Combinatorial Algorithms
For Computers and Calculators

Second Edition

This is a volume in
COMPUTER SCIENCE AND APPLIED MATHEMATICS
A Series of Monographs and Textbooks

Editor: WERNER RHEINBOLDT

A complete list of titles in this series appears at the end of this volume.

—x@mmMCOn>

N RE R -R R

Computer Science and Applied Mathematies
A SERIES OF MONOGRAPHS AND TEXTBOOKS

Editor
Werner Rheinboldt
University of Maryland

Hans P. Kinzi, H. G, TzscHACH, and C. A. ZEHNDER. Numerical Methods of Mathe-
matical Optimization: With ALGOL and FORTRAN Programs, Corrected and Aug-
mented Edition

AzriEL ROSENFELD. Picture Processing by Computer

JAMES ORTEGA AND WERNER RHEINBOLDT. Iterative Solution of Nonlinear Equations in
Several Variables ’

A7ZARIA PAz. Introduction to Probabilistic Automata
Davip YouNa. Iterative Solution of Large Linear Systems
ANN YasuHArA. Recursive Function Theory and Logic
JaMmEs M. ORTEGA. Numerical Analysis: A Second Course
G. W. STEWART. Introduction to Matrix Computations

CHIN-LIANG CHANG AND RicHARD CHAR-TUNG LEE., Symbolic Logic and Mechanical
Theorem Proving

C. C. GorLies AND A. BoropiN. Social Issues in Computing

ErwiN ENGELER. Introduction to the Theory of Computation

F. W. J. OLveR. Asymptotics and Special Functions

DioNysios C. TsicBRITZIS AND PHILIP A, BERNSTEIN. Operating Systems
RoBERT R. KORFHAGE. Discrete Computational Structures

PHiLIP J. Davis AND PRILIP RaBINoWITZ. Methods of Numerical Integration
A, T. Berzmiss, Data Structures: Theory and Practice, Second Edition
N. CaristopHIDES. Graph Theory: An Algorithmic Approach

ALBERT NIJENHUIS AND HERBERT S, WILF. Combinatorial Algorithms
AZrIEL ROSENFELD AND AvINASH C. Kaxk. Digital Picture Processing
SAkTI P. GHosH. Data Base Organization for Data Management

DioNysios C. TSICHRITZIS AND FrReEDERICK H. LocHovsKy. Data Base Management
Systems

WiLLiaM F, Ames. Numerical Methods for Partial Differential Equations, Second
Edition .
ARrNoOLD O. ALLEN. Probability, Statistics, and Queueing Theory: With Computer Sci-
ence Applications

ALBERT NIJENHUIS AND HERBERT 8. WiLF. Combinatorial Algorithms. Second edition.

In preparation

AZRIEL ROSENFELD. Picture Languages, Formal Models for Picture Recognition
Isaac FRIED. Numerical Solution of Differential Equations
JAMES 8. VANDERGRAFT. Introduction to Numerical Computations

Combinatorial Algorithms

For Computers and Calculators
Second Edition

ALBERT NIJENHUIS and HERBERT S. WILF

Department of Mathematics
University of Pennsylvania
Philadelphia, Pennsylvania

ACADEMIC PRESS New York San Francisco London

A Subsidiary of Harcourt Brace Jovanovich, Publishers

1978

CorpyriGHT © 1978, BY AcapEMIC PrEss, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM CR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER,

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NWl 7D

Library of Congress Cataloging in Publication Data

Nijenhuis, Albert.
Combinatorial algorithms for eomputers and calculators.

(Computer science and applied mathematics)

First ed. published in 1975 under title: Combina—
torial algorithms.

Bibliography: p.

Includes index.

1. Combinatorial analysis——Computer programs.
2. Algorithms. [Wilf, Herbert S., 1931~
joint author. II. Title.
QAI64.N54 1978 511°.6'0285425 78-213
ISBN 0-12-519260-6

PRINTED IN THE UNITED STATES OF AMERICA

To
P. G. J. Vredenduin, for his early inspiration and support,
Henry and Bernice Tumen, with affection and esteem.

Contents

Preface to Second Edition xiii

Preface to First Edition xv

Introduction 1
Aims 1

Highlights 2

Categories of Usage (Part I) 3
Structure of the Chapters 5

The Specifications List 5

Structure of the “Next” Programs 6
Structure of the “Random” Programs 7
Arrays and Specifications 8

PART 1 COMBINATORIAL FAMILIES

1 Next Subset of an n-Set (NEXSUB/LEXSUB) 13

(A) The Direct Approach 14

{B) The Gray Code 14

Algorithm NEXSUB 17

(C) Lexicographic Sequencing 17
Algorithm LEXSUB 18

Subroutine Specifications (NEXSUB) 18
Subroutine Specifications (LEXSUB) 19
Sample Qutput (NEXSUB) 20

Sample Output (LEXSUB) 21

I vil

viil /| CONTENTS

2 Random Subset of an n-Set (RANSUB)

Algorithm RANSUB 23
Subroutine Specifications 23
Sample Output 24

Next k-Subset of an n-Set (NEXKSB/NXKSRD)

Algorithm NEXKSB (Lexicographic) 27
Flow Chart NXKSRD 31

Subroutine Specifications (NEXKSB} 32
Subroutine Specifications (NXKSRD) 33
Sample Output (NEXKSB) 35

Sample Qutput (NXKSRD) 36

Random k-Subset of an n-Set (RANKSB)

Algorithm RANKSB 41
Algorithm RKS2 43

Subroutine Specifications 43
Sample Intermediate Result 45
Sample Output 45

Next Composition of n into k Parts (NEXCOM)

Algorithm NEXCOM 49
Subroutine Specifications 49
Sample Output 50

Random Composition of n into k Parts (RANCOM)

Algorithm BANCOM 52
Subroutine Specifications 52

Next Permutation of n Letters (NEXPER}

Algorithm NEXPER 58
Subroutine Specifications 59
Sample Qutput 61

Random Permutation of n Letters (RANPER)

Algorithm RANPER 62
Subroutine Specifications 63
Sample Output 63

Next Partition of Integer n (NEXPAR)

Algorithm NEXPAR 68
Subroutine Specifications 69
Sample Output 70

23

26

39

46

52

54

62

85

CONTENTS / Ix

10 Random Partition of an Integer n (RANPAR) 72

Algorithm RANPAR 74
Subroutine Specifications 75
Sample Output i

Postscript: Deus ex Machina 78
Algorithm NEXT PLANE PARTITION 84

11 Next Partition of an n-Set (NEXEQU) 88

Algorithm NEXEQU 90
Subroutine Specifications 90
Sample Output 91

12 Random Partition of an n-Set (RANEQU) 923

Algorithm RANEQU 93
Flow Chart RANEQU 96
Subroutine Specifications 97
Sample Output 98

13 Sequencing, Ranking, and Selection Algorithms in
General Combinatorial Families (SELECT) 99

(A} Introduction 99

(B} General Setting 100
Algorithm NEXT 102

(C) Examples 103

(D} The Formal Algorithms 1086
Algorithm SELECT 107
Subroutine Specifications 108
(E} Decoding 113

Sample Qutput 115

14 Young Tableaux (NEXYTB/RANYTB) 117

{A) Introduction 117

(B) Lexicographic Sequencing 120
Algorithm NEXYTB 122

{C) Random Selection 123

Algorithm RANYTB 127

Subroutine Specifications (NEXYTB) 128
Subroutine Specifications (RANYTB) 130
Sample Output 131

PART 2 COMBINATORIAL STRUCTURES

15 Sorting (HPSORT/EXHEAP) 135

Algorithm (I, n} 138
Algorithm TOHEAP 138
Algorithm SORTHEAP 139

x [CONTENTS

Subroutine Specifications (HPSORT) 140
Subroutine Specifications (EXHEAP) 141
Sample Cutput 142

16 The Cycle Structure of a Permutation (CYCLES)

Algorithm TAG 145
Algorithm INVERT 146
Subroutine Specifications 146
Sample Output 148

17 Renumbering Rows and Columns of an Array (RENUMB)

Algorithm RENUMB 155
Subroutine Specifications 155
Sample Qutput 157

18 Spanning Forest of a Graph (SPANFO)

(A) Introduction 158

(B) Depth-First-Search 160

Algorithm DEPTHFIRST 161

(C) A Breadth-First Algorithm 161

Algorithm LINK (x, €, n, E} 162

Algorithm VISIT (x, ¢, n, E, q,1,, m,, a} 164
Algorithm SCAN (x, ¢, n, E, p, Iy, mg, m, 1) 165
Algorithm COMPONENT {(x, ¢, n, E, p, k, L) 165
Algorithm SPANFO (x, ¢, n, E, k) 166
Subroutine Specifications 167

Sample Output 169

19 Newton Forms of a Polynomial (POLY)

Algorithm VALUE 171

Algorithm NEWTON 172

Algorithm TAYLOR 173 .
Algorithm STIRLING 174

Algorithm REVERSE STIRLING 174
Algorithm NWT (m, x, €, ¥) 175
Subroutine Specifications 175
Sample Qutput 177 -

20 Chromatic Polynomial of a Graph (CHROMP)

Algorithm CHROMP 182
Subroutine Specifications 183
Sample Qutput 185

21 Composition of Power Series (POWSER)

Algorithm POWSER (Options 1, 2, and 3} 190
Algorithm POWSER (Option 4) 191
Subroutine Specifications 191

First Sample Qutput, Option 1 193

144

150

158

171

178

187

Second Sample Quiput, Option 1 194
Sample Output, Option 3 194
Sample QOutput, Option 4 195

22 Network Flows (NETFLO)

23

24

25

26

27

Algorithm SWAP (i, j Option) 203
Algorithm INIT 203

Algorithm SORT 203

Algorithm XREF 204

Algorithm KZNET 205

Algorithm PUSHOUT (p, P) 206
Algorithm OLDFLOW (p) 207
Algorithm PUSHBACK (p) 207
Flow Chart PREFLOW 208
Algorithm PREFLOW 208
Algorithm NETFLO (n, E, €, v, source, sink, a, b, ¢, d, x}
Subroutine Specifications 209
Sample Output 215

The Permanent Function (PERMAN)

Computation of the Permanent Function 220
Algorithm PERMAN 223

Subroutine Specifications 224

Sample Oulput 225

Invert a Triangular Array (INVERT)

Algorithm INVERT 226
Subroutine Specifications 227

Triangular Numbering in Partially Ordered Sets

(TRIANG)

Algorithm TRIANG 230
Subroutine Specifications 230
Sample Qutput 231

The Mobius Function (MOBIUS)

Subroutine Specifications 237
Sample Output 238

The Backtrack Method (BACKTR)

(A) General (BACKTR) 240

Flow Chart BACKTR 244

Subroutine Specifications 243

{(B) Coloring the Vertices of a Graph (COLVRT) 246
Subroutine Specifications 247

Sample Qutput 248

{C) Euler Circuits (EULCRC) 249

Algorithm EULCRC 250

CONTENTS / x1

209

196

217

226

228

233

240

xll { CONTENTS

Subroutine Specifications 250

Sample Qutput 252

(D} Hamilton Circuits (HAMCRC) 256
Subroutine Specifications 257

Sample OQutput 1 258

Sample Output 2 260

(E) Spanning Trees (SPNTRE} 262
Subroutine Specifications 263

Sample Output 264

28 Labeled Trees (LBLTRE)
Algorithm LBLTRE 271
Subroutine Specifcations 272
Sample Qutput 273
29 Random Unlabeled Rooted Trees (RANRUT)
Algorithm RANRUT 279
Subroutine Specifications 279
Sample Output 281
30 Tree of Minimal Length (MINSPT)
Algorithm MINSPT 284
Subroutine Specifications 285
Sample Output 286
Exercises

Bibliographic Notes

References

Index

267

274

283

288
294
296

298

Preface to Second Edition

Since the appearance in 1975 of this work, the field of combinatorial
algorithms has continued its rapid evolution. We have substantially
rewritten several of the chapters in order to take account of theoretical
or algorithmic improvements, and to clarify the presentation.

The result has been that a number of speedups, storage economies,
and program simplifications have been made, some significant new
theoretical material such as that in the two new chapters (13 and 14)
has been added, and some minor errors have been corrected.

As an inducement to any reader who will point out to us an error or
misprint, we offer a copy of the complete errata sheet as it stands at
that time..

In the spring of 1977 one of us (HH.W.) had the pleasure of teaching a
course at Swarthmore College based on this book. One of the students
in that class, Mr. David Bayer, made a number of original and insight-
ful observations which have resulted in improvements to our al-
gorithms. We acknowledge our debt to him and wish him every suc-
cess in his young career as a mathematician.

¢ oan

Preface to First Edition

In the course of our combinatorial work over the past several years, we
have been fond of going to the computer from time to time in order to
see some examples of the things we were studying. We have built up a
fairly extensive library of programs, and we feel that others might be
interested in learning about the methods and/or use of the programs.
This book is the result.

It can be read as a collection of mathematical algorithms, and as
such we hope the reader will find much that is new and interesting.
Yet to do so would be to miss something that to us seems essential: the
interchange between the computer programs per se, the computer, the
algorithms, and ultimately the mathematics. To capture the complete
spirit of this work, we urge the reader to study the programs them-
selves. The extra dimension that the computer and the mathematics
bestow on each other is, we believe, worth the effort. Above all, we
hope we have placed in the reader’s hands a kit of building blocks
with which the reader can construct more elaborate structures of his or
her own.

The second-named author expresses his appreciation to the John
Simon Guggenheim Memorial Foundation for its support during the
writing of this book, and to Rockefeller University of New York for its
hospitality during the same period. Much of the original research
described herein was supported by the National Science Foundation.

We wish to thank Donald E. Knuth for reading the manuscript and
for making a number of extremely valuable suggestions that resulted
in improvements.

! xv

Introduction

AIMS

This book can be read at several levels. Those whose only need is
to use one of the computer programs can turn immediately to those
pages and satisfy their wants, Thus, on one level, this is a collection
of subroutines, in FORTRAN, for the solution of combinatorial
problems.

At the other extreme, pure mathematicians with no need of com-
puter programs will find much that is new and hopefully interesting
in these pages. For example, in the special section Deus ex Machina
(pp. 78-87), the random selection algorithms of Chapters 10, 12, and
29 are shown to be manifestations of a general phenomenon which
sheds light on a number of seemingly unrelated threads of research
in combinatorial analysis.

Between these two extremes is a rapidly growing category of
{(frequently youthful) persons who have access to a fancy calculator
(hand-held or table-top). They may not be interested in either the de-
tailed mathematics or the FORTRAN programs — yet we hope they will
find much to stimulate them and help them prepare their own pro-
grams,

Our hope, however, is that many readers will want to follow the en-
tire road from general mathematics to particular mathematics to in-
formal algorithm to formal algorithm to computer program and back
again, which occurs in virtually every chapter of the book.

Our other hope is that readers will view these methods and pro-

i1

2 / INTRODUCTION

grams as a beginning set of building blocks for their own kit of tools
and will go on to add to these tools to meet their own needs, so that
the contents of this book will be not a collection of pretty artifacts to
be looked at but basic elements of the growing and working equip-
ment of scientific investigation and learming.

HIGHLIGHTS

We preview some of the features which lie ahead. First, con-
cerning the random choice algorithms previously mentioned, in
Chapter 10 there is an algorithm for selecting, at random, a partition
of an integer n, so that all are equally likely to occur. This seems to
work for a special reason, but actually it works for a very general
reason described in the section Deus ex Machina which follows
Chapter 10. Another outcropping of the same idea is found in
Chapter 29 where we can select, at random, an unlabeled rooted tree
on n vertices so that all are equally likely, and, in Chapter 12, a
closely related idea results in the selection of a random partition of
an n-set.

In Chapter 13 there appears a unified approach to the problem of
selecting objects from combinatorial families. This approach may
help to pull together the methods which appear in Chapters 1-12 as
well as to motivate the interesting developments of Chapter 14, in
which a random selection algorithm is used to prove a rather difficult
theorem.

In Chapter 23 there is a calculation of the permanent function
which for an n X n matrix is about nf2 times faster than standard
algorithms at no cost in storage. It is in essence a variation of a
known method in which subsets of a set are processed in a special
sequence. The sequence is provided by the program in Chapter 1.

Further algorithms which merit special mention are the revolving-
door method of Chapter 3, which extends the spirit of Chapter 1 into
the realm of fixed cardinality, the sequential generation of composi-
tions, permutations, and partitions of Chapters 5, 7, and 9, the
random selection of k-subsets (Chapter 4) and compositions (Chapter
6), and the logarithmic-derivative-based composition of power series
(Chapter 21).

Chapter 22 on network flows uses a new implementation of a stan-
dard algorithm and works very smoothly on graphs whose edges
have positive capacities in both directions (e.g., undirected graphs).
Applications include graph connectivity and various matching

INTRODUCTION / 3

problems. The Mobius sequence (Chapters 24-26) is also elemen-
tary but minimizes storage space and computing time by suitable
relabeling of elements.

The backirack method of Chapter 27 is well known, and we have
added nothing new except for the specific implementation and appli-
cations. The renumbering method of Chapter 17 is curiously ar-
resting. The problem it solves is nonexistent within the scope of
mathematics, which does not concem itself with duplication of
storage requirements. Yet, in computation, such questions as this
thrust themselves to the fore time and time again.

CATEGORIES OF USAGE (PART 1)

We distinguish two kinds of usage, and try to deal with them both:
the exhaustive search and the random sampling. In algorithms of
search type, we have before us a list of combinatorial objects and we
want to search the entire list, or perhaps to search sequentially until
we find an object which meets certain conditions. For example, we
may wish to hunt through the list of all 3,628,800 permutations of 10
letters in order to find the distribution of their largest cycles.

Random sampling, on the other hand, is done when we want to get
the order of magnitude of a quantity of interest, but the exact deter-
mination of the quantity by exhaustive search would be so time con-
suming as to be impracticable. Thus, if we wanted to search through
the 87,178,291,200 permutations of 14 letters to examine their largest
cycles, it might be advisable to consider random sampling tech-
nigues.

These two categories of use call for different kinds of algorithms.
For a search, we want a subprogram which, each time we call upon
it, will present us with one of the objects on our list. We can then
process the object and call the subprogram again to get the next ob-
ject, ete. In broad outline, such a subprogram must (a) realize when it
is being called for the first time, (b) remember enough about its
previous output so that it can construct the next member of the list,
(c) realize, at the end, that there are no more objects left, and (d) in-
form the calling program that the end has been reached. The
algorithms in this work which are of the above type, and the lists of
objects which they search sequentially are

(1) NEXSUB All subsets of a set of n elements (n given).
LEXSUB All subsets of a set of n elements (n given).

(3) NEXKSB All k-subsets of a set of n elements (n, k given).
NXKSRD All k-subsets of a set of n elements (n, k given).

4 / INTRODUCTION

(5) NEXCOM All compositions of n into k parts (n, k given).
(7) NEXPER All permutations of a set of n elements (n given).
(9) NEXPAR All partitions of an integer n (n given).

(11) NEXEQU All partitions of a set of n elements (n given).

(14) NEXYTB All Young tableaux of a given shape.

The prefix NEX suggests “next,” because these routines deliver the
next subset, the next k-subset, etc,

In each case the routines are written in such a way as to minimize,
if not actually to eliminate, the bookkeeping responsibilities of the
calling program of the user. The detailed plan of construction of the
programs will be discussed overall in the next section and individu-
ally in each chapter.

The logic of a random sampling subroutine is much simpler. Given
the input parameters, the subprogram is expected to select at random
just one object from the list specified by the input parameter. Here,
“at random™ has the strict and consistently followed interpretation
that each object on the list has equal a priori probability of being
selected. If the list is short, of course, one might consider con-
structing the whole list and selecting a member from it at random.
The need for random selection methods, however, expresses itself at
exactly the point where the above naive approach fails, namely,
when the lists are too long to deal with in toto. What are needed,
therefore, are methods of constructing objects of desired type (the
construction depending on the choices of random numbers} in such a
way that all objects of the desired type are equally likely to result.

In some cases, these algorithms are trivial (Chapters 2 and 8); in
other cases, a simple application of known theorems yields the
algorithm (Chapter 24); and in still other cases, new methods are
needed and the algorithms appear here for the first ime (Chapters
10, 12, and 25). The complete list of algorithms in this work which
are of this “random” type and the lists of objects from which they
select are

{2) RANSUB All subsets of an n-set (n given).
{4) RANKSB All k-subsets of an n-set (n, k given).
(6) RANCOM All compositions of n into k parts (n, k given).
(8) RANPER All permutations of a set of n elements (n given).
{10) RANPAR All partitions of the integer n (n given).
{12) RANEQU All partitions of an n-set (n given).
(14) RANYTB All Young tableaux of a given shape.
(24) RANTRE All labeled trees on n vertices (n given).
{25) RANRUT All rooted unlabeled trees on n vertices (n given).

INTRODUCTION / §

STRUCTURE OF THE CHAPTERS

Each chapter follows roughly the same format, as detailed on
page 5.

{a) The mathematical basis of the problem is examined and the
chosen algorithm is informally described.

(b) A formal algorithm is stated.

(¢) Where appropriate, a complete computer flow chart is
shown in which the numbering of boxes mirrors the numbering of in-
structions in the actual computer program.

{d) The flow chart, if present, is described.

(e) Just prior to the FORTRAN program itself there appears a “Sub-
routine Specifications” list. Readers who want only to use a certain
program should turn first to this page in the chapter, for it contains
complete descriptions of the variables of the subroutine as a user
would need to know them. This Specifications list is described in de-
tail in the next section below,

{f) The FORTRAN program. All programs are written in SUBROU-
TINE form. While we have attempted to speak least-common-
denominator FORTRAN, it cannot be expected that every program will
always work with every compiler without slight changes. We believe
that such changes will be minimal, and usually nonexistent.

(g) A sample problem, described in detail, followed by output
reproduced from an actual machine run of the program.

THE SPECIFICATIONS LIST

Each computer program is immediately preceded by a specifica-
tions list which shows the name of the program and then the exact
form of its calling statement, Next there is a capsule statement of
what the program does, and then there is a list which shows, for each
variable which is named in the calling statement, the following in-
formation:

fa) The name of the variable.

(b) The type of the variable; e.g. INTEGER, REAL(N), IN-
TEGER (K} ,DOUBLE PRECISION(M,N}, etc. If a parenthesis is pres-
ent, the variable is an array, and the quantities inside the paren-
theses indicate the maximum size of the array, expressed in terms
_of SUBROUTINE parameters.

6 / INTRODUCTION

{¢) The column headed I/O/W/B describes the role which is
played by the variable in the interaction between the subroutine and
the “outside world.” In this column, opposite each variable, will be
found one of the five designations: I (input), O (output), I/O {input-
output), W (working), B (bookkeeping). We have found it desirable to
give quite precise meanings to these designations according to the
truth or falsity of the following three propositions:

PI: The value(s) of this variable at the time the subroutine is
called affects the operation of the subroutine.

P2: The value(s) of this variable is changed by the operation of
the subroutine.

P3: The computation of this variable is one of the main purposes
of the subroutine.

Then, our precise definitions of the five designations of variable
are these:

I=(PI)
O = (not P1) and (P2) and (P3)
I/O = (P1) and (P2) and (P3)
W = (not P1) and (P2) and (not P3)
B = (P1) and (P2) and (not P3)

In particular, the user must be careful not to change inadvertently
the values of variables designated I/O or B between calls of the
subroutine, whereas variables of designation O,W may freely be used
for any purposes by the calling program. The user need not concern
himself otherwise with B variables as they are generated by the
subroutine itself.

(d) The last column of the Specifications list gives a brief de-
scription of the variable as it appears in the program.

STRUCTURE OF THE “NEXT"” PROGRAMS

The six programs of NEX. .. type are alike in their bookkeeping
relationships to the calling program. It was thought desirable for the
subroutines to do as much of the bookkeeping as possible, and, to
achieve that end, the following programming format has been ob-
served:

(a) There is a subroutine variable MTC (mnemonic: “More To
Come”). This variable is LOGICAL, and is named in the calling state-

INTRODUCTION / 7

ments of the six “next” routines. When the subroutine returns to the
main program, MTC will be set to either .TRUE. or .FALSE. If
.TRUE ., then the output which is being returned by the subroutine
is not the last object in the collection of objects which is being
searched (there are “More To Come”). If .FALSE., then current
output is the last. Thus the calling program need only test MTC in
order to determine if the search is complete, The subroutine itself
carries the burden of knowing when the last object has been pro-
duced.

(b) Whenever the user wishes to start a new search, whether this
be the first request for a search, or whether, for any reason, he wants
to restart the subroutine from the beginning of its list of objects, it is
only necessary for the user to set MTC=.FALSE . himself prior to the
call. The subroutines test MTC on entry, and if it is .FALSE. , they
reset themselves back to the first object corresponding to the current
parameter values.

A typical use of a NEXT subroutine will look like this in the calling
program:

{Set parameters NK,. ..}
MTC= .FALSE.
10 CALL NEX...
{Process output object}
IF (MTC) GO TO 10

STRUCTURE OF THE “RANDOM” PROGRAMS

The eight programs of random type listed above require a random
number generator. A random number is a sample ¢ drawn from a
population which is uniformly distributed on the interval 0 < ¢ < 1.
The preparation of such generators is discussed fully in several stand-
ard references. Also, on many computers, random number genera-
tors are built-in. The programs in this book expect that a compiled
FUNCTION subprogram is available of the form

FUNCTION RAND(I)
RAND=. ..

RETURN

END

8 / INTRODUCTION

to be supplied by the user. We refrain from showing one here be-
cause such subprograms tend to be strongly machine-dependent. We
follow the convention that each appearance of the letter £ in a flow
chart calls for the selection of a new random number.

ARRAYS AND SPECIFICATIONS

One of the main problems which must be confronted in the prepa-
ration of a collection of combinatorial subroutines is that of the orga-
nization of array storage. The choice of the correct array can often
save considerable computing time, and in most of our applications
this is very important. Yet the proliferation of large numbers of arrays
may lead to insuperable storage problems when several subroutines
are compiled together for some large application. We have been very
conscious of these problems, and we have made certain policy deci-
sions regarding the handling of arrays, which we now describe.

First, suppose a subroutine makes use of several arrays in addition
to those which are of primary interest to the user. In FORTRAN, arrays
which are not named in the calling statement must receive fixed
dimensions in the subroutine itself, whereas the arrays which are
named in the calling statement can have dimensions inherited from
the main program.

Every such assignment of fixed dimension to an array whose actual
length varies from one call of the subroutine to the next introduces a
limitation on the capacity of the program. It is true that for different
applications the user could change the DIMENSION statements to suit
his needs, but at considerable inconvenience. This would lead to po-
tentially frustrating problems for the user, and so (rightly or notl) we
have almost invariably followed

Policy 1: The use of hidden arrays is avoided. More positively,
every array used by a subroutine is named in its calling statement,
unless the array is used only internally, and its dimension places no
restriction on the subroutine parameters.

This policy has several corollaries, some pleasant and some not so.
For example, two artays of the same type which appear in two in-
dependent subroutines used for working storage only can be given
the same name, thereby saving space.

INTRODUCTION / 9

As regards dimensioning, there are two main types of compilers. In
one type, a dimension statement of the form

(+) DIMENSION A(1), B(1, 1),...

appears in the subroutine and causes it to use the fixed dimensions
assigned in the main program. In the second type, dimension state-
ments like

(1) DIMENSION A(N), B(MN), C(K),...
appear, where K,M)N, . . . are calling variables, and these may cause
array space to be assigned according to the values of K,M,N, . . . at ex-

ecution time. We have, quite arbitrarily, selected the second alterna-
tive here and followed it.

Policy 2: All arrays used by subroutines in this book carry dimen-
sion statements of the type (1) above.

One of the effects of Policy 1 is that calling statements are some-
what longer than they would be if hidden arrays were used. This is
rarely troublesome since most subroutines have fewer than 6 vari-
ables in their parentheses, and only two subroutines have as many as
10 such variables. In order to achieve this economy we have been
very aware of the need to avoid the use of unnecessary arrays, and
we have not shrunk from doing even a small amount of extra com-
puting toward that end.

An extreme example is Chapter 17, a subroutine whose sole raison
d’etre is to avoid the use of an extra matrix array, and which, as a
result, poses some very entertaining problems of programming and
mathematics. Another small illustration is in Chapter 18 where a
well-known search algorithm was not used, and a new one devised
instead, just to avoid extra armray storage. We state this, in summary,
as

Policy 3: When confronted with the choice of a small amount of
extra computation versus an extra array, save the array and do the
computation.

We are under no illusions that these policies are ideal in all cir-
cumstances, but we do feel that they have been generally quite suc-
cessful, and we should at this time take the opportunity to make the
reader aware of them.

Part 1

Combinatorial Families

1

Next Subset of an n-Set NEXSUB/LEXSUB)

As our introduction to combinatorial algorithms, we consider the
question of generating all of the 2" subsets of the set {1, 2, . . . , n}.
This will offer an opportunity to discuss the relationship between an
algorithm and its proposed application. In fact, it is a truism that one
should choose the method which best fits the problem, and we illus-
trate this by giving three different methods which are suited to dif-
ferent kinds of uses.

Let us imagine, then, a machine which, on request, displays a
subset S of {1, 2, . . . , n}. Following this, the user of the machine
then does some calculation C(S) with the set 5. The user then asks
for the next subset, etc., until all subsets have been processed. In
this chapter we are concerned with the design of the subset-
machine, under various hypotheses about the extermal calculation
C(8).

First we will suppose that there is nothing special about C(S) at
all, in which case the simplest possible design of the subset
algorithm will be best.

Secondly, we will imagine that if § and §' are two consecutive sets
produced by the algorithm, then S§ and S’ are constrained to differ
only by a singleton, for then the calculation C(S) might be rapidly
done by using the results of C(S’). An important example of such a
calculation is in Chapter 23.

14 / 1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB)

Finally, we will discuss the case where the external computation
C(8) is simplified if we can easily find the result of C(S’) for some set
S' such that $' C S and |S'|=|S] — 1.

{A) THE DIRECT APPROACH

To each subset § € {1,2, . .., n} we make correspond a binary
number

m=a,+a, 2+a; - 22+---+a, 2"

by the relations
1 if i€ 38§ .

ai={0 if i &S (i=1,...,n)
To go from a set S to its successor we simply replace m by m + 1 and
read off the bits. Equivalently, we can operate directly on the bit-
string a,, . . . , @, byssimulating the operation m < m -1, and
keeping track of the cardinality k, as follows:

(A) [First entry] a; < 0 (i=1, n); k < 0; Exit.

(B) [All later entries] i< 1.

(C) fa,=0,to(D);a; < 0; k< k—1;i<i+1;to(C)
(D) a;< 1; k< k+ 1, If k= n, final exit; Exit &

The labor per subset is measured by the index i in step (D). We
leave the reader to check that the average value of this index is
n—1)
2 27— 2 (as n — o).
i=1 .
The same algorithm can be stated in words: “to find the successor
of a set S, insert the smallest element which is not in §, and delete
all smaller elements from S.”

{B} THE GRAY CODE

Now suppose each set §' is to differ from its immediate prede-
cessor by the adjunction or deletion of a singleton. Here, for ex-
ample, are the subsets of {1, 2, 3} arranged in such a sequence:

<, {1}, {1, 2}, {2}, {2, 3}, {1, 2, 3}, {L, 3}, {3}.

Pictorially, consider the cube in 3-space whose vertices are the

1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB) / 15

“,0,” L (| { ”
|
|
{1,0,0) - + (1,1,0) A
i
4 '
) U UUN ER {(0,1,1)
~7(0,0,1} J
”’
(0,0’0) (0,1'0,

Figure 1.1 A Hamilton walk on the cube.

vectors of 0’s and 1’s. A sequence of sets such as the above corre-
sponds to a walk along the edges of the cube, which starts at the ori-
gin and which visits each vertex exactly once. The list above, for in-
stance, corresponds to the walk shown in Fig. 1.1

A walk which visits every vertex of a graph exactly once is called a
Hamilton walk on the graph. Hence a sequence of subsets of the
desired type corresponds to a Hamilton walk on the n-cube, and our
problem now is to describe such a walk algorithmically. We do this
two ways, recursively and nonrecursively.

The recursive description of such a walk (“Gray code”) is elegant.
Let %, denote, for each n, a Hamilton walk on the n-cube, and let .%,
denote the reversed walk (i.e., begin at the end and end at the ori-
gin). Then we define .%, to be the empty list and

(1) Fn=L_ . ®0,.27,,®1 n=1)

The meaning of the notation is that we adjoin a symbol “0” to the
right of each set in the list .#,_;, then adjoin a symbol 1 to the right of
each set in the reverse of the list .#,,—,, in order to obtain .%,,.

In this way we find, successively,

F Ly Fy
0 00 000
1 1 100
11 110
01 o0lo0
011

111

101

001

etc.

16 / 1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB)

We leave it to the reader to verify that the recursive description (1)
does indeed provide a list of the desired type for each n =0, 1,
2, . .. ,and we proceed to discuss the nonrecursive construction of
L.

Suppose, generically, that we have arrived at a certain set S in the
Gray code list .#, and that we wish to find the successor of S. In
other words, we want to find the index j of the single coordinate a;,
which is to be changed in order to form the successor.

For example, the list %, is as follows:

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,
0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001

The sequence of indices j of the changed coordinates is
1,2,1,3,1,2,1,4,1, 2,1, 3, 1, 2, 1

The index j can be found from the set S={a,, . . . , ¢,} and its
cardinality k= |S]| by the following

Rule of Succession If &k is even, then j =1, if k is odd, then j is the
index of the coordinate which follows the first “1” bit of S.

The reader may wish to check this rule on the list .#; shown
above.

It is easy to prove the correctness of the rule of succession directly
from the recurrence (1) by induction. Indeed, if the rule does indeed
form the lists %, . . . , % and if the list .%; begins with & and
ends with {0,0,0, . . . ,0,1} for 1 =< i = n — [, then from (1) we see
that applying the rule clearly forms the first half of the list .%,.

Further, one more application of the rule puts us at the beginning
of Z,_; ® 1, the second half of %,. From there onward, the final “1”
bit reverses the parity of the cardinality of each set S from what it
was in .%,_,. Since the rule never “sees™ the final 1 bit, it produces,
for each set S, exactly the index j that produced it from its prede-

cessor in .%,—, ® 1, i.e., which will produce its successor in the list
Zea®1nm

We see that the rule can be applied if we know only the set S and
one single bit of information more, namely the parity of |S|, in O(1)
time, on the average, per set, If we also want to recognize the last set
in the list, when it is produced, in O(1) time, we shall need |S]| itself
and not just its parity,

This leads to the following algorithm.

1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB) / 17

ALGORITHM NEXSUB

[Generates the subsets of an n-set by the Gray code]

(A) [First entry] a;< 0 (i =1, n); k < 0; Exit.

(B) [Following entries] t < mod(k, 2), J< 1; If ¢ #0, to (D).

(C) [Change jth bit} a;« 1—a;; k< k +2a;—1; f k=a,, final
exit; Exit.

(D) [Find first 1 bit] j<—j+1;1fa,., =1, to (C); To (D) W

(C) LEXICOGRAPHIC SEQUENCING

Our final arrangement of the subsets of {1, . . . , n} will be the
lexicographic sequence.

Let us represent S by (a,, . . . , aj), a listing of its k members, in
increasing order. Then we observe that § < §' =(al, . . . a}) in

lexicographical order if there is j = min(k, k') such that a; = a; for
i<jand a;<aj, or if a;=a} for i = min(k, k') and k < k. This
sequencing has an important property, which can be phrased in two
ways,

(i) All the sets S’ obtained from a set § = {ay, . .., ay) by ad-
Joining to S only members greater than a, form a contiguous
sequence which immediately follows S.

(ii) For any S=(a,, . . ., a,) the most recent set of i elements
(i < k) which precedes S in the sequencing is precisely the set
(al, e ey ﬂ,').

Now back to the calculations C(S), performed in lexicographical
order. Set aside n pieces of storage (stack); when a C (S) is performed,
store its result in the kth piece of storage, where k= |S|. It is then
easy to see that the information needed to facilitate this calculation is
always found in the (k — 1)th piece of storage.

Some applications require the skipping of part of the sets in the
lexicographical sequence, e.g., there may be a bound k., on the car-
dinality. Or, for example, in calculating C(S), it may be clear that the
supersets of § are no longer desired. To cover these cases, algorithm
LEXSUB has a parameter], which causes a jump over all supersets
following the input set, if J = True. To use LEXSUB, the user must
make his own initialization (by setting k « 0); he may wish to stop at

18 7 1: NEXT SUBSET OF AN n-SET {NEXSUB/LEXSUB)

the last set (@, = n), or just after, when the null set is again produced
(k=0).

ALGORITHM LEXSUB

[Produces the successor of 2 subset of an n-set in lexicographical
order. See text for initialization and termination.]

(A) [Input n, k, J, (@1, . .., @): eliminate trivial cases; ini-
tialize] If k # 0, to (B); if] = True, Exit; s < 0; to (C).

(B) [Testa,andk for maximal values] If ap=mn,to (E); s < ax; if
J =True, to (D).

(C) k< k+1

(D) a, < s+ 1; Exit.

(E) [Backupifa,=n] k< k-1 if k=0, Exit; s < a,; to (D) B

SUBROUTINE SPECIFICATIONS (NEXSUB)

(1) Name of subroutine: NEXSUB.

(2) Calling statement: CALL NEXSUB (N, IN,MTC, NCARD, Jy .

(3) Purpose of subroutine: Generate subsets of {1,2, . . . , N}, in
an order specified by the Gray code.

{(4) Descriptions of variables in calling statement:

Name Type 1JO/W|B Description

N INTEGER 1 Number of elements in universe,

IN INTEGER (N} 1o IN(I} =1 if I is in output set; 0 if I is notin
output set {I=1,N).

MTC LOGICAL 11O TRUE _ if current output set is not the last one;
FALSE . if no more sets remain after current
cutput.

NCARD INTEGER 10 Cardinality of output set.

J INTEGER O Index of coordinate changed to create current

output set from previous (not available on
first output).

(5) Other routines which are called by this one: None.

(6) Number of FORTRAN instructions: 19.

(7} Remarks: User supplies MTC=.FALSE. to call for a new
sequence. The first output set is the empty set.

(8)

11

20

49

30

1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB) / 19

To convert to a nonself-starting, memoryless cyclic production
of successors, delete MTC from the instruction marked ¥, delete
all instructions marked ** and add the instruction marked *%¢
by removing the C in column 1.

SUBROUTINE NEXSUB (N, IN,MTC, K NCARD,J) *
INTEGER IN(N}

LOGICAL MTC * %
IF{MTC) GO TO 20 * %
DO 11 1I=1,N *x
IN(I)=0 * %
NCARD=0 **®
MTC=.TRUE. **
RETURN xx
J=1

IF(MOD (NCARD,2) .EQ. 0) GO TO 30

Jd=J+1

IF(IN({J-1} _EQ. 0} GO TO 40

IF{J .GT. N) J=N *Ex

IN{J}=1-IN(J)

NCARD=NCARD+2#IN(J)-1

MTC=NCARD .NE. IN({N) * %
RETURN

END

SUBROUTINE SPECIFICATIONS (LEXSUB)

(1)

Name of subroutine: LEXSUB,

(2) Calling statement: CALL LEXSUB(N K, IN,6JMP,6NDIM).

(3) Purpose of subroutine: Generate subsets of {1, . . . , N} which
succeed input set, in lexicographical order, with optional jumps
over supersets,

(4) Description of variables in calling statement:

Name Type HIOfW({B Description

N INTEGER I Number of elements in universe.

NDIM INTEGER I Maximal size of subset.

K INTEGER IO Cardinality of subset

IN INTEGER (N} I/o IN(I}, I=1,K is the Ith element of subset,

listed in increasing order.

JMP LOGICAL I To jump over supersets of input set, set

JMP=_TRUE . else set JMP= FALSE.

20 7/ 1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB)

(5)
(6)
(7)

10
20
30
100
110

40
80
90
50
60

Other routines which are called by this one: None,

Number of FORTRAN instructions: 16.

Remarks: Subroutine has no memory or MTC; it supplies the
null set {K=0) after the last set in lexicographical order; this is
also the starting point, which the user must supply (set K=0} .

SUBROUTINE LEXSUB (N, K, IN,6 JMP,KNDIM)
DIMENSION IN(NDIM)
LOGICAL JMP

IF(K .NE. 0) GO TO 40
IF{JMP) RETURN

IS=0

IF(.NOT. JMP) K=K+l
IN(K})=I5+1

RETURN

IF(IN(K) .EQ. N} GO TO b0
IS=IN(K)

GO TO 100

K=K-1

IF{K .EQ. 0) RETURN
IS=IN(K)

GO TO 110

END

SAMPLE OUTPUT (NEXSUB)

In the listing below are the 32 subsets of {1, 2, . . ., 5}, one on
each line, as produced by NEXSUB. On a line are IN(1),IN(Z),

,IN(5), followed by J, the index of the coordinate which was

changed, and NCARD. Note how each line agrees with its predecessor
except in the Jth entry.

OHHOOFRHO

OCOHKHKFHFOO

FHRPROOOO
OO0 O0OC0
laNoNeoleNaNoloie
HMNMPWHEMNHEO
HMNWONHFNPO

1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB) / 21

1

0 1 o

2

0

c 0 1

oo

QO

o~

1

0

0 01 3

1
1

1

0 o0

0 0 0

0O 0 0 0O

SAMPLE OUTPUT (LEXSUB)

=

pty subsets of cardinality

. » 6}, as produced by calls to LEXSUB(6,K,IN K

In the listing below are the 41 nonem

3 of {1, 2, ..
EQ.3 3)

)0 © < W W0
NN NMNNDWNMM

e R e e N I B R

22 f 1: NEXT SUBSET OF AN n-SET (NEXSUB/LEXSUB)

I 0

A B

— =~

© S0 0B© O no ©)
N MEMYOMIITLOVEOE FIIOLOO 00O ©

.I_12222222222233333334444556

2

Random Subset of an n-Set (RANSUB)

It is quite trivial to select a random subset of {1, 2,. . . , n}: We flip
a coin n times. If the ith toss is heads, then letter { belongs to the
subset, otherwise it does not belong, Ifgli=1, . . ., n)is a random

variable such that ¢;=1 or 0, depending on whether i belongs or
does not belong to our set, then the algorithm is as follows:

ALGORITHM RANSUB

(A) a; < |2¢] (i=1, n); Exit &

The symbol |x] denotes the largest integer = x.

As each of the elements of the set is chosen “in” or “out” with
equal probability %, each of the 2" sets is chosen with uniform proba-
bility 27~

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANSUB.
(2) Calling statement: CALL RANSUB(N,A).

/23

24 / 2: RANDOM SUBSET OF AN n-SET (RANSUB)

(3) Purpose of subroutine: Generate random subset of an n-set.
(4} Descriptions of variables in calling statement:

Name Type IIOiw/B Description
N INTEGER 1 Number of elements in set.
A INTEGER(N) o A(T)=1 if I is in output set; O otherwise (I=1,N).

(5) Other routines which are called by this one: FUNCTION
RAND(I) (random numbers).
(6) Number of FORTRAN instructions: 6.

SUBROUTINE RANSUB(N,A)
INTEGER A(N)
DO 10 I=1,N
10 A{I)=2.*RAND(1)
RETURN
END

SAMPLE OUTPUT

The program RANSUB was called 1280 times with N=5 . If all the 32
sets were chosen exactly the same number of times, the number of
choices of each would be 40. It would be highly unlikely, however,
that these exact numbers would be achieved. The following output
shows the frequency with which each of the 32 subsets was se-
lected, e.g., the empty set 43 times, etc. A measure of the likelihood
of this distribution of frequencies is obtained from the so-called chi-
square test, in which

. S) — 40)2
X _2(05()40)

S

Here ¢(S) is the frequency of the subset S and the sum is over all 32
subsets. We find x%=21.35. Statistical tables show that in 95% of
such experiments, the observed value of x* would lie between 17.5
and 48.2 if, indeed, all subsets were equally likely to be chosen.

2: RANDOM SUBSET OF AN n-SET (RANSUB) / 25

43

¢ 0 0 0 O
1 0 0 0 0O

33
41

1 0 0 O

0
1

53

1 0 0 O

38
35
40

37
39
44

0

0 0 0 1

1

1

0 0

42

1 0 1 41
1

1

44

0

0 0 1

38
47
39
47

1
1
1
1

0 0 0 O

0 0 O 39
32

1
0]

1 0 O

1
0

34
30
48

0O 0
1

1

0O 1 ©

37
43
38
44
35

1

0O 0 1

37
34
44

37
47

CHI SQ IS 21.35 WITH 31 DEG FREEDOM

3

Next k-Subset of an n-Set
(NEXKSB/NXKSRD)

We consider here the combinations of n things taken k at a time.
There are (%) k-subsets of an n-set altogether, and in this chapter we
give two different methods for generating them all, sequentially. In
the first method we construct them in “alphabetical order,” yielding
a very simple algorithm. Following that, we describe a “revolving-
door” method which generates each subset from its immediate pred-
ecessor by deleting some single element and adjoining some other
single element. The lists of the ten 3-subsets of {1, 2, 3, 4, 5} in these
two orders are

{1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 3, 4}
{1, 2, 5} {2, 3, 4}
{1, 3, 4} {1, 2, 4}
{1, 3, 5} {1, 4, 5}
{1, 4, 5} {2, 4, 5}
{2, 3, 4} {3, 4, 5}
{2, 3, 5} {1, 3, 5}
12, 4, 5} {2, 3, 5}
{3, 4, 5} {1, 2, 5}

26 /

3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD) / 27

In the lexicographic sequénce, we obtain the successor of a given
k-subset {a,, . . . , a;} as follows: search for the smallest h such that
dpii-p <n+1—h, then increase a;,,—, by 1, and set a; < a;-, +
1(j = k42 —h, k). It is interesting to notice that the index h can be
found without searching. Indeed, at each transition from a set to its
successor, h increases by 1 unless a4y, < n — h, in which case h is
reset to 1 on the next transition.

ALGORITHM NEXKSB (LEXICOGRAPHIC)

(A) [First entry] m < 0; h < k; to (D).

(B) [Later entries] Ifm=n—h, to (C); h < 0.

(C) h<~h+ 1, M € dpgpi—p-

(D) For j=1,h: {aggpn=m=+j}; If ay=n—k+1, final exit;
Exit B

It is not hard to measure the average amount of computational
labor per subset generated. We claim that less than two units of labor
are required, on the average, The index h measures the amount of
labor per subset. For a fixed [, the number of k-subsets with
h=I[+1,1ie., with

ap=n,a,,=n—1, ... ,@¢gunu=n—1l+1 and aw, <n—1
is exactly
(n—l— 1)
k—1
since @, ..., Ay can be any {(k—I)}-subset of {I, 2,...,

n — 1 —1}. 1t follows that

M

s =()
<\ k—1 k
since every k-subset contributes exactly once to the left side, and fur-

thermore, the average value of A — 1 is {using the last sum also with
k replaced by k — 1)

By

=@ RO Z e)] oy

~
I

28 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD}

=) [+ -g e -n 57
k=) a0 (1) k-

Thus, if & < (n/2), we do less than two units of labor per k-subset, on
the average.

 If we average h again over all 2" subsets, we find that the average
amount of labor per subset of an n-set is

2—-2

as claimed. A request for a subset is therefore quite inexpensivel

We turn now to the revolving-door (RD} algorithm. The motivation
for this is similar to that in Chapter 1, namely, if we want to do a
calculation for each subset, then if a subset differs only slightly from
its predecessor, we may be able to save much of the calculation from
the predecessor, thereby saving time. Since the cardinality k is fixed,
to differ only slightly means that each subset is obtained by ejecting
one element and adjoining another. An additional feature of RD is
that the last k-subset on the list is next to the first one on the list in
that one more “turn of the door” will return us to the beginning.

It is very easy to prove that such an algorithm exists for each n,

kin=1,2, . ..;0 =k = n). Indeed, let A(m, I} denote a list of all of
the l-subsets of {1, 2, . . ., m} arranged in RD order, beginning
with {
{,2,....,1}

and ending with

{1,2,...,1—1,m}
Then we have (the bar means reverse order)
(1) Aln, k)=Aln—1,k),Aln—1,k— 1) ® {n}

In other words, we construct A(n, k) by first forming the list
Af{n — 1, k), and following it with the list A(n — 1, k — 1) in reverse
order with the singleton {n} adjoined to each subset. It is then
simple to check that if A(n— 1, k), and A(rn —1, k— 1) are in RD
order, then so is A(n, k). It follows, by induction, that a list A(n, k)
exists for each n, k, starting with the inevitable A(n, 0) =& for
nz=0,and Aln,n)={1, ... ,n}forn>0.

For example, one easily derives

f There are other possibilities which, however, do not lead to much simpler
algorithms.

3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD) / 29

(2) An, 1)={1}, {2}, . . . , {n}

and

(3) A(n, 2) ={1, 2}, {2, 3}, {1, 3}, {3, 4}, {2, 4}, {1, 4},
..., {1, n}

To make the existence proof into an algorithm, we consider some
samples. First, to find the successor of C = {4, 5, 7, 8} in A(9, 4), or in
compressed notation (S = successor, P = predecessor), using (1)

S(C)=15{4,5,7,8} € A9, 4) =A(8, 4), A8, 3) ® {9}
Note that 9 & C, hence C € A(8, 4) and we have to look for
S(C) € A8, 4)=A(T7, 4), A(7, 3) ® {8}

Since 8 € C, C belongs to the second list, and because of the re-
versal of the listing, the problem is reduced to finding

P{4,5,7} € A(7,3)=A(6, 3), A6, 2) ® 7; add {8}
As 7 & {4, 5, 7}, again the second list is needed, and we reverse
again:

S{4,5} € A6, 2) = A(5, 2), A5, 1) ® {6}; add {7, 8}
Now no reversal as 6 ¢ {4, 5}

5{4, 5} € A(5, 2) = A4, 2), A4, 1) ® {5}; add {7, 8}
Another reversal, and we end up with

P{4} € A(4, 1); add {5, 7, 8}
Since P{4} = {3} by (2), we have found
5{4,5,7,8}=1{3,5,7, 8}

Actually, the calculation could have proceeded much faster. The
number of reversals for {4} is equal to the number of elements in C
larger than 4, that is 3, which is odd. Hence, we end up with
P{4} = {3}, and add {4, 7, 8}.

If we want the successor of {4, 5, 7} in A(9, 3), however, a similar
consideration would erroneously lead to asking for ${4} € A{4, 1),
which does not exist. Backing up one step, however, we face the cor-
rect question

P{4,5} € A(5, 2) = A4, 2), A4, 1) @ {5}; add {7}

Now {4, 5} belongs to A4, 1) ® {5} and is its first element, so
P{4, 5} is the last element of A(4, 2); that is {1, 4}. Hence,

30 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD)

${4,5,7}={1,4, 7}

This second example was not resolved till we hit the separation
between the two sublists of some list A(n, k). Actually, the same
should have happened in the first example as well, if we had not
availed ourselves of (2). Recall that we were looking for P{4} € A(4,
1). Using (1) again, we have

P{4} € A4, 1)=A(3, 1), A3, 0) ® {4}

Now {4} is the first (in fact, the only) member of A3, 0) ® {4} = {4},
so its predecessor is the last element of A(3, 1); that is, {3}.

