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Foreword

To solve a problem as efficiently as possible, a user selects a type of solver (MIP, CP,
SAT), then defines a model and selects a method of resolution. The model expresses
the problem in a way understandable for the solver. The method of resolution can be
complete (one is certain not to miss solutions) or incomplete (it uses a heuristic, i.e.,
a method that favors the chances of finding a solution but offers no completeness
guarantee).

Since solvers exist, researchers try to simplify the task of the end user, helping
her in these keys steps: the creation of the model, and the finding of a method of
resolution. In this book, Youssef Hamadi helps the user on the second point by
presenting ways to automatically select and adjust resolution strategies.

This book proposes several methods for both SAT and CP solvers. Firstly, the au-
thor demonstrates the benefit of parallelism through the duplication of search strate-
gies. In the best case, this can provide super linear speed up in the resolution process.
In most cases, this results in a more robust resolution method, to the point that such
a solver is never beaten by a solver using the best method. The solver ManySAT,
co-developed by Mr. Hamadi, is based on this idea and has won numerous prizes in
SAT competitions. Its fame goes far beyond the SAT solving domain and this line
of work is now a reference for the domain.

Any resolution method must be guided by the user through the definition of a
resolution strategy which typically defines the next decision to be made, i.e., which
variable must be assigned to which value? This book considers the automatic learn-
ing of the parameters of resolution strategies. It shows how to extract knowledge
from the information available during search. The difficulty is to determine the rel-
evant information and decide how they can be exploited. A particularly novel ap-
proach is proposed. It considers the successive resolutions of similar problems to
gradually build an efficient strategy.

This is followed by the presentation of Autonomous Search, a major contribution
of the book. In that formalism, the solver determines itself the best way to find solu-
tions. This is a very important topic, which has often been approached too quickly,
and which is finally well defined in this book. Many researchers should benefit from
this contribution.

v



vi Foreword

This book is fun to follow and the reader can understand the continuity of the
proposed approaches. Youssef Hamadi is able to convey his passion and conviction.
It is a pleasure to follow him on his quest for a fully automated resolution procedure.
The problem is gradually understood and better resolved through the book.

The quality, diversity and originality of the proposed methods should satisfy
many readers and this book will certainly become a reference in the field. I highly
recommend its reading.

Jean-Charles RéginNice, France
September 2013
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Chapter 1
Introduction

Combinatorial search algorithms are typically concerned with the solving of NP-
hard problems. Such problems are not believed to be solvable in general. In other
words there is no known algorithm that efficiently solves all instances of NP-hard
problems. However, tractability results from complexity theory along decades of
experimental analysis suggest that instances coming from practical application do-
mains can often be efficiently solved. Combinatorial search algorithms are devised
to efficiently explore the usually large solution space of these instances. They rely
on several techniques able to reduce the search space to feasible regions and use
heuristics to efficiently explore these regions.

Combinatorial search problems can be cast into general mathematical definitions.
This involves finding a finite set of homogeneous objects or variables whose state
must satisfy a finite set of constraints and preferences. Variables have a domain of
potential values, and constraints or preferences are used to either restrict or order
combinations of values between variables. Dedicated algorithms are able to effi-
ciently enumerate combinations or potential solutions over these definitions.

There are several mathematical formalisms used to express and tackle combina-
torial problems. This book will consider the Constraint Satisfaction Problem (CSP)
and the Propositional Satisfiability problem (SAT), two successful formalisms at the
intersection of Artificial Intelligence, Operations Research, and Propositional Cal-
culus. Despite the fact that these formalisms can express exactly the same set of
problems, as proved by complexity theory, they can be differentiated by their prac-
tical degree of expressiveness. CSP is able to exploit more general combinations
of values and more general constraints; SAT on the other hand focuses on Boolean
variables, and on one class of constraints. These degrees of expressiveness offer dif-
ferent algorithmic trade-offs. SAT can rely on more specialized and finely tuned data
structures and heuristics. On the other hand, algorithms operating on CSP modeling
have to trigger different classes of constraints and variables and therefore have to
deal with the associated overhead. These algorithms or constraint solvers, if differ-
ent, are based on the same principles. They apply search space reduction through
inference techniques, use activity-based heuristics to guide their exploration, diver-
sify their search through frequent restarts, and often learn from their mistakes.

Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Introduction

This book focuses on Knowledge Sharing in combinatorial search, the capacity
to generate and exploit meaningful information during search. Meaningful informa-
tion is made of redundant constraints, heuristic hints, and performance measures. It
can be used at different levels to drastically improve the performance of a constraint
solver. Typically, information can be shared between multiple constraint solvers
simultaneously working on the same instance, or information can help solvers to
achieve good performance while solving a large set of related instances.

In the first case, multiple constraint solvers are working on the same instance,
and information sharing has to be performed at the expense of the underlying search
effort, since a solver has to stop its main effort to prepare and communicate the
information to other solvers. On the other hand, not sharing information can incur
a cost for the whole system by having solvers potentially exploring the unfeasible
spaces discovered by other solvers.

In the second case, sharing performance measures can be done with little over-
head, and the goal is to be able to acutely tune a constraint solver in relation to
the characteristics of a new instance. This corresponds to the selection of the most
suitable algorithm for solving a given instance [Ric75].

The book contains two main parts. In Chaps. 2, 3, and 4, portfolios of distributed
and parallel algorithms are presented. The reading of Chap. 2 is essential to un-
derstand the notions of selection and randomization risks in combinatorial search.
These risks explain and motivate parallel portfolio solvers. Chapters 5 and 6 present
the benefit of using learning mechanisms during or between search efforts. They can
be read independently. Finally, Chap. 7 unifies the previous chapters into the new
Autonomous Search framework.

Chapter 2 presents portfolios of distributed CSP algorithms [YDIK92] which
demonstrate that competition and cooperation through knowledge sharing can im-
prove the performance of existing distributed search techniques by several orders of
magnitude. We show that a portfolio approach makes better use of computational re-
sources by reducing the idle time of agents. It allows search agents to simultaneously
work at different tree search levels and provides a solution to the classical work im-
balance problem of distributed backtracking. This is achieved through the selective
sharing of heuristic hints and decisions. It also shows the value of knowledge shar-
ing to significantly speed up search and provide portfolios whose performance is
better than any constituent algorithm.

The previous notions are then applied to the important problem of parallel propo-
sitional satisfiability in Chap. 3. This chapter presents the knowledge sharing aspects
of ManySAT, the first parallel SAT portfolio built on lessons learned from portfo-
lios of distributed CSP algorithms. In ManySAT different modern SAT solvers are
organized around a cooperative framework to quickly solve a given instance. They
exchange redundant constraints through advanced control mechanisms which adjust
the level of cooperation in relation with the perceived relevance of the information
exchanged.

Chapter 4 considers parallel local search algorithms for the problem of propo-
sitional satisfiability. This work is motivated by the demonstrated importance of
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clause sharing in the performance of complete parallel SAT solvers. Unlike com-
plete solvers, efficient local search algorithms for SAT are not able to generate re-
dundant clauses during their execution. In our settings, each member of the portfolio
shares its best configuration (i.e., which minimizes conflicting clauses) in a common
structure. At each restart point, instead of classically generating a random config-
uration to start with, each algorithm aggregates the shared knowledge to carefully
craft a new starting point. We present several aggregation strategies and evaluate
them on a large set of problems. Our techniques improve the performance of a large
set of local search algorithms.

In Chap. 5, our objective is to heuristically discover a simplified form of func-
tional dependencies between variables called weak dependencies. Once discovered,
these relations are used to rank branching decisions. Our method shows that these
relations can be detected with some acceptable overhead during constraint propa-
gation. More precisely, each time a variable y gets instantiated as a result of the
instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the
weight of x is raised, and the variable becomes more likely to be selected by the
variable ordering heuristic. Experiments on a large set of problems show that, on
average, the search trees are reduced by a factor of three while runtime is decreased
by one third.

Chapter 6 presents Continuous Search (CS). In CS, we interleave two functioning
modes. In exploitation mode, the instance submitted by the user is processed by the
constraint solver; the current heuristics model is used to parameterize the solver
depending on the instance at hand. In learning or exploration mode, CS reuses the
last submitted instance, running other heuristics than the one used in exploitation
mode in order to find which strategy would have been most efficient for this instance.
New information is thus generated and exploited in order to refine the heuristics
model, in a transparent manner: without requiring the user’s input and by only using
the idle computer’s CPU cycles. CS acts like an autonomous search system able to
analyse its performances and gradually correct its search strategies.

In Chap. 7, we leverage knowledge sharing mechanisms in the unified Au-
tonomous Search framework. We define autonomous solvers as solvers that con-
tain control in their search process, and study such autonomous systems w.r.t. their
specific control methods. A control process includes a strategy that manages the
modification of some of the solver’s components and behavioral features after the
application of some solving functions. The overall strategy to combine and use com-
ponents and parameters can be based on learning that uses meaningful information
from the current solving process and/or from previously solved instances. This chap-
ter proposes a taxonomy of search processes w.r.t. their computation characteristics,
and provides a rule-based characterization of autonomous solvers. This allows a for-
malizing of solver adaptation and modification with computation rules that describe
the modification of the solver’s component transformations.



Chapter 2
Boosting Distributed Constraint Networks

2.1 Introduction

In combinatorial tree-based search, finding a good labeling strategy is a difficult and
tedious task which usually requires long and expensive preliminary experiments on
a set of representative problem instances. Performing those experiments or defining
realistic input samples is far from being simple for today’s large scale real life appli-
cations. The previous observations are exacerbated in the processing of distributed
constraint satisfaction problems (DisCSPs). Indeed, the distributed nature of those
problems makes any preliminary experimental step difficult since constrained prob-
lems usually emerge from the interaction of independent and disconnected agents
transiently agreeing to look after a set of globally consistent local solutions [FM02].

This work targets those cases where bad performance in the processing of a
DisCSP can be prevented by choosing a good labeling strategy i.e., decide on an
ordered set of variable and value pairs to branch on, and execute it in a benefi-
cial order within the agents. In the following, we define a notion for the risks we
have to face when choosing a strategy and present the new Multi-directional Search
Framework or M-framework for the execution of distributed search. An M-portfolio
executes several distributed search strategies in parallel and lets them compete to
be the first to finish. Additionally, cooperation of the distributed searches is imple-
mented with the aggregation of knowledge within agents. The knowledge gained
from all the parallel searches is used by the agents for their local decision making
in each single search. We present two principles of aggregation and employ them in
communication-free methods.

Each DisCSP agent still has access to only a subset of the variables as usual but
itself runs several copies of the search process on these variables under different
search contexts, potentially integrating information across these different contexts.
Since these contexts have different indirect information about other agents (based
on the messages they have received), this indirectly allows aggregating information
across different agents as well.

We apply our framework in two case studies where we define the algorithms
M-ABT and M-IDIBT that improve their counterparts ABT [YDIK92] and IDIBT
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[Ham02b] by several orders of magnitude. With these case studies we can show the
benefit of competition and cooperation for the underlying distributed search algo-
rithms. We expect the M-framework to be similarly beneficial for other tree-based
DisCSP algorithms [HR11, RH05]. The framework presented here may be applied
to them in a straightforward way that is described in this chapter.

2.2 Previous Work

The benefit of cooperating searches executed in parallel was first investigated for
CSP in [HH93]. They used multiple agents, each of which executed one monolithic
search algorithm. Agents cooperated by writing/reading hints to/from a common
blackboard. The hints were partial solutions or nogoods its sender had found and
the receiver could reuse them in its efforts. In contrast to our work, this multi-agent
system was an artifact created for the cooperation. Thus the overhead it produced,
especially when not every agent could use its own processor, added directly to the
overall performance. Another big difference between Hogg’s work and ours is that
DisCSP agents do not have a global view of the searches and can thus only com-
municate what’s in their agent-view, which usually captures partial solutions for
comparably few variables only.

Later the expected performance and the expected (randomization) risk in portfo-
lios of algorithms was investigated in [GS97, GS01]. No cooperation between the
processes was used here. In the newer paper the authors concluded that portfolios,
provided there are enough processors, reduce the risk and improve the performance.
When algorithms do not run in parallel (i.e., when it is not the case that each search
can use its own processor) the portfolio approach becomes equivalent to random
restarts [GSK98]. Using only one processor, the expected performance and risk of
both are equivalent. In contrast to Gomes and Selman we cannot allocate search
processes to CPUs. In DisCSP we have to allocate each agent, which participates
in every search, to one process. Consequently, parallelism is in our setting and not
an overhead prune artifact. We distribute our computations to the concurrent pro-
cesses. However, this is done in a different way than in [GS01]; we do not assign
each search to one process, but each search is temporarily performed in each pro-
cess. Or from the other perspective, each agent participates in all the concurrent
search efforts at the same time. Thus load-balancing is performed by the agents and
not by the designer of the portfolio. In this work we consider agents that do this on
a first-come-first-serve basis. Another major difference with Gomes and Selman’s
work is that we use cooperation (aggregation) between the agents.

Recent work on constraint optimization [CB04] has shown that letting multi-
ple search algorithms compete and cooperate can be very beneficial without hav-
ing to know much about the algorithms themselves. They successfully use various
optimization methods on one processor which compete for finding the next best
solutions. Furthermore they cooperate by interchanging the best known feasible so-
lutions. However, this method of cooperation cannot be applied to our distributed
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constraint satisfaction settings for two reasons: first, we do not have (or want) a
global view to a current variable assignment, and second, we have no reliable met-
ric to evaluate partial assignments in CSP.

Concurrent search in DisCSPs [ZM05, Ham02b, Ham02a] differs from M- in a
significant way. These approaches also use multiple contexts in parallel to acceler-
ate search. However, in the named works certain portions of the search space are
assigned to search efforts. These works apply divide-and-conquer approaches. In
the framework presented here we do not split the search space but let every context
work on the complete problem. This makes a significant difference in the applica-
tion of both concepts; M- is a framework while divide-and-conquer is a class of
algorithms. M- requires algorithms to do the work while making use of available
resources to try multiple things in parallel. Consequently concurrent search could
be integrated in M- by letting multiple concurrent search algorithms (each hosting
multiple concurrent searches) run in parallel.

In DisCSP research many ways to improve the performance of search have
been found in recent years, including for example, [YD98, BBMM05, ZM05,
SF05, MSTY05]. All of the named approaches can be integrated easily in the M-
framework. The steps to take in order to do this are described in this chapter. The
data structures have to be generalized to handle M contexts, and the search functions
and procedures have to integrate an extra context parameter during their execution.
Depending on the algorithm we may achieve heterogeneous portfolios in different
ways. In this work we demonstrate the use of different agent topologies but other
properties of algorithms can similarly be diversified in a portfolio. As described in
the previous paragraph, the main difference between the work presented here and the
named DisCSP research is that we do not provide but require a DisCSP algorithm
to serve as input to create an instance of M-.

A different research trend performs “algorithm selection” [Ric76]. Here, a port-
folio does not represent competing methods but complementary ones. The problem
is then to select from the portfolio the best possible method in order to tackle some
incoming instance. [XHHLB07, LBNA+03] applies the previous to combinatorial
optimization. The authors use portfolios which combine algorithms with uncorre-
lated easy inputs. Their approach requires an extensive experimental step. It starts
with the identification of the problem’s features that are representative of runtime
performances. These features are used to generate a large set of problem instances
which allow the collection of runtime data for each individual algorithm. Finally,
statistical regression is used to learn a real-valued function of the features which
allows runtime prediction. In a real situation, the previous function predicts each
algorithm’s running time and the real instance is solved with the algorithm identi-
fied as the fastest one. The key point is to combine uncorrelated methods in order to
exploit their relative strengths. The most important drawback here is the extensive
offline step. This step must be performed for each new domain space. Moreover
a careful analysis of the problem must be performed by the end user to identify
key parameters. The previous makes this approach highly unrealistic in a truly dis-
tributed system made by opportunistically connected components [FM02]. Finally
knowledge sharing is not applicable in this approach.
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2.3 Technical Background

In this section we define some notions used later in the chapter. We briefly define
the problem class considered, two algorithms to solve them and three metrics to
evaluate the performance of these algorithms.

2.3.1 Distributed Constraint Satisfaction Problems

DisCSP is a problem solving paradigm usually deployed in multi-agent applications
where the global outcome depends on the joint decisions of autonomous agents. Ex-
amples of such applications are distributed planning [AD97], and distributed sensor
network management [FM02]. Informally, a DisCSP is represented by a set of vari-
ables, each of which is associated with a domain of values, and a set of constraints
that restrict combinations of values between variables. The variables are partitioned
amongst a set of agents, such that each agent owns a proper subset of the variables.
The task is for each agent to assign a value to each variable it owns without violating
the constraints.

Modeling a distributed problem in this paradigm involves the definition of the
right decision variables (e.g., in [FM02] one variable to encode the orientation of the
radar beam of some sensor) with the right set of constraints (e.g., in [FM02] at least
three sensors must agree on the orientation of their beams to correctly track a target).

Solving a DisCSP is equivalent to finding an assignment of values to variables
such that all the constraints are satisfied.

Formally, a DisCSP is a quadruplet (X,D,C,A) where:

1. X is a set of n variables X1,X2, . . . ,Xn.
2. D is a set of domains D1,D2, . . . ,Dn of possible values for the variables

X1,X2, . . . ,Xn respectively.
3. C is a set of constraints on the values of the variables. The constraint Ck(Xk1, . . . ,

Xkj ) is a predicate defined on the Cartesian product Dk1 × · · · × Dkj . The pred-
icate is true if the value assignment of these variables satisfies the constraint.

4. A = {A1,A2, . . . ,Ap} is a partitioning of X amongst p autonomous processes or
agents where each agent Ak “owns” a subset of the variables in X with respect to
some mapping function f : X → A, s.t. f (Xi) = Aj .

A basic method for finding a global solution uses the distributed backtracking
paradigm [YDIK92]. The agents are prioritized into a partial ordering graph such
that any two agents are connected if there is at least one constraint between them.
The ordering is determined by user-defined heuristics. Solution synthesis begins
with agents finding solutions to their respective problems. The local solutions are
then propagated to respective children i.e., agents with lower priorities. This propa-
gation of local solutions from parent to child proceeds until a child agent is unable
to find a local solution. At that point, a nogood is discovered. These elements record
inconsistent combinations of values between local solutions, and can be represented
as new constraints. Backtracking is then performed to some parent agent and the
search proceeds from there i.e., the propagation of an alternative local solution or a
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new backtrack. The detection and the recording of inconsistent states are the main
features which distinguish distributed backtracking algorithms. This process carries
on until either a solution is found or all the different combinations of local solutions
have been tried and none of them can satisfy all the constraints. Since these algo-
rithms run without any global management point, successful states—where each
agent has a satisfiable local solution—must be detected through some additional
termination detection protocol (e.g., [CL85]).

2.3.2 DisCSP Algorithms

As a case study to investigate the benefit of competition and cooperation in dis-
tributed search we applied our framework to the distributed tree-based algorithms
IDIBT [Ham02b] and ABT [YDIK92].

IDIBT exploits the asynchronous nature of the agents in a DisCSP to perform
parallel backtracking. This is achieved by splitting the solution space of the top
priority agent into independent sub-spaces. Each sub-space combined with the re-
maining parts of the problem represents a new sub-problem or context. In each con-
text, the same agent ordering is used. Globally, the search is truly parallel since
two agents can simultaneously act in different sub-spaces. At the agent level, search
contexts are interleaved and explored sequentially.

This divide-and-conquer strategy allows the algorithm to perform well when the
value selection strategy is poorly informed. Besides this parallelization of the explo-
ration, IDIBT uses a constructive approach to thoroughly explore the space by an
accurate bookkeeping of the explored states. It does not add nogoods to the problem
definition. However, it often requires the extension of the parent-child relation to
enforce the completeness of the exploration.

In this work, IDIBT agents use exactly one context to implement (each) dis-
tributed backtracking. Please note that we also use contexts but in a different way.
We only use them to implement our portfolio of variable orderings. In contrast to
[Ham02b] we thus apply each of them to the complete search tree.

IDIBT requires a hierarchical ordering among the agents. Agents with higher
priority will send their local solution through infoVal messages to agents with lower
priority. In order to set up a static hierarchy among agents, IDIBT uses the DisAO
algorithm [Ham02b]. In this chapter we do not use DisAO but define an order a
priori by hand. However, the DisAO has an extra functionality which is essential
for the correctness of IDIBT: it establishes extra links between agents which are
necessary to ensure that every relevant backtrack message is actually received by
the right agent. In order to prevent this pre-processing of the agent topology with
DisAO we changed the IDIBT algorithm to add the required extra links between
agents dynamically during search (similar to the processing of addLink messages in
ABT). Finally we extended the algorithm to support dynamic value selection, which
is essential for the aggregation described later in this chapter.

ABT is the most prominent tree-based distributed search algorithm. Just like
IDIBT it uses a hierarchy to identify the receivers of messages that inform others of
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currently made choices, of the need to backtrack or of the need to establish an extra
link. In contrast to IDIBT, ABT uses a nogood store to ensure completeness.

In this work, we used ABT in its original version where the hierarchy of agents
is given a priori.

Note that even if IDIBT is used with a single context in our experiments, that
does not make it similar to ABT. Indeed, IDIBT does not record nogood, while
ABT does. This makes a huge difference between these algorithms.

2.3.3 Performance of DisCSP Algorithms

The performance of distributed algorithms is comparably hard to capture in a mean-
ingful way. The challenge is to find a metric which includes the complexity of the
locally executed computations and the need for communication while taking into
account the work that can practically be done in parallel. The community has pro-
posed different metrics which meet these requirements.

Non-concurrent Constraint Checks Constraint checks (cc) is an established
metric to express the effort of CSP algorithms. It is the number of queries made
to constraints whether they are satisfied with a set of values or not. Non-concurrent
Constraint Checks (nccc) [GZG+08] apply this metric to a concurrent context. nccc
counts the constraint checks which cannot be made concurrently. When two agents
A and B receive information about a new value from another agent C, they then can
check their local consistency independently and thus concurrently. Assuming this
costs 10 constraint checks each, it will be 20 cc but only 10 nccc. However, when
agent C needs 10 cc to find this value, this is not independent of A and B and will
result in 20 nccc and 30 cc respectively.

Sequential Messages Counting messages (mc) is an established method to eval-
uate the performance of distributed systems. The number of messages is relevant
because their transportation often requires much more time than local computa-
tions. Analogously to counting cc in distributed systems we also have to distinguish
the messages that can be sent concurrently [Lam78]. This also applies to DisCSP
[SSHF00]. If an agent C informs two agents A and B of its new value then it uses
two messages. However, the two mc will only count as one sequential message
(smc) because both are independent and can be sent in parallel. When agent A now
replies to this message then we will have two smc (and three mc), because the re-
ply is dependent on the message sent by C. The metric thus refers to the longest
sequence of messages that is sent for the execution of the algorithm.

Parallel Runtime Runtime is a popular metric in practice today. It expresses in
a clear and easily understandable way the actual performance of an algorithm. Its
drawback is that it is hardly comparable when using different hardware. In multi-
tasking operating systems we usually use CPU time in order to capture just the time
the considered process requires. Again, in concurrent systems this metric cannot be
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applied so easily. We have multiple processes and CPUs which share the workload.
In order to capture parallel runtime (pt) we have to track dependencies of compu-
tations and accumulate the dependent runtime required by different processes. The
longest path through such dependent activities will be the required parallel time. In
simulators of distributed systems which run on one processor we can capture the pt
in the same way. With every message we transmit the pt required so far. The receiver
will add the time it needs to process the message and pass the sum on with the next
(dependent) message.

2.4 Risks in Search

Here we present two definitions of risk in search. Both kinds of risks motivate our
work. We want to reduce the risk of poor performance in DisCSP. The first notion,
called randomization risk, is related to the changes in performance when the same
non-deterministic algorithm is applied multiple times to a single problem instance.
The second notion, called selection risk, represents the risk of selecting the wrong
algorithm or labeling strategy, i.e., one that performs poorly on the considered prob-
lem instance.

2.4.1 Randomization Risk

In [GS01] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when more
randomness is used in the algorithms. With random value selection, for example,
it is high, and with a completely deterministic algorithm it will be close to zero.
In order to prevent confusion we will refer to this risk as the randomization risk
(R-risk) in the rest of the chapter.

Definition 2.1 The R-risk is the standard deviation of the performance of one algo-
rithm applied multiple time to one problem.

In asynchronous and distributed systems we are not able to eliminate random-
ness completely. Besides explicitly intended randomness (e.g., in value selection
functions) it emerges from external factors including the CPU scheduling of agents
or unpredictable times for message passing [ZM03].

Reducing the R-risk leads in many cases to trade-offs in performance [GSK98],
such that the reduction of this risk is in general not desirable. For instance, we would
in most cases rather wait between one to ten seconds for a solution than waiting
seven to eight seconds. In the latter case the risk is lower but we do not have the
chance to get the best performance.

Moreover, increasing randomization and thus the R-risk is known to reduce the
phenomena of heavy-tail behavior in search [Gom03]. Heavy-tailedness exposes
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Fig. 2.1 Heavy-tail behavior
of IDIBT and ABT

the phenomena that wrong decisions made early during search may lead to extensive
thrashing and thus unacceptable performance. In a preliminary experiment we could
detect this phenomenon in DisCSP with the algorithms ABT and IDIBT. We used
lexicographic variable and value selection to solve 20 different quasigroup comple-
tion problems [GW]. A quasigroup is an algebraic structure resembling a group in
the sense that “division” is always possible. Quasigroups differ from groups mainly
in that they need not be associative.

The problems were encoded in a straightforward model: N2 variables, one vari-
able per agent, no symmetry breaking, binary constraints only. We solved problems
with a 42 % ratio of pre-assigned values, which is the peak value in the phase tran-
sition for all orders, i.e., we used the hardest problem instances for our test. Each
problem was solved 20 times resulting in a sample size of 400. With ABT we solved
problems of order 6 and with the faster IDIBT problems of order 7. Randomness re-
sulted from random message delays and the unpredictable agent activation of the
simulator.

The results of this experiment are presented in Fig. 2.1. We can observe a linear
decay of the cumulative distribution function of ABT on a log-log scale. For IDIBT,
since this algorithm is more efficient than ABT, the linear decay is not visible, but
would have been apparent at a different scale, i.e., for the processing of larger prob-
lems. The cumulative distribution function of x gives us the probability (y-axis)
that the algorithm will perform worse than x. It can be seen that the curves display
a Pareto distribution having a less than exponential decay. A Pareto distribution
or power law probability distribution is seen in many natural phenomena (wealth
distribution, sizes of sand particles, etc.); it implies that the phenomenon under con-
sideration distributes a particular characteristic in an unbalanced way, e.g., 80–20
rule, which says that 20 % of the population controls 80 % of the wealth.

This hyperbolic (i.e., less than exponential) decay is identified on the log-log
scale when the curves look linear. This is a common means of characterizing a
heavy-tail [Hil75]. Thus, we could (for the first time) observe heavy-tails for both
considered DisCSP algorithms in these experiments.
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In order to diminish the heavy-tail Gomes and Selman propose the use of random
restarts during search. With this technique we interrupt thrashing and restart search
once the effort does not seem promising anymore. Nowadays, restart is an essential
part of any modern tree-based SAT solver [BHZ06], and is also successfully applied
to large scale CP applications [OGD06].

With a central control this decision to restart can be based on information gained
from a global view on the search space e.g., overall number of fails or backtrack
decisions. In DisCSP we do not have such a global view and could thus only de-
cide locally either to restart or to keep trying. However, the local view may not be
informed enough for this decision. In these algorithms different efforts are concur-
rently made on separate sets of variables. Thus we must face the risk that while one
effort may thrash and identify the need to restart, another effort may have almost
solved its sub-problem. Furthermore, stopping and restarting a distributed system is
costly since it involves extra communication. It requires a wave of messages to tell
all agents to stop. After that, global quiescence has to be detected before a restart
can be launched. Thus, we do not consider restarts to be very practical for DisCSP.

In [GS01] the authors incorporate random restarts in a different way. When we
use a portfolio of algorithms performing random searches in parallel then this can
be equivalent to starting all of these algorithms one after each other in a restart
setting. They showed that, if one processor is available, the use of portfolios of
algorithms or labeling strategies has performance equivalent to the application of
random restarts. When we use a portfolio of random searches, running in parallel
on the same computational resources, then the expected value of the performance
is the same as running these random searches one after each other using random
restarts. If we have more than one processor, the performance may increase.

In this chapter we make use of this in order to reduce heavy-tail behavior in
DisCSP. We use portfolios as a surrogate of random restarts to reduce the risk of
extensive thrashing paralyzing the algorithm. This will reduce the risk of very slow
runs and thus reduce the R-risk as well, and improve the mean runtime. The random-
ness may result from random value selection or from the distribution itself (message
transportation and process activation). As we will show in Sect. 2.6 we can avoid
heavy-tailedness with this new technique.

2.4.2 Selection Risk

The risk we take when we select a certain algorithm or a heuristic to be applied
within an algorithm to solve a problem will always be that this is the wrong choice.
For most problems we do not know in advance which algorithm or heuristic will be
the best, and may select one which performs much worse than others. We’ll refer to
this risk as the selection risk (S-risk).

Definition 2.2 The S-risk of a set of algorithms/heuristics A is the standard devi-
ation of the performance of each a ∈ A applied the same number of times to one
problem.
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Fig. 2.2 DisCSP (left) and
agent topologies implied by
the variable orderings
max-degree (middle) and
min-degree (right)

We investigated the S-risk emerging from the chosen agent ordering in IDIBT in
a preliminary experiment on small, fairly hard random problems (15 variables, 5 val-
ues, density 0.3, tightness 0.4). These problems represent randomly generated CSPs
where the link density between variables is set to 30 %, whereas the tightness density
of each constraint is set to 40 %, i.e., 40 % of the value combinations are disabled
in each constraint. We used one variable per agent and could thus implement vari-
able orderings in the ordering of agents. We used lexicographic value selection and
four different static variable ordering heuristics: a well-known “intelligent” heuris-
tic (namely maxDegree), its inverse (which should be bad) and two different blind
heuristics. As expected, we could observe that the intelligent heuristic dominates on
average but that it is not always the best. It was the fastest in 59 % of the tests, but
it was also the slowest in 5 % of the experiments. The second best heuristic (best in
18 %) was also the second worst (also 18 %). The “anti-intelligent” heuristic turned
out to be the best of the four in 7 %. The differences between the performances were
quite significant with a factor of up to 5. Applied to the same problems, ABT gave
very similar results with a larger performance range of up to factor 40.

2.5 Boosting Distributed Constraint Satisfaction

In DisCSP the variable ordering is partially implied by the agent topology. Neigh-
boring agents will have to be labeled directly one after the other. For example, if
each agent hosts one variable then for each constraint a connection between two
agents/variables must be imposed. From this follows that the connected variables
are labeled directly one after the other because they communicate along this estab-
lished link. In other topologies where we have inner and outer constraints, naturally
only the outer constraints must be implemented as links between agents and we have
free choice of variable selection inside the nodes.

For the inter-agent constraints we have to define a direction for each link. This
direction defines the priority of the agents [YDIK92] and thus the direction in which
backtracking is performed. It can be chosen in any way for each of the existing
connections. In Fig. 2.2 we show two different static agent topologies emerging
from two different variable ordering heuristics in DisCSP.
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Fig. 2.3 Two contexts for the agent hosting X4 from Fig. 2.2 resulting from two variable orderings

2.5.1 Utilizing Competition with Portfolios

The idea presented in this chapter is that several variable orderings and thus several
agent topologies are used by concurrent distributed searches. We refer to this idea
as the M-framework for DisCSP. Applied to an algorithm X it defines a DisCSP
algorithm M-X which applies X multiple times in parallel. Each search operates
in its usual way on one of the previously selected topologies. In each agent the
multiple searches use separate contexts to store the various pieces of information
they require. These include, for example, adjacent agents, their current values, their
beliefs about the current values of other agents, etc.

In Fig. 2.3 we show how an agent hosting variable X4 from Fig. 2.2 could em-
ploy the two described variable orderings. The figure shows the internal informa-
tion, and the associated pseudo code. On the right part of the figure, we can see that
this agent hosts two different current values, one for each search, and two different
agent-views which contain its beliefs about the values of higher-priority agents. The
set of these higher-priority agents depends on the chosen topology and thus on the
chosen variable ordering. The figure also shows on the left the pseudo code associ-
ated with some tree-based search algorithm. There, the functions and procedures are
augmented with an extra context parameter, which is used to access the right subset
of data.

In an M- search, different search efforts can be made in parallel. Each message
will refer to a context and will be processed in the scope of this context. The first
search to terminate will deliver the solution or report failure. Termination detec-
tion has thus to be implemented for each of the contexts separately. This does not
result in any extra communication, as shown for the multiple contexts of IDIBT
in [Ham02b].

With the use of multiple contexts we implement a portfolio of heuristics which is
known to reduce the heavy-tail of CSP [GS01]. As we will show in our experiments
this is also beneficial for DisCSP. In contrast to random restarts we do not stop any
search although it may be stuck due to bad early choices. We rather let such efforts
run while concurrent efforts may find a solution. As soon as a solution is detected
in one of the contexts all searches are stopped.
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Additionally, we can reduce the S-risk by adding more diversity to the portfolio.
Assuming we do not know anything about the quality of orderings, the chance of
including a good ordering in a set of M different orderings is M times higher than
selecting it for execution in one search. When we know intelligent heuristics we
should include them but the use of many of them will reduce the risk of bad per-
formance for every single problem instance (cf. experiment in Sect. 2.4.2). Further-
more, the expected performance is improved with the M-framework since always the
best heuristic in the portfolio will deliver the solution or report failure. If we have a
portfolio of orderings M where the expected runtime of each m ∈ M is t (m), then
ideally (if no overhead emerges), the system terminates after min({t (m)|m ∈ M}).

2.5.2 Utilizing Cooperation with Aggregation

Besides letting randomized algorithms compete such that overall we are always “as
good as the best heuristic” the M-framework can also use cooperation. Cooperation
through knowledge sharing is a very powerful concept which allows a collection of
agents to perform even better than the best of them. As suggested by Reid Smith,
Power = KnowledgeShared , where the exponent represents the number of agents
whose knowledge is brought to the problem [Buc06]. With this, M-portfolios may be
able to accelerate the search effort even more by providing it with useful knowledge
others have found. Cooperation is implemented in the aggregation of knowledge
within the agents. The agents use the information gained from one search context to
make better decisions (value selection) in another search context. This enlarges the
amount of knowledge on the basis of which local decisions are made.

In distributed search, the only information that agents can use for aggregation is
their view of the global system. With multiple contexts, the agents have multiple
views, and thus more information available for their local reasoning. Since all these
views are recorded by each individual agent within its local knowledge base, shar-
ing inter-context information is costless. It is just a matter of reading in the local
knowledge base what has been decided for context c, in order to make a new de-
cision in context c′. In this setting, the aggregation yields no extra communication
costs (i.e., no message passing). It is performed locally and does not require any
messages or accesses to some shared blackboard.

2.5.3 Categories of Knowledge

In order to implement aggregation we have to make two design decisions: first,
which knowledge is used, and second, how it is used. As mentioned before, we use
knowledge that is available for free from the internally stored data of the agents. In
particular this may include the following four categories:

• Usage. Each agent knows the values it currently has selected in each search con-
text.
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Table 2.1 Methods of aggregation

Diversity Emulation

Usage minUsed: the value which is used the
least in other searches

maxUsed: the value which is used most in
other searches

Support – maxSupport: the value that is most
supported by constraints w.r.t. current
agent-views

Nogoods differ: the value which is least included
in nogoods

share: always use nogoods of all searches

Effort minBt: a value which is not the current
value of searches with many backtracks

maxBt: the current value of the search
with most backtracks

• Support. Each agent can store for each search context currently known values of
other agents (agent-view) and the constraints that need to be satisfied with these
values.

• Nogoods. Each agent can store for each search context partial assignments that
are found to be inconsistent.

• Effort. Each agent knows for each search context how much effort in terms of the
number of backtracks it has already invested.

2.5.4 Interpretation of Knowledge

The interpretation of this knowledge can follow two orthogonal principles: diversity
and emulation. Diversity implements the idea of traversing the search space in dif-
ferent parts simultaneously in order not to miss the part in which a solution can be
found. The concept of emulation implements the idea of cooperative problem solv-
ing, where agents try to combine (partial) solutions in order to make use of work
which others have already done.

With these concepts of providing and interpreting knowledge we can define the
portfolio of aggregation methods shown in Table 2.1. In each box we provide a name
(to be used in the following) and a short description of which value is preferably
selected by an agent for a search.

2.5.5 Implementation of the Knowledge Sharing Policies

The implementation of each knowledge sharing policy is rather simple since it only
requires regular lookups to other contexts in order to make a decision. More con-
cretely,

• minUsed, maxUsed. Each value of the initial domain of a local variable is associ-
ated to a counter. This counter is updated each time a decision for that variable is
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made in any search context. Each counter takes values between 0 and the number
of contexts. For each variable, pointers to the min (resp. max) used variables are
incrementally updated. During a decision, minUsed selects the value which is the
least used in other contexts, while maxUsed selects the one most used.

• maxSupport. Each value of the initial domain of a local variable is associated
to a counter. This counter stores the number of supports each value has in other
contexts. In order to illustrate this policy, let us consider an example with an inter-
agent constraint X ≤ Y where X and Y have initial domains {a, b, c}. Now let us
assume that two different agents own the variables, and that the M-framework
uses three contexts where Y = a in the first one, and Y = b in the second one.
If the agent owning X has to decide about its value in the third context, it will
have the following values for the maxSupport counters: maxSupport(a) = 2,
maxSupport(b) = 1, maxSupport(c) = 0. It will then select the value a since this
value is the most supported w.r.t. its current agent-views. Note that implementing
a minSupport policy would be straightforward with the previous counters. We did
not try that policy, since it does not really make sense from a problem solving
point of view.

• differ. Each value of the initial domain of a local variable is associated to a
counter. This counter is increased each time a nogood which contains a partic-
ular value is recorded by ABT in any search context. During a decision, the value
with the lowest counter is selected.

• share. With this policy, each nogood learnt by ABT is automatically reused in
other search contexts.

• minBt, maxBt. The number of local backtracks performed by the agent in each
of the contexts is recorded. Each time a value has to be selected for a particular
variable, minBt forces the selection of the value used for the same variable in the
search with the least number of backtracks. Inversely, maxBt forces the selection
of the value used in the search with the largest number of backtracks.

As we can see, even the most complex policies only require the association of
counters to domains values. These counters aggregate information among search
contexts at the agent level. They are updated during decision in any particular con-
text, and used to make better decisions in any other context. Updating these counters
can be done naively or incrementally, for instance with the help of some bookkeep-
ing technique.

2.5.6 Complexity

Before presenting the empirical evaluation of M-, we discuss its costs hereafter.

Space The trade-off in space for the application of M- is linear in the number
of applied orderings. This is obvious for our implementation (see Fig. 2.3). Thus,
it clearly depends on the size of the data structures that need to be duplicated for
the contexts. This will include only internal data structures which are related to the
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state of the search. M- does not duplicate the whole agent. For instance, the data
structures for communication are jointly used by all the concurrent search efforts as
shown in Fig. 2.3.

It turned out in our experiments that this extra space requirement is very small.
We observed that the extra memory needed with a portfolio of size ten applied to
IDIBT is typically only about 5–10 %. For ABT the extra memory when using
10 instead of one context differed depending on the problem. For easy problems,
where few nogoods need to be stored the extra memory consumption was about
5–20 %. For hard problems we could observe up to 1,000 % more memory usage
of the portfolio. This clearly relates to the well-known space trade-off of nogood
recording.

Network Load The trade-off in network load, that is the absolute number of mes-
sages, is linear in the portfolio size. When using M parallel contexts that perform
one search effort each, we will in the worst case have M times more messages.
However, on average this may be less because not all of the M searches will termi-
nate. As soon as one has found a solution the complete system will stop and M − 1
search efforts will omit the rest of their messages.

Furthermore, the absolute number of messages is not the most crucial metric in
DisCSP. As described earlier, sequential messages are more appropriate. The se-
quential messages do not increase in complexity because the parallel search efforts
are independent of each other such that the number of sequential messages (smc) is
the maximum of the smc of all searches in the worst case. On average, however, it
will be the smc of the search that is best. Consequently, the smc-complexity when
using M-X is the same as the smc-complexity of X.

Using aggregation will not increase the number of required messages because
this is performed internally by the agents.

Algorithm Monitoring The complexity of monitoring M-X is the same as it is
necessary for the algorithm X. This includes starting the agents and termination
detection. Since the number of agents is not increased when using M- we do not
need any extra communication or computation for these tasks.

Time The trade-off in computational costs increases with the use of M-. Similar
to the increase in absolute messages we have a linear increase in constraint checks.
However, looking at non-concurrent constraint checks (nccc), the complexity of X
and M-X is the same provided there is no aggregation. The derivation of this con-
clusion can be made analogously to the derivation concerning smc.

When we use aggregation, however, there may be an increase in computational
costs of the agents. Depending on the effort an agent puts in using information it
gets from other contexts, this may also increase the number of nccc. This will be
analyzed in the next section.

Therefore, the overall cost of M-X is the same as the worst-case complexity of
X when we use the concurrent metrics. On average, however, M- will be “as good
as the best search heuristic” or even “better than the best” when knowledge sharing
techniques are implemented. This will be presented in the next section.
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2.6 Empirical Evaluation

For the empirical evaluation of the M-framework we processed more than 180,000
DisCSPs with M-IDIBT and M-ABT. We solved random binary problems (15 vari-
ables, 5 values), n-queens problems with n up to 20 and quasigroup completion
problems with up to 81 agents.

All tests were run in a Java multi-threaded simulator where each agent imple-
ments a thread. The common memory of the whole process was used to implement
message channels. Agents can send messages to channels where they are delayed
randomly for one to 15 milliseconds. This was done to simulate real world con-
tingencies in messages deliveries. After this delay they may be picked up by their
addressee. All threads have the same priority such that we have no influence on their
activation and on the computational resources assigned to them by the JVM or the
operating system.

In this simulator we implemented the metrics described in Sect. 2.3.3. The ab-
solute number of messages (mc), constraint checks (cc) and backtracks (bt) were
counted locally and accumulated after termination of the algorithm. The more so-
phisticated metrics which reflect the parallelism were computed during the execu-
tion of the algorithms. Whenever a message is passed from A to B then A will
include its current value of nccc and smc. The receiver takes the maximum of the
value and its locally stored values, adds the costs it is now accruing and passes the
result on with the next message it sends. After termination of the algorithm we select
the maximum of all these values among all agents. Note that there has been recent
research which has tried to define alternative performance metrics for DisCSP and
DCOP (optimization) problems (see [SLS+08, GZG+08]).

2.6.1 Basic Performance

In Fig. 2.4 we show the median1 numbers of messages sent and the runtime to
find one solution by different sized portfolios on fairly hard instances (density 0.3,
tightness 0.4) of random problems (sample size 300). These problems represent
randomly generated CSPs where the link density between variables is set to 30 %,
whereas the tightness density of each constraint is set to 40 %, i.e., 40 % of the value
combinations for the underlying constraint are disabled. No aggregation was used
in these experiments. The best known2 variable ordering (maxDegree) was used in
each portfolio, including those of size 1, which are equivalent to the basic algo-
rithms. In the larger portfolios we added instances of lex, random and minDegree
and further instances of all four added in this order. For example, 6-ABT would use

1We decided to use the median instead of the mean to alleviate the effects of messages interleaving.
Indeed, interleaving can give disparate measures which can be pruned by the median calculation.
2We made preliminary experiments to determine this.
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Fig. 2.4 Communication and
runtime in M-portfolios

the orders (maxDeg, lex, rand, minDeg, maxDeg, lex). It can be seen that with in-
creasing portfolio size there is more communication between agents. The absolute
number of messages rises. In the same figure we show the runtime. It can be seen
that the performance improves up to a certain point when larger portfolios are used.
In our experimental setting this point is reached with size 10. With larger portfolios
no further speed up can be achieved which would offset the communication cost and
computational overhead. The same behavior can be observed when considering smc
or nccc.

2.6.2 Randomization Risk

The randomization risk is defined as the standard deviation within each sample in
our experimental setup. To evaluate it we applied M-IDIBT with homogeneous port-
folios 30 times each to a set of 20 hard random problem instances 〈15,5,0.3,0.5〉.
All portfolios used the same deterministic value selection function and variable or-
dering (both lexicographic) in all searches. For each problem instance we considered
the standard deviation of the 30 runs. Then we took the average of these standard
deviations over all 20 problem instances for each portfolio size. This gave us the R-
risk that emerges exclusively from the distribution. The results for portfolios sized,
1 to 8 can be seen in Fig. 2.5. It can be seen that all three relevant performance mea-
sures (nccc, smc, and pt) decrease with portfolio size increased from 1 to 2. This
means the randomization risk decreases when we apply the M-framework. Beyond
2 there is only a slight decrease.

In order to check the influence of the M-framework on the heavy-tail behavior we
repeated the experiment described in Sect. 2.4.1 (quasigroup completion of order 6
for ABT and order 7 for IDIBT with 42 % preassigned values, sample size 800)
with portfolios of size 10. In Fig. 2.6 we show the cumulative distribution function
of the absolute number of backtracks when applying M-ABT and M-IDIBT to the
quasigroup completion problems on a log-log scale. It can be seen that both curves
decrease in more than a linear manner. As described earlier this implies the non-
heavy-tailedness of the runtime distribution of these algorithms.
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Fig. 2.5 Randomization risk
emerging from message
delays and thread activation

Fig. 2.6 No heavy-tails with
M-ABT and M-IDIBT

2.6.3 Selection Risk

To evaluate the selection risk we used a similar experimental setting as before but
with heterogeneous variable orderings in the portfolios. We chose to use M different
random variable orderings in a portfolio of size M . This would reduce the effects we
get from knowledge about variable selection heuristics. The value selection was the
same (lexicographic) in all experiments in order to reduce the portion of R-risk as
widely as possible and to expose the risk emerging from the selection of a particular
variable ordering. In this setting we would get an unbiased evaluation of the risk we
take when choosing variable orderings. The mean standard deviation of the parallel
runtime for M-ABT and M-IDIBT is shown in Fig. 2.7 on a logarithmic scale. It
can be seen that the risk is reduced significantly with the use of portfolios. With
portfolio size 20, for instance, the S-risks of M-IDIBT and M-ABT are 344 and 727
times smaller than the ones of IDIBT and ABT, respectively.
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Fig. 2.7 S-risk (standard-dev
of the parallel runtime)
including the R-risk emerging
from distribution

Table 2.2 Performance of
aggregation methods for
M-IDIBT

Hard randoms Quasigroups

smc nccc pt smc
1000

nccc
1000 pt

minUsed 367 2196 1.563 102 1625 448

maxUsed 379 2118 1.437 40 635 182

minBt 392 2281 1.640 104 1330 367

maxBt 433 2541 1.820 43 694 171

maxSupp 57 5718 1.922 1.9 3727 143

random 409 2406 1.664 73 1068 298

2.6.4 Performance with Aggregation

The benefit of aggregation, which is implemented with the different value selection
heuristics, is presented in Table 2.2. Each column in the table shows the median
values of at least 100 samples solved with M-IDIBT with a portfolio of size 10
applied to 30 different hard random and quasigroup completion problems.

In the table we refer to the aggregation methods introduced in Table 2.1, the
bottom line shows the performance with random value selection (and thus no ag-
gregation). When we consider the parallel runtime, it seems that the choice of the
best method depends on the problem. For the quasigroup, aggregation based on the
emulation principle seems to be better, but not so on random problems.

Interestingly, message passing operations present a different picture. It can be
seen that maxSupport uses by far the least messages. These operations are reduced
by a factor of 7 (resp. 38) for random (resp. quasigroup) problems. However, when
we consider parallel time, it cannot outperform the others significantly since our
implementation of this aggregation method is relatively costly.3 However, message
passing is the most critical operation in real systems because of either long laten-
cies or high energy consumption (e.g., ad hoc networks [FM02]). This makes the

3Bookkeeping could definitely help to reduce the amount of constraint checks in the computation
of maxSupport.
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maxSupport aggregation method really promising. Indeed, there is a clear correla-
tion between the amount of messages sent and the amount of local computations,
especially when agents host complex sub-problems. In these situations, since every
incoming message may trigger the search of a new solution for the local problem, it
is important to restrict message passing.

The performance of maxSupport can be explained as follows. It benefits from
the efforts in other contexts by capitalizing on compatible values i.e., support re-
lations. As a result this aggregation strategy effectively mixes the partial solutions
constructed in the different contexts. It corresponds to an effective juxtaposition of
partial solutions.

2.6.5 Scalability

In order to evaluate the relevance of the M-framework we investigated how it scales
in larger and more structured problems. For this we applied good configurations
found in the previous experiments to the quasigroup completion problem as de-
scribed earlier in Sect. 2.4.1 (straightforward modeling with binary constraints, most
difficult instances with 42 % pre-assignment).

Table 2.3 shows the experimental results of distributed search algorithms on
problems of different orders (each column represents an order). ABT and IDIBT
used the domain/degree (domDeg) variable ordering [BR96], which was tested best
in preliminary experiments. In the larger portfolios we used domain/degree and ad-
ditional heuristics including maxDegree, minDomain, lex and random. In all portfo-
lios aggregation with the method maxUsed was applied.4 For each order (column)
we show the median parallel runtime (in seconds) to solve 20 different problems
(once each) and the number of solved problems. When less than 10 instances could
be solved within a time-out of two hours we naturally cannot provide meaningful
median results. In the experiments with M-ABT we have also observed runs which
were aborted because of memory problems in our simulator. For order 8 these were
about one third of the unsolved problems, for order 9 this problem occurred in all
unsuccessful tests. This memory problem arising from the nogood storage of ABT
was addressed in [BBMM05] and is not the subject of this research.

From the successful tests it can be seen that portfolios improve the median per-
formance of IDIBT significantly. In the problems of order 7 a portfolio of 10 was
28 times faster than the regular IDIBT. Furthermore, portfolios seem to become
more and more beneficial in larger problems as the portfolio of size 10 seems to
scale better than the smaller one. ABT does not benefit in the median runtime but
the reduced risk makes a big difference. With the portfolio of size 10, we could solve
17 instances of order 7 problems whereas the plain algorithm could only solve one.

4We decided to use this method since it was shown to minimize nccc on previous tests (see Ta-
ble 2.2).
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Table 2.3 Median parallel runtime (pt) and instances solved (out of 20) of quasigroup completion
problems with 42 % pre-assigned values

5 6 7 8 9

ABT 0.3, 20 –, 8 –, 1 –, 0 –, 0

M-ABT, size 5 0.5, 20 5.9, 19 35.8, 14 –, 2 –, 0

M-ABT, size 10 0.6, 20 6.1, 20 40.6, 17 –, 8 –, 1

IDIBT 1.8, 20 12.4, 20 234, 20 4356, 16 –, 5

M-IDIBT, size 5 0.2, 20 0.9, 20 9.3, 20 709, 20 –, 6

M-IDIBT, size 10 0.3, 20 1.7, 20 8.2, 20 339, 20 –, 8

Table 2.4 Idle times of
agents in DisCSP Problem class Idle time of agents

ABT IDIBT M-ABT M-IDIBT

Easy random 87 % 92 % 56 % 47 %

Hard random 92 % 96 % 39 % 59 %

n-queens 91 % 94 % 48 % 52 %

Hard quasigroups 87 % 93 % 28 % 59 %

2.6.6 Idle Time

To complete the presentation of our experimental results let us consider time utiliza-
tion in distributed search. It appears that agents in both considered classical algo-
rithms under-use available resources. This is documented in the first two columns
of Table 2.4 for various problem classes. The numbers represent the average idle
times (10–100 samples) of the agents. In our simulator we captured the idle times
of each agent separately. Each agent accumulates the time it waits for new messages
to be processed. Whenever an agent finishes processing one message and has no
new message received it starts waiting until something arrives in its message chan-
nel. This waiting time is accumulated locally. After termination of the algorithm
we take the mean of these accumulated times of all agents to compute the numbers
shown in Table 2.4.

We can observe that ABT (Asynchronous BackTracking) and IDIBT (Interleaved
Distributed Intelligent BackTracking) are most of the time idle. This idleness comes
from the inherent disbalance of work in DisCSPs. Indeed, it is well known that
the hierarchical ordering of the agents makes low-priority agents (at the bottom)
more active than high-priority ones. Ideally the work should be balanced. Thus,
ideally one agent on the top of the hierarchy in context 1 should be in the bottom
in context 2, e.g., see agent in charge of variable X1 in Fig. 2.2. Obviously, since
we use well-known variable ordering heuristics we cannot enforce such a property.
However, the previous is an argument for M-, which can use idle time “for free”
in order to perform further computations in concurrent search efforts. This effect is
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shown in the last two columns of the table, where the M-framework with a portfolio
of size 10 is applied to the same problems. These algorithms make better use of
computational resources. Certainly it is not a goal to reduce idleness to a minimum
since the performance of our algorithm also depends in the response times of the
agents, which may become very long with low idleness. However, without having
studied this intensively we are convinced that a mean idleness of more than 90 % is
not necessary for fast responses.

2.7 Summary

We have presented a generic framework for the execution of DisCSP algorithms.
It was tested on two standard methods but any tree-based distributed search should
easily fit in the M-framework. The framework executes a portfolio of cooperative
DisCSP algorithms with different agent orderings concurrently until the first of them
terminates. In real (truly distributed) applications, our framework will have to start
with the computation of different orderings. The generic Distributed Agent Ordering
heuristic (DisAO) [HBQ98] could easily be generalized at no extra message passing
cost to concurrently compute several distributed hierarchies. The main idea is to
simultaneously exchange multiple heuristic evaluations of a sub-problem instead of
one.

Heterogeneous portfolios are shown to be very beneficial. They improve the per-
formance and reduce the risk in distributed search. With our framework we were
able to achieve a speed up of one order of magnitude while reducing the risk by up
to three orders of magnitude compared to the traditional execution of the original
algorithm. The chances of extensive thrashing due to bad early decisions (so-called
heavy-tails) are significantly diminished.

A portfolio approach seems to make better use of computational resources by
reducing the idle time of agents. This is the first of two special advantages of the ap-
plication of portfolios in DisCSP: we do not have to artificially introduce parallelism
and the related overhead but can use idle resources instead. The M-framework can
be seen as a solution to the classical “work imbalance” flaw of tree-based distributed
search.

We analyzed and defined distributed cooperation (aggregation) with respect to
two orthogonal principles, diversity and emulation. Each principle was applied with-
out overhead within the limited scope of each agent’s knowledge. This is the second
special advantage of using portfolios in DisCSP: aggregation made at the agent level
yields no communication costs and preserves privacy [GGS07]. Our experiments
identified the emulation-based maxSupport heuristic as the most promising one. It
is able to efficiently aggregate partial solutions, which results in a large reduction in
message passing operations.

In the next chapter we will see that the ideas developed here can be applied in
the context of parallel satisfiability.



Chapter 3
Parallel Tree Search for Satisfiability

3.1 Introduction

In the previous chapter, we have seen how a portfolio of algorithms, opportunis-
tically exchanging knowledge about the problem, can be used to boost the perfor-
mance of distributed search by several orders of magnitude. In this chapter, we are
going to apply the same concepts to centralized search, i.e., to situations where the
problem is fully expressed in one particular node or agent. More specifically, we are
going to apply parallel portfolios to the important domain of propositional satisfia-
bility.

In recent years, SAT solvers had a huge impact in their traditional hardware
and software verification domains. Today, they are also gaining popularity in new
fields like Automated Planning, General Theorem Proving or Computational Biol-
ogy [Rin11, dMB08, CBH+07]. This widespread adoption is the result of the effi-
ciency gains made during the last decade [BHZ06]. Indeed, many industrial prob-
lems with hundreds of thousands of variables and millions of clauses are now solved
within a few minutes. This impressive progress can be related to both low-level al-
gorithmic improvements and to the ability of SAT solvers to exploit the hidden
structures of a practical problem.

However, many new applications with instances of increasing size and complex-
ity are coming to challenge modern solvers, while at the same time it becomes clear
that the gains traditionally given by low-level algorithmic adjustments are almost
gone. As a result, a large number of industrial instances from recent competitions re-
main challenging for all the available SAT solvers. Fortunately, the previous comes
at a time when the generalization of multicore hardware gives parallel processing
capabilities to standard PCs. While in general it is important for existing applica-
tions to exploit new hardware, for SAT solvers, this becomes crucial.

Many parallel SAT solvers have been previously proposed. Most of them are
based on the divide-and-conquer principle (see Sect. 3.2). They either divide the
search space, using, for example, guiding paths, or the formula itself using decom-
position techniques. The main problem behind these approaches is the difficulty of
getting the workload balanced among the different processor units or workstations.
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Another drawback of these approaches arises from the fact that for a given large
SAT instance with hundreds of thousands of variables it is very difficult to find the
most relevant set of variables to divide the search space.

In the following, we detail ManySAT, a new parallel SAT solver, winner of the
2008 Sat Race.1 The design of ManySAT takes advantage of the main weakness
of modern solvers: their sensitivity to parameter tuning. For instance, changing the
parameters related to the restart strategy or to the variable selection heuristic can
completely change the performance of a solver on a particular problem class. In
a multicore context, we can easily take advantage of this lack of robustness by de-
signing a portfolio which will run different incarnations of a sequential solver on the
same instance. Each solver would exploit a particular parameter set and their combi-
nation should represent a set of orthogonal yet complementary strategies. Moreover,
individual solvers could perform knowledge exchange in order to improve the per-
formance of the system beyond the performance of its individual components.

As we can see, the ManySAT approach is a direct application of our previous
M-framework to SAT. Unlike in M-, ManySAT solves centralized problems and
uses multiple resources to speed up processing. Here, an M- context corresponds
to the full execution of a sequential SAT engine. In the portfolio, engines are dif-
ferentiated with respect to their labeling strategies but also to various other features
of SAT solvers [HJS09a, HJS09b, GHJS10, HJPS11, WHdM09, HMSW11, AH11,
HW12, HW13].

3.2 Previous Work

We present here the most noticeable approaches related to parallel SAT solving.
PSATO [ZBH96] is based on the SATO (SAtisfiability Testing Optimized) se-

quential solver [ZS94]. Like SATO, it uses a trie data structure to represent clauses.
PSATO uses the notion of guiding paths to divide the search space of a problem.
These paths are represented by a set of unit clauses added to the original formula.
The parallel exploration is organized in a master/slave model. The master organizes
the work by assigning guiding paths to workers which have no interaction with each
other. The first worker to finish stops the system. The balancing of the work is orga-
nized by the master.

In [JLU05] a parallelization scheme for a class of SAT solvers based on the
DPLL procedure is presented. The scheme uses a dynamic load-balancing mech-
anism based on work-stealing techniques to deal with the irregularity of SAT prob-
lems. PSatz is the parallel version of the well-known Satz solver.

Gradsat [CW06] is based on zChaff. It uses a master-slave model and the notion
of guiding paths to split the search space and to dynamically spread the load between
clients. Learned clauses are exchanged between all clients if they are smaller than

1http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/index.html.
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a predefined limit on the number of literals. A client incorporates a foreign clause
when it backtracks to level 1 (top level).

In [BSK03], the authors use an architecture similar to Gradsat. However, a client
incorporates a foreign clause if it is not subsumed by the current guiding path con-
straints. Practically, clause sharing is implemented by mobile agents. This approach
is supposed to scale well on computational grids.

Nagsat [FS02] is a parallel SAT solver which exploits the heavy-tailed distribu-
tion of random 3-SAT instances. It implements nagging, a notion taken from the
DALI theorem prover. Nagging involves a master and a set of clients called nag-
gers. In Nagsat, the master runs a standard DPLL algorithm with a static variable
ordering. When a nagger becomes idle, it requests a nagpoint which corresponds to
the current state of the master. Upon receiving a nagpoint, it applies a transforma-
tion (e.g., a change in the ordering of the remaining variables), and begins its own
search on the corresponding sub-problem.

In [BS96] the input formula is dynamically divided into disjoint sub-formulas.
Each sub-formula is solved by a sequential SAT solver running on a particular pro-
cessor. The algorithm uses optimized data structures to modify Boolean formulas.
Additionally, workload balancing algorithms are used to achieve a uniform distribu-
tion of workload among the processors.

MiraXT [LSB07], is designed for shared memory multiprocessors systems. It
uses a divide-and-conquer approach where threads share a unique clause database
which stores the original and the learnt clauses. When a new clause is learnt by a
thread, it uses a lock to safely update the common database. Read access can be
done in parallel.

PMSat uses a master-slave scenario to implement a classical divide-and-conquer
search [GFS08]. The user of the solver can select among several partitioning heuris-
tics. Learnt clauses are shared between workers, and can also be used to stop efforts
related to search spaces that have been proven irrelevant. PMSat runs on networks
of computer through an MPI implementation.

In [CS08], the authors use a standard divide-and-conquer approach based on
guiding paths. However, it exploits the knowledge on these paths to improve clause
sharing. Indeed, clauses can be large with respect to some static limit, but when
considered with the knowledge of the guiding path of a particular thread, a clause
can become small and therefore highly relevant. This allows pMinisat to extend the
sharing of clauses since a large clause can become small in another search context.

3.3 Technical Background

In this section, we first recall the basis of the most commonly used DPLL search
procedure. Then, we introduce some computational features of modern SAT solvers.
A brief description of multicore-based architectures is given. Finally, we present the
principle of the AIMD feedback control-based algorithm used by advanced versions
of ManySAT to manage knowledge sharing.
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3.3.1 DPLL Search

Most of the state-of-the-art SAT solvers are simply based on the Davis, Putnam,
Logemann and Loveland procedure, commonly called DPLL [DLL62]. DPLL is
a backtrack search procedure; at each node of the search tree, a decision literal is
chosen according to some branching heuristics. Its assignment to one of the two
possible values (true or false) is followed by an inference step that deduces and
propagates some forced literal assignments such as unit and monotone literals. The
assigned literals (the decision literal and the propagated ones) are labeled with the
same decision level starting from 1 and increased at each decision (or branching)
until finding a model or a conflict is reached. In the first case, the formula is found
to be satisfiable, whereas in the second case, we backtrack to the last decision level
and assign the opposite value to the last decision literal. After backtracking, some
variables are unassigned, and the current decision level is decreased accordingly.
The formula is found to be unsatisfiable when a backtrack to level 0 occurs. Many
improvements have been proposed over the years to enhance this basic procedure,
leading now to what is commonly called modern SAT solvers. We also mention that,
some look-ahead based improvements are at the basis of other kinds of DPLL SAT
solvers (e.g. Satz [LA97], Kcnfs [DD01], March-dl [HvM06]) particularly efficient
on hard random and crafted SAT categories.

