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PREFACE

Combinatorial Methods with Computer Applications provides the basis for a gen-
eral sequel to a standard college course in discrete mathematics. Its objective is to
enhance the ability of students to understand and to perform combinatorial computa-
tions, as they might arise in actual applications, and to use combinatorial models. It is
intended for an upper-level course in a department of mathematics, computer science, or
operations research, with the expectation of enrollment also of students in engineering,
the sciences, and the social sciences. It is also suitable for self-study and reference by
working professionals, especially in computer-related applications, and in other areas as
well.

A challenge and opportunity in offering such a course is that there are, by now,
dozens of different science and engineering courses that depend largely on combinatorial
mathematics (sometimes blended with some calculus). Most of these courses have, of
necessity, been introducing special instances of mathematical methods. In a computer
science department alone, the courses on analysis of algorithms, computational complex-
ity, computational learning, cryptography, spoken language processing, computational
genomics, machine learning, and performance evaluation may all make substantial use
of combinatorial methods and models beyond the level of a standard introductory dis-
crete math course. Combinatorial methods courses have arisen and their enrollments
have prospered, because of the benefit to students of prior exposure to systematic de-
velopment of combinatorial methods, before encountering the specialized instances in
applications.

Another challenge in offering a sequel to discrete mathematics designed for students
with diverse academic backgrounds is that a lower-level discrete mathematics course is
not necessarily required of students outside of computer science departments. Beyond
calculus, such students have commonly taken elementary probability and linear algebra,
whose prior study is quite good preparation for the study of combinatorial methods.

The elective combinatorial methods course that I teach every year in the Computer
Science Department at Columbia University is taken by a mix of graduate students and
upper-level undergraduates, students whose common ground is that they like mathe-
matics. Most of them are seeking their degrees in various applied disciplines, and a few
are mathematics majors. This book is written for such heterogeneous audiences.

Selection and Ordering of Contents

The selection of content for this textbook prioritizes breadth of technique and
applicability. Chapters 0 through 6, which are mostly concerned with counting methods,
can provide many combinatorial methods that students are most likely to need in future
work within a single one-semester course, or within its self-taught equivalent. The four
later chapters are a good basis for an honors-level second semester on graph theory and
combinatorial designs. The entire text is woven into a unified stream of exposition, in
which the chapters follow naturally upon each other. (My choice of the Hicks painting
for the cover whimsically reflects my perception that the different topics presented blend
well.) The most important methods appear repeatedly, underscoring their generality.

In my very fast-paced combinatorial methods course at Columbia, where I also
teach a course on graph theory every year, I cover most of the content of this present
book, except Chapters 7 and 8, which briefly survey most of the main topics in graph

iii



Xiv Preface

theory. Their inclusion in the book permits an instructor to craft a course that meshes
well with the curricular needs of his or her department, whatever other courses it offers.

A somewhat similar selection and a roughly comparable quantity of content are
offered in Liu’s classic Introduction to Combinatorial Mathematics and also in various
more recent texts on combinatorial methods for applications, all widely used, including
Applied Combinatorics by Tucker, Applied Combinatorics by Roberts and Tesman, and
Introductory Combinatorics by Brualdi. Some practical number theory is included in
Concrete Mathematics by Graham, Knuth, and Patashnik, which offers a somewhat dif-
ferent eclectic combination from the others, with a distinguishing tilt toward continuous
mathematics, away from algebra and graphs.

The ordering of content here also differs from that of more formal books, in the
sense that several topics get a preliminary preview and other topics are developed or first
presented shortly before their application, rather than strictly according to conventional
mathematical taxonomy. For instance, much of the development of exponential gener-
ating functions is deferred until they are applied to the solution of the derangement
recurrence. Most conspicuously, a section on the partitions of integers, a celebrated
topic of number theory, appears in the midst of Chapter 9 on graph enumeration, just
in time to assist in the calculation of cycle indexes for permutation groups.

How to Use This Book

Chapter 0 introduces combinatorics and the rest of the book. Beyond providing
a comprehensive foundation for the systematic treatment that follows in subsequent
chapters, it reviews a few topics that students may have seen already in a discrete math
course and fills in some possible gaps of coverage. The pace at which it can be covered
depends entirely on the background and mathematical sophistication of the students.
Some of the exercises are intentionally designed for students whose background for this
course 1s incomplete.

Past students commonly report to me after completing my course that they have
come to use methods in Chapters 1 to 6 “all the time” in their professional work or in
other courses. These chapters are on sequences, solving recurrences, evaluating sum-
mation expressions, binomial coefficients, partitions and permutations; and on integer
methods. The techniques they present have great generality.

The level of development provided by these six chapters goes well beyond whatever
prior exposure to their topics that students may have had in a discrete math course.
To the extent that a student has seen some of the methods before, they may have
been presented elsewhere more as a single-purpose “trick”, whereas here they emerge as
systematic approaches, suitable for many possible uses. Moreover, many of the methods
are used not only in the chapters where introduced, but also in later chapters. The intent
is to produce mathematical proficiency of great use in applications, without duplication
of what is typically taught by applications courses.

Chapters 7 to 9 are designed to facilitate an optional graph theory component
within a combinatorial methods course or a combination course. Thus, Chapters 7 and
8 provide a quick tour of graph theory. A student whose prior exposure to graph theory
gave little attention to isomorphism and automorphism might read the first four sections
of Chapter 7 before reading Chapter 9, but Chapter 9 does not otherwise depend on
Chapters 7 and 8.

The last two chapters use computational methods from higher algebra, which is
what I like to present at the end of my own course. Chapter 9 is concerned with
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using automorphism groups in algebraic counting methods, and Chapter 10 is about
combinatorial designs. Since very few students except math majors have previously
taken a course in abstract algebra, there is also included within the Appendix enough
algebraic background to make these chapters readily accessible. To my delight, students
who take my combinatorial methods course have often been inspired to later take a full
course in higher algebra.

Some Features

The stylistic features of this book are similar to those that Jay Yellen and I used
in Graph Theory and Its Applications.

e Drawings. There are more than 300 drawings, which serve as an aid to building
intuition.

e FExercises. There are about 1400 exercises. The emphasis is on applying the meth-
ods taught within the body of the text, and the easiest are routine drill. Some more
difficult problems require some challenging problem-solving. This book is far more
concerned with using powerful methods than with deriving theorems. The proofs
that are expected in the exercises are typically quite short.

e Computational Engine. The author’s website at wwer.graghthéeryicorom contains a
computational engine to help with calculations for some of the exercises.

e Solutions and Hints. Each exercise marked with a superscript® has a solution or
hint appearing in the back of the book. Some of the solutions are detailed, and
others are brief. Students may find that a detailed solution of an exercise within a
grouping is of considerable help in solving other exercises in the same grouping.

e Algorithms. Algorithms are presented in a reader-friendly pseudocode, devoid of
the details of computer implementation.

Websites

Suggestions and comments from readers are invited. They may be sent to the
author’s website at wwogyepptitéoryigprom. Thanks mostly to the efforts of my col-
league Dan Sanders and my webmaster Aaron Gross, this website also maintains ex-
tensive graph theory informational resources. The general website for CRC Press is
WA CYEPResSs. (e

In advance, I thank my students, colleagues, and other readers for notifying me
of any errors that they may find. I will post the corrections to all known errors at

wwwgy agpbitidoryaprn m.
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Chapter O

Introduction to Combinatorics

0.1 Objectives of Combinatorics
0.2 Ordering and Selection

0.3 Some Rules for Counting

0.4 Counting Selections

0.5 Permutations

0.6 Graphs

0.7 Number-Theoretic Operations
0.8 Combinatorial Designs

Combinatorial mathematics or, more briefly, combinatorics, refers to the body
of mathematics developed for solving problems concerned with discrete sets, by
which we mean finite and countably infinite sets, and with the functions to and
from such sets. By way of contrast, the infinitessimal calculus (in the usual sense of
differentiating and integrating) is concerned with continuous functions on the real
line, which involves an uncountably infinite set of numbers. Calculus and all its
generalizations are collectively called continuous mathematics.

Most combinatorics problems have one of three fundamental objectives: count-
ing or calculating a sum, constructing a configuration involving two or more discrete
sets (usually two) — subject to a list of constraints, or optimization, i.e., either
finding the extreme values of a function or designing something with an optimal
characteristic of some kind. The first section of this introductory chapter presents
examples of problems of each type. The rest of the chapter surveys a few intro-
ductory methods for solving such problems and describes additional combinatorial
problems. In so doing, it also provides a quick look-ahead at some concepts that are
useful in subsequent chapters. Various details are deferred to those later chapters,
as are most of the relevant exercises.

Some parts of mathematics, including probability, geometry, and algebra, have
combinatorial aspects and continuous aspects as well. Moreover, the methods of
combinatorial mathematics often have analogies in continuous mathematics.



2 Chapter 0 Introduction to Combinatorics

0.1 OBJECTIVES OF COMBINATORICS

This initial section elaborates on the three fundamental objectives of combi-
natorial analysis: counting, constructing a configuration, and optimization. The
six chapters immediately subsequent are largely concerned with counting and the
final four with configurations (especially graphs). Optimization issues are sprin-
kled throughout. Combinatorial problems are pursued by thousands of active re-
searchers. Enumeration, graph theory, combinatorial design, and combinatorial
optimization are vast areas, each with many distinct branches. The comprehen-
sive approach to introductory combinatorics taken in this text emphasizes topics of
frequent use throughout mathematics and its applications.

The dramatic rise in the development of combinatorial mathematics in the
present era largely stems from the fact that in a computer, in graphic imaging,
and in many forms of data transmission and communication, information is rep-
resented by discrete bits, thereby necessitating combinatorial models. Information
science and information engineering now stand side-by-side in applicability and pub-
lic familiarity with physical science and physical engineering, for which continuous
models are more common.

Combinatorial Enumeration

Combinatorial enumeration is concerned with the theory and methods of dis-
crete measurement. Summing the values of a function over a finite or countable
set is the prototypical discrete measurement, in which sense it is analogous to the
continuous measurement of calculating the area of a region in the plane between
the z-axis and a curve. The word counting is frequently used by combinatorialists
as a minimalist synonym for combinatorial enumeration.

Most solutions to combinatorial enumeration problems depend on a relatively
small number of well-understood methods for discrete summation. Applying these
methods effectively requires expertise at transformation of enumeration problems
into forms directly amenable to these methods. This is analogous to the kind of
expertise in applying the infinitessimal calculus in which complicated-looking inte-
grals are transformed into expressions that yield to a relatively few well-understood
integration formulas.

Example 0.1.1: Our first example is concerned with evaluating the following
sum:

1+
24+ 1+
34+24 1+

n4(n—1)+ - +1
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For n = 12, this sum would be the number of gifts presented by “my true love” in
a well-known English holiday song,* and the value of the sum is 364. One might
readily calculate that the sum of the j** row is

J+1)j

FH G-+ 1 .

by observing that the average summand in this row is % and that there are j
summands. (This approach to summing consecutive integers is ascribed to Grauss,]L

at an early age.) Thus, the value of the original sum equals

Z”: (+1)j
: 2

j=1
This latter sum rather neatly fits a standard form of what is called the finite calculus
(see, especially, §3.4), and it can be evaluated as follows:

z”: G+1Dji  (n+2)(n+n
2 o 6

j=1
For instance, for n = 12, the value is 364.

Example 0.1.1 could be generalized to summing the values of an arbitrary
polynomial over a range of consecutive integers. Such summation problems arise
frequently in the analysis of algorithms, in which the time to execute the body of a
loop might be roughly proportional to a polynomial-valued function.

Example 0.1.2: To evaluate the sum
> 4% =357 +5
7=0

we might use Stirling numbers (see §1.6, §5.1, and §5.2) to transform it into a sum
of falling powers (see §1.5 and §3.4), for which there are simple formulas. In fact, we
have additional methods for summing polynomials, such as perturbation (see §3.2).

In later sections of this chapter, we will see various additional kinds of counting
problems.

Incidence Structures

An incidence structure i1s a combinatorial configuration that involves two or
more discrete sets. Most commonly, there are exactly two sets — a set P of points

* The Twelve Days of Christmas, orignally a children’s rthyme, first published around 1780,
according to Wikipedia.

i For instance, see wwunv.mathhetesconyavy gaugshissidtm.
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and a set L of lines — and an incidence function ¢ : P x L = Zs. In this most
common variety, the set L may optionally be represented as a family of subsets
ol P. Some types of combinatorial confliguration have additional structure on one
or both of the discrete sets.

Example 0.1.3: An abstract model for what 1s called a simple graph 1s an in-
cidence structure in which every line has cxactly two points and in which no two
lines have the same two points. In a spatial model, the more intuitive model for
a graph, cach point of the graph is called a verter and identified with a point in a
Fuclidean space (usually the plane or 3-space), and each line of the graph is called
an edge. An edge is represented spatially by an arc joining its two points, which
are called the endpoints of that edge. They are said to be adjacent vertices. Figure
0.1.1 provides two drawings of a spatial model for the graph whose abstract model
is

P =11 2 3 4, 5}
L = {12, 14, 15, 23, 25, 45}

4 5 5
Figure 0.1.1 Two drawings of a simplec graph.

There should be no expectation whatever that a {ine of a combinatorial configuration
is represented by a straight-line of a drawing.

Practitioners of graph theory (see Chapters 7, 8, and 9) regard graphs as so
interesting in themselves that there 1s no extrinsic need to justify their study. The
same could be said for almost every area of mathematics its practitioners are
motivated more by their own intellectual curiosity than by possible applications.
Nonctheless, what has made graph theory of particular importance is its many
applications. Just for a start, graphs serve as models for molecules in physical
chemistry and biology, for computer networks, for computer flow diagrams, for
electronic networks, for networks of roads in civil engineering, for genealogy, and
for social organization. Both for intrinsic interest and for their value in applications,
graph theorists have solved many problems of an enumerative character.

Example 0.1.4: While studyiug organic chemisiry in the 19® century, Arthur
Cayley encountered the problem of counting the number of different hydrocarbon
isomers with the chemical formula C, H2,42. The two isomers for n = 4, called
hutane and isobutane, are illustrated in Figure 0.1.2. Graph enumeration is the
principal concern of Chapter 9.
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H H H
A R et et et
B Y
H— C—H
|
Figure 0.1.2 Butane and isobutane.
Optimization

In the present context, we mean by combinatorial optimization any discrete
problem concerned with finding a maximum or a minimum. In some other contexts,
the same phrase, combinatorial optimization, has a special meaning of finding the
maximum value of a function on a region of a Euclidean space or of functions that
could possibly be so represented. Even for the case in which the function 1s linear,
there is an entire discipline and many books.

Example 0.1.5: For instance, if one is selecting subsets of size k& from a set of
size n, one may wish to know the value of & for which the number of different
subsets 1s greatest. Such a problem is clearly analogous to the problem of finding
the maximum of a continuous function on a real interval, which is solved in calculus
by finding the zeros of the derivative function, a technique of extensive generality.
This combinatorial problem is solved in §1.5 by showing that the number of subsets
first rises with increasing value of k and then falls, which follows the same pattern
of reasoning as when optimizing a continuous function. However, the combinatorial
technique needed to establish rising and falling of a discrete function is usually less
formulaic than the maximizing and minimizing of the differential calculus, with
something more of an ad hoc character.

Example 0.1.6: In exiremal graph theory, the standard type of problem is to
determine the maximum number of edges that a simple graph G with n vertices
may have before some property necessarily holds. For instance, how many edges
may it have before there must be a set of three mutually adjacent vertices? The
following solution of this problem, due to Paul Turdn, appears in §8.4. (The notation
|z | means the largest integer less than or equal to z.)

2

n
|Fa| = {IJ + 1

An example of the more restricted meaning of combinatorial optimization is
the maximization of network flows, as described in §8.6.
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0.2 ORDERING AND SELECTION

We begin with the analysis and solution of a sample counting problem involving
ordering and selection, which are both fundamental ideas in combinatorics that
occur throughout. The example is then generalized, and some standard artifacts of
combinatorial analysis are introduced.

A Counting Problem

DEFINITION: An ordering of a set S of n objects is a bijection from the set

{1,2, ...,n}

to the set S. It serves as a formal model for an arrangement of the n objects into
a TOw.

DEFINITION: An (unordered) selection from a set S is a subset of S.

Example 0.2.1: In how many ways is it possible to arrange two of the letters
A B C D FE

and two of the digits
01 2 3

into a row of four characters, such that no two digits are adjacent? For instance,
the arrangement C'3A42 meets that requirement.

Tt is not difficult to determine (e.g., by listing all possibilities, if no shorter method
comes to mind) that there are 10 possible selections of two of the five letters and 6
possible selections of two of the four digits. Thus, there are 60 possible selections of
a combination of four symbols that meets the given requirement. An arrangements
of four such symbols into a row meets the requirement if it has any of the three
forms

LDLD DLDL and DLLD

where D is a digit and L is a letter. Since there are four ways that two distinct
letters and two distinct digits could be placed within one of the three forms, it
follows that there are 12 (= 4 x 3) ways that each of the 60 suitable selections of
four symbols could be arranged so as to meet the requirement. Thus, the answer
to the stated problem is 720 (= 60 x 12).

Some of the calculations in the foregoing analysis are based on a well-established
counting rule, called the Rule of Product, to be presented in §0.3. For the time being,
it is sufficient either to confirm the assertions of this section with ad hoc methods
or to defer checking them until after reading §0.3.



Section 0.2 Ordering and Selection 7

Sequences and Generating Functions

A somewhat more general version of Example 0.2.1 supposes that z, is the
number of ways to form an arrangement of four symbols when there are n letters,
but still only four digits. We have just calculated that x5 = 720. Similar analysis
yields the values

l‘QIO x1:0 1‘2272 l‘3:216 l‘4:432 l‘5:720

The sequence over all non-negative integers n is called a counting sequence for this
problem. Sometimes a sequence is encoded by multiplying its entries

g0 91 g2

by ascending powers of z (or of some other indeterminate) and summed into the
form
go + g1z + g2z + o

For this general version of Example 0.2.1, we would obtain

0+ 0247222 + 21622 + 4322 + 7202° + - -+
= 7222 + 2162 + 4322% + 7202° + - -

Moreover, the resulting infinite polynomial often has an equivalent closed form,
called a generating function.

Example 0.2.2: The closed form

1
1-—2z

1s equivalent to the infinite polynomial
1+ 22 + 427 + 825 + -+

Thus, it i1s a generating function for the sequence of powers of 2. As a generating
function, such an infinite polynomial is regarded either as an encoding of its sequence
of coefficients or as an algebraic expression. In this context, the issue of convergence
is rarely relevant.

Generating functions are the main topic of §1.7. It is described there how they
are used to solve various kinds of counting problems.

Recurrences

A sequence can be specified by giving some of its initial values and a recurrence
that says how each later entry can be calculated from earlier entries.

Example 0.2.3: Famously, the recurrence

fo=0 fi=1 initial values
fn = Jfac1+ fao2 for n > 2
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gives the Fibonacci sequence, whose first few entries are as follows:

n| 0123456 7 8 9:-
fn\0112358132134...

Generating functions are used in Chapter 2 to derive the formula

fo = %.((1:%)”_ (1_2ﬁ)n)

Such an arithmetic expression, whose evaluation can yield every value of a counting
sequence, 1s called a closed formula for that sequence. A closed formula for a re-
currence is called a solution to the recurrence, in the same sense that a differentiable
function might be a solution to a differential equation.

Combination Coefficients

The number of possible selections a subset of size & from a set of size n 1s
commonly expressed when speaking as “n-choose-k” and denoted in writing

(&)

which is called a combination coefficient. Its value is given by this equation

(Z) - #‘_k)x (0.2.1)

which is derived in §0.4. Its alternative name of binomial coefficient is justified in
Chapter 1. For the time being, we observe that

(g) - 2!(nn!— 29~ n(nQ_ -

We may also perceive how combination coefficients might be used in solving still
more generalized versions of Example 0.2.3.

Example 0.2.4: The sequence of combination coefficients

0 1 2 3
2 2 2 2
has the generating function

l,Z

(1—2)?
To verify this observation, one might expand the denominator and divide it into

the numerator, using the long division process on the two polynomials, which is
described in more detail in §1.7.
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0.3 SOME RULES FOR COUNTING

Having meaningful names for concepts, even for very simple concepts, makes
it possible to state clearly and concisely what method is being used. Moreover,
knowing a name for a concept makes it easier to recognize an instance of a method
that i1t is not explicitly identified. This section introduces the names of a few
principles whose applications are ubiquitous in combinatorial analysis. It also offers
a glimpse at the calculus of finite sums, which is the discrete counterpart to the
integral calculus.

NOTATION: The cardinality of a set U is denoted |U|. The most common binary
operations on two sets U and V' are denoted

U UV for union
UnNV for intersection
U -V for difference, and

U xV for cartesian product

Rules of Sum and Product

C. L. (Dave) Liu [Liul1968], then a professor of Electrical Engineering at M.I.T.,
gave popularity to now-standard names of two principles that relate elementary
arithmetic operations to the counting of set unions and set products. They are
frequently used in tandem.

DEFINITION: Rule of Sum: Let U and V be disjoint sets. Then

wuv] = [Ul+|V]

DEFINITION: Rule of Product: Let U and V be sets. Then

U x V] = |U]-|V]

Example 0.3.1: The license plate numbers in a small state are five characters
long. They must begin with three letters, but the other two characters may be
letters or digits. According to the Rule of Product, there are 26% ways that the 40
and 51 characters may both be letters, 26 - 10 ways that they may be, respectively,
a letter and a digit, 10 -26 ways they may be a digit and a letter, and 10? ways they
may both be digits. By rule of sum there are

2624+ 926-10+10-26+ 10> = 1296

possibilities for the last two digits. (We notice that 1296 = (26 +10)%.) Since there
are, by rule of product, 26 possible combinations for the leading three letters, the
total number of possibilities is

263 - 1296
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Sometimes the rule of product i1s applied in circumstances where a plausible
time-sequence is imposed on the order of selection of members from the sets, without
changing the resulting number of objects in the set to be counted.

Example 0.3.2: Three six-sided dice are rolled. The dice are colored blue, red,
and yellow. In how many ways can the outcome be three different numbers on the
three dice? To solve this problem, we observe that whichever of the 6 possibilities
occurs for the blue die, there remain 5 for the red die, and then 4 for the yellow die.
Thus, the total number of possibilities is

6-5-4

Rule of Quotient

Another counting rule, similar in simplicity to Liu’s two rules, applies to count-
ing the number of cells in a partition of a set.

DEFINITION: A partition of a set U is a collection of mutually exclusive subsets
Ui, .., Up
called cells of the partition, whose union is U.

DEFINITION: Rule of Quotient: Let P be a partition of a set U into cells, each of
the same cardinality k. Then the number of cells equals the quotient

1l
J

Example 0.3.3: Figure 0.3.1 shows 20 objects partitioned into cells of four each.
In accordance with the Rule of Quotient, the number of cells is

20

=5
4

Figure 0.3.1 Partition of 20 objects into cells of four each.

Example 0.3.2, revisited: There are 6 = 3! ways that any given combination of
three distinct numbers could occur on the three dice. If the set of all instances of
three different numbers for the three dice is partitioned into cells so that each cell
contains all instances of a given combination of three distinct numbers, then each
cell is of cardinality 6. It follows that the total number of possible combinations of
three numbers, ignoring which occurs on which die, is

6-5-4

= 20
6
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The Rule of Quotient cannot be applied when the cells of the partition are of
different sizes.

Example 0.3.4: Suppose that each of the squares of a 3 x 3 tic-tac-toe board may
be filled with an “X” or an “O”, or left blank, without consideration of what might
arise when playing the game. Since there are three possibilities for each of the nine
squares, the total number of possible configurations is 3°. It is natural to regard
two such configurations as equivalent if one could be obtained from the other by a
rotation or a reflection. The equivalence classes are not all of the same size. For
instance, Figure 0.3.2 illustrates an equivalence class of size four.

X[X|O O[X|[X o) X X o)
X X X X
O[X (X X([X|O X 0 0 X

Figure 0.3.2 Four equivalent tic-tac-toe configurations.

On the other hand, the configurations that are all blank, all “X” or all “O” are in
equivalence classes of size one. There are also some equivalence classes of sizes two
and eight. Thus, the Rule of Quotient cannot be applied.

Counting equivalence classes that are defined by symmetries is frequently ac-
complished with the aid of Burnside-Pélya counting. This method of counting is
developed in Chapter 9.

When to Subtract

There are some common circumstances when calculating the cardinality of a
set is achieved using a subtraction operation. One 1s when the set X to be counted
18 a subset of a larger set U and it looks easier to calculate the sizes of U and of the
complement U — X than the size of the set X directly.

Example 0.3.5: To count the number of n-digit base-ten numerals that contain
at least one odd numeral, we observe that there are 10" 6-digit base-ten numerals in
all, according to the Rule of Product. Of these, since there are five even digits, 5”
contain only even digits, also by the Rule of Product. Thus, the number of n-digit
base-ten numerals with at least one odd digit is

10" — 57

Another circumstance where subtraction is used 18 in calculating the size of
a union of overlapping subsets. Adding the subset sizes overcounts objects that
appear in more than one of the subsets, so the overcount must be subtracted.

Example 0.3.6: To count the integers from 1 to 990 that are divisible either by
3 or 5, we first calculate that within this range, there are
990

= 330
3
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that are divisible by 3 and
990

5

that are divisible by 5. However, the sum of these two quotient would count each

of the

= 198

990

15
integers that are divisible both by 3 and by 5 two times each. Thus, the total
number of integers that are divisible either by 3 or by 5 must be

330 + 198 — 66 = 462

= 66

Reals to Integers

Three standard functions for converting a real number into a nearby integer are
especially convenient when one wants to apply integer methods. Sometimes they
are intrinsic to a formula, for instance in a generalization of Example 0.3.6.

DEFINITION: The floor of a real number z is the largest integer that is not larger
than x. Tt is denoted |z].

DEFINITION: The ceiling of a real number z is the smallest integer that is not
smaller than . Tt is denoted [z].

DEFINITION: The nearest integer to a real number x is

lz] ife—|z] < 3
B lz] ife—|z] = % and |#] is even;

round (z) = o] ife—le) > L
[z] ife—|z| = % and [z] is even

This table gives a few values of the floor function, the ceiling function, and the
round function.

n [n] [n] round(n)
4.8 4 5 5
4.5 4 5 4
3.5 3 4 4
3.2 3 4 3
—2.2 -3 =2 -2
—2.5 -3 =2 -2
—-2.9 -3 =2 -3
—-3.5 -4 -3 —4

Example 0.3.6, continued: In general, the number of positive integers less than
or equal to n that are divisible by 3 or by 5 is

n n n

3+5 15
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Pigeonhole Principle

The imagery of another elementary counting principle is that a flock of pigeons
is flying in a formation that does not lend itself easily to counting the pigeons.
Fortunately, however, the pigeons come to roost in a set of pigeonholes that is more
easily counted, such that there is exactly one pigeon to each pigeonhole. Then the
fact that the number of pigeons equals the number of pigeonholes provides a way
to count the pigeons. Figure 0.3.3 illustrates this imagery.

A%

A%

Vv

A%

A%

A%

A%

Vv

v

A%

/\/\

/\/\

/\/\

/\/\

/\/\

Ve

A

A

A

A

<|<I<I<

Figure 0.3.3 Flock of pigeons neatly fills the pigeonholes.

One widely cited informal version of the pigeonhole principle simply says that if
there are more pigeons than pigeonholes, then there exists a pigeonhole with more
than one pigeon. A complete formal statement of the principle is as follows. It can
be proved by a straightforward induction argument. The informal version can be
derived from it.

DEFINITION: Pigeonhole Principle: Let f : U — V be a function with finite
domain and finite codomain. Let any two of the following three conditions hold:

1. f is one-to-one.

2. f is onto.

3.0 = |V
Then the third condition also holds.

Example 0.3.7:
were born in the same month.

In any collection of 13 people, there must be two of them who
In this elementary example, the people are the
pigeons, and the months are the pigeonholes.

Example 0.3.8: If a baseball team scores 12 runs in a 9-inning game, then there
is an inning in which they scored at least two runs.

Applications of the Pigeonhole Principle are often a bit tricky. Consider the follow-
ing example.

Example 0.3.9: Suppose there are ten pairs of socks, each pair a different color
and that the socks are tossed together in a pile. It becomes necessary to pack for a
business trip in total darkness, with a meeting in which it is essential to wear two
socks of the same color. What is the minimum number of socks one must pack to
be sure to have a matched pair?

In this case, the pigeons are socks and the pigeonholes are the 10 different colors.
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Although ten pigeons might roost one per hole, this would not be possible for 11
pigeons. Thus, 11 is the minimum number of socks that guarantees the existence
of a match among them.

A generalized version of the Pigeonhole Principle asserts that when there are
p pigeons and h pigeonholes, there is a pigeonhole with at least

H
pigeons.

Example 0.3.10: An equestrian asks her lawyer to write a will bequeathing her
17 horses to five beloved nieces and nephews. Then there exists a beneficiary among
them who will get at least four horses.

Evaluating Sums

Complex summation expressions tend to arise quite frequently in problems
concerned with counting. Some of the most useful methods for evaluating finite
sums appear in Chapter 3. One such method, with a direct analogy to the calculus
of integration, is called the calculus of finite sums.

Quite likely the most frequently used formula from the infinitessimal calculus
is the formula
b e
[
r=a r + 1

for integrating a monomial (i.e., a polynomial with only one term). The follow-

b

r=a

ing definition is a preliminary step to expressing an analogous formula for finite
summations.

DEFINITION: The r*P falling power of a real number z is the product

r factors

= z(z—=1) - (x—r+1) for r € N

Remark: For nonnegative integers n and r < n,

nto= —— (0.3.1)

Example 0.3.11: Here are some falling power evaluations.

2 = z(le—1D(z—-2) = 22— 327 + 22
62 = 6-5-4 = 120

2\ 2 -3 -8 48
5/ 5 5 5 125
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The formula for summing a falling-power monomial is

b kr_l_l b+1
>kt = (0.3.2)
k=a r+l k=a

Example 0.3.12: We apply formula (0.3.2) for exponent » = 2 and limits of
summation ¢ = 3 and b = 5.

5
Dk = 32442452
k=3

=64+ 124 20 = 38

IS e 3
3l 3 3
= 40 - 2 = 38

Summations of ordinary powers can be achieved via a preliminary conversion to
falling powers. For instance,

2?2 = 22 4+ 21 and % = 23 + 322 4+ 2L
The coefficients used in the conversion, which are called Stirling numbers, are de-
scribed in §1.6 and developed in much greater detail in Chapter 5.
Empty Sums and Empty Products
In manipulating expressions with iterated sums and products, such as

Z Ty or H €Ty

z;ES T;ES
we sometimes encounter a sum or product over the empty set §.

DEFINITION: A sum over an empty set of numbers is called an empty sum. Its
value is taken to be 0, the additive identity of the number system.

DEFINITION: A product over an empty set of numbers is called an empty product.
Its value is taken to be 1, the multiplicative identity of the number system.

Multisets

One of the many applications of the Rule of Quotient is to counting arrange-
ments of multisets. Informally, a multiset is often described as a “set in which the
same element may occur more than once”.

DEFINITION: A multiset is a pair (S, ¢) in which S is a set and ¢ : S — Z" is a
function that assigns to each element s € S a number ¢(s) called its multiplicity.
(The Greek letter iota is a mnemonic for instances.)
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Example 0.3.13: The letters of the word SYZYGY form a multiset in which the
letter Y occurs three times, and each of the other three letters occurs once. If the
six letters were all different, then the number of ways of arranging them into a
row of six would be 6! = 720. We may model this by artificially attaching distinct
subscripts to each of the copies of the letter Y, so that they become Y7, Y5, and Y.
We regard two arrangements of the six elements of the resulting set as equivalent if
the positions of the letters G, .S, and Z are the same in both arrangements. There
are then 6 = 3! equivalent arrangements in each equivalence class. By the Rule of
Quotient, the number of equivalence classes is
6!

5:120

More generally, the Rule of Quotient implies that the number of ways to arrange
the elements of a finite multiset (5, ¢) is

(Xses t())!
[T,es(e(5)")
DEFINITION: The cardinality of a multiset (S, ¢) is taken to be the sum
>_us)
SES

of the multiplicities of its elements. It is denoted |(S, ¢)|.

A couple of additional definitions are helpful when working with multisets.

DEFINITION: A submultiset of a multiset (S, 1g) is a multiset (7', ¢p) such that

TCSs and
tp(t) <eg(t) forallteT

We shall see in §1.7 how to use generating functions to count not only the
number of ways to select & elements from a given multiset, for all possible values of
k, but also to count the number of strings of length &, taken from a given multiset
of letters.

Example 0.3.13, continued: There are seven possible choices of three letters
from the word SYZYGY. There are 34 possible strings of length 3. For the time
being this can be confirmed using Rule of Sum and Rule of Product.

DEFINITION: The restriction of a multiset (S, ¢) to a subdomain 7' C S is the
submultiset (7, ¢7) such that

tp(t) = o(t) forallteT
NOTATION: In context, the multiplicity function of the restriction of a multiset

(S, ¢) to a subdomain 7" C S is simply denoted ¢, since its values on the elements
of T' are the same as when they are regarded as elements of S.
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EXERCISES for Section 0.3

0.3.1 Calculate the number of ways to arrange three 0-bits and four 1-bits into
a binary string.

0.3.2 Calculate the number of functions from a set of d elements to a set of r
elements.
0.3.3 Calculate the number of one-to-one functions from a set of d elements to

a set of r elements.

0.3.4 How many numbers between 1 and n, inclusive, are divisible either by 2
or by 77

0.3.5 How many numbers between 1 and n, inclusive, are divisible either by 6
or by 107

In each of the Exercises 0.3.6 through 0.3.9, compare the two floor expressions and
prove that one of them 1is less than or equal to the other, for all real x and y.

0.3.6° |z +y]and |z] + |y] 0.3.7 [z —y| and |2] — |y]
0.3.8 |z?| and |z ]? 0.3.9 V022] and | x|
In each of the Exercises 0.3.10 through 0.3.15, a multiset is represented by a given

string of letters. Calculate the number of ways to arrange the letters of the multiset
nto a string.

0.3.10° BANDANA 0.3.11 FOREIGNER
0312 HORSERADISH 0.3.13 CONSTITUTION
0.3.14 MISSISSIPPI 0.3.15 WOOLLOOMOOLOO

Each of the Erercises 0.3.16 through 0.3.19 presents a possible application of the
Pigeonhole Principle. Identify pigeons and pigeonholes, and calculate the answer.

0.3.16% What is the minimum number of students in a class such that at least two
of them were surely born on the same day of the week?

0.3.17 Suppose it is known that the maximum number of hairs on a person’s head
1s 500,000. Show that a city with 8,000,000 people must have two persons with the
same number of hairs on their heads.

0.3.18 How many times must two six-sided dice be rolled so it is certain that two
of the outcomes will have the same sum?

0.3.19  What is the maximum length of a binary string such that no two of the
substrings of length three are the same? (Optional: Give an example of a maximum-
length sequence.)

0.3.20  List the seven possible choices of three of the letters from SYZYGY.

0.3.21 Use the Rule of Product and the Rule of Sum to verify that there are 34
possible 3-letter strings that can be formed from the word SYZYGY, if no letter
may be used more often than its number of occurrences in that word.



18 Chapter 0 Introduction to Combinatorics

0.4 COUNTING SELECTIONS

This section gives models for several different kinds of selection from a set S
and methods for counting the number of possible selections. As defined in §0.2, an
unordered selection from S is simply a subset of S. An ordered selection assigns
an order to the elements of the selected subset. Some other models permit repeti-
tion. This discussion of selection includes the generalization to multi-selection, in
which several disjoint subsets may be selected from the set S. In a multi-selection,
sometimes the subsets are construed to be labeled, which serves to distinguish two
subsets of the same size.

In the course of this exposition, the usefulness of constructs such as falling powers
and empty products becomes evident.

Ordered Selections

DEFINITION: An ordered selection of k objects from a set of n objects is a function
from the set

(1,2, .., k}

to the set S. It serves as a formal model for an arrangement of k objects from S
into a row, or of a repetition-free list of length % of objects from S.

TERMINOLOGY NOTE: An ordered selection is sometimes elsewhere called a per-
mutation. In the present context, we follow the usage of higher algebra, that a
permutation is a bijection of a set to itself. Thus, here a permutation is the opera-
tion itself, rather than the resulting arrangement. See §0.5.

Proposition 0.4.1. Let P(n, k) be the number of possible ordered selections of k
objects from a set S of n objects. Then

P(n,k) = nk (0.4.1)

Proof: By induction on k.
BASIS: For k = 0, the only possible ordered selection is the empty list. Thus,

P(n,0) =1 = n?

IND HYP: Assume that P(n,k) = nk, for some k > 0.

IND STEP: After the first k£ objects have already been selected from .S, the number
of remaining objects from which to choose the k + 1°* object is n — k. Thus,

P(n,k+1) = P(n,k) - (n—k) (Rule of Product)
= nk.(n—k) (induction hypothesis)
=nn—1)--(n—k+1) - (n—k) (def of falling power)
= pltl &
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Example 0.1.1, revisited: Each of the ways to arrange two of the letters
A B C D FE
and two of the digits

into one of the forms
LDLD DLDL and DLLD

may be regarded as a choice of one of the three forms, followed by an ordered
selection of two letters from the set of five — to be placed into the two positions
for letters in the chosen form, in order consistent with the order of selection —
followed by an ordered selection of two digits from the set of four — to be placed
into the two positions for digits in the chosen form, in order consistent with the
order of selection. For instance, the arrangement C'3A2 corresponds to the choice
of the form LDLD), followed by the ordered selections C'A and 32.

Since the number of forms is 3, the number of ordered selections of two letters is
52, and the number of ordered selections of digits is 42, it follows from the Rule of
Product that the total number of arrangements is

3.52.42 = =3.20-12 = 720

Unordered Selections

To evaluate (Z), which counts unordered selections, we regard the unordered
selections as equivalence classes of ordered selections, in which two ordered selections
of k objects are considered to be equivalent if they contain the exact same k objects.

Proposition 0.4.2. The number of unordered selections of k objects from a set S
of n objects is given by the rule

(Z) - %k? - #'_k)' (0.4.2)

Proof: By Proposition 0.4.1, the number of ordered selections of k objects from S
is n£. Since the number of orderings of k objects is k!, there are k! ordered selections
corresponding to each unordered selection. The conclusion follows from the Rule of
Quotient. &

Selections with Repetitions Allowed

The number of ordered selections of k objects from a set S of n objects with
unlimited repetition allowed 1s easily determined.

DEFINITION: An ordered selection with unlimited repetitionof k objects from
a set S of size n is a finite sequence

L1, L2, ..., Tk

of k objects, each of which is an element of 5.
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Proposition 0.4.3. The number of ordered selections of k objects from a set S of

n objects is n*.

Proof: This is easily proved by an induction argument, involving the Rule of

Product. &

Counting unordered selection with unlimited repetitions allowed seems quite
difficult, if approached directly.

DEFINITION: An unordered selection with unlimited repetition of k objects
from a set S of size n is a multiset (S, ¢) of cardinality &, with domain S.