We now return to the general case. The calculation of S{a,, . . .,
a;} € Aln, k) leads, inductively, by (1), to the calculation of
${a,, . . . ,as}or P{a,, . . . , a;} in some A(m, j). While in some ini-
tial step both {a,, . . . , a;} and its successor (or predecessor, as the
case may be) belong to the same one of the segments A(m — 1, j) or
Alm — 1, j — 1) ® {m}, the decreasing of m at each step will force a
first time when {a,, . . . , a,;} and its successor {(or predecessor)
belong to different segments. When that happens we have two cases
which are symbalized by

) ﬂﬂw.wj—Lm—H%Hﬂp--J*Zm—Lm}
& Alm, j)

It is therefore imperative to find these values of m and j quickly. The
examples suggest, rightly, that such a search should start from the
left, i.e., with the small values of j and m. In fact, if we reduce j in
the sets in (4) by one unit (the reader is invited to see that the same
thing happens if j is further reduced) we would be locking for

P{1,2,...,j—1} € A(m,)
or for
${1,2,...,j—2,m—1} €EAlm—1,7)

(the reduction of j increases the number of elements larger than the
jth elements by one, and switches S and P), neither of which exist.
This criterion of nonexistence provides a means of finding j and m in
a left-to-right search: find the smallest j for which P{a,, . . . , as} (or
S{ay, . . ., as}, as required) exists.

Although the above discussion does not cover extreme values of j,
the underlying concept has been explained. Further details are in-
cluded in the flow chart and its description.

To estimate the labor involved in the revolving door algorithm we
observe that if the set is of the form {1, . . ., I, m, m'}, where
[+1 < m < m', the algorithm loops [times; before it reaches boxes

3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD) /7 31

70 or 150. In the {{ + 1)th loop, if K — [is even, we can now exit with
a predecessor. (m’ actually does not enter the consideration here,
and need not exist.) If k—1[is odd, we can find a successor if
m' > m + 1. (If there is no m’, replace it by n; otherwise, one more
loop is required.) In cither case, [measures the amount of labor in-
volved. The number of sets of the above form is (";7); this is ex-
actly the same binomial coefficient as occurred in the computation of
the labor for NEXKSB. Also the average value of I is computed by
the same formula, so again no more than two units of labor is
required when k < n/2.

The FORTRAN program for NXKSRD is supplied in two versions, one
in which the subsets are produced sequentially, from the beginning,
with an MTC indicating the end of the list; the second version simply
supplies the successor to a subset supplied by the user, with the ini-
tial set following the last. The second version gives the user more
flexibility, but requires also more user action. The same was not
done for NEXKSB , because this program “remembers” the values of
H and M from the previous call, and can therefore not be used to
generate successors. The user may, however, convert the subroutine
himself, e.g., by also making H and M I/O variables.

FLOW CHART NXKSRD

32 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD)

DESCRIPTION OF THE FLOW CHART

Box 10

Box 20
Box 30

Box 40
Box 50
Box 60
Box 70

Box 80
Box 90
Box 100

Box 110

Box 120
Box 130
Box 140
Box 150
Box 160
Box 170

Input n, k, {a,, ..., a,}. Initialization of j; the algorithm deals with
subsets {a@,, . . . , &j}.

If % is odd, we first look for a successor of {a,}; otherwise, for a predecessor.
The set {a,, . . . , a;} is either & if j = 0 and we just entered the algorithm,
oritis of the form {1, . . . ,j— 1, m}, where a,,, =m + 1, because Box 140
rejected the set as having no successor in A{a,,, — 1, §) [or in Aln, k) if
7=k]. Increment j and try for a predecessorof {1, . . . ,j—2,m,m + 1}, 0r
of {a,} ifj=1. .
There was no successor in Afn, k), hence the set is {1, ..., k—1, n}.
Restore original first input set.

If a,=j, the setis {1, . . ., j}, and has no predecessor,

The set is of the form {a,} with a, > 1ifj=1,oroftheform {1, . . . ,i—2,

m, m+1}ifj> 1. Seta,«—a;—1.

If j = 1, the new set is finished, Old &, is removed, ¢, — 1 adjoined.

Ifj > 1, set a;o, —j— 1. Now m +1 is removed, while j— 1 is adjoined.
The set is either @ if j =0 and we just entered the algorithm, or it has no
predecessor, and is therefore of the form {1, . . . , j}. Increment j.

We must look for a successorof {1, . . . ,7—1, a;} in A(m, j) where m is to
be determined.

Ifji<km=a,,—1

Ifji=k m=n.

If @, = m, there is no successor of {1, . . . , j— 1, m} in A(m, j).

The setis ofthe form {1, . . . ,j— 1, a;}. Seta;«a,+ 1.

If j = 1, the set is complete; @, has been removed, a; + 1 has been adjoined.
If > 1, a;-, needs to be changed. Now j— 1 has been removed and
a;+ 1 adjoined.

SUBROUTINE SPECIFICATIONS (NEXKSB)

(1) Name of subroutine: NEXKSB.

(2) Calling statement: CALL NEXKSB(N K, A MTC) .

(3) Purpose of subroutine: Next k-subset of an n-set, in lexico-
graphic order.

{4) Descriptions of variables in calling statement:

Name Type IJO/WIB Description

N INTEGER I Number of elements in universe.

K INTEGER I Number of elements in desired subset.

A INTEGER (K} IO A(I) is the Ith element of the output subset
(I=1,K).

MTC LOGICAL Ijo To be set = FALSE . before first call for a new
sequence; = . TRUE. if current output is not

the last subset; = FALSE, if current output
is the last.

3: NEXT K-SUBSET OF AN n-SET (NEXKSB/NXKSRD) / 33

(5) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 15.
(7) Remarks: 1 =A(1)<AQ)<---=N,

SUBROUTINE NEXKSB(N,K,A MTC)
INTEGER A{K) H
LOGICAL MTC
30 IF(MTC) GO TO 40
20 M2=0
H=K
GO TO 80
40 IF(M2.LT.N-H) H=0
H=H+1
M2=A (K+1-H)
50 DO 51 J=1,H
51 A{K+J-H)=M2+J
MTC=A{1l) NE.N-K+1
RETURN
END

SUBROUTINE SPECIFICATIONS (NXKSRD)

1) Name of subroutine: NXKSRD.

2) Calling statement: CALL NXKSRD(N,K,A MTC,IN, OUT).

3) Purpose of subroutine: List k-subsets of an n-set, in RD order.
4) Descriptions of variables in calling statement:

Name Type IHOIWIB Description

N INTEGER I Number of elements in universe.

K INTEGER I Number of elements in desired subset.

A INTEGER{K} Ijo A(I) is the Ith element of the output subset
(I=1,K).

MTC LOGICAL IO To be set = FALSE . before first call for a new

sequence; = TRUE. if current output is not
the last; = FALSE. if no more subsets re-
main after current one.

IN INTEGER 0] Element of output set which was not in input
set,

ouT INTEGER O Element of input set which is not in output
set,

(5) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 34,

34 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD)

(7) Remarks: The program is converted to a no-MTC, no-memory
version by deleting MTC from the instruction labeled *, by
deleting instructions ** , and by inserting *** (remove
the ¢ from column 1). The program then simply calculates
the successor of any input set, and starts again from the begin-
ning after the last set.

SUBROUTINE NXKSRD(N K, A MTC,IN,OUT) *
INTEGER A(K), OUT
LOGICAL MTC %
IF (MTC) GO TO 10 *x
DO 1 I=1,K *x

1 A(I)=1 *x
MTC=K .NE. N ' * %
RETURN *x

10 J=0

20 IF({MOD(K,2} .NE. 0) GO TO 100
30 J=J+1

¢ 40 IF(J .LE. K} GO TO &0 >
C 50 A(K)=K %%
C IN=K Xk
c OUT=N el
C RETURN %

60 IF(A(J) .EQ. J) GO TO 100
70 QUT=A{J)
IN=0UT-1
A(J)=IN
80 IF{J .EQ. 1) GO TO 200
90 IN=J-1

A{J-1)=IN
GO TO 200
100 J=J+1
130 M=N

110 IF(J .LT. K} M=A{(J+1}-1
140 IF({M .EQ. A(J)) GO TO 30
150 IN=A{J)+1

A(J)=IN
QUT=IN-1
IF{J .EQ. 1) GO TO 200
A(J-1)=0UT
oUT=J-1
200 IF(K .EQ. 1) GO TO 201 * %

MTC=A(K-1) .EQ. K-1 %

3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD) / 35

201 MTC=(.NOT.MTC} .OR. A(K) .NE. N %
RETURN * ¥

C200 RETURN EEE
END

SAMPLE OUTPUT (NEXKSB)

The program NEXKSB (in lexicographic order) was called, repeat-
edly, with N=7, K=4, until termination. The 35 output vectors
A(1),A(2),4(3),A(4) are now shown.

WM NNNMNONNNMNNNNMHEFFREHEERERFEFRRRERERERRRRRBRERR-@RF
B O D B WWWWWNA D RWWWNWWWNNNDNDDNONNDN NN
QOO AaAbhALOoOATO OO RBMDBOOOOOLADBNWRGWNN®
1IN0 110N II~10110100 110100300k

36 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD)

AW W
60 ¢ 0! "N
OO
~q-1-3-3

SAMPLE OUTPUT (NXKSRD)

Below there appear the 4-subsets of {1, ..., 7} and the 5
subsets of {1, ..., 8} as output by the revolving-door subroutine.
On each line, we show first the elements of the set, then the two ele-
ments IN, OUT which have just been exchanged.

WHNI—'I—'Z\JCM#I—‘ND}I—'NHI—'I—'NI—‘HNMI—'-I\JHI—'I—'NH}—'
AWWNOAT OO ARMBRNANMNMOAWNDBAADWNUNNDANWND
cncnr.nmc)mmmmmmmmmm.ﬁ-ppmmmmmmm.h.:.x.bm
*1'4-4444\1'\14\14\1440‘)030‘300)0)030’)0)0)01010101#
BEUNMHEFNWOAFRNAFWINFONHFRDREFROADEWAO
FN R ONWNAFRNOHUDHENANRRONWARENEONRANEWO

3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSRD) / 37

3

2
1

2 4 5 7T

4 5 7

0 ~

o N

~ &~

<+

oM

— o

3 4 7
l 2 3 7

4

2

0
4
2

0
6
4
2
1
3
7
4
2

2 3 4 5

1 2 3 5 86

3 4 5 6

2 3 4 5 8

2 4 5 6

5

2 3 4 6
2 3 6 7
3 4 6 7
2 3 4 6 7

4
2
1

1
1

3
2

1
5]

2 4 6 7
l 4 5 6 7
2 4 5 6 7

3 4

2
3
1
2
1
3

2

5 6 7

1 3 5 6 7
2 3 b 6 7

1
3

2 b 6 7T
2 3 b 7

1l 3 4 5 7

6
2

1

4
2
1
3
8

1
3
B
4

2 3 4 5 7

1 2 4 5 7

1 2 3 4 71

2 3 7 8

o

<

W w
b
o
[\p I \2]

— o

2 4 7T 8
l1 4 5 7 8
2 4 5 7 8

2

5
2

2
4

3
1
2
1
6

3 4 5 7 8

1 3 5 7 8
2 3 5 T 8

3
2

l1 2 5 7 8

S 6 T 8

2 5 6 7 8

2

3

3 5 6 T 8

38 / 3: NEXT k-SUBSET OF AN n-SET (NEXKSB/NXKSAD)

3

4
1
2
3

4 b 6 7 8
1 4 8 7 8
2 4 68 7 8

2
4

3 4 6 7 8

1
2
1

3 6 7 8B
2 3 6 7 8

1

3

2 6 T 8

1 2 3 6 8

T
2
1

3
4
2

3 4 6 8

2 3 4 & 8B

1
5

2 4 68 8
l1 4 5 6 8
2 4 5 6 8

2

2
3
1

2
4

3 4 5 6 8B

3 B 6 B

2 3 b 6 8

2
1
3

3

2 5 6 8
2 3 5 8
l1 3 4 5 8
2 3 4 5 B

6
2

1

4
2

1
3

2 4 5 8
2 3 4 8

5

1

4

Random k-Subset of an n-Set (RANKSB)

Suppose that integers k, n are given, 1 = k =n, and we want to
select k distinct elements a,, . . ., a; from {1, 2, ..., n}, at
random. This innocent-sounding question in fact poses some sub-
stantive algorithmic problems. The output set is to contain k words,
and so it seems reasonable to impose the requirement that

(i) no more than k words of array storage should be used by the
algorithm, each word to hold an integer between 0 and n.

Next, it seems that rather little labor should be needed beyond the
selection of k integers and perhaps some removal of duplicates, and
so our second condition is

(ii) the average labor required should be O(k).

Furthermore, in some applications (see, e.g., Chapter 6} though not
in all it is helpful if the elements of the output set are presented in
ascending order, and so we ask

(iii) for the output set we have 1l = a, <a; <- -+ < g, =n.

The reader may wish, before reading on, to try to design a method
which satisfies (i)-(iii). The main problem is that we select, one at a
time, integers at random between 1 and n, and we need to know if

/39

40 / 4: RANDOM k-SUBSET OF AN n-SET (RANKSB)

the integer just chosen has been chosen before. If so, the new inte-
ger is discarded, otherwise it is kept.

But how shall we discover if the latest integer is “new”? If we
examine all integers so far chosen, we end with O(k? labor, in viola-
tion of (ii). If we arrange the integers in a linked tree, the labor drops
to O(k3?), still in violation of (ii) and the links force a violation of (i}
also. If we keep an array whose ith entry tells us whether i has been
chosen, then (i) and (iii) will be violated.

Our algorithm, which meets all three requirements, is, in broad
outline, to divide the range [1,n] into k subintervals (“bins”)
B{l=1, ..., k) of approximately equal sizes, and choose the car-
dinalities |B;| of the sets B; of elements to be chosen from each bin
R,. The |B;| have a multinomial distribution; we determine them by a
rejection method which simulates the choosing and recording of the
members of the B, When this step is finished, we now must choose
the actual members of the B, from the interval R;, again uniformly at
random. This problem is in essence the same as the one we origi-
nally faced. Now, however, the |B,| are very small, and we can afford
to use a direct method which is quadratic in |B,|.

First, let us analyze the number of random choices of an integer
which must be made in order to obtain k distinct integers. It is well
known [Knl, Vol. 11, p. 470] that the expected number of independ-

ent random drawings from {1, 2, . . . , n}, which must be made in
order to obtain k distinct samples, is

N S SR §
(1) A—n{n_k+1+ +n}

If k =n, for example, we need A ~ n log n such drawings, on the
average. If kfn = @ < 1, then the number of such drawings needed is

(1 1
As(ﬁlogl——ﬂ_)k

The first component of the labor required to execute our algorithm,
namely, the work needed to select k distinct integers from
{1,2,, n} by independent random samples, is therefore O(k),
provided k = n/2, say, and is O(k log k) in any case.

Next, we plan to do the following.

(a) Divide the range [1, n] into the k subranges

15 B

The random k-set to be chosen will consist of members B, of the bins

R¢={m

4: RANDOM k-SUBSET OF AN n-SET (RANKSB) / 41

R, As the number of sets B, equals k, they will contain very few
elements; some will be empty.

(b) First determine the cardinalities |B,|, without worrying about
exactly which elements of R, will be members of B, In doing this,
the k storage locations g, can be used, one for each B, We draw a
random number xz in the range [1, n], determine the R; to which it
belongs, by

(2) I=1+|(xk — 1)/n]

and accept or reject the x depending on whether it “duplicates™ an
element already accepted. Suppose m members of R, have already
been accepted, while the total number of members of B, is g, then
the probability that x is rejected, is m/q. With this in mind, we may
simply reject x with probability m/q, without ever checking x against
any element that has been accepted! In fact, we only maintain a
count of the elements that have been “accepted.” All this (and a bit
more) is accomplished as follows. Initially, we store in a, the number
[{I — 1)n/k]; this is one unit less than the smallest element in R,
When an x has been chosen, and R, is determined by (2), we accept x
ifx > a;, reject if x < a,. If x is “accepted,” we increase g, by one
unit— but drop x (1)

{c) When %k such x have been accepted, we scan the
afl=1, ..., k) and move those «; that no longer have their initial
values (they represent the nonempty B,) to the leftmost positions of
the array, say (a,, . . ., @), Next, for j=p,p—1, ..., 1 we re-
serve space for each of the B,, starting from the right. We determine
by (2) the segment R, to which a; belongs, and determine the car-
dinality of B,. Now we reserve |B,| spaces for B; in (a,, . . . , ay),
starting from the right, store the value of l in the rightmost of these
spaces; the others are zeroed out.

(d) Again, scanning from the right, we now place random ele-
ments of R, into the space reserved for B, listing them in order.
Duplications are avoided by choosing, at random, m' =1 + |&m],
where m is the number of members of B, not yvet chosen, and x is the
m'th member of this list of unchosen elements.

ALGORITHM RANKSB

[Input: n, k; output: random subset (a,, . . ., a,)of {1, .. ., n},
listed in increasing order. Time: linear in k for k = n/2; no auxiliary
array storage. |

42 / 4: RANDOM k-SUBSET OF AN n-SET (RANKSB)

(A) [Initielize a, to “zero” point for bin R a; < (i — n/k]
{i=1,k); c< L

(B) [Choose random x; determine range R, accept or re-
jecty x <1+ |én); L1+ [(xk—1V/n); if x =g, to (B);
ag<—ag+l;ce—c—1,if c>0,to (B); i<0; p<—0; sk

(C) [Move a; of nonempty bins to the left] i< i+ 1,ifi>k to
(D); if a;=[{i — 1)nfk], ¢, <= 0and to (C); p<—p+1; m < a;
a; < 0; a, < m; to (C).

(D) [Determine I, set up space for B;] 1< 1+ [(a,k— 1)/n];
As<—a,— [{I—1)nfkl; ¢, < 0; e, < ;s —s—As; pep—1;
ifp>0,to(D);1<k

(E) [Ifa, # 0, a new bin is to be processed] ifa;=0,to (F);r < I;
my < 1+ (@, — Un/k]; m < |lam/k] —me+ 1.

(F) [Choose a random x] x < mq+ [&m]; i <L

(G) [Check x against previously entered elements in bin; increment
x as it jumps over elements = x] i —i+1; if i > r, to (H); if
X <a,to(H); a;, < a;x<x+1; to (G).

(H) [Insert x; exit if last] ey <x; m<m—1; l<1—1; if
1 =0, Exit; to (E) &

A labor estimate is obtained as follows. All operations through (D)
are linear in k (if k = n/2). Loop (G) resides inside loop (E) to (H);
the labor for B is O(|B:[?). To obtain an average labor, we must es-
timate the latter. We do so for large n; if n is not large compared to k,
then the larger values of m; will become even less likely, due to a
higher probability of rejection.

The probability of getting subsets B,, ..., By containing
My, . . ., mpnumbers (Im,; = k) is

o F)
My, o o0, Ty

The labor for each subset B, is proportional to m?. Hence, we calcu-
[ate the total average labor %

k

My, . ., My

& =Zkk () Zmd

Because of symmetry we may replace Em;* by km,?;

P L I
My, o0 0, My

The typical term in this sum is the coefficient of x,™ - - - x," in

2
k—k+1 (xl ai:) (xl 4+ -4 xk)k

1

4: RANDOM k-SUBSET OF AN n-SET (RANKSB) / 43

Calculating the latter and setting z,=:-'-=x,=1 we get
% =2k — 1. Hence, the average labor is linear in k, for k= n/2, and
O(k log k) for all k.

The required labor could have been held to O(k) uniformly for
1 = k = n by using a different method when k = nf2. The following
algorithm, for example, uses just k memory locations, operates in
O(k) steps when n/2 = k = n, and it also produces sorted output.

ALGORITHM RKS2

(A) o= kicyen; ky<0;,i<0.

(B) i—i+1;If&>cfe,, to{C); ey —c,—1; ke« kgt 1; @y, < i
If ¢, = 0, Exit.

(C) ¢z« c¢c;—1; To(B) A

In the interest of programming simplicity, we have chosen not to
include this algorithm in our program.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANKSB.

(2) Calling statement: CALL RANKSB(N,K,A).

(3) Purpose of subroutine: Choose a random k-subset of {1,
2, ..., nkhL

(4) Description of variables in calling statement:

Name Type 1/O/W(B Description

N INTEGER I Number of elements in universe,

K INTEGER I Number of elements in desired subset.

A INTEGER({K) 0 A(T} is the Ith element of the output subset
(I=1 K}.

(5) Other routines which are called by this one: Random number
generator FUNCTION RAND(I).

{6) Number of FORTRAN instructions: 46.

(7Y Remarks: A(l}, ..., A{K) are in sorted sequence.

SUBROUTINE RANKSB(N,K, A)
INTEGER A(K),X,R,DS,P,S,C
C=K

44 / 4: RANDOM k-SUBSET OF AN n-SET (RANKSB)

20
30

40

50

60

70

80

DO 1 I=1,K
A{I)=(I-1)*N/K
X=1+N+*RAND (1)
L=14+{X*K-1}/N

IF(X .LE. A(L)) GO TO 10
A{(LY=A{L)+1

C=C-1

IF(C .NE. 0} GO TO 10
P=0

S=K

DO 20 I=1,K

M=A{(I)

A(I)=0

IF{M .EQ. {I-1)*N/K) GO TO 20
P=P+1

A(P}=M

CONTINUE
L=1+(A({P)*K-1)/N
DS=A{P)~(L-1)*N/K

A(P)=0

A(S)=L

S=3-DS

P=pP-1

IF(P .GT. 0) GO TO 30
L=K

IF{A{L).EQ.0) GO TO 50
R=L

MO=1+(A{L)-1)*N/K
M=A(L)*N/K-MO+1
X=MO+M*RAND(1)

I=L

I=I+1

IF(I .LE. R) GO .TO 80
A(I-1)=X

M=M-1

L=L-1

IF{L .EQ. 0) RETURN
GO TO 40

IF(X .LT. A(I)} GO TO 70
X=X+1

A(I-1}=A(I)

GO TO 60

END

4: RANDOM k-SUBSET OF AN n-SET (RANKSB)/ 45

SAMPLE INTERMEDIATE RESULT

The program RANKSB was called with n =63, k = 10. The vector A
has been reproduced, after the completion of the indicated step of
the algorithm.

{(A) © 6 12 18 25 31 37 44 50 56
(B} 1 6 12 18 27 33 39 44 B0 59
(C) 1 27 33 39 58 0 0 0 0 0
(D) 1 0 5 0 6 0 T 0 0 10
(F) =81

H) 1 0 5 0 6 0 T 0 0 8l
(F) x=157

H) 1 0 5 0 & 0 T 0 BT 61
(F) x=058

H) 1 0 5 0] 6 0 7 BT 59 61
The next two values of x were 38, 43

(H) 1 0 5 0 6 38 44 57 59 61

SAMPLE OUTPUT

The program RANKSB was called 200 times with n =35, k= 3. The
frequencies with which each of the ten subsets were obtained are
shown below. Thus {1, 2, 3} occurred 18 times, etc. The value of x*
is 7.24 with 9 degrees of freedom. In 95% of such experiments, the
observed value of ¥ would lie between 2.6 and 19.6 if all 3-subsets
were equally likely to occur.

1 2 3 18
1 2 4 23
1 2 5 18
l 3 4 20
1 3 5 16
1 4 5 19
2 3 4 21
2 3 5 19
2 4 5 18
3 4 5 28

5

Next Composition of n into k Parts
(NEXCOM)

Let n and k be fixed positive integers. By a composition of n into k
parts, we mean a representation of the form

(1 n=r+r;+ - - - +r,

in which r; = 0 (i = 1, k) and the order of the summands is important.
For example, there are exactly 28 compositions of 6 into 3 parts,
namely,

6=6+0+0=0+6+0=0+0+6=1+2-+3
=5+1+0=5+0+1=1+4+5+0=24+1+3
=14+0+5=0+1+5=04+5+1=2+2+2
=44+24+0=4+0+2=0+4+2=2+4+0
=2+0+4=0+2+4=44+1+1=1+4+1
=1+14+4=3+3+0=34+0+3=0+3+3
=3+2+1=3+1+2=1+3+2=2+3+1

We now derive a formula for J(n, k), the number of compositions of
n into k parts. The derivation will show, also, how to construct a
simple algorithm for generating all of them.

Suppose that n indistinguishable balls are to be arranged in k
labeled cells. There are evidently exactly J(n, k) ways to do the

46 f

5: NEXT COMPOSITION OF n INTO k PARTS (NEXCOM) / 47

arranging because, if we have such an arrangement, let r; be the
number of balls in the ith cell for i = 1, k. Then we have a composi-
tion (1), and the converse is also true. Hence, we can find J(n, k) if
we can count these arrangements of n balls in k cells.

Let n + k+ 1 spaces be marked on a sheet of paper, and suppose
that in the first space and the last space we mark a vertical bar, as

1 2 3 4 (n+k+1)
Figure 5.1

shown in Fig. 5.1. In the remaining n + k — 1 spaces, distribute the n
balls with no more than one ball occupying any space. There are ob-

viously
(n +k— 1)
n

ways of doing this. In each of the other k — 1 spaces which remain,

place a vertical bar. We now have a pattern like the one shown in
Fig. 5.2.

1 2 3 4 5 6 7Tkt
Figure 5.2

Now we think of the vertical bars as representing cell boundaries.
Hence, in Fig. 5.2 there are 5 cells containing, respectively, 2, 0,
1, 3, 1 balls. It is now clear that there are precisely

() o ="

n

compositions of n into k parts. For example, the

6+3—1\ (8
(Cre)= (g)-2
compositions of 6 into 3 parts have been listed above.
Another proof of the same result can be given, which, while it does
not help with the design of an algorithm, shows an important area of

applications. Indeed, suppose we are given a number of power series
and we want to multiply them together. How can we calculate the

48 7 5: NEXT COMPOSITION OF n INTO k PARTS (NEXCOM)

coeficients of the product series? For instance, if

(S o) (3) (3 crx*) =3 dum

how can we express d,, in terms of a;, b, ¢, P Clearly,
(3) dw = 2 a;bycy,
i+it+k=m

On the right side of (3) there is a term corresponding to each com-
position of m into three parts.

Consider the power series f{x)=1+x-+x>+---. If we raise
it to the kth power, we get
(4) flx)k = 2 2 e 2 gtz AT
=0 rp=0 =0

Collecting terms with equal exponents, we see that x” appears ex-
actly as often as there are compositions of m; hence,

(5) Fl)e=73 I(n, k)"

On the other hand, f{x)* = (1 — x)~* but by Taylor’s theorem,
1 n+k—1y ,

© T 2(")

and comparison of (5) and (6) yields (2) again.

The algorithm for generating compositions of n into k parts
sequentially is suggested by our first proof, above, of the relation (2).
What we must do in order to generate all of the compositions of n
into k parts is to generate all of the (k — 1)-subsets of n + k— 1 ob-
jects and to interpret each such subset as the set of locations of the
interior vertical bars in Fig. 5.2. From the bar locations we can, by
subtraction or otherwise, determine the number of balls between
each consecutive pair of bars and thereby determine the composition
which corresponds to the given subset.

Instead of generating the subsets and from each subset computing
the composition, we can do both together by going back to our lex-
icographic algorithm NEXKSB and translating it into a direct
algorithm for compositions. Recall that in that algorithm, if

(7) {ala oy o« + ak—l}

is a (k — 1)-subset, we go to the next one by finding the smallest £ for
which

5: NEXT COMPOSITION OF n INTO k PARTS (NEXCOM) / 49

(8) Q= n, ak_2=n—1,. .. ,ak_,,=n—h+l; Gk_h_1<ﬂ'_'h

We then increase ¢, by 1 and set each succeeding a,,, equal to
one more than its predecessor ¢, (r=k—h—1,. .., k—2).
In terms of the composition associated with the subset (7)

(9) n=7'1+1'2+"‘+1'k

the relations (8) imply that ry,=7r,_, =+ - - =7, =0and r._, > 0.
The act of increasing a_,-, by 1 and setting each following a, equal
to one more than its predecessor, will (a) inecrease r_,_; by 1,
(b) set r,=r,— 1, and (¢) set r,_, =0. The reader can easily
follow this by watching what happens to the moving vertical bars in
Fig. 5.2 and noticing that the end bars remain fixed.

The language of subsets can therefore be removed, and the entire
algorithm can be stated directly in terms of compositions. It is also
convenient to search for the first nonzero part of the composition
starting from the left rather than from the right-hand side.

When all of this is done, what remains is to search the last com-
position ry, . . ., 7, to find the first nonzero part r,, We then put
te— 1y, <0, <= t—1 and 74, < 74, + 1. It is important to no-
tice, however, that the same line of measuring as we applied in
Chapter 3 also works here, and we do not actually have to search for
the first nonzero part.

Indeed, if the first nonzero part of the previous composition was
>1, then we will find A =1 on the next composition, while if that
first nonzero part was =1, we will have h < h + 1 on the next com-
position. The complete formal algorithm follows.

ALGORITHM NEXCOM

(A) [Firstentry] rne—njt<nh<0r,«<0({=2 k); Goto (D).
(B) [Later entries] Ift=1, go to (C); h < 0;

C) heh+Lteryrme0;r—t—1; 1y < e+ L

(D) If v, = n final exit; Exit B

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: NEXCOM.
(2) Calling statement: CALL NEXCOM(N,X,R,MTC).

50 7 5:

NEXT COMPOSITION OF n INTO kK PARTS (NEXCOM)

(3) Purpose of subroutine: Next composition of » into k parts.
(4) Descriptions of variables in calling statement:

Name Type HOIW/B ’ Description
N INTEGER I - Number whose compositions are desired.
K INTEGER i Number of parts of desired composition.
R INTEGER(K) i{lo] R(I} is the Ith part of the output compaosition
(I=1,K).
MTC LOGICAL IO =,.TRUE. if this is not the last composition;

=.FALSE. if the current output is the last.

(5) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 20.

10

11
15

20
30

SUBROUTINE NEXCOM (N,K,R,MTC)
INTEGER R(K},T,H
LOGICAL MTC

IF(MTC) GO TO 20
R(1}=N

T=N

H=0

IF(K.EQ.1) GO TO 15
DO 11 I=2 K

R{IV=0

MTC=R(K} .NE.N
RETURN

IF(T.GT.1) H=0
H=H+1

T=R(H)

R{H}=0

R{1l}=T-1
R{H+1)=R{H+1)+1

GO TO 15

END

SAMPLE OUTPUT

The program NEXCOM was called, repeatedly, with N=6, K=3, until
termination. The 28 output vectors R(1),R{2),R(3) are shown
on the next page.

5: NEXT COMPOSITION OF n INTO k PARTS (NEXCOM) / 51

OO0 00O M MMAMAMAMRMRNNNNAQANMDN IO
O NPV OOOAHANMMIPIONDOAANMNMAFOANNOOANODOHO

DWUINNMNAHOINT NN AN HOMNMNAONHO OO

Random Composition of n into k Parts
(RANCOM)

Our algorithm for random compositions is based on the “balls-in-
cells” model which was described in the previous chapter. Briefly,
we choose the positions of the cell boundaries at random, then by
differencing we find out how many balls are in each cell.

The algorithm is quite fast, requiring just O(k) operations per com-
position, on the average.

ALGORITHM RANCOM

(A) Choosea,y, . . . , @y_y, a random (k — 1)}-subset of
{1,2,...,n+k—1}

(B) Setr,«—a,—Lin<a—a,—1{(j=2,k—1);rne<n+k—-1—
dy.—; Exit

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANCOM.
(2) Calling statement: CALL RANCOM{N,K,R).

52/

6: RANDOM COMPOSITION OF n INTO k PARTS (RANCOM) / 53

(3) Purpose of subroutine: Random composition of n into k parts.
(4) Description of variables in calling statement:

Name Type IIO/WIB Description
N INTEGER I Number whose compositions are desired.
K INTEGER I Number of parts in desired composition.
R INTEGER (K) o] R{I) is the Ith part in the output composition
(I=1,K).

(5) Other routines which are called by this one: RANKSB (Chapter
4), FUNCTION RAND(I) (random numbers).
(6) Number of FORTRAN instructions: 11.

SUBROUTINE RANCOM(N,K,R)
INTEGER R({K)
CALL RANKSB({N+K-1,K-1,R)
R{K)=N+K
L=0
DO 10 I=1,K
M=R({I)
R(I)=M-L-1
10 L=M
RETURN
END

7

Next Permutation of n Letters
(NEXPER)

There are many methods of sequentially producing all n! permuta-
tions of n letters. Some of these methods require the construction of
the next permutation ab initio while others produce it by a small
modification of the previous permutation. Our inclination here is
toward the latter approach because of its computational simplicity
and elegance.

One knows, for example, that the transpositions generate the full
permutation group, i.e., that each permutation o of n letters is a prod-
uct

o=ty tu

of transpositions. The question of algorithmic importance is this: can
the n! permutations be arranged in order in such a way that each one
is obtainable from its predecessor by a single transposition?

For example, when n =3 we have the list

123
132
312
321
231
213

54 /

7: NEXT PERMUTATION OF n LETTERS (NEXPER) / 55

in which each of the six permutations of three letters is obtained
from its predecessor by a single exchange of two letters (transposi-
tion).

The same question can be asked in terms of graphs. Consider a
graph of n! vertices, one corresponding to each permutation of n
letters. Let T, denote the set of all transpositions. We construct a
directed edge, in our graph, from vertex o, to vertex o if there is a
transposition # € T, such that

oy =1toy

For instance, in the case n = 3, the graph G has 6 vertices and looks
like that shown in Fig. 7.1.

312}

Figure 7.1

In terms of this graph, our question is just this: Is there a Hamilton
path in the graph GP (A Hamilton path is a walk on the edges of G,
following the “one-way” signs, which visits each vertex exactly

once.) The question can also be asked about an arbitrary finite group
G and set T of generators.

Problem 1 Given a finite group G and set T of generators of G.
When can we conclude that all of the elements of G can be arranged
in a sequence so that each one is obtainable from its immediate
predecessor by the application of a single generator?

Problem 2 For which groups G can this be done for every set of
generators of G? In Exercise 6 we see that 8 is not such a group.

56 / 7: NEXT PERMUTATION OF n LETTERS (NEXPER)

In the case at hand, the answer is always affirmative, i.e., the per-
mutations of n letters can be arranged so that each is obtained by a
single transposition from its predecessor on the list. In fact, several
methods for doing this are known, An algorithm due to Wells [W1]
accomplishes this in a nice way in that the amount of computational
labor needed to decide which pair of letters to branspose at each
stage is quite small. We mention also an elegant method of Trotter
[Trl] which sequences the transpositions so that at each step the
two letters which are to be transposed are adjacent to each other.
Trotter's method can be implemented by the following algorithm,
which clearly reveals its inductive nature:

(A) [First entry] a; < j(j = 1, n); m < 1; Exit.

(B) [Later entries] n’' < n; m' < m; s < n.

(C) [Find n', the active letter] g < m' {(mod n'); t < m’ (mod 2n');
If g#0, to (D)}, If t=0, set s<s—1;, m < m'In';
n' —n"'—1; To (C).

(D) [n' at left or right?] If g=1¢, to (E); s« s+ g—n"; To (F).

(E} [Right end moves] s — s —gq.

(F) Exchange a,, a;4;; m < m+1; If m=n!, final exit; Exit &

Since the algorithms mentioned above are available in standard
references, we present here another algorithm which has the advan-
tage that it not only will produce a complete list of permutations if
started at the identity permutation, but it can also be entered with
any permutation and its sign, and will produce the successor of that
permutation.

We describe the algorithm first recursively. Let %, be the already

constructed list of permutations on the letters 1, . . ., n, and
let #.{i) (1=i=n-+1) be a list of permutations on the let-
ters 1,..., i—1, i+1,..., n+1, defined as follows.

Zn+ 1) =2, and Z,{i} (1 =i = n) is obtained from Z,{(i + 1)
by replacing all occurrences of i by i + 1. Then

(1) ZLou=ZLin+1yB(n+1), Lin)Bn, £dn—1)
Sn—1,Fn—2BNn—2), ...

The symbol @ denotes that in Z,{i) @ { each permutation has been
extended to contain the letter i as last element. A bar, as in £(i),
means reversal of the list. It is immediately clear, inductively, that
this provides a listing in which each permutation differs from its
predecessor by just one transposition; it is also clear, inductively,
that each permutation occurs exactly once.

7: NEXT PERMUTATION OF n LETTERS (NEXPER) / 57

In order to transform this inductive definition into a noninductive
one, and one in which we can compute the successor of a permuta-
tion without knowing its rank in the list (we only require its signa-
ture, to save the trouble of having to examine the whole permutation
each time) we encode a permutation (a;, . .., @, by an (n— 1)
tuple (d,, . . ., d,-,), where d; is the number of letters preceding
@41 Which are larger than a;,,. This is essentially the well-known
“inversion-table™ of the permutation. Columns 4, 5, 6 in Table 7.1
give this encoding. Clearly, 0 = d, = i. It is easy to reconstruct a per-
mutation from its encoding, starting with a, and d,_, and working
forward. As most of the “action” is in the front, however, we want to
calculate the successor of a permutation starting from the front. If
only we know the signature, this can be done. If a permutation is
even, we need no en- and decoding; we simply interchange @, and
a,. If the permutation is odd, however, we must operate more care-
fully. We consider the numbers s;=d, + - - - +d;, and observe from

Table 7.1 The Permutations of {1, . . . , 4}
and Their Inversion Tables

B
]
f3
=
@
)
e
=
o
A3
[~
&

f e 3 TN A Y S YR S o I e R A e]
Co b D2 W e QO CO W b = 03 B = R e DO BD LD QO e e D
R G WD DD e e GO R W R B RO DD e = RO BD G 2
ol el o B S S o= T S T O 0 T T o S I T S G Y ST S U A S
CHHRPOOH R OO MHOQLMHEFMFQOMFMFDOQMEMD
OO~ FFNMNMMNEEMENOOOOHEFRMNDMPENDW—-HOO
WWWWWWMHNHNNMNMEONR MMM MOOSC OO

58 / 7: NEXT PERMUTATION OF n LETTERS {NEXPER)

Table 7.1 that (starting from an odd permutation) if s, is odd, we find
the code word for the successor by increasing d, by one unit, and if s,
is even, we reduce d, by one unit. Exceptions to this rule occur
when the operation on d, would push it outside the range
0 = d, < 2. When that happens (e.g., at 3214} we consider s,: if it is
odd, we increase d; by one unit, otherwise we similarly reduce d,,
etc. The rigorous inductive proof of this statement follows by proving
from (1) that the first element of .%, is encoded by a string of zeros,
and the last element by all zeros except d,-, =n — 1 if n is even, or
dys=n—2,dyy=n—1ifn is odd.

The in- or decreasing of d; means, in practice, that we search
among d,, . . . , a; for the nearest element (smaller or larger) to a:,
in value, and interchange the two. Such an operation does, indeed,
change only d.;.

ALGORITHM NEXPER

[Calculates the next permutation on n letters; successive permuta-
tions differ by only a transposition]

(A) [Firstentry] a;<i(i=1,n); o< 1

(B) [Following entries; input (a;, . . . , a,) and signature o] If
o=-—1, to (C); o < —1,; interchange a,, a,; Exit.

(C) o <« 1; calculate d,= |{j:j =i, a; > ¢y,}| and s;=d,+ -+
d; (i=1, n— 1) until either s; is odd and d; < i or s; is even
and d; > 0; in the first (second} case search a, ..., @
for the largest (smallest) number less (greater) than a,.4, and in-
terchange the two; Exit B

To estimate the amount of labor involved, we note that, to find the
value of i in step (C), i{i + 1)/2 steps are required, and finding the
number with which to interchange a, costs another i steps. In half the
cases, none of this is needed, in the remaining n!/2 cases, there are
[(nl/2)) — (n1/31)] for which i =2, [(nl/3!) — (n}/4]}] for which i=3,
etc. Hence, the total labor is

22 (%r G fl)!) 3 < nize-2)

Thus, the average labor per permutation is bounded, independent of
n,

7: NEXT PERMUTATION OF n LETTERS (NEXPER} / 59

It is easy to see, inductively from (1}, that the last permutation in
the list ., is

(1 2 3-+n—1 n)
2 3 4--- n 1
if n is even and
(l 2 3---n—-2 n—1 n)
34 5.+ n 2 1

if n is odd. The test for a final exit is done by checking the output
permutation against the appropriate one of these.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: NEXPER.

(2) Calling statement: CALL NEXPER (N A MTC EVEN).

(3) Purpose of subroutine: Generate next permutation of 1,
2, ..., n

(4) Descriptions of variables in calling statement:

Name Type HO/WIB Description

N INTEGER I Number of letters being permuted.

A INTEGER (N} 1o A (T} is the value of the output permutation at
I(I=1,N} {(see Remarks below).

MTC LOGICAL 110 =_TRUE. if current output is not the last per-
mutation; =.FALSE. if no more permuta-
tions of n letters exist.

EVEN LOGICAL Ijo =.TRUE. if output permutation is even,

=.FALSE, if it is odd. Not needed as input
on first call, i.e., when MTC= FALSE .

{5) Other routines which are called by this one: None.

{6) Number of FORTRAN instructions: 47.

(7) Remarks: If entered with MTC=.TRUE., any permutation A,
and EVEN, the successor will be produced, unless A was the
last permutation on N letters, in which case A {1} will be set to 0
on output,

SUBROUTINE NEXPER(N,A,MTC,EVEN)
INTEGER A(N),S,D
LOGICAL MTC,EVEN
IF (MTC) GO TO 10

60 / 7: NEXT PERMUTATION OF n LETTERS (NEXPER)

NM3=N-3
DO 1 I=1,N
1 A(IY=T
MTC=.TRUE.
5 EVEN=.TRUE.
IF(N.EQ.1) GO TO B
g IF{A(N) NE.1.0R.A(1) .NE.2+MOD(N,2}) RETURN
IF(N.LE.3) GO TO 8
DO 7 I=1,NM3
IF(A(I+1) NE.A{I)+1) RETURN
T CONTINUE
8 MTC=.FALSE.
RETURN
10 IF(N.EQ.l) GO TO 27
IF{ .NOT.EVEN) GO TO 20
IA=A(1)
A{l)Y=4A(2)
A(R)=IA
EVEN= . FALSE.
GO TO 6
20 S=0
DO 26 I1=2,N
25 TA=A(I1l)
I=I1-1
D=0
DO 30 J=1,I
30 IF(A(J).GT.IA) D=D+l
3=D4+8
IF{D.NE.I*MOD(S,2)) GO TO 35
26 CONTINUE
27 A(1)=0
GO TO 8
35 M=MOD(S+1,2}#*({N+1)
DO 40 J=1,1
IF(ISIGN(1,A(J)-TA) .EQ.ISIGN(1,A(J)-M)) GO TO 40
M=A(J)
L=J
40 CONTINUE
A(L)=Ia
A(Il}=M
EVEN= . TRUE.
RETURN
END

SAMPLE OUTPUT

B, until ter-

The subprogram NEXPER was called repeatedly with N

.,A(5) follow.

mination. The 120 output vectors A(1),A(2),..

5 4 3 2

1 3 4 1

5
2
2
3

2
5
3
2

2 3 4 5

4 3 2
5 3 2

3 4 5
2 4 5
3 2 4 b

1

4 5 3 2
3 5 4 2

4

3 2 5 4

1

5

5 4 2

1 3 4 2
5 3 4 2
5

5
1

3 5 4
2 3 5 4
1 2 4 5 3

-2

5

4 2 3 5

3

4

1

5 3

l 4 5 3
1l 2 5 3
4 2 5 3

2 3 b
4 3 5

2 4 3 5

3
4

4
3

4
1

oo N

1) 1 D

MM

-~

= <N

) ¥ N

0w <

T

(SIS N Te]

o 1o W0

NN

R)

M-~

— M

3 4 5 2
2 3 4 5
3 2 4 5

4 2 3 b

4 3 2 5

5 2 4 3

1

5

2 4 3
5 4 3
2 5 4 3

1

4 3 2
3 4 2

2 4 3 5

1

5
5

3 4 2 5 1

4 3 2 5

l 4 5 2 3
4

1

2 4 3
4 2 3
3 2 4

5 2 3
4 2 3
5 4 2 3

1

5 3 2 4
3 5 2 4 1
2 5 3 4

1

2 3 4

3

2

5 2 3 4 1

3 2 5 4

2 3
1

1
1

4 1
5 4 2
4 5 2

3 2 5

3
3
3

1
2 5 3 1 4

3 2 3

2 3 5 4
2 4 5 3

2 5 4

4

1
1
2
2

3 5 2

4 2 B 3

5 2 4 1 3

5 3 2

5 2 4 3

3
3
2
2

4 4 2 5 1
1
1

4

5 3 2 4

2 5 4 3

4 5 2 3

2 4 b
3 4 b

4

5 4 2 3

3

3 2 4

5 4 3 2
4 5 3 2

4 5 3 4 1
3 5 2 4

2
2 5 3 4

2
2

3 5 4 1

4

3 5 4 2
5 3 4 2
4 3 5 2

3 4 5 2

5

2
2
2

1
3
3

5 4 3
5

4

3
5 1 2 3 4

4

1

5

5 2 3 4 4

1

/ 61

8

Random Permutation of n Letters
(RANPER)

We produce a random permutation by a sequence of random in-
terchanges. First choose any one of the n letters 1, . . . , n for a;
then choose any one of the remaining letters for as, etc. The con-
struction of a permutation thus involves n choices, with respective
probabilities

1 1 1
E’—n—l""’g’l

and the probability of a given permutation being chosen is therefore
1/n!

ALGORITHM RANPER

(A} a;,«<i(i=1, n).
(B) Form=1,n:{l < m+|én+1—m)j; Exchange a;, a,}.
Exit B

The FORTRAN program contains a LOGICAL parameter SETUP . If it
is set .FALSE. the subprogram will not setup the amay A with
1, . . ., n but, instead, will operate on whatever data the user has
supplied.

62 /

8: RANDOM PERMUTATION OF n LETTERS (RANFPER) / 63

SUBROUTINE SPECIFICATIONS

(1)
(2)
(3)

Name of subroutine: RANPER.

Calling statement: CALL RANPER(N, A, SETUP),

Purpose of subroutine: Generate random permutation of n
letters.

{4) Descriptions of variables in calling statement:
Name Type HOIWIB Description
N INTEGER I Number of letters to be permuted.
A INTEGER(N) (8] A(TI} is the value of the output permutation at
I (I=1,N}.
SETUP LOGICAL I If .FALSE., program shuffles the input array
A; else, shuffles 1,2, . . ., n.
(5) Other routines which are called by this one: Random number

6

10
20
30

40

generator FUNCTION RAND(I) .
Number 6f FORTRAN instructions: 13.

SUBROUTINE RANPER(N, A,6SETUP)
INTEGER A (N)

LOGICAL SETUP

IF(.NOT.SETUP) GO TO 20
DO 10 I=1,N

A(I)=I

DO 40 M=1,N
L=M+RAND (1)* { N+1-M)
L1=A(L)

A(L)=A(M)

A(M)=L1

RETURN

END

SAMPLE OUTPUT

For each n=3,...,8, a set of 50 random permutations of n
letters was chosen, and the number of cycles of each of these 50 per-
mutations was found. In Table 8.1, we tabulate the average number

64 / 8: RANDOM PERMUTATION OF n LETTERS (RANPER)

Table 8.1

n (a} (b)

3 1.78 1.83
4 2.04 2.08
5 2.28 2.28
6 2.50 2.45
7 2.52 2.59
8 2.58 292

of cycles in a permutation of n letters (a) estimated as described
above and (b) calculated exactly from the formula 1 +34+- - -+ 1/n.

9

Next Partition of Integer n NEXPAR)

If n is a positive integer, then a representation
n=r+rat+ - +r (RMETRZ o 21y

is called a partition of n, where it is understood that the “parts”
Ti, . . . , ¥y are strictly positive numbers. Thus, in Chapter 5, we saw
that there are 28 compositions of 6 into 3 parts, but there are only 3
partitions of 6 into 3 parts, viz.,

6=4+1+1
=3+2+1
=24+2+2

Indeed, if we do not restrict the number of parts, then for a fixed n
there are infinitely many compositions of n, but only a finite number
of partitions of n. We let p(n) denote the number of partitions of n.
Then, for example, p{6) = 11 and the eleven partitions of 6 are

6=6
6=5+1
(1) 6=44+2
6=4+1+1
6=3+3 (cont.)

66 / 9: NEXT PARTITION OF INTEGER n (NEXPAR)

6=3+2+1
6=3+1+1+1
6=2+2+2

(1 cont.) 6=2+2+1+1

6=24+14+1+1+4+1
6=14+1+1+1+1+1

In the preceding list of partitions of 6, the arrangement of the parti-
tions is in antilexicographic (reversed dictionary) order. More pre-
cisely, a partition

n=r,+r,+ -+

occurs in the list above a partition ‘
n=s,+s+ -+

if for some integer ¢ = 0 we have

(2) ri=¢8 (=1,...,t) and 7y > S

The algorithm which we will now discuss generates from a given
partition
(3) n=ry+ry+ -ty
its immediate successor on the list of all partitions of n, ordered
antilexicographically. Suppose
(4:) ﬂ=1_'1+f2+"'+i1

is the immediate successor. How can we determine the 7; from the
fi?
Suppose first that r, > 1, e.g.,

(5) 59=22+21+10+3+3

What is the immediate successor of (3) in the list of partitions of 597
It is found by decreasing the last part r, by 1 and adjoining a new
part=1:

(6) 50=22+4+214+10+3+2+1

Indeed, it is clear that (6) occurs somewhere after (5) on the list, If

some third partition of 59 lies between (5) and (6), then it is easy to

deduce a contradiction from the definition (2) of the ordering.
Hence, our first rule for obtaining (4) from (3} is:

9: NEXT PARTITION OF INTEGER n (NEXPAR) / 67

(I) Ifr,>1,
set Fy=7,Fa="a, . « « T =Tpqs T =7 — 1, Tpyy =1;
Exit.

