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Preface

Ive got 1o work the E qwations and the low cations
Ive got to comb the nations of it.

Russell Hoban, Riddley Walker (1980)

We have not begun to understand the relationship between combinatorics and
conceptual mathematics.

J. Dieudonné, A Panorama of Pure Mathematics (1982)

If anything at all can be deduced from the two quotations at the top of this page,
perhaps it is this: Combinatorics is an essential part of the human spirit; but it is
a difficult subject for the abstract, axiomatising Bourbaki school of mathematics to
comprehend. Nevertheless, the advent of computers and electronic communications
have made it a more important subject than ever.

This is a textbook on combinatorics. It’s based on my experience of more than
twenty years of research and, more specifically, on teaching a course at Queen Mary
and Westfield College, University of London, since 1986. The book presupposes
some mathematical knowledge. The first part (Chapters 2-11) could be studied by
a second-year British undergraduate; but I hope that more advanced students will
find something interesting here too (especially in the Projects, which may be skipped
without much loss by beginners). The second half (Chapters 12-20) is in a more
condensed style, more suited to posigraduate students.

I am grateful to many colleagues, friends and students for all kinds of contribu-
tions, some of which are acknowledged in the text; and to Neill Cameron, for the
illustration on p. 128.

1 have not provided a table of dependencies between chapters. Everything is
connected; but combinatorics is, by nature, broad rather than deep. The more
important connections are indicated at the start of the chapters.

Peter J. Cameron
17 March 1994




1. What is Combinatorics?

Combinatorics is the slums of topology.
J. H. C. Whitehead (attr.)!

| have to admit that he was not bad at combinatorial analysis — a branch,
however, that even then | considered to be dried up.

Stanislaw Lem, His Master's Voice {1968)

Combinatorics is special. Most mathematical topics which can be covered in a
lecture course build towards a single, well-defined goal, such as Cauchy’s Theorem
or the Prime Number Theorem. Even if such a clear goal doesn’t exist, there is
a sharp focus (finite groups, perhaps, or non-parametric statistics). By contrast,
combinatorics appears to be a collection of unrelated puzzles chosen at random.

Two factors contribute to this. First, combinatorics is broad rather than deep.
Its tentacles stretch into virtually all corners of mathematics. Second, it is about
techniques rather than results. As in a net,’ threads run through the entire con-
struction, appearing unexpectedly far from where we last saw them. A treatment of
combinatorics which neglects this is bound to give a superficial impression.

This feature makes the teacher’s job harder. Reading, or lecturing, is inherently
one-dimensional. If we follow one thread, we miss the essential interconnectedness
of the subject.

I have attempted to meet this difficulty by various devices. Each chapter begins
with a list of topics, techniques, and algorithms considered in the chapter, and
cross-references to other chapters. Also, some of the material is set in smaller
type and can be regarded as optional. This usually includes a ‘project’ involving a
more difficult proof or construction (where the arguments may only be sketched,
requiring extra work by the reader). These projects could be used for presentations
by students. Finally, the book is divided into two parts; the second part treats topics
in greater depth, and the pace hots up a bit (though, T hope, not at the expense of
intelligibility).

As just noted, there are algorithms scattered throughout the book. These are not
computer programs, but descriptions in English of how a computation is performed.
I hope that they can be turned into computer programs or subroutines by readers
with programming experience. The point is that an explicit construction of an object
usually tells us more than a non-constructive existence proof. (Examples will be
given to illustrate this.) An algorithm resembles a theorem in that it requires a proof
(not of the algorithm itself, but of the fact that it does what is claimed of it).

1 This attribution is due to Graham Higman, who revised Whitehead's definition to ‘Combinatorics
is the mews of algebra.’

? ‘Net. Anything reticulated or decussated at equal distances, with interstices between the intersee-
tions.' Samuel Johnson, Dictionary of the English Language (1775).

2 1. What is Combinatorics?

But what is combinatorics? Why should you read further?

Combinatorics could be described as the art of arranging objects according
to sPcciﬁed rules. We want to know, first, whether a particular arrangement is
possible at all, and if so, in how many different ways it can be done. If the rules
are simple (like picking a cricket team from a class of schoolboys), the existence
of an .arrangement is clear, and we concentrate on the counting problem. But for
more involved rules, it may not be clear whether the arrangement is possible at all.
Examples are Kirkman’s schoolgirls and Euler’s officers, described below.

Sample problems

.In this section, I will give four examples of combinatorial questions chosen to
illustrate the nature of the subject. Each of these will be discussed later in the book.

Derangements

Given n letters and n addressed envelopes, in how many ways can
the letters be placed in the envelopes so that no letter is in the
correct envelope?

DiscussioN. The total number of ways of putting the letters in the envelopes is the
number of permutations of n objects,® which is n! (factorial n). We will see that
the fraction of these which are all incorrectly addressed is very close to 1/e, where
e=2.71828 ... is the base of natural logarithms — a surprising result at ﬁrs’t sight.
In fact, the exact number of ways of mis-addressing all the letters is the nearest
integer to n!/e (see Exercise 1).

Kirkman’s schoolgirls

Fiftec?n schoolgirls walk each day in five groups of three. Arrange
the girls’ walks for a week so that, in that time, each pair of girls
walks together in a group just once.

DiscussioN. If it is possible at all, seven days will be required. For any given
girl must walk once with each of the other fourteen; and each day she walks with
two others. However, showing that the walks are actually possible requires more
argument. The question was posed and solved by Kirkman in 1847. The same
question could be asked for other numbers of girls (see Exercise 2). Only in 1967
did Ray-Chaudhuri and Wilson show that solutions exist for any number of girls
congruent to 3 modulo 6.

Euler’s officers

Thirty-six officers are given, belonging to six regiments and holding
six ranks (so thai each combination of rank and regiment coz-
responds to just ome officer). Can the officers be paraded in a
6 X 6 array so that, in any line (row or column) of the array, each
regiment and each rank occurs precisely once?

3 Permutations will be described in Chapter 3.
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[ b
DiscussioN. Euler posed this problem in 1782; he believed that thc;) answer :Iias dn?c:
This was not proved until 1900, by Tarry. Again, the problem can e gener. ases u,me
n? officers, where the number of regiments, r'anks, rows and columl:ls isn (;rv:io; ume
n > 1) — see Exercise 3. There is no solution for n = 2. Euler newlrv 80 uf s for
all n not congruent to 2 modulo 4, and guessed that the're was no sg ;tlin oh w.;d
(mod 4). However, he was wrong about that. Bose, Shrikhande and Parker sho

in 1960 that there is a solution for all n except n = 2 and n = 6.

A Ramsey game

This two-player game requires a sheet of paper and pencils of t:;)l
colours, say red and blue. Six points on the paper are chosen, wi
po three in line. Now the players take a pencil ?a.ch, and take tlums
drawing a line connecting two of the chosen points. Thel ﬁrsi; p ay‘r:ﬁ
to complete a triangle of her own colour loses. (Only triangles wi
vertices at the chosen points count.)

Can the game ever result in a draw?

DiscussioN. We'll see that a draw is not possible; one or other Player wil! be forced
to create a triangle. Ramsey proved a wide generalisation of.tlns’ fact. His theorem
is sometimes stated in the form ‘Complete disorder is impossible.

How to use this book

1. The book is divided into two parts: Chapters 2.—]:1 and Chapters 1?—2(;; I:; :E:
second part, along with some new material, we rev1§1t many of the top;cs :ﬁoned
first part and treat them from a more advanced viewpoint; als;)i, ats 01:;::3 tioned
carlier, the pace is a little faster in the second part. In any cafec,la rst ¢ urse can be
devised using only the first part of the book. (’.l‘he second-thir 1 yea.rfun o fial e
course at Queen Mary and Westfield College includes a selfectloz 1o 4!!;&4 o
Chapters 3 (Sections 3.1, 3.2, 3.3, 3.5, 3.7., 3.11, 3.12), 4 (Sectmnls 1.4:1'} ), 4, 4.5), 5,
6, 7, 8 and 10; other courses treat material from Chapters 9, 11, .

2. Chapter 3 plays a special role. The material here is central to combinatorics:
s{nbsets partitions, and permutations of finite sets. Within the other chapters, you arz
encour;,ged to dabble, taking or leaving sections as you choose; but I recommen
reading all of Chapter 3 (except perhaps the Projects, see below).
3. A number of sections are designated as Projects. These are to be rega.r:le(:hai
le;ss central and possibly more difficult than the others. ']:‘he word sugges ; : l?
they could be worked through by individuals outside class time, and then made the
subject of presentations to the class. ‘
4. Each chapter after this one begins with a box containing ‘to.plcg, t?chmtzllgls,
ai orithms and cross-references’. This is designed to give. you some indication of t?
scipe of the chapter. Roughly speaking, topics are specific remﬁtsdor c;im;:.mctlor;f,
i i icability, indicating general methods which may be
techniques ate of wider applicability, indical : oy be
i]lustra(.lted in specific cases in the chapter; algorithms are self-explanatory; an
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cross-references pinpoint at least some occurrences of the materjal in other chapters.
These are usually backward references, but the multidimensional nature of the
subject means that this is not always so. You should use these as pointers to places
where you might find help if you are stuck on something. The index can also be
used for this purpose.

5. The exercises are a mixed bunch; but, by and large, I have tended to avoid
‘drill’ and give more substantial problems. You will certainly learn more if you work
conscientiously through them. But I have tried not to assume that you have done all
the problems. When (as often happens) the result of an exercise is needed in a later
chapter, I have usually supplied a proof (or, failing that, a hint). Indeed, hints are
strewn liberally through the exercises, and some example solutions are given (rather
more briefly than I would expect from students!) at the end of the boak.

6. The last chapter does two jobs. First, it treats (somewhat sketchily) some further
topics not mentioned earlier; second, it gives pointers to further reading in various
parts of combinatorics. I have included a small collection of unsolved problems
here, to indicate the sort of thing that research in combinatorics might involve. But
beware: these problems are unsolved; this means that somebody has given some
thought to them and failed to solve them, so they are probably more difficult than
the exercises in other chapters.

7. The numbering is as follows. Chapter A is divided into sections, of which a
typical one is Section A.B. Within a section, theorems (and similar statements such
as propositions, lemmas, corollaries, facts, algorithms, and numbered equations)
have numbers of the form A.B.C. On the other hand, diagrams are just numbered
within the chapter, as A.D, for example; and exercises are typically referred to
as ‘exercise E of Chapter A’ Some theorems or facts are displayed in a box for
easy reference. But don’t read too much into the difference between displayed and
undisplayed theorems, or between theorems and propositions; it's a matter of taste,
and consistency is not really possible.

8. An important part of combinatorics today is the algorithmic side: I can prove that
some object exists; how do I construct it? I have described algorithms for a wide
range of constructions. No knowledge of computers or programming languages is
assumed. The description of the algorithms makes use of words like ‘While . ..",
‘Repeat ... until ..." and so on. These are to be interpreted as having their usual
English meaning. Of course, this meaning has been taken over by Programming
languages; if you are fluent in Pascal, you will I hope find my descriptions quite
congenial. If you are a competent programmer and have access to a computer, you
are advised at several places to implement these algorithms,

What you need to know

The mathematical results that I use are listed here. You don’t need everything all
at once; the more advanced parts of algebra, for example, are only required later
in the book, so you could study algebra and combinatorics at the same time, If
all else fails, I have tried to arrange things so that you can take on trust what you
don’t know. Topics in square brackets are treated in the book, but you may feel the
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need of more explanation from a course or textbook in that subject. As you see,
combinatorics connects with all of mathematics; you will see material from many

other areas being used here. )
o Basic pure mathematics: Sets and functions, ordered n-tuples and cartesian

products; integers, factorisation, modular arithmetic; [equivalence and order

relations]. ' ‘
o Linear algebra: Vector spaces, subspaces; linear transformations, matrices; row

operations, row space; eigenvalues of real symmetric matrices.
o Abstract algebra: [Elementary group theory; finite fields).
o Number theory: [Quadratic residues; two and four squares theorer.ns].4
e Analysis: Basic operations (limits, differentiation, etc.); [power series].
e Topology: [Definition of metric and topological space; surfaces; Jordan curve

theorem). '
o Probability: Basic concepts (for finite spaces only) [except in Chapter 19].

¢ Set theory: See Chapter 19.

Exercises
1. For n = 3,4,5, calculate the number of ways of putting n letters into their

envelopes 50 that every letter is incorrectly addressed. Calculate the ratio of this
number to n! in each case.

2. Solve Kirkman's problem for nine schoolgirls, walking for four days.

3. Solve Euler'’s problem for nine, sixteen and twenty-five officers. Show that no
solution is possible for four officers.

4 Test the assertion that the Ramsey game cannot end in a draw by playing it with
a friend. Try to develop heuristic rules for successful play.

4 As will be explained in Section 4.2, our treatment of power series is formal and does not involve
questions of convergence.

2. On numbers and counting

One of them is all alone and ever more shall be so

Two of them are lily-white boys all clothed alf in green Oh

Three of them are strangers o’er the wide world they are rangers
Four it is the Dilly Hour when blooms the Gilly Flower

Five it is the Dilly Bird that's seldom seen but heard

Six it is the ferryman in the boal that o’er the River floats Oh

Seven are the Seven Stars in the Sky, the Shining Stars be Seven Oh
Eight it is the Morning's break when all the World's awake Oh

Nine it is the pale Moonshine, the Shining Moon is Nine Oh

Ten Forgives all kinds of Sin, from Ten begin again Oh

English traditional folksong
from Bob Stewart, Where is Saint George? (1977)

Torics: Natural numbers and their representation; induction; use-
ful functions; rates of growth; counting labelled and unlabelled
structures; Handshaking Lemma

TECHENIQUES: Induction; double counting
ALGORITHMS: Odometer Principle; [Russian peasant multiplication]

CROS5-REFERENCES:

This chapter is about counting. In some sense, it is crucial to what follows, since
counting is so basic in combinatorics. But this material is part of mathematical
culture, so you will probably have seen most of it before.

2.1. Natural numbers and arithmetic

Kronecker is often quoted as saying about mathematics, ‘God made the integers;
the rest is the work of man.’ He was referring to the natural numbers (or counting
numbers), which are older than the earliest archeaological evidence. (Zero and the
negative numbers are much more recent, having been invented (or discovered) in
historical time.)! Since much of combinatorics is concerned with counting, the
natural numbers have special significance for us.

! See Georges Ifrah, From One io Zero: A Universal History of Numbers (1985), for an aceount of
the development of numbers and their representation.
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As each new class of numbers was added to the mathematical repertoire, it was
given a name reflecting the prejudice against its members, or the ‘old’ numbers were
given a friendly, reassuring name. Thus, zero and negative integers are contrasted
with the ‘natural’ positive integers. Later, quotients of integers were ‘rational’, as
opposed to the ‘irrational’ square root of 2; and later still, all numbers re!.tional and
irrational were regarded as ‘real’, while the square root of —1 was imaginary’ (and
its friends were ‘complex’).

The natural numbers are the first mathematical construct with which we become
familiar. Small children recite the names of the first few natural numbers in the same
way that they might chant a nursery thyme or playground jingle. This giv.es'them
the concept that the numbers come in a sequence. They grasp this in a sophisticated
way. The rhyme?

One, two,
Missed a few,
Ninety-nine,

A hundred

expresses confidence that the sequence of numbers stretches at least up to 100, and
that the speaker could fill in the gap if pressed.

Order or progression is thus the most basic property of the natural numbers.?
How is this expressed mathematically? First we must stop to consider how natural
numbers are represented. The simplest way to represent the number n is b{' a
sequence of n identical marks. This is probably the earliest scheme mankind
adopted. It is well adapted for tallying: to move from one number to the. next,
simply add one more mark. However, large numbers are not easily recognisable.
After various refinements (ranging from grouping the marks in sets of five to the
complexities of Roman numerals), positional notation was finally adopted. . .

This involves the choice of a base b (an integer greater than 1), and b digsts {dis-
tinguishable symbols for the integers 0,1,2,..., b— 1). (Early attempts at posit?onal
notation were bedevilled because the need for a symbol for zero was not recognised.)
Now any natural number N is represented by a finite string of digits. Logically tl%e
string is read from right to left; so we write it as Zn_1..-Z1Zo, Where eifch z; is
one of our digits. By convention, the leftmost digit is never zero. The algorithm for
advancing to the next number is called the Odometer Principle. It is basgd on the
principle of trading in b counters in place for a single counter in place 1 + 1', and
should be readily understood by anyone who has watched the odometer (or mileage
gauge) of a car.

2 T have heard the feminist version of this: ‘One, two, Mzs. Few, ...’

3 “The operations of arithmetic are based on the tacit assumption that we can alway:i pass from any
number fo its successor, and this is the essence of the ordinal concept.’ Tobias Dantzig, Number: the

Language of Science (1930).
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(2.1.1) Odometer Principle
to find the successor of a natural number to base b
Start by considering the rightmost digit.

e If the digit we are considering is not b — 1, then replace it by
the next digit in order, and terminate the algorithm.

e If we are considering a blank space (to the left of all the digits),
then wrile in it the digit 1, and terminate the algorithm.

o If neither of the above holds, we are considering the digit b — 1.
Replace it with the digit 0, move one place left, and return to
the first bullet point.

For example, if the base b is 2 and the digits are 0 and 1, the algorithm (starting
with 1) generates successively 10, 11, 100, 101, 110, ... .
Now it can be proved by induction that the string z,_; ... z%o represents the
positive integer
Ty e 3+ 2o
{see Exercise 2).

Often the number 0 is included as a natural number. (This is most usually done
by logicians, who like to generate the whole number system out of zero, or nothing,
But it conflicts with our childhood experience: I have never heard a child say
‘nought, one, two, ...", and we don’t count that way.} This is done by modifying
our representation so that the digit 0 represents the number 0. This is the one
allowed exception to the rule that the left-most digit cannot be 0; the alternative,
representing 0 by a blank space, would be confusing.

The odometer of a car actually works slightly differently. It works with a fixed
number of digits which are initially all zero, so that the ‘blank space’ case of the
algorithm cannot arise. If there are k digits, then the integers 0,...,5* — 1 are
generated in turn, and then the odometer returns to 0 and the process repeats.

Now that we have a representation of positive integers, and understand how to
move to the next integer, we should explore the arithmetic operations (ambition,
distraction, uglification and derision).® Algorithms for these are taught in primary
school® I will not consider the details here. It is a good exercise to program
a computer to perform these algorithms’, or to investigate how many elementary

1 A possible exception occurs when one child has been appointed to be first, and another wishes to
claim precedence, as in ‘Zero the hero' But this is closer to the historical than the logical approach.
5 Lewis Carroll, Alice’s Adventures in Wonderland (1865).

8 These algorithms were known to the Babylonians in 1700 B.C.

" Most programming languages specify the ‘maximum integer' to be something like 32767 or
2147483647, Oflen, the answer to a counting problem will be much larger than this. To find it by

computer, you may have to write routines for arithmetic operations on integers with many digits, If
you need to do this, write your routines so that you can re-use them!
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operations are required to add or multiply two n-digit numbers (where elementary
operations might consist of referring to one's memory of the multiplication tables,

or writing down a digit).

2.2. Induction

Induction is a very powerful principle for proving assertions about the natural
numbers. It is applied in various different forms, some of which are described in
this section. We also see that it is a consequence of our most basic intuition about
the natural numbers.

The Principle of Induction asserts the following:

(2.2.1) Principle of Induction
Let P(n) be a proposition or assertion about the natural number n.
Suppose that P(1) is irue. Suppose also that, if P(n) is true, then
P(n + 1) is also tzue. Then P(n) is true for all natural numbers n.

Why is this true? As we saw, the basic property of the natural numbers,
recognised even by children, is that we can count up to any natural number n
starting from 1 (given sufficient patience!) Now, with the assumptions of the
Principle, P(1) is true, 5o P(2) is true, so (miss a few here) so P(n — 1) is true, so
P(n) is true.

As this argument suggests, if you are reading a mathematical argument, and the
author puts in a few dots or the words ‘and so on’, there is probably a proof by
induction hiding there. Consider, for example, the function f satisfying f(1) = 2
and f(n + 1) = 2f(n) for all natural numbers n. Then

f2)=4=2%f3)=8=2", ... f(n)=2"

The dots hide a proof by induction. Let P(n) be the assertion that f(n) = 2". Then
P(1) holds; and, assuming that P(r) holds, we have

P(n+1) =2P(n) =2-2" = 2",

so P(n + 1) also holds. So the Principle of Induction justifies the conclusion. The
point is that very simple arguments by induction can be written out with three
dots in place of the detailed verification, but this verification could be supplied if
necessary. We'll see more examples of this later.

Now I give some alternative forms of the Principle of Induction and justify their
equivalence. The first one is transparent. Suppose that P(n) is an assertion, for
which we know that P(27) is true, and that if P(n) holds then so does P(n + 1).
Then we conclude that P(n) holds for all = > 27. (To prove this formally, let Q(n)
be the assertion that P(n + 26) is true, and verify the hypotheses of the Principle of
Induction for Q(n).)

For the next variation, let P{n) be a proposition about natural numbers. Suppose
that, for every natural number n, if P(m) holds for all natural numbers m less than
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n, then P(n) holds. Can we conclude that P(n) holds for all n? On the face of it,
this seems a much stronger principle, since the hypothesis is much weaker. (Instead
of having to prove P(n) from just the information that P(n — 1) holds, we may
assume the truth of P(m) for all smaller m.) But it is true, and it follows from the
Principle as previously stated.

We let Q(n) be the statement ‘P(m) holds for all m < n’. Now it is clear that
Q@(n + 1) implies P(n), so we will have succeeded if we can prove that Q(n) holds
for all n. We prove this by induction.

First, Q{1) holds: for there are no natural numbers less than 1, so the assertion
P holds for all of them (vacuously).

Now suppose that Q(n) holds. That is, P(m) holds for all m < n. By assumption,
P(n) also holds. Now P(m) holds for all m < n + 1 (since the numbers less than
n+ 1 are just » and the numbers less than »)%. In other words, Q(n + 1) holds.

Now the Principle of Induction shows that @(n) holds for all n.

The final re-formulation gives us the technique of ‘Proof by Minimal Counterex-
ample’. Suppose that P(r) is a proposition such that it is not true that P(n) holds
for all natural numbers . Then there is a least natural number n for which P(n) is
false; in other words, P(m) is true for all m < n but P(n) is false. For suppose that
no such n exists; then the truth of P(m) for all m < n entails the truth of P(n),
and as we have seen, this suffices to show that P(n) is true for all n, contrary to
assumption.

This argument shows that any non-empty set of natural numbers contains a
minimal element. (If S is the set, let P(n) be the assertion n € S.)

2.3. Some useful functions

I assume that you are familiar with common functions like polynomials, the function
|z] (the absolute value or modulus), etc.

Floor and Ceiling. The floor of a 1eal number z, written |z], is the greatest integer
not exceeding z. In other words, |z is the integer m suchthat m <z < m+ L If
is an integer, then [z| = . This function is sometimes written [z]; but the notation
lz] suggests ‘rounding down’. It is the number of the floor of a building on which
z would be found, if the height of = above the ground is measured in units of the
distance between floors. (The British system of floor numbering is used, so that the
ground floor is number 0.)

The ceiling is as you would probably expect: [z] is the smallest integer not less
than . So, if z is not an integer, then [2] = |z] + 1; if  is an integer, its floor and
ceiling are equal. In any case, you can check that

[z] = —[-=].

Factorial. The factorial function is defined on positive integers by the rule that n! is
the product of all the integers from 1 to n inclusive. It satisfies the condition

nl=n-(n—1)! (%)

8 Let p be an integer less than n+ 1. Then p < n or p=n or p > n; and the last case is impossible,
since there is no integer between n and n + 1.
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for » > 1. In fact, we can consistently define 0! = 1; then (*) holds for all n > 0.
In fact, the conditions 0! = 1 and () actually define n! for all natural numbers ».
(This is proved by induction: 0! is defined; if n! is defined then so0 is (n + 1)!; so n!
is defined for all n.)

Exponential and logarithm.  These two functions are familiar from elementary
calculus. We will often use the power series expansions of them. The equation

2

3T _ z
€ —E_%n!—l+z+2!

+...
is valid for all real numbers z. On the other hand, the function logz can’t be
expanded as a series of powers of z, since log 0 is undefined. Instead, we have
[ - 2
(-t z

logi{1 = —_— = ——+...,

og(l+2) ,; " z-3 +
which is valid for all z with |z| < 1 (and in fact also for z = 1).

The exponential function grows more rapidly than any power of z; this means
that e* > z° for all sufficiently large = {depending on ¢). In fact, for z > (¢ + 1)!, we
have

T wc+] c
e’ > (c+ l)! >z
On the other hand, the logarithm function grows more slowly than any power of z.
We will often write exp(z) instead of €.

2.4. Orders of magnitude

People use the phrase ‘the combinatorial explasion’ to describe a counting function
which grows very rapidly. This is a common phenomenon, and it means that, while
we may be able to give a complete description of all the objects being counted
for small values of the parameter, soon there will be far too many for this to be
possible, and maybe even far too many for an exact count; we may have to make do
with fairly rough estimates for the counting function. I will consider now what such
rough estimates might look like. In this section, some results from later chapters will
be anticipated. If you are unfamiliar with these, take them on trust until we meet
them formally.

Let X be a set with n elements, say X = {1,2,...,n}. The number of subsets
of X is 2*. This is the most familiar example of an exponential function, or function
with exponential growth. A function f which has (precisely) exponential growth has

the property that
fln+1) =cf(n)

for some ¢ > 1. (If ¢ = 1, the function is constant; if ¢ < 1, then f(n) — 0 as n — oo,
In these cases, the term ‘exponential growth’ is not really appropriate!®} A function

9 Economists define a recession as a period when the exponential constant for the GDP is less than
1.004. Sometimes you have to run in order to stand still.
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f satisfying the above equation is given by f(r) = ac®, where a is a constant (and
is equal to the value of f(0)).

We also say that a function f has ‘exponential growth’ if it is roughly the same
size as an exponential function. So the function f(n) = 2" + n has exponential
growth, since the term n is dwarfed by 2" for large n. Formally, the function f is
said to have ezponential growth if f(n)/™ tends to a limit ¢ > 1 as n — oo. This
means that, for any positive number ¢, f(n) lies between (¢ — €)™ and (¢ +¢)" for all
sufficiently large n. The number c is called the exponential constant for f.

Of course, a function may grow more slowly than exponentially. Examples
include
o polynomial growth with degree c, like the function f(n) = n%;
o fractional exponential growth with exponent ¢, like the function e™, where 0 <
c< 1.
These functions arise in real combinatorial counting problems, as we will see.
But many functions grow faster than exponentially. Here are two examples.

The number of permutations of the set X is equal to n! = n(n —1)...1, the
product of the integers from 1 to r inclusive, We have

Zn—l S n! S nn—l

)

because (ignoring the factor 1) there are n — 1 factors, each lying between 2 and
n. In fact it is easy to see that the growth is not exponential. We will find betier
estimates in the next chapter.

Now let P(X), the power set of X, denote the set of all subsets of X. We will
be considering subsets of P(X), under the name families of sets. How many families
of sets are there? Clearly the number is 22". This number grows much faster than
exponentially, and much faster than the factorial function. A function like this is
called a double exponential.

For comparing the magnitudes of functions like these, it is often helpful to
consider the logarithm of the function, rather than the function itself. The logarithm
of an exponential function is a (roughly) linear function. The logarithm of n! is
fairly well approximated by nlogn; and the logarithm of a double exponential is
exponential. Other possibilities are functions whose logarithms are polynomial.

Of course, this is only the beginning of a hierarchy of growth rates; but for the
most part we won’t have to consider anything worse than a double exponential

In connection with growth rates, there is a convenient analytic notation., We
write O(f(n)) (read ‘big Oh f(n)’) to mean a (possibly unknown) function g(n) such
that, for all sufficiently large n, |g(n)| < cf(n) for some constant c. This is typically

used in the form
$(n) = F(n) + O(f(n)),

where ¢ is a combinatorial counting function and F, f are analytic functions where
f grows more slowly than F'; this has the interpretation that the order of magnitude
of ¢ is similar to that of F. For example, in Section 3.6, we show that

logn! = nlogn —- n + O(logr).
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We write o{f(n)) (and say ‘small oh f(n)’) to man a function g(n) such that
g(n)/f(n) — 0 as n — oo; that is, g is of smaller order of magnitude than f.

There are several variants. For example, 2 is the opposite of O; that is, 2(f(r))
is a function g(n) with |g(n)| > cf(n) for some constant ¢ > 0. Also, g(n) ~ f(n)
means that both g(n) = O(f(n)) and g(n) = Q(f(n)) hold: roughly, f and ¢ have
the same order of magnitude apart from a constant factor.

2.5. Different ways of counting

In combinatorics (unlike real life!?), when we are asked to count something, there
are very many different answers which can be regarded as correct. Consider the
simple problem of choosing three items from a set of five. Before we can work out
the right answer, the problem must be specified more precisely. Are the objects in
the set identical {five electroms, say, or five red billiard balls), or all different (the
ace, two, three, four, and five of spades, for example)? Does the order of selection
matter? (That is, do we just put in a hand and pull three objects out, or do we draw
them one at a time and record the order?) And are we allowed to choose the same
object more than once (say, by recording the result of each draw and returning the
object to the urn), or not? There are various intermediate cases, like making words
using the letters of a given word, where a letter may be repeated but not more often
than it occurs in the original word.

Almost always, we assume that the objects are distinguishable, like the five
spade cards. Under this assumption, the problem will be solved under the four
possible combinations of the other assumptions in Chapter 3. What if they are
indistinguishable? In this case, there is obviously only one way to select three red
billiard balls from a set of five: any three red billiard balls are identical to any other
three.

t

What difference does indistinguishability make? If the underlying objects are
distinguishable, we can assume that they carry labels bearing the numbers 1,2,...,n.
In this case, we say that the configurations we are counting are lgbelled. If the r
underlying objects are indistinguishable, we are counting unlabelled things. An
example will illustrate the difference.

Suppose that we are interested in n towns; some pairs of towns are joined by
a direct road, others not. We are not concerned with the geographical locations,
only in whether the towns are connected or not. (This is described by the structure
known as a graph.!! See Chapter 11 for more about graphs.) Figure 1 shows the
eight labelled graphs for n = 3. If the towns are indistinguishable, then the second,

10 According to folklore, it is impossible to count the Rollright Stones consistently.

11 This usage of the term is quite different from the sense in the phrase ‘the graph of y = sinz"
Some people distinguish the two meanings by different pronunciation, with a short & for the sense
used here.
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Fig. 2.1. Graphs on three vertices

third and fifth graphs are identical, as are the fourth, sixth and seventh. So there
are just four unlabelled graphs with n = 3.

In general, let f(n) and g(n) denote the numbers of labelled and unlabelled
configurations, respectively, with n underlying objects. Then two labelled configura-
tions will be regarded as identical as unlabelled configurations if and only if there
is a permutation of {1,2,...,n} which carries one to the other. (For example, the
cyclic permutation 1 — 21— 3 - 1 carries the second graph in Fig. 1 to the fifth.)
So at most n! labelled configurations collapse into a single unlabelled one, and we

have
f(n)/nl < g(n) < f(n).

Now there are two possibilities for the ‘order of magnitude’ behaviour.

If f(n) grows much more rapidly than n!, then the left and right hand sides
of this equation are not so very far apart, and we have a reasonable estimate for
g(n). For example, we saw that there are 22" families of subsets of the n-element set
X. The number of permutations is insignificant by comparison, so it doesn’t matter
very much whether the elements of X are distinguishable or not, that is, whether we
count labelled or unlabelled families.

But if this doesn’t occur, then more care is needed. There are just 2" subsets of
the n-element set X, and this function grows more slowly than n!. In this case, we
can count unlabelled sets another way. If all elements of X are indistinguishable,
then the only thing we can tell about a subset of X is its cardinality; two subsets
containing the same number of elements are equivalent under a permutation. So the
number of unlabelled subsets is -+ 1, since the cardinality of a subset can take any
one of the n + 1 values 0,1,2,...,n.

This theme can be refined, using the concepts of permutation group and cycle
index. These are more advanced topics, and will be treated in Part 2 (see Chapter 15).
2.6. Double counting

We come now to a deceptively simple but enormously important counting principle:

If the same set is counted in two different ways, the answers are the
same.

This is analogous to finding the sum of all the entries in a matrix by adding the row
totals, and then checking the calculation by adding the column totals.

The principle is best illustrated by applications (of which there will be many
later) — here is one:
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(2.6.1) Handshaking Lemma
At a convention, the rumber of delegates who shake hands an odd
number of times is even.

To show this, let Dy,..., D, be the delegates. We apply double counting to the
set of ordered pairs (D;, D;) for which D; and D; shake hands with each other at
the convention. Let x; be the number of times that D; shakes hands, and y the
total number of handshakes that occur. On the one hand, the number of pairs is
2ieq i, since for each D; the number of choices of D; is equal to z;. On the other
]21a,nd,h each handshake gives rise to two pairs (D;, D;) and (D;, D;); so the total is

y. Thus ’

n

Z Ty = 2y.

=1
But, if the sum of n numbers is even, then evenly many of the numbers are odd.
(If we add an odd number of odd numbers and any number of even numbers, the
answer will be odd.)

The double counting principle is usually applied to counting ordered pairs.
For lovers of formalism, here is a general result, which encapsulates most of the
applications we will make of it.

(2.6.2) Proposition. Let A = {a,...,am} and B = {by,...,b.} be sets. Let S be a
subset of A x B. Suppose that, fori = 1,...,m, the element a; is the first component
of z; pairs in S, while, for j = 1,...,n, the element b; is the second component of
y; pairs in S. Then

S| =Y 2= v
=1

=1

Often it happens that z; is constant (say x) and y; is also constant (say y). Then
we have

mz = ny.

2.7. Appendix on set notation

The basic notation for sets is listed here. If A and B are sets, then we write z € A
if z is an element of A, = ¢ A otherwise. Also

|A] (the cardinality of A) is the number of elements in A;

AU B (the union) is the set of elements in A or B (or both);

AN B (the intersection) is the set of elements in both A and B;

A\ B (the difference) is the set of elements in A but not B;

AAB (the symmetric difference) is the set of elements in just one of the two sets;

A C B if every element of A belongs to B;

A = B if A and B have exactly the same elements.
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So, for example,
AAB=(A\B)U(B\ A)=(AUB)\ (AN B),
|AU B|+|ANnB|=|A| +|B]

The notation {z : P} means the set of all elements z having property P. So, for
example,

AUB={z:z€ Aorz € B}.

Similarly, {z,y} is the set consisting of the elements z and y only. It is sometimes
called an wnordered pair, since {z,y} = {y, z}. By contrast, the ordered pair (2,y)
has the property that (z,y) = (u,v) if and only if z = 4 and y = v. This is familiar
from Cartesian coordinates of points in the Euclidean plane.

The Carfesian product A x B is the set of all ordered pairs (e,b), with @ € A
and b € B. Similarly for more than two factors. For example, we write A® for the
set of ordered n-tuples of elements of A, for any positive integer n. We have

|4 x B| = |A]-B],
4% = |

Until last century, a function was something described by a formula (typically a
polynomial or a power series); it was the ambiguity in this definition which led to
the modern version. A function f from A to B is a subset of A x B with the property
that, for any a € A, there is a unique b € B such that (e,b) € f. If (a,5) € f, we
write f(a) = b.!? Usually there is a rule for calculating b = f(a) from q, but this is
not part of the definition.

If A ={ay,0z,...,0,}, then any function f : A — B can be specified by giving
the n-tuple of values (f(a;), f(az),.-., f(as)). Thus the number of functions from
A to B is |B|4l. Motivated by this, the set of functions from A to B is sometimes
written B4, so that |B4| = | B|lAl.

The power set P(A) is the set of all subsets of A. Any subset X of A is specified
by its characteristic function, the function fx : A — {0,1} defined by

1 ifa€eX;
fx(a) = {0 g X
(Two subsets are equal if and only if their characteristic functions are equal) So

there are as many subsets of A as there are functions from A to {0,1}; that is,

[P(A)| = 2.
2.8. Exercises

1. Criticise the following proof that 1 is the largest natural number.

Let n be the largest natural number, and suppose than n # 1. Then
n > 1, and 50 n? > n; thus n is not the largest natural number.

12 This definition is very familiar, despite appearances. You probably visualise ‘the function y = 2% in
terms of its graph in the Euclidean plane with coordinates (, ); and the graph consists of precisely
those ordered pairs (z,y) for which ¥ = z%. In other words, the graph is the function!
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2. Prove by induction that the Odometer Principle with base b does indeed give the
representation z,_; ...z;zo for the natural number

N=g, 6" +. -+ b+ 3.

> 2

for n > 1. (You may use the fact that (1 + 1y* < e for all n.)
(b) Use the arithmetic-geometric mean inequality!® to show that n! < (2™ for

n > 1, and deduce that
1 ﬁ)n
ni<e (2
forn > 1.

4. (a) Prove that logz grows more slowly than z¢ for any positive number c.
(b) Prove that, for any c,d > 1, we have ¢* > z¢ for all sufficiently large z.

5. (a) We saw that there are 2’ = 256 labelled families of subsets of a 3-set. How
many unlabelled families are there?

(b) Prove that the number F(n) of unlabelled families of subsets of an n-set
satisfies log, F(n) = 2" + O(nlogn).

3. (a) Prove by induction that

6. Verify that the numbers of graphs are given in Table 1 for n <35

n 2 3 4 5
labelled 2 8 64 1024
unlabelled 2 4 11 34

Table 2.1. Graphs

7. Suppose that an urn contains four balls with different colours. In how many
ways can three balls be chosen? As in the text, we may be interested in the order
of choice, or not; and we may return balls to the urn, allowing repetitions, or not.
Verify the results of Table 2.

order order
important unimportant
repetition
allowed 64 20
repetition
not allowed 24 4

Table 2.2. Selections

8. A Boolean function takes n arguments, each of which can have the value TRUE
or FALSE. The function takes the value TRUE or FALSE for each choice of values of
its arguments. Prove that there are 22" different Boolean functions. Why is this the
same as the number of families of sets?

13 The arithmetic-geometric mean inequality states that the arithmetic mean of a list of positive
numbers is greater than or equal to their geometric mean, with equality only if all the numbers are
equal. Can you prove it? (HINT: Do the special case when all but oge of the numbers are equal by
calculus, and then the general case by induction.)
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9. Logicians define a natural number to be the set of all its predecessors: so 3 is the
set {0,1,2}. Why do they have to start counting at 07

10. A function f has polynomial growth of degree d if there exist positive real numbers
@ and b such that an? < f(n) < bn? for all sufficiently large n. Suppose that f has
polynomial growth, and g has exponential growth with exponential constant greater
than 1 (as defined in the text). Prove that f(n) < g(n) for all sufficiently large n. If
f(r) = 10°n' and g(n) = (1.000001)", how large is ‘sufficiently large'?

11. Let B be a set of subsets of the set {1,2,...,v}, containing exactly & sets.

Suppose that
e every set in B contains exactly & elements;
e fori=1,2,...,v, the element i is contained in exactly » members of B.

Prove that bk = vr,
Give an example of such a system, withv =6,k =3,b=4,r =2.

12. The ‘Russian peasant algorithm’ for multiplying two natural numbers m and n
works as follows.!*

(2.7.3) Russian peasant multiplication
to multiply two natural numbers m and n
Write m and n at the head of two columns.

REPEAT the sequence
e halve the last number in the first column (discarding the re-
mainder) and write it under this number;
e double the last number in the second column and write it under
this number;
UNTIL the last number in the first column is 1.
For each even number in the first column, delete the adjacent
entry in the second column. Now add the remaining numbers in
the secord column. Their sum is the answer.

For example, to calculate 18 x 37:

18 37

74
148
296
592

= N He O

666
Table 2.3. Multiplication

PROBLEMS. (i) Prove that this method gives the right answer.

4 No tables needed, except two times!
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(ii) What is the connection with the primary school method of long multiplication?
HINT FoR (i) AND (ii): Express m (and n) to the base 2.

(ili) Suppose we change the algorithm by squaring (instead of doubling) the numbers
in the second column, and, in the last step, multiplying (rather than adding)
the undeleted numbers. Prove that the number calculated is n™. How many
multiplications does this method require?

13. According to the Buddha,

Scholazs speak in sixieen ways of the state of the soul after death.
They say that it has form or is formless; has and has not form,
or neither has nor has not form; it is finite or infinite; or both or
neither; it has ore mode of consciousness or several; has limited
consciousness or infinite; is happy or miserable; or both or neither.

How many different possible descriptions of the state of the soul after death do you
recognise here?

14, The library of Babel’® consists of interconecting hexagonal rooms. Each room
contains twenty shelves, with thirty-five books of uniform format on each shelf,
A book has four hundred and ten pages, with forty lines to a page, and eighty
characters on a line, taken from an alphabet of twenty-five orthographical symbols
(twenty-two letters, comma, period and space). Assuming that one copy of every
possible book is kept in the library, how many rooms are there?

15. COMPUTER PROJECT. Develop a suite of subroutines for performing arithinetic on
integers of arbitrary size, regarded as strings of digits. (You should deal with input
and output, arithmetic operations — note that division should return a quotient
and a remainder — and comparisons. You might continue with exponentiation and
factorials, as well as various combinatorial functions to be defined later.)

15 Jorge Luis Borges, Labyrinths (1964).

3. Subsets, partitions, permutations

The emphasis on mathematical methods seems to be shifted more towar.ds
combinatorics and set theory — and away from the algorithm of differential
equations which deminates mathematical physics.

J. von Neumann & O. Morganstern,
Theory of Games and Economic Behaviour (1944).

The process is directed always towards analysing and sepa rating‘the material
into a collection of discrete counters, with which the detached intellect can
make, observe and enjoy a series of abstract, detailed, artificial patterns of
words and images (you may be reminded of the New Criticism). ..

Elizabeth Sewell, ‘Lewis Carroll and T. S. Eliot as Nonsen.se Poets’
in Neville Braybrooke (ed.), T. S. Eliot (1958).

Torics: Subsets, binomial coefficients, Pascal’s Triangle, B.inom.ial
Theorem; [congruences of binomial coefficients]; permutations, or-
dered and unordered selections, cycle decomposition of a permuta-
tion; estimates for the factorial function; relations; [finite topolo-
gies; counting trees}; partitions, Bell numbers

TECHNIQUES: Binomial coefficient identities; use of double counting;
estimates via integration

ALGORITHMS: Sequential and recursive generation of combinatorial
objects

CROSS-REFERENCES: Odometer Principle; double counting (Chap-
ter 2); recurrence relations (Chapter 4)

This chapter is about the central topic of ‘classical’ combinatorics, what is often
referred to as ‘Permutations and Combinations’. Given a set with n elements, how
many ways can we choose a selection of its elements, with or without }'espect to the
order of selection, or divide it up into subsets? We'll define the various numbers
involved, and prove some of their properties; but these echo through subsequent

chapters.
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3.1. Subsets

How many subsets does a set of n elements have?

The number of subsets is 2". There are several different ways to see this. Perhaps
most easily, for each of the n elements of the set, there are two choices in building
a subset (viz., put the element in, or leave it out); all combinations of these choices
are possible, giving a total of 2".

Implicitly, this argument sets up a bijection between the subsets of a set X and
the functions from X to {0,1}. The function fy corresponding to the subset Y is
defined by the rule

1 ifze?Y
Fr(z) = {0 it gv.
Conversely, a function f corresponds to the set ¥ = {z € X : f(z) = 1}. The
function fy is called the characterisiic function or indicator function of Y.
If X = {0,1,...,n — 1}, then we can represent a function f : X — {0,1} by
the n-tuple (f(0), f(1),..., f(n — 1)) of its values. Thus subsets of X correspond to
n-tuples of zeros and ones.

We can take this one step further, and regard the n-tuple as the base 2 repre-
sentation of an integer

N=fn—-12"" ...+ f(1)2+ £(0),

as described in Chapter 2. Each n-tuple corresponds to a unique integer; the smallest
is 0 (corresponding to the empty set), and the largest is 21 + ... +24+1=2" -1
(corresponding to the whole set X), and every integer between represents a unique
subset, So the number of subsets is equal to the number of integers between 0 and
2™ — 1 {inclusive), namely 2".

Note that this method gives a convenient numbering of the subsets of the set
{0,...,n—1}: the k*" subset X; corresponds to the integer k, where 0 < k < 2" —1.
The set X; is easily recovered by writing & to base 2. The numbering has some
further virtues. For example, the set X depends only on %, and not on the particular
value of n used; replacing n by a larger value doesn’t change it. So we get a unique
set X, of non-negative integers corresponding to each non-negative integer k. For
another nice property, see Exercise 2.

Yet another proof of the formula for the number F(n) of subsets of an n-set is
obtained by noting that we can find all subsets of {1,...,n+ 1} by taking all subsets
of {1,...,n} and extending each in the two possible ways — either do nothing,
or add the element n + 1. So F(n + 1) = 2F(n). This is a recurrence relation, by
which the value of F' is determined by its values on smaller arguments. Recurrence
relations form the subject of the next chapter.

3.2. Subsets of fixed size

Let n and & be non-negative integers, with 0 < k& < n. The binomial coefficient (’;) is
defined to be the number of k-element subsets of a set of n elements. (The number
obviously doesn’t depend on which n-element set we use.) This number is often
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written as "Cy, and is read ‘n choose k. It is called a binomial coefficient (for reasons
to be elaborated later).

(3.2.1) Formula for binomial coefficients

(n)_n(n—l)...(n—k+l)_ n!
k] kk-1)...1 T k{n—k)

Note that (g) = 1 (the empty set) and (’;) =1 (the whole set) — the proposed
formula is correct in these cases, in view of the convention that 0! = 1 (see
Section 2.3). .

As suggested by the name, we prove this by counting choices. Given a set X of
n elements, in how many ways can we choose a set of ¥ of them? Clearly there are
n possible choices for the ‘first’ element, (n — 1) choices for the ‘second’, ... , and
{(n — k+1) choices for the ‘k"; in total, n(n—1)... (n —k +1). But we put the terms
‘first’, ‘second’, etc., in quotes because a subset has no distinguished first, second, . ..
element. In other words, if the same & elementis were chosen in a different order, the
same subset would result. So we must divide this number by the number of orders
in which the & elements could have been chosen. Arguing exactly as before, there
are k choices for which one is “first’, (k — 1) for which is ‘second’, and so on. Division
gives the middle expression in the box. Now the third expression is equal to the
second because n(n —1)...(n — k + 1) = n!/(n — k)!; the denominator cancels all
the factors from n — & on in the numerator.

Once we have a formula, there are two possible ways to prove assertions or
identities about binomial coefficients. There is a combinatorial proof, arguing from
the definition (we will interpret (") as the number of ways of choosing a team of k

k
players from a class of n pupils); and there is an algebraic proof, from the formula.

We give a few simple ones.
ny [ n
k) \n—k)

FIRST PROOF. Choosing a team of & from a class of n is equivalent to choosing the
n — k people to leave out.

(3.2.2) Pact.

SECOND ProOF. It's obvious from the last formula in the box.

n n-—1
Hi) (o)
FIRST PROOF. We choose a team of £ and designate one team member as captain.
There are (’,:) possible teams and, for each team, there are k¥ choices for the captain.

(3.2.3) Fact.
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Alternatively, we could choose the captain first (in n possible ways), and then the
remainder of the team (k — 1 from the remaining n — 1 class members).

Note that this is an application of the ‘double counting’ principle described in
Section 2.6.

SECOND PRrooF. Try it yourself!

You will find that the SECOND PROOFs above probably come more naturally to
you. For this reason, I'll concentrate on the combinatorial style of proof for the next
couple of results. Remember that the algebraic proof is not always appropriate or
even possible — sometimes we won't have a formula for the numbers in question,
or the formula is too complex. (See the discussion of Stirling numbers in Section 5.3

for examples of this.)
n+ly ( n n
(F)=(2)+6)

PROOF. We have a class of n + 1 pupils, one of whom is somehow ‘distinguished’, and
wish to pick a team of k. We could either include the distinguished pupil (in which
case we must choose the other k£ — | team members from the remaining n pupils),
or leave him out (when we have to choose the whole team from the remaining »).

£()-r

=0

(3.2.4) Fact.

(3.2.5) Fact.

PROOF. This one is easy — there are 2" subsets altogether (of arbitrary size).

id n)2 (2n)
,‘zd:, (k nj
ProOF. The right-hand side is the number of ways of picking a team of n from a

class of 2n. Now suppose that, of the 2n pupils, n are girls and n are boys. In how
many ways can we pick a team of k girls and n — k boys? Obviously this number is

(:) ("fk), which is equal to (:)2, by Fact 3.2.2. The result now follows.

The definition of the binomial coefficient (Z) actually makes sense for any non-
negative integers n and k: if & > n, then there are no k-subsets of an n-set, and
5 = 0. The (first) formula gives the right answer, since if k¥ > n then one of the
factors-in the numerator is zero. (This cannot be assumed, since the argument we
gave is only valid if k¥ < n.) However, the second formula makes no sense (unless,
very dubiously, we assume that the factorial of a negative integer is infinite!).
Facts 3.2.2-4 above remain valid with this more general interpretation. (You
should check this.)
Sometimes it is convenient to widen the definition still further. For example, if
k < 0, we should define (’,:) = 0, in order that Fact 3.2.2 should hold in general. We'll

(3.2.6) Fact.
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see in Chapter 4 that it is possible to relax the requirement that » is a non-negative
integer even further. The most general definition, using the formula, works for any
real number n and any infeger k: we set

(n) ={n(n—l)..l.c'(n—lc+1) k>0
k 0 ) if k < 0.

3.3. The Binomial Theorem and Pascal’s Triangle

Fact 3.2.5 above can be generalised to the celebrated Binomial Theorem.! A binomial
is a polynomial with two terms; the Binomial Theorem states that, if a power of a
binomial is expanded, the coefficients in the resulting polynomial are the binomial
coeflicients (from which, obviously, they get their name).

(3.3.1) Binomial Theorem

1+t =3 (Z)t".

k=0

FIRST PROOF. It's clear that (1 + ¢)" is a polynomial in ¢ of degree n. To find the
coefficient of ¢, consider the product

1+ +8)...(1+9 (n factors).

The expansion is obtained by choosing either 1 or ¢ from each factor in all possible
ways, multiplying the chosen terms, and adding all the results. A term t* is obtained
when t is chosen from % of the factors, and 1 from the other n — &k factors. There
are (’,:) ways of choosing these k factors; so the coefficient of * is (:), as claimed.

SECOND PROOF. The theorem can be proved by induction on n. It is trivially true
for n = 0. Assuming the result for n, we have

A+ =(14+8)"-(1+1¢)

(G0

the coefficient of t* on the right is (k'_‘l) + (:) (the first term coming from ¢*-! . ¢
and the second from ¢* - 1); and

(2)+()-(4)

! Proved by Sir Isaac Newton in about 1666.

by Fact 3.24.
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The Binomial Theorem allows the possibility of completely different proofs of
properties of binomial coefficients, some of which are quite difficult to prove in other
ways. Here are a couple of examples. First, a proof of Fact 3.2.3.

Differentiate the Binomial Theorem with respect to i:

n(l+8)* =% k(:)t’“’l.
k=1

The coefficients of t°*~! on the left and right of this equation are n(:'_':) and k(:)
respectively.

(3.3.2) Fact. For n > 0, the numbers of subsets of an n-set of even and of odd
cardinality are equal (viz., 27).

PROOF. Put ¢t = —1 in the Binomial Theorem to obtain

0=(-1r =3 ()0,

k=0

n n
= @)-=0)
k odd

k even

hence

But the two sides of this equation are just the numbers of subsets of even, resp. odd,
cardinality.

If n is odd, then k is even if and only if n — k is odd; so complementation sets up
a bijection between the subsets of even and odd size, proving the result. However, n
general, a different argument is required. The map X — X A{n} (that is, if n € X,
then remove it; otherwise put n into X) is a bijection on subsets of {1,..., n} which
changes the cardinality by 1, and hence reverses the parity; so there are equally
many sets of either parity.

The argument can be refined to calculate the number of sets whose size lies in
any particular congruence class. [ illustrate by calculating the number of sets of size
divisible by 4. I assume that n is a multiple of 8. (The answer takes different forms
depending on the congruence class of n mod 8.)

(3.3.3) Proposition. If n is a multiple of 8, then the number of sets of size divisible
by 4 is 2n% + 20v-2)/2,

For example, if n = 8, the number of such sets is (g) + (i) + (g) =26 4 28,
ProoF. We let A be the required number, and B the number of sets whose size is
congruent to 2 (mod 4). By Fact 3.3.2, A+ B =271 '

Now substitute ¢ = i in the Binomial Theorem. Note that 1 +1 = V2e"/4, and
s0 (since n is a multiple of 8), (1 +i)" = 2"/2. Thus

M=y (:)i".
k=0
Take the real part of the right-hand side, noting that i* = 1,i,—1, —1 according as
k=0,1,2 or 3 (mod 4). We obtain A — B = 2"/%. From this and the expression for
A + B above, we obtain the value of A (and that of B).
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REMARK. By taking the imaginary part of the equation, we find the numbers of sets
with size congruent to 1, or to 3, mod 4.

The binomial coefficients are often written out in the form of a triangular array,
known as Pascal’s Triangle:?

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 5 70 56 28 7 1

Thus, (:) is the k** element in the n*® row, where both the rows an the elements
in them are numbered starting at zero. Fact 3.2.4 shows that each internal element
of the triangle is the sum of the two elements above it (ie., above and to the left
and right). Moreover, the borders of the triangle are filled with the number 1 (since
(g) = (2) = 1). With these two rules, it is very easy to continue the triangle as far
as necessary. This suggests that Pascal’s Triangle is an efficient tool for calculating
binomial coefficients. (See Exercise 7.)

3.4. Project: Congruences of binomial coefficients

A popular school project is to examine the patierns formed by the entries of Pascal’s
Triangle modulo a prime. For example, the first eight rows mod 2 are as follows:

T
If T consists of the first 2* rows, then the first 2"*! rows look like 7 0 T .

Thus the pattern has a ‘self-similarity’ of the kind more usually associated with
fractals than with combinatorics! A similar pattern holds for congruence modulo
other primes, except that the copies of T are multiplied by the entries of the p-rowed
Pascal triangle.

2 Not surprisingly, this object was known long before Pascal. I owe to Robin Wilson the information
that it appears in the works of the Majorcan theologian Ramon Llull (1232-1316). Llull also
gives tables of combinations and mechanical devices for generating them, complete graphs, trees,
etc. However, combinatorics for him was only a tool in his logical system, and logic was firmly
subservient to theology. In his first major work, a commentary on Al-Ghazali, he says, ‘We will speak
briefly of Logic, since we should speak of God.
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The mathematical formulation is remarkably simple. It was discovered by Luca
in the nineteenth century.

(3.4.1) Lucas® Theorem
Let p be prime, and let m = ag + a1p + ... + axp®, n =b+bp+
oo+ bypt, where 0 < a;,b; < p fori =0,...,k — 1. Then

(m)=T1(5) e

Note. We assume here the usual conventions for binomial coefficients, in particular, (:) =0ife<d

Proor. It suffices to show that, if m = cp+a and n = dp + b, where 0 < a,b < p, then

(M=) @en

.F:r a=ap,b=bp,andc=as +...+ ap* "}, d=b; + ...+ brp*~!; and then induction finishes the
job.

This assertion can be proved directly, but there is a short proof using the Binomial Theorem,
The key is the fact that, if p is prime, then

1+ =1+t (mod p).

This is because each binomial coefficient (£), for 1 £ i < p— 1, is a multiple of p, so all intermediate
terms in the Binomial Theorem vanish mod p, (For (f) = p!/il(p ~ i)}, and p divides the numerator
but not the denominator.) Thus (congruence mod p):

A+ =1 +0)®(1+1)°
=1+ +0)°
- = (¢ e.“ ay ;
-2 () (e

Slinoe 0 < a,b < p, the only way to obtain a term in * = 9?45 in this expression is to take the
term ¢ = d in the first sum and the term j = b in the second; this gives

(=@ moan,

as required.

3.5. Permutations

There are two ways of regarding a permutation, which I will call ‘active’ and
‘passive’. Let X be a finite set. A permutation of X , in the active sense, is a
one-to-one mapping from X to itself. For the passive sense, we assume that there
is a natural ordering of the elements of X, say {z,,z,,... »Zn}. (For example, X
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might be {1,2,...,n}.) Then the passive representation of the permutation r is the
ordered n-tuple (7(z1), 7(zx2),...,m(2,)).2

In the preceding paragraph, I wrote 7(z) for the result of applying the funection
7 to the element z. However, in the algebraic theory of permutations, we often have
to campose permutations, i.e., apply one and then the other. In order that the result
of applying first 7, and then 7, can be called 7, it is more natural to denote the
image of z under = as z7. Then

.r(?l'l'ﬂ'g) = (x‘ll’l)‘ﬂ'g,

which looks like a kind of associative law!4

As is (I hope) familiar to you, the set of all permutations of {1,...,n}, equipped
with the operation of composition, is a group. It is known as the symmetric group
of degree n, denoted by S, (or sometimes Sym(n)). The symmetric groups form one
of the oldest and best-loved families of groups.

From now on, we take X = {1,2,...,n}.
A permutation 7 can be represented in so-called two-line notation as

(1 2 ... n)
Ir 2x ... nx/)~
The top row of this symbol can be in any order, as long as zx is directly under z

for all z. If the top row is in natural order, then the bottom row is the passive form
of the permutation.

(3.5.1) Proposition. The number of permutations of an n-set is nl.

ProoF. Take the top row of the two-rowed symbol to be (1 2 ... n). Then there
are n choices for the first element in the bottom row; n — 1 choices for the second
{anything except the first chosen element); and so on.

Note that this formula is correct when n = 0: the only permutation of the empty
set is the ‘empty function’,

There is another, shorter, representation of a permutation, the cycle form. A
cycle, or cyclic permutation, is a permutation of a set X which maps

I Ty L T, T,
where 2y,...,2, are all the elements of X in some order. It is represented as
(z1 2 ... z») (not to be confused with the passive form of a permutation!) The
cycle is not unique: we can start at any point, so (z; ... @, 21 ... Zi_1) represents

the same cycle.

2 In the nineteenth century, it was more usual to refer to a passive permutation as a permutation,
synonymous with ‘rearrangement’. An active permutation was called a substitution.

4 We say that permutations act on the right if they compose according to this rule.
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(3.5.2) Proposition. Any permutation can be written as the composition of cycles on
pairwise disjoint subsets. The representation is unique, apart from the order of the
factors, and the starting-points of the cycles.

The proof of this theorem is algorithmic. Let o be a permutation of X.

(8.5.3) Decomposition into disjoint cycles
WHILE there is a point of X not yet assigned to a cycle,
o choose any such point z;
o let m be the least positive integer such that z7™ = z;
e construct the cycle (z zm ... za™1).
RETURN the product of all cycles constructed.

PROOF. In the algorithm, we use the notation ™ for the composition of m copies of
1. We first have to show that the construction makes sense, that is, (z o7 ... z7™")
really is a cycle. This could only fail if the sequence of elements contains a repetition.
But, if z7* = z77, where 0 < i < j < m, then (because 7 is one-to-one) it holds that
£ = zn~*; but this contradicts the choice of m as least integer such that zn™ = z.

Next, we establish that the cycles use disjoint sets of points. Suppose that 27’ =
yn?, and suppose that z is chosen before y. If y=™ =y, then za*t™f = ya™ =y,
contradicting the fact that y (when chosen) doesn’t already lie in a cycle.

It is clear that any point of X lies in one of the chosen cycles. Finally, the
composition of all these cycles is equal to 7. For, given a point 2, there is a unique
vy and ¢ such that z = yn'. Then the cycle containing y agrees with = in mapping 2
to y=**1, and all the other cycles have no effect on z.

ExaMPLE. The permutation (; AN g), in cycle notation, is (1 3 4)(2 6)(5). This

is just one of 36 different expressions: there are 3! = 6 ways to order the three cycles,
and 3-2- 1 = 6 choices of starting points.

3.6. Estimates for factorials

Since many kinds of combinatorial objects (for example, binomial coefficients) can
be expressed in terms of factorials, it is often important to know roughly how large
n! is. In Exercise 3 of the last chapter, upper and lower bounds were found by ad
hoc methods. In this section, a more systematic approach will yield better estimates.
I will prove:

(3.6.1) Theorem.
nlogn —n+1<logn! <nlogn —n+ (log(n +1) +2 —log2).
From this, it follows that

logn! = nlogn — n + Olog n).
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This is weaker than an asymptotic estimate for n! itself: the exponentials of the
upper and lower bounds are e(n/e)* and {(n + 1)e’(n/e)", which differ by a factor
of (n + 1)e/2. A more precise estimate (not proved here) is:

(3.6.2) Stirling’s Formula
o (2) (0 (D)

PrOOF oF THEOREM. The main tool is shown in the pictures of Fig. 3.1. Since

44

y=logz 7? 'g=!og:c

n-ln 123 n=1n n+l

(b)

Fig. 3.1. Sums and integrals

y = logx is an increasing function of z for all positive 2 (its derivative, 1/z, is
positive), the tops of the rectangles in Fig. 3.1(a) all lie above the curve y = log z,
and those in Fig. 3.1(b) lie below the curve. In other words,

n n 41
]1 log z dzﬁZlogiS/ log x dz.
2

. =2
The term in the middle is logn!. So
nlogn—n+1<logn! < (n+1)log(n+1)—(n+1) —2log2 + 2.
The lower bound is exactly what is needed. For the upper bound, note that
n+1
log(n+l)—logn=/ d—3:<l,
n x n
so nlog(n + 1) < nlogn + 1. Combining this with the upper bound, we obtain

logn! <log(n+ 1)+ nlogn —n +2log2 — 2.

If you are interested, you could regard the proof of Stirling’s Formula as a
project.® A lower bound only slightly weaker than Stirling’s is given in Exercise 11.

Exercise 12 gives an example of the use of Stirling’s Formula to estimate a
binomial coefficient. A weaker result can be obtained much more easily:

5 An accessible proof can be found in Alan Slomson, Introduction 10 Combinatorics (1991).
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(3.6.3) Proposition.
2
9% f(an + 1) < (:) <o

ProoF. Immediate from the fact that the 2n + 1 binomial coefficients (25"), for
i=0,...,2n, have sum 2?", and the middle one is the largest.

3.7. Selections

In how many ways can one select k objects from a set of size n?

The answer differs according to the terms of the problem, as we saw in Chapter 2.
Specifically, is the order in which the objects are chosen significant (a permutation)
or not (a combination)? and is the same object permitted to feature more than once
in the selection, or not? (The term ‘permutation’ is used in a more general sense
than in the last section: this is what might more accurately be called a ‘pariial
permutation’)

(3.7.1) Theorem. The number of sclections of k objects from a set of n objects is
given by the following table:

Permutations and combinations
Order significant Order not significant
Repetitions n* nt+k—1
allowed k
Repeions w1y n-krn) ()

PROOF. For the column ‘order significant’, these are straightforward. If repetitions
are allowed, there are n choices for each of the k objects; if repetitions are not
allowed, there are n choices for the first, » — 1 for the second, n — k + 1 for the &M,

For ‘order not significant’, if repetitions are not allowed, we are counting the
k-subsets of an n-set, which we already know how to do. The final entry is a bit
harder.

(8.7.2) Lemma. The number of choices of k objects from n with repetitions allowed
and order not significant is equal to the number of ways of choosing n non-negative
integers whose sum is k.

PROOF. Given a choice of k objects from the set a1, ... ,ax, let z; be the number of
times that the object a; gets chosen. Then z; > 0, =i, z: = k. Conversely, given
(Z1,. .. ,%n), form a selection by choosing object a; just z; times.
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(3.7.3) Lemma. The number of n-tuples of non-negative integers 21,...,%, With
b1t ot Bnm ks (") = (.

ProoF. Consider the following correspondence. Put n + £ — 1 spaces in a row,
and fil » — 1 of them with markers. Let z; be the number of spaces before the
first marker; z; the number of spaces between the (i — 1)* and i*h marker, for
2 < i <n-—1; and 2, the number of spaces after the n'" marker. Then z; > 0,
Y a; = (n+k—1)— (n — 1) = k. Conversely, given z,,.. ., ., put markers after z,
spaces, after z, more spaces, . .., after z,.; more spaces (so that 2, spaces remain).

EXAMPLE. Suppose that n = 3, k = 4. The pattern of spaces and markers
ODORORO

corresponds to the values z; = 2, 2; = 1, 23 = 1. Conversely, the values (z1,Z2,%3) =
(0,0,4) correspond to the pattern

RROOO0O.

n+k—1) _

Now the number of ways of choosing the positions of the markers is ( o) =

("+t'l) , as claimed.

REMARK. Using the extended definition of binomial coefficients, the number of
selections with repetitions allowed and order not significant can be written

()

A common puzzle is to find as many words as possible which can be formed
from the leiters of a given word. Of course, the crucial feature of this problem
is that the words formed should belong to some given human language (i.e., they
should be found in a standard dictionary). There are two possible strategies for this
problem. We could either form all potential words (all permutations of whatever
length), and look each one up in the dictionary; or go through the entire dictionary,
and check whether each word uses a subset of the given letters. In order to decide
which strategy is more efficient, we need to answer a theoretical question (how many
permutations are there?) and some practical ones (how many words are there in the
dictionary, and how fast can we look them up?)