Example 0.4.1: Consider counting the number of unordered selections, with un-
limited repetitions allowed, of four objects from the set {1, 2, 3, 4}. There are these
four selections containing only one distinct digit

1111 2222 3333 4444

these 18 with two different digits

1112 1113 1114 2221 2223 2224
3331 3332 3334 4441 4442 4443
1122 1133 1144 2233 2244 3344

these 12 with three different digits

1123 1124 1134 2213 2214 2234
3312 3314 3324 4412 4413 4423

and only one with four different digits
1234
for a total of 35 possibilities.

The following construction greatly simplifies the task of counting unordered selec-
tions with unlimited repetitions, by representing multisets as binary strings.

DEFINITION: The bitcode for a multiset (S,¢) of cardinality k, with domain
{1, 2, ..., n}, is defined recursively:

o If n =1, then the bitcode is a string of k£ 0-bits.
e For n > 1, the bitcode for (S,¢) is the bitcode for the submultiset (S —{n},¢),
followed by a 1-bit, followed by a suffix of ¢«(n) 0-bits.

Example 0.4.1, continued: For the domain {1, 2, 3, 4}, the bitcode for the
multiset

{1,1,3,4}
18 0011010. The steps are as follows:
{1, 1} over domain {1} has bitcode 00
{1,1} over domain {1, 2} has bitcode 001
{1,1, 3} over domain {1, 2, 3} has bitcode 00110
{1,1, 3, 4} over domain {1, 2, 3} has bitcode 0011010
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We observe that the multiset {1,1,3,4} could be reconstructed from its bitcode
0011010. Since two 0-bits precede the first 1-bit, there must be two instances of
the digit 1 in the multiset. Since there are no 0-bits between the first 1-bit and the
second 1-bit of the bitcode, there must be no instances of the digit 2 in the multiset.
Since there is one 0-bit between the second 1-bit and the third 1-bit of the bitcode,
there must be exactly one instance of the digit 3 in the multiset. Since there is one
0-bit after the third and final 1-bit, the multiset must have exactly one instance of
the digit 4.

Remark: In reconstructing a multiset of cardinality k¥ with domain {1, 2, ..., n}
from its bitcode, we may regard the £ — 1 1-bits as separating the bitstring into
k substrings of 0-bits, some of which may be nullstrings. The lengths of the &
consecutive substrings of 0-bits are the multiplicities on the corresponding integers
in the domain. This may be depicted as in Figure 0.4.1.

00| |o]o

Figure 0.4.1 A representation of the bitstring 0011010.

Proposition 0.4.4. The correspondence between the set of multisets of cardinality
k with domain {1, 2, ..., n} and the set of bitstrings of length n+k —1 with exactly
k — 1 1-bits is a bijection.

Proof: One possible proof of this proposition is that the encoding of multisets
as bitcodes is clearly invertible, which could be established by generalizing the
inversion in Example 0.4.1. Another alternative is by induction. &

Corollary 0.4.5. The number of different multisets of cardinality k with domain

{1,2,...,n}is
n+k—1
k—1

Proof: By Proposition 0.4.2, the number of bitstrings of length n + & — 1 with

exactly k — 1 1-bits is
n+k—1
k-1

It follows from the Pigeonhole Principle, in view of Proposition 0.4.4, that the
number of different multisets of cardinality k& with domain {1, 2, ..., n} is the
same as the number of bitstrings of length n + k — 1 with exactly k¥ — 1 1-bits.

Example 0.4.1, continued: By Corollary 0.4.5, the number of multisets of car-
dinality four with domain {1, 2, 3, 4} is

4+4-1 7
= =35
5 - 0)

Thus, Corollary 0.4.5 can greatly reduce the effort needed to count multisets with
repetitions.
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Example 0.4.2: Consider counting the number of possible outcomes of rolling
three cubic dice, with the six sides of each die marked with 1 to 6 spots. Any two
outcomes with the exact same number of instances of each of the six numbers of
spots are regarded as equivalent. How many different possible outcomes are there?
According to Corollary 0.4.5, the answer is

(7)==

Distributions into Labeled Cells

Sometimes, instead of selecting a single subset of a set, a problem calls for
distributing the elements of a set into disjoint cells, thereby, in effect, selecting
several subsets. There are several different models.

DEFINITION: A multicombination from a set S of n objects is a distribution of the
elements of S into k labeled cells

By By ... By

(sometimes) called bozes. Although this does not distinguish the order of the objects
with a cell, the cells are distinct.

DEFINITION: The multicombination coefficient

n
7y T ST

is the number of ways to distribute a set of n objects into k labeled cells
By Bs ... By
of respective sizes 71, ra, ..., k.

Proposition 0.4.6. The values of the multicombination coefficients are given by

the rule :
n n!
= 4.
(rl ro - rk) rilrgl oo (0-4.3)

Proof: The number of ways to select r; for box B is

(%)

The number of ways to subsequently select r5 for box By from the remaining n —

objects is
n—r
T2
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And so on. By the Rule of Product, it follows that the number of ways to complete
the distribution is

n n—n n—"r—r2— " —Tkg-1
1 T2 Tk

n! (n—rp)! (n—ry—ro— - —rp_q)!

rl(n—r)t rl(n—r —ra)! 7! 0!
n!

rilrgl ooyl

by repeated application of the factorial formula (0.4.2) for binomial coefficients. ¢

Example 0.4.3: The ways to distribute the set {A, B, C, D} into boxes of sizes
r1 =2, r, =1, and r3 = 1 are given by this array

AB|C|D AC|B|D AD|B|C BC|A|D BDIA|C CDI|A|B
AB|D|C AC|D|B AD|C|B BC|D|A BD|C|A CD|B|A

Each of of the six columns of the array shows a different possible choice for Box
B; of 2 objects, leaving two objects, from which one object is to be chosen for box
By, thereby leaving the remaining object for box Bs. We could calculate the total
number of distributions iteratively as

() o

or, alternatively, with a single multicombination coefficient

4 4!
= — = 12
(2 1 1) 211 1t

TERMINOLOGY: Another name for the multicombination coefficient

n
7y T ST

is the multinomial coefficient, since it is provably the coeflicient of the term
qu x;2 PR xzk
in the expansion of the exponentiated multinomial

(z1+ 2o 4+ )"
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Distributions into Unlabeled Cells

The difference between distributions into labeled and into unlabeled cells is
best explained with concrete examples. The main idea is the cells of the same size
are regarded as interchangeable.

Example 0.4.3, continued: With unlabeled boxes, each of the distributions on
the top row of the array is indistinguishable from the distribution immediate below
it.

Example 0.4.4: Of four faculty in an academic department, two will be advisors
to the juniors and two to the seniors. According to Proposition 0.4.6, the number
of distributions meeting the requirement is

4!

5121~ O

If these faculty are designated A, B, C', and D, the six possible distributions are

juniors seniors

1. AB ¢D
2. AC BD
3. AD BC
4.  CD AB
5. BD AC
6. BC AD

However, if we discard the labels juniors and seniors then there are only three ways
that the four faculty are grouped into pairs. The distributions 1 and 4 would be
indistinguishable, as would distributions 2 and 5 and distributions 3 and 6.

The following proposition gives the formula for counting distributions into un-

labeled cells.

Proposition 0.4.7. Let S be a set of n objects. Suppose that these objects are to

be distributed into b; boxes of size r;, for j =1, ..., k, with
k
ij r; = n
j=1

The number of ways to do this is

n! 1
(7“1!)61 (7“2!)62 s (Tk!)bk b1' bz' s bk'

(0.4.4)

Proof: This follows from Proposition 0.4.6 and the Rule of Quotient. &
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Partitions of a Set

PREVIEW OF §1.6:

e A partition of a set into k cells can be characterized as a distribution of that
set into k unlabeled boxes with none left empty.

o The Stirling subset number {} } is the number of ways to partition a set
with n objects into k cells.

Formula (0.4.4) enables us to calculate the number of partitions of a set of n objects
into cells of prespecified sizes.

Example 0.4.4, continued: The number of partitions of a set of four objects
into two cells, both of size two, is

415 1

orat 91

Example 0.4.5: A set with four objects may be partitioned into two cells either
with sizes 3 and 1 or with cells of sizes 2 and 2. Thus,

{;} - (341) i (242)'% =443 =71

EXERCISES for Section 0.4

In each of the Exercises 0.4.1 through 0.4.3, calculate the number of selections with
unlimaited repetition for the designated problem.

0.4.1 Select eight coins from the six coins presently in circulation in the USA:

1¢, 5¢, 10¢, 25¢, 50¢, $1.

0.4.2 A bakery sells four kinds of bagels: plain, onion, garlic, and poppy seed.
Select a dozen bagels.

0.4.3%5  Select positive integer values for the variables 1, x5, and 3 so that 1 +
o+ x3 = 11.

0.4.4 A college schedules introductory courses in calculus, chemistry, and physics
at 9:00am and requires every one of its 323 freshmen to attend one of these 9:00am
courses. Calculate the number of ways to distribute the students into these three
courses.

0.4.5 A wrestling team competes in a league with 14 season matches, each of
which could result in a win, a loss, or a draw. Calculate the number of possible
season records.

0.4.65 Calculate the number of ways to distribute 12 indistinguishable balls into
four labeled boxes.
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0.4.7 Calculate the number of terms of the multinomial resulting from the ex-
pansion of the trinomial (z + y + 2)%.

In each of the Exercises 0.4.8 through 0.4.11, evaluate the given multinomial coef-
ficient.

7 9
4.8 4.9
’ (3 2 2) ’ (3 221 1)

9 12
0410 (4,0 1) RETR N

In each of the Exercises 0.4.12 through 0.4.15, calculate the number of partitions of
a set of the given size into cells of the given sizes.

0.4.12% A set of size 7 into parts of sizes 3, 2, and 2.

0.4.13 A set of size 9 into parts of sizes 3, 2, 2, 1, and 1.

0.4.14 A set of size 9 into parts of sizes 2,2, 2,1, 1, and 1.

0.4.15 A set of size 12 into parts of sizes 3, 3,2, 2, 1, and 1.

In each of the Exercises 0.4.16 through 0.4.19, evaluate the given Stirling subset
number.

5 5 6 6
s
0.4.16 {3} 0.4.17 {2} 0.4.18 {3} 0.4.19 {4}

0.5 PERMUTATIONS

Solving problems concerned with counting configurations with symmetries, like
the tic-tac-toe boards of Example 0.3.4, requires some algebra involving permuta-
tions, as seen in Chapter 9. It is fundamental to such algebra to know how to
construct a composition of two permutations and how to represent a permutation
in what 1s called disjoint cycle form.

DEFINITION: A permutation of a set S is a bijection (a one-to-one, onto function)
from S to itself.

In any kind of algebra, the calculation of the effect of applying various operations
depends on the representation of the objects. For instance, the rule for calculating
the product of two Roman numerals is different from the rule for calculating the
product of base-10 numerals. Similarly, rules for the calculation of permutation
operations depend on the representation. In this section, we introduce two ways to
represent permutations and the corresponding ways to calculate the composition of
permutations.
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2-Line Representation of Permutations

DEFINITION: The 2-line representation of a permutation w of a set S is a 2-line
array that lists the objects of S in its top row. Below each object x is its image
7(x) under the permutation.

Example 0.5.1: The permutation 7 of the set {1, 2, ..., 9} such that

l1—7 2—4 3—1 4—8
5—=b 6—2 7—=9 8—6 9—3

is represented by the 2-line array

S 1 2 3 45 6 7 8 9
A7 41 8 5 2 9 6 3
which is illustrated by Figure 0.5.1.
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
Figure 0.5.1 A permutation of the set {1, 2, ..., 9}.

One imagines that the nine numbers are initially in a row in ascending order.
The permutation m moves whatever object is in position 1 to position 7, whatever
object is in position 2 to position 4, and so on. Thus, the application of = changes
their ordering to

3 6 9 25 8 1 47

DEFINITION: The inverse of a permutation 7 on a set S is the permutation 7!

that restores each object of S to its position before the application of «.

The 2-line representation of the inverse of a permutation can be obtained by
transposing the rows, possibly sorting the columns according to the entry in the
resulting first row.

Example 0.5.1, continued:

= (I
a7l = <;

[>T (R GRS
W W=
[ NG S Nyo"
[ S ) S
o S O N
= =~ =~
= 00 oo O
-1 ©
N

(1
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Composition of Permutations

DEFINITION: The composition of permutations = and 7 is the permutation mor
resulting from first applying 7 and then applying 7. Thus, (7o 7)(z) = 7(7(z)).

Obtaining the 2-line representation of the composition mo7 of two permutations
is a 2-step process.

1. Rearrange the columns of the representation of 7 (the permutation to be applied
second) so that in each column, the top entry is the same as the bottom entry
in the representation of 7 (the permutation to be applied first).

2. The top line of the 2-line array for the composition w o 7 is the top line of the
array for m. The bottom line for 7w o 7 is the bottom line for the rearranged
representation of 7.

Example 0.5.1, continued: Suppose that

__ (123456789
“\6 53192874

Transposing the columuns of 7 facilitates the computation

__ (1234567809
T \7 4185296 3
__ (7418520963
“\8 16795423
or_ (12345673809
“\8 16795423

For instance, since m maps whatever is in position 1 to position 7 and 7 maps
whatever is in position 7 to position 8, the composition 7 o 7 maps whatever is in
position 1 to position 8. This composition is illustrated in Figure 0.5.2.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 0.5.2 A composition 7o 7 of permutations.
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Cyclic Permutations

A cyclic permutation 1s a permutation whose successive application would take
each object of the permuted set successively through the positions of all the other
objects.

DEFINITION: A permutation of the form

( v ow(e) wx) - W) wH(r))

(x) =*(z) =@3) - w7 H(x) x
is said to be cyclic permutation of period p.

NOTATION: A cyclic permutation is commonly represented in the cyclic form

(¢ w(2) 7(2) - #7%2) =7 '(2))

Example 0.5.2: The permutation

(1‘234567

):(1234567)
2 3 456 7 1

is cyclic of period 7. Its cyclic form is depicted by Figure 0.5.3 as a directed cycle.

1 2 3 4 5 6 7

et

Figure 0.5.3 A cyclic permutation depicted as a directed cycle.

Example 0.5.3: The permutation

12 3 4 5 6 13 2 6 4 5
( )= ( ) =204
36 2 5 1 4 3 2 6 4 5 1

is cyclic of period 6. It 1s depicted as a directed cycle in Figure 0.5.4.

1 3 2 6 4 5

et

Figure 0.5.4 Amnother cyclic permutation.

Disjoint Cycle Representation

A fundamental way of understanding a permutation 7 of a finite set S is in
terms of the cyclic permutations it induces on various subsets of S. Its structure is
understood 1n terms of the lengths of these cycles of objects.
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Proposition 0.5.1. Let m be a permutation on a finite set S and let x € S. Then

the sequence
v w(x) #*z) m3(x)

eventually contains an entry n/ (x) such that 7/ (z) = x, and the sequence is periodic
with period j.

Proof: Since the set S is finite, the sequence must eventually contain some entry
77 (#) that matches a previous entry. Suppose that n'(z) is the previous entry such
that

Then

3
Ly
|
~
3]
=
Il
3
L
A'
)
Ly
—_
3]
=
=

= 7' (x'(x)

= 71'0(36) =z

Since j > i > 0, since 7/ () is the first duplicate of a previous entry, and since 7/ ~*
duplicates the initial entry z, it follows that j — ¢ > j, which implies that ¢ = 0.
Since m? (x) = #, it follows that the subsequence

r w(z) 7wiz) w(z) ... w7l(z)
is endlessly reiterated. &

What now follows 1s a somewhat informal description of a method for rep-
resenting an arbitrary permutation 7 on a finite set S as a composition of cyclic
permutations.

Step 1: Choose an arbitrary element 1 € S. Let k1 be the smallest integer such
that 7%1(x1) = z;. Let T} be the subset

T = {xl, (1), 71'2(9:1), e ﬂkl_l(xl)}

Then the restriction 7|y, of the permutation 7 to the subset T} is the cyclic per-
mutation

mlr, = (& m(xy) w(z1) ... ﬂkl_l(xl))

Example 0.5.1, continued: For the permutation
F:<123456789)
7T 418 5 2 9 6 3
consider the choice x; = 1. This leads to the subset
T ={1,7,9 3}

and to the restricted permutation

mlr, = (1 7 9 3)
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Step 2: In general, if T} = S, then 7 is cyclic on S, and 7= = 7|p,. Otherwise,
choose an arbitrary element
9 S S — T1

Let ko be the smallest integer such that 7Tk2(l‘2) = 4. Let 15 be the subset

T = {l‘z, m(x2), 71'2(9:2), e ﬂkQ_l(xz)}

Then the restriction 7|y, of the permutation 7 to the subset T5 is the cyclic per-
mutation

(xz m(xy) 7w (x2) ... 7Tk2_1(l‘2)>

Example 0.5.1, continued: Choosing the second element x5 = 2 for the permu-
tation
S 1 2 3 45 6 7 8 9
T \7T 41 8 5 2 9 6 3

TZ = {Qa 4a 8a 6}

leads to the subset

and to the restricted permutation
mlp, = (2 4 8 6)

We observe that the subsets 77 and 75 are disjoint.

Proposition 0.5.2. Let 7 be a permutation on a finite set S and let x € S. Let
T = {71'2(9:) | i €N}

Let y € S — T and let '
"= {r(y | jen}
Then the subsets T' and 1" are disjoint.

Proof: If not, then there are nonnegative numbers ¢ and j such that

r'(x) = 7 (y) (0.5.1)

(@) = i (a)
= m(m(y)) by (05.1)

which contradicts the premise that y ¢ 7. &
Step 3: Having selected the mutually disjoint subsets 77, 7%, ..., Ty in this man-
ner, if

T1UT2U"'UTk = S
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then go to Step 4, since the decomposition of 7 is complete. Otherwise, choose
1 €S —(THUTyU---UTy) and continue as in Step 2.

Example 0.5.1, continued: The only remaining element in the set {1, 2, ..., 9},
on which the permutation

F:<123456789)
7T 418 5 2 9 6 3
acts, is the element z3 = 5, which leads to the subset

13 = {5}
and to the restricted permutation

mlr, = (5)

We observe that the subsets T7, T5, and T3 form a partition of the set [1: 9].

Step 4: Arriving at this step occurs after the set S has been partitioned into subsets
Ty, Ty, ..., Tx. Represent the permutation 7 in the form

T = wlp wlr, o T,

Example 0.5.1, continued: The net result of applying these steps to the per-

mutation
S 1 2 3 4 5 6 7 8 9
T \7 41 8 5 2 9 6 3
is the representation

m=(1 79 3)(2 4 8 6)(5)

DEFINITION: A disjoint cycle representation of a permutation 7 on a set S is
as a composition of cyclic permutations on subsets of S that constitute a partition
of S, one cyclic permutation for each subset in the partition.

The decomposition process described just above serves as a constructive proof of
the following theorem.

Theorem 0.5.3. Let w be a permutation of a finite set S. Then 7w has a disjoint
cycle representation. &

We conclude this subsection with an illustration that it is straightforward to com-
pute the disjoint cycle representation of a composition of two permutations 7 and
7 from the disjoint cycle representations of the factors m and .
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Example 0.5.1, continued:

The disjoint cycle forms of the permutations

(123456789
T AT 41 8 5 2 9 6 3
T—741852963and
“\&8 1 6 7 9 5 4 2 3
o _ (123456789
“\&8 1 6 7 9 5 4 2 3
are
T=(1 79 3)(2 4 8 6)(5)
r=(16 25 9 4)(3)(7 8) and
mor = (1 8 2)(3 6 5 9)(4 7)

Starting with the disjoint cycle forms
= (1 7 9 3)(2 4 8 6)(5)
and 7 =(1 6 2 5 9 4)(3)(7 8)

the first cycle of o 7 1s computed as follows:

1" —"7"—"8
8 =6 "—" 2
Ay e

2 — 4 "= 1

That 1s, the first cycle of the disjoint cycle representation of # o 7 may be written

as
(1 8 2)
The computation then continues
37—="17—"6
67— 27—"5
57 —="5"—="9
97—="3 =" 3
which yields
(3 6 5 9)
as the second cycle of the permutation 7 o 7. It concludes with
47— 8" =7
T =9 7—= "4

which yields as the third cycle
(4 7)
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EXERCISES for Section 0.5

In Ezercises 0.5.1 through 0.5.6, represent the indicated permutation in disjoint
cycle form.

s (123 45 12345 6 7
051 (35241) 0:5-2 (4725613)

1 2 3 45 6 7 8 1 2 3 4 5 6 7 8
0-5.3 (36874251) 0-5.4 (28376451)

1 2 3 45 6 7 8 1 2 3 4 5 6 7 8
055(38674521) 0.5.6 (23876541)

In Exercises 0.5.7 through 0.5.12, represent the wnverse of the permutation of the
designated previous exercise in 2-line form and in disjoint cycle form.

0.5.7%  Exercise 0.5.1. 0.5.10 Exercise 0.5.4.
0.5.8 Exercise 0.5.2. 0.5.11 Exercise 0.5.5.
0.5.9 Exercise 0.5.3. 0.5.12 Exercise 0.5.6.

In FErxercises 0.5.13 through 0.5.18, represent the indicated composition of permu-
tation in disjoint cycle form. In writing the disjoint cycle form of a permutation,
sometimes the I-cycles are omitted. For instance, (1 2 5) means the same per-

mutation as (1 2 5)(3)(4).

05135 (1 2 3)o(2 4 5) 0514 (1 2)o(2 4)o(3 4)
0515 (1 2 5)o(l 6 3 4) 0516 (1 2 3 4 5)o(3 4 6)
0517 (1 2 5 4)o(1 6 3) 0518 (1 3 4 5)o(2 3 4 6)

0.5.19  List every permutation of [1 : 5] that has three cycles in its disjoint cycle
form.

0.5.20 List every permutation of [1 : 6] that has four cycles in its disjoint cycle
form.

DEFINITION: The cycle structure of a permutation © of a set of cardinality n
is the monomial ¢,"* .. .¢,», such that ¢; is a formal variable and r; is the number
of j-cycles in the disjoint cycle form of w. Thus, 1ry 4+ 279 + - - -+ nr, = n.

In Ezercises 0.5.21 through 0.5.26, calculate the number of permutations of the given
winteger interval with the given cycle structure.

0.5.215% [1:7] of structure ¢1214 0.5.22  [1:9] of structure totsts
0.5.23  [1:7] of structure t,%t3 0.5.24  [1:9] of structure ¢,¢,
0.5.25  [1:7] of structure ¢,3¢,? 0.5.26  [1:9] of structure ¢3¢,
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0.6 GRAPHS

One widely studied combinatorial structure is called a graph. Intuitively, a
graph is a configuration comprising a discrete set of points in space and a discrete
set of curves, each of which runs either between two points or from a point back to
the same point. Formally, it 1s based on two abstract sets.

The beauty of various spatial models of graphs is one great attraction. Another
is the capacity to serve as a practical model for applications, for instance, of network
flows or of a linked database. Although this remarkably versatile structure was
introduced by the Swiss mathematician Leonhard Euler (1707-1783), most of its
theoretical development has occurred in relatively recent years. Chapters 7 and 8
provide a condensed survey of graph theory.

DEFINITION: A graph G = (V, E) is a mathematical structure consisting of two
finite sets V' and F, called vertices and edges, respectively. Each edge has a set
of one or two vertices associated to it, which are called its endpoints.

Example 0.6.1: Figure 0.6.1 illustrates a graph.

V={uv,w,x}
E ={a,b,c,d,e,f,g}

Figure 0.6.1 A graph.

TERMINOLOGY: An edge is said to join its endpoints. A vertex joined by an edge
to a vertex v is said to be a neighbor of v. Two neighboring vertices are said to
be adjacent.

TERMINOLOGY: In applications, the words node and line may be used for vertex
and edge, respectively.

NOTATION: When (' is not the only graph under consideration, the notations Vg
and Eg (or V(G) and E(G)) are used for the vertex- and edge-sets of G.

Example 0.6.1, continued: When choosing a vertex of this graph from which
to send messages, vertices v and & would seem to be good choices, since from either
of them, every other vertex is but an edge away, with no relay required. Numerous
optimization problems arise when costs are assigned to the edges. For instance, one
might want to know how to select the vertex from which the average cost of sending
a message to the other vertices 1s the least.
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TERMINOLOGY NOTE: The word graph i1s used here in an all-encompassing sense,
as various attributes are tacked on. For instance, sometimes an edge is assigned a
direction and/or a numerical weight. If all the edges are directed, then the graph
may be called a digraph, and if all the edges are weighted, it may be called a weighted
graph. However, under our philosophy of inclusivity, we may still refer to a graph
with such optional attributes as a graph.

Simple Graphs and General Graphs

Graph theory is a source of excellent examples for combinatorial concepts. It
is helpful to have some terminology in place at the outset.

DEFINITION: A proper edgeis an edge that joins two distinct vertices. A self-loop
is an edge that joins a single endpoint to itself.”

DEFINITION: A multi-edge is a collection of two or more edges having identical
endpoints. The multiplicity of a multi-edge is the number of edges within the
multi-edge.

DEFINITION: A simple graph is a graph with no self-loops or multi-edges. A
general graph may have self-loops and/or multi-edges. (Thus, the graph in Figure
0.6.1 is a general graph.)

NOTATION: In a simple graph, an edge joining vertices v and v may be denoted uv,
since only one such edge is possible.

Null and Trivial Graphs

DEFINITION: A null graph is a graph whose vertex- and edge-sets are empty.

DEFINITION: A trivial graph is a graph consisting of one vertex and no edges.

Degree of a Vertex

DEFINITION: The degree (or valence) of a vertex v in a graph G, denoted deg(v),
i1s the number of proper edges incident on v plus twice the number of self-loops.

TERMINOLOGY: A vertex of degree d is also called a d-valent vertex.

* We use the term “self-loop” instead of the more commonly used term “loop”, because loop

means something else in many applications.
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Example 0.6.1, continued: The caption of Figure 0.6.2 lists the degrees of the
graph from Figure 0.6.1.

V={uv,w,x}
E ={a,b,c,d,e,f,g}

Figure 0.6.2 deg(u) = deg(v) = deg(x) = 4, and deg(w) = 2.

The following result of Euler establishes a fundamental relationship between the
vertices and edges of a graph.

Theorem 0.6.1 [Euler’s Degree-Sum Theorem]. The sum of the degrees of
the vertices of a graph is twice the number of edges.

Proof: Each edge contributes two to the degree sum. &

Example 0.6.1, continued: The graph of Figure 0.6.2 has 7 edges. The sum of
the degrees is 14.

Corollary 0.6.2. In a graph, the number of vertices having odd degree is even.

Proof: Consider separately, the sum of the degrees that are odd and the sum of
those that are even. The combined sum is even by Theorem 0.6.1, and since the
sum of the even degrees is even, the sum of the odd degrees must also be even.
Hence, there must be an even number of vertices of odd degree. &

DEFINITION: The degree sequence of a graph is a list of the degrees of its vertices,
usually given in non-increasing order.

Example 0.6.1, continued: The degree sequence of the graph of Figure 0.6.2 is

4 4 4 2

Theorem 0.6.3. Let G be a simple n-vertex graph with n > 2. Then there are
two vertices with the same degree.

Proof: Ifthe n vertices all had different degrees, then, by the Pigeonhole Principle,
for each of the possible values 0,...,n — 1, there would be a corresponding vertex.
However, if some vertex has degree 0, then each other vertex could have degree at
most n — 2, precluding the existence of a vertex of degree n — 1. &



38 Chapter 0 Introduction to Combinatorics

Example 0.6.2: Suppose that on some floor of a college dormitory, each student
lists the names of all the other students on that floor with whom he or she has
ever shared a pizza, as represented by Figure 0.6.3. Four of the students in this
sociological network — Alisa, David, Jessica, and Risa — have shared pizza with an
odd number of other students in the network, in conformance with Corollary 0.6.2.
We observe that Herbie and Katie have each shared pizza with four other students,
which illustrates Theorem 0.6.3. There are also several other such pairs.

Katie Susan

Risa

David

Jessica

Herbie

Figure 0.6.3 A sociological network.

Beyond the whimsy of Example 0.6.2, sociological networks are a matter of
serious interest. For instance, so-called family trees are used in genealogy.

Complete Graphs

There are standard names for various special circumstances that arise fre-
quently in graph-theoretic modeling. Sometimes every node is linked to every other
node.

DEFINITION: A complete graph is a simple graph such that every pair of vertices
is joined by an edge. The complete graph on n vertices is denoted K,.

Example 0.6.3: Complete graphs on one, two, three, four, and five vertices are
shown in Figure 0.6.4.

y A A @
K,
K, Ks Ky Ks

Figure 0.6.4 The first five complete graphs.

Bipartite Graphs

DEFINITION: A bipartite graph G is a graph whose vertex-set V' can be partitioned
into two subsets U/ and W, such that each edge of (G has one endpoint in U and one
endpoint in W. The pair U, W is called a (vertex) bipartition of G, and the sets
U and W are called the bipartition subsets or (sometimes) the partite sets.
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Example 0.6.4: Two bipartite graphs are shown in Figure 0.6.5. The bipartition
subsets are indicated by the solid and hollow vertices.

Figure 0.6.5 Two bipartite graphs.

Example 0.6.5: Suppose that U is set of tasks needed for the completion of a
project, that W is the set of available workers, and that there is an edge joining
each worker to each task within that worker’s skill set. Such a bipartite graph is
quite useful in deciding how to allocate the tasks to workers.

DEFINITION: A complete bipartite graph is a simple bipartite graph such that
every vertex in one partite set is joined to every vertex in the other partite set. Any
complete bipartite graph that has m vertices in one partite set and n vertices in the
other is denoted K, .

Example 0.6.6: The complete bipartite graph K3z 4 is shown in Figure 0.6.6.

Figure 0.6.6 The complete bipartite graph Ks 4.

Representations of Graphs

It is conceptually helpful to see a small graph represented by a labeled drawing.
However, for computational purposes, it 1s important to have a purely combinatorial
specification. Various kinds of combinatorial specification have their individual
merits. We briefly consider three kinds.

DEFINITION: A specification of an n-vertex, m-edge graph G by an incidence table
has three parts:

e a list of the n vertices of GG.
o a list of the m edges of G.

e a 2 X m array whose columns are labeled by the edges of GG, such that the
endpoints of each edge appear in the column for that edge.

* The sense in which [(m,n is regarded as a unique object is described in §7.4‘
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Example 0.6.7: Figure 0.6.7 shows a graph G and its incidence table specifica-
tion.

Vo = {u, v, w}
EG = {Cl, ba C, d}
a b ¢ d
v ou U w
vov o ow w

Figure0.6.7 A graph and its incidence table specification.

COMPUTATIONAL NOTE: Specification by incidence table is an efficient represen-
tation for any kind of graph, not just for simple graphs. The space required is
proportional to the number of vertices and edges. Some variations include a second
table, with each row labeled by a vertex, such that the entries in that row are the
edges incident on that vertex. Although this seems like redundant information, the
small sacrifice of space facilitates a net improvement in algorithmic efficiency.

DEFINITION: An Incidence matrix for an n-vertex, m-edge graph GG is an n x m

array I, whose rows and columns are labeled, respectively, by the vertices and
edges of GG, such that

Ig[v,e] = <1 if vis an endpoint of e and e is proper

{ 0 if v is not an endpoint of e
2 if v is an endpoint of e and e is a self-loop

Example 0.6.7, continued: The incidence matrix for the graph G of Figure
0.6.7 1s

Ia =

<
[
_o = &
N O o &

We observe in this example and in general that each row-sum equals the degree
of the corresponding vertex and that every column-sum is 2. Clearly, the sum of
the row-sums of a matrix equals the sum of the column-sums. This provides an
alternative proof of Euler’s Degree-Sum Theorem (Theorem 0.6.1).

COMPUTATIONAL NOTE: The space required for an incidence matrix is propor-
tional to the product of the numbers of vertices and edges. Moreover, the time
required to retrieve the endpoints of an edge is proportional to the number of ver-
tices, whereas it is a small constant for an incidence table specification.

DEFINITION: An adjacency matrix for an n-vertex simple graph GG is an n x n
array Ag whose rows and columns are labeled by the vertices of (&, such that

Aglu,v] = 1 if uw and v are adjacent
G 0 otherwise
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Example 0.6.8: Figure 0.6.8 shows a simple graph (G and its adjacency matrix
specification.

w. x. Y. Z
w. 0 1 0 0

G Ag = 2. 1 0 1 1

y X y. 0 1 0 1
z. 0 1 1 O

w

Figure 0.6.8 A simple graph and its adjacency matrix.

Remark: The adjacency matrix is symmetric.

Remark: Spectral graph theory is concerned with calculation of the eigenvalues of
adjacency matrices.

COMPUTATIONAL NOTE: The space required for an adjacency matrix is propor-
tional to the square of the number of vertices.

Preview of Walks, Paths, and Distance

Graphs are commonly used to represent networks of various kinds, including
networks of roads, networks of computers, and networks of people. The notion of
accessibility is modeled by walks in graphs.

DEFINITION: A walk in a graph from vertex vy to vertex v, is an alternating
sequence

W — <UO,61,U1,62, "'aenavn>

of vertices and edges, such that edge e; joins vertices v;_; and v;, for j =1,...,n.
It is a closed walk if it begins and ends at the same vertex and an open walk if
it ends at a different vertex from the one at which it begins.

DEFINITION: A path is a walk that has no repeated vertices (or edges), except that
the last vertex may possibly be the same as the first. If so, it is a closed path,
and if not, it is an open path.

DEFINITION: The length of a walk is its number of edge-steps. (If an edge of a
walk is repeated, 1t is counted each time it occurs. However, it follows that the
length of a path is its number of edges.)

DEFINITION: The distance between two vertices u and v is the minimum length
taken over all paths between u and v, or oo if there are no such paths.

Example 0.6.9: The legendary mathematician Paul Erd6s wrote about 1500 pa-
pers, and he had 509 coauthors in all. Of course, many of them had various other
collaborators. The Erdds coauthorship graph has mathematicians as its vertices,
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with an edge joining two vertices if the mathematicians represented ever wrote a
paper together. A mathematician’s Erdds number is his or her distance from
Paul Erdés in this graph. Erdés himself is the only person at distance 0. The 509
coauthors have an Erdds number of 1.* The concept of an Erdos number was first

published in 1969 by Caspar Goffman [Goff1969].

EXERCISES for Section 0.6

In each of the FErxercises 0.6.1 through 0.6.8, compare the degree sequence of the
given graph with twice its number of edges.

0.6.2

0.6.1% ? :
0.6.3 0.6.4

065 K 066 K,
0.6.7 Kas 068 Kmn

In each of the Ezxercises 0.6.9 through 0.6.12, draw a simple graph of the given
degree sequence.

0695 43322 0610 43221
0611 533221 0612 544221

In each of the Ezxercises 0.6.13 through 0.6.16, draw two different general graphs of
the given degree sequence.

06135 44321 0614 743
0615 64310 0616 6554411

Ezercises 0.6.17 through 0.6.19 refer to the pizza network of Figaree (06.3.

0.6.17 What 1s the distance between Risa and David?

0.6.18 What vertex or vertices have the minimum worst-case (i.e., maximum)
distance to another vertex?

0.6.19 What vertex or vertices have the minimum average distance to the other
vertices?

* The author of this textbook has an Erd8s number of 2, since he wrote a paper [GrHa1980]

with Frank Harary, who was a coauthor of Erdés.
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PREVIEW OF Chapter 7:
e A cycle is a closed path of length at least 1.

e A cycle subgraphin a graph G is the image of a cycle in (G, that is, the graph
defined by the set of vertices and the set of edges that occur in that cycle.

e A treeis a graph that has no cycle subgraphs.

In each of the Erxercises 0.6.20 through 0.6.23, draw a tree with the given degree
sequence.

06.20%5 41111 0621 421111
0622 331111 0623 3321111
I

0.7 NUMBER-THEORETIC OPERATIONS

Number theory is a very large area of mathematics with connections to many
other areas. It 1s not taxonomically classified as combinatorics. We include some
number theory in this text, especially in Chapter 6, partly because of its intimate
connection to the design of fast algorithms and also because we need it to help with
counting and with studying graphs and other combinatorial objects. Although we
presently defer nearly all details of number-theoretic methods to later chapters, we
wish to make the point early that we will use whatever kind of mathematics 1s
helpful in our problem-solving efforts.

One number-theoretic operation that occurs frequently in combinatorics is the
greatest common divisor. Although our textbook examples are focused on small
enough problems of this type to do the calculation by hand, consider trying to
calculate the greatest common divisor of larger numbers, such as

32582657 and 24036583

DEFINITION: The greatest common divisor of two integers m and n, not both
zero, mnemonically denoted ged (m, n), is the largest integer that divides both m
and n.

DEFINITION: The least common multiple of two integers m and n, mnemonically
denoted lem (m, n), is the smallest non-negative integer that is a non-zero multiple
of both m and n.

When the prime factors are already known or easily calculated, it is quite easy
to calculate a greatest common divisor by a method commonly taught in middle
schools. Tt involves factoring the two numbers into products of primes. Although
this might seem easy for small numbers, the factoring of large numbers may re-
quire considerable effort. A method called the Fuclidean algorithm, described in
Chapter 6, avoids the need to factor, and it produces the answer in time propor-
tional to the number of digits of the larger number.
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Another operation we use in trying to count or to construct all the graphs of a
given kind involves listing all the ways to decompose an integer n into an iterated
sum of positive integers. Such a sum is called a partition of the integer n.

Example 0.7.1: The number 8 has five partitions into exactly four summands,
namely

5+1+1+4+1 4424141 34+3+1+1 3424241 2424242

0.8 COMBINATORIAL DESIGNS

The final type of discrete structure presented in this book, in Chapter 10, is
called a combinatorial design.

DEFINITION: A combinatorial design B has a non-empty domain of objects
X = {ay, @2, ..., 2y }

and a non-empty collection of subsets of objects from X.
B = {By, By, ..., By}

For some kinds of designs, these subsets may be called blocks.

The art of constructing combinatorial designs is in meeting various additional re-
quirements on the subsets B;. In a regular block design the subsets B; all have the
same cardinality k, called the blocksize. Moreover, each object #; occurs in the same
number r of blocks, which is called the replication number. An example illustrates
a possible application of such a design.

Example 0.8.1: Consider how one might design a round-robin playoff* for 13
contestants in a competitive game for 4 players that ranks the players from 1% to

4*M in each round. Such an event might plausibly have 13 rounds in which each of
the players, designated as

01 2 3 45 6789 A B C

plays four rounds and meets each other player exactly once, as follows:

* In a round-robin playoff, each contestant plays each other contestant.
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Round Players

1 0146
2 1257
3 2368
4 3479
5 458 A
6 5698
7 67AC
8 78B0
9 89C'1
10 9A02
11 AB13
12 BC24
13 C'035

Such a playoff might be represented by the illustration of Figure 0.8.1. Twelve
of the groupings of four players are represented by a curve that goes through the
corresponding four points. (The thirteenth grouping is 67AC.) Only four of these
groupings are actually represented by straight lines in the drawing.

o= -

s’ N\

Lo~ !
’ 04 \

Figure 0.8.1 Geometric representation of a block design.

A balanced block design 1s a regular block design in which each pair of points
occurs in the same number of lines. It 1s called incomplete if the blocksize is less
than the number of points in the domain.

Example 0.8.1, continued: The playoff described here is a balanced incomplete
block design, if each grouping of four players is regarded as a line.