3.3.2 Modern SAT Solvers

Modern SAT solvers [MMZ+01, ES03a] are based on classical DPLL search proce-
dures [DLL62] combined with (i) restart policies [GSK98, KHR+02], (ii) activity-
based variable selection heuristics (VSIDS-like) [MMZ+01], and (iii) clause learn-
ing [MSS96], the interaction of these three components being performed through
efficient data structures (e.g., watched literals [MMZ+01]). All the state-of-the-art
SAT solvers are based on a variation in these three important components.

Modern SAT solvers are especially efficient on structured instances coming
from industrial applications. VSIDS and other variants of activity-based heuristics
[BGS99], on the other hand, were introduced to avoid thrashing and to focus the
search: when dealing with instances of large size, these heuristics direct the search
to the most constrained parts of the formula. Restarts and VSIDS play complemen-
tary roles since the first component reorders assumptions and compacts the assump-
tions stack while the second allows for more intensification. Conflict Driven Clause
Learning (CDCL) is the third component, leading to non-chronological backtrack-
ing. In CDCL a central data structure is the implication graph, which records the
partial assignment that is under construction together with its implications [MSS96].
Each time a dead end is encountered (say at level i) a conflict clause or nogood is
learnt due to a bottom-up traversal of the implication graph. This traversal is also
used to update the activity of related variables, allowing VSIDS to always select
the most active variable as the new decision point. The learnt conflict clause, called
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asserting clause, is added to the learnt database and the algorithm backtracks non-
chronologically to level j < i.

Progress saving is another interesting improvement; initially introduced in
[FD94], it was recently presented in the Rsat solver [PD07]. It can be seen as a
new selection strategy of the literal polarity. More precisely, each time a backtrack
occurs from level i to level j , the literal polarity of the literals assigned between
the two levels is saved. Then, such a polarity is used in subsequent search trees.
This can be seen as a partial component caching technique that avoids solving some
components multiple times.

Modern SAT solvers can now handle propositional satisfiability problems with
hundreds of thousands of variables or more. However, it is now recognized (see the
recent SAT competitions) that the performances of the modern SAT solvers evolve
in a marginal way. More precisely, on the industrial benchmarks category usually
proposed at the annual SAT Race and/or SAT Competition, many instances remain
open (not solved by any solver within a reasonable amount of time). These problems
which cannot be solved even using a three hour time limit are clearly challenging to
all the available SAT solvers. Consequently, new approaches are clearly needed to
solve these challenging industrial problems.

3.3.3 Multicore Architectures

We can abstract a multicore architecture as a set of processing units which commu-
nicate through a shared memory. In theory, access to the memory is uniform, i.e.,
can be done simultaneously. Practically, the use of cache mechanisms in processing
units creates coherence problems which can slow down the memory accesses.

Our work is built on this shared memory model. The communication between
the DPLL solvers of a portfolio is organized through lock-less queues that contain
the lemmas that a particular core wants to exchange.

3.3.4 AIMD Feedback Control-Based Algorithm

The Additive Increase/Multiplicative Decrease (AIMD) algorithm is a feedback
control algorithm used in TCP congestion avoidance. The problem solved by AIMD
is to guess the communication bandwidth available between two communicating
nodes. The algorithm performs successive probes, increasing the communication
rate w linearly as long as no packet loss is observed, and decreasing it exponentially
when a loss is encountered. More precisely, the evolution of w is defined by the
following AIMD(a, b) formula:

• w = w − a × w, if loss is detected
• w = w + b

w
, otherwise

Different proposals have been made in order to prevent congestion in communi-
cation networks based on different numbers for a and b. Today, AIMD is the major
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component of TCP’s congestion avoidance and control [Jac88]. On probe of network
bandwidth, increasing too quickly will overshoot limits (underlying capacities). On
notice of congestion, decreasing too slowly will not be reactive enough.

In the context of ManySAT, it is important to exchange knowledge between
solvers. We will see that AIMD-based control policies can be used to achieve a
particular throughput or a particular throughput of maximum quality. Since any in-
crease in the size limit can potentially generate a very large number of new clauses,
AIMD’s slow increase can help us to avoid a quick overshoot of the throughput.
Similarly, in case of overshooting, aggressive decrease can help us to quickly re-
duce clause sharing by a very large amount.

3.4 ManySAT: A Parallel SAT Solver

ManySAT is a parallel portfolio of several DPLL engines which includes all the
classical features like two-watched-literal, unit propagation, activity-based decision
heuristics, lemma deletion strategies, and clause learning. In addition to the classical
first UIP scheme [ZMMM01], it incorporates a new technique which extends the
implication graph used during conflict analysis to exploit the satisfied clauses of a
formula [ABH+08]. In the following, we describe and motivate a set of important
parameters used to differentiate the different solvers in the portfolio.

3.4.1 Restart Policies

Restart policies represent an important component of modern SAT solvers. Contrary
to the common belief, in SAT restarts are not used to eliminate the heavy-tailed
phenomena [GSK98, GSCK00] since after restarting SAT solvers dive in the part of
the search space that they just left. In SAT, restarts policies are used to compact the
assignment stack and improve the order of assumptions.

Different restart policies have been previously presented. Most of them are static,
and the cutoff value follows different evolution schemes (e.g. arithmetic, geometric,
Luby). To ensure the completeness of the SAT solver, in all these restart policies, the
cutoff value in terms of the number of conflicts increases over the time. The perfor-
mance of these different policies clearly depends on the considered SAT instances.
More generally, rapid restarts (e.g. Luby) perform well on industrial instances; how-
ever, on hard SAT instances slow restarts are more suitable. Generally, it is hard to
say in advance which policy should be used on which problem class [Hua07].

Our objective was to use complementary restart policies to define the restart cut-
off xi .

We decided to use the well-known Luby policy [LSZ93], and a classical geomet-
ric policy, xi = 1.5×xi−1 with x1 = 100 [ES03a]. The Luby policy was used with a
unit factor set to 512. In addition, we decided to introduce two new policies. A very
slow arithmetic one, xi = xi−1 + 16000 with x1 = 16000, and a new dynamic one.
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New Dynamic Restart Policy The early work on dynamic restart policy goes
back to 2008. Based on the observation that frequent restarts significantly improve
the performance of SAT solvers on industrial instances, Armin Biere presents in
[Bie08] a novel adaptive restart policy that measures the “agility” of the search
process dynamically, which in turn is used to control the restart frequency. The
agility measures the average number of recently flipped assignments. Low agility
enforces frequent restarts, while high agility tends to prohibit restarts.

In [RS08], the authors propose applying restarts according to measures local to
each branch. More precisely, for each decision level d a counter c(d) of the number
of conflicts encountered under the decision level d is maintained. When backtrack-
ing to the decision level d occurs, if the value c(d) is greater than a given threshold,
the algorithm restarts.

Considering CDCL-based SAT solvers, it is now widely admitted that restarts
are an important component when dealing with industrial SAT instances, whereas
on crafted and random instances they play a marginal role. More precisely, in the
industrial (resp. crafted) category, rapid (resp. long) restarts are more appropriate.
It is important to note that on hard SAT instances, learning is useless. Indeed, on
such instances, conflict analysis generally leads to a learnt clause which includes at
least one literal from the level just before the current conflict level. In other words
the search algorithm usually back-jumps to the level preceding that of the current
conflict. For example, if we consider the well-known Pigeon-hole problem, learning
from conflicts will produce a clause which includes at least one literal from each
level. It is also obvious from this example, that learning does not achieve important
back-jumps in the search tree. The algorithm usually carries out a chronological
backtracking.

In the following, we define a new dynamic restart policy based on the evolution
of the average size of back-jumps. First, such information is a good indicator of
the decision errors made during search. Secondly, it can be seen as an interesting
measure of the relative hardness of the instance. Our new policy is designed in
such a way that, for high (resp. low) fluctuation of the average size of back-jumps
(between the current and the previous restart), it delivers a low (resp. high) cutoff
value. In other words, the cutoff value of the next restart depends on the average size
of back-jumps observed during the two previous and consecutive runs. We define it
as, x1 = 100, x2 = 100, and xi+1 = α

yi
× | cos(1 − ri)|, i ≥ 2, where α = 1200,

yi represents the average size of back-jumps at restart i, ri = yi−1
yi

if yi−1 < yi ,

ri = yi

yi−1
otherwise.

From Fig. 3.1, we can observe that the cutoff value in terms of the number of
conflicts is low in the first restarts and high in the last ones. This means that the
fluctuation between two consecutive restarts is more important at the beginning of
the resolution process. Indeed, the activity of the variables is not sufficiently ac-
curate in the first restarts, and the sub-problem on which the search focuses is not
sufficiently circumscribed.

The dynamic restart policy, presented in this section is implemented in the first
version of ManySAT [HJS08] presented at the parallel track of the SAT Race 2008.
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Fig. 3.1 Restart strategies

3.4.2 Heuristic

We decided to increase the random noise associated to the VSIDS heuristic
[MMZ+01] of core 0 since its restart policy is the slowest one. Indeed, that core
tends to intensify the search, and slightly increasing the random noise allows us to
introduce more diversification.

3.4.3 Polarity

Each time a variable is chosen, one needs to decide if such a variable might be
assigned true (positive polarity) or false (negative polarity). Different kinds of po-
larity have been defined. For example, Minisat usually chooses the negative polarity,
whereas Rsat uses progress saving. More precisely, each time a backtrack occurs,
the polarity of the assigned variables between the conflict and the back-jumping
level are saved. If one of these variables is chosen again its saved polarity is pre-
ferred. In CDCL-based solvers, the chosen polarity might have a direct impact on
the learnt clauses and on the performance of the solver.

The polarity of the core 0 is defined according to the number of occurrences of
each literal in the learnt database. Each time a learnt clause is generated, the number
of occurrences of each literal is increased by 1. Then to maintain a more constrained
learnt database, the polarity of l is set to true when #occ(l) is greater than # occ(¬l),
and to false otherwise. For example, by setting the polarity of l to true, we bias the
occurrence of its negation ¬l in the next learnt clauses.

This approach tends to balance the polarity of each literal in the learnt database.
By doing so, we increase the number of possible resolvents between the learnt
clauses. If the relevance of a given resolvent is defined as the number of steps needed
to derive it, then a resolvent between two learnt clauses might lead to more relevant
clauses in the database.
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As the restart strategy in core 0 tends to intensify the search, it is important to
maintain a learnt database of better quality. However, for rapid restarts as in cores 1
and 3, progress saving is most suitable for saving the work accomplished. For core 2,
we decided to apply a complementary polarity (false by default as in Minisat).

3.4.4 Learning

Learning is another important component which is crucial for the efficiency of mod-
ern SAT solvers. Most of the known solvers use similar CDCL approaches associ-
ated with the first UIP (Unique Implication Point) scheme.

In our parallel SAT solver ManySAT, we used a new learning scheme obtained
using an extension of the classical implication graph [ABH+08]. This new notion
considers additional arcs, called inverse arcs. These are obtained by taking into ac-
count the satisfied clauses of the formula, which are usually ignored by classical
conflict analysis. The new arcs present in our extended graph allow us to detect
that even some decision literals admit a reason, something which is ignored when
using classical implication graphs. As a result, the size of the back-jumps is often
increased.

Let us illustrate this new extended conflict analysis using a simple example. We
assume that the reader is familiar with the classical CDCL scheme used in modern
SAT solvers (see [MSS96, MMZ+01, ABH+08]).

Let F be a CNF formula and ρ a partial assignment, given below:

• F ⊇ {c1, . . . , c9}
• (c1) x6 ∨ ¬x11 ∨ ¬x12
• (c2) ¬x11 ∨ x13 ∨ x16
• (c3) x12 ∨ ¬x16 ∨ ¬x2
• (c4) ¬x4 ∨ x2 ∨ ¬x10
• (c5) ¬x8 ∨ x10 ∨ x1
• (c6) x10 ∨ x3
• (c7) x10 ∨ ¬x5
• (c8) x17 ∨ ¬x1 ∨ ¬x3 ∨ x5 ∨ x18
• (c9) ¬x3 ∨ ¬x19 ∨ ¬x18
• ρ = {〈. . .¬x1

6 . . .¬x1
17〉〈(x2

8) . . .¬x2
13 . . . 〉〈(x3

4) . . . x3
19 . . . 〉 . . . 〈(x5

11) . . . 〉}
The sub-sequence 〈(x2

8) . . .¬x2
13 . . . 〉 of ρ expresses the set of literals assigned at

level 2 with the decision literal mentioned in parenthesis and the set of propagated
literals (e.g. ¬x13). The current decision level is 5. The classical implication graph
Gρ

F associated to F and ρ is shown in Fig. 3.2 with only the plain arcs.
In the sequel, η[x, ci, cj ] denotes the resolvent between a clause ci containing

the literal x and a clause cj containing the literal ¬x. In other words η[x, ci, cj ] =
ci ∪ cj\{x,¬x}. Also a clause c subsumes a clause c′ iff c ⊆ c′.

The traversal of the graph Gρ

F allows us to generate three asserting clauses cor-
responding to the three possible UIPs (see Fig. 3.2). Let us illustrate the resolution
process leading to the first asserting clause Δ1 corresponding to the first UIP.
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Fig. 3.2 Implication graph/extended implication graph

• σ1 = η[x18, c8, c9] = (x1
17 ∨ ¬x5

1 ∨ ¬x5
3 ∨ x5

5 ∨ ¬x3
19)

• σ2 = η[x1, σ1, c5] = (x1
17 ∨ ¬x5

3 ∨ x5
5 ∨ ¬x3

19 ∨ ¬x2
8 ∨ x5

10)

• σ3 = η[x5, σ2, c7] = (x1
17 ∨ ¬x5

3 ∨ ¬x3
19 ∨ ¬x2

8 ∨ x5
10)

• σ4 = η[x3, σ3, c6] = (x1
17 ∨ ¬x3

19 ∨ ¬x2
8 ∨ x5

10)

As we can see, σ4 gives us a first asserting clause (that we’ll also name Δ1)
because all of its literals are assigned before the current level except one (x10),
which is assigned at the current level 5. The intermediate clauses σ1, σ2 and σ3
contain more than one literal of the current decision level 5, and ¬x10 is a first UIP.
If we continue such a resolution process, we obtain the two additional asserting
clauses, Δ2 = (x1

17 ∨¬x3
19 ∨¬x2

8 ∨¬x3
4 ∨ x5

2), corresponding to a second UIP ¬x5
2 ,

and Δ3 = (x1
17 ∨¬x3

19 ∨¬x2
8 ∨¬x3

4 ∨ x2
13 ∨ x1

6 ∨¬x5
11), corresponding respectively

to a third UIP (¬x5
11), which is the last UIP since it corresponds to the last decision

literal in the partial assignment.
In modern SAT solvers, clauses containing a literal x that is implied at the current

level are essentially ignored by the propagation. More precisely, because the solver
does not maintain the information whether a given clause is satisfied or not, a clause
containing x may occasionally be considered by the propagation, but only when
another literal y of the clause becomes false. When this happens the solver typically
skips the clause. However, in cases where x is true and all the other literals are
false, an arc is revealed for free that could as well be used to extend the graph. Such
arcs are those we exploit in our proposed extension.

To explain further the idea behind our extension, let us consider, again, the for-
mula F and the partial assignments given in the previous example. We define a new
formula F ′ as follows: F ′ ⊇ {c1, . . . , c9} ∪ {c10, c11, c12} where c10 = (¬x19 ∨ x8),
c11 = (x19 ∨ x10) and c12 = (¬x17 ∨ x10).

The three added clauses are satisfied under the instantiation ρ. c10 is satisfied by
x8 assigned at level 2, c11 is satisfied by x19 at level 3, and c12 is satisfied by ¬x17
at level 1. This is shown in the extended implication graph (see Fig. 3.2) by the
dotted edges. Let us now illustrate the usefulness of our proposed extension. Let us
consider again the asserting clause Δ1 corresponding to the classical first UIP. We
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can generate the following strong asserting clause: c13 = η[x8,Δ1, c10] = (x1
17 ∨

¬x3
19 ∨x5

10), c14 = η[x19, c13, c11] = (x1
17 ∨x5

10) and Δs
1 = η[x17, c14, c12] = x5

10. In
this case we backtrack to the level 0 and we assign x10 to true.

As we can see Δs
1 subsumes Δ1. If we continue the process we also obtain other

strong asserting clauses Δs
2 = (¬x3

4 ∨x5
2) and Δs

3 = (¬x3
4 ∨x2

13 ∨x1
6 ∨¬x5

11) which
subsume respectively Δ2 and Δ3.

This first illustration gives us a new way to minimize the size of the asserting
clauses.

Let us now explain briefly how the extra arcs can be computed. Usually unit
propagation does not keep track of implications from the satisfiable sub-formula. In
this extension the new implications (deductions) are considered. For instance in the
previous example, when we deduce x19 at level 3, we rediscover the deduction x8,
which was a choice (decision literal) at level 2. Our proposal keeps track of these
re-discoveries.

Our approach makes an original use of inverse arcs to back-jump farther, i.e., to
improve the back-jumping level of the classical asserting clauses. It works in three
steps. In the first step (1), an asserting clause, say σ1 = (¬x1 ∨ ¬y3 ∨ ¬z7 ∨ ¬a9),
is learnt using the usual learning scheme, where 9 is the current decision level. As
ρ(σ1) = false, usually we backtrack to level 7. In the second step (2), our approach
aims to eliminate the literal ¬z7 from σ1 using the new arcs of the extended graph.
Let us explain this second and new processing. Let c = (z7 ∨ ¬u2 ∨ ¬v9) such
that ρ(z) = true, ρ(u) = true and ρ(v) = true. The clause c is an inverse arc i.e.,
the literal z assigned at level 7 is implied by the two literals u and v respectively
assigned at levels 2 and 9. From c and σ1, a new clause σ2 = η[z, c, σ1] = (¬x1 ∨
¬u2 ∨ ¬y3 ∨ ¬v9 ∨ ¬a9) is generated. We can observe that the new clause σ2
contains two literals from the current decision level 9. In the third step (3), using
classical learning, one can search from σ2 for another asserting clause σ3 with only
one literal from the current decision level. Let us note that the new asserting clause
σ3 might be worse in terms of back-jumping level. To avoid this main drawback, the
inverse arc c is chosen if the two following conditions are satisfied: (i) the literals
of c assigned at the current level (v9) have been already visited during the first step
and (ii) all the other literals of c are assigned before level 7, i.e., level of z. In this
case, we guaranteed that the new asserting clause achieves better back-jumping.

This new learning scheme is integrated on the SAT solvers of cores 0 and 3.

3.4.5 Clause Sharing

Unlike in the previously presented M-framework, knowledge in SAT is made of
conflict clauses, and knowledge sharing is referred as clause sharing.

To start with, we can use a static clause sharing policy where each core exchanges
a learnt clause if its size is less than or equal to 8. This decision is based on exten-
sive tests with representative industrial instances. Figure 3.3 (resp. Fig. 3.4) shows
for different limits e the performance of ManySAT on instances taken from the SAT



38 3 Parallel Tree Search for Satisfiability

Fig. 3.3 SAT Race 2008:
different limits for clause
sharing

Fig. 3.4 SAT Competition
2007: different limits for
clause sharing

Race 2008 (resp. SAT Competition 2007). We can observe that on each set of bench-
marks a limit size of 8 gives the best overall performance.

The communication between the solvers of the portfolio is organized through
lock-less queues which contain the lemmas that a particular core wants to exchange.

Each core imports unit clauses when it reaches level 0 (e.g., after a restart). These
important clauses correspond to the removal of Boolean variables, and therefore are
more easily enforced at the top level of the tree.

All the other clauses are imported on the fly, i.e., after each decision. Several
cases have to be handled for the integration of a foreign clause c:

• c is false in the current context. In this case, conflict analysis has to start, allowing
the search process to back-jump. This is clearly the most interesting case.

• c is unit in the current context. The clause can be used to enforce more unit
propagation, allowing the process to reach a smaller fix-point or a conflict.

• c is satisfied by the current context. It has to be watched. To exploit such a clause
in the near future, we consider two literals assigned at the highest levels.
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• otherwise, c has to be watched. In this last case, the first two unassigned literals
are watched.

The following example illustrates the different cases mentioned above.
Let F be a CNF formula and ρ = {〈. . .¬x1

6 . . .¬x1
17〉〈(x2

8) . . .¬x2
13 . . . 〉〈(x3

4) . . .

x3
19 . . . 〉 . . . 〈(x5

11)¬x5
12, x

5
16,¬x5

2 , . . . ,¬x5
10, x

5
1 , . . . , x5

18〉} a partial assignment. To
make the shared clause c exploitable in near future, it must be watched in a cer-
tain way. Suppose that,

• c = (x1
17 ∨ ¬x3

19 ∨ x5
10) ∈ F . The clause c is false and the two literals ¬x3

19 and
x5

10 are watched.
• c = (x1

17 ∨ ¬x3
19 ∨ x30) ∈ F . The clause c is unit and the two literals ¬x3

19 and
x30 are watched.

• c = (x1
17 ∨¬x3

19 ∨¬x5
10) ∈ F . We watch the last satisfied literal ¬x10 and another

literal with the highest level from the remaining ones.
• c = (x25 ∨ ¬x34¬x29) ∈ F . We watch any two literals from c.

3.4.6 Summary

Table 3.1 summarizes the choices made for the different solvers of the ManySAT
portfolio. For each solver (core), we mention the restart policy, the heuristic, the
polarity, the learning scheme and the size of shared clauses.

3.5 Evaluation

3.5.1 Performance Against a Sequential Algorithm

ManySAT was built on top of Minisat 2.02 [ES03a]. SatElite was applied systemat-
ically by each core as a pre-processor [EB05]. In all the figures, instances solved by
Satellite in the preprocessing step are not included. In this section, we evaluate the
performance of the solver on a large set of industrial problems. Figure 3.5 shows
the improvement of performance provided by our solver when compared to the se-
quential solver Minisat 2.02 on the problems of the SAT Race 2008. It shows the
performance of ManySAT running with respectively one, two, three and four cores.
When more than one core is used, clause sharing is done up to clause size 8.

We can see that even the sequential version of ManySAT (single core) outper-
forms Minisat 2.02. This simply means that our design choices for core 1 represent
a good combination to put in a sequential solver. Interestingly, with each new core,
the performance increases both in speed and number of problems solved. This is the
result of the diversification of the search but also the fact that clause sharing quickly
boosts these independent search processes.
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Fig. 3.5 SAT Race 2008:
ManySAT e = 8, m = 1 . . .4
against Minisat 2.02

Table 3.2 SAT-Race 2008:
comparative performance
(number of problems solved)

ManySAT pMinisat MiraXT

SAT 45 44 43

UNSAT 45 41 30

3.5.2 Performance Against Other Parallel SAT Solvers

We report here the official results of the 2008 Sat-Race. They can be downloaded
from the competition website.2 They demonstrate the performance of ManySAT as
opposed to other parallel SAT solvers. These tests were done on 2× Dual Core Intel
Xeon 5150 running at 2.66 GHz, with a time-out set to 900 seconds.

Table 3.2 shows the number of problems (out of 100) solved before the time
limit for ManySAT, pMinisat [CS08], and MiraXT [LSB07], these solvers are de-
scribed in the next section. We can see that ManySAT solves five more problems
than pMinisat, which solves 12 more problems than MiraXT. Interestingly, the per-
formance of our method is well balanced between SAT and UNSAT problems.

Table 3.3 shows the speed up provided by these parallel SAT algorithms as com-
pared to the best sequential algorithm of the SAT Race 2008, Minisat 2.1. We can
see that on average, ManySAT is able to provide a superlinear speed up of 6.02. It is
the only solver capable of such performance. The second best provides on average
a speed up of 3.10, far from linear. When we consider the minimal speed up we
can see that the performance of the first two solvers is pretty similar. They decrease
the performance against the best sequential solver of the 2008 SAT Race by up to a
factor 4, while the third solver decreases the performance by a factor 25. Finally, the
maximal speed up is given by ManySAT, which can be up to 250 times faster than
Minisat 2.1. These detailed results show that the performance of the parallel solvers
is usually better on SAT problems than on UNSAT ones.

2http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/.

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/
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Table 3.3 SAT Race 2008: parallel solvers against the best sequential solver (Minisat 2.1)

ManySAT pMinisat MiraXT

Average speed up by SAT/UNSAT 6.02 3.10 1.83

8.84/3.14 4.00/2.18 1.85/1.81

Minimal speed up by SAT/UNSAT 0.25 0.34 0.04

0.25/0.76 0.34/0.46 0.04/0.74

Maximal speed up by SAT/UNSAT 250.17 26.47 7.56

250.17/4.74 26.47/10.57 7.56/4.26

Table 3.4 SAT Race 2008: runtime variation of parallel solvers

ManySAT pMinisat MiraXT

Average variation by SAT/UNSAT 13.7 % 14.7 % 15.2 %

22.2 %/5.5 % 23.1 %/5.7 % 19.5 %/9.7 %

It is well known that parallel search is not deterministic. Table 3.4 gives the av-
erage runtime variation of each parallel solver. ManySAT exhibits a lower variation
than the other techniques, but the small differences between the solvers do not allow
us to draw any definitive conclusion.

3.6 Control-Based Clause Sharing

The clause sharing approach based on some predefined size limit has several flaws,
the first and most apparent being that an overestimated value might induce a very
large cooperation overhead, while an underestimated one might completely inhibit
the cooperation. The second flaw comes from the observation that the size of learnt
clauses tends to increase over time, leading to an eventual halt of the cooperation.
The third flaw is related to the internal dynamic of modern solvers which tend to fo-
cus on particular sub-problems thanks to the activity/restart mechanisms. In parallel
SAT, this can lead two search processes toward completely different sub-problems
where clause sharing becomes pointless.

We propose a dynamic clause sharing policy which uses pairwise size limits to
control the exchange between any pair of processing units. Initially, high limits are
used to enforce the cooperation, and allow pairwise exchanges. On a regular ba-
sis, each unit considers the number of foreign clauses received from other units.
If this number is below/above a predefined threshold, the pairwise limits are in-
creased/decreased. This mechanism allows the system to maintain a throughput. It
addresses the first two flaws. To address the last flaw related to the poor relevance
of the shared clauses, we extend our policy to integrate the quality of the exchanges.
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Each unit evaluates the quality of the received clauses, and the control is able to
selectively increase/decrease the pairwise limits based on the underlying quality of
the recently communicated clauses, the rationale being that the information recently
received from a particular source is qualitatively linked to the information which
could be received from it in the very near future. The evolution of the pairwise lim-
its w.r.t. the throughput or quality criterion follows an AIMD (Additive-Increase-
Multiplicative-Decrease) feedback control-based algorithm (see Sect. 3.3).

3.6.1 Throughput and Quality-Based Control Policies

In this section, we describe our dynamic control-based clause sharing policies which
control the exchange between any pair of processing units through dynamic pairwise
size limits.

The first policy controls the throughput of clause sharing. Each unit considers the
number of foreign clauses received from other units. If this number is below/above a
predefined throughput threshold, the pairwise limits are all increased/decreased us-
ing an AIMD feedback algorithm. The second policy is an extension of the previous
one. It introduces a measure of the quality of foreign clauses. With this information,
the increase/decrease of the pairwise limits becomes proportional to the underlying
quality of the clauses shared by each unit. The first (resp. second) policy allows the
system to maintain a throughput (resp. throughput of better quality).

We consider a parallel SAT solver with n different processing units. Each unit
ui corresponds to a SAT solver with clause learning capabilities. Each solver can
work either on a sub-space of the original instance, as in divide-and-conquer tech-
niques, or on the full problem, as in ManySAT. We assume that these different units
communicate through a shared memory (as in multicore architectures).

In our control strategy, we consider a control-time sequence as a set of steps tk
with t0 = 0 and tk = tk−1 + α where α is a constant representing the time window
defined in terms of the number of conflicts. The step tk of a given unit ui corresponds
to the conflict number k×α encountered by the solver associated to ui . In the sequel,
when there is no ambiguity, we sometimes write tk simply as k. Then, each unit ui

can be defined as a sequence of states Sk
i = (F ,Δk

i ,R
k
i ), where F is a CNF formula,

Δk
i the set of its proper learnt clauses and Rk

i the set of foreign clauses received
from the other units between two consecutive steps k − 1 and k. The different units
achieve pairwise exchange using pairwise limits. Between two consecutive steps
k − 1 and k, a given unit ui receives from all the other remaining units uj , where
0 ≤ j < n and j = i, a set of learnt clauses Δk

j→i of length less or equal to a size

limit ek
j→i i.e., Δk

j→i = {c ∈ Δk
j/ |c| ≤ ek

j→i}. Then, the set Rk
i can be formally

defined as
⋃

0≤j<n, j =i Δ
k
j→i .

Using a fixed throughput threshold T of shared clauses, we describe our control-
based policies which allow each unit ui to guide the evolution of the size limit ej→i

using an AIMD feedback mechanism.
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Fig. 3.6 Throughput-based control policy

Throughput-Based Control As illustrated in Fig. 3.6, at step k a given unit ui

checks whether the throughput is exceeded or not. if |Rk
i | < T (resp. |Rk

i | > T ) the
size limit ek+1

j→i is additively increased (resp. multiplicatively decreased).

More formally, the upper bound ek+1
j→i on the size of clauses that a solver j shares

with the solver i between k and k+1 is changed using the following AIMD function:

aimdT
(
Rk

i

){

∀j |0 ≤ j < n, j = i

ek+1
j→i =

⎧
⎨

⎩

ek
j→i + b

ek
j→i

, if (|Rk
i | < T )

ek
j→i − a × ek

j→i , if (|Rk
i | > T )

}

where a and b are positive constants.

Throughput and Quality-Based Control In this policy, to control the throughput
of a given unit ui , we introduce a quality measure Qk

j→i (see Definition 3.1) to
estimate the relative quality of the clauses received by ui from uj . In the throughput-
and quality-based control policy, the evolution of the size limit ek

j→i is related to the
estimated quality.

Our quality measure is defined using the activity of the variables at the basis
of the VSIDS heuristic [MMZ+01], another important component of modern SAT
solvers. The variables with greatest activity represent those involved in most of the
(recent) conflicts. Indeed, with each conflict, variables whose literals are used during
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conflict analysis have their activity augmented. The most active variables are those
related to the current part of the search space. Consequently, our quality measure
exploits these activities to quantify the relevance of a clause learnt by unit uj to
the current state of a given unit ui . To define our quality measure, suppose that, at
any time of the search process, we have Amax

i , the current maximal activity of ui ’s
variables, and Ai (x), the current activity of a given variable x.

Definition 3.1 (Quality) Let c be a clause and LAi
(c) = {x/x ∈ c s.t. Ai (x) ≥

Amax
i

2 } the set of active literals of c with respect to unit ui . We define Pk
j→i = {c/c ∈

Δk
j→i s.t. |LAi

(c)| ≥ Q} to be the set of clauses received by i from j between steps
k − 1 and k with at least Q active literals. We define the quality of clauses sent by

uj to ui at a given step k as Qk
j→i = |Pk

j→i |+1

|Δk
j→i |+1

.

Our throughput- and quality-based control policy changes the upper bound ek+1
j→i

on the size of clauses that a solver j shares with the solver i between k and k + 1
using the following AIMD function:

aimdTQ
(
Rk

i

){

∀j |0 ≤ j < n, j = i

ek+1
j→i =

⎧
⎪⎨

⎪⎩

ek
j→i + (

Qk
j→i

100 ) × b

ek
j→i

, if (|Rk
i | < T )

ek
j→i − (1 − Qk

j→i

100 ) × a × ek
j→i , if (|Rk

i | > T )

}

where a and b are positive constants.
As shown by the AIMD function of the throughput- and quality-based control

policy, the adjustment of the size limit depends on the quality of shared clauses.
Indeed, as it can be seen from the above formula, when the exchange quality be-
tween uj and ui (Qk

j→i ) tends to 100 % (resp. 0 %), then the increase in the limit
size tends to be maximal (resp. minimal) while the decrease tends to be minimal
(resp. maximal). Our aim in this second policy is to maintain a throughput of good
quality, the rationale being that the information recently received from a particular
source is qualitatively linked to the information which could be received from it in
the very near future.

3.6.2 Experiments

Our tests were done on Intel Xeon Quad core machines with 16 GB of RAM run-
ning at 2.3 GHz. We used a time-out of 1,500 seconds for each problem. ManySAT
was used with 4 DPLL strategies, each one running on a particular core (unit). To
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alleviate the effects of unpredictable thread scheduling, each problem was solved
three times and the average was taken.

Our dynamic clause sharing policies were added to ManySAT and compared
against ManySAT with its default static policy ManySAT e = 8, which exchanges
clauses up to size 8. Note that since each pairwise limit is read by one unit, and
updated by another one, our proposal can be integrated without any lock.

We have selected a = 0.125, b = 8 for aimdT and aimdTQ, associated to a time
window of α = 10000 conflicts. The throughput T is set to α

2 and the upper bound

Q on the number of active literals per clause c is set to |c|
3 (see Definition 3.1). Each

pairwise limit ej→i was initialized to 8.
The Table 3.5 presents the results on the 100 industrial problems of the 2008

SAT Race. The problem set contains families with several instances or individual
instances.

From left to right we present, the family/instance name, the number of instances
per family, results associated to the standard ManySAT, with the number of prob-
lems solved before time-out, and the associated average runtime. The right part re-
ports results for the two dynamic policies. For each dynamic policy we provide ē,
the average of the ej→i observed during the computation. The last row provides for
each method the total number of problems solved and the cumulated runtime. For
the dynamic policies, it also presents the average of the ē values.

At this point we have to stress that the static policy (e = 8) is optimal in the way
that it gives the best average performance on this set of problems. We can observe
that the static policy solves 83 problems while the dynamic policies aimdT and
aimdTQ solve respectively 86 and 89 problems. Except on the ibm_∗ and manol_∗
families, the dynamic policies always exhibit a runtime better or equivalent to the
static one. Unsurprisingly, when the runtime is significant but does not drastically
improve over the static policy, the values of ē are often close to 8, i.e., equivalent
to the static size limit. When we consider the last row, we can see that the aimdT
is faster than the aimdTQ. However, this last policy solves more problems. We can
explain this as follows. The quality-based policy intensifies the search by favoring
the exchange of clauses related to the current exploration of each unit. This inten-
sification leads to the resolution of more difficult problems. However, it increases
the runtime on easier instances where a more diversified search is often more ben-
eficial. Overall these results are very good since our dynamic policies are able to
outperform the best possible static tuning.

3.7 Summary

We have presented ManySAT, a portfolio-based parallel SAT solver which advan-
tageously exploits multicore architectures. ManySAT is based on an understanding
of the main weakness of modern sequential SAT solvers, their sensitivity to pa-
rameter tuning and their lack of robustness. As a result, ManySAT uses a portfolio
of complementary sequential algorithms, and lets them cooperate in order to im-
prove further the overall performance. This design philosophy of ManySAT, which
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clearly contrasts with well-known parallel SAT solvers, is directly inspired by our
work in the previous M-framework for distributed constraint satisfaction problems.
The good performance obtained by ManySAT on industrial SAT instances clearly
suggests that the parallel portfolio approach is more interesting than the traditional
divide-and-conquer one.

We have also presented how knowledge sharing policies could be finely con-
trolled through dynamic clause sharing policies which can adjust the size of shared
clauses between any pair of processing units. The first policy controls the overall
number of exchanged clauses whereas the second policy additionally exploits the
relevance quality of shared clauses. This part has been described in [HJS09a].

As stated here, our four-core portfolio was carefully crafted in order to mix com-
plementary strategies. If ManySAT could be run on dozens of computing units, what
would be the performance? We have considered this question in a more general con-
text in [BHS09]. This work presents the first study on scalability of constraint solv-
ing on 100 processors and beyond. It proposes techniques that are simple to apply
and shows empirically that they scale surprisingly well. It proves that portfolio-
based approaches can also scale up to several dozens of processors.

Finally, as stated in the introduction, SAT is now applied to other domains. One
domain which particularly benefits from the recent advances in SAT is Satisfiability
Modulo Theory [NOT06]. There, our ManySAT approach has been integrated with
the Z3 SMT solver [dMB08], allowing it to achieve impressive speed ups on several
classes of problems [WHdM09].

In the next chapter we will see that the parallel portfolio approach can be used to
boost the performance of local search algorithms.



Chapter 4
Parallel Local Search for Satisfiability

4.1 Introduction

As we have seen in the previous chapter, complete parallel solvers for the proposi-
tional satisfiability problem have received significant attention. This push towards
parallelism in complete SAT solvers has been motivated by their practical applica-
bility. Indeed, many domains, from software verification to computational biology
and automated planning, rely on their performance. On the other hand, since the
application of local search solvers has been mainly focused on random instances,
their parallelization has not received much attention so far. The main contribution
of the parallelization of local search algorithms for SAT solving basically executes
a portfolio of independent algorithms which compete without any communication
between them. In our settings, each member of the portfolio shares its best config-
uration (i.e., one which minimizes the number of conflicting clauses) in a common
structure. At each restart point, instead of classically generating a random configura-
tion to start with, each algorithm aggregates the shared knowledge to carefully craft
a new starting point. We present several aggregation strategies and evaluate them on
a large set of instances. Our best strategies largely improve over a parallel portfo-
lio of non-cooperative local searches. We also present an analysis of configuration
diversity during parallel search, and find out that the best aggregation strategies
are the ones which are able to maintain a good diversification/intensification trade-
off. This chapter extends the conference paper [AH11]. It is organized as follows.
Section 4.2 describes previous work on parallel SAT and cooperative algorithms.
Section 4.3 gives background material. Section 4.4 presents our methodology and
our aggregation strategies, Sect. 4.5 evaluates them, and Sect. 4.6 presents some
concluding remarks and future research directions.

Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_4, © Springer-Verlag Berlin Heidelberg 2013
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4.2 Previous Work

4.2.1 Incomplete Methods for Parallel SAT

In [ZHZ02] the authors proposed PSAT, a hybrid algorithm that starts with a stan-
dard DPLL algorithm to divide the problem space into sub-spaces. Each sub-space
is then allocated to a given local search algorithm (Walksat). Experimental results
reported in the paper suggested that PSAT greatly outperformed the sequential ver-
sion of WSAT.

PGSAT [Rol02] is a parallel version of the GSAT algorithm. The entire set of
variables is randomly divided into τ subsets and allocated to different processors. In
this way, at each iteration, if no global solution has been obtained, the ith processor
uses the GSAT score function (see Sect. 4.3) to select and flip the best variable
for the ith subset. Another contribution to this parallel architecture is described in
[RBB05] where the authors aim to combine PGSAT and random walk. Thus at each
iteration, the algorithm performs a random walk step with a certain probability wp,
that is, a random variable from an unsatisfied clause is flipped. Otherwise, PGSAT
is used to flip τ variables in parallel at a cost of reconciling partial configurations to
test if a solution is found.

gNovelty+-v2 [PG09] belongs to the portfolio approach. This algorithm executes
n independent copies of the gNovelty+-v2 algorithm (each one with a different ran-
dom seed) in parallel, until at least one of them finds a solution or a given time-out
is reached. This algorithm was the only parallel local search solver submitted to
the random category of the 2009 SAT Competition.1 Furthermore, in [Hoo98] and
[CIR12] the authors present a detailed analysis of the runtime distribution of this
parallel framework in the context of SAT and MaxSAT.

In [KSGS09], the authors studied the application of a parallel hybrid algorithm
to deal with the MaxSAT problem. This algorithm combines a complete solver
(Minisat) and an incomplete one (Walksat). Broadly speaking, both solvers are
launched in parallel and Minisat is used to guide Walksat to promising regions of
the search space by suggesting values for the selected variables. Other literature re-
lated to the application of the parallel portfolio approach without cooperation to the
MaxSAT problem includes [PPR96] and [ARR02].

4.2.2 Cooperative Sequential Algorithms

In [HW93] a set of algorithms running in parallel exchange hints (i.e., partial valid
solutions) to solve hard graph coloring instances. To this end, they share a black-
board where they can write a hint with a given probability q and read a hint with a
given probability p.

1http://www.satcompetition.org/2009/.

http://www.satcompetition.org/2009/
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Algorithm 4.1 Local Search For SAT (CNF formula F, Max-Flips, Max-Tries)
1: for try := 1 to Max-Tries do
2: A := initial-configuration(F)
3: for flip := 1 to Max-Flips do
4: if A satisfies F then
5: return A
6: end if
7: x := select-variable(A)
8: A := A with x flipped
9: end for

10: end for
11: return ‘No solution found’

Although Averaging in Previous Near Solutions [SK93] is not a cooperative algo-
rithm by itself, this method is used to determine the initial configuration for the ith
restart in the GSAT algorithm. Broadly speaking, the initial configuration is com-
puted by performing a bitwise average of variables of the best solution found during
the previous restart (restarti−1) and two restarts before (restarti−2). That is, vari-
ables with the same values in both configurations are reused, and the extra set of
variables is initialized with random values. Since over time, configurations with few
conflicting clauses tend to become similar, all the variables are randomly initialized
after a given number of restarts.

4.3 Technical Background

4.3.1 Local Search for SAT

The propositional satisfiability problem (SAT) is defined in Chap. 3. Algorithm 4.1
describes a well-known local search procedure for SAT solving. It starts with a
random assignment for the variables (so-called configuration2), initial-configuration
in line 2. The key point of local search algorithms is depicted in lines (3–9) where
the algorithm flips the most appropriate candidate variable until a solution is found
or a given number of flips is reached (Max-Flips). After this process the algorithm
restarts itself with a new (fresh) random configuration.

As one may expect, a critical part of the algorithm is the variable selection func-
tion (line 7, select-variable), which indicates the next variable to be flipped in the
current iteration of the algorithm. Broadly speaking, there are two main categories
of variable selection functions. The first of these is motivated by the GSAT algo-
rithm [SLM92] based on the following score function.

score(x) = breakcount(x) − makecount(x)

2In the following, we use the term configuration as a synonym for assignment for the variables.
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Intuitively, breakcount(x) indicates the number of clauses that are currently sat-
isfied but by flipping x become unsatisfied, and makecount(x) indicates the num-
ber of clauses that are unsatisfied but by flipping x become satisfied. In this way,
local search algorithms select the variable with minimal score value (preferably
with a negative value), because flipping this variable would most likely increase
the chances of solving the instance.

The second category of variable selection functions is the Walksat-based one
[SKC94b] which works as follows. First, the algorithm selects, uniformly at random,
an unsatisfied clause c. Then, one variable appearing in c is selected according to a
given heuristic function. The selected variable usually improves (i.e., decreases) the
number of unsatisfied clauses in the formula.

Alternatively, some local search approaches aim at proving unsatisfiability. For
instance, [FR04] and [CI96] integrate new clauses to the initial clause database (or
problem definition). Broadly speaking, as soon as a local minimum is reached (none
of the candidate variables reduces the number of unsatisfied clauses), two neighbor
clauses of the form (x1 ∨ X) and (x̄1 ∨ Y) are used to infer a new clause (X ∨ Y).
Along the same lines, [ALMS09] introduces the concept of CDLS which adapts
Conflict Driven Clause Learning to local search. Other local search literature to
prove unsatisfiability includes [PL06].

The next section presents a more detailed description of the variable selection
functions.

4.3.2 Refinements

This section reviews the main characteristics of state-of-the-art local search solvers
for SAT solving. As pointed out before, these algorithms have been developed to
deal with the variable selection function. In the following, we describe several well-
known mechanisms for selecting the most appropriate variable to flip at a given state
of the search.

TSAT [MSG97a] extends the GSAT algorithm [SLM92] by proposing the use of
a tabu list. This list contains a set of recently flipped variables in order to avoid
flipping the same variable for a given number of iterations. This way, the tabu list
helps prevents search stagnation.

Novelty [MSK97] firstly selects an unsatisfied clause c and from c selects the
best vbest and second best v2best variable candidates. The former, vbest, is flipped iff
it is not the most recently flipped variable in c. Otherwise v2best is flipped with a
given probability p and vbest with probability 1 − p. Important extensions to this
algorithm are Novelty+ [Hoo99a], Novelty++ [LH05], and Novelty+p [LWZ07].

Novelty+ [Hoo99a] with a given probability wp (random walk probability) se-
lects a random variable from an unsatisfied clause and with probability 1 − wp uses
Novelty as a backup heuristic.

Adaptive Novelty+ (AN+) [Hoo02b] uses an adaptive mechanism to properly
tune the noise parameter (wp) of Walksat-like algorithms (e.g. Novelty+). wp is
initially set to 0 and as soon as search stagnation is observed (i.e., no improvement
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has been observed for a while) wp is incremented as follows: wp := wp + (1 +
wp)×φ. On the other hand, whenever an improvement is observed wp is decreased
as follows: wp := wp −wp ×φ/2. This adaptive mechanism has shown impressive
results, and was used to improve the performance of other local search algorithms
in the context of SAT solving, e.g. TNM [WL09] and RSAPS [HTH02].

Scaling and Probabilistic Smoothing (SAPS) [HTH02] adds a weight penalty to
each clause. These weights are initialized to 1 and updated during the search pro-
cess. Generally speaking, SAPS maintains a list L which contains a set of variables
whose objective value (i.e., sum of all unsatisfied clause weights) is maximal and
greater than a given threshold SAPSthresh. If L is not empty, SAPS selects, uniformly
at random, one of the variables in L. Otherwise, a random variable is selected with
a probability wp, and with probability 1 −wp SAPS performs a two-step procedure
in order to scale and smooth clause penalties.

The scaling procedure updates the weight of all unsatisfied clauses as fol-
lows: weighti := weighti × α. The smoothing procedure updates, with a probability
Psmooth, all clause penalties as follows: weighti := weighti ×ρ + (1−ρ)×w, where
w indicates the average weight over all clauses and ρ is a parameter which remains
fixed during the entire search process. SAPS uses five parameters (α, ρ, wp, Psmooth,
and SAPSthresh) that need to be tuned in order to achieve a top performance. Taking
this into account, [HHHLB06] proposes a machine learning framework to identify
the most suitable values for the parameters of the algorithm, and [HHLBS09] stud-
ies the application of paramILS, a parameter tuning algorithm, to identify promising
parameters to solve a given benchmark family.

Reactive SAPS (RSAPS) [HTH02] extends SAPS by adding an automatic tuning
mechanism to identify suitable values for Psmooth. This parameter is increased, i.e.,
Psmooth := Psmooth + 2 × δ × (1 − Psmooth), if an improvement has been observed
in the current iteration. The value of the parameter is decreased, i.e., Psmooth :=
δ ×Psmooth, if no improvement has been observed after θ ×|C| iterations. Moreover,
|C| denotes the number of clauses in the problem; δ and θ are constants set to 0.1
and 1/6.

Pure Additive Weighting Scheme (PAWS) [TPBF04], similarly to SAPS, has each
clause associated with a weight penalty. However, in this case the weight scaling
step is replaced with an additive one (weighti := weighti + 1). Moreover, when no
variable provides an improvement in the objective function, a variable that does
not degrade the objective is selected with a given probability Pflat . Finally, PAWS
decreases weights after Maxinc increases.

Novelty++ [LH05] with a given probability dp (diversification probability) flips
the most recently flipped variable from the selected unsatisfied clause. Otherwise,
with probability 1 − dp the algorithm uses Novelty as a backup heuristic.

G2WSAT [LH05] (G2) introduces the concept of promising decreasing variables.
Broadly speaking, a variable is decreasing if flipping it reduces the overall number
of failed clauses. Initially (line 2 in Algorithm 4.1), all variables are marked as
promising decreasing; then the status of the variables is updated by observing the
total gain (w.r.t. the objective) after flipping the variable (line 8 in Algorithm 4.1).
That is, a variable becomes non-promising if flipping it increased the overall number
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of failed clauses. In addition, all variables that become decreasing as a result of the
flip are marked as promising decreasing.

Taking this into account, G2 selects the best promising variable. If there are no
promising decreasing variables, the algorithm uses Novelty++ as a backup heuristic.
Similarly, G2WSAT+p (G2+p) also uses the concept of promising decreasing vari-
ables. However, in this case the algorithm selects the least recently flipped promising
variable, and Novelty+p is used as a backup heuristic.

Novelty+p [LWZ07] introduces the concept of promising score (pscore) for a
given variable as follows:

pscore(x) = scoreA(x) + scoreB

(
x′)

where A is the current assignment for the variables, B is the configuration after
flipping x, and x′ the best promising decreasing variable with respect to B . Similarly
to Novelty, Novelty+p starts by selecting vbest and v2best from an unsatisfied clause c.
Afterwards, if vbest is the most recently flipped variable in c, then with a probability
p the algorithm selects v2best and with probability 1 − p it uses the promising score
to select the next variable. Finally, if vbest is not the most recently flipped variable in
c but was flipped after v2best, then vbest is selected. Otherwise, the promising score
is used to select the best variable.

Adaptive G2WSAT (AG2) [LWZ07] aims to integrate the AN+ adaptive noise
mechanism into the G2WSAT algorithm. That is, the noise value is initially set to 0
and updated during the execution of the algorithm. Intuitively, the noise is decreased
as soon as an improvement is observed in the objective function, and decreased if
no improvement has been observed after a given number of iterations. Adaptive
G2WSAT+p (AG2+p) uses G2WSAT+p with the same adaptive noise mechanism
of AG2.

gNovelty+ [PTGS08] combines properties of four well-known algorithms: AN+,
G2, PAWS, and SAPS. As in SAPS, clauses are associated with penalty weights
whose initial value is 1. The algorithm starts by selecting, with a probability wp,
a random variable from an unsatisfied clause; otherwise, with probability 1 − wp,
the G2 mechanism is used to select a variable from the list of promising decreasing
variables. If this list is empty, gNovelty+ selects the variable with best improvement
in the objective function (sum of all unsatisfied clause penalties); ties are broken
using the flip history. After selecting the most appropriate variable, clause penalties
are updated, i.e., increasing by one unit the weight of unsatisfied clauses, and finally
with a probability sp the weight of all clause penalties is decreased by one unit.

Two Noise Mechanisms (TNM) [WL09] interleaves the execution of two adaptive
noise methods in order to solve a given SAT instance. The first is AG2+, the second
is a new method in which the algorithm adds two new variables per clause; var_false
and num_false. The former indicates the variable that most recently falsified each
clause, while the latter indicates the number of times that var_false consecutively
falsified its associated clause. If the best variable corresponds to var_false, then
the noise value is set to 0; otherwise it is set to num_false. This adaptive noise
mechanism is included into AG2 and named AG2′. Finally, the use of one method
or another is defined according to a new parameter called γ .
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4.4 Knowledge Sharing in Parallel Local Search for SAT

Our objective is to extend a parallel portfolio of state-of-the-art local search solvers
for SAT with knowledge sharing and cooperation. Each algorithm is going to share
with others the best configuration it has found so far with the cost (number of un-
satisfied clauses) of the respective configuration in a shared pair 〈M,C〉.

M =

⎛

⎜
⎜
⎜
⎝

X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
...

Xc1 Xc2 . . . Xcn

⎞

⎟
⎟
⎟
⎠

C = [C1,C2, . . . ,Cc]

where n indicates the total number of variables of the problem and c indicates the
number of local search algorithms in the portfolio. In the following we are associ-
ating local search algorithms and processing cores. Each element Xji in the matrix
indicates the ith variable of the best configuration found so far by the j th core. Sim-
ilarly, the j th element in C indicates the cost for the respective configuration in M .
Notice that M is updated iff a better configuration is observed (i.e., a configuration
with better cost).

These best configurations can be exploited by each local search procedure to
build a new initial configuration. In the following, we propose seven strategies to de-
termine the initial configuration (cf. function initial-configuration in Algorithm 4.1).

4.4.1 Using Best Known Configurations

In this section, we propose three methods to build the new initial configuration init
by aggregating best known configurations. In this way, we define initi for all the
variables Xi, i ∈ [1..n] as follows:

1. Agree: if there exists a value v such that v = Xji for all j ∈ [1..c] then initi = v;
otherwise the value is chosen uniformly at random.

2. Majority: if there exist two values v and v′ such that |{Xji = v|j ∈ [1..c]}| >

|{Xji = v′|j ∈ [1..c]}| then initi = v; otherwise the value is chosen uniformly at
random.

3. Prob: initi = 1 with probability pones = ones
c

and initi = 0 with probability
1 − pones, where ones = |{Xji = 1|j ∈ [1..c]}|.

4.4.2 Weighting Best Known Configurations

In contrast with our previous methods where all best known solutions are considered
equally important, the methods proposed in this section use a weighting mechanism
to consider the cost of best known configurations. The computation of the initial
configuration init uses one of the following two weighting systems: Ranking and
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Normalized Performance, where values from better configurations are most likely
to be used.

Ranking This method sorts the configurations of the shared matrix from worst to
best according to their cost. The worst ranked configuration gets weight of 1 (i.e.,
RankW1 = 1), and the best ranked c (i.e., RankWc = c).

Normalized Performance This method assigns weights (NormW) considering a
normalized value of the number of unsatisfied clauses of the configuration:

NormWj = |C| − Cj

|C|
Using the previous two weighting mechanisms, we define the following four ad-

ditional methods to determine initial configurations.
To this end, we define Φ(val,Weight) = ∑

k∈{j |Xji=val} Weightk .

1. Majority RankW: if there exist two values v and v′ such that Φ(v,RankW) >

Φ(v′,RankW) then initi = v; otherwise the value is chosen uniformly at random.
2. Majority NormalizedW: if there exist two values v and v′ such that Φ(v,

NormW) > Φ(v′,NormW) then initi = v; otherwise the value is chosen uni-
formly at random.

3. Prob RankW: initi = 1 with probability PRones = Rones
Rones+Rzeros and initi = 0

with probability 1 − PRones, where Rones = Φ(1,RankW) and Rzeros =
Φ(0,RankW).

4. Prob NormalizedW: initi = 1 with probability PNones = Nones
Nones+Nzeros and initi = 0

with probability 1 − PNones, where Nones = Φ(1,NormW) and Nzeros =
Φ(0,NormW).

4.4.3 Restart Policy

As mentioned earlier on, shared knowledge is exploited when a given algorithm is
restarted. At this point, the current working configuration of a given algorithm is
re-initialized according to a given aggregation strategy. However, it is important to
restrict cooperation since it adds overheads, and more importantly, tends to generate
similar configurations. As will be described in Sect. 4.5.4, a key point for a coop-
erative portfolio is to properly balance the diversification and intensification of the
acquired knowledge. Too much diversification results in performance similar to that
of a portfolio without cooperation, and too much intensification ends up in a parallel
portfolio where all the algorithms explore very similar regions of the search space.

We propose a new restart policy to avoid re-initializing the working configura-
tion again and again. This new policy re-initializes the working configuration for
a given restart (i.e., every MaxFlips) if and only if performance improvements in
best known solutions have been observed during the latest restart window. This new
restart policy is formally described in the following definition. Let bcki denote the
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cost (number of unsatisfied clauses) of the best known configuration produced by
core i up to the (k − 1)-th restart.

Definition 4.1 At a given restart k for a given algorithm i the working configuration
is reinitialized iff there exists an algorithm q such that bckq < bc(k−1)q , with q = i.

4.5 Experiments

This section reports on the experimental validation of the proposed aggregation
strategies.

4.5.1 Experimental Settings

We conducted experiments using instances from the RANDOM category of the
2009 SAT competition. We removed instances whose status was reported as
UNKNOWN in the competition and considered a collection of 359 satisfiable in-
stances, which were divided in the competition into two main groups: large and
medium, each group itself containing sets of k-SAT instances, where k indicates
the number of literals for each clause. Large size represents a set of 88 3-SAT,
49 5-SAT, and 27 7-SAT instances, while medium size represents a set of 110 3-SAT,
40 5-SAT, and 45 7-SAT instances. The proportion clauses/variables in the large
size group ranges from 33,600/8,000 to 42,000/10,000 for 3-SAT, 18,000/900 to
20,000/1,000 for 5-SAT, and 17,000/200 to 18,000/900 for 7-SAT, while in the
medium size group the proportion ranges from 1530/360 to 2,380/560 for 3-SAT,
1,917/90 to 2,130/100 for 5-SAT, and 5,340/60–6,675/75 for 7-SAT.

We decided to build our parallel portfolio on top of UBCSAT 1.1, a well-known
local search library that provides an efficient implementation of the latest local
search for SAT algorithms [TH04]. We did preliminary experiments to extract from
this library the eight algorithms which perform best on our set of problems. From
that, we defined the following three baseline portfolio constructions where algo-
rithms are independent searches without cooperation. The first one, pcores-PAWS,
uses p copies of the best single algorithm (PAWS); the second portfolio, 4cores-No
sharing, uses the best subset of four algorithms (PAWS, G2+p, AG2, AG2+p); and
the last one, 8cores-No sharing, uses all the eight algorithms (PAWS, G2+p, AG2,
AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with their default
parameters and without any restart, since these techniques are equipped with im-
portant diversification strategies and usually perform better when the restart flag is
switched off. For example, algorithms such as [WL09, HT07, WLZ08] have elimi-
nated the restart mechanism of their default local search procedures.

This portfolio construction can be seen as the best virtual portfolio (BVP) on
the entire set of instances. The portfolio, which selects a set of four and eight al-
gorithms, maximizes the overall number of solved instances. Notice that the BVP
might change from instance to instance and is not known in beforehand. However,
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it is worth mentioning that this portfolio construction is a near-optimal one on in-
stances of the 2007 SAT competition, confirming the robustness of this portfolio by
considering all available algorithms of the library.

Moreover, we also consider the best (TNM) and second best (gNovelty+-v2)
local search algorithms of the 2009 SAT competition; two complete local search
solvers: CDLS [ALMS09] and clsHai04 [FR04]; and Walksat‖Minisat [KSGS09].
Once again, all these solvers are used with their default parameters.

On the other hand, the knowledge aggregation mechanisms described in the
previous section were built on top of a portfolio with four algorithms (same al-
gorithms as 4cores-No sharing) and a portfolio with eight algorithms (same algo-
rithms as 8cores-No sharing). There, we used the modified restart policy described
in Sect. 4.4.3 with MaxFlips set to 106.

All tests were conducted on a cluster of eight Linux Mandriva machines with
8 GB of RAM, two Quad core (eight cores) 2.33 GHz Intel Xeon Processors E5345,
and 128 KB L1 cache and 8 MB L2 cache for each processor. In all the experiments,
we used a five-minute time-out (300 seconds) for each algorithm in the portfolio, so
that for each experiment the total CPU time was set to c × 300 seconds, where c

indicates the number of algorithms in the portfolio.
We ran each solver 10 times on each instance (each time with a different ran-

dom seed) and reported two metrics. First, the Penalized Average Runtime (PAR-10)
[HHLB10] which computes the average runtime over all instances, but where un-
solved instances are considered as 10× the cutoff time. Second, the runtime for
each instance, which is calculated as the median across the 10 runs. Overall, our
experiments for these 359 SAT instances took 1,914 days of CPU time.

4.5.2 Practical Performances with Four Cores

Figure 4.1(a) shows the results of each aggregation strategy using a portfolio with
four cores, comparatively to the four core baseline portfolios. The x-axis gives the
number of problems solved and the y-axis presents the cumulated runtime on a log-
scale.

As expected, the portfolio with the top four best algorithms (4cores-No Sharing)
performs better (solving 309 instances) than the one with four copies of the best
algorithms (4cores-PAWS) (solving 275 instances). Additionally, Fig. 4.1(b) shows
the performance when considering the PAR-10 metric. The y-axis (log-scale) shows
the Penalized Average Runtime for a given time cutoff given on the x-axis. In this
figure, it can be observed that the aggregation policies are also efficient when vary-
ing the time limit to solve problem instances.