We will solve a special case of the theoretical question. Assume that the n given
letters are all distinct. We will call any ordered selection without repetition from
these letters a word (without judging its legality — note in particular that we include
the ‘empty word’ with no letters, which doesn’t appear in any dictionary®).

(3.7.4) Proposition. The number of ordered selections without repetition from a set
of n objects is |e - n!|, wheze e is the base of natural logarithms.

8 If it did, how would you look it up?
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PrOOF. The number f(n) in question is just

So
1 1

=n+l+(n+1)('n+2)+'“
S S
n+l (n+1)?

=l£h

e-n!— f(n)

+...

3

so f(n) = e-n!].

If the allowed letters contain repetitions, the problem is harder, It is possible to
derive a general formula; but it is probably easier to argue ed koc in a particular
case, as the next example shows.

ExaMPLE. How many words can be made from the letters of the word FLEECE?

We count words according to the number of occurrences of the letter E. If there
is at most one E, we can invoke the previous result: there are 24 +24+12+4+1 =65
such words (including the empty word). If there are two Es, let us imagine first that
they are distinguishable; then there are 2+3-6 + 3-24 4 120 = 212 possibilities. (For
example, with four letters altogether, we choose two of the remaining three letters
in (;) = 3 ways, and arrange the resulting four in 4! = 24 ways.) Since the two
Es are in fact indistinguishable, we have to halve this number, giving 106 words.
Finally, with three distinguishable Es, there would be 6 +3-24 +3-120+ 720 = 1158
possibilities, and so there are 1158/6 = 193 words of this form. So the fotal is
65 + 106 + 193 = 364 words.

3.8. Equivalence and order

A relation on a set X is normally regarded as a property which may or may not
hold between any two given elements of X. Typical examples are ‘equal’, less than’,
‘divides’, etc. The definition comes as a surprise at first: a relation on X is a subset
of X? (the set of ordered pairs of elements of X). What is the connection? Of
caurse, a relation in the familiar sense is completely determined by the set of pairs
which satisfy it; and conversely, given any set of pairs, we could imagine a property
which was true for those pairs and false for all others.

This dual interpretation causes a small problem of notation. In general, if
R C X2 is a relation, we could write # R y to have the same meaning as (z,y) € R.
This is consistent with the usual notations z = y, ¢ < ¥, 2|y, ete. But we don’t
reverse the procedure and write (z,y) € =, (2,y) € <, ete.!
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Here are some important properties which a relation R may or may not have:
o R is reflexive if, for all z € X, we have (z,z) € R.
e R is irreflexive if, for all z € X, we bave (z,z) ¢ R. (This is not the same as
saying ‘R is not reflexive’)
o Ris symmetricif, for all z,y € X, (2,y) € R implies (y,z) € R.
o R is antisymmetric if, whenever (z,y) € R and (y,z) € R both hold, then z = y.
e R is transitive if, for all z,y,z € X, (z,y) € R and (y,2) € R together imply
(z.2) €R
For example, the relation of equality is reflexive, symmetric and transitive; the
relation ‘less than or equal’ is reflexive, antisymmetric and transitive; the relation
‘less than’ is irreflexive, antisymmetric and transitive; and the relation of adjacency
in a graph (as described in Section 2.5) is irreflexive and symmetric.
Note that there are two ways of modelling an order relation: as ‘less than’
(irreflexive) or as ‘less than or equal’ (reflexive).

We proceed to define some important classes of relations in terms of these
properties.

An equivalence relation is a reflexive, symmetric and transitive relation. It
turns out that equivalence relations describe partitions of a set. Let R be an
equivalence relation on X. For z € X, the equivalence class containing z is the set
R(z) = {y € X : (z,y) € R}. A partition of X is a family of pairwise disjoint,
non-empty subsets whose union is X — thus, every point of X lies in exactly one
of the sets.

(3.8.1) Theorem. Let R be an equivalence relation on X. Then the equivalence
classes of R form a partition of X. Conversely, given any partition of X, there is
a unique equivalence relation on X whose equivalence classes are the parts of the
partition.

PRrROOF. Let R be an equivalence relation on X.
o Each equivalence class is non-empty, and their union is X; for, by reflexivity,
each point © € X lies in the class R(z), and conversely, R(z) contains z.
o The equivalence classes are pairwise disjoint. For suppose that two classes R(x),
R(y) have a common point z. We will show that R(z) = R(y). By definition,
(2, 2),(y,2) € R. By symmetry, (z,y) € R; then, by transitivity, (z,y) € R.
Now, to prove two sets equal, we have to show that each set contains the other.
So suppose that w € R(y). Then (y,w) € R. Since (z,y) € R, transitivity implies
that (z,w) € R, or w € R(z). So R(y) C R(z). The reverse implication is similar.

For the converse, suppose that the sets ¥,Y;,... form a partition of X. Define
a relation R by the rule that (z,y) € R if there is an index 7 such that z and y both
lie in R;. It is not difficult to prove that R is an equivalence relation. For example, to
show reflexivity, take z € X ; by assumption there is a (unique) i such that z € ¥;;
s0 (z,z) € R. The other two properties are an exercise.

Thus, for example, the number of partitions of a set is equal to the number of
equivalence relations on that set. We will study these numbers (the Bell aumbers) in
Section 3.11.
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We turn now to order relations. As mentioned above, there are two ways to
model an order relation: we use the reflexive one {taking ‘less than or equal’) as the
prototype.

A relation R on X is a partial order if it is reflexive, antisymmetric, and transitive.

Note that there may be some pairs of elements which are not comparable at all
(i.e., neither (z,y) € R nor (y,z) € R hold). A relation R is said to satisfy trichotomy
if, for any =,y € R, one of the cases (z,y) € R, £ = y, or (y,z) € R holds. Then
a relation R is a fofal order if it is a partial order which satisfies trichotomy. We
commonly omit the word ‘total’ here; an order is a total order.

(3.8.2) Proposition. The number of orders of an n-set is equal to n!.

ReMABK. In fact we show that, given any order on an n-set, its elements can be
numbered zy,...,z, so that (z;,%;) € Rif and only if 7 < j; and there is a unique
way of doing this. In other words, the axiomatic definition of order agrees with our
expectations!

PROOF. We show first that there is a ‘last’ element of X, an element z such that,
if (z,y) € R, then y = z. Suppose that no such z exists, Then, for any =z, there
exists y # z such that (z,y) € R. Start with z = z,, and choose 2, z3,... according
to this principle (so that (x;,zi41) € R for all ¢ ). By transitivity, (x;,z;) € R for
all ¢ £ j, and a; # %41 for all i. Now X is finite, so the sequence eventually
bites its tail; that is, there exists { < § so that z; = z;. Then (z;_1,z;) € R, and
(zj,25-1) = (24,%;-1) € R since ¢ £ j — 1. By antisymmetry, z; = 2;_,, contrary to
the comnstruction.

Now there cannot be more than one ‘last’ element, since, for any z and y, either
(z,y) € R or (y,z) € R by trichotomy.

Call the last element z,; then, by trichotomy, (z,z,) € R for all z € X,

Arguing by induction, there is a unique way to label the temaining elements as
Zly...,Tn-1, in accordance with the assertion. The proposition is proved.

We see that orders on X are equinumerous with permutations of X; indeed,
our representation of an order looks like the ‘passive’ form of a permutation. But
there is no ‘canonical’ bijection between orders and permutations; we need one
distinguished order to set up this correspondence. (Then any order R corresponds
to the permutation which takes the distinguished order into R.)

In the next section, we will consider a generalisation of (partial) orders. A
relation R is a partial preorder (or pre-pariial order) if it is reflexive and transitive —
we relax the condition of antisymmetry. Exercise 18 outlines a proof that, if R is a
partial preorder on X, then there is a natural way to define an equivalence relation
on X so that the set of equivalence classes is partially ordered. (We set z = y if
both # R y and y R = hold: think of such = and y as being indistinguishable. Now
the truth of the relation z By is unaffected if either = or y is replaced by a point
which is indistinguishable from it; so R induces a relation on the equivalence classes
which is still reflexive and transitive, and is also antisymmetric.)

A partial preorder satisfying trichotomy is called a preorder.
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3.9. Project: Finite topologies

Topology is the study of continuity. The term suggests doughnuts, Mobius bands,
and such like. There is, however, an abstract definition of a topology, and it applies
to finite as well as infinite spaces. We are going to translate the meaning of ‘finite
topology’ into something simpler and more combinatorial.

A topology consists of a set X, and a set T of subsets of X, satisfying the following axioms:
edcTand XeT;
« the union of any collection of sets in 7 is in 7;
o the intersection of any two sets in 7 isin 7.
Sets in 7T are said to be open. The idea is that, if z is a point and U an open set containing z, the
points of U are in some sense ‘close’ to z. (Indeed, U is often called a neighbourhood of z.)

RemaRK. It follows by induction from the third axiom that the intersection of any finite number of
members of 7 is a member of 7. If X is finite, the second axiom need only deal with finite unions,
and so it t0o can be simplified to the statement that the union of any two sets in 7 is in 77 then the
axioms are ‘self-dual’. This is not the case in general! “

(3.9.1) Theorem. Let X be finite. Then there is 2 one-io-one correspondence between the topologies
on X, and the partial preorders (i.c., reflexive and transitive relations) on X.

Thus, describing finite topologies (sets of sets) reduces to the simpler task of describing partial
preorders (sets of pairs). No such correspondence holds for infinite sets!

Proor. The correspondence is simple to describe; the verification less so.

CoNsTRUCTION 1. Let T be a topology on X. Define a relation R by the rule that (z,y) € R if every
open set containing z also contains y. It is trivial that R is reflexive and transitive; that is, R is a
partial preorder.

CONSTRUCTION 2. Let R be a partial preorder on X. Call a subset U of X open if, whenever z € U,
we have R(x) C U, where

R(z)={y:(z,y) € R}.
Let 7 be the set of all open aets. We have to verify that 7 is a topology. The first axiom requires
no comment. For the second axiom, let Uy, Us, ... be open, and & € | J; U;; then £ € U; for some j,
whence

Riz)cU; c|JUs

For ihe third axiom, let I/ and V be open and © € U/ N V. Then R(z) C U and R(x) C V, and s0
R(z) C(UNV); thus U NV is open.

All this argument is perfectly general. It is the fact that we have a bijection which depends on
the finiteness of X. We have to show that applying the two constructions in turn brings us back to
our starting point.

Suppose first that R is a partial preorder, and 7 the topology derived from it by Construction 2.
Suppose that (z,y) € R. Then y € R(z), 50 every open sef containing = also contains y. Convergely,
suppose that every open set containing = also contains y. The set R(x) is itself open (this uses the
transitivity of R: if z € R(), then R(z) € R(z)), and 50 y € R(z); thus (z,y) € R. Hence the partial
preorder derived from 7 by Construction 1 coincides with R. (We still haven't used finiteness!)

Conversely, let 7 be a topology, and R the partial preorder obtained by Construction 1. If
U e T and z € U, then R(z) C U; so U is open in the sense of Construction 2. Conversely, suppose
that U is open, that is, z € U/ implies R(z) € U. Now each set R(z) is the intersection of all members
of T containing z. (This follows from the definition of R in Construction 1.) But there are only
finitely many such open sets (here, at last, we use the fact that X is finite!); and the intersection of
finitely many open sets is open, as we remarked earlier; so R(z) is open. But, by hypothesis, U is
the union of the sets R(z) for all points € U; and a union of open sets is open, so U is open, as
required.
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the next thing one meets after the definition is usually
d to satisfy the axiom Ty if, given any two distinct
but not the other; it satisfies axiom T; if, given

In the axiomatic development of tapology,
the so-called ‘separation axioms'. A topology is sal
points = and y, there is an open set containing one
distinct = and y, there is an open set containing z but not y (and vice versa).

These two axioms for finite topologies have a natural interpretation in terms of the partial
preorder R. Axiom T, asserts that R never holds between distinct points z and y; that is, R is
the trivial relation of equality. Construction 2 in the proof of the theorem then shows that every
subset is open. (This is called the discrete topology.) Tt follows that any stronger separation axiom

(in particular, the so-called ‘Hausdorff axiom’ T3) also forces the topology to be discrete.
Axiom Ty translates into the condition that the relation R is antisymmetric; thus, it is a partial
order. So there is a one-to-one correspondence between To topologies on the finite st X and partial

orders on X.

3.10. Project: Cayley’s Theorem on trees

As we saw at the end of Section 3.8, the number of orderings of an n-set is equal
to the number of permutations of the same set, namely n!. This seems too trivial to
be of any use at all, but in fact it forms the basis of a conceptual proof of a very

famous theorem of Cayley:’

(3.10.1) Cayley’s Theorem on trees
The number of labelled trees on n vertices is n" 2.

The definitions will be given somewhat briefiy; graphs (and trees in particular) are discussed in
more detail in Chapter 11. A graph consists of a set of vertices and a set of edges, each edge consisting
of a pair of vertices. The edge is regarded as joining the two vertices. Graphs were mentioned in
Chapter 2, where we also introduced the distinction between labelled and unlabelled graphs. Here,
we will be counting labelled graphs; that is, the vertex set is always {1,2,...,nr}, and two graphs are
the same precisely when they have the same set of edges.

A path in a graph is a sequence of vertices, all distinct except perhaps the first and the last,
with the property that consecutive vertices in the sequence are adjacent (joined by an edge). A graph
is connected if any \wo vertices are the ends of a path. A cireuit is a path (having more than two
vertices) such that the first and last vertices are equal. A freeis a connected graph containing no
circuit. Cayley's Theorem asserts that there are n"~2 trees on n vertices.

We prove this theorem by counting slightly different structures called vertebrates. A vertebrate
is a tree with two distinguished vertices called the head and the tail, which may or may not be equal.

There is a path from the head to the tail, and it is unique (or else there would be a cireuit); this path

is called the backbone. If T(n) is the number of trees on n vertices, then the number of vertebrates is
). So it is enough to prove that there

n2T(n) (each of the head and tail is chosen from a set of size n
ate exactly n" vertebrates on the set N = {1,...,n}.
An endofunction on N is simply a function from N to itself. In fact, what we show is:

(3.10.2) Proposition. The numbers of vertebrates and endofunctions on N are equal.

Obviously there are n” endofunctions; so this will prove Cayley's Theorem. 1t would suffice to
d endofunctions. But there is no tnatural’ bijection, so we have

find a bijection between vertebrates an
to do something a bit more complicated. First, one more small piece of notation. A rooted trecis a

tree with a single distinguished vertex {called, naturally, the root.)

7 The proof outlined here is adapted from an argument by André Joyal (1981).
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(3.11.1) Recurrence for Bell numbers

id —1
B,=Y (’;_ I)B,._k.

Forn 2 1,

PRrooF. Take X = {1,...,n}, and consider a partition of X. It has a unique part
containing n, say {n} UY, where Y is a subset of the (n — 1)-set {1,...,n—1}.
The remaining parts form a partition of the set {1,...,n— 1} \ Y. These data (the
subset Y, and the partition) determine the original partition uniquely. If |Y| = k— 1,
then there are (“'1 choices of Y, and B, choices of a partition of the remaining

k_ “ 0
points. Multiplyinlg, and summing over all possible values of k (from 1 to n), gives

the result.
3 3 3 3
= (o) ()2 () ()2

For example,
=54+(3-2)+(3-1)+1
=15.

3.12. Generating combinatorial objects

Combinatorial problems have a tendency to grow in size explosively as the size of
the set increases. It often happens that a few small values can be done by hand, and
then we have to resort to the computer to settle a few more cases.® If the problem
involves checking all objects of some kind (subsets, permutations, etc.), then we need
an algorithm to generate all of these. .

Usually the simplest algorithm (conceptually) involves recursion, based on th.e
way in which the objects are built up from smaller ones. For example, here is
a recursive algorithm for generating the power set of {1,...,n}. Note how the
algorithm resembles the proof of the recurrence relation F(n+1)=2F(n), F(0)=1
for the counting function.

(3.12.1) Becursive algorithm: Power set of {1,...,n}
If n =0, return {0}.
Otherwise,
o generate the power set of {1,...,n —1}; .
e make a new copy of each subset and adjoin the element n to 1t;

e return the set of all sets created.

8 After this, brainwork is the only way.
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In symbols: P(0) = {0};
P{L,....n}) ={Y, YU {n}:Y € P{{L,...,n—1})}
for n > 0.
In a similar way, the recurrence relations
. ny f(n—1 + n—1
k] \k-1 k
e nl=n(n-1)!
o the recurrence relation for Bell numbers
suggest recursive algorithms for k-subsets, permutations, and partitions.

However, thete are disadvantages to this simple approach. The main one is that,
even for moderate values of n, the set of all subsets (or all permutations) is so large
that the computer’s memory will not hold it. What we have to do is, rather than
creating all the objects in one step, generate them one at a time, process each one,
and then throw it away when the next one is generated.® The algorithm will have
the following general form. There are two parts. The first step generates the ‘first’
object, The second step takes any object and tries to calculate the ‘next’ one; if there
is no ‘next’ one (so that the current object is the last), it should report this fact.
Then the structure of a program will be like this:

Generate first object.
REPEAT

e process current object;

o generate next object
UNTIL there’s no next object.

One very important observation is that this set-up presupposes that the objects
come in some order. But the order is not specified, except in the progression from
each object to the next.’® So these algorithms implicitly define an ordering of the
relevant objects.

For subsets of a set, we use the Odometer Principle from Chapter 2. Re-writing
the algorithm given there, we get:

(3.12.2) Algorithm: Subsets of {1,...,n}
FIRST SUBSET is (.
NEXT SUBSET after Y:
e Find the last elemeni i not in Y (working back from the end).
o If there’s no such element, then Y was the last subset.
o Remove from Y all elementis after i, and add 7 to Y. Return
this set.

® If you are writing programs implementing the following algorithms, a good ‘minimal processing’ is
to count the objects; this provides an additional check on the correciness of the program.
10 Compare the remarks about the order of the natural numbers in Chapter 2.
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This displays the principle correctly. In practice, it would be more efficient to
combine the steps. Thus, we take a pointer i, initialised to n. While : € ¥, we
remove : from ¥ and decrease i by 1. If we fall off the bottom (i.e., reach i = (),
then Y was the last set. Otherwise, add the final value of 7 to the set Y and return
the result.

Note that, if we represent a subset ¥ of X by its ‘characteristic function’, the
sequence (ay, ... ,an) with

o= { 1 ificy,
0 ifigy,
and interpret this as the base 2 representation of an integer N = ¢,2*"' 4+ ... + a,,
then the algorithm proceeds through the integers from 0 to 2* — 1 in order. This
ordering of the subsets of a set was discovered by Shao Yung (1160), who proposed
it as an alternative to the traditional order of the sixty-four I Ching hexagrams
attributed to King Wén (ca. 1150 BC); and independently and much later by
Leibniz (1703).! So we could simplify the algorithm, using the computer’s inbuilt
arithmetic. We define the set corresponding to a non-negative integer N by writing
N to the base 2 and interpreting the result as a characteristic function. If we denote
the set corresponding to N by Y (V), then the FIRST SUBSET is Y'(0); and the NeXT
SUBSET after Y (V) is Y (N + 1). (The ‘next subset’ procedure fails if N = 2" — 1.)

This procedure has an additional advantage, in that it gives us ‘random access’
to the subsets of a set: we can easily produce the N*" set (V) for any N with
0 < N < 2" — 1. However, for other cases considered below, it is harder to do this.

Consider the problem of generating all the k-subsets of a set. Here, there are
two essentially different ‘natural’ orders in which the subsets could be generated,
exemplified by the case n = 5, k = 3:12

123,124,125,134, 135, 145, 234, 235, 245, 345;
123,124,134, 234,125, 135,235, 145, 245, 345.

The first ordering is generated by a fragment of program which (in BASIC) would
look like this (for & = 3, n arbitrary):

FORi=1TOn—2
FORf=i+1TONn~—1
FOREk=j+1TOn
process {i, i, k}
NEXT &
NEXT j
NEXT ¢

M 1t is said that, after Leibniz’ discovery, he was informed of the Chinese precedence by a Jesuit
missionary, Fr. Joachim Bouvet. But Leibniz went further, using the binary representation for
arithmetic where Shao Yung was concerned only with the progression. For further discussion, see S.
N. Afriat, The Ring of Linked Rings (1982).

12 Tn fact, reversing the order of the numbers {1,...,n} and the order of the subsets takes the first
ordering to the second. But, to a computer, this would look like time reversal: not an easy trick!
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(Hopefully this is clear even to non-programmers.) This seems a natural way to do
it. But it only works in this form if & is small and fixed, Also, the other order
has a subtle advaentage. Observe that the 3-subsets of {1,...,4} occur first, in
their ‘natural’ order, followed by the subsets containing 5 (which are obtained by
adjoining 5 to the 2-subsets of {1,...,4} in their natural order). This is in accord
with the recursive version discussed earlier. Anyway, the following algorithm does
the job (producing the second order above):

(3.12.3) Algorithm: k-subseis of {1,...,n}
FIRST SUBSET is {1,...,%}.
NEXT SUBSET after Y = {y,...,yx}, wherey, < ... < yi:
o Find the first i such that y; + 1 ¢ Y;
® increase y; by 1, set y; = j for j < 1, and return the new set Y;
o this fails if i = k, y; = n, in which case Y = {n—k+1,...,n}
is the last set.

The two ‘natural’ orders of k-sets can be characterised as follows. The first is
the so-called lexicographic order. This means that, if we regard the symbols 1,...,n
as letters of an alphabet, and regard each k-set as a word by writing its elements in
alphabetical order, then the words occur in lexicographic order (the order in which
they would be found in a dictionary). The second order is reverse lezicographic: we
turn k-sets into words as above, but then reverse each word before putting them in
dictionary order.

Lexicographic order or something similar is usually the most natural for prob-
lems of this kind. The next algorithm, for permutations, uses lexicographic order,
where a permutation is taken in passive form. (That is, we regard a permutation
as an n-tuple (zi1,...,,), where x;,...,z, are 1,...,n in some order.) Here is the

algorithm.

(3.124) Algorithm: Permutations of {1,...,n)
FIRST PERMUTATION is given by z; =¢ fori = 1,...,n.
NEXT PERMUTATION after (zy,...,2,):
o Find the largest j for which z; < ©;;1 (working back from the
end).
o If no such j exists, then the current permutation is the last.
o Interchange the value of x; with the least z; greater than z;
with k > j; then reverse the sequence of values of 2,41, . .., %n;
return this permutation.

Here is an example. Suppose the current permutation is (436521). The algorithm
first locates j = 2, z; = 3. We assert that the current permutation is the last (in
lexicographic order) of the form (43...), and should be followed by the first of the
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form (45...), namely (451236). To obtain this, we find & = 4, z; = 5. (Since the
values after z; are decreasing, this can be located by working back from the end
until we first find a value greater than z;.) Then we interchange the entries in the
second and fourth positions, giving (456321); and reverse the entries in positions 3
to 6, giving (451236), as required.

It is much harder to give an algorithm of this kind for partitions of a set. This
is related to the non-existence of a simple formula for the Bell number.
3.13. Exercises

1. A restaurant near Vancouver offered Dutch pancakes with ‘a thousand and one
combinations’ of toppings. What do you conclude?

2. Using the numbering of subsets of {0,1,...,n — 1} defined in Section 3.1, prove
that, if X C X, then k < { (but not conversely).

3. Prove tl}xce following identities:
ARG
057 - (")

(recall the convention that (:) =0ifk <0Qork>n)

Eofnti n+k+1
ax(r)-(7)
@3 k(:) =21,

k=1

2 . .

il (7Y _J0O if k is odd;

@ 2 () ={Cimm) i

4. Following the method in the text, calculate the number of subsets of an n-set of
size congruent to m (mod 3) (m = 0,1,2) for each value of n (mod 6).

5. Let k be a given positive integer. Show that any non-negative integer N can be
written uniquely in the form

v () () v (7)

where 0 < z; < ... < 74y < 4. [HINT: Let z be such that (i) <N < (31'1)
Then any possible representation has #; = z. Now use induction and the fact
that N — :) < ( { (Fact 3.2.5) to show the existence and uniqueness of the
representation.]

Show that the order of k-subsets corresponding in this way to the usual order
of the natural numbers is the same as the reverse lexicographic order generated by

the algorithm in Section 3.11. [HINT: T ("'?) = ("'.H).]

T
k—1

§=0 \i~j i
6. Use the fact that (1 +t)* =1+ ¢* (mod p) to prove by induction that n* = n
(mod p) for all positive integers n. :
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7. A computer is to be used to calculate values of binomial coefficients. The largest
integer which can be handled by the computer is 32767. Four possible methods are
proposed:

(1) (Z) = nl/ki(n — k)

) :)zn(n—l)...(n—k-f-l)/k!;
(3) (g)=1, (:)=(kﬁl)-"—‘l’:+—lfork>o;

@) (g)l = (Z) =1, (Z) = (Z B ;) + ("; 1) for 0 < k < n (i, Pascal’s Tri-

angle).
For which values of n and k can (Z) be calculated by each method? What can you
say about the relative speed of the different methods? °

8. Show that there are (n — 1)! cyclic permutations of a set of »n points.

9. The order of a permutation 7 is the least positive integer m such that 7™ is the
identity permutation. Prove that the order of a cycle on n points is n. Prove that
the order of an arbitrary permutation is the least common multiple of the lengths
of the cycles in its cycle decomposition.

10. How many words can be made from the letters of the word ESTATE?

11. Given n letters, of which m are identical and the rest are all distinct, find a
formula for the number of words which can be made.

12. Show that, for n = 2, 3,4, 5,6, the number of unlabelled trees on n vertices is 1,
1, 2, 3, 6 respectively.

13. The line segments from (7,log ) to (i +1,log(i + 1)) lie below the curve y = log .
(This is because the curve is convex, i.e., its second derivative —1/z? is negative.)
The area under these line segments from ¢ = 1 to i = n is logn! + 1log(n + 1), since
it consists of the rectangles of Fig. 3.1{b) together with triangles with width 1 and
heights summing to log{n + 1). Deduce that

nl<evn+1 (g)n.

[REMARK. According to Stirling’s Formula, the limiting ratio of this upper bound to
nlis e//2r = 1.0844 ... ]

14, Use Stirling’s Formula to prove that

(2n) o

n

15. (a) Let n = 2k be even, and X a set of n elements. Define a factor to be
a partition of X into £ sets of size 2. Show that the number of factors is equal
to1-3-5.--(2k —1). This number is sometimes called a double factorial, written
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(2k — 1)!! (with !! regarded as a single symbol, the two exclamation marks suggesting
the gap of two, not the factorial function iterated!)

(b) Show that a permutation of X interchanges some k-subset with its comple-
ment if and only if all its cycles have even length. Prove that the number of such
permutations is ((2k — 1)!!)2 [HINT: any pair of factors defines a partition of X into
a disjoint union of cycles, and conversely. The correspondence is not one-to-one,
but the non-bijectiveness exactly balances.]

(c) Deduce that the probability that a random element of S, interchanges some
1n-set with its complement is O(1/1/n). [HINT: You will probably need two analytic
facts: 1 — z < e™ for positive z; and Y1, (1/7) = logn + 0(1).]

16. How many relations on an n-set are there? How many are (a) reflexive, (b)
symmetric, (¢) reflexive and symmetric, (d) reflexive and antisymmetric?

17. Given a relation R on X, define
R* ={(z,9): (s,y) € Rorz =y}

Prove that the map R — R? is a bijection between the irreflexive, antisymmetric and
transitive relations on X, and the reflexive, antisymmetric and transitive relations
on X. Show further that this bijection preserves the property of trichotomy.

REMARK. This exercise shows that it doesn’t matter whether we use the ‘less than’ or
the ‘less than or equal’ model for order relations.

18. Recall that a partial preorder is a relation R on X which is reflexive and transitive.
Let R be a partial preorder. Define a relation S by the rule that (z,y) € S if and
only if both (z,y) and (y, ) belong to R. Prove that S is an equivalence relation.
Show further that R ‘induces’ a partial order R on the set of equivalence classes
of S in a natural way: if (z,y) € R, then (7,%) € R, where  is the S-equivalence
class containing z, etc. (You should verify that this definition is independent of the
choice of representatives « and y.)

Conversely, let X be a set carrying a partition, and R’ a partial order on the
parts of the partition. Prove that there is a unique partial preorder on X giving rise
to this partition and partial order as in the first part of the question.

Show further that the results of this question remain valid if we replace partial
preorder and partial order by preorder and order respectively, where a preorder is a
partial preorder satisfying trichotomy.

19, List the (a) partial preorders, (b) preorders, (c) partial orders, (d) orders on the
set {1,2,3}.

20. Prove that B, < n! for all n > 2. [HINT: associate a partition with each
permutation.]

21. Verify, theoretically or practically, the following algorithm for generating all
partial permutations of {1,...,n}:
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(3.13.1) Algorithm: Partial permutations of {1,...,n}
FIRST PARTIAL PERMUTATION is the empty sequence.
NEXT OBIECT after (z1,...,%5,):
o If the length m of the current sequence is less than n, extend it
by adjoining the least element it doesn’t contain.
o Otherwise, proceed as in the algorithm for permutations, up to
the point where z; and z; are interchanged; then, instead of
reversing the terms after x;, remove them from the sequence,

22. Verify the following recursive procedure for generating the set of partitions of a
set X. .

(3.13.2) Recursive algorithm: Partitions of X
If X =, then { is the only partition.
If X #0, then
o select an element z € X;
e generate all subsets of X \ {z};
¢ for each subset Y, generate all partitions of X \ ({z} U Y), and
adjoin to each the additional part {z} UY.

23. Let A = (a;;) and B = (b;;) be (n+1) X (n+ 1) matrices (with rows and colurns
indexed from 0 to n) defined by a;; = C), by = (=1t (;) (where (;) =0if ¢ < j).
Prove that B = A~%. [HINT: let V be the vector space of polynomials of degree at
most 7, with basis 1,£,¢2,...,#". Show that A represents the linear transformation
f(2) = f(t + 1). What transformation is represented by B?)

24. PROJECT. A couple of harder binomial identities. Prove:
(")i I+ 1\ fm+k\ (2m
o \2k+1 2 J T \2n)
" 3
b _ (™ = {(—l)"‘(3m)!/(m!)3 if n = 2m;
®) 2.(-1) (ic) 0 if n is odd.

25. PrOJECT, There are many different proofs of Cayley's Theorem. Look one up in
a graph theory textbook, and present it in your own words.

26. PROJECT. A forest is a graph without cycles. Prove that the number F(n) of

forests on the set {1,...,n} satisfies the recurrence relation
" fn—1

F{n)=Y" (n )k""F(n — k).
k=1 k - 1

Calculate the ratio of F'(n) to the number n™~? of trees for small n, What can you
say about this ratio in the limit?




4. Recurrence relations and
generating functions

The way begets one; one begets two; two begets three; three begets the
myriad creatures.

Lao Tse, Tao Te Ching {ca. 500 BC)

Torics: Fibonacci, Catalan and Bell numbers, derangements, [finite
fields, sorting, binary trees, ‘Twenty Questions’]

TECHNIQUES: Recurrence relations, solution of linear recurrence
relations with constant coefficients, generating functions and their
manipulation, [the ring of formal power series]

ALGORITHMS: Computation of Fibonacci numbers, [QUICKSORT]

CROSS-REFERENCES: Derangements (Chapter 5), set partitions
(Chapter 3)

A recurrence relation expresses the value of a function f at the natural number =
in terms of its values at smaller natural numbers. We saw a simple example of this
already: the number F(n) of subsets of an n-set satisfies F(n + 1) = 2F(n). This
relation, together with the initial value F'(0) = 1, determines the value of F" for every
natural number. In this chapter, we examine recurrence relations in more detail.
An important technique, often associated with recurrence relations but useful in
its own right, is that of generating functions. These are power series whose coefficients
form the number sequence in question. We show how generating functions can be
used either to solve recurrence relations explicitly, or to derive some information
about the (unknown) solution. The techniques look suspiciously like analysis!!

To begin, here is an introductory example of a proof by generating function.
Let F(n) be the number of subsets of an n-set. We saw several times already that
F(n) = 2"; now we will evaluate F(n) by yet another method, seemingly more
complicated but in fact of very general applicability. Set

$(t) = i F(n)t".

n=0

! To Newton, ‘analysis’ meant manipulation of power series. See V. I. Arnol'd, Huygens & Barrow,
Newton & Hooke (1990).
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{Don’t worry for the moment about whether this power series converges.) Now

2t4(t) = fj 2F (n)t"+!

n=0
=3 F(n+ 1)+
= ¢‘Et) -1,

the last equality holding because the sum is identical with the definition of ¢(t)
(with n + 1 replacing n) except that the first term F(0)¢® = 1 is missing, Thus

1
The right-hand side is the sum of a geometric progression:
$t) =22t
n=0

Comparing this with the original series, we conclude that F(n) = 2", (If two power
series are equal, then all their coefficients coincide.)

Incidentally, we now see that the power series converges for all ¢ with [t| < 1;
s0 our manipulations are justified by analysis. We will return to this question of
justification later. First, however, we do a less trivial example.

4.1. Fibonacci numbers

ProBLEM. In how many ways can the non-negative integer n be written as a sum of
ones and twos (in order)?

Let F, be this number. Then, for example, ¥y = 5, since
4=14+14+14+1=24+141=14241=14+1+2=2+2,

Similarly, we find that /} = 1, F; = 2, F3 = 3. By convention, we take Fj = 1: the
only solution for n = 0 is the empty sequence.

Suppose that n > 2. Any expression for n as a sum of ones and twos must enfi
with either a 1 or a 2. If it ends with 1, then the preceding terms sum to n — 1; if it
ends with a 2, they sum to n — 2. So we have

F=F_+F_.

The numbers Fo, Fy, F, . .. ate called the Fibonacci numbers.

This is an example of a recurrence relation, more specifically, a three-term linear
recurrence relation with constant coefficients. The meaning of these terms is, I hope,
obvious. But, in general, a (k + 1)-term recurrence relafion expresses any value F(n)
of a function in terms of the k preceding values F(n — 1), F(n — 2),...,F(n — k);
it is Uinear if it has the form

F(n) = ay(n)F(n — 1) + aa(n)F(n — 2) + . .. + ax(n)F(n — k),
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where ay,...,a; are functions of n; and it is lnear with constant coefficients if
a1,...,ar are constants. We will see examples later of recurrence relations in which
the value of F(n) depends on all the preceding values, in a highly non-linear way;
so this one is very special.

FAcT: A function satisfying a (k + 1)-term recuzrence relation is
uniquely determined by its values on the first k natural numbers.

(The first & natural numbers could be 0, ..., k—lorl,..., %, depending on context.)

For, if we know F(1), ..., F(k) (say), then these values determine F'(k -+ 1), and
then the values F(2),...,F(k + 1) determine F(k + 2), and so on. The words and
30 on are a signal that we are using induction. Formally, if two functions F' and G
satisfy the same recurrence relation and agree on the first & natural numbers, then
one proves by induction that they agree everywhere.

This is rather like the situation with differential equations, where we expect a
%t order d.e. and % initial conditions to determine a solution uniquely. However,
our situation is very much simpler in one way: the existence and uniqueness follows
immediately from the Principle of Induction, without the need for any hard analysis.
For any tecurrence relation whatever, it is usually obvious just what sort of initial
values are required to determine the solution uniquely.

We turn to methods for solving the recurrence relation:

(4.1.1) Fibonacei Recurrence Relation
Forn > 2,
F.=F._.+F_

Two methods will be given; both of them generalise.

FIRST METHOD. Since the recurrence relation is linear, if we can find any solutions,
we can take linear combinations of them to generate new solutions. (Again this is
like what happens with differential equations.) Specifically, let F' and G satisfy the
recurrence relation above, and let H, = aF,, + bG,. Then

H, =aF, + G,
= a(Fu-1 + Fpz) + B(Grq + Gn2)
= (aFuc1 + ¥Gu) + (aFn2 + bGr—z)
=H, 1+ H,-.
We try to fit the initial conditions by choice of a and &,

Try a solution of the form F, = o”. (The justification for this will be that it

works!) We require
a® = an—l + an—2’

o e —a—-1)=0.
So, if &> —a — 1 = {, the recurrence holds for all n.
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The roots of this equation are a = (1 + v/5), # = {(1 — v/5). So we have a
general solution of the form

Fn=a(1+2‘/g)n+b(l—2‘/g)".

To fit the initial conditions (which are F; = 1, F; = 1 in our case), we require

at+b=1,

(515

(5. ()
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ReMaRks. 1. (25) ~ 1.618..., and (155) ~ —0.618 .. . So the function grows

exponentially; for large n, its value is the nearest integer to ( 25 51) (M)n
2. Note that we could easily find values of a and b to fit any given initial values.
3. We'll see that, for some purposes, the explicit formula is less useful than the

recurrence relation.

and so:

SECOND METHOD. We now solve the recurrence relation using the technique of
generating functions. We let ¢(t) be the power series

$(t) = ) F(n)t*,

n20

where ¢ is an indeterminate.

We have
tp(t) = Y F(n)i""' =Y F(n — 1),
(1) = Z F(n)t™+? = 2 F(n —2)t".
n20 n>2

(Be clear about what is happening here. To get from the second term to the third
in each equation, we have used the fact that n is only a ‘dummy variable’ whose
actual name is not important. So, for example, in the first equation, we substitute
m = n+ 1, and then replace the dummy variable m by n. If this confuses you, write
out the first few terms of both sums.)
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Now F, = F,_y + Fa_3, 80 it is ‘almost true’ that ¢(t) = (¢ + t?)¢(t). Certainly,
the coeficients of #? and all higher powers will be the same on both sides of
this equation, but we might have to adjust the constant term and the term in ¢.
Remember that Fp = 1,5 = 1.

The coefficient of ¢ is ¥} on the left and Fy on the right, so these agree. The
constant term is Fy on the left and 0 on the right, so we have to add 1 to the
right-hand side to obtain equality. Thus,

B(t) = 1+ (t + ) (2),

whence
1

W=
Now the value of F,, is the coefficient of #* in the Taylor series for this function. This
is most easily found by a partial fraction expansion. Let 1 —¢ —¢* = (1 —a){1— Bt).
Thus, « and  are roots of 2> —z — 1 =0; s0 a = (Iﬁz&), 8= (‘—‘,35) (The same
as before — no coincidence!) If we let

1 __a b
M=o —F) 1-at  1-pt

then

1 =a(l— gt) + (1 — at),
so a+b =1, aB+ ba = 0. These equations can be solved for a and b (with the same
solution as before!).

Now
a b

() = I —at | T-5
=a(l+at+a®+.. )+ bl +p8t+ 5 +..)

equating coefficients of t", we find that
F, = aa™ + bj5".

4.2. Aside on formal power series

Once we have found the power series in the above argument, we can use the theory
of power series to show that it converges for [t| < 1/a, and so the manipulations
above are justified analytically. But in fact there is a theory of formal power series,
according to which it is legitimate to do such manipulations without any regard to
questions of convergence. This is important in cases where either the series don’t
converge for any non-zero value of ¢, or we ate unable to find out enough about
it to resolve the question of convergence. In this section, Il outline the algebraic
formalism for this. If you feel comfortable with the arguments of the last section,
there is no need to read what follows.
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A formal power series over a field F should be thought of as an expression

Z%t"=a0+ali+agtz+...,
n>0

but more formally it is an infinite sequence (ag, a1, as,...) of elements of F. (In iti
will ?vo.rk over an arbitrary ring.) The set of all formal po)wer series has ope;‘itio::c i’fﬁdﬁﬁ?ﬁg
m.ulhphclatlon defined on it, under which it forms a ring. Also, we can differentiate (and we h
dsﬁ'eren.tml ring). There are additional operations defined only for certain formal power seriees avec;
as infinite sums and products, and substitution; we will define these informally as required. '

The addition and multiplication are exactly what : i
ey e’ Thos 0, y what you would expect: you add and multiply

(z a,,t") + (Z b,.t") =3 (an +bu)t",

n20 n>0 n20
and
S o] (Shtr) = Do
n>0 n>0 n>0
where

n
¢ = _S' 2ibn_;.

=0

It can be checked with some eff: i iati i
the tnecked with ;: e effort that these operations are associative and commutative, and that

For example, we can sum geometric Pprogressions:

n_ 1
2l =g

n>0
Thia is easily verified by showing that (1 — ct) (En>o(ct)") =1
Another very important operation on formal power series is differentiotion:
d n
i Za"t = Z:(na,,)t"'l.
n>0 n21

g:e stta.n:arj rules ?f elementary c'a.Iculus for differentiating sums and products hold in this situation
¢ standard functions of analysis are defined as formal power series hy their usual Taylor series:

for example,
tﬂ
exp(t) = Z m»

n>0
—1n-1yn
log(1 +¢) = E (l)it
nx1 n

They satisfy the usual differential equations: £ exp(t) = exp(1), ,f—, log(1+2) = 1/(1+1¢)

We can add infinitely many formal i
PpoWer series as long as we are never required to add infinitel
:::y i"sfield elex}n:ents. So,"for example, 1f‘ g(t) = anl b,1" is a formal power series whose constan]tr
gero, then (g(f))" has no term involving powers of ¢ less than i”, Thus it makes sense to

evaluate
- anlg®)),

n>0
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since a given term, say the term in {™, only contains contributions from expressions an(g(2))"
for n < m. The resulting formal power series is obtained by substitution of ¢ into f, where
(1) = 3,50 @nt™. We see that we can substitute one formal power series into another, provided the
first has constant term gero.

Substitution behaves as one would expect: for example,

exp(log(1 +t)) = 1+1,
log(1 + (exp(t) — 1)) = ¢.

{Note that log(l +t) and exp(t) — 1 do have sero conatant term.) Furthermore, if f and g have
constant term 0, then exp(f) and exp(g¢) are defined, and

exp(f) - exp(g) = exp(f + g)-

One notable example of a formal power series is provided by the Binomial Theorem for a general
exponent. In our situation, the following statement is a definition, not a theorem:?

{4.2.1} Binomial Theorem

a+ty =3 (:)t“,

n>o

For any real number r,

{Here the ‘binomial coefficient’ ,'.) is defined by

(r):r(r—l)...(r—n+1).

n n! i

if » is a positive integer, this agrees with the usual definition, and it vanishes for n > 7.)
Now it can be verified that the ‘law of exponents’ holds:

A+ -1+ =1+t
For r = —1, this agrees with our calculation of the sum of a geometric progression above (with

¢ = 1). Moreover, we can define ((1+¢)7)? by substitution, since {1 + ¢)" has the form 1+ f(2) where
[ has constant term gero; and we find that

{a+5yy =+~
Finally, we have

d ro_ r=1

a(l-!—t) =r(l4+ )"0

(This follows from the casily-checked identity n(?) = :'::))

One more important operation on formal power series is infinite product. Let fy, f2, ... be formal
power series with constant term 0. Then the product

TG+ 5

n>1

2 Just as ‘Zorn's Lemma’ is an axiom of set theory, and ‘Bertrand's Postulate’ is a theorem.
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should be defined by taking, in all possible ways, either 1 or f,, from the n'? factor, multiplying these
together, and adding the resulting terms. To avoid having to multiply infinitely many non-trivial
terms, we specify that we choose 1 from all but finitely many of the factors; this gives a sum over all
finite sets of natural numbers. There is still a potential problem; we have to ensure that only finitely
many terms contribute to the coefficient of any given power of ¢, This will be true, for example, if
fna(?) contains no terma of degree less than n in ¢. So, for example,

[Ta+e)

n>1

is defined — see Exercise 14. It can be showan that, if [],,5,(1 + fa(¥)) = 1 + g(t) is defined, then

log(1+ g(t)) = Y log(1 + fa(t)).

n>1

Suppose that F is the field of real or complex numbers. Then, if the sequence (ag,@1,..-}
grows no faster than exponentially, its generating function will have non-sero radius of convergence,’
and techniques of analysis can be used on it. However, for many interesting counting functions of
combinatorial intereat, the growth is faster than exponential, and the series must be treated formally.
For example, the generating function for permutations is 3, n!t*. This diverges for all ¢ # 0, and
yet the coefficients in its inverse have combinatorial significance (see Exercise 13).

4.3. Linear recurrence relations with constant coefficients

The procedure for solving a general linear recurrence relation with constant coeffi-
cients is similar to that in the Fibonacci case. Consider the recurrence

F(n)=aF(n—1)+aFn-2)+...4+ &F(n—k).

Using the first method, we try a solution of the form F(n) = o"; we find that
must be a root of the polynomial

zF = a,a:’“_l + Ggl'k_z + ..o+ ag.

If this characteristic equation has all its roots distinct, then we obtain & independent
solutions of the recurrence relation. Taking a linear combination of these, and fitting
k initial values of F, we get k linear equations in k¥ unknowns; these equations have
a unique solution. So we have obtained the most general solution of the problem.
However, if the characteristic polynomial has repeated roots, then we don’t obtain
enough solutions, In this case, suppose that « is a root of the characteristic equation
with multiplicity d. Then it can be verified that the d functions o”,na™, ..., nilgm
are all solutions of the recurrence relation. Doing this for every root, we again find

enough independent solutions that k initial values can be fitted.

3 Recall from analysis that the radius of convergence of the power series ), @nt" is given by
R =1/limsup(a,)/".
n—oo

The series converges for |t| < R and diverges for {t| > R.
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The justification of this is the fact that the solutions claimed can be substituted
in the recurrence relation and its truth verified.

EXAMPLE. Solve the recurrence relation
F{n)=3F(n—-2)-2F(n-3)
with initial values F(0) = 3, F(1) = 1, F(2) = 8.
The characteristic equation is
2% =3z -2,
with solutions ¢ = 1,1, —2. So the general solution of the recurrence relation is
F(n)=a(-2)"+bn+ec.

To fit the initial conditions, we require a = & = 1,¢ = 2, so the solution is
Fn)y=(-2"+n+2

4.4. Derangements and involutions

For linear recurrences with non-constant terms, or for non-linear recurrences, there
is no general method which always works. Sometimes it is possible to solve such
relations, either by guessing a solution (and verifying that it works), or by some other
method. We give a couple of examples. In the first case, we solve the recurrence; in
the second, we will merely derive some information about the solution.

EXAMPLE: DERANGEMENTS. A derangement of 1,2,...,n is a permutation of this set
which leaves no point fixed. In Chapter 1, you were asked to calculate the number
of derangements for » < 5. Now we will find the general formula. (This will be done
again in Chapter 5 to illustrate a different technique, the Principle of Inclusion and
Ezxclusion.)

Let d(n) be the number of derangements of {1,...,n}. Any derangement moves
the point n to some point ¢ < n. Clearly, the same number of derangements is
obtained for each value of ¢ from 1 to n — 1; so we will find d(n) by computing the
number of derangements that map n to i and multiplying by n — 1.

Let 7 be a derangement with nm = i. (Remember that permutations act on the
right!) There are two cases:

CASE 1: im = n. In other words, = interchanges n and i. Now it operates on the
remaining n — 2 points as a derangement. Furthermore, given any detangement of
the points different from : and n, we may extend it to interchange i and », and
obtain a derangement of the entire set. So the number of derangements of this type
is d(n — 2).

CASE 2: im # n; say, jm = n for some j # i. Now define a permutation =’ of

{1,...,n =1} by the rule
kvr':{kﬂ-’ if & # 15

:,, ifk=j.
Then 7' is a derangement. Any derangement 7’ of {1,...,n—1} can be ‘extended’ to
a derangement 7 of {1,...,n}, by reversing the construction. So there are d(n — 1)
derangements under this case.
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So we obtain
d(n) = (n—1)(d(r— 1) +d(n - 2)).
This is a three-term recurrence relation. The initial values are given by d(0) = 1,

d(1) = 0.

(4-4.1) Theorem. The number d(n) of derangements of an n-set is given by
d(n) = n! (Z (=1) )
=0 :

This is the nearest integer to n!/e for n > 1, where e is the base of natural logarithms.

ReMARK. This demonstrates the claim made in Chapter 1, that if n letters are
randomly distributed among n addressed envelopes, the probability that no letter
is correctly addressed is close to 1/e. (The problem asks for the probability that a
random permutation is a derangement; this is d(n)/n!.)

To prove the theorem, we must show that the two sides of the equation satisfy
the same recurrence relation and have the same initial values. So let f(n) —
n! TF o(—1)!/il. Then

f0)=1=4d(0), f(1)=1=d(1).

Also

(n=1)(f(n—1)+ fln—2) = (n—1)-

Fn=1)-( 2)'"5( 1)

= (=) (= 1)t (n—1)( 2)')"5( oK
- 1)

n-2

1) ; nl
WZO(.)H 1)"( Y

+(- 1)"

since n — 1 = nl/(n — 1) — n!/nl

So the equality is established.

Now the Taylor series for e~ is 3.22,(—1)"/i!. Since this series has terms of
alternating sign and decreasing in absolute value, the difference between the n't
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term and the limit is less than the (n + 1)* term. So

n! 00 (__l)i n (_l)i
1
|
<™lET D)
1
T a4l
<jforn>1.

So nl!/e differs from the integer d(n) by less than 1. It follows that d(n) is the
nearest integer to n!/e, as claimed.

ExAMPLE: INVOLUTIONS. Here is an example of a naturally occutring sequence, with a
simple recurrence relation where we won't find a simple formula either for the terms
in the sequence itself or for a generating function for them (but see Exercise 18);
however, we can get quite precise information just using the recurrence relation.

ProBLEM. How many permutations are there of a set of n elements having the
property that all their cycles have length 1 or 2?

The cycles of a permutation refer to its expression as a product of disjoint cycles,
found in the usual way. For example, 5(3) = 4, counting the permutations (1)(2)(3),
(1 2)(3), (1 3)(2) and (2 3)(1). Similarly, s(2) = 2, and s(1) = 1. (What is 5(0)?)

Let s(n) be the number of permutations satisfying this condition. As usual, we
assume that the n-set is {1,2,...,n}, and divide the permutations into two classes:

o Those which fix the point n. These act on the set {1,...,n — 1} as permutations
with all cycles of length 1 or 2, so there are s(n — 1) of them.

o Those which don’t fix n. If such a permutation moves n to i, say, then by
assumption it contains a cycle (n ¢), and it acts on the n — 2 points other than n
and 7 as a permutation with all cycles of length 1 or 2. There are n — 1 choices
for 4, and for each choice, s(n — 2) choices for the permutation.

So we have the recurrence relation

s(n) = s(n — 1) + (n— 1)s(n — 2).

This recurrence relation makes the calculation of further values easy. For

example,
s(4)=4+3-2=10,

s(5) = 10+ 4- 4 = 26,
s(6) = 26+ 5-10 = 76.

We demonstrate the following properties of the numbers s(n):

(4.4.2) Proposition. {a) s(n) is even for all n > 1;
(b) s(n) > V/n! for all n > 1.

PrRoOF. Both statements are proved by induction, being easily verified for = = 2, 3.
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(i) If s(n — 1) and s(n — 2) are even, then s(n) = s(n — 1) + {(n—1)s(n —2)is
even. So induction applies.

(ii) Suppose that s(n — 1) > y/(n — 1)! and s(n — 2) > 1/(n — 2)!. Then
s(n)=s(n— 1)+ (n—1)s(n —2)
>y(r=1!+ (n - 1)y/(n—2)!
=l -DI (1 +va=T)
> \/(”——1)' v (*)

= v/nl,
and the induction goes through. (In (), we have used the fact that
1+vn—1>/n,

which is true because (1 +vr —1)2 =n 4+ 2y/n — 1)

REMARKS. 1. The second inequality is actually quite a good estimate.

2. The evenness of s(n) is a special case of a general group-theoretic fact, in the
case where G is the symmetric group Sym(r) of all permutations of {1,...;,n}: In
a finite group G of even order n, the number of solutions of 22 = 1 is even. This is
because the elements y for which y? # 1 come in pairs {y,y~*}, and so are even in
number.

4.5. Catalan and Bell numbers

In this section, we look at two important sequences of numbers. They have several,
apparently accidental, common properties: both are ‘named’; they start out similarly
(the Catalan numbers are 1, 2, 5, 14, 42, ..., while the Bell numbers are 1,2, 5,15,
52, ...); and both are given by recurrence relations.

The Catalan numbers appear in many guises throughout combinatorics and
computer science.* Here is a typical application:

In how many ways can a sum of n terms be bracketed so that it
can be calculated by adding two terms at a time?

For example, if n = 4, there are five possibilities:

(((a +8) +c) + d),
((a+(b+¢)) +4d),
(a+((b+c)+d)),
(a+ 2+ (c+d))),
((a+8)+(c+d)).

4 And elsewh?re. 'l‘u.vo of my colleagues, independently, asked me about the Catalan numbers which
had come up in their research. One studies non-linear dynamics; the other, Lie superalgebras.
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We have ‘normalised’ by enclosing the entire expression in an extra pair of brackets.
(Note that, in an algebraic system where the operation is non-associative, these
expressions could all have different values.)

Let C, be the number of ways of bracketing a sum of n terms. To obtain a
recurrence relation for C,, note that any bracketed expression has the form (E, + E»),
where E, and E; are bracketed expressions with (say} ¢ and n — 1 terms, for some ¢
satisfying 1 < ¢ < n — 1. There are C; choices for E;, and C,.; for E,_;. Summing
over %, we obtain our first example of a non-linear recurrence relation:

(4.5.1) Recurrence relation for Catalan numbers
Forn > 1,

n—1
Co=3 CiCui

i=1

Let F(t) = Yn»; Cat" be the generating function. (By convention, we take
Cy = 0; also, C; = 1, which is the start of the recurrence.) The recurrence relation
shows that the terms in #* and higher powers of ¢ in F(t)? are equal to those of
F(t). However, because the constant term is zero, F(¢)* has no term in ¢. Thus, we
have

F(t) =t+ F(t)%.

Re-writing this as a quadratic equation and solving, we obtain
1 12
F(t) = 5(14_~(1—4t) ).

Because F(0) = 0, we must choose the minus sign in the solution. Now, from the
Binomial Theorem, we can read off the coeflicient of ¢":

6= —3( ) o

= (2n— 2)!/(n — 1)In!

(In the above expression, there are n+1 twos in the denominator, and 47 /27 = 2771,
Then the product of all odd numbers from 1 to 2n—3 is equal to (2n—2)!1/2""!(n—1)!.
Moteover, there are altogether 2n — 2 minus signs.) Thus:

(4.5.2) Catalan numbers
C. — 1 (2n - 2)'
nin-—1

See the Exercises for other combinatorial interpretations of Catalan numbers.
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We encountered the Bell numbers briefly in Chapter 3. The Bell number B, is
the number of partitions of a set of size n. We proved there that it satisfies the

recurrence relation
" fn—1
Bn = Z i—1 Bn—n‘y

i=1
with the convention that By = 1. This recurrence is linear, but involves all the
preceding terms, rather than a fixed number.

There is no simple closed formula for B,, but there is a nice expression for its
generating function, which we now derive. This is a type of generating function we
haven't met before. The exponential generating function, or e.gf., of the sequence
(ao,a1,. . .) is the formal power series

Z ant*
. =0 n!

The name comes from the fact that the e.g.f. of the all-1 sequence is just the ordinary
exponential function exp(t). We will see in Part 2 that the exponential generating
function is well suited to counting labelled objects, in the sense introduced in
Chapter 2. Note that, if F(t) = L.»oant"/n!, then the derivative is %F(t) =
Y1 a1/ (n — 1)}; this is the e.g.f. of the sequence with the first term deleted.

Let F(£) = Yn50 Bnt"/n! be the eg.f. of the Bell numbers. Take the recurrence
relation, multiply by t*~!/(n — 1)!, and sum over n, to obtain

d Bt
EEF“)’Z; n—1)!

-2 (&) m

n>l \i=l

3 =t=’ By t*
-(z5) (5%)
= exp(t)F(t)

(In the penultimate line, we changed dummy variablesto j =i—1and k =n—1; as
7 Tuns from 1 to o0, and ¢ from 1 to n, j and & independently take all non-negative
integer values.)

Now we have

= (exp(~ exp(§) F(1)) =0,

so F(t) = cexp(exp(t)) for some constant c. Using the fact that F(0) = 1, we find
that ¢ = exp(—1); so

(4.5.3) E.g.f. for Bell numbers.

n

> B;: = exp(exp(t) — 1).

n>0
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4.6. Computing solutions to recurrence relations

In %)rinciple, nothing could be simpler than computing, say, Fibonacci numbers from
their recurrence relation. By the way it works, knowing that Fy = F; = 1, we find
F,=1+1 =2, then Fj, and so on. For example,

Fiooo = 70,330, 367, 711,422, 815, 821, 835, 254, 877, 183, 549, 770, 181,
269, 836, 358, 732, 742, 604, 905, 087, 154, 537, 118, 196, 933,579,
742,249, 494,562, 611,733,487, 750, 449, 241, 765,991, 088, 186,
363, 265, 450, 223, 647, 106,012, 053, 374, 121, 273,867, 339, 111,
198,139, 373, 125,598, 767, 690, 091, 902, 245, 245, 323, 403,501

takes just 999 additions to compute.®

However, there is an important point to consider. It is tempting to program the
calculation exactly as the sequence is defined; that is, to define a function F on the
natural numbers by the rules

e F(0O)=F(1)=1;

¢ F(n)=F(n-1)+ F(n—-2)forn>1.
But this is ot wise. Let us trace the calculation of F{4). We find that F(4) =
F(2) + F(3). First, we evaluate F(2) = F(0) + F(1) = 1 4+ 1 = 2. Next, we evaluate
F(3) = F(1) + F(2). Now the computer does not realise that F(2) has already been
calculated; it throws away its rough working. So we have to repeat the computation
F(2) = F(0) + F(1) = 1 + 1 = 2 before we can find F(3) = 1+ 2 = 3 and finally
F(4) = 24 3 = 5. For larger arguments, the amount of repeated labour grows
exponentially (see Exercise 7).

So it is important to tell the computer to remember earlier results. For this,
define an array of numbers (Fy, Fy,. .., Fiooe) (if the largest Fibonacci number we'll
need is Fiogo), with the first two entries equal to 1, and each subsequent entry equal
to the sum of the two before it.

This consideration applies to any sequence of numbers defined by a recurrence
relation of any sort. In the specific case of Fibonacci numbers, if we only need one
number F, rather than the whole sequence Fy, ..., Fy, it’s possible to economise on
storage space. We only need to remember two numbers, say z and y {and a counter
n). Start with z = y = 1 and = = 1. Now, in a single step,

e increase n by 1;
e calculate = + y, and replace either z or y by this number according as n is even
or odd.
The last number written (viz., ¢ or y depending on the parity of n) is the n't
Fibonacci number.

It is possible to calculate F, faster than this, using only clogn arithmetic
operations, using the ‘Russian peasant multiplication’ trick. Exercise 8 gives details.

5 On the other hand, if we were to use the formula, we would be faced with the need to calculate

(V5 + 1)/2vB)((v5 + 1)/2)1%% to such high accuracy that the final answer is guaranteed to have
an error of less than 0.5 — a much more difficult task!
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4.7. Project: Finite fields and QUICKSORT

In this section, we will work through two more elaborate applications of re-
currence relations and generating functions. We prove the existence of irreducible
polynomials over finite fields; and we calculate the average number of comparisons
needed to sort a list using QUICKSORT.®

IRREDUCIBLE POLYNOMIALS AND FINITE FIELDS.
If p is a prime, the integers modulo p form a field: addition, subtraction, multiplication and division
{except by zero) are defined, and the commutative, associative and distributive laws hold. What other

finite fields exist?
This question was answered by Galois in the nineteenth century.” He proved the following

result:

(4.7.1) Galois’ Theorem
The number of elements in a finite field is a prime power; and, for any prime
power g, there is & unique field with g elements.

The field with ¢ elements is called the Galois field of order ¢, denoted by GF(g). Thus, if p is
prime, then GF(p) = Z/(p), the integers mod p. Suppose that ¢ = p". Then a field of order g is
constructed from a polynomial

f@y=a"+b12" . izt b

over Z/(p), which has degree n, is monic (leading coefficient 1), and is irreducible: the elements of

the field are the p™ expressions
gt .+ c,._la"'l

for co, 21, . .. n-1 € Z/(p); addition and multiplication are defined in the obvious way, but setting
f(a) = 0 where necessary to reduce the degree of any expression to n — 1 or less. (Compare the
construction of the complex numbers as the set of objects of the form @ + bi for 4,4 € R, where
i2 = —1; note that the polynomial % + 1 is irreducible over R.)

The point of this brief discussion is that the existence of finite fields will follow if we can show
that there is an irreducible polynomial of any possible degree over Z/(p). We will prove this in
the most naive way possible, by connting the polynomials. We need one algebraic fact: e menic
polynomial over a field can be factorised into monic irreducible fectors, uniguely up to the order of the

faclors.

Fix a prime power ¢, and let F' be a field of order ¢. (For Galois' Theorem, take g = p prime,
and F = Z/(p).) Let a, be the number of monic irreducible polynomials of degree n over F. The
total number of monic polynomials of degree 7 is ¢”, since each of the n coefficients b, _1,..., 51, b0
can be chosen arbitrarily from F.

6 I am indebted to Colin McDiarmid for the second example.

7 fvariste Galois was killed in a duel at the age of 20. The night before the duel, he had written
all his recent mathematical discoveries in a hastily scrawled letter to a friend; this document can be
regarded as the foundation of modern algebra, though its influence was not felt until its publication
by Liouville fifteen years later. The theorem on finite fields, however, is one of the few pieces of his
work published during his lifetime.
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Now an arbitrary polynomial has a unique factorisation into irreducibles. Consider those
polynomials which have m; factors of degree 1, my of degree 2, and so on. We must have
my + 2mgz + ... = n. The m; factors of degree i are chosen from the set of a; irreducibles of degree
i; repetition is allowed, and the order of the factors is not important. By (3.7.1), there are (“"*,’:A‘_l)
choices for these factors, and hence )

H (a.- + m; - 1)
m;

i21

polynomials with a factorisation of this shape. So, counting all monic polynomials of degree n, we

have + )
a+mi -1y _ .
II ( m; ) =q" (%)

mi+2mat..=n 21

This is a recurrence relation (albeit a highly complicated, non-linear one). We illustrate the case
g=2

a3 + a1a2 + (al + 2) =8,

1 1 3
aq+a103+(a2; )+(“1é+ )az+(“1:' ):16,

from which we obtain successively ¢; = 2, a2 = 1,83 =2, ¢4 = 3.

The point of this section is that, by sleight-of-hand with generating functions, we transform this
recurrence relation into a very much simpler one, from which (for example) the fact that a, > 0 can
be seen directly.

Multiply equation (%) by t* and sum over n:

n>0

seo > gt

n>0 myit2mat...=n >0

SRIGAES

myma,.. i>0

(The last step needs a little explanation. If we sum over all n and then over all choices of my,ms, ...
salisfying mm; + 2mg + ... = n, we have simply summed over all sequences (m;,ms, .. .) with only
finitely many non-zero terms; this is what is meant by the prime on the summation sign. Furthermore,

n_ im,
" = gt ,
50 the power of { can be split up as claimed.)
Now the main technical step: I claim that the above expression is equal to
H z (a,- +m— l)t""‘.
iP1mz0 m

This is because, to evaluate an infinite product of this form, we choose one term from each factor
in all possible ways so that all but finitely many choices are equal to 1, multiply the chosen terms,
and add the results; say we choose the m{" term from the i factor, where finitely many m; are
non-sero. This gives just the sum previously described.
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(rn)-er()

s0, by the Binomial Theorem, we have

m20

Now note that

So we have )
-t =Jla -y
i21
Now comes the trick. We take logarithms of both sides:

—log(1—gt) = — Y _ a;log(1 - 1),

izl
whence (" "
qt)" _ t*
PO E DI DI
n>1 21 k>1

Now we equate the coefficients of ¢* on both sides. On the right, we obtain a term for each pair
(i, &) with ik = n; in other words, for each divisor ¢ of n.

&
n "Z" nfi
Multiplying by n gives

= Z ia;. (%%)

iln

This is our desired recurrence relation. It is linear, and has many fewer terms than (). To re-do the
case g = 2:

ay =2,
ai + 2az = 4,
o +3G3 =81

@ + 20z + 4a4 = 16.

In Chapler 12, we will discuss Mébius inversion, and solve this recurrence relation explicitly. But,
in the meantime, observe that ¢" is the sum of al most n terms, of which all except na,, are at most
¢"/? (since they occur in earlier recurrence relations). In general, ¢” > (n — 1)¢"*/2; s0 a,, > 0. Thus,
there exists an irreducible polynomial of any degree over any finite field.

With a little more algebra, the recurrence relation (#) can be used to show the uniqueness in
Galois' Theorem as well. (In outline: one shows that any element of a field of order ¢ salisfies an
irreducible polynomial over the subfield of order g whose degtee divides n. Now the a; irreducible
polynomials of degree i have at most ia; roots; and (x+) shows that these roots are just sufficient in
number to comprise one field of order ¢".)

It is instructive to compare the very different proof of Galois' Theorem normally given in algebra
text-books. It is possible to use that proof, and the counting of roots as in the preceding paragraph,
to give another proof of (*+).

THE PERFORMANCE 0F QUICKSORT.

A great deal of computer time is spent in sorting lists — arranging the elements in order, if they
were originally arranged haphasardly. It is important to be able to do this efficiently, and to estimate
how complex a task it is. :

Many important algorithms are recursive: they solve a given problem instance by reducing it to
smaller instances of the same problem. Thus, the average (or longest) time taken to solve a problem
of size n can be expressed in terms of the time for smaller problems, giving rise to a recurrence
relation. As an example, 1 will calculate the average number of comparisons taken by Hoare's
QUICKSORT algorithm to sort a randomly ordered list of n items.
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The algorithm is defined as follows.

