because it
contains an occurrence of free variable y. Apply the lifting algorithm
to [x].$S y x.

(1) The innermost abstraction matches the whole program.

(2) Lift the variable y: ([y].[x].$S y x)y.

(3) Now the supercombinator above is to be named:
$T = [y].[x].$S y x.

(4) Substitute the combinator into the program:

$T y x = $S y x

$T y

Turn now to the main algorithm. Derive, that:

$S x y z = + y (× x z)
$T y x = $S y x

(... $T y ...)

In accordance with the rule of elimination the redundant parameters
(see subsection 16.1.4) we obtain: $T = $S, therefore $T can be elim-
inated. Then the compiled code is as follows:

$S y x z = + y(× x z)

$S y

In the first variant such an otimization is impossible. In the initial
program

(... ([x].[z].+ y(× x z)) ...)

182 CHAPTER 16: SUPERCOMBINATORS

there are two bound variables: x and z. In the second variant an
ordering of the free variables is done at the step (2) so, that in the
obtained supercombinator the bound in a program variables x and
z are at the last place: $S y x z. Only in this case the code can
be optimized. Thus, the free variables should be arranges such a
way, that the bound variables were put in the tail places in a list of
supercombinator parameters.

Any abstraction is assigned by a lexical number of its level, which
is determined by the number of outer symbols of the abstraction.
Example 16.7. In the expression

([x].[y].+ x(× y y))

the operator of [x].-abstraction is at the level 1, and of [y].-abst-
raction is at the level 2.

Give the formulation of the rules, allowing to introduce a lexical
number of the level:

1) a lexical number of the abstraction is greater by one of the number
of its outer abstractions; if there are no such abstractions, the
the number is equal to 1;

2) the lexical number of a variable is the number of the abstraction,
bounding this variable; if the number of x is less than the num-
ber of y, then is said, that x is more free than y;

3) a lexical number of a constant is equal to 0.

To improve the abilities for optimizing, the extraparameters should be
arranged by increasing of their lexical numbers.

16.1.6 The lambda-lifting with a recursion

Note, that the lambda-abstractions, as a rule, have no names. To
the contrast, the supercombinators are named. Besides this, a su-
percombinator can refer to itself. This means, that recursive super-
combinators are implemented directly, without using the fixed point

CHAPTER 16: SUPERCOMBINATORS 183

combinator Y . Certainly, the recursive definitions can be transformed
into the non-recursive ones, using Y , by to do this the additional rules
are to be introduced.

Example 16.8. To make $F non-recursive, the following definitions
sould be intriduced:

$F = Y $F1
$F1 E x = $G (F(- x 1)) 0.

}
(∗)

An additional definition is marked by the symbol ‘*’. Since Y
should be reduced, then such a definition of $F involves more of the
reductions, than a recursive version does.

Notation:

$S1 x y = B1
S2 f = B2
...
E

is equl to the expression:

letrec
$S1 = [x].[y].B1
$S2 = [f].B2

...
in

E.

It means, that E contains $S1, $S2, ..., the recursive definitions
of which are given in letrec. The lambda-lifting algorithm proceeds
the same way, as previously: the expressions, containing in letrec,
are treated the same way as any other expressions. Nevertheless, a
question is, what a lexical level number should be assigned to the vari-
ables, bound in letrec. Since these variables are evaluated, when
nearest outer abstraction is applied to its argument, then their lexical
number is the same as the number of this abstraction. In case of

184 CHAPTER 16: SUPERCOMBINATORS

absence of outer abstractions the lexical number equals 0. Such a
number is assigned to the constants and supercombinators. Within
letrec, which contains no abstractions, it cannot be any free vari-
ables, besides those variables, which already have been defined in
letrec.

Such a letrec is the combinator. To transform it to supercom-
binator, it is necessary to make a lambda-lifting, eliminating all the
inner abstractions. The variables, bound in letrec of level 0, will not
be shifted as extraparameters, because the constants (remind, that
they are of level 0) are not lifted.

Example 16.9. Consider the program, resulting in an infinite list of
ones:

letrec x = cons 1 x
in x

In this program the letrec is at the level 0, and there are no abstrac-
tions, hence, x is already a supercombinator:

$x = cons 1 x

x

Example 16.10. Consider a recursive function of factorial:

letrec fac = [n].IF (= n 0) 1

(× n (fac(- n 1)))
in fac 4

In this case letrec has the number 0, and there are no abstrac-
tions within [n].-abstraction. Hence, fac is a supercombinator:

$fac n = IF (= n 0) 1 (× n(fac(- n 1)))
$Prog = $fac 4

$Prog

CHAPTER 16: SUPERCOMBINATORS 185

Exercise 16.6. Compile the program:

--
let

inf = [v].(letrec vs = cons v vs in vs)
in

inf 4

Hint: let means, that in the expression inf 4 the function inf con-
tains the definition, which have been written within let. The function
inf v returns an infinite list of symbols v.

16.1.7 Execution of the lambda-lifting algorithm

Consider the program, adding the first 100 natural numbers:

SumInts m = sum (count 1)
where
count n = [], n > m

= n:count(n + 1)
sum [] = 0
sum (n:ns) = n + sum ns

SumInts 100

SumInts is a composition of the functions sum and count: at first, the
function count is applied to 1, and next its result is used as an input
of the function sum. The function count works as follows:

count 1 = 1:count 2 (because both n = 1, m = 100,
and condition n > m do not hold)

= 1:2:(count 3) (executed count 2)
...

= 1:2: ... :100:(count 101)
= 1:2: ... :100:[] (since

n = 101, m = 100,
then n > m, (count 101 = []))

186 CHAPTER 16: SUPERCOMBINATORS

Now the list 1:2:3: ... :100:[] is transmitted to the function
sum. In the second defining equality for sum the argument (n:ns)
denotes a list, in which the first element is the number n, and its “tail”
is a list of the numbers ns:

sum 1:2:3: ... :100:[] = 1 + sum 2:3: ... :100:[]
...

= 1 + 2 + 3 + ... + 100 + sum[]
= 1 + 2 + 3 + ... + 100 + 0 (because sum [] = 0)

Write this function in terms of abstractions, using letrec:

letrec
SumInts

[m].letrec
count = [n].IF (> n m) NIL

(cons n (count (+ n 1)))
in sum (count 1)

sum = [ns].IF (= ns NIL) 0
(+ (head ns)(sum (tail ns)))

in SumInts 100

In the above: NIL is an empty list [], head is the function, returning
the first element of a list, tail is the function, returning the tail of
a list (a list without the first element). The variables SumInts and
sum have the number 0, however, SumInts contains an inner [n].-
abstraction with free variables m and count. It is necessary to execute
the lambda-lifting algorithm and to “lift” these variables.

(1) The inner abstraction is the following:
[n].IF (> n m) NIL (cons n (count(+ n 1)))

(2) Lift the variables count and m in this order (because bound in
a source program variable m should be at the last place):
([count].[m].[n].IF (> n m) NIL

(cons n (count (+ n 1)))) count m

CHAPTER 16: SUPERCOMBINATORS 187

(3) Assign to the derived combinator the name $count:
$count count m n = IF (> n m) NIL

(cons n (count (+ n 1)))
(4) Replace an occurrence of the [n].-abstraction in the program

by the construction $count count m n:

$count count m n = IF (> n m) NIL
(cons n (count (+ n 1)))

--
letrec

SumInts
= [m].letrec

count = $count count m
in sum (count 1)

sum = [ns].IF (= ns NIL) 0
(+ (head ns)(sum (tail ns)))

in SumInts 100

(5) In the expressions SumInts and sum there are no inner ab-
stractions, their level is equal to 0, hence, they are supercombinators.
By immediate applying the lifting to these expressions, and adding
the supercombinator $Prog, obtain the final result:

$count count m n = IF (> n m) NIL
(cons n(count (+ n 1)))

$sum ns = IF (= ns NIL) 0 (+ (head ns)
($sum (tail ns)))

$SumInts m = letrec count = $count count m
in $sum (count 1)

$Prog = $SumInts 100

$Prog

Exercise 16.7. Compile the program, which applies the function
f = SQUARE to each of the elements of a list of the natural numbers
from 1 to 5:

188 CHAPTER 16: SUPERCOMBINATORS

apply m = fold SQUARE (constr 1)

where constr n = [], n > m
= n:constr(n + 1)

fold f[] = []
fold f(n:ns) = fn:fold f ns

16.1.8 Other ways of lambda-lifting

An approach, used in the previous subsections, is not the only way
of a lambda-lifting of the recursive functions. There is an algorithm,
which generates the supercombinators for the data structures rather
than the functions. Assume, that there is a program, containing a
recursive function f with the free variable v:

(...

letrec f = [x].(... f ... v ...)
in (... f ...)

...)

The recursive combinator $f is generated by f, however, with this, an
abstraction is generated for the variable v, rather than for the function
f: all the occurrences of v are replaced by $f v. The replacement
results in:

$f v x = ... ($f v) ... v ...
(...

(... ($f v) ...)
...)

Consider an execution of this algorithm, using the example from sub-
section 16.1.6. A source program is as follows:

CHAPTER 16: SUPERCOMBINATORS 189

letrec

SumInts
[m].letrec

count = [n].IF (> n m) NIL
(cons n (count (+ n 1)))

in sum (count 1)
sum

= [ns].IF (= ns NIL) 0
(+(head ns)(sum(tail ns)))

in SumInts 100

Lift the [n].-abstraction, abstracting the free variable m, but not
the count, and replacing all the occurrences of count by the expres-
sion ($count m):

$count m n = IF (> n m) NIL

(cons n ($count m (+ n 1)))
letrec

SumInts = [m].sum($count m 1)
sum = [ns].IF (= ns NIL) 0

(+(head ns)(sum(tail ns)))
in

SumInts 100

There are two calls of count in the initial program: in the [n].-
abstraction and in the definition of SumInts; both of these calls are
replaced by ($count m). Now it is clear, that both SumInts, and sum
are the supercombinators, hence, they could be lambda-lifted:

190 CHAPTER 16: SUPERCOMBINATORS

$count m n = IF (> n m) NIL
(cons n ($count m (+ n 1)))

$sum ns = IF (= ns NIL) 0
(+(head ns)($sum(tail ns)))

$SumInts m = sum ($count m 1)
$Prog = $SumInts 100

$Prog

A main advantage of this method relatively the previous one is as fol-
lows. In the example from subsection 16.1.6 a recursive call of $count
in the supercombinator $count was performed via its parameter, de-
noted by count. In the new method a call of the supercombinator
$count is done immediately. The compiler, built on this method,
works more efficiently.

Exercise 16.8. Try to make a compiling of the program of exer-
cise 16.7 by the method given above.

16.1.9 Full lazyness

Consider the function f = [y].+ y (sqrt 4), where sqrt is the
function of square root. Every time, when this function is applied to
its argument, the subexpression (sqrt 4) is to be newly evaluated
one more time. However, independently on a value of the argument y,
the expression (sqrt 4) is reduced to 2. Hence, it would be desirable
not to perform repeatedly an evaluation of these constant expressions,
but, evaluating it once, use the saved result.

Example 16.11. Consider the program:

f = g 4
g x y = y + (sqrt x)
(f 1) + (f 2)

CHAPTER 16: SUPERCOMBINATORS 191

Its notation in terms of the lambda-expressions gives:

letrec f = g 4

g = [x].[y].+ y (sqrt x)
in + (f 1) (f 2)

In evaluating this expression the following result is obtained:

+ (f 1) (f 2) -->
--> + (. 1) (. 2)

.-----.---> (([x].[y].+ y (sqrt x)) 4)
--> + (. 1)(. 2)

.----.---> ([y].+ y (sqrt 4))
--> + (. 1)(+ 2 (sqrt 4))

.--------> ([y].+ y (sqrt 4))
--> + (. 1)4

.--------> ([y].+ y (sqrt 4))
--> + (+ 1 (sqrt 4))4
--> + (+ 1 2)4
--> + 3 4
--> 7

In this example the subexpression (sqrt 4) is evaluated twice,
on every application the expression [y].(sqrt 4) is treated as gen-
erated, in dynamics, constant subexpression of the [y].-abstraction.
The same effect is observed when the supercombinators are used. The
considered expression is compiled as follows:

$g x y = + y (sqrt x)
$f = $g 4
$Prog = + ($f 1)($f 2)

$Prog

The reduction of this is the following:

192 CHAPTER 16: SUPERCOMBINATORS

$Prog --> + (. 1)(. 2)
.----.---> ($g 4)

--> + (. 1)(+ 2 (sqrt 4))
.---> ($g 4)

--> + (. 1) 4
.---> ($g 4)

--> + (+ 1 (sqrt 4))4
--> + (+ 1 2)4
--> + 3 4
7

And in this case the subexpression (sqrt 4) is evaluated twice as
well. After writing these examples, having an introductory nature,
give a formulation of the main problem, to overcome which the efforts
are needed:

after binding all its variables, every expression should be
evaluated, at most, once.

This property of evaluation the expressions is called as full lazyness.

Exercise 16.9. Consider the following program:

f = g 2
g x y = y * (SQUARE x)
(f 3) * (f 1)

a) Write this program in terms of abstractions and evaluate.
b) Compile this program and evaluate.

16.1.10 Maximal free expressions

To get the full lazyness there is no necessity to make the evaluation of
those expressions, which contain no (free) occurrences of the formal
parameter.

CHAPTER 16: SUPERCOMBINATORS 193

Definition 16.2. An expressionE is called the proper subexpression
of F , if and only if E is a subexpression of F and E is not the same as
F .

Definition 16.3. SubexpressionE of the abstraction is assumed free
in the lambda-abstraction L, if all the variables of E are free in L.

Definition 16.4. . A maximal free expression, or MFE, inL is such
a free expression, that is not a proper subexpression of the other free
expression in L.

Example 16.12. In the abstractions below the MFEs are underlined:

(1) ([x].sqrt x),
(2) ([x].x (sqrt 4))
(3) ([y].[x].+(∗ y y) x).

To obtain a full lazyness, the maximal free abstractions are not to
be evaluated in performing the β-reductions.

Example 16.13. Turn back to a function from the example 16.11:

letrec f = g 4

g = [x].[y].+ y (sqrt x)
in + (f 1) (f 2)

A sequence of reductions begins, as in this example:

+ (f 1)(f 2) -->
--> + (. 1)(. 2)

.----.---> (([x].[y].+ y (sqrt x)) 4)
--> + (. 1)(. 2)

.----.---> ([y].+ y (sqrt 4))

(here: the expression (sqrt 4) is MFE in [y].-abstraction, hence,
in applying the [y].-abstraction to its argument (sqrt 4) it should
not evaluate:

194 CHAPTER 16: SUPERCOMBINATORS

--> + (. 1)(+ 2 .)
.--------.---> ([y].+ y (sqrt 4)))

Evaluation has a pointer to (sqrt 4) in the body of abstraction:

+ (. 1)(+ 2 .)
.--------.--->([y].+ y 2)

--> + (. 1)4
.---> ([y].+ y 2)

--> + (+ 1 2)4
--> + 3 4
7

In this case (sqrt 4) is evaluated only once.

Exercise 16.10. Evaluate the expression from exercise 16.9, using
MFE.

16.1.11 Lambda-lifting with MFE

An algorithm, using MFE, is distinct from the lambda-lifting algo-
rithm above in that, it does not make the abstractions of variables, but
of MFE. Turn back to an example under consideration. A function g
contains the abstraction:

[x].[y].+ y (sqrt x)

Give an exemplifying of the algorithm in this situation.

(1) The most inner abstraction is

[y].+ y (sqrt x).

(2) The expression (sqrt x) is MFE. Shift MFE as an extrapa-
rameter:

([sqrtx].[y].+ y (sqrtx))(sqrt x),

CHAPTER 16: SUPERCOMBINATORS 195

where sqrtx is a name of extraparameter. Substitute the ob-
tained expression into source abstraction:

[x].([sqrtx].[y].+ y sqrtx)(sqrt x).

(3) Assign a name to obtained supercombinator:

$g1 = [sqrtx].[y].+ y sqrtx

[x].$g1 (sqrt x)

(4) An available [x].-abstraction is also a supercombinator, that is
named and that is corresponded to a compiled code:

$g1 sqrtx y = + y sqrtx
$g x = $g1 (sqrt x)
$f = $g 4
$Prog = + ($f 1)($f 2)

$Prog

The additional supercombinator is obtained, because a possibilty to
use η-reductions is lost due to abstracting on (sqrtx) instead ab-
stracting on x.

However, this effect is compensated by full lazyness. Hence,

to obtain full lazyness it is needed to abstract MFE, but
not the free variables, using the generated abstractions as
extraparameters.

The algorithm above is a fully lazy lambda-lifting.

Exercise 16.11. Make a fully lazy lambda-lifting of a program, con-
sidered in exercise 16.9.

196 CHAPTER 16: SUPERCOMBINATORS

16.1.12 Fully lazy lambda-lifting with letrec

Consider the program:

let f = [x].letrec fac = [n].(...)

in + x (fac 100)
in

+ (f 3)(f 4)

The algorithm from subsection 16.1.6 compiles it in:

$fac fac n = (...)
$f x = letrec fac = $fac fac

in + x (fac 100)
+ ($f 3)($f 4)

The function fac is locally defined in the body of function f and,
hence, the expression (fac 100) cannot be lifted as MFE from a
body of f. This means, that (fac 100) will be evaluated every time,
when $f is executed. Thus, a property of full lazyness is lost.

The overcoming of this is rather easy: it is enough to note, that
the definition of fac does not depend on x, hence, letrec for fac can
be lifted:

letrec

fac = [n].(...)
in let
f = [x].+ x (fac 100)

in
+ (f 3)(f 4)

Now nothing prevents the applying of fully lazy lifting, that will gen-
erate a fully lazy program:

CHAPTER 16: SUPERCOMBINATORS 197

$fac n = (...)
$fac100 = $fac 100
$f x = + x $fac100
$Prog = + ($f 3)($f 4)

$Prog

In this case some optimizing is done: an expression, which has no
free variables, is not abstracted, but is named and became the super-
combinator – $fac100.

Thus, a strategy is implemented by two stages:
1) shifting letrec- (and let-) definitions as “far” as possible,
2) using a fully lazy lambda-lifting.

Exercise 16.12. Execute a fully lazy lambda-lifting of the program:

let
g = [x].letrec el = [n].[s].(IF (= n 1)(head s)

(el (- n 1)(tail s)))
in (cons x (el 3 (A,B,C)))

in
(cons (g R)(g L))

(here: R and L are the constants).

16.1.13 Compound example

This subsection contains a more detailed example exposing fully lazy
lambda-lifting1:

--
SumInts n = foldl + 0 (count 1 n)
count n m = [], n > m

1An advanced study of lazy evaluations with supercombinators see in [105]. This
book includes the abstract machine that supports all the spectrum of possibilities.

198 CHAPTER 16: SUPERCOMBINATORS

count n m = n:count (n + 1) m
fold op base [] = base
foldl op base (x:xs) = foldl op (op base x) xs

This program in terms of abstractions is written as:

letrec

SumInts = [n].foldl + 0 (count 1 n)
count = [n].[m].IF (> n m) NIL

(cons n (count (+ n 1) m))
foldl = [op].[base].[xs].IF (= xs NIL) base

(foldl op (op base (head xs))(tail xs))
in SumInts 100

In this program:
(1) an inner abstraction is ([xs]. ...),
(2) maximal free expressions are the expressions (fold op),

(op base) base.
They are shifted as extraparameters p, q and base respectively:

$R1 p q base xs = IF (= xs NIL) base
(p (q (head xs)) (tail xs))

letrec

SumInts = [n].foldl + 0 (count 1 0)
count = [n].[m].IF (> n m) NIL

(cons n (count (+ n 1) m))
foldl = [op].[base].$R1 (foldl op) (op base) base

in
SumInts 100

In this program an inner abstraction is ‘[base].’. Maximal free
expressions are the expressions ($R1(foldl op)) and op, that are
shifted as r and op respectively:

CHAPTER 16: SUPERCOMBINATORS 199

$R1 p q base xs = IF (= xs NIL) base
(p (q (head xs))(tail xs))

$R2 r op base = r (op base) base
--
letrec

SumInts = [n].foldl + 0 (count 1 n)
count = [n].[m].IF (> n m) NIL

(cons n (count (+ n 1) m))
foldl = [op].$R2($R1 op)op

in
SumInts 100

(3) all the definitions of letrec are supercombinators, because a
lifting of all the inner abstractions is done. With all of these notions,
a final result is as follows:

$SumInts n = $foldlPlus0 ($count1 n)
$foldlPlus0 = $foldl + 0
$count1 = $count 1
$count n m = IF (> n m)NIL(cons n ($count (+ n 1) m))
$foldl op = $R2 ($R1 ($foldl op))op
$Prog = $SumInts 100
$R1 p q base xs = IF (= xs NIL) base

(p (q (head xs))(tail xs))
$R2 r op base = r (op base) base

$Prog

Concluding a consideration, note that in this case the parameter op
cannot be eliminated in $foldl, because it is used twice in a right
part.

200 CHAPTER 16: SUPERCOMBINATORS

16.2 Task

Task 16.1. Write the following definition in initial language using
supercombinators:

el n s = if n = 1 then (hd s)
else el (n− 1) (tl s).

The function el selects n-th element form a sequence s.

Solution. In terms of λ-calculus a definition of the function has the
following form:

el = Y (λel.λn.λs.if (= n 1) (hd s)(el (− n 1) (tl s))). (el)

Remind an algorithm of translation the λ-expressions into applicative
form. Take an arbitrary λ-expression λV.E.

SC–1. A body of the initial expression is transformed into the
applicative form by a recursive call of the compiler. This results
in: λV.E′.

SC–2. The variables, which are free in the λ-expression, are
identified by the letters P , Q, . . . , R, next the λ-expression
receives a prefix ‘λ’, bounding all these variables. The result
is the following:

λP.λQ. . . . λR.λV.E′.

The resulting expression is wittingly a supercombinator, be-
cause E′ is an applicative form, all the free variables P , Q, . . . ,
R in which are bound.

SC–3. Denote the generated combinator by alpha and assign
to it a definition (defining equality):

alpha P Q . . . R V → E′.

CHAPTER 16: SUPERCOMBINATORS 201

An initial λ-expression is replaced by the form

(alpha P R . . . R).

In a connection with expression E, the application can be re-
duced. The expression E is related to V , and every free variable
has its own value in E′. Hence, the applicative form is actually
equal to the initial λ-expression. Now a step-by-step transla-
tions will be determined.

1) Consider the most inner λ-expression:

λs.if (= n 1) (hd s) (el (− n 1) (tl s)).

Its free variables are n and el, hence the combinator alpha
is introduced by a definition:

alpha n el s→ if (= n 1) (hd s)
(el (− n 1) (tl s)).

(alpha)

2) Replace all the λ-expressions by (alpha n el), therefore,

el = Y (λel.λn.alpha n el).

3) Repeat the steps 1) and 2) for λn.alpha n el. Introduce
the combinator beta by a definition:

beta el n→ alpha n el, (beta)

from which follows, that

el = Y (λel.beta el).

4) Repeat the steps 1) and 2) for (λel.beta el). Introduce the
combinator gamma by a definition:

gamma el→ beta el, (gamma)

from which we obtain, that

el = Y gamma.

202 CHAPTER 16: SUPERCOMBINATORS

Answer. el = Y gamma.

Test.

1. What are the aims of using the supercombinators in imple-
menting a reduction?

2. What are the features of a languages of the constant applicative
forms (CAF)?

3. What are the features of the combinators S, K, I, that allow
their direct using in a GR-machine (a machine of graph reduc-
tion)?

Exercise 16.13. Using the supercombinators, write the expression:

fac n = if n = 0 then 1 else n × (fac(n− 1)).