The performance of the portfolios with knowledge sharing is quite good. Overall,
it seems that adding a weighting mechanism can often hurt the performance of the
underlying aggregation strategy. Among the weighting options, it seems that the
Normalized Performance performs better. The best portfolio implements the Prob
strategy without any weighting (solving 329 instances). This corresponds to a gain
of 20 problems against the corresponding 4cores-No Sharing baseline.
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Fig. 4.1 Performance using
four cores in a given amount
of time

A detailed examination of 4cores-Prob and 4cores-No Sharing is presented in
Figs. 4.2 and 4.3. The first figure uses log-scales on each axis. These figures show,
respectively, a runtime and a best configuration cost comparison. Notice that each
number in Fig. 4.3 represents the sum of the overlapping points at that (x, y) lo-
cation. In both figures, points below (resp. above) the diagonal line indicates that
4cores-Prob performs better (resp. worse) than 4cores-No Sharing. In the runtime
comparison, we observe that easy instances are correlated as they require few steps
to be solved, and for the remaining set of instances 4cores-Prob usually exhibits a
better performance. On the other hand, the second figure shows that when instances
are not solved, the median cost of the best configuration (number of unsatisfied
clauses) found by 4cores-Prob is usually better than for 4cores-No Sharing. In par-
ticular, 4cores-Prob reports a better solution cost for 38 instances, while 4cores-No
Sharing was better for only six instances.
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Fig. 4.2 Runtime
comparison; each point
indicates the runtime to solve
a given instance using
4cores-Prob (y-axis) and
4cores-No Sharing (x-axis)

Fig. 4.3 Best configuration
cost comparison on unsolved
instances. Each point
indicates the best
configuration (median) cost
of a given instance using
4cores-Prob (y-axis) and
4cores-No Sharing (x-axis)

Table 4.1 summarizes all the experiments using four cores; each cell indicates
the results for medium-size instances (top), large-size instances (middle), and the
total overall instances (bottom) for each portfolio. We report the number of solved
instances (#solved), the median time across all instances (median time), the Penal-
ized Average Runtime (PAR), and the total number of instances that timed out in all
the 10 runs (never solved). These results confirm that sharing best known config-
urations outperforms independent searches. For instance, 4cores-Prob and 4cores-
prob NormalizedW solved respectively 20 and 17 more instances than 4cores-No
Sharing, and all the cooperative strategies (except 4cores-majority RankW) exhibit
better PAR. Interestingly, 4cores-PAWS exhibited the best median runtime overall
in the experiments with four cores; this fact suggests that PAWS by itself is able
to quickly solve an important number of instances. Moreover, only two instances
timed out in all the 10 runs for 4cores-Agree and 4cores-prob NormalizedW against
seven for 4cores-No Sharing. Notice that this table also includes 1core-PAWS, the
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Table 4.1 Overall evaluation using four cores. Each cell summarizes the results of medium-size
instances (top), large-size instances (middle), and the total overall instances (bottom). The best
strategy for each column is highlighted in bold

Strategy #solved Median time PAR-10 Never solved

1core-TNM 195 0.07 1.48 0

113 121.10 1007.91 8

308 1.30 461.24 8

1core-gNovelty+-v2 195 0.11 2.38 0

74 300.00 1637.09 38

269 2.52 749.16 38

1core-PAWS 195 0.07 1.67 0

54 300.00 1992.58 71

249 1.76 911.17 71

4cores-gNovelty+-v2 195 0.28 3.87 0

96 855.4 5771.75 34

291 5.075 2501.73 33

4cores-PAWS 195 0.08 1.48 0

80 1200.00 6379.67 61

275 1.63 2915.19 61

4cores-No Sharing 195 0.11 1.84 0

114 533.04 4159.15 7

309 2.19 1901.00 7

4cores-Agree 195 0.12 1.70 0
126 313.59 3131.19 2
321 2.54 1431.33 2

4cores-Majority 195 0.11 1.95 0

118 343.74 3773.63 11

313 2.53 1724.94 11

4cores-Prob 195 0.11 2.02 0

134 195.81 2751.24 4

329 2.51 1257.93 4

4cores-Majority RankW 195 0.12 2.07 0

109 518.39 4223.70 11

304 2.47 1930.61 11

4cores-Majority NormalizedW 195 0.13 1.94 0

119 447.06 3954.19 9

314 2.48 1807.42 9

4cores-Prob RankW 195 0.12 1.97 0

121 259.97 3546.78 7

316 2.53 1621.33 7

4cores-Prob NormalizedW 195 0.12 2.03 0
131 180.39 2759.74 2
326 2.50 1261.82 2
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Fig. 4.4 Performance using
eight cores in a given amount
of time

best sequential local search on this set of problems. The PAR-10 score for 1core-
PAWS is lower than the other values of the table since this portfolio uses only one
algorithm, therefore, the time-out is only 300 seconds, while four-core portfolios
use a time-out of 1,200 seconds.

4.5.3 Practical Performances with Eight Cores

We now move on to portfolios with eight cores. The results of these experiments
are depicted in Fig. 4.4, indicating the total number of solved instances within a
given amount of time. As in previous experiments, we report the results of base-
line portfolios 8cores-No Sharing and 8cores-PAWS, as well as the seven cooper-
ative strategies. We observe that the cooperative portfolios (except 8cores-Agree)
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greatly outperform the non-cooperative ones in both the number of solved instances
(Fig. 4.4(a)) and the PAR-10 metric (Fig. 4.4(b)). Indeed, as detailed in Sect. 4.5.4,
8cores-Agree exhibits a poor performance mainly because the best known config-
urations stored in the shared data structure tend to be different from each other.
Therefore, this policy tends to generate completely random starting points, and can-
not exploit the acquired knowledge.

Table 4.2 summarizes the results of this experiment, and once again, it includes
the best individual algorithm running in a single core. We can observe that 8cores-
Prob, 8cores-Prob RankW, and 8cores-Prob NormalizedW solve 24, 22, and 16
more instances than 8cores-No Sharing. Furthermore, it shows that knowledge shar-
ing portfolios are faster than individual searches, with a PAR-10 of 3,743.63 seconds
for 8cores-No Sharing against 2,247.97 for 8cores-Prob, 2,312.80 for 8cores-Prob
RankW, and 2,295.99 for 8cores-Prob NormalizedW. Finally, it is also important to
note that only one instance timed out in all the 10 runs for 8cores-Prob Normal-
izedW, against eight instances for 8cores-No Sharing.

These experimental results show that Prob (four and eight cores) exhibited the
overall best performance. We attribute this to the fact that the probability component
of this method balances the exploitation of best solutions found so far with the
exploration of other values for the variables; therefore, the algorithm diversifies the
search by exploring new starting configurations.

4.5.4 Analysis of the Diversification/Intensification Trade-off

Maintaining an appropriate balance between diversification and intensification of
the acquired knowledge is an important step of the proposed cooperative portfolios
to improve performance. In this chapter, diversification (resp. intensification) refers
to the ability of generating different (resp. similar) initial configurations at each
restart.

Figure 4.5 aims to analyze the balance between diversification and intensifica-
tion. The x-axis gives the pairwise average Hamming distance (HamDis) of all pairs
of algorithms in a portfolio after a given number of flips (y-axis) for a typical SAT
instance.3 Notice that some lines are of different sizes because some strategies re-
quired fewer flips to solve the instance. HamDis is formally described as follows:

HamDis =
∑c

i=1
∑c

j=i+1 Hamming(Xi,Xj )

c(c − 1)/2

where Xi and Xj indicate the best configurations found so far for the ith and j th al-
gorithms in the portfolio; c represents the number of algorithms in the portfolio; and
Hamming(Xi,Xj ) corresponds to the number of variables in Xi and Xj assigned to
different values, that is, Hamming(Xi,Xj ) = |{k : Xik = Xjk}|.

3We performed the same experiment on several instances and observed similar behavior.
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Table 4.2 Overall evaluation using eight cores. Each cell summarizes the results of medium-size
instances (top), large-size instances (middle), and the total overall instances (bottom). The best
strategy for each column is highlighted in bold

Strategy #solved Median time PAR-10 Never solved

1core-TNM 195 0.07 1.48 0

113 121.10 1007.91 8

308 1.30 461.24 8

1core-gNovelty+-v2 195 0.11 2.38 0

74 300.00 1637.09 38

269 2.52 749.16 38

1core-PAWS 195 0.07 1.67 0

54 300.00 1992.58 71

249 1.76 911.17 71

8cores-gNovelty+-v2 195 0.305 3.72 0

109 1164.98 6113.02 33

304 4.66 4173.14 33

8cores-PAWS 195 0.07 1.52 0

91 1482.08 11411.41 56

286 2.00 5213.84 56

8cores-No Sharing 195 0.125 1.86 0

116 937.64 8192.69 8

311 2.33 3743.63 8

8cores-Agree 195 0.15 1.92 0

110 1251.10 8649.17 17

305 2.48 3952.19 17

8cores-Majority 195 0.13 2.11 0

120 650.56 6921.42 6

315 2.47 3163.02 6

8cores-Prob 195 0.16 2.40 0

140 373.86 4918.01 2

335 2.45 2247.97 2

8cores-Majority RankW 195 0.14 2.06 0

130 409.70 6444.05 4

325 2.39 2944.92 4

8cores-Majority NormalizedW 195 0.14 2.15 0

119 638.37 7218.16 9

314 2.54 3298.60 9

8cores-Prob RankW 195 0.13 2.07 0

138 299.74 5060.32 2

333 2.55 2312.80 2

8cores-Prob NormalizedW 195 0.14 2.47 0
132 397.59 5023.04 1
327 2.47 2295.99 1
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Fig. 4.5 Pairwise average Hamming distance (x-axis) vs. Number of flips every 106 steps (y-axis)
to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf instance

Figure 4.5(a) shows the diversification-intensification analysis using four cores.
Among the cooperative strategies 4cores-Majority exhibits a premature convergence
due to its reduced diversification; while 4cores-Agree shows a slow convergence
due to its increased diversification. In contrast to these two methods, 4cores-Prob is
balancing diversification, and intensification. This phenomenon helps to explain the
superiority shown by this method in Sect. 4.5.2.

A similar observation is drawn from the experiments with eight cores presented
in Fig. 4.5(b). However, in this case 8cores-Agree dramatically increases diversifi-
cation, which actually degrades its overall performance when compared against its
counterpart portfolio with four cores (see Table 4.2). Additionally, Fig. 4.5(c) shows
the behavior of 8cores-Majority NormalizedW and 8cores-Prob NormalizedW, and
Fig. 4.5(d) shows the behavior of 8cores-Majority RankW and 8cores-Prob RankW.
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Table 4.3
Diversification-Intensification
analysis using four cores over
the whole set of benchmarks

Strategy HamIns

4cores-PAWS 38.2

4cores-No Sharing 39.0

4cores-Agree 35.0

4cores-Majority 31.7

4cores-Prob 33.1

4cores-Majority RankW 25.9
4cores-Majority NormalizedW 27.1

4cores-Prob RankW 30.8

4cores-Prob NormalizedW 32.8

Table 4.4
Diversification-Intensification
analysis using eight cores
over the whole set of
benchmarks

Strategy HamIns

8cores-PAWS 38.3

8cores-No Sharing 39.5

8cores-Agree 38.3

8cores-Majority 30.8

8cores-Prob 33.4

8cores-Majority RankW 29.3
8cores-Majority NormalizedW 29.5

8cores-Prob RankW 33.1

8cores-Prob NormalizedW 33.8

From these two last figures, it can be observed that Majority-based strategies pro-
vide less diversification than the Prob-based ones.

Now we switch our attention to Tables 4.3 and 4.4, where we extend our analysis
to all problem instances. To this end, we launched an extra run for each portfolio
strategy to compute HamIns, an average over all values of HamDis during the run
on each instance. HamIns is formally defined as follows:

HamIns(i) = HamDis(i)

total-vars(i)
× 100

where HamDis(i) computes the mean over all HamDis values achieved when solv-
ing i, and total-vars(i) indicates the number of variables involved in i. We use
HamIns to denote the mean HamIns over all the instances that required at least 106

flips to be solved. Notice that instances requiring fewer flips do not employ cooper-
ation because the first restart is not reached.

As can be observed, prob-based strategies have shown the best performance as
they exhibit a better trade-off between diversification and intensification than Agree-
(resp. Majority-) based strategies. For instance, excluding 4cores-agree, which is
known to provide more diversification than intensification, 4cores-Prob shows the
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Fig. 4.6 Individual algorithm performance to solve the unif-k3-r4.2-v16000-c67200-
S2082290699-014.cnf instance

highest HamIns variation among all cooperative portfolios using four cores. More-
over, Majority-based strategies are bad for diversification as they might tend to start
with a configuration similar to the one given by the best single algorithm. It is also
worth mentioning that our baseline portfolios 4cores-PAWS and 4cores-No Sharing
exhibit the highest values, which is not surprising as no cooperation is allowed. No-
tice that algorithms in non-cooperative portfolios are independent from each other;
for this reason each algorithm defines its own search trajectory.

On the other hand, a similar observation is seen in the case of eight cores. How-
ever, it is worth mentioning that 8cores-agree gives too much diversification, de-
grading the overall performance when compared against its counterpart with four
cores (see Tables 4.1 and 4.2).

Finally, Fig. 4.6 shows a trace of the best configuration cost found so far for
each algorithm in the portfolio to solve a typical instance. The x-axis shows the
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Fig. 4.7 Runtime
comparison using parallel
local search portfolios made
of respectively one, four, and
eight identical copies of
PAWS (same random seed
and no cooperation). Black
diamonds indicate the
performance of four cores vs.
one core. Red triangles
indicate the performance of
eight cores vs. one core,
points above the blue line
indicate that one core is faster

best solution for each algorithm vs. the number of flips (y-axis). The right part of
the figure shows the performance of individual searches using four and eight cores
without cooperation, while the left part depicts the performance of 4cores-Prob and
8cores-Prob. As expected, non-cooperative algorithms exhibit different behaviors.
For instance, Fig. 4.6(d) shows that SAPS and RSAPS are still far from the solu-
tion after reaching the time-out, while Fig. 4.6(c) shows that by using cooperation
all algorithms (including SAPS and RSAPS) are pushed to promising areas of the
search, i.e., assignments with few unsatisfied clauses.

4.5.5 Analysis of the Limitations of the Hardware

In this section, we wanted to assess the inherent slowdown caused by increased
cache and bus contingency when more processing cores are used at the same time.
Indeed, having an understanding of this slowdown help us to assess the real benefits
of parallel search. To this end, we decided to run our PAWS baseline portfolio using
the same random seed for each independent algorithm in the portfolio using one,
four, and eight cores. Since all the algorithms are executing the same search, this
experiment measures the slowdown caused by hardware limitations. The results are
presented in Fig. 4.7.

The first case executes a single copy of PAWS with a time-out of 300 seconds, the
second case executes four parallel copies of PAWS with a time-out of 1,200 seconds
(4 × 300) and the third case executes eight parallel copies of PAWS with a time-out
of 2,400 seconds (8 × 300).

Finally, we estimate the runtime of each instance as the median across 10 runs
(each time with the same seed) divided by the number of cores. In this figure, it
can be observed that the performance overhead is almost not distinguishable be-
tween one and four cores (black diamonds). However, the overhead between 1 and
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8 cores increases for difficult instances (red triangles). As a final observation from
this figure, we would like to point out that 111 points overlap at (300, 300).

This simple test can help us to assess the remarkable performance of our aggre-
gation techniques. Indeed, on eight cores, the best technique is able to solve 86 more
problems than the sequential search. This is achieved despite the slowdown caused
by cache and bus contingencies revealed by this experiment.

4.6 Summary

In this work, our objective was to integrate knowledge sharing strategies in parallel
local search for SAT. We were motivated by recent developments in parallel DPLL
solvers. We decided to restrict the information shared to the best configuration found
so far by the algorithms in a portfolio. From that we defined several simple knowl-
edge aggregation strategies along a specific restart policy which creates a new initial
assignment for the variables when a fixed cutoff is reached and when the quality of
the shared information has been improved.

Extensive experiments were done on a large number of instances taken from
the 2009 SAT competition. They showed that adding the proposed sharing policies
improves the performance of a parallel portfolio. This improvement is exhibited in
both,the number of solved instances and the Penalized Average Runtime (PAR). It is
also reflected in the best configuration cost of problems which could not be solved
within the time limit.

We believe that our work represents a very first step in the incorporation of
knowledge sharing strategies in parallel local search for SAT. Further work will
investigate the use of additional information to exchange, such as: tabu list, the age
and score of a variable, information on local minima, etc. We also intend to inves-
tigate the best way to integrate this extra knowledge while solving a given problem
instance. To this end, we plan to explore the taxonomies of cooperative search de-
scribed in [CT10]. Moreover, as said earlier, state-of-the-art local searches for SAT
perform better when they do not restart. Incorporating extra information without
forcing the algorithm to restart is likely to be important.

Along those lines, we plan to equip the local search algorithms used in this chap-
ter with clause learning, as described in [CI96] and [ALMS09], to exchange learnt
clauses, borrowing ideas from portfolios for complete parallel SAT solvers.

A longer-term perspective regards the use of machine learning to identify the best
subset of algorithms to solve a given instance.



Chapter 5
Learning Variable Dependencies

5.1 Introduction

The relationships between the variables of a combinatorial problem are key to
its resolution. Among all the possible relations, explicit constraints are the most
straightforward and are widely used. For instance, they are used to support classical
look-ahead and look-back schemes. During look-ahead, they can restrict the main-
tenance of some level of consistency to some locality. During look-back, they can
improve the backtracking by jumping to related and/or guilty decisions. These re-
lationships are also used in dynamic variable ordering (DVO) to relate the current
variable selection to past decisions (e.g., [Bre79]), or to give preference to the most
constrained parts of the problem.

Recently, the notion of backdoor has been proposed. A backdoor can be infor-
mally defined as a subset of the variables such that, once assigned values, the re-
maining instance simplifies to a computationally tractable class. Backdoors can be
explained by the presence of a particular relation between variables, e.g., functional
dependencies. Unfortunately, detecting backdoors can be computationally expen-
sive [DGS07], and their exploitation is often restricted to restart-based strategies as
in modern SAT solvers [WGS03].

In this work, our objective is to heuristically discover a simplified form of func-
tional dependencies between variables called weak dependencies. Once discovered,
these relations are used to rank the importance of each variable. Our method as-
sumes that these relations can be detected with low overhead during constraint prop-
agation. More precisely, each time a variable y gets instantiated as a result of the
instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the
weight of x is raised, and the variable becomes more likely to be selected by the
variable ordering heuristic [AH09].

5.2 Previous Work

In [BHLS04] the authors have proposed dom-wdeg, a heuristic which gives priority
to variables frequently involved in failed constraints. It adds a weight to each con-
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straint which is updated (i.e, incremented by 1) each time the constraint fails. Using
this value, variables are ranked according to domain size, and associated weight.
Xi , the selected variable, minimizes dom-wdeg(Xi) = |Xi |/∑

c∈prop(Xi)
weight(c).

As shown in the previous section, domFD is superior to dom-wdeg on many prob-
lems. Interestingly, while dom-wdeg can only learn from conflicts, domFD can also
learn from successful branchings. This is an important difference between these two
techniques.

In [Ref04], Refalo proposes the impact dynamic variable-value selection heuris-
tic. The rationale here is to maximize the reduction of the remaining search space.
In this context an impact is computed taking into account the reduction of the
search space due to an instantiated variable. Impact also considers values, and can
therefore select the best instantiation instead of the best variable. With domFD,
a variable is well ranked if its instantiation has generated several other instantia-
tions. This is equivalent to an important pruning of the search space. In that re-
spect domFD is close to impact. However, its principle is the dynamic exploitation
of functional dependencies, not the explicit quantification of search space reduc-
tions. More generally, since DVO heuristics are all based on some understanding
of the fail-first principle they are all aiming at an important reduction of the search
space.

To improve SAT solving, [OGMS02] proposes a new pre-processing step that
exploits the structural knowledge that is hidden in a CNF formula. It delivers
a hybrid formula made of clauses together with a set of equations of the form
y = f (x1, . . . , xn). This set of functional dependencies is then exploited to elim-
inate clauses and variables, while preserving satisfiability. This work detects real
functions while our heuristic observes weak dependencies. Moreover, it uses a pre-
processing step while we perform our learning during constraint propagation.

5.3 Technical Background

In this section, we briefly introduce definitions and notation used hereafter.

Definition 5.1 A Constraint Satisfaction Problem (CSP) is a triple (X,D,C)

where:

• X = {X1,X2, . . . ,Xn} represents a set of n variables.
• D = {D1,D2, . . . ,Dn} represents the set of associated domains, i.e., possible val-

ues for the variables.
• C = {C1,C2, . . . ,Cm} represents a finite set of constraints.

Each constraint Ci is associated to a set of variables vars(Ci), and is used to
restrict the combinations of values between these variables. Similarly, each vari-
able Xi is related to a set of constraints prop(Xi). The arity of a constraint Ci cor-
responds to |vars(Ci)|, and the degree of a variable Xi corresponds to |prop(Xi)|.
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Fig. 5.1 Classic propagation
engine

1: Q = {p1,p2, . . .}
2: while Q = {} do
3: p = choose(Q);
4: run(p);
5: for all Xi ∈ vars(p) s.t. Di was narrowed do
6: schedule(Q,p,Xi );
7: end for
8: end while

Solving a CSP involves the finding of a solution, i.e., an assignment of values to
variables such that all the constraints are satisfied. If a solution exists, the problem
is stated as satisfiable, and as unsatisfiable otherwise.

A depth-first search backtracking algorithm can be used to tackle CSPs. At each
step a value is assigned to some variable. Each assignment is combined with a look-
ahead process called constraint propagation which can reduce the domains of the
remaining variables. Constraint propagation is usually based on some constraint
network property which determines its locality and therefore its computational cost.
Arc-consistency is widely used, and the result of its combination with backtrack
search is called MAC, for Maintaining Arc-Consistency [SF94].

Figure 5.1 describes a classic constraint propagation engine [SC06]. In this al-
gorithm, constraints are managed as propagators1 in a propagation queue, Q. This
structure represents the set of propagators that need to be revised. Revising a prop-
agator corresponds to the enforcement of some consistency level on the domains of
the associated variables.

Initially, Q is set to the entire set of constraints. This is used to enforce the arc-
consistency property before the search process. During depth-first exploration, each
decision is added to an empty queue, and propagated through this algorithm.

The function choose removes a propagator p ∈ Q, run applies the filtering algo-
rithm associated to p, and schedule adds prop(Xi) to Q. The algorithm terminates
when the queue is empty. A fix-point is reached and more propagations can only
appear as the result of a tree-based decision.

Definition 5.2 f (X,y) is a functional dependency between the variables in the
set X and the variable y if and only if for each combination of values in X there is
precisely one value for y satisfying f .

Many constraints of arity k can be seen as functional dependencies between
a set of k − 1 variables and some remaining variable y. For instance, the arith-
metic constraint X + Y = Z gives the dependencies f ({X,Y },Z), f ({X,Z}, Y ),
and f ({Y,Z},X). There are also many exceptions like the constraint X = Y ,
where in the general case, one variable is not functionally dependent of the other
one.

1In the following, we will use this as a synonym for constraints.
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5.4 Exploiting Weak Dependencies in Tree-Based Search

5.4.1 Weak Dependencies

Our objective is to take advantage of functional dependencies during search. We
propose to heuristically discover a weaker form of relation called weak dependency
between pairs of variables. A weak dependency is observed when a variable gets
instantiated as the result of another instantiation. Our new DVO heuristic records
these weak dependencies and exploits them to prioritize the variables during the
search process.

Definition 5.3 During constraint propagation with the algorithm presented in
Fig. 5.1, we call (X,Y ) a weak dependency if the two following conditions hold:

1. Y is instantiated as the result of the execution of a propagator p.
2. p is inserted in Q as the result of the instantiation of X.

Property 5.1 Weak dependency relations (X,Y ) can be recorded as the result of
the execution of a propagator p iff X ∈ vars(p) and Y ∈ vars(p).

The proof is straightforward if we consider the algorithm presented in Fig. 5.1.

5.4.2 Example

To illustrate our definition, we consider the following set of constraints:

• p1 ≡ X1 + X2 < X3
• p2 ≡ X1 = X4
• p3 ≡ X4 = X5

With the domains, D1 = D2 = D4 = D5 = {0,1} and D3 = {1,2}.
The initial filtering does not remove any value and the search process has to

be started. Assuming that the search is started on X1 with value 1, the propagator
X1 = 1 is added to Q, and after its execution the domain D1 has narrowed, it is
necessary to schedule p1 and p2.

Running p1 sets X2 to 0, and X3 to 2, and gives the weak dependencies (X1,X2)

and (X1,X3). Afterwards, p2 sets X4 to 0, which corresponds to (X1,X4). Finally,
the narrowing of D4 schedules p3, which sets X5 to 1, and gives the weak depen-
dency (X4,X5).

Weak dependencies are binary; therefore they only roughly approximate func-
tional dependencies. For example, with the constraint X + Y = Z they will never
record ({X,Y },Z). On the other hand weak dependencies exploit the current do-
mains of the variables and can record relations which are not true in general but
hold in particular cases. For instance, the propagator p3 above creates (X4,X5).
This represents a real functional dependency since the domains of the variables are
binary and equal.
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Fig. 5.2 Variables and
propagators

Fig. 5.3 Schedule(Queue Q,
Propagator p, Variable Xi )

1: enqueue(Q, prop(Xi ));
2: if |Di | = 1 then
3: dependencies(p.assigned, Xi );
4: for all p′ in prop(Xi ) do
5: p′.assigned.add(Xi );
6: end for
7: end if

5.4.3 Computing Weak Dependencies

We can represent weak dependencies as a weighted digraph relation among the vari-
ables of the problem, where the nodes of the graph are the variables and the edges
indicate weak dependency relations between two variables, i.e, when there is an
edge between two variables X and Y , the direction of the edge shows the relation
and its weight indicates the number of observed occurrences of that relation.

In a propagation-centered approach [LS07] each variable has a list of dependent
propagators and each propagator knows its variables (see Fig. 5.2).

In this way, once the domain of a variable is narrowed it is necessary to schedule
its associated propagators in the propagator pool. Since we are interested in cap-
turing weak dependencies, we have to track the reasons for constraint propagation.
More specifically, when a propagator gets activated as the result of the direct as-
signment of some variable, we need to keep a reference to that variable. Since the
assignment of several variables can activate a propagator, we might have to keep
several references.

A modified schedule procedure is shown in Fig. 5.3. The algorithm starts by en-
queueing all the propagators associated to a given variable Xi in the propagators
pool. If the propagator p was called as the result of the assignment of Xi (|Di | = 1),
a weak dependency is created between each variable of the set p.assigned and Xi .
Variables from this set are the ones whose assignment was the reason for propa-
gating p. After that, a reference to Xi is added to its propagators prop(Xi). This is
done to ensure that if these propagators assign other variables, a subsequent call to
the schedule procedure will be able to create dependencies between Xi and these
variables.

5.4.4 The domFD Dynamic Variable Ordering

In the previous section, we have seen that a generic constraint propagation algorithm
can be modified to compute weak dependencies. As we pointed out above, weak
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dependencies can be seen as a weighted digraph relation among the variables. Using
this graph, we propose to define a function FD(Xi) which computes the out-degree
weight of a variable Xi taking into account only uninstantiated variables.

FD(Xi) =
∑

Xj ∈Γ +(Xi)

weight(Xi,Xj ) (5.1)

where Γ +(x) (resp. Γ −(x)) represents the set of outgoing (resp. ingoing) edges
from (resp. to) x in the graph of dependencies. It is also important to note that when
there is no outgoing edge associated to Xi we assume FD(Xi) = 1.

Given the definition of FD, we define domFD, a new DVO heuristic based on
both, the observed weak dependencies of the problem and the well-known fail-first
mindom heuristic:

domFD(Xi) = |Xi |
FD(Xi)

(5.2)

Then, the heuristic selects the variable whose domFD value is minimal.

5.4.5 Complexities of domFD

Space We know from Property 5.1 that dependencies are created between vari-
ables which share a constraint. Therefore, computing the weak dependency graph
requires in the worst case a space proportional to the space used for the representa-
tion of the problem. Assuming n variables and m constraints, the space is propor-
tional to n + m.

Time The computation of weak dependencies is tightly linked to constraint prop-
agation. The original schedule procedure only enqueues the propagators related to
Xi in Q; therefore its original cost is O(m). Our new procedure creates dependen-
cies each time a variable gets instantiated. Dependencies between variables can be
recorded as the result of the instantiation of one or several variables. In the latter
case, up to n − 1 dependencies can be created since the instantiation of up to n − 1
variables can be responsible for the scheduling of the current propagator (line 3 in
the algorithm of Fig. 5.3). Once dependencies are created, the propagators associ-
ated to Xi need to reference it. Here the cost is bounded by m. Overall, the time
complexity of the new schedule procedure is O(n + m).

We now have to consider the cost of maintaining the weak dependency graph.
Since our heuristic only considers the weights related to the variables which are
not instantiated we have to disconnect variables from the graph when they get a
value, and we have to reconnect them when the search backtracks. This can be done
incrementally.

Practically, we do not have to physically remove a variable from the dependency
graph; we can just offset the weight of the recorded dependencies between other
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variables and that variable. For instance, when Xi gets instantiated as the result of
a tree decision or as the result of constraint propagation, we only need to update
the out degrees of variables Xj ∈ Γ −(Xi). The update is done by decreasing their
associated counter Xj .FD by weight(Xj ,Xi). These counters represent the number
of times the weak dependency (Xj ,Xi) was observed during the search process.
During backtracking, Xi gets back its domain, and we just have to “reconnect” the
associated Xj ∈ Γ −(Xi) by adding weight(Xj ,Xi) to Xj .FD. Since a variable can
be linked to m propagators, an update of the dependency graph costs O(m). In the
worst case, each branching holds no propagation and therefore at each node, the cost
of updating the dependency graph is O(m).

Finally, selecting the variable which minimizes domFD can cost an iteration over
n variables if no special data structure is used.

Now if we consider all the operations, constraint propagation with the new sched-
ule procedure, disconnecting a single variable, and selection of the variable which
minimizes domFD, we have O(n + m) instead of O(m) initially.

5.5 Experiments

In this section, we propose to study the performance of domFD when compared to
dom-wdeg, a recently introduced heuristic able to focus on the difficult parts of a
problem [BHLS04].

In dom-wdeg, the priority is given to variables which are frequently involved
in failed constraints. A weight is added to each constraint and updated (i.e, incre-
mented by 1) each time a constraint fails. Using this value variables are selected
based on their domain size and their total associated weight. Xi , the selected vari-
able, minimizes dom-wdeg(Xi) = |Xi |/∑

c∈prop(Xi)
weight(c).

This heuristic is used in the Abscon solver, which appeared to be the most robust
in a recent CSP competition,2 where it finished one time first, three times second,
3 times third, and three times fourth, when compared against 15 other solvers.

To compare domFD against the powerful dom-wdeg, we implemented them in
Gecode-2.0.1 [Gec06] and used them to tackle several problems. Since Gecode is
now widely used, we decided to take from the Internet problems already encoded
for the Gecode library. We paid attention to the fact that overall our problems cover
a large set of Gecode’s constraints.

We used 35 instances coming from nine different benchmark families. They in-
volve satisfaction, counting, and optimization problems. They were solved using
the default Gecode’s branch-and-prune strategy, and a modified restart technique
based on the default strategy. In the tests, the value selection ordering was Gecode’s
INT_VAL_MIN, which returns the minimal value of a domain. All the experi-
ments were performed on a MacBook Pro 2.4 GHz Intel Core 2 Duo, under Ubuntu
Linux 7.10 and gcc version 4.0.1. A time-out (TO) of 10 minutes was used for each
experiment.

2http://www.cril.univ-artois.fr/CPAI06/round2/results/ranking.php?idev=6.

http://www.cril.univ-artois.fr/CPAI06/round2/results/ranking.php?idev=6
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5.5.1 The Problems

In the following, we list the different benchmark families. When they are described
on www.csplib.org, we only present the number in the library. Note that for all prob-
lems (except Quasigroup) the model and its implementation are the ones proposed
in the Gecode examples.3

• Quasigroup, qwh, problem 3 of CSPLib.
• Golomb ruler, gol-rul, problem 6 of CSPLib.
• All-interval, all-int, problem 7 of CSPLib.
• Nonogram, nono, problem 12 of CSPLib.
• Magic-square, magic-squ, problem 19 of CSPLib.
• Langford number, lfn, problem 24 of CSPLib.
• Sports league tournament, sport-lea, problem 26 of CSPLib.
• Balanced Incomplete Block Design, bibd, problem 28 of CSPLib.
• Crowded-chess, crow-ch; this problem consists in arranging n queens, n rooks,

2n − 1 bishops and k knights on an n × n chessboard, so that queens cannot at-
tack each other, no rook can attack another rook and no bishop can attack another
bishop. Note that two queens (in general two pieces of the same type) are attack-
ing each other even if there is a bishop (in general another piece of different type)
between them.

When an instance is solved, the number of nodes in the tree(s), the number of
fails and the time in seconds are reported. If the 10 minutes time-out is reached, TO
is reported.

5.5.2 Searching for All Solutions or for an Optimal Solution

The first part of Table 5.1 presents results related to the finding of all the solutions of
all-interval problems of order 11 to 14. We can observe that the trees generated with
domFD are usually far smaller than the ones generated by dom-wdeg. Most of the
time, domFD runtime is also better. However, the time per node is more important
for our heuristic. For instance, on all-int-14, dom-wdeg does 89,973 nodes/s while
domFD runs at 54,122 nodes/s.

The second part of the table presents results for the optimal Golomb rulers of
orders 10 to 12. Here, we can observe that order 10 is easier for dom-wdeg, but tree
sizes are comparable. Orders 11, and 12 give advantage to domFD, with far smaller
search trees and better runtimes. As before, the time per node is more important for
our heuristic (31,771 vs 35,852 on gol-rul-11).

3Available from http://www.gecode.org/gecode-doc-latest/group__ExProblem.html.

http://www.csplib.org
http://www.gecode.org/gecode-doc-latest/group__ExProblem.html


5.5 Experiments 79

Table 5.1 All solutions and optimal solution

Instance dom-wdeg domFD

#nodes #failures Time (s) #nodes #failures Time (s)

all-int-11 100844 50261 0.93 52846 26262 0.81

all-int-12 552668 276003 6.92 211958 105648 3.45

all-int-13 2.34M 1.17M 26.13 1.64M 821419 29.74

all-int-14 15.73M 7.86M 174.83 11.27M 5.63M 208.23

gol-rul-10 93732 46866 1.97 102910 51449 2.70

gol-rul-11 2.77M 1.38M 77.26 1.77M 889633 55.71

gol-rul-12 12.45M 6.22M 404.92 6.97M 3.48M 266.28

Table 5.2 First solution, branch-and-prune strategy

Instance dom-wdeg domFD

#nodes #failures Time (s) #nodes #failures Time (s)

qwh-30-316-1 1215 603 0.22 234 115 0.32

qwh-30-316-2 48141 24063 8.09 10454 5220 3.62

qwh-30-316-3 6704 3347 1.11 2880 1437 1.15

bibd-7-3-2 100 39 0.01 65 28 0.01

bibd-7-3-3 383 180 0.03 96 42 0.01

bibd-7-3-4 – – TO 132 56 0.03

lfn-3-9 168638 84316 6.16 7527 3760 0.26

lfn-2-19 – – TO 1.64M 822500 43.05

lfn-3-10 2.21M 1.10M 87.15 12440 6218 0.46

nono-5 1785 879 0.12 491 239 0.11

nono-8 17979 8983 3.54 1084 537 0.54

nono-9 248 115 0.04 120 58 0.12

5.5.3 Searching for a Solution with a Classical Branch-and-Prune
Strategy

Experiments related to the finding of a first solution are presented in Table 5.2.
They show results for, respectively, quasigroups, balance incomplete block design,
Langford numbers, and nonograms.

Quasigroups Three instances of order 30 with 316 unassigned positions were
produced with the generator presented in [AGKS00]. On these instances, domFD
always generates smaller search trees. When this difference is large enough e.g.,
second instance, the runtime is also better.
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Balance Incomplete Block Design Our heuristic always explores smaller trees,
which allows better runtimes. Interestingly the third instance is solved in 0.03 sec-
onds by domFD while dom-wdeg cannot solve it in 10 minutes.

Langford Numbers On these problems, domFD is always superior to dom-wdeg.
For instance, lfn-3-10 can be solved by both heuristics but the performance of
domFD is far better: 190 times faster.

Nonograms Table 5.2 shows results for the nonogram problem. Three instances
of orders 5, 8, and 9 were generated. Here again, the trees are systematically smaller
with domFD and when the difference is large enough runtimes are always better.

5.5.4 Searching for a Solution with a Restart-Based
Branch-and-Prune Strategy

Restart-based searches are very efficient since they can alleviate the effects of early
bad decisions. Therefore, it is important to test our new heuristic with a restart strat-
egy.

A restart is done when some cutoff limit in the number of fails is met, i.e., at
some node in a tree. There, the actual domFD graph is stored and used to start the
next tree-based search. This allows the early selection of well-ranked variables. The
same technique is used with dom-wdeg, and the next search tree can branch early
on well-ranked variables.

This part presents results with a restart-based branch-and-prune strategy where
the cutoff value used to restart the search was initially set to 1,000, and the cutoff
increase policy to ×1.2. The same 10 minutes timeout was used.

Table 5.3, presents the results for magic square, crowded chess, sports league
tournament, quasigroup, and bibd problems.

Magic Square Instances of orders 5 to 11 were solved. Clearly, domFD is the only
heuristic able to solve large orders within the time limit. For example, dom-wdeg
cannot deal with orders greater than 8, while our technique can. The reduction in the
search tree sizes is very significant, e.g., on mag-squ-8, dom-wdeg develops 35.18M
nodes and domFD 152,466, which allows it to be more than 100 times faster.

Crowded Chess As before, domFD can tackle large problems while dom-wdeg
cannot.

Sports League Tournament If we exclude the last instance, domFD is always
better than dom-wdeg.

Quasigroups Here, on most problems, domFD generates smaller search trees, and
can return a solution more quickly. On the hardest problem (order 35), domFD is
nearly two time faster.
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Table 5.3 First solution, restart-based strategy

Instance dom-wdeg domFD

#nodes #failures Time (s) #nodes #failures Time (s)

mag-squ-5 2239 1113 0.02 3025 1505 0.06

mag-squ-6 33238 16564 0.32 4924 2440 0.08

mag-squ-7 9963 4868 0.20 33422 16614 0.86

mag-squ-8 35.18M 17.59M 460.40 152446 75987 4.51

mag-squ-9 – – TO 66387 32951 1.64

mag-squ-10 – – TO 83737 41607 2.17

mag-squ-11 – – TO 8.52M 4.26M 374.62

crow-ch-7 2029 1002 0.04 3340 1656 0.22

crow-ch-8 16147 8036 0.67 2041 1002 0.14

crow-ch-9 129827 64788 6.15 228480 114089 37.97

crow-ch-10 – – TO 1134052 566761 263.01

sports-lea-14 4746 2327 0.68 4814 2359 0.65

sports-lea-16 28508 14073 4.05 3913 1912 0.61

sports-lea-18 546475 272510 101.70 51680 25549 10.72

sports-lea-20 182074 90355 36.69 2.07M 1.03M 514.18

qwh-30-316-1 1215 603 0.22 234 115 0.32

qwh-30-316-2 118348 59104 20.06 8828 4397 2.7

qwh-30-316-3 8944 4451 1.68 3114 1552 1.01

qwh-35-405 2.38M 1.19M 562.62 475053 237369 236.05

bibd-7-3-2 100 39 0.01 65 28 0.01

bibd-7-3-3 383 180 0.03 96 42 0.01

bibd-7-3-4 6486 3210 0.79 132 56 0.03

Balanced Incomplete Block Design Here domFD performs very well, with both
smaller search trees and small runtime.

5.5.5 Synthesis

Table 5.4 summarizes the performance of the heuristics. These results were gener-
ated by only taking into account the problems which can be solved by both domFD
and dom-wdeg i.e., we removed six instances which cannot be solved by dom-wdeg.

We can observe that the search trees generated by domFD are on the average
three times smaller. The difference in the number of fails is similar. Finally, even if
domFD is two times slower on the time per node, it is 31 % faster overall.
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Table 5.4 Synthesis of the
experiments Heuristic average

#nodes #failures Time (s) Nodes/s

dom-wdeg 2.14M 1.07M 56.99 37664

domFD 717202 358419 39.53 18139

Technically, our integration into Gecode is quite straightforward and not particu-
larly optimized. For instance we use Leda,4 an external library to maintain the graph,
while a bespoke light class with the right set of features should be used. The way we
record weak dependencies is also not optimized and requires extra data structures
whose accesses could be easily improved, e.g., the assigned list of variables shown
in the algorithm of Fig. 5.3. For all this, we think that it must be possible to increase
the speed of our heuristic by some factor.

We also did some experiments to see if the computation of domFD could be
cheaply approximated. We used a counter with each variable to record the number
of times that variable was at the origin of a weak dependency. This represents an
approximation of domFD since the counter considers dependencies on instantiated
variables. Unfortunately, this fast approximation is always beaten by domFD on
large instances.

5.6 Summary

In this work, our goal was to heuristically discover a simplified form of functional
dependencies between variables called weak dependencies. Once discovered, these
relations are used to rank the branching variables. More precisely, each time a vari-
able y gets instantiated as a result of the instantiation of x, a weak dependency (x, y)

is recorded. As a consequence, the weight of x is raised, and the variable becomes
more likely to be selected by the variable ordering heuristic.

Experiments done on 35 problems coming from nine benchmark families showed
that on the average domFD reduces search trees by a factor of 3 and runtime by
31 % when compared against dom-wdeg, one of the best dynamic variable ordering
heuristics. domFD is also more expensive to compute since it puts some overhead
on the propagation engine. However, it seems that our implementation can be im-
proved, for example, by using incremental data structures to record potential depen-
dencies in the propagation engine.

Our heuristic learns from successes, allowing a quick exploitation of the solver’s
work. In a way, this is complementary to dom-wdeg which learns from failures.
Moreover, both techniques rely on the computation of mindom. Combining their
respective strengths seems obvious but is not straightforward.

4www.algorithmic-solutions.com.

http://www.algorithmic-solutions.com


Chapter 6
Continuous Search

6.1 Introduction

In the previous chapters, we have seen that portfolios of algorithms can positively
impact the robustness of search. In Chap. 2, our portfolio was using multiple variable
ordering heuristics whose executions were interleaved at the agent level. In Chaps. 3
and 4, we moved to fully fledged parallelism with portfolios of parallel CDCL and
local search solvers competing and cooperating to tackle a given SAT instance. Fi-
nally, in Chap. 5 we have seen that we can incrementally learn an ordering of the
variables based on their observed interactions.

The present chapter shows how to improve performance by considering a set of
instances. It considers a situation where a given Constraint Programming engine
is used to successively solve problems coming from a given application domain.
The objective is to incrementally learn a predictive model able to accurately match
instance features to good solver’s parameters. The learning is possible thanks to
the relative coherence of the instances, and the goal is to eventually achieve top
performance for the underlying application domain.

In Constraint Programming, properly crafting a constraint model which captures
all the constraints of a particular problem is often not enough to ensure acceptable
runtime performance. Additional tricks, e.g. adding redundant and channeling con-
straints, or using some global constraint (depending on your constraint solver) which
can efficiently do part of the job, are required to achieve efficiency. Such tricks are
far from being obvious, unfortunately; they do not change the solution space, and
users with a classical mathematical background might find it hard to see why adding
redundancy helps.

For this reason, users are often left with the tedious task of tuning the search
parameters of their constraint solver, and this, again, is both time consuming and
not necessarily straightforward. Parameter tuning indeed appears to be conceptu-
ally simple ((i) try different parameter settings on representative problem instances,
(ii) pick up the setting yielding best average performance). Still, most users would
easily consider instances which are not representative of their problem, and get mis-
led.

Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_6, © Springer-Verlag Berlin Heidelberg 2013
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The goal of the work presented in this chapter is to allow any user to eventu-
ally get their constraint solver achieving a top performance on their problems. The
proposed approach is based on the original concept of Continuous Search (CS),
gradually building a heuristics model tailored to the user’s problems, and mapping
a problem instance onto some appropriate parameter setting. A main contribution
compared to the state-of-the art (see [SM08] for a recent survey; more in Sect. 6.4)
is relaxing the requirement of a large set of representative problem instances hav-
ing to be available beforehand to support offline training. The heuristics model is
initially empty (set to the initial default parameter setting of the constraint solver)
and it is enriched according to a lifelong learning approach, exploiting the problem
instances submitted by the user to the constraint solver.

Formally, CS interleaves two functioning modes. In production or exploitation
mode, the instance submitted by the user is processed by the constraint solver; the
current heuristics model is used to parameterize the constraint solver depending on
the instance at hand. In learning or exploration mode, CS reuses the last submitted
instance, running other heuristics than the one used in production mode in order
to find which heuristics would have been most efficient for this instance. CS thus
gains some expertise relative to this particular instance, which is used to refine the
general heuristics model through machine learning (Sect. 6.3.2). During the explo-
ration mode, new information is thus generated and exploited in order to refine the
heuristics model, in a transparent manner: without requiring the user’s input and by
only using the idle computer’s CPU cycles.

We claim that the CS methodology is realistic (most computational systems are
always on, especially production ones, and most systems waste a large amount of
CPU cycles) and compliant with real-world settings, where the solver is critically
embedded within large and complex applications. The CS computational cost must
be balanced against the huge computational cost of offline training [XHHLB07,
HHHLB06, HH05]. Finally, lifelong learning appears to be a good way to construct
an efficient and agnostic heuristics model and to be able to adapt to new modeling
styles or new classes of problem [AHS10, AHS09].

6.2 Related Work

This section briefly reviews and discusses some related works devoted to heuristic
selection within CP and SAT solvers.

SATzilla [XHHLB07] is a well-known SAT portfolio solver which is built upon
a set of features. Roughly speaking SATzilla includes two kinds of basic features:
general features such as number of variables, number of propagators, etc. and local
search features which actually probe the search space in order to estimate the dif-
ficulty of each problem-instance for a given algorithm. The goal of SATzilla is to
learn a runtime prediction function by using a linear regression model. Along the
same lines, Haim et al. in [HW09] build the portfolio taking into account several
restart policies for a set of well-known SAT solvers.
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CPHydra [OHH+08] is a portfolio approach based on case-based reasoning; it
maintains a database with all solved instances (so-called cases). Later on, once a
new instance I arrives, a set of similar cases C is computed, and based on C it builds
a switching policy selecting a set of CSP solvers that maximizes the possibilities of
solving I within a given amount of time.

The approach most similar to the presented one is that of [SM07], who likewise
apply machine learning techniques to perform online combination of heuristics into
search tree procedures. Unfortunately, this work requires an important number of
training instances to build a model with a good generalization property.

In [CB05] low knowledge is used to select the best algorithm in the context of
optimization problems; this work assumes a black-box optimization scenario where
the user has no information about the problem or even about the domain of the
problem, and the only known information is the output (i.e., solution cost for each
algorithm in the portfolio). Unfortunately this mechanism is only applicable to op-
timization problems and cannot be used to solve CSPs.

The purpose of The Adaptive Constraint Engine (ACE) [EFW+02] is to unify the
decisions of several heuristics in order to guide the search process. In this way, each
heuristic votes for a possible variable/value decision to solve a CSP. Afterwards,
a global controller selects the most appropriate variable/value pair according to pre-
viously (offline) learnt weights associated to each heuristic. The authors however
did not present any experimental scenario taking into account any restart strategy,
although these nowadays are an essential part of constraint solvers.

Combining Multiple Heuristics Online [SGS07] and Portfolios with Deadlines
[WvB08] are designed to build a scheduler policy in order to switch the execution
of black-box solvers during the resolution process. However, in these papers the
switching mechanism is learnt/defined beforehand, while our approach relies on the
use of machine learning to switch the execution of heuristics on the fly.

Finally, in [AST09] and [HHLBS09] the authors studied the automatic configu-
ration problem whose objective is to find the best parameters of a given algorithm
in order to efficiently solve a class of problems.

6.3 Technical Background

6.3.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a triple (X,D,C) where X represents a
set of variables, D a set of associated domains (i.e., possible values for the variables)
and C a finite set of constraints.

Solving a CSP involves finding a solution, i.e., an assignment of values to vari-
ables such that all constraints are satisfied. If a solution exists the problem is stated
as satisfiable, and as unsatisfiable otherwise. A depth-first search backtracking algo-
rithm can be used to tackle CSPs. At each step of the search, an unassigned variable
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X and a valid value v for X are selected; the exploration of variables/values is com-
bined with a look-ahead strategy able to narrow the domains of the variables and
reduce the remaining search space through constraint propagation. Restarting the
search engine [GSK98, KHR+02] helps to reduce the effects of early mistakes in
the search process. A restart is done when some cutoff limit in the number of fail-
ures (backtracks) is met (i.e., at some point in the search tree); before restarting the
search each heuristic stores its ranking metrics in order to start the next tree-based
search.

In this work, we consider five well-known variable selection heuristics. min-
dom [HE79] selects the variable with the smallest domain, wdeg [BHLS04] se-
lects the variable which is involved in the highest number of failed constraints,
dom-deg selects the variable which minimizes the ratio dom

deg , dom-wdeg [BHLS04]

selects the variable which minimizes the ratio dom
wdeg and impacts [Ref04] selects

the (variable, value) pair which maximizes the reduction of the remaining search
space. While only deterministic heuristics will be considered, the proposed approach
can be extended to randomized algorithms by following the approach proposed in
[HHHLB06].

6.3.2 Supervised Machine Learning

Supervised machine learning exploits data labeled by the expert to automatically
build hypotheses emulating the expert’s decisions [Vap95]. Only the binary clas-
sification case will be considered in the following. Formally, a learning algorithm
processes a training set E = {(xi, yi), xi ∈ Ω,yi ∈ {1,−1}, i = 1 . . . n} made of n

examples (xi, yi), where xi is the example description (e.g. a vector of values,
Ω = R

d ) and yi is the associated label; example (x, y) is referred to as positive
(respectively, negative) iff y is 1 (resp., −1). The learning algorithm outputs a hy-
pothesis f : Ω �→ Y associating to each example description x a label y = f (x) in
{1,−1}. Among ML applications are pattern recognition, ranging from computer
vision to fraud detection [LB08], game playing [GS07], or autonomic computing
[RBea05].

Among the prominent ML algorithms are Support Vector Machines (SVMs)
[CST00]. Linear SVM considers real-valued positive and negative instances
(Ω = R

d ) and constructs the separating hyperplane which maximizes the margin,
i.e., the minimal distance between the examples and the separating hyperplane. The
margin maximization principle provides good guarantees about the stability of the
solution and its convergence towards the optimal solution when the number of ex-
amples increases.

The linear SVM hypothesis f (x) can be described from the sum of the scalar
products of the current instance x and some of the training instances xi , called sup-
port vectors:

f (x) = 〈w,x〉 + b =
∑

αi〈xi, x〉 + b
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Fig. 6.1 Continuous search
scenario

The SVM approach can be extended to non-linear spaces, by mapping the in-
stance space Ω into a more expressive feature space Φ(Ω). This mapping is made
implicit through the so-called kernel trick, by defining K(x,x′) = 〈Φ(x),Φ(x′)〉; it
preserves all good SVM properties provided the kernel is positive definite. Among

the most widely used kernels are the Gaussian kernel (K(x,x′) = exp{−‖x−x′‖2

σ 2 })
and the polynomial kernel (K(x,x′) = (〈x, x′〉 + c)d ). More complex separating
hypotheses can be built on such kernels,

f (x) =
∑

αiK(xi, x) + b

using the same learning algorithm core as in the linear case. In all cases, a new
instance x is classified as positive (respectively negative) if f (x) is positive (resp.
negative).

6.4 Continuous Search in Constraint Programming

The Continuous Search paradigm, illustrated in Fig. 6.1, considers a functioning
system governed from a heuristics model (which could be expressed, e.g., as a set
of rules, a knowledge base, or a neural net). The goal of continuous search is to
exploit the problem instances submitted to the system in a two-step process:

1. Exploitation mode: unseen problem instances are solved using the current heuris-
tics model.

2. Exploration mode:

(a) these instances are solved with other heuristics, yielding new information.
This information associates to the description x of the example (accounting
for the problem instance and the heuristics) a Boolean label y (the heuristics
improves/does not improve on the current heuristics model);

(b) the training set E , augmented with these new examples (x, y), is used to
revise or relearn the heuristics model.

The Exploitation or production mode (step 1) aims at solving new problem in-
stances as quickly as possible. The Exploration or learning mode (steps 2 and 3)
aims at learning a more accurate heuristics model.

Definition 6.1 A continuous search system is endowed with a heuristics model,
which is used as is to solve the current problem instance in production mode, and
which is improved using the previously seen instances in learning mode.
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Fig. 6.2 dyn-CS: selecting
the best heuristic at each
restart point

Initially, the heuristics model of a continuous search system is empty, that is, it is
set to the default settings of the search system. In the proposed CS-based constraint
programming, the default setting is a given heuristic noted DEF in the following
(Sect. 6.5). Assumedly, DEF is a reasonably good strategy on average; the chal-
lenge is to improve on DEF for the particular types of instances which have been
encountered in production mode.

6.5 Dynamic Continuous Search

The Continuous Search paradigm is applied to a restart-based constraint solver,
defining the dyn-CS algorithm. After a general overview of dyn-CS, this section
details the different modules thereof.

Figure 6.2 depicts the general scheme of dyn-CS. The constraint-based solver
involves several restarts of the search. A restart is launched after the number of
backtracks in the search tree reaches a user-specified threshold. The search stops
after a given time limit. Before starting the tree-based search and after each subse-
quent restart, the description x of the problem instance is computed (Sect. 6.5.1).
We will call checkpoints the calculations of these descriptions.

In production mode, the heuristics model f is used to compute the heuristic f (x)

to be applied for the entire checkpoint window, i.e., until the next restart. Not to be
confused with the choice point which selects a variable/value pair at each node in
the search tree, dyn-CS selects the most promising heuristic at a given checkpoint
and uses it for the whole checkpoint window. In learning mode, other combina-
tions of heuristics are applied (Sect. 6.5.4) and the eventual result (depending on
whether the other heuristics improved on heuristics f (x)) leads to building training
examples (Sect. 6.5.3). The augmented training set is used to relearn the heuristics
model f (x).

6.5.1 Representing Instances: Feature Definition

At each checkpoint (or restart), the description of the problem instance is computed,
including static and dynamic features.

While a few of these descriptors had already been used in SAT portfolio solvers
[HHHLB06, XHHLB07], many descriptors had to be added as CSPs are more di-
verse than SAT instances: SAT instances only involve Boolean variables and clauses,
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contrasting with CSPs using variables with large domains, and a variety of con-
straints and pruning rules.

Static Features Static features encode the general description of a given problem
instance; they are computed once for each instance as they are not modified along
the resolution process. The static features also allow one to discriminate between
types of problems, and different instances.

• Problem definition (four features): Number of variables, constraints, variables as-
signed/not assigned at the beginning of the search.

• Variable size information (six features): Size prod, sum, min, max, mean
and variance of the variable domain size.

• Variable degree information (eight features): min, max, mean and variance
of the variable degree (resp. variable domain/degree).

• Constraint information (six features): The degree (or arity) of a given constraint
c is represented by the total number of variables involved in c. Likewise the size
of c is represented by the product of its corresponding variable domain sizes.
Taking into account this information, the following features are computed min,
max, mean of constraint sizes and degrees.

• Filtering cost category (eight features): Each constraint c is associated a cate-
gory.1 In this way, we compute the number of constraints for each category. Intu-
itively each category represents the implementation cost of the filtering algorithm.
Cat = {Exponential,Cubic,Quadratic,Linear expensive,Linear cheap,Ternary,
Binary,Unary}, where Linear expensive (resp. cheap) indicates the complexity
of a linear equation constraint and the last three categories indicate the number
of variables involved in the constraint. More information about the filtering cost
category can be found in [Gec06].

Dynamic Features Two kinds of dynamic features are used to monitor the per-
formance of the search effort at a given checkpoint: global statistics describe the
progress of the overall search process; local statistics check the evolution of a given
strategy.

• Heuristic criteria (15 features): each heuristic criterion (e.g., wdeg, dom-wdeg,
impacts) is computed for each variable; their prod, min, max, mean and vari-
ance over all variables are used as features.

• Constraint weight (12 features): likewise report the min, max, mean and vari-
ance of all constraint weights (i.e., constraint wdegs). Additionally the mean for
each filtering cost category is used as a feature.

• Constraint information (three features): min, max and mean of constraint run-
prop, where run-prop indicates the number of times the propagation engine has
called the filtering algorithm of a given constraint.

1Out of eight categories, detailed in http://www.gecode.org/doc-latest/reference/classGecode_
1_1PropCost.html.

http://www.gecode.org/doc-latest/reference/classGecode_1_1PropCost.html
http://www.gecode.org/doc-latest/reference/classGecode_1_1PropCost.html
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• Checkpoint information (33 features): for every checkpointi relevant information
from the previous checkpointi−1 (when available) is included into the feature
vector. From checkpointi−1 we include the total number of nodes and maximum
search depth. From the latest non-failed node, we consider the total number of
assigned variables, the satisfied constraints, the sum of variables wdeg (resp. sizes
and degree) and the product of variable degrees (resp. domain, wdeg and impact)
of unassigned variables. Finally, using the previous 11 features the mean and
variance is computed taking into account all visited checkpoints.

The attributes listed above include a collection of 95 features.

6.5.2 Feature Pre-processing

Feature pre-processing is an important first step in machine learning [WF05]; it can
significantly improve the predictive accuracy of the learned hypothesis. Typically,
the descriptive features detailed above are on different scales; the number of vari-
ables and/or constraints can be high while the impact of (variable, value) is between
0 and 1. A data normalization step, scaling down feature values in [−1,1] (MinMax-
normalization), is used.

Although selecting the most informative features might improve the perfor-
mance, in this work we do not consider any feature selection algorithm, and only
features that are constant over all examples are removed as they offer no discrimi-
nant information.

6.5.3 Learning and Using the Heuristics Model

The selection of the best heuristic for a given problem instance is formulated as
a binary classification problem, as follows. Let H denote the set of k candidate
heuristics, two particular elements in H being DEF (the default heuristics yielding
reasonably good results on average) and dyn-CS, the (dynamic) ML-based heuristics
model initially set to DEF.

Definition 6.2 Each training example pi = (xi, yi) is generated by applying some
heuristic h (h ∈ H, h = dyn-CS) at some checkpoint in the search tree of a given
problem instance. Description xi (∈R

97) is made of the static feature values describ-
ing the problem instance, the dynamic feature values computed at this checkpoint
and describing the current search state, and two additional features: checkpoint-id
gives the number of checkpoints up to now and cutoff-information gives the cutoff
limit of the next restart. The associated label yi is positive iff the associated run-
time (using heuristic h instead of dyn-CS at the current checkpoint) improves on
the heuristics model-based runtime (using dyn-CS at every checkpoint); otherwise,
label yi is negative.
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If the problem instance cannot be solved i.e., time out during the exploration and
exploitation modes whatever the heuristic used, it is discarded (since the associated
training examples do not provide any relevant information).

In production mode, the hypothesis f learned from the above training examples
(their generation is detailed in next subsection) is used as follows:

Definition 6.3 At each checkpoint, for each h ∈ H, the description xh and the as-
sociated value f (xh) are computed. If there exists a single h such that f (xh) is
positive, it is selected and used in the subsequent search effort. If there exist several
heuristics with positive f (xh), the one with maximal value is selected.2 If f (xh) is
negative for all h, the default heuristic DEF is selected.

6.5.4 Generating Examples in Exploration Mode

The Continuous Search paradigm uses the idle computer’s CPU cycles to explore
different heuristic combinations on the last seen problem instance, and see whether
one could have done better than the current heuristics model on this instance. The
rationale for this exploration is that improving on the last seen instance (albeit mean-
ingless from a production viewpoint since the user already got a solution) will de-
liver useful indications as to how to best deal with further similar instances. In this
way, the heuristics model will expectedly be tailored to the distribution of problem
instances actually dealt with by the user.

The CS exploration proceeds by slightly perturbing the heuristics model. Let
dyn-CS−i,h denote the policy defined as: use heuristics model dyn-CS at all check-
points except the i-th one, and use heuristic h at the i-th-checkpoint.

Algorithm 6.1 describes the proposed Exploration mode for Continuous Search.
A limited number (10) of checkpoints in the dyn-CS-based resolution of instance I
are considered (line 2); for each checkpoint and each heuristic h (distinct from
dyn-CS), a lesion study is conducted, applying h instead of dyn-CS at the i-th check-
point (heuristics model dyn-CS−i,h); the example (described from the i-th check-
point and h) is labeled positive iff dyn-CS−i,h improves on dyn-CS, and added to the
training set E ; once the exploration mode for a given instance is finished, the hypoth-
esis model is updated by retraining the SVM, including the feature pre-processing,
as stated in Sect. 6.5.2.

6.5.5 Imbalanced Examples

It is well-known that one of the heuristics often performs much better than the oth-
ers for a particular distribution of problems [CB08]. Accordingly, negative train-

2The rationale for this decision is that the margin, i.e., the distance of the example w.r.t. the sepa-
rating hyperplane, is interpreted as the confidence of the prediction [Vap95].
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Algorithm 6.1 Exploration-time (instance: I)
1: E = {} //initialize the training set
2: for all i in checkpoints(I) do
3: for all h in H do
4: Compute x describing the current checkpoint i and heuristic h

5: if h = dyn-CS then
6: Launch dyn-CS−i,h

7: Define y = 1 iff dyn-CS−i,h improves on dyn-CS and −1 otherwise
8: E ← E ∪ {x, y}
9: end if

10: end for
11: end for
12: return E

ing examples considerably outnumber the positive ones (it is difficult to improve
on the winning heuristics). This phenomenon, known as imbalanced distribution,
might severely hinder the SVM algorithm [AKJ04]. Two simple ways of enforc-
ing a balanced distribution in such cases, intensively examined in the literature and
considered in earlier work [AHS09], are to oversample examples in the minority
class (generating additional positive examples by Gaussianly perturbing the avail-
able ones) and/or undersample examples in the majority class.

Another option is to use prior knowledge to rebalance the training distribution.
Formally, instead of labeling an example positive (resp, negative) iff the associated
runtime is strictly less (resp. greater) than that of the heuristic model, we consider
the difference between the runtimes. If the difference is less than some tolerance
value dt , then the example is relabeled as positive.

The number of positive examples and hence the coverage of the learned heuristics
model increase with dt ; in the experiments (Sect. 6.6), dt is set to 1 minute iff time-
exploitation (time required to solve a given instance in production mode) is greater
than 1 minute; otherwise dt is set to time-exploitation.

6.6 Experimental Validation

This section reports on the experimental validation of the proposed Continuous
Search approach. All tests were conducted on Linux Mandriva 2009 boxes with
8 GB of RAM and 2.33 GHz Intel processors.

6.6.1 Experimental Settings

The presented experiments consider 496 CSP instances taken from different reposi-
tories.
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• nsp: 100 nurse scheduling instances from the MiniZinc3 repository.
• bibd: 83 Balance Incomplete Block Design instances from the XCSP4 repository,

translated into Gecode using Tailor.5

• js: 130 Job Shop instances from the XCSP repository.
• geom: 100 Geometric instances from the XCSP repository.
• lfn: 83 Langford number instances, translated into Gecode using global and chan-

nelling constraints.

The learning algorithm used in the experimental validation of the proposed ap-
proach is a Support Vector Machine with Gaussian kernel, using the libSVM im-
plementation with default parameters.6 All considered CSP heuristics (Sect. 6.3)
are home-made implementations integrated in the Gecode 2.1.1 [Gec06] constraint
solver. Our dyn-CS technique was used as a heuristics model on top of the heuris-
tics set H = {dom-wdeg,wdeg,dom-deg,min-dom, impacts}, taking min-value as
the value selection heuristic. The cutoff value used to restart the search was ini-
tially set to 1,000 and the cutoff increase policy to ×1.5; the same cutoff policy is
used in all the experimental scenarios.

Continuous Search was assessed comparatively to the best two dynamic variable
ordering heuristics on the considered problems, namely dom-wdeg and wdeg. It must
be noted that Continuous Search, being a lifelong learning system, will depend on
the curriculum, that is the order of the submitted instances. If the user “pedagogi-
cally” starts by submitting informative instances first, the performance in the first
stages will be better than if untypical and awkward instances are considered first.
For the sake of fairness, the performance reported for Continuous Search on each
problem instance is the median performance over 10 random orderings of the CSP
instances.

