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PREFACE
Combinatorial Methods with Computer Applications provides the basis for a gen­

eral sequel to a standard college course in discrete mathematics. Its objective is to 
enhance the ability of students to understand and to perform combinatorial computa­
tions, as they might arise in actual applications, and to use combinatorial models. It is 
intended for an upper-level course in a department of mathematics, computer science, or 
operations research, with the expectation of enrollment also of students in engineering, 
the sciences, and the social sciences. It is also suitable for self-study and reference by 
working professionals, especially in computer-related applications, and in other areas as 
well.

A challenge and opportunity in offering such a course is that there are, by now, 
dozens of different science and engineering courses that depend largely on combinatorial 
mathematics (sometimes blended with some calculus). Most of these courses have, of 
necessity, been introducing special instances of mathematical methods. In a computer 
science department alone, the courses on analysis of algorithms, computational complex­
ity, computational learning, cryptography, spoken language processing, computational 
genomics, machine learning, and performance evaluation may all make substantial use 
of combinatorial methods and models beyond the level of a standard introductory dis­
crete math course. Combinatorial methods courses have arisen and their enrollments 
have prospered, because of the benefit to students of prior exposure to systematic de­
velopment of combinatorial methods, before encountering the specialized instances in 
applications.

Another challenge in offering a sequel to discrete mathematics designed for students 
with diverse academic backgrounds is that a lower-level discrete mathematics course is 
not necessarily required of students outside of computer science departments. Beyond 
calculus, such students have commonly taken elementary probability and linear algebra, 
whose prior study is quite good preparation for the study of combinatorial methods.

The elective combinatorial methods course that I teach every year in the Computer 
Science Department at Columbia University is taken by a mix of graduate students and 
upper-level undergraduates, students whose common ground is that they like mathe­
matics. Most of them are seeking their degrees in various applied disciplines, and a few 
are mathematics majors. This book is written for such heterogeneous audiences.

Selection and Ordering of Contents

The selection of content for this textbook prioritizes breadth of technique and 
applicability. Chapters 0 through 6 , which are mostly concerned with counting methods, 
can provide many combinatorial methods that students are most likely to need in future 
work within a single one-semester course, or within its self-taught equivalent. The four 
later chapters are a good basis for an honors-level second semester on graph theory and 
combinatorial designs. The entire text is woven into a unified stream of exposition, in 
which the chapters follow naturally upon each other. (My choice of the Hicks painting 
for the cover whimsically reflects my perception that the different topics presented blend 
well.) The most important methods appear repeatedly, underscoring their generality.

In my very fast-paced combinatorial methods course at Columbia, where I also 
teach a course on graph theory every year, I cover most of the content of this present 
book, except Chapters 7 and 8 , which briefly survey most of the main topics in graph

xiii

  



x iv Preface

theory. Their inclusion in the book permits an instructor to craft a course that meshes 
well with the curricular needs of his or her department, whatever other courses it offers.

A somewhat similar selection and a roughly comparable quantity of content are 
offered in Liu’s classic Introduction to Combinatorial Mathematics and also in various 
more recent texts on combinatorial methods for applications, all widely used, including 
Applied Combinatorics by Tucker, Applied Combinatorics by Roberts and Tesman, and 
Introductory Combinatorics by Brualdi. Some practical number theory is included in 
Concrete Mathematics by Graham, Knuth, and Patashnik, which offers a somewhat dif­
ferent eclectic combination from the others, with a distinguishing tilt toward continuous

The ordering of content here also differs from that of more formal books, in the 
sense that several topics get a preliminary preview and other topics are developed or first 
presented shortly before their application, rather than strictly according to conventional 
mathematical taxonomy. For instance, much of the development of exponential gener­
ating functions is deferred until they are applied to the solution of the derangement 
recurrence. Most conspicuously, a section on the partitions of integers, a celebrated 
topic of number theory, appears in the midst of Chapter 9 on graph enumeration, just 
in time to assist in the calculation of cycle indexes for permutation groups.

How to Use This Book

Chapter 0 introduces combinatorics and the rest of the book. Beyond providing 
a comprehensive foundation for the systematic treatment that follows in subsequent 
chapters, it reviews a few topics that students may have seen already in a discrete math 
course and fills in some possible gaps of coverage. The pace at which it can be covered 
depends entirely on the background and mathematical sophistication of the students. 
Some of the exercises are intentionally designed for students whose background for this 
course is incomplete.

Past students commonly report to me after completing my course that they have 
come to use methods in Chapters 1 to 6  “all the time” in their professional work or in 
other courses. These chapters are on sequences, solving recurrences, evaluating sum­
mation expressions, binomial coefficients, partitions and permutations, and on integer 
methods. The techniques they present have great generality.

The level of development provided by these six chapters goes well beyond whatever 
prior exposure to their topics that students may have had in a discrete math course. 
To the extent that a student has seen some of the methods before, they may have 
been presented elsewhere more as a single-purpose “trick” , whereas here they emerge as 
systematic approaches, suitable for many possible uses. Moreover, many of the methods 
are used not only in the chapters where introduced, but also in later chapters. The intent 
is to produce mathematical proficiency of great use in applications, without duplication

Chapters 7 to 9 are designed to facilitate an optional graph theory component 
within a combinatorial methods course or a combination course. Thus, Chapters 7 and

gave little attention to isomorphism and automorphism might read the first four sections 
o f Chapter 7 before reading Chapter 9, but Chapter 9 does not otherwise depend on 
Chapters 7 and 8 .

The last two chapters use computational methods from higher algebra, which is 
what I like to present at the end of my own course. Chapter 9 is concerned with
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using automorphism groups in algebraic counting methods, and Chapter 10 is about 
combinatorial designs. Since very few students except ma th majors have previously 
taken a course in abstract algebra, there is also included within the Appendix enough 
algebraic background to make these chapters readily accessible. To my delight, students 
who take my combinatorial methods course have often been inspired to later take a full 
course in higher algebra. 

S o m e Features 

The stylistic features of this book are similar to those that Jay Yellen and I used 
in Graph Theory and Its Applications. 

• Drawings. There are more than 300 drawings, which serve as an aid to building 
intuition. 

• Exercises. There are about 1400 exercises. The emphasis is on applying the meth­
ods taught within the body of the text, and the easiest are routine drill. Some more 
difficult problems require some challenging problem-solving. This book is far more 
concerned with using powerful methods than with deriving theorems. The proofs 
that are expected in the exercises are typically quite short. 

• Computational Engine. The author 's website at www.graphtheory.com contains a 
computat ional engine to help with calculations for some of the exercises. 

• Solutions and Hints. Each exercise marked with a superscript has a solution or 
hint appearing in the back of the book. Some of the solutions are detailed, and 
others are brief. Students may find that a detailed solution of an exercise within a 
grouping is of considerable help in solving other exercises in the same grouping. 

• Algorithms. Algorithms are presented in a reader-friendly pseudocode, devoid of 
the details of computer implementation. 

W e b s i t e s 

Suggestions and comments from readers are invited. They may be sent to the 
author 's website at www.graphtheory.com. Thanks mostly to the efforts of my col­
league Dan Sanders and my webmaster Aaron Gross, this website also maintains ex­
tensive graph theory informational resources. The general website for CRC Press is 
www. crcpress. com. 

In advance, I thank my students, colleagues, and other readers for notifying me 
of any errors that they may find. I will post the corrections to all known errors at 
www.graphtheory.com. 

A c k n o w l e d g m e n t s 

Some readers of preliminary drafts of the manuscript gave me many helpful sug­
gestions regarding the mathematical content and presentation. In particular, Mehvish 
Poshni, Imran Khan, and Ken Rosen are to be credited for numerous improvements 
throughout the manuscript. Some of the exercises appearing here were suggested by 
Scott Brinker when he took my combinatorial methods course at Columbia in the fall 
of 2003. The computat ional engine was implemented by Yianni Alexander. Strategic 
suggestions on the organization came from Jay Yellen. Special thanks to Ward Klein 
for his comprehensive assistance, including an extensive review of the manuscript. 

Jona than Gross 
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Chapter

Introduction to Combinatorics

0.1 Objectives of Combinatorics 
0.2 Ordering and Selection 
0.3 Some Rules for Counting 

0.4 Counting Selections 

0.5 Permutations 

0.6 Graphs
0.7 Number-Theoretic Operations 

0.8 Combinatorial Designs

Combinatorial mathematics or, more briefly, combinatorics, refers to the body 
o f mathematics developed for solving problems concerned with discrete sets, by 
which we mean finite and countably infinite sets, and with the functions to and 
from such sets. By way of contrast, the infinitessimal calculus (in the usual sense of 
differentiating and integrating) is concerned with continuous functions on the real 
line, which involves an uncountably infinite set of numbers. Calculus and all its 
generalizations are collectively called continuous mathematics.

Most combinatorics problems have one of three fundamental objectives: count­
ing or calculating a sum, constructing a configuration involving two or more discrete 
sets (usually two) —  subject to a list of constraints, or optimization, i.e., either 
finding the extreme values of a function or designing something with an optimal 
characteristic of some kind. The first section of this introductory chapter presents 
examples of problems of each type. The rest of the chapter surveys a few intro­
ductory methods for solving such problems and describes additional combinatorial 
problems. In so doing, it also provides a quick look-ahead at some concepts that are 
useful in subsequent chapters. Various details are deferred to those later chapters, 
as are most of the relevant exercises.

Some parts of mathematics, including probability, geometry, and algebra, have 
combinatorial aspects and continuous aspects as well. Moreover, the methods of 
combinatorial mathematics often have analogies in continuous mathematics.

1



2 Chapter 0 Introduction to Combinatorics

0.1 OBJECTIVES OF COMBINATORICS

This initial section elaborates on the three fundamental objectives of combi­
natorial analysis: counting, constructing a configuration, and optimization. The 
six chapters immediately subsequent are largely concerned with counting and the 
final four with configurations (especially graphs). Optimization issues are sprin­
kled throughout. Combinatorial problems are pursued by thousands of active re­

optimization are vast areas, each with many distinct branches. The comprehen­
sive approach to introductory combinatorics taken in this text emphasizes topics of 
frequent use throughout mathematics and its applications.

The dramatic rise in the development of combinatorial mathematics in the 
present era largely stems from the fact that in a computer, in graphic imaging, 
and in many forms of data transmission and communication, information is rep­
resented by discrete bits, thereby necessitating combinatorial models. Information 
science and information engineering now stand side-by-side in applicability and pub­
lic familiarity with physical science and physical engineering, for which continuous 
models are more common.

Combinatorial Enumeration
Combinatorial enumeration is concerned with the theory and methods of dis­

crete measurement. Summing the values of a function over a finite or countable 
set is the prototypical discrete measurement, in which sense it is analogous to the 
continuous measurement of calculating the area of a region in the plane between 
the *-axis and a curve. The word counting is frequently used by combinatorialists 
as a minimalist synonym for combinatorial enumeration.

Most solutions to combinatorial enumeration problems depend on a relatively 
small number of well-understood methods for discrete summation. Applying these 
methods effectively requires expertise at transformation of enumeration problems 
into forms directly amenable to these methods. This is analogous to the kind of 
expertise in applying the infinitessimal calculus in which complicated-looking inte­
grals are transformed into expressions that yield to a relatively few well-understood 
integration formulas.

Example 0.1.1: Our first example is concerned with evaluating the following 
sum:

1 + 
2 + 1 + 
3 +  2 + 1  +

n +  (n — 1 ) +  • • • + 1

  



Section 0.1 Objectives of Combinatorics 3 

For n = 12, this sum would be the number of gifts presented by "my true love" in 
a well-known English holiday song,* and the value of the sum is 364. One might 
readily calculate that the sum of the j t h row is 

by observing that the average summand in this row is ^— and that there are j 

summands. (This approach to summing consecutive integers is ascribed to Gauss,T 
at an early age.) Thus, the value of the original sum equals 

This latter sum rather neatly fits a s tandard form of what is called the finite calculus 
(see, especially, §3.4), and it can be evaluated as follows: 

For instance, for n = 12, the value is 364. 

Example 0.1.1 could be generalized to summing the values of an arbitrary 
polynomial over a range of consecutive integers. Such summation problems arise 
frequently in the analysis of algorithms, in which the t ime to execute the body of a 
loop might be roughly proportional to a polynomial-valued function. 

E x a m p l e 0.1.2: To evaluate the sum 

we might use Stirling numbers (see §1.6, §5.1, and §5.2) to transform it into a sum 
of falling powers (see §1.5 and §3.4), for which there are simple formulas. In fact, we 
have additional methods for summing polynomials, such as perturbation (see §3.2). 

In later sections of this chapter, we will see various additional kinds of counting 
problems. 

Incidence Structures 
An incidence structure is a combinatorial configuration that involves two or 

more discrete sets. Most commonly, there are exactly two sets — a set P of points 

The Twelve Days of Christmas, orignally a children's rhyme, first published around 1780, 

according to Wíkípedía. 

' For instance, see www.mathnotes.com/aw-gauss.html. www.mathnotes.com/aw-gauss.html. 
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4 Chapter 0 Introduction to Combinatorics 

and a set L of lines — and an incidence function i. : P x L —'t Z9 • In this most 
common variety, the set L may optionally be represented as a family of subsets 
of P . Some types of combinatorial configuration have additional structure on one 
or both of the discrete sets. 

E x a m p l e 0.1.3: An abstract model for what is called a simple graph is an in­
cidence structure in which every line has exactly two points and in which no two 
lines have the same two points. In a spatial model, the more intuitive model for 
a graph, each point of the graph is called a vertex and identified, with a point in a. 
Euclidean space (usually the plane or 3-space), and each line of the graph is called 
an edge. An edge is represented spatially by an arc joining its two points, which 
are called the endpoints of tha t edge. They a.Te said to be adjacent vertices. Figure 
0.1.1 provides two drawings of a. spatial model for the graph whose abstract model 
is 

p = { 1 , 2, ;i 4, r>} 

L = {12, 14, 15, 23, 25, 45} 

Figure 0.1.1 T w o drawings of a s i m p l e graph . 

There should be no expectation whatever that a line of a combinatorial configuration 
is represented by a straight-line of a drawing. 

Practitioners of graph theory (see Chapters 7, 8, and 9) regard graphs as so 
interesting in themselves that there is no extrinsic need to justify their study. The 
same could be said for almost every area of mathematics its practitioners are 
motivated more by their own intellectual curiosity than by possible applications. 
Nonetheless, what has made graph theory of particular importance is its many 
applications. Just for a start , graphs serve as models for molecules in physical 
chemistry and biology, for computer networks, for computer flow diagrams, for 
electronic networks, for networks of roads in civil engineering, for genealogy, and 
for social organization. Both for intrinsic interest and for their value in applications, 
graph theorists have solved many problems of an enumerative character. 

E x a m p l e 0.1.4: While studying organic chemistry in lhe 19 century, Arthur 
Cay ley encountered the problem of counting the number of different hydrocarbon 
isomers with the chemical formula CnH2n+2- The two isomers for n = 4, called 
butane and isobutane, are illustrated in Figure 0.1.2. Graph enumeration is the 
principal concern of Chapter 9. 
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H H 

C  C — H 

H 

C — H 

H
Figure 0.1.2 Butane and isobutane.

Optimization

In the present context, we mean by combinatorial optimization any discrete 
problem concerned with finding a maximum or a minimum. In some other contexts, 
the same phrase, combinatorial optimization, has a special meaning of finding the 
maximum value of a function on a region of a Euclidean space or of functions that 
could possibly be so represented. Even for the case in which the function is linear, 
there is an entire discipline and many books.

Example 0.1.5: For instance, if one is selecting subsets of size k from a set of 
size n, one may wish to know the value of k for which the number of different 
subsets is greatest. Such a problem is clearly analogous to the problem of finding 
the maximum of a continuous function on a real interval, which is solved in calculus 
by finding the zeros of the derivative function, a technique of extensive generality. 
This combinatorial problem is solved in §1.5 by showing that the number of subsets 
first rises with increasing value of k and then falls, which follows the same pattern 
of reasoning as when optimizing a continuous function. However, the combinatorial 
technique needed to establish rising and falling of a discrete function is usually less 
formulaic than the maximizing and minimizing of the differential calculus, with 
something more of an ad hoc character.

Example 0.1.6: In extremal graph theory, the standard type of problem is to 
determine the maximum number of edges that a simple graph G with n vertices 
may have before some property necessarily holds. For instance, how many edges 
may it have before there must be a set of three mutually adjacent vertices? The 
following solution of this problem, due to Paul Turan, appears in §8.4. (The notation 
L̂ J means the largest integer less than or equal to x .)

Section 0.1 Objectives of Combinatorics

An example of the more restricted meaning of combinatorial optimization is 
the maximization of network flows, as described in §8 .6 .
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0.2 ORDERING AND SELECTION

We begin with the analysis and solution of a sample counting problem involving 
ordering and selection, which are both fundamental ideas in combinatorics that 
occur throughout. The example is then generalized, and some standard artifacts of 
combinatorial analysis are introduced.

A Counting Problem

d e f i n i t i o n :  An o rd er in g  o f  a s e t  S of n objects is a bijection from the set

{ 1, 2, . . . ,  n }

to the set S. It serves as a formal model for an arrangement of the n objects into 
a row.

DEFINITION: An (u n o rd ered ) se lec tio n  from  a s e t  S is a subset of S.

E xam ple  0 .2.1: In how many ways is it possible to arrange two of the letters

A B O D E

0 1 2  3

into a row of four characters, such that no two digits are adjacent? For instance, 
the arrangement C'3A2 meets that requirement.
It is not difficult to determine (e.g., by listing all possibilities, if no shorter method 
comes to mind) that there are 1 0  possible selections of two of the five letters and 6  

possible selections of two of the four digits. Thus, there are 60 possible selections of 
a combination of four symbols that meets the given requirement. An arrangements 
o f four such symbols into a row meets the requirement if it has any of the three 
forms

LD LD  D LD L  and D LLD

where D  is a digit and L is a letter. Since there are four ways that two distinct 
letters and two distinct digits could be placed within one of the three forms, it 
follows that there are 12 (=  4 x 3) ways that each of the 60 suitable selections of 
four symbols could be arranged so as to meet the requirement. Thus, the answer 
to the stated problem is 720 (=  60 x 12).

Some of the calculations in the foregoing analysis are based on a well-established 
counting rule, called the Rule o f Product, to be presented in §0.3. For the time being, 
it is sufficient either to confirm the assertions of this section with ad hoc methods 
or to defer checking them until after reading §0.3.
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Sequences and Generating Functions
A somewhat more general version of Example 0.2.1 supposes that x n is the 

number of ways to form an arrangement of four symbols when there are n letters, 
but still only four digits. We have just calculated that * 5  =  720. Similar analysis 
yields the values

* o =  0 * i =  0 X’z =  72 X3  =  216 X4  =  432 * 5  =  720 . . .

The sequence over all non-negative integers n is called a counting sequence for this 
problem. Sometimes a sequence is encoded by multiplying its entries

9o 9i 92 • • •

by ascending powers of z (or of some other indeterminate) and summed into the 
form

0
9 0 +  9 iz +  92^ +  • • •

For this general version of Example 0.2.1, we would obtain

0 +  Oz +  72z2 +  216 z3  +  432z4 +  720z5 +  •••
=  72 z 2 +  216z3 +  432z4 +  720z5 +  • • •

Moreover, the resulting infinite polynomial often has an equivalent closed form, 
called a generating function.

Example 0.2.2: The closed form

1

1  -  2 z

is equivalent to the infinite polynomial

1 +  2z +  4z2 +  8 z3  +  • • •

Thus, it is a generating function for the sequence of powers of 2. As a generating 
function, such an infinite polynomial is regarded either as an encoding of its sequence 
o f coefficients or as an algebraic expression. In this context, the issue of convergence 
is rarely relevant.

Generating functions are the main topic of §1.7. It is described there how they 
are used to solve various kinds of counting problems.

Recurrences
A sequence can be specified by giving some of its initial values and a recurrence 

that says how each later entry can be calculated from earlier entries.

Example 0.2.3: Famously, the recurrence

f n  =  f n  — 1 +  f n  — 2 for n >  2

  



gives the Fibonacci sequence, whose first few entries are as follows:

8 Chapter 0 Introduction to Combinatorics

n 0 1  2 3 4 5 6 7 8 9 •••

f n 0 1  1 2 3 5 8 13 2 1 34 •••

Generating functions are used in Chapter 2 to derive the formula

Such an arithmetic expression, whose evaluation can yield every value of a counting 
sequence, is called a c lo sed  form u la  for that sequence. A closed formula for a re­
currence is called a solution to the recurrence, in the same sense that a differentiable 
function might be a solution to a differential equation.

Combination Coefficients
The number of possible selections a subset of size k from a set of size n is 

commonly expressed when speaking as “n-choose-fc” and denoted in writing

n 
k

which is called a combination coefficient. Its value is given by this equation

' II \ n I
Kk k\ (n — k)\

(0 .2 .1)

which is derived in §0.4. Its alternative name of binomial coefficient is justified in 
Chapter 1. For the time being, we observe that

i(n — 1)
2! (n — 2)!

We may also perceive how combination coefficients might be used in solving still 
more generalized versions of Example 0.2.3.

Example 0.2.4: The sequence of combination coefficients

has the generating function

(1 — x )3

To verify this observation, one might expand the denominator and divide it into 
the numerator, using the long division process on the two polynomials, which is 
described in more detail in §1.7.
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0.3 SOME RULES FOR COUNTING

Having meaningful names for concepts, even for very simple concepts, makes 
it possible to state clearly and concisely what method is being used. Moreover, 
knowing a name for a concept makes it easier to recognize an instance of a method 
that it is not explicitly identified. This section introduces the names of a few 
principles whose applications are ubiquitous in combinatorial analysis. It also offers 
a glimpse at the calculus o f finite sums, which is the discrete counterpart to the 
integral calculus.

NOTATION: The cardinality of a set U is denoted \U\. The most common binary 
operations on two sets U and V  are denoted

U U V  for union
U fl V  for intersection
U — V  for difference, and
U x V  for cartesian product

Rules of Sum and Product
C. L. (Dave) Liu [Liul968], then a professor of Electrical Engineering at M.I.T., 

gave popularity to now-standard names of two principles that relate elementary 
arithmetic operations to the counting of set unions and set products. They are 
frequently used in tandem.

DEFINITION: R u le  o f  Sum : Let U and V  be disjoint sets. Then 

DEFINITION: R u le  o f  P ro d u ct : Let U and V  be sets. Then

Example 0.3.1: The license plate numbers in a small state are five characters 
long. They must begin with three letters, but the other two characters may be 
letters or digits. According to the Rule of Product, there are 262 ways that the 4th 
and 5th characters may both be letters, 26 • 10 ways that they may be, respectively, 
a letter and a digit, 1 0  • 26 ways they may be a digit and a letter, and 1 0 2 ways they 
may both be digits. By rule of sum there are

262 +  26 • 10 +  10 • 26 +  102 =  1296

are, by rule of product, 263 possible combinations for the leading three letters, the 
total number of possibilities is

263 •1296
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Sometimes the rule of product is applied in circumstances where a plausible 
time-sequence is imposed on the order of selection of members from the sets, without

Example 0.3.2: Three six-sided dice are rolled. The dice are colored blue, red, 
and yellow. In how many ways can the outcome be three different numbers on the 
three dice? To solve this problem, we observe that whichever of the 6  possibilities 
occurs for the blue die, there remain 5 for the red die, and then 4 for the yellow die. 
Thus, the total number of possibilities is

Another counting rule, similar in simplicity to Liu’s two rules, applies to count­
ing the number of cells in a partition o f a set.

DEFINITION: A p a r titio n  o f a set U is a collection of mutually exclusive subsets

called cells o f  th e  p a r tition , whose union is U .

DEFINITION: R u le  o f  Q u o tien t: Let V  be a partition of a set U into cells, each of 
the same cardinality k. Then the number of cells equals the quotient

Example 0.3.3: Figure 0.3.1 shows 20 objects partitioned into cells of four each 
In accordance with the Rule of Quotient, the number of cells is

Figure 0.3.1 Partition of 20 objects into cells of four each.

Example 0.3.2, revisited: There are 6  =  3! ways that any given combination of 
three distinct numbers could occur on the three dice. If the set of all instances of 
three different numbers for the three dice is partitioned into cells so that each cell 
contains all instances of a given combination of three distinct numbers, then each 
cell is of cardinality 6 . It follows that the total number of possible combinations of 
three numbers, ignoring which occurs on which die, is

6 - 5 - 4

Rule of Quotient

U i , . . . ,U p

k

6 - 5 - 4
6

20
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The Rule of Quotient cannot be applied when the cells of the partition are of 
different sizes.

Example 0.3.4: Suppose that each of the squares of a 3 x 3 tic-tac-toe board may 
be filled with an “X ” or an “O” , or left blank, without consideration of what might 
arise when playing the game. Since there are three possibilities for each of the nine 
squares, the total number of possible configurations is 39. It is natural to regard 
two such configurations as equivalent if one could be obtained from the other by a 
rotation or a reflection. The equivalence classes are not all o f the same size. For 
instance, Figure 0.3.2 illustrates an equivalence class of size four.

Figure 0.3.2 Four equivalent tic-tac-toe configurations.

On the other hand, the configurations that are all blank, all “X ” , or all “O” are in 
equivalence classes of size one. There are also some equivalence classes of sizes two 
and eight. Thus, the Rule of Quotient cannot be applied.

Counting equivalence classes that are defined by symmetries is frequently ac­
complished with the aid of Burnside-Polya counting. This method of counting is 
developed in Chapter 9.

When to Subtract
There are some common circumstances when calculating the cardinality of a 

set is achieved using a subtraction operation. One is when the set X  to be counted 
is a subset of a larger set U and it looks easier to calculate the sizes of U and of the 
complement U — X  than the size of the set X  directly.

Example 0.3.5: To count the number of 77-digit base-ten numerals that contain 
at least one odd numeral, we observe that there are 1 0 n 6 -digit base-ten numerals in 
all, according to the Rule of Product. Of these, since there are five even digits, 5n 
contain only even digits, also by the Rule of Product. Thus, the number of n-digit 
base-ten numerals with at least one odd digit is

10n _  5n

Another circumstance where subtraction is used is in calculating the size of 
a union of overlapping subsets. Adding the subset sizes overcounts objects that 
appear in more than one of the subsets, so the overcount must be subtracted.

Example 0.3.6: To count the integers from 1 to 990 that are divisible either by
3 or 5, we first calculate that within this range, there are
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that are divisible by 3 and
990

=  198

that are divisible by 5. However, the sum of these two quotient would count each 
of the

990 =  eg

integers that are divisible both by 3 and by 5 two times each. Thus, the total 
number of integers that are divisible either by 3 or by 5 must be

330 +  198 -  6 6  =  462

Reals to Integers
Three standard functions for converting a real number into a nearby integer are 

especially convenient when one wants to apply integer methods. Sometimes they 
are intrinsic to a formula, for instance in a generalization of Example 0.3.6.

DEFINITION: The floor o f a rea l n u m b er  x is the 
than x. It is denoted [x\.

DEFINITION: The ceilin g  o f  a rea l n u m b er  x is the smallest integer that is not 
smaller than x. It is denoted \x],

DEFINITION: The n ea res t in te g e r  to a real number x is

' [x\ if x — [x\ < l.
2 ’

[x\

M
if x — [x\ =  | and [x\ is even; 
if x — [x\ >
if x — [x\ =  | and \x~\ is even

This table gives a few values of the floor function, the ceilir 
round function.

[nj [n] round (n)

function, and the

4.8
4.5
3.5 
3.2

- 2.2

-2 .5
-2 .9
-3 .5

4
4
3
3

- 3
- 3
- 3

5
5
4
4

- 2
- 2
- 2
- 3

5
4
4
3

- 2
- 2

- 3

Example 0.3.6, continued: In general, the number of positive integers less than 
or equal to n that are divisible by 3 or by 5 is

15
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Pigeonhole Principle
The imagery of another elementary counting principle is that a flock of pigeons 

is flying in a formation that does not lend itself easily to counting the pigeons. 
Fortunately, however, the pigeons come to roost in a set of pigeonholes that is more 
easily counted, such that there is exactly one pigeon to each pigeonhole. Then the 
fact that the number of pigeons equals the number of pigeonholes provides a way 
to count the pigeons. Figure 0.3.3 illustrates this imagery.

Figure 0.3.3 Flock of pigeons neatly fills the

One widely cited informal version of the pigeonhole principle simply says that if 
there are more pigeons than pigeonholes, then there exists a pigeonhole with more 
than one pigeon. A complete formal statement of the principle is as follows. It can 
be proved by a straightforward induction argument. The informal version can be 
derived from it.

domain and finite codomain. Let any two of the following three conditions hold:

1 . /  is one-to-one.
2 . /  is onto.

Then the third condition also holds.

Example 0.3.7: In any collection of 13 people, there must be two of them who 
were born in the same month. In this elementary example, the people are the 
pigeons, and the months are the pigeonholes.

Example 0.3.8: If a baseball team scores 12 runs in a 9-inning game, then there 
is an inning in which they scored at least two runs.

Applications of the Pigeonhole Principle are often a bit tricky. Consider the follow­
ing example.

Example 0.3.9: Suppose there are ten pairs of socks, each pair a different color 
and that the socks are tossed together in a pile. It becomes necessary to pack for a 
business trip in total darkness, with a meeting in which it is essential to wear two 
socks of the same color. What is the minimum number of socks one must pack to 
be sure to have a matched pair?
In this case, the pigeons are socks and the pigeonholes are the 10 different colors.
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Although ten pigeons might roost one per hole, this would not be possible for 11 
pigeons. Thus, 11 is the minimum number of socks that guarantees the existence 
o f a match among them.

A generalized version of the Pigeonhole Principle asserts that when there are 
p pigeons and h pigeonholes, there is a pigeonhole with at least

Example 0.3.10: An equestrian asks her lawyer to write a will bequeathing her 
17 horses to five beloved nieces and nephews. Then there exists a beneficiary among 
them who will get at least four horses.

Complex summation expressions tend to arise quite frequently in problems 
concerned with counting. Some of the most useful methods for evaluating finite

ing definition is a preliminary step to expressing an analogous formula for finite 
summations.

DEFINITION: The r th fa lling p o w er  o f a real number x is the product

pigeons

Evaluating Sums

r factors

n
(0.3.1)

x - 2 ) 

: 1206 - =  6 - 5 - 4
3 2 - 3  - 8  _  48 

5 ' ~5 5”  ~~ 125

  



Section 0.3 Some Rules for Counting 15

The formula for summing a falling-power monomial is

^  k r + 1  |6+1
r +  1

(0.3.2)

Example 0.3.12: We apply formula (0.3.2) for exponent r =  2 and limits of 
summation a =  3 and b =  5.

=  3 - +  4 - +  5-

kz
3

=  6  +  12 +  20 =  38 

_  6 -  3 -_ y _ y

Summations of ordinary powers can be achieved via a preliminary conversion to

The coefficients used in the conversion, which are called Stirling numbers, are de­
scribed in §1.6 and developed in much greater detail in Chapter 5.

Empty Sums and Empty Products
In manipulating expressions with iterated sums and products, such as

xj or JJ  Xj
Xj£S Xj£S

we sometimes encounter a sum or product over the empty set 0 .

DEFINITION: A sum over an empty set of numbers is called an em p ty sum. Its 
value is taken to be 0 , the additive identity of the number system.

DEFINITION: A product over an empty set of numbers is called an em p ty product. 
Its value is taken to be 1, the multiplicative identity of the number system.

Multisets
One of the many applications of the Rule of Quotient is to counting arrange­

ments of multisets. Informally, a multiset is often described as a “set in which the 
same element may occur more than once” .

DEFINITION: A multiset is a pair (S, t) in which S is a set and t : S —>■ ZT1" is a 
function that assigns to each element s E S a number t(s) called its multiplicity. 
(The Greek letter iota is a mnemonic for instances.)
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Example 0.3.13: The letters of the word SYZYGY form a multiset in which the 
letter Y  occurs three times, and each of the other three letters occurs once. If the 
six letters were all different, then the number of ways of arranging them into a 
row of six would be 6 ! =  720. We may model this by artificially attaching distinct 
subscripts to each of the copies of the letter Y , so that they become Yi, Y2 , and Y3 . 
We regard two arrangements of the six elements of the resulting set as equivalent if 
the positions of the letters G, S, and Z  are the same in both arrangements. There 
are then 6  =  3! equivalent arrangements in each equivalence class. By the Rule of 
Quotient, the number of equivalence classes is

6 !

3! =  120

More generally, the Rule of Quotient implies that the number of ways to arrange 
the elements of a finite multiset (S , t) is

( E  , e s *00)!  
r U s M ® )1)

DEFINITION: The c a r d i n a l i t y  o f  a  m u l t i s e t  (S , t) is taken to be the sum

s£S

of the multiplicities of its elements. It is denoted |(S', t)|.

A coup le  o f  add itiona l defin itions are helpful w hen w orking w ith  m ultisets. 

DEFINITION: A s u b m u l t i s e t  o f  a  m u l t i s e t  (S , is) is a m ultiset (T, it ) such that

T  C S and

We shall see in §1.7 how to use generating functions to count not only the 
number of ways to select k elements from a given multiset, for all possible values of 
k, but also to count the number of strings of length k, taken from a given multiset 
of letters.

Example 0.3.13, continued: There are seven possible choices of three letters 
from the word SYZYGY. There are 34 possible strings of length 3. For the time 
being this can be confirmed using Rule of Sum and Rule of Product.

DEFINITION: The r e s t r i c t i o n  o f  a  m u l t i s e t  (S , 1 ) to a subdomain T  C S is the 
submultiset (T, it ) such that

NOTATION: In context, the m u l t i p l i c i t y  f u n c t i o n  o f  t h e  r e s t r i c t i o n  of a multiset 
(S, 1 ) to a subdomain T  C S is simply denoted t, since its values on the elements 
of T  are the same as when they are regarded as elements of S.
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EXERCISES for Section 0.3

0.3.1 Calculate the number of ways to arrange three 0-bits and four 1-bits into 
a binary string.

0.3.2 Calculate the number of functions from a set of d elements to a set of r 
elements.
0.3.3 Calculate the number of one-to-one functions from a set of d elements to 
a set of r elements.
0.3.4 How many numbers between 1 and n, inclusive, are divisible either by 2 
or by 7?
0.3.5 How many numbers between 1 and n, inclusive, are divisible either by 6  

or by 1 0 ?

In each o f the Exercises 0.3.6 through 0.3.9, compare the two floor expressions and 
prove that one o f them is less than or equal to the other, for all real x and y.

0.3.6s [x +  y\ and [x\ +  [y\ 0.3.7 [x — y\ and [x\ — [y\

0.3.8 [x 2\ and [x \ 2 0.3.9 \Zl*2J and [x\

In each o f the Exercises 0.3.10 through 0.3.15, a multiset is represented by a given 
string o f letters. Calculate the number o f ways to arrange the letters o f the multiset 
into a string.

0.3.10s B A N D A N A  0.3.11 F O R E IG N E R

0.3.12 H O R S E R A D IS H  0.3.13 C O N S T IT U T IO N

0.3.14 M IS S IS S IP P I  0.3.15 W O O LL O O M O O LO O

Each o f the Exercises 0.3.16 through 0.3.19 presents a possible application o f the 
Pigeonhole Principle. Identify pigeons and pigeonholes, and calculate the answer.

0.3.16s What is the minimum number of students in a class such that at least two 
of them were surely born on the same day of the week?
0.3.17 Suppose it is known that the maximum number of hairs on a person’s head 
is 500,000. Show that a city with 8,000,000 people must have two persons with the 
same number of hairs on their heads.
0.3.18 How many times must two six-sided dice be rolled so it is certain that two 
of the outcomes will have the same sum?
0.3.19 What is the maximum length of a binary string such that no two of the 
substrings of length three are the same? (Optional: Give an example of a maximum-

0.3.20 List the seven possible choices of three of the letters from SYZYGY.
0.3.21 Use the Rule of Product and the Rule of Sum to verify that there are 34 
possible 3-letter strings that can be formed from the word SYZYGY, if no letter 
may be used more often than its number of occurrences in that word.
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0.4 COUNTING SELECTIONS

This section gives models for several different kinds of selection from a set S 
and methods for counting the number of possible selections. As defined in §0.2, an 
unordered selection from S is simply a subset of S. An ordered selection assigns 
an order to the elements of the selected subset. Some other models permit repeti­
tion. This discussion of selection includes the generalization to multi-selection, in 
which several disjoint subsets may be selected from the set S. In a multi-selection, 
sometimes the subsets are construed to be labeled, which serves to distinguish two 
subsets of the same size.

In the course of this exposition, the usefulness of constructs such as falling powers 
and empty products becomes evident.

DEFINITION: An ordered se lec tio n  o f k objects from a set of n objects is a function 
from the set

TERMINOLOGY NOTE: An ordered selection is sometimes elsewhere called a per-

permutation is a bijection of a set to itself. Thus, here a permutation is the opera­
tion itself, rather than the resulting arrangement. See §0.5.

Proposition 0.4.1. Let P (n , k) he the number o f  possible ordered selections o f  k 
objects from  a set S o f  n objects. Then

Proof: By induction on k.

BASIS: For k =  0, the only possible ordered selection is the empty list. Thus,

IND STEP: After the first k objects have already been selected from S, the number 
o f remaining objects from which to choose the k +  1st object is n — k. Thus,

Ordered Selections

n, k) (0.4.1)

of
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E xam ple  0 .1.1, rev is ited : Each of the ways to arrange two of the letters

A B O D E

8  0 1 2  3

into one of the forms

LD LD  D LD L  and D LLD

may be regarded as a choice of one of the three forms, followed by an ordered 
selection of two letters from the set of five —  to be placed into the two positions 
for letters in the chosen form, in order consistent with the order of selection —  
followed by an ordered selection of two digits from the set of four —  to be placed 
into the two positions for digits in the chosen form, in order consistent with the 
order of selection. For instance, the arrangement C3A2 corresponds to the choice 
o f the form LD LD , followed by the ordered selections C A  and 32.
Since the number of forms is 3, the number of ordered selections of two letters is 
5-, and the number of ordered selections of digits is 4-, it follows from the Rule of 
Product that the total number of arrangements is

3 • 5-• 4 - =  =  3 - 2 0 - 1 2  =  720

Unordered Selections
To evaluate (^), which counts unordered selections, we regard the unordered 

selections as equivalence classes of ordered selections, in which two ordered selections 
o f k objects are considered to be equivalent if they contain the exact same k objects.

P ro p o s it io n  0 .4.2. The number o f  unordered selections o f  k objects from  a set S 
o f  n objects is given by the rule

ri-
kl k\ (n — k)\

(0.4.2)

P ro o f: By Proposition 0.4.1, the number of ordered selections of k objects from S 
is n-. Since the number of orderings of k objects is k\, there are k\ ordered selections 
corresponding to each unordered selection. The conclusion follows from the Rule of 
Quotient. <C>

Selections with Repetitions Allowed
The number of ordered selections of k objects from a set S of n objects with 

unlimited repetition allowed is easily determined.

DEFINITION: An o rd ered  se lec tio n  w ith  u n lim ited  r e p e t it io n  o f k objects from 
a set S of size n is a finite sequence

& 1  7 ^ 2  j ' ' ' 1 k

of k objects, each of which is an element of S.
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Proposition 0.4.3. The number o f  ordered selections o f  k objects from  a set S o f  
n objects is nk.

Proof: This is easily proved by an induction argument, involving the Rule of 
Product. <C>

Counting unordered selection with unlimited repetitions allowed seems quite 
difficult, if approached directly.

DEFINITION: An unordered selection with unlimited repetition  of k objects 
from a set S o f size n is a multiset (S , t) of cardinality k, with domain S.

Example 0.4.1: Consider counting the number of unordered selections, with un­
limited repetitions allowed, of four objects from the set {1, 2, 3, 4 }. There are these 
four selections containing only one distinct digit

1111 2222 3333 4444

1112 1113 1114 2221 2223 2224 
3331 3332 3334 4441 4442 4443
1122 1133 1144 2233 2244 3344

1123 1124 1134 2213 2214 2234 
3312 3314 3324 4412 4413 4423

1234

for a total of 35 possibilities.

The following construction greatly simplifies the task of counting unordered selec­
tions with unlimited repetitions, by representing multisets as binary strings.

DEFINITION: The bitcode for a multiset (S, i) o f cardinality k, with domain 
{ 1 , 2 , . . . ,  n} ,  is defined recursively:

• If n =  1, then the bitcode is a string of k 0-bits.

• For n >  1, the bitcode for (S , t) is the bitcode for the submultiset (S — { « } ,  t), 
followed by a 1 -bit, followed by a suffix of i(n) 0 -bits.

Example 0.4.1, continued: For the domain {1, 2, 3, 4 }, the bitcode for the 
multiset

{ 1 , 1 ,3 ,4}
is 0011010. The steps are as follows:

{ 1 , 1 } over domain { 1 } has bitcode 0 0  

{ 1 , 1 }  over domain { 1 , 2 } has bitcode 0 0 1  

{1, 1, 3} over domain {1, 2, 3} has bitcode 00110 
{1, 1, 3, 4} over domain {1, 2, 3} has bitcode 0011010
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We observe that the multiset {1,1,  3, 4}  could be reconstructed from its bitcode 
0011010. Since two 0-bits precede the first 1-bit, there must be two instances of 
the digit 1 in the multiset. Since there are no 0-bits between the first 1-bit and the 
second 1 -bit of the bitcode, there must be no instances of the digit 2  in the multiset. 
Since there is one 0-bit between the second 1-bit and the third 1-bit of the bitcode, 
there must be exactly one instance of the digit 3 in the multiset. Since there is one 
0 -bit after the third and final 1 -bit, the multiset must have exactly one instance of

Remark: In reconstructing a multiset of cardinality k with domain {1, 2, .. ., n} 
from its bitcode, we may regard the k — 1 1 -bits as separating the bitstring into 
k substrings of 0-bits, some of which may be nullstrings. The lengths of the k 
consecutive substrings of 0 -bits are the multiplicities on the corresponding integers 
in the domain. This may be depicted as in Figure 0.4.1.

Figure 0.4.1 A  representation of the bitstring 0011010.

Proposition 0.4.4. The correspondence between the set o f  multisets o f  cardinality 
k with domain { 1 , 2 , . . . ,  n }  and the set o f  bitstrings o f  length n +  k — l with exactly 
k — 1  l-bits is a bijection.

Proof: One possible proof of this proposition is that the encoding of multisets 
as bitcodes is clearly invertible, which could be established by generalizing the 
inversion in Example 0.4.1. Another alternative is by induction. <)■

Corollary 0.4.5. The number o f  different multisets o f  cardinality k with domain 
{ 1 , 2 , . . ., n } is

+  k — l ĵ

Proof: By Proposition 0.4.2, the number of bitstrings of length n +  k — 1 with 
exactly k — 1  1 -bits is

+  k — l ĵ

It follows from the Pigeonhole Principle, in view of Proposition 0.4.4, that the 
number of different multisets of cardinality k with domain { 1 , 2 , . . . ,  n }  is the 
same as the number of bitstrings of length n +  k — 1  with exactly k — 1  1 -bits. <)

Example 0.4.1, continued: By Corollary 0.4.5, the number of multisets of car­
dinality four with domain {1, 2, 3, 4 } is

Thus, Corollary 0.4.5 can greatly reduce the effort needed to count multisets with 
repetitions.
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Example 0.4.2: Consider counting the number of possible outcomes of rolling 
three cubic dice, with the six sides of each die marked with 1 to 6  spots. Any two

spots are regarded as equivalent. How many different possible outcomes are there? 
According to Corollary 0.4.5, the answer is

Sometimes, instead of selecting a single subset of a set, a problem calls for 
distributing the elements of a set into disjoint cells, thereby, in effect, selecting 
several subsets. There are several different models.

DEFINITION: A multicombination from a set S o f n objects is a distribution of the 
elements of S into k labeled cells

is the number of ways to distribute a set of n objects into k labeled cells

B\ 5 2 ••• Bk

of respective sizes r\, r2, • • •, r*.

Proposition 0.4.6. The values o f  the multicombination coefficients are given by 
the rule

The number of ways to subsequently select r2 for box B 2 from the remaining n — r\ 
objects is

Distributions into Labeled Cells

B\ B 2 . . .  Bk

n

(0.4.3)

Proof: The number of ways to select r\ for box B\ is

  



And so on. By the Rule of Product, it follows that the number of ways to complete 
the distribution is

r i )  (  r 2 )  (  rk

Section 0.4 Counting Selections 23

n\ (n — ri)!  (n -  rx -  r 2 ---------- i)!
r-\\(n — ri)! r2\(n — r\ — r2)\ r^iO!

ri! r2\ ■ ■ ■ rk\

by repeated application of the factorial formula (0.4.2) for binomial coefficients. <C>

Example 0.4.3: The ways to distribute the set {A , B, C, D }  into boxes of sizes 
r\ =  2 , r 2 =  1, and rs =  1 are given by this array

AB\C\D AC\B\D AD\B\C BC\A\D BD\A\C CD\A\B 
AB\D\C AC\D\B AD\C\B BC\D\A BD\C\A CD\B\A

Each of of the six columns of the array shows a different possible choice for Box 
B\ o f 2 objects, leaving two objects, from which one object is to be chosen for box 
B 2, thereby leaving the remaining object for box B%. We could calculate the total 
number of distributions iteratively as

or, alternatively, with a single multicombination coefficient

v2 1 l )  =  2! 1! 1! =  12 

TERMINOLOGY: Another name for the multicombination coefficient

r i r 2 ■ ■ ■ rk

is the multinomial coefficient, since it is provably the coefficient of the term

X̂ i x r2 . . . x rk

in the expansion of the exponentiated multinomial

x 2 +  • • • +  x k)
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Distributions into Unlabeled Cells
The difference between distributions into labeled and into unlabeled cells is 

best explained with concrete examples. The main idea is the cells of the same size 
are regarded as interchangeable.

Example 0.4.3, continued: With unlabeled boxes, each of the distributions on 
the top row of the array is indistinguishable from the distribution immediate below 
it.

Example 0.4.4: Of four faculty in an academic department, two will be advisors 
to the juniors and two to the seniors. According to Proposition 0.4.6, the number 
of distributions meeting the requirement is

If these faculty are designated A, B, C' , and D, the six possible distributions are

juniors seniors
T. ~AB C D
2. A C  B D
3. A D  B C
4. C D  AB
5. B D  A C
6. B C  A D

However, if we discard the labels juniors and seniors then there are only three ways 
that the four faculty are grouped into pairs. The distributions 1 and 4 would be 
indistinguishable, as would distributions 2 and 5 and distributions 3 and 6.

The following proposition gives the formula for counting distributions into un­
labeled cells.

Proposition 0.4.7. Let S be a set o f  n objects. Suppose that these objects are to 
be distributed into bj boxes o f  size rj, for j  =  1, . . ., k, with

k
=  n

The number o f  ways to do this is

1

Proof: This follows from Proposition 0.4.6 and the Rule of Quotient.

(0.4.4)

  



Partitions of a Set
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PREVIEW OF §1.6:
• A partition o f a set into k cells can be characterized as a distribution of that 

set into k unlabeled boxes with none left empty.
• The S tirling  su b se t  n u m b er  { ^ }  is the number of ways to partition a set 

with n objects into k cells.

Formula (0.4.4) enables us to calculate the number of partitions of a set of n objects 
into cells of prespecified sizes.

Example 0.4.4, continued: The number of partitions of a set of four objects 
into two cells, both of size two, is

2!2! ' 2! ~~ 3

Example 0.4.5: A set with four objects may be partitioned into two cells either 
with sizes 3 and 1 or with cells of sizes 2 and 2. Thus,

EXERCISES for Section 0.4

In each o f the Exercises 0-4-1 through 0-4-3, calculate the number o f selections with 
unlimited repetition for the designated problem.

0.4.1 Select eight coins from the six coins presently in circulation in the USA:

0.4.2 A bakery sells four kinds of bagels: plain, onion, garlic, and poppy seed.

0.4.3s Select positive integer values for the variables x\, x 2, and * 3  so that xi +  
* 2  +  * 3  =  1 1 ­

0.4.4 A college schedules introductory courses in calculus, chemistry, and physics 
at 9:00am and requires every one of its 323 freshmen to attend one of these 9:00am 
courses. Calculate the number of ways to distribute the students into these three 
courses.
0.4.5 A wrestling team competes in a league with 14 season matches, each of 
which could result in a win, a loss, or a draw. Calculate the number of possible 
season records.
0.4.6s Calculate the number of ways to distribute 12 indistinguishable balls into 
four labeled boxes.
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0.4.7 Calculate the number of terms of the multinomial resulting from the ex­
pansion of the trinomial (x +  y +  z )4.

In each o f the Exercises 0.4-8 through 0-4.11, evaluate the given multinomial coef-

049 ( 3 2 2 1 1 ) 

)  0 4 1 1  ( 3  3  2 2 1 1 )

In each o f the Exercises 0-4-12 through 0-4-15, calculate the number o f partitions of 
a set o f the given size into cells o f the given sizes.

0.4.12s A set of size 7 into parts of sizes 3, 2, and 2.
0.4.13 A set of size 9 into parts of sizes 3, 2, 2, 1, and 1.
0.4.14 A set of size 9 into parts of sizes 2, 2, 2, 1, 1, and 1.
0.4.15 A set of size 12 into parts of sizes 3, 3, 2, 2, 1, and 1.

In each o f the Exercises 0-4-16 through 0-4-19, evaluate the given Stirling subset 
number.

0.5 PERMUTATIONS

Solving problems concerned with counting configurations with symmetries, like

tions, as seen in Chapter 9. It is fundamental to such algebra to know how to 
construct a composition o f two permutations and how to represent a permutation 
in what is called disjoint cycle form.

DEFINITION: A p erm u ta tio n  o f a set S is a bijection (a one-to-one, onto function) 
from S to itself.

In any kind of algebra, the calculation of the effect of applying various operations 
depends on the representation of the objects. For instance, the rule for calculating 
the product of two Roman numerals is different from the rule for calculating the 
product of base-10 numerals. Similarly, rules for the calculation of permutation 
operations depend on the representation. In this section, we introduce two ways to 
represent permutations and the corresponding ways to calculate the composition of 
permutations.

0.4.8

0.4.10

3 2 2
9

2 2 2 1 1 1
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DEFINITION: The 2 -lin e r ep resen ta tio n  o f  a p erm u ta tio n  tt of a set S is a 2-line 
array that lists the objects of S in its top row. Below each object x is its image 
tt{x) under the permutation.

Example 0.5.1: The permutation tr of the set {1,2 ,  . . ., 9} such that

1 i—)■ 7 2 i—y 4 3 i—y 1 4 i—>■ 8 
5 ^ 5  6 2 7 ^ 9  8 6 9 ^ 3

is represented by the 2-line array

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

which is illustrated by Figure 0.5.1.

Figure 0.5.1 A  permutation of the set { 1 , 2 , . . . ,  9}.

One imagines that the nine numbers are initially in a row in ascending order. 
The permutation tt moves whatever object is in position 1 to position 7, whatever 
object is in position 2 to position 4, and so on. Thus, the application of tt changes 
their ordering to

3 6 9 2 5 8 1 4 7

DEFINITION: The in v erse  o f  a p erm u ta tio n  tt on a set S is the permutation tt 1 
that restores each object of S to its position before the application of tt.

The 2-line representation of the inverse of a permutation can be obtained by 
transposing the rows, possibly sorting the columns according to the entry in the

Example 0.5.1, continued:

4 1 8
2 3 4
2 3 4
6 9 2

5 2 9 6 3
5 6 7 8 9

5 6 7 8 9
5 8 1 4  7

or
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Composition of Permutations

DEFINITION: The c o m p o s i t i o n  o f  p e r m u t a t i o n s  tt and r  is the permutation t t o t  

resulting from first applying tt and then applying r. Thus, (tt o t ) ( x )  — t ( t t ( x ) ) .

Obtaining the 2-line representation of the composition ttot o f two permutations 
is a 2-step process.

1. Rearrange the columns of the representation of r  (the permutation to be applied 
second) so that in each column, the top entry is the same as the bottom entry 
in the representation of tt (the permutation to be applied first).

2. The top line of the 2-line array for the composition tt o t is the top line of the 
array for tt. The bottom line for tt o r  is the bottom line for the rearranged 
representation of r.

Example 0.5.1, continued: Suppose that

1 2 3 4 5 6 7 8 9
6 5 3 1 9 2 8 7 4

Transposing the columns of r  facilitates the computation

4

TT O T

'I
4

4 1 8  5 
1 6  7 9

5 6 7 8 9
5 2 9 6 3

9 6 3
4 2 3

2 3 4 5 6 7 8 9  
1 6 7 9 5 4 2 3

For instance, since tt  maps whatever is in position 1 to position 7 and r  maps 
whatever is in position 7 to position 8, the composition tt o  r  maps whatever is in 
position 1 to position 8. This composition is illustrated in Figure 0.5.2.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9  
Figure 0.5.2 A composition t t o t  of permutations.
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Cyclic Permutations
A cyclic permutation  is a permutation whose successive application would take 

each object of the permuted set successively through the positions of all the other

DEFINITION: A perm u tation  o f  the form

x  7t ( x )  7t 2 ( x ) 

'r ( x )  7T2 ( x )  7T3 ( 3 )

1TP 2(x)  7TP 1(x)  
7TP~ 1(x) X

is said to be cy c lic  p erm u ta tio n  o f p e r io d  p.

NOTATION: A cyclic permutation is commonly represented in the cyc lic  form  

( x  7r(x) 7r2 ( x)  ••• 7rp~ 2 (x)  t t p ~ 1 ( x ) )

Example 0.5.2: The permutation

1 2 3 4 5 6 7\ , x
=  1 2 3 4 5 6 7 

.2 3 4 5 6 7 1 j  v ;

is cyclic of period 7. Its cyclic form is depicted by Figure 0.5.3 as a directed cycle.

Figure 0.5.3 A cyclic permutation depicted as a directed cycle.

Example 0.5.3: The permutation

1 2 3 4 5 6 
3 6 2 5 1 4

1 3 2 6 4 5 
3 2 6 4 5 1

=  ( 1 3 2 6 4 5

is cyclic of period 6. It is depicted as a directed cycle in Figure 0.5.4.

1 3 2 6 4 5

Figure 0.5.4 Another cyclic permutation.

Disjoint Cycle Representation
A fundamental way of understanding a permutation 7r of a finite set S is in 

terms of the cyclic permutations it induces on various subsets of S. Its structure is 
understood in terms of the lengths of these cycles of objects.
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Proposition 0.5.1. Let n be a permutation on a finite set S and let x £ S. Then 
the sequence

X 7r(x) 7r2 (x) 7T3 (x) . . .

eventually contains an entry i (x) such that i ( x )  =  x, and the sequence is periodic 
with period j .

Proof: Since the set S is finite, the sequence must eventually contain some entry 
7rJ (x) that matches a previous entry. Suppose that 7r* (x) is the previous entry such 
that

7 (x) =  7Tl(x)

Then . .
-- TT  ̂(TT̂ ( 0 )  

) )=  7r [TT [X

Since j  >  i >  0, since (x) is the first duplicate of a previous entry, and since 7T?- * 
duplicates the initial entry x, it follows that j  — i >  j ,  which implies that i =  0. 
Since (x) =  x, it follows that the subsequence

. . 7r-J_1(*)

is endlessly reiterated. <C>

What now follows is a somewhat informal description of a method for rep­
resenting an arbitrary permutation jt o n  a finite set S' as a composition of cyclic 
permutations.

Step 1 : Choose an arbitrary element x\ £ S. Let k\ be the smallest integer such 
that 7rfel(*i )  =  x\. Let T\ be the subset

Then the restriction ,k \t 1 of the permutation 7r to the subset T\ is the cyclic per­
mutation

Example 0.5.1, continued: For the permutation

1 2 3 4 5 6 7 8 9  
7 4 1 8 5 2 9 6 3

consider the choice x\ =  1. This leads to the subset

Ti =  {1, 7, 9, 3}

and to the restricted permutation

tt|Ti =  ( 1 7 9 3)

  



Step 2: In general, if T\ =  S, then 7r is cyclic on S, and 7r =  Otherwise,
choose an arbitrary element

X'2 £ S -  Ti

Let 1x2 be the smallest integer such that irk2 (x 2 ) =  * 2 - Let T2 be the subset

Then the restriction tt\t2 o f the permutation 7r to the subset T2 is the cyclic per­
mutation

Example 0.5.1, continued: Choosing the second element * 2  =  2 for the permu­
tation

1 2 3 4 5 6 7 8 9 '
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^ V 7 4 1 8 5 2 9 6 3  

leads to the subset
T2 =  {2, 4, 8, 6} 

and to the restricted permutation

tt|t2 =  (2  4 8 6)

We observe that the subsets T\ and T2 are disjoint.

Proposition 0.5.2. Let tt be a permutation on a finite set S and let x £ S. Let

T  =  { tt1 (x) | i £ N }

Let y £ S — T  and let

Then the subsets T  and T ’ are disjoint.

Proof: If not, then there are nonnegative numbers i and j  such that

-- 7T-? (7T \X) =  7TJ (0.5.1)

Without loss of generality, assume that j  <  i. Then

7r* ■’ (x) =  tt ■, (tt"\x ) )

by (0.5.1)

which contradicts the premise that y ^ T. <C>

Step 3: Having selected the mutually disjoint subsets Ti, T2 , . . ., T  ̂ in this man­
ner, if
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then go to Step 4, since the decomposition of 7r is complete. Otherwise, choose 
Xk+i 6  5 -  (Ti U T2 U • • • U Tk) and continue as in Step 2.

Example 0.5.1, continued: The only remaining element in the set {1, 2, . . ., 9}, 
on which the permutation

1 2 3 4 5 6 7 8 9  
7 4 1 8 5 2 9 6 3

acts, is the element xs =  5, which leads to the subset 

and to the restricted permutation

tt|t3 =  (5 )

We observe that the subsets T\, T2 , and T3  form a partition of the set [1 : 9].

Step 4: Arriving at this step occurs after the set S has been partitioned into subsets 
Ti, T2 , . . ., T/;. Represent the permutation 7r in the form

Example 0.5.1, continued: The net result of applying these steps to the per­
mutation

_  f l  2 3 4 5 6 7 8  9'
7F — y7  4 1 8 5 2 9 6 3

is the representation

tt — ( 1 7 9 3) (2  4 8  6 ) (5 )

DEFINITION: A disjoint cycle representation  of a permutation 7r on a set S is 
as a composition of cyclic permutations on subsets of S that constitute a partition 
o f S, one cyclic permutation for each subset in the partition.

The decomposition process described just above serves as a constructive proof of 
the following theorem.

Theorem 0.5.3. Let tt be a permutation o f  a finite set S. Then n has a disjoint

We conclude this subsection with an illustration that it is straightforward to com­
pute the disjoint cycle representation of a composition of two permutations tt and 
r  from the disjoint cycle representations of the factors tt and r.
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Example 0.5.1, continued: The disjoint cycle forms of the permutations
1 2 3 4 5 6 7 8  9'  
7 4 1 8 5 2 9 6 3
7 4 1 8 5 2 9 6 3
8 1 6 7 9 5 4 2 3

1 2 3 4 5 6 7 8 9
8 1 6 7 9 5 4 2 3

and

tt =  ( 1 7 9 3) (2  4 8 6) (5 )  
r  =  ( 1 6 2 5 9 4) (3 )  (7  8) and 

t t o t  = (  1 8 2 ) ( 3 6 5 9 ) ( 4 7)

Starting with the disjoint cycle forms
t t  — ( 1 7 9 3) (2  4 8 6) (5 )  

a n d  r  =  ( 1 6 2 5 9 4 ) (3 )  (7  8) 
t h e  f i r s t  c y c l e  o f  t t  o  t  i s  c o m p u t e d  a s  f o l l o w s :

7T T

7T T

7T T

That is, the first cycle of the disjoint cycle representation of 7r o t may be written 
as

(1 8 2 )

The computation then continues
7T T

7r r

7r r

7T T

which yields
(3  6 5 9)

as the second cycle of the permutation tt o  r. It concludes with
7T r

7T T

which yields as the third cycle
(4  7)
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In Exercises 0.5.1 through 0.5.6, represent the indicated permutation in disjoint 
cycle form.

EXERCISES for Section 0.5

° '5'1 1 3 5 2 4 1 )  ° '5'2 V4 7 2 5 6 1 3

0.5.3 | i   ̂ 3 4 5 6 7 SA ^  f l  2 3 4 5 6 7 8
3 6 8 7  4 2 5  1 /  V2 8 3 7 6 4 5 1

n _ r , 1 2 3 4 5 6 7 8A _ _ „  ( l  2 3 4 5 6 7 8  0.5.5 „ „ „ „  , _ „ , 0.5.63 8 6 7 4 5 2 1 /  \2 3 8 7 6 5 4 1

In Exercises 0.5.7 through 0.5.12, represent the inverse o f the permutation o f the 
designated previous exercise in 2 -line form and in disjoint cycle form.

0.5.7s Exercise 0.5.1. 0.5.10 Exercise 0.5.4.

0.5.8 Exercise 0.5.2. 0.5.11 Exercise 0.5.5.
0.5.9 Exercise 0.5.3. 0.5.12 Exercise 0.5.6.

In Exercises 0.5.13 through 0.5.18, represent the indicated composition o f permu­
tation in disjoint cycle form. In writing the disjoint cycle form o f a permutation, 
sometimes the 1-cycles are omitted. For instance, (1 2 5) means the same per­
mutation as ( I  2 5) (3 )  ( 4) .

0.5.13s (1  2 3) o (2  4 5) 0.5.14 ( 1 2 ) o ( 2  4 ) o ( 3  4)
0.5.15 (1 2 5) o ( 1 6 3 4 ) 0.5.16 ( 1 2 3 4 5 ) o ( 3  4 6)  

0.5.17 ( 1 2 5 4) o ( 1 6 3) 0.5.18 ( 1 3 4 5 ) o ( 2  3 4 6)

0.5.19 List every permutation of [1 : 5] that has three cycles in its disjoint cycle 
form.

0.5.20 List every permutation of [1 : 6] that has four cycles in its disjoint cycle 
form.

DEFINITION: The c y c l e  s t r u c t u r e  o f  a p e r m u t a t i o n  tt of a set of cardinality n 
is the monomial t-f 1 . . , t^ n, such that tj is a formal variable and rj is the number 
of j-cycles in the disjoint cycle form of tt. Thus, lr i  +  2r^ +  • • • +  nrn =  n.

In Exercises 0.5.21 through 0.5.26, calculate the number o f permutations o f the given 
integer interval with the given cycle structure.

0.5.21s [1 : 7] of structure tit^t^ 0.5.22 [1 : 9] of structure t^tzt^

0.5.23 [1 : 7] of structure t22ts 0.5.24 [1 : 9] of structure t\ t 2

0.5.25 [1 : 7] of structure t 13 t 2 2 0.5.26 [1 : 9] of structure t 13 t 23
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0.6 GRAPHS

One widely studied combinatorial structure is called a graph. Intuitively, a 
graph is a configuration comprising a discrete set of points in space and a discrete 
set of curves, each of which runs either between two points or from a point back to 
the same point. Formally, it is based on two abstract sets.

The beauty of various spatial models of graphs is one great attraction. Another 
is the capacity to serve as a practical model for applications, for instance, of network 
flows or of a linked database. Although this remarkably versatile structure was 
introduced by the Swiss mathematician Leonhard Euler (1707-1783), most of its 
theoretical development has occurred in relatively recent years. Chapters 7 and 8 
provide a condensed survey of graph theory.

DEFINITION: A graph  G =  {V, E) is a mathematical structure consisting of two 
finite sets V  and E, called v er tice s  and ed ges, respectively. Each edge has a set 
of one or two vertices associated to it, which are called its en d p oin ts .

Example 0.6.1: Figure 0.6.1 illustrates a graph.

Figure 0.6.1 A graph.

TERMINOLOGY: An edge is said to jo in  its endpoints. A vertex joined by an edge 
to a vertex v is said to be a n eig h b o r  of v. Two neighboring vertices are said to 
be adjacent.

TERMINOLOGY: In applications, the words n o d e  and lin e  may be used for vertex 
and edge, respectively.

NOTATION: When G is not the only graph under consideration, the notations Vg 
and Eq  (or V(G)  and E(G))  are used for the vertex- and edge-sets of G.

Example 0.6.1, continued: When choosing a vertex of this graph from which 
to send messages, vertices v and x would seem to be good choices, since from either 
of them, every other vertex is but an edge away, with no relay required. Numerous 
optimization problems arise when costs are assigned to the edges. For instance, one 
might want to know how to select the vertex from which the average cost of sending 
a message to the other vertices is the least.
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TERMINOLOGY NOTE: The word graph is used here in an all-encompassing sense, 
as various attributes are tacked on. For instance, sometimes an edge is assigned a 
direction and/or a numerical weight. If all the edges are directed, then the graph 
may be called a digraph, and if all the edges are weighted, it may be called a weighted 
graph. However, under our philosophy of inclusivity, we may still refer to a graph 
with such optional attributes as a graph.

Simple Graphs and General Graphs

Graph theory is a source of excellent examples for combinatorial concepts. It 
is helpful to have some terminology in place at the outset.

DEFINITION: A proper edge  is an edge that joins two distinct vertices. A self-loop  
is an edge that joins a single endpoint to itself.*

DEFINITION: A m ulti-edge is a collection of two or more edges having identical 
endpoints. The multiplicity o f  a  m ulti-edge  is the number of edges within the 
multi-edge.

DEFINITION: A simple graph is a graph with no self-loops or multi-edges. A

NOTATION: In a simple graph, an edge joining vertices u and v may be denoted uv, 
since only one such edge is possible.

Null and Trivial Graphs

DEFINITION: A null graph is a graph whose vertex- and edge-sets are empty. 

DEFINITION: A trivial graph is a graph consisting of one vertex and no edges.

Degree of a Vertex

is the number of proper edges incident on v plus twice the number of self-loops. 

TERMINOLOGY: A vertex of degree d is also called a d-valent vertex.

We use the term “self-loop” instead of the more com m only used term “loop” , because loop 
means something else in many applications.
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Example 0.6.1, continued: The caption of Figure 0.6.2 lists the degrees of the

The following result of Euler establishes a fundamental relationship between the

Theorem 0.6.1 [.Euier’s D eg ree -S u m  T h eo rem ]. The sum o f  the degrees o f  
the vertices o f  a graph is twice the number o f  edges.

Proof: Each edge contributes two to the degree sum. <C>

Example 0.6.1, continued: The graph of Figure 0.6.2 has 7 edges. The sum of 
the degrees is 14.

Corollary 0.6.2. In a graph, the number o f  vertices having odd degree is even.

Proof: Consider separately, the sum of the degrees that are odd and the sum of 
those that are even. The combined sum is even by Theorem 0.6.1, and since the 
sum of the even degrees is even, the sum of the odd degrees must also be even. 
Hence, there must be an even number of vertices of odd degree. 0

DEFINITION: The d eg re e  s eq u en ce  o f a graph is a list of the degrees of its vertices, 
usually given in non-increasing order.

Example 0.6.1, continued: The degree sequence of the graph of Figure 0.6.2 is

4 4 4 2

Theorem 0.6.3. Let G be a simple n-vertex graph with n > 2. Then there are 
two vertices with the same degree.

Proof: If the n vertices all had different degrees, then, by the Pigeonhole Principle, 
for each of the possible values 0, . . ., n — 1, there would be a corresponding vertex. 
However, if some vertex has degree 0, then each other vertex could have degree at 
most n — 2, precluding the existence of a vertex of degree n — 1. 0
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Example 0.6.2: Suppose that on some floor of a college dormitory, each student 
lists the names of all the other students on that floor with whom he or she has 
ever shared a pizza, as represented by Figure 0.6.3. Four of the students in this 
sociological network —  Alisa, David, Jessica, and Risa —  have shared pizza with an 
odd number of other students in the network, in conformance with Corollary 0.6.2. 
We observe that Flerbie and Katie have each shared pizza with four other students, 
which illustrates Theorem 0.6.3. There are also several other such pairs.

Figure 0.6.3 A sociological network.

Beyond the whimsy of Example 0.6.2, sociological networks are a matter of 
serious interest. For instance, so-called family trees are used in genealogy.

Complete Graphs
There are standard names for various special circumstances that arise fre­

quently in graph-theoretic modeling. Sometimes every node is linked to every other 
node.

DEFINITION: A com plete graph is a simple graph such that every pair of vertices 
is joined by an edge. The complete graph on n vertices is denoted K n.

Example 0.6.3: Complete graphs on one, two, three, four, and five vertices are 
shown in Figure 0.6.4.

Figure 0.6.4 The first five complete graphs.

Bipartite Graphs

DEFINITION: A bipartite graph G is a graph whose vertex-set V  can be partitioned 
into two subsets U and W , such that each edge of G has one endpoint in U and one 
endpoint in W . The pair U, W  is called a (vertex) bipartition o f G, and the sets 
U and W  are called the bipartition subsets  or (sometimes) the partite sets.
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Example 0.6.4: Two bipartite graphs are shown in Figure 0.6.5. The bipartition 
subsets are indicated by the solid and hollow vertices.

Figure 0.6.5 Two bipartite graphs.

Example 0.6.5: Suppose that U is set of tasks needed for the completion of a 
project, that W  is the set of available workers, and that there is an edge joining 
each worker to each task within that worker’s skill set. Such a bipartite graph is 
quite useful in deciding how to allocate the tasks to workers.

DEFINITION: A c o m p le te  b ip a r tite  graph  is a simple bipartite graph such that 
every vertex in one partite set is joined to every vertex in the other partite set. Any 
complete bipartite graph that has to vertices in one partite set and n vertices in the 
other is denoted K m>n*

Example 0.6.6: The complete bipartite graph is shown in Figure 0.6.6.

Figure 0.6.6 The complete bipartite graph K 3 4.

Representations of Graphs
It is conceptually helpful to see a small graph represented by a labeled drawing. 

However, for computational purposes, it is important to have a purely combinatorial 
specification. Various kinds of combinatorial specification have their individual 
merits. We briefly consider three kinds.

DEFINITION: A specification of an n-vertex, m-edge graph G by an in c id en ce  ta b le  
has three parts:

• a list of the n vertices of G.

• a list of the m edges of G.

• a 2 x to array whose columns are labeled by the edges of G, such that the 
endpoints of each edge appear in the column for that edge.

• The sense in which n is regarded as a unique object is described in §7.4.

  



Example 0.6.7: Figure 0.6.7 shows a graph G and its incidence table specifica­
tion.

VG =  {u , v, w }
E g =  { a ,  b, c, d }

a b e d  
u u u w 
V V w w

Figure 0.6.7 A  graph and its incidence table specification.

COMPUTATIONAL NOTE: Specification by incidence table is an efficient represen-

proportional to the number of vertices and edges. Some variations include a second 
table, with each row labeled by a vertex, such that the entries in that row are the 
edges incident on that vertex. Although this seems like redundant information, the 
small sacrifice of space facilitates a net improvement in algorithmic efficiency.

DEFINITION: An in c id en ce  m a tr ix  for an n-vertex, m-edge graph G is an n x m 
array Iq , whose rows and columns are labeled, respectively, by the vertices and 
edges of G, such that

0 if v is not an endpoint of e
1 if v is an endpoint of e and e is proper
2 if v is an endpoint of e and e is a self-loop

Example 0.6.7, continued: The incidence matrix for the graph G of Figure 
0.6.7 is
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We observe in this example and in general that each row-sum equals the degree 
o f the corresponding vertex and that every column-sum is 2. Clearly, the sum of 
the row-sums of a matrix equals the sum of the column-sums. This provides an 
alternative proof of Euler’s Degree-Sum Theorem (Theorem 0.6.1).

COMPUTATIONAL NOTE: The space required for an incidence matrix is propor­
tional to the product of the numbers of vertices and edges. Moreover, the time 
required to retrieve the endpoints of an edge is proportional to the number of ver­
tices, whereas it is a small constant for an incidence table specification.

DEFINITION: An a d ja cen cy  m a tr ix  for an n-vertex simple graph G is an n x n 
array A q  whose rows and columns are labeled by the vertices of G, such that

, r n f 1 if u and v are adjacent Ag\u,v\ =  <
1 0 otherwise

  



Example 0.6.8: Figure 0.6.8 shows a simple
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G and its adjacency matrix

w. X. y- z.
w. 0 1 0 0
X. 1 0 l 1
y- 0 1 0 1
z. 0 1 l 0

Figure 0.6.8 A  simple and its adjacency matrix.

Remark: The adjacency matrix is symmetric.

Remark: Spectral graph theory is concerned with calculation of the eigenvalues of 
adjacency matrices.

COMPUTATIONAL NOTE: The space required for an adjacency matrix is propor­
tional to the square of the number of vertices.

Preview of Walks, Paths, and Distance
Graphs are commonly used to represent networks of various kinds, including 

networks of roads, networks of computers, and networks of people. The notion of

d e f i n i t i o n :  A walk in a
sequence

iph from vertex vq to vertex vn is an alternating 

W  =  { v 0, ei, vlt e2, . . ., e „ ,  vn )

of vertices and edges, such that edge ej joins vertices Vj_ \ and Vj, for j  =  I, . . .  ,n.  
It is a closed walk if it begins and ends at the same vertex and an open walk if 
it ends at a different vertex from the one at which it begins.

DEFINITION: A path is a walk that has no repeated vertices (or edges), except that 
the last vertex may possibly be the same as the first. If so, it is a closed path, 
and if not, it is an open path.

DEFINITION: The length o f  a walk is its number of edge-steps. (If an edge of a 
walk is repeated, it is counted each time it occurs. However, it follows that the

DEFINITION: The distance between two vertices u and v is the minimum length 
taken over all paths between u and v, or oo if there are no such paths.

Example 0.6.9: The legendary mathematician Paul Erdos wrote about 1500 pa­
pers, and he had 509 coauthors in all. Of course, many of them had various other 
collaborators. The Erdos coauthorship graph has mathematicians as its vertices,
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with an edge joining two vertices if the mathematicians represented ever wrote a 
paper together. A mathematic ian 's Erdõs number is his or her distance from 
Paul Erdõs in this graph. Erdõs himself is the only person at distance 0. The 509 
coauthors have an Erdõs number of 1.* The concept of an Erdõs number was first 
published in 1969 by Caspar Goffman [Goffl969]. 

E X E R C I S E S for S e c t i o n 0.6 

In each of the Exercises 0.6.1 through 0.6.8, compare the degree sequence of the 
given graph with twice its number of edges. 

0 .6 .1 s 0.6.2 

0.6.3 0.6.4 

0.6.5 K6 

0.6.7 A'4)5 

0.6.6 Kn 

0.6.8 Km¡n 

In each of the Exercises 0.6.9 through 0.6.12, draw a simple graph of the given 
degree sequence. 

0.6.9 s 4 3 3 2 2 0.6.10 4 3 2 2 1 

0.6.11 5 3 3 2 2 1 0.6.12 5 4 4 2 2 1 

In each of the Exercises 0.6.13 through 0.6.16, draw two different general graphs of 
the given degree sequence. 

0.6 .13 s 4 4 3 2 1 0.6.14 7 4 3 

0.6.15 6 4 3 1 0 0.6.16 6 5 5 4 4 1 1 

Exercises 0.6.17 through 0.6.19 refer to the pizza network of Figure 0.6.3. 

0.6.17 What is the distance between Risa and David? 

0.6.18 What vertex or vertices have the minimum worst-case (i.e., maximum) 
distance to another vertex? 

0.6.19 What vertex or vertices have the minimum average distance to the other 
vertices? 

The author of this textbook has an Erdôs number of 2, since he wrote a paper [GrHal980] 

with Frank Harary, who was a coauthor of Erdôs. 
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p r e v ie w  o f  Chapter 7:
• A c y c le  is a closed path of length at least 1.

defined by the set of vertices and the set of edges that occur in that cycle.

• A tr e e  is a graph that has no cycle subgraphs.

In each o f the Exercises 0.6.20 through 0.6.23, draw a tree with the given degree 
sequence.

0.6.20s 4 1 1 1 1  0.6.21 4 2 1 1 1 1
0.6.22 3 3 1 1 1 1 0.6.23 3 3 2 1 1 1 1

0.7 NUMBER-THEORETIC OPERATIONS

Number theory is a very large area of mathematics with connections to many 
other areas. It is not taxonomically classified as combinatorics. We include some 
number theory in this text, especially in Chapter 6, partly because of its intimate 
connection to the design of fast algorithms and also because we need it to help with 
counting and with studying graphs and other combinatorial objects. Although we 
presently defer nearly all details of number-theoretic methods to later chapters, we 
wish to make the point early that we will use whatever kind of mathematics is

One number-theoretic operation that occurs frequently in combinatorics is the 
greatest common divisor. Although our textbook examples are focused on small 
enough problems of this type to do the calculation by hand, consider trying to 
calculate the greatest common divisor of larger numbers, such as

32582657 and 24036583

DEFINITION: The g r ea te s t  com m on  d iv isor  o f two integers m and n, not both 
zero, mnemonically denoted gcd (m,n) ,  is the largest integer that divides both m 
and n.

DEFINITION: The lea st com m on  m u ltip le  o f two integers m and n, mnemonically 
denoted 1cm (m, n), is the smallest non-negative integer that is a non-zero multiple 
o f both m and n.

When the prime factors are already known or easily calculated, it is quite easy 
to calculate a greatest common divisor by a method commonly taught in middle 
schools. It involves factoring the two numbers into products of primes. Although 
this might seem easy for small numbers, the factoring of large numbers may re­
quire considerable effort. A method called the Euclidean algorithm, described in 
Chapter 6, avoids the need to factor, and it produces the answer in time propor-
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Another operation we use in trying to count or to construct all the graphs of a 
given kind involves listing all the ways to decompose an integer n into an iterated 
sum of positive integers. Such a sum is called a partition o f the integer n.

Example 0.7.1: The number 8 has five partitions into exactly four summands, 
namely

5 + 1 + 1 + 1  4 + 2 + 1 + 1  3 + 3 + 1 + 1  3 + 2 + 2 + 1  2 + 2 + 2 + 2

0.8 COMBINATORIAL DESIGNS

The final type of discrete structure presented in this book, in Chapter 10, is 
called a combinatorial design.

DEFINITION: A com bin a toria l design  B has a non-empty domain of objects

X  ----  {  X \  , • • • ? % v  }

and a non-empty collection of subsets of objects from A .

For some kinds of designs, these subsets may be called blocks.

The art of constructing combinatorial designs is in meeting various additional re­
quirements on the subsets B j . In a regular block design the subsets Bj  all have the 
same cardinality k, called the blocksize. Moreover, each object Xi occurs in the same 
number r of blocks, which is called the replication number. An example illustrates

Example 0.8.1: Consider how one might design a round-robin playoff* for 13 
contestants in a competitive game for 4 players that ranks the players from 1st to 
4th in each round. Such an event might plausibly have 13 rounds in which each of 
the players, designated as

0 1 2 3 4 5 6 7 8 9 A B C

plays four rounds and meets each other player exactly once, as follows:

* In a round-robin playoff, each contestant plays each other contestant
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Round Players
1 0146
2 1257
3 2368
4 3479
5 458A
6 569 B
7 67AC
8 7850
9 89C1
10 9A02
11 A B U
12 BC2A
13 C035

Such a playoff might be represented by the illustration of Figure 0.8.1. Twelve 
of the groupings of four players are represented by a curve that goes through the 
corresponding four points. (The thirteenth grouping is 67A C .) Only four of these 
groupings are actually represented by straight lines in the drawing.

0 1 4

Figure 0.8.1 Geometric representation of a block design.

A balanced block design is a regular block design in which each pair of points 
occurs in the same number of lines. It is called incomplete if the blocksize is less 
than the number of points in the domain.

Example 0.8.1, continued: The playoff described here is a balanced incomplete 
block design, if each grouping of four players is regarded as a line.

short) originated largely in the design of scientific experiments in agriculture. Each 
block represented a different kind of treatment of the varieties of crops within it. 
Applying all the treatments to all the varieties would have made the experiment 
infeasibly large, which was the motive for constructing incomplete designs.
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In a kind of combinatorial design called a finite geometry, the subsets of objects 
are called Unes. There are numerous kinds of finite geometry. A standard general 
requirement is tha t each pair of points lies on at most one line. 

E x a m p l e 0 .8 .1 , cont inued: As it happens, the balanced block design of Figure 
0.8.1 is also a finite geometry. 

GLOSSARY 
adjacent vert ices : two vertices joined by an edge. 

b a l a n c e d b lock des ign: a design in which all blocks are the same size, every 
element is in the same number of blocks, and every pair of elements is in the 
same number of blocks. 

B I B D : abbreviation for balanced incomplete block design. 

b i p a r t i t e graph: a graph whose vertex-set can be partit ioned into two subsets 
(called partite sets) such that every edge has one endpoint in one part and one 
endpoint in the other part . 

block des ign: a combinatorial configuration with a domain X and a set B of 
subsets of X tha t are called blocks. 

blocksize: the cardinality of a block of a combinatorial design. 

ce i l ing of a real n u m b e r x: the smallest integer that is not less than x; the 
result of "rounding up" to the next integer; denoted \x\. 

calculus of finite sums: a method for evaluating finite sums, analogous to inte­
gral calculus. 

cardinal i ty of a mul t i s e t : the sum of the multiplicities of the elements in the 
domain. 

cells of a p a r t i t i o n of a set S: the subsets of S into which S is subdivided. 

c losed formula for a sequence: an algebraic formula that can produce the value 
of any member of the sequence. 

combinat ion : see unordered selection. 

combinator ia l des ign: any mathematical structure involving a primary domain 
and a secondary domain of designated subsets of the primary domain, or, equiv-
alently, two domains and an incidence function from their cartesian product to 
Z2-

combinator ics : a collection of branches of mathematics that deal primarily with 
discrete sets, in contrast to continuous mathematics , the branches that deal 
primarily with subsets of Euclidean space. 

c o m p l e t e b i p a r t i t e graph: a simple biparti te graph such that each pair of ver­
tices in different sides of the parti t ion is joined by an edge. 
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complete
edge.

a simple such that every pair of vertices is joined by an

complete block design: a block design in which every block is the entire domain.

counting: an informal reference to any kind of combinatorial enumeration.
degree of a vertex: the number of proper edges incident on that vertex plus twice 

the number of self-loops.

degree sequence: a list of the degrees of all the vertices in ascending order.
discrete set: a finite or countably infinite set.

endpoints of an edge: the one or two vertices that are associated with that edge.

Euclidean algorithm: an algorithm for calculating the greatest common divisor; 
see Chapter 6.

Euler’s degree-sum theorem: the theorem that the sum of the degrees of a

falling power x— o f a real number: the product x (x  — l ) (x  — 2) • • • (x — n +  1).

Fibonacci sequence: the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . ., in which each 
number is the sum of its two immediate predecessors.

finite calculus: a calculus of discrete differences and sums, analogous to the 
infinitessimal calculus for continuous real functions.

finite geometry: a combinatorial design in which two points of the primary do­
main are in at most one designated subset in the secondary domain.

floor of a real number x: the largest integer that is not greater than x ; the 
result of “rounding down” to the next integer; denoted [x\.

generating function for a sequence of elements gj\ a closed form for the infinite 
polynomial go +  g\z +  g2 z 2 +  g%z3  +  • • •, or sometimes, that polynomial itself.

The elements of V  are called v ertices , and the elements of E  are called ed ges. 
Each edge has a set of one or two vertices associated to it, which are called its 
en d p oin ts .

greatest common divisor gcd (m, n): for integers m and n, not both zero, the 
greatest common divisor is the largest positive integer that divides both of them.

incidence function: a function associated with a combinatorial structure having 
more than one domain; its role is to indicate for any pair of objects, one from 
each domain, whether each is incident on the other; for instance, a vertex of 
a graph and an edge of which it is an endpoint are mutually incident on each 
other.

least common multiple lcm (m ,n ): for integers m and n, the least common 
multiple is the smallest non-negative integer that is a non-zero multiple of both 
o f them.
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multi-edge: a collection (at least two) of proper edges with the same two end­
points, or of self-loops with the same endpoint.

multiset: a pair (S, m) in which S is a set and m : S —> is a function that 
assigns to each element s £ S a number m(s) called its multiplicity. Informally, 
one thinks of there being m(s) copies of the element s in the multiset.

neighbor of a vertex v: any vertex that is adjacent to v.

ordered selection from a set S: an ordered subset of S.

partition of an integer S: a representation of a positive integer as a sum of 
other positive integers.

partition of a set S: a collection of mutually disjoint subsets of S whose union 
is S.

permutation from a set S: see ordered selection.

permutation of a set S: a one-to-one onto function from S to itself.

proper edge: an edge with two endpoints.
regular block design: a block design in which all the blocks have the same size, 

and in which each element occurs in the same number of blocks.
replication number of a BIBD: the number of blocks in which each element of 

its domain is contained.
Rule of Product: the counting rule that the size of a cartesian product of two 

sets is the product of the sizes of the sets.

Rule of Quotient: the counting rule that if all the cells are of the same size, then 
the number of cells in a partition of a set S is the quotient of the size of S by 
the size of the cells.

Rule of Sum: the counting rule that the size of a disjoint union of two sets is the 
sum of the sizes of the sets.

self-loop: an edge of a graph with only one endpoint.

Stirling numbers: numbers used in conversions between ordinary powers and 
falling powers, also for counting partitions and permutations; see Chapters 1 
and 5.

unordered selection from a set S: a subset of S.

vertices: one of two constituent sets of the graph.

  



Chapter

Sequences
1.1 Sequences as Lists
1.2 Recurrences
1.3 Pascal’s Recurrence
1.4 Differences and Partial Sums
1.5 Falling Powers
1.6 Stirling Numbers: A Preview
1.7 Ordinary Generating Functions
1.8 Synthesizing Generating Functions
1.9 Asymptotic Estimates

In combinatorial analysis, counts of selections, orderings, arrangements, or config­
urations for differently sized versions of a given problem are commonly given as a 
sequence. Alternatively, a sequence may correspond to a list of measurements of 
the behavior of some process over time. Even though such sequences may contain 
infinitely many different numerical values, there is often a finite way to represent 
them collectively. In particular, a closed formula to calculate any number in the 
sequence from its location in the sequence is especially convenient. A recursion rule 
for inferring later values in the sequence from earlier values is another form of finite 
representation. This first chapter provides acquaintance or reacquaintance with a 
variety of standard sequences and with these basic types of finite representations 
o f sequences. It introduces some initial methods for manipulating such represen­
tations so that information about the properties of the sequence can be extracted 
efficiently.

49
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1.1 SEQUENCES AS LISTS

In this section, we consider some common kinds of sequences and some of their 
attributes.

DEFINITION: A sequence  in a set S is a list of elements of S

X q  X \  X 2  . . .

indexed by the non-negative integers, or sometimes by some other countable set. 
Collectively, the sequence is denoted (x n), with angle brackets, or by variations on 
this basic notation.

TERMINOLOGY: A member Xj o f a sequence (x n} is also called an entry  or a term. 
The set in which the values xj are taken may be called the range o f  the sequence.

NOTATION: Some of the most standard sets of numbers that serve as ranges for 
sequences are denoted here in blackboard bold typeface style:

% =  { . . . ,  —2, —1, 0, 1, . . . }  integers 
ZT1" = { 1 ,  2, 3, •••} positive integers 
N = { 0 ,  1, 2, •••} natural numbers 
M =  real numbers 
Q =  rational numbers

DEFINITION: An algebraic expression in the argument n for the value of the general 
element x n of a sequence (x n} is called a closed formula for the (elements of the) 
sequence.

Example 1.1.1: The closed formula x n =  n3 — 5n specifies the sequence 

(x n) : 0 - 4  - 2  12 44 100 186 . . .

Example 1.1.2: The closed formula yn =  2n+2 — n3 specifies the sequence 

(yn) : 4 7 8 5 0 3 40 . . .

Fast-Growing Sequences
One frequently cited attribute of a sequence is its rate o f growth, which is 

understood in relation to the standard indexing sequence, i.e., the natural numbers. 
We refer to a sequence as a polynomial sequence if it is specifiable by a polynomial on 
the index set N, as in Example 1.1.1, or as an exponential sequence if it is specifiable 
by an exponential. Polynomial and exponential sequences are both thought to grow
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rather rapidly. Precise criteria for comparing growth rates are provided later in this 
chapter.

Example 1.1.3: The polynomial sequence (x n =  n2)

n 0 1 2 3 4 5 • • •
n2 0 1 4 9 16 25 • • •

grows more rapidly than the sequence of integers. Any polynomial sequence for a 
polynomial of degree greater than 1 grows more rapidly than the natural numbers.

Example 1.1.4: The exponential sequence (x n =  3n)

n 0 1 2 3 4 5 • • •
?n 1 3 9 27 81 243 • • •

also grows more rapidly than the sequence of integers. Once a precise notion of 
comparative rate of growth is in hand in § 1.4, it will be provable that any exponential 
sequence (x n =  bn) with b >  1 grows more rapidly than any polynomial sequence. 
Of course, if 0 <  b <  1, then the sequence (x n =  bn) decreases. For instance,

0 1 2 3 4 5

Example 1.1.5: A sequence that grows even more rapidly than an exponential 
sequence is the factorial sequence

n 0 1 2 3 4 5 • • •
n\ 1 1 2 6 24 120 •••

This is another comparison whose meaning awaits explanation.

Slow-Growing Sequences
Various other increasing sequences grow slowly, relative to the integers. The 

first example here involves a fractional exponent. The second and third involve 
logarithms and harmonic numbers.

Example 1.1.6: A sequence (x n =  nr) grows more slowly than the natural 
numbers if 0 <  r <  1. Consider, for instance,

n 0 1 2 3 4 5 • • •
n1! 2 0 1 V2 ^ 3  2 ^ 5  •••

NOTATION: The natural logarithm of a positive number x is denoted In*. The 
logarithm to the base 2 is denoted lg* .

Example 1.1.7: The sequence

n 1 2 3 4 5 • • •
lg n 0 1 lg 3 2 lg 5 •••

grows even more slowly than the sequence (x n =  nT}, for r >  0. (See Exercises.)

  



DEFINITION: The h arm on ic n u m b er  Hn is defined as the sum

A i  _  1  1  l
k ^ ik ~  1  +  2  +  ' " + n  

with H o =  0 for the empty sum.

Example 1.1.8: The harmonic sequence

52 Chapter 1 Sequences

n 0 1 2 3 4 5 • • •

Hn 0 1 3
2

n
6

25
1 2

137 
60 ' ' '

is closely related to the natural logarithm Inn, as explained in §3.1.

Example 1.1.9: The values in a sequence need not be numbers.

PREVIEW OF §8.7: The surface Sg is the surface with g handles in the following 
sequence.

Bounded Sequences
Although all sequences considered previously in this section become arbitrarily 

large as the sequence continues, some sequences do not.

DEFINITION: A b o u n d ed  seq u en ce  (x „ )  is a sequence (typically of real numbers 
or integers) for which there is a number B  (called a bou n d ), such that

\xn | <  B  for all n

Observe that the sequence is bounded in absolute value.

Example 1.1.10: The real sequence

Xn ~  1 “  V +  i ,

is bounded. It is always non-negative, and its value never exceeds 1.

Periodic Sequences
Some sequences are repetitive. That is, the same subsequence recurs ad infini­

tum.

  



DEFINITION: A p er io d ic  s eq u en ce  ( x „ )  is a sequence for which there is a positive 
integer P, such that

Xj+p =  Xj for all j  G N 

The smallest such integer is called the p e r io d  o f  th e  seq u en ce .

Example 1.1.11: An alternating sequence of 0’s and l ’s

0 1 0 1 0 1 - - -

is periodic with period 2.

DEFINITION: The rem a in d er  fu n ctio n  on a pair o f integers » £ P J  and d £ is 
defined as

n mod d =  n — d |̂—J

It is also called the m o d  fu n ction . The arguments n and d are called the dividend 
and the divisor, respectively.

Example 1.1.12: The sequence n mod 3
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n 0 1 2 3 4 5 • • •

n m od 3 0 1 2 0 1 2 • • •

is periodic with period 3. More generally, for any fixed divisor m, the sequence

(xn =  n mod m }

is periodic with period m.

Remark: Clearly, any periodic sequence is bounded, that is, by the largest number 
in the repeating subsequence. For instance, the sequence in Example 1.1.12 is 
bounded by 2.

Generalizations
At times, sequences employ sets other than the natural numbers as their sub­

script sets, and they sometimes have multiple subscripts. For instance, sometimes 
a sequence is of interest only over a finite set a, a +  1, . . . ,  6 of consecutive inte­
gers. At the other extreme, there may also be negative, or there may be multiple 
subscripts.

Example 1.1.13: The closed formula x(n)  =  3n may also be regarded as a 
specification of the extended sequence (3n | » £ Z ) :

n . . .  _ 2 - 1 0 1 2 3 • • •
?n 1

' ' ' 9
1
3 1 3 9 27 • • •
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DEFINITION: An array  o f dimension d in a set S is a function from the set of d-tuples 
of natural numbers to the set S.

NOTATION: Array elements are commonly written in the subscripted notation

£ 0,0 a?0 , l  £ 0,2 ' ' '

*1,0 *1,1 *1,2 * * *
*2,0 £2,1 £2,2 ' ' '

DEFINITION: The in te g e r  in terva l \k : m], where k ,m  € Z, is the set

The integer interval [1 : n] is used as the standard set of cardinality n.

TERMINOLOGY: Extended sequences, arrays, and any of a host of other possible 
related mathematical structures may sometimes simply be called sequences.

Eventual Behavior of Sequences
Some sequences take a while before entering a permanent pattern.

DEFINITION: In general, for a property V, we may say that a sequence (x n} is 
ev en tu a lly  V  (or related idiomatic variants of that phrasing) if there is a number N  
such that the subsequence {x n \ n > N ) has that property.

Example 1.1.14: The sequence

is eventually increasing, as illustrated in Figure 1.1.1. Its shape is an upward 
parabola, with its minimum at n =  4, after which it is strictly increasing. Thus, it 
is eventually increasing.

Figure 1.1.1 An eventually increasing sequence.

  



Example 1.1.15: The sequence (x n =  2ns — 2n) is eventually decreasing. 

Remark: Every polynomial (except a constant) is eventually increasing or eventu-

Example 1.1.16: The decimal digits of

4824
=  0.52412121212...
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8250

are eventually periodic, as illustrated in Figure 1.1.2.

Figure 1.1.2 An eventually periodic sequence.

EXERCISES for Section 1.1

In each o f the Exercises 1.1.1 through 1.1.6, write the first 12 elements o f the indi­
cated sequence, and prove that the sequence is periodic. Start at n =  0.

1.1.1s 2" mod 7 1.1.2 3" mod 7 1.1.3 4" mod 7
1.1.4 n2 mod 5 1.1.5 n3 mod 4 1.1.6 n2" mod 3

In each o f the Exercises 1.1.7 through 1.1.9, write the first 12 elements o f the indi­
cated sequence, and prove that the sequence is eventually periodic. Start at n — 0.

1.1.7s 2" mod 6 1.1.8 3" mod 15 1.1.9 2" mod 12

1.1.10 Prove that the sequence n! mod 11213 is eventually periodic.
1.1.11 Prove that the sequence [y^n\ mod 3 is not eventually periodic.

In each o f the Exercises 1.1.12 through 1.1.17, find a polynomial f (x )  and a number 
P  such that the sequence an =  f ( n ) mod P  has the periodic pattern delimited by 
semi-colons. Some o f these exercises may require algebraic experimentation and

1.1.12 0, 1; 0, 1; . . .  1.1.13s 0, 1, 1; 0, 1, 1; . . .
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1.1.14 0, 0, 1; 0, 0, 1; . . .
1.1.16 0, 0, 1, 1; 0, 0, 1, 1;

1.1.15 0, 1, 1, 0; 0, 1, 1, 0; . . .
1.1.17 1, 0, 1, 0, 1; 1, 0, 1, 0, 1;

write and solve a system of linear equations in the coefficients cij.

1.1.19 Given a polynomial f ( x ) =  do +  a\x +  • • • +  (idXd o f known degree d but

1.1.22 Show that the sequence of decimal digits of every rational number is even­
tually periodic.
1.1.23 Show that a number whose sequence of decimal digits is eventually periodic 
is a rational number.

DEFINITION: A sequence (un) eventually dominates a sequence (v „ } if there is a 
number K  such that un >  vn for all n >  K .

1.1.24 Show that Inn eventually grows more slowly than nr , for any r >  0, in 
the sense of differential calculus that its derivative is eventually dominated.
1.1.25s Show that the sequence (x n =  2 '/" }  eventually dominates the sequence 
{yn =  n2).

Most of the sequences considered in §1.1 were specified by a function j  i—> X j .  

This section presents an alternative way that a sequence may be specified.

DEFINITION: A standard recurrence for a sequence prescribes a set of initial 
values

and a recursion formula

from which one may calculate the value of x „ , for any n >  k, from the values of 
earlier entries.

1.2 RECURRENCES

for n >  k
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Example 1.2.1: The recurrence
*o =  0 initial value
x n =  * n_ i +  2 n — 1 recursion

has as its first few values

We observe that the recursion formula here depends only on a fixed number of 
predecessors of x n, specifically, only on * n- i -

DEFINITION: Inferring a closed formula for a sequence from a recurrence is called 
solving the recurrence.

Example 1.2.1, continued: The first few values specified by the closed formula 
specification x„ =  n2, which are

coincide with those specified by the given recurrence

The initial value * 0 =  0 may be used as the basis for an induction to prove that 
x „ =  n2. Substituting * n_ i =  (n — l ) 2 into the recursion yields the induction step

x n =  (n — l ) 2 +  2 n — 1 =  (n 2 — 2 n +  1) +  2 n — 1 =  n 2

Thus, n 2 is a correct closed formula for x „ , and the recurrence is solved.

In calculating the value of x„  for a large subscript n, it is usually quicker to 
use a closed formula than a recurrence, since using the latter would require first 
calculating the values of many entries with lesser subscripts. Quite often, however, 
an explicit recurrence for the values of a sequence is given or readily inferrable, 
yet identifying the closed formula requires some analytic effort. We shall describe 
recurrences and closed formulas for three well-known sequences: the Tower o f Hanoi 
sequence, the Fibonacci sequence, and the Catalan sequence.

A General Problem-Solving Method
Sometimes it is possible to guess the solution to a recurrence. More generally, 

the following approach goes a long way in mathematics, if one is good at guessing 
from relatively few examples.

1. Examine some small cases systematically.
2. Guess a pattern that covers all those cases.
3. Prove that the guess is correct.
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Tower of Hanoi

The T ow er o f  H an oi  is a puzzle invented by Edouard Lucas (1842-1891), a 
professor of mathematics in Paris with a keen interest in recreational mathematics. 
There are three pegs, a source peg, an intermediate peg, and a target peg. There 
are n drilled disks of differing diameters, initially stacked on the source peg in the 
order of ascending diameter, from top to bottom, as in Figure 1.2.1.

The objective is to transfer all the disks from the source peg to the target peg, 
with the aid of the intermediate peg, under the following rules:
(1) Only one disk may be transfered at a time.

(2) No disk may ever lie on top of a smaller disk.

Clearly, it takes an initial value of 0 steps to transfer 0 disks. We observe that when 
transferring n disks from the source peg to the target peg, it is necessary first to 
move n — 1 disks from the source peg to the intermediate peg (using the ultimate 
target peg as intermediate) —  which requires /in_ i moves. Then the largest disk 
can be transferred to the ultimate target peg in a single move, after which the n — 1 
disks on the intermediate peg can be transferred in /in_ i moves to the target peg on 
top of the largest disk (using the initial peg as intermediate). Thus, the minimum 
number hn o f moves needed to transfer n disks satisfies the following recurrence:

RECURRENCE

ho =  0 initial value
hn =  2/in_ i +  1 recursion

We may use the recursion to calculate the first few values of hn and then try to 
guess a closed formula.
SMALL CASES

ho =  0
hi =  1 APPARENT PATTERN
h2 =  3 hn =  2n -  1

h4  =  15
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Theorem 1.2.1. The Tower o f  Hanoi recurrence

has the solution
hn =  2n - l  (1.2.2)

Proof: By induction.
BASIS: Applying the formula (1.2.2) yields the equation /i0 =  2° — 1 =  1 — 1 =  0, 
which agrees with the prescribed initial condition ho =  0.

IND HYP: Assume that /in_ i  =  2n_1 — 1.

IND STEP: Starting with the recursion (1.2.1), we now complete the proof.

hn =  2/in_ i +  1 given recursion
=  2 (2n_1 — 1) +  1 induction hypothesis

ho =  0; hn — 2/in_ i  +  1 for n >  1 (1.2.1)

Fibonacci Sequence

Hindu-Arabic numerals in Europe. His original contributions include the formula­
tion and study of a well-known sequence that was mentioned in the introductory 
chapter.

DEFINITION: The F ib on a cc i s eq u en ce  ( / n) is defined by the recurrence

initial values 
for n >  2 (1.2.3)

Here are the first few entries:

n 0 1 2 3 4 5 6 7 8 9 •••

f n 0 1 1 2 3 5 8 13 21 34 •••

DEFINITION: A F ib on a cc i n u m b er  is any number that occurs in the Fibonacci 
sequence.

A closed formula for the Fibonacci recurrence is not easily guessed from the 
small cases. (However, once guessed, the solution is verifiable by a routine induc­
tive proof.) The derivation of the following solution appears in §2.5, along with a 
discussion of ways that the Fibonacci sequence occurs in mathematics.

(1.2.4)

and
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Example 1.2.2: For the time being, it is interesting to confirm an instance of the 
correctness of the formula (1.2.4) for the Fibonacci number f n .

Catalan Sequence
Many combinatorial objects are counted by a recurrence named for Eugene

DEFINITION: The C atalan seq u en ce  (cn) is defined by the recurrence

co =  l ;  initial value (1 2  5)
Cn =  c0cn_ 1 +  c\cn_ 2 +  • • • +  cn_ ic 0 for n >  1  ̂ '

Here are the first few entries

n 0 1 2 3 4 5 6 7 8 • • •

cn 1 1 2 5 14 42 132 429 1430 •• •

DEFINITION: Any number that occurs in the Catalan sequence is called a Catalan  
n u m ber.

As with the Fibonacci sequence, a closed formula for the Catalan sequence is 
not easily guessed from the small cases. Its derivation, which is significantly more 
difficult than that of a closed formula for the Fibonacci numbers, appears in §4.4.

1 ^ 2n ^ (1.2.6)
n | l  I n

Example 1.2.3: C3 =  —

Proving Properties of Sequences
Proof that a sequence has some given property can be derived either from a 

closed formula or from a recursion, with the aid of mathematical induction. As an 
illustration, we consider the properties of concavity and convexity.
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DEFINITION: A  sequence (x n} is co n cav e  (on the integer interval [a : 6]) if

^ x n -l  + x n + l /p , i t\x n >  --------- ----------  (for n =  a +  1, 6 - 1 )

This means that the point ( n , x n) lies above the line segment joining the points 
(n — 1, * n- i )  and (n +  1, * n+ i) in the plane, as in Figure 1.2.2.

Figure 1.2.2 Concavity in a sequence.

Example 1.2.4: Concavity o f the sequence (x n =  1 — ~ ) follows from  the obser­
vation that

2 2  ̂ 2 >  2 ^U
n n2 ' n2 — 1

 ̂ Tl — l )  (  n + i )  n l + n  + l

Example 1.2.5: That the Fibonacci sequence ( / „ )  is eventually increasing, after 
n =  2, follows easily by m athem atical induction. Moreover, it is a consequence for 
all n >  3 that f n <  2 /n_ i .

DEFINITION: A  sequence (x n) is c o n v e x  (on the integer interval [a : b]) if

x n <  — — ^ f o r  n =  a +  1, . . . ,  6 — 1

This means that the point (n , x n) lies below the line segment joining the points 
(n — 1, * n- i )  and (n +  1, * n+ i) in the plane, as in Figure 1.2.3.

Figure 1.2.3 Convexity in a sequence.
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Example 1.2.6: The Fibonacci sequence is eventually convex, after n =  2. This 
is confirmed as follows:

/ „ + 1  +  f n - 1  =  f n  +  2 /n - i  (by the Fibonacci recursion) 

which is equivalent to the defining condition for convexity.

EXERCISES for Section 1.2

1.2.1 Evaluate the closed formula (1.2.4) for the Fibonacci number f 4  and com­
pare the result with the value calculated by the Fibonacci recursion.
1.2.2 Evaluate the closed formula (1.2.4) for the Fibonacci number /s  and com­
pare the result with the value calculated by the Fibonacci recursion.
1.2.3 Evaluate the closed formula (1.2.6) for the Catalan number c4  and compare 
the result with the value calculated by the Catalan recursion.

1.2.4 Evaluate the closed formula (1.2.6) for the Catalan number C5 and compare 
the result with the value calculated by the Catalan recursion.

In Exercises 1.2.5 and 1.2.6, prove that the sequence is concave.

1.2.5 Hn (harmonic number) 1.2.6s lg n

In each o f the Exercises 1.2.7 through 1.2.12, prove that the given sequence is convex. 
1.2.7s n 2 1.2.8 n3  1.2.9 n ” 1

1.2.10 n ~ 2 1.2.11 2n 1.2.12 2“ n

1.2.13s Prove that the Catalan sequence is convex.

1.2.14 Can a bounded positive (infinite) sequence be convex?
1.2.15 Construct a bounded increasing sequence of positive values that is not 
eventually concave.

1.2.16 Prove that the sequence of values of y/n is concave.
1.2.17 Prove that the sequence of values of [\/n\ is not concave.

Let pn denote the number o f regions created m the plane by 
n mutually intersecting straight lines, with no more than two 
lines mteresectmg at any one point. The figure at the right 
illustrates that ps =  7. Exercises 1.2.18 through 1.2.21 are 
concerned with the sequence (pn).

1.2.18 What are the values po, pi, P2 , and p4l

1.2.19 Give a recursion for pn.

1.2.20 Guess a closed formula for pn.

1.2.21 Use induction to prove that your guess is correct.
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1.3 PASCAL’S RECURRENCE

A recurrence may also be used to specify an array. This section focuses on a 
recurrence for a doubly subscripted variable.

DEFINITION: The com b in a tion  co e ffic ien t  the number of ways (sometimes
called combinations) to choose a subset of cardinality k from a set of n objects.

Figure 1.3.1 There are (®) ways to choose 3 balls from the 9 in  the urn.

Proposition 1.3.1. The combination coefficients ( ) satisfy the recurrence
. K ,

( l i )

( l 2 )

=  1 for all n >  0

=  0 for all k >  1

n — 1\ fn  — 1 
k -  1

for n >  1

Proof: Since, in any set, the empty set is the only subset of cardinality zero, the 
combination coefficients have initial values (^) =  1, for all n >  0. Since there are no 
subsets of positive cardinality in the empty set, the combination coefficients have 
additional initial values (^) =  0,for all k >  1. The first of two proofs given here for 
the recursion formula (R) is algebraic. The second is combinatorial.

equation and makes substitutions and arithmetic operations that result in the left 
side.

n — 1 
k -  1

n — 1 
k

(n — 1)! (n — 1)!
(k — 1)! (n — k)\ k\ (n — k — 1)!

k! (n — k)\ k !(n  — k)\ '

k! (n — k)\ '
n\ f  n

k! (n — k)\ \k

(Formula (0.4./

Combinatorial Proof: The combinatorial proof of (R) shows that both sides 
o f (R) count the same set of objects. The left side counts the number of ways to
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choose a subset of size k from the integer interval [1 : n\. If such a subset includes 
object n, then it is counted by the summand (^l|) on the right side, since one then 
chooses k — 1 other objects from [1 : n — 1]. Alternatively, if such a subset excludes 
object n, then all k objects must be chosen from [1 : n — 1], and it is counted by 
the summand ("JT1)- Since these two cases are exclusive and exhaustive, it follows 
that

DEFINITION: The system { I i , I2 , R } is called P a sca l ’s r e cu rren ce .

TERMINOLOGY: The approach used in the combinatorial proof of Proposition 1.3.1

natorial arguments.

R em ark : Offering two proofs here previews Chapter 4, where more proofs of both 
types are presented. Learning to understand and to create combinatorial proofs is 
very important preparation for Chapter 5, because there are recursions and other 
identities for Stirling numbers that cannot be verified by simple algebraic manipu­
lations.

Binomial Coefficients

DEFINITION: The coefficient & of x k in the expansion

(1 ,k X

is called a bin om ial coefficien t.

E xam ple  1.3.1: Binomial coefficients can be calculated by iteratively multiplying 
by 1 +  x.

\ 0l +  x )u =  1

2

X

1 -|- x Y  =  1 +  2 x +  x 2

1 +  x)3 =  1  +  3x +  3x2 +  x3 

1  - f  x)A =  1  +  4x +  6x2 +  4x3

P ro p o s it io n  1.3.2. The binomial coefficients bn k satisfy Pascal’s recurrence. 

P ro o f: The initial values of Pascal’s recurrence are satisfied, since the values

bo ,k — 0

for all n >  0 

for all k >  1
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can be verified by considering the direct expansions of (1 +  x)°  and (1 +  x )n , as in 
Example 1.3.1. To show that the recursion is satisfied, it is observed that

n n — 1

=  (1 +  x) ^  Xk (1.3.1)

n—1 n—1
=  & n - l , f c  X -

n—1 n—1
=  l , k X k  +  y 1  & n - 1 , k X k  +  1

n n

—  ̂bn—\ k x -\~  ̂bn—\ k—\ x

n

=  { b n - i , k  +  b n - i  k - i ) x k  (1.3.2)

Thus, the coefficient bn k  of x k in the sum at the left of equation (1.3.1) must equal 
the coefficient of x k in the sum at the right in equation (1.3.2), i.e., it must equal 
the sum

b n  —  l , k  " i "  b n  —  l , k  —  l  O ’

Corollary 1.3.3. For all n ,k  >  0, the number Q) o f  ways to choose k objects 
from a set o f  n distinct objects equals the binomial coefficient bn k ■

Proof: By Proposition 1.3.2, the combination coefficients and the binomial 
coefficients bn k  satisfy the exact same recurrence system. An induction argument 
establishes that the values must be the same. <C>

TERMINOLOGY NOTE: The number is commonly called a bin om ial coefficien t. 
From here on in this book, we shall refer to it as such.

DEFINITION: If the zero values are left blank, then the array of binomial coefficients 
has a triangular shape and is called P a sca l’s triangle.

Table 1.3.1 Pascal’s triangle for values of (").
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In this form of Pascal’s triangle, each number is the sum of the number directly 
above it and the number in the row above, one column to the left. Pascal’s triangle 
also has a pyramid form:

1 
1 1

1 2 1 
1 3  3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1

In the pyramid form, each number is the sum of the two numbers just above it, one 
slightly to the left and the other slightly to the right.

Remark: The pyramid form of Pascal’s triangle may be regarded as a directed 
graph in which there are two directed edges from each number, one to the number 
just below to the left, the other to the number just below to the right. It may be 
observed empirically that the number of directed paths from the apex of Pascal’s

EXERCISES for Section 1.3

1.3.1 Calculate row n =  7 of Pascal’s triangle from row n =  6. 

Using only Pascal’s recursion, prove the following1.3.2

n  —  2 

k
2\ Ai -  2
1 U - l

1.3.3 By mathematical induction,

j j  \k ~ j

2 \ f n - 2 \ „
2 j  \ k 2 j  0 <  n

the equation of Exercise 1.3.2 to 

for 0 < r <  n

1.3.4 Show that the generalized sequence an k = satisfies Pascal’s
k\ (n — k)\

recurrence. Since the combinatorial and binomial coefficients also satisfy Pascal’s 
recurrence, this serves as an alternative proof that

1.3.5s Prove that

k\ (n — k)\

=  2n, for all

for 0 <  k <
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1.3.6 Prove that 2k =  3n, for all n £ N.

1.3.7 Prove the remark at the end of the section regarding directed paths in the 
pyramid form of Pascal’s triangle. Hint: Prove that the number of directed paths 
to each entry (") satisfies Pascal’s recursion.
1.3.8 Prove the correctness of the expansion

(x +  y +  z ) 2 =  x 2 +  y 2 +  z2 +  2 x y + 2 x z +  2 yz

In each o f the Exercises 1.3.9 through 1.3.12, expand the given power o f a linear 
multivariate polynomial, as m the statement o f Exercise 1.3.8.

1.3.9 (w +  x +  y)3 1.3.10 (w +  x +  y)A

1.3.11 (w +  x +  y +  z )3 1.3.12 (w +  x +  y +  z )4

1.3.13 Recalling multinomial coefficients from §0.4, prove this generalization of 
Pascal’s recursion:

f  n 

v 'l
n — 1  \ /  n — 1  \ /  n — 1

i\ 1 , %2 , ... 1 is J V'l 7̂ 2 1 7 3̂ J * * * 7 is J V'l 7 • • • 7 is — 1 7 is 1

1.4 DIFFERENCES AND PARTIAL SUMS

Texts on infinitessimal calculus generally provide formulas for derivatives before 
deriving formulas for integrals. For similar reasons, having formulas for differences 
o f consecutive values in a sequence provides access to formulas for partial sums of 
the sequence.

DEFINITION: Given a sequence (an), we define the d ifferen ce  seq u en ce  (A a„) by 
the rule

L\an =  an-|-i an

More generally, given a function /  : M —> M, we define the d ifferen ce  fu n ctio n  A /  
by the rule

DEFINITION: A d ifferen ce  ta b le  for a sequence (a „ ) has the sequence itself in its 
0th row and the difference sequence (A an) in its 1st row. Often, the difference 
operation is iterated and additional rows are given. Sometimes each subsequent 
row is written a half-column shift to the right.
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A  an =  (n +  l ) 2 — n 2 =  2n +  1

and

Example 1.4.1: If an =  n2, then

A<2)

These equations yield this difference table (with a half-column rightward shif

a„ =  n 
A  an

A <2

0 1 4 9 16 25 36 49 ■■
1 3  5 7 9 11 13 •••

2 2 2 2 2 2 • • •

Example 1.4.2: The sequence ( bn =  n3 } has the difference table, which was 
created by calculating its initial row and then iteratively taking differences.

bn =  n 3

A  bn 
A  <2)&n 
A (3)&„

0 1 8  27 64 125 216 343
1 7 19 37 61 91 127 ••

6  12 18 24 30 36 • • •
6 6 6 6 6 • • •

Properties of the Difference Function
In Examples 1.4.1 and 1.4.2, we observe that the second and third rows of the 

difference tables for the sequences (n2) and (n3), respectively, have the constant 
values 2 =  2! and 6  =  3!. An initial aspect of our exploration is to establish that 
this phenomenon holds generally.