16.3 Answers to exercises

16.1
1 0 contains no free variables (see Df. 16.1, p.(1)) and abstraction
symbols (see Df. 16.1, p.(3)); [x].+ x 1 contains a variable x, which
is bound (see Df. 16.1, p.(1)); + x 1 contains no abstractions (see
Df. 16.1, p.(2)); [f].f([x].+ x x) contains no free variables (see
Df. 16.1, p.(1)), [x].+ x x is a supercombinator (see Df. 16.1, p.(2)).

16.2
[x].x y z contains free variables y and z, point (1) of Definition 16.1
is violated; [x].[y].+ (+ x y) z contains free variable z.

16.3
For instance, [x].[y].x y([z].z x).

CHAPTER 16: SUPERCOMBINATORS 203

16.4
The expression $XY 5 cannot be evaluated, because it is not a redex;
$XY 5 7 can be evaluated, $XY 3 4 7 can be evaluated.

16.5
1) ([x].([y].- y x)x)5:

(1) the innermost abstraction is [y].- y x;
(2) lift x as an extraparameter ([x].[y].- y x)x and substitute

it into initial program ([x].([v].[y].- y v) x x)5;
(3) assign to this supercombinator the name $Y:

$Y v y = - y v

([x].$Y x x)5

(4) [x].-abstraction is also a supercombinator, which can be
named and assigned to the compiled code:

$Y v y = - y v
$X x = $Y x x

$X 5

The derived program is executed as follows:

$X 5 = $Y 5 5 = - 5 5 = 0.

2) ([z].+ z (([x].([y]. * y x) x) 4)2:

(1) inner abstraction: [y]. * y x;

(2) lift x as an extraparameter:

([x].[y]. * y x) x
([z].+ z(([x].([w].[y]. * y w) x x)4))2;

204 CHAPTER 16: SUPERCOMBINATORS

(3)

$Y w y = * y w

([z].+ z([x].$Y x x) 4) 2

(4) [x].-abstraction is a supercombinator:

$Y w y = * y w
$X x = $Y x x

([z].+ z ($X 4)) 2

Now it is obvious that [z].-abstraction is a supercombinator:

$Y w y = * y w
$X x = $Y x x
$Z z = + z ($X 4)

$Z 2

An execution of the program:

$Z 2 = + 2 ($X 4) = + 2 ($Y 4 4) =
= + 2 (* 4 4) = + 2 16 = 18.

16.6
inf is at a level 0 and contains no inner abstractions. Hence, inf is
already a supercombinator:

$inf v = letrec vs = cons 0 vs in vs
$Prog = $inf 4

$Prog

16.7
Write this program in terms of abstractions:

CHAPTER 16: SUPERCOMBINATORS 205

letrec apply = [m].letrec constr = [n].(IF > n m) NIL

(cons n (constr (+ n 1)))
in fold SQUARE (constr 1)

fold = [f].[ns].IF (= ns NIL) NIL
(cons (f (head ns)) (fold (f (tail ns))))

in apply 5

(1) inner abstraction has a form:

[n].IF (> n m) NIL (cons n (constr (+ n 1)));

(2) lift the variables constr and m in this order:

[constr].[m].[n].IF (> n m) NIL
(cons n (constr (+ n 1))) constr m;

(3) assign to this combinator the name $constr:

$constr constr m n = IF (> n m) NIL
(cons n(constr(+ n 1)));

(4) replace an occurrence of [n].-abstraction in the program by
the expression ($constr constr m n);

$constr constr m n = IF (> n m) NIL
(cons n (constr (+ n 1)))

letrec

apply = [m].letrec
constr = $constr constr m

in fold SQUARE (constr 1)
fold = [f].[ns].IF (= ns NIL) NIL

(cons (f (head ns)) (fold f (tail ns)))
in apply 5

206 CHAPTER 16: SUPERCOMBINATORS

(5) the expressions apply and fold are supercombinators:

$constr constr m n = IF (> n m) NIL
(cons m (constr(+ n 1)))

$fold f ns = IF (= ns NIL) NIL
(cons (f (head ns))

(fold (f (tail ns))))
$apply m = letrec constr = $constr constr m

in $fold SQUARE (constr 1)
$Prog = $apply 5
--
$Prog

16.8
Lift [n].-abstraction, abstracting the variable m, but not the constr,
and replace all the occurrences of constr by ($constr m):

$constr m n = IF (> n m) NIL
(cons n ($constr m (+ n 1)))

letrec

apply = [m].fold (SQUARE) ($constr m 1)
fold = [f].[ns].IF (= ns NIL) NIL

(cons (f (head ns)) (fold (f (tail ns))))
in apply 5

In this case both apply, and fold are the supercombinators:

$constr m n = IF (> n m) NIL
(cons n ($constr m (+ n 1)))

$fold f ns = IF (= ns NIL) NIL (cons
(f (head ns))
($fold f (tail ns)))

CHAPTER 16: SUPERCOMBINATORS 207

$apply m = $fold SQUARE ($constr m 1)
$Prog = $apply 5
--
$Prog

16.9

a) Notation as the abstraction is the following:

letrec f = g 2

g = [x].[y]. * y (SQUARE x) in * (f 3)(f 1)

Evaluation of expression:

* (f 3)(f 1) -->
--> (. 3)(. 1)

.----.---> ([x].[y]. * y (SQUARE x))2
--> * (. 3)(. 1)

.----.---> ([y]. * y (SQUARE 2))
--> * (. 3)(* 1 (SQUARE 2))

.---> ([y]. * y (SQUARE 2))
--> * (. 3) 4

.---> ([y]. * y (SQUARE 2))
--> * (* 3 (SQUARE 2)) 4
--> * 12 4
--> 48.

b) This expression is compiled into:

$g x y = * y (SQUARE x)
$f = $g 2
$Prog = * ($f 3) ($f 1)

$Prog

208 CHAPTER 16: SUPERCOMBINATORS

A sequence of reductions:

$Prog --> (* (. 3)(. 1))
.----.---> ($g 2)

--> * (. 3)(* 1 (SQUARE 2))
.---> ($g 2)

--> * (. 3) 4
.---> ($g 2)

--> * (* 3 (SQUARE 2)) 4
--> * (* 3 4) 4
--> * 12 4
--> 48.

16.10

* (f 3)(f 1) -->
--> * (. 3)(. 1)

.----.---> (([x].[y].* y (SQUARE x)) 2)
--> * (. 3)(* 1 .)

.--------.---> ([y].* y (SQUARE 2))
--> * (. 3) 4 (* 1 .)

.-----------.---> ([y].* y 4)
--> * (. 3) 4

.---> ([y].* y 4)
--> * (* 3 .) 4

.---> 4
--> * 12 4
--> 48

The expression --> (SQUARE 2) is evaluated once.

16.11
The function g contains an abstraction:

[x].[y]. * y (SQUARE x)

CHAPTER 16: SUPERCOMBINATORS 209

Next:
(1) the innermost abstraction is

[y]. * y (SQUARE x);

(2) (SQUARE x) is MFE, which is shifted as an extraparameter:

([SQUAREx].[y]. * y (SQUAREx)) (SQUARE x)

Substitute this expression into the abstraction:

[x].([SQUAREx].[y]. * y (SQUAREx)) (SQUARE x)

(3) assign to obtained supercombinator the name:

$g1 = [SQUAREx].[y]. * y SQUAREx

[x].$g1 (SQUARE x)

(4) [x].-abstraction is also a supercombinator, which is named
by $g and assigned to the compiled code:

$g1 SQUAREx y = * y SQUAREx
$g x = $g1 (SQUARE x)
$f = $g 2
$Prog = * ($f 3)($f 1)

$Prog

16.12
This program is compiled into:

$el el n s = (IF (= n 1)(head s)(el (- n 1)(tail s)))
$g x = letrec el = $el el

in (cons x (el 3 (A,B,C)))

(cons ($g R)($g L))

210 CHAPTER 16: SUPERCOMBINATORS

Since a definition of el does not depend on x, the letrec can be
shifted for el:

letrec el = [n].[s].(IF (= n 1)(head s)

(el(- n 1)(tail s)))
in let g = [x].cons x (el 3 (A,B,C))
in (cons (g R) (g L))

As a result of applying the lambda-lifting obtain:

$el n s = (IF (= n 1)(head s)(el (- n 1)(tail s)))
$el3 (A,B,C) = $el 3 (A, B, C)
$g x = cons x $el3 (A,B,C)
$Prog = cons ($g R)($g L)
--
$Prog

New combinators, the parameters of which are the MFEs, are
generated in a process of compiling a programm. In other words,
compiler performs the assigning by that way of indicating the objects
in a program source code, which is implemented, generating the indi-
vidual objects. Since the generated objects are the combinators, then
it is safety to add them to shell system as the new instructions. All
the generated combinators give rather individualized representation
of the source program: this is a system of objects.

Possibly, it would be better to explain in terms of assignment of a
shell system (λ-calculus) with the set of MFEs. Then, as a concept,
λ-calculus gives a system of individuals (of compiled programs):
they form an equivalency class (are converted to each other) relatively
the criteria of an optimum.

Chapter 17

Lazy implementation

Whenever the objects are generated in dynamics “on fly”, then an ef-
ficiency of the resulting code could be lost for the multiple evaluations
of the same object. The mechanisms of lazy evaluation allow to avoid
this inefficiency: if the value of an object is obtained once, then namely
this value will be used in the future.

17.1 Tasks

Task 17.1. For a sample definition

el n s = if n = 1 then (hd s) else el (n− 1) (tl s) fi,

where the function el returns n-th element of a list (finite sequence)
s, find the supercombinators, resulting in a fully lazy implementation,
and perform the particular case el 2.

Task formulation. Some definitions are to be introduced. As turns
out, the expressions which are repeatedly evaluated can be easily
identified. This is true for any subexpression of λ-expression, which
does not depend on bound variable. Such expressions are called free
expressions of λ-expression (similar to the notion of free variable).

211

212 CHAPTER 17: LAZY IMPLEMENTATION

Free expressions that are not a part of any other bigger free expression
are called maximal free expressions of a λ-expression (MFE).

Consider a scheme of translation. The maximal free expressions
of every λ-expression are transformed into the parameters of the cor-
responding combinator. Consider a scheme of translating maximal
free expressions into the parameters of corresponding combinator.

Note. At first, we establish that this translation scheme is valid, i.e.
the actual combinators are derived and every λ-expression is replaced
by the applicative form. Consider an applicability of this new scheme
to the λ-expression, which body is an applicative form. Such a com-
binator that is so generated should conform the definition, because its
body is to be an applicative form and is to contain no free variables.
Body of a combinator will wittingly be an applicative form because it
is, in turn, generated from the applicative form (from a body of source
λ-expression) by substituting new parameter names instead of some
of the expressions. It cannot contain any free variables, because a
free variable should be a part of some maximal free expression and,
therefore, will be eliminated as a part of parameter. All of this con-
firms that an actual combinator is constructed. The final result which
replaces a source λ-expression, is a new combinator, that is applied
to maximal free expressions, each of them came already into being as
an applicative form.

Solution. Turn back to the initial task.

lazy–1. Let maximal free expressions for the initial expression

λs.el n s = λs.if (= n 1)(hd s)(el(− n 1)(tl s))

be
p ≡ (if(= n 1)) and q ≡ (el(− n 1)).

Therefore, a new combinator alpha is defined by

alpha p q s→ p (hd s) (q (tl s)).

CHAPTER 17: LAZY IMPLEMENTATION 213

Note, that in this case

λs.alpha p q s = alpha p q → λs.p (hd s) (q (tl s)).

Since, now

λs.el n s = λs.if (= n 1)(hd s)(el(− n 1)(tl s))
= λs.p (hd s) (q (tl s)) = alpha p q = el n,

then
el n = alpha (if (= n 1))︸ ︷︷ ︸

p

(el (− n 1))︸ ︷︷ ︸
q

.

From this the following result is derived: a definition of the
function el is the expression

el = Y (λel.λn.alpha (if (= n 1)) (el (− n 1))).

Continuing this process, we obtain the additional combinators
beta and gamma, defined by:

beta el n → alpha (if (= n 1)) (el(− n 1))︸ ︷︷ ︸
el n

,

gamma el → beta el,

from where conclude, that the expression el is equal to the
expression (Y gamma), i.e. el = Y gamma, that coincides
with the previous result1.

lazy–2. Consider now a particular case, when (el 2) is applied:

el 2 → (Y gamma)︸ ︷︷ ︸
el

2

→ gamma el 2
→ beta el 2
→ alpha (if (= 2 1)) (el (− 2 1)).

1Indeed, gamma el = el, from where el = (λf.(gamma f)) el. By a fixed point
theorem (see Theorem 9.1 on p. 123) el = Y (λf.(gamma f)) = Y gamma.

214 CHAPTER 17: LAZY IMPLEMENTATION

Any time, when (el 2) is used, the same copies of free variables
are involved, hence, they are evaluated only once. In fact, the
following reduction is obtained:

el 2→ alpha if-FALSE (alpha if-TRUE (el (− 1 1))).

In more details:

el 2→ alpha (if (= 2 1)) (el (− 2 1))
→ alpha (if-FALSE) (el 1)
→ alpha (if-FALSE) (alpha (if (= 1 1)) (el(− 1 1)))
→ alpha (if-FALSE) (alpha (if-TRUE) (el (− 1 1)))

The scheme considered above leads to the suboptimal combinators.

Exercises

Exercise 17.1. For the expression

fac n = if n = 0 then 1 else n× (fac(n− 1))

perform a fully lazy implementation, using the supercombinators, and
execute fac 3.

Chapter 18

Permutation of parameters

Using of combinators opens the abilities to generate optimized pro-
gram code, in passing the synthesis of resulting object making an
analysis of order of possible replacement of the formal parameters by
the actual ones.

18.1 Task

Task 18.1. For the initial definition:

el = Y (λel.λnλs.IF (= n 1) (hd s) (el (− n 1) (tl s)))

derive an expression with optimal (by two criteria) ordering of super-
combinator parameters.

Task formulation. Remind, that two main criteria of the optimal
ordering of supercombinator parameters are the number of MFEs and
maximal elimination of redundant parameters. The given definition
should be successfully optimized by both of the criteria.

Note. For maximizing the length and minimizing the number of
MFEs of the currently nested λ-expression, all the MFEs in λ-
expression being compiled, that in the same time are free expressions

215

216 CHAPTER 18: PERMUTATION OF PARAMETERS

in the next nested λ-expression, should appear before MFE, having
no such property. An optimal parameter ordering by this criterion
can be formulated as follows. All Ei are free expressions of the λ-
expression, which has to be compiled, however it can be free expres-
sion of one or more number of nested λ-expressions. The innermost
λ-expression, in which the expression Ei is not free, will be called
a generating λ-expression. If generating λ-expression Ei includes
the generating λ-expression Ej , then in an optimal ordering Ei is
a predecessor of Ej . From this it does not follow, that an optimal
ordering is with a necessity unambiguously determined, because
the expressions with the same generating λ-expression can occur
in any order. Nevertheless, any ordering, conforming this condition,
is optimal, as any other one.

Solution.

opt–1. First of all take into account the result of solving the
task 17.1 on p. 211.

opt–2. Assume the applicative form

(alpha (hd s) n (tl s)),

in which the parameters of alpha can be arranged in any or-
der. In case the immediately nested λ-expression binds n, then
maximal free expressions (MFEs) of this form is as follows:

(alpha (hd s)) (tl s).

In case a reordering of the form

(alpha (hd s) (tl s) n),

is performed, then MFE is unique:

(alpha (hd s) (tl s)).

CHAPTER 18: PERMUTATION OF PARAMETERS 217

opt–3. If, on the other hand, an immediately nested λ-expres-
sion binds s, then an optimal parameter ordering is

(alpha n (hd s) (tl s)),

from where the only MFE is (alpha n).

opt–4. Having obtained an optimal ordering by one criterion,
consider the next of them. As the “only” parameters the follow-
ing ones

alpha, beta, el, hd, tl.

can be accepted.

A mission of the compiler is to arrange parameters so that to
achieve a maximal elimination of redundant parameters. The
only case in which compiler has a choice is when a combinator
is directly defined as a call of other one. As an example consider
the reduction:

beta p q r s→ alpha . . . s

There are no redundant parameters besides the last one, but
the last parameter of a combinator should always be a bound
variable of the λ-expression, from which a derivation was done.
In this case parameter s is a bound variable of the λ-expression,
that immediately includes alpha. If the parameters have already
been optimally ordered by the rules above, then all the param-
eters, in which s participates, are shifted to the end of its list
of parameters. If there is the only such a parameter, and this
is s, then s becomes a redundant parameter beta and can be
eliminated. By this reason a call alpha should be determined in
form of

(alpha E1 . . . En s),

218 CHAPTER 18: PERMUTATION OF PARAMETERS

where s has no occurrences in any of the expressions Ei.

This means, that all Ei are free in beta, that spreads over
(alpha E1 . . . En s). Hence, in fact, if there are any Ei, then
beta should be defined by reduction

beta p s→ p s,

where p corresponds to (alpha E1 . . . En s).

If alpha has the only parameter s, then beta should be defined
by

beta s→ s.

In the first case beta equals to the combinator I . The λ-expres-
sion, generating beta, is replaced by an application

(beta (alpha E1 . . . En s)),

i.e. by (I (alpha E1 . . . En s)). Besides that, beta can be
entirely omitted, and λ-expression is replaced immediately by
(alpha E1 . . . En s).

In the second case beta is equal to alpha. It can be seen that
optimal ordering, obtained by the second criterion, also con-
forms to the first one and, besides that, significantly simplifies a
mission to find the redundant parameters.

opt–5. The considered expression el is defined by equality:

el = Y (λel.λn.λs.IF (= n 1) (hd s) (el(− n 1) (tl s))).

The innermost λ-expression has two MFEs:

(IF (= n 1)) (el (− n 1)).

Assume them as the parameters p and q. Both of these MFEs
have the same generating λ-expression, hence, their ordering
is immaterial, and alpha can be defined by reduction:

alpha p q s→ p (hd s) (q (tl s)),

CHAPTER 18: PERMUTATION OF PARAMETERS 219

therefore,

el = Y (λel.λn.alpha (IF (= n 1)) (el(− n 1))).

It appears now, that the next λ-expression has the only MFE
and this is el. Hence, beta is defined by reduction

beta el n→ alpha (IF (= n 1)) (el (− n 1)),

according which

el = Y (λel.beta el).

Next, the reduction

gamma el→ beta el,

should be applied, and, since combinator gamma is equal to
combinator beta, then gamma should not be generated.

Finally, obtain that gamma is equal to (Y beta).

Exercises

Exercise 18.1. Derive the expression with optimal ordering of super-
combinators for the definition:

fac n = IF n = 0 then 1 else n× (fac(n− 1)).

Test

Try to give answers to the following questions.

1. Define the notion of ‘lazy evaluation in λ-calculus’ and ‘full
lazyness’ in the language of CAFs and indicate a connection of
them.

220 CHAPTER 18: PERMUTATION OF PARAMETERS

2. Determine a meaning of ‘MFE of λ-expression’.

3. What is the final result of replacing the initial λ-expression in a
fully lazy implementation of supercombinators?

4. What are the advantages of using the rules of optimization?

5. Give a formulation of two main criteria of optimization.

6. What are the consequences of the ordering of parameters of
supercombinators?

Chapter 19

Immediate computations

In this chapter a method of evaluating expressions is revised using
systematic construction of the set of both syntax and semantic equal-
ities, that implement considered paradigm of object-oriented compu-
tations.

19.1 Task

Task 19.1. For the expression:

let x = plus in x (4, (x where x = 3)); ;

construct λ-expression and expression of a combinatory logic, and
evaluate them.

Solution.

dc–1. Write the expression:

let x = plus in x (4, (x where x = 3)); ;

dc–2. Re-write it in a form of λ-expression:

M = (λx.x(4, (λx.x)3)) + .

221

222 CHAPTER 19: IMMEDIATE COMPUTATIONS

dc–3. Make the preparations to translate this expression into a
language of combinatory logic (CL), i.e. perform the currying:

N = (λx.x 4 ((λx.x)3))⊕,

where the symbol of addition ‘⊕’ is distinct from the symbol
‘+’. In the meanwhile put aside a discussion of their differences
till the topics on the expression evaluation using categorical
abstract machine will be considered.

dc–4. Remind that a procedure of translating into CL is de-
fined by induction:

(i) λx.x = I,
(ii) λx.c = Kc, c 6≡ x,

(iii) λx.PQ = S(λx.P)(λx.Q).

Thus,

N = (λx.x 4((λx.x)3))⊕
= S(λx.x 4)(λx.((λx.x)3))⊕
= S(S(λx.x)(λx.4))(S(λx.(λx.x))(λx.3))⊕
= S(SI(K 4))(S(λx.I)(K3))⊕
= S(SI(K 4))(S(K I)(K 3))⊕ .

dc–5. Application of this procedure results in

N = S(SI(K 4))(S(K I)(K 3))⊕,

where Sxyz = xz(yz), Kxy = x, Ix = x.

dc–6. Using any of the ways to evaluate it, results in the num-
ber ‘7’:

S(SI(K4))(S(KI)(K3))⊕ →
→ (SI(K 4)⊕)(S(K I)(K 3)⊕)
→ (I⊕)(K 4⊕)(S(K I)(K 3)⊕)
→ ⊕(K 4⊕)(S(K I)(K 3)⊕)
→ ⊕4(S(K I)(K 3)⊕)→ ⊕4(K I⊕)(K3⊕)
→ ⊕4(I(K 3⊕))→ ⊕4 3→ 7.

CHAPTER 19: IMMEDIATE COMPUTATIONS 223

It is easy to verify this result by an immediate β-reduction of the λ-
expression:

M = (λx.x(4, (λx.x)3))+→ +(4, (λx.x)3)→ +(4, 3)→ 7,

(pay attention one more time to the using of the addition symbol: ‘+’
is used instead of ‘⊕’).

Exercises

Exercise 19.1. Express by the combinators K and S the object I
with a combinatory characteristic Ia = a.

Hint. Use the equality I = λz.z. Derive the expression λz.z =
(λxyz.xz(yz))(λxy.x)(λxy.x) and remind that K = λxy.x, S =
λxyz.xz(yz).

Answer. I = SKK.

Exercise 19.2. For the expression:

let x = π/2 in let z = sin in sqr(z x); ;

construct the expression of combinatory logic and evaluate it.

Hint.

1. λ-expression is the following:

(λx.(λz.sqr(z x))sin)π/2 =
= (λx.sqr(sin x))π/2, (β)
= sqr(sin π/2). (β)

2. Use a fact that

f(gx) = (f ◦ g)x = S(KS)K f g x.

Answer. S(KS)K sqr sin π/2 = 1.

224 CHAPTER 19: IMMEDIATE COMPUTATIONS

Test

1. Write the combinatory characteristics of the standard combi-
nators K, I, S, B, W , C.

2. What are the reasons to use combinatory logic to implement
β-reductions?

Chapter 20

de Bruijn’s encoding

In this chapter the method of rewriting the bound variables (formal
parameters) is introduced, which allows to avoid the collisions of
binding while replacing the formal parameters by the actual ones.
This way of rewriting is called as de Bruijn’s encoding and allows,
in fact, use λ-calculus on the same rights as combinatory logic.

20.1 Tasks

Task 20.1. For the expression:

let x = plus in x (4, (x where x = 3)); ;

construct the λ-expression and expression of de Bruijn’s encoding,
and evaluate the last expression using SECD-machine.

Task formulation. It is known, that performing the λ-conversions
leads to the collisions of variables. E.g., “direct” execution of β-
reduction for (λxy.x)y could give λy.y:

(λxy.x)y = λy.y,

225

226 CHAPTER 20: DE BRUIJN’S ENCODING

that is completely inappropriate, because:

(λxy.x)y
(α)
= (λuv.u)y

(β)
= (λv.y)

6= (λy.y) = I.