6.6.2 Practical Performances

Figure 6.3 highlights the Continuous Search results on Langford number problems,
comparatively to dom-wdeg and wdeg. The x-axis gives the number of problems
solved and the y-axis presents the cumulated runtime. The (median) dyn-CS perfor-
mance (gray line) is satisfactory as it solves 12 more instances than dom-wdeg (black
line) and wdeg (light gray line). The dispersion of the dyn-CS results depending on
the instance ordering is depicted from the set of dashed lines. Note that traditional
portfolio approaches such as [HHHLB06, SM07, XHHLB07] do not present such
performance variations as they assume a complete set of training examples to be
available beforehand.

3http://www.g12.cs.mu.oz.au/minizinc/download.html.
4http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.
5http://www.cs.st-andrews.ac.uk/~andrea/tailor/.
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.g12.cs.mu.oz.au/minizinc/download.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cs.st-andrews.ac.uk/~andrea/tailor/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 6.3 Langford number
(lfn): Number of instances
solved in less than 5 minutes
with dyn-CS, wdeg, and
dom-wdeg. Dashed lines
illustrate the performance of
dyn-CS for a particular
instance ordering

Figure 6.4 depicts the performance of dyn-CS, dom-wdeg and wdeg on all other
problem families, respectively (bibd, js, nsp, and geom). On the bibd (Fig. 6.4(a))
and js (Fig. 6.4(b)) problems, the best heuristic is dom-wdeg, solving three more
instances than dyn-CS. Note that dom-wdeg and wdeg coincide on bibd since all
decision variables are Boolean.

On nsp (Fig. 6.4(c)), dyn-CS solves nine more problems than dom-wdeg, but is
outperformed by wdeg by 11 problems. On geom (Fig. 6.4(d)), dyn-CS improves on
the other heuristics, solving respectively three more instances and 40 more instances
than dom-wdeg and wdeg.

These results suggest that dyn-CS is most often able to pick up the best heuristics
on a given problem family, and sometimes able to significantly improve on the best
of the available heuristics.

All experimental results are summarized in Table 6.1, reporting for each consid-
ered heuristic the number of instances solved (#sol), the total computational cost
for all instances (time, in hours), and the average time (avg-time, in minutes) per
instance, over all problem families. These results confirm that dyn-CS outperforms
dom-wdeg and wdeg, solving respectively 18 and 41 instances more out of 315. Fur-
thermore, it shows that dyn-CS is slightly faster than the other heuristics, with an
average time of 2.11 minutes, against respectively 2.39 for dom-wdeg and 2.61 for
wdeg. It is also worth mentioning that the total CPU time required to complete the
exploration (or learning) mode after solving a given instance was on average no
longer than two hours.

Additionally, a random heuristic selection scenario was also experimented with
(i.e., executing 10 times each instance with a uniform heuristic selection and report-
ing the median value over the 10 runs). The random selection strategy was able to
solve 278 out of 496 instances, 19 instances less than dom-wdeg and 37 instances
less than dyn-CS.

Another interesting lesson learned from the experiments concerns the difficulty
of the underlying learning problem, and the generalization error of the learned
hypothesis. The generalization error in the Continuous Search framework is esti-
mated by 10-fold Cross Validation on the whole training set (including all train-
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Fig. 6.4 Number of instances solved in less than 5 minutes

Table 6.1 Total solved instances

Problem dom-wdeg wdeg dyn-CS

#Sol Time
(h)

Avg-time
(m)

#Sol Time
(h)

Avg-time
(m)

#Sol Time
(h)

Avg-time
(m)

nsp 68 3.9 2.34 88 2.6 1.56 77 2.9 1.74

bibd 68 1.8 1.37 68 1.8 1.37 65 2.0 1.44

js 76 4.9 2.26 73 5.1 2.35 73 5.2 2.4

lfn 21 5.2 3.75 21 5.3 3.83 33 4.1 2.96

geom 64 3.9 2.34 27 6.8 4.08 67 3.3 1.98

Total 297 19.7 2.39 274 21.6 2.61 315 17.5 2.11

ing examples generated in exploration mode). Table 6.2 reports on the predic-
tive accuracy of the SVM algorithm (with same default settings) on all problem
families, with an average accuracy of 67 %. As could have been expected, the
predictive accuracy is correlated to the performance of Continuous Search: the
problems with best accuracy and best performance improvement are geom and
lfn.
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Table 6.2 Predictive
accuracy of the heuristics
model

bibd nsp geom js lfn

63.2 % 58.8 % 76.9 % 63.6 % 73.8 %

Table 6.3 Total solved
instances Problem #Sol Time (h) Problem #Sol Time (h)

nsp-geom‡ 55 4.1 lfn-bibd‡ 23 5.3

nsp-geom† 67 3.4 lfn-bibd† 63 2.3

To give an idea of order, 62 % predictive accuracy was reported in the context of
SATzilla [XHHLB07], aimed at selecting of the best heuristic in a portfolio.

A direct comparison of the predictive accuracy might however be biased. On the
one hand SATzilla errors are attributed to the selection of some near-optimal heuris-
tics, by the authors; on the other hand, Continuous Search would involve several
selection steps (in each checkpoint) and could thus compensate for earlier errors.

6.6.3 The Power of Adaptation

Our second experimental test combines instances from different domains in order
to show how CS is able to adapt to changing problem distribution. Indeed, unlike
classical portfolio-based approaches which can only be applied if the training and
exploitation sets come from the same domain, CS can adapt to changes and provide
top performance even if the problems change.

In this context, Table 6.3 reports the results on the geom (left) and bibd (right)
problems by considering the following two scenarios. In the first scenario, we are
going to emulate a portfolio-based search which would use the wrong domain to
train. In nsp-geom‡, CS incrementally learns while solving the 100 nsp instances,
and then solves one by one the 100 geom instances. However, when switching to
this second domain, incremental learning is switched off, and checkpoint adaptation
uses the model learnt on nsp. In the second scenario, nsp-geom†, we solve nsp, then
geom instances one by one, but this time we keep the incremental learning on when
switching from the first domain to the second one—as if CS was not aware of the
transition.

As we can see in the first line of the table, training on the wrong domain gives
poor performance (55 instances solved in 4.1 hours). In contrast, the second line
shows that CS can recover from training on the wrong domain thanks to its incre-
mental adaptation (solving 67 instances in 3.4 hours). The right part of the table
reports similar results for the bibd problem.

As can be observed in nsp-geom† and lfn-bibd†, CS successfully identifies the
new distribution of problems, solving respectively the same number and two fewer
instances than geom and bibd when CS is only applied to this domain starting from
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scratch. However, the detection of the new distribution introduces an overhead in
the solving time (see results for single domain in Table 6.1).

6.7 Summary

The main contribution of the presented approach, the Continuous Search framework,
aims at designing a heuristics model tailored to the user problem distribution, allow-
ing it to get top performance from the constraint solver. The representative instances
needed to train a good heuristics model are not assumed to be available beforehand;
they are gradually built and exploited to improve the current heuristics model, by
stealing the idle CPU cycles of the computing system. Metaphorically speaking, the
constraint solver uses its spare time to play against itself and gradually improve its
strategy over time; further, this expertise is relevant to the real-world problems con-
sidered by the user, all the more so as it directly relates to the problem instances
submitted to the system.

The experimental results suggest that Continuous Search is able to pick up the
best of a set of heuristics on a diverse set of problems, by exploiting the incoming
instances; in two out of five problems, Continuous Search swiftly builds up a mixed
strategy, significantly overcoming all baseline heuristics. With the other classes of
problems, its performance is comparable to the best two single heuristics. Our ex-
periments also showed the capacity of adaptation of CS. Moving from one problem
domain to another one is possible thanks to its incremental learning capacity. This
capacity is a major improvement over classical portfolio-based approaches which
only work when offline training and exploitation use instances from the same do-
main.



Chapter 7
Autonomous Search

7.1 Introduction

The selection and the correct setting of the most suitable algorithm for solving a
given problem was already investigated many years ago [Ric75]. The proposed ab-
stract model was suggested to extract features in order to characterize the problem,
to search for a suitable algorithm in the space of available algorithms and then to
evaluate its performances with respect to a set of measures. These considerations
are still valid and this general problem can indeed be considered at least from two
complementary points of view:

• selecting solving techniques or algorithms from a set of available techniques
• tuning an algorithm with respect to a given instance of a problem

To address these issues, the proposed approaches include tools from different
computer science areas, especially from machine learning. Moreover, they have
been developed to answer the algorithm selection problem in various fields as de-
scribed in the recent survey of Smith-Miles [SM08].

In this chapter, we will focus on the application of this general question to con-
straint satisfaction and optimization problems. In this particular area, the problem
of finding the best configuration in a search space of heuristic algorithms is also re-
lated to the recent notion of Hyper-heuristics [BHK+09a, BKN+03, CKS02]. Hyper-
heuristics are methods that aim at automating the process of selecting, combining,
generating, or adapting several simpler heuristics (or components of such heuris-
tics) to efficiently solve computational search problems. Hyper-heuristics are also
defined as “heuristics to choose heuristics” [CS00] or “heuristics to generate heuris-
tics” [BEDP08]. This idea was pioneered in the early 1960s with the combination
of scheduling rules [FT63, CGTT63]. Hyper-heuristics that manage a set of given
available basic search heuristics by means of search strategies or other parame-
ters have been widely used for solving combinatorial problems (see Burke et al.
[BHK+09a] for a recent survey).

From a practical point of view, Burke et al. [BHK+09b] proposed a comprehen-
sive classification of hyper-heuristics considering two dimensions: the nature of the
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heuristics and the source of the feedback for learning. They thus distinguish be-
tween heuristics that select heuristics from a pre-existing set of search heuristics
and heuristics that generate new heuristics from basic components. Concerning the
feedback, they identify three categories: online learning, offline learning, and no
learning. The distinction between online and offline processes was previously pro-
posed in order to classify parameter settings in evolutionary algorithms [EHM99],
distinguishing parameter tuning (offline) from parameter control (online).

As classical offline mechanisms, we may mention portfolio algorithms
[HHHLB06, XHHLB08], where previously acquired knowledge is used in order to
select the suitable solving method with regard to a given problem instance. Gagli-
olo et al. [GS08] use reinforcement learning-based techniques for algorithm selec-
tion.

Online control of heuristics has been widely addressed, for instance in adaptive
strategies in evolutionary computation [Thi07, Kra08], in adaptive neighborhood se-
lection for local search [HR06, CB01, PR08], or in constraint programming solvers
[EFW+02].

When considering parameter setting, the space of possible algorithms is the set
of possible configurations of a given algorithmic scheme induced by the possible
values of its parameters that control its computational behavior. Parameter tun-
ing of evolutionary algorithms has been investigated for many years (we refer the
reader to the book [LLM07] for a recent survey). Adaptive control strategies were
also proposed for other solving approaches such as local search [Hoo02a, PK01].
Offline mechanisms are also available for tuning parameters, such as in the work of
Hutter et al. [HHLBS09], which proposes to use a local search algorithm in or-
der to automatically find a good (i.e., efficient) configuration of an algorithm in
the parameter space. Including this work, a more complete view of the configura-
tion of search algorithms is presented in the Ph.D. thesis of Hutter [Hut09]. Revac
[NE07, NE06] is a method that uses information theory to identify the most im-
portant parameters and calibrate them efficiently. We may also mention that racing
techniques [BSPV02, YG04, YG05, YG07] can be used to choose suitable parame-
ter settings when facing multiple choices.

Another important research community that focuses on very related problems has
been established under the name Reactive Search by Battiti et al. [BBM08, BB09].
After focusing on local search with the seminal works on reactive tabu [BT94] or
adaptive simulated annealing [Ing89], this community is now growing through the
dedicated Learning and Intelligent OptimizatioN (LION) conference.

It clearly appears that these approaches share common principles and purposes
and have been developed in parallel in different but connected communities. Their
foundations rely on the fact that, since the solving techniques and search heuris-
tics are more and more sophisticated and the problem structures more and more
intricate, the choice and the correct setting of a solving algorithm is becoming an
intractable task for most users. Therefore, there is a rising need for an alternative
problem-solving framework. According to the above brief historical review, we have
observed that these approaches have indeed their own specificities that are induced
by their seminal supporting works. In this chapter, we propose to integrate the main
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motivations and goals into the more general concept of Autonomous Search (AS)
[HSe12, HMS08a, HMS08b].

This chapter is organized as follows. In Sect. 7.2, we describe the general archi-
tecture of modern solvers. We present the specificities of autonomous solvers and
formalize their solving mechanisms with a set of rules in Sect. 7.3. In Sect. 7.4,
we illustrate different solver architectures by providing examples from the literature
and we characterize these solvers using our previous rule-based description frame-
work.

7.2 Solver Architecture

In this section, we present the basic concepts related to the notion of solver in the
context of general constraint problems solving, which provide an introduction to
problem solving. By general problems, we mean optimization or constraint sat-
isfaction problems, whose variables may take their values over various domains
(boolean, integer, real number, etc.). In fact, solving such problems is the main in-
terest of different but complementary communities in computer science: operations
research, global optimization, mathematical programming, constraint programming,
and artificial intelligence. From the different underlying paradigms that are associ-
ated to these research areas, we may try to identify common principles, which are
shared by the resulting solving algorithms and techniques that can be used for the
ultimate solving purpose.

As it has finally been suggested by the notion of metaheuristics [GK03], solvers
could be viewed as a general skeleton whose components are selected according
to the problem or the class of problems to be solved. Indeed, from our point of
view we want to look carefully at the components of the solver that define its
structural properties and at its parameters or external features that define its be-
havior. On one hand, one has to choose the components of the solver, and on the
other hand one should configure how these internal components are used during the
solving process. We identify the core of the solver which is composed by one or
several solving algorithms. Note that here we distinguish between the solver and
the solving algorithm, which is a part of the solver but corresponds to the real
operational solving process. A basic solving algorithm corresponds to the man-
agement of solving techniques, abstracted by the notion of operators, making use
of a solving strategy that schedules the use of these operators. A solving algo-
rithm is designed of course according to the internal model, which defines the
search space, and uses a function to evaluate the elements of the search space.
All these components can be subjected to various parameters that define their be-
havior. A given parameterization defines thus what we call a configuration of the
solver. At this level, a control layer can be introduced, especially in an autonomous
solver, to manage the components and modify the configuration of the solver during
the solving process. The general description of a solver architecture is illustrated
by Fig. 7.1.
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Fig. 7.1 The general
architecture of a solver

7.2.1 Problem Modeling/Encoding

The encoding of the problem is considered separately from the solver itself. In fact,
most of the time, a solver is designed for a specific encoding framework that in-
duces a specific internal representation that corresponds to the model. While the
classic CSP modeling framework [Tsa93] is commonly used as a description tool
for all solving methods, the internal encoding of the problem and its possible con-
figurations involve different representations (e.g., complete vs. partial assignments,
etc.). One should note that different modeling and encoding paradigms can be used.
In constraint programming [Apt03, Dec03, MS98, Hen89] one could encode con-
straints as tuples of allowed values or use a more declarative first order language
with relations and functions. Moreover, other paradigms can be used to encode
CSPs, such as SAT [BHvMW09], and various transformation schemes have been
investigated [BHZ06, Wal00, Hoo99b]. On the metaheuristics side, the encoding
of the possible configurations of the problem has a direct impact on the search
space and on the search landscape. For instance, one may include directly some
of the constraints of the problem in the encoding as this is the case when using
permutations for the Traveling Salesman Problem (TSP [ABCC07]), which corre-
sponds to the constraint each city is visited once and only once. In genetic algorithms
[Jon06, ES03b, Mic92] or local search [AL03, HM05], encoding may have a sig-
nificant impact on the performance of the algorithm. The encoding of continuous
optimization problems (i.e., over real numbers) also requires providing suitable data
structures, for instance, floating point representation for genetic algorithms [JM91]
or continuous and interval arithmetic in constraint programming [BG06]. The in-
ternal representation of the model can be considered as a component of the solver.
This representation has of course a direct computational impact on the evaluation
function and also on the solving techniques that are implemented through operators.
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7.2.2 The Evaluation Function

The evaluation function is related to the nature of the problem. From a general point
of view, a function is needed to evaluate possible configurations of the problem with
regard to its constraints and variable values. An evaluation function may evaluate
the number of conflicts or check the satisfiability of a given constraint set, or use
particular consistency notions (global or local). Such a function can also be used to
prune the search space when dealing with optimization problems. Again, this notion
is more traditionally used in the context of metaheuristics than in classic complete
constraint programming solvers. But it seems rather intuitive to have such a function
to assess the current search state in order to be able to check if the solver has reached
a solution or not. Moreover, this evaluation function clearly appears when dealing
with constraint optimization problems and using branch-and-bound algorithms.

7.2.3 The Solving Algorithm

Our purpose is to distinguish between the basic structure of the algorithm and its
configurable components. For instance, in a classic complete constraint solver, the
skeleton of the algorithm is the basic backtracking process, whose heuristics and
propagation rules can be configured. In an evolutionary algorithm, the core of the
solver is constituted by the population management. A solver may include the fol-
lowing components that we have to take into account:

• A set of operators: operators are used in the solving process to compute search
states. These operators may basically achieve variable instantiation, constraint
propagation, local moves, recombination or mutation selection, etc. Most of the
time, they are parameterized and use an evaluation function to compute their re-
sults (e.g., number of violated constraints or evaluation of the neighborhood in
local search algorithms). Note that these operators may be used to achieve a com-
plete search (i.e., find a solution or prove unsatisfiability of the problem) or to
perform an incomplete search (i.e., find a solution if possible or a sub-optimal
solution).

– Concerning tree search-based methods, the notion of operator for perform-
ing solving steps during the search process corresponds to basic solving tech-
niques. For instance if we consider a classic backtracking-based solver in con-
straint programming, we need an enumeration operator that is used to assign
values to variables and reduction operators that enforce consistencies in order
to reduce the domains of the variables. The search process then corresponds to
the progressive construction of a search tree whose nodes are subjected to the
application of the previously described operators. When considering numeri-
cal variables over intervals, we may add splitting operators. Of course these
operators may include heuristics concerning the choice of the variables to be
enumerated, and the choice of the values, but also other parameters to adjust
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their behavior. Indeed, constraint propagation can be formalized by means of
rules [Apt03, FA03], which support operator-based description and provide a
theoretical framework to assess properties of the solver such as termination.

– On the metaheuristics side, in evolutionary computing [Gol89, Jon06, ES03b]
we usually consider variation operators (mutation operators and recombina-
tion operators) and selection operators. Considering an evolutionary algorithm,
it is possible to established some convergence properties such as the famous
schemata theorem [Hol75]. There exist some general purpose operators as, for
instance, the uniform crossover [Syw89] or the Gaussian mutation [Kje91]. To
get better performance, these operators are often designed with respect to the
specificities of the problem to be solved. In local search [AL03], local moves
are based on neighborhood functions.

All these operators are most of the time subjected to parameters that may modify
their behavior but, more important, that also control their application in the search
process.

• A solving strategy: the solving strategy schedules how operators are used. In the
previous example, in a complete tree-based search process, the strategy will con-
sist in alternating enumeration and constraint propagation. The strategy can be
subjected to parameters that will indicate which operators to choose in the gen-
eral scheduling of the basic solving process.

7.2.4 Configuration of the Solver: The Parameters

The solver usually includes parameters that are used to modify the behavior of its
components. A configuration of the solver is then an instance of the parameters to-
gether with its components. Parameters are variables that can be used in the general
search process to decide how the other components are used. These parameters may
correspond to various data that will be involved in the choice of the operator to be
applied at a given search state. For instance, we may consider the probability of
application of the operators (e.g., genetic operators in evolutionary algorithms, the
noise in random walk for local search algorithms [SKC94a]) or of some tuning of
the heuristics themselves (e.g., tabu list length in Tabu Search [GL97]).

Parameter setting is an important issue for evolutionary algorithms [LLM07].
Parameter setting for local search algorithms is also handled in [BBM08]. In con-
straint programming much work has been done to study basic choice heuristics (see
[EFW+02] for instance), but also to evaluate the possible difficulties related to the
classic use of basic heuristics such as heavy-tailed problems [GSCK00] (these stud-
ies particularly demonstrate the benefit of randomization when solving multiple in-
stances of a given family of problems compared to the use of a single predefined
heuristic).
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Fig. 7.2 Control taxonomy proposed by Eiben et al. [EHM99]

7.2.5 Control

Modern solvers also include external or internal mechanisms that allow the solver
to change its configuration by selecting the suitable operators to apply, or tuning the
parameters, or adding specific information to the model. These mechanisms often
include machine learning techniques and will be detailed later. Of course, control
rules will often focus on the management of the parameters and/or of the operators
of the solver.

7.2.6 Existing Classifications and Taxonomies

As mentioned before, we may identify at least three important domains where re-
lated work has already been conducted. These lines of work have led to the use of
different terminologies and concepts that we try to recall here.

In evolutionary computing, parameters setting [LLM07] constitutes a major issue
and we may recall the taxonomy proposed by Eiben et al. [EHM99] (see Fig. 7.2).

Methods are classified depending on whether they attempt to set parameters be-
fore the run (tuning) or during the run (control). The goal of parameter tuning is to
obtain parameter values that could be useful over a wide range of problems. Such re-
sults require a large number of experimental evaluations and are generally based on
empirical observations. Parameter control is divided into three branches according
to the degree of autonomy of the strategies. Control is deterministic when param-
eters are changed according to a previously established schedule, adaptive when
parameters are modified according to rules that take into account the state of the
search, and self-adaptive when parameters are encoded into individuals in order to
evolve conjointly with the other variables of the problem.

In [SE09], Eiben and Smit recall the difference between numeric and symbolic
parameters. In [NSE08], symbolic parameters are called components, whose ele-
ments are operators. In this chapter, we choose to use the notions of parameters for
numeric parameters. As defined above, the operators are configurable components
of the solver that implement solving techniques.

In [BB09], reactive search is characterized by the integration of machine learn-
ing techniques into search heuristics. A classification of the source of information
that is used by the algorithm is proposed to distinguish between problem-dependent
information, task-dependent information, and local properties.
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Fig. 7.3 Classification of hyper-heuristics by Burke et al. [BHK+09b]

In their survey [BHK+09b], Burke et al. propose a classification of hyper-
heuristics, which are defined as search methods or learning mechanisms for select-
ing or generating heuristics to solve computational search problems. As mentioned
above, this classification also distinguishes between two dimensions: the different
sources of feedback information and the nature of the heuristic search space. This
classification is summarized in Fig. 7.3.

The feedback, when used, corresponds here to the information that is learned
during solving (online) or using a set of training instances (offline). The authors
identify two families of low-level heuristics: construction heuristics (used to incre-
mentally build a solution) and perturbation heuristics (used to iteratively improve a
starting solution). The hyper-heuristics level can use heuristic selection methodolo-
gies, which produce combinations of pre-existing low-level heuristics, or heuristics
generation methodologies, that generate new heuristics from basic blocks of low-
level heuristics.

Another interesting classification is proposed in [GS08], in which Gagliolo et al.
are interested in the algorithm selection problem [Ric75] and describe the different
selection techniques according to the following points of view. The problem consists
in assigning algorithms from a set of possible alternative solving methods to a set
of problem instances in order to improve the performance. Different dimensions are
identified with regard to this algorithm selection problem:

• The nature of the problems to be solved: decision vs. optimization problems.
• The generality of the selection process: selection of an algorithm for a set of

instances or selection of an algorithm for each instance.
• The reactivity of the selection process: the selection can be static and made be-

fore running all the selected algorithms or can be dynamically adapted during
execution.

• The feedback used by the selection process: the selection can be made from
scratch or using previously acquired knowledge.

• The source of feedback: as in the previous classification, when learning is used
in the selection process, one may consider offline (using separated training in-
stances) or online (updating information during solving) learning techniques.
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As claimed in the introduction, autonomous search aims at providing a more
uniform description and characterization of these different trends, which have close
relationships.

7.3 Architecture of Autonomous Solvers

We may define autonomous solvers as solvers that contain control in their search
process (i.e., the solvers described in Sect. 7.4.2). We want to study such au-
tonomous systems w.r.t. their specific control methods.

A general control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application of
some solving functions. The overall strategy to combine and use components and
parameters can be based on learning that uses information from the current solving
process or from previous solved instances (see remarks in Sect. 7.2.6). Therefore,
modifications are often based on a subset of search states. Given a solver, we have
to consider the interactions between the heuristics and the strategy which selects the
heuristics at a meta-level (notion of hyper-heuristics).

On the one hand, one can consider the solver and its history and current envi-
ronment (i.e., the previously computed search states and eventually other external
information related to previous computations) as an experimental system, which is
observed from an external point of view. Such a supervised approach then consists
in correctly controlling the solver by adjusting its components according to criteria
and decision rules (these rules may be automatically generated by means of statistics
and machine learning tools or even by human experts). On the other hand, one may
consider that the solver changes the environment at each step of the solving process
and that this environment returns feedback information to the solver in order to man-
age its adaptation to this changing context (different types of feedback may be taken
into account, as mentioned in Sect. 7.2.6). In this case, we will use self-adaptation.
To illustrate these ideas, we propose a high-level picture of an autonomous search
system (see Fig. 7.4).

7.3.1 Control by Self-adaptation

In self-adaptation, the adaptive mechanism is coupled with the search components,
directly changing them in response to the consequences of their actions. Self-
adaptive techniques are tightly integrated with the search process and should usu-
ally require little overhead. The algorithm is observing its own behavior in an on-
line fashion, modifying its parameters accordingly. This information can be either
directly collected from the problem or indirectly computed through the perceived
efficiency of individual components. Because the adaptation is done online, there is
an important trade-off between the time spent computing heuristic information and
the gains that are to be expected from this information.
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Fig. 7.4 The global architecture of an Autonomous Search System

7.3.2 Control by Supervised Adaptation

Supervised adaptation works at a higher level. It is usually external and its mech-
anisms are not coupled with the search process. It can be seen as a monitor that
observes the search and analyzes it. It can modify the components of the solver (or
require the solver to modify its components) in order to adapt it. Supervised adapta-
tion can use more information, e.g., learning-based knowledge, etc. In some cases,
we can imagine that typical supervised actions can be compiled into self-adaptive
mechanisms.

7.3.3 Searching for a Solution vs. Solutions for Searching

It appears now that the problem of building a good Autonomous Search solver is
more ambitious than that of finding a solution to a given instance of a problem.
Indeed, inspired by the seminal consideration of John Rice [Ric75] when he was
abstracting the problem of finding the best algorithm for solving a given problem,
we need to take into account at least three important spaces in which an autonomous
search process takes place.

• The search space: the search space is induced by the encoding of the problem
and corresponds to the set of all potential configurations of the problem that one
has to consider in order to find a solution (or to find all solutions, or to find an
optimal solution, etc.). This search space can also be partitioned, for optimization
problems, into the set of feasible solutions and infeasible solutions with respect
to the constraints of the problem.

• The search landscape: the search landscape is related to the evaluation function
that assigns a quality value to the elements of the search space. If indeed this
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Fig. 7.5 The solver and its
action with respect to
different spaces

notion is rather of limited use in the area of complete solvers, it is a crucial no-
tion when using heuristics or metaheuristics, search algorithms whose purpose is
to explore and exploit this landscape in order to find solutions. Most of the meta-
heuristics, designed according to the management of this exploration-exploitation
balance and the characteristics of the search landscapes, often use geographical
metaphors: How to travel across plateaus? How to escape from a local optimum
by climbing hills?, etc.

• The algorithms space: according to the previous description of solver architecture,
we have highlighted that a solver consists of components that define its struc-
tural properties together with a set of behavioral features (parameters and control
rules). As mentioned before, given a basic algorithmic skeleton we may consider
a set of possible solvers that correspond to the possible component choices and
configurations. This algorithms space can also be composed of different solvers
when dealing with portfolio-based algorithm selection.

The relationships between these spaces are illustrated in Fig. 7.5. Indeed, the ulti-
mate autonomous search purpose can be formulated as: finding a suitable algorithm
that is able to efficiently explore and exploit the search landscape in order to suitably
manage the search space and find solutions to the initial problem.

7.3.4 A Rule-Based Characterization of Solvers

As already mentioned, the solving techniques used for solving such problems may
include very different features, from complete tree-based solvers to local search
or evolutionary algorithms. In this presentation, we will attempt to abstract these
solving features in order to be able to address general solving algorithms, focusing
on their autonomous aspects as described above. Indeed, such rule-based formal-
izations have already been proposed for modeling some constraint programming
solving processes [Apt03, FA03] and also for hybrid solvers including local search
[MSL04]. Here, our purpose is not really to prove some properties of the solvers but
rather to highlight their basic operational mechanisms in order to classify them with
regard to their behavioral and structural characteristics.

When using a solver, one may distinguish two main tasks that correspond indeed
to different but closely related levels of technical accuracy that can be achieved by
more or less specialized users:



110 7 Autonomous Search

• The component design: this phase consists in choosing the suitable components
described in Sect. 7.2.3 that should be included in the solver with regard to the
problem characteristics for instance. As mentioned above, these components con-
stitute the architecture of the solver.

• The configuration of the solver through parameters settings and controls: this
second phase consists in defining through control features how the components
can be used during the solving process.

Based on this consideration and on the general solver architecture depicted in
Fig. 7.1, we propose a formal description in the next section.

Formal Description We define here some basic notions in order to characterize
the behavior of solvers with a computationally oriented taxonomy. This approach
will allow us to characterize the solvers. We first recall some basic concepts related
to constraint satisfaction and optimization problems.

Definition 7.1 (CSP) A CSP is a triple (X,D,C), where X = {x1, . . . , xn} is a set
of variables whose values are restricted to given domains D = {D1, . . . ,Dn}. There
exists a bijective mapping that assigns each variable xi to its corresponding do-
main, Dxi

. We consider a set of constraints C as a set of relations over the vari-
ables X.

Definition 7.2 (Search Space) The search space S is a subset of the possible con-
figurations of the problem and can be the Cartesian product of domains,

∏
x∈X Dx .

The choice of the internal representation (i.e., the model) defines the search space.
An element s of the search space will be called a candidate solution.

Definition 7.3 (Solution) A feasible solution is an assignment of values to vari-
ables, which can be seen as an element of S (i.e., given an assignment θ : X →∏n

i=1 Di , θ(xi) ∈ Dxi
), and which satisfies all the constraints of C. In the context

of optimization problems, we also consider an objective function f : S → R. An
optimal solution is a feasible solution maximizing or minimizing, as appropriate,
the function f .

We have now to define, according to Sect. 7.2, the different elements that are
included in the solver.

Definition 7.4 (Evaluation Functions) We denote by E the set of evaluation func-
tions e : S →R.

Definition 7.5 (Parameters) We denote by P the set of parameters, and a parame-
terization π is a mapping that assigns a value to each parameter. We denote by Π

the set of parameterizations.

Definition 7.6 (Solving Operators) We denote by Ω a set of solving operators (op-
erators for short) that are functions o : 2S → 2S .
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Definition 7.7 (Solving Strategy) We denote by H the set of solving strategies that
are functions h : 2S × Π × E → Ω .

For sake of simplicity, in the following we will refer to solving strategies as
strategies. Solving strategies and solving operators are the key points of the solving
algorithm (see Fig. 7.1): a strategy manages some operators to compute the solu-
tions. We obtain:

Solving algorithm = solving strategy + solving operators

We now formalize the solving processes as transitions using rules over computation
states.

Definition 7.8 (Computation State) Given a CSP (X,D,C), a search space S , a set
of operators Ω , a set of evaluation functions E, a set of parameters P and a set of
solving strategies H , a computation state is a tuple 〈O,S, e,π,h|S〉 where:

• O ⊆ Ω , where O is the set of operators currently used in the solver
• S ⊆ S is the current subset of candidate solutions
• e ∈ E is an evaluation function
• π ∈ Π is the current parameterization
• h ∈ H is the current solving strategy

Remarks

• It is important to note that Ω , E, and H are sets that may not be yet computable.
For example, H represents the set of all possible strategies, either already existing
or that will be discovered by the solver (as defined in Definition 7.11). Similarly,
all the operators of Ω are not known since they can be designed later by the
solver. However, O is known, and all its operators as well.

• S corresponds to the internal basic search structure: the search state. For instance,
if we consider a genetic algorithm the search state will be a population. In the case
of a complete backtracking solver, it will consist in an incomplete assignment, etc.

• O is the current set of operators available in the solver at a given stage extracted
from a set Ω of potential operators that could be used in this solver. Indeed,
some solvers may use new solving operators that are produced online or offline
according to a general specification or according to design rules. Note that an
operator allows the solver to perform a transition from one search state to another.
This is therefore the key concept of the solving process and we want to keep it as
general as possible to handle various solving paradigms (as mentioned above).

• The evaluation function e must evaluate the candidate solutions. This evaluation
is used by the strategy in order to drive the basic solving task and by the control
in order to drive the solver behavior.

• The solving strategy h will be used to select the suitable operator to apply on the
current candidate solutions with respect to the current parameterization π and the
evaluation function e.



112 7 Autonomous Search

Note that, for the sake of simplicity, we restrict ourselves to solvers that have only
one evaluation function and one search space at a time. This is typically the case but
this framework could be easily generalized to capture more exotic situations.

We denote by CS the set of computation states. Note that a computation state
corresponds in fact to a search state together with the current configuration of the
solver.

Definition 7.9 (Computation Rules) A computation rule is a rule σ ′
σ

where σ and
σ ′ are computation states from CS.

Identification of Computation Rules We identify here specific families of com-
putation rules with respect to the way they modify the computation states.

• Solving: The fundamental solving task of a classic solver consists in computing
a new state from the current one according to a solving strategy that chooses
the suitable operator to apply with respect to the current candidate solutions, the
parameterization, and the evaluation function. This corresponds to the following
rule:

[Solv] Solving

〈O,S, e,π,h|S〉
〈O,S, e,π,h|S′〉

where S′ = o(S) and o = h(S,π, e) ∈ O .

• Parameterization: The modification of the solver’s parameters changes its config-
uration and can be used either to tune the solver before running it or to adjust its
behavior during the run. A parameterization rule can be abstracted as:

[Par] Parameterization

〈O,S, e,π,h|S〉
〈O,S, e,π ′, h|S〉

• Evaluation function modification: Since we address here autonomous systems
that are able to modify not only their configuration through their parameters but
also their internal components, we have to consider more intricate rules. A first
way to adapt the solver to changes is to modify its evaluation function, which
directly induces changes on the search landscape. This is the case when changing
weights or penalties in the evaluation function (there are many examples, for
instance [KP98, PH06]).

[EvalCh] Evaluation modification

〈O,S, e,π,h|S〉
〈O,S, e′,π,h|S〉

• Operator modification: Another way to modify the internal configuration of the
solver is to change its set of operators. Note that operators can be added or dis-
carded from the set O .
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[OpCh] Operator modification

〈O,S, e,π,h|S〉
〈O ′,S, e,π,h|S〉

• Strategy modification: Similarly, solving strategies can be changed to manage
differently the operators and achieve a different solving algorithm. As mentioned
above, a backtracking algorithm can apply different strategy for enforcing local
consistency at each node, or in hybrid solving one may switch from complete to
approximate methods.

[StratCh] Strategy modification

〈O,S, e,π,h|S〉
〈O,S, e,π,h′|S〉

• Encoding modification: We also have to take into account solvers that will be able
to change their encoding during execution. As this is the case for the evaluation
modification, such changes will affect the search landscape.

[EncCh] Encoding modification

〈O,S, e,P,h|S〉
〈O,S ′, e,P,h|S〉

Note that applying one of these rules (except [Res]) will generally require applying
other computation rules. For example, a change of encoding ([EncCh]) will cer-
tainly require a change of operators ([OpCh]), of evaluation function ([EvalCh]), of
strategy ([StratCh]), and of parameterization ([Par]). However, a change of strategy
does not always imply a change of operators.

Control of the Computation Rules and Solvers The most important part of our
characterization concerns the control of the algorithm to finally build the solver.
The control is used to act on the configuration of the solver through its parameters,
but also to modify the internal components of the solver (parameters, operators,
strategies, etc.).

Definition 7.10 (Control) Let SCS be the set of all the finite sequences of elements
of CS. A control function K : SCS → R is a function that selects a computation rule
from the set R according to a sequence of computation states.

A solver state can be defined by a set of computation rules, and a sequence of
computation states that have been previously computed.

Definition 7.11 (Solver) A solver is a pair (K,R) composed of a control func-
tion K and a set of computation rules R that will define a sequence of solver states.



114 7 Autonomous Search

A way of describing a solver is to use regular expressions which schedule compu-
tation rules to describe its control. Let’s come back to the rules defined in Sect. 7.3.4.
We consider the set of rules R = Par ∪ Res ∪ EvalCh ∪ EncCh ∪ OpCh ∪ StratCh
where Par represents some parameterization rules [Par], EvalCh some evaluation
modification rules [EvalCh], etc. Given two subsets R1 and R2 of R, R∗

1 means that
zero or more rules of R1 are sequentially applied and R1R2 means the sequential
application of one rule of the subset R1 is followed by the application of one rule
of R2. R1|R2 corresponds to use of one rule from R1 or one from R2. These no-
tations will be used in the following section to highlight the characteristics of the
solvers by means of the sequences of rules that they apply in their solving processes.

Definition 7.12 (Solver State) A solver state is a pair (R,Σ) where:

• R is a set of computation rules as defined above
• Σ is a sequence of computation states that are recorded during the solving pro-

cess.

Starting from a solver state (R,Σ), with Σ = (σ0, . . . , σn), the next state is ob-
tained as (R,Σ ′) where ∃r ∈ R, such that K(Σ) = r and Σ ′ = (σ0, . . . , σn, σn+1 =
r(σn)).

Note that in practice, a solver state does not contain the complete history. Thus,
the sequence of computation states is either limited to a given length, or only the
most relevant computation states are kept.

We now have:

Solver = control + configured solving algorithms

We recall that we stated before that Solving algorithm = solving strategy + solving
operators. Coming back to Fig. 7.3 that shows a classification of hyper-heuristics,
we notice that we obtain a similar distinction here: solvers correspond to the hyper-
heuristics of Fig. 7.3, solving algorithms to heuristic search spaces, strategies to
heuristic selection or generation, and operators to heuristic construction or pertur-
bation. We can finally identify an autonomous solver:

Definition 7.13 (Autonomous Solver) Consider a solver given by a regular expres-
sion ex of computation rules from R = Par ∪ Solv ∪ EvalCh ∪ EncCh ∪ OpCh ∪
StratCh. A solver is autonomous if ex contains at least a rule from Par ∪ EvalCh ∪
EncCh ∪ OpCh ∪ StratCh (i.e., ex is not only composed of rules from Solv).

An autonomous solver is a solver that modifies its configuration during solving,
using a control rule. Of course, there are various degrees in this autonomy scale. We
can now come back to the previous taxonomy of offline/tuning and online/control
(e.g., for parameters). Consider a solver given by a regular expression ex of com-
putation rules from R = Par ∪ Solv ∪ EvalCh ∪ EncCh ∪ OpCh ∪ StratCh, and the
word w given by flattening this expression ex. The offline/tuning of a solver con-
sists of the rules that appear in ex before the first Solv rule of ex. The online/control
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is composed of all the rules that appear after the first rule Solv and that are not of
the Solv family of rules.

In the next section we will illustrate how these rules are used in real solvers and
how they can be used to characterize families of solvers within our autonomous
search scope.

7.4 Case Studies

In this section, we will not attempt to present an exhaustive view of existing solvers
but we will rather choose some representative solvers or algorithms in order to il-
lustrate different solving approaches and how the previous computation rules can
be used to characterize these approaches. As mentioned in the introduction, au-
tonomous search has been indeed investigated for many years, across many differ-
ent areas and under different names. Therefore, we could not imagine providing an
exhaustive discussion of all approaches.

7.4.1 Tuning Before Solving

As in [EHM99, LLM07], we use the word tuning for the adjustment of the dif-
ferent components of the algorithm before trying to solve an instance (see end of
Sect. 7.3.4).

Preprocessing Techniques

Even if preprocessing is not directly linked to the core of the solving mechanism but
relies on external processes, we have to consider it as an important component in
the design of modern solvers. Nowadays, efficient solvers (e.g. DPLL) use simpli-
fication preprocessing before trying to solve an instance (see for instance the SAT
solver SatElite [EMS07]). Note that the model transformation can maintain equisat-
isfiability or a stronger equivalence property (the set of solutions is preserved).

Parameter Tuning on Preliminary Experiments

Such a tuning phase may consist in setting correct parameters in order to adjust the
configuration of the solver. Here, these settings are performed according to a given
set of preliminary experiments. Tuning before solving will correspond to the con-
figuration of the solver and then its use for properly solving the problem. Therefore,
the general profile of the solvers will be mainly described as:

[Config]Solv∗

where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗.
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Empirical Manual Tuning We include in this family the classic tuning task in-
volved when using single metaheuristic based solvers where experiments are re-
quired to tune the various parameters [SE09, NSE08]. Of course there exist similar
studies in constraint programming to choose the suitable variable and value heuris-
tics, and this task is often not formalized. Most of the time, parameters are tuned
independently since it appears difficult to control their mutual interaction without a
sophisticated model. Here, the parameterization is not really part of the solver but
rather a preliminary experimental process.

Solver: Solv∗

Determining the Size of a Tabu List Experiments or other previous analysis can
be used to extract general parameters or heuristic settings. In the context of Tabu
Search for SAT, [MSG97b] have used an extensive offline experimental step to de-
termine the optimal length of a tabu list. They used simple regression to derive the
length of the list according to the number of variables n. Remarkably, the length
is independent of the size of the constraints, and their formula applies to any hard
random k-SAT instance. Therefore the parameterization can be included as a first
step of the solving process.

Solver: Par_Solv∗

Automatic Parameter Tuning by an External Algorithm Recently, [HHLBS09]
proposed an algorithm to search for the best parameters in the parameter space and
therefore to automatically tune a solver. Now, if we consider that this automated
process is included in the solver, we have then the following description.

Solver: (Solv∗Par)∗Solv∗

Note that (Solv∗Par)∗ corresponds to a series of runs and parameter tuning, which
is achieved automatically.

Component Setting Before Solving

We consider here methods that consist in choosing the correct components of the
solver by using experiments and/or external knowledge that has been acquired sep-
arately from the current solving task. This knowledge can be formulated as general
rules, can use more or less sophisticated learning techniques, or may also use an
external computation process.

A. Learning Solver’s Components External mechanisms can be used before tun-
ing to discover or learn efficient components for the solver.



7.4 Case Studies 117

Discovering Heuristics In [Fuk08], genetic programming is used to discover new,
efficient variable selection heuristics for SAT solving with local search algorithms.
Candidate variable selection heuristics are evaluated on a set of test instances. This
automatic process can be inserted before solving (the variable selection heuristics
can induce a change of parameters or operators depending on the description gran-
ularity). Note that here the first Solv∗ is not applied to the problem at hand.

Solver:
(
Solv∗(OpCh|Par)

)∗
Solv∗

The choice of heuristics can be parameters of the operators in our formalism; heuris-
tic discovering can be considered as the selection of suitable operators and their
parameterization.

Learning Evaluation Functions In [BMK00], a new method is proposed in or-
der to learn evaluation functions in local search algorithms and improve search effi-
ciency based on previous runs.

Solver: (Solv∗EvalCh)∗Solv∗

B. Empirical Prediction of Instance Hardness The following techniques are
based on a learning component (e.g., clustering tools), which can be used to de-
tect automatically the suitable heuristics and strategies to apply.

Portfolio-Based In SATzilla [XHHLB08], offline linear basis function regression
and classifiers are used on top of instance-based features to obtain models of SAT
solvers runtime. During the exploitation phase, instance features are used to select
the best algorithm from a portfolio of tree- and local search-based SAT solvers. We
may also cite the works of Gebruers et al. [GGHM04] and Guerri et al. [GM04] that
use case-based reasoning and learning technique from to choose the appropriate
solving technique among constraint programming and integer linear programming.
In these solver schemes, the first Solv∗ corresponds again to preliminary experi-
ments.

Solver: Solv∗(OpCh|StratCh|Par|EvalCh)∗Solv∗

Parameter-Based In [HH05, HHHLB06], the authors use an approach similar
to SATzilla. They show that it is possible to predict the runtime of two stochastic
local searches (SLSs). In this work, the selection of the best method to apply on a
given instance is changed into the selection of the best parameters of a given SLS
algorithm.

Solver: ParSolv∗

7.4.2 Control During Solving

The control of the solver’s behavior during the run can be achieved by modifying
its components and/or its parameters. This corresponds, for instance, to an online



118 7 Autonomous Search

adjustment of the parameters or heuristics. Such control can be achieved by means
of supervised control schemes or self-adaptive rules. Of course, such approaches
often rely on a learning process that tries to benefit from previously encountered
problems during the search or even during the solving of other problems. Therefore,
the profile of the solvers will generally be:

([Config]Solv∗)∗

where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗. Note that the outer ∗
loop represents the control loop.

Controlling Encoding

[Han08] proposes an adaptive encoding in an evolutionary algorithm in order to
solve continuous function optimization problems. The representation of the solu-
tions are changed along the search to reach an optimal representation that could
simplify the solving of the initial problem.

Solver: (EncChSolv∗)∗

Controlling Variable Orderings and Value Selection in Search Heuristics

We consider here approaches where the heuristic functions change during the search
w.r.t. the current state and parameters.

Hybrid Approaches to Discover Efficient Variable Ordering To illustrate this
kind of approach, we may mention the SAT solving technique of [MSG98] where a
Tabu Search is used at each node of a DPLL to find the next variable to branch on.

Solver:
(
(OpChStratCh)Solv∗ParSolv∗)∗

Continuous Search In [AHS10], the authors propose to exploit the result of an
offline learning stage to select the best variable and value heuristics. They use a
restart-based tree search algorithm and tune the previous heuristics at each new
restart point. Moreover, this approach perpetually refines its learning stage by re-
assessing its past choices in between successive calls to the search procedure. This
approach is presented in Chap. 6.

Solver: (ParSolv)∗

Conflict Driven Heuristic In [BHLS04], important variables are deemed to be
the ones linked to constraints that have frequently participated in dead ends. During



7.4 Case Studies 119

the search, this information is collected and used to order variables. Eventually,
the system has enough knowledge to branch on important variables and quickly
solve the problem. The system learns weights from conflicts that are used in the
computation of the variable selection heuristics; this corresponds to an update of the
parameters each time a conflict is met.

Solver: (ParSolv∗)∗

Variable Dependency-Based Heuristic In [AH09] and in Chap. 5, the constraint
propagation engine is exploited to detect so called weak dependencies between vari-
ables. These correspond to situations when the instantiation of a given variable leads
to the instantiation of others. These events are perceived as positive, and are used
to rank the variables, favoring the ones whose branching on results in the largest
number of instantiations. This heuristic is shown to outperform [BHLS04] on many
domains.

Solver: (ParSolv∗)∗

Implicit Feedback Loops in Modern DPLL Solvers In modern SAT solvers like
the one presented in [ES03a], many implicit feedback loops are used. For instance,
the collection of conflicts feeds the variable selection heuristic, and the quality of
unit propagation is sometimes used to control the restart strategy. Similarly, the dele-
tion of learned clauses, which is necessary to preserve performances uses activity-
based heuristics that can point to the clauses that were the least useful for the unit
propagation engine. Therefore, it induces changes in the model itself and in the
heuristic parameters.

Solver:
(
(EncCh|Par)Solv∗)∗

Adapting Neighborhood During the Search Variable neighborhood search
[MH97, HR06, PR08] consists in managing simultaneously several neighborhood
functions and/or parameters (according to the description granularity) in order to
benefit from various exploration/exploitation facilities.

Solver:
(
(OpCh|Par)Solv

)∗

Evolving Heuristics

Hyper-heuristics Hyper-heuristics [BKN+03] is a general approach that consists
in managing several metaheuristic search methods from a higher strategy point of
view. Therefore, it is closely related to autonomous search and has already been
applied for many problems (e.g., SAT solving [BEDP08]). Since they switch from
one solving technique to another, hyper-heuristics could be characterized by:

Solver:
(
(OpCh|StratCh|Par|EvalCh)∗Solv∗)∗

Learning Combinations of Well-known Heuristics In the ACE project
[EFW05], learning is used to define new domain-based weighted combinations of
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branching heuristics (for variable and value selection). ACE learns the weights to
apply through a voting mechanism. Each low-level heuristic votes for a particu-
lar element of the problem (variable, value). Weights are updated according to the
nature of the run (successful or not). The learning is applied to a given class of
problems. The combination is learned on a set of representative instances and used
during the exploitation step. A similar approach has been used in [GJ08] in order to
learn efficient reduction operators when solving numerical CSPs.

Solver: (ParSolv∗)∗

Controlling Evaluation Function

This aspect may concern local search algorithms that use, for instance, adaptive
weighting of the constraints in their evaluation function [Mor93, Tho00]. Constraint
weighting schemes solve the problem of local minima by adding weights to the cost
of violated constraints. These weights increase the cost of violating a constraint and
so change the shape of the cost surface w.r.t. the evaluation function. Note that these
techniques are also widely used in SAT solvers [BHvMW09].

Solver: (EvalChSolv∗)∗

Parameter Control in Metaheuristic Algorithms

We consider here approaches that change the parameters during the search w.r.t.
the current state and other parameters. Of course, these parameters have a direct
influence on the heuristic functions, but these latter functions stay the same during
the solving process.

Reactive Search In [BBM08] (formerly presented in [BBM07]), Battiti et al. pro-
pose a survey of so-called reactive search techniques, highlighting the relationship
between machine learning and optimization processes. In reactive search, feedback
mechanisms are able to modify the search parameters according to the efficiency of
the search process. For instance, the balance between intensification and diversifi-
cation can be automated by exploiting the recent past of the search process through
dedicated learning techniques.

Solver: (ParSolv∗)∗

Adaptive Genetic Algorithms Adaptability is well known in evolutionary algo-
rithm design. For instance, there are classical strategies to dynamically compute the
usage probability of GA search operators [Thi05, WPS06a, WLLH03]. Given a set
of search operators, an adaptive method has the task of setting the usage probability
of each operator. When an operator is used, a reward is returned. Since the environ-
ment is non-stationary during evolution, an estimate of the expected reward for each
operator is only reliable over a short period of time [WPS06b]. This is addressed
by introducing a quality function, defined such that past rewards influence opera-
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tor quality to an extent that decays exponentially with time. We may also mention
other works that use more sophisticated evaluation functions, reward computation
and operator probability adjustments in order to manage dynamically the application
parameters of the EA [MFS+09, MS08, FDSS08].

Solver: (ParSolv∗)∗

7.4.3 Control During Solving in Parallel Search

The solvers described in this section also belong to the previous family of solvers
that include control within their proper solving process. But here, due to the par-
allel/distributed architecture of solver, the sequence of computation rules is more
difficult to schedule. Thus, the profile could be described as ([Config]|Solv∗)∗.

Value Ordering in Portfolio-Based Distributed Search In [RH05] and in
Chap. 2, the authors present portfolio-based distributed searches. The system al-
lows the parallel execution of several agent-based distributed search. Each search
requires the cooperation of a set of agents which coordinate their local decisions
through message passing. An agent is a part of multiple distributed searches, and
maintains the context of each one. Each agent can aggregate its context to dynam-
ically rank the values of its local variables. The authors define several efficient
portfolio-based value-ordering heuristics. For instance, one agent can pick up the
value which is used most frequently in competing searches, or the one which is most
supported in other searches, etc.

Solver: (Par|Solv∗)∗

Adaptive Load-Balancing Policies in Parallel Tree-Based Search Disolver is
an advanced Constraint Programming library which particularly targets parallel
search [Ham03]. This search engine is able to dynamically adapt its inter-processes
knowledge sharing activities (load-balancing, bound sharing). In Disolver, the end
user can define constraint-based knowledge sharing policies by adding new con-
straints. This second modeling can be linked to the constraint-based formulation
of the problem to control the knowledge sharing according to the evolution of
some problem components. For instance, the current value of the objective func-
tion can be used to draft answers to incoming load-balancing requests when the
quality of the current subtree is perceived as good, etc. Interestingly, since the con-
trol of the knowledge sharing policies is made through classical constraints, it is
automatically performed by the constraint propagation engine. We can see this as
a dynamic adjustment of knowledge sharing activities, and customize it to model
(learned clauses) and parameter (selection heuristics) changes.

Solver:
(
(EncCh|Par)|Solv∗)∗

Control-Based Clause Sharing in Parallel SAT Solving Conflict driven clause
learning, one of the most important components of modern DPLL, is crucial to the
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performance of parallel SAT solvers. Indeed, this mechanism allows clause sharing
between multiple processing units working on related (sub-)problems. However,
without limitations, sharing clauses might lead to an exponential blow-up in com-
munication or to the sharing of irrelevant clauses. In [HJS09a], the authors propose
new innovative policies to dynamically select shared clauses in parallel solvers. The
first policy controls the overall number of exchanged clauses whereas the second
one additionally exploits the relevance or quality of the clauses. This dynamic adap-
tation mechanism allows us to reinforce/reduce the cooperation between different
solvers which are working on the same SAT instance. This approach is fully de-
scribed in Chap. 3.

Solver: (Par|Solv∗)∗

7.5 Summary

In this chapter, we have proposed a taxonomy of search processes w.r.t. their com-
putation characteristics. To this end, we have presented the general basic concepts
of a solver architecture: the basic components of a solver, and its configurations.
We have then identified autonomous solvers as solvers that can control their solv-
ing process, either by self-adaptation (internal process) or by supervised adaptation
(external process).

We have proposed a rule-based characterization of autonomous solvers: the idea
is to formalize solver adaptations and modifications with some computation rules
that describe solver transformation. Using our formalism, we could then classify,
characterize, and identify the scope of autonomous search representative solvers by
outlining their global mechanism.

Our description framework allows us to handle solving techniques:

• of various and different types: complete, incomplete, or hybrid
• based on different computation paradigms: sequential, distributed, or parallel
• dedicated to different problem families: CSP, SAT, optimization, etc.

This work was also an attempt to highlight the links and similarities between differ-
ent communities that aim at building such autonomous solvers and that may benefit
from more exchanges and more collaborative approaches (including constraint pro-
gramming, SAT, machine learning, numerical optimization, clustering, etc.).

We have identified the notion of control in autonomous constraint solvers and
two main techniques for achieving it: control by supervised adaptation and control
by self-adaptation, depending on the level of interaction between the solver, its en-
vironment, and the control itself. These two control management approaches are
indeed complementary. Moreover, they open new challenges for the design of more
autonomous search systems that would run continuously, alternating (or combining,
or executing in parallel) solving and self-improving phases. A first attempt in this
direction has been presented in Chap. 6.



Chapter 8
Conclusion and Perspectives

Writing this book gave me the occasion to put my work into perspective and to re-
assess its homogeneity and consistency. Clearly, my work on distributed constraint
satisfaction put me on the distributed system side very early. In that world, algo-
rithms are more than monolithic sets of instructions and have value in their well-
timed and controlled interactions.

I decided to exploit the richness of this setting to mitigate the risk of being wrong
in a constructive search process, initially by adding parallelism to distributed search
[Ham99, Ham02b], then as presented in Chap. 2 by organizing competition and
cooperation between multiple distributed search strategies. Competition is rather
straightforward to organize. On the other hand, cooperation opens a new space
where the benefit of the knowledge exchanged has to be balanced against the cost of
sharing knowledge. When information is shared, we have to consider the ramp-up
time to prepare information, and the time it takes to effectively exchange the infor-
mation. When information is not shared we have to consider that costly redundant
work can occur, and that in divide-and-conquer systems task starvation can happen.

Therefore, controlling the way knowledge is shared and what knowledge is ex-
changed is crucial to the performance. In DisCSP settings, we managed to exploit
agents’ locality to share information between strategies. This allowed exchange at
virtually no cost. Concerning the knowledge to share, we tried to be systematic
by exploring policies based on diversification and emulation principles. In future
work we think that it would be interesting to investigate how portfolios are best
composed. Dynamic adaptation of portfolios looks also promising in the DisCSP
context. Adaptation could provide more resources to the most promising efforts.
Knowledge aggregation could be easily improved at no cost by adding extra infor-
mation to existing message passing operations. This would give a better view of the
distributed system, and could benefit from new aggregation methods

In the parallel SAT settings, complete solvers allow the exchange of conflict
clauses. However, since they can generate millions of clauses during their effort,
the exchange has to be well controlled. Technically, we decided to exploit lock-less
data structures to maximize performance. Content-wise, we managed to develop
new techniques to assess the quality of conflict clauses in an attempt to exchange
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meaningful information. We got inspired by control theory techniques to finely tune
the exchanges.

Parallel portfolios exploit the stochasticity of modern SAT solvers, which are
worth differentiating for better performance. More importantly, they benefit from
a crucial property of these solvers: they do not need to exhaust a search space to
definitely qualify an input as satisfiable or not. Portfolios have completely depre-
cated divide-and-conquer approaches, and nowadays the whole SAT community has
adopted this architecture [Bie10, Kot10, SLB10].

We came up with the ManySAT architecture thanks to our early experience
with distributed portfolios, and thanks to our experience with parallel divide-and-
conquer in constraint programming [Ham03]. As future work, the question of the
scalability of parallel SAT portfolios able to exchange conflict clauses has to be
asked. Many attempts have been made to mix portfolios and divide-and-conquer
approaches [MML10]; however, the results so far are not convincing.

To improve parallel local search techniques for SAT, we could only rely on
heuristic hints. One good piece of information to exchange in this setting is the best
configuration found so far. We used that as a basis to explore diversification and
intensification strategies to find out that the latter was giving the best performance
improvement.

Further work should investigate the use of additional information to exchange, for
instance, tabu list, the age and score of a variable, information on local minima, etc.
It should also consider the best way to integrate this extra knowledge in the course
of a given algorithm. State-of-the-art local searches perform better when they do
not restart. Incorporating extra information without forcing the algorithm to restart
is likely to be important.

Dynamic variable ordering heuristics are key to the performance of constraint
solvers. We showed how to heuristically discover a simplified form of functional
dependency between variables called weak dependency. Once discovered, these re-
lations are used to rank branching decisions. Our method shows that these relations
can be detected with some acceptable overhead during constraint propagation. Ex-
periments on a large set of problems show that, on the average, the search trees are
reduced by a factor of 3 while runtime is decreased by one third.

Our heuristic learns from successes, allowing a quick exploitation of the solver’s
work. In a way, this is complementary to dom-wdeg which learns from failures.
Moreover, both techniques rely on the computation of Mindom. Combining their
respective strengths seems interesting.

When one cannot multiply search strategies to avoid being wrong, the selection
of the right strategy is crucial. One way to avoid mistakes is to learn offline a predic-
tive model which accurately matches instance features to good solver’s parameters
[HH05, HHHLB06]. This approach requires a good understanding of the applica-
tion domain and a large set of representative instances. This last requirement can be
dropped by streamlining the learning process across executions of the search proce-
dure. Since the learning is performed on real instances, the model is more accurate.
As a downside, such a system cannot give top performance with the first instances
but can only gradually improve over time. Such a Continuous Search system was
presented in Chap. 6.
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Continuous computation addresses the issue of finding not the best (boundedly
optimal) use of time in solving a given problem, but the best use of idle compu-
tational resources between bouts of problem solving. This approach broadens the
definition of a problem to include not just individual instances, but the class of chal-
lenges that a given computational system is expected to face in its lifetime. Even-
tually, the end of the current search is just another event for the search system. As
an effect, the priority of its long-lasting self-improving task is raised and the task
comes to the foreground. That search is used to enrich the knowledge of the system
and is eventually exploited during this new task.

We can envision a wide range of actions that can be taken over by the search algo-
rithm while it is idle: analyzing the strategies that have succeeded and failed during
the last runs; applying costly machine learning techniques in order to improve a su-
pervised tuning method; using knowledge compilation techniques in order to com-
pile new deduction rules, or new patterns that were detected in the recently solved
problems and that can prove useful for future problems of the same application area;
exchanging gained knowledge with similar AS systems, e.g., features-based predic-
tion function.

In fact, such a continuous system would include a self-adaptive strategy during
the solving process while it could switch to a supervised controller while waiting
for another problem instance. This architecture would allow it to react dynamically
to incoming events during solving and to exploit the knowledge acquired through
its successive experiences.

The performance evaluation of a search system able to work in continuous search
mode is also an important problem which is highly related to the arrival rate and to
the quality of new problem instances. Here quality corresponds to how good the
instances are for the system for gaining important knowledge on the whole problem
class.

Finally, to capture our contributions in a unifying framework which will also
embed related work as much as possible, we moved to the notion of Autonomous
Search. We defined autonomous solvers as solvers that contain control in their
search process, and studied such autonomous systems w.r.t. their specific control
methods. A control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application of
some solving functions. We gave a formalization of solver adaptation and modifica-
tion with computation rules that describe solvers’ component transformation.

An important issue is evaluating performance of Autonomous Search systems
with respect to classical criteria, used in solver competitions, for instance. We think
that the performance evaluation of an autonomous search may actually focus on
three points: show that an autonomous search can (re)discover the best known or
approximate a very good strategy for a specific problem; show the ability of an au-
tonomous search to adapt itself to a changing environment, e.g., more or less com-
putational resources; show that an autonomous search can adapt itself and converge
to an efficient strategy for a class of problems.

There exists an optimal search strategy for a particular problem. However, deter-
mining such a strategy could require much more computational power than solving
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the problem at hand. One possible way to assess the performance of AS systems is
to run them on artificial problems where the optimal strategy is well known and to
see if their adaptive mechanisms are able to build a strategy close to the optimal.

The efficiency of an AS system can also be measured as its ability to maintain
the competitiveness of its search strategy in a changing environment. Here, the goal
is more to assess the reaction time of the system under changing settings than the
ultimate quality of the produced strategies.

A major challenge associated to AS is that classical tools for algorithm analysis
typically provide weak support for understanding the performance of autonomous
algorithms. This is because autonomous algorithms exhibit a complex behavior that
is not often amenable to a worst-/average-case analysis. Instead, autonomous algo-
rithms should be considered as full-fledged complex systems, and studied as such.
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Foreword


To solve a problem as efficiently as possible, a user selects a type of solver (MIP, CP,
SAT), then defines a model and selects a method of resolution. The model expresses
the problem in a way understandable for the solver. The method of resolution can be
complete (one is certain not to miss solutions) or incomplete (it uses a heuristic, i.e.,
a method that favors the chances of finding a solution but offers no completeness
guarantee).