Interestingly, the theory of balanced incomplete block designs (BIBD’s, for
short) originated largely in the design of scientific experiments in agriculture. Each
block represented a different kind of treatment of the varieties of crops within it.
Applying all the treatments to all the varieties would have made the experiment
infeasibly large, which was the motive for constructing incomplete designs.
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In a kind of combinatorial design called a finite geometry, the subsets of objects
are called lines. There are numerous kinds of finite geometry. A standard general
requirement 1s that each pair of points lies on at most one line.

Example 0.8.1, continued: As it happens, the balanced block design of Figure
0.8.1 is also a finite geometry.

GLOSSARY

adjacent vertices: two vertices joined by an edge.

balanced block design: a design in which all blocks are the same size, every
element 1s in the same number of blocks, and every pair of elements is in the
same number of blocks.

BIBD: abbreviation for balanced incomplete block design.

bipartite graph: a graph whose vertex-set can be partitioned into two subsets
(called partite sets) such that every edge has one endpoint in one part and one
endpoint in the other part.

block design: a combinatorial configuration with a domain X and a set B of
subsets of X that are called blocks.

blocksize: the cardinality of a block of a combinatorial design.

ceiling of a real number z:  the smallest integer that is not less than «; the
result of “rounding up” to the next integer; denoted [z].

calculus of finite sums: a method for evaluating finite sums, analogous to inte-
gral calculus.

cardinality of a multiset: the sum of the multiplicities of the elements in the
domain.

cells of a partition of a set S: the subsets of S into which S is subdivided.

closed formula for a sequence: an algebraic formula that can produce the value
of any member of the sequence.

combination: see unordered selection.

combinatorial design: any mathematical structure involving a primary domain
and a secondary domain of designated subsets of the primary domain, or, equiv-
alently, two domains and an incidence function from their cartesian product to
Zs.

combinatorics: a collection of branches of mathematics that deal primarily with
discrete sets, in contrast to continuous mathematics, the branches that deal
primarily with subsets of Euclidean space.

complete bipartite graph: a simple bipartite graph such that each pair of ver-
tices in different sides of the partition is joined by an edge.
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complete graph: a simple graph such that every pair of vertices is joined by an

edge.
complete block design: a block design in which every block is the entire domain.
counting: an informal reference to any kind of combinatorial enumeration.

degree of a vertex: the number of proper edges incident on that vertex plus twice
the number of self-loops.

degree sequence: a list of the degrees of all the vertices in ascending order.
discrete set: a finite or countably infinite set.

edges of a graph: one of two constituent sets of the graph.

endpoints of an edge: the one or two vertices that are associated with that edge.

Euclidean algorithm: an algorithm for calculating the greatest common divisor;
see Chapter 6.

Euler’s degree-sum theorem: the theorem that the sum of the degrees of a
graph equals twice the number of edges.

falling power zZ of a real number: the product z(x — 1)( —2)---(x — n+1).

Fibonacci sequence: the sequence 0, 1, 1, 2, 3, 5, 8 13,..., in which each
number is the sum of its two immediate predecessors.

finite calculus: a calculus of discrete differences and sums, analogous to the
infinitessimal calculus for continuous real functions.

finite geometry: a combinatorial design in which two points of the primary do-
main are in at most one designated subset in the secondary domain.

floor of a real number z:  the largest integer that is not greater than z; the
result of “rounding down” to the next integer; denoted |z].

general graph: a graph that may have self-loops and/or multi-edges.

generating function for a sequence of elements g;: a closed form for the infinite
polynomial go + ¢17 + g22% + ¢32° + - - -, or sometimes, that polynomial itself.

graph G = (V| E): a mathematical structure consisting of two sets, V and E.
The elements of V' are called vertices, and the elements of E are called edges.
Each edge has a set of one or two vertices associated to it, which are called its
endpoints.

greatest common divisor ged (m,n):  for integers m and n, not both zero, the
greatest common divisor is the largest positive integer that divides both of them.

incidence function: a function associated with a combinatorial structure having
more than one domain; its role is to indicate for any pair of objects, one from
each domain, whether each is incident on the other; for instance, a vertex of
a graph and an edge of which it is an endpoint are mutually incident on each
other.

least common multiple lem (m,n):  for integers m and n, the least common
multiple is the smallest non-negative integer that is a non-zero multiple of both
of them.
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multi-edge: a collection (at least two) of proper edges with the same two end-
points, or of self-loops with the same endpoint.

multiset: a pair (S, m) in which S is a set and m : S — 7T is a function that
assigns to each element s € S a number m(s) called its multiplicity. Informally,
one thinks of there being m(s) copies of the element s in the multiset.

neighbor of a vertex v: any vertex that is adjacent to v.
null graph: a graph with no vertices and no edges.
ordered selection from a set S: an ordered subset of S.

partition of an integer S: a representation of a positive integer as a sum of
other positive integers.

partition of a set S: a collection of mutually disjoint subsets of S whose union
18 5.

permutation from a set S: see ordered selection.

permutation of a set S: a one-to-one onto function from S to itself.

Pigeonhole Principle: a frequently applied method of counting.

proper edge: an edge with two endpoints.

regular block design: a block design in which all the blocks have the same size,
and in which each element occurs in the same number of blocks.

replication number of a BIBD: the number of blocks in which each element of
its domain is contained.

Rule of Product: the counting rule that the size of a cartesian product of two
sets 1s the product of the sizes of the sets.

Rule of Quotient: the counting rule that if all the cells are of the same size, then
the number of cells in a partition of a set S is the quotient of the size of S by
the size of the cells.

Rule of Sum: the counting rule that the size of a disjoint union of two sets is the
sum of the sizes of the sets.

self-loop: an edge of a graph with only one endpoint.
simple graph: a graph with no self-loops or multi-edges.

Stirling numbers: numbers used in conversions between ordinary powers and
falling powers, also for counting partitions and permutations; see Chapters 1

and 5.
trivial graph: a graph with one vertex and no edges.
unordered selection from a set S: a subset of S.
valence of a vertex of a graph: synonym for degree.

vertices: one of two constituent sets of the graph.
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Sequences

1.1 Sequences as Lists

1.2 Recurrences

1.3 Pascal’s Recurrence

1.4 Differences and Partial Sums

1.5 Falling Powers

1.6 Stirling Numbers: A Preview

1.7 Ordinary Generating Functions

1.8 Synthesizing Generating Functions
1.9 Asymptotic Estimates

In combinatorial analysis, counts of selections, orderings, arrangements, or config-
urations for differently sized versions of a given problem are commonly given as a
sequence. Alternatively, a sequence may correspond to a list of measurements of
the behavior of some process over time. Even though such sequences may contain
infinitely many different numerical values, there 1s often a finite way to represent
them collectively. In particular, a closed formula to calculate any number in the
sequence from its location in the sequence is especially convenient. A recursion rule
for inferring later values in the sequence from earlier values is another form of finite
representation. This first chapter provides acquaintance or reacquaintance with a
variety of standard sequences and with these basic types of finite representations
of sequences. It introduces some initial methods for manipulating such represen-
tations so that information about the properties of the sequence can be extracted
efficiently.

49



50 Chapter 1 Sequences

1.1 SEQUENCES AS LISTS

In this section, we consider some common kinds of sequences and some of their
attributes.

DEFINITION: A sequence in a set S is a list of elements of .S
Lo L1 L2

indexed by the non-negative integers, or sometimes by some other countable set.
Collectively, the sequence is denoted (x,), with angle brackets, or by variations on
this basic notation.

TERMINOLOGY: A member x; of a sequence (x,) is also called an entry or a term.
The set in which the values x; are taken may be called the range of the sequence.

NOTATION: Some of the most standard sets of numbers that serve as ranges for
sequences are denoted here in blackboard bold typeface style:

Z=4..., =2, =1, 0, 1, ...} integers
Zt = {1, 2, 3, ...} positive integers

N = {0, 1, 2, ...} natural numbers

R = real numbers

@ = rational numbers

C = complex numbers

DEFINITION: An algebraic expression in the argument n for the value of the general
element z, of a sequence {x,) is called a closed formula for the (elements of the)
sequence.

Example 1.1.1: The closed formula z,, = n3 — 5n specifies the sequence

(z,) © 0 —4 —2 12 44 100 186

Example 1.1.2: The closed formula y, = 2772 — n3 specifies the sequence

(yn) : 4 7 8 5 0 3 40

Fast-Growing Sequences

One frequently cited attribute of a sequence is its rate of growth, which is
understood in relation to the standard indexing sequence, i.e., the natural numbers.
We refer to a sequence as a polynomial sequence if 1t 1s specifiable by a polynomial on
the index set N, as in Example 1.1.1, or as an exponential sequence if it 1s specifiable
by an exponential. Polynomial and exponential sequences are both thought to grow
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rather rapidly. Precise criteria for comparing growth rates are provided later in this
chapter.
Example 1.1.3: The polynomial sequence (x, = n?)

n |0 1 2 3 4 5

P01 4 9 16 25

grows more rapidly than the sequence of integers. Any polynomial sequence for a
polynomial of degree greater than 1 grows more rapidly than the natural numbers.

Example 1.1.4: The exponential sequence (x, = 3")

n | 0o 1 2 3 4 5

3| 1 3 9 27 81 243
also grows more rapidly than the sequence of integers. Once a precise notion of
comparative rate of growth isin hand in §1.4, 1t will be provable that any exponential

sequence (x, = b") with b > 1 grows more rapidly than any polynomial sequence.
Of course, if 0 < b < 1, then the sequence (x,, = ") decreases. For instance,

n|012 4 5

3
asr] T bR s

Example 1.1.5: A sequence that grows even more rapidly than an exponential
sequence is the factorial sequence

n| 0 1 2 3 4 5
|11 2 6 24 120

This is another comparison whose meaning awaits explanation.

Slow-Growing Sequences

Various other increasing sequences grow slowly, relative to the integers. The
first example here involves a fractional exponent. The second and third involve
logarithms and harmonic numbers.

Example 1.1.6: A sequence (x, = n") grows more slowly than the natural
numbers if 0 < r < 1. Consider, for instance,

n |01 2 3 4 5
2101 V2 V32 VB

NOTATION: The natural logarithm of a positive number x is denoted Inxz. The
logarithm to the base 2 is denoted 1g .

Example 1.1.7: The sequence
n | 1 2 3 4 5
lgn| 0 1 1g3 2 Ig5

grows even more slowly than the sequence (z, = n"), for r > 0. (See Exercises.)
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DEFINITION: The harmonic number H, 1s defined as the sum

2”31 I N S
| 2 n
k=1

with Hy = 0 for the empty sum.
Example 1.1.8: The harmonic sequence
n |0 1 2 3 4 5
3 11 25 137
Hol o1 3 4B

is closely related to the natural logarithm Inn, as explained in §3.1.

Example 1.1.9: The values in a sequence need not be numbers.

PREVIEW OF §8.7: The surface S is the surface with ¢ handles in the following
sequence.

N’
0 ESECED -
S, S, S, S,

Bounded Sequences

Although all sequences considered previously in this section become arbitrarily
large as the sequence continues, some sequences do not.

DEFINITION: A bounded sequence (x,) is a sequence (typically of real numbers
or integers) for which there is a number B (called a bound), such that

|z,| < B for all n

Observe that the sequence is bounded in absolute value.

Example 1.1.10: The real sequence

SR
n+1

is bounded. It is always non-negative, and its value never exceeds 1.

Periodic Sequences

Some sequences are repetitive. That is, the same subsequence recurs ad infini-
tum.
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DEFINITION: A periodic sequence (z,) is a sequence for which there is a positive
integer P, such that
Tiyp = I for all j € N

The smallest such integer is called the period of the sequence.

Example 1.1.11: An alternating sequence of 0’s and 1’s
01 01 0 1
1s periodic with period 2.

DEFINITION: The remainder function on a pair of integers n € N and d € Z% is
defined as n
nmod d = n—d{EJ

It is also called the mod function. The arguments n and d are called the dividend
and the divisor, respectively.

Example 1.1.12: The sequence n mod 3

n_|

0
n mod 3 ‘ 0
is periodic with period 3. More generally, for any fixed divisor m, the sequence
(xn, = n mod m)
1s periodic with period m.

Remark: Clearly, any periodic sequence is bounded, that is, by the largest number
in the repeating subsequence. For instance, the sequence in Example 1.1.12 is

bounded by 2.

Generalizations

At times, sequences employ sets other than the natural numbers as their sub-
script sets, and they sometimes have multiple subscripts. For instance, sometimes
a sequence is of interest only over a finite set a, a + 1, ..., b of consecutive inte-
gers. At the other extreme, there may also be negative, or there may be multiple
subscripts.

Example 1.1.13: The closed formula z(n) = 3" may also be regarded as a
specification of the extended sequence (3" | n € Z):
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DEFINITION: An array of dimension d in a set .S is a function from the set of d-tuples
of natural numbers to the set S.

NOTATION: Array elements are commonly written in the subscripted notation

To,0 o1 Xo,2
10 *1,1 1,2
T20 T21 X222

DEFINITION: The integer interval [k : m], where k,m € 7Z, is the set
{k, k+1, ..., m}

The integer interval [1 : n] is used as the standard set of cardinality n.

TERMINOLOGY: Extended sequences, arrays, and any of a host of other possible
related mathematical structures may sometimes simply be called sequences.

Eventual Behavior of Sequences

Some sequences take a while before entering a permanent pattern.

DEFINITION: In general, for a property P, we may say that a sequence (x,) is
eventually P (or related idiomatic variants of that phrasing) if there is a number N
such that the subsequence (z,, | n > N) has that property.

Example 1.1.14: The sequence
(r, = n>—8n+15)

is eventually increasing, as illustrated in Figure 1.1.1. Its shape is an upward
parabola, with its minimum at n = 4, after which it is strictly increasing. Thus, it
is eventually increasing.

100

80

60

40

20

0 4

01234567 89 1011121314

Figure 1.1.1 An eventually increasing sequence.
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Example 1.1.15: The sequence (z, = 2n® — 2"} is eventually decreasing.

Remark: Every polynomial (except a constant) is eventually increasing or eventu-
ally decreasing, depending on the sign of its term of highest degree.

Example 1.1.16: The decimal digits of

4824
— = 0.52412121212...
8250 05

are eventually periodic, as illustrated in Figure 1.1.2.

01234567 89 1011121314

Figure 1.1.2 An eventually periodic sequence.

EXERCISES for Section 1.1

In each of the Erxercises 1.1.1 through 1.1.6, write the first 12 elements of the indi-
cated sequence, and prove that the sequence is periodic. Start at n = 0.

1.1.1% 27 mod 7 1.1.2 3" mod 7 1.1.3 4" mod 7

1.1.4 n? mod 5 1.1.5 n® mod 4 1.1.6 n2” mod 3

In each of the Exercises 1.1.7 through 1.1.9, write the first 12 elements of the indi-
cated sequence, and prove that the sequence is evenlually periodic. Start at n = 0.

1.1.7% 27 mod 6 1.1.8 3" mod 15 1.1.9 2™ mod 12

1.1.10  Prove that the sequence n! mod 11213 is eventually periodic.
1.1.11  Prove that the sequence |\/n| mod 3 is not eventually periodic.

In each of the Exercises 1.1.12 through 1.1.17, find a polynomial f(x) and a number
P such that the sequence a, = f(n) mod P has the periodic pattern delimited by
semi-colons. Some of these exercises may require algebraic experimentation and

patience.

1112 0, 1; 0, 1; ... 1.1.13% 0,1, 1; 0, 1, 1; ...
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1114 0,0, 1;0,0, 1; ... 1115 0,1,1,0;0, 1, 1,0; ...
1116 0,0,1,1;0,0, 1, 1; ... 1117 1,0,1,0,1;1,0, 1,0, 1; ...

1.1.18 Given a polynomial f(z) = ag+aj2x+azx? of known degree (i.e., degree 2)
but unknown coefficients a;, and given the values f(0) = 1, f(1) = 4, f(2) = 11,
write and solve a system of linear equations in the coefficients a;.

1.1.19  Given a polynomial f(z) = ag + a1 + - - - + agz? of known degree d but
unknown coefficients a;, and given the values f(0) = bg, f(1) = by, ..., f(d) = 2¢,
write a system of linear equations in the coefficients a;.

1.1.20% Design a polynomial f(x) such that f(z) = n? for n = 0, ...,3 and such
that f(z) > n? for all n > 4.

1.1.21% Use integral calculus to show that the sequence PR nl—Q is bounded.

1.1.22  Show that the sequence of decimal digits of every rational number is even-
tually periodic.

1.1.23  Show that a number whose sequence of decimal digits is eventually periodic
is a rational number.

DEFINITION: A sequence (u,) eventually dominates a sequence (vy,) if there is a
number K such that u, > v, for alln > K.

1.1.24  Show that Inn eventually grows more slowly than n”, for any r > 0, in
the sense of differential calculus that its derivative is eventually dominated.

1.1.25% Show that the sequence (x, = 2ﬁ> eventually dominates the sequence
(yn =n?).

1.2 RECURRENCES

Most of the sequences considered in §1.1 were specified by a function j — =;.
This section presents an alternative way that a sequence may be specified.

DEFINITION: A standard recurrence for a sequence prescribes a set of initial
values

l‘o:bo l‘lzbl l‘kzbk

and a recursion formula
tn = ¢(rp_1, Tp_2, ..., xg) forn>k

from which one may calculate the value of #,,, for any n > k, from the values of
earlier entries.
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Example 1.2.1: The recurrence
xg = 0 initial value
Ty, = Tp_1+2n-—1 recursion
has as its first few values
20 =0 21 =1 2z9=4 23=9 x4 = 16

We observe that the recursion formula here depends only on a fixed number of
predecessors of x,,, specifically, only on x,_1.

DEFINITION: Inferring a closed formula for a sequence from a recurrence is called
solving the recurrence.

Example 1.2.1, continued: The first few values specified by the closed formula
specification #, = n?, which are

02=0 17=1 22=4 32 =9 42 =16
coincide with those specified by the given recurrence
l‘oIO 1‘1:11‘224 l‘3:9 1‘4216

The initial value 25 = 0 may be used as the basis for an induction to prove that
z, = n?. Substituting z,_; = (n— 1)2 into the recursion yields the induction step

T, = (n—1)2—|—2n—1 = (n2—2n—|—1)—|—2n—1 = n?

Thus, n? is a correct closed formula for z,, and the recurrence is solved.

In calculating the value of z, for a large subscript n, it is usually quicker to
use a closed formula than a recurrence, since using the latter would require first
calculating the values of many entries with lesser subscripts. Quite often, however,
an explicit recurrence for the values of a sequence is given or readily inferrable,
vet identifying the closed formula requires some analytic effort. We shall describe
recurrences and closed formulas for three well-known sequences: the Tower of Hanoi
sequence, the Fibonacct sequence, and the Catalan sequence.

A General Problem-Solving Method

Sometimes it i1s possible to guess the solution to a recurrence. More generally,
the following approach goes a long way in mathematics, if one is good at guessing
from relatively few examples.

1. Examine some small cases systematically.
2. Guess a pattern that covers all those cases.

3. Prove that the guess is correct.
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Tower of Hanoi

The Tower of Hanoi is a puzzle invented by Edouard Lucas (1842-1891), a
professor of mathematics in Paris with a keen interest in recreational mathematics.
There are three pegs, a source peg, an intermediate peg, and a target peg. There
are n drilled disks of differing diameters, initially stacked on the source peg in the
order of ascending diameter, from top to bottom, as in Figure 1.2.1.

Figure 1.21 Tower of Hanoi puzzle.

The objective is to transfer all the disks from the source peg to the target peg,
with the aid of the intermediate peg, under the following rules:

(1) Only one disk may be transfered at a time.
(2) No disk may ever lie on top of a smaller disk.

Clearly, it takes an initial value of 0 steps to transfer 0 disks. We observe that when
transferring n disks from the source peg to the target peg, it is necessary first to
move n — 1 disks from the source peg to the intermediate peg (using the ultimate
target peg as intermediate) — which requires h,_; moves. Then the largest disk
can be transferred to the ultimate target peg in a single move, after which the n—1
disks on the intermediate peg can be transferred in h,_; moves to the target peg on
top of the largest disk (using the initial peg as intermediate). Thus, the minimum
number h,, of moves needed to transfer n disks satisfies the following recurrence:

RECURRENCE
hg = 0 initial value
hy, = 2h,_1+1 recursion

We may use the recursion to calculate the first few values of &, and then try to
guess a closed formula.

SMALL CASES

ho == 0

h1 =1 APPARENT PATTERN
hy = 3 hp, = 27 -1
h3 == 7

hy = 15

Having guessed that h, = 2" — 1, we proceed to confirm the guess with a proof.
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Theorem 1.2.1. The Tower of Hanoi recurrence
hy = 0; hno = 2hy_1+1 forn>1 (1.2.1)

has the solution

h, =2"—1 (1.2.2)
Proof: By induction.

BASIS: Applying the formula (1.2.2) yields the equation hg = 2° =1 =1—1 = 0,
which agrees with the prescribed initial condition hg = 0.

IND HYP: Assume that hp,_; = 27~ — 1.

IND STEP: Starting with the recursion (1.2.1), we now complete the proof.

hy, = 2h,_1+1 given recursion
=22" 1) 41 induction hypothesis
=" _241
=2"—1 &

Fibonacci Sequence

Leonardo of Pisa (1170-1250), known as Fibonacci, championed the use of
Hindu-Arabic numerals in Europe. His original contributions include the formula-
tion and study of a well-known sequence that was mentioned in the introductory
chapter.

DEFINITION: The Fibonacci sequence (f,) is defined by the recurrence

fo=0 fi =1 initial values

fn = fn—l + fn_z for n > 92 (123)

Here are the first few entries:

n| 0123456 7 8 9.
fn\0112358132134...

DEFINITION: A Fibonacci number is any number that occurs in the Fibonacci
sequence.

A closed formula for the Fibonacci recurrence is not easily guessed from the
small cases. (However, once guessed, the solution is verifiable by a routine induc-
tive proof.) The derivation of the following solution appears in §2.5, along with a
discussion of ways that the Fibonacci sequence occurs in mathematics.

fo = % (fb” —é”) (1.2.4)

1+2\/5 and qu 1-v5

where ¢ =
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Example 1.2.2: For the time being, it is interesting to confirm an instance of the
correctness of the formula (1.2.4) for the Fibonacci number f,.

1 (<1+¢5>3 <1—¢5>3)

8 8
1 (1+3¢5+15+5¢5)_ 1 (1—3¢5+15—5¢5)

fs =

S

El

8 N 8

El

1 (6\/5—1—10\/5) .,
T

Catalan Sequence

Many combinatorial objects are counted by a recurrence named for Eugéne
Catalan (1814-1894), a Belgian mathematician. Several examples are given in §4.4.

DEFINITION: The Catalan sequence {c,) is defined by the recurrence

co = 1; initial value
Cp = C0Cpn_1 + €C1Chp_3 + -+ + cpn_1Co forn>1

(1.2.5)

Here are the first few entries:

n | 00123 4 5 6 71 8
el 11 2 5 14 42 132 429 1430

DEFINITION: Any number that occurs in the Catalan sequence is called a Catalan
number.

As with the Fibonacci sequence, a closed formula for the Catalan sequence is
not easily guessed from the small cases. Its derivation, which is significantly more
difficult than that of a closed formula for the Fibonacci numbers, appears in §4.4.

1 2n
n = 1.2.
¢ n+1 ( n ) ( 6)
1 /6 20
Example 1.2.3: ¢35 = Z<3) =4 = 5.

Proving Properties of Sequences

Proof that a sequence has some given property can be derived either from a
closed formula or from a recursion, with the aid of mathematical induction. As an
illustration, we consider the properties of concavity and convexity.
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DEFINITION: A sequence (z,) is concave (on the integer interval [a : b]) if

xnzw (formn =a+1, ..., b-1)
This means that the point (n,z,) lies above the line segment joining the points
(n—1,25-1) and (n + 1, 2,41) in the plane, as in Figure 1.2.2.

Xn+l
Xn

Xn-1

n-1 n n+l

Figure 1.2.2 Concavity in a sequence.

Example 1.2.4: Concavity of the sequence {2, =1 — %> follows from the obser-
vation that

20y = 2—— = 2—— > 2—
n n

1 1
1- 1- = &Ln- n
( n—1)+< n—l—l) Tp—1+ Tpt1

Example 1.2.5: That the Fibonacci sequence (fy,) is eventually increasing, after

n = 2, follows easily by mathematical induction. Moreover, it is a consequence for
all n > 3 that f, < 2f,_1.

DEFINITION: A sequence (x,) is convex (on the integer interval [a : b]) if

xngw forn =a+1, ..., b—1
This means that the point (n,z,) lies below the line segment joining the points
(n—1,25-1) and (n + 1, 2,41) in the plane, as in Figure 1.2.3.

A
Xn+1 /

Xn
Xn-1

n-1 n n+l

Figure 1.2.3 Convexity in a sequence.
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Example 1.2.6: The Fibonacci sequence is eventually convex, after n = 2. This
is confirmed as follows:
fav14+ facr = fa+2fn1 (by the Fibonacci recursion)
> 21, (by Example 1.2.5)

which is equivalent to the defining condition for convexity.

EXERCISES for Section 1.2
1.2.1 Evaluate the closed formula (1.2.4) for the Fibonacci number f4 and com-
pare the result with the value calculated by the Fibonacci recursion.

1.2.2 Evaluate the closed formula (1.2.4) for the Fibonacci number f5 and com-
pare the result with the value calculated by the Fibonacci recursion.

1.2.3 Evaluate the closed formula (1.2.6) for the Catalan number ¢4 and compare
the result with the value calculated by the Catalan recursion.

1.2.4 Evaluate the closed formula (1.2.6) for the Catalan number ¢ and compare
the result with the value calculated by the Catalan recursion.

In Ezercises 1.2.5 and 1.2.6, prove that the sequence is concave.

1.2.5  H, (harmonic number) 1.2.65 lIgn

In each of the Exercises 1.2.7 through 1.2.12, prove that the given sequence is convez.
1.2.7%  n? 128 nd 129 n!

1.210 n~? 1211 27 1212 27

1.2.13% Prove that the Catalan sequence is convex.
1.2.14 Can a bounded positive (infinite) sequence be convex?

1.2.15  Construct a bounded increasing sequence of positive values that is not
eventually concave.

1.2.16  Prove that the sequence of values of \/n is concave.
1.2.17  Prove that the sequence of values of |\/n] is not concave.
Let p, denote the number of regions created in the plane by
n mutually intersecting straight lines, with no more than two
lines interesecting at any one point. The figure at the right

tlustrates that ps = 7. Erercises 1.2.18 through 1.2.21 are
concerned with the sequence (py).

1.2.18 What are the values pg, p1, p2, and p4?
1.2.19  Give a recursion for p,,.
1.2.20  Guess a closed formula for p,,.

1.2.21  Use induction to prove that your guess is correct.
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1.3 PASCAL'S RECURRENCE

A recurrence may also be used to specify an array. This section focuses on a
recurrence for a doubly subscripted variable.

DEFINITION: The combination coefficient (Z) is the number of ways (sometimes

called combinations) to choose a subset of cardinality & from a set of n objects.

Figure 1.3.1 There are (g) ways to choose 3 balls from the 9 in the urn.

Proposition 1.3.1. The combination coefficients ( ) satisfy the recurrence

k
n
(Ty) (0) =1 for alln > 0
0
(T2) (k) =0 for all k > 1

(R) (Z) = (Z:})Jr(n;l) forn > 1

Proof: Since, in any set, the empty set is the only subset of cardinality zero, the

combination coefficients have initial values (TOL) = 1,for all n > 0. Since there are no

subsets of positive cardinality in the empty set, the combination coefficients have

additional initial values (2) = 0,for all £ > 1. The first of two proofs given here for

the recursion formula (R) is algebraic. The second is combinatorial.

Algebraic Proof: The algebraic proof of (R) starts with the right side of the
equation and makes substitutions and arithmetic operations that result in the left
side.

n—1 n—1Yy (n—1)! (n—1)!
(k—l) +< k ) S Gt ooy (Formula(042))
k(n—1)! (n—4k)(n—1)!
kl'(n — k)! kl'(n — k)!

[k+ (n—k)](n—1)!
kl'(n — k)!

- w0 0

Combinatorial Proof: The combinatorial proof of (R) shows that both sides
of (R) count the same set of objects. The left side counts the number of ways to




64 Chapter 1 Sequences

choose a subset of size k from the integer interval [1 : n]. If such a subset includes
object n, then it 1s counted by the summand (Zj) on the right side, since one then
chooses k — 1 other objects from [1 : n — 1]. Alternatively, if such a subset excludes
object n, then all k& objects must be chosen from [1 : n — 1], and it is counted by

the summand (”;1) Since these two cases are exclusive and exhaustive, it follows

that
n n—1 n—1
(k):<k—1)+< 1 ) forn>1 &

DEFINITION: The system {I;, I, R} is called Pascal’s recurrence.

TERMINOLOGY: The approach used in the combinatorial proof of Proposition 1.3.1
is called the Method of Distinguished Element. 1t arises frequently in combi-
natorial arguments.

Remark: Offering two proofs here previews Chapter 4, where more proofs of both
types are presented. Learning to understand and to create combinatorial proofs is
very important preparation for Chapter 5, because there are recursions and other

identities for Stirling numbers that cannot be verified by simple algebraic manipu-
lations.

Binomial Coefficients

DEFINITION: The coefficient by, ;. of z* in the expansion

(I4+2)" = Z bn i z"
k=0

1s called a binomial coefficient.

Example 1.3.1: Binomial coefficients can be calculated by iteratively multiplying
by 1+ x.

(1+2)° =1

( = 1+«%

(1—1—1‘)2 =1+ 22+ 22

( ) =1+ 3z + 327+ 2°

( ) = 1+ 4z + 62% + 42% + 24

Proposition 1.3.2. The binomial coeflicients by, j satisfy Pascal’s recurrence.

Proof: The initial values of Pascal’s recurrence are satisfied, since the values

bpo =1 forall n >0
bop = 0 forall £ > 1
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can be verified by considering the direct expansions of (1 + #)" and (1 + )", as in
Example 1.3.1. To show that the recursion is satisfied, 1t is observed that

n n—1
S bagat = (142)> byogpat (1.3.1)
k=0 k=0
n—1 n—1
= an—l,kxk + xzbn—l,kxk
k=0 k=0
n—1 n—1
= an—l,kxk + an—l,kxk-l—l
k=0 k=0

n n
k k
= g bp_1 k2" + g bp_1 k1%
k=0 k=1
n

= Y (bao1h + boorpor) 2" (1.3.2)
k=0

Thus, the coefficient &), ; of z* in the sum at the left of equation (1.3.1) must equal
the coefficient of #* in the sum at the right in equation (1.3.2), i.e., it must equal
the sum

bno1 g + bpoig—1 &

Corollary 1.3.3. For all n,k > 0, the number (Z) of ways to choose k objects
from a set of n distinct objects equals the binomial coefficient b, .

Proof: By Proposition 1.3.2, the combination coefficients (Z) and the binomial
coefficients b, , satisfy the exact same recurrence system. An induction argument
establishes that the values must be the same. &

TERMINOLOGY NOTE: The number (Z) is commonly called a binomial coefficient.
From here on in this book, we shall refer to it as such.

DEFINITION: If the zero values are left blank, then the array of binomial coefficients
has a triangular shape and is called Pascal’s triangle.

Table 1.3.1 Pascal’s triangle for values of (:f)

nl @) 0 G 6 W6 @ >
0| 1 1
I T 2
2| 1 2 1 4
5 1 3 31 8
401 4 6 41 16
50 1 5 10 10 5 1 32
6| 1 6 15 20 15 6 1 | 64
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In this form of Pascal’s triangle, each number is the sum of the number directly
above it and the number in the row above, one column to the left. Pascal’s triangle
also has a pyramid form:

13 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

In the pyramid form, each number is the sum of the two numbers just above it, one
slightly to the left and the other slightly to the right.

Remark: The pyramid form of Pascal’s triangle may be regarded as a directed
graph in which there are two directed edges from each number, one to the number
just below to the left, the other to the number just below to the right. It may be
observed empirically that the number of directed paths from the apex of Pascal’s
triangle to each entry in the triangle equals the value of that entry. See the Exercises.

EXERCISES for Section 1.3

1.31 Calculate row n = 7 of Pascal’s triangle from row n = 6.

1.3.25  Using only Pascal’s recursion, prove the following

G =00+ B0+ ()6 o<

1.3.3 By mathematical induction, generalize the equation of Exercise 1.3.2 to
n P\ [n—7
() = X)) eosrsn
7=0
n!

1.3.4 Show that the generalized sequence a,r = satisfies Pascal’s

kl(n—k)!
recurrence. Since the combinatorial and binomial coefficients also satisfy Pascal’s
recurrence, this serves as an alternative proof that

n n!
= — <k <
(k) F(n— ! for0<k<n

1.3.55  Prove that Z (Z) = 2" foralln € N.
k=0
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n

n
1.3.6 Prove that E 2F = 3" for all n € IV.
k=0 <k)

1.3.7 Prove the remark at the end of the section regarding directed paths in the
pyramid form of Pascal’s triangle. Hint: Prove that the number of directed paths

to each entry (:f) satisfies Pascal’s recursion.
1.3.8 Prove the correctness of the expansion

(x+y+2)? = 2 +y* + 22 + 20y + 222 + 2y2

In each of the Exercises 1.3.9 through 1.3.12, expand the given power of a linear
multivariate polynomaal, as in the statement of Frercise 1.3.8.

139 (wtz+y)? 1310 (w4z+y)?
1311 (w4z+y+2)° 1312 (w+z+y+z)?

1.3.13  Recalling multinomial coefficients from §0.4, prove this generalization of

Pascal’s recursion:
( n )
1y, « .oy 25

n—1 n n—1 n n n—1
11— 1,49, ..., i 11,190 — 1,43, ..., is Uy ooy g1, 0s — 1

1.4 DIFFERENCES AND PARTIAL SUMS

Texts on infinitessimal calculus generally provide formulas for derivatives before
deriving formulas for integrals. For similar reasons, having formulas for differences
of consecutive values in a sequence provides access to formulas for partial sums of
the sequence.

DEFINITION: Given a sequence {a,), we define the difference sequence (Aa,) by
the rule
Aan = Qp41 — Qp

More generally, given a function f : R — IR we define the difference function A f
by the rule

Af(e) = fle+1) = f(=)

DEFINITION: A difference table for a sequence (a,) has the sequence itself in its
0" row and the difference sequence (Aa,) in its 15° row. Often, the difference
operation is iterated and additional rows are given. Sometimes each subsequent
row is written a half-column shift to the right.
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Example 1.4.1: If a,, = n?, then
Na, = (n+1)2—n2 = 2n+1

and

APa, = 2+ D) +1)—(2n+1) = 2

These equations yield this difference table (with a half-column rightward shift)

an=m2] 0 1 4 9 16 25 36 49
Aa, 135 7 9 11 13 .-
A@q, 2 2 2 2 92 2 ..

Example 1.4.2: The sequence (b, = n?®) has the difference table, which was
created by calculating its initial row and then iteratively taking differences.

b,=m3| 0 1 8 27 64 125 216 343

Ab,, 1 7 19 37 61 91 127
A@p, 6 12 18 24 30 36 ---
ABp, 6 6 6 6 6 ---

Properties of the Difference Function

In Examples 1.4.1 and 1.4.2, we observe that the second and third rows of the
difference tables for the sequences (n?) and (n3), respectively, have the constant
values 2 = 2! and 6 = 3!. An initial aspect of our exploration is to establish that
this phenomenon holds generally.

Proposition 1.4.1. The difference operator A is linear. That is,
A(f(n) 4+ cg(n) = (Af)(n) 4+ c(Dg)(n)
Proof: The details are straightforward.

A(f(n) +eg(n)) = (Fin+1) +eg(n+1)) = (f(n) +cg(n))
(f(n+1) = f(n) + clg(n+1) —g(n))
= (&N(n) +c(bg)(n) &

Proposition 1.4.2. In the difference table for the sequence
(n" | n €N)

the r* row has the constant value v!, and, accordingly, all subsequent rows are
null.

Proof: By induction.
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BAsIS: The entries in the 0'" row of the sequence {(n°) all have the value 1 = 0!.

IND HYP:  Assume that all the entries in the (r — 1)** row of the table for n"~!
have the value (r — 1)! and that all higher order rows are null.

IND sTEP: It follows from the expansion
ART) = (n4+1) —n" = " 4 be_an™ T 4 by
(for appropriate coefficients ;) and from the linearity of A that
A7) = ATTH(A()

— A(r—l)(rnr—l + br_znr—Z 4o+ bo)
r—2
= r AUTD (077 4 3 b AU ()

7=0

By the induction hypothesis, A(’“_l)(nj) =0, for j < r — 2, from which it follows
that every term in the sum on the right has value 0. Thus,

A(r) (nr) - r A(r—l) (nr—l)
It follows that the r™ row of the difference table for (n") equals r times the (r—1)**
row of the table for n” ! in which every entry has the value (r—1)!, by the induction
hypothesis. &
Summation Operator

DEFINITION: Let {(#,) be a sequence with values in an algebraic structure with an
addition. Then the expression
n
>3
7=0

is called the n'* partial sum.

DEFINITION: The summation operator maps a sequence (x, | n € N) to the

sequence of partial sums
n
< Z x| ne N>
7=0

Example 1.4.3: Under the summation operator, the integer sequence
(zn) = 1 3 5 7
is mapped to the integer sequence of its n*® partial sums

7=0
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which begins with the values
1 4 9 16

It may be guessed that u, = (n + 1)?, which is readily proved by induction. If one

now defines
n—1

an = > (25 +1)
0

.
I

then the sequence {a, = n?) has the values
0 1 4 9 16

which inverts Example 1.4.1. We recall from §0.3 that the empty sum is defined to
be zero. This accounts for the value

n—1 -1
a = Y (2j+1) = DY (2j+1) =0
7=0 7=0

The next theorem establishes that the inversion is not at all a coincidence.

NOTATION: From time to time, it is convenient to use the notation z! as an alter-
native to Az;. This is analogous to the use of such an alternative notation in the
differential calculus.

Theorem 1.4.3(a). Let {(x, | n € N) be a sequence. Then

Zx]/ = z, — X (1.4.1)

2: o 2:
Ty = (i1 — ;)
]:

= ( —l‘o) ($2—$1)+"'+(xn_xn—1)
= (xn —Zp_1) + (Tpo1 — Bp_2) + -+ + (21 — x0)

= — o <>

The upper limit of the sum in equation (1.4.1) must be n — 1, rather than n, to get
the correct result. Figure 1.4.1 illustrates the proof of Theorem 1.4.3(a). The sum

3

/

o + E x;
7=0
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of the lengths along the y-axis clearly equals the height x4 of the rightmost rectangle.
Thus,

3
_ /
rga — o = l‘j
7=0

which is the total vertical distance from the top of the leftmost rectangle to the top
of the rightmost rectangle.

(1 —wo) + (w2 —21) + (23— 22) + (w4 —23) = 24 — 20
A
X3'=X4-X3 § }
B Y [
X5 =X3 - *
X1 = Xp-X) %} HESY :
. v {nie X
Xo = X[ -Xgo {} X]Q 2: : |
- ; |
Xo g1%8] v vl 4 .

Figure 1.41 Accumulating consecutive differences,
as in Theorem 1.4.3(a).