Note, that in a closed term the significantly important knowledge of
a variable is the depth of its binding, i.e. the number of symbols λ
between the variable and its binding λ (excepting the last operator).
Then the variable is replaced by the number, which, however, should
be distinguished from the usual natural number. To distinguish the
numbers, replacing the variables, from the usual natural numbers the
first of them will be called de Bruijn’s numbers. Now, e.g., for

P = λy.(λxy.x)y

de Bruijn’s encoding is of a form:

λ.(λλ.1)0.

Say, the rule (β), when applied to this expression, results in λλ.1, and
it is not necessary to transform λxy.x into λxv.x, which eliminates
the collision. Main topic is to describe a meaning of the expressions.
This depends on the associations between the identifiers and their
values, i.e. on an environment. Thus, evaluation of M is the function
‖M‖, which associates the value with an environment. Consider the
usual semantic equalities, where the application of a function to its
argument is represented just by writing the symbol of function fol-
lowed by the symbol of argument:

‖x‖env = env(x),
‖c‖env = c,

‖(M N)‖env = ‖M‖env (‖N‖env),
‖λx.M‖env d = ‖M‖env [x← d],

where:

CHAPTER 20: DE BRUIJN’S ENCODING 227

env(x) - value of x in the environment env;
c - constant, denoting the value, also be

called c, what is in accordance with the
usual practice;

env[x← d] - environment env, where x is replaced by
the value d, i.e. a substitution of d in
place of x in env has been done.

In general, de Bruijn’s formalism can be considered by the same way
as a combinatory logic with a suitable adaptation of the rules. To
transit from the usual λ-expressions to encoding the variables by de
Bruijn’s numbers, consider the needed rules and agreements.

Let environment env be of form

(. . . ((), wn) . . . , w0),

where the value wi is associated with de Bruijn’s number i. This
assumption uses rather strict restrictions. The environments, where
the evaluation of expressions is performed, are assumed bound by
the structures, not by the arrays. This choice is closely linked to
conforming the demands of efficiency. First of all, this choice leads
to a simple machine description:

‖0‖(env, d) = d,
‖(n+ 1)‖(env, d) = ‖n‖env,

‖c‖env = c,
‖M N‖env = ‖M‖env(‖N‖env)
‖λ.M‖env d = ‖M‖(env, d).

The interest is not of the values themselves, but the values from point
of view the evaluations they support. In a combinatory approach it is
stressed, that the value of, e.g.,M N is a combination of the values of
M and N .

228 CHAPTER 20: DE BRUIJN’S ENCODING

The following three combinators are introduced:

S of arity 2,
Λ of arity 1,
′ of arity 1

and infinitely many of combinators n! in that sense that:

‖n‖ = n!,
‖c‖env = c,
‖M N‖ = S(‖M‖, ‖N‖),
‖λ.M‖ = Λ(‖M‖).

From this it is easy to establish a procedure of transition from seman-
tic equalities to purely syntactic ones:

0!(x, y) = y,
(n+ 1)!(x, y) = n!x,

(′x)y = x,
S(x, y)z = xz(yz),
Λ(x)yz = x(y, z)

These rules are near to SK-rules: the first three of them indicate the
“forgetting” of an argument property (similar to combinator K); the
fourth rule is the uncurried version of rule S; the fifth rule is exactly
the currying, i.e. the transformation of a function on two arguments
into the function on the first argument, which in turn is a function on
the second argument.

Introduce also a coupling combinator < ·, · >, where

‖(M,N)‖ =< ‖M‖, ‖N‖ >,

and equip it by the pick outers (projections) Fst and Snd. Intro-
duce in addition the composition operator ‘◦’ and a new command
ε. Consider S (·, ·) and n! as the abbreviations for ‘ε◦ < ·, · >’ and

CHAPTER 20: DE BRUIJN’S ENCODING 229

‘Snd ◦ Fstn’ respectively, where Fstn+1 = Fst ◦ Fstn. List now all
the combinatory equalities:

(ass) (x ◦ y)z = x(yz),
(fst) Fst(x, y) = x,
(snd) Snd(x, y) = y,

(dpair) < x, y > z = (xz, yz),
(ac) ε(Λ(x)y, z) = x(y, z),

(quote) (′x)y = x,

where (dpair) is a connection between pairing and coupling, and
(acc) is a connection between composition and application. It can
be observed, that S(x, y)z = ε(xz, yz). By this a consideration of
operators Fst, Snd and ε becomes homogeneous. In addition, the
following equality:

′M = Λ(M ◦ Snd),

is valid, from where it follows that

(′x)yz = xz.

Solution.

DB–1. Using the syntax and semantic rules, it can be derived
for M = (λx.x(4, (λx.x)3))+ :

M ′ = ‖M‖ = ‖(λ.0(4, (λ.0)3)) + ‖
= S(‖λ.0(4, (λ.0)3)‖, ‖+ ‖)
= S(Λ(‖0(4, (λ.0)3)‖), ‖+ ‖)
= S(Λ(S(0!, ‖(4, (λ.0)3)‖)), ‖+ ‖)
= S(Λ(S(0!, <′ 4,S(Λ(0!),′ 3) >)),Λ(+ ◦ Snd)).

DB–2. Now the evaluation by P. Landin’s method for SECD-
machine will be performed, i.e. M should be evaluated by ap-
plying M ′ to the environment. Currently, an environment is

230 CHAPTER 20: DE BRUIJN’S ENCODING

empty, because the term is closed. In evaluating M ′ the strat-
egy of the leftmost and at the same time innermost expression
will be applied. To abbreviate denote:

A = S(0!, <′ 4, B >), B = S(Λ(0!), 3).

Consider a complete sequence of reductions:

(Λ(A),Λ(+ ◦ Snd))()→ ε(Λ(A)(),Λ(+ ◦ Snd)())→ A env

here an abbreviation env ≡ ((),Λ(+ ◦ Snd)()) is used:
→ ε(0! env,<′ 4, B > env)
→ ε(Λ(+ ◦ Snd)(), (′4 env,B env))
→ ε(Λ(+ ◦ Snd)(), (4, B env))
→ ε(Λ(+ ◦ Snd)(), (4, ε(Λ(0!)env,′ 3 env)))
→ ε(Λ(+ ◦ Snd)(), (4, ε(Λ(0!)env, 3)))
→ ε(Λ(+ ◦ Snd)(), (4, 0!(env, 3)))
→ ε(Λ(+ ◦ Snd)(), (4, 3))→ (+ ◦ Snd)((), (4, 3))
→ +(Snd((), (4, 3)))→ +(4, 3)→ 7.

Evidently, that this result is the same as the result, obtained in the
immediate evaluation of the expression.

Exercises

Exercise 20.1. Construct de Bruijn’s expressions for the λ-expres-
sions below.
1) λy.yx. Answer. ‖λy.yx‖ = Λ(S(0!, 1!)).
2) (λx.(λz.zx)y)((λt.t)z).

Hint. Denote the initial expression by Q and use the expression R =
λzxy.Q. Then, using a tree of representation of R, we can write it in
the form: R′ = (λ.(λ.01)1)((λ.0)2), and by simple replacement of ‘λ’
by ‘Λ’, ‘◦’ by ‘S’, ‘n’ by ‘n!’ can obtain de Bruijn’s encoding for Q.

CHAPTER 20: DE BRUIJN’S ENCODING 231

Answer. QDB(z,x,y) = S(Λ(S(Λ(S(0!, 1!))1!)),S(Λ(0!), 2!)) (the or-
dering of names in the subscript of Q corresponds to the order of
their binding in an intermediate expression R and allows to restore
the initial definition with corresponding free variables).

232 CHAPTER 20: DE BRUIJN’S ENCODING

Chapter 21

Abstract machine: CAM

In this chapter a special version of computation theory, called cat-
egorical abstract machine, is constructed. To achieve the goals a
special version of combinatory logic – the categorical combinatory
logic is considered. It is represented by a set of combinators, every of
which has its own meaning as the instruction in a programming sys-
tem. This embeds in a combinatory logic one more useful application
– a programming system, based on cartesian closed category. This,
one more time, allows at a new level revise the connection of operator
and applicative style of programming.

21.1 Theoretical background

Abbreviation ‘CAM’ is used for ‘Categorical Abstract Machine’. As
can be seen, this name has itself a voluminous sense.

21.1.1 CAM structure

At first make a substantiation for the term ‘categorical’. Composition
and identity are used in a category (identity mapping serves for a
purpose of optimizing), product equipped with coupling < ·, · >, and

233

234 CHAPTER 21: ABSTRACT MACHINE: CAM

projections Fst and Snd is added in a cartesian category. Curry-
ing Λ, applying ε and exponentiation, i.e., the means to construe the
functional spaces, are added in a cartesian closed category (c.c.c.).

The rules listed in the previous chapter allow to evaluate the cat-
egorical terms of a form M ′, which are constructed from the combi-
nators mentioned earlier by applying a term to the environment that
is constituted from a set of various components:

1) combinators of application and coupling are not used in M ′;

2) application arises when M ′() has been written, i.e. whenever a
categorical term is applied to an (empty) environment;

3) constructing of a couple is performed any time the rule (dpair)
is used.

Machine instructions

The machine instructions of CAM are constructed as follows:

static operators are accepted as the basic machine in-
structions.

Note at first, that any redex in the rules, used for the reduction of
M ′(), is of form Mw, where w is a value, i.e. term is in a normal form
relatively the rules in use. A term M is transformed by de Bruijn, i.e.
it is de Bruijn’s encoding. Next:

1. term M is considered as a code, acting on w, where M is con-
stituted from the elementary components;

2. projections Fst and Snd are easily added to the set of instruc-
tions: Fst acts on the value (w1, w2), giving an access to the
first generated element of the pair, in case it is assumed, that a
value is represented by a binary tree;

CHAPTER 21: ABSTRACT MACHINE: CAM 235

3. for couples an action of< M,N > on w is considered in accor-
dance with the equality:

< M,N > w = (Mw,Nw).

The actions of M and N on w should be performed independently,
and their results are joined in a tree, the root of which is a couple, and
leaves are the obtained values w1 and w2. In a sequential machine,
first, the evaluation is executed, e.g., of M . This results in w1. Before
beginning to execute w, it should be saved in a memory to have an
ability to restore w in evaluating N , when w2 is obtained. At last, w1

and w2 are gathered into couple, but it is assumed, that the value w1

has been saved, and this is executed namely in the same time, when
w is restored.

Machine structure

From the considerations above it follows a notion of machine struc-
ture:

T − term as a structured value, e.g., a graph;
C − code;
S − stack, or dump (auxiliary memory).

The machine state is a triple < T, C, S >.
It follows from the above, that code for< M,N > is the following

sequence of instructions:

‘<’ , followed by a sequence of instructions, correspond-
ing to code M , followed by ‘,’, followed by a sequence of
instructions, corresponding to code N , followed by ‘>’.

21.1.2 Instructions

Note, that categorical abstract machine (CAM) makes only the sym-
bolic transformations, no compiling is performed. This is achieved by
the following instructions.

236 CHAPTER 21: ABSTRACT MACHINE: CAM

Instructions < , >

Consider an action of the instructions ‘<’, ‘,’, ‘>’:

< : pushes the term onto the top of the stack,
, : swaps the term and the top of the stack,
> : makes a couple from the top of the stack and the term,

replaces the term by the couple just built, and pops the
stack.

The particular syntax which is used for making a couple, exactly cor-
responds to constituting the control instructions. These instructions
should replace a construction of coupling. Thus, the combining of
evaluations of M and N into the evaluation < M,N > is achieved.

Instructions Fst Snd Λ(C)

Respectively machine structure, the projections Fst and Snd can be
described more exactly:

Fst : expects a term (s, t) and replaces it by s,
Snd : expects a term (s, t) and replaces it by t.

The code for n! is constructed from n and the instruction ‘Fst’, fol-
lowed by the instruction ‘Snd’. Any additional efforts are not needed,
if the following agreement is used:

take x y, or x|y to denote a composition, which in usual math-
ematical practice is denoted by y ◦ x. In currying, the code for
Λ(M) is Λ(C), where C is the code for M . An action of ‘Λ’ is
described as follows:

Λ(C) : replaces s by C : s, where C is the code encapsu-
lated in Λ;

notation C : s is the abbreviation of ‘Λ(M)s’. From the rewrit-
ing rules point of view, the action of ‘Λ’ is none, since Λ(M)w

CHAPTER 21: ABSTRACT MACHINE: CAM 237

is a value as soon as w is a value, hence it can not be rewritten.
In terms of actions this is reformulated as:

the action of Λ(M) on w is Λ(M)w .

The description of the command ‘Λ’ results in building a closure as
in the SECD-machine. Indeed, as stressed by the notation C : s,
the couple is handled as a value, and this couple is built from the
code, corresponding to a body of λ-expression, and the value, that
represents a declaration environment of the function, described by the
abstraction.

Instruction ′

The additional constants will be used. They are needed as the basic
constants, when a code for ′C is ′(C) with the following action:

′C : replaces the term by the encapsulated constant C.

For the constructions like built-in function, e.g., for the symbol of
addition, the encoding as above is used:

the code for ′(op) is Λ((op)), where (op) is the instruction
Snd, followed by ‘op’.

Instruction ε

Turn back to the application operation from the λ-calculus. It can be
written as ε◦ < M,N >. In case a rewriting rule is needed, then the
following equality is used:

(ε◦ < M,N >)w = ε(Mw,Nw) (= ε[Mw,Nw]).

The last notation includes the brackets and is used in the notations of
combinatory logic.

238 CHAPTER 21: ABSTRACT MACHINE: CAM

Let (Mw,Nw) be evaluated as (w1, w2), that is the action of the
code, associated to < M,N >. The instruction ‘ε’ is still left which
gets w1 = Λ(P)w′1 and returns ε(Λ(P)w′1, w2) = P (w′1, w2).

In terms of CAM, the code corresponding to ε◦ < M,N >, is the
code for < M,N > followed by ‘ε’ with the following effect:

ε gets the term (C : s, t), replaces it by (s, t), and estab-
lishes prefix C for the rest of a code.

CAM working cycle

Before building a complete list of instructions, remind the notational
agreements for the instruction lists and stack elements:

an empty list L is denoted by []; denotation [e1; . . . ; en] is used for
the list with n elements e1, . . . , en;

a.L writes a in the head of L;

L1@L2 appends L2 to L1.

The following mnemonic notations are used for convenience and
listed below depending on their action:

Fst Snd < , > ε Λ ′

car cdr push swap cons app cur quote

The Table 21.1 is represented to describe the working cycle of CAM.
Its left side contains the initial states (“old” states), and its right side
contains the resulting ones (“new” states). In fact, CAM is observed
as the λ-calculus with explicit products.

In fact, this table describes a programming system with a few
initial commands (instructions). Note, that among them there is

no conditional evaluation (conditional branching). This instruction
should be added using some agreements on the ways of the represen-
tation, how does categorical abstract machine work. Besides that in

CHAPTER 21: ABSTRACT MACHINE: CAM 239

Table 21.1: CAM working cycle

Initial Resulting
configuration configuration

Term Code Stack Term Code Stack

(s, t) car.C S s C S
(s, t) cdr.C S t C S
s (quoteC).C S C C S
s (curC).C1 S (C : s) C1 S
s push.C S s C s.S
t swap.C s.S s C t.S
t cons.S s.S (s, t) C S
(C : s, t) app.C1 S (s, t) C@C1 S

evaluating recursive definitions, the (implicit) fixed point operator is
to be used. The additional agreements are to be introduced to achieve
this goals.

21.2 Tasks

Task 21.1. For the expression:

let x = plus in x(4, (x where x = 3)); ;

give its notation in terms of “categorical code” and write the program
of its evaluation in terms of CAM-instructions.

Solution.

CAM–1. Use the mathematical notation, which stresses a re-
lation with the rewriting rules. Let A, B be assumed as the
notations of codes ofA andB respectively, + is an abbreviation
for plus, S(x, y) ≡ S[x, y] = ε◦ < x, y >,⊕ ≡ (Snd+) : ().

240 CHAPTER 21: ABSTRACT MACHINE: CAM

The resulting evaluations are listed in Table 21.2. Note, that evalu-
ations start with an empty environment, i.e. in the position of term,
is written (). The initial term is represented by de Bruijn’s encoding.
In the starting point of computations, the stack, or dump (“auxiliary
memory”) is also assumed as empty [].

Thus, CAM let us obtain the awaited result by one more way,
which could be easy implemented. To achieve this goal, take in mind
that the operation + is not a proper CAM-instruction, but is a built-
in function of a host programming system.

Exercises

Exercise 21.1. Give a representation for the machine instructions of
CAM to evaluate the expression:

let x = 3 in (op(7, x) where op = sub).

Hint. Start with deriving a corresponding λ-expression

(λx.(λop.op 7 x)sub)3,

then, using the postulates of the λ-calculus convert it to the form

(λop.op(7, (λx.x)3))sub

and obtain de Bruijn’s encoding:

S(Λ(S(0!, <′ 7,S(Λ(0!),′ 3) >)),Λ(sub ◦ Snd)).

Now, after rewriting this code by CAM instructions and applying the
needed transformations, a final answer can be obtained.

Answer. 4.

CHAPTER 21: ABSTRACT MACHINE: CAM 241

Table 21.2: CAM computations

Term Code Stack

() < Λ(A),Λ(Snd+) > ε []
() Λ(A),Λ(Snd+) > ε [()]
A : () ,Λ(Snd+) > ε [()]
() Λ(Snd+) > ε [A : ()]
.
⊕ > ε [A : ()]
(A : (),⊕) ε []
((),⊕) < Snd,<′ 4, B >> ε []
((),⊕) Snd,<′ 4, B >> ε [((),⊕)]
⊕ , <′ 4, B >> ε [((),⊕)]
((),⊕) <′ 4, B >> ε [⊕]
((),⊕) ′4, B >> ε [((),⊕);⊕]
4 , B >> ε [((),⊕);⊕]
((),⊕) >> ε [4;⊕]
((),⊕) (Snd),′ 3 > ε >> ε [((),⊕); 4;⊕]
Snd : ((),⊕) , 3 > ε >> ε [((),⊕); 4;⊕]
((),⊕) 3 > ε >> ε [Snd : ((),⊕); 4;⊕]
3 > ε >> ε [Snd : ((),⊕); 4;⊕]
(Snd : ((),⊕), 3) ε >> ε [4;⊕]
(((),⊕), 3) Snd >> ε [4;⊕]
3 >> ε [4;⊕]
(4, 3) > ε [⊕]
(⊕, (4, 3)) ε []
((), (4, 3)) Snd+ []
(4, 3) + []
7 [] []

242 CHAPTER 21: ABSTRACT MACHINE: CAM

Chapter 22

Optimizing
CAM-computations

A cartesian closed category gives the additional abilities to optimize
the resulting program code. Besides the properties of combinatory
logic used as a shell, the special categorical equalities, taken from a
cartesian closed category as from an application, are applicable.

22.1 Task

Task 22.1. For the expression:

let x = 5 in let z y = y + x in let x = 1 in (zx)× 2; ;

compile CAM-program and, possibly, optimize it.

Solution.

opt–1. Write the initial expression:

P = let x = 5 in let z y = y + x in let x = 1 in (zx)× 2.

243

244 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

Table 22.1: Evaluation of a substitution

Term Code Stack

s push.(cur C).swap.C1@[cons; ε] S
s (cur C).swap.C1@[cons; ε] s.S

C : s swap.C1@[cons; ε] s.S
s C1@[cons; ε] (C : s).S
w [cons; ε] (C : s).S

(C : s, w) [ε] S
(s, w) C S

Its reduction to the λexpression results in:

P = (λx.(λz.(λx.(zx)× 2)1)(λy.y + x))5.

Note, that this notation leads to a simple optimizing in a com-
piling time. This is possible, because the code, corresponding
to the expression (λ.M)N , is the instruction ‘push’, followed
by‘cur C’ (where C is the code of M), followed by ‘swap’, fol-
lowed by the code C1 forN , followed by ‘cons’ and ‘ε’. Assum-
ing, that an evaluation of C1 on the term s results in the value
w, write the main steps of a computation:

code of ((λ.M)N) = push.cur C.swap.C1@[cons; ε],
C = code of (M), C1 = code of (N).

Table 22.1 represents the evaluation.

Note, that

‖(λ.M)N‖ =< Λ(‖M‖), ‖N‖ > ε.

CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS 245

Consider the means of deriving the optimized code. Besides the
possible evaluation of expressions relatively the environment,
as was already considered, it is possible, using the categorical
combinatory logic, rather naturally simulate the β-reduction.
To achieve this goal, a set of rules is used, which are distinct
from the above, and only the pure “categorical” combinators are
used, i.e. both coupling and applying are eliminated. A starting
point is the rule:

(Beta) ε◦ < Λ(x), y >= x◦ < Id, y > .

A validity of this rule is proved as follows:

(ε◦ < Λ(x), y >)t = ε(< Λ(x), y > t)
= ε(Λ(x)t, yt)
= x(t, yt) = x(Id t, yt)
= (x◦ < Id, y >)t,

from where the principle of comprehension (Beta) can be de-
rived. Note, that Id x = x. By the rule (Beta) the expression

let x = N inM

is associated with the code

push.skip.swap@C1@cons.C,

where skip replaces Id (with no action). The action of the con-
struction [push.skip.swap] is the same as of [push], i.e. the
considered optimization has a sound ground.

opt–2. Show, that the optimization of [push.skip.swap] by re-
placing [push] is valid. Indeed, in terms of λ-calculus we ob-
tain:

< f, g >= λt.λr.r(ft)(gt) = λt.(ft, gt),

246 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

and also obtain:

< g >= λt.λr.r(t)(gt) = λt.(t, gt) = λt.(Id t, gt).

Replacing f in the first equality by Id, results in:

< Id, g >=< g >,

that substantiates the introducing of the notation ‘< · >’ for a
single expression (a special case). Next,

< Id, g >= [push; skip; swap; g; cons],
< g >= [push; g; cons].

From that the needed optimization is derived as an equality.

opt–3. Let an additional rule be introduced as an optimization
rule for the code [⊕]1. The proof for this optimization is not
difficult. Indeed, the following equalities are valid:

[⊕] ε◦ < Λ(+ ◦ Snd), < M,N >>=
= (+ ◦ Snd)◦ < Id,< M,N >>
= +◦ < M,N >=< M,N > +.

In more details:

(ε◦ < Λ(+ ◦ Snd), < M,N >)t =
= ε(Λ(+ ◦ Snd)t, < M,N > t)
= (Λ(+ ◦ Snd)t)(< M,N > t)
= (+ ◦ Snd)(t, < M,N > t)
= (+(Snd(t, < M,N > t)
= (+◦ < M,N >)t,

from which the needed equality is derived. In addition, a se-
quence [cons; plus] can be replaced by [plus], if ‘plus’ is con-
sidered as a two placed function that takes as its arguments the

1 It turns out, that e.g., the optimization can be done by compiling M + N into
the code 〈M, N〉, followed by ‘plus’.

CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS 247

term and the top of a stack. It should be noted, that an ability
of the operation ‘plus’ to be applied to its arguments is partially
lost (because the λ-term (λx.λy. + xy) is replaced by the two
placed operator x + y, which needs both of the operands at
once), but this lost of generality for operating is overcame by the
ability to optimize the particular cases of three- and, generally,
of n-placed functions. This can be grounded by the following
rules (the case of three placed functions):

λt.(ft, gt, kt) = λtλr′.r′(λr.r(ft)(gt))(kt) =
= λt.(< f, g > t, kt) =<< f, g >, k >,

therefore:

+(M,N,O) = + << M,N >,O > .