Proposition 1.4.1. The difference operator A  is linear. That is,

Proof: The details are straightforward.

A  ( f(n )  +  cg(n)) =  ( f (n  +  l) +  cg(n +  l ) ) - ( f ( n )  +  cg(n))

Proposition 1.4.2. In the difference table for the sequence

the rth row has the constant value r\, and, accordingly, all subsequent rows are 
null.

Proof: By induction.
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BASIS: The entries in the 0 row of the sequence (n } all have the value 1 =  0!.

IND HYP: Assume that all the entries in the (r — l ) st row of the table for nr~l 
have the value (r — 1 )! and that all higher order rows are null.

IND STEP: It follows from the expansion

(for appropriate coefficients bj) and from the linearity of A  that

') )
=  A ^ - 1 ) ^ * - 1 +  br_ 2nr~2 +  . . .  +  6 0)

r — 2
=  r A ^ 1) (nr~1) +  A (r_1) (nj )

By the induction hypothesis, A l-r - 1 )(n-J) =  0, for j  <  r — 2, from which it follows 
that every term in the sum on the right has value 0. Thus,

A W (n r) =  r A ^ ' l f / - 1)

It follows that the r th row of the difference table for (nr) equals r times the (r — l ) st 
row of the table for nr~1, in which every entry has the value ( r— 1 )!, by the induction
hypothesis.

Summation Operator

DEFINITION: Let (xn) be a sequence with values in an algebraic structure with an 
addition. Then the expression

E :

is called the nth p artia l

DEFINITION: The su m m ation  o p er a to r  maps a sequence ( x n \ n £ N ) to the 
sequence of partial sums

Example 1.4.3: Under the summation operator, the integer sequence

(x n) = 1 3  5 7 . . .  

is mapped to the integer sequence of its nth partial sums
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which begins with the values 

1 4 9 16 . . . 

It may be guessed that un = (n + l ) 2 , which is readily proved by induction. If one 
now defines 

then the sequence (an = n2) has the values 

0 1 4 9 16 . . . 

which inverts Example 1.4.1. We recall from §0.3 that the empty sum is defined to 
be zero. This accounts for the value 

The next theorem establishes that the inversion is not at all a coincidence. 

NOTATION: From time to time, it is convenient to use the notation X : (IS (111 alter­
native to AXJ. This is analogous to the use of such an alternative notation in the 
differential calculus. 

T h e o r e m 1 .4 .3(a) . Let (xn \ n £ N) be a sequence. Then 

(1.4.1) 

Proof: This is another straightforward calculation. 

0 

The upper limit of the sum in equation (1.4.1) must be n — 1, rather than n, to get 
the correct result. Figure 1.4.1 illustrates the proof of Theorem 1.4.3(a). The sum 
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of the lengths along the y-axis clearly equals the height X4 of the rightmost rectangle. 
Thus, 

which is the total vertical distance from the top of the leftmost rectangle to the top 
of the rightmost rectangle. 

(Xl - X0) + (X2 - Xl) + (X3 - X2) + (X4 - X3) = X4 - X0 

Figure 1.4.1 A c c u m u l a t i n g c o n s e c u t i v e differences, 
as in T h e o r e m 1 .4 .3(a) . 

T h e o r e m 1 .4 .3 (b) . Let (xn \ n £ N) be a sequence. Then 

Proof: By the definition of the difference operator, 

0 

Figure 1.4.2 illustrates the proof of Theorem 1.4.3(b). The difference of the sum 
%o + • • • + %4 of the areas of the consecutive rectangle including X4 and the sum 
xo + • • • + x3 of the areas excluding X4 clearly equals the cU*6cl X4 of the rightmost 
rectangle. 
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+  X l  +  X ' j  +  X 3  + +  *1 +  X'j +  ;

Figure 1.4.2 Subtracting consecutive sums, as in Theorem 1.4.J

TERMINOLOGY: Theorem 1.4.3 is a form of what is commonly called the Funda­
m en ta l T h eo rem  o f  F in ite  Calculus. One sees a direct analogy to the Funda­
mental Theorem of Infinitessimal Calculus:

Growth Rate of Sequences
Comparison of the growth rate o f one sequence (x n} with that of another was 

mentioned informally in §1.1. The most common criterion for comparing the long 
term behavior of two sequences is called asymptotic dominance. However, by way of 
analogy to differential calculus, a possible measure of the growth rate of a sequence 
is its difference sequence.

Example 1.4.4: To establish, in the sense of finite differences, that the sequence 
(n3) grows faster than the sequence (cn2) , for any constant value of c, we make the 
following calculations.

A n 3  =  (n +  l ) 3 — n3  =  3 n 2 +  3n +  1 
A  cn 2 =  c(n +  l ) 2 — cn 2 =  2 cn +  c

For n >  c, we have
3n2 +  3n >  3cn +  3c >  2cn +  c

Thus, A n 3 eventually dominates A  cn2.

Another possible measure of the growth rate of a sequence of positive values is the 
sequence of ratios

'En + l n £ Z +
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of consecutive terms.

Example 1.4.4, continued: The successive ratios of n3 are
In 1)S n3 +  3 n 2 +  3n +  1

n°

and the successive ratios of cn 2 are

c(n +  1 y cn ■ 2 cn ■
~  1 +  -  +  —

which are clearly smaller.

EXERCISES for Section 1.4

In each o f the Exercises 1.4-1 through 1.4-6, construct a portion o f a difference table 
for the given sequence, o f sufficient extent to indicate the general pattern.

1.4.1s n4  1.4.2 n(n — 1) 1.4.3 n(n — l) (n — 2)

1.4.4 2n 1.4.5 3n 1.4.6 4n

In each o f the Exercises 1.4-7 through 1-4-12, calculate the difference sequence A an 
for the given sequence.

1.4.7s an =  cn 1.4.8 an =  n~r (r >  0)
1.4.9 an =  lg n 1.4.10 an =  f n (Fibonacci number)

1.4.11 an =  Hn (Harmonic number) 1.4.12 an =  cn (Catalan number)

In each o f the Exercises 1.4-13 through 1-4-16, compare the value o f the difference
a6 — a3  to the value o f the sum ^ n = 3

1.4.13s a„ =  n 2

1.4.15

1.4.14

1.4.16

an =  n(n — 1) 

an =  2 n

1.4.17 Prove that the difference function of a polynomial function of degree d is

1.4.18 Prove that a sequence is generated by a polynomial if and only if there is 
eventually a row of zeroes in the difference table.
1.4.19 Prove that a sequence is generated by an exponential cn if and only if each 
row in the difference table is a multiple of other rows.

Each o f the Exercises 1.4-20 through 1-4-23 gives a linear recurrence for a sequence. 
Write a recurrence for its difference sequence.

&n — 3czn_ i 2
an =  can_ i +  d

ai —  1, an —  3czn _i -1- 2an — 2

an =  4an_ i +  n

1.4.20 a0 =  1
1.4.21 a0 =  b
1.4.22 a0 =  0

1.4.23 a0 =  2
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1.5 FALLING POWERS

r e v i e w  f r o m  §0.2: The nth falling power  of a real number x is the product

n factors

x— =  x (x — 1) • • • (x — n +  1) for

If x is an integer, then the falling power x— equals the number of ordered selections 
of n objects from a set of x distinct objects. Thus, for elementary combinatorial 
calculations, falling powers are as natural as ordinary powers.

We recall that the differential calculus has nice formulas:

dx dx

So does the calculus of finite differences, but these are not examples of them:

In the calculus of finite differences, the falling monomial x— lends itself quite natu­
rally to nice formulas that are analogous to those of the ordinary monomial x n.

Example 1.5.1: This illustrates what is meant by a “nice formula” .

(x -)

Example 1.5.1 and is analogous to the differential calculus formula for ordinary 
powers.

Theorem 1.5.1. A (*L) =  r*— -.

Proof: A straightforward approach is sufficient.

A  {xr~) =  {x +  1 y- -  x r-
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Corollary 1.5.2. For every non-negative integer r and every positive integer n,

n — 1 / + 1

r +  1

Proof: By Theorem 1.5.1, we have j -  =  A  

Theorem of Finite Calculus, it follows that

• r  +  l

•r +1

r + l
. Thus, by the Fundamental

3-
r + l

/ + 1

r + l

Example 1.5.2: Direct addition and the formula of Corollary 1.5.2 give the same 
result when summing k-.

4
=  0 • ( -1 )  +  1- 0 +  2 -1  +  3- 2 +  4- 3 =  20

5- 5 - 4 - 3

Unimodal Sequences
DEFINITION: A sequence (x n) is unimodal if there is an index M  such that

Xq <  X\ <  • • • <  x m  — i ^  XM

and that (x n) is non-increasing after index M . The value xm  is called the m ode  
and M  the m ode index. (A tie is permitted at the mode value.)

DEFINITION: A sequence is eventually 0 if there is a number N  such that x n =  0, 
for all n >  N . (Thus, there are only finitely many non-zero entries.)

Example 1.5.3: Most of the unimodal sequences of interest in the present context 
are eventually 0. Figure 1.5.1 illustrates that the sequence (®) is unimodal.

Figure 1.5.1 The unimodal sequence
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T h eorem  1.5.3. For any fixed non-negative integer n, the binomial sequence

r =  0 , 1 , . . . }

is unimodal with mode index [n /2 j and is eventually 0 .

I 71 I 71 71 1
P ro o f: We observe that for r <  -  L we have — >  2, and, hence, --------  >  2.

L 2 J r r
n — r +  1

Thus,

n
r — 1 (r — 1)!

(r — 1)! r
n - f  n'

! \

Moreover, for r >  |̂—J , we have n <  2r +  1, and it follows that n — r <  r + l .
77 — V

Thus, -------- <  1. It follows that
r + l

n
r + l

- . r  +  l n - n — r
(r +  1)! r! r + l  r!

Of course, the sequence is zero for r >  n.

R em ark : One of the consequences of unimodality of a sequence is that it may 
make it possible to find the maximum by hill-climbing, for which there exist highly 
efficient computational strategies.

Log-Concavity and Log-Convexity
In trying to establish unimodality, curiously enough, it is often easier to prove 

the stronger property called log-concavity. For instance, this is the method used in 
this section to reconfirm the unimodality of the binomial coefficients in the rows of 
Pascal’s triangle and later to prove the unimodality of some analogous sequences of 
Stirling numbers (see §§1.6, 5.1, 5.2).

DEFINITION: A sequence ( xn) o f  positive  real num bers is 
teger interval [a : b]) if, for n =  a + 1, . . . ,  6—1,

con ca v e  on

and iis lo s -c o n v e x if

’, x n >

’,x n <

the in-

(1.5.1)

(1.5.2)
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Proposition 1.5.4. A sequence (x„ )  o f  positive real numbers is log-concave (on 
the integer interval [a : b\) i f  and only if, for n =  a +  1, . . ., b,

Xn ^  Xn — l^n + l (1.5.3)

It is log-convex if  and only if

Xn ^  Xn — l^n + 1 (1.5.4)

Proof: The defining condition (1.5.1) for log-concavity

{x n >
2

is equivalent to the inequality

Exponentiating both sides of the inequality (1.5.5) leads to inequality (1.5.3), i.e.,

X f i  —  X n  —  l X n Jr \

A similar argument establishes the equivalence of inequalities (1.5.2) and (1.5.4). <C>

Theorem 1.5.5. Let (x n) be a log-concave sequence (over the integer interval 
[a : b\). Then it is unimodal (over that integer interval).

Proof: It follows from Proposition 1.5.4 that the sequence of ratios

X \  X 2 X 3  

X q  X \  X 2

(wherever defined) is non-increasing. That is,

2 ^  , x n - x n + 1
^ n — ^n — l^n + 1 ^

%n—1 %n

Let M  be the largest number k in the integer interval [a : b] such that

_ ?* _  >  1
X k -  1

or M  =  a if no such number k exists. Then the initial subsequence

% a %a-\-1 • • •

is increasing and the terminal subsequence

Xm  % M 1 • • •

is non-increasing, precisely the conditions for unimodality with mode index M . <C>
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T h eorem  1.5.6. The binomial sequence

is log-concave on the integer interval [0 : n\.

P ro o f: The falling-power formula for binomial coefficients is

V ft — V
Since ------ - <  1 and -------------- <  1, it follows that

r + l n — r +  1

n -  \2 ^  n - n -
r! r! r + l  n — r + l

and, in turn, that

n - n - r n — r 
r! r! r + l  n — r + l

n-r — 1
f t -

r  +  l ft
r — 1

n
r + l(r — 1)! ( r + l ) !

Accordingly, by Proposition 1.5.4, the binomial sequence is log-concave.

R em ark : Theorems 1.5.6 and 1.5.5 can be used together to reconfirm Theorem 
1.5.3, that the sequence of binomial coefficients Q ) , for k =  0, . . ., n, is unimodal.

E X E R C IS E S  fo r  S ection  1.5

In Exercises 1.5.1 through 1.5.4, determine which one, if either, o f the two given 
expressions is the larger and give a proof. Assume that all the variables are integers 
greater than one.

1.5.1s x r-y r-  : (xy )r-  1.5.2 x r-x s-  : x r-±±-

1.5.3 x rL : (xr-)^  1.5.4 (n^)n : (nn)^

In Exercises 1.5.5 through 1.5.7, evaluate the generalized binomial coefficient. 

1.5.5s L 5_6 ( M  L 5_7

1.5.8 From the integer interval [1 : n], there are to be selected at random r 
numbers, without repetition. Express in falling powers the probability that such a 
selection includes all the numbers in the subinterval [1 : k\, where k <  r.
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.I\ ( _ |)n f ‘)n
1.5.9 Confirm that I 2 ' — '

v n ) 22li V n

- ,thDEFINITION : The n ris in g  p o w er  o f a real number x is the product

n  f a c t o r s

x n =  x (x +  1) • • • (x +  n — 1)

1.5.11 Express x— as a rising power.

1.5.12 Show that the sequence (\/n) is concave and log-concave.
1.5.13 Show that the sequence (Hn) is concave and log-concave.

In each o f the Exercises 1.5.14 through 1.5.19, decide whether the given sequence is 
log-convex or log-concave. Give a proof.

1.5.14s n 2 1.5.15 n3  1.5.16 n " 1
1.5.17 n ~ 2 1.5.18 2n 1.5.19 2“ n

1.5.20 Give an example to illustrate that the sum of unimodal sequences need 
not be unimodal.

1.6 STIRLING NUMBERS: A PREVIEW

James Stirling (1692-1770) was a Scottish mathematician. He introduced two 
families of numbers, now called Stirling numbers o f the first and second kinds, for 
representing falling powers and ordinary powers in terms of each other. Stirling 
numbers are highly useful in counting partitions and permutations.

Converting Falling Powers into Ordinary Powers
The following theorem provides a recursive method for converting a falling 

power into ordinary powers.

T h eorem  1.6.1. Any falling power x— can be expressed as a linear combination 
o f  ordinary powers, i.e., in the form

x— =  sntk x k with sn>n =  1 and sn o =  0 for n >  1 

P ro o f: By induction on the exponent n.
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BASIS: For n =  0 and n =  1, we have

x -  =  lx °  

x -  =  l x 1 +  0 x°

Thus, we take so,o =  1, «i,i =  1, and si o =  0.

IND HYP: Suppose for some n >  1 that there exist integer coefficients

$ n  — 1 , 0  $ n  — 1 , 1  • • • $ n  —  l , n  — 1

for which

n  — 1 ^

IND STEP: It follows that

n  — 1

=  [x — n

n  — 1

1) sn-i,k  x k (inductive hypothesis)

n  — 1

=  x 'y2 l Sn -l,k X k ~  (n -  1) Sn — l tk Xk

n  — 1

—  ( ^  l ) ^ n  — 1 , 0  X  ^  ^ ( Sn —  l k  —  l { T I  l ) s n _ l  ^ )  X  Sn —  \  n  —  \ X

n  —  1

=  0 x °  +  J 2 ( s n - i , k - i - ( n - l ) S n - 1 , k ) x k  +  l x n

Thus, we may take s „ t 0 =  0, s „ t„ =  1, and s „ tk =  sn_ i,fe_ i -  (n -  l )s n_ i )fe, for
0 <  k <  n. 0

DEFINITION: The coefficients sn k in the summation

= £ Sn,k %

are called S tirling  n u m b ers  o f  th e  first kind. For k >  n or k <  0 , the Stirling 
number sn>k is taken to be 0, corresponding to letting the upper and lower limits 
o f the sum go to oo.

The Stirling numbers sn>k can be calculated by multiplying the factors in the ex­
pansion

  



Example 1.6.1:

x- —  x2 —  X 1

x -  =  x 3  — 3x 2 +  2X1

x -  =  x 4  — 6 x 3  +  l l x 2 — Gx1

x -  =  x 5 — 10x4  +  35* 3  — 50x2 +  24*1

Thus, s 5 2 =  —50 and S3 1  =  2. We observe the alternating signs in each equation.
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Converting Ordinary Powers into Falling Powers

Expressing an ordinary power as a sum of falling powers is an analogous task.

Theorem 1.6.2. Any ordinary power x n can be expressed as a linear combination 
o f  falling powers, i.e., in the form

x n =  y '  S „tk x— with Sntn =  1 and S „to =  0 for n >  1

Proof: Once again, we use induction on the exponent n.

BASIS: For n =  0 and n =  1, we have

x° =  l x -  

x 1 =  l x ~—|- Ox—

IND HYP: Suppose that for some n >  1, the monomial x n ~ 1 can be expressed as 
a linear combination

j

* n_1 = J ^ Sj'kX~
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IND STEP: Then

n  — 1

n  — 1

=  Sn-l,k X • x-

n  — 1

=  ^ 2  Sn-l,k  (x -  k) ■ x -  +  y ^ Sn-l,k k ■ x -

n  — 1

l,k X-

n  —  1

=  y2 s — h k - i x -  +  J2 k s n - 1 ,k X-

n  —  l

Thus, we may take 5 „ i0 =  0, =  1, and =  sn_ lik- i  +  kSn- lik, for
0 <  k <  n. 0

DEFINITION: The coefficients Sn k in the sum

x — ' Sn k̂ x

are called S tirling  n u m b ers  o f  th e  se co n d  kind. For k >  n or k <  0, the Stirling 
number S „tk is 0 , which corresponds to letting the upper and lower limits of the 
sum go to oo.

Example 1.6.2:

x 5 =  x -  +  10x- +  25x- +  15x- +  x -

Thus, S5 3  =  25 and S4  2 =  7.

Corollary 1.5.2 provides a simple formula for the sum of the values of any falling 
power n-, over an interval of integer values of the base n. Accordingly, due to the 
linearity of the difference operator (Proposition 1.4.1), we could calculate the sum 
of the values of any ordinary power nT, over a range of values of n, if we first express

  



Example 1.6.3: Notice, in particular, in Example 1.6.2, that n2 =  n -  +  n-. It 
follows from Theorem 1.6.2 that

n n n

E f = E f + E jL

(n +  1 )- (n +  1 )- 
~~ 3 +  2 

7 - 7-
E.g., 0 +  1 +  4 +  9 +  16 +  25 +  36 =  — + —  =  70 +  21 =  91.

In turn, this enables us to calculate the sum of the sequential values of a 
polynomial, since a polynomial is a linear combination of ordinary powers. This 
method of summing the values of polynomials will be further explored in §3.4.

Partitions
DEFINITION: A p a rtitio n  o f  a set S is a fam ily  T  =  { S i , . . ., Sn }  o f  m utually  
d isjoin t subsets o f  S , called  the cells o f  th e  p a r titio n  T , w hose union  is S.

NOTATION: Cells of partitions of a set may be indicated by the use of hyphens. If 
the set is small enough, then its elements can be represented by single characters, 
thereby avoiding potential ambiguities latent in juxtapositions of the characters.

Example 1.6.4: The partition { { 1 , 3 } ,  {2 ,5 } , { 4 } }  o f the integer interval [1 : 5] 
may be denoted

1 3 - 2 5 - 4
or also, for instance, by 4 - 5 2 -  13, since the cells of a partition and the order within 
cells are taken to be unordered.

Stirling Subset Numbers
DEFINITION: The S tirling  su b se t  n u m b er

Section 1.6 Stirling Numbers: A Preview 83

is the number of ways to partition the integer interval [1 : n] into k non-empty 
non-distinct cells.*

In §5.1 , we establish that the Stirling number SHtk o f the second kind equals 
the Stirling subset number {  ̂} .

Example 1.6.2, continued: The value =  7 is consistent with the following 
list of 7 partitions of [1 : 4] into 2 cells, as an ad hoc calculation of { ^ j -

1 -  234, 2 -  134, 3 -  124, 4 -  123
12 -  34, 13 -  24, 14 -  23

* W ikipedia acknowledges D. E. Knuth for promoting usage of the user-friendly notations, 
{  ^ }  and [^ ], o f the Serbian mathematician J. Karamata (1902-1967) for Stirling numbers.
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Stirling Cycle Number

DEFINITION: The S tirling  cy c le  n u m b er  the number of ways to partition
the integer interval [1 : n\ into k non-empty non-distinct cycles.

In §5.2 , we establish that the Stirling number of the first kind equals the 
absolute value of the Stirling cycle number [ nk ].

Example 1.6.1, continued: The value S4 2 =  11 of the Stirling number of the 
first kind is consistent with the following list of 11 partitions of the integer interval 
[1 : 4] into 2 cycles, as an ad hoc calculation of the Stirling cycle number [ 2 ] •

( 1 ) ( 2  3 4 ) ,  ( 2 ) (  1 3 4 ) ,  ( 3 )  (1 2 4 ) ,  ( 4 ) (  1 2 3)
( 1 ) ( 2  4 3 ) ,  ( 2 ) (  1 4 3 ) ,  ( 3 )  (1 4 2 ) ,  ( 4 ) (  1 3 2)

( 1 2 ) ( 3  4 ) ,  ( 1 3 ) ( 2  4 ) ,  ( 1 4)  (2 3)

Remark: Since the Stirling cycle numbers

correspond to an inventory of all permutations of the integer interval [1 : n], ac­
cording to the number of cycles in their disjoint cycle representation, it follows 
that n r ~\

EXERCISES for Section 1.6

In Exercises 1.6.1 through 1.6.4, expand each o f the falling power polynomials as a 
polynomial m ordinary powers.

1.6.1s x^ 1.6.2 x -  +  Ax- +  3
1.6.3 2 x - +  3 x - — 2 x -  1.6.4 x -

In Exercises 1.6.5 through 1.6.8, expand each o f the given polynomials as a polyno­
mial m falling powers.

1.6.5s x 6 1.6.6 x 5 +  Ax2 +  3

1.6.7 2x 5 +  3x 4 - 2 x 1 1.6.8 x 7

1.6.9 List all the partitions of the integer interval [1 : 5].

1.6.10 List all partitions of the integer interval [1 : 6] into 3 parts.

DEFINITION: The t y p e  o f  a p a r titio n  T  =  {S i, . . ., Sn} of a set of cardinality n 

such that Sj is the cardinality of the cell Sj. Thus, si +  • • • +  sn =  n.
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In Exercises 1.6.11 through 1.6.16, calculate the number o f partitions o f the given 
integer interval o f the given type.

1.6.11s [1 : 7] of type 124

1.6.13 [1 : 7] of type 223

1.6.15 [1 : 8 ] of type 224 1.6.16 [1 : 10] of type 127

6.12 [1
6.14 [1
6.16 [1

1.7 ORDINARY GENERATING FUNCTIONS

A sequence (gn) can be represented by the polynomial
OO

y2 i 9nZn =  9 0  + g i Z  +92Z2 H------

If the sequence has infinitely many non-zero elements, then the polynomial has in­
finitely many terms. Generating functions have many uses, even though the motiva­
tion for introducing them is not immediately obvious. Their immediate application 
in this section is directly in counting. In Chapter 2, they reappear as an intermedi­
ate device in the transformation of recurrences into closed formulas for sequences. 
In Chapter 9, they are used in a sophisticated algebraic method for counting graphs.

DEFINITION: An (o rd in a ry ) g en era tin g  fu n ctio n  (abbr. O G F ) for the sequence 
(gn) is any closed form G(z)  such that

OO

or, sometimes, it means the polynomial itself.

Exponential Generating Functions
There is another kind of generating function, called an exponential generating 

function, that is also used directly for counting and in solving recurrences. We 
introduce it here and offer a brief explanation of the circumstances in which each 
of these two main kinds of generating function is used in counting. More extensive 
development of exponential generating functions appears in §5.5.

DEFINITION: An ex p o n en tia l g en era tin g  fu n ctio n  (abbr. E G F ) for a sequence 
(gn) is any closed form G(z)  corresponding to the infinite polynomial

-o

or, sometimes, the polynomial itself.
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Direct Counting with Ordinary Generating Functions
Ordinary generating functions are readily applicable to counting unordered 

selections. We now illustrate this by returning to a counting problem first raised in 
Example 0.3.13.

E xam ple  1.7.1: A combination of letters from the word SYZYG Y may contain 
at most one S. Thus, an ordinary generating function for the number of possible 
combinations containing no letters that are not S’s is

1 +  s

Similarly, ordinary generating functions for combinations containing no letters ex­
cept Z ’s and no letters except G ’s are, respectively

1 +  z and 1 +  g

Since the word SYZYG Y contains three Y ’s, the OGF for counting combinations 
containing no letters except Y ’s is

1 +  y +  y 2 +  y3

which signifies that there is one choice with no Y ’s, one choice with one Y, one with 
two Y ’s, and one with three Y ’s. In the product

of these four generating functions, the terms of degree d provide an itemization of 
the ways to select d letters from SYZYGY. For instance, the seven terms of degree
2 are

sz sg sy zg zy gy yz

It follows that if each of the indeterminates s, z, g, and y is replaced by a single 
indeterminate, say x,

(1 +  * )3(1 +  x +  x 2 +  x 3) 

then the coefficient of x d in the expansion

1 +  4x +  7x 2 +  8 x 3 +  7x 4  +  4x 5 +  x 6

is the number of ways to select d letters from SYZYGY. The general principle is 
articulated by the following proposition.

P ro p o s it io n  1.7.1. Let G(z)  and H(z)  be the ordinary generating functions for 
counting unordered selections from  two disjoint multisets S and T. Then G(z)H(z)  
is the ordinary generating function for counting unordered selections from  the union 
S J T .

P ro o f: This is a direct application of the Rule of Sum and Rule of Product. <C>
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Direct Counting with Exponential Generating Functions
Exponential generating functions are readily applicable to counting ordered 

selections. We continue the analysis of Example 1.7.1.

E xam ple  1.7.1, con tin u ed : An ordered selection of letters from SYZYG Y may 
contain at most one S. Thus, an exponential generating function for the number of 
possible combinations containing no letters that are not S’s is

1 +  s

Similarly, exponential generating functions for ordered selections containing no let­
ters except Z ’s and no letters except G ’s are, respectively

1 +  z and 1 +  g

Since the word SYZYGY contains three Y ’s, the exponential generating function 
for counting ordered selections containing no letters except Y ’s is

, y 2 y3  

+  y +  2! +  3!

which signifies that there is one way with no Y ’s, one way with one Y, one with two 
Y ’s, and one with three Y ’s. In the product

(1 )(1 )(1  ̂ ^  ^ ^ .

of these four generating functions, the terms of degree d provide an itemization of the 
ways to select d letters from SYZYGY. Suppose that the multivariate indeterminate 
monomial of a term of degree d is given the denominator of d\. For instance, this 
would give the transformation

zgy 2 4! zgy2 /  4 \ zgy2
2! 2! 1! 1! 4! V2 1 1J 4!

in which the multinomial coefficient ( 2  1 1 ) is the number of ways to order the 
selection ZG YY represented by the monomial zgy2. It follows that if each of the 
indeterminates s, z, g, and y is replaced by a single indeterminate, say x,

™2  3

 ̂1  ̂ | 1 

then the coefficient of x d in the expansion

2  3  4  5  6

1 + ^  + 13fy + 3 4 ^  + 7 2 ^  + 120^ + 120^

is the number of ordered selections of d letters from SYZYGY. The general principle 
is as follows.
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P ro p o s it io n  1.7.2. Let G(z)  and H(z)  be the exponential generating functions for 
counting ordered selections from  two disjoint multisets S and T. Then G(z )H(z )  is 
the exponential generating function for counting ordered selections from  the union 
S J T .

P ro o f: This is a another direct application of the Rule of Sum and Rule of Prod­
uct. <c>

Analyzing a Generating Function
Multiplying two or more generating functions for sequences with simple closed 

forms may lead to a generating function for a sequence whose closed form is not 
readily apparent, as seen in Example 1.7.1. Thus, to use generating functions 
effectively, either for direct counting or for solving recurrences, one needs to be able 
to analyze generating functions so as to recover a closed-form function for the list 
of entries. We now indicate briefly how this might be done, deferring most of the 
details to Chapter 2.

E xam ple  1.7.2: Let’s consider how we might analyze the generating function
z

l - 3 z  +  2 z 2
(1.7.1)

to enable us to extract the coefficients. When a closed-form generating function is 
a quotient of polynomials, one way to extract the entries of the sequence is by long 
division o f polynomials.

z +  3z2 +  7z3  +  15z4 +  • • •

1 — 3z +  2z 2 )  z
z -  3z2 +  2z 3

3z 2 -  2 z 3  

3z 2 -  9z3  +  6 z 4

7 z 3  — 6 z 4

Long division provides a recursive procedure for generating successive entries of the 
sequence. This sequence corresponds to the infinite polynomial

z +  3z2 +  7z3  +  15z4 +  •••

While this is useful for the coefficients of smaller powers zn, it is not a closed form. 
Factoring the denominator of the expression (1.7.1) and splitting the fraction into 
two parts, like this

z 1 1

=  (1 +  2 z +  22z2 +  23z3 -|------) -  ( l  +  z +  ~2 1 ~3
OO
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illustrates the standard way to recover a closed-form function for arbitrary entries 
o f a sequence with such a generating function. Techniques for splitting the fraction 
are developed in §2.3.

Remark: Example 1.7.2 uses the familiar algebraic identity

— —  =  l +  ay +  a2 y 2 +  ■■■
1 - a y

which can be justified either by long division or by multiplying 1  — ay and 1 +  ay +  
a2 y 2 H------.

Rational Functions
Fortunately, many generating functions that arise in the course of solving direct 

counting problems and recursions have an essential similarity to the generating 
function (1.7.1).

DEFINITION: A quotient of two polynomials in z (each with finitely many terms) is 
called a ra tiona l fu n ction  in z. If the degree of the numerator is less than the 
degree of the denominator, then it is called a p r o p e r  ra tiona l fu n ction .

Remark: An improper rational function can be transformed by long division into 
the sum of a polynomial —  the quotient of dividing the denominator into the nu­
merator —  and a proper rational function, whose numerator is the remainder of 
that division.

Long division of the denominator into the numerator transforms a generating 
function G (z) represented as a rational function

q/ n _  &o +  z +  • • • +  bszs 
C o  +  C \ Z  + -----------1- ctzl

into its power series

G  (z) —  9o +  9iz +  92Z2 +  • • •

as in Example 1.7.2. Moreover, it will be shown in Chapter 2 how to use factoring 
o f the denominator, as in Example 1.7.2, to represent the values of the sequence by 
a closed function. For the time being, we consider another case of this phenomenon.

Example 1.7.3: Here is an additional illustration of the effect of factoring the de­
nominator and splitting the fraction into a sum of fractions with linear polynomials 
as denominators

r ( ~ \  -  z ~ l -  “ 2 1
^  “  l - 5 z  +  6 z 2 ~  1 -  3z +  1 -  2z

=  - 2  (1 +  3z +  32z2 +  • • •) +  (1 +  2z +  22z2 +  • • •)
OO

=  ^ ( 2 n - 2 - 3 n)zn
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Taylor Series
The fact that a rational function can be reconverted into a power series mo­

tivates the use of the terminology generating function, because a rational function 
may be regarded as generating its coefficients by the process of long division. An­
other sense in which a function G(z)  can generate the coefficients of a power series 
is by application of a Taylor series  expansion at z =  0.

( ) ( ) 1 ( )  ̂ 11 ( ) ^  111 ( ) ^  

that assigns to the infinitely differentiable function G(z)  the power series

where

Using Taylor series permits an interpretation of a wide range of infinitely differen­
tiable functions as generating functions.

E xam ple  1.7.4: For the function G(z)  =  —ln( 1 — z), the value of the nth deriva­
tive at z =  0 is

G {r'
(n — 1)!

=  ( n — 1)! for n >  1

and, thus,

_i  =  0  +  0 !±  +  1, i T +  2 ! i 7 +  . . .  =  E iz
2 !

That is, the function —ln( 1 — z) is the OGF for the sequence (x n =  ^).

Addition and Scalar Multiplication
There is a correspondence between various operations on sequences (an) and 

(bn) and some operations on their associated generating functions

=  a j and B ( z ) =  b •

DEFINITION: The sum  o f  tw o  seq u en ces  (a n ) and (bn) is the sequence

ao +  bo, « i +  bi, a2 +  &2, • • •
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This corresponds to the sum of their generating functions, i.e., to the generating 
function OO

DEFINITION: M u ltip ly in g  th e  s eq u en ce  {a „  }  b y  th e  scalar c yields the sequence

ca0, ca i, ca2, . . .

This corresponds to the generating function

OO

that results from multiplying the generating function A(z)  by that scalar. 

Example 1.7.5: Since the ordinary generating functions

1 -  5z 1 -  7 z

generate the sequences (an =  5n) and (bn =  7n), respectively, it follows that the 
ordinary generating function

2 3 5 -  29 z

generates the sequence (2 • 5n +  3 • 7n).

Products and Convolutions
The following two examples illustrate how one might use products of generating 

functions in direct computations.

Example 1.7.6: Consider the problem of counting the number pn of ways to 
make ruf, postage from 3  ̂ and 5  ̂ stamps. If one had nothing but 3  ̂ stamps, the 
generating function would be

y ^ a nx n =  1 +  x 3  +  x 6 +  x 9 +
1

1 — x 3

which signifies that there is exactly one way from 3  ̂ stamps alone to make each 
multiple of 3, and no way to make any other postage. Similarly, if one had nothing 
but 5  ̂ stamps, the generating function would be

J2 b^yn =  1 +  y5 1 y10 +  y15
l

1  -  y 5
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In the product o f these two generating functions, the number o f terms o f degree 
n would be the number o f ways o f making ruf, postage. For instance, the terms o f 
degree 23 (i.e., the terms whose exponents have 23 as their sum) are

x 18y5 and x 3y20

It follows that if z is substituted for x and y, then the coefficient o f z 23 is the number 
o f ways. Thus, the generating function is

-  -  OO OO n

= $Z PnZn = J 2 znJ 2 ai bn- i1 — z3 1 — z _ 0 _ 0 ,_ o

That is, the only way to get ruf, postage is to find an aj =  1 and a =  1- The 
sequence (pn) is not m onotonic. For instance,

COMPUTATIONAL NOTE: In trying to obtain actual values for such a sequence, it 
is useful to have the aid o f a com putational engine such as Mathematica.

DEFINITION: The convolution o f  the sequences (un) and (vn) is the sequence 

M 0 ^ 0 ,  M o ^ l + M l ^ O ,  U 0 V 2  +  U l V l  +  U 2 V 0 , . . .

Example 1.7.6, continued: Thus, the sequence (pn) is the convolution o f the 
sequences (an) and (bn).

Example 1.7.7: Four distinguishable six-sided dice are rolled, each marked with 
the numbers 1, 2, 3, 4, 5, 6. Then the generating function for the number o f ways 
that sum o f the outcom es could be n is the coefficient o f zn in the expansion o f

(z +  z2 +  z3 +  z4 +  z5 +  z6)4 

Proposition 1.7.3. The product o f  the generating functions

O O  OO

is the generating function

for the convolution o f  the sequences (un) and (vn). <C>

We observe that Proposition 1.7.3 provides term inology for the sum o f products 
that occurs within the proof o f  Proposition 1.7.1.
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Example 1.7.8: The rational functions

and
1 -  2z 1 -  3z

generate the sequences (u„ =  2") and (v„ =  3"), respectively. Their product is the 
generating function

1 - 2  3

OO

=  Y , z n( 3n+1 - 2 n+1)

=  l +  5 z +  19z2 +  69z3 +

The convolution of the sequences (un =  2n) and (vn =  3n) is the sequence whose 
nth element (counting from the 0th element) is

2° • 3n +  21 •3n~1 +  ••• +  2n -3°

Thus, the convolution sequence begins

1, 5, 19, 69, . . .

in affirmation of Proposition 1.7.3.

Sums and Generating Functions
Proposition 1.7.3 has a slue of useful consequences. An immediate consequence 

is that it provides a method for going from a counting sequence to its sequence of 
partial sums.

Theorem 1.7.4. Let B(z)  be the ordinary generating function for a sequence (bn). 
Then the ordinary generating function for the sequence

o f  partial sums is
B(z)
1 -  z

Proof: We observe that the total coefficient of zn in

f  ^  =  (b0 +  b1z +  b2z2 +  • • •) (l +  z +  z2 H------)1 — z

equals the sum J2j=o as Per following calculation:
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bo +  z  +  b2 z 2 +  &3 Z3 +

b o  +  b \ z  +  b 2 z 2 +  &3 Z3 +  • • •

b0z +  &1 Z2  +  b2z3 +  &3 Z4  +  • • •

b0z2 +  &iz3  +  b2z4 +  &3 Z5  +

This is just a special case of Proposition 1.7.3.

Corollary 1.7.5.
1

( 1 - z ) '  

Proof: By induction on r. 
BASIS: For r =  1, we have 

1

E /n  +  r — V
r — 1

( l - z ) i 1  - 1

since the value of each of the coefficients (g) is 1.

IND HYP: Next, suppose for some r > 1 that

1 _  f n +  r ~ 2 \ z ..
( 1 - z ) r — 2

IND STEP: Then
1 1

(1 -  z )r 1 - z  ( 1 - z ) r — 1

1 v ^ / n  +  r -  2̂
~~ 1 -  z r - 2  ]Z

00 n j  +  r — 2  

r — 2
leorem 1.7.

0 ' 0  ̂ r ~   ̂ '
0 0  7 n  ___

= E E(j + r - 2)— (factor 1
^ 0  (r “ 2) ! J^o

=  E  ( r - 2 )!
n =  0 v ’

r — 1

inner summand) 

(Corollary 1.5./

z n +  r

n=o ( r - 2 ) ! (r _ 1 )
n +  r — 1 

r — 1
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Table 1.7.1 gives closed-form generating functions for some standard sequences 
and forms of sequences.

Table 1.7.1 Ordinary generating functions for some sequences.

sequence

1, 1, 1

1, - 1 ,  1

1, 0, 1

1, 0, 0, 1

1, a, a2 

0, a, 2a2

1, 2, 3

1, . . .

0 , . . .

0 , 0 , 

a3, .. 

3a3, . 

4, . . .

1; (™ + 1); (m + 2)) ^  

J_ J_ J_ J_
O P  I P  2 P  3 !  • • •

0 1 -  -u ,  ± ,  2, 3 . . .

closed form
1

1 -  z 
1

1 +  Z 
1

( i ^ y
i

( i ^ y
i

1 — az
z

1 — az 
1

i

ez

Example 1.7.9: The rational function ---------— generates the sequencei 1 • \ Z

n +  1
1

( 1 - z ) 2 

1, 2, 3, 4, •••

Example 1.7.10: The rational function —-------— generates the sequenceI -\ - \ O

n +  2

2

(I -  z ) 3 

1, 3, 6, 10, •••

Corollary 1.7.6.
(1 -  az)r

n +  r — 1 
r — 1

Proof: Substitute az for z in Corollary 1.7.5.

  



E xam ple  1.7.11: The rational function -----------— generates the sequence
(1 — 2 z ) 2

r) -L 1 \
^  J 2 n : 1, 4, 12, 32, •••
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E xam ple  1.7.12: The rational function -----------— generates the sequence
(1 — 2 z)d

n 4- 2 '
2 ) 2 " :  1, 6, 24, 80, •••

E X E R C IS E S  fo r  S ection  1.7

In each o f the Exercises 1.7.1 through 1.7.6, write the OGF for the number of 
unordered selections o f letters from the given word.

1.7.1s B A N D A N A  1.7.2 F O R E I G N E R

1.7.3 H O R S E R A D IS H  1.7.4 C O N S T I T U T I O N

1.7.5 M I S S I S S I P P I  1.7.6 W O O LLO O M O O LO O

In each o f the Exercises 1.7.7 through 1.7.12, write the EGE for the number of 
ordered selections o f letters from the given word.

1.7.7s B A N D A N A  1.7.8 F O R E I G N E R

1.7.9 H O R S E R A D IS H  1.7.10 C O N S T I T U T I O N

1.7.11 M I S S I S S I P P I  1.7.12 W O O LL O O M O O LO O

In Exercises 1.7.13 through 1.7.20, use long division on the given rational function 
to calculate the terms o f degrees 0  through 4  o f the infinite polynomial.

1.7.13s ------— —̂ —  1.7.14 ~ 1  +  z
1 — 5 z +  6 z 2 1 — 5 z +  6 z 2

1.7.15  -----J 1------ - 1.7.16 1
1 -  2z +  z 2 1 -  3z +  3z2 -  z

1.7.17  -------- - 1.7.18 1
1 —4z +  4z2 ■ ’ 1 —6 z + 1 2 z 2 - 8 z 3

1-7-19 , ! ~ 29! ,r ,  1.7.20 2 — 3* +  5*3
1 — 12z +  35z2 •" i - 4 z 2 + 4 z 4
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Exercises 1.7.21 through 1.7.28 are concerned with a Taylor series at z =  0 for the 
given function.

a. Calculate the first three terms o f the Taylor series.

b. Derive an expression for the nth term.

1.7.21s —  1.7.22
1 - z  1 +  z

z 1
1.7.23  ------  1.7.24

1 1
1.7.25   1.7.26

2

1 — 2z ' ' (1 — 2 z )2

1.7.27 ----------------- - 1.7.28 ln(l +  z)l - 3 z  +  2 z 2 v -r ;

1.7.29 Give a detailed proof of Proposition 1.7.1.
1.7.30 Give a detailed proof of Proposition 1.7.2.

1.8 SYNTHESIZING GENERATING FUNCTIONS

Synthesizing a generating function for a given sequence is a skill, like analyzing 
them, that is fundamental to solving counting problems with them. The approach 
is to recognize fundamental patterns in the sequence and to perceive how these 
patterns were combined.

Example 1.8.1: In the sequence

- 4 ,  2, 5, 2, - 6 ,  2, 7, 2- - -  (1.8.1)

the two fundamental patterns are

1, 2, 3, 4, 5, 6 ••• (1.8.2)

and
2, 2, 2, 2, ••• (1.8.3)

It seems that sequence (1.8.2) acquired negative signs on its even elements, that the 
entries preceding the entry 4 were truncated, and that it was then interwoven with 
sequence (1.8.3) by strict alternation.

Example 1.8.1 serves as a running example for this section. Our objective is to 
construct its generating function.
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Proposition 1.8.1 Substitution Rule. If  G(z)  is a generating function for the 
sequence (gn), then G(bz) is a generating function for the sequence ( bngn}.

Proof: ^ # n(&z)n =  ^  bng„

Example 1.8.1, continued: By Example 1.7.9, the generating function for the 
sequence (1.8.2): 1, 2, 3, 4, . . .  is

1
( 1 - z ) 2

Substitute (—l )z for z, according to Proposition 1.8.1, to obtain the OGF

1

for the sequence

(1

1, - 2 ,  3, - 4 ,  5, - 6  ••• (1.8.4)

Shifting Right and Left

DEFINITION: Shifting the sequence (a n ) to the rig
sequence

0, 0, . . . ,  0, a0, ai, a2, . . .

The corresponding generating function is

by k places yields the

zkA( z ) =  V ai-zJ'+fe—

DEFINITION: Nullifying the j th element of the sequence (a n ) means replacing 
by 0. The corresponding generating function is

z — aJ zJ

DEFINITION: Shifting the sequence (a„) to the left by k places yields the se­
quence

d k ,  d k  +  1 , d k  +  2 , ■ ■ ■

The corresponding generating function is

. k - 1
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The terms ao, ai, . . a^-i are nullified, so that they do not end up as non-zero 
coefficients of negative powers of z.

Example 1.8.1, continued: Shifting sequence (1.8.4) to the left by three places 
yields the sequence

- 4 ,  5, - 6  7, - 8 ,  9, • • • (1.8.5)

which corresponds to the OGF

1

(1
-  l +  2 z - 3 z 2 =

- 4 - 3  z 
(1 +  z)2

Spacing Out

DEFINITION: S pacing a s eq u en ce  (a n) by  k units yields the sequence

k  0 ' s  k  0 ' s  k  0 ' s

a0, 0, . . .  ,0, ai, 0, . . .  ,0, a2, 0, . . .  ,0, . . .

The corresponding generating function is

Jt + 1\

Example 1.8.1, continued: Spacing sequence (1.8.5) by 1 place yields the se­
quence

- 4 ,  0, 5, 0, - 6 ,  0, 7, 0, - 8 ,  0, 9, • • • (1.8.6)

which corresponds to the OGF

- 4  -  3z

(1
- 4  -  3z 
(1 +  z2)2

Isolating a Subsequence

DEFINITION: Iso la tin g  th e  su b seq u en ce  n =  k mod m of the sequence (an) 
yields the sequence in which all terms are nullified, except those whose index is 
congruent to k mod m.

For modulus m =  2, the corresponding generating function is

if k =  0 

if k =  1

Example 1.8.1, continued: Since the rational function generates a sequence 
o f l ’s, the generating function for the sequence (1.8.3) is

2
1 -  z
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Isolating the 1 mod 2 subsequence from sequence (1.8.3) yields the sequence

0, 2, 0, 2, ••• (1.8.7)

which corresponds to the OGF

1 (  2
2 \ 1 — z 1  +  z

2 z
1  — z 2

which might also have been obtained by spacing sequence (1.8.3) out by 1 unit and 
shifting right 1 place. Sequence (1.8.1) is the sum of sequences (1.8.6) and (1.8.7). 
Thus, its OGF is the sum of their O G F’s, i.e.,

2 z—4 — 3z
( 1  +  z 2 ) 2 1 - z 2

2z5 +  3z4  +  4z3  +  z 2 +  2z — 4

Differentiation

DEFINITION : The d eriv a tive  o f  th e  g en era tin g  fu n ction

OO

is the generating function

G'(x) = 1 = E ( w + !)ffn+1 z"

Example 1.8.2: Consider the generating function

,  1 ~

1 -  2 z

(1 -  2z ) 2 = E ( n + 1)2
n + l zn

which is consistent with Corollary 1.7.6.
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EXERCISES for Section 1.8

In Exercises 1.8.1 through 1.8.8, write a closed-form generating function for the 
given sequence.

1-8.1 1, - 1 ,  1, - 1 ,  1, - 1 ,  . . .
1.8.3 1, 1, 1, 1, 1, 1, . . .

1.8.5 1, 0, - 1 ,  0, 1, 0, - 1 ,  0,

1.8.7 1, 1, 0, 1, 1, 0, 1, 1, 0,

1.8.2 1, 0, 1, 0, 1, 0, . . .
1.8.4 1, 1, - 1 ,  - 1 ,  1, 1, - 1 ,  - 1 ,

1 .8.6  1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , . . .  

1 .8.8  0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , . . .

In Exercises 1.8.9 through 1.8.18, write a closed-form generating function for the 
given sequence.

1.8.9 1, 2, 3, 4, 5, 6, . . .
1.8.11 1, - 2 ,  3, - 4 ,  5, - 6 ,  ..
1.8.13 1, 0, 3, 0, 5, 0, 7, 0, ..
1.8.15 1, 2, 0, 4, 5, 0, 7, 8, 0,
1.8.17 1, 1, 2, 1, 3, 1, 4, 1, ..

1.8.10 1, 0, 2, 0, 3, 0, . . .
1.8.12 1, 2, - 3 ,  - 4 ,  5, 6, - 7 ,  - 8 ,
1.8.14 1, 0, - 3 ,  0, 5, 0, - 7 ,  0, . . .
1.8.16 1, 2, 0, 3, 4, 0, 5, 6, 0, . . .
1.8.18 1, 3, 6, 10, 15, 21, . . .

In Exercises 1.8.19 and 1.8.20, use a difference table to determine a closed formula 
for the nth term o f the given sequence and then write the corresponding generating

1.8.19 1, 3, 8, 17, 32, 57, 100, 1.8.20 0, 1, 4, 10, 20, 35, 56,

1.8.21 The 4th roots of unity are the complex numbers i, —1, —i, and 1. Given a 
generating function A(z) ,  show that the subsequence n =  0 mod 4 of the sequence 
(a„)  can be isolated as

1.8.22 Let 1, ui, ui2 , . . ., be the set of kth roots of unity. Given a generating 
function A(z) ,  show that the subsequence n =  0 mod k of the sequence (an) can be 
isolated as
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1.9 ASYMPTOTIC ESTIMATES

The growth rate of a function is customarily reckoned via comparison to bench­
marks. For instance, it might be said of the function nHn that it grows faster than 
the function n but slower than n2. The focus is on the long term. Computer algo- 
rithmists compare various algorithms to achieve a specific objective in their pursuit 
of an optimal algorithm, where optimality means using the smallest amount of 
computational resources as the algorithm is applied to ever larger instances of the 
problem at hand.

DEFINITION: Let / ( n )  be a function such that / ( n )  0 for sufficiently large n. The 
sequence x n is a sy m p to tic  to f (n)  if

=  1

It is often reasonably straightforward to guess or to find a well-understood function 
/ (n )  such that the ratio

Xn
f ( n)

converges. Rigorous study of asymptotics is concerned not only with finding a 
function / (n )  to which a given sequence (x n) is asymptotic, but also with calculating 
the rate of convergence. Determining the rate of convergence tends to require a 
more extensive background in graduate-level continuous mathematics than can be 
assumed here or developed just-in-time. Thus, we focus presently on the function 
to which the given sequence is asymptotic.

Example 1.9.1: How large is the Catalan number cn? From the expansion

_  1 /2n\ _  1 (2n)—
n n +  1 \ n /  n + 1  n!

1 2n 2 n - l  ( n + 1 )
n + l n  n — 1 1

one sees that the Catalan number cn is a product of the value of ^j-j- and the values 
o f n other factors, whose values form an increasing sequence from 2 to n +  1. One 
surmises that

4 t  < -  < ^  = c - m -n + l  n + 1

which is a very wide range of possibilities, since the lower and upper bounds are 
far apart. Narrowing that gap is a primary need toward improved understanding 
o f the behavior of the Catalan sequence.

  



Ratio Method
Ratio M ethod: Considerable information about the asymptotic behavior of a 
sequence x n lies in the ratio

x n
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%n — 1
of successive terms. We calculate the limit of that ratio.

Example 1.9.1, continued: The ratio of successive entries of the Catalan se­
quence is

c„ I f  2  n\ /  I f  2 n — 2

cn _ i n +  1  \ n J / n \ n — 1

_  1 (2n)— j  1 (2n -  2 ) ^ -  
n +  1 n! /  n ( n — 1)! 

_  1 (2n)— 
~~ n +  1 ' (2n -  2 ) ^ -

n +  1 

c„ 4n — 2
(1.9.1)

cn_ i n + 1  

 ̂ lim _ lim 2

— lim +  4  ® — 4  q

=>• lim — —̂ =  4 (1.9.2)

Since the ratio ec’*i is everywhere less than its asymptotic upper limit of 4, and 
since ci =  1 <  4, it is possible to narrow the estimating range of cn to

<  Cn =  <  4n (1.9.3)n +  1  n +  1  \ n /

Philosophy of Estimation: A formula in n in which the number of operations 
of addition, subtraction, multiplication, division, and exponentiation needed for 
evaluation is a constant is an easier formula to grasp than one for which that 
number grows with n. The number of multiplications grows in a factorial or in a 
falling power. Here, “grasping” includes the ability to estimate the value of the 
formula for a concrete value of n.

Tightening Bounds on Estimates
Concrete Substitution: Concrete early values of a sequence can often be used to 
improve asymptotic upper and lower bounds.
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Example 1.9.1, continued: Sharpening the lower bound of (1.9.3) for the Cata­
lan number c„, including eliminating the denominator of n +  1, can begin with an 
observation regarding the ratio cCn ̂  after n =  5.

4n — 2 >  3n +  3 for n >  5

4n — 2 ^  3n +  3 ^
n +  1 — n + 1  

Recalling (1.9.1), we have

Cn >  3 (1.9.4)
Cn — 1

Using (1.9.4) and the fact that
C5 c 6 cn
C4  C5 cn 1

we infer that

cn >  c4 -3n- 4 =  14 • 3n-4
14 1

=> cn =  —  • 3n >  -  • 3n for n >  4 (1.9.5)
o l b

The inequality (1.9.5) also holds for c0 , c\, c2, and C3 . Recalling the inequality 
(1.9.3), it follows that

^ • 3n <  cn <  4n for n >  0 (1.9.6)

We shall now show that the coefficient of  ̂ can be removed from the lower 
bound of (1.9.6) for sufficiently large values of n. Since the ratio

cn —1
is increasing monotonically to 4, it eventually exceeds say, for all n >  P . Since 
| >  1, there is a number Q such that

7 \ q 3P
-  >  —  for all q >  Q -  P
2 J cP

C-P+l C-P+2 C Q  \  f  C Q  + 1 C Q  +  2

C p  C p . | _1 C Q - 1 J  V C Q  C Q  + 1 c n - l

y\ Q--P / y  \ n -Q

which implies that

>  C p  •
,2 ;  V2.

=> cn >  3n (1.9.7)

Combining (1.9.6) and (1.9.7) yields the desired result

3n <  cn <  4n for n > Q  (1.9.8)
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Remark: In fact, this lower bound is further improvable. Since the ratio

cn —1
is increasing monotonically to 4, it eventually surpasses 4 — e for any e > 0, say, for 
all n > N (e). It follows, by an argument similar to that used in the derivation of 
(1.9.6), that

CjV(e
4N(e

The coefficient could be removed, once again, as in the derivation of (1.9.8), to yield 
the asymptotic estimate

(4 — e)n <  cn <  4n 

which is adequate for present purposes.

The following proposition formulates the method used in Example 1.9.1 as a 
general principle.

Proposition 1.9.1. Let x n be a sequence such that

' %n—1 ^
Then, for e >  0 and sufficiently large values o f  n,

(K  — e)n < c n <  (K  +  e)n (1.9.9)

If  the ratio xXn  ̂ is bounded above by K , then (1.9.9) can be sharpened to

If  bounded below by K , then (1.9.9) can be sharpened to

Proof: Details from Example 1.9.1 are readily transformed into a proof. This is 
left to the Exercises. <C>

Asymptotic Dominance
DEFINITION: If there is a positive number c such that

f (n)  <  cg(n) for all n > N

then we may write

and say uf (n)  is in b ig -oh  of g(n)” . The numbers c and N  are called w itn esses  
to the relationship.

TERMINOLOGY NOTE: Although 0(g(n) )  is defined here as the class of functions 
that are eventually dominated by a multiple of g(n),  the usage “/  is big-oh of g” 
(omitting the preposition “in” ) is quite common. The rationale is that membership 
in the class may be regarded as an adjectival property.

  



Example 1.9.2: One way to prove that 7n 2 £ 0 (n 3) is to choose the witnesses 
N  =  7 and c =  1. Then

7n2 <  1 • n3  for n >  7 

Another proof uses the witnesses N  =  1 and c =  7. Then

7n2 < 7 • n3 for n > 1

In general, there tends to be a tradeoff in the size of the witnesses N  and c. Choosing 
a larger value of witness c may enable one to choose a smaller value of witness n.

Example 1.9.3: To prove that n3 ^ 0 (7 n2), we observe that for any witness c, 
and for any number n >  8c,

n3  >  (8c)n 2 >  7c ■ n 2
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EXERCISES for Section 1.9

These exercises may be challenging for a reader with little prior experience at con­
structing proofs about limits.

1.9.1 Prove that every polynomial of degree less than d is in 0 (n d), for d £ Z + .

1.9.2 Prove that every polynomial of degree d is in 0 (n d), for d £ Z + .
1.9.3 Prove that if 0 <  r <  s, then nr £ 0 (n s), but ns 0 (n r), for r, s £ M.
1.9.4 Prove that lgn £ 0 (n r), for r >  0.
1.9.5 Prove that nr ^ 0 (lg n ) , for r >  0.
1.9.6 Prove that if 0 <  b <  c, then bn £ 0 ( c n) but cn (f 0 (b n), for b, c £ M.

1.9.7 Give a proof of Proposition 1.9.1.

GLOSSARY
asymptotic to a function f (n ) :  the property of a sequence x n that

Xn — \

big-oh of a function g(n): the class of functions that are eventually dominated 
by a scalar multiple of g(n).

binomial coefficient Q ) : the coefficient of x k in the expansion of (1 +  x )n.

Catalan number: any number in the sequence c„ defined by the recursion
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ceiling of a real number x: the smallest integer that is not larger than x] the 
result of “rounding up” to the next integer; denoted \x],

cells of a partition of a set S: the subsets into which S is subdivided.
closed formula for a sequence x n: an algebraic expression for the value of x n 

(in the argument n).

combination coefficient Q ) : the number of ways to choose a subset of size k 
from a set of size n.

concave sequence on an integer interval [a : b]: a sequence x n such that
^  x n - l  + x n + l /p , i t \x n >  ------------------- (for n =  a +  1, . . . ,  6 - 1 )

convex sequence on an integer interval [a : b]: a sequence x n such that
,  x n - l  + x n + l /p , i t \x n <  ------------------- (for n =  a +  1, . . . ,  6 - 1 )

convolution of two sequences an and 6n: the sequence whose nth entry is
n

53 ai bn~i

difference function of a real function f ( x ) :  the function A /  given by the rule 

difference sequence of a real sequence an: the sequence A an given by the rule
A  cin — cinjr i cin

difference table of a real sequence an: the table whose rows are

A Cln: A  Cin: • • •
EGF: see generating function.

eventual dominance by a function g(n): the property of a function f (n )  that 
there is a number N  E such that f (n )  <  g(n) for all n >  N .

eventually has a property: the subsequence from some index N  onward has 
the property.

falling power x—: the number x (x — 1) • • • (x — n +  1).

Fibonacci number: any number in the sequence f n defined by the recursion

floor of a real number x: the largest integer that is not greater than x] the 
result of “rounding down” to the next integer; denoted [x\.

Fundamental Theorem of Finite Calculus: a theorem relating differencing 
and summation.

generating function of a sequence an:

'  *>
ao +  aiyy +  a2 ~2 \ ' ' '

or sometimes the series itself.
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___, ordinary (abbr. O G F): a closed form for the power series
odo +  o,i z +  a2z +  • • • 

or sometimes the series itself, 

growth rate of a sequence: a comparative measure of its eventual values, 

harmonic number Hn: the value of the sum j  +   ̂ +  • • • +  ^ .

Heawood number of the surface Sg: the value of the expression

integer interval [k : m]: the set of integers {k , k +  1, . . ., m }.

log-concave: property of a sequence that implies unimodality.

map on a surface: a drawing of a graph on the surface, subdividing it into regions.

M ethod of Distinguished Element: a method used to derive combinatorial 
formulas.

mode of a unimodal sequence: the maximum value.

mode index of a unimodal sequence x n: the index at which the maximum value 
occurs.

OGF: see generating function.

partial sum, nth, of a sequence an: the sum
n

partition of a set S: a family of mutually disjoint subsets whose union is S. 

Pascal’s recurrence: the recurrence
x nfi =  1, n0,k =  0 for k >  0;

x n , k  —  x n  —  l , k  —  1  “ 1“  x n  —  l , k  f o r  n  0 ,

Pascal’s triangle: a triangle formed by the non-zero values of the binomial 
coefficients.

periodic sequence: a sequence whose values are an unending reiteration of a 
finite initial segment.

range of a sequence: the set in which the sequence takes its values.

rational function: the quotient of two polynomials.

recursion: a formula for expressing the value of an entry of a sequence in terms 
of the values of earlier entries.

rising power x n: the number x (x +  1) ■ ■ ■ (x +  n — 1).

solving a recurrence: finding a closed formula for the entries of the sequence 
it specifies.

Stirling cycle number [^]: the number of ways to partition a set of n objects 
into k non-empty cycles.
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Stirling numbers of the first kind sn k'- numbers used in converting a falling 
power into a linear combination of ordinary powers; they are equal to the Stirling 
cycle numbers.

Stirling numbers of the second kind Sn>k'- numbers used in converting an 
ordinary power into a linear combination of falling powers; they are equal to the 
Stirling subset numbers.

Stirling subset number {   ̂} : the number of ways to partition a set of n objects 
into k non-empty subsets.

Tower of Hanoi: a puzzle invented by Edouard Lucas, which is solved recur-

type of a partition: a list of the sizes of its cells.
unimodal sequence: a sequence that is monotonically non-decreasing up to a 

maximum and monotonically non-increasing thereafter.
witnesses: two parameters that occur in establishing a big-oh relationship.

  



Chapter

Solving Recurrences

2.1 Types of Recurrences
2.2 Finding Generating Functions
2.3 Partial Fractions
2.4 Characteristic Roots
2.5 Simultaneous Recursions
2.6 Fibonacci Number Identities
2.7 Non-Constant Coefficients
2.8 Divide-and-Conquer Relations

As indicated by its title, this chapter is predominantly concerned with solving 
recurrences. In §2.1, it identifies a basic type of recurrence, called a linear recur­
rence with constant coefficients, which is amenable to a fairly simple solution. The 
next three sections develop two approaches to solving such a recurrence. The first 
approach is completely general, and it applies to all kinds of recurrences, not just 
this special, most tractable form: one derives a generating function for the sequence 
specified by the recurrence, and then one analyzes that generating function so as 
to have a closed form for the values in the sequence. Application of the second ap­
proach is restricted to linear recurrence relations with constant coefficients: having 
memorized some standard patterns and their solutions, or possibly with the aid of 
a table of standard patterns, one sees how a given linear recurrence fits a standard 
pattern and adapts the solution. How to solve simultaneous recurrences is described 
in §2.5. Special properties of the Fibonacci numbers are featured in §2.6. The fo­
cus of §2.7 and §2.8 is on techniques for transforming a more complicated type of 
recurrence into a linear recurrence with constant coefficients, thus preconditioning 
it for solution by the well-established methods of the earlier sections.

111



112 Chapter 2 Solving Recurrences

2.1 TYPES OF RECURRENCES

REVIEW FROM §1.2:

• A recurrence for a sequence prescribes a set of initial values

and a recursion formula

X„ =  <f)(xn- i ,  x n _ 2 , . . . ,  X0) for n >  k

from which one may calculate the value of x n, for any n >  k, from the values 
of earlier entries.

One top-level demarcation in the taxonomy of recursions is the distinction between 
Unear and non-linear recursions. Another is the distinction between homogeneous 
and non-homogeneous recursions. This section explains these two distinctions and 
various other considerations that also affect the choice of a method of solution.

DEFINITION: A recursion formula of the form

x n — an — \xn — i -(- an — 2 Xn — 2 “I- * * * “I- a0 x 0 d(T'i)

in which each term is linear is said to be a linear recursion. Each coefficient aj 
may be either a constant coefficent, the same for all n, or a function of n,  that 
is, a variable coefficient.

• It is a recursion o f  degree d if the number of coefficients aj that are non­
zero is bounded, and if the smallest subscript among the non-zero coefficients 
is n — d.

• The function a(n)  is called the particularity function.

• It is a hom ogeneous recursion if the particularity function is 0.

Some Linear Recursions
It is fortunate that some of the most familiar recursions are linear, because 

linear recursions are usually easier to solve than non-linear recursions. It tends also 
to be easier to solve a recursion with constant coefficients than one with variable 
coefficients.

Example 2.1.1: The Tower o f Hanoi recursion (introduced in §1.2 and solved in 
§2 .2 )

hn =  2/in_ i +  1 (2.1.1) 
is a non-homogeneous, linear recursion of degree 1, with a constant coefficient.

Example 2.1.2: The Fibonacci recursion  (introduced in §0.2 and §1.2 and solved 
in §2.5)

f n  =  f n  — 1 +  f n  — 2 (2 .1 .2)

is a homogenous linear recursion of degree 2, with constant coefficients.
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Recurrences without Fixed Degree
A recurrence of fixed degree d for a sequence (x n) prescribes x n as a combina­

tion of the recent past entries

% n  —  1  % n  —  2  '  '  '  % n  —  d

In the most important kind of recurrence without fixed degree, the value of x n is 
a combination of entries whose indices are a fraction of n. This is called a dwide- 
and-conquer recurrence. Methods for solving such recurrences appear in §2.8. This 
kind of recurrence arises frequently in computer science, in circumstances when 
completing a task on input of size n can be reduced not just to completing it for 
slightly smaller size input, but for input of much smaller size.

Example 2.1.3: A well-known recurrence from computer science that approxi­
mates the number of steps needed to sort a file by iterative merging does not have 
a fixed degree. The merge-sort recurrence (explained and solved in §2.8)

mn =  2m|-.|i +  n (2.1.3)

is a non-homogeneous linear recurrence without fixed degree, with a constant coef­
ficient. Its recursion formula expresses that the problem of sorting a list of length 
n is reduced to merging two lists of size

Variable Coefficients
The three recursions (2.1.1), (2.1.2), and (2.1.3) all have constant coefficients. 

One of the most important linear recursions with variable coefficients arises in the 
study of permutations.

REVIEW FROM §0.5:
• A p e r m u t a t i o n  on a set S is a one-to-one, onto function from S to itself.

• Theorem 0.5.3. Every permutation can be represented as the composition of 
disjoint cyclic permutations.

there is no object x such that ir(x) =  x.

Example 2.1.4: Figure 2.1.1 illustrates a derangement.
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the integer interval [1 : n\.

The derangements of the smallest integer intervals [1 : n] are given in Table 2.1.1. 
We observe that the permutation n is a derangement if there is no 1-cycle in the 
disjoint cycle form of n.

Table 2.1.1 Derangements of Small Intervals [1 : n]

P ro p o s it io n  2.1.1. The derangement numbers D n satisfy the following recursion 
formula.

P ro o f: Every derangement of [1 : n] such that n does not lie in a 2-cycle can be 
formed by inserting the number n, immediately after one of the n — 1 numbers in 
some cycle of some derangement of [1 : n — 1]. Every derangement of [1 : n] in 
which n does lie in a 2-cycle can be formed from some derangement 7r of [1 : n — 2] 
either by adding the 2-cycle (n — 1 n), or by replacing one of the n — 2 numbers j  
in some cycle of n by the number n — 1 and then adding the 2-cycle (j  n). <C>

E xam ple  2.1.5: The derangement recurrence (considered in more detail in §5.4)

is a homogenous linear recurrence of degree 2, whose coefficients are variable. The 
sequence it specifies is convex, since

2 “  2 

> U D

> D n for n >  2

Even without solving the derangement recurrence, it is possible to prove inductively 
that most permutations have a fixed point, that is, that the ratio of derange­
ments to permutations is less than half. This is clearly true for n =  1 and n =  2.
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For n >  3, we have

Some Non-linear Recurrences
All of the recursions (2.1.1), . . ., (2.1.4) are linear. Various other important 

recurrences are non-linear.

Example 2.1.6: The Catalan recurrence (introduced in §1.2 and solved in §4.4)

C n  =  C [ ) C n _ i  +  C i C n _ 2  +  '  '  '  +  C n _ i C [ )

is a homogenous non-linear recurrence without finite degree, with constant coeffi­
cients.

Remark: The next three sections present two basic approaches to solving a linear 
recurrence of fixed degree with constant coefficients. The remaining sections are 
concerned with reducing the solution of other kinds of recurrences to these basic

EXERCISES for Section 2.1

In each o f the Exercises 2.1.1 through 2.1.4, write the first 6 values o f the given 
recurrence, guess the closed formula, and then prove by induction that your guess 
is correct.

2.1.1s an =  2an_ i — 1; ao =  3.
2.1.2 an =  4an_ i -  1; a0 =  9.
2.1.3 an =  an_ i +  2n — 1; ao =  0.

2.1.4 an =  an_ i +  2n; ao =  1.

In each o f the Exercises 2.1.5 through 2.1.7, write a homogeneous linear recurrence 
o f degree 2 with constant coefficients that corresponds to the given closed formula. 
Hint: substitute the given solution into a general linear recurrence o f degree 2.

2.1.5s an =  3n — 2n.
2.1.6 an =  3n — 2n +  1.
2.1.7 an =  n2n -  1.

i - i  +  (n ■ ■'n — 2

I 1 \ (n ~  1)' / 1 \ (n ~  2)!
l ' » - l )  2 +  ( ■ » - ! )  2 (■■

( n - 2 l !  _  ( n ^ l l !  +  („  _  j ,  (H ^2|!
2 2 2

n\
~2~
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2.1.8 List the derangements of the integer interval [1 : 5].
2.1.9 Calculate the derangement numbers D$ and D q using the derangement 
recurrence given in Example 2.1.5.
2.1.10 Prove that more than a third of the permutations of n objects, for n >  4, 
have a fixed point.
2.1.11 Write a recurrence for the number of binary strings without a pair of 
adjacent 0’s.

2.1.12 Write a recurrence for the number of binary strings without three consec­
utive 0’s.

2.1.13 Write a recurrence for the number of ternary strings without a pair of 
adjacent 0’s.
2.1.14 Write a recurrence for the number of ternary strings with an even number 
o f l ’s.
2.1.15s Write a recurrence for the number of ternary strings without a pair of 
adjacent 0’s, o f adjacent l ’s, or of adjacent 2’s.

2.1.16 Write a recurrence for the number of sequences 
2’s whose sum is n.

2.1.17 Write a recurrence for the number of sequences 
2’s whose sum is n, with evenly many l ’s.
2.1.18s Write a recurrence for the number of sequences 
2’s whose sum is n, with evenly many 2’s.

2.2 FINDING GENERATING FUNCTIONS

This section is devoted to the fundamental method for solving a recurrence of 
the form

g0 =  bo, gk =  bk', initial conditions
gn =  -y (gn_ i , . . . ,  g0) for n >  k recursion

It uses three steps to determine a closed form for the corresponding generating 
function

OO

and then a fourth step to derive a closed formula for the coefficients gn. We describe 
the four steps of this fundamental method with reference to this running example 
o f a recurrence system.

matters!) o f l ’s and 

matters!) o f l ’s and 

matters!) o f l ’s and
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enous recursion of degree 2 with constantExample 2.2.1: This is a linear ho 
coefficients.

g„ =  b g „ - i - 6 g„ - 2  for n >  1 

Step la . Multiply both sides of the recursion equation by zn.

gnzn =  hgn. lZn -  &gn. 2 zn

Step lb . Sum both sides of the resulting equation over the same range of values, 
with a lower bound as low as possible, and upward to oo.

'Yll (JnZn =  'Y^hgn- i z n -  £ > „ _

We start all the sums at the lower bound n =  2, because starting any lower would 
take the subscript of gn below 0 on the left side, and this recurrence system does 
not specify either 2 or g -i -

Step 2. Recalling equation (2.2.1), we observe that

Thus, we can replace each infinite sum in equation (lb ) by an algebraic expression

(2c J ~2gnzn =  5z g n -iz n 1 -  6z2 gn- 2 zr‘

In (2a), we factor the terms of each sum on the right, so that the power of z in the 
summand equals the subscript. In (26), we replace all three infinite sums.

Step 3. Solve for G (z).

z) ( l - 5 z  +  6z2) =  giz +  g0 -  5#0z

1 -  3z
1 — 5 z +  6 z 2

In (3a) we collect the G (z) terms on the left and substitute initial values for the 
low-subscripted entries of the sequence. In (36), we isolate the generating function 
G (z) on the left.
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Step 4. Solve for gn .

(4a)
1 -  3z

OO

=  J 2 2 " z n => 9n =  r

initial conditions 
recursion

Step (4a) converts the result of step (36) into a more tractable form. In (46) we 
extract the coefficient gn.

Check the Answer: A better way to confirm the answer than by retracing the 
steps is to verify that the answer gn =  2 n satisfies the recurrence.

g„ =  b g „ - i  -  6g„-2  
=  5 ■2n ~ 1 -  6 ■2n ~2 

=  5■ 2 n ~ 1 -  3• 2n_1

Step (4a) is usually not quite this simple, as illustrated by this variation on the 
running example.

Example 2.2.1, continued: Suppose that the initial values in the preceding 
problem were changed to

Then steps 1 and 2 would be as before. However, here is how we would finish in 
the modified problem.

Step 3. Solve for G(z).

, 2z
1 — 5 z +  6 z 2

Step (3a) collects the G (z) terms on the left and substitutes initial values for the 
low-subscripted entries of the sequence. Step (36) isolates the generating function 
G (z) on the left.

Step 4. Solve for gn. Step (4a) anticipates a method called partial fraction decom­
position, which is described in the next section. For now, we can confirm that the 
calculation in Step (4a) is correct, by proceeding from right to left on its top line. 
The next section describes how to do such a calculation from left to right.

(4a) G (z) 2Z - 2 . 2

OO  OO

=> gn =  —2n + 1  +  2 • 3n

1 -  3z
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C h eck  th e  A n sw er: As before, we verify that the answer satisfies the recurrence 
This time the answer is gn =  —2n+1 +  2 • 3n.

go =  —21 +  2 -3 °  =  —2 +  2 =  0 initial conditions

g„ =  b g „ -i  -  6 g„ - 2  recursion
=  5 (—2n +  2 • 3n_1) -  6 (—2n_1 +  2 • 3n“ 2)
=  ( - 5 ) • 2n +  10•3n_1 +  3• 2n -  4 • 3n_1 
=  —2• 2n +  6• 3n_1

recurrences. We illustrate this with a revisit to the Hanoi recurrence 

ho =  0; hn — 2/in_ i +  1 for n >  0 

We proceed through the same four steps.

We explain in §2.3 how to split a rational function

2n + i +  2 • 3:■ n

Y ^ T z n ~ => hn = 2n -  1

This solution was suggested in § 1.2 by examination of small cases and then confirmed 
by mathematical induction.
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In each o f the Exercises 2.2.1 through 2.2.14, write a generating function for the 
given recurrence.

2.2.1s an =  2an_ i; a0 =  3.

2.2.2 an =  2an_ i -  3; a0 =  3.
2.2.3 an — 3 an — i 2an_2, ao — 2, a\ — 1.
2.2.4 an — 3an — \ 2an_2 2, ao — 2, a\ — 1.

2.2.5 an — 3an — \ 2an_2 2, ao — 2, a\ — 1.

2.2.6 an =  3an_ i -  2an_ 2 +  n; a0 =  2, ai =  - 1 .
2.2.7 an =  5an_ i -  6an_ 2 +  n; a0 =  1, ai =  3.

2.2.8 an =  5an_ i -  6an_ 2 +  n2; a0 =  1, ai =  4.
2.2.9s an =  7an_ i +  8an_2 +  (—l ) n ; ao =  0, a\ =  1.
2.2.10 an =  4an_ i -  4an_ 2 +  2n; a0 =  3, ai =  1.
2.2.11 an =  5an_ i +  6an_ 2 +  2n +  1; a0 =  2, ai =  - 1 .

2.2.12 an =  2an_ 2 +  an_ 3; a0 =  0, ai =  1, a2 =  2.
2.2.13 an =  4an_ i -  an_ 2 -  6an_ 3; a0 =  0, ai =  1, a2 =  2.
2.2.14 an =  an_ i +  2 an_ 2 +  3an_ 3; a0 =  0, ai =  1, a2 =  2.

EXERCISES for Section 2.2

DEFINITION: For any graph G, the puzzle we will call the T ow er-of-G  has a frame 
that models G and a peg at every vertex. The objective is, as in the Tower of Hanoi, 
to move a stack of disks from a designated source peg s to a target peg t, subject to 
the requirements that a disk can be transferred only to a peg at an adjacent vertex 
with no smaller disks on it.

Exercises 2.2.15 through 2.2.18 all concern a Tower-of-G puzzle.

2.2.15 Find a graph H  such that the Tower-of-iJ puzzle is equivalent to the Tower 
of Hanoi, and explain the equivalence.
2.2.16s Consider the Tower-of-A ' 1 3  puzzle in which both the designated source
peg and target peg are at vertices of 1 

the minimum number of moves.
2;ree 1. Write and solve the recurrence for

2.2.17 Consider the Tower-of-A ' 1 3  puzzle in which both the designated source 
peg is at the vertex of degree 3 and the target peg is at a vertex of degree 1. Write 
and solve the recurrence for the minimum number of moves.

2.2.18 Consider the Tower-of-A ' 1 3  puzzle in which both the designated source 
peg is at a vertex of degree 1 and the target peg is at a vertex of degree 3. Write 
and solve the recurrence for the minimum number of moves.
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2.3 PARTIAL FRACTIONS

Suppose that a linear recurrence

X n  —  Q,n  —  \ X n  —  i  Q,n  —  2 % n  —  2  “ 1“  '  '  '  “ 1“  a 0 X 0  d ( T ' i )

has constant coefficients aj and that its particularity function a(n) is a polynomial 
in n. Then the generating function constructed by Steps 1 ,2 , and 3 of the method 
of §2.2 is a proper rational function.

Z i^ ognZ c0 +  c\z -\--------1- ctzl

Step 4 is to complete the solution, by deriving a closed formula for gn. This section 
develops the details of Step 4. Like the previous section, this section explains the 
details of the method with the aid of a running example.

E xam ple  2 .3.1: The running example now is the rational function

, 1 - 5 z
w  1 - 7 z +  16z2 -  12z3 

One may verify that it corresponds to the recurrence

g„ =  7 g „ -i  -  16g„-2 +  12#n-3  for n >  2 

Step 4a-1. Factor the denominator into linear factors.

C o  +  C l 2  +  • • • +  C t Z f =  C 0 ( l  -  T i z f 1 • • • ( !  —  T k z ) S k  

with £\ +  ■ ■ ■ +  £k =  t. For simplicity, we take co =  1. For our example, we have

, 1 - 5 z
w  1 -  7 z +  16z2 -  12z3 

1 -  5z 
~  (1 -  2z)2(l  -  3z)

By what is called the Fundamental Theorem of Algebra, a polynomial with complex 
coefficients has a factorization into powers of linear polynomials.

Remark: There is no general method for calculating the roots of a polynomial 
exactly for higher degree polynomials. Nonetheless, in practice, one commonly 
encounters polynomials that can be factored by elementary methods.

Step 4a-2. Analyze the rational function into a sum of k rational functions, each 
of whose denominators is one of the factors (1 — Tj)Sj, and whose numerators are 
“unknown polynomials” , each of the respective form

bj,o + + • • • + bjej- i z £3 1
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Thus,
1 -  5z b 1 , 0  +  b n  z J 2 , 0

1 -  7 z + 1 6 z 2 -  12z3 (1 — 2z)2 (1 — 3z)

Step 4a-3. Recombine these summands, with a single denominator. For the present

1 -  5z
1 -  7z +  16z2 -  12z3

(&i,o +  bitiz ) ( l  — 3 z) +  &2 ,o(l — 2 z )z 
(1 -  2z)2( l  -  3z)

Step 4a-4. Then collect terms according to the exponent of the factor zl . For the 
present example,

_  (&i,o +  &2 ,o) +  (—3&i,o +  b ii  — 4&2,o)  ̂+  (—3&i,i +  4&2,o)z2 
~~ 1 -  7z +  16z2 -  12z3

Step 4a-5. Next obtain a system o ft  linear equations in t unknowns bjj by equating 
each resulting coefficient of zl in the numerator to the corresponding coefficient of 
zl in the numerator of the original linear function, and solve that system.

bifi +  &2 ,o =  1 1 bio =  7
— 3&i ,0 +  &i, i  -  4 &2,o =  - 5  > &i_i =  - 8

—36 i;i +  4&2,o =  0 J &2,o =  —6

Step 4a-6. Now substitute these solutions into the right side of the equation of 
Step 4a-2.

1 - 5 z  7 -  8 z  -6

1 -  7 z + 1 6 z 2 -  12z3 (1 — 2z)2 1 — 3z

Step 4a-7. Transform each term on the right into the product of its numerator 
with the power series corresponding, via Corollary 1.7.4, to its denominator. Then 
simplify each power series.

^ | x ̂   ̂ ^

o o  OO

Step 4a-8. Finish by combining into a single power series, and then extracting a 
closed formula for gn.

=  E  [(3n +  7) • 2n -  6 • 3n] => gn =  (3n +  7) • 2n -  6 • 3"
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EXERCISES for Section 2.3

Each o f the Exercises 2.3.1 through 2.3.14 corresponds to an exercise m which 
prescribed the determination o f a generating function. Analyze the corresponding 
generating function into partial fractions and solve the recurrence.

2.3.1
2.3.2
2.3.3
2.3.4

2.3.5
2.3.6
2.3.7
2.3.8 

2.3.9s
2.3.10

2.3.11
2.3.12
2.3.13

2.3.14

an

an

an

an

an

an

an

an

an
an

an

an

a„

2.4 CHARACTERISTIC ROOTS

To solve a homogenous linear recurrence of fixed degree d with constant coeffi­
cients, in addition to using generating functions as described in §2.2 and §2.3, there 
is an alternative approach called the m e th o d  o f  ch a ra cteristic  ro o ts .  It begins 
with the assumption that the recurrence has solutions of the form

We describe this alternative method with reference to the same recurrence that 
we used for the running example, Example 2.2.1, that illustrated the method of 
solution using generating functions.

Suppose that a sequence (g„) is representable by a homogeneous linear re­
currence with constant coefficients. Then its generating function G (z) must be a 
rational function, as one might prove by analyzing the method in §2.2. Furthermore, 
by splitting G (z) into partial fractions with denominators

( !  -  Tj zY 3
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one can prove that the closed form for the entry gn must be a linear combination 
o f powers of the numbers Tj, which are the roots of the denominator of G (z).

Example 2.4.1: Applying the method of characteristic roots to this familiar re­
currence provides a running example for this section.

g„ =  b g „ -i  -  6 g„ - 2  for n >  1

Characteristic Equation
Step 1. Form the characteristic equation, as follows.

(la ) Substitute r n for gn in the recurrence.
— 1 _ Q^n — 2

(lc ) Move the non-zero terms to the left of the equals sign

r 2 — 5r +  6 =  0 

thereby forming the characteristic polynomial.

Step 2. Factor the characteristic polynomial.

The roots of the characteristic polynomial

are called the characteristic roots. We observe their correspondence to the linear 
factors of the denominator of the generating function derived in Step 4 of Example
2.2.1. We observe that

gn =  =  2n and gn =  r2" =  T

are solutions to the given recurrence.

Step 3. As a general solution to the given homogeneous recurrence, form a linear 
combination of the characteristic roots, using unknown coefficients. If none of the 
roots is repeated, the result of this step is as follows.

gn =  b1 2 n +  b2T

We shall eventually return to this step to elaborate on the case in which one or 
more roots is repeated.
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Step 4a. Use the initial conditions to write a system of linear equations for the 
unknown coefficients.

go =  1 =  &i2° +  &23° =  b\ +  &2 

gi =  2 =  &1 2 1 +  &231 =  2&i +  3&2

Step 4b. Solve for the unknown coefficients.

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.

gn =  2n

We observe that this is the same solution previously obtained for this recurrence in 
Example 2.2.1.

Alternative Initial Values
Suppose that we now consider, as in the continuation of Example 2.2.1, the 

alternative initial values

Then the finish would be as follows.

Step 4a. Use the initial conditions to write a system of linear equation for the 
unknown coefficients.

go =  0 =  &i2° +  &23° =  &i +  &2 

gi =  2 =  b\2 l +  &231 =  2&i +  3&2

Step 4b. Solve for the unknown coefficients.

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.

9n =  —2n+1 +  2 • 3n

This is the same solution obtained previously, in Example 2.2.1, with these alter­
native initial values.

Repeated Roots
We now apply the method of characteristic roots to the recurrence of Example

2.3.1.

g„ =  7 g „ -i  -  16gn-2 +  12#n-3  for n >  2

  



Step 1. The characteristic equation is

r 3 -  7 r2 +  16r -  12 =  0 

Step 2. Factor the characteristic polynomial.

(t - 2 ) 2 (t - 3 )  =  0

Step 3. If a root Tj has multiplicity Sj, then use

bjto tJ1 +  bjti nTj1 +  ••• +  bj!Sj- 1 n Sj~ 1 Tjl

in forming the general solution with unknown coefficients. In the present example, 
the general solution is

gn =  &i,02n +  bh ln 2 n +  b2T

Step 4a. Use the initial conditions to write a system of linear equation for the 
unknown coefficients.

£'o =  l =  &i,o2° +  &i,10 • 2° +  &2 3° =  61,0 +  &2

9i =  2 =  &i)o21 +  6 1 ; 1 1 • 21 +  &231 =  2&io +  2&ii +  3&2 

§2 =  — 2  =  &i)o22 +  61 ,1 2  • 2 2 +  &2 32 =  4&i o +  8 6 i ;i +  9&2

Step 4b. Solve for the unknown coefficients.

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.

gn =  7  . 2n +  3n • 2n -  6 • 3n 

This is the same solution obtained in Example 2.3.1.

Remark: The proof that this method works is a matter of checking that it always 
yields the same solution as the method of generating functions.

Non-homogeneous Equations
To extend the method of characteristic roots to a non-homogeneous linear 

recurrence of degree d with constant coefficients

go =  b0, . . . ,  ga-i =  &d-i!
g„ =  an- i  gn - 1 +  • • • +  an_ dgn_ d +  a(n)

we first isolate the a ssocia ted  h o m o g en eo u s  r e cu rren ce

9 n  —  —  —  ' ' ' ~\~ ^ n  —  d  9 n  —  d

obtained by dropping the particularity function.

126 Chapter 2 Solving Recurrences
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We illustrate the rest of the extended method with a revisit to the Hanoi recurrence.

hn =  2/in_ i +  1 for n > 0

Use Steps 1, 2, and 3 to find a general solution to the homogeneous recurrence

Steps 1 , 2 .  t  — 2 =  0
Step 3. hn =  b ■ 2n

The result so far is called the h o m o g en eo u s  p a r t  of the general solution.

Step 3N. Find a trial function h„ that satisfies the original recurrence. Such a 
trial function is called the p a rticu la r  so lu tion  or the p a rticu la r  p art. It usually 
resembles the particularity function. For instance, if the particularity function is a 
polynomial in n, then the trial function can be a polynomial of the same degree, 
with unknown coefficient. Since the particularity function for the Hanoi recurrence 
is a constant, the trial function can be a constant.

Substitution into the original recurrence leads to a system of linear equations in the 
unknown coefficients.

hn =  2/in_ i +  1 (recurrence)

Step 4a. Use the initial conditions to write a system of linear equations for the 
unknown coefficients.

Step 4b. Solve for the unknown coefficients.

Step 4c. Substitute the solutions for b\ and b2 from Step 4b into the general 
solution of Step 3.

hn =  T  -  1

This is the same solution obtained in Example 2.2.2 by the method of generating 
functions.

  



128 Chapter 2 Solving Recurrences

Example 2.4.2: We modify Example 2.4.1 by giving the recurrence a polynomial 
particularity function

g„ =  b g „ - i  -  6 g„ - 2  +  4n -  3 for n >  1 

We have previously derived for the homogeneous recurrence the general solution

gn =  b1 2 n +  b2T

Step 3N. As a particular solution we use the form

gn =  cin  +  c0 

and substitute it into the particularized recurrence.

4n -  3 =  gn -  bgn- i  +  &gn - 2  (recurrence)

This leads to the linear equations and solutions

4 =  2ci
c -  2 c -  11

which are combined with the general solution to the ^eneous part. 

11
g-ri — g-ri +  g-ri — b i2n +  b2T  + 2  n +  —

Step 4a. Use the initial conditions to write a system of linear equations for the 
unknowns b\ and b2-

go =  1 =  bi2 ° +  &23° +  —  

gi =  2 =  &1 2 1 +  &231 +  2 • 1 +  —

Step 4b. Solve for the unknowns b\ and b2.

_  9 _  h +  h

&2 2

Step 4c. Substitute the solutions for b\ and b2 from Step 4b into the general 
solution from Step 3N.
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7 11
gn =  —8 • 2n +  -  • 3n +  2n +  —

Example 2.4.3: We now modify Example 2.4.1 by giving the recurrence an ex­
ponential particularity function.

g„ =  b g „ -i  -  6 g„ - 2  +  ( ~ l ) n for n >  1

We have previously derived for the homogeneous recurrence, as in Example 2.4.2, 
the general solution

gn =  b1 T  +  b2T

Step 3N. As a particular solution we use the form

9n =  C (- I )n

and substitute it into the particularized recurrence.

( - l ) n =  9 n ~  5#n_ i +  6 gn - 2 (recurrence)
=  c ( - l ) n +  5c (—l ) n +  6 c (—l ) n

Combine this solution with the general solution to the homogeneous part.

9n =  9n +  9n =  &l2" +  &23" +

Step 4a. Use the initial conditions to write a system of linear equations for the 
unknowns b\ and b2-

90 =  1 =  &i2° +  &23° +  —

91 =  2 =  &121 +  &231 — —

Step 4b. Solve for the unknowns b\ and b2-

11 _  \ h -  —
12 “  i +  2 I i -  i 2

§ = 2&1 + 3&2 J b2 = A
Step 4c. Substitute the solutions for b\ and b2 from Step 4b into the general 
solution from Step 3N.

8 3 1 
9n ~  12 ’ 2 + 1 2 ' 3 +  12
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Complex Roots
A recurrence in which the initial values are real and the recursion has real 

coefficients has a characteristic polynomial with real coefficients. The roots of such 
a polynomial may be complex.

E xam ple  2 .4.4: The recurrence

g„ =  2 gn_i -  2#n_ 2 for n >  1 

has the characteristic equation

r 2 -  2r +  2 =  0

with roots

Thus, the general solution is

9n =  bi(l +  i)n +  &2(1 — *')"

The initial conditions yield the complex simultaneous equations

go =  1 =  6i ( l +  *)° +  62(1 — *)° =  bi +  b2 
gi =  2 =  biil +  i)1 +  b2( l - i ) 1

with solution
b =  i +  1 b =  1

1 2 i 2 2 i
Hence, the general solution is

=  h (1+i)n+1 ~ h (1~ i)n+1

E X E R C IS E S  fo r  S ection  2.4

In each o f the Exercises 2-4.1 through 2-4-14> solve the recurrence by the method of 
characteristic roots.

2.4.1s an =  2an_ i; ao =  3.
2.4.2 an =  2an_ i — 3; ao =  3.

2.4.3 an — 3an_ i 2an_2, ao — 2, a\ — 1.
2.4.4 an =  3an_ i -  2an_ 2 +  2; a0 =  2, ai =  1.

2.4.5 an =  3an_ i -  2an_ 2 +  2; a0 =  2, ai =  - 1 .
2.4.6 an =  3an_ i -  2an_ 2 +  n; a0 =  2, ai =  - 1 .
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= 5 a n _ i - 6 a n _ 2 + n; a0 = 1, ai = 3. 

= 5 a n _ i - 6 a n _ 2 + n2 ; a0 = 1, ai = 4. 

= 7 a n _ i + 8 a n _ 2 + ( - l ) n ; a0 = 0, ai = 1. 

= 4 a n _ i - 4 a n _ 2 + 2 n ; a0 = 3 , ai = 1. 

= 5 a n _ i + 6 a n _ 2 + 2n + 1; a0 = 2, ai = - 1 . 

= 2 a n _ 2 + a n _ 3 ; a0 = 0, ai = 1, a2 = 2. 

= 4 a n _ i - a n _ 2 - 6a n _ 3 ; a0 = 0, ai = 1, a2 = 2. 

= a n _ i + 2 a n _ 2 + 3a n _ 3 ; a0 = 0, ai = 1, a2 = 2. 

/n each of the Exercises 2.4.15 through 2.4.18, solve the recurrence by the method 
of characteristic roots. The roots are a complex conjugate pair. 

2.4.7 

2.4.8 

2.4.9s 

2.4.10 

2.4.11 

2.4.12 

2.4.13 

2.4.14 

an 

an 

an 

an 

an 

an 

an 

an 

2.4.15s 

2.4.16 

2.4.17 

2.4.18 

an 

an 

an 

an 

= 

= 

= 

= 

2an_i -

2an_i -

3an_i -

2an_i -

- 3an_2; 

- 2an_2; 

- 3an_2; 

- 4an_2; 

a0 

a0 

a0 

a0 

= 

= 

= 

= 

1, 

1, 

1, 

1, 

ai = 2 

ai = 3 

a i = 3 

ai = 2 

2.5 SIMULTANEOUS RECURSIONS 

As remarked at the end of §2.1, from this point on in the chapter, we explore 
how to reduce other kinds of recurrences to the type for which we have good meth­
ods, tha t is, to linear recurrences of fixed degree with constant coefficients. Here 
we consider simultaneous recurrences that arise in a problem concerning growth of 
a rabbit population. In solving simultaneous algebraic equations, one uses a substi­
tution from one equation in the system to reduce the number of variables in other 
equations. Similarly, with simultaneous recurrences, one uses a substitution from 
one recursion to reduce the number of different sequences occurring in other recur­
sions. The objective is to reduce the solution of the initial system to the solution of 
one or more independent linear recurrences. Solving the particular system described 
here is reduced to solving the classical Fibonacci recurrence, which is unsurprising, 
because the simultaneous system presented here pertains to the rabbit population 
model invented by Fibonacci, depicted in Figure 2.5.1. This section solves the 
Fibonacci recurrence and describes how readily it pertains to other mathematical 
constructions and problems. Discussion of the Fibonacci sequence continues in §2.6. 
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0

Figure 2.5.1 Fibonacci rabbit population growth

Fibonacci Rabbits
In 1202, Fibonacci imagined a kind of rabbit that takes one month from birth 

to mature, with a gestation period of one month. Every mature female gives birth 
each month to a litter of two, with one male and one female. The population growth 
is described by a pair of simultaneous recurrences. Let bn represent the number of 
pairs of newborn rabbits, and let an be the number of pairs of adult (mature) 
rabbits. Suppose that there are no rabbits at n =  0 months, and that a newborn 
pair initiates the system after 1 month.
We want to calculate the total number f n = a n +  bn pairs of rabbits. This situation 
is modeled by a sim u ltan eou s recu rsion  with initial conditions

and the relational equations

o,n — (in — i +  bn — i 
bn =  cin — l

fn — On + &n
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A first step in solving such a system is to use substitutions to reduce it to a recur­
rence with a single unknown. We see tha t 

(2.5.1) 

(2.5.2) 

(2.5.3) 

and tha t / 0 = ao + 60 = 0 and j \ = a\ + b\ = 0 + 1 = 1. 

The resulting single-variable recurrence 

is recognizable as the Fibonacci recurrence. 

Ubiquitousness of the Fibonacci Sequence 

Although Fibonacci's rabbit model is Fibonacci's invention, the sequence it 
yields is evidently nature 's invention. For instance, what follows immediately is 
an explanation of an occurrence of the Fibonacci sequence in the construction of a 
nautilus shell. 

DEFINITION: A Fibonacci rectangle is any rectangle, subdivided into squares 
whose sides are of lengths that are Fibonacci numbers, in the following sequence: 

• The Fibonacci rectangle 7*1 is a 1 x 1 square. 

• For each n > 2, the Fibonacci rectangle rn is constructed by placing a square 
along the longer side of the rectangle r n _ i , as in Figure 2.5.2. 

Figure 2.5.2 F ibonacc i rec tang le s . 

DEFINITION: A spiraled Fibonacci rectangle is a Fibonacci rectangle in which 
each square of size 5 x 5 and larger is placed so that it touches three previous 
squares, rather than two. Figure 2.5.3 illustrates a spiraled Fibonacci rectangle. 
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Figure 2.5.3 Fibonacci spiral.

We observe that the inscribed spiral in Figure 2.5.3 has the shape of a nautilus 
shell. It is called a Fibonacci spiral.

Solving the Fibonacci Recurrence
We now use the method of generating functions to solve the Fibonacci recur­

rence.

Step 1. f n Z n  =  f n - l Z n  +  f n - 2 Z n -

OO OO oo
= J ^ fn~izn + J ^ fn~2zn

Step 2. Use F (z)  as the generating function for f n .

Y , f n Z n =  z j ^ f n - i z n~1 +  z 2 2 Z

Step 3. Solve for F (z).

Step 4. To solve for f n , we use the quadratic equation
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whose roots involve the golden mean and its conjugate

1 +

respectively. We then use partial fractions

1 -  z -  z2

from which we conclude
(2.5.4)

which is called the B in e t  form u la  for the Fibonacci numbers, after Jacquet Binet, 
who rediscovered it in 1843, after Euler had published it in 1765. Closed forms for 
an and bn are readily derivable from (2.5.1) and (2.5.2), respectively.

. . . . . . 7nP ro p o s it io n  2 .5.1. The Fibonacci number f n is asymptotic to —=.

P ro o f: Since j  <  1, it follows that j n is asymptotic to 0. Accordingly, using 
Eq. (2.5.1) above,

lim fn (7» +  7 " 7"

Some Tiling Problems
One of the many other contexts, besides biology, in which Fibonacci numbers 

arise is tiling problems. Using tiling as a model for Fibonacci numbers leads to 
some possibly surprising results. We visualize paving a l x n  chessboard with tiles 
o f various lengths. A 1 x d tile is called a rf-tile.

E xam ple  2 .5.1: Let tn be the number of ways to cover a l x n  chessboard with 

with the empty arrangement. Figure 2.5.4 shows the possibilities for n =  0, . . ., 4.

Figure 2.5.4 T ilin g  a l x n  ch essboard .
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The number of 1 x n tilings in which the rightmost tile is a 1-tile is tn-\. The 
number of 1 x n tilings in which the rightmost tile is a 2-tile is tn_ 2 - The solution 
to the resulting recurrence

— tn — 1 ~\~ n̂ — 2

is clearly tn =  f n+i, the n +  1st Fibonacci number.

E xam ple  2 .5.2: Observe that any tiling in which all the tiles are of odd length 
can be converted to a tiling with 1-tiles and 2-tiles, whose initial tile is a 1-tile, by 
breaking a tile of length 2n +  1 into a 1-tile, followed by n 2-tiles. This breakage 
operation can be inverted, since each maximal string of 2-tiles and the 1-tile that 
precedes it can be assembled into an odd-length tile. It follows that there is a one- 
to-one, onto correspondence between the two kinds of tiling. Since the number of 
tilings of a 1 x n chessboard with 1-tiles and 2-tiles, and with an initial 1-tile, is the 
Fibonacci number tn_ i =  f n- 2 , this must also be the number of tilings with tiles

E X E R C IS E S  fo r  S ection  2.5

2.5.1 Show that a pair of simultaneous recursions of the form

x n — axn—j byn-k  
Vn — cxn—r -\- dyn — s

can be split into two separate linear recursions, one for the sequence (x r 
for the sequence (yn).
2.5.2s Solve these simultaneous recurrences.

and

x n — x n — i -\- yn — i 
y„ =  4*n_ i +  t/n_ i

2.5.3 Solve these simultaneous recurrences.

x n — x n — i yn — i 
y„ =  9xn- i  +  yn_ i

2.5.4 Solve these simultaneous recurrences.

x n — x n — i yn — i
Vn — 2 ^ n _ 2 “1“ yn — 1

y o
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2.5.5 Solve the following recurrence. 

2.5.6 Calculate the first five values of the following recurrence, use them to guess 
the solution, and then use mathematical induction to prove the correctness of your 
guess. 

DEFINITION: The Lucas sequence (Ln) is defined by the recursion 

Exercises 2.5.7 through 2.5.10 are concerned with the Lucas sequence, which has the 
same recursion formula as the Fibonacci sequence, but different initial values. 

2.5.7 Calculate the Lucas numbers LQ, L\, . . ., Lg. 

2.5.8 Find a generating function for the Lucas sequence and a closed formula 
for Ln. 

2.5.9 Consider paving a circular l x n track with a seam with curved 1-tiles and 
2-tiles, so that two tiles meet at the seam. Let rn be the number of ways to do this. 
Then ro = 1, and Figure 2.5.5 illustrates that r% = 3. Write a recurrence for the 
sequence rn and solve it. 

Figure 2.5.5 P a v i n g a s e a m e d 1 x 3 c ircular track. 
T h e s e a m is t h e dark vert ica l l ine in t h e track. 

2.5.10 Now consider paving such a circular l x n track with curved 1-tiles and 
2-tiles, so that the midline of a 2-tile covers the seam, for n > 1. Let sn be the 
number of ways to do this. We take so = 1, and we observe that si = 0. Figure 
2.5.6 below illustrates that S4 = 2. Write a recurrence for the sequence sn and solve 
it. 
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two 1-tiles and one 2-tile two 2-tiles

Figure 2.5.6 C overin g  th e  seam  o f  a 1 x 4 circu lar track.

2.5.11 Show that Ln =  rn +  sn .

Exercises 2.5.12 through 2.5.14 are concerned with the ancestry tree o f a single male 
bee, which is called a drone. Let dn be the number o f drones and qn the number of 
queens m n previous generations o f bees from which that drone is descended. These 
numbers are given by the recurrence

dn — Qn — 1,
qn — dn — i +  qn~ i

which corresponds to the fact that whereas a queen has two parents — a drone and 
a queen — a drone has only one parent, a queen.

2.5.12 Draw the ancestry tree for a drone back four generations.

2.5.13 Draw the ancestry tree of a queen back four generations.
2.5.14s Use substitution to split the given simultaneous recurrence for bee ancestry 
into two independent recurrences, one for dn and one for qn, and solve them.

2.6 FIBONACCI NUMBER IDENTITIES

In examining the first few entries of the Fibonacci sequence

n 0 1 2 3 4 5 6 7 8 9 10 11 12

fn 0 1 1 2 3 5 8 13 21 34 55 89 144

we observe that for each instance of a number n and a multiple kn, the Fibonacci 
number f mn is a multiple of f n. For instance,

f 5 =  5 and f w =  55 =  l l / 5

Some other patterns may be immediately apparent, and some are subtle. This 
section is devoted to the observation and verification of such patterns.
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Forward-Shift and Subscript Multipliers
As a preliminary to trying to prove that the Fibonacci number f m n  is a multiple 

° f  f n ,  we consider a relationship between f k + n  and f n . Proceeding from k =  2,

we observe that the coefficients of / n+i and f n are themselves Fibonacci numbers. 
The observable pattern is confirmed by the following theorem.

T h eorem  2.6.1 [F orw ard -S h ift Id en tity ]. The Fibonacci numbers satisfy the 
equation

We now confirm the initial observation regarding multiples.

C oro lla ry  2 .6.2. For all k >  0, the Fibonacci number fkn is a multiple o f  the 
Fibonacci number f n .

P ro o f: By induction on the multiplier k.

BASIS: This is trivial for k =  0 and k =  1. That is,

/ n  +  2  —  / n  +  1 “ 1“  f n

f n +  3  —  / n  +  2  +  / n  +  1

/ n + 4  =  / n + 3  +  / n  +  2

/ n  +  5  — / n + 4  “1“ / n + 3

/ n  +  6  =  / n  +  5  +  / n + 4

f n - \ - k  — — 1 f n

P ro o f:
b a s i s :

f n + j  —  f  j  / n  +  1 +  f j  —  l f n

IND STEP: Then

f n - \ - k  —  f n - \ - k  —  1  “ 1“  f n - \ - k  —  2

f k f n  + 1 “ 1“  f k  —  l f n

  



IND HYP: Assume that the Fibonacci f j n is a multiple of the Fibonacci number 
for all j  such that 0 <  j  <  k.

IND STEP: Then

f kn  — f n  + (k — l)n

By the inductive hypothesis, there is a number M  such that /(& _!)„ =  M f n. Thus,

f kn  =  M f n f n  + 1 +  f (k  — l)n — l f n

Cassini’s Identity
In returning to the early entries of the Fibonacci sequence

140 Chapter 2 Solving Recurrences

n 0 1 2 3 4 5 6 7 8 9 10 11 12

f n 0 1 1 2 3 5 8 13 21 34 55 89 144

we also observe that the square of each Fibonacci number differs by 1 from the 
product of the Fibonacci number that follows it and the Fibonacci number that 
precedes it. For instance,

T h eorem  2.6.3 [C assin i’s Id en tity ]. In the Fibonacci sequence ( / „ ) ,

/ n+i / n_ i =  / n2 +  ( - l ) n fo rn  >  1 

P ro o f: By induction on n.

BASIS: Confirmation that the identity holds for n =  1 is as follows.

IND HYP: Assume that

IND STEP: Then
/ n + i / n _ !  =  ( f n  +  f n - i ) f n - i  (Fibonacci recurrence)

=  / n2 +  (—l ) n (Fibonacci recurrence) <C>
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Fibonacci Number System
It is clear that every non-negative integer is the sum of some Fibonacci numbers, 

since 1 is a Fibonacci number. The following example adds as requirements non­
repetition and non-consecutiveness.

E xam ple  2 .6.1: Each of the smallest integers that is not a Fibonacci number is 
the sum of two or more non-consecutive Fibonacci numbers.

3 + 1  
5 + 1  
5 +  2 
8 + 1

Moreover, this property holds for some 

100 =  89 +  8 +  3

10
11
12

14

8 + 2 
8 +  3 
8 +  3 +  1 
13 +  1

ger examples.

200 =  144+ 5 5 + 1

T h eorem  2 .6.4. Every non-negative integer n can be represented as the sum o f  
distinct non-consecutive Fibonacci numbers.

P ro o f: By induction on n.

BASIS: The number n =  0 is the sum of the empty set.

IND HYP: Assume for some n >  0 that every number less than n is representable 
as the sum of distinct non-consecutive Fibonacci numbers.

IND STEP: Let f m be the largest Fibonacci number less than or equal to n. Since 
f m -|-i > n, it follows from the Fibonacci recursion that

f m  — 1 ^  n f m

Thus, when the induction hypothesis is applied to n — f m , the summands are non- 
consecutive Fibonacci numbers, each less than f m - i -  Accordingly, when f m is 
included in the set of summands, the members of the resulting set of Fibonacci 
numbers remain non-consecutive, and their sum is n. <C>

DEFINITION: The F ib on a cc i rep resen ta tio n  o f  an in te g e r  is its expression as a 
sum of distinct non-consecutive Fibonacci numbers.

E X E R C IS E S  fo r  S ection  2.6

In each o f the Exercises 2.6.1 through 2.6.4, calculate the value o f the given expres­
sion.

2.6.1 /io  2.6.2 / 15 

2.6.3 h f ^ - h h  2.6.4 h h - h h

  



142 Chapter 2 Solving Recurrences

In each o f the Exercises 2.6.5 through 2.6.8, convert the given integer to its Fibonacci

2.6.5s 202 2.6.6 105
2.6.7 128 2.6.8 243

In Exercises 2.6.9 through 2.6.20, prove the given identity.

2.6.9s / n2 -  2fn - i fn - 2  ~  fn2- i  =  fn - 2 for n >  2.
2 .6 .1 0  / o  +  f i  +  f ’2 +  • • • +  f n  =  f n  + 2 ~  1 fo r  fl >  0.

2.6.11 f i  +  / 3 +  /s  +  • • • +  / 2 n -i  =  / 2 n for n >  1 .

2 . 6 . 1 2  / o  +  /2  +  / 4  +  • • • +  / 2 n  =  / 2 n  +  l  —  1  f o r  Tl  >  0 .

2.6.13 / 02 +  / i 2 +  / 22 +  • • • +  / n2 =  /n /n + 1  for n >  0.

2.6.14 / i / 2 +  / 2/ 3 +  / 3 / 4  +  • • • +  /2n -l/2n  =  / 2n for «  >  1.

2-6.15 Efe=o ( V )  =  fn +1 for n >  0.
2.6.16 / n2 +  / n2+1 =  / 2 n + 1 for n >  0.

2.6.17 / n2+1 -  / n2_ ! =  / 2n for n >  1.
2.6.18 2 /n =  / n+i +  / n_ 2 for n >  2.

2.6.19 3 /„  =  / n+2 -  / n_ 2 for n >  2.

2.6.20 / i  +  / 4  +  / 7  +  • • • +  / 3 n- 2  =  5 / 3 n for n >  0 .

2.6.21 Prove that / n =  , for n >  1, where is the Lucas number.

2.6.22 Prove that the Fibonacci sequence is neither log-concave nor log-convex.

2.6.23s Write the Fibonacci representation for the number f 2 n+i ~  1- (Suggestion: 
Try this first for n =  4.)
2.6.24 Prove that f 2 n+i — 1 is the smallest integer that requires at least n sum­
mands in its Fibonacci representation.

p r e v i e w  o f  §6.1:

• T h eorem  6.1.9. For n >  0 and m >  1, g c d ( /n , / m) =  / gcd(n,m)-

2.6.25 Confirm that Theorem 6.1.9 is correct for gcd ( / 1 2 , /s)-

2.7 NON-CONSTANT COEFFICIENTS

A good method for solving any recurrence that is not specified as a linear 
recurrence of fixed degree with constant coefficients is to transform it into such a 
recurrence. This is an instance of the standard mathematical strategy of reducing a 
given problem to a previously solved problem. Most of our attention in this section 
is devoted to the solution of another recurrence from computer science, called the 
quicksort recurrence.
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A Reduction Strategy
Consider this general linear recursion of degree d with variable coefficients.

f (n )  x n =  cn_ i f (n  -  1) * n_ i +  • • •
+  cn_ df (n  -  d )x n_ d +  p(n) (2-7.1)

Substituting f (n )x n =  yn yields the recursion

y„ =  cn_ i y „ - i  + ----- Ycn-d yn -d  +  p(n) (2.7.2)

which is linear with constant coefficients, and, therefore, is amenable to previously 
developed methods of solution. A solution yn =  g(n) for the recursion (2.7.2) could 
be reverse-transformed into a solution x n =  g(n )/ f(n )  for the recursion (2.7.1).

E xam ple  2 .7.1: Consider the recurrence

_  2(n — 1) 1
n n n 1 n

Multiplying the recursion by n yields the recursion

nxn =  2(n -  1) * n_ i +  1

in the form of recurrence (2.7.1). The substitution nx„ =  yn yields this new recur­
rence in the form of recurrence (2.7.2).

Vn — 2i/n_ i 1

This transformed recurrence is easily solved by the method of generating functions 
or by the method of characteristic roots. Indeed, if we recognize it as the Hanoi 
recurrence, we already have this solution for yn:

yn =  2n -  1

To obtain the solution for x n, we substitute yn/n =  x n:

nxn =  2n -  1 
2 n  -  1

E xam ple  2 .7.2: To solve the recurrence

nxn =  ^ 1 ----- ^ x n — i +  (2n )1_n for n >  1

we first multiply the recursion by nn_1, thereby obtaining
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rin xn =  (n — l ) n xn~i +  nn (2 n) 
=>- nn xn =  (n — l ) n_1* n_ i  +  2 1_n

Substituting rin* n =  j/n yields the recurrence

n —1

This transformed recurrence is easily solved.

y  -  1 +  -  +  -  +

1
In — 1

for n >  1

)n — 1

By reverse-substituting t/n =  nnxn, we solve the given recurrence.

_  1 /  1 \ 2n -  1
2n_1 n On — 1nn2

Sum in a Recurrence: Quicksort
Beyond the complication of variable coefficients, the quicksort recurrence has 

no fixed degree. It involves a long sum of earlier values in the sequence. Another 
preliminary to applying the methods of the earlier part of this chapter is to transform 
it into a recurrence of fixed degree.

The quicksort recurrence arises in the analysis of the time needed to execute 
a well-known sorting algorithm called qu icksort. Performing it on a sequence of 
numbers (which may be used as the keys to the records in a file of data) involves 
two signature steps, that is, steps that occur in quicksort but not in most other 
sorting methods. One signature step is choosing an entry of the sequence, which is 
called a pivot. The other signature step, called tripartitioning, is to partition the 
given sequence into three subsequences, as follows:

• The front part contains every element that is less than the pivot. This part 
may be empty.

• The pivot part contains only the pivot entry itself.

• The back part contains every entry not in the other two parts, all the entries 
that are greater than the pivot, plus any duplicates of the pivot. The back part 
may be empty.

If the length of a sequence is 0 or 1, then the sequence is deemed to be sorted. Oth­
erwise, it is tripartitioned, and then its front part and its back part are quicksorted. 
In the implementation represented by the following algorithm, the pivot is selected 
at random. (This tends to produce pivots whose value is relatively near to the 
median of the sequence, a fortuitous event that reduces the number of subsequent 
iterations.) The following algorithm specifies the details of a quicksort.
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Algorithm 2.7.1: Q uicksort

Input: seq X  =  (x j) ; range limits lo, hi
Output: that same sequence in non-decreasing order
i f  lo >  hi th en  retu rn

else pivot :=  random ({lo, . . ., hi})
“tripartition” (xi0, . . ., x^i) into (xpivot) plus 

fron t :=  (x j \ Xj <  xpivot) 
back :=  (x j ( j  ^pivot) | Xj >  xpivot)

X  :=  concatenate(Qsort(fron t), xpivot, Qsort(back))

E xam ple  2 .7.3: Suppose that the given sequence is

(78 49 05 14 10 90 44 39 19 55) 

and that the initial pivot is 39. Then the result of the first tripartition step is

front part pivot back part

( '(05 1 4 "  10 19)' (39)̂  '^78 49 90 44 iF y  )

The subscript q denotes a part that is fully quicksorted. Suppose that at the second 
stage the pivots chosen in the parts not yet fully quicksorted are 10 and 78. Then 
the result of the second-stage tripartitioning is

( ( ( 0 5 ) ,  ( 10 ) ,  ( 14 19) )  ( 39 ) ,  ( ( 49  44 55) ( 78 ) ,  ( 9 0 ) , ) )

Suppose that at the third stage the pivots chosen in the parts not yet fully quick- 
sorted are 19 and 49. Then the result of the third-stage tripartitioning is

( ( ( 0 5 )  (10)  ( ( 1 4 )  ( 1 9 ) ) )  (39)  ( ( ( 4 4 )  (49)  ( 5 5 ) )  (78)  ( 9 0 ) ) )

at which point all parts are fully quicksorted. Concatenation proceeds level by level 
with this sequence as the final result.

(05 10 14 19 39 44 49 55 78 90)

Analysis of the Time Needed by Quicksort
Let Qn represent the time needed to quicksort a sequence of length n. This involves 
the following time expenditures:

1 to select a pivot location
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The probability that there are exactly k items smaller than random pivot is

P ( <  P ) n

This leads to the following recurrence.