(4.7.2) QUICKSORT
io sort a kst L
Let a be the first item of the list.
o Partition the remainder of the list into sublists L=, LT consisting of the
elements less than, greater than o respectively.
e Sort L~ and L*.
e Return (L~ (sorted), a, L (sorted)).

We will calculate the average number of comparisons of individual elements which have to be
made, assuming that the algorithm is presented with a list in random order (that is, all orderings
equally likely). But firsl, whal answer do we expect? There are n! possible orderings; since each
comparison can at best narrow down the number of possibilities to half the previous value (on
average), we would expect to need at least log, a! comparisons.? By (3.6.1),°

log, n! =nlogn/log2+ O(n) = 1.4427...nlogn + O(n).

We will show that the average number of comparisons required by QUICKSORT is only a constant

factor worse than this lower bound, namely 2n logn + O(n).
The crucial observation is that, if the list L is in random order, then
o the first element a is equally likely to be the first, second, ..., n'" emallest element;
o the sublists L— and LT are randomly ordered (i.e. all orderings equally likely).
Let gn be the average number of compatrisons required to sort a list of length n. Thus we have

l n
tn=n-1+ ;;(Qk—l + gn—k).

(The first step requires n — 1 comparisons; if @ is the k" smallest element, the second step requires
an average of ¢r—1 + gn_s compatisons, and this number has to be averaged over the possible values
of k) We can simplify this to

n—1

2
%=n—1+zgyh

gince each of go, . - ., a1 Occurs twice in the sum.

The initial value is clearly go = 0.
To solve this recnrrence relation, we find a differential equation for its generating function. Let

Q(t) = Z gnt”
n>0
be the generating function. Multiplying the recurrence relation by ni" and summing gives
n—1
S ngnt® = ontn - )" 23 (g q,-) "
n>0 n2o n>0 \i=0
We analyse the three terms. The second is just the Taylor series of 2t2/(1 — 1)%. (We have

Z n(n— "2 = 2/(1 = 1)%,

nz0

8 This might be called the ‘Twenty Questions’ principle. For a proof, see Exercise 23.
® The notation O(f(n)) means ‘a function whose absolute value is bounded by cf(n) for some
constant ¢, as n — 0o’
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most easily by differentiating twice the series for 1/(1 — ), or alternatively by the Binomial Th
The fizst term is 1Q'(t), since ’ T l orem)
Q) = anﬂt“’l.

n20

The last term is the most difficult; I claim that it is 2¢Q(¢)/(1 — ¢). This is because
Q-0 =+ ++ .. ) (p+at+at +6t®+..),

and the t* term is obtained by multiplying "¢ from the first factor and ¢;¢* from the second, and
summing over 1. '
Thus, we have
2¢2 2
Q) = —— + ——
Q( ) (l—i)s + (l_t)Q(t)'

) This is a first-order linear differential equation, for which there is a standard method for solution.
Without going through the general case, we have

2
(1-1)’

((1-02Qw) = (1- Q1) - 21 - )Q(t) =

(1-)%Q(t) = -2(¢ + log(1 — t))
(using the fact that Q(0) = 0). Hence

—2(2 + log(1 — 1))

o = =78

- hIt still seems a tall order to find the coefficients in this power series explicitly; but it can be done.
e have

2 3
Q(t):?(%+%+...) (142432 4. ),
8O

qn=2§(§)(n-i+n
:2(n+1)2:(%) —4n.

Tl?is is an exact formula, though it involves a sum of = terms. We can produce an approximation by
using the fact that'®

n

> (3) =toen -+,

i=1
whence
¢n = 2nlogn + O(n),

as we promised.

1% The sum is an approximation to the area under the curve y = 1/z from z = 1 to z = n.
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4.8. Exercises

FBoNACCI NUMBERS. In these exercises, F, denotes the n'® Fibonacci number.

1. (a) Thfere are n seating positions arranged in a line. Prove that the number of ways
;‘f choosing a subset of these positions, with no two chosen positions consecutive, is
nt+l-
(b) If the n positions are arranged around a circle, sh
choicas s Fr g B or 3 circle, show that the number of
2. Prove the following identities:
(a) {f —~FonFy = (=1)" forn > 1.
(b) ZE - Fn+2 - ]..
i=0
() F2, 'E‘/F,f = Fon, FosFot FoFopy = Fppyy.
n/2| —
Q) Fo= Y (" _ ’).
=0 ¢
3. Show that F}, is composite for all odd n. > 3.
4, Show that
l(n-1)/2]
Z Fow=Fu~1

=0

for n > 1.

5. .Prove that every non-negative integer z less than Fo41 can be expressed in a
unique way in the form
) ] F}1+E2+---+Er> (*)
where Usizy sty € {L..oon}ii > i 41, iy > 5+ 1, ... (in other words, iy,...,i
are all distinct and no two are consecutive). Deduce Exercise 1(a).

' [HII'\IT: By Exercise 4, the largest expression of the form (*) that can be made

using Fibonacci numbers below FisF,—-1.S0,if F, <z < Fo11, then F, must be
‘included in the sum; and z — F, < Fo_1, 50 F,_; cannot be included.]

6. Fibonacci nurflbers are traditionally associated with the breeding of rabbits.!?
Assu'me that a pair of rabbits does not breed in its first month, and that it produces
a pair of offspring in each subsequent month. Assume also that rabbits live forever.

Show that, starting with one newborn pair of rabbits, the number of pairs alive in
the n** month is F,.

7. Prove t?:at the number of additions required to compute the Fibonacci number
F, according to the ‘inefficient’ algorithm described in the text is F,—1.
;.' (a) l:)liove that Fi, = F,F, + Fp,_1F,_, for m,n > 0 (with the convention that
-1 = U}
(b) pse this to derive an algorithm for calculating F, using only clogr arithmetic
operations. [HINT: see Russian peasant multiplication (Exercise 12 of Chapter 2).)

(c) Given that multiplication is slower than addition, is this algorithm really better
than one involving n — 1 additions?

r

1 This example is due to Fibonacei {Leonardo of Pisa) himself.
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MISCELLANEOUS RECURRENCES AND GENERATING FUNCTIONS.

9. (a) Solve the following recurrence relations.

i) f(n+1) = f(n)%, £(0) =2
@ T ) o A - 1t fn =2 SO = ) = S = 1.

n—1
i) fln+1) =1+ 3 ), fO) =1
(b) Show that the &Tlomber of ways of writing n as a sum of positive integers,
where the order of the summands is significant, is 2! for n > 1.

10. The number f(n) of steps required to solve the ‘Chinese rings puzzle’ with n
rings satisfies f(1) =1 and

s = {300, o

Prove that f(n +2) = f(n +1) +2f(n) + 1. Hence or otherwise find a formula for
f(n)?

11. (a) Let s(n) be the number of sequences (z1,...,zx) of integers satisfying
1< z; <nforalliand 2y >2z; fore=1,... ,k — 1. (The length of the sequence
is not specified; in particular, the empty sequence is included.) Prove the recurrence

s(n) = s(n — 1) + s(|n/2])

for n > 1, with s(0) = 1. Calculate a few values of s. Show that the generating
function S(t) satisfies (1 —¢)S(f) = (1 + )S(t%). ‘ o

(b) Let u(n) be the number of sequences (zi,...,%x) of integers satisfying
1<z <nforalliandziy > Tjme; fori=1...,k—1 Calculate a few values
of u. Can you discover a relationship between s and u? Can you prove it?

12. Let F(t) be a formal power series with constant term 1. By finding a recurrence

relation for its coefficients, show that there is a multiplicative inverse G(t) of F(t).
Moreover, if the coefficients of F' are integers, so are those of G.

13. A permutation 7 of the set {1,... ,n} is called connected if there does'not exist
a number k with 1 < k < n such that = maps the subset {1,2,...,&} into itself. Let
¢, be the number of connected permutations. Prove that

n

> ei(n — i) =n!

i=1
Deduce that, if F(t) = ¥,», n! and G(t) = Yap1¢n ate the genera.tin_gl functions of
the sequences (n!) and (c,) respectively, then 1 — G(t) = (1 + F(t))"!. (Note that
F(t) and G(t) diverge for all ¢ # 0.)

were given in 1872 in Théorie du Baguenodier, by

12 d an algorithm for solution T
e o Notaire Lyomsels : ). See S. N. Afriat, The Ring of Linked

‘Un Clere de Notaire Lyonnais' (now identified as Louis Gros
Rings (1982).
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14. Let

[HA+) =3 ant™

a>1 n>0
.Prove that a, is the number of ways of writing n as the sum of distinct positive
integers. (For example, as = 4, since 6 =5+1=44+2=3+2+1)

15. (a) In an election, there are two candidates, A and B; the number of votes
cast is 2n. Each candidate receives exactly n votes; but, at every intermediate point
during the count, A has received more votes than B. Show that the number of ways
this can happen is the Catalan number C,. [HINT: A leads by just one vote after
the first vote is counted. Suppose that this next occurs after 2 + 1 votes have been
counted. Then there are f(i) choices for the count between these points, and f(n —i)
choices for the rest of the count, where f(n) is the required number; so we obtain
the Catalan recurrence.]

HARDER PROBLEM. Can you construct a bijection between the bracketed expressions
and the voting patterns in (a)?

(b) In the above election, assume only that, at any intermediate stage, A has
received at least as many votes as B. Prove that the number of possibilities is now
Crny1. [HINT: Give A an exira vote at the beginning of the count, and B an extra
vote at the end )]

16. A clown stands on the edge of a swimming pool, holding a bag containing n

red and n blue balls. He draws the balls out one at a time and discards them. If

he draws a blue ball, he takes one step back; if a red ball, one step forward. (All

it/e(ps hax)re the same size.) Show that the probability that the clown remains dry is
n+1).

17. Prove that
B 1/n
lim (——") =0.

n=60 \ nl
[HINT: See the footnote on p. 56.]

18. Prove that the exponential generating function for the numbers s(n) of Section 4.4
is exp(¢ + 1)

19. The Bernoulli numbers b, (not to be confused with the Bell numbers!) are defined

by the recurrence b = 1 and
* fn+ 1)
Z br=10
2 ('
for n > 1. Prove that the exponential generating function

=y

n>0

is given by f(¢) = t/{exp(t) — 1).
>S?how that f(t) + %t is an even function of ¢, and deduce that b, = 0 for all odd
n-a
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REMARK. The Bernoulli numbers play an important and unexpected 1ole in topics
as diverse as numerical analysis, Fermat’s last theorem and p-adic integration.

What is the solution of the similar-looking recurrence 4, = 1 and

£ (s

k=0

forn > 17

20. For even n, let ¢, be the number of permutations of {1,... ,n} with all cycles
even: 0,, the number of permutations with all cycles odd; and p, = n! the total
number of permutations. Let E(t), O(t) and P(¢) be the exponential generating
functions of these sequences. Show that

(@) P(t) = (1 — &)

{b) E(t) = (1 —2)~%/?; [HINT: Exercise 15 of Chapter 3]

(9) E(6).0(t) = P(t);

(d} e = on for all even n.

[I don’t know any ‘bijective’ proof of the last equality.]

QuEsTIONS oN QUICKSORT AND BINARY TREES.

21. Show that QUICKSORT sometimes requires all ('2‘) comparisons to sort a list. For how many
orderings does this occur? One such ordering is the case when the list is already sorted — is this a
serious defect of QUICKSORT?

29. Let m, be the minimum number of compartisons required by QUICKSORT to sort a list of length
n. Prove that, for each integer k > 1, my is a linear function of n on the interval from 2%-1—1to
2F — 1, with

Mgy = (k— 2)2% +2.

If n = 2% — 1, what can you say about the number of orderings requiring m, comparisons?

33. This exercise justifies the ‘Twenty Questions’ principle. We are given N objects and required
to distinguish them by asking questions, each of which has two possible answers. The aim if this
exercise is to show that, no matter what scheme of questioning is adopted, on average the number
of questions required is at least log; N. (For some schemes, the average may be much larger. If we
ask ‘Is it a1 7', ‘Is it as?), etc., then on average (N + 1)/2 questions are needed!)

A binary tree is a graph (sce Chapter 2) with the following properties:

o there is a vertex (the roof) lying on just two edges;

o every other vertex lies on one or three edges (and is called a leafor an internal vertex accordingly);

o there are no circuits (closed paths of distinct vertices), and every vertex can be reached by a
path from the root.

It is convenient to arrange the vertices of the tree on successive levels, with the root on level 0.
Then any non-leaf is joined to two successors on the next level, and every vertex except the root has
one predecessor. The height of a vertex is the number of the level on which it lies,

In our situation, a vertex is any set of objects which can be distinguished by some sequence of
questions, The root corresponda to the whole set (before any questions are asked), and leaves are
singleton sets. The two successors of a vertex are the sets distinguished by the two possible answers
to the next question. The height of a leaf is the number of questions required to identify that object
uniquely.

SreP 1. Show that there are two leaves of maximal height (%, say} with the same predecessor.
Deduce that, if there is a leaf of height less than 4 — 1, we can find another binary tree with N leaves
having smaller average height. Hence conclude that, in a tree with minimum average height, every
leaf has height m or m + 1, for some m.
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STEP 2. Since there are no leaves at height less than m, there are altogether 2™ vertices on level

m.
Step 3. If there are p internal vertices on level m, show that there are 2p leaves of height m + 1,
and N = 2p = 2™ — p of height m; so N = 2™ + p, where 0 < p < 2™.
S1eP 4. Prove that log,(2™ +p) < m+ 2p/(2™ + p), and deduce that the average height of leaves
is at least logy N.

REMARK. Sorting a list is equivalent to finding the permutation which takes the given order of the
list into the ‘correct’ order; thus it involves identifying one of ! possibilities. So any sorting method
which compares elements of the list will require, on average, at least log, n! = nlog n/log2 + O(n)
comparisons, as claimed in the text. Figure 4.1 shows the binary tree for QUICKSORT with n = 3.

Fig. 4.1. Binary tree for QUICKSCRT
(Left = ves, Right = no)

24. Suppose that the two successors of each non-leaf node in a binary tree are distinguished as ‘left’
and ‘right’. Show that, with this convention, the number of binary trees with n leaves is the Catalan
number Cy. [HINT: Removing the root gives two binary trces, a ‘left’ and a ‘right’ tree. Use this to
verify the recurrence relation.]

5. The Principle of Inclusion and
Exclusion

To every thing there is a season, and a time to every purpose under the
heaven:

A time to be born, and a time to die; a time to plant, and a time to pluck up
that which is planted;

A time to kill, and a time to heal; a time to break down, and a time to build
up;

A time to weep, and a time to laugh; a time to mourn, and a time to dance;
A time to cast away stones, and a time to gather stones together; a time to
embrace, and a time to refrain from embracing;

A time to get, and a lime to lose; a time to keep, and a time to cast away;
Atime to rend, and a time to sew; a time to keep silence, and a time to speak;
A time to love, and a time to hate; a time of war, and a time of peace.

Ecclesiastes, Chapter 3

ToPICS: Principle of Inclusion and Exclusion; Stirling numbers;
even and odd permutations

TECHNIQUES: Generating function tricks; matrix inverses
ALGORITHMS:

CROSS-REFERENCES: set-partitions, cycles of permutations, inverse
of Pascal’s triangle (Chapter 3); derangements, exponential gener-
ating function, [Bernoulli numbers] (Chapter 4); Mobius inversion
(Chapter 12)

Suppose we are given a family of sets, and told the number of elements which
lie simultaneously in every set of each possible subfamily. Then we have enough
information to work out how many elements lie in none of the sets, or indeed, how
many lie in each region of the Venn diagram of the family. The Principle of Inclusion
and Exclusion, known as PIE for short, is a formula for calculating this. It gives
rise to another proof of the theorem about inverting Pascal’s triangle, as well as a
formula for the number of partitions of an n-set into & parts. This last number is a
so-called Stirling number of the second kind. We spend the second half of the chapter
investigating these numbers and their relatives, and their surprising properties.

5.1. PIE

In a class of 100 pupils, a survey establishes that 45 play cricket, 53 play tiddlywinks,
and 55 play Space Invaders. Furthermore, 28 play cricket and tiddlywinks; 32 play
cricket and Space Invaders; 35 play tiddlywinks and Space Invaders; and 20 play
all three sports. How many pupils don’t play any sport?
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This problem can be answered by drawing a Venn diagram to represent the
three sets. Then the numbers in each region can be worked out in turn, until finally
the number in none of the regions is found. For example, 8 pupils play cricket and
tiddlywinks but not Space Invaders.

Tiddlywinks
10 8
8 20\ 15
5 Space
12 Invader:
Cricket
22

Fig. 5.1. A Venn diagram

The Principle of Inclusion and Exclusion gives a formula for this calculation, not
relying on our ability to draw meaningful Venn diagrams with arbitrarily many sets.
First, some notation. Let X be our ‘universe’ (corresponding to the whole class
in the example), and let (A1, A4s,...,As) be a family of subsets of X. (It is not
forbidden that some set occurs more than once in the sequence.) If I is a subset of
the index set {1,...,n}, we set
Ar =) 4,

il
with the convention that Ay = X. (Intersecting more sets gives a smaller result; so
intersecting no sets at all should give the largest possible set.)

(5.1.1) Principle of Inclusion and Exclusion
Let (Ay,...,Ays) be a family of subsets of X. Then the number of
elements of X which lie in none of the subsets A; is

> (=nal.

IC{1,....n}

ProOF. The sum on the right is a linear combination of cardinalities of sets Ay with
coefficients +1 or —1. We calculate, for each point of X, its ‘contribution’ to the
sum, that is, the sum of the coefficients of the sets A; which contain it.

Suppose first that z € X lies in none of the seis A.. Then the only term in the
sum to which z contributes is that with I = §; and its contribution is 1.

Otherwise, the set J = {i € {l,...,n} : € A;} is non-empty; and z € Ay
precisely when I C J. Thus, the contribution of z is

s enn=3 (e

icJd i=0
=(1-1Y=0
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by the Binomial Theorem, where j = |J|.

Thus, points lying in no set A; contribute 1 to the sum, while points in some 4;
contribute 0; so the overall sum is the number of points lying in none of the sets, as
claimed.

PIE has a natural interpretation for small n. For n = 2, we take the number
of points in X, and subtract the sum of the numbers in A, and A;; the points in
A; N A, have been subtracted twice, and must be added in again.! For n = 3, after
the pairwise intersections have been added, we find that the points lying in all three
sets have been included once too often, and must be removed again.

We proceed to a couple of applications of PIE.

(5.1.2) Corollary. The number of surjective mappings from an n-set to a k-set is
given by
k Ak
S (§) e - o
i=0 t
In particular, we have
”n
nl = $(=1) (”) (n — i)™
=0 ¢
PROOF. We take X to be the set of all mappings from {1,...,n} to {1,...,k}, so
that |X| = k" For ¢ = 1,...,k, we let A; be the set of mappings f for which the
point i does not lie in the range of f. Then each f(x) can be any of the ¥ — 1 points
different from ¢, and so |4;| = (k — 1)*. More generally, A; consists of all mappings
whose range contains no point of I, and |4} = (k —- |I])™
A mapping is a surjection if and only if it lies in none of the sets 4;. So, by PIE,
the number of surjections is equal to

> (=) -y,

IC{1,...k}

Put : = |I|. There are (':) sets I of cardinality 7, where ¢ runs from 1 to k; this gives
the result.

If k = n, then the permutations of {1,...,n} are precisely the surjective map-
pings from this set to itself.

For a second application, we give a second proof of the formula for the number
of derangements.

(5.1.3) Theorem. The number of derangements of {1,...,n} is equal to
nor_1Y¢
Y

Proof. This time, we take X to be the set of permutations, and A; the set of
permutations fixing the point i; so |Ail = (n — 1)!, and more generally, [4;] =

! This gives the familiar identity |4; U As| + |41 N Az| = |A1| + |Az| (see Section 2.7).
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(n —[I|)!, since permutations in A; fix every point in I and permute the remaining
points arbitrarily. A permutation is a derangement if and only if it lies in none of
the sets A;; so the number of derangements is

N CVLRITES v Sl (R

IC{1,....,n} =0
on putting ¢ = |I|. The result follows on noting that (':) (n — )l =nl/fil

5.2. A generalisation

In the introductory example, it is clear that there is enough information to find,
not only the number of pupils who play none of the sports, but (for example) the
number who play cricket only. This can be formulated in general, as we will do in
this section. As a consequence, we give a different proof of Exercise 23 of Chapter 3,
about the inverse of the matrix of binomial coefficients.

(5.2.1) Proposition. Let (A,,. .., A,) be a family of sets, and I a subset of the index
set {1,...,n}. Then the number of elements which belong to A, for all i € I and
for no other values is

(=14,

i

PROOF. We define a new family of sets indexed by N \ I, where N = {1,...,n}, by
setting By = Apuqr) for k£ € IV \ I. The Proposition asks us to calculate the number
of elements of Ay lying in none of the sets B;. By PIE, this number is

Z (_l)lxllBKI)
KCNVI
where By = A;. Now the correspondence K « J = I U K between subsets of N \ I
and subsets of N containing I is a bijection; and Bx = Ay if K and J correspond.
So the result is true.

Next, we turn this result into more abstract form, referring to arbitrary set
functions rather than cardinalities of sets.

(5.2.2) Proposition. Let N = {1,...,n}, and let f and g be functions from P(N) to
the rational (or real) numbers. Ther the following are equivalent:

(8) g(I) = a1 f(J);

(b) f(I) = Zyor(-1)"Mlg(J).

ProoF. We argue that it suffices to prove the resuli when the values of f are
non-negative integers. For either of (a) and (b) can be regarded as a system of
2" linear equations in 2* unknowns (the values of f or g); this means that the
corresponding homogeneous system has only the zero solution in integers. But any
rational solution would give rise to an integer solution, on multiplying the solution
by a suitable integer (the least common multiple of the denominators). So the linear
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equations have a unique rational solution. This means that the determinant of the
coefficients is non-zero, and this fact doesn’t change on passing from the rationals

to the reals. )
But now, given any non-negative integer values of the function f, we can

construct a family (Ai,...,4,) of sets with the property that the number of points
lying in A; for ¢ € I but for no other values of A; is exactly f(I). (Imagine a Yenn
diagram for n sets; put f(I) elements in the region corresponding to this condition.)
Then g(I) = =51 f(J) is the total number of elements in Ay; and the result follows

from (5.2.1).

The same result with the set inclusions reversed is also true:

(5.2.3) Proposition. Let N = {1,...,n}, and let f and g be functions for P(N) to
the rational (or real) numbers. Then the following are equivalent:

(8) o(I) =Y yct F(JT);
(b) F(I) = Lo (—1)Vg(J).
To see this, we define new set functions f and ¢’ by the rules that f'(I) = f(N\T)

and ¢'(I) = ¢(N \ I), and apply (5.2.2) to these functions. If I' and J’ denote N \T
and N \ J respectively, condition (a) becomes

g =g =3 F(7) =J§f(J)-

Jor
Similarly, condition (b) translates correctly, because |[J'\ I'| = |\ J|.

(5.2.4) Corollary. Let f and g be real-valued functions on {0,...,n}. Then the
following are equivalent:

@) 960 =3 ;)

i<
. Y A
o 16 =20 ({)ati)
i<i J
PROOF. We define set functions F' and G on P(N) by letting F(I) = f(z) and
G(I) = g(i) whenever |I| = . Now, if |I| = i, then I has (;) subsets of size 7, and
the result follows immediately from (5.2.3).

This result gives an alternative proof of the result of Chapter 3, Exercise 23,
about inverting Pascal’s Triangle. We repeat the result for reference.

(5.2.5) Theorem. Let n be given, and let A and B be the (n + 1) x (n + 1) matrices
(with rows and columns indexed from 0 to n} having (i,7) entries

Ay = (;) By = (~1)" (;)

Then B = AL
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ProO¥F. Let V be the real vector space of functions from {0,...,n} to R; each vector
f is represented by the (n + 1)-tuple (f(0),...,f (n)). Then the matrices A and B
represent linear transformations of V mapping the fanction f to the function g and
back again (in the notation of (5.2.4)); so one is the invesse of the other.

5.3. Stirling numbers

In this section, we look at two 2-parameter families of numbers. They are related to
the factorials and Bell numbers in much the same way that the binomial coeflicients
are related to the powers of 2. (In a sense, they complete the pattern ‘subsets,
permutations, partitions’ of Chapter 3.) The reasons for discussing them here are a
bit tenuous: their surprising relationship to each other ((5.3.4) below) parallels that
of the binomial coefficients to their signed versions, proved using PIE in the last
section; and there is a formula for the Stirling numbers of the second kind, which
is an apphcation of PIE, from which some of their most important properties are
derived.

Let n and k be positive integers with £ < n.

The Stirling number of the first kind, s(n, k), is defined by the rule that
(—1)**s(n, k) is the number of permutations of {1,... ,n} with k& cycles. (Note
the sign. Sometimes a different convention is used, according to which the Stirling
numbers are the absolute values of those defined here.)

The Stirling number of the second kind, S(n, k), is the number of partitions of
{1,...,n} with k (non-empty) parts.

The definitions can be extended to all n and % by defining the Stirling numbers
tobeOunless 1 <k <n.

(5.3.1) Proposition. (a) S (=1 Fs(n, k) = 3 1s(n, k)| = nl;
k=1 k=1
(b) E S(n,k) = Bn, where B, is the n't Bell number.
k=1

This is clear from the definition.

Both arrays satisfy recurrence relations, similar to that for Pascal's triangle.
Recall that s(n,0) = S(r,0) =0 for all n.

(5.3.2) Proposition. (a) s(n,n) = S(n,n) =1;
(b) s(n+1,k) = —ns(n, k) + s(n, k = 1);
(c) S(n+1,k) = kS(n,k) + S(n,k—1).

PROOF. {a) is clear; the proofs of (b) and (¢} are similar. Consider first partitions of
{1,...,n+ 1} with k parts. Eithern+1lisa singleton part (in which case {1,...,n}
is partitioned into k¥ — 1 parts), or n+1 is adjoined to one of the k parts into which
{1,...,n} is partitioned.

The case of permutations requires a little more care. Given a cycle of length I,
there are I places at which a new point can be interpolated, giving ! different cycles.
So, given a permutation of {1,...,n} with k cycles, there are n ways of interpolating
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the point n + 1 so as to have k cycles resulting (since the cycle lengths sum to n). In
addition, we could add the one-point cycle (n + 1) to a permutation of {1,...,n}
with £ — 1 cycles. Thus

ls(n + 1, k)| = nls(n, k)| + |s(n, k - 1),

and on putting the signs in correctly we obtain the result.

Using this recurrence, we prove a remarkable ‘generating function’ form. Recall
than (3), =t(t—1)...(t —n+1).
n

(5.3.3) Proposition. (2) (t), = 3 s(n, k)t*;

k=1

(b} " = an S(n, k) -
k=1,

PROOF. The proofs are by induction on n. Since t' = (); = ¢ and 3(1,1) = S(1,1) =
1, the inductions begin at n = 1.

PROOF OF (a). Assume that (), = Lr.; s(n, k)t*. Then we have
(s = Onle =) = (3 s 06 ) 1),
=1
and the coefficient of t* on the right is —ns(n, k) + s(n,k — 1) = s(n+ 1, k).
ProOF OF (b). Assume that t" = T7._; S(n, k)(¢);. Then
£ = 17t = 3 (00 (¢ = k) + k) S(ns ).
=1

Since (t)x(t — k) = ()41, we have

23 S, ) (B + 30 S(m, B (D)
k=1 £=1

n+1

= kz_j (S(n, k= 1) + kS(n, k)) ()
= ril S(n + 11k)(t)k’

since S(n,0) = S(n,n+1) =0.

There are direct combinatorial proofs of this result. Such a proof for (b) is
outlined in Exercise 4; but the argument for (a) involves the concept of group action
and the Orbit-Counting Lemma, and is deferred until Part 2.

(5.3.4) Corollary. Let A and B be the n x . matrices whose (i, j) entries aze given
by the Stirling numbers s(i,7) and 5(i, ;) respectively. Then B = A™1.
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Proof. A and B are the transition matrices between two different bases for the
space of polynomials of degree n with constant term zero:

o First basis: £,#2,...,t%;

e Second basis: (t)1,(t)2,...,(t)a.

We conclude with a formula for the Stirling numbers of the second kind.

(5.3.5) Proposition. S(n, k) = = E 1)k_J( )

j=1

PrOOF. We saw in the last section that this expression, without the factor kl!, is
the number of surjections from {1,...,n} to {1,...,k}. (I have also replaced the
dummy variable ¢ by j = k — ¢, and dropped the term with j = 0.) So it suffices to
prove that the number of surjections is k!S(r, k).
Each suzjection f defines a partition of {1,...,n} with k non-empty parts, viz.,
“1(1),...5 f7'(k). But every partition arises from exactly k! surjections, since we
may assign the numbers ...,k to the parts in any order. The result is proved.

5.4. Project: Stirling numbers and exponentials

In this section, we explore a different way of looking at the inverse relationship
between the two kinds of Stirling numbers: they correspond to substitution of
exponential or logarithmic functions into a power series.

We begin with the Stirling numbers of the second kind. First, we obtain an exponential
generating function for S(n, k) for fixed k, as n varies.

S'(n k)t _ (exp(t) - 1)*
k! )

(5.4.1) Proposition. E
n>0

The proof uses the formula for S(n, k) derived using PIE. We have

S(n, k)" 1 [k it
> = ZEJZ;(;,-)HV g

n>0 ! n>0

(g

=1 n>0

Ly (§) -~ et
=

_ (exp) — 1)
L

?"|"‘ I

| —

Note that this gives the e.g.f. of the Bell numbers as a corollary, since
s(n k

n>0 n>0k=0
_y e Z." 1y
k20 :
= exp(exp() — 1),
on reversing the order of summation.
This leads to the following result:
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(5.4.2) Theorem. Let (f,) and (g.) be sequences with eg.fs F(t) and G(t) respectively. Then the
following assertions are equivalent:
n

(a) go = fo aud gn = 3_ S(n, k) fi forn > 1;
(b) G(®) = Flexp(t) - D).
PRoor. If (a) holds, then
G@) = £(0) + ZZ":S(n,Ic)fk%

n21k=1
=5 fulee(® = 1) fk(exp(t) — 1)
k20
= F(exp(t) — 1).

Using the inverse relation between the Stirling numbers, we immediately deduce the following:

(5.4.3) Theorem. Let (fa) and (g.) be sequences with egfs F(t) and G(t) respectively. Then the
following assertions are equivalent:
n

(2) fo=go and fa =) s(n,k)gs forn>1;
(5) F(t) = Gllog(1 +1)).

We can use this result to derive the e.gf. of the Stirling numbers of the first kind. Let gr = 1
and gn = 0 for n # k. Then, if f and g are related as in the theorem, we have f, = s(n, k). Thus,
we obtain

nk)t" _ (log(1+0))*
ko

{5.4.4) Proposition. E
n20

5.5. Even and odd permutations

Let 7 be a permutation of {1,...,n}, and denote by c(r) the number of disjoint
cycles of 7. The sign of 7 is deﬁned to be sign(m) = (—1)*~*"); and = is said to be
even or odd according as its sign is +1 or —1. We observe ﬁrst.

(5.5.1) Proposition. For n > 2, there are equally many even and odd permutations
of an n-set.

PrOOF. We use the formula

tt=1)...(t—n+1) =3 s(n, k)t
k=1
Putting t = 1 and using the fact that n > 2, we see that 3°7_, s(n, k) = 0. But
s(n, k) is defined to be (—1)"~* times the number of permutations with k cycles;
so -2, s(n, k) is the sum of the signs of the permutations in S,, and so there are
equally many with either sign.

To analyse the sign further, we relate it to the composition of permutations.
Recall the convention that composition works from left to right.
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(5.5.2) Proposition. Let © be a permutation of {1,...,n}, and 7 a transposition.
Then
elnr)=c(n)£ 1.

PROOF. We examine the effect of composition with a transposition (i j). If ¢ and §
lie in different cycles of , then these cycles are ‘stitched together’ in =7, which has
one fewer cycle than . (For suppose that the cycles are (a; ... ax) and (b; ... by),
where i = a1, j = b;. Check that 77 has the cycle (@1 ... ax by ... by).) Conversely,
if i and § lie in the same cycle of «, then this cycle splits into two in 77.

We see that «r has the opposite sign to 7. Hence, if a permutation 7 is a
product of m transpositions, then its sign is (—1)™; and, in particular, however 7 is
expressed as a product of transpositions, the parity of the number of transpositions
is always the same.

(5.5.3) Theorem. (a} Any permutation is a product of transpositions.
(b} the map sign is a homomorphism from the symmetric group to the multiplicative
group {£1} of order 2.

PROOF. (a) It is intuitively clear that, however the numbers 1,...,n are ordered, it is
possible to sort them into the usual order by a sequence of swaps. Formally, if two
points ¢ and j lie in the same cycle of #, then composing 7 with the transposition
(i j) increases by 1 the number of cycles; so the result follows by induction on
n — ¢(w).

(b) We have to show that sign(m72) = sign(m )sign(mz). To show this, express
73 as a product of (say m) transpositions; composing m with each transposition
changes its sign, so the overall effect is to multiply by (1™

1t follows that the set of all even permutations in S, is a normal subgroup.
This subgroup is called the alternating group A.. We now have two proofs that
|Aq| = n!/2 if n > 2. First, this is immediate from (5.5.1); second, A, is the kernel
of a homomeorphism onto a group of order 2.

5.6. Exercises

1. An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respectively.
Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12% would be
content with any of the three. What do you conclude?

2. Make tables of the two kinds of Stirling numbers for small values of n and k.
3. Prove directly that S(n,1) = 1, $(n,2) =2 —1,and S(n,n - 1) = (2) Find a
formula for S(n,n—2).

4. Prove that |s(n,1)| = (n — 1)! using the recurrence relation, and show directly
that the number of cyclic permutations of an n-set is (r — 1)!.

5. This exercise outlines a proof that t* = T.5_; S(n, k)(t)s.
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(a) Let ¢ be a positive integer, T = {1,...,t}, and N = {1,...,n}. The number
of functions f : N — T is ", Given such a function f, define an equivalence relation
= on N by the rule

i=j ifandonlyif f(3) = f(5)-
The classes of this equivalence relation can be numbered Ci,.. ., C; (say), ordered
by the smallest points in the classes. (So C contains 1; C; contains the smallest
number not in C;; and so on.) Then the values f(C),..., F(Cy) are k distinct
elements of T, and so can be chosen in (t); ways; the partition can be chosen in
S(n, k) ways. Summing over k proves the identity for the particular value of L.

(b) Prove that if a polynomial equation F(t) = G(t) is valid for all positive
integer values of the argument ¢, then it is the polynomials F and G are equal.

6. For this exercise, recall the Bernoulli numbers from Exercise 19 of Chapter 4,
especially the fact that their e.gf. is ¢/(exp(t) — 1). Derive the formula
' n(—1)kk!
b = 3 CUESEH
k=1 (k + 1)
fot the n'® Bernoulli number.

7. Let (f,) and (g,) be sequences, with e.g.£s F(t) and G(t) respectively. Show the
equivalence of the following assertions:
(a) gn = Tieo (3) fi5
(b) G(t) = F(t) exp(t).
8. Show that a permutation which is a cycle of length m can be written as a product
of m — 1 transpositions. Deduce that it is an even permutation if and only if its
length is odd. Hence show that an arbitrary permutation is even if and only if it
has an even number of cycles of even length (with no restriction on cycles of odd
length).
9. This exercise outlines the way in which the sign of permutations is normally treated
by algebraists. Let 21,...,2, be indeterminates, and consider the polynomial
F(z'],. .. ,:Cn) = H(IJ - :c.-).
i<j
Note that every pair of indeterminates occur together once in a bracket. Ifrisa
permutation, then F(Z1, ..., Znr) is also the product of all possible differences (but
some have had their signs changed). So
F(‘Tl"" ce "T‘n‘”) = Sigl’l(?l’)F(.’L‘l, . az'n.)3
where sign(n) = +1 is the number of pairs {%, j} whose order is reversed by =. Prove
that
e sign is a homomorphism;
e if 7 is a transposition, then sign(r) = —1.
10. Recall from Section 3.8 that a preorder is a reflexive and transitive relation which

satisfies trichotomy. Prove that the exponential generating function for the number
of preorders on an n-set is 1/(2 — exp(t)). [HINT: the e.g.f. for the number of orders

is 1/(1 —¢).]
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11. (a) Show that the smallest number of transpositions of {1,...,n} whose product
is an n-cycle is n — 1.

(b) Prove that any n-cycle can be expressed in n™2 dii.:fc.:rent ways as a product
of n—1 transpositions. [HINT: The product of the transpositions (z; y:) is an n-cycle
if and only if the pairs {z:,1;} are the edges of a tree (Section 3.10). Double-count
(tree, cycle) pairs, using Cayley’s Theorem (3.10.1) and the fact that all cycles have
the same number of expressions as products of transpositions.]

6. Latin squares and SDRs

. nets, grids, and other types of calculus ...
Alan Watts, The Book (1972).

Television? The word is half Latin and half Greek. No good can come of it.

C. P. Scott (attr.)

Torics: Latin squares, SDRs, Hall’s Theorem, orthogonal Latin
squares, quasigroups, groups, permanents

TECHNIQUES:
ALGORITHMS:

CROSS-REFERENCES: Network flows (Chapter 11), affine planes and
nets (Chapter 9), groups (Chapter 14)

In this chapter, we examine Latin squares, showing that there are many of them
(by means of a digression through Hall's theorem on SDRs), and then consider
orthogonal Latin squares.

6.1. Latin squares

Latin squares arise in Euler’s ‘thirty-six officers’ problem, but with one level of detail
removed. The definition is as follows.

A Latin square of order n is an n X n array or matrix with entries taken from the
set {1,2,...,n}, with the property that each entry occurs exactly once in each row
or column.! So, in a solution to Euler’s problem, if the officers’ ranks are numbered
from 1 to 6, they are arranged in a Latin square; and similarly for the regiments.

REMARK. Sometimes it is convenient to regard the entries as coming not from the
set {1,...,n} but from an arbitrary given set of n elements.

! Why are they called Latin squares? Wait and see!
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The existence of Latin squares is not in doubt. The array

B GO Ut
O H O = BN
NS N R
G B G
— BN QO W U

is a Latin square of order 5; the construction obviously generalises. So our goal is
to refine this observation, and come up with some estimate of how many different
Latin squares there are.

We can interpret a Latin square as follows.2 Given a class of n boys and n girls,
arrange a sequence of n dances so that each boy and girl dance together exactly
once. (The (i, 7) entry of the Latin square gives the number of the dance at which
the it boy and the j** girl dance together.)

Latin squares were fizst used in statistical design. Very roughly, suppose that n
varieties of a crop have to be tested. A field is laid out in a n x n array of plots.
We assume that there may be some unknown but systematic variation in fertility, or
susceptibility to insect attack, moving across or down the field; so we arrange that
each variety is planted in one plot in each 1ow or column, to offset this effect.

6.2. Systems of distinct representatives

We have to make quite a long detour to reach our goal. We prove a result known as
Hall’s Marriage Theorem; this was originally shown by Philip Hall, and a refinement
(which we need) was shown by Mazshall Hall Jr.* but there are now many different
proofs. This result is closely connected with the theory of flows in networks, and
you may meet it in an Operations Research course. Qur objective here is different.
(We return to networks in Chapter 11.)

Let Ay,...,An be sets. A system of distinct representatives (SDR) for these sets
is an n-tuple (z1,...Tn) of elements with the properties
(a) zi€ Asfori=1,...,n (ie, reptesentatives);
(b) z; # zj fori # j (ies distinct).

For any set J C {1,...,n} of indices, we define

A(J ) = U Aj.
j€JS

(Don’t confuse this with the similar Ay which occurred in PIE, where we had

intersection in place of union. Here, A(0) = 0.)

If the sets Aj,...,A, have a system of distinct representatives, then necessatily
|A(J)| = |J| for any set J & {1,...,n}, since A(J) contains the representative z; of
each set A; for j € J, and these representatives are all distinct. Hall’s Theorem says
that this necessary condition is also sufficient:

2 This is in the spirit of Kirkman's Schoolgirls Problem (Chapters 1, 8).

3 No relation.
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(6.2.1) Hall.’s Tl.leorem. The family (A, ..., A,) of finite sets has a system of distinct
representatives if and only if the following condition holds:

(6.2.2) Hall’s Condition

(HC) |A(J)| = |J| for all J C {1,...,n}

Proor. We use induction on the number n of sets. The induction obviously starts:
.(HC) guarantees a representative for a single set! We call a set J of indices critica.l
if JA(J)| = |7|. 'The motivation is that, if J is critical, then every element of A(J)
must be used as a representative of one of these sets. We divide the proof into two
cases:

CASE 1. No set J is critical except for J = § and i

: = possibly J = {1,...,n}. Let
z,: be any point of A, (n?te A, # 0 by (HC)) and, for j = 1,...,n ~ 1,}deﬁne
Al = A; \ {zn}. We claim that the family (4f,...,4; ) satisfies (HC). Take
J C{1,...,n — 1}, and suppose that J # @. Then

[4(7)] = Al -1
> IJl - 1:

the first inefluality true since at worst z,, is omitted, the second since J is not critical

by assufnptlon. So |A'(J)| = |J|, proving the claim.

q By 1nductlo.n,. (A;,...', A:‘Tl) has a SDR (zy,...,2,—1). Then (z1,...,2,) is a
DR for the original family, since clearly z,, is distinct from all the other z;.

CAS.E 2. Som.e set J # @, {l,:. .,n} is critical. We may suppose that J is minimal
sungct to this. '{‘hen the family (A; : § € J) has a SDR (z; : 7 € J), by induction.
For i & J, set A} = A; \ A(J). We claim that the family (A7 : i ¢ J) satisfies (HC)
Take K to be a set of indices disjoint from J. Then ‘

|A*(K)| = |A(J U K)| — |A{J)]
2 [JUK|-|J|
= K],

the first equality since in fact A*(K) = A(J U K)\ A(J), a i ity si
, and the inequality since
|A(JSEJ£)| 2 [JLSJII){ILb(y (HC¢) b;xt |A(T)| = |J| since J is critical.
ere is a z; : 1 € J) for the sets (A} : ¢ ¢ J). Combining this with th
SDR for the sets (4; : j € J) gives the required result. ’ " )

T]I{]S t.heorem is sometimes called Hall’s Marriage Theorem, because of the
fo].lo.wmg interpretation. Given a set of boys and a set of girls, each girl knowing a
specified set of boys, it is possible for all the girls to marry bc;ys that the knov? if
and only if any set of & girls know altogether at least k& boys. ’
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(6.2.3) Hall’s Theorem Variant. Suppose that (Ai,...,Aqn) are seis satisfying (HC),
and suppose that |A;| > r fori =1,...,n. Then the number of different SDRs for

the family is at least

r! ifr <n,
{r(r—l)...(r—n+1) ifr >n

NoTt. Two SDRs may use the same elements and still be different, if they assign
different elements to the sets. For example, (1, 2) and (2, 1) are different SDRs for
the sets ({1,2,3},{1,2,4}).
Proo¥. This is just a variant on the proof of Hall’s Theorem. We use induction on
n; if n = 1, then a single set of size at least r has at least r SDRs! So assume true
for families with fewer than n sets.
In Case 2 of the proof above, we have r < |J| < n, and the family (4;:7 € J)
has at least ! SDRs, each of which can be extended to the whole family. .
In Case 1, there are at least r choices for the 1epresentative z,. For each choice,
the family (4] : 1 < i < n —1) consists of n — 1 sets each of size at least r —1
satisfying (HC), so by induction it has a least (r —1)! SDRs if » < n, or at least
(r=1)...(r—1)—(r-1+1)ifr>n Multiplying gives the result.

We need the following consequence of Hall's Theorem:

(8.2.4) Theorem. Let (A;, ..., An) be a family of subsets of {1,...,n}, and let v be
a positive integer such thai

(a) |Al=rfori=1,...,n;

(b} each element of {1,... ,n} is contained in exactly r of the sets Aq,... 4.
Then the family (A,,. .., An) satisfies (HC), and so has an SDR.

PRoOF. Let J be a set of indices. We count choices of (j,x), where j € Jandz € A;.
There are |J| choices for j, and for each 7 there are r choices for z € Aj, or r|J|
altogether. On the other hand, z € A(J), so there are |A(J)| choices for z; and z
lies in r sets, not all of which might have index in J, so there are at most r choices

for ;. Thus
r| 7] < |A(D)Irs

and since r > 0 we get (HC).

(8.2.5) Corollary. Under the hypotheses of the last theorem, the family of sets has
at least r! SDRs.

This just combines Theorem (6.2.4) with the Hall Variant (6.2.3).

6.3. How many Latin squares?

Now we return to Latin squares. We want to construct Latin squares ‘row by row’,
and so we want to be sure that if we have fewer than n rows, there are many
ways to add another row. So we define a k x n Latin rectangle, for k < n, to be a
k x n array with entries from {1,...,n}, having the property that each entry occurs
exactly once in each row and at most once in each column.
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(6.3.1) Proposition. Given a k x n Latin rectangle with k < n, there are at least
(r — k)t ways to add a row to form a (k + 1) x n rectangle.

ProoF. The elements of the new row must all be distinct, and each must not be
among those alteady used in its column. So we let A; be the set of entries not
occurring in the #** column of the rectangle, and we have:

(z1,...,%,) is a possible (k + 1)** row for the rectangle if and only
if it is a SDR for the family (Ay,...,Az).

Now clearly each set A; has size n — k, since & of the n eniries have already
been used. Consider a particular entry, say z. This occurs k times in the rectangle
(one in each of the rows), in k distinct columns; so there are n — k columns where it
does not occur. So the hypotheses of Corollary (6.2.5) are satisfied, with r =n — k.

(6.3.2) Theorem. The number of Latin squares of order n is at least

ProoF. Add rows one at a time: there are at least n! choices for the first row, at
least (n — 1)! for the second, and so on.

This problem incorporates two counting problems we met earlier. The first row
of a Latin square of order n is simply a permutation of {1,...,n}, and there are
exactly n! choices for it. Given the first row, we may (by re-labelling) assume that
itis (12 ... n); then a legitimate second row is precisely a permutation satisfying
ir # i for i = 1,...,n, that is, a derangement. We know that the number of
derangements is the nearest integer to n!/e for n > 4, this is better than the lower
bound of (n — 1)! which we used, so the estimate for the number of Latin squares
can be improved a bit. However, the number of choices of the third row depends on
the way the first two rows were chosen, so we cannot get the exact answer simply
by multiplying n numbers together.

EXAMPLE. There are 2 Latin squares of order 2, and 3!-2! = 12 of order 3. However,
for order 4, there are 24 - 3 choices of the first two rows which can be extended in
4 different ways, and 24 - 6 which have just 2 extensions; so the number of Latin
squares is

24.3.4+24.6-2 = 576.

(See Exercise 1.)

REMARK. Let L(n) be the number of Latin squares of order n. We have shown that
Liny znl(n=1)1...1L This bound was improved, about fifteen years ago, to

L(n) > (al)™/n™",
We explore this in Section 6.5. On the other hand, we have

L(n) < n®,
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since there are n® ways of filling in the n? positions of the array with entries from
{1,...,n}. We can improve this to

L(n) < (nl)*

by observing that each entire row is chosen from the set of permutations of {1,...,n},
and there are n! permutations. A further improvement is made by noticing that all
the rows after the first are derangements of the first row, so roughly L(r) < ni* /e,

To compare these bounds, it is helpful to estimate log L(n) rather than L(n)
itself. The simplest possible upper bound, namely L(n) < n™", gives

log L(n) < n’logn.

On the other hand, we have

log L(n) > 3_ log k!

S
It
-

> Y (klogk — k)

k=1
> nlogn + O(n?),
where we used the simple bound k! > (k/e)* from Chapter 2, Exercise 3. So roughly
the upper and lower bounds for log L(n) differ by a factor of 2. The improved lower
bound mentioned above removes this factor, giving

log L(n) = n®log n 4+ O(n?).

6.4. Quasigroups

There is another way of looking at Latin squares. Let G = {g1,...,¢.}. If A = (ay)
is any n X n matrix with entries from the set {1,...,n}, we can define a binary
operation, or ‘multiplication’, on G by the rule

giog; =gx ifandonlyif a;=*h

Conversely, any binary operation on G gives rise to such a matrix, once we have
numbered the elements of G as g1, ..., gn.?

A binary structure like G above is called a guasigroup if the following axioms
hold:

(left division) for all g;, gi € G, there is a unique g; € G with gig; = gs;

(right division) for all g;, gx € G, there is a unique g; € G with g:9; = gs.
Now the following result follows from the definitions:

(6.4.1) Proposition. A binary siructure G is a quasigroup if and only if the corre-
sponding malrix A is a Latin square.

4 The matrix is the multiplication table of the binary structure.
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ProoFr. The left divisibility condition just says that each column of the matrix
contains each entry exactly once; and similarly for right division.

There are various advantages to turning Latin squares into algebraic objects
like quasigroups. For one thing, we can obtain a kind of measure of the strength of
various algebraic axioms by seeing how many Latin squares correspond to structures
satisfying these axioms. For example, there are very many quasigroups; but there
are many fewer groups (see next section), so the group axioms are very powerful!
Another is that algebraic constructions can be transferred to Latin squares. One
example of this is the direct product.

Let G and H be binary structures (the binary operation in each of them will be
denoted by o). The direct product G x H is defined, just as for groups, as follows: it
is the set of ordered pairs (g, k), for ¢ € G, h € H, with operation

(91, 1) 0 (g2, h2) = (g1 © g2, b1 0 ).

Now it is easily established that the direct product of quasigroups is a quasigroup.
(For left divisibility, suppose that in the above equation g3, ks, g3, hs are given. Then
¢1 is determined by left divisibility in G, and similarly h, in H.)

The direct product can be translated into a direct product operation on Latin
squares, which we write with the same notation, i.e. the direct product of A and B
is A x B. This is considerably more complicated to define directly, although the idea
is simple. For example, we have:

123456
21 436 5
1 2 y ;g? B 34561 2
2 1 231 = 43635 21
56 1 2 3 4
6 5 2 1 4 3

6.5. Project: Quasigroups and groups

The best-known examples of quasigroups are groups: these are quasigroups with
an identity element whose composition is associative. In this section, we describe
a refinement of the estimate for the number of quasigroups, using the proof of the
van der Waerden permanent conjecture; and we show that two of the most basic
theorems about groups (Lagrange’s Theorem and Cayley’s Theorem)® can be used
to put an upper bound on the number of groups. We see that groups are very rare
among quasigroups; in other words, the associative law is a very powerful condition.

QUuasIGROUPs: PERMANENTS AND SDRs.

Our lower bound for the number of quasigroups comes from the zan der Waerden permanent
conjecture, whose truth was shown by Egorychev and Falikman (independently). First we need a
couple of definitions, whose relevance will not be immediately appatent!

5 These theorems and their historical context are described in Chapter 14.
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A matrix is said to be stochastic if its entries are non-negative real numbers and its row sums are
equal to 1. The term suggests a connection with probability. A system is initially in one of m states
S1,...,8m, and can make a transition to one of n states T},...,T,. If the probability of jumping
from S; to 7; is pij, then the m x n matrix with (i, j) entry p;; is stochastic. A stochastic matrix is
called doubly siochastic if, in addition, its column sums are all equal to 1. (This implies in particular
that the matrix is square.) This condition doesn’t have an obvious probabilistic interpretation.

Let A be an n x n matrix with (4,j) entry a;;. Then there is a well-known formula for the
determinant of 4: "

det(A) = z H sign(7) a; ix.
AES, i=1
(Recall our convention that permutations act on the right, and the definition of the sign of a

permutation in Chapter 5.)
If we leave out the sign facior in this expression, we obtain the permanent of A:

n

per(A) = z @ in.
1

TES, i=

Though the formula is simpler, the permanent is much harder to manipulate or evaluate than the
determinant! It is clear that the matrix with every entry 1/r has permanent n!/n” (the sum has n!
terms, each the product of n factors 1/n.)

The van der Waerden permanent conjeciure asserted:

The permanent of an n x n doubly stochastic matrix A is at least n!/n", with
equality if and only if every entry of A is equal to 1/n.

This conjecture was proved in 1979-1980, independently, by Egorychev and Falikman. Earlier, Bang
and Friedland had shown the slightly weaker result that the permanent of a doubly stochastic matrix
is at least e~". (Note that ™" < nl/n", by Exercisc 3 of Chapter 2.) If you want to see how it was
done, Marshall Hall’s Combinaioriel Theory (1989) contains an exposition.

What is the relevance to this chapter? Given a family (A;, ..., As) of n subsets of {1,...,n},
we define the incidence matriz A of the family by the rule that the (i, j) eniry of A is given by

oo {1 HiEA,
§=10 ifiga;

Then we have:

(6.5.1) Proposition. With the above notation, per(A) is equal to the number of SDRs of the family
of sets.

Proor. In the evaluation of the permanent, the product corresponding to a permutation = is zero
unless ir € A4; for all 4, when it is one. In this case, (la,...,n7) is a SDR for (4;,...,An).
Conversely, any SDR arises from such a permutation. Hence the permanent is equal to the number
of SDRs.

(6.5.2) Proposition. Let (A;, ..., An) be a family of subseis of {1,...,n}. Suppose that
o cach set A; has cardinalily r;
o each point i lies in r of the seis Ay,. .., An.

Then the number of SDRs of the family is at least n!(r/n)".

ReMaRK. You should stop and compare this with the lower bound r! proved in Section 6.3.

Proor. The incidence matrix A has all row and column sums r. So (1/r)A is doubly stochastic,
whence per((1/r)4) > n!/n®, from which the result follows since per{(1/r)A) = (1/r)*per(4).
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(8.5.83) Proposition. The number L(r) of n x n Latin squares satisfies
_2n
L(n) > pre
PROOF. Just as in Section 8.3, we have
n
L(n) > H nl(r/n)*
r=1

What about the number of quasigroups? Given a quasigroup, if we number its elements 1, ..., r
in any order, its multiplication table is a Latin square. So each quasigroup gives at most n! Latin
squares; this is insignificant compared with L(n), and the estimate n?logn + O(n?) holds for the
logarithm of the number of quasigroups too.

GROUPS: LAGRANGE AND CAYLEY.

We will now show that the number of groups is very small compared with the number of quasigroups.
If G(r) is the number of groups of order n, we prove that G(n) < n"'°62". In other words,
log G(n) = O(n{logn)?), much smaller than log L(n).

The proof, not surprisingly, requires some algebra. In fact, little is needed; just two of the
basic theorems proved in the nineteenth century. (Using more powerful tools, beiter estimates can be
derived.) The results we need are:

o Lagrange’s Theorem: The order of a subgroup of a group G divides the order of G.
o Cayley’s Theorem: Any group of order r is isomorphic to a subgroup of the symmetric group
e
We also need the concept of the subgroup H generated by a set {g1,...,9:} of elements of G. This
is the smallest subgroup of & containing g1,. .., gz, and consists of all elements of G' which can be
written as products of these elements and their inverses. (See Chapter 14 for further discussion.)

(8.5.4) Lemma. A group G of order n can be generated by at most log, n elements.

Proor. We prove by induction that if g;, g2,... are chosen so that, for all &, gy41 does not lie in
the subgroup G generated by g1,...,gx (and g; # 1), then the order of G is at least 2%, For
the inductive step, |Gr41| > |G| (since gx € Giy1 \ Gi), and |G}| divides |Gk, 1| by Lagrange's
Theorem; so we have |G't41| > 2|Gi], and the induction goes through.

By Cayley’s Theorem, the number G(n) of groups of order n (up to isomorphism) is no greater
than the number of subgroups of order n of $;. By the Lemma, this number does not exceed the
number of choices of log, n elements of S,; so

Gln) < ()87 < n*1oham,

6.6. Orthogonal Latin squares

Two Latin squares A = (;;) and B = (b;;) are said to be orthogonal if, for any
pair (k,1) of elements from {1,...,n}, there are unique values of ¢ and j such that
a;; = k, bj; = l; in other words, there is a unique position where A has entry k
and B has entry I. A set {A;,...,A,} of Latin squares is called a set of mutually
orthegonal Latin squares, or set of MOLS for short, if any two squares in the set are
orthogonal. (Sometimes the terms pairwise orthogonal and POLS are used instead.)

Sometimes a pair of orthogonal Latin squares is called a Graeco-Latin square,
The reason comes from a different representation sometimes used. Instead of
numbers, the entries can be taken from any set of size n: the first n letters of the
alphabet are commonly used. Now if we use letters of different alphabets, say the
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Latin alphabet for A and the Greek for B, are used, then the two squares can be
combined into one unambiguously; and A and B are orthogonal if and only if each
combination of a Latin and a Greek letter occurs exactly once in the square.® For
example, here are two orthogonal Latin squares of order 3 and the corresponding

Graeco-Latin square.

1 2 3 1 2 3 aa b8 cv
2 31 ) 31 2 — by ca af
31 2 2 31 cf ay ba

A question which has had much attention is:
What is the maximum size of a set of MOLS of order n?

This question is closely connected with the existence question for projective and
affine planes, as we will see in Chapter 9.

Let f(n) denote the maximum number of MOLS of order n. We observe first
that f(n) < n—1for all n. Forlet A,,..., A, be mutually orthogonal Latin squares;
without loss of generality, we may assume that each square has (1,1) entry 1. Now
each square has n — 1 further entries 1, none occurring in the first row or column;
and, by orthogonality, these 1s cannot occur in the same position in two different
squares. Since there are only (n — 1)? available positions, there cannot be more than

n — 1 squares.
(6.6.1) Proposition. If n is a prime power, then f (n)=n—1

This result uses Galois’ Theorem on the existence of finite fields (see Section
47). We use the fact that there is a field F' of any given prime power order n.
Now we take the elements of F to index the rows and columns of all the squares.
For each non-zero element m € F, we define a matrix A,, whose (i,7) entry is
(A,m),',j =im +j

Now each A, is a Latin square. For, if im + ji = im + j2, then j1 = 723 and, if
tim + 7 =1ym + j, then iym = iom, and so i, = i3 (since m is non-zero and so has
an inverse).

Moreover, these squares are orthogonal. For, given elements a,b € F, and
my # ma, the equations

imy +7 = a,
img+j=b,

have a unique solution (3, 7).

This doesn’t appear to help evaluate f(n) in general. Bui it gives us a lower
bound. To show this, we use the direct product construction for Latin squares, and
make the following observation:

6 The Latin letters alone form a Latin square. (Hence the name.)
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(6.6.2) Proposition. If A, and A, are orthogonal Latin squares of order n, and B,
and B; orthogonal Latin squares of order m, then the Lalin squares A; x B and
Ay x B, of order nm are orthogonal.

Proor. As we saw in the last section, direct products are easier to define for
quasigroups. So we re-formulate orthogonality for quasigroups. For convenience, we
take the same set G = {q1,...,9n} of symbols for both quasigroups, but distinguish
the binary operations. Let (G, o) and (G, #) be quasigroups. These quasigroups are
said to be orthogonal if the following holds:
(orthogonality) for all gi, ot € G, there exist unique elements g¢;, g; € G such that
gi09g; = gr and g; * g; = g
This is equivalent to orthogonality of the corresponding squares. Now it is a simple
exercise to prove that, if (G,0) and (G, *) are orthogonal quasigroups, and (H,0)
and (H, %) are another pair of orthogonal quasigroups (possibly of different order),
then (G x H,o) and (G x H,*) are also orthogonal.

(6.8.3) Proposition. Let n = pi'...p}", where py,...,p: are distinct primes and
ay,...,a, > 0, and let ¢ be the minimum of p3*,...,pt. Then f(n) > ¢ — 1.

Proor. Let ¢; = p%. Then we can find ¢y — 1 MOLS of order ¢, g2 — 1 of order
g2, and so on. Since a subset of a set of MOLS is again a set of MOLS, if ¢ is the
minimum of ¢1, gz, ..., we can find ¢ — 1 MOLS of each of these orders; taking their
products gives a set of ¢ — 1 MOLS of order n.

REMARK. More generally, we have

F(rnina) 2 min{f(n1), f(n2)}-
(6.6.4) Corollary. If n # 2 (mod 4), then there exist two orthogonal Latin squares
of order n.

Proo?. If ¢ = 2 in the Proposition, then n is divisible by 2 but not by 4, so that
n=2 (mod4).

Euler conjectured that the converse is also true; in other words, that if n = 2
{(mod 4), then orthogonal Latin squares do not exist. For n = 6, this is his ‘thirty-six
officers’ problem posed in the first chapter. It turned out that Euler was right about
the 36 officers (no solution exists), but wrong for all larger values of n. More
generally, it is known that f(n) — 00 as n — co. (This means that, for any given r,
there exist r MOLS of order n for all but finitely many values of r. For example,
two MOLS of order n exist for all » except n = 1,2 and 6.)

6.7. Exercises

1. (a) Show that the number of n x n. Latin squares is 1, 2, 12, 576 for n =1,2,3,4
respectively.

(b) Prove that, up to permutations of the rows, columns, and symbols in a Latin
square, there are unique squares of orders 1, 2, 3, and two different squares of
order 4.

(c) Show that one of the two types of Latin square of order 4 has an orthogonal
‘mate’ and the other does not.
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2. Show that, for n < 4, any Latin square of order n can be obtained from the
multiplication table of a group by permuting rows, columns, and symbols; but this
is not true for n = 5.

3. A Latin square A = (a;;) of order n is said to be row-complete if every ordered
pair (z,y) of distinct symbols occurs exactly once in consecutive positions in the
same row (ie, as (aij, @ j+1) for some i,j). (Note that there are n(n — 1) ordered
pairs of distinct symbols, and each of the n rows contains n — 1 consecutive pairs

of symbols.)

(a) Prove that there is no row-complete Latin square of order 3 or 5, and
construct one of order 4.

(b) Define analogously a column-complete Latin square.

(c) Suppose that the elements of Z/(n) are written in a sequence (z1,%2,.+ 1 Zn)
with the property that every non-zeto element of Z/(n) can be written uniquely in
the form %4y — 2; for some i =1,...,n — 1. Let A be the Latin square (with rows,
columns and entries indexed by 0,...,n— 1 instead of 1,... ,n) whose (3, j) entry is
a;j = #; + ;. (This is the addition table of Z /(n), written in a strange order.) Prove
that A is both row-complete and column-complete.

(d) If n is even, show that the sequence

0,L,n—1,2,n—2,...,in—1,3n+1,in)
has the property described in (¢)7
REMARK. Row- and column-complete Latin squares are useful for experimental
design where adjacent plots may interact.

4. (a) Find a family of three subsets of a 3-set having exactly three SDRs.
(b) How many SDRs does the family

({1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7}, {3,4,7}, {3,5,6}}
have?®

5. Let (A1,...,As) be a family of subsets of {1,...,n}. Suppose that the incidence
matrix of the family is invertible. Prove that the family possesses a SDR.

6. Use the truth of the van der Waerden permanent conjecture to prove that the
number d(n) of derangements of {1,...,n} satisfies

1 n
d(n) 2 n! (1 - —) .
(n}2n -
How does this estimate compare with the truth?

7. Prove the following generalisation of Hall’s Theorem:

If a family (A,...,An) of subsets of X satisfies AN 2 || -~
for all J C {1,...,n}, then there is a subfamily of sizen — 1 which
has a SDR.

[HiNT: add r ‘dummy’ elements which belong to all the sets]

7 [ am grateful to Rosemary Bailey for this exercise.
8 This family is the set of triples of the Steiner triple system of order 7; see Chapter 8.

7. Extremal set theory

Commonest family name. The Chinese name Zhang is borne, according to
estimates, by between 9.7 and 12.1 per cent of the Chinese population, so
indicating even on the lower estimate that there are at least some 104 million
Zhangs.

Peter Matthews (ed.), The Guinness Book of Records (1993).

TorIcs: Intersecting families; Sperner families; de Bruijn-Erdds
Theorem; [regular families]

TECHNIQUES: LYM method
ALGORITHMS:

CROSS-REFERENCES: Hall's Theorem (Chapter 6); Steiner triple sys-
tems (Chapter 8), projective planes {Chapter 9)

Fxtremal set theory considers families of subsets of a set satisfying some restriction
(perhaps in terms of inclusion or intersection of its members). It then asks the
questions:

e What is the maximal size of such a family?

e Can one describe all families which meet this bound?
Like many topics, it is best introduced by example. In this chapter, well consider
three example results in extremal set theory. In the first, the proof of the bound is
trivial, but there are far too many families meeting it to allow any decent description.
The second is just the opposite: the proof of the bound is quite ingenious, but not
much more work is needed to give a precise description of families meeting it. The
last case is somewhere between; it is included because it ties in with another of our
topics, finite geometry.

Let X = {1,2,...,n}. The set of all subsets of X is called the power set of X,
and denoted P(X), or sometimes 2X. (The latter notation relates to the fact that
|P(X)| = 2%, with a natural bijection between these sets, as we saw in Chapters 2
and 3.) By a family of sets is meant a subset F of P(X). The conditions we will
impose on a family all relate to pairs of sets in the family; they are as follows:

{a) any two sets have non-empty intersection;
(b) no set contains another;
(¢) two sets have exactly one common point.
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7.1. Intersecting families
A family F of subsets of X is intersecting if A, B€ F = ANB # 0.