Indeed,

ε◦ < Λ(+ ◦ Snd), ε◦ < Λ(Snd), << M,N >,O >>>=
= + ◦ Snd◦ < Id, ε◦ < Λ(Snd), << M,N >,O >>>
= + ◦ (ε◦ < Λ(Snd), << M,N >,O >>>)
= + ◦ Snd◦ < Id,<< M,N >,O >>)
= +◦ << M,N >,O > .

Thus, for initial task the following main steps of computation
are distinguished:

s push.C1@cons.C S
s C1@cons.C s.S
w cons.C s.S

(s, w) C S

This optimized computation is based on the identity combina-
tor, without which the combinatory logic in use is hardly be
called the categorical one.

248 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

opt–4. Turn back to the CAM computations with the term P .
Use the notation x | y ≡ y ◦ x to save writing of the compiled
expression. In the following the abbreviations:

Fst = F, Snd = S,

will be used. To make all the writings closed, consider the
derivations in details. A formulation of optimizing principle
(Beta) will be taken in the form:

(Beta) < Λ(X), Y >| ε = x◦ < Id, y >=< y >| x.

A formulation of optimizing principle [⊕] will be used in the
form:

[⊕] < Λ(+ ◦ Snd), < M,N >> |ε =
= (+ ◦Snd)◦ < Id,< M,N >>.

De Bruijn’s encoding gives:

P = (λx.(λz.(λx.(z x)× 2)1)(λy.y + x))5,

next

P ′ = (λ.(λ.(λ.(1 0)× 2)1)(λ.0 + 1))5
= (λ.(λ.(λ.× ((1 0), 2))1)(λ.+ (0, 1)))5.

Next the evaluation of P ′ results in:

‖P ′‖ =<′ 5 >| ‖(λ.(λ(1 0)× 2)1)(λ.0 + 1)‖;

‖(λ.(λ(1 0)× 2)1)(λ.0 + 1)‖ =
= < ‖λ.(λ.(1 0)× 2)1‖, ‖λ.0 + 1‖ > ε
= < Λ‖λ.(1 0)× 2)1‖, ‖λ.0 + 1‖ > ε

(Beta)
= < ‖λ.0 + 1‖ >| ‖(λ.(1 0)× 2)1‖;

CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS 249

‖(λ.(1 0)× 2)1‖ = < ‖λ.(1 0)× 2)‖,′ 1 > ε
= < Λ‖(1 0)× 2‖,′ 1 > ε
= <′ 1 >| ‖(10)× 2‖;

< ‖λ.0 + 1‖ > = < Λ‖+ (0, 1)‖ >
= < Λ <′ +, < 0!, 1! >> ε >
= < Λ < Λ(+ ◦ S), < 0!, 1! >> ε >;
(⊕)
= < Λ(+◦ < 0!, 1! >) >
= < Λ(< 0!, 1! >| +) >
= < Λ(< S,F | S >| +) >;

‖(1 0)× 2)‖ = < ‖ × ‖, < ‖(1 0)‖,′ 2 >> ε
= < Λ(× ◦ S), < ‖(1 0)‖,′ 2 >> ε
(⊕)
= ×◦ < ‖(1 0)‖,′ 2 >
= ×◦ << 1!, 0! > ε,′ 2 >
= ×◦ << F | S, S > ε,′ 2 >
= << F | S, S >| ε,′ 2 >| ×.

To save writing use the abbreviations. Using the abbreviation
for D, where D = (< S,F | S >| +) and for C, where C =<
F | S, S >| ε, obtain:

‖P ′‖ =<′ 5 >|< Λ(D) >|<′ 1 >|< C ′, 2 >| ×.

To save more writing with CAM-computations use the abbre-
viations:

B =< C,′ 2 >| ×, C =< F | S, S >| ε, D =< S,F | S >| +.

We pay attention, that these re-writings, evidently, have the connec-
tions with supercombinators. Indeed, every object that is introduced
as a mathematical notational agreement, is the sequence of CAM-
instructions. This sequence can be evaluated beforehand (compiled)
with CAM, and, by need, this result of preliminary evaluation could be
used in a proper place. It is not difficult to see, that these preliminary

250 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

computations should be better done not episodically, but using the
“discipline” of computations2.

The categorical abstract machine itself is relatively well balanced
system of “mathematical” computations. These computations with a
good evidence can be arranged in a table with three columns, which
represents the current values of term, code and stack. Remind, that
namely the triple <term, code, stack > is exactly a current state
(of computation). Thus, a sequence of rows in the table of CAM-
computations determines the sequence of states of the computation
process3 .

2The methods of optimizing the computations, when it is possible to select
relatively independent parameters, are developed not only in different versions of “su-
percombinatory” programming, but are widely used in a functional programming.
The approaches are distinct in semantics of evaluations: as a rule, a denotational
semantic with “continuations” is used. It means, that for any well in some sense
defined computation the “rest of program” is known.

3From the mathematical point of view a computation can be considered as a
sequence of states, i.e. as the process in a rigorous sense of this term. This point of
view is quite in a spirit of the theory of computations by D.S. Scott.

CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS 251

Consider the complete sequence of CAM-computations:

() <′ 5 >< Λ(D) ><′ 1 > B []
() ′5 >< Λ(D) ><′ 1 > B [()]
(5) >< Λ(D) ><′ 1 > B [()]
((), 5) < Λ(D) ><′ 1 > B []
((), 5) Λ(D) ><′ 1 > B [((), 5)]
(D : ((), 5)) ><′ 1 > B [((), 5)]
(((), 5), D : ((), 5)) <′ 1 > B []
(((), 5), D : ((), 5)) ′1 > B [. . .]
(1) > B [. . .]
(((), 5), D : ((), 5)); 1 B []
(((), 5), D : ((), 5)); 1 < C,′ 2 > × []
(((), 5), D : ((), 5)); 1 C,′ 2 > × [. . . ; 1]
(((), 5), D : ((), 5)); 1 < F | S, S >| ε,′ 2 > × [. . . ; 1]
(((), 5), D : ((), 5)); 1 F | S, S >| ε,′ 2 > × [. . . ; . . . ; 1]
((D : ((), 5))) , S >| ε,′ 2 > × [. . . ; . . . ; 1]
(((), 5), D : ((), 5)); 1 S >| ε,′ 2 > × [D : ((), 5)); . . .]
(1) > ε,′ 2 > × [D : ((), 5)); . . .]
((D : ((), 5)); 1) ε,′ 2 > × [. . .]
(((), 5); 1) D,′ 2 > × [. . .]
(((), 5); 1) < S,F | S > +,′ 2 > × [. . .]
(((), 5); 1) S, F | S > +,′ 2 > × [(((), 5); 1); . . .]
(1) , F | S > +,′ 2 > × [(((), 5); 1); . . .]
(((), 5); 1) F | S > +,′ 2 > × [1; . . .]
(5) > +,′ 2 > × [1; . . .]
(1, 5) +,′ 2 > × [. . .]
(6) ,′ 2 > × [. . .]
(. . .) ′2 > × [6]
(2) > × [6]
(6, 2) × []
(12) [] []

252 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

Exercises

Exercise 22.1. Write the optimized program for CAM-computations
of evaluating the expression:

let x = 3 in let z = x+ y in fz where y = 1 where f = sqr.

Hint. Introduce the λ-expression:

(λx.(λz.(λf.fz)sqr)((λy.+ xy)1))3,

and obtain its de Bruijn’s encoding:

(λ.(λ.(λ.0 1)sqr)((λ.+ 1 0) 1))3.

Next,

S‖λ.(. . .)(· · ·), 3‖= S(Λ(‖(. . .)(· · ·)‖),′ 3);
‖(. . .)(· · ·)‖= S(‖(. . .)‖, ‖(· · ·)‖);

‖(. . .)‖= Λ(S(Λ(S(0!, 1!)), ‖sqr‖));
‖(· · ·)‖= S(Λ(S(S(‖+ ‖, 1!), 0!)),′ 1);

In the expressions the subscripts will indicate a balance of paired
parentheses, e.g.,

0(. . .)0, . . . ,6 (. . .)6.

Write the following:

S0(Λ1(S2(Λ3(S4(Λ5(S6(0!, 1!)6)5, ‖sqr‖)4)3,
S3(Λ4(S5(S6(‖+ ‖, 1!)6, 0!)5)4,′ 1)3)2)1,′ 3)0 ≡ R.

Checking is done by the straightforward computations:

Rρ ≡ S0(. . . ,′ 3)0ρ
= (Λ1(. . .)1ρ)(′3 ρ)
= 1(. . .)1(ρ, 3)
≡ 1(. . .)1ρ′;

CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS 253

1(. . .)1ρ′ ≡ S2(. . . , . . .)2ρ′

= S4(. . . , . . .)4(ρ′,4 (. . .)4(ρ′, 1));

4(. . .)4(ρ′, 1) = S5(. . . , . . .)5(ρ′, 1)
= S6(. . . , . . .)6(ρ′, 1)1
= Λ(+ ◦ Snd)(ρ′, 1)ρ′ 1
= (+ ◦ Snd)((ρ′, 1), 3)1
= + 3 1 = 4;

S4(. . . , . . .)4(ρ′, 4) = Λ5(. . .)5(ρ′, 4)(Λ5(· · ·)5(ρ′, 4))
= 5(. . .)5((ρ′, 4), (Λ5(· · ·)5(ρ′, 4)))
≡ S(0!, 1!)(. . . , . . .)
= Λ5(· · ·)5(ρ′, 4)4
= 5(· · ·)5((ρ′, 4), 4)
≡ (sqr ◦ Snd)((ρ′, 4), 4)
= sqr(4) = 16.

The derived expressionR should be optimized by the rules (Beta) and
[⊕]. To achieve this goal the following equality:

S(x, y) = ε◦ < x, y > .

can be useful.

Answer. sqr(4) = 16.

Test

1. List the alternative ways to eliminate a collision of variables in
the λ-expressions.

2. Give the reasons to introducing the composition operator.

3. Show connection and difference between the notions of ‘pair’
and ‘couple’.

254 CHAPTER 22: OPTIMIZING CAM-COMPUTATIONS

Hint. It is possible to use the set theoretic definitions of these
notions, assuming

f : D → E, g : D → F.

From this it follows, that

couple : h =< f, g >: D → E × F ;
pair : [f, g] = (f, g) : (D → E)× (D → F).

4. List three main approaches to implementation of the functional
programming languages, which the notion of the categorical
abstract machine is based on.

5. What are the basic machine instructions of CAM?

6. Describe the projections Fst and Snd in connection with a
structure of machine.

7. Give the formulations of the main rules of optimization.

8. What are the advantages of using the principles (Beta) and [⊕]
in writing a CAM-program?

Chapter 23

Variable objects

In this chapter the general topics of mathematical representation of
objects are considered. As it shown, the notion of functor-as-object
allows in a laconic form to revise the main laws of object-oriented
computations. In particular, an attention is paid to the changeable
(variable) notions-concepts, that are the usual objects of combinatory
logic but have the useful in programming properties. For instance, the
variable concepts, without complications, allow to build not only the
theory of computations, but a semantic of programming languages,
and the data object models as well. The notion of data-as-object
brings in the new extent of the computing derivations.

23.1 Models

In such applicative computational system as untyped λ-calculus one
and the same object depending on the context can play both the role of
an argument and the role of a function which acts on the argument(s).
If the arguments are taken from the domain D, then the functions are
to be taken from the domain D → D, and, as they can change their
roles, we need the isomorphism between the domain of arguments D

255

256 CHAPTER 23: VARIABLE OBJECTS

and the domain of mappings D → D, i.e.:

D ' (D → D),

but, in general, this is impossible. However, in a particular case when
the domain D → D is restricted to the set of functions which are
continuous in some topology on D, it is possible. As was shown
by D. Scott ([112]), to build the semantic of λ-calculus which cov-
ers available in computer science and, in particular, in programming
computational mechanisms, it is sufficient to take a category of com-
plete lattices with continuous mappings. In this case it is possible to
build the object D∞, which is isomorphic to the object D∞ → D∞,
i.e.:

D∞ ' (D∞ → D∞),

that leads to development of the extensional model of λ-calculus.

23.1.1 Applicative structure

The applicative structure, being simple and conceptually transparent,
gives a sound ground to formulate, develop and research the variety
of data models.

Assume, that all the elements can be gathered into one set, the
domain D, on which the only operation of application (· ·) is defined:

(· ·) : D ×D → D : ∀x, y ∈ D ∃z ∈ D.[x, y] 7→ z & z = (x y),

or, in other notations,

x ∈ D y ∈ D
(x y) ∈ D

, (· ·)

i.e. for any pair of elements x, y fromD it can be built the (x y), called
the ‘application of x to y’. This pair D and (· ·):

M = (D, (· ·))

CHAPTER 23: VARIABLE OBJECTS 257

is called an applicative structure.
Note that in the literature as a notation for explicit application

instead of ‘(· ·)’ is often used ‘ε’:

ε : D ×D → D :
∀x, y ∈ D ∃z ∈ D.[x, y] 7→ z & z = ε[x y] ≡ (x y),

This notation can be equally simplified to:

ε : D ×D → D, ε : [x, y] 7→ (x y);

then the applicative structure will be of form:

M = (D, ε).

The applicative structureM is extensional, if the following condition
is valid:

∀a, b ∈ D ∀x ∈ D.ax = bx

a = b
.

Note that for the structureM = (D, ε) instead of ‘d ∈ D’ it is often
written ‘d ∈M’.

Terms

Consider a class of all the terms inM, denoted by T (M). This class
is built by induction on complexity of the term is:

i) class of the terms contains all the variables v1, . . . , vi, . . . :

v1, . . . , vi, . . . ∈ T (M);

ii) class of the terms contains all the constants ca:

a ∈M
ca ∈ T (M)

;

iii) applicative structure is closed by the application operation, i.e.

M,N ∈ T (M)
(M N) ∈ T (M)

.

Here: M , N are arbitrary terms from T (M).

258 CHAPTER 23: VARIABLE OBJECTS

Assignment

An assignment in the applicative structureM is the mapping ρ:

ρ : variables→M,

i.e. ρ(vi) ∈M for any variable vi.

Evaluation mapping

Begin with the fixing of applicative structure M and assignment ρ.
The evaluation, or interpretation of a term M is the mapping:

‖ · ‖· : terms× assignments→ elements fromM.

An evaluation of the terms from T (M) inMwith the assignment
ρ is built by induction on complexity of a term:

i) all the variables x ∈ T (M) are interpreted as:

‖x‖ρ = ρ(x),

where ρ(x) ∈M;

ii) all the constants ca ∈ T (M) are interpreted as:

‖ca‖ρ = a,

where a ∈M;

iii) the application of a term M to a term N is interpreted as:

‖(M N)‖ρ = (‖M‖ρ)(‖N‖ρ),

i.e., by a principle: ‘an evaluation of the application is an appli-
cation of the evaluations’.

CHAPTER 23: VARIABLE OBJECTS 259

The fact, that equality M = N of the terms M,N ∈ T (M) is true in
M with the assignment ρ, is denoted by:

M, ρ |= M = N

and has a meaning of the equality ‖M‖ρ = ‖N‖ρ.
As can be seen from a definition of the evaluation ‖M‖ρ, it de-

pends on the assignment of the values ρ on the set of free variables
of M . Thus, in case of closed terms M , when FV (M) = ∅, the
evaluation ‖M‖ρ does not depend on an assignment ρ, that is denoted
by ‖M‖.

Substitution

One of the most often used constructions in programming languages
is a substitution. Its sense reveals in performing the assignments.
Let the assignment ρ be fixed and take an element a ∈ M. Then the
construction ‘assignment of a substitution a in place of the variable
x’ is denoted by ‘ρ([a/x])’ and defined as:

ρ([a/x]) def= ρ′(y)|xa ≡
{

a, if y ≡ x,
ρ(y), if y 6≡ x,

where y is a variable.

23.1.2 Typed models

Note, that initially the λ-calculus both in a type free and in a typed
variants have been considered as the means or metatheory to formal-
ize the notion of a rule or process. To use the types, the syntax of a
typed language is to be introduced.

Types

Type symbols are defined by induction on complexity:

260 CHAPTER 23: VARIABLE OBJECTS

i) basic type o ia a type symbol;

ii) if σ and τ are the types, then (σ, τ) is a type:

σ – type, τ – type
(σ, τ) – type

.

Variables

Every variable xi is assigned a type σ, and this fact is written by one
of the ways:

xσ
i , or xi : σ, or #(xi) = σ.

The objects s, corresponding to the λ-terms, which contain a set
of free variables FV (s) and a set of bound variables BV (s), are
assigned the types by induction on complexity:

i) a variable xσ
i is the term of type σ, where FV (xσ

i) = {xσ
i },

BV (xσ
i) = ∅;

ii) if s is a term of type (σ, τ), and t is a term of type σ, then (s t) is
the term of type τ :

s : (σ, τ) t : σ
(s t) : τ

, (· ·)

a set of free variables in the compound term is the union of the
sets of free variables in the component terms:

FV ((s, t)) = FV (s) ∪ FV (t),

and a set of bound variables in the compound term is the union
of the sets of bound variables in the component terms:

BV ((s, t)) = BV (s) ∪BV (t);

CHAPTER 23: VARIABLE OBJECTS 261

iii) if s is a term of type τ , and y is a variable of type σ, then λy.s is
the term of type (σ, τ):

y : σ s : τ
(λy.s) : (σ, τ)

, (λ · . ·)

the variable y is excluded from a set of free in s variables:

FV ((λy.s)) = FV (s)− {y},

and the variable y is added to a set of bound in s variables:

BV ((λy.s)) = BV (s) ∪ {y}.

Thus, metaoperator of abstraction (λ · . ·) binds one variable in the
one term. The set of all the λ-terms is denoted by Tm.

Pre-structure

A pre-structure is the family

({Dσ}, {εστ})

with parameters σ, τ , whereDσ is a non-empty set, corresponding to
arbitrary type symbol σ, and εστ is the mapping

εστ : D(σ,τ) ×Dσ → Dτ , εστ : [x, z] 7→ x(z)

for a function x ∈ D(στ) and argument z ∈ Dσ, which is valid for all
the type symbols σ, τ .

The pre-structure is extensional, if for the elements x, y ∈ D(σ,τ)

on arbitrary element z ∈ Dσ from the equality εστ [x, z] = εστ [y, z] it
follows, that x = y:

x, y ∈ D(σ,τ) ∀z ∈ Dσ.εστ [x, z] = εστ [y, z]
x = y

.

262 CHAPTER 23: VARIABLE OBJECTS

Assignment

An assignment in the system ({Dσ}, {εστ}) is the function ρ with a
domain constituted of the set of all the variables and such, that

ρ(xσ
i) ∈ Dσ.

A set of all the assignments is denoted by Asg.
If x, y are the variables, then ρ(·)|xa is determined by:

ρ(y)|xa ≡
{
ρ(x)|xa = a, if y ≡ x,

ρ(y), if y 6≡ x.

Compare with the definition of assignment of a substitution in 23.1.1
on p. 259.

Structure

A structure is the family

({Dσ}, {εστ}, ‖ · ‖·),

with parameters σ, τ , where ({Dσ}, {εστ}) is a pre-structure, and
‖ · ‖· is the evaluation mapping

‖ · ‖· : Tm×Asg →
⋃
σ

Dσ,

which is defined elementwise by induction on term construction:

i) ‖xσ
i ‖ρ = ρ(xσ

i);

ii) ‖(s t)‖ρ = εστ [‖s‖ρ, ‖t‖ρ], where term s is assigned the type
(σ, τ), and t is assigned the type σ;

iii) for any element a ∈ Dσ the following equality is valid:

εστ [‖(λx.s)‖ρ, a] = ‖s‖ρ|xa,

where term s is assigned the type τ , and the variable x is as-
signed the type σ.

CHAPTER 23: VARIABLE OBJECTS 263

For arbitrary structure ({Dσ}, {εστ}, ‖ · ‖·) write:

({Dσ}, {εστ}) |= s = t[ρ]

in that case, if
‖s‖ρ = ‖t‖ρ.

Example 23.1. Consider a special case of the structure, denoted by
TB :

TB = ({Bσ}, {εστ}),

that is defined on B. For this structure:

Bo = B, Bσ→τ = Bσ → Bτ , εστ [x, y] = x(y).

This is a sample of the structure of complete type on B. Indeed, for
the type (σ, τ) ≡ (σ → τ) corresponding domain (a set) of possible
elements of this type is exactly Bσ→τ . Its every element is the map-
ping of type σ → τ . On the other hand,Bσ → Bτ has as a domain the
set of all the mappings from Bσ to Bτ . In the structure of complete
type it is regarded that these sets are to be likewise.

Substitution

If s is a term, x is a variable, and t is the term of the same type as x,
the notation

‘[t/x]s’

is read as

‘substitution of term t in place of every free occurrence of x in
s’.

A substitution is defined by induction on complexity of s as follows:
for atomic s:

i) [t/x]x = t;

264 CHAPTER 23: VARIABLE OBJECTS

ii) [t/x]y = y for the variables y 6≡ x;

for non-atomic s:

iii) [t/x](r s) = ([t/x]r)([t/x](r s));

iv) [t/x](λx.s) = (λx.s);

v) [t/x](λy.s) = (λy.[t/x]s) for the variables y 6≡ x.

Substitution is the function Subst from all the variables to terms
such, that Subst(x) has the same type as x. Similarly, take s(Subst)
as a notation for the simultaneous substitution of every free occur-
rence of any variable y in s, i.e. Subst(y).

Consistency

Given a structure M = ({Dσ}, {εστ}, ‖ · ‖·) prove a theorem of con-
sistency.

Lemma 23.1. In case the bound variables of the term s and free vari-
ables of the term t are distinct, i.e.

BV (s) ∩ FV (t) = ∅,

then the following equality is used to substitute the term t in place of
the variable x in the term s:

‖[t/x]s‖ρ = ‖s‖ρ|x‖t‖ρ.

Proof. For the fixed t by induction on complexity of s.

Lemma 23.2. If the variable y is distinct both from free and bound in
s variables:

y 6∈ FV (s) ∪BV (s),

then the following equality takes place:

‖[y/x]s‖ρ|yd = ‖s‖ρ|xd.

CHAPTER 23: VARIABLE OBJECTS 265

Proof. It follows from Lemma 23.1.

Lemma 23.3. If the variable y is distinct both from free and bound in
s variables:

y 6∈ FV (s) ∪BV (s),

then the equality holds:

M |= (λx.s) = (λy.[y/x]s).

Proof. From Lemma 23.2 it follows that

ε[‖(λx.s)‖ρ, d] = ‖s‖ρ|xd
= ‖[y/x]s‖ρ|yd
= ε[‖(λy.[y/x]s)‖ρ, d].

Lemma 23.4. In case the bound variables of the term s and free vari-
ables of term t are distinct, i.e.

BV (s) ∩ FV (t) = ∅,

then the following equality holds to substitute the term t in place of
the variable x in the term s:

‖(λx.s)t‖ρ = ‖[t/x]s‖ρ.

Proof. From Lemma 23.1 it follows that

‖(λx.s)t‖ρ = ε[‖(λx.s)‖ρ, ‖t‖ρ]
= ‖s‖ρ|x‖t‖ρ
= ‖[t/x]s‖ρ.

266 CHAPTER 23: VARIABLE OBJECTS

Lemma 23.5. If the variable x is distinct from any of the free in term
s variables, i.e.

x 6∈ FV (s),

then the equality holds:

‖(λx.sx)‖ρ = ‖s‖ρ.

Proof.
ε[‖(λx.sx)‖ρ, d] = ‖(sx)‖ρ|xd

= ε[‖s‖ρ|xd, ‖x‖ρ|xd]
= ε[‖s‖ρ, d].