Since solvers exist, researchers try to simplify the task of the end user, helping
her in these keys steps: the creation of the model, and the finding of a method of
resolution. In this book, Youssef Hamadi helps the user on the second point by
presenting ways to automatically select and adjust resolution strategies.


This book proposes several methods for both SAT and CP solvers. Firstly, the au-
thor demonstrates the benefit of parallelism through the duplication of search strate-
gies. In the best case, this can provide super linear speed up in the resolution process.
In most cases, this results in a more robust resolution method, to the point that such
a solver is never beaten by a solver using the best method. The solver ManySAT,
co-developed by Mr. Hamadi, is based on this idea and has won numerous prizes in
SAT competitions. Its fame goes far beyond the SAT solving domain and this line
of work is now a reference for the domain.


Any resolution method must be guided by the user through the definition of a
resolution strategy which typically defines the next decision to be made, i.e., which
variable must be assigned to which value? This book considers the automatic learn-
ing of the parameters of resolution strategies. It shows how to extract knowledge
from the information available during search. The difficulty is to determine the rel-
evant information and decide how they can be exploited. A particularly novel ap-
proach is proposed. It considers the successive resolutions of similar problems to
gradually build an efficient strategy.


This is followed by the presentation of Autonomous Search, a major contribution
of the book. In that formalism, the solver determines itself the best way to find solu-
tions. This is a very important topic, which has often been approached too quickly,
and which is finally well defined in this book. Many researchers should benefit from
this contribution.


v







vi Foreword


This book is fun to follow and the reader can understand the continuity of the
proposed approaches. Youssef Hamadi is able to convey his passion and conviction.
It is a pleasure to follow him on his quest for a fully automated resolution procedure.
The problem is gradually understood and better resolved through the book.


The quality, diversity and originality of the proposed methods should satisfy
many readers and this book will certainly become a reference in the field. I highly
recommend its reading.


Jean-Charles RéginNice, France
September 2013
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Chapter 1
Introduction


Combinatorial search algorithms are typically concerned with the solving of NP-
hard problems. Such problems are not believed to be solvable in general. In other
words there is no known algorithm that efficiently solves all instances of NP-hard
problems. However, tractability results from complexity theory along decades of
experimental analysis suggest that instances coming from practical application do-
mains can often be efficiently solved. Combinatorial search algorithms are devised
to efficiently explore the usually large solution space of these instances. They rely
on several techniques able to reduce the search space to feasible regions and use
heuristics to efficiently explore these regions.


Combinatorial search problems can be cast into general mathematical definitions.
This involves finding a finite set of homogeneous objects or variables whose state
must satisfy a finite set of constraints and preferences. Variables have a domain of
potential values, and constraints or preferences are used to either restrict or order
combinations of values between variables. Dedicated algorithms are able to effi-
ciently enumerate combinations or potential solutions over these definitions.


There are several mathematical formalisms used to express and tackle combina-
torial problems. This book will consider the Constraint Satisfaction Problem (CSP)
and the Propositional Satisfiability problem (SAT), two successful formalisms at the
intersection of Artificial Intelligence, Operations Research, and Propositional Cal-
culus. Despite the fact that these formalisms can express exactly the same set of
problems, as proved by complexity theory, they can be differentiated by their prac-
tical degree of expressiveness. CSP is able to exploit more general combinations
of values and more general constraints; SAT on the other hand focuses on Boolean
variables, and on one class of constraints. These degrees of expressiveness offer dif-
ferent algorithmic trade-offs. SAT can rely on more specialized and finely tuned data
structures and heuristics. On the other hand, algorithms operating on CSP modeling
have to trigger different classes of constraints and variables and therefore have to
deal with the associated overhead. These algorithms or constraint solvers, if differ-
ent, are based on the same principles. They apply search space reduction through
inference techniques, use activity-based heuristics to guide their exploration, diver-
sify their search through frequent restarts, and often learn from their mistakes.
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2 1 Introduction


This book focuses on Knowledge Sharing in combinatorial search, the capacity
to generate and exploit meaningful information during search. Meaningful informa-
tion is made of redundant constraints, heuristic hints, and performance measures. It
can be used at different levels to drastically improve the performance of a constraint
solver. Typically, information can be shared between multiple constraint solvers
simultaneously working on the same instance, or information can help solvers to
achieve good performance while solving a large set of related instances.


In the first case, multiple constraint solvers are working on the same instance,
and information sharing has to be performed at the expense of the underlying search
effort, since a solver has to stop its main effort to prepare and communicate the
information to other solvers. On the other hand, not sharing information can incur
a cost for the whole system by having solvers potentially exploring the unfeasible
spaces discovered by other solvers.


In the second case, sharing performance measures can be done with little over-
head, and the goal is to be able to acutely tune a constraint solver in relation to
the characteristics of a new instance. This corresponds to the selection of the most
suitable algorithm for solving a given instance [Ric75].


The book contains two main parts. In Chaps. 2, 3, and 4, portfolios of distributed
and parallel algorithms are presented. The reading of Chap. 2 is essential to un-
derstand the notions of selection and randomization risks in combinatorial search.
These risks explain and motivate parallel portfolio solvers. Chapters 5 and 6 present
the benefit of using learning mechanisms during or between search efforts. They can
be read independently. Finally, Chap. 7 unifies the previous chapters into the new
Autonomous Search framework.


Chapter 2 presents portfolios of distributed CSP algorithms [YDIK92] which
demonstrate that competition and cooperation through knowledge sharing can im-
prove the performance of existing distributed search techniques by several orders of
magnitude. We show that a portfolio approach makes better use of computational re-
sources by reducing the idle time of agents. It allows search agents to simultaneously
work at different tree search levels and provides a solution to the classical work im-
balance problem of distributed backtracking. This is achieved through the selective
sharing of heuristic hints and decisions. It also shows the value of knowledge shar-
ing to significantly speed up search and provide portfolios whose performance is
better than any constituent algorithm.


The previous notions are then applied to the important problem of parallel propo-
sitional satisfiability in Chap. 3. This chapter presents the knowledge sharing aspects
of ManySAT, the first parallel SAT portfolio built on lessons learned from portfo-
lios of distributed CSP algorithms. In ManySAT different modern SAT solvers are
organized around a cooperative framework to quickly solve a given instance. They
exchange redundant constraints through advanced control mechanisms which adjust
the level of cooperation in relation with the perceived relevance of the information
exchanged.


Chapter 4 considers parallel local search algorithms for the problem of propo-
sitional satisfiability. This work is motivated by the demonstrated importance of
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clause sharing in the performance of complete parallel SAT solvers. Unlike com-
plete solvers, efficient local search algorithms for SAT are not able to generate re-
dundant clauses during their execution. In our settings, each member of the portfolio
shares its best configuration (i.e., which minimizes conflicting clauses) in a common
structure. At each restart point, instead of classically generating a random config-
uration to start with, each algorithm aggregates the shared knowledge to carefully
craft a new starting point. We present several aggregation strategies and evaluate
them on a large set of problems. Our techniques improve the performance of a large
set of local search algorithms.


In Chap. 5, our objective is to heuristically discover a simplified form of func-
tional dependencies between variables called weak dependencies. Once discovered,
these relations are used to rank branching decisions. Our method shows that these
relations can be detected with some acceptable overhead during constraint propa-
gation. More precisely, each time a variable y gets instantiated as a result of the
instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the
weight of x is raised, and the variable becomes more likely to be selected by the
variable ordering heuristic. Experiments on a large set of problems show that, on
average, the search trees are reduced by a factor of three while runtime is decreased
by one third.


Chapter 6 presents Continuous Search (CS). In CS, we interleave two functioning
modes. In exploitation mode, the instance submitted by the user is processed by the
constraint solver; the current heuristics model is used to parameterize the solver
depending on the instance at hand. In learning or exploration mode, CS reuses the
last submitted instance, running other heuristics than the one used in exploitation
mode in order to find which strategy would have been most efficient for this instance.
New information is thus generated and exploited in order to refine the heuristics
model, in a transparent manner: without requiring the user’s input and by only using
the idle computer’s CPU cycles. CS acts like an autonomous search system able to
analyse its performances and gradually correct its search strategies.


In Chap. 7, we leverage knowledge sharing mechanisms in the unified Au-
tonomous Search framework. We define autonomous solvers as solvers that con-
tain control in their search process, and study such autonomous systems w.r.t. their
specific control methods. A control process includes a strategy that manages the
modification of some of the solver’s components and behavioral features after the
application of some solving functions. The overall strategy to combine and use com-
ponents and parameters can be based on learning that uses meaningful information
from the current solving process and/or from previously solved instances. This chap-
ter proposes a taxonomy of search processes w.r.t. their computation characteristics,
and provides a rule-based characterization of autonomous solvers. This allows a for-
malizing of solver adaptation and modification with computation rules that describe
the modification of the solver’s component transformations.







Chapter 2
Boosting Distributed Constraint Networks


2.1 Introduction


In combinatorial tree-based search, finding a good labeling strategy is a difficult and
tedious task which usually requires long and expensive preliminary experiments on
a set of representative problem instances. Performing those experiments or defining
realistic input samples is far from being simple for today’s large scale real life appli-
cations. The previous observations are exacerbated in the processing of distributed
constraint satisfaction problems (DisCSPs). Indeed, the distributed nature of those
problems makes any preliminary experimental step difficult since constrained prob-
lems usually emerge from the interaction of independent and disconnected agents
transiently agreeing to look after a set of globally consistent local solutions [FM02].


This work targets those cases where bad performance in the processing of a
DisCSP can be prevented by choosing a good labeling strategy i.e., decide on an
ordered set of variable and value pairs to branch on, and execute it in a benefi-
cial order within the agents. In the following, we define a notion for the risks we
have to face when choosing a strategy and present the new Multi-directional Search
Framework or M-framework for the execution of distributed search. An M-portfolio
executes several distributed search strategies in parallel and lets them compete to
be the first to finish. Additionally, cooperation of the distributed searches is imple-
mented with the aggregation of knowledge within agents. The knowledge gained
from all the parallel searches is used by the agents for their local decision making
in each single search. We present two principles of aggregation and employ them in
communication-free methods.


Each DisCSP agent still has access to only a subset of the variables as usual but
itself runs several copies of the search process on these variables under different
search contexts, potentially integrating information across these different contexts.
Since these contexts have different indirect information about other agents (based
on the messages they have received), this indirectly allows aggregating information
across different agents as well.


We apply our framework in two case studies where we define the algorithms
M-ABT and M-IDIBT that improve their counterparts ABT [YDIK92] and IDIBT
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[Ham02b] by several orders of magnitude. With these case studies we can show the
benefit of competition and cooperation for the underlying distributed search algo-
rithms. We expect the M-framework to be similarly beneficial for other tree-based
DisCSP algorithms [HR11, RH05]. The framework presented here may be applied
to them in a straightforward way that is described in this chapter.


2.2 Previous Work


The benefit of cooperating searches executed in parallel was first investigated for
CSP in [HH93]. They used multiple agents, each of which executed one monolithic
search algorithm. Agents cooperated by writing/reading hints to/from a common
blackboard. The hints were partial solutions or nogoods its sender had found and
the receiver could reuse them in its efforts. In contrast to our work, this multi-agent
system was an artifact created for the cooperation. Thus the overhead it produced,
especially when not every agent could use its own processor, added directly to the
overall performance. Another big difference between Hogg’s work and ours is that
DisCSP agents do not have a global view of the searches and can thus only com-
municate what’s in their agent-view, which usually captures partial solutions for
comparably few variables only.


Later the expected performance and the expected (randomization) risk in portfo-
lios of algorithms was investigated in [GS97, GS01]. No cooperation between the
processes was used here. In the newer paper the authors concluded that portfolios,
provided there are enough processors, reduce the risk and improve the performance.
When algorithms do not run in parallel (i.e., when it is not the case that each search
can use its own processor) the portfolio approach becomes equivalent to random
restarts [GSK98]. Using only one processor, the expected performance and risk of
both are equivalent. In contrast to Gomes and Selman we cannot allocate search
processes to CPUs. In DisCSP we have to allocate each agent, which participates
in every search, to one process. Consequently, parallelism is in our setting and not
an overhead prune artifact. We distribute our computations to the concurrent pro-
cesses. However, this is done in a different way than in [GS01]; we do not assign
each search to one process, but each search is temporarily performed in each pro-
cess. Or from the other perspective, each agent participates in all the concurrent
search efforts at the same time. Thus load-balancing is performed by the agents and
not by the designer of the portfolio. In this work we consider agents that do this on
a first-come-first-serve basis. Another major difference with Gomes and Selman’s
work is that we use cooperation (aggregation) between the agents.


Recent work on constraint optimization [CB04] has shown that letting multi-
ple search algorithms compete and cooperate can be very beneficial without hav-
ing to know much about the algorithms themselves. They successfully use various
optimization methods on one processor which compete for finding the next best
solutions. Furthermore they cooperate by interchanging the best known feasible so-
lutions. However, this method of cooperation cannot be applied to our distributed
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constraint satisfaction settings for two reasons: first, we do not have (or want) a
global view to a current variable assignment, and second, we have no reliable met-
ric to evaluate partial assignments in CSP.


Concurrent search in DisCSPs [ZM05, Ham02b, Ham02a] differs from M- in a
significant way. These approaches also use multiple contexts in parallel to acceler-
ate search. However, in the named works certain portions of the search space are
assigned to search efforts. These works apply divide-and-conquer approaches. In
the framework presented here we do not split the search space but let every context
work on the complete problem. This makes a significant difference in the applica-
tion of both concepts; M- is a framework while divide-and-conquer is a class of
algorithms. M- requires algorithms to do the work while making use of available
resources to try multiple things in parallel. Consequently concurrent search could
be integrated in M- by letting multiple concurrent search algorithms (each hosting
multiple concurrent searches) run in parallel.


In DisCSP research many ways to improve the performance of search have
been found in recent years, including for example, [YD98, BBMM05, ZM05,
SF05, MSTY05]. All of the named approaches can be integrated easily in the M-
framework. The steps to take in order to do this are described in this chapter. The
data structures have to be generalized to handle M contexts, and the search functions
and procedures have to integrate an extra context parameter during their execution.
Depending on the algorithm we may achieve heterogeneous portfolios in different
ways. In this work we demonstrate the use of different agent topologies but other
properties of algorithms can similarly be diversified in a portfolio. As described in
the previous paragraph, the main difference between the work presented here and the
named DisCSP research is that we do not provide but require a DisCSP algorithm
to serve as input to create an instance of M-.


A different research trend performs “algorithm selection” [Ric76]. Here, a port-
folio does not represent competing methods but complementary ones. The problem
is then to select from the portfolio the best possible method in order to tackle some
incoming instance. [XHHLB07, LBNA+03] applies the previous to combinatorial
optimization. The authors use portfolios which combine algorithms with uncorre-
lated easy inputs. Their approach requires an extensive experimental step. It starts
with the identification of the problem’s features that are representative of runtime
performances. These features are used to generate a large set of problem instances
which allow the collection of runtime data for each individual algorithm. Finally,
statistical regression is used to learn a real-valued function of the features which
allows runtime prediction. In a real situation, the previous function predicts each
algorithm’s running time and the real instance is solved with the algorithm identi-
fied as the fastest one. The key point is to combine uncorrelated methods in order to
exploit their relative strengths. The most important drawback here is the extensive
offline step. This step must be performed for each new domain space. Moreover
a careful analysis of the problem must be performed by the end user to identify
key parameters. The previous makes this approach highly unrealistic in a truly dis-
tributed system made by opportunistically connected components [FM02]. Finally
knowledge sharing is not applicable in this approach.
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2.3 Technical Background


In this section we define some notions used later in the chapter. We briefly define
the problem class considered, two algorithms to solve them and three metrics to
evaluate the performance of these algorithms.


2.3.1 Distributed Constraint Satisfaction Problems


DisCSP is a problem solving paradigm usually deployed in multi-agent applications
where the global outcome depends on the joint decisions of autonomous agents. Ex-
amples of such applications are distributed planning [AD97], and distributed sensor
network management [FM02]. Informally, a DisCSP is represented by a set of vari-
ables, each of which is associated with a domain of values, and a set of constraints
that restrict combinations of values between variables. The variables are partitioned
amongst a set of agents, such that each agent owns a proper subset of the variables.
The task is for each agent to assign a value to each variable it owns without violating
the constraints.


Modeling a distributed problem in this paradigm involves the definition of the
right decision variables (e.g., in [FM02] one variable to encode the orientation of the
radar beam of some sensor) with the right set of constraints (e.g., in [FM02] at least
three sensors must agree on the orientation of their beams to correctly track a target).


Solving a DisCSP is equivalent to finding an assignment of values to variables
such that all the constraints are satisfied.


Formally, a DisCSP is a quadruplet (X,D,C,A) where:


1. X is a set of n variables X1,X2, . . . ,Xn.
2. D is a set of domains D1,D2, . . . ,Dn of possible values for the variables


X1,X2, . . . ,Xn respectively.
3. C is a set of constraints on the values of the variables. The constraint Ck(Xk1, . . . ,


Xkj ) is a predicate defined on the Cartesian product Dk1 × · · · × Dkj . The pred-
icate is true if the value assignment of these variables satisfies the constraint.


4. A = {A1,A2, . . . ,Ap} is a partitioning of X amongst p autonomous processes or
agents where each agent Ak “owns” a subset of the variables in X with respect to
some mapping function f : X → A, s.t. f (Xi) = Aj .


A basic method for finding a global solution uses the distributed backtracking
paradigm [YDIK92]. The agents are prioritized into a partial ordering graph such
that any two agents are connected if there is at least one constraint between them.
The ordering is determined by user-defined heuristics. Solution synthesis begins
with agents finding solutions to their respective problems. The local solutions are
then propagated to respective children i.e., agents with lower priorities. This propa-
gation of local solutions from parent to child proceeds until a child agent is unable
to find a local solution. At that point, a nogood is discovered. These elements record
inconsistent combinations of values between local solutions, and can be represented
as new constraints. Backtracking is then performed to some parent agent and the
search proceeds from there i.e., the propagation of an alternative local solution or a
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new backtrack. The detection and the recording of inconsistent states are the main
features which distinguish distributed backtracking algorithms. This process carries
on until either a solution is found or all the different combinations of local solutions
have been tried and none of them can satisfy all the constraints. Since these algo-
rithms run without any global management point, successful states—where each
agent has a satisfiable local solution—must be detected through some additional
termination detection protocol (e.g., [CL85]).


2.3.2 DisCSP Algorithms


As a case study to investigate the benefit of competition and cooperation in dis-
tributed search we applied our framework to the distributed tree-based algorithms
IDIBT [Ham02b] and ABT [YDIK92].


IDIBT exploits the asynchronous nature of the agents in a DisCSP to perform
parallel backtracking. This is achieved by splitting the solution space of the top
priority agent into independent sub-spaces. Each sub-space combined with the re-
maining parts of the problem represents a new sub-problem or context. In each con-
text, the same agent ordering is used. Globally, the search is truly parallel since
two agents can simultaneously act in different sub-spaces. At the agent level, search
contexts are interleaved and explored sequentially.


This divide-and-conquer strategy allows the algorithm to perform well when the
value selection strategy is poorly informed. Besides this parallelization of the explo-
ration, IDIBT uses a constructive approach to thoroughly explore the space by an
accurate bookkeeping of the explored states. It does not add nogoods to the problem
definition. However, it often requires the extension of the parent-child relation to
enforce the completeness of the exploration.


In this work, IDIBT agents use exactly one context to implement (each) dis-
tributed backtracking. Please note that we also use contexts but in a different way.
We only use them to implement our portfolio of variable orderings. In contrast to
[Ham02b] we thus apply each of them to the complete search tree.


IDIBT requires a hierarchical ordering among the agents. Agents with higher
priority will send their local solution through infoVal messages to agents with lower
priority. In order to set up a static hierarchy among agents, IDIBT uses the DisAO
algorithm [Ham02b]. In this chapter we do not use DisAO but define an order a
priori by hand. However, the DisAO has an extra functionality which is essential
for the correctness of IDIBT: it establishes extra links between agents which are
necessary to ensure that every relevant backtrack message is actually received by
the right agent. In order to prevent this pre-processing of the agent topology with
DisAO we changed the IDIBT algorithm to add the required extra links between
agents dynamically during search (similar to the processing of addLink messages in
ABT). Finally we extended the algorithm to support dynamic value selection, which
is essential for the aggregation described later in this chapter.


ABT is the most prominent tree-based distributed search algorithm. Just like
IDIBT it uses a hierarchy to identify the receivers of messages that inform others of
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currently made choices, of the need to backtrack or of the need to establish an extra
link. In contrast to IDIBT, ABT uses a nogood store to ensure completeness.


In this work, we used ABT in its original version where the hierarchy of agents
is given a priori.


Note that even if IDIBT is used with a single context in our experiments, that
does not make it similar to ABT. Indeed, IDIBT does not record nogood, while
ABT does. This makes a huge difference between these algorithms.


2.3.3 Performance of DisCSP Algorithms


The performance of distributed algorithms is comparably hard to capture in a mean-
ingful way. The challenge is to find a metric which includes the complexity of the
locally executed computations and the need for communication while taking into
account the work that can practically be done in parallel. The community has pro-
posed different metrics which meet these requirements.


Non-concurrent Constraint Checks Constraint checks (cc) is an established
metric to express the effort of CSP algorithms. It is the number of queries made
to constraints whether they are satisfied with a set of values or not. Non-concurrent
Constraint Checks (nccc) [GZG+08] apply this metric to a concurrent context. nccc
counts the constraint checks which cannot be made concurrently. When two agents
A and B receive information about a new value from another agent C, they then can
check their local consistency independently and thus concurrently. Assuming this
costs 10 constraint checks each, it will be 20 cc but only 10 nccc. However, when
agent C needs 10 cc to find this value, this is not independent of A and B and will
result in 20 nccc and 30 cc respectively.


Sequential Messages Counting messages (mc) is an established method to eval-
uate the performance of distributed systems. The number of messages is relevant
because their transportation often requires much more time than local computa-
tions. Analogously to counting cc in distributed systems we also have to distinguish
the messages that can be sent concurrently [Lam78]. This also applies to DisCSP
[SSHF00]. If an agent C informs two agents A and B of its new value then it uses
two messages. However, the two mc will only count as one sequential message
(smc) because both are independent and can be sent in parallel. When agent A now
replies to this message then we will have two smc (and three mc), because the re-
ply is dependent on the message sent by C. The metric thus refers to the longest
sequence of messages that is sent for the execution of the algorithm.


Parallel Runtime Runtime is a popular metric in practice today. It expresses in
a clear and easily understandable way the actual performance of an algorithm. Its
drawback is that it is hardly comparable when using different hardware. In multi-
tasking operating systems we usually use CPU time in order to capture just the time
the considered process requires. Again, in concurrent systems this metric cannot be







2.4 Risks in Search 11


applied so easily. We have multiple processes and CPUs which share the workload.
In order to capture parallel runtime (pt) we have to track dependencies of compu-
tations and accumulate the dependent runtime required by different processes. The
longest path through such dependent activities will be the required parallel time. In
simulators of distributed systems which run on one processor we can capture the pt
in the same way. With every message we transmit the pt required so far. The receiver
will add the time it needs to process the message and pass the sum on with the next
(dependent) message.


2.4 Risks in Search


Here we present two definitions of risk in search. Both kinds of risks motivate our
work. We want to reduce the risk of poor performance in DisCSP. The first notion,
called randomization risk, is related to the changes in performance when the same
non-deterministic algorithm is applied multiple times to a single problem instance.
The second notion, called selection risk, represents the risk of selecting the wrong
algorithm or labeling strategy, i.e., one that performs poorly on the considered prob-
lem instance.


2.4.1 Randomization Risk


In [GS01] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when more
randomness is used in the algorithms. With random value selection, for example,
it is high, and with a completely deterministic algorithm it will be close to zero.
In order to prevent confusion we will refer to this risk as the randomization risk
(R-risk) in the rest of the chapter.


Definition 2.1 The R-risk is the standard deviation of the performance of one algo-
rithm applied multiple time to one problem.


In asynchronous and distributed systems we are not able to eliminate random-
ness completely. Besides explicitly intended randomness (e.g., in value selection
functions) it emerges from external factors including the CPU scheduling of agents
or unpredictable times for message passing [ZM03].


Reducing the R-risk leads in many cases to trade-offs in performance [GSK98],
such that the reduction of this risk is in general not desirable. For instance, we would
in most cases rather wait between one to ten seconds for a solution than waiting
seven to eight seconds. In the latter case the risk is lower but we do not have the
chance to get the best performance.


Moreover, increasing randomization and thus the R-risk is known to reduce the
phenomena of heavy-tail behavior in search [Gom03]. Heavy-tailedness exposes
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Fig. 2.1 Heavy-tail behavior
of IDIBT and ABT


the phenomena that wrong decisions made early during search may lead to extensive
thrashing and thus unacceptable performance. In a preliminary experiment we could
detect this phenomenon in DisCSP with the algorithms ABT and IDIBT. We used
lexicographic variable and value selection to solve 20 different quasigroup comple-
tion problems [GW]. A quasigroup is an algebraic structure resembling a group in
the sense that “division” is always possible. Quasigroups differ from groups mainly
in that they need not be associative.


The problems were encoded in a straightforward model: N2 variables, one vari-
able per agent, no symmetry breaking, binary constraints only. We solved problems
with a 42 % ratio of pre-assigned values, which is the peak value in the phase tran-
sition for all orders, i.e., we used the hardest problem instances for our test. Each
problem was solved 20 times resulting in a sample size of 400. With ABT we solved
problems of order 6 and with the faster IDIBT problems of order 7. Randomness re-
sulted from random message delays and the unpredictable agent activation of the
simulator.


The results of this experiment are presented in Fig. 2.1. We can observe a linear
decay of the cumulative distribution function of ABT on a log-log scale. For IDIBT,
since this algorithm is more efficient than ABT, the linear decay is not visible, but
would have been apparent at a different scale, i.e., for the processing of larger prob-
lems. The cumulative distribution function of x gives us the probability (y-axis)
that the algorithm will perform worse than x. It can be seen that the curves display
a Pareto distribution having a less than exponential decay. A Pareto distribution
or power law probability distribution is seen in many natural phenomena (wealth
distribution, sizes of sand particles, etc.); it implies that the phenomenon under con-
sideration distributes a particular characteristic in an unbalanced way, e.g., 80–20
rule, which says that 20 % of the population controls 80 % of the wealth.


This hyperbolic (i.e., less than exponential) decay is identified on the log-log
scale when the curves look linear. This is a common means of characterizing a
heavy-tail [Hil75]. Thus, we could (for the first time) observe heavy-tails for both
considered DisCSP algorithms in these experiments.
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In order to diminish the heavy-tail Gomes and Selman propose the use of random
restarts during search. With this technique we interrupt thrashing and restart search
once the effort does not seem promising anymore. Nowadays, restart is an essential
part of any modern tree-based SAT solver [BHZ06], and is also successfully applied
to large scale CP applications [OGD06].


With a central control this decision to restart can be based on information gained
from a global view on the search space e.g., overall number of fails or backtrack
decisions. In DisCSP we do not have such a global view and could thus only de-
cide locally either to restart or to keep trying. However, the local view may not be
informed enough for this decision. In these algorithms different efforts are concur-
rently made on separate sets of variables. Thus we must face the risk that while one
effort may thrash and identify the need to restart, another effort may have almost
solved its sub-problem. Furthermore, stopping and restarting a distributed system is
costly since it involves extra communication. It requires a wave of messages to tell
all agents to stop. After that, global quiescence has to be detected before a restart
can be launched. Thus, we do not consider restarts to be very practical for DisCSP.


In [GS01] the authors incorporate random restarts in a different way. When we
use a portfolio of algorithms performing random searches in parallel then this can
be equivalent to starting all of these algorithms one after each other in a restart
setting. They showed that, if one processor is available, the use of portfolios of
algorithms or labeling strategies has performance equivalent to the application of
random restarts. When we use a portfolio of random searches, running in parallel
on the same computational resources, then the expected value of the performance
is the same as running these random searches one after each other using random
restarts. If we have more than one processor, the performance may increase.


In this chapter we make use of this in order to reduce heavy-tail behavior in
DisCSP. We use portfolios as a surrogate of random restarts to reduce the risk of
extensive thrashing paralyzing the algorithm. This will reduce the risk of very slow
runs and thus reduce the R-risk as well, and improve the mean runtime. The random-
ness may result from random value selection or from the distribution itself (message
transportation and process activation). As we will show in Sect. 2.6 we can avoid
heavy-tailedness with this new technique.


2.4.2 Selection Risk


The risk we take when we select a certain algorithm or a heuristic to be applied
within an algorithm to solve a problem will always be that this is the wrong choice.
For most problems we do not know in advance which algorithm or heuristic will be
the best, and may select one which performs much worse than others. We’ll refer to
this risk as the selection risk (S-risk).


Definition 2.2 The S-risk of a set of algorithms/heuristics A is the standard devi-
ation of the performance of each a ∈ A applied the same number of times to one
problem.
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Fig. 2.2 DisCSP (left) and
agent topologies implied by
the variable orderings
max-degree (middle) and
min-degree (right)


We investigated the S-risk emerging from the chosen agent ordering in IDIBT in
a preliminary experiment on small, fairly hard random problems (15 variables, 5 val-
ues, density 0.3, tightness 0.4). These problems represent randomly generated CSPs
where the link density between variables is set to 30 %, whereas the tightness density
of each constraint is set to 40 %, i.e., 40 % of the value combinations are disabled
in each constraint. We used one variable per agent and could thus implement vari-
able orderings in the ordering of agents. We used lexicographic value selection and
four different static variable ordering heuristics: a well-known “intelligent” heuris-
tic (namely maxDegree), its inverse (which should be bad) and two different blind
heuristics. As expected, we could observe that the intelligent heuristic dominates on
average but that it is not always the best. It was the fastest in 59 % of the tests, but
it was also the slowest in 5 % of the experiments. The second best heuristic (best in
18 %) was also the second worst (also 18 %). The “anti-intelligent” heuristic turned
out to be the best of the four in 7 %. The differences between the performances were
quite significant with a factor of up to 5. Applied to the same problems, ABT gave
very similar results with a larger performance range of up to factor 40.


2.5 Boosting Distributed Constraint Satisfaction


In DisCSP the variable ordering is partially implied by the agent topology. Neigh-
boring agents will have to be labeled directly one after the other. For example, if
each agent hosts one variable then for each constraint a connection between two
agents/variables must be imposed. From this follows that the connected variables
are labeled directly one after the other because they communicate along this estab-
lished link. In other topologies where we have inner and outer constraints, naturally
only the outer constraints must be implemented as links between agents and we have
free choice of variable selection inside the nodes.


For the inter-agent constraints we have to define a direction for each link. This
direction defines the priority of the agents [YDIK92] and thus the direction in which
backtracking is performed. It can be chosen in any way for each of the existing
connections. In Fig. 2.2 we show two different static agent topologies emerging
from two different variable ordering heuristics in DisCSP.







2.5 Boosting Distributed Constraint Satisfaction 15


Fig. 2.3 Two contexts for the agent hosting X4 from Fig. 2.2 resulting from two variable orderings


2.5.1 Utilizing Competition with Portfolios


The idea presented in this chapter is that several variable orderings and thus several
agent topologies are used by concurrent distributed searches. We refer to this idea
as the M-framework for DisCSP. Applied to an algorithm X it defines a DisCSP
algorithm M-X which applies X multiple times in parallel. Each search operates
in its usual way on one of the previously selected topologies. In each agent the
multiple searches use separate contexts to store the various pieces of information
they require. These include, for example, adjacent agents, their current values, their
beliefs about the current values of other agents, etc.


In Fig. 2.3 we show how an agent hosting variable X4 from Fig. 2.2 could em-
ploy the two described variable orderings. The figure shows the internal informa-
tion, and the associated pseudo code. On the right part of the figure, we can see that
this agent hosts two different current values, one for each search, and two different
agent-views which contain its beliefs about the values of higher-priority agents. The
set of these higher-priority agents depends on the chosen topology and thus on the
chosen variable ordering. The figure also shows on the left the pseudo code associ-
ated with some tree-based search algorithm. There, the functions and procedures are
augmented with an extra context parameter, which is used to access the right subset
of data.


In an M- search, different search efforts can be made in parallel. Each message
will refer to a context and will be processed in the scope of this context. The first
search to terminate will deliver the solution or report failure. Termination detec-
tion has thus to be implemented for each of the contexts separately. This does not
result in any extra communication, as shown for the multiple contexts of IDIBT
in [Ham02b].


With the use of multiple contexts we implement a portfolio of heuristics which is
known to reduce the heavy-tail of CSP [GS01]. As we will show in our experiments
this is also beneficial for DisCSP. In contrast to random restarts we do not stop any
search although it may be stuck due to bad early choices. We rather let such efforts
run while concurrent efforts may find a solution. As soon as a solution is detected
in one of the contexts all searches are stopped.
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Additionally, we can reduce the S-risk by adding more diversity to the portfolio.
Assuming we do not know anything about the quality of orderings, the chance of
including a good ordering in a set of M different orderings is M times higher than
selecting it for execution in one search. When we know intelligent heuristics we
should include them but the use of many of them will reduce the risk of bad per-
formance for every single problem instance (cf. experiment in Sect. 2.4.2). Further-
more, the expected performance is improved with the M-framework since always the
best heuristic in the portfolio will deliver the solution or report failure. If we have a
portfolio of orderings M where the expected runtime of each m ∈ M is t (m), then
ideally (if no overhead emerges), the system terminates after min({t (m)|m ∈ M}).


2.5.2 Utilizing Cooperation with Aggregation


Besides letting randomized algorithms compete such that overall we are always “as
good as the best heuristic” the M-framework can also use cooperation. Cooperation
through knowledge sharing is a very powerful concept which allows a collection of
agents to perform even better than the best of them. As suggested by Reid Smith,
Power = KnowledgeShared , where the exponent represents the number of agents
whose knowledge is brought to the problem [Buc06]. With this, M-portfolios may be
able to accelerate the search effort even more by providing it with useful knowledge
others have found. Cooperation is implemented in the aggregation of knowledge
within the agents. The agents use the information gained from one search context to
make better decisions (value selection) in another search context. This enlarges the
amount of knowledge on the basis of which local decisions are made.


In distributed search, the only information that agents can use for aggregation is
their view of the global system. With multiple contexts, the agents have multiple
views, and thus more information available for their local reasoning. Since all these
views are recorded by each individual agent within its local knowledge base, shar-
ing inter-context information is costless. It is just a matter of reading in the local
knowledge base what has been decided for context c, in order to make a new de-
cision in context c′. In this setting, the aggregation yields no extra communication
costs (i.e., no message passing). It is performed locally and does not require any
messages or accesses to some shared blackboard.


2.5.3 Categories of Knowledge


In order to implement aggregation we have to make two design decisions: first,
which knowledge is used, and second, how it is used. As mentioned before, we use
knowledge that is available for free from the internally stored data of the agents. In
particular this may include the following four categories:


• Usage. Each agent knows the values it currently has selected in each search con-
text.
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Table 2.1 Methods of aggregation


Diversity Emulation


Usage minUsed: the value which is used the
least in other searches


maxUsed: the value which is used most in
other searches


Support – maxSupport: the value that is most
supported by constraints w.r.t. current
agent-views


Nogoods differ: the value which is least included
in nogoods


share: always use nogoods of all searches


Effort minBt: a value which is not the current
value of searches with many backtracks


maxBt: the current value of the search
with most backtracks


• Support. Each agent can store for each search context currently known values of
other agents (agent-view) and the constraints that need to be satisfied with these
values.


• Nogoods. Each agent can store for each search context partial assignments that
are found to be inconsistent.


• Effort. Each agent knows for each search context how much effort in terms of the
number of backtracks it has already invested.


2.5.4 Interpretation of Knowledge


The interpretation of this knowledge can follow two orthogonal principles: diversity
and emulation. Diversity implements the idea of traversing the search space in dif-
ferent parts simultaneously in order not to miss the part in which a solution can be
found. The concept of emulation implements the idea of cooperative problem solv-
ing, where agents try to combine (partial) solutions in order to make use of work
which others have already done.


With these concepts of providing and interpreting knowledge we can define the
portfolio of aggregation methods shown in Table 2.1. In each box we provide a name
(to be used in the following) and a short description of which value is preferably
selected by an agent for a search.


2.5.5 Implementation of the Knowledge Sharing Policies


The implementation of each knowledge sharing policy is rather simple since it only
requires regular lookups to other contexts in order to make a decision. More con-
cretely,


• minUsed, maxUsed. Each value of the initial domain of a local variable is associ-
ated to a counter. This counter is updated each time a decision for that variable is
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made in any search context. Each counter takes values between 0 and the number
of contexts. For each variable, pointers to the min (resp. max) used variables are
incrementally updated. During a decision, minUsed selects the value which is the
least used in other contexts, while maxUsed selects the one most used.


• maxSupport. Each value of the initial domain of a local variable is associated
to a counter. This counter stores the number of supports each value has in other
contexts. In order to illustrate this policy, let us consider an example with an inter-
agent constraint X ≤ Y where X and Y have initial domains {a, b, c}. Now let us
assume that two different agents own the variables, and that the M-framework
uses three contexts where Y = a in the first one, and Y = b in the second one.
If the agent owning X has to decide about its value in the third context, it will
have the following values for the maxSupport counters: maxSupport(a) = 2,
maxSupport(b) = 1, maxSupport(c) = 0. It will then select the value a since this
value is the most supported w.r.t. its current agent-views. Note that implementing
a minSupport policy would be straightforward with the previous counters. We did
not try that policy, since it does not really make sense from a problem solving
point of view.


• differ. Each value of the initial domain of a local variable is associated to a
counter. This counter is increased each time a nogood which contains a partic-
ular value is recorded by ABT in any search context. During a decision, the value
with the lowest counter is selected.


• share. With this policy, each nogood learnt by ABT is automatically reused in
other search contexts.


• minBt, maxBt. The number of local backtracks performed by the agent in each
of the contexts is recorded. Each time a value has to be selected for a particular
variable, minBt forces the selection of the value used for the same variable in the
search with the least number of backtracks. Inversely, maxBt forces the selection
of the value used in the search with the largest number of backtracks.


As we can see, even the most complex policies only require the association of
counters to domains values. These counters aggregate information among search
contexts at the agent level. They are updated during decision in any particular con-
text, and used to make better decisions in any other context. Updating these counters
can be done naively or incrementally, for instance with the help of some bookkeep-
ing technique.


2.5.6 Complexity


Before presenting the empirical evaluation of M-, we discuss its costs hereafter.


Space The trade-off in space for the application of M- is linear in the number
of applied orderings. This is obvious for our implementation (see Fig. 2.3). Thus,
it clearly depends on the size of the data structures that need to be duplicated for
the contexts. This will include only internal data structures which are related to the
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state of the search. M- does not duplicate the whole agent. For instance, the data
structures for communication are jointly used by all the concurrent search efforts as
shown in Fig. 2.3.


It turned out in our experiments that this extra space requirement is very small.
We observed that the extra memory needed with a portfolio of size ten applied to
IDIBT is typically only about 5–10 %. For ABT the extra memory when using
10 instead of one context differed depending on the problem. For easy problems,
where few nogoods need to be stored the extra memory consumption was about
5–20 %. For hard problems we could observe up to 1,000 % more memory usage
of the portfolio. This clearly relates to the well-known space trade-off of nogood
recording.


Network Load The trade-off in network load, that is the absolute number of mes-
sages, is linear in the portfolio size. When using M parallel contexts that perform
one search effort each, we will in the worst case have M times more messages.
However, on average this may be less because not all of the M searches will termi-
nate. As soon as one has found a solution the complete system will stop and M − 1
search efforts will omit the rest of their messages.


Furthermore, the absolute number of messages is not the most crucial metric in
DisCSP. As described earlier, sequential messages are more appropriate. The se-
quential messages do not increase in complexity because the parallel search efforts
are independent of each other such that the number of sequential messages (smc) is
the maximum of the smc of all searches in the worst case. On average, however, it
will be the smc of the search that is best. Consequently, the smc-complexity when
using M-X is the same as the smc-complexity of X.


Using aggregation will not increase the number of required messages because
this is performed internally by the agents.


Algorithm Monitoring The complexity of monitoring M-X is the same as it is
necessary for the algorithm X. This includes starting the agents and termination
detection. Since the number of agents is not increased when using M- we do not
need any extra communication or computation for these tasks.


Time The trade-off in computational costs increases with the use of M-. Similar
to the increase in absolute messages we have a linear increase in constraint checks.
However, looking at non-concurrent constraint checks (nccc), the complexity of X
and M-X is the same provided there is no aggregation. The derivation of this con-
clusion can be made analogously to the derivation concerning smc.


When we use aggregation, however, there may be an increase in computational
costs of the agents. Depending on the effort an agent puts in using information it
gets from other contexts, this may also increase the number of nccc. This will be
analyzed in the next section.


Therefore, the overall cost of M-X is the same as the worst-case complexity of
X when we use the concurrent metrics. On average, however, M- will be “as good
as the best search heuristic” or even “better than the best” when knowledge sharing
techniques are implemented. This will be presented in the next section.
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2.6 Empirical Evaluation


For the empirical evaluation of the M-framework we processed more than 180,000
DisCSPs with M-IDIBT and M-ABT. We solved random binary problems (15 vari-
ables, 5 values), n-queens problems with n up to 20 and quasigroup completion
problems with up to 81 agents.


All tests were run in a Java multi-threaded simulator where each agent imple-
ments a thread. The common memory of the whole process was used to implement
message channels. Agents can send messages to channels where they are delayed
randomly for one to 15 milliseconds. This was done to simulate real world con-
tingencies in messages deliveries. After this delay they may be picked up by their
addressee. All threads have the same priority such that we have no influence on their
activation and on the computational resources assigned to them by the JVM or the
operating system.


In this simulator we implemented the metrics described in Sect. 2.3.3. The ab-
solute number of messages (mc), constraint checks (cc) and backtracks (bt) were
counted locally and accumulated after termination of the algorithm. The more so-
phisticated metrics which reflect the parallelism were computed during the execu-
tion of the algorithms. Whenever a message is passed from A to B then A will
include its current value of nccc and smc. The receiver takes the maximum of the
value and its locally stored values, adds the costs it is now accruing and passes the
result on with the next message it sends. After termination of the algorithm we select
the maximum of all these values among all agents. Note that there has been recent
research which has tried to define alternative performance metrics for DisCSP and
DCOP (optimization) problems (see [SLS+08, GZG+08]).


2.6.1 Basic Performance


In Fig. 2.4 we show the median1 numbers of messages sent and the runtime to
find one solution by different sized portfolios on fairly hard instances (density 0.3,
tightness 0.4) of random problems (sample size 300). These problems represent
randomly generated CSPs where the link density between variables is set to 30 %,
whereas the tightness density of each constraint is set to 40 %, i.e., 40 % of the value
combinations for the underlying constraint are disabled. No aggregation was used
in these experiments. The best known2 variable ordering (maxDegree) was used in
each portfolio, including those of size 1, which are equivalent to the basic algo-
rithms. In the larger portfolios we added instances of lex, random and minDegree
and further instances of all four added in this order. For example, 6-ABT would use


1We decided to use the median instead of the mean to alleviate the effects of messages interleaving.
Indeed, interleaving can give disparate measures which can be pruned by the median calculation.
2We made preliminary experiments to determine this.
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Fig. 2.4 Communication and
runtime in M-portfolios


the orders (maxDeg, lex, rand, minDeg, maxDeg, lex). It can be seen that with in-
creasing portfolio size there is more communication between agents. The absolute
number of messages rises. In the same figure we show the runtime. It can be seen
that the performance improves up to a certain point when larger portfolios are used.
In our experimental setting this point is reached with size 10. With larger portfolios
no further speed up can be achieved which would offset the communication cost and
computational overhead. The same behavior can be observed when considering smc
or nccc.


2.6.2 Randomization Risk


The randomization risk is defined as the standard deviation within each sample in
our experimental setup. To evaluate it we applied M-IDIBT with homogeneous port-
folios 30 times each to a set of 20 hard random problem instances 〈15,5,0.3,0.5〉.
All portfolios used the same deterministic value selection function and variable or-
dering (both lexicographic) in all searches. For each problem instance we considered
the standard deviation of the 30 runs. Then we took the average of these standard
deviations over all 20 problem instances for each portfolio size. This gave us the R-
risk that emerges exclusively from the distribution. The results for portfolios sized,
1 to 8 can be seen in Fig. 2.5. It can be seen that all three relevant performance mea-
sures (nccc, smc, and pt) decrease with portfolio size increased from 1 to 2. This
means the randomization risk decreases when we apply the M-framework. Beyond
2 there is only a slight decrease.


In order to check the influence of the M-framework on the heavy-tail behavior we
repeated the experiment described in Sect. 2.4.1 (quasigroup completion of order 6
for ABT and order 7 for IDIBT with 42 % preassigned values, sample size 800)
with portfolios of size 10. In Fig. 2.6 we show the cumulative distribution function
of the absolute number of backtracks when applying M-ABT and M-IDIBT to the
quasigroup completion problems on a log-log scale. It can be seen that both curves
decrease in more than a linear manner. As described earlier this implies the non-
heavy-tailedness of the runtime distribution of these algorithms.
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Fig. 2.5 Randomization risk
emerging from message
delays and thread activation


Fig. 2.6 No heavy-tails with
M-ABT and M-IDIBT


2.6.3 Selection Risk


To evaluate the selection risk we used a similar experimental setting as before but
with heterogeneous variable orderings in the portfolios. We chose to use M different
random variable orderings in a portfolio of size M . This would reduce the effects we
get from knowledge about variable selection heuristics. The value selection was the
same (lexicographic) in all experiments in order to reduce the portion of R-risk as
widely as possible and to expose the risk emerging from the selection of a particular
variable ordering. In this setting we would get an unbiased evaluation of the risk we
take when choosing variable orderings. The mean standard deviation of the parallel
runtime for M-ABT and M-IDIBT is shown in Fig. 2.7 on a logarithmic scale. It
can be seen that the risk is reduced significantly with the use of portfolios. With
portfolio size 20, for instance, the S-risks of M-IDIBT and M-ABT are 344 and 727
times smaller than the ones of IDIBT and ABT, respectively.
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Fig. 2.7 S-risk (standard-dev
of the parallel runtime)
including the R-risk emerging
from distribution


Table 2.2 Performance of
aggregation methods for
M-IDIBT


Hard randoms Quasigroups


smc nccc pt smc
1000


nccc
1000 pt


minUsed 367 2196 1.563 102 1625 448


maxUsed 379 2118 1.437 40 635 182


minBt 392 2281 1.640 104 1330 367


maxBt 433 2541 1.820 43 694 171


maxSupp 57 5718 1.922 1.9 3727 143


random 409 2406 1.664 73 1068 298


2.6.4 Performance with Aggregation


The benefit of aggregation, which is implemented with the different value selection
heuristics, is presented in Table 2.2. Each column in the table shows the median
values of at least 100 samples solved with M-IDIBT with a portfolio of size 10
applied to 30 different hard random and quasigroup completion problems.


In the table we refer to the aggregation methods introduced in Table 2.1, the
bottom line shows the performance with random value selection (and thus no ag-
gregation). When we consider the parallel runtime, it seems that the choice of the
best method depends on the problem. For the quasigroup, aggregation based on the
emulation principle seems to be better, but not so on random problems.


Interestingly, message passing operations present a different picture. It can be
seen that maxSupport uses by far the least messages. These operations are reduced
by a factor of 7 (resp. 38) for random (resp. quasigroup) problems. However, when
we consider parallel time, it cannot outperform the others significantly since our
implementation of this aggregation method is relatively costly.3 However, message
passing is the most critical operation in real systems because of either long laten-
cies or high energy consumption (e.g., ad hoc networks [FM02]). This makes the


3Bookkeeping could definitely help to reduce the amount of constraint checks in the computation
of maxSupport.
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maxSupport aggregation method really promising. Indeed, there is a clear correla-
tion between the amount of messages sent and the amount of local computations,
especially when agents host complex sub-problems. In these situations, since every
incoming message may trigger the search of a new solution for the local problem, it
is important to restrict message passing.


The performance of maxSupport can be explained as follows. It benefits from
the efforts in other contexts by capitalizing on compatible values i.e., support re-
lations. As a result this aggregation strategy effectively mixes the partial solutions
constructed in the different contexts. It corresponds to an effective juxtaposition of
partial solutions.


2.6.5 Scalability


In order to evaluate the relevance of the M-framework we investigated how it scales
in larger and more structured problems. For this we applied good configurations
found in the previous experiments to the quasigroup completion problem as de-
scribed earlier in Sect. 2.4.1 (straightforward modeling with binary constraints, most
difficult instances with 42 % pre-assignment).


Table 2.3 shows the experimental results of distributed search algorithms on
problems of different orders (each column represents an order). ABT and IDIBT
used the domain/degree (domDeg) variable ordering [BR96], which was tested best
in preliminary experiments. In the larger portfolios we used domain/degree and ad-
ditional heuristics including maxDegree, minDomain, lex and random. In all portfo-
lios aggregation with the method maxUsed was applied.4 For each order (column)
we show the median parallel runtime (in seconds) to solve 20 different problems
(once each) and the number of solved problems. When less than 10 instances could
be solved within a time-out of two hours we naturally cannot provide meaningful
median results. In the experiments with M-ABT we have also observed runs which
were aborted because of memory problems in our simulator. For order 8 these were
about one third of the unsolved problems, for order 9 this problem occurred in all
unsuccessful tests. This memory problem arising from the nogood storage of ABT
was addressed in [BBMM05] and is not the subject of this research.


From the successful tests it can be seen that portfolios improve the median per-
formance of IDIBT significantly. In the problems of order 7 a portfolio of 10 was
28 times faster than the regular IDIBT. Furthermore, portfolios seem to become
more and more beneficial in larger problems as the portfolio of size 10 seems to
scale better than the smaller one. ABT does not benefit in the median runtime but
the reduced risk makes a big difference. With the portfolio of size 10, we could solve
17 instances of order 7 problems whereas the plain algorithm could only solve one.


4We decided to use this method since it was shown to minimize nccc on previous tests (see Ta-
ble 2.2).
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Table 2.3 Median parallel runtime (pt) and instances solved (out of 20) of quasigroup completion
problems with 42 % pre-assigned values


5 6 7 8 9


ABT 0.3, 20 –, 8 –, 1 –, 0 –, 0


M-ABT, size 5 0.5, 20 5.9, 19 35.8, 14 –, 2 –, 0


M-ABT, size 10 0.6, 20 6.1, 20 40.6, 17 –, 8 –, 1


IDIBT 1.8, 20 12.4, 20 234, 20 4356, 16 –, 5


M-IDIBT, size 5 0.2, 20 0.9, 20 9.3, 20 709, 20 –, 6


M-IDIBT, size 10 0.3, 20 1.7, 20 8.2, 20 339, 20 –, 8


Table 2.4 Idle times of
agents in DisCSP Problem class Idle time of agents


ABT IDIBT M-ABT M-IDIBT


Easy random 87 % 92 % 56 % 47 %


Hard random 92 % 96 % 39 % 59 %


n-queens 91 % 94 % 48 % 52 %


Hard quasigroups 87 % 93 % 28 % 59 %


2.6.6 Idle Time


To complete the presentation of our experimental results let us consider time utiliza-
tion in distributed search. It appears that agents in both considered classical algo-
rithms under-use available resources. This is documented in the first two columns
of Table 2.4 for various problem classes. The numbers represent the average idle
times (10–100 samples) of the agents. In our simulator we captured the idle times
of each agent separately. Each agent accumulates the time it waits for new messages
to be processed. Whenever an agent finishes processing one message and has no
new message received it starts waiting until something arrives in its message chan-
nel. This waiting time is accumulated locally. After termination of the algorithm
we take the mean of these accumulated times of all agents to compute the numbers
shown in Table 2.4.


We can observe that ABT (Asynchronous BackTracking) and IDIBT (Interleaved
Distributed Intelligent BackTracking) are most of the time idle. This idleness comes
from the inherent disbalance of work in DisCSPs. Indeed, it is well known that
the hierarchical ordering of the agents makes low-priority agents (at the bottom)
more active than high-priority ones. Ideally the work should be balanced. Thus,
ideally one agent on the top of the hierarchy in context 1 should be in the bottom
in context 2, e.g., see agent in charge of variable X1 in Fig. 2.2. Obviously, since
we use well-known variable ordering heuristics we cannot enforce such a property.
However, the previous is an argument for M-, which can use idle time “for free”
in order to perform further computations in concurrent search efforts. This effect is
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shown in the last two columns of the table, where the M-framework with a portfolio
of size 10 is applied to the same problems. These algorithms make better use of
computational resources. Certainly it is not a goal to reduce idleness to a minimum
since the performance of our algorithm also depends in the response times of the
agents, which may become very long with low idleness. However, without having
studied this intensively we are convinced that a mean idleness of more than 90 % is
not necessary for fast responses.


2.7 Summary


We have presented a generic framework for the execution of DisCSP algorithms.
It was tested on two standard methods but any tree-based distributed search should
easily fit in the M-framework. The framework executes a portfolio of cooperative
DisCSP algorithms with different agent orderings concurrently until the first of them
terminates. In real (truly distributed) applications, our framework will have to start
with the computation of different orderings. The generic Distributed Agent Ordering
heuristic (DisAO) [HBQ98] could easily be generalized at no extra message passing
cost to concurrently compute several distributed hierarchies. The main idea is to
simultaneously exchange multiple heuristic evaluations of a sub-problem instead of
one.


Heterogeneous portfolios are shown to be very beneficial. They improve the per-
formance and reduce the risk in distributed search. With our framework we were
able to achieve a speed up of one order of magnitude while reducing the risk by up
to three orders of magnitude compared to the traditional execution of the original
algorithm. The chances of extensive thrashing due to bad early decisions (so-called
heavy-tails) are significantly diminished.


A portfolio approach seems to make better use of computational resources by
reducing the idle time of agents. This is the first of two special advantages of the ap-
plication of portfolios in DisCSP: we do not have to artificially introduce parallelism
and the related overhead but can use idle resources instead. The M-framework can
be seen as a solution to the classical “work imbalance” flaw of tree-based distributed
search.


We analyzed and defined distributed cooperation (aggregation) with respect to
two orthogonal principles, diversity and emulation. Each principle was applied with-
out overhead within the limited scope of each agent’s knowledge. This is the second
special advantage of using portfolios in DisCSP: aggregation made at the agent level
yields no communication costs and preserves privacy [GGS07]. Our experiments
identified the emulation-based maxSupport heuristic as the most promising one. It
is able to efficiently aggregate partial solutions, which results in a large reduction in
message passing operations.


In the next chapter we will see that the ideas developed here can be applied in
the context of parallel satisfiability.







Chapter 3
Parallel Tree Search for Satisfiability


3.1 Introduction


In the previous chapter, we have seen how a portfolio of algorithms, opportunis-
tically exchanging knowledge about the problem, can be used to boost the perfor-
mance of distributed search by several orders of magnitude. In this chapter, we are
going to apply the same concepts to centralized search, i.e., to situations where the
problem is fully expressed in one particular node or agent. More specifically, we are
going to apply parallel portfolios to the important domain of propositional satisfia-
bility.


In recent years, SAT solvers had a huge impact in their traditional hardware
and software verification domains. Today, they are also gaining popularity in new
fields like Automated Planning, General Theorem Proving or Computational Biol-
ogy [Rin11, dMB08, CBH+07]. This widespread adoption is the result of the effi-
ciency gains made during the last decade [BHZ06]. Indeed, many industrial prob-
lems with hundreds of thousands of variables and millions of clauses are now solved
within a few minutes. This impressive progress can be related to both low-level al-
gorithmic improvements and to the ability of SAT solvers to exploit the hidden
structures of a practical problem.


However, many new applications with instances of increasing size and complex-
ity are coming to challenge modern solvers, while at the same time it becomes clear
that the gains traditionally given by low-level algorithmic adjustments are almost
gone. As a result, a large number of industrial instances from recent competitions re-
main challenging for all the available SAT solvers. Fortunately, the previous comes
at a time when the generalization of multicore hardware gives parallel processing
capabilities to standard PCs. While in general it is important for existing applica-
tions to exploit new hardware, for SAT solvers, this becomes crucial.


Many parallel SAT solvers have been previously proposed. Most of them are
based on the divide-and-conquer principle (see Sect. 3.2). They either divide the
search space, using, for example, guiding paths, or the formula itself using decom-
position techniques. The main problem behind these approaches is the difficulty of
getting the workload balanced among the different processor units or workstations.


Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_3, © Springer-Verlag Berlin Heidelberg 2013
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Another drawback of these approaches arises from the fact that for a given large
SAT instance with hundreds of thousands of variables it is very difficult to find the
most relevant set of variables to divide the search space.


In the following, we detail ManySAT, a new parallel SAT solver, winner of the
2008 Sat Race.1 The design of ManySAT takes advantage of the main weakness
of modern solvers: their sensitivity to parameter tuning. For instance, changing the
parameters related to the restart strategy or to the variable selection heuristic can
completely change the performance of a solver on a particular problem class. In
a multicore context, we can easily take advantage of this lack of robustness by de-
signing a portfolio which will run different incarnations of a sequential solver on the
same instance. Each solver would exploit a particular parameter set and their combi-
nation should represent a set of orthogonal yet complementary strategies. Moreover,
individual solvers could perform knowledge exchange in order to improve the per-
formance of the system beyond the performance of its individual components.


As we can see, the ManySAT approach is a direct application of our previous
M-framework to SAT. Unlike in M-, ManySAT solves centralized problems and
uses multiple resources to speed up processing. Here, an M- context corresponds
to the full execution of a sequential SAT engine. In the portfolio, engines are dif-
ferentiated with respect to their labeling strategies but also to various other features
of SAT solvers [HJS09a, HJS09b, GHJS10, HJPS11, WHdM09, HMSW11, AH11,
HW12, HW13].


3.2 Previous Work


We present here the most noticeable approaches related to parallel SAT solving.
PSATO [ZBH96] is based on the SATO (SAtisfiability Testing Optimized) se-


quential solver [ZS94]. Like SATO, it uses a trie data structure to represent clauses.
PSATO uses the notion of guiding paths to divide the search space of a problem.
These paths are represented by a set of unit clauses added to the original formula.
The parallel exploration is organized in a master/slave model. The master organizes
the work by assigning guiding paths to workers which have no interaction with each
other. The first worker to finish stops the system. The balancing of the work is orga-
nized by the master.


In [JLU05] a parallelization scheme for a class of SAT solvers based on the
DPLL procedure is presented. The scheme uses a dynamic load-balancing mech-
anism based on work-stealing techniques to deal with the irregularity of SAT prob-
lems. PSatz is the parallel version of the well-known Satz solver.


Gradsat [CW06] is based on zChaff. It uses a master-slave model and the notion
of guiding paths to split the search space and to dynamically spread the load between
clients. Learned clauses are exchanged between all clients if they are smaller than


1http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/index.html.
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a predefined limit on the number of literals. A client incorporates a foreign clause
when it backtracks to level 1 (top level).


In [BSK03], the authors use an architecture similar to Gradsat. However, a client
incorporates a foreign clause if it is not subsumed by the current guiding path con-
straints. Practically, clause sharing is implemented by mobile agents. This approach
is supposed to scale well on computational grids.


Nagsat [FS02] is a parallel SAT solver which exploits the heavy-tailed distribu-
tion of random 3-SAT instances. It implements nagging, a notion taken from the
DALI theorem prover. Nagging involves a master and a set of clients called nag-
gers. In Nagsat, the master runs a standard DPLL algorithm with a static variable
ordering. When a nagger becomes idle, it requests a nagpoint which corresponds to
the current state of the master. Upon receiving a nagpoint, it applies a transforma-
tion (e.g., a change in the ordering of the remaining variables), and begins its own
search on the corresponding sub-problem.


In [BS96] the input formula is dynamically divided into disjoint sub-formulas.
Each sub-formula is solved by a sequential SAT solver running on a particular pro-
cessor. The algorithm uses optimized data structures to modify Boolean formulas.
Additionally, workload balancing algorithms are used to achieve a uniform distribu-
tion of workload among the processors.


MiraXT [LSB07], is designed for shared memory multiprocessors systems. It
uses a divide-and-conquer approach where threads share a unique clause database
which stores the original and the learnt clauses. When a new clause is learnt by a
thread, it uses a lock to safely update the common database. Read access can be
done in parallel.


PMSat uses a master-slave scenario to implement a classical divide-and-conquer
search [GFS08]. The user of the solver can select among several partitioning heuris-
tics. Learnt clauses are shared between workers, and can also be used to stop efforts
related to search spaces that have been proven irrelevant. PMSat runs on networks
of computer through an MPI implementation.


In [CS08], the authors use a standard divide-and-conquer approach based on
guiding paths. However, it exploits the knowledge on these paths to improve clause
sharing. Indeed, clauses can be large with respect to some static limit, but when
considered with the knowledge of the guiding path of a particular thread, a clause
can become small and therefore highly relevant. This allows pMinisat to extend the
sharing of clauses since a large clause can become small in another search context.


3.3 Technical Background


In this section, we first recall the basis of the most commonly used DPLL search
procedure. Then, we introduce some computational features of modern SAT solvers.
A brief description of multicore-based architectures is given. Finally, we present the
principle of the AIMD feedback control-based algorithm used by advanced versions
of ManySAT to manage knowledge sharing.
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3.3.1 DPLL Search


Most of the state-of-the-art SAT solvers are simply based on the Davis, Putnam,
Logemann and Loveland procedure, commonly called DPLL [DLL62]. DPLL is
a backtrack search procedure; at each node of the search tree, a decision literal is
chosen according to some branching heuristics. Its assignment to one of the two
possible values (true or false) is followed by an inference step that deduces and
propagates some forced literal assignments such as unit and monotone literals. The
assigned literals (the decision literal and the propagated ones) are labeled with the
same decision level starting from 1 and increased at each decision (or branching)
until finding a model or a conflict is reached. In the first case, the formula is found
to be satisfiable, whereas in the second case, we backtrack to the last decision level
and assign the opposite value to the last decision literal. After backtracking, some
variables are unassigned, and the current decision level is decreased accordingly.
The formula is found to be unsatisfiable when a backtrack to level 0 occurs. Many
improvements have been proposed over the years to enhance this basic procedure,
leading now to what is commonly called modern SAT solvers. We also mention that,
some look-ahead based improvements are at the basis of other kinds of DPLL SAT
solvers (e.g. Satz [LA97], Kcnfs [DD01], March-dl [HvM06]) particularly efficient
on hard random and crafted SAT categories.