(7.1.1) Proposition. An intersecting family of subsets of {1,...,n} satisfies |F| <
97=1, Moreover, there are intersecting families of size 2"~

ProoF. Let X = {l,...,n}. The 2" subsets of X can be divided into on-1
complementary pairs {4, X \ A}; clearly an intersecting family contains at most one
set from each pair. This proves the bound. But the family of all sets containing a
particular element (say 1) of X has cardinality 27! and is intersecting.

There are far too many intersecting families of size 27-! for there to be any
hope of classifying them. Here are a couple of examples in addition to the ones in
the proof of the Proposition.

ExAMPLE L. If n is odd, the set of all subsets A containing more than half the points
of X is intersecting, and has size 2"~! (since, as required by the proof, it does contain
one of each pair of complementary sets). If n is even, we modify the construction as
follows: take all sets with strictly more than n/2 points; then divide the sets of size
n/2 into complementary pairs, and take one of each pair in any manner whatever.
This gives lots of different examples. (Note that if |4| > n/2 and |B| > n/2, then

|ANB|=|4|+|B|-|[AUB| >n/2+n/2-n=10,

so the families constructed really are intersecting.)

ExaMpLE 2. Let X = {1,...,7}, and let B consist of the seven subsets
{{1’2’3}) {1’4?5} {116’7} {2)4’6} {275,7} {3,4’7} {3’5,6}}'

(Then (X,B) is a Steiner triple system of order 7 — see the next chapter for
definitions.) Let F be the set of all those subsets of X which contain a member of
B. Then F is intersecting, and |F| = 64 = 2"~! (see Exercise 1).

If we further restrict the sets to all have the same size k, what can be said? If
n < 2k, then any family of k-subsets of an n-set is intersecting, and there is no
testriction; so we should assume that n > 2k to get meaningful results. If n = 2k,
then an intersecting family contains at most one of each pair of disjoint sets, and

so contains at most %(’,:) = (';:}) sets. In general, there is always an intersecting

family of size ::i), consisting of all those k-sets containing some fixed point of X;
and, for large enough n, this is best possible. More generally, there is a t-intersectin

family F of k-sets (i.e., satisfying |Fy N F3| > ¢ for all Iy, F; € F) of size (::§
(consisting of all k-sets containing a fixed t-set), and this is also best possible for

large enough n:!

1 Upusually for the twentieth century, this theorem was proved in 1947, but was not published until
1963.
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(7.1.2) Erdés-Ko-Rado Theorem. Given k and t, there exist n1, n, such that

(a) if n > ny, a t-intersecting family of k-subsets of an n-set has size at most (2::),
(b) if n > ng, a t-intersecting family of k-subsets of an n-set which has size ('2::)
consists of all k-subsets containing some t-subset of the n-set.

A special case of this theorem is given as Exercises 2 and 3.

7.2. Sperner families

The family F of sets is called a Sperner family if no member of F properly contains
any other, that is,
ABeF=>A¢Band B¢ A.

For any fixed k, the set of all subsets of X of size ¥ forms a Sperner family
containing (:) sets. Since the binomial coefficients increase to the midpoint and
then decrease, the largest Sperner families of this fype occur when k = n/2 (if n is
even) and when & = (n — 1)/2 or (n + 1)/2 (if n is odd). It turns out that these are
the largest Sperner families without restriction.

(7.2.1) Sperner’s Theorem. Let F be a Sperner family of subsets of the ni-element
set X. Then |F| < (ln72l)' Moreover, if equality holds, then F consists either of all
subsets of X of size |n/2], or all subsets of size [n/2] (these are the same if n is
even}.

PrOOF. The ingenious proof uses the concept of a chair of subsets, a sequence
@=AOCA|C...CA",=X.

How many chains are there? If 7 is any permutation, then we get a chain by seiting
A; = {lr,...,ir} fori = 0,...,n. Conversely, in a chain, the points are added one
at a time, so we can uniquely recover the permutation. Thus there are as many
chains as permutations, viz. nl.

Next we ask: How many chains contain a fixed set A? If |A| = k, then it must
occur that A = A, and the chain is obtained by welding together a chain for A and
a chain for 8( \ A. So A lLies in k!(n — k)! chains, a proportion 1/ (2) of the total
We could also see this by observing that each of the (:) sets of size k lies in equally
many chains, by symmetry.

Now let F be a Sperner family. By assumption, any chain contains at most one
member of F. So the number of chains which do contain a member of ¥ is

X 14l 41 = (,% (|;|)) .

Since there are only n! chains altogether, we see that

> <1

Ae¥ (|3|) -

—
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Now, as we already observed, the middle binomial coefficients are the largest;
so their reciprocals are the smallest, and if we set m = |n/2], we have

Z(%SI,

AeF

whence |F| < (;), the required bound.

When is this bound met? Examining the argument, we see that attaining the
bound forces that (I:I) = (;:) for evety A € F, in other words, every set in F has
size either m = |n/2|, or n — m = [n/2]. If n is even, then these two numbers are
equal, and F must consist of all the sets of size m. But if m is odd, there is further
work required. In that case n = 2m + 1 and all the sets have size m or m + 1, but

we have to show that either they all have size m, or they all have size m + 1.

Looking at the proof again we see that, if the bound is met, then every chain
contains one member of F; so, if A is an m-set and B a (m + 1)-set with 4 C B,
then A € F if and only if B ¢ F. Now suppose that 4 is a m-set in F, and A’ any
other m-set. It is possible to find a sequence of sets beginning at A and ending at
A’, every term being of size m or m + 1, and each two consecutive terms related by
inclusion:

ACByDAC...

We see, following this sequence, that all of its m-sets belong to F, while none of
its (m + 1)-sets do. So A’ € F. Since A’ was arbitrary, F consists of all m-sets.
Similarly, if there is a (m + 1)-set in F, then it consists of all (m + 1)-sets.

The technique used here is called the LYM technigue. Roughly speaking, it
depends on the fact that a Sperner family and a chain have at most one set in
common, and the number of chains containing a set takes only a few values. A
simpler example along the same lines is given in Exercise 2.

71.3. The de Bruijn-Erdos Theorem

The third result is a specialisation of the first. Instead of assuming that two sets
meet in at least one point, we assume that they meet in exactly one.

The proof of this theorem is a bit harder than what we've had before; if you have
trouble following it, concentrate on understanding the result. The proof uses Hall’s
‘Marriage Theorem’ (6.2.1) on the existence of systems of distinct representatives.

(7.3.1) De Bruijn-Erdds Theorem. Let F be a family of subsets of the n-set X.

Suppose that any two sets of F have exactly one point in common. Then |F| < n.

If equality holds, then one of the following situations occurs:

{a} up to re-numbering the points and sets, we have F = {A,,...,A,}, where
Ai={i,n} fori=1,...,n {s0 A, = {n});

(b) up to re-numbering the points and sets, we have F = {A,,...,A,}, where
A, =1{1,2,...,n—1},and A; = {i,n} for 1 < <n—1;

{c) for some positive integer g, we have n = ¢> + ¢+ 1, each set in F has size g + 1,

and each point lies in q + 1 members of F.
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ReMARK. Case (b) is illusirated in Fig. 7.1. The last two cases of equality overlap:
when n = 3 (and g = 1), both describe a ‘triangle’. For g > 1, the structure described
in (c) is called a projective plane of order g. These planes will be considered further
in Section 9.5. The first example (with ¢ = 2) is the Steiner triple system of order 7,
to be discussed in the next chapter.

1 2 n-1

Fig. 7.1. An extremal family

ProOF. First, we can suppose that every set in 7 has at least two points. For if the
empty set is in F, it must be the only set. And if F contains a singleton, say {n},
then all the other sets of 7 contain n, and any two have just 7 in common; so there
are at most n — 1 more sets, the extreme case being as described in (a). Also, we
may assume that X ¢ F; for if it were, there could be at most one further set in F,
a singleton.

The proof requires a trick. If |[F| > n, then there is a subfamily of F with »
members. We analyse this family, and show that no further set can be added without
violating the hypothesis. So, for most of the proof, we can assume what we have to
prove, viz, |F| = n.

Let F = {Ay,«..,A.}. Moreover, fori = 1,...,n, let

Bi =X \ A{;

ki = |Ai;

r; the number of sets in F which contain :.

(r: is called the replication number of the point i.)
We claim that, if ¢ ¢ A;, then r; > k;. This is because each member of F containing
1 meets A; in a unique point, and these points are all distinct.

Next we claim that the sets By,. .., B, satisfy Hall’s condition. Let J be a subset
of {1,...,n}; then B(J) is the set of points not contained in A; for any j € J. If
J ={j}, then B(J) = B; = X \ A; # 0, by assumption; so (HC) holds in this case.
If2<|J| £n—1, then |B(J)| = n—1 (for, if i,j € J, then every point except
perhaps 4; N A; lies in B(J)). If |J| = n, the conclusion is clear.

Thus there is a SDR for the family (B; : j = 1,...,n). If we choose the
numbering so that i is a representative of B;, we have the conclusion that i ¢ A; for
¢ =1,...,n. From our earlier observation, this means that

k¢>?‘;

fori=1,...,n.
Now count pairs (¢, 4;) with ¢ € A;. Each point ¢ lies in r; sets A;, and each set
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A; contains k; points ¢. So we have
7 n
Sori=3 ki
=1 i=1

From these two equations, we conclude that r; = k; for:=1,...,n.

Now, considering the proof that k; > r;, we see that equality implies that every
point on A, lies on a member of F containing the point <.

But we can say more.

Look again at the application of Hall’s Theorem, and ask: could a set J be
critical? The proof shows that this can only happen if |J] =1 or n— 1. If a set
J = {3} is critical, this means that |B;| = 1, or [4;] = n — 1. If a set of size
n — 1 is critical, this means that n — 1 of the sets A; pass through a fixed point.
In either of these two situations, we must have conclusion (b) of the theorem. So
we may suppose that they don’ occur, so that no set J is critical except J = § or
J ={l,...,n}. Now the proof of Hall’'s Theorem shows that we can take any set
B; and choose any of its points as its representative.

Now let z,y be two points of X. We aim to show that some member of F
contains ¢ and y. Suppose not. Choose the numbering of F so that A, contains y
(but not z). Thus B, contains z, and we may use z as its representative. Now, as
just shown, this means that every point of A; (in particular, y) lies on a set of F
containing z. In other words:

any two points lie on a unique member of F.

Of course, this holds also in case (b) of the theorem.

It now follows that there cannot be a set F with more than n members. For
any n of them would satisfy the above. If A were an additional set, not a singleton,
and z,y € A, then one of the first n sets (say A;) also contains  and y, and then
A; and A have at least two common points.

We also have the following condition {*):

If the point ¢ does not lie on the set A;, then r; = k;; In other
words, if ; # k;, then i € A;.

Suppose that there are points x,y with r; # r,. Then each set of ¥ contains at
least one of = and y. If z is any further point, then we may suppose that r; # r;
(interchanging z and y if neccessary), and so any set contains at least one of z and
z. But only one set, say A, contains both y and z. So every set except A contains z.
This forces the structure defined under (b).

Thus, we may suppse that r is constant, say r, = ¢+ 1. Now |4| = ¢+ 1 for all
A € F, since for every set A there is a point 2 ¢ A, and (*) applies. Take a point .
Then g + 1 sets of F contain x, and each contains ¢ further points of X; and there
are no overlaps among these points. Thus n = 1 + (¢ + 1)¢ = ¢* + ¢ + 1, as claimed.

1.4. Project: Regular families

A family F of subsets of X is regular if every point lies in a constant number r of
elements of F. It is interesting to ask questions of extremal set theory restricted to
regular families. This section considers regular intersecting families. First, however,
we show that regular families do exist!
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(7.4.1) Theorem. Let b, k,n, v be positive integers satisfying

bk=nr, k<n, b< (:)

Then there is a regular family F of k-subsets of an n-set with |F|=b.

PrOOF.? There is a simple way to make a family ‘more regular’. Let r, be the replication number of
z, the number of sets of the family which contain z. If r, > r,, then there must exist a (k — 1)-set
U, containing neither z nor y, such that {z}UU € F, {y}UU ¢ F. Now form a new family F’
by removing {2} UU from F and including {y} U U in its place. In the new family, »; = r, — 1,
#, = ry + 1, and all other replication numbers are unaltered. Starting with any family of k-sets, we
reach by this process a family in which all the replication numbers differ by at most 1 (an elmosi
regular family), containing the same number of sets as the original family.

But, by double counting, the average replication number is $k/n = r; and an almost regular
family whose average replication number is an integer must be regular.

This idea can be modified to prove a theorem of Brace and Daykin:

(74.2) Theorem. If k is not a power of 2, and n = 2k, there exists a regular intersecting family of

sise 1(7) = (L)) of k-subsets of an n-set.

We begin with two remarks:

REMARK 1. As we already saw in Section 7.1, an intersecting family of k-subsets of a 2k-set has size

at most (1"_‘11), with equality if and only if it contains one of each complementary pair of k-sets.

ReMARK 2. The replication number of a regular family as in the theorem is r = %(2,::__11). This is an
integer if and only if k is not a power of 2 (Exercise 4). So the condition on k is necessary.

We need a slightly more complicated version of the replacement procedure, in order to preserve
the intersecting property. Let ¢ and y be points with r; > ry, + 2. Then there are two disjoint
(k — 1)-subsets I/ and V of X \ {z,y} such that {zx} U U, {y} UU € F. The complements of these
sets ate {y} UV, {z} UV respectively, and are not in F. If we replace both of these sets by their
complements, we obtain an intersecting family F' in which r; = r; — 2, r; = ry + 2, and the
other replication numbers are unaltered. Applying a sequence of such operations to an arbitrary
intersecting family, we obtain a family in which the new replication differ by at most 2, and are
congruent mod 2 to their initial values.

Let F be any intersecting family of size (%), in which all the replication numbers are
congruent to %(Zk"__ll) mod 2. [Let Fo be the family of all sels containing the point z. Its replication
numbers are r; = (2:__11), Ty = (2;__13) for y # x, which are all even. If a family in which all
replication numbers are odd is required, replace a single set by its complement.] Now apply the
above process. If a collection of numbers differ by at most 2, and all have the same parity as their
(integral) average, then all the numbers are equal.

7.5. Exercises

1. Verify the claim in Example 2 of Section 7.1.

2. If n = 2k, an intersecting family of k-subsets of an n-set has size at most
1fn n—1 : : 3

,‘—,(k) = (k_l), because it contains at most one of each complementary pair of k-sets.
We proceed to generalise this result and argument. What follows could be regarded

as a very simple version of the LYM technique. PROVE:

2 This argument is due to David Billington.
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Suppose that k divides n. Then an intersecting family F of k-subsets
of an n-set X has size at most (Z:})

[HINT: Let C be the set of all partitions of X into n/k subsets of size k. We don’t

need to know |C| (though this could be counted), merely the fact that each k-set Lies
in [C|/ (',::i members of C. Prove this by double-counting pairs (B, C), where B is
a k-set and C' € C with B a member of C)

Now double-count pairs (B, C), with B € F, C € C, and B € C, to obtain

—1
#11e/ (3 21) <t

using the fact that, since the parts of a partition are disjoint, at most one of them
lies in any intersecting family.

3. (HARDER PROBLEM). Prove that, if k divides n and n > 3k, then any intersecting
family of size (Z:;) of k-subsets of the n-set X consists of all k-sets containing some

point of X. [HINT: it follows from the argument of Exercise 2 that, if |Fl = k::),
then given any partition of X into disjoint k-sets, exactly one of these k-sets b ongs
to F. Exploit this fact,

4. Show that (2:__11) is even if and only if & is not a power of 2.

5. (a) If n is not a power of 2, construct a regular intersecting family of subsets of
an n-set, having size 271,
(b) If n = 2,4 or 8, show that there is no such family.

6. Prove that, in any intersecting family of size (2:_"11) of k-subsets of a 2k-set, the
1eplication numbers all have the same parity.

7. Let F be any intersecting family of subsets of the n-set X. Show that there is an
intersecting family 7' O F with |F'| = 2°~). [HINT: A blocking set for F is a set
Y which meets every member of F but contains none. Adjoin to F all sets which
contain a member of F, all blocking sets of size greater than %n, and (if n is even)
one of each complementary pair of blocking sets of size in]

By proving that the Steiner triple system of order 7 has no blocking sets, give
another proof of Exercise 1.

8. Let F be a Sperner family of subsets of the n-set X. Define b(F ) to be the family
of all subsets ¥ of X such that
(i) YNF #0 for all F e F;
(ii) Y is minimal subject to (i} (i.e., no proper subset of ¥ satisfies 1))
(a) Prove that 5(F) is a Sperner family.
(b) Show that, for any F' € F andany y € F, there exists Y € b(F) with Y NF = {v}
(¢) Deduce that b(b(F)) = F.
(d) Let Fi denote the Sperner family of all k-subsets of X. Prove that b(Fy) =
Fat1-k for k > 0. What is b(F,)?

8. Steiner triple systems

... how did the Cambridge and Dublin Mathematical Journal, Vol. ll, p. 191
[1846] manage to steal so much from ... Crelle’s Journal, Vol. LVI, p. 326
[1859], on exactly the same problem in combinations?

T. P. Kirkman (1887)

ToPIos: Steiner triple systems; packings and coverings; [tournament
schedules; finite geometries]

TECHNIQUES: Direct and recursive constructions; [use of linear
algebra and finite fields for constructions)

ALGORITHMS:

CROSS-REFERENCES: Extremal set theory (Chapter 7); [finite fields
(Chapter 4); finite geometry (Chapter 9)]

This chapter is devoted to the proof of existence of Steiner triple systems. The topic is
somewhat specialised; but the technique, involving a mixture of direct and recursive
constructions (the latter building up large objects of some type from smaller ones)
is of very wide applicability.

8.1. Steiner systems

In 1845, the following problem in extremal set theory was posed in an unlikely
forum, the Lady’s and Gentleman’s Diary:

Given integers I,m,n with [ < m < n, what is the greatest number
of m-element subsets of an n-element set with the property that
any l-element subset lies in at most one of the chosen sets?

The problem proved too difficult for the journal’s readership, and so it was specialised
to the case [ = 2, m = 3. This provided the incentive for a 40-year-old Lancashire
vicar, T. P. Kirkman, to take up mathematics: his first published paper, the following
year, contained a contribution to this case.!

Returning to the general problem for a moment, we observe:

! Kirkman is now remembered almost entirely for his work on this problem, but he also wrote
extensively on projective geometry, groups, polyhedra, and knots, and was regarded as one of the
leading British mathematicians of his day. An account of his life and work can be found in the
article ‘T. P. Kirkman: Mathematician’ by Norman Biggs in the Bulletin of the London Mathematical

Society 13 (1981), 97-120.
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(8.1.1) Proposition. Let B be a family of m-subsets of an n-set, such that any I-set
Lies in at most one member of B. Then

1B < (’;)/(’7)

Equality holds if and only if any i-subset lies in exactly one member of B.

Proo¥. We count pairs (L, B), where L is an /-set and B € B with L C B. Each
B € B contains (T) subsets of size /, so there are |B|- (’;‘) pairs. On the other hand,

there are altogether (’;) subsets of size /, and each lies in at most one set B, so there

 ()<()

Equality is only possible if every I-set lies in a (unique) member of B.

A pair (X, B), where X is an n-set and B a family of m-subsets satisfying the
hypotheses of the proposition and attaining the bound is called a Steiner system
§(1,m,n).2 A very important specialisation of the above problem is the following;:

are at most (’,‘) pairs. Thus

For which values of I, m,n does a Steiner system S(l,m,n) exist?

A Steiner system 5(2, 3, n) is called a Steiner triple system. To reiterate: a Steiner
triple system consists of a set X of points and a set B of 3-element subsets of X
(called triples or blocks), with the property that any two points of X lie in a unique
triple. The number n is called the order of the Steiner triple system. In this chapter,
we settle the existence question for Steiner triple systems. I will usually abbreviate
‘Steiner triple system’ to STS, and write STS(n) for a Steiner triple system of order
n.

First, some examples.

()

Fig. 8.1. Two small Steiner triple systems

2 The name is a double misnomer: the question posed by Steiner was not equivalent to the existence
of Steiner systems, though they are the same in the special case | = 2, m = 3; and this special
case was settled by Kirkman seven years before the question was asked by Steiner. However, the
terminology is now standard, and the term ‘Kirkman system' has a different meaning.
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Fig. 8.1(a) shows a STS(7). More formally, (X, B) is a STS(7), where
X =1{1,2,3,4,5,6,7}
B = {123,145,167, 246,257, 347,356 }.

(We write 123 for the set {1,2,3}, and so on.)
Fig. 8.1(b) shows a STS(9). Note that it solves the ‘nine schoolgirls’ problem

posed in Chapter 1: the walking scheme is

Day 1: 123 456 789
Day 2: 147 258 369
Day 3: 159 267 348
Day 4: 357 168 249

Moreover, there are trivial Steiner triple systems of orders 3 (three points forming
a triple), 1 (a single point, no triples), and 0 (no points or triples). Before reading
further, show that there is no Steiner triple system of order 2, 4, 5 or 6.

The next theorem determines completely the possible orders of Steiner triple
systems.

(8.1.2) Theorem. These exists a Steiner triple system of order n if and only if either
e n=20;0r
en=1o0r3 (mod 6).

This theorem asserts that a numerical condition is necessary and sufficient for
the existence of something. So the proof has two parts. First, we must show that the
order of a Steiner triple system satisfies the constraint: the argument is given below.
Second, given a number n of the correct form, we have to construct a STS(n). This
is more difficult, and will take the next two sections.

PROOF OF NECESSITY. Suppose that (X,B) is a STS of order n. Clearly, we may
suppose that n > 0. We establish two important properties by ‘double counting’.
1. Any point lies in (n — 1)/2 triples.

Choose a point #, and count pairs (y, B), where y is a point different from z,
and B a triple containing = and y. First, there are n — 1 choices for y and, for each
choice, there is a unique triple containing = and y: altogether n — 1 pairs. Second,
if = lies in r triples, then (since each triple contains two points other than z) there
are 2r choices of the pair (y, B). Hence 2r = n — 1, and r is as claimed.

2. There are n(n — 1)/6 triples altogether.

We count pairs (2, B), where z is a point and B a triple containing z. Each
of the n points lies in (n — 1)/2 triples, so there are n(n — 1)/2 pairs. If there are
b triples, each containing 3 points, then there are 3b choices. So 3b = n(n — 1)/2,
giving the claimed value for &.

Now the necessity of the condition follows. For, if n > 0, then both (n —1)/2
and n{n — 1)/6 must be whole numbers. The first condition asserts that » is odd,
whence n = 1,3 or 5 (mod 8). Suppose that n =5 (mod 6), say n = 6k + 5. Then
the number of triples is

n(n — 1)/6 = (6k + 5)(3k + 2)/3;
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but this is not an integer, since neither 6% + 5 nor 3% + 2 is a multiple of 3. So n
must be congruent to 1 or 3 modulo 6.

Note that, if » = 1 or 3 (mod 6), then both (n—1)/2 and n(n—1)/6 are integers;
but this in itself is no guarantee that a STS(n) exists, of course.

8.2. A direct construction

The proof of sufficiency given in the next section involves a reeursive construction, in
which larger Steiner triple systems are built up from smaller ones. In this section, we
show that a direct construction can be used to prove half of the theorem. Specifically:

(8.2.1) Proposition. If n =3 (mod 6), there exists a STS(n).

Suppose that n = 3 (mod 6); then n = 3 where m is odd. The point set is
made up of three copies of the integers mod m. Formally,

X = {a;,b‘v,c,- 1€ Z/(m)}

Blocks are of two types:
(a) all sets of the form a:a;bi, bibjck, or cicjar, where 1,5,k € Z/(m), i # j, and

i+ j =2k (in Z/(m));

(b) all sets of the form a;bic;, for i € Z/(m).

Before verifying that this works, observe that the equation 7 + j = 2k has a
unique solution (in Z/(m)) for any one of the variables, given the other two. This
is clear for 7 and j. For k it depends on the fact that (since m is odd) any element
of Z/(m) can be uniquely divided by 2: depending on the parity of I, either I/2 or
(1 + m)/2 is the unique solution of 2z = L

First let us count the triples. There are ('2) = m(m — 1)/2 choices of ¢ and j,
and for each choice, a unique k and hence three triples of the first type. There are
clearly m triples of the second type. This makes altogether

Im(m - 1)/2+m=3m(3m —1)/6

triples, as required. Now let us verify that they do form a Steiner triple system, by
showing that any two points lie in a unique triple.

There are several cases:

(i) Points e; and a;, ¢ # j. A triple containing them must be of type (a); by our
remark above, there is a unique such triple.

(i) Points b; and b;, or ¢; and c;: these cases are similar.

(iii) Points a; and b;. These Lie in a unique triple of type (b); and in no triple of
type (a), since if a;a;b; were such a triple, then i + j = 2i, whence 7 = 1.

(iv) Points b; and ¢, or ¢; and ;: similarly.

(v) Points a; and by, k # i: these lie in a unique block of type (a).

{vi} Points 4 and cx, or ¢; and a;: similarly.

For n = 9, we get a different-looking STS of order 9. In fact it turns out to be
the same as before, just drawn differently (see Fig. 8.2, in which three triples are not
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shown).
q o 1
bo b2
Co cy c2

Fig. 8.2. STS(9)

8.3. A recursive construction

Before embarking on the main business, we attend to one important detail: the
construction of a STS(13).

For this, it would be sufficient to give a list of 13 points and 13.12/6 = 26 triples,
and leave the verification to the reader. However, the construction is a special case
of something more general, so we give it abstractly.

We take X to be the set Z/(13) of residue classes modulo 13. Consider first the
sets

Bi={0,1,4}, B»={0,2,8)}.

We claim that the following holds.

For any non-zero z € X, there is a unique way to write 2z =z — y
with z,y chosen from the same set B;.

This is seen by listing all possibilities:

1=1-0 2=2-0 3J=4-1 4=4-
- 5=0-8 6=8-2 7=2-8 8§=8-0
9=0-4 10=1-4 11=0-2 12=0-1

and noting that each of the 2.3 .2 = 12 expressions u — v for u,v € B;, i = 1,2 has
been used once.

Now let
B={By+2B:+z:2€ X},

where B; + z = {t + 2z : t € B;}. (So B consisis of the triples 014, 125, 236, ..., 028,
139, ... ; 26 in all)

We claim that (X, B) is a STS. Clearly X is a 13-set and B a set of 3-subsets of
X. Let z,y be distinet points of X. If 2,4 € B; + 2, then z — 2,y — z € B;, and
(# — z) — (y — 2) = z — y. By the claim above, there is a unique choice of i,u,v so
that z —y =u —v withu,v € B;; and thenz — 2 = 4,50 2 =2 — u = y — v is also
determined. So there is a unique triple containing z and y.

This technique works whenever we can find sets By, ... in Z/(n) such that any
non-zero element of Z/(n) can be written uniquely in the form u — v, with  and v
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chosen from the same B:. For example, with . = 7, it is possible to use a single set
B, = {0,1,3}, giving rise to the familiar STS(7) labelled in a different way (Fig. 8.3).

1

4 4] 5 6 0

Fig. 8.3. STS(7) in cyclic form

This construction works much more generally. We use it for all primes n (indeed,
all prime powers) which are congruent to 1 (mod 6) in a Project (Section 8.5).

Now we come to the main technical result. This is a recursive construction,
building larger systems from smaller ones. First, a definition.

A subsystem of the Steiner triple system (X,B) is a subset ¥ of X with the
property that any triple in B which contains two points of Y is contained within Y.
If C is the set of triples contained within the subsystem Y, then (Y,C) is a Steiner
triple system in its own right, and we may refer to this as a subsystem without
confusion.

(8.3.1) Proposition. Suppose that there exists a STS of order v containing a subsystem
of order u, and also there exists a STS of order w. Then there exists a STS of order
u +w(v —u). If w > 0, it contains a copy of the STS(v) as a subsystem. Moreover,
if0 < v <v and w > 0, then it can be assumed to have a subsystem of order 7.

ExAMPLE. Given this result, we can give two constructions of a STS of order 19 (the
smallest value for which we haven’t yet constructed a STS). In the proposition, take
either
eu=1Lv=3,w=9(19=14+93-1)); or
su=Lo=T,w=3(19=1+3(7-1)).

The idea behind the construction is described like this. Imagine that the STS(v)
is drawn on a piece of paper, with the points of the STS(1) on the left-hand side.
Make w copies of this page. Now bind them into a book by glueing them together
on the left, so that the points of the STS(x) on the different pages become identified
(and lie on the spine of the book). We have u + w(v — ) points, as required.
Moreover, we have some triples already, all those lying on a single page of the
book (possibly using points of the spine). Any further triple uses three points from
different pages. We use the STS(w) to help us choose these triples; so we imagine
that the pages are numbered by its points.

Formally, then, let the point set of the STS(v) be {a1,...,a,} U{d; : i € Z/(m)},
where m = v — u, and the points {a,...,a,} form the STS(x). Let the points of the
STS(w) be {cy,... ¢} Take

z={ay,...,a}U{dyi:p=1,...,w;i € Z/(m)}.
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The blocks are of two types:

(a) the blocks of the STS(v), copied onto each ‘page’ (each set consisting of all the
a; and all the d,; with fixed p) by the mapping that fixes all ¢; and maps b; to
dp.is

(b) aﬁ sets of the form d,, ;,d,, ;,dp, i, for which the ‘page numbers’ ¢p, , ¢p,, Cp, form
a triple of the STS(w) and ¢, + 12 + i3 = 0 {in Z/(m)).

Let us check that it works. Take two points. If they lie on the same page,
then they lie in a unique triple of the first iype, by the defining property of the
STS(v). If they lie on different pages, then they have the form d,, ;, and d',,z‘;,, j;vhere
p1 # p2. Then the third point on the triple must have the form dp,,;,; ps is Tlmquely
determined by the requirement that c,,cp, ¢y, is a triple of the STS(w), and i3 by the
requirement that ¢, + 43 + 23 = 0.

It remains to show the last part, about the subsystem of order 7. Suppose that
0 < u < v and w > 1. Since u > 0, we may take a point a of the subsystem. Since
» > u, we have m = v — u even; choose the numbering of the points b; so that
abobyyz is a triple (otherwise it is arbitrary). Since w > 1, there is a triple in the
STS(w), say ¢i1cacs. Now it is easily checked that the seven points

{a} U{dpi:p=1,2,3;i = 0,m/2}

form a subsystem (see Fig. 8.4).

Fig. 8.4. A STS(7) subsystem

Now let A be the set of positive integers n for which there is a Steiner triple
system of order n — we have to show that A contains all numbers n =1 or 3 (mod
6). Also, we let B be the set of positive integers n for which there exists a Steiner
triple system of order n containing a subsystem of order 7.
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We note that B is a subset of A. Also, the following implications hold:

neA=3ncAd
nEB=3necB
ncA=>3In-2¢B
nEA=>3In—-6¢cB
ncEB=>3In—-14€ B

These are justified by (8.3.1), with the following values of (u,v,w):

We divide the potential members of B into congruence classes modulo 18: any
admissible n is congruent to 1, 3, 7, 9, 13 or 15 (mod 18). Now we have

6k+1€A=>18k+1=306k+1)—2€B
6k+3€A=18t+3=3(6k+3)—6€ B
6k+3€c A= 18k +7=3(6k+3)—-2¢B
6k+3€B=>18k+9=3(6k+3)c B
6k+9cB=18k+13=3(6k+9)—14€¢ B
6k+7€ A=>18k+15=3(6k+7)—6€ B
We claim that every admissible number » > 15 lies in B. Suppose not, and take
a least counterexample. If n = 1 (mod 18), then we must have n < 55 — for if
18k +1 > 55, then 6k + 1 > 19, so 6k + 1 € B (since 6k + 1 is at least 15 and is
smaller than the least counterexample), and 18k 4+ 1 € B also. So n = 19 or 37.
Checking the other congruence classes this way, we find the possible values of n to
be 15, 19, 21, 25, 27, 33, 37. So the claim will be proved if we can show that each

of these numbers is in B. Suitable values of (u,v,w) in (8.3.1), with the relevant
equation, are given in the following table.

(1,37 15=1+73-1)
(1,3,9)  19=1+93-1)
(0,7,3) 21 =0+3(7—0)
(1,9,3) 256=1+3(9-1)
(1,3,13)  27=1+133-1)
(3,13,3)  33=3+3(13-3)
(1,13,3)  37=1+3(13-1)

We use the fact that 7,9,13 € A, as established earlier.
So B does contain all admissible n > 15. Since B C A, and since A contains 1,

3, 7, 9 and 13, the theorem is proved.
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The proof of the theorem is constructive: given a number n = 1 or 3 (mod 6),
if n is sufficiently large, then we can read off from the proof a number »’ such that
an STS(n') can be used to construct an STS(n). For example, how to construct a
STS(625)7 Since 625 = 18- 34 + 13, and 6 - 34 + 9 = 213, we require a STS(213).
Then, since 213 = 18- 11 4 15, and 6 - 11 + 7 = 73, we need a STS(73). Then, since
78=18-4+1,and 6-4 + 1 = 25, we need a STS(25). Then the recursion ‘bottoms
out’, since the proof tells us how to construct this system.

The construction given here is by no means the only one possible. Exercises 2
and 13 yield a completely different STS(625).

This is not the end of the story — one can ask how many different ways there
are of forming a Steiner triple system on a set of n points, where n = 1 or 3 (mod
6). But we now pursue a different question: if n is not of this form, how close can
we get to a STS?

8.4. Packing and covering

Steiner triple systems represent special solutions to an extremal set problem —
indeed, to two such problems, as we now discuss. This situation, where a structure
satisfying a condition containing the words ‘exactly one’ is an extreme case for both
‘at most one’ and ‘at least one', is very common; the extremal problems are referred
to as packing and covering problems.

Let X be a set with n elements. A (2,3)-packing is a set B of triples such that any
two points of X are contained in af mast one member of B; and a (2,3)-covering is
a set B of triples such that any two points are contained in at least one member of
B. Obyiously any subset of a packing is a packing, and any superset of a covering
is a covering; so we let p(n) denote the size of the largest (2,3)-packing, and c(n)
the size of the smallest (2,3)-covering, of an n-set.

(8.4.1) Proposition. (a} p(n) < n{n —1)/6.
(b} c(n) = n(n—1)/6.
(c} Equality holds in either bound if and only if there exists a STS(n).

PROOF. The arguments are straight double counting. For packings, each of the
n(n — 1)/2 pairs is contained in at most one triple, and each of the p(n) triples
contains exactly three pairs. For coverings, the inequality reverses.

Thus, if n = 1 or 3 (mod 8), we have p(n) = ¢(n) = n(n—1)/6. For other values,
p(n) is smaller than this bound, and c(n) is larger. It is possible to prove a general
result improving the inequalities:

(8.4.2) Proposition. (a} p(n) < [2[25%])-
(b) c(n) > [3[2311].

Proor. We follow the argument for the necessary condition for the existence of a
STS(n) (8.1.2). Let B be a packing. Then, by double counting, any point z lies in
at most %51 triples of B. However, the number of triples containing z is an integer,
so we can round this number down to |25 ]|. Then, again by double counting, the
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number of triples is at most 2|2:*|; and, again, we can round this number down,
The argument for coverings is similaz, except that we round up.

These bounds are not always attained. But there is one case where they are met:
(8.4.3) Proposition. If »n = 0 or 2 (mod 6), then p(r) = n(n — 2)/6.

PROOF. 2 is even, so |®31] = 222, Then 5(”6—_21 is an integer, so this quantity is our
upper bound for p(rn).

On the other hand, there exists a Steiner triple system of order » + 1, since this
number is congruent to 1 or 3 (mod 6). This STS has "t~ blocks, of which each
point lies in 7. So, if we remove one point and all triples containing it, we obtain a
packing of size

(n+l)p n_ n(n-2)
6 2 6

8.5. Project: Some special Steiner triple systems

This section describes some constructions of Steiner triple systems by algebraic,
rather than combinatorial, methods. The resulting systems have a high degree of
symmetry.

PROJECTIVE TRIPLE SYSTEMS.

In this subsection and the next, we construct examples of highly symmetric Steiner triple systems,

using linear algebra over the fields Z/(2) and Z/(3). These systems are instances of more general
‘finite geometries', to be treated in Chapter 9.

Let F be the field Z/(2) of order 2. Let ¥ be a vector space of dimension d over F. Then V
can be realised concretely as the set of all d-tuples of elements of F, so that [V| = 29. We take X to
be the set of non-zero vectors in V, and

B = {{=,y,2}: z,y,z distinct, 2 + y + z = 0}.

CLAIM. (X, B) is a Steiner triple system of order 2¢ — 1.

PrRooO?. It’s clear that, if = + y + z = 0, then any two of z, y, z determine the third. We have to show
that, if z and y are distinct and non-zero, then z is distinct from both and non-zero. So suppose that
O#c#y#0.Then z= —(2+y) =2+ y (since =1 =1 in F ). Since y # 0, we have z # z; since
z#£0,wehave 2 # y; andsince 2 £y, wehave z =z +y=z—y #0.

We denote this system by P(d — 1); it is called a projective triple system or projective geometry
of dimension ¢ — 1 over F. (There are geometric reasons for leiting the dimension be d — 1 rather
than d; these will appear later,) Fig. 8.5 shows the familiar STS(7) presented as P(2).

1) (o11)  (oo1)
Fig. 8.5. P(2)

Projective systems have an important, and characteristic, property. A Zriangle in a STS is a set
of three points not forming a triple.
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(8.5.1) Theorem. A STS is projective if and only if any triangie is contained in a subsystem of order 7.

Proor. Let (X,B) be a projective triple system, and {z,y,z} a triangle. Then :z':+ y+z # 0; so
the seven points #, ¥, z, £+ ¥, ¥ + 2, & + &, ¢ + y + z are all distinct and are easily seen to form a

subsystem.

For the converse, let (X, B) be a STS in which every triangle is contained in a 7-point subsystem.
We have to construct the algebraic structure of a vector space over Z/(2). This is an example of the

procedure of ‘coordinatisation’ in geometry. .
Let 0 be a symbol not in X, and let V = X U {0}. We define an operation + on V' by the rules

that, for allv € V,
0O+v=v40=uv,

v+uv=0,

and, if 2,y € X with z # y, then z + ¥ is the third point of the triple containing z a1_1d v

This operation is obviously commutative; 0 is the identity, and every element is its own 1nverse.
We show that it is associative. There are several cases, most of which are trivial (for exampl'e,
(+0)+y =2 +y=2z+ (0+y)). The only non-trivial case occurs when {=z,v,z} is a triangle, in
which case the structure of the STS{7) gives the required conclusion (see Fig. 8.6).

3

(e+y)+z=z+(y+2)

¥ yt+z z
Fig. 8.6. The associative law

We conclude that
" (V,+) is an abelian group.
Next we define a scalar multiplication on V, by elements of F, by the rules

=0,
l-v=wv,

for all v € V. We have
(V, +,-) is a vector space over Z{(2).
Again, most of the axioms are trivial. The most interesting is
(a+B)-v=a-ut+tp-v.

In the case a = 3 = 1, we have & + 8 = 0, and the result follows from the fact that v+ 2 =0.
Now X is the set of non-zero vectors, and B the set of triples with sum 0, in V; so the system

is projective.

AFFINE TRIPLE SYSTEMS.

There is a similar construction involving the field Z/(3). Let V' be a d-dimensional vector space over
this field. Let X = V, and

B={{z,y,2) C X : z,y,2 distinct, = + y + 2 = 0}.

CLAM. (X, B) is a Steiner triple system of order 3¢,




118 8. Steiner triple systems

PROOF. Again, if z +y + z = 0, then any two of z,y, 2 determine the third. Suppose that = £y
Then z # =, since if = z = —(2 +y) then y = —22 = 2; and similarly z # y, so all three points are
distinct.

This system is called an affine triple system or affine geometry of dimension d over Z/(3). (Note
the dimension!) It has a property resembling that of projective triple systema:

In an afline triple system, any triangle is contained in a subsystem of order 9.

(See Exercise 5.)

The converse, surprisingly, is false. The first counterexample has order 81, and was constructed
by Marshall Hall. As a result, the term Hell triple system is used for any Steiner triple system which
is not affine but has the properly that every triangle is contained in a subsystem of order 9. It is
known that the order of a Hall triple system must be a power of 3, and that they exist for all orders
which are powers of 3 and at least 81.

Nobody knows any example of a Steiner triple system of order n in which each triangle lies in
a unique subsystem of order k < n, for any k other than 7 or 9.

NETTO SYSTEMS.
These Steiner triple systems are constructed using the method we saw already for the STS(13).

(8.5.2) Proposition. Let B, ..., B; be 3-subsets of Z/(n). Suppose that, for any non-gero element
u € Z/(n), there is a unique value of i € {1, ...,t} and unique z,y € B; such that v =z — y. Set

B={(Bi+z:1<i<tr e/},
where B; + 2 = {b+ z : b € B;}. Then (Z/(n), B) is a Steiner triple sysiem.

PRroo¥. Take two distinet elements z,y € Z/(n); we have to show that a unique triple in B contains
z and y. When do we have z,y € B; + z? This condition implies that ¢ — 2,y — z € B;; and
(r—z) — (y—2) = =~y # 0. So, given  and y, there is a unique choice of ¢; and the elements 2 —z
and y — z (and hence z) are alsc determined.

Note that the number of triples is tn = n{n — 1)/6; so n = 6¢ + 1, or n = 1 (mod 6). Note also
that the cyelic permutation z — =+ 1 (mod n) preserves the Steiner triple system.

We will see that, for any prime number p = 1 (mod 6), there exist sets B, ..., B; satisfying the
hypothesis of (8.5.2). For this, we use the following fact:
Ifp=1 (mod 6), then the field Z/(p) contains a primitive sixth root of unity
(an element z satisfying 2 = 1, z* £ 1 for 0 < £ < 6).

The algebraic explanation of this fact is that the multiplicative group of Z/(p) is a cyclic group of
order p — 1, and so (if 6|p — 1) contains a cyclic subgroup of order 6.

Since 0= 25— 1= (P - 1)(z+1)(22—z+1),and 2* £ 1,z # ~1, we have 2> — 2 + 1 = 0. We
note the equations

1=1-0, 2z=2z-0, z2=2z-1, #=0-1, z*=0-2 S=1-2

Now set ¢ = (p — 1)/6, and let s;,...,$; be cosel representatives for the distinct coseis of
the subgroup generated by z in the multiplicative group of Z/(p). Then let B; = {0, s,-,_s‘-z} for
t=1,...,,. Then every non-zero residue mod p is uniquely expressible in the form s;z’, where

1<i<tand0<j<5. According to the displayed equations, it is uniquely expressible in the form
z — y for some z,y € B; and some i. This proves the claim.

The STS we have constructed is called a Netto system of order p, denoted by N(p).

The construction can be generalised, using finite fields. In Section 4.7, we briefly discussed the
theorem of Galois, guaranteeing a unique field GF(g) of any prime power order ¢. It is also true
that the multiplicative group of GF(g) is cyclic. So the construction of a Netto system N(g) of prime
power order ¢ = 1 (mod 6) works exactly as for prime order p, with GF(¢) replacing Z/(p) in the
construction. See Exercise 2 for an example of this.
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8.6. Project: Tournaments and Kirkman’'s schoolgirls

In this section, we construct Kirkman’s own solution to his Schoolgirls Problem.

We begin with a detour. The schoolgirls enjoy playing hockey, and the achool has a team in
a league, playing matches against other school teams at weekends during term. In the course of a
season, every team plays against every other team once. If there are n teams in the competition, what
is the least number of rounds required to play all the matches?

The number of matches to be played is (5) = n{n — 1)/2. If a is even, then n/2 matches can be
played in every round, so we need (at least) n — 1 rounds. If n is odd, then only (n — 1)/2 matches
can be played in a round, with one team having a bye; so n rounds are required. A fournament
schedule for n teams is an arrangement of all pairs of teams into the minimum numbers of rounds
just calculated (viz. n — 1 if  is even, n if n is odd).

Of course, we cannot guarantee that tournament schedules exist on the basis of this argument;
but there is a simple construction, as follows. First, consider the case where n is odd. Draw a regular
n-gon in the plane, and number its vertices 0,...,n — 1 corresponding to the teama (these numbera
are regarded as belongong to the integers mod n). For each edge of the n-gon, there are (n — 3)/2
diagonals parallel to this edge; this parallel class determines the matches in a round, with the team
corresponding to the vertex opposite the chosen edge having a bye. Fig. 8.7 shows the case n = 5.
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Fig. 8.7. Tournament schedule: five teams

This construction can be presented algebraically: the edge and diagonals in the parallel class
not containing the vertex i have the form {j, k}, where j + & = 2i (in Z/(n)).

For n even, we temporarily remove one team from the competition, and construct a tournament
schedule with n — 1 rounds for the remaining teams as above. Then we decree that, in each round,
the extra team will play the team which would otherwise have had a bye in that round.

Now we present Kirkman's marching orders for his schoolgirls. First we construct a STS(15).
Divide the 15 schoolgirls into a group X of 7 girls and a group Y of 8. We take X = {zo,..., %6} to
be the point set of a Steiner triple system STS(7). Also, we take Y to ‘be’ the teams in a tournament
with 7 rounds Ro,+.., Re. Bach R; consists of four disjoint pairs of girls; we add girl z; to each of
these pairs to form a triple. In this way we get 28 triples which, together with the 7 triples of the
STS(7), form 35 triples, the right number for a STS(15).

We check that it really is a STS(15). Any two girls in X belong to a unique triple of the
subsystem. Any iwo girls in Y form a pair belonging to one round R; of the tournament, and so lie
in a triple with z;. Finally, take a girl in X (say 2;) and a gitl y € ¥': the unique triple containing
them is {:,y, ¥}, where {y, ¥/} belongs to round R;.

Finally, we have to divide the triples into seven sets of five, corresponding to the walking
groups on the seven days of the week. For this, we exploit the eyclic structure of both the STS(7)
and the tournament schedule. We can take the iriples of the STS(7) io be {By,..., Bs}, where
Bi = {@i41,%i42, Zita}. Label the girls in Y as {yo,...,¥s, 2}, where the i*" round R; of the
tournament consists of {w,z} and all {y;, yc) with 5 + k = 2¢. Then {zo,w0,2}, {ye, v, 5},
{2, ys, s}, and {y1, ys, 23} are triples (since, for example, 4 + 6 = 2 x 5). Together with {1, z2, z4},
these make up the groups for day 0: every girl is in one group. Now the groups for day ¢ are obtained
by adding ¢ to the subscripts of the z's and y's.
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In general, a Steiner triple system, whose triples can be partitioned into classes
with the property that each point lies in a unique triple of every class, is called a
Kirkman system.

8.7. Exercises

1. Kirkman’s original (incomplete, but basically correct) proof of the existence of
Steiner triple systems went as follows. Kirkman defined two kinds of structure: S,
what we have called a Steiner triple system of order n; and S, whose exact details
don’t concern us here. He claimed to show:

(a) Sl exists;

(b) if S, exists, then Son4; exists;

(c) if S, exists and n > 1, then 5, _, exists;

(d) if SL exists, then Sgn_1 exists.

Prove that, from (a)~(d), it follows that S, exists for all positive integers n =1 or 3
(mod 6). For which values of n does 5, exist?

2. Construct a Netto system of order 25.

[HINT: As in Section 4.7, we have to find an irreducible quadratic over Z/(5),
use it to construct GF(25), and then find a primitive sixth root of unity in this field.
But all this can be simplified. We know that z must satisfy 2% — z + 1 = 0, and this
quadratic is irreducible over Z/(5); so let

GF(25) = {a + bz : a,b € Z/(5)},
where 22 = z—1. All that remains is to find the coset representatives of the subgroup
generated by z.]
3. Prove that, given any STS(7), its points can be numbered 1,...,7 so that its
triples are those listed in Fig. 8.1(a). Prove a similar statement for STS(9).
[HINT: show that any two triples of a STS(7) must meet; while, in a STS(9), there
are just two triples disjoint from a given triple, and these are disjoint from one
another.]

Formally, an isomorphism between Steiner triple systems (X;,B1) and (X3, Bs)
is a bijective map f : X; — X; which carries the triples in B to those in B2. You
are asked to prove that Steiner triple systems of orders 7 and 9 are unique up to
isomorphism.

HARDER PROBLEM. Prove that there are just two nom-isomorphic Steiner triple
systems of order 13.

REMARK. After this, things get mote difficult. There are exactly 80 non-isomorphic
STS of order 15, and millions of non-isomorphic STS(19) (the exact number has
never been determined).

4. An automorphism of a Steiner triple system is an isomorphism from the system to
itself. Prove that a Steiner triple system of order 7 or 9 has 168 or 432 automorphisms
respectively.

5. (a) Prove that, in an affine triple system, each triangle lies in a subsystem of

order 9.
(b) Prove that an affine triple system is a Kirkman system.
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6. Verify the following values of the packing and covering functions for small n.

n 3 4 5 6 7 8 9
pn) 1 1 2 4 8 12
c(n) 1 3 4 6 7 11 12

-3

EXERCISES ON STEINER QUADRUPLE SYSTEMS.

A Steiner guadruple system (SQS) is a pair (X, B), where X is a set, and B a collection
of 4-element subsets of X called quadruples, with the property that any three points
of X are contained in a unique quadruple. The number n = |X| is called the order
of the quadruple system.

7. If a SQS of order n exists, with n > 2, then n = 2 or 4 (mod 86).
[This condition is also sufficient, but the proof is more difficult.]

8.If (X, B) is a SQS of order n, then |B| = n(n — 1)(n — 2)/24.

9. Let X be a vector space over Z/(2), and let B be the set of 4-subsets {z,y, z, w}
of X for which z + y + z + w = 0. Show that (X, B) is a SQS.

10. Let (X, B} be a SQS of order n > 2. Take a disjoint copy (X’, B') of this system.
Take a tournament schedule on X with rounds R,..., R,_1, and one on X’ with
rounds R,,..., ! _,. (This is possible since n is even — see Section 8.6.) Now let
Y =XUX',and C = BUB'UR, where R is the set of 4-sets {z,y, ', w'} such that
e z,ye X, we X
e forsomei (1 <i<n-1),{z,y} € R; and {",w'} € R,.
Show that (¥,C) is a SQS of order 2n.

EXERCISES ON SUBSYSTEMS.

11. Let (X, B) be a STS of order n, and ¥ a subsystem of order m, where m < n.
Prove that n > 2m + 1. Show further that n = 2m + 1 if and only if every triple in
B contains either 1 or 3 points of Y.

12. Let (X, B) be a STS of order n = 2m + 1, and Y a subsystem of order m; say
Y={y1,.--,ym}. Fori = 1,...,m, let R, be the set of all pairs {z,2'} C X \Y for
which {y:, 2,2} € B. Show that {R,,...,R,} is a tournament schedule on X \ Y.

Show further that this construction can be reversed: a STS(m) and a tournament
schedule of order m + 1 can be used to build a STS(2m + 1).

13. Let (X, B) and (Y,C) be STS, of orders m and n respectively, Let Z = X x Y,
and let D consist of all triples of the following types:

e {(z,1),(2,¥2),(x,y3)} for 2 € X, {y1, 42,45} € C;

o {(z1,y),(22,y)s (23,y)} for {@1,22,23} € B,y €Y}

o {(z1,1),(22,92), (23, y3)} for {21, 22,23} € B, {y1,92,3} €C.
(Note that a triple in B and one in C give rise to six triples of the third type,
corresponding to the six possible bijections from one to the other.)

Show that (Z,D) is a STS of order mn. Show further that,if m > 1 and n > 1,

then (Z, D) contains a subsystem of order 9.
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14. What can you say about the set
{n: there exists a STS(n) with a subsystem of order 9}7

15. COMPUTING PROJECT. Recall the ‘nine schoolgitls problem’ posed in Chapter 1:
nine schoolgirls are to walk, each day in sets of three, for four days, so that each pair
of girls walks together once. We've seen that this problem has a unique solution:
there is a unique STS(9) up to isomorphism (Exercise 4), and there is a unique way
of partitioning its twelve triples into four sets of three with the required property.
Now we add a further twist to the problem:

Arrange walks for the girls for twenty-eight days (divided into seven
groups of four) so that

o in each group of four days, any two girls walk together once;

e in the entire month, any three girls walk together once.

In other words, we are asked to partition the (g) = 84 triples of girls into seven
12-sets, each of which forms a Steiner triple system.

There are 840 different Steiner triple systems on a given 9-set,® and so potentially
(8;0) possibilities to check — rather a large number! We make one simplifying
assumption, (This means that, if we fail to find a solution, we have not demonstrated
that no solution exists.) We assume that

the required seven STS(9)s can be obtained by applying all powers
of a permutation 6 of order 7 lo a given one.

We can assume that the starting system is the one of Fig. 8.1(b), with point set
X =1{1,...,9}, and triple set

B = {123,456, 789, 147,258, 369, 159, 267, 348, 357,168,249}

We can also assume, without loss, that ¢ fixes the points 1 and 2, and acts as a
7-cycle on the others. (That no generality is lost here depends on the symmetry of
the STS(7): all pairs of points are ‘alike’) Finally, there is a unique power of 8
which maps 3 to 4; so we may assume that 6 itself does so. Thus, in cycle notation,

8=(1){2)34abcde),

where a,...,c are 5, ... ,9 in some order; in other words, (2 ? ;’ : g) is a permuta-
tion in two-line notation.
Thus our algorithm is as follows:

o set up the system (X, B);

e generate in turn all permutations (: o7 3 2); for each,let § = (1)(2)(34 abede),
and check whether B, B9, ..., B6° are pairwise disjoint. Report success if so.
Program this calculation. (You should find two permutations which give rise to

a solution.)

16. Here is a related problem. Cayley showed that it is impossible to partition the

;) = 35 triples from a 7-set into five disjoint Steiner triple systems. In fact, no more

than two disjoint STS(7)s can be found. Verify this observation.

3 For a proof of this fact, see Chapter 14,

9. Finite geometry

In Plane Geometry that afternoon, | got into an argument with My Shull, the
teacher, about parallel lines. | say they have to meet. I'm beginning to think
everything comes together somewhere.

William Wharton, Birdy (1979)

Topics: Finite fields; Gaussian coefficients; projective and affine
geometries; projective planes

TECHNIQUES: Linear algebra
ALGORITHMS:

CROSS-REFERENCES: Binomial coefficients (Chapter 3); Orthogonal
Latin squares (Chapter 6); de Bruijn—-Erdds Theorem (Chapter 7);
Steiner triple systems (Chapter 8)

Projective geometry over finite fields is a topic of great importance, for many reasons.
It provides a large collection of highly symmetric structures, with interesting groups
of collineations; it is a so-called ‘g-analog’ of the family of subsets of a set, providing
;.n interesting perspective; and it ties in with almost everything else we have met so
ar.

9.1. Linear algebra over finite fields
We already met in Section 4.7 the basic fact about the existence of finite fields:

(9.1.1) Finite fields
There exists a field with ¢ elements if and only if ¢ is a prime power.
If so, then the field is unique up to isomorphism. It is called the
Galois field of order g, and denoted by GF(q).

This fact is proved in any good algebra textbook. I have included an outline of
the proof at the end of this chapter (Section 9.9). If you haven’t met it before, and
have trouble with the algebra involved, you may take it on trust, and keep in mind
the case when the order is prime. (The Galois field of prime order p is the field
Z/(p) of integers modulo p.)

In traditional linear algebra, it is usually assumed that the field over which we
work is the field of real numbets (or possibly some variant, such as the rational or
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complex numbers). However, almost everything works the same over finite fields.
The definition of linearly independent set, spanning set, basis, subspace; the formula

dim(U N W) + dim(U + W) = dim(U) + dim(W),

the representation of linear maps by matrices, and the rank and nullity formula, all
work as usual.

Row operations and reduced echelon form also work in the same way; but, since
we will need these, I will sketch them. The three types of row operation on a matrix
are:

¢ multiply a row by a non-zero scalar;

¢ add a multiple of one row to another;

e interchange two rows.
These operations do not change the linear dependence or independence of the rows
of the matrix, and also do not change the row space (the subspace spanned by the
rows).

A matrix A = (a;;) is said to be in reduced echelon form if the following three
conditions hold:

e given any row of A, either it is zero, or the first non-zero entry is a 1 (a so-called

‘leading 1°);

e for any ¢ > 1, if the i** row is non-zero, then so is the (i — 1)*, and its leading 1
is to the left of the leading 1 in the i*! row
e if a column contains the leading 1 of some row, then all its other entries are 0.
Now the following result holds:

(9.1.2) Proposition. Any matrix can be put into reduced echelon form by applying a
series of elementary row operations; and the reduced echelon form is unique.

If 2 matrix is in reduced echelon form, then its rows are linearly independent if
and only if the last row is non-zero — this is the familiar test for linear independence
of a set of vectors.

Note that, for linear algebra, the weaker notion of ‘echelon form’ (where the
third condition in the definition is deleted) suffices; but, for us, a crucial fact about
reduced echelon form is its uniqueness, and this is not true for the weaker form.
9.2. Gaussian coefficients
We are now going to do some counting in vector spaces ovet finite fields. Let V(n, ¢)
denote an n-dimensional vector space over GF(g). First, the number of vectors:
(9.2.1) Proposition. The number of vectors in V(n,q) is equal to ¢".

PrOOF. As usual, by choosing a basis, we represent the vectors by all n-tuples of
elements of GF(q); and there are ¢* of these.

The Gaussian coefficient [';]q is defined to be the number of %-dimensional

subspaces of V(n, ).
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(9.2.2) Gaussian coefficients

[n] R C il ) [ C it RERE C Gl V)
k], (¢ - 1)(g*1-1)...(¢—1) °

Proor. First we show:

The number of linearly independent &-tuples in V(n, g) is equal to

(- -q)..- (" —¢").

This is proved by examining the number of choices of each vector. A k-tuple of
vectors is linearly independent if and only if no vector lies in the subspace spanned
by the preceding vectors. Thus, the first vector can be anything except zero (¢" — 1
choices); the second must lie outside the 1-dimensional subspace spanned by the
first (¢" — g choices); and, in general, the i*" must lie outside the (¢ — 1)-dimensional
subspace spanned by its predecessors (¢" — ¢*~! choices). Multiplying these numbers
gives the result.

Now a k-dimensional subspace is spanned by k linearly independent vectors,
and we have counted these. But a given subspace U will have many different bases.
How many? Just the number of linearly independent k- tuples in a k-dimensional
subspace, which is found from the same formula by putting k£ in place of n. We
must divide by this number to obtain the number of subspaces. Cancelling powers
of ¢ gives the quoted formula.

Now the number of k-dimensional subspaces of V(n, ¢) is equal to the number
of k x n matrices over GF(¢) which are in reduced echelon form and have no zero

rows. This gives another way to calculate [2] .
2

ExaMpLE. Let n = 4 and & = 2. Our formula gives

[4] _@-)*-1
2], (¢-1}{e¢-1)
=(@+D)(E+g+)=¢"++2¢" + ¢+ L.

We check by counting matrices. The possible shapes are

(1 *) 1 % 0 =x 1 0
0 * /7 0 01 x/° (U l)’
(0 *) (0 1 = 0 0 0
0 * /0 00 0 1/’ 0 1)’

where * denotes an arbitrary element. So there are ¢* + ¢° + ¢* + ¢* + g + 1 matrices.

D= =D
—O * %
oo o %
o= O %
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REMARK 1. If we regard the Gaussian coefficient as a function of the real variable ¢
(where n and k are fixed integers), then we find that

im 2], = ()

For, by PHépital’s rule, we have

for a,b # 0; so

. [n] _nrn-1)...n-k+1) (n
im k]q_ kk—1)...1 _(lc)

For this reason, the Gaussian coefficients are sometimes called the ‘g-analogs’ of the
binomial coefficients.

REMARK 2. The Gaussian coefficients can be given a combinatorial interpretation
for all positive integer values of ¢ greater than 1, not just prime powers. For
let Q be any set of size ¢, containing two distinguished elements called 0 and 1.
Then the definition of a matrix in reduced echelon form over @ makes sense, even
though the algebraic interpretation is lost. The number of k x n matrices in reduced
echelon form with no zero rows is given by a polynomial in ¢. But, for infinitely
many values (all the prime powers), this polynomial coincides with the Gaussian
coefficient (which is also a polynomial); so they are identically equal.

The matrix interpretation enables us to give a recurrence relation for the Gaus-

sian coeflicients:
SR AR R
g q q

PROOF. Consider k x (n + 1) madtrices in reduced echelon form, with no zero rows.
Divide them into two classes: those for which the leading 1 in the last row occurs
in the last column; and the others. Those of the first type correspond to (k — 1) x n
matrices in reduced echelon with no zero rows, since the last row and column are
zero apart from the bottom-right entry. Those of the second type consist of a k x n
matrix in reduced echelon with no zero rows, with a column containing arbitrary
elements adjoined on the right. Since there are ¢* choices for this column, the
recurrence relation follows.

(9.2.3) Theorem.

Note that this relation reduces to the binomial recurrence when ¢ = 1. However,
unlike the binomial recurrence, it is not ‘symmetric’. (For a symmetric form, see
Exercise 3.) In fact, we have:

(9.2.4) Proposition.
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PROOF. This follows from the bijection between k-dimensional subspaces of V' =
V(n,q) and (n — k) dimensional subspaces of its dual space V* (where a subspace
of V corresponds to its annihilator in V=).

Thus, we obtain another recurrence:

nt+ll n npl_k| T
i A R A
q q q
(see Exercise 4).

From the formula for the Gaussian coefficients, we can deduce another result
analogous to & binomial coefficient identity:

A n n n—1
-1 = -1 .
(g )[k] (g )[k_l]
¢ g
In fact, quite a lot of the combinatorics of binomial coefficients can be extended to
their g-analogs; but we have enough for our needs now.

We can use the recurrence relation above to prove a pretty analogue of the
Binomial Theorem (3.3.1):

(9.2.5) g-binomial Theorem
Forn 2> 1,

n—1 n
[10+gt)y =37 [n] tt.
k=0 k

i=0 q

PrROOF. The proof is a straightforward induction. For n = 1, both sides are 1 + ¢.
Suppose that the result is true for n. Then

101 +4't) = (Z ] t") ).
i=0 k=0 q

The coefficient of t* on the right is

k(k-1)/2 |7 (e-1)k-2)r2| T n
el waeenl

_rte-n2 [T n—k+1| T
! ([k]q+q [k_l]q)

— g1/ n+1
k

k]
q

as required.
Letting ¢ — 1, we obtain the usual Binomial Theorem.

It’s now easy to count the non-singular matrices.
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(9.2.6) Theorem. The number of non-singular n x . matrices over GF(q) is

(-1 —-9)...("—¢").

PROOF. A square matrix is non-singular if and only if its rows are linearly indepen-
dent. We counted linearly independent k-tuples above.

Note that the non-singular n x n matrices form a group, the so-called gereral
linear group GL(n, ¢). The theorem above computes the order of this group.

9.3. Projective geometry

The definition of projective geometry seems strange at first meeting. We'll make a
short detour to see where it came from.

One of the goals of painting is to create a 2-dimensional picture whose effect on
a viewer approximates that of the 3-dimensional scene it depicts. In the European
renaissance, painters began to approach this problem mathematically. Let us idealise
the situation, and assume that the painter’s eye is a point, and take this point to be
the origin of a coordinate system for space. He sees an object by means of a ray of
light from the object to his eye. Another object seen by a ray in the same direction
will appear in the same place. (In practice, of course, the nearer object will hide
the further one). Thus, the points of the painter’s perceptual space can be identified
with semi-infinite rays through the origin.

Fig. 9.1. Perspective

The painter wants to represent his perceptual space in a plane. He sets up a
‘picture plane’ II, not passing through his eye. A typical ray will meet II in a single
point, which can be taken to represent that ray (and hence, to represent objects
for which that ray is the line of sight). Assuming that Il is a mathematical plane,
extending infinitely in all directions, then the rays represented are all those on one
side of the plane IF' through the painter’s eye parallel to II.
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Mathematically, it is simpler to replace rays by lines through the origin, extending
in both directions. (The painter doesn’t have eyes in the back of his head, and so
he will not actually picture objects behind him.) With this convention, every line
through the origin is represented by a unique point in the picture plane Il, except
for the lines in II' {that is, the lines parallel to II). This led to the convention of
adjoining mathematical ‘ideal points’ to II to represent these lines, forming the real
projective plane.

Thus, the real projective plane can be regarded in either of two ways: the
picture plane IT with ‘ideal points’ added, or the set of all lines through the origin
(1-dimensional subspaces) of 3-dimensional space R®. The second representation
has the disadvantage that points of the plane ‘are’ lines rather than points, but the
(more than compensating) advantage that all points are alike.

What about lines? Given a line L of R? not containing the origin, the set of
lines joining its points to the origin sweep out a plane (minus one line, the ‘point
at infinity’), which intersects II in a line. This is the line which the painter draws to
represent L. In other words, in the second (3-space) model, a line of the projective
plane is a 2-dimensional subspace of R®. Note that any two lines of the projective
plane meet. For example, if L, L’ are lines in 3-space which are parallel but not
in II’, then their representations in II meet at the point where the line through the
origin parallel to L intersects II.

This gives us the clue for the general definition. The n-dimensional projective
space over a field F, denoted PG(n, F'), is defined by means of an (n+1)-dimensional
vector space V = V(n 4 1, F). The points of projective space are the 1-dimensional
subspaces of V; the lines are the 2-dimensional subspaces; planes are 3-dimensional
subspaces; and so on. Note that a line, normally regarded as 1-dimensional, is
represented by a 2-dimensional vector space. We saw the motivation for this
already; but, in an attempt to reduce confusion, we use the term k-flat for the object
in projective geometry represented by a (k¥ + 1)-dimensional vector subspace.