Q  o =  0
n — 1  ̂ ^

n — 1

n — 1

An obstacle to solving the recurrence is the unlimited number of terms in the sum. 
Often, such a recursion can be transformed into a recursion of fixed degree, by 
setting up a subtraction of sums.

n —1
^Q n  — Tl ~\~ Tl +  2 ^   ̂ Qk (2.7.3)

n — 2

(2.7.4)

Productively, subtracting (2.7.4) from (2.7.3) yields 

and, thus,

which may be rewritten in the form

Qn _ Qn — 1 ^  2
n +  1 n n +  1

Qn _  p
n +  1 n

there is the following transformed recurrence

2
Pn =  Pn - 1 H----------r for n >  1

n +  1

whose solution is
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n +  1/ 0 10 10 X -

Pn = E i r r r  = = 2E t  = ̂ i + 1  ̂  ̂

which is then reverse transformed.

1
-  2(n +  l)

n + 1 ,

*n +  l - i )

— 2 n

Confirming Small Cases
Direct application of the recurrence

Qo =  0 ;
n — 1

Q n  — 1 +  ft +  /  Q kT) f J

yields the small values

Q   ̂ [Q ]

2
Q 2 — 1 +  2 +  — [Qo +  Q 1 ] =  3 + 1 * 2  =  5

Zj
2 2 26

Q 3  =  1 +  3 +  — [Qo +  Q 1 +  Q 2 ] =  4 +  — • [2 +  5] =  —  

Application of the closed formula

yields the small values

Q 1 — 2 • (1 +

EXERCISES for Section 2.7

In Exercises 2.7.1 through 2.7.7, transform the given recurrence into a linear recur­
rence with constant coefficients, and solve.

„ 7 1 s o o 3(n — l ) x n- i  (  4\2.7.1 xq =  2, x i =  3; x n =  —-------- ------------ 2 --------- *n - 2  for n >  2.

  



2.7.2

2.7.3

2.7.4

2.7.5

2.7.6

2.7.7
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x 0

2(n -  2)xn_i  
n — 1 

2(n -  3)xn_i  
n — 2

4n*„_ i

+  1 for n >  1. 

+  n for n >  1.

n — 1 
2(n -  l ) 2* n_i

— 1 for n >  1.

+  2n for n >  1.

=  3 lg(n — 1) * n_i  +  1 for n >  1.

PREVIEW OF §5.4: Some recurrences with non-constant coefficients are solved with 
exponential generating functions, instead of ordinary generating functions.
2.7.8 Solve the derangement recurrence by using an exponential generating func­
tion.

2.8 DIVIDE-AND-CONQUER RELATIONS

A divide-and-conquer strategy for solving a problem is to partition it into sub­
problems, such that the total effort needed to do all the subproblems is significantly 
less than a direct approach to the original problem, even if includes in total effort 
the costs of partitioning the original problem and of recombining the solutions to 
the smaller problem into a solution to the original problem.

DEFINITION: A recurrence of the form

% n  —  n / d

is said to be a divide-and-conquer recurrence.

R em ark : Such a recurrence represents the circumstance in which each of c sub­
problems is smaller than the original by a factor of d and in which a(n) is the cost 
of partitioning and recombining.

Divide-and-conquer strategy is frequently used in the development of fast al­
gorithms. The running time for such algorithms is often described by a divide-and- 
conquer recurrence. A good approach to solving a divide-and-conquer recursion is 
to make a substitution that transforms it into a recursion of fixed degree. This ap­
proach is applied to recursions arising from two computer science algorithms, binary 
search and mergesort, and to a recursion used to solve a problem of great antiquity.
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Binary Search
Searching an ordered domain to find the location of a record whose key matches 

a given number, called the target (o f the search), is one of the many tasks at which 
a divide-and-conquer strategy yields a major reduction of work effort. A sequential 
search, in which one scans a list of records from one end to the other, is a naive 
approach. Consider the benefit of comparing the target key value to the middle key 
in the list.

The middle record of the search file is construed to divide the search file into 
the first half, which contains every record whose key precedes the key of the middle 
record, and the second half, which contains all the other records. The signature 
step of a binary search is that the target value is compared to the key of the middle 
record. If it precedes the middle record, then the target record cannot be in the 
second half of the file, so it is inactive for the remainder of the search. Otherwise, the 
first half goes inactive. This step is then applied to the active half. This continues, 
recursively, until there is only one active record remaining.

Example 2.8.1:
following list of le:

Suppose we are searc for the target value y =  74 in the

X  =  (5  18 31 34 35 39 42 47 51 53 60 74 75 80 81 96)

Initially, the entire list is active, with a lower limit location of lo =  1 and an upper 
limit location of hi =  16.
In the first stage, the middle location is determined to be

lo +  hi 1 +  16

The target value y =  74 is compared with the middle value xg =  51. Since

and since the list is sorted, it follows that the target value y =  74, if present in the 
list, must be in the second half of the list, which becomes the only active sector. 
Resetting the lower limit to lo =  9 achieves the choice of active sector.

In the second stage, the middle location of the active sector xg, . . ., xie  is location

lo +  hi 9 +  16

The target value y =  74 is compared with the middle value xis  =  75. Since

it follows that the target value y =  74, if present in the list, must be in the first 
half of the active sector, which becomes the new active sector. Resetting the upper 
limit to hi =  12 accomplishes this.
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In the third stage, the middle location of the active sector xg, . . ., X1 2  is location

lo +  hi 9 +  12'

The target value y =  74 is compared with the value x\\ =  60. Since

it follows that the target value y =  74, if present in the list, must be in the second 
half of the active sector, which becomes the current active sector. Therefore, the 
lower limit is reset to lo =  11.
In the fourth stage, the middle location of the active sector x\\, xyi is location

lo +  hi 11 + 12

The target value y =  74 is compared with the value * 1 2  =  74. Since

it follows that the target value y =  74, if present in the list, must be in the second 
half of the active sector, which becomes the final active sector, as the lower limit is 
reset to lo =  12.
The final active sector has only one item. If it were not the target item, that would 
imply that the target item is not in the original list. If it is the target item, as in 
this example, then its location is returned as the output of the search.

The following algorithm gives the general rules for a binary search.

Algorithm 2.8.1: R ecu rsive  B in ary  Search ( R B S )

Input: a non-decr seq X  =  (Xj); range limits lo, hi;
a target value y 

Output: if y ^ {x i0, . . ., x^i} then * ( “not found” ); 
else m in {j  £ {lo, . . ., h i} \ y =  X j }

call R B S (X , lo, hi, y)
j  lo if y =  x io 

output :=  |

Recursive Subroutine R B S (X ,lo ,h i,y )  
i f  lo =  hi th en  retu rn  
else mid =  [ (hi +  lo)/2 ]
i f  y <  x mid th en  hi :=  mid — 1 else lo =  mid 
call R B S (X , lo, hi, y)
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Analysis of the Time Needed for a Binary Search
Let bn be the number of comparisons needed to perform a binary search on 

an array of size n. Since at each stage, the limits of the active search space within 
the original sequence are reset to about half their previous range, the value of bn is 
represented by the following divide-and-conquer binary-search recurrence:

bn =  bnj 2 +  2

The substitutions n =  2k and b2k =  ck transform this to the recurrence

The solution to the transformed recurrence is evidently

ck =  2 k +  2

from which it follows (by the inverse substitutions k =  lgn and cign =  bn) that the 
solution to the binary-search recurrence is

bn =  2  lg n +  2

COMPUTATIONAL NOTE: Partitioning a search space and searching the parts one 
at a time would not yield a net reduction of searching effort if the time to search 
each part were proportional to its size. Such a circumstance would be dividing- 
without-conquering, since there would be an added cost of subdividing the space. 
Nor would it be of much help if the subdivision permitted elimination only of tiny 
fragments of the given search space. However, in a binary search, half the given 
space is eliminated at each iteration, which quickly reduces the active space to one 
record.

Merging
Mergesort is based on repeated merging. A merge is conceptualized as having 

two input lists L\ and L2, both in non-decreasing order, and an output list L. It 
is necessary to have access to the head ends of the input lists and to the tail end 
of the output list. In the main step of a merge, either the lead entry of input list 
L\ or the lead entry of input list L2, whichever is lesser (either, if they are equal) 
is transferred to the tail of the output list L. The main step is iterated until one of 
the two input lists is empty, after which all remaining entries in the other input list 
are transferred to the tail o f the output list.

Algorithm 2.8.2 prescribes a process for merging two sorted lists.

  



152 Chapter 2 Solving Recurrences

Algorithm 2.8.2: M erge

Input: non-decreasing lists L\ and L 2

Output: a merged non-decr list L, initially empty
w hile  both input lists are non-empty

move min(head(_Li), head(_L2 )) from its own list 
to the tail o f the output list 

i f  that transfer makes one list empty th en  transfer 
all the remaining elements of the other list to 
the end of the output list

E xam ple  2 .8.2: Suppose that the input lists and output list are initially

L x : 2 14 30 37 55 
L 2 : 3 36 43 65

After two transfers, the lists are

L x : 14 30 37 55 
L 2 : 36 43 65 
L : 2 3

After two more transfers, the lists are

L x : 37 55 
L 2 : 36 43 65 
L : 2 3 14 30

The final lists are

L 2 '■
L :  2 3 14 30 36 37 43 55 65 

The time needed to merge the lists L\ and L 2 is at worst proportional to the

Iterative Mergesort
A mergesort is a sort by iterative merging. Suppose that a file of length 2n 

to be sorted is initially regarded as a list of 2n subfiles of length 1. These subfiles

is merged into a sorted subfile of length 2, leading to a list of 2n_1 sorted subfiles, 
each of length 2. Next, these subfiles are paired, and then the two subfiles within 
each pair are merged into a sorted subfile of length 4. This continues iteratively
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until a single sorted file of 
for the case in which the lei

th 2n is obtained. This method is readily modified 
of the given initial file is not a power of 2.

E xam ple  2 .8.3: Suppose that the list to be sorted is

X  =  [82 48 03 17 11 94 41 37] 
which has length 8. From an iterative perspective, this list is initially viewed as a

X ! =  [ (82)  (48)  (03)  ( 17) ( 11) (94)  (41)  ( 37) ]

X i  =  [ ( ( 8 2 )  ( 4 8 ) )  ( ( 0 3 )  ( 1 7 ) )  ( ( 1 1 )  ( 9 4 ) )  ( ( 4 1 )  ( 3 7 ) ) ]  
Merging the two sublists of length 1 within each pair yields this file with 4 sorted

X 2 =  [ (48 82) (03 17) (11 94) (37 41) ]
The sorted subfiles are paired, as follows.

X {  =  [ ( ( 48  82) (03 17) )  ( (  11 94) (37 41 ) ) ]
Merging the two sublists of length 2 within each pair yields this file with 2 sorted

X 3 =  [ (03 17 48 82) ( 11 37 41 94)]

X i  =  [ ( ( 03  17 48 82) (11 37 41 94) ) ]
Then the two subfiles of length 4 are merged, thus ultimately yielding a fully sorted

X  =  [03 11 17 37 41 48 82 94]

Recursive Mergesort
In a recursive mergesort, the order in which various pairs are merged would 

be slightly different from an iterative mergesort. For instance, the first two sorted

results would be identical. Algorithm 2.8.3 represents a recursive mergesort.

Algorithm 2.8.3: R ecu rsive  M ergesort

Output: that same sequence in non-decreasir
Recursive Subroutine M erS o(X )  
i f  n >  1 th en

X c2 .— (^m + 1 7 %2i • • • 7 ^n)

order
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Analysis of the Time Needed for a Mergesort
Let sn be the number of comparisons needed to perform a mergesort on an 

array of size n. The value of sn is represented by the following divide-and-conquer 
recurrence:

The substitutions n =  2k and -s2k =  tk transform this into the recurrence

Sn — 2 sn / 2  +  n

tk — 2 tk- i  +  2 k

which we can solve with the method of generating functions.
OO OO OO

J 2 *ktk =  2 z J 2 ^k~ 1 ik - i  +  J 2 zk2k

2 z
1 -  2 z

(1 -  2z ) 2

Thus, after the inverse substitutions k =  lg n and t\gn =  sn , the solution to the 
mergesort recurrence is

sn =  n lg n +  n

What enables the divide-and-conquer strategy of a mergesort to succeed at 
reducing the work effort, relative to naive forms of sorting, is that merging two 
sorted lists of equal length together takes less work than a naive sort of the union 
of the two lists. Naive sorts (e.g., insertion sorts and selection sorts) of n items

The Josephus Recurrence
During the Roman occupation of the Judean state, the Romans had trapped 

41 Jewish rebels at a fortress called Jotapata. Rather than face likely slavery in 
Rome or public execution, these patriots made a suicide pact. Proceeding around 
a circle, every third man was to be killed, until there was only one remaining 
man, who would then kill himself. Joseph ben Mattiyahu ha-Cohen (who adopted 
the name Flavius Josephus after going over to the Romans), a survivor of several 
previous losses to the Romans, calculated what would be the last two positions 
on the circle whose occupants would remain alive, so that he and a friend could 
survive. This terrifying tale suggests some interesting mathematics. Walter Rouse

(see [BaCol987]) to mathematical aspects of this ancient problem.
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DEFINITION: The Josephus problem is to calculate a closed formula for the values 
of the sequence J„ , the position of the last man alive, for a circle of n men in which 
every kth man is killed. 

(2) 

Figure 2.8.1 T h e J o s e p h u s p r o b l e m J 4 1 . 

For the special case of 41 men, with every 2 n d man killed (a variation from 
the historical event), we can readily simulate the entire process. In each cycle of 
this simulation, the bold numbers are those of the men who are eliminated on that 
cycle. 

1 2 3 4 ••• 39 40 41 0 mod 2 
1 3 5 7 ••• 37 39 4 1 1 mod 4 
3 7 11 15 ••• 31 35 39 7 mod 8 
3 11 19 27 35 11 mod 16 
3 19 35 3 mod 32 

Thus, the man in position 19 is the survivor. 

(2) 

The survivor position J„ for the first few values of n is given in Figure 2.8.2. 
Since every man in an even-numbered position is killed on the first cycle, every one 
of the survivor positions is an odd number. 

(2) 

Figure 2.8.2 Ca lcu la t ing J„ for smal l values of n. 

After the first traversal of the elimination process around the circle, there are 
two possible cases, depending on whether the number of men at the outset is odd or 
even. If there are 2n men at the outset, then after eliminating the even-numbered on 
the first cycle, the process location immediately precedes position 1. We may regard 
this as location 2n — 1, with a still-alive occupant, since the occupant of position 
2n is gone, as shown in Figure 2.8.3. The remaining n men, all odd-numbered, are 
shown just outside the circle. 
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2n 2n-1

This is equivalent to starting with n men, whose numbers are shown just inside 
the circle. Each outer number is obtained by doubling the inner number and then 
subtracting 1. Of course, this applies to the survivor position. Thus, we have the 
recursion

If there are 2n +  l men at the outset, then after eliminating the even-numbered 
on the first cycle, the next man to be killed is at position 1. The status of the 
process immediately thereafter would be as illustrated in Figure 2.8.4. Here, each 
outer number is obtained by doubling the inner number and adding 1, which yields 
the recursion

Applying this divide-and-conquer recursion to n =  41 yields a quick solution for 
that case:

for n >  1

for n >  1

for n >  1

for n >  1

2n+1 2n+1

Figure 2.8.4 After one cycle, for an odd configuration
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19

R em ark : When the Romans ultimately stormed into the fortress, all the Jews 
except for Josephus and his friend were dead. Upon hearing from Josephus how he 
and his friend had survived the suicide pact, the Romans recognized that Josephus 
was indeed a clever man, who could be quite valuable to them. Josephus lived out 
his life writing versions of history that flattered the Romans.

• (2 )To solve the more general problem of calculating -J„ , we extend the sample 
o f small cases:

From this increased number of small cases, a pattern emerges, as indicated by the 
following proposition.

P ro p o s it io n  2 .8.1. I f  n =  2m +  k, with 0 <  k <  2m, then

n 8 9 10 11 12 13 14 15 16 17 18
j P  1 3 5 7 9 11 13 15 1 3 5

P ro o f:

b a s i s :

IND HYP:

IND STEP: . Thus,

recursion

2 k +  1

2 k +  1
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In Exercises 2.8.1 through 2.8.4, consider a binary search o f the given list X  for the 
given target value y. Indicate the lower and upper limits o f the sequence o f active 
sectors.

2.8.1s X  =  ( 1 3 18 27 43 56 74) and y =  49.
2.8.2 X  =  ( 12 19 43 65 78 83 91 99) and y =  65.
2.8.3 X  =  (2  8 21 21 47 49 66 70 83) and y =  21.
2.8.4 X  =  ( 16 21 32 34 36 55 67 71 79 92) and y =  82.

In Exercises 2.8.5 through 2.8.8, consider a mergesort o f the given list X  for the 
given target value y. Show the sequence o f lists o f sorted sublists.

2.8.5s X  =  [92 56 83 97 72 78

2.8.6 X  =  [86 65 59 41 91 28
2.8.7 X  =  [22 21 85 37 29 91

2.8.8 X  =  [83 45 36 81 53 47

2.8.9s The number of bit-operations of the usual algorithm for multiplication 
o f two n-bit integers is asymptotically approximate to n 2 . The number of oper­
ations for divide-and-conquer multiplication (e.g., see [AhHoU11974]) is bounded 
from above by the sequence (tn), where n =  2 k , and

tn =  3tn/2 +  cn for n > 2

Solve for tn .

2.8.10 The number of number multiplications of the usual algorithm for multi­
plication of two n x n matrices is n3. The number of multiplications for Strassen’s 
divide-and-conquer matrix multiplication (e.g., see [AhHoU11974]) is bounded from 
above by the sequence ( «„ ) ,  where n =  2 k, and

un =  7un/ 2 +  cn 2 for n > 2

Solve for un.

In Exercises 2.8.11 through 2.8.14, suppose that a non-decreasing sequence (un) 
satisfies the recursion

un — aunjb -\- c

with a >  1, with b a positive integer, and with c >  0. Prove the given assertion.

2.8.11 If n =  bk for some positive integer k, and if a >  1, then the solution has 
the form ^

1 ^  a — 1  a — 1

EXERCISES for Section 2.8

  



2.8.12 If n =  bk for some positive integer k, and if a 
the form

2.8.13 If b divides n and a >  1, then un £ 0 (n lo g b a)

2.8.14 If b divides n and a =  1, then un £ 0 ( log6 n).

2.8.15s Finding himself in position 1 among n men, Josephus gets to select the 
elimination parameter. Give a function of n that indiates his survival.

2.8.16 Write the terms of the Josephus sequence J„ for n =  1, . . ., 10.

2.8.17 Consider a recurrence of the form

_ p q
x n ~  x  n — l Xn — 2

How would you reduce it to a linear recurrence?

Glossary

=  1, then the solution has

159

GLOSSARY
binary search: a method of searching a sorted list by repeated halving. 

Binet formula for the Fibonacci number f n :

1 +

Cassini’s Identity for the Fibonacci numbers f n :

fn + l fn - l  =  fn +  ( - 1)" for n >  1
Catalan recurrence: the quadratic recurrence

Cn =  C[)Cn_i  +  CiCn_2 +  ' ' ' +  Cn_iC[)

characteristic polynomial: a polynomial that arises in one method for solving 
linear recurrences.

characteristic roots: the roots of the characteristic polynomial.

: a fixed-point-free permutation.

number D n: the number of fixed-point-free permutations of a 
set of n objects.

divide-and-conquer recurrence: a recurrence that expresses the element x n 
of a sequence in terms of some element •

divide-and-conquer strategy: the strategy of reducing a problem to a set of 
much smaller similar problems.
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of the sides of each square is a Fibonacci number.

Fibonacci recurrence:

Fibonacci representation of an integer: representing that integer as the sum 
of an ascending sequence of Fibonacci numbers, no two of which are consecutive.

forward-shift identity for the Fibonacci numbers:

fn+k =  fkfn + 1 +  fk — 1 fn for all k >  1

Fundamental Theorem of Algebra: the theorem that a polynomial of degree 
d has d roots over the complex numbers.

the number
2

initial conditions for a recurrence: values for one or more initial elements of 
the specified sequence.

Josephus problem: a combinatorial problem, popularized by W . Rouse Ball, 
involving determination of the survivor of a sequential elimination process.

linear recursion: a recursion of the form

X n  —  & n  —  l % n  —  1  “1“ & n  —  2 % n  —  2  “ 1“  '  '  '  “ 1“  ^ 0 ^ 0  “1“
Lucas sequence: the sequence specified by the recurrence

mergesort: a sorting method based on repeated merging, 
permutation: a bijection from a set to itself.
quicksort: a recursive method for sorting, with fast average time, 
recurrence: a specification of a sequence in this form.

g0 =  bo, ■ ■ ■, gk =  bk', initial conditions
gn =  -y (gn_ i , . . . ,  g0) for n >  k recursion

  



Chapter

Evaluating Sums

3.1 Normalizing Summations
3.2 Perturbation
3.3 Summing with Generating Functions
3.4 Finite Calculus
3.5 Iteration and Partitioning of Sums
3.6 Inclusion-Exclusion

The concern of this chapter is a collection of methods for the evaluation of a 
finite sum whose summands are given as a sequence, either in a functional form 
f (k) ,  or in a subscripted form xj,. Analogous to the sense in which a real function 
may have for its integral over an interval an anti-derivative function evaluated at 
the bounds of the interval, the value of such a sum may be given by some other 
function of the lower and upper limits of the index k. For instance, the sum of the 
integers from 0 to n is given by the formula

n 2 +  n
2

which is called a solution for that sum. Many summation problems of this general 
form can be solved by more than one method, and there is no all-encompassing way 
that applies to all problems, much less a best way for all problems. This chapter 
presents several different methods for evaluating such a sum.

There are contexts in which it is helpful to use the word summation to mean a 
formal expression

and sum to mean the value of the expression; we do not adhere to this rigidly, and 
we often use sum to mean either the expression or its value.

161
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3.1 NORMALIZING SUMMATIONS

There are compelling reasons for preconditioning a given summation problem 
into the summation of a finite string of consecutive entries of a sequence ( xn), most 
especially, an initial string starting at xo■

REVIEW FROM §1.4:

• Let ( x„ )  be a sequence. Then the value of the expression

n

)  ] x j  =  X q  +  X i  +  • • • +  x n (3.1.1)

(and sometimes the expression) is called the nth partial sum.

NOTATION: We sometimes use Sn to denote the nth partial sum.

Such preconditioning allows us to view evaluation of the sum (3.1.1) as solving a 
recurrence with initial value xo and recursion formula S„ =  S „ - i  +  x „ , as declared 
in the following formal definition, which also gives names to various artifacts of a 
slightly more general form of such an expression. It also gives a precise prescription 
o f the value of the sum.

DEFINITION: Let a and b be integers or integer-valued variables, and let ( xn) be a 
sequence with its values in an algebraic structure such as the integers, the reals, or 
the complex numbers, with an associative and commutative addition. An expression 
o f the form

b

J 2 xk

is called a consecutive summation. Its value, the sum, is defined recursively.

v—\b— 1
Z^k=aXk

if b <  a 
if b =  a

Xb if b >  a

The parameters of the expression have the following names:

• k is called the index variable;

• a is called the lower limit of the index;

• b is called the upper limit of the index;
• Xk is called the summand.

If the lower limit a and the upper limit b are both given as fixed integers, then the 
sum has a definite value within the domain of its summands. For instance, if the 
summands are integers, then the sum is an integer.
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E x a m p l e 3 . 1 . 1 : (3.1.2) 

Quite commonly, a summation has a lower index limit fixed at 0 and a symbolic 
upper limit of n, in which case summation may be regarded as an operator on a 
sequence 

whose application produces a sequence of partial sums 

akin to the way that integration operates on a function to produce a new function. 
This chapter develops methods for evaluating the summation, which, in this 
context, often means producing a closed formula for the elements of the sequence of 
partial sums. From a computat ional standpoint, viewing the preconditioning from 
evaluation permits us to state the methods of evaluation in concise, easy-to-apply 
form. 

E x a m p l e 3 . 1 . 1 , c o n t i n u e d : With the variable n as the upper limit, the value of 
the sum of the form (3.1.2) is 

This formula could be confirmed immediately by mathematical induction, or by any 
of several methods of summation to be introduced in subsequent sections of this 
chapter. 

R e m a r k : Sometimes a summation index has a variable lower limit or variables 
for both the lower and upper limits. The theory of such seemingly more general 
operators is readily reducible to sums and differences of partial sums. 

Sums over Sets 
In a more general expression of a summation, the indexing set of a given sum­

mation may be any finite set T. Given any function / with values in 7L, Q, M, or C, 
the sum 

is well-defined. In a sum over an unordered indexing set, the order in which the 
index variable t takes its values is not specified or implied, and the value would be 
the same for any order of summation. 

E x a m p l e 3 .1 .2: The sum of the weights of the edges in the graph G of Figure 
3.1.1 is represented by the expression 
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w(e)
e £ Eg

whose value is

6 +  7 +  3 +  2 +  3 +  6 +  5 +  5 +  6 +  4 + 1 0  +  5 =  62

Figure 3.1.1 A n graph.

In principle, the edges o f the graph G could be indexed by integers 0, 1, . . 11, 
which would permit the sum of their weights to be represented by a consecutive 
summation. There seems to be little gained from doing so in this example. Our focus 
here is to do something more efficient, when possible, than successively incrementing 
a running total by additional summands. Such tedium is unavoidable when the 
summands have no discernable pattern, especially if the summands are random 
numbers. However, in many other cases, when the index set is a subset of the 
integers, a transformation may simplify the evaluation.

DEFINITION: Transformation into a consecutive summation, whose index variable 
ranges over consecutive integers, is called n orm a liz in g  a su m m ation .

Example 3.1.3: The sum

can be normalized to

E  *l<k< 2 0  
k  o d d

which is readily transformed further into
9  9  9

^ 2  (2 k +  1) =  ^ 2  2 k +  ^ 2  1

9

=  2 ^ 2  k +

10^
=  2 ' ^  +  10 
=  10^ +  10 
=  100

Corollary 1.5.2)
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Many of the methods to be introduced in this chapter are designed to work on 
normalized summations. Other sums one might encounter are transformed into 
consecutive sums to permit the application of such methods.

Iverson Truth Function
When the index variable of a summation has irregular gaps in its range, it may 

still be possible to normalize, by inserting into the summand an artificial multiplier 
that effectively cancels the summand across the gaps.

Example 3.1.4: For instance, the index variable p o f the sum 

has gaps between consecutive primes.

DEFINITION: The Iverson  tru th  fu n ctio n  is defined by the rule

, v , \ f 1 if the predicate is true 
(predicate) =  | Q if the predicate is false

Example 3.1.4, continued: Using the Iverson truth function facilitates the re­
formulation of (3.1.3) as a consecutive summation.

n

CONVENTION: The value of the product

is 0 whenever the value of the Iverson expression (P (k )) is 0, even when a& is 
undefined.

Example 3.1.5: The value of the sum

^~o 1 '

is well-defined, since the “strong zero” of the Iverson expression (p prime) cancels 
the effect of the undefined quotient  ̂ when p =  0.

Algebraic Regrouping
Part of the art of simplifying and evaluating sums is to manipulate them so that 

recognizable forms emerge. The familiar algebraic properties of the number system 
include several principles for regrouping. These principles are applied independently 
and also in conjunction with the other summation methods of this chapter.
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Proposition 3.1.1 [Distributive Law]. A common factor can be distributed over 
all the summands.

] T c a k =  c y ^ ak
k e K  k e K

Proposition 3.1.2 [Addition Law]. Two sums over the same index set can be 
combined into a single sum by adding each pair o f  summands with the same index.

k e K  k e K  k e K

Proposition 3.1.3 [Permutation Law]. The value o f  a sum is unchanged by 
permuting the order o f  the summands.

^ ' ®k — ' 7̂r(&)
k e K  k e K

As a first illustration, we apply these algebraic regroupings to an arithmetic 
progression. From our present perspective, that means a sequence (an) given by a 
recurrence of the form

an =  an_ i +  b for n >  0 
For instance, the consecutive odd numbers 3, 5, 7, 9, .. . are an arithmetic progres­
sion, with initial value c =  3 and increment b =  2.

Example 3.1.6: Simplifying the sum of a finite arithmetic progression
n

can begin with application of the Permutation Law.
n

Adding equations (3.1.4) and (3.1.5) leads into the following analysis.

x >
n

£  Ik

n

S (2c
(2c +  I 

(2c +  I

J2 (c + b (n -

+  (c +  b(n -

S 1
(n +  1)

c +  —  ) • (n +  1)

(3.1.4)

(3.1.5)

(3.1.6)
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For instance,

Example 3.1.7: This is a special case of formula (3.1.6).

P  = (° + i T !)-(»  + 1) 

“ ° = © < »  + '>
n +  1

2

0 + 1  +  2 +  3 +  4 +  5 =  15 =

Harmonic Numbers
REVIEW FROM §1.2:

The sequence of h arm on ic n u m b ers

" 1 
k' h

-  1 +  1 +  

The harmonic numbers are the discrete an

Hn

is defined by the rule

1
n

for n >  0

ue of the natural logarithm
,n x

In (n) Ĵ  ^ dx

Figure 3.1.2 illustrates that the harmonic number and the natural logarithm are 
reasonably good approximations of each other. Familiarity with upper and lower 
Riemann sums may add some interest here, but such familiarity is not necessary 
for understanding of the correctness of the approximation.

x=1 x=2 x=3 x=4 x=5

Figure 3.1.2 Upper and lower Riemann approximations of

Since the area under the curve 1/x over the interval [1, 5] is ln(5), one observes that 
In 5 is less than the sum of the areas of the upper rectangles, i.e.,

upper sum

and that In 5 is greater than the sum of the areas of the lower rectangles, i.e.,
1

1 1  ,  r-  +  -  <  In 5 4 5
lower sum
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Proof: Summing the areas of the upper rectangles (i.e., taking upper Riemann 
sums) yields

Proposition 3.1.4. For any positive integer n

1 n

( )  n _  \ n 1 ( ) 

and summing the areas of the lower rectangles (i.e., taking lower Riemann sums) 
yields

Hn — 1 =  — +  • • • H---------- <  Inn (3.1.9)
2 n — 1

Together, (3.1.7) and (3.1.9) imply part (a). Similarly, (3.1.9) and (3.1.8) imply

GKP Notations
The exercises for this section use two elementary number-theoretic concepts not 

previously defined here and some innovative notation, introduced by [GKP1994]. 
Use of these notations also appears later in this book.

DEFINITION: Let n and d be integers. If there is an integer q such that n =  dq, then 
we say that d divides n. Notation: d \ n .

Remark: The usual notation for the divides relation is d\n.  [GKP1994] observes 
that vertical lines are already overused in mathematics, notably for absolute values, 
conditional probabilities, and set delimiters. Moreover, for many people, using 
backslash has mnemonic value, since it brings to mind the divides operator slash.

DEFINITION: Let m and n be integers whose greatest common divisor is 1. Then we 
say that m and n are relatively prime. Notation r a i n .

Remark: There is no standard notation for relative primality. The perpendicularity 
notation m _L n appropriately suggests orthogonality. If two vectors are orthogonal, 
then the dot-product of their coordinate tuples is zero. Suppose that an integer is 
represented by a tuple of integers whose kth coordinate is the exponent of the kth 
smallest prime, in its prime-power decomposition. Then two positive integers are 
relatively prime if and only if the dot-product of their respective representations is
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EXERCISES for Section 3.1

In each o f the Exercises 3.1.1 through 3.1.4, rewrite the given sum as a consecutive 
sum without an Iverson truth function, with 0 as lower limit. The notations are 
defined m a remark that immediately precedes these exercises.

3.1.1

3.1.3

1
V  -h

7 < f c 2 < 4 5

3.1.2 £  *
1 4 < k < 3 1

k - ■ (k mod 7 =  4) 3.1.4 k - ■ (k _L ■
- 5 < k < 2 9

3.1.5 In the equation

2 n
• (k

solve for b, c, and d. 

3.1.6 In the equation

2 n  +  l

Y ,  2k 2 ■ (k

7 < k < 5 5

CJ

£ 3 i 2 +  ^ 2 j ' 2 =  y 2 (b n 2 +  cn +  ,

solve for b, c, and d.

3.1.7s Use Proposition 3.1.4 to prove for n >  2 that

In n In n

3.1.8 Use Proposition 3.1.4 to prove for n >  2 that

1 In n
In n ^  H„ ^

3.2 PERTURBATION

Perturbation is conceptually quite a simple method, whose correctness is trans­
parent, without any theoretical development. Like the other methods of summation 
considered in this chapter, its goal is to transform a formula for the entries of a se­
quence ( xn) into a formula for the entries of its sequence (Sn) o f partial sums. The 
intended result is an expression for evaluating any sum of consecutive entries within 
the sequence ( xn).
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The initial step of a p er tu r b a tio n  is to equate two expressions for S'n+i, the n +  1st 
partial sum of the sequence ( xn).

n  +  1

Sn +  Xnjr\ =  Xo +  y  ] Xk

By transparency of correctness of the method, we mean, for a start, that the sums 
on both sides of the equal sign are clearly equal. The summation on the right is 
first transformed so that its lower and upper limits are 0 and n, respectively, and 
then manipulated algebraically in order to recast it as a multiple of Sn plus the 
sum of a few other terms. The theoretical correctness of such algebraic steps was 
justified in §3.1. Perturbation is a practical method, and additional tricks are used 
as needed. What makes it interesting is not the theory behind it, but the fact that 
it works so effectively so often.

Example 3.2.1: A very simple first example of applying perturbation is to eval­
uate the sum

Sn =  J 2 2k (3.2.!)

Of course, the solution is easily obtainable by other methods, but the details serve 
as a good illustration of the technique of perturbation.

n + 1  n + 1

n

= ! + 2E 2

=>• Sn =  2n+1 — 1 (solution) (3.2.2)

For instance, for n =  3, the value of the sum (3.2.1) is

2° +  21 +  22 +  23 =  1 +  2 +  4 +  8 =  15 

and the value of the closed formula in (3.2.2) is
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A Classical Example of Perturbation

E xam ple  3 .2.2: A classic example to show the power of the method of pertur­
bation is evaluating the sum

(3.2.3)

which is not so easily evaluated by the most elementary methods. The setup used 
here (and on Example 3.2.1) is characteristic of applications of the perturbation 
method.

n +  1 n +  1
r>n +  l  __=  o -2 °  +  =  J 2 k2k ip)

n n

Y ^ k 2 k + 1  +  ^ 2 fe+1

2 j 2 k2k + 2 J 2 2k

2Sn +  2(2n+1 — 1) (from Example 3.2.1)

(3.2.4)

For n =  3, the result of the term-by-term summation (3.2.3)

J 2 k2k =  0 • 2° +  1 • 21 +  2 • 22 +  3 • 23 

k~° =  0 +  2 +  8 +  24 =  34 

agrees with the evaluation of the formula (3.2.4) derived by perturbation.

=  2 -1 6  +  2 =  32 +  2 =  34

Indirect Perturbation
When a first attempt at perturbation misses the target, it may help to adjust 

what is to be perturbed and to try a second time, as indicated by the next example.

E xam ple  3 .2.3: We evaluate the sum

n

Sn = J 2 Hk (3-2'5)
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by perturbation, as in previous examples.

n + 1  n + 1

S n +  H n + 1  =  H q +  H k  =  0  +  H k

i
k + 1

i
5„ -

k +  1

H,n +  1

E

i

k + 1

+ 1
(3.2.6)

Formula (3.2.6) is quite correct, but it is not what was wanted, since the symbol S n 

cancelled out. When this occurs, a standard maneuver is to multiply the summand 
by the index variable k and to perturb the result.

E xam ple  3 .2.3, con tin u ed : Multiplying the summand Hk by the index variable 
in this example yields the summation

S n  =  k H k (3.2.7)

which we now perturb, as follows.

S n +  ( n  +

n +  1

0Ho +  kHk

n +  1

0 +  'y ] kHk

53 ^)Hk+i

n , 1
Y ^ {k + \ )\ H ,

n

k +  1, 

k +  1

'y ] kHk +  ^ ] Hk +  ^ ] 1
& = 0 A

n

^ ] Hk +  n +  1
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(3.2.8)

This time, the result is a formula (3.2.8) for the sum of consecutive harmonic num­
bers, the formula we actually want. For n =  3, directly adding the harmonic 
numbers, which are the summands of the sum (3.2.5)

Y , H k =  0-
1 1 1 
1 +  2 +  3

25 13

and applying the summation formula (3.2.8)

4i?4 — 4 _  4 - y ^ - 4  -  y  ~  4 -  y

yield the same result, thereby illustrating correctness of the formula.

As a second example of indirect perturbation, consider the problem of deriving 
a formula for summing k2.

E xam ple  3 .2.4: To evaluate the sum

n

Sn = (3.2.9)

we start as usual.

Sn +  {n +  l ) 2 — 0
n +  1 n +  1

£ *  =

? ? 2 = ? ? 2
n n

^ ( f c + l ) 2 =  (k2 +  2fc +  1)

n n n

1

n n n

^2 k'2 + 2^2 k + X ! 1

n

Sri +  2 ^  ' k +  (n +  1)

(n +  l )2 — (11 +  1) n 2 +  n
(3.2.1

Thus, as in Example 3.2.3, direct perturbation has yielded a correct equation that 
is not the desired result. Seeking to remedy this situation, we once again multiply 
the summand by the index variable and re-perturb.
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E xam ple  3 .2.4, con tin u ed : Since perturbing the sum of consecutive values of 
k 2 just above has yielded an evaluation for the sum of consecutive values of k, it 
may be less than fully surprising that perturbing the sum of values of k3 yields a 
formula for the sum of values of k2. This time, set

Sn = J 2 kS

Then
n +  1 n +  1

Sn +  (n +  l ) 3 =  03 +  J 2  kS =  E  kS

n

= S {k+ 1)3
n

=  ^ { k 3  +  3k2 +  3 k + l )

n n n n

=  X > 3 +  3 ][> 2 +  3 X >  +  E 1

n n n

= sn + 3 'y ] k2 + 3 'y ] k + y ] 1

3 Y , k 2 = (« + !)3 -  * J 2 k -  E 1

1)

E fc2 =
2 n3  +  3 n 2 +  n 

6

For n =  3, we confirm the agreement of the value of the sum (3.2.9)
3

J ^ k 2 =  02 +  l 2 +  22 +  32 

with the value of formula (3.2.12)

2 n3  +  3 n 2 +  n 
6

2 • 33 +  3 • 32 +  3 _  84 _  
6 “  " 6"  “

(3.2.1

3 3n2 +  3n f
2 ^

3 3n2 +  5n +  2 2 n3  +  3 n 2 +  n

(3.2.1

R em ark : As with direct perturbation, the correctness of the method of indirect 
perturbation is clear. Although one could plausibly memorize a list of circumstances 
in which the indirect form is the more helpful form, we adopt here the practical 
approach of trying direct perturbation first, and then indirect perturbation if it 
seems to be needed.
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EXERCISES for Section 3.2

In each o f the Exercises 3.2.1 through 3.2.14, evaluate the given sum by perturbation.
n n

3.2.23.2.1s J 2 3k

n
3.2.3

3.2.5 fc23

n

3.2.7

3.2.9

n

3.2.11 ^ f c 23

3.2.13

3.2.4 J 2 Mk

n

3.2.6

3.2.8 X ! 4” '

n

3.2.10

3.2.12 J 2 k2i

n

3.2.14 ^ 3 ^

In each o f the Exercises 3.2.15 through 3.2.18, evaluate the given sum by indirect

3.2.15s J 2 kS

n

3.2.17 J 2 kHk

3.2.16 J 2 k 4

n

3.2.18 J 2 k2}Ik

3.3 SUMMING WITH GENERATING FUNCTIONS

In this section, it will be seen that most of the sums evaluated in §3.2 could 
easily be evaluated, alternatively, by using generating functions, as indicated by 
Theorem 1.7.2 and its corollaries, with the aid of partial fractions, as needed.

REVIEW FROM §1.7:

• Theorem 1.7.2. Let B(z)  be the ordinary generating function for a sequence 
(bn). Then the ordinary generating function for the sequence of partial sums 
of (bn) is

B(z)
1 -  z

  



• Corollary 1.7.3.

• Corollary 1.7.4.
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(1 — zY  V r — 1
v ’  n  =  0

n +  r — 1
(1 — azY  V r — 1v ; n = 0

Revisiting Examples
Example 3.2.1, revisited: We examine how to use generating functions to re- 
derive the summation formula

n
_ gn + l _ x

for the powers of 2. As first mentioned in §1.7, the ordinary generating function for 
the sequence (&& =  2*) is

1
1 -  2z

By Theorem 1.7.2, the generating function for the sequence

= X >  = £ 2<

oo

n =  0,1, . . .

B(z)

1

By the method of partial fractions (described in §2.3), which here involves the 
solution of a pair of simultaneous linear equations, it follows that

1

OO  OO

= E ( -1)zn +
oo

= J 2 ^ n+1 - zn

n

=> un = J2  2fe =  2n+1 -  1

Example 3.2.2, revisited: We now rederive the summation formula

r ) n  +  l
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Corollary 1.7.4 provides the formula

(1 -  az)r

into which the substitutions a =  2 and r =  2 yield 

1
(1 -  2z ) 2  

from which it follows that 

2 z

= = D " +1>2

(1 -  2z)2
=  ^ ( n + l ) 2 n+V +1 =  ^ n 2 "

Thus, the ordinary generating function for the sequence (b„ =  n2n) is

2 z
(1 -  2z)2

By Theorem 1.7.2, the generating function for its sequence

=  E * 2* Tl =  0, 1, . . .

o f partial sums is

= £■ B(z)

2  z

By the method of partial fractions, which this time requires the solution of three 
simultaneous linear equations, we have

2z 8z

Thus, by Corollaries 1.7.3 and 1.7.4, it follows that

=  J 2 k2k =  2 +  4n • 2n — (n - ) n  +  l

For this example, the previous evaluation by perturbation may seem less effort than 
the method of generating functions, because of the linear equations and the care 
needed to apply Corollary 1.7.4 accurately.

  



178 Chapter 3 Evaluating Sums

E xam ple  3 .2.4, rev is ited : To rederive the summation formula

2 n3 +  3 n 2 +  n
6

the method of generating functions is easier than perturbation, since it avoids the 
false start encountered in perturbation, which is unlikely to be discovered until the 
late stages. To derive the ordinary generating function for the sequence (bf~ =  k2) 
we start with Corollary 1.7.3.

1
(1 - z Y

For r =  3, this yields
1

r — 1

(1 -  z )3 ^  V 2

Therefore,

( 1 - z ) 3 ^ „ V 2

and

(1 -  z )3 ^  V 2
n +  n

from which it follows that

( !  -  z )a =  J 2 n '2 zn =  B(z)

By Theorem 1.7.2, the generating function for the sequence

Vn =  J ^ k 2 n =  0,1, . . .

Corollary 1.7.3 with r =  4 is 

1
=  ] r r +3V

( 1 - z ) 4 3
v ’  n  =  0

Thus,
n +  3 yn +  2 n +  3s

J2 z ( n +  2 ^z"

vn +1
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Therefore,

(n +  1 )- (n +  2 )-
Vn q g

n3  — n n3  +  3 n 2 +  2 n 
~  6 +  6

2 n3  +  3 n 2 +  n 
~  6

E X E R C IS E S  fo r  S ection  3.3

In each o f the Exercises 3.3.1 through 3.3.20,
a. write a generating function for the sequence o f summands;
b. write a generating function for the sequence o f partial sums;
c. split the result o f part (b) by partial fractions;
d. use part (c) to evaluate the given sum. Where appropriate, perhaps compare 

this result for part (d) with your solution to a corresponding exercise from §3.2.

3.3.1s

n

3.3.3 J 2 k3k

3.3.5 fc23

n

3.3.7s

3.3.9

n

3.3.11 ^ f c 23

3.3.13s

n

3.3.15 J 2 k 3

3.3.17s

3.3.19

k +  1

k +  2

3.3.2 J 2 4k

n

3.3.4 J 2 Mk

3.3.6

n

3.3.8

3.3.10

n

3.3.12 J ^ k 2 4

3.3.14 ^ 3 ^

n

3.3.16 J ^ k 4

3.3.18 J 2 k~3k

n
3.3.20 ^  k -3 k
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3.4 FINITE CALCULUS

In the Fundamental Theorem of Finite Calculus (Theorem 1.4.3), Part (a) 
asserts how sums can be evaluated as anti-differences, analogous to way the fun­
damental theorem of infinitessimal calculus asserts that integrals can be evaluated 
as anti-derivatives. This is yet another powerful method for evaluating sums. This 
section develops a few of the most important formulas of the finite calculus.

REVIEW FROM §1.4:

• Given a function /  : M —> M, the d ifferen ce  fu n ctio n  A /  is given by the rule

(x ) =  f ( x  +  l) -  f ( x )  (3.4.1)

• Given a sequence ( xn), we define the d ifferen ce  seq u en ce  (A x „ } by the rule

• Theorem 1.4.3 [Fundamental Theorem of Finite Calculus]. Let ( xr
be any standard sequence. Then

n — 1

(a) ^ 2  Xj ~  Xn ~  Xq]
<k- 1

Summing a Polynomial
We recall that the finite calculus formulas for differencing and summing a falling 

power are directly analogous to the infinitessimal calculus formula for differentiating 
and integrating an ordinary power.

REVIEW FROM §1.5:

• The nth falling p o w er  function on a real variable x, for any n £ N, is defined 
by the rule

n factors

n — 1

Corollary 1.5.2. For r E li, we have k-  =
^ r  + l

r + l
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We established in §1.6 that ordinary powers can be converted into falling powers. 

REVIEW FROM §1.6:

• T h eorem  1.6.1 Any ordinary power x n can be expressed as a linear combi-

where the coefficients Sn<r are called Stirling numbers o f the second kind.

We will now use the reviewed results to see how finite calculus makes many kinds 
o f summation quite routine.

E xam ple  3 .2.4, rev is ited  again: In this chapter, we have already derived the 
summation formula

first using indirect perturbation, and then again with generating functions. Yet 
most practitioners of combinatorial calculations would say that using summation 
calculus, as we saw in Example 1.6.3, is the easiest of the three approaches. When 
solving this sum with finite calculus, we first express k2 as a linear combination 
o f falling powers. For monomials of low degree, it is easy enough to calculate the

n

X.n

(3.4.2)

n n

n n

2

6
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Formula for Summing Exponentials
The supply of useful finite summation formulas is readily extended beyond the 

monomial formula of Corollary 1.5.2. This begins with sums and differences of 
exponentiations in which the base is constant and the exponent is variable.

Theorem 3.4.1. Let the constant value c be a real number and let x be a real or 
integer variable. Then

Proof: A cx =  cx + 1  -  cx =  (c -  1) cx . 0

Example 3.4.1: For the case c =  2, Theorem 3.4.1 gives the result

A 2 X =  (2 — 1) 2X =  2X 

which is analogous to the differential-calculus result

This is one of numerous reasons why the number 2 is regarded as the natural base 
of discrete mathematics in the same sense that the real number e is the natural base 
for continuous mathematics. More generally, the continuous-mathematics formula

^ - c x =  In c - c x 
dx

is analogous to the discrete-mathematics formula of Theorem 3.4.1.

Example 3.4.2 - 3 *  =  2 • 3^
_  ^x+i _  _  3  . 4 ^

This leads to a major formula of the finite-summation calculus, the formula for 
summing exponentials.

Corollary 3.4.2 [Exponential Formula]. Let c be any real number except 1. 
Then
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Proof: For c ^  1, applying the Fundamental Theorem of Finite Calculus to the 
conclusion of Theorem 3.4.1 implies that

n — 1

= C — 1 

Cn -  1
c — 1

Remark: For the case c — 1, which is excluded from Corollary 3.4.2, we have the

Example 3.4.3: We observe that when c =  5 and n =  4, the value of the sum on 
the left side of equation (3.4.3)

3

=  5° +  51 +  52 +  53 =  1 +  5 +  25 +  125 =  156 

agrees with the value of the quotient on the right side

54 — 1 625 -  1 =  15g
4 4

As easy as it was to derive the formula

^ 2 k =  2 n + 1  -  1

either with perturbation or with generating functions, it is even easier with the 
calculus of summation, as now shown.

Example 3.2.1, revisited again: According to Theorem 3.4.1, we have

A 2 k =  2h

Summing both sides, we obtain
n n

after which, applying the Fundamental Theorem yields the result

n +  1
^ 2 fe =  2 k
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Falling Negative Powers
The extension of the list of useful differencing and summation formulas contin­

ues. We observe that non-negative falling powers can be defined recursively.

x ^ -  =  x - (x  — r ) for r >  0

Running the recursion backward extends the utility of the falling power concept. 

DEFINITION: N o n -p o s it iv e  fa lling p o w ers  are defined as follows.

xr+1

Example 3.4.4: Here are a few evaluations of the definition of negative 
powers.

— (—1) x +  1 x +  1

„ - 2 „ - 2

Proposition 3.4.3. For any positive number r and any real number x,

1
(x +  1 ) ■ ■ ■ (x +  r)

Proof: By induction on r.

Although ordinary powers are additive in a product of ordinary monomials 
with the same base, in the sense that

xr . x s =  x r+ s

it is clear that falling powers are not additive in a product of j 
mials. For instance,

-power mono-

but

Thus, there is no reason to expect that x—  =  (x-)  1. On the other hand, an 
important analogy to infinitessimal calculus is preserved.
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Proposition 3.4.4. The difference formula for negative falling powers is the same 
formula as for positive falling powers. That is, for every positive integer r,

Proof: Start by applying the defining formula (3.4.1) for the difference operator.

1 1
(x +  2) • • • (x +  r +  1) {x -\- 1) •••(* +  r) 

Then by routine manipulation
1 1 1

(* +  2) •••(* +  r)
1

{x +  2) •••(* +  r)

{x +  1) • • • (x +  r +  1)

* +  r +  1 x +  1

we achieve the result

Corollary 3.4.5. For any integer r ^  0 and any real number x,

Proof: This combines Theorem 1.5.1 and Proposition 3.4.4.

Corollary 3.4.6 [Monomial Formula]. For any integers r —1 and n,

n — 1

r + l

Proof: This combines the Fundamental Theorem and Corollary 3.4.5.

(3.4.4)

Example 3.4.5: To make a direct evaluation of the left side of Equation (3.4.4) 
for r =  —2, —3 and n =  4, we first calculate the following partial table of the values 
of k-, i.e., o f a small integer to a small falling negative power.

r 0 ^ 1 L 2 — 3 - 4 -  • • •

i 1 i 1 i

l 2 3 4 5  '  '  '

_ 2 i 1 1 1 1

1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  '  '  '

_ 3 1 1 1 1 1
1 - 2 - 3 2 - 3 - 4 3 - 4 - 5 4 - 5 - 6 5 - 6 - 7  '  '  '

Case r =  —2 and n =  4 : The value on the left side is

1 1 1 
1^2 +  2 ~ 3 +  3^4

1 - 2 - 2 3 - 2 1
4 -5
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and the value on the right side is

( - I ) - 5 - 1

Case r =  —3 and n =  4 :  The value on the left side is

! - 3  | i - 3  | r , - 3  i 0 - 3  1 1 1

and the value on the right side is

1
1 - 2 - 3  2 - 3 - 4  3 - 4 - 5  4 - 5 - 6

7_
30

-2 -2 -2 ( -2 )  - 5 - 6  ( -2 )  - 1 - 2 30

Harmonic Numbers
In the formula for evaluating f ° r the special case with r =  1 there is

another analogy between the natural logarithm In n and the harmonic number Hn, 
which lies in the similarity of the derivative

^L\n x  =  x ~i
dx

to the difference formula

A  Hn =  Hn+1 — Hn

1

and, naturally enough, in the similarity of the summation formula

n — 1

to the integration formula

J  x _1dx =  In*

(3.4.5)
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Product Formula
Analogous to the product formula for derivatives,

(u(x) ■ v(x)Y =  u' ( x ) - v ( x )  +  u(x ) - v ' ( x )  

there is a product formula for finite differences.

P ro p o s it io n  3 .4.7  [P rod u ct Form ula]. Let h(x)  =  g(x)  ■ f ( x ) .  Then

P ro o f: Once again, it is sufficient to do some routine algebraic manipulation, 
starting from an application of the definition of the difference operator.

=  g ( x +  1 ) ■ f ( x +  1 ) -  g(x)  ■ f ( x )

=  g{x  +  1) • f ( x  +  1) -  g{x)  ■ f { x )
~  g(x)  ■ f ( x  +  1) +  g{x)  ■ f ( x  +  1)

E xam ple  3 .4.6: Take g(n)  =  n-  and f (n)  =  Hn. According to the product 
formula (3.4.6), we have

1

=  2n ■ H n + 1 +  n(n -  1)

— 2n I Hn +
n + 1

n + 1

n + 1

— 2 nHn +
n +  n 
n + 1

=  2 nHn +  n

Unsurprisingly, evaluating the defining formula (3.4.1) for a finite difference yields 
the identical result.

(n-H„)  =  (n +  l ) - H n+i -  n - H „

— (n +  n) I Hn +
n +  1

— in — n

=  2 n Hn +  n

n +  n 
n +  1

— in — n
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Summation by Parts
From the infinitessimal calculus, we recall the following formula for integration 

by parts

(x)v' (x)dx =  u(x)v(x) u [x)v[x)ax)da

The finite calculus has an analogous formula, called summation by parts.

Proposition 3.4.8 [Summation by Parts]. Let g(k) and f (k)  be functions on 
the integers. Then

(3.4.7)

Proof: This corollary to Proposition 3.4.7 follows from the Fundamental Theorem
of Finite Calculus.

Example 3.2.2, revisited again: After using the substitutions

summing the sequence (k 2 k j k =  0, 1, 2, . . .} by parts takes the form

n n

=  J 2 k~2k

which leads to the calculations

n +  1
-  J 2 k°2k+1

1) -2n+1 -  2 ^ 2 *

=  (n — 1) • 2n+1 +  2

Example 3.2.3, revisited: Since integration by parts is helpful in evaluating the 
integral of In x to a? In a? — a;, it is unsurprising that summation by parts is helpful 
in summing Hn to nHn — n.

n — 1 n — 1

Y , H k =  j 2 k°HK

=  k-H i
1 n

-  £  = k'~H l £ 1
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Table 3.4.1 Formulas for the calculus of differences

function difference function

V- ?$- 1  ̂ 1

ck ( c - l ) c k

Hn
1

n + 1

g(k) f (k) A g(x)  f ( x  +  1) +  g(x)  A  f ( x )

Table 3.4.2 Formulas for the calculus of summations.

summation formula reference
n — 1

Y l ck’ c^°
n — 1

J 2 kr-  r + ~ x
n — 1

x>-
n — 1

cn -  1 
c — 1

r + l

Hn

n — 1

(3.4.3)

(3.4.4)

(3.4.5)

9{k) f {k)  k=o ~  £ A 0K*)) .W  +  1) (3.4.7)

EXERCISES for Section 3.4

In each o f the Exercises 3-4.1 through 3-4-16, evaluate the given sum by finite cal­
culus. Perhaps compare the result with your solution to the corresponding exercise 
from §3.2 or from §3.3.

3.4.1s

n

3.4.3 J 2 k3k

3.4.2

n

3.4.4s J 2 Mk

3.4.5 J 2 k '2 3

n

3.4.7

3.4.6 J 2 k'24:

n

3.4.8
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3.4.9

n
3.4.11 ^ f c 23

n
3.4.12 ^ f c 24

3.4.10

X—̂ ^3.4.13 =

n

3.4.15 J 2 k 3

3.4.14 } J 3  =

n

3.4.16 J 2 k 4

In Exercises 3-4.17 and 3-4-18, evaluate the given sum with finite calculus. Perhaps 
compare each with the corresponding exercise from  §5.5.

3.4.17 J 2 k~

In Exercises 3-4-19 and 3-4-20, evaluate the given sum with finite calculus. Perhaps 
compare with Exercises 3.2.17 and 3.2.18, respectively.

3.4.19s J 2 kHk 3.4.20 J 2 k2Hu

In each o f the Exercises 3-4-21 through 3-4-26, calculate the difference function

3.4.21 Ari 3.4.22 kA 3.4.23 4k
3.4.24s 3.4.25 3.4.26 \—k

In each o f the Exercises 3-4-27 through 3-4-32, calculate the anti-difference function 
for the given function f (n) .

3.4.27 Ari 3.4.28 kA
3.4.30s 3.4.31

3.4.29
3.4.32 4 -fe

In Exercises 3-4-33 through 3-4-37,
a. calculate the next two terms o f the given sequence.
b. specify the function that yields the given sequence. 

Hint: use difference tables, which were introduced m §l-4-

3.4.33s 7 8 15 28 47 72 

3.4.34 1 - 2  - 3  10 49 126
3.4.35 0 0 2 8 20 40
3.4.36 2 5 15 33 61 103

3.4.37 0 - 1  - 6  -1 3  - 4  87 470
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3.5 ITERATION AND PARTITIONING OF SUMS 

This section is concerned with iterated summation. In the simplest case, the 
index set U of the sum 

is a 2-dimensional array, such that one could first take the row sums and then 
add those sums to get the total . Sometimes the first summation, called the inner 
summation, is for groupings other than rows. In selecting groupings for the inner 
summations, the consideration is that both the inner summation and the other sum­
mation, called the outer summation, should be amenable to reasonably convenient 
methods of evaluation. Sometimes, when given a double summation to evaluate, it 
is helpful to swap the order of summation, as described here. 

Double summation need not be twice as hard. Indeed, sometimes a single sum is 
recast as a double sum to make it more tractable. A possible strategy in evaluating 
a difficult sum 

is to find a parti t ion 

such that each of the sub-sums 

is tractable, and also such that the sum 

of the sub-sums is tractable. 

Independent Indices 
An example from graph theory illustrates the simplest case of a double sum­

mation, in which the index of the inner sum is independent of the index of the outer 
sum. 

E x a m p l e 3 .5 .1: The degree of a vertex v of a graph is the total number of edge-
incidences on v. Each edge e contributes 0, 1, or 2 to that total , corresponding to 
the number I(v,e) of times that vertex v is an endpoint of edge e. Figure 3.5.1 
shows a graph, with its vertex degrees as bold numbers. 
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Figure 3.5.1 Degrees of the vertices of a graph.

Thus, the sum of all the edge-vertex incidences

(v,e)  e V x E

is indexed by the cartesian product V  x E,  where V  is the set o f vertices and E  the 
set of edges. The obvious partition of this sum over a cartesian product o f two sets 
is into an iterated sum

T(v ’ e) =
( v , e ) e V x E  v e v  e £ E

over the incidence matrix, with rows labeled by vertices and columns by edges, so 
that the row-sums are the degrees.

s t u v v x y z degree
a 2 2 1 0 0 0 0 1  6 
b 0 0 1 1 1 1 0 0 4 
c 0 0 0 0 0 0 1 1 2
c? 0 0 0 1 1 1 1 0  4

Of course, the result of adding the row-sums of an array equals the result of adding 
the column-sums. In this case, since every column-sum is 2, adding the column- 
sums is equivalent to doubling the number of edges, which is faster than adding 
degree-sums. This observation yields an alternative proof of Euler’s Degree-Sum 
Theorem (Theorem 0.6.1).

Theorem 3.5.1 [Euler’s Degree-Sum Theorem]. The sum o f the degrees o f

Proof: Let V =  (V, E) be a graph. Then starting from row sums 

v) =  I(v, e ) sum of row sums
vEV v£V e£E

swap the order of summation:
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I(v, e)  sum of column sums
e £ E  v £ V

=  2 every column sum is 2
e £ E

Interchanging the order of summation is a fundamental technique for evaluating 
an iterated sum over an array. It is useful when the implicit repartitioning yields 
inner sums and an outer sum for which the total effort of evaluation is less than 
that for the given iterated summation problem.

In this instance, the cost of repartitioning was trivial, because the index of the 
inner sum of the given iterated sum was independent o f the index of the outer sum.

Dependent Indices
If the limits of the index of the inner sum are independent of the index of the 

outer sum, then the order of summation can be transposed without changing the 
limits of either index. However, it is quite common for the outer index to range 
from 1 to n, while the upper limit of the inner index equals the outer index. As 
illustrated in Figure 3.5.2, this amounts to summing over the rows of the lower-left

Figure 3.5.2 R ow  sum s and co lu m n  sum s.

Interchanging the order of summation for this form of iterated sum turns the outer 
sums into column sum. The new inner index (the row index) has the outer index 
(the column index) as its lower limit and ranges up to n.

E xam ple  3 .2.3, rev is ited : The sum of the harmonic numbers has previously been 
evaluated by perturbation and by finite calculus. Another effective method is going 
to a double sum and then interchanging the order of summation.

n — 1 n — 1 k

5 >  = E E
n — 1 n — 1 l

= E E J

write as double sum

swap order of summation
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n—1 .. n—1

E y E 1

“  1 1

factor out constant

evaluate inner sum

Chapter 3 Evaluating Sums

n  — 1

add zero

nH„ — n

In circumstances when swapping rows and columns of an array does not ade­
quately reduce the evaluation, it may help to reorganize the partitioning of sum­
mation so that the inner sum is over some tractable geometric pattern other than 
a row or column.

Example 3.5.2: To envision how to repartition the double sum
n  k  —  1 -

as an aid in evaluation, it helps to write out the array of summands, like this.

k i 1 2 3 4 j  ->

2
1
1

3 1
2

1
1

4 1 1 1
3 2 1

c; 1 1 1 1
0 4 3 2 1

Evidently, summing rows or columns amounts to summing the harmonic numbers. 
However, the strategy of summing on the southeastward diagonals (in which the 
entries are constant) yields the following result, which is consistent with Example 
3.2.3, which also sums harmonic numbers.

i —  d
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Linear Partitioning: Floor Sums
Sometimes a sequence of less tractable summands can be partitioned into con­

secutive finite subsequences with tractable sums. In particular, this may occur when

Example 3.5.3: Seeking to evaluate a sum of floors may suggest resorting to an 
approximation, such as

s E ;

z ^ d x
J  X  =  0

lx3/2

For n =  9, the value of this approximation is

whereas the exact value is

=  0 + 1  +  1 +  1 +  2 +  2 +  2 +  2 +  2 +  3 =  16

Sometimes, an approximation this rough meets the purpose at hand. However, 
it is helpful to be in command of methods that get an exact value when it is needed. 
There are five steps in the derivation of an exact evaluation formula for such a sum 
by the method of linear partitioning.

Step 1. List the early terms of the sequence, and partition them according 
to the value of the summand.

Step 2. Express the size of all but the last cell.

Step 3. Express the size of the last cell, which needs individual attention, 
since its size might not follow the same rule as the other cells.

Step 4. Evaluate the given sum.

Step 5. Confirm for a small case.
We now demonstrate the application of this method to Example 3.5.3.
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n l_ \

increases, the value of the summand [fcj increases also, but more slowly than the 
index itself.

Step 1 is to partition the index values according to the value of the summand. This 
is represented for =  0, 1, . . . 17 as follows:

Example 3.5.3, continued: As the index k o f  the sum

Table 3.5.1 P a rtition in g  fo r  th e  sum m and

7

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Jk I 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3  4 4

Step 2 is to express the sizes of all but the last cell. Each other cell in Table 3.5.1 is 
grouped with an overbrace, with its size written over the overbrace. The smallest 
number within each cell is the square m2 of some number m. Since the number 
(m +  l ) 2 starts the next cell, it follows that the cell containing m2 is

Evidently,

Step 3 is to express the size of the last cell

whose entries correspond to the uppermost summand [\/n J. Its size is

Step 4. To evaluate the given sum, we multiply each of the realized values of the 
summand by the corresponding number of values of the index k and then sum the

S'
Lv'nJ-1

(2m +  1) • m +  (n —

Lv'nJ-1
(2m - +  3m -) +  (n — [

( 2m - 3m - 
( ~  + ~

■1)

1 ) '

fn I- 3 I 2
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Step 5. We confirm for the small case n =  11.
Sum values in Step 1: 0 +  1 +  1 +  1 +  2 +  2 +  2 +  2 +  2 +  3 +  3 +  3 =  22 
Compare with the value by formula of Step 4.

Example 3.5.4: We now use linear partitioning to evaluate the sum

Step 1. List the early terms of the sequence, and partition them according to the 
value of the summand.

1 2  4  8  1 6

k 1 2 3 4 5 6 7 8 • • • 15 16 • • • 31 32 33 • • •
[lgfcj 0 11  2 2 2 2  3 • • • 3 4 • • • 4 5 5 • • •

Step 2. To express the size of all but the last cell, we observe that the cell corre­
sponding to the summand m is

{2 m, 2m +  l, . . . ,  2m+1 - 1 }

Its size is
# { 2 m, 2m +  l, . . . ,  2m+1 - 1 }  =  2m 

Step 3. The last cell is

Its size is

Step 4. Evaluate the given sum, using the previously derived formula (e.g., see 
Example 3.2.2) for summing k ■ 2k.

n L ' g " ] - 1

Step 5. Confirm for the small case n =  9.
Sum the values in Step 1: 0 + l  +  l -| -2 -| -2 -| -2 -| -2 -| -3 -| -3  =  16. 
Compare with the value given by the formula of Step 4.

=  1 - 2 3 +  2 +  3 - 2  =  16

+ 0
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R em ark : The two evaluations just considered have an easy second step, because 
within each group the value of the summand is constant. If the summand were 
k[y/kJ, for instance, then an inner sum might be introduced in Step 2 for the 
partial sum over the interval corresponding to a group.

E X E R C IS E S  fo r  S ection  3.5

In each o f the Exercises 3.5.1 through 3.5.12, evaluate the given double sum.

3-5 1  £ ! > '  +  *)

n n

3.5.3 Y , J 2 ^  +  2k +  3)

n k

3-5-5S £ ! > '  +  *)

n k

3-5.7 £ £ ( i  +  2* +  3)

n n

3-5-9 E E o '  +  *)

n n

3.5.11 ^ ( ; + 2i  +  3)

3-5'2

n n / ,

354
n k

3.5.6

n k /i. 

3 58 ssc
n n

3-5.10 J 2 J 2 j ' k

n n fh EE ■
In each o f the Exercises 3.5.13 through 3.5.20, evaluate the given sum.

" k "
3.5.13

n
3.5.15

n

3.5.17 £

n

3.5.19 mod 3

3.5.14s 5 3  (k mod 3)

n

3.5.16 5 3

n

3-5.18 | ig * |

n

3.5.20 ^  (k2 mod 3)
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3.6 INCLUSION-EXCLUSION

Sometimes, the index set for a complicated sum has subsets with tractable 
sums, but those subsets overlap. The strategic insight of the inclusion-exclusion 
method is that the partial sums over those subsets can be combined into a total 
sum by subtracting the overcounts.

Venn Diagrams for Two Overlapping Subsets
A Venn diagram provides a visual model for evaluating sums over an index set 

given as the union of overlapping subsets. The simplest case has two overlapping 
subsets, A  and B, as in Figure 3.6.1. The domain from which both subsets are 
drawn is denoted U .

Figure 3.6.1 V e n n subsets.

Suppose that the objective is to calculate the sum Saub over the set A  U B, with 
partial sums Sa , Sb , and Sahb over subsets A, B,  and Sa h b , respectively. Then

That is, to calculate S a u b , we add S a  and S b  and then subtract the overlap S a h b -

E xam ple  3 .6.1: The number of integers in the range 1 that are divisible
either by 2 or by 3 is expressible as a consecutive sum with indexing in the integer 
interval [1 : n\ and the summand

_  J 1 if n is divisible either by 2 or by 3 
. 0 otherwise

that is, by the sum
n

B

Every number that contributes 1 to this sum lies either in the set {k  £ [1 : n\ | 2\fc},

Adding these two cardinalities overcounts by [n /6 j , the number of integers in [1 : n\ 
that are divisible both by 2 and by 3. Thus,

»
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In Figure 3.6.1, 

and 

Their intersection is 

and 

In Example 3.6.1, the implicit summand is the number 1, since we counted the 
number of elements in a set. Tha t is, 

E x a m p l e 3 .6 .2: A related problem is to calculate the sum of the numbers that 
are divisible by 2 or 3. Then, instead of having a constant value of 1, the value of 
the summand equals the index itself. Tha t is, 

Thus, 

similarly, 

and 

Therefore, 

For the small case n = 14, direct addition and the formula both yield SAUB = 68. 
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Venn Diagrams for Three or More Subsets
Venn diagrams are qu ite com m on ly  draw n for three overlapping  subsets, and 

they have this general defin ition.

DEFINITION: A fam ily  o f  n sim ple closed curves (typ ica lly  circles or ellipses) in the 
plane, w hose interior regions represent som e subsets A \, A 2, . . ., A „  o f  a set A  w ithin

TERMINOLOGY: The domain U from which both the subsets A  and B  are drawn is 
commonly called the universal set.

Example 3.6.3: The Eurasian Translators Company has 15 expert linguists fluent 
in at least two of the languages Armenian, Bulgarian, and Czech. Of these,

Sahc =  7 speak Armenian and Czech

How many speak all three languages? Figure 3.6.2 is the relevant Venn diagram.

Figure 3.6.2 Venn diagram for three overlapping subsets.

Whereas 15 is the given number of linguists fluent in two or more of the three 
languages, the sum

Sahb +  Sahc +  Sbhc =  5 +  7 +  9 =  21

of the numbers corresponding to the three intersection-regions for which data are 
given triple-counts the contribution 5Unsnc in the triple intersection at the center 
of the diagram and counts all the other translators only once. Thus, subtracting 
15, thereby excluding the total number of translators who speak at least two of the 
languages by the calculation

2SAnBnc =  2 1 -  15 =  6

yields the result

from which one concludes that
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After deriving an analytic solution to a Venn diagram problem, it is helpful to check 
the result by inserting numbers into the relevant regions of the diagram. In this case, 
the number 3 is inserted into the centermost region, representing the population of 
the region A n B n C  in Figure 3.6.3. Then it must be excluded from the populations 
given for composite regions AC\B, APiC,  and B(~\C, in order to obtain populations 
for the simple regions they contain.

NOTATION: The com plem ent o f a set X  in a dom ain U is denoted X .

Figure 3.6.3 Inserting numbers into regions of a Venn diagram.

We observe that all of the inserted numbers are consistent with the original data as 
well as with the derived population of A  fl B  H C .

Context for Inclusion-Exclusion
A more general context of inclusion-exclusion evaluations is a set A  within a 

domain U , a real-valued function /  : U —> M, and a representation

n

of set A  as a union of subsets Aj, , conceptualized like a Venn diagram with n 
mutually intersecting subsets. (Some of the regions may be empty.)

Remark: Quite often, the function /  : U —> M is the constant function f ( x )  =  1, 
in which case the evaluation amounts to calculating the cardinality of a region.

NOTATION: The intersection of two sets Ai and Aj  may be denoted by the juxtapo­
sition AiAj .

DEFINITION: An intersection A i±A i2 ■ ■ ■ A ir is called an r -fo ld  in te rs ec tio n  of the
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Formulas for Inclusion-Exclusion
As illustrated by Example 3.6.3, evaluating sums over combinations of regions 

in Venn diagrams takes some care. Fortunately, such evaluations can usually be 
reduced to the application of two or three general inclusion-exclusion equations for 
sums over single regions.

Theorem 3.6.1 [Exclude-All Equation for Set
sets o f  a set U, with

1. Let A \, . . ., A n he sub-

so that, for r =  1, . . ., n, the number Sr is the sum o f  the cardinalities o f  all r-fold

Proof: First suppose that the element x £ U lies in none of the sets Aj. Then x 
is counted once on the left side of the equation, and it is counted in the formula on 
the right side only by the summand \U\, and not by any summand Sk-

Now suppose that x lies in exactly m o f the subsets Aj,  with m >  0. Accordingly 
x is not counted on the left side of the equation. On the right side, it is counted 
(™) times by Sk, since there are (™) ways to choose k sets from the m sets Aj  that 
contain x, and x is also counted once by \U\. Thus, its net count on the right side 
is

The other main inclusion-exclusion formula is derivable by the same approach, or, 
as shown here, as a corollary of Theorem 3.6.1.

Corollary 3.6.2 [Include-All Equation for Set Size]. Let A i, . . ., A n be sub­
sets o f  a set U, with

n
A =  [ j A k and 5V =  \Ai l - - - A ir\

k =  1 ii, . . . , ir£[l:n]

so that, for r =  1, . . ., n, the number Sr is the sum o f  the cardinalities o f  all r-fold

M l =  ' Z ( - i ) k~ 1 s k
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P ro o f: Observe that the universal set U is the disjoint union of the set A  and the 
set A\ A ’i • • • A n. Therefore,

and, accordingly,

and then, by Theorem 3.6.1,

n

Theorem 3.6.3 provides an inclusion-exclusion formula for the sum of the values 
o f an arbitrary function /  : U —> 1  on the domain U , not simply for counting the 
size of a set.

T h eorem  3.6.3 [G enera l E x c lu d e -A ll E quation ]. Let Ai ,  . . ., A„  be subsets 
o f  a set U, with

n

and let f  : U —> M be a real-valued function. Let the sum

Sr = E  E  A*)
x£Atl - --Alr

be taken over all r-fold intersections o f  the family {A^} .  Then

n

_ £ _ / ( * )  =  £ / ( * )  +  B - 1)*5*
••• A n XEU k =  1

P ro o f: The proof is a straightforward modification of the proof of the Exclude-All 
Equation for set sizes. <C>

In the remainder of this section, the two main inclusion-exclusion formulas are 
applied to various combinatorial problems.

Stirling Subset Numbers
Although there are various similarities between Stirling numbers and binomial 

coefficients, there is no known closed formula for Stirling numbers of either kind, 
unlike the situation for binomial coefficients. However, there is a summation for­
mula for a Stirling subset number, whose derivation by inclusion-exclusion is our 
immediate objective. The ideas involved are encapsulated in the following example.
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E xam ple  3 .6.4: The Stirling subset number { ® } is the number of ways to dis­
tribute a set of 5 objects into 4 cells with no cell left empty. For a problem this 
small, listing cases is easy enough, but it is instructive to apply inclusion-exclusion. 
Toward that objective, for i =  1, 2, 3, 4, let A{ be the set of distributions with box 
i left empty. Clearly,

\Ai\ =  35 for * =  1,2, 3, 4 
\ AiAj\ =  2 5 for i 7  ̂ j   ̂ ^

Moreover,

Sk =  Q ( 4 - A ) 5 (3.6.1)

since there are (^) ways to choose k of the subsets Ai from the collection of four such 
subsets, and each intersection A i1 A i2 ■ ■ ■ A ik contains (4 — k ) 5 objects. Furthermore,

=  | | 4! (3.6.2)

since each distribution with none of the boxes left empty amounts to assigning the 
labels 1,2, 3, 4 to the cells of a partition. Finally, if U is the set of all ways to 
distribute 5 objects into 4 cells, we have

When we substitute into the Exclude-All Equation

the values from Equations (3.6.1), (3.6.2), and (3.6.3), we obtain the equation 

1 }  4! =  4 = - Q 3 = + Q 2S - Q l ‘ + ( y

=  1024 -  972 +  192 -  4 =  240

51 240
4 J 4! =  1 0

A confirming observation is that, since two of the elements are paired, and since 
the others have cells to themselves, clearly

In a similar manner, an inclusion-exclusion analysis leads to an identity for the 
Stirling subset numbers

oIm J

we have just completed.
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T h eorem  3.6.4. Let n and k be a pair o f  non-negative integers. Then

{ ; } « =  B - D ' O - i r

P ro o f: For i =  1,2, . . .  ,k,  let A{ be the set of distributions of n distinct objects 
into k distinct boxes with box i left empty. Clearly,

|Ai| =  (k -  l ) n for * =  1 , 2 , . . . , *

and, more generally, for any j  £ [1, k]

| A-ii A-i2 • • ■ Aij | =  (k — j ) n for mutually distinct *i, *2 , - - -, ij

Since there are (*) ways to choose the mutually distinct *1 , *2 , - - -, ij, and since Sj 
is the sum of the numbers of ways to leave j  specific boxes empty (with others

Sj =  ( * ) ( * -• ? ') "  (3-6-1')

Furthermore,

^  | =  [ Uk ]k\  (3.6.2')

since each distribution with none of the k boxes left empty amounts to assigning 
the labels 1, 2, . . ., k to the cells of a partition. Finally, if U is the set of all ways to 
distribute n objects into k cells, we have

Substituting the values from Equations (3.6.1'), (3.6.2'), and (3.6.3') just above into 
the Exclude-All Equation

we obtain the identity

{ >  = E<-i>J0 )  <*-•>•>“ «

Derangements
Inclusion-exclusion is also helpful in analyzing the derangement recurrence. 

REVIEW FROM §2.1:

interval [1 : n\.
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• The r e c u r r e n c e  (see also §5.4) is

■'n — 2

(3.6.4
(3.6.4

E xam ple  3 .6.5: In the classical h a tch eck  p ro b lem , each of n persons leaves a 
hat in the cloakroom, but the hatchecks are lost, and the n hats are redistributed 
randomly. It asks, what is the probability that no hat goes to its rightful owner? 
This problem is recognizable as a homespun version of calculating the proportion 
o f permutations of n objects that are derangements.
If U is the set of all possible hat distributions, then

(3.6.5)

To calculate the number D n o f derangements, let A{ be the set of permutations in 
which hat i goes to its rightful owner. Then

and

More generally,

which implies that

|A-1 =  (n -  1)!

A„

\Ai,A i 2  - - -Ai

When the Exclude-All Equation

(n — k)\

is combined with Equations (3.6.5), (3.6.6), and (3.6.7), we obtain

D n =  n\ +  £ ( - ! ) * ( ; ; ] ( „ - * ) !

=

Substituting n =  0 and n =  1 into Eq. (3.6.8), we obtain

" 0 !

0 !

and

(3.6.6)

(3.6.7)

(3.6.8)
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1 11

, 1! 1!

0 !

which establishes that equation (3.6.8) satisfies the initial conditions (3.6.4a) of 
the derangement recurrence. Moreover, assuming that equation (3.6.8) satisfies the 
recurrence for D n- i  and D n_ 2 , we confirm by the following calculation that it also 
satisfies the recurrence for D „ .

+  ( n -

=  ( n -  1 ) £ ( - 1 ) k (n ~  !)! 
k\

= S - ' i *  - e W  {n- 1|!

n — 1

k\

k\ v ’ ( n — 1)!

n ,

n — 1

E ( - d
fc ( n -  1)! 

k\

R em ark : We observe that
n j

D - 1' ^  <3-68>

^  1 1

Thus, one might approximate the value of e_1 , and hence, of the number e, by gen­
erating random permutations and counting the proportion that are derangements.

implies that

D„

Counting Bipartite Matchings
In the rest of this section at least a passing prior acquaintance with graph 

theory would be helpful. [GrYe2006] is recommended.

REVIEW FROM §0.6:

subsets X  and Y  such that every edge has one vertex in X  and the other in Y .
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PREVIEW OF § 8 .6 :

• A m a tch in g  in a graph is a set of edges such that no two edges have an 
endpoint in common.

• A p e r fe c t  m a tch in g  in a graph is a matching in which every vertex is the 
endpoint of one of the edges.

Example 3.6.6: In the bipartite 

and one with f ( l )  =  c.

ph G of Figure 3.6.4, there are five perfect 

with thicker edges);

Figure 3.6.4 Perfect matching in a bipartite graph.

Let U be the total set of bijections X  —>■ Y . Then

(3.6.9)

A bijection X  —> Y  is consistent with the bipartite graph G if it is representable 
as a perfect matching in G. For i =  1,2, 3, 4, let A{ be the number of bijections 
f  : X  ^  Y  such that the assignment i /(*') is inconsistent with the graph G, 
that is, such that vertex f ( i )  is not adjacent to vertex i.

For each choice of a vertex of Y  that is not adjacent to vertex i, there are 3! 
bijections X  —>■ Y , corresponding to the 3! ways to assign the other 3 vertices of X  
to the remaining 3 vertices of Y . Thus,

and there are similar formulas for multiple inconsistencies.

— | ^ 3 4̂ - 4 1 ~  |̂42 4̂ 3 I — 1 and 1̂ 4 1 4̂ 2 ^ 4 1  ~  0

^  =  30, S2 =  14, 1S3  — 3, 1S4  — 0 (3.6.:
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Therefore, by using (3.6.9) and (3.6.10) with the Exclude-All Equation, the number 
of perfect matchings is shown to be

| A2 A3 A4 | =  \U\ — Si +  S2 — S3 +  S4 
=  24 -  30 +  14 -  3 +  0

which agrees with our ad hoc count at the outset.

An alternative representation of this counting problem is the chessboard of Figure 
3.6.5. Observe that a square is shaded if and only if it is forbidden to match the 
vertex corresponding to its row to the vertex corresponding to its column. Each 
perfect matching corresponds to a selection of one unshaded square in each row, 
such that there is at most one selection in each column.

Figure 3.6.5 Chessboard representation of a bipartite matching problem.

Consistent with this representation, there is a well-developed theory of rook polyno­
mials that uses a divide-and-conquer strategy for calculating the numbers Si used 
in inclusion-exclusion.

Remark: The method given here is applicable not only to perfect matchings, but 
also to counting complete matchings of the vertices in one part of the bipartition 
to the other part when that other part has more vertices.

Chromatic Polynomials
An algebraic invariant called the chromatic polynomial of a graph can be cal­

culated by inclusion-exclusion.

PREVIEW OF §8.3:
• A vertex-coloring o f  a graph G in the set [1 : n], often simply called a 

coloring, is a function /  : Vg —> [1 : n\.

• A proper vertex-coloring o f  a graph is a coloring such that no two adjacent 
vertices have the same color.

DEFINITION: The chromatic polynomial P( G, t )  of a graph G is the function 
whose value at the integer t is the number of proper colorings of G with at most t 
colors.
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As a preliminary to a more systematic approach, we consider an ad hoc construction 
of a chromatic polynomial. It illustrates why the function P( G, n )  is a polynomial.

E xam ple  3 .6.7: The graph K i ^  requires at least two colors for a proper coloring. 
We observe that, given two colors, exactly two proper 2-colorings are possible, one 
of which is illustrated in Figure 3.6.6. We write p 2 =  2. Given three colors, exactly 
six 2-colorings (i.e., 3!) are possible, so we write p% =  6.

Figure 3.6.6 A proper 2-coloring for the bipartite graph A i 2*

For any positive integer t, the number of ways to choose two colors is (*) and the 
number of ways to choose three colors is (*), By the Rule of Product and the Rule 
of Sum, it follows that the number of proper colorings with t colors is

=  2-  ̂ 2, ) +  6 • — ^  ^

=  -  2t2 +  t (3.6.11)

In general, it may be computationally difficult to determine the exact numbers 
of proper colorings

P i  P 2  ■■■ P n

for an n-vertex graph G, or even to decide the chromatic number, which is the 
smallest positive value. However, whatever those numbers may be, the chromatic 
polynomial is

Example 3.6.7, continued: To recalculate the chromatic polynomial of the 
graph K\ 2 by inclusion-exclusion, its two edges are labeled 1 and 2, as shown 
in Figure 3.6.7.

Figure 3.6.7 An edge-labeling for the bipartite graph Ai 2 -

Let U be the set of all colorings of K\^ with at most t colors. Let A\ be the set 
of such colorings in which the endpoints of edge 1 have the same color, and let A 2
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be the set of such colorings in which the endpoints of edge 2 have the same color. 
Then

This is a job  for the Exclude-All Equation. Evidently, \U\ =  t3.

To calculate \Ai\, we recognize that there are t possible choices of a color for both 
endpoints of edge 1, and then another t possible choices for the color of the remaining 
vertex. Clearly, this holds also for \A2\. Thus,

and S\ — \Ai\ +  \A2\ — 21 2

Any coloring in Ai fl A 2 has the same color at both endpoints of edge 1 and the 
same color at both ends of edge 2. Since these two edges share an endpoint, all 
three vertices of K i j 2  must have the same color. There are t possible choices for 
this color. Thus,

|̂ 4i 4̂.21 — t

We now complete the recalculation,

. I -  Si +  S2  

=  t 3  -  2 t 2 +  t (3.6.:

which agrees with (3.6.:

Example 3.6.8: To calculate the chromatic polynomial P(K^,  t) of the complete 
graph K 4  by inclusion-exclusion, label its its six edges with numbers 1, . . . ,6, as 
shown in Figure 3.6.8.

Figure 3.6.8 An edge-labeling of the complete graph K4 .

Let U be the set of all colorings of K 4  with colors in [1 :t]. Then

Next, let Ai be the set of colorings in [1 : t] such that the endpoints of edge i have 
the same color. Then \Ai\ =  t3, since there are t possibilities for the color of the
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endpoints of edge i and t possibilities for each of the other two vertices. Since there 
are 6 edges, it follows that

Si =  |j4i| +  \A2\ +  ••• +  | A 61 =  6t 3

There are (®) =  15 ways to choose a pair of edges, i and j .  For 3 of these pairs, 
edges i and j  have no vertex in common, in which case a coloring in AiAj  may use 
t colors for the endpoints of edge i and t colors for the endpoints of edge j ,  yielding 
t 2 possibilities. For the 12 pairs of edges that have a vertex in common, there are t 
choices for the color of the three vertices in the union of their endpoint sets and t 
choices for the remaining vertex, again yielding t2 possibilities. Thus,

S2 =  15t2

There are (®) =  20 ways to choose three edges. Exactly 4 of these 20 triples form 
a 3-cycle. There are t choices for the color of all three vertices in that 3-cycle and 
t choices for the remaining vertex. The other 16 edge-triples form a connected 
subgraph (a spanning tree) that contains all four vertices of K 4 , so all four must get 
the same color, for which there are t choices. Accordingly,

S3  =  At2 +  16t

A subset of four or more edges must contain all the vertices of K 4 . It follows that

By the Exclude-All Formula,

=  t 4  -  613 +  l i t 2 -  61

R em ark : There are circumstances where the Exclude-All Formula is an excellent 
way to calculate chromatic polynomials, which are not revealed by these small 
examples. For instance, it can be used to prove that the chromatic polynomial of 
any n-vertex tree is t(t — l ) n_1.
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PREVIEW OF §6.5:
• For a positive integer n, the E u ler p h i-fu n ctio n  <f>(n) gives the number of 

positive integers not exceeding n that are relatively prime to n.

In each o f the Exercises 3.6.1 through 3.6.6, use inclusion-exclusion to calculate 
4>{n) for the given number n. (A faster method o f calculation is given m §6.5.)

3.6.1s 48 3.6.2 60 3.6.3 100
3.6.4 81 3.6.5 64 3.6.6 96

In each o f the Exercises 3.6.7 through 3.6.10, use inclusion-exclusion to calculate 
the given Stirling subset number.

3 6 78 { 2 }  3 6 8 { 3 }  3 6 9 { 4 }  3 6 1 0  { 5 }

3.6.11s Eight 6-sided dice are rolled. What is the probability that each of the 
numbers 1, . . ., 6 occurs at least once?
3.6.12 How many ways are there to select five cards from a 52-card poker deck 
so that each of the four suits is represented?

3.6.13 In how many ways can three 0’s, three l ’s, and three 2’s be arranged in a 
row so that no three adjacent digits are the same?
3.6.14 In how many ways can the 26 letters A, B, ..., Z be arranged in a row so 
that none of the words YES, NO, or MAYBE occurs?
3.6.15 Calculate the number of binary sequences of length n such that no 1 is 
immediately adjacent to another 1.
3.6.16s Calculate the number of permutations of the integer interval [1 : 2n] such 
that no even integer is fixed.

3.6.17s Calculate the number of permutations of n objects in which exactly k 
objects are fixed.

In Exercises 3.6.18 through 3.6.21, use inclusion-exclusion to calculate the number 
of perfect matchings m the given bipartite graph

3.6.18s 1 2 3 3.6.19 

3.6.20 1 2 3 4 3'6'21

M

EXERCISES for Section 3.6

1 2  3 4

a b e d

1 2 3 4 5

a b c d e

  



Glossary 215

In Exercises 3.6.22 through 3.6.30, use inclusion-exclusion to calculate the chro­
matic polynomial o f the given graph.

3.6.22 3.6.23 3.6.24

3.6.25 3.6.26 3.6.27

3.6.28 3.6.29 3.6.30

GLOSSARY

(called partite sets) such that every edge has one endpoint in one partite set and 
one endpoint in the other partite set.

chromatic polynomial of a graph G: the function P( G, t )  whose value at the 
integer t is the number of proper colorings of G with at most t colors.

coloring or an edge-coloring, 

consecutive sum: a sum Y^k=a x k indexed over a consecutive set of integers.

: a permutation with no fixed points.

number D n : the number of permutations of the integer interval 
[1 : n\ that are derangements.

difference function for a function / :  the function A /  defined by the rule
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difference sequence for a sequence ( xn): the sequence (x'n) defined by the rule

harmonic number: the number

inclusion-exclusion: a method for counting the number of elements in a union 
of sets that overlap.

Iverson truth function: the function defined by the rule

normalizing a sum: manipulating it into an equivalent consecutive sum 
partial sum: usually, a sum over an initial subsequence of the index set.

o f one of the edges.
perturbation of a sum: a method for evaluating a sum that begins by equating

that inverts the product rule.
Venn diagram: a drawing with several overlapping ovals, which represent over­

lapping sets.
vertex-coloring of a graph: an assignment of colors to its vertices

  



Chapter

Binomial Coefficients
4.1 Binomial Coefficient Identities
4.2 Binomial Inversion Operation
4.3 Applications to Statistics
4.4 The Catalan Recurrence

Binomial coefficients are numbers that arise in the expansion of an exponenti­
ated binomial, and they are among the most ubiquitous artifacts of combinatorial 
mathematics —  indeed, they are seemingly somehow involved with almost every 
combinatorial construction. The fact, proved in Chapter 1, that they also express 
the numbers of ways to choose a subset of size k from a set of n objects, for any 
value of k, makes it possible to derive many of their properties using highly intuitive 
combinatorial counting arguments, as an alternative to computational algebraic ar­
guments. Various identities presented in §4.1 are used in subsequent sections to 
simplify complicated expressions involving binomial coefficients. Some applications 
to mathematical statistics are examined in §4.3. It is shown in §4.4 how the Catalan 
numbers can be expressed in terms of binomial coefficients.

217
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4.1 BINOMIAL COEFFICIENT IDENTITIES 

The objective of this section is to derive the most important identities for 
binomial coefficients. These identities will be used in the later sections of this 
chapter and throughout the rest of the book. 

REVIEW FROM §1.3 AND §1.5: We recall the following definitions and results. 

• The combination coefficient Q) is the number of ways to choose a subset of k 
objects from a set of size n. 

• P r o p o s i t i o n 1.3.1. The combination coefficients satisfy Pascal's recur­
rence: 

• The binomial coefficient bn¡k is the coefficient of xk in the binomial expansion 

• P r o p o s i t i o n 1.3.2. The binomial coefficients satisfy Pascal's recurrence. 

• Corol lary 1.3.3. For all k,n <EM, 

• Since combination coefficients have exactly the same values as binomial co­
efficients, as per Corollary 1.3.3, they are commonly referred to as binomial 
coefficients. 

• P r o p o s i t i o n 1.5.3. For all non-negative integers n and k, 

(4.1.2a) 

• Corol lary 1.5.4. For all non-negative integers n and k, 

(4.1.2b) 

• Table 4.1.1, below, of the binomial coefficients is called Pascal's triangle. 

(4.1.1) 
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Table 4.1.1 Pascal’s triangle of binomial coefficients

Combinatorial vs. Algebraic Proofs
There are several reasons for acquiring proficiency at more than one kind of 

proof. In the first place, one kind of proof may be simpler for some problems and 
the other simpler for other problems. Futhermore (especially for people who are a 
bit impatient), obtaining the same result by two quite different approaches tends to 
be more reliable confirmation than doing the same steps a second time. In addition, 
the different insights of different approaches are useful in deriving analogous results 
and consequences.

Several binomial-coefficient identities in this section are given not just one 
proof, but two. The following terminology is used to distinguish these approaches.

TERMINOLOGY: An a lgebra ic p r o o f  o f  an eq u a tion  is achieved by transforming 
one side of the equation with the aid of substitutions and of arithmetic operations 
into the expression on the other side.

TERMINOLOGY: A com bin a toria l p r o o f  o f  an eq u a tion  is achieved by showing 
that both sides of the equation count the same thing. Sometimes such a proof uses 
the pigeonhole principle.

Numerous examples of both kinds of proof follow. Sometimes we give two or more 
proofs of a single assertion. Various general methods, including mathematical in­
duction, may be used with either type of proof.

Symmetry
Some identities are generalizations of properties readily noticeable in Pascal’s

it reads the same forward or backward. For instance, we observe the symmetry of 
row 8.

1 8 28 56 70 56 28 8 1
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Proposition 4.1.1
that 0  <  k <  n ,

tow-Symmetry Property], For any integers n and k such

(4.1.3)
n 
k

Proof: Using Eq. (4.1./

n \  n!

k k\ ■ (n — k)\ (n — k)\ ■ k\

n
n — k;

yields this easy algebraic proof.

n\ (  n
n — k ,

Combinatorial Proof: The left side of Equation (4.1.3) is the number of ways 
to select k objects from the set of n, to be in the designated subset. The right side 
is the number of ways to select n — k objects to be excluded from it. There must 
be the same number of ways to do either. <C>

Row-Sum Property
Another property of Pascal’s triangle is that the sum of the entries in each row 

is a power of 2. For instance, in row 8,

1 +  8 +  28 +  56 +  70 +  56 +  28 +  8 + 1

Proposition 4.1.2 [Row-Sum P r o p e r t 1. The sum o f  the entries in row n o f

=  2 r' (4.1.4)

Combinatorial Proof: According to Corollary 1.3.3, the summands on the left 
side are the number of ways to choose subsets of cardinality k from a set S o f n 
objects, for respective values of k. Their total is the number of ways to select a 
subset from S, over all possible subset sizes, which is clearly 2n, shown on the right 
side, since each of the n objects is either present or absent. <C>

mial expansion yields the following result.

... =  T ,

2" =  £

lie Proof: Another algebraic proof is by straightforward induction, start­
ing with row 0 of Pascal’s triangle as a basis case, and then using Pascal’s recursion 
to show that the sum in row n doubles the sum in row n — 1 . <C>
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Column-Sum Property
Some other properties of Pascal’s triangle emerge after further investigation. 

For instance, the sum of all the entries in any column, up to and including the entry 
in row n, can be found in the next column in row n + 1 .

E xam ple  4 .1 .1 : In columns 2 and 3 of Pascal’s triangle, we see the following 
configuration.

P ro p o s it io n  4 .1.3  [C olu m n -S u m  P r o p e r ty ] . The sum o f  the entries in column 
c (c >  0) o f  Pascal’s triangle, from row 0 down to row n, equals the entry in row 
n + 1 ,  column c +  1. That is,

P ro o f: By induction on the row number n.

BASIS: For n =  0, the sum of the entries down to row 0 is 1, in column c =  0, and 
is otherwise 0; also,

2 1

3 3

4 6

5 10

6 15

1 +  3 +  6 +  10 +  15 =  35

7 35

(4.1.5)

IND STEP: Then

(Pascal’s recursion) <C>
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Diagonal-Sum Properties
DEFINITION: A diagonal from the upper left of a 2-dimensional array, toward the 

DEFINITION: A diagonal from the lower left of a 2-dimensional array, toward the

We observe that the sum of the elements along a finite initial segment of the 
southeast diagonal in Pascal’s triangle appears just below the southeasternmost

P ro p o s it io n  4 .1 .4  [S ou th east-D iagon a l-S u m  P ro p e rty ]. The sum o f  the first 
n + 1  entries on the southeast diagonal from row r, column 0 in Pascal’s triangle 
equals the entry in row r +  n +  1, column n, the entry immediately below the last 
entry o f  the diagonal. That is,

r +  k 
k

r +  n +  1 
n

P ro o f: This result follows from two previously derived properties of Pascal’s tri­
angle.

£
r +  k r +  k 

r

fr +  n +  1 
r + l  

' r +  n +  1 
n

(column-sum property) 

E xam ple  4 .1 .2 : Here is a southeast diagonal-sum.

The following corollary simply reverses the order of summation of the elements 
on the diagonal.
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Corollary 4.1.5 [Northwest-Diagonal-Sum Property]. For any non-negative 
integer m such that 0  <  m <  n, the binomial coefficients satisfy the equation

E
n — k 
m — k

n +  1  

m
(4.1.6

Proof: Reversing the northwest diagonal sum

n — 0 
m  —  0

n — 1  

m — 1

n — m 
m — m

on the left of the equation yields the southeast diagonal sum

n — m 
0

n — m +  1 
1

which starts at row n — m and includes m +  1 entries downward, ending at row n, 
column m. By Proposition 4.1.4, the value of this southeast diagonal sum is the 
binomial coefficient

+ r ' <>

An especially fascinating pattern emerges in the sums of northeast diagonals, 
namely, that they are Fibonacci numbers. For instance, the sum 1 +  5 +  6 +  1 along 
the northeast diagonal that starts at (®) is the Fibonacci number fr  =  13.

Example 4.1.3: The boxed Fibonacci numbers shown here do not actually appear 
at the locations shown. They are simply the sums along the northeast diagonals 
that lead to them.

Proposition 4.1.6 [Northeast-Diagonal Fibonacci Property]. The sum o f
the entries on the NE diagonal from row n, column 0 in Pascal’s triangle equals the 
Fibonacci number f n+i- That is,

(4.1.7)
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P ro o f: BASIS: For n =  0 and n =  1 the northeast diagonal sums are 1 =  / i  and

IND HYP: For n >  2 assume that
n — 1 n — 2

=  / « - d = / - 1 

IND STEP: By the Pascal recursion, we have 

/n — k\ (n  — k — 1
k -  1

n — k — 1  

k

Therefore,

n — k 
k

n — k — 1 
-  1

n — k — 1 
k

n  — 1

f S
(Fibonacci recursion)

n — k — 1 
k

Products of Binomial Coefficients
Another pattern in Pascal’s triangle is the relationship between each element 

and the element to its upper left.

E xam ple  4 .1.4: We observe in this inset from Pascal’s trie 

4 1 7 ] =  4-35  =  140 =  7-20  =  7

that

The generality of this relationship, which is called the absorption property, is estab­
lished by the next proposition.

P ro p o s it io n  4 .1 .7  [A b s o rp tio n  P r o p e r ty ]. For 0 <  k <  n,

n\ fn  ~  1 ^
k )  ~  U\ k -  1

(4.1.8)
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lie Proof: By algebraic manipulation, we have

k j k k\k ( k -  1)!

Combinatorial Proof: Alternatively, we observe that the left side

is the number of ways of choosing a board of k directors from a set of n persons and 
then a chairperson from within that board of k. This is clearly equivalent to the 
number of ways to choose a chairperson from a set of n persons and then another 
k — 1 persons from the remaining n — 1 persons for the rest of the board of directors, 
which is the right side

—  1\ ^

Absorption is a special case of a relationship between an element and other 
elements along the northwest diagonal direction. This relationship is expressed by

Example 4.1.4, continued:
the coefficient (1) we have

Observe that whereas at one position northwest of

7\4±- _  35 4

at three positions northwest of (J) in Pascal’s triangle, we have

A i l  _  o , 24_ 
4 / 7 3  210

The following formulation of this property is called the subset-of-a-subset property.
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DC) = (;)(;:*)
lie Proof: By straightforward algebraic calculation, we have 

n \ / m\ nl ml
m ) \ k j  ml (n — m)l kl (m — k)l

Proposition 4.1.8 [Subset-of-a-Subset Identity]. For 0 < k < m  < n,

kl (n — m)l (m — k)l
nl (n — k)l

kl (n — k)l (n — m)l (m — k)l 
n\ (  n — r
k)  \m — k j  ^

Combinatorial Proof: We can also reason combinatorially that the left side

is the number of ways of choosing a board of m directors from a set of n persons 
and then an executive committee of k persons from within that board of m. This 
is clearly equivalent to the number of ways to choose an executive committee of k 
persons from a set of n persons and then another m — k persons from the remaining 
n — k persons for the rest of the board of directors, which is the right side

/n\ (  n — k ' , ^
kJ \m — k

Vandermonde Convolution
Theorem 4.1.9 [V a n d erm on d e C on volu tion ]. Let n, m, and k be non-negative 
integers. Then

^ m ^ +  m

Combinatorial Proof: A combinatorial proof supposes that there are n +  m 
objects in a set, n o f them blue and m o f them red, and that k objects are to be 
chosen, for which there are clearly ways in all, the number of the right side.
The number of ways to select j  blue objects and k — j  red objects is the product 

so the sum of all these products, which is on the left side, must be the 
same total as the right side. <C>

Another Proof: The sum on the left of the combinatorial equation above equals 
the coefficient of x k on the left side of the polynomial equation

(l +  * ) n(l +  * )m =  ( l +  x ) n+m

and the binomial coefficient on the right side of the combinatorial equation equals 
the coefficient of x k on the right side of that polynomial equation. <C>
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Table 4.1.2 Basic Binomial Coefficient Identities

/'n\ ( n — 1\ (n  — 1

n \ n\
kJ k\ (n — k)\ 
n\ f  n 
k J \n — k

Falling Power Formula (4.1.2a) 

Factorial Formula (4.1.2b) 

Symmetry (4.1.3)

5 3  ( i, j =  2" Row-Sum (4.1.4)

/r +  k\ f r  +  n +
5 3  ^  ̂ J =  ^ J Southeast Diagonal (4.1.6a)

5 3  ^ =  (  )  Northwest Diagonal (4.1.6b) 

" /n _
y  ̂ ^  ̂ J =  f n_|_i Fibonacci Northeast Diagonal (4.1.7)

[ J f c  =  nl 1 Absorption (4.1.8)

( " , ) ( ! )  =  Q  ( , " - * )  Subset-of-a-Subset (4.1.9)

E  ( ” ) ( f c -  j )  =  ( " t " ' )  Vandermonde Convolution (4.1.10)

Parity of Binomial Coefficients
Beyond the basics of binomial coefficients, there are many fascinating byways. 

For instance, how might one determine the parity of a given binomial coefficient, 
such as

One observes that all the entries in rows 1,3, and 7, numbers of the form 2n — 1, are 
odd. Moreover, the number of odd numbers in a row appears to be a power of 2.
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Theorem 4.1.10. Let n and k be non-negative integers. Then

0 mod 2 i f  n is even and k is odd

Determination o f the parity o f a binom ial coefficient was studied system atically by

mod 2 otherwise

Proof: This proof splits naturally into four cases.

Case 1 — n even and k odd: Since n is even, it is clear that, for this case, the 
value of the right side of the absorption identity

n — 1  

k -  1

is even. Since the product k(^) on the left side must also be even, and since k is 
odd, it follows that Q ) is even.

Case 2 — n even and k even: For this case, we expand the binomial coefficient.

kl 1 - 2 - 3 - - -k
In - 4 ) - - - { n - k  +  2 )

I I. 2 - 4 - 6  - - -k

Since the denominator has k/2 even factors, we obtain

2 t - 1 - 2 - 3 - - - I
n v
k )  ~  1 • 3 • 5- • -{k -  1)

And since the denominator has k/2 even factors, we obtain

Therefore,

1 - 3 - 5 1)

1 - 3 - 5 1)
i / 2

1 • 3 • 5 • • • (fc — 1) — 3) • • • (n — k +  1)
i / 2

It follows that for n and k both even,

_  fn / 2 \ _  (\nj
mod 2 (4.1.1

The first equivalence in (4.1.11) holds because each of the factors preceding the 
binomial coefficient in the numerator and in the denominator is odd, and multipli­
cation of an integer by an odd number does not change its parity. The second holds
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Case 3 — n odd and k odd: As in Case 1, our starting point is the absorption 
identity

^n\ f  n — V"
k\t) =  " v t - i

Since n and k are both odd, and once again, since multiplication of an integer by 
an odd number does not change the parity, it follows that

n — 1
mod 2

Kk -  1,

Since n — 1 and k — 1 are both even, it follows from Case 2 that

''n — 1\ f [ n/

and, hence, that

k -  1
mod 2

mod 2

Case 4 — n odd and k even: The symmetry identity implies that

< - ‘ >U =

It follows from the absorption identity

and n
n — 1 

n — k — 1
n — 1

(n — k)
— k

that
(n — k)

n — 1 
- k - 1

n — 1

Since n — k and n are both odd, we have

n\ _  fn  — 1 
k )  =  \ k

Applying Case 2 to the right side, we obtain

n\ _  f [ ( n  — 
k ,

mod 2

mod 2

Since n is odd, the upper index [(n — 1)/2J equals [r

A simple algorithm to decide the parity of a binomial coefficient is to apply 
Theorem 4.1.10 iteratively, either until the upper index is even and the lower index 
odd or until the lower index is 0.
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=  0 mod 2

Example 4.1.5: Here are both possible types o f termination.

In order to see why the number of odd binary coefficients in a row of Pascal’s triangle 
is a power of 2, we observe that, in binary numbers, the integer operation

is achieved by erasing the rightmost bit. We observe also that Case 1 of Theorem 
4.1.10, in which n is even and k is odd, is discernible by a 0-bit at the right end of 
the binary numeral for n and a 1-bit at the right end of the binary numeral for k. If 
the parity algorithm uses binary numerals, then iterative erasure of the rightmost 
bits is not actually necessary. It is possible, instead, to align both numerals flush 
right and to scan to see whether there is a 0-bit above a 1-bit.

Example 4.1.5, continued: In scanning the aligned binary numerals

165io =  10 100 10 12 
93io =  0 1 0 1 1 1 0 1 2

leftward from the right end, the first occurrence of a 0 in the upper index occurs 
at the 21-bit. Since there is also a 0-bit immediately below it, the scan continues. 
The next 0 in the upper index occurs at the 23-bit, and there is a 1-bit below it, so 
the scan terminates and the decision is even parity. In scanning the aligned binary 
numerals

75io =  I O O I O I I 2 

1110 =  O O O I O I I 2

one observes that there is a 0-bit beneath every 0-bit in the upper index, so the 
decision is odd parity.

Proposition 4.1.11. The number o f  odd binary coefficients in row n o f  Pascal’s 
triangle is 2 W, where w is the number o f  1 -bits in the binary representation o f  n.

Proof: For the binomial coefficient Q ) to be odd, there must be a 0 at each bit 
in the binary numeral for k for which there is a 0 at the corresponding bit of the 
binary numeral for n. However, if there is a 1 at a bit of the binary numeral for n, 
there may be either a 0 or a 1 at the corresponding bit of the binary numeral for k. 
If there are w 1-bits for n, then there are 2W values for k that satisfy the rule for 
the 0-bits. <C>

Corollary 4.1.12. I f  the integer n is o f  the form 2 r — 1, then every binomial 
coefficient in row n o f  Pascal’s triangle is odd.

Proof: There are no 0-bits in the binary representation of 2r — 1. <C>
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EXERCISES for Section 4.1

In each o f the Exercises 4.1.1 through 4-l-4> expand the given binomial coefficient 
and evaluate the result.

,3 ,
4.1.1 4.1.2

4.1.3
- 3

4.1.4

In each o f the Exercises 4-1-5 through 4-1-8, expand the given binomial coefficient 
as a polynomial m n.

4.1.5 I 1 4.1.6 ' 'n

4.1.7

n
n — 2

s j n +  2 
n — 2

4.1.8

In each o f the Exercises 4-1-9 through 4-1-20, prove the given binomial coefficient 
identity, where

4.1.9s ( " - » • ) ( " ] =  1 4.1.10
2n\ In '
2 H  2, l + » -

4.1.11 y ,
2 / 2 n

4-L13 u ) = n2
n — 1 2 n

k J \k +  1J \n —  1

4 ' L 1 2  pWJ ^

4-L16 E ( * ) ( - 1)fc = (n = °)

4.1.17s 5 3 ( - l ) ^ ( ” ) = - ( n = l )  4.1.18 J ] -
1 (n 1

k +  1  \k J n +  1

4.1.19 E  ( - I ) * - 1 Q  = l f o r n >  0 4.1.20 £  ( - i f ’- 1 ±  ( ” )  =  Hn

4.1.21 Prove that Pascal’s recursion for binomial coefficients holds, even when 
the upper index is not an integer. That is,

x — 1  

r
x — 1  

r — 1

4.1.22s Prove that the absorption identity for binomial coefficients holds, even 
when the upper index is not an integer. That is,

x\ j x — 1

r j  \ r — 1
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In each o f the Exercises 4.1.23 through 4-1-30, calculate the parity o f the given 
binomial coefficient.

4.1.23 W  4.1.24s H  4.1.25 (™) 4.1.26 f 10°
9 V 48 /  V 9 V 48

4.1.27 / 1728\ „ 1 /6 5 6 l\ „ 1 / 19937\ „ 1 /5678\ 
4 .1.28 4 .1.29 4 .1.30 

v 323 y \I728J \ l l2 l3 j  \I2MJ

4.1.31 Derive a formula for the proportion of odd binomial coefficients in column

4.1.32 Prove that the sequence of parities that occurs in any column of Pascal’s

4.2 BINOMIAL INVERSION OPERATION

This section develops an incremental technique used with binomial coefficients, 
called binomial inversion. Its main application in this section is within a solution 
of the derangement recurrence, which was introduced in §2.1 and further explored 
in Example 3.6.5. In the course of developing binomial inversion and applying it, 
there is use of several of the binomial coefficient identities of §4.1.

DEFINITION: The tra n sform  o f the sequence ( f „ )  under bin om ial in version  is
the sequence (g„)  with

A characteristic property of anything mathematical that is correctly called a du­
a lity  o p era tio n  is that a second application of the operation restores the original 
object. Theorem 4.2.1 confirms that a transformation called binomial inversion of 
sequences has this property.

T h eorem  4.2 .1 . Let ( / „ )  be a sequence and (gn) its transform under binomial 
inversion. Then, for all n >  0,

f "  =  (4 -2-2) 

In other words, retransformation restores the original sequence ( f n ) -

P ro o f: Start at the right side of Eq. (4.2.2) and substitute the inversion formula 
o f Eq. (4.2.1) for gj.
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=  E E L - M ' M " ' ' *  (4-2 -3)

Exchanging the order of summation is useful here.

n\ f j

Applying the subset-of-a-subset identity (Proposition 4.1.8) reduces the number of 
occurrences of the summation index j .

n\ ( n — i

Then factor to simplify the inner summation.

= ± ( : V <  * “ <-»)* = »

Substitute k =  j  — i.

Compress the inner summation to an exponentiated binomial.

Using the Iverson truth function (i =  n) leads to completion of the proof.

n

Observe at Eq. (4.2.4) above that the summation index j  occurs twice in the sum­
mand within a binomial coefficient, once as an upper index, and once as a lower 
index. In such circumstances, as seen here, the subset-of-a-subset identity often fa­
cilitates a transformation that reduces the number of occurrences of the summation 
index in the summand.

Some Basic Examples of Inversions
The first three examples here of inversion are introductory, to show how inver­

sion works.

Example 4.2.1: The constant sequence
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has the inversion

{1~ x)n L i
1 if n =  0 

.0 if n >  0

1 0 0 0 - - -

More generally, the sequence

{fn

has the inversion

{dn =  c 0 0 0 •••

Example 4.2.2: The natural number sequence

(fn) = 0 1 2  3 
is inverted as follows.

9n

(4.2.5)

Apply the absorption identity to eliminate an occurrence of the index j.

—  V

Substitute j  =  i +  1 to align the binomial coefficient with the summation limits.
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=> { g n )  =  o - i  o o
In Eq. (4.2.5) of this example, the summation index j  occurs within a binomial 
coefficient and also as a multiplier. The absorption identity is the usual binomial 
identity by which the number of occurrences of the index variable is reduced in such 
a circumstance.

The sequence 0 1 2 3 • • • can also be represented as ( ( " ) ) .  Accordingly, 
it should be unsurprising if calculating the inversion of the sequence (") is similar 
to Example 4.2.2.

E xam ple  4 .2 .3 : The binomial coefficient sequence

At Eq. (4.2.6), the summand has two occurrences of the summation index j .  This 
time, both are within different binomial coefficients, with one occurrence as an upper

(4.2.6)

(—l ) n if n =  r 
0 if n ^  r
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index and the other as a lower index. The subset-of-a-subset identity is frequently 
used to eliminate one of the occurrences in such summands, thereby simplifying the 
sum.

Derangements
Of course, the point of learning how to invert sequences is not just to pose a 

new class of computational exercises. Binomial inversion has numerous extrinsic 
applications.

E xam ple  4 .2.4: Every permutation of the integer interval [1 : n\ can be obtained 
by choosing r numbers from [1 : n\ and deranging them. Accordingly, if D j is a 
derangement number, then

■! - ' >  + (;>■ + G) *+ ■+ O
It follows that the sequence

has the binomial inversion

/ „  =  ( - 1  )"£>„

9 n  =  n\

By the duality property of binomial inversion, we have

J 9 j

which implies that

J 9 ja , =  ( - i r g Q i - i i

=  y

n\ 1! 2! 3!  ̂  ̂ nl n -too

Thus, the proportion of derangements among the permutations of a set of n objects 
tends to e-1 as n gets larger, a result that we previously derived with inclusion- 
exclusion in Example 3.6.5. This illustrates again our perspective that it is helpful 
to have a variety of mathematical tools available for the solution of a given problem.

  



Section 4.2 Binomial Inversion Operation 237

More Examples of Inversions
The summation techniques presented in this section for transforming sequences 

are widely applicable. The next section of this chapter applies these methods to 
computations in probability and statistics. We complete the present section with 
two more examples that combine the method of binomial inversion with the binomial 
identities derived previously.

E xam ple  4 .2 .5 : When two factors of a summand are both binomial coefficients 
that contain the index of summation as a lower index, the key to simplification is 
to set up an application of the Vandermonde convolution, which would simplify the 
summand. The sequence

E xam ple  4 .2 .6 : Sometimes there is a quotient of two binomial coefficients both 
of which contain the index of summation. The sequence

fn

has as its transform under binomial inversion the sequence
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Here we apply the subset-of-a-subset identity

,«) ( i )  G ) ( w - j
thereby obtaining

n

N\ ( n
n J \]

- 1  n

E

N - j  
n - j

n - j

which can be simplified using the diagonal-sum identity

N\ 1 fN  +  1
n
N  +  1 

N  — n +  1

EXERCISES for Section 4.2

In each o f the Exercises 4.2.1 through 4-2.18, transform the given sequence with 
binomial inversion.
4.2.1
4.2.3
4.2.5s
4.2.7
4.2.9
4.2.11
4.2.13s
4.2.15
4.2.17

1

f n =  4 n - — 2n +  3

4.2.2
4.2.4
4.2.6
4.2.8
4.2.10
4.2.12s
4.2.14
4.2.16
4.2.18

1 - 1

f n =  4 n 2 — 2n +  3
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4.3 APPLICATIONS TO STATISTICS

Binomial coefficients frequently occur within summands of sums that arise 
in probability and statistics. Identities derived in §4.1 are now used to simplify 
some of these summation expressions. We continue to seek to reduce the number 
o f occurrences of the index of summation within the summand. There are a few 
additional rules of thumb to be learned here and used.