3.3.2 Modern SAT Solvers


Modern SAT solvers [MMZ+01, ES03a] are based on classical DPLL search proce-
dures [DLL62] combined with (i) restart policies [GSK98, KHR+02], (ii) activity-
based variable selection heuristics (VSIDS-like) [MMZ+01], and (iii) clause learn-
ing [MSS96], the interaction of these three components being performed through
efficient data structures (e.g., watched literals [MMZ+01]). All the state-of-the-art
SAT solvers are based on a variation in these three important components.


Modern SAT solvers are especially efficient on structured instances coming
from industrial applications. VSIDS and other variants of activity-based heuristics
[BGS99], on the other hand, were introduced to avoid thrashing and to focus the
search: when dealing with instances of large size, these heuristics direct the search
to the most constrained parts of the formula. Restarts and VSIDS play complemen-
tary roles since the first component reorders assumptions and compacts the assump-
tions stack while the second allows for more intensification. Conflict Driven Clause
Learning (CDCL) is the third component, leading to non-chronological backtrack-
ing. In CDCL a central data structure is the implication graph, which records the
partial assignment that is under construction together with its implications [MSS96].
Each time a dead end is encountered (say at level i) a conflict clause or nogood is
learnt due to a bottom-up traversal of the implication graph. This traversal is also
used to update the activity of related variables, allowing VSIDS to always select
the most active variable as the new decision point. The learnt conflict clause, called
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asserting clause, is added to the learnt database and the algorithm backtracks non-
chronologically to level j < i.


Progress saving is another interesting improvement; initially introduced in
[FD94], it was recently presented in the Rsat solver [PD07]. It can be seen as a
new selection strategy of the literal polarity. More precisely, each time a backtrack
occurs from level i to level j , the literal polarity of the literals assigned between
the two levels is saved. Then, such a polarity is used in subsequent search trees.
This can be seen as a partial component caching technique that avoids solving some
components multiple times.


Modern SAT solvers can now handle propositional satisfiability problems with
hundreds of thousands of variables or more. However, it is now recognized (see the
recent SAT competitions) that the performances of the modern SAT solvers evolve
in a marginal way. More precisely, on the industrial benchmarks category usually
proposed at the annual SAT Race and/or SAT Competition, many instances remain
open (not solved by any solver within a reasonable amount of time). These problems
which cannot be solved even using a three hour time limit are clearly challenging to
all the available SAT solvers. Consequently, new approaches are clearly needed to
solve these challenging industrial problems.


3.3.3 Multicore Architectures


We can abstract a multicore architecture as a set of processing units which commu-
nicate through a shared memory. In theory, access to the memory is uniform, i.e.,
can be done simultaneously. Practically, the use of cache mechanisms in processing
units creates coherence problems which can slow down the memory accesses.


Our work is built on this shared memory model. The communication between
the DPLL solvers of a portfolio is organized through lock-less queues that contain
the lemmas that a particular core wants to exchange.


3.3.4 AIMD Feedback Control-Based Algorithm


The Additive Increase/Multiplicative Decrease (AIMD) algorithm is a feedback
control algorithm used in TCP congestion avoidance. The problem solved by AIMD
is to guess the communication bandwidth available between two communicating
nodes. The algorithm performs successive probes, increasing the communication
rate w linearly as long as no packet loss is observed, and decreasing it exponentially
when a loss is encountered. More precisely, the evolution of w is defined by the
following AIMD(a, b) formula:


• w = w − a × w, if loss is detected
• w = w + b


w
, otherwise


Different proposals have been made in order to prevent congestion in communi-
cation networks based on different numbers for a and b. Today, AIMD is the major
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component of TCP’s congestion avoidance and control [Jac88]. On probe of network
bandwidth, increasing too quickly will overshoot limits (underlying capacities). On
notice of congestion, decreasing too slowly will not be reactive enough.


In the context of ManySAT, it is important to exchange knowledge between
solvers. We will see that AIMD-based control policies can be used to achieve a
particular throughput or a particular throughput of maximum quality. Since any in-
crease in the size limit can potentially generate a very large number of new clauses,
AIMD’s slow increase can help us to avoid a quick overshoot of the throughput.
Similarly, in case of overshooting, aggressive decrease can help us to quickly re-
duce clause sharing by a very large amount.


3.4 ManySAT: A Parallel SAT Solver


ManySAT is a parallel portfolio of several DPLL engines which includes all the
classical features like two-watched-literal, unit propagation, activity-based decision
heuristics, lemma deletion strategies, and clause learning. In addition to the classical
first UIP scheme [ZMMM01], it incorporates a new technique which extends the
implication graph used during conflict analysis to exploit the satisfied clauses of a
formula [ABH+08]. In the following, we describe and motivate a set of important
parameters used to differentiate the different solvers in the portfolio.


3.4.1 Restart Policies


Restart policies represent an important component of modern SAT solvers. Contrary
to the common belief, in SAT restarts are not used to eliminate the heavy-tailed
phenomena [GSK98, GSCK00] since after restarting SAT solvers dive in the part of
the search space that they just left. In SAT, restarts policies are used to compact the
assignment stack and improve the order of assumptions.


Different restart policies have been previously presented. Most of them are static,
and the cutoff value follows different evolution schemes (e.g. arithmetic, geometric,
Luby). To ensure the completeness of the SAT solver, in all these restart policies, the
cutoff value in terms of the number of conflicts increases over the time. The perfor-
mance of these different policies clearly depends on the considered SAT instances.
More generally, rapid restarts (e.g. Luby) perform well on industrial instances; how-
ever, on hard SAT instances slow restarts are more suitable. Generally, it is hard to
say in advance which policy should be used on which problem class [Hua07].


Our objective was to use complementary restart policies to define the restart cut-
off xi .


We decided to use the well-known Luby policy [LSZ93], and a classical geomet-
ric policy, xi = 1.5×xi−1 with x1 = 100 [ES03a]. The Luby policy was used with a
unit factor set to 512. In addition, we decided to introduce two new policies. A very
slow arithmetic one, xi = xi−1 + 16000 with x1 = 16000, and a new dynamic one.







3.4 ManySAT: A Parallel SAT Solver 33


New Dynamic Restart Policy The early work on dynamic restart policy goes
back to 2008. Based on the observation that frequent restarts significantly improve
the performance of SAT solvers on industrial instances, Armin Biere presents in
[Bie08] a novel adaptive restart policy that measures the “agility” of the search
process dynamically, which in turn is used to control the restart frequency. The
agility measures the average number of recently flipped assignments. Low agility
enforces frequent restarts, while high agility tends to prohibit restarts.


In [RS08], the authors propose applying restarts according to measures local to
each branch. More precisely, for each decision level d a counter c(d) of the number
of conflicts encountered under the decision level d is maintained. When backtrack-
ing to the decision level d occurs, if the value c(d) is greater than a given threshold,
the algorithm restarts.


Considering CDCL-based SAT solvers, it is now widely admitted that restarts
are an important component when dealing with industrial SAT instances, whereas
on crafted and random instances they play a marginal role. More precisely, in the
industrial (resp. crafted) category, rapid (resp. long) restarts are more appropriate.
It is important to note that on hard SAT instances, learning is useless. Indeed, on
such instances, conflict analysis generally leads to a learnt clause which includes at
least one literal from the level just before the current conflict level. In other words
the search algorithm usually back-jumps to the level preceding that of the current
conflict. For example, if we consider the well-known Pigeon-hole problem, learning
from conflicts will produce a clause which includes at least one literal from each
level. It is also obvious from this example, that learning does not achieve important
back-jumps in the search tree. The algorithm usually carries out a chronological
backtracking.


In the following, we define a new dynamic restart policy based on the evolution
of the average size of back-jumps. First, such information is a good indicator of
the decision errors made during search. Secondly, it can be seen as an interesting
measure of the relative hardness of the instance. Our new policy is designed in
such a way that, for high (resp. low) fluctuation of the average size of back-jumps
(between the current and the previous restart), it delivers a low (resp. high) cutoff
value. In other words, the cutoff value of the next restart depends on the average size
of back-jumps observed during the two previous and consecutive runs. We define it
as, x1 = 100, x2 = 100, and xi+1 = α


yi
× | cos(1 − ri)|, i ≥ 2, where α = 1200,


yi represents the average size of back-jumps at restart i, ri = yi−1
yi


if yi−1 < yi ,


ri = yi


yi−1
otherwise.


From Fig. 3.1, we can observe that the cutoff value in terms of the number of
conflicts is low in the first restarts and high in the last ones. This means that the
fluctuation between two consecutive restarts is more important at the beginning of
the resolution process. Indeed, the activity of the variables is not sufficiently ac-
curate in the first restarts, and the sub-problem on which the search focuses is not
sufficiently circumscribed.


The dynamic restart policy, presented in this section is implemented in the first
version of ManySAT [HJS08] presented at the parallel track of the SAT Race 2008.







34 3 Parallel Tree Search for Satisfiability


Fig. 3.1 Restart strategies


3.4.2 Heuristic


We decided to increase the random noise associated to the VSIDS heuristic
[MMZ+01] of core 0 since its restart policy is the slowest one. Indeed, that core
tends to intensify the search, and slightly increasing the random noise allows us to
introduce more diversification.


3.4.3 Polarity


Each time a variable is chosen, one needs to decide if such a variable might be
assigned true (positive polarity) or false (negative polarity). Different kinds of po-
larity have been defined. For example, Minisat usually chooses the negative polarity,
whereas Rsat uses progress saving. More precisely, each time a backtrack occurs,
the polarity of the assigned variables between the conflict and the back-jumping
level are saved. If one of these variables is chosen again its saved polarity is pre-
ferred. In CDCL-based solvers, the chosen polarity might have a direct impact on
the learnt clauses and on the performance of the solver.


The polarity of the core 0 is defined according to the number of occurrences of
each literal in the learnt database. Each time a learnt clause is generated, the number
of occurrences of each literal is increased by 1. Then to maintain a more constrained
learnt database, the polarity of l is set to true when #occ(l) is greater than # occ(¬l),
and to false otherwise. For example, by setting the polarity of l to true, we bias the
occurrence of its negation ¬l in the next learnt clauses.


This approach tends to balance the polarity of each literal in the learnt database.
By doing so, we increase the number of possible resolvents between the learnt
clauses. If the relevance of a given resolvent is defined as the number of steps needed
to derive it, then a resolvent between two learnt clauses might lead to more relevant
clauses in the database.
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As the restart strategy in core 0 tends to intensify the search, it is important to
maintain a learnt database of better quality. However, for rapid restarts as in cores 1
and 3, progress saving is most suitable for saving the work accomplished. For core 2,
we decided to apply a complementary polarity (false by default as in Minisat).


3.4.4 Learning


Learning is another important component which is crucial for the efficiency of mod-
ern SAT solvers. Most of the known solvers use similar CDCL approaches associ-
ated with the first UIP (Unique Implication Point) scheme.


In our parallel SAT solver ManySAT, we used a new learning scheme obtained
using an extension of the classical implication graph [ABH+08]. This new notion
considers additional arcs, called inverse arcs. These are obtained by taking into ac-
count the satisfied clauses of the formula, which are usually ignored by classical
conflict analysis. The new arcs present in our extended graph allow us to detect
that even some decision literals admit a reason, something which is ignored when
using classical implication graphs. As a result, the size of the back-jumps is often
increased.


Let us illustrate this new extended conflict analysis using a simple example. We
assume that the reader is familiar with the classical CDCL scheme used in modern
SAT solvers (see [MSS96, MMZ+01, ABH+08]).


Let F be a CNF formula and ρ a partial assignment, given below:


• F ⊇ {c1, . . . , c9}
• (c1) x6 ∨ ¬x11 ∨ ¬x12
• (c2) ¬x11 ∨ x13 ∨ x16
• (c3) x12 ∨ ¬x16 ∨ ¬x2
• (c4) ¬x4 ∨ x2 ∨ ¬x10
• (c5) ¬x8 ∨ x10 ∨ x1
• (c6) x10 ∨ x3
• (c7) x10 ∨ ¬x5
• (c8) x17 ∨ ¬x1 ∨ ¬x3 ∨ x5 ∨ x18
• (c9) ¬x3 ∨ ¬x19 ∨ ¬x18
• ρ = {〈. . .¬x1


6 . . .¬x1
17〉〈(x2


8) . . .¬x2
13 . . . 〉〈(x3


4) . . . x3
19 . . . 〉 . . . 〈(x5


11) . . . 〉}
The sub-sequence 〈(x2


8) . . .¬x2
13 . . . 〉 of ρ expresses the set of literals assigned at


level 2 with the decision literal mentioned in parenthesis and the set of propagated
literals (e.g. ¬x13). The current decision level is 5. The classical implication graph
Gρ


F associated to F and ρ is shown in Fig. 3.2 with only the plain arcs.
In the sequel, η[x, ci, cj ] denotes the resolvent between a clause ci containing


the literal x and a clause cj containing the literal ¬x. In other words η[x, ci, cj ] =
ci ∪ cj\{x,¬x}. Also a clause c subsumes a clause c′ iff c ⊆ c′.


The traversal of the graph Gρ


F allows us to generate three asserting clauses cor-
responding to the three possible UIPs (see Fig. 3.2). Let us illustrate the resolution
process leading to the first asserting clause Δ1 corresponding to the first UIP.
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Fig. 3.2 Implication graph/extended implication graph


• σ1 = η[x18, c8, c9] = (x1
17 ∨ ¬x5


1 ∨ ¬x5
3 ∨ x5


5 ∨ ¬x3
19)


• σ2 = η[x1, σ1, c5] = (x1
17 ∨ ¬x5


3 ∨ x5
5 ∨ ¬x3


19 ∨ ¬x2
8 ∨ x5


10)


• σ3 = η[x5, σ2, c7] = (x1
17 ∨ ¬x5


3 ∨ ¬x3
19 ∨ ¬x2


8 ∨ x5
10)


• σ4 = η[x3, σ3, c6] = (x1
17 ∨ ¬x3


19 ∨ ¬x2
8 ∨ x5


10)


As we can see, σ4 gives us a first asserting clause (that we’ll also name Δ1)
because all of its literals are assigned before the current level except one (x10),
which is assigned at the current level 5. The intermediate clauses σ1, σ2 and σ3
contain more than one literal of the current decision level 5, and ¬x10 is a first UIP.
If we continue such a resolution process, we obtain the two additional asserting
clauses, Δ2 = (x1


17 ∨¬x3
19 ∨¬x2


8 ∨¬x3
4 ∨ x5


2), corresponding to a second UIP ¬x5
2 ,


and Δ3 = (x1
17 ∨¬x3


19 ∨¬x2
8 ∨¬x3


4 ∨ x2
13 ∨ x1


6 ∨¬x5
11), corresponding respectively


to a third UIP (¬x5
11), which is the last UIP since it corresponds to the last decision


literal in the partial assignment.
In modern SAT solvers, clauses containing a literal x that is implied at the current


level are essentially ignored by the propagation. More precisely, because the solver
does not maintain the information whether a given clause is satisfied or not, a clause
containing x may occasionally be considered by the propagation, but only when
another literal y of the clause becomes false. When this happens the solver typically
skips the clause. However, in cases where x is true and all the other literals are
false, an arc is revealed for free that could as well be used to extend the graph. Such
arcs are those we exploit in our proposed extension.


To explain further the idea behind our extension, let us consider, again, the for-
mula F and the partial assignments given in the previous example. We define a new
formula F ′ as follows: F ′ ⊇ {c1, . . . , c9} ∪ {c10, c11, c12} where c10 = (¬x19 ∨ x8),
c11 = (x19 ∨ x10) and c12 = (¬x17 ∨ x10).


The three added clauses are satisfied under the instantiation ρ. c10 is satisfied by
x8 assigned at level 2, c11 is satisfied by x19 at level 3, and c12 is satisfied by ¬x17
at level 1. This is shown in the extended implication graph (see Fig. 3.2) by the
dotted edges. Let us now illustrate the usefulness of our proposed extension. Let us
consider again the asserting clause Δ1 corresponding to the classical first UIP. We
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can generate the following strong asserting clause: c13 = η[x8,Δ1, c10] = (x1
17 ∨


¬x3
19 ∨x5


10), c14 = η[x19, c13, c11] = (x1
17 ∨x5


10) and Δs
1 = η[x17, c14, c12] = x5


10. In
this case we backtrack to the level 0 and we assign x10 to true.


As we can see Δs
1 subsumes Δ1. If we continue the process we also obtain other


strong asserting clauses Δs
2 = (¬x3


4 ∨x5
2) and Δs


3 = (¬x3
4 ∨x2


13 ∨x1
6 ∨¬x5


11) which
subsume respectively Δ2 and Δ3.


This first illustration gives us a new way to minimize the size of the asserting
clauses.


Let us now explain briefly how the extra arcs can be computed. Usually unit
propagation does not keep track of implications from the satisfiable sub-formula. In
this extension the new implications (deductions) are considered. For instance in the
previous example, when we deduce x19 at level 3, we rediscover the deduction x8,
which was a choice (decision literal) at level 2. Our proposal keeps track of these
re-discoveries.


Our approach makes an original use of inverse arcs to back-jump farther, i.e., to
improve the back-jumping level of the classical asserting clauses. It works in three
steps. In the first step (1), an asserting clause, say σ1 = (¬x1 ∨ ¬y3 ∨ ¬z7 ∨ ¬a9),
is learnt using the usual learning scheme, where 9 is the current decision level. As
ρ(σ1) = false, usually we backtrack to level 7. In the second step (2), our approach
aims to eliminate the literal ¬z7 from σ1 using the new arcs of the extended graph.
Let us explain this second and new processing. Let c = (z7 ∨ ¬u2 ∨ ¬v9) such
that ρ(z) = true, ρ(u) = true and ρ(v) = true. The clause c is an inverse arc i.e.,
the literal z assigned at level 7 is implied by the two literals u and v respectively
assigned at levels 2 and 9. From c and σ1, a new clause σ2 = η[z, c, σ1] = (¬x1 ∨
¬u2 ∨ ¬y3 ∨ ¬v9 ∨ ¬a9) is generated. We can observe that the new clause σ2
contains two literals from the current decision level 9. In the third step (3), using
classical learning, one can search from σ2 for another asserting clause σ3 with only
one literal from the current decision level. Let us note that the new asserting clause
σ3 might be worse in terms of back-jumping level. To avoid this main drawback, the
inverse arc c is chosen if the two following conditions are satisfied: (i) the literals
of c assigned at the current level (v9) have been already visited during the first step
and (ii) all the other literals of c are assigned before level 7, i.e., level of z. In this
case, we guaranteed that the new asserting clause achieves better back-jumping.


This new learning scheme is integrated on the SAT solvers of cores 0 and 3.


3.4.5 Clause Sharing


Unlike in the previously presented M-framework, knowledge in SAT is made of
conflict clauses, and knowledge sharing is referred as clause sharing.


To start with, we can use a static clause sharing policy where each core exchanges
a learnt clause if its size is less than or equal to 8. This decision is based on exten-
sive tests with representative industrial instances. Figure 3.3 (resp. Fig. 3.4) shows
for different limits e the performance of ManySAT on instances taken from the SAT
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Fig. 3.3 SAT Race 2008:
different limits for clause
sharing


Fig. 3.4 SAT Competition
2007: different limits for
clause sharing


Race 2008 (resp. SAT Competition 2007). We can observe that on each set of bench-
marks a limit size of 8 gives the best overall performance.


The communication between the solvers of the portfolio is organized through
lock-less queues which contain the lemmas that a particular core wants to exchange.


Each core imports unit clauses when it reaches level 0 (e.g., after a restart). These
important clauses correspond to the removal of Boolean variables, and therefore are
more easily enforced at the top level of the tree.


All the other clauses are imported on the fly, i.e., after each decision. Several
cases have to be handled for the integration of a foreign clause c:


• c is false in the current context. In this case, conflict analysis has to start, allowing
the search process to back-jump. This is clearly the most interesting case.


• c is unit in the current context. The clause can be used to enforce more unit
propagation, allowing the process to reach a smaller fix-point or a conflict.


• c is satisfied by the current context. It has to be watched. To exploit such a clause
in the near future, we consider two literals assigned at the highest levels.
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• otherwise, c has to be watched. In this last case, the first two unassigned literals
are watched.


The following example illustrates the different cases mentioned above.
Let F be a CNF formula and ρ = {〈. . .¬x1


6 . . .¬x1
17〉〈(x2


8) . . .¬x2
13 . . . 〉〈(x3


4) . . .


x3
19 . . . 〉 . . . 〈(x5


11)¬x5
12, x


5
16,¬x5


2 , . . . ,¬x5
10, x


5
1 , . . . , x5


18〉} a partial assignment. To
make the shared clause c exploitable in near future, it must be watched in a cer-
tain way. Suppose that,


• c = (x1
17 ∨ ¬x3


19 ∨ x5
10) ∈ F . The clause c is false and the two literals ¬x3


19 and
x5


10 are watched.
• c = (x1


17 ∨ ¬x3
19 ∨ x30) ∈ F . The clause c is unit and the two literals ¬x3


19 and
x30 are watched.


• c = (x1
17 ∨¬x3


19 ∨¬x5
10) ∈ F . We watch the last satisfied literal ¬x10 and another


literal with the highest level from the remaining ones.
• c = (x25 ∨ ¬x34¬x29) ∈ F . We watch any two literals from c.


3.4.6 Summary


Table 3.1 summarizes the choices made for the different solvers of the ManySAT
portfolio. For each solver (core), we mention the restart policy, the heuristic, the
polarity, the learning scheme and the size of shared clauses.


3.5 Evaluation


3.5.1 Performance Against a Sequential Algorithm


ManySAT was built on top of Minisat 2.02 [ES03a]. SatElite was applied systemat-
ically by each core as a pre-processor [EB05]. In all the figures, instances solved by
Satellite in the preprocessing step are not included. In this section, we evaluate the
performance of the solver on a large set of industrial problems. Figure 3.5 shows
the improvement of performance provided by our solver when compared to the se-
quential solver Minisat 2.02 on the problems of the SAT Race 2008. It shows the
performance of ManySAT running with respectively one, two, three and four cores.
When more than one core is used, clause sharing is done up to clause size 8.


We can see that even the sequential version of ManySAT (single core) outper-
forms Minisat 2.02. This simply means that our design choices for core 1 represent
a good combination to put in a sequential solver. Interestingly, with each new core,
the performance increases both in speed and number of problems solved. This is the
result of the diversification of the search but also the fact that clause sharing quickly
boosts these independent search processes.
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Fig. 3.5 SAT Race 2008:
ManySAT e = 8, m = 1 . . .4
against Minisat 2.02


Table 3.2 SAT-Race 2008:
comparative performance
(number of problems solved)


ManySAT pMinisat MiraXT


SAT 45 44 43


UNSAT 45 41 30


3.5.2 Performance Against Other Parallel SAT Solvers


We report here the official results of the 2008 Sat-Race. They can be downloaded
from the competition website.2 They demonstrate the performance of ManySAT as
opposed to other parallel SAT solvers. These tests were done on 2× Dual Core Intel
Xeon 5150 running at 2.66 GHz, with a time-out set to 900 seconds.


Table 3.2 shows the number of problems (out of 100) solved before the time
limit for ManySAT, pMinisat [CS08], and MiraXT [LSB07], these solvers are de-
scribed in the next section. We can see that ManySAT solves five more problems
than pMinisat, which solves 12 more problems than MiraXT. Interestingly, the per-
formance of our method is well balanced between SAT and UNSAT problems.


Table 3.3 shows the speed up provided by these parallel SAT algorithms as com-
pared to the best sequential algorithm of the SAT Race 2008, Minisat 2.1. We can
see that on average, ManySAT is able to provide a superlinear speed up of 6.02. It is
the only solver capable of such performance. The second best provides on average
a speed up of 3.10, far from linear. When we consider the minimal speed up we
can see that the performance of the first two solvers is pretty similar. They decrease
the performance against the best sequential solver of the 2008 SAT Race by up to a
factor 4, while the third solver decreases the performance by a factor 25. Finally, the
maximal speed up is given by ManySAT, which can be up to 250 times faster than
Minisat 2.1. These detailed results show that the performance of the parallel solvers
is usually better on SAT problems than on UNSAT ones.


2http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/.



http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/
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Table 3.3 SAT Race 2008: parallel solvers against the best sequential solver (Minisat 2.1)


ManySAT pMinisat MiraXT


Average speed up by SAT/UNSAT 6.02 3.10 1.83


8.84/3.14 4.00/2.18 1.85/1.81


Minimal speed up by SAT/UNSAT 0.25 0.34 0.04


0.25/0.76 0.34/0.46 0.04/0.74


Maximal speed up by SAT/UNSAT 250.17 26.47 7.56


250.17/4.74 26.47/10.57 7.56/4.26


Table 3.4 SAT Race 2008: runtime variation of parallel solvers


ManySAT pMinisat MiraXT


Average variation by SAT/UNSAT 13.7 % 14.7 % 15.2 %


22.2 %/5.5 % 23.1 %/5.7 % 19.5 %/9.7 %


It is well known that parallel search is not deterministic. Table 3.4 gives the av-
erage runtime variation of each parallel solver. ManySAT exhibits a lower variation
than the other techniques, but the small differences between the solvers do not allow
us to draw any definitive conclusion.


3.6 Control-Based Clause Sharing


The clause sharing approach based on some predefined size limit has several flaws,
the first and most apparent being that an overestimated value might induce a very
large cooperation overhead, while an underestimated one might completely inhibit
the cooperation. The second flaw comes from the observation that the size of learnt
clauses tends to increase over time, leading to an eventual halt of the cooperation.
The third flaw is related to the internal dynamic of modern solvers which tend to fo-
cus on particular sub-problems thanks to the activity/restart mechanisms. In parallel
SAT, this can lead two search processes toward completely different sub-problems
where clause sharing becomes pointless.


We propose a dynamic clause sharing policy which uses pairwise size limits to
control the exchange between any pair of processing units. Initially, high limits are
used to enforce the cooperation, and allow pairwise exchanges. On a regular ba-
sis, each unit considers the number of foreign clauses received from other units.
If this number is below/above a predefined threshold, the pairwise limits are in-
creased/decreased. This mechanism allows the system to maintain a throughput. It
addresses the first two flaws. To address the last flaw related to the poor relevance
of the shared clauses, we extend our policy to integrate the quality of the exchanges.
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Each unit evaluates the quality of the received clauses, and the control is able to
selectively increase/decrease the pairwise limits based on the underlying quality of
the recently communicated clauses, the rationale being that the information recently
received from a particular source is qualitatively linked to the information which
could be received from it in the very near future. The evolution of the pairwise lim-
its w.r.t. the throughput or quality criterion follows an AIMD (Additive-Increase-
Multiplicative-Decrease) feedback control-based algorithm (see Sect. 3.3).


3.6.1 Throughput and Quality-Based Control Policies


In this section, we describe our dynamic control-based clause sharing policies which
control the exchange between any pair of processing units through dynamic pairwise
size limits.


The first policy controls the throughput of clause sharing. Each unit considers the
number of foreign clauses received from other units. If this number is below/above a
predefined throughput threshold, the pairwise limits are all increased/decreased us-
ing an AIMD feedback algorithm. The second policy is an extension of the previous
one. It introduces a measure of the quality of foreign clauses. With this information,
the increase/decrease of the pairwise limits becomes proportional to the underlying
quality of the clauses shared by each unit. The first (resp. second) policy allows the
system to maintain a throughput (resp. throughput of better quality).


We consider a parallel SAT solver with n different processing units. Each unit
ui corresponds to a SAT solver with clause learning capabilities. Each solver can
work either on a sub-space of the original instance, as in divide-and-conquer tech-
niques, or on the full problem, as in ManySAT. We assume that these different units
communicate through a shared memory (as in multicore architectures).


In our control strategy, we consider a control-time sequence as a set of steps tk
with t0 = 0 and tk = tk−1 + α where α is a constant representing the time window
defined in terms of the number of conflicts. The step tk of a given unit ui corresponds
to the conflict number k×α encountered by the solver associated to ui . In the sequel,
when there is no ambiguity, we sometimes write tk simply as k. Then, each unit ui


can be defined as a sequence of states Sk
i = (F ,Δk


i ,R
k
i ), where F is a CNF formula,


Δk
i the set of its proper learnt clauses and Rk


i the set of foreign clauses received
from the other units between two consecutive steps k − 1 and k. The different units
achieve pairwise exchange using pairwise limits. Between two consecutive steps
k − 1 and k, a given unit ui receives from all the other remaining units uj , where
0 ≤ j < n and j = i, a set of learnt clauses Δk


j→i of length less or equal to a size


limit ek
j→i i.e., Δk


j→i = {c ∈ Δk
j/ |c| ≤ ek


j→i}. Then, the set Rk
i can be formally


defined as
⋃


0≤j<n, j =i Δ
k
j→i .


Using a fixed throughput threshold T of shared clauses, we describe our control-
based policies which allow each unit ui to guide the evolution of the size limit ej→i


using an AIMD feedback mechanism.
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Fig. 3.6 Throughput-based control policy


Throughput-Based Control As illustrated in Fig. 3.6, at step k a given unit ui


checks whether the throughput is exceeded or not. if |Rk
i | < T (resp. |Rk


i | > T ) the
size limit ek+1


j→i is additively increased (resp. multiplicatively decreased).


More formally, the upper bound ek+1
j→i on the size of clauses that a solver j shares


with the solver i between k and k+1 is changed using the following AIMD function:


aimdT
(
Rk


i


){


∀j |0 ≤ j < n, j = i


ek+1
j→i =


⎧
⎨


⎩


ek
j→i + b


ek
j→i


, if (|Rk
i | < T )


ek
j→i − a × ek


j→i , if (|Rk
i | > T )


}


where a and b are positive constants.


Throughput and Quality-Based Control In this policy, to control the throughput
of a given unit ui , we introduce a quality measure Qk


j→i (see Definition 3.1) to
estimate the relative quality of the clauses received by ui from uj . In the throughput-
and quality-based control policy, the evolution of the size limit ek


j→i is related to the
estimated quality.


Our quality measure is defined using the activity of the variables at the basis
of the VSIDS heuristic [MMZ+01], another important component of modern SAT
solvers. The variables with greatest activity represent those involved in most of the
(recent) conflicts. Indeed, with each conflict, variables whose literals are used during
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conflict analysis have their activity augmented. The most active variables are those
related to the current part of the search space. Consequently, our quality measure
exploits these activities to quantify the relevance of a clause learnt by unit uj to
the current state of a given unit ui . To define our quality measure, suppose that, at
any time of the search process, we have Amax


i , the current maximal activity of ui ’s
variables, and Ai (x), the current activity of a given variable x.


Definition 3.1 (Quality) Let c be a clause and LAi
(c) = {x/x ∈ c s.t. Ai (x) ≥


Amax
i


2 } the set of active literals of c with respect to unit ui . We define Pk
j→i = {c/c ∈


Δk
j→i s.t. |LAi


(c)| ≥ Q} to be the set of clauses received by i from j between steps
k − 1 and k with at least Q active literals. We define the quality of clauses sent by


uj to ui at a given step k as Qk
j→i = |Pk


j→i |+1


|Δk
j→i |+1


.


Our throughput- and quality-based control policy changes the upper bound ek+1
j→i


on the size of clauses that a solver j shares with the solver i between k and k + 1
using the following AIMD function:


aimdTQ
(
Rk


i


){


∀j |0 ≤ j < n, j = i


ek+1
j→i =


⎧
⎪⎨


⎪⎩


ek
j→i + (


Qk
j→i


100 ) × b


ek
j→i


, if (|Rk
i | < T )


ek
j→i − (1 − Qk


j→i


100 ) × a × ek
j→i , if (|Rk


i | > T )


}


where a and b are positive constants.
As shown by the AIMD function of the throughput- and quality-based control


policy, the adjustment of the size limit depends on the quality of shared clauses.
Indeed, as it can be seen from the above formula, when the exchange quality be-
tween uj and ui (Qk


j→i ) tends to 100 % (resp. 0 %), then the increase in the limit
size tends to be maximal (resp. minimal) while the decrease tends to be minimal
(resp. maximal). Our aim in this second policy is to maintain a throughput of good
quality, the rationale being that the information recently received from a particular
source is qualitatively linked to the information which could be received from it in
the very near future.


3.6.2 Experiments


Our tests were done on Intel Xeon Quad core machines with 16 GB of RAM run-
ning at 2.3 GHz. We used a time-out of 1,500 seconds for each problem. ManySAT
was used with 4 DPLL strategies, each one running on a particular core (unit). To
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alleviate the effects of unpredictable thread scheduling, each problem was solved
three times and the average was taken.


Our dynamic clause sharing policies were added to ManySAT and compared
against ManySAT with its default static policy ManySAT e = 8, which exchanges
clauses up to size 8. Note that since each pairwise limit is read by one unit, and
updated by another one, our proposal can be integrated without any lock.


We have selected a = 0.125, b = 8 for aimdT and aimdTQ, associated to a time
window of α = 10000 conflicts. The throughput T is set to α


2 and the upper bound


Q on the number of active literals per clause c is set to |c|
3 (see Definition 3.1). Each


pairwise limit ej→i was initialized to 8.
The Table 3.5 presents the results on the 100 industrial problems of the 2008


SAT Race. The problem set contains families with several instances or individual
instances.


From left to right we present, the family/instance name, the number of instances
per family, results associated to the standard ManySAT, with the number of prob-
lems solved before time-out, and the associated average runtime. The right part re-
ports results for the two dynamic policies. For each dynamic policy we provide ē,
the average of the ej→i observed during the computation. The last row provides for
each method the total number of problems solved and the cumulated runtime. For
the dynamic policies, it also presents the average of the ē values.


At this point we have to stress that the static policy (e = 8) is optimal in the way
that it gives the best average performance on this set of problems. We can observe
that the static policy solves 83 problems while the dynamic policies aimdT and
aimdTQ solve respectively 86 and 89 problems. Except on the ibm_∗ and manol_∗
families, the dynamic policies always exhibit a runtime better or equivalent to the
static one. Unsurprisingly, when the runtime is significant but does not drastically
improve over the static policy, the values of ē are often close to 8, i.e., equivalent
to the static size limit. When we consider the last row, we can see that the aimdT
is faster than the aimdTQ. However, this last policy solves more problems. We can
explain this as follows. The quality-based policy intensifies the search by favoring
the exchange of clauses related to the current exploration of each unit. This inten-
sification leads to the resolution of more difficult problems. However, it increases
the runtime on easier instances where a more diversified search is often more ben-
eficial. Overall these results are very good since our dynamic policies are able to
outperform the best possible static tuning.


3.7 Summary


We have presented ManySAT, a portfolio-based parallel SAT solver which advan-
tageously exploits multicore architectures. ManySAT is based on an understanding
of the main weakness of modern sequential SAT solvers, their sensitivity to pa-
rameter tuning and their lack of robustness. As a result, ManySAT uses a portfolio
of complementary sequential algorithms, and lets them cooperate in order to im-
prove further the overall performance. This design philosophy of ManySAT, which
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clearly contrasts with well-known parallel SAT solvers, is directly inspired by our
work in the previous M-framework for distributed constraint satisfaction problems.
The good performance obtained by ManySAT on industrial SAT instances clearly
suggests that the parallel portfolio approach is more interesting than the traditional
divide-and-conquer one.


We have also presented how knowledge sharing policies could be finely con-
trolled through dynamic clause sharing policies which can adjust the size of shared
clauses between any pair of processing units. The first policy controls the overall
number of exchanged clauses whereas the second policy additionally exploits the
relevance quality of shared clauses. This part has been described in [HJS09a].


As stated here, our four-core portfolio was carefully crafted in order to mix com-
plementary strategies. If ManySAT could be run on dozens of computing units, what
would be the performance? We have considered this question in a more general con-
text in [BHS09]. This work presents the first study on scalability of constraint solv-
ing on 100 processors and beyond. It proposes techniques that are simple to apply
and shows empirically that they scale surprisingly well. It proves that portfolio-
based approaches can also scale up to several dozens of processors.


Finally, as stated in the introduction, SAT is now applied to other domains. One
domain which particularly benefits from the recent advances in SAT is Satisfiability
Modulo Theory [NOT06]. There, our ManySAT approach has been integrated with
the Z3 SMT solver [dMB08], allowing it to achieve impressive speed ups on several
classes of problems [WHdM09].


In the next chapter we will see that the parallel portfolio approach can be used to
boost the performance of local search algorithms.







Chapter 4
Parallel Local Search for Satisfiability


4.1 Introduction


As we have seen in the previous chapter, complete parallel solvers for the proposi-
tional satisfiability problem have received significant attention. This push towards
parallelism in complete SAT solvers has been motivated by their practical applica-
bility. Indeed, many domains, from software verification to computational biology
and automated planning, rely on their performance. On the other hand, since the
application of local search solvers has been mainly focused on random instances,
their parallelization has not received much attention so far. The main contribution
of the parallelization of local search algorithms for SAT solving basically executes
a portfolio of independent algorithms which compete without any communication
between them. In our settings, each member of the portfolio shares its best config-
uration (i.e., one which minimizes the number of conflicting clauses) in a common
structure. At each restart point, instead of classically generating a random configura-
tion to start with, each algorithm aggregates the shared knowledge to carefully craft
a new starting point. We present several aggregation strategies and evaluate them on
a large set of instances. Our best strategies largely improve over a parallel portfo-
lio of non-cooperative local searches. We also present an analysis of configuration
diversity during parallel search, and find out that the best aggregation strategies
are the ones which are able to maintain a good diversification/intensification trade-
off. This chapter extends the conference paper [AH11]. It is organized as follows.
Section 4.2 describes previous work on parallel SAT and cooperative algorithms.
Section 4.3 gives background material. Section 4.4 presents our methodology and
our aggregation strategies, Sect. 4.5 evaluates them, and Sect. 4.6 presents some
concluding remarks and future research directions.


Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_4, © Springer-Verlag Berlin Heidelberg 2013
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4.2 Previous Work


4.2.1 Incomplete Methods for Parallel SAT


In [ZHZ02] the authors proposed PSAT, a hybrid algorithm that starts with a stan-
dard DPLL algorithm to divide the problem space into sub-spaces. Each sub-space
is then allocated to a given local search algorithm (Walksat). Experimental results
reported in the paper suggested that PSAT greatly outperformed the sequential ver-
sion of WSAT.


PGSAT [Rol02] is a parallel version of the GSAT algorithm. The entire set of
variables is randomly divided into τ subsets and allocated to different processors. In
this way, at each iteration, if no global solution has been obtained, the ith processor
uses the GSAT score function (see Sect. 4.3) to select and flip the best variable
for the ith subset. Another contribution to this parallel architecture is described in
[RBB05] where the authors aim to combine PGSAT and random walk. Thus at each
iteration, the algorithm performs a random walk step with a certain probability wp,
that is, a random variable from an unsatisfied clause is flipped. Otherwise, PGSAT
is used to flip τ variables in parallel at a cost of reconciling partial configurations to
test if a solution is found.


gNovelty+-v2 [PG09] belongs to the portfolio approach. This algorithm executes
n independent copies of the gNovelty+-v2 algorithm (each one with a different ran-
dom seed) in parallel, until at least one of them finds a solution or a given time-out
is reached. This algorithm was the only parallel local search solver submitted to
the random category of the 2009 SAT Competition.1 Furthermore, in [Hoo98] and
[CIR12] the authors present a detailed analysis of the runtime distribution of this
parallel framework in the context of SAT and MaxSAT.


In [KSGS09], the authors studied the application of a parallel hybrid algorithm
to deal with the MaxSAT problem. This algorithm combines a complete solver
(Minisat) and an incomplete one (Walksat). Broadly speaking, both solvers are
launched in parallel and Minisat is used to guide Walksat to promising regions of
the search space by suggesting values for the selected variables. Other literature re-
lated to the application of the parallel portfolio approach without cooperation to the
MaxSAT problem includes [PPR96] and [ARR02].


4.2.2 Cooperative Sequential Algorithms


In [HW93] a set of algorithms running in parallel exchange hints (i.e., partial valid
solutions) to solve hard graph coloring instances. To this end, they share a black-
board where they can write a hint with a given probability q and read a hint with a
given probability p.


1http://www.satcompetition.org/2009/.



http://www.satcompetition.org/2009/
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Algorithm 4.1 Local Search For SAT (CNF formula F, Max-Flips, Max-Tries)
1: for try := 1 to Max-Tries do
2: A := initial-configuration(F)
3: for flip := 1 to Max-Flips do
4: if A satisfies F then
5: return A
6: end if
7: x := select-variable(A)
8: A := A with x flipped
9: end for


10: end for
11: return ‘No solution found’


Although Averaging in Previous Near Solutions [SK93] is not a cooperative algo-
rithm by itself, this method is used to determine the initial configuration for the ith
restart in the GSAT algorithm. Broadly speaking, the initial configuration is com-
puted by performing a bitwise average of variables of the best solution found during
the previous restart (restarti−1) and two restarts before (restarti−2). That is, vari-
ables with the same values in both configurations are reused, and the extra set of
variables is initialized with random values. Since over time, configurations with few
conflicting clauses tend to become similar, all the variables are randomly initialized
after a given number of restarts.


4.3 Technical Background


4.3.1 Local Search for SAT


The propositional satisfiability problem (SAT) is defined in Chap. 3. Algorithm 4.1
describes a well-known local search procedure for SAT solving. It starts with a
random assignment for the variables (so-called configuration2), initial-configuration
in line 2. The key point of local search algorithms is depicted in lines (3–9) where
the algorithm flips the most appropriate candidate variable until a solution is found
or a given number of flips is reached (Max-Flips). After this process the algorithm
restarts itself with a new (fresh) random configuration.


As one may expect, a critical part of the algorithm is the variable selection func-
tion (line 7, select-variable), which indicates the next variable to be flipped in the
current iteration of the algorithm. Broadly speaking, there are two main categories
of variable selection functions. The first of these is motivated by the GSAT algo-
rithm [SLM92] based on the following score function.


score(x) = breakcount(x) − makecount(x)


2In the following, we use the term configuration as a synonym for assignment for the variables.
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Intuitively, breakcount(x) indicates the number of clauses that are currently sat-
isfied but by flipping x become unsatisfied, and makecount(x) indicates the num-
ber of clauses that are unsatisfied but by flipping x become satisfied. In this way,
local search algorithms select the variable with minimal score value (preferably
with a negative value), because flipping this variable would most likely increase
the chances of solving the instance.


The second category of variable selection functions is the Walksat-based one
[SKC94b] which works as follows. First, the algorithm selects, uniformly at random,
an unsatisfied clause c. Then, one variable appearing in c is selected according to a
given heuristic function. The selected variable usually improves (i.e., decreases) the
number of unsatisfied clauses in the formula.


Alternatively, some local search approaches aim at proving unsatisfiability. For
instance, [FR04] and [CI96] integrate new clauses to the initial clause database (or
problem definition). Broadly speaking, as soon as a local minimum is reached (none
of the candidate variables reduces the number of unsatisfied clauses), two neighbor
clauses of the form (x1 ∨ X) and (x̄1 ∨ Y) are used to infer a new clause (X ∨ Y).
Along the same lines, [ALMS09] introduces the concept of CDLS which adapts
Conflict Driven Clause Learning to local search. Other local search literature to
prove unsatisfiability includes [PL06].


The next section presents a more detailed description of the variable selection
functions.


4.3.2 Refinements


This section reviews the main characteristics of state-of-the-art local search solvers
for SAT solving. As pointed out before, these algorithms have been developed to
deal with the variable selection function. In the following, we describe several well-
known mechanisms for selecting the most appropriate variable to flip at a given state
of the search.


TSAT [MSG97a] extends the GSAT algorithm [SLM92] by proposing the use of
a tabu list. This list contains a set of recently flipped variables in order to avoid
flipping the same variable for a given number of iterations. This way, the tabu list
helps prevents search stagnation.


Novelty [MSK97] firstly selects an unsatisfied clause c and from c selects the
best vbest and second best v2best variable candidates. The former, vbest, is flipped iff
it is not the most recently flipped variable in c. Otherwise v2best is flipped with a
given probability p and vbest with probability 1 − p. Important extensions to this
algorithm are Novelty+ [Hoo99a], Novelty++ [LH05], and Novelty+p [LWZ07].


Novelty+ [Hoo99a] with a given probability wp (random walk probability) se-
lects a random variable from an unsatisfied clause and with probability 1 − wp uses
Novelty as a backup heuristic.


Adaptive Novelty+ (AN+) [Hoo02b] uses an adaptive mechanism to properly
tune the noise parameter (wp) of Walksat-like algorithms (e.g. Novelty+). wp is
initially set to 0 and as soon as search stagnation is observed (i.e., no improvement
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has been observed for a while) wp is incremented as follows: wp := wp + (1 +
wp)×φ. On the other hand, whenever an improvement is observed wp is decreased
as follows: wp := wp −wp ×φ/2. This adaptive mechanism has shown impressive
results, and was used to improve the performance of other local search algorithms
in the context of SAT solving, e.g. TNM [WL09] and RSAPS [HTH02].


Scaling and Probabilistic Smoothing (SAPS) [HTH02] adds a weight penalty to
each clause. These weights are initialized to 1 and updated during the search pro-
cess. Generally speaking, SAPS maintains a list L which contains a set of variables
whose objective value (i.e., sum of all unsatisfied clause weights) is maximal and
greater than a given threshold SAPSthresh. If L is not empty, SAPS selects, uniformly
at random, one of the variables in L. Otherwise, a random variable is selected with
a probability wp, and with probability 1 −wp SAPS performs a two-step procedure
in order to scale and smooth clause penalties.


The scaling procedure updates the weight of all unsatisfied clauses as fol-
lows: weighti := weighti × α. The smoothing procedure updates, with a probability
Psmooth, all clause penalties as follows: weighti := weighti ×ρ + (1−ρ)×w, where
w indicates the average weight over all clauses and ρ is a parameter which remains
fixed during the entire search process. SAPS uses five parameters (α, ρ, wp, Psmooth,
and SAPSthresh) that need to be tuned in order to achieve a top performance. Taking
this into account, [HHHLB06] proposes a machine learning framework to identify
the most suitable values for the parameters of the algorithm, and [HHLBS09] stud-
ies the application of paramILS, a parameter tuning algorithm, to identify promising
parameters to solve a given benchmark family.


Reactive SAPS (RSAPS) [HTH02] extends SAPS by adding an automatic tuning
mechanism to identify suitable values for Psmooth. This parameter is increased, i.e.,
Psmooth := Psmooth + 2 × δ × (1 − Psmooth), if an improvement has been observed
in the current iteration. The value of the parameter is decreased, i.e., Psmooth :=
δ ×Psmooth, if no improvement has been observed after θ ×|C| iterations. Moreover,
|C| denotes the number of clauses in the problem; δ and θ are constants set to 0.1
and 1/6.


Pure Additive Weighting Scheme (PAWS) [TPBF04], similarly to SAPS, has each
clause associated with a weight penalty. However, in this case the weight scaling
step is replaced with an additive one (weighti := weighti + 1). Moreover, when no
variable provides an improvement in the objective function, a variable that does
not degrade the objective is selected with a given probability Pflat . Finally, PAWS
decreases weights after Maxinc increases.


Novelty++ [LH05] with a given probability dp (diversification probability) flips
the most recently flipped variable from the selected unsatisfied clause. Otherwise,
with probability 1 − dp the algorithm uses Novelty as a backup heuristic.


G2WSAT [LH05] (G2) introduces the concept of promising decreasing variables.
Broadly speaking, a variable is decreasing if flipping it reduces the overall number
of failed clauses. Initially (line 2 in Algorithm 4.1), all variables are marked as
promising decreasing; then the status of the variables is updated by observing the
total gain (w.r.t. the objective) after flipping the variable (line 8 in Algorithm 4.1).
That is, a variable becomes non-promising if flipping it increased the overall number
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of failed clauses. In addition, all variables that become decreasing as a result of the
flip are marked as promising decreasing.


Taking this into account, G2 selects the best promising variable. If there are no
promising decreasing variables, the algorithm uses Novelty++ as a backup heuristic.
Similarly, G2WSAT+p (G2+p) also uses the concept of promising decreasing vari-
ables. However, in this case the algorithm selects the least recently flipped promising
variable, and Novelty+p is used as a backup heuristic.


Novelty+p [LWZ07] introduces the concept of promising score (pscore) for a
given variable as follows:


pscore(x) = scoreA(x) + scoreB


(
x′)


where A is the current assignment for the variables, B is the configuration after
flipping x, and x′ the best promising decreasing variable with respect to B . Similarly
to Novelty, Novelty+p starts by selecting vbest and v2best from an unsatisfied clause c.
Afterwards, if vbest is the most recently flipped variable in c, then with a probability
p the algorithm selects v2best and with probability 1 − p it uses the promising score
to select the next variable. Finally, if vbest is not the most recently flipped variable in
c but was flipped after v2best, then vbest is selected. Otherwise, the promising score
is used to select the best variable.


Adaptive G2WSAT (AG2) [LWZ07] aims to integrate the AN+ adaptive noise
mechanism into the G2WSAT algorithm. That is, the noise value is initially set to 0
and updated during the execution of the algorithm. Intuitively, the noise is decreased
as soon as an improvement is observed in the objective function, and decreased if
no improvement has been observed after a given number of iterations. Adaptive
G2WSAT+p (AG2+p) uses G2WSAT+p with the same adaptive noise mechanism
of AG2.


gNovelty+ [PTGS08] combines properties of four well-known algorithms: AN+,
G2, PAWS, and SAPS. As in SAPS, clauses are associated with penalty weights
whose initial value is 1. The algorithm starts by selecting, with a probability wp,
a random variable from an unsatisfied clause; otherwise, with probability 1 − wp,
the G2 mechanism is used to select a variable from the list of promising decreasing
variables. If this list is empty, gNovelty+ selects the variable with best improvement
in the objective function (sum of all unsatisfied clause penalties); ties are broken
using the flip history. After selecting the most appropriate variable, clause penalties
are updated, i.e., increasing by one unit the weight of unsatisfied clauses, and finally
with a probability sp the weight of all clause penalties is decreased by one unit.


Two Noise Mechanisms (TNM) [WL09] interleaves the execution of two adaptive
noise methods in order to solve a given SAT instance. The first is AG2+, the second
is a new method in which the algorithm adds two new variables per clause; var_false
and num_false. The former indicates the variable that most recently falsified each
clause, while the latter indicates the number of times that var_false consecutively
falsified its associated clause. If the best variable corresponds to var_false, then
the noise value is set to 0; otherwise it is set to num_false. This adaptive noise
mechanism is included into AG2 and named AG2′. Finally, the use of one method
or another is defined according to a new parameter called γ .
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4.4 Knowledge Sharing in Parallel Local Search for SAT


Our objective is to extend a parallel portfolio of state-of-the-art local search solvers
for SAT with knowledge sharing and cooperation. Each algorithm is going to share
with others the best configuration it has found so far with the cost (number of un-
satisfied clauses) of the respective configuration in a shared pair 〈M,C〉.


M =


⎛


⎜
⎜
⎜
⎝


X11 X12 . . . X1n


X21 X22 . . . X2n


...
...


...
...


Xc1 Xc2 . . . Xcn


⎞


⎟
⎟
⎟
⎠


C = [C1,C2, . . . ,Cc]


where n indicates the total number of variables of the problem and c indicates the
number of local search algorithms in the portfolio. In the following we are associ-
ating local search algorithms and processing cores. Each element Xji in the matrix
indicates the ith variable of the best configuration found so far by the j th core. Sim-
ilarly, the j th element in C indicates the cost for the respective configuration in M .
Notice that M is updated iff a better configuration is observed (i.e., a configuration
with better cost).


These best configurations can be exploited by each local search procedure to
build a new initial configuration. In the following, we propose seven strategies to de-
termine the initial configuration (cf. function initial-configuration in Algorithm 4.1).


4.4.1 Using Best Known Configurations


In this section, we propose three methods to build the new initial configuration init
by aggregating best known configurations. In this way, we define initi for all the
variables Xi, i ∈ [1..n] as follows:


1. Agree: if there exists a value v such that v = Xji for all j ∈ [1..c] then initi = v;
otherwise the value is chosen uniformly at random.


2. Majority: if there exist two values v and v′ such that |{Xji = v|j ∈ [1..c]}| >


|{Xji = v′|j ∈ [1..c]}| then initi = v; otherwise the value is chosen uniformly at
random.


3. Prob: initi = 1 with probability pones = ones
c


and initi = 0 with probability
1 − pones, where ones = |{Xji = 1|j ∈ [1..c]}|.


4.4.2 Weighting Best Known Configurations


In contrast with our previous methods where all best known solutions are considered
equally important, the methods proposed in this section use a weighting mechanism
to consider the cost of best known configurations. The computation of the initial
configuration init uses one of the following two weighting systems: Ranking and
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Normalized Performance, where values from better configurations are most likely
to be used.


Ranking This method sorts the configurations of the shared matrix from worst to
best according to their cost. The worst ranked configuration gets weight of 1 (i.e.,
RankW1 = 1), and the best ranked c (i.e., RankWc = c).


Normalized Performance This method assigns weights (NormW) considering a
normalized value of the number of unsatisfied clauses of the configuration:


NormWj = |C| − Cj


|C|
Using the previous two weighting mechanisms, we define the following four ad-


ditional methods to determine initial configurations.
To this end, we define Φ(val,Weight) = ∑


k∈{j |Xji=val} Weightk .


1. Majority RankW: if there exist two values v and v′ such that Φ(v,RankW) >


Φ(v′,RankW) then initi = v; otherwise the value is chosen uniformly at random.
2. Majority NormalizedW: if there exist two values v and v′ such that Φ(v,


NormW) > Φ(v′,NormW) then initi = v; otherwise the value is chosen uni-
formly at random.


3. Prob RankW: initi = 1 with probability PRones = Rones
Rones+Rzeros and initi = 0


with probability 1 − PRones, where Rones = Φ(1,RankW) and Rzeros =
Φ(0,RankW).


4. Prob NormalizedW: initi = 1 with probability PNones = Nones
Nones+Nzeros and initi = 0


with probability 1 − PNones, where Nones = Φ(1,NormW) and Nzeros =
Φ(0,NormW).


4.4.3 Restart Policy


As mentioned earlier on, shared knowledge is exploited when a given algorithm is
restarted. At this point, the current working configuration of a given algorithm is
re-initialized according to a given aggregation strategy. However, it is important to
restrict cooperation since it adds overheads, and more importantly, tends to generate
similar configurations. As will be described in Sect. 4.5.4, a key point for a coop-
erative portfolio is to properly balance the diversification and intensification of the
acquired knowledge. Too much diversification results in performance similar to that
of a portfolio without cooperation, and too much intensification ends up in a parallel
portfolio where all the algorithms explore very similar regions of the search space.


We propose a new restart policy to avoid re-initializing the working configura-
tion again and again. This new policy re-initializes the working configuration for
a given restart (i.e., every MaxFlips) if and only if performance improvements in
best known solutions have been observed during the latest restart window. This new
restart policy is formally described in the following definition. Let bcki denote the
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cost (number of unsatisfied clauses) of the best known configuration produced by
core i up to the (k − 1)-th restart.


Definition 4.1 At a given restart k for a given algorithm i the working configuration
is reinitialized iff there exists an algorithm q such that bckq < bc(k−1)q , with q = i.


4.5 Experiments


This section reports on the experimental validation of the proposed aggregation
strategies.


4.5.1 Experimental Settings


We conducted experiments using instances from the RANDOM category of the
2009 SAT competition. We removed instances whose status was reported as
UNKNOWN in the competition and considered a collection of 359 satisfiable in-
stances, which were divided in the competition into two main groups: large and
medium, each group itself containing sets of k-SAT instances, where k indicates
the number of literals for each clause. Large size represents a set of 88 3-SAT,
49 5-SAT, and 27 7-SAT instances, while medium size represents a set of 110 3-SAT,
40 5-SAT, and 45 7-SAT instances. The proportion clauses/variables in the large
size group ranges from 33,600/8,000 to 42,000/10,000 for 3-SAT, 18,000/900 to
20,000/1,000 for 5-SAT, and 17,000/200 to 18,000/900 for 7-SAT, while in the
medium size group the proportion ranges from 1530/360 to 2,380/560 for 3-SAT,
1,917/90 to 2,130/100 for 5-SAT, and 5,340/60–6,675/75 for 7-SAT.


We decided to build our parallel portfolio on top of UBCSAT 1.1, a well-known
local search library that provides an efficient implementation of the latest local
search for SAT algorithms [TH04]. We did preliminary experiments to extract from
this library the eight algorithms which perform best on our set of problems. From
that, we defined the following three baseline portfolio constructions where algo-
rithms are independent searches without cooperation. The first one, pcores-PAWS,
uses p copies of the best single algorithm (PAWS); the second portfolio, 4cores-No
sharing, uses the best subset of four algorithms (PAWS, G2+p, AG2, AG2+p); and
the last one, 8cores-No sharing, uses all the eight algorithms (PAWS, G2+p, AG2,
AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with their default
parameters and without any restart, since these techniques are equipped with im-
portant diversification strategies and usually perform better when the restart flag is
switched off. For example, algorithms such as [WL09, HT07, WLZ08] have elimi-
nated the restart mechanism of their default local search procedures.


This portfolio construction can be seen as the best virtual portfolio (BVP) on
the entire set of instances. The portfolio, which selects a set of four and eight al-
gorithms, maximizes the overall number of solved instances. Notice that the BVP
might change from instance to instance and is not known in beforehand. However,
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it is worth mentioning that this portfolio construction is a near-optimal one on in-
stances of the 2007 SAT competition, confirming the robustness of this portfolio by
considering all available algorithms of the library.


Moreover, we also consider the best (TNM) and second best (gNovelty+-v2)
local search algorithms of the 2009 SAT competition; two complete local search
solvers: CDLS [ALMS09] and clsHai04 [FR04]; and Walksat‖Minisat [KSGS09].
Once again, all these solvers are used with their default parameters.


On the other hand, the knowledge aggregation mechanisms described in the
previous section were built on top of a portfolio with four algorithms (same al-
gorithms as 4cores-No sharing) and a portfolio with eight algorithms (same algo-
rithms as 8cores-No sharing). There, we used the modified restart policy described
in Sect. 4.4.3 with MaxFlips set to 106.


All tests were conducted on a cluster of eight Linux Mandriva machines with
8 GB of RAM, two Quad core (eight cores) 2.33 GHz Intel Xeon Processors E5345,
and 128 KB L1 cache and 8 MB L2 cache for each processor. In all the experiments,
we used a five-minute time-out (300 seconds) for each algorithm in the portfolio, so
that for each experiment the total CPU time was set to c × 300 seconds, where c


indicates the number of algorithms in the portfolio.
We ran each solver 10 times on each instance (each time with a different ran-


dom seed) and reported two metrics. First, the Penalized Average Runtime (PAR-10)
[HHLB10] which computes the average runtime over all instances, but where un-
solved instances are considered as 10× the cutoff time. Second, the runtime for
each instance, which is calculated as the median across the 10 runs. Overall, our
experiments for these 359 SAT instances took 1,914 days of CPU time.


4.5.2 Practical Performances with Four Cores


Figure 4.1(a) shows the results of each aggregation strategy using a portfolio with
four cores, comparatively to the four core baseline portfolios. The x-axis gives the
number of problems solved and the y-axis presents the cumulated runtime on a log-
scale.


As expected, the portfolio with the top four best algorithms (4cores-No Sharing)
performs better (solving 309 instances) than the one with four copies of the best
algorithms (4cores-PAWS) (solving 275 instances). Additionally, Fig. 4.1(b) shows
the performance when considering the PAR-10 metric. The y-axis (log-scale) shows
the Penalized Average Runtime for a given time cutoff given on the x-axis. In this
figure, it can be observed that the aggregation policies are also efficient when vary-
ing the time limit to solve problem instances.