Now we need to deal with the case where rp, = 1. Suppose, in fact,
that

=T =" =tu=1, rn>1
as in the example
(7) 59=19+16+14+3+1+1+1+1+1+1+1
If the first part, 19, were to change to 18, say
(8) 59=18+ - - -
we would not have the immediate successor of (7) because any parti-
tion
(9) H9=194+15+ - - -

would lie between (7) and (8). Similarly, the 16 and the 14 must both
remain fixed, Hence the immediate successor of (7) is of the form

(10) 59=19+16+14+ - - -

and the dots in (10) constitute a partition of 10, namely, the one
which is the successor of

10=3+1+1+1+1+1+1+1

in the list of partitions of 10. We need to go from the “last” partition
of 10 whose largest part is 3 to the “first” partition of 10 whose larg-
est part is 2

0=24+24+2+2+2
The successor of (7) is then
BN=19+16+14+2+24+2+2+2
If we return now to the general case, suppose we have a partition
n=t+rs+++r+1+1+14+- - - +1

In the successor partition, none of the first § — 1 parts will change, so
that

Fi=r (i <j)

68 7 9: NEXT PARTITION QF INTEGER n (NEXPAR)

What remains is the last partition of the number
n' =71+ (k—j)

whose largest part is r;, and we must go to the first partition of n’
whose largest part is

m=r;—1

This first partition is made by repeating the part m as often as it will
“fit” into n’', namely

Ln'fm]
times, and if there is a positive remainder
s=n'"—m|n'/m]

then we adjoin one additional part equal to s.
The complete formulation of the transition from (3) to {4) in the
case where

1‘,-+1="'=1'k=1, TJ>].
is

F,=‘r,- (i'_"l,...,j_l)
(10 Fi=T ="' " " =T =m

Fira=s (ifs>0)

wherem=r,—1, g=[(n+ (k—j))m], s=r+{k—3j)—mq.
The algorithm avoids the repeated listing of equal parts by main-
taining a list 7, > r, > + -+ - > r; > 0 of distinct parts, and a list
My, . . . » my of their respective (positive) multiplicities. This
economy results in a running time for each call to the subroutine
which is independent of the value of n, and the program is loop-free.

ALGORITHM NEXPAR

(A) [First entry] ry < n; m; « 1; d <« 1; Exit.

(B) [Later entries] (Set o equal to the sum of all parts of size one,
plus the part preceding them.) If rg=1, set o < m,;+1,
d —d —1; Otherwise, o < 1.

(C) [Remove one part of size ry] fe—1r,—1;, If my=1, to (D);
ma-(—md-"l; de—d+1.

(D) [Add new parts of size f] 1y < f; mg < |olf | + 1.

9: NEXT PARTITION OF INTEGER n (NEXPAR) s/ 69

(E) [Add positive remainder] s «— o (mod f); ¥ s =0, to (F); Other-
wise, d<«—d+1;r; < 5; my < 1.
(F) [Exit] If m;=n, final exit; Exit B

SUBROUTINE SPECIFICATIONS

(1} Name of subroutine: NEXPAR.

(2) Calling statement: CALL NEXPAR(N,R,M,D,MTC).
(3) Purpose of subroutine: Find next partition of n.

(4) Descriptions of variables in calling statement:

Name Type I/O!WIB Description

N INTEGER i Integer whose partitions are desired.

R INTEGER(N) IO R(I) is the Ith distinct part of the output part-
Hon (I=1,D}.

M INTEGER(N} 11O M{I) is the multiplicity of R(I} in the output
partition (I=1,D).

D INTEGER IO Number of distinct parts in output partition.

MTC LOGICAL IO =.TRUE. if more partitions of N remain after this

one. =.FALSE. if this is the last partition of N.

{5) Other routines which are called by this one: None,
(6) Number of FORTRAN instructions: 28.

SUBROUTINE NEXPAR(N,R,M,D,MTC)
IMPLICIT INTEGER (A—Z)
LOGICAL MTC
DIMENSION R(N),M(N)
DATA NLAST/0/

10 IF(N.EQ.NLAST) GO TO 20
NLAST=N

30 S=N
D=0

50 D=D+1
R(D)=S
M(D)=1

40 MTC=M(D).NE.N
RETURN

20 IF(.NOT.MTC) GO TO 30
SUM=1
IF(R(D).GT.1) GO TO 60

70 / 9: NEXT PARTITION OF INTEGER n (NEXPAR)

SUM=M(D)+1
D=D-1

60 F=R(D}-1
IF(M(D).EQ.1) GO TO 70
M(D)=M(D)-1.
D=D+1

70 R(D)=F
M(D)=1+SUM/F
S=MOD(SUM, F)
IF(S) 40,40,50
END

SAMPLE OUTPUT

The subprogram NEXPAR was called repeatedly with N=10, until
termination. The 42 output partitions are shown below where, for
clarity, we have shown multiple parts repeated.

10

9 1

8 2

g8 1 1

T 3

T 2 1

T 1 1 1

6 4

6 3 1

6 2 2

6 2 1 1

6 1 1 1 1
5 5

5 4 1

5 3 2

5 3 1 1

5 2 2 1

5 2 1 1 1
5 1 1 1 1 1
4 4 2

4 4 1 1

4 3 3

9: NEXT PARTITION OF INTEGER n (NEXPAR) / 71

— - o

o~ N

RN R R A

A B

— 2

M o

)

M m

3 3 2

3 2 2 2

3 2 2

1

1

2 2 2 2 2
2 2 2 2

2 2 2

1

1

1

10

Random Partition of an Integer n
(RANPAR)

For a given n = 1 we wish to select, uniformly at random (u.a.r.) a
partition of n, i.e., so that each partition has a priori probability 1/p{n)
of being selected.

Here is one method which suggests itself, and in fact, is an ex-
ample of the ideas of Chapter 13 at work. Let p{n, k) denote the
number of partitions of n whose largest part is k. Then we first select
the largest part of our partition according to

n Prob {r, =1} = pln, r}/pn) (r=1,...,n)

Next we need to choose u.a.r. a partition of n whose largest part is r,.
Now observe that

(2) pin, k)=pn—1,k—1)+pn—k, k)

because the first term on the right counts the partitions of n with
largest part k and second part < k, while the second termn counts
those whose second part = k.

Thus to select a partition of n with largest part k:

(a) with probability p{rn — 1, k — I)/p(n, k), select a partition of
n — 1 whose largest part is k—1 and add 1 to its largest part or

727

10: RANDOM PARTITION OF AN INTEGER n {RANPAR) / 73

(b) with probability p(n — k, k)/p(n, k), select a partition of n — k
whose largest part is k and make one more copy of its largest part.

See Chapter 13 for the full development of this method.

The above algorithm requires the tabulation of p(n, k), and so next
we describe an algorithm which avoids any tabulation of a function
of two indices, requiring only a linear array.

Let o(n) denote the sum of the divisors of the integer n, and con-
sider the identity

(3) np(n} =% o(n —m) p(m)
m<n
of Euler. We give two proofs of this identity, the classical proof, and
a purely combinatorial one which forms the basis of the present
algorithm.
The original proof depends on the generating function

(4) Ta—x)"=3 pmr (p(0)=1)

i=1 n=0

whose proof can be found in any standard text. If we take logarithms
of both sides and differentiate with respect to x, we obtain

3 np(n)x"

i
Je 4

] — i
i=1 E p(n)x"

-]

(5)

If we develop the left side in a power series, we obtain

(6) Sl a2k) =3 o)t

=1 k=1

and then (5) yields

(7) (3 ot} {3 pempar] = 3 npiae

k=1 n=0

Euler’s identity now follows by equating the coefficients of x* on
both sides of (7).

Next we give a combinatorial proof of (3) which is based on a mul-
tiple counting of the partitions. Suppose 7 denotes a partition of
some integer m < n and d is a divisor of n — m; then the pair (=, d)
gives rise to a partition of n. We simply adjoin to the partition = of m

74 / 10: RANDOM PARTITION OF AN INTEGER n (RANPAR)

exactly (n — m)/d copies of d, yielding a partition ' of n. We make d
copies of the partition 7',

We claim that as d runs over all divisors of n — m and @ runs over
partitions of m (m=0, 1, . . . , n — 1), each partition of n is counted
exactly n times by this process, which will prove (3). Indeed, if

(8) ' in =gt Ty

is a fixed partition of n where the r; are the distinct parts of #’ and
the u; are their multiplicities, then foreach ¢, 1 St = p;, 1 =i =k,
o' is constructed by adjoining ¢ copies of r; to a partition of n — r;
and by replicating the resulting partition of n r; times. This gives
a total of

©) énm=n

copies of 7" altogether, as required.

To obtain an algorithm for random partitions, we replace n —m in
(3) by jd, as we now describe. For simplicity of notation, we assume
that p(k) =0 for k < 0. Then

np{n) = i o(m)p(n — m}
m=1
=% % dpln—m)
m==1 d|m
=> > dpn—jd)
=1 d=1
or equivalently,
- dpln —jd}
(10) 1= ;:: Z npln)

and we interpret the terms on the right as probabilities which sum
to 1.

ALGORITHM RANPAR

Given n.

(A) Set 2 < empty partition; m < n.

10: RANDOM PARTITION OF AN INTEGER n {RANPAR) / 75

{B) Choose a pair of integers (d, j) according to the probabilities
-y _ dplim —jd) L
Prob(d, j} = mp(m) d,i7=1,2,.. ..
(C) Adjoin j copies of d to 2.
(D) m<m-—jd.
(E) If m=0, exit; Otherwise go to (B} l

It is easy to see that all partitions of n have equal a priori probabili-
ties of being chosen. Indeed, let

(11) n=pd, + pady +« -+ -+ upd,
be a fixed partition of n, where the d,, . . . , d, are distinct, and
1, g, . . . are their multiplicities. This partition is chosen in w, +

* -+ . ways by adjoining j copies of d; to the partition of
n — jd; given by
n—jdi=ud +- -+ —di+- -+ pd
(l=j=usl=i=k)
Inductively, these latter partitions each have an a priori probability
equal to 1/p(n —jd;). The a priori probability of (11) is therefore

b d,p(n_dd) 1 _ 1 kooH
22 np(n) pln—jd) np(n) b 21 i

i=1 J=1

1 -
= np(n) I—Zl H'idi
1

pln)

as required.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANPAR

{2) Calling statement: CALL RANPAR(N,K,MULT,P).

(3) Purpose of subroutine: Generate a random partition of n.
{4) Descriptions of variables in calling statement:

Name Type HHOIWIB Description

N INTEGER I Number whose partitions are desired.

K INTEGER O Number of parts in output partition.

MULT INTEGER(N) o MULT(I) is the multiplicity of I in the output
partition (I=1,2,...,N).

P INTEGER (N) B P(I} is the numberof partiionof I (I=1,N).

76 / 10: RANDOM PARTITION OF AN INTEGER n (RANPAR)

(5) Other routines which are called by this one:

RAND(I) (random numbers).
(6) Number of FORTRAN instructions: 42.

SUBROUTINE RANPAR(N,K,MULT,P)
INTEGER P(N},D,MULT(N)
DATA NLAST/0/
10 IF(N.LE.NLAST) GO TO 30
20 P(1l)=1
M=NLAST+1
NLAST=N
IF(N.EQ.1) GO TO 30
DO 21 I=M,N
ISUM=0
26 DO 22 D=1,1
15=0
I1=1
24 I1=I1-D
IF(I1) 22,25,23
23 IS=IS+P(Il)}
GO TO 24
25 I3=15+1
22 ISUM=ISUM+IS+D
21 P(I)=ISUM/I
30 M=N
K=0
DO 31 I=1,N
31 MULT(I)}=0
40 Z=RAND(1)=+M+P(M)
D=0
110 D=D+l
60 I1=M
J=0
150 J=J+1
70 I1=I1-D
80 IF(I1) 110,90,120
120 Z=Z-D+*P(Il)
130 1IF(Z) 145,145,150
90 Z=Z-D
100 IF(Z} 145,145,110
145 MULT({D)=MULT(D}+J
K=K+J

FUNCTION

10: RANDOM PARTITION OF AN INTEGER n (RANPAR) / 77

160 M=I1

170 IF(M.NE.O) GO TO 40
RETURN
END

SAMPLE OUTPUT

The subprogram RANPAR was called 880 times with N=8, The
frequencies with which each of the 11 partitions of 6 were obtained
are shown below. Thus, 6 =3 +2 + 1 occurred 83 times, etc. The
value x? = 13.475 was calculated from

¢(m) — 80)
xz:g(()80)

where ¢(#) is the frequency of the partition =, and the sum is over
the 11 partitions of 6. In 95% of such experiments, the observed value
of x* would lie between 3.247 and 20.483 if the partitions did indeed
have equal a priori probabilities.

80
77
106
T3
T2
83
67
75
76
g6
85

(S

1
1 1 1

HOoNMDOWOWNADMIO®
PHMMHEMNMGWENE

H - H M

CHI 5Q IS 13.475 WITH 10 DEG FREEDOM

Postscript: Deus ex Machina

There is, in the material of Chapter 10, an excellent example of how
new pure mathematics can result from the use of computers. In this
case, we asked a question about the proper way to generate parti-
tions at random. The mere asking of such a question was itself a prod-
uct of the existence of computers. The resulting answer was obtained
by seeking the combinatorial meaning of a certain identity (cf. Eq.
(6)) and following the construction thereby suggested.

The next question is, “Why did it work?” That is, does our con-
struction apply only to this problem, or is it a manifestation of some-
thing more general? It turns out that the latter is the case, and many
other applications of the same ideas can be made (see Chapters 12
and 29).

The situation as regards partitions of an integer is that every parti-
tion is uniquely constructed from a set of basic building blocks,
namely, the special partitions 1=1,2=2,3=23,4=4, . . . (which
we abbreviate as (1), (2), (3), (4), . . .) and their multiplicities. Thus

8=44+24+2=(4)+2- (2)

can be regarded as exhibiting a partition of 8 in terms of the special
partitions (4), (2).
We have then a family of combinatorial objects, namely, the set of

78 /

POSTSCRIPT: DEUS EX MACHINA / 79

all partitions of all integers, and in that family is a distinguished
subset (1), (2), (3), . . ., called “primes,” with the property that
every partition in the large family is uniquely expressible as a syn-
thesis of primes with multiplicities. We shall now abstract from this
case to a more general setting, and we will see that the algorithms
follow along.

Consider a system & which consists of

1. asetJ of objects

2, asynthesismap ® : F X T -

3. an order function Q : 9 — Z+

4. a distinguished subset 2 of 7 of primes,

with the properties:

HI Additivity of order under synthesis:
Q' @)Y =Q(t") + Q")

H2 Properties of synthesis: ® is associative and commutative
H3 Unique factorization: There are no primes of order 0 and
every t € % is uniquely a synthesis of primes, i.e.,

t=,pl.ul®.p2.uz®. -
where Vi:p; €% and p* means p®@p® - - - @p (p

factors).

Let a, denote the number of objects in & of order n, and let II,
denote the number of prime objects of order n, for each

n=1,2,.... We seek the relationship between {a,} and {II,}.
Let s € J be an object of order n, and let
(1) § = pll-'-l & ,pzl-lﬂ. ® - e . ® .p!l-h

be the unique “prime factorization” of s. We shall construct the ob-
ject s in all possible ways by a two-step process of synthesis and
replication:

Step 1 (Synthesis) Let s’ be any object of 7 whose prime decomposi-
tion is identical with Eq. (1) except that exactly one of the primes
say P, appears to a lower power, say pu, —j (1 = j = u,). Then

(2) s=5' @ p,

The object s is uniquely determined by the object s’ of lower order,
and the integers j, p,. Note that Q(s") = Q(s) — iQ(p,).

¥

80 / POSTSCRIPT: DEUS EX MACHINA

Step 2 (Replication) Make d, = Q(p,) copies of the object s, after
synthesizing it in Eq. (2).

Now, as s’ runs over all objects of order <n = {}(s), exactly how
many copies of the object s will be made? For each j such that
= j = p, we make Q(p,) copies of s, for a total of

]
S wlp) = Upt @ p @ - - - @pt)=Qs)=n
k=1

copies of s altogether. Thus, every object of order n is produced ex-
actly n times. It follows that

(3) nt, = E 2 an—sadlla
Jj=1 dzl

because the right side is the total number of copies of all objects of
order n which are made by our synthesis and replication. The fun-
damental relation (3) expresses the total number of objects of each
order in our system % in terms of the number of prime objects of
each order.

The identity (3) can also be written in the more familiar equivalent
form

4 ty, = &m { dIl }
() " m2<n dl(;m) ¢

The identity (6) of Chapter 10 appears as the analytic statement of
unique factorization among the partitions of integers.
We can express (4) in terms of generating functions. Let

A(x) = anx”, P(x) =73 TI.x"
nzo n=1
be the counting functions for all objects and for prime objects,
respectively, then

o r
(5) A =exp S £EL
r=1

Indeed, logarithmic differentiation of (5), followed by matching coef-
ficients of like powers of x yields (4) and conversely. (Remark: @, =
1; it counts the identity element, whose prime decomposition is the
“empty”’ product.)

In this general situation, an algorithm for selecting an object of
order n uniformly at random can always be given. Suppose that we
know how to select a prime object uniformly of given order; then

POSTSCRIPT: DEUS EX MACHINA / 81
(A) Choose a pair of integers (j, d) with probabilities
Prob(j, d) =L=ulla ;5 42 1)
n

(B) Choose an object s’ € 7 of order n — jd and a prime object p
of order d uniformly.

(C) Synthesize s of order n from s’ and J copies of p:

s=35" ®p!
It is easy to check that every s € 7,)(s) = n, has a priori probabil-
ity a,~' of being selected.

Aside from partitions of integers, there are many examples of such
systems in the literature. If & is the set of all forests of rooted
unlabeled trees, with Q(t) = number of vertices of t, and if 2 is the
subset of connected objects (i.e., rooted unlabeled trees), then we
have the following interesting situation: OQur algorithm will select a
random forest on n vertices, given a knowledge of how to select a
random tree of m = n vertices. However, there is a 1-1 corre-
spondence between forests of n vertices and trees of n + 1 vertices:
just adjoin a new vertex n + 1, call it the new root, and connect it to
each of the roots of the trees in the original forest, It follows that our
algorithm will select a tree of n + 1 vertices if we know how to select
a tree of =n vertices, i.e., we have an inductive process for selecting
random rooted, unlabeled trees! This is discussed in detail in
Chapter 29.

The abstract structures which we have introduced here are a spe-
cial case of a family of objects, called “prefabs,” first studied by E.
Bender and J. Goldman who also pointed out the interesting prop-
erty of rooted forests noted above. What we have added to their work
is first of all the constructive procedure of synthesis and replication,
which gives direct combinatorial meaning to the logarithmic deriva-
tive (4) of the functional equation (5), and secondly the realization
that such structures are invariably equipped with recurrent
algorithms for randomly uniform selection of objects of given order,

We give one more example of a prefab, from the theory of plane
partitions. By a plane partition of n we mean an array n;;]%,, of non-
negative integers such that

(a) > ng=n
[}
(6)

=
by T M g9
(b) Ty = Nyyq,j (@, J)

B2 / POSTSCRIPT: DEUS EX MACHINA

Thus, for example, the array

7 3 2 2 2 1
(7 4 2 11

2 92

is a plane partition of 29, in which the blank entries are all zero.

We will show that the set of all plane partitions is a prefab, in
which the order of a plane partition of n is n, and in which we will
describe the synthesis operation and identify the “prime” partitions.
We will see that there are exactly n prime partitions of each order n,
and of course each partition will be uniquely expressible as a “prod-
uct” of these.

When this has been demonstrated, it will follow from Eq. (5) of
this chapter, which holds in any prefab, that

_exp{i 2 }

g7

log 29

—exp{

com (3

= ||Ms uMa i

[a—=r

Thus, the generating function for the number, b{(n}, of plane partitions
of n, is

(8) S b(n)x" =
nz0 1‘[(1 — x")"
n=1
The difficult step, then, is to identify the synthesis operation and

the prime objects, Now, the following result is due to Bender and
Knuth [BK 1].

Theorem There is a one-to-one correspondence between plane par-
titions of n, on the one hand, and infinite matrices a{i, j = 1) of
nonnegative integer entries which satisfy

© 2rlz, e

on the other.

POSTSCRIPT: DEUS EX MACHINA / 83

Let us define T, to be the set of all infinite matrices of nonnega-
tive integer entries that satisfy (9), and let

r=_Jr,
Nzl

Then, for example, there are exactly six plane partitions of 3,
namely,

3 21 2 111 11 1
1 I 1
1

and there are exactly six matrices in T, namely,

3 10 11 00 001 000
10 00 01 000 000
000 100

in which matrix elements that are not shown are all zeros.

In view of the theorem, we can consider plane partitions of n to be
encoded forms of the matrices of I',. Therefore, in order to generate
all plane partitions of n or to select a random plane partition of n, we
may generate all matrices of T',, or select one at random, and then
decode the resulting output so as to present the plane partition in
familiar form.

Now we assert that the set I' of matrices is a prefab. Indeed, if
A € T, the order Q(A) of A is defined to be the left-hand side of 9).
The synthesis operation ® in T is ordinary matrix addition. We ob-
serve that

QA ® B) = QA + B) = Q{A) + YB)

What are the primes of I'? They are the matrices A all of whose en-
tries are 0 except for a single 1 in one position.

To be a prime of order n a matrix will have its single 1 entry on the
nth antidiagonal. Hence there are exactly n prime objects of order n
for each n = 1. Evidently each A € I is uniquely expressible as a
synthesis (= sum) of primes.

Let us denote by o the bijection between T' and the plane parti-
tions, whose existence is asserted by the theorem of Bender-Knuth,
so that o(A) is the plane partition associated with the matrix A € T.

It follows from the earlier considerations of this Postscript that we
can select a plane partition of n uniformly at random by selecting a
matrix A € I', u.a.r. and decoding it by the mapping o, which we

84 / POSTSCRIPT: DEUS EX MACHINA

describe below. The selection of A follows our previous prescription
exactly, and aside from the decoding problem, the preparation of a
computer program to do so would closely parallel our program
RANPAR , and so is left as an exercise for the reader.

Another consequence of the theorem of Bender-Knuth is that we
can generate sequentially all plane partitions of n. To do this, we
generate the matrices A of T, and decode them by o. According to
(9), which we must do is the following.

ALGORITHM NEXT PLANE PARTITION

For each linear partition of n, m n=p,+ 2+ 3ps +4p, +

.. . do:
For each set of compositions of m into 1 part, u, into 2
parts, . . . , u;into jparts, . . ., do:

Enter the parts of the composition of p, into the rth an-
tidiagonal of the matrix A r=1, 2, . . .)

End :

End 1

The problem is therefore an easy application of NEXPAR (Chapter 9)
and NEXCOM (Chapter 5) and is also left to the reader,

It remains to describe the bijection . We proceed in four steps,
beginning with a matrix A € T, and ending with a plane partition
a(A) of n.

First, from A € T, we construct a two-line array o;(A). Precisely,
suppose a; =m > 0. Then enter m copies of i in the first row of o{A)
and m copies of j in the second row. For example, if we start with

1 0 2
(10) A=|0 2 0
1 00

we would obtain

an «@=(1 333253 1)

Second, we permute the columns of o;(A) so that (a) the elements
of the first row are in nonincreasing order and {b) within a block of
constancy of the first row, the corresponding elements of the second
row are in nonincreasing order. This yields o»(A). In the preceding ex-

POSTSCRIPT: DEUS EX MACHINA / 85
ample we have
322111
(12) =0 5 3 35 3 1)
Third, from the two-line array

R I ST 7 TR,
UZ(A) (jl’ jz; L !jm)
we construct a pair S, T of plane partitions by an insertion and
bumping procedure, as follows. The plane partition § will be con-
constructed from i,, . . . , i, and T from Ji + . . 5 jm Recursively,
define S =1, and T® = j,, Suppose that $© and T® have been con-
structed, and that these are plane partitions of the same shape, S("
containing the parts i;, . . . , i, and T containing j,, . . . s Jro

We then insert j,,, into the first row of T, immediately to the
right of the rightmost entry which is = j,,,. If this space is occupied
by some element k, then by entering j,,, into this space we bump k
down to the second row, where it is then treated just as j.., was, so
that another element may be bumped to the third row, ete. If there is
no entry that is 2j,,,, then j,,, is inserted at the beginning of the row
and bumps the former first element down.

In this way, T¢*" is formed from 7™ and j,,,. To construct §C+D ig
easy: just insert i,,; into S so that the resulting array has the same
shape as T+,

Let us follow the matrix A of our example through this process.

T S
1 3

2 3

1 2
22 32
1 2
32 32
2 2

1 1
33 32
22 21
1 1
331 321
22 21

1 1

86 / POSTSCRIPT: DEUS EX MACHINA

Thus the pair of plane partitions which correspond to A is

331 321
(13) §=22 T=21
1 1

and this completes the third phase of the construction.

Finally, from the ordered pair S, T of plane partitions we construct
a single plane partition o =o(A) by a method of Frobenius, as
adapted by Bender and Xnuth.

From a column of § and a column of T we form a new column, as
illustrated below. The labels at the right of the array are the first
column of S, those at the bottom of the array are one less than the
first column of T.

2 1 0

By counting the dots in each row we find the first column of the
plane partition o, namely,

3
3
3

Repeat this with the second column of S and of T to obtain

1 0
from which the second column of the plane partition is
3
3

Finally from the third columns of § and T we get

POSTSCRIPT: DEUS EX MACHINA / g7

and the third column of ¢ is 1. Thus, the complete partition is

3 31
glA)=0c=3 3
3

Note that this is a plane partition of 16 as required by (9), (10).

The reader is encouraged to write the subroutines NXPLPR and
RNFPLPR which, respectively, sequence all plane partitions of a given
integer n and select such a partition uniformly at random, as well as
to write DCDPLP which decodes the matrix output of the previous
two programs so as to output the familiar form of a plane partition.

11

Next Partition of an n-Set NEXEQU)

From partitions of integers we turn to partitions of sets. If § =

{1,2,...,n}, then by a partition of S we mean a family of sets
T T2 . . ., T, satisfying
(a) ;NT,=3 ((+#j)
and
{b) L’J T,=8
i=1
and
(e} T'#& (=1,....,k)
It is assumed that no significance is attached to the order in which
T,, ..., T, are listed nor to the order of the listing of elements

within these sets. For n = 3, therefore, we have the following 5 parti-
tions:

1 (123)

2 (12) (3)

3 {(13) (2)

4 (23) (1)

5 (1) (2) (3}

11: NEXT PARTITION OF AN n-SET (NEXEQU) /7 B9

A partition of a set is evidently identical with an equivalence rela-
tion on the set, with the T, as the equivalence classes, which ac-
counts for the name NEXEQU of this routine.

Given a partition # of {1,2,. .., n} into kclasses T,, . . . , T},
we may associate with @ exactly k+ 1 different partitions of
{L 2, ...,n n+1}; namely,

@1:T1U{n+1},T2,T3,...,TA.

.@2:T1,T2U{n+1},T3,...,Tk

Pt T, Te, Tgy o o ., T U {n+1}
‘@,\"Fl H Tl’ Tz, T3, v oo Tk, {n+1}

The first k of these descendants of 2 have k classes, and the last one
has k + 1 classes in which the last class is just the singleton {n + 1}.

We can visualize all of the partitions of {1, 2,. . . , n}, therefore,
as one horizontal line in a tree (Fig. 11.1).

A=0: (2}

LERE (n

n=g: (IE‘)/ }2)

n=3: {123) (12){3} (133(2) {23y (NEY3)

a=4; (1234) (123}(4) {t24)(3) (12)(34) (12)(3)(4).... (13{24){3) (N{(2)(34) (1){2)}(3)(4)
Figure 11.1

In this tree, a line is drawn from each partition 2, of a set of n
letters into k classes, to each of its K+ 1 immediate descendants,
which are partitions of n + 1 letters into k or k + 1 classes.

To generate successively all partitions of {1, 2,. .., n} we want
to move from lefi to right along one horizontal level of this tree.
Given a partition # of {1, 2,. . ., n}, to locate its immediate suc-
cessor 2’ we (a) locate the highest active letter m, i.e., the largest
integer 1 = m = n which is not in a singleton class in 2; (b) move
m to the next higher class, or create a singleton class for m if m is
already in the highest class; {¢) put m+1,...,n into class 1.

For example, here are the five partitions of {1, 2, 3}, in the order in
which this algorithm produces them where, in each case, the highest

90 / 11: NEXT PARTITION OF AN n-SET (NEXEQU)

active letter m is underlined:

(123)
(12)(3)
(13) (2
(1) (2 3)
(1) (2) (3)

It is convenient to use two arrays, p,, the population of the ith class,
and g, the class to which element j belongs (i=1, n; j=1, n).

ALGORITHM NEXEQU

(A)
(B)
(C)

(D)

(E)
(F)

[First entry] p, < n; n. < 1; g, < 1 (i =1, n); to (F).

[Later entries] m < n.

[Find highest active letter m] | < gu; If p,# 1, to (D}
Gm < 1, m < m—1,; to (C).

[Movem] n.< n.+m—n;p, < p,+n—m;Ifl#n,to(E)
n, < n.t+ 1 p(nc) < 0.

gn<l+Lp<—p—1 pryy < P+ 1.

If n, = n, final exit; Exit B

Remark Recall that no significance attaches to the names of the
classes within a partition. Yet, on output, the computer is forced to
name these classes for reference purposes. Qur algorithm does this
naming in such a way that the smallest element of class j is the first
integer which does not belong to any earlier class 1, 2, . . . , j— 1.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: NEXEQU.

(2) Calling statement: CALL NEXEQU(N,NC,P,Q,MTC).

(3) Purpose of subroutine: Generate next equivalence relation on
1,2, ..., n}

(4) Descriptions of variables in calling statement:

Name Type HO{W/(B Description

N INTEGER I Number of elements in set to be partitioned.

NC INTEGER O Number of classes in output partition.

P INTEGER(N) IO P(I} is the numher of elements in the Ith

class of the output partition (I=1 NC}.
Q INTEGER(N) o Q{ 1) is the class to which I belongs {I=1,N}.
MTC LOGICAL 11O =.TRUE. if current output is not the last;

= FALSE. otherwise.

(B)
(6)

10
11
60

20
30

40

50

11: NEXT PARTITION OF AN n-SET (NEXEQU) / 91

Other routines which are called by this one:

Number of FORTRAN instructions: 26.

SUBROUTINE NEXEQU(N,NC,P,Q,MTC)
INTEGER P{N),6Q(N)
LOGICAL MTC

IF(MTC) GO TO 20
NC=1

DO 11 I=1 N

Q{I)=1

P(1l)=N

MTC=NC .NE_.N

RETURN

M=N

L= (M)

IF(P(L) .NE.1) GO TO 40
QiMY=1

M=M-1

GO TO 30

NC=NC+4+M-N

P{1)=P{1) +N-M
IF(L.NE.NC) GO TO 50
NC=NC+1

P{NC)=0

Q{M)=L+1
P{L)=P{L)-1
P(L+1)=P({L+1)+1

GO0 TCQ &0

END

SAMPLE OUTPUT

None.

The subprogram NEXEQU was called repeatedly with N=5, until ter-

mination. The 52 output vectors Q(1),Q(2),...,Q(5) are shown
below.

1 1 1 1 1 1 2 2 1 2

1 1 1 1 2 1 2 2 1 3

i 1 1 2 1 1 2 2 2 1

1 1 1 2 2 1 2 2 2 2

11 1 2 3 1 2 2 2 3

11 2 1 1 1 2 2 3 1

92 / 11: NEXT PARTITION OF AN n-SET (NEXEQU)

1 2 2 3 2

1 2 2 3 3
2 2 3 4
2 3

1
1

1 2 1 3
1 2 2

1

1

1
1
1
1

2 2 2
2 2 3
2 3

2

1 2 3

1

3

1 2 3

1
1

1

1
1

2 3
2 3 2

2 3 2

1

1 2 3 3
1 2 3 4

1

2 3 2 2

2 3 2 3

1

2 3 2 4

2 3 3
1 2 3 3 2
1 2 3 3 3

1 2 1 2 2

2 & 3 4

2 3 4

1

1 3 1

2
1 2 1 3 2

2 3 4 2

2 3 4 3
2 3 4 4

1

1 21 3 4

1 2 3 4 5

1

2 2 1

12

Random Partition of an n-Set
(RANEQU)

The algorithm for a random partition of the set {1, 2, . .., n}
follows the basic idea of Chapter 10 and its Postscript, in which we
found a recumrence formula and then endowed it with a probabilistic
interpretation.

Here, the recurrence is in the quantities a,, a,, . . . , where a, is
the number of partitions of a set of n objects. Indeed, let £, be a
fixed partition of {1, 2, . . . , k}. We will extend £, to exactly (";!)
partitions of {1, 2, . . . , n}. First, choose a subset S of k elements
from {1,2, ..., n—1}. Relabel the k elements of #, using the
elements of S as labels and preserving order. Adjoin to the resulting
partition all of the n —k remaining elements of {1,2, ..., n}
regarded as a single class. In this way, we make (";') partitions of
{1,2, ..., n} from each of the a; partitions of {1,2, . . ., k} or

n—1 n— 1) .
ay
partitions of {1, 2, . . . , n} altogether.
We claim that every partition 2 of {1,2, . . . , n} is constructed
just once in this way, For, if =T, U T, U - : - U T, where the T;

are the classes of &, suppose T, is the unique class of 2 which con-
tains the element n. Then £ was constructed uniguely from the par-

/93

94 / 12: RANDOM PARTITION OF AN n-SET (RANEQU)

tition which is formed by relabeling the set T, U T, U - - - U T\
with labels 1, 2, . , k, where k = Z{7} |T,|. Hence we have

n—1 —
(1) au=2(nk1)ak (nz1,a,=1)

=)

from which we find a; =1, ¢, =2, a; =5, 2, = 15, etc.
Usually the use to which (1) is put is to find the generating func-
tion

(2) f@=3 5w

In fact, (1) implies that

f'{(z) = e°f (z)
and £(0) = 1. The solution of this initial value problem is evidently
(3) : f(z) =exp(e*—1)

which identifies the numbers «a, as

n

@) an =" (exple*

(n=0,1,2,...)

The numbers a,, ¢;, . . . are called the Bell numbers.
Our interest, however, lies in the algorithm which results from
dividing both sides of (1) by a,

(5) 1=5 (")&

k=0 Gp

and identifying the terms on the right as probabilities which sum
to 1.

Indeed, the kth term of the sum is the probability that the class in
which n lives contains exactly k other elements besides n.

Now we could use a straightforward algorithm which starts by
choosing the companions for n, relabeling the remaining elements,
etc. However, a simpler method avoids all relabelings and reduces
the bookkeeping to a minimum.

First we will choose the sizes ky, kg, . . . , k; of the classes in the
output partition by sampling them from the relevant distribution.
Next we set up an array of length n. In the last k,, places we insert
I’s in this array; in the next k, places we put 2’s, . . . , in the first k;
places we insert I’s. Finally we execute a random permutation of this

12: RANDOM PARTITION OF AN n-SET (RANEQU) / 95

array and exit, at which time the ith array element is interpreted as
the class to which the letter i belongs. We give below a formal
algorithm and then a proof of its validity. It will be noted that the ini-
tial insertion of class numbers into the array is done while the sizes
are being chosen, so that the k; themselves need never be stored.

ALGORITHM RANEQU

[Produces a random equivalence relation on {1, . . . , n}. The
outputis (g, . . . , ¢.), where g, is the number of the class to which
i belongs.]

(A) [Initialization] Precalculate and store any a, not yet calcu-
lated (see(1)); m < n; [< 0.
{B) [Choose sizes of equivalence classes] Choose k according to

the probability
_fm— 1 Am—p - -
6) Prob(k)—(k_l)—am (1=k=m)
l—Il+4+1;storelintogpyir . . . » gmm<—m—k;ifm >0,to
{B).
(C) [Randomize] Perform a random permutation on (g, . . . , Ga);
Exit B

To prove the validity of the algorithm we modify it slightly, in a
way which gives the same result, and is more transparent, hut
requires an additional array of storage (¢, . . . , ¢,). We choose a
random permutation 7 (the same as in step (C)), and store its inverse
(which is equally probable) into (¢,, . . . , ¢,). Then we choose k ac-
cording to (8), with m =n, and store 1 into ¢u—p+1, - - . , Ga Next,
proceed with equivalence class 2, etc. Now the equivalence classes
are the same as in the algorithm; that is: in the algorithm, g, is the
equivalence class of i, while in the above modification g; is the
equivalence class of ¢

Now, let @ be a fixed partition of {1, ..., n}, with classes
Ty, . . ., Tn. Then the probability that 2 is obtained by the modi-
fied algorithm is a sum of probabilities £P;, where P; is the proba-
bility that in the first step one of Ty, . . . , T} is found, namely T,
multiplied by the probability that the remaining partition £ — T, =
{T.}, is then obtained as an equivalence relation on {1, ...,
n} — T;. By induction on n we may assume that the latter is 1/a,,,

96 / 12: RANDOM PARTITION OF AN n-SET (RANEQU)

where k; = |Ti|. The probability that k; is first found is Prob(k) (see
(6)), with m =n; the probability that ¢y, . . . » ¢, are the ele-
ments of T;, in some order, is {#)"%. Thus we find

1
Prob(#) = Prob{k = |Ti|} - Prob{{ch-ss1> . - . s Ca} =T}
i=1
- Prob{# — T}}
A m=1\ gy, (nNt L k1
- gl (kl — 1) a, (kf) Qp—k, - Z{ na, B ay -

The flow chart and the FORTRAN program are basically a straight-
forward implementations of the algorithm. However, a few remarks
may be helpful. In order to control the order of magnitude of the
quantities, we actually do not precompute the a; but, instead
b;=afil. In the evaluation of the sum in the program (this was
deleted from the flow chart)

h—1 1
nby =S 27 buci-s
=0 ™'

we use a nested multiplication to build up k! Also, we do not test
against a random number ¢ between 0 and 1, but against {¢mb,, (Box
20) thus saving a division in each step. In the testing, another nested
factorial is hidden in three instructions in Box 40.

FLOW CHART RANEQU

m—n
L—0
Y =20
z — Embm
k0
L—{+1

]
C:to? glml—{
z m—m—|
50

T random
(=0
F 40
Z=Z— by
Kk +1
Z—kz

10

12: RANDOM PARTITION OF AN n-SET (RANEQL) / 97

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANEQU .
(2) Calling statement: CALL RANEQU(N,L,Q,B}.
(3) Purpose of subroutine: Generate random equivalence relation
on{l,2, ..., n}
(4) Descriptions of variables in calling statement:
Name Type IIO/W(B Description
N INTEGER I Cardinality of partitioned set.
L INTEGER o Number of classes in cutput partition,
Q INTEGER O QUI) is the class to which I belongs
{I=1,N)
B REAL (N} B B(K}=4(K)/K! {(see text Eq. (1)) (K=1,N).
(5) Other routines which are called by this one: FUNC—
TION RAND(I) (random numbers), RANPER,
(6) Number of FORTRAN instructions: 30.
(7) Remark: Equivalence classes numbered in no particular order.
SUBROUTINE RANEQU(N,L,Q,B)
INTEGER Q(N}
REAL B (N}
DATA NLAST/1/
B{l)=1.
IF(N .LE. NLAST) GO TO 10
NM1=N-1
DO 5 L=NLAST,NM1
SUM=1./L
Li=L-1
IF(L1 .EQ. 0) GO TO 5
DO 6 K=1 L1
(] SUM= {SUM+B (K) } / (L—-K)
5 B{(L+41)=(SUM+B(L))/(L+1)
NLAST=N
10 M=N
L=0
20 Z=M=*B{M)*RAND(1)
K=0
L=L+1
30 Q(MY=L

M=M-1

98 / 12: RANDOM PARTITION OF AN n-SET (RANEQU)

IF{M .EQ. 0) GO TO 50
40 Z=Z-B(M)

K=K+1

Z=Z¥K

IF(Z)Y20,30,30
50 CALL RANPER(N,Q, .FALSE.)

RETURN

END

SAMPLE OUTPUT

The subprogram RANEQU was called 750 times with N=4. The
frequencies with which each of the 15 partitions of the set
{1, 2, 3, 4} occurred are shown below. The partitions are identified
by the output vector Q:Q(I) is the class to which I belongs
{I=1,4). Thus, the partition (124) (3) was obtained 46 times, etc.
The value x2 = 6.64 was calculated from

. — 50)?

™

where ¢() is the observed frequency of the partition & of the set
and the sum is over the 15 partitions. In 95% of such experiments,
the value of ¥* would lie between 5.63 and 26.12 if the 15 partitions
were in fact equally probable.

1 1 1 1 50
1 1 1 2 56
1 1 2 1 46
1 1 2 2 55
1 1 2 3 50
1 2 1 1 51
1 2 1 2 52
1 2 1 3 42
1 2 2 1 B2
1 2 2 2 52
1 2 2 3 38
1 2 3 1 55
1 2 3 2 48
1 2 3 3 51
1 2 3 4 52

13

Sequencing, Ranking, and Selection
Algorithms in General Combinatorial
Families (SELECT) '

{A) INTRODUCTION

In Chapters 1-12 we discussed the generation of families of com-
binatorial objects, sequentially, and at random. Now we shall give a
method which exploits a common feature of these and many other
families. Not surprisingly, the unified method may not have the ef
ficiency of the individually tailored special algorithms.

The basic property of the families we consider is that they can be
constructed recursively. More precisely, there must be a recursive
relationship which establishes a one-to-one correspondence between
the set of objects of a certain order and a (disjoint) union of (multiple
copies of) sets of objects of lower order. The recursive construction
provides a natural way to sequence the objects, to find the rank
(sequence number) of an object, to construct the object with a given
rank, or to select an object uniformly at random.

In order to develop the idea it is convenient to consider the proto-
type, in which the combinatorial family consists of A(n, k), a listing
of all k-subsets of an n-set (0 = k = n). The recurrence

/99

100 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

ny_(n—1 n—1
(L B=Cx)+G2)
related to the cardinality (%) of A(n, k) is well known; however, we
need the recurrence between the lists A(n, k) themselves:

(2) An, k)=Aln—1,k,Aln—1,k—1) ® {n}
This formula expresses the fact that a listing of the k-subsets of
{1, . .., n} is obtained from a listing of the k-subsets of {1, . . .,

n— 1}, followed by a listing of the (k — 1)-subsetsof {1, . . . , n—1},
each of them adjoined with the element n.

With a particular 8§ € A(n, k) we can associate a walk which visits
the various A’s beginning at A(n, k). Recursively, having arrived at
Alu, »), proceed to A(u —1,v—1)if p € S,orto Al — 1, v) if p & S.
Terminate the walk at A(0, 0).

For example, if n=7, k=4, §={1, 3, 5, 6}, we obtain A(7,
4) — A@B,4) — A(,3) > A4, 2)— AB,2) — A2, 1)— Al
1) — A(0, 0). Conversely, with a walk from A(n, k) to A(0, 0}, which at
each step goes from A(u, v) to A(w—1, v—1) or to A(n— 1, v), we
can uniquely associate a set S: § is the set of values of p where we
pass from A(g, v) to A{x— 1, v— 1). The interesting observation is
that the set is determined by the walk, and that it is not necessary to
examine the nature of the A(g, v); they could as well be lattice points
(., v) in the plane, or just vertices of some graph (we could in fact say
that the set is the walk).

{B} GENERAL SETTING

In the general setting we deal with what we call a combinatorial
family, which is a directed graph G on a set of vertices V(G), with
various properties:

(i) V(G) has a partial order and a unique minimal element 7; G is
locally finite: for each v € V(G) the set {x € V(G)|x < v} is finite.

(ii) Each edge of G points from a vertex to one that is lower in the
partial order. Every vertex v, except 7, has a strictly positive out-
valence p(v). Two vertices may be joined by more than one edge, but
by only finitely many.

(iii) For each vertex v, the set E(v) of outgoing edges has been as-
signed a ranking, 0 = r,(e) = p(v) — 1 (e € E(v)).

Every walk in G, starting from a vertex v, and respecting the orien-

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) / 101

tation of the edges, will eventually end in 7; such a complete walk is
called a (combinatorial) object of order v.

We shall show how the ranking (iii) of the edges induces a (basi-
cally lexicographic) ranking of the objects of each order v. With
respect to this ranking we study four tasks. In addition, we have the
job of showing how the various special cases fit into this general
framework. ‘

Task 1: Sequence Given an object in the family, construct the

“next” object (e.g., which permutation of 7 letters follows
(2614735)7).

Task 2: Rank Given an object w of the combinatorial family, find
the integer r such that o is the rth member of the family, in the or-
dering implied by Task 1 (e.g., what is the rank of the partition
15=4+4+ 3+ 3 + 1 in the list of all partitions of 15?).

Task 3: Unrank Given an integer r, construct the rth member of the
family (e.g., which is the 322,576th 12-subset of 25 objects?).

Task 4: Random Select an object uniformly at random from the
given family.

With each object @ we associate a code word. Let w be a path with
edge sequence (e, e, . . . , e,) leading from v to =; let i(e), t{e)
denote the initial and terminal vertices of edge e; then, of course,
t{e;) = ileiy), 1 =i = n; denote this common value by v;; further-
more, v = v, = ife,), t(e,) = 7. Using the ranking functions for each
E{v)) (see (iii)) we obtain the code word for

{(rofed, . .5 1o, ()

It is obvious that @ is completely determined by v and its code word.
The sequencing of the objects of order v is now by the lex-
icographical ordering of the code words. Recursively, this ordering
may be described as follows: Let e, . . ., ey, be the outgoing
edges from v, in order (i.e., »,(e;) = i — 1), then the ordering of the list
A(v) of objects of order v is implied by the concatenation of the lists
n

(3) Alv) =e; ® Altley)), e; @ Altler)), . . .

where ¢ ® A(i(e)) denotes the list of paths whose first edge is e,
followed by a path in A(#(e)} which begins at the endpoint of e.

102 / 13: SEQUENCING, RANKING, AND SELECTION ALGOQRITHMS (SELECT)

To accomplish Task 1 (sequencing) in a combinatorial family, we
have the simple

ALGORITHM NEXT

[Given an object @ of order v; output its immediate successor in
the list of all objects of order v, ordered lexicographically by their
codewords.]

Begin at 7. Back up along the walk o starting from 7 until reaching,
for the first time, an edge e which is not the last outbound edge from
its initial vertex. If no such e exists, terminate the algorithm. Else,
replace ¢ by the next one, say ¢', and complete the new walk from
the final vertex of e’ by choosmg, at each step, edge 0 until 7 is
reached. B

Two auxiliary counting functions are needed to accomplish Task 2.
If b{v) = |A(v)| is the number of combinatorial objects of order v, then
we have, evidently, the recurrence

2 gvmb(w) v E V(G) -
(4) b(v) = { 1 o=r1
in which g is the number of outgoing edges from v to w. Of course,
p(v) = 2y oo
The second function assigns a partial sum of b’s to each edge: If
e € E(v), let ¢’ < e mean “e’ € E{(v) and r,(e’) < r(e).” We define

(5) fly=S bite")
e'<e
Thus f(e) counts the number of walks which precede the first walk
from v whose first edge is ¢, see {3).
Task 2, ranking, is therefore done very easily. Let @ be an object of
order v, with edge sequence (e,, . . . , &). Then the rank r{w) is
given by

=if(3i)

and, as @ runs over the objects of order v, (@) runs over the integers
0,1,2,..., 5 —1.

For Task 3, we are given an integer r and the vertex v, and we are
asked to find the object of rank r. To do this, begin at v with 7' =r.
Generically, having arrived at w with ', exit along the highest out-

13: SEQUENCING, RANKING, AND SELECTICN ALGORITHMS (SELECT) / 103

bound edge e for which fle) =+, set " «< ' — fle), and continue
from t(e) with . Halt at 7 with 0.

Finally, we give two methods for Task 4, choosing a random object
of order v. First, we could select an integer r at random in [0,
b(v) — 1], then unrank r via performing Task 3.

More in the spirit of the earlier algorithms in this book is the fol-
lowing alternate method, which also has superior numerical stability
properties:

Begin at v. Generically, having arrived at w, choose the next vertex
w’ in the walk according to the probabilities

(6) Prob(w') = gueblw’) b(w) (w' € G)

Then choose one of the g, edges w — w’ uniformly at random.
Continue from w’'. Halt at r.

(C) EXAMPLES

As stated in the Introduction, in order for this theory to work, there
must be a one-to-one correspondence between the set A(w) of
objects of order v, and a (disjoint) union of (multiple copies of) sets
of objects A(w), with w < v. As a practical matter, in many examples
the sets of some order are determined by two integer parameters; as
a result, the graph G will have its vertices at lattice points in the
plane; the partial order (n, k} < (n’, k') is defined by n < n' and
k = k'. With few exceptions, the edges from (n, k) will run to {(n — 1,
k) and (n—1, k—1); usually, there will be more than one edge
between certain pairs of vertices, reflecting the multiplicities of the
copies in the recursive relationship.

Family 1 The k-subsets of an n-set. The vertices are pairs (n, k),
0 =k=mn;(n k) is joined to (n — 1, k) and (n — 1, k — 1) each (pro-
vided the entries satisfy the stated inequalities) with one edge; they
are numbered 0 and 1, in this order.

Family 2 The set A(n, k) of partitions of a set of n elements into k
classes (0 = k = n). If S(n, k) = |A(n, k)|, then we have

Sn, k)=8Sn—1,k—1)+kSn—1k)
and for the list A(n, k) we have

A(n) k) = i?l,lA(n - 1} k)’ irl.2A(n - 1: k):
) 1:u..'\-fq(” -1 k)s in,kA(n -1, k- 1)

104 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

where i,,A(m, k) is obtained from A(m, k) by inserting n into the /th
class; if I =k + 1, the class is a new one. Vertex (n, k) is joined to
(n— 1, k) by k edges, numbered 0 through k —1, and is joined to
(n—1, k— 1) by one edge numbered k.

Family 3 The permutations of an n-set which have exactly k cycles.
If S(n, k) is the number of these, then

(7) Sn, =n—-1DSn—-1,,k+Sn—-1,k—1)

Here the second term counts the permutations where n is a fixed
point, and the first term counts those where n lives in a cycle with
lower letters. The graph G is again on the lattice points of the plane,
where now from (g, ¥) (¢ Z v + 1, » = 0) there go p — 1 edges, num-
bered 0,1, . . . , u— 2, westbound to (¢ — 1, v), and one edge, num-
bered u — 1, southwest to (u — 1, »— 1). There is a 1-1 correspond-
ence between walks from (n, k) to (0, 0) and permutations of n
letters with k cycles.

Family 4 Vector subspaces of dimension k of n-dimensional space
over a finite field of q elements.
Let [%], denote the number of such subspaces. Then we have

n|l _ .[n—1 n—1

(8) [k]a_q [k]q+|:k_l]q

The combinatorial meaning of this recurrence will be discussed
below under “decoding.” The graph G has for its vertices the lattice
points of the plane, and from (g, ») there go ¢ westbound edges to
(w—1, v), numbered 0,1, . . ., ¢"—1 (= v+ 1, »=0) and one
southwestbound edge, numbered ¢* (4 2 v Z 0). There is a 1-1 cor-
respondence between vector subspaces of dimension k of n-dimen-
sional space over GF(g), on the one hand, and the set of all walks
from (n, k) to (0, 0) on the graph G. The correspondence will be
explicitly described below.

Family 5 Permutations of n letters with k runs.
By a “run” in a permutation we mean a maximal ascending con-
secutive subsequence, e.g., the permutation

9 (82157346)

of 8 letters has four runs.