Now some familiar geometric properties hold. For example:

(a) Two points lie in a unique line.

(b) Two intersecting lines lie in a unique plane.
These properties follow from elementary linear algebra. For (a), the two points are
1-dimensional subspaces, and their span is 2-dimensional. For (b), the two lines are
2-dimensional subspaces U; and U,; the fact that they intersect in a point means
that dim(U; NU;) = 1, and so dim(U; + Uz) = 3, whence the two lines span a plane.

Slightly less familiarly, the converse of (b) holds:

(¢) Two coplanar lines intersect.

(This follows by reversing the argument, noting that dim(U; + Uz) = 3 implies
dim(U; N U;) = 1.} In other words, there are no parallel lines!

If F is a finite field GF(q), then we denote the projective space by PG(n, ¢). Now
we can count objects in PG(n, ¢) in terms of Gaussian coefficients, For example:

(9.3.1) Proposition. PG(n, ¢) has ["T‘]q = (¢**! = 1}/(¢ — 1) points. It has [:I; .

k-flats, each of which contains (¢**' — 1)/(¢ — 1) points.
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In particular, the projective plane PG(2,¢) has ¢* + ¢ + 1 points and ¢* + ¢ + 1
lines; each line contains ¢ + 1 points and each point lies in ¢ + 1 lines; two points
lie in a unique line, and two lines intersect in a unique point. Thus, it is an example
of a family of sets satisfying the hypotheses and the final conclusion of the de
Bruijn-Erd8s Theorem (see Section 7.3).

9.4. Axioms for projective geometry

How do we recognise a projective space? Let us assume that we are given the points
and the lines only. (In fact, all the flats can be recovered from these data: a set
of points is a flat if and only if it contains the unique line through any two of its
points. See Exercise 6.) Now, as just remarked, two points lie on a unique line. But
this alone is not enough to force the structure to be a projective space. For example,
any Steiner triple system (Chapter 8) has this property, if we take the lines to be the
triples; and certainly not every Steiner triple system is a projective space PG(n, q).
(Three points per line forces ¢ = 2, so that the total number of points would be
27+l _ 1. But there are Steiner triple systems where the number of points is not of
this form.)

In Section 8.5, we defined a class of Steiner systems which were referred to as projective. If you
read that section, you will be reassured to know that those systems are precisely the projective spaces
PG(n,2). As defined there, the points are the non-gero vectors of V(n 4 1, 2), and the lines are the
triples of vectors with sum szero. But, over GF(2), a 1-dimensional space contains the sero vector
and a unique non-gero vector, so there is a one-to-one correspondence between the non-gero vectors
and the subspaces they span. Moreover, a 2-dimensional subspace contains the zero vector and three
non-zero vectors; it is not hard to see that the sum of these three vectors is zero, and conversely that
any three vectors with sum gero, together with the zero vector, form a 2-dimensional subspace.

The correct characterisation was given by Veblen and Young, and can be stated
as follows.

(9.4.1) Veblen—Young Theorem. Let £ be a family of subsets (called lines) of the set

X. Suppose that the following conditions hold:

{(a) every line contains at least three poinis;

(b) two points of X lie in a unique line;

{c) there exist two disjoint lines;

(d) if a line meets two sides of a triangle, not at their intersection, then it meets the
third side also.

Then X and L can be identified with the poinis and lines of the projective space

PG(n,g) for some n > 3 and some prime power q.

Fig. 9.2. Veblen—-Young axiom
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Bl (g+1)=(g*+g+1)-(g+1),
so |Bl=¢*+¢+1
This shows that there is a ‘duality principle’ for projective planes. Let (X, B) be
a projective plane. Let X’ = B and B = {f:: x € X}, where
B.={LeB:zel}
then (X', B’) is also a projective plane of order g. Its points and lines correspond to
the lines and points of the original plane.

For which numbers ¢ do projective planes of order ¢ exist? We have seen that
they exist for all prime powers. The main non-existence theorem is the celebrated
Bruck—Ryser Theorem:

(9.5.2) Bruck-Ryser Theorem
If a projective plane of order n exists, where n = 1 or 2 (mod 4),
then n is the sum of two squares of integers.

The proof is given in Section 9.8. The theorem shows, for example, that there
is no projective plane of order 6, a fact connected with Euler’s officers, as we will
see. However, since 10 = 12 + 3%, the question of whether or not a projective
plane of order 10 exists is not resolved by our results so far. This question was
finally settled in the negative by Lam, Swiercz and Thiel in 1989, after several large
computations taking a number of years. The existence question for a plane of order
12 is unresolved at present.

How do we recognise the special planes PG(2,q)? It turns out that they are
precisely the (finite) projective planes in which the classical theorems of Desargues!
and Pappus® are valid.

(9.5.3) Desargues’ Theorem for I
Let aybic; and azbac, be triangles in the projective plane Il such
that the lines ajas, b1, by and c1¢; are concuzrent. Let p = hianNbaca,
g = c1a1 N a2, and r = a1bhy N agby. Then p,q,r are collinear.

1 Desargues was a contemporary of Descartes; their advocacy of geometric and algebraic methods
respectively created a rivalry between them.

2 pappus was one of the last of the classical Greek geometers. His work, the Collection, was important
in the preservation of their heritage.
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Fig, 9.3. Desargues’ Theorem

{9.5.4) Pappus’ Theorem for I
Leta,b,c,d,e, f be points of the projective plane I1, such that a,c,
are collinear and b,d, f are collinear. Let p = abN de, ¢ = bc Nef,
r = edN fa. Then p,q,r are collinear.

Fig. 9.4. Pappus’ Theorem

9.5.5) Theorem. The following conditions are equivalent for a finite projective plane
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e II is isomorphic to PG(2, ¢) for some prime power g;
e Desargues’ Theorem holds in I1;
e Pappus’ Theorem holds in IL

We now develop a connection with the theory of Latin squares. First, we define
a related geometric structure. An affine plane of order ¢ consists of a set X of ¢*
points, and a set B of g-element subsets of X called lines, such that two points lie
on a unique line. The Steiner triple system on 9 points is an example of an affine
plane.

Two distinct lines of an affine plane clearly have at most one common point.
Unlike a projective plane, lines may be disjoint. We call two lines parallel if they are
either equal or disjoint.

(9.5.6) Proposition. In an affine plane of order g,
(i) any point lies on q + 1 lines;
(i) there are g(g + 1) lines altogether;
(iii) (Buclid’s parallel postulate) if p is a point and L a line, there is a unique line L'
through p parallel to L;
(iv) parallelism is an equivalence relation; each parallel class contains g lines which
partition the point set.

PROOF. We begin as before. If p is a point, the ¢* — 1 points different from p have the
property that each lies on a unique line through p, and each line through p contains
¢ — 1 further points; so there are (¢ — 1)/(¢ — 1) = ¢ + 1 lines through p. Now
double counting shows that there are ¢> - (¢ + 1)/¢ = (g + 1) lines altogether.

Let p be a point and L a line. If p € L, then clearly L is the unique line through
p parallel to itself, since any two such lines intersect in p. Suppose that p ¢ L. Then
p lies on ¢ + 1 lines, of which ¢ join it to the points of L; so exactly one is disjoint
from L.

The relation of parallelism is, by its definition, reflexive and symmetric, and we
have to show that it is transitive. In other words, two lines L, L' parallel to the same
line L’ are parallel to one another. This is clear if two of the three lines are equal,
so suppose not. If L and L’ have a point p in common, then they both pass through
p and are disjoint from L, which is impossible. So L and L' are disjoint.

Clearly each parallel class contains exactly one line through any point. Thus, the
g + 1 lines through a point p contain representatives of all the parallel classes. To
see the same thing another way, observe that each parallel class contains 7 /g=24q
lines, since these lines are pairwise disjoint and cover the point set; so there are
¢(g + 1)/q = q + 1 parallel classes.

(9.5.7) Theorem. A projective plane of order q exists if and only if an affine plane
of order g exists.

PROOF. We have to construct each type of plane from the other. Suppose that (X, B)
is a projective plane. Let L be a line, and set Xo = X \ L and

Bo={L'\L:L'€B,L' # L}.
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(In other words, we remove a line and all of its points.) There are (¢*+g+1)—(¢+1) =
¢® points in Xo; each line has (¢ + 1) — 1 = ¢ points, since any line meets Lina
unique point; and two points lie in a unique line. So (X, Bo) is an affine plane.

Conversely, suppose that (Xo,Bo) is an affine plane. Let Y be the set of
parallel classes of lines in this plane. We take the point set X to be Xo UY; then
|X| = ¢ + ¢ + 1. There are two types of new lines. For each line L € By, set
L* = LU{C}, where C is the parallel class containing L; also take ¥ as a new line.
Thus the new structure is (X, B), where

B={L":LeB}uU{Y}

Any line has ¢ + 1 points, since one new point is added to each old line L, and
there are g+ 1 parallel classes. We have to show that two points of X lie in a unique
line. There are several cases:

e two points z,y in X, lie in a unique old line, hence 2 unique new line of the
first kind;

e given a point z € X, and a parallel class C' € Y/, there is a unique line containing
z in the parallel class C, hence a unique new line of the first kind containing
both;

e two parallel classes lie in a unique new line of the second type, namely Y.

So (X, B) is a projective plane.

The process used above to extend an affine plane to a projective plane is called
‘adding a line at infinity’. The line Y is the line at infinity, and its points are the points
at infinity, the points where parallel lines of the affine plane meet. This is exactly the
procedure which turns the Euclidean ‘picture plane’ into the real projective plane.

We now make the connection with orthogonal Latin squares, and exhibit affine
planes as the solution of a different kind of exiremal problem. Recall the definition
of a Latin square of order n (from Chapter 6): it is an n x n matrix with entries

1,2,...,n, having the property that each entry occurs exactly once in each row or
column. Also, two Latin squares A = (a;;) and B = (b;) are orthogonal if, for
any pair (k,{) of elements from {1,...,n}, there are unique values of ¢ and j such

that a;; = k, bi; = L. A set {A;,...,A,} of Latin squares is called a set of muiually
orthogonal Latin squares (MOLS) if any two squares in the set are orthogonal. We
saw that there cannot be more than n — 1 MOLS of order n.

(9.5.8) Theorem. There exist n — 1 MOLS of order n if and only if there is an affine
plane of order n.

PROOY. Given a set {A;,..., A.} of MOLS, we build a geometry of points and lines
resembling a ‘partial affine plane’. We take the points to be the cells ofan n xn
array:
X ={(53):4,i=1...,n}

There are three types of lines:
(a) horizontal lines, of the form {(z,j): 2 =1,... ,n}, where j is fixed (j = 1,...,7);
(b) vertical lines, of the form {(3,y) :y =1,... ,n}, where i is fixed (i = 1,...,n);
(c) for each square A, (m = 1,...,7), and for each entry k (k=1,...,n), the set

{(5,3) : (Am)i; = k).
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Cleazly there are n? points, and any line contains n points.

We claim that two points lie on at most one line. This is clear for horizontal or
vertical lines; and the definition of a Latin square guarantees that two points of a
type (c) line lie in different rows and columus. Furthermore, lines of type (¢} coming
from the same square A,, are disjoint. So consider two lines of type {c), defined by
square Ap, and entry k; and by square An, and entry k; respectively. Could they
have two points (31, 1) and (iz, j2) in common? If so, then in both these positions
the squate A, has entry &, and A, has entry ky, contradicting orthogonality.

Now any point p lies on r + 2 lines: one horizontal, one vertical, and one for
each of the squares. These lines contain (r + 2)(n — 1) points other than p. So
14 (r +2)(n — 1) € n? whence r < n — 1, giving another proof (more-or-less the
same as the earlier one) of the upper bound. Equality holds if and only if any two
points lie on a line, that is, the geometry is an affine plane.

Conversely, suppose that an affine plane of order n occurs. It has n® points
and n + 1 parallel classes of lines. We select two parallel classes {H,,...,H,} and
{W,...,V,} of lines (to be the horizontal and vertical lines). Now any point lies on
a unique horizontal line H; and a unique vertical line V;; we can give this point the
coordinates (Z,7).

Now let {L,...,Ln} be any further parallel class, and define a matrix 4 by the
rule that A;; = k if and only if (4,5) € L. It is easily checked that this matrix is a
Latin square. Furthermore, the matrices obtained from different parallel classes are
orthogonal. So we obtain a set of n —1 MOLS from our affine plane.

REMARK. Given any set of 7 MOLS of order n, a ‘geometry’ can be constructed
as in the above proof. It has n? points and n(r 4 2) lines, with each line having n
points, two points in at most one line, and the lines falling into r + 2 parallel classes.
Such a geometry is called a net.

9.6. Other kinds of geometry

Finite geometers have produced a bewildering variety of new types of geometries,
usually defined by lists of axioms: affine spaces, polar spaces (and affine polar
spaces), partial and semi-partial geometries, generalised polygons, near-polygons,
buildings, etc. In this section, I will say a little about two of these types, which are
closely related to projective spaces.

We have already seen the relation between projective and affine planes. Not
surprisingly, the same can be done in any dimension. We define the n-dimensional
affine geometry AG(n,q) over the field GF(q) to be obtained from the projective
geometry PG(n, ¢) by designating a hyperplane (a subspace of codimension 1) as
being ‘at infinity’ and deleting it, together with all the subspaces it contains.

Just as in the plane case, there is a cartesian representation. If the underlying
vector space V(n + 1,g) consists of vectors with coordinates (zi,...,Tn41), We can
take the hyperplane at infinity to have equation 2,41 = 0; then any non-infinite
point has a unique representative with z.,, = 1, say (#1,...,2n,1), and we can
represent it uniquely by the n-tuple (xy,...,%,). We can regard this as a vector of

9.6. Other kinds of geometry 137

V(n,q). Now the whole geometry can be represented in V = V(n,g), as follows:
k-flats turn out to be all cosets W = v of k-dimensional vector subspaces W of
V. (This works even for points: the only 0-dimensional subspace is {0}, and its
cosets are all the singleton sets {v}, which can be identified with individual vectors
v € V.) Now it is clear that a flat of dimension % contains ¢* points. The number

of such flats is ¢ *|}| : for there ate |}| choices of the vector subspace W, and
k q

k

q
¢" choices of the coset representative v, but g* of these give rise to the same coset.
Summarising:

(9.8.1) Proposition. AG(n, g) has ¢* points. I has gk [’,:] . flats of dimension k, each

of which contains ¢* points.

There are theorems about recognition of affine spaces, like the Veblen—Young
Theorem but more complicated. We won't pursue this any further (but see the
discussion of affine Steiner triple systems in Section 8.5).

Now we examine briefly a class of geometries which axiomatise (among other
things) the nets, which arose in connection with orthogonal Latin squares and affine
planes in Section 9.5.

Let s,t,a be positive integers. A partial geometry with parameters s,t,a is a
geometry of points and lines for which the following axioms hold:
e every line is incident with s + 1 points, and any point with ¢ + 1 lines;
o two points are incident with at most one line (and two lines with at most one
point — but this is equivalent to the preceding!);
o if the point p is not incident with the line L, then there are exactly o points of L
collinear with p (or, equivalently, exactly o lines through p concurrent with L).
The comments in parentheses demonstrate that the dual of a partial geometry with
parameters s, ¢, « is a partial geometry with parameters ¢, s, a. (The dual is defined in
the same way as for projective planes in Section 9.5.) Note that 1 < o < min(s,t)+1.
Part of the motivation for studying partial geometries is that they include many
other types of structure as special cases. Let us just notice two cases.

A partial geometry with o = 5 + 1 has the property that any two points lie on a
unique line. (For let p and g be points, and L a line containing ¢. If L also contains
p, we're done; else, by the third axiom and the fact that a = |L|, every point of L
(and in particular ¢) is collinear with p. Conversely, a structure in which two points
lie on a unique line and every line has a constant number of points, is a partial
geometry with a = s + 1. These include projective and affine planes, projective and
affine spaces of arbitrary dimension (where lines are 1-flats), Steiner triple systems,
and complete graphs (with two points per line).

A net (obtained from a family of » MOLS, as in Section 9.5) is a partial geometry
withs=n—1,t=r —1, a = r — 1. (The parameters s and ¢t are clear. Now, if p
is not on the line I, then every line through p meets L except for the unique line
parallel to L.

Conversely, let G be a partial geometry witha =t. Let n =s+1landr =t +1.
Calling two lines parallel if they are equal or disjoint, we see that, given any point
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p and line L, there is a unique line L’ through p parallel to L. Hence parallelism
is an equivalence relation, and each parallel class covers all the points of G once.
Now every line has n points. It follows that every parallel class has n lines (since a
line not in that parallel class meets each line in the class once), and so there are n?
points altogether. Thus G is a net.

We conclude that nets are the same as partial geometries with o = ¢. In
particular, & = t =1 defines a square grid.

A very important kind of partial geometry consists of generalised quadrangles,
defined by the condition that &« = 1. We see that square grids are generalised
quadrangles; but there are many others. Exercise 12 gives a simple construction of
one.

9.7. Project: Coordinates and configurations

As you might expect, the projective planes PG(2,¢) have many special properties
not shared by arbitrary planes. The proofs of these properties must involve the
algebraic structure: in other words, we work with coordinates rather than with the
geometric configurations they represent. In this section, we will see how to set up
coordinates, and then use them to prove one of the most famous theorems of finite
geometry, Segre’s Theorem.

Let F = GF(g). The points of PG(2,¢) are 1-dimensional subspaces of the
vector space V = V(3, F). Each point is spanned by a non-zero vector (z, y, z); but,
of course, any non-zero multiple (cz, cy, ¢z) would span the same point. We use the
notation [z,y, z] for the point spanned by (z,y, ), so that [z,y,2] = [cz, cy, c2] for
any ¢ # 0. Then z,y, z are called Aomogeneous coordinates for the point.

(An alternative procedure would be to call two non-zero vectors equivaleat if
one is a constant multiple of the other, and then define points to be equivalence
classes of vectors.)

Any line can be represented by a linear equation ez + by + cz = 0, where a, b, ¢
are not all zero. We see that multiplying ¢, b, c by a constant doesn’t change the
set of points on the line; so we can also represent lines by equivalence classes
(or 1-dimensional subspaces) [a,b,c]. (In algebraic terms, lines, or 2-dimensional
subspaces of V, are represented by 1-dimensional subspaces of the dual space V*.)

We can find unique representatives of the points and lines at the cost of
distinguishing cases. For this purpose, we take the line z = 0 (represented by
[0,0,1]) to be the line at infinity. Now any point not on this line (i.e, in the
affine plane) has z # 0, and so has a unique representative [z,y,1] (obtained by
multiplying through by the inverse of the third coordinate): this corresponds to the
usual Cartesian coordinates (z,y) in the affine plane. There are ¢° points of this
form. Similarly, points on the line z = 0 either have z # 0 (in which case there is a
unique representative {1,m,0]), or have z = 0 as well (there is a unique such point,
namely [0, 1,0]). This gives the ¢ + 1 points on the line at infinity, making ¢* + ¢ + 1
lines altogether.

Now we consider the lines. One of them is the line at infinity, [0,0,1]. For
most other lines, as usual in coordinate geometry, we can take the equation to be
y = mz + c: this line has slope m and y-intercept ¢ in the standard way. (Its
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affine points are those {z,y, 1] for which = and y satisfy this equation.) In terms of
homogeneous coordinates, the equation is y = mz + ¢z, or [m, —1, ¢]; it contains the
point [1,m,0] of the line at infinity. The remaining lines (those with ‘infinite slope’)
have equation z = ¢, which in homogeneous coordinates is z = ¢z or [—1,0, c]; they
pass through the point [0, 1,9].

We are going to find all the ovals in the planes PG(2, ¢) with ¢ odd. First we have to define
avals, and prove a few of their properties.

An oval in a projective plane is a set O of points with the properties that no three of its points
are collinear, and it has a unique tangent at each of its points (a line meeting it in no further
point). It's clear that this definition is abstracted from the intuitive notion of an oval in the real
plane (exemplified by any smooth convex curve); but intuition doesn’t always serve us well in finite
geometry.

Given an oval ), any line of the plane meets @ in at most two points; we call a line L a secant,
tangent or passant according as [LNO| =2, 1 or 0. If p is a point of O, then p lies on g + 1 lines
(where g is the order of the plane), of which one is a tangent and the other g are secants, each
containing one furthier point of &; s0 |0 = ¢+ 1.

In PG(2, g), there is an important special class of ovals, called conics. A conic ( is the set of
points satisfying a non-singular quadratic equation: thus

C ={[z,y,2) : az® + by® + c2® + fyz + g2z + hzy = 0},

where the quadratic form is non-singular (this means that it cannot be transformed into a form in
less than three variables by any non-singular linear substitution of the variables z,y, z). Note that,
becanse every term in the quadratic form has degree 2, if (z,y, z) satisfies the equation, so does
(cz, ey, cz); so our definition does make sense.

Any conic is an oval. To see this, take a line L, which (by choice of coordinates, ie., a
linear substitution) we can assume is the line z = 0. The pointe of ¢ N L are those [z,y,0] for
which az? + by? + hzy = 0. Now we cannot have a = b = 4 = 0; for then the quadratic would be
z(gz + fy+ez) =0, and a linear substitution would change it to zz = 0, involving only two variables.
If a # 0, then the point [1,0,0] doesn't satisfy the equation; any other point has a representative
(#,1,0), and lies on the conic if and oaly if az? + hz + b = 0, and this quadratic equation has at
moest two solutions, The argument is similar if & # 0. Finally, if @ = & = 0, the equation is hzy =0,
and there are two points which satisfy it, namely [1,0,0] and [0,1,0).

In the affine plane, there are three familiar types of conic: the ellipse, parabole, and hyperbola.
But the three are equivalent in the projective plane. If we take a conic C in PG(2, ¢), and choose
a line L to be the line ai infinity, then the conic becomes a hyperbola, parabola or ellipse in the
usual fashion if L is a secant, tangent or passant respeciively. For example, consider the conic with
equation zy = 22, If we choose z = 0 to be the line at infinity, the affine form of the equation is
2y = 1, a hyperbola (put z = 1); if y = 0 is the line at infinity, the affine form is z = 2?, a parabola.

(9.7.1) Segre’s Theorem. If ¢ is an odd prime power, then any oval in PG(2, ¢) is a conic.

Proor. Let O be an oval. We begin with some combinatorial analysis which applies in any plane of
odd order; then we introduce coordinates.

SreP 1. Any point not on @ lies on 0 or 2 tangents.

Let p be a point not on Q. Since |] = ¢ + 1 is even, and an even number of points lie on
secants through p, an even number must lie on tangents also. Let z: be the number of points outside
O which lie on i tangents. Now we have

SNa=d

> iz =(g+ g,
Yoi(i— )z = (g + g
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(These are all obtained by double counting. The first holds because there are ¢° points outside O;
the second because there are ¢ + 1 tangents (one at each point of ©), each containing ¢ poinis not
on (; and the third because any two tangents intersect at a unique point outside ©.)

From these equations, we see that 3 i(i —2)=; = 0. But the term 4 = 1 in the sum vanishes (any
point lies on an even number of tangents); the terms ¢ =0 and i = 2 clearly vanish, and i(i —2) > 0
for any other value of i. So &: = 0 for all i # 0 or 2, proving the assertion.

ReMARK. Points not on @ are called exterior points or interior points according as they lie on 2 or 0
tangents, by analogy with the real case. But the analogy goes no further. In the real case, every line
through an interior point is a secant; this is false for finite planes, (Can you count the number of
secants through a point of each type?)
SrEP 2. The product of all the non-zero elements of GF(g) is equal to —1.

The solutions of the quadratic 22 =1 are z = | and z = —1; these are the only elements equal
to their multiplicative inverses. So, in the product of all the non-zero elements, everything except 1
and —1 pairs off with its inverse, leaving these two elements unpaired.

For the next two steps, note that we can choose the coordinate system so that the sides of a
given triangle have equations 2 = 0,y =0 and z = 0 (and the opposite vertices are {1,0,0% [0,1,0],
and [0,0,1] respectively). We'll call this the triangle of reference.

Step 3. Suppose that concurrent lines through the vertices of the triangle of reference meet the
opposite sides in the points [0, 1, a), 5,0, 1}, and [1,¢,0). Then abc=1.

(The equations of the concurrent lines are z = ay, x = bz and y = ez respectively; the point of
concurrency must satisfy all three equations, whence abc = 1)

ReMARK. This result is equivalent to the classical Theorem of Menelaus.

9rEp 4. Let the vertices of the triangle of reference be chosen to be three points of O, and let the
tangents at these points have equations z = gy, ¢ = bz and y = ez respectively. Then abe = —1.

Proof: There are ¢ — 2 further points of O, say p1,...,Pg-2 Consider the point {1,0,0]. It
lies on the tangent z = ay, mecting the opposite side in [0,1,4]; two sccants which are sides of
the triangle; and ¢ — 2 further secants, through p1,...,pg-2- Let the secant through p; meet the
opposite side in [0, 1,4;). Then @ Hf;f a; = —1, by Step 2. If b;, ¢; are similarly defined, we have also
I1ec2 b = e[TI=7 o = —1. Thus

g2
abe H(a.-b,-ci) =-1.
i=1

But, by Step 3, aghic; = Lfori=1,...,¢~ 2; so abe = —L.
Srep 5. Given any three points p, ¢,r of @, there is a conic € passing through p,g,r and having the

same tangents at these points as does O.
Proof: Choosing coordinates as in Step 4, the conic with equation

yz —czz +cazy =0

can be checked to have the required property. {For example, [1,0,0] lies on this conic; and, putting
z = ay, we obtain ay? =0, so (1,0, 0] is the unique point of the conic on this line.)

grep 6. Now we are finished if we can show that the conic C of Step 5 passes through an arbitrary
further point s of O.

Let C' and (” be the conics passing through p, ¢, s and p, 7, 5 respectively and having the correct
tangents there. Let the conics €, €' and €' have equations f = 0,f=0,f"=0 respectively. (These
equations are determined up to a constant factor.) Let Ly, Lg, L, Ly be the tangentsto O at p, ¢, 7\ &
respectively. Since all three conics are tangent to L, at p, we can choose the normalisation so that
£, f', f* agree identically on Lp.

Now consider the restrictions of f* and f' to L,. Both are quadratic functions having a double
zero ab 5, and the values at the point L, N L, coincide; so the two functions agree identically on L,.
Similarly, f and ' agree on L, and f and f' agree on L,. Bui then f, f and f* all agree at the
point Ly N Ly. So the quadratic functions f' and f* agree on Ly, L., and L, 0 L., which forces them
to be equal. So the three conics coincide, and our claim is proved {and with it Segre’s Theorem).
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9.8. Project: Proof of the Bruck-Ryser Theorem
In this section, we prove the Bruck-Ryser Theorem:

If n= 1 or2 (mod 4) and a projective plane of order n exists, then
n is a sum of two squares of integers.

The proof uses a fair amount of number theory. It also has a very ed hoc appearance;
you may wonder how anybody ever thought of it! In fact, there are deeper and
more general number-theoretic regions lying hidden here, for relating integer zeros
of quadratic forms to zeros modulo primes, going by the name of Hasse-Minkowski
theory, which have important applications in combinatorics. The argument here can
be regarded as the general argument translated into a simpler form in the special
case.

We need four ‘facts’ from number theory, Proofs and discussions of these will be given after the
proof of the Bruck—Ryser Theorem.

Fact 1. The four-squares identity’:
(@ +ad+af+a)(el +a+oi+ad) =+l + B+l
where
th = G1%) — G2%2 — a3Ta — 44T4,
Y2 = @12 + G2 + Q34 — B4y,
3 = @123 + 43%] + 24T2 — A2Ty,
¥4 = G124 + G4} + Q223 — a3T2.
Facr 2. If p is an odd prime, and there exist integers z1, 2, not both divisible by p, such that

2} + 2% =0 (mod p), then p is the sum of two integer squares. The analogous result holds for four
squares.

FacT 3. Every positive integer is the sum of four integer squares.

Facr 4. For any integer n, if the equation 22 + y? = nz? has an integer solution with 2, y, z not all
zer0, then n is the sum of two integer squares (that is, the equation has a solution with 2 = 1).

Proor oF BRUCK-RYSER THEOREM. Suppose that there is a projective plane of order », where n = 1
or 2 (mod 4). The number of points of the planeis N = n?+n+1; and wesee that N =3 (mod 4).

Let A be an incidence matriz of the plane, an N x N matrix with rows indexed by points and
columns by lines, with (i, j) entry equal to 1 if the #* point is on the 7 line, 0 otherwise. Then
AAT has (i, j) entry equal to the number of lines containing the 6'" and #* points, which is 5 + 1
if i = j, and 1 otherwise; that is,

AAT =l +J,
where J is the matrix with every entry 1.
Let zi,...,zxn be indeterminates, and let = (z1,...,2n). Let 24 =z = (z1,...,2n); then
z1,...,zn are linear combinations of 21, ...,z with integer coefficients. We have

22" =24A 2T = nzz” +2J27,
that is,
24+ =n(el +...+2}) + vl

where w = 2 +...4 zn. We take a new indeterminate zy4) and add nz’N_,_, to both sides of the
above equation, Note that N + 1 is divisible by 4. Write » = o} + a3 + a2 + ¢} (by Fact 4), and use
the four-squares identity (Fact 1) to write )

2
LICA TR D $3i+4) = y§t+1 +...+ 93;'4.4:
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where the y's are linear combinations of the z's. We have
A4t tnahg =+ Y
In the next step, we make a number of specialisations, each expressing some z; as a rational
linear combination of other z's. Note that the quadratic is positive definite, so, no matter how we do

this, the resulting form will involve all the variables. To begin with, z is involved in at least one y
and at least one z; without loss of generality, it is involved in ¥, and z;. If it has different coefficients

in these two expressions, we impose the condition y1 = z1; otherwise, we impose y1 = —2z). In either
case, we can express z) in terms of the other 2's; and also 2% = 42, so this term can be cancelled.
Now repeat this process to cancel the terms g7 and z,-2 for i = 2,..., N, obtaining finally

N4 = Vi + 07
where yy ;1 and w are rational linear combinations (that is, rational multiples) of 2y, ;. So we can
choose an integer value of zy.; such that yy4) and w are also integers, and we have a non-zero
solution of the above equation in integers. By Fact 4, n is a sum of two integer squares. The theorem
is proved.

We now return to the proofs of the four ‘facts’.

ProoP o Fact 1. Straightforward calculation. But the result has a deeper significance. The
qualernions are a number system H extending the complex numbers. They have the form

a = a; + a1 + aaj + a4k,
where i2 = j2 = k% = —1, ijk = —1,% from which it follows that ij = k, ji = -k, jk =i, kj = —i,
ki = j, ik = —j. It is easily checked that
(a1 + 621 + as) + ask)(z1 + 221 + 23] + 24k) = y1 + Yai + 1) + vak,
where ¥, ...,ys are as in Fact 1. There is a ‘norm’ defined on the quaternions by
&1 + a2i 4 aaj + adk|] = a2 + af + af + aF;
the four-squares identity says that
flall - ll=ll = lla=]|-

If we treat the complex numbers similarly, using the norm ||a]| = |a|?, we obtain a two-squares

identity’
(a} + a3)(2} + 23) = (me1 = apz)? + (@122 + avm).

There is also an ‘eight-squares identity’, related to a number syatem called the octonions or Cayley
numbers.

ProOF oF FACT 2. We are given that rp = z? + 23, for some posilive r; take an expression of this
form in which r is as small as possible, We have to prove that » = 1. So suppose not. Choose uy, uz
such that u; = z; (mod #), u3 = —z (mod r), and |u;| < r/2 for i = 1,2. Then

w+uiz2ir2l=0 (modr),
say u? 4+ u2 = rs. Then # < r, because of the bounds on u; and u;. We have
r2op = (2} + 23)(uf + ud) = (21w1 — ©2w2)” + (z1uz + @21 )?
by the two-squares identity. We have
zyuy —Toug = 25 + 23 =0 (mod r)
and
Zius + Touy = 21T2 — T2 =0 (mod r),
so the equation has a factor r2, and we obtain
sP=4+4%
for y1 = (@121 — T2u2)/r, P2 = (z1uz + 22u;)/7. But this contradicts our choice of r, since s < r.
The argument for four squares is very similar.

3 These formulae were discovered by Hamilton, while walking by a canal in Dublin. He was so
pleased with his discovery that he wrote it on a bridge he passed.
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ProoF oF FacT 3. According to the four-squares identity, if two numbers are sums of four squares,
then so is their product. So it will suffice to show that every prime is the sum of four squares. Clearly
2 =12 412 4+ 0% 4 02, s0 we need only deal with odd primes.

We need another fact. Let p be an odd prime. A non-zero congruence class m mod p is called
a quadratic residue (QR) if the congruence m = z? is solvable, and a quadratic non-residue (QNR)
otherwise. Now, of the p — 1 congruence classes, half are QRs and half are QNRs, and the product
of two QNRs is a QR. (See Exercise 12.)

Now we separate two cases.
Case 1: —1 is a QR. In other words, the congruence z2 4+ 1 =0 (mod p) has a solution. By Fact 2,
p is a sum of two squares.
Case 2: —1 is a QNR. Let m be the smallest positive QNR. Then —m and m — 1 are QRs, and so
the congruences > =m — 1 (mod p), 3° = —m (mod p) are solvable. But then

22442 +1* =0 (mod p),
and by Fact 2, p is a sum of four squares.

Proor oF Facr 4. First, we argue that it suffices to prove the result for squarefree numbers n. For
suppose it is true for squarefree n, and let n = mu? with m squarefree; let 22 + y> = nz?, where
z, 4,z are not all zero. Then z2 + y2 = m{uz)®. By assumption, m is a sum of two squares, say
m = a? + b%; and then n = (au)? + (bu)?.

So let n be squarefree, say n = p1 ... px, wWhere pi, ..., P are distinct primes; and suppose that
22 + y? = n2?, where z,y, 2 are not all zero. We may suppose that z,y, z have no common factor.
Then z and y are not both divisible by p;; for if they were, then p? divides nz?, contradicting the
facts that p? doesn’t divide n and that p; doesn’t divide z. Now by Fact 2, p; is a sum of two squares.
This holds for all i. By applying the two-squares identity k — 1 times, we see that n is a sum of two
squares, as required.

9.9. Appendix: Finite fields

This section gives an algebraic proof of the basic existence result (due to Galois) for
finite fields, cited in the first section of this chapter. The details may be somewhat
sketchy, but a standard algebra textbook will fill them in for you.

The proof requires a technical result, the uniqueness of splitting field. First, a definition. Let F
be a field. We call a field containing F an extension of F. Let Ey, E; be two extensions of F. We say
that E; and E; are F-isomorphic if there is an isomorphism from E) to F> which fixes every element
of F.

Step 1. Let F be a field, f(z) an irreducible polynomial over F. Then there exists an extension E of
F such that f(x) has a root in E. Any two such fields which are minimal with respect to inclusion
are F-isomorphic.

An example of such a field is the quotient ring F[z)/(f(z)), where F[z] is the polynomial ring
over F and (f(z)) the ideal generated by f(z). (Since f is irreducible, the ideal it generates is
maximal, and the quotient is a field.) Now, if E) and E; are minimal extensions of F containing
roots & and oy of f(z) respectively, then every element of E; is expressible as a polynomial g(a;) in
o; with coefficients in F, two polynomials representing the same element if and only if their difference
is divisible by f; and the map which takes g(a;) to g(az) is an F-isomorphism from E; to Ea.

The unique minimal extension of F containing o is denoted by F(e).

It follows by an easy induction that, if f(2) is any polynomial over F, then there is an extension
E of F such that f has all its roots in E; that is, f can be factorised into linear factors over £. (Tust
adjoin roots of f(z) one at a time.) A minimal such extension is called a splitting field of f(z) over
F.

The degree of a field extension E of F is its dimension as a vector space over F' (when we forget
multiplication in £ and remember only how to add elements of £ or multiply them by elements of
F).
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Step 2. Any two splitting fields of f(x) over F are F-isomorphic.

This is proved by induction on the degree of one of the splitting fields. If the degree is 1, so
that f(z) already splits in F, the result is clear. So suppose not. Let E; and E, be splitting fields
of f(x) over F. Let a; be a root of f(z) in E, but not in F, and a3 a oot of the same irreducible
factor of f(z) in E,. Then there is an F-isomorphism from F(a1) to F(er2) carrying oy to ao, by
Fact 1; so we may suppose that a; = az. Now E, and Es are splitting fields for f(z) over F(e),
with smaller degree than they have over F; by induction, they are F{a )-isomorphic (and, @ fortiori,
F-isomorphic).

Now we turn our attention to finite fields.
Step 3. Let F be a finile field. There exisis a prime number p such that p-a =0 for all ¢ € F, where
pe=a+eae+...+a p terms.

The additive group of F is finite, so its elements have finite order. Suppose that the element 1
has order p; that is, p- 1 = 0. Then p is prime; for if p= mn with m,n > 1, then (m - 1)(n.1) =0,
but neither m - 1 nor n -1 is zero (since, by definition, p is the smallest integer k for which & -1 = 0).
But this contradicts the fact that F' has no divisors of zero.

The prime p is called the characteristic of F.
Step 4. The number of elements in a finite field F is a power of the characteristic of F.

This follows from (9.2.1), once we check that F is a vector space over Z/(p). (In fact, F is an
extension of Z/(p), where Z/(p) consists of the elements 0,1,...,(p—1)- 1 of F.)

Step 5. If ' has g elements, then F' is a splitting field of the polynomial #9 — 2 over Z/(p), where p
is the characteristic of F,

For the multiplicative group of F has order ¢ — 1, so all non-zero elements satisfy z9-! = 1,
whence also 2? = r; this polynomial is also satisfied by 0. But a polynomial of degree ¢ cannot have
more than ¢ roots; so the elements of F are all the roots, and F is a splitting field.

Now Step 2 shows the uniqueness of the field with ¢ elements, if it exists.
Step 6. If ¢ is a power of the prime p, then the splitting field of ! — = over Z/(p) has ¢ elementis.

The derivative of the polynomial #9 — 2 is —1 (remember that the characteristic divides q); this
is coprime to z7 — z, so all the roals of the polynomial z¢ — ¢ in its splitting field are distinct, so
there are ¢ of them. We have to show that these roots form a field. So let S be the set of roots, and
a,b € S; that is, a? = a and 8¢ = b. Then

(a+b)f=a’+b6T=a+b,
(ab)? = a%b? = ab,

so a +b,ab € S; similarly 1/a € S if a # 0. (The first equation above is non-trivial. We have

»

Y - PY p-izi _ »

(a + b —Z(i)a ¥ =a® + b,
i=0

since the characteristic is p and divides all the binomial coefficients () for 1 < i < p ~ 1. Then, by

induction on k,

(a+b)"’k =" +5"

and the result follows since ¢ is a power of p (Fact 4).) So S is a field of order ¢, completing the
proof.
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9.10. Exercises

1. How many additions and multiplications are needed (in the worst case) to
transform an mn X n matrix into reduced echelon form?

2. For fixed ¢, show that the probability that a random n x n matrix over GF(g) is
non-singular tends to a limit ¢(g) as n — oo, where 0 < ¢(g) < L.

3. Let Fy(n) be the total number of subspaces of an n-dimensional vector space
over GF(q). Prove that Fy(0) = 1, Fy(1) = 2, and

Fy(n+1) =2F,(n) + (¢" — 1)Fy(n — 1)
for n > 1. [HINT: By (9.2.3) and (9.2.4), we have

i e R MRl
Now sum over k.}

Prove that F,(n) > gn/el,

4. Prove 41 n
n TL:| nt+i-k
T AN E
[ k ]q [k q k - 1 q

in two ways: by using (9.2.3) and (9.2.4), or by dividing the k x (n + 1) matrices into
two classes according to their first column.

5. Prove that the right-hand side of the g-binomial theorem (9.2.5) for ¢ = 1 counts
the number of n X n matrices in echelon form over GF(g), that is, satisfying the first
two conditions in the definition of reduced echelon form. How many n x n matrices
in reduced echelon form are there?

6. Prove that a set of points of a projective space is a flat if and only if it contains
the line through any two of its points. [The corresponding set of vectors of the
vector space is closed under scalar multiplication, since it is a union of l-dimen:sional
subspaces. So you must show that the set of vectors is closed under addition if and
only if the set of points contains the line through any two of its points.]

7. Show that any set of m — 2 MOLS of order m can be enlarged to a set ofm-—1
MOLS. [HINT: Construct the net corresponding to the given MOLS. Show t.ha.t its
points fall into m sets of m pairwise non-collinear points; these sets comprise the
‘missing’ parallel class.]

REMARK. R. H. Bruck generalised this result; he showed that any set of m — f (m)
MOLS of order m can be enlarged to a set of m — 1 MOLS, where f(m) is a
function of magnitude roughly m!/4,

8. Show that there are two non-isomorphic nets of order 4 and degree 3. (The
corresponding Latin squares are the multiplication tables of the two groups of order
4.) Show that one, but not the other, can be enlarged to an affine plane.

9. (a) Prove that there is a unique projective plane of order 3.
(b) Prove that there is a unique projective plane of order 4.
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10. Let O be an oval in a projective plane of even order ¢. Prove that the tangents
to O all pass through a common point p, and that @ U {p} is a set of ¢ + 2 points
which meets every line in either 0 or 2 points. (Such a set is called a kyperoval Note
that, if any one of its points is omitted, the resulting set is an oval} [HINT: Let z;
be the number of points not on @ which lie on 4 tangents. Show that 2o = 0, and
calculate (¢ — 1)(¢ — (¢ + 1))z:.] ’

11. Prove that, if ¢ is a prime power, then any five points of PG(2,q), such that
no three of them are collinear, are contained in a unique conic. Deduce that the
number of conics is

(@* +1+1)¢*(g - 1).

12. Define a geometry as follows. The points are to be all the 2-element subsets
of {1,2,3,4,5,6}; the lines are all the disjoint triples of 2-subsets. Prove that the
geometry is a generalised quadrangle with s =t = 2, o = 1.

13. Let p be an odd prime. Show that half the non-zero congruence classes mod
p are quadratic residues and half are non-residues, and that the product of two
non-residues is a residue. [HINT: Any non-zero element of Z/(p) bas 0 or 2 square
toots in Z/(p). Further, multiplying by a fixed non-residue is one-to-one and maps
residues to non-residues.)

14.. Writie a quaternion formally as a + x, where ¢ is a real number and x a
3-dimensional vector (relative to the standard basis (i, ], k)). Show that
(a+x)+(b+y)=(a+b) +(x+y),
(a+x)-(b+y)=(ab—xy)+(ay +bx +x xy),

where x.y and x x y are the usual scalar and vector products (‘dot product’ and
‘cross product’) of vectors.

10. Ramsey’s Theorem

Complete disorder is impossible
T. S. Motzkin (attr.)

Torics: Pigeonhole Principle; Ramsey’s Theotem; estimates for
Ramsey numbers; applications

TECHNIQUES: Double induction; probabilistic existence proof

ALGORITHMS:

CROSS-REFERENCES:

In 1930, F. P. Ramsey' proved a lemma in a paper on mathematical logic. The lemma
has proved to be of greater importance than the theorem it was used to prove,’ and
has given its author’s name to an area where combinatorics, logic, topology and
probability interact. Roughly speaking, a theorem of Ramsey theory says that any
structure of a certain type, no matter how ‘disordered’, contains a much more highly
ordered substructure of the same type.

Several mathematicians (notably Hilbert, Schur and van der Waerden) had
before 1930 proved theorems which are now regarded as part of Ramsey theory. As
Kafka in Borges' essay,” Ramsey created his own predecessors; with the hindsight of
Ramsey’s Theorem, we can see thai these independent results are closely connected.

10.1. The Pigeonhole Principle

The Pigeonhole Principle is, at first sight, not the kind of thing that you would
expect to be discovered by (and named after) a mathematician. In its simplest form,

it is rather obvious:

{(10.1.1) Pigeonhole Principle
If n + 1 letters are placed in n pigeonholes, then some pigeonhole
must contain more than one letter.

! Ramsey was a brilliant economist in the circle of Keynes. Though he died at the age of 29, he had
already made notable contributions to this discipline. He was an atheist, but his younger brother

became Archbishop of Canterbury.
2 This theorem concerned what are now called ‘indiscernible sequences’.
2 Jorge Luis Borges, ‘Kafka and his precursors’, Labyrinths (1964)
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We will see, however, that it can be quantified and generalised into some highly
non-trivial mathematics. In any event, it is clear that it is a ‘combinatorial’ result.
It bears the name of the nineteenth-century German algebraist Dirichlet. He was
surely not the first person to discover it, but the first to make effective use of it, as
we will soon see. (By the way, can you give a formal proof?)

Even in the basic form above, it has many applications. One of these (ordering
elements in a rectangular array) is given as Exercise 1. Here is the application which
Dirichlet made, and resulted in his name being attached to the principle. It concerns
the existence of good rational approximations to an irrational number. The topic
really belongs to Number Theory, but the argument is combinatorial.

(10.1.2) Proposition. Let o be an irrational number. Then there are infinitely many
different rational numbers p/q for which

P 1

a—=|<—.

a ¢
PRrooF. For this proof, we let {z} denote the fractional part of the real number z,
that is, {z} =z — |z].

Our strategy is to show:

For any natural mumber n, there is a rational number p/q with
q < n such that |a — p/q| < 1/(nq).

Of course, we then have |a — p/q| < 1/{¢?). Moreover, since « is irrational, a # p/q,
and we can find n, with @ — p/g| > 1/n;. Then repeating the argument with
ny in place of n gives another solution p;/q, which is different from p/q (since
la — pif@| < 1/(maq) € 1frq < |o — p/g]). Continuing this process, we find
infinitely many such ‘good’ rational approximations.

Consider the n + 1 numbers {ia}, for i = 1,2,...,n 4+ 1. We put these numbers
into the n pigeonholes (j/n,(j +1)/n), for j =0,...,n — 1. (None of the numbers
coincides with an end-point of the intervals, since « is irrational.) By the Pigeonhole
Principle, some interval contains more than one of the numbers, say {i;a} and
{22}, which therefore differ by less than 1/n. Putting ¢ = |{, — 72|, we see that there
exists an integer p such that

1
lga —pl < —,
n

from which the result follows on division by n. Moreover, g is the difference between
two integers in the range 1,...,n+ 1,50 ¢ < n.

Instead of pigeonholes, we use the terminology of colouring. The Pigeonhole
Principle states that, if » + 1 objects are coloured with r different colours, then there
must be two objects with the same colour. In order to move towards Ramsey's
Theorem, we quantify the result further as follows.

(1:0.1.3) Propesition. Suppose thai n > 1+ r(I —1). Let n objects be coloured with r
different colours; then there exist | objects all with the same colour. Moreover, the
inequality is best possible.
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PRroOF. If the conclusion is false, then there are at most / — 1 objects of each colour,
hence at most r({ — 1) altogether, contrary to assumption.

When we say that the result is best possible, what we mean is this. If fewer than
1+ (I — 1) objects are given, then there is some way of colouring them such that no
{ have the same colour. This too is obvious: ‘fewer than 1+ r(I — 1)’ means ‘at most
7(I — 1), and the objects can be divided into 7 groups with at most [ — 1 in each
group.

Still more generally, suppose that n > ki + ...+ kb — 7+ 15 let the points of an
n-set be coloured with r colours ¢i,...,c.. Then, for some value of ¢ in the range
1,...,r, there exist k; points all having colour #; and this is best possible.

10.2. Some special cases

We now consider the two-player game introduced in Chapter 1.

Mark six points on the paper, no three in line (for example, the vertices of a
regular hexagon). Now the players take turns. On each player’s turn, he draws
a line in his colour between two of the points which haven't already been joined.
(Crossings of lines other than at marked points are not significant.) The first player
to create a triangle with all sides of his colour, having three of the marked points
as vertices, loses.

The game is finite, since at most (g) = 15 edges can be drawn. If you play it
with a friend, you will notice that it always ends in a win for one player; a draw is
not possible. We prove that this is necessarily so.

(10.2.1) Proposition. Suppose that the 2-element subsets of a 6-clement set are
coloured with éwo colours. Then there is a 3-element set, all of whose 2-element sets
have the same colour. This is not true for fewer than six points.

PROOT. Let us suppose that the colours are red and blue; let 1,...,6 be the points.
Consider the five 2-subsets 16, 26, 36, 46, 56. These are coloured with two colours; so
there must be three of the five edges which have the same colour (by the Pigeonhole
Principle with » = 2, I = 3). Let us suppose that 16, 26, and 36 are red. Now there
are two possibilities: if any one of 12, 23, 31 is red (say 12), there is a red triangle
(126); but if none of the three is red, then 123 is a blue triangle.

To show that six is best possible, we must colour the 2-subsets of a 5-set red

and blue without creating a monocromatic (single-coloured) triangle. If the points
are 1, 2, 3, 4, 5, let 12, 23, 34, 45, 51 be red and 13, 24, 35, 41, 52 blue.

Here are some more results of the same type.

(10.2.2) Proposition. (i) If the 2-subsets of a 9-set are coloured red and blue, there is

either a red 3-set or a blue 4-set.

(i) If the 2-subsets of a 18-set are coloured red and blue, there is a monochromatic
4-set.

(iii) If the 2-subsets of a 17-set are coloured red, blue and green, there is a monochro-
matic 3-set.

{iv) All the above are best possible.
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PROOF. The proofs all follow the same pattern, except for one trick in the proof of

(i). We prove (i) first for 10 points.
to the others. By the ‘more general’
are four red edges, or six blue e
let X be the set of their four endpoints
then zyz is a red triangle;

blue edges; let Y be the set of their endpoints

that Y contains a monochromatic triangle uvw.

done; if blue, then zuvw is a blue 4-set.
Now suppose there are just nine points.

situation is that every point z lies on exactly
f Chapter 2. (Could there be nine people at

proved above,

contradicts the Handshaking Lemma o

a convention, each of whom shakes han

for 9 points too.

Consider the nine edges joining one point &
form of the Pigeonhole Principle, either there
dges. Suppose first that ihere are four red edges;

other than z. If X contains a red edge yz,

else X is a blue 4-set. Now consider the other case, six

other than z. Now we use the result
If it is red, we are

The only way we can avoid the above
three red and five blue edges. But this

ds exactly three times?) So the result holds

(i) Take a set of 18 points and colour the edges. Any point = lies on 17 edges;

by the Pigeonhole Principle,
(i), the endpoints o

either 9 are red or 9 are blue. Assume the former. By
f these 9 edges either contain a red triangle (giving a red 4-set

with z), or a blue 4-set {(and we are finished).

(ili) Now take 17 points and colou

green. A point z is joined to 16 others, so
X of endpoints of these edges contains a green edge yz, we

otherwise all edges within X are red and blue, and there

say green. If the set
have a green triangle zyz;
is a red or blue triangle by our earlier

The fact that these are best possible requires
17 and 16 points, not having monochromatic subs

be done, but I don’t give details here (
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The results above and their mann
known as Ramsey’s Theorem.

coloured with r celours,

More generally, let 7, k,a1,...,ar

that, if the k-subsets of an n-set are coloured with r colours ¢y, ..
i in the range 1,...,r, there is an a;-set,

(10.3.1) Ramsey’s Theorem
Let r,k,1 be given positive integers. Then there is a positive integer
n with the following property. If the k-subsets of an n-set are
then there is a monochromatic 1-set, ie.,

one all of whose k-sets have the same colour.

r the edges with three colours, red, blue and
by PP six of them have the same colour,

result.

construction of colourings with 8,
ets of the specified sizes. This can

but see Exercise 6).

er of proof suggest their generalisation, which is

—

be given. Then there exists n with the property
., ¢ry then for some

all of whose subsets have colour ¢;.

We denote by R(r,k,1) the smallest n for which Ramsey’s Theorem holds, and

by R*(r,k;a1,. .- ,a,) the smallest n

for which the ‘more general statement holds.
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Clearly we have R(r, k,I) = R*(r, k
kD) = ks Lo, D). To familiari i
;e proved the following results: R(2,2,3) i 6? I;‘H(l.l’l ;f§°4ghin;’.tah°n’ iy
(3.2.3) = 17: and ' ,2;3,4) = 9; R(2,2,4) = 18;

R (r,Liay,...,a,) =Y a;—r + 1.
Moreover, there are some trivi i .
ial evaluations: R(r,k,k) = k, R —
a.lway-s assume .tha.t k < I, or that all of ay,... a, ;.rg at 1(,: t(%fc, kD) = I (We
assertions are trivial.) T ast k, otherwise the
It is also true that

R(r+1Lka,...,6 k)= R*(r,k;a,...,a,).

For, if there is a k-set of
- colour . .
oceur. ¢r41, we have won; otherwise, only the first r colours

2
argu'];‘::nf:?zf ?’f Ra(xins.(.ey 5 Theorem uses induction, similar to the examples. As the
axguments for lf) 8.!;: (ii) suggest, we prove the ‘more general’ assertion. We alread
jove the res or & = 1, so assume that k > 1. We may assume that o; > & 1
. By induction, we may assume that the numbers >k foral

Ai = R(r,kja1,...,¢im1,8 — L, @igy, .. -, 6,)
are defined (and the statement is true for these).

Taken =1 * -1

are coloured wi;;}: E:gl]ciurslyc:lh N c; A:I)‘;,]feetai ‘?eta szt .(;{f . P; e bty
= . yeeeqCre oint z and let ¥ =
; ufe (:E{::ef:r c:iou(r;cng ;)f the (k — 1)-subsets of ¥ with co’lours ct,. .. c‘Xb\y{tz}i;
mele i {;} r o yB d—ﬁ)js‘ubset U, the colour of U is ¢! if and only if’ﬂ::e colour
aluish (i;aﬁnyft. e mftlon of n, for some i, there is a c*-monochromatic set Z;
o sia of,COky;uI f 1f ion o A,»,. the'set Z; contains either a set of size a; with all it;
J-sets of colour ﬁ, tor some j # ¢, or a set V of size a; — 1 with all its k-sets of
colow, ;11 " k_se:: l::ase, we have won. In the second case, {2} UV is a set of size
B by the definit ave co]ciur G — by assumption for subsets not containing =

1 ths ion of the c*-colouring and the fact that all (k — 1)-sub e
colour ¢} in the case of subsets containing z. Fubsets bave

10.4. Bounds for Ramsey numbers

3, t:s‘;::lctrenu?ly di.iﬁcu]t to calculate exact values of Ramsey numbers. Apart fr
the ¥ t;;;s ixz::; 21 th:kla.st Sectio}lll, only four values are known pre;:isell; rIf ;ﬁ
weakness t i iali iding

the Tllom i oo on the part of combinatorialists, try deciding any of

o Is 7*(2,2;3,8) equal to 28 or 29?

. is R*(2,2;4,5) equal to 25, 26, 27 or 28?

® I:l ilé2,:i;4) = R;(2,3;4,4) equal to 13, 14 or 157

e absence of exact values, we rely on inequaliti
qualities, upper and
[ stress that upper bounds come from the proof of Ramslg;?s ?rr;lei:;vnirzound&
a re-

finement of it, and ]
y ower bounds f; i : .
nonochromatic sets. rom constructions of colourings without large
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The proof of Ramsey’s Theorem in the last section gives us a ‘recurrence
inequality’ for the Ramsey numbers, viz.

R*(r,kya1,...,a,) <1+ R (r,k— 1Ay, .. A,
where
A; = R (r, k00 - -, Q1,00 — 1, @1, .-y )
In general, this is a very tangled web which is difficult to disentangle into explicit

bounds. We consider one case where this can be done.

(10.4.1) Proposition. If a;,a > 2, then

" ay +az —2
R(2,2;61,02) < ( -1 )
PROOF. If a; = 2, then
24+a;—2
R‘(2,2;2,a2)=R"(1,2;a2)=a2=( 2_21 )

and the result is true; similarly, if a; = 2. So we will use induction, assuming the
result is true when either a; or a; is reduced. In the notation of Ramsey’s Theorem,

. ap+a—3

A1=R(2,2;a1—1,a2)5( a1_2 );
" a1+ag—3

A2=R(2:2;a1:02_1)5( a; —1 )’

whete the inequalities are the inductive hypothesis; so

R‘(2,2;a1,a2) < 1+ R‘(2,1;A1, AZ)
= A+ A

< a1 +a—3 n a1+a2—3)
- @ —2 a; —1

_ a1+a2—2

- a1—1 ’

where the second line comes from the Pigeonhole Principle (the .case.k =nl of
Ramsey’s Theorem) and the last is the standard binotmial coefficient identity (k_l) +

() = ()

22
(10.4.2) Corollary. R(2,2,1) < (l—- 1 )
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Proor. R(2,2,1) = R*(2,2;1,1) by definition.

The right-hand side here is less than 222 = 41, since the sum of all binomial
coeflicients (2;:2) is equal to 2%~2, Moreover, it is larger than 4'~!/(2/ — 1), since

there are 21— 1 of these binomial coefficients, and the middle one (2:__12) is the largest.

So the upper bound grows exponentially with constant 4. We conclude this section
by proving a lower bound for this Ramsey number, which is also exponential, but
with the smaller constant /2. (The true order of magnitude is not known.) The
proof uses an important combinatorial technique known as the Probabilistic Method.

(10.4.3) Proposition. R(2,2,1) > 2(~272,

PROOF. Let X be a set of n points; the size of n will be specified later. We consider
all possible colourings of the 2-subsets of X with two colours {red and blue, say).
Since there are (2 = n(n — 1)/2 pairs, there are 2""~1)/2 such colourings.

How many of these colourings contain a monochromatic [-subset? There are

7) choices of an l-set L. For each choice, L is monochromatic in a proportion

9/2{6=1)/2 = 91-UI=1)/2 of 4] the colourings; for, of the 2'(~1/2 ways in which
the colours could fall on the 2-subsets of L, only two are monochromatic. So
the number of colourings which contain a monochromatic {-set does not exceed a
fraction (7) 21-1=1}/2 of the total. (The number could in principle be calculated
exactly, using PIE; but this bound is good enough.)

Now suppose that n = [2(=2/2|. Then

(T;) Q1=1(1=1)/2  plo=ii-2)/2
<l

the first inequality holding since (;2 <nfand 1 —I(I-1)/2 < —I(I — 2)/2, and
the second by definition of n. In other words, the proportion of colourings having
a monochromatic l-set is strictly less than 1. This means that there exists some
colouring which has no monochromatic l-set. Hence R(2,2,{) > n = [2(-2/2],
whence R(2,2,1) > 20-2/2, as required.

The argument can be re-phrased as follows. Instead of considering the set of
all colourings, and calculating the proportion that have a monochromatic n-set, we
can instead speak of the probability that a random colouring has a monochromatic
I-set. This probability p is bounded by the expected number of monochromatic !-sets
in a random colouring, which is equal to (’521—’("1)/ 2 (the number of I-sets times
the probability that a given l-set is monochromatic). No mention of inclusion and
exclusion is required. It is this interpretation which led to the term ‘probabilistic
method’ for this type of argument.

In more detail:

Colour at random the set of all 2-subsets of the given n-set X, where each set has probability
1/2 of being red and 1/2 of being blue, with decisions about different sets independent. Now consider
any i-set Y. It has (;) = (! — 2)/2 subsets of size 2. The probability thai all are red is 2-l-1)/2
with the same probability that all are blue; so the probability that ¥ is monochromatic is twice this
number, or 21-1-1)/2,
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The expected number of monochromatic {-sets is equal to this probability multiplied by the total

—i(l=- 12
ber of l-subsets, hence (7)2! ¢ n/z, ]
numIf n and ! are ’such thg.i this expected value is less than one, then it cannot occur that there

is at least one monochromatic set in every colouring; hence there exists a colouring containing no
monochromatic [-set.

However the argument is phrased, note that it is a non-constrPcﬁve existence
proof: it shows that there must be a way of doing the cglmfnn.g so that no
monochromatic I-sets are created, but it gives us absolutely no mdxcatufn of how to
find one (except, possibly, choosing the colouring s'zt. random ar}d trusting to. luc]f).
It is generally regarded as ‘better’ to have an exphc:tl construction c?f an ob]ect,' in
such a way that it is possible to verify directly that it has the required properties,

than to have only an existence proof.

10.5. Applications |
Here are some applications of Ramsey’s Theorem. In the first case, there is a
beautiful direct argument giving the exact bound.

(10.5.1) Proposition. There is a fanction f(m,n) with the foliowin.g property:
If ©1,22,...,2n is any sequence of distinct real numbers with N > f(m,n),
then there is either a monotonic increasing sequence of length greater than m,
or a monotone decreasing sequence of length greater than n.

Here is the proof using Ramsey’s Theorem. We take f(n,m) = R*(2,2';n:1, +
1,n 4 1) — 1. Suppose that N > f(m,n), and we are given a sequence of N distinct
real numbers. Take X = {1,...,N}, and colour the 2-subsets of X as folltfws:
given a 2-set {¢,j}, with i <, colour it red if x; < zj, blue if z: > z;. Since
1X| > R*(2,2;m + 1,n + 1), there is either a red (m + 1)-set or a blue (n + 1)-set.
But a red set indexes a monotone increasing subsequence; for if ny < nz < ... and

all edges are red, then ¢, £ Ty, < .. Sirediarly » Dok ndem Qﬁ\“‘“\“‘

subsequence.

Now here is the elegant direct proof, due to Erd3s and Szekeres. We take the
function f(m,n) to be simply mn. So suppose that we have a sequence of mn + 1
distinct real numbers, and suppose that it contains no monotone increasing sequence
of length m + 1 or greater. Fori =1,...,m, let

K; = {k: the longest monotone increasing sequence ending at z has length i}.

Now we have partitioned the set {1,2,...,mn + 1} into m subsets Ki,...,Kn. By
the Pigeonhole Principle, some one of these sets, say Kj, contains at least n + 1
members.

Now we claim that X; indexes a monotone decreasing subsequence. For suppose
that k,! € K; with k < { and 2 < a;. Now, by definition of K;, there is a monotone
increasing sequence of length ¢ ending at k, say z;, < zj, < ... < zx. But then

25 <2h <. . L2 LT

is a monotone increasing sequence of length i + 1 ending at ;, contradicting the
fact that [ € K;. This claim establishes the result.
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The bound f(m,n) = mn is best possible. For consider the mn numbers
n—12n-1,...,mn—1,n—-22n—-2,... mn—2,...,0,n,...,(m—1)n,

It is not hard to check that the longest increasing subsequence has length m, and
the longest decreasing subsequence has length 7.

Another application is due to Erdds and Szekeres. A set of points in the
Euclidean plane is convex if it contains the line segment joining any two of its
points. The conver hull of a set S of points is the smallest convex set containing
S. It can also be described as the set of linear combinations of points in S, where
the coefficients in the linear combination are restricted to being non-negative and
having sum 1. A convez polygon is a finite set of points, none of which lies in the
convex hull of the others. Another description is that each of the points lies on a
line with the property that all the other points are on the same side of the line.

(10.5.2) Proposition. There is a function f such that, given any f(n) points in the
plane with no three collinear, some set of n of the points form a convex polygon.

Proo¥. We need two preliminary facts:

FacT 1. Given any five points in the plane, no three collinear, some four of the
points form a convex quadrilateral.?

This is clear if the convex hull of the points is a pentagon or quadrilateral. So
suppose that it is a triangle, with vertices A, B,C, and let D and E be the remaining
points. Then the line DE meets two sides of the triangle, say AB and AC; and the
quadrilateral BCDZE is convex.

FacT 2. Given a set of n points in the plane, if every four points form a convex
quadrilateral, then all n points form a convex polygon.
The proof is an exercise.

Now let f(n) = R*(2,4;5,n). Given f(n) points in the plane, colour a 4-set red
if it is a convex quadrilateral, blue otherwise. By Fact 1, there is no blue 5-set. So
there is a red n-set; and, by Fact 2, it is a convex polygon with n points.

The exact value of the function f(n) is unknown.

10.6. The infinite version

As our very last item, we mention without proof the infinite version of Ramsey’s
Theorem. As usual, the prototype is the Pigeonhole Principle:
If the elements of an infinite set are coloured with finitely many colours, then
there is an infinite monochromatic subset.
Ramsey’s theorem generalises to colourings of the k-subsets of an infinite set with
finitely many colours:

4 This special case of (10.5.2), due to Esther Klein, was the inspiration for the general result, which
involved an independent discovery of Ramsey's Theorem by ErdSs and Ssekeres. See the comments
by Szekeres in the introduction to the volume of selected papers by Paul ErdSs, The Art of Counting
(1973).
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(10.6.1) Ramsey’s Theorem (infinite form)
Let X be an infinite set, and k and r positive integers. Suppose
that the k subsets of X are coloured with r colours. Then there
is an infinite subset Y of X, all of whose k-subsets have the same

colour.

We will discuss this result, and various extensions of it, in Section 19.4.

A remarkable recent discovery in logic is that it is possible to deduce the
finite form of Ramsey’s theorem from the infinite, but not vice versa. This fact
has important spin-offs in logic, notably a variant of the finite form (the ‘Paris—
Harrington Theorem’) which is true but not provable from the axioms for the natural
numbers (essentially because the ‘Paris-Harrington numbers’ grow so fast that they
are not provably computable). But we cannot follow this any further.