Lemma 23.6. If M |= s = t, then M |= (λx.s) = (λx.t).

Proof. Fix ρ. Then:

ε[‖(λx.s)‖ρ, d] = ‖s‖ρ|xd
= ‖t‖ρ|xd
= ε[‖(λx.t)‖ρ, d].

Theorem 23.1 (soundness). If

` s = t,

then in every structure
M |= s = t.

Proof. By induction on proof of equality s = t, using Lemmas 23.1–
23.6.

CHAPTER 23: VARIABLE OBJECTS 267

23.1.3 Partial objects

The formal means of logic ought to be used to build data object model.
But in case of using the standard means they are correct only for
non-empty domains. A practice of deployment open information
systems leads to considering the subdomains defined by unsolvable
predicates.

Partial elements

In case of the subdomains defined by unsolvable predicates, which is
applicable to World Wide Web, the question

is there the objects x as an element of this subdomain,

could be unsolvable. As it appears, if we consider more than one sort
of variables, then logical means should be conformed to operating on
the domains, relatively which it is impossible to know, neither if are
they “inhabited”, nor if do its elements completely exist.

A reality arose, when in reasoning with the objects it is not always
possible to assume their existence.

In this case a well formed language constructions can mean nothing.

Predicate of existence

To the aims of considering the terms which could have no value – the
meaningless, – a special predicate of existence E is introduced. For
a term t the construction

Et

is read as ‘t exists’. It is assumed that free variables of the sorts
of t range the domain of potential, or possible elements, that are
selected out of the implicit outer domain.

As known, any domain D of the partial elements can be repre-
sented as a subdomain of some domain Ã of total elements, and these

268 CHAPTER 23: VARIABLE OBJECTS

last are considered as an objectification of possible elements of the set
D. Accepting this point of view means the following:

the predicate of physical existence E enables a selection of actual
in D elements.

The usual assumption, used in logic is that the bound variables range
only over the actual elements. This means that bound variables are
considered as restricted by the predicate E.

Similarity between partial elements

The establishing of any domain assumes that the sentences con-
cerning the similarity of its objects within this domain can be con-
structed. As the partial elements are used, then the equality between
them is considered in the following sense:

(t = s) ⊃ (Et& Es),

i.e. the established equality of partial elements implies their existence.

Equality between partial elements

A deployment of representation of the equality between elements
begins with that all the elements outside the predicate E are assumed
as non-existent are considered as equal is their non-existence. More
formally, the biconditional

t ≡ s⇔ (Et ⊃ t = s) & (Es ⊃ t = s)

is accepted. Thus, the equal elements become just the same.

Extensionality

A demand of correctness of the predicate definition assumes that they
are extensional not only relatively identity, but also relatively equality.

CHAPTER 23: VARIABLE OBJECTS 269

The other name of this principle is the substitutivity of equal ones:

[t/x]φ& t = s ⊃ [s/x]φ. (ext)

Essentially, the relation of equality ≡ and predicate of existence E are
selected as the initial ones, and equality become derived and is defined
by the following biconditional

t = s⇔ t ≡ s& Et& Es.

Sorts

The logical means of building data object model are given by a many-
sorted theory with higher types. It means that higher order structures
are allowed to build. To achieve this aim any finite sequence of sorts

(T1, T2, . . . , Tn)

is assigned the sort
[T1, T2, . . . , Tn],

which is assumed as power sort of all the n-ary relations over the
given sequence of domains. As turns out, the rest of type construc-
tions can be expressed by the power sorts.

Descriptions

In building the logical means, the descriptions – the constructions
‘such . . . that . . . ’, – are used among the terms. Such construc-
tions are suitable, and their usage does not lead to the difficulties,
because there is a predicate of existence. In this case there is a set
of terms with the rich expressive power, which can be used in corre-
spondence with the aims to reach, as was shown in (D. Scott, [114])
and (M. Fourman, [8]). Thus introduced term

IxΦ

canonically is read as

‘such x that Φ is valid’.

270 CHAPTER 23: VARIABLE OBJECTS

Possible worlds

The possible worlds are understood as various sets of individuals
with the additional structure or without it. The terms ‘element’ and
‘individual’ will be used changeably. The distinct sets of individuals
are identified by the indexed expressions. As known, an arbitrary
system of structures can be indexed. This is done by a choice as the
indices the elements of the appropriate set, and this choice can be
done by the various ways.

Take some fixed set I of these indices, and also will consider the
set of possible individuals D and virtual individuals V . Next, mark
by the indices the system of actual individuals Ai, assuming for any
index i ∈ I, possibly, distinct Ai ⊆ D. It is evident, that the following
inclusion

Ai ⊆ D ⊆ V

is valid, because the virtual individuals are introduced just for increas-
ing the regularity. Note, that between Ai and i there is no assumed
one-to-one correspondence, because the elements of the set I can
have a structure, which is not completely reflected by the distinctions
of different sets Ai each of other.

23.1.4 Data object models

In building the data object models from a formal point of view instead
of term ‘assignment’, used on p. 258 and on p. 262, we will use the
term ‘reference’, that is relative to a representation of the possible
world or indexing system.

Concepts, individuals and states

Among the objects the concepts, individuals and states will be dis-
tinguished. These entities are used as the units – the main build-
ing blocks using which a data object model, or DOM is built. As
awaited, the additional means to formalize this model are needed, and

CHAPTER 23: VARIABLE OBJECTS 271

they are shown in Figure 23.1. An interpretation of correspondences
shown in this figure, leads to a formulation of the special approach
which can be called the conceptualization principle.

Conceptualization principle

The interrelation of concepts, individuals and states allows to formu-
late the main principle of conceptualizationas follows:

‖(individual concept)‖ = function : references→ individuals,

i.e. a value of the individual concept can be considered as the function
from a set of references into a set of individuals.

It means that to describe concepts the formulae are used which
identify the functions from references to individuals. In other words,
a concept is considered as the process in a mathematical sense. Us-
ing the conceptualization principle above, establish a ground to the
scheme of investigating the problem domain aimed to choosing and
fixing of data objects:

‖(individual concept)‖ ∈ individual reference

individual reference �− individual

individual �− state reference

state reference �− state

In the scheme above the following notations are used:

• symbol ‘�−’ indicates the transition from invariant to the
family;

• notation individual reference means the set of all the map-
pings from references to individuals, i.e. exponential;

• notation state reference means the set of all the mappings
from references to states.

272 CHAPTER 23: VARIABLE OBJECTS

The main feature of this scheme is in making a transition from the
individual concepts (in a language) to the individual concepts in a
domain. Such a transition is performed by the evaluating function
‖ · ‖ ·. Next, the concept in PD1 is teated as a process, using which
the individuals are chosen and fixed. An individual is also considered
as the process allowing to indicate the states. The more neutral is the
terminology of a kind ‘state-metastate’, which can be used in place of
‘individual-concept’ or instead ‘state-individual’.

Both the principle of conceptualization and the scheme of investi-
gating the problem domain can be formulated not only at a qualitative
level, but as the formal diagram, shown in Figure 23.1. In accordance
with this figure, the individual concept is described by the formula Φ,
that is additionally equipped with the description operator I. Remind,
that the notation

IxΦ(x)

is considered as the descriptive sentence of a kind:

‘the (unique) x, such that (it has the property) Φ(x)’.

Describing the objects

It turned out that from an intuitive point of view the description opera-
tor, of course, serves the goals of describing one or another object. At
first, for such a describing, the evaluation is performed which allows
the language construction to be corresponded to the object from a do-
main. To obtain, by this way, the image of of a language construction,
take into account the reference, that is formally indicated by an index.
In fixing the individuals of DOM the most important is to conform the
condition for i ∈ I :

‖IxΦ(x)‖i = d⇔ {d} = {d ∈ D| ‖Φ(d)‖i = 1},

1PD – Problem domain.

CHAPTER 23: VARIABLE OBJECTS 273

Figure 23.1: Data object model

274 CHAPTER 23: VARIABLE OBJECTS

which is the main characteristic of formalization, where the symbol
‘1’ is used as a truth value true. The variants of this principle are well
known in mathematics, but they are in a considerable degree less used
in the research area of such a subject as data objects. Indeed, all that
is said here – this is a singularity of the individualizing the object d by
the formula Φ. The other aspect of characteristic of the formalism is
the following reason. The descriptions in use have sufficient “selectiv-
ity” to choose the individual from a problem domain. According this
reason, the characteristic of DOM formalization, besides the fixing
individual in a domain, is aimed to establish a connection with the
systems of symbolic computations. Development and using of the
systems of symbolic computations leads to applying the notion of a
function in the sense of definition. Such a research is based on a pro-
cess of transition from an arguments to the value, when this process
is encoded by the definitions. The definitions usually are determined
by the sentences of a researcher language. Next they are applied to
the arguments, also determined by the sentences of the researcher
language. In case of computer systems of symbolic computations,
the definitions are understood like the programs, which, in turn, are
applied to the programs. Since the objects under research are both
the functions and their arguments, then an untyped system arises,
that allows the self-applicability of a function, what is considered im-
possible for the “usual” mathematical functions. As a main untyped
system, the λ-calculus is usually used, which is based on the notion
of bound variable, or the combinatory logic, which avoids the notion
of a variable.

23.2 The main task

Give a rather general formulation of the task that could be reduced to
a creation of the object representation – the data object or meta-
data object.

CHAPTER 23: VARIABLE OBJECTS 275

Task 23.1. Build the object of a given form, using its determining
properties Φ.

Task formulation. Establish the definition of an object, using the
principle of comprehension:

C = Iy : [D]∀x : D(y(x)↔ Φ) = {x : D | Φ}, (C)

where [D] denotes a power set (a set of all the subsets) of D.

Solution. A solution of the main task is based on the diagram shown
in Figure 23.1. A particular application depends on a lot of factors and
first of all – on the aims of using the object. Among these objects are
the elementary types and indexed concepts. Besides that, a form
of resulting object can be changed depending on the computational
model in use. In the following subsections the different variants of the
solution of main task are given, and this is a task to construe the data
object model.

23.2.1 Elementary types

Consider the constructing of the definitions of the elementary types.

HT (I)–1. Type. Usually type is considered as the subset of a set,
identified by a sort symbol. Thus, for sort D, the type T is
determined by the description

T = Iy : [D]∀x : D(y(x)↔ Φ) = {x : D | Φ},

for which the inclusion T ⊆ D ∈ [D] holds.

HT (I)–2. Relation. The data object called a relation, is considered
as a subset of cartesian product of the domains, identified by the
sort symbols. Hence, for sorts A, B the relation R is defined by
the description

R = Iz : [A,B]∀x : A∀y : B(z[x, y]↔ Ψ)
= {[x : A, y : B] | Ψ},

276 CHAPTER 23: VARIABLE OBJECTS

for which the inclusion R ⊆ A× B holds. Here, to avoid com-
plications, the definition of two placed relation R is considered.

HT (I)–3. Value of function. In developing the data bases a signif-
icant attention is paid to the class of relations called the func-
tional relations. To reach this aim the definition

R′(t) = Iy : B.R([t, y])

is introduced where t is a term of sort A. In this case the mem-
bership R′(t) ∈ B could be written.

HT (I)–4. Functional abstraction. This object is distinguished by
an especially often usage in applicative programming systems
to indicate the definition of a function. For the variable u of sort
A and the term s of sort B the functional abstraction is defined
by the description

λu : A.s = Iw : [A,B]∀u : A∀v : B(w[u, v]↔ v = s)
= {[u, v] | v = s},

for which the inclusion λu.s ⊆ A×B holds.

As it turned out, the means of descriptions have a sufficient power –
they allow to express the derived operator of abstraction. Note, that
in combinatory logic the abstraction operator is also expressed by the
combinators. In this sense a certain similarity between the means of
combinatory logic and the means of the descriptions can be observed.

23.2.2 Typed variable objects

Give a generalization of the means of typed data objects for the case of
definition of the sets that vary with the outer conditions. In this case
the variable concepts are introduced which are the invariants of the
corresponding object set for given conditions.

CHAPTER 23: VARIABLE OBJECTS 277

HT (I)–1. The conditions are taken into account as an index that
characterizes the selected reference. The most typical cases of
the definitions of the variable concepts are to be the unary type
concept and binary relation concept.

HT (I)–2. Variable type concept. It arises in considering the pairs
reference-individual and corresponds to the description

C = C(I) = Iz : [I, T]∀i : I∀hi : T (z[i, hi]↔ Φ)
= {[i, hi] | Φ} ⊆ {h|h : I → T}
= HT (I).

In the case above HT (I) is considered as a set of all the indi-
viduals for the references from I and the type T . The definition
allows a derivation of one particular case that plays a central
role in building the computational models using the λ-calculus.
In case we take I as T , and individuals are assumed to be con-
stants, thenC maps such an individual h into the singleton {h}:

C : h 7→ h

and, of course, C(h) ∈ {h}. This immediately implies the
equality

C = 1C : C → C,

i.e. C is the identity mapping 1C with the property

C = C ◦ C.

HT (I)–3. Binary relation concept. As this is the most general
case of dependency between the objects, then it is not sufficient
to restrict a consideration by the description

φ = φ(I)
= Iz : [I, (T, T)].∀i∀ui : T∀vi : T (z[i, [ui, vi]]↔ Φ)
= {[i, [ui, vi]] | Φ}
⊆ {< u, v >|< u, v >: I → T × T }
= HT×T (I).

278 CHAPTER 23: VARIABLE OBJECTS

The important feature is that u is an element of HT (I), and v is
an element of HT (I), i.e. u ∈ HT (I), v ∈ HT (I). Moreover, in
defining the description for φ the following equalities hold:

φ = φ(I)
= Iz : [(I, T), (I, T)].∀i∀ui∀vi(z[[i, ui], [i, vi]]↔ Φ)
= {[[i, ui], [i, vi]] | Φ}
⊆ {[u, v] | Φ}
= HT (I)×HT (I).

Both the expressions for φ turned out isomorphic and can be put into
the basis of a type system.

23.2.3 Computational models

Consider the typed computational models of data objects. The main
aim of type systems of DO2 is to apply it for simulating of execution
either the constructions of DOML3, or the program that, possibly,
uses the constructions of DOML. Consider the way of interpretation
the constructions of pure DOML or the constructions of DOML that,
possibly, included into the host program, or, visa versa, contain the
program (the functions) of programming system. This way is based
on the defining and using the families of applicative pre-structures of
the kind

({HB}, {εBC})

for arbitrary types B, C of type system of DO, where H is the do-
main of objects of type B, and εBC is the applicator of evaluating the
functions on the argument from HB .

HT (I)–1. Construction of the model. The steps of building the
computational data object model (CDOM) are as follows:

2DO is the abbreviation for Data Objects.
3DOML is the abbreviation for Data Object Manipulation Language.

CHAPTER 23: VARIABLE OBJECTS 279

• introduce the functional space as explicit objects in a repre-
senting category;

• given the objects A B, build the explicit object (A→ B);

• equip it, for using, with the applicator mapping εBC : (B →
C)×B → C that given f : B → C and x : B, returns f(x) : C,
i.e. f, x 7→ f(x);

• in evaluating h(x, y), the mapping operator on two arguments
h : A × B → C, the first of them x is fixed, and h(x, y) is
considered as a function on y;

• for connecting h with its values, a special abstractor function
ΛABC is introduced and typed by

(ΛABCh) : A→ (B → C);

• given the operator h and argument x, the abstractor takes a
form of (ΛABCh)(x) : B → C that allows to use applicator in
evaluating on the second argument.

A significant feature of this CDOM is an ability to use it sep-
arately for concepts, individuals and states. At the same time,
CDOM can be applied to the object on the whole.

HT (I)–2. Abstraction by two variables. In abstracting on two
variables, all the features of the approach are revealed that car-
ried over the case of more variables. To shorten the notation of
the description, the symbols of sorts are omitted:

λ[x, y].t = λzIw∀x∀y(z = [x, y] & t = w).

In turn, w is treated as a relation

w = Id∀z∀τ [d[z, τ]↔ Ψ]

280 CHAPTER 23: VARIABLE OBJECTS

and τ ∈ w′(z). Since the term t depending on z takes the values
from w′(z), them assume that t ∈ w′(z). Corresponding or-
dered pairs [z, t] are put into basis of the definition of the object

λz.t = λ[x, y].t,

that gives the needed description.

HT (I)–3. Functional space. This object serves the aims of repre-
senting of the set of functions from type A into type B that is
written as the description

A→ B = {z : [A,B] | ∀x ∈ A∃y ∈ B.z[x, y]}

or, in more weak form, for sorts A, B and A → B. In the
last case the defining formula has been changed to take into
account the relation of sorts A, B with the types A, B.

HT (I)–4. Applicator. Using two descriptions above, write the de-
scription for an evaluating morphism:

εAB = λ[z, x]Iy.z[x, y],

that, given the function z ∈ A → B and argument x ∈ A
returns the value y ∈ B, i.e.

εAB : [z, x] 7→ z(x),

or, more generally, εAB : [z, x] 7→ y.

23.2.4 Indexed objects

Building of CMDOM4 assumes the choosing and fixing the main
building blocks of extensible programming environment. Every of

4CMDOM is an abbreviation for Computational MetaData Object Model.

CHAPTER 23: VARIABLE OBJECTS 281

this blocks is the dynamic metadata object in the sense that the refer-
encing or evolving the events is captured. The steps below, aimed to
capture dynamics, assume an introducing, by means of the DODL5,
a spectrum of MDO6 that combines the abilities of ACS and type
systems. The most important of these MDO are the indexed concept
and indexed relation.

HT (I)–1. Indexed concept. Evaluation of the expressions, built as
λ-abstractions, is based on the property of extensibility. This
property reveals in adding to the environment and tying up the
individuals, conforming the body of λ-abstraction. Considering
the application (λ.Φ)h, where Φ is the body of λ-abstraction, h
is the individual (individual constant) from a domain, obtain the
following equality:

‖(λ.Φ)h‖i = ‖Φ‖[i, hi]

for the reference i. By this way a tying up the individual h
with the body of λ-abstraction Φ is reduced to building of the
concept, corresponding ‖Φ‖ and checking the membership h ∈
‖Φ‖. Checking up of the membership is done by a selection
from the relational Data Manipulation Language. The check-
ing is performed by the following procedure:

1) the reference i in correspondence with the data base is es-
tablished;

2) the type T of the individual h, selected from the data base is
established;

3) check up if the individual h does conform to the restriction Φ;

4) select all such individuals h′ = hi that generate the extension
of the concept C ′(i) for which the following inclusion holds:

C ′(i) ISAT;
5DODL means Data Object Definition Language.
6MDO means MetaData Objects.

282 CHAPTER 23: VARIABLE OBJECTS

5) all the selected pairs [i, hi] identify the individuals h in the
world i of a set I and are accepted as the extension of the vari-
able concept C(I);

6) the natural inclusion C(I) ⊆ HT (I) for the variable domain
HT (I), defined by

HT (I) = {h | h : I → T}

is preserved.

HT (I)–2. Dynamic of concept. The most effective application of
the families of indexed concepts is the ability to consider their
changes depending on the variations in a domain. Let in a
domains the events evolve along the law f where f : B →
I, i.e. the transition from the world I to the world B is per-
formed. In this case the applying of the property of extensibility
in evaluation of the λ-abstractions has the specific features. For
application (λ.Φ)h we obtain:

‖(λ.Φ)h‖i = ‖Φ‖f [b, (h ◦ f)b]

for the reference i = fb. Thus, the tying up the individual
h with the body of λ-abstraction Φ is not reduced to check-
ing the membership of individual h to the value ‖Φ‖, but to
checking the membership of the image of h under evolving the
events along the law f in the world b for shifted evaluation ‖Φ‖f .
Hence, checking of the membership is performed by the modi-
fied procedure:

1) the new referenceB is established as an alternative to the old
reference under evolving the events along the law f ;

2) the type T of an image of the individual h, selected out of the
image of data base under the transformation f , is established;

3) check if the image of the individual h does conform the re-
striction Φ in the world b;

CHAPTER 23: VARIABLE OBJECTS 283

4) select all such individuals h′ = (h ◦ f) that generate an
extension of the concept C ′f (b); the inclusion C ′f (b) ISA T
holds;

5) all the selected pairs [b, hb] identify the individuals h in the
world b from the set B and are accepted as an extension of the
variable concept Cf (B);

6) the natural inclusion Cf (B) ⊆ HT (B) for the domain
HT (B), defined by

HT (B) = {h | h : B → T},

is preserved.

HT (I)–3. Static of concept. The boundary case of the law of
evolving the events is the identity (unitary) mapping. Then
the notation

f = 1I : I → I

means that the law f of evolving the events does not lead to the
changes in a domain. In evaluation of the λ-abstraction obtain:

‖(λ.Φ)h‖i = ‖Φ‖1I [i, hi].

Thus, the tying up of the individual h with the body of λ-
abstraction of Φ does not need the modified procedure, but is
completely similar to the procedure for indexed concept. A
studying of concept static leads to an important corollary. Since
there are no changes neither in a domain (nor in data base D),
then the references I and D can be seen as identical, assuming
I = D. Then

C1I (I) : h→ h,

i.e. the individual h is transformed to itself and

C1I (I) = C1D(D) = 1D.

On the other hand, obtain C1I (I) = C(I) and CI : CI → CI ,
from where the following rule is derived:

284 CHAPTER 23: VARIABLE OBJECTS

indexed concept is similar to identity mapping.

More detailed, for any conceptsA,B and the mapping f : A→
B the following equalities

A = A ◦A; f = B ◦ f ◦A,

which are derivable directly from the equalities and the rule
above, hold.

HT (I)–4. Functorial characteristic of concept. An analysis of
dynamic and static of the concepts allows to separate the con-
trol action on the concepts, one one hand, the the system of the
concepts, on the other hand. It means, that a control performs
a switching of the system of concepts depending on the law of
evolving the events. The representation of a system of variable
concepts leads to the formulation of the functorial charac-
teristic of the concepts. A significant is the way of taking
into account the law f of evolving the events – C is similar to
contravariant functor:

1) the law f : B → I is assumed as a transition from the world I
to the worldB, i.e. from the knowledge level I to the knowledge
level B etc.;

2) obtain: f = 1I ◦ f ◦ 1B and C1B = C(B), C1I = C(I);

3) for the concept Cf = Cf (B) the following inclusion holds:

C(f) : C(I)→ C(B);
Cf ⊆ C(B),

because the type checking T for the individual h and its im-
age under transformation f preserves a natural inclusion for the
variable domains:

C(I) ⊆ HT (I) = {h | h : I → T};
C(B) ⊆ HT (B) = {h | h : B → T};
Cf = {h ◦ f | h ◦ f : B → T} ⊆ C(B).

CHAPTER 23: VARIABLE OBJECTS 285

HT (I)–5. Indexed relation. In the above an indexing of the one
placed concepts was considered. In this case all the important
features, connected with taking into account the evolving of
events, were already revealed. However, in case of interac-
tion with the data base the definition and maintenance of multi
placed concepts is involved. To simplify the notations consider
the indexing of two placed concept, corresponding to the binary
relation. Its complete characteristic follows from the consider-
ation of application (λλ.Φ)uv for the formula Φ and individuals
u and v. It is obtained:

‖(λλ.Φ)uv‖i = (‖(λλ.Φ)‖i)(‖u‖i)(‖v‖i)
= Λ‖λ.Φ‖i(ui)(vi)
= (‖λ.Φ‖[i, ui])(vi)
= Λ‖Φ‖[i, ui](vi)
= ‖Φ‖[[i, ui], vi]

for the reference i. The other way of reasoning is also possible:

‖(λ.Φ)[u, v]‖i = Λ‖Φ‖i(‖[u, v]‖i)
= Λ‖Φ‖i[ui, vi]
= ‖Φ‖[i, [ui, vi]],

in applying which it is assumed that Φ is a two placed operator
(uncurried). The tying up the individual [ui, vi] with a body
of λ-abstraction Φ takes down to building the concept, cor-
responding ‖Φ‖, and to checking up the membership [ui, vi] ∈
‖Φ‖. In this case the individual is represented by an ordered
pair, which every element is defined over the corresponding one
placed concept:

‖(λ.Ψ1)u‖i = ‖Ψ1‖[i, ui] = U({i});
‖(λ.Ψ2)v‖i = ‖Ψ2‖[i, vi] = V({i}).