If the Eulerian number (%) is the number of such permutations
then

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) / 105

(10) <2>=k<nkl>+(n—k+1)<z_i>.
Indeed, from each of the ("'} permutations of n — 1 letters with k
runs, we can make k permutations with k runs by inserting the letter
n at the end of one of the runs. Finally, from each of the {}}} per-
mutations of n — 1 letters with kX — 1 runs, we can make n —k+1
permutations with k runs by inserting n interior to one of the runs.
Our graph G again has for its vertices the lattice points of the
plane. From the vertex (i, ») (w = v+ 1, » = 1) there go v westbound
edges, numbered 0, . . ., v—1, to (x— 1, »). From (&, ») (u = v,
v > 1) there go © — v + 1 southwestbound edges, numbered v, . . . ,
i, to (=1, v—1). From (1, 1) one edge, numbered 0, goes to {0, 1),
the terminal vertex,

Family 6 Partitions of the integer n whose largest part is k.
If p{n, k) is the number of these, then Eq. {4) of Chapter 10 is the
recurrence

(11) pln, k)=pn—k k) +pln—1,k—1)

The second term counts those partitions whose largest part is less
than k, the first term counts those whose largest part is equal to k.

On the lattice points of the plane once more, from (u, »)
(n = 2v = 0) there goes westbound to (& — », v) a single edge, num-
bered 0, and from {u, ») (£t = v = 2 or u = v = 1) there goes a single
edge to {ix — 1, » — 1), numbered 1 unless & = v =1, and numbered 0
in that case. The graph is atypical in that a westbound step can be
more than one unit long.

Family 7 Compositions of n into k parts.
We have seen in Chapter 5 that there are

(12) bin, k)=(”+:“1)

of these compositions, and so the recurrence
(13) bn, k)=bln, k—1)+b(n—1, k)

holds. In (13), the first term on the right counts those compositions
whose first part is 0, the second term counts the others.

Now we have a graph on the lattice points -of the plane where from
the point (u, ») (= 1, v = 1) there goes one edge to {(w— 1, v) and
from (u, v) (& = 0, v = 2) there goes one edge to (u, » — 1). The graph
is atypical in that the “southwest” edge here goes south. As usual,

106 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

there is a I-1 correspondence between paths from (n, k) to (0, 1) and
compositions of n into k parts.

(D) THE FORMAL ALGORITHMS

In this section we give algorithms for performing any of the four
tasks (sequencing, ranking, unranking, random selection) on any of
the seven combinatorial families mentioned in the previous section.

The algorithms of this section will apply to the coded form of the
combinatorial objects, that is, we suppose that the objects are repre-
sented as paths on their appropriate graphs. For some ordinary
applications this is sufficient. For most applications it will be neces-
sary to translate the coded form of the object to one of the familiar
forms which are more easily recognizable. This process, called
decoding, is discussed in Section 6 of this chapter. For some applica-
tions it may be necessary to translate a familiar form of an object into
its coded form (encoding). We leave these encoding algorithms to the
reader, who will, we think, find them to be easy inversions of the
corresponding decoding algorithms.

The coded form of a combinatorial object, as we have said, is that
of a path from a vertex v to the terminal vertex 7 in a graph G with
numbered edges. We specialize at once to the case where the ver-
tices of the graph are lattice points (u, v} of the plane, as is the case
in the seven families so far mentioned. Then an object of order (n, k)
is represented by a vertex-sequence and edge-number sequence of
the precise form

edge, edge, cdgen-, dgen
(1) (1, K= Gy 20) 5 (g,) S0y oy () e

Thus (u,, v;) = (n, k) is the order of the object, and edge(i) is the
number of the edge of the path which goes from {p;, v3) to (fir1, Vitr)-
There is evidently redundant information here, since if we are given
{n, k) and the edges we can deduce the vertex sequence. Nonethe-
less, it is convenient to have all of these arrays.

Next, we examine the seven recurrence relations (1), (6), (7), (8),
{10), (11), and (13) of the families in question. We observe that they
are all of the form

(15) b(, v) = @{, v)b{py, ¥} + s, v}, v — 1)

in which ¢, ¢ are certain given functions in each family, g, (“west-
em” w)is g — 1 except in Family 6, where it is & — v, and g, (“south-
western” w) is 4 — 1 except in Family 7, where it is p.

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) /7 107

The precise form of the function ¢, ¥ in each of the seven families
is stated in the subprograms PHI{MU,NU,FAMILY) PSI(MU,KNU,
FAMILY) , to which the reader’s attention is directed. The subpro-
gram XNEW(M1 M2 MF MGO) {(q.v.} calculates the value of w, (if
MGO=1) or of u, (if MGO=2) in the family MF, given the point
(e, v)= (M1 M2) .

The edges outbound from the point (g, ¥) are numbered consecu-
tively from 0 to o{u, ») + ¢(p, ») — 1 in the counterclockwise direc-
tion. That is, the ¢{u, v) westbound edges if any, are numbered 0,
1, ..., ¢lu, v) —1, and P(p, ») southwestbound edges are num-
bered @, v), . . ., @, ¥) + P(p, ¥) — 1. The terminal vertex 7 has
the property that ¢(r) + () = 0, and so all walks are followed until
such a 7 is encountered. Thus there is no need to tabulate the termi-
nal vertices separately (the reader may wish to reexamine subpro-
grams PHI,PSI and to tabulate for his own reference the seven ter-
minal vertices of the families considered).

The algorithm SELECT, which follows, is the universal portion of
the mechanism for performing the four tasks on the seven families. It
assumes that the counting numbers b(n, k) (=number of objects of
order (n, k)) have been precomputed.

ALGORITHM SELECT

(A [Entry for Task 4] r < bi{n, k) * £.

(B) [Entry for Task 3] j< 1;+ <.

(C) [Extend path from jth step] (pj, v)) < (n, k); m < j.

(DY [Reached terminal vertex?] If ¢n+¥,=0, set m—m —1
and exit; [southwest edgeP] If +' = ¢,bm), to (E); [next
edge goes west] edge{m) < [+'/by{m)]; [decrease remaining
rank] 1" < ' —edge(m)by(m); (Kmt1, Vmid) < (M), vn);
m<m+1; to (D),

(E) [Next edge goes southwest] ' < r' — byim)e,; edge(m) <

em+ |r'ibd{m)]; -[decrease remaining rank] ' < r' —
(edge(m) - ‘Pm)bs(m); (.u'm+1: I’m»H) - (xs(m): Vm — 1), m < m -+
1; to (D).

(F) [Entry for Task 2] r< 0
Forj=1,m—1do:
(F1) If vy, # vy, to (F2); r < r + edge(f)b{j); next j.
(F2) v < r+ ¢;b.(f) + (edge()) — ¢;) bolj); next j.
End
Exit

108 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

(G} [First entry for Task 1] r < 0; to (B).

(H) [All later entries for Task 1] j < m.

(K) [Is jth edge moveable?] If edge(j) < e¢;+¢;—1, to (L);
[Backtrack] j < j— 1; If j # 0, to (K); Final exit.

(L) [Augment edge] edge(j) « edge(f) +1; l < j+ 1; If edge(y)
#= @, to (M): (lu-'la V!) b (xs(l - 1): v — 1)

(M) [Extend with 0’s to terminal vertex] + < 0; m < I, to (D) R

The following abbreviations were used in the statement of the
algorithm.

T The rank of an object.

& A random number,

b{n, k) The number of objects of order (n, k).
©m ‘P(lu'm: Vm)-

W !p(“'m: Vm)-

by{im) The value of bB(u', v') at the point west of (., va).

by{m) The value of b{y', ') at the point southwest of (w,, v,).
x,(m) The x-coordinate of the point west of (g, vu).

xd{m) The x-coordinate of the point southwest of (uy, v,).

SUBROUTINE SPECIFICATIONS

We depart slightly from the format of the previous chapters here in
order to expand somewhat the description of the subroutine vari-
ables.

The calling statement is

CALL SELECT (FAMILY K TASK N K,MU,NU,EDGE,M,
NEWONE , RANK B}
in which
(a) FAMILY is an integer variable, 1 = FAMILY = 7, which de-

scribes the combinatorial family in question, according to the
scheme

FAMILY =1 K-subsets of an N-set
= partitions of N objects into K classes
= permutations of N objects with K cycles
= vector subspaces of dimension K of N-dimensional
space over GF(Q)1
=5 permutations of N letters with ¥ runs

1 Qis set to 2 by a DATA statement in the FUNCTION PH1 subprogram, It can easily
be changed by the user, if desired.

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) / 109

=6 partitions of N whose largest part is K
=7 compositions of N into K parts.

(b) TASK is an integer variable, 1 = TASK = 4, which controls the
functioning of the routine as follows.

TASK = 1: Sequencing. The subroutine produces the next object of
the FAMILY and exits. Required input data are FAMILY,K TASK=
1,N K, as well as the description of the previous object MU,NU,
EDGE,M. The logical variable NEWONE is set by the user to . FALSE.
to initiate a new sequence. The subroutine returns NE§ONE= . TRUE .
with each output object, including the last. When the subroutine is
called once more, after the last object has been delivered, the value
NEWONE=_.FALSE. will be returned. Thus NEWONE is similar in spirit
to MTC of Chapters 1, 3, 5, 7, 9, 11, but not identical.

TASK = 2: Ranking. Given an object, the subroutine computes its
rank among those of its order, and exits. Input data are
FAMILY ;TASK=2: the order (N,K); the object MU,NU,EDGE M.
Output is RANK.

TASK =3: Unranking. The subroutine computes the object of
given rank, Input data. are FAMILY ; TASK=3; the order (N, K); the
RANK. Qutput is the object MU ,NU ,EDGE | M.

TASK = 4: Random selection. The subroutine chooses, uniformly at
random, an object of given order. Input data are FAMILY ; TASK=4;
the order {N,K) . Qutput is the object MU,NU ,EDGE , M.

{c) Nand K are integers which give the order of the objects con-
sidered.

(d) MU,NU,EDGE are integer arrays of length M. These describe an
object precisely as given by the form (14).

{e} Mis the length of the arrays MU, NU, EDGE, in the sense of
(14).

{f} NEWONE is a logical variable whose purpose is described under
TASK=1 in (b) above.

(g) RANK is an integer variable, It is the rank of the object under
consideration among those of its order (N,K), where 0 = RANK =
b(n, k) — 1.

{h) Bis an NXK integer array, where B(I,J) is the number of ob-
jects of order I,J. These are computed automatically, as needed, by
the subroutine, and may be ignored by the user. On each call to the
subroutine, the input order N, K is checked against NLAST , KLAST . If
either N>NLAST or K>KLAST, the values B(I,J) are computed and
stored for all 1 = I=N, 1 = J=K, and then (NLAST, KLAST) is set
to {N,K) ., Otherwise, no values are computed.

There are 118 instructions in the subroutine.

110 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

SUBROUTINE SELECT(FAMILY, TASK,N,K, MU,NU,EDGE, M,
NEWONE RANK B)
IMPLICIT INTEGER{A~Z)
LOGICAL NEWONE
REAL RAND
INTEGER MU{(N) ,NU(N) ,EDGE(N),B{10,10)
DATA NLAST ,KLAST,FLAST/0,0,0/
IF(N.LE.NLAST.AND.K.LE. KLAST.AND.FAMILY .EQ.
* FLAST) GO TO 205 ‘
NLAST=N
KLAST=K
FLAST=FAMILY
DO 201 M1=1,N
DO 201 Kl=1 K
201 B(M1,K1)=PHI(M1 K1, FAMILY)=*BNEW(Ml K1 FAMILY,
* 1,B)+PSI (M1l K1, FAMILY
*)*BNEW (M1, Kl FAMILY 2 B)
205 GO TO (100,400,200,300) , TASK
300 RANK=RAND(1)*B (N, K)
200 J=1
RANKP=RANK
500 MU{J}=N
NU{J)=K
M=J
510 T1=PHI{MU(M) NU(M), FAMILY)
IF{T1+PSI(MU(M) NU(M) FAMILY).NE.O) GO TO 518
M=NM—1
RETURN
518 B1=BNEW(MU(M) NU{M), FAMILY,1,B)
IF (RANKP .GE.T1*B1l) GO TG 520
512 EDGE(M)=RANKP/B1
RANKP=RANKP—EDGE (M) *B1
MU (M+1) =XNEW (MU (M) ,NU (M) , FAMILY, 1)
NU (M+1) =NU (M)
515 M=M+1
GO TO 510
520 RANKP=RANKP—B1*T1l
B2=BNEW (MU (M) ,NU (M} , FAMILY, 2 B)
EDGE (M) =T1+RANKP/B2
RANKP=RANKP- (EDGE (M} —T1} *B2
MU (M+1) =XNEW (MU (M) ,NU (M) ,FAMILY,2)
NU(M+1}=NU(M)-1

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) / 111

GO TO 515
400 RANK=0
M1=M—1
DO 401 J=1 M1
IF(NU(J+1} NE.NU(J)) GO TO 402
RANK=RANK+EDGE (J) *BNEW (MU {(J) NU{(J) ,
* FAMILY 1, B)
GO TO 401
402 RANK=RANK+PHI (MU(J) NU(J) FAMILY)*BNEW
* (MU{J) ,NU(J) ,FAMILY,61,B)
* +{EDGE(J)—PHI(MU(J) ,NU(J) FAMILY)) *BNEW
* (MU(J) ,NU(J) FAMILY 2 B)
401 CONTINUE
RETURN
100 IF (NEWONE) GO TO 105
NEWONE= . TRUE .
RANK=0
GO TO 200
105 J=M
120 T=PHI(MU(J) NU(J) FAMILY)
IF (EDGE{J) .LT.T+PSI(MU(J) NU(J) FAMILY)-1)
* GO TO 130
J=J-1
IF(J.NE.0) GO TO 120
NEWONE= . FALSE .
RETURN
130 EDGE(J)=EDGE(J) +1
L=J+1
IF(EDGE (J) .NE.T) GO TO 140
NU(L)=NU(L)-1
MU (L}=XNEW (MU(L—1) NU(L-1) ,FAMILY,2)
140 RANKP=0
M=L
GO TO 510
END

INTEGER FUNCTION XNEW (M1 K M2, 6MF,6 MGO)
XNEW=M1-1

IF{(MF .EQ.6.AND.MGO.EQ.1l} XNEW=M1-M2
IF(MF.EQ.7.AND MGO.EQ.2}) XNEW=M1
RETURN

END

112 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

10

20

30

40

50

80

70

10

20

30

INTEGER FUNCTION BNEW(M1,M2,MF,MGO,B)
INTEGER B(10,10) ,XNEW

BNEW=1

LX=XNEW (M1, M2 MF,MGO)
LY=M2-MGO+1
IF(LX*LY.GT.0) BNEW=B(LX, LY}

RETURN
END

FUNCTION PHI(MU,6NU,FAMILY)
IMPLICIT INTEGER (A-Z)

DATA Q/2/

PHI=0

GO TO (10,20,30,40,50,60,70) ,FAMILY
IF (MU.GE.NU+1 AND NU.GE.0) PHI=1
RETURN

IF (MU.GE.NU+1 . AND.NU.GE.1) PHI=NU
RETURN

IF (MU.GE.NU+1 AND NU. GE.0) PHI=MU-1
RETURN

IF (MU.GE.NU+1.AND.NU.GE.0) PHI=Q*#*NU
RETURN

IF (MU.GE.NU+1 . AND.NU.GE.1) PHI=NU
IF(MU.EQ.1.AND .NU.EQ.1) PHI=1
RETURN

IF (MU.GE.2*NU .AND .NU.GE.1) PHI=1
RETURN

IF(MU.GE.1 AND.NU.GE.1l) PHI=1
RETURN

END

FUNCTION PSI{MU NU,FAMILY)

IMPLICIT INTEGER(A-Z)

PSI=0

GO TO (10,20,20,10,30,40,50) ,FAMILY

IF(MU.GE.NU AND.NU .GE.1l)

RETURN

PSI=1

IF({MU.GE.NU AND .NU.GE.Z2) .OR.
{MU.EQ .1 AND .NU.EQ.1}) P3I=1

RETURN

IF(MU.GE NU.AND.NU.GE.2) PSI=MU-NU+1l

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT} / 113

RETURN
40 IF({MU.GE.NU. AND.NU.GE.2) .OR.
* {(MU.EQ.1.AND.NU.EQ.1}) PSI=1
RETURN
50 IF(MU.GE.Q.AND.NU.GE.2) PSI=1
RETURN
END

(E) DECODING

The decoding problem is that of translating the representation of
the object as a path
(16) (1K) = (o, 1) 55 (pag,) 200 - S0, () yoteen,
into a representation in a familiar form. In all cases, this is done by
considering the combinatorial meaning of the recurrence relation of
the family. '

In general, we can begin at the terminal vertex with a suitable ter-
minal object, and back up along the path. At a generic step, suppose
we go from (g, v) to (p', ¥} via edge e. If »’ = v we have an eastbound
step, and we perform operation E (described below). Otherwise we
have a northeastbound step, and we perform operation N (described
below). When (n, k) is reached, we exit with the familiar form of the
object.

Family 1 k-subsets of an n-set.

The set S is initially empty. In operation E we do nothing. In
operation N we adjoin element u’ to the set S. When (n, k) is
reached, the set § is the desired output set in familiar form.

Family 2 Partitions of n objects into k classes.

The partiton P is initially empty. In operation E we insert the
letter ' into class number e of the partition P (the classes are num-
bered 0, 1, . . .). In operation N we adjoin the letter &’ as a new
singleton class to P,

The reader may wish to verify that

GaLwdE9-02%01%0 0

decodes into the partition of 5 elements into 3 classes (1) (235) (4)
when written in familiar form.

114 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

Family 3 Permutations of n objects with k cycles.

The permutation P is initially empty. In operation E we must in-
sert the letter u’ into the eth “space” in the permutation P, where
“space” means the following: u letters have already been inserted
into the permutation P. Think of the cycles of P as necklaces. There
are u spaces between consecutive “beads.” Number these 0, 1, . . .
in some standard way. Then insert g’ into the space number e.

In operation N we adjoin the letter u' as a singleton cycle to the
permutation P.

Family 4 k-subspaces of n-spaces over GF(q).

The “familiar form™ of a subspace is taken to be a k X n matrix V
over GF(gq) whose rows are a basis. Let the matrix V be initially
0 X 0. In operation E we will adjoin to V a new column of » field
elements, namely the column of the digits of the number ¢ when
written as a g-ary number,

In operation N we will border the matrix V with a new row and
column: a new row of zeros, a new column of zeros, and a single 1 at
their intersection (see [CW1] for details).

Family 5 Permutations of n letters with k runs.

The terminal vertex is (0, 1). Initially we have the empty permuta-
tion I On an operation E we insert g’ at the end of the eth run of the
permutation II (runs numbered 0, 1, . .).

In operation N the letter u' is inserted into the eth one of the
spaces interior to existing runs (also numbered 0, 1, . . .).

Family 6 Partitions of n whose largest part is k.

We begin with the empty “partition” II: 0 = 0. On each operation E
we replicate the largest part of I On each operation N we add 1 to
the largest part of IL

Family 7 Compositions of n into k parts.

Begin with the empty composition. k. An operation E adds 1 to the
first part of the composition k. Each operation N adjoins a new first
part to k, namely 0.

While these algorithms describe the decoding process, of course
they need not be, in each case, the most efficient decoding method.
A better way to decode permutations of n letters with k cycles, for ex-
ample, is to begin at (n, k) and follow the path forwards, with an ini-
tially blank array a, . . . , @, At the jth step of the walk, if the
number of cycles not yet started is equal to the number of edges not

13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT) / 115

yet traversed, fill all remaining blanks in a with —1, -2, ~3, . . . and
exit. Else, if edge(j}=n —j, insert =(n +1 —3) into the (e, + 1)th
blank space on the array a, while if ; < n —j, put n + 1 —j into the
(e;+ 2)th blank space. At termination, the array a,, . . . , a, holds
the usual cycle form of the permutation, with the leftmost element of
each cycle flagged with a negative sign.

SAMPLE OUTPUT

With k=3, n =5, the three tables below show the first ten objects
of order (5, 3) in Families 1, 2, 3. For each object we display its
RANK, its EDGE , MU NU arrays, and its familiar form

Family 1 3-subsets of a 5-set.

RANK EDGE MU NU SUBSET
00000 543210 333210 {1,2,3}
01000 543210 333221 {1,2 4}
01101 543210 333211 {1,3, 4}
01110 543210 333210 {2,3,4}
10000 543210 332221 {1,2 5}
10100 543210 332211 {1,3,5)
10110 543210 332210 {2, 3 5}
11000 543210 332111 {1,4,5}
11010 543210 332110 {2,4 5}
11100 543210 332100 {3,4,5}

OCOJOONAWN~O

Family 2 Partitions of 1, 2, 3, 4, 5 into three classes.

RANK EDGE MU NU PARTITION
0 00000 543210 333210 (145)(2)(3)
1 01000 543210 333210 (15){24)(3)
2 02000 543210 333210 (15)(2) (34}
3 03000 543210 332210 (135)(2) (4}
4 03100 543210 332210 (15)(23)(4)
5 03200 543210 332110 (125)(3)(4)
6 10000 543210 333210 (14)(25) (3)
7 11000 543210 333210 (1) (245)}(3)
8 12000 543210 333210 1)}(25)(34)
9 13000 543210 332210 {(13)(25)(4)

116 / 13: SEQUENCING, RANKING, AND SELECTION ALGORITHMS (SELECT)

Family 3 Permutations of 12345 with 3 cycles.

RANK EDGE MU NU PERMUTATION
' 00000 543210 333210 (154}(2)(3)
01000 543210 333210 (15)(24}1(3)
02000 543210 333210 (15}(2) (34)
03000 543210 332210 (153)(2)(4)
03100 543210 332210 (15)(23) (4)
03200 543210 332110 (152)(3]{4)
10000 543210 333210 (145)(2)(3)
11000 543210 333210 (1) (254) (3}
12000 543210 333210 (1) (25){34)
13000 543210 332210 (135} (2)(4)

o

CO-100s W0

14

Young Tableaux (NEXYTB/RANYTRB)

{A) INTRODUCTION

Consider the partition
(1) m6=34+2+1

of n =6. With the partition 7 we associate a shape, namely

(2)

in which the successive parts of the partition are the lengths of suc-
cessive rows of the shape.

Next we fill in the 6 squares in the shape with the letters 1, . . . ,
6 subject to the condition that the integers in every row or column
form an increasing sequence. Thus

F 117

118 / 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

4 112|6 112|686
(3) 21 6 3| 4 3
5 4

are three different ways of doing this. The filled-in shape in each
case is called a Young Tableau of shape . '

For the partition 7 shown above there are in fact 16 tableaux
which have its shape.

For the partition

(4) m8=3+3+1+1

whose shape is

(5}

it turns out that there are exactly 56 Young tableaux.

We now describe the general formula which gives the number of
tableaux of shape w. Associated with each of the n squares in a
tableau is an integer called the “hook length™ at that square. To find
the hook length we count the number of squares to the right of the
given one, in the same row, add the number below the given one, in
the same column, and add 1 to count the given square itself.

For example, for the shape (5) we show below each hook length
written into its square.

(6)

|| U] O

Let 7 be a partition of the integer n, then the number of Young
tableaux of the given shape = is

n!

(7 N(m) = (product of all hook lengths)

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 119

where n is the integer of which 7 is a partition. Thus from (6) the
number of tableaux belonging to the shape (4) is

8!
1-1-2:-2-2-3-5-6

It is a remarkable fact that the algorithm which we will give in this
chapter for selecting a Young tableau uniformly at random (u.a.r.)
from among those of a given shape also provides a proof of the
counting theorem (7), a proof, furthermore, in which the role of the
hooks is a natural one. The algorithm and the proof of the counting
theorem are due to Greene, Nijenhuis, and Wilf [GNW1].

Next we note that the highest letter n in a tableau must appear
at the end of a row and of a column. Let us call such a position a
corner of the shape. There are as many corners as there are distinct
parts in the partition .

We identify the Young tableaux with the general theory of com-
binatorial families described in the preceding chapter. Consider a
graph G which has a vertex 7 corresponding to each partition of each
positive integer #n, and the “empty partition” 0 = 0.

We draw a directed edge from a vertex = to a vertex #' in G if the
shape of 7' is obtained from the shape of m by deleting exactly one
corner.

Thus the out-valence of 7 is equal to the number of distinct parts
of .

Now imagine a walk « which begins at 7, and follows directed
edges of G to the terminal vertex

0=0

Then @ is a Young tableau of shape #. Indeed, we begin with the
shape 7 and walk along the path w. As we traverse each edge we in-
sert the highest letter not yet inserted into the corner whose deletion
corresponds to the edge.

Consider, for example, the following walk:

(8)

=56

. S ST -0

On the first edge we insert 6 into the corner which is deleted, then 5
into the next corner, . . . , obtaining the tableau

120 / 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

(9)

We see that the walk is a recursive recipe for filling in the empty
shape.

The family of Young tableaux is thereby identified as a family of
walks on a graph, in which the shape plays the part of the “arder,”
The difference between this family and the ones which are treated
by the program of the preceding chapter is that the vertex set here is
not, in a natural way, a set of lattice points in the first quadrant of the
plane.

Hence, in this chapter we describe separate algorithms for
sequencing and random selection of Young tableaux.

(B) LEXICOGRAPHIC SEQUENCING

First we consider passing from a given tableau T to its immediate
lexicographic successor. '

Observe that the “first” tableau of shape is obtained by inserting
n into the first (topmost) comer, then n — 1 into the first corner of the
remaining shape, etc. The first tableau of shape (1) is

11 4 6

(10)

3

while the last tableau of that shape is

(11)

Thus in the first one we write the letters 1, . . . , n down the
columns consecutively beginning on column 1, while in the last

tableau the letters are written consecutively across the rows, top to
bottom.

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 121

Now to find the successor of a given T, following algorithm NEXT
of the previous chapter, we see that we must

(a) locate the smallest integer j in T which does not occupy the
bottom corner of the subtableau T; formed by 1, 2, . . . ,j

(b) move the letter j to the next lower corner position in T,

(c) replace all other entries in the shape T; by entering the
numbers 1, 2, . . ., j—1 consecutively down the columns, begin-
ning with column 1.

For example, let

(12) T=

10 111
12

00| OU | Co |

The integer 7 in step (a) is 6 because in its subtableau

6

(13) Tg=

it does not occupy the last corner position, and it is the least such
integer.
Following step (b) we move 6 into the next comner of T, thus

(14) Tgncw) = 6

After step {c), the subtableau has become

(15) Ty =

The successor of the full tableau has the new T; embedded in the
otherwise unchanged T as

122 / 14: YOUNG TABLEAUX {NEXYTB/RANYTB)

(16) T(nexl) —

10 | 11
12

0| WMo

It is convenient to represent a tableau in a computer by means of
its Y-vector, which is defined by

(17) y{i) = the number of the row which contains 1 (i=1,n)

Thus the vector associated with the tableau T of (12) is

(18) ¥Y=(1,1,2,2,3,1,2,4,1,3,3,4)
while that of the successor (16) of T is
(19) Yesh=(1,2.3,1,1,2,2,4,1,3,3,4)

The reader should satisfy himself that the Y-vector of a tableau
uniquely describes the tableau.

From the Y-vector of T it is easy to locate the letter j which
we need in step (a) of the sequencing algorithm: it is the least j such
that y(j) <y — 1L

The complete sequencing algorithm follows.

ALGORITHM NEXYTB

[Enter at step (A) with the Y-vector y(1), . . . , y(n) of a tableau of
order n and exit with the Y-vector of its successor, if it has one, or at
“final exit,” if it has none.

Enter at step (C) with a partition n=A(1) + - - - + A(n) in which
the A(f) decrease, and a zero entry is inserted in the array A after the
last part of the partition, and exit with the first y-vector of shape A.]

(A) U n=1, final exit;
M1) < 1; Mi) < 0 (i = 2, n) [The array A will now be set to the
shape of the subtableau of the letters [1, 2, . . . , j], where j is
the point of decrease of Y]
Forj=2,ndo: {Myy) < My, + 1; If y; < y;.,, to (B)}
Final exit.
(B) [Find new row forletterj] t< M1+ y;);i<—k;
While M(i) #= tdo: {i < i—1}
[Move § to row i] y; < i; Ald) < Mi) — 1; To (D).

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 123

C) j<=n+1
(D) [Fill entries of the Y-vector corresponding to shape A]
(Dl) t<—j—1,1<1.
(D2) r<1.
(D3) If A(n)=0, to (D4); yy«<r; M) <A —1;, l—=1+1;
r<r+1; To (D3
(D4) Ifl = ¢, to (D2); Exit B

The program for SUBRQUTINE NEXYTB has been written so as to
facilitate its use for either of two purposes: (a) listing all tableaux of a
given shape or (b) finding the successor of a given tableau.

If the routine is called with MTC= _FALSE. it interprets the input
array LAMBDA as the set of parts of a partition of N (n=\A, +
Ay +- - -+ A), in decreasing order. On output the array Y holds
the Y-vector of the lexicographically first tableau of the given
shape.

If called with MTC=.TRUE. the array LAMBDA is used only for
working storage, and its input contents are of no significance. In this
case the Y array, on output, holds the immediate successor of the
tableau that was described by the input ¥ amray.

On output MTC is normally set to .TRUE. but is .FALSE. if the
output tableau is the last of its shape. Thus, to process all tableaux of
given shape we would have a main program of the form

MTC= FALSE.
[Set array LAMBDA to desired shape; if LAMBDA has K < N non-
zero parts, enter LAMBDA (K+1)=0]
10 CALL NEXYTB(...)
[Process output tableau]
IF(MTC) GO TO 10
20 [All tableaux of this shape are done]

+

(C) RANDOM SELECTION

Next we consider the selection uniformly at random of a Young
tableau of given shape. This will be done by inserting the letter n
into a corner position of the given shape with the right probability,
then inserting n — I into a comer of the remaining shape, etc.

124 7 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

Hence there are two questions to answer: (a) What is the probabil-
ity that the highest letter n lies in a given corner « of the shape #? (b)
How can we arrange to insert n into a corner « with the correct prob-
ability?

The answer to (a) is quite simple. To question (b) there is first the
obvious answer, and then the algorithm that we have chosen to pro-
gram, which is a litle “game” in which the letter n is moved
around the “board” until it hits a corner, then stops, and if the rules
of the game are observed, the probabilities turn out to be the correct
ones,

First, as regards question (a), the answer is just that

N(m—«)
N(m)

in which N{m) is the number of tableaux of shape =, and 7 — x is the
shape obtained from # by erasing the corner square k. If we substi-
tute {7) into (20) we obtain

(20) Pk) =

Product of hook lengths of

(21) Plr) = n - Product of hook lengths of 7 — «

In (21), the hook lengths in the numerator cancel against those in
the denominator except for those in the row and column which con-
tains x. We can rewrite (21) in the form

(22) 200 =211 (725)

where the product extends over those squares of the given shape
which lie in the row or column of «, excluding « itself, and in which
h is the hook lengths of the square.

For example, if we refer back to (6), the probability of the corner in
the (2, 3) position is

Puc) = (551)(231)(231) -3

and of the corner in the (4, 1} position is

2 =5 (21)(521)e2 1) -5

In view of the known probabilities (22) of the corners, it would of
course be easy to program the selection of a corner to hold the letter
n. Instead of this, however, we describe a game whose outcome
locates the letter n in the desired fashion, with no computations of
probabilities being required.

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 125

The proof of the validity of the game will establish the comer
probability (22) independently of the counting formula (7), and then
by recognizing that the cormer probabilities must add up to 1, we will
obtain a proof of the counting formula itself. We will have then
another example of how algorithmic motivation can generate valu-
able points of view in pure mathematics.

Consider a chessboard of shape 7 on which there moves a single
“one-way-rook,” i.e., a piece which can move any number of spaces
to the right or any number down.

Player 1 places it on any square. Players 2 and 1 then move alter-
nately until the rook reaches a corner of the shape (board); the last
mover wins,

This game is easy to analyze, and is similar to “Corner the Queen”
[see Scientific American 236, 134 (March 1977)]. We might call the
present game “Comer the Rook.” A gambler’s version of “Corner the
Rook™ is even more germane: (bets are placed on the corners before
play begins) the rook is placed on the shape in any square, chosen
uv.a.r,; it is then moved repeatedly, each move being made to a
square which is chosen u.a.r. from among those which are available
destinations.

First, as to the speed of the game, let A denote the area (number of
squares) to the south and east of the first square (i, j), and let A’
denote the corresponding area after one move is made. The expected
value of A’ is = }A, and equality holds if and only if the shape to the
south and east is a rectangle. Thus only about O{log n) moves are
needed before a corner is reached.

In order to analyze the game, consider the probability that a game
started in a square (i, j,) ends in a certain comer (i¥, j*). Obviously,
i = i* and j, = j* for a positive probability. There are many ways to
make this trip, and in order to classify these conveniently, consider
two fixed lists of rows 4, . . . , i,, and of columns j, . . . ,j,;, where
fp<i <---<i=1* and jo<j, <+ - -<j,=j* and now con-
template only those moves in which the rook, starting at {i,, 7,), in
each move goes either to the next row or the next column in the
respective list; the corner will be reached after exactly r + s moves.
There are many ways to do this, and we calculate all at once the total
probabilities of the rook following one of this set of paths:

. . . . r—1 1 5—1 1
(23) P ({10: =t 1',1....1}, {Jl]: e, :Js—l}) = Il_-[h w— 1 H h . —1
=0 ‘i =0 "°1*3

(empty products interpreted as 1).
In fact, starting from (i,, o) one may move only to (i1, j,) or to (i, j.);

126 / 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

the probability for either choice is 1/(h;y;, — 1). Now, by induction on
n the probability of getting from (i, jo) using only the remaining rows
Gy . . ., %) and the columns (jy, . . ., js) is P{i,, . . ., &-ihs
{f0s - - . »Jds—1}) as given by (23), because the trip from (i, jo) to (i*,

4*) may be considered as a walk in a smaller tableau =’ obtained from
o by removing at least one row. Similarly, the probability of getting

from (i, j,) to (i*, j*) using rows (i, . . . , i;) and the remaining
columns (jl, . :js) iS '@({30: L ir—l}) {jl: - :js-—l})- NOte that
'@({ib = e ir—l}: {j{): LI :js—l})
= (hioi‘ - 1) '@({1’0) LI] i’r—l}i {jOs e :js—l})

-@({im - :ir—l}: {jl: I ’js—l})
=(hi"jo_l) -@({1’0: CEIEI ir—l}: {jl]: o ajs—l})

hence the probability of getting from (i, jo) to {i*, j*) using only rows
(9, . . . , i) and columns (jp, . . . , j) is

[l Grage = D+ (s = 1) Bl - reihs L - - i)

This proves the result (23), as hyp — 1 = hiu g + Bigj» — 2. To calculate
the probability of reaching (i*, j*) from any square along any permis-
sible path we merely have to sum £2(R, S) over all subsets R of
{1, . .., i*—1} and over all subsets S of {1, ..., j*—1} and
multiply by the probability, 1/n, of initially landing on any one
square. Hence, this probability Prob(i¥, j*) is

(24) Prob(i*, j*) == O

i*— Je—1

: =21 (=) T (4=

which is precisely equation (22).

The game therefore terminates in a given corner with a probability
which agrees with that obtained from the counting formula, and
therefore we can choose u.a.r.a Young tableau of shape = by play-
ing the game to completion successively with rooks labeled n,
n—1,...,1L

We claimed earlier, however, that the algorithm proved the
counting formula (7) also. To establish this, observe that the expres-
sion (22) has been shown to represent the probability that our
algorithm halts at a specified comer « of the shape.

Now the sum of these probabilities over all corners is 1, and so

14: YOUNG TABLEAUX {NEXYTB/RANYTB) / 127

SAT () -

However, if N(m) is the function defined by (7) then (25) asserts that

Nimr—x)
2N !
i.e., that
(26) N(m) =3 N(m — k)

Since (26) is also the recurrence satisfied by the number of tableaux
of shape =, and since that number and N(#) also agree on the tableau
which consists of a single square, it follows that the function N(w) of
(7) is indeed the number of tableaux of shape , as claimed.

The complete algorithm follows.

ALGORITHM RANYTB

[Enter with a shape = of order n; Exit with a Young tableau of
shape 7 chosen u.a.r. from among all tableaux of shape =.]

(A) men; 7 <

(B) Place the letter m on a square % of the shape #', the square
being chosen u.a.r.

(C) If # is a comer of ' go to (D); [Move m to a new square]
Choose a square &%’ u.a.r. from among the h — 1 squares in the
hook of %, other than % itself; Move m to %'; Set & < &' and
go to (C).

M m=LExitmem—1;7<x —%;t0o(B)

The FORTRAN program follows the algorithm closely. The instruc-
tions which precede instruction 30 store the conjugate partition to
the input partition X in the array y. This array also will hold the
output Y-vector, but as the latier is entered from right to left
in the amay it can never clash with the (shrinking) conjugate par-
tition.

Instruction 30 is step (A) of the algorithm; instructions 40-41 do
step (B) by a simple rejection technique; instructions 70-79 move m
to a new square (I, J) as in step (C) above; instructions 80-85 modify
the partition and its conjugate to reflect the deletion of the chosen

128 / 14: YOUNG TABLEAUX {NEXYTB/RANYTB)

corner, and insert one entry in the output Y-vector; the DO 90 loop
restores the input partition prior to retum.

The process of selecting a square at random on a given chessboard
merits some comment. What we do is to select a random square in a
rectangular board, of size k X A(1) where k is the number of parts and
M1) is the largest part. This is the smallest rectangular board which
holds the given shape.

If the chosen square lies outside the shape we reject the choice,
and select a new square, The expected number of selections
required before a square is kept is the ratio of areas

S =knL)in

Now the normal order of magnitude of k and of A(1) is C Va log n,
consequently we may expect that averaged over all partitions of
order n, the statistic S will be O(n®) for every € > 0, though for some
partitions S can be quite large.

SUBROUTINE SPECIFICATIONS (NEXYTB)

(1} Name of subroutine: NEXYTB.

(2) Calling statement: CALL NEXYTB (N, LAMBDA Y, MTC).

(3) Purpose of subroutine: Supplies the sequence of Young tab-
leaux of given shape.

(4) Description of variables in calling statement:

Name Type I/O/W/B Description

N INTEGER I The integer which is partitioned.

LAMBDA INTEGER (N) 1o LAMBDA (I) is the Ith part of the partitiont

Y INTEGER(N) 110 Y(I) is the row containing I in the output
tableau (I=1,N) .

MTC LOGICAL IiO = .FALSE . on input, starts 2 new sequence; on

output, signals end of current sequence.

1 See program description above for complete description.

(5) Other routines which are called by this one: None.

(6) Approximate number of FORTRAN instructions: 34,

(7) Remarks: An extra “part” =0 must be inserted after the last
part of the partition LAMBDA, on input, if called with
MTC= .FALSE., except that if LAMBDA has N parts, this is not
done.

20

21

22

30

31

32

40
43
42

41
45

46
47

50

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 129

SUBRQUTINE NEXYTB(N,LAMBDA,Y MTC)

LOGICAL MTC

INTEGER LAMBDA(N),Y(N),R,S,S1,T

T=N

IF{ .NOT.MTC) GO TO 40
LAMBDA({1)=1

DO 21 1I=2 N

LAMBDA(I)=0

DO 22 J=2 N
LAMBDA(Y{J)Y=LAMBDA(Y(J)) +1
IF(Y{J)Y.LT.Y(J=-1)) GO TO 30
CONTINUE

MTC=.FALSE.

RETURN

T=LAMBDA{1+Y(J})

I=N

IF(LAMBDA(TI) EQ.T) GO TO 32
I=I-1

GO TO 31

Y{J)=1
LAMBDA(I)=LAMBDA (I)-1
T=J-1

L=1

R=1

IF(R.GT.N) GO TO 45

IF (LAMBDA (R} .EQ.0) GO TO 41
Y(L)=R

LAMBDA (R})=LAMBDA{R) -1
L=L+1

R=R+1

GO TO 42

IF(L.LE.T) GO TO 43
IF(N.EQ.1) GO TO 47

DO 46 J=2 N
IF(Y(J} . LT.Y(J-1)} GO TO 50
CONTINUE

MTC= FALSE,

RETURN

MTC=.TRUE,

RETURN

END

130 / 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

SUBROUTINE SPECIFICATIONS (RANYTB)

(1)

Name of subroutine: RANYTB.

(2) Calling statement: CALL RANYTB (N,LAM,Y) .
(3) Purpose of subroutine: Selects, un.a.r,, a Young tableau of given
shape.
{4) Descriptions of variables in calling statement:
Name Type IIOIWIB Description
N INTEGER 1 The integer which is partitioned.
LAM INTEGER (N) 1 N=LAM(1}+LAM(2) +- - - is the input part-
tion of N,
Y INTEGER(N) O Y-vector of the output tableau.
(5) Other routines which are called by this one: FUNCTION
RAND (I} (random numbers).
{6) Number of FORTRAN instructions: 31
SUBROUTINE RANYTB(N,LAM,Y)
INTEGER LAM(N),Y(N) H
DO 5 I=1,N
5 Y(I)=0
I=0
L=0
10 I=I4+1
M=LAM(I)
DO 20 J=1,M
Y(J)=Y(J)+1
20 L=L+41
IF(L.LT.N) GO TO 10
30 DO 85 M=1,N
40 TI=1+4RAND(1)=*Y(1)}
J=1+RAND (1) *LAM(1}
41 IF(I.GT.Y(J)}.OR.J.GT.LAM(I)) GO TQ 40
70 H=Y(J)+LAM(I)-I-J

IF(H.EQ.0) GO TO 80O
L=1+H*RAND(1}
IF(L.GT.LAM(IY-J) GO TO &0
J=J+L

GO TO 70

14: YOUNG TABLEAUX (NEXYTB/RANYTB) / 131

60 TI=L-LAM(I)+14J

79 GO TO 70

80 LAM{I)=LAM(I)-1
Y(J)=Y(J)-1

85 Y(N+1-M)=TI
DO 90 I=1,N

90 LAM(Y(I))=LAM(Y(I))+1l
RETURN
END

SAMPLE OUTPUT

Subroutine NEXYTB was called until MTC=.FALSE. with the
input shape

The printed output consisted of the 16 Y-vectors corresponding to
the 16 tableaux of this shape, and they are shown below.

1 2 3 1 2 1 (40)
1 2 1 3 2 1 {38)
1 1 2 3 2 1 (42)
1 2 1 2 3 1 (44)
1 1 2 2 3 1 (44)
1 2 3 1 1 2 {39)
1 21 3 1 2 (47)
1 1 2 3 1 2 {34)
1 2 1 1 3 2 (43)
1 1 2 1 3 2 (46)
1 1 1 2 3 2 {36)
1 2 1 2 1 3 (45)
1 1 2 2 1 3 (42)
1 2 1 1 2 3 (32)
1 1 2 1 2 3 (36)
1 1 1 2 2 3 {32)

132 / 14: YOUNG TABLEAUX (NEXYTB/RANYTB)

Subroutine RANYTB was called 640 times with the input shape
shown above. For each of the 16 tableaux of this shape, the
frequency with which it was obtained is also shown above, next to
the Y vector of its shape, in parentheses.

The observed value of ¥2 is 9.0. In 95% of such experiments the
value of x* would lie between 6.2 and 27.7 if the tableaux were
indeed selected uniformly at random.

Part 2

Combinatorial Structures

15

Sorting (HPSORT/EXHEAP)

A frequently occurring problem in combinatorial work is the sorting
of an array. One is given b,, b,, . . . , b,, and it is required to per-
mute the members of the array so that the output is in nondecreasing
order of size. This is an intensively studied subject, but, even so, im-
portant advances continue to be made.

There are various criteria by which one may evaluate the effec-
tiveness of a sorting method, such as (a) the aversge amount of
labor (pairwise comparisons or displacements of position) required
to sort an array of length n; (b) the maximum amount of labor
required by some sequence of length n; (¢} the amount of array
storage required; (d} the amount by which the method takes advan-
tage of whatever order is already present in the input list;
(e) elegance, compactness, universality, etc.

A comprehensive survey of sorting is given by Knuth [K1, Volume
IIT]. We note here only that the best methods now available require
about cn to cn(log n)? units of labor on the average, and about
cn{log n) to cn? at worst. Furthermore, the best methods will need n
to n+ O(log n) storage registers (including the input}) and, in the
case of merging methods, will speed up operation if considerable
order is present on input,

No single sorting method optimizes all departments at once. Qur

/135

136 / 15: SORTING (HPSORT/EXHEAP)

selection here is, we think, a good choice if just one general-purpose
sort is to be available for combinatorial applications. It requires an
average of cn log n operations, a maximum of cn log n operations, no
array storage other than the input array, and it is extremely elegant,
compact, and universal. Its only unfortunate aspect is that in category
(d) above, not only does it fail to take advantage of whatever order is
already present, it is actually embarrassingly clumsy when the input
list is already sorted! More about this later (see Sample Output,
p. 142},

Our choice is the “Heapsort” method of Williams and Floyd,
which is of quite recent origin (1964).

First, by a heap we mean an array by, by, . . . , b, which has the
property that

(1) byaz by (L= [j2] <j=n)

The importance of this idea rests in the fact that if we imagine the
elements b,, b, as being placed at the successive vertices of a
binary tree, as in Fig. 15.1 where n = 11, then the sequence is a heap
if and only if every “parent” is at least as large as its two “children.”
The reader should study this figure and its relationship to (1) care-
fully before proceeding. The main properties of the parental rela-
tionship which we will use are that

{2) The parent of b;is by 2=j=n)
and

b, and bgyy, if % +1=n
(3) The children of b, are {by; only, if 2i=n
&, if 2§>n

The Heapsort algorithm is divided into two phases as follows:
First, the input array is transformed into a heap, and, second, the
heap is sorted into nondecreasing order,

(&)
(b) (bs)
(ba) OIS
Gy (b9 RO

Figure 15.1

15: SORTING (HPSORT/EXHEAF) / 137

The first problem, then, concerns the transformation of a given
array into a heap by rearrangement of its elements. The vertices of
the tree are processed in reverse order beginning with the first
parent, which is b, e Inductively, suppose that we have arrived at a
certain parent b, and that the left subtree at b; and the right subtree
at b; have already been transformed into heaps, as shown in Fig.
15.2. How can we make the tree rooted at b, into a heap?

Figure 15.2

We first move b, to a “safe place,” say b*, thereby creating a
vacancy in the tree. Next we begin a “percolating-up” process (Fig.
15.3). The larger of the two descendants of the now-vacant space

Figure 15.3

moves up if it is larger than b* and flls the vacancy, but thereby
creates another empty slot. Next, the larger of the two descendants of
the newly vacated space moves up, if it is larger than b*, and fills
that vacaney but creates another one, and so forth.

The upward motion ceases when the current vacancy has no
descendant larger than b*, and, in particular, it halts if the vacancy
has no descendants at all. When it halts, the contents of b* are
moved into the current vacant slot and the upward percolation is
complete. At this time the situation in Fig. 15.2 will have been
processed, and the full tree shown, including b,, will constitute a
heap. We next go to process b,_, in a similar way.

138 / 15: SOATING (HPSORT/EXHEAP)

It is important to break off this piece of the Heapsort as a separate
algorithm, which we do as follows:

Definition % (I, n) is the operation which, given a vertex ! in a binary
tree of n vertices, and given also that the left subtree at I and the
right subtree at I are heaps, carries out an upward percolation
process until the entire tree rooted at [is a heap.

ALGORITHM #(i, n)

(A) I, <1, b* < b,

(B) m « 2l,; If m > n, to (E); If m=n, to (D).
(C) Y¥b,y,>b,, me—m+1.

(D) If b* = b, to (E); by, « by; I, — m; to (B).
(E) by, « b*; Exit &

In terms of this Algorithm, the entire transformation of a linear
array b,, . . . , b, to a heap is done by

ALGORITHM TOHEAP
(A) Forl=|nf2], |nf2]—1,...,1:Do%F{l.n) &

We now consider the second phase of Heapsort, in which we
sort a heap into nondecreasing order. Here, the reason for dealing
with operation % (I, n) as a separate algorithm will become clear
because we will use the same algorithm in a different way in this
phase.

First, since b,,. .., b, now constitute a heap, surely b, is the
largest of all of the array elements. We therefore exchange b, and b,
at which point the nth array element has its final form. Future opera-
tions will therefore leave b, untouched, and we must now contend
with the fact that the reduced tree b, . . . , b,_; no longer is a heap
because we just ruined everything by moving the last element to 5,.
However, the left subtree at vertex 1 is still a heap, and the right sub-
tree at vertex 1 is still a heap. Hence if we apply operation
(1, n — 1), then all will be well again!

After doing #(1, n — 1), the largest of b,, . . . , b,_, will now oc-
cupy position 1. We exchange b, with b,_,, apply &(1, n — 2}, etc.,
after which the input array appears in sorted order.

The algorithm for sorting a heap is therefore

15: SORTING (HPSORT/EXHEAP) 7 139

ALGORITHM SORTHEAP

(A) n, < n.
(B) Exchange by, b,,; If n, = 2, exit; n, « n, — 1; Do #(1, »n,); To
(B) N

We can observe that Algorithm % (I, n) is used by both of the
phases of Heapsort. It will therefore be written as a subroutine
within a subroutine and will be called by the other phases.

The labor involved in % (I, n) is, at most, one comparison and one
displacement for each level of the tree below the level of the lth ele-
ment. The Ith element is at level 1 + |log, !] in the tree, so F(l, n)
involves, at most,

(1+ logyn]) — (1+ |log, [)) = O(log %)

comparisons and a like number of displacements of position.

It follows, by summation, that phase Toheap entails at most O(n)
operations. Sortheap takes O(n log n) operations. The full algorithm
Heapsort, therefore, is accomplished with at most O(n log n) compar-
isons and displacements.

The program is very simply related to the algorithms: Instructions
in lines 3-7 are Toheap, 8-10 are Sortheap, and 11-21 do operation
% (L,N1). The entire program requires just 23 FORTRAN instructions.

To simplify certain applications, a second program, EXHEAP, is
given, which performs the same function as HPSORT , but the opera-
tions on the data, namely the comparison of two elements, or the
transposition of two elements, are performed outside the subroutine.
This enables the user to operate on more complicated data than just
simple numbers. For example, he may wish to put the rows of a ma-
trix into lexicographical order. A slight variation on this idea is found
in NETFLO (Chapter 22).

Parameters to EXHEAP are N, INDEX, I,J, ISGN, where N is the
length of the list to be sorted, and INDEX is initially set to O by the
user. If, upon return, INDEX>0, the user is required to interchange
items I and J and to reenter the subroutine. (Leave I,J,INDEX
unchanged.) If INDEX<0, the user is to compare items I and J, and
to enter into ISGN a negative value if item I is to precede item J and
a positive value otherwise, then reenter the subroutine, again
without disturbing I,J, or INDEX . Finally, if INDEX=0, the sorting
is done,

140 / 15: SORTING (HPSORT/EXHEAP)

SUBROUTINE SPECIFICATIONS (HPSORT)

(1) Name of subroutine: HPSORT.
(2) Calling statement: CALL HPSORT(N,B)

{3) Purpose of subroutine: Sort a linear array into nondecreasing
order. |

{4) Descriptions of variables in calling statement:

Name Type IIOIW/B Description
N INTEGER I Length of input array.
B INTEGER(N) IO B(I) is the Ith element of the inputarray, and
then is the Ith element of the sorted array
(I=1,N).