Probability and Random Variables
Some basic definitions* are now recalled from elementary statistics and prob­

ability. The pace of the exposition here presumes that the reader has some prior 
familiarity with these topics.

DEFINITION: A discrete probability space is a pair (£1, Pr) as follows.
• The discrete set £1 is called a sample space.

• A subset of £1 is called an event.

• The set 2n of all subsets of £1 is called the event space.

• The function Pr : 2n —y M is called a probability measure, and it satisfies 
the following axioms.

probability o f  the event A.

3. If the events A s, for s £ 5, are mutually exclusive subsets of £1, then

s£S s£S

DEFINITION: A random variable X  on a sample space is a real-valued function. 
It is called a discrete random variable if the set of values it takes is finite or 
countably infinite.

NOTATION: Let X  : SI —> M be a discrete random variable on a sample space SI with 
probability measure Pr. For i £ l ,  the probability of the set {w £ SI | X ( uj) =  x }

Mean and Variance
The expected value o f a random variable, also called the mean, is commonly 

described as a weighted average. This is quite distinct from various informal notions 
o f a typical outcome, since the expected value might never occur. It is simply an 
average of what could occur. The variance and the standard deviation are measures

• E.g., see Devore, Probability and Statistics, 6th Edition, Brooks-Cole, 2004.
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of dispersion from the mean. If they are large, then values relatively far from the 
mean are more likely to occur than in a distribution with the same mean, but in 
which the variance and standard deviation are small.

DEFINITION: Let X  : £1 —> M be a discrete random variable on a sample space £1 
with probability measure Pr, and let D  be the set of values that X  takes. The 
expected value or mean o f  the random variable X ,  denoted E ( X )  or f ix,  is 
the sum

xeD

DEFINITION: Let X  : SI —> M be a discrete random variable on a sample space SI 
with probability measure Pr, and let D  be the set of values that X  takes. The
variance o f  the random variable X , denoted Jx> the

>x
xeD

• Pr(*) = (4.3.2)

DEFINITION: Let X  : SI —> M be a discrete random variable. The standard devi­
ation o f  the random variable X,  denoted S D( X)  or ax ,  is the square root of 
the variance.

(4.3.3)

NOTATION: When it is clear from context to which random variable X  they pertain, 
the subscripts for mean and variance may be dropped, so that they are denoted f i  

and a2.

DEFINITION: In calculating the mean o f  a list o f  numbers  or the variance o f  a
list o f  numbers, one regards each element of the list as equally likely.

P ro p o s it io n  4 .3 .1 . Let X  : SI —> M be a discrete random variable. Then

Jx (4.3.4)

P ro o f: Let D  be the set of values taken by X . We proceed straightforwardly, 
starting from the Equation (4.3.2).

xeD

5 3  (* 2 — +  A*x) Pr(*)
xeD

5 3  x 2 P r(a :) -  5 3  2 * /u x P r ( * )  +  5 3  A
xeD xeD

-  2^ x  ■ 5 3  x F i (x ) + v x  ■ 5 3

xeD

xeD

"2) -  2^ x  ■ /J j +  f*x ' 1

xeD
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Binomial Distribution
The prototypical experiment whose outcomes have a binomial distribution is a 

sequence of n tosses of a coin. Taking one of the possible outcomes of an individual 
toss, say heads, to be a “success” , what is binomially distributed is the number of 
heads. We now apply the binomial coefficient identities of §4.1 to the calculation of 
the mean and variance of the binomial distribution.

DEFINITION: Given an experiment with binary outcome (success or failure) that is 
to be performed n times, the bin om ial ran d om  variable X  is the number of 
successes. Suppose that the probability of success is p, and that the n trials are 
independent. Then

The sample space is the sequence of outcomes of the n trials. An event is a set of 
possible outcomes.

P ro p o s it io n  4 .3 .2 . The expected value o f  a binomial random variable X  on n 
trials, each with probability p o f  success, is

We substitute the probability of a binomial random variable given by Eq. (4.3.5)

Absorption eliminates one of the four occurrences of the summation index j

(4.3.5)

np

n

J - K J  

't — u 

np
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P ro p o s it io n  4 .3 .3 . The variance o f  a binomial random variable X  on n trials, 
each with probability p o f  success, is

P ro o f: Once again, start at Eq. (4.3.1).

There are once again four occurrences of the index j  of summation. Applying 
absorption reduces the exponent of j  in one occurrence, a reasonable step.

=  np j h  j  ( n _  ^  pj : (1 - p ) n - j

Substitute i — j — 1 to align the indices of the binomial coefficient with the upper 
and lower limits of the summation, another reasonable step.

=  n p J 2 i  1 +  0  { ^  P®(1 - P ) n_1“ 8

Splitting the sum like this helps here

n ~ 1 / „  _  i\ n ~ 1 / „  _  i\
= nP'E{ i ) P ^ l - P f - 1-1 + npJ2i[ {

because the summation in the first part is recognizable as a binomial expansion.

=  np +  n p 'Y ,i (^  • ^P*(l  — p)n_1_*

Applying absorption again now eliminates one occurrence of the summation index.
n  '  / n  _  2\ . 

np +  n p 'Y jin  — 1)1 . 1 ) p * ( l — p)r
, ' - n  V * 1 /

Substituting k = i — 1 realigns the lower index of the binomial coefficient with the 
lower limit of the summation.

= np + n(n — l)p2' Y , (  , )̂pk(^~p) ’ 
f c - n  V  k J

=  np +  n(n — 1 )p  =  np +  n p — np
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By Propositions 4.3.1 and 4.3.2,

Unbiased Estimator of the Mean
An intuitive statistical approach to estimating the proportion of persons in 

a population of large size N  who have a given characteristic (such as enjoying 
recreational mathematics) is to take a random sample and to use the proportion 
in that sample to estimate the proportion in the general population. We will use 
binomial coefficient identities in confirming the validity of this approach.

DEFINITION: An estimator 6  o f a statistical characteristic 6  o f a population is said 
to be an u n biased  es tim a to r  if the expected value E ( 6 ) for a random sample 
equals 9.

P ro p o s it io n  4 .3.4. The sample proportion is an unbiased estimator o f  the pro­
portion o f  individuals in a general population that have a given characteristic.

P ro o f: Suppose that in a population of size N  exactly M  individuals have a 
given trait. A sample of size n is taken. The random variables of interest are the 
number m of persons with that trait and the proportion

n

of persons with the trait. The total number of ways to choose a sample of size n is

The number of ways that a sample of size n could have exactly j  persons with the 
prescribed trait is the product

of the number of choices of j  individuals from the population of size M  with the 
trait and the number of choices of the remaining n — j  individuals from the N  — M  
persons who do not have the trait. Thus,
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'M \ (N  - M
n -  ]

1 (N
n \ n E ;

M \ (N  -  M  
j ) \ n - j

Apply the absorption identity to eliminate one occurrence of the index of summa­
tion.

-1 n

x >
1 ( N  
n \ n

n \n

M -  1j -  M

n -  j

Now use the Vandermonde convolution.

M  ( N  
n \n 

M  n\ 
n N — (n — 1)!

N  - I '  

n — 1

M

Thus, the intuitive method of estimating the mean is unbiased.

Unbiased Estimator of the Variance
Let I  be a random variable on a space £1. The identically distributed random 

variables

X 1 x 2 . . .  x n

are the values of X  on n samples from £1, with sample mean X . Statisticians use 
the estimator

n — I n — 1

with n — 1 in the denominator (rather than n), for the variance. This is explained 
by the next proposition.
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P ro p o s it io n  4 .3 .5 . The sample statistic

E x r -  n - 1 ( E x i)
n — 1  n — 1

is a 11 unbiased estimator o f  the variance o f  the random variable X .

245

(4.3.6)

P ro o f: E  (cr2) =
E ( j : x f )  E [ ( Z X , ) 2}

n — 1 i(n — 1)

n — 1 n[n — 1) 4 ^  ~ “x

Split the double summation into two parts.

1
n — 1 E -

i
n(n - l ) f rE -

n(n — 1)

1 1

n — 1  n(n — 1) 

1 n n

n(n — 1)

Both sums are resolvable.
1
n

i(n — 1) 
i(n — 1)

Thus, division by n — 1 leads to an unbiased estimate.

E X E R C IS E S  fo r  S ection  4.3

In Exercises 4-3.1 through 4-3.3, a fair die is to be rolled 20 times.

4.3.1 What is the probability of obtaining exactly four sixes?
4.3.2 What is the expected number of sixes?
4.3.3 What is the standard deviation of the number of sixes?
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space with N  objects, o f which M  are successes. A sample of n objects is to be 
chosen, without replacement. The random variable X  is the number of successes in 
the sample.

In Exercises 4-3.4 through 4-3.7, give an algebraic formula for each o f the following 
properties o f a hypergeometric distribution.

4.3.4
4.3.6

4.3.5
4.3.7s

In Exercises 4-3-8 through 4-3-10, 10 cards are drawn without replacement from a 
deck o f 2 0  playing cards.

4.3.8 What is the probability of obtaining exactly 3 face cards?
4.3.9 What is the expected number of face cards?
4.3.10 What is the standard deviation of the number of face cards?

DEFINITION: The context for a n eg a tiv e  b in om ial d is tr ib u tion  is an infinite 
sequence of trials, each resulting in a success or a failure, such that success occurs 
on each trial with probability p. The experiment continues until r successes have 
been observed. The random variable X  is the number of trials that precede the rth 
success.

In Exercises 4-3.11 through 4-3.14, give an algebraic formula for each o f the follow­
ing properties o f a negative binomial distribution.

4.3.11
4.3.13s

4.3.12
4.3.14s

In Exercises 4-3.15 through 4-3.17, a fair die is to be rolled until the number six has 
occurred 4  times.

4.3.15 What is the probability of exactly 20 rolls before the rth six?
4.3.16 What is the expected number of rolls?
4.3.17 What is the standard deviation of the number of rolls?

DEFINITION: A random variable X  has a P oisson  d is tr ib u tion  with parameter
A (A >  0) if

XJ

j!

In Exercises 4-3.18 through 4-3.20, give an algebraic formula for each o f the follow­
ing properties o f a Poisson distribution.

4.3.18s 4.3.19 4.3.20s
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4.4 THE CATALAN RECURRENCE

The Catalan numbers c„, named for Eugene Catalan, are used to count many 
different kinds of combinatorial objects. Two that are prominent in computer sci­
ence applications are binary trees and nestings of parentheses. Another is subdiag­
onal paths.

REVIEW FROM §1.2:
• The Catalan sequence { cn}  is defined by the recurrence

co =  1; initial value
cn =  c0cn_ i +  Cicn_ 2  +  • • • +  cn_ ic 0 for n >  1 

Surprisingly, perhaps, the closed formula for cn is a multiple of a binomial coefficient.

Binary Trees
In graph theory, the set 7  ̂ o f binary trees can be defined recursively:

• The empty tree $  is in the set 7  ̂•

• The tree K*  with a single vertex designated as the root is in the set 7^.
• If T  E 7^, and if v is a vertex of the tree T, then each of the following rooted 

trees is in the set 7  ̂•
i. The tree obtained by adjoining a new vertex to v, called the left-child of 

vertex v. (A vertex has at most one left-child.)
ii. The tree obtained by adjoining a new vertex to v, called the right-child of 

vertex v. (A vertex has at most one right-child.)

Figure 4.4.1 illustrates the binary trees with 0, 1, 2, and 3 vertices. It is easy enough 
to verify for these small cases that the Catalan number cn is the number of binary 
trees with n vertices.

Figure 4.4.1 The smallest binary trees.

  



248 Chapter 4 Binomial Coefficients 

Remark: In computer science, each child of a vertex of a binary tree is designated 
either as a left-child or a right-child, even if there is only one child. The importance 
of this designation occurs in applications such as binary search trees and priority 
trees (see [GrYe2006]). 

DEFINITION: The left subtree of a binary tree T is the subtree whose root is the 
left-child of the root of T. The right subtree of a binary tree T is the subtree 
whose root is the right-child of the root of T. 

P r o p o s i t i o n 4 .4 .1 . For n > 0, the number of n-vertex binary trees equals the 
Catalan number cn. 

Proof: By induction on the number n of vertices. 

BASIS: Clearly, Co = 1 and c\ = 1 are the numbers of binary trees with 0 and 1 
vertices, respectively. 

IND HYP: Let n > 0. Suppose for all integers k with 0 < k < n, tha t c¡, is the 
number of binary trees with k vertices. 

IND STEP: Suppose that a binary tree has n vertices. For k = 0, 1, . . ., n — 1, the 
number of possible left subtrees with k vertices is c^, by the induction hypothesis. 
Of course, the right subtree would then have n — k — 1 vertices, so that there would 
be a total number of n vertices within the union of the two subtrees and the root, 
as depicted in Figure 4.4.2. 

Figure 4.4.2 J o i n i n g left a n d right s u b t r e e s t o a root . 

The induction hypothesis also implies in this circumstance, therefore, tha t the num­
ber of possible right subtrees is cn_k-i- Hence, by the rule of product, there are 
CfeCn_fe_i n-vertex binary trees with k vertices in the left subtree. Accordingly, the 
total number of n-vertex binary trees is given by the sum 

Nested Parentheses 

The set V of well-nested strings of parentheses is defined recursively (as 
depicted in Figure 4.4.3 below): 
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• The empty string A is in V .

• If Pi , P 0 E V,  then the string (Pi)P 0 is in V. That is, we insert the string Pi 
inside a new pair and then juxtapose the string P 0 at the right.

In listing the well-nested strings with 0, 1, 2, and 3 pairs of parentheses, the new 
pair specified by the recursion rule above is depicted by brackets.

0 pairs A =  empty string Co =  1
1 pair [ ] ci =  l
2 pairs [ ](), [()] c2 =  2
3 Pairs [ ] ( ) ( ) , [ ] ( ( ) ) , [ ( ) ] ( ) , [ ( ) ( ) ] , [ ( ( ) ) ]  c3 =  5

P ro p o s it io n  4 .4.2. For n >  0, the number o f  well-nested strings o f  parentheses 
equals the Catalan number cn .

P ro o f: This proof follows the exact same lines as the proof of Proposition 4.4.1. 
The new pair of parentheses with well-nested substrings inside and outside in the 
recursive construction here corresponds to the new root with left and right binary 
subtrees there. <C>

Subdiagonal Paths
DEFINITION: A northeastward path or NE-path  in the array [0 : n\ x [0 : n\ 
is a path whose directed edges are each one unit in length and lead northward or 
eastward.

DEFINITION: A subdiagonal path from (0,0) to (n,n)  in [0 : n\ x [0 : n\ is a 
NE-path along which each point (x, y) satisfies the inequality x >  y.

The inequality in the definition means, as illustrated in Figure 4.4.3, that the path 
never crosses above the longest northeast diagonal.

Figure4.4.3 A  su bd iagon a l p ath  fro m  (0,0) to  (n,n).

P ro p o s it io n  4 .4 .3 . For n >  0, the number o f  subdiagonal paths from (0,0) to 
(n , n) in the array [0 : n\ x [0 : n\ equals the Catalan number cn.

P ro o f: In every prefix of a well-nested string of parentheses, the number of left 
parentheses is greater than or equal to the number of right parentheses, and the
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total number of left parentheses equals the total number of right parentheses. Both 
these facts are provable by an induction on the length of the string. It follows that 
the well-nested strings of n pairs of parentheses are in bijective correspondence with 
the subdiagonal paths in the array [0 : n] x [0 : n\. <) 

Solving the Catalan Recurrence 
Of the many methods of solving the Catalan recurrence, the one now presented, 

based on work of D. Andre in 1878, is probably the simplest to follow. 

T h e o r e m 4.4 .4 . T i e Catalan recurrence 

Co = 1; initial value 

cn = c 0 c n _i + c i c n _ 2 + • • • + c n _ ic 0 for n > 1 

has the solution 

Proof: Consider the set S'NE of all NE paths from (0, 0 to (n, n) in [0 : n] x [0 : n\. 
Suppose that each step eastward on an NE path is represented by the letter E and 
that each step northward is represented by the letter N. For instance, the path in 
Figure 4.4.3 is represented by the string 

ENEENENNEN 

This correspondence is evidently a bijection between the set S'NE of NE-paths and 
the set of strings in E and N of length 2n with n occurrences of each letter. The 
number of ways to choose the n locations for the N's in such a string is 

The bijection establishes that this is the total number of NE paths. By Proposition 
4.4.3, the Catalan number cn equals the number of subdiagonal paths in the array 
[0 : n] x [0 : n\. Our approach is to subtract from this total the number of strings 
that do not represent subdiagonal paths. 

Observe that a path is not subdiagonal if and only if, at some point, the number 
of northward steps has exceeded the number of eastward steps. Accordingly, the 
corresponding string 

would have a prefix in which the number of N's exceeds the number of E's. If 2 j + 1 
is the smallest index at which this occurs, then the number of E's in the prefix 

is j and the number of N's is j + 1. 
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It follows that in the suffix
s2j + 2S2j+3 • • • S'jn

there are n — j  E ’s and n — j  — 1 N ’s. Suppose that in the suffix, each E is replaced 
by an N and each N by an E. This is called a r e f l e c t i o n  o f  t h e  s u b p a t h  or a 
r e f l e c t i o n  o f  t h e  s u b s t r i n g .  The resulting string has n — 1 E ’s and n + 1  N ’s. It 
represents an NE path in [0 : n — 1] x [0 : n +  1], and there is a bijection between 
the set of non-subdiagonal paths from (0, 0) to (n, n) in [0 : n\ x [0 : n\ and the set 
o f NE paths from(0, 0) to (n — 1, n +  1) in [0 : n — 1] x [0 : n +  1], whose cardinality 
is

2 n 

\ n  ~  1/

Thus, the number of subdiagonal paths from (0, 0) to (n, n) in [0 : n\ x [0 : n\ is 

^2n\ (  2n \ (2n)^—!-(n +  1) (2n)^—!-n  
. n — 1/

1
n!
2 n

n +  1 V n

, 1 /  6 
Example 4.4.1: C3 =  - I  

Example 4.4.2: C4 =

Generalized Binomial Theorem
An alternative proof of the solution to the Catalan recurrence uses the gener­

alized binomial theorem.

NOTATION: The kth derivative of a function f ( x )  may be denoted

DEFINITION: An analytic function is a function f ( x )  with an nth derivative for every 
n >  0.

Theorem 4.4.5 (Generalized Binomial Theorem). For any real number s, 
the exponentiated binomial (1 +  x )s has the power series

(1

1 2
“  +  T T  'X +  2! ' x

Proof: For f ( x )  =  (1 +  x ) s , observe that
kl

— s ■ I s-1 — s -

/ =  s~(l +  x ) s _ g2 _ ^s- 2  _  g2
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By induction, it can be proved that

Recall that the Maclaurin series expansion* of an analytic function f ( x )  is

/ ( * )  =  £ ■ k\

f f
0 ! 1! 2 !

Thus, the substitution /^ ( O )  =  s— yields the conclusion.

E xam ple  4 .4 .3 : In the solution of the Catalan recurrence below, we use this 
generalized binomial expansion.

/
(1

1! 2 !

Alternative Proof of the Catalan Formula
An alternative proof of the solution

_  1 / 2 n \  _  1 (2 n)! 
n n +  1 \ n J n +  1 n!n!

to the Catalan recurrence provides a traditional illustration of the power of the 
method of generating functions in solving recurrences. We define the generating 
function

OO

and begin as in §2.2.

S tep  la . Multiply both sides of the Catalan recursion by zn.

n — 1

CnZ" =  Y l CkCn~k~lZn (4-4.!)

S tep  l b .  Sum both sides of Eq. (4.4.1) over the same range of values, as large as 
possible.

oo oo n — 1

=  5 3  Y l CkCn~k~lZn (4.4.2)

This is equivalent to the Taylor series expansion at X  — 0.
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Step 2. Replace the infinite sum on the left of Eq. (4.4.2) with a finite sum involvir 
the generating function C'(z).

oo n — 1

(̂ ■) Cq — ^   ̂ ^   ̂CkCn — k — 1 %

Exchange the order of summation.

Substitute j  =  n — k — 1.

oo oo
— ^  ̂ ^   ̂ C&̂ n —& —1̂

oo oo
—  ̂^   ̂ k̂ % ^   ̂ n̂ —& —1̂

oo oo

=  z J 2 Ckzk E ci zJ

OO

(4.4.3)

Step 3. Solve for C'(z) in Eq. (4.4.3) by the quadratic formula.

2 z
(4.4.4)

Step 4. To solve for the value of the general Catalan number c„,  we apply the 
Generalized Binomial Theorem, as in Example 4.4.3, to Eq. (4.4.4).

1!

oo / 1 \n

= 1 + E k f (  n -

2 !

Since every term of this series except the first is signed negative, the appropriate 
choice is the negative root. That is,

2 n! ^2z
(4.4.5)
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To sim plify (4.4.5), we expand part o f the summand

n\ ( 2 )  n\ ' 2 ' 2 ' 2

_ 1 ( - 1 ) ’ "

— (2n -  3)

n\ 2n n  2  j

1 ( - l ) n_1 (2 n — 2)!

n! 2 n

1  ( - i r

2n~1(n -  1)!
_  (—l ) n (2n — 2)!

2 2n~1(n — l)!n !

and we substitute the result (4.4.6) back into Eq. (4.4.5), to obtain

_  - i A  (—l ) n“ 1(2n -  2) ! ( 
~  ^ > 7  2 . ^ 1

2 z ^
^  OO

22n-1i(n - 1 ):\n\

( - I ) " ' ■1(2n - 2)!
22n-1i(n - 1 ):\n\

( - I ) " ' ■1 (2 n - 2)!
2 z 2 2n~1(n — l)!n!

(—l ) n2

(2« -  2)!_^„_1
—J (n — l)!n!

_ 1 ( 2 n S ] . .

1 ( 2 n -  2
n \ n — 1

i ! +  l \  n

This yields the conclusion
1 /2 n  ̂

n +  1 V n ,

(4.4.6)
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EXERCISES for Section 4.4

The point (x, y) m the infinite northeast quadrant M xH  represents x steps eastward 
and y steps northward from the origin (0,0).  All o f the exercises for this section 
are concerned with counting NE-paths to various points (x,y) .  Let q(x,y)  be the 
number o f subdiagonal paths from  (0, 0) to (x,y) .

4.4.1s Prove that q(n,n ) =  cn, the nth Catalan number.
4.4.2 Prove that q(x, y) satisfies the following recurrence.

qx,o =  1 for x >  0 
<ix,y =  0 for y >  x 
qx ,y =  qx,y -l +  <lx-l ,y  for y >  1

4.4.3 Give a formula in Catalan numbers for the value of q(n, n — 1).
4.4.4s Give a formula in Catalan numbers for the value of q(n, n — 2).
4.4.5 Give a formula in Catalan numbers for the value of q(n, n — 3).

4.4.6 Give a formula in Catalan numbers for the value of q(n, n — 4).

4.4.7 Count the number of subdiagonal paths to (n,n)  such that between the 
first E and the final N, the number of E ’s exceeds the number of N ’s.
4.4.8 Count the number of subdiagonal paths to (n, n) that touch the diagonal 
at least once between the origin and (n, n).

4.4.9s Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by more than 1.
4.4.10 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by at most 1.
4.4.11 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by more than 2.
4.4.12 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by at most 2.

4.4.13 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by more than k.

4.4.14 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s exceeds the number of E ’s by at most k.

4.4.15s Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s and the number of E ’s differ by more than k, where k >  n /2.
4.4.16 Count the number of NE-paths to (n,n),  such that in every prefix, the 
number of N ’s and the number of E ’s differ by at most k, where k >  n /2 .

4.4.17 A fair coin is tossed 2n times. What is the probability that the number 
of heads equals the number of tails at the end of the sequence, and never exceeds 
it before then?
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GLOSSARY

and arithmetic operations.
analytic function: a real function that has an nth derivative for all n >  0.
binary tree: a rooted tree such that each vertex has a possible left-child, a 

possible right-child, and no other children.
binomial coefficient: formally, a coefficient of x k in the expansion of (1 +  x ) n; 

its value is the same as (^), the combination coefficient.

binomial inversion: a transformation on sequences; it is its own inverse. 
Catalan sequence: the sequence defined by the recurrence 

co =  l; initial value
cn =  c0cn_i  +  Cicn _ 2  +  • • • +  cn_ i c 0 for n >  1

combination coefficient Q)  : the number of ways to choose a subset of k elements 
from a set of size n.

combinatorial proof: a proof achieved by exhibiting a model in which two 
expressions count the same thing.

: a permutation that leaves no objects fixed.
number D n\ the number of possible derangements of n objects, 

event for a probability measure: a subset of the sample space, 
event space for a probability measure: the set of all subsets of the sample space, 

expected value of a discrete random variable X : a formal model for a proba-

integer interval [1 : n\: the set {1, 2, . . ., n}.

left subtree of a vertex v o f a binary tree: the left child of v and all its descen­
dants.

mean of a list of numbers: the sum, divided by the length of the list, 

mean of a random variable: synonym for expected value.
Pascal’s recurrence: the recurrence

^  =  1 for all n >  0 =  0 for all k >  1

n\ f  n — 1\ f n  — 1\ „ ,
k) = U - i M  * 1

Pascal’s triangle: a triangle formed from the non-zero binomial coefficients.
probability measure: a function on an event space that satisfies certain axioms.
random variable: a variable on a sample space with a probability measure.
right subtree of a vertex v o f a binary tree: the right child of v and all its 

descendants.
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sample space: a set with a probability measure on it.
standard deviation of a random variable: the square root of the variance.
unbiased estimator of a statistic: a statistic that when applied to a sample has 

an expected value equal to the true value for the entire sample space.

upper bound for a subset S o f a poset: an element that dominates every element 
of S.

variance: a measure of the distribution of values of a random variable or of some 
characteristic of a sample of data.

well-nested strings of parentheses: strings with as many right parentheses 
as left, such that in every prefix, the number of left parentheses is at least as

  



Chapter

Partitions and Permutations
5.1 Stirling Subset Numbers
5.2 Stirling Cycle Numbers
5.3 Inversions and Ascents
5.4 Derangements
5.5 Exponential Generating Functions
5.6 Posets and Lattices

The principal focus of Chapter 5 is counting the partitions and permutations 
of a set. An immediate connection between the partitions and the permutations 
of a set is that a permutation partitions the objects according to their cycles in 
its disjoint cycle form. This connection is of great importance within the algebraic 
counting methods of Chapter 9. In this chapter, we see that the two Stirling re­
cursions, one used to count partitions and the other to count permutations, are 
both quite similar to Pascal’s recursion for combination coefficients. In establishing 
Pascal’s recursion and other identities for binomial coefficients, we have seen that 
it is generally possible to proceed from an algebraic expression involving factorials 
and/or falling powers. The virtue of the combinatorial proofs for such identities is 
the intuitive appeal they embody, which stems from their pertaining closely to the 
identification of binomial coefficients with counting selections from a set. In estab­
lishing the Stirling recursion and various other identities for counting the partitions 
and permutations of a set, virtue (of intuitive modeling) becomes a necessity, since 
the Stirling numbers have no closed algebraic formulas. A secondary topic of this 
chapter is partially ordered sets, known familiarly as posets, some of which have 
sufficient structure to be what are called lattices. Some of the most interesting 
lattices arise in connection with partitions and permutations, and a final section of 
this chapter considers various posets encountered in our explorations of counting 
methods from the perspective of their structure as lattices.

259
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5.1 STIRLING SUBSET NUMBERS

Stirling subset numbers count the number of ways that a set can be partitioned. 
They satisfy a recurrence similar to Pascal’s recurrence for binomial coefficients,

binomial coefficients in §4.1. We now recall some definitions and an inclusion- 
exclusion formula for Stirling numbers.

REVIEW FROM §1.6:
• A partition of a set S is a family o f mutually disjoint non-empty subsets whose 

union is S.

• The Stirling subset num ber m  ■» the number of ways to partition a set 
o f n distinct objects into k non-empty non-distinct cells.

REVIEW FROM §3.6:
• T h eorem  3.6.4. Let n and H e  a pair of non-negative integers. Then

Our immediate concern is careful attention to three properties within the defini­
tion of a partition: non-distinctness of the cells, non-emptiness of the cells, and 
distinctness of the objects of the set.

Non-distinctness o f the cells means that they are regarded as a set, not as a 
list. If a given partition has k labeled cells, there are k\ ways to list them.

E xam ple  5 .1.1: We consider an ad hoc calculation of the Stirling number

We observe that the set {a, b, c, d} can be partitioned into two subsets of two 
objects each in the following three ways.

Changing the order in which the subsets are listed in a representation of a partition

Non-Distinctness of Cells of a Partition

1 , { a , b } , { c , d ]  2 , { a , c } , { b , d ]  3. {a, d], {b, c}

{ c , d } , { a , b }
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is identical to partition (1) above. By way of contrast, if the objects were to be 
distributed into compartments distinguished by pre-assigned names or, equivalently, 
by their order in the listing, each of the partitions above would correspond to two 
such distributions, for a total of six ways to distribute four objects into two distinct 
compartments with a 2-2 distribution.
In addition to partitions (1), (2), and (3), given above, of four objects into two parts 
of two objects each, the Stirling subset number {  ̂} also counts the partitions of 
four objects into subsets of sizes one and three, i.e., these four partitions:

4 , { a } , { b , c , d }  5 , { b } , { a , c , d }  6 , { c } , { a , b , d }  7 , { d } , { a , b , c }

The two compartments within each of these four partitions could be ordered in 
two ways, if they were distinct. This would give a total of eight distributions into 
distinct compartments with a 1-3 (or 3-1) distribution.

It follows that, altogether, there are

distributions into non-distinct calls, and

distributions into non-distinct calls. These two results are consistent with an appli­
cation of Theorem 3.6.4.

1 • 1 • 24 +  ( -1 )  • 2 • l 4 +  1 • 1 • 04 
1 6 - 2  +  0 =  14

The following proposition summarizes this part of the discussion.

Proposition 5.1.1. The number o f  ways to distribute n distinct objects into k 
distinct boxes with none left em pty is

HI)
Proof: After partitioning the objects into

non-distinct non-empty cells, we can assign k distinct labels to the k cells in k\ 
ways. <C>
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Every Cell of a Partition is Non-Empty
Specifying non-emptiness o f the cells o f a partition into k cells is consistent 

with the everyday notion of dividing a set into parts. (For instance, when Julius 
Caesar wrote in The Gallic Wars that all Gaul is divided into three parts, he meant 
non-empty parts.)

E xam ple  5 .1.1, con tin u ed : If one of the two cells of a distribution of the set 
{a, b, c, d} could be left empty, there would be a total of 8 ways to separate the 
four objects into two parts, which would include the distribution

{a, b, c, d} { }

If the cells were also distinct, there would be twice as many, for a total of 16 ways. 
Such a distribution is achievable by assigning one of the two compartment names 
to each of the four objects, for which, of course, there are 24 =  16 ways.

P ro p o s it io n  5 .1.2. The number o f  ways to distribute n distinct objects into k 
distinct boxes with some possibly left em pty is

kn 0

Distinctness of Objects
Distinctness o f the objects is a critical feature, since two distributions of a 

multiset of indistinguishable objects would differ only in the numbers of objects in 
the cells.

E xam ple  5 .1.1, con tin u ed : The only two possible partitions of four indistin­
guishable objects into two non-empty non-distinct cells have the following forms:

{a }  {a, a, a} and {a, a} {a, a}

They are equivalent to the integer partitions

4 = 1  +  3 and 4 =  2 +  2

In general, partitioning n indistinguishable objects into k indistinguishable cells is 
equivalent to partitioning the integer n into a sum of k parts, a topic that is explored 
further in §9.4.

On the other hand, if the two cells are distinct, then the distribution of four non- 
distinct objects amounts to choosing four cells from a set of two distinct cells, 
with repetitions allowed. We developed a counting formula for combinations with 
repetitions in Chapter 0.
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Proposition 5.1.3. The number o f  ways to distribute n non-distinct objects into 
k distinct boxes with some possibly left em pty is

Proof: This is equivalent to choosing n objects from a set of k with repetitions 
allowed. The formula was derived in conjunction with Corollary 0.4.5. <C>

The Type of a Partition
Clearly, the sum of the sizes of the cells of a partition of a set of n objects must 

be equal to n.

DEFINITION: An arrangement of the sizes of the cells into non-increasing order is 
called the t y p e  o f  a p a rtition .

Example 5.1.1, continued: The partitions

1 , { a , b } , { c , d ]  2 , { a , c } , { b , d ]  3. {a, d], {b, c} 

are of type 22, and the partitions

4. {a} ,  {b, c, d}  5. {&}, {a, c, d}  6. { c} ,  {a, b, d}  7. {rf}, {a,  b, c} 

are of type 31.

Stirling’s Subset Number Recurrence
A recurrence similar to Pascal’s recurrence provides a systematic means to 

calculate a Stirling subset number { ^ } ,  without resorting to separate counts for 
each partition type. Since there is no simple closed formula for a Stirling number, 
unlike the situation for a binomial coefficient, there is no simple algebraic proof, 
and we resort to a combinatorial proof.

Proposition 5.1.4 [Stirling’s r e cu r re n c e  fo r  su b se t  n u m bers]. The Stirling 
subset numbers satisfy the following recurrence:

Combinatorial Proof: The initial conditions are clear.
The recursion is verified by splitting the partitions of the integer interval [1 : n] 
into two kinds, as per the Method of Distinguished Element, which was used with 
Pascal’s recursion in §1.3. The first kind contains every partition in which the integer

  



264 Chapter 5 Partitions and Permutations

n gets a cell to itself. Since the other n — 1 integers must then be partitioned into 
k — 1  non-empty cells, there are

{ r :}
cases of the first kind.

In the second kind, the set [1 : n — 1] is partitioned into k non-empty cells, and then 
one of those k cells is selected as the cell for the integer n. There are

cases of the second kind. The sum of the numbers of cases in these two kinds is the 
total number of partitions. <C>

Stirling’s Triangle for Subset Numbers
The recurrence for the Stirling subset numbers leads to a triangle similar to 

Pascal’s triangle, called Stirling’s triangle for subset numbers. It appears as Table
5.1.1.

Table 5.1.1 Stirling’s triangle for values of { 2 } -

The rest of this section is devoted to the development of formulas for Stirling’s 

binomial coefficients.

Rows Are Log-Concave
We recall from §1.5 that each row of Pascal’s triangle rises to its maximum 

among the non-zero entries and then falls off. That is, the rows are unimodal. The 
rows of Stirling’s triangle for subset numbers share the property of unimodality.
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REVIEW FROM § 1 . 5 : 

• A sequence (xn) is a log-concave sequence if 

• A log-concave sequence is unimodal. 

E x a m p l e 5.1.2: Figure 5.1.1 illustrates the unimodality of row 6. In fact, every 
row of Stirling's triangle for subset numbers (see Table 5.1.1) is unimodal. 

Figure 5.1.1 G r a p h of t h e values of { ('k } . 

L e m m a 5.1.5. Let (xn) be a log-concave sequence. Then 

Proof: The log-concavity inequality is applied twice. 

0 

P r o p o s i t i o n 5.1.6. For all n > 0, the sequence of Stirling subset numbers 

is log-concave. That is, 
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P ro o f: This is an algebraic proof by induction on n. 
BASIS: Rows 0 and 1 are surely log-concave.
IND HYP: Assume that row n — 1 is log-concave.

IND STEP: Under Stirling’s subset recurrence, the product

k — 1 J [fc +  1

has the expansion

to which log-concavity and Lemma 5.1.5 are applied, under the induction hypothesis 

<  | U ~  ̂ j>2 +  (k2 1)  ̂U ~  ^  2

. n — 11 2 , ,  fn  -  11 2 , [ n — l l f n  — 1
< V i }  + k  {  k \  +2fcU - i / {  *

n — 1] , f n — l ' ' x2
k - 1 I ' k I k

' n "i 2 

. k i

Bell Numbers

DEFINITION: The B ell n u m b er  Bn is the number of partitions of a set of n distinct 

Thus, the nth Bell number is the sum

n

B“ = £ { ‘ }

of row n of Stirling’s triangle for subset numbers.
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T h e o r e m 5.1 .7 . The Bell numbers satisfy the recurrence 

Proof : This proof has combinatorial steps and algebraic steps. The initial condi­

tion 

is clearly satisfied. 

For n > 1, consider the case in which there are k other objects in the cell of a 
parti t ion of [1 : n] tha t contains the number n. There are 

ways to select these k numbers and then Bn_k-i ways to parti t ion the remaining 
n — k — 1 numbers. Thus, the total number of partit ions of n objects is 

which is transformable, by symmetry of binomial coefficients, to 

Reversing the order of summation yields the conclusion 

E x a m p l e 5 .1 .3 : Table 5.1.1 provides the Bell numbers 

We observe, for instance, that 

  



Column-Sum Formulas
There are two readily accessible summation formulas for column c of the tri­

angle for Stirling subset numbers. They both assert that a weighted partial sum 
of the entries in column c can be found in column c +  1. In the two formulas, the 
weightings differ.

P ro p o s it io n  5 .1.8. Let n and c be non-negative integers. Then

n +11 = V (n̂  Ik
c +  1 J ~~ h o  w  I c

P ro o f: In partitioning the n +  1 numbers of the integer interval [1 : n +  1] into 
c +  1 cells, there are

/n's 
\ky

ways to select n — k other numbers to be in the same cell as the number n + 1  and 
then

k'

268 Chapter 5 Partitions and Permutations

c

ways to partition the remaining k numbers into c additional cells. <C>

E xam ple  5 .1.4: In column c =  1 of the triangle for Stirling subset numbers, all 
the non-zero entries are l ’s. Thus, Proposition 5.1.8 takes the form

E xam ple  5 .1.5: In column c =  2 of the Stirling triangle for subset numbers, there 
appear the consecutive entries

In row 4 of Pascal’s triangle, there are the consecutive entries

Proposition 5.1.8 asserts for this case that

451 A  /4 \  f k
3| ^ \ k J  I 2

=  6 -1  + 4 - 3  + 1 - 7  = 2 5
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The sum in Proposition 5.1.8 can be visualized as a dot product o f a row o f  Pascal’s

P ro p o s it io n  5 .1.9. Let n and c be non-negative integers. Then

n +  1 
c +  1

P ro o f: By induction.

IND HYP: Assume, for inductive purpose, that

n — 1n 
c +  1 = D c+1>

IND STEP: Then

n +  1 
c +  1 o

o

C - 1)
n

. c +  1
n  — 1

( c + ! ) $ > + ! ) '

tirling s recursion

n  — 1

E xam ple  5 .1.6: Proposition 5.1.9 implies that

4

4  — k

_ o 4 -z
~~ ’ 2 J ' ” 12

=  32 • 1 +  31 • 3 +  3° • 7

f  34

25
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Southeast Diagonal Sum
Along a southeast diagonal from column 0 to column c, multiply each entry by 

its column number and take the sum. This equals the number immediately below 
the last entry in that diagonal.

n +  k 
k

P ro p o s it io n  5 .1.10. Let n and c be non-negative integers. Then

n +  c +  1

c / =J k =  0

P ro o f: Again by induction.
BASIS: The equation is clearly true for all n >  0 when c =  0.

IND HYP: Assume for all n >  0 that

n +  c 
c — 1

n +  k 
k

IND STEP: Then

n +  c +  1
c

n +  c 
c — 1

n +  c

x >
C

x >

n +  

n +

s recursion

E xam ple  5 .1.7: The sum in Proposition 5.1.10 can be visualized as a dot product 
o f a southeast diagonal of Stirling’s triangle with a vector of column numbers.

n | In 1
I1!

71 [ 
2J

n [ 
3J

3 1

4 7

5 25

6 90

1 - 1 +  2 - 7  +  3-25 =  90

Stirling Numbers of the Second Kind

REVIEW FROM §1.6: The Stirling numbers o f the second kind were defined as the 
coefficients Sn k in the sum

,kX-

  



Section 5.1 Stirling Subset Numbers 271

Proposition 5.1.11. For all non-negative integers n and k,

S n 'k  =  { * }
Proof: We use the Stirling subset-number recurrence, as verified in Proposition 
5.1.4.

(5.1.1)

k

a
n — 1  

k -  1

It is sufficient to show that the Stirling numbers of the second kind satisfy the same 
recurrence. The initial conditions

hold, because
x° =  l x -

and because the constant term of the expansion

= ,kX- (5.1.2)

is 0, unless k =  0.

The Stirling numbers Sn-\ tk o f the second kind are defined with the specification

„n — 1 (5.1.3)

x n _  x _ x n -l  

n — 1

—  X  ' ^  ^  ^ > n  —  l , k  %  

n — 1L
=  X~ ' X

n —1 n —1

=  Y  Sn-l,k  X -- (x -  k) +  Y  Sn-l,k  X - • k

n—1 n—1
=  J2 Sn - l , k X ^ +  J2 kSn. h k X̂ -

n n  — 1

=  J2 Sn - l , k - l X ^ +  Y k S n - l , k X ^

n

(5.1.4)
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Table 5.1.2 Some Basic Formulas for Stirling Subset Numbers

Stirling’s recurrence:

0 
k

{I}
n — 1 
k -  1

Special values:

= (n >  0) 

Converting ordinary powers to

=  2 n ~ 1 -  1  (for n >  1)

; powers:
n

X^

Bell numbers:
n

S O
n  — 1

Bn =  £
n — 1

Bk for n >  1

Column-sum formulas: 

n +  1

k=o

n +  1

n\ f k
k 1 c

'  = ! >  + !>n — k
C  +  1  ,

SE diagonal-sum formula:

(5.1.5)

(5.1.6)

Using binomial coefficients to calculate Stirling subset numbers:

{ ? } * ’ = t ( - » ‘ Q r  (5.i.7)

(5.1.8)

(5.1.9)

  



Since x— must have the same coefficient in the two expansions (5.1.2) and (5.1.4) 
of x n , it follows that

S n ,k  — S n — i  k — l  k S n — i  k

Thus, the Stirling numbers of the second kind have the same recurrence as the 
Stirling subset numbers, which implies that they have the same values. <C>
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E xam ple  5 .1.8: The following recursive calculation of values of the Stirling num­
ber Sntk o f the second kind illustrates how these numbers conform to Stirling’s 
subset recursion.

=> x 4  =  x ■ x -  +  3x ■ x -  +  x ■ x -

=  [x - (x  — 3) +  3*-] +  3 [x-{x — 2) +  2x~] +  [x - ( x  — 1) +  x-] 

=  [x-  +  3*-] +  3 [x-  +  2x~] +  [x - +  *-]

=  x -  +  [3*- +  3*-] +  [6 x -  +  x-] +  x -

E X E R C IS E S  fo r  S ection  5.1

Exercises 5.1.1 through 5.1.6 probe some nuances o f the definition o f Stirling subset 
numbers.

5.1.1 Give an expression for the number of distributions of n distinct objects 
into k non-distinct cells with exactly r cells left empty.
5.1.2s Give an expression for the number of distributions of n distinct objects 
into k non-distinct cells with up to r cells left empty.
5.1.3 Give an expression for the number of distributions of n distinct objects 
into k non-distinct cells with arbitrarily many cells left empty.

5.1.4 Give an expression for the number of distributions of n distinct objects 
into k distinct cells with exactly r cells left empty.
5.1.5s Give an expression for the number of distributions of n distinct objects 
into k distinct cells with up to r cells left empty.
5.1.6 Give an expression for the number of distributions of n distinct objects 
into k distinct cells with arbitrarily many cells left empty.
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In each of the Exercises 5.1.7 through 5.1.14, using only Table 5.1.1 as given values, 
calculate the values of the following additional Stirling subset numbers. 

In each of the Exercises 5.1.15 through 5.1.22, confirm the column-sum formula of 
Proposition 5.1.8 for the following Stirling subset numbers. 

In each of the Exercises 5.1.23 through 5.1.30, confirm the column-sum formula of 
Proposition 5.1.9 for the following Stirling subset numbers. 

In each of the Exercises 5.1.31 through 5.1.38, confirm the diagonal-sum formula 
of Proposition 5.1.10 for the following Stirling subset numbers. 

5.1.39 Calculate the Bell number B7. 

5.1.40 Calculate the Bell number 58-
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5.2 STIRLING CYCLE NUMBERS

Stirling cycle numbers count the number of possible partitions of a set into 
cycles, in effect, the number of the permutations of the set. Like Stirling subset 
numbers, they satisfy a recurrence similar to Pascal’s recurrence, and, in a further 
similarity, their non-zero entries form a triangle. This section derives some identities 
analogous to the identities for binomial coefficients and Stirling subset numbers.

REVIEW FROM §1.6:
• The S tirling  c y c le  n u m b er  [^] is the number of ways to partition n distinct 

objects into k non-empty non-distinct cycles.

• Since every permutation of a set of n objects can be represented as a com po­
sition of disjoint cycles, it follows that the S tirling  c y c le  n u m b er  [^] is the 
number of permutations with exactly k cycles.

In general,

since the number of ways to form a cycle from s objects already in a cell of a 
partition is (s — 1)!. Thus, to calculate [^],  one could multiply the number of 
partitions of a given partition type t i t 2 ■ ■ ■ tr by (ti — 1 ) ! ( ^ 2  — 1)! • • • {tr ~  1)! and 
sum over all such partitions.

E xam ple  5 .2.1: The set {a, b, c, d} can be partitioned into two cycles in 11 ways, 
which correspond to the 11 permutations of the set {1, 2, 3, 4} with two cycles:

(c) (abd ) (c) (adb ) (d) (abc ) (d) (acb )

We observe that each of the four partitions of type 31 into cells corresponds to 
(3 — 1)!(1 — 1)! =  2 partitions into cycles. For instance, the partition

{a }  {b, c, d}

corresponds to the two permutations

Each of the three partitions of type 22 into cells yields only (2 — 1)! (2 — 1)! =  1 
partition into cycles. For instance, the partition

yields only the permutation 

We observe, moreover, that
4 • 2 +  3 • 1 =  11
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Non-Distinctness of the Cycles
Non-distmctness o f the cycles means that changing the order in which its cycles 

Example 5.2.2: For instance, the disjoint cycle representations

are representations of the same permutation.

Remark: In the context of permutations, the notion of an empty cycle is meaning­
less. Moreover, although it does make sense to discuss a cyclic arrangement of the 
objects of a multiset, the notion of a cycle whose objects are not mutually distinct 
is regarded as undefined when studying permutations.

Stirling’s Cycle Number Recurrence
As with Stirling subset numbers, a recurrence similar to Pascal’s recurrence 

provides a systematic means to calculate a Stirling cycle number [^],  without re­
sorting to separate counts for each partition type. Moreover, here too there is no 
simple algebraic proof, and we resort again to a combinatorial proof.

Proposition 5.2.1 [Stirling’s recurrence for cycle numbers]. The Stirling 
cycle numbers satisfy the following recurrence:

+  (n — 1)  ̂ for n >  1 

Combinatorial Proof: The initial conditions are clear.
As with Stirling subset numbers, the recursion is verified by splitting the permuta­
tions of the integer interval [1 : n\ that have k cycles into two kinds. The first kind 
contains every permutation in which the number n gets a cycle to itself, and the 
other n — 1  numbers are partitioned into k — 1  non-empty cycles, so there are

cases of the first kind. In the second kind, in which the number n does not have 
a cycle to itself, the other n — 1  numbers are partitioned into k non-empty cycles, 
and then the number n is inserted immediately after some number j  in one of those 
k cycles. There are

cases of the second kind, because there are, in total, n — 1  other numbers after 
which the number n could be inserted. The sum of the numbers of cases in these 
two types is the total number of partitions of [1 : n\ into k cycles. <C>
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Stirling’s Triangle for Cycle Numbers
There is a triangle for the Stirling cycle numbers, like Pascal’s 

ngle for Stirling subset numbers. It appears as Table 5.2.1.
le and the

Table 5.2.1 Stirling’s triangle for values of [^]

We observe that Column 1 of Stirling’s triangle for cycle numbers is the se­
quence (n — 1)!.

Proposition 5.2.2. Let n be a positive integer. Then

Proof: The number of ways to arrange n objects in a cycle with a designated 
starting point is n!. Two cycles may be regarded as equivalent if they differ only 
in the choice of starting point. There are n possible starting points. Thus, by the 
Rule of Quotient,

[ " ]  =  ( « - ! ) !  <C>

It is less apparent, but not hard to prove, that Column 2 also has a tractable 
closed formula.

Proposition 5.2.3. Let n be a positive integer. Then

[”] = ( n - i y . B n - !

Proof: Once again, by induction on n.

1 =  ( 2 - 1 ) ! # ! .

IND HYP: Assume for some n >  2 that

(n — 2)! H n _ 2

b a s i s :

  



278 Chapter 5 Partitions and Permutations

+  (n -  1)

IND STEP: Then, b y  Stirling’s recursion

n — 1
1

n — 1  

_ 2 
n — 1  

2 _

(n — 1)! '
n — 1

+  (n — 1)! H n _ 2

1
n — 1

(Proposition 5.2.2)

+  Hn_ 2 =  {n — 1)! Hn- i

Example 5.2.3: The following table helps to illustrate Proposition 5.2.3. In each 
column, the product of the entries in the row labeled i?n- i  and the row labeled 
(n — 1)! is the entry in the row labeled

Hn-  1 0 1 3
2

n
6

25
12

n — 1)! 1 1 2 6 24

m 0 1 3 11 50

Rows are Log-Concave
As with the rows of the Stirling triangle for subset numbers, the rows of the 

Stirling triangle for cycle numbers are log-concave and, thus, unimodal.

Proposition 5.2.4. For all n >  0, the sequence o f  Stirling cycle numbers

'n~
- 0 -

n 1 fn i rn

is log-concave. That is,

n n

> -  1. k +  1 kl Ik

Proof: Rows 0 and 1 are vacuously log-concave. Assume that row n — 1 is log- 
concave, and consider row n. Under Stirling’s recurrence for cycle numbers, the

n n
_k — 1 k +  1

has the expansion

n — 1  

k -  2
+  (n -  1)

n — 1  

k -  1

n — 1

k
+  ( « - ! )

n — 1  

k +  1
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to which log-concavity and Lemma 5.1.5 are applied under the induction hypothesis. 

Figure 5.2.1 illustrates the unimodality of row 6. 

Figure 5.2.1 U n i m o d a l i t y of t h e s e q u e n c e ([^] | k = 0 , . . . , 6 ). 

Row Sums 
The rows of Stirling's triangle for cycle numbers have several other interesting 

properties. The following property is apparent in Table 5.2.1. 

P r o p o s i t i o n 5.2.5 . Let n be a positive integer. Then 
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Proof: The simplest proof is that each row sum of Stirling’s triangle for cycle 
numbers is the total number of permutations of a set of n objects. An alternative 
proof proceeds inductively on the row number, n. <C>

A subtler property is how each entry in the second column is related to the 
row immediately above that entry, by a weighted row sum.

Proposition 5.2.6. Let n be a positive integer. Then

E j
n n + 1

J . _ 2 _

Proof: By in du ction . 

BASIS: If n =  1, then

+ 1

IND HYP: For some n >  2, assume that

n  — 1

E j
n  — 1 

3

IND STEP: Then, by Stirling’s recursion,

+  (n -  1)

Now split the first sum.

n — 1 n — 1
3

n — 1 
j

n — 1 n — 1

Apply Proposition 5.2.5 to the first sum.
n

=  ( « - ! ) !  +  E t i ~  X)
n — 1

n

{ n - i ) E j
n — 1 

j

(n -
n — 1

j
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Next apply the induction hypothesis to the other two sums. 

Then apply Proposition 5.2.2 

and conclude by applying Stirling's recursion. 

E x a m p l e 5.2.4: Wi th da ta from Table 5.2.1, we now illustrate Proposition 5.2.6. 

Proposition 5.2.6 has Theorem 5.2.7 as a fascinating consequence. 

T h e o r e m 5.2.7. The average number of cycles in a random permutation of n 
objects is Hn. 

Proof: Let the random variable X be the number of cycles in a permutat ion on 
n objects. Then 

Therefore, the expected number of cycles is 

(Proposition 5.2.6) 

(Proposition 5.2.3) 
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Proposition 5.2.8 concerns a generalization of Proposition 5.2.6. It asserts that 
every entry, not just the entries in column 2, is a weighted sum of the elements of 
the row just above.

P ro p o s it io n  5 .2.8. Let n and c be non-negative integers. Then

E
n n +  1

J . c +  1.

P ro o f: For c >  n, both sides of the equation are 0. Thus, in what follows, it is 
assumed that c <  n.

BASIS: If n =  0, then for c =  0,

0\ ro 
0 /  0

IND HYP: For som e n >  1, assum e for all k that

n  — 1

E
n — 1  

j

n 1
c J

IND STEP: Then for any c < n, Stirling’s recursion implies

n — 1

E

which splits like this:
n

n — 1

n — 1

+  (n -  1)
j

n — 1

j

which reduces, by the induction hypothesis, to

+  {n -  1)

Applying Pascal’s recursion, we continue

n — 1

c — 1 c

c — 1
n  — 1

E

n 
c +  1

n  — 1

c

+  ( « - ! )
n

c +  1

n — 1
+  (n -  1)

n
c + 1

which reduces, by the induction hypothesis, to

+  (n -  1)
n

c + 1
n

c + 1

n
c + 1
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and we finish, by applying Stirling's recursion. 

E x a m p l e 5.2.5: Some da ta from Table 5.2.1 helps us to illustrate Proposition 
5.2.8. 

Columns 
Proposition 5.2.9 asserts that a weighted partial sum of the entries in column 

c can be found in column c + 1. It is analogous to Proposition 5.1.9 for Stirling 
subset numbers. 

P r o p o s i t i o n 5.2.9. Let n and c be non-negative integers. Then 

Proof: The equation is clearly true when n = 0. Assume, for inductive purpose, 
tha t it is true for n — 1. After starting with Stirling's recursion, 

we apply the inductive hypothesis. 

The sum in Proposition 5.2.9 can be visualized as a dot product of a row of falling 
powers of a fixed base with a column of Stirling's triangle. 
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Example 5.2.6: Consider colum n 2.

That is,

• 5 - + • 5 - + • 5-

=  1-60 +  3-20  +  11-5 +  50-1  =  225 =

Southeast Diagonal

The entries along each southeast diagonal from column 0 to column c satisfy a 
summation formula.

P ro p o s it io n  5 .2.10. Let n and c be non-negative integers. Then

n +  c +  1
c

n +  k 
k

P ro o f: The equation is clearly true for all n >  0 when c =  0. Assume, for 
inductive purpose, that it is true for c — 1. Then, by Stirling’s recursion,

n +  c +  1 n +  c
_ c c — 1

+  (n +  c)
n +  c 

c

Now apply the induction hypothesis.

n +  k 
k

n +  k 
k

+  (n +  c)
n +  c 

c
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E xam ple  5 .2.7: The sum in Proposition 5.2.10 is a dot product of a southeast 
diagonal of Stirling’s triangle with a vector of row numbers.

Stirling Numbers of the First Kind

REVIEW FROM §1.6: The Stirling numbers o f the first kind were defined as the

X -  =  ^Sn>c*C

P ro p o s it io n  5 .2.11. Let n and c be any non-negative integers. Then

= m )"+c Cl

P ro o f: We recall the Stirling cycle recurrence of Proposition 5.2.1.

n — 1  

k -  1
+  (n -  1)

0
n — 1

k
for n >  1

BASIS: The initial conditions

So.c =  (—1)°+C(c =  0) and sn_o =  ( - l ) n+0 (n =  0) 

hold, because
x -  =  lx °

and because the constant term of the expansion

^

(5.2.1)

(5.2.2)

is 0, unless n =  0.
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IND HYP: Now assume that
n  — 1

E—  =  5 > - i . “ e

IND STEP: Then

n—1 n—1
=  x ■ ^ 2  s „ - i tCx c -  (n -  1) sn- i tc x c

n  — 1

=  ^ Sn_ i,c* c+1 -  (n -  1) sn_

n  — 1

=  '^2lSn-l,c-lXC -  (n -  1) -Sn _ 1 ,cX

(5.2.3)

Since x c must have the same coefficient in both expansions, (5.2.2) and (5.2.3), of 
x—, it follows that

sn,c — sn — l ,c—l (^  l )^ n  —l,c

Thus, the absolute values of the Stirling numbers of the first kind satisfy the same 
recurrence as the Stirling cycle numbers. That is,

|Sn,c| =  [ J

This implies, by an induction, that

K d  =  ( - i ) n+c [ " ]

E xam ple  5 .2.8: The values of sn c are calculated recursively, as in the proof of 
Proposition 5.2.11.

3  2 | 1

=  [ * -+ 3 * - ]  +  [3 a :-+  6 x~] +  [ x - + x ~ ]
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Table 5.2.2 S o m e Bas ic Formulas for St ir l ing Cyc le N u m b e r s 

Stirling's recurrence: 

Special values for n > 1: 

Converting falling powers to ordinary powers: 

Row sum formulas: 

(5.2.4) 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

Column-sum formula: 

SE diagonal-sum formula: 

E X E R C I S E S for S e c t i o n 5.2 

In each of the Exercises 5.2.1 through 5.2.8, using only Table 5.2.1 as given values, 
calculate the values of the following additional Stirling cycle numbers. 

  



288 Chapter 5 Partitions and Permutations

In each o f the Exercises 5.2.9 through 5.2.16, confirm the weighted row-sum formula 
of Proposition 5.2.8 for the following Stirling cycle numbers.

5.2.9

5.2.13

5.2.10

5.2.14

5.2.11

5.2.15

5.2.12

5.2.16

In each o f the Exercises 5.2.17 through 5.2.24, confirm the column-sum formula of 
Proposition 5.2.9 for the following Stirling cycle numbers.

5.2.17

5.2.21

5.2.18

5.2.22

5.2.19s

5.2.23

5.2.20

5.2.24

In each o f the Exercises 5.2.25 through 5.2.32, confirm the diagonal-sum formula 
of Proposition 5.2.10 for the following Stirling cycle numbers.

5.2.25

5.2.29

5.2.26

5.2.30

5.2.27s

5.2.31

5.2.28

5.2.32

5.3 INVERSIONS AND ASCENTS

Stirling cycle numbers provide an inventory for the partition of the set of all n\ 
permutations of the integer interval [1 : n\, according to the number of cycles. In 
particular, the Stirling cycle number

is the number of partitions with k cycles. This section is concerned with two other 
ways of partitioning those n\ permutations, one according to their number of inver­
sions and the other according to their number of ascents.

1 2 ••• n
ai a2 ••• ar

of the integer interval [ 1  : n\ by its lower line

ai«2 •••<*„

is called the o n e -lin e  rep resen ta tio n  o f 7r.
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Inversions

DEFINITION: In a permutation 7r of the integer interval [1 : n\, an in version  is a 
pair of integers i <  j  with ir(j) <  n(i).

In any permutation n of the integer interval [1 : n\, each instance of an in­
version corresponds to some larger integer preceding an integer j  in the one-line 
representation of n, so they would appear to be inverted in that line. There are 
( 2 ) pairs of integers in [1 : n], each of which could possibly be inverted. At the 
low end, the identity permutation of [1 : n] has no inversions. At the high end, the 
permutation that reverses the order of [1 : n] has Q ) inversions.

DEFINITION: The in version  v e c to r  o f a permutation 7r is the vector

hi b'j ■ ■ ■ bn

such that bj equals the number of larger integers preceding j  in the one-line repre­
sentation of 7r.

Example 5.3.1: The permutation

7r =  35 1 624

has the inversion vector
2 3 0 2 0 0

We observe that the coordinate bj o f the inversion vector b\ b2 ■ ■ ■ bn is an 
integer in the range [0 : n — j\. Moreover, the total number of inversions of a 
permutation is the sum of the coordinates of its inversion vector.

Example 5.3.1, continued: The permutation n =  3 5 1 6 2 4  has a total of 7 
inversions, the sum of the coordinates of its inversion vector 2 3 0 2 0 0.

DEFINITION: The in version  coe ffic ien t In (k) is the number of permutations of the 
integer interval [1 : n] with exactly k inversions.

Table 5.3.1 gives the values of some inversion coefficients.

Table 5.3.1 Inversion coefficients
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The table of inversion coefficients can be constructed using the following proposition. 
We take In(c) to be 0 if c < 0. 

P r o p o s i t i o n 5 . 3 . 1 . The inversion coefficients satisfy the following recurrence. 

Proof : The initial condition is true, since the null permutat ion on the empty set 
has no inversions. 

To affirm the recursion inductively, assume that the recursion holds for the permu­
tations of [1 : n — 1]. Now consider the one-line representation of a permutat ion 7r 
on [1 : n] with c inversions 

IT : 7Tl7T2 • • -7T„ 

Then the number of inversions contributed by the placement of the integer n within 
this line equals the number j of integers that follow n on that line. Thus, if n is 
erased from that line, then the number of inversions in the permutat ion correspond­
ing to the resulting line equals c—j. There are exactly 7n_i(c—j) such permutat ions 
of [1 : n — 1]. Thus, In(c) is the sum of the numbers 7 n _i (c — j) over the possible 
values of j . <) 

E x a m p l e 5.3.2: We observe in Table 5.3.1 that 

Donald Knuth (see [Knutl973], p.12) regards the following observation of Mar­
shall Hall as the most important single fact about inversions. 

T h e o r e m 5.3.2 [ H a l l l 9 5 6 ] . A permutation IT on the integer interval [1 : n] is 
reconstructible from its inversion vector 

bib2 • • • bn 

Proof : To reconstruct a one-line representation of the permutat ion 7r, begin by 
writing the number n. After the integers 

k , . . . , n 

have been written as directed here, insert the integer k — 1 so that it immediately 
follows the first b^-i integers. <) 
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Corollary 5.3.3. There is a bijective correspondence between permutations on 
[1 : n\ and inversion vectors b\ b2 ■ ■ ■ bn with bj £ [0 : n — j] for j  =  1, . . ., n.

Proof: The number of permutations of [1 : n\ and the number of such inversion 
vectors are both equal to n\. By Theorem 5.3.2, the correspondence of permutations 
to inversion vectors is one-to-one. It follows by the pigeonhole principle that it is 
onto. <C>

Example 5.3.3: The one-line representation of the permutation of the integer 
interval [1 : 7] corresponding to the inversion vector

is reconstructed as follows:

4 5 1 2 0 1 0

7
7 6
5 7 6
5 7 4 6
5 3 7 4 6
5 3 7 4 6 2
5 3 7 4 1 6

Ascents
DEFINITION: An index j  of a permutation

7r  =  a i  a 2 ■ ■ ■ a n  

is an a scen t  if dj <  cij+ i and a d escen t  if dj >  cij+ i.

Remark: Thus, an ascent is a special kind of non-inversion.

Example 5.3.4: The ascents of the permutation

7r =  35 1 624

are as follows:
1 : 3 <  5 
3 : 1 <  6 
5 : 2 <  4

Example 5.3.5: The partition of the permutations of [1 : 4] according to number 
o f ascents is as follows:

3 : 1234
2 : 1243 1423 1324 1342 2134 2314 2341 2413

3124 3412 4123
1 : 3421 3241 4231 2431 4312 4132 1432 3142

4213 2143 3214
0 : 4321
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Eulerian Numbers
DEFINITION: The E ulerian  n u m b er

is the number of permutations of [ 1  : n\ with exactly k ascents.

Proposition 5.3.4. The Eulerian numbers satisfy the recurrence 
/  0  \ _  r l i fk  =  0  

\k / lO i f  k >  0

Q  = <*+i>("*1) + ("-‘>C-I) f o r n>0
Combinatorial Proof: The basis for the recurrence is clear. The first summand 
in the right side of the recursion follows from the fact that a permutation of [ 1  : n\ 
with k ascents is obtained from a permutation of [ 1  : n — 1 ] with k ascents by 
prepending the integer n at the start of the one-line representation or inserting it 
between the integers of an ascending pair. The second summand corresponds to the 
n — k ways to increase the number of ascents by 1  in a permutation of [ 1  : n — 1 ] 
with k — 1  ascents either by interposing n between any of the n — k — 1  descending 
pairs or by appending n at the end of the line. <C>

As with Pascal’s recursion and the Stirling recursions, the Euler recursion leads 
to a triangular table.

Table 5.3.2 Euler’s triangle for values of ( " )

We observe that each row of Euler’s triangle is symmetric. This observation is 
confirmed for all n as follows.

Proposition 5.3.5 S y m m etry  fo r  E ulerian  N u m bers.

Proof: A permutation 7r of [1 : n] with k ascents has n — 1 — k descents. Accord­
ingly, the permutation whose one-line representation is the reverse of the represen­
tation for 7r has n — 1  — k ascents. <C>
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E X E R C I S E S for S e c t i o n 5.3 

5.3.1 Write all the permutat ions of [1 : 4] with exactly 2 inversions. 

5.3.2 Write all the permutat ions of [1 : 4] with exactly 3 inversions. 

5.3.3 Write all the permutat ions of [1 : 4] with exactly 4 inversions. 

5.3.4 Write all the permutat ions of [1 : 4] with exactly 5 inversions. 

5.3.5 Write all the permutat ions of [1 : 5] with exactly 1 inversion. 

5.3.6 Write all the permutat ions of [1 : 5] with exactly 2 inversions. 

5.3.7 Write all the permutat ions of [1 : 5] with exactly 3 inversions. 

5.3.8 Write all the permutat ions of [1 : 6] with exactly 2 inversions. 

In each of the Exercises 5.3.9 through 5.3.16, calculate the value of the given inver­
sion coefficient. 

In each of the Exercises 5.3.17 through 5.3.20, reconstruct the permutation from the 
given inversion vector. 

5.3.17s 321200 5.3.18 513010 

5.3.19 1232110 5.3.20 4123200 

In each of the Exercises 5.3.21 through 5.3.28, using only Table 5.3.2 as given 
values, calculate the values of the following additional Eulerian numbers. 

5.4 DERANGEMENTS 

We recall tha t a derangement is a permutat ion in which none of the objects is 
fixed. The derangement recurrence (from §2.1) 

D0 = 1; Di = 0; 

Dn = ( n - l ) D „ _ i + ( n - l ) D „ _ 2 for n > 2 (5.4.1) 

is second-degree linear with variable coefficients. From it, a first degree recurrence 
can be derived. 

  



294 Chapter 5 Partitions and Permutations

Proposition 5.4.1. The sequence satisfies the recurrence

D n =  nDn- i  +  ( - l ) n for n >  1 

Proof: Recursion (5.4.1) above implies that

We now apply recursion (5.4.3) recursively.

n —3j

(5.4.2)

(5.4.3)

D n =  nD n - 1 +  ( - l ) n

Using either derangement recurrence, (5.4.1) or (5.4.2), we can calculate the 
derangement number D n. The ratio D n/n\ is the proportion of permutations that 
are derangements. Some values for the ratios D n/n\ and n\/Dn appear in Table 
5.4.1.

Table 5.4.1 Ratios of ts to permutations.

7 I D„ Dn/n\

1

1

2
6

24
120
720

5040
40320

362880

1

0

1

2
9

44
265

1854
14833

133496

1

0

0.5
0.333333

0.375
0.366667
0.368055
0.367857
0.367881
0.367879

2.0
3.0

2.666667
2.727273
2.716981
2.718447
2.718263
2.718284

Seemingly, the ratios D„/n\ and n\/D„ converge rapidly to e - 1  and e, respectively. 
The following proposition and its corollary confirm this reasonable suspicion. This 
is an application of the familiar technique of guessing the solution to a recurrence 
and proving the correctness by induction.

Theorem 5.4.2. For every non-negative integer n, 
1 1 1 1 
0 ! - H + 2 ! - 3! +  " ' 71 I

(5.4.4)
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Proof: For n =  0, both sides of equation (5.4.4) have the value 1. We asssume 
inductively that equation (5.4.4) holds for n — 1. Then

D n — nDn_ i +  ( — 1)

0! 1! +  2! +  " '  +  (' ^  ( n - 1 ) ! .

— n !

1  1  

V. +  2!
1  1  

V. +  2!

n  — 1 l
(n — 1 )!

+  ( - l ) r 

n! (—l ) n

In §3.6, the derangement numbers were calculated by inclusion-exclusion. In the 
proof of Theorem 5.4.2, we verified the solution as a “guessed solution” to a re­
cursion. In the next section, the derangement recurrence is solved by generating 
functions, without resort to guessing.

Corollary 5.4.3. lim —y  =  e- 1 . <C>
n  — v c c  ji\

Remark: By running a Monte Carlo experiment on a computer, we could use 
Corollary 5.4.3 to approximate the value of e.

Every permutation of n objects may be regarded as a choice of j  objects to 
fix and a derangement of the other n — j  objects. This leads immediately to the 
following assertion, which was previously noted with Example 4.2.4.

Proposition 5.4.4. Let n be a non-negative integer. Then

Example 5.4.1: For n =  4, Proposition 5.4.4 corresponds to the equation

24 = ( > + ( > +
=  1 • D 4  +  4 • D 3  +  6  • D'j +  4 • D\ +  1 • Do 
=  1 -9  +  4 -2  +  6 -1  +  4 -0  +  1 -1
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5.5 EXPONENTIAL GENERATING FUNCTIONS

Ordinary generating functions are well-adapted to problems about counting 
unordered selections. This section develops the other main variety of generating 
function, called an exponential generating function, which is especially useful in 
counting ordered selections. We will see also how exponential generating functions 
can be used in solving certain recurrences with variable coefficients.

REVIEW FROM §1.7:
• The ordinary generating function (abbr. OGF) for a sequence (gn) is any 

closed form G (z) corresponding to the infinite polynomial

OO

or sometimes, the polynomial itself.

The exponential generating function (abbr. EGF) for a sequence (gn) is 
any closed form G (z) corresponding to the infinite polynomial

__
J 2 gn~nl

or sometimes, the polynomial itself.
• P ro p o s it io n  1.7.1. Let G (z) and H (z) be the ordinary generating functions 

for counting unordered selections from two disjoint multisets S and T. Then 
G (z)H (z)  is the ordinary generating function for counting unordered selections 
from the union S U T.

• The convolution o f  the sequences (an) and (b„) is the sequence

a0b0, ao&i +  ai&o, a0b2 +  ai&i +  a2b0, . . .

• P ro p o s it io n  1.7.3. The product of the generating functions

z) =  anzn and B (z) =  bnz" 

is the generating function

oo I n

A (z )B (z ) =  J 2  

for the convolution of the sequences (an) and (bn).
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The following example reviews how Proposition 1.7.1 can be used to count unordered 
selections with ordinary generating functions.

E xam ple  5 .5.1: Let an and bn be the numbers of ways to select n letters from 
the multi-sets represented by the strings

“AD D” and “SPICE”

respectively. Thus, the ordinary generating functions for the sequences (an) and 
(bn) are

OO

OO

B (z) =  =  1 +  5z +  10z2 +  10z3  +  5z4  +  z5

The set of possibilities counted by the sequence (a8-) is completely disjoint from the 
set counted by the sequence (bn), because the set of letters of “AD D” is disjoint 
from the set of letters of “SPICE” . It follows that the number cn o f ways to choose 
n letters from the multi-set represented by the string

“ADDSPICE”

is the sum
aobn +  aibn- i  +  • • • +  anbo

More generally, it follows that the sequence (cn) is the convolution of the sequences 
(an) and (bn). Therefore, according to Proposition 1.7.3, the generating function 
for the sequence (cn) is the product

A (z )B (z )  =  l +  7z +  22z2 +  41z3 +  50z4 +  41z5 
+  2 2 z 6 +  l z 7 +  z8

For instance, there are 21 ways to choose two letters from the seven different letters 
and 1  way to choose the same two letters, for a total of 2 2 , the coefficient of z2.

Counting Ordered Selections
To count ordered selections from a disjoint union of multisets, we use Proposi­

tion 1.7.2.

REVIEW FROM §1.7:

• P ro p o s it io n  1.7.2. Let G (z) and H {z) be the exponential generating func­
tions for counting ordered selections from two disjoint multisets S and T. Then 
G (z )H (z) is the exponential generating function for counting ordered selections 
from the union S UT.

E xam ple  5 .5.2: Let rn and sn be the numbers of ways to select a sequence of n 
letters (without repetition) from the multi-sets represented by the strings

“AD D” and “SPICE”
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respectively. Thus, the exponential generating functions for the sequences (rn) and 
(sn) are

1! 2! 3!

y ! L y  y  y  y  y

=  =  1 +  5TT +  2 0 9T +  6 0 aT +  1204r +  120^T
zI — 
3!

zI — 
4!

z 
1 — 
5!

The coefficient of z ’1 in the product R (z)S (z) is

1-20 2-5 3-1

0 ! 2 ! 1! 1! 2 ! 0 !
1  

2 !

43 
~2 !~

o ) 1 ' 2 0 +  ( i ) 2 ' 5 +  ( 2 1 3 ' 1

from which it follows that the coefficient of y -  in R (z)S (z)  is

43

This corresponds to 7 - =  42 possible ordered selections of two different letters from 
the seven in the string “ADDSPICE” , plus 1 way to choose the same two letters, 
for a total of 43.

Giving a name to the construction appearing within Example 5.5.2 facilitates 
the use of a generalization of that method, via Proposition 5.5.1, which is analogous 
to Proposition 1.7.3.

DEFINITION: The bin om ial con v o lu tion  o f two sequences (r „ ) and ( s „ ) is the 
sequence (tn) whose nth entry is

P ro p o s it io n  5 .5.1. The product o f  the exponential generating functions for the 
sequences (rn) and (s „ ) is the exponential generating function for their binomial 
convolution.

P ro o f: The coefficient of zn in the product of the exponential generating functions

~ zn
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and

Eh n n \

roSn n s n- i
0 ! n! 1 ! (n — 1 )!
1

n!
1

n!

n\
0 ! n!

n
0

roSn

roSn

1! (n — 1)!
n

r „ s  o 

n! 0 !

r i s „ - i  +

riSn-l +

i! 0!

r „ s  o

r „ s  o

n! \j

Thus, the coefficient of in the product R (z)S (z) is

EC
We complete this section by considering several applications in which using 

EGF’s is a highly convenient way to count.

Counting Strings with Various Symbol Requirements
If a set of symbols has cardinality k, then, of course, there are kn strings of 

length n. The examples in the sequence to follow impose various rules on the strings 
and count the strings that satisfy those rules. The first examples are easy enough, 
as an intended warmup, that solution without EGF’s is well within grasp, and as 
the complications increase, the usefulness of EGF’s becomes ever more clear.

E xam ple  5 .5.3: We count the number bn o f binary strings of length n with at 
least one 1. Of the 2n binary strings of length n, only one has no l ’s. Thus,

b„ =  2 n -  1

Alternatively, we could observe that the EGF for the number of all-0 strings of 

with at least one 1 is ez — 1. Thus, by Proposition 1.7.2, the EGF for bn is

~ Zn 2

The coefficient of zn in e2z — ez is

2 n 1  

n! n!
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Thus, the coefficient o f -̂r is
b n  =  2n -  1

E xam ple  5 .5.4: Next we count the number tn o f ternary strings (i.e., base-3) 
of length n in which the digits 1 and 2 must each occur at least once. Of the 3n 
ternary strings of length n, there are 2 n strings with no l ’s and 2 n strings with no 
2’s and exactly 1 string with no l ’s or 2’s. Thus, by Inclusion-Exclusion,

tn =  T  — 2  • 2 n +  1  

Alternatively, we could write the EGF for tn, which is

-  1  y  =  edz -  2 e +  e

Thus, the coefficient of —̂r is’ n!

tn =  T  — 2  • 2 n +  1

For n =  3, for instance, the formula tn =  3n — 2 • 2n +  1 yields

t3 =  33  — 2 • 23  +  1 
=  2 7 - 1 6 + 1

This corresponds to 3! =  6  arrangements of the digits within the string 012, plus 3

within the string 1 2 2 .

Using exponential generating functions on such simple problems seems not 
to expedite the calculation. However, for more complicated restrictions on the 
occurrences of some of the symbols in a string, EGF’s are of considerable assistance.

E xam ple  5 .5.5: Let un be the number of ternary strings with at least one 1 and 
at least two 2’s. Then the EGF for strings of 2’s with at least two 2’s is

It follows that

 ̂ git 

n n\

=  e3z -  2e2z -  ze2z +  ze" +  ez

Therefore,
=  o n  _  g n  +  l  _  n T - l  +  n  +  i
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For instance,
u3 =  33  — 24  — 3 • 22 +  3 +  1 

=  2 7 - 1 6 - 1 2  +  3 +  1

This corresponds to the three possible arrangements of the digits within the string 
122 .

E xam ple  5 .5.6: Let vn be the number of ternary strings with evenly many 2’s 
and at least one 1. Then the EGF for strings of evenly many 2’s is

1 +  z2 +  z4 +  z6 +

I  . (e3z -  e2z +  ez -  I)

Therefore,
0  if n =  0

1 
2\ (3n -  2n +  1) if n >  1

For instance, this formula yields
^  =  2 7 - 8  +  1 =  1Q

which corresponds to the 7 binary strings with at least one 1, plus the 3 strings
022 202 220

An Application To Stirling Subset Numbers
Continuing as in the immediately previous examples, the EGF for the number 

o f ternary strings with at least one 0 , at least one 1 , and at least one 2  is

(ez -  l ) 3  =  e3z -  3e2z +  3ez -  1

°° z n
=  £ ( 3 -  — 3 - 2- +  3) —

If we identify the distinct positions 1, . . ., n in the sequence with n distinct objects, 
then this is also the generating function for partitioning n distinct objects into three 
distinct boxes, with no box left empty. This is 3! times as many as if the boxes were 
indistinguishable, so that we were counting partitions into three subsets. Thus,

(ez — l ) 3  _  f rq  zn
3! “  I 3 J nT

is an EGF for column 3 of Stirling’s subset triangle. This calculation has an imme­
diate generalization with a corollary that is equivalent to Theorem 3.6.4.
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k\
f n \ z 
I k J n!

C oro lla ry  5 .5.3. Let n and k be non-negative integers. Then

P ro o f: The sides of the equation are the coefficients of

in Proposition 5.5.2. <C>

E xam ple  5 .5.7: Applying the formula of Corollary 5.5.3 yields the evaluation

=  -  [1 - 0 - 1  +  2 - 1 - ( - I )  +  1 -16-1]

which agrees with our previous calculations of

4
2

An EGF for Derangement Numbers
We now show an example of how, sometimes, an EGF can be used in solving a 

linear recurrence with a variable coefficient. We then use this technique in finding 
a generating function for the derangement numbers.

E xam ple  5 .5.8: Consider the following recurrence of degree 2.
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Step 1. Multiplying both sides of the recursion by ^ 7  and then summing from 
n =  2  to 0 0  leads to the equation

n!
z
n\

which simplifies to the form
~ n  — 1

= 3zJ2an~1T~— TTin\ ( (ft — 1 )! (n -  2 )!

Step 2. By substituting the exponential generating function

Eh n n \

we obtain the equation

Step 3. We then solve for A (z).

w  w  1 -  3z +  2z2

Step 4. Use partial fractions to solve for a „ .

1 -  2z l - z  

an =  (2 n — 1 ) n\

Check the Answer: We now verify that the answer an =  (2n — 1 )n! satisfies the 
recurrence.

a0
ai

an

(2° -  1)0! =  0, 
(21 — 1) 1! =  1;
3nan_i  — 2n(n — 1) an _ 2  (recursion)

3n! • (2n _ 1  -  1) -  2n! • (2n “ 2 -  1) 
n ! •(3 • 2n _ 1  -  3) -  n! • (2n _ 1  -  2)

n ! ( 2 n -  1 )

What enables the substitution of the EGF A (z) to lead to the successful con­
clusion of Example 5.5.8 is that in the recursion
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the variable coefficients of an_i  and an_ 2 are the falling power monomials 3n -  and 
—‘In -, o f degrees 1 and 2, respectively. Fortunately, the variable coefficient of the 
derangement recurrence has the same property. The non-homogeneous part adds a 
small complication.

T h eorem  5.5.4. Let D (z) be the EGF for the numbers D „ . Then

1 -  z

P ro o f: This proof follows the paradigm of Example 5.5.8.

D n =  nDn_ 1 +  (—l ) n (Proposition 5.4.1)
0 0  0 0  0 0  

=> X > " -  =  E ^ - i -  +  E M r - ̂ n  I  ̂ n  I  ̂ n  '

Z °  ° °
-  A )- 7̂ =  z Y D n - (n — 1 )!

1  -  z

C oro lla ry  5 .5.5. Let (D n) be the 

D „ =  n\
1  1  

1 ! +  2 !

1

3!

sequence. Then

P ro o f: To rederive Theorem 5.4.2, this time as a corollary to Theorem 5.5.5, we 
proceed as follows:

1 -  Z
1

0 ! 1 ! 2 ! 3!

We recognize (1 — z) 1 as a summing operator.

D n  

n\

■ D n =  n!

1 1 1 1  
0 ! _ l! +  2 ! _ 3! +  

1 1 1 1  
0! “  1! +  2! “  3!
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EXERCISES for Section 5.5

In each o f the Exercises 5.5.1 through 5.5.4, write an exponential generating function 
for the given function o f n.

5.5.1s
5.5.3

5.5.2
5.5.4

In each o f the Exercises 5.5.5 through 5.5.8, write an exponential generating function 
for the sequence whose nth entry is the number o f binary strings o f length n with 
the given property.

5.5.5s At least two 0’s and at least two l ’s.
5.5.6 An odd number of 0’s and an odd number of l ’s.

5.5.7 At most three 0’s.
5.5.8 At most three 0’s and an even number of l ’s.

In each o f the Exercises 5.5.9 through 5.5.12, write a closed formula for the number 
of binary strings o f length n with the given property.

5.5.9s At least two 0’s and at least two l ’s.
5.5.10 An odd number of 0’s and an odd number of l ’s.
5.5.11 At most three 0’s.
5.5.12 At most three 0’s and an even number of l ’s.

In each o f the Exercises 5.5.13 through 5.5.16, use an EGF to solve the given re­
currence.

5.5.13s a0 =  0
5.5.14 a0 =  0
5.5.15s a0 =  1
5.5.16 a o =  1,

an =  nan_i  +  n! for n >  1 . 
an =  nan_i  +  (n +  1 )! for n >  1 . 
an =  nan_i  +  1  for n >  1 .

5.6 POSETS AND LATTICES

Within the combinatorial systems we have already explored, there have oc­
curred in the near periphery various partially ordered sets, a.k.a. posets. In this 
section, we reexamine these systems, this time with explicit attention to their struc­
ture as posets. In so doing, we also undertake a quick survey of the basic theory of
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f r o m  A p p e n d i x  A 3 :

• A p a r t i a l  o r d e r i n g  on a set P  is a binary relation ^  with the following 
properties, for all x ,y , z £ P:

i. x x (reflexive)

ii. if x y and y ^  x then x =  y (antisymmetric)
iii. if x y and y ^  z then x ^  z ( transitive)

• Two elements x ,y  in a poset P  such that either x ^  y or y ^  x are said to be 
c o m p a r a b l e .

• If x ^  y, we may say that y d o m i n a t e s  x.

• We write x -< y if x ^  y and x ^  y.

• The structure V  =  (P, ^  ) is called a p a r t i a l l y  o r d e r e d  s e t  or a p o s e t .  The 
set P  is called the d o m a i n  o f  t h e  p o s e t .

• Writing or saying “the poset _P” (giving the domain o f the poset, rather than 
the complete structure) is commonplace and convenient.

• The o r d e r  o f  a p o s e t  V  =  (P, ^  ) is the cardinality of its domain P. Infor­
mally, the word size is also used.

• A s u b p o s e t  of a poset (P, ^  } is a subset S C P , in which x < s  V if and only 
if x -<p y.

Products of Sets
One of the basic ways in which a poset arises in applications is when subjects 

are scaled in more than one attribute. Although each of the scales may be totally 
ordered, when considered simultaneously there is only a partial ordering. For in­
stance, the possible College Board scores for the mathematics and verbal exams are 
numbers from 200 to 800. However, pairs of scores are only partially ordered, ac­
cording to the rule in Example 5.6.1, unless one adds a context-dependent secondary 
rule for such comparisons.

E xam ple  5 .6.1: The cartesian product [m : n\ x [r : s] of two integer intervals is 
partially ordered under the rule

(a, b) <  (c, d) if a <  c and b <  d

This construction can also be generalized to an iterated product over arbitrarily 
many integer intervals or, indeed, over arbitrarily many posets.

Cover Digraph
Several digraphs and graphs are associated with a poset. The most useful is 

the cover digraph.
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DEFINITION: If x t y in a poset (P ,^ ) ,  then t is called an in te rm ed ia te  
e lem en t  between x and y.

DEFINITION: If x -< y and if there is no intermediate element t, then y cov ers  x.

DEFINITION: The co v er  d igraph  of a poset (P, ^  } has the elements of the set P  as 
its vertices. There is an arc from x to y if and only if x is covered by y. The co v er

cover graph in which the dominant of any two comparable elements must appear 
above the other.

Example 5.6.1, continued: Figure 5.6.1 illustrates the cover digraph and Hasse 
diagram of the poset [ 0  : 1 ] x [0 : 2 ].

Figure 5.6.1 Cover digraph and Hasse diagram of [0 : 1] x [0 : 2].

For any poset V  =  (P, ^ } ,  we may observe that x ^  y if and only if there is 
a directed path from x to y in the cover digraph, by which we mean a sequence of 
edges, aligned head to tail, proceeding from vertex x to vertex y. The digraph cor­
responding directly to the partial ordering itself is called the comparability digraph,

The Boolean Poset

The boolean poset is among the most familiar partially ordered structures 

DEFINITION: The b oo lea n  p o s e t

has as its domain the set of subsets of [1 : n\. They are partially ordered by set- 
theoretic inclusion.
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Example 5.6.2: Figure 5.6.2 shows a cover digraph for the boolean poset B4 .

Figure 5.6.2 The boolean poset £>4 .

Various properties of the boolean poset Bn can be observed in Figure 5.6.2. For 
instance, at level k, the number of subsets is the binomial coefficient (^). Also, the 
subset Y  covers the subset X  if X  C Y  and if Y  — X  is a single element of [1 : n].

The Divisibility Poset

REVIEW FROM §3.1:
• The notation k \ n means that the integer k divides the integer n.

DEFINITION: In the d iv is ib ility  p o s e t  V n =  (D n, \), the domain is the set

D n =  [k  G [1 : n\ | k \ n }

and the relation is divisor of. The in fin ite  d iv is ib ility  p o s e t  V  =  ( ,  
as its domain the set o f all positive integers.

Under the divisibility relation, y covers x if the quotient is prime. 

Example 5.6.3: Figure 5.6.3 illustrates the divisibility poset X>7 2 .

\ } has

Figure 5.6.3 Cover £ram of the divisibility poset X>7 2 .
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The Partition Poset

DEFINITION: A partition V  o f a set S is a refinement o f  the partition U if every 
cell o f V  is a subset of some cell of U . This relation is denoted U ^  V .

DEFINITION: In the partition poset V n =  (Pn, 3 ) ;  the subsets of the integer 
interval [ 1  : n\ are partially ordered by the refinement relation.

NOTATION: To avoid cluttering the representation of a partition, it is sometimes 
convenient to write the contents of the cells as strings of objects, thereby eliminating 
commas, and to separate the cells only by dashes, thereby eliminating the braces 
around each cell.

Example 5.6.4: We now consider an ad hoc calculation of a Stirling subset num­
ber. The integer interval [1 : 4] can be partitioned into 3 cells in 6  ways:

12-3-4 13-2-4 14-2-3 J 4 \ -
23-1-4 24-1-3 34-1-2 \ 3 J ~~ 6

Example 5.6.5: A partition V  covers a partition U if it splits a single cell of 
U into two non-empty subcells. Figure 5.6.4 illustrates a cover diagram for the 
partition lattice V 4 . Hyphens are used to delimit the cells.

1-2-3-4

12-3-4 13-2-4 14-2-3 1-23-4 1 -24-3 1-2-34

123-4 12-34 124-3 134-2 13-24 14-23 1-234

1234
Figure 5.6.4 The partition poset V 4

The Inversion-Dominance Ordering on Permutations
NOTATION: The set of all permutations of the integer interval [1 : n\ is denoted £ n. 
(Under the composition of permutations, it is a group, in the sense of Appendix 
A2, called the symmetric group.)

DEFINITION: The inversion-dominance relation

7r ^  r

on £ n means that every inversion of 7r is also an inversion of r.

Example 5.6.6: The permutation 7r =  1342 has two inversions, namely
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In addition to those inversions, the permutation r  =  3142 has both those inversions 
and the inversion

as well. Thus, 1342 ^  3142.

DEFINITION: The inversion poset l n =  ( S n, is the partially ordered set 
whose domain is the set of partitions on [ 1  : n], with the inversion-dominance 
relation 7r ^  r  as its partial ordering.

E xam ple  5 .6.7: A digraph representing the cover digraph of I 4  is drawn in Figure
5.6.5 so as to embody the shape of the truncated octahedron, whose 1-skeleton is 
the underlying graph. Observe that the direction of the arcs is away from 1234, the 
least inverted permutation, and toward 4321, the most inverted.

4231 4213

Figure 5.6.5 Cover digraph of the inversion poset I 4 .

The underlying graph is obtained by drawing an edge between two permutations 
whose one-line representations differ only by a single transposition of adjacent in­
tegers. The direction reflects increasing the number of inversions.

Minimal and Maximal Elements

DEFINITION: A minimal elem ent in a poset P  is an element x such that there 
is no element w with w x. If x ^  y for every y £ P, then x is the minimum  
element.

DEFINITION: A maximal elem ent in a poset P  is an element y such that there 
is no element w with y w. If x ^  y for every x £ P, then y is the maximum  
element.
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Example 5.6.8: In Figure 5.6.6, there is no minimum or maximum element. 
However, the elements a and b are maximal, and the elements d, j ,  and k are 
minimal.

Figure 5.6.6 A poset with two maximal elements 
and three minimal elements.

Example 5.6.2, continued: The minimum element of the boolean poset Bn is 
the empty set 0 , and the maximum element is the entire set { 1 , 2 , ,n } .

Example 5.6.3, continued: The minimum element of the divisibility poset V n is 
the number 1, and the maximum element is the number n. The infinite divisibility 
poset V  has no maximum.

Example 5.6.5, continued: The minimum element of the partition poset V n is 
the unpartitioned set [ 1  : n\, and the maximum element is the partition

into singletons.

Example 5.6.7, continued: The minimum element of the inversion poset Xn is the 
permutation 1 2  . . .n, and the maximum element is the permutation n(n — 1 ) . . .  1 .

Lattice Property
Informally, a lattice could be described as a poset with no loose ends. More 

rigorously, it involves the existence of upper and lower bounds for pairs of elements. 
It is the culmination of the following list of definitions.

DEFINITIONS:

• An upper bound  for a subset S of a poset P  is an element u such that s -< u 
for all s G S.

• A lower bound  for a subset S of a poset P  is an element w such that w ^  s 
for all s E S.

• A least upper bound  for a subset S' o f a poset P  is an upper bound u such 
that if z is any other upper bound for S, then u ^  z. We commonly write 
lub (x ,y ) for the least upper bound of a subset of two elements, which, if it 
exists, must be unique, by the antisymmetry property.
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• A g r ea te s t  low er  b ou n d  for a subset S' of a poset P  is a lower bound w for
S such that if z is any other lower bound for S, then z ^  w. We commonly 
write glb(x, y) for the greatest lower bound of a subset of two elements, which, 
if it exists, must be unique, by the antisymmetry property.

• A la tt ic e  is a poset such that every pair of elements has a lub and a gib.

Example 5.6.2, continued: The boolean poset Bn is a lattice, in which the least 
upper bound of two subsets is their union and the greatest lower bound is their 
intersection.

Example 5.6.3, continued: The divisibility lattices V  and V n are lattices, in 
which the least upper bound of two numbers is their least common multiple and 
the greatest lower bound is their greatest common divisor.

Proving that the partition poset is a lattice involves a few details regarding the 
least upper and greatest lower bounds.

Example 5.6.5, continued: The partition poset V n is a lattice. The constructions 
of the least upper bound and the greater lower bound are now given.

NOTATION: In the partition lattice V n , let U V V  denote the set of non-empty 
intersections of a cell o f a partition U with a cell of another partition V .

Example 5.6.9: Let U be the partition 123 — 45 — 678 and let V  be the partition 
14 -  235 -  67 -  8 . Then U V V =  1 -  23 - 4 - 5 -  67 -  8 .

Proposition 5.6.1. In the partition poset Vn, the partition U V V is the least 
upper bound o f  partitions U and V .

Proof: See Exercises. <C>

NOTATION: Let U and V  be two partitions of the integer interval [1 : n\. Then
• Let K jj,v  denote the bipartite graph whose partite sets are the cells of U and 

the cells of V, respectively, and where a cell of IJ is adjacent to a cell of V  if 
they have a vertex in common.

• Let U A V  denote the partition of [1 : n\, each of whose cells is the union of the 
vertices in a component of K jjy -

Example 5.6.9, continued: Let U be the partition 123 — 45 — 678 and let V  be 
the partition 14 — 235 — 67 — 8 . The graph Kjj,v is shown in Figure 5.6.7.

U: 123 45 678

Then U W V  =  1 -  23 - 4 - 5 -  6 7 - 8
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Proposition 5.6.2. In the partition poset V n, the partition U A V is the greatest 
lower bound o f  partitions U and V.

Proof: See Exercises. 0

Example 5.6.10: The poset whose cover diagram appears in Figure 5.6.8 is not 
a lattice, because although d and e are both common lower bounds for b and c, 
neither is a lower bound for the other.

Figure 5.6.8 A poset that is not a lattice.

Poset Isomorphism

DEFINITION: An isom orph ism D, < p ) and (Q, <̂q } is a bijection

f - P ^ Q

such that x -<p y in P  if and only if f ( x )  -<q f in Q.

Example 5.6.11: The divisibility poset V 1 2  is isomorphic to the poset of integer 
pairs [ 0  : 1 ] x [ 0  : 2 ], under the bijection

l - > ( 0 , 0 )  2  - > (0 , 1 )  3 —» (1, 0)
4 —> (0 , 2 ) 6  —» ( 1 , 1 ) 1 2  ^  ( 1 , 2 )

Figure 5.6.9 shows the Hasse diagram for the poset V 1 2 .

Figure 5.6.9 Hasse of the divisibility poset V 1 2 .
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Example 5.6.12: The divisibility poset is isomorphic to the boolean poset 
£ > 3  under the bijection

6  {1, 2} 10 {1, 3} 15 {2, 3} 3 0 { 1 , 2 ,  3}

Example 5.6.13: Figure 5.6.10 shows Hasse diagrams for the five isomorphism 
types of posets of size 3. The only one of them that is a lattice is at the far right.

relations 1 relation 2 relations
Figure 5.6.10 Hasse diagrams of the posets of size 3.

Observe that two of the posets of size 3 with 2 relations have isomorphic cover 
graphs (see §7.4). This complicates classifying the isomorphism types of posets of 
a given size. Also observe that not all simple graphs can occur as cover graphs, as 
indicated by Proposition 5.6.3.

Proposition 5.6.3. The cover graph o f  a poset {P, ■< } cannot contain a 3-cycle.

Proof: Suppose that elements u ,v ,w  E P  form a 3-cycle in the cover graph. Then 
in each pair, one element must cover the other. By transitivity, there cannot be a 
cycle in the cover digraph, so one of them, say u, must cover neither of the others, 
and another, say w, must cover both the others. But then u -< v -<; w, which implies 
that w does not cover u. <C>

Chains and Antichains
There are two extreme forms of posets. At one extreme, in a chain, every 

pair of elements is comparable. At the other, in an antichain, no two elements are 
comparable.

DEFINITIONS: Here are a few related definitions:

♦ If every two elements of a poset (P, ■< ) are comparable, then (P, ■< ) is said to 
be totally ordered, linearly ordered, or a chain.

♦ A poset in which all elements are incomparable is called a clutter or an an­
tichain.

• The height o f  a poset  is the cardinality of a longest chain.

• The width o f  a poset  is the cardinality of a maximum-size antichain.

A collection of elements of a poset forms a chain if and only if there is a directed 
path in the cover digraph from the vertex corresponding to one of them to the
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vertex corresponding to another of them, with the vertices corresponding to all the 
others as interior vertices along the way. A collection of elements of a poset forms 
an antichain if the corresponding vertices are mutually unreachable in the cover 
digraph. 

NOTATION: It is common practice to refer to a poset, at times, by its domain, that 
is, writing simply P for (P, ^ }. 

Posets have some general structural properties. The following two are among 
the most easily proved. 

P r o p o s i t i o n 5.6 .4 . Let (P, A ) be a poset, let C be a chain in P, and let A be an 
antichain. Then the intersection AClC contains at most one element. 

Proof: Let x and y be any elements of the poset (P, -< ) . If a?, y € C, then they 
are comparable. If x, y G A, then they are incomparable. <) 

T h e o r e m 5.6.5. Let (P, X } be a ñnite poset of height h. Then P can be parti­
tioned into h antichains, and into no fewer than h antichains. 

Proof: By Proposition 5.6.4, it follows that an antichain contains at most one 
element of a longest chain C. Thus, the number of antichains whose union contains 
C is at least h, the number of elements in chain C. 

Proof that the poset (P, ^ } can be partit ioned into h antichains is by induction on 
the height h. 

BASIS: If h = 1, then the poset (P, ^ } itself is an antichain. 

IND HYP: Assume that such a parti t ion exists for h = n — 1. 

IND STEP: Suppose that height h = n. Let A\ be the antichain containing all 
minimal elements of the poset P. Then the longest chain in the subposet P — A\ is 
of length n — 1. By the induction hypothesis, it follows that the subposet P — A\ 
can be parti t ioned into n — 1 antichains. <) 

E x a m p l e 5 .6 .2 , cont inued: A chain in the boolean poset Bn is a sequence of sets, 
each nested in its successor. Thus the height of the poset Bn is n + 1, corresponding 
to starting with the empty set and including one additional element at a t ime. An 
antichain is a collection of subsets, no two of which are nested. The collection Uk of 
subsets of size k is an antichain. Clearly, the boolean poset Bn can be partit ioned 
into these n + 1 collections Uk, for k = 0, . . ., n. 

E x a m p l e 5 .6 .3 , cont inued: A chain in the divisibility poset T>„ is a sequence of 
numbers, each of which is a multiple of its predecessor. It follows that the height of 
the divisibility poset T>„ is 1 plus the sum of the exponents in the prime factorization 
of n. The subset Ek of numbers whose exponent sum is k is an antichain. Clearly, 
the divisibility poset T>„ can be partit ioned into these collections Ek, as illustrated 
in Figure 5.6.11. For instance, 12 = 2 2 3 1 , so the exponent sum is 3 = 2 + 1, which 
implies that four antichains are necessary and sufficient. 
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Figure 5.6.11 Partitioning the poset V \ 2  into four antichains.

Ranked Posets
The various posets we have examined carefully —  boolean posets, divisibility 

poset, partition posets, and inversion posets —  have a common feature that they 
appear to be layered, so that any traversal of the cover graph is between adjacent 
ranks. The formal name used for these layers is ranks.

N such that if the
DEFINITIONS: Here is another list of related definitions:

• A rank function on a poset (P, ^  } is a function p : P  
element y covers the element x then p(y) =  p(x) +  1 .

• A ranked poset is a poset with a rank function.

• The k rank of a ranked poset P  is the antichain Pj. of elements of rank k.

• The k W h itn ey num ber N& (P ) o f a ranked poset (P, ^  ) is the cardinality 
o f the k rank of P.

Example 5.6.2, continued: The rank function of the boolean poset Bn assigns to 
every subset of [1 : n\ its number of elements. Thus, the Whitney number N k { B n) 
»  © ■
Example 5.6.3, continued: The rank function of the divisibility poset V n assigns 
to every divisor of n the sum of the exponents in its prime power factorization.

Example 5.6.3, continued: The rank function of the permutation poset Vn is 
the number of cells in the partition. The Whitney number Nr (Pn) is the Stirling 
subset number { " } . For instance, Va has {  ̂} =  7 elements of rank 2 at the middle 
level of the cover diagram.

Proposition 5.6.6. A graded poset can be ranked.

Proof: Assig n rank p(x) =  0 to every minimal element x. Then, proceeding 
recursively, assign rank p(x) +  1  to an element that covers x. <C>

Proposition 5.6.7. The inversion poset l n is a graded poset.

Proof: All the maximal chains extend from 12 ■ ■ ■ n to n(n — 1) • • • 1 and are of
n. The rank of each permutation is the number of inversions.
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Some posets cannot be ranked.

Example 5.6.14: The poset of Figure 5.6.12 is unrankable. Indeed, any poset 
with an odd cycle in its cover graph is unrankable.

d

a
Figure 5.6.12 An unrankable poset.

Linear Extensions
Linear extension o f a poset is a way to make a partially ordered set into a 

totally ordered set.

DEFINITION: An ex ten s io n  o f  a  p o s e t  (P, ^  } is a poset (P, } with the same 
domain, such that x <* y whenever x <  y. Thus, an extension adds one or more 
relations.

DEFINITION: A lin ear ex ten s io n  o f  a p o s e t  (P, ^  } is an extension that is totally 
ordered.

Example 5.6.15: The partial orderings on a set P  are partially ordered by exten­
sion. The linear extensions are the maximal orderings. The clutter is the minimum 
ordering.

Proposition 5.6.8. Every finite poset (P, ^  } has a linear extension.

Proof: Suppose that |_P| =  n.

BASIS: If n =  1, then (P, ^  ) is linearly ordered.

IND HYP: Assume that any poset of size n — 1 has a linear extension.

IND STEP: Let x be a minimal element of (P, ^ } .  By the induction hypothesis, 
there is a linear extension of the poset P  — { x } .  Complete the linear extension of P  
by making x precede every element in the linear extension of the poset P  — {x } .  <C>

Example 5.6.16: Here are three linear extensions of the boolean poset £>3 .

0 < 1 < 2 < 3 < 1 2 < 1 3 < 2 3 <  123 
0 < 3 < 1 < 2 < 2 3 < 1 3 < 1 2 <  123 

0 < 1 < 2 < 1 2 < 3 < 2 3 < 1 3 <  123
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DEFINITION: A to p o lo g ica l so r t  is an algorithm whose input is a poset (P, ^ } ,  
and whose output is a list (Xj) o f the elements of the domain P  of that poset that 
is consistent with a linear extension of the poset.

In the following algorithm for a topological sort, we take M in (P ) to be a 
function on a non-empty poset that returns a minimal element of the poset.

Algorithm 5.6.1: Topological Sort

Input: a finite poset (P, ^  ) of size n
Output: a roster (Xj) of P  such that Xi ^  Xj for 0 <  i <  j  <  n

Initialize j  =  0
while P  7  ̂ 0

continue

Dilworth’s Theorem
Whereas Theorem 5.6.5 concerns the decomposition of a poset into antichains, 

there is a complementary theorem of Robert P. Dilworth (1914-1993) that concerns 
a decomposition into chains. There are two preliminary lemmas.

Lemma 5.6.9. Let (P, ■<) he a poset, and let L be the set containing all the 
minimal elements o f  P . Then L is a maximal antichain.

Proof: Every element of L is a minimal element in P , so no two are comparable. 
Thus, L is an antichain. If y ^ L, then since y is not a minimal element, there is 
an element x £ L such that x y. It follows that L U { y }  is not an antichain. <C>

Lemma 5.6.10. Let (P, ■<) he a poset, and let U be the set that contains all the 
maximal elements o f  P . Then U is a maximal antichain.

Proof: The proof exactly parallels the proof of Lemma 5.6.9. <C>

Theorem 5.6.11 [Dilwl950]. Let (P, ■<) he a finite poset o f  width w. Then P  
can be partitioned into w chains, and into no fewer than w chains.

Proof: By Proposition 5.6.4, each chain contains at most one element of any 
antichain, in particular, o f a largest antichain. It follows that the width w is a lower 
bound on the total number of chains in a partition of P  into chains.

Proof that a partition into w chains exists is by induction on the width w, with a 
secondary induction on the size of the poset P.

BASIS: If w =  1, then P  itself is a chain.

IND HYP: Assume that such a partition exists, for w =  n — 1.
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IND STEP: Suppose that width w = n. If | P | = n, then each of the n elements of 
P serves as a chain. Assume that this is also true for all posets of width n whose 
size is less than the size of P. 

Now let A be a maximum antichain, tha t is, an antichain of size n. 

Case 1. Suppose the following two conditions hold: 

(1.1) The antichain A is not the set of all maximal elements. 

(1.2) The antichain A is not the set of all minimal elements. 

We define the subposets 

Observe that the following two properties hold. 

(i) \>-A\ < \P\. 
Proof of (t). If every minimal element of P were in A, then the subset of 
A containing only those minimal elements of P would, by Lemma 5.6.9, 
already in itself be a maximal antichain. This would imply that that subset 
is the antichain A, which violates condition (1.2). Thus, some minimal 
element of P cannot be in A. Since it is a minimal element, it cannot 
dominate any element of A. Hence, that minimal element also cannot be 
in ^A. 

(ii) | ^ | < | P | . 
Proof of (ii). If every maximal element of P were in A, then the subset of 
A containing only those maximal elements of P would, by Lemma 5.6.10, 
already in itself be a maximal antichain. As before, this would imply that 
that subset is the antichain A, in violation of condition (1.1). Thus, some 
maximal element of P cannot be in A. Since it is a maximal element, it 
cannot be dominated by any element of A. Thus, tha t maximal element 
cannot be in -A. 

Any antichain in the subposet -A is also an antichain in the poset P. By con­
struction, AC -A. Thus, the antichain A is a maximum antichain in -A. By the 
induction hypothesis, it follows from (i) tha t the subposet -A can be partit ioned 
into n chains, B\, . . ., Bn. Since every element of -A dominates some element oí A, 
and since AC -A, it follows that the minimal element of each of these chains Bj 
is some element bj G A. Since {B\, . . ., Bn} is a partit ion, the elements b\, . . . ,bn 

are distinct. 

Similarly, it follows from (ii) tha t the subposet -A can be partit ioned into n chains, 
C\, . . ., Cn, tha t the maximal element of each of these chains Cj is some element 
Cj G A, and that the elements c\, . . ., cn are distinct. 

Since \A\ = n, we have A = {b\, . . ., bn} and A = {c\, . . ., c n } . Hence, the minimal 
element bj of each chain Bj is the maximal element cw/j\ of some chain Cw/j\, and 
the union of the two chains is a chain Bj U CVm in poset P, as illustrated in Figure 
5.6.13. The chains 
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B\ U CV(i)

are a partition of P.

Bn U C.7r(n)

Figure 5.6.13 Partitioning poset P  into 3 chains.

Case 2. Suppose, alternatively, that there are no antichains of maximum size n, 
except for either the set of all maximal elements of P  or the set of all minimal 
elements of P  (or both). In this case, let u be a minimal element and v a maximal 
element. Then the size of the largest antichain in the poset P  — {u ,v }  is n — 1. 
By the induction hypothesis, the subposet P  — { « ,  v} can be partitioned into n — 1 
chains. These n — 1 chains, along with the chain { « ,  v} give a partition of poset P  
into n chains. <C>

EXERCISES for Section 5.6

5.6.1 Draw a Hasse diagram for the boolean poset £>3 .
5.6.2 Draw a Hasse diagram for the divisibility poset V 4 5 0 .

5.6.3 Draw Hasse diagrams for all 16 isomorphism types of posets on 4 elements.

In each o f the Exercises 5.6.4 through 5.6.9, find a maximum chain in the given

5.6.4s The boolean poset £>3 . 5.6.5 The boolean poset £>4 .
5.6.6 The divisibility poset X>7 2 . 5.6.7 The divisibility poset X>4 5 o.
5.6.8 The partition poset V 4 . 5.6.9 The partition poset V 5 .

In each o f the Exercises 5.6.10 through 5.6.15, find a maximum antichain in the 
given poset.

5.6.10s The boolean poset £>3 . 5.6.11 The boolean poset £>4 .
5.6.12 The divisibility poset X>7 2 . 5.6.13 The divisibility poset V 4 5 0 .
5.6.14 The partition poset V 4 . 5.6.15 The partition poset V§.
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In each o f the Exercises 5.6.16 through 5.6.21, partition the given poset into a 
minimum number o f chains.

5.6.16s The boolean poset £>3 . 5.6.17 The boolean poset £>4 .
5.6.18 The divisibility poset X>7 2 . 5.6.19 The divisibility poset V 4 5 0 .
5.6.20 The partition poset V 4 . 5.6.21 The partition poset V§.

In each o f the Exercises 5.6.22 through 5.6.27, partition the given poset into a 
minimum number o f antichains.

5.6.22s The boolean poset £>3 . 5.6.23 The boolean poset £>4 .
5.6.24 The divisibility poset X> 7 2 . 5.6.25 The divisibility poset
5.6.26 The partition poset V 4 . 5.6.27 The partition poset V§.

In each o f the Exercises 5.6.28 through 5.6.33, count the number o f linear extensions 
o f the given poset.

5.6.28s The boolean poset £>3 . 5.6.29 The poset of Example 5.6.14.
5.6.30 The divisibility poset X>i2 . 5.6.31 The divisibility poset T>so-
5.6.32 The partition poset V3. 5.6.33 The poset of Example 5.6.10.

5.6.34 Prove that a lattice has a unique maximal element and a unique minimal 
element.

5.6.37 Draw the inversion poset I 3 .

GLOSSARY
antichain in a poset: a subposet in which no two elements are comparable.

ascent in the one-line representation aia2 ■ ■ ■ an o f a permutation: an index j  
such that aj <  aj.|_i.

Bell number Bn\ the number of partitions of a set of n distinct objects; thus, 

the sum j n j  +  j n j +  + j n j

binomial convolution of two sequences (rn) and (sn): the sequence (tn) 
whose nth entry isJ n

tn = J2

boolean poset £>n: the poset of subsets of the integer interval [ 1  : n\.

chain in a poset: a subposet in which any two elements are comparable.

clutter in a poset: synonym for antichain.
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comparability digraph of a poset (P, ^ ) :  the elements of the set P  are the 
vertices; there is an arc from x to y if and only if x ^  y.

digraph.

comparable elements of a poset: two elements such that one dominates the 
other.

cover digraph of a poset (P ,^ ) :  the elements of the set P  are the vertices; 
there is an arc from x to y if and only if y covers x.

cover relation in a poset (P, ^  }: y covers x if x y and there is no intermediate 
element t such that x t y.

: a permutation with no fixed points.

number D n\ the number of derangements of n objects.

recurrence: the recurrence

—  2

descent in the one-line representation a\a2 ■ ■ ■ an o f a permutation: an index j  
such that aj >  ay+i.

divisibility poset (finite) V n: the number n and its divisors, under the divides 
relation.

divisibility poset (infinite) V : the set of all positive integers, under the divides 
relation.

domination in a poset: y dominates x if x ^  y.

dot product of the n-tuples (x i, x 2, • • •, x n) and (t/i, y2, • • •, yn)'- the number 
* 1 2 / 1  +  x 2y2 +  • • • +  x nyn.

EGF: standard abbreviation for exponential generating function.

Eulerian number ( ^ ) :  the number of permutations of [1 : n] with exactly k 
ascents.

exponential generating function for a sequence (g„): any closed form G(z) 
corresponding to the infinite polynomial (or sometimes, the polynomial itself)

__
J 2 9n~nl

extension of a poset: (P ,^ )'. another poset with the same domain in which 
all pairs related in P  are related in the same way, but some additional pairs may 
be related.

greatest lower bound for a subset of a poset: a lower bound that dominates 
every other lower bound.
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Hasse diagram for a poset: a plane drawing of the cover graph in which every 
element appears above any other element it dominates.

height of a poset: the cardinality of a longest chain.

intermediate element between two related elements x and y o f a poset: an 
element t such that x - i t  -i y.

inversion in a permutation n o f the integer interval [1 : n\: a pair of integers 
i <  j  such that ir(j) <  n(i).

inversion coefficient In(k): the number of permutations of the integer interval 
[1 : n] with exactly k inversions.

inversion poset I n\ the permutations on the integer interval [1 : n] under the 
relation of obtainability by adding inversions.

inversion relation n ^  r  on permutations of [1 : n\: means that every inversion 
o f 7r is also an inversion of r.

inversion vector of a permutation n of the integer interval [1 : n\: the vector 
bi &2  • • • bn such that bj equals the number of larger integers preceding j  in the 
one-line representation of n.

isomorphism of posets: a bijection of domains that preserves all dominances 
and non-dominances.

lattice: a poset in which every pair of elements has a greatest lower bound and 
a least upper bound.

least upper bound for a subset of a poset: an upper bound that is dominated 
by every other upper bound.

linearly ordered poset: a poset in which every pair of elements is comparable.

log-concave sequence (x n): a sequence such that * n_i  * n+i <  *n f ° r n >  1.

lower bound for a subset S o f a poset: an element that is dominated by every 
element of S.

maximal element in a poset: an element that is not dominated by any other.
maximum element in a poset: an element that dominates every other.

minimal element in a poset: an element that does not dominate any other.

minimum element in a poset: an element that is dominated by every other.

OGF: standard abbreviation for ordinary generating function.

one-line representation of a permutation n on [1 : n\: the second line of the 
two-line representation.

ordinary generating function for a sequence (gn): any closed form G (z) cor­
responding to the infinite polynomial (or sometimes, the polynomial itself)

OO

E gnZn

partial ordering: a relation that is reflexive, anti-symmetric, and transitive.

partially ordered set: a set with a partial ordering of its elements.
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partition of a set S: a family of mutually disjoint non-empty subsets whose 
union is S.

partition poset V n: the poset of partitions of the integer interval [1 : n\ under 
the refinement relation.

Pascal’s triangle: a triangle formed from the non-zero binomial coefficients.
poset: a partially ordered set.

rank function on a poset (P, ^  }: a function /  : P  —> N such that if y covers x,

ranked poset: a poset with a rank function, 
size of a poset: the cardinality of its domain.

Stirling cycle number ["  ]: the number of ways to partition the integer interval 
[1 : n\ into r non-empty non-distinct cycles.