Theorem 1.4.3(b). Let (&, | n € N) be a sequence. Then

/

k—1
E €Ty = In
7=0 n

Proof: By the definition of the difference operator,

k-1 (n+1)-1 n—1
E €Ty = E Ty — E €Ty
7=0 n 7=0 7=0
= In <>

Figure 142 illustrates the proof of Theorem 1.4.3(b). The difference of the sum
zy 4 -+ -+ x4 of the areas of the consecutive rectangle including x4 and the sum
zp + - -+ x3 of the areas excluding x4 clearly equals the area x4 of the rightmost
rectangle.
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(2o 4 x1 + 29+ 23 + x4) - (zo +x1 + 22+ 23) 4

X4 X4

HES
*Xza

b X

A

Wil

Figure 1.4.2 Subtracting consecutive sums, as in Theorem 1.4.3(b).

} K}
M
o

i
;

|
I
I
I
I
|
- Y

TERMINOLOGY: Theorem 1.4.3 is a form of what is commonly called the Funda-
mental Theorem of Finite Calculus. One sees a direct analogy to the Funda-
mental Theorem of Infinitessimal Calculus:

(@) /— (t)dt = f () — £ (0):

) & [ rwd=re

0

Growth Rate of Sequences

Comparison of the growth rate of one sequence (x,) with that of another was
mentioned informally in §1.1. The most common criterion for comparing the long
term behavior of two sequences is called asymptotic dominance. However, by way of
analogy to differential calculus, a possible measure of the growth rate of a sequence
1s 1ts difference sequence.

Example 1.4.4: To establish, in the sense of finite differences, that the sequence
(n®) grows faster than the sequence (cn?), for any constant value of ¢, we make the
following calculations.

And = (n+1)3—n3 = 3n%4+3n+1
Acn? = c(n+1)2—cn2 = 2en+c

For n > ¢, we have
3n?4+3n > 3en+3¢ > 2en+e

Thus, An? eventually dominates Acn?.

Another possible measure of the growth rate of a sequence of positive values is the

sequence of ratios
Tn+1
Tn

nEZ+>
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of consecutive terms.

Example 1.4.4, continued: The successive ratios of n® are

(n+1)3 nd+3n?24+3n+1 3 3 1
3 = 3 =l+-F+ =5+
n n n n

n
and the successive ratios of en? are
c(n+1)? en® +2en+ ¢

= —1—1—2-1-1
2 o cn? o n n?

en
which are clearly smaller.

EXERCISES for Section 1.4

In each of the Erercises 1.4.1 through 1.4.6, construct a portion of a difference table
for the given sequence, of sufficient extent to indicate the general pattern.

1415 nt 142  nh-1) 143  nn-1)(n-2)
144 20 145 3° 146 47

In each of the Exercises 1.4.7 through 1.4.12, calculate the difference sequence Aay,
for the given sequence.

1475 a,=c" 148  a,=n"" (r>0)
1.4.9 an, =lgn 1.410 a, = f, (Fibonacci number)
1411  a, = H, (Harmonic number) 1.4.12 a, = ¢, (Catalan number)

In each of the Exercises 1.4.13 through 1.4.16, compare the value of the difference
ag — az to the value of the sum 2223 Aa,.

1.4.13% q, = n? 1414 a,=n(n-1)
1415 a, =n? 1416 a, =2"

1.4.17  Prove that the difference function of a polynomial function of degree d is
a polynomial function of degree d — 1.

1.4.18 Prove that a sequence is generated by a polynomial if and only if there is
eventually a row of zeroes in the difference table.

1.4.19 Prove that a sequence is generated by an exponential ¢” if and only if each
row in the difference table is a multiple of other rows.

Each of the Ezxercises 1.4.20 through 1.4.23 gives a linear recurrence for a sequence.

Write a recurrence for its difference sequence.
1.420 a9y = 1;, an = 3ap_1 + 2

1421 ay = b; a, = can_1 + d
1422 a9 = 0; a1 = 1; a, = 36p-1 + 2an_2
1.4.23 ap

2 ap = 4dap_1 +n
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1.5 FALLING POWERS

REVIEW FROM §0.2: The n'? falling power of a real number z is the product

n factors

2 =x@-1) - (z—n+1) forn € N

If # is an integer, then the falling power #2 equals the number of ordered selections
of n objects from a set of = distinct objects. Thus, for elementary combinatorial
calculations, falling powers are as natural as ordinary powers.

We recall that the differential calculus has nice formulas:

d d
— 2% = %2 — 23 = 327 etc.

dx dx

So does the calculus of finite differences, but these are not examples of them:

A(xz) = 2z + 1
A(x?’) =322+ 3z +1

In the calculus of finite differences, the falling monomial #2 lends itself quite natu-
rally to nice formulas that are analogous to those of the ordinary monomial z”.

Example 1.5.1: This illustrates what is meant by a “nice formula”.

A2 = (+1)2 — 22
(z+Da(e—-1) —2z(@x-1)(r-2)
[(x+1) = (v =2)]z(x—1)

3e(z—1) = 322

The next theorem gives a difference formula for falling powers that generalizes
Example 1.5.1 and is analogous to the differential calculus formula for ordinary
powers.

Theorem 1.5.1. A(z%) = rar=L.

Proof: A straightforward approach is sufficient.

A (25 (x 4+ 1DE — 2=
(+1)ar=t — 2=z —r+1)

= [(z4+1) = (z —r+1)]ei=t = rpr=L &
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Corollary 1.5.2. For every non-negative integer r and every positive integer n,

. n
-

]'7‘-|-1
- + 1

n—-1 r+1
7

r+
Proof: By Theorem 1.5.1, we have j~ = A <

Theorem of Finite Calculus, it follows that

>‘ Thus, by the Fundamental

r41

F—
7=0 r+1

=0 r+1

Example 1.5.2: Direct addition and the formula of Corollary 1.5.2 give the same
result when summing k2.

4
Zkz =0-(-)+1-0+2-1+3-2+4-3 =20
k=0

52 5-4-3

— = 20
3

Unimodal Sequences
DEFINITION: A sequence (z,) is unimodal if there is an index M such that
o L1 L - Swemo1 S v

and that (z,,) is non-increasing after index M. The value xps is called the mode
and M the mode index. (A tie is permitted at the mode value.)

DEFINITION: A sequence is eventually ( if there is a number N such that z,, = 0,
for all n > N. (Thus, there are only finitely many non-zero entries.)

Example 1.5.3: Most of the unimodal sequences of interest in the present context
are eventually 0. Figure 1.5.1 illustrates that the sequence (?) is unimodal.

80

60

40 —

20 H

o

012345678

Figure 1.5.1 The unimodal sequence (f)
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Theorem 1.5.3. For any fixed non-negative integer n, the binomial sequence

()

is unimodal with mode index |n/2] and is eventually 0.

r:O,l,...>

1
Proof: We observe that for » < {gJ, we have = > 2, and, hence, n+l > 2.
r r

— 1
, nor+l > 1. Accordingly,

() =5
(r—1! 7

nt n
o T Ay

Moreover, for r > {gJ, we have n < 2r 4+ 1, and it follows that n —r < r 4 1.

n _I < 1. It follows that

n nrtl n n—r nt n
r+1 (r+ 1)! rtor+1 T ! r

Of course, the sequence is zero for r > n. &

Thus

Thus,
T+

Remark: One of the consequences of unimodality of a sequence is that it may
make i1t possible to find the maximum by hill-climbing, for which there exist highly
efficient computational strategies.

Log-Concavity and Log-Convexity

In trying to establish unimodality, curiously enough, it is often easier to prove
the stronger property called log-concavity. For instance, this is the method used in
this section to reconfirm the unimodality of the binomial coefficients in the rows of
Pascal’s triangle and later to prove the unimodality of some analogous sequences of

Stirling numbers (see §§1.6, 5.1, 5.2).

DEFINITION: A sequence (z,) of positive real numbers is log-concave (on the in-

teger interval [a : 0]) if, for n = a+1, ..., b—1,
log #,,—1 + log 2,
logz, > —2% 1; 08 T+l (1.5.1)
and is log-convex if
log #,,—1 + log 2,
logz, < —8¥n=1t108Tnt1 (1.5.2)

2
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Proposition 1.5.4. A sequence (&) of positive real numbers is log-concave (on
the integer interval [a : b]) if and only if, forn =a+1,...,b,

2 > ep_1%ng1 (1.5.3)

n

It is log-convex if and only if

2

Ty

S Tpn—1Tn+1 (154)
Proof: The defining condition (1.5.1) for log-concavity

log &1 + log 41

logz, >
ogr, > 5
1s equivalent to the inequality
2logx, > loga,—1 +loga,y: (1.5.5)

Exponentiating both sides of the inequality (1.5.5) leads to inequality (1.5.3), i.e.,

2

Ty

Z Tpn—1Tn+1

A similar argument establishes the equivalence of inequalities (1.5.2) and (1.5.4).

Theorem 1.5.5. Let (x,) be a log-concave sequence (over the integer interval
[a :b]). Then it is unimodal (over that integer interval).

Proof: It follows from Proposition 1.5.4 that the sequence of ratios
L1 T2 T3
Lo L1 L2

(wherever defined) is non-increasing. That is,

x x
2 n n+1
n Z Tpn—1Tn+1 = -

X

v

LTn—1 Ln

Let M be the largest number k in the integer interval [a : b] such that

it
P

Tk—1
or M = a if no such number k exists. Then the initial subsequence
Zg Tgyl .. TM
is increasing and the terminal subsequence
TM  TM+1 .. Ty

is non-increasing, precisely the conditions for unimodality with mode index M. ¢
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Theorem 1.5.6. The binomial sequence

()] =)

is log-concave on the integer interval [0 : n].

Proof: The falling-power formula for binomial coefficients is

() = (%)

- < 1 and L < 1, it follows that
1 n—r+4

nt\ 2 S nt nt r n—r
7! rtorl 41 n—r4+1

Since

and, in turn, that
n\’ S nt nt r n—r
r rtorl 41 n—r4+1

- (:i)l'(rnﬁ)! - <ri1)'<r11)

Accordingly, by Proposition 1.5.4, the binomial sequence is log-concave.

Sequences

&

Remark: Theorems 1.5.6 and 1.5.5 can be used together to reconfirm Theorem
1.5.3, that the sequence of binomial coefficients (Z), for £k =0,...,n, is unimodal.

EXERCISES for Section 1.5

In FErxercises 1.5.1 through 1.5.4, determine which one, if either, of the two given
expressions is the larger and give a proof. Assume that all the variables are integers

greater than one.
1.515 2yl (zy)- 1.5.2 rlas  pis
1.5.3 ars s (an)s 1.5.4 n2)" : (n")2

In Ezercises 1.5.5 through 1.5.7, evaluate the generalized binomaal coefficient.

1.5.5% (f) 1.5.6 (i) 1.5.7 (?)

1.5.8 From the integer interval [1 : n], there are to be selected at random r
numbers, without repetition. Express in falling powers the probability that such a

selection includes all the numbers in the subinterval [1 : k], where k < r.
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_1 _1\»
1.5.9 Confirm that ( 2) = (=1) (271)
n

22n n

DEFINITION: The n'! rising power of a real number z is the product

n factors

P e+ (z+n-1)

1.5.10 Express 2" as a falling power.
1.5.11  Express z2 as a rising power.
1.5.12  Show that the sequence (\/n) is concave and log-concave.

1.5.13  Show that the sequence (H,) is concave and log-concave.

In each of the Exercises 1.5.1] through 1.5.19, decide whether the given sequence is
log-conver or log-concave. Give a proof.

1.5.14% p2 1.5.15 n3 1.5.16 n!
1.5.17 n~2 1.5.18 27 1.5.19 277

1.5.20  Give an example to illustrate that the sum of unimodal sequences need
not be unimodal.

1.6 STIRLING NUMBERS: A PREVIEW

James Stirling (1692-1770) was a Scottish mathematician. He introduced two
families of numbers, now called Stirling numbers of the first and second kinds, for
representing falling powers and ordinary powers in terms of each other. Stirling
numbers are highly useful in counting partitions and permutations.

Converting Falling Powers into Ordinary Powers

The following theorem provides a recursive method for converting a falling
power into ordinary powers.

Theorem 1.6.1. Any falling power z2 can be expressed as a linear combination
of ordinary powers, 1.e., in the form

n
= an,k " with s, , =1 and s,o=0forn>1
k=0

Proof: By induction on the exponent n.
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BASIS: For n =0 and n = 1, we have

22 = 14°

i = 12t 4+ 02°
Thus, we take spg =1, 511 =1, and 519 = 0.

IND HYP: Suppose for some n > 1 that there exist integer coefficients

Sp—-1,0 Spn—-1,1 --- Sn—1n-1
for which
n—1
o=t — E sn_lykxk with s,_1p—1=1 and s,_10=0
k=0

IND STEP: It follows that

et o= =l (z—n+1) (definition of falling power z2)
n—1
= (x—n+1) Z Sp_1k z" (inductive hypothesis)
r=0
n—1 n—1
==z Z Sp_1k zF - (n—1) Z Sp_1k z"
k=0 k=0
n—1
= —(n—1)sp_102° + Z(Sn—1,k—1 —(n=Vsp_14) 2" 4+ sy 1, 12"
k=1
n—1
= 0z" + Z(Sn—1,k—1 —(n—D)sp_1g)a® + 127
k=1
Thus, we may take s, 0= 0, s,, = 1, and spp = sp—15-1 — (n — 1)sp_1 1, for
0< k<n. &

DEFINITION: The coefficients s, ; in the summation

n

2 = E snykxk

k=0

are called Stirling numbers of the first kind. For k > n or k < 0 , the Stirling
number s, j is taken to be 0, corresponding to letting the upper and lower limits
of the sum go to oo.

The Stirling numbers s, ; can be calculated by multiplying the factors in the ex-
pansion
= ze—1)(x=-2) - (z—n+1)
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Example 1.6.1:

2 2 1

¥ =z —
22 = 2% — 327 4+ 22!
22 = 2t — 623 4+ 1127 — 62!
2 = 2° — 102* + 3523 — 502? + 24z!
Thus, s52 = —50 and s3; = 2. We observe the alternating signs in each equation.

Converting Ordinary Powers into Falling Powers

Expressing an ordinary power as a sum of falling powers is an analogous task.

Theorem 1.6.2. Any ordinary power x” can be expressed as a linear combination
of falling powers, i.e., in the form

" = ZS”J“ ok with S, =1 and S,p=0forn>1
k=0

Proof: Once again, we use induction on the exponent n.

BASIS: For n =0 and n = 1, we have

20 = 122

2! = 1zt 4022

We take 5070 = 1, 5171 = 1, and Sl,O = 0

IND HYP: Suppose that for some n > 1, the monomial z”~*

a linear combination

can be expressed as

J
n—1 E k
xr = Sjyk r—
k=0

of falling-power monomials S; » zE each of degree less than or equal to j.
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IND STEP: Then

xn — l"l‘n_l
n—1
= l"ZSn—l,k L (inductive hypothesis)
k=0
n—1
= ZSn_lw =
k=0
n—1 n—1
= Sucip(@—k) 2k + Y Sk ok
k=0 k=0
n—1 n—1
= Z:Sn—l,klzki1 + Z:ksn—l,kl‘E
k=0 k=0
n n—1
= ZSn—l,k—le + stn—ml‘ﬁ
k=1 k=0
n—1
= Spoipo1a® + Z(Sn—1,k—1+k5n—1,k)lﬁ + 051022
k=1

Thus, we may take S, 0 = 0, S, = 1, and Sy = sn_1,6—1 + kSp_1k, for
0< k<n. &

DEFINITION: The coefficients S,  in the sum

n
" = E SnykxE
k=0

are called Stirling numbers of the second kind. For k > n or k < 0, the Stirling
number Sy, . is 0, which corresponds to letting the upper and lower limits of the
sum go to oo.

Example 1.6.2: 2? = 22 4 oL
3 = o2 4 322 + 2L
et = ot 4 622 + TeZ 4 2t

2° = 22 4+ 1022 + 2523 + 1522 + 2t
ThUS, 5573 = 25 and 5472 =7.

Corollary 1.5.2 provides a simple formula for the sum of the values of any falling
power n&, over an interval of integer values of the base n. Accordingly, due to the
linearity of the difference operator (Proposition 1.4.1), we could calculate the sum
of the values of any ordinary power n”, over a range of values of n, if we first express
n” as a linear combination of falling powers.
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Example 1.6.3: Notice, in particular, in Example 1.6.2, that n? = nZ 4+ ni It
follows from Theorem 1.6.2 that

n
>
7=0

n n
Sr
7=0 7=0

(nt1)2 (ot 1)2
3 2
7372

Eg,0+1+44+94+164+25436 = 3—1—7 = 70421 = 91.

In turn, this enables us to calculate the sum of the sequential values of a
polynomial, since a polynomial is a linear combination of ordinary powers. This
method of summing the values of polynomials will be further explored in §3.4.

Partitions

DEFINITION: A partition of a set S is a family F = {S1,...,5,} of mutually
disjoint subsets of S, called the cells of the partition F, whose union is S.

NOTATION: Cells of partitions of a set may be indicated by the use of hyphens. If
the set is small enough, then its elements can be represented by single characters,
thereby avoiding potential ambiguities latent in juxtapositions of the characters.

Example 1.6.4: The partition {{1,3}, {2,5}, {4} } of the integer interval [1 : 5]
may be denoted
13-25-4

or also, for instance, by 4 -52—-13, since the cells of a partition and the order within
cells are taken to be unordered.

Stirling Subset Numbers
DEFINITION: The Stirling subset number
n
{1}
is the number of ways to partition the integer interval [1 : n] into k non-empty
non-distinct cells.*

In §5.1, we establish that the Stirling number S, » of the second kind equals
the Stirling subset number {7 }.

Example 1.6.2, continued: The value S42 = 7 is consistent with the following
list of 7 partitions of [1 : 4] into 2 cells, as an ad hoe calculation of {;}
1—234, 2—-134, 3—-124, 4-123
12—-34, 13—-24, 14-23

* Wikipedia acknowledges D. E. Knuth for promoting usage of the user-friendly notations,
{Z} and [Z], of the Serbian mathematician J. Karamata (1902-1967) for Stirling numbers.
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Stirling Cycle Number

DEFINITION: The Stirling cycle number [Z] is the number of ways to partition
the integer interval [1 : n] into & non-empty non-distinct cycles.

In §5.2, we establish that the Stirling number s,  of the first kind equals the
absolute value of the Stirling cycle number [Z]

Example 1.6.1, continued: The value s45 = 11 of the Stirling number of the
first kind 1s consistent with the following list of 11 partitions of the integer interval

[1:4] into 2 cycles, as an ad hoc calculation of the Stirling cycle number [;1]

(1)(2 3 4), (2)(1 3 4), (3)(1 2 4), (4)(1 2 3)
(1)(2 4 3), (2)(1 4 3), (3)(1 4 2), (4)(1 3 2)
(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

Remark: Since the Stirling cycle numbers
HEHEEE
1 2 n
correspond to an inventory of all permutations of the integer interval [1 : n], ac-

cording to the number of cycles in their disjoint cycle representation, it follows
that

EXERCISES for Section 1.6

In Ezercises 1.6.1 through 1.6.4, expand each of the falling power polynomials as a
polynomial in ordinary powers.

1.6.15 28 1.6.2 22442243
1.6.3 202 4+ 322 — 9L 1.6.4 xZ

In Ezercises 1.6.5 through 1.6.8, expand each of the given polynomials as a polyno-
maal in falling powers.

1.6.5%5 2 1.6.6 25+ 422+ 3
1.6.7 225 4+ 3x4 — 22! 1.6.8 z7

1.6.9  List all the partitions of the integer interval [1 : 5].
1.6.10  List all partitions of the integer interval [1 : 6] into 3 parts.
DEFINITION: The type of a partition F = {S51,...,5,} of a set of cardinality n

is a string s1 ...s, of positive integers (usually in ascending or descending order)
such that s; is the cardinality of the cell S;. Thus, 51 +---+ 5, = n.
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In Ezercises 1.6.11 through 1.6.16, calculate the number of partitions of the given
integer interval of the given type.

1.6.115% [1:7] of type 124 1.6.12  [1:9] of type 234
1.6.13  [1:7] of type 223 1.6.14 [1:9] of type 144
1.6.15  [1: 8] of type 224 1.6.16  [1:10] of type 127
—

1.7 ORDINARY GENERATING FUNCTIONS

A sequence (g, ) can be represented by the polynomial

(o)
Zgnzn = Yo +912+9222 + -
n=0

If the sequence has infinitely many non-zero elements, then the polynomial has in-
finitely many terms. Generating functions have many uses, even though the motiva-
tion for introducing them is not immediately obvious. Their immediate application
in this section is directly in counting. In Chapter 2, they reappear as an intermedi-
ate device in the transformation of recurrences into closed formulas for sequences.
In Chapter 9, they are used in a sophisticated algebraic method for counting graphs.

DEFINITION: An (ordinary) generating function (abbr. OGF) for the sequence
(gn) is any closed form G(z) such that

G(z) = Zgnz"
n=0

or, sometimes, it means the polynomial itself.

Exponential Generating Functions

There 1s another kind of generating function, called an exponential generating
function, that is also used directly for counting and in solving recurrences. We
introduce 1t here and offer a brief explanation of the circumstances in which each
of these two main kinds of generating function is used in counting. More extensive
development of exponential generating functions appears in §5.5.

DEFINITION: An exponential generating function (abbr. EGF) for a sequence
(gn) is any closed form G/(z) corresponding to the infinite polynomial
n

%]
z
D 9niy
n.
n=0

or, sometimes, the polynomial itself.
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Direct Counting with Ordinary Generating Functions

Ordinary generating functions are readily applicable to counting unordered
selections. We now illustrate this by returning to a counting problem first raised in
Example 0.3.13.

Example 1.7.1: A combination of letters from the word SYZYGY may contain
at most one S. Thus, an ordinary generating function for the number of possible
combinations containing no letters that are not S’s is

1+s

Similarly, ordinary generating functions for combinations containing no letters ex-
cept Z’s and no letters except G’s are, respectively

1+2z and 14y

Since the word SYZYGY contains three Y’s, the OGF for counting combinations
containing no letters except Y’s is

l+y+y° +¢°

which signifies that there is one choice with no Y’s, one choice with one Y, one with
two Y’s, and one with three Y’s. In the product

(I+s)(14+2)1+9)(1+y+y" +¢°)

of these four generating functions, the terms of degree d provide an itemization of
the ways to select d letters from SYZYGY. For instance, the seven terms of degree
2 are

sz 89 sy zg 2y gy Y

It follows that if each of the indeterminates s, z, g, and y 1s replaced by a single
indeterminate, say =,
(1+ 21+ 2+ 2% + 2°)

then the coefficient of z¢ in the expansion
1+ 4o + 727 + 82 + 72t + 425 + 25

is the number of ways to select d letters from SYZYGY. The general principle is
articulated by the following proposition.

Proposition 1.7.1. Let G(z) and H(z) be the ordinary generating functions for
counting unordered selections from two disjoint multisets S and T'. Then G(z)H (%)
is the ordinary generating function for counting unordered selections from the union

SuUT.
Proof: This is a direct application of the Rule of Sum and Rule of Product. <
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Direct Counting with Exponential Generating Functions

Exponential generating functions are readily applicable to counting ordered
selections. We continue the analysis of Example 1.7.1.

Example 1.7.1, continued: An ordered selection of letters from SYZYGY may
contain at most one S. Thus, an exponential generating function for the number of
possible combinations containing no letters that are not S’s is

1+s

Similarly, exponential generating functions for ordered selections containing no let-
ters except Z’s and no letters except G’s are, respectively

1+2z and 14y

Since the word SYZYGY contains three Y’s, the exponential generating function
for counting ordered selections containing no letters except Y’s is

2 3
L4+ 5+ 5
3!
which signifies that there is one way with no Y’s, one way with one Y, one with two
Y’s, and one with three Y’s. In the product

2 3

(1+5)(1+2)(1+g) (1+y+y—+3§,)

of these four generating functions, the terms of degree d provide an itemization of the
ways to select d letters from SYZYGY. Suppose that the multivariate indeterminate

monomial of a term of degree d is given the denominator of d!. For instance, this
would give the transformation

2 A 2 4 2
9y 29y _ 29y
2! 2111 4! 211 4!

in which the multinomial coefficient (2 411 1) is the number of ways to order the
selection ZGYY represented by the monomial zgy?. It follows that if each of the

indeterminates s, z, g, and y is replaced by a single indeterminate, say z,

w2 23
(1+x)® (1—1—1‘—1——-1- 3')

then the coefficient of ¢ in the expansion

2 3 4 5 6

1+45 + 135 434 27 41205 + 1207
+1'+3 +33+7 +05l+0

is the number of ordered selections of d letters from SYZYGY. The general principle
1s as follows.
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Proposition 1.7.2. Let G(z) and H(z) be the exponential generating functions for
counting ordered selections from two disjoint multisets S and T'. Then G(z)H (z) is
the exponential generating function for counting ordered selections from the union

SuUT.

Proof: This is a another direct application of the Rule of Sum and Rule of Prod-
uct. &

Analyzing a Generating Function

Multiplying two or more generating functions for sequences with simple closed
forms may lead to a generating function for a sequence whose closed form is not
readily apparent, as seen in Example 1.7.1. Thus, to use generating functions
effectively, either for direct counting or for solving recurrences, one needs to be able
to analyze generating functions so as to recover a closed-form function for the list
of entries. We now indicate briefly how this might be done, deferring most of the
details to Chapter 2.

Example 1.7.2: Let’s consider how we might analyze the generating function

z

13- 522 (1.7.1)

to enable us to extract the coefficients. When a closed-form generating function is
a quotient of polynomials, one way to extract the entries of the sequence is by long
division of polynomials.

s 4322472 15

1— 3z + 222 )z
72— 322 4223
322 — 223
322 — 923 4+ 627
Tz3 — 624

Long division provides a recursive procedure for generating successive entries of the
sequence. This sequence corresponds to the infinite polynomial

z 4 327 4 722 4+ 150 + -

While this is useful for the coefficients of smaller powers 27, it is not a closed form.
Factoring the denominator of the expression (1.7.1) and splitting the fraction into
two parts, like this
z 1 1
1—-2)(1-22) 1-22 1—2z

(142422724225 +.) — Q424224224+
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illustrates the standard way to recover a closed-form function for arbitrary entries
of a sequence with such a generating function. Techniques for splitting the fraction
are developed in §2.3.

Remark: Example 1.7.2 uses the familiar algebraic identity
1

= 1—|—ay—|—a2y2—|—~~~
1—ay

which can be justified either by long division or by multiplying 1 — ay and 1+ ay +
a2y2 _|_ cee,

Rational Functions

Fortunately, many generating functions that arise in the course of solving direct
counting problems and recursions have an essential similarity to the generating
function (1.7.1).

DEFINITION: A quotient of two polynomials in z (each with finitely many terms) is
called a rational function in z. If the degree of the numerator is less than the
degree of the denominator, then it is called a proper rational function.

Remark: An improper rational function can be transformed by long division into
the sum of a polynomial — the quotient of dividing the denominator into the nu-
merator — and a proper rational function, whose numerator 1s the remainder of
that division.

Long division of the denominator into the numerator transforms a generating
function G (z) represented as a rational function

bo+biz+ - byst

G(z) = -
cot+crz+ -+ ez

into its power series

G(z) = 90-1-912-1-9222-1-"'

as in Example 1.7.2. Moreover, 1t will be shown in Chapter 2 how to use factoring
of the denominator, as in Example 1.7.2, to represent the values of the sequence by
a closed function. For the time being, we consider another case of this phenomenon.

Example 1.7.3: Here is an additional illustration of the effect of factoring the de-
nominator and splitting the fraction into a sum of fractions with linear polynomials
as denominators
z—1 -2 1
G = =
C) = T ge ~ 108 T 1o
= —2(1+32+3%274+ ) + (14+2:+2%" +-)

= > (2" —2.3")"

n=0
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Taylor Series

The fact that a rational function can be reconverted into a power series mo-
tivates the use of the terminology generating function, because a rational function
may be regarded as generating its coefficients by the process of long division. An-
other sense in which a function G(z) can generate the coefficients of a power series
is by application of a Taylor series expansion at z = 0.

G(Z) = G(0)+G/( )F+G//( )E—FG/H( )§+

that assigns to the infinitely differentiable function G(z) the power series
G(z) = g0 + q12 + g22° + -+

where

Using Taylor series permits an interpretation of a wide range of infinitely differen-
tiable functions as generating functions.

Example 1.7.4: For the function G(z) = —In(1 — 2), the value of the n'" deriva-
tive at z = 0 1s

Gy = H , = (n—1)! forn>1

and, thus,

2 3

1
G(z)—0+0'—+1'§+2'—+ =) -

n=1

That is, the function —{n(1 — z) is the OGF for the sequence (z, = %>

Addition and Scalar Multiplication

There is a correspondence between various operations on sequences (a,) and
(by) and some operations on their associated generating functions

oQ

A(z) = Zajzj and B(z Zb 2

7=0

DEFINITION: The sum of two sequences {(a,) and (b,) is the sequence

ap+ba, a1 +01, az+ b,
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This corresponds to the sum of their generating functions, i.e., to the generating
function -
(A+B)(z) = > (aj+b5)2

7=0

DEFINITION: Multiplying the sequence {a, } by the scalar ¢ yields the sequence

Cap, Cay, Caz,

This corresponds to the generating function

cA(z) = Z cajzj
7=0

that results from multiplying the generating function A(z) by that scalar.

Example 1.7.5: Since the ordinary generating functions

Az) =

=5, d Bl =1+

generate the sequences (a, = 57) and (b, = 77), respectively, it follows that the
ordinary generating function

2 3 5 — 292
2A@)+3B(2) = 75 T 10 T @oena-1e)

generates the sequence (25" 43 - 77).

Products and Convolutions

The following two examples illustrate how one might use products of generating
functions in direct computations.

Example 1.7.6: Consider the problem of counting the number p, of ways to
make n¢ postage from 3¢ and 5¢ stamps. If one had nothing but 3¢ stamps, the
generating function would be

- 1
Zanx" =14+ +254+2+.. = ——

1 —z3
n=0
which signifies that there is exactly one way from 3¢ stamps alone to make each
multiple of 3, and no way to make any other postage. Similarly, if one had nothing
but 5¢ stamps, the generating function would be

any":1+y5+y10+y15+~~: .

n=0
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In the product of these two generating functions, the number of terms of degree
n would be the number of ways of making n¢ postage. For instance, the terms of
degree 23 (i.e., the terms whose exponents have 23 as their sum) are

$18y5 and $3y20

It follows that if z is substituted for # and y, then the coefficient of 222 is the number
of ways. Thus, the generating function is

1 1 (o) (o) n
TE T T = ) by
n=0 n=0 7=0

That is, the only way to get n¢ postage is to find an a¢; = 1 and a b,,_; = 1. The
sequence {p,) is not monotonic. For instance,

Pia=1 p5=2 ps=1

COMPUTATIONAL NOTE: In trying to obtain actual values for such a sequence, it
is useful to have the aid of a computational engine such as Mathematica.

DEFINITION: The convolution of the sequences {u,) and (v,) is the sequence

UpUp, UoU1 + U1Vo, UoV2 + U1V1 + UaVp,
Example 1.7.6, continued: Thus, the sequence (p,) is the convolution of the
sequences (a,) and (by).

Example 1.7.7: Four distinguishable six-sided dice are rolled, each marked with
the numbers 1, 2, 3, 4, 5, 6. Then the generating function for the number of ways
that sum of the outcomes could be n is the coefficient of z” in the expansion of

(z + 22+ 3 4 24 4 25 4 5

Proposition 1.7.3. The product of the generating functions

is the generating function

Uz)V(z) = Z 2" Z UjUp_;

for the convolution of the sequences (u,) and {v,). &

We observe that Proposition 1.7.3 provides terminology for the sum of products
that occurs within the proof of Proposition 1.7.1.
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Example 1.7.8: The rational functions

=2, o 73

generate the sequences (u, = 2") and (v, = 3"), respectively. Their product is the
generating function

1 _ 2,3
(1-22)(1-32)  1-2z 1-3z

— Z 2N (3n+1 i 2n+1)
n=0

= 1452+1922 46923+ --.

The convolution of the sequences (u, = 2") and (v, = 3") is the sequence whose
n't element (counting from the 0™ element) is

203n+213n—1++2n30
Thus, the convolution sequence begins
1, b5, 19, 69,

in affirmation of Proposition 1.7.3.

Sums and Generating Functions

Proposition 1.7.3 has a slue of useful consequences. An immediate consequence
is that it provides a method for going from a counting sequence to its sequence of
partial sums.

Theorem 1.7.4. Let B(z) be the ordinary generating function for a sequence (by).
Then the ordinary generating function for the sequence

<Zn:bj |n:0,1,...>
7=0

B(z)
1—=2
Proof: We observe that the total coefficient of z™ 1n

of partial sums is

= (bo+brz+b? + ) (1424224

equals the sum Z?:o b;, as per the following calculation:
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b0—|—b12—|—b222—|—b323—|—~~~
X l4z4+22424-

bo 4+ b1z 4 boz? + b3z + -
boZ + b122 + szS + b324 + -
b022 + b123 + b224 + b325 =+ .-

bo + (b1 + bo)z + (ba + by + bo)2” + -

This is just a special case of Proposition 1.7.3. &
1 “(n4r—1 n
Corollary 1.7.5. m = nz_% ( .1 ) z

Proof: By induction on 7.

BAsIs:  For r = 1, we have
1 = “/n+1-1\ ,
D SEIED Bl (R B
n=0 n=0
since the value of each of the coefficients (TOL) 1s 1.

IND HYP: Next, suppose for some r > 1 that

n=0
IND STEP: Then
(1—;;)7“ T 1=z (1—2)’“_1
1 = (n+r—2 . . |
- " ductive hypoth
l—z —~ ( r—9 )Z (inductive hypothesis)
(o) n . _ 2
- Z " Z (j j:i 9 ) (Theorem 1.7.4)
n=0 j=0
= Z — (j+r—2)=2 (factor inner summand)
(r—2)! 4
n=0 ]:0
e 2 (e =1L - (r—2)d
- HZ:% (r—2)! r—1 (Corollary 1.5.2)
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Table 1.7.1 gives closed-form generating functions for some standard sequences
and forms of sequences.

Table 1.7.1 Ordinary generating functions for some sequences.

sequence closed form
1
1, 1, 1, 1, ...
bl bl bl bl 1 —
1
1a _1a 1a _1a
1+ =2
1
1, 0, 1, 0 —
bl bl bl bl (1 _ 22)
1
1, 0, 0, 1, 0, O —a
bl bl bl bl bl bl (1 _ 23)
1
1’ a’ az’ a3’
1—az
0, a, 2a°, 3d’, -
1—az
1, 2, 3, 4 !
bl bl bl bl (1 _ Z)2
1
m+1 m+2 m+3
A
1 1 1 1 z
o 1 2 31 €
| —
0, 1, s 3 ln(l Z)
. . 1
Example 1.7.9: The rational function ———— generates the sequence

(1—-2)
(”Jlrl): 1, 2, 3, 4,

. . 1
Example 1.7.10: The rational function ————= generates the sequence

(1-2)
2
(”;r ): 1, 3, 6, 10,

1 —(n+r—1\ ,
Corollary 1.7.6. m = nZ_:Q( .1 )a z

Proof: Substitute az for z in Corollary 1.7.5. &
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xample 1.7.11: e rational function ———— generates the sequence
E le 1.7.11: Th ional f i f 2)2g h
— 2z
1
(”Jlr )2": 1, 4, 12, 32,
xample 1.7.12: e rational function —————— generates the sequence
E le 1.7.12: Th ional f i il 2)3g h
— 2z
2
(”;r )2”: 1, 6, 24, 80,

EXERCISES for Section 1.7

In each of the Ezercises 1.7.1 through 1.7.6, write the OGF for the number of
unordered selections of letters from the given word.

1.7.1° BANDANA 1.7.2 FOREIGNER
1.7.3 HORSERADISH 1.7.4 CONSTITUTION
1.7.5 MISSISSIPPI 1.7.6 WOOLLOOMOOLOO

In each of the Exercises 1.7.7 through 1.7.12, write the EGE for the number of
ordered selections of letters from the given word.

1.7.7% BANDANA 1.7.8 FOREIGNER
1.7.9 HORSERADISH 1.7.10 CONSTITUTION
1711 MISSISSIPPI 1.712 WOOLLOOMOOLOO

In Ezercises 1.7.13 through 1.7.20, use long division on the given rational function
to calculate the terms of degrees 0 through 4 of the infinite polynomial.

1.7.138 m 1.7.14 %
1.7.15 m 1.7.16 1—-32 —1—1322 — 23
1.7.17 TZ—M L7188 11222 ey
719 2= 1720 2ZIrdho

1—122 + 3522 1—422 4424
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Ezercises 1.7.21 through 1.7.28 are concerned with a Taylor series at z = 0 for the
given function.

a. Calculate the first three terms of the Taylor series.

b. Derive an expression for the n'® term.

1.7.21% L 1.7.22 !
1—=z 142

1723 — 1.7.24 !

o 1—2 o (1—2)2

1.7.25 1 1.7.26 1

ER e B FR TS

1
1727 —— 1.7.28 In(1
7 1—32+ 222 n(l+2)

1.7.29  Give a detailed proof of Proposition 1.7.1.
1.7.30 Give a detailed proof of Proposition 1.7.2.

1.8 SYNTHESIZING GENERATING FUNCTIONS

Synthesizing a generating function for a given sequence is a skill, like analyzing
them, that is fundamental to solving counting problems with them. The approach
i1s to recognize fundamental patterns in the sequence and to perceive how these
patterns were combined.

Example 1.8.1: In the sequence

. 5, 2, —6, 2, T, 2-- (18.1)

.3, 4, 5, 6 - (1.8.2)

and

R (1.8.3)

It seems that sequence (1.8.2) acquired negative signs on its even elements, that the
entries preceding the entry 4 were truncated, and that it was then interwoven with
sequence (1.8.3) by strict alternation.

Example 1.8.1 serves as a running example for this section. Our objective is to
construct its generating function.
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Substitution

Proposition 1.8.1 Substitution Rule. If G(z) is a generating function for the
sequence (g, ), then G(bz) is a generating function for the sequence {b"g,).

Proof: ign(bz)" = ib"gnz". &
n=0 n=0

Example 1.8.1, continued: By Example 1.7.9, the generating function for the
sequence (1.8.2): 1, 2, 3, 4, ... is

1
(1—2)?
Substitute (—1)z for z, according to Proposition 1.8.1, to obtain the OGF
1
(1+2)?

for the sequence

, -2, 3, —4, 5 —6 .- (1.8.4)

Shifting Right and Left

DEFINITION: Shifting the sequence {(a,) to the right by k places yields the

sequence
k zeroes

——
0, 0, ceey 0, ap, a1, a2, ...

The corresponding generating function is

oQ

zkA(z) = Z ajzj'l'k

7=0
DEFINITION: Nullifying the j® element of the sequence (a,) means replacing a;
by 0. The corresponding generating function is
A(z) — a?2!
DEFINITION: Shifting the sequence (a,) to the left by k places yields the se-

quence
@, Ok41, Rhg2, ---

The corresponding generating function is

k—1 . ¢S] .
z7k [A(z) - Z'_o ajz]] = Zj:k ajz]_k
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The terms ag, ay, ..., ax_1 are nullified, so that they do not end up as non-zero
coefficients of negative powers of z.