{5) Other routines which are called by this one: None,

(6) Number of FORTRAN instructions: 23.

(7) Remarks: If B is a REAL array, change type declaration of
B,BSTAR to REAL.

SUBROUTINE HPSORT(N,B)
INTEGER B(N),BSTAR

N1=N
L=14N/2

11 L=L-1

’ BSTAR=B(L)
GO TO 30

25 BSTAR=B(N1)
B(N1)=B(1)

29 N1=N1-1

30 Ll=L

31 M=2+L1

IF (M-N1) 32,33,37
32 IF(B(M+l).CE.B(M)) M=M+1’
33 IF(BSTAR.GE.B(M)) GO TO 37
B{(L1)=B(M)
L1=M
GO TO 31
37 B(L1)=BSTAR
IF(L.GT.1) GO TO 11
IF(N1.GE.2) GO TO 25
RETURN
END

15: SORTING (HPSORT/EXHEAP) / 141

SUBROUTINE SPECIFICATIONS (EXH EAP)

(1} Name of subroutine: EXHEAP.

(2) Calling statement: CALL EXHEAP (N, INDEX,I,J, ISGN) .

(3) Purpose of subroutine: Sort a list of any items into linear order.
(4) Descriptions of variables in calling statement:

Name Type I/O/WIB Description

N INTEGER I Length of input list,
INDEX INTEGER o See text for descriptions.
I INTEGER O See text for descriptions.
d INTEGER o See text for descriptions,
ISGN INTEGER I See text for descriptions.

(5) Other routines which are called by this one: None.
(6} Number of FORTRAN instructions: 39.

SUBROUTINE EXHEAP (N,INDEX,I,J, ISGN)
IF{INDEX} 90,10,80

10 N1l=N

L=1+N/2
20 L=L-1
30 L1=L

40 I=L1+L1
IF(I-N1) 50,60, 70

50 J=I+1
INDEX=-2
RETURN

60 J=L1°
L1=I
INDEX=-1
RETURN

70 IF(L .GT. 1) GO TO 20
IF(N1 .EQ. 1) GO TO 110
I=N1
N1=N1-1
J=1
INDEX=1
RETURN

80 IF(INDEX-1) 30, 30,40

90 IF(INDEX .EQ. -1) GO TO 100
IF{ISGN .LT. 0} I=I+l

142 / 15: SORTING (HPSORT/EXHEAP)

GO TO 60
100 IF(ISGN .LE. 0) GO TO 70
INDEX=2
RETURN
110 INDEX=0
RETURN
END

SAMPLE OQUTPUT

We illustrate the workings of HPSORT by showing it in the case
where, on input, B{I)=I (I=1,10), so that no sorting is really
required at all. The first nine lines of output show the status of the
array B on input, and then after each displacement. At the ninth step
the input array has been transformed into a heap, which concludes
the TOHEAP part of the operation. In each line the appearance of a
box [0 indicates the position of the vacancy in the percolation-up
process, and the number within the box is the current content of the
“safekeeping” register b*.

The next 22 lines of output show the transformation of the heap
into a fully sorted array. Note how the final output appears from right
to left starting from the last array element.

1 2 3 4 6 7 8 9 10
1 2 3 10 6 7 8 9 5
1 2 s 10 6 7 8 4 5
1 7 9 10 6 3 8 4 5
i 10 7 9 6 3 8 4 5
1 10 7 © 5 6 3 8 4
10 7 9 5 6 3 8 4 2
10 9 7 5 6 3 8 4 2
10 9 7 8 5 6 3 4 2
2 9 7 8 5 6 3 1 4 10
9 7 8 5 6 3 1 4 10
9 8 7 5 6 3 1 4 10
9 8 7 4 5 6 3 1 10
2 8 7 4 5 86 3 1 9 10
8 7 4 5 6 3 1 9 10
8 5 7 4 6 3 1 9 10
1 5 7 4 2 6 3 8 9 10

15: SORTING (HPSORT/EXHEAP) / 143

10
10

[a* RN AT RN At A}

<+

4

«f

[+]© ©w]w
101010 10 10— 4E222m2
b =[] 0 [A]w © Q] ¥ [+ [—]e —

10
10
10

0w o

NN

<[]

oS P B

10
10
10
10
10
10

\p]

le]

A i

Ie]

4

Te}

<

¥ [0

<t

[\p]

<+

A8

16

The Cycle Structure of a
Permutation (CYCLES)

Let ¢ be a permutation of n letters, and suppose that
(1) U'=t1t2 o tp

where the t; are transpositions. Then, by the sign of o we mean +1
or —1 depending on whether p is even or odd, respectively. It is well
known that the sign of o depends only on o and not on the particular
representation (1), i.e., no matter how we exhibit o in the form (1),
the parity of p is constant,

Computationally, there are better ways of calculating the sign of &
than the above. We have, indeed the following

Theorem Let o be a permutation of n letters, with ¢ cycles. Then

(2) sign(o) = (—1)"™
To prove this, decompose ¢ into disjoint cyclic permutations
{3) oc=C(n,)C(n,) - - - C(n,), n+ s fn,=n

and observe that each cyclic permutation
(4) C(m) L=l i

144 /

16: THE CYCLE STRUCTURE OF A PERMUTATION (CYCLES) / 145

can be written as a product of m — I transpositions

tyii—j—>i

as follows
(8) Clm) =tui, " * * tuisiree
Now, substitute (5), with m=n,, . . ., g, in (3). We then see o

written as a product of
(ni—)+- - +n,—1)=n— g transpositions

The calculation of the sign of a permutation is just one application
of the cyclic decomposition. Another one arises when an array, say b
(i = 1, n) has to be permuted, so that the new value of b, equals
the old value of b, It would be impossible to program all forms of
this application in one neat, little program, but it is possible to tag a
permutation to facilitate "these applications. Suppose o is decom-
posed as in (3), with each C(m) of the form (4). Then among 4,, . . . ,
in there is a smallest number; we may assume it is #,. Then
o(i) =1y . . ., 0(in) =i, Totag ois to replace o(i;) by —i,. Then, a
program which wants to traverse the cycles of o knows when a cycle
is completed, and when it encounters the first element of a new
cycle.

One application of such tagging occurs in the in place inversion of
a permutation. The permutation o is then replaced by o, where
o~}i} =j iff o(j) = i. The execution of this change follows the cycles,
replacing C(m} in (4) by

(6) Cl(m): 'il =g i, —> il

ALGORITHM TAG

[Input n, o; output: o with the sign of o(i) reversed for each o(i)
for which i is the smallest element in its cycle; n., the number of
cycles of o; sgn = =1, the sign of o]

{A) n.en;ie1.

(B) i, < o(i). .

(C} Ifiy, =i, to (D); ne < n. — 1; iy < o(iy); oli;) < —iy; to {C).

(D) o(i) < —o(i); i< i+1; if i <n, to (B); sgn = (—1)+. Exit A

When following this algorithm on an example, the reader will see
how, in each cycle, the signs of all members are reversed in (C): ex-

146 / 16: THE CYCLE STRUCTURE OF A PERMUTATION (CYCLES)

cept the first element in each cycle. This serves as a warning that
these elements have already been dealt with when a new cycle is
sought. Then, in (13), all signs are reversed, leaving only the desired
tags.

If only n. and sgn are desired, we replace o(i) < —a(i) in (D) by
o(i) < |a(i).

To invert a permutation, we first tag it; then we reverse each cycle.
Let 4, i, = olip), i,= oli) be successive members, then setting
ali,) < iy, followed by iy < iy iy < iy, tC,, constitutes the core of the
Process.

ALGORITHM INVERT

[Input a tagged permutation o; output oL, untagged.]

(A) i< 0.
(B) i<i+1; if i > n, Exit; 4, < —a(i); if i, <0, to (B); 15 < i.
(C) i< o(iy); o(i;) < ig; if i, <0, to-(B); 4o < i i1 iy tO (ON |

The FORTRAN program CYCLES performs these tasks, depending on
a parameter OPTION, as shown in Table 16.1.

Table 16.1
Qutput
OPTION n., sgn calculated? Tagged? Inverted?
-1 yes no yes
0 yes no no
1 yes yes no

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: CYCLES.

(2) Calling statement: CALL CYCLES(SIGMA N,SIGN, NCYCL,
OPTION) .

(3) Purpose of subroutine: Count cycles, find sign of a permuta-
tion, tag and/or invert.

(4) Descriptions of variables in calling statement:

16: THE CYCLE STRUCTURE OF A PERMUTATION (CYCLES)} / 147

Name Type HO/WIB Description

SIGMA INTEGER (N) 110 SIGMA(I) is the value of a permutation o{I)
(I=1,N).

N INTEGER 1 The number of letters being permuted.

SIGN INTEGER (8] +1 if o is even, —1 if o is odd.

NCYCL INTEGER o Number of cycles of the permutation o

OPTION INTEGER I See Table 16.1,

(8) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 29,

15

10

SUBROUTINE CYCLES{SIGMA,N,SIGN,6NCYCL OPTION)
INTEGER SIGMA(N),KSIGN, OPTION

Is=1
NCYCL=N

DO 5 I=1,N
I1=SIGMA(I)

IF(I1 .LE. I) GO TO 7
NCYCL=NCYCL~1

I2=SIGMA (I1)

SIGMA (I1)=-1I2

I1=1I2

GO TO 6 ~

IF(OPTION .NE. 0) IS=-ISIGN(1 SIGMA(TI))
SIGMA(I)=ISIGN{SIGMA(I) IS)
SIGN=1-2#*MOD (N~NCYCL 2)
IF{OPTION.GE.0) RETURN
DO 10 I=1.N
I1=—SIGMA(I)

IF(I1 .LT. 0) GO TO 10
I0=1

I2=SIGMA (I1)
SIGMA(I1)=I0

IF(I2 .LT. 0) GO TO 10
10=I1

I1=12

GO TO 15

CONTINUE

RETURN

END

148 / 16: THE CYCLE STRUCTURE OF A PERMUTATION (CYCLES)

SAMPLE OUTPUT

If a sequence of edges e, €x, . . . , egisan Euler circuit of a graph
G, we call the circuit even or odd depending on whether the permu-
tation ¢ of E letters

o:i—e (i=1E)

is an even or odd permutation. For the graph G (Fig. 16.1} we used

Figure 16.1

the BACKTR subroutine of Chapter 27(C) to generate all Euler cir-
cuits, and then used CYCLES to determine if each circuit was even or
odd, and the number of cycles in the corresponding permutation,

Below we see, for each of the 44 circuits, the sign of the circuit, the
number of cycles in the permutation, and its sequence of edges. Of
these, 22 circuits are even, and 22 are odd.

-1 S 1 2 9 4 10 7 8 6 5 3
-1 5 1 2 9 4 10 5 6 8 7 3
1 4 1 2 9 4 8 T 10 6 5 3
-1 5 1 2 9 4 8 T 5 6 10 3
1 8 1 2 9 4 6 5 10 8 T 3
-1 T 1 2 9 4 6 5 i B 10 3
1 4 1 2 9 3 10 8 7 5 6 4
1 4 1 2 9 3 10 5] 5 T 8 4
-1 3 1 2 9 3 7 8 10 5 6 4
1 4 1 2 9 3 T 8 13 5 10 4
-1 5 1 2 9 3 5 6 10 T 8 4
1 6 1 2 9 3 5 6 8 7 10 4
-1 3 1 2 6 10 T 8 4 9 5 3
1 4 1 2 6 10 7 8 4 3 5 9
-1 5 1 2 6 10 5 <] 4 8 T 3

16: THE CYCLE STRUCTURE OF A PERMUTATION (CYCLES) /7 149

2 6 10
1 2 6 10

1

3
3

4

2 6 10

4 10 3

S

10
10

10

8
8

1 2 5 10

4

2 5 10

2 5 10

My <

t~

6
10 6
1 2 5 10

2 5

4

5

4

2 5 10

4 10 3.

S

10
6 10 3

9

o <

7T 10 4

8

17

Renumbering Rows and Columns
of an Array (RENUMB)

In this chapter, we study a question which at first sight seems trivial
but which in fact is quite substantial. We are given an m X n matrix
A and two permutations

o:f1,...,m}—={L...,m}
rn{l,...,n} ={,...,n}

We are asked to renumber the rows and columns of A in accordance

with the given permutations. More precisely, we are to construct the
matrix A whose elements are

N (A)r‘._iz (A) i), 13 (i=1..., myi=1,..., n)

Yet there seems to be no problem at all, since the one-step
“algorithm”

(A) Fori=1, ...,m;j=1, ..., n:A(gli), 7(j)) < Al j) W

does the whole job. Questions of interest arise, however, when we
insist that no extra array storage beyond the input data arrays o, 7, A
be used: in other words, A must be rearranged in place. Let us con-
sider a few possible approaches to this problem.

First, we could permute the rows of A according to o, then per-

150 /

17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY {RENUMB) / 151

mute the columns by 7. This could easily be programmed to use no
extra arrays (try it). The disadvantage of this procedure is that each
element gets moved twice, an inefficiency.

In the same vein, we could factor the given permutations as prod-
ucts of transpositions, then carry out the successive interchanges of
rows or of columns. In this approach each element will be moved
several times. For example, let

@y @iz Qg3
A=|an an ay
@z1 3 Qg
and
oc=7={1-3,2—>1,3-> 2}
be the given data. The desired output is the matrix

Q32 Qzp Qo)
A=| ay agz ay

12 G dp

Suppose we observe that
gF=T7= t12t13

where ¢;; exchanges letters i and j. Then in this example the number
of times each element is moved during the transition from A to A is

2 2 3
2 2 3
3 4

We therefore discard this proposal.

A third possibility is this: Store a,, in T. Move into a,, the element
@), (13> then into the latter location move the element which goes
there, etc., until the cycle is complete, then move T into the last loca-
tion in the cycle. Then begin the next cycle, etc. This approach is
much closer to what we shall actually do, but it is not deep enough
vet, because how, exactly, do we “begin the next cycle?”

What we must do is find some matrix element which was not
moved in the first cycle and then follow around the cycle which it
belongs to. How do we recognize a matrix element which was not
moved in the first cycle?

152 / 17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY (RENUMB)

The matrix elements will have to be flagged in some way when
they are moved, and then we can search for an unflagged entry. One
possibility is to use a LOGICAL array for just this purpose, but our
stipulation regarding no extra array storage would thereby be vio-
lated. If it is known in advance that the matrix entries are positive
numbers, then we can flag them in the sign position. Aside from re-
stricting the applicability of the subroutine, this approach also
doubles the number of times the entries are moved, because the
flags must all be reset before exit.

If the matrix elements are restricted to be integers, of either sign,
we can {a) double all entries, (b) use the “1’s” bit for a flag,
{(¢) halve all entries before exit. The objections to this are as de-
scribed in the previous paragraph.

We hope now to have convinced the reader that a question of some
depth is posed by the requirements of no extra array space, universal
applicability of the method, and movement of each matrix entry at
most once. We must seek our answer in the direction of under-
standing the cycle structure of the induced product permutation

p: (i,3) = (o (i), 7(4)) (i=1,...,mj=1...,n)

Consider the case where o and 7 are both equal to the permutation
1> 4—5-1;2— 3 — 2 of five letters. The induced permutation
p of the product set then has the cycle structure shown below.

(1, 1) = (4,4) = (5,.5) = (1, 1)

(1,4) — (4,5) — (5, 1) — (1, 4)

(1,5) = (4, 1) = (5. 4) — (1, 5

(2,2)— (3,3) — (2,2)

(2,3) = (3,2) = (2,3)

(1,2) — (4,3) = (5,2) = (1,3) — (4, 2) — (5,3) = (1, 2)
(2,1) = (3,4) — (2,5) = (3, 1) = (2, 4) = (3,5 —= (2, 1)

Obviously, within one of its cycles p is a cyclic permutation, and to
reorder elements under a cyclic permutation is easy. Suppose

Qy —> Oy —> Qg —> °~ " > Oy > Oy
is such a cycle. We can then do

(a) T e
(b) a0y (i=r—1Lr—2,...,1)
() a,«T

and the rearrangement is accomplished.

17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY (RENUMB} / 153

We can, in fact, give a complete description of the cycles of the
product permutation p in terms of the cycles of o, 7. If
C':e 41=2i— =i, >
and
C'" j1—=2fa— - —=i—1

are, respectively, a cycle of o and a cycle of 7, let g =g.c.d. (r, 5) and
let A =l.c.m. (r, 5). Corresponding to the pair C’, C'’ of cycles of &
and 7, there are exactly g different cycles of p, each of length A,
namely, the cycles

(ilajl) - (1.'23.7:2) —
(i1, o) = (Gas J3) — - - -
(1'53]'3) - (iZZjd) —

SO0

g (i1sdy) = (ias Jors) = * * -

Furthermore, as C' runs over all cycles of o and C'’ runs through all
cycles of 7, we obtain every cycle of p as above, each one exactly
once.

To use this parameterization of the cycles of p in terms of those of
o, 7 our first thought might be to proceed as follows {our final thought
will differ in a small, but very important, detail):

(a) Run through all elements of one cycle C’ of o, counting them
and flapging them, say, by changing the sign of the corresponding
entries of the array o. Let the cycle have r elements.

(b) Do the same as above for one cycle C'' of 7. Let it have s ele-
ments.

(c) Calculate g=g.c.d. (r, s); A=lem. (7, 5).

(d) For the fixed pair C’, C"', move the matrix entries around the
set of g cycles of p which the pair C', C"’ generate, as described
above.

{e) By locating the first unflagged (positive) entry of 7, repeat
steps (b)—(d) for the next cycle of 7, keeping C’ fixed. Continue in
this way until all cycles of v are done (all entries of the array 7 are
negative).

(f) Reset the entries of 7 to positive values. Search the array o for
the first unflagged element, and generate the next cycle C' of o.
Keeping C’ fixed, repeat the operations as above.

(g) Proceed until all eycles of o have been done.

154 / 17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY (RENUMB)

This is, essentially, our method. One difficulty arises if the flagging
of elements of o, 7 is done as above. This will become clear if we
imagine what happens if the routine is called in the important spe-
cial case where ¢ = 7, that is, only one linear array is input, and it
plays two roles. If we use the sign bits of o and 7 as flags, and if, in
fact, o and 7 are the same array, then the logic of the routine will ob-
viously become snarled.

The way out of this problem is to tag, in each cycle of o, the ele-
ment o(i) for which i is minimal in that cycle with a minus sign
before any actual permuting takes place by using the program
CYCLES of Chapter 16. However, once the tags are on, they are not
changed during the actual permuting of matrix elements. To find out
if o =7, we first tag o, then test if 7(1) is negative; if not, we tag 7
also.

The core of the subroutine consists of instructions 50 to 55 in
which the cycles of (o, 7) are traced without s, g, and X having been
explicitly computed; we need only r. Before entering a cycle pair
{C', C'") we set

k(_-fz i1<__i:r jl (_j2<_ja

where i, j are the tagged elements. Displacements of matrix elements
are performed as i, < o(iy), j; < 7(j;) until j, returns to j,. At that
point, we set k < k — 1 and test if i, = i (return to loop if not) which
signifies the completion of a cycle of length A. We then set
41 < j» < 7(j,) to start a new cycle, provided k > 0. Indeed, in each
cycle of length A, k is reduced by Afs; hence the total number of
cycles performed until k =0 is 7/(A/s) = rs/\ = g, and we are finished
with the pair (C’, C'") of cycles, without ever having computed g or A
explicitly.

The number of displacements of matrix elements per cycle pair is,
of course, rs; the number of tests is counted as follows. j, is tested
each time (rs tests); i, is tested as k is reduced, (r times). Finally, k is
tested g times, so that there is a total of

rst+r+g
tests. Summed over all pairs (C’, C’'), this yields
mn + m(number of cycles of 7) + g

In average situations, the last sum is small (though it can be as big as
mn) while the average number of cycles of 7 is log n (the maximum is
n). In any case, the operation count is O{mn) (see Table 17.1).

17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY (RENUMB) ;7 155

Table 17.1 Structure of SUBROUTINE RENUMB

Instruction number Purpose

10 Outer DO loop through the cycles of &

20 and two below The cycle length LC of a cycle of o is calculated
30 DO loop through the cycles of 7

40 Start of cycle of length A

50 Continuation of above cycle

55 Test if more cycles required

60, 70 Remove tags from o, 7

ALGORITHM RENUMB

Given a permutation o of 1,...,m; a permutation r of
1,...,n; a matiix ay(i=1,...,m; j=1,...,n); move a; to
Q5 h(y)-

(A) Tago;Ifr# o, tag7; i« 0.

(B) [Find next cycle of 0] i< i+ 1;Ifi>m, to (G); i, « —ol(i);
Ifi; <0, to (B); I < 0.

(C} [Find length of cycle of o] i, <« o(i,); l <1+ 1;Ifi, >0, to
(Chi,<—1i;5«0.

(D) [Find next cycleof 7] j«—j+1;1fj>n, to(B);, Ifr(§) > 0, to
(D); js < j; k<L

(E) [Start new product cycle] j, <« jo; t1 — a4,

(F) [Move matrix elements in one product cycle] i, «— |a(i,)|;
Jre TGl te < @py; @usn <ty bty I §i # jo, to (F)
ke—k—1; [End of product cycle?] If i i, to (F)
J2 < |7(42)|; [AU product cycles done?] If k 5 0, to (E); to (D).

(G) [Restore arrays] o}« |c(i)| (i=4,...,m): If o7

(i) — |G G=1,...,n), Exit @

SUBROUTINE SPECIFICATIONS

(1)
(2)
(3)

(4)

Name of subroutine: RENUME,

Calling statement: CALL RENUMB(M,N,SIG,TAU,A).

Purpose of subroutine: Renumber rows and columns of a ma-
trix.

Descriptions of variables in calling statement:

156 7 17; RENUMBERING ROWS AND COLUMNS OF AN ARRAY (RENUMB)

Name Type 1/OIW(B Description

M INTEGER I Number of rows of matrix.

N INTEGER I Number of columns of matrix,

SIG INTEGER (M) I SIG(I) is the value at I, of the row permu-
tation {I=1,M).

TAU INTEGER (N} I TAU(J) is the value, at J, of the column
permutation (J=1,N}.

A INTEGER (M,N) IO A(1,F) is the I.,J entry of the input
matrix, and holds A{I,J) after
executon {I=1,M;J=1,N).

(5) Other routines which are called by this one: CYCLES {Chapter
16).
(6) Number of FORTRAN instructions: 37.
(7) Remarks: To use on a noninteger matrix, just change type
declaration of A, T1, and T2.
SUBROUTINE RENUMB (M,N,6SIG,6TAU,A)
INTEGER SIG{M),TAU{(N) A(M,N), T1,T2
CALL CYCLES(SIGMA, M, IS NC,1)
IF(TAU{(1) .GT.0) CALL CYCLES(TAU,N,IS NC,1)
po 10 I=1,M
I1=—SIG(I)
IF(I1.LT.0) GO TO 10
LC=0
20 I1=SIG(Il1)
LC=LC+1
IF(I1.GT.0) GO TO 20
I1=I
Do 30 J=1,N
IF(TAU{(J).GT.0) GO TO 30
Ja=J
K=LC
40 Jl=J2
Tl=A(I1,J1)
50 I1=IABS(SIG(Il))

J1=IABS(TAU{J1))
T2=A(I1,J1)
A(I1,J1)=T1

T1=T2

IF(J1.NE.J2) GO TO 50
K=K-1

IF(I1.NE.I) GO TO 50

17: RENUMBERING ROWS AND COLUMNS OF AN ARRAY {RENUMB) / 157

J2=TIABS(TAU(J2))
55 IF{K.NE.O) GO TO 40
30 CONTINUE
10 CONTINUE
DO 60 I=1,M
60 SIG(I)=IABS(SIG(I))
IF(TAU(1).GT.0) RETURN
DO 70 J=1,N
70 TAU(J)=IABS({TAU(J))
RETURN
END

SAMPLE OUTPUT

Subroutine RENUMB was called, with M=N=9, SIG as shown in the
first line below, TAU as shown on the second line. The input 9 X 9
matrix A appears next, followed by the cutput rearrangement of A.

2 3 9 6 7 8 5 4 1
3 4 5 6 T 8 2 1 2

23 24 25 26 27 28 29 21 22
33 34 35 36 37 38 39 31 32
93 94 95 96 97 98 99 91 92
63 64 65 €656 67 68 69 61 62
T3 T4 75 T6 TT T8 79 Tl 72
83 B4 85 B6 87T 88 89 81 82
63 54 55 56 57 58 59 51 52
43 44 45 46 47 48 49 41 42
13 14 15 16 17 18 12 11 12

11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
51 52 53 54 55 b6 57 58 59
6l 62 63 64 65 66 67 68 69
71 72 T3 T4 75 76 TT 78 79
Bl 82 83 84 85 88 87 88 89
91 892 93 94 95 96 97 98 99

18

Spanning Forest of a Graph
(SPANFO)

(A) INTRODUCTION

One of the most fundamental questions about a graph concems its
connectivity. G is connected if, whenever u and v are distinct ver-
tices of G, there is a path in G which joins u and v. Even if G is not
connected, we can define an equivalence relation on its vertex set: u
and v are related if there is a path between them. A connected com-
ponent of G is an equivalence class T of vertices of G, under this
equivalence relation, together with all of the edges of G which are
incident with some vertex of T,

For example, the graph in Fig. 18.1 of 14 vertices and 10 edges has
7 connected components, namely, the 7 pieces of the drawing.

Computationally, we pose the problem as follows. Imagine that we
are given the graph G in the form of an array

€i.j) (i=12;5=1,E),

in which €(1,), €2, j) are, respectively, the two vertices which are
end points of edge j(j =1, E). For the graph of Fig. 18.1, the array
might be this:

el,§): 2

4 1 7 5 2 6 2 3 4
€2,9): 3 7 9 11

8§ 5 10 8 8 11

158 /

18: SPANNING FOREST OF A GRAPH (SPANFQ) / 159

7 3 5 | 9
—
12 13 14
G . . .
4 Iz 8 6 0
Figure 18.1

We wish to design an algorithm which, given such an array for a
graph of n vertices and E edges, will produce the following output:

(a) k, the number of connected components of G,

(b) x(i), the number of the component to which vertex i belongs
(i=1,n),

{c) a rearrangement of the edges in the € array so that listed first
are the edges in a spanning tree of component 1, then the edges of a
spanning tree of component 2, etc., and finally those edges which are
not in any spanning tree,

{d} the sequence of edges in the spanning forest portion of the
output list is to have an additional property, namely that each span-
ning tree can be considered as a directed rooted tree, and then its
edges are to be listed so that any walk on the tree which begins at
the root will follow edges with an ascending sequence of indices.
Further, for each edge j, which is in a spanning tree, (1,) is nearer
to the root of its tree than €2,), and so, in particular, the root of a
tree is (1, r), where r is the first edge in that component.

The reader may wish to check the output arrays x, € for the graph
of Fig. 18.1, to see how the various properties above are satisfied:

= 1 2 2 3 2 4 3 2 1 4 3 5 6 7

e 1 2 8 2 4 4 6 2 3 7
9 8 5 311 7 10 5 8 11

Algorithms for finding such information can be loosely classified
into two categories: “on-line” and “off-line.” In an on-line algorithm,
we think of the computer as being in a room where, from time to
time, someone will announce the two endpoints of a certain edge.
Without knowing if more edges are to be announced later, the
algorithm proceeds to use the latest edge so as to update its picture
of the connectivity of the graph. If at any time the procedure is ter-
minated, then with almost no additional computing the desired
output items are available. In such a situation the algorithm must
deal with the question of maintaining appropriate data structures
which can be conveniently updated after a single new edge is an-
nounced,

160 / 18: SPANNING FOREST OF A GRAPH (SPANFO)

In an off-line algorithm we are presented with a list of all of the
edges of G before any computation is done. The algorithm is there-
fore permitted to operate on the entire graph as a unit.

On-line algorithms exist whose operation times are almost, but not
quite, linear in the number of edges E of the graph. Offline
algorithms exist whose times are linear in E. Such methods can be
- formulated in terms of breadth-first-search or in terms of depth-first-
search of a graph. In this chapter we describe two algorithms, a
depth-first-search algorithm which is due to R. Tagjan, and then
another, breadth first, algorithm, which offers economies of array
space. A FORTRAN program for the latter algorithm is given.

{B) DEPTH-FIRST-SEARCH

Given G, of n vertices and E edges, we initiate the search by
choosing a vertex v of G. We scan v by examining each of its
neighbors. Any neighbor w of v which has not already been assigned
to a connected component of G is assigned to the current component,
and the vertex w is placed on top of a stack. Neighbors which have
already been assigned are ignored.

After scanning v, we remove the vertex which is then on top of the
stack, and call it v. We then scan v, as before. When the stack is
empty, we have finished a connected component. We then increment
the component number and choose, for v, any vertex which has not
yet received a component number. If no such v exists, the algorithm
halts.

The reader is invited to try the algorithm by hand on the first two
components of Fig. 18.1, for instance.

The algorithm as so far described meets three of the four require-
ments (a)-(d) which we posed. It finds k, assigns each vertex to a
component, and if vy, vy, . . . , v is the sequence in which the ver-
tices of a certain component were scanned, then the edge sequence
(v, ©g), (Vg Vg), . . . , {4y, ty) forms a spanning tree for the com-
ponent which satisfies condition (d).

The ingredient which is so far missing is this: when we are scan-
ning vertex v, and we examine a vertex w in its neighborhood,
consider the case where w has already been assigned a component
number. The edge (v, w) might be an edge which already is part of
the spanning tree, it might be an edge which is not in the tree and
which we are seeing for the first time, or it might be such an “extra”
edge which we are seeing for the second time.

18: SPANNING FOREST OF A GRAPH (SPANFO) / 161

We can tell if (v, w) is already in the spanning tree simply by
remembering the immediate predecessor v’ of v in the spanning tree.
If w =-v', the edge is already in the spanning tree and we can ignore
it.

Otherwise, if (v, w) is an “extra” edge we want to store it in the list
of extra edges at the right side of the e array if we are now seeing
(v, w) for the first time, and to ignore it if we have already seen (o, w).

In order to make this decision some extra information is needed.
We assign to each vertex v, not only its component number, but also
its position in the scan sequence. Call this NUM(v). Thus, if w was
scanned before v was, we shall have NUM(w) < NUM(v) and vice-versa.
With the NUM array our decision is easy to make: if NUM(v) < NUM{w)
we adjoin (v, w) to the list of extra edges, else we ignore it because it
will then be chosen exactly once.

Altogether, then, we ignore (v, w) if

{w = Predecessor{v) or NUM(v) > NUM(w)}

and otherwise adjoin it to the list of extra edges.
The formal algorithm follows.

ALGORITHM DEPTHFIRST

(A) Setzx(v) <0 (all v); k < 0; v « 1, num <« 0.
(B) [Scan nextv] Ifv > n, Exit; If x(v) 20, set v < o+ 1 and go
to (B); [Begin kth component at v] k < k + 1; num < num + 1;
x(v) < (k, num); Write (v, 0) on stack.
(C) [Component k finished?] If stack is empty, set v < v + I and
go to (B); Read (j, Prev) < top of stack; For each vertex
r € Nbhd(j) do:
(Cl) If x(r) # 0 then go to (C2); [Vertex r encountered for
first time] num < num + 1; x(+) < (k, num); Top of
stack < (r, j); List of tree edges < (j, 7); Next r.
(C2) If r="Prev or x(r) > x(j) then do next r; List of extra
edges < (f, 7); Next r.
End
Goto (C). N

{C) A BREADTH-FIRST ALGORITHM

We turn now to a modified approach, which has the advantage over
the depth-first approach that it can be entirely executed within two

162 / 18: SPANNING FOREST OF A GRAPH (SPANFO)

arrays, the input array e, m) {=1,2; m=1, E), which is the edge
list of the graph, and the array x(i) (i =1, n) which on output has in
x(1) the component to which vertex i belongs.

As before, we scan and visit, but the scanning of vertices takes
place in the same order as the visiting. Thus, we are not dealing with
a stack but with a so-called gueue. It so happens that, in this ap-
proach, storage can be so used that e and x suffice. Of course, the en-
tries of € and x are used a few times each, for somewhat different pur-
poses.

Since no auxiliary storage is available, the lists of neighbors of
each vertex have to be stored in e itself in such a manner that essen-
tially no searching will be needed. We do this by replacing all occur-
rences of vertex p by a linked list, which points from one such occur-
rence to another. x(p) points to the first such occurrence, while at the
last such occurrence p itself is inserted. The addresses (I, m) in € are
encoded as IM +m, where M is a sufficiently large number, say
M =1 + max{n, E). All these quantities are given negative signs to
indicate that no scanning or visiting has yet taken place.

ALGORITHM LINK (x, ¢ n, E)

Fori=1, n: x(i) < —i
Form=1, E:
Fori=1, 2:
p < €l, m); ell, m) < x(p); x(p) « —(IM+m} B

As an example, consider the graph of Fig. 18.2

| 3
Figure 18.2

On input this graph might have been described by the arrays

2

18: SPANNING FOREST OF A GRAPH (SPANFO) / 163

After conversion to linked lists in which we have chosen M =10
for convenience, the arrays € and x look like this:

—22|—13| —4|—-21~1
€ x |—24|—11|—21|—12
—23|—14(—25|—15| —3

For example, the linked list of vertex 3 is found by starting at z(3)
and walking through € thus:

x3)=(02,1)—>(2,3) > (2,5)—> 3

When the scanning of vertex p has reached ¢(l, m), say, we set
s < |e(l, m)| and reinsert €I, m) < p to restore the endpoint list. We
then do two things:

1. Visit the neighbor of p at the other endpoint of edge m; that is,
we go to €3 — I, m) and follow the linked list to the end to find the
name g of the neighbor. Note that if g has already been visited no
second visit is needed. Note also that if ¢ has already been scanned,
gp would be a suitable edge with which to join p to an already par
tially constructed spanning tree.

2. Examine s. If s > M, then s points to another occurrence of p
in the edge list, and it will be the next place from which to visit. If
§ < M, then we have just completed the scanning of p. In particular,
we shall see to it that if s =0, a component has just been completed.
When the scanning of p is complete, we shall signal this fact by
replacing x(p) by a positive quantity.

Before we discuss the scanning process any further, we first exam-
ine the visiting process in detail.

a) We identify as-yet-unvisited neighbors g of a vertex p that we
are scanning. We are also interested in the endpoint (I, m,) of the
linked list of q, and we insert 0 into this location. Usually, this zero
will be overwritten later, but when it isn’t, it signifies that ¢ was the
last vertex in the component that was scanned. While we travel along
the linked list of g, we change the signs of all pointers, to indicate to
all future attempts to visit ¢ that such a visit has already taken place.

b) If the neighbor was already visited, there is no reason to visit it
again. Continuing the attempt to visit would lead to useless or even
confusing duplicate information, and would adversely affect the
labor estimate. So, suppose we are scanning p and have arrived at
€(l, m). We then “cross over”, setting s; < €3 — [, m). The following
cases can 0CCur:

164 / 18: SPANNING FOREST OF A GRAPH (SPANFOQ}

b} s; < —M. Then s; points to the next location of a linked list of
the neighbor g. We reinsert |s;| into € and move on.

b.) —M < 5; < 0, We have just found g = |s,|; let the location be
{l,, m,). We set €l,, m,;) < 0 and remember (I,, m,).

b,) 5, =0. The vertex has been visited: Abandon visit.

b)) 0 < 5, < M. Then s, is the name of a vertex. If x(s,) > 0 then
5, has been scanned; remember m, so we can use this edge for the
spanning tree. In any case, abandon the visit.

by} s; > M. Pointer in a linked list, but vertex has already been
visited. Abandon.

ALGORITHM VISIT (x, e, n, E, g, I, m,, &)

[Visits, with possibility of abandonment, a vertex starting at
e{l;, m,). In each of the four cases b,, b;, b,, b; described above, out-
put is as follows:

b,: Output ¢ (new unvisited neighbor); (I,, m,) (the end of the
linked list of ¢); @ = 1, Insert 0 into last place «({,, m,) oflinked
list. .

by, by (if x{5) =< 0), or by: Output &« =0.
b, (ifx{s,) > 0): Outputm, (edge to scanned neighbor); o =—1.

In all cases, change all negative pointers to positive as they are en-
countered.]

(A) g < e(l,, my);
If g <—M, set €(l;, m;} < —q; |, < L_QIM_{'; m, — —q—LM;
To (A).
If —M < g <0, set g < —q, €(l,, m,) < 0; « < 1; Exit.
If0 < g <M, ifx(qg) > 0, set @ < —1; Exit;
' else set o < (; Exit,
Ifg=00rg>M, seta < 0; Exit @

Now that we have a complete description of a visit, we resume dis-
cussion of the scanning of a vertex p. We start traversing the linked
list of p at the location encoded in x(p). If p is a root, we first visit p
to find the last point (I,, m,) of its linked list and to reset signs so that
p will never be visited successfully. Only then does the actual scan-
ning start. Let g be the first neighbor of p that is visited successfully;
then we want to scan it as soon as we are finished with p. To this ef-
fect, we set €I, my) < g, and save in ({;, m,) the end of the linked list

18: SPANNING FOREST OF A GRAPH (SPANFOQ) /7 165

of g, which we have just found! We continue like this, hooking up
one linked list after the other. The last entry in this list will be 0 (see
case by), which signifies that the component has been completely
scanned.

Meanwhile, we should not forget the main objective, the construc-
tion of a spanning tree. All we need for that, while scanning p, is one
single edge (say, r) joining p to an already scanned vertex. To effect
this we set r <= Q initially and when we find an edge m, (see first
case b,) we set 7 < m,. This chooses just one edge for p, and if by
chance r =0 when p has been scanned, then p is a root.

ALGORITHM SCAN (x, €, n, E, p, Iy, my, m, 1)

[Scans vertex p. If p is a root, r is returned unchanged. Otherwise,
edge r joins p to a previously scanned vertex. m is the name (if
m # 0) of the vertex which is listed at the end of the linked list of p.]

(A) s < —x(p).
(B} <« [s/M]; m< s—IM; If] =0, Exit;
Lb<~3—IlL;m«<mVISIT (x,e,n, E, q, l,, m;, @)
If a=—1, then r < m,; _
If a =1, then €{l,, mq) < q and {Iy, my) < (I, m,);
s < le(l, m}|; (I, m) < p; to (B) W

To process a component, we now combine VISIT and SCAN in the
proper manner, as described above. In order to assure that edges of
the spanning tree end up in the right places, we have a location
assigner L, initially zero, which is incremented each time a new
edge is found. There is also k, which counts components. When
vertex g has been scanned, if it is a root, we set x(q) < k; if it is not,
we register the edge r by entering the other endpoint of it in x(g), ¢
into €2, r), and —L into (1, r).

ALGORITHM COMPONENT {x, €, n, E, p, k, L}

[Controls the scanning of one component, assigning component
number and labeling edges of the spanning tree with future addresses.]

(A) S<——x(p), lo<_' LS/MJ;mO@S_loM;T(_O.
VISIT (x: €, 1, E: q, lO) Mg, CE)

166 / 18: SPANNING FOREST OF A GRAPH (SPANFOQ)

(B} SCAN (x, ¢, n, E, q, Iy, mqg, m, 1)
Ifr=0, then k < k+ 1and x(g) < k; else L <~ L+ 1;
x(g) < €1,) + €2, 1) — q; (1, 1) < —L; €2, 7) < q.
If m =0, Exit; Else g < m; To (B) R

To complete the whole construction of a spanning forest, we there-
fore have to call LINK, deal with isolated vertices separately
(x(i) = —i), call COMPONENT for each other unprocessed vertex
and then sort the edges and insert component numbers into x, All
this has now become quite simple.

- ALGORITHM SPANFO (x, ¢, n, E, k)

[Constructs a spanning forest for a graph according to require-
ments a—d of the Introduction.]

(A) M < 1+ maxin, E); LINK(x, €, n, E}; k < 0; L < 0.
{(B) Fori=1, n:
If x{i) = —i, then k < k + 1; x(i) < k; Next i;
If x(i) > 0, then next i,
Else COMPONENT(x, ¢, n, E, i, k, L); next i.
(C) Form=1, E: perform (D).
(D) If &1, m)>0, next m; Else, r < —e(l, m); Interchange
(2, m) < €2, r); (1, m) < (1,); €(1,) < x(e(2, 1)); to (D).
(E) Fori=1, L: x(e(2, ©)) < x{e(1, i)) A

The FORTRAN implementation packages all procedures into one
program with identification of the parts. The algorithms have been
followed rather closely though a few shortcuts were made to avoid
duplicate codes. Also, the use of a has been replaced by direct
transfers (42, 43, 44). The two returns from VISIT, to COMPONENT
and to SCAN have been made transparent by the assigned GO TO
RTNVIS.

Comment on Array Storage We have observed that one of the prin-
cipal motivations for our choice of the second algorithm as our FOR—
TRAN program was the fact that it utilized only two named arrays: x,
&. The alert reader will have noticed that some of these words are
“packed” with two pieces of information, and so the question can be
raised as to what the “real” array storage requirement is.

To answer this, we count the bits of storage, rather than the words.
The € array consists of 2E words, each of which might contain a

18: SPANNING FOREST OF A GRAPH (SPANFO) / 167

number as large as 3M (M = 1 + max(n, E)) in absolute value, and
the sign bit is also used. Hence 2E log, 3M bits of array storage are
used for €. Similarly, the x-array uses about n log, 3M bits, and so our
array storage requirements total about (2F + n)log, 3M bits. For in-
stance, for a “dense” graph with E = an® we need 4an? log, n + O(n?)
bits, whereas for a “sparse” graph, where E = an, we would use just
(2a + 1)n log, n + O(n) bits of array storage. Such bit counts form a
valid basis of comparison between the array storage requirements of
various proposed methods of solving the same problem.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: SPANFO.

(2) Calling statement: CALL SPANFO (N,E,ENDPT K X)

(3) Purpose of subroutine: Determine connectivity of a graph; find
spanning forest.

(4) Descriptions of variables in calling statement:

Name Type IIO/WIB Description

N INTEGER 1 Number of vertices in input graph G.

E INTEGER I Number of edges in G.

ENDPT{ INTEGER(2,E) 110 ENDPT({1,X) ,ENDPT(2,I) are the two ver
tices in edge I{I=1 E).

K INTEGER O Number of connected components in G.

X INTEGER (N} O X(I) is the component to which vertex I

belongs (I=1 N},
1 See text for arrangement of output array ENDPT .

(8) Other routines which are called by this one: None
(6) Number of FORTRAN instructions: 7T9.

SUBROUTINE SPANFO(N,E, ENDPT K, 6X)
IMPLICIT INTEGER{A-Z)

DIMENSION ENDPT{Z2,E) ,X(N)
MM=1+MAXO (N E)

]

START LINK

DO 11 I=1,N
11 X(I)=-TI

DO 12 M=1,E

DO 12 L=1,2

168 / 18: SPANNING FOREST OF A GRAPH (SPANFO}

aQaH

20

21
22

23

Wwmooaa

P=ENDPT(L, M)
ENDPT (L ,M)=X(P)
X(P)=-L*MM—M

END LINK—-START MAIN S/R

K=0

LOC=0

I=0

I=I+1

IF(I .GT. NIGO TO 21
Q=X(I)

IF{Q .GT. 0) GO TO 20

K=K+1

X{I)=K

IF{Q+I)30,20,20)
30 IS CALL TO COMPONENT-FROM WHERE TO 20

DO 23 M=1,E

R=—ENDPT(1 M)

IF(R .LT. 0) GO TO 23

S=ENDPT (2, M)

ENDPT(2 ,M)=ENDPT(2,R)

ENDPT(2,R)=5

ENDPT(1,M}=ENDPT(1,R)

ENDPT (1,6 R)=X(ENDPT(2,R))

GO TO 22

CONTINUE

DO 24 TI=1,L0C

X(ENDPT(2,I))=X(ENDPT(1,I))

RETURN

END MAIN S/R——START COMPONENT

P=1
S=—Q
ASSIGN 31 TO RTNVIS
GO TO B3
CALL TO VISIT-FROM WHERE TO 31
LO=L1
MO=M1
R=0
ASSIGN 43 TO RTNVIS
GO TO 41

32

33

w00
~ O

43

44

oG aa

52
53

b4

18: SPANNING FOREST OF A GRAPH (SPANFOQ)} / 169

GO TO 40

CALL TO SCAN-FROM WHERE TO 33
IF(R .EQ. 0) GO TO 34
LOC=LOC+1
X(P)=ENDPT(1,R) +ENDPT(2,R)~P
ENDPT (1,R)=-L0C

ENDPT (2 R} =P

P=M

IF (M)20,20,32

END COMPONENT-START SCAN

S=-X{P)

L=S/MM

M=S5S-L*MM

IF(L .EQ. Q) GO TO 33
L1=3-L

M1l=M

GO TO 50

CALL TO VISIT-FROM WHERE TO 42,43 OR 44

R=M1

GO TO 44
ENDPT{(LO,M0)=Q
LO=L1

MO=M1

S=IABS (ENDPT(L,M))
ENDPT(L,M)=P

GO TO 41

END SCAN-START VISIT

Q=ENDPT(L1,M1)
IF(Q)51,44 54

IF(Q .LT. —MM) GO TO 52
Q=-Q

ENDPT{L1,M1)=0

GO TO RTNVIS, (31,43)
ENDPT (L1 ,M1)=—Q

Ll= -Q/MM
Ml=—Q-L1+*MM
GO0 TO 50

IF(Q .GT. MM) GO TO 44
IF(X{Q) 144,42, 42

170 / 18: SPANNING FOREST OF A GRAPH (SPANFO)

C
C END VISIT
C

END

SAMPLE OUTPUT

SPANFO was called for the graph of Fig. 18.1. The input and output
array ENDPT is shown below together with the output array
X and the number of connected components K=7.

The first edge in the cutput ENDPT array is a spanning tree for the
first component (Fig. 18.3). The next three edges are a spanning tree
for the second component (Fig. 18.4). The next two span the third

2 8

: N

3 5
Figure 18.3 Figure 18.4

component (Fig. 18.5). Finally the last one spans the fourth com-
ponent (Fig. 18.6).

: 5 0
Figure 18.5 Figure 18.6
INPUT
ENDPT(1,J}): 2 4 1 7 5 2 6 2 3 4
ENDPT(2,J) : 3 7 g 11 8 5 10 8 g 11
OUTPUT
ENDPT(1,J}: 1 2 8 2 4 4 6 2 3 7

ENDPT(2,J}): 9 8 5 3 11 7 10
X: 1 2 2 3 2 432 14365267
K=7

)]
w
-
—

19

Newton Forms of a Polynomial (POLY)

A polynomial f(x) of degree n — 1 is said to be in Newton form with

respect to x,, . . . , X, if it is written as
(1 flx)y=a,+a(x—x;) +a3(x —x) (x — x2)
+ - - +ar:(x_x1) ot (x_xn—l)

In this chapter, we consider (primarily for use in Chapter 20)
algorithms for transforming the coefficients of f from one Newton
form to another and related questions.

First, values of f can easily be calculated by rewriting (1) as

{2) Fx)=a,+ (x—x){a:+ (x — 2} (a3 + (x — x3)
X (o F (@t (x—xp1)an) - -0)

More explicitly, v = f(z) is the result of

ALGORITHM VALUE

[Input: %, @y, . « . » @ %15 . . . » Xa—y; OUtpUt v = f(z), where f{x) is
given by (1}.]

/17

172 / 19: NEWTON FORMS OF A POLYNOMIAL (POLY)

{A) v<a,
B) ve=z—x)ot+a.lk=n—1,n—-2 ..., 1)1

The following special cases are of interest here:

(i} x,=- - =2,,=0. Then (1) is the usual form of a polyno-

mial as a series of powers of x.

{ii) 2, =- - -=gx,_,=c¢. Then (1) is the Taylor expansion of f(x)
at c.

(iii) xy=i—1(=1,...,n—1). Here f(x) is expanded as

(3) f(x) =a,(x}pta(x),+ - - + @, (x) 4y

in a series in the factorial polynomials

(4) (R)m=x(x—1) - - - (x—m+1); (x)p=1

Transitions between the different forms can be obtained by a well-
known theorem of interpolation theory (see, for example, Conte and
de Boor [CB1, p. 199]) which asserts that the coeflicients by, . . . , b,
of the Newton form of f with respect to z, x,,. . . , x,—; are found
from the coefficients a;, . . ., 4, of the Newton form of f with
respect to %, . .., T,y by means of a simple modification of
algorithm VALUE, which stores the intermediate values of v.

ALGORITHM NEWTON

[Input @y, . . .,y X4 . . . , Xp—y, z With f(x) given in its Newton
form (1), with respect to x,, . . . , Xp—1, Cutputis by, . . . , b, the co-
efficients of f(x) in its Newton form with respect to z, 2y, . . . , Tu—s.]
(A) b, < a,.

(B) b,—<—ai+(z—:t,-)b,-+1(i=n—l,...,1)-

To prove this, rewrite (A) and (B) as

a, = bn
a;=b;— (z—x)buy {(i=n-—-1..., 1)
and substitute in (1). There are two terms which involve b,, namely,
bi{x—=xy) - - - (x—x4) — (= —x)bi{x —x4) - - 0 (X —x-2)
=bi(x—"x,) - - - (x—) (x— %y~ 2+ xy)
=bi(x—z)(x—xy) - - - (x—x-2)

which is exactly the term with b; in the Newton form with respect to
Zy X1y - « - » Xnoo, @S claimed.

19: NEWTON FORMS OF A POLYNOMIAL (POLY} / 173

As an application, in order to obtain from the polynomial form (i) of
f(x) the Taylor expansion (ii) at ¢, we call NEWTON n — 1 times, with

% %5, . . . , %p—; having the values, respectively,
c; 0,0,...,0,0
¢; ¢0,...,00
¢ 6 C ...,C0

If we take for a; and b, the same arrays, then we may skip step (B) of
NEWTON every time when z = x;,

ALGORITHM TAYLOR

[Input c; a,, . . . , ap the coefficients of f(x) in power sum form
(i); output @, . . . , &, the coefficients of f(x) in Taylor expansion
form (ii).]

(A) Form=1, ...,n—1do:
Fori=n—1, ..., mdo:

a; < U + Cajv [|

Observe thatifa,, . . . , a, are the coeflicients of f in an expansion
in powers of x — d, then the output will be the coefficients of an ex-
pansion in powers of x —d —e¢.