Stirling numbers of the first kind: the coefficients sn>k in the summation
n

X -  =  Y h S n >k X k

Stirling numbers of the second kind: the coefficients SHtk in the summation
n

~  Tl \  ^  (~r k
X  —  /  J  ^ > n , k  %

Stirling subset number { " } :  the number of ways to partition the integer 
interval [1 : n] into r non-empty non-distinct cells.

Stirling’s triangles: triangles of the non-zero Stirling cycle and subset numbers,

subposet of a poset (P, ^  }: a poset whose domain is a subset of P  and whose 
order is consistent with ^  on P.

topological sort of a poset: a process that produces a linear extension.

total ordering of a poset: same as a linear ordering.
two-line representation of a permutation n on [1 : n\: the 2 x n array

^ 1  2 ■■■ n ^

W hitney number Nk(P) for a ranked poset P  the cardinality of the kth rank, 
width of a poset: the cardinality of a maximum-sized antichain.
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One reason why books on combinatorial methods attract computer science 
readers is that combinatorial methods are critical to the construction of fast al­
gorithms. As a very basic example, it takes much more time to sum the values 
o f a sequence than to apply a closed formula for that sum. As another example, 
using inclusion-exclusion as in §3.6 to calculate how many numbers less than n are 
divisible by one or more numbers in some fixed collection is much faster than ex­
amining every number from 1 to n. What motivates packaging this number theory 
chapter with purely combinatorial methods is largely our interest in computer ap­
plications, in which some number theory occurs in conjunction with what might 
elsewhere be called strictly combinatorial methods. The number theory presented 
here is more than just beautiful; it ’s useful. This chapter presents several computa­
tional problems for which integer algorithms based on number-theoretic principles 
are markedly faster than primitive algorithms tied more closely to the definitions.
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6.1 EUCLIDEAN ALGORITHM

The Euclidean algorithm is a method for calculating the greatest common divi­
sor of two integers. It is faster by far than the primitive method of successive trial 
divisors and methods based on factoring.

REVIEW FROM §3.1 AND APPENDIX A2:
• Let n and d be integers. If there is an integer q such that n =  dq, then we say 

that d divides n, and we write d \ n.

• A prim e num ber is a positive integer p >  1 such that p has no divisors except
1 and itself.

• Let ra and n be integers whose greatest common divisor is 1. Then we say that 
ra and n are relatively prime. Notation r a i n .

• The Fundamental Theorem o f  Arithm etic  is that every positive integer n 
has a unique representation as a product of powers of ascending primes.

6 1 &2 & rn =  _PiP22 ■■■p/

(The number 1 is representable as the empty product.)

Successive Trial-Divisors Algorithm
A primitive algorithm for calculating gcd (ra, n) is to determine which of the 

numbers from 1 through ra divides both ra and n, and to save the largest common 
divisor, so that the trial divisors are considered in ascending order. The time re­
quired for this is proportional to minjra, n}, regardless of the value of gcd (ra, n).

the first time it finds a common divisor, so it runs relatively faster than the as­
cending version whenever gcd (ra, n) > 1 .  Of course, the worst-case time remains 
proportional to ra.

Algorithm 6.1.1 : Near-Primitive G C D  M ethod

Input: non-negative integers ra, n, not both 0

Function G C D  1 (ra, n)
if minjra,  n}  =  0 then return maxjra,  n};  
for d := minjra,  n} to 1 step —1

if d\ m and d \ n  then return rf; 
continue

The following minor modification of Algorithm 6.1.1 considers only the possible 
divisors d =  [m/k\ for k =  1, . . ., [\/mJ. This decreases the worst-case number of 
iterations of the loop to •
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Algorithm 6.1.2: Elementary G C D  M ethod

Input: integers m, n, with 0 <  m <  n and 0 ^  n

Function GCD2  (m, n) 
if m =  0 then return n;

if d\ m and d \ n  then return rf; 
continue

Prime-Decomposition Method
A different method for calculating the greatest common divisor of the numbers 

m and n, and their least common multiple as well, is commonly taught in an early 
school grade. It starts with a factorization of m and n into primes.

m =  2d2 • 3d3 • 5ds • • • •
n =  262 • 363 • 5e

It then applies the rule

gcd (ra n) =  2min d̂2’e2J‘ • 3min{ 3̂ ,e3} _ gmin{d5,e5} _ _ _ _ (6 11)

lcm (m, n) =  2max^ 2>62> • 3max{d3-e3} • 5max{d5-es} • ••• (6.1.2)

Example 6.1.1: Here are two prime-power factorizations.

720 =  24 • 32 • 5 
168 =  23 •3 • 7

We now apply the elementary school method.

gcd (720 168) _ 2 m ^n { 4 ) 3 }  ^ m i n { l , 0 }  y m i n { 0 , l }

lcm (720 168) _ 2 m a x { 4 ) 3 }  2rnax{ 2,1} ^ m a x { l , 0 }  j m a x { 0 , l }

=  24 • 32 • 5 • 7 =  5040

This method for calculating the greatest common divisor works well if either prime 
factorization is known. If neither is known, it may take some effort to calculate 
the prime factors. When it is taught at lower school levels, the presumption is that 
the user already knows the prime factorizations o f the two numbers. The following 
example illustrates what happens when this is not the case.

Example 6.1.2: Hand-calculator evaluation of
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by prime power factorizations is daunting, because those factorizations are not 
immediately at hand, and they must be calculated to proceed with the easier step. 
This greatest common divisor is evaluated quickly by the Euclidean algorithm, as 
will be shown presently.

Quotient and Mod Functions
Some basic concepts from integer division are used in the Euclidean algorithm.

DEFINITION: The in te g e r  q u o tien t  of dividing an integer n >  0 by an integer 
d >  0 is defined recursively (in effect, by repeated subtraction)

quotient {n, d) =  j  1 +  quotient ^  ^  ^  otherwise 

Remark: Equivalently, for n >  0 and d >  0,

DEFINITION: The rem a in d er  (o r  r es id u e)  of dividing an integer n >  0 by an 
integer d >  0 is the number

n mod d =  n — quotient (n, d) ■ d

The associated binary operation is called the m o d  fu n ction , as previously noted 
in §1.1.

Example 6.1.1, continued: For 720 as dividend and 168 as divisor, we have

720
quotient (

and

168

720 mod 168 =  720 -  4 • 168 

=  720 -  672

Proposition 6.1.1. The integer pairs {m , n } and {m , n +  km } have the same set 
o f  common divisors, for every integer k.

Proof: Let d be any common divisor of m and n, say m =  rd and n =  sd. Then
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Thus, d divides m +  kn. In the opposite direction, if ra =  rd and n +  km  =  td, then 

Corollary 6.1.2. For every pair o f  integers m and n such that 0 <  ra <  n,

Proof: Suppose that q =  quotient (n, ra). Then

The strategy of the E uclidean  a lg orith m  is to apply Corollary 6.1.2 recur­
sively. The following version captures this idea.

Algorithm 6.1.3: Recursive Euclidean Algorithm

Input: integers n ,m  >  0, not both 0

Recursive Function gcd (n, m)
If n =  0 then return ra;
If m =  0 then return n; 

else return gcd (ra, n mod ra)

Example 6.1.1, continued: This easy calculation illustrates the method

Example 6.1.2, continued: Here the calculations are mildly tedious, yet much 
easier than trying to factor the two numbers.

0)
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P ro p o s it io n  6 .1.3. Given two numbers n and m, with n >  m, let f r be the 
smallest Fibonacci number that exceeds n. Then the number o f  recursive calls in 
the Euclidean algorithm is at most r.

P ro o f: Suppose that there are s calls. Then let no, n\, • • •, ns be the sequence 
of values of the first argument in the successive calls. Thus,

We observe that ns >  1 >  fo and that ns_i  >  2 >  / i .  It follows by induction, in 
general, that

because

In particular, no >  f s - Therefore, s <  r. <C>

R em ark : Intuitively, the number of recursive calls is at its largest, relative to the 
size of the numbers supplied as input, when the input supplied is two consecutive 
Fibonacci numbers, since then all the quotients are 1, each remainder is the next 
lower Fibonacci number, and the numbers passed in the recursion are reduced as 
little as possible at each step. Since the growth of the Fibonacci sequence is ex­
ponential, as we proved in §2.5, we conclude that in this computationally “worst 
case” , the number of recursive calls is proportional to the logarithm of the size of 
the input.

Extended Euclidean Algorithm
Keeping track of the quotients and remainders at each division step of the Eu­

clidean algorithm is useful in extending its capability. In the Euclidean computation 
of gcd (n, ra), define

mo =  m and no =  n (6.1.3)

and then, if after j  — 1 steps the recursion continues, define

rrij-i (6.1.4)
rij_ i — q j - im j - i  (6.1.5)

Numerous applications involve the following result.
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Theorem 6.1.4. For every pair o f  non-negative integers m and n, not both 0, 
there are numbers N  and M  such that

Proof: Suppose that the recursion of the Euclidean algorithm stops at the kth 
call, so that ra* =  0 and nk =  gcd (n, ra). Then, if we define Nk =  1 and Mk =  0, 
we have

It follows from (6.1.4) and (6.1.5) that

and, thus,

In particular,

. (n, ra) =  Norio +  Monio

=  Non +  Mom  by (6.1.3)

DEFINITION: The e x te n d e d  E uclidean  a lgorith m  includes the computation of 
N  and M  such that Nn  +  M m  =  gcd (n, ra), as in Theorem 6.1.4.

Example 6.1.1, continued: When preparing to apply the extension of the Eu­
clidean algorithm, the steps of the calculation of the greatest common divisor are 
arranged in tabular form.

3 rij
0 720 168 4
1 168 48 3
2 48 24 2
3 24 0 STO P

To continue with the extension, start by regarding the next-to-bottom row as the 
current row. Let j  be its row number, in this case row 2. In that next-to-bottom 
row, write

1 • n j  +  0 • m j  =  1 • ( r i j - i  —  c j j - i m j - i )

with the appropriate values substituted for every subscripted variable. In this case, 
the substitution yields the equation

1 . 24 +  0 • 0 =  1 - 3 - -
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which expresses the greatest common divisor as a linear combination of rij and rrij 
on the left and in terms of riy_i and rrij- 1  on the right, which is then simplified 
into a standard form of linear combination, in this case

1 •168 -  3-48

In general, working upwards, for each row of a by-hand calculation, the substitution 
o f r i j - 1 — q j - in i j - i  for rrij uses values from the preceding row. There is an implicit 
substitution of the value of rrij-1 for the value of rij, but since rrij-1 =  rij, this 
does not require work. Continue upward until row 0 is reached, at which point the 
greatest common divisor is expressed as a linear combination of no and mo, thereby 
completing the objective of the extended algorithm.

3 rij mj qj_____________________________________________

0 720 168 4 ( - 3 ) - 7 2 0  +  13 • 168
1 168 48 3 1-168 -  3 -48 =  1 • 168 -  3 • (720 -  4

3 24 0 STO P

In this case, we see that 

Thus, N  =  — 3 and M  =  13.

C oro lla ry  6.1.5. For every pair o f  non-negative integers m and n, not both 0, if  
N  and M  are numbers such that

then Nn +  M m  is the smallest positively valued combination Nn +  M m  with integer 
multipliers N  and M .

P ro o f: By Theorem 6.1.4, gcd (n, m) equals some combination Nn +  M m . Since 
Nn +  M m  is the smallest combination of n and ra, it follows that

Since gcd (ra, n) \ n and gcd (ra, n) \ ra, it follows that for every choice of integers 
N  and M , we have

(ra, n ) \ N n  +  M m

In particular,

It follows that gcd (ra, n) < Nn  +  Mm .

  



The GCD of Two Fibonacci Numbers
We conclude this section by combining what we know about Fibonacci numbers 

with what we know about greatest common divisors to produce the fascinating

are helpful.

REVIEW FROM §2.6:
• Theorem 2.6.1 [Forward-Shift Identity]. The Fibonacci numbers satisfy the 

equation
fn+k =  fkfn + 1 +  fk — 1 fn for all k >  1

• Corollary 2.6.2. For all k >  0, the Fibonacci number /&„ is a multiple of the 
Fibonacci number f n .

P ro p o s it io n  6 .1.6. Let ra, n, and r be integers such that r _L ra. Then
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Proof: Since any common divisor of ra and n is also a divisor of ra and rn, it 
follows that gcd (n, ra) <  gcd (rn, ra). Now suppose that Nn  +  M m  =  gcd (n, ra) 
and that C'r +  Dm  =  1. It follows that NC'r +  N D m  =  N  and, thus, that

=  N C rn  +  N  Dmn +  M m

Since gcd (rn, ra) is the smallest combination of rn and ra, it follows that 

Proposition 6.1.7. For n >  1, gcd ( f n , / n _ i )  =  1.

Proof: Calculation of gcd (f n , f n - i )  by the Euclidean algorithm terminates with 
a value of 1. <C>

Corollary 6.1.8. For n >  1 and k 1  n, gcd ( f k n + i ,  f n )  =  1- 

Proof: By Corollary 2.6.2, f n divides /&„. Therefore,

And now for the punch line.

Theorem 6.1.9. For n > 0 and ra >  1,

Proof: Suppose that n =  qm +  r, where 0 <  r <  ra. Then
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calculate the greatest common divisor o f the given pair o f integers; (b) use prime 
power factorization to calculate the greatest common divisor.

In each o f the Exercises 6.1.9 through 6.1.16, use the extended Euclidean algorithm 
on the given pair o f integers a and b to calculate integers M  and N  such that

In each o f the Exercises 6.1.17 through 6.1.21, suppose that the numbers a and b 
are positive integers and relatively prime.

6.1.17 Prove that the numbers M  and N  such that aM  +  bN =  1 may be chosen 
so that 1 <  M  < b and —a <  N  <  — 1.

6.1.18 Prove that the numbers M  and N  such that aM  +  bN =  1 may be chosen 
so that — b <  M  <  — 1 and 1 <  N  <  a.

6.1.19 Prove that postage of (a — 1 )(b — 1) cents can be formed from a-cent 
and &-cent stamps. That is, there exist non-negative integers r and s such that

6.1.20 Prove that postage of (a — 1)(6 — 1) — 1 cents cannot be formed from a-cent 
and &-cent stamps.
6.1.21 Prove that postage of n cents, for any n >  (a — 1 )(b — 1) cents, could be 
formed from a-cent and &-cent stamps. That is, there exist non-negative integers r 
and s such that ra +  sb =  n.

Exercises 6.1.22 through 6.1.24 anticipate the next section. Let a, b, c, d, and r a / 0  
be integers.

6.1.22 Prove that a mod m =  b mod m if and only if m \b — a.

6.1.23 Prove that if a mod m =  b mod m and c mod m =  d mod ra, then 
a +  c mod ra =  b +  d mod ra and ac mod ra =  bd mod ra.
6.1.24 Prove that ab =  gcd (a, 6) lcm (a, 6).

6.1.1s 89,71 
6.1.3 210,196
6.1.5 1047,2011
6.1.7 32768,10000

6.1.2 94,85
6.1.4 1000,560
6.1.6 11213,19937
6.1.8 6561,1728

aM  +  bN (a,b )
6.1.9s 89,71 
6.1.11 210,196
6.1.13 1047,2011
6.1.15 32768,10000

6.1.10 94,85 
6.1.12 1000,560
6.1.14 11213,19937
6.1.16 6561,1728
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6.2 CHINESE REMAINDER THEOREM

The extended Euclidean algorithm has many applications. The application of 
immediate concern is in the solution of a system of Unear congruences. The existence 
of solutions to certain systems is ensured by the Chinese remainder theorem.

Congruence Modulo m

DEFINITION: A congruence m odulo m is a relational statement of the form

It means that m \b — a. (We sometimes omit the parentheses.)

E xam ple  6 .2.1: 1 7 = 2  (modulo 5) and —8 =  2 (modulo 5).

The relation called congruence modulo m and the operator called mod have a 
similarity in their names. Their mathematical connection is as follows.

P ro p o s it io n  6 .2.1. Let a and b be any integers and m a positive integer. Then 

if  and only if
a mod ra =  b mod ra

P ro o f: Suppose that a =  qm +  r and b =  q'm +  r' with 0 <  r, r' <  m , so that 
a mod ra =  r and b mod ra =  r '. We observe that the assertion a =  b (modulo ra) 
simply means m \ b  — a, which is equivalent to the relation

ra \ (q'm +  r') — (qm +  r)

which is equivalent, in turn, to the relation

m \ r ' — r

Since \r' — r\ <  ra, this holds if and only if r' =  r, and, accordingly, if and only if 
a mod ra =  b mod ra. <C>

Linear Congruence Modulo m
Just like equations, congruences can involve indeterminates. Moreover, just 

as a system of linear equations may possibly have a solution, a system o f linear 
congruences may possibly have a solution.

DEFINITION: For integers a, b, and ra >  0, a linear congruence is a relation of 
the form

ax =  b (modulo ra)
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DEFINITION: For positive  m od u li m i, m2 , . . ., m^, a system  o f  linear congru­
ences is a list

a\x =  b\ (modulo m 1 )
0 2 * =  &2  (modulo m 2 )

a^x =  bk (modulo m&)

A solution to the system  o f  congruences is an integer x that satisfies all of 
them.

E xam ple  6 .2.2: Consider the system of congruences 

We observe that x =  8 is a solution.

A Lemma on Relatively Prime Numbers
The Chinese remainder theorem yields a sufficient condition for a system of 

linear congruences to have an essentially unique solution. Moreover, there is a 
systematic way to find solutions. The following proposition serves as a lemma in 
the proof of the Chinese remainder theorem.

P ro p o s it io n  6 .2.2. Let m and n be relatively prime, and let Q be an integer such 
that m \ Q  and n \ Q . Then mn \ Q.

P ro o f: Suppose that Q =  mr and Q =  ns. Since m _L n, there are integers N  
and M  such that Nn +  M m  =  1, by Theorem 6.1.4. Thus,

Q =  QN n  +  Q M m

R em ark : An alternative proof of Proposition 6.2.2 requires prior proof of the 
uniqueness of the factorization into prime powers, which is a substantially longer 
proof than the proof above.

Encoding by Residues
Some aspects of number theory are quite ancient. What is now described dates 

back to the Chinese mathematician Sun Tsu in the 4th century C.E.

DEFINITION: A set of positive integers { m i , . . . ,  m& } is a system  o f  independent 
moduli if mi _L mj  whenever i ^  j.
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DEFINITION: The tuple o f  residues of an integer n with respect to a system 
{ m i, . . ., rrik} o f independent moduli is the fc-tuple

(n mod m i, ■ ■ ■, n mod ra*)

The following table shows the tuple of residues of the numbers 0 to 20 with respect 
to the mutually independent moduli 3, 4, and 5.

Table 6.2.1 R esidu es m o d u lo  3, 4, and  5.

n n mod 3 n mod 4 n mod 5

No two of the rows have the same list of residues, and there would be no repetition 
o f rows until after the 60th row. This observation was generalized by Sun Tsu, as 
now indicated.

0
1
2
3
4

12

13
14 

0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0

0
1
2
3
4 
0 
1 
2
3
4 
0 
1 
2
3
4 
0 
1 
2
3
4 
0

from the integer interval [0 : M  — 1] to the set o f  possible tuples o f  residues with 
respect to {m i, . . ., m^} is a one-to-one and onto mapping.

P ro o f: Since the domain [0 : M  — 1] and the codomain of tuples of residues 
with respect to {m i, . . ., m^} have the same cardinality M , it is sufficient, by the
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pigeonhole principle (see §0.3), to prove that no two numbers in [0 : M  — 1] have 
the same set of residues.

Suppose, to the contrary, that 0 < b <  c <  M  and that

c mod rtij =  b mod rtij for j  =  1, . . ., k

Then
rrij \(c — b) for j  =  1, . . ., k 

Accordingly, iterative application of Proposition 6.2.2 would imply that

mi m 2 ■ ■ ■ mu \ (c — b) for j  =  1, . . ., k

It would follow that M  \ (c — b), since M  =  mi m 2 • • -m^. But then c — b >  M , 
which contradicts the prior supposition that 0 < b <  c <  M . <C>

Arithmetic on Residue Tuples
Much of the value of encoding numbers by their residues is that arithmetic 

operations on the residues produce the residues of the result of the operations 
directly on the numbers.

DEFINITION: The sum o f  two k-tuples of residues with respect to a list of mod­
uli {mi ,  . . . ,mfe} is the fc-tuple whose j th coordinate is the sum of the two j th 
coordinates modulo m j.

E xam ple  6.2.3:
n n mod 3 n mod 4 n mod 5
2 2 2 2

+  8 2 0 3
=  10 \ 2 0

DEFINITION: The product o f  two k-tuples of residues with respect to a list of 
moduli { mi ,  . . ., m^} is the fc-tuple whose j th coordinate is the product of the two 
j th coordinates modulo m j.

E xam ple  6.2.4:
n n mod 3 n mod 4 n mod 5
2 2 2 2

x 8 2 0 3
=  16 1 0 1

A critical feature of the encoding by residues is that it respects arithmetic. 
That is, the sum of the tuples for numbers r and s is the tuple of the sum r +  s, 
and the product of the tuples for numbers r and s is the tuple of the product rs.

R em ark : The arithmetic-preservation property enables us to add and multiply 
small residues instead of large numbers. If there is a large amount of arithmetic, 
then the cost of encoding and subsequently decoding the result of the computations 
may be amortized.
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Residue Decoding
The following theorem provides a method by which, knowing only the residues 

of a number, one could recover the number itself.

integers and let Q i and Q 2 be integers such that

Q 1m 1 +  Q 2m2 =  1 

Let n be an integer such that 0 <  n <  m im 2, and such that

By the Chinese Remainder Theorem, there is only one number in the integer interval 
[0 : mi m 2 ] whose residues modulo mi and modulo m2 are r\ and r2, respectively. 
Thus,

riQ 2m2 +  r2Qinii =  n 0

In combination with the extended Euclidean algorithm, Theorem 6.2.4 is used to 
decode any tuple of moduli. It is simplest for a 2-tuple, as now illustrated.

or by an application of the extended Euclidean algorithm, we have 

( -3 )  • 3 +  2 • 5 =  1 =  Qinii  +  Q 2m2 

Chinese Remainder Decoding now recovers the encoded number 8.

riQ 2m2 +  r2Q im i =  2 • 2 • 5 +  3 • ( -3 )  • 3

(6 .2 .1)

Similarly,

r iQ 2m2 + =  r2 (6 .2 .2)

8 (m odulo
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Example 6.2.6: Decoding of the 2-tuple (4 mod 8,2 mod 9) begins with deter­
mination of Q i and Q 2, easily in this case,

( -1 )  • 8  +  1 • 9 =  1 =  Qinii +  Q 2m2 

and finishes with the calculation
riQ 2m2 +  r2Q im i =  4 • 1 • 9 +  2 • ( -1 )  • 8  

=  36 -  16 =  20

Checking that 20 1—> (4 mod 8 , 2 mod 9) confirms this decoding.

Decoding 3-Tuples and Larger Tuples
Decoding a fc-tuple of residues with k >  3 involves iterative application of the 

following principle.

Proposition 6.2.5. Suppose that m i, m2, and m 3  are mutually relatively prime. 
Then m\m2 _L m 3 .

Proof: If neither of the numbers m\ nor m2 has a prime divisor that occurs in 
the prime factorization of m 3 , then m\m2 has no prime divisor that occurs in the 
prime factorization of m 3 , since the set of prime divisors of m\m2 is the union of 
the set of prime divisors of m\ and m2. <C>

Example 6.2.7: Decoding of the 3-tuple

(4 mod 8 , 2 mod 9, 3 mod 5)

begins with the calculation of Example 6.2.6 that

20 1—>■ (4 mod 8 , 2 mod 9)

Any number n such that n =  20 mod 72 satisfies both of the conditions n =  4 mod 8  

and n =  3 mod 5. Subsequent decoding of the 2-tuple

(20 mod 72, 3 mod 5) 

begins with finding multipliers Q 1 and Q 2 such that

Qi • 72 +  Q 2 ■ 5 =  1 

Either by “guessing” or by the extended Euclidean algorithm, we have

( - 2 ) -72 +  29- 5  =  1  

The calculation concludes with
r iQ 2m2 +  r2Q im i =  20 • 29 • 5 +  3 • (—2) • 72 

=  2900 -  432 =  2468

Checking that
308 (4 mod 8 , 2 mod 9, 3 mod 5) 

confirms this decoding.
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EXERCISES for Section 6.2

6.2.1s Add (6 mod 8, 3 mod 9) and (7 mod 8, 5 mod 9).
6.2.2 Multiply (6 mod 8, 3 mod 9) by (7 mod 8, 5 mod 9).
6.2.3 Add (7 mod 16, 4 mod 22) and (9 mod 16, 11 mod 22).

6.2.4 Multiply (7 mod 16, 4 mod 22) by (9 mod 16, 11 mod 22).

In each o f the Exercises 6.2.5 through 6.2.10, calculate the prescribed Chinese re­
mainder encoding.

6.2.5s 29 mod (5, 7) 6.2.6 31 mod (5, 7)
6.2.7 64 mod (5, 7) 6.2.8 66 mod (5, 7)

In each o f the Exercises 6.2.11 through 6.2.18, calculate the prescribed Chinese 
remainder decoding.

6.2.11s (6 mod 8, 3 mod 9) 6.2.12 (0 mod 5, 4 mod 9)
6.2.13 (6 mod 14, 3 mod 15) 6.2.14 (7 mod 16, 4 mod 21)
6.2.15 (2 mod 3, 1 mod 4, 3 mod 5) 6.2.16 (4 mod 6, 3 mod 11, 9 mod 13)
6.2.17 (1 mod 7, 2 mod 13, 6 mod 15) 6.2.18 (8 mod 14, 5 mod 9, 3 mod 17)

6.2.19 Explain how to solve a system of linear congruences of the form

anx =  rn(modulo mn)

when the moduli are independent and each coefficient aj is relatively prime to the 
corresponding modulus n ij.

6.2.20s Apply the method of Exercise 6.2.19 to solving this system of linear con­
gruences.

2x =  1 (modulo 3)

6.2.21 Show that this system of linear congruences has the solution x =  548.

6.2.22 Observe that the sequence 547, 548, 549, 550 of consecutive numbers has 
the perfect squares l 2, 22, 32, 52 as respective divisors. Generalize Exercise 6.2.21 
in a proof that the sequence of integers contains arbitrarily long sequences of con­
secutive integers, each divisible by a perfect square.
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6.3 POLYNOMIAL DIVISIBILITY

This section briefly digresses from the principal topic of integer operations to 
demonstrate how some of the integer operations of present interest are extendible to 
operations on polynomials. In particular, a pair of polynomials may have a greatest 
common divisor, there is a Euclidean algorithm for polynomials, and there are prime

NOTATION: The degree of a polynomial g(x)  is denoted dg(x).

DEFINITION: A m on ic  p o ly n o m ia l  is a p o ly n om ia l w hose coefficient on  the term  

E xam ple  6 .3.1: x 4 +  5x3 — Ax2 +  7x +  14 is a m on ic  po lyn om ia l.

The Polynomial Ring over the Integers
NOTATION: The set of polynomials of finite degree in one indeterminate x, with 
integer coefficients, is denoted 7L\x\.

The set TL [x] is closed under the operations of addition and multiplication. 
The null polynomial 0 serves as the additive identity, and the constant polynomial
1 serves as the multiplicative identity. Every polynomial has an additive inverse. 
Moreover, the multiplication of polynomials distributes over their addition. This 
same notation Z[x\ is also used for the algebraic structure whose domain is Z[x\ and 
whose operations are polynomial addition and polynomial multiplication.

TERMINOLOGY: In view of the algebraic properties just described, 7L\x\ is called a 
p o ly n o m ia l rin g  (see Appendix A2).

Divisibility and Mod for Polynomials
Division of polynomials is a generalization of what is commonly called long 

division, with a quotient and a remainder. The underlying mechanism procedurally 
is a matter of systematically subtracting multiples of the divisor from the dividend, 
until what is left is of lower degree than the divisor.

DEFINITION: The q u o tien t  o f  d iv id in g  a p o ly n o m ia l  of degree r

g(x) =  grx r +  gr- i x r~1 +  • • • +  g0

h(x)  =  hsx s +  hs- i * s_1 +  ■■■ +  ho 

If r <  s then quotient (g(x),  h(x))  =  0, and, otherwise,

h$ {  hs /
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DEFINITION: The rem a in d er  o f  d iv ision  o f  a p o ly n o m ia l

g(x)  =  grx r +  gr- i x r~1 +  • • • +  g0

by a non-zero polynomial

h(x)  =  hsx s +  hs- i * s_1 +  ■■■ +  ho

is the polynomial

DEFINITION: The non-zero polynomial h(x) d iv id es  the polynomial g(x)  if there is 
a polynomial f ( x )  such that

g(x)  =  h(x ) f ( x )

This relation is denoted h(x) \g(x) .

Clearly, the polynomial h(x)  divides the polynomial g(x)  if and only if

g(x)  mod h(x)  =  0

E xam ple  6 .3.2: The polynomials x 3 — x 2 +  l and x 3 — 2 both divide the polynomial
x 6 — x 5 — x 3 +  2x2 — 2, since

Common Divisors
The notions of common divisors and greatest common divisors for polynomials 

are also similar to the same notions for integers.

DEFINITION: A com m on  d iv isor  o f two or more polynomials is a polynomial that 
divides both or all of them.

The following proposition is analogous to Proposition 6.1.1.

P ro p o s it io n  6 .3.1. Let a(x),  b(x), and c(x) be polynomials in the polynomial ring 
7L\x\. Then the polynomial pairs {a(x) ,  b(x) }  and {a(x) ,  b(x) +  a(x)c(x) }  have the 
exact same set o f  common divisors.

P ro o f: Let h(x)  be any common divisor of a(x)  and b(x), say a(x)  =  u(x)h(x)

Conversely, if a(x)  =  u(x)h(x)  and b(x) +  a(x)c(x)  =  v(x)h(x) ,  then

b(x) =  v(x)h(x)  — a(x)c(x)
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DEFINITION: A greatest common divisor o f  two polynomials

a(x)  =  arx r +  ar- i x r~1 +  • • • +  do and 
b(x) =  bsx s +  bs_ i * s_1 H--------1- b0

is a common divisor polynomial g(x)  o f highest degree.

NOTATION: The notation gcd (g(x),  h(x))  often refers to the monic greatest common 
divisor of g(x)  and h(x).

Example 6.3.3: The polynomial x 3 — x 2 +  1 is a greatest common divisor of the 
polynomials x 6 — x 5 — x 3 +  2x2 — 2 and x 4 — x 2 +  x +  1. The polynomial x 3 — x 2 +  1 
is monic, and we write

Euclidean Algorithm for Polynomials

Theorem 6.3.2 [Euclidean Reduction for Polynomials]. Let g(x)  and h(x)  

Proof: Suppose that q(x)  =  quotient (g(x) , h(x ) ) . Then

x ), d{x ) ~  q(x)h(x))  (Proposition 6.3.1) 
x), g(x)  mod h(x))  <C>

DEFINITION: The Euclidean algorithm for polynomials is to iterate Euclidean 
reduction until a residue of zero is achieved.

Example 6.3.4: The process is directly analogous to the integer version.

9 1 1lOx — 15x +  5, - x  — -

1 1 „
— x ----- , 0
4 4 ’

Remark: There is also an extended Euclidean algorithm for polynomials.

  



Section 6.3 Polynomial Divisibility 345

Prime Polynomials

DEFINITION: A monic polynomial g(x)  ^  1 is a p r im e  p o ly n o m ia l  if it has no 
monic divisors of positive degree except for itself.

E xam ple  6 .3.5: Any linear polynomial x +  k is prime.

E xam ple  6 .3.6: A quadratic polynomial x 2 +  bx +  c is prime over the integers, 
unless it has two integers (perhaps both the same) as its roots. For instance, x 2 — 2 
is prime. More generally, by the quadratic equation, it follows that for the roots to 
be integers, it is a necessary condition that b2 —4c must be the square of an integer.

E X E R C IS E S  fo r  S ection  6.3

In Exercises 6.3.1 through 6.3.8, decide whether the given polynomial is prime over 
the integers.

6.3.1 x — 4x +  2
6.3.3 * 3 + l
6.3.5 x 3 +  2x2 — 1
6.3.7 x 3 — 6x2 +  l l x  — 6

6.3.2
6.3.4
6.3.6
6.3.8

x 2 +  1 
x 3 -  1
x 3 +  2x2 +  1 
x 3 — x 2 — 4x +  4

In Exercises 6.3.9 through 6.3.16, calculate g(x)  mod h(x) for the given pair of 
polynomials.
6.3.9s x 2 +  3* +  7 mod x — 2 6.3.10
6.3.11 x 3 — 6x2 +  l l x  — 6 mod x +  4 6.3.12
6.3.13 x 3 — x 2 — 10 mod x 2 +  3 6.3.14
6.3.15 x 4 — 7x3 +  3x — 1 mod 5x — 1 6.3.16

In Exercises 6.3.17 through 6.3.22, calculate gc< 
polynomials.

x 3 — 6x2 +  11* — 6 mod x — 1 
x 3 — x 2 — 10 mod x +  3 
x 4 — 7x3 +  3x — 1 mod x 2 +  bx — 1 
x 5 — 8x2 — 10 mod x 3 +  2

(g(x),  h(x))  for the given pair of

6.3.17
6.3.18

6.3.19
6.3.20

6.3.21
6.3.22

(x 2 — 7x +  10, x — 2)
(x 2 — 7x +  10, x — 3)
(x 3 — 6x2 +  11* — 6, x 2 — 3x +  2)
(x3 — 6x2 +  l l x  — 6, x 2 — 5x +  4)

(* 5 — 2x4 +  7x3 +  3*2 — 6* +  21, x 4 — 2x3 +  6x2 +  2x — 7)
(x 5 — 2x4 +  7x3 +  3x2 — 6x +  21, x 6 — x 5 +  5x4 +  7x3 — 2x +  7)
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6.4 PRIME AND COMPOSITE MODULI

The fast calculations toward which the methods of this section are directed 
mainly concern evaluating of arithmetic expressions with respect to a modulus and 
solving congruences. The naive approach of expanding high-valued arithmetic ex­
pressions and then dividing by the modulus can be quite tedious, relative to methods 
based on some understanding of number theory and algebra. Similarly, there are 
faster methods for solving various types of congruences than sequential trial and 
error.

f r o m  A p p e n d ix  A 2 :

• The domain of the ring of integers m odulo n, denoted TLn, is the set of 
numbers

{0 , 1, . . . ,  n — 1}

We write an element of TLn in the form a (modulo n) when it seems necessary 
or helpful to distinguish the meaning from the number a £ TL.

• The binary operations of addition m odulo n (+ ) and multiplication m od­
ulo n (•) in the ring 7Ln are given by the rules

b (modulo n) +  c (modulo n) =  b +  c (modulo n) 
b (modulo n) ■ c (modulo n) =  b ■ c (modulo n)

In other words, if adding or multiplying two numbers as usual for integers 
happens to exceed n — 1, then divide by n and use the remainder as the result 
of the operation.

• The number 0 is the additive identity of 7Ln.

• The number 1 is the multiplicative identity of 7Ln.

• Every number k has n — k as its additive inverse in 7Ln.

• Some numbers have multiplicative inverses in 7Ln. For instance, 13 is the inverse 
of 7 in Z 9 0 , since

Existence of Inverses Modulo m
Whereas 1 and —1 are the only integers with multiplicative inverses (in TL), a 

ring TLn o f integers modulo n may have more than two numbers with multiplicative 
inverses. However, some numbers may have no multiplicative inverse modulo n. 
The general context for this issue is to find all solutions to congruences of the form

mx =  1  (modulo n)

for arbitrary positive integers m and n.
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Proposition 6.4.1. Let m and n be positive integers. Then m (modulo n) has a 
multiplicative inverse if  and only if  m _L n.

Proof: First, suppose that m _L n. By the extended Euclidean algorithm, there 
are integers N  and M  such that

N n +  M m  =  1

Thus,

M  mod n is a multiplicative inverse of m mod n in 7Ln.

Thus, there is an integer N  such that Nn  =  M m  — 1 which implies that

M m  — Nn  =  1

from which it follows that m l n .  <C>

Corollary 6.4.2. Let p be a prime number. Then all the numbers 1, . . ., p — 1
have inverses in Zp.

Proof: Since p is prime, all the numbers 1, . . ., p — 1 are relatively prime to p. <C>

Remark: When p is prime, Xp is a field. See Appendix A2.

The following three examples all illustrate the conclusion of Proposition 6.4.1.

Example 6.4.1: In the ring Ze, the numbers 1 and 5 (both relatively prime to 6 ) 
are their own inverses, but the numbers 2,3,  and 4 have no multiplicative inverses.

Example 6.4.2: In the ring Z 7 , the numbers 1, . . ., 6  (all o f which are relatively 
prime to 7) all have multiplicative inverses, in accord with Corollary 6.4.2, respec­
tively, 1, 4, 5, 2, 3, 6 .

Example 6.4.3: In the ring the numbers 1, 3, 5, 7 (all relatively prime to 8 ) 
are their own inverses, but 2, 4, 6  (not relatively prime to 8 ) have no multiplicative 
inverses.

Calculating Inverses Modulo n
The proof of Proposition 6.4.1 provides a method for calculating the inverse 

modulo n o f a number m such that r a i n .
Step 1. Find integers N  and M  such that N n  +  M m  =  1, for instance, by the 

extended Euclidean algorithm.
Step 2. Then take M  mod n as the multiplicative inverse of m (modulo n).

which implies that 
Conversely, if M m
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Example 6.4.4: Since 16 and 21 are relatively prime, the number 16 must have a 
multiplicative inverse modulo 21. Either by inspection or by the extended Euclidean 
algorithm, it can be determined that

4 • 16 -  3 -21 =  1

Thus, the multiplicative inverse of 16 (modulo 21) is 4.

Uniqueness of Inverse Modulo m
TERMINOLOGY: In Example 6.4.4, the number 4 is described as the inverse of 
16 modulo 21, rather than an inverse. In fact, the number 25 is another multi­
plicative inverse of 16 modulo 21, since

25 • 16 -  19 • 21 =  1

However, it is proved below that a number n has at most one inverse modulo m in 
the range

1, . . ., m — 1

The definite article the is often applied to such an inverse.

Lemma 6.4.3. Let n be an integer and m an integer that is relatively prime to n. 
Then the numbers

m, 2m, . . ., (n — 1 )m  

are mutually non-congruent modulo n, i.e., a permutation o f  the numbers

1, 2 , . . . ,  n — 1

Proof: Proposition 6.4.1 implies that m has a multiplicative inverse modulo n, 
that is, a number M  such that

M m  =  1 +  Nn

for some number N. Consider two numbers r and s such that 1 <  r, s <  n — 1. 
Suppose that

rm  =  sm  (modulo n)

Then rm M  =  sm M  (modulo n). It follows that

and, in turn, that

Corollary 6.4.4. Let m and n be relatively prime positive integers 
exactly one inverse M  o f  m (modulo n) such that 1 <  M  < n.

Then there is
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Example 6.4.5: Consider the prime p =  7 and the number m =  4. Then the 
sequence l^km mod p k =  I, . . ., p — 1 ̂  is exactly the sequence

1 -4  =  4, 2 -4  =  8, 3 - 4 = 1 2 ,  4 - 4 = 1 6 ,  5 - 4  =  20, 6 - 4  =  24 
which reduces, modulo 7, to the sequence

Thus, the number 2 is the unique inverse of 4 (modulo 7) in the range 1, . . ., 6.

Fermat’s Theorem
We now turn to the problem of modular exponentiation, that is, of evaluating 

an expression involving an exponential modulo a number, such as

This is less tedious than it at first appears, since there is no need to evaluate 3124214. 
A first reduction is based on the following proposition.

Proposition 6.4.5. For any integers m and n > 1,

mr (modulo n) =  (m mod n)r (modulo n)

Proof: Suppose that m =  qn +  (m mod n). Then
mr =  (qn +  (m mod n ))r

In the expansion of the exponentiated binomial on the right, the only term that 
does not have n as a factor is (m mod n)r . Hence,

mr (modulo n) =  (m mod n)r (modulo n) <C>

In particular,

A further kind of simplification begins with the choice of a convenient power of 
the base number 4. For instance, choosing the exponent 3 produces the following 
reduction of the exponent and easy evaluation.

Alternatively, if we choose the exponent 5,

A theorem of Fermat permits such a calculation to go even more rapidly, when the 
modulus is prime. Its traditional name is Fermat’s Little Theorem.
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Theorem 6.4.6 [Fermat’s Little Theorem ]. Let p be a prime number and let 
b be any integer that is not divisible by p. Then

&p_1 =  1 (modulo p)

Proof: Lemma 6.4.3 implies that

Since multiplication modulo p retains commutativity, 

p - l  / p - i  \ p - i

n o -* )  - m u  j  (modulo p) (6.4.2)

Combining (6.4.1) and (6.4.2) yields

bp~1( p — 1)! =  (p — 1)! (modulo p) (6.4.3)

Applying Corollary 6.4.2 to all the factors of (p — 1)! in the congruence (6.4.3) 
implies the result

&p_1 =  1 (modulo p) <C>

Example 6.4.6: All the numbers

l 4 =  1, 24 =  16, 34 =  81, 44 =  256 

are congruent to 1 modulo 5.

Example 6.4.7: Fermat’s congruence cannot be used when the modulus is not 
prime. For instance,

Remark: In §6.5, there is a generalization by Euler of Fermat’s Little Theorem.

Wilson’s Theorem
There is still more to be harvested from Corollary 6.4.2, the principle that the 

numbers 1, . . ., p — 1 all have multiplicative inverses modulo a prime p.
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Proposition 6.4.7. Let p be a prim e num ber and let n be an integer that is not

Proof: Suppose first that n =  ±1  (modulo p). That is, there is an integer k such 
that n =  k p ±  1. Then either

Conversely, suppose that n2 =  1 (modulo p). Then p \ n 2 — 1. It follows that

Thus, since p is prime, either p \ n—1 or p \ n+1. If p \ n—1, then n =  1 (m odulop)

Corollary 6.4.8. Let p be a prime number. Then (p — 2)! =  1 (modulo p).

Proof: Let r £ {2, . . ., p — 2}. By Proposition 6.4.7, the number r cannot be its 
own multiplicative inverse modulo p, and that inverse must lie in that same range 
{2, . . ., p — 2}. It follows that the numbers 2, . . .  ,p  — 2 can be paired into inverses 
modulo p. Accordingly,

holds if  and only if  m is prime.

Proof: If m is prime, then the congruence (m — 1)! =  —1 (modulo m) follows 
immediately from Corollary 6.4.8.

Conversely, if m is not prime, then m has a factor r such that r <  say
rs =  m. If r <  s, then

or

0 • 0 ^ —1 (m odulo m)
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If r2 =  m =  4, then 

O

Remark: We have proved a sharpened version of W ilson’s theorem, with values 
for (m — 1)! (modulo m) in all cases.

DEFINITION: The integer a is a quad ra tic r es id u e  o f the integer m if a 1  m and 
if the congruence

has a solution. If the congruence x 2 =  a mod m has no solution, then a is called a 
quad ra tic n o n -res id u e  o f m.

Remark: If c and d are congruent, then

is the set of quadratic residues of 7. The numbers 3, 5, and 6 are quadratic non­
residues of 7.

Example 6.4.9: The quadratic residues of 11 are

The numbers 2, 6, 7, 8, and 10 are quadratic non-residues of 11.

Example 6.4.10: The quadratic residues of 15 are

Quadratic Residues

2
X

Thus, the set of numbers c2 such that 1 <  c <  m — 1 and c 1  m is a complete set 
o f quadratic residues of m.  

=  {1 , 2, 4 }

  



Finding Solutions to a Quadratic
We now generalize some of the properties that may have been observed in these

POWER OF ODD PRIME AS MODULUS

T h eorem  6.4.10. Let p be an odd prime, let n be a positive integer, and let a be 
an integer not divisible by p. Then the congruence

x2 =  a (modulo pn) (6.4.4)

has either two distinct solutions in the range 1, pn — 1 or no solutions at all.

P ro o f: Suppose that b lies in the range 1, . . ., pn — 1 and that

b2 =  a mod pn (6.4.5)

Observe that the number pn — b lies in the range 1, . . ., pn — 1, and that it is not 
equal to b, since pn is odd. The calculation

(pn -  b)2 =  p2n -  2bpn +  b2

=  b2 (modulo pn)

establishes that pn — b is a second solution to the congruence (6.4.4).
To see that there are no more than these two solutions, consider another putative 
solution, i.e., a number c such that

c2 =  a (modulo pn) (6.4.6)

Congruences (6.4.5) and (6.4.6) together imply that

b2 — c2 =  0 (modulo pn )

from which it follows that pn \ b2 — c2, and, equivalently, that

Thus, either
p \ b  — c or p \ b  +  c

If p were to divide both b — c and b +  c, then p would divide their sum 2b. Yet, since 
p is an odd prime, it cannot divide 2, so it would necessarily divide b, implying that 
it divides a, which would contradict the choice of the number a. Accordingly, the 
number p does not divide both b — c and b +  c. It follows that either

pn \ b — c or pn \ b +  c

If pn \ b — c, then

On the other hand, if pn \ b +  c, then

We conclude that c is not an additional solution, and that either there are two 
solutions in the range 1, . . . ,pn — 1 or there are none. <C>
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Corollary 6.4.11. Let p be an odd prime. Then the number o f  quadratic residues 
among the numbers 1, . . ., p — 1 is

Proof: Since none of the numbers 1, . . ., p — 1 is divisible by p, it follows from 
Theorem 6.4.10 that the mapping

x ^  x 2 mod p

from 1, . . ., p — 1 to itself is two-to-one. Thus, the image of this mapping, i.e., the 
set of quadratic residues, has cardinality

POWER OF 2 AS MODULUS

For modulus 2, the number 1 is the only quadratic residue, and the congruence 
1 mod 2 has the unique solution x =  1. For modulus 4, the numbers 1 and 3 

are relatively prime. The number 1 is a quadratic residue, and the number 3 is a 
quadratic non-residue. The congruence x 2 =  1 mod 4 has the two solutions x =  1 
and x =  3. For higher powers of 2, there is the following theorem.

Theorem 6.4.12. Let n be an integer greater than 2, and let a be a quadratic 
residue o f  2n, whose smallest positive solution is the number b. Then in the range 
1, . . . ,  2n — 1, the congruence

x 2 =  a (modulo 2n) (6.4.7)

has exactly these four solutions and no others:

b, 2n — b, 2n~1 — b, 2n~1 +  b (6.4.8)

Proof: Squaring any of the three other proposed solutions implies immediately 
that it is a solution to the congruence (6.4.7). It is also clear that the four asserted 
solutions are mutually non-congruent modulo 2n.
To see that there are no other possible solutions, consider a number c such that 
c2 =  a (modulo 2n). Then, since both b and c satisfy the congruence (6.4.7), it 
follows that

2n \ b2 — c2

Equivalently,

It may be asserted that 4 cannot divide both b — c and b +  c, since otherwise, the 
number 4 would divide their sum 2b, from which it would follow that b is even, 
implying that a is even, contrary to the choice of a. Accordingly, either

2n_1 \ b — c  or 2 n ~ 1 \ b  +  c  (6.4.9)

  



One alternative under (6.4.9) is that 2n_1 \ b — c. Then, for some integer k, we have

b - c  =  k T ~1 
=> c =  b -  k2n~1

If k is odd then c is one of the four solutions (6.4.8), since 

and, similarly, if k is even, then

The other alternative under (6.4.9) is that 2n_1 \ b +  c. Then c =  — b +  k2n~1, for 
some integer k. If k is odd then c =  2n_1 — b, and if k is even, then c =  2n — b, so 
it is not a fifth solution.
We conclude that either there are four solutions in the range 1, . . ., pn — 1, as 
indicated, or there are none. <C>
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EXERCISES for Section 6.4

In Exercises 6.4-1 through 6.4-8, calculate the multiplicative inverse o f the given 
number.

6.4.1 7 modulo 17 
6.4.3s 21 modulo 25 
6.4.5 11 modulo 14
6.4.7 15 modulo 32

6.4.2
6.4.4
6.4.6
6.4.8

8 modulo 17
14 modulo 23 
8 modulo 27
15 modulo 28

In Exercises 6-4-9 through 6-4-16, evaluate the given expression.

6.4.9
6.4.11
6.4.13

7090 mod 17 
s 22164 mod 25 

l l l l 111 mod 14
6.4.15 155108 mod 32

6.4.10 180312 mod 17 
6.4.12 1441728 mod 23 
6.4.14 88222 mod 27 
6.4.16 515613 mod 29

In Exercises 6-4-17 through 6-4-22, evaluate the given expression. 
6.4.17s 4! mod 5 6.4.18 5! mod 6
6.4.19 6! mod 7 6.4.20 7! mod 8
6.4.21 8! mod 9 6.4.22 10! mod 11

In Exercises 6-4-23 through 6-4-28, find all quadratic residues o f the given number.

6.4.23 9 6.4.24 13 
6.4.25s 14 6.4.26 15 
6.4.27 16 6.4.28 17
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In Exercises 6-4-29 through 6-4-36, 
congruence.

6.4.29 x 2 =  1 modulo 9 
6.4.31s x 2 =  1 modulo 24
6.4.33 x 2 =  4 modulo 15
6.4.35 x 2 =  1 modulo 30

' all the solutions to the given quadratic

6.4.30 x 2 =  4 modulo 9
6.4.32 x 2 =  9 modulo 25
6.4.34 x 2 =  4 modulo 21
6.4.36 x 2 =  7 modulo 18

6.5 EULER PHI-FUNCTION

DEFINITION: The number of positive integers not exceeding n that are relatively 
prime to n is given by the Euler phi-function 4>(n).

Here are the first few values of the Euler phi-function:

n 1 2 3 4 5 6 7 8 9 • • •
(j)n 1 1 2 2 4 2 6 4 6 • • •

A preview of the Euler phi-function appears in the Exercises for §3.6, since its 
values could plausibly be calculated by inclusion-exclusion. However, calculating 
4>(n) is much simpler than that. For a start, the next proposition shows it is 
particularly easy to evaluate 4>(n) when n is prime.

Proposition 6.5.1. I f  the number p is prime, then

Proof: Suppose that p is a prime number. Then each of the numbers

1, 2, . . . ,  p 1

is relatively prime to p, which implies that 4>(p) =  p — 1. Conversely, if p is not a 
prime number, then at least one of those p — 1 numbers is not relatively prime to p,

In this section, we develop some properties of 4>(n) and give a method of calculating 
that is much simpler than inclusion-exclusion.

Euler’s Generalization of Fermat’s Theorem
Euler derived the following generalization of Fermat’s Theorem, as well as 

showing its use in evaluating exponentiation modulo a composite number.

  



Section 6.5 Euler Phi-Function 357

Proof: We observe that if the modulus n is prime, then the conclusion reduces to 
Fermat’s Theorem. More generally, let

be the set of numbers less than n and relatively prime to n.

Assertion 1: Each of the numbers

bri, br2, •••, br^n} 

is relatively prime to the number n.

Proof of Assertion 1: Suppose that p is a prime number that divides n and also 
divides the product brj. Then p would divide either b or r-j. Whichever it divides 
would not be relatively prime to n, a contradiction in either case. <C> Assertion 1

Assertion 2: If i j ,  then bri ^  brj (modulo n).

Proof of Assertion 2: Suppose that n \ b(ri — rj). Since n _L b, none of the prime 
divisors of n divides b. It follows that n \ r8- — r-j. Since |r8- — rj | <  n, it follows that 
ri =  rj, and thus, that i =  j ,  a contradiction. <C> Assertion 2

Assertion 3: bri ■ br2 ......... ^ ^ ( n )  =  r i r 2 ........................r 4> ( n )  (modulo n).

Proof of Assertion 3: It follows from Assertions 1 and 2 and the pigeonhole 
principle that the values

bri  mod n, . . ., b r mod n 

are a permutation of the values r i ,  . . . , r^ ^ y  <C> Assertion 3

Completion of Proof: Assertion 3 implies that

Example 6.5.1: The numbers relatively prime to 15 are

1, 2, 4,7, 8, 11, 13, 14 

Thus, =  8. The numbers 4 and 7 are relatively prime to 15. We observe that

  



Evaluating the Phi-Function
Proposition 6.5.1 was a first step toward a general formula for <f>(n). We now 

continue the pursuit of a formula.

Theorem 6.5.3. Let p be a prime number and e a positive integer. Then

„ e —l
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Proof: A number is not relatively prime to pe if and only if it is divisible by p. 
In the integer interval [1 : pe], the numbers divisible by p are

P, 2 p, . . . ,  pe~1p

The cardinality of the complementary set is pe — pe_1. <C>

Example 6.5.2: If p =  2, then the numbers relatively prime to 2e are the odd 
numbers less than 2e. Clearly, there are

2e
_ c\e _ Oe _  1

2 ~~

such odd numbers.

DEFINITION: A function /  : \ is a m u ltip lica tiv e  fu n ctio n  if whenever
r a i n

/(ran ) =  /( r a ) /(n )

Theorem 6.5.4. The Euler phi-function is multiplicative.

Proof: Let ra and n be integers such that r a i n .  Then

m n  — 1

(b _L ran) (definition of <f>)

m n  —  1 

m n  —  1

(6 mod ra _L m)(b mod n i n )  (Proposition 6.1.1)

m —  1 n  — 1

y~^(j mod ra _L m )(k  mod n i n )  (Theorem 6.2.3)

m —  1 n  — 1

( j mod ra _L ra) ^^(fc mod n i n )

</>(ra) </>(n) 0
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Example 6.5.3: By sequential testing, we determine that the numbers relatively 
prime to 36 are

1 5 7 11 13 17 19 23 25 29 31 35 

Thus, </>(36) =  12. Either by sequential testing of the smaller positive integers or

Theorem 6.5.5. Let b be a positive integer with the prime power factorization

 ̂ _ p e l pe^

Then
k ^ '

Proof: This follows immediately from Theorems 6.5.3 and 6.5.4. <C>

Corollary 6.5.6. Let b be a positive integer with the prime power factorization

^  __  p e l pe^

Then

Proof: Starting from Theorem 6.5.5,

=  =  i l
k

Pi - 1
Pi

Example 6.5.4: 60 =  2 • 3 • 5. By Corollary 6.5.6,

_ 6 o  1 2 4 _  i 6_  ”

The sixteen numbers relatively prime to 60 are

1 7 11 13 17 19 23 29 
31 37 41 43 47 49 53 59
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By combining Corollary 6.5.6 with Euler’s theorem, we can quickly evaluate 
some otherwise hard-looking congruences.

Example 6.5.5: In reducing each of the following congruences of an exponenti­
ated expression to something more tractable, first the base is reduced by dividing 
by the modulus ra, and then the exponent is reduced by dividing by <f>(m).

28945 mod 15 =  445 mod 15 =  45 mod 15 =  4 

1728613 mod 35 =  13613 mod 35 =  1313 mod 35 =  13 

12055106 mod 21 =  85106 mod 21 =  83 mod 21 =  8

Summing Phi over Divisors of n
We are now concerned with proving the following classical result:

d \ n

The proof is most easily understood as a generalization of an example.

Example 6.5.6: The divisors of 12 are

d =  1 2 3 4 6 12 

The sum of the values of <f>(d) is

d \ 12

This phenomenon can be explained by considering the unreduced fractions of the 

form : for j  =  1, . . ., 12

i i l i i i l i l l i i y
12 12 12 12 12 12 12 12 12 12 12 12

First reduce them to

J _ 1 1 1 _ 5 _ I j L 2 3 5 U 1  

1 2  6  4  3  1 2  2  1 2  3  4  6  1 2  1

and then regroup them according to their denominators

1 1 1 2 1 3 1 5  1 5 7  11
v L J L  .12 12 12 12,

The set of numerators in each reduced subgrouping is precisely the set of num­
bers that are relatively prime to the common denominator of that subgrouping. 
Thus, the number of fractions in the subgrouping corresponding to the divisor d
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unreduced fractions, it follows that

£ '
d \  1 2

Theorem 6.5.7. Let n be any positive integer. Then

d  \  n

Proof: For each divisor rf o f n, the value <f>(d) equals the number of unreduced
fractions in the set , „1 2  n

n n n
whose denominator is d after reduction. Since every one of the n unreduced fractions 
reduces to a unique reduced fraction, the conclusion follows. <C>

Example 6.5.7: The divisors of 15 are

d =  1 3 5 15

The sum of the values of <

d  \  1 5

EXERCISES for Section 6.5

In each o f the Exercises 6.5.1 through 6.5.8, calculate the value o f the Euler phi- 
function for the given argument.

In Exercises 6.5.9 through 6.5.16, evaluate the given expression, using Euler’s gen­
eralization o f Fermat’s Theorem.
6.5.9 34® mod 15 
6.5.11s 22164 mod 25
6.5.13 l l l l 111 mod 14
6.5.15 155108 mod 16

6.5.10 180312 mod 15
6.5.12 1441728 mod 25
6.5.14 88222 mod 27
6.5.16 515613 mod 24

In each o f the Exercises 6.5.17 through 6.5.22, list all the divisors o f the given 
number, calculate the value o f the Euler phi-function on each divisor, and add those 
values, to confirm that their sum is the given number.

6.5.17 15 6.5.18 24
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6.5.19s 30

6.5.21 48

6.5.20 36

6.5.22 100

DEFINITION: The F a rey  seq u en ce  o f order n, for each positive integer n, is the 
sequence of reduced fractions j ,  such that 0 <  r <  s <  n, in ascending order. The 
elements of the Farey sequence are called F a rey  fractions.

Example 6.5.8: The Farey sequence of order 5 is

0 1 1 1 2  3 1 
1 ’ 4 ’ 3 ’ 2 ’ 3 ’ 4 ’ 1

Exercises 6.5.23 through 6.5.26 are concerned with the Farey fractions. Let Fn 
denote the set o f Farey fractions o f order n.

6.5.23 Write the Farey sequence of order 4.
6.5.24 Write the Farey sequence of order 5.

6.5.25s Prove that \Fn\ =  l-Fn-il +

mathematics at Leipzig, whose most celebrated mathematical association is quite 
likely with the surface called a Mobius strip, which is one-sided when imbedded 
in 3-dimensional space. He was also an astronomer. This section concerns one of 
his contributions to classical number theory, the Mobius function, and its use in a 
summation principle called Mobius inversion.

DEFINITION: The M o b iu s  fu n ctio n  f i ( n )  is defined recursively on the positive 
integers as follows:

6.5.26 Prove that |_F„|

6.6 THE MOBIUS FUNCTION

i

n  — 1

l
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- M

- M

We observe that on each of the primes 2, 3, 5, 7, and 11, the value of the Mobius 
function is —1. It is easy enough to prove that this is true of all primes.

L em m a 6.6.1. Let p be a prime number. Then

P ro o f: Since 1 is the only proper divisor of a prime number p, it follows that

p - 1

ing that fi is zero-valued on every prime power, we might check a few more and 
then confirm our hunch.

E xam ple  6 .6.1, con tin u ed : We check the next few small cases of prime powers.

L em m a 6.6.2. Let pk be a prime power with k >  2. Then

P ro o f: Since all the divisors of pk are of the form p>, it follows that

f e - i

  



364 Chapter 6 Integer Operators

Basis: k =  2

Ind Step : Assume true for j  =  2 , . . .  ,k  — 1. Then

About Multiplicative Functions
It is proved in §6.5 that the Euler function 4>(n) is multiplicative. That is, 

whenever m l n
<f)(mn) =

In anticipation of calculating the values of the Mobius function, we prove two general 
theorems about multiplicative functions, after a preparatory lemma.

L em m a 6 .6.3. Let ra and n be relatively prime numbers. Then each divisor d o f  
the product mn has a unique representation as the product d =  d\d2 o f  a pair o f  
integers d i and d2 such that di \ m and d2 \n.

P ro o f: By the Fundamental Theorem of Arithmetic, the integer d has a factor­
ization into prime powers, each of which divides either m or n, but not both, since 
r a i n .  The unique representation is

T h eorem  6.6.4. Let f(n )  be a function on the positive integers, and let F(ri) be 
the function

d  \  n

If  f (n )  is multiplicative, then so is F (n ).

P ro o f: Let ra and n be relatively prime numbers. Then

d \  \  m  d <2 \  ti

d \  \  m  6^2 \  n  

d \  \  m  6^2 \  n  

( d i  > <̂ 2)  : d \  \  m  A  d 2  \ n  

d  \  m n

( /  is multiplicative)
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Example 6.6.2: To illustrate Theorem 6.6.4, let /  be a multiplicative function, 
m =  10 and n =  9. Then

=  / ( ! ) / ( ! )  +  /  (2) /  (1) +  / ( l ) / ( 3 )  +  /  (5) /  (1) +  / ( 2 ) / ( 3 )  +  /(l)/(9) 
+  /(1 0 ) /(1 )  +  / ( 5 ) / (3 )  +  / (2 ) / (9 )  +  /(1 0 ) /(3 )  +  / ( 5 ) / (9 )  +  /(1 0 ) /(9 )

The following theorem inverts the relationship of Theorem 6.6.4. It enables us 
to prove that the Mobius function fi is multiplicative, which is the key property in 
establishing a formula for the values of fi.

Theorem 6.6.5. Let f  be any function on the positive integers such that the sum

d \ m

is a multiplicative function. Then f  itself is a multiplicative function.

Proof: By induction.
B a s is : Since F  is multiplicative, it follows that F (  1) =  1. Thus

d \ 1

In d  H y p : Assume that / ( r a n )  =  / (m ) /(n )  for r a i n  whenever ran <  s.

In d  St e p : Suppose that r a i n  and that ran =  s. Then

d\mn  b \ m c \n

We infer that b _L c within the double sum, since b \m  and c \n, with ra _L n. 
Thus, by the induction hypothesis, we have

= I E  £ •
i \ m  c \ n

(c) -  f (m )f (n )  +  /(ran)

\m c \ n J

It is given that F  is multiplicative, which means that F(m n) =  F (m )F (n ). It 
follows that

/(ran ) =  /( r a ) /(n )
Thus, /  is multiplicative. <C>

  



Evaluating Mu

T h eorem  6.6.6. The Mobius function fi is multiplicative.

P ro o f: Immediately from the definition of fi, the function

d  \  m

has the value
f 1 if m =  1
1 0 otherwise

Thus, the function F(m ) is multiplicative. It follows from Theorem 6.6.5 that the 
function f i  is multiplicative. <C>

T h eorem  6.6.7. Let p\, . . ., pr be different primes. Then

0 if  ej >  2, for any j
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P ro o f: This follows from Lemma 6.6.1, Lemma 6.6.2, and the fact that f i  is mul- 

E xam ple  6 .6.3: We use Theorem 6.6.7 to determine some values of n(n).

Mobius Inversion
The following identity facilitates the manipulation of a summation indexed over 

a lattice of divisors.

L em m a 6.6.8. Let m and k be positive integers. Then

: k \ d\ m j-

P ro o f: First suppose that k \ d \ m .  Take c =  —. Then
k

m m
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Conversely, suppose that c \ — . Take d =  ck. Then
K

T h eorem  6.6.9 [M ob iu s  In version  P rin cip le]. The integer function F  is related 
to the integer function f  by the summation

d \ m

if  and only if  the function f  is related to the function F  by the summation

f (m ) =  ( 7

d \ m

P ro o f: First suppose that

Then

d \m

d \ m

d \ m k \ d

= E & Q -
d \ m  k \ d

= S  S " ( 7
k \ m k \ d \ m 

k \ m k \ d \ m

k \ d 

k \ d 

k \ d

This completes the “forward” direction.

summation 1

(Lemma 6 .6 .8 ) 

(definition of fi)

Conversely, suppose that

f (m )  =  E H j
d \ m
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Then

E ­
d \ m

= E
d \ m k \ d

= E  E  ^
k \d k \ d \ m

k \d k \ d \m

k \d k \ d \m

summation «

E j
k \ d

E j
k \ d

E ^
k \ d

E >
m ^
k

(Lemma 6.6.8) 

(definition of //)

E xam ple  6 .6.4: We recall from Theorem 6.5.7 that

d \ n

For n =  6, the sum on the left is

According to the Mobius inversion principle, one expects that

6
=

d\ 6

The value of this sum is

which serves as empirical confirmation.
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6 .6.1

6.6.3s
6.6.5

6 .6.2

6.6.4

6.6.7 n( 323)

Exercises 6.6.9 through 6.6.14 further explore multiplicative functions.

DEFINITION: For every positive integer n, the sum-of-all-divisors function cr(n) gives 
the sum of the divisors of n.

6.6.9 Prove that the function i ( n )  =  n is multiplicative.
6.6.10 Give a direct proof that the function <r(n) is multiplicative.
6.6.11s Use Theorem 6.6.4 to show that the function cr(n) is multiplicative.

DEFINITION: For every positive integer n, the number-of-divisors function r(n ) gives 
the number of divisors of n.

6.6.12 Prove that the function rz i— 1 is multiplicative.

6.6.13 Give a direct proof that the function r(n ) is multiplicative.
6.6.14 Use Theorem 6.6.4 to show that the function r(n ) is multiplicative.

respect to a system of independent moduli.

Chinese remainder theorem: the theorem that there are essentially unique 
solutions to certain systems of linear congruences with relatively prime moduli.

common divisor of two or more integers: a positive integer that divides 
each of them.

common multiple of two or more integers: a positive integer that is a 
multiple of each of them.

divides relation: for integers n and d, the relation d \ n means that there is an 
integer q such that dq =  n.

GLOSSARY
Chinese remainder decoding: finding a number with a given set of residues 

with respect to a system of independent moduli.

Chinese remainder encoding: finding the residues of a given number with
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Euclidean algorithm: a process of iterative reductions to a greatest common 
divisor, using the mod operator; usually for two integers n and ra, but also for

___, extended: usually, a process that represents the greatest common divisor
of two integers as a linear combination of them with integer coefficients; 
sometimes also for polynomials.

Euler phi-function <f>(n): the number of integers from 1 to n that are relatively 
prime to n.

Farey sequence of order n: the sequence of reduced fractions valued from 0 to 
1, with denominator at most n, in ascending order.

field: an algebraic structure with an addition and a multiplication that has 
multiplicative inverses as well as additive inverses.

greatest common divisor of integers n and ra, not both zero: the largest 
common divisor.

independent moduli, system of m i, m2, • • •, ra :̂ moduli that are pairwise 
relatively prime.

integer quotient of a division of an integer n by an positive integer d: the unique 
integer q such that 0 <  n — dq <  d.

least common multiple of two or more integers: the smallest common multiple.
linear congruence: a congruence of the form ax =  &(modulo ra) with constant 

integers a, b, and ra, and indeterminate x.

modular exponentiation: evaluating an exponential modulo some number.
monic polynomial: a polynomial whose highest-degree term has a coefficient 

of 1.
multiplicative function: a function /  on the integers such that

/(ran ) =  /( r a ) /(n )

prime number: a positive integer larger than 1 with no proper divisors except 1.
prime polynomial: a monic polynomial with no divisors except 1 and itself.
quadratic residue of a number ra: a number a, relatively prime to ra, such that 

the congruence x 2 =  a mod ra has a solution.
relatively prime polynomials: polynomials whose greatest common divisor is 

the constant polynomial 1.
residue: the remainder of a division process.
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The short preview of graph theory in Chapter 0 has enabled us to employ

for application of some of the counting methods developed. This chapter marks 
a transition of focus from counting, in the preceding chapters, to configurations.

tour of the basics and some highlights. This chapter presents the core concepts

(i.e., equivalence) that are vital throughout the vast range of particular aspects and 
applications, plus a cluster of graph operations that are used in constructing new

and edge-weights.
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7.1 REGULAR GRAPHS 

The late Frank Harary often referred, in his characteristically entertaining style, 
to "beautiful graph theory". One of the various at tr ibutes that could earn his 
approval of a particular graph as beautiful was symmetry. Regularity in a graph is 
a form of local symmetry. 

REVIEW FROM §0.6: The degree of a vertex v is the number of proper edges 
incident on v plus twice the number of self-loops at v. 

DEFINITION: A regular graph is a graph in which every vertex has the same degree. 
If the common degree is d, then the graph may be called d-regular. 

There are many interesting classes of regular graphs. Familiarity with them is very 
helpful, since they frequently arise as examples in discussions of graphs. Regularity 
also arises in practical applications. In a criss-cross grid of streets, every intersection 
has degree 4. Alternatively, imagine an electrical network in which each node has 
the same number of wire-ends incident on it, or, in larger scale, a homogeneous 
network of processors on a chip in which each computat ional node is linked to the 
same number of other nodes. 

Geometric Regularity 

The members of some classes of regular graphs are readily visualizable as geo­
metrically regular figures. Visualization of such graphs with the geometric regular­
ities in R o r l tends to enhance intuitive conceptualization. 

DEFINITION: The cycle graph Cn is the graph whose vertices are representable as 
n points spaced equally apart around the unit circle (see Figure 7.1.1) and whose 
edges are representable as the arcs joining adjacent vertices. 

Figure 7.1.1 T h e cyc le graphs C\, C-¿, C3, a n d C4. 

E x a m p l e 7 .1 .1: Every cycle graph Cn is a 2-regular connected graph, and con­
versely, every 2-regular connected graph with n vertices is isomorphic to the cycle 
graph Cn. For n > 3, the cycle graph Cn can be represented as the boundary of an 
n-sided polygon in the plane, as in Figure 7.1.2. 

  



Section 7.1 Regular Graphs 373 

Figure 7.1.2 T h e cyc le graphs C3, C4, C5, a n d C'e as p o l y g o n s . 

Another s tandard example of a regular graph is a complete graph. 

REVIEW FROM §0.6: The complete graph Kn is the n-vertex simple graph such 
that every pair of vertices is joined by an edge. 

E x a m p l e 7.1.2: The complete graph Kn is (n — l)-regular. For n < 4, the 
complete graph Kn can be drawn in the plane without edge-crossings. For n > 5, 
drawings of Kn in the plane have edge-crossings, as, for instance, the complete 
graph KQ in Figure 7.1.3. 

Figure7.1.3 T h e c o m p l e t e graph K6. 

Sometimes a graph is visualized in 3-space, rather than as a plane figure. It 
can serve as what is intuitively the framework enclosing a polyhedron, which is the 
higher-dimensional analogue of a polygon. Just as a regular polygon, a 2-dimensional 
figure, has all its sides of the same length and perfect rotational symmetry, a regular 
polyhedron of dimension 3 has identical regular polygons as its faces and perfect 
rotational symmetry. 

DEFINITION: For any polyhedron in 3-space, the graph representable by its corners 
and edges is called the 1-skeleton (or sometimes, simply, the skeleton) of that 
polyhedron. 

E x a m p l e 7.1.3: The five regular polyhedra shown in Figure 7.1.4 are called the 
platonic solids. Their 1-skeletons are called platonic graphs. More generally, 
the 1-skeleton of a regular polyhedron of any dimension is a regular graph. 
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T e trahed ron  C ube O ctahedron

The concept of polyhedron generalizes to dimensions higher than 3. In particular, 
the graph K n is also representable as the 1-skeleton of a polyhedron in IRn_1 called 
the (n — 1) -simplex.

Algebraic Regularity

Various families of regular graphs also arise from algebraic constructions. Some 
of the members of algebraically constructed regular classes are also geometrically 
realizable.

DEFINITION: To the group of integers modulo n and each subset S of numbers 
in its domain, we associate the circu lan t graph  circ (n : S ), whose vertex set is

{0 , 1, . . . ,  n -  1}

and in which two vertices i and j  are adjacent if and only if there is a number s E -S' 
such that i +  s =  j  mod n or j  +  s =  i mod n. The elements of the set S are called 
con n ection s .
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Example 7.1.4: Figure 7.1.5 shows three circulant graphs.

Figure 7.1.5 T h e graphs circ (4 : 1,2), circ(6  : 1,2), and  c ir c (7 : 1,3).

This extremely useful construction can be generalized.

the binary strings of length n, such that two vertices are adjacent if and only if 
the corresponding binary strings differ in a single bit. The hypercube graph Qn is 
evidently n-regular, as illustrated in Figure 7.1.6.

Figure 7.1.6 T h e  h y p ercu b e Q i, Q 2, and  Q3.

E xam ple  7.1.5: To see how the hypercube graph is related to a circulant graph, 
consider the operation of adding two binary strings of length n by adding each pair 
of corresponding coordinate values modulo 2. For instance,

10110 
+ 01110 

11000

Taking the set of n binary strings with one 1 as the connections has the effect of 
joining each binary string to each of the other strings from which it differs by one 
bit.

Example 7.1.5 suggests how to generalize the circulant-graph construction to an 
arbitrary group and any subset of elements of the group. (See Appendix A2.) This 
was developed by Max Dehn (1878-1952), building on a representation of complete

been given to the construction.
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DEFINITION: To an arbitrary group A  and to an arbitrary subset S o f its domain,

domain of the group A , such that there is an edge between vertices u and v if there 
is an element s £ S such that u +  s =  v (for an additive group, or u -k s =  v if is 
the group operation).

Example 7.1.5, continued: The hypercube 

where E  is the set of fc-tuples

Qn may be described as the

( 1 , 0 , 0 , . .  . , 0 ), (0 , 1 , 0 , . . . ,  0 ),

Circular and Mobius Ladders
In general, a class of graphs is better conceptualized with the aid of both a 

picture and an algebraic specification, than by either one alone, if the graphs in that 
class have sufficient symmetry to be represented by a concise algebraic description.

DEFINITION: The circu lar lad d er graph  C L n is representable geometrically in 
the plane as two concentric cycle graphs, each with n vertices spaced equally apart, 
such that there is a line joining the j th vertex on the outer cycle to the j th vertex 
on the inner cycle, for j  =  1, . . ., n.

Example 7.1.6: Each circular ladder C L n is 3-reg 
7.1.7.

as illustrated in Figure

Figure 7.1.7 The circular ladders CL\, C L 2, C L 3 , and C L 4 .

Alternatively, the circular ladder C L n could be described as the Cayley graph

The first component of each pair in 7Ln ® 7L2 is added modulo n and the second 
component is added modulo 2. This alternative representation is illustrated for 
C L 4  in Figure 7.1.8.

Figure 7.1.8 The Cayley .0 ), (0,
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DEFINITION: The M o b iu s  lad d er graph  M L n is obtainable from the circular 
ladder C L n by removing the edge joining vertex n and vertex 1  on both the inner 
cycle and the outer cycle, and then joining vertex n on the outer cycle to vertex 1  

on the inner cycle and also joining vertex n on the inner cycle to vertex 1  on the 
outer cycle.

Example 7.1.7: Each Mobius ladder M L n is 3-regular, as illustrated in Figure 
7.1.9. The name Mobius ladder reflects the resemblance of these drawings of the

Alternatively, the Mobius ladder M L n can be described as circ(2n  : 1, n) or, equi-

Cay (TL’in : { ! , « } )

as illustrated for M L 4  in Figure 7.1.10.

Figure 7.1.10 The Cayley C a y (Z 8 : {1,

PREVIEW OF §7.4: The formal sense in which we may say that two different 
drawings, or more generally, two specifications of any type, represent equivalent

Petersen Graph

certainly the Petersen graph.

  



378

DEFINITION : The P e t e r s e n  g ra p h  is the 3-re depicted in Figure 7.1.11.

Chapter 7 Graph Fundamentals

Figure 7.1.11 The Petersen

EXERCISES for Section 7.1

In each o f the Exercises 7.1.1 through 7.1.4, calculate the number o f vertices and 
edges o f the given graph.

7.1.1 Hypercube grapl Q 4 .

7.1.4 circ(2n : 2 ,n ).

DEFINITION: Two edges of a graph G are considered to be a d ja cen t ed g es  if they 

G, has Eq  as its vertex set. Each pair of edges that is adjacent in G is joined by

7.1.5 Prove that the line of simple simple

7.1.6 Suppose that G is a rf-regular graph with n vertices. How many vertices

of itself?

In each o f the Exercises 7.1.9 through 7.1.12, describe the given graph as a circulant 
graph.

7.1.9 Mobius ladder M L n.

7.1.13 Is the Petersen graph

7.1.10 Circular ladder GLn 
7.1.12s Complete bipartite j

describable as a circulant graph?

odd.
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7.2 WALKS AND DISTANCE 

À walk in a graph is a discrete analogue of a continuous curve. It is conceptu­
alized as a sequence of consecutive edge-steps. It represents some kind of traversal, 
and it has an order of traversal, even if its edges arc undirected. Applications are 
commonly concerned with shortest walks. The first few definitions about walks, 
paths, cycles, and distance are presented rather rapidly, in consideration of the like­
lihood that they have been encountered previously in a discrete mathemat ics course 
or, perhaps, in any one of various engineering or applied-mathematics courses. 

Figure 7.2.1 A c o n t i n u o u s curve a n d a d i screto walk. 

D E F I N I T I O N : A walk from vertex i'o to vertex v„ in a graph G is an alternating 
sequence 

of vertices and edges, such that edge t .¡ joins vertices Vj-¡ and v,¡. for j = 1, . . ., n. 
It is a tr ivia/ walk if n = 0. It is a directed walk if each edge e;- is directed from 
Vj-i to VJ. A closed walk is a walk that begins and ends at the same vertex. An 
open walk ends at a different vertex from the one at which it begins. 

In a simple graph, since there is only one edge between two adjacent vertices, one 
can safely abbreviate that representation with a sequence of vertices, 

without explicitly mentioning the edges. 

DEFINITION: A path is a walk that has no repeated vertices (or edges), except that 
the last vertex may possibly be the same as the first. If so, it is a. closed path. 
and if not, it is an open path. 

DEFINITION: A closed path is also called a c ircuit or a cycle. A graph with no 
non-trivial circuits is said to be an acycl ic graph. 

E x a m p l e 7 .2 .1: Figure 7.2.2 below illustrates an open path. The last vertex, vn, 
is not the same as the initial vertex, VQ. 
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Figure 7.2.2 An open

DEFINITION: A in which there is an open path that traverses every edge is

Figure 7.2.3 The graphs P3 and P4 .

Observe that we distinguish between a path, which is a sequence of vertices and

DEFINITION: A gr; 
from u to v.

is connected  if for every pair of vertices u and v, there is a

7.2.2: The graph in Figure 7.2.4 is non-connected, because there is no 
, for instance, between vertices u and v.

Figure 7.2.4 A non-connected graph.

PREVIEW OF §8.1: A closed walk that traverses every edge of a graph exacly 
once is called an eulerian tour, after Leonhard Euler (1707-1783). An open walk 
that traverses every edge exactly once is called an eulerian trail. A circuit that 
traverses every vertex is called a hamiltonian circuit, after Sir William Rowan

Measuring Distance
DEFINITION: The length o f  a walk

W  =  {v 0, ei, vi, e2, ■ ■ •, e„, vn )

is the number n o f edge-steps in the walk. (This may be more than the number 
of different edges in the sequence, because one or more edges may be retraversed 
during the walk.)
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DEFINITION: The d ista n ce d(u,v) from vertex u to vertex v is the length of a 
shortest walk from u to v, if such a walk exists. Otherwise, the distance d(u, v) is 
defined to be infinite.

R em ark : Clearly, a shortest walk between two vertices must be a path. If a vertex 
w recurs on a walk from a vertex u to a vertex v, then one could excise the subwalk 
from w to itself and thereby obtain a shorter walk.

R em ark : In an undirected graph, the distance from v to u must be the same as 
the distance from u to u, so we may refer to the distance between two vertices.

PREVIEW OF §7.8: A standard algorithm for calculating shortest paths from a 
given vertex to all other vertices, due to E. Dijkstra [Dijkl959], is presented in §7.8. 
This algorithm applies to a more general sense of distance in a weighted network, 
in which arbitrarily large distances may be assigned to single edges.
COMPUTATIONAL NOTE: An elementary algorithm of R. W . Floyd [Floyl962] cal­
culates all the pair distances in a weighted n-vertex graph, with total time pro­
portional to n3, based on work of S. Warshall [Warsl962]. An algorithm that has

Walks and Cycles in Bipartite Graphs

P ro o f: Since there are no edges within either part of the bipartition, a walk from 
a vertex v is always in the other part after an odd number of edge-steps. <C>

P ro o f: Proof for a connected graph G is sufficient. Let u be any vertex of G, and 
define

X  =  { x | d(u, x) is even }
Y  =  { y  | d(u,y) is o d d }

Suppose that both vertices z\ and z2 lie either in X  or in 7 ,  and that they are 
adjacent. Let Pi be a shortest u-z\ path and P2 be a shortest u-z2 path. By 
definition of X  and Y , the lengths of these paths are either both even or both 
odd. Thus, they must meet at one or more vertices, as illustrated in Figure 7.2.5, 
for otherwise the concatenation of paths Pi, P2 and edge z iz2 would form an odd

Figure 7.2.5 S h ortest paths to  z i and  z2
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Since Pi and P 2 are both shortest paths, the distances along them to every inter­
section vertex must be the same, and there must be some last intersection vertex w. 
Thus, the distance along the subpath of Pi from w to zi must be of the same parity 
as the distance along the subpath of P 2 from w to Z2 . Since these subpaths do not 
meet, their concatenation with edge Z\Z2 forms an odd cycle, a contradiction. 0

Diameter, Radius, and Girth

Various numerical invariants of a graph are based on the distances between 
vertices. They are of great importance to certain models for communications.

DEFINITION: The diameter o f a graph G, denoted diam(G), is the maximum of 
the distances between any two vertices. (The diameter may represent the maximum 
time needed for two nodes of a network to communicate.)

Example 7.2.3: The diameter of the graph in Figure 7.2.6 is 3. In particular, 
vertex s is at distance 3 from vertices w, x, and z.

DEFINITION: The eccentricity of a vertex v, denoted ecc(v), is the maximum of the 
distances from v to other vertices. (The eccentricity may represent the worst-case 
time needed to reach any other node from a given node.)

Example 7.2.3, continued: In Figure 7.2.6, the vertices s, w, x, and z each 
have eccentricity 3, and the other four vertices have eccentricity 2.

DEFINITION: The radius o f a graph G, denoted rad(G ), is the minimum of the 
eccentricities of the vertices. (A vertex whose eccentricity equals the radius of the 
network is regarded as central. It is a best node for originating or receiving a 
message within the network, in the sense that its worst-case time is least.)

Example 7.2.3, continued: The radius of the graph in Figure 7.2.6 is 2, the 
minimum of the eccentricities.
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DEFINITION: The girth of a graph G is the length of a shortest non-trivial circuit, 
denoted girth(G), if any such circuit exists. 

E x a m p l e 7.2 .3 , cont inued: The girth of the graph of Figure 7.2.6 is 3. 

COMPUTATIONAL NOTE: The shortest path that includes a given edge uv can be 
calculated by a modification of Dijkstra's algorithm. Iterating this over all the edges 
leads to an elementary algorithm for calculating the girth. 

The following table gives the diameter, radius, and girth of some of the graphs 
described earlier in this chapter. All of the graphs in the table are vertex-transitive 
(which is to be defined later in this chapter), which is a sufficient condition for the 
diameter and the radius to be equal. 

Exercises 
In each of the Exercises 7.2.1 through 7.2.4, calculate the radius and diameter of 
the given graph. 

7 .2 .1 s 7.2.2 

7.2.3 7.2.4 

In each of the Exercises 7.2.5 through 7.2.8, decide whether the specified graph is 
bipartite. Give a proof. 

7.2.5 The graph of Exercise 7.2.1. 

7.2.6 The graph of Exercise 7.2.2. 

7.2.7 The graph of Exercise 7.2.3. 

7.2.8 The graph of Exercise 7.2.4. 

graph 

cycle graph Cn 

hypercube Qn 

circular ladder CLn 

Mõbius ladder MLn 

Petersen graph 

diameter radius girth 

n 

4, for n > 2 

4, for n > 4 

4, for n > 2 

5 
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In each o f the Exercises 7.2.9 through 7.2.12, decide whether the girth o f the specified 
graph is 3 or 4- Give a proof.

7.2.9s The graph of Exercise 7.2.1.

7.2.10 The graph of Exercise 7.2.2.
7.2.11 The graph of Exercise 7.2.3.
7.2.12 The graph of Exercise 7.2.4.

In each o f the Exercises 7.2.13 through 7.2.16, find all the central vertices o f the

7.2.13 The graph of Exercise 7.2.1.
7.2.14 The graph of Exercise 7.2.2.

7.2.15s The graph of Exercise 7.2.3.
7.2.16 The graph of Exercise 7.2.4.

In each o f the Exercises 7.2.17 through 7.2.20, calculate the radius and diameter of 
the indicated line graph.

7.2.21 Prove that the diameter of a connected graph is at most twice the radius, 
and give an example to illustrate that this upper bound can be realized.

7.3 TREES AND ACYCLIC DIGRAPHS

DEFINITION: A tr e e  is a conn ected  graph in w hich  there are no n on -triv ia l circuits. 
A tree w ith  on ly  one vertex  is called  trivial. A possib ly  n on -con n ected  graph w ith  
no n on -triv ia l circu its is called  a fo rest.

Example 7.3.1: Figure 7.3.1 shows a tree and a i 
it has a circuit.

that is not a tree, because

Figure 7.3.1 A tree and a non-tree.
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DEFINITION: A leaf of a tree is a 1-valent vertex. 

E x a m p l e 7 .3 .1 , cont inued: The graph on the left of Figure 7.3.1 is a tree with 
five leaves. 

Trees are among the most commonly occurring graphs, both in pure mathe­
matics and in applications. Their use in computer algorithms could be a book in 
itself. Our concern in this section is to lay the groundwork for such study. We es­
tablish their most significant characteristics, and we briefly introduce the two kinds 
of trees that arise most frequently as da ta structures for computer algorithms. 

Properties of Trees 

The following lemma is the key to establishing some of the most important 
characterizations of trees, because it permits inductive arguments on tree size, as 
in Proposition 7.3.2. 

L e m m a 7.3 .1 . Every non-trivial tree T has at least two leaves. 

Proof: Let P be a path of maximum length in the tree T, and suppose that P 
runs from vertex s to vertex t. Since tree T is non-trivial, it follows that s ^ t and, 
in turn, tha t there is a vertex v ^ s immediately after s along path P. Suppose 
that vertex s is not a leaf. Then it must be adjacent to some other vertex w, in 
addition to v. The vertex w cannot lie on path P, because if it did, the walk from 
s to w along P, followed by the edge sw, would yield a circuit. Yet if w does not 
lie on path P, then preceding path P by edge sw would extend P to a longer path. 
By a similar argument, the vertex t must be a leaf. <) 

P r o p o s i t i o n 7.3.2. The number of edges of a tree is one less than the number of 
vertices. 

Proof: A tree cannot have self-adjacencies, so if there is only one vertex, there 
must be no edges. 

By way of induction, assume that a tree with n — 1 vertices must have n — 2 edges, 
for some n > 2, and let T be a tree with n vertices. By Lemma 7.3.1, there is a leaf 
in tree T. Deleting that leaf and the edge incident on it cannot introduce a circuit 
to T. Nor does it disconnect T. Thus, the graph obtained by that deletion is a tree. 
Since it has n — Í vertices, it follows from the induction hypothesis that it has n — 2 
edges. Accordingly, the tree T, with one more edge, has n — 1 edges. <) 

P r o p o s i t i o n 7.3 .3 . Adding an edge to a tree T creates a cycle. 

Proof: If the new edge has only one endpoint, then that edge itself is a cycle. 
Therefore, suppose that it joins two vertices. Since the tree T is connected, there 
is already a path joining those two vertices, and adding the edge to that path 
transforms it into a cycle. <) 
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P r o p o s i t i o n 7.3.4. In a tree T, there is exactly one path joining any two vertices. 

Proof: Let P and Q be a pair of paths joining the same two vertices, say s and t, 
such that among all such instances of pairs of paths in T, the sum of their lengths is 
minimum. Minimality of that sum precludes the possibility that path Q intersects 
path P anywhere except vertices s and t. Accordingly, following a traversal of path 
P by a reverse traversal of Q is a circuit in T, a contradiction. <) 

Rooted Trees and Binary Trees 

DEFINITION: A rooted tree is a tree with one vertex designated as the root. 

Computer programs use rooted trees as da ta structures. Access to the da ta is 
giving by passing the memory address of the root of the tree. There are, in fact, 
many other uses of rooted trees, including their capacity to represent a sequential 
decision process or a hierarchy. Designating some particular vertex of a tree as the 
root induces a host of additional properties. Some of the terminology for rooted 
trees is based on the metaphor of a family tree. 

Remark: Although it is helpful to borrow terminology from the notion of family 
trees, it is provable that family trees have cycles. If one assumes that a generation 
is 25 years, then in a thousand years, there are 40 generations. The number 24 0 of 
ancestors one would have had a thousand years ago, under the assumption of no 
cycles, vastly exceeds the total population of the earth. 

DEFINITION: In a rooted tree T, the parent of a vertex v other than the root is the 
vertex immediately after v on the unique path in T from v to the root. The root 
itself may serve as a parent. 

DEFINITION: Every vertex of which the vertex u is a parent is called a child of u. 
Two vertices with the same parent are called siblings. 

DEFINITION: A descendant of a vertex of a rooted tree is defined recursively 
as that vertex itself, any child of that vertex, or any descendant of a child of that 
vertex. An ancestor of a vertex of a rooted tree is defined as any vertex of 
which that vertex is a descendant. 

TERMINOLOGY NOTE: Sometimes it is convenient to distinguish a vertex itself from 
its other descendants and ancestors, in which case, its other descendants and an­
cestors are called proper descendants and proper ancestors, respectively. 

DEFINITION: The height of a rooted tree is the maximum distance of any vertex 
from the root. 

E x a m p l e 7.3.2: In the rooted tree of Figure 7.3.2, vertex u is the parent of 
vertices w, x, and y. The ancestors of vertex y are the vertices u and s. The height 
of the tree is 2. 
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Figure 7.3.2 A  ro o te d  tree  o f  height 2.

DEFINITION: A binary tree is a rooted tree in which each vertex has at most two 
children, such that each child (even an only child) is designated as a left-child or 
a right-child.

E xam ple  7.3.3: In the binary tree of Figure 7.3.3, vertex w is the left-child and 
vertex x the right-child of vertex u. Vertex x has no right-child. Its only child, the 
vertex a, is designated by the drawing as the left-child.

Binary Search Trees
To illustrate one of the many ways that graphs are used as data structures in 

computer information systems, we now introduce vertex labeling as an augmenta­
tion of the graph model. Whereas the name of a vertex is a permanent part of its

DEFINITION: A labeling o f  the vertices of a graph G in a set S is an assignment 
to each vertex of an element of S.

DEFINITION: The descendants of the left-child of a vertex v, plus the edges joining 
those vertices, is called the left subtree of v. Similarly, the descendants of the 
right-child of a vertex v, plus the edges joining those vertices, is called the right 
subtree  of v.

DEFINITION: A binary search tree (abbr. BST) is a binary tree with a labeling 
o f its vertices by distinct elements of a linearly ordered set, such that the label at 
each vertex follows all the labels in its left subtree and precedes all the labels in its 
right subtree. The label of a vertex v is called its key.
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51 34 84 22 08 56 52 69 28 94 04 61

could be the keys of a binary search tree are illustrated in Figure 7.3.4. A data struc­
tures and algorithms course presents algorithms for inserting and deleting keyed 
nodes from a BST, so that the resulting graph is also a BST.

Example 7.3.4: Tw o o f the many ways in which the numbers

Figure 7.3.4 Two binary search trees with the same keys.

We observe that at node 22, for instance, the two nodes to its left have keys 04 and 
08 that are less than 22, and the two nodes to its right have keys 28 and 34 that 
are greater than 22. This same relationship holds at every node.

To illustrate how one searches a BST, consider how we might seek a node with the 
target key 52 in the BST on the right, starting from the root. Target node 52, if in 
the BST, would have to be in the right subtree of node 34, that is, in the subtree 
rooted at node 69. Proceeding down a level, node 52 (if in the BST) would have to 
be in the left subtree of the subtree rooted at node 69, that is, in the subtree rooted 
at node 56. Node 52 would have to be in the left subtree of node 56, and indeed, it 
is the left-child of node 56. If we had been seeking a target node 54, we would have 
tried to go to the right subtree of node 52. Finding no right-child at 52, we would 
conclude that there is no node 54 in the BST. Algorithm 7.3.1 indicates how this 
would be done on a computer.

Algorithm 7.3.1 : Binary-Search-Tree Search

Input: a binary-search tree T  and a target key t.
Output: a vertex v o f T  such that key(v) =  t if t is found, 

or a NULL vertex if no vertex has t as its key.

Return v.

In a computer implementation of a binary search tree, a node with a NULL key 
and no children is installed as an artificial left- or right-child, wherever the actual 
node has no left- or right-child, respectively. The following searching algorithm
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calling program is a pointer to a node. If the key at that node is NULL, this is 
interpreted as “not found” . Otherwise, the search has located the node whose key 
matches the target key value, where there is the record with the data actually being

Edge Directions
An edge between two vertices creates a connection in two opposite senses at 

once. Assigning a direction makes one of these senses forward and the other back­
ward. In a line drawing, the choice of forward direction is indicated by placing an 
arrow on an edge. The option of assigning directions greatly enhances the modeling

some ways similar, and in others, a little different.

DEFINITION: A directed edge  (or a r c ) is an edge, one of whose endpoints is 
designated as the tail, and whose other endpoint is designated as the head. An 
arc is said to be directed from  its tail to its head.

DEFINITION: A multi-arc is a collection of two or more arcs with the same tail and 
head.

DEFINITION: A directed graph (or digraph) is a graph each of whose edges is 
directed. If some edges are directed and some are not, it is called a m ixed graph.

d e f i n i t i o n :  A simple is a digraph that has no self-loops and no multi-

Figure 7.3.5 A  simple digraph.

that results from removing all the designations of head and tail from the directed 
edges of G (i.e., deleting all the edge-directions).

Example 7.3.5: Although the digraph in Figure 7.3.6 is simple, its underlying

Figure 7.3.6 A digraph D  and its underlying G.
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DEFINITION: A d ir ec ted  walk  in a graph is an alternating sequence 

W  =  ( v q , ei, Vi , e2, • • •, en, vn )

o f  vertices and arcs in w hich  the head o f  the arc ej is the vertex Vj, for j  =  1, . . ., n; 
it is a d ir ec ted  p a th  i f  it is a path  in the underlying graph.

vertices u and v, there is a d irected  w alk from  m t o  ti.

Acyclic Digraphs

is a digraph with no directed cycles.

Example 7.3.6: The underlying 
as in Figure 7.3.7.

of an acyclic digraph may contain cycles,

Figure 7.3.7 A whose underlying is non-acyclic.

Example 7.3.7: Any binary relation R  on a set U can be represented by a digraph 
in which there is an arc from u to v if and only if uRv. In this sense, every 
acyclic digraph may be regarded as a partial ordering on its vertices, by using the 
relation u ■< v to mean that there is a directed path from a to d. Trivial paths 
yield reflexivity, acyclicity implies antisymmetry, and concatenation of paths yields 
transitivity. Conversely, every partially ordered set can be represented as an acyclic 
digraph.

Transitive Digraphs

DEFINITION: A tra n sitiv e  d igraph  is a digraph such that whenever there is an arc 
from u to v and an arc from d to w, there is also an arc directly from u to w.

Proposition 7.3.5. In a transitive digraph, i f  there is a directed path from vertex 
u to vertex v, then there is an arc u —> v.

Proof: This follows readily from an induction argument. <C>

Example 7.3.6, continued: The dag of Figure 7.3.7 is transitive.
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C oro lla ry  7.3.6. Let D be a transitive digraph whose underlying graph is simple. 
Then D is acyclic.

P ro o f: Let Vo, Vi, . . ., v^-i  be a d irected  path  in D, and consider an edge e jo in in g  
vq and Vk~i, as illustrated in F igure 7.3.8.

Figure 7.3.8 A  directed path in a transitive digraph D.

By Proposition 7.3.5, there is an arc

d : v0 -»■ vk _ 2

Since there is an arc
v k -  2  v k -  1

transitivity implies that the edge e joining i>o and v^-i must be directed from i>o to 
Vk-i- Thus, the directed path cannot be completed to a directed cycle in D. <C>

DEFINITION: The transitive closure o f  a digraph is the digraph obtained by 
joining each vertex u to every other vertex v such that there is a non-trivial directed 
path from u to ti, but no pre-existing directed edge from u to v already.

Exercises
7.3.1 Prove that every vertex of maximum eccentricity in a tree is a leaf.

7.3.2 Let G be a connected graph in which the number of edges is one less than 
the number of vertices. Prove that G is a tree. This is a converse of Proposition 
7.3.2.

7.3.3 Let G be a connected graph in which there is exactly one path joining any 
two vertices. Prove that G is a tree. This is a converse of Proposition 7.3.4.

7.3.4 Draw all possible binary search trees whose keys are 1, 2, and 3.

7.3.5 Draw all possible binary search trees whose keys are 1, 2, 3, and 4.

7.3.6s How many different binary search trees are possible if there are n keys?

7.3.7 What is the minimum height of a binary search tree with n keys?

7.3.8 Prove that it is possible to assign directions to all the edges of a complete

7.3.9s Prove that it is possible to assign directions to all the edges of any simple
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7.3.10 Prove that the comparability digraph of a poset is transitive.

7.3.11 Prove that every transitive digraph is the comparability digraph of a poset.

DEFINITION: A d igraph  is a tournament i f  its underlying is a complete

7.3.12 Prove that an acyclic tournament is transitive.

7.3.13 Prove that a transitive tournament is acyclic.

7.3.14s Prove that a transitive tournament linearly orders its vertices.

7.3.15 Is the transitive closure of a connected acyclic digraph necessarily a tour­
nament? Give a counterexample or a proof.

7.4 GRAPH ISOMORPHISM

We are often faced with the problem of deciding from drawings, incidence 
tables, or other descriptions of two graphs whether they specify mathematically 
equivalent graphs. Some features that seem to distinguish one graph from another 
are invariant properties o f the graphs, and others are artifacts of the representation.

Example 7.4.1: Each of the three graphs in Figure 7.4.1 has five vertices and 
seven edges. However, graphs G and H  both have a 1-valent vertex, but graph J 
does not. We will see that the degree sequence is an invariant property.

Figure 7.4.1 Three 5-vertex, 7-edge graphs.

However, the edge-crossing in graph G is merely a feature of the representation, 
since the edge 02 could be redrawn so that it does not cross edge 13. The names of 
the vertices are also features of the representation, not of the underlying structure.

Structural Equivalence for Simple Graphs
What turns an abstract set called vertices and another abstract set called edges 

into a graph is the incidence structure, that is, the specification of which vertices 
are the endpoints of which edge. For two graphs to be equivalent, it is not enough 
that they have the same number of vertices and the same number of edges. There
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must also be a correspondence of their incidence structures. In a simple graph, 
the incidence structure conveniently reduces to the adjacency relationship on the 
vertices.

DEFINITION: A bijection /  : Vq —> Vh on the vertex sets of two simple graphs is 
said to p r e s e r v e  a d ja cen cy  if for every pair {u, v } of adjacent vertices in G, the 
image pair { / ( « ) , /(i>)} is adjacent in H. It is said to p r e s e r v e  n o n -a d ja cen cy  
if for every pair {u, v} of non-adjacent vertices in G, the image pair { /( « ) ,  f ( v )} is 
non-adjacent in H .

The name for the confluence of bijection with structure preservation is isomorphism.

DEFINITION: Two simple graphs G and H  are isom orp h ic, denoted G =  H , if there 
is a bijection /  : Vq —> Vh that preserves both adjacency and non-adjacency. Such 
a bijection /  is said to be an isom orph ism . (The definitions of isomorphic and 
isomorphism are extended to general graphs by requiring that the number of edges 
joining each pair of vertices be preserved.)

Example 7.4.1, continued: The vertex bijection

Oh-y w 1 i—y n 2 i— e 3 i 4 t o  4 i p

itself, under the identity mapping. The following proposition establishes symmetry. 
Proving that the composition of two isomorphisms is an isomorphism is left as an 
exercise.

Proposition 7.4.1. The inverse o f  a graph isomorphism is an isomorphism.

Proof: The inverse of a bijection is a bijection, and the requirement that an 
isomorphism preserves non-adjacency as well as adjacency ensures that the inverse 
preserves adjacency and non-adjacency. <C>

We can now establish two criteria for graphs to be isomorphic.

Theorem 7.4.2. Let G and H be isomorphic graphs. Then G and H have the 
same numbers o f  vertices and edges.

Proof: Since an isomorphism /  : G —> H  is a bijection on the vertex sets, the 
numbers of vertices of G and H  must be the same. Since an isomorphism preserves 
adjacency, the number of adjacent pairs in the codomain H  must be at least as large 
as the number of adjacent pairs in the domain G. (Moreover, in case of multiple 
adjacencies, the sum of the multiplicities of adjacency in H  must be at least as large 
as in G.) By Proposition 7.4.1, the number of adjacent pairs in H  (or the sum of 
the multiplicities of adjacency) cannot be greater than in G. <C>

Remark: A graph isomorphism /  is best regarded as a bijection not only on the 
vertex set, but also as a bijection on the edge set of its domain graph, under the 
rule

uv >->■ f {u ) f ( v )

  



394 Chapter 7 Graph Fundamentals

The conceptualization of an isomorphism as a pair of mappings extends to general 
graphs by requiring that each edge e joining vertices u and v is mapped to a specific 
edge /(e )  joining vertices f (u)  and f (v) .

TERMINOLOGY: The number of vertices of a graph, and also the number of edges,

same number of vertices (in view of Theorem 7.4.2), and also the same number of 
edges. This terminology is applied to any property of graphs that must have the

Graph Isomorphism Testing
Some of the necessary conditions for two graphs to be isomorphic are easily 

calculated. In particular, it is easy to determine their numbers of vertices, their 
numbers of edges, and their degree sequences. In the case of small graphs, it is not 
much more difficult to calculate their eccentricities, their diameters, and their radii,

Proposition 7.4.3. A ;
vertex in its domain.

isomorphism f  : G —>■ H preserves the degree o f  every

Proof: Let v E Vcj. Then the isomorphism /  maps each neighbor u o f v to a 
neighbor f (u)  o f / ( v) (of the same multiplicity, in case these are general graphs). 
It follows that the degree of / ( v) equals the degree of d. <C>

Theorem 7.4.4. Two isomorphic graphs have the same degree sequence. 

Proof: This is an immediate corollary of Proposition 7.4.3.

Example 7.4.1, continued: As previously observed, in graphs G and H , the

Proposition 7.4.5. A isomorphism f  : G —>■ H maps a walk o f  length n

W  =  ( v 0, ei, V]_, e2, ■ ■ ., en, vn ) 

in its domain G to a walk o f  length n

in its codomain H .

Proof: This is an immediate consequence of the requirement that a graph isomor­
phism preserves adjacency. <C>

Theorem 7.4.6. A graph isomorphism f  : G —?> H maps a vertex u o f  G to a 
vertex f (u)  o f  the same eccentricity as u.

Proof: This follows from Proposition 7.4.5. <C>
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E x a m p l e 7.4.2: The two trees T and U in Figure 7.4.2 have the same degree 
sequence. According to Theorem 7.4.4, an isomorphism from T to U would have to 
map the vertex x, the only 3-valent vertex of T, to the vertex y, the only 3-valent 
vertex of U. However, ecc(x) = 3 and ecc(y) = 2. Thus, by Theorem 7.4.6, the two 
trees are not isomorphic. 

Figure 7.4.2 T h e s e t w o trees w i t h t h e s a m e degree s e q u e n c e 
are not i somorph ic . 

C o r o l l a r y 7 .4 .7 . Two isomorphic graphs have the same diameter and radius. 

Proof : This follows from Theorem 7.4.6. <) 

E x a m p l e 7 .4 .3 : Since the circular ladder CL4 and the Mõbius ladder ML4, 
shown in Figure 7.4.3, are both 3-regular, they cannot be distinguished by The­
orem 7.4.4. However, their diameters are 3 and 2, respectively, so they are not 
isomorphic. This test works for all pairs CL'in and ML'in-

Figure 7.4.3 T h e circular ladder CL4 a n d t h e M o b i u s ladder ML4 
a r e n o t i s omorph ic . 

P r o p o s i t i o n 7 .4 .8 . A graph isomorphism maps a cycle in its domain to a cycle of 
the same length. 

Proof : This follows from Proposition 7.4.5. <) 

C o r o l l a r y 7 .4 .9 . Two isomorphic graphs have the same girth. 

Proof : This follows from Proposition 7.4.8. <) 

E x a m p l e 7.4.4: The circular ladder CL3 and the Mõbius ladder ML3 are both 
3-regular, and they both have diameter and radius 2. However, CL3 has an odd 
cycle, but ML3 does not. See Figure 7.4.4 below. 
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Figure 7.4.4 T h e c i r c u l a r l a d d e r CLs a n d t h e M o b i u s l a d d e r MLs a r e 
n o t i s o m o r p h i c . 

The pairs CL'in-\-\ and ML'in-\-\ can be distinguished, because CL'in-\-\ has some 
odd cycles and ML'in-\-\ does not, since it is biparti te. 

By considering particular examples of isomorphism testing, one comes to re­
alize the difficulties inherent in that pursuit. There is no known fixed list of short 
calculations that works on every pair of graphs. In general, one usually establishes 
isomorphism of two given graphs by constructing an explicit isomorphism, and one 
disproves isomorphism by finding incompatible properties in the two graphs. 

E x a m p l e 7 .4 .5 : The two graph drawings in Figure 7.4.5 both have a hexagon, 
but they look dissimilar because graph G has two overlapping triangles inside the 
hexagon, while graph H has a skewed 6-cycle inside. 

Figure 7.4.5 T w o 4 - r e g u l a r , 6 - v e r t e x g r a p h s . 

It is a mistake to assume that the outer cycle in one drawing must be mapped to 
the outer cycle in the other. The first step of a more appropriate approach is to 
observe the total symmetry of graph G. Accordingly, if there is an isomorphism 
G —> H, then there is an isomorphism h in which vertex a of G is mapped to vertex 
u of if. 

We observe that vertex d is the only vertex of G tha t is not adjacent to vertex a. 
It follows that h(d) would have to be the vertex x, the only vertex of H tha t is not 
adjacent to u, because an isomorphism preserves non-adjacency. 

Suppose that we now make the arbitrary choice of mapping vertex b £ VQ to vertex 
v G VH• Since e is the only vertex of G not adjacent to b and since z is the only 
vertex of H not adjacent to v, it follows that h(e) would have to be z. The progress 
so far in the a t tempted isomorphism is shown in Figure 7.4.6 below. 
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Figure 7.4.6 Attem pted progress toward an isomorphism.

Vertex c is adjacent to vertices a, b, d, and e, and since the vertices w and y are 
both adjacent to each of the vertices h(a), h(b), h(d),  and h(e), we can make the 
arbitrary choice of assigning h(c) =  w and h( f )  =  y. It can be directly verified that

b i—y v c i—y i—y x e >—y z f  i—>■ y

preserves adjacency and non-adjacency everywhere. Thus, the G and H  are

Example 7.4.6: The graphs circ(8 : 1,2) and circ(8 : 1,3) are not isomorphic. 
As seen in Figure 7.4.7, circ(8 : 1, 2) has some 3-cycles, but circ(8 : 1, 3) is bipartite, 
so it has no odd cycles.

Figure 7.4.7 circ(8 : 1,2) and circ(8 : 1,3) are not isomorphic.

DEFINITION: The graph  isom orp h ism  p ro b lem  is to invent a practical general 
algorithm to decide whether two given graphs are isomorphic or, alternatively, to 
prove that no such algorithm exists.

Since the number of possible bijections of the vertex sets of two n- vertex graphs 
is n\, the brute-force method of testing every one of them to see if it preserves 
adjacency and non-adjacency is not practical.

Isomorphism Type

isomorphism is called an isom orp h ism  ty p e . A listing of all the isomorphism types 

o f each type.
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Example 7.4.7: Figure 7.4.8 depicts all the isomorphism types of simple 
with four vertices and three edges.

given set of requirements, a systematic approach is helpful. Considering all plausible 
degree sequences is one kind of systematic approach. For instance, one may observe 
in this case that since there are three edges, the degree sum is 6. Since we are 
restricted to simple graphs, the maximum degree is 3. The ways to partition the 
number 6 into four non-negative integers, none greater than 3, are the following:

3300 3210 3111 2220 2211

The first two degree sequences cannot be achieved without multi-edges. Each of the 
other three sequences is represented by a single graph in Figure 7.4.8.

Remark: More generally, a single plausible degree sequence can be represented by 
two or more isomorphism types, as in Example 7.4.2.

TERMINOLOGY NOTE: Informally, one would usually say things like “these are the

EXERCISES for Section 7.4

Exercises 7-4-1 through 7-4-6 are concerned with distinguishing the graphs A, B, C', 
and D. Hint: It is sufficient to consider eccentricities and cycle lengths.

7.4.1s Prove that A ^ . B.
7.4.3 Prove that A ^  D.
7.4.5 Prove that B  ^  D.

7.4.2 Prove that A ^ C .
7.4.4 Prove that B  ^  C.
7.4.6 Prove that C  ^  D.
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Exercises 7-4-7 through 7-4-16 are concerned with distinguishing the graphs A, B, 
C , D, and E. Hint: It is sufficient to consider eccentricities and cycle lengths.

7.4.7
7.4.9
7.4.11
7.4.13
7.4.15

Prove that 
Prove that 
Prove that 
Prove that 
Prove that

A ^ B .
A ^ D .
B ^ C .
B ^ E .

7.4.8 Prove that A ^ C .
7.4.10 Prove that A^.  E.
7.4.12 Prove that B  ^  D.
7.4.14 Prove that C  ^  D.
7.4.16 Prove that D  ^  E.

In Exercises 7-4-17 
o f the isomorphism

7.4.17

7.4.18
7.4.19
7.4.20

7.4.21
7.4.22

7.4.23
7.4.24

Trees with 

Trees with 
Simple 
Simple 

Simple 
Simple 

General 
General

through 7-4-24, construct one example (no duplicates) o f each 
types o f graph meeting the given requirement.

5 vertices.

6 vertices, 
with 4 vertices and 4 edges, 
with 5 vertices and 4 edges, 

with 5 vertices and 5 edges, 
with 5 vertices and 6 edges.

with 3 vertices and 3 edges, 
with 4 vertices and 3 edges.

7.4.25 Prove that the composition of two isomorphisms is an isomorphism.

7.5 GRAPH AUTOMORPHISM

What we perceive visually to be a symmetry in a drawing of a graph is rep­
resentable combinatorially as a self-isomorphism, i.e., an isomorphism of the graph 
onto itself. In this sense of self-isomorphisms as symmetries, a graph may have 
symmetries beyond those that are visible in a particular drawing.

DEFINITION: An isom orph ism  from  a ; to itself is called an a u tom orp h ism .

An automorphism on a simple graph G can be specified by a permutation n on 
the vertex set. If the graph is complete, then every permutation of the vertex 
set specifies an automorphism on the graph. Otherwise, however, some of the 
permutations of the vertex set will map an adjacent pair to a non-adjacent pair.
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As explained in §1.6, every permutat ion can be represented as a composition of 
disjoint cycles of the objects in the permuted set, and we employ the disjoint-cycles 
representation in what follows. 

Sometimes, all the automorphisms of a graph correspond to geometric symme­
tries of a well-chosen drawing of the graph. In such a case, it may be reasonably 
straightforward to list all the automorphisms. 

E x a m p l e 7 .5 .1: Figure 7.5.1 depicts the 3-cycle graph C3, which is a complete 
graph. All six permutat ions of the vertex set {0 ,1 ,2} are adjacency preserving, 
since all vertices are adjacent, and non-adjacency preserving as well, since there are 
no non-adjacent pairs. 

Figure 7.5.1 T h e 3-cycle graph . 

3 rotations 3 reflections 

0° = (0)(1)(2) thru vertical axis (0)(1 2) 
120° = (0 1 2 ) thru axis LI (1)(0 2) 
240° = (0 2 1) thru axis L2 (2)(0 1) 

P r o p o s i t i o n 7 .5 .1 . T i e inverse of a graph automorphism is a graph automor­
phism. 

Proof: This follows from Proposition 7.4.1. 

E x a m p l e 7 .5 .1 , cont inued: We observe that rotation by 240° and rotation by 
120° are inverses of each other. The identity is its own inverse. Moreover, each 
reflection is its own inverse. 

TERMINOLOGY: The automorphisms on a graph form a group (see Appendix A2), 
under the operation of composition, called the automorphism group of the 
graph, which is denoted Aut(G). The identity mapping is the group identity. 
There are a number of routine details to verify. 

E x a m p l e 7.5.2: The graph G of Figure 7.5.2 below has four vertices, so there 
are 24 vertex permutat ions. However, an automorphism preserves degree. Since 
vertices 0 and 2 are the only two 3-valent vertices, an automorphism must either 
fix both or swap them. Similarly, since 1 and 3 are the only 2-valent vertices, 
an automorphism must either fix both or swap them, as well. Only four vertex 
permutat ions satisfy both these restrictions. It is readily confirmed that all four 
such vertex permutat ions are adjacency preserving and non-adjacency preserving, 
so all four are automorphisms. We observe that each is its own inverse. 
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Figure 7.5.2 A  graph with four automorphisms.

All four automorphisms are representable as rotations and reflections.

2 rotations 2 reflections

o°(=  (°) W H J ) thru SE diagonal (0) (2) (1 3) 
thru NW diagonal (1) (3) (0 2)

Size of the Automorphism Group
It is thought to be quite difficult to produce a list of all the automorphisms of 

a given graph, even though it has not been proved that there is no reasonably quick 
way. Moreover, it is thought difficult even to determine the size of the automorphism 
group, because the graph isomorphism problem reduces to the latter problem. Here 
is the reduction, applied to two given connected graphs, G and H , assumed for 
simplicity to be disjoint.

Step 1 : Calculate \Aut(G) \ and \Aut(H)\. If they are not equal, then decide that

G ^ H

and stop.

Step 2: Calculate \Aut(GU

G ^  H  if \Au

. Decide as follows:

JU. 
'U I

Explanation: If G ^  H , then every automorphism on G U H  is representable as a 
union a U /?, where a is an automorphism on G and [3 an automorphism on H . We 
define

a(v)  if v E Vg 
j3(v) if d E Vh

12Since there are \Aut(G) \ choices for a and equally many for /?, there are \Aut 
automorphisms on G U H . However, if there exists an isomorphism f  : G - H,
then there are additional \Ai automorphisms of the form

((a  U (3) ■ f ) (v)  =  

thereby yielding a total of 2 \Aut

a ( f  if v E VH
P(f (v) )  i f v E V G

2 automorphisms in all.
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Orbits 

DEFINITION: The orbit of a vertex v in a graph G is the set 

{ct(v) | a eAut(G)} 

of vertices to which v is mapped by some automorphism of G. 