Checking the membership of individual wi = [ui, vi] to the
concept φ = ‖Φ‖ is performed by the following procedure:

286 CHAPTER 23: VARIABLE OBJECTS

1) the reference i is established in correspondence with the data
base;

2) the types T and T of the individuals ui and vi, selected from
the data base (and paired) are established;

3) check if the individual wi conforms the restriction Φ;

4) select all such individuals wi that generate an extension of
the concept φ′(i); the following inclusion

φ′(i) ISA (T× T)

holds;

5) all the selected pairs [i, wi] identify the individuals w in the
world i of the set I and are accepted as the extension of the
variable concept φ = φ(I);

6) the natural inclusion φ(I) ⊆ HT×T (I) for the variable do-
main HT×T (I), defined by

HT×T (I) = {w | w : I → (T× T)}

is preserved.

HT (I)–6. Dynamic of relations. A reflection of the changes in the
domain reveals in the associated changes with the data base.
Accepting f : B → I as a law of evolving the events, apply the
property of extensibility in evaluating the λ-abstractions. For
the application (λ.Φ)[u, v] obtain:

‖(λ.Φ)[u, v]‖i = ‖Φ‖f [b, (< u, v > ◦f)b].

This expression can be written in slightly modified form. The
essence of this modifying is the following:

‖(λ.Ψ1)u‖(fb) = ‖Ψ1‖f [b, (u ◦ f)b],
‖(λ.Ψ2)v‖(fb) = ‖Ψ2‖f [b, (v ◦ f)b],

u ◦ f ∈ Uf , v ◦ f ∈ Vf .

CHAPTER 23: VARIABLE OBJECTS 287

Then
φf ⊆ [Uf ,Vf]

and
< u, v > ◦f ∈ φf

for φf ⊆ (B×T)× (B×T). Therefore, tying up the individual
w with the body of λ-abstraction Φ takes down to checking the
membership of the image of w under evolving the events along
the law f in the world b for shifted evaluation ‖Φ‖f . The details
of checking are straightforward and are performed according
the following procedure:

1) as an alternative to the reference i the new reference b for
the law of evolving the events f is established;

2) the type T×T of the image of individual w, selected from
the data base image under the transformation f is estab-
lished;

3) check if the image of individual w does conform the re-
striction Φ in the world b;

4) select all such individuals < u, v > ◦f which generate an
extension of the concept φ′f (b); the inclusion

φ′f (b) ISAT× T

holds;

5) all the selected pairs

[b, (< u, v > ◦f)b]

identify the individuals

< u, v > ◦f

in the world b of the set B, and are accepted as an exten-
sion of the variable concept φf (B) = φf ;

288 CHAPTER 23: VARIABLE OBJECTS

6) the natural inclusions

φf (B) ⊆ Uf (B)×Vf (B) ⊆ HT (B)×HT (B)

for the variable domain HT (B)×HT (B), defined by

HT (B)×HT (B) = {h | h : (B → T)× (B → T)}

are preserved.

23.3 Interpretation of evaluating environment

The evaluation environment, represented by the objects, in practice,
usually is equipped with a control structure – the system of scripts,
– that determines its behavior. The examples of implementations of
such structures are well known. From an intuitive point of view, a
script is the system of instructions that determines the transitions
from one states – the old states of computation, – to other ones
– the new states. This is rather special treating of evaluations, how-
ever enabling some suitabilities. Its implementing needs to involve
the parameterized objects. As a main model of object is taken the
representation of a variable set – the variable concept, – relatively
new in computer science representation. The volume of an intuitive
knowledge on what is the object, is replaced by an idealized entity,
called functor-as-object. As known, the functors allow to operate
with the higher order languages when an object is assumed as the
mapping from objects into objects.

The getting acquainted a notion store and associated methods of
reasoning as above, not saying of the methods of the implementation,
is considered as an ability to work at the “cutting edge” of the studies
in an area of programming.

Bibliography

[I] Russian editions:

[1] Aksenov K.E., Balovnev O.T., Wolfengagen V.E., Voskre-
senskaya O.V., Gannochka A.V., Chuprikov M.Yu. A guide
to practical works “Artificial Intelligence Systems”. – M.:
MEPhI, 1985. – 92 p. (in Russian)

[2] Barendregt H.P. The lambda calculus. Its syntax and se-
mantics. – North-Holland Publishing Company: Amsterdam,
N.Y., Oxford, 1981.
(Russian edition: Moscow: Mir, 1985)

[3] Belnap N.D., Steel T.B. The logic of questions and answers.
– Yale University Press: New Haven, C.T., 1976.
(Russian edition: Moscow: Progress, 1981)

[4] Bulkin M.A., Gabovich Yu.R., Panteleev A.G. Methodical
recommendations to programming and exploitaition of the
interpretor for algorithmic language Lisp of OS ES. – Kiev:
NIIASS, 1981. – 91 p. (in Russian)

[5] Burge W. Recursive programming techniques. – Addison-
Wesley: Reading, MA, 1978.
(Russian edition: Moscow: Mashinostroyeniye, 1983)

289

290 BIBLIOGRAPHY

[6] Curry H.B. Foundations of mathematical logic. – McGraw-
Hill Book Company, Inc.: N.Y., San Francisco, Toronto, Lon-
don, 1963.
(Russian edition: Moscow: Mir, 1969)

[7] Engeler E. Metamathematik der Elementarmathematik. –
Springer-Verlag: N.Y., 1983. – 132 p.
(Russian edition: Moscow: Mir, 1986)

[8] Fourman M.P. Logic of topoi. – In: Handbook of mathe-
matical logic. – ed. Barwise J., North-Holland Publishing
Company: Amsterdam, N.Y., Oxford, 1977.
(Russian edition: Moscow: Nauka, 1983)

[9] Goldblatt R. Topoi: The categorial analysis of logic. –
North-Holland Publishing Company: Amsterdam, New York,
Oxford, 1979.
(Russian edition: Moscow: Mir, 1983)

[10] Henderson P. Functional programming: application and
implementation. – Prentice-Hall: Englewood Cliffs, N.J.,
1980.
(Russian edition: Moscow: Mir, 1983)

[11] Hopcroft J.E., Motwani R., Ullman J.D. Introduction to au-
tomata theory, languages, and computation. – 2nd ed.,
Addison-Wesley Publishing Company: Boston, San Fran-
cisco, N.Y., 2001.
(Russian edition: Moscow: Izdatelsky dom “Williams”, 2002)

[12] Ilyukhin A.A., Ismailova L.Yu., Shargatova Z.I. Expert sys-
tems on the relational basis. – M.: MEPhI, 1990. (in Rus-
sian)

[13] Johnstone P.T. Topos theory. – Academic Press, 1977.
(Russian edition: Moscow: Nauka, 1986)

BIBLIOGRAPHY 291

[14] Kleene S.C. Introduction to metamathematics. – D. Van
Nostrand Company, Inc.: Princeton, N.J., 1952.
(Russian edition: Moscow: IL, 1957)

[15] Kuzichev A.S. Some properties of the Schönfinkel-Curry’s
combinators. – Combinatorniy analiz, vipusk. 1., izdat. MGU,
1971. (in Russian)

[16] Kuzichev A.S. Deductive combinatory construction of the
theory of functionalities. – DAN SSSR, 1973, Vol. 209,
No 3. (in Russian)

[17] Kuzichev A.S. Consistent extensions of pure combinatory
logic. – Vestnik Mosk. Univers., matem., mechan., No 3,
p. 76-81, 1973. (in Russian)

[18] Kuzichev A.S. On the subject and methods of combinatory
logic.– Istoriya i metodologiya estesvennikh nauk, M.: MGU,
vipusk 14, 1973, p. 131-141. (in Russian)

[19] Kuzichev A.S. The system of lambda-conversion with de-
ductive operator of the formal implication. – DAN SSSR,
212, No 6, 1973, p. 1290-1292. (in Russian)

[20] Kuzichev A.S. The deductive operators of combinatory
logic.– Vestnik Mosk. Univers., matem., mechan., No 3,
p. 13-21, 1974. (in Russian)

[21] Kuzichev A.S. On expressive power of the deductive sys-
tems of lambda-conversion and combinatory logic.– Vest-
nik Mosk. Univers., matem., mechan., No 6, p. 19-26, 1974.
(in Russian)

[22] Kuzichev A.S. Principle of combinatory completeness in
mathematical logic. – Istorya i methodologiya estestvennikh
nauk, sbornik MGU, vipusk 16, 1974. – p. 106-127. (in Rus-
sian)

292 BIBLIOGRAPHY

[23] Kuzichev A.S. Combinatory complete systems with the op-
erators Ξ, F , Q, Π, ∃, P , ¬, &, ∨, =. – Vestnik Mosk.
Univers., matem., mechan., No 6, 1976. (in Russian)

[24] Kuzichev A.S. Operation of substitution in the systems
with unrestricted principle of combinatory completeness.
– Vestnik Mosk. Univers., matem., mechan., No 5, 1976. (in
Russian)

[25] Kuzin L.T. Foundations of Cybernetics, Vol. 2. – M.: En-
ergiya, 1979, 15-9. (in Russian)

[26] Kuzin L.T. Foundations of Cybernetics. Vol. 1. Mathemati-
cal foundations of Cybernetics: Primary for the institutes.
– 2nd ed., revised and completed. – M.: Energoatomizdat,
1994. – 576 p. (in Russian)

[27] Maltsev A.I. Algorithms and recursive functions.– M.:
Nauka, 1965. (in Russian)

[28] Markov A.A. Impossibility of some algorithms in the the-
ory of associative systems.– DAN SSSR, 1947, Vol. 55,
No 7; Vol. 58, No 3. (in Russian)

[29] Markov A.A. On logic of the constructive mathematics.–
Vestnik Mosk. Univers., matem., mechan., No 2, 7-29, 1970.
(in Russian)

[30] Markov A.A. On logic of the constructive mathematics.–
M.: Znaniye, 1972. (in Russian)

[31] Mendelson E. Introduction to mathematical logic. –
Princeton: N.J., N.Y., Toronto, London, 1964. – 300 p.
(Russian edition: Moscow: Nauka, 1971)

[32] Panteleev A.G. On interpretor from the Lisp language for
ES EVM. – Programmirovaniye, 1980, No 3, p. 86–87 (in
Russian)

BIBLIOGRAPHY 293

[33] Pratt T.W., Zelkowitz M.V. Programming languages. Design
and implementation. – 4th ed., Prentice Hall PTR: N.J.,
2001.
(Russian edition: St.-Pb.: Piter, 2002)

[34] Schoenfield J.R. Mathematical logic. – Addison-Wesley:
Reading, MA, 1967.
(Russian edition: Moscow: Nauka, 1975)

[35] Sebesta R. Concepts of programming languages. – 4th ed.,
Benjamin Cummings: Redwood City, CA, 1998.
(Russian edition: Moscow: Izdatelsky dom “Williams”, 2001)

[36] Shabunin L.V. On consistency of some calculi of combina-
tory logic.– Vestnik Mosk. Univers., matem., mechan., 1971,
No 6. (in Russian)

[37] Smirnov V.A. (ed.) Semantics of modal and intensiaonal
logics. – Moscow: Progress, 1981. (In Russian)

[38] Smirnov V.A., Karpenko A.S., Sidorenko E.A. (eds.) Modal
and intensional logics and their applications to the prob-
lems of a methodology of science.– M.: Nauka, 1984.–
368 p. (in Russian)

[39] Stogniy A.A., Wolfengagen V.E., Kushnirov V.A., Sarkisyan
V.I., Araksyan V.V., Shitikov A.V. Development of the inte-
grated data bases.– Kiev: Technika, 1987. (in Russian)

[40] Takeuti G. Proof theory. – North-Holland Publishing Com-
pany: Amsterdam, London, 1975.
(Russian edition: Moscow: Mir, 1978)

[41] Wolfengagen V.E. Computational model of the relational
calculus, oriented for knowledge representation . – M.:
preprint MEPhI, 004-84, 1984. (in Russian)

294 BIBLIOGRAPHY

[42] Wolfengagen V.E., Yatsuk V.Ya. Computational model of
relational algebra. – Programmirovaniye, No 5, M.: AN
SSSR, 1985. – p. 64-76. (in Russian)

[43] Wolfengagen V.E., Sagoyan K.A. Methodical recommenda-
tions to practical classes in the course “Discrete mathe-
matics”. The special chapters of discrete mathematics. –
M.: MEPhI, 1987. – 56 p. (in Russian)

[44] Wolfengagen V.E., Aksenov K.E., Ismailova L.Yu., Volshanik
T.V. A guide to laboratory works in course “Discrete math-
metics. Aplicative programming and supporting technolgy
for relational systems”. – M.: MEPhI, 1988 . – 56 p. (in
Russian)

[45] Wolfengagen V.E., Yatsuk V.Ya. Applicative computational
systems and conceptual method of knowledge systems de-
sign. – MO SSSR, 1987. (in Russian)

[46] Wolfengagen V.E., Chepurnova I.V., Gavrilov A.V., Methodi-
cal recommendations to practical classes in course “Dis-
crete mathematics”. Special chapters of discrete mathe-
matics. – M.: MEPhI, 1990. – 104 p. (in Russian)

[47] Wolfengagen V.E., Goltseva L.V. Applicative computations
based on combinators and λ-calculus.– (The leader
of project “Applicative computational systems” Dr.
L.Yu. Ismailova.) – M.: MEPhI, 1992. – 41 p. (in Russian)
The basics of applicative computational systems are covered by
the elementary means that provides the students and postgraduate
students with short and sound guide that can be used for the ‘first
reading’. During several years this guide in various versions was used
in the practical works and laboratory works in the corresponding
partitions of computers science. The topics of using the combinators
and λ-calculus in implementing the applicative computations are

BIBLIOGRAPHY 295

covered. The needed minimal theoretical background is included,
and the main attention is paid to solving the exercises that explicate
the main computational ideas, notions and definitions. To make the
learning easier, the guide is equipped with the interactive program
which can be used to support the introductory practical works.
When using this Teaching Program, it should be taken that the
solving the problems assumes the additional transformations of the
epressions aimed to make the optimizations, eliminate the variables,
and simplify the target executable expression. The applicative
computations are delivered as a set of such methods and means.
For the students and postgraduate students of all the specialities. It
can be used for the initial self studying of the subject.

[48] Wolfengagen V.E. Theory of computations. – M.: MEPhI,
1993. – 96 p. (in Russian)

[49] Wolfengagen V.E. Categorical abstract machine.– M.:
MEPhI, 1993. – 96 p.; – 2nd edition – M.: “Center JurInfoR”,
2002. – 96 p. (in Russian)
The main attention is paid to analyse in depth the evaluation of the
programming language constructions. The topics of compiling the
code, its optimizing and execution are covered using the environ-
ment of the categorical abstract machine. The series of examples of
increasing complexity are used.

[50] Wolfengagen V.E. Programming languages design and a
theory of computations. – M.: MEPhI, 1993. – 189 p. (in
Russian)

[51] Wolfengagen V.E. Programming languages constructions.
Methods of description.– M.: “Center JurInfoR”, 2001. –
276 p. (in Russian)
This book covers the basics concerning the development, implemen-
tation and application of the constructions both of imperative and

296 BIBLIOGRAPHY

functional programming languages. An attention is paid to the de-
notational semantic allowing to reveal completely all the advantages
of the object-oriented approach, that, after all, gives an ability to
construe the resulting computational model of pure functional type.
The detailed solutions for the exercises are included that are carefully
commented to make it easier to learn the implementations of the
constructions of various programming languages.
This book can be used as a guide to the subject. It can be useful for the
students, postgraduate students and the professionals in computer
scince, information technologies and programming.

[52] Wolfengagen V.E. Logic. Synopsis of the lectures: Reason-
ing techniques. – M.: “Center JurInfoR”, 2001. – 137 p. (in
Russian)
This book covers the ways of rewriting the factual text into the
symbolic language allowing the using of classic logical means. The
ways and methods to use and validate the argumentation are covered.
The numerous examples help to study the means of logical reasoning,
inference and proof. The ways of using the comments in an inference
are indicated that can assist to establish the truth or false of the
demonstrated reasons.
For the students and postgraduate students of the humanities. It can
be used for the initial study of the subject and also for self studying.

[53] Yanovskaya S.A. Foundations of mathematics and math-
ematical logic.– Mathematics in the USSR for thirty years.
1917-1947.– M.-L.: Gostechizdat, 1948. (in Russian)

[54] Zakharyaschev M.V., Yanov Yu.I. (eds.) Mathematical logic
in programming.– M.: Mir, 1991. – 408 p. (in Russian)

BIBLIOGRAPHY 297

[II] English editions:

[55] Nested relations and complex objects in databases.– Lec-
ture Notes in Computer Science, 361, 1989.

[56] Amadio R.M., Curien P.-L. Domains and lambda-calculi.–
Cambridge University Press, 1998. – 484 p.
This book describes the mathematical aspects of the semantics
of programming languages. The main goals are to provide formal
tools to assess the meaning of programming constructs in both
a language-independent and a machine-independent way, and to
prove properties about progrms, such as whether they terminate, or
whether their result is a solution of the problem they are supposed to
solve.
The dual aim is pursued: to provide the computer scientists to do
some mathematics and to motivate of interested mathematicians in
unfamiliar application areas from computer science.

[57] Appel A. Compiling with continuations.– Cambridge Uni-
versity Press, 1992.

[58] Avron A., Honsel F., Mason I., and Pollak R. Using
typed lambda-calculus to implement formal systems on a
machine.– Journal of Automated Reasoning, 1995.

[59] Backus J.W. Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs.– Comm. ACM, 1978, v.21, No 8, p. 614-641.

[60] Backus J.W. The algebra of functional programs: func-
tional level reasoning, linear equations and extended
definitions.– Int. Col. on formalization of programming con-
cepts, LNCS, v. 107, 1981, pp. 1-43.

[61] Backus J.W., Williams J.H., Wimmers E.L. FL language
manual (preliminary version).– IBM research report No RJ
5339(54809), 1987.

298 BIBLIOGRAPHY

[62] Banerji R.B. (ed.) Formal techniques in artificial intelli-
gence: a sourcebook.– Studies in computer science and ar-
tificial intelligence, 6, North-Holland, 1990.

[63] Beery G., Levy J-J. Minimal and optimal computations of
recursive programs.– J. Assoc. Comp. Machinery, Vol.26, No
1, 1979.

[64] Belnap N.D. (Jr.) A useful four-valued logic. Modern uses of
multiple-valued logic.– Epstein G.,Dunn J.M. (eds.) Proceed-
ings of the 1975 International Symposium of multiple-valued
logic, Reidel, 1976.

[65] Belnap N.D. (Jr.) How a computer should think.– Con-
temporary aspects of philosophy, Proceedings of the Oxford
International Symposium, 1976.

[66] Bird R.S. An introduction to the theory of lists.– Logic
programming and calculi of descrete design (ed. Broy M.),
Springer-Verlag, 1986, pp. 5-42.

[67] Böhm C. (ed.) Lambda calculus and computer science
theory.– Proceedings of the Symposium held in Rome. March
25-29, LNCS, vol.37, Berlin: Springer 1975.

[68] Bonsanque M. Topological dualities in semantics.– PhD
thesis, Vrije Universiteit Amsterdam, 1996.

[69] Bunder M.V.W. Set Theory based on Combinatory Logic.–
Doctoral thesis, University of Amsterdam, 1969.

[70] Bunder M.V.W. Propositional and predicate calculuses
based on combinatory logic.– Notre Dame Journal of Formal
Logic, Vol. XV, 1974, pp. 25-34.

[71] Bunder M.V.W. The naturalness of illative combinatory
logic as a basis for mathematics.– To H.B.Curry: Essays

BIBLIOGRAPHY 299

on combinatory logic, lambda calculus and formalism.– Seldin
J.P., Hindley J.R. (eds.), Academic Press, 1980, pp. 55-64.

[72] Bucciarelli A. Logical reconstruction of bi-domains.– In:
Proc. Typed Lambda Calculi and Applications, Springer Lec-
ture Notes in Comp. Sci., 1210, 1997.

[73] Church A. The calculi of lambda-conversion.– Princeton.
1941, ed. 2, 1951.

[74] Coppo M., Dezani M., Longo G. Applicative information
systems.– LNCS, 159, 1983, pp. 35-64.

[75] Cousineau G., Curien P.-L., Mauny M. The categorical ab-
stract machine.– LNCS, 201, Functional programming lan-
guages computer architecture.– 1985, pp. 50-64.

[76] Curien P.-L. Categorical combinatory logic.– LNCS, 194,
1985, pp. 139-151.

[77] Curien P.-L. Typed categorical combinatory logic.– LNCS,
194, 1985, pp. 130-139.

[78] Curry H.B., Feys R. Combinatory logic.– Vol. 1. Amsterdam:
North-Holland, 1958.

[79] Curry H.B., Hindley J.R., Seldin J.P. Combinatory logic.–
Vol. II. Amsterdam, 1972.

[80] Curry H.B. Some philosophical aspects of combinatory
logic.– Barwise J., Keisler H.J., Kunen K. (eds.) The Kleene
Symposium.– North-Holland Publ. Co, 1980, p. 85-101.

[81] Danforth S., Tomlison C. Type theories and object oriented
programming.– ACM Computing Surveys, 1988, v.20, No 1,
pp. 29-72.

300 BIBLIOGRAPHY

[82] Darlington J., Henderson P., Turner D.A. (eds.) Functional
programming and its applications.– Cambridge Univ.
Press, Cambridge, 1982.

[83] de Bruijn N.G. Lambda-calculus notations with nameless
dummies: a tool for automatic formula manipulation.–
Indag. Math. 1972, N 34, pp. 381-392.

[84] Eisenbach S. (ed.) Functional programming: languages,
tools and architectures.– Chichester: Horwood, 1987.

[85] Fasel J.H., Keller R.M. (eds.) Graph reduction.– LNCS, 279,
1986.

[86] Fenstad J.E. et al. Situations, language and logic. – Dor-
drecht: D. Reidel Publ. Comp., 1987.

[87] Fitting M. First-order logic and automated theorem
proving.– Springer-Verlag, 1990.

[88] Frandsen G.S., Sturtivant C. What is an efficient implemen-
tation of the lambda-calculus?– LNCS, 523, 1991, pp. 289-
312.

[89] Friedman H. Equality between functionals.– Proceedings
of the Symposium on Logic. Boston, 1972–1973.– Lecture
Notes in Mathematics, 453, 1975, pp. 22-37.

[90] Gardenfors P. Induction, Conceptual spaces and AI.– Pro-
ceedings of the workshop on inductive reasoning, Riso Na-
tional Lab, Rpskilde, 1987.

[91] Henson M.S. Elements of functional languages.– Exford:
Blackwell, 1987.

[92] Hindley J.R. The principial type-scheme of an object in
combinatory logic.– Trans. Amer. Math. Soc., 1969, vol. 146.

BIBLIOGRAPHY 301

[93] Hindley J., Lercher H., Seldin J. Introduction to combinatory
logic.– Cambridge University Press, 1972.
A general introduction which goes fairly deep; primarily mathemati-
cal.