Example 1.8.1, continued: Shifting sequence (1.8.4) to the left by three places
yields the sequence

—4, 5 -6 7, =8 9, --- (1.8.5)
which corresponds to the OGF
1 —4 — 3z
B —142:-322) = ———
= (g 1+=-%) = Ty

Spacing Out
DEFINITION: Spacing a sequence (a,) by k units yields the sequence

k 0's k 0's k 0's
—_—— —_———
agp, 0,...,0, ay, 0,...,0, as, 0,...,0,...

The corresponding generating function is

A(Zk+1)

Example 1.8.1, continued: Spacing sequence (1.8.5) by 1 place yields the se-
quence

-4, 0, 5, 0, -6, 0, 7, 0, =8 0, 9,--- (1.8.6)
which corresponds to the OGF
-4 -3z _ —4 — 322
0+ |, (427

Isolating a Subsequence

DEFINITION: Isolating the subsequence n = k mod m of the sequence (ay)
yields the sequence in which all terms are nullified, except those whose index 1is
congruent to k& mod m.

For modulus m = 2, the corresponding generating function is

A(z) + A(-2) T
2

M ifk=1
2

Example 1.8.1, continued: Since the rational function % generates a sequence
of 1’s, the generating function for the sequence (1.8.3) is

2
1—=2
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Isolating the 1 mod 2 subsequence from sequence (1.8.3) yields the sequence
0, 2, 0, 2, - (1.8.7)

which corresponds to the OGF

1/ 2 2\ 2
2\1—2 142/  1-22

which might also have been obtained by spacing sequence (1.8.3) out by 1 unit and
shifting right 1 place. Sequence (1.8.1) is the sum of sequences (1.8.6) and (1.8.7).
Thus, its OGF is the sum of their OGF’s; 1.e.,

—4—3z2+ 2z _ 22548324 44234+ 22 42,4
(14 22)2 1—22 (1 — 24 (1 + 22)
Differentiation

DEFINITION: The derivative of the generating function

G(z) = Zgnz"
n=0

is the generating function

G'(x) = annz”_l = Z(n+1)gn+1z"
n=1 n=0

Example 1.8.2: Consider the generating function

1 (o]
= = 2” n
G(z) T, nz_% z
Then taking its derivative yields the equation

e = G = Dk

n=0

which is consistent with Corollary 1.7.6.
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EXERCISES for Section 1.8

In Ezercises 1.8.1 through 1.8.8, write a closed-form generating function for the
given sequence.

181% 1, -1, 1, -1, 1, -1, ... 182 1,0,1,0, 1,0, ...

183 1,1,1,1,1, 1, ... 184 1,1, -1, -1, 1, 1, =1, —1, ...
185 1,0, -1,0,1,0, —1,0,... 1.86 1,0,0, 1,0,0,1,0,0, ...
187 1,1,0,1,1,0,1,1,0,... 188 0,0,0 1,1,1,1,1,1,...

In Ezercises 1.8.9 through 1.8.18, write a closed-form generating function for the
given sequence.

1895 1,2, 3, 4,5,6, ... 1810 1,0,2 0,3,0, ...

1811 1, -2, 3, -4, 5, —6, ... 1812 1,2, -3, —4, 5,6, -7, -8, ...
1813 1,0,3, 0,50, 7,0, ... 1814 1,0, =3, 0,5, 0, -7, 0, ...
1815 1,2,0,4,5,0,7,80,... 1816 1,2,0,3,4,0 5, 6,0, ...
1817 1,1,2 1,3, 1,4, 1, ... 1818 1,3, 6, 10, 15, 21, ...

bl

In Frercises 1.8.19 and 1.8.20, use a difference table to determine a closed formula
for the n*® term of the given sequence and then write the corresponding generating
function.

1.8.19% 1, 3,8, 17, 32, 57, 100, ... 1.8.20 0, 1, 4, 10, 20, 35, 56, ...
1.8.21  The 4'" roots of unity are the complex numbers i, —1, —i, and 1. Given a

generating function A(z), show that the subsequence n = 0 mod 4 of the sequence
(an) can be isolated as

A(z) + A(iz) + A(—2) + A(—i2)
4

1.8.22 Let 1, w, w?, ..., w* ! be the set of k*® roots of unity. Given a generating
function A(z), show that the subsequence n = 0 mod k of the sequence (a,) can be
isolated as
A(z) + A(wz) + A(W?2) + - + AwF12)
k
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1.9 ASYMPTOTIC ESTIMATES

The growth rate of a function is customarily reckoned via comparison to bench-
marks. For instance, it might be said of the function nH,, that it grows faster than
the function n but slower than n?. The focus is on the long term. Computer algo-
rithmists compare various algorithms to achieve a specific objective in their pursuit
of an optimal algorithm, where optimality means using the smallest amount of
computational resources as the algorithm is applied to ever larger instances of the
problem at hand.

DEFINITION: Let f(n) be a function such that f(n) # 0 for sufficiently large n. The
sequence z, is asymptotic to f(n) if

Ln

BT

It is often reasonably straightforward to guess or to find a well-understood function
f(n) such that the ratio
Ty

f(n)

converges. Rigorous study of asymptotics 1s concerned not only with finding a
function f(n) to which a given sequence (z, ) is asymptotic, but also with calculating
the rate of convergence. Determining the rate of convergence tends to require a
more extensive background in graduate-level continuous mathematics than can be
assumed here or developed just-in-time. Thus, we focus presently on the function
to which the given sequence is asymptotic.

Example 1.9.1: How large is the Catalan number ¢, ? From the expansion

oo L <2n) _ 1 (e

n+1l\n n+1 n!
B 1 2n 2n-—1 (n+1)
T n4+1 n n-1 1

one sees that the Catalan number ¢, is a product of the value of ﬁ and the values
of n other factors, whose values form an increasing sequence from 2 to n + 1. One
surmises that

2n (n+1)"

. — 1n—1
n+1<c <7n—|—1 (n+1)

which is a very wide range of possibilities, since the lower and upper bounds are
far apart. Narrowing that gap is a primary need toward improved understanding
of the behavior of the Catalan sequence.
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Ratio Method

Ratio Method: Considerable information about the asymptotic behavior of a

sequence x, lies in the ratio
Tn

LTn—1

of successive terms. We calculate the limit of that ratio.

Example 1.9.1, continued: The ratio of successive entries of the Catalan se-

quence 1s
Cn 1 2n l 2n—2
o1 n+1\n n\n—1
1 2n)2 /1 (2n-— 2)E
n+1 n! n (n—1)!
1 (2n)2
n+1 (2n—2)2=L1
1 (2n)(2n — 1)

n+1 . n
Ch, 4n — 2
= 1.9.1
= Cp—1 n+1 ( )
. Cn .o4dn—2
= lim = lim
Nn—00 Cp_1 n—oco n 4+ 1
4 4
L i L. B
n—oo N+ 1 n—co n 4+ 1
= lim 2 =4 (1.9.2)

nN—00 Cp_1

Since the ratio cc—" is everywhere less than its asymptotic upper limit of 4, and

since ¢1 = 1 < 4, 1t is possible to narrow the estimating range of ¢, to

o 1 /2
<o = (n) < 4 (1.9.3)

n+1 n+1\n

Philosophy of Estimation: A formula in n in which the number of operations
of addition, subtraction, multiplication, division, and exponentiation needed for
evaluation is a constant is an easier formula to grasp than one for which that
number grows with n. The number of multiplications grows in a factorial or in a
falling power. Here, “grasping” includes the ability to estimate the value of the
formula for a concrete value of n.

Tightening Bounds on Estimates

Concrete Substitution: Concrete early values of a sequence can often be used to
improve asymptotic upper and lower bounds.
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Example 1.9.1, continued: Sharpening the lower bound of (1.9.3) for the Cata-
lan number ¢,, including eliminating the denominator of n + 1, can begin with an

observation regarding the ratio ccil after n = 5.

n—-2 > 3n+3 forn >5
4n — 2 >3n—|—3 _ 3
n+1l — n+1

Recalling (1.9.1), we have

Cn

> 1.94
Cn—1 k ( ! )
Using (1.9.4) and the fact that
Cs Cg Cp
Cp = Cq+— +—+ -+ -+
c4 Cy cp — 1
we infer that
cn > cq-3""% = 143771
14 1
= ¢, = 8—13” > 63” forn >4 (1.9.5)

The inequality (1.9.5) also holds for ¢g, ¢1, c2, and ¢z. Recalling the inequality
(1.9.3), it follows that

1
6~3" < ey < A" forn >0 (1.9.6)

We shall now show that the coefficient of % can be removed from the lower

bound of (1.9.6) for sufficiently large values of n. Since the ratio
Cn

Cn—1

is increasing monotonically to 4, it eventually exceeds %, say, for all n > P. Since
% > 1, there 18 a number ) such that

N 3F
(—) > — forall¢g > @Q — P
2 cp
which implies that
B (CP+1 cpio cQ ) (CQ+1 €Q+2 cn )
cp CP41 Q-1 cQ CQ+1 Cn—1
. Z Q-P Z n—Q
P2 2
> 3P.3Q—P.3”—Q
= ¢ > 3" (1.9.7)

Combining (1.9.6) and (1.9.7) yields the desired result
I <o, < A” forn > @ (1.9.8)



Section 1.9 Asymptotic Estimates 105

Remark: In fact, this lower bound is further improvable. Since the ratio

Cn

Cn—1

is increasing monotonically to 4, it eventually surpasses 4 — ¢ for any € > 0, say, for
all n > N(e). Tt follows, by an argument similar to that used in the derivation of

(1.9.6), that

CN(e n n
4N—((E))~(4—e) <ep < 4 for n > N(e)

The coefficient could be removed, once again, as in the derivation of (1.9.8), to yield
the asymptotic estimate

(4—0" < ¢, < 4"
which is adequate for present purposes.

The following proposition formulates the method used in Example 1.9.1 as a
general principle.

Proposition 1.9.1. Let x,, be a sequence such that

n_ K>

limy, oo
LTn—1

Then, for € > 0 and sufficiently large values of n,

(K=" <cn < (K+¢€)" (1.9.9)
If the ratio x:fl is bounded above by K, then (1.9.9) can be sharpened to
(K—e)" <ecn < oK™ (1.9.10)
If bounded below by K, then (1.9.9) can be sharpened to
K" <e¢p < (K+¢€)" (1.9.11)

Proof: Details from Example 1.9.1 are readily transformed into a proof. This is
left to the Exercises. &

Asymptotic Dominance

DEFINITION: If there is a positive number ¢ such that
f(n) < cg(n) foralln>N

then we may write

f(n) € O(g(n))
and say “f(n) is in big-oh of g(n)”. The numbers ¢ and N are called witnesses
to the relationship.

TERMINOLOGY NOTE: Although O(g(n)) is defined here as the class of functions
that are eventually dominated by a multiple of g(n), the usage “f is big-oh of ¢”
(omitting the preposition “in”) is quite common. The rationale is that membership
in the class may be regarded as an adjectival property.
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Example 1.9.2: One way to prove that Tn? € O(n®) is to choose the witnesses
N =7 and ¢=1. Then
m? < 1-n® forn>7

Another proof uses the witnesses N = 1 and ¢ = 7. Then

m? < 7-n% forn>1

In general, there tends to be a tradeoff in the size of the witnesses N and ¢. Choosing
a larger value of witness ¢ may enable one to choose a smaller value of witness n.

Example 1.9.3: To prove that n® € O(7n?), we observe that for any witness c,
and for any number n > 8c¢,

nd > (86)712 > Tc-n?

EXERCISES for Section 1.9

These exercises may be challenging for a reader with little prior experience at con-
structing proofs about limits.

1.9.1 Prove that every polynomial of degree less than d is in O(n?), for d € AR
1.9.2 Prove that every polynomial of degree d is in (’)(nd), for d e Zt.

1.9.3 Prove that if 0 < r < s, then n” € O(n?), but n® € O(n"), for r,;s € R.
1.9.4  Prove that lgn € O(n"), for r > 0.

1.9.5  Prove that n” & O(lgn), for r > 0.

1.9.6 Prove that if 0 < b < ¢, then ” € O(c™) but ¢” ¢ O(b"), for b,c € R.
1.9.7 Give a proof of Proposition 1.9.1.

GLOSSARY

asymptotic to a function f(n): the property of a sequence z, that

Tn
lim — =1
n—00 f(n)
big-oh of a function g(n):  the class of functions that are eventually dominated
by a scalar multiple of g(n).
binomial coefficient (Z) the coefficient of z* in the expansion of (1 + ).

Catalan number: any number in the sequence ¢, defined by the recursion

co = 1; ¢, = cocpt1 12+ -+ cpu_ico



Glossary 107

ceiling of a real number x:  the smallest integer that is not larger than z; the
result of “rounding up” to the next integer; denoted [z].

cells of a partition of a set S:  the subsets into which S is subdivided.

closed formula for a sequence z,:  an algebraic expression for the value of z,
(in the argument n).
combination coefficient (Z) the number of ways to choose a subset of size &
from a set of size n.
concave sequence on an integer interval [a : b]:  a sequence z, such that
xn_% (formn =a+1, ..., b-1)
convex sequence on an integer interval [a : b]:  a sequence z, such that
xngw (formn =a+1, ..., b-1)
convolution of two sequences a, and b,: the sequence whose nt” entry is

n

Z ajbn_j

j=0
difference function of a real function f(z):  the function Af given by the rule
Af@) = fo+1) = f()
difference sequence of a real sequence a,: the sequence Aa, given by the rule
Aay, = apy1 — an
difference table of a real sequence a,: the table whose rows are
an, Nayp, Nay,, ...
EGF: see generating function.
eventual dominance by a function g(n):  the property of a function f(n) that

there is a number N € Z¥ such that f(n) < g(n) for all n > N.

eventually has a property: the subsequence from some index N onward has
the property.

falling power #2:  the number z (z — 1) --- (z —n + 1).

Fibonacci number: any number in the sequence f,, defined by the recursion

Jo =0, fi=1 fo = fa-1 + fa-2
floor of a real number z:  the largest integer that is not greater than z; the

result of “rounding down” to the next integer; denoted |z].

Fundamental Theorem of Finite Calculus: a theorem relating differencing
and summation.
generating function of a sequence ay,:
__, exponential (abbr. EGF): a closed form for the power series
2
z z

ao+alﬁ+02§ + -

or sometimes the series 1tself.
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__, ordinary (abbr. OGF): a closed form for the power series
ap + a1z + asz® + -+
or sometimes the series itself.

growth rate of a sequence: a comparative measure of its eventual values.

1

harmonic number H,,: the value of the sum % + % + 4

Heawood number of the surface S;: the value of the expression

{7+¢12+748gJ

integer interval [k : m]:  the set of integers {k, k+ 1, ..., m}.
log-concave: property of a sequence that implies unimodality.

map on a surface:  a drawing of a graph on the surface, subdividing it into regions.

Method of Distinguished Element: a method used to derive combinatorial
formulas.
mode of a unimodal sequence:  the maximum value.

mode index of a unimodal sequence z,: the index at which the maximum value
occurs.

OGF: see generating function.

partial sum, n'", of a sequence a,: the sum
n

>4

7=0
partition of a set S:  a family of mutually disjoint subsets whose union is S.

Pascal’s recurrence: the recurrence
Tpo = 1, nor=0 fork>0;

Tnk = Tpn-1k-1 + Tn—1k for n > Oa
Pascal’s triangle:  a triangle formed by the non-zero values of the binomial
coefficients.
periodic sequence: a sequence whose values are an unending reiteration of a

finite initial segment.
range of a sequence: the set in which the sequence takes its values.
rational function: the quotient of two polynomials.

recursion: a formula for expressing the value of an entry of a sequence in terms
of the values of earlier entries.

rising power z":  the number z (z + 1) --- (z +n — 1).

solving a recurrence: finding a closed formula for the entries of the sequence
it specifies.

Stirling cycle number [}']:  the number of ways to partition a set of n objects

into k non-empty cycles.
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Stirling numbers of the first kind s, ;:  numbers used in converting a falling
power into a linear combination of ordinary powers; they are equal to the Stirling
cycle numbers.

Stirling numbers of the second kind S, ;:  numbers used in converting an
ordinary power into a linear combination of falling powers; they are equal to the
Stirling subset numbers.

Stirling subset number {7 }:  the number of ways to partition a set of n objects
into k non-empty subsets.

Tower of Hanoi: a puzzle invented by Edouard Lucas, which is solved recur-
sively.

type of a partition: a list of the sizes of its cells.

unimodal sequence: a sequence that is monotonically non-decreasing up to a
maximum and monotonically non-increasing thereafter.

witnesses:  two parameters that occur in establishing a big-oh relationship.
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Solving Recurrences

2.1 Types of Recurrences

2.2 Finding Generating Functions
2.3 Partial Fractions

2.4 Characteristic Roots

2.5 Simultaneous Recursions

2.6 Fibonacci Number Identities
2.7 Non-Constant Coefficients
2.8 Divide-and-Conquer Relations

As indicated by its title, this chapter is predominantly concerned with solving
recurrences. In §2.1, it identifies a basic type of recurrence, called a linear recur-
rence with constant coefficients, which is amenable to a fairly simple solution. The
next three sections develop two approaches to solving such a recurrence. The first
approach i1s completely general, and it applies to all kinds of recurrences, not just
this special, most tractable form: one derives a generating function for the sequence
specified by the recurrence, and then one analyzes that generating function so as
to have a closed form for the values in the sequence. Application of the second ap-
proach is restricted to linear recurrence relations with constant coefficients: having
memorized some standard patterns and their solutions, or possibly with the aid of
a table of standard patterns, one sees how a given linear recurrence fits a standard
pattern and adapts the solution. How to solve simultaneous recurrences is described
in §2.5. Special properties of the Fibonacci numbers are featured in §2.6. The fo-
cus of §2.7 and §2.8 1s on techniques for transforming a more complicated type of
recurrence into a linear recurrence with constant coefficients, thus preconditioning
it for solution by the well-established methods of the earlier sections.

111
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2.1 TYPES OF RECURRENCES

REVIEW FROM §1.2:
e A recurrence for a sequence prescribes a set of initial values
l‘o:bo l‘lzbl l‘kzbk
and a recursion formula
tn = ¢(p_1, Tp_2, ..., ¥g) forn>k

from which one may calculate the value of #,, for any n > &, from the values
of earlier entries.

One top-level demarcation in the taxonomy of recursions is the distinction between
linear and non-linear recursions. Another is the distinction between homogeneous
and non-homogeneous recursions. This section explains these two distinctions and
various other considerations that also affect the choice of a method of solution.

DEFINITION: A recursion formula of the form
Ty = Ap-1Tp-1 + Ap_2Tpn-2 + -+ + apZo + a(n)

in which each term is linear is said to be a linear recursion. Each coeflicient a;
may be either a constant coefficent, the same for all n, or a function of n, that
is, a variable coefficient.

o It is a recursion of degree d if the number of coefficients «; that are non-
zero is bounded, and if the smallest subscript among the non-zero coefficients
isn—d.

e The function a(n) is called the particularity function.

¢ It is a homogeneous recursion if the particularity function is 0.

Some Linear Recursions

It is fortunate that some of the most familiar recursions are linear, because
linear recursions are usually easier to solve than non-linear recursions. It tends also
to be easier to solve a recursion with constant coefficients than one with variable
coefficients.

Example 2.1.1: The Tower of Hanoi recursion (introduced in §1.2 and solved in
§2.2)
hy = 2hp_1 + 1 (2.1.1)

is a non-homogeneous, linear recursion of degree 1, with a constant coefficient.
Example 2.1.2: The Fibonacci recursion (introduced in §0.2 and §1.2 and solved
in §2.5)

o = fact + faoo (2.1.2)

i1s a homogenous linear recursion of degree 2, with constant coefficients.



Section 2.1  Types of Recurrences 113

Recurrences without Fixed Degree

A recurrence of fixed degree d for a sequence (x,) prescribes z,, as a combina-
tion of the recent past entries
Tn—1 Tpn-2 -+ Tn-d

In the most important kind of recurrence without fixed degree, the value of z,, is
a combination of entries whose indices are a fraction of n. This is called a divide-
and-conquer recurrence. Methods for solving such recurrences appear in §2.8. This
kind of recurrence arises frequently in computer science, in circumstances when
completing a task on input of size n can be reduced not just to completing it for
slightly smaller size input, but for input of much smaller size.

Example 2.1.3: A well-known recurrence from computer science that approxi-
mates the number of steps needed to sort a file by iterative merging does not have
a fixed degree. The merge-sort recurrence (explained and solved in §2.8)

my = 1;
m, = 2mpz) + n (2.1.3)

i1s a non-homogeneous linear recurrence without fixed degree, with a constant coef-
ficient. Its recursion formula expresses that the problem of sorting a list of length

n is reduced to merging two lists of size 7.

Variable Coefficients

The three recursions (2.1.1), (2.1.2), and (2.1.3) all have constant coefficients.
One of the most important linear recursions with variable coefficients arises in the
study of permutations.

REVIEW FROM §0.5:
e A permutation on a set S is a one-to-one, onto function from S to itself.

e Theorem 0.5.3. Every permutation can be represented as the composition of
disjoint cyclic permutations.

DEFINITION: A derangement is a permutation 7 with no fixed points. That is,
there is no object z such that 7(x) = «.

Example 2.1.4: Figure 2.1.1 illustrates a derangement.

lllll

Figure 21.1 The derangement (1 3) (2 5 4).
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DEFINITION: The derangement number D, is the number of derangements of
the integer interval [1 : n].

The derangements of the smallest integer intervals [1 : n] are given in Table 2.1.1.
We observe that the permutation 7 is a derangement if there is no l-cycle in the
disjoint cycle form of .

Table 2.1.1 Derangements of Small Intervals [1 : n].

n D,
1 0
2 (12) 1
3 (123) (132) 2
4 (12)(34) (13)(24) (14)(23) 9
(1234) (1243) (1324
(1342) (1423) (1432

Proposition 2.1.1. The derangement numbers D,, satisfy the following recursion
formula.

D, = (n=1)Dy_1 4+ (n—1)Dp_y (2.1.4)

Proof: Every derangement of [1 : n] such that n does not lie in a 2-cycle can be
formed by inserting the number n, immediately after one of the n — 1 numbers in
some cycle of some derangement of [1 : n — 1]. Every derangement of [1 : n] in
which n does lie in a 2-cycle can be formed from some derangement 7 of [1 : n — 2]
either by adding the 2-cycle (n — 1 n), or by replacing one of the n — 2 numbers j
in some cycle of 7 by the number n — 1 and then adding the 2-cycle (j n). &

Example 2.1.5: The derangement recurrence (considered in more detail in §5.4)

Do = 1, D1 = 0,
Dn = (n—l)Dn_l + (n—l)Dn_z

is a homogenous linear recurrence of degree 2, whose coefficients are variable. The
sequence 1t specifies is convex, since

Dn+1 + Dy _ (nDn +nDn—1) + Dpq

2 2
D

n
n

v

n
2
> D, forn>2

Even without solving the derangement recurrence, it is possible to prove inductively

that most permutations have a fixed point, that is, that the ratio % of derange-

ments to permutations is less than half. This is clearly true for n = 1 and n = 2.
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For n > 3, we have
Dn = (n — 1)Dn_1 + (n — 1)Dn_2

< (n_l)u_k(n_l)&

5 5 (ind hyp)
_ (n=1) (n—1)! (n—2)!
B I R
n!
T2
Some Non-linear Recurrences
All of the recursions (2.1.1), ..., (2.1.4) are linear. Various other important

recurrences are non-linear.

Example 2.1.6: The Catalan recurrence (introduced in §1.2 and solved in §4.4)

co = 1;
Cn = C0Cp—1 F C1Cn—2 + -+ + Ch—1C0

is a homogenous non-linear recurrence without finite degree, with constant coeffi-
clents.

Remark: The next three sections present two basic approaches to solving a linear
recurrence of fixed degree with constant coefficients. The remaining sections are
concerned with reducing the solution of other kinds of recurrences to these basic
approaches.

EXERCISES for Section 2.1

In each of the Erxercises 2.1.1 through 2.1.4, write the first 6 values of the given
recurrence, guess the closed formula, and then prove by induction that your guess
15 correct.

21.1% a, = 2a,_1 — 1; ag =

2.1.2 an = 4dap_1 —1; ag = 9.

2.1.3 an = ap_1 + 2n — 1; ay = 0.

2.14 an = ap_1 + 27, ag = 1.

In each of the Exercises 2.1.5 through 2.1.7, write a homogeneous linear recurrence

of degree 2 with constant coefficients that corresponds to the given closed formula.
Hint: substitute the given solution into a general linear recurrence of degree 2.

21.5% a, = 3» — 9",
216 a, = 3" — 2" + 1.
21.7  a, = n2" — 1.
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2.1.8  List the derangements of the integer interval [1 : 5].

2.1.9 Calculate the derangement numbers Ds and Dg using the derangement
recurrence given in Example 2.1.5.

2.1.10  Prove that more than a third of the permutations of n objects, for n > 4,
have a fixed point.

2.1.11  Write a recurrence for the number of binary strings without a pair of
adjacent 0’s.

2.1.12  Write a recurrence for the number of binary strings without three consec-
utive 0’s.

2.1.13  Write a recurrence for the number of ternary strings without a pair of
adjacent 0’s.

2.1.14  Write a recurrence for the number of ternary strings with an even number
of 1’s.

2.1.15% Write a recurrence for the number of ternary strings without a pair of
adjacent 0’s, of adjacent 1’s, or of adjacent 2’s.

2.1.16  Write a recurrence for the number of sequences (order matters!) of 1’s and
2’s whose sum is n.

2.1.17  Write a recurrence for the number of sequences (order matters!) of 1’s and
2’s whose sum is n, with evenly many 1’s.

2.1.18% Write a recurrence for the number of sequences (order matters!) of 1’s and
2’s whose sum is n, with evenly many 2’s.

2.2 FINDING GENERATING FUNCTIONS

This section is devoted to the fundamental method for solving a recurrence of
the form

go = bo, ..., gr = by; initial conditions

9n = v (9n-1,...,90) forn >k recursion

It uses three steps to determine a closed form for the corresponding generating
function

G(z) = > gnd" (2.2.1)

and then a fourth step to derive a closed formula for the coefficients g,,. We describe
the four steps of this fundamental method with reference to this running example
of a recurrence system.
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Example 2.2.1: This is a linear homogenous recursion of degree 2 with constant
coefficients.

go =1, g1 = 2

gn = Bgn_1—6gn_a forn>1
Step la. Multiply both sides of the recursion equation by 2”.

gnzn = 5gn—1zn _'6gn—22n

Step 1b. Sum both sides of the resulting equation over the same range of values,
with a lower bound as low as possible, and upward to .

(1b) Zgnz" = Z5gn_1z" — Zng_zz"
n==2 n==2 n==2

We start all the sums at the lower bound n = 2, because starting any lower would
take the subscript of g, below 0 on the left side, and this recurrence system does
not specify either g_o or g_1.

Step 2. Recalling equation (2.2.1), we observe that
(o] (o]
g =D gt — g1z — g0 = G(2) — g17 — go
n=2 n=0

Thus, we can replace each infinite sum in equation (1b) by an algebraic expression
involving the generating function G(z).

(2a) Zgnz" = 5z2gn_1zn_1 — GZZZgn_zz"_z
n==2 n=2 n=2
(2b) G(2) — g1z —go = 52(G(2) — g0) — 62°G(2)

In (2a), we factor the terms of each sum on the right, so that the power of z in the
summand equals the subscript. In (2b), we replace all three infinite sums.

Step 3. Solve for G(z).

(3a) G(z) (1 =52 +62°) = g12+ g0 — 5goz
= 2z+1-5z
1-3z
b = - "
(36) Gl = 5

In (3a) we collect the G(z) terms on the left and substitute initial values for the
low-subscripted entries of the sequence. In (3b), we isolate the generating function

G(z) on the left.
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Step 4. Solve for g,,.

1-32 1
(1a) S T T e Bl g
(4b) = i?”z" = gy o= 2"

Step (4a) converts the result of step (3b) into a more tractable form. In (4b) we
extract the coefficient g¢,,.

Check the Answer: A better way to confirm the answer than by retracing the
steps 1s to verify that the answer g, = 2" satisfies the recurrence.
go =2 =1, ¢ =2t = 2; initial conditions
In = dgn—1 — Bgn_2 recursion
=521 —6.2"77
— 5.277,—1 _ 3.277,—1
2.9771
= 9n

Step (4a) is usually not quite this simple, as illustrated by this variation on the
running example.

Example 2.2.1, continued: Suppose that the initial values in the preceding
problem were changed to

g0 = 0,91 = 2
Then steps 1 and 2 would be as before. However, here is how we would finish in
the modified problem.

Step 3. Solve for G(z).

(3a) G(2)(1 =52 462%) = g12 + go — 5zg0
=2240-0
2z
b N —
(36) C6) = 5 e

Step (3a) collects the G(z) terms on the left and substitutes initial values for the
low-subscripted entries of the sequence. Step (36) isolates the generating function

G(z) on the left.

Step 4. Solve for g,. Step (4a) anticipates a method called partial fraction decom-
position, which is described in the next section. For now, we can confirm that the
calculation in Step (4a) is correct, by proceeding from right to left on its top line.
The next section describes how to do such a calculation from left to right.

2: —2 2
4 = -
(1) S P TS M g e
= > (=227 4 ) 237"
n=0 n=0

(40) = ga = 2" 4 2.37
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Check the Answer: As before, we verify that the answer satisfies the recurrence.

This time the answer is g, = —2"T' + 2. 3",
go = -2 4+2.3° = —242 =0 initial conditions
g1 = 22 4+2.38 = 446 =
gn = Dgn—1 — Ogn_2 recursion

5(—2" 423771 — 6(=2""1 4 2.3
(=5)-2" +10-3""' +3.2" —4.3"7!
—2.2" + 63"

= 2"t 4 2.3"

Example 2.2.2: The method of generating functions also solves non-homogeneous
recurrences. We illustrate this with a revisit to the Hanoi recurrence.

ho = 0 hy, = 2h,_1 +1 forn>0

We proceed through the same four steps.

(la) hpz" = 2h,_12" + 127
(1b) Z hy,z" = Z Qh,_ 12" + Z 2"
n=1 n=1 n=1
(2a) Zhnz" = QZZhn_lz"_l + zZz"‘l
n=1 n=1 n=1
(2b) H(z) = ho = 2:H(2) + :
—z
z z
z
3b H(:z = ————
(35) C) = a9
We explain in §2.3 how to split a rational function.
1 1
4 H = —
(1) S T s
(4b) =D =y = h, = 2" — 1
n=0 n=0

This solution was suggested in §1.2 by examination of small cases and then confirmed
by mathematical induction.
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EXERCISES for Section 2.2

In each of the Exercises 2.2.1 through 2.2.14, write a generating function for the
given recurrence.

221% a, = 2a,_1; ag = 3.
2.2.2 an = 2ap_1 — 3; ag = 3.

2.2.3 an = 3ap_1 — 2ap_9; ag = 2, a; = 1.

224 an = 3ap_1 — 2ap_2+ 2; ap = 2, a1 = 1.
2.2.5 an = 3ap_1 — 2ap_2+ 2; ag = 2, a3 = —1.
2.2.6 an = 3ap_1 — 2ap_2 +n; ag = 2, a3 = —1.
227 an = bap_1 — 6ap_o+n; ag = 1, a3 = 3.

2.2.8 an = Bp_1 — B6an_o + 1% ag = 1, a1 = 4.
2.2.9% a, = Ta,_; + 8an_s + (=1)*; ag = 0, a; = 1.
2210 a, = 4dan_1 — 4dap_o + 2" ag = 3, a1 = 1.

2211 a, = ban_1 + 6ap_2+2n+1; ag = 2, a3 = —1.
2212 a, = 2anp-9 + an_3;, ag = 0, a1 = 1, ay = 2.
2213 a, = 4an_1 — ap_2—06a,_3;, ag = 0, a3 = 1, ay = 2.

2214 a, = apn_1 + 2ap_5 4+ 3a,_3; ag = 0, a3 = 1, ay = 2.

DEFINITION: For any graph (G, the puzzle we will call the Tower-of-G has a frame
that models GG and a peg at every vertex. The objective 1s, as in the Tower of Hanoi,
to move a stack of disks from a designated source peg s to a target peg t, subject to
the requirements that a disk can be transferred only to a peg at an adjacent vertex
with no smaller disks on it.

Ezercises 2.2.15 through 2.2.18 all concern a Tower-of-G puzzle.

2.2.15 Find a graph H such that the Tower-of- H puzzle is equivalent to the Tower
of Hanoi, and explain the equivalence.

2.2.16% Consider the Tower-of-K; 3 puzzle in which both the designated source
peg and target peg are at vertices of degree 1. Write and solve the recurrence for
the minimum number of moves.

2.2.17  Consider the Tower-of-K; 3 puzzle in which both the designated source
peg 1s at the vertex of degree 3 and the target peg is at a vertex of degree 1. Write
and solve the recurrence for the minimum number of moves.

2.2.18 Consider the Tower-of-K; 3 puzzle in which both the designated source
peg is at a vertex of degree 1 and the target peg is at a vertex of degree 3. Write
and solve the recurrence for the minimum number of moves.
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2.3 PARTIAL FRACTIONS

Suppose that a linear recurrence
Tp = Ap—1Tp-1+ Gp-2Tp—2+ -+ apxo + a(n)

has constant coefficients a; and that its particularity function a(n) is a polynomial
in n. Then the generating function constructed by Steps 1, 2, and 3 of the method
of §2.2 is a proper rational function.

- bo+biz+ -+ bzt
G(z) = Y g =
) nz_:og ) coF+erz4 - F et

Step 4 1s to complete the solution, by deriving a closed formula for g,. This section
develops the details of Step 4. Like the previous section, this section explains the
details of the method with the aid of a running example.

Example 2.3.1: The running example now is the rational function

1-5z
1—7z4+1622 — 1223

G(z) =
One may verify that it corresponds to the recurrence

go = 1, g1 = 2, g2 = =2
9n Tqn-1 — 16gn_2 + 12953 forn > 2

Step 4a-1. Factor the denominator into linear factors.
co+ ez 4 et = el =)t (1= Tp2)k

with 1 + -+ - 4+ &, = ¢. For simplicity, we take ¢ = 1. For our example, we have

1—-52
1—7z4+ 1622 — 1228
1—5z
(1—22)2(1 = 3z2)

G(z) =

By what is called the Fundamental Theorem of Algebra, a polynomial with complex
coefficients has a factorization into powers of linear polynomials.

Remark: There is no general method for calculating the roots of a polynomial
exactly for higher degree polynomials. Nonetheless, in practice, one commonly
encounters polynomials that can be factored by elementary methods.

Step 4a-2. Analyze the rational function into a sum of %k rational functions, each
of whose denominators is one of the factors (1 — 7;)%7, and whose numerators are
“unknown polynomials”, each of the respective form

bjo + bjiz 4 -+ b1z
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Thus

bl

1-5z bio+ b1z n ba 0
1—72+41622-1223 (1 —22)2 (1-132)

Step 4a-3. Recombine these summands, with a single denominator. For the present
example,

1—5z _ (b170—|—b1712)(1—32)—|—b270(1—22)2
1— 7241622 —-1223 (1 —22)%2(1 —3z)

Step 4a-4. Then collect terms according to the exponent of the factor z*. For the
present example,

(b1,0+bao) + (=3b1 o+ b1 1 — 4ba o)z + (—3by 1 + 4bs )22
1—72z+162%2 — 1228

Step 4a-5. Next obtain a system of { linear equations in ¢t unknowns b; ; by equating
each resulting coefficient of z* in the numerator to the corresponding coefficient of
z* in the numerator of the original linear function, and solve that system.

bi,0 + bao = 1 bio = 7
—3b170+b171—4b270 = -5 = bl,l = -8
—3b114+4bso = O bpg = —6

)

Step 4a-6. Now substitute these solutions into the right side of the equation of

Step 4a-2.
1—-5z 7T— 8z —6

1—7z4 1622 — 1223 (1—2z)2+1—3z

Step 4a-7. Transform each term on the right into the product of its numerator
with the power series corresponding, via Corollary 1.7.4, to its denominator. Then
simplify each power series.

oQ

(T—82)3 (”J{ 1) 9 m 4 (—G)i (g) 3nn

n=0 n=0

= —8z§:n—|—12"" 623""
n=0 n=0

Step 4a-8. Finish by combining into a single power series, and then extracting a
closed formula for g,,.

= > [Bn+7)2"-6-3"] = g, = Bn+7)-2" —6-3"

n=0
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EXERCISES for Section 2.3

Each of the Ezxercises 2.3.1 through 2.3.14 corresponds to an exercise in §2.2, which
prescribed the determination of a generating function. Analyze the corresponding
generating function into partial fractions and solve the recurrence.

231% q, = 2a,_1; ag = 3.

2.3.2 an = 2ap_1 — 3; ag = 3.

2.3.3 an = 3ap_1 — 2ap_9; ag = 2, a1 = 1.

2.3.4 an = 3ap_1 — 2ap_2 + 2; ag = 2, a3 = 1.
2.3.5 an = 3ap_1 — 2ap_92 + 2; ag = 2, a3 = —1.
2.3.6 an = 3ap_1 — 2ap_2+n; ag = 2, a3 = —1.
2.3.7 an = bap_1 — 6an_o +mn; ag = 1, a3 = 3.
2.3.8 dn = Bp_1 — B6an_o + n% ays = 1, a1 = 4.
2.3.9% a, = Tan_1 + 8an_2 + (=1)"; ay = 0, a; = 1.
2310 a, = 4dan_1 — dap_o + 2" ag = 3, a1 = 1.

2311 a, = bBap_1 +6ap_2+2n+1; ag = 2, a3 = —1.
2312 a, = 2ap_9 + an_3;, ag = 0, a1 = 1, as = 2.
2313 a, = 4an_1 — ap_s — b6ay_3; ag = 0, a3 = 1, ag = 2.

2314 a, = apn_1 + 2ap_5 + 3a,_3; ag = 0, a1 = 1, ag = 2.

2.4 CHARACTERISTIC ROOTS

To solve a homogenous linear recurrence of fixed degree d with constant coeffi-
cients, in addition to using generating functions as described in §2.2 and §2.3, there
is an alternative approach called the method of characteristic roots. It begins
with the assumption that the recurrence has solutions of the form

We describe this alternative method with reference to the same recurrence that
we used for the running example, Example 2.2.1, that illustrated the method of
solution using generating functions.

Suppose that a sequence (g,) is representable by a homogeneous linear re-
currence with constant coefficients. Then its generating function G(z) must be a
rational function, as one might prove by analyzing the method in §2.2. Furthermore,
by splitting G/(z) into partial fractions with denominators

(1 —m2)%
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one can prove that the closed form for the entry ¢, must be a linear combination
of powers of the numbers 7;, which are the roots of the denominator of G(%).

Example 2.4.1: Applying the method of characteristic roots to this familiar re-
currence provides a running example for this section.

Yo = 1a g1 = 2a
gn = Bgn—1 — 6gn_2 forn>1

Characteristic Equation

Step 1. Form the characteristic equation, as follows.

(la) Substitute 7™ for g, in the recurrence.
™ = 5Tl — g
(1b) Factor out 774,
™ = 51— 6
(Ic) Move the non-zero terms to the left of the equals sign
™ —5r+6 =0

thereby forming the characteristic polynomial.