Being co-orbital is clearly an equivalence relation that partit ions the vertex set 
of a graph. 

E x a m p l e 7.5.2, cont inued: The orbits of the graph G in Figure 7.5.2 are 

{0, 2} and {1, 3} 

DEFINITION: A graph is vertex-transitive if every vertex is in the same orbit. 

E x a m p l e 7.5.2, cont inued: The graph G in Figure 7.5.2 is not vertex-transitive, 
because it has two orbits, not one. 

E x a m p l e 7.5.3: The complete graph Kn is vertex-transitive. 

E x a m p l e 7.5.4: The hypercube Qn is vertex-transitive. 

E x a m p l e 7.5.5: A complete biparti te graph Km,n has two orbits if m ^ n, one 
with m vertices, the other with n. If m = n, then there is only one orbit, because 
the part i te sets could be swapped. 

E x a m p l e 7.5.6: Every circulant graph circ(n : S) is vertex-transitive. The au­
tomorphism that maps vertex i to vertex j is the operation of adding j — i to every 
vertex. 

Rigidity 

Rigidity is the opposite of vertex-transitivity. 

DEFINITION: A graph is rigid if every vertex has an orbit to itself (or, equivalently, 
the only automorphism is the identity mapping) . 

E x a m p l e 7.5.7: The graph G in Figure 7.5.3 is rigid. 

Figure 7.5.3 A r ig id graph . 

The vertices v and z are the only two of degree 3. However, whereas v has the 
1-valent neighbor u, the vertex z has no 1-valent neighbors. Thus, both v and z 
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must have orbits to themselves. Similarly, vertices w and y are both 2-valent, but 
w has a 1-valent neighbor, the vertex x, and y does not. Finally, the vertices u and 
x are both 1-valent, but their lone neighbors, the vertices v and w, respectively, are 
3-valent and 2-valent.

C O M P U T A T I O N A L  N O T E :  Since we don’t have an easy way even to calculate the 
number of automorphisms, much less to list the automorphisms, it may be unsur­
prising that calculating orbits is another of the problems commonly thought to be 
difficult.

EXERCISES for Section 7.5

In Exercises 7.5.1 through 7.5.12, write a list o f the automorphisms o f the indicated 
graph from Figure 7.5.4, giving each as a permutation o f the vertex set.

7.5.1s
7.5.4
7.5.7s
7.5.10

Graph A. 
Graph D. 
Graph G. 
Graph K .

7.5.2
7.5.5
7.5.8
7.5.11

Figure 7.5.4

Graph B. 
Graph E. 
Graph H . 
Graph L.

7.5.3
7.5.6
7.5.9
7.5.12

Graph C . 
Graph F. 
Graph J . 
Graph M .

In Exercises 7.5.13 through 7.5.24, write a list o f the vertex orbits o f the indicated 
graph from Figure 7.5-4-

7.5.13
7.5.16
7.5.19s
7.5.22

Graph A. 
Graph D. 
Graph G. 
Graph K .

7.5.14
7.5.17
7.5.20
7.5.23

Graph B. 
Graph E. 
Graph H . 
Graph L.

7.5.15
7.5.18
7.5.21
7.5.24

Graph C . 
Graph F . 
Graph J . 
Graph M .

7.5.25 W hich o f the in Figure 7.5.4 are vertex-transitive?
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7.5.26 Which of the graphs in Figure 7.5.4 are rigid? 

7.5.27 Draw a connected 3-regular graph that is not vertex-transitive, and prove 
that it is not vertex-transitive. 

7.5.28 Draw a rigid tree. 

7.6 SUBGRAPHS 

This section is concerned with the subgraphs of a graph, that is, with the 
graphs that are contained within that graph. Questions of special interest include 
the existence of particular kinds of subgraphs. For instance, a path subgraph or 
a cycle subgraph might be used in a traversal. A tree subgraph might be used in 
searching a graph. Examination of the subgraphs is often useful in isomorphism 
testing. 

DEFINITION: A subgraph of a graph G is a graph H whose vertex set and edge set 
are subsets of the vertex set and edge set, respectively, of G. 

TERMINOLOGY NOTE: More generally, any graph that is isomorphic to a subgraph 
of G is called a "subgraph" of G, and one infers from context whether the cited 
subgraph is set-theoretically a part of G. 

E x a m p l e 7 .6 .1: Figure 7.6.1 illustrates that Ce and C9 are subgraphs of the 
Petersen graph. 

Figure 7.6.1 T w o cyc le s u b g r a p h s of t h e P e t e r s e n graph . 

Spanning Paths and Cycles 

DEFINITION: A subgraph of a graph G is a spanning subgraph of G if it contains 
every vertex of G. 

E x a m p l e 7.6.2: Figure 7.6.2 illustrates that the path graph Pio spans the Pe­
tersen graph and that the cycle graph Ce spans the octahedron graph. Clearly, any 
spanning cycle contains spanning paths. 

  



DEFINITION: A path subgraph that spans the graph in which it lies is called a 
h am ilton ian  path .

DEFINITION: A cycle subgraph that spans the graph in which it lies is called a 
h am ilton ian  circu it.

E xam ple  7.6.2, con tin u ed : Thus, Pio is a hamiltonian path in the Petersen 
graph, and C q is a hamiltonian circuit in the octahedral graph.

Section 8.1 discusses hamiltonian circuits at greater length.

Components

One possible use of tree-growing is to find every vertex that is reachable from 
a given vertex. The relation of reachability is an equivalence relation. A component 
of a graph contains a maximum collection of mutually reachable vertices and all the 
edges that join them to each other.

DEFINITION: A co m p o n en t  of a graph is a maximal connected subgraph. That is, 
it is a connected subgraph such that there is no path from any vertex within it to 
any vertex not within it.

In a drawing, it is possible to draw each component so that it is separate from the 
others.

E xam ple  7.6.3: In Figure 7.6.3, vertices u and v are in separate components, 
because they are not mutually reachable by paths from each other.

Figure 7.6.3 A  n o n -co n n e cte d  graph .
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E x a m p l e 7.6.4: Every component of a forest is a tree, as in Figure 7.6.4 below. 

Isomorphism Preserves Subgraphs 

We have already used the presence and absence of cycles of a particular size to 
distinguish two graphs. This method of isomorphism testing can be generalized to 
the presence and absence of any particular subgraph. 

P r o p o s i t i o n 7 .6 .1 . Let J be a subgraph of a graph G and let f : G —?> H be an 
isomorphism. Then the subgraph /(</) is isomorphic to J. 

Proof : Since / maps VQ bijectively to VH , it maps Vj bijectively to Vjtjy Since 
/ is adjacency preserving and non-adjacency preserving on all of the graph G, it is 
adjacency preserving and non-adjacency preserving on its subgraph J. <) 

E x a m p l e 7 .6 .5 : The two graphs in Figure 7.6.5 have the same degree sequence. 
However, graph G contains a subgraph that is isomorphic to A'4 and graph H does 
not. Thus, they are not isomorphic. 

Figure 7.6.4 A f o r e s t . 

Figure 7.6.5 T w o n o n - i s o m o r p h i c g r a p h s . 

G H 

Induced Subgraphs 

DEFINITION: Let G be a graph and U a subset of the vertex-set of G. The induced 
subgraph G(U) is the subgraph whose vertex-set is U, and whose edge-set contains 
every edge of G whose endpoints are in U. 

E x a m p l e 7.6.6: A subset U of the vertex set of the graph G in Figure 7.6.6 
is indicated by solid black vertices. The edges of the induced subgraph G(U) are 
indicated by thickening. 
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EXERCISES for Section 7.6

In Exercises 7.6.1 through 7.6.4, draw the indicated graph, and draw a hamiltonian 
circuit within it.

In Exercises 7.6.5 through 7.6.8, show that there is no hamiltonian circuit in the 
indicated graph from Figure 7.6.7.

7.6.7 Graph C . 7.6.8 Graph D

DEFINITION: The c e n te r  o f a graph is the subgraph induced on all the central 
vertices.
7.6.9 Find the center of graph A of Figure 7.6.7.
7.6.10 Find the center of graph C of Figure 7.6.7.
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In each o f the Exercises 7.6.11 through 7.6.14, find the center o f the given graph.

7.6.11s

7.6.13

w
7.6.12

7.6.14

7.7 SPANNING TREES

Trees are among the most prevalent kinds of subgraphs that arise in graph- 
theoretic applications.

TERMINOLOGY: Let T  be a tree subgraph of a graph G. A vertex of G that lies in 
the tree T  is called a tree vertex. Every other vertex is called a non-tree vertex. 
Every edge of G that lies in the tree T  is called a tree edge. Every other edge 
is called a non-tree edge. A frontier edge is an edge of the graph G with one 
endpoint in the tree T  and the other not in T.

E xam ple  7.7.1: Figure 7.7.1 shows a tree subgraph in a graph. The tree edges 
are bold and the frontier edges ru, qu, tu, tv, and tw are dashed. Other non-tree 
edges are plain lines.

Figure 7.7.1 F ron tier edges fo r  a tree  su bgraph .

R em ark : If a tree subgraph for a G spans G, then there are no frontier

DEFINITION: A tree subgraph that spans a graph is called a spanning tree.
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DEFINITION: The cy c le  rank of a connected graph G, denoted /3(G), is the number 
of edges that are non-tree edges for a spanning tree of G. Equivalently,

In view of Proposition 7.2.2, every spanning tree for a graph G has the same number 
o f edges.

Example 7.7.2: The two spanning trees for K 4  shown in Figure 7.7.2 both have 
three non-tree edges. We also observe that

Figure 7.7.2 The cycle rank of K 4 is 3.

Proposition 7.7.1. Every connected G contains a spanning tree.

Proof: If /3(G) =  0, then G is already a tree, and it spans itself. Otherwise, 
removing an edge from any circuit reduces the cycle rank, without disconnecting

Tree-Growing
In computer science applications, spanning trees are commonly grown inside a

a vertex is chosen as the root. Then at each iteration of the growth process, an 
edge is selected from among the set of frontier edges and added to the tree, along 
with its non-tree endpoint.

Example 7.7.1, continued: Figure 7.7.3 shows the result of adding the frontier 
edge tu to the growing tree. Then the edges ru and qu are no longer in the frontier, 
but edges uv and ux have been added to the frontier.

Figure 7.7.3 Frontier edges for a growing tree
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DEFINITION: The discovery order of the vertices of a graph under a tree-growing 
scheme is the order in which they are added to the tree. Each vertex acquires its 
discovery number in sequence, as it is added to the growing tree, starting with 
the number 0 for the root. 

Depending on the application, there are different rules governing the selection 
of the next frontier edge to be added to the growing tree. We now consider two of 
the most common schemes for tree-growing, especially when visiting the nodes of a 
network. 

Breadth-First and Depth-First Trees 

The breadth-first and depth-first spanning trees represent two different objec­
tives in reaching all vertices of a graph. First imagine a message being relayed along 
from the root vertex to the entire graph. A breadth-first spanning tree would tend 
to keep the paths from the root short, thereby having no vertex waiting too long to 
get the message. A depth-first tree would tend to reduce the number of vertices to 
which a non-leaf in the tree would have to relay the message. 

DEFINITION: In a breadth-first search of a graph G, the frontier edges are pri­
oritized primarily according to smallest discovery number of their tree endpoints. 
Tha t is, an edge is selected whose tree endpoint has as small a discovery number as 
possible. 

Among several frontier edges whose common tree endpoint (they all share the same 
tree endpoint) has lowest discovery number at some stage of a breadth-first search, 
the secondary priority rule is either random choice or based on some form of 
ordering of the edges incident on that vertex. 

E x a m p l e 7.7.3: Figure 7.7.4 below shows the outcome of a breadth-first search 
on the graph of Example 7.7.1 above, including the discovery numbers, starting from 
the vertex s. The secondary priority for competing frontier edges was alphabetic 
order of their non-tree endpoints. 

DEFINITION: In a depth-first search of a graph G, the frontier edges are prioritized 
primarily according to largest discovery number of their tree endpoints. 

E x a m p l e 7.7.4: Figure 7.7.5 shows the outcome of a depth-first search on the 
graph of Example 7.7.1, including the discovery numbers, starting from the vertex 
s. The secondary priority rule used on competing frontier edges was once again 
alphabetic order of their non-tree endpoints. 
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Figure 7.7.4 Outcome of a breadth-first search

Figure 7.7.5 Outcome of a depth-first search.

We observe that in the breadth-first spanning tree, the maximum number of steps 
from the root to a leaf is 5 steps, and in the depth-first spanning tree, it is 11 
steps. However, the root of the breadth-first tree must give the message to three 
neighbors, yet in the depth-first tree, each vertex passes the message along only to 
a single neighbor.
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In Exercises 7. 7.1 through 7. 7.4, list the frontier edges for the indicated tree subgraph 
from Figure 7.7.6 below.

7.7.1s Tree T\. 7.7.2 Tree T2. 
7.7.3 Tree T3 . 7.7.4 Tree T4 .

E X E R C I S E S  f o r  S e c t io n  7.7

Figure 7.7.6

In each o f the Exercises 7.7.5 through 7.7.8, mark the discovery numbers and draw 
the breadth-first spanning tree for the graph m Figure 7.7.7 and for indicated root 
vertex. The secondary priority for competing frontier edges is alphabetic order of 
the non-tree endpoints, as m Example 7.7.3.

7.7.5s Root r 
7.7.7 Root y

In each o f the Exercises 7.7.9 through 7.7.12, mark the discovery numbers and draw 
the depth-first spanning tree for the graph m Figure 7.7.7 and for indicated root 
vertex. The secondary priority for competing frontier edges is alphabetic order of 
the non-tree endpoints, as m Example 7.7-4­

7.7.9s Root r. 7.7.10 Root t.
7.7.11 Root y. 7.7.12 Root z.

7.7.6 Root t. 
7.7.8 Root z.

Figure 7.7.7
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7.8 EDGE WEIGHTS

models in applications. What is often in mind when edge weights are assigned is 
some form of cost associated with the edges, such as the cost of traversal. Accord­
ingly, edge weights are assumed to be non-negative unless it is explicitly declared 
otherwise.

DEFINITION: An ed g e -w eig h t fu n ctio n  on a graph assigns a number to every edge.

Minimum-Weight Spanning Tree Problem

DEFINITION: The m in im u m -w eigh t sp a n n in g -tree  p ro b lem  (abbr. M S T )  is to
find a spanning tree in a graph with edge-weights such that the sum of the weights 
on its edges is the minimum possible for that graph.

Application 7.8.1 Suppose that the weight on an edge between two locations 
represents the cost of hard-wiring a cable between those two locations. Solving 
MST for such a configuration yields the minimum cost of having all locations in

Example 7.8.1: Figure 7.8.1 below shows a minimum-weight spanning tree. If 
the five edges in that tree had the five minimum edge-weights in this 6 -vertex graph, 
it would be immediately clear that that tree is a minimum-weight spanning tree. 
Such a combination o f five edges could be obtained by replacing edge yz of the 
spanning tree with non-tree edge vx.

Figure 7.8.1 A  minimum-weight spanning tree.

However, that resulting set of five edges is not a spanning tree, 
shown has the next smallest possible combination of five edge-weig 
has minimum-weight.

and the tree 
hts. Thus, it

of Cayley, the complete graph K n has nn~2 spanning trees. Thus, it is infeasible 
to consider all of them and their weights as a data set from which to select the 
minimum. Fortunately, there is a far more efficient way to find a minimum-weight 
spanning tree, attributed to R. C. Prim [Priml957].
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Prim ’s method begins by choosing any vertex as a root, and by then using 
smallest edge-weight iteratively as the primary prioritizing criterion for selection of 
a frontier edge. Random selection is a suitable tie-breaking rule.

Algorithm 7.8.1: Prim ’s M ST Algorithm

Input: a weighted connected graph G and starting vertex v. 
Output: a minimum-weight spanning tree T.

Initialize tree T  as vertex v.
Initialize S as the set of proper edges incident on v. 
While 5 / 0

Let e be a minimum-weight edge in S.
Let w be the non-tree endpoint of edge e.
Add edge e and vertex w to tree T.
Update the frontier set S.

Return tree T.

TERMINOLOGY: The tree in Prim ’s algorithm that grows to be the minimum span­
ning tree is called the Prim tree.

Proposition 7.8.1. Let XJu be the Prim tree after k iterations o f  Prim ’s algorithm, 
for 0 <  k <  \Vg \ — 1. Then Tk is a subtree o f  a minimum spanning tree o f  G.

Proof: The assertion is trivially true for k =  0, since To is simply the starting 
vertex. This provides an inductive basis.
Assume for some number k <  |Vg| — 2, that Tk is a subtree of a minimum spanning 
tree T  o f G. According to Prim ’s algorithm, the tree Tj~+i is obtained by adding to 
tree Tk a frontier edge e of smallest weight. Let u and v be the endpoints of edge 
e, such that u is in tree T,\ and v is not.
If spanning tree T  contains edge e, then T̂  + i is a subtree of T. If e is not an edge 
in tree T, then e is part of the unique cycle contained in T  +  e. Consider the path in 
T  from u to v representing the “long way around the cycle” . Let d be the first edge 
along this path that joins a vertex in Tk to a vertex not in T^. In Figure 7.8.2, the 
black vertices and bold edges make up Prim tree Tk, the spanning tree T  consists 
of everything except edge e, and the Prim tree Tk+i is (Tk Ui)) +  e.

\ e  
\  u

Figure 7.8.2 A l t e r n a t iv e  e x te n s io n s  o f  a P r im  tre e .
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Since d was a frontier edge at the beginning of the (k + l ) s t iteration, it follows that 
w(e) < w(d) (since the algorithm chose e). The tree 

f = T + e-d 

is clearly a spanning tree of G, and T^+i is a subtree of T. Since 

w(f) = w(T) + w(e) - w(d) < w(T) 

it follows that T is a minimum spanning tree of G. <) 

Corol lary 7.8.2. When Prim's algorithm is applied to a connected graph, the 
result is a minimum spanning tree. <) 

E x a m p l e 7.8.2: Figure 7.8.3 shows the minimum-weight spanning tree for an 
edge-weighted graph. The small number at each vertex is its discovery number 
from the tree-growing process of Pr im's algorithm. 

Figure 7.8.3 M S T by P r i m ' s a l g o r i t h m , w i t h d i scovery n u m b e r s . 

Shortest Path Problem 

DEFINITION: The shortest path problem is to find the path between two vertices 
s and t in a connected graph with edge-weights whose total edge-weight is minimum, 
i.e., a shortest s-t path . 

A p p l i c a t i o n 7.8.2 Beyond the obvious applications involving distance, suppose 
again that the weight on an edge represents the cost of hard-wiring a cable between 
its endpoints. Then solving the shortest-path problem yields the minimum cost of 
establishing cable communication between two specific locations. 

E x a m p l e 7.8.3: The graph in Figure 7.8.4 has edge weights and two designated 
vertices s and t. The s-t pa th in bold edges has total weight 14. There are many 
paths from s to i, but it can be proved that this path has the least total weight, 
and is, thus, the shortest. 
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Figure 7.8.4 A shor tes t p a t h in an e d g e - w e i g h t e d graph . 

An algorithm at tr ibuted to E. Dijkstra [Dijkl959] provides yet another instance 
of generic tree-growing. Instead of finding only the shortest path from a given vertex 
s to a single vertex, Dijkstra's algorithm finds a spanning tree, rooted at s, tha t 
contains the minimum path from s to every other vertex. 

TERMINOLOGY: The dynamic tree that grows under Dijkstra's algorithm to a span­
ning tree with all the shortest paths is called the Dijkstra tree. 

The Dijkstra score of a frontier edge is the sum of its own weight plus the sum of 
the weights along the unique path in the growing Dijkstra tree. An edge with least 
Dijkstra score is chosen. Random selection is an appropriate tie-breaking rule. 

Algorithm 7.8.2: Di jkstra 's S h o r t e s t - P a t h s A l g o r i t h m 

Input: a weighted connected graph G and starting vertex s. 
Output: a shortest-path tree T with root s. 

Initialize tree T as vertex s. 
Initialize S as the set of proper edges incident on s. 
While 5 ^ 0 

Select frontier edge e with lowest Dijkstra score. 
Let w be the non-tree endpoint of edge e. 
Add edge e and vertex w to tree T. 
Update the frontier set S. 

Return tree T. 

Remark: Proof of the correctness of Dijkstra's algorithm is similar to the proof for 
Pr im's algorithm. It is omitted. 

E x a m p l e 7.8.4: Figure 7.8.5 shows the same edge-weighted graph as in Example 
7.8.2 and the Dijkstra spanning tree with all the shortest paths. The small number 
at each vertex is its distance from the root. It is a different spanning tree from 
the Pr im spanning tree, because a different prioritizing criterion is applied to the 
frontier edges. 

  



EXERCISES for Section 7.8

Exercises 7.8.1 through 7.8.9 pertain to the edge-weighted graph m Figure 7.8.6. 
Use ascending lexicographic order o f the non-tree vertex as a secondary priority m 
tree-growth, and lexicographic order o f the tree vertex as a third priority (in case 
two different frontier edges lead to the same non-tree vertex).

7.8.1s

7.8.2

7.8.3

7.8.4
the gi
7.8.5
the gi
7.8.6
the gi

Figure 7.8.6

Draw the Prim tree and mark the discovery numbers of the vertices on the 
Figure 7.8.6, using vertex s as the root.
Draw the Prim tree and mark the discovery numbers of the vertices on the 
Figure 7.8.6, using vertex v as the root.
Draw the Prim tree and mark the discovery numbers of the vertices on the 
Figure 7.8.6, using vertex z as the root.

Draw the Dijkstra tree and mark the discovery numbers of the vertices on 
i o f Figure 7.8.6, using vertex s as the root.
Draw the Dijkstra tree and mark the discovery numbers of the vertices on 
i o f Figure 7.8.6, using vertex v as the root.
Draw the Dijkstra tree and mark the discovery numbers of the vertices on 
i o f Figure 7.8.6, using vertex z as the root.
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7.8.7 Use Dijkstra's algorithm to find the minimum-weight cycle in the graph of 
Figure 7.8.6 that includes the edge tu. 

7.8.8 Use Dijkstra's algorithm to find the minimum-weight cycle in the graph of 
Figure 7.8.6 that includes the edge vx. 

7.8.9 Use Dijkstra's algorithm to find the minimum-weight cycle in the graph of 
Figure 7.8.6 that includes the edge ux. 

7.9 GRAPH OPERATIONS 

Computationally, it is convenient to regard a graph as a variable, to which 
vertices and edges may be added, and from which vertices and edges may also be 
deleted. 

Primary Operations 
The maintenance operations of adding or deleting a vertex or an edge to or from 

a graph are called primary operations because they are the fundamental operations 
on a graph variable from which other operations are constructed. 

E x a m p l e 7 .9 .1: Figure 7.9.1 illustrates the four primary operations. 

Figure 7.9.1 T h e four p r i m a r y graph m a i n t e n a n c e o p e r a t i o n s . 

DEFINITION: Let G be a graph and v a new vertex, not in VQ. The vertex-addition 
operation yields the graph G U v with vertex-set VQ U {V} and edge-set EQ. 

DEFINITION: Let G be a graph and e a new edge, not in EQ, whose endpoints are 
both in VQ. The edge-addition operation yields the graph G U e with vertex-set 
VQ and edge-set EQ U {e}. 
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DEFINITION: Let i i  be a vertex of a graph G. The vertex-deletion subgraph 
G — v is the subgraph of G whose vertex-set is Vq — { i 1} and whose edge-set is 
Eq — {e  | v is an endpoint of e}.

Example 7.9.2: A spanning tree of a connected graph can be grown by iteratively 
adding the non-tree vertex of a frontier edge and then adding the frontier edge itself. 
This is the idea behind the construction o f the breadth-first tree, the depth-first tree, 
Prim ’s tree, and Dijkstra’s tree.

Graph Reconstruction
The deletion operations lead immediately to the fascinating theoretical topic 

of graph reconstruction.

DEFINITION: Let G be a graph with vertices Vi, v2, ■■■, vn. The vertex-deletion  
subgraph list of G is the list of subgraphs

G — vi, G — V'2 , . . . ,  G — vn

DEFINITION: The reconstruction deck  of a graph G is its vertex-deletion subgraph 
list, with no labels on the vertices. (Each vertex-deletion subgraph is regarded as 
a card in the deck. It is possible that various cards in the deck are identical, since 
the deck is a list, not a set.)

from its reconstruction deck.

Example 7.9.3: Consider trying to infer a specification for a graph El with the 
reconstruction deck shown in Figure 7.9.2.

is the graph with the vertex-set Vq and the edge-set E g  — {e } .

Reconstructing the number of vertices is easy.
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P r o p o s i t i o n  7 .9 .1 . The number o f  vertices o f  a j
in its reconstruction deck.

equals the number o f  cards

Proposition 7.9.2. The number o f  edges o f  a simple graph G can be inferred from 
its reconstruction deck via the following formula.

1
n — 2 E i (7.9.1)

Proof: Each edge of the graph appears on n — 2 cards, i.e., on every card except 
the cards for its endpoints. Formula 7.9.1 is implemented by adding the numbers 
of edges on the cards and then dividing by n — 2 . <C>

Example 7.9.3, continued: By Propositions 7.9.1 and 7.9.2, the
have 6  vertices and 1 0  edges.

H  must

Corollary 7.9.3. The degree sequence o f  edges o f  a , 
its reconstruction deck.

G can be inferred from

Proof: For each card in the deck, the degree of the vertex that was deleted is the 
difference of the total number of edges in the graph and the number of edges on 
that card. <C>

Example 7.9.3, continued: By Proposition 7.9.3, the degree sequence of the

5 4 3 3 3 2

The two with that degree sequence are shown in Figure 7.9.3.

Figure 7.9.3 Two candidates for the reconstructed H.

The vertex-deletion subgraph list for the graph H i coincides with the given recon-

The Graph-Reconstruction Problem
In seeking to reconstruct a graph as in Example 7.9.3, one obstacle that arises is 

in the number of edges. Another is that it is unknown whether a reconstruction
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DEFINITION: The graph-reconstruction problem is to determine whether two 
non-isomorphic graphs with three or more vertices can have the same reconstruction 
deck. 

There is a special case in which the graph is not only known to be unique, but also 
readily reconstructable. 

P r o p o s i t i o n 7.9.4. Any regular graph can be reconstructed from its reconstruc­
tion deck. 

Proof: By Corollary 7.9.3, it can be determined from its reconstruction deck 
whether the graph is regular, and the degree d of regularity. Accordingly, one can 
reconstruct the graph by joining the vertices of degree t í - 1 on any single card to 
a new vertex, which restores the missing vertex for that card. <) 

Connectivity 
The deletion operations also lead to the highly practical topic of connectivity. 

DEFINITION: If deleting vertex v from graph G increases the number of components, 
then v is a cut-vertex of G. 

DEFINITION: If deleting edge e from graph G increases the number of components, 
then v is a cut-edge of G. 

E x a m p l e 7.9.4: In the graph of Figure 7.9.4, the vertices u, v, and w are cut-
vertices. The edges uv and vw are cut-edges. 

Figure 7.9.4 G r a p h w i t h cu t -ver t i ce s a n d c u t - e d g e s . 

DEFINITION: Let G be a connected graph. The connectivity K(G) is the smallest 
number of vertices of G whose iterative deletion results either in a non-connected 
graph or in a 1-vertex graph. 

DEFINITION: Let G be a connected graph. The edge-connectivity K'(G) is the 
smallest number of edges of G whose iterative deletion results in a non-connected 
graph, or 0 edges for a 1-vertex graph. 

E x a m p l e 7.9.5: The graph G of Figure 7.9.5 has no cut-vertices, and it is dis­
connected by the removal of vertices w and x. Thus, 
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Removal of edges a, b, and c disconnects graph G,  and no smaller set of edges 
disconnects. Thus,

Graph Union
Beyond addition of a single vertex to an existing graph, there are several in­

graph union.

DEFINITION: The (g ra p h )  union  G U G' o f two graphs

is the graph whose vertex set and edge-set are the disjoint unions, respectively, of 
the vertex-sets and edge-sets of G and G ', respectively.

NOTATION: The notation nG  is used for the n -fo ld  se lf-u n ion  o f a graph G, that 
is, for the result of an iterated union of n disjoint copies of G.

Join

DEFINITION: The jo in  G +  H  o f two graphs G and H  is obtained from their disjoint 
union by joining each vertex of G to each vertex of H  with a new edge.

DEFINITION: The n -w h ee l W „ is the join G„ +  K\. The n-wheel is said to be an

Figure 7.9.6 A  5-wheel and a 6-wheel

NOTATION: In the special case where one of the two graphs in a join is a trivial
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Cartesian Product 

DEFINITION: The (cartesian) product G x H of the graphs G and H has as its 
vertex-set the cartesian product 

and as its edge-set a union of two products 

If edge e £ EH has endpoints y and z and if u £ VQ then edge («, e) £ VG X £ # has 
endpoints (u, y) and (w, Z). If edge d £ EQ has endpoints i; and w and if x £ Vp 
then edge (d, x) £ £"G X VH has endpoints (D, X) and (w, a;). 

E x a m p l e 7.9.6: Figure 7.9.7 represents the cartesian product C3 x A'2,3 as a 3 x 5 
grid in which the induced graph on each row is a copy of H and the induced graph 
on each column is a copy of G. 

Edge-Complementation 

DEFINITION: A simple graph G has as its edge-complement (or complement) 
the graph G on the same vertex-set, such that two vertices of G are adjacent if and 
only if they are non-adjacent in G. 

NOTATION: The notat ion Kn — G is also commonly used for the edge-complement 
of an n-vertex graph G. 

E x a m p l e 7.9.7: The edge-complement of the wheel W5 is isomorphic to the graph 
union K\ U C5, as illustrated in Figure 7.9.8. 

Figure 7.9.7 T h e cartes ian p r o d u c t C3 x A'23. 
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Theorem 7.9.5. Two simple graphs G and H are isomorphic i f  and only if  their 
edge-complements are isomorphic.

Proof: If /  : Vg —> Vh is a bijection that preserves adjacency and non-adjacency, 
then /  : Vq —> Vg- preserves non-adjacency and adjacency, respectively, and vice 
versa. <C>

Theorem 7.9.5 is useful in testing the isomorphism of two graphs whose average 
degree is at least half the number of vertices.

Example 7.9.8: Figure 7.9.9 illustrates two 4-regular, 7-vertex graphs, called G 
and H . They both have girth 3 and eccentricity 2 at every vertex. However, the 
edge-complements differ, in that G =  CV and H =  C 3  U C 4 .

I  I

Figure 7.9.9 Two graphs and their edge-complements

Exercises
In Exercises 7.9.1 through 7.9.6, reconstruct the graph with the given deck. 

7.9.1s
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7 .9.2

425

7.9.3

7.9.4

7.9.5

7.9.6

In Exercises 7.9.7 through 7.9.18, write a list o f the outpoints o f the indicated 
graph from Figure 7.9.10, giving each as a permutation o f the vertex set.

Figure 7.9.10
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7.9.7 

7.9.10 

7.9.13 

7.9.16s 

Graph A. 

Graph D. 

Graph G. 

Graph K. 

7.9.8 

7.9.11 

7.9.14 

7.9.17 

Graph B. 

Graph E. 

Graph H. 

Graph L. 

7.9.9 

7.9.12 

7.9.15 

7.9.18 

Graph C. 

Graph F. 

Graph J. 

Graph M 

In Exercises 7.9.19 through 7.9.30, write a list of the cutedges of the indicated graph 
from Figure 7.9.10. 

7.9.19 

7.9.22 

7.9.25 

7.9.28s 

Graph A. 

Graph D. 

Graph G. 

Graph K. 

7.9.20 

7.9.23 

7.9.26 

7.9.29 

Graph B. 

Graph E. 

Graph H. 

Graph L. 

7.9.21 

7.9.24 

7.9.27 

7.9.30 

Graph C. 

Graph F. 

Graph J. 

Graph M 

In Exercises 7.9.31 through 7.9.36, draw the edge-complement of the indicated graph 
from Figure 7.9.10. 

7.9.31 Graph A. 7 .9 .32s Graph B. 7.9.33 Graph D. 

7.9.34 Graph E. 7.9.35 Graph F. 7.9.36 Graph G. 

GLOSSARY 

acycl ic d igraph: a digraph with no directed circuits. 

acycl ic graph: a graph with no circuits. 

adjacent e d g e s in a graph: edges that have an endpoint in common. 

arc: a directed edge. 

a u t o m o r p h i s m of a graph: an isomorphism from the graph to itself. 

a u t o m o r p h i s m g r o u p Aut(G) of a graph G: the set of all automorphisms of 
the graph G, with the operation of composition. 

binary search t ree (abbr. BST): a binary tree with a vertex labeling, such that 
the label at each vertex is greater than every label in its left subtree and less 
than every label in its right subtree. 

binary tree: a rooted tree such that each vertex has a possible left-child, a 
possible right-child, and no other children. 

breadth-f irs t search: a method of constructing a spanning tree in a graph. 

cartes ian p r o d u c t G x H: the graph whose vertex-set is the cartesian product 

VGXH = VG x VH 

and whose edge-set is the union 

EGXH = {VG x EH) U (EG X VH) 

If edge e £ EH has endpoints y and z and if u £ VG then edge (u, e) £ VG X EH 
has endpoints (u, y) and (u, z). If edge d £ EG has endpoints v and w and if 
x £ VH then edge (d, x) £ EG X VH has endpoints (v, x) and (w,x). 
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a graph whose vertex set is the domain of the group A,  such that there is an 
edge between vertices u and v if there is an element s £ S such that u +  s =  v 
(for an additive group, or u -k s =  v if is the group operation).

central vertex in a graph: a vertex of minimum eccentricity.

child of a vertex v o f a rooted tree: an adjacent vertex w such that v lies on the 
unique path from the root to w.

circuit: synonymous with closed path.

{0 , 1, . .

the g 

n — 1}

whose vertex set is

and in which two vertices i and j  are adjacent if and only if there is a number 
s £ S such that i +  s =  j  mod n or j  +  s =  i mod n. The elements of the set 
S are called connections.

G: the short form of edge-complement. 

raph in which every pair of vertices is joined by an

k 2. S P "
complement of a simple grap 

edge.
component of a graph: a maximal connected subgraph, 

connected digraph: a digraph whose underlying graph is connected.

connections: see circulant graph.

connectivity of a graph: the minimum number of vertices whose removal would 
either disconnect it or reduce it to a 1 -vertex graph.

cut-edge: an edge whose removal would increase the number of components.
cut-vertex: a vertex whose removal would increase the number of components.

cycle: a closed path.

cycle rank of a connected graph G: the number of edges remaining after all the 
edges of a spanning tree are removed.

degree of a vertex: the total number of edge-ends incident on it; thus, the sum 
of the number of proper edges plus twice the number of self-loops of which it is 
an endpoint.

depth-first search: a method of constructing a spanning tree in a graph, 
diameter of a graph: the maximum distance between any two vertices in the
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___, simple: a digraph with no multi-arcs and no self-loops.
Dijkstra tree: a spanning tree of all the shortest paths from its root.

directed path: a path in which every edge is directed.
directed walk: a walk in which every edge is directed.

discovery number of a vertex: its position in the discovery order.
discovery order of a vertex: the order in which it is added to a growing spanning 

tree.
distance between two vertices: the number of edges in a shortest walk be­

tween the vertices.
eccentricity of a vertex: the maximum distance to any other vertex.
edge-complement: the graph G on same vertex set as V, in which two vertices 

are adjacent if and only if they are not adjacent in G.

edge-connectivity of a graph: the minimum number of vertices whose removal 
would either disconnect it; zero for K\.

edge-weight function: a function that assigns a number to every edge.
eulerian tour in a connected graph: a closed walk that contains every edge.
eulerian trail in a connected graph: an open walk that contains every edge.

forest: a graph whose every component is a tree.
frontier edge for a tree subgraph of a graph: an edge joining a tree vertex to a 

non-tree vertex.
of a non-acyclic graph: the size of the smallest circuit.

invariant: a measurement or property of a graph that is the same for

graph isomorphism problem: the problem of designing a practical algorithm 
to test graph isomorphism or to prove that no such algorithm exists.

graph-reconstruction problem: the problem of deciding whether two non­
isomorphic graphs could have the same reconstruction deck.

hamiltonian circuit in a graph: a spanning circuit.

hamiltonian cycle: same as hamiltonian circuit.

hamiltonian path: a spanning path.
height of a rooted tree: the maximum distance from the root to any leaf.

vertex set is U , in which two vertices are adjacent, if and only if they are adjacent 
in G.

isomorphism of graphs G and H: a bijection of their vertex sets that preserves 
all adjacencies and non-adjacencies.  
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isomorphism type of a graph: the class of all graphs that are isomorphic to it.
join G +  H: the graph obtained from the union G U H  by joining each vertex of 

G to each vertex of H .

labeling of the vertices of a graph in a set S: an assignment of label (or key) 
from S to each vertex of G.

leaf of a tree: any 1-valent vertex of an unrooted tree, or a childless vertex of a 
rooted tree.

left-child: see binary tree.

length of a walk: the number of edge-steps.

using edge-adjacency in G as the adjacency rule in L(G).  

mixed graph: a graph in which some edges are directed and some are not.

except that it looks like it belongs on a Mobius band, instead of on a cylindrical 
band.

orbit of a vertex v of a graph G:  the set of all vertices u f G  such that there 
is an automorphism a with a(v)  +  u.

parent of a vertex v in a rooted tree: an adjacent vertex on the unique path to 
v from the root.

path graph Pn: an n-vertex graph in which all the vertices lie on a single path, 

path: a walk with no repeated vertices.
___, closed: a path whose final vertex is the same as its initial vertex.
___, open: a path whose final vertex is not the same as its initial vertex.

platonic graph: the skeleton of a platonic solid.

platonic solids: the five regular 3-dimensional polyhedra: tetrahedron, octahe­
dron, cube, dodecahedron, isosahedron.

polyhedron: higher dimensional analog of a polygon.

Prim tree: a minimum-weight spanning tree grown by Prim ’s algorithm.

primary operations on a graph: adding and deleting a vertex or edge.

radius of a graph: the minimum eccentricity over all vertices.

reconstruction deck of a graph G:  the list of all graphs G — v such that v E Vcj.

whose interior angles are of identical measure, 

right-child: see binary tree.

rooted tree: a tree with one vertex designated as the root.
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self-union nG  of a graph: the graph union of n disjoint copies of G.

shortest-path problems: problems concerned with finding the shortest paths 
between pairs of points.

siblings in a rooted tree: two vertices with the same parent.

simplex: generalization of a triangle to all dimensions.
skeleton of a polyhedron: the graph comprising its vertices and edges.
spanning subgraph of a graph: a subgraph that contains every vertex of the

spanning tree: a subgraph that is a tree
strongly connected digraph: a digraph in which any two vertices are reachable 

from each other by directed walks.
subgraph of a graph G: a graph whose vertex set and edge set are subsets of 

Vg and Eg, or any graph isomorphic to such a subgraph.

transitive digraph: a digraph in which whenever there is a directed walk from 
a vertex u to a vertex v, there is an arc from u to ti.

trivial walk: a walk with no edges.
iph of a digraph: the graph obtained by eliminating all theunderlying gra

edge directions.

union of graphs: the graph whose vertex set and edge set are the disjoint union 
of their vertex sets and of their edge sets, respectively.

vertex-deletion subgraph of a graph G: in the graph reconstruction problem,

vertex-transitive graph: a graph whose vertices are all in one orbit.

walk in a graph: an alternating sequence W  =  ( Vo, ei, Vi, e2, ■ ■ ■, en , vn ) of 
vertices and edges, such that edge e j  joins vertices V j -  \ and V j ,  for j  =  1, . . .  ,n.

___, closed: a walk whose final vertex is the same as its initial vertex.
___, open: a walk whose final vertex is not the same as its initial vertex.

wheel graph Wn: the result of joining a new vertex with an n-cycle.

  



Chapter

Graph Theory Topics

8.1 Traversability
8.2 Planarity
8.3 Coloring
8.4 Analytic Graph Theory
8.5 Digraph Models
8.6 Network Flows
8.7 Topological Graph Theory

The attraction of graph theory to most practitioners includes the accessibility 
of many of its most important branches and the interesting histories of their origins. 
Entire books have been written on each of these branches, so, o f course, a single 
section of one chapter has to be quite selective. In this attempt at a broad view of 
graph theory, the emphasis is presenting the key results and methods that everyone

few of the classical results are stated without proof. The order of the sections is 
correlated with the order in which these large branches acquired their foundations 
and came to prominence.

431
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8.1 TRAVERSABILITY

A graph traversal is a walk that uses either all the edges or all the vertices. 
In some historically celebrated graph traversal problems explored here, the edges 
are not weighted, and it is required that every edge or every vertex is to be visited 
only once. Algorithmists have subsequently focused on optimal traversals of various

The Bridges of Konigsberg
Two branches of the River Pregel merge within the town of Konigsberg, which 

is located in a part of present-day Russia previously known as East Prussia. There 
is an island just below the junction of the two branches, near the mouth o f the river 
into the Baltic Sea. These four land areas were once connected by seven bridges, 
as illustrated in Figure 8.1.1. A problem arose of traversing all seven bridges of 
Konigsberg without crossing any bridge more than once.

Proof in 1736 by the celebrated Swiss mathematician Leonhard Euler that no such 
traversal is possible is acclaimed as the origin of graph theory. The configuration
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Eulerian Tours
Some terminology, some of it first mentioned some in §7.2, facilitates easy 

discussion of the kind of traversal required by the seven bridges problem.

DEFINITION: A trail is a walk with no repeated edges.

DEFINITION: An eu lerian  graph  is a graph that has a closed trail that traverses 
every edge exactly once.

DEFINITION: An eu lerian  trail is a trail containing every edge of the graph. An 
eu lerian  to u r  is a closed eulerian trail.

T h eorem  8.1.1. A connected graph G has an eulerian tour if  and only if  the 
degree o f  every vertex is even.

P ro o f: (=>•) First assume that G has an eulerian tour. When the tour starts, the 
number of available edge-ends at the terminus drops by one. Every time the tour 
enters and leaves a vertex along the way, the number of available edge-ends drops by 
two, preserving the parity. As the tour ends, the number of available edge-ends at 
the terminus drops by one. Thus, at each vertex, the number of available edge-ends 
when the tour began has the same parity as its final value, i.e., as zero. Thus, its 
initial value, i.e., its degree, must be even.
(-<=) Next assume that the degree is everywhere even. This implies that the cycle 
rank /3(G) is at least 1, since a non-trivial tree would have two or more vertices 
o f degree 1. If /3(G) =  1, then G is a cycle and clearly has an eulerian tour. For 
(3(G) >  1, we proceed inductively. Let C  be any cycle subgraph of G. We observe 
that the degree at every vertex of G — C  is even, so it is even at every vertex of 
every component of G — C . By the induction hypothesis, each component has an 
eulerian tour. To construct an eulerian tour of G, start traversing anywhere on 
cycle C . As soon as a vertex of any component of G — C  is encountered, detour 
from cycle C  with a eulerian tour of that component, and then continue the tour 
o f C  until the next component of G — C  is encountered. After detouring through 
the last such component, complete the traversal of cycle C , which also completes 
an eulerian tour of G. <C>

R em ark : The proof of necessity of even degrees in Theorem 8.1.1 is due to Euler in 
1736. However, the proof of sufficiency is by K. Hierholzer in 1873. See [BLW1986] 
for further historical details.

C oro lla ry  8 .1.2. A connected graph G has an open eulerian trail i f  and only if  
there are exactly two vertices o f  odd degree.

P ro o f: Let u and v be the two vertices of odd degree. Form a new graph G' by 
joining a new vertex s to vertices u and v. Since every vertex of G' has even degree, 
Theorem 8.1.1 implies that G' is eulerian. One eulerian tour starts and finishes at 
vertex s. The trail obtained by eliminating the edges su and sv is an open eulerian 
trail in G. <C>

  



Example 8.1.1: The graph in Figure 8.1.3 has an eulerian trail but no eulerian 
tour.
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Hamiltonian Circuits
Sir William Rowan Hamilton (1805-1865), an Irish mathematician, observed 

in 1856 that the 1-skeleton of a dodecahedron (see §7.1), commonly called the 
dodecahedral graph, has a circuit that traverses every vertex, and he used this as 
the basis for a puzzle whose idea he sold for commercial distribution. The graph is 
reproduced in Figure 8.1.4.

DEFINITION: A ham ilton ian  c ircu it  is a closed path that traverses every vertex. 

DEFINITION: A ham ilton ian  graph  is a graph with a hamiltonian circuit.

When is a Graph Hamiltonian?
There are certain circumstances under which it is clear that a graph cannot 

be hamiltonian. Some of the easiest to apply are identified by the following two 
propositions.
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Proof: Let v be a cut-vertex of a graph G, and let x and y be vertices that are in 
different components o f G — v. A hamiltonian circuit in G  would contain the vertices 
x and y, and there would be two paths joining them. Yet v lies on every path joining 
x and y, and it would thus occur twice on the same cycle, a contradiction <C>

Proposition 8.1.4. A bipartite graph with partite sets o f  different sizes is non- 
hamiltonian.

Proof: Let U and V  be the two partite of a bipartite graph. On a hamiltonian 
circuit, the vertices of U and V  would have to alternate, implying that there are 
equally many vertices in each. <0>

There is no known polynomial-time algorithm to decide whether a graph is 
hamiltonian. Nonetheless, for a reasonably small graph G, a useful approach may 
be to start identifying a set S o f edges that would have to be a subset of a spanning 
cycle if any such cycle exists. Here is an outline of the steps.

• 1 If any vertex v has degree 2, then both incident edges should be added to the 
set S. If it is clear how to extend S' to a spanning cycle, then the problem is 
solved.

•2 If some vertex is an endpoint of two edges in S, then all other edges incident on 
that vertex are marked unusable, and excluded from the degree determination 
o f step * 1 .

•3 If the set S cannot be extended to a spanning cycle, for instance, if a sub­
set of edges of S forms a cycle that does not span G, then the graph is not 
hamiltonian.

Example 8.1.2: In the graph K 2 , 3  o f Figure 8.1.5, the edges ru and su are selected 
because vertex u is 2-valent, and then edges rv and sv because v is 2-valent. Since 
these four edges form a cycle that does not span, we conclude that the graph is not 
hamiltonian.

Figure 8.1.5 Showing that a graph is not hamiltonian.

Sufficiency Conditions
Intuitively, the more edges that a simple graph has, the more likely that it is 

hamiltonian. The classical results of Ore and Dirac support this intuition.

P r o p o s i t i o n  8 .1 .3 . A graph with a cut-vertex is non-hamiltonian.
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T h eorem  8.1.5
that

JreJ Let G be a sir

(x) +  i

1 n-vertex  .

> n

j, where n >  3, such

for each pair o f  non-adjacent vertices x and y. Then the , G is hamiltonian.

P ro o f: Suppose, to the contrary, that some graph satisfies the conditions of the 
theorem, yet is non-hamiltonian. Consider a maximal counterexample G —  so that 
joining any two non-adjacent vertices of G would result in a hamiltonian graph. For 
n >  3, a complete graph K n is hamiltonian, so there must exist two non-adjacent 
vertices s and t. It would be a contradiction to show that

(s) +  ■ < n — 1

Since the graph G +  st contains a hamiltonian circuit, the 
hamiltonian path from s to t

G contains a

as in Figure 8.1.6.

Figure 8.1.6 A  h am ilton ian  path  in G.

For each i =  2, . . ., n — 1, at least one of the pairs vi, Vj+i and Vj, vn is non-adjacent, 
since otherwise

(vi ,  V> 2 , Vi ,  Vn , Vn_i,  . . . ,  Vi + 1, Vx)

would be a hamiltonian circuit in G (as illustrated in Figure 8.1.7). This means 
that if A q =  [o-i,j\ is the adjacency matrix for G, then +  aJjn <  1 , for
i =  2 , . . . ,  n — 2 .

Figure 8.1.7  
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Thus, 

437 

which establishes the specified contradiction. <) 

Corol lary 8.1.6 [ D i r a l 9 5 2 ] . Let G be a simple n-vertex graph, where n > 3, 
such that 

Tl 

deg(v) > -

for each vertex v. Then G is hamiltonian. 

Proof: Dirac's theorem is easily derived as a consequence of Ore's theorem. His­
torically, it preceded Ore's theorem. <) 

Postman and Traveling Salesman Problems 

In an edge-weighted graph, the sum of the weights on the edge-steps traversed 
is taken as the cost of the traversal. Self-loops do not affect eulerian traversability. 
However, any connected graph can be made into an eulerian graph by selectively 
increasing the numbers of edges between two adjacent vertices. 

DEFINITION: The postman problem in an edge-weighted graph is to find in a 
graph the least cost subset of edges whose doubling makes the graph eulerian. 

The postman problem was introduced by M-K Guan [Guanl962]. He envi­
sioned a postman who must traverse every street in a village and return to the 
starting point. This requires traversing some streets twice, if there are any junc­
tions of an odd number of streets. Each weight is the cost of traversing a street. J. 
Edmonds and E. Johnson [EdJol973] proved that the problem can be solved in 
t ime proportional to a polynomial function on the number of edges. 

E x a m p l e 8.1.3: In Figure 8.1.8, the four white vertices, w, x, y, and z, have odd 
degree. If the edge wy at cost 9 is doubled and the edge xz at cost 8 is doubled, 
then the resulting graph is eulerian at a total cost of 17. There are several better 
choices. In particular, doubling the edge xy at cost 3 and the edges wu and uz at 
costs 2 and 4, respectively, thereby making the graph eulerian at a total cost of 9, 
is the optimal choice, which is provable by ad hoc methods. 
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Remark: The streets that are doubled in a postman tour can be partitioned into 
a set of paths that serve to match the odd-degree vertices. An exhaustive approach 
to the postman problem involves considering all possible pairings of the odd-degree 
vertices and finding, for each pairing, a set of least-distance paths that join the 
pairs. The Edmonds-Johnson algorithm is a great improvement.

find the hamiltonian tour with lowest cost.

A prototype version of this problem imagined a traveling salesman who sought 
to sell his product in the capital cities of each of the states of the United States. 
The distance between two capital cities was taken to be the cost.

Except for a graph with only one vertex, a self-loop is of no use to a hamil­
tonian tour. Moreover, if there is a multi-adjacency between two vertices, then a 
hamiltonian tour would either select from it the edge with lowest weight or skip 
that adjacency altogether.

Example 8.1.4: The edge-weighted complete graph in Figure 8.1.9 has five ver­
tices.

6
Figure 8.1.9 An edge-weighted complete graph.

There are 5! possible orderings in which all the vertices can be visited. However, 
two orderings correspond to the same hamiltonian tour if they differ only by cyclic

  



Section 8.1 Traversability 439

An ad hoc proof of this begins with the observation that the five edges with least

4 5 5 5 6

for a total cost of 25. However, the three edges with weight 5 form a 3-cycle, so 
that at most two of them could be used in a 5-cycle. Accordingly, the minimum 
cost o f a 5-cycle is at least 26, which is the cost of the indicated 5-cycle.

EXERCISES for Section 8.1

In Exercises 8.1.1 through 8.1.4, write a list o f the edges that might be traversed in 
sequence on an eulerian tour o f the given graph.

8 .1 .1s 8.1.2

h
9 ---V

8.1.3 8.1.4

a d

h

8.1.5s 8 . 1.6

6
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In Exercises 8.1.9 through 8.1.12, either thicken a hamiltonian circuit m the given 
graph or explain why it is not hamiltonian.

8.2 PLANARITY

A basic method to draw a connected graph G on any surface, not just the 
plane, starts by selecting an edge e\ and drawing it (and its endpoints, o f course) 
on that surface. At each subsequent stage, assuming that edges e\, . . ., en_ i have 
been drawn, select and draw an additional edge en o f G, such that at least one of its 
endpoints already appears in the drawing. More specific methods differ primarily 
in their criteria for selecting the next edge en to be drawn.

DEFINITION: A graph is a plan ar graph  if it can be drawn in the plane so that the 
vertices are distinct points of the plane and so that the interior of each edge crosses 
through no edge or vertex.
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This section presents two kinds of criteria for deciding whether a is planar.

Regions of a Graph Drawing
Intuitively, drawing a graph on a surface partitions the surface into regions, the 

pieces of surface that would result if one were to cut the surface along the entirety

DEFINITION: Let G be a graph drawn on a surface S. Two points x , y 6  S — G are 
mutually reachable if there is a continuous curve in the complement S — G from x 
to y that does not cross the graph G. A region o f  the drawing is an equivalence 
class under the mutual reachability relation.

in the plane. There are two interior regions, R  and R !, and also the exterior region 
R " , for a total of three regions.

Figure 8.2.1 A  graph with a crossing-free drawing.

DEFINITION: The boundary walk of a region of drawing of a connected graph on 
a surface is the closed walk that traverses the boundary. (There may be repeated 
vertices and edges.)

Example 8.2.1, continued: The boundary walk of region R  in Figure 8.2.1 is

u, y, v, x , u 

The boundary walk of region R! is

y, w, z, v, y

DEFINITION: A f a c e  of a drawing of a connected gi 
the vertices and edges in its boundary walk.

is the union of a region with

DEFINITION: The size o f  a face is the number of edge-steps in its boundary walk. 

Example 8.2.1, continued: In Figure 8.2.1,

Remark: It is important to recognize that face-size counts edge-steps, not edges. 
Thus, a single edge may occur twice.
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1 2 4 6  7

The 6 -sided face is the “exterior” face. In traversing the boundary of the 7-sided

the boundary walk includes a step from y to x, a step around the self-loop at vertex 
x, and a step from x back to y and also four steps around the other sides of the 
region

E x a m p le  8 .2 .2 : The face sizes in the drawing o f Figure 8.2.2 are

Figure 8.2.2 Another illustration of the Euler polyhedral formula.

Observe that the sum of the face sizes is 20, which is twice the number 10 of edges

Theorem 8.2.1 [Edge-Face Equation]. The sum o f  the sizes o f  the faces o f  a 
drawing o f  a graph G on a surface equals twice the number o f  edges.

Proof: Each edge contributes 2 to this sum, since each of its two sides in a surface 
borders one and only one region. <C>

DEFINITION: The Jordan sep ara tion  p r o p e r ty  is that for any closed curve in the 
sphere or the plane, it is impossible to get from a point on one side of that curve 
to a point on the other side without crossing through the curve.

The effect of the Jordan separation property is that every cycle of a graph in 
a planar drawing bipartitions the set of regions.

Remark: There are infinitely many surfaces for which the Jordan separation prop­
erty does not hold, such as the torus, which is the surface of a doughnut. In 
particular, a closed curve that goes once around the hole does not separate the sur­
face into two parts. The Jordan separation property is precisely what makes it less 
difficult to decide which graphs have crossing-free drawings in the plane (or sphere) 
than to make that decision for other surfaces.

Euler Polyhedral Equation

DEFINITION: The E u ler p o ly h ed ra l form u la  for a drawing of a graph G ir 
surface S is the formula

where V, E, and F  are the sets of vertices, edges, and faces. For a graph drawing 
in the plane, it is imperative to count the exterior region.
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E x a m p l e 8 .2 .2 , cont inued: The formula \V\ — \E\ + |_F| applied to the drawing 
of Figure 8.2.2 has the evaluation 

Our immediate goal is to establish the remarkable fact that for every crossing-
free drawing of a connected graph in the plane or sphere — for any planar graph 
whatever, with or without self-loops and/or multiple edges, the value of the Euler 
polyhedral formula is always 2. 

Remark: The value of the Euler polyhedral formula is not 2 for drawings of non-
connected graphs. For instance, the disjoint union of two 3-cycles has six vertices, 
six edges, and three faces in a planar drawing, yielding 6 — 6 + 3 = 1. 

T h e o r e m 8.2 .2 . The equation 

holds for every crossing-free drawing of a connected graph G in the plane or sphere. 

Proof: If a proper edge of the graph G is drawn first, the initial drawing has two 
vertices, one edge, and one region, in which case 

If a self-loop is drawn first, then (by the Jordan separation property) it separates 
the plane or sphere into two regions, and we have 

We continue inductively, following the basic method of drawing offered at the start 
of this section. We suppose that the Euler polyhedral equation holds, so far. 

There are two cases for the next edge. In both cases, we let V', E', and F' denote 
the sets of vertices, edges, and faces, respectively, tha t result from adding that edge 
to the drawing. 

Case 1. If one of its endpoints is new to the drawing, then that endpoint is drawn 
in the interior of some region and joined to the other endpoint by a line that does 
not separate the region. Thus, 

Case 2. If the new edge adds no new endpoint to the drawing, then that edge 
(whether proper of not) is drawn through the interior of some region, thereby split­
ting the region into two regions (by the Jordan separation property). Hence, 

DEFINITION: Equation (8.2.1) is called the Euler polyhedral equation for the 
sphere. 
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The Kuratowski Graphs
Our next objective is to use this remarkable equation to prove that various 

graphs are not planar. We first illustrate for two graphs of special importance.

DEFINITION: The graphs K 5 and K 3 3 are called the K u ra tow sk i graphs.

Figure 8.2.3 The Kuratowski graphs.

Proposition 8.2.3. The complete graph K$ is non-planar.

Proof: If could be drawn in the plane, the Euler polyhedral equation

+ =  5 -  10 +

implies that |F| =  7. Since K$ is a simple graph, the minimum length of a non­
trivial closed walk is 3, which is, accordingly, the minimum face-size. It follows that 
the sum of the face-sizes would be at least 3\F\ =  21. However, this contradicts the 
Edge-Face Equation (Theorem 8.2.1), which implies that the sum of the face-sizes

Prop 8.2.4. The complete bipartite graph is non-planar.

Proof: For a putative drawing of K.%  ̂ in the plane, the Euler polyhedral equation

+

implies that \F\ =  5. Since is simple and bipartite, the minimum length of a 
non-trivial closed walk is 4, which is, therefore, the minimum face-size. It follows 
that the sum of the face-sizes would be at least 4|T| =  20. However, the Edge- 
Face Equation implies that the sum of the face-sizes must be only 2|I?| =  18, a 
contradiction. <)

Algebraic Planarity Tests
The method of proof used in the proofs of Theorems 8.2.3 and 8.2.4 yields a 

general inequality that is applicable to testing whether a graph can be drawn on a 
surface. This inequality, in turn, particularizes to the sphere and plane.

Theorem 8.2.5
Then

^e-Face Inequality]. Let G be ag

girth (G ) •

drawn in any surface.

< 2-

Proof: The girth of a gi 
for any drawing of that gi 
the sum of the face-sizes, which

(8 .2 .2)

is surely less than or equal to the minimum face-size 
. It follows that girth(G) • |F| is less than or equal to 

the Edge-Face Equation) equals 2\E\. <£>
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C o r o l l a r y  8 .2 .6 . A  s i m p l e  g r a p h  G  i s  n o n - p l a n a r  i f

445

(8.2.3)

P ro o f: Since 3 is less than or equal to the girth of any simple graph, the Edge-Face 
Inequality implies that

girth(G) 3 

Rearranging the Euler polyhedral equation yields

Combining (8.2.4) and (8.2.5) implies

-  2 (8.2.5)

which readily yields the result.

E xam ple  8 .2.3: Every 8 -vertex simple graph with more than 18 edges is non- 
planar.

C oro lla ry  8 .2.7. A simple bipartite graph G is non-planar if

P ro o f: Since 4 is the minimum possible girth of a simple bipartite graph, the 
Edge-Face Inequality implies that

2 •
girth(G) 4 

Rearranging the Euler polyhedral equation yields

Combining (8.2.6) and (8.2.7) implies

(8 .2 .6)

(8.2.7)

which readily yields the result.

E xam ple  8 .2.4: Every 12-vertex simple bipartite graph with more than 20 edges 
is non-planar.
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Kuratowski’s Theorem

DEFINITION: Let e be an edge with endpoints u and v in a graph G. The operation 
of su b d iv id in g  edge e formally adds a new vertex x to the graph, joins it to vertices 
u and v, and deletes edge e. Intuitively, we place the new vertex x in the middle of 
edge e and call the resulting two new edges e' and e " .

Figure 8.2.4 Subdividing an edge

DEFINITION: A K u ra tow sk i su bgraph  o f a graph is a subgraph that is isomorphic 
to the result of iterated subdivisions on K 5 or on K 3  3 .

Figure 8.2.5 Results of some iterated subdivisions 
on /\V, and K 3 3 .

Theorem 8.2.8 [Kuratowski,
Kuratowski subgraph.

Remark: Since the Kuratowski graphs are non-planar, inserting a few extra dots 
(representing vertices) along their edges won’t help make them planar. Moreover, 
appending extra edges and vertices to them won’t help either. The more difficult 
direction is proving that a non-planar graph must have a Kuratowski subgraph. See 
[GrYe2006] for a detailed proof.

Example 8.2.5: Figure 8.2.6 illustrates how a Kuratowski subgraph might be 
nestled into a graph. Three vertices of a subdivided A' 3  3  are in white and three in 
black. Subdivision vertices are gray. Unused edges are dashed.

Figure 8.2.6 F i n d i n g  a  K u r a t o w s k i  s u b g r a p h
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EXERCISES for Section 8.2

In each o f the Exercises 8.2.1 through 8.2.4, ltst the numbers o f vertices, edges, and 
faces shown m the designated planar graph drawing from Figure 8.2.7. Verify that

8.2.3 Graph C. 8.2.4 Graph D

In each o f the Exercises 8.2.5 through 8.2.8, list the sizes o f all the faces shown m 
the designated planar graph drawing from Figure 8.2.7. Verify that the Face-Size 
Equation is satisfied.

8.2.5s Graph A. 8.2.6 Graph B. 

8.2.7 Graph C. 8.2.8 Graph D.

In each o f the Exercises 8.2.9 through 8.2.12, verify that the designated graph from 
Figure 8.2.7 does not meet the non-planarity criterion o f equation (8.2.3), but find a 
subgraph that is isomorphic to a subdivided A' 3  3 , thereby establishing non-planarity.

8.2.11 Graph J . 8.2.12 Graph K
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8.3 COLORING

DEFINITION: A vertex k-coloring o f  a graph (or simply coloring) is an assign­
ment to the vertices either of the names of k different colors or, more usually, of 
integers 1 ,2 , ,k, that are spoken of as colors in this context. A graph coloring is 
a proper coloring if no two adjacent vertices have the same color.

E xam ple  8 .3.1: As shown in Figure 8.3.1, vertex colorings may be indicated in 
a drawing either by placing numbers or other color designators as labels on the 
vertices, or by using graphic features directly on the vertices.

DEFINITION: A graph is k-colorable if it has a proper /^-coloring.

DEFINITION: The chromatic number  o f a graph G, denoted x(G) ,  is the smallest 
number of colors required for a proper vertex coloring.

The chromatic number of a complete graph K n is n, since assigning a distinct color 
to each vertex is clearly proper. The chromatic number of a connected bipartite 
graph is 2, since all the vertices in the same part can have the same color. Thus, 
both these vertex colorings are optimal.

There are two basic steps to the process of establishing a specific value k for

• Upper Bound: Show that x(G)  <  k. Presenting a proper /^-coloring for G is a 
standard way.

• Lower Bound: Show that x(G)  >  k. Proof by finding a subgraph of G that 
requires k colors is an elementary way to establish a lower bound.

R em ark : In studying chromatic numbers, it is usually implicit that the graphs are 
simple. A multi-adjacency has no more effect on proper colorings than a simple 
adjacency. Since the endpoint of a self-loop is adjacent to itself, a graph with a 
self-loop has no proper colorings.
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Quite a few practical problems can be modeled by finding the chromatic number

Example 8.3.2: Suppose there are n radio stations in various locations, and that 
broadcasts from pairs that are too close to each other would interfere with each 
other. The chromatic number of the network is the minimum number of frequencies 
that would have to be assigned so that no two stations would interfere.

Cliques and Independent Sets
If a graph has k mutually adjacent vertices, then the chromatic number must 

be at least k, since they must all have different colors. Thus, the number of vertices 
in the largest such set is a lower bound on the chromatic number.

DEFINITION: A cliqu e  in a graph G is maximal set of mutually adjacent vertices. 
The cliqu e n u m b er  oj(G) is the cardinality of the largest clique.

Proposition 8.3.1. For any graph G

Example 8.3.3: In the South America graph of Figure 8.3.2, the vertices Bo, 
Br, Pa, and Ar  form a clique. A proper 4-coloring for the South America graph is 
shown, establishing an upper bound. That Bo, Br, Pa, and Ar  are a clique yields 
a lower bound of 4. Thus, the chromatic number of the South America graph is 4.

Figure 8.3.2 Vertex coloring of the South America

DEFINITION: An in d ep en d en t s e t  o f vertices in a gr; 
non-adjacent vertices. The in d ep en d en ce  n u m b er  a(

i G is a set of mutually 
is the cardinality of the
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Example 8.3.4: Figure 8.3.3 shows a proper 4-coloring for the i 
thereby establishing an upper bound on its chromatic number.

circ(7 : 1 , 2 ),

Figure 8.3.3 Vertex 4-coloring of c ir c (7 : 1,2).

Moreover, each vertex of the circ(7 : 1,2) is adjacent to all but two of the other 
vertices, and these two are adjacent to each other, which implies that

a (circ  (7 :1 ,

Since vertices with the same color must be non-adjacent, it follows that a proper 
coloring has at most two vertices of each color. Thus, there must be at least [7/2] =
4 colors. Accordingly,

The method used in this example genei 

Proposition 8.3.2. For any graph G

to the following proposition.

Proof: Each color in a proper coloring is assigned to at most a( 
cause two vertices with the same color must be non-adjacent.

vertices, be-

Vertex- and Edge-Additions and Deletions
Joining a single new vertex to some or all of the vertices of a graph increases 

the chromatic number by at most 1 , since the new vertex could simply be assigned a 
new color. Deleting a single vertex cannot decrease the chromatic number by more 
than 1 , because otherwise, restoring that vertex would not recover what was lost in 
chromatic number.

Moreover, adding a single edge increases the chromatic number by at most 1, 
since a new color could be assigned to one of its endpoints. It follows that dropping 
one edge cannot decrease the chromatic number by more than 1 .

DEFINITION: A graph is chromatically critical if no matter what edge is deleted, 
the chromatic number drops by 1 .

Example 8.3.5: The 5-wheel has chromatic number 4, since the three colors are 
needed for the vertices on the 5-cycle at the rim and a fourth color for the vertex
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at the hub. Figure 8.3.4 below illustrates that both of the isomorphism types of 
graph obtainable by deleting a single edge from W 5 have a proper 3-coloring. It 
follows that W 5 is chromatically critical. More generally, every odd wheel W 2n+i 
has chromatic number 4 and is chromatically critical.

Figure 8.3.4 The 5-wheel W 5 is chromatically critical.

Wheel graphs illustrate a simple instance of two facts regarding the join oper­
ation and chromatic numbers.

Proposition 8.3.3. For any two graphs G and H

Proof: In coloring the join G +  H , if the vertices of G are properly colored with 
x(G)  colors and the vertices of H  with x(-ff) colors not used on vertices of G,  the 
result is a proper x(G ) + x (if)-co lor in g . Moreover, in any proper coloring of G +  H , 
the colors used on vertices of G must all be distinct for the colors used on vertices 
o f H , since every vertex of G is joined to every vertex of H . <C>

Corollary 8.3.4. The join o f  two chromatically critical graphs G and H is chro­
matically critical.

Proof: This follows immediately from Proposition 8.3.3.

Complete Sets of Obstructions

DEFINITION: A graph G is called an o b s tru c tio n  to a possible property of graphs

DEFINITION: A set S o f graphs is called a co m p le te  s e t  o f  o b s tru c tio n s  to a

S as a subgraph, and if every graph lacking that property contains at least one of

Example 8.3.6: By Theorem 8.2.8, the set of Kuratowski 
set of obstructions to planarity.

is a complete

  



452 Chapter 8 Graph Theory Topics 

Remark: When the context is colorability, the term obstruction is usually reserved 
for chromatically critical graphs. 

P r o p o s i t i o n 8.3.5. The set {A'2} is a complete set of obstructions to 1-colorability. 

Proof: This is equivalent to saying that a graph is 1-colorable if and only if it has 
no edges, which is clearly true. <) 

P r o p o s i t i o n 8.3.6. The set of odd cycles is a complete set of obstructions to 
2-colorability. 

Proof: A graph is 2-colorable if and only if it is biparti te. Thus, this follows from 
Konig's Theorem (Theorem 7.2.3) that a graph is biparti te if and only if it has no 
odd cycles. <) 

E x a m p l e 8.3.7: The odd wheels are obstructions to 3-colorability, but they do 
not form a complete set. The graph in Figure 8.3.5 is a chromatically critical graph 
that requires 4 colors. 

Figure 8.3.5 A chromat i ca l ly crit ical graph . 

Map-Colorings 

Questions about map-colorings are readily reducible to questions about graph 
colorings, through the Pomcaré duality construction. 

DEFINITION: A map is a crossing-free drawing of a graph on a surface. 

DEFINITION: A map-coloring is a function that assigns colors to the regions of a 
map . It is a proper map-coloring if two regions bordering each other on an edge 
must be assigned different colors. 

DEFINITION: The dual of a map is the map drawn by inserting a (dual) vertex 
into each region (of that primal map) and then drawing, for every (primal) edge, 
a (dual) edge joining the (dual) vertices in the regions on the two sides of that 
(primal) edge. 

E x a m p l e 8.3.8: In Figure 8.3.6, a primal graph is drawn with black vertices and 
solid edges. The dual graph is shown with white vertices and dashed edges. Observe 
that although the primal graph is simple, the dual graph has a double adjacency 
and a self-loop. Observe also that the dual of the dual map is the primal map . 
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E xam ple  8 .3.9: The South America graph of Example 8.3.3 is the dual graph of 
the map of South America.

Classical Map-Coloring Problems
The history of mathematical map-coloring problems dates back to a commu­

nication between Augustus DeMorgan and Sir William Rowan Hamilton in 1852, 
asking whether every planar map has a proper coloring with at most four colors. 
This is called the F ou r-C o lor  M a p  P ro b lem . It was solved in 1976 in the affir­
mative by Kenneth Appel and Wolfgang Haken, with the aid of a computer.
It is not difficult to prove, as now demonstrated, that six colors are sufficient to 
properly color any planar graph, hence, any planar map.

P ro p o s it io n  8 .3.7. The average degree o f  a planar simple graph G is less than 6. 

P ro o f: By Corollary 8.2.6,

By Euler’s Degree-Sum Theorem,

average—degree(

It follows that

T h eorem  8.3.8. The chromatic number o f  a planar graph is at most 6.

P ro o f: Let G be a chromatically critical planar graph, supposedly with chromatic 
number k >  7. (This could be obtained from any planar fc-chromatic graph by delet­
ing edges until further deletion would cause a decrease in the chromatic number.) 
By Proposition 8.3.7, it has a vertex v o f degree 5 or less. Since G is chromatically 
critical, the graph G — v has chromatic number at most k — 1 >  6 . Consider a 
(fc-l)-coloring of G — v. Since v has at most five neighbors, at least one of the k — 1 
colors does not appear on a neighbor, so that (fc-l)-coloring could be extended to 
G by assigning such a missing color to o. <C>
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R em ark : Percy Heawood proved in 1890 that five colors are sufficient. At the same 
time, he offered a formula for the maximum number of colors needed to properly 
color a map on any other surface, such as the torus. Verifying this formula became 
known as the Heawood Map-Coloring Problem. It was solved in 1968 by Gerhard

E X E R C IS E S  fo r  S ection  8.3

In each o f the Exercises 8.3.1 through 8.3.6, give the clique number and the inde­
pendence number o f the indicated graph from Figure 8.3.7.

8.3.1s Graph A. 8.3.2 Graph B. 8.3.3 Graph C.

8.3.4 Graph D. 8.3.5 Graph G. 8.3.6 Graph H .

In each o f the Exercises 8.3.7 through 8.3.12, draw a minimum coloring for the 
indicated graph from Figure 8.3.7. Prove it is a minimum coloring.

8.3.7s Graph A. 8.3.8 Graph B. 8.3.9 Graph C.

8.3.10 Graph D. 8.3.11 Graph G. 8.3.12 Graph H.

In each o f the Exercises 8.3.13 through 8.3.18, decide whether the indicated graph 
is chromatically critical, and give a proof. I f not critical, also decide whether there 
is an edge whose removal reduces the chromatic number, and give a proof.

8.3.13s Graph A. 8.3.14 Graph B. 8.3.15 Graph C.

8.3.16 Graph D. 8.3.17 Graph G. 8.3.18 Graph H.
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In each o f the Exercises 8.3.19 through 8.3.22, give the chromatic number o f the 
map o f the indicated continent, where two adjacent countries must have different 
colors.

8.3.19s Africa. 8.3.20 Asia.
8.3.22 North America.

The Poincare dual o f each of the platomc graphs, as shown in Figure 8.3.8, is a 
platomc graph. In each o f the Exercises 8.3.23 through 8.3.26, construct the dual

1-skeleton.

Figure 8.3.8 The five platonic

8.3.23s Tetrahedron. 8.3.24 Cube.
8.3.26 Dodecahedron. 8.3.27 Icosahedron.

8.3.25 Octahedron.

In each o f the Exercises 8.3.28 through 8.3.31, draw the dual o f the indicated map.

8.3.28 Map A.

8 .3 .30s Map C.

Figure 8.3.9 Four maps.

8.3.29
8.3.31

Map B. 
Map D.
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8.4 ANALYTIC GRAPH THEORY

Analytic graph theory is a collective name for some related branches of graph

graphs get larger, in some sense. This section introduces two of these branches. In 
extremal graph theory, the contingent property of interest occurs after the number 
o f edges is sufficiently large, relative to the number of vertices. Ramsey graph theory 
is concerned with a special type of property that occurs either in a simple graph G 
or in its edge-complement, regardless of the number of edges of G, once the number

The problems tend to be quite difficult. There are vey few easy results.

Extremal Graphs and Extremal Functions

DEFINITION: An n -vertex gr? 

graphs), in the sense of havir

>h is said to be an ex tr em a l graph  for a property 
raph without that property (usually, among simple 
the most edges.

DEFINITION: For a property V, the value of the ex tr em a l fu n ction

is the number of edges in an extremal n-vertex for that property.

and to derive formulas for extremal functions. A basic approach is to posit a 
plausible candidate for an extremal graph, and then to prove that the property

least one cycle. Since a tree is acyclic, and since an n-vertex tree has n — 1 edges, 
it is clear that

ex(n,  non-acyclic) >  n — 1 

Since adding an edge to an n-vertex tree creates a cycle, it is reasonable to consider

In fact, some component of an n-edge, n-vertex graph must have at least as many 
edges as vertices, which implies that beyond the existence of a spanning tree in 
that component, there is at least one additional edge, which forms a cycle in the

ex(n,  non-acyclic) <  n — 1

Thus, the extremal n-vertex graphs for non-acyclicity are the acyclic 
n — 1  edges, that is, all the n-vertex trees.

with
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E xam ple  8 .4.2: Let V  be the property of non-planarity. A planar n-vertex i 
has at most 3n — 6  edges, by Proposition 8.2.6. Thus,

The g 
Thus,

ex(n,  non-planarity) <  3n — 6  

Cn - 2 +  2A'i has 3n — 6  edges. Its planarity is illustrated in Figure 8.4.1.

ex(n,  planar) >  3n — 6

Figure 8.4.1 A  planar draw ing o f  C 5 +  2K\.

triangulate the plane, that is, the simple graphs that can be drawn in the plane so 
that every region is 3-sided.

Turan’s Theorem

orem of Paul Turan. It concerns the property of having a 3-cycle. Turan proved 
this theorem while confined to a forced labor camp in Hungary.

T h eorem  8.4.1 ith than
[n 2 /4 j edges contains K 3  as a subgraph.

P ro o f: We consider a G such that

+  1

For n =  3 this implies that I-EgI =  3, in which case G =  K 3 , and for n =  4 it 
implies that I-EgI =  5, in which case G is obtainable by deleting a single edge from 
K 4 . In either case, there is a K 3  in G. We continue inductively.
For arbitrary n >  5, let u and v be adjacent vertices in G. Suppose that there is 
no K 3  in G — { u, v } .  Then, by the induction hypothesis, the number of edges in 
G — { « ,  v}  is at most

(n — 2 ) 2 

_ 4 _
It follows that the number of edges joining the n — 2 vertices of G — { « ,  v}  to the 
vertices u and v is at least

^ {1 1 -  2 )2
+  1 -

(Equality holds no matter whether n is even or odd.) By the pigeonhole principle, 
one of those n — 2 vertices must be joined both to u and to v, forming a K 3 . <C>

  



458 Chapter 8 Graph Theory Topics

The Ramsey Puzzle
Frank Ramsey (1903-1930) was a British mathematician. His work has led to 

extensive mathematical development.
The classical Ramsey puzzle is to prove that among any six persons, there are 

either three mutual acquaintances or three mutual non-acquaintances. The next

Proposition 8.4.2. Let G be a simple graph with six vertices. Then either G or 
its edge-complement G contains K 3 .

Proof: Then let v E Vcj. Then either (Case 1) v has three neighbors in the graph 
G or (Case 2) v has three non-neighbors in G. These cases are illustrated in Figure 
8.4.2, with dashed lines used here to represent non-adjacency.

Figure 8.4.2 Solving the Ramsey puzzle.

Case 1. If any two of the neighbors are adjacent to each other, then along with 
v they are spanned by a K 3  in G. Yet if no two are adjacent, then those three 
neighbors are spanned by a K 3  in G.

Case 2. If any two of the non-neighbors are non-adjacent to each other, then along 
with v, they are spanned by a K 3  in G. Yet if no two are non-adjacent, then the 
three non-neighbors are spanned by a K 3  in G. <C>

Ramsey Numbers
DEFINITION: For any pair of positive integers s and t, the R a m sey  n u m b er  r(s, t) 
is the minimum number n such that every simple graph G with at least n vertices 
either has K s as a subgraph in itself or, alternatively, has K t as a subgraph of its 
edge-complement G.

Example 8.4.3: Proposition 8.4.2 asserts that r(3 ,3) =  6 .

Proposition 8.4.3. For every positive integer s,

r ( s , 1 ) =  1

Proof: The edge-complement of a non-empty contains K\. <C>

Proposition 8.4.4. For every positive integer s,

r(s, 2 ) =  s

K s . If it is not complete, then its complement G has at least one edge and contains
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Proposition 8.4.5. For all positive integers s and t,

r(s, t)  =  r(t ,s)

Proof: The definition of a Ramsey number r(s, t)  is symmetric in the two argu­
ments s and t. <C>

The Erdos-Szekeres Theorems
It is not obvious that the Ramsey numbers are well-defined. However, us­

ing Propositions 8.4.3, 8.4.4, and 8.4.5 to construct a basis, the following theorem 
establishes the existence of the other Ramsey numbers and an upper bound as well.

Theorem 8.4.6 [Erdos and Szekeres, 1935].
(a) For all integers s ,t  >  2,

r ( s , t ) <  r(s — 1 ,t) +  r(s, t  — 1 )

(b) Moreover, i f  r(s  — 1 ,t) and r(s, t  — 1) are both even, then

r(s, t)  <  r(s — 1 , t) +  r(s, t — 1 ) — 1

Proof: This builds by induction on Propositions 8.4.3 and 8.4.4.
(a) Let G be a simple graph on r(s — l , t )  +  r(s, t  — 1) vertices, and let v E Vg - 
Then either

(Case 2) deg-^(v) >  r(s, t  — 1).
iralizes the proof of Proposition 8.4.2, as illustrated by Figure 8.4.3.This

i vertices a r (s ,t- i) vertices

Figure 8.4.3 Alternatives in an Erdos-Szekeres theorem.

Case 1. If any s — 1 of the neighbors are mutually adjacent, then along with vertex 
v, they are spanned by a K s in G.  Yet if at most s — 2 are mutually adjacent, then 
by the definition of the Ramsey number, some t o f these neighbors are mutually 
non-adjacent, yielding a K t in G.

Case 2. If any t — 1 of the non-neighbors of v are mutually non-adjacent, then 
along with v they are spanned by a K t in G.  Alternatively, if at most t — 2 are 
mutually non-adjacent, then by the definition of the Ramsey number, some s of 
these non-neighbors are mutually adjacent, yielding a K s in G.
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(b) Now suppose that r(s — 1 ,t) and r(s, t  — 1) are both even, and that 

Then

Since \Vq \ is an odd number, there is some vertex w o f G with even degree.
Case 1. If dega(w)  >  r(s — 1 ,t), then we are done, as in part (a) Case 1 of above. 

Case 2. If dega(w) <  r(s — 1 ,t), then, since dega(w)  is even, it follows that
?g (dega(w)  <  r(s — I, t)  — 2. Hence, deg-^(w) >  r(t — 1, s). The result now follows, as 

in Case 2 of part (a). <C>

Corollary 8.4.7 [Erdos and Szekeres, 1935]. For all positive integers s and t,

's  +  t -  2 ^
r(s, t)  <

s — 1

Proof: The assertion is trivially true for s +  t =  2, by Proposition 8.4.3. Contin­
uing inductively, assume for some k >  3 that the inequality is true for all positive 
integers s and t such that s + 1 <  k, and consider when s +  t =  k. Then

r(s, t)  <  r(s — 1, t) +  r(s, t — 1) (by Theorem 8.4.6(a)) 
' (s — 1 ) +  t — 2 ^ ^  +  (t — 1 ) — 2 ^

ŝ -\-1 — 3\ f  s -\-1 — 3̂  
s — 2  )  +  {  s -  1  

's  +  t -  2  ̂
s — 1

(Pascal’s recursion)

Ramsey Number Calculations
Calculating Ramsey numbers r(s, t) for 3 <  s <  t is notoriously difficult, except 

for the first few. The only nine known Ramsey numbers are shown in Table 8.4.1. 
Theorem 8.4.2 establishes that r(3 ,3) =  6 . The next two results calculate r(3 ,4) 
and r (3, 5), and a third result produces an upper bound for r (4, 4).

Table 8.4.1. The known Ramsey numbers r(s, t )  for 3 <  s < t .

t =  3 4 5 6 7 8 9

8 =  3 6 9 14 18 23 28 36

4 18 25
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Proposition 8.4.8. r(3 ,4) =  9.

Proof: Since the Ramsey numbers r ( 2,4) =  4 and r(3 ,3) =  6  are both even, 
Theorem 8.4.6(b) implies the upper bound

r(3, 4) <  r(2, 4) +  r(3, 3) - 1  =  9

For the reverse inequality, observe that the 8 -vertex circulant graph circ (8 ; 1,4), 
shown in Figure 8.4.4, has neither a A'3 -subgraph nor an independent set of four 
vertices (i.e., its edge-complement has no A'4 -subgraph). <C>

4 *  3

Figure 8.4.4 The circulant graph circ (8 ; 1,4).

Proposition 8.4.9. r(3 ,5) =  14.

Proof: The upper bound for r(3 ,5) follows from Thm 8.4.6(a) and Propositions
8.4.4 and 8.4.8. In particular,

r(3, 5) <  r {2, 5) +  r (3 ,4) =  5 +  9 =  14

For the reverse inequality, consider the graph circ (13; 1,5), shown in Figure 8.4.5 
below, which clearly has no A'3 -subgraph. If it had a set S o f five mutually non- 
adjacent vertices, then two of them would have to be within distance two of each 
other. By symmetry, we may take these two vertices to be 0 and 2. This excludes 
vertices 1, 3, 5, 7, 8 , 10, and 12, leaving only 4, 6 , 9, and 11 as possible members of 
S. But at most one of the vertices 4 and 9 can be in S, because they are adjacent. 
Likewise, at most one o f 6  and 11 can be in S. <C>

Figure 8.4.5 T h e  c i r c u la n t  g r a p h  circ  ( 13; 1, 5)
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Proposition 8.4.10. r(4,4) <  18.

Proof: By Theorem 8.4.6(a) and Propositions 8.4.5 and 8.4.8, we have

r(4 ,4) <  r(3 ,4) +  r(4 ,3) =  9 +  9 =  18 <C>

EXERCISES for Section 8.4

In each o f the Exercises 8.4-1 through 8-4-5, derive a formula for the extremal 
number ex (n , V)  for the given property.

8.4.1s V: has radius 1.
8.4.2 V: contains P4 .

8.4.3 V: is connected.
8.4.4 V: contains 2 K2, i.e., two disjoint copies of K 2.

8.4.5 V:  contains 3 K2, i.e., three disjoint copies of K 2.

In each o f the Exercises 8-4-6 through 8-4-11, use Theorem 8-4-6 o f Erdos and 
Szekeres to calculate an upper bound for the indicated Ramsey number.

8.4.6s r (3 ,6). 8.4.7 r(3 ,7 ). 8.4.8 r(3 ,8).
8.4.9 r (4 ,4). 8.4.10 r(4 ,5 ). 8.4.11 r(5 ,5).
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8.5 DIGRAPH MODELS

What imparts to the study of digraphs a special character is their incremental

the need to understand such models. This section presents two examples of digraph 
modeling.

Many streets and sections of streets of New York City have been designated 
for one-way traffic flow. In various parts of the city, some streets that appear on 
a map to be through streets have abrupt reversals of their one-way flow at various 
cross streets. Driving to a specified location in the city sometimes involves intricate 
weaving through the grid, thus inspiring the joke punchline, “You can’t get there 
from here.” In fact, a variation on Dijkstra’s algorithm (see §7.8) will find a shortest 
directed path from any location in a digraph to any other, as well as determine 
whether there is any such path.

grid so that, even if every street is to be limited to one-way traffic, there is a way 
to assign directions that enables all pairs of locations to be mutually reachable. A 
few definitions from digraph theory facilitate the discussion.

connected (§7.2).

DEFINITION: A digraph is s tr o n g ly  co n n e c ted  if for any two vertices s and t, there 
is a directed path from s to 1

DEFINITION: An or ien ta tio n  on  a graph  is an assignment of directions to all of

in Figure 8.5.1, cannot be strongly orientable, since whichever way it is oriented,

Robbins’ Traffic Problem

connected

Figure 8.5.1 o r ie n t a b le
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Robbins’ solution inverts this observation: if a graph has no cut-edge, then it is 
possible to assign directions so that the resulting digraph is strongly connected. In 
digraph terminology, we are working toward Robbins’ proof that every cut-edge-free

Synthesizing Cut-Edge-Free Graphs

DEFINITION: A path addition to a graph G is the addition to G of a path whose 
edges and internal vertices are not in G. If the path is closed, then it is a cycle 
addition. Otherwise it is an open path addition.

DEFINITION: A W hitney-R obbins synthesis of a grapl G from a H  is a

such that for i = 1, . . . , k, the 
or as a cycle addition to the g

ti Gi is derivable either as an open path addition

Theorem 8.5.1 [W hitney-Robbins Synthesis Theorem]. A graph G is cut- 
edge-free i f  and only if  G is either a cycle or derivable from a cycle by a Whitney- 
Robbins synthesis.

Proof: (-<=) A cycle has no cut-edge. Moreover, the result of a path addition to

derivable by Whitney-Robbins synthesis from a cycle is cut-edge-free.

(=>•) Suppose that G is a cut-edge-free graph. Since G is not a tree, there must exist 
a cycle C  in G. Among all subgraphs of G that are Whitney-Robbins synthesizable 
from C , let R  be one with the maximum number of edges. If R  =  G, then we are 
done.
Otherwise, consider an edge e with one endpoint s in subgraph R  and the other 
endpoint t a vertex of G — R. Since the graph G has no cut-edges, the edge e is not 
a cut-edge, so there is a path P  in G — e from t to s. As one traverses path P  from 
t toward s, let y (possibly y =  s) be the first vertex in the subgraph R, and let W  
be the path from s to y that begins with edge e and continues with the subpath of 
P  from t to y, as illustrated in Figure 8.5.2.

R
t

r

L s t

I / H y  ' !  

path P

J
G

V

Figure 8.5.2 A  p a t h  a d d i t i o n  in  G t o  s u b g r a p h  R,
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However, the graph obtained when subgraph R  is extended by adding path W  is 
a non-trivial Whitney-Robbins extension of R. This contradicts the choice of R  as 
having the maximum possible number of edges. <C>

Theorem 8.5.2 [Robbins, 1939]. A connected graph is strongly orientable i f  and 
only if  it has no cut-edges.

Proof: (=>•) Let e be an edge of strongly orientable graph G, oriented so that G 
is strongly connected. Then there is a directed path from the head of e to the tail 
of e in the graph G — e. Accordingly, the edge e is not a cut-edge.

(-<=) Let G be a connected graph with no cut-edges. By Theorem 8.5.1, it follows 
that G is either a cycle or derivable from a cycle by a Whitney-Robbins synthesis.

addition, simply by aligning directions of the edges of the path. It follows by 
induction that G is strongly orientable. <C>

Tournaments

The graph-theoretic model called a tournament represents the outcome of what 
is familiarly known as a round-robin tournament, in which every player plays exactly 
one match with every other player. There is a vertex for each player, and an arc 
from x to y means that x beat y.

REVIEW FROM §7.3: A simple digraph is a digraph that has no self-loops and 
no multi-arcs.

DEFINITION: A tournament is a simple digraph whose underlying graph is a com-

TERMINOLOGY: A transitive tournament is a tournament that is transitive as a 
digraph.

Proposition 8.5.3. A tournament is transitive i f  and only if  it is acyclic.

Proof: Since the underlying graph of a tournament is simple, it follows from 
Corollary 7.3.6 that a transitive tournament is acyclic.
Conversely, if the tournament D  is acyclic, that D  has arcs x —> y and y z, then 
the edge joining x and z must be directed from * to z. Thus, tournament D  is 
transitive. <C>

Of course, one would like to be able from the outcomes of the matches not only to 
say who is the winner, but to rank the players. The out-degree of a vertex represents 
the number of other players the corresponding player has beaten, so it is natural to
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E x a m p l e 8 .5 .1: Figure 8.5.3 depicts a non-transitive tournament . Observe that 
v beats x, x beats z, and z beats v. Vertices are labeled with their out-degrees. 

Figure 8.5.3 A n o n - t r a n s i t i v e t o u r n a m e n t . 

DEFINITION: The score sequence of a tournament is the sequence of out-degrees. 

T h e o r e m 8 .5.4. An n-vertex tournament is transitive if and only if the score 
sequence is 

n — 1, n — 2, . . ., 1, 0 

Proof: (=>•) In a transitive tournament , if x beats y, then x beats everybody that 
y beats, so the out-degree of x is at least one more than the out-degree of y. Thus, 
no two vertices have the same out-degree. By the pigeonhole principle, the score 
sequence must b e n — l,n — 2, . . ., 0. 

(-<=) Suppose that the score sequence is n — 1, n — 2 , . . . , 0 . If n = 1, the tournament 
is transitive. Moreover, adding a player who beats everyone else to a transitive 
tournament yields a transitive tournament . <) 

Hamiltonian Paths in Tournaments 
In a digraph, a hamiltonian path is usually understood to be a directed path. 

P r o p o s i t i o n 8.5.5. A transitive tournament D has exactly one hamiltonian path. 

Proof: Suppose that D has n vertices, By Proposition 8.5.4, the score sequence 
is 

n — 1, n — 2, . . ., 1, 0 

Clearly, the vertex with score 0 is beaten by every other vertex. Continuing induc­
tive, it is clear that every vertex beats all the vertices with lower scores. Thus, there 
is a (directed) hamiltonian path from the vertex with score n — 1 to the vertex with 
score 0. <) 

T h e o r e m 8.5.6 [Rédei , 1934] . Every tournament D has a hamiltonian path. 

Proof: Let P = ( vo, v\, . . ., v^-i) be a directed path of maximum length in the 
tournament D. If D has no hamiltonian path, then there is a vertex z of D not on 
path P. For j = 0, . . ., k — 1, let e¿ be the edge joining Vj and z, as shown in Figure 
8.5.4. 
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Arc eo must be directed from i>o to z, as shown, lest preceding path P  by that 
arc yield a longer directed path, contradicting the maximality of P. Moreover, for 
j  =  1, . . ., k — 1, if arc ej_ i is directed toward z, then arc ej must also be directed 
toward z, lest substituting the pair of arcs ej_i  and ej into the path P  for the arc 
Vj- i  —?> Vj yield a longer path, thereby contradicting the maximality of P.  However, 
having arc e^ -i  directed toward z implies that the directed path P  can be extended 
by arc e^ -i, contradicting the maximality of P. <C>

Kings

DEFINITION: A king in a tournament is a vertex such that every other vertex is 

Theorem 8.5.7. Every tournament D has a king.

Proof: If D  has only one vertex, it is a king. Assume inductively that every n — 1- 
vertex tournament has a king, and let u be any vertex in an n-vertex tournament. 
Let z be a king in the tournament D — u, and let S be the set containing the vertex 
z and all the vertices that z beats. If u beats every vertex in S, then u is king, as 
shown in Figure 8.5.5(a). Otherwise, some vertex in S beats u, in which case z is a

( a )  ( b )
Figure 8.5.5 Finding a king in every tournament
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In Exercises 8.5.1 through 8.5.4, construct a Whitney-Robbins synthesis o f the given 
graph.

8.5.1s 8.5.2

E X E R C I S E S  fo r  S e c t io n  8.5

Figure 8.5.6 Six tournaments

8.5.5s Tournament A. 8.5.6 Tournament B. 8.5.7 Tournament C.

8.5.8 Tournament D. 8.5.9 Tournament G. 8.5.10 Tournament H .

In each o f the Exercises 8.5.11 through 8.5.16, find a hamilton path m the designated 
tournament o f Figure 8.5.7.

8.5.11s Tournament A. 8.5.12 Tournament B. 8.5.13 Tournament C .

8.5.14 Tournament D. 8.5.15 Tournament G. 8.5.16 Tournament H .

  



Section 8.6 Network Flows 469

8.6 NETWORK FLOWS

Network flows are used in a variety of mathematical optimization problems. 
The general idea is that there are one or more source nodes of some commodity, 
one or more target nodes where the commodity will be consumed, various relay 
nodes, and a set of connections among the nodes, each with a capacity for flow from 
one end to the other.

DEFINITION: A source in a conn ected  d igraph  is a designated vertex  w ith  non-zero 
out-degree. A sink is a designated vertex w ith  non-zero indegree. A netw ork w ith  
a single source vertex  s and a single sink vertex t (som etim es called  the target) is 
called  an s-t network.

DEFINITION: A capacitated network  is a conn ected  digraph  in w hich  each arc e 
is assigned a non-negative w eight cap(e),  called  its capacity.

E xam ple  8 .6.1: A capacitated s-t network is shown in Figure 8.6.1.

6

5
Figure 8.6.1 A  ca p acita ted  netw ork,

DEFINITION: Let v be a vertex of a digraph D.  The out-set of v, denoted Out(v),  
is the set of all arcs in D  directed outward from v. The in-set of v, denoted In(y),  
is the set of all arcs in D  directed inward into v.

Feasible Flows

DEFINITION: A feasible How on a capacitated s-t-network N  is a function

that assigns to each arc e a non-negative real number /(e )  such that
1. (capacity constraint) for every e £ i?jv,

/(e )  <  cap(e)

2. (conservation constraint) for every v E Vn , except source s and sink t,

/(e) = E  /(e)
e£ln(v)  e£Out (v )
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E x a m p l e 8 .6 .1 , cont inued: Figure 8.6.2 shows a flow for the network of Figure 
8.6.1. The capacity of each arc is the first number, and the flow on that arc is the 
second number. 

Figure 8.6.2 A feas ible flow o n a c a p a c i t a t e d ne twork . 

DEFINITION: The value of a ñow f on a capacitated s-t network, denoted val(f), 
is the net flow out of the source 

E x a m p l e 8 .6 .1 , cont inued: The value of the flow in Figure 8.6.2 is 2 + 3 = 5. 

DEFINITION: A maximum now is a flow / such that val ( /) is greater than or 
equal to the value of any other flow on the same network. 

Cuts 

DEFINITION: In an s-t network N, let Vs and Vt be a parti t ion of the vertex set VN 
such that s £ Vs and t E Vt. Then the set of all arcs directed from a vertex of Vs to 
a vertex of Vt is called an s-t cut on network N. It is denoted (Vs, Vt). 

DEFINITION: The capacity of a cut (Vs, Vt) is the sum of the capacities in its 
arcs. 

E x a m p l e 8 .6 .1 , cont inued: In Figure 8.6.3, the capacity of the s-t cut 

({s,u,w,x}, {v,t}) 

(shown with dashed arcs) is 6 + 2 + 7 = 15. 

Figure 8.6.3 A feas ible flow o n a c a p a c i t a t e d ne twork . 
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DEFINITION: The net now through an s-t cut is the sum of the flows on the arcs 
of the cut (the forward now) minus the sum of the flows on arcs from vertices in 
Vt to vertices in Vs (the backñow). 

E x a m p l e 8 .6 .1 , cont inued: The net flow through the cut in Figure 8.6.3 is 
4 + 1 + 2 — 2 = 5. We observe that this equals the value of the flow. 

P r o p o s i t i o n 8 .6 .1 . Let f be a now on a network. The net now through any s-t 
cut (Vs, Vt) equals val ( / ) . 

Proof: The net flow through the cut Vs = {s} is val(f). For Vs = {s, v\, . . ., v^}, 
the net flow through the cut is the sum of the net flows out of all the vertices in Vs. 
By the conservation constraint, the net flows out of each of these vertices except s 
is 0. Thus, the net flow through the cut (Vs, Vt) is val(f). <) 

P r o p o s i t i o n 8 .6 .2 . Let f be a now on a network. The forward now through any 
s-t cut (Vs, Vt) is less than or equal to the capacity of that cut. 

Proof: The flow through each arc in the cut is at most the capacity of that arc. 
Summing over the arcs yields the conclusion. <) 

Corol lary 8 .6 .3 . Let f be a now on a network. The net now through any s-t cut 
(Vs, Vt) is less than or equal to the capacity of that cut. 

Proof: The net flow is less than or equal to the forward flow, since the backflow 
is non-negative. <) 

DEFINITION: A minimum cut is a cut whose capacity is less than or equal to the 
capacity of any other cut on the same network. 

T h e o r e m 8.6.4 . Let f be a now on a network. Then the value of a maximum now 
is less than or equal to the capacity of a minimum cut. Moreover, if the value of 
a now f equals the capacity of some cut (Vs, Vt), then ñow f is a maximum now, 
and cut (Vs, Vt) is a minimum cut. 

Proof: This follows from Proposition 8.6.1 and Corollary 8.6.3. <) 

Increasing the Flow Along a Directed Path 

The equilibrium in which the flow achieves its maximum, the capacity of the 
minimum cut, is always achievable, due to an algorithm of Ford and Fulkerson. We 
are now working toward a description of their optimization method. 

We consider, as a preliminary, a flow / on an s-t network with a directed s-t pa th 

such that for j = 1, . . ., k 
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Let
A  P =  m in { cap(ej) -  f ( e j )  \ j  =  1, .. , , k }

and suppose that the flow on each of the arcs e\, . . ., e* is increased by A p . The 
resulting flow is feasible, since it preserves the conservation of flow at each internal 
vertex along path P , and by choice of the increment A p , none of the resulting arc 
flows exceeds capacity.

Example 8.6.1, continued: When the flow in each of the arcs along the directed 
path ( s ,w ,x , t ) is increased by 2, the resulting network flow is as shown in Figure
8.6.4. The network flow is increased thereby from 5 to 7.

Figure 8.6.4 Increasing the flow along a directed path.

There is no other directed s-t path along which the flow could be increased. Since 
the arc sw is filled to capacity, the first arc in such a path would have to be su, 
after which the only possible next arc is uv. From vertex v, the arcs vw and vt are 
already at capacity.

Augmenting Along a Quasi-Path
Although increasing some forward flows is an obvious way to achieve an in­

creased net flow, it is also possible to increase the net flow by decreasing some 
backward flows.

DEFINITION: An s-t quasi-path in an s-t network is a sequence

Q — ( S, 6 i, . . . , l^ — i, , t ^

whose vertices and edges form an s-t path in the underlying graph. The arc ej is a 
forward arc if it is directed from to Vi and a backward arc if it is directed 
from Vi to Vi-i.

DEFINITION: Let /  be a flow on an s-t network and Q a quasi-path as above. The 
slack on an arc e is given by

^  _  f cap(e) — / (e )  if e is a forward arc
1  / ( e) if e is a backward arc

The slack on the quasi-path Q is given by
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DEFINITION: A quasi-path  Q w ith  positive  slack for a flow  /  is called  a flow - 
a u g m en tin g  quasi-pa th  or an f-a u gm en tin g  quasi-path . A u g m en tin g  th e  
flow  on  Q m eans increasing the flow  by  A (Q) on  every forw ard  arc and decreasing 
the flow  by  A (Q) on  every backw ard arc.

Example 8.6.1, continued: Figure 8.6.5 shows a flow-augmenting quasi-path 
for our running example.

Example 8.6.1, continued: Figure 8 .6 . 6  shows the result of augmenting the flow 
on that quasi-path. Observe that the net flow through the revised cut equals the 
capacity of that cut. By Theorem 8.6.4, it follows that this is maximum flow and 
that the revised cut is a minimum cut.

Figure 8.6.6 Result of augmenting the flow.

What remains to be proved here is that if no such quasi-path exists, then the 
exisiting flow is a maximum.

Achieving Maximum Flow
If there is a flow-augmenting s-t quasi-path in a network N , it can be found by 

a breadth-first search on a digraph D n  associated with network N . The vertex set 
of D n  is Vn - Each arc e of network N  leads to one or two arcs in D n -

If /(e )  =  0, then there is an arc in D n  from the tail of e to the head, but none 
from the head to the tail.
If 0 <  /(e )  <  cap(e), then there is an arc from the tail of e to the head, and 
another from the head to the tail.
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If /(e )  =  cap(e), then there is an arc from the head of e to the tail, but none 
from the tail to the head.

Making an iterative breadth-first search until no flow-augmenting quasi-path can 
be found is known as the Ford-Fulkerson algorithm.

Theorem 8.6.5. A Bow f  in a network N  is a maximum Bow if  and only i f  there 
does not exist an f-augmenting quasi-path.

Proof: (=>•) Suppose that flow /  is a maximum flow in network N. There cannot 
exist an /-augmenting quasi-path, since augmenting the flow on the that quasi-path 
would yield an increased flow.
(-<=) Suppose there exists no /-augmenting flow, and let Vs be the set of vertices 
in a breadth-first tree and Vt the remaining vertices. Let e be a frontier arc. If e 
is directed from Vs to Vt, then /(e )  =  cap(e); if e is directed from Vt to Vs, then 
/(e )  =  0. It follows that the net flow through the cut equals the capacity. Therefore, 
by Theorem 8.6.4, the flow is maximum and the cut is minimum. <C>

Bipartite Matching
Network flow theory is remarkably versatile. We now examine how it applies 

to a personnel assignment problem.

DEFINITION: A matching in a graph is a set of edges no two of which have an 
endpoint in common. A maximum matching is a matching with the greatest 
number of edges.

Suppose that in a bipartite graph, the vertices pi, . . . ,pm represent available people 
and the vertices u>i, . . ., w„ represent jobs of different types. There is an edge from 
each person to each job  of which that person is capable. A maximum matching 
covers as many jobs as possible and, simultaneously, assigns work to as many people 
as possible.

Example 8.6.2: Figure 8.6.7 shows an ad hoc matching in a bipartite graph with 
five matched pairs. It is maximal, in the sense that one of the endpoints of every 
remaining edge is already in this matching. It may be observed that if person p\ 
switched to the unassigned job  ws, then the unassigned person p 2 could cover the 
job  wi relinquished by p\.

P t p 2 p3 p 4 p 5 p 6 p 7 p 8

w 1 w 2 w 3 w 4  w 5 w 6 w 7 w 8 w 9

Figure 8.6.7 A  p e r s o n n e l  a s s ig n m e n t  b i p a r t i t e
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A method to find swaps that increase the size of the matching is based on flow 
theory. All the edges are directed from the personnel toward the jobs. Then a new 
source vertex s is joined by arcs to each of the personnel, and all the personnel are 
joined by arcs to a new sink t, as illustrated in Figure 8.6.8. Dark edges represent 
a flow of 1. Lighter edges have a flow of 0. 

Figure 8.6.8 A p e r s o n n e l a s s i g n m e n t b i p a r t i t e graph . 

Every arc is given a capacity of 1. The dashed arcs in Figure 8.6.8 indicate a 
flow augmenting path, relative to Figure 8.6.7. The net effect of a single flow 
augmentat ion is to increase the size of the matching by one edge. A maximum flow 
thereby yields a max imum matching. 

E X E R C I S E S for S e c t i o n 8.6 

In Exercises 8.6.1 through 8.6.6, construct a maximum flow for the given network. 

8 . 6 . 1 8 . 6 . 2 

8.6.3 8.6.4 
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In Exercises 8.6.7 through 8.6.12, construct a minimum cut for the network o f the 
given exercise.

8.6.7 The network of Exercise 8.6.1.

8 .6 . 8  The network of Exercise 8.6.2.
8.6.9 The network of Exercise 8.6.3.
8.6.10 The network of Exercise 8.6.4.
8.6.11 The network of Exercise 8.6.5.

8.6.12 The network of Exercise 8 .6 .6 .

8.7 TOPOLOGICAL GRAPH THEORY

pecially in the study of placements of graphs on surfaces. By the late 19th century,

to elevate the study of graphs on surfaces beyond the plane to the higher order 
surfaces. This section presents algebraic tests for imbeddability in higher surfaces 
that generalize some of the tests for planarity. It also presents some methods for 
representing and constructing imbeddings in higher order surfaces.

The exposition in this section presumes some basic acquaintance with surfaces. For 
further detail, see [GrYe2006].

Two Sequences of Surfaces
The orientable surfaces are represented in Figure 8.7.1 as an infinite sequence

S o ,  S i ,  S 2 , . . .  .

Figure 8.7.1 T h e  o r ie n t a b le  s u r fa c e s
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The initial surface in this sequence is the sphere. The next surface is the torus Si. 
In general, the surface Sg might be positioned in 3-space so as to bound a (/-hole 
doughnut, but it could also adapt to more exotic positioning, involving knotting 
and linkages of various holes wth each other.

The non-orientable surfaces form the sequence N i ,  N2, Ns, . . . represented in 
Figure 8.7.2. The surface Nk is formed by excising the interiors of k disjoint closed 
disks from the sphere and capping each of them with a Mobius band.

N i n 2 n 3

Figure 8.7.2 The non-orientable surfaces

Flat-Polygon Representation of Surfaces
A closed surface in space may have contours that are hidden from the viewer 

behind other parts of the surface. Vertices or edges of a graph drawn on the “back”

front is to cut the surface open and flatten it out.

DEFINITION: A H at-polygon  rep resen ta tio n  o f a surface S is a drawing of a 
polygon and a matching of its sides, such that when the sides are pasted together 
according to the matching, the result is a surface that is topologically equivalent to 
the surface S. Figure 8.7.3 shows a flat polygon representation of the torus.

Figure 8.7.3 Flat-j ^on representation of a torus.

Pasting the bottom of the rectangle to the top, as per the &-matching, yields a 
cylindrical tube. Then pasting the right end of the tube to the left end, as per the
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Example 8.7.1: Figure 8.7.4 is a drawing of the complete bipartite graph 3  

on the torus, represented as a flat rectangle. In this drawing, the sides of the 
rectangle are represented by dashed lines, to distinguish them from the solid edges 
of the graph. The edge 23 is construed to extend continuously between vertices 
2 and 3 when the rectangle is pasted into a torus. Likewise, the edge 05 extends 
continuously between its endpoints.

Figure 8.7.4 A"3 3 on a torus.

Remark: Although there are a few widely adopted practices in drawing graphs on 
flat-polygon representations of surfaces, various graphic devices are used ad hoc to 
enhance the clarity of individual drawings. The dashed lines for the sides of the flat 
polygon of Figure 8.7.4 are such a device.

Proposition 8.7.1. Every orientable surface Sg has a flat-polygon representation.

Proof: Draw a closed curve around each of the handles of the surface, with a 
single point on it designated to serve as corners of the polygon. Cutting the surface
Sg open on all the closed curves $es it into a sphere with 2 g holes, each of
which has a designated point on it. Then draw a tree with 2$ — 1 edges on the 
surface-with-holes, whose vertices are the designated points. Cutting the surface 
open on the tree and then flattening the resulting surface yields a polygon with 
Qg — 2  corners and sides. <)

The most usual form of flat-polygon representation of Sg is achieved by con­
tracting the tree to a single point before cutting on the g closed curves. In that 
case, the flat polygon has Ag corners and sides. All of the corners are pasted into 
that single point when the surface is constructed from the polygon.

Remark: Non-orientable surfaces also have flat-polygon representations. The idea 
there is to draw a closed curve as the central circuit on each of the k Mobius bands 
of Nk, each with a designated point, and a tree joining the designated points.

Cellular Imbeddings
TERMINOLOGY: In the present context, the top o log ica l w ord  imbedding is used to  
m ean a crossing-free draw ing o f  a graph.

  



Section 8.7 Topological Graph Theory 479 

DEFINITION: Á region of an imbedding of a graph on a surface is cellular if it, is 
topologically equivalent, to an open disk. Tha t means that every closed curve inside 
the region bounds a disk within the region. It, is a strongly cellular region if its 
boundary is a cycle in the graph. 

DEFINITION: A (strongly) cellular imbedding is an imbedding such that, every 
region is (strongly) cellular. 

E x a m p l e 8 .7 .1 , cont inued: The imbedding in Figure 8.7.4 is strongly cellular. 

E x a m p l e 8.7.2: The flat-polygon drawing of Kj —s- S\ in Figure 8.7.5 is strongly 
cellular. Notice that some edges and vertices of the graph are drawn along the 
boundary of the polygon. 

Figure 8.7.5 Kj o n t h e torus . 

This tends to make the drawings seem simpler, once one gets used to the idea that 
the same edge (e.g., edges 12 or 45) may appear twice and that the same vertex 
(e.g., vertices 2 or 4) may appear twice if it, occurs on a side of the polygon and 
even more than twice (e.g., vertex 0) if it is drawn at a. corner of the polygon. 

E x a m p l e 8.7.3: Figure 8.7.6 shows two non-cellular imbeddings on the torus. 
In either case, one could draw a closed curve in the "larger" region that does not 
separate tha t region. 

Figure 8.7.6 T w o non-ce l lu lar i m b e d d i n g s o n t h e torus . 

Generalized Euler Polyhedral Equation 
In §8.2, the Euler polyhedral equation 

\V\ - \E\ + \F\ = 2 (8.2.1) 

  



is combined with the Edge-Face Inequality

to produce the result that a simple graph G is non-planar if
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Theorem 8.7.2 Euler Polyhedral Equation]. The equation

holds for every imbedding o f  a connected , G in the surface Sg.

Proof: This generalizes Theorem 8.2.2. For a detailed proof, see [GrYe2006] or 
[GrTu2001], <C>

Corollary 8.7.3. Let —>■ Sg be the property o f  imbeddabilty in the surface Sg.
Then

e x (n ,—> Sg) =  3n — 6  +  6 g (8.7.2)

Proof: Since 3 is less than or equal to the girth of any simple graph, the Edge-Face 
Inequality (8.2.2) implies that

2 •
girth(G) 3 

Rearranging the Euler polyhedral equation (8.7.1) yields

Combining (8.7.3) and (8.7.4) implies

(8.7.3)

(8.7.4)

\E \ 2 I
which readily yields the conclusion.

— 2 +  2 g

Example 8.7.4: Suppose that a simple graph G has 8  vertices and that we want 
to know if it has a crossing-free drawing on the torus S\. Then

=  3 -8  -  6 +  6

Thus, every 8 -vertex simple with more than 24 edges is non-toroidal.

  



Section 8.7 Topological Graph Theory 481

C o r o l l a r y  8 .7 .4 . A  s i m p l e  b i p a r t i t e  g r a p h  G  c a n n o t  b e  i m b e d d e d  o n  t h e  o r i e n t a b l e

surface Sg if
- 4  +  4 g

Proof: Since 4 is the minimum possible girth of a simple bipartite 
Edge-Face Inequality implies that

2 •
girth(G) 4 

Rearranging the Euler polyhedral equation yields

Combining (8.7.6) and (8.7.7) implies

(8.7.5)

(8.7.6)

(8.7.7)

which readily yields the result.

Example 8.7.5: Every 10-vertex simple bipartite graph with more than 20 edges 
is non-planar. For instance, A' 3  7 , K^fi, and A' 5  5 are all non-toroidal.

Minimum Genus

DEFINITION: The m in im u m  gen u s o f  a graph  G is the smallest integer g such 
that G has an imbedding on the orientable surface Sg. It is denoted 7m i n ( G ) .

The landmark solution of the Heawood Map-Coloring Problem (see §8.3) by 
Ringel and Youngs [RiYol968] is built on a reduction to calculating the minimum 
genus of all the complete graphs. Table 8.7.1 gives the genus of some complete

Table 8.7.1 The genus of some complete

n 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 • • •

Tmin (A n ) 0 1 1 1 2 3 4 5 6 8 1 0 1 1  • • •

This achievement launched the emergence of topological graph theory as a major 
branch. Deriving formulas for the minimum genus of classes of graphs was initially 
the primary focus. The paradigm for proving such formulas was to establish a lower 
bound for the minimum genus, and then to describe how to construct a crossing-free 
drawing in a surface whose genus equals that lower bound. Lower bounds commonly 
relied on the following theorem.
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T h e o r e m  8 .7 .5 . L e t  G  b e  a  c o n n e c t e d  g r a p h .  T h e n

I n 2 • girth (G )

Proof: For a minimum imbedding G —?> S, we have 
the Euler polyhedral equation is

=  7i

=  2  -  2 7 n

The Edge-Face Inequality implies that

which implies that

and, in turn, that

girth(G)

I n

girth(G)
>  2 -  2 7n

2 • girth(G)

Since 7min ( G )  is integer-valued, the conclusion follows. 

Corollary 8.7.6. Let G be a simple connected graph. Then

(8.7.8) 

and, thus,

(8.7.9)

Proof: Since G is simple, it follows that girth(G) >  3. Substitution of this 
inequality into the inequality of Theorem 8.7.5 yields the conclusion. <C>

K n has the lower bound 

12
(8.7.1

for its minimum genus.