10.7. Exercises

1. A platoon of soldiers (all of different heights) is in rectangular formation on a
parade ground. The sergeant rearranges the soldiers in each row of the rectangle
in decreasing order of height. He then rearranges the soldiers in each column in
decreasing order of height. Using the Pigeonhole Principle, prove that it is not
necessary to rearrange the rows again; that is, the rows are still in decreasing order
of height.

9. Show that any finite graph contains two vertices lying on the same number of
edges.

3. (a) Show that, given five points in the plane with no three collinear, the number
of convex quadrilaterals formed by these points is odd.
(b) Prove Fact 2 in the proof of {10.6.2).

4. Show that, if N > mnp, then any sequence of N real numbers must contain either
a strictly increasing subsequence with length greater than m, a strictly decreasing
subsequence with length greater than n, or a constant subsequence of length greater
than p. Show also that this result is best possible.

5. (a) Show that any infinite sequence of real numbers contains an infinite subse-
quence which is either constant or strictly monotonic.

{b) Using the Principle of the Supremum,® prove that every increasing sequence
of real numbers which is bounded above is convergent.

(c) Hence prove the Bolzano—Weierstrass Theorem: Every bounded sequence of
real numbers has a convergent subsequence.

5 The Principle of the Supremum is the basic principle expressing the completeness of the real
number system. It asserts that, if a non-empty set of real numbers has an upper bound, then it has
a supremum or least upper bound.
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6. Fet. X be the set of residues modulo 17. Colour the 2-element subsets of X by
assigning to {z,y} the colour red if

z—y==x1,£2,44 or £8 (mod 17),

blue otherwise. Show that there is no monochromatic 4-set. [HINT: By symmetry,

we may assume that the 4-set contains 0 and 1; this greatly reduces the number of
cases to be considered!]

7. (a) Prove the following theorem of Schur:

Schur’s Theorem
There is a function f on the natural numbers with the property
that, if the numbers {1,2,..., f(n)} are partitioned into n classes
then there are two numbers z and y such that x,y and z + y a.l,l
belong to the same class.

(Ixtl ,o)ther words, the numbers {1,2,..., f(n)} cannot be partitioned into n ‘sum-free
sets’.
[HiNT: Colour the 2—su'b:ets of {1,2,...,N + 1} with n colours, according to the
ru%e that {z,y} has the i** colour if |¢ — y| belongs to the i} class (where N is some
suitable, sufficiently large, integer).]

(b) State and prove an infinite version of Schur’s Theorem.

8. A delta-system is a family of sets whose pairwise intersections are all equal. (So
for example, a family of pairwise disjoint sets is a delta-system.) Prove the existencé
of a function f of two variables such that any family F of at least f(n, k) sets of
cardinality n contains k sets forming a delta-system. ’

[HINT: Construct a sequence of sets A, A2 in F, and a se
C yeos u F cee
subfamilies, such that ’ ’ quence Fi, oo of

o Fi 2 Fip forall i;
e A,NA=A;NA forall A, A’ € F;
o A;c Fiforall j >
Show that
o the sequence can be continued for m terms if F is sufficiently large (in terms of
m and n);
o if the sequence continues for (k — 1)(n + 1) + 1 terms, then some k of the sets
A, form a delta-system.]
State and prove an infinite version of this theorem.

Do you regard this theorem as part of ‘Ramsey theory’?

9. V\’T’hy are constructive existence proofs more satisfactory than non-constructive
ones?




11. Graphs

Only connect!

E. M. Forster, Howards End (1910)

Torics: Graph properties related to paths and cycles, especially
trees, Eulerian and Hamiltonian graphs; networks, Max-Flow Min-
Cut and related theorems; [Moore graphs]

TECHNIQUES: Algorithmic proofs; approximate solutions; [Eigen-
value techniques]

ALGCORITEMS: Graph algorithms; greedy algorithm; stepwise im-
provement

CROSS-REFERENCES: Trees (Chapter 4); Hall's Marriage Theorem
(Chapter 6); [de Bruijn—Erd&s theorem (Chapter 7)]

We have met graphs several times before, in various guises. Now, we return to
them, and consider them more systematically. Graphs describe the connectedness
of systems; typically, they model transport or communication systems, electrical
networks, etc. In this chapter, we concentrate on issues related to this aspect. In
Part 2, we return to graphs and look at colouring problems.

Graph theory is a cuckoo in the combinatorial nest;' it has grown to the
status of an independent discipline, though still closely linked with other parts of
combinatorics.

11.1. Definitions

We have defined a graph to consist of a set V of vertices equipped with a set E of
2-subsets of V called edges. Sometimes it is necessary to broaden the definition.”
In particular, we may want to allow loops, which are edges joining vertices to
themselves; multiple edges, more than one edge between the same pair of vertices;
and directed edges, which have an orientation so that they go from ome vertex t:)

| . .
This cop‘memt is not a disparagement. Graph theory has been successful because it provides
mathematicians with a large supply of interesting problems, many of them related to applications.

2 Where necessary to avoid confusion, the structure just defined is called a simple graph.
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another.® The exact details of the formal mathematical machinery needed to define
all these concepts is not too important; just note that directed edges are easily
represented as ordered pairs rather than 2-subsets of vertices. A graph with some
or all of these extended features is called a general graph; in particular, if it has
directed edges, it is a directed graph or digraph, and if it has multiple edges, it is a
multigraph.

Mast of these concepts can be expressed in the language of relations introduced
in Section 3.8. Since knowing a graph involves knowing which pairs of vertices
are adjacent, we can regard a graph as a binary ‘adjacency’ relation on the vertex
set. For a simple graph, adjacency is irreflexive and symmetric; relaxing these two
conditions allows loops and directed edges respectively. However, multiple edges
cannot easily be described in this language.

For the most part, we consider only undirected graphs without loops; but we
sometimes need to allow multiple edges. The exception is Section 11.9; a network is
most naturally based on a directed graph.

In a simple graph, we say that vertices z and y are adjacent if {z,y} is an edge;
they are non-adjacent otherwise.

We write G = (V, E) for a graph G with vertex set V and edge set E.

Two simple but important kinds of graphs are complete graphs, in which every
pair of vertices is an edge; and null graphs, having no edges at all. The complete and
null graphs on n vertices are denoted by K, and NV, respectively. Other important
graphs will appear from time to time.

A subgraph of a graph G = (V, E) is a graph whose vertex and edge sets are
subsets of those of G. Note that, if G' = (V, E') is a subgraph of G, then for every
edge ¢ € E', it must hold that both the vertices of e lie in V.

Two kinds of subgraphs are of particular importance. An induced subgraph of
G is a subgraph G’ = (V', E') whose edge set consists of all the edges of G which
have both ends in V'. A spanning subgraph is one whose vertex set is the same as
that of G. Thus, for example, every graph with at most » vertices is a subgraph of
K,, and every graph with exactly n vertices is a spanning subgraph; but the only
induced subgraphs of K, are complete graphs.

An induced subgraph is specified by giving its vertex set V'; we speak of the
subgraph induced on the set v

Now we have to consider various kinds of routes in graphs. There are several
different terms to be defined here; the differences are not very important, as you will
see. My terminology is slightly different from the standard.

A welk in a graph is a sequence

(v01 €1,U1,€2,¥2,. ¢+ En;y 'Un),

where ¢; is the edge {vi_,v;} fori=1,...,n We say that it is a walk from vo 20 V.
The length of the walk is the number n of edges in the sequence (or one less than

3 Pirected edges could arise in modelling traffic flow in a town with some one-way sirects, for
example.
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the number of vertices). It is closed if n > 0 and v, = vo. Note that there are no
restrictions; when walking, we may retrace our steps arbitrarily.

In a simple graph, the edges in a walk are uniquely determined by the vertices;
so we often speak of the walk (vo, v1,. . .,vs), defined by the condition that v;_, and
v; are adjacent fori =1,...,n.

We define special kinds of walks: treks, trails, and paths. A trek is a walk in
which any two consecutive edges are distinct;? if it is closed, we also require that the
first and last edge are distinct. Thus, a trek is a bit more purposeful than a walk:
we never retrace the edge we have just used. The last condition ensures that, in a
closed trek, we can start at any point and the result is still a trek.

A trail is a walk with all its edges distinct; a path is a walk with all its vertices
distinct (except perhaps the first and the last). The idea is that a trail might be
followed by an explorer, who is not interested in revisiting an edge he has once
explored; while a path proceeds efficiently from one place to another without any
repetition. Further, we define a circuit to be a closed path.

Note that these concepts get progressively stronger; a path is a trail is a trek.’
However, from the point of view of connections, there is no essential difference:

(11.1.1) Proposition. (a) For any distinct vertices z,y of a graph G, the conditions
that there exists a walk, trek, trail or path from z to y are all equivalent.

(b) For any graph G, the conditions that G contains a closed trek, irail or path
are all equivalent.

PROOF. Given a walk from z to y, if it is not a trek, then some two consecutive
edges are repeated, so that there is a subsequence (v,e,v',e,v). Replacing this by
the single vertex v gives a shorter walk. The process terminates in a trek from z to
Y.

Now a trek with a repeated edge must have a repeated vertex; so it suffices to
show that, if there is a trek from z to y (with possibly = = y), then there is a path. If
the vertex v is repeated (but not as the first and last vertex), there is a subsequence
(v,...,v), which can be replaced by a single v to obtain a shorter trek. Continuing
this process produces a path. Note that a closed trek cannot be reduced to the trek
of length zero by this process.

Now define a relation = on the vertex set V by the rule: z = y if there is a path
(or trail, or trek, ot walk) from z to y. We have:

= js an equivalence relation on V.

This is straightforward: there is a walk of length 0 from z to z; reversing a walk
from 2 to y gives a walk from ¥ to z; and following a walk from z to y with a walk
from y to z gives a walk from z to z. (Note that the proof would be untidier if we
used one of the more special types of walk.)

4 A trek with s edges is called an s-arc in the graph-theoretic literature; but this does not convey the
gense of being intermediate in purposiveness between an walk and a trail, and also could be confused
with the use of ‘arc’ for an edge of a directed graph.

5 Mnemonic: a term later in the dictionary describes a wider concept.
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This equivalence relation, of course, defines a partition of the vertex set of G.
We define the connected components (or, for short, the components) of G to be the
subgraphs induced on the equivalence classes. Note that no edge joins points in
different equivalence classes; so the edge set of G is partitioned into the edge sets
of its components.

A graph is connected if it has just one component. Note that any connected
component of G is indeed a connected graph.

The valency, or degree, of a vertex z of a graph G is the number of edges
containing z.% In a directed graph, we have to distinguish between the out-valency
of a vertex (the number of directed edges starting at that vertex) and the in-valency
(the number of edges ending there).

If every vertex of a graph has the same valency, the graph is called regular, and
the common valency d is the valency of the graph. We call such a graph d-valent,
and use the terms divalent, trivalent, etc. when d = 2,3, etc.

Often we will modify a graph G by removing a vertex v and all edges containing
it, or by removing an edge ¢, or by adding an edge ¢ joining two vertices not
previously joined. We use the shorthand notations G —v, G —e, G+e for the results
of these operations. (The strictly correct set-theoretic notation would be much more
cumbersome, and would depend on the precise kind of graph in question.)

Sometimes our graphs will carry additional, numerical information: an edge
may represent a pipeline, for example, and be labelled with its capacity, or the cost
of building it. Formally, a weight function on a set X is a function from X to the
non-negative real numbers. A vertex-weighted, resp. edge-weighted, graph is a graph
with a weight function on the set of vertices, resp. edges. Edge-weighted graphs are
more common, but we allow either or both types of weight function.

11.2. Trees and forests

A tree is a connected graph without circuits. We have met trees before, in Section
3.10 (where we proved Cayley’s Theorem, that there are n -2 labelled trees on n
vertices) and Section 4.7 (binary trees, in connection with searching and sorting).

We might expect that a connected graph has ‘many’ edges, and a graph without
circuits has ‘few’. The next result shows that trees are extremal for both these
properties. We need one piece of notation: a graph without circuits is called a forest
— its connected components are trees!

& Both terms are commonly used. I prefer the first. The term ‘degrec’ is over-used in mathematics,
and there is no analogy between the degree of a graph and the degree of a polynomial, permutation
group, etc. On the other hand, anyone who has studied chemistry will recognise the same concept. In
the methane molecule CH,, the carbon atom has valency 4 and the hydrogen atoms have valency 1.

The standard representation
H

|
H— C —H

I

H

of the methane molecule shows the analogy clearly.
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(11.2.1) Theorem. (2) A connected graph with n vertices has at least n — 1 edges,
with equality if and only if it is a tree.

(b) A forest with n vertices and m connected components has n — m edges.
Thus, a forest has at most n — 1 edges, with equality if and only if it is a tree.

PROOF. We show first that a tree has n — 1 edges. This is proved by induction; it is
clear for » = 1. The inductive step depends on the following fact:

A tree with more than one vertex has a vertex of valency 1.

Since a tree is connected, it has no isolated vertices (if n > 1); so, arguing by
contradiction, we can assume that every vertex has valency at least 2. But then there
are arbitrarily long treks in the graph, since whenever we enter a vertex along one
edge, we may leave along another. A trek of length greater than n must return to
a vertex it has visited previously; so there is a closed trek, and hence a circuit, and
we have arrived at a contradiction. So the assertion is proved.

Now let z be a vertex in the tree T' which has valency 1. Let T — v denote the
graph obtained by removing v and the unique edge incident with it. Then 7 — v has
n—1 vertices, and contains no circuits. We claim that T — v is connected. This holds
because a path in T between two vertices z,y # v cannot pass through v. Thus
T — v is a tree. By the induction hypothesis, it has n — 2 edges; so T has n—1 edges.

Now (b) of the theorem follows casily. For let F be a forest with n vertices and
m components Ty, ..., T, with a1,...,an vertices respectively. Then Y1, a; = n.
Now T is a tree, and so has a; — 1 edges. So F has

m

Z(G;—l)zn—m

i=1

edges.

Ta prove (a), let G be any connected graph with n vertices, and suppose that
G is not a tree. Then G contains a circuit C. Let ¢ be an edge in this circuit, and
G, = G — e the graph obtained by removing e. Then G, is still connected. For, if
a path from z to y uses the edge ¢, then there is a walk from z fo y not using e.
(Instead of using e, we traverse the circuit the other way.) Repeating this procedure,
we must reach a tree after, say, r steps. Since r edges are removed, G hasn —1+r

edges altogether.

Let G be a graph. A spanning forest is a spanning subgraph of G (consisting
of all the vertices and some of the edges of G) which happens to be a forest. A
spanning tree is similarly defined.

(11.2.2) Corollary. Any connected graph has a spanning tree.

This follows from the argument for part (a) of the theorem above; by removing
edges from G, we can obtain a spanning tree. There is another way to proceed,
which will be useful later; this involves building up the spanning tree ‘from below’.

164 11. Graphs

(11.2.3) Spanning tree algorithm
Let G = (V, E) be a connected graph.
Set $ = 0.
WHILE the graph (V,S) is not connected, let e be an edge joining
vertices in different components, and add e to the set S.

ReTURN (V,5).

To prove that this algorithm works, we have to show that the choice of e is
always possible and its addition creates no circuit. Let Y be a connected component
of (V, S),, and Z = V \ 'Y; choose vertices y,z in Y, Z respectively. In G, there is
a path from y to z; some edge in this path must cross from Y to Z, and this is a
suitable choice for e. Now suppose that (V, §) + ¢ contains a circuit. If we start, say,
in Y, and follow this circuit, at some moment we cross into Z by using the edge ¢;
then there is no way to return to ¥ to complete the circuit without re-using e.

We see.that there is a great deal of freedom in creating spanning trees. How
many are there? Cayley’s Theorem (Section 3.10) can be stated in the form:

(11.2.4) Cayley’s Theorem. The complete graph K, has n"~? spanning irees.

For, obviously, any tree on the vertex set {1,...,n} is a spanning tree of the
complete graph.

There is a general technique for counting the spanning trees in an arbitrary
graph, using the adjacency matrix of the graph. This is described in the chapter on
graph spectra in Beineke and Wilson, Selected Topics in Graph Theory (1977).

11.3. Minimal spanning trees

Suppose that n towns are to be linked by a telecommunication network. For each
pair of towns, the cost of installing a cable between these two towns is known. What
is the most economical way of connecting all the towns?

This is known as the minimal connector problem. The data can be regarded as an
edge-weighted graph. (As described, the graph G in question is the complete graph;
but this is not essential. We could suppose that, for various reasons, it is impossible
of uneconomic to connect certain pairs of towns directly.)

The solution to the problem will be that connected spanning subgraph H of the
graph G of minimal total weight (that is, the sum of the weights of the edges of H
is as small as possible). Clearly, H must be a tree; for, if not, then edges could be
deleted, reducing the weight, without disconnecting it. The problem is solved by a
simple-minded algorithm called the greedy algorithm. This says: at each stage, build
the cheapest link which joins two towns not already connected by a path. Formally:
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(11.3.1) Greedy algorithm for minimal connector
Let G = (V,E) be a connected graph, w a non-negative weight
function on E.
Set S = 0.
WHILE (V, 8) is not connected, choose the edge ¢ of minimal weight
subject to joining vertices in different components.

ReTurn (V,5).

This algorithm is just a specialisation of the spanning tree algarithm in the last
section; so it does indeed produce a spanning tree. We have to show that this
spanning tree has minimum weight.

Let €1, ez,.. . , €n_1 be the edges in S, in the order in which the Greedy Algorithm
chooses them. Note that

w(el) <... < w(cn_1),
since if w(e;) < w(e;) for j > ¢, then at the it stage, ¢; would join points in different
components, and should have been chosen in prefetence to ¢;.

Suppose, for a contradiction, that there is a spanning tree of smaller weight,
with edges fi,..., fa_1, ordered so that

w(fl) <...K% W(fn_l).
Thus,

=1 n—1

Z w(f;) < Z w(e;).

i=1 =1

Choose % as small as possible so that

k k
Z: w(fi) <D wle).

g=1
Note that & > 1, since the greedy algorithm chooses first an edge of smallest weight.

Then we have -

k-1
Sw(fi) = Y wle);
=1 i=1
hence
w(fi) <... L w(fi) < wler).

Now, at stage k, the greedy algorithm chooses ¢, and not any of the edges fi1,..., fx
of strictly smaller weight; so all of these edges must fail the condition that they join
points in different components of (V,§), where § = {e1,...,ex-1}. It follows that
the connected components of (V, $"), where $' = {f1,..., fi}, ate subsets of those
of (V,8); so (V,5') has at least as many components as v, S).

But this is a contradiction, since both (V,S) and (V,5’) are forests, and their
numbers of components are n — (k — 1) and n — k respectively; it is false that
n—k>n—-(k-1)
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In general, the greedy algorithm refers to any algorithm for constructing an
object in stages, where at each stage we make the choice which locally optimises
some ‘objective function’, subject to the condition that we move closer to our final
goal. Obviously, this short-sighted local optimisation does not usually produce the
best overall solution. It is quite remarkable that it does so in this case! (See
Exercise 3.)

11.4. Eulerian graphs

One’s first encounter with graph theory often takes the form of the familiar puzzle
‘trace this figure without taking your pencil off the paper’. Euler’s’ experience was
similar. He showed that it was not possible to walk round the town of Konigsberg®
crossing each of its seven bridges just once. This demonstration is commonly taken
as the starting point of graph theory.®

In problems of this sort, we are required to traverse every edge of a graph once,
but we may revisit a vertex. So the appropriate type of route is a trail (see Section
11.1). We define an Fulerian troil in a graph to be a trail which includes every edge.
(A closed Eulerian trail is sometimes called an Eulerian circust, but this conflicts
with our definition of a circuit as a closed path.) Clearly an isolated vertex (lying
on no edges) has no effect, and may be deleted. Also, it is convenient here to work
in the more general class of multigraphs, where two vertices may be joined by more
than one edge. Now Euler’s result can be stated thus:

(11.4.1) Euler’s Theorem. (a) A multigraph with no isolated vertices has a closed
Eulerian trail if and only if it is connected and every vertex has even valency.

(b) A multigraph with no isolated vertices has a non-closed Eulerian trail if and
only if it is connected and has exactly two vertices of odd valency.

Proor. It’s obvious that a graph with an Eulerian frail must be connected if no
vertex is isolated. The other conditions are also necessary. For consider a graph
with a closed Eulerian trail. As we follow the circuit, each time we reach a vertex
by an edge, we must leave it by a different edge, using up two of the edges through
that vertex; since every edge is used, the valency must be even. The same applies at
the initial vertex of a closed Eulerian trail, since the first and last edge of the circuit
play the same role. For a non-closed Eulerian trail, however, the valencies of the
first and last vertices are odd, since the first and last edges are ‘unpaired’.

ReEMaRK. According to the Handshaking Lemma (Chapter 2), the number of vertices
of odd valency in a graph is even. So, if there is a vertex of odd valency, then there
are at least two.

7 Euler could be claimed as the founder of combinatorics. He was not the first person lo work
on a combinatorial problem; but he is undoubtedly the mathematician of greatest stature who has
made a serious contribution to the subject. We saw his encounter with orthogonal Latin squares in
Chapter 8, and we will meet him again.

8 Now Kaliningrad.
® See, for example, Biggs, Lloyd and Wilson, Graph Theory 1736-1936 (1976).




11.5. Hamiltonian graphsa 167

Now we turn to the sufficiency of the conditions: we have to construct Eulerian
trails in graphs satisfying them. The argument is, in some sense, algorithmic.

So let G = (V, E) be a graph satisfying the condition of either (a) or (b). In
case (a), let v be any vertex; in (b), let v be one of the vertices of odd valency. Now
follow a trail from v, never re-using an edge, for as long as possible. Let S be the
set of edges in this trail.

For any vertex z other than v (in case (a)) or the other vertex of odd valency (in
case (b)), whenever the trail reaches z, there are an odd number of edges through
z not yet used. This is because we reached z along an edge, and previous visits
accounted for an even number of edges (except for v, where previous visits accounted
for an odd number of edges). Thus, we don’t get stuck at z; zero is not odd, so
there is an edge by which we can leave. So the trail must end at v (in case (a)) or
the other vertex of odd valency (in case (b}).

If S = E, we have constructed an Eulerian trail, and we are finished. So suppose
not. There must be a vertex u lying on both an edge in S and an edge not in §. For
otherwise, the sets X and Y of vertices lying on edges in S, not in § respectively,
form a partition of V; and no edge joins vertices in different parts, contradicting
connectedness. '

Moreover, in the graph (V, E\ S), every vertex has even valency. So, starting at
u and using only edges of E \ $, we can find a closed trail, by the same argument
as before. Now we can ‘splice in’ this trail to produce a longer one: start at v and
follow the old trail to u; then traverse the new trail; then continue along the old
trail.

After a finite number of applications of this construction, we must arrive at an
Eulerian trail of the type desired.

Note that, in case (b), any Eulerian trail must siart at one vertex of odd valency
and finish at the other — a fact well known to anyone who has tried a ‘trace without
lifting the pencil’ puzzle.

The map of Konigsberg is easily converied into a multigraph whose edges are
the bridges, as shown in Fig. 11.1. All four vertices have odd valency; so there is no
Eulerian trail. -

Fig. 11.1. The bri-d'ges of Konigsberg
11.5. Hamiltonian graphs

There is a natural analogue for vertices of an Eulerian trail: a Hamiltonian path!® is
a path which passes once through each vertex (except that it may be closed, that is,

10 Hamilton's claim to give his name to this concept is much weaker than Buler’s claim to Eulerian
trails. Hamilton demonstrated that the graph formed by the twenty vertices and thirty edges of a
dodecahedron possesses a Hamiltonian circuit, and patented a puzsle based on this; but he proved
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its start and finish may be the same). A closed Hamiltonian path is a Hamiltonian
circuit. A graph possessing such a circuit is called Hamiltonian.

Clearly multiple edges are irrelevant here; so we may assume that our graphs
are simple in this section.

For n > 2, there is a unique graph on » vertices which is connected and divalent
(regular with valency 2). This is the so-called n-cycle C.. It can be represented as
the vertices and edges of an n-gon. Now a graph is Hamiltonian if and only if it
has a cycle as a spanning subgraph.

Hamiltonian graphs are much harder to deal with than Eulerian ones. There is
no simple necessary and sufficient condition for a graph to be Hamiltonian, and it
is notoriously difficult to decide this question for a given graph of even moderate
size. A lot of effort has gone into proving sufficient conditions. As an example, we
prove one of the simplest of these conditions, Ore’s Theorem.

(11.5.1) Ore’s Theorem. Let G be a graph with n vertices, and suppose that, for any
two non-adjacent vertices z and y in G, the sum of their valencies is at least n. Then
G is Hamiltonian.

PROOF. By contrast to Euler’s Theorem, this proof is non-constructive. I'll remark
the main points where the non-constructiveness appears.

Arguing by contradiction, we suppose that G is a graph which satisfies the
hypothesis of Ore’s Theorem but is not Hamiltonian. We also may suppose that G
is maximal with these properties, so that the addition of any edge to G produces a
Hamiltonian graph. (This curious feature of the proof is certainly non-constructive.
We achieve it by adding new edges joining previously non-adjacent vertices as long
as G remains non-Hamiltonian. Adding an edge does not decrease the valency of
any vertex, and does not create any new non-adjacent pair of vertices, so the valency
condition remains true. But we won’t know when G is maximal unless we can test all
the graphs obtained by adding an extra edge and show that they are Hamiltonian!)

Now G is certainly not complete, so it has a non-adjacent pair of vertices z and
y. Since G is maximal non-Hamiltonian, the graph obtained by adding the edge
e = {z,y} is Hamiltonian; and a Hamiltonian circuit in this graph must contain e.
So G itself contains a Hamiltonian path

(:C = U1,€2,V2,. .- 0Un = y)'

(This step is also non-constructive.)
Now let A be the set of vertices adjacent to z; and let

B = {v; : v_, is adjacent to y}.

(Since y is not adjacent to v, = y, this set is well-defined.) By assumption,
|A] + |B| > n. But the vertex v; = z doesn’t belong to either A or B; so

no general result, and there is some evidence that he got the idea from Kirkman, whe made the same
observation at about the same time. Also, a problem involving a Hamiltonian circuit in a different
graph, the ‘knight's tour’ on the chessboard, had been solved earlier by (of all people) Euler.
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|[AUB| < n— 1. It follows that |AN B| > 1, and so there is a vertex v; lying in both
A and B.

Now we obtain a contradiction by constructing a Hamiltonian circuit in G.
Starting at z = v, we follow the path vy, v3,... as far as v;.;. Now v;_; is adjacent
to y (since v; € B), so we go to y = v, al the next step. Then we follow the
path backwards through v,_,,... as far as v;, and then home to v, (this edge exists
because v; € A).

The result is best possible in some sense. Consider the graph with 2m + 1
vertices T1,...,Zm,Y1,--->Ym+1, and having as edges all pairs {z;,y;}. (This is a
complete bipartite graph.) It is not Hamiltonian; for any edge crosses between the
sets A = {ay,...,a,} and B = {#,...,bn}, and 50 a path of odd length starting
in A must finish in B and cannot be closed. But two non-adjacent vertices are both
in A or both in B, and the sum of their valenciesis 2m +2=n+1or2m—n—1
respectively.

Nevertheless, there are a great many results which strengthen Ore’s Theorem by
varying the hypotheses slightly.

11.6. Project: Gray codes

An analog-to-digital converter is a device that takes a continuously-varying real number and
converts it to an integer, ideally the integer part or the nearest integer. The resull is presented in the
standard way, usually to base 10 (in an odometer or gas meter) or base 2 (in an electronic device
connected directly to a computer).

We considered the operation of an odometer in Chapters 2 and 4. There are points in its
operation where several digils must change simultaneously. Owing to mechanical limitations, the
change is not quite simultaneous. Thus, a reading taken at this point may involve a considerable
error. For example, in the course of changing from 36999 to 37000, the reading could be as low as
36000 or as high as 37999; and even if we assume that the digits change sequentially from the right,
the low value 36000 is still a possible reading.

To eliminate this error, we need to arrange the numbers in order (different from the usual order)
so that only one digit changes at each step. If this can be done, the only possible error will arise
from a time delay in the mechanical operation of the device, and will be at most 1. In the case of
binary representation, such a sequence is known as a Gray code. It has a natural graph-theoretic
interpretation.

The n-cube @, is the graph whose vertices are all n-tuples z,_; ...z¢ of zeros and ones, two
vertices being adjacent if they agree in all but one position. (Note that there are 2” vertices, which
we write as the binary representations of the integers from 0 to 2" — 1. The n-cube consists of the
vertices and edges of the familiar regular polytope of the same name in R™.) Now a Gray code is
the same thing as a Hamiltonian path in the n-cube. For n = 1, the graph @, is a single edge, and
trivially has a Hamiltonian path. But for n > 2, we can do better:

(11.8.1) Theorem. For n > 2, the graph @y, is Hamiltonian.

The proof is by induction. For n = 2, @, is the 4-cycle Cy, and the assertion is true: we fix the
Hamiltonian circuit (00,01, 11,10, 00). Suppose that Q, has a Hamiltonian circuit (vo,...,v32_1).
Then

(Ovo, 001, ..., 0van_2,0vanny, lugnay, luas_s, ..., 1uy, luwg, Ovo)

is a Hamiltonian circuit in Qn41.
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The case n = 3 is shown in Fig. 11.2.

000 001

Fig. 11.2. Hamiltonian circuit in the 3-cube
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11.7. The Travelling Salesman

A salesman for the Acme Widget Corpo
on business. The distance between eac

ration'! has to visit all n cities in a country
h pair of cities is known. She wants to

minimise the total distance travelled, and return to her starting point.

t

weighted complete graph.

edge-weighted graph, simply add new etiges ‘Yit .
these cannot occur in any minimum-weight circuit.

the Travelling Salesman problem. If G has n vertices,
of the complete graph K, if it is an
weight of a Hamiltonian circuit of K,

This is the notorious Travelling Salesman Problem (TSP). In gra.ph—theoretic
erminology, it asks for the Hamiltonian circuit of smallest weight in an edge-

. - al
i real loss in restricting to the complete graph. F.‘or a gener
i prah. h ridiculously large weights, so that
en graph G is a special case of
assign the weight 1 to an edge
edge of G, and 2 otherwise. Then the m.immflm
is n if and only if G has a Hamiltonian

Indeed, the Hamiltonian circuit problem for a giv

circuit.

11 Widgets are generic industrial products in Operational Research problems
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The existence of an algorithm to solve this problem is not in doubt.

(11.7.1) (Slow) Algorithm for Travelling Salesman
o Generate all permutations of {1,...,n} (see Chapter 3).
e For each permutation =, calculate

3 wi{ir, (6 + 1)r}) + w({nm, 17}),

i=1

o Return the smallesi value.

The disadvantage is that there are n! permutations; for even moderate values of
n (say, n = 50),,Fhis number is so large that the method cannot be contemplated
] S.ome small improvements can be made. For example, we can assume that t'he
circuit starts at vertex 1, so that 1= = 1; this saves a factor of n. Unfortunatel
nobody knows how to do substantially better! . s
Because of the practical importance of the problem (not just for sales depart-
ments, but for other applications such as design of circuits), some compromises El:ave
been reached. Methods which deliver an approximate solution have been developed.

Ou.t Of a huge hteratule, I hﬂ.ve Se]ected one exa.nlple, Chosen. because it uses COIICeptS

(11.7.2) Twice-round-the-Tree Algorithm
. (An approximate solution to the Travelling Salesman)
e Find a minimal connector S.

o In the multigraph obtained by duplicati
plicatin ch ed,
a dosed Euleria.n traﬂ. g ea e ge OfS, .ﬁ.ﬂd

o Follow this trail, but whenever the next step would involve

rev?siting a vertex, go instead to the first unvisited vertex on the
trail. When every vertex has been visited, return to the start.

) hIn the secot.ld step, every edge in S is duplicated, resulting in a connected graph
with all valencies even; so there does indeed exist a closed Eulerian trail, and we
have seen an algorithm for finding one. ’

It is clear that this algorithm produces a Hamilionian circuit. How good is it?

We say that an edge-weigh i ]
ghted complete graph satisfies the ¢ ; ity i
for any three vertices a, b, ¢, we have riangle nequality it

w({a,8}) + w({d,c}) 2 w({a,c}).

This condition certainly holds if the weights are distances between towns.!?

Or much more genera, disl ances. nder minimal assumpt:ons the shortest route from a to ¢
1 b U 1 N
cannot be longer than a route via b.
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(11.7.3) Theorem. Let G be an edge-weighted complete graph, m the weight of a
minimal connector, M the smallest weight of a Hamiltonian circuit. Then

{a) m < M;

(b} if G satisfies the triangle inequality, then M < 2m.

PROOF. (a) is clear, since a Hamiltonian circuit is certainly connected. (Indeed, it
remains connected when any edge is deleted, so its weight is at least the sum of m
and the smallest edge weight in G. This can be further improved.)

For (b), note that the weight of the closed Eulerian trail in the second stage of
the algorithm is equal to 2m. Now, in the third stage, we take various short cuts,
replacing a path v;,...,v; by a single edge from v; to v;. By the triangle inequality
(and induction), the length of the edge doesn’t exceed the length of the path. So
we end up with a Hamiltonian circuit of weight at most 2m, giving a constructive
proof of the inequality.

Another celebrated problem bears the same relation to closed Eulerian trails as
the Travelling Salesman does to Hamiltonian circuits. This is the Chinese postman
problem: Given an edge-weighted connected graph, find the closed walk of minimum
weight which uses every edge of the graph. (The postman must pass along every
street delivering letters.) If the graph G is Eulerian, then a closed Eulerian trail is
the solution. If not, then some edges must be traversed more than once. There is an
efficient algorithm for this problem.

11.8. Digraphs

The most important variant of graphs consists of directed graphs or digraphs, where
the edges are ordered pairs of vertices (rather than unordered pairs). Each edge
(z,y) has an initial vertez = and a terminal vertex y. Note that (z,y) and (y,z) are
different edges.

With any digraph D is associated an ordinary (undirected) graph, the underlying
graph: it has the same vertex set as D, and its edges are those of D without the
order (that is, {z,y} for each edge (z,y) of D). The underlying graph will fail to be
simple if D contains two oppositely-directed edges (such as (z,y) and (¥, z)). If the
underlying graph is simple, then D is called an oriented graph.

The definitions of the various types of route in a digraph are the same as in 2
graph, with the important exception that the edges must be traversed in the correct
direction: so, if

(V0,€1,V15+ -+ 5 €n,Un)

is a trek, trail, or path, then e; is the edge (vi—1,v;) fori =1,...,7. In a digraph,
we cannot immediately retrace an edge, and so every walk is a trek. (11.1.1) holds
without modification for digraphs.

The situation with connected components is different, however. If, as before,
we let R be the relation defined by the rule that (z,y) € R if there is a path (or
trail, or trek) from z to ¥, then the relation R is reflexive and transitive, but not
necessarily symmetric; so it is a partial preorder but not necessarily an equivalence
relation. (See Sections 3.8-9 and Exercise 18 of Chapter 3 for partial preorders and
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their connection with equivalence relations.) Accordingly, we define two types of
connectedness:

o the digraph D is (weakly) connected if its underlying graph is connected;

o D is strongly connected if, for any two vertices z,y, there is a path from z to y.
It's clear that a strongly connected digraph is weakly connected. The converse is
false.!3

The definitions of Eulerian trail and circuit and of Hamiltonian path and circuit
are just what you expect. A digraph possessing a Hamiltonian circuit is obviously
strongly connected; one with a Hamiltonian path is weakly (but not necessarily
strongly) connected. Similar statements hold for Eulerian trails and circuits.

The analogue of Euler’s theorem runs as follows:

(11.8.1) Euler’s Theorem for digraphs. A digraph with no isolated vertices has a
closed Eulerian trail if and only if it is weakly connected and the in-valency and
out-valency of any vertex are equal.

You are invited to prove this, and to formulate and prove a necessary and
sufficient condition for the existence of a non-closed Eulerian trail.

11.9. Networks

A network is an edge-weighted digraph possessing two distinguished vertices, the
source s and the target ¢, with s # £. The weight of an edge e is referred to as its
capacity, and denoted by c(e).

A good model to keep in mind is a hydraulic network consisting of pipes and
junctions. Fluid is pumped in at the source and out at the target; the capacity of
an edge reflects the maximum rate of flow possible in that pipe. Of course, much
wider interpretations are also possible, such as the movement of commercial product
through distribution systems between factories, warehouses, etc.

In accordance with this interpretation, we define a flow in a network to be a
function f from the edge set to the non-negative real numbers, satisfying the two
properties

o 0 < f(e) < ¢(e) for all edges e;

® 3i(e)=v f{€) = Tr(e)=o fle) for all vertices v # s, 1.
Here c is the capacity; s and ¢ the source and target; and, for any edge ¢, +(e) and
7{e) denote the initial and terminal vertices of e. Thus, the first condition asserts
that the flow in any edge is non-negative and doesn't exceed the capacity of the
edge; the second asserts that, for any vertex v other than the source and target, the
flow out of v is equal to the flow into v, so there is no net accumulation at any
point.

The value of a flow f is defined to be

vallf) = - fle)— > f(e),

fe)=s T(e)=s

13 Tt is possible to imagine a town with one-way streeta in which you can drive from z to y but not
from y to z (but very impracticable!)

174 11, Graphs

to be equal to the net flow into the

t of the source. It turns out .
e e e et we use the notation

s the next result shows. For any set S of vertices,
5~ ={e:e) € 8,7(e) € S},
5= = {exdle) ¢ S,7(e) € ).

work, S a set of vertices containing the

target, a

(11.9.1) Proposition. Let f be a flow in a net
source but not the target. Then

Y fle)— X fle)=vallf).

ecS— eES—

ProoF. To show this, we calculate

E(Z fley= > f(e))-

veS \ule)=v r{e)=v

£), since the term of the outer sum withv = s

is i al to val
On one hand, this is equ ( O e o om.

i to val( f), while the other terms are all zero by
: ecgl:l the otglf;)r’ hand, consider this as a sum over edges. Let ¢ = (v.,w) be .a.I;
edge. If v € 5, then f(e) occurs in the term of the‘outer sum correspondllfg to g, i
w € §, then — f(e) occurs in the term corresponding to w. ’]?hus, only those e ge;
with exactly one end in §, viz,, those in $— and §*, contribute to the sum, an

their contributions are f(e) and —f(e) respectively.

Now take § = V \ {t}, where V is the vertex set; then S~ = {e: 7(e)
§< = {e: i(e) = t}, and so the net flow into t is equal to val(f).

=t} and

The main question about a network is:
What is the maximum value of a flow in the network?

A cufin a network is a set C of edges with the meerty that any path fron; tl}te
source to the target contains an edge in C. Its capacity ca‘p(C) is the sum o the
capacities of its edges. Intuitively, it is clear that.the capacity of a cut is an upper
bound for the value of any flow. We will show this and more:

(11.9.2) Max-Flow Min-Cut Theorem

The maximum value of a flowin a network is equal to the minimum

capacity of a cut.

including Hall's Mar-
Our proof of the
the proof is

This important theorem has a number of consequences,
riage Theorem and Menger’s Theorem on paths‘m graphs. C
Max-Flow Min-Cut Theorem is in part algorithn‘uc. More precisely, !
algorithmic in the case when all the capacities are integers, and we prove some ng

more:
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(11.9.3) Integrity Theorem
Suppose that the capacity of every edge in a network is an integer.
Then there is a flow of maximum value, such that the flow in every
edge is an integer.

The integral case is the important one; we'll see that the general case can be
deduced from it by quite different (and non-constructive) methods.

Our first task is to prove:

( the value ) < the capacity)
of any flow/ ~ ( of any cut /°

It is enough to prove this for minimal cuts (those for which, if any edge is
removed, the result is not a cut). So let C be a minimal cut. Define $ to be the set
of vertices v for which there exists a path from s to v using no edge of C. Then
C C S (If e is any edge in C then, by minimality, there is a path from s to £ using
the edge ¢ and no other edge of C; so ¢(e) € S and 7(e) ¢ S.) Now, if f is any flow,

then
val(f) = 3 fle)— 3 fle)
eeS— eeS—
< D ele)
e€sS—
= cap(C).

Now we treat the case where all capacities are integers. We prove the following:

If all capacities of edges in a network are integers, then there is a
flow f, with integer values on all edges, and a cut C, such that

val(f) = cap(C).

By what we just proved, f is a maximal flow and C a minimal cut; so the Max-
Flow Min-Cut Theorem (in this case) and the Integrity Theorem will be proved.

The proof involves showing the following.

Let all capacities of edges in a network be integers, and let f be an
integer-valued flow. Then either

o there is an integer-valued flow f' with val(f') = val(f) + 1; or

e there is 2 cut C with cap(C) = val(f).

Now we can start with any flow, and apply this result successively. As long as
the first alternative holds, the value of the flow is increased. So eventually the second
alternative becomes true, and we have finished. In order to prove the theorem, we
can start with the zero flow (the zero function is always a flow!); but in practice it
is usually possible to spot a starting flow which is close to maximal, and shorten the
calculation. The proof of the assertion is algorithmic.
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So let f be an integer-valued flow in a network with integer capacities. Perform
the following algorithm.

Set § = {s}. o
WHILE there is an edge ¢ = (v, w) with either
o fley<e(e)hveES,wgS, or
o fle)>0,v¢g S, we S, )
add to S the vertex of ¢ it doesn’t already contain (w or v respec-
tively).
RETURN S.

Now there are two cases, according as ¢ € S or not,

CASE 1. ¢ € S. By construction of S, it follows that thereis a path‘ fr?m s to t in the

underlying graph, say (vo = 5,91,...,04 = t), such that, for each %, either

(a) (vi-i,v:) is an edge ¢ of the network Wfth fle) < e(e); or

(b) (vi,vi—1) is an edge ¢ of the network with f (e) > 0. . ;
Let A and B be the sets of edges of the digraph appearing under cases (a) an

(b) zespectively. Now define a new flow f' by the rule

fley+1 fee 4
flley=X fley—1 ife€ B;
fle otherwise.

We have to show that this is a flow, and that its value is one more than that o.f . f
The first axiom for a flow, that 0 < f'(e) < c(e) for all ¢, holds because all capacities
and flow values are integers, so (for example) if f(e) < c(¢), then f(e) +1 < c(e).
The second axiom requires some case checking. Let v; be a vertex on the path (no
vertex off the path is affected); suppose that i # 0,d. If (vi=1,v;) and (v;,.'v,-_(.l) a,r;
both edges, then the net flow into v; and the net ﬂow: o.ut of v; are b.oth .mcreaset
by 1, and the flows still balance. The other cases are similar. Also similar is the fac
that the value of the flow is increased by 1.

CAsE 2.t ¢ S. Then S~ is a cut. Also, by definition of S, if ¢ € 57, then f(e) = c(e),
and if f € S, then f(e) = 0 {else the algorithm would enlarge $). So

val(f) = 3 fle) — 3 fle)

e€5— ceS—

2 <le)

eES™
= cap(57),

as required. '
This completes the proof in the integral case.

The rest of the proof of the Max-Flow Min-Cut Theorem is quite differ.ent (and
of less interest). It parallels the construction of the real numbers from the integers:
first we construct the rational numbers by division, and then.we construct the reals
by an analytic process (typically Cauchy sequences or Dedekn'nd f:uts). ) ,

So suppose first that all capacities are rational. By multlplyn}g by the highes
common factor m of the denominators of these rationals, we obtain a new network
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in which all capacities are integers. By the previous case, the Max-Flow Min-Cut
Theorem holds for the new network; hence it also holds for the old one (on dividing
the flow values by the same number m).

Finally, suppose that the capacities are real numbers. We can approximate them
arbitrarily closely from below by rational numbers, and hence find flows whose
values are arbitrarily close to the capacity of a minimal cut. Then the result follows
by a limiting process.!*

This concludes the proof of the Max-Flow Min-Cut Theorem.

11.10. Menger, Konig and Hall

The Max-Flow Min-Cut Theorem, in combination with the Integrity Theorem, is
a very powerful tool in graph theory. The key to its application is to consider an
arbitrary directed graph with distinguished vertices s and ¢ as a network in which
each edge has capacity 1. Now, in an integer-valued flow in this network, the flow in
any edge must be 0 or 1; so the flow ‘picks out’ a subset of the edges, those carrying
a flow of 1. Now, if the value of the flow is m, then there are m edge-disjoint paths
from s to t. (This is proved by induction on m. Starting from s and using only
edges with positive flow, never re-using an edge, we eventually arrive at ¢, having
constructed a trek from s to ¢, Deleting circuits between repeated vertices, we obtain
a path from s to t. Now, if we reduce the flow in the edges of this path to 0, the
value of the flow is decreased by 1. By induction, we can find m — 1 edge-disjoint
paths among the remaining edges. So the claim is proved.)

This conclusion can be put in the following form, where an st-separating set of
edges is a set C such that every path from s to ¢ uses an edge of C:

(11.10.1) Menger’s Theorem. Let s and ¢ be vertices of a digraph D. Then the
maximum number of pairwise edge-disjoint paths from s to t is equal to the
minimum number of edges in an st-separating set.

Menger’s Theorem also has a version for undirected graphs, and versions which
refer to vertices instead of edges. You can read about these in Beineke and Wilson,
Selected Topics in Graph Theory.

Further results involve more specific digraphs. A very important class of digraphs
are those derived from bipartite graphs.

A graph G = (V, E) is bipartite if there is a partition of the vertex set into two
parts A and B such that every edge has one end in A and the other end in B. The
partition {A, B} is called a bipartition of G.

14 There is an additional subtlety here. We construct a sequence of flows whose values converge to
cap(C), where C' is a minimal cut. Now the flows can be regarded as points in a Euclidean space
whose dimension is equal to the number of edges. Moreover, they lie in closed and bounded region
of the space. Such a region is compact; so, by the Bolzano—Weierstrass Theorem, the sequence of
flows has a convergent subsequence. The limit of this subsequence is a flow whose value is equal to
cap(C). See Chapter 10, Exercise 5, for the 1-dimensional Bolzano—Weierstrass Theorem; the general
case is proved coordinatewise.
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Given a bipartite graph G with bipartition {4, B}, we construct a network as
follows. The vertex set is {s,t} U AU B, where the source s and target ¢ are new
vertices. The edges are

e all pairs (s, a) for a € A;

e all pairs (b,¢) for b € B;

o all pairs (a, ), with a € A, b € B, for which {e, b} is an edge of G.
I will call this network N(G).

In order to interpret flows and cuts in N{G), we need two definitions. In a graph
G, a matching is a set of pairwise disjoint edges; and an edge-cover is a set S of
vertices with the property that every edge contains a vertex of S,

Now a path from s to t in N(G) has the form (s,a,5,t), where a € A, b € B,
and {a, b} is an edge of G. So a set of edge-disjoint paths (s, a;, b;, ) in N(G) arises
from a matching in G consisting of the edges {a;, b}, =1,...,m.

An edge-cover S in G gives rise to a cut in N(G), consisting of the edges (s, a)
for ¢ € S A, together with the edges (b,¢) for & € SN B. (Any path from s
to ¢ must use an edge of G, and hence pass through a vertex of S, since S is an
edge-cover.) Now there may be other cuts, containing some edges of the form (a, b);
but none of these can be smaller than all those of the first type. For let S be an
arbitrary cut. Replace every edge (a,b) in S (a € A, b € B) with the edge (s, a),
deleting repetitions; the result is a cut containing edges of the form (s,a) and (b,?)
only. We conclude that

The size of the smallest cut in N(G) is equal to the size of the
smallest edge-cover in G,

Hence we conclude:

(11.10.2) Kénig’s Theorem. The maximum size of a matching in the bipartite graph
G is equal to the minimum size of an edge-cover in G.

Finally, we will show that Hall’s Marriage Theorem is a consequence of Konig's

Theorem.!®

In order to do this, we have to translate a family of sets into a bipartite graph.
This is a common and important procedure.

Let F = (Ay,...,A,) be a family of subsets of {1,...,m}. We define the
incidence graph G of F as follows. The vertex set V' of G is the union of two parts
A={l,...,m} and B = {4y,...,A.}; and the vertices : € A and 4; € B are
joined if and only if i € A;.

The incidence graph is clearly bipartite; the sets A and B used in its definition
form a bipartition. If the dual 16le played by the vertices (which are also sets
or elements of sets) is confusing, you may take A to be a set in one-to-one
correspondence with {1,...,m}, and B a set in one-to-one correspondence with F.

Now a matching in the incidence graph G is a set of disjoint edges {¢, A;}; thus,
each point i lies in its corresponding set A;, and the points are all distinct, as are

15 In fact, Konig’s Theorem was proved before Hall's, but this implication was not noticed until
afterwards, (Hall was a group theorist, Konig a graph theorist.)
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Lhe sets.S gﬁs is just a sy:stem of distinct representatives for a subfamily of . So F
as an if and only if there is a matching whose edges contain all vertices of B.

Recall that, for J C {1,...,n}, we set A(J) = U; i
Hall's Condition if |[A(J)] > |J| fo}r’au Jc {1(, ) . ,9}’.EJAj' We say that 7 satisfes

(11.10.3) Hall’s Marriage Theorem. The fami
0.3 . amily (A,, ... f
only if it satisfies Hall’s Condition. v (h An) possesses 2 SDR if and

PROOF. As in Chapter 8, the necessity of the condition is clear: if a SDR exists, th
{1(] ) must contain representatives of all the sets A; for j € J, and so m\s1 i’h ve
size at least as great as J. So suppose that Hall’s Condition is sa;;isﬁed Let Gsbe itl.l‘;e
mcxdenci g.ra;ph of the family. We have to show that thereis a ma.tchix.lg of size n in
G. By Konig’s Theorem, we must show that any edge-cover in GG has size at least .
The set of all vertices in B is an edge-cover of G of size n. Let S l(:as o
edge-cover, and let J = B\ S. Each vertex in A(J) is joined to a v'ertex fJ ; .
edge; so the edge-cover S must contain A(J). Thus 0 v

S| = |B] = |71+ [A(J)] = n,
by Hall’s Condition.

REMARK. We have, in some sense, gi i
; e sense, given a constructive proof of Hall’s Theorem.
gl\:;lda; lf:.x:;lsr F koij'vs(egs) ss;};lsfyllilgalﬂall’s Condition, construct its incidence graph
A wor . Use the algorithm of the last section to fi i
flow in N(G). Then th i o v o et the
o S(D I){ n the edges from A from B carrying non-zero flow define the
The network algorithm can be translated into more graph-theoretic language

for this purpose, A formulati i oni
for this pur ulation of the algorithm for Konig's Theorem is given in

11.11. Diameter and girth

XIVe kn-ow what it means fo'r a graph to be connected. How do we decide in practice?
ere is an algorithm which computes the connected component of a graph G
containing a vertex z (and more besides, as we will see). o

(11.11.1) Algorithm: Co ining
| : Component conta 4
Mark z with the integer 0. Set d = 0. :
WHIILE ;ny I:I;'tex was marked at the preceding stage,
e look at all vertices marked d; mark all unmarked neij
of such vertices with d + 1; ’ od neighbour
e replace d by d + 1.

At the termination of this algorithm, the marked vertices comprise the connected

component containing z, and the mark of each i
e ; 2 ach vertex is the length of the shortest
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In a connected graph G, the distance d(z,y) from z to y is the length of the
shortest path from z to . (Sometimes, distance is defined in a general graph, so
that the distance between two vertices in different components is co; we ignore
this complication.) The algorithm above gives a method for computing the distance

between two vertices of a graph.

The distance function satisfies
o d(z,y) >0, and d(z,y) = 0 if and only if z = y;
o d(z,y) = d(y,2);

o d(z,y) +dly,2) 2 dlz,2).
The first two properties ate clear. For the third, note that there is a walk of length

d(z,y) + d(y,z) from z to 2 via y; this can be converted into a path by removing
repetitions in the usual way, so the length of the shortest path cannot be greater
than this.

The third condition is the triangle inequality, which we met already in Sec-
tion 11.7. If you have studied introductory topology, you will recognise the three
properties as the axioms for a metric. So, in this language, a connected graph,
equipped with its distance function, is a metric space.

The diameter of a connected graph G is the maximum value attained by the

distance function.
The number of vertices of a graph is bounded in terms of the diameter and the

maximum valency of a vertex:

(11.11.2) Theorem. In 2 connected graph with diameter d and maximum valency k,
the number of vertices is at most

— d—-
1+1c+1c(1c—1)+k(lc—1)2+...+1c(7c—1)”“=1+’“‘_‘(’c k—l_)z -

PROOF. We show by induction that there ase at most k(k —1)"~" vertices at distance
: from a given vertex z, for ¢ > 1. This is clear for i = 1. For the inductive step, we
double-count pairs (y,z), where y and z are adjacent and lie at distances tandi+1
from z respectively. There are at most k(k — 1)1 choices for y; each is joined to
one point at distance 7 —1 from z (lying on a shortest path from z to y), and so for
given y there are at most k — 1 choices for z. On the other hand, for each z, there is
at least one y (again on a shortest path to z); so there are at most k(k — 1)* such z.
Now the result is obtained by summation.

In the next section, we examine graphs meeting this bound. First, however, we
prove a ‘dual’ result.

The girth of a graph G is the length of the shortest closed path in G. Thus, forests
don’t have a girth {or we could say the girth of a forest is infinite). Alternatively, the
girth is the smallest n > 3 for which the graph contains the n-cycle C, as an induced
subgraph. (A closed path of length n is a subgraph isomorphic to Cy; if it is not
an induced subgraph, then there must be an edge of G joining two non-consecutive
vertices, in which case the circuit is cut into two shorter circuits.)

JS—
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(11.11.3) Theorem. Let G be a graph of girth g, and let e = |(g — 1)/2]. Suppose
that the minimum valency of G is k. Then G has at least

(k=1) -1

14+k+klk—~)+.. . +k(k—1)"=14% =

vertices.

PROOF. The argument is similar to the previous theorem: we show that, for 1 <: < e,
the number of vertices at distance : from z is at least k(k—1)""?. Again, the induction
begins trivially. Now consider the double count,

For each y with d(z,y) = 7 < e, there is one neighbour of y at distance i — 1
from x, and none at distance ¢ from z. (Otherwise, we could start from z, trek to y,
and return a different way, to create a closed trek of length 2i or 2i + 1; so there
would be a closed path of length at most 2{ 4+ 1. Since 2{ 4 1 < g, this is impossible.)
Thus, at least ¥ — 1 neighours of y lie at distance ¢ + 1 from y.

In the same way, given z with d(z, z) = i + 1, there can be only one neighbour y
of z at distance ¢ from z (since 2(i + 1) € 2¢ < g by assumption). So the induction
goes through.

Close inspection of the argument shows the following:

Theorem. Of the following conditions on a graph G, any two imply the third:
e (G is connected with maximum valency k and diameter d;
¢ G has minimum valency k and girth 2d + 1;
e G has 1+ k((k—1)¢—1)/(k — 2) vertices.

A graph satisfying these three conditions is called a Moore graph of diameter d
and valency k. (The first two conditions show that a Moore graph is regular.) In the
next section, we examine Moore graphs of diameter 2.

It turns out that Moore graphs are very rare. So the next question is: how close
to these bounds can we get (for general values of k and d, or asymptotically)? A lot
of work has been done on this question, but the results will not be described here.

11.12. Project: Moore graphs

In this section, we decide (almost completely) for which values of & there exists a
Moore graph of diameter 2 and valency k.

Let G be a graph with vertex set {1,2,...,n}. The adjacency matric A(G) of Gisthe n x n
malrix whose (i, 7) entry is equal to 1 if {i,j} is an edge of G, 0 otherwise. It is a real symmetric
matrix, and thus it can be diagonalised. The argument involves calculating the eigenvalues of A(G)
and their multiplicities.

Let G be a Moore graph of valency & and diameter 2. From the argument in the last section,
we see that G has

n=14+k+k(k—1)=k%+1

vertices, and that G has girth 5. This means that, if z and y are adjacent, then no vertex is adjacent
to both; and, if = and y are non-adjacent, they have exactly one common neighbour.
Let A be the adjacency matrix of G, and J the n x n matrix with every entry 1. If  isthen x n
identity matrix, we claim that
A2=kI4+(J-1-A).
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To see this, we prove:

For any graph G, the (i, 7) entry of A(G)? is equal to the number of common
neighbours of ¢ and j.

For the (i, j) entry is

S (A (A
h=1

and every entry of A is zero or 1, 80 the sum counts the fmmbe.r of ‘vettices hhfor Whi;h (Ain =
(A)n; = 1, that is, the number of vertices h joined to both i and j. This proves the a:s?: 1czln.‘ -

Now, in the case of our Moore graph G, t]fxe number of common t}elghbo.urs of i a;nhatj 1;: -
i = j (since the valency is k), and is 0 if {i,j} is an edg? and 1 otherwise. This n:)ea:ns hat 4 e
diagonal entries k, and off diagonal entries 0 or 1 according as A has entries 1 or 0 (in other 8
off the diagonal, it coincides with J — I — A). this proves the claim.

Now we examine the spectrum of A. Let j be the vector with a,l_l its ent‘ries 1. Then. the ;’;“ entrg
of Aj is just the row sum of the ith row of A, which is equal to k since G is regular with valency k.

Thus, Aj = kj, and j is an eigenvector of A with engenva'lue : ] B
i Siﬁie A ia; symmetric, the subspace W of R™ consisting of vectors perpendicular to j is preserved
by A. Also, for any w € W, the sum of the entries of w is 0, and so Jw = 0. Thus, for w € W, we
have
Alw = kw + (-1 - A)w,
whence
(A+ A-(k—1)D)w =0
Let & be any eigenvalue of A (acting on W). If w is the corresponding cigenvector, then the
above equation shows that
= elta-(k-1)=0.

So a is a root of this quadratic equation, whence
a:%(—lﬂ:\/‘lls—‘&»).

Now we distinguish two cases.
Casg 1. 4k — 3 is not a perfect square. Then the eigenvalues aze irratiorfal. So the multiglicitlj‘; of the
two roots of the quadratic, as eigenvalues of A, are equal, and so e?ch is(n—1)/2=k /Zd' ow we1
use the fact that the sum of the eigenvalues of a matrix is equal to its frace (the sum 9f the ul‘ag];n%:,
elements). A has the eigenvalue & with multiplicity 1, and (—1 £ v4k — 3)/2 each with multiplicity
(n - 1)/2; and its trace is zero, since all its diagonal elements are zero. Thus, we have

o (£) (PR (8) (2

2 2 2
from which we find that k = k2/2,0r £ =2. )
Now there is a unique graph ,of yaleney 2, diameter 2, and girth 5: the 5-cycle or pentegon.

Cask 2. 4k — 3 is a square. Since it is odd, so is its square toot; say 4k — 3 = (2s + 1)? f;:of some
integer s, from which we find that k = s2 + 5 + 1. The cigenvalues of A are k (v:'1th nl1cu tlphtcl:t:i
1), s and —s — 1. The multiplicities of the last two eigenvalues are, say, f and g; we know tha
f+g=n—1= k" Since the trace of A is equal to 0, we also find that

k+ fe+g(-s—1)=0.
From these two linear equations, it is possible to solve for f and g. We find that

_s(s®+s+1)(s*+25+2)
- 2541
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Now the multiplicity of an eigenvalue of a matrix must be an integer; so we conclude that
28 + 1 divides 5(s% + s + 1)(s% + 25 4 2).
Multiplying this expression by 32 and doing some manipulation, we find that 2s + 1 divides
(28 + 1) = 1)((25+ 1)* + 3)((2s + 1){25 + 3) + 5).

F;lom this, it is clear that 2s + 1 divides 15, so that 2s+ 1 = 1,3,5 or 15. This gives the possible
values

§=0,1,30r7;

k=1,3,7or 57;

n = 2,10,50 or 3250.

The case » = 2 is spurious, since G would have a single edge and would not have diameter 2
So we conclude: '

(11,12.1) Theorem. If there is a Moore graph of diameter 2 and valency k, then k = 2,3, 7 or 57, and
the number of vertices is 5,10, 50 or 3250. w ,

) For k = 2, we saw that the pentagon is the only graph. In a moment, we will construct the
unique Moore graph of valency 3. There is also a unique Moore graph of valency 7, though this is
harder to consruct. Nobody knows whether one of valency 57 exists or not!

THE PETERSEN GRAPH.

Let G be a Moore graph of valency 3 and diameter 2, with 10 vertices. Let {a,b} be an edge of G.
Th.en each of a and b has two further neighbours, with no veriex joined to both. Let b,¢,d be the.
neighbours of @, and a, e, f the neighbours of &, There are no edges within the set {c,d 7c £}, for
any such edge would create a circuit of length 3 or 4. e

) Now ¢ .:md e have a unique common neighbour, since they are not adjacent; let ¢ be this
neighbour. Similarly, let i be the common neighbour of ¢ and f; i that of d and e; and j that of d
and f. These vertices are all distinct and are joined to none of @, .. ., f except whe;e specified. Now
we have all vertices. The first six have three neighbours each, and the last four have two each (so
fa.r);. so we need two more edges to complete the graph, with each of g, 4,7, j on one edge. But g is
not joined to & or 7; so we have edges {g,j} and {k, i}.

Fig. 11.3. Uniqueness of a Moore graph

This completes the unique Moare graph of diameter 2 and valency 3 (see Fig. 11.3). It can be
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drawn in other, more symmetrical ways (as in Fig. 114, for example).

Fig. 11.4. The Petersen graph

This graph is the notarious Pefersen graph. Its fame stems from the fact that it is a counterex-
ample to a large number of conjectures in graph theory. If you discover an assertion you believe to
be true of all graphs, test it first on the Petersen graph! It is now the star of a book in its own right:
Holton and Shechan, The Petersen Graph (1993).

To complete the story of Moore graphs, here are the facts. As noted above, there is a unique
Moore graph of diameter 2 and valency 7, the Hoffman-Singleton graph; the remaining case for
diameter 2 is unknown. For larger diameter, Damerell, and Bannai and Ito, independently showed

the following result.

(11.12.2) Theorem. For d > 3, the only Moore graph of diameter d is the (2d + 1)-cycle Czat {with
valency 2).

11.13. Exercises

1. There are 34 non-isomorphic graphs on 5 vertices {compare Exercise 6 of
Chapter 2). How many of these are (a) connected, (b) forests, (c) trees, (d) Eulerian,
{e) Hamiltonian, (f) bipartite?

2. Show that the Petersen graph (Section 11.12) is not Hamiltonian, but does have
a Hamiltonian path.

3. Show that the greedy algorithm does not succeed in’finding the path of least
weight between two given vertices in a connected edge-weighted graph.

4. Consider the modification of the greedy algorithm for minimal connector. Choose
the edge e for which w(e) is minimal subject to the conditions that S + e contains
no cycle and e shares a vertex with some previously chosen edge (unless S = 0).
Prove that the modified algorithm still correctly finds a minimal connector.

5. Let G = (V, E) be a multigraph in which every vertex has even valency. Show
that it is possible to direct the edges of G (that is, replace each unordered pair {z,y}
by the ordered pair (z,y) ot (y,z)) so that the in-valency of any veriex is equal to
its out-valency.

6. Let G be a graph on n vertices. Suppose that, for all non-adjacent pairs z,y
of vertices, the sum of the valencies of z and y is at least n — 1. Prove that G is
connected.
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7. (a) Prove that a connected bipartite graph has a unique bipartition.

(b) Prove that a graph G is bipartite if and only if every circuit in G has even
length.
8. Choose ten towns in your country. Find from an atlas (or estimate) the distances
between all pairs of towns. Then

{a) find a minimal connector;
(b) use the ‘twice-round-the-tree’ algorithm to find a route for the Travelling

Salesman.
How does your route in {b) compare with the shortest possible route?

9. Consider the result of Chapter 6, Exercise 7, viz.

Let F = (A;,...,A,) be a family of seis having the property that
|A(J) = |J|—d for alt J C {1,...,n}, where d is 2 fixed positive
integer. Then there is a subfamily containing all but d of the sets
of F, which possesses a SDR.

Prove this by modifying the proof of Hall's Theorem from Kdnig’s given in the text.

REMARK. This extension of Hall's Theorem is in fact ‘equivalent’ to Kénig’s theorem.
Can you deduce Konig’s Theorem from it?

10. K&nig's Theotem is often stated as follows:

The minimum number of lines {rows or columns} which contain
all the non-zero entries of a matrix A is equal to the maximum
number of independent non-zero entries,

where a set of matrix entries is independent if no two are in the same row or column.
Show the equivalence of this form with the one given in the text. [HINT: if Ais m xn,
let G be the bipartite graph with vertices a1,...,am, 1, - ., bs, in which {a;, b;} is an
edge whenever (A);; # 0. Show that sets of independent non-zero entries correspond
to matchings in G, and sets of lines containing all non-zero entries correspond to
edge-covers of G

11. In this exercise, we translate the ‘stepwise improvement’ algorithm in the proof
of the Max-Flow Min-Cut Theorem into an algorithm for Konig’s Theorem.

Let G be a bipartite graph with bipartition {4, B}. We observed in the text that
an integer-valued flow f in N(G) corresponds to a matching M in G, consisting
of those edges {a,b} for which the flow in (q,b) is equal to 1. Now consider the
algorithm in the proof of the Max-Flow Min-Cut Theorem, which either increases
the value of the flow by 1, or finds a cut. Suppose that we are in the first case, where
there is a path

(s,a1, bl,dg,bz, ce G, br,t)

in the underlying graph of N(G) along which the flow can be increased. Then
(a1,b1,...,a,b.) is a path in G, such that all the edges {b;,aiy1}

but none of the edges {a;,b;} belong to M; moreover, no edge
containing a; or b, is in M.