Step 2. Factor the characteristic polynomial.
(r—=2)(r=3) =0
The roots of the characteristic polynomial
7 =2 and ™ = 3

are called the characteristic roots. We observe their correspondence to the linear
factors of the denominator of the generating function derived in Step 4 of Example
2.2.1. We observe that

gn = 1 = 2" and g, = 7 = 3"
are solutions to the given recurrence.

Step 3. As a general solution to the given homogeneous recurrence, form a linear
combination of the characteristic roots, using unknown coefficients. If none of the
roots is repeated, the result of this step is as follows.

gn = 512" 4 093"

We shall eventually return to this step to elaborate on the case in which one or
more roots is repeated.
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Step 4a. Use the initial conditions to write a system of linear equations for the
unknown coefficients.

g0 = 1 b12° + 523° = by + by
g9 = 2 = b121 + b231 = 2b1 + 3b2

Step 4b. Solve for the unknown coefficients.

b1:1 bzIO

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.
In = 2"

We observe that this is the same solution previously obtained for this recurrence in
Example 2.2.1.

Alternative Initial Values

Suppose that we now consider, as in the continuation of Example 2.2.1, the
alternative initial values

gJo = Oa g1 = 2
Then the finish would be as follows.

Step 4a. Use the initial conditions to write a system of linear equation for the
unknown coefficients.

5120 4+ 823° = by + by
bi2b + 131 = 2By + 3bs

go = 0

g1 = 2
Step 4b. Solve for the unknown coefficients.

by = =2 by = 2

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.
In = —ontl +2.3"

This is the same solution obtained previously, in Example 2.2.1, with these alter-
native initial values.

Repeated Roots

We now apply the method of characteristic roots to the recurrence of Example

2.3.1.
go = 1a g1 = 2a g2 = _2a
gn = Tgn—1 — 16gp_2 + 12¢,_5 forn > 2
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Step 1. The characteristic equation 1s
™ -7 4 167 — 12 = 0
Step 2. Factor the characteristic polynomial.
(7'—2)2(7'—3) =0
Step 3. If a root 7; has multiplicity ¢;, then use
bjor/" + bjint + 4 bjeia naj_lrj"

in forming the general solution with unknown coefficients. In the present example,
the general solution is

gn = b102" + by 102" + 023"

Step 4a. Use the initial conditions to write a system of linear equation for the
unknown coefficients.

go = 1 = b17020 =+ b1710 '20 + b230 — bl,O + bZ
g1 = 2 = b1 2" 4+ by 112" 4 523" = 2by o+ 2b1 1 + 3by
g2 = =2 = b1 027 + 011227 4 0337 = 4by o + 8byy + 9by

Step 4b. Solve for the unknown coefficients.
bio =7 big =3 by = —6

Step 4c. Substitute the solutions from Step 4b into the general solution of Step 3.
gn = 7-2" 4+ 3n-2" — 63"

This is the same solution obtained in Example 2.3.1.

Remark: The proof that this method works is a matter of checking that it always
yields the same solution as the method of generating functions.

Non-homogeneous Equations

To extend the method of characteristic roots to a non-homogeneous linear
recurrence of degree d with constant coefficients

go = bo, ..., ga-1 = ba-1;
n = Qun_1gp-1 + -+ + @Gn_qGn_dq + a(n)

we first isolate the associated homogeneous recurrence
.gn = Gp-1 ﬁn—l + -+ an—dﬁn—d

obtained by dropping the particularity function.
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We illustrate the rest of the extended method with a revisit to the Hanoi recurrence.

ho IO,
hy, = 2h,_1 +1 forn>0

Use Steps 1, 2, and 3 to find a general solution to the homogeneous recurrence

hy, —2h,_1 = 0.

Steps 1, 2. T—2 =0
Step 3. h, = b-27

The result so far is called the homogeneous part of the general solution.

Step 3N. Find a trial function h, that satisfies the original recurrence. Such a
trial function is called the particular solution or the particular part. It usually
resembles the particularity function. For instance, if the particularity function is a
polynomial in n, then the trial function can be a polynomial of the same degree,
with unknown coefficient. Since the particularity function for the Hanoi recurrence
is a constant, the trial function can be a constant.

hy = ¢

Substitution into the original recurrence leads to a system of linear equations in the
unknown coefficients.

hy = 2h,_1 + 1 (recurrence)
c = 2c+1 (after substitution)
c = —1 (particular solution)

h, = h, + h, = b-2" — 1 (general solution)

Step 4a. Use the initial conditions to write a system of linear equations for the
unknown coefficients.

he = 0 = 5-29—-1 = b—1

Step 4b. Solve for the unknown coefficients.

b =1

Step 4c. Substitute the solutions for b, and bs from Step 4b into the general
solution of Step 3.
h, = 2" — 1

This is the same solution obtained in Example 2.2.2 by the method of generating
functions.
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Example 2.4.2: We modify Example 2.4.1 by giving the recurrence a polynomial
particularity function

go =1 g1 = 2
gn = Bgn—1 — 6gp—2 +4n — 3 forn>1

We have previously derived for the homogeneous recurrence the general solution
gn = 012" + 5,37
Step 3N. As a particular solution we use the form
gn = an + co
and substitute it into the particularized recurrence.

An—3 = ¢n — dgn—1 + 6gn_2 (recurrence)
(can+4co) — Blea(n— 1)+ ¢o) + 6(ca(n—2) + ¢o)
n(ep — bey + 6¢1) + (co — bey + beg — 12¢1 + 6eg)

2ncy + 2¢q — Ty (after substituting)

This leads to the linear equations and solutions

4 = 261 11
c1 = 2 Ch = —
-3 260 - 761 2

which are combined with the general solution to the homogeneous part.
. . n n 11
Gn = Gn + gn = 012" 4+ 523" + 2n + o

Step 4a. Use the initial conditions to write a system of linear equations for the
unknowns b; and bs.

11
B20 + 5,30 4 =

go = 1 = 7
1 1 11
g1 = 2 = 0127 + b3 +2~1+7

Step 4b. Solve for the unknowns b; and b,.

—g = by + by by = -8
7
11 -
—7 = 2b; + 3b, by = 2

Step 4c. Substitute the solutions for b, and bs from Step 4b into the general
solution from Step 3N.
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7 11
n = —8:2" + —.3" 4+ 2 —
9 + 7 + 2n 4+ 7
Example 2.4.3: We now modify Example 2.4.1 by giving the recurrence an ex-

ponential particularity function.

go = 1, g1 = 2
gn = Dgn—1 — 6gn_2 + (—=1)" forn>1

We have previously derived for the homogeneous recurrence, as in Example 2.4.2,
the general solution
gn = 012" + 5,37

Step 3N. As a particular solution we use the form

and substitute it into the particularized recurrence.

(=D = gn — 5gn-1 + 6gn_2 (recurrence)
= ¢c(=1)" 4+ be(=1)" + 6c(=1)"
= 12¢(-1)" (after substituting)
1 .
©C= 1 (solution)

Combine this solution with the general solution to the homogeneous part.
~ . n n 1 n
gn = Gn + gn = 0127 + 523" + E(_l)

Step 4a. Use the initial conditions to write a system of linear equations for the
unknowns b; and bs.

1
B20 + 5,30 + —

=1 =

90 B

1

= 2 = b2 + b3t — —

g1 127 + 02 19

Step 4b. Solve for the unknowns b; and b,.

11 8
o= by + b2 by = D]
25 3
7 = 2b1 + 309 by = 2

Step 4c. Substitute the solutions for b, and bs from Step 4b into the general
solution from Step 3N.

8 3 1
n:_2n 2 an —(=1)"
g Rttt
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Complex Roots

A recurrence in which the initial values are real and the recursion has real
coefficients has a characteristic polynomial with real coefficients. The roots of such
a polynomial may be complex.

Example 2.4.4: The recurrence

g0 = 1a g1 = 2a
Gn = 20n-1 — 2¢n_» forn>1

has the characteristic equation
2 _
T —=2r4+2 =0

with roots
n = 14+72 and ™» = 1—1

Thus, the general solution is
The initial conditions yield the complex simultaneous equations

go = 1 = by(14+4)° 4+ bo(1 —0)° = by + by
g1 = 2 = bi(144)" 4 bo(1 — i)t

with solution

1+ 1 1—1
by = by =
' 2 ? 2
Hence, the general solution is
1 1
n = — 1 an+l 1—3 n+1
9 5; (1 +1) 5;(1—1)

EXERCISES for Section 2.4

In each of the Ezxercises 2.4.1 through 2.4.1}, solve the recurrence by the method of
characteristic roots.

241% q, = 2a,_1; ag = 3.

2.4.2 an = 2ap_1 — 3; ag = 3.

24.3 an = 3ap_1 — 2ap_9; ag = 2, a; = 1.

24.4 an = 3ap_1 — 2ap_2+ 2; ap = 2, a1 = 1.
2.4.5 an = 3ap_1 — 2ap_2+ 2; ag = 2, a3 = —1.
2.4.6 an = 3ap_1 — 2ap_2 +n; ag = 2, a3 = —1.
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247 an = bap_1 — 6ap_o+n; ag = 1, a3 = 3.
2.4.8 dn = Bp_1 — B6an_o + 1% ag = 1, a1 = 4.

2.4.9% a, = Ta,_; + 8an_s + (=) ag = 0, a; = 1.
2410 a, = 4dan_1 — 4dap_o + 2" ag = 3, a; = 1.

2411 a, = ban_1 + 6ap_2+2n+1; ag = 2, a3 = —1.
2412 a, = 2ap-9 + an_3;, ag = 0, a1 = 1, ay = 2.
2413 a, = 4an_1 — ap_2—06a,_3;, ag = 0, a3 = 1, ay = 2.

2414 a, = ap_1 + 2a5_2 + 3an_3; ag = 0, a1 = 1, as = 2.
In each of the Exercises 2.4.15 through 2.4.18, solve the recurrence by the method
of characteristic roots. The roots are a complex conjugate pair.
24.15% a, = 2a,_, — 3ap_2; ag = 1, a3 = 2.
2416 a, = 2an-1 — 2ap_9; ag = 1, a; = 3
2417 an, = 3an-1 — 3ap_2; ag = 1, a; = 3.
2

2418 a, = 2ap-1 — 4dap_9; ag = 1, a1 =

2.5 SIMULTANEOUS RECURSIONS

As remarked at the end of §2.1, from this point on in the chapter, we explore
how to reduce other kinds of recurrences to the type for which we have good meth-
ods, that is, to linear recurrences of fixed degree with constant coefficients. Here
we consider simultaneous recurrences that arise in a problem concerning growth of
a rabbit population. In solving simultaneous algebraic equations, one uses a substi-
tution from one equation in the system to reduce the number of variables in other
equations. Similarly, with simultaneous recurrences, one uses a substitution from
one recursion to reduce the number of different sequences occurring in other recur-
sions. The objective is to reduce the solution of the initial system to the solution of
one or more independent linear recurrences. Solving the particular system described
here is reduced to solving the classical Fibonacci recurrence, which is unsurprising,
because the simultaneous system presented here pertains to the rabbit population
model invented by Fibonacci, depicted in FigHi® 2.5.1. This section solves the
Fibonacci recurrence and describes how readily 1t pertains to other mathematical
constructions and problems. Discussion of the Fibonacci sequence continues in §2.6.
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Jee

1 *

3

B

Figure 2.5.1 Fibonacci rabbit population growth.

Fibonacci Rabbits

In 1202, Fibonacci imagined a kind of rabbit that takes one month from birth
to mature, with a gestation period of one month. Every mature female gives birth
each month to a litter of two, with one male and one female. The population growth
is described by a pair of simultaneous recurrences. Let b,, represent the number of
pairs of newborn rabbits, and let a,, be the number of pairs of adult (mature)
rabbits. Suppose that there are no rabbits at n = 0 months, and that a newborn
pair initiates the system after 1 month.

We want to calculate the total number f,, = a,, + b, pairs of rabbits. This situation
is modeled by a simultaneous recursion with initial conditions

CloIO, CllIO, bQIO, blzl,
and the relational equations

n = Gp-1 + by
bn = Gp-1

In an + by,
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A first step in solving such a system is to use substitutions to reduce it to a recur-
rence with a single unknown. We see that

n = Gpo1 + bpo1 = fn—l (251)
bn = Qp_-1 = fn—Z (252)
fo = an + by = fac1 + fao2 (2.5.3)

and that fo =ap+bg=0and fi =a; +b; =0+ 1= 1.

The resulting single-variable recurrence

fO - 0) fl =1
I fac1 + fa2

is recognizable as the Fibonacci recurrence.

Ubiquitousness of the Fibonacci Sequence

Although Fibonacci’s rabbit model is Fibonacci’s invention, the sequence it
yields is evidently nature’s invention. For instance, what follows immediately is
an explanation of an occurrence of the Fibonacci sequence in the construction of a
nautilus shell.

DEFINITION: A Fibonacci rectangle is any rectangle, subdivided into squares
whose sides are of lengths that are Fibonacci numbers, in the following sequence:

e The Fibonacci rectangle r1 i1s a 1 x 1 square.

e For each n > 2, the Fibonacci rectangle 7, is constructed by placing a square
along the longer side of the rectangle r,_1, as in Figure 2.5.2.

2 2 2 2
1] ] [ 1[1 1[1

Figure 2.5.2 Fibonacci rectangles.

DEFINITION: A spiraled Fibonacci rectangle is a Fibonacci rectangle in which
each square of size 5 x b and larger is placed so that it touches three previous
squares, rather than two. Figure 2.5.3 illustrates a spiraled Fibonacci rectangle.



134 Chapter 2 Solving Recurrences

/

Figure 2.5.3 Fibonacci spiral.

We observe that the inscribed spiral in Figure 2.5.3 has the shape of a nautilus
shell. It 1s called a Fibonacci spiral.

Solving the Fibonacci Recurrence

We now use the method of generating functions to solve the Fibonacci recur-
rence.

Step 1. fnzn = fn—lzn + fn—22n~
anzn = an—lzn + an—ZZn
n=2 n=2 n=2
Step 2. Use F(z) as the generating function for f,.
anzn = Zan—lzn_l + 2? an—ZZn_z
n=2 n=2 n=2
F(z)—= fiz—fo = 2(F(2) = fo) + 2°F(2)

Step 3. Solve for F(z).

F(Y1—2z—2% = fiz+fo— for = 124+0 -0z = 2
F(2) -

1—2z— 22

Step 4. To solve for f,,, we use the quadratic equation

s _ 1+6 1-V5
1—z—z_(1— 7 z)~(1— 7 z)
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whose roots involve the golden mean and its conjugate

14+5 d 1-+5
9

respectively. We then use partial fractions

P - ] 1 1
S Vv \l—9z 1-4%z

from which we conclude

fn = %M”—&”) (2.5.4)

which is called the Binet formula for the Fibonacci numbers, after Jacquet Binet,
who rediscovered it in 1843, after Euler had published it in 1765. Closed forms for
a, and b, are readily derivable from (2.5.1) and (2.5.2), respectively.

V5
Proof: Since 4 < 1, it follows that 4" is asymptotic to 0. Accordingly, using
Eq. (2.5.1) above,

Proposition 2.5.1. The Fibonacci number f, is asymptotic to

lim Jn — lmwzhm1+7—:1 &

Some Tiling Problems

One of the many other contexts, besides biology, in which Fibonacci numbers
arise is tiling problems. Using tiling as a model for Fibonacci numbers leads to
some possibly surprising results. We visualize paving a 1 x n chessboard with tiles
of various lengths. A 1 x d tile is called a d-tile.

Example 2.5.1: Let t,, be the number of ways to cover a 1 x n chessboard with
1-tiles and 2-tiles. We have ¢y = 1, which represents covering a degenerate board
with the empty arrangement. Figure 2.5.4 shows the possibilities for n = 0,...,4

Iy
f

HD_

]
NI
LI el T Jr |

Figure 2.5.4 Tiling a 1 x n chessboard.

=1
1
2
3
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£ S St
1l
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The number of 1 x n tilings in which the rightmost tile is a 1-tile is ¢,,_;. The
number of 1 x n tilings in which the rightmost tile is a 2-tile is ¢,,_5. The solution
to the resulting recurrence

to = 1, tl = 1,

tpy = th1 +1ln_o

is clearly ¢, = fny1, the n + 15" Fibonacci number.

Example 2.5.2: Observe that any tiling in which all the tiles are of odd length
can be converted to a tiling with 1-tiles and 2-tiles, whose initial tile is a 1-tile, by
breaking a tile of length 2n 4+ 1 into a 1-tile, followed by n 2-tiles. This breakage
operation can be inverted, since each maximal string of 2-tiles and the 1-tile that
precedes it can be assembled into an odd-length tile. It follows that there 1s a one-
to-one, onto correspondence between the two kinds of tiling. Since the number of
tilings of a 1 x n chessboard with 1-tiles and 2-tiles, and with an initial 1-tile, is the
Fibonacci number ¢,_1 = f,_2, this must also be the number of tilings with tiles

of odd length.

EXERCISES for Section 2.5

2.5.1 Show that a pair of simultaneous recursions of the form

Ln = ALp—j + byn—k

Yn = CTp—p + dyn—s

can be split into two separate linear recursions, one for the sequence (x,), and one
for the sequence {(yy).

2.5.2%  Solve these simultaneous recurrences.

xOIOa yOIla

Tn = Tp-_1 + Yn—1
Yo = 4xp_1 + Yn-1
2.5.3 Solve these simultaneous recurrences.

xOIOa yOIla

Tn = Tp-_1 + Yn—1
Yn = 9Tp_1 + Yn—1
254 Solve these simultaneous recurrences.

xOIOa $1:1a yo:la
Tp = Tpn-1 + Yn-1

Yn = 2Tp_2 + Yn—1
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2.5.5 Solve the following recurrence.
xg = 0, x1 = 1;
T, = 2xp_2 + Tp_3
2.5.6 Calculate the first five values of the following recurrence, use them to guess

the solution, and then use mathematical induction to prove the correctness of your
guess.

xg = 1, &1 = 2

zply + 1

Ln

DEFINITION: The Lucas sequence (L,) is defined by the recursion

Lo = 2, L1 = 1,
Ln Ln—l + Ln—Z

Ezercises 2.5.7 through 2.5.10 are concerned with the Lucas sequence, which has the
same recursion formula as the Fibonacci sequence, but different initial values.

2.5.7% Calculate the Lucas numbers Ly, L1, ..., Lo.
2.5.8 Find a generating function for the Lucas sequence and a closed formula
for L,,.

2.5.95  Consider paving a circular 1 x n track with a seam with curved I-tiles and
2-tiles, so that two tiles meet at the seam. Let r, be the number of ways to do this.
Then ry = 1, and Figure 2.5.5 illustrates that r3 = 3. Write a recurrence for the
sequence 1, and solve it.

three 1-tiles one 1-tile and one 2-tile

Figure 2.5.5 Paving a seamed 1 x 3 circular track.
The seam 1s the dark vertical line in the track.

2.5.10 Now consider paving such a circular 1 x n track with curved 1-tiles and
2-tiles, so that the midline of a 2-tile covers the seam, for n > 1. Let s, be the
number of ways to do this. We take s = 1, and we observe that s; = 0. Figure
2.5.6 below illustrates that s4 = 2. Write a recurrence for the sequence s, and solve
it.
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two 1-tiles and one 2-tile two 2-tiles

Figure 2.5.6 Covering the seam of a 1 x 4 circular track.
2.5.11 Show that L, = r, + s,.

Ezercises 2.5.12 through 2.5.14 are concerned with the ancestry tree of a single male
bee, which is called a drone. Let d,, be the number of drones and q,, the number of
queens in n previous generations of bees from which that drone is descended. These
numbers are given by the recurrence

dO = 1a qdo = Oa
d, = In—1;
@ = dp_1 + qn-1

which corresponds to the fact that whereas a queen has two parents — a drone and
a queen — a drone has only one parent, a queen.

2.5.12  Draw the ancestry tree for a drone back four generations.
2.5.13 Draw the ancestry tree of a queen back four generations.

2.5.14% Use substitution to split the given simultaneous recurrence for bee ancestry
into two independent recurrences, one for d,, and one for ¢,, and solve them.

2.6 FIBONACCI NUMBER IDENTITIES

In examining the first few entries of the Fibonacci sequence

123 4 5 6 7 8 9 10 11 12
11 2 3 5 8 13 21 34 55 89 144

n_|

fo |

0
0
we observe that for each instance of a number n and a multiple kn, the Fibonacci
number f,,; 1s a multiple of f,,. For instance,

f5 =35 and f10 = bh = 11f5

Some other patterns may be immediately apparent, and some are subtle. This
section 1s devoted to the observation and verification of such patterns.
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Forward-Shift and Subscript Multipliers

As a preliminary to trying to prove that the Fibonacci number f,,, 1s a multiple
of f, we consider a relationship between fii, and f,. Proceeding from k = 2,

otz = fot1 + Ja
fo4s = fatz + far1 =
Jota = fots + far2 =
= faota + fnys
fats + fotga

fag1 + o) + fot1 = 2fnq1 + fa

2fn41 + o) + (fag1 + fo) = 3fas1 + 2/n
3fat1r + 2fn + 2fns1 + fn) = Bfas1 + 3fa
5fat1 + 3fn) + Bfats + 2fn) = 8fat1 + 5/

fn+5

o~ —

fn+6

we observe that the coefficients of f, 41 and f,, are themselves Fibonacci numbers.
The observable pattern is confirmed by the following theorem.

Theorem 2.6.1 [Forward-Shift Identity]. The Fibonacci numbers satisfy the
equation

fotk = Jofos1+ foifn forallk > 1

Proof: By induction on k.
BAsIS: If k=1, then f1 =1 and fy = 0, and, thus,

fkfn+1 + fk—lfn = 1'fn+1 + Ofn = fn+1

IND HYP: Assume for all j in the interval 0 < j < k that
Jovi = Jifar1 + fi-1fn
IND STEP: Then

otk = Jfatk-1 + fagr—2 (Fibonacci recursion)
= (femifnt1 + focofn) + (fe—ofagr + fucafn) (ind hyp)
= (foc1+ foca)forr + (fo—2+ fo—3)fn (regrouping)
Jefagr + Jo1fn (Fibonacci recursion) O

We now confirm the initial observation regarding multiples.

Corollary 2.6.2. For all k > 0, the Fibonacci number fi, is a multiple of the
Fibonacci number f,.

Proof: By induction on the multiplier k.
BASIS: This is trivial for £k = 0 and &£ = 1. That is,

fOn =0 = Ofn
fln = fn = lfn
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IND HYP: Assume that the Fibonacci f;, is a multiple of the Fibonacci number f,,
for all j such that 0 < j < k.

IND STEP: Then

fkn = fn+(k—1)n
= Je—tyn Jot1 + fe—tyn-1 /an (by Theorem 2.6.1)
By the inductive hypothesis, there is a number M such that f_1), = M f,. Thus,

Jen = anfn+1+f(k—1)n—1fn
= (Mfat1+ fe—1yn—1) fa O

Cassini’s Identity

In returning to the early entries of the Fibonacci sequence

123 4 5 6 7 8 9 10 11 12
11 2 3 5 8 13 21 34 55 89 144

n_|

fo |

0
0

we also observe that the square of each Fibonacci number differs by 1 from the
product of the Fibonacci number that follows it and the Fibonacci number that
precedes it. For instance,

fsfs =52 =33+1= fufa+1
fefa = 83 =5-5-1= f5f5—1

Theorem 2.6.3 [Cassini’s Identity]. In the Fibonacci sequence {f,),
fosrfoor = f7+ (=) forn>1

Proof: By induction on n.

BAsIS: Confirmation that the identity holds for n = 1 is as follows.

fofo = 1:0 =0
A+ (=Dt =11-1=0

IND HYP: Assume that
fevifoor = FE+(=1)F forl<k<n

IND STEP: Then
Jnt1fo—1 = (o + fami) fama (Fibonacci recurrence)

= fufaor + £2

= fafoc1i+ fafaca — (=1)""'  (ind hyp)

Jo(foc1 + faz2) + (=1)"

L2+ (=" (Fibonacci recurrence) O
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Fibonacci Number System

It 1s clear that every non-negative integer is the sum of some Fibonacci numbers,
since 1 is a Fibonacci number. The following example adds as requirements non-
repetition and non-consecutiveness.

Example 2.6.1: FEach of the smallest integers that is not a Fibonacci number is
the sum of two or more non-consecutive Fibonacci numbers.

4 =341 10 = 842
6 = 541 11 = 843
7T =5+2 12 = 84+3+1
9 =841 14 = 1341

Moreover, this property holds for some larger examples.

100 = 894843 200 = 144455+ 1

Theorem 2.6.4. Every non-negative integer n can be represented as the sum of
distinct non-consecutive Fibonacci numbers.

Proof: By induction on n.

BASIS: The number n = 0 is the sum of the empty set.

IND HYP: Assume for some n > 0 that every number less than n is representable
as the sum of distinct non-consecutive Fibonacci numbers.

IND STEP: Let f,, be the largest Fibonacci number less than or equal to n. Since
fm+1 > n, it follows from the Fibonacci recursion that

fm—l > n_fm

Thus, when the induction hypothesis is applied to n — f,;;, the summands are non-
consecutive Fibonacci numbers, each less than f,,_1. Accordingly, when f, is
included in the set of summands, the members of the resulting set of Fibonacci
numbers remain non-consecutive, and their sum is n. &

DEFINITION: The Fibonacci representation of an integer is its expression as a
sum of distinct non-consecutive Fibonacci numbers.

EXERCISES for Section 2.6

In each of the Exercises 2.6.1 through 2.6.4, calculate the value of the given expres-
sion.

2.6.1 f10 2.6.2 f15
263  fafa—frfz 264  fofs— fafs
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In each of the Exercises 2.6.5 through 2.6.8, convert the given integer to its Fibonacci
representation.

2.6.55 202 2.6.6 105
267 1928 26.8 243

In Ezercises 2.6.9 through 2.6.20, prove the given identity.

2.6.9% [ = 2fn_1fos — [ = [y forn>2
2610 fo+ L+ fo+ -+ fo = fay2—1forn>0.
2611 fi + fs+ fs5+ -+ fanor = fopforn> 1.
2612 fo+ fo+ fa+ -+ fan = fangr— 1forn > 0.
2613 fe+ PP+ o+ LD = fafaga forn>0.
2.6.14  fifo+ fofs + fafa +  + fonoifon = fiy forn>1
2615 >._, (";k) = fng1 forn > 0.

2.6.16 f? + n2-|—1 = fong1 forn > 0.

2.6.17 n2-|—1 — [, = fopforn>1.

2.6.18 2f, = foy1 + fa—aforn>2.

2.6.19 3f, = foyo — fa—aforn>2.

2620 fi 4+ fa+ fr 4+ fapms = [z, forn>0.

2.6.21 Prove that f, = %, for n > 1, where L, is the Lucas number.
2.6.22  Prove that the Fibonacci sequence is neither log-concave nor log-convex.

2.6.23% Write the Fibonacci representation for the number fa,11 —1. (Suggestion:
Try this first for n = 4.)

2.6.24  Prove that fop 41 — 1 is the smallest integer that requires at least n sum-
mands in its Fibonacci representation.

PREVIEW OF §6.1:
e Theorem 6.1.9. For n >0 and m > 1, ged (fn, fm) = fged (n,m)-
2.6.25  Confirm that Theorem 6.1.9 is correct for ged (fiz, fs)-

2.7 NON-CONSTANT COEFFICIENTS

A good method for solving any recurrence that is not specified as a linear
recurrence of fixed degree with constant coefficients is to transform it into such a
recurrence. This is an instance of the standard mathematical strategy of reducing a
given problem to a previously solved problem. Most of our attention in this section
is devoted to the solution of another recurrence from computer science, called the
quicksort recurrence.
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A Reduction Strategy

Consider this general linear recursion of degree d with variable coefficients.

f(n) Tp = Cp—1 f(n — 1) Tp_1 + -
+ enaf(n —d)an_a + p(n) (2.7.1)

Substituting f(n)x, = yn yields the recursion

Yn = Cn—1Yn—1 + -+ Cn_d¥Yn—a + p(n) (272)

which is linear with constant coefficients, and, therefore, is amenable to previously
developed methods of solution. A solution y, = g(n) for the recursion (2.7.2) could
be reverse-transformed into a solution #, = g(n)/f(n) for the recursion (2.7.1).

Example 2.7.1: Consider the recurrence
Xy = 0,
2(n—1) 1
Tp = ——Zp-1 + —
n n
Multiplying the recursion by n yields the recursion

ney, = 2n—1Day_1 + 1

in the form of recurrence (2.7.1). The substitution n, = y, yields this new recur-
rence in the form of recurrence (2.7.2).

vo = 05
Yn = 2Yp—1 + 1

This transformed recurrence is easily solved by the method of generating functions
or by the method of characteristic roots. Indeed, if we recognize it as the Hanoi
recurrence, we already have this solution for y,,:

yn:2n_1

To obtain the solution for x,, we substitute y,/n = ,:

ne, = 2" — 1
2m —1
= T, =
n
Example 2.7.2: To solve the recurrence
rg = 0;
1 n—1 e
ne, = (1—— Tp—1 + (2n) forn>1
n

we first multiply the recursion by n” !, thereby obtaining
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nnxn — (n—l)"_lxn_l—l—n"_l(Qn)l_”

= n"z, = (n— 1)"_11‘”_1 +2t-n

Substituting n”z, = y, yields the recurrence

Yo = 0;
1 n—1
Yn = Yn-1 + (5) forn>1
This transformed recurrence is easily solved.
=1+ ! + = + + !
n = 2 1 g1
1
=2~ gn—1

By reverse-substituting y, = n”x,, we solve the given recurrence.

1 9 1 2n—1
Ty, = — - - - - -
nn 2n—1 nn?n—l

Sum in a Recurrence: Quicksort

Beyond the complication of variable coefficients, the quicksort recurrence has
no fixed degree. It involves a long sum of earlier values in the sequence. Another
preliminary to applying the methods of the earlier part of this chapter is to transform
it into a recurrence of fixed degree.

The quicksort recurrence arises in the analysis of the time needed to execute
a well-known sorting algorithm called quicksort. Performing it on a sequence of
numbers (which may be used as the keys to the records in a file of data) involves
two signature steps, that is, steps that occur in quicksort but not in most other
sorting methods. One signature step 1s choosing an entry of the sequence, which is
called a pivot. The other signature step, called tripartitioning, is to partition the
given sequence into three subsequences, as follows:

e The front part contains every element that is less than the pivot. This part
may be empty.

e The pivot part contains only the pivot entry itself.

e The back part contains every entry not in the other two parts, all the entries
that are greater than the pivot, plus any duplicates of the pivot. The back part
may be empty.

If the length of a sequence is 0 or 1, then the sequence is deemed to be sorted. Oth-
erwise, it is tripartitioned, and then its front part and its back part are quicksorted.
In the implementation represented by the following algorithm, the pivot is selected
at random. (This tends to produce pivots whose value is relatively near to the
median of the sequence, a fortuitous event that reduces the number of subsequent
iterations.) The following algorithm specifies the details of a quicksort.
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Algorithm 2.7.1: Quicksort

Input: seq X = (x;); range limits lo, hi
Qutput: that same sequence in non-decreasing order
if lo > hi then return

else pivot := random({lo, ..., hi})
“tripartition” (o, ..., Zpi) I0to (Tpiver) plus

front .= (z; | 2; < Tpivot)

back = (x;(j #pivot) | 2; > Zpivor)
X := concatenate(Qsort(front), zpivor, Qsort(back))

Example 2.7.3: Suppose that the given sequence is
(78 49 05 14 10 90 44 39 19 55)

and that the initial pivot is 39. Then the result of the first tripartition step is

front part pivot back part
——
( (05 14 10 19) (39)q (78 49 90 44 55) )

The subscript g denotes a part that is fully quicksorted. Suppose that at the second
stage the pivots chosen in the parts not yet fully quicksorted are 10 and 78. Then
the result of the second-stage tripartitioning is

(((05), (10), (14 19)) (39), ((49 44 55) (78), (90),))

Suppose that at the third stage the pivots chosen in the parts not yet fully quick-
sorted are 19 and 49. Then the result of the third-stage tripartitioning is

(((05) (10) ((14) (19))) (39) (((44) (49) (55)) (78) (90)))

at which point all parts are fully quicksorted. Concatenation proceeds level by level
with this sequence as the final result.

(05 10 14 19 39 44 49 55 78 90)

Analysis of the Time Needed by Quicksort

Let @,, represent the time needed to quicksort a sequence of length n. This involves
the following time expenditures:

1 to select a pivot location
n to tripartition a seq of length n
@ to quicksort a front part of length %
@n—r—1 to quicksort the back part of length n — & — 1
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The probability that there are exactly k items smaller than random pivot 1s

1
pr (k items < pivot) = —
n
This leads to the following recurrence.
o =0
n—1
Q, = 14+n + Z pr (k items < pivot) - [Qr + Qn—k—1]
k=0
n—1 1
n — 1 - n—k—
Q +n+;n @k + Qrn—k-1]

n—1
9
1 _
+n + n;Qk

An obstacle to solving the recurrence is the unlimited number of terms in the sum.
Often, such a recursion can be transformed into a recursion of fixed degree, by
setting up a subtraction of sums.

n—1

nQn = n+n’ + 2 Q (2.7.3)
k=0

n—2

(n=1)Qu-1 = (n=1)+n—1)" +2) Qs

n—2
=n'—n+2> Q (2.7.4)

k=0
Productively, subtracting (2.7.4) from (2.7.3) yields
nQn — (0 —1)Qn-1 = 2n + 2Qn_1
and, thus,
nQn = (n+1)Qn_1 + 2n

which may be rewritten in the form

Qn _ Qn—1+ 2
n+1 n n+1

After making the substitution
@n
n+1

there 1s the following transformed recurrence

= n

POIO;
2

P, =P, + — forn>1
n—+1

whose solution is
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n n n+1

2 1 1
Pnzg—:2§—:2§—,:2Hn -1
k1 —ht1 = (1= 1)

which is then reverse transformed.

@n

(n+ 1) Py = 2(n+ 1)(Hagr — 1)
= 2(n+1) (Hﬁ-%ﬂ) - 2(n+1)

2+ DH, +2 = 2(n+1) = 2(n+ 1)H, — 2n

Confirming Small Cases

Direct application of the recurrence
Qo = 0;
Qn

n—1
2
1 z
=D Q
k=0
yields the small values

Q1

2
1+1+I[Q0]:2—|—0:2

2
Q2 = 1+2+§[Q0+Q1] =3+1-2 =5

2 2 26
1 +3+ g[Qo-i-Ql-l-Qz] = 4+§'[2+5] =3

Qs
Application of the closed formula
Qn = 2(n+1)H, —2n

yields the small values

Q=2 (1+1)H —2-1 =4.1—-2 =2
3

Q=2 Q2+)H-22=65-4=5
11 26

EXERCISES for Section 2.7

In Erxercises 2.7.1 through 2.7.7, transform the given recurrence into a linear recur-
rence with constant coefficients, and solve.

3(n—Dx,_ 4
271% 2y = 2, v1=3;, x, = M — (2— —) XTp_o forn > 2.
n

n
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2(n — 2)x,_
2.7.2 xg = 0; xnzw—l—lfornZl.
n—1
2(n — e
2.7.3 xg = 2, w, = w—l—n for n > 1.
n—2
dnw,_1
2.7.4 xg = 1; ¢y = ————1 forn>1.
n—1
2(n — )%z, _
2.7.5 g = 2, xp = (n—gxl—l—Q" forn > 1.
n

2.7.6 z1 = b; lgnz, = 3lgln—1)zp_1+1 forn>1.

2.7.7 xg = 0, 1 =1; xnz = l‘nz_l + xnz_z for n > 2.

PREVIEW OF §5.4: Some recurrences with non-constant coefficients are solved with
exponential generating functions, instead of ordinary generating functions.

2.7.8  Solve the derangement recurrence by using an exponential generating func-
tion.

2.8 DIVIDE-AND-CONQUER RELATIONS

A dwide-and-conquer strategy for solving a problem is to partition it into sub-
problems, such that the total effort needed to do all the subproblems is significantly
less than a direct approach to the original problem, even if includes in total effort
the costs of partitioning the original problem and of recombining the solutions to
the smaller problem into a solution to the original problem.

DEFINITION: A recurrence of the form
n = cp/q + a(n)

is said to be a divide-and-conquer recurrence.

Remark: Such a recurrence represents the circumstance in which each of ¢ sub-
problems is smaller than the original by a factor of d and in which «(n) is the cost
of partitioning and recombining.

Divide-and-conquer strategy is frequently used in the development of fast al-
gorithms. The running time for such algorithms is often described by a divide-and-
conquer recurrence. A good approach to solving a divide-and-conquer recursion is
to make a substitution that transforms it into a recursion of fixed degree. This ap-
proach is applied to recursions arising from two computer science algorithms, binary
search and mergesort, and to a recursion used to solve a problem of great antiquity.
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Binary Search

Searching an ordered domain to find the location of a record whose key matches
a given number, called the target (of the search), is one of the many tasks at which
a divide-and-conquer strategy yields a major reduction of work effort. A sequential
search, in which one scans a list of records from one end to the other, is a naive
approach. Consider the benefit of comparing the target key value to the middle key
in the list.

The middle record of the search file 1s construed to divide the search file into
the first half, which contains every record whose key precedes the key of the middle
record, and the second half, which contains all the other records. The signature
step of a binary search is that the target value is compared to the key of the middle
record. If it precedes the middle record, then the target record cannot be in the
second half of the file, so it is inactive for the remainder of the search. Otherwise, the
first half goes inactive. This step is then applied to the active half. This continues,
recursively, until there is only one active record remaining.

Example 2.8.1: Suppose we are searching for the target value y = 74 in the
following list of length 16:

X = (5 18 31 34 35 39 42 47 51 53 60 74 75 80 81 96)

Initially, the entire list is active, with a lower limit location of lo = 1 and an upper
limit location of hz = 16.

In the first stage, the middle location is determined to be

ZOHﬂ B FJrlﬂ

9 9 =9

mid:"

The target value y = 74 1s compared with the middle value zg = 51. Since

y="74 > x9 =051
and since the list is sorted, it follows that the target value y = 74, if present in the
list, must be in the second half of the list, which becomes the only active sector.
Resetting the lower limit to o = 9 achieves the choice of active sector.

In the second stage, the middle location of the active sector xg, ..., x14 1s location
) lo+ hi 9416
d = — = 13

The target value y = 74 1s compared with the middle value z13 = 75. Since
Yy = 74 S 13 = 75

it follows that the target value y = 74, if present in the list, must be in the first
half of the active sector, which becomes the new active sector. Resetting the upper
limit to A7 = 12 accomplishes this.
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In the third stage, the middle location of the active sector xg, ..., %12 1s location
mid — "lo—i—hz-‘ "9—1—12-‘ _ 11
2 2

The target value y = 74 1s compared with the value 217 = 60. Since
Yy = 74 Z 11 = 60

it follows that the target value y = 74, if present in the list, must be in the second
half of the active sector, which becomes the current active sector. Therefore, the
lower limit is reset to lo = 11.