Proof: The substitutions into inequality (8.7.9) of

\V\ d \E\ ~
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The challenge of the Heawood problem was to construct an imbedding for each 
complete graph in the surface whose genus realized the lower bound of inequality

torus, but on higher genus surfaces, it is very difficult to check the connections of 
many edges that pass through a side of the polygon to the matched side.

by listing the boundary-walks of its faces. For instance, consider the imbedding 

be used to condense the specification of the boundary walks.

0 1 2 3 4 5 6 0

2 3 4 5 6 0 1 2

Figure 8.7.7 A symmetrical drawing of K 7 on the torus

The boundary-walks of the faces (clockwise around each face) are as follows.

013 032 
124 143 
235 254 
346 365 
450 406 
561 510 
602 621

Remark 1: In using a list of faces to specify a graph imbedding, one important 
requirement is that there are exactly two occurrences of each edge over all the 
face-boundary walks. For instance the edge 34 occurs on the edges 346 in the first 
column and 143 in the second column. Another is that the faces incident at each 
vertex form a single cycle around that vertex. For instance, Figure 8.7.8 shows how 
the faces incident at the vertex 0 form such a cycle.

Figure 8.7.8 The cycle of faces incident on vertex 0.

Remark 2: We observe that the other faces in each of the two columns are gener­
ated by developing the face in the top row modulo 7. Ringel used the development
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of a list of faces from a single principal face as the key to constructing several infinite

An enormous breakthrough occurred in 1963 when W . Gustin introduced a 
combinatorial device called a current graph to generate the boundary of a principal

Youngs added many different possible augmentations to current graphs in their 
successful quest to construct minimum imbeddings of all the complete graphs.

A more general device for constructing graph imbeddings, called a voltage 
graph, was subsequently invented by J. L. Gross (see [Grosl974]) and extended

cations of coverings and branched coverings, which had been previously understood 
as topological abstractions of Riemann surfaces. They provide a capability to con­
struct graph imbeddings for any kind of graph with adequately many fixed-point-free

toward that objective and various others. They unified (see [GrTul974]) the many

Remark: The monograph [GrTul987] surveys topological graph theory up to about 
1985. The edited volume [GrTu2008] describes the programmatic themes that have 
developed subsequently, including the distribution of imbeddings, algorithms and 
obstructions, graph minors, enumerating coverings, symmetrical maps, and connec­
tions between imbeddings and geometries and designs.

EXERCISES for Section 8.7

In Exercises 8.7.1 through 8.7.9, draw an imbedding o f the given graph on a flat 
polygon representation o f the torus.

8.7.1 K 2 +  C6. 8.7.2 C 3 x C 3. 8.7.3 circ( 8 : 1 ,2,3).
8.7.4 circ(8; 1 ,2 ,4). 8.7.5 circ(9 : 1 ,2 ,3). 8.7.6 C 3  +  C5.

8.7.7 M L 5. 8.7.8 K 4>4. 8.7.9 Q4.

In Exercises 8.7.10 through 8.7.15, prove that the given graph has no imbedding on 
the torus.

8.7.10 K 2 +  W 6. 8.7.11 # 4 ,5 . 8.7.12 Q 5.

8.7.13 Q 4  +  K 2- 8.7.14 C 3  +  M L 5. 8.7.15 circ{ 10: 1 , 2 , 3 , 4) .

In Exercises 8.7.16 through 8.7.21, use the girth to calculate a lower bound with 
inequality (8.7.8) for the minimum genus o f the given graph.

8.7.16 Qn. 8.7.17 K m>n. 8.7.18 K ^ Q n .

8.7.19 I< 2 +  Qn. 8.7.20 C 3  +  M L n. 8.7.21 circ{n : 1,2,3,4) .
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GLOSSARY

for extremal or probabilistic phenomena, including Ramsey phenomena.

augmenting the flow: increasing the flow along a chain of arcs from source to 
target.

boundary walk of a face: a closed walk that traverses the entire perimeter of 
the face.

capacitated network: a digraph in which each arc is assigned a non-negative 
number called its capacity.

capacity constraint on a flow: the requirement that the flow in each arc not 
exceed the capacity o f the arc.

capacity of a cut: the sum of the capacities of the arcs from the source side of 
the cut to the target side.

cellular imbedding of a graph in a surface: an imbedding such that every region 
is topologically equivalent to an open disk.

chromatic number of a graph: the minimum number of colors required for a 
proper coloring.

chromatically critical graph: a graph such that the removal of any edge would 
reduce the chromatic number.

clique in a graph: a maximal set of mutually adjacent vertices.

clique number: the cardinality of a largest clique.

coloring: an assignment to each vertex of a member of a set called colors.

complete set of obstructions to a graph property: a set of graphs lacking that 
property, of which at least one member is a subgraph of any graph that lacks 
the property.

connected digraph: a digraph whose underlying graph is connected.

conservation constraint: the requirement of a network flow that at every vertex 
except the source and the target, the sum of the flows on the in-arcs equals the 
sum of the flows on the out-arcs.

current graph: a device invented by W . Gustin, used in constructing the bound­
ary walks of an imbedded complete graph in the solution of the Heawood prob­
lem.

dodecahedral graph: the 1-skeleton of the dodecahedron.

dual of a map: a map obtained by inserting a dual vertex in each region and 
drawing through each edge a dual edge joining the vertices whose regions are 
adjacent through that edge.

Euler polyhedral equation for an imbedding of a graph on a surface: for
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with an eulerian tour, 

a closed walk that traverses every edge exactly once, 

a walk that traverses every edge exactly once.

\: the number of edges of an extremal graph for that

eulerian tour in a graph

eulerian trail in a graph

extremal function ex(n  
property.

a graph with the maximum number of edges, 
relative to its number of vertices, for any graph that lacks the property V .

face of an imbedding: the union of a region and the edges in its boundary walk.

feasible flow in a capacitated network: a flow that satisfies the capacity con­
straint and the conservation constraint.

flat-polygon representation of a surface S: representation by a polygon whose 
sides are paired in such a way that pasting the paired sides together yields a 
surface that is topologically equivalent to S.

flow in a network: an assignment of non-negative numbers to its arcs.

Ford-Fulkerson algorithm: an algorithm for maximizing the flow in a capaci­
tated network.

Four-Color Map Problem: a famous problem from the 19th century, asking 
whether every map on the sphere requires at most four colors for a proper 
coloring; solved by K. Appel and W. Haken in 1976.

hamiltonian circuit: a cycle that is incident on every vertex.

Heawood Map-Coloring Problem: the problem of finding the chromatic num-

and J. W . T. Youngs.

imbedding of a graph in a surface: a drawing without any edge-crossings.

independence number of a graph: the maximum number of mutually non- 
adjacent vertices.

independent set of vertices:

Jordan separation property:
closed curve separates it.

problem originated.

king in a tournament: a vertex from which every other vertex is reachable by

1930 are a complete set of obstructions to planarity of a graph.

Kuratowski subgraph of a graph: a subgraph isomorphic to a subdivision 
either of K 5 or of K 3  3 .

a set on mutually non-adjacent vertices, 

a property of the sphere and plane that every
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map-coloring: an assignment to each region of a map a member of a set called 
colors.

matching in a graph: a set of edges in which no two edges share an endpoint.

maximum flow: a flow on a capacitated network such that the net outflow from 
the source is the maximum possible.

maximum matching: a matching that has the maximum possible number of 
edges.

minimum cut: a cut whose capacity is the minimum among all cuts that sepa­
rate the source from the target.

minimum genus of a graph: the minimum number of handles needed on an 
orientable surface such that the graph can be drawn without edge-crossings.

mutually reachable vertices: two vertices in a digraph such that each is reach-

net flow through an s — t cut: the difference between the sum of the flows on 
arcs that cross from the s side to the t and the sum of the flows on the arcs that 
cross back.

non-orientable surface: a surface that contains a Mobius band.

open path addition to a graph: adding a path joining two different vertices.

orientable surface: a surface that does not contain a Mobius band; any surface 
in the infinite sequence So, Si, S2, ■ ■ ■ ■

orientation on a graph: an assignment of directions to its edges.

path addition: see Whitney-Robbins synthesis.

Poincare duality construction: see dual o f a map.

postman problem: the problem of finding a closed walk in a weighted graph 
that traverses every edge at least once, such that the sum of the weights encoun­
tered in traversal is a minimum; invented by M-K Guan.

primal map: a name given to the existing map on a surface to distinguish it 
from the dual map that is constructed from it.

proper coloring of a graph: a coloring in which no two adjacent vertices are 
assigned the same color.

m a p : a crossing-free drawing o f a graph on a surface.

proper map-coloring: a map-coloring in which no two adjacent regions are 
assigned the same color.

Ramsey graph theory: the pursuit of Ramsey numbers and various general­
izations.

Ramsey number r (s ,t)  : the smallest number r such that if G is any simple 
graph with r vertices, then either G contains K s or else G contains K t .
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r e g io n  o f  a  d r a w in g :  a topological com ponent o f the com plem ent o f the image

round-robin tournament: a contest in which every player plays every other 
player once; modeled by a type of digraph called a tournament.

score sequence of a tournament: the sequence of out-degrees.
seven bridges problem: a problem whose solution by Euler is acclaimed as the

simple digraph: a digraph with at most one arc from a to d, for any pair of 
vertices u and v.

size of a face of a graph drawing: the number of edge-steps in a traversal of its 
boundary walk.

cellular region: a region whose boundary walk is a cycle.

connected digraph: a digraph in which in every pair of vertices, both 
vertices are reachable from the other.

subdividing a graph: inserting an additional vertex in the interior of an edge, 
or iterating this operation.

trail: a walk with no repeated edges.
transitive tournament: a tournament that is transitive as a digraph.

circuit with the least total weight, 

underlying graph of a digraph: the result of eliminating all the edge directions, 
value of a flow: the net flow out of the source vertex, 

vertex fc-coloring of a graph: a coloring with k colors.

with T. W . Tucker, used to realize graph imbeddings by covering-space construc­
tions, to count covering spaces of a graph, and to give an algebraic specification

W hitney-Robbins synthesis of a 2-edge-connected graph G: a sequence of
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Graph Enumeration

9.1 Burnside-Polya Counting
9.2 Burnside’s Lemma
9.3 Counting Small Simple Graphs
9.4 Partitions of Integers
9.5 Calculating a Cycle Index
9.6 General Graphs and Digraphs

When Polya showed how the algebraic theorem called Burnside’s Lemma could 
be augmented to count graph isomorphism types, he had in mind an application 
in physical chemistry, that of counting the number of distinct isomers with a given 
chemical formula. A couple of decades after Polya, Harary launched an extensive 
program of developing additional augmentations, to permit wide-ranging applica­
tion of the fundamental Burnside-Polya method to the enumeration of graphs and 
other combinatorial objects, including, for instance, finite automata. The present 
chapter presents the basics of the method and should how it can be used to count
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9.1 BURNSIDE-POLYA COUNTING

This section presents a way to algebraize a problem of counting equivalence 
classes under geometric or other symmetries, by representing the symmetries as a 
collection of permutations. Proof that the technique works is deferred to §9.2.

REVIEW FROM §1.6:

• A p e r m u t a t i o n  o f  a  s e t  S is a one-to-one, onto function from S to itself.
• Corollary 1.6.4. Every permutation of a finite set S can be represented as 

the composition of disjoint cycles of elements of S.

f r o m  Appendix A2:

• An algebraic system (U, ■*■) is called a g r o u p  if it has the following properties:
the operation is associative, 

there is an identity element, 
every element of U has an inverse.

Example 9.1.1: Suppose that each square of a 2 x 2-checkerboard is to be colored 
black or white. Then, since the number of squares is 4 and the number of colors 
is at most 2, the number of possible colorings is 24 =  16. These 16 colorings are 
partitioned into 6 cells in Figure 9.1.1.

f f l i H  f f l f f l l i l l

U L r i .  i
Figure 9.1.1 The sixteen 2 x 2-checkerboards.

Broken lines in the figure partition the set of 16 checkerboards into six cells. Each 
such cell represents an equivalence class under a geometric symmetry. That is, any 
checkerboard within each cell could be obtained from any other checkerboard in the 
cell by one of the clockwise rotations in the set

G =  { 0° ,  90°, 180°, 270°}

Also, there are no two boards in different cells that are related by one of the clockwise 
rotations. Thus, up to rotational symmetry, the number of colorings is 6.

In this example, the composition of two rotations in G is representable as their 
addition modulo 360° and is also in G. The rotation of 0° serves as the identity. 
Moreover, the inverse of each rotation is in G. Thus, the set of four rotations under

H

■ ■
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composition forms a group. Having a group of symmetries is a highly significant 
feature in counting problems. 

Counting the equivalence classes of colorings of Example 9.1.1 is easy enough, 
for 2 colors on a 2 χ 2 board, simply by drawing all cases and organizing them into 

equivalence classes, as in Figure 9.1.1. However, what if there were 5 possible colors 

and the board was 4 χ 4, as in Figure 9.1.2? 

Figure 9.1.2 A 5-colored 4 χ 4-checkerboard. 

Since there are 165 such 5-colorings, and since the m a x i m u m size of an equivalence 

class is 4, the number of equivalence classes would be at least 

There is a remarkable counting method, called Burnside-Pólya counting, tha t 
is used for such enumeration problems, to obtain the exact number of classes. 
Burnside-Pólya counting is based on a group-theoretic principle widely known as 
Burnside's Lemma and its enhancement by Pólya [Póly 1937]. This method reduces 
such counting problems to evaluating a polynomial called the cycle index. Its ca­
pacity for widespread application was developed by Harary (see [HaPal973]) in the 
1950s and then further developed by his many students and others. 

Permutations on Discrete Sets 
The set-up for Burnside-Pólya counting under a group of symmetries is to 

represent the objects of the symmetries as a discrete set and to represent each 
symmetry as a permutat ion. 

DEFINITION: A closed non-empty collection Ρ of permutat ions on a set Y of objects 

that forms a group under the operation of composition is called a permutation 

group. The combined structure may be denoted V = [P : Y]. It is often denoted 

Ρ when the set Y of objects is understood from context. 

Remark: Permutat ion groups can be non-commutative, and in practice, the phrase 

permutation group usually refers to a non-commutative group, even though some of 

our early examples are commutative. 

E x a m p l e 9.1.1, cont inued : The objects in the problem of counting checker­

boards are the individual squares of the checkerboard. Each of the four squares is 

assigned a number, starting with the number 1 in the upper right, and proceeding 

clockwise in assigning 2, 3, and 4, as shown in Figure 9.1.3. 
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Figure 9.1.3 Numbering the squares of a checkerboard.

The four rotational symmetries of the group G that acts on the 2 x 2  checkerboard 
can be represented as permutations of the numbers assigned to its squares, as shown 
in the second column of Table 9.1.1.

Table 9.1.1

rotation

the checkerboard symmetries.

permutation

0° 
90° 

180° =  2 
270° =  3

90°
90°

(1 )  (2 )  ( 3 ) ( 4 )
( 1 2  3 4)  

( 1 2 3 4 )2 =  ( 1 3)  (2 4)  
( 1 2 3 4 ) 3 =  ( 1 4 3 2)

It is easily verified that this collection of permutations satisfies the group axioms. 
We may observe that it is commutative.

Cyclic Permutations

DEFINITION: A perm u tation  on  a set Y  w hose representation  in d isjoin t cycle  form  
has on ly  one cycle  conta in in g  m ore than one elem ent o f  Y  is called  a c y c l i c  p e r ­

m u t a t i o n .

• The number of elements in that one cycle is called the l e n g t h  o f  t h a t  c y c l e .

Proposition 9.1.1. Let n £ Z + , and let

a =  (1  2 • • • n)

Then for j  =  1, . . ., n — 1 and for r =  1, . . ., n, we have

r +  j  i f  r +  j  <  n
r +  j  mod n otherwise

Proof: This is provable by a straightforward induction on the power j .  It is clearly 
true for j  =  1. The inductive hypothesis is that

a ^  | r +  j  — 1 m o d  n otherw ise
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The inductive step is tha t 

Corol lary 9 .1 .2 . Let ρ be a prime number, and let the permutation α be the 
p-cycle ( 1 2 · · · p). Then for j = 1, . . ., ρ — 1, the permutation 

in the group 7LV is a p-cycle. 

Proof: It is sufficient to show that each two elements of the sequence 

(9.1.1) 

are distinct. Suppose, to the contrary, tha t 

for some pair u and ν such that 1 < u,v < ρ — 1. Then, by Proposition 9.1.1, we 
have 

It follows that 

and in turn, since ρ is prime, that 

Since 1 < j < ρ — 1, it follows that 

Since 0 < u,v < ρ — 1, it now follows that 
u = ν 

Therefore, by the pigeonhole principle, the sequence (9.1.1) contains all of the num­
bers 1, . . ., p. Accordingly, we have 

(9.1.2) 
Tha t is, the permutat ion aJ is a p-cycle. <) 

E x a m p l e 9.1.2: Let a be the 5-cycle ( 1 2 3 4 5 ) . Then we have 

a3 = ( 1 4 2 5 3) and a 4 = ( 1 5 4 3 2) 

E x a m p l e 9.1 .3: However, if a is the n-cycle ( 1 2 · · · n) and the number η 
is not prime, then some of the permutat ions aJ are not cyclic. For instance, for 
a = ( 1 2 3 4 ), we have 

as previously observed in Table 9.1.1. 
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Cyclic Permutation Groups 
Table 9.1.2 generalizes the group of Table 9.1.1 to a permutat ion group on the 

set {1,2, . . .,n). Geometrically, visualize the numbers as equally spaced in cyclic 
order 1, 2, . . ., η around the unit circle in the xj/-plane. 

Table 9.1.2 T h e cycl ic p e r m u t a t i o n g r o u p 7Ln. 

rotation permutat ion 

DEFINITION: The group of permutat ions in Table 9.1.2 is called a cyclic permu­
tation group on the set {1, 2, . . ., n). It can be denoted \7Ln : [1 : η] , but is more 
usually denoted, simply, 7Ln. 

P r o p o s i t i o n 9 .1 .3 . The permutation group 7Ln is commutative, for η G 7L . 

Proof: Let α = (1 2 · · · η). Then, as indicated by Table 9.1.2, any two 
permutat ions in 7Ln could be represented in the forms ar and as. Then 

0 

Corollary 9.1.2 establishes that if η is prime, then every permutat ion in the cyclic 
permutat ion group Zn is cyclic. However, when η = 4, which is not prime, as first 
noted in Table 9.1.1, we have 

Tha t is, the permutat ions in a cyclic permutat ion group need not all be cyclic 
permutat ions. The next proposition sharpens this observation. 

P r o p o s i t i o n 9.1 .4 . Let a = (1 2 · · · n) be an η-cycle in 7Ln. Then for 
j = 1, . . ., η — 1, the permutation aJ has gcd (j, n) cycles, each of length 

Proof: For an arbitrary object k G [1 : η], we observe that all the objects in the 
cycle containing k must lie in the sequence 

(9.1.3) 

  



This is because the next element in that sequence would be

which holds because a n is the identity permutation. Thus, the maximum length of 
a cycle of the permutation is
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We next assert that the elements of the sequence (9.1.3) are mutually distinct. To 
see this, suppose that

71 — 1
1 <  u <  V  < — — — -  (9.1.4)

and that a u:>(k) =  a v:>(k). Then, by Proposition 9.1.1, we have

uj +  k =  vj +  k mod n

It follows that
n \ vj — uj 

IS v — u. I

Thus, the minimum length of a cycle in is

and, in turn, that — — -  divides v — u. By (9.1.4), it now follows that u =  v.

It follows that every cycle of the permutation is of that length. <C>

Corollary 9.1.5. Let a =  (1 2 ••• n ) be a permutation in Z „. Then for 
j  =  1 , . . ., n — 1 , the permutation is cyclic i f  and only if  j  i n .  <C>

Example 9.1.4: Let a =  (1 2 • • • 12) in the cyclic permutation group TLyi- 
Since

d ( ) d ^
4

Proposition 9.1.4 implies that the permutation a 8  has four 3-cycles. In fact 

a 8  =  ( 1 9 5) (2  10 6 ) (3  11 7 ) ( 4  12 8 )

Example 9.1.5: Let a =  ( 1 2 • • • 10) in Z4 0 . Since

Proposition 9.1.4 implies that a 3  has one 10-cycle. In fact,

a 3  =  ( 1 4 7  10 3 6 9 2 5 8 )
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Cycle Structure of a Permutation 
After representing the context of the counting by a permutat ion group, we can 

turn to the main calculation of Burnside-Pólya counting, which is to determine a 
polynomial called the cycle index for that group. 

TERMINOLOGY: A monomial is a polynomial with only one term. 

DEFINITION: Let π be a permutat ion on a set of η objects. Then the cycle struc­
ture of π is the n-variable monomial 

where tj is a formal variable, and where ry is the number of j-cycles in the disjoint 
cycle form of π. 

E x a m p l e 9 .1 .1 , cont inued: Table 9.1.3 extends Table 9.1.1 by adding a column 
with the cycle structures of the permutat ions and a bo t tom row to be explained 
below. 

Table 9.1.3 Cyc le s t r u c t u r e s of t h e p e r m u t a t i o n s . 

symmetry permutat ion cycle structure 

0° ( 1 ) ( 2 ) ( 3 ) ( 4 ) t4 
90° ( 1 2 3 4) t4 

180° (1 3 ) ( 2 4) t\ 
270° ( 1 4 3 2) t4 

cycle index = 

In Table 9.1.3, the permutat ion ( 1 ) ( 2 ) ( 3 ) ( 4 ) has the cycle structure ί-j4, because 
it has four 1-cycles and no other cycles. The permutat ion (1 3) (2 4) has the 
cycle structure t^, because it has two 2-cycles and no other cycles. The permuta­
tions (1 2 3 4) and (1 4 3 2) both have cycle structure Í4, because they 
have one 4-cycle and no other cycles. 

DEFINITION: Let V = [P : Y] be a permutat ion group on a set of η objects. Then 
the cycle index of V is the polynomial 

where ζ(π) is the cycle structure of π. 

E x a m p l e 9 .1 .1 , cont inued: Observe that the cycle index for the group of sym­
metries on the checkerboard is recorded at the bo t tom of Table 9.1.3. 

Remark: As proficiency in Burnside-Pólya counting is acquired, one can often write 
the cycle index without writing a tables of permutat ions and their cycle structures. 
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Evaluating the Cycle Index 
After the cycle index polynomial is calculated, the final step of Burnside-Pólya 

counting is to evaluate the cycle index, by making a substitution for each of its 
variables t\, . . ., tn. If the objective is simply to obtain the total number of colorings 
under the symmetries, then substitute the cardinality of the color set for every 
variable tj. 

E x a m p l e 9 .1 .1 , cont inued: The bot tom line of Table 9.1.3 contains the cycle 
index for the permutat ion group acting on the 2 χ 2-checkerboard. 

The number of black-white 2 x 2 checkerboards is obtained by substituting 2 for 
each of the variables t\, . . ., Í4. Thus, the number of boards is 

DEFINITION: Substituting the polynomial c[ + · · · + c?k for the variable tj, for 
j = 1, . . ., n, into the cycle index is called Pólya substitution for k colors. The 
resulting polynomial in the indeterminates c\, . . ., c¡, is called a Pólya inventory. 

The objective of Pólya substitution is to obtain a more detailed enumeration. 
It is frequently calculated with the aid of a table. 

E x a m p l e 9 .1 .1 , cont inued: Table 9.1.4 calculates a Pólya inventory for the black-
white 2 χ 2-checkerboards. The mnemonic indeterminates b (for black) and w (for 
white) are used in place of the generic c\ and C'¿. 

Table 9.1.4 P ó l y a i n v e n t o r y for t h e 2 χ 2 -checkerboards . 

f
cyc

f
le . . 64 b3w b2w2 bw3 w4 

structure subst 

1 4 6 4 1 
1 0 2 0 1 
2 0 0 0 2 

sum 4 4 8 4 4 
-=-4 1 1 2 1 1 

In each row of the table, the entry in the first column is one of the terms of the 
cycle index polynomial, and the entry in the second column is the result of Pólya 
substitution, unexpanded. The remaining columns show the expansion. Thus, the 
Pólya inventory polynomial is 

With the monomial Vw4-3 signifying j black squares and A — j white squares, then 
this calculation agrees with Figure 9.1.1. 
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E x a m p l e 9.1.6: If the number of colors for the 2 χ 2-board is increased to 3, then 
the number of boards is 

If only one color is actually used, then there are 3 choices of a color. If exactly two 
colors are used, there are ('«,) = 3 choices of two colors and then 4 pat terns (from 
Kxample 9.1.5) possible for each such choice, for a subtotal of 3 -4 = 1.2. If all three 
colors are used, there are 3 choices of the color that is used on two squares and three 
possible pat terns with those colors, up to rotation, as shown in Figure 9.1.4, for a 
subtotal of 9. The sum of the three subtotals 3, 12, and 9 is 24, thereby confirming 
the Burnside-Pólya calculation. 

Figure 9.1.4 T h e three 3-color p a t t e r n s , up to r o t a t i o n . 

Reflections 
In addition to the four rotations on a checkerboard, there are also four reflec­

tions. They are not a closed collection of permutat ions, since the composition of 
any two of them yields a rotation. However, if they are included with the four-
rotations, there would be a permutat ion group of cardinality 8. For 2-coloring the 
2 x 2-board of Figure 9.1.3, 

there would be the following additional permutat ions and cycle structures in the 
cycle index. 

Table 9.1.5 Cyc le s t r u c t u r e s of t h e four ref lect ions . 

reflection permutat ion cycle structure 

thru χ - a x i s ( 1 4) (2 3) t\ 
thru y - axis ( 1 2) ( 3 4 ) t\ 
NE diagonal ( 2 ) ( 4 ) ( 1 3) t\t2 

SE diagonal ( 1 ) ( 3 ) ( 2 4) t\t2 

To generalize from Table 9.1.5 to reflections on a larger set of objects, we model 
the set of numbers 1, 2, . . . . η as points evenly spaced around the unit circle. There 
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are n possible reflections of the plane through a line through the origin that map 
this set of points bijectively onto itself. Each corresponds to a permutation of the 
set of numbers, as illustrated in Figure 9.1.5. Each cycle in each such permutation 
is either a 1 -cycle or a 2 -cycle.

Figure 9.1.5 The reflection (1 5)(2 4)(3)(6).

It is natural to regard the cyclic permutation

a — ( 1  2  • • • n ) 

as the principal rotation on the unit circle model of [1 : n\. Suppose that we similarly

as the principal reflection on [1 : n]. We observe that (3 corresponds to a reflection 
of the unit circle through a line through the origin that bisects the arc between the 
points numbered 1 and n. If n is odd, this line also passes thru the point numbered 

If n is even, it bisects the arc between the points numbered ^ and ^ +  1. In 
the immediate context, we call this line the /3-bisector.

Remark: We observe that the composition permutation

a j3{i) a (n +  1 i) n  ̂  ̂ otherwise

represents reflection through the circle bisector obtained by rotating the /5-bisector 
radians clockwise.n

Example 9.1.7: The reflection (1 5)(2 4)(3)(6) depicted in Figure 9.1.5 is a 5(3.

Dihedral Permutation Groups
The composition of any two reflections on the unit circle model of

{ 1 , 2 , . . . , n }

is a rotation, and the composition of a rotation and a reflection is a reflection. 
Accordingly, the union of the sets of rotations and reflections on { l , 2 , . . . , n }  is 
closed under composition. Thus, it forms a permutation group.
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E x a m p l e 9.1.8: This composition of reflections 

( 1 5 ) ( 2 4 ) ( 3 ) ( 6 ) o ( l 4 ) ( 2 3 ) ( 5 6) 

is the rotation 

( 1 6 5 4 3 2) 

DEFINITION: The permutat ion group 

is called the dihedral group on the cyclic set { l , 2 , . . . , n } . It is denoted D n . 

E x a m p l e 9.1.9: Thus, the dihedral group D4 is given in Table 9.1.6, which is 
formed from the union of the rotations of Table 9.1.3 and the reflections of Table 
9.1.5. 

Table 9.1.6 T h e d ihedra l g r o u p D 4 . 

symmetry permutat ion cycle structure 

0° ( 1 ) ( 2 ) ( 3 ) ( 4 ) Tf 
90° ( 1 2 3 4) t4 

180° (1 3) (2 4) t\ 
270° ( 1 4 3 2) U 

χ - axis ( 1 4) (2 3) t\ 
y - axis ( 1 2) (3 4) t\ 
S E d i a g ( 1 ) ( 3 ) (2 4) t'(t2 

N E d i a g ( 2 ) ( 4 ) ( 1 3) t{t2 

cycle index Zm : 

Using the cycle index of D4 on its bo t tom line, one can calculate that the 
corresponding number of colorings would be 

This corresponds to the observation that the parti t ion of 2-colorings in Figure 9.1.1 
corresponds to dihedral symmetry as well as to pure rotational symmetry. By way 
of contrast, the middle and rightmost 3-coloring pat terns of Figure 9.1.4 are related 
by reflection. Thus, one expects, as now calculated, tha t there would be fewer 
dihedral classes than the 24 classes of colorings (under rotation) that were counted 
in Example 9.1.6. 
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2 p 4( 3 , . . . ,  3) =  ^ (34 +  2 • 32 * 3 +  3 • 32 +  2 * 3)

168

+  54 +  27 +  6)

Larger Sets of Permuted Objects
When the same two groups of four or eight geometric symmetries act on larger 

checkerboards, the cycle structures of the permutations change, even though the 
terminology is preserved.

Example 9.1.10: The 3 x 3-checkerboard of Figure 9.1.6

Figure 9.1.6 The 3 x 3-checkerboard.

has the following table of permutations and cycle structures for its dihedral sym­
metry group.

Table 9.1.7 Symmetries on the 3 x 3-checkerboard.

symmetry______________ permutation________________ structure

0° ( l ) ( 2 ) - . . ( 9 )  t\
90° ( 9 )  ( 1 3 5 7)  (2 4 6 8)  i\t\
180° (5 )  ( 1 5 ) (2  6) (3 7) (4 8)
270° ( 9 ) (  1 7 5 3 ) ( 2  8 6 4)

1L2 
+ 2 1̂ 4 

3̂ 3x — axis (4 )  ( 8 ) ( 9 ) ( 1 7) ( 2 6 ) ( 3 5) t\t1L2
3+3y — axis (2 )  (6 )  (9 )  (1 3 ) (4  8 ) ( 5 7) t\t1L2
3+3SE diag (1 )  (5 )  (9 )  (2 8 ) (3  7 ) (4  6 ) t\t1L2
3-i3N Ediag (3 )  (7 )  (9 )  (1 5 ) ( 2  4)  (6 8)  t\t*

Thus, as the number of ways to color the 3 x 3  checkerboard with at most 2 colors, 
Burnside-Polya counting gives

I  (29 +  2 • 24 +  2 • 2 • 22 +  4 • 23 • 23) =  102
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In each o f the Exercises 9.1.1 through 9.1.8, for the cyclic permutation

a =  ( 1 2 3 4 5 6  7) 
calculate the indicated permutation a k.

9.1.1 a 2 9.1.2s a 3 9.1.3 a 4 9.1.4 a 5 

9.1.5 a 6 9.1.6 a 7 9.1.7 a 8 9.1.8 a 9

In each o f the Exercises 9.1.9 through 9.1.16, for the cyclic permutation 

a =  ( 1 2 3 4 5 6 7 8 9 10 11 12) 
calculate the indicated permutation a k.

9.1.9 a 2 9.1.10s a 3 9.1.11 a 4 9.1.12 a 5 
9.1.13 a 6 9.1.14 a 7 9.1.15 a 8 9.1.16 a 11

In each o f the Exercises 9.1.17 through 9.1.24, calculate the cyclic index polynomial 
for the indicated cyclic group.

9.1.17 Z 5 9.1.18s Z 6 9.1.19 Z 7 9.1.20 Z 8 

9.1.21 Z 9 9.1.22 Z 10 9.1.23 Z n  9.1.24 Z i2

In each o f the Exercises 9.1.25 through 9.1.32, substitute the number 2 into the 
cyclic index polynomial for the indicated cyclic group.

9.1.25 Z 5 9.1.26s Z 6 9.1.27 Z 7 9.1.28 Z 8 
9.1.29 Z 9 9.1.30 Z 10 9.1.31 Z n  9.1.32 Z i2

In each o f the Exercises 9.1.33 through 9.1.40, do a Polya substitution o fb  +  w into 
the cyclic index polynomial for the indicated cyclic group.

9.1.33 Z 5 9.1.34s Z 6 9.1.35 Z 7 9.1.36 Z 8 

9.1.37 Z 9 9.1.38 Zio 9.1.39 Z n  9.1.40 Z i2

In each o f  the Exercises 9.1.41 through 9.1.44, calculate the cyclic index polynomial 
fo r  the indicated dihedral group.

9.1.41 D5 9.1.42s D6 9.1.43 D7 9.1.44 D8

In each o f the Exercises 9.1.45 through 9.1.48, substitute the number 2 into the 
cyclic index polynomial for the indicated dihedral group.

9.1.45 D5 9.1.46s D6 9.1.47 D7 9.1.48 D8

In each o f the Exercises 9.1.49 through 9.1.52, do a Polya substitution o fb  +  w into 
the cyclic index polynomial for the indicated dihedral group.

E X E R C I S E S  f o r  S e c t io n  9.1

9.1.49 D5 9.1.50s D6 9.1.51 D7 9.1.52 D8

  



Section 9.2 Burnside's Lemma 503 

9.2 BURNSIDE'S LEMMA 

The mathematical principle that underlies the calculations of §9.1 has com­
monly been called Burnside's Lemma, after its appearance in Burnside's influential 
monograph [Burnl911]. A footnote in the first edition of that monograph attr ibutes 
the result to Frobenius [Frobl887], whose derivation appears to have been preceded 
by Cauchy [Caucl847]. 

DEFINITION: Let V = [P : Y] be a permutat ion group, and let y EY. The orbit of 
the object y under the action of P is the set {7r(y) | ir £ P}. 

With the benefit of this definition, we may say that Burnside's Lemma counts orbits. 

P r o p o s i t i o n 9 .2 .1 . Let V = [P : Y] be a permutation group. Then being co-
orbital is an equivalence relation. 

Proof: The identity permutat ion maps each object to itself, so each object is in 
its own orbit. If ir(y) = y1, then ir~1{y') = y, so the relation is symmetric. If 
ir(y) = y' and Tr'(y') = y", then (ir' o ir)(y) = y", so the relation is transitive. <) 

Orbits 

Given a permutat ion group V = [P : Y], the orbit of an object y can be 
computed from a listing of the disjoint cycle form for every permutat ion ir £ P. 
Quite simply, the orbit of y is the set of objects that appear in the same cycle as y 
in any of the permutat ions ir. More efficiently to compute, the orbit of y is also the 
set of objects that appear immediately after y in some permutat ion of the group. 

E x a m p l e 9 .2 .1: When the group of 4 rotations acts on the 
set of squares of the 2 x 2-checkerboard, then all 4 squares are 
in the same orbit. 

rotation permutat ion 

~ ° ( 1 ) ( 2 ) ( 3 ) ( 4 ) 
90° ( 1 2 3 4) 
180° (1 3 ) ( 2 4) 
270° (1 4 3 2) 

However, when the group of 4 rotations acts on the set of 16 colorings of the board 
with at most two colors, there are 6 orbits, as indicated in Figure 9.1.1. In this 
particular example, they happen to be identifiable with the cells of the 90° rotation, 
as illustrated in Figure 9.2.1. 
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Induced Actions on Colorings 
Pólya's main contribution to the counting method was to discover a relationship 

between the cycle index of a permutat ion group action on a set Y and the number 
of orbits induced on the colorings of Y. 

DEFINITION: A k-coloring of a set Y is a mapping / from Y onto the set 

{ 1 , 2 , . . . , * } 

TERMINOLOGY: The value f(y) is called the color of the object y. Often the names 
or initials of actual colors, such as black and white, are used in place of integer 
values. 

DEFINITION: A (<k)-coloring of a set Y is a coloring that uses k or fewer colors, 
formally a mapping / from Y onto any set {1,2, . . ., t} with t < k. 

NOTATION: The set of all (<fc)-colorings of the elements of a set Y is denoted 
Colk(Y). 

E x a m p l e 9.2 .3: Figure 9.2.3, a copy of Figure 9.1.1, represents all the (<2)-
colorings of {1, 2, 3, 4} as 2 x 2-checkerboards. 

Figure 9.2.3 T h e 16 2 x 2 -checkerboards . 

P r o p o s i t i o n 9 .2 .3 . Let Y he a set. Then \Colk(Y)\ = k\Y\. 

Proof: This is a direct application of the Rule of Product (see §0.4). <) 

E x a m p l e 9 .2 .3 , cont inued: There are 16 (<2)-colorings of the set { 1 , 2 , 3 , 4 } , 
as shown in Figure 9.2.3. 

DEFINITION: Let V = [P : Y] be a permutat ion group acting on a set Y, and let / 
and g be (<fc)-colorings of the objects in Y. 

• Then the coloring / is V-equivalent to the coloring g if there is a permutat ion 
7T G P such that g = fir, tha t is, if for every object y £ Y, the color g(y) is the 
same as the color f(ir(y)). 

• The mapping / i—> fir is a permutat ion on the colorings, called the induced 
action of 7T on the set of colorings. The notation [P : Colk(Y)] distinguishes 
the permutat ion group of such induced actions from the group [P : Y]. 
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/ :  1 I—> b 2 w 3 4 k  4h>iii 

is ^-equivalent to the 2-coloring

g : 1 I—> w 2 i—» & 3 i 4 t o  4 i—> w 

under the permutation
7r : ( 1 2  3 4)

This is the formal reason why the coloring with its one black square in the upper 
left corner of a 2 x 2-checkerboard, represented in this example as the mapping / ,  is 
equivalent to the coloring with its one black square at the upper right, represented 
by the mapping g, under the 90° rotation, represented by the permutation 7r.

Fixed Points

DEFINITION: Let V =  [P Y] be a permutation group, and let n £ P. A fix ed  
p o in t  o f 7r is an object y £ Y  such that 7r(y) =  y.

NOTATION: Fix(ir) denotes the set of all fixed points of the permutation n.

R em ark : The fixed point set Fix(ir) comprises the objects that lie in the 1-cycles 
o f 7r.

E xam ple  9 .2.3, con tin u ed : The number of fixed points of each of the four 
rotations is different for different sets on which the rotation group acts.

E x a m p le  9 .2 .3 , c o n t in u e d :  The 2-coloring

rotation #  fixed pts in #  fixed pts in
{1,2,3,  4} 2 x 2  — colorings

0° 4 16
90° 0 2
180° 0 4
270° 0 2

total #  fixed pts 4 24

Stabilizers

DEFINITION: Let V =  [P :Y ]  be a permutation group, and let y £ Y. The sta b i­
liz er  o f y is the subset

o f the permutation group P.
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Remark: Clearly, Stab(y) is a subgroup of P. It is non-empty, since it contains 
the identity permutation. It is closed under composition, because the composition 
o f two permutations that both fix object y must also fix the object y.

Remark: Stab(y) can be constructed computationally as the set of all permutations 
in P  in which the object y lies in a 1-cycle.

Example 9.2.4: When the rotation group ZL4 acts on the set {1,2, 3 ,4}, the 
stabilizer Stab(3) is the trivial subgroup

{ ( 1 )  ( 2 ) ( 3 ) ( 4 ) }

Example 9.2.5: When the dihedral group D4  acts on the set {1,2, 3 ,4}, the 
stabilizer Stab(3) is the subgroup

{ ( 1 ) ( 2 ) ( 3 ) ( 4 )  , ( 1 ) ( 3 ) ( 2  4 ) }

Example 9.2.6: Consider the action of the rotation group 7L4 on the set of 2 x 2- 
checkerboards. The stabilizer of the board with four white squares is the entire 
group.

Lemma 9.2.4. Let V  =  [P : Y] be a permutation group. Then

y£Y  7r£ P  "

Proof: Consider a matrix M  in which the rows are indexed by the objects of the 
set Y , and in which the columns are indexed by the permutations in P , such that

0  otherwise

Then the sum of row y is \Stab(y)\ and the sum of column n is \Fix(ir)\. This 
lemma simply asserts that the sum of the row sums of M  equals the sum of its 
column sums, which is true of any matrix. <C>

Lemma 9.2.5. Let V  =  [P : Y] be a permutation group and y £ Y . Then

\P\

| orbit (y) \

Proof: Suppose that

and that, for j  =  1, ,n , we let Pj be the subset of permutations of P  that maps 
object y to object y j . Then the subsets

P i ,  P 2 , ■ ■ ■, P n

partition the permutation group P, and Pi =  Stab(y).

  



508 Chapter 9 Graph Enumeration

For j  =  1, ,n , let TTj be any permutation such that n'j(y) =  yj ■ Then the rule 
7r i—y tt o tt j (composition with ttj) is a bijection from Pi to Pj, which implies that

Since each of the n partition cells P\, P2, ■ ■ ■, Pn of group P  has cardinality \Stab(y)\, 
it follows that

But n =  \orbit(y)\, which completes the proof. <C>

Proof of Burnside’s Lemma
Theorem 9.2.6 [Burnside’s Lemma]. Let V  =  [P : Y] be a permutation 
group with n orbits. Then

n =  Tp\ li?“ (7r)l
' ' ttGP

Proof: Lemmas 9.2.4, 9.2.5, and 9.2.2 establish the following chain of equalities, 
which proves Burnside’s lemma.

^  ttGP ' yeY
I _ |p|

=  V  -j—  (Lemma 9.2.5)|P| Z -, \orbit(y)\ 1 J

=  —  \p \y ____ i____
I P \ l 1 f^\orbit(y)\

=  V  i— ,  ̂ / m =  n (Lemma 9.2.2) 0A .\orbit(y)\  1 j V

Orbits of the Induced Action on Colorings
In several examples of the preceding section, the orbits of an induced action

on (<fc)-colorings were counted by substituting the number k of colors into the 
cycle index of the underlying action [P : Y] on a set Y . The connection of this 
substitution into Burnside’s Lem m a—  viz., that it counts the sum of the sizes of 
the fixed-point sets of the induced action —  is now to be established.

Remark: The actions of 7Ln and Dn on the set {1 , . . . , n }  have only one orbit, 
because they both have a permutation in which a single cycle contains every object. 
One does not need Burnside’s Lemma to count this one orbit.

NOTATION: If p (x i, . . ., x n) is a multivariate polynomial, then p(k, . . ., k) denotes 
the result of substituting the value k for every variable Xj.
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L em m a 9.2.7. Let V  =  [P : Y] be a permutation group, and let ny  E P, with 
induced action nCY on the coloring set C olk(Y). Then the number o f  (<k)-colorings 
o fY  that are fixed by nCY is given by

\Fix(TTCY)\ =  C(irY) ( k , . . . ,k )

P ro o f: A (<fc)-coloring c is fixed by irCY if and only if within each cycle of n y , all 
the objects are assigned the same color by c. Thus, there are k independent choices 
possible for each cycle of n y . Therefore,

\Fix(nCY)\ =  kn

where n is the number of cycles in ny ■ But the number kn is precisely the value of 
((irY ) ( k , . . . ,k ) .  0

T h eorem  9 .2.8. Let V  =  [P : Y] be a permutation group. Then the number o f

P ro o f: Applying Burnside’s lemma to the induced permutation group

gives the number of orbits among the colorings as

T̂ T J 2  \F ix ^oY)\ =  7^7 C(7ry)(fc, •••,&) (Lemma 9.2.7)
nCY EPc ky  £Py

Polya Inventory
As defined in §9.1, P olya  su b stitu tio n  means substituting the polynomial

4  +■■■ +  4

for the variable tj (j  =  I, . . .  ,n ) into the cycle index of a permutation group [P : Y], 
The resulting generating function in the indeterminates c\, . . .  ,c k is called a P olya  
in v en to ry  for the color classes of the induced action [P : C'olk(Y)].

P ro p o s it io n  9 .2.9. For any permutation group V  =  [P : Y\, every term in the 

P ro o f: Let 7r £ Py  and let C M  =  ^i1 ' ' 't rnn be its cycle structure. Then, clearly,
n

because 7r permutes the set Y  and the sum is the total number of objects of Y 
over all the cycles of 7r. Substituting the polynomial c{ +  • • • +  for a factor t^3 
(j  =  1, . . ., n) in C M  contributes j  ■ rj to the degree of each corresponding term of 
the generating function. <C>
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C oro lla ry  9 .2.10. For any permutation group V  =  
for [P : Colk(Y)\ is a sum

£
siH----- l-Sfc — | Y

over the partitions o f  \Y\. 0

d e f in it io n : Let V  = be a permutation group. The w eight o f  a co lor in g

number of objects of Y  assigned color c j , for j  =  1, 
co lo r in g  o rb it  is the weight of any coloring in that orbit.

such that sj is the 
The w eight o f  a

R em ark : The definition of the induced permutation action [P : Colk(Y)] implies 
that two colorings in the same orbit must have the same weight. Indeed, the weights 
are quite simply a mathematical device that enables us to inventory orbits according 
to some significant characteristic, such as the number of squares of a given color.

T h eorem  9.2.11 [P olya  In v e n to r y  T h eo rem ]. Let V  =
tion group. Then every term

: Y] be a permuta-

'Sl,* ■,SkL 1 -k
in a Polya inventory for the induced action [P : Col}~(Y)\ has as its coefficient 
pSlj...j$k the number o f  coloring orbits whose weight is c^1 • • * cskk .

P ro o f: A weighted form of Lemma 9.2.2 is that the coefficient of the weight
’ i i i I l w \  c m  m

£
wt\

ore

is the number of orbits of we
f e c d k(Y)

_ tit c^1 ■ ■ -cskh. As before, it is really about partitions 
of sets. Similarly, a weighted version of Lemma 9.2.4 asserts that the sum over all 
permutations in [P : Colk{Y)\ of the sums of the weights of their fixed-point sets 
equals the sum over all colorings /  E Colk(Y) of the products w t(f)  • \Stab(f )\. <0>

Coloring Necklaces
We conclude this section by illustrating the application of the theory to a 

classic example, that of counting necklaces. Our model for an n-beaded necklace is

as illustrated in Figure 9.2.4. The numbering of the beads is used in specification of 
the permutations.

Figure 9.2.4 A  5 -b e a d e d  n e c k la c e .
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Example 9.2.7: Suppose that each bead is to be colored either black or white, 
and that two necklaces are indistinguishable (i.e., equivalent) if one can be obtained 
from the other by a rotation of the polygon. We model these symmetries by the 
cyclic permutation group Z 5 , in which the clockwise rotation of ^  corresponds to 
the permutation

a =  (1 2 3 4 5)

The cycle structure of the identity permutation is t®. By Corollary 9.1.2, the cycle 
structure of the permutations

a, a 2, a 3, and a 4 

is 15 . Thus, the cycle index polynomial is

Z Z5 =  5  Oi5 +  4<5)

According to Theorem 9.2.8, the number of 2-colored, 5-beaded necklaces is 

Table 9.2.1 provides the corresponding Polya inventory.

Table 9.2.1 Inventory for 5-beaded necklaces under cyclic symmetry.
c y c l e

s t r u c t u r e s u b s t
b5 b4w b3w2 b2w3 bw4

4̂ 5
(b- 10

0
10

0
sum 10

2
10
2

Figure 9.2.5 illustrates the eight necklaces.

Figure 9.2.5 T h e  e ig h t  2 -c o lo r e d ,  5 -b e a d e d  n e c k la c e s .
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Allowing reflections cannot possibly increase the number o f equivalence classes, 
since any two necklaces that are related by a rotation remain related by that rotation 
when reflections are included.

Example 9.2.8: In accordance with the description of reflections in §9.1, each of 
the five reflections has the cycle structure t i t |. It follows that the dihedral group 
D5 that includes all the reflections as well as the rotations has the cycle index

% 5 -  (̂ i5 +  5^ 2 2 +  4*5)

Under dihedral symmetry the number of 2-colored, 5-beaded necklaces is

l ( 2 5 +  5 . 2 - 2 2 + 4.2)  = ^  = 8

In other words, for 2-colored, 4 beaded necklaces, dihedral symmetry yields no fewer 
equivalence classes o f necklaces than cyclic symmetry.

However, allowing reflections as well as rotations might decrease the number 
of equivalence classes, since it is possible that two necklaces that are not equivalent 
under any rotation are equivalent under a reflection.

Example 9.2.9: Consider the 3-colored, 5-beaded necklaces. Under cyclic sym­
metry, the number of equivalence classes is

1 ( 3 '  +  4 - 3 )  =  =  51

By way of contrast, under dihedral symmetry, the number of classes is only 

1 ( 3 5 + 5 . 3 . 32 + 4.3)  = ^  = 39

Figure 9.2.6 illustrates two necklaces that are equivalent under a vertical re­
flection, and thus under dihedral symmetry. However, none of the five rotations on 
one necklace produces the other necklace, so they are not equivalent under cyclic 
symmetry.

Figure 9.2.6 Two 3-colored necklaces that are equivalent under dihedral 
symmetry, but not under cyclic symmetry.
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EXERCISES for Section 9.2

In each o f the Exercises 9.2.1 through 9.2.4, use Theorem 9.2.8 to count the number 
of necklaces o f the given type under cyclic symmetry.

9.2.1 4-colored, 5-beaded 9.2.2 2-colored, 6-beaded
9.2.3 3-colored, 6-beaded 9.2.4 2-colored, 7-beaded

In each o f the Exercises 9.2.5 through 9.2.8, use Theorem 9.2.8 to count the number 
of necklaces o f the given type under dihedral symmetry.

9.2.5 4-colored, 5-beaded 9.2.6 2-colored, 6-beaded
9.2.7 3-colored, 6-beaded 9.2.8 2-colored, 7-beaded

In each o f the Exercises 9.2.9 through 9.2.12, construct a Polya inventory o f the 
necklaces o f the given type under cyclic symmetry.

9.2.9 3-colored, 5-beaded 9.2.10 2-colored, 6-beaded
9.2.11 3-colored, 6-beaded 9.2.12 2-colored, 7-beaded

In each o f the Exercises 9.2.13 through 9.2.16, construct a Polya inventory o f the 
necklaces o f the given type under dihedral symmetry.

9.2.13 3-colored, 5-beaded 9.2.14 2-colored, 6-beaded
9.2.15 3-colored, 6-beaded 9.2.16 2-colored, 7-beaded

In each o f the Exercises 9.2.17 through 9.2.20, draw two necklaces o f the given type 
that are equivalent under dihedral symmetry but not under cyclic symmetry.

9.2.17 3-colored, 3-beaded. 9.2.18 2-colored, 6-beaded
9.2.19 3-colored, 6-beaded. 9.2.20 2-colored, 7-beaded
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9.3 COUNTING SMALL SIMPLE GRAPHS

REVIEW FROM §0.6:

V and E. The elements of V are called vertices (or nodes), and the elements 
o f E  are called edges. Each edge has a set of one or two vertices associated to 
it, which are called its endpoints.

• The vertex set and edge set of a graph G are sometimes denoted Vq and E q ,

• An edge is said to join  its endpoints. A vertex joined by an edge to a vertex v is 
said to be a neighbor of v. The endpoints of an edge are said to be adjacent 
vertices.

no two edges have the same two endpoints. In a simple graph, an edge with 
endpoints u and v may be denoted uv.

tt : V —y V that preserves adjacency and non-adjacency. That is,
• if u and v are adjacent, then so are ir(u) and 7 r(i> ).

• if u and v are non-adjacent, then so are ir(u) and 7 r(i> ).

acts as a permutation group on its vertex set.

P ro o f: The composition of two automorphisms preserves both adjacency and non-

Vertex Automorphisms and Colorings

5 2

Figure 9.3.1 T h e  w h e e l  g r a p h  W 5
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The automorphism group A u ty  (W 5 ) has 5 rotations and 5 reflections, for a total 
o f 10 permutations. Its cycle index is

Z A u t v (w5){h,---,t6) =  (4 +  5*14  +  4 * 1 * 5 )

The number of (<2)-colorings is

1
Z A u t v { w s ) (  2, . . . ,  2 ) =  —  (26 +  5 • 22 • 22 +  4 • 2 • 2) =  16

Table 9.3.1 calculates the Polya inventory. Due to symmetry, the coefficients of

b2 w4, bw5, and w 6  

must be the same as the coefficients of

b4 w2, b5 w, and b6 

respectively. Thus, they may be omitted from the table.

Table 9.3.1 Polya inventory for (<2)-colorings of V (W s).

C(tr) subst b6 b5w b4 w 2 b3 w3

5 t 2 t 2

4i 1̂ 5

(b +  w) 
w )2 (b2 +  w“

sum

1 6 15 20
5 10 15 20
4 4 0 0
10 20 30 40
1 2 3 4

Figure 9.3.2 illustrates the four colorings for the case of three black vertices and 
three white.

Figure 9.3.2 Four (<2)-colorings of the wheel

Edge Automorphisms and Colorings

w 5.

DEFINITION: For any automorphism 7r : V —> V  o f the vertex set of a simple g 
G =  (V, E ), there is an in d u ced  ed g e  a u tom orp h ism  tte given by the rule

t t e ( u v ) =  7 t (m )7 t ( i ; )
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Example 9.3.1, continued: The following translations of vertex automorphisms 
into edge automorphisms represent all three kinds of transformation of cycle struc­
ture.

acts as a permutation group on its edge set.

Proof: The composition of two edge automorphisms is an edge automorphism. <C>

NOTATION: The automorphism group of the edge set of a gr?
Aut e (G ).

Example 9.3.1, continued: The cycle index of AutE{W §) is

G is denoted

z AutE(w&) { t i , - - - , t w )  =  —  (t{° +  m l4  +  Atl)

The number of (<2)-colorings is

Z AutE(W5 ) ( 2 , . . . , 2 )  =  (210 +  5 • 22 • 24 +  4 • 22) =  136 

Table 9.3.2 gives a partial inventory.

Table 9.3.2 Partial inventory for (<2)-colorings of

C(7 s u b s t
a9b a8b2 a7b3

(a +  b) 10fio 
li

bt\4 5 (a +  b)2(a2 +  b2)4 
(a54t2 4 (a5 +  b5)2

10

10

0

45
25
0

120

40
0

sum 10 20 
1 2

70
7

160
16

Figure 9.3.3 shows the seven colorings for the case of eight light (a8) edges and two 
dark (b2) edges.

Figure 9.3.3 S e v e n  e d g e -a 862-c o lo r in g s  o f  th e  g ra p h  W5
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Orbits of Labeled Graphs
DEFINITION: A stan d ard  la b eled  graph  on n vertices is a simple graph whose 
vertices are identified with the numbers 1 ,2 , . . .  ,n.

P ro p o s it io n  9 .3.3. The number o f  standard labeled simple graphs on n vertices 
is

P ro o f: Each possible edge ij  is either absent or present. <C>

DEFINITION: An isom orp h ism  o f  tw o  s im p le  grap h s G and H  is a bijection 
Vg —> Vh that preserves adjacency and non-adjacency of all pairs of vertices in V o­

lt is clear that any simple graph on n vertices is isomorphic to at least one of 
the standard labeled graphs. However, there are isomorphism relations among the 
standard labeled simple graphs. For instance, any two of the Q ) n-vertex simple 
graphs with only one edge are isomorphic. Proposition 9.3.4 indicates how Burnside- 
Polya enumeration is used to count the isomorphism types o f n-vertex simple graphs.

P ro p o s it io n  9 .3.4. The number o f  isomorphism types o f  n-vertex simple graphs 
equals the number o f  orbits o f  the action

P ro o f: If the two colors used for coloring edges of K n are regarded as absent and 
present, then the full set of 2n edge-(<2)-colorings is in one-to-one correspondence 
with the full set of n-vertex standard labeled simple graphs, and in this regard, the 
coloring classes correspond to the isomorphism types. <C>

Proposition 9.3.4 suggests the following general strategy for counting the isomor­
phism types of the n-vertex simple graphs. It is illustrated by a series of propositions

Step  1 : Calculate the cycle-index polynomial o f  A u ty (K n).

Since knowing the cycle-index polynomial is sufficient for algebraic counting, 
writing out all the permutations in a large permutation group can be avoided.

Step  2 : Calculate the cycle-index polynomial o f  A u tE (K n).

The cycle-index polynomial of A u tE (K n) is obtained by considering each cycle 
size and each pair of cycle sizes in the cycle-index polynomial of A u ty (K n).

Step  3: Apply Theorem 9.4.8.

This final step in counting the isomorphism types of graphs with n vertices is to 
simply substitute the number 2 for every variable in the cycle-index polynomial
ZAutE(Kn) '

2(

Simple Graphs on 4 Vertices
The following three propositions implement the general counting strategy for
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Z A u t v ( K 4 ) { t l , t 2 , t 3 , t 4 )  =  ^ -(* 1  +  6* 1*2 +  8* 1*3 +  3*2 +  6* 4)

Proof: The 24 vertex-permutations in A u ty(K ^) are naturally partitioned ac-

*1 * 1*2 * 1*3 *2 * 4

Each cell in this partition is to be counted.
*1 : 1  automorphism.

Only the identity permutation has this cycle structure.
t\t2 : 6  automorphisms.

The number of ways to choose two vertices for the 2-cycle is

P r o p o s i t i o n  9 .3 .5 . T h e  p e r m u t a t i o n  a c t i o n  [ A u t y ( K ^ )  '■ V i r J  h a s  t h e  f o l l o w i n g

*1 *3 : 8  automorphisms.
The number of ways to choose three vertices for the 3-cycle is

and the number of ways to arrange them in a cycle is (3 — 1)! =  2.
t\\ 3 automorphisms.

There are three ways to group four objects into two cycles, when it does 
not matter which cycle is written first.

*4 : 6  automorphisms.
They correspond to the (4—1)! =  6  ways that four objects can be arranged 
in a cycle. <C>

Proposition 9.3.6. The permutation action [A u tE (K i) : E k 4\ has the following

Proof: The size of the cycle to which an edge belongs is determined by the cycles 

the cycle structure CI^e) ° f  the edge-permutation is determined by the the cycle

Justification: If both endpoints of a given edge e are in a 1-cycle of the vertex- 
permutation iry, then they are both fixed points. In a simple graph, the corre­
sponding edge-permutation must map that edge to itself.
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Justification : An edge of K 4  is mapped to itself if both its endpoints are in a 2-cycle 
or if each endpoint is in a 1-cycle. Thus, two edges of K 4  are fixed by Tty. Each of 
the other four edges has one endpoint in a 1-cycle, which is fixed by n y , and the 
other in a 2-cycle of n y , which is mapped by Tty to the other vertex in that 2-cycle. 
It follows that such an edge lies in a 2-cycle of 7r̂ ;.

Justification: The three edges of K 4  that have both their ends in the 3-cycle of Tty 
lie in a 3-cycle of 7r ;̂. The three edges of K 4  that have one endpoint in a 1-cycle of 
7Ty and the other endpoint in a 3-cycle all lie in another 3-cycle of t te ■

Justification: The two edges that have both endpoints in the same 2-cycle of iry 
are both fixed by 7r ;̂. If an edge has one endpoint in one 2-cycle of iry and the 
other endpoint in another 2-cycle of 71v ,  then that edge lies in a 2-cycle of tte with 
the edge whose respective endpoints are the other vertices of those 2-cycles of Tty.

Justification : The four edges whose endpoints are consecutive vertices in the 4-cycle 
o f 7Ty form a cycle of 7r ;̂. The two edges whose endpoints are spaced 2 apart in the 
4-cycle of Tty form a 2-cycle of 7r ;̂. <C>

C oro lla ry  9 .3.7. There are exactly 11 isomorphism types o f  simple graph with 4 
vertices.

P ro o f: Proposition 9.3.6 asserts that

2 AutE(K4)(2 ,2 ,2 ,2 ) =  —  (26 +  9 - 2 2 • 22 +  8 • 22 +  6 • 2 • 2) =  11

The 11 promised by this calculation are shown in Figure 9.3.4.

Figure 9.3.4 T h e  11 s im p le  4 - v e r t e x
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Observe that the Pólya inventory in Table 9.3.3 is consistent with Figure 
9.3.4. The indeterminates a and p stand for absent and present. They are Pólya-
substituted into the cycle index to produce the table. 

For instance, the coefficient of 2 for the monomial a4p2 at the bo t tom of the column 
labeled a4p2 signifies that there are exactly two 4-vertex graphs with exactly 2 edges 
present. 

Table 9.3.3 I s o m o r p h i s m t y p e s of 4 -ver tex graph . 

a6 a5p a4p2 a3p3 

1 6 15 20 
9 18 27 36 
8 0 0 16 
6 0 6 0 

24 24 48 72 
1 1 2 3 

Simple Graphs with 5 Vertices 

P r o p o s i t i o n 9.3.8. There are exactly 34 isomorphism types of simple graph with 
5 vertices. 

Proof: By using the same approach as in the calculation of the number of 4-
vertex simple graphs, it can be shown (an explicit general method for any number 
of vertices is given in the next section) that 

Therefore 

and accordingly 

Therefore 

and accordingly 
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Partial Polya Inventories
Doing a hand calculation of a complete Polya inventory can be quite tedious. 

We complete this section by considering how to calculate the number of 5-vertex 
graphs with 4 edges, to illustrate how to do a selective partial inventory. Table 9.3.4 
summarizes the calculation.

Table 9.3.4 Counting the 5-vertex with 3

substitute j7p3 _  contribution evaluate

10 t 4 t 3  

15tft| 
2 0 ^ 1  

20^3^6 
30t2*4 
24*1

[a ~ 
(a - 
){a

a +  p )u 
■ p )4 (a2  

■P f (a
, 3

i 3  +  p3 )(a'

P  )
, 3 \ 3

-P2)( a
„5\2

1 • O 120

10- [(t)( D + (s)(o)] 160
15 •0 0 120
20 •0 0 60

20 (J) 0 0 20

sum 480
4

Example 9.3.2: When the expression 10(a -\- p )4(a2 +  p2)3 on the second line 
o f the table is fully expanded, there are two contributions to the term with the 
monomial a7p3. One results from the product Y2a7p3 o f 4a3p1 and 3a4p2 in the 
expansions of (a +  p)4 and (a2 +  p2)3, respectively, and the other results from the 
product 4a7p3 o f 4a1p3 and 1 a6p° in the expansions of (a +  p)4 and (a2 +  p2)3, 
respectively. The sum 12+4 is multiplied by the coefficient 10 to yield 160.

EXERCISES for Section 9.3

In each o f the Exercises 9.3.1 through 9.3.8, construct the cycle index for the vertex 
automorphism group o f the given graph, and then use it to count the number of

9.3.1

9.3.7 Circular ladder C L 3.

9.3.2 Path
9.3.4 Bipartite
9.3.6 Wheel
9.3.8 Circular ladder C L 4 .

In each o f the Exercises 9.3.9 through 9.3.16, construct the cycle index for the edge 
automorphism group o f the given graph, and then use it to count the number of

9.3.9 Path 9.3.10 Path 2n +  l  •
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9.3.15 Circular ladder C L 3 . 9.3.16 Circular ladder C L 4 .

In each o f the Exercises 9.3.17 through 9.3.19, use a partial inventory table to 
calculate the number o f graphs with 5 vertices and the given number o f edges.

9.3.17 2 edges. 9.3.18 4 edges. 9.3.19 5 edges.

9.4 PARTITIONS OF INTEGERS

In the cycle index Z Autv(Kn)(t 1 , . . . , t n), each term is the product of a cycle 
structure

j 6 l j 6 2 jere 
l l  l 2 ' ' ' l n

and a coefficient giving the number of permutations in the group A u ty  (K n) having 
that cycle structure. The sum of the coefEcents is n!, since there are n! permutations 
in all.

E xam ple  9 .4.1: In the previous section, we calculated that

ZAutv (K4) { t l ,12,^3,1 4 ) =  ^  (*i +  6 *1 * 2  +  8 *1 * 3  +  3 * 2  +  6 *4 ) (9.4.1)

and that

Z Autv(Ks) (*1 ; • • • ; *5) —

—  (*? +  10*i*2 +  15*i*2 2 0 *1 * 3  +  2 0 *2 * 3  +  30*1*4 +  2 4 *5 ) (9.4.2)

DEFINITION: A p a r titio n  o f  an in te g e r  n (with n positive) is a sum

S1 +  s2 +  ' ' ' +  Sfc

whose value is n and whose summands are positive integers. It is usually represented 
with the summands in nonincreasing order, without the addition signs.
The cycle structure t^ t^2 ■ ■ -*®1* of a permutation corresponds to the integer parti­
tion

g  TI* S 2  5  6 1  1  5

nn'- ■ ■ n ••• 2 2 • • • 2 11 - • - 1 

E xam ple  9 .4.1, con tin u ed : The five partitions of the integer 4 are

1111 211 22 31 4

  



Observe that they correspond to the terms of the cycle index polynomial

Z Autv (K4){tl,t2 ,t3 ,t4 )  =  ^ ( * 1  +  6 ^ 2  +  8 ^ 3  +  3 * 2  +  6 *4 )

Similarly, the seven partitions of the integer 5

11111 2111 221 311 32 41 5 

correspond to the terms of the cycle index polynomial 

^Autv(Ks) (*1 ; • • • ; *5 ) —

—  (*? +  10*1*2 +  15*1*2 20*1*3 +  20*2*3 +  30*1*4 +  24*5)
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Listing all Partitions of an Integer
As an aid in calculating the cycle index polynomial ZAutv (Kn){t 1 , ■ ■ ■ ,tn) f ° r 

the automorphism group of a complete graph of general size, we now introduce a 
systematic way to list all the partitions of an arbitrary integer n.

In Example 9.4.1, the partitions of the integer 5 are given in ascending order. 
Algorithm 9.4.1 lists all the partitions of n in descending order. The key step 
o f constructing the next partition after siS 2 ' ' 'Sfe has a relatively easy intuitive 
description. It is assumed that the parts s8- of the partition given as input are 
written in order of descending size.

Algorithm 9.4.1: Next Integer Partition (S)

Input: an integer partition S =  s 1 • • • sj,, not all l ’s.
Output: The next integer partition, in descending order.
Assign b :=  m ax{j | Sj 7  ̂ 1}.
Assign M  :=  Sb — 1.
Assign S6 :=  M .
Replace suffix S6+i ■ ■ ■ sj, by string of [k — j  +  1/MJ M ’s. 
If k — j  +  1 mod M  >  0 

then append integer k — j  +  1 mod M  to string S. 
Return (S)

Example 9.4.2: We apply the algorithm to the partition

8666411111

of the integer 35. Then index & is 5, the location of the rightmost non-1, whose 
value S5 is 4, so M  =  3. The assignment s5 :=  M  decreases the value of S5 to 3.
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The suffix of five l ’s is replaced by two 3’s, since [6/3J =  2. The division has zero 
remainder. Thus, the partition returned is

8666333

To obtain a list all the partitions of an integer n, that integer itself is supplied to the 
algorithm Next Integer Partition to initiate the list. Then the output is supplied to 
the algorithm iteratively, until a string of n l ’s is obtained as the final partition.

Example 9.4.3: For n =  6, iterative application of Next Integer Partition pro­
duces the sequence

6 ->■ 51 ->■ 42 ->■ 411 ->■ 33 ->■ 321 ->■ 3111
->■ 222 ->■ 2211 ->■ 21111 ->■ 111111

Ferrers Diagrams

DEFINITION: The F errers  diagram  o f a partition S1 S2 ■ ■ - Sk is an array of k rows 
o f dots, with Sj dots in row j .

Example 9.4.4: The partition 6441 has the Ferrers diagram

• • • • • •
• • • •
• • • •

Figure 9.4.1 Ferrers diagram for the integer partition 6441.

DEFINITION: The co n ju g a te  o f  a F errers diagram  for the partition S1 S2 ■ ■ - Sk is 
the Ferrers diagram with k columns of dots, with sj dots in column j .

Example 9.4.4, continued: The conjugate of the Ferrers diagram in Figure 9.4.1

• • • •
• • •
• • •
• • •

Figure 9.4.2 Conjugate of the previous Ferrers diagram.

DEFINITION: The co n ju g a te  o f  a p a r titio n  S is the partition whose Ferrers dia­
gram is the conjugate of the Ferrers diagram of S.

Ferrers diagrams are the easiest way to prove the following kind of theorem 
about partitions.
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T h eorem  9.4.1. The number o f  partitions o f  an integer n into at most k parts 
equals the number o f  partitions o f  n into parts o f  size at most k.

P ro o f: The operation of conjugation on Ferrers diagrams is a bijection from the 
set of partitions of the number n into at most k parts to the set of partitions of size 
at most k. <0>

Partition Lattices

DEFINITION: The inclusion  re la tion  on in te g e r  p a r titio n s  is given b y

s l s 2 ' ' ' s k  ^ U \ U 2 - - - U i  if k <  i
and Sj <  Uj, for j  — 1, k

Its name reflects the fact that the Ferrers >;ram of the first is contained in the

DEFINITION: For an integer partition S — S1 S2 • • • Sk, the Y o u n g ’s la tt ic e  3̂ 5 has 
as its domain the set of all integer partitions included in S. The partial ordering is 
inclusion.

E xam ple  9 .4.5: The Hasse diagram for the 
tion 3221 is shown in Figure 9.4.3.

’s lattice for the integer parti-

Figure 9.4.3 ’ s la ttice  y 322 1 .

A Young’s lattice is graded. The rank of each partition is the integer it parti­
tions. There is a second kind of lattice for partitions of integers, in which all the 
elements partition the same integer.
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DEFINITION: Let B =  &1&2 • ''bk and U =  u\u2 - - -ui  be any two partitions of 
the integer n, such that

b\ +  • • • +  bj < u\ +  • • • +  Uj for all j  <  min(k,£)

Then the partition U has su m m ation  d om in a n ce  over the partition B. The 
resulting poset S V n is called a su m m ation  d om in a n ce la ttice .

Proposition 9.4.2. The order o f  the partitions o f  an integer n produced by itera­
tive application o f  the algorithm Next Integer Partition is a linear extension o f  the 
summation dominance partial ordering.

Proof: Since the input to the algorithm has lexicographic dominance over the 
output, it cannot be summation dominated by the output. <)

shown in Figure 9.4.4. Observe that it is unranked.

Figure 9.4.4 S u m m a t io n  d o m in a n c e  la t t ic e  ST>7 .
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EXERCISES for Section 9.4

In each o f the Exercises 9-4-1 through 9-4-4, ltst oil the partitions o f the given 
integer, with at most 3 parts.

9.4.1s 8 9.4.2 9 9.4.3 10 9.4.4 11

In each o f the Exercises 9-4-5 through 9-4-8, draw the Ferrers diagram for the given 
partition and draw its conjugate.

9.4.5s 5322 9.4.6 53211 9.4.7 64322 9.4.8 64331

In each o f the Exercises 9-4-9 through 9-4-12, draw the Youngs lattice for the given 
partition.

9.4.9s 332 9.4.10 422 9.4.11 431 9.4.12 2222

9.4.13 Draw the summation dominance lattice V $

9.5 CALCULATING A CYCLE INDEX

Beyond writing a cycle structure monomial t^1 ■ ■ •t®’* corresponding to each 
partition of an integer n, calculating the cycle index of A u ty (K n) requires writing 
the coefficient of each such monomial. When calculating A u tE {K n), another step 
is transforming a cycle structure for the automorphism action on the vertices of

action on the edges of K n.

Multinomial Coefficients

DEFINITION: Let r\,r2 , ■ ■ ■ ,rk be a list of non-negative integers whose sum is n. 
The value of the m u ltin om ia l co e ffic ien t

n  r2 • • • rk

is the number of ways that a set of n distinct objects can be distributed into k 
distinct boxes

B i , B'j, ■ ■ ■, Bk

so that, for j  =  1, . . .  ,k , there are rj objects in box B j . The concept of a multinomial

n 
r
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which is the special case with two boxes, the first of size r, and the second of size 
n — r.

E xam ple  9 .5.1: Suppose that an 8-member executive board of an organization is 
to be partitioned into a 2-member recruiting committee, a 3-member finance com­
mittee, and a 3-member events committee. The three committees are distinguished 
by their organizational missions.

P ro p o s it io n  9 .5.1. Let r\, r2, ■ ■ ., rk be a, list o f  non-negative integers whose sum 
is n. Then

(  n \ _  n ' 
v r i r 2 ■ ■ ■ rk J ~  n \ r2\ ■ ■ ■ rk\

P ro o f: For k =  2, the right side is a familiar formula for the value of the binomial 
coefficient. We continue inductively.
Clearly, the number of ways to distribute n objects into the boxes

B i , B 2 , • • •, Bk

of sizes r\, r2, . . ., rk equals the product of the number of ways to select r\ objects 
for box B\ and the number of ways to distribute the remaining n — r\ objects into 
the boxes B 2, B3, . . ., Bk ■ That is,

n \ _  / n \ / n — r i
n  r2 ■ ■ ■ rk )  ~  \ n )  \ r 2 r3 ■ ■ ■ rk

By the induction hypothesis,

n — ri \ _  {n -  ri)\
r 2 r3 ■ ■ ■ rk J r2 \ r3! • • • rk\ 

Thus, combining Equations (9.5.1) and (9.5.2),

n \ ! n \ (n — r i)!
r i r2 ■■■ rk J \r i) r 2\r3\ - - - r k\

r i ! r2\ ■ ■ ■ rk\

(9.5.1)

(9.5.2)

E xam ple  9 .5.1, con tin u ed : It follows from Proposition 9.5.1 that the number of 
ways to partition the executive board into the three committees of those prescribed 
sizes is
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Non-distinct Boxes
When a permutation 7r partitions n objects into disjoint cycles, the cycles are 

non-distinct. For instance, the permutations

are identical, since the order in which the 3-cycles are written in a disjoint cycle 
representation has no bearing on the effect of the permutation.

P ro p o s it io n  9 .5.2. Let r\, r2, ■ ■ ■, rk and e\, e2, ■ ■ ■, ek he list o f  non-negative in­
tegers such that

n =  eir i  +  e2r2 +  • • • +  ekrk

Then the number o f  ways to partition n distinct objects into non-distinct boxes, 
with ej boxes o f  size rj, for j  =  1, ,k , is

P ro o f: If the boxes were distinct, the number of possible distributions would be

I Mei (rn ,'le2 • • • (r, M15*

by Proposition 9.5.1. Application of the Rule of Quotient motivates division by

ei'.e2! ■■■ek\

for non-distinct boxes.

E xam ple  9 .5.2: The three ways to partition the integer six into three parts are 
411, 321, and 222. The Stirling subset number

is the total number of ways to partition 6 objects into 3 cells. Thus, in view of 
Proposition 9.5.2, we anticipate the result of the following computation.

(S M A H + G S iM
6! 1 6! 6 1 

“  4! ' 2! +  3!2! +  2! 2! 2! ' 3!
=  15 +  6 0 + 1 5
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Corollary 9.5.3. The number o f  permutations o f  cycle structure t^1 ■■■t^n in 
A u tv (K n) is

- i y . y - i y . y
ex'. ■ ■ ■ ek\

Proof: Proposition 9.5.2 accounts for the multinomial coefficient and for the de­
nominator of the fraction. The numerator of the fraction accounts for the objects 
within each cell into a cycle of the permutation. The number of ways to organize s 
objects into a cycle is (s — 1)!. <C>

Example 9.5.2, continued: The Stirling cycle number [®] is the number of 
permutations of 6 objects with three cycles. Thus, consistent with Corollary 9.5.3, 
we obtain

6 \ 3! 0! 0!
4 1 1 /  1! 2!

=  4! '3 +  312! ' 2 
=  90 +  120 +  15 
=  225

6 \  2 ! 1 ! 0 !

3 2 l j  1! 1! 1! 
6 ! 1

6 \ 1! 1! 1! 
2 2 2 1 3!

2 ! 2 ! 2 ! 6

Proposition 9.5.4. The cycle index o f  the group A u tv (K e ) is

Z A u t v ( K e ) { t l , - - - , t 6 )  =  — ( ^  +  1 5 ^ 2  +  4 5 ^ 1  +  1 5 ^ + 4 0 ^ 3

+ 120 1̂ 2̂^3 + 40^3 + 9 0 ^ 4  + 90 2̂^4 + 144 1̂̂ 5 + 120^6 )

Proof: This follows from Corollary 9.5.3.

Transforming the Cycle Index
When counting isomorphism types of graphs, one further step is to transform 

each vertex automorphism cycle structure into the corresponding edge automor-

We continue to use variables tj in the cycle structure of a graph automorphism 
action on the set of vertices. For clarity, we will use variables yj in the cycle 
structure of the corresponding action on the set of edges.

Theorem 9.5.5. Let n be an automorphism o f  the complete graph K n, represented 
by permutations 7ry on Vk„ and tte on E x n- Then

(i) *2P+i Vlp+v
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(¡i) t2p ^y2
p
P~1yP-

Each (2p)-cycle in iry corresponds to p — 1 (2p)-cycles and one p-cycle in TTE-

fui) f f _> ,, ecd(p.i). 
( J J V lPl1 ^ V\cm (p,q) • 

Each (p-cycle, q-cycle)-pair in the permutation iry, with p ^ q, corresponds to 
gcd (p, q) lcm (p, q)-cycles in TTE-

(iv) tptp - > ) / / : 

Each pair of p-cycles in iry corresponds to p p-cycles in TTE-

Proof: The key to all four parts of the proof is tha t if ij is any edge in Kn, then 
the endpoints of the edge TTE(ÍJ) are TTV(Í) and irv(j)- We begin each part with an 
illustrative example. 

(i) t2p+i -^y2p+i-

The case p = 2, where we consider a factor Í5 corresponding to some 5-cycle 
(1 2 3 4 5) in Try, is illustrated in Figure 9.5.1. The copy of K5 in Figure 9.5.1 
is the induced subgraph of Kn on the five vertices 1, 2, 3, 4, and 5. Since TTE maps 
the edge 12 to the edge 23, maps 23 to 34, and so on, it must contain the cycle 
(12 23 34 45 15), whose edges are solid lines in the figure. 

Figure 9.5.1 Trans format ion of Í5 i n t o y5
2. 

Since TTE maps the edge 13 to the edge 24, maps 24 to 35, and so on, it must also 
contain the cycle (12 23 34 45 15), whose edges are dashed lines in the figure. 

More generally, for a cycle in iry of the form 

(vi v2 ••• v 2 p + i ) 

the p — 1 corresponding (2p + l)-cycles in TTE are 

(ii) t2p -+y2
p
p~

1yP--

For the case p = 3, we consider a factor tç corresponding to a 6-cycle ( 1 2 3 4 5 6) 
in Try, as illustrated in Figure 9.5.2. The dark solid edges form one 6-cycle in TTE-
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Even though the dashed edges form two 3-cycles in the copy of K q in the figure, 
they all lie in the same 6-cycle of 7r ;̂. Even though the three light solid edges form 
no cycles in K q, they form a 3-cycle in tte■

Figure 9.5.2 Transformation of tq into j/62 j/3 .

[ V l  V'j ■■■ V2p )  

the corresponding cycles in tte are

( V\V2 V2 V3 ■■■ V2 p V l )

V l V 3 V2 V4 ■■■ V2 p V2

[ V l  Vp V2 Vp +  1 ■■ 

( V i V p  +  i  V2 Vp +  2

V2p'Vp—l
0 v2p ) }  one p-cycle

( i l l )  tr,tn gcd (p,q) .
hPLq 7 ^lcm (p,q) '

We consider two cycles (1 • • • 4) and (1 • • • 6) in iry, which yields gcd (4, 6) =  2 
cycles in tte, each of length lcm (4,6) =  12. For clarity in Figure 9.5.3, these two 
cycles in tte are shown separately. Neither is a cycle in the graph, only in the 
permutation.

Figure 9.5.3 Transformation of £4*6 into ylJ. 

for a pair o f cycles in ixy

( « i  u2 ) and ( Vi v2
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the gcd (p, q) corresponding lcm (p, g)-cycles in tte are

(  U \ V \  U 2 V  2 • • •  U p V q ) 

( u i v 2  U 2 V 3  ■■■ U p V l )

( ^ l ^ g c d ( p , q )  ^ 2^ g c d  ( p , q )  +  l  ^ p ^ g c d  ( p , q )  —  1 j

In the special case of two p-cycles in Tty, there are p p-cycles in 7r̂ ;.
This completes the proof of the theorem. <C>

Proposition 9.5.6. There are exactly 156 isomorphism types o f  simple graph with
6  vertices.

Proof: By Proposition 9.5.4,

ZAutv(Ke)(t +  15^ 2  + 4 5 ^  +  15*f +  4 0 ^ 3  +  120^2*3

40^ +  9 0 ^ 4  +  90^2^4 +  144^1^5 120^6 ^

By Theorem 9.5.5,

ZAutE(K e )(y i ,- - - ,y i 5 ) =  7 ^ (^ 1 15 +  152/i2/I +45?/?2/1 +  ISyfyt +  40yfyj 

+  120yiy2J/3 2/6 +  40?/| +  90yiy2yl +  90yiy2yl +  144yf +  120y32/I) 

Substituting 2 for each of the variables 2/1 , • • •, 2/15 in

yields 156. <C>

EXERCISES for Section 9.5

In each o f the Exercises 9.5.1 through 9.5.6, use a partial inventory table to calculate 
the number o f isomorphism types o f 6 -vertex graphs with the given number o f edges.

9.5.1 2 edges. 9.5.2 3 edges. 9.5.3s 4 edges.
9.5.4 5 edges. 9.5.5 6 edges. 9.5.6 7 edges.

9.5.7 Calculate the cycle index polynomial of A u ty  (K 7 ) .

9.5.8 Calculate the cycle index polynomial of A u tsiK ^ ).
->s9.5.9 Calculate the number of isomorphism types of simple graphs with 7 ver­

tices.

In each o f the Exercises 9.5.10 through 9.5.15, use a partial inventory table to 
calculate the number o f isomorphism types o f 7-vertex graphs with the given number

9.5.10 2 edges. 9.5.11 3 edges. 9.5.12s 4 edges.
9.5.13 5 edges. 9.5.14 6 edges. 9.5.15 7 edges.
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9.6 GENERAL GRAPHS AND DIGRAPHS

W ith some small variations, the same techniques used to count the isomorphism 
types o f simple graphs can be applied to counting graphs with multiple edges, self­

Counting Multigraphs

DEFINITION: A multigraph is a graph model in which multiple edges are permitted, 
but not self-loops. A c-multigraph has at most c edges joining any two vertices.

2-colorings of K n. The color 1 represented the presence of an edge and the color 0 
the absence. If the number of edges between two vertices is permitted to rise from
1 to c, then the number of colors in the model is increased from 2 to c +  1.

Proposition 9.6.1. The 3-vertex 2-multigraphs fall into exactly 10 isomorphism 
types.

Proof: The first step is calculating the cycle index

ZAutv (K3) (il; t ’2 , ts) =  g(^ l +  3 ^ 2  +  2 3̂ )

The second is transforming it to 

The final step of substituting 3 yields

=  q (V i +  3yi2/2 +

^ UM * 3 )(3 ,3 ,3 )  =  -  ( 33 +  3 -3 -3  +  2 -3 )

-  ~Q ~  1 0

The result of Proposition 9.6.1 is confirmed by the list of multigraphs in Figure 
9.6.1.

F ig u re  9.6.1 T h e  t e n  3 - v e r t e x  2 -m u l t ig r a p h s .
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DEFINITION: The very : K °  on n vertices has an edge joining each
pair o f vertices and a self-loop at each vertex.

The cycle index for A u ty (K ° )  is the same as for A u tv {K n). However there is a 
slightly different rule for transforming a cycle structure. Whatever cycle structure 
would have been obtained for A u tE {K n) is augmented by a factor of yj for each 
factor tj.

Proposition 9.6.2. There are exactly 20 isomorphism types o f  3-vertex general 
graph with edge multiplicity at most 1 .

Proof: Under the modified transformation rule, the cycle index

Z A u t v { K l )  { t l , h ,  

is transformed into

Z AutE(K°) (.Vl : 2/2 : . 

Substituting 2 yields

— 7 7 ( ^ 1  +  1 ^ 2  +  2 3̂ ) 
6

=  0 ( 2/1 +  3 y\y\ +  2 ?/|)

1
Z A u t E{K°3) (2 ,2 ,2 ) =  - ( 26 +  3 • 22 • 22 +  2 • 22)

6 
120
IT

Figure 9.6.2 shows the isomorphism types for 0 to 3 edges. The graphs with 
4, 5, and 6 edges are the complements in K °  o f the graphs with 2, 1, and 0 edges,

Figure 9.6.2 The 3-vertex general graphs with edge multiplicity
at most 1 and at most 3 edges.

  



Another modification of the main model enables us to count isomorphism types 
of digraphs.

to each other vertex.
The cycle index for A u tv {K n) is the same as for A u tv {K n). However there are 
different rules for transforming a cycle structure, as follows.

Theorem 9.6.3. Let tt be an automorphism o f  the complete digraph K n, repre­
sented by permutations 7ry on Vg and tte on E g  . Then

ttE -

(Hi) tptq ->■ ylc^ p iqP} ’q'> ■ Each (p-cycle, q-cycle)-pair in ttv , with p ±  q, corre- 

(iv) tptp —>■ yp2p: Each pair o f  p-cycles in Try corresponds to 2 p p-cycles in tte- 

Proof: Omitted. Analogous to the proof of Theorem 9.5.5. <C>
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Counting Simple Digraphs

Proposition 9.6.4. There are exactly 16 isomorphism types o f  3-vertex simple 
digraph.

Proof: Under Theorem 9.6.3, the cycle index

Z A u t v (Kl  { t l M M  =  g ( i ?  +  3*1*2 +  2 *3 )

is transformed into

Z A u t E( K 3) (S/1.S/2, 2/3) =  g ( 2/ i  +  3y| +  2y l )

Substituting 2 yields

(2 .2 .2 ) = -  (2 " +  3 ■ 23 +  2 ■ 22)
6

=  -  =  16
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Figure 9.6.3 The 3-vertex simple digraphs with at most 3 edges.

EXERCISES for Section 9.6

9.6.1s Count the 3-vertex 3-multigraphs.
9.6.2 Draw all the isomorphism types of 3-vertex 3-multigraphs, and compare 
to your answer to Exercise 9.6.1.
9.6.3 Count the 4-vertex 2-multigraphs.
9.6.4 Draw all the isomorphism types of 4-vertex 2-multigraphs, and compare 
to your answer to Exercise 9.6.3.
9.6.5 Count the 2-vertex general graphs with edge-multiplicity at most 2.

multiplicity at most 2, and compare to your answer to Exercise 9.6.5.

9.6.7 Count the 2-vertex general graphs with edge-multiplicity at most 3.

multiplicity at most 3, and compare to your answer to Exercise 9.6.7.
9.6.9 Count the 4-vertex simple digraphs.

9.6.10 Draw all the isomorphism types of 4-vertex simple digraphs, and compare 
to your answer to Exercise 9.6.9.
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GLOSSARY
automorphism of a simple graph: a b ije c tio n  on the v e rte x  set th a t preserves 

adjacencies and n on -ad jacencies as w e ll.

Burnside-Polya counting: an a lgeb ra ic  m e th o d  o f  c o u n tin g  ind uced  eq u iva ­
lence classes; the m ost im p o rta n t  m e th o d  o f  g ra p h ica l en u m era tio n .

Burnside’s Lemma: a th eorem  fo r c o u n tin g  the equiva lence classes o f  ob jects  
u nd er a p e rm u ta tio n  g ro u p .

(<fc)-coloring: a c o lo rin g  th a t uses at m ost k co lo rs , b u t p o ss ib ly  few er.

complete digraph: a d ig ra p h  such th a t fro m  each v e rte x  to  each o th er ve rte x  
there is an arc.

conjugate of a Ferrers diagram: the resu lt o f  re flec tin g  the d ia g ra m  th ro u g h  
its  southw est d ia go n a l.

conjugate of a partition S: the p a r t it io n  whose Ferrers d ia g ra m  is the c o n ju -

cycle index o f a p e rm u ta tio n  g ro u p : a m u lt iv a r ia te  p o ly n o m ia l th a t g ives the 
d is tr ib u t io n  o f cyc le  s tru ctu res o f  the p e rm u ta tio n s  in  th a t g ro u p .

cycle structure o f a p e rm u ta tio n  tt: a m o n o m ia l t ^ t ^ 2 ■ ■ -t^n such th a t rj is

cyclic permutation: a p e rm u ta tio n  w ith  o n ly  one cyc le  in  its  d is jo in t cycle  
fo rm .

cyclic permutation group: a g ro u p  in  w h ic h  there is a p e rm u ta tio n  tt such 
th a t e ve ry  o th e r elem ent is o b ta in a b le  as an ite ra te d  c o m p o s it io n  o f tt w ith  itse lf.

dihedral group D n : the g ro u p  o f  s ym m e trie s  o f  a re g u la r n -s id ed  p o ly g o n , or 
a n y g ro u p  iso m o rp h ic  to  th a t g ro u p .

Ferrers diagram o f a p a r t it io n  S1 S2 ■ ■ - sj, o f an in teger: an a rra y  o f  k row s o f 
dots, w ith  Sj dots in  ro w  j ,  fo r  j  =  1, . . ., k.

fixed point o f a p e rm u ta tio n  tt: an o b je c t y such th a t tt(y) =  y.

group: an a lgeb ra ic  s tru c tu re  whose d o m a in  is closed und er a b in a ry  o p e ra tio n , 
ca lled  e ith er addition o r multiplication, such th a t there is an id e n t ity  elem ent 
and th a t e ve ry elem ent has an inverse.

inclusion relation on integer partitions: we write S1 S2 • • • Sfc d  ui u 2 ■ ■ - ui if
k <  I  and i f  Sj <  Uj fo r  j  =  1, . . .  ,k .

induced action o f a p e rm u ta tio n  tt : Y  —> Y  on the set /  : Y  —> [1 : k] o f  co lo rin gs  
o f  y : the p e rm u ta tio n  th a t m aps a n y c o lo rin g  /  to  the c o lo rin g  / tt.

induced edge automorphism o f an a u to m o rp h is m  tt : V  —> V  on the v e rte x  set

isomorphism of two simple graphs G  and H : a b ije c tio n  Vq Vh  th a t 
preserves a ll adjacencies and a ll n on -ad jacencies as w e ll.

length of a cycle: the n u m b er o f  edge-steps (o r, e q u iva le n tly , o f  vertices).
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monomial: a p o ly n o m ia l w ith  o n ly  one te rm .

multigraph: a g ra p h  in  w h ic h  there m a y  e x is t at least one p a ir  o f  edges w ith  
the same set o f  en dp o in ts .

multinomial coefficient: g e n e ra liza tio n  o f  a b in o m ia l coefficient.

orbit of an object y und er a p e rm u ta tio n  g ro u p  V  =  [P : Y\. the set

partition of an integer n: a sum  s i +  s2 +  • • • +  o f p o s itiv e  integers, u s u a lly  
w r it te n  in  n o n -in c re a s in g  o rder, o ften  w ith o u t  the p lus signs, i.e ., as S1 S2 •••«*•

permutation group V  =  [P : Y\. a set Y  o f ob jects  and a set P  o f p e rm u ta tio n s  
th a t is a g ro u p  u nder c o m p o s it io n ; fo r  a fin ite  set o f  ob jects , a closed n o n -e m p ty  
set o f  p e rm u ta tio n s  is a g ro u p .

permutation of a set: a b ije c tio n .

Polya Inventory Theorem: p ro o f  o f  the correctness o f  a m e th o d  fo r  o b ta in ­
in g  a b rea kd ow n  o f the to ta l count g ive n  b y  B u rn s id e  c o u n tin g  in to  counts fo r 
subclasses o r o rb its , acco rd in g  to  features o f  the ob jects  w ith in  the o rb its .

Polya substitution: a ru le  fo r  s u b s titu t in g  m o n o m ia ls  fo r  in d e te rm in a te s  in  the 
cyc le  in d e x  p o ly n o m ia l, so as to  p rod uce  a P o ly a  in v e n to ry  p o ly n o m ia l.

stabilizer o f an o b je c t x  in  a p e rm u ta tio n  g ro u p : th a t su b grou p  o f  p e rm u ta tio n s  
th a t m a p  x  to  itse lf.

summation dominance lattice: a la tt ic e  o f  a ll the p a rt it io n s  o f  an in teger n.

Young’s lattice a la tt ic e  o f  p a rt it io n s  b y  in c lu s io n .

  



Chapter 10
Combinatorial Designs

10.1 Latin Squares
10.2 Block Designs
10.3 Classical Finite Geometries
10.4 Projective Planes
10.5 Affine Planes

A com bin a toria l design  (or alternatively, an in c id en ce  s tr u c tu re ) consists 
o f a domain set A  and another set B, commonly represented as subsets of that 
domain, analogous to the way in which the edges of a simple graph can be repre­
sented as pairs of vertices. This final chapter studies several kinds of combinatorial 
designs, each with additional axioms and/or mathematical structure on the domain 
and/or on the subsets.

Remark: Some constructions in this chapter that are described here only for a 
prime field are extendible to a prime power, since there is a finite field for every 
prime power.

541



542 Chapter 10 Combinatorial Designs

10.1 LATIN SQUARES

A Latin square is a type of combinatorial design most easily described as an 
n x n array.

DEFINITION: A L atin  squ are  on a set X  of n objects is an n x n array such that 
each object in A  occurs once in each row and once in each column.

Example 10.1.1: A Latin square on a set of four graphic patterns is shown in 
Figure 10.1.1.

Figure 10.1.1 A  4 x 4 Latin square

The standard symbols for an n x n Latin square are the integers modulo n. The 
rows and columns of a Latin square on 7Ln are commonly indexed in 7Ln, so that 
there is a row 0 and a column 0. In particular, the following 4 x 4  Latin square on 
7L4  is obtainable from the Latin square of Figure 10.1.1 by a bijection of the symbol 
sets.

/0  1 2 3\

2 3 0 1 (10.1.1) 

V 3 2 1 0 /

TERMINOLOGY NOTE: Euler used Latin letters as the objects when he introduced 
the idea, whence the name Latin squares. In small examples, sometimes the objects 
are colors or patterns.

Remark: Thus, a sudoku is a form of 9 x 9 Latin square on the numbers 1 to 9, 
with an additional requirement that each number occur exactly once in certain 3 x 3  
sub-arrays.
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It is easy enough to construct a Latin square o f any given size.

Proposition 10.1.1. For every positive integer n, there exists an n x n Latin 
square with Z„ as the set o f  objects.

Proof: Let L[i,j\ =  i +  j  modulo n. Thus,

/  o 
1 
2

n — 2 n — 1  

\ n — 1  0
Clearly the array L is a Latin square.

n — 2 n — 1  \
n — 1  

0

n — 4 n — 3 
n — 3 n — 2 /

Example 10.1.2: For n =  4, the construction of Proposition 10.1.1 yields the 
following Latin square.

/ 0  1 2 3 '

1 2 3 01  - 0.1.2)

with additional structure. The set B  is ordered, corresponding to the order of the 
rows in the array. Each member Bj  £  B  contains every object of X , is construed 
to be ordered, corresponding to the order of the elements of a row. Moreover, the 
number of subsets in B  equals the number of objects in X,  and for each object x 
and each possible position within a row, there is a unique row in which x occupies 
that position.

Product of Latin Squares
The next definition indicates a method of construction of a new Latin 

starting from two given Latin squares.
square,

DEFINITION: Let A  =  (d jj)  and B  =  (bij) be Latin squares on Z 
tively. Then the p ro d u c t  squ are A 0  B  is the Latin square on

/  c*oo 
« 1 0

B
B

a oi
an

B
B

\ a ( r _ i ) o  x B  a o i  x B 

where the s x s submatrix x B  is given by

a 0 ( r - l )  

a l ( r — 1 )

a ( r —  l ) ( r — 1 )

and
r  X  Z

B \ 
B

x  B J

\ (aij •> b(s — l)o) (aij •> b (s-l)l)

(o>ij , 0̂(s —1))  ̂
(o>ij, 6 i( , - i) )

{aij 7 ^ ( s - l ) ( s - l ) )  /
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P r o p o s i t i o n 10 .1 .2 . Let A = (a¿¿) and B = (6¡j) be Latin squares on 7Lr and 7LS, 
respectively. Their product A® B is a Latin square. 

Proof: Since each row of A contains each number in 7Lr and each row of B contains 
each number in 7LS, it follows that each row of A ® B contains each pair in 7Lr x Z s . 
The same fact holds for the columns. <) 

E x a m p l e 10 .1 .3: If 

then 

which we observe is equivalent to the Latin square 

under the bijection 7L'¿ x TL-¡ —> TLQ given by 

Orthogonal Latin Squares 
DEFINITION: Two n x n Latin squares A = (a¿j) and B = (6¿j) are orthogonal 
Latin squares if the n2 ordered pairs (a¿ j , b¡j) are mutually distinct. 
Remark: By the pigeonhole principle, two n x n Latin squares are orthogonal if 
each possible ordered pair of domain elements occurs. 

E x a m p l e 10.1 .4: It is easy enough to construct the pair of orthogonal 4 x 4 
Latin squares in Figure 10.1.2 by ad hoc methods. One Latin square is represented 
pictorially by the outer pat tern in an array location, and the other Latin square by 
the inner pat tern. 
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/  0 1 2 3 '
1 0  3 2
2 3 0 1

\ 3 2 1 0, 
outer

Figure 10.1.2 T w o o rth og on a l Latin  squares.

The next proposition indicates how to construct a family of mutually orthog­
onal Latin squares.

P ro p o s it io n  10.1.3. For k =  1, . . ., p — 1, where p is a prime number, let L£ be 
the p x p array such that

=  hi +  j  mod p 0 <  i, j  <  p — 1

L p - i
p

Then the p — 1 arrays

are mutually orthogonal Latin squares.

P ro o f: The entries in row i o f the array L£  are

ki, ki + 1 , ki +  2, . . ., ki +  (p — 1) 

which are clearly distinct. The entries in column j  are

Two of these entries differ by some number ck with 0 <  c,k  <  p. Since p is prime, 
ck ^  0 modulo p. Therefore, each of the arrays L£  is a Latin square.
Now suppose that the pairs of entries

Lp[hJ\, Lp' [hj ] )  and ( Lp[hj\, Lp'[hj]

are identical. Then

and

3.1.3)

3.1.4)

  



546 Chapter 10 Combinatorial Designs

If i zjz j, then i — i has a multiplicative inverse in Zp (see Corollary 6.4.2). Hence,

and

Therefore, k =  k '.

Example 10.1.5: The arrays and Lg of Proposition 10.1.3 are orthogonal.

/ 0  1 2 3 4\
2 3 4 0 1
4 0 1 2  3
1 2 3 4 0

V3 4 0 1 2 /

/ 0  1 2 3 4\
3 4 0 1 2 
1 2 3 4 0
4 0 1 2  3 

V 2  3 4 0 l /

Remark: If p is not a prime, then Lp might not be a Latin square. For instance, 
row 2 of the array Lq is identical to row 0.

Theorem 10.1.4 [MacNeish, 1922]. Let

A ^ \  A W , . . . ,  A M

be r mutually orthogonal m x m Latin squares, and let

B (1\ B (2\ . . . ,  B (r) 

be r mutually orthogonal n x n  Latin squares. Then the Latin squares

A (1 ) ( x )B(1\ A (2 ) ( x )B(2\ •••, A (r) (x )B(r) 

are mutually orthogonal.

Proof: Suppose that the pair of entries at location ij  x ki o f the Latin square 
A^x) x B ^  and of the Latin square A ^  x B^y\ i.e.,

a..d («!j \&)
is the same as the pair in location pq x uv o f those two Latin squares, i.e., as the 
pair

(a(pq\buJ) and (a'pq j ^uv ,

Then the pairs
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are identical, which implies, since A ^  and A ^  are orthogonal, that 

Similarly,

Therefore, A ^  x and A ^  x B ^  are orthogonal.

P ro p o s it io n  10.1.5. For every odd number n >  1, there is a pair o f  orthogonal 
n x n Latin squares.

P ro o f: This follows from Proposition 10.1.3 and Theorem 10.1.4, since every odd 
number factors into a product of odd primes. <C>

P ro p o s it io n  10.1.6. Let n =  2k with k >  2. Then there is a pair o f  orthogonal 
n x n Latin squares.

P ro o f: Example 10.1.4 gives a pair of orthogonal 4 x 4  Latin squares. The fol­
lowing is a pair of orthogonal 8 x 8  Latin squares.

/ 0  1 
1 0 
2 3

4 5
5 4
6 7

3 2
4 5
5 4
6 7 

\ 7 6

1 0  7 6
6 7 0 1
7 6 1 0
4 5 2 3
5 4 3 2 1 0 /

6 7\
7 6 
4 5

4 
3 
2 
1

/ 0  1
7 6
3 2
4 5 
6 7 
1 0
5 4 

\ 2 3

2 3 4 5
5 4 3 2 
1 0  7 6
6 7 0 1 
4 5 2 3
3 2 5 4

6 7\

7 6 1 0
7 6 
3 2

0 1 6  7 4 5 /

If k is even, then n is a power of 4, and if k is odd, then n is a product of 8 with a 
power of 4. It follows from the base cases 4 x 4  and 8 x 8  and Theorem 10.1.4 that 
there is a pair of orthogonal n x n Latin squares. <C>

There are only two possible 2 x 2  Latin squares in 7L2, and they are not or­
thogonal. Euler conjectured in 1782 that for n odd, there is no orthogonal pair of 
2n x 2n Latin squares. In 1901, Gaston Tarry [Tarrl901] proved by exhaustion that 
there is no 6 x 6 pair. However, Ernest Parker [Parkl959] produced a 10 x 10 pair 
in 1960, and then Bose, Shrikhande, and Parker [BSP1960] proved that there is a 
2n x 2n orthogonal pair except for n =  1 or 3.

Sum m ary. For every positive integer n except 1, 2, and 6 , there is a pair o f  
orthogonal n x n Latin squares.

Isotopic Latin Squares

DEFINITION: The Latin squares L[i, j] and L'[i, j] on 7Ln are iso to p ic  L atin  squares  
if L' can be obtained from L by a sequence of transformations, each chosen from 
any of the following three types.
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• A permutation of the rows.
• A permutation of the columns.
• Applying a permutation cr : 7Ln —> 7Ln to the symbols of the array. 

Example 10.1.6: Swapping rows 0 and 1 of the Latin square

/ 0  1
1 2
2 3 0 1 

\ 3 0 1

3.1.2)

yields the Latin square
( 1  2 

0 1
2 3 0 1 

\ 3 0 1

Example 10.1.7: Swapping the symbols 0 and 1 in the Latin square 
yields this Latin square.

/ I  0 2 3 '
0 2 3 1

3.1.2)

2 3
\ 3 1 0

Remark: Clearly, isotopy on Latin squares is an equivalence relation. 

DEFINITION: A Latin square on 7Ln is said to be n orm a lized  if its initial row is

0 1 • • • n — 1

and its initial column is
0
1

n — 1

Clearly, every Latin square is isotopic to a normalized Latin square.

Abstract Latin Squares
Isotopy allows three natural kinds of transformation on Latin squares that may 

be regarded as natural equivalences. The following alternative conceptualization of 
a Latin square allows some additional equivalences.

DEFINITION: An a b stra ct Latin  squ are  on 7Ln is a set L o f triples

such that
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• For any (i, j )  £ 7Ln x  7Ln there is a unique triple (r, c, s) in L such that i =  r

• For any (i, k) £ 7Ln x  7Ln there is a unique triple (r, c, s) in L such that i =  r

• For any (j, k) £ 7Ln x  there is a unique triple (r, c, s) in L such that j  =  c

P ro p o s it io n  10.1.7. Every abstract Latin square corresponds to a unique concrete 
Latin square (i.e., the array form). Conversely, for every concrete Latin square, there 
is a unique abstract Latin square. <C>

We observe that the operation of transposition on the array form of a Latin 
square has as its abstract counterpart the operation of swapping the first and second 
entry in each triple. Yet from the abstract perspective, we could equally well swap 
the first and third entry of each triple. Indeed, we equally apply any of the six 
possible permutations uniformly to all the triples. This motivates the following 
definition.

DEFINITION: Let 7r be a permutation on the set {1, 2, 3}. The operation of trans­
forming a Latin square by applying 7r to the coordinates of the triples is called a 
conjugacy operation. The array resulting from applying 7r to a Latin square L 
is called the tt-conjugate of L. It may be denoted Ln.

E xam ple  10.1.8: Consider the following Latin square in array and abstract form.

/0  3 1
1 2 0

3 0 2
V 2 1 3

(0 ,0 ,0 ) (0 ,1 ,3 ) (0 ,2 ,1 ) (0 ,3 ,2 ) 
(1 ,0 ,1 ) (1 ,1 ,2 ) (1 ,2 ,0 ) (1 ,3 ,3 ) 
(2 ,0 ,3 ) (2 ,1 ,0 ) (2 ,2 ,2 ) (2 ,3 ,1 ) 
(3 ,0 ,2 ) (3 ,1 ,1 ) (3 ,2 ,3 ) (3 ,3 ,0 )

(0 ,0 ,0 ) (1 ,0 ,3 ) (2 ,0 ,1 ) (3 ,0 ,2 ) 
(0 ,1 ,1 ) (1 ,1 ,2 ) (2 ,1 ,0 ) (3 ,1 ,3 ) 
(0 ,2 ,3 ) (1 ,2 ,0 ) (2 ,2 ,2 ) (3 ,2 ,1 ) 
(0 ,3 ,2 ) (1 ,3 ,1 ) (2 ,3 ,3 ) (3 ,3 ,0 )

/0  1 3 "
L (l,2 )(3 ) _  3 2 0

1 0  2 ;  
\2 3 1 i

Observing that iC1 >2)(3) is simply the transpose of L, we recognize that the trans­
formation L i—y L (1>2)(3) simply swaps the roles of rows and columns.

  



550 Chapter 10 Combinatorial Designs

Alternatively, applying the permutation (1,3) (2) to the set of triples means swap­
ping the first and third coordinates of each triple, thereby obtaining

(0,0 ,0 )
( 1, 0 , 1)
(3 ,0 ,2 )
(2 ,0 ,3 )

(3 .1 .0 )
(2 .1 .1 ) 
(0 ,1 ,2 ) 
(1 ,1 ,3 )

( 1 , 2 , 0)
(0 ,2 ,1 )
(2 ,2 ,2 )
(3 ,2 ,3 )

(2 .3 .0 )
(3 .3 .1 )
(1 .3 .2 ) 
(0 ,3 ,3 )

which is the abstract form of the Latin square

£ ( 1 , 3 ) ( 2 )  _

Remark 1: We observe that conjugacy is an equivalence relation on the Latin 
squares. The possible class sizes are 1, 2, 3, and 6.

Remark 2: For n <  5, the conjugacy operations on a Latin square produce only 
Latin squares that could be obtained by isotopy operations. However, for n >  6, 
they produce additional Latin squares.

DEFINITION: Two Latin squares L and L' are m ain class iso to p ic  if L is isotopic 
to any conjugate of L '.

EXERCISES for Section 10.1

10.1.1s Draw two orthogonal 3 x 3  Latin squares.
10.1.2 Prove that there are only two Latin squares on 7L3  whose first row is

0 1 2

10.1.3 Prove that the number of non-identical Latin squares on 7L3  is 12.

10.1.4 Prove that there is only one normalized Latin square on 7h3.

10.1.5 Draw the four mutually non-identical normalized Latin squares on 7L̂ .

In each o f the Exercises 10.1.6 through 10.1.9, construct the designated Latin square, 
as specified m Proposition 10.1.3.

10.1.6s L i  10.1.7 i 72 10.1.8 L f  10.1.9 i 75

In each o f the Exercises 10.1.10 through 10.1.13, let

Construct the specified product square.

10.1.10s A<g> A  10.1.11s A ® B  10.1.12 B ® B  10.1.13 B ® A
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10.1.14 Draw four mutually orthogonal 5 x 5  Latin squares.
10.1.15 Draw three mutually orthogonal 7 x 7  Latin squares.

In each o f the Exercises 10.1.16 through 10.1.18, let

Construct the specified conjugate.

10.1.16s L W^2’3) 10.1.17 L(1’2’3') 10.1.18 L(1’3’2')

10.2 BLOCK DESIGNS

A generic block design can be regarded as a generalization of a ; 
a block is a generalized edge.

in which

DEFINITION: A block design B has a non-empty domain

X  — { X i , X 2 , • • • , X v }  

whose elements are sometimes called varieties and a non-empty collection

of subsets of X  called blocks. It is a simple design if no two blocks are identical.

DEFINITION: The number of blocks in which an element x appears is called the 
valence o f  that elem ent o f  the design.

DEFINITION: The number of blocks in which a pair of elements x and y appears is 
called the covalence o f  that pair.

Thus, a graph could be regarded as a block design in which every block has size
2. The valence of an element within the block design would be its degree as a

their multiplicity of adjacency as vertices of the graph. To allow self-loops in a 
graph, one would allow the blocks to be multisets of elements of the design and 
make suitable revisions in the definition of valence and covalence.

DEFINITION: A block design is regular if the following two conditions hold:
• every block is the same size k >  2, which is called the blocksize;

• each element Xj has the same valence; that is, each appears in the same number 
r o f blocks, which is called the replication number.

Thus, a d-re 
number d.
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Balanced Designs
The notion of balancing a design with incomplete blocks arose with Sir Ronald

ture.

DEFINITION: A regular b lock  design B w ith  v varieties and b blocks is said to  be 
balan ced  and is called  either a (v , b, r, k, X )-design  or a (v , k, X )-design  if  
each pair o f  elem ents Xi and Xj has the sam e covalence, that is, i f  each pair appears 
in the sam e num ber A o f  b locks, w hich  is called  the in d e x  o f  th e  design.

A balanced design is co m p le te  if k =  v, so that each block contains all o f X . If 
k <  v, then it is in co m p le te .

TERMINOLOGY: A balanced incomplete block design is commonly called a B IB D .

E xam ple  10.2.1: For X  =  {0, 1, 2, 3}, the blocks

B 1 : 012 B 2 : 013 B 3  : 023 S 4 : 123

E xam ple  10.2.2: For X  =  {0, 1, . . ., 8, 9, A }, the blocks

02348 13459 2456A  35670 46781 57892 
689A3 79A04 8A015 90126 A1237

generates all o f the others, if we regard the elements of X  as integers modulo 11, 
with a standing for 10 modulo 11. Then each other block is obtained by adding
1 modulo 11 to each of the elements of the previous block.

E xam ple  10.2.3: For every integer n >  2, setting X  =  [1 : n\ and B\ =  X  yields

E xam ple  10.2.4: For every integer n >  2, setting X  =  [1 : n\ and having the 
pairs of elements from X  as blocks yields a balanced design with

Thus, the complete graph K n is representable as a BIBD.

E xam ple  10.2.5: When a simple graph is drawn on an arbitrary surface without 
crossings, each edge lies on exactly two faces. If the graph is K n, and if all faces 
are fc-sided, then this drawing may be regarded as a BIBD with v =  n, blocksize k, 
and A =  2, in which a block is the set of corners of a face.

Necessary Conditions
The examples above establish that BIBD’s exist for certain combinations of 

the parameters v, b, r, k, and A. However, there are no BIBD’s for various other 
combinations. Our immediate concern is to derive some necessary conditions for 
the existence of a (v, b, r, k, A)-design.
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P ro p o s it io n  10.2.1. For every non-empty (v, b, r, k, X)-BIBD

(a) A >  1 and (b) k <  v

P ro o f: Since there is at least one block, and since it has at least two elements, 
some pair has at least once occurrence. Since all pairs occur equally often, it follows 
that A >  1.
Since a block is a subset of the domain, its size cannot exceed the size of the domain.
Thus, k <  v. Since a BIBD is incomplete, it follows that k <  v.

P ro p o s it io n  10.2.2. The parameters o f  a (v , b, r, k, X)-design c

X  — { X i, X2 , *. . ,  Xv } 
satisfy the following two conditions:

(a) bk =  vr

P ro o f: First consider the v x b incidence matrix 
B\ ■ ■ ■ Bb

X\ *i,i *1,6 1 if Xi G Bj 
■ 0 otherwise

I'll ,1 ‘ ‘ ‘ t"v ,b

There are v rows, each with row-sum r, and there are b columns, each with column- 
sum k. Therefore, bk =  vr.

Next consider the (“) x b pair-incidence matrix

B\ ■ ■ Bb

X\X2 *1 2 , 1  ' ’ i 12,6
' 

1 .! .
(v — l ) v ,1

. .!(v — l)v,b

with
1 if XiXj G Bi

lJ’ 1 0 otherwise 
There are (“ ) rows, each with row-sum A, and there are b columns, each with 
column-sum (*). Therefore,

A

At; (v — 1) =  bk (k — 1)
Xv (v — 1) =  vr (k — 1) since bk =  vr 

> X (v — 1) =  r (k — 1)

TERMINOLOGY NOTE: The inferrability (from Proposition 10.2.2) of the parameters 
b and r from the parameters v, k, and A justifies optionally calling a (v, b, r, k, A)-
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C oro lla ry  10.2.3. For every non-empty BIBD,

A < r

P ro o f: Since A (v — 1) =  r (k — 1) (from Theorem 10.2.2) and k <  
sition 10.2.1), it follows that A < r.

REVIEW FROM LINEAR ALGEBRA:

• If A B  is the product of the matrices A  and B  then

NOTATION: The transpose o f  a m a trix  M  is den oted  M T.

T h eorem  10.2.4  [F ish er’ s Inequality ]. In any BIBD, b >  v.

P ro o f: Let I  be the incidence matrix of the BIBD. Then
( r A A A • • • A \

A r A A

(fr Propo-

A A r A 
A A A r

\ A A A A • • • r J
Subtracting the first column of a matrix from the other columns does not 
the determinant. Hence,

r A — r A — r A — r ■ • A — r
A r — A 0 0 • ■ 0
A 0 r — A 0 • • 0
A 0 0 r - A  • • 0

A 0 0 0 • '• r - A

Adding the other rows of a matrix to the first row does not 
Hence,

 ̂ A  ̂ r - A  0 0 
A 0 r - A  0
A 0 0 r - A

re the determinant.

A 0 0 0 ••• r - A
Since the upper triangle of this matrix is all zeroes, the determinant is the product 
o f the diagonal entries. Thus,

is non-zero. Accordingly, the rank of the v x i>-matrix I I T is v. Since the rank 
of the v x b incidence matrix I  is at most b, and since the rank, v, o f the product 
matrix I I T cannot exceed the rank of the matrix / ,  it follows that v <  b. <C>

  



Steiner Triple Systems

DEFINITION: A (v, 3, l)-design is also called a S te in er  tr ip le  sy s tem .

Example 10.2.6: The complete balanced block design

^  | domain X  =  {0, 1, 2}  ̂ ^

Section 10.2 Block Designs 555

is a Steiner triple system. (A Steiner triple system on a domain with more than 
three elements is a BIBD.)