[94] Howard W. The folmulas-as-type notion of construction.–
Seldin J.P., Hindley J.R. (eds.), To H.B.Curry: Essays on com-
binatory logic, lambda-calculus and formalism.– Amsterdam:
Academic Press, 1980.

[95] Hughes R.J.M. Super combinators: a new implementation
method for applicative languages.– Proceedings of the 1982
ACM symposium on LISP and functional programming, pp. 1-
10.

[96] Hughes R.J.M. The design and implementation of prog-
ramming languages.– PhD Thesis, University of Oxford,
1984.

[97] Hunt L.S. A Hope to FLIC translator with strictness
analysis.– MSc dissertation, Department of Computing, Im-
perial College, University of London, 1986.

[98] Kelly P.H.J. Functional languages for loosely-coupled mul-
tiprocessors.– PhD Thesis, Imperial College, University of
London, 1987.

[99] Lambek J., Scott P.J. Introduction to higher order catego-
rical logic. – Cambridge Studies in Advanced Mathematics 7,
Cambridge University Press, 1986, 1988, 1989, 1994. – 293 p.

[100] Landin P. The next 700 programming languages.– Commu-
nications of the ACM, 3, 1966.

[101] McCarthy J. A basis for a mathematical theory of compu-
tation.– Computer programming and formal systems (eds.:

302 BIBLIOGRAPHY

Braffort and Hirshberg), Amsterdam: North-Holland, 1963,
pp. 33-69.

[102] Michaelson G. An introduction to functional programming
through lambda-calculus. – Addison Wesley Publ.Co, 1989,
320 p.

[103] Milner R., Parrow J., Walker D. A calculus of mobile process.
– Parts 1-2. – Information and Computation, 100(1), 1992,
pp. 1-77

[104] Mycroft A. Abstract interpretation and optimizing trans-
formations for applicative programmes.– PhD Thesis, De-
partment of Computer Science, University of Edinburgh, 1981.

[105] Peyton Jones S.L. The implementation of functional prog-
ramming languages.– Prentice Hall Int., 1987.

[106] Pitts A. Relational properties of domains. – Information and
Computation, 127, 1996, pp. 66-90.

[107] Rosser J.B. A mathematical logic without variables.– Ann.
of Math., vol. 36, No 2, 1935. pp. 127-150.

[108] Schönfinkel M. Uber die Baustein der mathematischen
Logik.– Math. Annalen, vol. 92, 1924, pp. 305-316.

[109] Schroeder-Heister P. Extentions of logic programming.–
LNAI, 475, 1991.

[110] Scott D.S. Advice on modal logic.– Philosophical problems
in logic. Some recent developments.– Lambert K. (ed.), Dor-
drecht; Holland: Reidel, 1970.

[111] Scott D.S. Outline of a mathematical theory of computa-
tion.– Proceedings of the 4-th Annual Princeton conference
on information sciences and systems, 1970.

BIBLIOGRAPHY 303

[112] Scott D.S. The lattice of flow diagrams.– Lecture Notes in
Mathematics, 188, Symposium on Semantics of Algorithmic
Languages.– Berlin, Heidelberg, New York: Springer-Verlag,
1971, pp. 311-372.

[113] Scott D.S. Some phylosophycal issues concerning theories
of combinators. – Lambda Calculus and Computer Science
Theory. – Böhm C. (ed.), Proceedings of the Symposium held
in Rome, March 25-26, 1975, Lecture Notes in Computer
Science, Vol. 37, Springer: Berlin, 1975. – pp. 346-370.

[114] Scott D.S. Identity and existence in intuitionistic logic.–
In: Applications of Sheaves. Berlin: Springer, 1979, pp. 660-
696.

[115] Scott D.S. Lambda calculus: some models, some philoso-
phy.– The Kleene Symposium. Barwise, J., et al.(eds.), Stud-
ies in Logic 101, North-Holland, 1980, pp. 381-421.

[116] Scott D.S. Relating theories of the lambda calculus.–
Hindley J., Seldin J. (eds.) To H.B.Curry: Essays on combi-
natory logic, lambda calculus and formalism.– N.Y.& L.: Aca-
demic Press, 1980, pp. 403-450.

[117] Scott D.S. Lectures on a mathematical theory of
computation.– Oxford University Computing Laboratory
Technical Monograph PRG-19, 1981. – 148 p.

[118] Scott D.S. Domains for denotational semantics.– LNCS,
140, 1982, pp. 577-613.

[119] Stoy J.E. Denotational semantics: The Scott-Strachey ap-
proach to programming language theory.– M.I.T. Press,
Cambridge, Mass., 1977.– xxx+414 p.

304 BIBLIOGRAPHY

[120] Stoye W.R. The implementation of functional languages
using custom hardware.– PhD Thesis, University of Cam-
bridge, 1985.

[121] Szabo M.E. Algebra of proofs.– Studies in Logic foundations
of mathematics, v. 88. North-Holland Publ. Co, 1978.– 297 p.

[122] Talcott C. Rum: An intensional theory of function and
control abstractions.– Foundations of logic and functional
programming, LNCS, 306, 1986, pp. 3-44.

[123] Tello E.R. Object-Oriented Programming for Windows /
Covers Windows 3.x.– Wiley and Sons, Inc., 1991.

[124] Turner D.A. A New Implementation Technique for Applica-
tive Languages.– Software Practice and Experience.– No 9,
1979, pp. 31-49.

[125] Turner D.A. Aspects of the implementation of program-
ming languages.– PhD Thesis, University of Oxford, 1981.

[126] Turner R. A theory of properties.– J. Symbolic logic, v. 52,
1987, pp. 455-472.

[127] Wodsworth C.P. Semantics and pragmatics of the lambda
calculus.– PhD Thesis, University of Oxford, 1981.

[128] Wolfengagen V.E. Frame theory and computations.– Com-
puters and artificial intelligence. V.3, No 1, 1984, pp. 1-31.

[129] Wolfengagen V.E. Building the access pointers to a compu-
tational environment. – In: electronic Workshops in Com-
puting, Berlin Heidelberg New York: Springer-Verlag, 1998.
pp. 1-13
http://ewic.springer.co.uk/adbis97/

 http://ewic.springer.co.uk/adbis97/

BIBLIOGRAPHY 305

[130] Wolfengagen V.E. Event driven objects. – In: Proceedings of
the 1st International Workshop on Computer Science and In-
formation Technologies, Moscow, Russia, 1999, Vol. 1. pp. 88-
96

[131] Wolfengagen V.E. Functional notation for indexed con-
cepts. – In: Proceedings of The 9th International Workshop on
Functional and Logic Programming WFLP’2000, Benicassim,
Spain, September 28-30, 2000
http://www.dsic.upv.es/∼wflp2000/

[132] Zhang The largest cartesian closed category of stable do-
mains. – Theoretical Computer Science, 166, 1995, pp. 203-
219.

[133] http://www.rbjones.com
This Web-resource FACTASIA is aimed “to develop a vision for our
future and to provide recourses for building the vision and the future”,
and also “to contribute to the values which shape our future and to the
technology which helps us build it”. The partition “Logic” includes
combinatory logic and λ-calculus, bibliography.
See http://www.rbjones.com/rbjpub/logic/cl/

[134] http://ling.ucsd.edu/∼barker/Lambda/ski.html
This is an easy on-line introduction in combinatory logic.

[135] http://www.cwi.nl/∼tromp/cl/cl.html
The guide, bibliography and Java-applet are represented which allow
to interpret the objects – expressions of an applicative language, –
that are to be build by the rules of combinatory logic.

[136] http://www.brics.dk
BRICS – Basic Research in Computer Science.
This is a Research Center and International Postgraduate School. In
the chapter “BRICS Publications” the “Lecture Series” is presented

 http://www.dsic.upv.es/~wflp2000/
http://www.rbjones.com
http://www.rbjones.com/rbjpub/logic/cl/
http://ling.ucsd.edu/~barker/Lambda/ski.html
http://www.cwi.nl/~tromp/cl/cl.html
http://www.brics.dk

306 BIBLIOGRAPHY

that covers the courses in 9 main areas: discrete mathmatics, se-
mantic of evaluations, logic in computer science, computation
complexity, constructing and analysis of algorithms, program-
ming languages, verification, distributed computations, criptol-
ogy and data security.

[137] http://www.afm.sbu.ac.uk
Formal Methods.
This document contains the references to available Web-resourses
on formal methods, that are useful for mathematical description and
analysis of the properties of computer systems. The attention is paid
to such formal methods that are useful to decrease the number of
errors in the systems, especially at the early stages of development.
These methods are complementary to such a method of error detec-
tion as testing.

[138] http://liinwww.ira.uka.de/bibliography/
The Collection of Computer Science Bibliographies.
This collection is accumulated from the different sources and covers
many aspects of computer science. The bibliography is renewing
monthly, thus containing the fresh versions. More than 1.2 mln. ref-
erences to the journal papers, conference proceedings and technical
reports are partitioned in approximately 1400 bibliographies. More
than 150000 references contain URLs to electronic copies of the
papers available on-line.

[139] http://www.ncstrl.org
NCSTRL – Networked Computer Science Technical Reference Li-
brary.
This library is created in a framework of the Open Archives Initiative
(http://www.openarchives.org).

[140] http://xxx.lanl.gov/archive/cs/intro.html
CoRR – The Computing Research Repository.
Contains the papers from 1993 in the computer science area, that are

http://www.afm.sbu.ac.uk
http://liinwww.ira.uka.de/bibliography/
http://www.ncstrl.org
http://www.openarchives.org
http://xxx.lanl.gov/archive/cs/intro.html

BIBLIOGRAPHY 307

classified in two ways: by subject and using the ACM Classification
Scheme in computing of 1998. The ACM Classification Scheme is
stable and covers all the partitions of computer science. The subjects
are not pairwise distinct and do not cover all the topics. Nevertheless
they reflect in computer science the areas of an active research.

[141] http://web.cl.cam.ac.uk/DeptInfo/CST/node13.html
Foundations of Computer Science.
The lecture notes of University of Cambridge aimed to cover the
basics in programming.

[142] http://web.comlab.ox.ac.uk/oucl/courses/
topics01-02/lc
Lambda Calculus.
The lecture notes of Oxford University that cover the formal theory,
rewriting systems, combinatory logic, Turing’s completeness, and
type systems. This is a short introduction to many branches of
computer science, revealing the connections with lambda-calculus.

http://web.cl.cam.ac.uk/DeptInfo/CST/node13.html
http://web.comlab.ox.ac.uk/oucl/courses/topics01-02/lc
http://web.comlab.ox.ac.uk/oucl/courses/topics01-02/lc

308 BIBLIOGRAPHY

Index

Curry, 147
unCurry, 148
‘+1’

σ = λxyz.xy(yz), 89
σ̂ ≡ [xyz](y(xyz)), 82

Axiom
(FI), 96
(FK), 96
(FS), 96

Basis
I, B, C, S, 120
I, K, S, 114

Cartesian product, 150
Category
C(L), 150
cartesian closed, 161

Characteristic
combinatory, 46

Code
categorical, 245
optimized, 245

Combinator
B, 37, 51
B2, 37, 56
B3, 37, 57
C, 37, 53

C [2], 37, 58
C [3], 37, 59
C[2], 37, 58
C[3], 37, 60
F , 38
I = λx.x, 157
I, 35
K = λxy.x, 157
P , 38
W , 37, 54
Y , 37, 61, 68–71, 200
Y0, 38, 70, 71
Y1, 38, 70, 71
&, 38
Φ, 37, 61
Ψ, 37, 55
Ξ, 38
∃, 38
¬, 38
∨, 38
addition A, 85
cancellator, K, 50
compositor, B, 50
connector, S, 50
cut subtraction L, 84
duplicator, W , 50
identity, I, 50
minimum min, 84

309

310 INDEX

multiplication M, 86
pairing D, 83
permutator, C, 50
predecessor π, 83
successor σ̂, 82
symmetric difference R, 85

Completeness
combinatory, 75

Composition
f ◦ g, 150

Concept, 271
individual, 271
of predicate, 155

Constructor
Append, 164
Car, 164
Cdr, 164
List, 164
Nil, 164
Null, 164
else, 128
fi, 211
hd, 201
if , 128, 201
if-FALSE, 214
if-TRUE, 214
in, 221
let, 221
then, 128
tl, 201
where, 221

Couple
< f, g >, 254
< x, y >, 140

Currying
Curry, 147

de Bruijn’s encoding

0, 226
1, 226

Description
I, 76

Domain
HT (I), 275

Equality
(ac), 229
(ass), 229
(dpair), 229
(fst), 229
(quote), 229
(snd), 229
< Id, g >=< g >, 246
< M,N > w = (Mw,Nw),

235
< f, g >= λt.[f(t), g(t)], 140
[x, y] = λr.rxy, 140
λxy.xy = λx.x, 77
a ◦ b = λx.a(bx), 149
id a = a, 150

Function
CurryABC , 145
ΛABC , 140
ΛABC h, 140
⊕, 222
ε◦ < k ◦ p, q >: A × B → C,

140
εBC , 140
el, 201, 211
fac, 202, 214, 219
h : A×B → C, 145
plus, 221
unCurry, 148
predicate, 155

Individual, 271

INDEX 311

Instruction
car, 238
cdr, 238
cons, 238
cur, 238
push, 238
quote, 238
skip, 246
swap, 238

Karoubi’s shell
L, 149

Language
Lisp, 164

Number
combinatory Z0, 82

Numeral
n̄ = (SB)n(KI), 87
n̄ = λxy.(xn)y, 87
0, 88
1, 88

Object
Append, 43
Car, 43
Cdr, 43, 89
Fst, 240, 248
List, 43
Nil, 43, 90
Null, 43, 89
Snd, 240, 248
Y , 129
Λ, 41, 230, 240
S, 240
S, 229
ε, 41, 230, 240

εBC : (B → C)×B → C, 151
append, 41, 128, 135
car, 127, 134, 135
cdr, 128, 134, 135
concat, 41, 128, 135
false, 134
h : (A × B) → C, ΛABCh :

A→ (B → C), 151
identity, 135
length, 41, 89, 128, 135
list, 134
list1, 39, 133
map, 41, 128, 135
null, 129, 134
postfix, 135
product, 41, 128, 135
reverse, 135
sum, 41, 128, 135
sumsquares, 135
times, 127, 202
true, 134
arithmetical
Z0, 82
A, 85
L, 84
M, 86
R, 85
min, 84
π, 83
σ̂, 82

modes of combining, 18

Pair
[f, g], 254
[x, y] = λr.rxy, 157
[x, y] , 140

Pairing
[x, y] = λr.rxy, 145

312 INDEX

Parameter
actual, 48
formal, 48
substitutional, 48

Postulate
alpha, α, 35
eta, η, 77
mu, µ, 35
nu, ν, 35
sigma, σ, 35
xi, ξ, 35

Predicate
variable, 156

Principle
(Beta), 245
[⊕], 248
of comprehension, 155, 275

Projection
p : A × B → A, 140
q : A × B → B, 140

Recursion
stack, 65

Reference, 271
Rule

(F), 96, 97
(λ), 97
characteristic, 46

Semantic
denotational, 250

State, 271
Supercombinator, 249

alpha, 202, 213
beta, 202, 213
gamma, 202, 213

Term

λx.P , 40
λx.PQ, 40

Terms
λV.E, 200

Theory
metatheory, 11
subtheory, 11

Type
#(B), 99
#(B2), 104
#(B3), 105
#(C), 111
#(C [2]), 105
#(C [3]), 106
#(C[2]), 107
#(C[3]), 108
#(D), 111
#(SB), 100
#(W), 103
#(X), 95
#(Y), 109
#(Zn), 102
#(Z0), 101
#(Z1), 101
#(Φ), 109

Glossary

Algebra
Often algebra means a system, which does not use the bound
variable at all, i.e. all the variables in use are free.

Algorithm (informally)
Algorithm is a deterministic procedure that can be applied to
any element of some class of symbolic inputs and that for every
such input results, after all, in corresponding symbolic output.

The essential features of the algorithm:

*1) algorithm is given by a set of instructions of finite size;

*2) there is a computing device that is able to proceed with
instructions and perform the computations;

*3) there is an ability to choose, store and repeat the steps of
computations;

*4) let P be a set instructions in accordance with *1), and
L be a computing device of *2). Then L interacts with P
so, that for any given input the computation is performed
discretely by steps, without analog devices and methods;

*5) L interacts with P so that the computations move forward
in a deterministic way, without access to stochastic meth-
ods or devices, e.g. dice.

313

314 GLOSSARY

Alphabet
Alphabet is a set of objects, called symbols or letters, which
has a property of unlimited reproducing (in written form).

Applicative computational systems
Usually, the applicative computational system, or ACS, in-
cludes the systems of object calculi based on combinatory logic
and lambda-calculus. The only that is essentially developing
in these systems, is a representation of an object. Combinatory
logic contains the only metaoperator – application, or, in other
terms, action of one object on another. The lambda-calculus
contains two metaoperators – application and functional ab-
straction that allows to bind one variable in the one object.

The objects, generated in these systems, have a behavior of the
functional entities with the following features:

the number of argument places, or arity of an object is not fixed
in advance, but reveals step by step, in interactions with
other objects;

in building the compound object one of the generic objects –
the function, – is applied to the other one – to argument,
– while in other contexts they can change their roles,
i.e. the function and arguments are considered on equal
rights;

the self-applicability of functions is allowed, i.e. an object can
be applied to itself.

Axiomatic set theory
The characteristics of such a theory are the following (see, e.g.,
[6]): (1) propositional functions are considered extensionally
(the functions having the same truth values on the same ar-
guments are identical); (2) propositional functions more that of
one argument are reduced to the propositional functions of one
argument, i.e. to classes; (3) there is the class which elements

GLOSSARY 315

are called the sets; a class can be the element of other class if
and only if it is a set; (4) the sets are characterized genetically,
according to their building, so that too big classes, e.g. class of
all the sets, could not be the sets.

Calculus
The calculus is a system with bound variables. In particular,
λ-calculus uses bound variables, and the only operator binding
a variable, i.e. transforming a variable into formal parameter, is
the operator of functional abstraction λ.

Category
A category E contains the objects X , Y , . . . and arrows f ,
g, Any arrow f is attached to the object X , called the
domain and the object Y , called codomain. This is written as
f : X → Y . In addition the restrictions on using a compo-
sition are imposed – taking into account the unitary (identity)
map. The arrows are viewed as the representations of map-
pings. Moreover, if g is an arbitrary arrow g : Y → Z with the
domain Y that is the same as the codomain of f , then there is
an arrow g ◦ f : X → Z, called a composition of g with f . For
any object Y there is an arrow 1 = 1Y : Y → Y , called the
identity arrow for Y . The axioms of identity and associativity
are assumed to be valid for all the arrows h : Z →W :
1Y ◦ f = f, g ◦ 1Y = g, h ◦ (g ◦ f) = (h ◦ g) ◦ f : X →W .

Class
A notion of class is assumed to be intuitively clear. The classes
of objects are usually considered as some objects. The proper
classes (e.g., a class of numbers, houses, humans etc.) – are
such the classes that are not the members of themselves (e.g.,
a class of all the notions).

Class (— conceptual)
In a broad sense of the word this is a set of admissible elements

316 GLOSSARY

of this class.

Class (— inductive)
The inductive class is a conceptual class generated from the
definite generic elements by the selected modes of combining.
More rigorously, the class K is inductive, if:

(1) class K includes the basis;

(2) class K is closed relatively the modes of combining;

(3) class K is a subclass of any class conforming the condi-
tions (1) and (2).

The notion of inductive class is used in two cases:

(1) the elements are the objects, and modes of combining are
the operations;

(2) the elements are the propositions, and the combinations
are the connectives.

Combinator
The combinator is an object that relatively an evaluation reveals
the property of being a constant. From a point of view of the λ-
calculus the combinator is a closed term.

Combinatory logic
In a narrow sense this is a branch of mathematical logic that
studied the combinators and their properties. In the combina-
tory logic the functional abstraction can be expressed in terms
of usual operations, i.e. without using the formal variables
(parameters).

Construction
The process of deriving the object X belonging to the inductive
classK (see Class inductive) by the iterative use of the com-
bining modes is considered as the constructionX relativelyK.

GLOSSARY 317

Definition
The definition traditionally is regarded as an agreement con-
cerning the usage of a language. Then a new symbol or com-
bination of symbols, called definable, is introduced with the
permission to substitute it in place of some other combination of
symbols, called the defining one which value is already known
from the data and previously introduced definitions.

Definition (— of function)
The functions are introduced by the explicit definitions. Thus,
starting with a variable x that denotes arbitrary object of type
A, the expression b[x] denoting the object of type B(x) is con-
structed. Next, the function f of type (∀x ∈ A)B(x) with the

scheme f(x)
def
= b[x], where brackets indicate an occurrence

of the variable x into the expression b[x], is defined. If B(x) for
any object x of type A defines one and the same type B, then in
place of ‘(∀x ∈ A)B(x)’ the abbreviation A → B is used. The
last notation is accepted as the type of functions from A to B.

Definition (— recursive)
The recursive definition of a function is such a definition in that
the values of function for given arguments are directly deter-
mined by the values of the same function for “simpler” argu-
ments or by the values of “simpler” functions. The notion of
‘simpler’ is augmented by a choice of formalization – the sim-
plest, as a rule, are all the functions-constants. Such a method
of formalization is suitable, because the recursive definitions
can be considered as an algorithm (see Algorithm).

Definitional equality

The binary relation of a definitional equality is denoted by ‘
def
= ’.

Its left part is definable, and its right part is defining. This is
an equality relation (reflective, symmetric, and transitive).

318 GLOSSARY

Description
In building the logical means, among the terms are often used
the descriptions – the constructions ‘such . . . , that . . . ’. The
description corresponds to the term IxΦ that is canonically read
as ‘such and the only x, that Φ (for which Φ is true)’.

Evaluation
By the evaluation means such a mapping, when intensional
objects are corresponded to the formal objects, and one and the
same intensional object can be mapped in one or more different
formal objects.

Function
See Definition of function.

Function (— of higher order)
The function is called a ‘higher order’ function, if its arguments
can in turn be the functions or it results in a function.

Function (—, computable by an algorithm)
This is the mapping determined by a procedure, or by algo-
rithm.

Function (— primitive recursive)
The class of primitive recursive functions is the least class C of
the total functions such that:

i) all the constant functions λx1 . . . xk.m are in C, 1 ≤
k, 0 ≤ m;

ii) the successor function λx.x+ 1 is in C;

iii) all the choice functions λx1 . . . xk.xi are in C, 1 ≤ i ≤ k;

iv) if f is a function of k variables of C and g1, g2, . . . , gk are
the functions of m variables of C, then the function

λx1 . . . xm.f(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

GLOSSARY 319

is in C, 1 ≤ k,m;
v) if h is a function of k+1 variables of C, and g is a function of

k− 1 variables of C, then the only function f of k variables
that conforms the conditions

f(0, x2, . . . , xk) = g(x2, . . . , xk),
f(y + 1, x2, . . . , xk) = h(y, f(y, x2, . . . , xk), x2, . . . , xk),

is in C, 1 ≤ k.

Note that the ‘function of zero variables of C’ means a fixed
natural number.

Functor (— grammatical)
The functor is regarded as the means to join the phrases to
generate other phrases.

Infix
Infixes are the binary functors (“connectives”, operators) that
are written between the arguments.

Interpretation (— of a theory)
By the interpretation of a theory relatively intensional domain
(problem domain) we mean many-to-one mapping between
the elementary propositions of a theory and definite intensional
propositions regarding this intensional domain.

Interpretation (— of a term)
An evaluation, or interpretation of the termM in the structure
M is a mapping:

‖ · ‖· : terms× references→ elements ofM

(see also Evaluation).