As a second application, we convert f(x} from polynomial form (i)
to factorial form (3). Thus, let

(5) flxy=a,+ax+- - +ax"!
then ¢, will not be changed, as

flix)=a, +x(a; + azx+- + - +ax"?%
and our next operation consists of writing
(6) ds +azx+- - -+ gt
in the form
(7) ah+ (x—1)at+ajx+- + -+apx*®)

This requires a call to NENTON, with z =1, x;=0, applied to the
polynomial (6). Similarly, in the next phase, we apply NEWTON to the

174 / 19: NEWTON FORMS OF A POLYNOMIAL (POLY)

paranthesized polynomial in (7), with z = 2, 2, =0 to obtain
ay +(x—2)a} +- - +a)x"

and so on.

ALGORITHM STIRLING

[Input: a,, . . . , a,, coefficients of f(x) as power sum (3); output
a,, . . ., a, coefficients of f(x) is factorial form (3).]
(A) Form=1,...,n—1lda
ze—m—1;fori=n—1,...,mdo:

a; < a; + za;-, A

The same result would have been obtained by applying Algorithm

NEWTON more straightforwardly to all of a;, . . . , a,, starting with
n=:+-=x,4y=0,z=n—1; then x;,=n—1, x,=- - -=x,,=0,
z=n—2: thenxy;=n—2,x,=n—1,23=- - -=x,,=0,2=n—3,

ete. On balance, Algorithm STIRLING above seems more efficient,

If Algorithm STIRLING is applied to f(x) = x"~, the output values
of a,, . .., a, express x"~! as a linear combination of (x),, . .
(x),—,. These are the Stirling numbers of the second kind.

A third application of Algorithm NEWTON will convert factorial
series to ordinary power series. If f{(x) in the form (3} is given, then
we simply call NERTON n — 1 times, with z; x;, . . . , x,—, having the
following values

D

0, ¢,1,2,...,n—2
0; 0,0, ,...,n—B
0; 070:0:-"’1

Of course, we may omit again steps (B) in NEWTON for which z = x;,
and obtain

ALGORITHM REVERSE STIRLING

[Input gy, . . . , an, coefficients of f(x) in factorial form (3); output
@y, . . . , Oy, coeflicients of f(x) in power sum form (5).]

18: NEWTON FORMS OF A POLYNOMIAL (POLY) / 175

(A) Form=1,...,n—1do:
ze—m—n
Fori=n-—1,...,mdo:

z—z+1;, a;<a;+za, B

If Algorithm REVERSE STIRLING is applied to f(x) = (x),- the
output values a,, . . . , a, give (x),—, as a linear combination of
x° . .. ,x™1 These are the Stirling numbers of the first kind (with
alternating signs).

Now we want to produce a program which incorporates the
algorithm VALUE for cases (i) and (iii), TAYLOR (including the ability
to produce just a few of the Taylor coefficients), STIRLING and
REVERSE STIRLING. In view of the strong similarities, we want to
combine them as well as we can. The following is sufficiently gen-
eral to accomodate the inner loop of each. It contains a parameter ¢,
which is 0 or 1; and vy, which is True if and only if the intermediate
values of v (as in VALUE) are to be saved.

ALGORITHM NWT (m, z,¢, 7)

v<0
Fori=n, ... ,mdo:

z—z+e v<a+zv; ify=True a;<v
End B

Then we have:

VALUE (case (i)Xc) NWT(1, ¢, 0, False)
VALUE {(case (iii)}c) NWT{1, ¢ — n, 1, False)
TAYLOR(c) m=1,...,n NWET(m,c, 0, True)
STIRLING m=1,...,n NAT(m, m—1,0, True)

REV STIRLING m=1,...,n N#Tm,m—n—11, True)
The FORTRAN subprogram POLY contains a parameter OPTION which

determines which of the algorithms is chosen, see Table 19.1.
SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: POLY.
(9) Calling statement: CALL POLY(N,A,X0,6OPTION, VAL).

176 / 19: NEWTON FORMS OF A POLYNOMIAL (POLY)

{3) Purpose of subroutine: Operations on polynomials in power
and factorial form.
(4) Descriptions of variables in calling statement:

Name Type 11OIW{B Description
N INTEGER I N-1 is the degree of the input polynomial.
A INTEGER(N) 1/0
X0 INTEGER 1 See Table 19.1.
OPTION INTEGER 1
VAL INTEGER (@]
Table 19.1
Input A(1), Qutput A(l),
Algorithm OPTION X0 VAL L LA L., AN
REV STIRLING -3 Coeff. as in (3) Coeff. as in (5)
STIRLING -9 Coeff. as in (5) Coeff, as in (3)
VALUE(ii} -1 ¢ flc) Coeff. as in (3) Unchanged
VALUE() 0 ¢ fle) Coeff. as in (5) Unchanged
TAYLOR =0 c Coeff, as in (5) AQ), ...,
A(QPTION) :
Taylor coeff.
atc

{5) Other routines which are called by this are: None.
(6) Number of FORTRAN instructions: 19.

SUBROUTINE POLY (N,A,X0, OPTION,VAL)
INTEGER A(N), X0, OPTION,VAL,Z,W,6EPS
LOGICAL GAMMA
GAMMA=0OPTION .NE.O. AND., OPTION.NE. K -1
N1=MAXO (1 MINO (N, OPTION))
IF{QPTION.LT. -1} N1=N
EPS=MOD (MAXO (—OPTION,0) , 62}
W=—N#*EPS

IF(OPTION .GT.—-2) W=W+X0O

DO 1 M=1,N1

VAL=0

Z=W

DO 9 I=M,N

Z=Z4+EPS

VAL=A(N+M-I)+Z*VAL

19: NEWTON FORMS OF A POLYNOMIAL (POLY) / 177

9 IF(GAMMA} A({N+M-I)=VAL
1 TIF(OPTION.LT.0) W=W+1
RETURN
END

SAMPLE OUTPUT

POLY was called four times with N=6, A(l)=--=A(5}=0,
A(6)=1 (i.e., flx) = x° or f{x) = (x);, depending on OPTION}:

OPTION=6;X0=1; Qutput: 1 5 10 10 5
OPTION=6;X0=-1; Output: -1 5 -10 10 -5
OPTION=-2; Output: 0 1 15 25 10
OPTION=-3; Output: 0 24 -50 35 -10

(P

20

Chromatic Polynomial of a Graph
(CHROMP)

Let G be a graph of n vertices. By a proper coloring of G we mean an
assignment of colors to the vertices of G in such a way that the end-
points of no edge of G have the same color. In Fig. 20.1, we show a
graph G of 4 vertices and a proper coloring of G in three colors
R,Y, B.

For a fixed positive integer A, the number of proper colorings of G
in A or fewer colors is denoted by P()). In counting P(A), the vertices

of G are regarded as labeled with the labels 1, 2,. . . , n, and two
proper colorings of G are different if any one of the ordered pairs
(V, color of V) (V=1,2,. .., n) are different in the two colorings.
If G, for example, is a triangle, then P(0)=0, P(1)=0, P(2)=0,
P(3)=6,P4)=24,. .. ,PAN=AMA—1DA—-2) (A= 0).

B Y

Y R

Figure 20.1

178 /

20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP) / 179

The values P(A\) (A\=0,1,2,. ..) turn out to be the values of a
polynomial P at the nonnegative integers A. This polynomial is called
the chromatic polynomial of the graph G. Thus, the chromatic poly-
nomial of the triangle is A(A — 1)}{(A — 2). We develop, in this chapter, a
new algorithm for the computation of the coeflicients of the powers
of A in the chromatic polynomial of a graph.

For a given graph G, let u and v be any two vertices which are
joined by an edge, E,,. Let G — E,,, denote the new graph which is
obtained from G by deleting the edge E,,. Let G,, denote the new
graph which is obtained from G by identifying the two vertices u, v.
This means that G, has, instead of the two vertices u and v, a single
vertex v such that uv is joined by an edge to every vertex w which
was joined, in G, to «, or to v, or to both. All other vertices and edges
of G, are as they were in G.

Consider the collections of all P(x; G) proper colorings of G, the
P(\; G — E,,) proper colorings of G — E,,, and the P(; G,,) proper
colorings of G,,. Clearly, there are more colorings of G — E,, than of
G because there is one less edge-constraint on the colorings. Indeed,
the excess of P(x»; G —E,,) over P(x; G) is exactly the number of
colorings of G which are proper except that the two ends u, v of E,,
are given the same color. But such colorings are identical with
proper colorings of G,,: from any such coloring C of G,,, construct a
coloring C' of G in which u and v are both given the color of wv in C
and all other vertices are given the colors which they had in C. It
follows that

(1) P(\; G)=P(\; G—Eu) —P(%; Gu)

Observe that in this fundamental and well-known relation G has n
vertices and E edges, G — E,, has n vertices and E — 1 edges, and
G., has n — 1 vertices and <E edges. Hence, (1) is actually a reduc-
tion formula. For theoretical purposes, (1) is useful because from it
we can prove theorems by induction. For practical purposes, (1) can
be used iteratively to compute P(A; G).

As an example, let us prove that P(\; G) is a polynomial in A of
degree n. If G has 0 edges and n vertices, then P(}; G) = A", so the
theorem holds. If true for graphs of <E edges and any number of
vertices, then by (1) it remains true for graphs of E edges and any
number of vertices, completing the proof. It follows that if G has n
vertices, we may write P(A; G) in the form

(2) P(\; G) =M = g™ auoh = - (S 1) e

A similar induction will prove that ¢; =z 0 (j=1,...,n—1) in
(2), so that the coeflicients alternate in sign.

180 / 20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP)

We return now to our algorithm for computation of a,, . . . , @,
by considering a certain binary tree which can be constructed from
our given graph G. In case G is the graph of Fig. 20.1, the tree in
question looks like Fig. 20.2.

]

=
SN
AF

Figure 20.2

At the top of the tree is the original graph G with one of its edges
marked. It has two descendants, IG and DG. IG is obtained from G
by identifying the two endpoints of the marked edge. DG is obtained
from G by deleting the marked edge. Next, in IG and DG, we mark
an edge and repeat the process. According to Eq. (1),

(3) P(M; G)=P(A, DG) —P(\ IG)
=P(x; DDG) —P(A\ IDG) — P(n; DIG) + P(M HG)

Why, in Fig. 20.2, did we choose to halt when we did? Because the
graphs in the bottom line are all trees {connected, with no circuits).
In the present context, the advantage of a tree is that all trees on n
vertices have the same chromatic polynomial, namely

(4) LAy =AA-D"1 (nz])

We can prove this by induction on n: If T is a tree on n vertices,
choose a terminal vertex (vertex with just one incident edge) u of T
and let v be the unique other vertex of T which is connected to wu.
Then T — E,, is a tree of n — 1 vertices and an isolated point, which,
inductively, has the chromatic polynomial

P(A, T—Euu) =) - (A_ 1)!:—2 .)\=l\2()\— l)r:—z

20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP) / 181

On the other hand, if we identify v and v in T, we obtain a tree of
n — 1 vertices so that, inductively,

PO\ Tp) =A(A—1)m2
Then (1) yields '

POy T)=AA—1)2— A —1)"2=x(A— 1)1

as claimed.

Hence, if b; is the number of trees on i vertices which are pro-
duced by the delete-and-identify algorithm above, then the chro-
matic polynomial of G is exactly

5) PO\ G) =3 (—1)"bA (A — 1)7
=

As a by-product of the algorithm, notice that we have just proved the
following well-known

Theorem If the chromatic polynomial of a graph is written in the
form (5), then the coefficients b; are nonnegative (=1, n).

Equation (5) is called the Tutte polynomial form of P(x; G). For
example, Eq. (3) now implies that for the graph G of Fig. 20.1,

P(x; G) =t,(A) —t5(A) — ta(A) + . (A)
=AMr—D3—-2x(A— D2+ rx{r— 1)
=AA—1)(A—2)2

Next, how can we be sure that every downward path terminates at
a tree? By taking care that, at each stage, the edge which we mark
has the property that its removal will not disconnect the graph. One
convenient way of doing this is, after having previously found a
spanning tree for the graph, to mark only edges which lie outside
that spanning tree. Evidently, the removal of any such edge will not
disconnect G, and, having removed all such edges, we will be left
with a tree.

How can we be sure to carry out every possible combination of I's
and D’s? A well-known algorithm for doing this is to throw all the
work to be done later onto a “stack.”

(A} G’ « G, stack < empty stack.

(B} If G'isatree, to (C); Stack « DG’'; G’ «— IG'; To (B).

{C) Tabulate G'; If stack is empty, exit; Otherwise, G' « top graph
on stack, and return to (B) B

182 7 20: CHROMATIC POLYNOMIAL OF A GRAPH {CHROMP)

The method utilizes a stack of graphs, and, as we work our way
down Fig. 20.2, we travel to the left at each fork while at the same
time throwing the right-hand graph DG’ on top of the stack. When
we reach the end of a path (G’ is a tree) we take next the top graph
on the stack at that time.

At each stage we call SPANFO (Chapter 18) to arrange the edges of
G’ in order so that the edges of a spanning tree are listed first. If G is
not a tree, then, we select for deletion the last edge in the list, since
its removal cannot disconnect the graph, The bottom of a path, i.e.,
the fact that G’ is a tree, is recognized simply by noting that in G’ we
have # edges = # vertices — 1.

The whole calculation constitutes a binary tree search (e.g., Fig.
90.2) in which the tree has < E levels, and therefore O{2F) “vertices”
(i.e., graphs G'). For each G’ we do O{E) calculation, and so the
whole algorithm requires O(E - 2%) labor.

The stack of graphs is an N X (2 - E) array consisting of at most N
graphs whose edges are listed in 2 X (E — 1) or fewer locations. The
last location for each graph G’ on the stack is used to store N1, E1,
the vertex and edge counts of G'.

In the identification process the list of endpoints of the edges is
searched for the occurrence of the two vertices, u and v, to be iden-
tified, and v is replaced by u, whenever it occurs as a vertex. At the
same time a notation is made for each vertex to which u or v are
joined, to prevent duplicate listings. The result is the identified
graph IG,

ALGORITHM CHROMP

[Input is a connected graph via its edge list; output are the num-
bers b; (i =1, n) of equation (5).] Note: the term “score one tree”
means: set b, < b,, + 1, where m is the number of vertices of the
tree at hand.

(A) [Initialize] b; < 0 (i =1, n); Stack < empty, G’ < G.

(B) [Spanfo] Arsrange edges of G’ so that spanning tree comes
first; if G' is a tree, score one tree and to (D); delete the last
edge of G'; if this DG’ is a tree, score one tree; else, write DG’
on the stack.

(C) [Identify] Set G’ < IG'; if a tree, score one tree and to (D),
to (B).

(D) {[Get next graph from stack] If the stack is empty, Exit; read

. 20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP) / 183

G’ < Stack; remove last edge from graph just read from stack;

if it is a tree, score one tree and remove graph from stack; to
(C) ‘

In the FORTRAN program, step A is performed by the instructions
up to number 20, step B by those up to 70, step C by those up to 40,
step D by those up to 100, while the remaining instructions perform
additional operations on the coefficients. In step C, the armray A(I)
keeps a record of vertices I that are joined to u or o{{(A(I) = 1).

For many purposes it is desirable also to have the coefficients a; of
the form (2). These are computed by the program through a call to
subroutine POLY of Chapter 19. Indeed, let A’ = » — 1; then

POUA =3, () (-1)~ b,

is a polynomial which, if arranged in powers of A’ 4+ 1(=X) gives the
form (2) (after multiplying both sides again by A). This is just what
POLY does, if OPT=N.

Similarly, a call to POLY with OPT=—2 causes P{})/\ to be written
as a sum of factorial polynomials (A');_;; this expression has the same
coeflicients as the expression of P(A} in terms of

NMAMA=LL,MA—1(A—2), ..., AMA—DA—2) ... A—n+1).

The coefficient of A(A — 1) - - - (A — i + 1) is 1/i! times the number of
colorings of G in exactly i colors.

Remark The graphs stored in STACK, at any instant, have the prop-
erty that both their vertex and their edge counts are strictly de-
creasing. An upper estimate for the number of pairs in STACK
{including the N1 and E1) is therefore

N-—-1)N

6) E+E-D+ -+E-N+1)=NE- L=
— N(E — N +3)

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine; CHROMP.

{2) Calling statement: CALL CHROMP (N, E ENDPT, A, B,C,6 STACK
NSTK) .

(3) Purpose of subroutine: Calculate the chromatic polynomial of a
connected graph.

184 / 20: CHROMATIC POLYNOMIAL OF A GRAPH {CHROMP)
(4) Descriptions of variables in calling statement:

Name Type IHOiW/B Description

P

N INTEGER Number of vertices of G.

E INTEGER Number of edges of G.

ENDPT INTEGER(2, E) I ENDPFT(1, 1) ,ENDPT(2,1) are the two ends
of edge T of G(I=1,E).

-—

A INTEGER(N) o] Coefficients in Eq. (2).
B INTEGER (N) O Coeflicients in Eq. (5).
N
c INTEGER(N) o PQ)=7% CIHM.
=1
STACK INTEGER{2,6NSTK} W Working storage.
NSTK INTEGER I Maximurn size of stack (see Eq. (6)).

(5) Other routines which are called by this one: SPANFO,POLY.
(6) Number of Fortran instructions: 59.
(7} Remarks: Input list ENDPT is destroyed.

SUBROUTINE CHROMP (N,E,ENDPT A, ,B,C,6STACK, NSTK)
IMPLICIT INTEGER({A-Z)
DIMENSION ENDPT{2 E) 6 STACK({2,6NSTK),6A(N) B(N},
* C(N) EN(2]
IS=0
DO 5 I=1,N
5 B(I}=0
El=E
N1=N
20 CALL SPANFO(N1,El ENDPT,K,C)
IF{X .NE. 1) GO TO 100
IF(E1-N1) 40,29,30
29 B(N1)=B(N1)+1l
GO TO 70
30 DO 31 1I=1,El
IS=IS+1
Do 31 L=1,2
31 STACK(L,6 IS}=ENDFT(L,I)
32 STACK(1,6IS)=N1
STACK(2,IS)=El-1
70 DO 71 I=1,N
71 A(I}=0
U=MINO(ENDPT{(1,E1) ENDPT(2,E1l))

20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP) / 185

V=ENDPT{1,El) +ENDPT{2 E1}-U
M1=El-1
El1=0
DO 75 J=1 M1
DO 80 L=1.2
EN(L)=ENDPT(L,6J)
IF(EN(L) .EQ. V) EN{L)=U
80 IF(EN{L) .EQ. N1} EN{(L)=V
DO 81 L=1,2
IF(EN(L} .NE. U) GO TO 81
IF{A(EN(3-L)} .NE. 0) GO TO 75
A(EN(3-L))=1
81 CONTINUE
E1=El+1
DO 82 L=1.2
82 ENDPT(L,El)=EN{L)
75 CONTINUE
Nl=N1-1
GO TO 20
40 B(N1)=B{N1l)+1
50 IF{IS .EQ. 0) GO TO 100
60 N1=STACK(1l IS)
E1=STACK({2,6 IS)
IS=1S-El1-1
DO 81 I=1,El
DO 61 L=1,2
61 ENDPT(L,I)=STACK(L, K IS+I)
IF{El1 .EQ. N1) GO TO 29
IS=IS+El
GO TO 32
100 DO 101 I=1,N
A{I}=B(I)
101 C{I}=(1-2*MOD{(N-I, 2)}}*B(I})
CALL POLY(N,A,1 ,N,V)
CALL POLY(N,C,0,-2,V)
RETURN
END

SAMPLE OUTPUT

The chromatic polynomial of the graph shown in Fig. 20.3 was
computed by CHROMP.

186 / 20: CHROMATIC POLYNOMIAL OF A GRAPH (CHROMP)

Figure 20.3

The input arrays are shown below, along with the polynomial coef-
ficients A(1),A(2),A(3),A(4),A(5), the “tree coeflicients,”
B(1),B(2),B(3),B(4),B(5), and the Stirling coeflicients C(1),
C(2}.C(3},C(4),C(5).

ENDPT(1,I): 1 1 1 1 2 2 2 3 3 4 4 5
ENDPT(2,I); 2 3 4 56 3 4 6 5 6 5 6 6
A(I): 64 154 137 58 12 1
B(I): 0 11 25 20 7 1
C(I): 0 0 1 3 3 1

The chromatic polynomial of this graph is therefore

P(X) = A% — 12A5 + 58A% — 137A% + 154A% — 64\
=AA =153 —=TA(A— 14+ 20x (A — 1)
— 25 (A — 1?4+ 11Ix(A— 1)
= (A)a+3(N) s +3(N\)s + (M)

21

Composition of Power Series
(POWSER)

Suppose that we are given two power series

(1 g(z)=biz+ bz + byz3+ - -+ -
(2) h(z)=ciz+c,z2+ 28+ - - -
and that we want to calculate the coefficients of the composite
(3) f@R)=gh(z))=az+az2+ - - -
Such problems arise frequently in combinatorics, for instance, if
(4) g(z) =h(z) =e—1
the numbers nla, (n=1, 2,. . . } represent the number of partitions

of an n-set (see Chapter 11).

As so often is the case, the most explicit method is the least
desirable computationally. There is a closed formula, due to Faa di
Bruno, which expresses the coefficients of g(h(z)) in terms of those of
g{z) and of h{z). It states that

(5) a=3 buud (j21)
in which

Cnn Ci'llz s on s . ,
(6) W= Tm - GELIsSksj)

/187

188 / 21: COMPOSITION OF POWER SERIES (POWSER)

where the sum runs over the partitions TI of j into exactly k parts, and
m, is the multiplicity of i in IL. The amount of computational labor in-
volved here is astronomical compared to that in either of the next
two approaches, and so we shall not discuss (5} further.

Next, a rather neat algorithm can be constructed by the use of two
linear arrays, say Py, . « « 5 Pus G15 + - + 5 @at

Bl) pi—c(i=1n);a,<0({=1n)q< 1L
(B2) a; <= byp;+ a; (i=1, n); If g =n, exit.

(B3) g<—g+Lp < pcin{i=1,n); To (B2) W
]

Thus, we find the coefficients ¢; of a single power of h(z), the gth
power, accumulate the contribution b,h(z)? to the coeflicients of f{z),
then go to the next power of h(z), etc.

The algorithm is quite nice, but we shall not use it here. Its disad-
vantages relative to our final choice of a method are, first, that if we
want to raise h{z) to the 100th power, all lower powers would have to
be calculated and, second, that the powers of h are calculated each
from its predecessor so that buildup of round-off error can take place.
The next method calculates each power of h(z) independently of the
others, and only the powers that are needed (i.e., such that b; #* 0)
are computed.

First, consider the special case, where we want the coefficients
@y, . . ., 8y 0f flz)

(7) flR) =1 +h{z)*—1

if a real number a and the coefficients ¢4, . . . , ¢, of h(2) are given.
Differentiation of both sides yields

f'(z) = a(l + h(z))*"'h'(2)
and upon multiplying both sides by (1 + h(z)) we find
F (@)1 + h(z)) = a(f(z) + Dh'(z)

Equating the coefficients of like powers of z we obtain the recur- -
rence

j=1
{8) a, = acy; a,-=acj+%2 ac;f{e(j—1i)—i) (=2
i=1

from which a,, . . . , @, can be found in O(n?) operations. This is
done by POWSER if OPTION=1 (see Table 21.1).

21: COMPOSITION OF PCWER SERIES (POWSER) / 189

Table 21,1
Option 1 3
o' @ 1 Variable
I 1 0 I
q 0 0 See Eq. (9)
§ 1 1 Ve,

Now, back to the first problem. Let
(9) h(z}) = €27 + €q142% 4+ - - - (e, # 0)
then the coeflicients of f{z) = g{h(z)) can be obtained from

o0 m
(10) Fz) =73 bucz™ (l Lot g Cavr g2y)
m=1 Cq Cq
by applying POWSER with OPTION=1 to evaluate the mth power of
the series in parentheses. This is OPTION=3 of POWSER (Table 21.1).
For the important special case where g(z) = ¢* — 1:

(11) flz)=exp h(z) — 1

our algorithm is, of course, able to handle the problem. The calcula-
tion of n coeflicients of f{z} would require O(n?) operations. We can,
however, calculate these n coefficients of f in O{n?) operations. In-
deed, by direct logarithmic differentiation of (11) we find 2 recur-
rence formula

141 . .
a;=c; +F >ac{i—i (jZ2)
(12) =

G =0c

for the required ¢, . . . , @,. Our program POWSER provides for this
case under OPTION=2,

We exploit the similarities in form between the recurrences (8) and
(12) by noting that both are special cases of the recurrence

=1
(13) aj=s(a'cJ+Jl.2 GCrund@G—9) +iD) (G=1,2, ...,n"
=1

The parameters &', I, g, s of the general form (13) are set to the val-
ues shown in Table 21.1 in the cases of Options 1, 2, or 3.

190 / 21: COMPOSITION OF POWER SERIES (POWSER)

ALGORITHM POWSER (Options 1, 2, and 3)

See Tables 21.1, 21.2.

(A) [Entries for Options 1, 2] &' <« (2a—1)+ (1 — a)*0OPTION;
g« 0;5s<1;n < n; 1< 2—0PTION: go to (C1).
(B) [Entry for Option 3] d; < bedi=1, n); g < min{i|¢,; 7 0};
s < 1jcg; I < 1; Do step (C) form=2, . . . ,|nfg] and then go
to step (D).
(C) Ifh,=0,nextm; ¢ < m;r< b,c,”; n' < n—mgq
(C1} Forj=1, n' calculate a; by (13); If Option =1 or 2, then
exit;
(C2) dupg < dpg+r; Fori=1, n' set diypg < Qiyme + ra; next
m

(D) FOIi=1, n: ai<_di; Exit .

Finally, let f, h be given power series, and consider the calculation
of g(z) = flh~(z)). Now, if k(z) is any power series with k(0}=0,
k'(0) # 0, so k7! exists, then

(]_4) fok'lzgohok_l
In fact, we choose functions k;, . . . , k, such that
(15) hok ok ook, (z) =2+ O(z"");

then the first n coeflicients of fo k710 - - - o k,7! are those of g, and
the problem is solved. Let

(16) hizy=ciz+cyz®>+-+ -+, 2"+ -,
then we choose k(z) = ¢,z, and we find

(17) hiz)=ho ki (z)=z+ciz®+ciz®+ - - -
where ¢} = ¢;/c,. Next, we take ky(z) = z 4+ ¢;32?%; then
(18) ho(z)=hye ky Y z)=zFci/z8+)z +- - -
and inductively, if

(19) h(z) =z + ¢,z + - -

we take kiy,(2) = z + ¢}, 2", and obtain hyy, = h; e ki, 7%, of the form
(19), with i «< i 4+ 1, and new numerical values for the coeflicients.

21: COMPOSITION OF POWER SERIES (POWSER) / 191

Table 21.2 Description of Options in POWSER Subroutine

Opf;ration
Purpose” OPTION= Input QOutput time
f=1+hr—-1 1 ;05 €, ... s Cnl P O(n?)
f=e" -1 2 R €l G Gy - - . by On?)
f:g(h) 3 n; bll Ce ey bu; Gy . .., 0y O(nﬂ)
Cis o« oy Oy
g=Ffh ™z 4 €. .0, 20, by oL, Dy an®
Ay - .y Uy,
“fld=aztax*+- - -, g@ =Dbz+ b+ - -, hz)=ciz+cpz*+- - -

To calculate the coefficients of h;.,, we merely have to expand h{z)
in powers of (z + ¢};,2'"!); the coefficients in this expansion are then
the coefficients of h,,,(z), because hy(z) = h;,(z + cZ£,z"*"). This ex-
pansion is done by a loop very similar to TAYLOR in POLY (Chapter
19). To calculate g, we merely do unto the coeficients of f what we
do unto the coefficients of h.

ALGORITHM POWSER (Option 4)

See Table 21.2,

(A) Fori=1, n: {b, < ajfc,, d; < cfc,'}; if n = 1, Exit.
(B) Form=1,n:s5 < —d,; my—m—1;
for i=m, n:
forl=1, n: by < b, + sb,_,
dl “— dl + Sdl—mn
Exit H

SUBROUTINE SPECIFICATIONS

(1} Name of subroutine: POWSER.

(2) Calling statement: CALL POWSER(A B,C, N, ALPHA,
OPTION D).

(3) Purpose of subroutine: Compose power series.

(4) Descriptions of variables in calling statement:

192 / 21: COMPOSITION OF POWER SERIES (POWSER)

Name Type HOIWIB Description

A DOUBLE IjO f@R)=all)z+A(2)z*+
PRECISION{N) - -+ A(NYzV.

B DOUELE [0 glz)=B(lyz+- - -+ B(N)z"
PRECISION(N)

c DOUBLE I h(zy=C(liz+- - -+ C{N)z"
PRECISION (N) .

N INTEGER I Number of coefficients to be calcu-

lated.

ALPHA DOUBLE I Exponent of 1 + hiz) if OPTION=1.
PRECISION

OPTION INTEGER : I See Table 21.2.

D DOUBLE w Working storage.

(5)
(6)
(7)

10

15

12
11

30
31

PRECISION (N}

Other routines which are called by this one: None.

Number of FORTRAN instructions: 59.

Remarks: All input arrays and variables (see Table 21.2) are re-
turned unchanged. If OPTION=4, then C(1) # 0.

SUBRQUTINE POWSER(A ,B,C,N,ALPHA OPTION, D)
DOUBLE PRECISION A(N) ,B(N},6 C(N).
D{N),ALPHA ALP ,R,S,T,V,DFLOAT
INTEGER Q, OPTION

IND=1

Q=0

IF{OPTION-3}10,30,640

M1=0

S=1.

IF{QPTION .EQ. 2) IND=0

ALP=1.

IF(OPTION .EQ. 1) ALP=ALPHA
N1=N

DO 11 J=1,N1

V=0

IF(J .EQ. 1) GO TO 11

Jl=J-1

po 12 I=1,J1

V=V3+A(I)*C(J-TI+Q)* (ALP*(J~T1)—-IND*I)
A(J)Y=(ALP*C(J) +V/DFLOAT(J})*5
IF (OPTION-2) 43,43,36

DO 31 I=1,N

D(IY=B(1}*C(I}

DO 33 Q=1,N

21: COMPOSITION OF POWER SERIES (POWSER) / 193

IF(C(Q) .NE. 0) GO TO 34
33 CONTINUE

GO TO 38
34 S=1./C(Q)
M=1
35 M=M+1
M1=M=*Q

IF(M1 .GT. N} GO TO 38
IF(B{M) .EQ. 0.) GO TO 35
ALP=M
R=B (M} *C{Q)**M
D(M1)=D(M1)+R
N1=N-M1
IF(N1)38,38,15
36 Ml=M*Q
DO 37 I=1,6N1
37 D(I+M1)=D{I+M1}+A{(I)*R
GO TO 35
38 DO 39 I=1,N
32 A(IY=D(I}
RETURN
40 T=1.
DO 41 I=1,N
T=T/C(1)
B(I)=A(I)*T
41 D(I}=C{I)=*T
IF{N .EQ. 1) RETURN
DO 42 M=2 N
S=-D{M)
MO=M-1
DO 42 I=M,N
DO 42 L=1I,N
B{L)=BI(L) +S*B(L—MO0)
42 D(L)=D(L)+5*D({L-M0)
43 RETURN
END

FIRST SAMPLE OUTPUT, OPTION 1

With OPTION=1, h(z) = z, the program computes binomial coefhi-
cients. Output with & =7, n = 10 is on the next page.

194 / 21: COMPOSITION OF POWER SERIES (POWSER)

.0000000 21.0000000 35.0000000 35.0000000 21.0000000
.0000000 1.0000000 0.0000000 0.0000000 0.0000000

SECOND SAMPLE OUTPUT, OPTION 1

If b; is the number of binary trees on j vertices, then the gen-
erating function

oo

S bal=a- (1— VI—4z)

=
is well known. We took OPTION=1, h{z) =—4z, a =0.5, N =11, and
thereby obtained a,=-2b,_, (n=1, ..., 11) which are shown
below.
—2.0000000 —2.0000000 -4. 0000000
—-10.0000000 —28.0000000 —84 . 0000000
=264 . 0000000 —857.9999299 -28B59.9999999

—9723.9999999 -33591.9999854

SAMPLE OUTPUT, CPTION 3

Let ®(n) denote the number of ways of writing
n=58x+9%y+ 17z (x,y,z=0)
Then evidently

l S n
A=A == H

_ 1 1 1
= exp {log 15 + log 1 _t9+10g T —t”}

= exp {i E,;.t’"}

r=1

where ¢, is the sum of those elements of the subset of {5, 9, 17}
which divide r. We can calculate ®(n) fromm POWSER with input
OPTION=3 and

bi=>(i=1,...,n)

c; = 7 % {845+ B + Buu7dd (i=1,n)

— e

21: COMPOSITION OF POWER SERIES (POWSER) / 195

The output of such a calculation, with N=50, follows, The numbers
printed are ®(n) (n = 1, 50).

¢0.00 0.00 0.00 ©.00 1.00 0.00 0.00 0.00
1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00
1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
1.00 1.00 2.00 1.00 1.00 1.00 1.00 2.00
1.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00
2.00 2.00 2.00 3.00 3.00 2.00 2.00 2.00
3.00 3.00

SAMPLE OUTPUT, OPTION 4

With OPTION=4, b;=1/i (i=1, n), n =10, and f{z) = z, the pro-
gram will find the coeflicients a,, . . . , a,, of the inverse function of
log 1/(1 — z), namely, of 1 — e~2. The output follows.

1.0000000 —0.5000000 0.1866667 -0.0416667 0.0083333
-0.0013889 0.0001984 -0.0000248 0.0000028 -0.0000003

22

Network Flows (NETFLO)

In this chapter we will consider a remarkable family of combinatorial
algorithms first dealt with by Ford and Fulkerson. These are the
“network flow” problems, and included as special cases are (a) find-
ing a maximum matching of a bipartite graph, (b) discovering if a
family of sets possesses a system of distinct representatives, (c) com-
puting the Dilworth number of a partially ordered set, (d) finding the
edge-connectivity or vertex-connectivity of a graph, and (e) deter-
mining if a given pair of vectors are or are not the row and column
sum vectors of a matrix of zeros and ones, and if so, finding such a
matrix, etc.

All of the above problems and many more can be solved with an
amount of labor which is a low power of the order of complexity of
the problem, i.e., the algorithm is in each case a very efficient
method for handling the problem.

The general framework in which we deal with all these problems
simultaneously is that of network flows. To state the problem, we
need a graph, with the following additional structure:

(i) One vertex is designated source, another sink; denote them x,
z, respectively. It is essential that x # =z.

(i) Associated with each edge pg are nonnegative numbers cp,
and ¢, called the capacities of the edge in the directions

196 /

22: NETWORK FLOWS (NETFLO) / 197

p — g and g — p, respectively, Either ¢,, or ¢,; may be zero,
If a pair pg is not an edge in the graph, we may assign it
capacity zero in both directions. (Altematively, we may delete
all edges with only zero capacities.)

A cut in a network is a subset S of the vertices, such that x € § and
z € S. The capacity of the cut is then defined by

1) cap(S) = 3 ¢p
pgg

A flow in a network is a function ¢ defined on the edges, which
satisfies Kirchoff’s law. For convenience we define both ¢,, and
@, and require

(2) Pagp = ~Ppq

If ¢,, > 0, we consider the flow to “go” from p to g; it is outgoing
flow for p; if @y < 0, we have incoming flow to p. Kirchoff’s law
states the equality of these two kinds of flow at each p # x, z; that is,

(3) z ©ag =0 (p # x,2)

A flow is permissible if for all p, ¢ in the network
(4) Ppg = Cpq
The value of a flow is the quantity

(5) f(‘P) = 2 Pre
q
If S is a cut, and ¢ a flow, then it is easy to see that
(6) . f(ﬁo) = z Ppq
A

because all sums (3) for p € § are zero, except for p = x:

2 Prg = Z Png — E #pe =Flo} —0

peES res PES
qES q TES
the last sum being zero because [¢;q]p,qes is @ skew-symmetric ma-

trix.
From (1), (4), and (6) we see that for any permissible flow ¢ and
any cut S we have

(7) fle) = cap(S}

198 / 22: NETWORK FLOWS (NETFLO)

The max-flow-min-cut theorem of Ford and Fulkerson asserts that
there exist a permissible flow ¢ and a cut § which give equality in
(7). Thus, by finding a flow @ and a cut S for which we have equality
in (7), we prove the max-flow-min-cut theorem, and have in fact
found a maximal flow and a minimal cut.

Ford and Fulkerson’s original idea was to find a path from source
to sink, every edge of which permits a positive flow. A maximum
amount of flow is then pushed through this path, and the residual
capacities in the edges of this path are reduced by the amount of the
flow in this path. The process is repeated until termination. Let S be
the set of vertices that can then be reached from the source along a
flow-admitting path. Clearly, z &€ S, and S is a cut, It can be shown
that the capacity of S equals the total flow.

Ford and Fulkerson’s method was quite inefficient; in fact, if the
capacities were real numbers, a maximal flow might not be obtained
in a finite number of steps. Since then several drastic improvements
have been made, which also use flow-pushing along paths, and have
satisfactory time bounds. Recently, however, Karzanov developed a
method which has the even better time bound O(n?) for a graph on n
vertices, and which uses preflows.

First, we describe briefly the use of the network flow algorithm in
the solution of the five problems mentioned above.

(a) Maximum Matching

Given a bipartite graph G(8, T). Adjoin a source and a sink. Con-
nect the source to each s € S, and connect each ¢t € T to the sink,
using edges of capacity 1. Assign to each edge (s,) capacity 1 {all
other edges have capacity 0). All edges are directed as source
— § — T — sink. The maximum value of a flow is then equal to
the maximum number of edges in a matching. Any minimal cut
defines a minimum edge-covering set of vertices.

(b) Systems of Distinct Representatives (SDR) -

Given sets S, . . . , S, composed of elements x;, . . . , x,,. Con-
struct a bipartite graph by joining (S;, ;) if the element belongs to
the set. A maximum matching of n edges is an SDR; it assigns a dis-
tinct x; to each §;;x; € S, It exists iff the capacity of a minimal cut is
n. This is equivalent to |S,,, . . . ,S;| = k forall distinet j,, . . ., J&.

(¢) Dilworth Number

Given a partially ordered set P: {1, 2,..., n}. Let §=
{1, ..., %) T={y, . - -, Yn} and draw edge (x;, y;} if i & in

22: NETWORK FLOWS (NETFLO) / 199

P. If there are d edges in a maximum matching of this bipartite
graph, then the Dilworth number of P is n — d, i.e., P can be covered
by n —d linearly ordered sets but not by fewer. A minimum cut
defines an independent set in P of n — d elements.

(d) Edge-Connectivity of a Graph (after Even and Tarjan)

To find the edge-connectivity of an undirected graph G, fix
4, 2 =4 = n. Take vertex 1 as source, j as sink, in the graph G. Give
all edges unit capacity in both directions. If ®(j) is the value of a
maximum flow in this network, then the edge-connectivity is

k(G} = min ®(j)

25)=n
(e) 0-1 Matrices
Given vectors (r,, . . . ,) and {(s;, . . . , s,), a network is con-
structed from a source, vertices %, . . . , Xm> Uis + - - » Un, and a

sink. There are edges (source, x,) of capacity r{i = 1, m); edges (x;, y ;)
of capacity 1 (i=1, m; j=1, n); and edges (y;, sink) of capacities
sdi=1, n). A 0-1 matrix A having the given row and column sums
exists if and only if the maximum flow in this network saturates all
edges adjacent to the source and sink. The saturation condition holds
if0=r=n0=s=nand

m Iy
Emin(rf, k)zz 55 (k=1i, . ..,n)
=1 i=1

with equality for k = n. If so, the matrix elements are a,; = flow in
edge (x,,y) G=1m;j=1, n).

The list of examples could go on, but in Ford and Fulkerson the
interested reader will ind many more. In the cases above, the fact
that the algorithm produces the effects claimed is in each case a by-
product of a network flow proof of, respectively, the marriage
theorem, P. Hall’s theorem on SDR, Dilworth’s theorem, Menger's
theorem, and the Gale-Ryser theorem.

The method we describe now is Karzanov's, except for some
drastic refinements in the bookkeeping. The construction of a max-
imal flow is performed in a number of phases. Each phase deals with
the residual capacities left after a previous phase. Let ¢,, be a capac-
ity and ¢,, a flow so far constructed, then &, = ¢pq — @5 is the resid-
ual capacity. If the flow is from p to g, then &,, < ¢pq, but note that
€ap > Cop-

Each phase begins with the construction of a KZ-net. This is a

200 / 22: NETWORK FLOWS (NETFLO}

directed subgraph, with no circuits, all whose edges have positive
residual capacities. In terms of the partial order which it defines on
its vertices, the source ¥ must be its unique minimal element, and
the sink z its unique maximal element. Furthermore, all directed
paths from source to sink, with a positive residual capacity on each
edge, of minimal length, are to lie in the KZ-net.

Once a KZ-net is constructed, a maximal flow in it is found; that is,
flow is pushed through until every directed path from source to sink
in the net has at least one edge on which the (residual} capacity
equals the (new) flow. When this stage is reached, new residual
capacities are set up in preparation for a new phase. But then every
directed path from source to sink in the network, all of whose edges
have positive residual capacities, will be longer than the shortest
ones in the previous phase. Consequently, no more than n phases
will be required.

The construction of a flow in a KZ-net uses preflows: a preflow ¢ is
a function which satisfies (2) and (4), but the left side of {3} need only
be nonpositive. Proceeding from source to sink along all edges, the
maximum amount of preflow is pushed through. If the incoming
preflow at vertex v exceeds the sum of outgoing capacities, then all
outgoing edges are used to capacity, and a positive excess x(v) re-
mains. Otherwise, only part of the outgoing capacity is used, and the
excess x(v) is zero. For reasons of efficiency and simplicity an outgo-
ing edge from a vertex is given the maximum preflow before the next
edge is started.— This step is a pushout. To remove the excesses at
the various vertices, a pushback is performed; that is, incoming
preflow is cut back to produce a zero excess. Of course, the preflow
pushed back causes excesses at the receiving vertices. If not all out-
going capacity was used there, a new pushout is performed; else, fur-
ther pushback is required. When all vertices other than source and
sink have zero excess, a maximal flow in the KZ-net has been
found.— To assure convergence and to obtain a favorable time
bound, a subtle strategy in applying pushouts and pushbacks is
required. For example, after a pushback has been performed on a
vertex, no further changes are to be made to any incoming or outgo-
ing preflow.

The construction of 2 maximal flow in a KZ-net starts with a
sequence of pushouts of preflow, first from the source (it is assumed
to have infinite excess, while all other vertices have initial excess
zero), then from the receiving vertices onward, in an order compat-
ible with the partial order of the KZ-net. In later stages, similar
sequences of pushouts are performed, though not starting from the

22: NETWORK FLOWS (NETFLO) / 201

source. Such a sequence is called an advance. An advance, once
started, continues until it runs out, by reaching the sink, or by getting
stuck in vertices which are unable to pass on any more preflow, or
both.

After a pushout, some vertices will be balanced, i.e., have zero
excess, while others have positive excesses and will, in due time, be
subjected to a pushback.

An order ideal in a KZ-net is a set of vertices which contains with
each vertex all vertices closer to the sink, with respect to the partial
order.

Lemma Let ¢ be a preflow in a KZ-net, and I an order ideal in
which every vertex, except the sink, is balanced. Then there exists a
permissible flow @ which is equal to ¢ on every incoming and outgo-
ing edge of every vertex of I.

For the proof, we define ¥ equal to ¢ on all edges to all vertices in
I. Let v be a maximal element in the complement of I. If v is bal-
anced, define ¥ equal ¢ on the edges into v; otherwise first modify ¢
by a pushback at v. As I U {v} is an order ideal, the proof is com-
plete, by induction on the cardinality of I.

Flow into and from a vertex of an order ideal whose vertices, ex-
_cept the sink, are balanced, is called old flow, and the algorithm
makes sure it becomes part of the flow to be constructed in the
KZ-net. This is achieved, after each advance, by accumulating a
growing order ideal, from the sink up, and, if a new vertex is bal-
anced, putting the incoming flow in a “safe” place, inaccessible to
future pushbacks. As a result, all pushbacks at these vertices will be
performed only on later flow. When a vertex, which is next taken into
the order ideal, is not balanced, a pushback is performed. This will
be the last action (for the present phase) on the vertex, because addi-
tional incoming flow will be stopped forcibly (the incoming edges
are declared closed), while all outgoing flow is “old.” The recipient
vertices for the pushed-back preflow will, in due time, be subjected
to an advance. Adding new vertices to the order ideal continues until
a vertex is encountered which is a candidate for a pushout. Then the
advance takes precedence again.

The strategy thus outlined gives rise to what seems an endless
seesaw battle between advances toward the sink on one hand, and
pushbacks and safeguarding of flow towards the source on the other.
However, each resumption of advancing was preceded by at least one
pushback, thereby eliminating a vertex from further action. Hence

202 / 22: NETWORK FLOWS (NETFLQ)

there are at most n advances before all vertices except source and sink
are balanced. Then the preflow is a flow.

To show this flow is maximal, consider a path in the KZ-net from
source to sink. After the first advance from the source, its very first
edge is filled to capacity. We proceed to show that, atall times, after a
pushout or a pushback, there is always one such edge in the path,
though not necessarily the first edge. Clearly, a pushout cannot de-
stroy equality of preflow and capacity in an edge as it causes only
increases in the preflow. If no pushbacks were performed on vertices
along this path, we are finished. Otherwise, let e be the edge in the
path from the last vertex along it that had a pushback. Such an edge
exists, since the sink certainly did not have a pushback. On this edge,
then, preflow and capacity are equal, because a pushback is per-
formed only when all outgoing capacity is used up, or outgoing edges
are closed by a pushout at their endpoint—but we just eliminated this
latter possibility.

To count the labor to perform one phase, it is easy to see that the
construction of the KZ-net, and all the pushbacks together, require
O(E). Similarly, the labor involved in all advances, in filling an edge
“to the last drop” and passing to the next edge, requires O(E). More
difficult to estimate are little drips coming in, that do not fill edges
to capacity. However, during each advance every vertex has at most
one such edge, so here we have an estimate of O(n?). This brings the
total labor for a complete network flow construction to n - O(E +
n?) = O{n®).

Now comes the detailed description of the network flow algorithm.
First we give the data structures which we employ; then we discuss
each step, and follow it immediately by a formal algorithm, which
should remove any ambiguities. To obtain an overview of the method,
it should not be necessary for the reader to spell out each algorithm.

We use the following arrays, A 2 X E array € will hold in (1, i) and
(2, i) the endpoints of edge i. If a vertex pair p, g is listed, then also
g, p must be listed, On input, the edges may be in any order. On out-
put they will be sorted in lexicographical order. A 2 X E array y will
hold in (1, i) the capacity of edge i. On output, ¥(2, i) will hold the
flow. Part of the intermediate calculations are performed in € and 7.
For example, the outgoing edges from a vertex, in a phase, will
be listed before the others, while the incoming edges which hold
“new” preflow, will be at the end of the edge list of the vertex. Then
there are several arrays of length n, denoted a, b, ¢, d, and x. The last
one will be used to hold the excesses, and on output will hold the
flow through each vertex. All arrays will hold only integers, except
% and y, which may hold real numbers.

22: NETWORK FLOWS (NETFLO) / 203

During most of the calculations, the entries (1, i) will be replaced
by pointers, so the two opposite orientations of an edge can find each
other immediately. The presence of a pointer will affect the perform-
ance of an interchange of edges, a frequently needed operation.

ALGORITHM SWAP(i, j, Option}

[Interchanges edges i and j]

(A) [Entry if Option = 1: edges are cross referenced]
e(1, e(1, 7)) < i; (1, €1, 1)) < j; to (B).

(B) [Entry if Option = 2: no cross references]
Forr = 1to 2do: Interchange €(r, i) <> €(r,); v(r, i) < v{r,j}; nextr
Exit H

Prior to the beginning of any phase we initialize ¥(2, i), sort the
edges in lexicographical order (we use EXHEAP, see Chapter 15) and
set pointers a(p) to the beginning of the list of edges from p. Edges
will be permuted again later, but only within these sublists, and the
values in @ will remain unchanged after this point,

ALGORITHM INIT

For i =1 to E do: (2, i) « 0; next i.

For i=1 to n do: a(i} < 0; next i.

Fori=1to E do: p < €1, i); a(p) < a(p) + 1; next i; s < 1;
Fori=1to ndo: t « a(i); a(i) < s; s < s + ¢; next i Exit W

ALGORITHM SORT

[Sorts the edges in lexicographical order]

(A) I<0
(B) Perform EXHEAP(E, I, 4, j, s).
If I > 0, Performa SWAP(4, 4, 2); to (B).
1 <0,s <« €el,i)— e,); ifs # 0, to (B).
else s < €(2, i) — €(2, j); to (B).
IfI=0, Exit &

204 / 22: NETWORK FLOWS (NETFLO)

At this point the task of €(1, i) has been taken over by the array a.
The cross references are now entered into €(1, 7). The lexicographical
order greatly simplifies this.

ALGORITHM XREF

[Sets cross references between opposite edges; pointers placed in

e(1, =)]

For i =1 to n do: b(§) < ali); next i. .
For i=1 to E do: p < €2, i); (1, i) < b(p); b(p) < blp)+1;
next i; Exit Wl

The KZ-net to be constructed at the beginning of a phase will ap-
pear in storage as follows. As before, a(p) points to the beginning of
the list of edges from p. The array entry b(i) will denote the ith vertex
in an enumeration which is compatible with the partial order. The
source will be b(1), but the sink will be deleted, as it plays only a pas-
sive part. A pointer along b will control the computations. The ver-
tices listed to the right of it, plus the sink, form an order ideal at all
times. When the pointer is moving to the left, all vertices listed to the
right of it will be balanced, and the preflow safeguarded.

The outgoing edges from vertex p, that belong to the KZ-net, will be
listed in locations a(p) through c(p), and will carry a negative sign in
(2, *). The entries in y for these edges are modified, by reducing
v(1, i) by ¥(2, 1), and setting ¥(2, i} equal zero. Thus (1, i) will be a re-
sidual capacity. Meanwhile, the reverse edge still holds the actual
flow, so there is no loss of information.

The end of the list of vertices from p is reserved for those incoming
edges that bring in flow that has not been safeguarded. It is empty as
yet, and d(p), which is to point to the beginning of it, is initialized to
the location just right of the last element in the p-list.

The construction of a KZ-net is performed in two operations, first an
outward drive from the source, then an inward drive from the sink. In
the outward drive the vertices are scanned in a breadth-first search,
starting from the source. The scanning of a vertex v means the ex-
amining of those neighbors ¢ which can be reached by a usable edge i
(i.e., ¥(1, i) > ¥(2, 1)). If such a neighbor has not been examined
before, it is placed on a sequential list in b. At this point the c-entry is
given the value —1, to signify the vertex has been examined. Place-

22: NETWORK FLOWS (NETFLO) / 205

ment of the sink in b is avoided. When the scanning of a vertex is
complete, the next vertex is taken from b. Note that the distance of a
vertex from the source, measured by the shortest low-capable path, is
a monotone function on b.