In the fourth stage, the middle location of the active sector x11, 12 1s location

11
[ +12w - 192
2

mid — "lo—l—hz-‘

The target value y = 74 1s compared with the value x5, = 74. Since
Yy = 74 Z 12 = 74

it follows that the target value y = 74, if present in the list, must be in the second
half of the active sector, which becomes the final active sector, as the lower limit 1s
reset to lo = 12.

The final active sector has only one item. If it were not the target item, that would
imply that the target item is not in the original list. If it is the target item, as in
this example, then its location is returned as the output of the search.

The following algorithm gives the general rules for a binary search.

Algorithm 2.8.1: Recursive Binary Search (RBS)

Input: a non-decr seq X = (z;); range limits lo, hi;
a target value y
Output: if y & {10, ..., 2ni} then * (“not found”);
else min{j € {lo,... hi} |y =a;}
call RBS(X,lo, hi,y)
_Jlo fy==xp
output 1= § iy # 21,

Recursive Subroutine RBS(X, lo, hi, y)

if lo = hi then return

else mid = [(hi +l0)/2]

if y < 254 then hi .= mid — 1 else lo = mid
call RBS(X,lo, hi,y)
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Analysis of the Time Needed for a Binary Search

Let b, be the number of comparisons needed to perform a binary search on
an array of size n. Since at each stage, the limits of the active search space within
the original sequence are reset to about half their previous range, the value of b,, is
represented by the following divide-and-conquer binary-search recurrence:

bl = 2,

The substitutions n = 2¥ and byx = ¢; transform this to the recurrence

co = 2

cp = Cp_1+2

The solution to the transformed recurrence is evidently
e, = 2k+2

from which it follows (by the inverse substitutions k¥ = lgn and Clgn = b, ) that the
solution to the binary-search recurrence is

b, = 2lgn—+2

COMPUTATIONAL NOTE: Partitioning a search space and searching the parts one
at a time would not yield a net reduction of searching effort if the time to search
each part were proportional to its size. Such a circumstance would be dividing-
without-conquering, since there would be an added cost of subdividing the space.
Nor would it be of much help if the subdivision permitted elimination only of tiny
fragments of the given search space. However, in a binary search, half the given
space 1s eliminated at each iteration, which quickly reduces the active space to one
record.

Merging

Mergesort is based on repeated merging. A merge is conceptualized as having
two input lists L; and Ls, both in non-decreasing order, and an output list L. It
1s necessary to have access to the head ends of the input lists and to the tail end
of the output list. In the main step of a merge, either the lead entry of input list
Ly or the lead entry of input list La, whichever is lesser (either, if they are equal)
is transferred to the tail of the output list L. The main step is iterated until one of
the two input lists is empty, after which all remaining entries in the other input list
are transferred to the tail of the output list.

Algorithm 2.8.2 prescribes a process for merging two sorted lists.
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Algorithm 2.8.2: Merge

Input: non-decreasing lists Ly and L,
QOutput: a merged non-decr list L, initially empty

while both input lists are non-empty
move min(head (L), head(L3)) from its own list
to the tail of the output list
if that transfer makes one list empty then transfer
all the remaining elements of the other list to
the end of the output list

Example 2.8.2: Suppose that the input lists and output list are initially

Li: 2 14 30 37 b5
Ly: 3 36 43 65
L:

After two transfers, the lists are

Li: 14 30 37 55
Lsy: 36 43 65
L: 2 3

After two more transfers, the lists are

Ly 37 55
Lo 36 43 65
L: 2 3 14 30

The final lists are

Lli
in
L: 2 3 14 30 36 37 43 55 65

The time needed to merge the lists Ly and L, is at worst proportional to the
sum of their lengths.

Iterative Mergesort

A mergesort is a sort by iterative merging. Suppose that a file of length 27
to be sorted is initially regarded as a list of 2" subfiles of length 1. These subfiles
are organized into a list of length 27~! of pairs of subfiles of length 1. Each pair
is merged into a sorted subfile of length 2, leading to a list of 27! sorted subfiles,
each of length 2. Next, these subfiles are paired, and then the two subfiles within
each pair are merged into a sorted subfile of length 4. This continues iteratively
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until a single sorted file of length 2" is obtained. This method is readily modified
for the case in which the length of the given initial file is not a power of 2.
Example 2.8.3: Suppose that the list to be sorted is

X = [82 48 03 17 11 94 41 37]

which has length 8. From an iterative perspective, this list is initially viewed as a

list of 8 files, each of length 1.
Xio= [(82) (48) (03) (17) (11) (94) (41) (37)]
The files of length 1 are paired, as follows:
X{o=[((82) (48)) ((03) (17)) ((11) (94)) ((41) (37))]

Merging the two sublists of length 1 within each pair yields this file with 4 sorted
subfiles, each of length 2.

Xy = [(48 82) (03 17) (11 94) (37 41)]
The sorted subfiles are paired, as follows.
Xy = [((48 82) (03 17)) ((11 94) (37 41))]

Merging the two sublists of length 2 within each pair yields this file with 2 sorted
subfiles, each of length 4.

Xz = [(03 17 48 82) (11 37 41 94)]
These two sorted subfiles of length 4 are paired.
X4 = [((03 17 48 82) (11 37 41 94))]

Then the two subfiles of length 4 are merged, thus ultimately yielding a fully sorted
list of length 8.
X = [03 11 17 37 41 48 82 94]

Recursive Mergesort

In a recursive mergesort, the order in which various pairs are merged would
be slightly different from an iterative mergesort. For instance, the first two sorted
sublists of length 2 would be merged into a single sublist of length 4 before the rest
of the sublists of length 1 were merged into sublists of length 2. Of course, the
results would be identical. Algorithm 2.8.3 represents a recursive mergesort.

Algorithm 2.8.3: Recursive Mergesort

Input: X = {21, €2, ..., Tn)
Qutput: that same sequence in non-decreasing order

Recursive Subroutine MerSo(X)

if n > 1 then
m = [n/2]
Xy = (w1, 22, ..., L)
Xo = {&mi1, T2y -+, Tn)

X = Merge(X1, X2)
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Analysis of the Time Needed for a Mergesort

Let s, be the number of comparisons needed to perform a mergesort on an
array of size n. The value of s, 1s represented by the following divide-and-conquer
recurrence:

s1 = 1;
Sp = 28,/9+n
The substitutions n = 2¥ and ss» = t;, transform this into the recurrence

to = 1,
ty = 2_q + 2

which we can solve with the method of generating functions.

(o) (o) (o)
sztk = QZsz_ltk_l—l—szQk
k=1 k=1 k=1

T(z) =1 = 2:T(z) + 13222
1
' ==y
= ty = (k+1)2F

Thus, after the inverse substitutions & = lgn and #;, = s,, the solution to the
mergesort recurrence is

s, = nlgn+n

What enables the divide-and-conquer strategy of a mergesort to succeed at
reducing the work effort, relative to naive forms of sorting, is that merging two
sorted lists of equal length together takes less work than a naive sort of the union
of the two lists. Naive sorts (e.g., insertion sorts and selection sorts) of n items
require O(n?) steps.

The Josephus Recurrence

During the Roman occupation of the Judean state, the Romans had trapped
41 Jewish rebels at a fortress called Jotapata. Rather than face likely slavery in
Rome or public execution, these patriots made a suicide pact. Proceeding around
a circle, every third man was to be killed, until there was only one remaining
man, who would then kill himself. Joseph ben Mattiyahu ha-Cohen (who adopted
the name Flavius Josephus after going over to the Romans), a survivor of several
previous losses to the Romans, calculated what would be the last two positions
on the circle whose occupants would remain alive, so that he and a friend could
survive. This terrifying tale suggests some interesting mathematics. Walter Rouse
Ball (1850-1925), a British mathematician (and also a barrister), brought attention
(see [BaCo1987]) to mathematical aspects of this ancient problem.
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DEFINITION: The Josephus problem is to calculate a closed formula for the values
of the sequence Jr(f), the position of the last man alive, for a circle of n men in which
every k" man is killed.

40 A1 1

19 = Flavius Josephus

Figure 2.8.1 The Josephus problem J4(12).

For the special case of 41 men, with every 2°¢ man killed (a variation from
the historical event), we can readily simulate the entire process. In each cycle of
this simulation, the bold numbers are those of the men who are eliminated on that

cycle.

1 2 3 4 ... 39 40 41 0 mod 2
1 3 5 7 ... 37T 39 41 1 mod 4
3 7 11 15 ... 31 35 39 7 mod 8
3 11 19 27 35 11 mod 16
3 19 35 3 mod 32

Thus, the man in position 19 is the survivor.

The survivor position Jr(Lz) for the first few values of n is given in Figure 2.8.2.
Since every man in an even-numbered position is killed on the first cycle, every one
of the survivor positions is an odd number.

12345678
JO 113135 71

Figure 2.8.2 Calculating Jr(Lz) for small values of n.

After the first traversal of the elimination process around the circle, there are
two possible cases, depending on whether the number of men at the outset 1s odd or
even. If there are 2n men at the outset, then after eliminating the even-numbered on
the first cycle, the process location immediately precedes position 1. We may regard
this as location 2n — 1, with a still-alive occupant, since the occupant of position
2n is gone, as shown in Figure 2.8.3. The remaining n men, all odd-numbered, are
shown just outside the circle.
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oo 2n 1 203 2n-1 1

Figure 2.8.3 After one cycle, for an even configuration.

This is equivalent to starting with n men, whose numbers are shown just inside
the circle. Each outer number is obtained by doubling the inner number and then
subtracting 1. Of course, this applies to the survivor position. Thus, we have the
recursion

JZ(Z) = QJT(LZ) -1 forn>1

If there are 2n+ 1 men at the outset, then after eliminating the even-numbered
on the first cycle, the next man to be killed is at position 1. The status of the
process immediately thereafter would be as illustrated in Figure 2.8.4. Here, each
outer number is obtained by doubling the inner number and adding 1, which yields
the recursion

J2(721)+1 = 27 +1 forn>1

n

Thus, the recurrence problem to be solved is as follows:

7P =
JZ(Z) = QJT(LZ) -1 forn>1
J2(721)+1 = QJT(LZ) +1 forn>1
on 2n+1 1 on.3 2n+1 3
2 5
3 7
——

Figure 2.8.4 After one cycle, for an odd configuration.

Applying this divide-and-conquer recursion to n = 41 yields a quick solution for
that case:
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I = 2P 11
= 20270 -1+1 = 47P —1
= (2J5 —1)-1 =815
=827 P +1)—-5 = 16/ +3

16(2J1() 43 = 32709 —13 = 19

Remark: When the Romans ultimately stormed into the fortress, all the Jews
except for Josephus and his friend were dead. Upon hearing from Josephus how he
and his friend had survived the suicide pact, the Romans recognized that Josephus
was indeed a clever man, who could be quite valuable to them. Josephus lived out
his life writing versions of history that flattered the Romans.

To solve the more general problem of calculating Jn(z), we extend the sample
of small cases:

n|89101112131415161718
13 5 7 9 11 13 15 1 3 5

From this increased number of small cases; a pattern emerges, as indicated by the
following proposition.

Proposition 2.8.1. If n = 2™ + k, with 0 < k < 2™, then

n

J® = 2k41 = Q(n monUg"J)+1

Proof: By induction on n.
BAsIs: The equation 1s clearly true for n = 1.
IND HYP: Assume the equation is true for all cases less than n.

IND sTEP: If n = 2™ + £k is even, then k is even. Thus,

J2 = 2J2(m) Lk -1 (recursion)
k
=2 (2 '3 + 1) -1 (induction hypothesis)
= 2k+1
If n=2™ + £k is odd, then k£ — 1 is even, and
JT(LZ) = 2J2(m) Sy +1 (recursion)

k—1
2 (2 5 + 1) +1 (induction hypothesis)

2k +1 &
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EXERCISES for Section 2.8
In Erercises 2.8.1 through 2.8./4, consider a binary search of the given list X for the

given target value y. Indicate the lower and upper limits of the sequence of active
sectors.
281% X (1 3 18 27 43 56 74) and y=49.
2.8.2 X = (12 19 43 65 78 83 91 99) and y = 65.
X =
X =

2.8.3 2 8 21 21 47 49 66 70 83) and y=21.
2.8.4 16 21 32 34 36 55 67 71 79 92) and y=82.

In FExercises 2.8.5 through 2.8.8, consider a mergesort of the given list X for the
given target value y. Show the sequence of lists of sorted sublists.

285% X = [92 56 83 97 72 78 15].

2.8.6 X = [8 65 59 41 91 28 61 92].

2.8.7 X =[22 21 8 37 29 91 25 47 96].
2.8.8 X = [8 45 36 81 53 47 50 12 80 30].

2.8.9%5 The number of bit-operations of the usual algorithm for multiplication
of two n-bit integers is asymptotically approximate to n?. The number of oper-
ations for divide-and-conquer multiplication (e.g., see [AhHoUI1974]) is bounded
from above by the sequence (t,), where n = 2% and

ln = 3tyso + cnforn>2
tl = C
Solve for t,.

2.8.10  The number of number multiplications of the usual algorithm for multi-
plication of two n x n matrices is n®. The number of multiplications for Strassen’s
divide-and-conquer matrix multiplication (e.g., see [AhHoUI1974]) is bounded from
above by the sequence (u,), where n = 2% and

Uy = 7un/2—|—cn2 forn > 2
Ul =1

Solve for u,,.

In Ezercises 2.8.11 through 2.8.14, suppose that a non-decreasing sequence (up)
satisfies the recursion
Up = AUpyp + C

with a > 1, with b a positive integer, and with ¢ > 0. Prove the given assertion.

2.8.11 If n = b* for some positive integer k, and if @ > 1, then the solution has

the form

U, = Cn'°®% 4 D, where
¢ and D = —¢
a— a—1

C = u+
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2.8.12 If n = b* for some positive integer k, and if a = 1, then the solution has

the form
u, = Clogyn + D, where

C =z=cand D = u; —¢

2.8.13 If b divides n and a > 1, then u, € O(nlog, a).
2.8.14 If b divides n and a = 1, then u, € O(log, n).

2.8.15% Finding himself in position 1 among n men, Josephus gets to select the
elimination parameter. Give a function of n that indiates his survival.

2.8.16  Write the terms of the Josephus sequence JT(LS) forn=1,...,10.
2.8.17 Consider a recurrence of the form

r1 = €1, T2 = Cz;

P q
Tpn_1¥p_2

Ln

How would you reduce it to a linear recurrence?

GLOSSARY

binary search: a method of searching a sorted list by repeated halving.
Binet formula for the Fibonacci number f,:
me | () - (59
"5 2 2
Cassini’s Identity for the Fibonacci numbers f,,:
fosrfoor = f7+ (=D forn>1

Catalan recurrence: the quadratic recurrence

co = 1;
Cn = C0Cp—1 F C1Cn—2 + -+ + Ch—1C0

characteristic polynomial: a polynomial that arises in one method for solving
linear recurrences.

characteristic roots: the roots of the characteristic polynomial.
derangement: a fixed-point-free permutation.

derangement number D,:  the number of fixed-point-free permutations of a
set of n objects.

divide-and-conquer recurrence: a recurrence that expresses the element x,
of a sequence in terms of some element Tral.

divide-and-conquer strategy: the strategy of reducing a problem to a set of
much smaller similar problems.
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Fibonacci rectangle:  a rectangle partitioned into squares, such that the length
of the sides of each square 1s a Fibonacci number.

Fibonacci recurrence:
Jo =0, /1 = 1L
Jo = fuc1 + Jouoe
Fibonacci representation of an integer: representing that integer as the sum
of an ascending sequence of Fibonacci numbers, no two of which are consecutive.

forward-shift identity for the Fibonacci numbers:

Jotk = Jefos1r + fo-1fn forallk>1
Fundamental Theorem of Algebra: the theorem that a polynomial of degree
d has d roots over the complex numbers.

14+5

golden mean: the number 5

initial conditions for a recurrence: values for one or more Initial elements of
the specified sequence.

Josephus problem: a combinatorial problem, popularized by W. Rouse Ball,
involving determination of the survivor of a sequential elimination process.

linear recursion: a recursion of the form
Tp = @po1p_1 + dn—2Zn_2 + - + agzo + a(n)
Lucas sequence: the sequence specified by the recurrence
Lo = 2, L1 = 1;
Ly, = Lp_1+Ly_»
mergesort: a sorting method based on repeated merging.
permutation: a bijection from a set to itself.
quicksort:  a recursive method for sorting, with fast average time.
recurrence: a specification of a sequence in this form.
go = bo, ..., gr = by; initial conditions

9n = v (9n-1,...,90) forn >k recursion



Chapter 3

Evaluating Sums

3.1 Normalizing Summations

3.2 Perturbation

3.3 Summing with Generating Functions
3.4 Finite Calculus

3.5 Iteration and Partitioning of Sums
3.6 Inclusion-Exclusion

The concern of this chapter is a collection of methods for the evaluation of a
finite sum whose summands are given as a sequence, either in a functional form
f(k), or in a subscripted form zj. Analogous to the sense in which a real function
may have for its integral over an interval an anti-derivative function evaluated at
the bounds of the interval, the value of such a sum may be given by some other
function of the lower and upper limits of the index k. For instance, the sum of the
integers from 0 to n is given by the formula

n2+n
2

which is called a solution for that sum. Many summation problems of this general
form can be solved by more than one method, and there is no all-encompassing way
that applies to all problems, much less a best way for all problems. This chapter
presents several different methods for evaluating such a sum.

There are contexts in which it is helpful to use the word summation to mean a

formal expression
> fk)
k=0

and sum to mean the value of the expression; we do not adhere to this rigidly, and
we often use sum to mean either the expression or its value.

161
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3.1 NORMALIZING SUMMATIONS

There are compelling reasons for preconditioning a given summation problem
into the summation of a finite string of consecutive entries of a sequence (z,), most
especially, an initial string starting at zg.

REVIEW FROM §1.4:

e Let {x,) be a sequence. Then the value of the expression

ij = zxg+x + -+ Ty (3.1.1)

7=0
(and sometimes the expression) is called the n'" partial sum.

NOTATION: We sometimes use S, to denote the n* partial sum.

Such preconditioning allows us to view evaluation of the sum (3.1.1) as solving a
recurrence with initial value xy and recursion formula S, = S,_1 + x,, as declared
in the following formal definition, which also gives names to various artifacts of a
slightly more general form of such an expression. It also gives a precise prescription
of the value of the sum.

DEFINITION: Let a and b be integers or integer-valued variables, and let {(z,) be a
sequence with its values in an algebraic structure such as the integers, the reals, or
the complex numbers, with an associative and commutative addition. An expression

of the form
b
> o
k=a

is called a consecutive summation. Its value, the sum, is defined recursively.

b 0 ifb<a
Zq ifb=ua

T —
k=a ( Z;Z xk) + xp ifb>a

The parameters of the expression have the following names:
e k is called the index variable;
e a is called the lower limit of the index;
e b is called the upper limit of the index;
e 15 1s called the summand.

If the lower limit @ and the upper limit b are both given as fixed integers, then the
sum has a definite value within the domain of its summands. For instance, if the
summands are integers, then the sum is an integer.
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2
Example 3.1.1: Y k* = 07417 +2° = 5. (3.1.2)
k=0
Quite commonly, a summation has a lower index limit fixed at 0 and a symbolic
upper limit of n, in which case summation may be regarded as an operator on a
sequence

(n |n=0,1,...)

whose application produces a sequence of partial sums

<Zn:xj‘n: 0, 1,...>
7=0

akin to the way that integration operates on a function to produce a new function.
This chapter develops methods for evaluating the summation, which, in this
context, often means producing a closed formula for the elements of the sequence of
partial sums. From a computational standpoint, viewing the preconditioning from
evaluation permits us to state the methods of evaluation in concise, easy-to-apply
form.

Example 3.1.1, continued: With the variable n as the upper limit, the value of
the sum of the form (3.1.2) is

Zn:k’z _ 3 4+ 3n24+n
6
k=0
This formula could be confirmed immediately by mathematical induction, or by any
of several methods of summation to be introduced in subsequent sections of this
chapter.

Remark: Sometimes a summation index has a variable lower limit or variables
for both the lower and upper limits. The theory of such seemingly more general
operators is readily reducible to sums and differences of partial sums.

Sums over Sets

In a more general expression of a summation, the indexing set of a given sum-
mation may be any finite set 7. Given any function f with values in Z, Q, R, or C,

the sum
>

yerT

is well-defined. In a sum over an unordered indexing set, the order in which the
index variable ¢ takes its values is not specified or implied, and the value would be
the same for any order of summation.

Example 3.1.2: The sum of the weights of the edges in the graph G of Figure
3.1.1 is represented by the expression
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whose value is

6+T7T+3+2+34+6+5+5+6+4+10+5 = 62

a 6 b 7 c
3 2 3
G 5
d f
6 e
5 6 4
10 h 5
g [

Figure 3.1.1 An edge-weighted graph.

In principle, the edges of the graph ' could be indexed by integers 0,1,...,11,
which would permit the sum of their weights to be represented by a consecutive
summation. There seems to be little gained from doing so in this example. Our focus
here is to do something more efficient, when possible, than successively incrementing
a running total by additional summands. Such tedium is unavoidable when the
summands have no discernable pattern, especially if the summands are random
numbers. However, in many other cases, when the index set is a subset of the
integers, a transformation may simplify the evaluation.

DEFINITION: Transformation into a consecutive summation, whose index variable
ranges over consecutive integers, is called normalizing a summation.

Example 3.1.3: The sum

Sk

1<k <20
k odd

can be normalized to .
> (2k+1)
k=0

which is readily transformed further into

> (2k+1) E + 01

2k
k=0 0
9

k

k
=2) k+10

k

= 2. - + 10 (by Corollary 1.5.2)
= 102 4 10

= 100
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Many of the methods to be introduced in this chapter are designed to work on
normalized summations. Other sums one might encounter are transformed into
consecutive sums to permit the application of such methods.

Iverson Truth Function

When the index variable of a summation has irregular gaps in its range, it may
still be possible to normalize, by inserting into the summand an artificial multiplier
that effectively cancels the summand across the gaps.

Example 3.1.4: For instance, the index variable p of the sum

NRV/ (3.1.3)

p<n
p prime

has gaps between consecutive primes.
DEFINITION: The Iverson truth function is defined by the rule

{ 1 if the predicate is true

(predicate) = 0 if the predicate is false

Example 3.1.4, continued: Using the Iverson truth function facilitates the re-
formulation of (3.1.3) as a consecutive summation.

dYovp = Y [(pprime) - /p]

p<n
p prime

CONVENTION: The value of the product
(P(k)) - ax

is 0 whenever the value of the Iverson expression (P(k)) is 0, even when ay is

undefined.

Example 3.1.5: The value of the sum
Z — - (p prime)
p=0 p

is well-defined, since the “strong zero” of the Iverson expression (p prime) cancels
the effect of the undefined quotient zl? when p = 0.

Algebraic Regrouping

Part of the art of simplifying and evaluating sums is to manipulate them so that
recognizable forms emerge. The familiar algebraic properties of the number system
include several principles for regrouping. These principles are applied independently
and also in conjunction with the other summation methods of this chapter.
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Proposition 3.1.1 [Distributive Law]. A common factor can be distributed over

all the summands.
E ca — ¢ E ar
keK keK

Proposition 3.1.2 [Addition Law]. Two sums over the same index set can be
combined into a single sum by adding each pair of summands with the same index.

Z(ak+bk) = Zak+zbk

keK keK keK

Proposition 3.1.3 [Permutation Law]. The value of a sum is unchanged by
permuting the order of the summands.

Z ag = Z Qr (k)

keK keK

As a first illustration, we apply these algebraic regroupings to an arithmetic
progression. From our present perspective, that means a sequence {(a,) given by a
recurrence of the form

apg = ¢

p = ap_1 + b forn >0
For instance, the consecutive odd numbers 3,5,7,9,... are an arithmetic progres-
sion, with initial value ¢ = 3 and increment b = 2.

Example 3.1.6: Simplifying the sum of a finite arithmetic progression

Sa = > (c+bk) (3.1.4)
k=0
can begin with application of the Permutation Law.

Supo= > (e+b(n—k) (3.1.5)
k=0
Adding equations (3.1.4) and (3.1. 5) leads into the following analysis.

QSn:Zn:c—i—bk Zc—i—bn— )

k=0 k=0
n

= > [lc+bk)+(c+bn—k)]  (Addition Law)

Z (2¢+ bn)

k=0

= (2¢+bn) Z 1 (Distributive Law)
= (2¢+bn)(n+1)

=8, = (c—l— %”) S(n+1) (3.1.6)
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Example 3.1.7: This is a special case of formula (3.1.6).
n 1 .
Sk <0+T”) (n+1)
k=0
n

(3)-tns )

_ (n+1

o 2

6
04+1424+3+4+5 = 15 = ()

For instance,

Harmonic Numbers

REVIEW FROM §1.2:

The sequence of harmonic numbers (H,) is defined by the rule

H, = —

1
4+ 4+ = forn>0
n

The harmonic numbers are the discrete analogue of the natural logarithm

In (n) :/1 édx

Figure 3.1.2 illustrates that the harmonic number and the natural logarithm are
reasonably good approximations of each other. Familiarity with upper and lower
Riemann sums may add some interest here, but such familiarity is not necessary
for understanding of the correctness of the approximation.

7,
x=1 X=2 X=3 X=4 X=5

X
Figure 3.1.2 Upper and lower Riemann approximations of %

Since the area under the curve 1/x over the interval [1,5] is In(5), one observes that
In5 is less than the sum of the areas of the upper rectangles, i.e.,

1 1 1 1
ln5<I—|—§—|—§—|—Z—H4 upper sum

and that Inb is greater than the sum of the areas of the lower rectangles, i.e.

1 1 1 1
H5—1:§—|—§—|—Z—|—3<1n5 lower sum
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This observation generalizes to the following:
Proposition 3.1.4. For any positive integer n

(a) In(n+1) < H, < In(n) +1
(b) Hp, — 1 < In(n) < Hy,_1

Proof: Summing the areas of the upper rectangles (i.e., taking upper Riemann
sums) yields

1 1
In(n+1) < Tt = H, (3.1.7)
In(n) < 1+ + ! H (3.1.8)
n(n - = n— 1.
1 n—1 '

and summing the areas of the lower rectangles (i.e., taking lower Riemann sums)
yields

1 1
Hn—1—§+"'+m<hln (3.1.9)
Together, (3.1.7) and (3.1.9) imply part (a). Similarly, (3.1.9) and (3.1.8) imply
part (b). &

GKP Notations

The exercises for this section use two elementary number-theoretic concepts not
previously defined here and some innovative notation, introduced by [GKP1994].
Use of these notations also appears later in this book.

DEFINITION: Let n and d be integers. If there is an integer ¢ such that n = dq, then
we say that d divides n. Notation: d \ n.

Remark: The usual notation for the divides relation is d|n. [GKP1994] observes
that vertical lines are already overused in mathematics, notably for absolute values,
conditional probabilities, and set delimiters. Moreover, for many people, using
backslash has mnemonic value, since it brings to mind the divides operator slash.

DEFINITION: Let m and n be integers whose greatest common divisor is 1. Then we
say that m and n are relatively prime. Notation m L n.

Remark: There is no standard notation for relative primality. The perpendicularity
notation m L n appropriately suggests orthogonality. If two vectors are orthogonal,
then the dot-product of their coordinate tuples is zero. Suppose that an integer is
represented by a tuple of integers whose k" coordinate is the exponent of the k'
smallest prime, in its prime-power decomposition. Then two positive integers are
relatively prime if and only if the dot-product of their respective representations is
zero.
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EXERCISES for Section 3.1

In each of the Exercises 3.1.1 through 3.1.4, rewrite the given sum as a consecutive
sum without an lverson truth function, with 0 as lower limit. The notations are
defined in a remark that immediately precedes these erercises.

3115 > L 3.1.2 > k- (3\k)

7<k2<45 k 14<k<31
3.1.3 > k- (kmod7=4) 3.1.4 D> k2 (k L48)
—5<k<29 7<k<55

3.1.5 In the equation

2n 2n+1 n
Z3k2 (k’ even) + Z ka(k Odd) = Z(b]2+cj+d)
k=0 k=0 j=0

solve for b, ¢, and d.
3.1.6 In the equation

n

n 2n
D037+ > 257 = D (bn? +en+d)
k=0 k=0

7=0
solve for b, ¢, and d.
3.1.7%  Use Proposition 3.1.4 to prove for n > 2 that

H, 1
1 < < 1+ —
Inn Inn

3.1.8 Use Proposition 3.1.4 to prove for n > 2 that

3.2 PERTURBATION

Perturbation is conceptually quite a simple method, whose correctness is trans-
parent, without any theoretical development. Like the other methods of summation
considered in this chapter, its goal is to transform a formula for the entries of a se-
quence (&, ) into a formula for the entries of its sequence (S,) of partial sums. The
intended result is an expression for evaluating any sum of consecutive entries within
the sequence (z,).
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The initial step of a perturbationis to equate two expressions for Sy 41, the n+15°
partial sum of the sequence (zy).

n+1

Sp + Tpy1 = To + Zxk
k=1

By transparency of correctness of the method, we mean, for a start, that the sums
on both sides of the equal sign are clearly equal. The summation on the right is
first transformed so that its lower and upper limits are 0 and n, respectively, and
then manipulated algebraically in order to recast it as a multiple of S,, plus the
sum of a few other terms. The theoretical correctness of such algebraic steps was
justified in §3.1. Perturbation is a practical method, and additional tricks are used
as needed. What makes it interesting is not the theory behind it, but the fact that
1t works so effectively so often.

Example 3.2.1: A very simple first example of applying perturbation is to eval-
uate the sum

Spo= » 2 (3.2.1)
k=0

Of course, the solution is easily obtainable by other methods, but the details serve
as a good illustration of the technique of perturbation.

n+1 n+1
S, +27tt = 9% 4 Z 2k = 14 Z ok (set up)
k=1 k=1

= 1+ Z 2+l (change of limits)
k=0

1+2) 2
k=0
1+2S,
= S, = 2ntl (solution) (3.2.2)

For instance, for n = 3, the value of the sum (3.2.1) is
20421 42242 = 1424448 = 15
and the value of the closed formula in (3.2.2) is

271 = 16—-1 = 15
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A Classical Example of Perturbation

Example 3.2.2: A classic example to show the power of the method of pertur-
bation is evaluating the sum

Spo= Y k2 (3.2.3)
k=0

which 1s not so easily evaluated by the most elementary methods. The setup used
here (and on Example 3.2.1) is characteristic of applications of the perturbation
method.

n+1 n+1
Sp+ (n+ 12" = 020 4 Y k2" = Y k2" (set up)
k=1 k=1

Z (k +1)28+! (change of limits)
k=0

= Y k2P 4 Yok (Addition Law)
k=0 k=0

= 2 Z k2F 4+ 2 Z 2k (Distributive Law)
k=0 k=0

= 29, + 2(2""'1 -1) (from Example 3.2.1)
= Sy = (n+ 127t 927t — 1)
= (n— 1)2”"’1 +2 (solution) (3.2.4)

For n = 3, the result of the term-by-term summation (3.2.3)

3
D k2t = 0-2°41-2" 2.2 4393
k=0
= 04248424 = 34
agrees with the evaluation of the formula (3.2.4) derived by perturbation.

(n—1)2"t = 3-1)2* +2
=2.164+2 = 324+2 = 34

Indirect Perturbation

When a first attempt at perturbation misses the target, it may help to adjust
what is to be perturbed and to try a second time, as indicated by the next example.

Example 3.2.3: We evaluate the sum

Sa = > Hy (3.2.5)
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by perturbation, as in previous examples.
n+1 n+1
SptHopr = Ho+ Y He = 0+ Y Hy
k=1 k=1

n

- 1
= ;Hk+1 = Z(Hk‘Fm)

k=0

= Hypyo =y —— (3.2.6)

Formula (3.2.6) is quite correct, but it is not what was wanted, since the symbol S,
cancelled out. When this occurs, a standard maneuver is to multiply the summand
by the index variable k£ and to perturb the result.

Example 3.2.3, continued: Multiplying the summand Hy by the index variable
in this example yields the summation

Su = Y _ kM (3.2.7)
k=0

which we now perturb, as follows.

n+1
Snt (n+ V)Hyp = 0Ho + Y kHy
k=1
n+1

= 04+ Zk’Hk
k=1

n

= Y (k+ 1) Hpp

k=0

= Zn:(k’-l-l) (Hk-i-ﬁ)
k=0 +

= k+ 1D H —_—
2kt DH, + Zk+1
k=0 k=0

= Y kHy + > He + Y 1
k=0 k=0 k=0

= Sp 4+ > Hp + n+l
k=0
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= > Hi = (n+1)Hop—(n+1) (3.2.8)

This time, the result is a formula (3.2.8) for the sum of consecutive harmonic num-
bers, the formula we actually want. For n = 3, directly adding the harmonic
numbers, which are the summands of the sum (3.2.5)

3
1 1 1 1 1 1 13
Somo= o0+ (7)+(5+5)+ (f+5+3) = 5
k=0
and applying the summation formula (3.2.8)

25 25 13
AHi—4 = 4.5 -4 = T-4 =

yield the same result, thereby illustrating correctness of the formula.

As a second example of indirect perturbation, consider the problem of deriving
a formula for summing k2.

Example 3.2.4: To evaluate the sum
Sp o= Y K (3.2.9)
k=0

we start as usual.

n+1 n+1
Spt(n+1)? =07+ > K = D &
k=1 k=1

n

=Y (k+1)? = Zn:(k2+2k+1)

k=0

=Y K+ D> 2%+ > 1 (Addition Law)
k=0 k=0 k=0

= Zkz + 22]{7 + Zl (Distributive Law)
k=0 k=0 k=0

= Sy +2> k4 (n+1)

k=0
- n+1) = (n+1) n?+n
= > k= 5 = — (3.2.10)

Thus, as in Example 3.2.3, direct perturbation has yielded a correct equation that
is not the desired result. Seeking to remedy this situation, we once again multiply
the summand by the index variable and re-perturb.
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Example 3.2.4, continued: Since perturbing the sum of consecutive values of
k? just above has yielded an evaluation for the sum of consecutive values of k, it
may be less than fully surprising that perturbing the sum of values of k3 yields a
formula for the sum of values of 2. This time, set

Sp =Y K (3.2.11)
k=0

Then
n+1 n+1

S+ (n+1)° =074+ > K =YK
k=1 =1

=Y (k+1)°

= ) (K 43k +3k+1)
k=0
= ik3+3ik2+3ik+i1
k=0 k=0 k=0 k=0
= Sp 43> K +3) k+ Y 1
k=0 k=0 k=0

= 3> K = (n+1)3—3zn:k—zn:1
k=0 k=0

k=0
2
:(n—l—l)S—W—(n—l—l)
—(n—|—1)3 3n24+5n+2 _ n3+3n24+n
- B 2 - 2
- 3+ 3n? 4+ n
= == " " 3.2.12
l;) - (3.2.12)

For n = 3, we confirm the agreement of the value of the sum (3.2.9)
3
SR = 07417427 43
k=0
=04+14+44+9 = 14

with the value of formula (3.2.12)
3+ 3n2+n _ 2.334+43.324+3 84

= = = 14
6 6 6

Remark: As with direct perturbation, the correctness of the method of indirect
perturbation is clear. Although one could plausibly memorize a list of circumstances
in which the indirect form is the more helpful form, we adopt here the practical
approach of trying direct perturbation first, and then indirect perturbation if it
seems to be needed.
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EXERCISES for Section 3.2

In each of the Exercises 3.2.1 through 3.2.14, evaluate the given sum by perturbation.

3.2.1% Zn::’)k 3.2.2 Zn:zﬁ
k=0 k=0

3.2.3 Zn:k:ak 3.24 Zn:kzﬁ
k=0 k=0
3.2.5 Z/ﬁ:&k 3.2.6 Zk%k
k=0 k=0
3.2.7 23—’“ 3.2.8 24—’“
k=0 k=0
3.2.9 Zk:’rk 3.2.10 Zkﬁl"“
k=0 k=0
3.2.11 Zk23—k 3.2.12 Zkzzr’“
k=0 k=0
3.2.13 22% 3.2.14 23k
k=0 k=0

In each of the Exercises 3.2.15 through 3.2.18, evaluate the given sum by indirect
perturbation.

3.2.15% Zk?’ 3.2.16 Zk4
k=0 k=0
3.2.17 Zka 3.2.18 Zszk
k=0 k=0
I

3.3 SUMMING WITH GENERATING FUNCTIONS

In this section, it will be seen that most of the sums evaluated in §3.2 could
easily be evaluated, alternatively, by using generating functions, as indicated by
Theorem 1.7.2 and 1its corollaries, with the aid of partial fractions, as needed.

REVIEW FROM §1.7:

e Theorem 1.7.2. Let B(z) be the ordinary generating function for a sequence
(bp). Then the ordinary generating function for the sequence of partial sums
of (by) is

B(2)
1—=z
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1 “(n+r—1 n
e Corollary 1.7.3. m = ;( .1 )z
1 - -1
e Corollary 1.7.4. m - Z (n i‘j ; ) 2"

o

n=

Revisiting Examples

Example 3.2.1, revisited: We examine how to use generating functions to re-
derive the summation formula

Zn:ﬁ = ontl
k=0

for the powers of 2. As first mentioned in §1.7, the ordinary generating function for

the sequence (b, = 2%) is
1

1-—2z

By Theorem 1.7.2; the generating function for the sequence

u:nb:n2k n=0,1,...
<n Zk Z aa>
k=0 k=0

U(z) = Zunz" = 1iZB(z)

o
(1 —2)(1—=22)

By the method of partial fractions (described in §2.3), which here involves the
solution of a pair of simultaneous linear equations, it follows that

B(z) =

1s

1 _ L, 2
1-2)(1-22)  (1—2) (1 —2z)
= > (=1 4+ D o22nn

= > @ -1en

n=0
n
= u, =y 28 =2t
k=0
Example 3.2.2, revisited: We now rederive the summation formula

d k2 = (n—1)2"T 42
k=0
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Corollary 1.7.4 provides the formula

n+r—1\ . ,
(1—az Z( r—1 )az

into which the substitutions ¢« = 2 and r = 2 yield

(1_22 Z(“+1)2”” Zn—l—l?””

n=0

from which 1t follows that

22’ (o] (o]
— n+l_n+1 __ n_n
n=0 n=0
Thus, the ordinary generating function for the sequence (b, = n2") is
2z
B = —
() = a=o

By Theorem 1.7.2, the generating function for its sequence

<vn = > k2 n:O,l,...>
k=0

= 1
= Y v = B
Up 2 T (2)

n=0

of partial sums is

2z
(1—=2)(1—22)2

By the method of partial fractions, which this time requires the solution of three
simultaneous linear equations, we have

2z _ 2 8z 2

(1—2)(1-22)2  (1-2) + (1 —2z2)? B (1 —2z2)?
Thus, by Corollaries 1.7.3 and 1.7.4, 1t follows that

ve = » k28 = 2440 2" — (n+1)2"H!
= (n—1)2"* 4 2
For this example, the previous evaluation by perturbation may seem less effort than

the method of generating functions, because of the linear equations and the care
needed to apply Corollary 1.7.4 accurately.
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Example 3.2.4, revisited: To rederive the summation formula

Zn:k’z _ 2n% +3n% + n
6
k=0
the method of generating functions is easier than perturbation, since it avoids the
false start encountered in perturbation, which is unlikely to be discovered until the

late stages. To derive the ordinary generating function for the sequence (by = k?)
we start with Corollary 1.7.3.