The performance of the portfolios with knowledge sharing is quite good. Overall,
it seems that adding a weighting mechanism can often hurt the performance of the
underlying aggregation strategy. Among the weighting options, it seems that the
Normalized Performance performs better. The best portfolio implements the Prob
strategy without any weighting (solving 329 instances). This corresponds to a gain
of 20 problems against the corresponding 4cores-No Sharing baseline.
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Fig. 4.1 Performance using
four cores in a given amount
of time


A detailed examination of 4cores-Prob and 4cores-No Sharing is presented in
Figs. 4.2 and 4.3. The first figure uses log-scales on each axis. These figures show,
respectively, a runtime and a best configuration cost comparison. Notice that each
number in Fig. 4.3 represents the sum of the overlapping points at that (x, y) lo-
cation. In both figures, points below (resp. above) the diagonal line indicates that
4cores-Prob performs better (resp. worse) than 4cores-No Sharing. In the runtime
comparison, we observe that easy instances are correlated as they require few steps
to be solved, and for the remaining set of instances 4cores-Prob usually exhibits a
better performance. On the other hand, the second figure shows that when instances
are not solved, the median cost of the best configuration (number of unsatisfied
clauses) found by 4cores-Prob is usually better than for 4cores-No Sharing. In par-
ticular, 4cores-Prob reports a better solution cost for 38 instances, while 4cores-No
Sharing was better for only six instances.
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Fig. 4.2 Runtime
comparison; each point
indicates the runtime to solve
a given instance using
4cores-Prob (y-axis) and
4cores-No Sharing (x-axis)


Fig. 4.3 Best configuration
cost comparison on unsolved
instances. Each point
indicates the best
configuration (median) cost
of a given instance using
4cores-Prob (y-axis) and
4cores-No Sharing (x-axis)


Table 4.1 summarizes all the experiments using four cores; each cell indicates
the results for medium-size instances (top), large-size instances (middle), and the
total overall instances (bottom) for each portfolio. We report the number of solved
instances (#solved), the median time across all instances (median time), the Penal-
ized Average Runtime (PAR), and the total number of instances that timed out in all
the 10 runs (never solved). These results confirm that sharing best known config-
urations outperforms independent searches. For instance, 4cores-Prob and 4cores-
prob NormalizedW solved respectively 20 and 17 more instances than 4cores-No
Sharing, and all the cooperative strategies (except 4cores-majority RankW) exhibit
better PAR. Interestingly, 4cores-PAWS exhibited the best median runtime overall
in the experiments with four cores; this fact suggests that PAWS by itself is able
to quickly solve an important number of instances. Moreover, only two instances
timed out in all the 10 runs for 4cores-Agree and 4cores-prob NormalizedW against
seven for 4cores-No Sharing. Notice that this table also includes 1core-PAWS, the
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Table 4.1 Overall evaluation using four cores. Each cell summarizes the results of medium-size
instances (top), large-size instances (middle), and the total overall instances (bottom). The best
strategy for each column is highlighted in bold


Strategy #solved Median time PAR-10 Never solved


1core-TNM 195 0.07 1.48 0


113 121.10 1007.91 8


308 1.30 461.24 8


1core-gNovelty+-v2 195 0.11 2.38 0


74 300.00 1637.09 38


269 2.52 749.16 38


1core-PAWS 195 0.07 1.67 0


54 300.00 1992.58 71


249 1.76 911.17 71


4cores-gNovelty+-v2 195 0.28 3.87 0


96 855.4 5771.75 34


291 5.075 2501.73 33


4cores-PAWS 195 0.08 1.48 0


80 1200.00 6379.67 61


275 1.63 2915.19 61


4cores-No Sharing 195 0.11 1.84 0


114 533.04 4159.15 7


309 2.19 1901.00 7


4cores-Agree 195 0.12 1.70 0
126 313.59 3131.19 2
321 2.54 1431.33 2


4cores-Majority 195 0.11 1.95 0


118 343.74 3773.63 11


313 2.53 1724.94 11


4cores-Prob 195 0.11 2.02 0


134 195.81 2751.24 4


329 2.51 1257.93 4


4cores-Majority RankW 195 0.12 2.07 0


109 518.39 4223.70 11


304 2.47 1930.61 11


4cores-Majority NormalizedW 195 0.13 1.94 0


119 447.06 3954.19 9


314 2.48 1807.42 9


4cores-Prob RankW 195 0.12 1.97 0


121 259.97 3546.78 7


316 2.53 1621.33 7


4cores-Prob NormalizedW 195 0.12 2.03 0
131 180.39 2759.74 2
326 2.50 1261.82 2
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Fig. 4.4 Performance using
eight cores in a given amount
of time


best sequential local search on this set of problems. The PAR-10 score for 1core-
PAWS is lower than the other values of the table since this portfolio uses only one
algorithm, therefore, the time-out is only 300 seconds, while four-core portfolios
use a time-out of 1,200 seconds.


4.5.3 Practical Performances with Eight Cores


We now move on to portfolios with eight cores. The results of these experiments
are depicted in Fig. 4.4, indicating the total number of solved instances within a
given amount of time. As in previous experiments, we report the results of base-
line portfolios 8cores-No Sharing and 8cores-PAWS, as well as the seven cooper-
ative strategies. We observe that the cooperative portfolios (except 8cores-Agree)
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greatly outperform the non-cooperative ones in both the number of solved instances
(Fig. 4.4(a)) and the PAR-10 metric (Fig. 4.4(b)). Indeed, as detailed in Sect. 4.5.4,
8cores-Agree exhibits a poor performance mainly because the best known config-
urations stored in the shared data structure tend to be different from each other.
Therefore, this policy tends to generate completely random starting points, and can-
not exploit the acquired knowledge.


Table 4.2 summarizes the results of this experiment, and once again, it includes
the best individual algorithm running in a single core. We can observe that 8cores-
Prob, 8cores-Prob RankW, and 8cores-Prob NormalizedW solve 24, 22, and 16
more instances than 8cores-No Sharing. Furthermore, it shows that knowledge shar-
ing portfolios are faster than individual searches, with a PAR-10 of 3,743.63 seconds
for 8cores-No Sharing against 2,247.97 for 8cores-Prob, 2,312.80 for 8cores-Prob
RankW, and 2,295.99 for 8cores-Prob NormalizedW. Finally, it is also important to
note that only one instance timed out in all the 10 runs for 8cores-Prob Normal-
izedW, against eight instances for 8cores-No Sharing.


These experimental results show that Prob (four and eight cores) exhibited the
overall best performance. We attribute this to the fact that the probability component
of this method balances the exploitation of best solutions found so far with the
exploration of other values for the variables; therefore, the algorithm diversifies the
search by exploring new starting configurations.


4.5.4 Analysis of the Diversification/Intensification Trade-off


Maintaining an appropriate balance between diversification and intensification of
the acquired knowledge is an important step of the proposed cooperative portfolios
to improve performance. In this chapter, diversification (resp. intensification) refers
to the ability of generating different (resp. similar) initial configurations at each
restart.


Figure 4.5 aims to analyze the balance between diversification and intensifica-
tion. The x-axis gives the pairwise average Hamming distance (HamDis) of all pairs
of algorithms in a portfolio after a given number of flips (y-axis) for a typical SAT
instance.3 Notice that some lines are of different sizes because some strategies re-
quired fewer flips to solve the instance. HamDis is formally described as follows:


HamDis =
∑c


i=1
∑c


j=i+1 Hamming(Xi,Xj )


c(c − 1)/2


where Xi and Xj indicate the best configurations found so far for the ith and j th al-
gorithms in the portfolio; c represents the number of algorithms in the portfolio; and
Hamming(Xi,Xj ) corresponds to the number of variables in Xi and Xj assigned to
different values, that is, Hamming(Xi,Xj ) = |{k : Xik = Xjk}|.


3We performed the same experiment on several instances and observed similar behavior.
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Table 4.2 Overall evaluation using eight cores. Each cell summarizes the results of medium-size
instances (top), large-size instances (middle), and the total overall instances (bottom). The best
strategy for each column is highlighted in bold


Strategy #solved Median time PAR-10 Never solved


1core-TNM 195 0.07 1.48 0


113 121.10 1007.91 8


308 1.30 461.24 8


1core-gNovelty+-v2 195 0.11 2.38 0


74 300.00 1637.09 38


269 2.52 749.16 38


1core-PAWS 195 0.07 1.67 0


54 300.00 1992.58 71


249 1.76 911.17 71


8cores-gNovelty+-v2 195 0.305 3.72 0


109 1164.98 6113.02 33


304 4.66 4173.14 33


8cores-PAWS 195 0.07 1.52 0


91 1482.08 11411.41 56


286 2.00 5213.84 56


8cores-No Sharing 195 0.125 1.86 0


116 937.64 8192.69 8


311 2.33 3743.63 8


8cores-Agree 195 0.15 1.92 0


110 1251.10 8649.17 17


305 2.48 3952.19 17


8cores-Majority 195 0.13 2.11 0


120 650.56 6921.42 6


315 2.47 3163.02 6


8cores-Prob 195 0.16 2.40 0


140 373.86 4918.01 2


335 2.45 2247.97 2


8cores-Majority RankW 195 0.14 2.06 0


130 409.70 6444.05 4


325 2.39 2944.92 4


8cores-Majority NormalizedW 195 0.14 2.15 0


119 638.37 7218.16 9


314 2.54 3298.60 9


8cores-Prob RankW 195 0.13 2.07 0


138 299.74 5060.32 2


333 2.55 2312.80 2


8cores-Prob NormalizedW 195 0.14 2.47 0
132 397.59 5023.04 1
327 2.47 2295.99 1
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Fig. 4.5 Pairwise average Hamming distance (x-axis) vs. Number of flips every 106 steps (y-axis)
to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf instance


Figure 4.5(a) shows the diversification-intensification analysis using four cores.
Among the cooperative strategies 4cores-Majority exhibits a premature convergence
due to its reduced diversification; while 4cores-Agree shows a slow convergence
due to its increased diversification. In contrast to these two methods, 4cores-Prob is
balancing diversification, and intensification. This phenomenon helps to explain the
superiority shown by this method in Sect. 4.5.2.


A similar observation is drawn from the experiments with eight cores presented
in Fig. 4.5(b). However, in this case 8cores-Agree dramatically increases diversifi-
cation, which actually degrades its overall performance when compared against its
counterpart portfolio with four cores (see Table 4.2). Additionally, Fig. 4.5(c) shows
the behavior of 8cores-Majority NormalizedW and 8cores-Prob NormalizedW, and
Fig. 4.5(d) shows the behavior of 8cores-Majority RankW and 8cores-Prob RankW.
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Table 4.3
Diversification-Intensification
analysis using four cores over
the whole set of benchmarks


Strategy HamIns


4cores-PAWS 38.2


4cores-No Sharing 39.0


4cores-Agree 35.0


4cores-Majority 31.7


4cores-Prob 33.1


4cores-Majority RankW 25.9
4cores-Majority NormalizedW 27.1


4cores-Prob RankW 30.8


4cores-Prob NormalizedW 32.8


Table 4.4
Diversification-Intensification
analysis using eight cores
over the whole set of
benchmarks


Strategy HamIns


8cores-PAWS 38.3


8cores-No Sharing 39.5


8cores-Agree 38.3


8cores-Majority 30.8


8cores-Prob 33.4


8cores-Majority RankW 29.3
8cores-Majority NormalizedW 29.5


8cores-Prob RankW 33.1


8cores-Prob NormalizedW 33.8


From these two last figures, it can be observed that Majority-based strategies pro-
vide less diversification than the Prob-based ones.


Now we switch our attention to Tables 4.3 and 4.4, where we extend our analysis
to all problem instances. To this end, we launched an extra run for each portfolio
strategy to compute HamIns, an average over all values of HamDis during the run
on each instance. HamIns is formally defined as follows:


HamIns(i) = HamDis(i)


total-vars(i)
× 100


where HamDis(i) computes the mean over all HamDis values achieved when solv-
ing i, and total-vars(i) indicates the number of variables involved in i. We use
HamIns to denote the mean HamIns over all the instances that required at least 106


flips to be solved. Notice that instances requiring fewer flips do not employ cooper-
ation because the first restart is not reached.


As can be observed, prob-based strategies have shown the best performance as
they exhibit a better trade-off between diversification and intensification than Agree-
(resp. Majority-) based strategies. For instance, excluding 4cores-agree, which is
known to provide more diversification than intensification, 4cores-Prob shows the
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Fig. 4.6 Individual algorithm performance to solve the unif-k3-r4.2-v16000-c67200-
S2082290699-014.cnf instance


highest HamIns variation among all cooperative portfolios using four cores. More-
over, Majority-based strategies are bad for diversification as they might tend to start
with a configuration similar to the one given by the best single algorithm. It is also
worth mentioning that our baseline portfolios 4cores-PAWS and 4cores-No Sharing
exhibit the highest values, which is not surprising as no cooperation is allowed. No-
tice that algorithms in non-cooperative portfolios are independent from each other;
for this reason each algorithm defines its own search trajectory.


On the other hand, a similar observation is seen in the case of eight cores. How-
ever, it is worth mentioning that 8cores-agree gives too much diversification, de-
grading the overall performance when compared against its counterpart with four
cores (see Tables 4.1 and 4.2).


Finally, Fig. 4.6 shows a trace of the best configuration cost found so far for
each algorithm in the portfolio to solve a typical instance. The x-axis shows the
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Fig. 4.7 Runtime
comparison using parallel
local search portfolios made
of respectively one, four, and
eight identical copies of
PAWS (same random seed
and no cooperation). Black
diamonds indicate the
performance of four cores vs.
one core. Red triangles
indicate the performance of
eight cores vs. one core,
points above the blue line
indicate that one core is faster


best solution for each algorithm vs. the number of flips (y-axis). The right part of
the figure shows the performance of individual searches using four and eight cores
without cooperation, while the left part depicts the performance of 4cores-Prob and
8cores-Prob. As expected, non-cooperative algorithms exhibit different behaviors.
For instance, Fig. 4.6(d) shows that SAPS and RSAPS are still far from the solu-
tion after reaching the time-out, while Fig. 4.6(c) shows that by using cooperation
all algorithms (including SAPS and RSAPS) are pushed to promising areas of the
search, i.e., assignments with few unsatisfied clauses.


4.5.5 Analysis of the Limitations of the Hardware


In this section, we wanted to assess the inherent slowdown caused by increased
cache and bus contingency when more processing cores are used at the same time.
Indeed, having an understanding of this slowdown help us to assess the real benefits
of parallel search. To this end, we decided to run our PAWS baseline portfolio using
the same random seed for each independent algorithm in the portfolio using one,
four, and eight cores. Since all the algorithms are executing the same search, this
experiment measures the slowdown caused by hardware limitations. The results are
presented in Fig. 4.7.


The first case executes a single copy of PAWS with a time-out of 300 seconds, the
second case executes four parallel copies of PAWS with a time-out of 1,200 seconds
(4 × 300) and the third case executes eight parallel copies of PAWS with a time-out
of 2,400 seconds (8 × 300).


Finally, we estimate the runtime of each instance as the median across 10 runs
(each time with the same seed) divided by the number of cores. In this figure, it
can be observed that the performance overhead is almost not distinguishable be-
tween one and four cores (black diamonds). However, the overhead between 1 and
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8 cores increases for difficult instances (red triangles). As a final observation from
this figure, we would like to point out that 111 points overlap at (300, 300).


This simple test can help us to assess the remarkable performance of our aggre-
gation techniques. Indeed, on eight cores, the best technique is able to solve 86 more
problems than the sequential search. This is achieved despite the slowdown caused
by cache and bus contingencies revealed by this experiment.


4.6 Summary


In this work, our objective was to integrate knowledge sharing strategies in parallel
local search for SAT. We were motivated by recent developments in parallel DPLL
solvers. We decided to restrict the information shared to the best configuration found
so far by the algorithms in a portfolio. From that we defined several simple knowl-
edge aggregation strategies along a specific restart policy which creates a new initial
assignment for the variables when a fixed cutoff is reached and when the quality of
the shared information has been improved.


Extensive experiments were done on a large number of instances taken from
the 2009 SAT competition. They showed that adding the proposed sharing policies
improves the performance of a parallel portfolio. This improvement is exhibited in
both,the number of solved instances and the Penalized Average Runtime (PAR). It is
also reflected in the best configuration cost of problems which could not be solved
within the time limit.


We believe that our work represents a very first step in the incorporation of
knowledge sharing strategies in parallel local search for SAT. Further work will
investigate the use of additional information to exchange, such as: tabu list, the age
and score of a variable, information on local minima, etc. We also intend to inves-
tigate the best way to integrate this extra knowledge while solving a given problem
instance. To this end, we plan to explore the taxonomies of cooperative search de-
scribed in [CT10]. Moreover, as said earlier, state-of-the-art local searches for SAT
perform better when they do not restart. Incorporating extra information without
forcing the algorithm to restart is likely to be important.


Along those lines, we plan to equip the local search algorithms used in this chap-
ter with clause learning, as described in [CI96] and [ALMS09], to exchange learnt
clauses, borrowing ideas from portfolios for complete parallel SAT solvers.


A longer-term perspective regards the use of machine learning to identify the best
subset of algorithms to solve a given instance.







Chapter 5
Learning Variable Dependencies


5.1 Introduction


The relationships between the variables of a combinatorial problem are key to
its resolution. Among all the possible relations, explicit constraints are the most
straightforward and are widely used. For instance, they are used to support classical
look-ahead and look-back schemes. During look-ahead, they can restrict the main-
tenance of some level of consistency to some locality. During look-back, they can
improve the backtracking by jumping to related and/or guilty decisions. These re-
lationships are also used in dynamic variable ordering (DVO) to relate the current
variable selection to past decisions (e.g., [Bre79]), or to give preference to the most
constrained parts of the problem.


Recently, the notion of backdoor has been proposed. A backdoor can be infor-
mally defined as a subset of the variables such that, once assigned values, the re-
maining instance simplifies to a computationally tractable class. Backdoors can be
explained by the presence of a particular relation between variables, e.g., functional
dependencies. Unfortunately, detecting backdoors can be computationally expen-
sive [DGS07], and their exploitation is often restricted to restart-based strategies as
in modern SAT solvers [WGS03].


In this work, our objective is to heuristically discover a simplified form of func-
tional dependencies between variables called weak dependencies. Once discovered,
these relations are used to rank the importance of each variable. Our method as-
sumes that these relations can be detected with low overhead during constraint prop-
agation. More precisely, each time a variable y gets instantiated as a result of the
instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the
weight of x is raised, and the variable becomes more likely to be selected by the
variable ordering heuristic [AH09].


5.2 Previous Work


In [BHLS04] the authors have proposed dom-wdeg, a heuristic which gives priority
to variables frequently involved in failed constraints. It adds a weight to each con-
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straint which is updated (i.e, incremented by 1) each time the constraint fails. Using
this value, variables are ranked according to domain size, and associated weight.
Xi , the selected variable, minimizes dom-wdeg(Xi) = |Xi |/∑


c∈prop(Xi)
weight(c).


As shown in the previous section, domFD is superior to dom-wdeg on many prob-
lems. Interestingly, while dom-wdeg can only learn from conflicts, domFD can also
learn from successful branchings. This is an important difference between these two
techniques.


In [Ref04], Refalo proposes the impact dynamic variable-value selection heuris-
tic. The rationale here is to maximize the reduction of the remaining search space.
In this context an impact is computed taking into account the reduction of the
search space due to an instantiated variable. Impact also considers values, and can
therefore select the best instantiation instead of the best variable. With domFD,
a variable is well ranked if its instantiation has generated several other instantia-
tions. This is equivalent to an important pruning of the search space. In that re-
spect domFD is close to impact. However, its principle is the dynamic exploitation
of functional dependencies, not the explicit quantification of search space reduc-
tions. More generally, since DVO heuristics are all based on some understanding
of the fail-first principle they are all aiming at an important reduction of the search
space.


To improve SAT solving, [OGMS02] proposes a new pre-processing step that
exploits the structural knowledge that is hidden in a CNF formula. It delivers
a hybrid formula made of clauses together with a set of equations of the form
y = f (x1, . . . , xn). This set of functional dependencies is then exploited to elim-
inate clauses and variables, while preserving satisfiability. This work detects real
functions while our heuristic observes weak dependencies. Moreover, it uses a pre-
processing step while we perform our learning during constraint propagation.


5.3 Technical Background


In this section, we briefly introduce definitions and notation used hereafter.


Definition 5.1 A Constraint Satisfaction Problem (CSP) is a triple (X,D,C)


where:


• X = {X1,X2, . . . ,Xn} represents a set of n variables.
• D = {D1,D2, . . . ,Dn} represents the set of associated domains, i.e., possible val-


ues for the variables.
• C = {C1,C2, . . . ,Cm} represents a finite set of constraints.


Each constraint Ci is associated to a set of variables vars(Ci), and is used to
restrict the combinations of values between these variables. Similarly, each vari-
able Xi is related to a set of constraints prop(Xi). The arity of a constraint Ci cor-
responds to |vars(Ci)|, and the degree of a variable Xi corresponds to |prop(Xi)|.
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Fig. 5.1 Classic propagation
engine


1: Q = {p1,p2, . . .}
2: while Q = {} do
3: p = choose(Q);
4: run(p);
5: for all Xi ∈ vars(p) s.t. Di was narrowed do
6: schedule(Q,p,Xi );
7: end for
8: end while


Solving a CSP involves the finding of a solution, i.e., an assignment of values to
variables such that all the constraints are satisfied. If a solution exists, the problem
is stated as satisfiable, and as unsatisfiable otherwise.


A depth-first search backtracking algorithm can be used to tackle CSPs. At each
step a value is assigned to some variable. Each assignment is combined with a look-
ahead process called constraint propagation which can reduce the domains of the
remaining variables. Constraint propagation is usually based on some constraint
network property which determines its locality and therefore its computational cost.
Arc-consistency is widely used, and the result of its combination with backtrack
search is called MAC, for Maintaining Arc-Consistency [SF94].


Figure 5.1 describes a classic constraint propagation engine [SC06]. In this al-
gorithm, constraints are managed as propagators1 in a propagation queue, Q. This
structure represents the set of propagators that need to be revised. Revising a prop-
agator corresponds to the enforcement of some consistency level on the domains of
the associated variables.


Initially, Q is set to the entire set of constraints. This is used to enforce the arc-
consistency property before the search process. During depth-first exploration, each
decision is added to an empty queue, and propagated through this algorithm.


The function choose removes a propagator p ∈ Q, run applies the filtering algo-
rithm associated to p, and schedule adds prop(Xi) to Q. The algorithm terminates
when the queue is empty. A fix-point is reached and more propagations can only
appear as the result of a tree-based decision.


Definition 5.2 f (X,y) is a functional dependency between the variables in the
set X and the variable y if and only if for each combination of values in X there is
precisely one value for y satisfying f .


Many constraints of arity k can be seen as functional dependencies between
a set of k − 1 variables and some remaining variable y. For instance, the arith-
metic constraint X + Y = Z gives the dependencies f ({X,Y },Z), f ({X,Z}, Y ),
and f ({Y,Z},X). There are also many exceptions like the constraint X = Y ,
where in the general case, one variable is not functionally dependent of the other
one.


1In the following, we will use this as a synonym for constraints.
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5.4 Exploiting Weak Dependencies in Tree-Based Search


5.4.1 Weak Dependencies


Our objective is to take advantage of functional dependencies during search. We
propose to heuristically discover a weaker form of relation called weak dependency
between pairs of variables. A weak dependency is observed when a variable gets
instantiated as the result of another instantiation. Our new DVO heuristic records
these weak dependencies and exploits them to prioritize the variables during the
search process.


Definition 5.3 During constraint propagation with the algorithm presented in
Fig. 5.1, we call (X,Y ) a weak dependency if the two following conditions hold:


1. Y is instantiated as the result of the execution of a propagator p.
2. p is inserted in Q as the result of the instantiation of X.


Property 5.1 Weak dependency relations (X,Y ) can be recorded as the result of
the execution of a propagator p iff X ∈ vars(p) and Y ∈ vars(p).


The proof is straightforward if we consider the algorithm presented in Fig. 5.1.


5.4.2 Example


To illustrate our definition, we consider the following set of constraints:


• p1 ≡ X1 + X2 < X3
• p2 ≡ X1 = X4
• p3 ≡ X4 = X5


With the domains, D1 = D2 = D4 = D5 = {0,1} and D3 = {1,2}.
The initial filtering does not remove any value and the search process has to


be started. Assuming that the search is started on X1 with value 1, the propagator
X1 = 1 is added to Q, and after its execution the domain D1 has narrowed, it is
necessary to schedule p1 and p2.


Running p1 sets X2 to 0, and X3 to 2, and gives the weak dependencies (X1,X2)


and (X1,X3). Afterwards, p2 sets X4 to 0, which corresponds to (X1,X4). Finally,
the narrowing of D4 schedules p3, which sets X5 to 1, and gives the weak depen-
dency (X4,X5).


Weak dependencies are binary; therefore they only roughly approximate func-
tional dependencies. For example, with the constraint X + Y = Z they will never
record ({X,Y },Z). On the other hand weak dependencies exploit the current do-
mains of the variables and can record relations which are not true in general but
hold in particular cases. For instance, the propagator p3 above creates (X4,X5).
This represents a real functional dependency since the domains of the variables are
binary and equal.







5.4 Exploiting Weak Dependencies in Tree-Based Search 75


Fig. 5.2 Variables and
propagators


Fig. 5.3 Schedule(Queue Q,
Propagator p, Variable Xi )


1: enqueue(Q, prop(Xi ));
2: if |Di | = 1 then
3: dependencies(p.assigned, Xi );
4: for all p′ in prop(Xi ) do
5: p′.assigned.add(Xi );
6: end for
7: end if


5.4.3 Computing Weak Dependencies


We can represent weak dependencies as a weighted digraph relation among the vari-
ables of the problem, where the nodes of the graph are the variables and the edges
indicate weak dependency relations between two variables, i.e, when there is an
edge between two variables X and Y , the direction of the edge shows the relation
and its weight indicates the number of observed occurrences of that relation.


In a propagation-centered approach [LS07] each variable has a list of dependent
propagators and each propagator knows its variables (see Fig. 5.2).


In this way, once the domain of a variable is narrowed it is necessary to schedule
its associated propagators in the propagator pool. Since we are interested in cap-
turing weak dependencies, we have to track the reasons for constraint propagation.
More specifically, when a propagator gets activated as the result of the direct as-
signment of some variable, we need to keep a reference to that variable. Since the
assignment of several variables can activate a propagator, we might have to keep
several references.


A modified schedule procedure is shown in Fig. 5.3. The algorithm starts by en-
queueing all the propagators associated to a given variable Xi in the propagators
pool. If the propagator p was called as the result of the assignment of Xi (|Di | = 1),
a weak dependency is created between each variable of the set p.assigned and Xi .
Variables from this set are the ones whose assignment was the reason for propa-
gating p. After that, a reference to Xi is added to its propagators prop(Xi). This is
done to ensure that if these propagators assign other variables, a subsequent call to
the schedule procedure will be able to create dependencies between Xi and these
variables.


5.4.4 The domFD Dynamic Variable Ordering


In the previous section, we have seen that a generic constraint propagation algorithm
can be modified to compute weak dependencies. As we pointed out above, weak
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dependencies can be seen as a weighted digraph relation among the variables. Using
this graph, we propose to define a function FD(Xi) which computes the out-degree
weight of a variable Xi taking into account only uninstantiated variables.


FD(Xi) =
∑


Xj ∈Γ +(Xi)


weight(Xi,Xj ) (5.1)


where Γ +(x) (resp. Γ −(x)) represents the set of outgoing (resp. ingoing) edges
from (resp. to) x in the graph of dependencies. It is also important to note that when
there is no outgoing edge associated to Xi we assume FD(Xi) = 1.


Given the definition of FD, we define domFD, a new DVO heuristic based on
both, the observed weak dependencies of the problem and the well-known fail-first
mindom heuristic:


domFD(Xi) = |Xi |
FD(Xi)


(5.2)


Then, the heuristic selects the variable whose domFD value is minimal.


5.4.5 Complexities of domFD


Space We know from Property 5.1 that dependencies are created between vari-
ables which share a constraint. Therefore, computing the weak dependency graph
requires in the worst case a space proportional to the space used for the representa-
tion of the problem. Assuming n variables and m constraints, the space is propor-
tional to n + m.


Time The computation of weak dependencies is tightly linked to constraint prop-
agation. The original schedule procedure only enqueues the propagators related to
Xi in Q; therefore its original cost is O(m). Our new procedure creates dependen-
cies each time a variable gets instantiated. Dependencies between variables can be
recorded as the result of the instantiation of one or several variables. In the latter
case, up to n − 1 dependencies can be created since the instantiation of up to n − 1
variables can be responsible for the scheduling of the current propagator (line 3 in
the algorithm of Fig. 5.3). Once dependencies are created, the propagators associ-
ated to Xi need to reference it. Here the cost is bounded by m. Overall, the time
complexity of the new schedule procedure is O(n + m).


We now have to consider the cost of maintaining the weak dependency graph.
Since our heuristic only considers the weights related to the variables which are
not instantiated we have to disconnect variables from the graph when they get a
value, and we have to reconnect them when the search backtracks. This can be done
incrementally.


Practically, we do not have to physically remove a variable from the dependency
graph; we can just offset the weight of the recorded dependencies between other
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variables and that variable. For instance, when Xi gets instantiated as the result of
a tree decision or as the result of constraint propagation, we only need to update
the out degrees of variables Xj ∈ Γ −(Xi). The update is done by decreasing their
associated counter Xj .FD by weight(Xj ,Xi). These counters represent the number
of times the weak dependency (Xj ,Xi) was observed during the search process.
During backtracking, Xi gets back its domain, and we just have to “reconnect” the
associated Xj ∈ Γ −(Xi) by adding weight(Xj ,Xi) to Xj .FD. Since a variable can
be linked to m propagators, an update of the dependency graph costs O(m). In the
worst case, each branching holds no propagation and therefore at each node, the cost
of updating the dependency graph is O(m).


Finally, selecting the variable which minimizes domFD can cost an iteration over
n variables if no special data structure is used.


Now if we consider all the operations, constraint propagation with the new sched-
ule procedure, disconnecting a single variable, and selection of the variable which
minimizes domFD, we have O(n + m) instead of O(m) initially.


5.5 Experiments


In this section, we propose to study the performance of domFD when compared to
dom-wdeg, a recently introduced heuristic able to focus on the difficult parts of a
problem [BHLS04].


In dom-wdeg, the priority is given to variables which are frequently involved
in failed constraints. A weight is added to each constraint and updated (i.e, incre-
mented by 1) each time a constraint fails. Using this value variables are selected
based on their domain size and their total associated weight. Xi , the selected vari-
able, minimizes dom-wdeg(Xi) = |Xi |/∑


c∈prop(Xi)
weight(c).


This heuristic is used in the Abscon solver, which appeared to be the most robust
in a recent CSP competition,2 where it finished one time first, three times second,
3 times third, and three times fourth, when compared against 15 other solvers.


To compare domFD against the powerful dom-wdeg, we implemented them in
Gecode-2.0.1 [Gec06] and used them to tackle several problems. Since Gecode is
now widely used, we decided to take from the Internet problems already encoded
for the Gecode library. We paid attention to the fact that overall our problems cover
a large set of Gecode’s constraints.


We used 35 instances coming from nine different benchmark families. They in-
volve satisfaction, counting, and optimization problems. They were solved using
the default Gecode’s branch-and-prune strategy, and a modified restart technique
based on the default strategy. In the tests, the value selection ordering was Gecode’s
INT_VAL_MIN, which returns the minimal value of a domain. All the experi-
ments were performed on a MacBook Pro 2.4 GHz Intel Core 2 Duo, under Ubuntu
Linux 7.10 and gcc version 4.0.1. A time-out (TO) of 10 minutes was used for each
experiment.


2http://www.cril.univ-artois.fr/CPAI06/round2/results/ranking.php?idev=6.



http://www.cril.univ-artois.fr/CPAI06/round2/results/ranking.php?idev=6
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5.5.1 The Problems


In the following, we list the different benchmark families. When they are described
on www.csplib.org, we only present the number in the library. Note that for all prob-
lems (except Quasigroup) the model and its implementation are the ones proposed
in the Gecode examples.3


• Quasigroup, qwh, problem 3 of CSPLib.
• Golomb ruler, gol-rul, problem 6 of CSPLib.
• All-interval, all-int, problem 7 of CSPLib.
• Nonogram, nono, problem 12 of CSPLib.
• Magic-square, magic-squ, problem 19 of CSPLib.
• Langford number, lfn, problem 24 of CSPLib.
• Sports league tournament, sport-lea, problem 26 of CSPLib.
• Balanced Incomplete Block Design, bibd, problem 28 of CSPLib.
• Crowded-chess, crow-ch; this problem consists in arranging n queens, n rooks,


2n − 1 bishops and k knights on an n × n chessboard, so that queens cannot at-
tack each other, no rook can attack another rook and no bishop can attack another
bishop. Note that two queens (in general two pieces of the same type) are attack-
ing each other even if there is a bishop (in general another piece of different type)
between them.


When an instance is solved, the number of nodes in the tree(s), the number of
fails and the time in seconds are reported. If the 10 minutes time-out is reached, TO
is reported.


5.5.2 Searching for All Solutions or for an Optimal Solution


The first part of Table 5.1 presents results related to the finding of all the solutions of
all-interval problems of order 11 to 14. We can observe that the trees generated with
domFD are usually far smaller than the ones generated by dom-wdeg. Most of the
time, domFD runtime is also better. However, the time per node is more important
for our heuristic. For instance, on all-int-14, dom-wdeg does 89,973 nodes/s while
domFD runs at 54,122 nodes/s.


The second part of the table presents results for the optimal Golomb rulers of
orders 10 to 12. Here, we can observe that order 10 is easier for dom-wdeg, but tree
sizes are comparable. Orders 11, and 12 give advantage to domFD, with far smaller
search trees and better runtimes. As before, the time per node is more important for
our heuristic (31,771 vs 35,852 on gol-rul-11).


3Available from http://www.gecode.org/gecode-doc-latest/group__ExProblem.html.



http://www.csplib.org

http://www.gecode.org/gecode-doc-latest/group__ExProblem.html
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Table 5.1 All solutions and optimal solution


Instance dom-wdeg domFD


#nodes #failures Time (s) #nodes #failures Time (s)


all-int-11 100844 50261 0.93 52846 26262 0.81


all-int-12 552668 276003 6.92 211958 105648 3.45


all-int-13 2.34M 1.17M 26.13 1.64M 821419 29.74


all-int-14 15.73M 7.86M 174.83 11.27M 5.63M 208.23


gol-rul-10 93732 46866 1.97 102910 51449 2.70


gol-rul-11 2.77M 1.38M 77.26 1.77M 889633 55.71


gol-rul-12 12.45M 6.22M 404.92 6.97M 3.48M 266.28


Table 5.2 First solution, branch-and-prune strategy


Instance dom-wdeg domFD


#nodes #failures Time (s) #nodes #failures Time (s)


qwh-30-316-1 1215 603 0.22 234 115 0.32


qwh-30-316-2 48141 24063 8.09 10454 5220 3.62


qwh-30-316-3 6704 3347 1.11 2880 1437 1.15


bibd-7-3-2 100 39 0.01 65 28 0.01


bibd-7-3-3 383 180 0.03 96 42 0.01


bibd-7-3-4 – – TO 132 56 0.03


lfn-3-9 168638 84316 6.16 7527 3760 0.26


lfn-2-19 – – TO 1.64M 822500 43.05


lfn-3-10 2.21M 1.10M 87.15 12440 6218 0.46


nono-5 1785 879 0.12 491 239 0.11


nono-8 17979 8983 3.54 1084 537 0.54


nono-9 248 115 0.04 120 58 0.12


5.5.3 Searching for a Solution with a Classical Branch-and-Prune
Strategy


Experiments related to the finding of a first solution are presented in Table 5.2.
They show results for, respectively, quasigroups, balance incomplete block design,
Langford numbers, and nonograms.


Quasigroups Three instances of order 30 with 316 unassigned positions were
produced with the generator presented in [AGKS00]. On these instances, domFD
always generates smaller search trees. When this difference is large enough e.g.,
second instance, the runtime is also better.
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Balance Incomplete Block Design Our heuristic always explores smaller trees,
which allows better runtimes. Interestingly the third instance is solved in 0.03 sec-
onds by domFD while dom-wdeg cannot solve it in 10 minutes.


Langford Numbers On these problems, domFD is always superior to dom-wdeg.
For instance, lfn-3-10 can be solved by both heuristics but the performance of
domFD is far better: 190 times faster.


Nonograms Table 5.2 shows results for the nonogram problem. Three instances
of orders 5, 8, and 9 were generated. Here again, the trees are systematically smaller
with domFD and when the difference is large enough runtimes are always better.


5.5.4 Searching for a Solution with a Restart-Based
Branch-and-Prune Strategy


Restart-based searches are very efficient since they can alleviate the effects of early
bad decisions. Therefore, it is important to test our new heuristic with a restart strat-
egy.


A restart is done when some cutoff limit in the number of fails is met, i.e., at
some node in a tree. There, the actual domFD graph is stored and used to start the
next tree-based search. This allows the early selection of well-ranked variables. The
same technique is used with dom-wdeg, and the next search tree can branch early
on well-ranked variables.


This part presents results with a restart-based branch-and-prune strategy where
the cutoff value used to restart the search was initially set to 1,000, and the cutoff
increase policy to ×1.2. The same 10 minutes timeout was used.


Table 5.3, presents the results for magic square, crowded chess, sports league
tournament, quasigroup, and bibd problems.


Magic Square Instances of orders 5 to 11 were solved. Clearly, domFD is the only
heuristic able to solve large orders within the time limit. For example, dom-wdeg
cannot deal with orders greater than 8, while our technique can. The reduction in the
search tree sizes is very significant, e.g., on mag-squ-8, dom-wdeg develops 35.18M
nodes and domFD 152,466, which allows it to be more than 100 times faster.


Crowded Chess As before, domFD can tackle large problems while dom-wdeg
cannot.


Sports League Tournament If we exclude the last instance, domFD is always
better than dom-wdeg.


Quasigroups Here, on most problems, domFD generates smaller search trees, and
can return a solution more quickly. On the hardest problem (order 35), domFD is
nearly two time faster.
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Table 5.3 First solution, restart-based strategy


Instance dom-wdeg domFD


#nodes #failures Time (s) #nodes #failures Time (s)


mag-squ-5 2239 1113 0.02 3025 1505 0.06


mag-squ-6 33238 16564 0.32 4924 2440 0.08


mag-squ-7 9963 4868 0.20 33422 16614 0.86


mag-squ-8 35.18M 17.59M 460.40 152446 75987 4.51


mag-squ-9 – – TO 66387 32951 1.64


mag-squ-10 – – TO 83737 41607 2.17


mag-squ-11 – – TO 8.52M 4.26M 374.62


crow-ch-7 2029 1002 0.04 3340 1656 0.22


crow-ch-8 16147 8036 0.67 2041 1002 0.14


crow-ch-9 129827 64788 6.15 228480 114089 37.97


crow-ch-10 – – TO 1134052 566761 263.01


sports-lea-14 4746 2327 0.68 4814 2359 0.65


sports-lea-16 28508 14073 4.05 3913 1912 0.61


sports-lea-18 546475 272510 101.70 51680 25549 10.72


sports-lea-20 182074 90355 36.69 2.07M 1.03M 514.18


qwh-30-316-1 1215 603 0.22 234 115 0.32


qwh-30-316-2 118348 59104 20.06 8828 4397 2.7


qwh-30-316-3 8944 4451 1.68 3114 1552 1.01


qwh-35-405 2.38M 1.19M 562.62 475053 237369 236.05


bibd-7-3-2 100 39 0.01 65 28 0.01


bibd-7-3-3 383 180 0.03 96 42 0.01


bibd-7-3-4 6486 3210 0.79 132 56 0.03


Balanced Incomplete Block Design Here domFD performs very well, with both
smaller search trees and small runtime.


5.5.5 Synthesis


Table 5.4 summarizes the performance of the heuristics. These results were gener-
ated by only taking into account the problems which can be solved by both domFD
and dom-wdeg i.e., we removed six instances which cannot be solved by dom-wdeg.


We can observe that the search trees generated by domFD are on the average
three times smaller. The difference in the number of fails is similar. Finally, even if
domFD is two times slower on the time per node, it is 31 % faster overall.
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Table 5.4 Synthesis of the
experiments Heuristic average


#nodes #failures Time (s) Nodes/s


dom-wdeg 2.14M 1.07M 56.99 37664


domFD 717202 358419 39.53 18139


Technically, our integration into Gecode is quite straightforward and not particu-
larly optimized. For instance we use Leda,4 an external library to maintain the graph,
while a bespoke light class with the right set of features should be used. The way we
record weak dependencies is also not optimized and requires extra data structures
whose accesses could be easily improved, e.g., the assigned list of variables shown
in the algorithm of Fig. 5.3. For all this, we think that it must be possible to increase
the speed of our heuristic by some factor.


We also did some experiments to see if the computation of domFD could be
cheaply approximated. We used a counter with each variable to record the number
of times that variable was at the origin of a weak dependency. This represents an
approximation of domFD since the counter considers dependencies on instantiated
variables. Unfortunately, this fast approximation is always beaten by domFD on
large instances.


5.6 Summary


In this work, our goal was to heuristically discover a simplified form of functional
dependencies between variables called weak dependencies. Once discovered, these
relations are used to rank the branching variables. More precisely, each time a vari-
able y gets instantiated as a result of the instantiation of x, a weak dependency (x, y)


is recorded. As a consequence, the weight of x is raised, and the variable becomes
more likely to be selected by the variable ordering heuristic.


Experiments done on 35 problems coming from nine benchmark families showed
that on the average domFD reduces search trees by a factor of 3 and runtime by
31 % when compared against dom-wdeg, one of the best dynamic variable ordering
heuristics. domFD is also more expensive to compute since it puts some overhead
on the propagation engine. However, it seems that our implementation can be im-
proved, for example, by using incremental data structures to record potential depen-
dencies in the propagation engine.


Our heuristic learns from successes, allowing a quick exploitation of the solver’s
work. In a way, this is complementary to dom-wdeg which learns from failures.
Moreover, both techniques rely on the computation of mindom. Combining their
respective strengths seems obvious but is not straightforward.


4www.algorithmic-solutions.com.



http://www.algorithmic-solutions.com





Chapter 6
Continuous Search


6.1 Introduction


In the previous chapters, we have seen that portfolios of algorithms can positively
impact the robustness of search. In Chap. 2, our portfolio was using multiple variable
ordering heuristics whose executions were interleaved at the agent level. In Chaps. 3
and 4, we moved to fully fledged parallelism with portfolios of parallel CDCL and
local search solvers competing and cooperating to tackle a given SAT instance. Fi-
nally, in Chap. 5 we have seen that we can incrementally learn an ordering of the
variables based on their observed interactions.


The present chapter shows how to improve performance by considering a set of
instances. It considers a situation where a given Constraint Programming engine
is used to successively solve problems coming from a given application domain.
The objective is to incrementally learn a predictive model able to accurately match
instance features to good solver’s parameters. The learning is possible thanks to
the relative coherence of the instances, and the goal is to eventually achieve top
performance for the underlying application domain.


In Constraint Programming, properly crafting a constraint model which captures
all the constraints of a particular problem is often not enough to ensure acceptable
runtime performance. Additional tricks, e.g. adding redundant and channeling con-
straints, or using some global constraint (depending on your constraint solver) which
can efficiently do part of the job, are required to achieve efficiency. Such tricks are
far from being obvious, unfortunately; they do not change the solution space, and
users with a classical mathematical background might find it hard to see why adding
redundancy helps.


For this reason, users are often left with the tedious task of tuning the search
parameters of their constraint solver, and this, again, is both time consuming and
not necessarily straightforward. Parameter tuning indeed appears to be conceptu-
ally simple ((i) try different parameter settings on representative problem instances,
(ii) pick up the setting yielding best average performance). Still, most users would
easily consider instances which are not representative of their problem, and get mis-
led.


Y. Hamadi, Combinatorial Search: From Algorithms to Systems,
DOI 10.1007/978-3-642-41482-4_6, © Springer-Verlag Berlin Heidelberg 2013
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The goal of the work presented in this chapter is to allow any user to eventu-
ally get their constraint solver achieving a top performance on their problems. The
proposed approach is based on the original concept of Continuous Search (CS),
gradually building a heuristics model tailored to the user’s problems, and mapping
a problem instance onto some appropriate parameter setting. A main contribution
compared to the state-of-the art (see [SM08] for a recent survey; more in Sect. 6.4)
is relaxing the requirement of a large set of representative problem instances hav-
ing to be available beforehand to support offline training. The heuristics model is
initially empty (set to the initial default parameter setting of the constraint solver)
and it is enriched according to a lifelong learning approach, exploiting the problem
instances submitted by the user to the constraint solver.


Formally, CS interleaves two functioning modes. In production or exploitation
mode, the instance submitted by the user is processed by the constraint solver; the
current heuristics model is used to parameterize the constraint solver depending on
the instance at hand. In learning or exploration mode, CS reuses the last submitted
instance, running other heuristics than the one used in production mode in order
to find which heuristics would have been most efficient for this instance. CS thus
gains some expertise relative to this particular instance, which is used to refine the
general heuristics model through machine learning (Sect. 6.3.2). During the explo-
ration mode, new information is thus generated and exploited in order to refine the
heuristics model, in a transparent manner: without requiring the user’s input and by
only using the idle computer’s CPU cycles.


We claim that the CS methodology is realistic (most computational systems are
always on, especially production ones, and most systems waste a large amount of
CPU cycles) and compliant with real-world settings, where the solver is critically
embedded within large and complex applications. The CS computational cost must
be balanced against the huge computational cost of offline training [XHHLB07,
HHHLB06, HH05]. Finally, lifelong learning appears to be a good way to construct
an efficient and agnostic heuristics model and to be able to adapt to new modeling
styles or new classes of problem [AHS10, AHS09].


6.2 Related Work


This section briefly reviews and discusses some related works devoted to heuristic
selection within CP and SAT solvers.


SATzilla [XHHLB07] is a well-known SAT portfolio solver which is built upon
a set of features. Roughly speaking SATzilla includes two kinds of basic features:
general features such as number of variables, number of propagators, etc. and local
search features which actually probe the search space in order to estimate the dif-
ficulty of each problem-instance for a given algorithm. The goal of SATzilla is to
learn a runtime prediction function by using a linear regression model. Along the
same lines, Haim et al. in [HW09] build the portfolio taking into account several
restart policies for a set of well-known SAT solvers.
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CPHydra [OHH+08] is a portfolio approach based on case-based reasoning; it
maintains a database with all solved instances (so-called cases). Later on, once a
new instance I arrives, a set of similar cases C is computed, and based on C it builds
a switching policy selecting a set of CSP solvers that maximizes the possibilities of
solving I within a given amount of time.


The approach most similar to the presented one is that of [SM07], who likewise
apply machine learning techniques to perform online combination of heuristics into
search tree procedures. Unfortunately, this work requires an important number of
training instances to build a model with a good generalization property.


In [CB05] low knowledge is used to select the best algorithm in the context of
optimization problems; this work assumes a black-box optimization scenario where
the user has no information about the problem or even about the domain of the
problem, and the only known information is the output (i.e., solution cost for each
algorithm in the portfolio). Unfortunately this mechanism is only applicable to op-
timization problems and cannot be used to solve CSPs.


The purpose of The Adaptive Constraint Engine (ACE) [EFW+02] is to unify the
decisions of several heuristics in order to guide the search process. In this way, each
heuristic votes for a possible variable/value decision to solve a CSP. Afterwards,
a global controller selects the most appropriate variable/value pair according to pre-
viously (offline) learnt weights associated to each heuristic. The authors however
did not present any experimental scenario taking into account any restart strategy,
although these nowadays are an essential part of constraint solvers.


Combining Multiple Heuristics Online [SGS07] and Portfolios with Deadlines
[WvB08] are designed to build a scheduler policy in order to switch the execution
of black-box solvers during the resolution process. However, in these papers the
switching mechanism is learnt/defined beforehand, while our approach relies on the
use of machine learning to switch the execution of heuristics on the fly.


Finally, in [AST09] and [HHLBS09] the authors studied the automatic configu-
ration problem whose objective is to find the best parameters of a given algorithm
in order to efficiently solve a class of problems.


6.3 Technical Background


6.3.1 Constraint Satisfaction Problems


A Constraint Satisfaction Problem (CSP) is a triple (X,D,C) where X represents a
set of variables, D a set of associated domains (i.e., possible values for the variables)
and C a finite set of constraints.


Solving a CSP involves finding a solution, i.e., an assignment of values to vari-
ables such that all constraints are satisfied. If a solution exists the problem is stated
as satisfiable, and as unsatisfiable otherwise. A depth-first search backtracking algo-
rithm can be used to tackle CSPs. At each step of the search, an unassigned variable
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X and a valid value v for X are selected; the exploration of variables/values is com-
bined with a look-ahead strategy able to narrow the domains of the variables and
reduce the remaining search space through constraint propagation. Restarting the
search engine [GSK98, KHR+02] helps to reduce the effects of early mistakes in
the search process. A restart is done when some cutoff limit in the number of fail-
ures (backtracks) is met (i.e., at some point in the search tree); before restarting the
search each heuristic stores its ranking metrics in order to start the next tree-based
search.


In this work, we consider five well-known variable selection heuristics. min-
dom [HE79] selects the variable with the smallest domain, wdeg [BHLS04] se-
lects the variable which is involved in the highest number of failed constraints,
dom-deg selects the variable which minimizes the ratio dom


deg , dom-wdeg [BHLS04]


selects the variable which minimizes the ratio dom
wdeg and impacts [Ref04] selects


the (variable, value) pair which maximizes the reduction of the remaining search
space. While only deterministic heuristics will be considered, the proposed approach
can be extended to randomized algorithms by following the approach proposed in
[HHHLB06].


6.3.2 Supervised Machine Learning


Supervised machine learning exploits data labeled by the expert to automatically
build hypotheses emulating the expert’s decisions [Vap95]. Only the binary clas-
sification case will be considered in the following. Formally, a learning algorithm
processes a training set E = {(xi, yi), xi ∈ Ω,yi ∈ {1,−1}, i = 1 . . . n} made of n


examples (xi, yi), where xi is the example description (e.g. a vector of values,
Ω = R


d ) and yi is the associated label; example (x, y) is referred to as positive
(respectively, negative) iff y is 1 (resp., −1). The learning algorithm outputs a hy-
pothesis f : Ω �→ Y associating to each example description x a label y = f (x) in
{1,−1}. Among ML applications are pattern recognition, ranging from computer
vision to fraud detection [LB08], game playing [GS07], or autonomic computing
[RBea05].


Among the prominent ML algorithms are Support Vector Machines (SVMs)
[CST00]. Linear SVM considers real-valued positive and negative instances
(Ω = R


d ) and constructs the separating hyperplane which maximizes the margin,
i.e., the minimal distance between the examples and the separating hyperplane. The
margin maximization principle provides good guarantees about the stability of the
solution and its convergence towards the optimal solution when the number of ex-
amples increases.


The linear SVM hypothesis f (x) can be described from the sum of the scalar
products of the current instance x and some of the training instances xi , called sup-
port vectors:


f (x) = 〈w,x〉 + b =
∑


αi〈xi, x〉 + b
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Fig. 6.1 Continuous search
scenario


The SVM approach can be extended to non-linear spaces, by mapping the in-
stance space Ω into a more expressive feature space Φ(Ω). This mapping is made
implicit through the so-called kernel trick, by defining K(x,x′) = 〈Φ(x),Φ(x′)〉; it
preserves all good SVM properties provided the kernel is positive definite. Among


the most widely used kernels are the Gaussian kernel (K(x,x′) = exp{−‖x−x′‖2


σ 2 })
and the polynomial kernel (K(x,x′) = (〈x, x′〉 + c)d ). More complex separating
hypotheses can be built on such kernels,


f (x) =
∑


αiK(xi, x) + b


using the same learning algorithm core as in the linear case. In all cases, a new
instance x is classified as positive (respectively negative) if f (x) is positive (resp.
negative).


6.4 Continuous Search in Constraint Programming


The Continuous Search paradigm, illustrated in Fig. 6.1, considers a functioning
system governed from a heuristics model (which could be expressed, e.g., as a set
of rules, a knowledge base, or a neural net). The goal of continuous search is to
exploit the problem instances submitted to the system in a two-step process:


1. Exploitation mode: unseen problem instances are solved using the current heuris-
tics model.


2. Exploration mode:


(a) these instances are solved with other heuristics, yielding new information.
This information associates to the description x of the example (accounting
for the problem instance and the heuristics) a Boolean label y (the heuristics
improves/does not improve on the current heuristics model);


(b) the training set E , augmented with these new examples (x, y), is used to
revise or relearn the heuristics model.


The Exploitation or production mode (step 1) aims at solving new problem in-
stances as quickly as possible. The Exploration or learning mode (steps 2 and 3)
aims at learning a more accurate heuristics model.


Definition 6.1 A continuous search system is endowed with a heuristics model,
which is used as is to solve the current problem instance in production mode, and
which is improved using the previously seen instances in learning mode.
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Fig. 6.2 dyn-CS: selecting
the best heuristic at each
restart point


Initially, the heuristics model of a continuous search system is empty, that is, it is
set to the default settings of the search system. In the proposed CS-based constraint
programming, the default setting is a given heuristic noted DEF in the following
(Sect. 6.5). Assumedly, DEF is a reasonably good strategy on average; the chal-
lenge is to improve on DEF for the particular types of instances which have been
encountered in production mode.


6.5 Dynamic Continuous Search


The Continuous Search paradigm is applied to a restart-based constraint solver,
defining the dyn-CS algorithm. After a general overview of dyn-CS, this section
details the different modules thereof.


Figure 6.2 depicts the general scheme of dyn-CS. The constraint-based solver
involves several restarts of the search. A restart is launched after the number of
backtracks in the search tree reaches a user-specified threshold. The search stops
after a given time limit. Before starting the tree-based search and after each subse-
quent restart, the description x of the problem instance is computed (Sect. 6.5.1).
We will call checkpoints the calculations of these descriptions.


In production mode, the heuristics model f is used to compute the heuristic f (x)


to be applied for the entire checkpoint window, i.e., until the next restart. Not to be
confused with the choice point which selects a variable/value pair at each node in
the search tree, dyn-CS selects the most promising heuristic at a given checkpoint
and uses it for the whole checkpoint window. In learning mode, other combina-
tions of heuristics are applied (Sect. 6.5.4) and the eventual result (depending on
whether the other heuristics improved on heuristics f (x)) leads to building training
examples (Sect. 6.5.3). The augmented training set is used to relearn the heuristics
model f (x).


6.5.1 Representing Instances: Feature Definition


At each checkpoint (or restart), the description of the problem instance is computed,
including static and dynamic features.


While a few of these descriptors had already been used in SAT portfolio solvers
[HHHLB06, XHHLB07], many descriptors had to be added as CSPs are more di-
verse than SAT instances: SAT instances only involve Boolean variables and clauses,
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contrasting with CSPs using variables with large domains, and a variety of con-
straints and pruning rules.


Static Features Static features encode the general description of a given problem
instance; they are computed once for each instance as they are not modified along
the resolution process. The static features also allow one to discriminate between
types of problems, and different instances.


• Problem definition (four features): Number of variables, constraints, variables as-
signed/not assigned at the beginning of the search.


• Variable size information (six features): Size prod, sum, min, max, mean
and variance of the variable domain size.


• Variable degree information (eight features): min, max, mean and variance
of the variable degree (resp. variable domain/degree).


• Constraint information (six features): The degree (or arity) of a given constraint
c is represented by the total number of variables involved in c. Likewise the size
of c is represented by the product of its corresponding variable domain sizes.
Taking into account this information, the following features are computed min,
max, mean of constraint sizes and degrees.


• Filtering cost category (eight features): Each constraint c is associated a cate-
gory.1 In this way, we compute the number of constraints for each category. Intu-
itively each category represents the implementation cost of the filtering algorithm.
Cat = {Exponential,Cubic,Quadratic,Linear expensive,Linear cheap,Ternary,
Binary,Unary}, where Linear expensive (resp. cheap) indicates the complexity
of a linear equation constraint and the last three categories indicate the number
of variables involved in the constraint. More information about the filtering cost
category can be found in [Gec06].


Dynamic Features Two kinds of dynamic features are used to monitor the per-
formance of the search effort at a given checkpoint: global statistics describe the
progress of the overall search process; local statistics check the evolution of a given
strategy.


• Heuristic criteria (15 features): each heuristic criterion (e.g., wdeg, dom-wdeg,
impacts) is computed for each variable; their prod, min, max, mean and vari-
ance over all variables are used as features.


• Constraint weight (12 features): likewise report the min, max, mean and vari-
ance of all constraint weights (i.e., constraint wdegs). Additionally the mean for
each filtering cost category is used as a feature.


• Constraint information (three features): min, max and mean of constraint run-
prop, where run-prop indicates the number of times the propagation engine has
called the filtering algorithm of a given constraint.


1Out of eight categories, detailed in http://www.gecode.org/doc-latest/reference/classGecode_
1_1PropCost.html.



http://www.gecode.org/doc-latest/reference/classGecode_1_1PropCost.html

http://www.gecode.org/doc-latest/reference/classGecode_1_1PropCost.html
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• Checkpoint information (33 features): for every checkpointi relevant information
from the previous checkpointi−1 (when available) is included into the feature
vector. From checkpointi−1 we include the total number of nodes and maximum
search depth. From the latest non-failed node, we consider the total number of
assigned variables, the satisfied constraints, the sum of variables wdeg (resp. sizes
and degree) and the product of variable degrees (resp. domain, wdeg and impact)
of unassigned variables. Finally, using the previous 11 features the mean and
variance is computed taking into account all visited checkpoints.


The attributes listed above include a collection of 95 features.


6.5.2 Feature Pre-processing


Feature pre-processing is an important first step in machine learning [WF05]; it can
significantly improve the predictive accuracy of the learned hypothesis. Typically,
the descriptive features detailed above are on different scales; the number of vari-
ables and/or constraints can be high while the impact of (variable, value) is between
0 and 1. A data normalization step, scaling down feature values in [−1,1] (MinMax-
normalization), is used.


Although selecting the most informative features might improve the perfor-
mance, in this work we do not consider any feature selection algorithm, and only
features that are constant over all examples are removed as they offer no discrimi-
nant information.


6.5.3 Learning and Using the Heuristics Model


The selection of the best heuristic for a given problem instance is formulated as
a binary classification problem, as follows. Let H denote the set of k candidate
heuristics, two particular elements in H being DEF (the default heuristics yielding
reasonably good results on average) and dyn-CS, the (dynamic) ML-based heuristics
model initially set to DEF.


Definition 6.2 Each training example pi = (xi, yi) is generated by applying some
heuristic h (h ∈ H, h = dyn-CS) at some checkpoint in the search tree of a given
problem instance. Description xi (∈R


97) is made of the static feature values describ-
ing the problem instance, the dynamic feature values computed at this checkpoint
and describing the current search state, and two additional features: checkpoint-id
gives the number of checkpoints up to now and cutoff-information gives the cutoff
limit of the next restart. The associated label yi is positive iff the associated run-
time (using heuristic h instead of dyn-CS at the current checkpoint) improves on
the heuristics model-based runtime (using dyn-CS at every checkpoint); otherwise,
label yi is negative.
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If the problem instance cannot be solved i.e., time out during the exploration and
exploitation modes whatever the heuristic used, it is discarded (since the associated
training examples do not provide any relevant information).


In production mode, the hypothesis f learned from the above training examples
(their generation is detailed in next subsection) is used as follows:


Definition 6.3 At each checkpoint, for each h ∈ H, the description xh and the as-
sociated value f (xh) are computed. If there exists a single h such that f (xh) is
positive, it is selected and used in the subsequent search effort. If there exist several
heuristics with positive f (xh), the one with maximal value is selected.2 If f (xh) is
negative for all h, the default heuristic DEF is selected.


6.5.4 Generating Examples in Exploration Mode


The Continuous Search paradigm uses the idle computer’s CPU cycles to explore
different heuristic combinations on the last seen problem instance, and see whether
one could have done better than the current heuristics model on this instance. The
rationale for this exploration is that improving on the last seen instance (albeit mean-
ingless from a production viewpoint since the user already got a solution) will de-
liver useful indications as to how to best deal with further similar instances. In this
way, the heuristics model will expectedly be tailored to the distribution of problem
instances actually dealt with by the user.


The CS exploration proceeds by slightly perturbing the heuristics model. Let
dyn-CS−i,h denote the policy defined as: use heuristics model dyn-CS at all check-
points except the i-th one, and use heuristic h at the i-th-checkpoint.


Algorithm 6.1 describes the proposed Exploration mode for Continuous Search.
A limited number (10) of checkpoints in the dyn-CS-based resolution of instance I
are considered (line 2); for each checkpoint and each heuristic h (distinct from
dyn-CS), a lesion study is conducted, applying h instead of dyn-CS at the i-th check-
point (heuristics model dyn-CS−i,h); the example (described from the i-th check-
point and h) is labeled positive iff dyn-CS−i,h improves on dyn-CS, and added to the
training set E ; once the exploration mode for a given instance is finished, the hypoth-
esis model is updated by retraining the SVM, including the feature pre-processing,
as stated in Sect. 6.5.2.


6.5.5 Imbalanced Examples


It is well-known that one of the heuristics often performs much better than the oth-
ers for a particular distribution of problems [CB08]. Accordingly, negative train-


2The rationale for this decision is that the margin, i.e., the distance of the example w.r.t. the sepa-
rating hyperplane, is interpreted as the confidence of the prediction [Vap95].
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Algorithm 6.1 Exploration-time (instance: I)
1: E = {} //initialize the training set
2: for all i in checkpoints(I) do
3: for all h in H do
4: Compute x describing the current checkpoint i and heuristic h


5: if h = dyn-CS then
6: Launch dyn-CS−i,h


7: Define y = 1 iff dyn-CS−i,h improves on dyn-CS and −1 otherwise
8: E ← E ∪ {x, y}
9: end if


10: end for
11: end for
12: return E


ing examples considerably outnumber the positive ones (it is difficult to improve
on the winning heuristics). This phenomenon, known as imbalanced distribution,
might severely hinder the SVM algorithm [AKJ04]. Two simple ways of enforc-
ing a balanced distribution in such cases, intensively examined in the literature and
considered in earlier work [AHS09], are to oversample examples in the minority
class (generating additional positive examples by Gaussianly perturbing the avail-
able ones) and/or undersample examples in the majority class.


Another option is to use prior knowledge to rebalance the training distribution.
Formally, instead of labeling an example positive (resp, negative) iff the associated
runtime is strictly less (resp. greater) than that of the heuristic model, we consider
the difference between the runtimes. If the difference is less than some tolerance
value dt , then the example is relabeled as positive.


The number of positive examples and hence the coverage of the learned heuristics
model increase with dt ; in the experiments (Sect. 6.6), dt is set to 1 minute iff time-
exploitation (time required to solve a given instance in production mode) is greater
than 1 minute; otherwise dt is set to time-exploitation.


6.6 Experimental Validation


This section reports on the experimental validation of the proposed Continuous
Search approach. All tests were conducted on Linux Mandriva 2009 boxes with
8 GB of RAM and 2.33 GHz Intel processors.


6.6.1 Experimental Settings


The presented experiments consider 496 CSP instances taken from different reposi-
tories.
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• nsp: 100 nurse scheduling instances from the MiniZinc3 repository.
• bibd: 83 Balance Incomplete Block Design instances from the XCSP4 repository,


translated into Gecode using Tailor.5


• js: 130 Job Shop instances from the XCSP repository.
• geom: 100 Geometric instances from the XCSP repository.
• lfn: 83 Langford number instances, translated into Gecode using global and chan-


nelling constraints.


The learning algorithm used in the experimental validation of the proposed ap-
proach is a Support Vector Machine with Gaussian kernel, using the libSVM im-
plementation with default parameters.6 All considered CSP heuristics (Sect. 6.3)
are home-made implementations integrated in the Gecode 2.1.1 [Gec06] constraint
solver. Our dyn-CS technique was used as a heuristics model on top of the heuris-
tics set H = {dom-wdeg,wdeg,dom-deg,min-dom, impacts}, taking min-value as
the value selection heuristic. The cutoff value used to restart the search was ini-
tially set to 1,000 and the cutoff increase policy to ×1.5; the same cutoff policy is
used in all the experimental scenarios.