If the sink was not examined in the outward drive, then no KZ-net
exists, hence there is no flow-capable path from source to sink, and we
go to the exit procedure, with unmodified arrays ¢, v, and a.

The inward drive begins by making the sink useful with a positive
sign on its c-value. Now we follow the list in b in reverse, marking as
useful only those vertices which are joined to a useful vertex by a
usable edge. These usable edges are moved to the initial portion of
their segment in € and are marked with a negative sign in €(2, *); the
entry in ¢ now points to the last one of these. Also, the entries in -y are
adjusted to residual capacity and zero preflow.

ALGORITHM KZNET

[Constructs a KZ-net. If construction fails, Exit0, and €, v, and & are
returned unchanged. Otherwise, Exitl and the outgoing edges from
p are listed in e(*, i} with a(p) = 1 = c(p); sign of &2, i) reversed.
Array b holds a list of the vertices of the KZ-net in an order com-
patible with the partial order of the KZ-net, excluding the sink. The
point just past the list of edges from p is marked in d(p).]

(A) [Initialize ¢, d, x; prepare for outward drive]
Fori=1 to n do:
cli) < 0; x(i) < 0; if i < n,d@) < ali + 1); else, d(i) « E + 1;
next i
x(source) < w; 7 < Q; w <« 1; b(1} « source; c{source) < —1.
(B) [Read next item from b] r < r+ 1; if r > w, to (C); p < b(r);
fealp)l—dp)—1
Fori=ftol do:
q <— €(2,4); 8 — (1, 1) —v{2,i);if c{g) # 00r 6§ =0, next i
if ¢ # sink, w < w + 1 and b(w) < q; clg) < —1; next i.
(C) [Sink examined? Initialize backward drive]
If c(sink) = 0, Exit0; c(sink) < 1.
(D) [Step backward] r<r—1; if r=0, to (F}; p < b(r);
i—a(p)— 1 j<dp)—1.
(E} [Test edges for KZ-net] if j=4, clp) < i-sgnli—a(p)+1)

206 / 22: NETWORK FLOWS (NETFLO)

and to (D); g <« €2, j); if clg) = 0 or 2, =1,)), j—ji—1
and to (E}; .
&2, 1) « —q; y(1,) < ¥(1, §) — (2, 5); ¥(2,) < 0;
i« i+ 1;if i <j, perform SWAP(, j, 1); to (E).
(F) [Compactify list on b] K<« 0;
For r=1 to w do:
if c(b(r)= 0, next r; K< K+ 1; b(K) «—b(r); next r; Exitl A

The pushout step takes the excess at a vertex, and pushes it down
the outgoing edges, increasing both the preflow, and the excesses at
the receiving vertices. No flow is pushed down edges whose terminal
points have negative x-values indicating that the terminal point had a
pushback, and that the incoming edges are closed. There is a pa-
rameter P which is set to 1 if actual flow is pushed down.

ALGORITHM PUSHOUT(p, P)

[Pushes down preflow from vertex p on outgoing edges that are
not closed. P is set to 1 if actual preflow is pushed through; else, P is
left unchanged.]

(A) [Initialize]l i< c(p)+ 1.

(B) [Push preflow down one edge] i< i—1; if i < a(p), to (D);
q <« —€(2, 1); if x{q)} < 0, to (B);
8 < min(x(p), y(1, i) — Y2,); ¥(2,) < ¥(2, i) +5;
x(p) « x(p) — 8; x(q) < x(q) +8; P < 1; < (1, d);
if j = d(q), to (C); d{g) < d(q}—1;if j # d{qg), perform SWAP
(, d{a), 1).

(C) [Any preflow left; edge saturated?] If x(p) >0, to (B); if
w1,) =v(2,i),i<—i— L

(D) [Update c(p)] clp)<i; Exit®

The safeguarding of old preflow is effected by adding it to the flow
already accumulated during previous phases. Let i be an incoming
edge to p, so i = d(p); then the preflow is located in (2, i} where
j=€(l, 1) is the opposite edge, and the flow, with reverse sign, is in
v(2, i). While moving the preflow, also the residual capacity ¥{1, 7)
must be adjusted.

22: NETWORK FLOWS (NETFLO) /7 207

ALGORITHM OLDFLOW(p)

[Moves old preflow to accumulated flow from previous phases.]

(A} [Initialize] < E+1;, if p<n, l<alp+1l) i<dp),
d{p) < L

(B) [Move preflow] ifi=1, Exit;
J L, 1); 8 < (2, j); (2, 5) < 0;
Y(LJ) <= Y1,) — 8 92, i) < y(2,)) —8; i< i+ 1; to (B} H

A pushback at p consists in reducing incoming flow in some of the
edges at the end of the list of p until the excess is zero. Then we set
x(p) <= —1 as a warning for attempts at entering further preflow. The
outgoing preflow from p is incoming flow to vertices in the order ideal
of vertices listed after p in b, all of whose vertices have zero excess
and whose incoming flow has been safeguarded. All activity in p is
frozen from now on.

ALGORITHM PUSHBACK(p)

[Pushes back excess new flow into incoming edges; then x(p) set
to —1.

(A) [Initialize] i< d(p).

(B) [Push back preflow along edge i] j < €1, 1); & « min(x(p),
2,) v D A2)8 x(p)—x(p)— 8 g« €2, i)
x(q) < x(g)+8; if x(p) >0, i< i+1; and to (B); x(p) ——1;
Exit @

The algorithm which controls the action of the three preceding
algorithms is now surprisingly simple. There are two basic param-
eters, m and P. The former is a pointer, which moves back and forth
along the array b. When m moves right, pushouts are performed on the
vertices that need it, until the end of the list. Then a retreat takes
place, during which vertices, according to their needs, are left alone,
or have old flow removed, or undergo a pushback. The reversal from
retreat to advance is controlled by the parameter P, which is set to 1

208 / 22: NETWORK FLOWS (NETFLO)

when a pushout moves a positive amount of preflow, and is left
unchanged if no preflow is moved. The following flow chart illustrates
the basic logic. When a retreat reaches the source, the phase is
finished, except for a readjustment of the y’s.

FLOW CHART PREFLOW

PUSHOUT (& {m), P)
{# =1 if positive preflow)

CLDFLOW (& (m)}
or
PUSHBACK (£ (m))

ALGORITHM PREFLOW

(A) [Initiglize] m < 1; P < L
(B) [Advance] p < b{m); if x(p) > 0, to (C); else, to (D).
(C) [Pushout] Perform PUSHOUT(p, P); if P=0, to (G).
(D) [Next step in advance] m < m+1; if m = K, to (B).
(E) [Initialize for vetreat] P < 0.
(F) [Next step in retreat] m< m—1; if m=1, to (H); else,
p < b(m);

If x(p) <0, to (F)

If x(p) = 0, perform OLDFLOW(p); to (F)

If x(p) > 0, if a(p) = c(p), to (C); else, to (G).
(G) [Pushback] Perform PUSHBACK(p); to (F).
(H) [Adjust eand y] Fori=1to E do:

22: NETWORK FLOWS (NETFLO) / 209

q < —€(2,i); if g < 0, next i
€2, 1) < gq;§ < €(1, i);
Y2, i) < 8; v(2, j) < —8; next i; Exit B

The total algorithm consists of little more than calls to the various
algorithms. Only minor chores are left, including the removal of the
cross references.

ALGORITHM NETFLO(n, E, ¢, v, source, sink, a, b, c, d, X)

[Finds a maximal flow and a minimal cut in a network. Maximal
flow will be in ¥(2, *); minimal cut in c. The flows through the ver-
tices are stored in x; the flow value in x(source) and x(sink). The
edge list is returned in lexicographical order, with a(p) pointing to
the beginning of the edge list of p.]

(A)
(B)
(®)

Perform INIT, SORT,XREF .
Perform KZNET; if Exit0, to (C); perform PREFLOW; to (B).
For i =1 to n do: (i} < 0; (i) < —c(i); next i
Fori=1to E do: p < €2, &1, 7)); €(1, i} < p;
x(p) < x(p) + max(0, y(2, {)); next i;
x(sink) < x(source); perform SORT: Exit B

SUBROUTINE SPECIFICATIONS

(1)
(2)

Name of subroutine: NETFLO.
Calling statement: CALL NETFLO(N ,E _ENDPT, CAPFLO,
SOURCE, SINK,CUT X, A, AUX1 AUX2)

(3) Purpose of subroutine: Find maximum flow in a network.
(4) Description of variables in calling statement:

Name Type Iiow/B Description
N INTEGER I Number of vertices.
E INTEGER I Number of edges (sce (7) below).
ENDPT INTEGER{2,E) I In column J are the endpoints of edge J.
CAPFLO INTEGER(2,E) 1o Capacities and Hows, see (7) below.
S0URCE INTEGER 1 The designated source vertex.
SINK INTEGER I The designated sink vertex.

(continued on following page)

210 /

cuT

AUX1
AUX2

(5)
(6)
(7)

oo aaQ

12

22: NETWORK FLOWS (NETFLO)

INTEGER ([N} (o] GUT(I}=1ifI is in a minimal cut set, other-
wise O.

INTEGER(N) O X(I) is the quantity which flows through
vertex I.

INTEGER(N) w A{I) points to beginning of edges from I in
ENDPT on output.

INTEGER{N} w Working storage.

INTEGER(N) W Working storage.

Other routines which are called by this one: EXHEAP.
Number of FORTRAN instructions: 169

Remarks: Required input data are N ,E,ENDPT,CAPFLO
(1, *) ,SOURCE,SINK. Any edge pg is to be listed in ENDPT
both as (p, g} and (g, p), with capacities in CAPFLO(1, *}. On
output, flows in CAPFLO(2, *), and edges sorted lex-
icographically.

SUBROUTINE NETFLO(N E,ENDPT,CAPFLO,SOURCE,
*SINK CUT,X A, 6AUXL, AUX2)

IMPLICIT INTEGER{A-Z)

DIMENSION ENDPT(2 E),CUT(N), A{(N), 6 AUX1(N),
*AUX2 (N)

INTEGER CAPFLO(2,E) ,X(N), DEL

CHANGE ABOVE TYPE DECLARATION FOR REAL FLOWS

START INIT

DO 11 I=1,N
AlIY=0

DEL=0

DO 12 I=1,E
CAPFLO(2,I)=0
P=ENDPT{1, 1)
IF(P .EQ. SOURCE} DEL=DEL+CAPFLO(1,1I)
A{P)=A(P)+1
X (SOURCE}=DEL
S5=1

DO 13 I=1,N
T=A(TI)

A(I)=5
AUX1(I)=S

NN
= O

b X

2

22: NETWORK FLOWS (NETFLO) / 211

S=8+T
SRTRTN=0

END INIT~-START SORT

INDEX=0

CALL EXHEAP (E INDEX EN1 EN2 S)

IF (INDEX) 22,23, 31

31 IS CALL TO SWAP—THEN TO 21
S=ENDPT (1 ,EN1)-ENDPT (1, EN2)

IF(S .EQ. 0) S=ENDPT(2 EN1)—-ENDPT(2 EN2)
GO TO 21

IF (SRTRTN)40, 40,83

END SORT—-START SWAP

ENDPT(1,ENDPT(1,EN1))=EN2
ENDPT (1,ENDPT (1 EN2))=EN1
DO 32 R=1 2

S=ENDPT(R,EN1}

ENDPT (R,EN1)=ENDPT (R EN2)
ENDPT (R EN2)=5
DEL=CAPFLO (R, EN1)
CAPFLQ(R,EN1)=CAPFLO (R,EN2)
CAPFLO (R, EN2) =DEL

IF (INDEX) 92,57, 21

END SWAP——-START XREF

DO 41 I=1.E
Q=ENDPT (2,1}

ENDPT (1,I)=AUX1{Q)
AUX1(Q)=AUX1(Q) +1

END XREF—-~—START KZNET

INDEX=0
DO 51 I=1 N

IF(I .NE. SOURCE)X(I)=0
AUX2(I)=E+1)

IF(I .LT. N) AUX2(I)=A(I+1)

212 t 22: NETWORK FLOWS (NETFLO}

51

b2

53

54

56

57

58

59

CUT(I)=0

READ=0

WRITE=1

AUX1 (1}=S0URCE
CUT{SOURCE)=-1

READ=READ+1

IF{READ .GT. WRITE) GO TO 55
P=AUX1 (READ)

LST=AUX2(P)-1

I=A(P)-1

I=1+1

IF(I .GT. LST} GO TO 52
Q=ENDPT (2, I)
DEL=CAPFLO(l,I)—CAPFL0O(2, 1)
IF(CUT(Q) .NE. 0 .OR. DEL .EQ. 0} GO TO 53
IF{Q .EQ. SINK) GO TO 54
WRITE=WRITE+1
AUX1{WRITE)=Q

cuT(Q)=-1

GO TO 53

IF({CUT({SINK) .EQ. 0) GO TO 80
80 IS CALL TO EXIT PROCEDURE
CUT{SINK)=1

READ=READ-1

IF({READ .EQ. 0) GO TC 60
P=AUX1 (READ)

ENl=A(P)-1

EN2=AUX2(P) -1

IF(EN1 .EQ. EN2) GO TO 59
Q=ENDPT (2, EN2)

IF(CUT(Q) .GT. O .AND. CAPFLO (1, EN2)
* NE. CAPFLO(2 ,EN2)} GO TO 58
EN2=EN2-1

GO TO 57

ENDPT (2 ,EN2)=-Q
CAPF‘LO(l,EN2)=CAPFLO(l,EN2)—CAPFLO(2,EN2)
CAPFLO(2 ,EN2)=0

EN1=EN1+1

IF(EN1 .LT. EN2) GO TO 30

30 IS CALL TO SWAP THEN TO 57
IF(EN1 .GE. A(P)) CUT(P)=EN1
GO TO 56

60

aaoad

Tl

72

73

Qo
= O

22: NETWORK FLOWS (NETFLO) / 213

KZ=0

DO 61 R=1 WRITE
IF(CUT(AUX1(R))}.LE. 0) GO TO 61
KZ=KZ+1

AUX1 (KZ)=AUX1 (R)

CONTINUE

END KZNET-—START PREFLOW

INDEX=-1
M=1
P=AUX1 (M)

IF(X{(P) .GT. 0) GO TO 90

90 IS CALL TO PUSHOUT-THEN TO 72 OR 110
M=M+1

IF(M .LE. KZ) GO TO 71

PARM=0

M=M-1

IF(M .EQ. 1) GO TO 75

P=AUX1 (M)

IF{X(P)) 73, 100, 74

100 IS CALL TO OLDFLOW—THEN TQ 73
IF{A(P)-CUT(P})} 90, 90, 110

S0 IS CALL TO PUSHOUT-THEN TC 72 OR 110
110 IS CALL TO PUSHBACK—THEN TQ 73
D076 I=1E

Q=-ENDPT(2, I)

IF(Q .LT. 0) GOTO 76

ENDPT (2 ,1)=0Q

J=ENDPT(1,I)
CAPFLO(1,T}=CAPFLO{1,I)-CAPFLO(2,J}
DEL=CAPFLO(2,I)-CAFFLG(2,6J)
CAPFLO(2,I)=DEL

CAPFLO(2,J)=-DEL

CONTINUE

GO TO 50

END PREFLOW~—-START EXIT ROUTINE
DO 81 I=1 N

CUT(I}==CUT(I)
DO 82 I=1 E

214 / 22: NETWORK FLOWS (NETFLO)

P=ENDPT (2 ,ENDPT(1,I)]
IF (CAPFLO{(2,I) .LT. 0) X{P)=X{P)-CAPFLO(2, I)
82 ENDPT{1,I)=P
X (SOURCE) =X ({SINK)

SRTRTN=1
G0 TO 20
C CALL TO SORT—THEN RETURN
83 RETURN
C
c END EXIT ROUTINE--START PUSHOUT
c
[0 I=CUT(P}+1
91 I=I-1

IF(I .LT. A{P))} GO TO 94
Q=—ENDPT(2,I)
IF{X{Q) .LT. 0) GO TO 91
DEL=CAPFLO (1,I)-CAPFLO(2,I)
IF (X(P)} .LT. DEL) DEL=X(P)
CAPFLO ({2, I)=CAPFLO(2,I)+DEL
X(P}=X(P)-DEL
X(Q)=X(Q) +DEL
PARM=1
EN1=ENDPT(1,1)
EN2=AUX2(Q) -1
IF (EN1-EN2) 30, 92, 93
C 30 IS CALL TO SWAP—THEN TO 92
92 AUX2(Q)=EN2
93 IF(X(P) .GT. 0) GO T0O 91
IF (CAPFLO(1,I) .EQ. CAPFLO(2,I)) I=I-1
94 CUT(P)=I
IF (PARM) 72, 110, 72

C
c END PUSHOUT--START OLDFLOW
C
1

00 LST=E+1
IF(P .LT. N} LST=A(P+1)
I=AUX2(P)
AUX2 (P)=LST

101 IF(I .EQ. LST) GO TO73
J=ENDPT(1,1)
DEL=CAPFLO(2,6J)
CAPFLO(2,J}=0
CAPFLO{1,J)=CAPFLO(1,J)-DEL

22: NETWORK FLOWS (NETFLQ) / 215

CAPFLO{2,I)=CAPFLO(2 I)-DEL

I=T+1

GO TO 101
C
C END OLDFLOW——START PUSHBACK
C

116 I=AUX2(P})

111 J=ENDPT(1,I)
DEL=CAPFLO (2, J)
IF(X(P} .LT. DEL) DEL=X({P}
CAPFLO(2,J)=CAPFLO(2,6J)-DEL
X{P)=X(P)-DEL
Q=ENDPT (2, 1)

X(Q}=X{(Q)+DEL

I=T4+1
IF{X{(P) .GT. 0) GOTO 111
X(P)=-1
GO TO 73
C
c END PUSHBACK
C
END

SAMPLE OUTPUT

The program NETFLO was called to solve the network shown in
Fig. 22.1, in which edge capacities are shown in bold type.

2 -] 4
3 4 8
1 2 2 6
'
7 3
3 4 5
Figure 22.1

On input, the ENDPT array was

12132324253435454656
21313242524353546465

216 7 22: NETWORK FLOWS (NETFLO)
and the CAPFLO array was

30702050401040208030

On output, the ENDPT array was

11222233334444555058686
2313451245 2356234645
and the CAPFLO array was
37 0254 0014 0 0280 003 O 0
24-3030-4013-3-1040=-303 -4 =3

The CUT array was

101010

which describes a capacity of 7, and the X array was

7344377

indicating a flow value of 7.

23

The Permanent Function (PERMAN)

Let
(1) A= (a;)}=

be an n X n square matrix. As is well known, the determinant of A is
the number

(2) det(A) =2 Sgn(o-)al.o'fllaz.a'(Z) Tt Qe

where the sum is over all permutations o of {1, 2,. . . , n}. We con-
trast this with the permanent of A, which is instead,

(3) per(A) = 41,0200 ° * * Guotw

The distinction lies solely in the omission of the = sign of the permu-
tation o. This omission causes the permanent not to share many of
the nice properties of determinants. For instance, we have generally,

4) per(AB) = per(A) per(B)

The permanent is of considerable combinatorial importance, how-
ever. If A, for instance, is a matrix all of whose entries are +1, then
from (3), per A = n! is the number of permutations of n letters. More

7217

216 / 23: THE PERMANENT FUNCTION {PEAMAN)

generally, let A be a matrix all of whose entries are either 0 or 1.
Then in (3) each term is 0 or 1, and the value of per A is just the
number of permutations ¢ which hit only 1’s in the matrix A. This
fact can be exploited for various combinatorial purposes.

Let A, be given by

(5) aw={) i di=nw

Then, a term in the sum (3) is 1 if and only if

a,L.m=1 and o, o) =1 and Coe and B oty =1
which in the case (5) means that

o(l) #1 and a(2) # 2 and S and ag(n) #n

which, in tum, is so if and only if the permutation o leaves no letter
fixed. Hence, for the matrix A, of (5),

(6) D, = per(A,)

is the number of fixed-point free permutations of n letters. These
“rencontres” numbers are well known to be given by
1 1

(7) D,,=n!{1—1+g_m+_) _+(—n1!)ru}

Again, let S,,. . . , S, be a collection of sets whose union U con-
sists of objects a,, @3, . . . , @,. By a system of distinct represent-
atives of the collection S,, . . . , S, we mean alist y,, ys,. . . , ¢y, of
all of the objects in U arranged in sequence so that y; € §;
(i=1,...,n). The permanent function counts systems of distinct
representatives: Let a matrix A be defined by a;=1if a¢; € S; and
a; = 0 otherwise. This matrix A is called the incidence matrix of the
objects in the sets. A single term in the sum (3) is =1 or 0 according
to whether @, - - . » Gotm 18 OF is not, respectively, a system of dis-
tinct representatives for the sets S,, . . . , S,. The permanent of A is
therefore equal to the number of such systems.

As another application of the permanent function, by an rXn
Latin rectangle we mean a rectangular array of + rows and n columns,
whose entries are letters chosen from {1,2,...,n} such that
(a}) the entries in each row constitute a permutation of {1, 2,

., n} and (b) the entries in each column are all different. We
show a 3 X5 Latin rectangle in Fig. 23.1. Our question is: In
how many ways can we adjoin a new row to a given r X n Latin
rectangle in such a way that the result is an (r + 1) X n Latin rec-

23: THE PEAMANENT FUNCTION (PERMAN) / 219

2 4 I 5 3

Figure 23.1

tangle? To see this question as one about permanents, define n sets
Si,. .., 8,as follows: i € S;if i does not appear in column § of the
given Latin rectangle (i=1,. . . ,n;j=1,. .., n). Hence, S, is the
set of letters which might possibly appear in the jth column of any
new row which is adjoined.

It is easy to check that |$;|=n—71(j=1,. .., n), and that each
letter i appears in exactly n — r of the S;'s. As above, let A be the in-
cidence matrix of the objects 1,2, ... ,nin the sets S,,. .., S,.

Then A is an n X n matrix of 0's and 1’s which has exactly n — r 1’s in
each row and column. The permanent of A is equal to the number of
systems of distinct representations of the family of sets S, . . . , S,
and each system of distinct representations is a way of adjoining a
new row. Hence, per(A) is equal to the number of possible exten-
sions. This idea can be used, for example, to prove that an extension
is always possible. This is so because the permanent of a matrix of
nonnegative entries, with constant nonzero row and column sums, is
always strictly positive. Thus per A > 0 and an extension always
exists.

Because of such applications as the above, great interest attaches
to the question of estimating the size of the permanent of a square
nonnegative matrix in terms of its row and column sums. First, if the
entries of A are 0's and 1's, then a theorem of Bregman, conjectured
by Ryser and Minc holds that

(8) per(A) = ﬁ (r;1) 1
=1

where 7; is the number of 1’s in the jth row of A.
In the other direction, if ay = 0{i,j=1,. .., n)and

iau=1 (i=]_,...,n)
=1
(10)
ay= Gj=1...,n)

220 / 23: THE PERMANENT FUNCTION (PERMAN)

then an unproven conjecture of van der Waerden states that

nl

(1) per(a) = &2

which, if true, would alsc be the best possible.
Observe, for instance, that since (8) is known to be true, then by
the construction outlined above we would have at most

(n — 1‘) 1 ni{n—r}

extensions of an r-rowed Latin rectangle to an (r 4+ 1}-rowed one. On
the other hand, if (11} were true, then by dividing our incidence ma-
trix by n —r, we would satisfy (10} and thereby learn that a Latin
rectangle has at least

(n—r)tnlin"

extensions to one of order r+ 1. The number L, of n X n Latin
squares would then satisfy

n!2u—]

n—1 n
Ml =71 =
(12) {I__l] v! } =L, 2%

which would be an improvement over known bounds.

COMPUTATION OF THE PERMANENT FUNCTION

Observe that a direct application of (3) to an n X n matrix would
require about n - n! operations for the calculation of per(A). We
reduce this labor in three steps.

(1) A method due to Ryser evaluates per{A) in about n22*? opera-
tions. It requires an average of n2/2 calculations for each of the 2"
subsets of {1, 2,. .., n}, Ryser's method is derived below and ap-
pears in Eqs. (17) and (18).

(2} We reduce the above by a factor of 2 by a method which
makes it necessary to process only the subsets of {1,2,. .. ,n—1}
Thus in Eq. {(24) we do about n%/2 calculations for each of the 2#!
subsets of {1, 2,. . ., n— 1}, or (n?/4) 2" operations altogether.

(3} A further reduction by a factor of /2 is accomplished by
arranging the sequence of subsets so as to follow a Hamilton walk on
an (n — I)-cube (see Chapter 1). If this is done, only a slight change
in the calculation for a set § will yield the result of the calculation
for the successor of S. In this way, our final algorithm PERMAN

23: THE PERMANENT FUNCTION (PERMAN) / 221

does about n calculations for each of the 2! subsets of
{1,2,...,n— 1}, for a total of n2"! operations {multiplication and
addition} to compute the permanent of an n X n matrix.

We first describe Ryser’s formula. Suppose, for the moment, that A
isan n X m matrix; letf: {1,. .. ,n}— {1,. .., m} denote a map-
ping, and let the weight of f be

(13) w(f) H LN 6]

for each of the n™ mappings f. Then we can define the permanent of
such a rectangular matrix by

(14) per(A) =Y'w(f)
I

where the prime indicates that the sum is over only whose f such
that

vie{l, ..., ml:fj)#0

Note that if m > n, per{(A)=0
Now consider the n™ objects as our mappings f, and let the jth
property of one of these objects be

Pi:f1G)=¢ (U=1...,m)

Then by the principle of inclusion—-exclusion, the total weight of
those objects which have none of the properties is

(15) perA=2 —DITN(T)

where T runs over all subsets of properties, and N(T) is the weight of
those objects which have the set T of properties. But the weight N(T)
of those objects is

(16) N(T) =g {za}

since the weight of every mapping with properties T occurs once in
the expansion of the right-hand side. If we substitute (16) into (15),
we find

per(4) =3, DM [T {3, af

=1 YET

and, finally, if we sum over § = T, instead of T,

222 / 23: THE PERMANENT FUNCTION (PERMAN)

(17) per A= (—1)"Y (—1)Flog
5
where
(18) 0’s=ﬁ a;
i1 J€S

{17) is Ryser's formula. We observe that (17) requires about
24 - (n2/2) operations for the computation of the permanent.

A variation which saves half of the labor will now be described.
Suppose A is n X n. Adjoin to A a new column [x,, x5, . . . , x,,]7, ob-
taining an n X (n+ 1) matrix A’, and number the columns
0,1,2,...,n If weapply (17) to A’, we obtain

(19) 0=—perA'=(—1)"Y (—1}¥log+ (=1)" > (=1) ¥log.
5 5

where S’ and S§'' run, respectively, through all the subsets of

{0, 1, . . ., n} which do (respectively, do not) contain 0. Hence
z2m 0= (—1)" E (—1)¥lgg + per A

<
But

en T =£Il {x,- + 2 a,-,-}

Let (S')¢ be the complementary set of (S’ — {0}}). Then

(22} Ty = fl [xi + (ﬁ: ﬂij) -> ar’.i]‘

i=1 i=1 J#A0
JES'
H
= [ac,- +rn=> a:‘j]
i=1 F#=0
JES
where 7; is the ith-row sum of A, Now choose x;, = —}r,. Then
(23) oy = (—1)"os

and the contributions of S’ and (5')° to the sum in (20) are equal. We
can, for example, compute only the terms in the sum (20) corre-
sponding to §$' which contain both 0 and n, and double the result.

Ryser’s method, together with this modification, can be sum-
marized as

23: THE PERMANENT FUNCTION (PERMAN) s 223

1 & ,
(243-) X = ai,n_gg ay (7'= L..., n)
(4b) per(A)= (-2 S (CHW T {n+ 3 o}
S =1 JES
where S runs only over the subsets of 1,2,. . . ,n— L.
To save our final factor of n/2 in the amount of computation
required, observe that for each subset $ C {1,2,...,n—1} we

have to calculate

(25) F(S) =T AlS)
where
(26))\i(S)=xi+Ea” (i=1,...,n)

Suppose that our current subset S differs from its predecessor S’ by
a single element, j. Then

(27) M(SY=M(8)xae; (i=1,...,n)

Thus, instead of requiring n(]S|+ 1) operations to compute
Ay . -+ 5 A in (26), we can find them in just n operations by (27).
The key to the saving is, then, generating the subsets of
1,2,...,n—1 in such a sequence that each set § differs from its
predecessor only in a single element. In Chapter 1, this question
was discussed in detail, and we produced Algorithm NEXSUB for
doing the generation of the subsets. Hence in our present problem,
Algorithm PERMAN will simply call NEXSUB to get its next subset of
1, ..., n—1, calculate the A; as in {27), f(S) as in (25), and per A
from (24). The program is very short, just 26 instructions.

The question of significant digits merits some attention. It is char-
acteristic of inclusion—exclusion calculations that the terms get larger
for a while (as |$| increases) then smaller, that there is a good deal of
cancellation between terms, and that the final answer may be much
smaller than many of the individual terms in the sum. It is tempting
to consider using integer arithmetic when calculating with an integer
matrix. Yet, in the present situation, one may find that even though
per(A) is small enough to fit comfortably into an integer word, inter-
mediate quantities in the calculation may overflow. For these
reasons our program is in double-precision mode.

224 / 23: THE PERMANENT FUNCTION {(PERMAN)

ALGORITHM PERMAN

(A) p <0 x ea!?l_%; ai; (i=1, n); sgn < —1.

(B) sgn « —sgn; P < sgn; Get next subset of {1,2,...,n—1}
from NEXSUB (see Chapter 1); If empty, to (C); If j was deleted,
z «——1; Otherwise, z < 1; x; « x; + za; (i=1, n).

(C) P<—P-x;(i=1,n);, p < p+P; If more subsets remain, to (B);
Permanent « 2(—1)"!p; Exit B

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: PERMAN.

(2) Calling statement: CALL PERMAN(N,A,IN,X,6 PERMN).

(3) Purpose of subroutine: Calculate permanent of square matrix.
(4) Descriptions of variables in calling statement:

Name Type I/OW|B Description

N INTEGER I Size of input matrix.

A DOUBLE I A(X,J) is the I,J entry of the input matrix.
PRECISION(N,N}

IN INTEGER(N) w Working storage.

X DOUEBLE w Working storage.
PRECISION(N)

PERMN DOUBLE PRECISION O Calculated value of the permanent of A.

(5) Other routines which are called by this one: NEXSUB.

(6) Number of FORTRAN instructions: 26.

(7) Remarks: Will not work correctly in integer arithmetic by
merely changing type declarations.

‘SUBROUTINE PERMAN(N,A,IN,X,PERM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
LOGICAL MTC
DIMENSION A(N,N),IN(N),X(N)

10 P=0
N1=N-1
DO 11 I=1,N
SUM=0
DO 15 J=1,N

15 SUM=SUM+A(I,J)

11
20

30

35
38
39

40

23: THE PERMANENT FUNCTION (PERMAN) / 225

X(I)=A(I,N})-SUM/2.D0
SGN=-1
SGN=-SGN
PROD=SGN
CALL NEXSUB(N1,IN,MTC,NCARD,J)
IF(NCARD.EQ.0) GO TO 38
Z=2+IN(J)-1
DO 35 TI=1,N

X(I)=X(I)+Z=A(I,J)

DO 39 I=1,N
PROD=PROD+X (1)
P=P+PROD

IF(MTC) GO TO 20

PERM=2.* (2+MOD(N,2)-1)*P
RETURN

END

SAMPLE OUTPUT

Foreach n=2,3,. .., 12, PERMAN was asked for the permanent
of the n X n matrix of diagonal 0’s and off-diagonal 1’s. The output is
reproduced below.

'—J
O W3O O hWN

o
N

= NeNeNoloNoNoNoleNe ol

.10000000D+01
.20000000D+01
. 90000000D+01
. 44000000D+02
.26500000D+03
.18540000D+04
.14833000D+05
.13349600D+06
.13342610D+07
.14684570D+08
.17621484D+09

24

Invert a Triangular Array (INVERT)

This little routine is combinatorial only in its proposed use. In fact it
is simple linear algebra. We suppose that there is given an n X n ma-
trix A which has 1's on the main diagonal and 0’s below the main
diagonal. If b;; (i, = 1, n) are the entries of A}, then it is simple to
verify that

=Y awby (i <j)

i<k=j
(1) bl'j= 1 (i=3j)
0 (i>7)

We have, then, a simple recurrence formula for calculating the b
in the following order
bst bj—l.js bj—a.j-: ceaaby G=nyLl 001D

The computation is straightforward. It is important to notice that
the columns are processed in reverse order to permit storage of A
and A~! in the same memory space if desired.

ALGORITHM INVERT

(A) b,‘i(_]. ('i:l, n).
(B (b;<— E by, G=4—1, j—2,. .. 1), j=n,. . .,2)
i<k=j

Exit B

226 /

24: INVERT A TRIANGULAR ARRAY (INVERT) / 227

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: INVERT.

(2) Calling statement: CALL INVERT(A,AINV,N).

(3) Purpose of subroutine: Invert upper triangular matrix.
(4) Descriptions of variables in calling statement:

Name Type I/OIW/B Description

A INTEGER{N,N) I Input array.

AINV INTEGER(N,N) O QOutput, inverse of A.
N INTEGER I Size of A

(5) Other routines which are called by this one: None.

(6) Number of FORTRAN instructions: 17.

(7) Remarks: If this subroutine is called with AINV=A, then the
matrix A will be correctly inverted in place.

SUBROUTINE INVERT (N,A,AINV)
IMPLICIT INTEGER(A-Z)
DIMENSION A(N,N),AINV(N,N)

J=N

10 1I=N

20 SUM=0
IF (I1.EQ.J) SUM=1
K=I+1

25 IF (K.GT.J) GO PO 30
SUM=SUM-A(I,K)*AINV(K,J)
K=K+1
GO TO 25

30 AINV (I,J)=SUM
I=I-1
IF (I.GT.0) GO TO 20
J=J-1
IF (J.GT.0) GO TO 10
RETURN
END

25

Triangular Numbering in Partially
Ordered Sets (TRIANG)

Let 2 be a finite partially ordered set, say
#={1,2,...,n}
and let < be the partial-order relation defined on 2. By the zeta ma-
trix of @ we mean the incidence matrix { of the relation < i.e.,
(1 if i=<j
(1) by = {0 otherwise

We claim that it is always possible to renumber the rows and col-
umns of { (i.e., relabel the elements of #) in such a way that ¢
becomes an upper-triangular matrix. In terms of the original partially
ordered set P, we are claiming that there is a permutation

o:{l,....,n}—={1,...,n}
such that
(2) o l@) <o (HDi=j G.ji=1...,n)

where the = on the right side of (2) is the natural order of the posi-
tive integers. Such renumbering will be used in Chapter 26 to con-
struct the Mbius function and is useful in many combinatorial situa-

228 /

25: TRIANGULAR NUMBERING IN PARTIALLY ORDERED SETS {TRIANG) / 229

tions where computation must be sequenced consistently with some
natural partial order in the problem.

We prove the claim by describing an algorithm which ac-
complishes the desired renumbering. Choose an element x € @. If
there is no y < x (y € &), then assign to » the next available label. If
there is such a y, replace x by y and repeat. Since 2 is finite, we
surely will reach an element with no predecessor after a finite
number of steps.

As is so often the case, the most obvious algorithm is not the best
one.{ In the algorithm described above, we descend a chain in the
partial-order relation until we reach a minimal element. Next we
search for a new unlabeled element and repeat the process. How-
ever, we have lost 2 good deal of useful information because the ele-
ment which preceded the minimal element just labeled is a better
place to start the search for the next element to label. This is so
because we would thereby start lower down in the partially ordered
set and would be nearer to our next minimal element.

To recover this information we must make better use of our array
o; (i = 1, n) which carries the labels of the points. This array is set to
zero initially, and if a point is labeled, then o, carries the label. How-
ever, we will now put o; to work at intermediate stages also. Pre-
cisely, as we go down a chain 4, > i, >+« >i,; > i, we write in
each o, its predecessor i,_; (k =2, u). Then, when we reach i, we
save o.temporarily, in g, say, insert the label of i, into ¢, and then
resume the search at g.

If g is zero then we have just labeled a point which was the largest
element i, in some chain of 2, all of whose elements are now la-
beled. Therefore, we resume our search for the next unlabeled point
at1 +1i,. If g is not zero, then q is indeed the predecessor of the point
which was just labeled, and we climb down a chain hanging below
g. The nature of the numbering process is such that when we are
searching below g to find a minimal element, the search can begin at
the next integer larger than the last i below ¢ which was labeled. If
we begin the search below g, we may start at i, + 1 because all
points before i, have already been labeled.

We give below the formal algorithm which describes the process
in detail. This algorithm is designed so that the partial-order relation
can be deseribed on input by its full zeta matrix, or else by just the

{ One considerably more efficient method for this problem, called “topological
sorting,” appears in [K1, Vol. 1, p. 262]. It is assumed there that the input is given as a
set of related ordered pairs. For onr purposes we need a square incidence matrix of
input.

230 / 25: TRIANGULAR NUMBERING IN PARTIALLY ORDERED SETS (VRIANG)

matrix of its covering relation, or more generally, by any matrix
whose (i, j) entry is nonzero if j covers i and 0 if j < i. In fact, if one
is assured that the full zeta matrix will be used for input, then certain
further economies become possible: In step (B) we can delete
“t «-m -+ 1,” and step (C) can be replaced by “r <~ m + 1" which
will start the searches lower down in the structure.

ALGORITHM TRIANG

(A) m«0;l«<0,0,<0(@{=1n)

(B) [To next unlebeled] m « m+1; Iif o, # 0, to (E); t—m+1.

(C) [Start climb down] r < &.

(D) Ifr=n,to (F); [Label m] l <1+ 1; g« on; om < I; [Climb
up to predecessor} If g=0,to (E);r —=m+1; m < q; To (D).

(E) [DoneP] If m = n, exit; To (B).

(F) [Is r an unlabeled element below m?] If o # 0 or dr, m) # 1,
set r <« 7 + 1 and return to (D); [Go down from m tor] o, < m;
me<r; To(C) N

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: TRIANG

(2) Cualling statement: CALL TRIANG(N,ZETA,SIG}.

(3) Purpose of subroutine: Discover consistent labeling of ele-
ments of partially ordered set.

(4) Descriptions of variables in calling statement:

Name Type IHO{W(B Description

N INTEGER 1 Number of elements in partially ordered
set.

ZETA INTEGER{N,N) I ZETA{I,J)=1if I=X J, 0 otherwise.

SIG INTEGER({N) (0] SIG(I) is the new label assigned to

I [1=SIG(I)=N;1=I=N).

(5) Other routines which are called by this one: None.

(6) Number of FORTRAN instructions: 20.

(7) Remarks: Input matrix can be any matrix which generates the
partial order.

25: TRIANGULAR NUMBERING IN PARTIALLY ORDERED SETS (TRIANG) / 231

SUBROUTINE TRIANG(N,ZETA,SIG)
IMPLICIT INTEGER(A-Z)
DIMENSION SIG(N), ZETA(N,N)

10 M=0

L=0

DO 11 I=1,N
11 SIG(I)=0
20 M=M+1

30 IF (SIG(M).EQ.0) GO TO 40
130 IF (M.EQ.N) RETURN

GO TO 20
40 T=M+1
50 R=T

60 IF (R.GT.N) GO TO 100
70 IF (SIG(R).NE.OQ.OR.ZETA(R,M).EQ.0) GO TO 90
80 SIG(R)=M

M=R

GO TO 5O
20 R=R+1

GO TO &0
100 L=L+1

Q=SIG(M)

SIG(M)=L
110 IF (Q.EQ.0) GO TO 130

R=M+1
120 M=Q

GO TO &0

END

SAMPLE OUTPUT

The partially ordered set in our example is the set of divisors of 48
ordered by divisibility. The divisors are arranged, on input, in the
order

16, 3, 8, 24, 1, 6, 2, 12, 48, 4

The zeta matrix corresponding to this input ordering is shown as the
following 10 x 10 array. The output permutation o, which also

232 / 25: TRIANGULAR NUMBERING IN PARTIALLY ORDERED SETS {TRIANG)

follows, rearranges the divisors in the order
1, 2, 4, 8 16, 3, 6, 12, 24, 48

in which the zeta matrix is triangular.

HOOHRORFOROH
CO0OO0OO0OHOOFO
HOOROFHOKROO
HOHFRRFRHRKERHEHRPRO
OO0 O0OFR OO OO
COCOO0OFFHFHFOQRFO
OCoOO0OHFOHOOOO
HFOFRRPRHQORO
[L el
HOOHOFHOOOO

%]
[#)]
EN
@
l—‘
-3
2
w
=
(]
[¥}]

26

The Mo6bius Function (MOBIUS)

Let 2 be a partially ordered set, and let f be a function defined on 2
to the real numbers. Then we can define a new function g on # by

(1) glx)=> fly} (x € P)

=T

As we noted in Chapter 25, if 2 contains a 0 element and is locally
finite (which we henceforth assume), then the sum in (1} has only a
finite number of terms in it for each x € 2. We can rewrite (1) as

(2) g(x) =3 Lewf(y) (x€P)

where the sum is now over all y € £, and { is the zeta function (see
Chapter 25) of #. In simple vector-matrix form we could write (2) as

(3 g=tf

We now ask how to invert the relation (1). That is, if g(x) is given,
for all x € &, how can we find f(x} (x € £) such that (1) is true? The
importance of this question rests on the fact that in many combina-
torial situations where we want f, f and g are related by (1), and g is
relatively easy to find.

/ 233

234 /7 26: THE MOBIUS FUNCTION (MOBIUS)

Now (3) suggests that the inverse relation is
(4) f=t"g

provided ¢ has an inverse. Qur discussion in Chapter 25, however,
showed that, under the present hypotheses, the elements of # can be
relabeled so that £ is upper-triangular with 1’s on the diagonal. Such
a matrix can always be inverted (see Chapter 24).

The Mébius function u(x, y) (x, y € P) is defined as the inverse of
the zeta function [, {x, y € &} of #. Our problem in this chapter
concerns the efficient computation of u(x, y} for a “given” set 2.

First we ask for an efficient way to describe the given set #. Cer-
tainly the zeta matrix completely describes 2. On the other hand, it
contains a good deal of redundant information. If we are told, for ex- -
ample, that {,,;=1 and {;,=1, we do not need to be told that
{12 =1 since that follows from the transitivity of the = relation.

To describe a more economical method, we define the “covering”

relation. We say that, in a partially ordered set &, b covers a, written
ach,if

(i) a<b
and
(ii) there isno z € # such thata<z <b.

We denote by H{x, y) the incidence matrix of the covering relation

1 if xcy
Hx, y) = {0 otherwise
The H matrix describes the complete partial-order relation in 2,
for if x & y, then there is a chain

XCX, CXyC "+ CX,CY

in which each element is covered by its successor joining x to y. By

finding the totality of such chains, we can therefore deduce the total-

1ty of relations x < y, and thereby ﬁnd the full zeta matrix from its
“skeleton” H,

Let us describe this process more formally. Let £ be a finite par-
tially ordered set. Then

H*(x,y) = H(x, z)H(z y)

according to the rules of matrix multiplication. A termx on the right
side is 0 unless z covers x and is covered by y. The sum therefore

26: THE MEBIUS FUNCTION (MOBIUS) / 235

*-——y
X z y

Fig. 26.1

counts the number of maximal chains of length 2 (Fig. 26.1) which
join x to y. Similarly, H*(x, y) counts the number of maximal chains of
length k

XCZ CReC " " CZpqCY

which join x to y, in which each element is covered by its successor.

Now if x < y in 2, there surely is a chain of some length which
joins x to y, with each element covered by its successor. Hence, at
least one of the numbers

H:(x,y) (k=1,2,3,...)
must be positive. Since the others are nonnegative, it follows that
(5) H(x,y) + H*(x, y) + H(x, y) + -+ -
will have positive entries precisely where x <y, or, equivalently,
(6) 8(x, y) + H(x, y) + H*(x, y) + - -~

has positive entries precisely where x < y (8 is the Kronecker delta).

The apparently infinite series (6) actually terminates. Indeed,
since 2 is finite, there is only a finite number of different covering
chains in %, and if N is the length of the largest one, then
H"{x, y)=0for all m > N and all (x, y) € 2. The series (6) therefore
represents (I — H)™!, where I is the identity matrix, and we have
shown the

Proposition In a finite partially ordered set & with covering matrix
H, we have x < y if and only if
(7) (I-H)z!, >0

This relation remains true if H is any nonnegative matrix which gen-
erates the partial order.

More precisely, this proposition is true if we have only

(a) H.,=0 when x <y is false
(b) H.,>0 when xcuy
(c) H,,=0 always

For notational convenience, let us define for any matrix Q of non-
negative entries a new mafrix ¢(Q) according to

236 / 26: THE MUBIUS FUNCTION (MOBIUS)

(8) vou={p § &=2¢

According to the proposition above, then, the zeta matrix of a finite
partially ordered set can be generated from the covering matrix H by
means of the relation

(9) {=y({I-H)™)

Finally, the Mobius function w is the inverse of £, and so it can be
obtained from the covering matrix by

(10) p=y((I —H)")™

The covering matrix H can be obtained from the zeta matrix in a
similar manner because x c y if and only if there is precisely one
chain

r=xg<x, < < x,=y
{n that case, p must be 1. It is easily seen that the (i, j) entry in
=D+ (=Dt - -

counts the number of chains from i to j.
Define for any matrix Q a new maitrix o(Q) according to

1 if i#j and Q=1
 (Q)r; {0 otherwise

then we have

H=w(@I-0™)

We hereby summarize the calculation. Beginning with the in-
cidence matrix I of the a covers b relation, we perform the following
operations:

(1} Find the permutation SIGMA such that when the rows and
columns of H are renumbered according to SIGMA, H becomes
triangular (use subroutine TRIANG, Chapter 25).

(2) Apply the permutation SIGMA to the rows and columns of H
(use subroutine RENUMB, Chapter 17).

(3) Invert I — H (use subroutine INVERT, Chapter 24).

(4) Replace all nonzero elements by 1’s, yielding the zeta ma-
trix of the partial order.

(5) Invert the resulting matrix (use subroutine INVERT,
Chapter 24). This gives the Mébius function MU but according to
the renumbering SIGMA .

26: THE MOBIUS FUNCTION (MOBIUS) / 237

(6) Find the inverse permutation SIGl of SIGMA. Renumber
the rows and columns of MU according to SIG1 (use subroutine
RENUMB, Chapter 17). We now have the Mobius matrix MU con-
sistent with the initial ordering of the rows and columns of H.
Output MU. Exit.

Another procedure for doing the above would be to ignore the
renumbering and simply invert the matrices as they are. If this were
done, we would need to use general matrix inversion programs
because the triangularity would no longer be exploited. Thus, in-
stead of INVERT, which requires n® + O{n?) operations to invert a
triangular matrix, we would use a program which, at best, might
need in® operations plus the inconvenience of dealing with real
numbers, or three times the computational effort. The cost of triangu-
larizing, renumbering, and unrenumbering is (G(n?%), which gives an
economic advantage to the procedure outlined above.

An additional noteworthy feature is that the entire calculation can
be done with just one integer matrix array because each matrix can
bhe written over its predecessor.

SUBROUTINE SPECIFICATIONS

(1} Name of subroutine: MOBIUS.

(2} Calling statement: CALL MOBIUS(N,H,MU,SIGMA,SIGL).

(3) Purpose of subroutine: Find M&bius matrix from covering rela-
tion.

(4) Descriptions of variables in calling statement:

Name Type HO/W/B Description

N INTEGER I Number of elements in partially ordered
set P.

H INTEGER{N,N)} I H(I,J)=1if1Iis covered by J,0 otherwise
(I,J=1,N).

MU INTEGER{N,N) (0] MU(I,J) is Mgbins matrix element
(I,J=1,N).)

SIGMA INTEGER(N) w Working storage.

SIGl INTEGER(N) w Working storage.

(5) Other routines which are called by this one: TRIANG,
RENUMEB, INVERT.

(6) Number of FORTRAN instructions: 23.

(7) Remarks: If called with MU and H being the same array, the cor-

238 / 26: THE MOBIUS FUNCTION (MOBIUS)

rect output will be obtained, and the input H will of course be
lost. Then the routine requires only a single square integer array
of storage.

SUBROUTINE MOBIUS({N,H,MU,SIGMA,SIGl)

IMPLICIT INTEGER(A-Z)
DIMENSION H(N,N),SIGMA(N),MU(N,N),SIG1 (N}
CALL TRIANG(N,H,SIGMA) '
DO 1 I=1,N
DO 1 J=1,N

1 MU(I,J)=H(I,J)
CALL RENUMB(N,N,SIGMA,SIGMA,MU)
N1=N-1
DO 11 1I=1,N1
J1=I+1
DO 11 J=J1,N

11 MU(I,J)=-MU(I,J)
CALL INVERT (N,MU,MU)
DO 12 I=1,N
DO 12 J=I,N

12 IF(MU(I,J).NE.O)MU(I,J)=1
CALL INVERT(N, MU, MU)
DO 20 1I=1,N

20 SIGLl(SIGMA(I))=I
CALL RENUMB(N,N,SIGl,SIG1,MU)
RETURN
END

SAMPLE OUTPUT

On the following page we show the input H matrix and the output
4 matrix in the case of the set of partitions of the integer 6, partially
ordered by refinement. The order is: (1) 4+ 1 4+ 1, (2) 2+ 1 +
1+14+1, 3+1+1+1, @2+2+14+1, BY2+ 2-+2,
6)4+2, (16, 8)1+1+1+1+1+1, (93+2+1, (10)5+1,
(11) 3+ 3.

For example,

“w@2+2+1+1,4+2)=2=p(3+2+1,6)

and all other entries of the u matrix are at most 1, in absolute value.

26: THE MUBIUS FUNCTION (MOBIUS) / 239

0

¢ 0 0 001 0 0 0 1
¢ 0 0 0 0 0 O

0O 0 1

1

0

1

0O 0 0o 0 0 0 O

1 0 0o 0 1 0 O
1 o 0 0 0 O

0 0 O
0 0o 0 0 O

0 0 0 O
0O 0 o o000 0 0 0 O

1

c 0 0 0 0 O

0O 0 0 0 0 0 0 ¢ O

1

0

1

0O 0 01 0 0 0 1
1 0 0 0 0O
0O 0 0 O

0 0

0 0 0 0 0 0O

0O 0 0 0 0 0 1

-1
-1

-1
-1

27

The Backtrack Method (BACKTR)

(A) GENERAL (BACKTR)

The backtrack method is a reasonable approach to use on problems
of exhaustive search when all possibilities must be enumerated or

processed. The precise mathematical setting is that we are required
to find all vectors

(ﬂ-], gy v + ., a;)

of given length [, whose entries a,, . . . , a, satisfy a certain condi-
tion . In the most naive approach, we might first make a list of all
possible vectors whose entries a; lie within the range of the problem;
then, from this list we could strike out all vectors which do not sat-
isfy our condition €.