186 11. Graphs

Such a path in G is called an alternating path with respect o M. (An alternating
path starts and ends with an edge not in M, and edges not in and in M alternate.
Moreover, since no edge of M contains ¢; or b, it cannot be extended to a longer
such path.)

Show that, if we delete the edges {b;,a;4:} from M (¢ = 1,...,7—1), and include
the edges {a;, &} (¢ = 1,...,7), then a new matching M’ with |M'| = |[M|+ 1 is
obtained.

So the algorithm is:

WHILE there is an alternating path, apply the above replacement to
find a larger matching,.
When no alternating path exists, the matching is maximal.

12. Let G be a graph with adjacency matrix A. Prove that the (i,;) entry of A? is
equal to the number of walks of length d from ¢ to ;.

13. This exercise proves the ‘friendship theorem’: in a finite society in which any two
members have a unique common friend, there is somebody who is everyone else’s
friend. In graph-theoretic terms, a graph on n vertices in which any two vertices
have exactly one common neighbour, possesses a vertex of valency n — 1, and is a
‘windmill’ (Fig. 11.5).

Fig. 11.5. A windmill

STEP 1. Let the vertices be 1,...,n, and let A; be the set of neighbours of i. Using
the de Bruijn—Erdds Theorem (Chapter 7), or directly, show that either there is a
vertex of valency n — 1, or all sets A; have the same size (and the graph is regular).
In the latter case, the sets A; are the lines of a projective plane (Chapter 9).

STEP 2. Suppose that G is regular, with valency k. Use the eigenvalue technique of
Section 11.11 to prove that & = 2.

14. The ‘Trackwords’ puzzle in the Radio Times consists of nine letters arranged in
a 3 x 3 array. It is possible to form an English word from all nine letters, where
consecutive letters are adjacent horizontally, vertically or diagonally. Consider the
problem of setting the puzzle; more specifically, of deciding in how many ways a
given word (with all its letters distinct) can be written into the array.

(a) Formulate the problem in graph-theoretic terminology.

(b) (COMPUTER PROJECT.) In how many ways can it be done?




12. Posets, lattices and matroids

... good order and military discipline

Army regulations

TorIcs: Posets, lattices; distributive lattices; (propositional logic);
chains and antichains; product and dimension; Mobius inversion;
matroids; (Arrow’s Theorem)

TECHNIQUES: Mobius inversion

ALGORITHMS: Calculating the Mdbius function; minimum-weight
basis

CRrOss-REFERENCES: PIE (Chapter 5); Hall's Theorem (Chapter 6);
g-binomial theorem (Chapter 9)

Order is fundamental to the process of measurement: representing objects by
numbers presupposes that we can arrange them in order. Often, however, we have
only enough information to decide the order of some pairs of elements; in this case,
partial order may be a more relevant concept. In this chapter, we introduce some
of the many themes of the theory of order.

12.1. Posets and lattices

First, we recall the definitions, from Chapter 3. A partial order on X is a relation R
on X which is
o reflexive: (z,z) € Riorall z € X;
o antisymmetric: (z,y),(y,2) € R imply ¢ = y; and
e transitive: (z,y),(y,2) € R imply (2,2) € R.
(Thus, order models the relation ‘less than or equal’ For the connection with ‘less
than’, see Exercise 17 of Chapter 3.) As usual, we write ¢ < y for (z,y) € R. The
pair (X, R) is called a partially ordered set, or poset for short.
Here are some examples of posets. In each case, the point set is {1,...,n}, for
some n; we list some elements of R, and the rest follow by reflexivity and transitivity.
Two comparable points: n = 2, 1 < 2 (so R = {(1,1),(1,2),(2,2)}).
Two incomparable points: n = 2, R = {(1,1),(2,2)}.
The poset N:n=4,1<3,2<3,2<4.
The pentagon: n=15,1 <2< 35,1 <3 <4 <5
The three-point line: n =5,1<2<5 1<3<51<4<5.
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A convenient way of representing a poset is by its Hasse diagram. We say that y
covers z if z < y but no element z satisfies z < z < y. (In the list above, we gave all
pairs z < y for which y covers z.) Now the Hasse diagram of a poset P is a graph
drawn in the Euclidean plane, such that each vertex corresponds to a point of the
poset, and for each covering pair z < y, the points representing z and y are Jjoined
by an edge and the point representing z is ‘below’ the point representing y (in the
sense that it has smaller Y-coordinate).

The figure below gives the Hasse diagrams of the five posets described above.
Note that the Hasse diagram determines the entire poset: u < v if and only if there
is a path from u to v, every edge of which goes ‘upward".

3 1 5 5
2
1 2 4
[ J ® 2 2 4
3
1
1 2 1 1

Fig. 12.1. Some Hasse diagrams

Two specialisations of posets are important. A fotal order is a partial order

satisfying
e trichotomy: for any z,y € X, (z,y) ERorz=y or (y,2) € R.

(With the definition here, the middle alternative z = y is actually covered by the
other two; but this would not have been so if we had used the ‘strict’ definition of
partial order.) In any poset, we say that elements z and y are comparable if either
(z,y) € R or (y,z) € R. Thus, a total order is a partial order in which any two
elements are comparable. A total order is sometimes called a linear order,! and a
totally ordered set is called a chain.

A mazimal element of a poset (X, <) is an element z such that, if 2 < y, then
¢ = y. (We do not require that y < z for all z, so there may be more than one
maximal element.) Minimal elements are defined dually.

(12.1.1) Lemma. Any (non-empty) finite poset contains a maximal element.

PRrOOF. Choose any z) € X. If z, is not maximal, there exists z2 € X with z, < 72
(which means, of course, that z; < z; and z1 # ;). Continue this process, either
until a maximal element is found, or we reach an element previously encountered.
In fact, the second alternative cannot occur; for, if ¢ < j, then

T < iy < ... < Zj1 < T,

80 z; = x; is impossible. So eventually a maximal element will be found.

This argument obviously fails in infinite posets: there is no maximal integer, for
example.

1 This usage comes from geometry, where the points on a line in Euclidean space are linearly ordered,
as opposed to the points of a line in projective space, which are circularly ordered.
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In a poset, we say that 2 is a lower boundof z and y if z < z and 2 < y. A
greatest lower bound (glb.} of z and y is a maximal element in the set of lower
bounds. By (12.1.1), if two elements of a finite poset have a lower bound, they have
a greatest lower bound; but it may not be unique. Upper bounds and least upper
botunds (Lu.b.s) are defined similarly.

A lattice is a poset in which each pair of elements has a unique greatest lower
bound and a unique least upper bound. (We are considering only finite lattices here.)
A lattice has a unique minimal element 0, which satisfies 0 < z for any element z.
(For let 0 be any minimal element, and z any element. If z is the glb. of 0 and z,
then z < 0, so z = 0 by minimality, whence 0 < z. If 2 happened to be a minimal
element also, then # < 0, whence z = 0 by antisymmetry.) Dually, a lattice has a
unique maximal element 1, satisfying z < 1 for all z.2

We use the notation z A y and 2 V y for the glb. and lub. of z and y in a
lattice. These are also called the meet and join of z and y.

Any totally ordered set is a lattice: if z < y, then z Ay = z and z Vy = y. Other
examples of lattices include:

o The power-set lattice P(X), whose elements are the subsets of a set X, ordered
by inclusion. It has Ay =zNyandzVy=zUvy.

o The lattice D(n) of (positive) divisors of the positive integer n, ordered by
divisibility: = < y if = divides y. The g.Lb. and Lu.b. of z and y are their greatest
common divisor (z,y) and least common multiple zy/(z,y) respectively.

¢ The lattice of subspaces of a finite vector space V = V(n,q), ordered by
inclusion: this is the projective geometry PG(n, ¢), looked at in a different way.
We have zAy = 2Ny and zVy = {z,y) = z+y (sum of subspaces!) respectively.
Following the nineteenth-century tendency towards abstraction and axiomatisa-

tion in mathematics, a lattice can be regarded as a set on which are defined two
binary operations A and V and two elements 0 and 1. The next result gives the
axiomatisation of lattices from this point of view.

(12.1.2) Proposition. Let X be a set, A and V two binary operations defined on X,
and 0 and 1 two elements of X. Then (X,A,V,0,1) is a lattice if and only if the
following axioms are satisfied:

o Assaciative laws: zA(yAz)={(zAy)AzandaV(yVz)=(zVy)Vz

e Commutative laws: z Ay=yAzandzVy=yVz;

o Idempotent laws: s Az =z V& = z;

ezA(zVy)=a=zV(zAy)

ez A0=0,zv]1=1

ProoF. Verifying that the axioms hold in a lattice is not difficult — try it yourself.
The converse is a little harder. We have to recover the partial order from the lattice
operations. If z < y, then the glb. of z and y is obviously z; we reverse this and
define the relation < by the rule that z < y if z A y = . We have to show that this
really is a partial order, and that z A y and z V y are the g.l.b. and Lu.b,, and 0 and
1 the least and greatest elements, in this order.

? In an infinite lattice, the existence of 0 and 1 cannot be deduced, and must be postulated.
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First, note that 2 Ay = z implies zVy = yV {y A z) = y, using the commutative
laws; and conversely. So the ‘dual’ definition of the order is equivalent to the one

we used.
Now we show that < is a partial order. The idempotent laws show that 1t is

reflexive. Suppose that ¢ < y and ¢ < z. Then
r=2Ay=yhz=y,

so the relation is antisymmetric, Finally, suppose that + < y and y < z. Then
zAy=randyAz=y. So

shz=(zhy)hz=cA(yAz)=aAhy=u=s,

sox < z.
Now, for any = and v,

Ay Ay=cAr(yry)=zAy,

so (z Ay) < y. By commutativity, also (z A y) < z. Thus, z Ay is a lower bound for
z and y. If z is any lower bound, then

tA(zAy)=(zAz)Ay=2Ay=z2,

so z < (z A y). It follows that z A y is the unique greatest lower bound. The proof
that z v y is the unique least upper bound is dual.

Finally, the last axiom shows that 0 is the unique minimal element and 1 the
unique maximal element.

12.2. Linear extensions of a poset

As in the introduction to this chapter, we can regard a partial order as expressing
our partial knowledge of some underlying total order. This suggests that every
partial order is a subset of a total order. This is indeed true:

(12.2.1) Theorem. Let I? be a partial order on X. Then there is a total order R™ on
X such that EC R*.

A total order containing the partial order R is called a linear extension of R (the
word ‘linear’ coming from the alternative term ‘linear order’ for a total order). If X
is finite, this result can be expressed in the form:

Let (X, <) be a poset. Then we can label the elemenis of X as
Z1,...,&, such that, if x; <z, theni < j.

Our proof will, as usual, assume that X is finite. The idea of the proof is that, if
R is not itself a total order, then some pair of elements is incomparable; intuitively,
we don’t yet know the order of these elements. We enlarge R by specifying the order
of the two elements, and adding various consequential information. The resulting
relation R’ is still a partial order. After a finite number of steps, there are no more
incomparable elements, and we have a total order.
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So let a,b be incomparable. If we specify a < b, then everything below a must
become less than everything above b. So we put

R=RU(lax1}),

where | ¢ = {z : (z,¢) € R} and 1 b= {y: (b,y) € R}. We claim that R’is a partial
order. It is clearly reflexive, since R is. Also, note that | anN 1 & = §; for, if z lies
in this intersection, then (3, z), (z,a) € R, so (b,a) € R by transitivity, contradicting
the incomparability of ¢ and &.

Suppose that (z,y), (y,«) € R'. If both pairs lie in R, then = = y by antisymmetry
of R. The remark in the last paragraph shows that we cannot have (z,y), (y,z) €
la x Th The remaining case is that (without loss of generality) (z,y) € R,
(y,dzl € | a x T b. Then (b,z),(z,y), (v, ¢) € R, again contradicting the choice of ¢
and b.

The proof of transitivity is very similar. If (z,y),(y,z) € R, then (z,2) € R;
we cannot have (z,y),(y,2) € | ¢ x T b; and, if (z,y) € R, (y,2) € L a x T b, then
z€ | as0(z,2z)eR.

The proof is complete.

12.3. Distributive lattices

A lattice L is distributive if it satisfies the two distributive laws

sV({gAz)=(zVy)A(zVz),
zA(yvz)=(zAy)V(zAz)

Two of our examples of lattices are distributive: the lattice P(X) of subseis of
a set X, and the lattice of divisors of a positive integer n. (In the first case, the
distributive laws are familiar equations connecting unions and intersections of sets
easily checked with a Venn diagram. The second is a little harder to see; try it fo;
yourself.)

In view of the first example, any sublattice of the lattice P(X) of subsets of X
(that is, any family of subsets of X which is closed under union and intersection) is
a distributive lattice. We could ask whether, conversely, any distributive lattice can
be represented in this way. This is indeed true, and we prove a stronger version.

. Let P = (X, S? be a poset. A subset ¥ of X is called a down-setifye ¥V, 2< y
m}p.ly z € Y; that is, anything lying below an element of ¥ is in Y. There are two
trivial down-sets in any poset: the empty set, and the whole of X.

(12.3.1) Proposition. The union or intersection of two down-sets is a down-set.
Proor. Let Y, and Y; be down-sets. Suppose that ¥y € Y; UY; and z < y. Then

:1!€Y1 ory € Yp; 80 2 €Y, or z €Y, whence z € Y, UY,. The argument for
intersections is similar.

3 The term ‘ideal’ is often used. But it has another, conflicting, meaning.
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Thus, the set of all down-sets of P, with the operations of union and intersection,
is a distributive lattice (whose 0 and 1 are the trivial down-sets). We denote this
lattice by L(P). For example, if P is the paset N of Fig. 12.1, then L(P) is shown
in Fig. 12.2. Now every finite distributive lattice has a canonical representation of

this form.
1234

123 124

Fig. 12.2. The lattice Z(V)

(12.3.2) Theorem. Let L be a finite distributive lattice. Then there is a finite poset P
(uniquely determined by L) such that L is isomorphic to L{P).

Proor. How can we recover the elements of P from L? For any point z of P, the
set | z = {y : y < z} is a down-set, the principal down-set determined by z. We have
to recognise elements of L corresponding to principal down-sets.

An element a # 0 of a lattice L is called join-indecomposable, or JI for short, if
a = bV c implies a = b or @ = c. Now, in L(P), any principal down-set is JI. For, if
lz=bve thenz€borz € c,whence |z =bor |z =¢ (if b and c are down-sets).
Conversely, any JI in L(P) is a principal down-set. (In Fig. 12.2, the JI elements of
L(N) are represesnted by solid circles. Note that they form a sub-poset isomorphic

to N.)
So, in any finite distributive lattice L, we let P(L) be the set of JI elements, with

order inherited from L. Then P(L) is the only possible candidate for a poset P such
that L(P) = L; we show that, indeed, L(P(L)) = L. The proof is in a number of

steps.
StEP 1. Every non-zero element of L is a join of JI elements.

PROOF. If a € L is JI, we are done. Otherwise, ¢ is a join of two elements strictly
below it in the lattice. By induction (for example, on the number of elements below
a), these two elements are joins of J1 elements; so the same is true of a.

STEP 2. Every non-zero element a € L is the join of all the JI elements below it.

PROOF. We know that a is the join of some of these elements. The join of all of
them is no smaller, but is still no larger than a.

These two steps apply also to 0, if we interpret the join of the empty set as 0.

Now let X be the set of all JI elements (the elements of the poset P(L)); for
any a € L, let s(a) = {z € X : z < a}. We show that s is an isomorphism from L

to L(P(L)).

Step 3. 5(a) is a down-set.
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ProoF. Clear from the definition.
STEP 4. s is a bijection.

PROOF. That s is one-to-one follows from the fact that a is the join of the elements in
s(a). Now let Y be any down-set in P(L), and let a be the join of the elements in Y.
Then each y € Y satisfies y < a. Suppose that z ¢ Y andz < 0. If Y = {15+ ¥ by
then we have z < y; V...V yn, 50 ZA (31 V ...V ¥a) = 2. By the distributive law,
(zAn) V...V (zAys) = 2. But z is JI; so, for some ¢, we have z Ay; = z, whence
z < yi. But this contradicts the facts that ¢ Y, y; € Y,and Y is a down-set. We
conclude that ¥ = s(a). So s is onto.

STEP 5. s is an isomorphism, i.e.
(a) s(aAb)=s(a)Ns(b)
(b) s(aV b) = s(a)U s(b).
PROOF. (a) For z € X, we have z < a A b if and only fz<aeandz <bh
(b) Take = € s(a) U s(b). Then either z € s(a) or z € s(b); soz<aorz <h,
whence z < a V b. Conversely, suppose that z € s(a V b), s0 < aV b. Then

z=zAlaVvB =(zAa)V(zAb)

Since zis JI, z = z Aa or z = z A b, whence = € s(a) or z € s(b).
This completes the proof.

Among distributive lattices, a special class are the Boolean lattices. These are the
distributive lattices L possessing a unary operation z — z’ called complementation,
satisfying

e zVyy =2 Ay, (zry) =2V
exzvz=1zAz =0

(12.3.3) Theorem. A finite Boolean lattice is isomorphic to the lattice of all subsets
of a finite set X, with ¢’ interpreted as X \ z.

PrOOF. Let L be a finite Boolean lattice. We have an embedding of L into P(X),
where X is the set of JI elements of L. To show that L = P(X), we show that any
two JI elements are incomparable — then any set of JI elements is a down-set.
So suppose that a and b are distinct JI elements with @ < 5. Then
aV(baad)={avbhAlavd)=bAl=0d
Since 4 is J1 and @ # b, we must bave b = bA &’ < a'. Then
o=anb=aA(bAd)=bA{aAd)=bA0=0,
a contradiction.

Now, if s is the lattice-isomorphism from L to P(X) as in Theorem (12.3.2), we
have s(a) N s(a’) = §, s(a) U s(¢') = X; s0 s(a’) = X \ 5(a), as claimed.
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Another interesting class consists of the free distributive lattices. These are gen-
erated (in the algebraic sense) by a set X = {2y,...,%x}, and have the property that
two expressions in the generators are unequal unless the definition of a distributive
lattice forces them to be equal. I will identify the free distributive lattice as L(P), as
in (12.3.2), but with a bit of hand-waving; a rigorous proof has to use properly the
formal algebraic definition of freeness.

Using the distributive laws, any element other than 0 and 1 can be written as a
join of terms, each of which is a meet of some elements of X. So the only possible
join-indecomposables apart from 1 are the meets of the non-empty subsets of X.
The JI element 1 corresponds to the empty set. The order in the lattice of these
meets is the reverse of the inclusion order of the subsets.

Moreaver, a down-set in the poset of meets of subsets of X corresponds to an
up-set in P(X). Since P(X) is ‘self-dual’, we have:

(12.3.4) Proposition. The free distributive lattice generated by an n-set X is iso-
morphic to L(P(X)), in other words, to L(L(A)), where A is an antichain with n
elements.

However, nobody knows a formula for the number of elements in this lattice for
arbitrary n. This is a famous unsolved problem. The answer is known only for very
small values of n.

12.4. Aside on propositional logic

The name of Boole is familiar to every computer scientist today, as a result of his
project to turn set theory and logic into algebra. We now sketch the details.

Expressions in Boole's system are built from variables, just as polynomials are; but a Boclean
variable can take only the two values TRUE and FaLsE. (Think of these variables as elementary
statements or propositions out of which more complicated expressions can be built.)

We start with a set P of propositional or Boolean variables. A formula is an expression
involving variables, parentheses, and the connectives v (disjunction, ‘or’), A (conjunction, ‘and'), and
- (negation, ‘not’), defined by the rules

e any propositional variable is a formula;

e if ¢ and ¢ are formulae, so are (¢ V ), (¢ A 9), and (—¢);

» any formula is obtained by these two rules.
In other words, the set of formulae is the smallest set of strings of variables, parentheses and
conneclives which contains the variables and is closed under the three constructions specified in the
second rule.

A valugtion is a function v from the set of variables to the set {TRUE,PALSE}. By induction, »
defines a function from the set of formulae to the set {TRUE, *ALSB}, which is also called a valuation
end denoted by v, such that the usual ‘truth table rules’ for the connectives apply:

o if v(¢) = TRUE then v({—~¢)) = PALSE, and wice versa;
o v((¢ V ¥)) = TRUE unless v(¢) = v(¥) = PALSE, in which case v((¢ V ¥)) = FALSE;
o v((¢ A 9)) = FALSE unless v(¢) = v(¥) = TRUE, in which case v(($ A ¥}) = TRUE.

Further connectives can be defined in terms of the ones already given. For example, (¢ — )
is shorthand for ((—¢) V #), and (¢ — ¥) for ((¢ — ¥) A (¥ — ¢)). Truth tables for these can be
calculated. For example, v((¢ « 1)) = TRUB if and only if v(¢) = v(¥).

A formula ¢ is called a tautology if v(¢) = TRUE for all valuations v, a contradiction if
o(¢) = PALSE for all v (that is, if (—¢) is a tautology). Two formulae ¢, are equivalent if v($) = v(¥)
for all valuations v; that is, if (¢ < ) is a tautology.
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Now it can be checked that the ‘equivalence’ just defined is an equivalence relation, and that the
connectives induce operations on the set of equivalence classes: if [¢] denoles the equivalence class
of ¢, then we can set

[olv (¥ =[(6 vl

[#] A (4] = [(6 A#)),

[#) = [(=¢)}

and the objects defined don’t depend on the choice of representatives of the equivalence classes. Now
Boole’s observation can be summarised as follows:

(12.4.1) Proposition. The set of equivalence classes of propositicnal formulae, with the above opera-
tions, is a Boolean lattice.

Suppose that there are n propositional variables. The number of valuations is 2". Any formula
¢ defines a function v — v($) from valvations to {TRUE,FALSB}, and two formulae are equivalent
if and only if they define the same function. Any function is represented by some formula, so the
number of equivalence classes is 22" So the Boolean lattice has 22" elements.

By (12.3.3), any Boolean lattice is isomorphic to P(X) for some set X. Can we identify such an
X here? It must have cardinality 2°. An answer is given by the disjunctive normal form:

{12.4.2) Disjumctive normal form. Any formula in the variablesp1, ..., pn which is not a contradiction
is equivalent to a unique disjunction of terms (g1 A ... A ga), where each g; is either p; or (=p:).

There are 2" ‘terms’ of the form described in the proposition, and each equivalence class of
formulae corresponds to a subset of the set of terms. (The equivalence class of contradictions
corresponds to the empty set of terms.) Moreover, the operations V,A,’ on equivalence classes
correspond to union, intersection, and complementation on sets of terms. So the set of terms is the

required X.

Another approach to the question gives an even more obvious answer: take X to be the set of
valuations, and identify an equivalence class with the subset consisting of valuations which give the
formulae in that class the value TRUE, To see the correspondence between the two approaches, note
that there is a unique valuation which gives the term g; A ... A gn the value TRUR, namely the one

defined by
y_ [ rruE if g =p,
v(pi) = {uLsB if @i = (—pi).

The disjunctive normal form theorem can be used to show that the lattice of equivalence classes
of propositional formulae in n variables is the free Boolean latiice on n generators {compare the
remarks at the end of the last section on free distributive lattices).

12.5. Chains and antichains

A chain C in a poset P is a subset of P such that any two of its points are
comparable. In other words, it is a sub-poset which is a total order. An antichain A
is a subset such that any two of its points are incomparable.

We have met these concepts before. Sperner’s Theorem (7.2.1) describes the
lazgest antichains in the lattice P(X) of subsets of X. Our proof of this by the LYM
technique involved covering the poset by chains. A crucial point in the argument
was:

If C is a chain and A an antichain in a poset, then |C N A| < 1.

For two points in this intersection would be both comparable and incomparable!
From this, we immediately see:
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(12.5.1) Proposition. (a) If a poset P has a chain of size r, then it cannot be
partitioned into fewer than r antichains.

(b) If a poset P has an aatichain of size r, then it cannot be partitioned into
fewer than r chains.

The proof is trivial, since two points in the same chain must lie in different
members of a partition into antichains, and ‘dually’. The main goal of this section
is to prove a pair of results in the reverse direction, The first is straightforward:

(12.5.2) Theorem. Suppose that the largest chain in the poset P has size r. Then P
can be partitioned into r antichains.

PROOF. We define the height of an element = of P to be one less than the greatest
number of elements in a chain whose greatest member is z. (The ‘one less’ is
conventional: the height of = is the greatest number of ‘steps’ up from the bottom
of the poset to z.) Let A; be the set of elements of height i. Then, by hypothesis,
A;=0fori>r,s0 P =ApU...UA,_;; and each 4; is an antichain, since if z € 4;
and z < y, then there is a chain 5 < ... < #; = & < y, 50 y has height greater than
i

The ‘dual’ result looks similar, but the proof is much more involved.”

(12.5.3) Dilworth’s Theorem. Suppose that the largest antichain in the poset P has
size r. Then P can be partitioned into r chains.

PrOOF. The proof is by induction on the number of points of P. Clearly the result
holds for one-element posets. So suppose that it is true for all posets with fewer
points than P. Let z be a minimal element of P.

CaASE 1. 2 is incomparable with everything else in P. Then the largest antichain
in P\ {z} has size » — 1, since adjoining 2 gives a larger antichain. By induction,
P\ {z} can be partitioned into r — 1 chains; we add the singleton chain {z} to
produce the required partition.

CASE 2. Some other points are comparable with z. By induction, we can partition
P\ {z} into r chains Cy,...,C,. For each ¢, let T; be the set of elements of C; which
are comparable with 2, and B; = C;\ T}; let B = By U...U B,. Then every element
of T; is greater than z, since z is minimal; T} is above B; for each 7, and B is the
set of all elements incomparable with z. We colour the points of B with r colours
C1,.-.,Cry by the rule that y has colour ¢; if y € Ci.

By the argument of Case 1, B can be written as the union of » — 1 chains
Ci,...,C'_,. Each of these chains can be partitioned into ‘runs’ of elements of
the same colour. We are about to do some rearranging of these chains, which
may have to be repeated an unspecified number of times. But each rearrangement

4 The result is uniformly known as Dilworth's Theorem. It was published by Dilworth in 1950. It
had been found a few years earlier by Gallai and Milgram, but publication was delayed because
Gallai wanted the paper translated into English, and Milgram, a fopologist, did not fully appreciate
its importance.
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strictly decreases the total number of colour runs which occur; so we know that the
rearrangement process will terminate after a finite number of moves.

A move is as follows. Suppose that the greatest elements of two or more of
the chains C!,...,C}_, have the same colour ¢;. Take the union of all the runs of
colour ¢; which lie at the top of their chains. This unton U is itself a chain, since it
is a subset of C;. If y is the smallest element of U, and y € C}, then we move all the
elements of U to C}, where they sit at the top, forming a single run. So the number
of runs has decreased, as claimed; and the new C are still chains.

At some stage, it is no longer possible to apply a move of this type. This
must be because the greatest elements of the chains all have different colours. Re-
numbering if necessary, we may assume that the greatest element of C/ has colour
cifori=1,...,r —1. Now C! = T: UC! is a chain for i = 1,...,r — I, since the
greatest element of C! lies below T;. Finally, C} = T, U {z} is a chain, since = lies

r

below all T;. So we have the required partition into chains Cj, ..., C\.

Perhaps the relative difficulty of this theorem is more understandable when you
realise that it contains Hall’s Marriage Theorem (6.2.1) as a special case!
Suppose that 4,,..., A, are subsets of X satisfying Hall’s Condition (HC):

{A(D)] = |J] for JTC{1,...,n},

where A(J) = Ujes Aj. We construct a poset P as follows. The elements of P
are the points of X and symbols y,...,y,, with z < y; if ¢ € A;, and no other
comparabilities. We set ¥ = {y1,...,¥s}. Now X is an antichain in this poset.
We claim that there is no larger antichain. For let $ be an antichain, and set
J = {j : y; € S}. Then S contains no element of A(J); so

IS| < 171+ X - |A(D)] < 1 X1,

by (HC).

Now Dilworth’s Theorem implies that P can be partitioned into |X| chains.
Each of these chains must contain a point of X. Let the chain through y; be {x;,%:}.
Then (zi,...,%,) is a system of distinct representatives for (A;,...,4,): for 2; € 4;
(since z; < y), and z; # z; for i # j (since the chains are disjoint).

12.6. Products and dimension

Suppose that a number of objects are being compared on several different numeric
attributes. If z is better than y on all these attributes, we are justified in saying that
z beats y. But if z is better on some attributes and y on others, then, depending
how the attributes are scaled or weighted, we might come to different conclusions
about their ordering, and it seems safest to say that z and y are incomparable in
this case.

Accordingly, let (X1,<,),...,(Xn, <n) be posets. The direct product of these
posets is the poset (X, <), where

X=X x...xXo={(21,.,2) 1 %1 € X1,..., 24 € X0},
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and
(z1y.0,20) < (¥1,.--,¥a) ifandonlyif =z <yifori=1,...,n

It is a simple matter to show that (X, <) is indeed a poset. Moreover, a direct
product of lattices is a lattice, with meet and join defined by

($1,...,$n)A(y1,---,yn)=(3:1 /\lyla-'-amn/\nyﬂ)'l
(21, Zn) V Uy vy ¥n) = (1 V1Y, -+, Tn Va Ya)s

and 0 = (01,...,0.), 1 =(11,...,1n).
Some familiar posets are direct products. Notably:

(12.6.1) Proposition. (a) If | X| = n, then the power-set lattice P(X) is the direct
product of n copies of the two-element lattice {0,1}.

(b) Ifn = p3* ...pir, wherepy,...,p, are distinct primes, then the Iattice D(n) of
divisors of n is isomorphic to the direct product of the lattices D(p7'),. .., D(pi*).

PROOF. (a) Let X = {z1,...,2,}. Weidentify any subset Y of X with its characteristic
function (e1,...,e,), where ¢; = 1 if 2; € Y, ¢; = 0 otherwise. This is a bijection
between P(X) and {0,1}", Moreover, if ¥ and Z have characteristic functions
(e15-.,€n) and (f1,..., fn) respectively, then

YCZe(M)(eY = 2€Z)
"::}(Vi)(ei=l=>f;=1)
& (Vi) (& < fihs

so the map is an isomorphism.

(b) is an exercise.

The concept of direct product gives us a measure of how far a poset is from
being totally ordered. Essentially, this is the smallest number of different numerical
attributes required to produce the partial order by the recipe at the start of this
section. Formally, we define the dimension of a poset P to be the smallest integer
d such that P can be embedded as a sub-poset of the direct product of d totally
ordered sets.

(12.6.2) Proposition. The poset P(X) has dimension |X|. The dimension of the poset
D(n) is equal to the number of distinct prime divisors of n.

PRrooF. We found isomorphisms from these posets to products of the stated number
of totally ordered sets. It is necessary to show that they cannot be embedded in
products of fewer total orders. More generally, we claim that the product of n total
orders, each with more than one point, has dimension n. The result is clear if n < 2,
so we may suppose that n > 3.

We consider a special two-level poset, the standard poset, with 2n vertices

al:--':anabla"':bn;

the comparabilities are a; < b; if (and only if) i # .
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Step 1. If P is a sub-poset of @, then dim(P) < dim(Q).

Srep 2. If P is the direct product of n total orders, each with at least two points,
then P contains the 2rn-point standard poset. For suppose that u;,v; are elements
of the ith factor, with u; < v, fori = 0,...,n — 1. Now let ¢; be the n-tuple with ith
entry v; and j*h entry u; for j # ¢; and let b; be the n-tuple with i*" entry u; and jtb
entry v; for j # i. It is readily checked that these elements form a standard poset.

STEP 3. The dimension of a 2n-point standard poset is n. Clearly it is not greater
than n. Suppose that the standard poset is embedded in the product of m total
orders. For each i, there exists a j such that the j*! coordinate of b; is strictly smaller
than that of any other point b, since otherwise a; (whose coordinates are all smaller
than the corresponding coordinates of b; for k # i) would lie below b;. Clearly this
requires at least n coordinates.

ExaMpLE. The poset N has dimension 2: it can be represented by the four points
(2,0), (0,1), (3,2), (1,3).

It’s not obvious that a finite poset has finite dimension; but this is indeed true.

(12.6.3) Theorem. The dimension of a finite poset P is finite, and is not greater than
the number of linear extensions of P.

Proor. Let P = (X, R), and let (X, R:),...,(X, Ri) be the linear extensions of P.
We map X to the direct product of these total orders by the diagonal embedding:
z — (z,2,...,z). Now, if (z,y) € R, then (z,y) € R for i = 1,...,k; so
(2,...,2) < (y,...,y) in the direct product. Suppose that z and ¥ are incomparable.
The proof of Theorem 12.2.1 shows that there is a linear extension R; of R with
(z,y) € Ri, and another linear extension R; with (y,%) € R;; thus, (z,...,z) and
(%,...,y) are incomparable. So the diagonal embedding is an isomorphism.

12.7. The Mobius function of a poset

An n x 7 real matrix A = (a;;) can be regarded as a function a from N x N to R,
where N = {1,2,...,n}, whose values are given by a(i,7) = a;;. From this point of
view, the fact that N is an ordered set leads us to consider the matrices or functions
‘supported’ by the order, that is, functions which satisfy a;; = 0 unless ¢ < j: these
are precisely the upper triangular matrices. They form an algebra: that is, they are
closed under matrix multiplication as well as addition and scalar multiplication. In
particular, an upper triangular matrix is invertible if and only if its diagonal entries
are all non-zero. We will extend this point of view to an arbitrary finite poset.

Let P = (X,<) be a finite poset. The incidence algebra I(P) of P is the set
of functions f : X x X — R which satisfy f(z,y) = 0 unless z < y. Addition and
scalar multiplication are defined pointwise, and two functions are multiplied by the
rule

fro(zy)= Y fz,2)9(zy).

z<2<y
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(12.7.1) Proposition. If |X| = n, the incidence algebra I(P) is isomorphic to a
subalgebra of the algebra of upper triangular matrices. A function f is invertible if
and only if f(z,z) # 0 for all z € X.

PROOF. We take a linear extension of P (Theorem 12.2.1); that is, we number the
elements of X as zi,...,Z, so that, if z; < z;, then i < j. Now we map fellP)
to the matrix A = (ai;) where a;; = f(x:,z;). Cleazly, A is upper triangular. Also,
the map is an isomorphism, since if matrices A and B correspond to f and g, then
the matrix corresponding to fg has (i, ;) entry

S fmoz)e(zee;) = Y aby

zi<Tx L2 i<k<s

= ) auby

1<i<n

the last inequality holding because, unless i < k < 7, either a, or by; is zero. In
particular, fg(z,y) = 0 unless z < y (since there are no terms in the sum); so
fg € I{P).

Finally, note that the values f(z,z) aze the diagonal elements of the matrix
corresponding to f. So a function satisfying the condition f(z,z) # 0 corresponds
to an invertible matrix. We need to know that the inverse function does lie in [ (P).
For this purpose, we give an algorithm to compute an inverse function; the fact that
the inverse is unique then implies the result.

For 2 < y, we define the interval [z, y] to be the set {z:2 < z £ y}, or the poset
induced on this set. Now suppose that f{(z,z) # 0 for all z € X. We calculate the
values g(z,y) of a function g € I(P) by induction on the cardinality of [z,y], as
follows:

If |[z,y]| = 0, then & £ y, and we set g(z,y) =0.
If |[z,y]| = 1, then z = y, and we set g(z,2) = f(=z,z)™"
If |{=,y]| > 1, we set

g(£1 y) = —f(m,z)—l ( Z: f(maz)g(zwy)) .

T<ILY

The function ¢ is well-defined, because the values of g on the right-hand side
of the last equation have the form g(z,y), where z < z < y; so the interval [z, y)
is properly contained in [z,y], and the values are defined by induction. Clearly
g € I(P). A short calculation shows that, indeed, fg(z,z) = 1 and fg(x,y) = 0 if
z # yj 50 g is the inverse of f.

Three particular elements of I(P) are specially important. The first is the
function e, the characteristic function of equality:

1 fz=y
ez,y) = {0 otherwise;
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this is the identity element of I(P), corresponding to the identity matrix. Next is the
function i, the characteristic function of the partial order:

. _J1 ifz<y

i(z,9) = {0 otherwise.

Finally, the Mdbius function i of the poset is the inverse of the function . That is,
it is characterised by the equation

_[1 ifz=y
; w(=,2) = {0 otherwi;e.
z<z<y

(12.7.2) Proposition. The Mobius function is integer-valued.

PROOF. Examine the proof of (12.7.1), which gives a method for calculating the
inverse of a function: take f = ¢ there. Since i(z, ) = 1 for all x, the factor i(z,z)~"
is equal to 1. Now z(z,y) is a linear combination of values of p(z,y) with integer
coefficients (in fact, all equal to —1), where + < z < y; by induction, p(z,y) is an
integer. (The induction starts with p(z,z) = 1.)

Note that the value of the Mobius function at (z,y) depends only on the poset
[z, y); points outside this interval don’t affect the value. For the record, we translate
the defining property of the Mobius function as follows. This result is referred to as
Mabius inversion in the poset P.

(12.7.3) Proposition. Let f, g be elements of I(P). Then the following are equivalent:
() flz,9) = ). 9(z,2);

<28y

(b) g(z,y) = Y f(z,2)u(zy).

<2<y
For a simple but important example, we have

(12.7.4) Proposition. Let P be a totally ordered set. Then the Mobius function of P

18

1 fz=y,
w(z,y) = {—1 if y covers z,

0  otherwise.
PROOF. Indeed, in any poset, if y covers z, then u(z,y) = —1, since only the term
z =y occurs in the sum in (12.7.1). Now, if z < y and y is not the unique element
2 which covers z, a simple induction shows that g(z,y) = 0. (This induction begins
with the case where y covers z; then p(z,y) = —(u(z,y) + #{y,y)) = 0.

Conveniently, the Mobius function of a direct product of posets is equal to the

product of the Mobius functions of the factors:

(12.7.5) Proposition. Let Py,..., P; be posets, and let P = P; X ... x P. Then the
Maébius function of P is defined by

k
(21, 2h)s (91505 9k)) = Hﬂ(mi,yi)'

=1
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PROOF. Since the M&bius function is unique, it suffices to prove that the right-hand
side does have the property that

1 ifz=y
> o=} Kick
sty ’ 0 otherwise.
If z=(21,...,2k), thenz < 2 <y if and only if z; < z; < y; forz = 1,...,k; so the
sum on the left is over the product of the intervals [z;,;]. Then this sum factorises
as shown in the proposition.

From this, we can calculate the Mobius functions of two important posets.
(12.7.8) Theorem. (a) The M&bius function of the Boolean lattice P{X) is given by

_[(=na-oify C 7,
u¥,2) {0 otherwise.

{b) The Mobius function of the lattice D(n) of divisors of nu is given by

_ {(=1)? if z/y is the product of d distinct primes,
#(y, ) { ] otherwise.

This is immediate from (12.7.4), (12.7.5) and (12.6.1).
REMARK 1. Both P(X) and D(n) have the property that any interval is isomorphic
to a lattice of the same form: [Y,Z] = P(Z \ Y) in case (a), and [y, 2] = D(z/y)
in (b). Thus, in these cases, we can regatd the Mobius function as having a single
argument, setting p(Y) = p(8,Y) in P(X), and g(y) = u(1,) in D(n). The values
of these functions are then given by
W¥) = (-D¥ in P(X)

—1¥ ify= .
= {7 gz ot

where pi,...,ps denote distinct primes. The latter function is the classical Mobius
function met with in number theory.

REMARK 2. Using the form of the Mbius function for P(X), the statement of (12.6.3)
translates precisely into (5.2.2), an equivalent form of the Principle of Inclusion and
Exclusion. Thus Madbius inversion is a generalisation of PIE.

REMARK 3. The ‘classical’ form of Mobius inversion reads as follows.

Let f,g be functions on the positive integers. Then the following
are equivalent:

(a) f(n) =2 g(d);

dln

(b) ¢(n) = dzlzf(d)u(n/d}

Here is an application. In Section 4.7, we found that the number a,, of monic ir-
reducible polynomials of degree n over a field with g elements satisfies the recurrence

relation
E dad = qn.
dln
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aBy‘ Mobius inversion (applied with f(n) = ¢", g(rn) = na,), we find a formula for
"

1
& = = Y ¢%u(n/d)

dln

where 4 is here the classical Mabius function.

12.8. Matroids

The nf::,;ﬁ of independence shows up in many different places in mathematics:
;?ul'ls]:s . Am::é i;:l; ::::: so. We'll see that it obeys the same laws in these different
o Linear independence in vector spaces.
. A closely related notion occurs in projective or affine spaces. Any set of k points
}n‘suf:h a space lies in a flat of dimension at most k — 1; it is called independent
if it Kes in no flat of dimension smaller than % — 1. ’ g
¢ In a graph (V, E), a set B’ of edges is acyelic if (V, E’) is a forest.?
¢ Let F be a family of subsets of X. A set {z1,...,z;} of points of X is a partial
framversal for F if there are distinct sets A,,..., A, € F such that z; € A; for
i =1,...,k; in other words, (2,,...,2;) is a SDR for a subfamily of t7—' ‘

The common concept here is that of a matroid® A matroid is a pair (X,7)
where 7 is a non-empty family of subsets of X having the properties: o
. ger;d:tmy property: if Y € 7 and Z C Y, then Z € T;
o Exchange axiom: if Y, Z € T and |Z| > |Y|, then t i
Vo |Z| > |Y|, then there exists z € Z such that

The members of I are called independent sets. In fact, there are many other ways
to define a matroid, and the beginner is often bemused by the many axiom systemys
As a compromise, I will describe some other structures which are equivalent to tht;
notion of a matroid, but without giving all the axiomatisations.

. It follows immediately from the second matroid axiom that any two maximal
mdepende.nt sets have the same cardinality. This number is called the rerk of
the matroid, and a maximal independent set is called a basis. Dually, a minimal
dependent set is called a cycle. If Y is any subset of the point set X o% a matroid
then the. members of 7 contained in ¥ clearly satisfy the matroid axioms, so deﬁnej
a matrmd'on Y. Let p(Y') denote its rank, so that p is a function from ’P(’X ) to the
non-negative integers. A set Y is called closed if p(Y U {z}) > p(Y) forall z ¢ ¥
The closure o(Y') of an arbitrary subset Y is the smallest closed set containing it. .

(12.8.1) Proposition. A matroid on X is determined by any of the following: the
bases; the rank function; the cycles; the closed sets; the closure operator on P(X).

5 The graph may contain loo i
ps or multiple edges. By conventi i
al most one edge joining any pair of vertices. Y ntion, & forest has 1o loops, and containe

& An alternative term is ‘combinatori
orial pregeometry”. To the surprise of i
of nobody else, this term has not become standard. prise of it proponents, but perhaps
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PROOF. As we have explained, each of these structures is determined by the indepen-
dent sets. We must show the converse.

The axioms imply that a set is independent if and only if it is contained in a
basis. Obviously, a set is independent if and only if it contains no cycle. Also, a set
is independent if and only if its rank is equal to its cardinality.

For the last two, we first observe that a set is closed if and only if it is equal to
its closure, so the closed sets and the closure operator carry the same information.
Moreover, the rank of a set is equal to the rank of its closure, so it is enongh to
determine the rank of the closed sets. Now the rank of a closed set Y is the length
of any maximal chain of closed sets with greatest element Y.

(12.8.2) Proposition. Each of the following examples defines a matroid:
o X is a subset of a vector space, I the set of linearly independent subsets of X ;
o X is.2 subset of a projective or affine space, T is the set of independent subsets
of X;
o X is the edge set of a graph, I the set of acyclic subsets of X;
e T is the set of partial transversals of a family of subsets of X.

PROOF. The proofs show various similarities and differences, so I will sketch the first,
third and fourth. (The second is almost the same as the first.)

1. Let X be a set of vectors. Clearly, any subset of a linearly independent
subset is linearly independent. Suppose that ¥’ and Z are linearly independent, with
|Z| > |Y'|. Then dim(Z) > dim{Y}, so Z @ {Y). Thus, there is a vector z € Z not
contained in (¥), and Y U {z} is linearly independent.

3. Let X be the edge set of a graph on the vertex set V. Clearly a subset
of an acyclic subset is acyclic. If Y is acyclic, then the number of connected
components of (V,Y) is |V| - |Y]|+1, by (11.2.1). Thus, if |Z| > [Y|, then (V,2)
has fewer components than (V,Y), and so some edge z € Z is not contained within
a component of (V,Y); thus Y U {z} is acyclic.”

4. Any subset of a partial transversal is clearly a partial transversal. Suppose
that Y and Z are partial transversals, with |Y| < |Z|. Let A, be the set represented
by y € Y, and B, the set represented by z € Z. We consider, for each z € Z, the
set X! = Y U {2}, and the subsets A, = A, N X' and B, = B, N X'. If this family
of sets has a SDR, its elements must be all the points of X', which is thus a partial
transversal, and we are done. So we can suppose that this fails for all z. But this
means that some n + 1 of these sets contain only n elements of X'. These n + 1 seis
must include B, since any subfamily of the A has a SDR. This means that z € ¥
for all z € Z, a contradiction, since |Z| > |Y.

As usual with abstract concepts, the point of this result is that a single argument
suffices to prove a theorem applicable in several different fields. We should look
to these fields for results which can be formulated in terms of independent sets.
One such is the greedy algorithm for the minimal connector (Section 11.3), which

7 A cycle in this matroid is the edge set of a circuit in the graph (possibly a loop or two parallel
edges) — hence the name.
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extends to the minimum-weight basis in a matroid whose elements have weights (see
Exercise 13).

The closed sets of a matroid form a lattice, where meet is intersection, and the
join of two sets is the closure of their union. Boolean lattices and finite projective
and affine geometries form special cases of these so-called geometric lattices, which
have been axiomatised and studied in their own right. We make just one observation.

A matroid is called geometric if the empty set and all singletons are closed.
Now it is possible to pass from any matroid to a geometric matroid in a canonical
way, which parallels exactly the procedure for passing from a vector space to the
corresponding projective space (Chapter 9).

STEP 1. By removing all points in the closure of the empty set, we produce a matroid
in which the empty set is closed.

STEP 2. Now write £ ~ y if £ = y or {z,y} is dependent (in other words, if {z,y}
has rank 1). It follows from the exchange axiom that this is an equivalence relation.
There is a matroid induced in a natural way on the set of equivalence classes. (Any
closed set is a union of equivalence classes.)

In the case of a vector space V, Step 1 removes the zero vector, and Step 2 calls
two vectors equivalent if one is a scalar multiple of the other; so the equivalence
¢lasses are the 1-dimensional subspaces, that is, the points of the projective geometry.
In the case of a graph, Step 1 removes loops and Step 2 removes multiple edges,
leaving a simple graph.

Now, in general, geometric matroids and geometric lattices are equivalent con-
cepts: the points of the geometric matroid are the elements of the lattice which cover
0; an arbitrary element of the lattice can be identified with the set of points lying
below it; and, as explained earlier, we can recover the rank function, and hence the
independent sets, from the closed sets.

We conclude this section with a generalisation which pulls itself up by the
bootstraps. Our third example of a matroid arose from the partial transversals of
a family {A4;,...,A,} of subsets of X, that is, the sets of points supporting SDRs
of subsets of the family. Now we suppose that there is already a matroid (X,Z)
defined on the point set. We ask: Is there an independent transversal? The answer is
formally similar to Hall’s Theorem (of which it is a generalisation).

(12.8.4) Theorem. Let A;,...,A, be subsets of X, and let (X,I) be a mairoid.
Then there is an independent iransversal to the family if and only if, for every
Jg {la"',n}!

p(A(J)) 2 |-

ReMarK. Hall’s Theorem corresponds to the case where the matroid is trivial {every
set independent), so that p(Y) = |Y| for any subset Y of X.

ProoF. If there is an independent transversal, then for any J C {1,...,n}, A(J)
contains an independent set of size |J|, so its rank is at least this large. The converse
is an exercise, which can be solved by re-writing (with care) the proof of Hall’s
Theo;‘t;m given in Section 6.2 (or, indeed, almost any other of the standard textbook
proofs).
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12.9. Project: Arrow’s Theorem

One of the problems of politics involves ‘averaging out’ individual preferences to
reach decisions acceptable to society as a whole. In this section, we prove Arrow’s
Theorem, which shows that this is indeed a difficult task!

We suppose that [ is a society consisting of a set of n individuals. These individuals are (o be
offered a choice among a set X of options, for example, by a referendum. We assume that each
member i of the society has made up her/his mind about the relative worth of the options. We can
describe this by a total order <; on X, for each i € I. A social choice function is a rule which, given
the ‘individual preferences' <; for each i € I, comes up with a ‘social preference’ < on X, subject
to four conditions listed (and justified) below. In other words, it is a function from the sel of all
n-tuples of X to the set of total orders, satisfying Axioms (A1)-(A4) below. Arrow’s Theorem asserts
that, if there are at least three options, then no social choice function is possible.

(A1) If £ < y (in the social preference), then the same remains true if the
individual preferences are changed in y’s favour.

(This means that, if <; (i € I) are another system of individual preferences satisfying
v v u<ivioraly,v#y and
u<;y=>u<iyforallu,
and <’ is the corresponding social preference, then z <’ y holds.
(A2) If Y € X and lwo sets {<;}, {<!} of individual preferences on X have the
property that <; and <} induce the same ordering on Y for each i € I, then the
corresponding social preferences < and <’ induce the same ordering on Y.

(This is the principle of irrelevant options, and asserts that the working of social choice should
not be affected if some of the options are struck out.)

(A3) For any distinct .,y € X, there is some system of individual preferences
for which the corresponding social preference has © < y.

(In other words, it should be possible for society to prefer y to z if enough individuals do so. In
fact, it follows from (A1)~{A3) that, if  <; y for alli € /, then z < y: that is, if everybody prefers y
to , then society does too.)

(A4) There is no individual i such that <; coincides with < for all systems of
individual preferences.

This axiom requires that there should not be a dictator whose opinions prevail against all

opposition!
(12.9.1) Arrow’s Theorem. If | X | > 3, then no social choice function exists.

Proor. Suppose that we have a social choice function. If (z, y) is an ordered pair of distinct options,
we say that a set J of individuals is (z, y)-decisive if, whenever all members of J prefer y to «, then
90 does the social order; formally, if ¢ <; y for all i € J, then z < y. Further, we say that J is
deeisive if it is (z, y)-decisive for some distinct z,y. We claimed after the statement of (A3) that the
whole society I is (2, y)-decisive for all 2, y; let us first prove this. By (A2), we can suppose that =
and y are the only options. Now by (A3), there is some system of individual preferences which causes
r < y to hold; and by (AL}, this remains true if we alter them so that all individuals prefer y to z.
Let J be a minimal decisive set. Then J # @, by (A3). Suppose that J is (z,y)-decisive, and let
i be a member of J.
CLaM. J = {i}. Forlet ' = J\ {i} and K = I\ J. Let zbe & member of X different from z and y
(remember that |X| > 3). Consider the individual preferences for which
e Y <
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z<; ¢ <; yforalljelt;

y<pz<pzrforallk e K.
Then

z < y, since all members of the (z, y)-determining set J think so;

y < z, since if z < y then J' is (7, y)-decisive, contradicting the minimality of J.
Hence = < z. But then {i} is (z, z)-decisive, since nobody else agrees with this order. By minimality
of J, we have J = {i}.

The proof shows, in fact, that {i} is (, 7)-decisive for all z # z.

CLAIM. 1 is a dictator.

Choose w # z, and z # w,z. Consider the individual preferences in which

w < &< 3,

z<) w<g zforall k£
Then w < © (because everybody thinks so) and z < z (because i thinks s0); so w < z, and {i} is
{w, 7)-decigive. Finally, a similar argument (left to the reader) shows that {i} ie (w, z)-decisive for
any w # 2. The claim is proved; and so Axiom (A4) is violated, proving the Theorem.

12.10. Exercises

1. Describe the lattice L(P) for each of the posets P of Fig. 12.1 (other than N, see
Fig. 12.2).

2. Show that the pentagon and the three-point line are lattices, but are not
distributive.

REMARK. It can be shown that a lattice is distributive if and only if it contains
neither the pentagon nor the three-point line as a sublattice.

3. A poset P is a two-level poset if it is the union of two antichains U and L with
no element of L greater than any element of U (so that the only comparabilities
which occur are of the form [ < u for ! € L, « € U). In the deduction of Hall’s
Theorem from Dilworth’s, we used a two-level poset. Show, conversely, that the truth
of Dilworth’s theorem for two-level posets can be deduced from Hall’s Theorem.
[HINT: you may find the form of Hall's Theorem given in Exercise 7 of Chapter 6
useful.]

4. Prove Proposition 12.5.1(b).

5. (a) Find the dimension of the pentagon and the three-point line.
(b) Find all linear extensions of N, the pentagon, and the three-point line.

6. (a) Show that any antichain (containing more than one point) has dimension 2.
{b) The incidence poset of a graph I' consists of the vertices and edges of T
ordered by inclusion, where an edge is regarded as a set of two vertices. Calculate
the dimensions of the incidence posets of some small graphs. Show that the only
connected graphs whose incidence posets have dimension 2 are the paths.

7. Prove Theorem 12.8.4.

8. Calculate the Mdbius functions of the posets whose Hasse diagrams appear in
Fig. 12.1.

9. Prove that the M&bius function of the lattice of subspaces of a vector space over

GF(q) is given by
u(t,2) = {(—1)"q'°<‘°—“’2 ifY CZ,

0 otherwise,
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where k = dim(Z) — dim(Y"). [HINT: It suffices to consider the case when ¥ = {0}.
Now put ¢ = —1 in the ¢-binomial Theorem (9.2.5)]

10. Let a,b be elements of a poset P. Prove that pla,b) = Z,-ZO(—I)‘C;, where c; is
the number of chains
a=zo<...<3:.-=b.

[HiNT: Calling the right-hand side p(a,b), it suffices to show that Yo<zcs pla,z) =10
for a < b. Now the displayed chain contributes (—1)* to p(a, b), and also (-1 to
p(awmi—l)']
11. Let (X,Z) be a matroid.

(a) Let Y C X. Prove that any basis for ¥ can be ‘extended’ to a basis for X.

(b) Let Y C X and let C be a cycle in Y. Prove that, for any z € C, we have

p(Y \ {2}) = oY)
(c) Show that the rank function satisfies

p(Y UZ)+p(Y NZ) < p(Y)+ o(2).

[HINT: Recall from linear algebra the argument which proves this (with equality)
for subspaces of a vector space/]
(d) Give an example where strict inequality holds in (c).
12. Let (X,Z) be a matroid, and I € Z. Show that (X\I,{J:JUIcI})isa
matroid. Prove that its rank function ' is given by p'(Y) = p(Y U I) — o().
Hence show that any interval in a geometric lattice is a geometric lattice.
13. Prove that the greedy algorithm succeeds in finding a basis of minimum weight
in a weighted matroid.
14. Show that Arrow’s Theorem is false if there are just two options and at least
three individuals in the society. [HINT: try democracy!]
How is this result related to the contents of Section 7.17
15. Exploit the connection between terms in the disjunctive normal form and
valuations to prove the disjunctive normal form theorem (12.4.2).
16. (a) Show that the free distributive lattice with 3 generators has cardinality 20.
(b) CompUTING PROJECT. Calculate the cardinality of the free distributive lattice
for larger numbers of generators.
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More and more F'm aware that the permutations are not unlimited.

Russell Hoban, Turtle Diary (1975)

Toprics; Partition numbers; conjugacy classes of permutations;
diagrams and tableaux; symmetric polynomials

TECHNIQUES: Generating functions; proof of identities by counting
ALGORITHMS: Robinson—Schensted—Knuth correspondence

CROSS-REFERENCES: Permutations and partitions (Chapter 3); par-
tial order (Chapter 12); [Catalan numbers, involutions (Chapter 4),
Gaussian coefficients (Chapter 9); cycle index (Chapter 15)]

In Chapter 3, we considered partitions and permutations of a finite set. Here, we
look at the ‘unlabelled’ versions. These are partitions of an integer n, and conjugacy
classes of permutations in the symmetric group S,. It turns out that there are equal
numbers of these objects, and a rich interplay between them. The story also involves
symmetric functions and the character theory of S,..

13.1. Partitions, diagrams, and conjugacy classes

Let » be a positive integer. A partition of n is an expression for n as a sum of
positive integers, where the order of the summands is unimportant.! We can arrange
the parts in order, with the largest first. Thus, there are five partitions of 4:

4=3+4+1=242=2+14+1=14+141+1

As well as this obvious notation, a partition of n is sometimes written in the form
1212% , _n%. where ¢; is the number of parts equal to 7, that is, the number of
occurrences of ¢ as a term in the sum. The ‘factor’ :* is not an exponential; the
integer ¢ is merely a placeholder for the term a;. If a; = 0, the “factor’ can be omitted.
In this notation, the five partitions of 4 are

4', 3111, 2% 9112 14,

U If the order of the summands is significant, then the number of partitions of n is 2°~! for n > 1.
See Exercise 9(b) of Chapter 4.
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We also use the notation A F n to mean ‘) is a partition of n’.

In addition, we use a pictorial representation of partitions by means of diagrams
D()), defined as follows. Let A be the partition n = n; +... +ng, withny > ... > 4.
The diagram of ) has & rows; the i row (numbering from the top) contains n; cells,
aligned at the left.> Cells may be represented either by dots or by empty squares,
whichever is convenient; I will make use of both in appropriate places. Thus, the
diagram of the partition 7= 3 + 2 + 2 or 3!2? is shown in Fig. 13.1.

2

Fig. 13.1. The diagram of a partition

Let A - n. The conjugate or dual partition \* of X is the partition of n whose
diagram is the transpose (in the sense of matrices, that is, interchanging rows and
columns) of that of A. For example, if A = 3122, as above, then A* = 3%1'. In general,
if A= 121292 _non then M = 1%2% __ nbs where b; is the number of indices j for
which a; > i. Obviously, (A*)* = A,

Let p(n) be the number of partitions of n, the n'® partition number. (Check
that, for n = 1,2,3,4,5, we have p(r) = 1,2,3,5,7 respectively.) The function
p is sometimes called the partition function. We prove first an expression for its
generating function. By convention, p(0) = 1; the unique partition of 0 has no parts.

(13.1.1) Theorem. 3 p(r)t" = JJ(1 — ).

n>0 i>1
ProoF. The right-hand side is
TMa+¢++. ) =(0+t+2+. )1+ +0+..) ...

ix1
A term in ¢™ in this product is obtained by selecting, say, t** from the first factor,
%% from the second, and so on, with a; +2a; +... = n (so that 1%12% ..} n). Each

partition of n gives a contribution of 1 to the coefficient of ¢*, so this coeflicient is
equal to p(n).

This expression for I1{t) = 3 p(n)t" is not much use as it stands. But in the next
section, we'll see that it gives a recurrence relation for the partition numbers.*

2 These are also called Ferrers diagrams or Young dicgrams.

3 This convention corresponds to the indexing of matrices, where rows are numbered down the page
and columns from left to right. An alternative convention is based on Cartesian coordinates, where
the independent variable increases from left to right, and the dependent variable from bottom to top.
According to Ian Macdonald, Symmetric Functions end Hell Polynomials, p. 2, ‘Readers who prefer
this convention should read this book upside down in a mirror’. Computer users will recognise the
difference between text and graphics output.

4 For analysts, we note that [I({) is an analytic function of the complex variable ¢ for |t} < 1, but
has a singularity at every root of umity, so it cannot be analytically continued outside the unit dise.
(The unit circle is a natural boundary.)
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There are two convenient orderings defined on the set of all partitions of n. Let
Mpbnysay, \in=n1+...+npand p:n=m +... +my with the convention
that undefined parts are zero.

(a) We say that X precedes p in the reverse lexicographic order (rlo.) if, for some
i, we have n; = m; for < i and n; > m;. (If we regard a partition as a ‘word’,
whose ‘letters’ are positive integers, this is the dictionary order of words with the
convention that large integers precede small ones in the ‘alphabet’.) This is a total

order.
(b) We say that ) precedes u in the netural partial order (n.p.o.) (written A < i)

if A# p and
Mt i 2m .. tmy
forallz > 1.

For n < 5, these two orders coincide. They differ first for n = 6, where 3'1% and
9% are incomparable in the n.p.o. (though the first precedes the second in the r.lo.).
However, it is always true that rlo. is a linear extension (see Section 12.2) of n.p.o.:

(13.1.2) Proposition. If A < p, then A precedes p in the reverse lexicographic order.

PrOOF. With the notation as before, choose ¢ such that n; = m; for § < ¢ but
n; # m,. Since ny + ... +n; > my + ... + m;, we must have n; > m,.

Conjugation reverses the n.p.o.:
(13.1.3) Proposition. If A < u then ™ < A
PROOF. Suppose that u* £ A\*, where p* is the partition n = n] +n3 +..., etc. (so
that n? is the number of j such that n; > i, by definition of conjugation). Then, for
some %, we have

mi+...+m;2ni+...+n; forj<i
and mi+...+m;<nj+...+n],

sot=m] <ni=s. ‘

Now nj,, +ni.s+... is the number of cells in the diagram of A which lie to the

right of the i*" column; so
3

-+l = )
Similarly, )

My, +Mi,+...= J.X:;(mj —1).
So

S (m;—i) > SURDED SCEL)

i=1
the right-hand inequality holding because s > ¢ and n; > i for j < s. Hence

m1+...+mt>n1+...+nt,
and so A € p.
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Now we turn to permutations. We saw in Section 3.5 that any permutation of
{1,...,n} can be expressed as the product of disjoint cycles, uniquely up to the
order of the factors and the starting point of each cycle. If the cycle lengths are
Tiyy ...,k then n = ng + ... + ng, and so we have a partition of n, which is called
the cycle structure of the permutation. Thus, cycle structure defines a map from the
symmetric group S, to the set of partitions of n.

Two permutations ¢;,9: € S, are said to be conjugate if g; = A~'g1h for some
h € S,. Conjugacy is an equivalence relation on S,, whose equivalence classes are
called conjugacy classes.’

(13.1.4) Proposition. Two permutations have the same cycle structure if and only if
they are conjugate.

ProoF. Suppose that ¢; = h~'g,h. Let (7 z2 ... zx) be a cycle of g, so that
;g1 =i fori=1,...,k— 1, and 749y = 2;. Let y; = ;A for i = 1,..., k. Then,
fori=1,...,k— 1, we have

Yigz = yih gk = zigih = irih = i,
and similarly yigs = 1. Thus, (31 ¥2 ... %) is a cycle of g;. Thus, we obtain the
cycle decompositon of g; from that of ¢; by replacing each point by its image under
h. So the cycle structures are equal.

Conversely, let g, and g; have the same cycle structure. Calculate the cycle
decomposition of each, and write that of g2 under that of ¢; so that cycles of
the same length correspond vertically. Now let - be the permutation obtained by
mapping each point in the decomposition of ¢, to the point vertically below it. (So,
if we forget all the brackets, what is written down is the two-line form of h.} Then
h~lg1h = gy, by the same calculation as before,

For example, if g, = (1 2 3){4 5)(6) and g2 = (2 5 3)(4 6)(1), then g; = A1 g4,
where h = (; : g:g?) = (125 6)(3)(4) (in cycle notation).

It is clear that every partition of n is realised as the cycle structure of some
permutation; so

the number of conjugacy classes in S, is p(n).

But we can do better, and calculate the conjugacy class sizes:

(13.1.5) Proposition. Let A = 112% ... n*" be a partition of n. Then the number of
permutations with cycle structure X is®
nt
n?:l iﬂiai! '

Proor. If we write out the brackets for the cycle decomposition of such a permuta-
tion, there are n! ways of entering the numbers 1,...,n into the spaces. But we can
start each of the a; cycles of length ¢ in any position in the cycle, in i* ways, and
permute these cycles arbitrarily, in a;! ways, for each i; so we have to divide n! by
the product of all these numbers.

® Conjugacy is an equivalence relation in any group. (Prove this.)
% In this expression, ¢* has its usual mathematical meaning.
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13.2. Euler’s Pentagonal Numbers Theorem

A pentegonal number is a number of the form k(3k — 1)/2 or k(3k + 1)/2 for some
non-negative number k. Alternatively, it is a number of the form k(3k — 1)/2 for
some (positive, negative, or zero) integer k. The second description is preferable,
since it generates zero once only, whereas the first produces zero twice. The reason
for the name is shown by the pictures of pentagonal numbers for small positive .

Fig. 13.2. Small pentagonal numbers

The next theorem, due to Euler, is quite unexpected, as is its application: it will
enable us to derive an efficient recurrence relation for the partition numbers.

(13.2.1) Euler’s Pentagonal Numbers Theorem
(a} Ifn is not a pentagonal number, then the numbers of partitions
of n into an even and an odd number of distinct parts are equal.
{b) Ifn = k(3k—1)/2 for some k € Z, then the number of partitions
of n into an even number of distinct parts exceeds the number
of partitions into an odd number of distinct paris by one if k
is even, and vice versa if k is odd.

For example, if there are four partitions of n = 6 into distinct parts, viz.
6=5+1=4+2=3+2+1, two of each parity; while if n = 7, there are five such
partitions, viz. T=6+1=5+2=4+3 =442+ 1, three with an even and two
with an odd number of parts.