Example 10.2.7: The BIBD

^  | domain Y  =  {0, 1, 2, 3, 4, 5, 6} ^   ̂ ^

is a (7, 3, l)-design. As in Example 10.2.2, the first block generates the others. 

Proposition 10.2.5. In a (^,3, 1 )-design,

v  — 1 ^  b v ( v  ~  1 )

2 w  6 

Proof: Part (a) follows from Proposition 10.2.2(b):

Simply substitute k =  3 and A =  1.
For part (b), start with the equation

bk =  rv

from Proposition 10.2.2(a). Then substitute 3 for k and (v — l ) /2  for r to obtain

3 b =  v V ~  1
2

which leads immediately to the desired formula. <C>

Corollary 10.2.6. In a (^, 3, 1 )-design,

v =  1 or 3 modulo 6 

Proof: Proposition 10.2.5(a) implies that v is odd. Thus,

v =  1, 3 or 5 modulo 6 

However, if v =  5 modulo 6, then v(v — 1) =  2 modulo 6, contradicting Proposition
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Constructing Designs

v =  1 or 3 modulo 6 , there exists a (u,3, l)-design. He was unaware that in 1847,

methods are beyond the present scope. We presently offer some elementary methods 
that can also be used for constructing BIBD’s with larger blocksize. The first such

in 7Ln is a perfect difference set of index A for 7Ln if each non-zero number in 7Ln 
occurs exactly A times in the list

( y % i j  —  C l j  | CL£ ,  C l j  £  S ,  'I j')

It is simply called a perfect difference set if A =  1.

Proposition 10.2.7. A perfect difference set B o f  cardinality k and index A for

Proof: For j  =  0, . . ., v — 1, let Bj  =  { j  +  b \ b £ B }.  By the definition of a 
perfect difference set, these blocks form a (v, k, A)-design. <C>

Example 10.2.7, continued: The set {0, 1, 3} C Z 7  is a perfect difference set of 
index 1 , since

DEFINITION: A fam ily  S o f  sets S\, . . ., Sj C Zn is a perfect difference family o f  
index  A i f  each non-zero num ber in 7Ln occu rs exactly  A tim es in the list

([%ijk — Oj | Clj £ Sk, i ^  j , 1 ^  k ^

It is called  a perfect difference family i f  A =  1.

Proposition 10.2.8. I f  the sets o f  a perfect difference family o f  index A for 7LV are 
all o f  the same size k, then they generate a (v, k, X)-design. <C>

{0, 1 , ,  3, 4, 9,
{0, 2, , 5, 6 , 7,

X  =  {0, 1, 2, 3, 4, 5, 6 , 7, 8 , 9, A, B , C'}
(

B <

  



Section 10.2 Block Designs 557

E xam ple  10.2.9: The set {0 ,1 , 4, 6 } is a perfect difference set for Z4 3 . Thus, 
with the domain

X  =  {0, 1, 2, 3, 4, 5, 6 , 7, 8 , 9, A, B , C'}

the set of blocks
f 0146 1257 2368 3479 458A 569B  67A C  

~  \ 7850 89C1 9A02 A B 13 B C 24 C035

The next example offers a way to construct a new Steiner triple system from 
two (possibly identical) smaller systems.

E xam ple  10.2 .10: The cartesian product of the domain of the (3, 3, l)-design 
A  o f Example 10.2.6 and the domain of the (7, 3, l)-design B o f Example 10.2.7 is 
representable as the following array.

0 1 2 3 4 5 6

0 /  00 01 02 03 04 05 06 \
1 10 11 12 13 14 15 16
2 \ 20 21 22 23 24 25 2 6 /

To obtain a (21, 3, l)-design A  x B on the set of elements of that array, we choose 
as blocks

(i) every column;
(ii) from each row, each triple {ri,  rj, rk}  such that {*, j, k}  is a block of £>;

(iii) each triple {0*, 1 j, 2k}  such that {*, j, k}  is a block of B.

Observe that the number of blocks we have chosen is

7 +  21 +  42 =  70

Two elements xy  and x'y' o f A  x B appear in one and only one block. There are 
three cases.

(i) x x' and y =  y ': only in the block arising from column y.

(ii) x =  x' and y zfz y ': only in the block arising from row x and the unique 
block of B in which y and y' are paired.

(iii) x x' and y zfz y': let x "  be the remaining row, and let y" be the 
third entry in the unique block of B that contains both y and y '. Then 
{xy,  x 'y ', x " y " }  is the unique block containing xy  and x 'y '.

DEFINITION: The product o f  two Steiner triple system s A  and B is the triple 
system whose domain is the set of entries of the array representing the product of 
the domains of A  and B, with blocks as follows:

(i) from each column of the array, each triple {rc,  sc, tc}  such that {r, s, 
is a block of A',
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(ii) from each row, each triple {ri,  rj, rk}  such that {*, j, k}  is a block of B ;
(iii) each triple {ri,  sj, tk}  such that {r,  s, t }  is a block of A  and {*, j, k}  is 

a block of B.

Theorem 10.2.9. Let A  and B be Steiner triple systems with u and v varieties, 
respectively. Then their product is a Steiner triple system with uv varieties.

Proof: The proof for the general case is essentially the same as for Example
10.2.10. <C>

Remark: The definition and theorem just above are generalizable to a product of 
BIBD’s and a theorem that the result is a new BIBD.

Isomorphism of Designs

DEFINITION: A bijection f  : X  ^  Y  o f the domains of two block designs

is called an i s o m o r p h i s m  o f  b l o c k  d e s i g n s  if for every block Cj  of design C , there 
is a block Bi of design B, such that the restriction /  : 5 S- —> C'j is onto.

Proposition 10.2.10. Let B =  (X , { Bi } )  be a (7, 3, 1) Steiner system. Then B is 
isomorphic to the (7, 3, 1) Steiner system with elements 0, 1, 2, 3, 4, 5, 6 and blocks

013 124 235 346 450 561 602

Proof: Choose an arbitrary element of X  and call it xo- Since each of the six 
other elements of X  must appear with xo exactly once, there must be exactly three 
blocks of B that contain xo- Call the other two elements in one of these blocks x\ 
and xs, and call the other two in a second of these blocks x 2 and x§. Partially 
specify the bijection /  by

xq i—)■ 0 x i i )■ 1 x 2 1—̂ 2 X3  1—)■ 3 xq 1—)■ 6

which ensures some block preservation, namely,

* 0 * 1 * 3  l—> 013 * 0 * 2 * 6  l—> 026 * 0 * 4 * 5  l—> 045

The elements x\ and x 2 appear together in a unique block of B. Since the third 
element of that block cannot be xo, * 3 , or xe, each of which appears in another 
block with x\ or x 2, it can be called X4 , with the remaining element of X  to be * 5 .
Completing the bijection specification with

*4 I—» 4 £ 5  I—» 5 

immediately ensures further block preservation

* 1 * 2*4 l—> 124
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Moreover, given that * 0 * 1 * 3  and * 1 * 2 * 4  are blocks, it follows that the third block 
containing * 1  must be * 1 * 5 * 6 - Similarly, the third block containing * 2  must be 
* 2* 3* 5- Since the elements * 3 , * 4 , and * 6  have so far appeared in only two blocks 
each, the seventh block must be * 3 * 4 * 6 . Thus all blocks are preserved by the

R em ark : There is essentially only one (7, 3, l)-design, as established by Propo­
sition 10.2.10, and also only one (9, 3, l)-design. There are two non-isomorphic

on p764 of [CoDi2000a],  ̂  ̂ §

E X E R C IS E S  fo r  S ection  10.2

In each o f the Exercises 10.2.1 through 10.2.6, construct a (v, k, X)-design corre­
sponding to the given values o f v , k, and X.

10.2.1s
10.2.4

(4 .3 .2 )
(5 .4 .3 )

10 .2.2

10.2.5
(5 ,3 ,3 )
(6 ,3 ,2 )

10.2.3
10 .2.6

(6 ,3 ,4 )
(7 ,3 ,2 )

In each o f the Exercises 10.2.7 through 10.2.12, prove that there is no (v, k, X)-design 
corresponding to the given values o f v , k, and X.

10.2.7
10.2.10

(5 .4 .2 )
(8 .4 .2 )

10 .2.8

10.2.11
(8 .3 .1 )
(8 .5 .2 )

10.2.9
10.2.12

(8 .4 .1 )
(9 .4 .1 )

For each o f the Exercises 10.2.13 through 10.2.21, where

are the sets o f blocks o f the B IB D ’s A , B, and C, respectively, construct the param­
eter values v, b, r, k, and X for the product o f the two specfied B IB D ’s.

10.2.13s A x  A  10.2.14 A x B  10.2.15 A x C
10.2.16 B x A  10.2.17 B x B  10.2.18 B x C
10.2.19 C x A  10.2.20 C x B  10.2.21 C x C

For each o f the Exercises 10.2.22 through 10.2.30, where

are the sets o f blocks o f the B IB D ’s A , B, and C, respectively, construct the product 
o f the two specfied B IB D ’s.

10.2.22s A x  A
10.2.25 B
10.2.28 C :

: A  
A

10.2.23
10.2.26
10.2.29

A  
B : 
C >

10.2.24
10.2.27
10.2.30

A x C
B x C
C x C
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10.3 CLASSICAL FINITE GEOMETRIES

Many properties of the Euclidean spaces Mn can be derived purely from a short 
list of axioms about points and lines, without consideration of distance or angles, 
and without consideration that a line in Mn contains infinitely many points. In this 
spirit, various kinds of combinatorial designs on a finite set of elements have been 
called finite geometries. The elements of their domains are traditionally called 
the points o f  the geom etry, and their distinguished subsets are called the lines 
o f  the geom etry. The following two general axioms are standard for geometries.

G I. Two distinct points are contained in at most one line.
G2. Two distinct lines intersect in at most one point.

NOTATION: In view of Axiom GI, we may denote the line containing two distinct 
points u and v by uv.

TERMINOLOGY: Two disjoint lines of a geometry are often said to be parallel lines. 

DEFINITION: The incidence matrix o f  a geom etry  (X , L) with p points

and I lines

is the p x I matrix

M { x , L ) [ i , j ]  =  { JL (J otherwise
A geometry is commonly specified by its incidence matrix.

E xam ple  10.3.1: Figure 10.3.1 illustrates a geometry with a drawing of its four 
points and its six lines.

Figure 10.3.1 A  g eom etry  w ith  4 p o in ts  and  6 lines

DEFINITION: The dual o f  a geom etry  (X , L) is the geometry ( X * , L*) with

whose incidence matrix is the transpose of the incidence matrix of (X , L). (In view 
of the reciprocity of Axioms GI and G2, the dual design satisfies both of them.)

  



Section 10.3 Classical Finite Geometries 561 

E x a m p l e 10 .3 .1 , cont inued: Figure 10.3.2 illustrates the dual of the geometry 
specified by Figure 10.3.1. 

Figure 10.3.2 T h e dual g e o m e t r y has 6 p o i n t s a n d 4 l ines . 

The Fano Plane 

A design named for the Italian geometer Gino Fano (1871-1952) is the first of 
three widely cited classical geometries tha t we now consider. 

DEFINITION: The Fano plane is defined by the incidence matr ix 

It is depicted in the diagram in Figure 10.3.3, in which the line LQ is represented 
by a circle. 

Figure 10.3.3 T h e Fano p lane . 

We observe that as a design, the Fano plane is precisely the Steiner triple system 
of Example 10.2.7. 
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The Pappus Geometry
A second classical geometry is named for Pappus of Alexandria (c. 300-350 

C.E.), who proved the following theorem of Euclidean geometry.

Theorem of Pappus. Let 0, 1, and 2 be three distinct points on a line L\ and
3, 4, and 5 three distinct points on line L 2 7^ L\, such that there are points o f  
intersection

6 = 04 fi 13 7 = 05 n 23 and 8 = 15 n 24 

Then the points 6, 7, and 8 are colinear.

Figure 10.3.4 The geometry of Pappus.

DEFINITION: The P a p p u s g e o m e tr y  is the following finite geometry

X  =  {0 , 1, 2, 3, 4, 5, 6, 7, 8 }
L  =  {012, 345, 064, 075, 163, 185, 273, 284, 678 }

or any other geometry of the same isomorphism type.

The Pappus geometry has uniform blocksize 3 and uniform replication number 3. 
As in Euclidean plane geometry, no pair of points occurs more than once in a line. 
However, in the Pappus geometry, and unlike Euclidean geometry, some pairs of 
points do not lie on any line. This implies that the Pappus geometry is not a Steiner 
triple system or a BIBD. The Pappus geometry shares the following property with 
Euclidean plane geometry.

Proposition 10.3.1. Let Li be any line o f  the Pappus geometry, and let p be a 
point that is not on that line. Then there is a unique line Lj containing the point 
p and parallel to the line L i.

Proof: The lines of the Pappus geometry are resolvable into three classes of par­
allel lines.

Ci =  { 012 345 678}
C' 2 =  { 064 185 273}
C'3  =  { 075 163 284}

If the given line Li  lies in the class Ck , then choose line Lj  to be the unique line in 
class Ck that contains point p. <C>
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The Desargues Geometry
Another theorem of plane Euclidean geometry is due to Girard Desargues

T h eorem  o f  D esargues. Let 123 and 456 be triangles such that the lines 14, 25, 
and 36 meet at point 0. Let

7 =  13 n 46 8 =  23 n 56 and 9 =  12 n 45

or any other geometry of the same isomorphism type.

In the Desargues geometry, as in the Pappus geometry, there is a uniform blocksize 
of 3 and a uniform replication number of 3. As in Euclidean geometry and the 
Pappus geometry, no pair of points occurs more than once in a block. As in the 
Pappus geometry, and unlike Euclidean geometry, some pairs do not occur on any 
line. Accordingly, it is not a Steiner triple system or a BIBD.

R em ark  1: Observe that Proposition 10.3.1 does not apply to the Desargues 
geometry. In fact, for every line Li in the Desargues geometry, there is a point p 
such that no line containing p intersects the line Li. Such a point p is called a pole 
o f the line L i.

E xam ple  10.3.2: In the Desargues geometry, the point 8 is a pole of the line 014, 
and the point 1 is a pole of the line 568.

R em ark  2: Another interesting property in which Desargues geometry differs 
from Euclidean geometry is that in the Desargues geometry, two lines that are 
parallel to the same line are not parallel to each other.

E xam ple  10.3.3: The lines that are parallel to the line 789 of the Desargues 
geometry are 014, 036, and 025. Observe that any pair of them intersects in the 
point 0.

7

0

DEFINITION: The D esa rg u es  g e o m e tr y  is the following finite geometry 

X  =  {0 , 1, 2, 3, 4, 5, 6, 7, 8, 9 }
L =  {014, 025, 036, 137, 129, 238, 467, 459, 568, 789 }

  



Partially Balanced Designs
DEFINITION: A (v, b, r, k; Ai, A2 ) -P B IB D  (stands for p a rtia lly  ba lan ced  in co m ­
p le t e  b lo ck  d esign ) is a design with v elements and b blocks, in which

(i) each element lies in exactly r blocks;
(ii) each block contains exactly k elements;

(iii) each pair of distinct elements occurs either in Ai or A2 blocks.

Example 10.3.4: The Pappus geometry is a (9, 9, 3, 3; 1, 0)-PBIBD.

Example 10.3.5: The Desargues geometry is a (10, 10, 3, 3; 1, 0)-PBIBD.

EXERCISES for Section 10.3

10.3.1 Which pairs of points do not occur on any line of the Pappus geometry?
10.3.2 Which pairs of points do not occur on a line of the Desargues geometry?

set is XU  B, such that there is an edge joining Xi E X  and Bj E B  whenever Xi E Bj. 

In each o f the Exercises 10.3.3 through 10.3.6, construct the Levi graph for the

10.3.3 The BIBD with B  =  {012, 013, 023,123}.
10.3.4s The Fano plane.
10.3.5 The Pappus geometry.
10.3.6 The Desargues geometry.

X  and an edge joining each pair of points of X  that lie on a line of B.

In each o f the Exercises 10.3.7 through 10.3.10, construct the Menger graph for the

10.3.7 The BIBD with B  =  {012, 013, 023,123}.

10.3.8s The Fano plane.
10.3.9 The Pappus geometry.

10.3.10 The Desargues geometry.

In each o f the Exercises 10.3.11 through 10.3.14, prove that the Menger graph for  
the specified design is vertex-transitive.

10.3.11 The BIBD with B  =  {012, 013, 023,123}.
10.3.12s The Fano plane.

10.3.13 The Pappus geometry.
10.3.14 The Desargues geometry.

564 Chapter 10 Combinatorial Designs
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10.4 PROJECTIVE PLANES

A projective plane is a type of finite geometry, and thus, a type of combinatorial 
design. Toward the end of this section, there is given a method for constructing 
projective planes from 3-dimensional vector spaces. This construction is what mo-

DEFINITION: A p r o je c t iv e  p la n e V  has a domain X , whose elements are called 
points, and a collection of subsets of X  that are called lines, such that the following 
axioms hold:

PP1. For each pair of distinct points, there is exactly one line containing them. 
PP2. Each pair of distinct lines intersects in exactly one point.
PP3. There exist four points, no three of which lie on the same line.

These three simple axioms have many implications.

Some Basic Examples

E xam ple  10.4.1: The Fano plane is a projective plane. This can be verified by 
checking its definition as a design.

difference set S =  {ai , . . . , at~}  C 7hv is a projective plane. Moreover, v =  k 2 — k +  1.

P ro o f: Let i , j  £ 7LV with i <  j . To find a block in B that contains both i and j , 
let ar and as be the unique pair in the difference set S such that as — ar =  j  — i. 
Then the block S +  (i — ar) contains

ar +  (i — ar) =  i and

No other pair from S has difference j  — i, so no other pair can translate to i and 
j  in the same block. Moreover, ar and as translate to i and j  only in the block 
S +  (i — ar). This establishes Axiom PP1.

Next, consider two arbitrary blocks of B, say

There is a unique pair ar , as in the difference set S such that

It follows that the number j  +  as =  i +  ar is the unique point in the intersection

This establishes Axiom PP2.
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To prove the third axiom, let B\ and B 2 be any two blocks. By PP2, they intersect 
in a single point. Since k >  3, there are at least two points x\, x 2 E B\ — B 2 and at 
least two points * 3 , * 4  E B 2 —B\. The four points x\, x 2, * 3 , * 4  satisfy the condition 
o f PP3.
The method of block generation yields v blocks. Thus, when B is represented as a 
(v, b, r, k, A)-BIBD, we have b =  v. Hence, the equation

bk =  rv Prop. 10.2.2(a)

implies that r =  k. Using that fact and the specification A =  1, the equation

further implies that v =  k 2 — k +  1 . <C>

Example 10.4.2: The 9-point Pappus geometry is not a projective plane, since, 
for instance, the lines 012 and 345 do not meet. Some projective planes do satisfy 
the Theorem of Pappus, but some do not.

Example 10.4.3: The 10-point Desargues geometry is not a projective plane, 
since (as observed previously) there are pairs of points with no lines through them. 
Some non-Desarguesian projective planes exist, but most of the familiarly encoun­
tered projective planes do satisfy the Theorem of Desargues.

The Duality Principle for Projective Planes
We observe that Axioms PP1 and PP2 are absolute duals of each other. The 

following proposition establishes a dual to Axiom PP3.

Proposition 10.4.2. In a projective plane V , there exist four lines, no three o f  
which contain the same point.

Proof: By Axiom PP3, there exist four points 0, 1, 2, and 3, no three on the same 
line. By Axiom PP1, there exist lines 01, 12, 23, and 03, as shown in Figure 10.4.1.

Figure 10.4.1 Proving the dual to Axiom  PP3.

By Axiom PP2 none of these lines contains a third point from the set {0, 1, 2, 3}. 
Moreover, since among any three of these four lines, there are two with a common 
point in {0, 1 ,2 ,3 }, it follows from Axiom PP2 that there cannot be some other 
point common to all three. <C>
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Duality Principle. The dual o f  any valid statement about projective planes is 
also a valid statement about projective planes.

Proof: Axioms PP1 and PP2 are dual to each other, and Proposition 10.4.2 is 
dual to Axiom PP3. 0

Projective Planes as BIBD’s
Lemma 10.4.3. For any two distinct lines L and TJ o f  a projective plane V , there 
is a point x such that x ^ L U L '.

Proof: Let y be the intersection of the lines L and L ', let 0,1 6 L — y and 
2, 3 £ L' — y, as shown in Figure 10.4.2.

Figure 10.4.2 A  point x not in the union of two lines.

Let x be the intersection of the lines 02 and 13. Since 0 is the unique interesction 
point of 02 and L, it follows that x ^ L. Since 3 is the unique interesection point 
of 13 and L ' , it follows that x ^ L!. <£>

Proposition 10.4.4. Any two lines o f  a projective plane V  have the same number 
o f  points.

Proof: Let L and L' be two distinct lines. By Lemma 10.4.3, there is a point 
x ^ L U L '. Now suppose that

and that, for j  =  1 , . . .  ,k  — 1 , the intersection of the line xyj with line V  is the 
point zj, as in Figure 10.4.3.

^k-1 |^i

L

Figure 10.4.3 A  bijection between two lines.

Then none of the points Zj, with j  =  1, 1, coincides with yo, because the
lines L and xyj meet only at yj. If Zj =  yo, then line xyj would also meet line L
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at ?/0 ; which would be a second point in their intersection, since t/y t/o- Moreover, 
if i zjz j ,  then the lines xyi and xyj are distinct, and then meet only at x. If 
Zi =  Zj, then they would also meet there, contradicting Axiom PP2. Thus, the 
correspondence yi 1—> Z{ is a bijection of L — yo to L' — t/o-

DEFINITION: The order o f  a projective plane is defined to be one less than its 
blocksize as a design. (Significantly, the order is not defined to be the number of 
elements.)

Corollary 10.4.5. In a projective plane o f  order n, every point lies on exactly 
n + 1  lines.

Proof: Using the definition of order just given, this assertion is simply the dual 
o f Proposition 10.4.4. <C>

TERMINOLOGY: The set of all lines that meet at a point x o f a projective plane is 
called the pencil o f  lines at x. (See Figure 10.4.4).

Figure 10.4.4 The pencil of lines at point x.

Proposition 10.4.6. In a projective plane V  o f  order n, the number o f  points is

n 2 +  n +  1  

Proof: Let x be any point, and let

^ 0  j Ll j • • • j Ln

be the pencil o f lines that meets at x. Since every point of V  lies on some line 
containing x, by Axiom PP1, the union of these lines is the entire domain of V. 
Since no two of these lines intersect anywhere except x, by Axiom PP2, it follows 
that the number of points in V  equals 1 for x plus n points on each of the n + 1  
lines unique to that line, that is,

1 +  n(n + 1 )  =  n2 +  n +  1

points in all. <C>

Corollary 10.4.7. In a projective plane V  o f  order n, the number o f  lines is

n2 +  n +  1

P r o o f :  This is the dual o f Proposition 10.4.6. <C>
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T h eorem  10.4.8. A projective plane o f  order n is a BIBD with parameters 

P ro o f: This summarizes the results above. <C>

Constructing Projective Planes
Much of the elementary theory of finite vector spaces is the same as for real vec­

tor spaces. The row-reduction algorithm is the key to establishing some additional 
facts to be used in the construction of some projective planes. After presenting 
some of the basics, we will use various such results from elementary linear algebra 
withour proof.

f r o m  A p p e n d ix  A 3 :

• The vector space 1L3 , with p prime, is the set of triples (x\, x 2, * 3 ) (called 
points) in Zp under vector addition

+  V1 , * 2  +  J/2, * 3  +

and scalar multiplication

cx 2,

• A line in the finite vector space 7Lp is the set of all scalar multiples of a non-zero

P ro p o s it io n  10.4.9. Every non-zero point 
in a unique line o f  /

* 2 , o f  the vector space ZL lies

■

P ro o f: Certainly, (xi,  x 2, * 3 ) lies in the line comprising all o f its own scalar mul­
tiples. Since the modulus p is prime, every non-zero scalar in Xp is a multiple 
modulo p o f any other scalar. It follows that any line containing (xi,  x 2, * 3 ) must 
be that same line. <C>

C oro lla ry  10.4 .10. The number o f  lines in the vector space 1L3  is p 2 +  p +  1.

P ro o f: Clearly, the number of non-zero points in Z 3 is p3  — 1. Since each line 
contains p — 1 non-zero points, and since two distinct lines meet only at (0, 0, 0), 
it follows from the Rule of Quotient (§0.3) that the number of lines is

p3  — 1 

p — 1
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A plane in the finite vector space Xp is the set of sums of the scalar multiples of 
two points not on the same line.

DEFINITION: The p r o je c t iv e  g e o m e tr y  P
lines of the vector space Z i5 and as its lines the set of all planes of '7?3

,p) has as its points the set of all 

V

Example 10.4.4: In Figure 10.4.5, the seven points of the projective geometry 
P G (2, 2) are shown as lines through the origin 000 in ■

Figure 10.4.5 The projective geometry P G (2,2).

Proposition 10.4.11. The projective geom etry PG(2,p)  is a projective plane o f  
order p.

Proof: Axiom PP1 holds because two distinct lines in the vector space deter­
mine a unique plane. Axiom PP2 holds because two distinct planes in Z 3 meet in 
a line. Axiom PP3 holds because each combination of three of the following four 
vectors

(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 1) 

lies on a line of Z 3, is a linearly independent set, from which it follows that they
and the lines they generate cannot all lie in the same plane of Z  . Hence,
is a projective plane. Since a plane in Zp has p 2 — 1 non-zero points and a line has 
p — 1 non-zero points, it follows that the number of points in a line of PG(2,p)  is

p2 -  1 
p -  1

Thus, its order as a projective plane is p. 0

EXERCISES for Section 10.4

10.4.1s Construct a list of all the points of the projective geometry P G { 2, 2). 

10.4.2s Construct a list of all the lines of the projective geometry P G ( 2, 2).
10.4.3 Construct an isomorphism between P G ( 2, 2) and the Fano plane.
10.4.4 Construct a list of all the points of the projective geometry P G ( 2, 3).
10.4.5 Construct a list of all the lines of the projective geometry P G ( 2, 3).
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10.4.6 Construct an isomorphism between PG(2, 3) and the BIBD generated by 
the difference set {0, 1, 3, 9}. 

10.4.7 Prove that a BIBD generated by a difference set is a projective plane. 

10.5 AFFINE PLANES 

An affine plane is another kind of finite geometry. There is a close correspon­
dence between affine planes and projective planes. 

DEFINITION: An affine plane A has a domain X, whose elements are called points, 

and a collection of subsets of X tha t are called Unes, such that the following axioms 

hold: 

A P I . For each pair of distinct points, there is exactly one line containing them. 

AP2. For any given line Li and any point x not on Li there is a line through x 
tha t is parallel to Li. 

AP3. There exist four points, no three of which lie on the same line. 

E x a m p l e 10 .5 .1 : The following geometry, seen previously in §10.3, is an affine 
plane called AG(2, 2). The name is explained later in this section. 

Figure 10.5.1 T h e affine p lane A G ( 2 , 2 ) . 

Axioms A P I and AP3 are easily verified for AG(2, 2) either from the incidence 
matr ix or from the diagram. To verify Axiom AP2 from the drawing, one recognizes 
that lines LQ and Ls are parallel, in the sense of finite geometry, even though they 
cross each other in the drawing. 

E x a m p l e 10 .5 .2: The Fano plane is not an affine plane. In general, a projective 
plane has no pair of parallel lines. Thus, it cannot satisfy Axiom AP2. 

E x a m p l e 10 .5 .3: We observe that lines of the Pappus geometry can be parti­
tioned into three cells of three lines each, as represented by the three columns to 
the left of Figure 10.5.2, such that within each cell, each point of the geometry 
occurs exactly once. 
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[ 012, 046, 057 
L =  I 345, 158, 136

I 678, 237, 248

Figure 10.5.2 the geometry of Pappus.

If a point of the Pappus geometry does not lie on a given line, then it lies on another 
line in the same column as the given line, which is parallel to the given line. Thus, 
Axiom AP2 holds. However, the Pappus geometry does not satisfy A PI, so it is 
not an affine plane.

into cells such that the lines within each cell partition the domain.

Proposition 10.5.1. A finite geom etry satisfies Axiom  AP2 if  and only if  it is 
resolvable. 0

The Affine Plane AG(2,p)

DEFINITION: An affine lin e  in the finite vector space Z 2 is the set of p points
produced by adding a fixed pair ( c i , 

thereby obtaining a set of the form

to every point on a line of ,

+  C l ,  2 x 2  +  C 2) ,  . . .

+

This is conceptualized like adding a fixed vector to every point on a line through
the origin in the real plane 
illustrated in Figure 10.5.3.

", thereby translating the line to a parallel line, as

origin

Figure 10.5.3 An affine line in the plane

An alternative perspective is to choose numbers a, 6 E Zp such that ax 1 +  bx2 =  0, 
so that the vector (a, b) is normal to the line K . Then the affine line L is the line

  



normal to (a, b) that contains the point (ci, C2 ), i.e.,

Example 10.5.4: Adding the fixed pair (1, 2) in Z| to the line 

yields the affine line

We observe that 3 • 1 +  4 • 3 =  0 and that 3 • 1 +  4 • 2 =  1, so the affine line L is also 
specifiable as the set of pairs (yi, 2/2 ) such that 3yi +  4^2 =  1-
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DEFINITION: The affine 7(2, p) is the geometry whose points are the
points of the vector space 7L and whose lines are the affine lines of

Example 10.5.5: In Figure 10.5.4, each of the four classes of parallel lines is 
represented by a different graphic -  thin solid curve, thin dashed line, bold solid 
curve, and bold dashed line.

It may be observed in Figure 10.5.4 that every affine line in A G (2, 3) has the same 
number of points -  representing a common blocksize of k =  3 as a design, and that 
each pair of points occurs in exactly one affine line -  representing a common index 
of A =  1 as a design. These properties are verified shortly for every affine geometry

Proposition 10.5.2. The affine geom etry A G (2, p) is an affine plane. 

affine line
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contains both (a 
such affine line.

j  =  0) and (t/i, j  =  1), and it is the only

): Suppose that the affine line

does not contain the point (t/i, Then the affine line

is parallel to L and contains (t/i, j/2 ) -

(0,0), (0,1), (1,0), and (1,1)

, p) is a (p2, p, 1 )-design, and, thus, a

lie on the same affine line in Z 2. <C>

P ro p o s it io n  10.5.3. The affine plane A  
(p2, p 2 +  p, p +  1, p, 1)-BIBD.

P ro o f: The number of points in 7L2 is p2, and thus the number of points in 
AG(2,p)  is p2. Moreover, the number of points in every affine line in 7L2, and, thus,

Affine Planes from Projective Planes
Suppose that a particular block B  is deleted from a combinatorial design B, 

and that each point of B  is deleted from the domain. This is called a restriction 
of the design B to the complement of block B. Then the incidence matrix of the

column B  and also deleting each row corresponding to an element of B.

E xam ple  10.5.6: If we delete column L 0 and rows 1,2,  and 4 from the incidence 
matrix for the Fano plane

Ln L 1 Lo Lp, L 4 Lk Le,

t  0 
1
1
0
1
0

\ 0

1 \ 
0 
1 
0 
0 
0 
1 /

then the rest incidence matrix is
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L i L 2 L3  L 4  L 5 Lq 
/  0 0 1 0 1 1

0 1 1 1 0  0 
1 1 0  0 1 0  

\ 1 0 0 1 0 1

Referring back to Example 10.5.1, we recognize that the corresponding design is

T h eorem  10.5.4. The geom etry Q resulting from restricting a projective plane 
PG(2,p)  to the complement o f  any given line L is an affine plane.

P ro o f: By Axiom PP2, the line L intersects every other line of PG(2,p)  exactly 
once. Since every line of PG(2,p)  has p +  1 points, it follows that every line of Q 
has p points.

line of PG(2,p) ,  by Axiom PP1. This implies that each pair of points of Q lies on 
exactly one line.

meeting at Xj partitions by Axiom PP1. By Axiom PP2, none of
the points on line L is on any line of this pencil other than line L. Thus, after x 
is deleted from the remaining lines of that pencil, the resulting subsets partition 
the set PG(2,p)  — L, which is precisely the domain of the geometry Q. Thus, the 
lines of Q can be partitioned into p +  1 sets of p points each. In other words, Q is 
a resolvable geometry, from which it follows (by Proposition 10.5.1) that it satisfies 
Axiom AP2.

(Axiom AP3): Choose the first two points w and x o f the needed four from any 
line of Q. Then choose two other points y and z from any parallel line. Any subset 
of three points from this foursome must include either the pair w and x or the pair 
y and z. Since there is only one line through either pair, it follows from Axiom API 
that no line can go through three of these points. <C>

Projective Planes from Affine Planes
Now suppose that the p +  1 classes of parallel lines in AG(2,p)  are

Co ,  C i ,  . . . ,  Cp

Suppose further that p +  1 distinct new points

OO0, &Ql f • • • , OOp

are added to the domain of AG(2,p) ,  that the point 0 0 j  is added to each of the 
lines in class C ,- , and that a new line

is added.
TERMINOLOGY: We adopt the name projective extension for each artifact of the 
construction just described.
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from projective extension o f  the affineT h eorem  10.5.5. The geom etry CJ resul 
plane AG(2,p)  is a projective plane.

P ro o f: Since AG(2,p)  has p2 points and p2 -\-p lines of p points each, the geometry 
Q has p2 +  p +  1 points and p2 +  p +  1 lines of p +  1 points each.
(Axiom PP1): If two points of the geometry Q are already in AG(2,p) ,  then they 
are on some line of AG(2,p) ,  and accordingly, they lie on the extension of that line 
in Q. If the two points are oo* and o o  j , then they lie on the line L00 . If one point x is 
from AG{2,p)  and the other is oo  j,  then since each of class Cj  partitions AG(2,p) ,  
the point x lies on some line of class Cj,  and thus on the extension of that line in 
geometry Q.

(Axiom PP2): The line L^  evidently meets every other line of Q. Moreover, the 
intersection of two lines not in the same parallel class of AG{2,p)  is a single point, 
by Axiom API ,  from which it follows that their extensions meet only at that same 
point. If two lines of AG(2,p)  are in the same parallel class Cj,  then their extensions 
meet only at oo  j.

If four points satisfy Axiom AP3 in AP(2,p) ,  then those same fourLXiom
points satisfy Axiom PP3 in Q.

E xam ple  10.5.7: Figure 10.5.5 shows how the projective plane P G ( 2, 3) with 13 
points can be constructed by extending the 9-point affine plane A G ( 2, 3).

Figure 10.5.5 E xten d in g  A G (2, 3) to

E X E R C IS E S  fo r  S ection  10.5

10.5.1s Construct a list of all the points of the affine geometry AG(2,  2).
10.5.2s Construct a list of all the lines of the affine geometry A G ( 2, 2).
10.5.3 Calculate the replication number r o f the affine geometry A G { 2, 2).
10.5.4 Construct a list of all the points of the affine geometry A G ( 2, 3).
10.5.5 Construct a list of all the lines of the affine geometry A G ( 2, 3).

10.5.6 Calculate the replication number r o f the affine geometry A G { 2, 3).
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GLOSSARY
abstract Latin square: representation of a Latin square as a set of triples.
affine geometry AG(2,p) :  the finite geometry whose points are the points of 

the vector space and whose lines are the affine lines of Zp2.

affine line in Zp2: the set of points obtained by adding a fixed vector (ci, c2) to a 
one-dimensional subspace of Zp2.

affine plane: a finite geometry such that the following three axioms hold:
A PI. For each pair of distinct points, there is exactly one line containing them.
AP2. For any given line Li and any point x not on Li there is a line through x 

that is parallel to Li .

AP3. There exist four points, no three of which lie on the same line.
balanced block design: a regular design such that every pair of objects appears 

in the same number of blocks.

BIBD : balanced incomplete block design.

block design: a combinatorial design with no ordering of the blocks or within 
the blocks.

blocksize: the cardinality of a block of a regular block design.

combinatorial design: any mathematical structure involving a domain and a 
set of subsets of that domain.

complete block: a block that contains every object of the domain.
conjugacy operation on a Latin square: on an abstract Latin square, a permu­

tation on the coordinates within each of its triples; otherwise, the Latin square 
corresponding to the effect of such an operation on its abstract counterpart.

covalence of a pair of elements of a block design: the number of blocks in 
which the pair lies; for a BIBD, this is the index.

Desargues geometry: a classical finite geometry with ten points and ten lines.

dual of a geometry (X , B ): the geometry whose incidence matrix is the trans­
pose of the matrix for (X , B ).

Fano plane: a classical finite geometry with seven points and seven lines; equiv-

finite geometry: a combinatorial design (X , C ), in which X  is said to be a set 
o f points and C a set of lines, such that

G l. Two distinct points are contained in at most one line.

G2. Two distinct lines intersect in at most one point.

incidence matrix of a geometry ( X , C ) :  a matrix with a row for each point 
Xi and a column for each line L j , such that

i j  r * f 1 if Xj £ L 7
-  l o  otherwise

  



578 Chapter 10 Combinatorial Designs

incidence structure: a discrete structure involving two sets X  and Y  and a 
rule for the incidence of a member of x and a member of y; if the value of the 
incidence is restricted to be either 0 or 1, then the members of the set Y  can be 
represented as subsets of X .

incomplete block design: a design with incomplete blocks.

index of a BIBD : the number A of blocks in which each pair of objects appears.

X  —> Y  such that each block of B is mapped onto a block of C.

isotopy of Latin squares: a permutation of the rows, a permutation of the 
columns, or a permutation of the symbol set, or any iterated composition of 
three such operations.

Latin square: a n » x n  array of n symbols, arranged so that each symbol appears 
exactly once in each row and exactly once in each column.

B,  with an edge joining Xj E X  to Bj  E B  whenever Xi E Bj.  

line in a finite vector space: a 1-dimensional subspace, 

lines of a geometry (X,  L }: the members of L.

main class isotopic Latin squares: two Latin squares such that one is isotopic 
to a conjugate o f the other.

two vertices are joined if they are contained in a block of B.

normalized Latin square: an n x n Latin square whose initial row and initial 
column both give the elements of 7Ln in the order 0, 1, . . . ,  n — 1.

order of a projective plane: one less than the cardinality of a line.

orthogonal Latin squares: Latin squares A  =  and B  =  (bij)  such that
the n2 ordered pairs (a i j , b i j ) are mutually distinct.

Pappus geometry: a classical finite geometry with nine points and nine lines.

parallel lines: two lines with no points in common.

partially balanced incomplete block design: a combinatorial design that is 
in most ways like a BIBD, except that the number of blocks in which a pair of 
objects occurs may have either of two values, Ai or A2 , rather than only one 
possible value.

PB IB D : partially balanced incomplete block design.

pencil of lines at a point x: the set of all lines that contain x.

perfect difference family: generalization of a perfect difference set.

perfect difference set of index A: a set of numbers S =  {a 1 , a2, . . . ,  a 
in 7Ln such that each non-zero number in 7Ln occurs exactly A times in the list
(x\j — a\ aj | a\, aj E S, 1 ^  j ) .

plane in a finite vector space: a 2-dimensional subspace.
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pole of a line L in a geometry: a point p such that no line through p intersects 
L.

projective extension: the construction by which an affine plane is extended to 
a projective plane.

projective geometry PG(2,p) :  has as its points the set of all lines of the vector 
space Z 3 and as its lines the set of all planes of Z 3.

projective plane: a finite geometry with the following properties:
PP1. For each pair of distinct points, there is exactly one line containing them. 
PP2. Each pair of distinct lines intersects in exactly one point.

PP3. There exist four points, no three of which lie on the same line.
regular block design: a block design with common blocksize, and in which 

each element appears in the same number of blocks.
replication number in a BIBD: the number of blocks in which each element 

occurs.

resolvable geometry: a finite geometry (X,  L } whose lines can be partitioned 
so that within each cell, the lines partition the domain X .

restriction of the design: the design that results from deleting a set of points 
from the domain and from all the blocks.

scalar multiplication: multiplying every component of a vector by a scalar 
from the field.

Steiner triple system: a (v, 3, l)-design.

transpose of a matrix: the result of reflecting the matrix through its main 
diagonal, so that its rows become columns and vice versa.

(v, b, r, k, A)-design: a BIBD with v points, b blocks, replication number r, block­
size k, and index A.

(v, k, A)-design: a BIBD with v points, blocksize k, and index A.

valence of an element of a block design: the number of blocks in which it 
lies.

vector addition: adding two vectors over the same field, coordinate by coordi­
nate.

p o in t s  o f  a  g e o m e t r y  (X,  L }: the members o f L.
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A1 Relations and Functions
A2 Algebraic Systems
A3 Finite Fields and Vector Spaces

A1 RELATIONS AND FUNCTIONS

DEFINITION: A binary relation R  from a set U to a set V  may be regarded 
intuitively as a predicate on arguments u E  U and v E  V  that is true or false, with 
the notation u R v  indicating true, i.e., that u is related to v. Set-theoretically the 
relation R  may be represented as a subset of the cartesian product U x F , in which 
(u,v)  E  R  means u is related to v.

Some of the most important relations are from some set to itself.

E xam ple  A l . l :  A binary relation on the positive integers is defined by the rule

m \ n  if and only if — is an integer 
ra

For instance, 7 \42. One says, “7 divides 42” .

E xam ple  A 1 .2 : For any positive integer ra, the relation of arithmetic congruence 
modulo ra on all the integers is defined by the rule

b =  a modulo ra if and only if m \ b  — a

For instance, 25 =  3 modulo 11. One says, “25 is congruent modulo 11 to 3” or “25 
is congruent to 3 modulo 11” .

Equivalence Relations

DEFINITION: A binary relation R  from a set U to itself is an equivalence relation 
if it has the following three properties:

• reflexivity: uRu, for all u E  U .

• symmetry: if u\Ru2 then U2 RU1 , for all ui, u2 E  U .

• transitivity: if u\Ru2 and U2 RU3  then uiRus,  for all u 1 , U2 , M3  E  U .
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Example A 1.3: Congruence modulo m on any subset of the integers is reflexive, 
since the quotient is the integer 0. It is symmetric, since, if the quotient 
is the integer k, then the quotient is the integer —k. To show it is transitive, 
suppose that a =  b modulo ra and b =  c modulo ra. Then there are integers r and 
s such that

a — b d  ̂— c
m m

It follows that
a — c a — b b — c 

m m m
Thus, a =  c modulo ra.

Any binary relation R  on a set U can be represented by a directed graph whose 
vertex set is U . If aRb, then there is an arc from a to b.

Example A 1.3, continued: Figure A l . l  shows the directed graph for congruence 
modulo 3 the subset {0, 1, . . ., 8}.

Figure A1.1 Digraphic representation of congruence modulo 3

Proposition A l . l .  Let G be the digraph that represents a relation R on a set U .

• R is reflexive iff there is a self-loop at every vertex.

• R is symmetric iff for every arc, there is an arc with opposite direction joining 
the same two vertices.

• R is transitive iff whenever there is an arc from a vertex u to a vertex v and 
also an arc from vertex v to a vertex w, there is an arc from u to w. <C>

Example A 1.3, continued: Observe that the digraph of Figure A l . l  has the

Example A 1.4: The relation divides is reflexive, since the quotient ^ is the inte­
ger 1. To show it is transitive, suppose that a\b  and b\c. Then there are integers 
r and s such that ^

a b
It follows that

c c b 
a b a

However, it is not an equivalence relation, because, although it is reflexive and 
transitive, it is not symmetric. For instance, 3 divides 6, but 6 does not divide 3.
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Partial Orderings

DEFINITION: A binary relation R  from a set U to itself is a partial ordering if it 
has the following three properties:

• reflexmity: uRu, for all u E U .

• anti-symmetry: if u\Ru2 and u2Ru\ then u\ =  u2, for all u\,u2 E U.

• transitivity: if u\Ru2 and u2Rus then uiRus,  for all ui , u2,ii3  E U.

Example A 1.4, continued: Divides is anti-symmetric on the positive integers, 
since, if the quotient ^ is an integer, then a <  b, and if the quotient | is also an 
integer, then b <  a. Thus, if both quotients are integers, then a =  b. Since it is 
reflexive, anti-symmetric, and transitive, divides is a partial ordering.

Example A 1.5: The relation congruence modulo m is not a partial ordering, 
because it is not anti-symmetric.

Properties of Some Functions

DEFINITION: A function  from  a set U to  a set V  is a relation  from  U to  V  such 
that for each u E U , there is a unique v E V, such that (u,v)  E U x  V .

• The set U to whose elements a function f  : U V  assigns values is called the 
domain.

• The set V  in which the values are assigned is called the codomain. 

DEFINITION: A function /  : U —> V  is one-to-one  (or injective) if for all u\,u2 E U,

DEFINITION: A function /  : U —> V  is onto  (or surjective) if for all v E V,

DEFINITION: A function /  : U —> V  is bijective  if it is both one-to-one and onto.

Any function /  : U —?> V  can be represented by a digraph whose vertex set is 
U U V. There is an arc from u to v if and only if f (u)  =  v.

Proposition A 1.2. Let D be the digraph that represents a function f  : U —> V. 
Then

• /  is one-to-one if  and only if  no vertex v E V is the head o f  more than one arc 
o f  the digraph D.

• /  is onto if  and only if  every vertex v E V is the head o f  at least one arc o f  the 
digraph D.

• /  is bijective i f  every vertex v E V is the head o f  exactly one arc o f  D. <C>
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A2 ALGEBRAIC SYSTEMS

T h e  a lgeb ra ic  system  o f m ost frequent concern in  the a p p lic a tio n  o f  co m b i­
n a to r ia l m e thods is the set o f  in tegers, a lo ng  w ith  the op era tion s  o f  a d d it io n  and 
m u lt ip lic a t io n .

N O T A T IO N : T h e  set o f  integers is denoted 7L. T h e  co rresp on d in g  a lgeb ra ic  system  
is fo rm a lly  denoted ( 7L, + ,  •}. H ow ever, in  p ra ctice , b o th  the a lgeb ra ic  system  and 
its  d o m a in  are fa m ilia r ly  denoted b y  7L.

NOTATION: T h e  greatest common divisor o f tw o  num bers is denoted gcd ( m ,n ) .  
Som etim es the gcd o p e ra to r is a p p lied  to  m ore  th a n  tw o  num bers at a tim e .

Binary Operations

DEFINITION: A  binary operation  on a set U is a fu n c tio n  fro m  the cartes ian  
p ro d u c t U x  U to  the set U itse lf.

DEFINITION: In  the present c o n te x t, an algebraic system  m eans a n o n -e m p ty  set 
to ge th er w ith  one o r m ore  b in a ry  op era tion s.

• T h e  set U is ca lled  the domain o f th a t a lgeb ra ic  system .

Example A 2.1: A d d it io n  and m u lt ip lic a t io n  are b in a ry  op era tion s  on the in te ­
gers, since the resu lt o f  a d d in g  o r m u lt ip ly in g  tw o  integers is an in teger.

NOTATION: T h e  operations o f  ad d ition  and m u ltip lica tion  are usually represented 
in infix form, i.e.,

x +  y or x ■ y 

resp ective ly , ra th e r th a n  the prefix form  +  (x, y) or ■ (x,y) .

Integers Modulo n

DEFINITION: T h e  m od operator  is the a r ith m e tic  ru le  th a t assigns to  a n on ­
n egative  in teger x (ca lled  the moduland ) and a p o s itiv e  in teger n (ca lled  the 
m odulus) the n um b er

x m o d  n

th a t is the rem a in d e r o f  o p e ra tio n  o f  d iv id in g  * b y  n.

EXTENSION OF DEFINITION: F o r a n egative  m o d u la n d  x, the fu n c tio n

x i—y x m o d  n

is extended  fro m  the d o m a in  N  to  the d o m a in  7L in d u c tiv e ly , b y  the ru le

x m od n =  (x +  n) m od n [A.2.1)
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Example A 2.2: —5 mod 3 =  —2 mod 3 =  1 mod 3 =  1. More generally, the 
following table illustrated the periodicity of the mod operator.

X . . .  —7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 • • •
x  mod 3 • • • 2 0 1 2 0 1 2 0 1 2 0 1 2 0 • • •

Proposition A 2.1 . Let x be a negative integer. Then

x mod n =  n — (|*| mod n) [A .2.2)

Proof: The proof is by induction. Details are omitted. <C>

Example A 2.3 : For instance,
—5 mod 3 =  3 — (| —51 mod 3)

=  3 — (5 mod 3)

Remark: The mod operator is now used to define an algebraic system called the 
integers modulo n. In both concepts, which are clearly distinct, taking the remainder 
o f a division has a fundamental role.

DEFINITION: The domain of the algebraic system (with n >  2) known as the inte­
gers m odulo n, denoted Zn, is the set of numbers

{0 , 1, . . . ,  7 1 - 1 }

There are two binary operations (+ ) and (•) on Z „, given by the rules
b +  c =  b +  c mod n 

b ■ c =  b ■ c mod n
In other words, in the algebraic system if adding or multiplying two numbers as 
usual for integers happens to exceed n — 1, then divide by n and use the remainder 
as the result of the operation.

Associativity and Commutativity
In the rest of this chapter, we adopt the symbol *  as a generic binary operation, 

to be written in infix form.

DEFINITION: A binary operation *  on a set U is an associative operation  if
(u v) *  w =  u -k (v id) (' i u , v , w £ U )

Example A 2.3 , continued: Addition and multiplication are both associative 
operations on the integers and also on the integers modulo n.

DEFINITION: A binary operation *  on a set U is a comm utative operation  if
u -k v =  v ~k u (\/u,v£U)

Example A 2.3 , continued: Addition and multiplication are commutative oper­
ations on the integers and also on the integers modulo n.

  



Identity Element

D E F I N I T I O N : An element e E  U is the identity elem ent with respect to a binary 
operation if

There is at most one identity element with respect to a given binary operation.

Example A 2.3, continued:

• The number 0 is the additive identity of the integers and also the additive 
identity of the integers modulo n.

• The number 1 is the multiplicative identity of TL and also the multiplicative 
identity of the integers modulo n.

Inverse Elements

D E F I N I T I O N :  Suppose that the set U has an identity e with respect to a binary 
operation ■*•, and let u E  U . An element m_1 is the tnver.se o f u with respect to ~k if

u~1 ~ku =  =  e

There is at most one inverse for an element with respect to a given binary operation.

Example A 2.3, continued:

• Every integer n has —n as its additive inverse.
• The number 1 is the only integer whose multiplicative inverse is an integer.

• In the set of positive rational numbers, every element ^ has the multiplicative 
inverse

p

• Some numbers have multiplicative inverses in 7Ln. For instance, 11 is the inverse 
o f 5 in Zi8, since

11-5 =  55 =  1 mod 18 

It is proved in §6.4 that a number b has a multiplicative inverse modulo n if and

Groups

D E F I N I T I O N :  An algebraic system (U, ■*■) is called a g ro u p  if it has the following 
properties:

the operation is associative.
there is an identity element.

every element of U has an inverse.
If is commutative, then (U, ■*■) is called a commutative group or an abelian group. 
In this case, it is also commonly called an additive grou p , and its operation is

586 Appendix
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written as addition, using the operational symbol + . Moreover, the additive identity 
is typically called z e r o  and denoted 0.

Example A 2.3, continued:

• The integers are a group under the operation of addition. They are not a group 
under multiplication, because most integers do not have multiplicative inverses.

• The positive rationals are a group under multiplication.

Rings

DEFINITION: An algebraic system (U, + , •) is called a r in g  if it has the following 
properties:

the system (U, + ) (ignoring •) is an additive group, 

the operation x  is associative.
z  ■ (x +  y) =  z  ■ x +  z  ■ x, for any x,y,  z £ U . We say that the operation (•) 
distributes over the operation (+ ).

The operation (•) is typically called m u ltip lica tion .

Example A 2.3, continued:

• The integers are a ring under the operations of addition and multiplication, as 
are the integers modulo n. In both cases, we commonly represent the multipli­
cation operation by juxtaposition, that is,

ab means a ■ b

• In some rings, including TL and 7Ln, multiplication is commutative and the 
number 1 serves as the multiplicative identity. No number except 1 or —1 has 
a multiplicative inverse in TL.

Example A 2.4: The 2 x 2  real matrices are a ring, whose multiplication (i.e., 
matrix multiplication) is non-commutative. A square matrix has a multiplicative 
inverse if its determinant is non-zero.

Fields

DEFINITION: A field  is a ring with commutative multiplication and a multiplicative 
identity, such that every non-zero element has a multiplicative inverse.

Example A 2.5:

• The rational numbers Q  are a field.

• The real numbers M are a field.
• The complex numbers C are a field.
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E xam ple  A 2 .6 :
• The ring Z2 is a field, since the number 1 is its own multiplicative inverse.
• The ring Z 3  is a field, since both 1 and 2 are their own inverses.

• The ring Z  ̂ is a field since

Since, according to §6.4, every number r such that gcd (r, n) =  1 has a multiplicative 
inverse in Zn, it follows that for prime p, the ring Zp is a field.

k-Tuples of Numbers

DEFINITION: The direct sum Zni ®  Z „ 2 of the additive groups Zni and Z „ 2 is a 
group whose domain is the set of 2-tuples

| (r, s) r £ Zn i, s £ Z „ 2J 

Its operation is coordinate-wise addition. That is,

(r, s) +  (r', s') =  (r +  r' mod n 1 , s +  s' mod n2)

E xam ple  A 2 .7 : In Z 3  (B Z 4  , the elements are

(0,0) (0,1) (0,2) (0,3)
(1.0) (1,1) (1,2) (1,3)
(2.0) (2,1) (2,2) (2,3)

Some examples of addition are

( 1 , 3 ) +  (2, 2) =  (0,1)
( 1 , 1 ) +  (2, 3) =  (0,0)

R em ark : The direct sum construction can be iterated

Zni ®  Zn2 • • • ®  Znk

to fc-tuples of numbers, with each coordinate having its respective modulus. All 
these direct sums are groups.

NOTATION: If every modulus over all k coordinates is the same number r, then the 
group may be denoted Zrk.
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Generators for an Algebraic System
DEFINITION: An element x is an additive generator  for 7Ln if every number r in 
7Ln can be written as an iterated sum

Example A 2.8: The number 3 is an additive generator for Z4 0 , but the number
2 is not. Whereas 3 generates the complete sequence

3 6 9 2 5 8 1 4 7 0
(where 6  =  3 +  3, 9 =  3 +  3 + 3 , 2 =  3 +  3 +  3 +  3 mod 10, etc.) the number 2 
generates only the five numbers

before it repeats.

DEFINITION: A number x is a multiplicative generator  for 7Ln if every non-zero 
number r in 7Ln can be written as an iterated product

Example A 2.9: The number 3 is a multiplicative generator for Z 7 , but the num­
ber 2 is not. Whereas 3 generates the complete sequence

before it repeats.

DEFINITION: A set of elements S =  { x i ,  x 2, . . . ,  x s}  o f an algebraic system A  
is a generating set for that system if every other element of that system can be 
obtained by applying the operations of the system A  to some combination of the 
elements in S.

Example A 2.10: The numbers 3 and 5 form an additive generating set for Z4 5 .

Example A 2 .l l :  The 2-tuples (1, 0) and (0, 1) generate the group Z ni ® Z „ 2. No 
single 2 -tuple generates such a group.

Although the entire set of integers is generated additively by the number 1, it 
takes the infinite set of all the prime numbers to generate the integers multiplica-

DEFINITION: A divisor of an integer n is an integer d such that the equation xd =  n 
has an integer solution x =  q.

DEFINITION: A prim e num ber  is a positive integer p >  1 that has no divisors 
except 1  and itself.

2 4 6  8  0

r x ■ x X

( y  mod n | j  =  1, . .  . , 6  ) =  3 2 6  4 5 1

Prime Factorization

  



590 Appendix

The following theorem from elementary number theory is commonly called the 
Fundamental Theorem o f  Arithm etic.

T h eorem  A 2.2  [Prime-Power Factorization Theorem ]. Every positive inte­
ger n can be written uniquely as a product o f  powers o f  distinct, non-decreasing 
primes

n =  p i 1 P2 2 ■ ■ ■ p f r

A3 FINITE FIELDS AND VECTOR SPACES

Example A2.6 asserts that for prime p, all non-zero numbers have multiplicative 
inverses in the ring Zp (as proved in §6.4), which implies that is a field. In order 
to present various algebraic methods to persons who have not previously had at 
least the equivalent of a semester course on groups, rings, and fields, Chapter 10 
develops various design constructions explicitly for prime fields Zp, even though 
they are readily generalizable to all finite fields. This section is intended for readers 
wanting to understand the methods of Chapter 10 in greater generality. For other 
readers, it is optional. Our main concern in this present section is to describe the 
construction of a field GF( pr) for every prime power pr .

DEFINITION: An additive group (V, + ) is called a vector space over the field T  if 
there is a scalar product T  x  V —>■ V such that

(i) c (v + v ')  = cv + cv'  for all c £ T  and all v, v ' £ V
(ii) (a +  b)v =  av +  &v for all a, b £ T  and all v  £ V 
(Hi) (ab) v =  a(bv) for all a, b £ T  and all v  £ V
(iv) lv  =  v for mult, identity 1 £ T  and all v  £ V

An element of the domain V is called a vector. An element of the field T  is called 
a scalar.

E xam ple  A 3 .1 : The vector space is the set of rf-tuples with entries in M (i.e., 
real numbers), where coordinate-wise addition in M is the vector addition. The 
scalar product is

Bases and Dimension

DEFINITION: Let v i ,  V2 , • • . ,  Vk be vectors in a vector space (V, + ) over a field T  
and c i ,  C2 , . . ., Cfc scalars in T . The iterated sum

C iV i  +  c 2v 2 +  • • • +  CfeVfe

is called a linear combination of those vectors.

  



can be expressed as a lin e a r c o m b in a tio n  o f  the vectors

(1, 0, 0, 0, . . . ,  0, 0)
(0, 1, 0, 0 , . . . ,  0, 0) 
(0, 0, 1, 0 , . . . ,  0, 0)

A3 Finite Fields and Vector Spaces

E x a m p le  A 3 .1 ,  c o n t in u e d :  In the vector space Md, every vector

591

T h a t  is,

(0, 0, 0, 0, . . . ,  0, 1)

*2, *3, •••>*(/) — Z i ( l ,  0,0,  0, . . . ,  0, 0) 
+  %2 (0, 1, 0, 0, . . . ,  0, 0) 
+  * 3  (0, 0, 1, 0, . . . ,  0, 0)

+  x d (o, 0, 0, 0, . . . ,  0, 1)

D E F IN IT IO N : I f  e ve ry ve c to r in  a ve c to r space (V, + }  is expressib le  as a lin e a r com ­
b in a tio n  o f  the vectors vi, V 2 , . . ., v*, then  those vectors are said to  be a spanning 
set o f  vectors fo r  T  o r to  span T .

D E F IN IT IO N : A set o f  vectors v i ,  V 2 , . . . ,  v* th a t span the ve c to r space (V , + }  such 
th a t the lin e a r c o m b in a tio n  expressing  each ve c to r v is un iq ue  is ca lled  a basis for 
the vector space (V, +).

Example A 3.1, continued: In  the ve c to r space M d, the vectors

(1, 0, 0, 0, . . . ,  0, 0) 
(0, 1, 0, 0, . . . ,  0, 0)
(0, 0, 1, 0, . . . ,  0, 0)

(0, 0, 0, 0, . . . ,  0, 1)

fo rm  a basis.

Theorem A 3.1 [Invariance of Dimension]. E very basis for a vector space has 
the sam e cardinality.

Proof: W e  o m it  de ta ils  o f  the p ro o f. I t  fo llo w s  fro m  the row reduction algorithm, 
w h ic h  am ou nts  to  a s ys te m a tiza t io n  o f  the s ta n d a rd  m e th o d  o f  s o lv in g  s im u ltan eous 
lin e a r equations b y  ite ra tiv e  s u b s titu tio n . M ore over, the ro w  re d u ctio n  a lg o r ith m  
is used in  p ro v in g  th a t e ve ry ve c to r space has a basis. <C>

Example A 3.2: T h e  p o ly n o m ia ls  o f  f in ite  degree w ith  coefficients in  the fie ld  
fo rm  an in fin ite -d im e n s io n a l ve c to r space, denoted Zp [x\. W e  observe th a t eve ry
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such polynomial can be expressed uniquely as a linear combination of the polyno­
mials

1  x x 2 x 3  • • •

Moreover, the polynomials of degree at most d — 1 with coefficients in Zp form a 
d-dimensional vector space over the field Zp, with the vectors

1 X X ̂   ̂̂  1

serving as a basis.

Irreducible Polynomials

DEFINITION: A p o ly n om ia l in Zp [x] is said to  be irreducible over the prim e held 
Zp i f  it can not be factored  in to tw o polyn om ia ls  (in Zp[x]) o f  sm aller degree.

E xam ple  A 3 .3 : The polynomial x 2 +  1 factors over Z'j into

=  x 2 +  1  modulo 2

and the polynomial x 2 +  x +  1  is irreducible (which could be proved by trying all 

E xam ple  A 3 .4 : The polynomial x 2 +  x +  1 factors over Z 3  into

=  x 2 +  x +  1 modulo 3 

and the polynomial x 2 +  x +  2  is irreducible.

R em ark : Tables of irreducible polynomials can be downloaded from various web­
sites.

Polynomials Modulo a Polynomial
TERMINOLOGY: When a polynomial f ( x )  is divided by a polynomial g(x)  o f degree 
d, there is a quotient polynomial q(x)  and a remainder polynomial r ( x ) of
degree less than d such that

DEFINITION: The algebraic structure T[x\ /  g(x)  o f polynomials m odulo a poly­
nomial over the field T  has polynomial addition and multiplication modulo g(x)  
as its operations, under which it is a ring.
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Example A 3.5: Here are the addition and multiplication tables for the ring 
Ih2 [x\ /  x 2 +  x +  1. It can be verified that ^ [ x ]  j  x 2 +  x +  1 satisfies all o f the 
axioms for a field.

Table A3.1 Arithmetic tables for Z 2 [x] /  x 2 +  x +  1

x +  1

0 1 x +  1

0 0
1 1
X X

1 X X +  1
0 x +  1 x

x +  1 0 1 
x +  1 x 1 0

0 1 x +  1

0 0 0 0 0
1 0 1 *  *  +  1

* 0 x x +  1 1
* + 1  0 * + l  1 *

Basic Facts about Finite Fields
Proofs of the following basic facts about finite fields can be found in many 

textbooks on abstract algebra. We presently assert them without proof.

Proposition A 3.2. For any irreducible polynomial g(x) o f  degree d over Zp[x\, 
where p is prime, the ring Z,p [x\/g(x) is a field o f  order pd.

Proposition A 3.3. There exists a field o f  order n if  and only if  n =  pd for some 
prime number p.

Proposition A 3.4. All fields o f  order pd are isomorphic.

Proposition A 3.5. The additive group o f  the field o f  order pd is isomorphic to 
the vector space 7Ld.

Proposition A 3.6. The multiplicative group o f  the field o f  order pd is generated 
by some single element o f  the held.
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SOLUTIONS AND HINTS

Chapter 0 Introduction to Combinatorics

0.3 Some Rules for Counting

. . . 7!
0.3.10: Use the Rule of Quotient iteratively: gt 2; ]_ 1 ]_ 1

0.3.16: Use the Pigeonhole Principle. Let the students be the pigeons and the 
seven days of the week be the pigeonholes. It would take 8 students to be certain 
o f a match.

0.4 Counting Selections

0.4.3: This amounts to selection of 8 objects from 3 distinct types, with repeti­
tions permitted, since an initial choice of one object of each type is required:

10 
2

0.4.6:

v3 2 27 3! 2! 2!

0.4.12: 105

0.4.16: A partition of 5 objects into three parts is of type 311 or type 221.

3 1 l )  ' 2! +  (2  2 l )  ' 2! ~~ 10 +  15 -  25

603
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0.5 Permutations

1 2 3 4 50.5.1:

0.5.7:

3 5 2 4 1 

1 2 3 4 5

= ( 1 3 2  5 ) ( 4 '

= ( 1 5 2  3 ) ( 4 '5 3 1 4  2 

0.5.13: (1 2 3)  o (2 4 5)  =  ( 1 4 5 2 3; 

7
0.5.21:

4 2 1
•3!

0.6 Graphs

0.6.1: There are 7 edges. The degree sum is 14. 

0.6.9:

0.6.13:

Chapter 1 Sequences

1.1 Sequences as Lists

1.1.1: (xn =  2n mod 7) ^ 1 2 4 1 2 4 1 2 4 1 2 4 . . .
I f  n =  3k +  j ,  then 2n =  (23) fe • 2-? =  (1 +  7)k • 2-? =  l k ■ 2-? =  2-? m o d u lo  7.

1.1.7: Use induction.

1.1.13: Period P  =  3. Sequence an =  n2 mod 3. One way to derive this is 
to assume there is a polynomial ax2 +  bx +  c that satisfies it. These three linear 
equations

are equivalent modulo 3 to the equations
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a +  2b +  c =  1
whose solution isa  =  l , 6 = 0 , c  =  0

1.1.20: Polynomial f ( x )  =  x 2 +  x(x  — - 3 )

1 1 2 1  v  1 i r  dx _  2  1
11,2 Jx= l  x 2 11

1.1.25: Compare lg x n to lg yn.

n

1.2 Recurrences

1.2.6: Compare 2 lg n to lg (n +  1) +  lg (n — 1). Exponentiating both sides yields 
n2 on the left, which is larger than (n +  l)(n  — 1) on the right.

1.2.7: (n +  1)2 +  (n — 1)2 =  (n2 +  2n +  1) +  (n2 — 2n +  1) =  2n2 +  2 >  n2.

1.2.13: Use induction. The induction step is

>  2c0cn +  • • • +  2cn_ ic i  +  cnci +  cn+ic0 by ind hyp
>  2c0cn +  • • • +  2cn_ ic i  +  2cnc0 since cn+1 >  cn and ci =  c0 =  1

1.3 Pascal’s Recurrence

fn  — 1\ /n  — 1 
1 -3 -2: { r - l )  +  {  r

1.3.5: Evaluate (1 +  *)"!^=!

n — 2 
r — 2

n — 2 
r — 1

n — 2 
r — 1

n — 2 
r

1.4 Differences and Partial Sums

1.4.1: Difference table for n4.
0 1 16 81 256 625 1296 2401 

1 15 65 175 369 671 1105
14 50 110 194 302 434 •••

36 60 84 108 132 • • •
24 24 24 24 • • •
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1.4.7: Difference sequence for cn.

1
c — 1 (c — 1 )c (c — l )c 2

( c — l )2 (c — l ) 2c (c — l ) z
(c — l )3 (c — l ) 3c

1.4.13: 62 — 32 =  27

( c -  l)c

1.5 Falling Powers

1.5.1: For r >  xy, both expressions have the value 0. For min(x,y)  <  r <  xy, 
we have x - y -  =  0 and ( xy ) -  >  0. In the main case 2 <  r <  m in(*,t/), since

1.5.5: 2 , _  H l z  = ( - l ) ( - l ) ( - l ) ( - l )
244 j  4!

1.5.14: To compare log(n2) to

35
128

I)2

directly from the definition, we multiply both sides by 2 and exponentiate. These 
operations are both monotonically increasing. Since

we conclude that n2 is log-concave. Equivalently, with less effort, we could use 
inequalities (1.5.3) and (1.5.4).

1.6 Stirling Numbers: A Preview

1.6.1: x— — x® — 15*5 +  85*4 -  225*3 +  274*2 -  120* 

1.6.5: x 6 =  x -  +  15*- +  65x-  +  90*- +  31*- +  * -

1 .6 .11 : =  105
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1.7 Ordinary Generating Functions

1.7.1 :

=  1 +  4z +  8z2 +  11 z3 +  l l z 4 +  8z5 +  4z6 +  z7

1.7.7 : (1

(1

a2 a3
1 +  “ +  2! +  3!

1 + + z2 + z3

z z  ̂ z  ̂ z  ̂ z  ̂ z  ̂ z^=  1 +  4 -  +  1 4 -  +  4 3 -  +  1 1 4 -  +  2 5 0 -  +  4 2 0 -  +  4 2 0 -

1.7.13: 1 +  5z +  19z2 +  65z3 +  211z4 +  • • •

„  x n!1.7.21: (a) 1 +  z +  z2 +
( 1 - z ) n +  1

1.8 Synthesizing Generating Functions

1
1.8 .1 :

1.8.9:

1 +  z

1

1.8.19: The third difference row begins with 1, 2, 4, . . . .  Therefore, try sub­
tracting the sequence (2n). The resulting sequence is 0, 1, 4, 9, 16, 125, . . ., 
apparently n2. The sequence n2 +  2n perfectly matches the given sequence.

1.9 Asymptotic Estimates

1.9.1: Given the polynomial f (n )  =  a(i - i n d~1-\--• -+ain +  ao, let M  be a number 
larger than absolute value of any of the coefficients aj. Then, for j  =  0, . . ., d — 1 
and n >  1, we have ajni <  M n d. Therefore, for n >  1,

d— 1 d— 1 
/ (n )  =  =  M d n a
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Chapter 2 Solving Recurrences

2.1 Types of Recurrences

Guess: an =  2n+1 +  1. Now prove using induction.
Basis: true for n =  0. Ind hyp: assume true for n — 1, with n >  1.
Ind step: an =  2an_ i — 1 (given recursion)

2.1.5: an =  c1an_ 1 +  c2an_ 2 => 3n -  2" =  c ^ - 1 -  2n~r) +  c2(3n“ 2 -  2 "“ 2) 
Therefore, 3n =  Ci3n_1 +  c23n_2 and 2n =  ci2n_1 +  c2 ^n~2. Simplify to the 
equations

32 =  3ci +  C2 and 22 =  2ci +

and solve them:

Thus, the recurrence is an =  5an_ i — 6an_ 2- 

2.1.15: to =  1; ti =  3; tn =  2tn_ i for n >  2

2.1.18: Ans. s0 =  1; si =  1; sn =  Sn-i -  s„ - 2 +  /n - i  for n >  2, where f n 
is the nth Fibonacci number.

2.2 Finding Generating Functions

w X 32.2.1: A z)

2.2.9:

1 -  2z

z +  2z2 
( l  +  z )2( l -

2.2.16: Clearly to =  0. Suppose it takes tn_ i moves to transfer n — 1 disks 
from source to target. To get n disks from source to target, first n — 1 disks must 
be transferred to the vertex of degree 1 that is neither the source nor the target, 
which requires tn_ i steps. Then it takes 2 steps to transfer the largest disk to the 
target, followed by another tn_ i steps to transfer the stack of n — 1 disks to the 
target. Thus, the recursion is tn =  2tn_ i +  2. The solution is tn =  2n+1 — 2.

2.3 Partial Fractions
3

2.3.1: A(z) =  => an =  3 - 2 "

(1 +  z )2 1 — 8z
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2.4 Characteristic Roots

2.4.1: Root is r  =  2.
Solution: a n  =  3 • 2n

2.4.9: Roots are T\ =  —1 and t 2 =  8.

' 81  ̂  ̂ ) ( ) )

2.4.15: Roots are T\ =  1 +  i and t 2 =  1 — i.

Solution: a n  =  — Tj— (1 +  *T +  _  *)"

2.5 Simultaneous Recursions

2.5.2: =  1 [ - ( - 1 ) "  +  3n] yn = l-  [ ( -1 ) "  +  3"]

2.5.7: Ln : 2 1 3 4 7 11 18 29 47 76 . . .

2.5.9: rn =  /„ + i ,fo r r a > 0

2.5.14: The queen numbers are qn =  f n . The drone numbers are dn =  f n- i ,
for n >  1; this even makes sense at n =  0, since running the Fibonacci recurrence

2.6 Fibonacci Number Identities

2.6.5: 202 =  144 +  55 +  3

2.6.9: f 2 =  ( /n -l  +  /n - 2 ) 2 =  /n -l  +  2 /n -l /n -2  +  /n - 2 ) etc-

2.6.16: One method of proof is first to observe that f 2n+i =  f (n+ i)+n and 
then to apply the forward-shift identity. Another is to observe that f 2n+i =  t 2n, 
and that a 1 x  2n chessboard covered with 1-tiles and 2-tiles may either have a 
break between tiles at position n or not. If so, then that break separates two tile 
sequences of length n, each of which can be achieved in tn =  f n+i ways, for a total 
o f t 2 =  / n2+1 ways. If not, then a 2-tile at the middle is sandwiched between two 
tile sequences of length t „ - i ,  which can occur in tjl_ 1 =  / 2 ways.

2.6.23: f 2n+i ~  1 =  /2 +  f i  +  • • • +  /2n

2.7 Non-Constant Coefficients

2.7.1: Multiplying by n yields the recursion nxn =  3(n — l ) * n_ i — 2(n — 2)xn- 2. 
Substituting yn =  n xn now yields yn =  3j/n_ i — 2yn- 2, with y0 =  0 and y1 =  3, 
with the solution yn =  3 • 2n — 3. Thus, x n =  (3 • 2n — 3)/n, for n > 0.
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2.8 Divide-and-Conquer Relations

2.8.1: (lo, hi) =  (1, 7) -► (4, 7) -► (4, 5) -► (5, 5)

2.8.5 : [ ( 92)  (56)  ( 83)  ( 97)  ( 72)  ( 78)  ( 15) ]  
[ (56 92) (83 97) (72 78)  ( 15) ]
[ (56 83 92 97) (15 72 78) ]
[ (15 56 72 78 83 92 97)]

2.8.9: tn =  3cnlg3 — 2 cn

2.8.15: Select n!. Actually, it is sufficient to select the least common multiple of 
the numbers 1 to n.

Chapter 3 Evaluating Sums

3.1 Normalizing Summation

3.1.1:
1

7< fc2< 4 5
k +  3

3.1.7: Proposition 3.1.4(a) asserts that ln(n +  1) <  Hn <  ln(n) +  1. Therefore, 

Divide through by Inn to obtain the desired result.

3.2 Perturbation

3.2.1 :

n +  1

=> S +  3 n + 1  =  3 °  +  =  3° +  3 ^ 3 fe =  3 °  +  3 5

gn + l _ 0̂

3.2.15: Perturbing kA yields =  -  [ «4 +  2n3 +  n2] .
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3.3 Summing with Generating Functions

3.3.1 : (a)
1

1 -  3z 

1 1

1 — z 1 — 3 z

= x >
oo /  n

= S IS 3
1 1

1 — z 1 — 3 z 1 — 3 z 1 — z

1  on _  I
2 2

3 .3 .7 : (a)
1 1

1 1 oo /  n

1 - z  l - z / 3

i i

3fe 2 3n 2

3 .3 .13 : (a)
1

1 -  ZA 

1 1 oo /  n

l l
1 - Z  1 - 1 -  ZA 1 -  Z

3 .3 .17 : (a
1

1 1
oo /  n /

E E
1 1

sCt1)3 4 4 3
•3"
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3.4 Finite Calculus

3.4.1 :

n ok

=  -
n +  1

3.4.4: To sum k4k by parts, use g(k)  =  k and A  f (k )  =  Ak. Then

Y M k =  k -  - Y
^ k 0 ^ k 3

4«+i
=  \ (n +  1)— ------ 0 | -

n +  1 ^ k +  l  n +  !

k-0 ®
4«+2 4 '

9,9

3.4.19: To sum kH& by parts, use g(k) =  Hk and A f (k )  =  k. Then

f c * * -  - E (‘  +  1)2 1k + l

nn +  n

n +  1 k2-  n+1
4

ffn+i - 0 ]  -  [ ^ - 02 T 7 V 4 

3.4.24: A k ^ 2- =  -2 fc ^

3.4.30: - k - 1

3.4.33: (a) 103, 140. (b) 3n2 -  2n +  7

nn +  n
Hn + l

3.5 Iteration and Partitioning of Sums

3.5.5: (H +  D l  +  | ( „ +  1)2

3.5.14: n +  (n =  2 mod 3)

3.6 Inclusion-Exclusion

n2 +  n 
4
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3.6.11:

3.6.17:

86

n

D n_n — k

— 1 |̂ 4i 4̂2 | — — 0
|j4 ij42j4s | = 0

=> 5i = 4
=» s 2 =  i 
=> ^  =  0

3.6.22: \U\=t4  Si =  4t3  S2 =  6 t 2 S3  =  t 2 +  3t S4  =  t .

=  t4  -  41 3  +  hi2 -  2 1

Chapter 4 Binomial Coefficients

4.1 Binomial Coefficient Identities

4.1.4 :

4.1.7 :

1
’ 2 \ — H f  _ ( -§ )( -§ )(- ! )  _ 5
3 /  3! 3! 16

n +  2\ f n  +  2\ (n +  2)(n +  1) n (n — 1)
n - 2 J  \ 4 J 4!

n4 +  2n3 — n2 — 2n
4!

. n — 1 
■ r

(absorption)

  



4.1.17: For n =  0 and n =  1, the equation is clearly correct. For n >  2,

^ ( - 1)fe k Q  =  "  ( *  -  l )  (absorption)

n /  1

=  - B - D * ' 1
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fe-1 ^ _1

4 .1 .22 : ( I r =  — r =  ------------ —----  =  x .
r !  ( r  —  1 ) !  \ r  —  1

4.1.24: First method: iteratively reduce upper and lower index. 

Second method: align binary numerals flush right; scan for 0 over 1.
*

80io =  1 0 1 0 0 0  O2 => even 
48io =  O I I O O O O 2

4.2 Binomial Inversion Operation

4.2.12: gn =  { - 2 ) n

4.2.13: g2 =  2, and gj =  0 for j  ^  2

4.3 Application to Statistics

4.3.4 :

4.3.5 : 

4.3.7 : 

4.3.11

o
M

N ~ U\ n M  ( l  M

=  j )  =  [ ]+r r_ l 1 ) p r ( i - p y
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4.3.13 :

4.3.14 : 

4.3.18 : 

4.3.20 :

P

p Z

4.4 The Catalan Recurrence

4.4.1: This is Proposition 4.4.3.

4.4.4: q ( n , n -  2) =  c „ - c „ _ i .

4.4.9: There are (n2"2) paths in [0 : n +  2] x [0 : n — 2]. By reflection of suffixes, 
this provides the correct count.

4.4.15: There are
2 n 

n — k — 1

NE-paths that enter the NW fc-triangle, and equally many that enter the SE k- 

number of paths that enter either of them is

2 n
— k — 1

Chapter 5 Partitions and Permutations

5.1 Stirling Subset Numbers
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5.2 Stirling Cycle Numbers

5.2.3 :

5.2.16 :

5.2.19 : 6- 6 - =  30- 1 +  6- 10 +  1-85 =  175 =

5.2.27 : 0 +  1 +  3

=  1 - 0  +  2 - 1  +  3-  3 +  4-  6 +  5 - 10  +  6- 15  =  175 =

5.3 Inversions and Ascents

5.3.1: 3124 1423 2143 2314 1342

5.3.17: 532164
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5.5 Exponential Generating Functions

5.5.1: zez

5.5.5: (ez -  1 -  z )2 =  e2z -  2 zez -  2 ez +  z 2 +  1 +  2z

0 if 0 <  n <  3
5.5.9: un =

' 2n -  2n -  2 if n >  4 
5.5.13: an =  n ■ n\

1 n ■
5.5.15: an =  —- n3-

5.6 Posets and Lattices

5.6.4: Maximum chain: 0 C 1 C 12 C 123

5.6.10: Maximum anti-chain: 1, 2, 3

5.6.16: Partition into minimum number of chains:

5.6.22: Partition into minimum number of anti-chains:

5.6.28: There are 48 linear extensions. 0 must be first and 123 last. If the three 
singletons 1,2,3 precede the three doubletons 12, 13, 23, then there are 3! possible 
ordering on the singletons and 3! of the doubletons, for a total of 36. There are also 
12 linear extensions in which some doubleton precedes the other two doubletons.

Chapter 6 Integer Operators

6.1 Euclidean Algorithm

6.1.1 : 89 mod 71 =  18
71 mod 18 =  17 
18 mod 17 =  1
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6.1.9: 4 • 89 +  (—5) • 71 =  1 derived as follows

j  nj rrij qj

0 89 71 1
1 71 18 3
2 18 17 1
3 17 1 17
4 1 0 ST OP

6.2 Chinese Remainder Theorem

6.2.1: (6 mod 8, 3 mod 9) +  (7 mod 8, 5 mod 9) =  (5 mod 8, 8 mod 9) 

6.2.5: 29 mod (5, 7) =  (4 mod 5, 1 mod 7)

6.2.11: (6 mod 8, 3 mod 9) =  30, derived as follows:

3 • (—1) - 8 +  6 - 1 - 9  =  30
6.2.20: 38

6.3 Polynomial Divisibility

6.3.1: x 2 — 4x +  2 is prime, since the roots are irrational.

6.3.9: x 2 +  3* +  7 mod x — 2 =  17

6.3.19: gcd (x3 — 6x2 +  11* — 6, x 2 — 3x +  2) =  x 2 — 3x +  2

6.4 Prime and Composite Moduli

6.4.3: The inverse of 21 mod 25 is 6.

6.4.11: 22164 mod 25 =  6

6.4.17: 4! mod 5 =  —1, since 5 is prime.

6.4.25: The quadratic residues of 14 are

6.4.31: The solutions to x 2 =  1( modulo 24) are 1, 5, 7, 11, 13, 17, 19, and 23

6.5 Euler Phi-Function

6.5.11: Since <̂ .(25) =  20, we have 22164 mod 25 =  2164 =  214 =  6.
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6.5.25: The set-difference Fn — Fn_\ is the set of reduced fractions The 
number of such fractions is 4>{n).

6.6 The Mobius Function

6.6.11:  c(ri )  =  'Y  L{d)
d\n

1 +  1 +  2 +  4 +  2 +  4 +  8 +  8 =  30

Chapter 7 Graph Fundamentals

7.1 Regular Graphs

7.1.1: 16 vertices, 32 edges.

7.1.12: circ (2n : 1, 3, 5, • • •, 2n — 1)

7.2 Walks and Distance

7.2.1: radius =  3 and diameter =  3.

7.2.5: Color the top two vertices white, the next three black, the next three 
white, and the bottom  two black. The color classes are a bipartition.

7.2.15: The two vertices inside the outer octagon have eccentricity 2 and they 
are the central vertices.

7.2.17: radius =  2 and diameter =  2.

7.3 Trees and Acyclic Digraphs

7.3.6: The Catalan number c„.

7.3.9: Label the vertices with consecutive integers. Then direct each edge from 
its lower-numbered endpoint to the higher-numbered endpoint.

  



620 Solutions and Hints

7.3.14: We may interpret it as reflexive. It is obviously anti-symmetric. It 
is transitive by hypothesis. Thus, the vertices are partially ordered. Since the 
underlying graph is complete, it follows that every pair of elements is comparable, 
which implies that the ordering is complete.

7.4 Graph Isomorphism

7.4.1: A  has two vertices of eccentricity 2, and B  has five.

7.4.7: A  is bipartite (thus, no odd cycles), and B  has two 3-cycles.

7.4.17: Due to Euler’s theorem on degree-sum and Proposition 7.2.5, the plausi­
ble degree sequences are 22211, 32111, and 41111. Each corresponds to exactly one 
tree, as shown:

7.5 Graph Automorphism

7.5.1: There are two automorphisms: ( 1 ) ( 2 ) ( 3 ) ( 4 )  and ( 1) ( 2 ) ( 3 4)

7.5.7: There are four automorphisms:
(1 )  (2 )  ( 3 ) ( 4 ) ( 5 ) ( 6 ) ,  ( 1 5 )  ( 3 ) ( 4 ) ( 2  6 )

(1,  2)  (3,  4)  (5,  6 ) ,  (1,  6 ) (3,  4)  (2,  5)

7.5.13: The vertex orbits are {1 } , {2 } , and {3, 4}.

7.5.19: The vertex orbits are {1, 2, 5, 6} and {3, 4}.

7.6 Subgraphs

7.6.6: In any cycle in a bipartite graph, the vertices must alternate between one 
partite set and the other. Thus, the number of vertices in a cycle in A'3 5 is at 
most 6.
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7.6.13: The two vertices inside the outer octagon have eccentricity 2 and 
are the central vertices. The edge joining them is the only edge in the center.

7.7 Spanning Trees

7.7.1: The frontier edges are sp, qp, ut, uv, and ux.

7.7.5

7.8 Edge Weights

7.8.1:

4 6
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7.8.4 1 5 5 a

8

0

3 10

5

11

4 6

a shortest path in it between vertices u and x.

7.9 Graph Operations

7.9.1: The degree sequence is 522221. When the vertex of degree 5 is deleted, 
the result is the sixth card in the given deck.

7.9.16: The cut-vertices are vertices 3, 4, and 7.

7.9.28: The cut-edges are 35, 47, and 67.

7.9.32: We observe that this graph is isomorphic to its edge-complement.

6

8.1.9: The three vertices of degree 2 are mutually non-adjacent. Thus, they 
cannot lie on a 5-cycle.

Chapter 8 Graph Theory Topics

8.1 Traversability

8.1.5: Select a ma
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8.2 Planarity

8.2.1: 7 vertices, 10 edges, 5 faces: 7 — 10 +  5 =  2.

8.2.5: The face-sizes are 34445: 3 +  4 +  4 +  4 + 5  =  2-10.

8.3 Coloring

8.3.7: Four colors is a lower bound, by Proposition 8.3.2. The shape of a vertex 
is used in this drawing as another way of indicating color classes.

8.3.13: It is not chromatically critical. Indeed, no matter what edge is removed, 
the independence number remains 3. Thus, by Proposition 8.3.2, the chromatic 
number remains at least 4.

8.3.19: The chromatic number of Africa is 4, since (for instance) Malawi is the 
hub of a 3-wheel.

8.3.23: The dual of a tetrahedron is a tetrahedron.

8.3.30

8.4 Analytic Graph Theory

n(n — 2)

8.4.6: r (3,6) < r (2 ,6) +  r (3 ,5) -  1 =  6 +  1 4 - 1  =  19

8.4.1:
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8.5.1: Start (for instance) with acd, then attach the closed path gh, then the 
open paths e and bf.

8.5.5: 43111.

8.5.11:

8.5 D ig ra p h  M o d e ls

8.6 Network Flows

8.7 Topological Graph Theory

8 .7 .16 : g i r t h  =  4  a n d  j m m ( Q 4 )  =  n 2 n  3 — 2n 1 +  1
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Chapter 9 Graph Enumeration

9.1 Burnside-Polya Counting

9.1.2: a 3 =  ( 1 4 7 3 6 2 5)

9.1.18: ^ (t°  +  t 3 +  2t 2 +  216)

6 9

9.1.26: 14

9.1.42: : —  (tf +  3t2t2 +  4t 3 +  2 +  2tg)

v3 +  3 b2w4 +  bw5 +  b6

9.1.46: 13 

9.1.50: b6 +  b5w ■ v3 +  3 b2w4 +  bw5 +  b6

9.2 Burnside’s Lemma

9.2.1: 208 

9.2.5: 136

9.2.10: b6 +  b5w +  3b4w2 

9.2.14: b6 +  b5w +  3b4w2 

9.2.17:

iw3 +  3 b2w4 +  bw5 +  b6 

3w3 +  3 b2w4 +  bw5 +  b6

9.3 Counting Small Simple Graphs

9.3.3: ZAutv (K2 ,3) '■ Y2  +  +  2t2t3 +  3tit22 +  21

9.3.11: ZAutE(K2',3) '■ Y2  (̂ i6 +  ^ 1 ^ 2  +  +  2t6)

9.3.17: 2 graphs with 5 vertices and 2 edges.

625
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8, 71, 62, 53, 44, 611, 521, 431, 422, 332 

• • • • •  • • • •
• •  •  •  • •  •

332 
/  \

322 331

9.4 P a rt it io n s  o f  In te g e rs

/ \  / \
222 321 33

211 31 22

111 21 3

1

9.5 Calculating a Cycle Index

9.5.3: 9 graphs.

9.5.9: 1044 graphs.

9.5.12: 10 graphs.

9.6 General Graphs and Digraphs

9.6.1: Substituting 4 into the cycle index

yields

-2Uu<E (t f3) ( 4 , 4 , 4 )  =  ^ ( 4 3 +  3 - 4 - 4  +  2 - 4 )  =  ™  =  20

9.4.1:

9.4.5:

9.4.9:
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Chapter 10 Designs

10.1 Latin Squares

/ 0  1 2\ / 0  1 2 \
10.1.1: 1 2 0 2 0 1

y 2 o i /  y i 2 o /

10.1.6: L,-4

/O  1 2 3
4 0 1 2
3 4
2 3

\ 1  2

4\

0 1 2 
4 0 1 
3 4 0/

10.1.10: A(g)A =

10.1.15: I^H 2-3) =

/  0 2 3 1'
2 0 1 3  
1 3  2 0

\3 1 0 2,

10.2 Block Designs

10.2.1: varieties: 0, 1, 2, 3; blocks: 012, 013, 023, 123.

10.2.7: The replication number r calculated by applying Proposition 10.2.2(b) 
would not be an integer.

10.2.13: v =  9, b =  12, r =  4, k =  3, and A =  1.

10.2 .22 : varieties: 00, 01, 02, 10, 11, 12, 20, 21, 22.
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10.3 Classical Finite Geometries

10.3.4: These are two drawings of the Levi gra 
on the right illustrates that it is vertex-transitive.

for the Fano plane. The one

10.3.8: Since A =  1, the Menger graph for the Fano plane is AV 

10.3.12: See the solution to Exercise 10.3.8 above.

10.4 Projective Planes

10.4.2: lines of Pi , 2 ) :

10.5 Affine Planes

10.5.1: points of AC 

10.5.2: lines of AG(

2 , 2 ) :  0 0 , 0 1 , 1 0 , 1 1 . 

, 2 ) :

  



INDEXES
11 Index of Notations
12 General Index

I1 INDEX OF NOTATIONS
The notations listed here are generally those that occur at multiple locations in the 
text. They are grouped according to the context in which they occur. Some totally 
standard notations are omitted.

Numbers and Arithmetic
algebraic and arithmetic domains

C the complex numbers, 50
Dn the dihedral group, 500
N the non-negative integers (natural numbers), 50
Q  the rational numbers, 50
M the real numbers, 50
TL the integers, 50

TL+ the positive integers, 50
7Ln the integers mod n, 585

TL [x] polynomial ring with integer coefficients, 342
[k : ra] integer interval {k, k + l ,  . . .  , ra}, 54

arithmetic operators

[x\ floor of a real number, 12
\x] ceiling of a real number, 12

x r rising power of a real number, 79
In x natural logarithm of a real number, 51
lg x base-2 logarithm of a real number, 51

gcd (ra, n) greatest common divisor, 43
lcm(ra, n) least common multiple, 43
n mod d mod operator, 53

4>{n) Euler phi-function, 356
(predicate) Iverson truth function, 165

629



630 I1 Index of Notations

congruence relation, 335 
d divides n, 168
m and n are relatively prime, 168

arithmetic relations

d \ n  
m _L n

Sets and Sequences
sets and multisets

0 empty set, 15 
l^l cardinality of a set S, 9
S complement of a set S, 202 

(S, i) multiset, 15 
1(5, i)| cardinality of multiset, 16

sequences

( a j )  the sequence a o ,  a i ,  a 2 , • • •, 50
A a n  for a sequence (an), the difference a n + 1 —  a n , 67

a'n  for a sequence ( a n ) ,  the difference a n + 1 —  a n , 67
Bn the nth Bell number, 266
cn the nth Catalan number, 60
D n derangement number, 114
f n the nth Fibonacci number, 59
Hn the nth harmonic number, 52

generalized sequences

binomial coefficient (also called a combination coefficient), 8

the number of ordered selections of k objects from n objects, 18

multicombination coefficient, 22

Stirling number of the first kind, 80 
Stirling number of the second kind, 82

Stirling subset number, 25 

Stirling cycle number, 84

Eulerian number, 292

recurrences and generating functions

gn homogeneous part of a solution to a recurrence, 127
gn particular part of a solution to a recurrence, 127

G(z)  ordinary generating function, 85
G(z)  exponential generating function, 85
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Probability and Statistics
sample space for probability, 239
probability of the event A,  239
mean of the random variable X ,  240
standard deviation of the random variable X , 240
variance of the random variable X , 240
sample mean of a random variable X , 244
estimator of a statistic 9, 243

Partially Orders Sets and Lattices

x d  V generic partial ordering relation, 306
Bn boolean poset, 307
V n divisibility poset, 308
V  infinite divisibility poset, 308
l n inversion poset, 310
Vn partition poset, 309

S V n summation dominance lattice, 526
y,s Young’s lattice for the integer partition S, 525

Nk(P)  the kth Whitney number of a ranked poset, 316
In(k) the inversion coefficient, 289 

lub(x, y) least upper bound under a partial ordering, 311
glb(x, y) greatest lower bound under a partial ordering, 312

Graph Theory
basic notations 

uv

Ig
A g
W
G

special families

C n

circ(n : S) 
C L n 
Kn 

Km,n
Kn.

re-set E, 35

in a simple graph, an edge joining vertices u and v, 36 
degree of vertex v, 36

G, 40 
i G, 40

423
G and H,  393

incidence matrix of j 
adjacency matrix of 
walk ( Vo, ei, vi, e2, , ... 
edge-complement of a simple 
isomorphism relation between

circular ladder with n rungs, 376

complete bipartite graph with bipartition subsets of sizes m and n, 38
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M L n 
P n

Q n

wn
h invariants

Mobius ladder with n rungs, 377 

n-wheel, 422

automorphism group on the edge set of a gr 
automorphism group on the vertex set of a

eccentricity of a vertex v, 382 

chromatic polynomial of the gi G, 210

nG n-fold self-union of graph G, 422 

■aph analytic functions

ex (n ,V )  extremal function, 456 
r(s,t)  Ramsey number, 458

flows in networks
cap(e) capacity on an arc of a network, 469
val(f)  value of a flow / ,  470

A(e) the slack on arc e, 472
A (Q) the slack on quasi-path Q, 472

Nk the non-orientable surface of crosscap number k, 477 
Sg the orientable surface of genus g, 476 

7min(G) minimum genus of a graph, 481

permutations and Burnside-Polya counting

2-line representation of a permutation, 27

1-line representation of permutation, 288
set of all (<fc)-colorings of a set Y , 505
the set of all objects fixed by permutation tt, 506
a group of permutations on a set Y  o f objects, 491
the set of all permutations that fix object y, 506
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Z-p(ti, . . . , tn) cycle index of a group, 496
C(tt) =  t^ t ^ 2 ■ ■ -trnn cycle structure of permutation n, 496

Combinatorial Designs

A ®  B  product of two Latin squares, 543
L k a particular Latin Square, 544
Ln a conjugate of the Latin square L, 549

(v, b, r, k, A) parameters of a BIBD, 552
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I2 GENERAL INDEX

abelian group, 586 
Absorption Property, 224

addition modulo n, 346 
additive generator, 589 
additive group, 586 
adjacency matrix, 40 
adjacent edges, 378 
adjacent vertices, 35 
affine geometry, 573 
affine line, 572 
affine plane, 571 
algebraic proof, 219 
algebraic system, 584 
analytic function, 251

ancestor of a tree vertex, 386 
antichain, 314 
anti-symmetry, 583 
Appel, Kenneth, 453 
arc, 389
arithmetic congruence, 581 
arithmetic progression, 166 
array, 54
ascent of a permutation, 291 
associated homogeneous recurrence, 126 
associative operation, 585 
asymptotic dominance, 72 
asymptotic to a function, 102 
asymptotics, study of, 102 
augmenting the flow, 473

basis for the vector space, 591
Bell number, 266
BIBD, 45, 552
big-oh, 105
bijective, 583
binary operation, 584
binary relation, 581
binary search, 149
binary search tree, 387

binary tree, 247, 387 
Binet formula, 135 
binomial coefficient, 64, 65, 218 
binomial convolution, 298 
binomial inversion of a sequence, 232 
binomial random variable, 241 
binomial theorem, generalized, 251 
bipartition of the vertex set, 38 
bipartition subsets, 38 
bitcode for a multiset, 20 
blackboard bold typeface style, 50 
block, of a design, 44, 551

balanced, 45, 552 
complete, 552 
incomplete, 552

simple, 551 
(v, b, r, k, A), 552 
(v, k, A), 552 

blocksize of a design, 44, 551 
boolean poset, 307 
bound, for values of a sequence, 52 
boundary walk of a region, 441 
bounded sequence, 52 
breadth-first search, 410 
BST, 387
Burnside-Polya counting, 491
Burnside’s Lemma, 491
calculus of finite sums, 14
capacity constraint for a network, 469
capacity of a cut in a network, 470
capacity of an arc, 469
Cassini’s Identity, 140
Catalan, Eugene, 60, 247
Catalan number, 60, 247
Catalan recurrence, 115
Catalan sequence, 60, 247
Cayley, Arthur, 4

cells of a partition, 10, 83
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central vertex, 382 
chain, 314
characteristic equation, 124 
characteristic polynomial, 124 
characteristic roots, 124 
child of a tree vertex, 386 
Chinese remainder decoding, 339 
Chinese Remainder Theorem, 337

chromatic polynomial, 210

closed formula, 8, 50 
clutter, 314
codomain of a function, 583 
colorable with k colors, 448

coloring fc-coloring, 505

Column-Sum Property, 221 
combination coefficient, 8, 63, 218 
combinatorial configuration, 3

combinatorial enumeration, 2 
combinatorial mathematics, 1 
combinatorial proof, 219 
combinatorics, 1 
common divisor, 343 
commutative group, 586 
commutative operation, 585 
comparability digraph of a poset, 307

comparable elements of a poset, 306 
complement of a set, 202

complete digraph, 536

concave sequence, 61 
congruence modulo ra, 335 
conjugacy operation, 549

conjugate of a Ferrers diagram, 524 
conjugate of a partition, 524 
connected digraph, 463

conservation constraint for a network, 
469

constant coefficent, 112
continuous mathematics, 1
convex sequence, 61
convolution of two sequences, 92, 296
counting, 2
counting sequence, 7
covalence of a pair of elements of a

cover digraph of a poset, 307

covers relation in a poset, 307

cut in an s-t network, 470 
minimum, 471

cycle addition, 464

cycle index, 491, 496

cycle structure of a permutation, 34,
496

cycle subgraph, 43 
cyclic form, 29 
cyclic permutation, 29, 492 
cyclic permutation group, 494 
cyclic permutation, period of, 29

definite value, 162 
degree of a vertex, 36, 372 
degree sequence, 37 
DeMorgan, Augustus, 453 
depth-first search, 410 
derangement, 113, 206, 293 
derangement number, 114, 206, 236, 294 
derangement recurrence, 114, 207, 293 
Desargues geometry, 563 
descendant of a tree vertex, 386
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descent of a permutation, 291 
diagonal in an array or table, 222 

northeast, 222 
northwest, 222 
southeast, 222 
southwest, 222

difference function, 67, 180 
difference sequence, 67, 180 
difference table, 67 
digraph, 36, 389 

acyclic, 390 
connected, 390 
simple, 389, 465 
strongly connected, 390 
transitive, 390 
transitive closure of, 391 

dihedral group, 500 
Dijkstra score, 416 
Dijkstra tree, 416 
direct sum, 588 
directed edge, 389 
directed from, 389

410 8

discrete probability space, 239 
discrete random variable, 239 
discrete set, 1
disjoint cycle representation, 32 
distance between two vertices, 41, 381 
distinguished element, method of, 64 
distributes, 587
divide-and-conquer recurrence, 113, 148 
divide-and-conquer strategy, 148 
divides relation, 168, 326 

for polynomials, 343 
divisibility poset, 308 
divisor, 589

domain of a function, 583
domain of a poset, 306
domain of an algebraic sructure, 584
dominates relation in a poset, 306
dual of a geometry, 560
dual of a map, 452

duality operation, 232 
eccentricity, 382
edge automorphism, induced, 515 

edge-addition operation, 418

edge-deletion subgraph, 419 
edge-weight function, 413 
Edmonds, Jack, 437 
EGF, 85, 296 
empty product, 15 
empty sum, 15 
endpoints, 35 
entry, 50
equivalence relation, 581 
Erdos, Paul, 41 
Erdos number, 41 
Euclidean algorithm, 43, 329 

for polynomials, 344 
Euclidean Reduction for Polynomials, 

344
Euler, Leonhard, 35, 432 
Euler phi function, 214, 356 
Euler polyhedral equation, 443 

generalized, 480 
Euler polyhedral formula, 442

Eulerian number, 292
eulerian tour, 380, 433
eulerian trail, 380, 433
Euler’s degree-sum theorem, 37
evaluating a sum, 163
event, in probability, 239
event space, 239
eventual domination, 56
eventual property of a sequence, 54
eventually zero, 75
expected value, 240
exponential sequence, 50
extended Euclidean algorithm, 331
extension of a poset, 317
extremal function, 456
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184
Fano plane, 561 
Farey fractions, 362 
Farey sequence, 362 
Fermat’s Little Theorem, 350 
Ferrers diagram, 524 
Fibonacci, Leonardo, 59 
Fibonacci number, 59 
Fibonacci rabbits, 132 
Fibonacci rectangle, 133 
Fibonacci recurrence, 133 
Fibonacci recursion, 112 
Fibonacci representation of an integer, 

141
Fibonacci sequence, 8, 59 
Fibonacci spiral, 134 
field, 347, 587 
finite calculus, 3

Fundamental Theorem of, 72 
finite differences, product formula, 187 
finite geometry, 46, 560 
fixed point of a permutation, 506

floor of a real number, 12 
flow in a network, 469 

feasible, 469 
maximum, 470 
value of, 470 

flow through an s-t cut, backward, 471 
flow through an s-t cut, forward, 471 
flow through an s-t cut, net, 471 
Floyd, Robert W ., 381 
Ford-Fulkerson algorithm, 474 
forest, 384
forward-shift identity, 139 
Four-Color Map Problem, 453 
frontier edge, 408 
function, 583
Fundamental Theorem of Algebra, 121 
Fundamental Theorem of Arithmetic, 

326,590 
Gauss, Karl Friedrich, 362 
generalized binomial theorem, 251 
generating function, 7 

derivative of, 100 
exponential, 85, 296 
ordinary, 85, 296 
substitution rule, 98

generating set, 589 

Goffman, Caspar, 42 

graded poset, 316

greatest common divisor, 43, 584 
of two polynomials, 344 

greatest lower bound in a poset, 312 
Gross, Jonathan Light, 42, 484 
group, 490, 586 
growth rate, 72 
Haken, Wolfgang, 453 
Hamilton, Sir William Rowan, 434, 453 
hamiltonian circuit, 380, 434 
hamiltonian cycle, 486

hamiltonian path, 405
hamiltonian path, in a tournament, 466
Harary, Frank, 42, 489
harmonic number, 52, 167
harmonic sequence, 52
Hasse diagram for a poset, 307
hatcheck problem, 207
head of a directed edge, 389
Heawood Map-Coloring Problem, 454
Heawood, Percy, 454
Heffter, Lothar, 483

Hierholzer, Karl, 433

homogeneous recursion, 112

hypergeometric distribution, 246 
identity element, 586

imbedding, strongly cellular, 479 
incidence function, 4  
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incidence structure, 3, 541 
incidence table, 39
inclusion relation on integer partitions, 

525
inclusion-exclusion, 202

independent moduli, 336

index A of a block design, 552 
induced action on colorings, 505 
induced subgraph, 406 
infinite divisibility poset, 308 
infix form, 584 
initial conditions, 116 
initial values, 56, 112 
injective, 583 
in-set of a vertex, 469 
integer interval, 54 
integer quotient, 328 
integers modulo n, 346, 585 
integers, 584
intermediate element, 307 
intersection, r-fold, 202 
inverse, algebraic, 586 
inverse of a permutation, 27 
inversion, in a permutation, 289 
inversion coefficient, 289 
inversion poset, 310 
inversion vector, 289 
inversion-dominance relation, 309 
irreducible over the prime field, 592 
isomers (organic chemistry), 4

of posets, 313

Iverson truth function, 165 
Johnson, Ellis, 437

Jordan separation property, 442 
Josephus problem, 155

incidence matrix of a geometry, 560 juxtaposition, 587 
Konigsberg, 432 
Karamata, Jovan, 83 
key, 387
king in a tournament, 467 
Knuth, Donald Ervin, 83

Kuratowski subgraph, 446 
Guan, Mei-Ko, 437 
labeling of the vertices, 387 
Latin square, 542 

abstract, 548 
normalized, 548 

Latin squares (relations)
7r-conjugate, 549 
isotopic, 547 
main class isotopic, 550 
orthogonal, 544 

lattice, 312 
leaf of a tree, 385 
least common multiple, 43 
least upper bound of a subset in a 

poset, 311
left subtree of a binary-tree vertex, 248, 

387
left-child of a binary-tree vertex, 387

Leonardo of Pisa, 59

line in a finite vector space, 569 
line of a finite geometry, 46

linear combination, 590 
linear congruence, 335 
linear extension of a poset, 317 
linearly ordered set, 314 
lines of a geometry, 560 
Liu, C. L. (Dave), 9 
logarithm to the base 2,51 
log-concave sequence, 76, 77, 265 
log-convex sequence, 76, 77

lower bound of a subset in a poset, 311 
Lucas, Edouard, 58
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dual of, 452
primal, 452 

map-coloring, 452 
map-coloring, proper, 452

maximum, 474
perfect, 209 

maximal element in a poset, 310 
maximum element in a poset, 310 
mean of a list of numbers, 240 
mean of a random variable, 240

merge of lists, 151 
merge-sort recurrence, 113 
mergesort algorithm, 152 
method of characteristic roots, 123 
minimal element in a poset, 310 
minimum element in a poset, 310 
minimum genus of a graph, 481 
minimum-weight spanning-tree problem, 

413

Mobius, August Ferdinand, 362 
Mobius function, 362 
Mobius Inversion Principle, 367

mod function, 53, 328, 584
mode, 75
mode index, 75
moduland, 584
modular exponentiation, 349
modulus, 584
monic polynomial, 342
monomial, 496
MST, 413
multi-arc, 389
multicombination coefficient, 22 
multicombination, 22 
multi-edge, 36

multinomial coefficient, 23, 527 
multiplication modulo n, 346 
multiplication, 587 
multiplicative function, 358 
multiplicative generator, 589

Lucas sequence, 137 multiplicity of a multi-edge, 36 
multiplicity of an element of a multiset,

15
multiset, 15 

cardinality, 16 
restriction of, 16 
submultiset of, 16 

mutually reachable, 441 
natural logarithm, 51 
nearest integer, 12 
negative binomial distribution, 246 
neighboring vertex, 35 
NE-path, 249 
network, s-t, 469 
network, capacitated, 469 
node, 35
non-tree edge, 408 
non-tree vertex, 408 
normalizing a summation, 164 
Northeast-Diagonal Fibonacci Property, 

223
northeastward path, 249 
Northwest-Diagonal-Sum Property, 223

number-of-divisors function, 369

obstructions, complete set of, 451 
OGF, 85, 296
one-line representation, 288
one-to-one function, 583
onto function, 583
orbit of a permuted object, 503
orbit of a vertex, 402
order (cardinality) of a poset, 306
order of a projective plane, 568
ordered selection, 18

with unlimited repetition, 19 
ordering of a set, 6

out-set of a vertex, 469 
Pappus geometry, 562, 571 
parallel lines in a geometry, 560 
parent of a tree vertex, 386 
partial ordering, 306, 583 
partial sum, 69, 162 
partially balanced incomplete block
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partially ordered set, 306 
particularity function, 112 
partite sets, 38
partition of a set, 10, 25, 83, 260 
partition of an integer, 44, 522 
partition poset, 309 
Pascal’s recurrence, 64, 218

path addition, 464 
open, 464

path, 41, 379 
closed, 41, 379 
directed, 390 
open, 41, 379 

PBIBD, 564
pencil of lines in a projective plane, 568 
perfect difference family, 556 
perfect difference set, 556 
period of a sequence, 53 
periodic sequence, 53 
permutation group, 491 
permutation of a set, 26, 113, 490

2-line representation of, 27 
permutations, composition of, 28 
perturbation, 170

pigeonhole principle, 13 
pivot, 144

plane in a finite vector space, 570

platonic solid, 373
Poincare duality construction, 452
points of a geometry, 560
Poisson distribution, 246
pole of a line of a geometry, 563

Polya inventory, 497, 509 
Polya Inventory Theorem, 510 
Polya substitution, 497, 509 
polyhedron, 373 
polynomial ring, 342 
polynomial sequence, 50 
polynomials modulo a polynomial, 592 
poset, 306
postman problem, 437

393 8

map, 393 
Prim, Robert Clay, 413 
Prim tree, 414 
primal map, 452

prime number, 326, 589 
prime polynomial, 345 
Prime-Power Factorization Theorem, 

590
probability measure, 239 
probability of an event, 239 
product of two fc-tuples, 338 
product of two Steiner triple systems, 

557 ^

product square, 543 
projective extension of an affine plane, 

575
projective geometry, 570 
projective plane, 565 
proof, algebraic, 219 
proof, combinatorial, 219 
proper edge, 36

quadratic non-residue, 352 
quadratic residue, 352 
quasi-path, s-t, 472 

backward arc in, 472 
flow-augmenting, 473 
forward arc in, 472 

quicksort, 144
quotient of dividing a polynomial, 342 
quotient polynomial, 592

Ramsey, Frank, 458

Ramsey number, 458 
random variable, 239 
range of the sequence, 50 
rank, in a poset, 316 
rank function, 316 
ranked poset, 316

prefix form, 584
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rate of growth, 50 
rational function, 89 
rational function, proper, 89

recurrence, 112

particular part, 127 
particular solution, 127 

recursion, 56, 112, 116, 160 
linear, 112

simultaneous, 132 
refinement of a partition, 309 
reflection of an NE-subpath, 251 
reflection of an NE-substring, 251 
reflexivity, 581, 583 
region of a drawing, 441 

cellular, 479 
strongly cellular, 479

relatively prime numbers, 168, 326 
remainder function, 53 
remainder of a division, 328 

of a polynomial, 343 
remainder polynomial, 592

residue of a division, 328 
resolvable geometry, 572

Riemann sums, 167
right subtree of a binary-tree vertex,

 ̂ 387

right-child of a binary-tree vertex, 387

ring, 587

rising power, 79 
roots of unity, 101

round-robin-playoff design, 44 
round-robin tournament, 465 
Rouse Ball, Walter, 154 
row reduction algorithm, 591

Row-Sum Property, 220 
Row-Symmetry Property, 220 
Rule of Product, 9 
Rule of Quotient, 10 
Rule of Sum, 9
sample space, for probability, 239 
scalar, 590
scalar multiplication, 569 
score sequence of a tournament, 466 
secondary priority rule, 410 
selection from a set, 6 

unordered, 6 
self-loop, 36 
self-union, n-fold, 422 
sequence, 50

isolating a subsequence of, 99 
multiplication by a scalar, 91 
nullifying an element of, 98 
shifting to the left, 98

spacing with zeroes, 99 
sequences, sum of, 90 
set complement, 202

shortest path problem, 415

simplex, 374
sink, in a digraph, 469
size of a face, 441
size of a poset, 306
skeleton of a polyhedron, 373
slack, on a quasi-path, 472
slack, on an arc, 472
sociological network, 38
solution to a system of congruences, 336
solving the recurrence, 57
source, in a digraph, 469
Southeast-Diagonal-Sum Property, 222
span, 591
spanning set of vectors, 591 
spanning subgraph, 404 
spanning tree, 408 
Spira, Philip Martin, 381 
stabilizer of a permuted object, 506 
standard deviation of a random 

variable, 240 
standard labels on a graph, 517
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standard recurrence, 56 
Steiner triple system, 555 
Stirling, James, 79 
Stirling number, 15, 79 

cycle, 84, 275 
of the first kind, 80, 285 
of the second kind, 82, 181, 270 
subset, 25, 83, 260, 316 

Stirling’s recurrence for cycle numbers, 
276

Stirling’s recurrence for subset numbers, 
263

§264 8 
strongly connected digraph, 463

subdiagonal path, 249 
subdividing, 446 
subgraph, 404 
subposet, 306
Subset-of-a-Subset Identity, 226 
sum of two fc-tuples, 338 
sum, 161
summation by parts, 188 
summation dominance lattice, 526 
summation dominance relation on 

integer partitions, 526 
summation operator on generating 

functions, 69 
summation, 161 

consecutive, 162 
index variable of, 162 
indexing set of, 163 
lower limit of, 162 
summand of, 162 
upper limit of, 162 

sum-of-all-divisors function, 369 
surface, non-orientable, 477 
surface, orientable, 52, 476 
surjective, 583 
symmetric group, 309 
Symmetry for Eulerian Numbers, 292 
symmetry, 581
system of linear congruences, 336 
tail o f a directed edge, 389 
target (of a search), 149 
Taylor series, 90

term, 50 
tic-tac-toe, 11

topological sort, 318 
totally ordered set, 314 
tournament, 392, 465 

transitive, 465 
Tower of Hanoi, 58 

recursion, 112 
Tower-of-G, 120

transitivity, 581, 583 
transpose of a matrix, 554 
traveling salesman problem, 438 
tree, 43, 384 
tree edge, 408 
tree vertex, 408 

rooted, 386 
trivial, 384 

tripartitioning, 144

Tucker, Thomas W ., 484 
Turan, Paul, 5, 457 
tuple of residues, 337 
Twelve Days of Christmas (song), 3 
type of a partition, 84, 263 
unbiased estimator, 243

unimodal, 75

universal set, 201 
unordered selection, 18

with unlimited repetition, 20 
upper bound of a subset in a poset, 311 
valence of an element of a design, 551 
valence, 36
Vandermonde convolution, 226 
variable coefficient, 112 
variance of a list of numbers, 240 
variance of a random variable, 240 
vector addition, 569 
vector space, 569, 590

vertex, 35 
d-valent, 36
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vertex-deletion subgraph, 419 
vertex-deletion subgraph list, 419

closed, 41, 379 
directed, 379, 390 
open, 41, 379 
trivial, 379 

Warshall, Stephen, 381 
weight of a coloring, 510 
weight of a coloring orbit, 510 
well-nested strings of parentheses, 248

even, 422 
o d d ,422 

Whitney number in a poset, 316 
Whitney-Robbins synthesis, 464 
width of a poset, 314 
W ilson’s Theorem, 351 
witnesses to asymptotic dominance, 105 
Young’s lattice, 525 
Youngs, J. W . T. (Ted), 454 
zero element of an additive group, 587

vertex-addition operation, 418
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