Interpretation (— adequate)
An adequate, relatively complete interpretation maps every in-
tensional proposition (interpretant of the intensional domain)
into the theorem of a theory.

320 GLOSSARY

λ-term (lambda-term)
λ-term, or λ-expression is an object derived by induction on
complexity with possible using of the operators of application
and abstraction.

Language
The language in a broad sense of the word is determined by the
introducing of agreements: (1) the alphabet is fixed; (2) the
rules of constructing the certain combinations of the letters of
alphabet are called the expressions, or words.

Language (— of researcher, or U-language)
U-language is characterized by the following properties:

(1) singularity for every particular context;

(2) presence of the means to formalize a terminology;

(3) variability in a sense that it is a process relatively joining
the new symbols or terms, and the usage of old terms is
not necessary unchangeable;

(4) U-language by need is inexact, but using it any reasonable
degree of precision can be reached.

Logic
“Logic is an analysis and criticism of thought” (see Johnson
W.E. Logic, part I, London, 1921; part II, London, 1922; part
III, London, 1924.). When in studying logic the mathematical
methods are used then the mathematical systems, that are by
the definite ways related to the logic, are constructed. These
systems are the subject of self standing studies and are con-
sidered as a branch of mathematics. These systems constitute
the mathematical logic. The mathematical logic deals with
a task of explaining the nature of mathematical rigor because
the mathematics is a deductive discipline, and the notion of a

GLOSSARY 321

rigorous proof is the central notion of all its partitions. More-
over, mathematical logic includes the studies of foundations of
mathematics.

Logic (— mathematical)
The mathematical logic describes a new direction in mathe-
matics (see Mathematics modern), paying attention to the
language in use, the modes of defining the abstract objects, and
the laws of logic that are used in reasoning about these objects.
Such a study have been attempted in logic to understand the
nature of mathematical experience, enrich the mathematic with
the most important results, and also to find out the applications
to other branches of mathematics.

Logic (— modern mathematical)
The modern mathematical logic follows from the works of Leib-
nitz on the universal calculus that can include all the brainwork
and, in particular, all the mathematics.

Mathematics (— modern)
The modern mathematics can be described as a science of the
abstract objects such as the real numbers, functions, algebraic
systems etc.

Name
The name calls some actual or imaginable object.

Numeral
Combinatory logic or λ-calculus allows to establish such com-
binators or, respectively, terms that are similar to numbers.
These representations of numbers are called the numerals.
Numerals as the combinators conform to all the laws of com-
binatory logic. Moreover, the combinators that represent the
arithmetic operations, e.g., addition of numbers, can be con-
structed.

322 GLOSSARY

Ob-system
The formal objects of ob-systems constitute an inductive class.
The elements of this class are called the obs, or objects. The
generic objects of inductive class are the atoms, and the modes
of combining are the operations. The ob-systems are used to
find out the significant, invariant assemblies of the objects.

Object
Object is a mathematical entity that is used in a theory. The
object is a mathematical representation of the physical object
of a problem domain (“outer world”).

Object (— arithmetical)
Arithmetical objects are the combinatory representations of the
numbers – they are numerals and also the corresponding com-
binatory representations of the operations over numbers (see
Numeral).

Objects (system of —)
See System of objects.

Object-oriented programming
The object-oriented programming (OOP) is such a way of pro-
gramming that enables a modularity of programs due to the
partitioning a memory into the extents containing the data and
procedures. The extents can be used as the samples which by
request can be copied.

Phrase (— grammatical)
The phrases are the names, sentences and functors.

Possible worlds
Possible worlds are considered as various set of individuals
with the additional structure or without it.

Postulates
The inference rules and axioms are called by a term ‘postulates’.

GLOSSARY 323

Prefix
The prefix is a functor (operator, “connective”) that is written
before the arguments.

Process (— effective)
Assume that there are definite transformations that can be ac-
tually performed over the certain elements. Assume that there
also is a prescription defining the sequence of transformations
that should be applied to some element one after other. It is
said that the prescription defines an effective process to reach
the certain aim relatively the element, if, when given this ele-
ments, the prescription singularly determines such a sequence
of transformations, that the aim is reached in a finite number of
steps.

Product
The product is a set of tuples (n-tuples). Depending on the
number of elements in a tuple, the product is attached with the
arity.

Projection
The projection is a subset of corresponding cartesian product.

Property
The property is a propositional function defined over a(n) (arbi-
trary) type A.

Proposition
A proposition is determined by such a way relatively which its
proof can be considered.

Relational system
This is the system with a single basic predicate that is the binary
relation.

324 GLOSSARY

Representation
The representation (of a system) is any way of considering the
particular objects (of a domain) as the formal objects. The in-
tensional (concrete) objects preserve a structure of the formal
objects.

Sentence
The sentence expresses an assertion.

Set (— countable)
Any set which elements can be enumerated, i.e. arranged as a
general list where some element is placed in the first position,
some element is placed in the second position etc., so that any
elements of this set early or late occurs in this list, is called
countable.

Shell (Karoubi’s —)
Karoubi’s shell is a particular case of a category.

Suffix
Suffix is a functor that is written after the arguments.

System (— of objects)
In a system of objects the formal objects constitute a homo-
geneous inductive class (see Class inductive). The elements
of this inductive class are regarded as the objects, its generic
objects are atomic objects, and the modes of combining are
the primitive generic operations.

Thesis (Church’s —)
It is impossible to prove the hypothesis that some standard for-
malization gives the satisfactory analogs of a non-formal no-
tion of algorithm (see Algorithm) and algorithmic function
(see Function, computable by an algorithm). Many of the

GLOSSARY 325

mathematicians accept the hypothesis of that the standard for-
malizations give a “reasonable rebuilding” of unavoidable inex-
act non-formal notions, and the hypothesis is called Church’s
thesis.

Theory
The theory is a way of choosing the subclass of truth proposi-
tions of the propositions belonging to the class of all the propo-
sitionsA.

Theory (— deductive)
The theory T is a deductive one, if T is an inductive class of the
(elementary) propositions (see Class inductive).

Theory (— of models)
The model theory is a branch of mathematical logic, studying
the connections between the formal language and its interpre-
tations, or models. The main studying objects are the sen-
tences φ and algebraic systemsM of the language L.

Theory (— consistent)
The consistent theory is defined as such a theory that does not
contain a classA of all the propositions.

Theory (— complete)
The complete theory is such a deductive theory T that a joining
to its axioms the elementary proposition which is not an ele-
mentary theorem with saving its rules unchangeable, makes it
inconsistent (contradictory).

Theory (— complete by Post)
T is a complete theory, if every proposition of the class A of
propositions is the consequence relatively T of any proposition
X that is not in T .

326 GLOSSARY

Theory (— of recursion)
The recursion theory studies the class of recursive, or effectively
computable functions and its applications in mathematics. In
a broad sense, the theory of recursion is considered as studying
of the general processes of defining with a recursion not only
over natural numbers, but over all the types of mathematical
structures.

Theory (— of types)
In a basis of this theory is put a principle of the hierarchy.
This means that the logical notions – propositions, individuals,
propositional functions, – are arranged as the hierarchy of
types. It is essential, that an arbitrary function, as its argu-
ments, has only the notions that are its predecessors in this
hierarchy.

Type doctrine
The type doctrine is due to B. Russell according to whom any
type can be assumed as a range of truth of the propositional
function. Moreover, it is assumed that every function has a type
(its domain). In the type doctrine the principle of replacing a
type (of proposition) by definitionally equal type (propo-
sition) holds.

Unsolvability
The mathematical sense of some result concerning unsolvabil-
ity means that some particular set is not recursive.

Value
The values constitute a conceptual class that contains the in-
tensional objects which are assigned to the formal objects by
the evaluation.

Variable
The variable is a “variable, or changeable object”, that can be
replaced (using a substitution).

GLOSSARY 327

Variable (— bound)
This is an object that participates in the operation having one
or more formal parameters. Binding the variable have a sense
relatively such an operation.

Variable (— indefinite)
This is an (atomic) object that (in ob-system) is not restricted.

Variable (— substitutive)
This is such an object in place of that the substitutions by the
explicitly formulated substitution rule are allowed.

328 GLOSSARY

Practical work

Sources

Initially the practical work in applicative computations was included
in a general practical work in the course “The systems of artificial in-
telligence” delivered in MEPhI (L.T. Kuzin, [25]). This practical work
was prepared by the group of authors in the topics of deductive in-
ference, relational algebra and relational calculus, conceptual knowl-
edge representation and frames, Lisp programming (K.E. Aksenov,
O.T. Balovnev, V.E. Wolfengagen, O.V. Voskresenskaya, A.V. Gan-
nochka, M.Yu. Chuprikov, [1]; A.G. Panteleev, [32], M.A. Bulkin,
Yu.R. Gabovich, A.G. Panteleev, [4]). Its essential part was the re-
lational DBMS Lisp/R, that implemented one of the ways to develop
the initial computational ideas. This method was based on the em-
bedded computational systems and covered in (O.V. Voskresenskaya,
[1]), which is included in the list of dissertations on p. 334.

Applicative computations

The variant of course delivered in MEPhI on the basis of this book
(e.g., as “Special topics of discrete mathematics” or “Foundations
of computer science”) is equipped with the practical works that are
in (V.E. Wolfengagen, L.V. Goltseva, [47]). Further development can
be found in (L.V. Goltseva, [7]) and (A.V. Gavrilov, [6]), included in
the list of dissertations on p. 334. The software for practical work is

329

330 PRACTICAL WORK

implemented for IBM PC and is distributed in a machine form.

Structure of practical work

The practical work covers the main notions and notations used in
applicative computational systems and allows to learn it completely:
from the language and notational agreements to the metatheorems
on the corresponding formal systems. It gives the basic knowledge on
usage the applicative computational systems (ACS) as a foundation
of the functional languages, functional programming systems and
purely object languages.

The central notion in use is a term considered as the representa-
tion of an object. The term syntactically corresponds to the program
in a functional language.

At this reason the first chapter of the guide to practical work deals
with the technique of correct syntactical transformations – arranging
the parentheses, – for the terms of different kinds.

The second chapter is intended to learn the reductions in ACS.
An execution of the functional program results in the value obtained
at the end of computations. In ACS the normal form of a term cor-
responds to the result of performing the reduction. According to the
Church-Rosser theorem, the normal form is not depending on the or-
der of the reduction steps that allows to build the various strategies of
computations in the functional programming systems. A simulation
of the λ-abstraction in combinatory logic can be considered as an ex-
ample of interpretation the logical systems by means of combinatory
logic.

The pair of combinators K and S constitute the basis for arbi-
trary λ-term, while the combinators I, B, C, S are the basis only
for such terms that have no free variables. Using of these two bases
for disassembling the terms from two chapters of the practical work
gives a sufficient completeness of covering the topics because there
are represented both the arbitrary λ-terms and combinatory terms

PRACTICAL WORK 331

that are the λ-terms without free variables.
The last chapter of the practical work is the most creative because

it covers the building of your own combinatory systems. It is shown
how, joining the additional combinators to the basis combinators,
increase the expressive power of the implemented environment.

As a whole, every of the chapters of practical works gives the
learner a skill in the certain unit of questions and can be used as a
separate laboratory work. In case the practical works are used as a
computerized book then the chapters can be compiled and arranged in
accordance with the learner’s experience or such a way that is needed
for an instructor.

Independent recourses

http://www.rbjones.com A purpose of Web-resource FACTA-
SIA is “to develop a vision for our future and to provide recourses
for building the vision and the future”, and also “to contribute to the
values which shape our future and to the technology which helps
us build it”. The partition “Logic” includes combinatory logic and
λ-calculus, bibliography. See http://www.rbjones.com/rbjpub/
logic/cl/

http://www.cwi.nl/∼tromp/cl/cl.html The guide, bibliogra-
phy and Java-applet are represented which allow to interpret the ob-
jects – expressions of an applicative language, – that are to be build
by the rules of combinatory logic.

http://ling.ucsd.edu/∼barker/Lambda/ski.html A simple
on-line introduction to combinatory logic is represented.

http://tunes.org/∼iepos/oldpage/lambda.html
Introduction to the lambda-calculus and combinatory logic.

http://www.rbjones.com
http://www.rbjones.com/rbjpub/logic/cl/
http://www.rbjones.com/rbjpub/logic/cl/
http://www.cwi.nl/~tromp/cl/cl.html
http://ling.ucsd.edu/~barker/Lambda/ski.html
http://tunes.org/~iepos/oldpage/lambda.html

332 PRACTICAL WORK

http://foldoc.doc.ic.ac.uk This is FOLDOC – Free On-
Line Dictionary of Computing.

http://dmoz.org/Science/Math/ Contains references and bib-
liography. The chapter ‘/Logic and Foundations’ contains
‘/Computational Logic’, that has a reference to
‘/Combinatory Logic and Lambda Calculus/’.

http://www.cl.cam.ac.uk/Research/TSG
The directions of academic and research activity of the world known
University of Cambridge Computer Laboratory.

http://web.comlab.ox.ac.uk/oucl The Oxford University
Computing Laboratory (OUCL) which is the world known depart-
ment on computer science. The URL http://web.comlab.ox.ac.
uk/oucl/strachey contains the references on a termly series of Dis-
tinguished Lectures named after Christopher Strachey (1916-1975),
the first Professor of Computation at Oxford University. He was the
first leader of Programming Research Group (PRG), founded in 1965
– and was succeeded by Sir Tony Hoare in 1977, – and with Dana
Scott he founded the field of denotational semantics, providing a
firm mathematical foundation for programming languages.

http://foldoc.doc.ic.ac.uk
http://dmoz.org/Science/Math/
http://www.cl.cam.ac.uk/Research/TSG
http://web.comlab.ox.ac.uk/oucl
http://web.comlab.ox.ac.uk/oucl/strachey
http://web.comlab.ox.ac.uk/oucl/strachey

Dissertations

[1] Voskresenskaya O.V., Methods of development the relational
database management system, Candidate of Technical Sciences The-
sis, 05.13.06 – Computer aided management systems, Moscow Engi-
neering Physical Institute, Dissertational Council K.053.03.04 MEPhI,
Moscow, 1985.

[2] Alexandrova I.A., Development of information support and software
for the systems of organizational type on the basis of conceptual
models, Candidate of Technical Sciences Thesis, 05.13.06 – Computer
aided management systems, Moscow Engineering Physical Institute,
Dissertational Council K.053.03.04 MEPhI, Moscow, 1986.

[3] Ismailova L.Yu., Development of software for relational data pro-
cessing in expert systems, Candidate of Technical Sciences Thesis,
05.13.11 – Mathematical means and software for computing machines,
complexes, systems and networks, Moscow Engineering Physical Insti-
tute, Dissertational Council K.053.03.04 MEPhI, Moscow, 1989.

[4] Volkov I.A., Exploration and development of methods for analysis
and trustworthy support of information about R&D in the area of
medicine, Candidate of Technical Sciences Thesis, 05.13.06 – Com-
puter aided management systems; 14.00.33 – Social hygiene and public
health, Moscow Engineering Physical Institute, Dissertational Council
D-053.03.04 MEPhI, Moscow, 1990.

[5] Wolfengagen V.E., Conceptual method of data bank design, Doc-
tor of Technical Sciences Thesis, 05.13.11 – Mathematical means

333

334 DISSERTATIONS

and software for computing machines, complexes, systems and net-
works, Moscow Engineering Physical Institute, Dissertational Council
D-053.03.04 MEPhI, Moscow, 1990.
{ Summary. This Doctoral Thesis describes the conceptual method of data bank
design which is determined as an approach to develop, apply and manage the
databases and metadata bases. This approach covers the accommodations to the
variable problem domain and its representation, e.g., by increasing/decreasing
the level of details being described. The topics concerning the management of
databases and metadata bases deal with an integration of data objects, meta-
data objects and programs. A unified computational environment preserves the
extensibility of data object model. The representations of data and metadata are
specified by the variety of data and metadata objects which are embedded into a
computational framework.

The design procedure is based on a choice of multilevel conceptualization to cap-
ture the semantic features of data/metadata interconnections. The variety of data
and metadata objects can be expanded without violation of the computational
environment properties.

All the topics give a conceptual framework for thinking about computations with
the objects. Several areas of theoretical computer science are covered, including
type free and typed λ-calculus and combinatory logic with applications, eval-
uation of expressions, computations in a category. The topics, covered in this
Thesis accumulated much experience in teaching these subjects in postgraduate
computer science courses. }

[6] Gavrilov A.V., Tunable programming system for the categorical
computaions, Candidate of Technical Sciences Thesis, 05.13.11 –
Mathematical means and software for computing machines, complexes,
systems and networks, Moscow Engineering Physical Institute, Disser-
tational Council D-053.03.04 MEPhI, Moscow, 1995.

[7] Goltseva L.V., Applicative computational system with the inten-
sional relations, Candidate of Technical Sciences Thesis, 05.13.11 –
Mathematical means and software for computing machines, complexes,
systems and networks, Moscow Engineering Physical Institute, Disser-
tational Council D-053.03.04 MEPhI, Moscow, 1995.

[8] Zykov S.V., Exploring and implementation of the integrated corpo-
rative information system for solving the tasks of personnel man-
agement, Candidate of Technical Sciences Thesis, 05.13.11 – Math-
ematical means and software for computing machines, complexes and

DISSERTATIONS 335

computer networks, Moscow Engineering Physical Institute, Disserta-
tional Council D-053.03.04 MEPhI, Moscow, 2000.

[9] Zabrodin A.L., Exploring and implementation of the software for
data management in computer aided systems of operative control
of communication, Candidate of Technical Sciences Thesis, 05.13.11 –
Mathematical means and software for computing machines, complexes
and computer networks, Moscow Engineering Physical Institute, Dis-
sertational Council D-053.03.04 MEPhI, Moscow, 2000.

[10] Gorelov B.B. Exploring and implementation of distributed infor-
mation system for financial data management, Candidate of Tech-
nical Sciences Thesis, 05.13.11 – Mathematical means and software
for computing machines, complexes and computer networks, Moscow
Engineering Physical Institute, Dissertational Council D-212.130.03
MEPhI, Moscow, 2003.

About the Author

Viacheslav Wolfengagen received his Candidate of Technical Sci-
ence degree in 1977 and the Doctor of Technical Science degree in
1990 from Moscow Engineering Physics Institute. He is a full profes-
sor of theoretical computer science and discrete mathematics at the
Cybernetics Department of MEPhI and a professor of programming
languages at the Cryptology and Discrete Mathematics Department
of MEPhI. Since 1994 he has been with the Institute for Contempo-
rary Education “JurInfoR-MSU” in Moscow where he is currently a
head of the Department of Advanced Computer Studies and Informa-
tion Technologies.

He chaired the 1999-2003 International Workshops in Com-
puter Science and Information Technologies (CSIT). He is author
of the books Logic: Techniques of Reasoning (2001, Center “Jur-
InfoR”), Constructions in Programming Languages: Methods of
Description (2001, Center “JurInfoR”), Categorical Abstract Ma-
chine: Introduction to Computations (2002, Center “JurInfoR”),
and Combinatory Logic in Programming: Computations with
Objects through Examples and Exercises (2003, MEPhI – Center
“JurInfoR”).

His research interests include data models, database design, soft-
ware development databases, object and object-oriented program-
ming and design, computation theory, programming languages, ap-
plicative computational systems. He was a manager of research
and development projects Logical Applicative Modeling Base of
DAta LAMBDA (version 3, project 93-01-00943 granted by RFBR),
Categorical Object-Oriented Abstract Machine COOAM (project
96-01-01923 granted by RFBR), Metadata Objects for Proxy-
Based Computational Environment (project 99-01-01229 granted
by RFBR).

Viacheslav Wolfengagen

Combinatory logic in programming
Computations with objects through examples and exercises

Scientific editor: L. Yu. Ismailova
Typesetting: Author

Proof-reading: L. M. Zinchenko
Cover design: O. V. Mortina

Signed to publishing 04.01.2003. Offset print.
Offset paper. Format 6084/16. Pr. sh. 21,25. Cond. pr. sh. 19,8.

Copies 1500 Order No .

“Center JurInfoR” Ltd.
103006, Moscow, Vorotnikovsky per., 7, phone (095) 956-25-12,

http://www.jurinfor.ru, e-mail: info@jurinfor.ru
License for publishing

ID No 03088 issued by October 23, 2000

The production conforms the conditions of the
Public Health Department of the Russian Federation.

Sanitary-epidemiologic Certificate
No 77.99.02.953.D.003230.06.01 issued by June 9, 2001

Tax incentive – All-Russia Classifier of Production
-005-93, volume 2; 953000 – books, booklets

Printed in a full accordance with
the quality of given transparencies

in the Typography “Nauka”
121099, Moscow, Shubinsky per., 6

All rights reserved “Center JurInfoR” Ltd.
103006, Moscow, Vorotnikovsky per., 7, phone (095) 956-25-12

	Preface of the editors of the series
	Special Preface
	The spectrum of problems
	Preface to the first edition
	Preface to the second edition
	Introduction
	Preliminaries
	The spectrum of ideas
	Layout of a chapter
	State-of-the-art in an area
	Typical task
	Variants of task
	A recommended order of solving the tasks

	Derivation of Object
	Principle of combinatory completeness
	Combinatory characteristic
	Systems of concepts
	Combinatory completeness
	Elementary combinatory logic

	Deriving main combinators: tasks
	Historical remark

	Fixed Point
	Theoretical background.
	Abstraction
	Multiabstraction
	Local recursion

	Main tasks
	Exercises

	Extensionality
	Theoretical background
	Tasks
	Exercises

	Numerals
	Numbers and numerals
	Combinatory arithmetic
	Tasks
	Exercises

	Typed combinators
	Notion of a type
	Combinatory terms
	-terms

	Tasks

	Basis I, K, S
	Theoretical background
	Tasks
	Exercises

	Basis I, B, C, S
	Theoretical background
	A property of being basic
	Elementary examples
	Exercises

	Applications of fixed point combinator Y
	Fixed point theorem
	Elements of recursive computations
	Using the combinator Y
	Evaluation of a function
	Exercises

	Function list1
	Theoretical background
	Tasks
	Functor-as-object
	Exercises

	Isomorphism of c.c.c. and ACS
	Theoretical background
	Tasks

	Currying
	Theoretical background
	Operators and functions
	Comprehension
	Connection between operators and functions

	Tasks
	Exercises

	Karoubi's shell
	Theoretical background
	Tasks
	Exercises

	Products and projections
	Theoretical background
	Task
	Product and cartesian closed category

	Embedding Lisp into ACS
	Theoretical background
	A main task
	Concluding remarks

	Supercombinators
	Theoretical background
	Notion of supercombinator
	Process of compiling
	Transformation to supercombinators
	Eliminating redundant parameters
	Ordering of the parameters
	The lambda-lifting with a recursion
	Execution of the lambda-lifting algorithm
	Other ways of lambda-lifting
	Full lazyness
	Maximal free expressions
	Lambda-lifting with MFE
	Fully lazy lambda-lifting with letrec
	Compound example

	Task
	Answers to exercises

	Lazy implementation
	Tasks
	Exercises

	Permutation of parameters
	Task
	Exercises
	Test

	Immediate computations
	Task
	Exercises
	Test

	de Bruijn's encoding
	Tasks
	Exercises

	Abstract machine: CAM
	Theoretical background
	CAM structure
	Instructions

	Tasks
	Exercises

	Optimizing CAM-computations
	Task
	Exercises
	Test

	Variable objects
	Models
	Applicative structure
	Typed models
	Partial objects
	Data object models

	The main task
	Elementary types
	Typed variable objects
	Computational models
	Indexed objects

	Interpretation of evaluating environment

	Bibliography
	Index
	Glossary
	Practical work
	Dissertations
	About the Author