PrROOF. To demonstrate Euler’s Theorem, we try to produce a bijection between
parttitions with an even and an odd number of distinct parts; we succeed unless n is
a pentagonal number, in which case a unique partition is left out.
Let A be any partition of n into distinct parts. We define two subsets of the
diagram D()\) as follows:
o The base is the bottom row of the diagram (the smallest part).
o The slope is the set of cells starting at the east end of the top row and proceeding
in a south-westerly direction for as long as possible.
Note that any cell in the slope is the last in its row, since the row lengths are all
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distinct. See Fig. 13.3.

Fig. 13.3. Base and slope

Now we divide the set of partitions of n with distinct parts into three classes, as
follows:

o Class 1 consists of the partitions for which either the base is longer than the

slope and they don’t intersect, or the base exceeds the slope by at least 2;

o Class 2 consists of the partitions for which either the slope is at least as long as
the base and they don’t intersect, or the slope is strictly longer than the base;
o Class 3 consists of all other partitions with distinct parts.

Given a partition A in Class 1, we create a new partition A’ by removing the
slope of X and installing it as a new base, to the south of the existing diagram.
In other words, if the slope of A contains k cells, we remove one from each of the
largest k parts, and add a new (smallest) part of size k. This is a legal partition with
all parts distinct. Moreover, the base of )’ is the slope of ), while the slope of X is
at least as large as the slope of ), and strictly larger if it meets the base. So X is in
Class 2.

In the other direction, let A’ be in Class 2. We define A by removing the base of
X' and installing it as a new slope. Again, we have a partition with all parts distinct,
and it lies in Class 1. (If the base and slope of A meet, the base is one greater
than the second-last row of ), which is itself greater than the base of \’, which has
become the slope of A. If they don’t meet, the argument is similar,)

The partition shown in Fig. 13.3 is in Class 2; the corresponding Class 1 partition

is shown in Fig. 13.4.
® o o o o 7
e & ¢ o o

*—o—o—»

Fig. 13.4. A Class 1 partition

These bijections are mutually inverse. Thus, the numbers of Class 1 and Class 2
partitions are equal. Moreover, these bijections change the number of parts by 1,
and hence change its parity. So, in the union of Classes 1 and 2, the numbers of
partitions with even and odd numbers of parts are equal.

Now we turn to Class 3. A partition in this class has the property that its
base and slope intersect, and either their lengths are equal, or the base exceeds the
slope by 1. So, if there are k parts, then n = 22 + (k- 1)/2 = k(3k — 1)/2 or




13.2. Euler’s Pentagonal Numbers Theorem 215

n=k(k+1) + k(k — 1)/2 = k(3k + 1)/2. Fig. 13.5 shows the two possibilities.

Fig. 13.5. Two Class 3 partitions

So, if n is not pentagonal, then Class 3 is empty; and, if n = k(3k — 1)/2, for
some k € Z, then it contains a single partition with |k| parts. Euler’s Theorem
follows.

(18.2.2) Corollary. J(1 —t") = 3 (—1)k¢H=1/2,

Y | k=-00
Proor. By Euler’s Pentagonal Numbers Theorem, the right-hand side is the gen-
erating function for even(n) — odd(n), where even(n) and odd(n) are the numbers
of partitions having all parts distinct and having an even or odd number of parts
respectively. We must show that the same is true for the left-hand side.

The coefficient of ¢* is made up of contributions from factors (1 —t™),...,(1 —
t"), whete n; +...+ ny = n and n,,...,n; are distinct; the contribution from this
choice of factors is (—1)*. So each term counted by even(n) contributes 1, and each
term counted by odd(n) contributes —1. So the theorem is proved.

The right-hand side can be written as

1+ Z(_l)k (tk(sk—l)/z + tk(3k+1)/2) \
k>0

using the first ‘definition’ of the pentagonal numbers. From this, we deduce the
promised recurrence for the partition numbers. This illustrates the general principle
that finding a linear recurrence relation for a sequence is equivalent to finding the
inverse of its generating function (see Chapter 4, Exercise 12).

(13.2.3) Corollary. For n > 0,

p(n) = Y (=1 (p(n — §k(3k — 1)) + p(n — Jk(3k + 1))

k>0
=pln—=1)+pn—-2)—p(n—5)~pn—T)+p(n—-12)+... ,

with the convention that p(n)} =0 for n < 0.

PRrOOF. Since

> pn)tt = [T -,

n>0 n>0
we have

(z p(n)tn) . (1 + Z(_l)k(tk(ilk—ljl2+tk(3k+1)/2)) =1.

n>0 k>0
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For n > 0, the coeficient of ¢* in the product is zero. Thus,
0 =p(n) + 3 (~1)*(p(n — 3k(3k — 1)) + p(n — Jk(3k +1))),
k>0
from which the result follows.

This is a linear recurrence relation in which the number of terms grows with r,
but relatively slowly: there are about /8n/3 pentagonal numbers below n. Thus,
it permits efficient calculation: p(n) can be evaluated with O(n%?) additions or
subtractions.

13.3. Project: Jacobi’s Identity

In this section, I give a delightful proof, due to Richard Borcherds, of an identity of
Jacobif The proof has the appearance of physics, although it is pure combinatorics;
it involves double-counting states of Dirac electrons!

Jacobi's Identity asserts:

(18.3.1) Jacobi’s Triple Product Identity

H(l +q2n—lz)(1 + q2n-1z—l)(1 _ q2n) = ZQFZZ‘

n>0 20

It is an identity between formal power series in the indeterminates ¢ and 2. By replacing g by
¢'/? and moving the third term in the product to the right-hand side, the identity takes the form

H(]' +qn—l/22)(1 + qn—llzz—l) — (Z qg’/zzf) (H(l _ qn)—l) (*),

n>0 >0 n>0

in which form we will prove it.
A level is a number of the form n + 1, where n is an integer. A state is a set of levels

which contains all but finitely many negative levels and only finitely many positive levels. The state
consisting of all the negative levels and no positive ones is called the vacuum. Given a state S, we
define the energy of S to be

S{i:t>01eS)-) {1:1<0,i¢ S},
while the particle number of S is
[{t:1>0,1eSY—{l:1<0,1¢ S}

Although it is not necessary for the proof, a word about the background is in order!

Dirac showed that relativistic elecirons could have negative as well as pasitive energy. Since they
jump to a level of lower energy if possible, Dirac hypothesised that, in a vacuum, all the negative
energy levels are occupied. Since electrons obey the exclusion principle, this prevents further clectrons
from occupying these states. Electrons in negative levels are not detectable. If an electron gains
enough energy to jump to a positive level, then it becomes ‘visible’; and the ‘hole’ it leaves behind
behaves like a particle with the same mass but opposiie charge to an eleciron, (A few years later,
positrons were discovered filling these specifications.) If the vacuum has no net particles and zero
energy, then the energy and particle number of any state should be relative to the vacuum, giving

rise to the definitions given.

% Jacobi’s Identity implies Euler’s Pentagonal Numbers Theorem: see Exercise 10.
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We show that the coefficient of g™ 2! on either side of (*) is equal to the number of states with
energy m and particle number /. This will prove the identity.

For the left-hand side this is straightforward. A term in the expansion of the product is obtained
by selecting ¢"~%z or ¢~ *¥2z"! from finitely many factors. These correspond to the presence of an
electron in positive level n — % {contributing n — -é- to the energy and 1 to the particle number), or
a hole in negative level —(n — 1) (contributing n — 1 to the energy and —1 to the particle number).
So the coefficient of g™z’ is as claimed.

The right-hand side is a little harder. Consider first the states with particle number 0. Any such
state can be obtained in a unique way from the vacuum by moving the electrons in the top & negative
levels up by nq,ns,..., 7, say, where ny > ng > ... > ni. (The monotonicity is equivalent to the
requirement that no electron jumps over another.) The energy of the state is thus m = ny + ...+ nx.
Thus, the number of states with energy m and particle number 0 is equal to the number p(m) of
partitions of m, which is the coefficient of ¢™ in I1{¢) = [T,»o(1 — ¢*)", by (13.1.1}.

Now consider states with positive particle number {, There is a unique ground state, in which
all negative levels and the firat I positive levels are filled; its energy is § + 5 + ... + 271 = 11,
and its particle number is [. Any other state with particle number ! is obtained from this one by
Yumping’ electrons,up as before; so the number of such staies with energy m is p(m — %!2), which is
the coefficient of ¢™ 2 in ¢' /22'T1(g), as required.

The argument for negative particle number is similar.

13.4. Tableaux

Our definition of a tableau is not the most general one possible; what is defined
here is usually called a standard tableaw, but I will not talk about any non-standard
tableaux!”

Let A be a partition of n, with diagram D()). A tableay, or Young tableau, with
shape ), is an assignment of the numbers 1,2,...,7n to the cells of D(A), in such a
way that the numbers in any row or column are strictly increasing. For example,
the three tableaux with shape 3'1' are shown in Fig. 13.6.

Fig. 13.6. Tableaux

The number of tableaux with shape ) is denoted by fi. Clearly, we have
f» = fyre, the corresponding tableaux being related by transposition.

There is a somewhat unexpected formula for fi. Given a cell (¢,7) of the
diagram D()), the hook H(i,7) associated with it is the set consisting of this cell
and all those cells to the south or east of it; that is, all cells (¢,7’) in the diagram
with j/ > j, and all cells (¢, ;) with ¢’ > i. The hook length h(i,j) is the number of
cells in the hook H(7, 7).

n!

(13.4.1) Theorem. f\ = ————.
I jyep(n) h(1,5)

7 Plural of tebleau.
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In his book Symmetric Functions and Hall Polynomials, Jan Macdonald refers
on p. 53 to ‘The fact that the number of standard tableaux of shape X is equal to
n!/h(\), and says ‘No direct combinatorial proof seems to be known.' The note
refers to a proof of this hook length formula at the end of a series of exercises,
quoting earlier results on symmetric functions. I do not plan to trace through the
argument here!

The numbers f» have another combinatorial interpretation. Let A be the partition
n =ny+... +ng where (as usual) n; > ... > ng Suppose that, in an election, n
voters cast their votes for k candidates, with the '™ candidate receiving n; votes for
i =1,...,k Then the number of ways in which the votes can be counted, so that
at no stage in the count is the j** candidate ahead of the ith, for any j > i, is fi.
To see this, record the count by writing the numbers 1,...,n in the cells of D(}),
where m is put in the i** row (immediately to the right of the entries already there)
if the m'h vote goes to the i candidate. By assumption, we have a tableau with
shape A; and every tableau corresponds to a possible count.

In particular, if A is the partition 2n = n + n, then fy is the Catalan number
C.41 — this interpretation of f) is in exact agreement with that for the Catalan
number given in Exercise 15(b) of Chapter 4. So the numbers f, generalise the
Catalan numbers. We can check the hook length formula (13.4.1) in this case. The
hook lengths for this partition A are n+1,n,...,2 in the first row, and n,n—1,...,1

in the second; so
o (2n) 1 (2
"M+ ! ndl\n)’

in agreement with (4.5.2).

Another important property of tableaux is the Robinson-Schensted—Knuth cor-
respondence:

(13.4.2) Robinson—Schensted—Knuth correspondence. There is a bijection between the
set of permutations of {1,...,n}, and the set of ordered pairs of tableaux of the
same shape. Under this bijection, if ¢ corresponds to the pair (S,T) of tableaux,
then g~! corresponds to (T, S). In particular, the two tableaux corresponding to a
permutation g € S, are equal if and only if g* = 1.

Proor. We give a constructive proof, of course! We build a pair (S, T') of tableaux
from a permutation g, which we take in passive form (a1, . .., a.). The construction
proceeds step by step. Before the first step, S and T are empty. At the start of the
i*h step, S and T are ‘partial tableaux’ with : cells, having the same shape. (This
means that their entries are distinct but not necessarily the first < natural numbers,
and the rows and columns are strictly increasing. In fact, T is a genuine standard
tableau, but S is not in general.) In step i, we add a new cell to the shape, and add
entries a; to S and ¢ to T, in a manner to be described. The procedure is recursive;
we define a ‘subroutine’ called INSERT, which puts an integer a in the ;™ row of a
partial tableau 7.
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Subroutine: INSERT q into the 7" row
If a is greater than the last element of the ;" row, then append it
to this row. (If the j't row is empty, put a in the first position.)
Otherwise, let = be the smallest element of the §** row for which
a ¥ z. ‘Bump’z out of the j*" row, replacing it with a; then INSERT
z into the (§ + 1)* row.

Now we can give a complete specification of the RSK algorithm:

RSK algorithm
Start with S and T' empty.
Fori=1,...,n, do the following:

e INSERT ¢, into the first row of S. This causes a cascade of
‘bumps’, ending with a new cell being created and 2 number
(not exceeding a;) written into it.

e Now create a new cell in the same position in T and write :
into it.

We have to check that, after the i" stage, S and T are partial tableaux. The fact
that rows and columns are increasing is, for S, a consequence of the way INSERT
works; for T, it is because i is greater than any element previously in the tableau.
The point of substance is that the newly created cell doesn’t violate the condition
that the row lengths are non-increasing; that is, there should be a cell immediately
above it. This is because the element ‘bumped’ is smaller than the element to the
right of the position it is ‘bumped’ out of, and so it comes to rest to the left of this
position.

At the end of the algorithm, we have two tableaux of the same shape.

We illustrate the algorithm with the permutation (2,3, 1).

Stage 1 Stage 2 Stage 3
S 2 2|3 113
2
T 1 12 1]2
|3 |

Fig. 13.7. The RSK algorithm
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At stage 3, 2 is ‘bumped’ by 1 into the second row.

The procedure can be reversed, to construct a permutation from a pair of
standard tableaux of the same shape. To see this, note that we can locate » in
the tableau T, and then reconstruct the cascade of ‘bumps’ required to move the
corresponding element of S to that position; the insertion triggering this cascade
is a,. Working back in the same way, we recover the entire permutation. (A few
worked examples make this clearer than pages of explanation!)

Now we come to the final claim that, if ($,T) corresponds to g, then (T, 5)
corresponds to g~'. My argument here will be somewhat ‘hand-waving'. Let ¢ and
¢~! have passive forms (ay,...,a,) and (b;,...,b,) respectively. Thus, ¢; = 7 if and
only if b; = 4. For the permutation g, stage ¢ in the construction inserts ¢; into § and
i into T; a; goes into the first row, and ¢ into a position determined by a cascade
of ‘bumps’ in S. Subsequently, ¢ keeps its place in T, but ¢; may be ‘bumped’ down
by subsequent insertions corresponding to values of s with s > ¢ but ¢, < a;. Each
‘bump’ moves it down one row.

Now, corresponding to g-!, at stage j, we insert b; = i into the first row of 5,
and ; into 7, in a position determined by a sequence of bumps in 5. One can check
that these are the same bumps that moved ¢; before, but all in a single cascade
rather than one at a time. Dually, the bumps which subsequently move b; down
are those which determine the position of 7 in the previous case. So the resulting
tableaux $ and T are precisely the T and S corresponding to ¢, and the claim is
proved.

(18.4.3) Corollary. (a) ) (f,)*=n!.
Abn
(b) X_ fr = s(n), where s(n) is the number of solutions of ¢> = 1 in §,.
Abn

The function s(n) was considered in Section 4.4, where we proved a lower bound
for it. We can now re-do this and give an upper bound too.

(13.4.4) Corollary. V! < s(n) < \/p(n)nl.

Proor. (a) (3 £1)? = T f7, since the right-hand side omits all ‘product’ terms 2f, f,..
(b) The vectors (1,1,...,1) and (fa,, frss- -+, fays ) in the Euclidean space of

dimension p(n) have lengths /p(n) and V!, and inner product s(n).

13.5. Symmetric polynomials

Let z,...,zn be indeterminates. A polynomial f(zy,...,2n) is called symmetric
if it is left unchanged by any permutation of its arguments: f(215,...,%ng) =
f(z1,...,zn) for all ¢ € Sy. (The older term ‘symmetric functions’ is often used; I
will avoid this since it has at least two more general meanings.)

Any symmetric polynomial can be written uniquely as a sum of parts which are
homogeneous (that is, every term has the same total degree). These homogeneous
parts are themselves symmetric. So we may restrict our attention to homogeneous
symmetric polynomials, of degree n, say.
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We now define some special classes of symmetric polynomials. Let A be the
partition n =n; + ... + .

(2) The basic polynomial m. is the sum of the term z7" ... z;* and all the other
terms which can be obtained from this one by permuting the indeterminates. (If
some of the parts n; are equal, the same term will come up more than once; but
each term is only included once.)

(b) The elementary symmetric polynomial e, is the sum of all products of n
distinct indeterminates; the complete symmetric polynomial h, is the sum of all
products of n indeterminates (repetitions allowed); and the power sum polynomial p,
is 27 +... + =R

(c) If z is one of the symbols ¢, h or p, then we define zx = 25, ... zn,.

For example, if there are three indeterminates, and A is the partition 3 = 2 + 1,
then

ma = 3Ty + 222y + Tiz3 + 2y + 223 + Th2s,
ey = (125 + #2123 + T2x3)(z1 + 22 + z3),

pr = (2 + 22 + 23) (%1 + 22 + 73),
hy=ex+px

(13.5.1) Theorem. For N > n, if z is one of the symbols m,e, b or p, then any
homogeneous symmetric polynomial f of degree n in z,...,znx can be written
uniquely as a linear combination ¥, ¢1z\. Moreover, in all cases except z = p, if
f has integer coefficients, then the numbers cy are integers.

Proor. For z = m, this is clear: if one term of m, occurs in f, then all the other
terms appear with the same coefficient.

To show the rest of the theorem, we have to demonstrate that the m) can be
expressed as linear combinations of the z, (with integer coefficients if z # p). I will
consider z = e now; the others will emerge naturally later. The key fact is:

Suppose that ey = 1.0 02a™,- Then ayy- = 1, and a5, = 0 unless
4 > A" in the natural partial order.

For, if ) is the partition n = n; + ... + ng, then ex contains the term

(z1z2 .. T M@ oo Tg ) o oo (21 - By )y

which occurs in mj+; so ax» = 1. Any other monomial in e, corresponds to a
partition greater than this one.

Thus, if the e, are ordered according to the reverse lexicographic order, and the
m) according to the rlo. of their duals, then the matrix expressing the es in terms
of the ms is upper triangular, with diagonal entries 1 and all entries integers. (Recall
that the ro. is a linear extension of the n.p.o.} So it is invertible, and its inverse
has the same form. (Compare the Mobius inversion algorithm in Section 12.7.)

(13.5.2) Corollary. Any symmetric polynomial f(x1,...,2x) can be written as a
polynomial g{z, ..., zn), where z is one of the symbols e, h, p. In the first two cases,
if f has integer coeflicients, then so does g.
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This holds because the z, are all possible monomials of degree n which can be
formed from z;,...,2zn.
In the case z = ¢, this is a version of Newton’s Theorem on symmetric functions.

The particular significance of this case is that, if a1,...,an are the roots of the
polynomial ¢(t) = t¥ + at"' + ...+ ay =0, then

a; = (—l)ie;(al, e ,aN),

so any symmetric polynomial in the roots of ¢ can be written as a polynomial in
its coefficients. (Newton’s Theorem extends to larger classes of functions, such as

rational functions.)

Further results about symmetric polynomials can be expressed conveniently in
terms of their generating functions. Define

E(t)y=)_ ent",

720
H(t) =) hat",
n>0
Pt)=) pat" "
n>1
(These series of course also involve the indeterminates z1,.. ., ~.) Now we have
N
E(t) = [I(1 + =),
r=1

N
Hit)=T[0 -=.t)7,

r=1

as is shown by expanding the products on the right in the usual way. In particular:

(13.5.3) Proposition. (a) H(t) = E(—t)~".
{b) Z(—l)'e,hn_r =0forn>1.

r=0

Here (b) comes from expanding E(—t)H(t) = 1. It is a recursive relation
expressing e, in terms of €o,...,€,_1 and ho,...,ha. By induction, e, can be
expressed as a polynomial in ho,...,h, with integer coefficients. This is equivalent
to the assertion that the polynomials ¢, are linear combinations of the h, with
integer coefficients. This proves the case z = k of Theorem 13.5.1.

The situation for P(t) is a little less obvious:
d d
(13.5.4) Proposition. {a) aH(t) = P(t)H(t) and EE(t) = P(-t)E(t).

(b) nhn = _ Prhn_, and ne, = S (-1)"pren-
=1

r=1
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PRrOOF. (a)

P(t)y=>_pt™

21

N
SR
>1i=1
N

- i
_Zl—z;t

t=1

d X 1
= aZlog(l - .Iz't)

=1

d
= ElogH(t),

the argument for the other part is similar.
(b) comes fiom (a) by expanding and equating coefficients.

The result of (b) allows us to express ¢, ot h, as polynomials in pi,...,pn, and
hence e or hj as linear combinations of the p,. But this time the coefficients are
rational numbers, not integers, because of the terms ne,, nh, in (b). For example,

e2=13pl—p),  ha=3(pl + 1)

There are several further reasons for combinatorialists to be interested in sym-
metric polynomials. One is the fact that we have the indeterminates z1,...,zy at
our disposal; substitutions of particular values lead to interesting specialisations.
For example (taking n = N):

(a) putting z, = ... = 2, = 1, we have E{t) = (1 4+¢)" and e, = (’:) giving the

Binomial Theorem (3.3.1). Similatly, H(t) = (1 —¢)™" and h, = (""’:'1).

(b) Putting z; = ¢! for i = 1,...,n, we find that E(t) = [],(1 + ¢"¢) is the
left-hand side of the g-binomial Theorem (9.2.4); so

n— rir— n
Cr(l,q,.-.,q 1)=q( 1)/2[7‘] R
[]

the Gaussian coefficient.

Secondly, we have now four bases for the space of symmetric polynomials of
degree n, namely (m,), (ex), (hy) and (p,). A further important basis consists of
the Schur functions s,. The transition matrices between these bases define interesting
arrays of numbers indexed by pairs of partitions. In many cases, these have
combinatorial significance, or specialise to more familiar numbers, including the
numbers f of standard tableaux (Section 13.4), Stirling and Bell numbers (Sections
4.5, 5.3), and cycle indices of symmetric and alternating groups (see Section 15.3).
For algebraists, I mention the fact that the transition matrix from (p») to (s4) is
the character table of the symmetric group S,.. See Macdonald, Symmetric Functions
and Hall Polynmials, for an overview of this material. Reading it, one can appreciate
the view held by some people, that if it isn’t related to symmetric polynomials, then
it isn’t combinatorics!
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13.6. Exercises

1. In the spirit of Section 3.12, devise an algorithm for generating the partitions of
n, one at a time, in reverse lexicographic order.

2. Use the recurrence relation (13.2.3) to calculate p(n) for n < 20.

3. Prove that p(n) < F, for n > 5, where F, is the n‘" Fibonacci number.

4. Show that conjugation of partitions does not reverse the r.lo.

5. Define two operations o, ¢ on partitions as follows. Let A :n =n1+ ... + 1,
prm=my+...+my be partitions of n and m respectively; undefined parts are
zero. Then Aoy and X e i are the partitions of m +n defined thus: for Ao u we add
the parts of A and g, viz.

Aop:(n-l—m)=(n1+m1)+(n2+mg)+.,.,

while the parts of A i are the parts of A and p together (arranged in non-increasing
order). Prove that .

Qo) =X epu"
6. (a) Prove that, if k > n/2, the number of permutations in S, having a cycle of

length % is nl/k. ‘
(b) If t(n) is the proportion of permutations in S, which have a cycle of length

greater than n/2, show that
,}l.r{}ot(n) =log?2.
7. Let TI{t) = Tarop(n)t" be the generating function for the pa.rtit.ion numb?ts.
Let o(n) be the sum of the divisors of n, and Z(t) = Xr»o o(n)t"! its generating
function. Prove that d
—II(t) = Z()II(¢),
S1I() = SOE)
and deduce that

n

np(n) = Y olk)pln - k).

k=1

8. Prove that 2.(l,q,...,¢" ") = [“+:’l]q.

9, Let z; = 1/N for 1 <: < N, and let N — oo. Show that the limiting values of
E(t) and H(t) are both equal to e'.
10. Deduce Euler's Pentagonal Numbers Theorem from Jacobi’s Triple Product
Identity. [HINT: put ¢ = 312z = —t712]
11. Let A be a matrix of zeros and ones, with row sums ny 2 ... > ng > 0 and
column sums my > ... > my > 0; let ) and g be the partitions n = m —i; +2!k
and n = my + ...+ m. Show that the polynomial e, contains a term zy oz
Show further that, if

e\ = Za)‘“m,,,

ukn

then ay, is equal to the number of matrices A which satisfy the above conditions.




14. Automorphism groups and
permutation groups

There is transitive motion and there is intransitive motion: the motion of a
galloping horse is transitive, it passes through our field of vision and continues
on to wherever it is going; the motion in a tile pattern is intransitive, it moves
but it stays in our field of vision.

Russell Hoban, Pilgermann (1983)

ToPICS: Permutation groups, automorphism groups; orbits, transi-
tivity, primitivity, generation

TECHNIQUES: Group theory
ALGORITHMS: Schreier-Sims algorithm

CROSS-REFERENCES: Labelled and unlabelled structures (Chapter 2),
permutations (Chapter 3), STS(7), [STS(9)] (Chapter 8), Petersen
graph (Chapter 11), [M&bius function (Chapter 12}], cycle structure
{Chapters 3, 13, 15)

Groups perform two main functions in combinatorics, paradoxically opposed. On
the one hand, they measure order. Any combinatorial object has an automorphism
group; the larger the group, the more symmetrical the object. On the other, they
measure disorder. The most familiar example of this is Rubik’s cube, whose possible
configurations {more than 10'°) are the elements of a group, only the identity of
which corresponds to the completely ordered state. We'll see in this chapter that the
same basic principles underlie the study of groups in both these roles.

14.1. Three definitions of a group

In this section, welll re-write history a bit, tracing in idealised form the path from
the definition of a group as ‘all symmetries of an object’ to the modern axiomatic
definition. The point of this journey is to see how the various concepts are related.

By an object I will mean a pair (X, S), where X is a set, and $ any structure on
X, whose exact nature needn’t be specified: it may be a set of unordered or ordered
pairs (ie., a graph or digraph), a set of subsets or partitions of X, or something
more recondite (such as a set of paths of length 3 using vertices of X, or a set of
weight functions on the edges of the complete graph on X). The point is that, given
any permutation g on X, there should be a natural way of applying ¢ to S. For
example, if (X,S) is a graph, we apply ¢ to each edge in S to obtain the edge set
Sg.If S is a set of sets of ..., we apply this construction recursively.

226 14. Automorphism groups and permutation groups

The permutation g of X is an sutomerphism of (X,S) if Sg = S. The sutomor-
phism group of (X,S) is the set Aut(X,S) of all automorphisms of {X,S). A subset
G of Sym(X) is an automorphism group if G = Aut(X,S) for some structure S on
X. This is our first ‘definition’ of a group.

An automorphism group G has the following properties:
(P1) it contains the identity permutation;
(P2) it contains the inverse of each of its clements;
(P3) it contains the composition of each pair of its elements.
(The first condition is clear. For the second, if § = Sg, we can apply g7' to both
sides, yielding S¢™! = S. For the thitd, if Sg = Sh =S, then S(gh) = (Sg)h = 8.)

These facts form the basis of our second definition. A set G of permutations of
X is a permutation group on X if it satisfies (P1), (P2) and (P3). We observed that
every automorphism group is a permutation group; is the converse true, or have we
strictly enlarged the domain of groups?

It turns out that, indeed, every permutation group is the automorphism group
of some object. (See Exercise 1 for a proof.)

However, this is not the end of the story. Not every permutation group is the
automorphism group of a graph, for example. (There are just two different graphs on
the vertex set {1,2}, and both have two automorphisms. So the permutation group
on this set which contains only the identity permutation is not the automorphism
group of any graph. Note that the construction of Exercise 1 shows that it is the
automorphism group of the digraph with edge (1,2).) The problem of deciding
which permutation groups are automorphism groups of graphs is unsolved.

The next step is in the spirit of nineteenth-century axiomatic mathematics. It
was decided that the important thing about a group is the operation of composition.
In terms of this, for example, we can characterise the identity permutation e by the
fact that eg = ge = g for all permutations ¢, and the inverse g~ ! of a permutation
g by gg~' = g'g = e. Let us temporarily write the composition of gand has goh.
Now a permutation group G satisfies the following conditions:

(A1) Associativity: go (ho k)= (goh)ok for all g,k k€ Gy

(A2) Identity: there exists e € G witheog=goe for all g € G;

(A3) Inverses: for any g € G, there exists gl € Gwithgog' =g log=e
Associativity is a general property of composition of functions:

z(g o (hok)) = (zg)(h o k) = ((zq)n)k = (a(g o h))k = =((g 0 B) o k).

We observed that the identity and inverse permutations have the required properties,
and they are contained in G by (P2) and (P3).

Cayley defined an abstract group to be a set G with a binary operation o defined
on it satisfying (A1), (A2) and (A3). Thus, every permutation group is an abstract
group. Again, we must ask whether the converse is true. The fact that it is, is the
content (and the raison d’étre) of Cayley’s Theorem:

(14.1.1) Cayley’s Theorem. Every absiract group is isomorphic to a permutation
group. .
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PROOF. We are given an abstract group G, with operation o, and are required
to find a permutation group G' on a set X, whose elements are in one-to-one
correspondence with those of G, such that the element of G’ corresponding to go &
is the composition of the elements corresponding to ¢ and A.

We take X = G, and let @' = {p, : ¢ € G}, where p, is the right translation by

zp,=zog forallz,g€c@G.

It isn’t clear yet that p, is a permutation; but at least p, # pi for ¢ # h (consider
their effect on the element e), so that we have a one-to-one correspondence. Now
we have

zpepr = (z0g)oh=z0(go0h) = zpyen,

so the group operation in G corresponds to composition. From this, conditions
(P1)~(P3) follow: closure is obvious (p;pr = pgor); pe is the identity permutation;
and p,-: is the inverse mapping to p, (from which it follows that p, is indeed a
permutation).

1t follows of course that every abstract group is an automorphism group, so the
three concepts are identical. More is true. Frucht showed that every abstract group
is the automorphism group of a graph. (In Section 14.7, we outline a proof of this.)
Frucht showed further that in fact this graph can be taken to be trivalent. A sheaf
of similar results is known.

From now on, we abbreviate ‘abstract group’ to ‘group’, and represent the group
operation by juxtaposition gh instead of g o h. Most accounts now go much further,
hiding the origins of the concept by reversing the procedure. A group is defined by
axioms (A1)-(A3);! Cayley’s Theorem shows that it makes sense o represent groups
by means of permutations in order to study them (nothing is lost by this). Of course,
the definition of a permutation group then changes: it is a set of permutations
which, equipped with the operation of composition, forms a group!

We need one more concept. This is because the construction in Cayley’s Theorem
isn’t the only way in which a group can be represented by permutations. So we
define an action of a group G on a set X to be a map 4 from G to the set Sym(X)
of permutations of X, satisfying

(gh)6 = (96)(h8),
10=1,
97'0=(g8)7",
where we used the same notation for group operations and permutations (juxtaposi-

tion, 1, and ~?). In fact, the second and third conditions follow from the first, which
says that 8 is a hemomorphism from G into Sym(X).

1 Often ‘closure’ is given as an axiom. Since a binary operation is defined on all pairs, this is not
necessary; it is a historical vestige, or ontogeny repeating phylogeny.
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The same group can have many different actions. We need to be able to say
when two actions are ‘the same’. Let 8, ¢ be actions of G on sets X,Y. We call these
actions equivalent if there is a bijection f : X — Y such that

(zf)(g¢) = (=(¢9))f

for all z € X, g € G. In other words, if we use f to identify the sets X and Y, then
any element of G induces the same permutation on the two sets.

For an example, let G be the symmetric group S, regarded as the automorphism
group of a triangle (Fig. 14.1). Then G acts on the vertices and on the edges of the

1
Fig. 14.1. A triangle

triangle. These actions are equivalent by means of the map f, where 1f = {2,3},
2f = {3,1}, 3f = {1,2}. (For example, if a permutation ¢ carries 1 to 2, then it
carries {2,3} to {3,1}.)

14.2. Examples of groups

Perthaps the most famous groups are the cyclic groups C,. The group C, can
be regarded as the additive group of congruence classes modulo n, or as the
multiplicative group of all n'® roots of unity in C (that is, {e*™/" : £ = 0,...,n—1}),
or (for n > 2) as the automorphism group of the cyclic digraph with vertex set
{0,1,...,n — 1} and edge set

{(,i+1):i=0,...,n =2} U{(n —1,0)}.

Algebraically, an important fact is that it is generaied by a single element g, that is,
all its elements are powers of g. Any finite group with this property is cyclic.

{We say that a group G is generated by a set S of elements if each member of ¢
can be expressed as a product of elements of S and their inverses, in any order and
allowing repetitions. This is logically equivalent to saying that .S is not contained in
any proper subgroup of G, but expresses the concept in a more positive way. More
generally, if S is a subset of a group G, the subgroup H generated by S consists
of all products of elements of S and their inverses; it is also characterised as the
smallest subgroup of G containing .5, that is, the intersection of all subgroups of G
containing S. Since every subset of Sym(X) generates some permutation group, we
have a potentially enormous collection of groups; but it is quite difficult to deduce
properties of the group from a generating set. We will consider this problem in
Section 14.4.)

A closely related group is the dihedral group D,, of order 2n. For n > 3,
D,, is the automorphism group of the cyclic (undirected) graph with vertex set
{0,1,...,n — 1} and edge set
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{{ii+1}:i=0,...,n =2} U{{n—1,0}},

or the group of symmetries of a regular n-gon. It contains the cyclic group C, as a
subgroup (the rotations of the n-gon). The remaining elements are reflections of the
n-gon in its n axes of symmetry. (If n is odd, all axes of symmetry are alike; but,
if n is even, there are two types, one joining opposite vertices and the other joining
midpoints of opposite edges.) The dihedral groups can be defined consistently for
smaller n: D, is the cyclic group of order 2 (generated by one reflection), and D,
is the Klein group Vy = {1,a,b,c}, whete a? = b =2 =1, ab=¢, bc = @, ca = b.
Note that V; is the group of symmetries of a rectangle.

We have already met the symmetric group Sym(X), consisting of all permutations
of X. If | X| = n, it 1s also denoted by S, and its order is ! . We saw in Chapter 5
that, for » > 1, S, has a subgroup of order n!/2 consisting of the even permutations
of X, called the alternating group and denoted by Alt(X) or 4,. We see that S, is
the cyclic group C,, while A; and S; are isomorphic to C; and Dg respectively.

We met briefly the general linear group GL(n, g) consisting of all invertible n x n
matrices over GF(g) in Chapter 9, where we calculated its order.

Groups can be built up from smaller ones. Two important constructions are the
direct product and wreath product, which we now define.

Let G and H be permutation groups on sets X and Y respectively. We assume
that X and Y are disjoint. The direct product G x H consists of all ordered pairs
(g, k) with g € G and h € H, and acts on the disjoint union X UY in the following
way:

_Jzg ifzeX;
z(g’h)_{zh fzcy.

(You should check that this is an action.} The group operation is given by
(g1, h1)(g2, h2) = (q192, B k2).

The action of G x H on X UY is called its natural action. Another action is its
product action on X x Y, defined by

(z,9)(g,h) = (g, yh).

The wreath product G wr H is more difficult to define abstractly; I will describe
it as a permutation group. Its natsral aclion is on the set X x Y; but we take
Y = {#1,.--,¥s}, and regard X x Y as the disjoint union of n copies X;,...,X, of
X, where X; = X x {y:}. Now we define two permutation groups:

s The bottom group B is the direct product of n copies of G, in its natural action
on X U...UX,. In other words, B acts by the rule

(=, 4:)(915- - 1 8a) = (@95, %)

o The top group T consists of H acling on the second coordinate:

(z,¥:)h = (z,ph).
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In other words, T shifts the sets Xi,..., X, around bodily. .
Now the wreath p;oduct G wr H is the group generated by B and T (and consists
f all products bt for b€ B, t € T). .
° Tlfere is another actim; of the wreath product, the product acf:on, on the set
XY of all functions from Y to X. We can regard a function f € XV as an n-tuple
(f(z)s- .., f(yn)) of elements of X. Now the base group acts by

flgr, - ygn) = (fln)g, - o f(yn)gn),

(in other words, the image of f under (g1,...,9n) is the f}lnction f v:rhere If’ (y},l) =
f(yi)g:); and the top group acts by the rule that fh is the function f/, where
Fly:) = flyah ™) . _
Puzzles like Rubik’s cube give rise to groups, which are ‘most easily d?scnbed.by
giving sets of generators. As an example, easier tha.fx Rubik’s cube, I will descabe
Rubik’s domino. This puzzle appears from the outsn.ie as a'3- x 3 %2 ‘rectang at
parallelepiped, divided into 18 unit cubes. In the starting position, the nine cu})es u;l
one 3 x 3 face are coloured white, and those in the other square face are black; eac
cube carries a number of spots of the other colour between 1 and 9, so that on the
white face the arrangement is as shown in Fig. 14.2, and each black cube has the
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Fig. 14.2. Rubik’s domino

i be with which it shares a face (giving the mirror image
iai"n:}ien:lino]:'?::t:f}::n;hllt:'i‘lzlulabel the white cubes with capital lettgrs from A to I,
and the black cubes with the corresponding lower-case letters a to i.

A move consists of a rotation of a face of the parallelepiped. The square faces
can be rotated through 90°, 108° or 270°, while the rectangular .faces can o.nly be
rotated through 180°. Thus, moves correspond to powers of the six permutations

(ACIG)BFHD)
(acig)bfhd)
(46)(C a)BH)
(C I (F f)
(I )G i)(H )
(G a)(A g)(Dd)

The domsno group is the group of all permutations of the cubes which can be
produced by applying a sequence of moves. It is the group generated by the above
permutations; but, to see this, we must resolve one difficulty.
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The permutations listed above correspond to applying basic moves to the domino
in its ordered state. However, if it is disordered, different permutations result because
the cubes which are moved have different letters! A move can be regarded as a
fixed place-permutation, or permutation of the positions; but we have represented
states of the domino as entry-permutations, or permutations of the cubes. We must
examine the distinction.

Let g be a permutation of {1,...,n}. In two-line form, it is

{1 2 ... n )
9=\1¢ 29 ... ng/)"
If we compose g with the entry-permutation h, then the entry in position ¢, which is
ig, is replaced by its image under A, which is tgh; the result is

1 2 ... n )
1gh 29k ... ngh)’
which is our usual composition of permutations. But if we compose ¢ with the
place-permutation k, then the entry ig in position ¢ is carried to position ih; the

result s th 2oy (12 e n )
(lg 2 ... ng) - (lh"g oh~tg ... nh7lg)’

so the effect is to compose the inverse of 4 with g. In particular, choosing g to be .the
identity, we see that the place-permutation k corresponds to the entry-permutatfon
h-1. So the rule for composing place-permutations is: compose the corresponding
entry-permutations from right to left.

In particular, the group generated by a set of permutations is the same, whethct,r
they are place-permutations or entry-permutations. Thus, the domino group is
indeed generated by the six permutations displayed earlier.

14.3. Orbits and transitivity

If a group G acts on a set X, then as combinatorialists we are mainly interested in
X rather than G; we want to know what structures on X are left invariant by G, for
example. The action ¢ is a homomorphism from G to the symmetric group on .X R
and its image is a permutation group. So we lose little by considering pe@utatxon
groups rather than abstract groups. (An algebraist, on the other hand, is more
concerned with G, and observes that the homomorphism has a kernel N, a non.na,l
subgroup of G which measures exactly what is lost in passing to the permutation
group G0.)

In any case, from now on, G will be either a permutation group on Xora
group acting on X; I will suppress the map 6 in the notation, and write xg for the
image of = under (the permutation corresponding to) g.

Our first target is a generalisation of the cycle decomposition of a single permu-
tation (Chapter 3). Let G act on X, Define a relation = on X by the rule

rz=y ifand onlyif zg =y forsomeg€G.

(14.3.1) Proposition. = is an equivalence relation.
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Proor. There 1s a kind of historical inevitability about this result; most naturally-
occurring equivalence relations in mathematics arise from group actions. The
three axioms for an equivalence relation (reflexivity, symmetry and transitivity)
are immediate consequences of the three axioms for a permutation group (identity,
inverses, and closure under composition). To take the second as an example: suppose
that z =y. Then zg = y forsome g € G;soyg ™! =z, and y = z.

The equivalence classes of the relation = are known as the orbits of the group
G. So we have, uniquely, a partition of X into orbits. G is said to be transitive if
there is only one orbit, intransitive otherwise.? Note that, for intransitive G, we have
an action of G on each orbit, and these actions are transitive. So, if we want to
describe all the ways in which a group can act on a set, it suffices to describe the
transitive actions.

ExaMpLE. The orbits of the domino group are
{A,C,I,G,a,c,i,g} (corner cubes);
{B,F,H,D,b,f,h,d} (edge cubes);

{E} (white centre cube);
{e} (black centre cube).

To describe all the transitive actions, we introduce first a special class of these,
the coset actions. We show that any transitive action is equivalent to a coset action,
and we decide when two coset actions are themselves equivalent.

Let H be a subgroup of the group G. A right coset of H in G is a set of the
form Hg = {hg : h € H} for some fixed g € G. We need the fact that any two
cosets are equal or disjoint. (This is the core of Lagrange’s Theorem.) For this we
first show

if ' € Hg, then H¢' = Hg.

For, if ¢’ € Hg, then ¢’ = hog for some ho € H; then any element hg’ € Hg’ lies in
hg because hg’ = (hho)g and hhy € H. Similatly, every element of Hg' is in Hg.

Now suppose that cosets Hg, Hg' are not disjoint; let ¢ € Hg N Hg'. Then
Hg=Hg¢' = H¢g', as 1equired.

Lagrange’s Theorem says that the order of a subgroup H of G divides the order
of G. This now follows from the fact that a coset of H has the same number of
elements as H itself. (The map & — hg is a bijection from H to Hg.) We see that
the number of cosets of H is equal to |G|/|H|. (This number is called the index of
Hin G)

The coset space (G : H) is the set of right cosets of H in G. (It is often denoted
by H\G, but this is easily confused with the set difference H \ G.) Now the cosel
action of G on (G : H) is given by the rule

(Hk)g = H(kg).

2 This is not the same as the distinction between tramsitive and intransitive motion made so
eloquently by Russell Hoban in the quote at the head of this chapter. Hoban's dichotomy is closer
to the difference between active and passive forms of a permutation.

3 The algebraist’s job is harder. An intransitive permutation group is contained in the direct product
of the transitive permutation groups induced on the orbits, but need not be the whole direct product.
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In other words, the permutation corresponding to ¢ maps Hk to Hkg for all k € G.
It is easily verified that this is indeed an action.

As promised, we have the following two results.
(14.3.2) Proposition. Any transitive action of G is equivalent fo a coset action.

ProoF. Let G act transitively on the set X. Choose a point 2z € X, and let
H = {g € G:zg ==z}. Then H is called the stabiliser of z, and is written G, or
Stabg(z). We have, by an easy check,

o H is a subgroup of G.
Also (and this is the heart of the matter),

e there is 2 natural bijection between X and (G : H).
The bijection is defined as follows. To each point ¥ € X corresponds the subset
S(y) = {g € G : zg = y}. The set S(y) is non-empty, by transitivity of G. The sets
S(y) (for y € X) form a partition of G, and it is straightforward to identify it with
the partition into cosets of H. Finally,

o this bijection defines an equivalence of the actions of G.
In other words, if yg = z, then S(y)g = S(2); this follows from the definitions.

(14.3.3) Proposition. Two coset actions on (G : H) and (G : K) are equivalent if
and only if the subgroups H and K are conjugate.

Proor. H and K are conjugate if K = g7 Hg, for some ¢, € G. If this holds, then
the map K¢ — Hg,g is an equivalence. Conversely, suppose that actions on the
coset spaces of subgroups H and K are equivalent. Let K correspond to the coset
Hg, under the equivalence. Then the stabilisers of K and Hg, are equal. The first
is just K; the second is

{9€G:Hug=Ha}={9€G qig97' € H} = g{'Hy,.

So K = g7 Hg, is conjugate to H.
ExampLE. How many inequivalent actions of the symmetric group S; on {1,...,n}?

We first describe the transitive actions. Si is a group of order 6, containing
an identity, three elements of order 2, and two elements of order 3. By Lagrange’s
Theorem, the possible orders of subgroups are 6, 3, 2 and 1. There is a unique
subgroup of each of the orders 6 and 1. Further, the identity and the two elements
of order 3 form the unique subgroup of order 3; and there are three subgroups
of order 2, each consisting of the identity and an element of order 2. These three
subgroups are all conjugate.! So, up to equivalence, there is a unique transitive
action on a set of size 1, 2, 3 or 6, and no others.

Now an arbitrary action is made up of a disjoint union of these; so the number
fn of different actions on {1,...,n} is equal to the number of ways of expresssing

1 Their generators all have the same cycle structure; compare (13.1.2).
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n as a sum of ones, twos, threes and sixes. I claim that the generating function is
given by

[

ST A =11 =11 =) (1 =) (1 - °).

n=0

This is because the right-hand side is
Q+t+2+. )1+ + 0+ 00+ +8+ . )1 +5 4824000,

and the coefficient of t" is the number of ways of getting a term " by multiplying
%, 12, %, and t* for some a,b,c,d; that is, the number of expressions n =
a+ 2b+ 3c + 6d.

It is possible to find an explicit expression for f, from this formula. One way is
to use analytic tools. Cauchy’s integral formula expresses f, as a contour integral,
which can be evaluated by calculating residues at poles, which occur at the sixth
roots of unity. But the digression would take us too far afield!

Group actions clarify the distinction between labelled and unlebelled structures
introduced in Section 2.5. Let C be a class of structures on a set {1,...,n}. (C
might consist of graphs, families of sets, etc.) Two labelled structures C' and C’ are
counted as the same unlabelled structure if and only if they are isomorphic, that is,
there is an element of the symmetric group S, which maps C to C'. We consider the
action of S, on the class C of labelled structures. In this action, unlabelled structures
correspond to orbits; and the stabiliser of a structure C is its automorphism group
Aut(C), the set of all permutations fixing it.

(14.3.4) Theorem. {a) The number of different labellings of a structure C is equal fo
n!/| Aut(C)).

(b) If there are M labelled siructures and m unlabelled structures C,...,Cn,
then

o 1 M
L K@) ~

Comnsider, for example, Steiner triple systems on 9 points. Up to isomorphism,
there is only one (Chapter 8, Exercise 3), and its automorphism group has order 432
(Chapter 8, Exercise 4); so it can be labelled in 91/432 = 840 ways. (This justifies
the claim made in Chapter 8, Exercise 15.)

We have more to say about counting unlabelled structures in the next chapter.

14.4. The Schreier-Sims algorithm

What is the order of the domino group?

According to Lagrange’s Theorem, if a group G acts on a set X, then the size
of the orbit of X is equal to the number of cosets of the stabiliser G, in G. We
can calculate this; and G, is a smaller group than G, so we could hope to calculate
its order, perhaps by a recursive procedure, and then find |G| by multiplying these
numbers. We see that what is really needed for this is a generating set for G.. This
simple idea is formalised in the Schreier—Sims algorithm; as we'll see, it gives a lot
more information too.
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First, we review how to compute orbits. Let .S be a generating set for the group
G acting on X.

(14.4.1) Algorithm: Orbit of z
Start with Y = (. Add the point z to Y.

While any point was added to Y in the previous step, apply all
elements of S to the recently added points; whenever a point not
in Y is obtained, add it to Y.

At the conclusion, Y is the orbit of z.

While we do this calculation, we can record a witness for each point in the orbit,
a permutation carrying z to that point. If S = {¢1,...,¢.}, this is conveniently
done by labelling a new point y with the number 4, if it is the image of an earlier
point under g;,. Then the eatlier point must be yg;; 1 Either it is «, or it has a label
iz, and in the latter case it is obtained by applying g:, to yg; lgi';l. Eventually we
have yg,-'l1 ...g;' =z, and so y = z¢, ... gi,- Note that we have not only an explicit
element carrying = to y, but even an expression for this element as a product of
generators.

In fact, all the orbits can be described in this way. We give z a negative label,
say —1, to distinguish it as an orbit representative. If ¥ = X, there is a single orbit;
otherwise, select an unlabelled point, give it the label —2, and proceed as before.
Eventually, every point is labelled, and the labels (together with the generators) give
a complete (and compact) description of the orbits and witnesses. The n-tuple of
labels is called a Schreier vector for G.

Let Y = {z = z1,23,...,2,} be the orbit of z, and let k; map = to z; as above,
fori=1,...,s (with k; = 1). If H = G, then Hkj,..., Hk, are all the cosets of
in G; in other words, ky,. .., k, are coset representatives for H in G.

To find generators for the stabiliser, we use:

(14.4.2) Schreier’s Lemma. Let {g1,...,g} generate a group G; let k1,...,k, be
coset representatives for a subgroup H of G. Let § denote the coset representative
of the element g; in other words, § = k; if Hg = Hk;. Assume that ky = 1. Then H
is generated by the set
-1 . .
S;_r={k,~gj(k,~gj) :z=1,...,s;]=l,...,m}.

PrOOF. All these elements lie in H, since each is the product of an element of G and
the inverse of its coset representative. Now suppose that h = g; g, ... ¢i, € H. For
j=0,...,7rlet t; = gi, ... gi, and let v; = ;. Then, with uo = 1, we have

_ -1 -1 -1
h = uogi Uy U1ty - .. Ur1 G5 Uy

since ug = u, = 1 and all the other u; cancel with their inverses. But u;_.g;; lies in
the same coset as u;; thus uj_lgiju;1 € Su, and we have expressed % as a product
of elements of Sy.
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Now we can apply recursion, to get:

(14.4.3) Group order: Schreier—Sims algorithm
Let S be a set of generators for G.
IfS=0o0r5=/{1}, then |G| =1.
Otherwise, let = be a point not fixed by all elements of S;
calculate the orbit Y of z and Schreier generators for G,. Apply
the algorithm recursively to find |G.|. Then |G,| - |Y]| = |G|.

But let’s see what is really produced by this algorithm. We end up with a sequence
of points 21, T3, . . . , Z¢ and information about subgroups G(0), G(1), .. ., G(d), where
G(0) = G, G(i) = G(i—1)g, fori = 1,...,d,and G(d) = {1}. In fact, for: = 1,... ,d,
we calculate a set T} of coset representatives for G(i) in G(:—1). Let T = ThU...UT;.
Then (z1,...,%q4) is called a base for G — a base is a sequence of points such that
the stabiliser of all these points is the identity — and T is a strong generating set.
(We'll see soon that it really is a generating set.) Now T; is the index of G(7) in
G(i — 1); the order of G is the product of these indices:

Gl =ITh] ... T4

The recursive nature of the construction is reflected by the fact that (zs,...,zq4) is
a base, and T3 U ... U Ty a strong generating set, for G(1).

We also have a membership test for G. This is a procedure which, given an
arbitrary permutation G, decides whether or not g € G, and if so, expresses g in
terms of the generators.

(14.4.4) Membership test for G
GIVEN a permutation g of X.
If G = {1}, then ¢ € G if and only if ¢ = 1. Otherwise, is
z1¢ = 2t for some t, € Ty?
e If not, theng ¢ G.
o If 50, then apply the membership test for G(1) = G., to gt{';
and g € G if and only if gt;* € G(1).

Note that this test is also recursive. If g passes the test, we will find unique
elements #;,12,...,ts, with ¢; € T; for i = 1,...,d, such that gtir .. 7 € G(i) for
all ;. Then we have gt;*...t7" = 1,50 g = t4...%:. In other words, if ¢ € G, then we
find a unique expression for it as a product of elements of 7y, ..., 7. This confirms
our formula for |G|. It also shows that T is indeed a generating set for G, as the
name ‘strong generating set’ suggested. Finally, the Schreier—Sims algorithm enables
us to express each element of 7', and hence the arbitrary element g of G, in terms of
the original set S of generators.
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This is just what is needed to solve a puzzle like Rubik’s cube or Rubik’s domino.
We are presented with the puzzle in a disordered state, which is some well-defined
permutation g of the initial state. We have to ascertain, first, if ¢ is in the group
generated by the moves (so that the given state could indeed have been obtained
legally); and, if so, how to express g in terms of the generating permutations (so
that, by reversing the sequence, we can return the puzzle to its initial state).

There is one impractical feature of the algorithm as presented here. If the
original group has s generators and acts on a set of size n, Schreier’s Lemma gives
us a set of perhaps as many as sn generators for the stabiliser of a point. Then, the
group G(i) fixing ¢ base points might have up to sn’ generators. Of course, G(d) is
the trivial group, so all its potential sn generators collapse to the identity; and, if
we are lucky, the collapse may begin ealier. But, to make the algorithm efficient,
it is necessary to have a ‘filter’ which reduces the number of generators to within
a practical bound, without changing the group they generate. This can indeed be
done; but we won’t pursue this here.

THE DOMINO GROUP. Since we know that the domino group has orbits of sizes 8,
8, 1, 1, it must be a subgroup of the direct product Sg x Ss. (We can neglect the
two fixed points; now Sg x Sg is the group of permutations which leave the other
two orbits fixed setwise.) Now it turns out that the group is in fact S5 x Ss. One
way to show this is to use the Schreier—Sims algorithm to calculate the order of the
group, which turns out to be (8!)%. But a little hand calculation can be used to make
the job easier. It we compose the first and third displayed generator, we obtain the
permutation

(Ae¢CIGc)BFHDb).

The sixth power of this permutation is (B F' H D b), which fixes all the corner
cubes and moves only the edge cubes. Now it can be shown that this and similar
permutations generate the alternating group Ag of permutations of the edge cubes.
Similarly, the fifth power of the permutation above fixes all the edge cubes; it and
similar permutations generate the symmetric group Sz on the corner cubes. Thus the
group contains at least Sg x As. But the first generator acts as an odd permutation
of the edge-cubes. So the group is not Sg x Ag; and the only larger group it could
possibly be is Sg x Ss.
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Just as we've reduced the study of arbitrary group actions to {ransitive ones, it is
possible to make further reductions. We now consider this, in rather less detail.

Let G act on X. Remember that a relation on X is a set of ordered pairs
of elements of X, that is, a subset of X 2 = X x X. We say that the relation R
is preserved by G, or is G-invariant, if Ry implies zg Ryg and conversely. (The
converse follows, by applying the inverse of g.) Now G acts on the set X?, by the
rule

(z,9)9 = (z9,¥9);

and we have the following:
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(14.5.1) Proposition. The relation R is preserved by G if and only if it is a union of
orbits of G on X2

PROOF. G-invariance means that (z,y) € R if and only if (zg,yg) € R for any
gEG j so the whole of the G-orbit of (z,y) is contained in R. Hence R is a union
of orbits. The converse is similar.

A G-congruence on X is an equivalence relation R on X which is preserved by
G. (We don’t require that G fixes the equivalence classes of R.) There are always
two trivial G-congruences (if [X| > 1): the relation of equality, and the ‘all’ relation
R defined by the rule that z R y for all z,y € X. The group G is called imprimitive
if there is a G-congruence other than these two, and prémitive otherwise.

Let G be a transitive permutation group. If R is a non-trivial G-congruence,
let Xy,...,X,, be the congruence classes, and Y = {X,..., X,,} the set of cla.sses’
Now we define two new permutation groups: .

¢ (7 acts on the set Y'; let Gy be the permutation group on Y induced by G.
s Let H be the subgroup of G which fixes the set X, (not its pointwise stabiliser)
and Hj the permutation group induced on X; by H. ’

(14.5.2) T.heorem. G is isomorphic to a subgroup of the wreath product Hy wr Gy;
and the given action is equivalent to the restriction to G of the natural action of the
wreath product.

Thus, G can be regarded as being built out of the smaller groups Hy, and
Go. Both these groups are transitive. If either is imprimitive, we can continue the
reduction further. We end up with a collection of primitive groups, the primitive
components of G. (But note that G may have several different congruences, which
may give rise to different collections of primitive components.)

Let ¢ be a positive integer not exceeding |X|. A permutation group G on X
is‘ s?.id to be t-transitive if, given any two t-tuples (z1,...,%:) and (y1,...,%) of
distinet points of X, there is a permutation ¢ € G with z;,9 = y; for ¢ = 17 ot
{In other words, G acts transitively on the set of i-tuples of distinct points.j N(;w
1-transitivity is the same as transitivity (as defined in Section 14.3).

(14.5.3) Proposition. Let G be i-transitive on X, with ¢ > 2. Then
(a) G is (t — 1)-transitive;
(b) G is primitive.

Proor. (a) Take two (¢t — 1)-tuples (zi,...,2:—1) and (y1,...,%-1) of distinct
elements. Extend them to ¢-tuples by appending elements z; and y; respectively
;Vhi(.:h ai:e not among the elements in the tuples already. Then choose g with z;g = y,;,
or:=1,...,¢%

{b) We may assume that G is 2-transitive. Now any G-congruence R is a union
of orbits of G acting on X? (Proposition 14.5.1), necessarily containing the dicganal
A = {(#,2) : = € X}, since R is reflexive. But, if G is 2-transitive, it has just two
orbits on XZ, namely A and X2\ A; so there are only two possible congruences.
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If | X| = n, then the symmetric group on X is n-transitive. Also, the alternating
group is (n —2)-transitive if n > 2. (Given (n—2)-tuples (z1,...,Zn_2), (¥1,- - - Ya-2)
of points, there are just two permutations which carry the first to the second; they
differ by a transposition of the remaining points, so they have opposite parity, and
one of them is in the alternating group.)

It is known that no other finite permutation group can be more than 5-transitive.
This temarkable fact is a consequence of the classification of the finite simple groups,
perhaps the greatest collective achievement of mathematicians; but the proof is more
than ten thousand pages long, so I must ask you to take it on trust.

14.6. Examples

EXAMPLE: STS(7). We showed in Chapter 8 that there is a unique STS(7), up to
isomorphism (see Fig. 14.3). In fact, the argument shows the following:

Fig. 14.3. STS(7)

Let (X,B) and (Y,C) be Steiner triple systems of order 7. Let
(%1, %2, 23) be a triangle in the first system, and (y1,y2, ¥3) 2 triangle
in the second. Then there is a unique isomorphism from the first
system to the second which maps ¢; to y; for ¢ = 1,2,3.

For the isomorphism must map the third point on the block through z; and z; to
the third point on the block through y; and y;, and similarly for the other two sides
of the triangle; then it maps the seventh point of X to the seventh point of Y. This
map really is an automorphism: three of the remaining blocks consist of a vertex,
the ‘third point’ of the opposite side, and the ‘seventh point’ of the design; the last
block consists of the ‘third points’ of the three sides.

From this, we can calculate the order of the automorphism group of the Steiner
system. By choosing the two systems to be equal {so that the isomorphisms are
automorphisms), the number of automorphisms is equal to the number of (ordered)
triangles, which is 7-6-4 = 168. We also see that a triangle is a base for the
automorphism group.

Now the automorphism group is 2-transitive. (The proof is a modification of
the proof of Proposition 14.5.3(a). Let (x1,z;) and (y1,y:) be two pairs of distinct
elements. Now choose z3 so that (21, %,23) is a triangle; and choose y3 similarly.
Then choose an automorphism carrying the first triangle to the second.) In particular,
it is primitive.

We can put a name to this automorphism group. In Section 8.5, we saw that
the points of the STS(7) can be labelled by the non-zero vectors of a 3-dimensional
vector space V over GF(2), so that the blocks are the triples of points with sum
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zero. Now the group GL(3,2) of invertible 3 x 3 matrices over GF(2) acts on the
non-zero vectors in V, and obviously maps any block to a block; so it is a group of
automorphisms. But

|GL(3,2)f = (2° — 1)(2° —2)(2° — 2%) = 168,

50 this is the full automorphism group.

EXAMPLE: THE PETERSEN GRAPH. Recall the Petersen graph from Chapter 11 (see
Fig. 14.4). (Ignore the labels for the moment.)

Fig. 14.4. The Petersen graph

We saw in Section 11.12 that any subgraph of shape : : can be completed
in a unique way to a graph on 10 vertices with valency 3, diameter 2 and girth 5.
This means, by the same kind of argument as we gave for the Steiner triple system,
that the number of antomorphisms of the Petersen graph is equal to the number of
subgraphs of this type, whichis 10-3-2-1-2-1 = 120.

Now consider the labels in Fig. 14.4. We have labelled each vertex with a
2-element subset of {1,...,5}, so that all (g) = 10 2-subsets are used. A litile
checking shows that two vertices are adjacent if and only if their labels are disjoint.
It follows that any permutation of {1,...,5}, in its induced action on the 2-subsets,
is an automorphism; and we find a group of automorphisms isomorphic to S5, with
order 120. So the full automorphism group is S;.

Now the automorphism group is clearly transitive on vertices. It is not 2-
transitive, since no automorphism can map two adjacent vertices to two non-adjacent
vertices. However, we see that the orbits of S5 on X? are three in number:

o the diagonal {(z,z):z € X};

o the set {(z,y) : x ~ y);

o theset {(z,y):z # v,z # y}.
The automorphism group is transitive on (ordered) edges and on (ordered) non-
edges.

From this information, we can show that S is primitive on X. For a congruence
R must be a union of some of these three orbits, and must include the diagonal.
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Suppose that it contains the second orbit (the ordered edges). Since we can find
vertices z,y, z with £ ~ y ~ z and = ¢ z, we have z Ry and ¥ R 2, so, by transitivity,
z Rz Thus R contains all the ordered non-edges as well, and is the universal
relation. A similar argument applies if B contains the orbit of non-edges. So either
R is the diagonal, or R = X2, This means that the group is primitive.

14.7. Project: Cayley digraphs and Frucht's Theorem

Let S be a subset of a group G, not containing the identity. The Cayley digraph D(G; S) of G with
respect to S is defined to have vertex set G, and edges (g,sg) for each s € S and each g € G. The
Cayley graph I'(G; S) is the underlying graph of D(G; 5); that is, its vertex set is G, and it has edges
{g,5g} for cach s € S and g € G. We can regard the element s as a ‘label’ on the edges (g, 59) of
D(G; S), or the corresponding edges of I'(G; 5). (Note that, if an element s and its inverse both lie
in S, they label the same edges of I'(G; S).)

Now the following holds.

{14.7.1) Proposition. (a) D(G; S) is connected if and only if S generates G.
{b) For each g € G, the map p, : & > z¢ is an automorphism of (G} 5).

Proor. (a) If S generates G, then any ¢ € G can be written as a product of elements of S and their
inverses. This product tells us how to find a path from the ideniity to g. For example, if g = 8155 153,
then we have an edge (1, s3) labelled 33, an edge (s;Isa,sa) labelled s; (but going in the wrong
direction), and an edge (s 53,5157 ' s3) labelled s1.

(This argument shows that the digraph is connected {which means that the underlying graph
is connected, see Section 11.8), not that it is strongly connected. In fact, if G is finite, the strong
connectedness of D{G; S) follows from the connectedness (see Exercise 12).)

The converse is similar: any path from 1 to ¢ in the underlying graph translates into a product
of elements of S and their inverses which is equal to g.

(b) A simple check: if (z,sz) is an edge, then so is (zpy, s2p4) = (2g, 57¢), by the associative
law.

Note that the permutations p, comprise the permutation group in the proof of Cayley's Theorem
(14.1.1), isomorphic to the abstract group G. So we have an action of G on the vertices of the Cayley
digraph or graph, as a group of automorphisms. Note that this action is transitive; for p,-:, maps
g to h. We denote the permutation group by p(G), to distinguish it from G (the set of points being
permuted): we are thinking here of p as the action of G.

More is true:

(14.7.2) Proposition. Suppose that S generates G. Then any automorphism of D(G; S) which preserves
the labels on the edges belongs to p(G).

Proor. Let f be an automorphism which preserves the labels. Since all elements of p(G) also
preserve lahels, we can compase f with the element py;-: to obtain an automorphism fixing 1; and
this automorphism lies in p(G) if and only if f does. So we may assume that f fixes 1. Now, for
cach s € S, there is a unique edge with label s and initial vertex 1 (namely (1, s)), and a unique edge
with label s and terminal vertex 1 (namely (s~!,1)). So f must fix all elements s or s~ for s € 5.
In this way we can work out through the digraph, and find that f fixes every element which is a
product of elements of S and their inverses. But, by assumption, these elements comprise all of G;
so f=1¢€p(G)

Now we can prove Frucht's Theorem:

{14.7.3) Theorem. Every finite group is the automorphism group of a finite graph.
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PRroor. Let G be a finite group. We assume that G has at least 5 elements. (For smaller groups,
it's not difficult to write down suitable graphs.) Now take S = G\ {1}, and construct the Cayley
digraph D(@; S). Since S generates G, we know from (14.7.2) that the group of automorphisms of
this digraph preserving the edge labels is isomorphic to G. The trick is to replace the labelled directed
edges with subgraph ‘gadgets’ to ensure that the automorphism group remains the same.

Let 4n denote the graph with n + 4 vertices a,b,¢,d, ey, ..., en, having the following edges:
{a,b}, {b,¢c}, {c,d}, {b,e1}, {eiseir1} (i =1,...,n — 1) (see Fig. 14.5). Now let $ = {51,...,6m-1}

Q b e €2 en
::I & L * y
d c

Fig. 14.5. A gadget

where m = |G|. Replace each edge (u,v) of D(G;S) with label s, with a copy of the gadget .,
where the vertices a and d of the gadget are identified with v and v. (All the added gadgets are
disjoint apart from these identifications.) Let I' be the resulting graph. Thus, 