=2

For r = 3, this yields

1 N n4+2\
T—27 Z( 2 )
n=0
Therefore,
PE = /n\ , “n’-n
- n0)r -
n=0 n=0
and

P (o)
(1—2)3 - Z
from which 1t follows that
22 4+ z > "
= S = ay
n=0

By Theorem 1.7.2; the generating function for the sequence
<yn = Zk’z n:O,l,...>
k=0

Corollary 1.7.3 with r = 4 1s

= 2 ()

1s

Thus

bl
oQ

n+3 n+2 n+3 n+1
( 3 ) +Z< 3 )

n=0

n+1\ , ad n+2\ ,

<
o
:Nm
|

w | T
—| ®
|
Wk

0

3
I

I
Nk

=3
I
=)
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Therefore,
_ (41 (n+2)?
_ nd—n n® + 3n% + 2n
- 6 6
_ 273 + 3n% 4+ n
6

EXERCISES for Section 3.3
In each of the Exercises 3.3.1 through 3.3.20,

a. write a generating function for the sequence of summands;
b. write a generating function for the sequence of partial sums;

c. split the result of part (b) by partial fractions;

d. use part (c) to evaluate the given sum. Where appropriate, perhaps compare

this result for part (d) with your solution to a corresponding exercise from §3.2.

3.3.18

3.3.3

3.3.5

3.3.78

3.3.9

3.3.11

3.3.13%

3.3.15

3.3.17%

3.3.19

>
k=0

> k3
k=0

> k8
k=0
>
k=0

> k37
k=0

Z k23—k
k=0
3ot
k=0
>k
kEO
(1)

k=0

eV

k=0

3.3.2

3.3.4

3.3.6

3.3.8

3.3.10

3.3.12

3.3.14

3.3.16

3.3.18

3.3.20

>
k=0

> k4
k=0

> k24
k=0
>
k=0

> k4
k=0

Z k24—k
k=0
>
k=0
>k
kEO

> kL3t
k=0
21&3’“
k=0
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3.4 FINITE CALCULUS

In the Fundamental Theorem of Finite Calculus (Theorem 1.4.3), Part (a)
asserts how sums can be evaluated as anti-differences;, analogous to way the fun-
damental theorem of infinitessimal calculus asserts that integrals can be evaluated
as anti-derivatives. This is yet another powerful method for evaluating sums. This
section develops a few of the most important formulas of the finite calculus.

REVIEW FROM §1.4:

e Given a function f: 1R — R, the difference function Af is given by the rule
Af(e) = fle+1) — f(=) (3.4.1)

e Given a sequence (z,), we define the difference sequence (Ax,) by the rule
Azxy = 2} = ¥pi1 — @

e Theorem 1.4.3 [Fundamental Theorem of Finite Calculus]. Let (z,)
be any standard sequence. Then

n—1 k—1 !
(a) Zx; = z, — xp; (b) ij = z,
7=0 7=0

n

Summing a Polynomial

We recall that the finite calculus formulas for differencing and summing a falling
power are directly analogous to the infinitessimal calculus formula for differentiating
and integrating an ordinary power.

REVIEW FROM §1.5:

e The n'? falling power function on a real variable x, for any n € N, is defined
by the rule

n factors

2= zx—1)---(z—n+1)

e Theorem 1.5.1. For r € Z*, we have A(zn) = rai=L,

n—1 r+1

n
C 11 1.5.2. F N h k- = .
e Corollary or r € N, we have ,;J 1
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We established in §1.6 that ordinary powers can be converted into falling powers.

REVIEW FROM §1.6:

e Theorem 1.6.1 Any ordinary power z” can be expressed as a linear combi-
nation of falling powers, i.e., in the form

n
" = E Sp ™
r=0

where the coefficients .S, , are called Stirling numbers of the second kind.

We will now use the reviewed results to see how finite calculus makes many kinds
of summation quite routine.

Example 3.2.4, revisited again: In this chapter, we have already derived the
summation formula

Zn:k’z _ 3+ 3n? 4+ n
k=0 6

first using indirect perturbation, and then again with generating functions. Yet
most practitioners of combinatorial calculations would say that using summation
calculus, as we saw in Example 1.6.3, 1s the easiest of the three approaches. When
solving this sum with finite calculus, we first express k% as a linear combination
of falling powers. For monomials of low degree, it 1s easy enough to calculate the
coefficients of the falling powers by ad hoc methods.

k? = Syok? 4+ Sy kt
= k% + kL (3.4.2)

Summing both sides of equation (3.4.2), we obtain

n

Zn:kz = ) (k2 + kY

k=0
Sy
k=0 k=0
Applying Corollary 1.5.2 now yields
K= — —
2 3,772
k=0

(n+1)2 n (n+1)2

n+1 kz n+1

k=0 k=0

3 2
nd—n 2

_ +n +n
3 2
3+ 3n2+n

6
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Formula for Summing Exponentials

The supply of useful finite summation formulas is readily extended beyond the
monomial formula of Corollary 1.5.2. This begins with sums and differences of
exponentiations in which the base is constant and the exponent is variable.

Theorem 3.4.1. Let the constant value ¢ be a real number and let x be a real or
integer variable. Then

Ac® = (e—=1)c"

Proof: Ac® = ¢t —¢® = (c—1)c". &

Example 3.4.1: For the case ¢ = 2, Theorem 3.4.1 gives the result
A" = (2-1)2° = 2°
which is analogous to the differential-calculus result

d
—e® = ¢€°

dx
This is one of numerous reasons why the number 2 is regarded as the natural base
of discrete mathematics in the same sense that the real number e is the natural base

for continuous mathematics. More generally, the continuous-mathematics formula

d

xr xr
—c¢¥ = Ine-c
dx

is analogous to the discrete-mathematics formula of Theorem 3.4.1.

Ac® = (e=1)c°

Example 3.4.2 A3 = 3"t _ 37 = 2.37
A4 = 4T 4T = 3y

This leads to a major formula of the finite-summation calculus, the formula for
summing exponentials.

Corollary 3.4.2 [Exponential Formula]. Let ¢ be any real number except 1.

Then
n—1 e 1
E : k
s Cc B 1 (3 3)
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Proof: For ¢ # 1, applying the Fundamental Theorem of Finite Calculus to the
conclusion of Theorem 3.4.1 implies that

n—1 n
k c*
¢t =
k=0 c—1 k=0
-1 o
T oe—1

Remark: For the case ¢ = 1, which is excluded from Corollary 3.4.2, we have the
sum

n—1

Z ¥ =n

k=0

Example 3.4.3: We observe that when ¢ =5 and n = 4, the value of the sum on
the left side of equation (3.4.3)

3
D5 = 5745 457+ 5% = 1+54+25+125 = 156
k=0

agrees with the value of the quotient on the right side

5t —1 625 — 1
= = 156
4 4

As easy as it was to derive the formula

Zn:ﬁ = ontl _ 1
k=0

either with perturbation or with generating functions, it is even easier with the
calculus of summation, as now shown.

Example 3.2.1, revisited again: According to Theorem 3.4.1, we have
A2F = oF
Summing both sides; we obtain
S = 3 a
k=0 k=0

after which, applying the Fundamental Theorem yields the result

k=0

|

n+1

k=0
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Falling Negative Powers

The extension of the list of useful differencing and summation formulas contin-
ues. We observe that non-negative falling powers can be defined recursively.
2 =1

ol — ez —7r) forr >0

Running the recursion backward extends the utility of the falling power concept.

DEFINITION: Non-positive falling powers are defined as follows.

22 =1
. xr+1
rt = for r < 0
r—r

Example 3.4.4: Here are a few evaluations of the definition of negative falling
powers.

o=l _ 22 _ 22 _ 1
T r—(=1)  z4+1  x+1
x_z _ $;1 _ l‘_—l _ 1
S or—(-2)  z+2 (z+1)(x+2)
=2 =2 1
423 _ x oz B

o —(=3) 43 (z+1)(z+2)(x+3)

Proposition 3.4.3. For any positive number r and any real number z,

1
(x4+1)--(z+7r)

xi:

Proof: By induction on 7. &
Although ordinary powers are additive in a product of ordinary monomials
with the same base, in the sense that

xr .xs — xr+s

it is clear that falling powers are not additive in a product of falling-power mono-

mials. For instance,

P zlx—1) - 2(x—1)(x —2)
but

23 = 3 = ez —1)(z—=2)(x —3)(x —4)

Thus, there is no reason to expect that x== = (zZ)~'. On the other hand, an
important analogy to infinitessimal calculus is preserved.
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Proposition 3.4.4. The difference formula for negative falling powers is the same
formula as for positive falling powers. That is, for every positive integer 7,

Ar=l = (—r)a:—_r_l
Proof: Start by applying the defining formula (3.4.1) for the difference operator.

Ar™r = (e+1)=2 — 2=~
1 1
(x+2)---(x+r+1) (z+1)---(z+7)

Then by routine manipulation

:(x+%%(x+ﬂ[x+i+l_xiJ

1 —r
C(z+2) () [(x—i—l)(x—l—r—l—l)
—r
o (z4+1)-(x+r+1)
we achieve the result
Ar=t = (—r)p=t=L &

Corollary 3.4.5. For any integer r # 0 and any real number z,
Axt = rei=t

Proof: This combines Theorem 1.5.1 and Proposition 3.4.4. &

Corollary 3.4.6 [Monomial Formula]. For any integers r # —1 and n,

n—1 kJ‘+1 n
>kt = (3.4.4)
k=0 T+ 1 k=0

Proof: This combines the Fundamental Theorem and Corollary 3.4.5. &

Example 3.4.5: To make a direct evaluation of the left side of Equation (3.4.4)
for r = =2, —3 and n = 4, we first calculate the following partial table of the values
of k=, 1.e.; of a small integer to a small falling negative power.

P01 o2m 3 4

IR 1 1 1 1
1 2 3 4 5

9| L o 1 1 1
1-2 2-3 3-4 4.5 5.6

S (S R N U S

1-2-3 2-3-4 3-4.5 4.5-6 5.6-7

Case r = —2 and n = 4: The value on the left side 1s

1 1 1 1 4
0=2 + 1=2 4922 4322 — - 4 - 4 _- 4 _ -  — =
+ + + 1~2+2~3+3~4+4~5 5
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and the value on the right side is

k=L |t 4=L o=L 1 1 -1

4
[ e L P s S
k=0
Case r = —3 and n = 4: The value on the left side is
1 1 1 1 7
=3 4 123 4 9=3 -3 = = —
(===t 123 723473457756 ~ 30
and the value on the right side is
k=2 4=z =2 1 1 7
-2 |y -2 -2 (=2)-5-6 (=2)-1-2 30
Harmonic Numbers
In the formula for evaluating > k= for the special case with » = 1 there is

another analogy between the natural logarithm In n and the harmonic number H,,,
which lies in the similarity of the derivative

d
—Ilnz = 27!

dx

to the difference formula

AHn = Hn+1 -,

Il
TN
= =

+

+
=
+ | =
—
SN

|
TN
= =

+

+
3| =
SN

and, naturally enough, in the similarity of the summation formula

n—1
> k=L = m, (3.4.5)
k=0

to the integration formula

¢
/ 27 e = Inz
r=1
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Product Formula

Analogous to the product formula for derivatives,

(u(w) -v(2)) = w'(2)-v(x) + u(x) v'(x)
there is a product formula for finite differences.

Proposition 3.4.7 [Product Formula]. Let h(x) = g(x) - f(x). Then
Ah(x) = Ag(x) - fle+1) + glz) - Af(x) (3.4.6)

Proof: Once again, it is sufficient to do some routine algebraic manipulation,
starting from an application of the definition of the difference operator.

Ah(l‘) = h(l‘—l—l

&

Il
>
=
&
=
3]
+
=
+
=
&
>
=
3]

Example 3.4.6: Take g(n) = nZ and f(n) = H,. According to the product
formula (3.4.6), we have

A(nan) = An? - H,4 1 + 0% AH,

1
= 2n-H, - 1)-
n +1 + n(n )n+1
1 n?—n
= 2n| H,
n( +n—|—1)+ n+1
n2+n
= 2nH,
" + n—+1
= 2nH, + n

Unsurprisingly, evaluating the defining formula (3.4.1) for a finite difference yields
the identical result.

AnEH,) = (n+1)2H,y — n2H,

(n* +n) (Hn + L) — (n® —n)H,

n+1
n2+n 5

2
i,
(n®+n) +n—|—1

= 2nH, + n
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Summation by Parts

From the infinitessimal calculus, we recall the following formula for integration
by parts

/abu(l‘)v/(l‘)dx = w(e)u()| - /abu/(x)v(l,)dx

The finite calculus has an analogous formula, called summation by parts.

a

Proposition 3.4.8 [Summation by Parts]. Let g(k) and f(k) be functions on
the integers. Then

S o) AUW) = glrw|_ - YA fEEY) (347

Proof: This corollary to Proposition 3.4.7 follows from the Fundamental Theorem
of Finite Calculus. &

Example 3.2.2, revisited again: After using the substitutions
gk) = kX and  f(k) = 2*

summing the sequence (k2% | k=0, 1, 2, ...) by parts takes the form
i - Y
k=0 k=0

kLot ‘”H — 3 keprH
0
k=0

which leads to the calculations
= (n+1)- 27T —2) o
k=0

= (n+1)-27Th — 202" 1)
= (n—1)-2"" 4+ 2

Example 3.2.3, revisited: Since integration by parts is helpful in evaluating the
integral of Inz to zlnz — 2, it 1s unsurprising that summation by parts is helpful
in summing H, to nH, — n.

n—1 n—1
S Hi = > kMH,
k=0 k=0

n—1 n—1

n 1 n
:le‘— kll—:le‘— 1
b, = 2 bt D K, — 2
k=0 k=0
= (nH,—0) —n

nH, —n
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Table 3.4.1 Formulas for the calculus of differences.

function difference function
k- rkI=L
o* (e=1) o*
1
Hn n+1
g(k)f(k) | Aglz) f(x+1) + g(z) Af(x)

Table 3.4.2 Formulas for the calculus of summations.

summation formula reference
n—1 o 1
L _
Sk e#0 — (3.4.3)
k=0
n—1 nr+1
k- -1 344
2 r# ol (3.4.4)
- n—1
Z k=L H, (3.4.5)
k=0
n—1 n n—1
9B B0 | gmrw] = S A S (34T)
k=0 - k=0

EXERCISES for Section 3.4

In each of the Exercises 3.4.1 through 3.4.16, evaluate the given sum by finite cal-
culus. Perhaps compare the result with your solution to the corresponding exercise

from §3.2 or from §3.3.

3.4.1% Zn::’)k 3.4.2 Zn:zﬁ
k=0 k=0

3.4.3 Zn:k:’)k 3.4.4% ZH:M’@
k=0 k=0

3.4.5 Z/ﬁ:&k 3.4.6 ka
k=0 k=0

3.4.7 Zn::r’“ 348 > 47F
k=0
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3.4.9 Zn:ki%_k 3.4.10 Zn:kzr’“
k=0 k=0
3.4.11 Zn:kZB_k 3.4.12 Zn:k%—’“
k=0 k=0
3.4.13 ZH:Q% 3.4.14 angk
k=0 k=0
3.4.15 Zn:k?’ 3.4.16 Zn:k‘*
k=0 k=0

In Ezxercises 3.4.17 and 3.4.18, evaluate the given sum with finite calculus. Perhaps
compare each with the corresponding exercise from §3.3.

3.4.17 Zk§ 3.4.18 Z/&:’)k
k=0 k=0

In Ezxercises 3.4.19 and 3.4.20, evaluate the given sum with finite calculus. Perhaps
compare with Erercises 3.2.17 and 3.2.18, respectively.

3.4.19% Zka 3.4.20 Zszk
k=0 k=0

In each of the Ezercises 3.4.21 through 3.4.26, calculate the difference function
Af(n) for the given function f(n).

3.4.21 k2 3.4.22 k* 3.4.23 4k

3.4.24% k=2 3425 k34 k2 3.4.26 47F

In each of the Exercises 3.4.27 through 3.4.32, calculate the anti-difference function
for the given function f(n).

3.4.27 k2 3.4.28 k* 3.4.29 4k

3.4.30% k=2 3431 k>4 k2 3.4.32 47F

In Ezercises 3.4.33 through 3.4.37,

a. calculate the next two terms of the given sequence.

b. specify the function that yields the given sequence.
Hint: use difference tables, which were introduced in §1.4.

34335 7 8 15 28 47 72

3434 1 -2 -3 10 49 126
3435 0 0 2 8 20 40

3436 2 5 15 33 61 103

3437 0 -1 —6 —-13 —4 87 470
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3.5 ITERATION AND PARTITIONING OF SUMS

This section is concerned with iterated summation. In the simplest case, the

index set U of the sum
S = Z s

ieU

is a 2-dimensional array, such that one could first take the row sums and then
add those sums to get the total. Sometimes the first summation, called the inner
summation, 1s for groupings other than rows. In selecting groupings for the inner
summations, the consideration is that both the inner summation and the other sum-
mation, called the outer summation, should be amenable to reasonably convenient
methods of evaluation. Sometimes, when given a double summation to evaluate, it
1s helpful to swap the order of summation, as described here.

Double summation need not be twice as hard. Indeed, sometimes a single sum is
recast as a double sum to make it more tractable. A possible strategy in evaluating

a difficult sum
S = Z s

€U

v=Ju

keK

is to find a partition

such that each of the sub-sums
Sk = Z s
ieUy
is tractable, and also such that the sum

LD S) 9

keK keKieUy

of the sub-sums 1s tractable.

Independent Indices

An example from graph theory illustrates the simplest case of a double sum-
mation, in which the index of the inner sum is independent of the index of the outer
sum.

Example 3.5.1: The degree of a vertex v of a graph is the total number of edge-
incidences on v. Each edge e contributes 0, 1, or 2 to that total, corresponding to
the number I(v,e) of times that vertex v is an endpoint of edge e. Figure 3.5.1
shows a graph, with its vertex degrees as bold numbers.
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s 6 u 4
b
v X
z
C d
2 y 4

Figure 3.5.1 Degrees of the vertices of a graph.

Thus, the sum of all the edge-vertex incidences

Z I(v,e)

(v,e) EVXE

is indexed by the cartesian product V x E, where V' is the set of vertices and E the
set of edges. The obvious partition of this sum over a cartesian product of two sets
is into an iterated sum

Z I(v,e) = ZZI(U,@)

(v,e) eV XE vEV e€l

over the incidence matrix, with rows labeled by vertices and columns by edges, so
that the row-sums are the degrees.

s t u v v x y z degree
a 2 2 1 0 0 0 0 1 6
6 0 0 1 1 1 1 0 0 4
c 0 0 0 0 00 11 2
d 00 0 1 1 1 10 4

Of course, the result of adding the row-sums of an array equals the result of adding
the column-sums. In this case, since every column-sum is 2, adding the column-
sums is equivalent to doubling the number of edges, which is faster than adding
degree-sums. This observation yields an alternative proof of Euler’s Degree-Sum
Theorem (Theorem 0.6.1).

Theorem 3.5.1 [Euler’s Degree-Sum Theorem]. The sum of the degrees of
the vertices of a graph equals twice the number of edges.

Proof: Let V = (V, E) be a graph. Then starting from row sums

Z deg(v) = Z Z I(v,e) sum ol Tow sums

veEV vEV eeE

swap the order of summation:
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= Z Z I(v,e) sum of column sums

eeEveEV

= E 2 every column sum is 2
ecE

2|E| &

Interchanging the order of summation is a fundamental technique for evaluating
an iterated sum over an array. It is useful when the implicit repartitioning yields
inner sums and an outer sum for which the total effort of evaluation is less than
that for the given iterated summation problem.

In this instance, the cost of repartitioning was trivial, because the index of the
inner sum of the given iterated sum was independent of the index of the outer sum.

Dependent Indices

If the limits of the index of the inner sum are independent of the index of the
outer sum, then the order of summation can be transposed without changing the
limits of either index. However, it is quite common for the outer index to range
from 1 to n, while the upper limit of the inner index equals the outer index. As
illustrated in Figure 3.5.2, this amounts to summing over the rows of the lower-left
triangle of an n X n array.

b row sums bl,l column sums
b2,1 bz,z b2,1 bz,z

by, by, bssl by, | bsa| b3

lbn,l bn,z bn,3 e bn,n | bn,l bn,z bn,3 bn,n

Figure3.5.2 Row sums and column sums.

Interchanging the order of summation for this form of iterated sum turns the outer
sums into column sum. The new inner index (the row index) has the outer index
(the column index) as its lower limit and ranges up to n.

Example 3.2.3, revisited: The sum of the harmonic numbers has previously been
evaluated by perturbation and by finite calculus. Another effective method is going
to a double sum and then interchanging the order of summation.

3
|
—

write as double sum

.| =

n—1
S -
k=0

3
I
= O
3
—_

swap order of summation

.| =

[y
I
—
o

[
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n—1 1 n—1
= - Z 1 factor out constant
R -
n—1
1 .
= Z -(n—17) evaluate inner sum
j=1 J
n—1 .
n_ 1)
j=1 J J

add zero

.S
|
[,
~—

l

l
Y
[
o
TN TN

[l
7
[l
g

Y
I
—
.
I
—
Y
|
—

3
Ay

n — N

In circumstances when swapping rows and columns of an array does not ade-
quately reduce the evaluation, it may help to reorganize the partitioning of sum-
mation so that the inner sum is over some tractable geometric pattern other than
a row or column.

Example 3.5.2: To envision how to repartition the double sum
Sl
k=1 j=1 k— J

as an aid in evaluation, it helps to write out the array of summands, like this.

KLl 1 o2 3 4 o
2 |1
31 7 1
415 301

5ol 1 5 31

Evidently, summing rows or columns amounts to summing the harmonic numbers.
However, the strategy of summing on the southeastward diagonals (in which the
entries are constant) yields the following result, which is consistent with Example
3.2.3, which also sums harmonic numbers.

n n—d n n n
1 n—d n d
D P i 2y
d=1 j=1 d=1 d=1 d=1
n 1 n
= n i 1 = nH, — n
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Linear Partitioning: Floor Sums

Sometimes a sequence of less tractable summands can be partitioned into con-
secutive finite subsequences with tractable sums. In particular, this may occur when
the summands are the floors or ceilings of a non-decreasing sequence.

Example 3.5.3: Seeking to evaluate a sum of floors may suggest resorting to an

approximation, such as
n
> Vk
k=0

/” 21 2dx
=0

n

t
)
X

X

2 39

= -

=0

2 39

= —-n

For n = 9, the value of this approximation is

2 2
=39 =221 = 18

VO] [V + [ve] + [ V3]
+[ V] [VB]+ [ V8] + V7] + [ VE] + [ o)

=04+14+14+14+24+24+24+24+24+3 =16

Sometimes, an approximation this rough meets the purpose at hand. However,
it is helpful to be in command of methods that get an exact value when it is needed.
There are five steps in the derivation of an exact evaluation formula for such a sum
by the method of linear partitioning.

Step 1. List the early terms of the sequence, and partition them according
to the value of the summand.

Step 2. Express the size of all but the last cell.

Step 3. Express the size of the last cell, which needs individual attention,
since 1ts size might not follow the same rule as the other cells.

Step 4. Evaluate the given sum.

Step 5. Confirm for a small case.

We now demonstrate the application of this method to Example 3.5.3.
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Example 3.5.3, continued: As the index k of the sum
S|V
k=0

increases, the value of the summand [k | increases also, but more slowly than the
index itself.

Step 1 1s to partition the index values according to the value of the summand. This
is represented for £ = 0,1,...17 as follows:

Table 3.5.1 Partitioning for the summand |k|.

1 3 5 7

AN N —N—
k 0 12345678 9101112131415 1617
IVk] 0 1112222233 3 3333 44

Step 2 1s to express the sizes of all but the last cell. Each other cell in Table 3.5.1 is
grouped with an overbrace, with its size written over the overbrace. The smallest
number within each cell is the square m? of some number m. Since the number
(m + 1)? starts the next cell, it follows that the cell containing m? is

{mz, m24+1, ..., m2—|—2m}
Evidently,
#{mz, m24+1, ..., m2—|—2m} = 2m+1

Step 3 is to express the size of the last cell

{IVvn|? ..., n}

whose entries correspond to the uppermost summand |/n |. Its size is
#{ |Vl ...,n} = n—|Vn|*+1

Step 4. To evaluate the given sum, we multiply each of the realized values of the
summand by the corresponding number of values of the index & and then sum the
products.

n LV |-1
S VRl = Y @mal)m o+ (- [VEE 1) VA
) v
=Y @l 4 (- WAL D) |V
m3 am2\ (V7 ,
= (I ) (A ) Al

- QLéﬁJ_+3LéﬁJ_ + (n- VAl +1) - [val
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Step 5. We confirm for the small case n = 11.
Sum values in Step 1: 0+14+14+14+2+24+24+2+24+34+3+3 = 22.
Compare with the value by formula of Step 4.

2N31_1J§+3N21_1J2 N (11—M1J2+1)WHJ
= 4+ 9+33 = 22

Example 3.5.4: We now use linear partitioning to evaluate the sum
n

> llgk)

k=1

Step 1. List the early terms of the sequence, and partition them according to the
value of the summand.
102 4 8 16

AN N N— — N —
k 1 2345678---1516---31 3233 ---
Ughk] 0 11222233 4.4 55 ...

Step 2. To express the size of all but the last cell, we observe that the cell corre-
sponding to the summand m is

A R
Its size is
#{27, 2" 41, ..., 27 1) = 2™
Step 3. The last cell is
{QUg"J, ollen] 4 q n}
Its size is
n—2llerl 41

Step 4. Evaluate the given sum, using the previously derived formula (e.g., see
Example 3.2.2) for summing k - 2.

n llgn|—1

ZngJ = Z m-2™ 4+ |lgn] (n—?ng”J -1-1)

k=1
Step 5. Confirm for the small case n = 9.

Sum the values in Step 1: 0+ 1 +1+24+24+24+24+3+3 = 16.
Compare with the value given by the formula of Step 4.

= (3-2)-2° + 2 +39-2°4+1)
=12 +2+3.2=16
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Remark: The two evaluations just considered have an easy second step, because
within each group the value of the summand 1s constant. If the summand were
kL\/EJ, for instance, then an inner sum might be introduced in Step 2 for the
partial sum over the interval corresponding to a group.

EXERCISES for Section 3.5

In each of the Exercises 3.5.1 through 3.5.12, evaluate the given double sum.

3.5.1 Zn:i(j—i—k) 3.5.2 Zn:ijk

k=0j=0 k=0j=0
3.5.3 ii(j-l—?k—i—i%) 3.5.4 ZH:ZH: (k)
k=0j=0 k=0j=0 J
n k n k
355% > N (i+k) 356 > > j-k
k=07=0 k=0j=0
n k n k k
357 D N (i+2k+3) 358 > Y ()
k=0j=0 k=0j=0 J
3.5.9 Zn:zn:(j—l—k’) 3.5.10 Zn:zn:jk
k=0j5=k k=0j5=k
3511 Zn:i(j+2k+3) 3.5.12 ZH:ZH: (k)
k=0j5=k k=0j5=k J

In each of the Exercises 3.5.13 through 3.5.20, evaluate the given sum.

3.5.13 ZEJ 3.5.14% > (k mod 3)

3.5.15 zn: a 3.5.16 Zn: [tog, |
5517 S Wﬂ 3.5.18 zn: [1g k]
3.5.19 zn: (|VE| mods) 3.5.20 Zn: (k? mod 3)

k=0 k=0
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3.6 INCLUSION-EXCLUSION

Sometimes, the index set for a complicated sum has subsets with tractable
sums, but those subsets overlap. The strategic insight of the inclusion-exclusion
method is that the partial sums over those subsets can be combined into a total
sum by subtracting the overcounts.

Venn Diagrams for Two Overlapping Subsets

A Venn diagram provides a visual model for evaluating sums over an index set
given as the union of overlapping subsets. The simplest case has two overlapping
subsets, A and B, as in Figure 3.6.1. The domain from which both subsets are
drawn is denoted U.

Figure 3.6.1 Venn diagram for two overlapping subsets.

Suppose that the objective is to calculate the sum Saup over the set AU B, with
partial sums S4, Sp, and Sanp over subsets A, B, and Sanp, respectively. Then

Sauve = Sa+ S — Sannm

That is, to calculate S4up, we add S4 and Sp and then subtract the overlap Ssnp.

Example 3.6.1: The number of integers in the range 1,...,n that are divisible
either by 2 or by 3 is expressible as a consecutive sum with indexing in the integer
interval [1 : n] and the summand

Flk) = 1 if n is divisible either by 2 or by 3

0 otherwise
that is, by the sum

> (2\k v 3\k)

k=1
Every number that contributes 1 to this sum lies either in the set {k € [1 : n] | 2\k},
with cardinality [n/2], or in the set {k € [1 : n] | 3\k}, with cardinality [n/3].
Adding these two cardinalities overcounts by [n/6], the number of integers in [1 : n]
that are divisible both by 2 and by 3. Thus,

n

> @\k v 3\k) = {gJ n {gJ B {%J

k=1
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In Figure 3.6.1,
A = {ke[l:n]|2\k}
and

B = {ke[l:n]]|3\k}

Their intersection 1s

ANB

{ke[l:n]|6\k}
and

U = [l:n]

In Example 3.6.1, the implicit summand is the number 1, since we counted the
number of elements in a set. That 1s,

Sx = > 1 =|X|

keX
for X = A, B, ANB, or AUB

Example 3.6.2: A related problem is to calculate the sum of the numbers that
are divisible by 2 or 3. Then, instead of having a constant value of 1, the value of
the summand equals the index itself. That is,

SX:Zk

keX
for X = A, B,ANB, or AUB

Thus,
[n/2] [n/2] 2
. . n/2|*+ |n/2
Sa = Zk:Z?]:QZ]:Q—[/JQL/J
2\k<n j=1 j=1
Similarly,
_ _ o [n/3]2+|n/3]
Sp = Z k = 3#
3\k<n
and
n/6|% + |n/6
Sap = Yk = plofO Lo
6\k<n
Therefore,

Saup = Sa + S — SanB

o In/2 % 102 I3+ nf3] g Lnf6 + 1)

For the small case n = 14, direct addition and the formula both yield S4,p = 68.
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Venn Diagrams for Three or More Subsets

Venn diagrams are quite commonly drawn for three overlapping subsets, and
they have this general definition.

DEFINITION: A family of n simple closed curves (typically circles or ellipses) in the
plane, whose interior regions represent some subsets Ay, As, ..., A, of aset A within
a domain U, is called a Venn diagram, after the logician John Venn (1834-1923).

TERMINOLOGY: The domain U from which both the subsets A and B are drawn 1s
commonly called the universal set.

Example 3.6.3: The Eurasian Translators Company has 15 expert linguists fluent
in at least two of the languages Armenian, Bulgarian, and Czech. Of these,

Sanp = D speak Armenian and Bulgarian
Sanc = 7 speak Armenian and Czech
and Spnc = 9 speak Bulgarian and Czech

How many speak all three languages? Figure 3.6.2 is the relevant Venn diagram.

Figure 3.6.2 Venn diagram for three overlapping subsets.

Whereas 15 is the given number of linguists fluent in two or more of the three
languages, the sum

Sane + Sanc + S = 5+7+9 = 21

of the numbers corresponding to the three intersection-regions for which data are
given triple-counts the contribution S4npn¢ in the triple intersection at the center
of the diagram and counts all the other translators only once. Thus, subtracting
15, thereby excluding the total number of translators who speak at least two of the
languages by the calculation

QSAOBOC = 21—15 = 6

yields the result
2S4nBnc = 6

from which one concludes that

SanBnc =3
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After deriving an analytic solution to a Venn diagram problem, it is helpful to check
the result by inserting numbers into the relevant regions of the diagram. In this case,
the number 3 is inserted into the centermost region, representing the population of
the region AN BNC in Figure 3.6.3. Then it must be excluded from the populations
given for composite regions ANB, ANC, and BNC, in order to obtain populations
for the simple regions they contain.

NOTATION: The complement of a set X in a domain U is denoted X.

Figure 3.6.3 Inserting numbers into regions of a Venn diagram.

We observe that all of the inserted numbers are consistent with the original data as
well as with the derived population of AN BNC.

SanB = b =243 = SAang + SanBnc
443 = SunEac T SanBac
and Sgre = 9 = 643 = SZOBOC + SanBnc

Sanc

Context for Inclusion-Exclusion

A more general context of inclusion-exclusion evaluations is a set A within a
domain U, a real-valued function f : U — R, and a representation

A = CJA’“
k=1

of set A as a union of subsets Ag, conceptualized like a Venn diagram with »n
mutually intersecting subsets. (Some of the regions may be empty.)

Remark: Quite often, the function f: U — R is the constant function f(z) = 1,
in which case the evaluation amounts to calculating the cardinality of a region.

NOTATION: The intersection of two sets A; and A; may be denoted by the juxtapo-
sition A; A;.

DEFINITION: An intersection A;, A;, -+ - A;, 1s called an r-fold intersection of the
family {Ag}.
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Formulas for Inclusion-Exclusion

As illustrated by Example 3.6.3, evaluating sums over combinations of regions
in Venn diagrams takes some care. Fortunately, such evaluations can usually be
reduced to the application of two or three general inclusion-exclusion equations for
sums over single regions.

Theorem 3.6.1 [Exclude-All Equation for Set Size]. Let A;,..., A, be sub-
sets of a set U, with

A = CJAk and S, = Z | Ay - Ay
k=1

11,..,00€[1:n]

so that, for r = 1,...,n, the number S, is the sum of the cardinalities of all r-fold
intersections of the family {Ag}. Then

A = | WA A = UL+ (-1FS
k=1

Proof: First suppose that the element x € U lies in none of the sets A;. Then z
1s counted once on the left side of the equation, and it is counted in the formula on
the right side only by the summand |U]|, and not by any summand Sy.

Now suppose that x lies in exactly m of the subsets A;, with m > 0. Accordingly
z is not counted on the left side of the equation. On the right side, it is counted
(TZ) times by Sk, since there are (Tg) ways to choose k sets from the m sets A; that
contain z, and  is also counted once by |U|. Thus, its net count on the right side

() - Ser()

=0 o

The other main inclusion-exclusion formula i1s derivable by the same approach, or,
as shown here, as a corollary of Theorem 3.6.1.

Corollary 3.6.2 [Include-All Equation for Set Size]. Let Ay,..., A, be sub-
sets of a set U, with

A = CJAk and S, = Z | Ay - Ay
k=1

11,..,00€[1:n]
so that, for r = 1,...,n, the number S, is the sum of the cardinalities of all r-fold
intersections of the family {Ag}. Then

n

Al = D (=DFs,

k=1
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Proof: Observe that the universal set U 1s the disjoint union of the set A and the

set A7 Ay --- A,. Therefore,

U] = Al + | T3 A5 - Ay |
and, accordingly,

A= U] — | A o A
and then, by Theorem 3.6.1,

- (|A—1A—2~~A—n|—2<—1>ksk) A A
k=1
= D (=)t %
k=1

Theorem 3.6.3 provides an inclusion-exclusion formula for the sum of the values
of an arbitrary function f : U — IR on the domain U, not simply for counting the
size of a set.

Theorem 3.6.3 [General Exclude-All Equation]. Let Ay, ..., A, be subsets

of a set U, with
A= JA
k=1

and let f : U — R be a real-valued function. Let the sum

So= > > )

i1,..,ir€[1in] TEA A4,

be taken over all r-fold intersections of the family {Ay}. Then

Y @) = Y )+ Y1

TEA; - An zelU

Proof: The proofis a straightforward modification of the proof of the Exclude-All
Equation for set sizes. &

In the remainder of this section, the two main inclusion-exclusion formulas are
applied to various combinatorial problems.

Stirling Subset Numbers

Although there are various similarities between Stirling numbers and binomial
coefficients, there is no known closed formula for Stirling numbers of either kind,
unlike the situation for binomial coefficients. However, there is a summation for-
mula for a Stirling subset number, whose derivation by inclusion-exclusion is our
immediate objective. The ideas involved are encapsulated in the following example.



Section 3.6 Inclusion-Exclusion 205

Example 3.6.4: The Stirling subset number {Z} is the number of ways to dis-
tribute a set of b objects into 4 cells with no cell left empty. For a problem this
small, listing cases is easy enough, but it is instructive to apply inclusion-exclusion.
Toward that objective, for i = 1,2,3,4, let A; be the set of distributions with box
¢ left empty. Clearly,

|4;] = 3% fori=1,23,4
|A;Aj] = 2°  forij
|AjAjAg| = 1° for mutually distinct 7, 7, k

Moreover,
4 5
Sk = i (4—k) (3.6.1)

since there are (:) ways to choose k of the subsets A; from the collection of four such
subsets, and each intersection A;, A;, - - - A;, contains (4—k)® objects. Furthermore,

LG = {i}‘“ (3.6.2)

since each distribution with none of the boxes left empty amounts to assigning the
labels 1,2,3,4 to the cells of a partition. Finally, if U is the set of all ways to
distribute 5 objects into 4 cells, we have

|U| = 4° (3.6.3)
When we substitute into the Exclude-All Equation
|A_1A_2A_3A_4| = U] - 51+ 5 — S3+ S
the values from Equations (3.6.1), (3.6.2), and (3.6.3), we obtain the equation

(e - = (e (- (e

= 1024 — 972 4 192 — 4 = 240

5 240
= — =1
= {4} al 0

A confirming observation is that, since two of the elements are paired, and since
the others have cells to themselves, clearly

{1} =) -

In a similar manner, an inclusion-exclusion analysis leads to an identity for the
Stirling subset numbers
n
{m)

Proof of the following theorem simply generalizes the steps and calculations that
we have just completed.
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Theorem 3.6.4. Let n and k be a pair of non-negative integers. Then

k
n C(k
k! = —1)/ k—5"
O = ey (Fu-s
7=0

Proof: Fori=1,2,...,k, let A; be the set of distributions of n distinct objects
into k distinct boxes with box ¢ left empty. Clearly,

|Ail = (k=1)" fori=1,2,... )k
and, more generally, for any j € [1, k]

|Ai Aiy - As| = (k=5)" for mutually distinct 41,42, ..., 4;

Since there are (?) ways to choose the mutually distinct 7y, 22, ...,%;, and since S}

is the sum of the numbers of ways to leave j specific boxes empty (with others
possibly empty also), it follows, by analogy to Eq. (3.6.1), that

k
S; = (j)(k—j)" (3.6.1)
Furthermore,
LA A = {Z}k' (3.6.2')

since each distribution with none of the & boxes left empty amounts to assigning
the labels 1,2, ... k to the cells of a partition. Finally, if U is the set of all ways to
distribute n objects into k cells, we have

k
Ul = k" = (0) (k—=0)" (3.6.3)
Substituting the values from Equations (3.6.1'), (3.6.2"), and (3.6.3") just above into
the Exclude-All Equation
|Ar Ay - A | = U] = S+ So 4 (<1)5S,

we obtain the identity

(e = e Q- <>

Derangements

Inclusion-exclusion is also helpful in analyzing the derangement recurrence.

REVIEW FROM §2.1:
e A derangement is a permutation © with no fixed points.

e The derangement number D, is the number of derangements of the integer
interval [1 : n].
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e The derangement recurrence (see also §5.4) is
Dy =1, Dy = 0 (3.6.4a)
D, = (n=1)Dp_1 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>