Continuous Search was assessed comparatively to the best two dynamic variable
ordering heuristics on the considered problems, namely dom-wdeg and wdeg. It must
be noted that Continuous Search, being a lifelong learning system, will depend on
the curriculum, that is the order of the submitted instances. If the user “pedagogi-
cally” starts by submitting informative instances first, the performance in the first
stages will be better than if untypical and awkward instances are considered first.
For the sake of fairness, the performance reported for Continuous Search on each
problem instance is the median performance over 10 random orderings of the CSP
instances.


6.6.2 Practical Performances


Figure 6.3 highlights the Continuous Search results on Langford number problems,
comparatively to dom-wdeg and wdeg. The x-axis gives the number of problems
solved and the y-axis presents the cumulated runtime. The (median) dyn-CS perfor-
mance (gray line) is satisfactory as it solves 12 more instances than dom-wdeg (black
line) and wdeg (light gray line). The dispersion of the dyn-CS results depending on
the instance ordering is depicted from the set of dashed lines. Note that traditional
portfolio approaches such as [HHHLB06, SM07, XHHLB07] do not present such
performance variations as they assume a complete set of training examples to be
available beforehand.


3http://www.g12.cs.mu.oz.au/minizinc/download.html.
4http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.
5http://www.cs.st-andrews.ac.uk/~andrea/tailor/.
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/.



http://www.g12.cs.mu.oz.au/minizinc/download.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cs.st-andrews.ac.uk/~andrea/tailor/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 6.3 Langford number
(lfn): Number of instances
solved in less than 5 minutes
with dyn-CS, wdeg, and
dom-wdeg. Dashed lines
illustrate the performance of
dyn-CS for a particular
instance ordering


Figure 6.4 depicts the performance of dyn-CS, dom-wdeg and wdeg on all other
problem families, respectively (bibd, js, nsp, and geom). On the bibd (Fig. 6.4(a))
and js (Fig. 6.4(b)) problems, the best heuristic is dom-wdeg, solving three more
instances than dyn-CS. Note that dom-wdeg and wdeg coincide on bibd since all
decision variables are Boolean.


On nsp (Fig. 6.4(c)), dyn-CS solves nine more problems than dom-wdeg, but is
outperformed by wdeg by 11 problems. On geom (Fig. 6.4(d)), dyn-CS improves on
the other heuristics, solving respectively three more instances and 40 more instances
than dom-wdeg and wdeg.


These results suggest that dyn-CS is most often able to pick up the best heuristics
on a given problem family, and sometimes able to significantly improve on the best
of the available heuristics.


All experimental results are summarized in Table 6.1, reporting for each consid-
ered heuristic the number of instances solved (#sol), the total computational cost
for all instances (time, in hours), and the average time (avg-time, in minutes) per
instance, over all problem families. These results confirm that dyn-CS outperforms
dom-wdeg and wdeg, solving respectively 18 and 41 instances more out of 315. Fur-
thermore, it shows that dyn-CS is slightly faster than the other heuristics, with an
average time of 2.11 minutes, against respectively 2.39 for dom-wdeg and 2.61 for
wdeg. It is also worth mentioning that the total CPU time required to complete the
exploration (or learning) mode after solving a given instance was on average no
longer than two hours.


Additionally, a random heuristic selection scenario was also experimented with
(i.e., executing 10 times each instance with a uniform heuristic selection and report-
ing the median value over the 10 runs). The random selection strategy was able to
solve 278 out of 496 instances, 19 instances less than dom-wdeg and 37 instances
less than dyn-CS.


Another interesting lesson learned from the experiments concerns the difficulty
of the underlying learning problem, and the generalization error of the learned
hypothesis. The generalization error in the Continuous Search framework is esti-
mated by 10-fold Cross Validation on the whole training set (including all train-
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Fig. 6.4 Number of instances solved in less than 5 minutes


Table 6.1 Total solved instances


Problem dom-wdeg wdeg dyn-CS


#Sol Time
(h)


Avg-time
(m)


#Sol Time
(h)


Avg-time
(m)


#Sol Time
(h)


Avg-time
(m)


nsp 68 3.9 2.34 88 2.6 1.56 77 2.9 1.74


bibd 68 1.8 1.37 68 1.8 1.37 65 2.0 1.44


js 76 4.9 2.26 73 5.1 2.35 73 5.2 2.4


lfn 21 5.2 3.75 21 5.3 3.83 33 4.1 2.96


geom 64 3.9 2.34 27 6.8 4.08 67 3.3 1.98


Total 297 19.7 2.39 274 21.6 2.61 315 17.5 2.11


ing examples generated in exploration mode). Table 6.2 reports on the predic-
tive accuracy of the SVM algorithm (with same default settings) on all problem
families, with an average accuracy of 67 %. As could have been expected, the
predictive accuracy is correlated to the performance of Continuous Search: the
problems with best accuracy and best performance improvement are geom and
lfn.
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Table 6.2 Predictive
accuracy of the heuristics
model


bibd nsp geom js lfn


63.2 % 58.8 % 76.9 % 63.6 % 73.8 %


Table 6.3 Total solved
instances Problem #Sol Time (h) Problem #Sol Time (h)


nsp-geom‡ 55 4.1 lfn-bibd‡ 23 5.3


nsp-geom† 67 3.4 lfn-bibd† 63 2.3


To give an idea of order, 62 % predictive accuracy was reported in the context of
SATzilla [XHHLB07], aimed at selecting of the best heuristic in a portfolio.


A direct comparison of the predictive accuracy might however be biased. On the
one hand SATzilla errors are attributed to the selection of some near-optimal heuris-
tics, by the authors; on the other hand, Continuous Search would involve several
selection steps (in each checkpoint) and could thus compensate for earlier errors.


6.6.3 The Power of Adaptation


Our second experimental test combines instances from different domains in order
to show how CS is able to adapt to changing problem distribution. Indeed, unlike
classical portfolio-based approaches which can only be applied if the training and
exploitation sets come from the same domain, CS can adapt to changes and provide
top performance even if the problems change.


In this context, Table 6.3 reports the results on the geom (left) and bibd (right)
problems by considering the following two scenarios. In the first scenario, we are
going to emulate a portfolio-based search which would use the wrong domain to
train. In nsp-geom‡, CS incrementally learns while solving the 100 nsp instances,
and then solves one by one the 100 geom instances. However, when switching to
this second domain, incremental learning is switched off, and checkpoint adaptation
uses the model learnt on nsp. In the second scenario, nsp-geom†, we solve nsp, then
geom instances one by one, but this time we keep the incremental learning on when
switching from the first domain to the second one—as if CS was not aware of the
transition.


As we can see in the first line of the table, training on the wrong domain gives
poor performance (55 instances solved in 4.1 hours). In contrast, the second line
shows that CS can recover from training on the wrong domain thanks to its incre-
mental adaptation (solving 67 instances in 3.4 hours). The right part of the table
reports similar results for the bibd problem.


As can be observed in nsp-geom† and lfn-bibd†, CS successfully identifies the
new distribution of problems, solving respectively the same number and two fewer
instances than geom and bibd when CS is only applied to this domain starting from
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scratch. However, the detection of the new distribution introduces an overhead in
the solving time (see results for single domain in Table 6.1).


6.7 Summary


The main contribution of the presented approach, the Continuous Search framework,
aims at designing a heuristics model tailored to the user problem distribution, allow-
ing it to get top performance from the constraint solver. The representative instances
needed to train a good heuristics model are not assumed to be available beforehand;
they are gradually built and exploited to improve the current heuristics model, by
stealing the idle CPU cycles of the computing system. Metaphorically speaking, the
constraint solver uses its spare time to play against itself and gradually improve its
strategy over time; further, this expertise is relevant to the real-world problems con-
sidered by the user, all the more so as it directly relates to the problem instances
submitted to the system.


The experimental results suggest that Continuous Search is able to pick up the
best of a set of heuristics on a diverse set of problems, by exploiting the incoming
instances; in two out of five problems, Continuous Search swiftly builds up a mixed
strategy, significantly overcoming all baseline heuristics. With the other classes of
problems, its performance is comparable to the best two single heuristics. Our ex-
periments also showed the capacity of adaptation of CS. Moving from one problem
domain to another one is possible thanks to its incremental learning capacity. This
capacity is a major improvement over classical portfolio-based approaches which
only work when offline training and exploitation use instances from the same do-
main.







Chapter 7
Autonomous Search


7.1 Introduction


The selection and the correct setting of the most suitable algorithm for solving a
given problem was already investigated many years ago [Ric75]. The proposed ab-
stract model was suggested to extract features in order to characterize the problem,
to search for a suitable algorithm in the space of available algorithms and then to
evaluate its performances with respect to a set of measures. These considerations
are still valid and this general problem can indeed be considered at least from two
complementary points of view:


• selecting solving techniques or algorithms from a set of available techniques
• tuning an algorithm with respect to a given instance of a problem


To address these issues, the proposed approaches include tools from different
computer science areas, especially from machine learning. Moreover, they have
been developed to answer the algorithm selection problem in various fields as de-
scribed in the recent survey of Smith-Miles [SM08].


In this chapter, we will focus on the application of this general question to con-
straint satisfaction and optimization problems. In this particular area, the problem
of finding the best configuration in a search space of heuristic algorithms is also re-
lated to the recent notion of Hyper-heuristics [BHK+09a, BKN+03, CKS02]. Hyper-
heuristics are methods that aim at automating the process of selecting, combining,
generating, or adapting several simpler heuristics (or components of such heuris-
tics) to efficiently solve computational search problems. Hyper-heuristics are also
defined as “heuristics to choose heuristics” [CS00] or “heuristics to generate heuris-
tics” [BEDP08]. This idea was pioneered in the early 1960s with the combination
of scheduling rules [FT63, CGTT63]. Hyper-heuristics that manage a set of given
available basic search heuristics by means of search strategies or other parame-
ters have been widely used for solving combinatorial problems (see Burke et al.
[BHK+09a] for a recent survey).


From a practical point of view, Burke et al. [BHK+09b] proposed a comprehen-
sive classification of hyper-heuristics considering two dimensions: the nature of the
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heuristics and the source of the feedback for learning. They thus distinguish be-
tween heuristics that select heuristics from a pre-existing set of search heuristics
and heuristics that generate new heuristics from basic components. Concerning the
feedback, they identify three categories: online learning, offline learning, and no
learning. The distinction between online and offline processes was previously pro-
posed in order to classify parameter settings in evolutionary algorithms [EHM99],
distinguishing parameter tuning (offline) from parameter control (online).


As classical offline mechanisms, we may mention portfolio algorithms
[HHHLB06, XHHLB08], where previously acquired knowledge is used in order to
select the suitable solving method with regard to a given problem instance. Gagli-
olo et al. [GS08] use reinforcement learning-based techniques for algorithm selec-
tion.


Online control of heuristics has been widely addressed, for instance in adaptive
strategies in evolutionary computation [Thi07, Kra08], in adaptive neighborhood se-
lection for local search [HR06, CB01, PR08], or in constraint programming solvers
[EFW+02].


When considering parameter setting, the space of possible algorithms is the set
of possible configurations of a given algorithmic scheme induced by the possible
values of its parameters that control its computational behavior. Parameter tun-
ing of evolutionary algorithms has been investigated for many years (we refer the
reader to the book [LLM07] for a recent survey). Adaptive control strategies were
also proposed for other solving approaches such as local search [Hoo02a, PK01].
Offline mechanisms are also available for tuning parameters, such as in the work of
Hutter et al. [HHLBS09], which proposes to use a local search algorithm in or-
der to automatically find a good (i.e., efficient) configuration of an algorithm in
the parameter space. Including this work, a more complete view of the configura-
tion of search algorithms is presented in the Ph.D. thesis of Hutter [Hut09]. Revac
[NE07, NE06] is a method that uses information theory to identify the most im-
portant parameters and calibrate them efficiently. We may also mention that racing
techniques [BSPV02, YG04, YG05, YG07] can be used to choose suitable parame-
ter settings when facing multiple choices.


Another important research community that focuses on very related problems has
been established under the name Reactive Search by Battiti et al. [BBM08, BB09].
After focusing on local search with the seminal works on reactive tabu [BT94] or
adaptive simulated annealing [Ing89], this community is now growing through the
dedicated Learning and Intelligent OptimizatioN (LION) conference.


It clearly appears that these approaches share common principles and purposes
and have been developed in parallel in different but connected communities. Their
foundations rely on the fact that, since the solving techniques and search heuris-
tics are more and more sophisticated and the problem structures more and more
intricate, the choice and the correct setting of a solving algorithm is becoming an
intractable task for most users. Therefore, there is a rising need for an alternative
problem-solving framework. According to the above brief historical review, we have
observed that these approaches have indeed their own specificities that are induced
by their seminal supporting works. In this chapter, we propose to integrate the main
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motivations and goals into the more general concept of Autonomous Search (AS)
[HSe12, HMS08a, HMS08b].


This chapter is organized as follows. In Sect. 7.2, we describe the general archi-
tecture of modern solvers. We present the specificities of autonomous solvers and
formalize their solving mechanisms with a set of rules in Sect. 7.3. In Sect. 7.4,
we illustrate different solver architectures by providing examples from the literature
and we characterize these solvers using our previous rule-based description frame-
work.


7.2 Solver Architecture


In this section, we present the basic concepts related to the notion of solver in the
context of general constraint problems solving, which provide an introduction to
problem solving. By general problems, we mean optimization or constraint sat-
isfaction problems, whose variables may take their values over various domains
(boolean, integer, real number, etc.). In fact, solving such problems is the main in-
terest of different but complementary communities in computer science: operations
research, global optimization, mathematical programming, constraint programming,
and artificial intelligence. From the different underlying paradigms that are associ-
ated to these research areas, we may try to identify common principles, which are
shared by the resulting solving algorithms and techniques that can be used for the
ultimate solving purpose.


As it has finally been suggested by the notion of metaheuristics [GK03], solvers
could be viewed as a general skeleton whose components are selected according
to the problem or the class of problems to be solved. Indeed, from our point of
view we want to look carefully at the components of the solver that define its
structural properties and at its parameters or external features that define its be-
havior. On one hand, one has to choose the components of the solver, and on the
other hand one should configure how these internal components are used during the
solving process. We identify the core of the solver which is composed by one or
several solving algorithms. Note that here we distinguish between the solver and
the solving algorithm, which is a part of the solver but corresponds to the real
operational solving process. A basic solving algorithm corresponds to the man-
agement of solving techniques, abstracted by the notion of operators, making use
of a solving strategy that schedules the use of these operators. A solving algo-
rithm is designed of course according to the internal model, which defines the
search space, and uses a function to evaluate the elements of the search space.
All these components can be subjected to various parameters that define their be-
havior. A given parameterization defines thus what we call a configuration of the
solver. At this level, a control layer can be introduced, especially in an autonomous
solver, to manage the components and modify the configuration of the solver during
the solving process. The general description of a solver architecture is illustrated
by Fig. 7.1.
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Fig. 7.1 The general
architecture of a solver


7.2.1 Problem Modeling/Encoding


The encoding of the problem is considered separately from the solver itself. In fact,
most of the time, a solver is designed for a specific encoding framework that in-
duces a specific internal representation that corresponds to the model. While the
classic CSP modeling framework [Tsa93] is commonly used as a description tool
for all solving methods, the internal encoding of the problem and its possible con-
figurations involve different representations (e.g., complete vs. partial assignments,
etc.). One should note that different modeling and encoding paradigms can be used.
In constraint programming [Apt03, Dec03, MS98, Hen89] one could encode con-
straints as tuples of allowed values or use a more declarative first order language
with relations and functions. Moreover, other paradigms can be used to encode
CSPs, such as SAT [BHvMW09], and various transformation schemes have been
investigated [BHZ06, Wal00, Hoo99b]. On the metaheuristics side, the encoding
of the possible configurations of the problem has a direct impact on the search
space and on the search landscape. For instance, one may include directly some
of the constraints of the problem in the encoding as this is the case when using
permutations for the Traveling Salesman Problem (TSP [ABCC07]), which corre-
sponds to the constraint each city is visited once and only once. In genetic algorithms
[Jon06, ES03b, Mic92] or local search [AL03, HM05], encoding may have a sig-
nificant impact on the performance of the algorithm. The encoding of continuous
optimization problems (i.e., over real numbers) also requires providing suitable data
structures, for instance, floating point representation for genetic algorithms [JM91]
or continuous and interval arithmetic in constraint programming [BG06]. The in-
ternal representation of the model can be considered as a component of the solver.
This representation has of course a direct computational impact on the evaluation
function and also on the solving techniques that are implemented through operators.
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7.2.2 The Evaluation Function


The evaluation function is related to the nature of the problem. From a general point
of view, a function is needed to evaluate possible configurations of the problem with
regard to its constraints and variable values. An evaluation function may evaluate
the number of conflicts or check the satisfiability of a given constraint set, or use
particular consistency notions (global or local). Such a function can also be used to
prune the search space when dealing with optimization problems. Again, this notion
is more traditionally used in the context of metaheuristics than in classic complete
constraint programming solvers. But it seems rather intuitive to have such a function
to assess the current search state in order to be able to check if the solver has reached
a solution or not. Moreover, this evaluation function clearly appears when dealing
with constraint optimization problems and using branch-and-bound algorithms.


7.2.3 The Solving Algorithm


Our purpose is to distinguish between the basic structure of the algorithm and its
configurable components. For instance, in a classic complete constraint solver, the
skeleton of the algorithm is the basic backtracking process, whose heuristics and
propagation rules can be configured. In an evolutionary algorithm, the core of the
solver is constituted by the population management. A solver may include the fol-
lowing components that we have to take into account:


• A set of operators: operators are used in the solving process to compute search
states. These operators may basically achieve variable instantiation, constraint
propagation, local moves, recombination or mutation selection, etc. Most of the
time, they are parameterized and use an evaluation function to compute their re-
sults (e.g., number of violated constraints or evaluation of the neighborhood in
local search algorithms). Note that these operators may be used to achieve a com-
plete search (i.e., find a solution or prove unsatisfiability of the problem) or to
perform an incomplete search (i.e., find a solution if possible or a sub-optimal
solution).


– Concerning tree search-based methods, the notion of operator for perform-
ing solving steps during the search process corresponds to basic solving tech-
niques. For instance if we consider a classic backtracking-based solver in con-
straint programming, we need an enumeration operator that is used to assign
values to variables and reduction operators that enforce consistencies in order
to reduce the domains of the variables. The search process then corresponds to
the progressive construction of a search tree whose nodes are subjected to the
application of the previously described operators. When considering numeri-
cal variables over intervals, we may add splitting operators. Of course these
operators may include heuristics concerning the choice of the variables to be
enumerated, and the choice of the values, but also other parameters to adjust
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their behavior. Indeed, constraint propagation can be formalized by means of
rules [Apt03, FA03], which support operator-based description and provide a
theoretical framework to assess properties of the solver such as termination.


– On the metaheuristics side, in evolutionary computing [Gol89, Jon06, ES03b]
we usually consider variation operators (mutation operators and recombina-
tion operators) and selection operators. Considering an evolutionary algorithm,
it is possible to established some convergence properties such as the famous
schemata theorem [Hol75]. There exist some general purpose operators as, for
instance, the uniform crossover [Syw89] or the Gaussian mutation [Kje91]. To
get better performance, these operators are often designed with respect to the
specificities of the problem to be solved. In local search [AL03], local moves
are based on neighborhood functions.


All these operators are most of the time subjected to parameters that may modify
their behavior but, more important, that also control their application in the search
process.


• A solving strategy: the solving strategy schedules how operators are used. In the
previous example, in a complete tree-based search process, the strategy will con-
sist in alternating enumeration and constraint propagation. The strategy can be
subjected to parameters that will indicate which operators to choose in the gen-
eral scheduling of the basic solving process.


7.2.4 Configuration of the Solver: The Parameters


The solver usually includes parameters that are used to modify the behavior of its
components. A configuration of the solver is then an instance of the parameters to-
gether with its components. Parameters are variables that can be used in the general
search process to decide how the other components are used. These parameters may
correspond to various data that will be involved in the choice of the operator to be
applied at a given search state. For instance, we may consider the probability of
application of the operators (e.g., genetic operators in evolutionary algorithms, the
noise in random walk for local search algorithms [SKC94a]) or of some tuning of
the heuristics themselves (e.g., tabu list length in Tabu Search [GL97]).


Parameter setting is an important issue for evolutionary algorithms [LLM07].
Parameter setting for local search algorithms is also handled in [BBM08]. In con-
straint programming much work has been done to study basic choice heuristics (see
[EFW+02] for instance), but also to evaluate the possible difficulties related to the
classic use of basic heuristics such as heavy-tailed problems [GSCK00] (these stud-
ies particularly demonstrate the benefit of randomization when solving multiple in-
stances of a given family of problems compared to the use of a single predefined
heuristic).
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Fig. 7.2 Control taxonomy proposed by Eiben et al. [EHM99]


7.2.5 Control


Modern solvers also include external or internal mechanisms that allow the solver
to change its configuration by selecting the suitable operators to apply, or tuning the
parameters, or adding specific information to the model. These mechanisms often
include machine learning techniques and will be detailed later. Of course, control
rules will often focus on the management of the parameters and/or of the operators
of the solver.


7.2.6 Existing Classifications and Taxonomies


As mentioned before, we may identify at least three important domains where re-
lated work has already been conducted. These lines of work have led to the use of
different terminologies and concepts that we try to recall here.


In evolutionary computing, parameters setting [LLM07] constitutes a major issue
and we may recall the taxonomy proposed by Eiben et al. [EHM99] (see Fig. 7.2).


Methods are classified depending on whether they attempt to set parameters be-
fore the run (tuning) or during the run (control). The goal of parameter tuning is to
obtain parameter values that could be useful over a wide range of problems. Such re-
sults require a large number of experimental evaluations and are generally based on
empirical observations. Parameter control is divided into three branches according
to the degree of autonomy of the strategies. Control is deterministic when param-
eters are changed according to a previously established schedule, adaptive when
parameters are modified according to rules that take into account the state of the
search, and self-adaptive when parameters are encoded into individuals in order to
evolve conjointly with the other variables of the problem.


In [SE09], Eiben and Smit recall the difference between numeric and symbolic
parameters. In [NSE08], symbolic parameters are called components, whose ele-
ments are operators. In this chapter, we choose to use the notions of parameters for
numeric parameters. As defined above, the operators are configurable components
of the solver that implement solving techniques.


In [BB09], reactive search is characterized by the integration of machine learn-
ing techniques into search heuristics. A classification of the source of information
that is used by the algorithm is proposed to distinguish between problem-dependent
information, task-dependent information, and local properties.
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Fig. 7.3 Classification of hyper-heuristics by Burke et al. [BHK+09b]


In their survey [BHK+09b], Burke et al. propose a classification of hyper-
heuristics, which are defined as search methods or learning mechanisms for select-
ing or generating heuristics to solve computational search problems. As mentioned
above, this classification also distinguishes between two dimensions: the different
sources of feedback information and the nature of the heuristic search space. This
classification is summarized in Fig. 7.3.


The feedback, when used, corresponds here to the information that is learned
during solving (online) or using a set of training instances (offline). The authors
identify two families of low-level heuristics: construction heuristics (used to incre-
mentally build a solution) and perturbation heuristics (used to iteratively improve a
starting solution). The hyper-heuristics level can use heuristic selection methodolo-
gies, which produce combinations of pre-existing low-level heuristics, or heuristics
generation methodologies, that generate new heuristics from basic blocks of low-
level heuristics.


Another interesting classification is proposed in [GS08], in which Gagliolo et al.
are interested in the algorithm selection problem [Ric75] and describe the different
selection techniques according to the following points of view. The problem consists
in assigning algorithms from a set of possible alternative solving methods to a set
of problem instances in order to improve the performance. Different dimensions are
identified with regard to this algorithm selection problem:


• The nature of the problems to be solved: decision vs. optimization problems.
• The generality of the selection process: selection of an algorithm for a set of


instances or selection of an algorithm for each instance.
• The reactivity of the selection process: the selection can be static and made be-


fore running all the selected algorithms or can be dynamically adapted during
execution.


• The feedback used by the selection process: the selection can be made from
scratch or using previously acquired knowledge.


• The source of feedback: as in the previous classification, when learning is used
in the selection process, one may consider offline (using separated training in-
stances) or online (updating information during solving) learning techniques.
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As claimed in the introduction, autonomous search aims at providing a more
uniform description and characterization of these different trends, which have close
relationships.


7.3 Architecture of Autonomous Solvers


We may define autonomous solvers as solvers that contain control in their search
process (i.e., the solvers described in Sect. 7.4.2). We want to study such au-
tonomous systems w.r.t. their specific control methods.


A general control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application of
some solving functions. The overall strategy to combine and use components and
parameters can be based on learning that uses information from the current solving
process or from previous solved instances (see remarks in Sect. 7.2.6). Therefore,
modifications are often based on a subset of search states. Given a solver, we have
to consider the interactions between the heuristics and the strategy which selects the
heuristics at a meta-level (notion of hyper-heuristics).


On the one hand, one can consider the solver and its history and current envi-
ronment (i.e., the previously computed search states and eventually other external
information related to previous computations) as an experimental system, which is
observed from an external point of view. Such a supervised approach then consists
in correctly controlling the solver by adjusting its components according to criteria
and decision rules (these rules may be automatically generated by means of statistics
and machine learning tools or even by human experts). On the other hand, one may
consider that the solver changes the environment at each step of the solving process
and that this environment returns feedback information to the solver in order to man-
age its adaptation to this changing context (different types of feedback may be taken
into account, as mentioned in Sect. 7.2.6). In this case, we will use self-adaptation.
To illustrate these ideas, we propose a high-level picture of an autonomous search
system (see Fig. 7.4).


7.3.1 Control by Self-adaptation


In self-adaptation, the adaptive mechanism is coupled with the search components,
directly changing them in response to the consequences of their actions. Self-
adaptive techniques are tightly integrated with the search process and should usu-
ally require little overhead. The algorithm is observing its own behavior in an on-
line fashion, modifying its parameters accordingly. This information can be either
directly collected from the problem or indirectly computed through the perceived
efficiency of individual components. Because the adaptation is done online, there is
an important trade-off between the time spent computing heuristic information and
the gains that are to be expected from this information.
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Fig. 7.4 The global architecture of an Autonomous Search System


7.3.2 Control by Supervised Adaptation


Supervised adaptation works at a higher level. It is usually external and its mech-
anisms are not coupled with the search process. It can be seen as a monitor that
observes the search and analyzes it. It can modify the components of the solver (or
require the solver to modify its components) in order to adapt it. Supervised adapta-
tion can use more information, e.g., learning-based knowledge, etc. In some cases,
we can imagine that typical supervised actions can be compiled into self-adaptive
mechanisms.


7.3.3 Searching for a Solution vs. Solutions for Searching


It appears now that the problem of building a good Autonomous Search solver is
more ambitious than that of finding a solution to a given instance of a problem.
Indeed, inspired by the seminal consideration of John Rice [Ric75] when he was
abstracting the problem of finding the best algorithm for solving a given problem,
we need to take into account at least three important spaces in which an autonomous
search process takes place.


• The search space: the search space is induced by the encoding of the problem
and corresponds to the set of all potential configurations of the problem that one
has to consider in order to find a solution (or to find all solutions, or to find an
optimal solution, etc.). This search space can also be partitioned, for optimization
problems, into the set of feasible solutions and infeasible solutions with respect
to the constraints of the problem.


• The search landscape: the search landscape is related to the evaluation function
that assigns a quality value to the elements of the search space. If indeed this
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Fig. 7.5 The solver and its
action with respect to
different spaces


notion is rather of limited use in the area of complete solvers, it is a crucial no-
tion when using heuristics or metaheuristics, search algorithms whose purpose is
to explore and exploit this landscape in order to find solutions. Most of the meta-
heuristics, designed according to the management of this exploration-exploitation
balance and the characteristics of the search landscapes, often use geographical
metaphors: How to travel across plateaus? How to escape from a local optimum
by climbing hills?, etc.


• The algorithms space: according to the previous description of solver architecture,
we have highlighted that a solver consists of components that define its struc-
tural properties together with a set of behavioral features (parameters and control
rules). As mentioned before, given a basic algorithmic skeleton we may consider
a set of possible solvers that correspond to the possible component choices and
configurations. This algorithms space can also be composed of different solvers
when dealing with portfolio-based algorithm selection.


The relationships between these spaces are illustrated in Fig. 7.5. Indeed, the ulti-
mate autonomous search purpose can be formulated as: finding a suitable algorithm
that is able to efficiently explore and exploit the search landscape in order to suitably
manage the search space and find solutions to the initial problem.


7.3.4 A Rule-Based Characterization of Solvers


As already mentioned, the solving techniques used for solving such problems may
include very different features, from complete tree-based solvers to local search
or evolutionary algorithms. In this presentation, we will attempt to abstract these
solving features in order to be able to address general solving algorithms, focusing
on their autonomous aspects as described above. Indeed, such rule-based formal-
izations have already been proposed for modeling some constraint programming
solving processes [Apt03, FA03] and also for hybrid solvers including local search
[MSL04]. Here, our purpose is not really to prove some properties of the solvers but
rather to highlight their basic operational mechanisms in order to classify them with
regard to their behavioral and structural characteristics.


When using a solver, one may distinguish two main tasks that correspond indeed
to different but closely related levels of technical accuracy that can be achieved by
more or less specialized users:
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• The component design: this phase consists in choosing the suitable components
described in Sect. 7.2.3 that should be included in the solver with regard to the
problem characteristics for instance. As mentioned above, these components con-
stitute the architecture of the solver.


• The configuration of the solver through parameters settings and controls: this
second phase consists in defining through control features how the components
can be used during the solving process.


Based on this consideration and on the general solver architecture depicted in
Fig. 7.1, we propose a formal description in the next section.


Formal Description We define here some basic notions in order to characterize
the behavior of solvers with a computationally oriented taxonomy. This approach
will allow us to characterize the solvers. We first recall some basic concepts related
to constraint satisfaction and optimization problems.


Definition 7.1 (CSP) A CSP is a triple (X,D,C), where X = {x1, . . . , xn} is a set
of variables whose values are restricted to given domains D = {D1, . . . ,Dn}. There
exists a bijective mapping that assigns each variable xi to its corresponding do-
main, Dxi


. We consider a set of constraints C as a set of relations over the vari-
ables X.


Definition 7.2 (Search Space) The search space S is a subset of the possible con-
figurations of the problem and can be the Cartesian product of domains,


∏
x∈X Dx .


The choice of the internal representation (i.e., the model) defines the search space.
An element s of the search space will be called a candidate solution.


Definition 7.3 (Solution) A feasible solution is an assignment of values to vari-
ables, which can be seen as an element of S (i.e., given an assignment θ : X →∏n


i=1 Di , θ(xi) ∈ Dxi
), and which satisfies all the constraints of C. In the context


of optimization problems, we also consider an objective function f : S → R. An
optimal solution is a feasible solution maximizing or minimizing, as appropriate,
the function f .


We have now to define, according to Sect. 7.2, the different elements that are
included in the solver.


Definition 7.4 (Evaluation Functions) We denote by E the set of evaluation func-
tions e : S →R.


Definition 7.5 (Parameters) We denote by P the set of parameters, and a parame-
terization π is a mapping that assigns a value to each parameter. We denote by Π


the set of parameterizations.


Definition 7.6 (Solving Operators) We denote by Ω a set of solving operators (op-
erators for short) that are functions o : 2S → 2S .
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Definition 7.7 (Solving Strategy) We denote by H the set of solving strategies that
are functions h : 2S × Π × E → Ω .


For sake of simplicity, in the following we will refer to solving strategies as
strategies. Solving strategies and solving operators are the key points of the solving
algorithm (see Fig. 7.1): a strategy manages some operators to compute the solu-
tions. We obtain:


Solving algorithm = solving strategy + solving operators


We now formalize the solving processes as transitions using rules over computation
states.


Definition 7.8 (Computation State) Given a CSP (X,D,C), a search space S , a set
of operators Ω , a set of evaluation functions E, a set of parameters P and a set of
solving strategies H , a computation state is a tuple 〈O,S, e,π,h|S〉 where:


• O ⊆ Ω , where O is the set of operators currently used in the solver
• S ⊆ S is the current subset of candidate solutions
• e ∈ E is an evaluation function
• π ∈ Π is the current parameterization
• h ∈ H is the current solving strategy


Remarks


• It is important to note that Ω , E, and H are sets that may not be yet computable.
For example, H represents the set of all possible strategies, either already existing
or that will be discovered by the solver (as defined in Definition 7.11). Similarly,
all the operators of Ω are not known since they can be designed later by the
solver. However, O is known, and all its operators as well.


• S corresponds to the internal basic search structure: the search state. For instance,
if we consider a genetic algorithm the search state will be a population. In the case
of a complete backtracking solver, it will consist in an incomplete assignment, etc.


• O is the current set of operators available in the solver at a given stage extracted
from a set Ω of potential operators that could be used in this solver. Indeed,
some solvers may use new solving operators that are produced online or offline
according to a general specification or according to design rules. Note that an
operator allows the solver to perform a transition from one search state to another.
This is therefore the key concept of the solving process and we want to keep it as
general as possible to handle various solving paradigms (as mentioned above).


• The evaluation function e must evaluate the candidate solutions. This evaluation
is used by the strategy in order to drive the basic solving task and by the control
in order to drive the solver behavior.


• The solving strategy h will be used to select the suitable operator to apply on the
current candidate solutions with respect to the current parameterization π and the
evaluation function e.
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Note that, for the sake of simplicity, we restrict ourselves to solvers that have only
one evaluation function and one search space at a time. This is typically the case but
this framework could be easily generalized to capture more exotic situations.


We denote by CS the set of computation states. Note that a computation state
corresponds in fact to a search state together with the current configuration of the
solver.


Definition 7.9 (Computation Rules) A computation rule is a rule σ ′
σ


where σ and
σ ′ are computation states from CS.


Identification of Computation Rules We identify here specific families of com-
putation rules with respect to the way they modify the computation states.


• Solving: The fundamental solving task of a classic solver consists in computing
a new state from the current one according to a solving strategy that chooses
the suitable operator to apply with respect to the current candidate solutions, the
parameterization, and the evaluation function. This corresponds to the following
rule:


[Solv] Solving


〈O,S, e,π,h|S〉
〈O,S, e,π,h|S′〉


where S′ = o(S) and o = h(S,π, e) ∈ O .


• Parameterization: The modification of the solver’s parameters changes its config-
uration and can be used either to tune the solver before running it or to adjust its
behavior during the run. A parameterization rule can be abstracted as:


[Par] Parameterization


〈O,S, e,π,h|S〉
〈O,S, e,π ′, h|S〉


• Evaluation function modification: Since we address here autonomous systems
that are able to modify not only their configuration through their parameters but
also their internal components, we have to consider more intricate rules. A first
way to adapt the solver to changes is to modify its evaluation function, which
directly induces changes on the search landscape. This is the case when changing
weights or penalties in the evaluation function (there are many examples, for
instance [KP98, PH06]).


[EvalCh] Evaluation modification


〈O,S, e,π,h|S〉
〈O,S, e′,π,h|S〉


• Operator modification: Another way to modify the internal configuration of the
solver is to change its set of operators. Note that operators can be added or dis-
carded from the set O .
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[OpCh] Operator modification


〈O,S, e,π,h|S〉
〈O ′,S, e,π,h|S〉


• Strategy modification: Similarly, solving strategies can be changed to manage
differently the operators and achieve a different solving algorithm. As mentioned
above, a backtracking algorithm can apply different strategy for enforcing local
consistency at each node, or in hybrid solving one may switch from complete to
approximate methods.


[StratCh] Strategy modification


〈O,S, e,π,h|S〉
〈O,S, e,π,h′|S〉


• Encoding modification: We also have to take into account solvers that will be able
to change their encoding during execution. As this is the case for the evaluation
modification, such changes will affect the search landscape.


[EncCh] Encoding modification


〈O,S, e,P,h|S〉
〈O,S ′, e,P,h|S〉


Note that applying one of these rules (except [Res]) will generally require applying
other computation rules. For example, a change of encoding ([EncCh]) will cer-
tainly require a change of operators ([OpCh]), of evaluation function ([EvalCh]), of
strategy ([StratCh]), and of parameterization ([Par]). However, a change of strategy
does not always imply a change of operators.


Control of the Computation Rules and Solvers The most important part of our
characterization concerns the control of the algorithm to finally build the solver.
The control is used to act on the configuration of the solver through its parameters,
but also to modify the internal components of the solver (parameters, operators,
strategies, etc.).


Definition 7.10 (Control) Let SCS be the set of all the finite sequences of elements
of CS. A control function K : SCS → R is a function that selects a computation rule
from the set R according to a sequence of computation states.


A solver state can be defined by a set of computation rules, and a sequence of
computation states that have been previously computed.


Definition 7.11 (Solver) A solver is a pair (K,R) composed of a control func-
tion K and a set of computation rules R that will define a sequence of solver states.
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A way of describing a solver is to use regular expressions which schedule compu-
tation rules to describe its control. Let’s come back to the rules defined in Sect. 7.3.4.
We consider the set of rules R = Par ∪ Res ∪ EvalCh ∪ EncCh ∪ OpCh ∪ StratCh
where Par represents some parameterization rules [Par], EvalCh some evaluation
modification rules [EvalCh], etc. Given two subsets R1 and R2 of R, R∗


1 means that
zero or more rules of R1 are sequentially applied and R1R2 means the sequential
application of one rule of the subset R1 is followed by the application of one rule
of R2. R1|R2 corresponds to use of one rule from R1 or one from R2. These no-
tations will be used in the following section to highlight the characteristics of the
solvers by means of the sequences of rules that they apply in their solving processes.


Definition 7.12 (Solver State) A solver state is a pair (R,Σ) where:


• R is a set of computation rules as defined above
• Σ is a sequence of computation states that are recorded during the solving pro-


cess.


Starting from a solver state (R,Σ), with Σ = (σ0, . . . , σn), the next state is ob-
tained as (R,Σ ′) where ∃r ∈ R, such that K(Σ) = r and Σ ′ = (σ0, . . . , σn, σn+1 =
r(σn)).


Note that in practice, a solver state does not contain the complete history. Thus,
the sequence of computation states is either limited to a given length, or only the
most relevant computation states are kept.


We now have:


Solver = control + configured solving algorithms


We recall that we stated before that Solving algorithm = solving strategy + solving
operators. Coming back to Fig. 7.3 that shows a classification of hyper-heuristics,
we notice that we obtain a similar distinction here: solvers correspond to the hyper-
heuristics of Fig. 7.3, solving algorithms to heuristic search spaces, strategies to
heuristic selection or generation, and operators to heuristic construction or pertur-
bation. We can finally identify an autonomous solver:


Definition 7.13 (Autonomous Solver) Consider a solver given by a regular expres-
sion ex of computation rules from R = Par ∪ Solv ∪ EvalCh ∪ EncCh ∪ OpCh ∪
StratCh. A solver is autonomous if ex contains at least a rule from Par ∪ EvalCh ∪
EncCh ∪ OpCh ∪ StratCh (i.e., ex is not only composed of rules from Solv).


An autonomous solver is a solver that modifies its configuration during solving,
using a control rule. Of course, there are various degrees in this autonomy scale. We
can now come back to the previous taxonomy of offline/tuning and online/control
(e.g., for parameters). Consider a solver given by a regular expression ex of com-
putation rules from R = Par ∪ Solv ∪ EvalCh ∪ EncCh ∪ OpCh ∪ StratCh, and the
word w given by flattening this expression ex. The offline/tuning of a solver con-
sists of the rules that appear in ex before the first Solv rule of ex. The online/control
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is composed of all the rules that appear after the first rule Solv and that are not of
the Solv family of rules.


In the next section we will illustrate how these rules are used in real solvers and
how they can be used to characterize families of solvers within our autonomous
search scope.


7.4 Case Studies


In this section, we will not attempt to present an exhaustive view of existing solvers
but we will rather choose some representative solvers or algorithms in order to il-
lustrate different solving approaches and how the previous computation rules can
be used to characterize these approaches. As mentioned in the introduction, au-
tonomous search has been indeed investigated for many years, across many differ-
ent areas and under different names. Therefore, we could not imagine providing an
exhaustive discussion of all approaches.


7.4.1 Tuning Before Solving


As in [EHM99, LLM07], we use the word tuning for the adjustment of the dif-
ferent components of the algorithm before trying to solve an instance (see end of
Sect. 7.3.4).


Preprocessing Techniques


Even if preprocessing is not directly linked to the core of the solving mechanism but
relies on external processes, we have to consider it as an important component in
the design of modern solvers. Nowadays, efficient solvers (e.g. DPLL) use simpli-
fication preprocessing before trying to solve an instance (see for instance the SAT
solver SatElite [EMS07]). Note that the model transformation can maintain equisat-
isfiability or a stronger equivalence property (the set of solutions is preserved).


Parameter Tuning on Preliminary Experiments


Such a tuning phase may consist in setting correct parameters in order to adjust the
configuration of the solver. Here, these settings are performed according to a given
set of preliminary experiments. Tuning before solving will correspond to the con-
figuration of the solver and then its use for properly solving the problem. Therefore,
the general profile of the solvers will be mainly described as:


[Config]Solv∗


where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗.
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Empirical Manual Tuning We include in this family the classic tuning task in-
volved when using single metaheuristic based solvers where experiments are re-
quired to tune the various parameters [SE09, NSE08]. Of course there exist similar
studies in constraint programming to choose the suitable variable and value heuris-
tics, and this task is often not formalized. Most of the time, parameters are tuned
independently since it appears difficult to control their mutual interaction without a
sophisticated model. Here, the parameterization is not really part of the solver but
rather a preliminary experimental process.


Solver: Solv∗


Determining the Size of a Tabu List Experiments or other previous analysis can
be used to extract general parameters or heuristic settings. In the context of Tabu
Search for SAT, [MSG97b] have used an extensive offline experimental step to de-
termine the optimal length of a tabu list. They used simple regression to derive the
length of the list according to the number of variables n. Remarkably, the length
is independent of the size of the constraints, and their formula applies to any hard
random k-SAT instance. Therefore the parameterization can be included as a first
step of the solving process.


Solver: Par_Solv∗


Automatic Parameter Tuning by an External Algorithm Recently, [HHLBS09]
proposed an algorithm to search for the best parameters in the parameter space and
therefore to automatically tune a solver. Now, if we consider that this automated
process is included in the solver, we have then the following description.


Solver: (Solv∗Par)∗Solv∗


Note that (Solv∗Par)∗ corresponds to a series of runs and parameter tuning, which
is achieved automatically.


Component Setting Before Solving


We consider here methods that consist in choosing the correct components of the
solver by using experiments and/or external knowledge that has been acquired sep-
arately from the current solving task. This knowledge can be formulated as general
rules, can use more or less sophisticated learning techniques, or may also use an
external computation process.


A. Learning Solver’s Components External mechanisms can be used before tun-
ing to discover or learn efficient components for the solver.
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Discovering Heuristics In [Fuk08], genetic programming is used to discover new,
efficient variable selection heuristics for SAT solving with local search algorithms.
Candidate variable selection heuristics are evaluated on a set of test instances. This
automatic process can be inserted before solving (the variable selection heuristics
can induce a change of parameters or operators depending on the description gran-
ularity). Note that here the first Solv∗ is not applied to the problem at hand.


Solver:
(
Solv∗(OpCh|Par)


)∗
Solv∗


The choice of heuristics can be parameters of the operators in our formalism; heuris-
tic discovering can be considered as the selection of suitable operators and their
parameterization.


Learning Evaluation Functions In [BMK00], a new method is proposed in or-
der to learn evaluation functions in local search algorithms and improve search effi-
ciency based on previous runs.


Solver: (Solv∗EvalCh)∗Solv∗


B. Empirical Prediction of Instance Hardness The following techniques are
based on a learning component (e.g., clustering tools), which can be used to de-
tect automatically the suitable heuristics and strategies to apply.


Portfolio-Based In SATzilla [XHHLB08], offline linear basis function regression
and classifiers are used on top of instance-based features to obtain models of SAT
solvers runtime. During the exploitation phase, instance features are used to select
the best algorithm from a portfolio of tree- and local search-based SAT solvers. We
may also cite the works of Gebruers et al. [GGHM04] and Guerri et al. [GM04] that
use case-based reasoning and learning technique from to choose the appropriate
solving technique among constraint programming and integer linear programming.
In these solver schemes, the first Solv∗ corresponds again to preliminary experi-
ments.


Solver: Solv∗(OpCh|StratCh|Par|EvalCh)∗Solv∗


Parameter-Based In [HH05, HHHLB06], the authors use an approach similar
to SATzilla. They show that it is possible to predict the runtime of two stochastic
local searches (SLSs). In this work, the selection of the best method to apply on a
given instance is changed into the selection of the best parameters of a given SLS
algorithm.


Solver: ParSolv∗


7.4.2 Control During Solving


The control of the solver’s behavior during the run can be achieved by modifying
its components and/or its parameters. This corresponds, for instance, to an online
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adjustment of the parameters or heuristics. Such control can be achieved by means
of supervised control schemes or self-adaptive rules. Of course, such approaches
often rely on a learning process that tries to benefit from previously encountered
problems during the search or even during the solving of other problems. Therefore,
the profile of the solvers will generally be:


([Config]Solv∗)∗


where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗. Note that the outer ∗
loop represents the control loop.


Controlling Encoding


[Han08] proposes an adaptive encoding in an evolutionary algorithm in order to
solve continuous function optimization problems. The representation of the solu-
tions are changed along the search to reach an optimal representation that could
simplify the solving of the initial problem.


Solver: (EncChSolv∗)∗


Controlling Variable Orderings and Value Selection in Search Heuristics


We consider here approaches where the heuristic functions change during the search
w.r.t. the current state and parameters.


Hybrid Approaches to Discover Efficient Variable Ordering To illustrate this
kind of approach, we may mention the SAT solving technique of [MSG98] where a
Tabu Search is used at each node of a DPLL to find the next variable to branch on.


Solver:
(
(OpChStratCh)Solv∗ParSolv∗)∗


Continuous Search In [AHS10], the authors propose to exploit the result of an
offline learning stage to select the best variable and value heuristics. They use a
restart-based tree search algorithm and tune the previous heuristics at each new
restart point. Moreover, this approach perpetually refines its learning stage by re-
assessing its past choices in between successive calls to the search procedure. This
approach is presented in Chap. 6.


Solver: (ParSolv)∗


Conflict Driven Heuristic In [BHLS04], important variables are deemed to be
the ones linked to constraints that have frequently participated in dead ends. During
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the search, this information is collected and used to order variables. Eventually,
the system has enough knowledge to branch on important variables and quickly
solve the problem. The system learns weights from conflicts that are used in the
computation of the variable selection heuristics; this corresponds to an update of the
parameters each time a conflict is met.


Solver: (ParSolv∗)∗


Variable Dependency-Based Heuristic In [AH09] and in Chap. 5, the constraint
propagation engine is exploited to detect so called weak dependencies between vari-
ables. These correspond to situations when the instantiation of a given variable leads
to the instantiation of others. These events are perceived as positive, and are used
to rank the variables, favoring the ones whose branching on results in the largest
number of instantiations. This heuristic is shown to outperform [BHLS04] on many
domains.


Solver: (ParSolv∗)∗


Implicit Feedback Loops in Modern DPLL Solvers In modern SAT solvers like
the one presented in [ES03a], many implicit feedback loops are used. For instance,
the collection of conflicts feeds the variable selection heuristic, and the quality of
unit propagation is sometimes used to control the restart strategy. Similarly, the dele-
tion of learned clauses, which is necessary to preserve performances uses activity-
based heuristics that can point to the clauses that were the least useful for the unit
propagation engine. Therefore, it induces changes in the model itself and in the
heuristic parameters.


Solver:
(
(EncCh|Par)Solv∗)∗


Adapting Neighborhood During the Search Variable neighborhood search
[MH97, HR06, PR08] consists in managing simultaneously several neighborhood
functions and/or parameters (according to the description granularity) in order to
benefit from various exploration/exploitation facilities.


Solver:
(
(OpCh|Par)Solv


)∗


Evolving Heuristics


Hyper-heuristics Hyper-heuristics [BKN+03] is a general approach that consists
in managing several metaheuristic search methods from a higher strategy point of
view. Therefore, it is closely related to autonomous search and has already been
applied for many problems (e.g., SAT solving [BEDP08]). Since they switch from
one solving technique to another, hyper-heuristics could be characterized by:


Solver:
(
(OpCh|StratCh|Par|EvalCh)∗Solv∗)∗


Learning Combinations of Well-known Heuristics In the ACE project
[EFW05], learning is used to define new domain-based weighted combinations of
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branching heuristics (for variable and value selection). ACE learns the weights to
apply through a voting mechanism. Each low-level heuristic votes for a particu-
lar element of the problem (variable, value). Weights are updated according to the
nature of the run (successful or not). The learning is applied to a given class of
problems. The combination is learned on a set of representative instances and used
during the exploitation step. A similar approach has been used in [GJ08] in order to
learn efficient reduction operators when solving numerical CSPs.


Solver: (ParSolv∗)∗


Controlling Evaluation Function


This aspect may concern local search algorithms that use, for instance, adaptive
weighting of the constraints in their evaluation function [Mor93, Tho00]. Constraint
weighting schemes solve the problem of local minima by adding weights to the cost
of violated constraints. These weights increase the cost of violating a constraint and
so change the shape of the cost surface w.r.t. the evaluation function. Note that these
techniques are also widely used in SAT solvers [BHvMW09].


Solver: (EvalChSolv∗)∗


Parameter Control in Metaheuristic Algorithms


We consider here approaches that change the parameters during the search w.r.t.
the current state and other parameters. Of course, these parameters have a direct
influence on the heuristic functions, but these latter functions stay the same during
the solving process.


Reactive Search In [BBM08] (formerly presented in [BBM07]), Battiti et al. pro-
pose a survey of so-called reactive search techniques, highlighting the relationship
between machine learning and optimization processes. In reactive search, feedback
mechanisms are able to modify the search parameters according to the efficiency of
the search process. For instance, the balance between intensification and diversifi-
cation can be automated by exploiting the recent past of the search process through
dedicated learning techniques.


Solver: (ParSolv∗)∗


Adaptive Genetic Algorithms Adaptability is well known in evolutionary algo-
rithm design. For instance, there are classical strategies to dynamically compute the
usage probability of GA search operators [Thi05, WPS06a, WLLH03]. Given a set
of search operators, an adaptive method has the task of setting the usage probability
of each operator. When an operator is used, a reward is returned. Since the environ-
ment is non-stationary during evolution, an estimate of the expected reward for each
operator is only reliable over a short period of time [WPS06b]. This is addressed
by introducing a quality function, defined such that past rewards influence opera-
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tor quality to an extent that decays exponentially with time. We may also mention
other works that use more sophisticated evaluation functions, reward computation
and operator probability adjustments in order to manage dynamically the application
parameters of the EA [MFS+09, MS08, FDSS08].


Solver: (ParSolv∗)∗


7.4.3 Control During Solving in Parallel Search


The solvers described in this section also belong to the previous family of solvers
that include control within their proper solving process. But here, due to the par-
allel/distributed architecture of solver, the sequence of computation rules is more
difficult to schedule. Thus, the profile could be described as ([Config]|Solv∗)∗.


Value Ordering in Portfolio-Based Distributed Search In [RH05] and in
Chap. 2, the authors present portfolio-based distributed searches. The system al-
lows the parallel execution of several agent-based distributed search. Each search
requires the cooperation of a set of agents which coordinate their local decisions
through message passing. An agent is a part of multiple distributed searches, and
maintains the context of each one. Each agent can aggregate its context to dynam-
ically rank the values of its local variables. The authors define several efficient
portfolio-based value-ordering heuristics. For instance, one agent can pick up the
value which is used most frequently in competing searches, or the one which is most
supported in other searches, etc.


Solver: (Par|Solv∗)∗


Adaptive Load-Balancing Policies in Parallel Tree-Based Search Disolver is
an advanced Constraint Programming library which particularly targets parallel
search [Ham03]. This search engine is able to dynamically adapt its inter-processes
knowledge sharing activities (load-balancing, bound sharing). In Disolver, the end
user can define constraint-based knowledge sharing policies by adding new con-
straints. This second modeling can be linked to the constraint-based formulation
of the problem to control the knowledge sharing according to the evolution of
some problem components. For instance, the current value of the objective func-
tion can be used to draft answers to incoming load-balancing requests when the
quality of the current subtree is perceived as good, etc. Interestingly, since the con-
trol of the knowledge sharing policies is made through classical constraints, it is
automatically performed by the constraint propagation engine. We can see this as
a dynamic adjustment of knowledge sharing activities, and customize it to model
(learned clauses) and parameter (selection heuristics) changes.


Solver:
(
(EncCh|Par)|Solv∗)∗


Control-Based Clause Sharing in Parallel SAT Solving Conflict driven clause
learning, one of the most important components of modern DPLL, is crucial to the
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performance of parallel SAT solvers. Indeed, this mechanism allows clause sharing
between multiple processing units working on related (sub-)problems. However,
without limitations, sharing clauses might lead to an exponential blow-up in com-
munication or to the sharing of irrelevant clauses. In [HJS09a], the authors propose
new innovative policies to dynamically select shared clauses in parallel solvers. The
first policy controls the overall number of exchanged clauses whereas the second
one additionally exploits the relevance or quality of the clauses. This dynamic adap-
tation mechanism allows us to reinforce/reduce the cooperation between different
solvers which are working on the same SAT instance. This approach is fully de-
scribed in Chap. 3.


Solver: (Par|Solv∗)∗


7.5 Summary


In this chapter, we have proposed a taxonomy of search processes w.r.t. their com-
putation characteristics. To this end, we have presented the general basic concepts
of a solver architecture: the basic components of a solver, and its configurations.
We have then identified autonomous solvers as solvers that can control their solv-
ing process, either by self-adaptation (internal process) or by supervised adaptation
(external process).


We have proposed a rule-based characterization of autonomous solvers: the idea
is to formalize solver adaptations and modifications with some computation rules
that describe solver transformation. Using our formalism, we could then classify,
characterize, and identify the scope of autonomous search representative solvers by
outlining their global mechanism.


Our description framework allows us to handle solving techniques:


• of various and different types: complete, incomplete, or hybrid
• based on different computation paradigms: sequential, distributed, or parallel
• dedicated to different problem families: CSP, SAT, optimization, etc.


This work was also an attempt to highlight the links and similarities between differ-
ent communities that aim at building such autonomous solvers and that may benefit
from more exchanges and more collaborative approaches (including constraint pro-
gramming, SAT, machine learning, numerical optimization, clustering, etc.).


We have identified the notion of control in autonomous constraint solvers and
two main techniques for achieving it: control by supervised adaptation and control
by self-adaptation, depending on the level of interaction between the solver, its en-
vironment, and the control itself. These two control management approaches are
indeed complementary. Moreover, they open new challenges for the design of more
autonomous search systems that would run continuously, alternating (or combining,
or executing in parallel) solving and self-improving phases. A first attempt in this
direction has been presented in Chap. 6.







Chapter 8
Conclusion and Perspectives


Writing this book gave me the occasion to put my work into perspective and to re-
assess its homogeneity and consistency. Clearly, my work on distributed constraint
satisfaction put me on the distributed system side very early. In that world, algo-
rithms are more than monolithic sets of instructions and have value in their well-
timed and controlled interactions.


I decided to exploit the richness of this setting to mitigate the risk of being wrong
in a constructive search process, initially by adding parallelism to distributed search
[Ham99, Ham02b], then as presented in Chap. 2 by organizing competition and
cooperation between multiple distributed search strategies. Competition is rather
straightforward to organize. On the other hand, cooperation opens a new space
where the benefit of the knowledge exchanged has to be balanced against the cost of
sharing knowledge. When information is shared, we have to consider the ramp-up
time to prepare information, and the time it takes to effectively exchange the infor-
mation. When information is not shared we have to consider that costly redundant
work can occur, and that in divide-and-conquer systems task starvation can happen.


Therefore, controlling the way knowledge is shared and what knowledge is ex-
changed is crucial to the performance. In DisCSP settings, we managed to exploit
agents’ locality to share information between strategies. This allowed exchange at
virtually no cost. Concerning the knowledge to share, we tried to be systematic
by exploring policies based on diversification and emulation principles. In future
work we think that it would be interesting to investigate how portfolios are best
composed. Dynamic adaptation of portfolios looks also promising in the DisCSP
context. Adaptation could provide more resources to the most promising efforts.
Knowledge aggregation could be easily improved at no cost by adding extra infor-
mation to existing message passing operations. This would give a better view of the
distributed system, and could benefit from new aggregation methods


In the parallel SAT settings, complete solvers allow the exchange of conflict
clauses. However, since they can generate millions of clauses during their effort,
the exchange has to be well controlled. Technically, we decided to exploit lock-less
data structures to maximize performance. Content-wise, we managed to develop
new techniques to assess the quality of conflict clauses in an attempt to exchange
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meaningful information. We got inspired by control theory techniques to finely tune
the exchanges.


Parallel portfolios exploit the stochasticity of modern SAT solvers, which are
worth differentiating for better performance. More importantly, they benefit from
a crucial property of these solvers: they do not need to exhaust a search space to
definitely qualify an input as satisfiable or not. Portfolios have completely depre-
cated divide-and-conquer approaches, and nowadays the whole SAT community has
adopted this architecture [Bie10, Kot10, SLB10].


We came up with the ManySAT architecture thanks to our early experience
with distributed portfolios, and thanks to our experience with parallel divide-and-
conquer in constraint programming [Ham03]. As future work, the question of the
scalability of parallel SAT portfolios able to exchange conflict clauses has to be
asked. Many attempts have been made to mix portfolios and divide-and-conquer
approaches [MML10]; however, the results so far are not convincing.


To improve parallel local search techniques for SAT, we could only rely on
heuristic hints. One good piece of information to exchange in this setting is the best
configuration found so far. We used that as a basis to explore diversification and
intensification strategies to find out that the latter was giving the best performance
improvement.


Further work should investigate the use of additional information to exchange, for
instance, tabu list, the age and score of a variable, information on local minima, etc.
It should also consider the best way to integrate this extra knowledge in the course
of a given algorithm. State-of-the-art local searches perform better when they do
not restart. Incorporating extra information without forcing the algorithm to restart
is likely to be important.


Dynamic variable ordering heuristics are key to the performance of constraint
solvers. We showed how to heuristically discover a simplified form of functional
dependency between variables called weak dependency. Once discovered, these re-
lations are used to rank branching decisions. Our method shows that these relations
can be detected with some acceptable overhead during constraint propagation. Ex-
periments on a large set of problems show that, on the average, the search trees are
reduced by a factor of 3 while runtime is decreased by one third.


Our heuristic learns from successes, allowing a quick exploitation of the solver’s
work. In a way, this is complementary to dom-wdeg which learns from failures.
Moreover, both techniques rely on the computation of Mindom. Combining their
respective strengths seems interesting.


When one cannot multiply search strategies to avoid being wrong, the selection
of the right strategy is crucial. One way to avoid mistakes is to learn offline a predic-
tive model which accurately matches instance features to good solver’s parameters
[HH05, HHHLB06]. This approach requires a good understanding of the applica-
tion domain and a large set of representative instances. This last requirement can be
dropped by streamlining the learning process across executions of the search proce-
dure. Since the learning is performed on real instances, the model is more accurate.
As a downside, such a system cannot give top performance with the first instances
but can only gradually improve over time. Such a Continuous Search system was
presented in Chap. 6.
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Continuous computation addresses the issue of finding not the best (boundedly
optimal) use of time in solving a given problem, but the best use of idle compu-
tational resources between bouts of problem solving. This approach broadens the
definition of a problem to include not just individual instances, but the class of chal-
lenges that a given computational system is expected to face in its lifetime. Even-
tually, the end of the current search is just another event for the search system. As
an effect, the priority of its long-lasting self-improving task is raised and the task
comes to the foreground. That search is used to enrich the knowledge of the system
and is eventually exploited during this new task.


We can envision a wide range of actions that can be taken over by the search algo-
rithm while it is idle: analyzing the strategies that have succeeded and failed during
the last runs; applying costly machine learning techniques in order to improve a su-
pervised tuning method; using knowledge compilation techniques in order to com-
pile new deduction rules, or new patterns that were detected in the recently solved
problems and that can prove useful for future problems of the same application area;
exchanging gained knowledge with similar AS systems, e.g., features-based predic-
tion function.


In fact, such a continuous system would include a self-adaptive strategy during
the solving process while it could switch to a supervised controller while waiting
for another problem instance. This architecture would allow it to react dynamically
to incoming events during solving and to exploit the knowledge acquired through
its successive experiences.


The performance evaluation of a search system able to work in continuous search
mode is also an important problem which is highly related to the arrival rate and to
the quality of new problem instances. Here quality corresponds to how good the
instances are for the system for gaining important knowledge on the whole problem
class.


Finally, to capture our contributions in a unifying framework which will also
embed related work as much as possible, we moved to the notion of Autonomous
Search. We defined autonomous solvers as solvers that contain control in their
search process, and studied such autonomous systems w.r.t. their specific control
methods. A control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application of
some solving functions. We gave a formalization of solver adaptation and modifica-
tion with computation rules that describe solvers’ component transformation.


An important issue is evaluating performance of Autonomous Search systems
with respect to classical criteria, used in solver competitions, for instance. We think
that the performance evaluation of an autonomous search may actually focus on
three points: show that an autonomous search can (re)discover the best known or
approximate a very good strategy for a specific problem; show the ability of an au-
tonomous search to adapt itself to a changing environment, e.g., more or less com-
putational resources; show that an autonomous search can adapt itself and converge
to an efficient strategy for a class of problems.


There exists an optimal search strategy for a particular problem. However, deter-
mining such a strategy could require much more computational power than solving
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the problem at hand. One possible way to assess the performance of AS systems is
to run them on artificial problems where the optimal strategy is well known and to
see if their adaptive mechanisms are able to build a strategy close to the optimal.


The efficiency of an AS system can also be measured as its ability to maintain
the competitiveness of its search strategy in a changing environment. Here, the goal
is more to assess the reaction time of the system under changing settings than the
ultimate quality of the produced strategies.


A major challenge associated to AS is that classical tools for algorithm analysis
typically provide weak support for understanding the performance of autonomous
algorithms. This is because autonomous algorithms exhibit a complex behavior that
is not often amenable to a worst-/average-case analysis. Instead, autonomous algo-
rithms should be considered as full-fledged complex systems, and studied as such.
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