In the backtrack procedure, we “grow” the vector from left to
right, and we test at each stage to see if our partially constructed
vector has any chance to be extended to a vector which satisfies €. If
not, we immediately reject the partial vector, and go to the next one,
thereby saving the effort of const'ructmg the descendants of a clearly
unsuitable partial vector,

Thus, at the kth stage (k = 1, I}, we have before us a partial vector

(al, g, . . . 9ak—l)
240 ¢

27: THE BACKTRACK METHOD (BACKTR) / 241

which is not inconsistent with ¥. We construct from it the list of all
candidates for the kth position in our vector. To say that a particular
element x is a candidate is just to say that the new partial vector

(als o, + . . s Qp—1, x)

does not yet show any irretrievable inconsistency with our condi-
tion ¥.

If there are no candidates for the kth position, i.e., if for every =,
the extended vector {(a,, a,, . . . , @y, x) is inconsistent with €, we
“backtrack” by reducing k by 1, deleting a,_, from the list of can-
didates for position k — 1, and choosing the new occupant of the
(k — 1)th position from the reduced list of candidates.

If and when we reach k=1, we exit with a,, . . . , a, Upon reen-
try, we delete g, from the list of candidates for position I and proceed
as before,

We now discuss the computer implementation of this procedure.
Our aim is to split off the universal aspects of the backtrack method
as a subroutine which will be useful in most, or all, applications, and
to leave the part of the application which differs from one situation to
the next to the user, as a program which he must prepare within cer-
tain guidelines. Qur approach is that we suppose that the user
wishes to prepare a program which will exhibit one vector at a time
which satisfies his condition %, and inform him when no more such
vectors exist.

Although it would be simplest to have BACKTR produce one vector
(or a negative message) on each call, we do not do so because such a
program would have to (a) call the subroutine which provides the
list of candidates for each position and hence know the name of this
routine, and (b) pass along to this subroutine all the variables,
arrays, dimensions, etc., that it needs to operate. These will differ
from one application to another.

Instead, the method we have adopted involves the following prin-
ciples (four examples follow in Sections (B)-(E) of this chapter,
which should make the ideas much clearer):

(1) The complete calculation is carried out by three programs:
MAIN, BACKTR, CANDTE, of which BACKTR is universal (and ap-
pears below) and the other two are prepared by the user.

(2) Communication between the programs is as shown in Fig.
27.1. Note that BACKTR and CANDTE do not speak to each other
directly.

(3) MAIN receives input data from the “outside world,” and asks
BACKTR to inaugurate the search for complete vectors by calling

242 }/ 27: THE BACKTRACK METHOD (BACKTR)

MAIN

BACKTRl l CANDTE |

Figure 27.1

BACKTR with INDEX=0.

(4) When BACKTR needs a list of all candidates for the Kth com-
ponent of the output vector, having already found
A(l),...,A(K-1), it asks for this list by RETURN-ing to MAIN
with INDEX=2. ‘

(5) MAIN responds to this request by a call to CANDTE, telling
CANDTE the value of K, the predecessors A(1l},...A(K-1},
and whatever auxiliary arrays are needed for the construction.
(6) CANDTE finds the list of candidates and places them at the
end of a STACK, i.e., a linear array containing all candidates for
all positions up to the Kth, along with a count of the candidates,
which becomes the last word in the stack.

{T) MAIN tells BACKTR this information, and the search con-
tinues. When K=L, so that the search is successfully completed,
BACKTR returns to MAIN with INDEX=1. If there are no more
vectors of the type sought, the search terminates with a return to
MAIN with INDEX=3.

The above description is a general one. Specific recipes for writing
the two routines MAIN and CANDTE will now be given.
The structure of MAIN is as follows:

10

20

30

DIMENSION A(100), STACK{1000),...
Obtain input data

INDEX=0
CALL BACKTR(L,A,INDEX,K,M,STACK,NSTK)
GO0 TO0 (10,20,30}), INDEX
[Process output vector A(1), ... ,A{L)
but do not change it!
GO TO 1
CALL CANDTE(A,K,M,STACK, ...)
GO TO 1

27: THE BACKTRACK METHOD (BACKTR) / 243

The variables and arrays mentioned play very precise roles:

L is the desired length of a complete output vector.
A is the output vector.
INDEX is explained above.
Kis the length of a partially constructed vector: A call to
CANDTE is a request for position A(K); K is set by BACKTR.
Mis the location of the last item on the stack; it is changed by
both BACKTR and CANDTE.
STACK is a linear array, of maximal length NSTK, whose appearance
at a typical intermediate stage in the calculation is shown in

Fig. 27.2.
LI T T Tl T T T T T T T T Tl T 1]
- — AN ~ ~
n, candidates n, candidates ete.
for position A(1) for position A(2)
Figure 27.2

More precisely, let the lists of candidates for A(1),...,
A(K-1),A(K) be stored in STACK, each list followed by its length.
Let NC=STACK(M) be the last item on STACK. Then the items
STACK(M-1),...,STACK(M-NC) are the candidates for 4(K), given
the current values of A(1),...,A(K-1). When one candidate is
needed, NC=STACK(M) is examined; if it is zero, we set MeM—
1, K<K-1, and repeat. Otherwise, we set M<M-1, A(K)e—
STACK(M), STACK(M)<«NC-1. If K=L, we retum A, Otherwise, we
set K<K+1 and ask CANDTE to place the candidates for A{K) in loca-
tions M+1, ..., ,M+Q of STACK, to enter Q into STACK(M+Q+1), and
to set M<M+Q+1. Then BACKTR takes over again.

From this discussion, the precise mission of CANDTE emerges,
which we state as follows: Given K,A(1), ... ,A{K-1) M. Find all
candidates for A(K), insert them in locations M+1, ... ,M+Q of
STACK, insert Q into STACK(M+Q+1), set M<—M+Q+1l, and return to
MAIN.

DESCRIPTION OF FLOW CHART

Box 10 Start a new sequence (or first sequence)?
Boxez 20, 30 Initialization to pass information to auxiliary routine.

Box 50 Read length NC of list of candidates for A{K) from stack.

244 / 27: THE BACKTRACK METHOD (BACKTR)

Boxes 60, 70 1f NC=0, backtrack to Box 70.
Boxes 80, 90 If K=0, list is complete, exit,
Box 100 Read A(K) from stack, reduce list count.

Boxes 110-130 Vector complete? Set K and INDEX accordingly; exit.

FLOW CHART BACKTR

ENTRY I
30 20 10
K=1 Yes
EXIT INDEX=2 M=0 INDEX=07? EXIT

No

50 80 90
NC=STACK(M)
M=M-1

120 110

AlK) = S‘I"ACK(M)
STACK(M)=NC-1

EXIT

1

The relationship of backtracking to random selection is worth a
few remarks. Suppose we have a backtrack situation in which we
want a single random choice of an admissible vector, rather than a
sequential search for all such vectors. Then, instead of choosing a
particular candidate from the list of all possible candidates at the Kth
stage, we might envision choosing one of the candidates at random
from the list. Unfortunately, if the choice is made uniformly, then not
all of the final objects will have equal a priori probability, in gen-
eral.} Thus, this process will, at best, serve as an inadequate substi-
tute for genuine random selection if nothing better suggests itself in
a particular situation.

§ In addition, if there are “few” admissible vectors but many partial vectors, the
method may be hard put to find a single admissible vector!

27: THE BACKTRACK METHOD (BACKTR) / 245

SUBROUTINE SPECIFICATIONS

(1)
(2)

(3)

Name of subroutine: BACKTR.

Calling statement: CALL BACKTR(L,A,INDEX,K,M,STACK,
NSTK) .

Purpose of subroutine: Supervise backtrack search.

(4) Descriptions of variables in calling statement:

Name Type HOIWIB Description

L INTEGER I Length of completed vector.

A INTEGER{L} 0] A(1),...,A{L) is an oultput vector.

INDEX INTEGER IO =0 to start a search; =1 with a complete
output vector; =2 if candidates are
needed; =3 if no more vectors exist.

K INTEGER o] Current Iength of partial vector.

M INTEGER HO Current length of STACK.

STACK INTEGER(NSTK) o List} of candidates for positions 1, ..., K.

NSTK INTEGER I Maximum length of STACK.

{ Input variables supplied by CANDTE routine.

(5)
(6)

10
20

30
50
60
70
80
90
100

11¢

Other routines which are called by this one: None.
Number of FORTRAN instructions: 23.

SUBROUTINE BACKTR(L,A,INDEX,K,M,STACK,NSTK)
IMPLICIT INTEGER(A-Z)
DIMENSION A(L),STACK(NSTK)
IF (INDEX.NE.O) GO to 50
K=1 .
M=0

INDEX=2

RETURN

NC=STACK (M)

M=M—1

IF(NC.NE.O) GO TO 100
K=K-1

IF(K.NE.0) GO TO 50
INDEX=3

RETURN

A(K)=STACK (M)

STACK (M)=NC-1

IF(K.NE.L) GO TO 120
INDEX=1

246 / 27: THE BACKTRACK METHOD (COLVRT)

RETUEN
120 K=K+l

GO TO 30

END

(B) COLORING THE VERTICES OF A GRAPH
(COLVRT)

As our first application of backtracking, let G be a graph of n ver-
tices, and let X be a given positive integer. A proper coloring of the
vertices of G in A colors is an assignment of a color 4; (1 = a; = A) to
each vertex i =1, n in such a way that for each edge ¢ of G, the two
endpoints of e have different colors.

The vector

(als Ao, . - . :arl)

will be the output of our backtrack program, and we will prepare, in
this section, the subroutine CANDTE, in this case called COLVRT,
which will cause all possible proper colorings of G in A colors to be
delivered sequentially.

We observed in the discussion of Section (A) that the key question
for the user of BACKTR is the determination of all candidates for posi-
tion K of the output vector if a partially constructed vector

(A(1),...,A(K-1))

is given.

In the present case, our answer is as follows: If K=1, A(l)=lis
the only candidate (for normalization). If K>1, the list of candidates
is the set of those integers J such that

(1) 1=J=A
and

{2) there is no I=K-1, such that A(I}=J and vertex I is connected
to vertex K in the graph G.

Suppose that the graph G is specified by means of its vertex-ad-
jacency matrix in LOGICAL form, i.e.,

ADJ(I,J) = {.TRUE. if I<J, and vertex I connected toJ
)= 1.FALSE. if I<J, otherwise (1=I,J=N)

27: THE BACKTRACK METHOD (COLVRT) / 247

Then the set of candidates for position K, if K>1, is precisely
{1.2,...,A}—{A(I)|I=K-1 and ADJ(I,K)=.TRUE.}

The actual program adheres exactly to the format described in Sec-
tion {(A).

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: COLVRT.

(2) Calling statement: CALL COLVRT(N,A,K,M,STACK,NSTK,
LAMBDA, ADJ,COL}.

(3) Purpose of subroutine: Find possible colors of vertex K.

(4) Descriptions of variables in calling statement:

Name Type I/o/wiB Description

N INTEGER I Number of vertices in the graph.

A INTEGER(N) I A (I} is the color of vertex T({I=1,N}.§

K INTEGER I Vertex whose color-candidates are to be
found. {

M INTEGER IO Current length of stack.}

STACK INTEGER{NSTK) HO Candidates for positions
A(1),...,A(K-1).1

NSTK INTEGER I Maximum length of STACK.

LAMBDA INTEGER I Number of colors available
{1=A(I)=LAMBDA for I=1,N).

ADJ LOGICAL(N,N) I ADJ(I,J)}=.TRUE. if vertices I,J are
joined by an edge; =.FALSE. other-
wise.

COL LOGICAL(N) w Working storage,

1 Input values are supplied by BACKTR.

(5) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 24.

SUBROUTINE COLVRT(N,A,K,M,STACK,NSTK, LAMBDA, ADJ, COL)
IMPLICIT INTEGER(A—-Z)

LOGICAL ADJ,COL

DIMENSION A(N),STACK(NSTK),ADJ(N,N),COL(N)
IF(K.GT.1) GO TO 10

STACK(1)=1

STACK(2)=1

M=2

RETURN

248 7 27: THE BACKTRACK METHOD {COLVRT)}

10 Kl=K-1
DO 20 TI=1,LAMBDA
20 COL(I)=.TRUE.
DO 30 I=1,Kl
30 IF(ADJ(I,K)) COL(A(I))=.FALSE.
M1=M
DO 40 I=1,LAMBDA
IF(.NOT.COL(I)) GO TO 40
M1=M1+1
STACK (M1)=I
40 CONTINUE
STACK (M1+1)=M1-M
M=M1+1
RETURN
END

SAMPLE OUTPUT

The following output shows the six possible proper colorings of a
4-cycle (Fig. 27.3) in which the color of vertex 1 is fixed at color 1.

1 2
4 3
Figure 27.3
The input ADJ array was

- T F T
T - T F
ADJ= F T — T
T F T -

[e
NN WWW
HEHEOWR PN
MO o WK

27: THE BACKTRACK METHOD (EULCRC) / 249

(C) EULER CIRCUITS (EULCRC)

Let G be a (directed or undirected) graph of n vertices and ¢ edges.
By an Euler circuit on G we mean a walk along the edges of G which
visits each edge exactly once, returning to the starting point, and fol-
lowing the direction of each edge if G is directed.

A celebrated theorem of Euler holds that an undirected graph has
such a circuit if and only if every vertex of G has even valence. A
directed graph has such a circuit if and only if at each vertex there
are an equal number of ingoing and outgoing edges. In either case G
is called Eulerian.

If G is Eulerian we can ask for a program which will list all of the
Euler circuits of G in the fashion of our “next” subroutines, i.e.,
producing one circuit each time called, until no more remain.

The backtrack program provides a ready-made tool for such a task,
and so we now describe the utilization of BACKTR in our desired
subroutine. As usual, we suppose given a partially constructed Euler
circuit

(A(1),A(2),... A(K-1))

and we ask for the list of candidates for the Kth edge A(K) in the cir-
curit,

We first need to define the idea of a “terminal vertex.” If G is un-
directed, we choose one of the endpoints of edge A(1) and declare it
to be the terminal vertex of A(1). Then, for I=2,3, . . .the terminal
vertex Z1{I) is that vertex of A(I) which is not the terminal vertex
of A(TI-1). If G is directed, the terminal vertex of A(I) is pre-
scribed.

To return now to the question of candidates for A(K), if G is un-
directed, an edge ¢’ is a candidate for A(K) if

(1) e’ does not appear among A(1),...,A(K-1)
and

(2) the terminal vertex Z1(K-1) of edge A(K-1) is an endpoint
of e'.

If G is directed, condition {(2) is replaced by

(2') the terminal vertex Z1{K-1) of edge A(K-1) is the initial
vertex of e’.

Euler’s theorem guarantees that such a path must retum to its
starting point, if G is Eulerian.

250 s 27: THE BACKTRACK METHOD {EULCRC)

Many of the interesting applications of our subroutine occur with
graphs G which have loops and multiple edges. We therefore permit
these in the input graph. Hence input data will consist of
ENDPT(1,I),ENDPT(2,I), and the two ends of edge I (I=1,E)},
where the two endpoints may be equal, and the same pair may ap-
pear several times. If G is directed, ENDPT(1,I) is the initial vertex
and ENDPT(2,I) is the terminal vertex of edge I.

For an undirected G (OPTION=1}, the algorithm for determining
the list of candidates for A(K) is

ALGORITHM EULCRC

(A) K=1? If so, set Z1(1)}<ENDPT(2,1); Candidate is edge 1,
only; Exit.

(B} K=2? If so, to (D).

(C) Z1(K-1)<ENDPT({1,A(K—1))+ENDPT(2,A(K-1))-Z1(K-2).

(D) ED{I)«.FALSE. (I=1,E).

(E} For I=1,E: {If Z1(K-1) is one of the endpoints of edge I, set
ED(I)<.TRUE.}.

(F) ED(A(I))<.FALSE. (I=1,K-1) M

The candidates are then the edges I such that ED(I)=.TRUE..If G
is directed (OPTION=2), step {E) above is replaced by

(E') For I=1,E: {If Z1(K-1) is the initial vertex of edge T, set
ED(I)<.TRUE.} M

A brief comment about step (C) above seems warranted. If we have
three numbers x, ¥, z, and if z is known to be one of x, y, but it is not
known which one, and if we wish to set w equal to the other one of
x, y (i.e., the one which is not z), then the quickest program is

w=x+y—=z

which is done in step (C).

Program CANDTE (called EULCRC) for listing Euler circuits appears
on the following two pages.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: EULCRC.
(2) Calling statement: CALL EULCRC(E,A,K,M,STACK,6NSTK,
OPTION,ENDPT,Z1,ED).

27: THE BACKTRACK METHOD {EULCRC) 7 251

(8) Purpose of subroutine: Find candidates for Kth edge of Euler
circuit,
(4) Descriptions of variables in calling statement:
Name Type IHO/W/IB Description

E INTEGER I Number of edges in graph G.

A INTEGER(E) 1 A(I} is the Ith edge in the circuit
(I=1,E).t1

K INTEGER I Index of next edge to be determined in
circuit.]

M INTEGER IO Current length of stack.}

STACK INTEGER (NSTK) IO Candidates for all positions
1,..., K-1.1

NSTK INTEGER I Maximum length of stack.

OPTION INTEGER I =1 if G is undirected; =2 if G is directed.

ENDPT INTEGER(2,E) I ENDPT(1,I), ENDPT(2,I) are the two
ends of edge I{I=1,E).

pAl INTECER (E) w Working storage.

ED LOGICAL(E) w Working storage.

{ Input supplied by BACKTR.

(5)
(6)

10
20

30
40
60

61
62
64
65

Other routines which are called by this one:
Number of FORTRAN instructions:

SUBROUTINE EULCRC(E,A,K,M,STACK,NSTK , OPTION

+ENDPT, Z1,ED)
IMPLICIT INTEGER(A-Z)
LOGICAL ED(E)

None.
32.

»

DIMENSION A(E),STACK(NSTK),ENDPT(2,E),Z1(E)

IF(K.NE.1) GO TO 30
Z1(1)=ENDPT(2,1)

STACK(1)=1
STACK(2)=1
M=2
RETURN

IF(K.EQ.2) GO TO 60

Z1(K-1)=ENDPT(1,A(K-1))+ENDPT(2,A(K-1))-21(K-2)

T=21(K-1)
IF(OPTION.EQ.2) GO TO 80
DO 62 1I=1.E

ED(I)=T.EQ.ENDPT(1,T).0OR.T.EQ.ENDPT(2,I)

Kl=K-1
DO 66 1I=1,Kl1

252 / 27: THE BACKTRACK METHOD (EULCRC)

66 ED(A(I))=.FALSE.

70 M1=M
DO 71 1I=1,E
IF({.NOT.ED(I)) GO TO 71
M1=M1+1
STACK (M1)=I

71 CONTINUE
STACK {M1+1)=M1-M
M=M1+1
RETURN

80 DO 81 1I=1,E

81 ED(I)=T.EQ.ENDPT(1,I)
GO TO 64
END

SAMPLE OUTPUT

The complete graph K; on 5 vertices has 132 different Euler cir-
cuits, On the following pages there appear, first of all, the ENDPT
array which describes K;, and then the full list of 132 circuits as ob-
tained, successively, from the program.

1111 2 2 2 3 3 4

2 3 4 5 3 4 b 4 5 5

1 7 10 8 9 4 3 6 5 2
1 T 10 8 9 4 2 5 5] 3
1 7 10 8 5 8 3 4 9 2
1 7 10 8 5 6 3 2] 4
1 T 10 8 2 4 9 5 6 3
1 T 10 8 2 3 6 5 9 4
1 7 10 6 5 9 4 3 8 2
1 7T 10 6 5 9 4 2 8 3
1 7 10 6 5 8 3 4] 2
1 7 10 6 5 8 3 2] 4
1 T 10 6 5 2 4 9 8 3
1 7 10 6 5 2 3 8 2] 4
1 T 10 3 4 9 8 6 5 2
1 T 10 3 4 9 5 6 8 2
1 T 10 3 2 8 6 5 9 4

27: THE BACKTRACK METHOD (EULCRC) 7/ 253

10
10

10

10
10

10

10
10

10

10

254 / 27: THE BACKTRACK METHOD (EULCRC)

10
10

10

10
10

10
10
10

10

10

10
10

27: THE BACKTRACK METHOD (EULCRC) / 255

10

10

10
10

10

10

i0

10

10

10

256 / 27: THE BACKTRACK METHOD (HAMCRC}

(D) HAMILTON CIRCUITS (HAMCRC)

In a graph G of n vertices, a Hamilton circuit is a sequence
Vla V2, V:h LRI | Vr:

of vertices of G such that the V, are some rearrangement of all of the
vertices of G, each V, is connected by an edge to Vi
(i=1,...,n—1),and V, is connected to V.

More pictorially, a Hamilton circuit is a round-trip walk on the
edges of G which visits every vertex once entering and once leaving
(following the directions of the edges if G is a directed graph). Many
graphs do not have Hamilton circuits, and there are no simple cri-
teria for deciding whether a given G has such a circuit and, if so, how
many different such circuits it has.

The program in this section presents to the calling routine, each
time it is called, a Hamilton circuit of G until no more exist, at which
time it will so inform the main routine in the usual manner by setting
INDEX=3.

We have here a simple exercise in backtracking, in which, if

A(1),A(2),...,A(K-1)

is the vertex sequence in a partially constructed circuit, the set of
candidates for A(K) is the set of all vertices x in G such that

(1) ¥x=l:x=1.
(2) IfK>1:(a) A(K-1) is joined to x by an edge of G
and
(b) «x is distinct from A(1), ..., A(K-1).
(3) IfXK=N:(c) =z isjoined to A(1) by an edge of G
and
(d) = <A(2),
and
(a} and (b} above.

We ensure that each Hamilton circuit occurs exactly once by the
normalization conditions in (1) and (3d) above, which require that
A{l}=1and A(N)<A(2).

If G is a directed graph we omit condition (3d}. The program will
handle an undirected (OPTION=1) or directed {OPTION=2) graph.
Program CANDTE (here called HAMCRC) for this purpose appears on
the following pages.

27: THE BACKTRACK METHOD (HAMCRC) / 257

SUBROUTINE SPECIFICATIONS

(1)

Name of subroutine: HAMCRC.

{2) Calling statement: CALL HAMCRC(N,A,K,M,STACK,NSTK,
ADJ ,VERT,OPTION).
(3) Purpose of subroutine: Find candidates for Kth vertex in a
Hamilton circuit.
(4) Descriptions of variables in calling statement:
Name Type HO/WIB Description
N INTEGER I Number of vertices in graph G.
A INTEGER (M) I A(I) is the Ith vertex in the circuit.}
K INTEGER I Index of next step on current partial
circuit.]
M INTEGER 1o Current length of stack.t
STACK INTEGER {NSTK) IO Candidates for steps 1,...,K-1 (see
text). I
NSTK INTEGER I Maximum length of stack.
ADJ LOGICAL(N,N} 1 ADJ(I,J)=TRUE if edge (I.J) is in G;
FALSE otherwise.
VERT LOGICAL(N) w Working storage.
OPTION INTEGER I =1 if G is undirected; =2 if G is directed.

1 Input supplied by BACKTR.

(5)

(6) Number of FORTRAN instructions:

10
20

30

31

32

Other routines which are called by this one:

SUBROUTINE HAMCRC{N,A,K,M,STACK,KNSTK, ADJ,VERT, OPTION)

IMPLICIT INTEGER({A-Z)
LOGICAL ADJ(N,N),VERT(N)

None.
38.

DIMENSION A(N),STACK(NSTK)

IF(K.NE.1) GO TO 30
STACK(1)=1
STACK(2)=1

M=2

RETURN

K1=K-1

Al=A(K1)

DO 31 I=1,N
VERT (I)=ADJ(Al,I)
DO 32 1I=1,Kl
M1=A(I)

VERT (M1)=.FALSE.

258 / 27: THE BACKTRACK METHOD (HAMCRC)

M1=M
IF(K.EQ.N) GO TO 50

40 DO 41 1I=1,N
IF(.NOT.VERT(I)) GO TO 41
M1=M1+1
STACK (M1)=I

41 CONTINUE

44 STACK (M1+1)=M1-M
M=M1+1
RETURN

50 DO 51 1I=1,N
IF(.NOT.VERT{I)) GO TO 51
IF(OPTION.EQ.2) GO TO 52
IF(I.GT.A{2)) GO TO 44

52 TIF(.NOT.ADJ(I,1)) GO TO 44
M=M+2
STACK (M-1)=I
STACK (M)=1
RETURN

51 CONTINUE
GO TO 44
END

SAMPLE OUTPUT 1

The graph in Fig. 27.4, on 20 vertices, was one of those originally
studied by Hamilton. There are 30 Hamilton circuits in the graph,

I
Figure 27.4

PHHMHERRMFHRPHRHRRERRERERERFRFFRHERPHEFPRRERRRERFEF

27: THE BACKTRACK METHOD (HAMCRC) / 259

and they are shown in the following output, one circuit per line.
Elapsed computer time was less than one minute on a relatively slow
and small machine.

The vertices of this graph are numbered consecutively following
one of the circuits found by Hamilton, which appears as the first one

below.

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

000000 Co 000 o

1°
19
19
19
19
12
19
19
19
19
18
16
16
16
16
16
16
16
16
16

111000

18
18
18
18
18
18

]
9
9
9
17
17
17
17
17
17
15
15
15
15
19
19
10
10
10
10
6
6
3
3

17
17
11
11
11
11
10
10

8

8
18
18
13
13
13
13
14
14

2

2
20
20
11
11
11

3]
10

5

4

186
16
12
12
12
10
11

6

T

7
19
19
14
12
12
12
13

4

3

3
16
16
18
12
12

7

9
12
14

15
15
13

=

-

PN S S B e B e) IR B oV B IS o s B (O RS LIS)

4 5 6

14
2
17
&6
4
8
17
4
10
4
10
8
2
18
6
4
18
6
6
14
18
14
20
17
6
4
20
17
17
10

13

3
16
10
14

7
16
14
11
14
11

7

3
19
10
14
19
10
10
13
11

4
16
18

7

S
16
18
18

9

12

7
15

9
13

6
15
13
18
13
12

3

4

S
11
15

<]
11
11
17
10

5
17
12

3
12
15
11
11
19

11
6
14

8.

17
5
2

12

17

12

13
4
5

10

18
2
8

12

12

18
6

12

13

20
4

11

14

10

12

20

10
5
4
7

16

12
3

11

16
5

14
5

12
5]

19
3
7

13
5

19
T

13

12

16

14

18

13
]
5

16

8 7 6 5 4 3

14
6
4
2

17

14

17

14

10
2

10

18
4
8
6

10

18

14

10
4

18
6

14

17

20

18

20

10

18

13
10
14

3
16
13
186
13
11

3
11
19
14

v
10
11
19
13
11

5
11

T

4
18
16
11
16

9
11

12

9
13

i
15
12
15
12
18

4
12

Q
15

3
11
12

o]
17
12
12
10

3

5
19
17
12
15
19
12

11
8
17
6
14
5
2
5
17
5
13
10
2
4
18
5
8
18
5
13
6
4
6
20
13
5
14
20
13

10 9

=

RO OO
'_l

-3 -1 © G WKW

~
[

|
~

st [y
ROV OBRNIILIIOD
'—l

]

-
WA -JOWWOON-]-TO AW

H=
[

[y =
[OOSR)]
MOMNMMMODNMMNMNODONMNNMONOONONMDDONMONNEON

=
[loN)]
=
ar

260 / 27: THE BACKTRACK METHOD {(HAMCRC)

SAMPLE OQUTPUT 2

~ Consider the graph G whose 24 vertices correspond to the permu-
tations of 4 letters, where each permutation ¢ is connected to the
three other permutations which can be obtained from o by a single
interchange of two adjacent letters. Thus abed is connected to bacd,
achd, and abdc. A Hamilton circuit in G is then a sequencing of the
24 permutations so that each is obtainable from its predecessor by
such an interchange.

With the aid of NEXPER, BACKTR, HAMCRC and a main program,
we found that there are 44 such Hamilton circuits in G, which are
listed on the next page, one to a line, in the following format: To go
from permutation I to I+1 in the circuit, we exchange the Jth letter
with the (J+1)th letter (1=J=3). The sequence of values of J, for
I=1,23 is shown in each line.

For example, in the tenth line of the output we find the sequence

3212 1232 3212 1232 3212 123

of values of J, which yields the list of 24 permutations in the follow-
ing order:

1234 9 2314 17 3124
1243 10 2341 18 3142
1423 11 2431 19 3412
4123 12 4231 20 4312
4213 13 4321 21 4132
2413 14 3421 22 1432
2143 15 3241 23 1342
2134 16 3214 24 1324

Q0 =1 3 U b

A further examination of this list of Hamilton circuits was carried
out in order to find equivalence classes with respect to action of the
group generated by (a) replacing each J in a sequence by 3-J and
(b) eyclically permuting a sequence. This examination showed that
there are just five equivalence classes of circuits among the 44 cir-
cuits which were printed out, representatives of which are

3121 2131 2121 3123 2121 232
3123 1321 3123 1321 3123 132
3132 3231 3212 3232 1231 323
3212 1232 3212 3212 1232 321
3212 1232 3212 1232 3212 123

31212131212131232121232
31212131232121232131212

31232121232131212131212
31231321312313213123132
313232313232313212323¢21
31323231321232321231323
31321312313213123132131

31321232321231323231323
32121232321232121232321

32121232321212323212123
3212123213121 2131212131
32121232123232121232123

32123132323132323132123
32123232121232123232121

3212323212313 2323132323
32123212123232123212123
32131212131212131232121

3213123132131 2313213123
32313212323212313232313
32313232313212323212313
3232121232123 2321212321
32321212323212123232121

3232123212123 2321232121
32321231323231323231321

32323132123232123132323
32323132323132123232123

23232121232123232121232
23232121232321212323212
23232123212123232123212
23232123132323132323132%2
23213121213121213123212

23212123232123212123232
23212123213121213121213
23212323212123212323212:2
23132323132323132123232
23132131231321312313213

21312321212321312121312

21312121312321212321312

21232321232121232321232
21232321212323212123232

21232131212131212131232
21232123232121232123232
21213123212123213121213
21213121213123212123213

/ 261

262 / 27: THE BACKTRACK METHOD (SPNTRE)

(E) SPANNING TREES (SPNTRE)

Qur final example of a backirack routine will, each time it is
called, exhibit one spanning tree of a given graph G and inform
the user when no more exist.

Suppose, then, that

A(lY,A(2),...,A(K-1)

are the edges of a partially constructed spanning tree of G. What are
the candidates for A(K)? Suppose we were to adopt the condition
that for A(K) we use any edge I such that exactly one endpoint of T
is incident with the subgraph spanned by A(1l},...,A(K-1). We
would surely generate all spanning trees, but a given tree T could be
generated many times. This is because the present problem is fun-
damentally different from the preceding applications in that the
order of the compoenents in the output vector is immaterial. A given
tree T might appear with several different edge orderings, and we
want each one to be generated just once.

To avoid this problem, we might require not only that edge I have
exactly one vertex in the previous partial tree, but also that
I>A(K-1). This would insure that the edges would be in ascending
order, so each tree T would then be generated no more than once.
Unfortunately, some trees would not be generated at all! Indeed T
could be so generated if and only if when the edges of T are arranged
in increasing order of their numbers, each edge A{I) is incident
with the subgraph spanned by A(1),...,A(I-1), and this is
clearly a special property not shared by all T.

In order to insure that each tree appears at most once, we continue
the requirement that A(K)>A(K-1). To insure that all trees appear,
we ask only that edge A(K) not form any circuits in the subgraph

spanned by A(1l),...,A(K-1), but we do not insist that it be in-
cident with that subgraph. Our partially constructed trees
{A(1), ... ,A(K-1)}=T will actually be forests, i.e., will have sev-

eral conmected components, each of them a tree. To determine
whether or not an edge e completes a circuit in Ty we ask if both
endpoints of e lie in the same connected component of T. Finally,
cbserve that the complete tree T will have N — 1 edges, and if these
edges are to be numbered in ascending order, then we must have
A{K)SE-N+K+1 (K=1,...,N-1).

To summarize, edge 1 is a candidate for position K, given

27: THE BACKTRACK METHOD (SPNTRE} / 263

A(L),...,A(K-1)if

(1) A(K-1)}+1=I=E-N+K+1

and

(2) ENDPT(1,I) and ENDPT(2,I) are in different connected com-
ponents of the subgraph whose vertices are all of the vertices of
G and whose edges are A(1), ..., A(K-1).

Subroutine SPANFO of Chapter 18 will assume the task of deter-
mining the connected component X{J) in which each vertex J=1 N
lives.

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: SPNTRE.

(2) Calling statement:
CALL SPNTRE(E,N,A K M, STACK, NSTK, ENDPT END, X)

(3) Purpose of subroutine: Find candidates for Kth edge of span-
ning tree,

(4) Descriptions of variables in calling statement:

Name Type IIO/WIB Description

E INTEGER I Number of edges of graph G,

N INTEGER 1 {Number of vertices of graph) — 1 (111}

A INTEGER(N) I A(I) is Ith edge of spanning tree
{I=1,N}.{

K INTEGER I Index of position for which candidates are
needed. 1

M INTEGER 110 Current size of stack. |

STACK INTEGER{NSTK) Hile; List of candidates for all positions (see
text}.

NSTK INTEGER I Maximum length of stack.

ENDPT INTEGER(Z2,E) 1 ENDPT(1,I), ENDPT(2,I) are the two
ends of vertex I in G (I=1,E).

END INTEGER(Z2,N) w Working storage.

X INTEGER(N) w Working storage.

{ Input supplied by BACKTR.

{5) Other routines which are called by this one: SPANF0, RENUMB.
(6) Number of FORTRAN instructions: 28.

SUBROUTINE SPNTRE(E N, A, K,M,STACK, NSTK,ENDPT,
+END , X)

264 / 27: THE BACKTRACK METHOD (SPNTRE)

IMPLICIT INTEGER(A-Z)
DIMENSION A{(N),STACK(NSTK), ENDPT(2,E) END(2,N),
#X {N)
10 IF(K.NE.1l) GO TO 30
20 N2=E-N+1
DO 21 1I=1,N2
21 STACK(I)=I
M=N2+1
STACK (M)=N2
RETURN
30 Kl=K-1
Do 31 I=1,bKl
END{1,I)=ENDPT(1,A(I))
31 END(2,I)=ENDPT(2,A(I))
N3=N+1
CALL SPANFOQ{N3 K1 END,COMP,X)
I1=A(K1)+1
I2=FE-N+K
M1l=M
32 DO 35 1I=I1,I2
IF (X(ENDPT(1,I}).EQ.X(ENDPT(2,I))) GO TO 35
M1=M1+1
STACK(M1)=I
35 CONTINUE
STACK (M1+1)=M1-M
M=M1+1
RETURN
END

SAMPLE OUTPUT

Suppose that five cities A, B, C, D, E are situated as shown
in the “map” in Fig. 27.5 in which the numbers are the distances
between cities. We ask for the shortest length of telephone cable
which would connect all of the cities together. Evidently, we seek
the spanning tree of the graph of shortest total length (Fig. 27.6). The
output of our program shows for each of the 125 spanning trees of the
graph, first its total length, and then the four edges which comprise
the tree. It is seen that the shortest connection is 235 miles long.
There are much more efficient ways of handling this problem (see
Chapter 30) and this example is intended only to illustrate the opera-
tion of SPNTRE.

27: THE BACKTRACK METHOD (SPNTRE) / 285

B
40

45

30

E
Figure 27.5 The map. Figure 27.6 The shortest connection,

455 4 7 ¢ 10 290 3 5 8 7
395 4 7 8 10 400 3 4 7 9
385 4 7 8B] 340 3 4 7 8
375 4 6 9 10 320 3 4 6 9
315 4 6 8 10 260 3 4 8 8
305 4 6 8 9 330 3 4 b 9
380 4 6 7 9 270 3 4 5 8
320 4 6 7 8 345 3 4 b T
385 4 5 9 10 265 3 4 5 6
325 4 5 8 10 415 2 7 8 10
315 4 5 8 9 355 2 7 8 10
400 4 5 7 10 345 2 7 8 9
330 4 5 7T B 335 2 6 9 10
320 4 5 & 10 275 2 6 8 10
310 4 5 6 9 265 2 6 8]
325 4 5 6 T 340 2 6 7 2
420 3 7T 9 10 280 2 6 7 8
360 3 7 8 10 345 2 5 9 10
350 3 T 8 9 285 2 b 8 10
340 3 6 9 10 275 2 5 8 9
280 3 6 8 10 360 2 5 7 10
270 3 6 8 S 290 2 8 7 8
345 3 6 7T 9 280 2 5 6 10
285 3 8 7T 8 270 2 5 & 9
350 3 b 9 10 285 2 5 6 T
290 3 5 8 10 405 2 4 7 10
280 3 b 8] 335 2 4 7 8
365 3 5 7 10 325 2 4 6 10
295 3 b 7 8 255 2 4 6 8
280 3 5 6 10 330 2 4 86 7
275 3 b 6 9 33D 2 4 5 10

266 / 27: THE BACKTRACK METHOD (SPNTRE)

295

26b
260
370

235
315

10

4 5

1

2 3 7 10

245
240
335

360
290
280
295
300

10

2 3 6

10

1 3 9

3 8 10

275
265
340
280
280
270
285

10

2 3 5

290
305

1 3 5 10

350
270

280
395
330
325

315
255

1 7 9 10

1 7 8

10

260

10

2 9
1 2 8 10

1

330
RT70
260
345

6 9 10

315
255
245
320

6 8 10

2 7 10

275
265

260

2 6 10

1

1 5 9 10

325
265
255
340

255

5 8 10

270
320

2 4 10

1

5 7 10

1

250

270
260

245
285

5 6 10

2 3 10

250

275
290
265

265
370
310
300

1 4 9 10

4 8 10

28

Labeled Trees (LBLTRE)

We now consider the processing of labeled trees. A celebrated
theorem of Cayley asserts that there are exactly n* 2 such trees on n
vertices. Our plan here is to use one of the proofs of Cayley’s
theorem as the basis for selection algorithms.

The proof which we will use is due to Priifer, and it gives an
explicit construction which associates with each labeled tree on n

vertices a unique (n — 2)-tuple of integers a,, @;, . . . , ady_s in the
range

(1) 1=ag;,=2=n i=1,n—29)

in a 1-1 way. Since there are obviously n* 2 sequences (“code-
words”) a,, . . . , @,—, which satisfy (1), Cayley’s theorem will follow
at once.

Having established this, we will give an algorithm which con-
structs a tree from its codeword, in linear time. Hence, with this
algorithm, one can exhibit all trees on n vertices, select one
uniformly at random, find the mth one on the list, etc., since such
operations are trivially easy on the codewords themselves.

Given a tree T on n vertices. By an endpoint of T we mean a
vertex of valence 1. It is easy to see that every tree has at least one
endpoint.

/ 267

268 / 28: LABELED TREES (LBLTRE)

4 & 4 3 4 5
ﬁ VALV 6
%——b— 3 ——— ¥ —b-\s/ —:-—3/.
2
1 = = = =
(et B o B) IR Vit

Figure 28.1

Let x be the endpoint of smallest index. Let g, be the unique
vertex of T to which x is connected. Delete x and the edge (x, a,)
from T, to obtain a new tree T'. Again, let ' be the endpoint of T’ of
smallest index, and let a, be the unique vertex of T’ to which x’ is
connected. Delete x' and edge (x’, a,) from T’ to obtain T", etc. The
process halts when we have found a,, @,, . . . , @, and the tree has
been reduced to a single edge.

For example, we have the sequence of Fig. 28.1. The tree at the
left is associated with the sequence (2, 3, 3, 3) of integers in the
range [1, 6].

Priifer’s construction goes both ways. Given a sequence (a4, . . . ,
@,—s) in the range [1, n], make two lists. List, initially contains
the numbers 1, 2, . . . , n in order. List, initially contains a, . . . ,
@n_s. List, has length 2 greater than List,. Hence, there are numbers
in List, which are not in List,. Let x be the smallest of these
(1 = x = n). Connect vertex x and vertex a, by an edge. Delete x
from List, and ¢, from List,. Again, let x be the smallest number in
List,, which is not in List,. Connect (x, a,) by an edge. Delete x and
a5 from their respective lists, etc.

The process terminates when List, is empty and List, contains two
elements x, y. Connect (x, y) by an edge, and the tree is now com-
plete. For example, if n =6, we have the sequence shown in Fig.
28.2.

The argument actually is useful for a good deal more than a proof
of Cayley’s theorem. For instance, given an n-tuple a={a,, . .

-3

o
3

we H
o> -

o H

———

FE RS
wewwre H

[= 304 WU 5 B]
weoww H
oo H

edge (edge) edge) (edge edge
e N e B e I A

Figure 28.2

28: LABELED TREES (LBLTRE) / 269

@a.—2) satisfying (1); what is the valence p(i) of vertex i in the tree
which corresponds to a? The construction shows that p(i) =1 + u(3)
where p(i) is the number of appearances of i in a (i=1,. .., n).

Hence, if the number of trees on n labeled vertices with valences
p(1),. . ., p(n) (given) is denoted by F,(p), we know that F,{(p} is
the number of (n — 2)-tuples a which satisfy both (1) and the addi-
tional condition that

(2) n(@i)=p@E)—1 (G=1,...,n)

Since evidently
(3) S u@=n—2
i=1

we have from (2)

(4) Ep(i)=2n—2

i=1
as a necessary condition on the p if F,{p) > 0. If (3) holds, then F,(p)
is the number of ways of arranging p(1) —1 1’s, p(2) —1 2's,. . .,
p{n} — 1 n's in an (n — 2)-vector; i.e.,

(n — 2!
{(p() =11« (p(n) — D!

is the number of trees with valence vector p. Summation of (5) over
all p which satisfy (4) vields Cayley’s theorem again, but (5) is con-
siderably more precise.

How many labeled trees on n vertices have exactly ¢t endpoints?
We can select which ¢ vertices shall be the endpoints in

()
t
ways. The number of trees in which vertices 1,2,. . ., t are the

endpoints is the number of ways of placing n —2 labeled balls
into n — ¢ labeled boxes with no box empty. To see this, let the

(5) F.(p)=

balls be labeled 1,2,. .., n—2, and let the boxes be labeled
t+1,¢i+2,...,n For any arrangement of the balls in the boxes
with no box empty, interpret the set of labels on the balls in box i as
the set of subscripts j such that ¢,=i (j=1,...,n—2;
i=t+1,...,n) The arrangement therefore leads uniquely to a
vector (dy, . . . , @) in which g; = ¢t+1 (i=1,...,n—2), and
therefore to a tree in which vertices 1, 2, . . . , t are endpoints. We

have proved the

270 / 28: LABELED TREES (LBLTRE)

Theorem The number of labeled trees on n vertices which have ex-
actly t endpoints is

(6) ?—:{Z:i} @=t=n—1)

in which the quantity in braces is a Stirling number of the second

kind.

A consequence of {6) is the identity
a—1 —
%) 2 n! {n 2} — -2

“tl|ln—t

which is well-known in the theory of Stirling numbers. The average
number of endpoints over all trees on n vertices is

n—==2

- =onl fn—2 ! -2
— (=2 non S R | LR
t=mn %tt!{n—t} n ;(n ") (n—r)!{ }

T

n—2 — —
— n—(n—z) -n 2 (n ‘ 1) 1‘! {n 2} — n-—(n—z) -n- (n —_— 1):1—2
r=1 ? 4

=n(1—l)" z~£(n_>w)
n e
Hence an average tree has about n/e endpoints.

We return now to the main purpose of the discussion, which is to
describe an algorithm for generating a random tree. Evidently what
we need to do is just

(a) Select n — 2 integers ¢,, . . . , &,_, at random in [1, n].
{b) Carry out Priifer’s construction to get the tree.

The formal algorithm utilizes arrays as follows:

A(J) (J=1,N-2) The n — 2 numbers a,, . . ., d,_s
(this is List,).

B(J) (J=1,N) =.TRUE. if J is on List,; . FALSE.
otherwise.

M{J) {J=1,N) The number of appearances of J
in List,.

{gﬂggﬂi; {M1=1,N-1) The two endpoints of the Mlth

edge in the output tree.

We turn now to the question of implementing Priifer’s construction
by a formal algorithm. This algorithm utilizes two linear arrays: a;

28: LABELED TREES (LBLTRE) s 271

(i=1, n—2) is the given codeword, and tree(d) (i=1, n — 1) de-
scribes the output labeled tree T in the sense that (3, tree(s)) (i = 1,
n — 1} is the set of edges of T. The algorithm is due to P. Klingsberg.

We begin by flagging the last appearance of each integer m in the
codeword by changing its sign. For example, if the input codeword is
(7, 2, 5, 2, 1, 5) we would change it to (—7, 2, 5,—2,—1, —5).

Now the array tree will hold three kinds of information during the
operation of the algorithm:

(a} Tree(i) = —1 means that i is still in List, and that 4 still appears
in List,.

(b} Tree(i) = 0 means that i is still in List, and that i does not ap-
pear in List, {i is “eligible™).

{c) 1= Tree(i) = n means that i is no longer in List; and so
Tree(i) is the other endpoint of vertex i in the output tree.

In the example above, the array tree would be initially set to
0,—-1,0,0,—1,0,—1, 0).

Further, two pointers k, k' are maintained. k' always points to the
smallest eligible index i, that is, the least i for which tree(i) = 0. The
pointer k has the property that for every eligible index i we have
i >k or i = k'. The formal algorithm follows.

ALGORITHM LBLTRE

[Enter with a,, . . ., a,, (Vi: 1 =g; = n); Exit with the tree
which is thereby encoded, in the form of its edge list (i, tree(s))
i=1,n-—1)].

(A) [Initialize]
tree(f) < 0(i=1,n) k< 1;j < 0; a,_, < n.
Fori=n—2,...,1do:
If tree (g;) =—1, next i;
tree(a;} < —1; a; < —a,; next i.
End
(B) [Move down to next eligible vertex]
k' « k < min{l = kltree(l) = 0}.

(C) [Enter next edge] j<j+1; 7« |aj; tree(k’) < r [done?] if
J=mn—1, exit; [last appearance of r on List,?] If a; > 0, to (B);
[reenter r as active letter] if 7 > k set tree(r) « 0 and go to (B)
EFernto(ONR

272 /

28: LABELED TREES {LBLTRE)

SUBROUTINE SPECIFICATIONS

(1)
(2)
3)

@

Name of subroutine: LBLTRE.

Calling statement: CALL LBLTRE(N,6A, TREE).

Purpose of subroutine: Produce the edge list of a tree from its
Priifer codeword. :

Descriptions of variables in calling statement:

Name Type IJO/WiB Description

N INTEGER 1 Number of vertices in desired tree.

A INTEGER (N} I A{I)(I=1,N-2} is the Prifer codeword of
the tree.

TREE INTEGER (N} (0] (I, TREE(I)} is the Ith edge of the output

(3)
(6)

10
11

12

20

25

30

32

tree {I=1,N-1).

Other routines which are called by this one: None.
Number of FORTRAN instructions: 30.

SUBROUTINE LBLTRE(N,A,6 TREE)
INTEGER A(N) ,TREE({N) ,R
Do 11 I=1,N

TREE(I}=0

NM2=N-2

DO 12 1I=1,6NMZ2
L=A{N-1-T}

IF(TREE(L) ,EQ.0) A(N-1-I)=-L
TREE(L)=-1

K=1

A{(N-1)=N

J=0

IF{TREE{K) .EQ.0) GO TO 25
K=K+1

GO TO 20

KP=K

J=J+1

R=IABS{A(J))}

TREE(KP)=R

IF(J.EQ.N-1) GO TO 40
IF(A(J).GT.0) GO TO 20
IF(R.GT.K) GO TO 35

KP=R

28: LABELED TREES (LBLTRE) / 273

GO TO 30
35 TREE(R)=0
GO TO 20
40 DO 41 TI=1,NM2
41 A(I)=IABS(A{I))
RETURN
END

SAMPLE OUTPUT

For our sample problem we used LBLTRE to display the 16 la-
belled trees on N=4 vertices. On the 16 printed lines below we show
the Priifer codeword A(l) A(2) and the output TREE array,
TREE(1) ,TREE(2) ,TREE(3) , for each of these 16 trees.

B WO ANNMEALAWRNOHELDWN PR
Db o A WM NNNE P
LN I \V IR N A I VI R SN U T Y S N
[N 7, B < T < B S N N N N N SU I S
Bl N R R R A R NN N e

29

Random Unlabeled Rooted Trees
(RANRUT)

The algorithms for finding random partitions of an integer (Ranpar,
Chapter 10) and random equivalence classes on a set (Ranequ,
Chapter 12) were both based on recurrence relations of the approxi-
mate form

(1) Nar= > Cn-mlm

m<n
where a,, is the number of objects of order n and where the ¢’s were
known or easy to compute. A combinatorial proof of (1) was essential,
which then gave rise to an inductive construction by dividing both
sides of (1) by the left side and interpreting the terms on the right as
a sum of probabilitiés that add up to one.

The situation for random unlabeled rooted trees (briefly called
“trees” for the remainder of this chapter) is similar since it is also a
special case of the ideas in the Postscript to Chapter 10, pp. 78-87,
although more complicated. The essential formula which ¢£,, the
number of trees on n vertices, satisfies is now

(2) (n=1t= 3 timy dta (n>1,t,=1)

1=IM<h dm

For n fixed, select an integer m, 1 = m < n, a divisor d of m, a tree
T' of n—m vertices, and a tree T’ of d vertices. Make j=m/d

274 7

29: RANDOM UNLABELED ROOTED TREES (RANRUT) / 275

copies of T''. Join the root R of T’ to the roots of each of the copies of
T''. There results a tree T of n vertices rooted at R. This operation is
symbolized by T« T'+; ® T,

To prove (2), take d copies of T. We claim that, thus, every rooted
tree on n vertices is created exactly n — 1 times. Indeed, if T is such
a tree, let k be the valence of the root R of T. Delete these k edges
and also R, and root each component at the vertex which was
connected to R. Suppose the resulting k trees consist of ., copies

of a tree 1, on I, vertices, . . . , u, copies of a tree r,, on I, ver-
tices, where, of course, u,l;+ - -+ + ud,=n—1, and the trees
Ti, . - - , Ts are nonisomorphic. From these data the tree T can be ob-

tained in the following way: let 1 = j=s,1 =<7 = yu;, and let T' be
the tree obtained by deleting from T r copies of 7, including the
edges joining their roots to R. Then T is obtained as T' +r ® 7;. We
count this construction [, times; then T is counted g,l, + © - - + p,l;
=n— 1 times, as claimed in (2). See the Postscript to Chapter 10,
pp. 78-87, where the general principles underlying such construc-
tions are described.

Formula (2) is well known. The usual proof, which we do not
present here, is based on the generating function T{x) = 3=, t,x"
which satisfies the identity

(3) T(x)=x exp{i M}

r=1 T

Indeed, our construction proves (3), because (2) and (3) are equiva-
lent after logarithmic differentiation of {3).

Most important for our present purposes, we can now use (2) to
construct random trees. First the numbers #,, ¢, . . . , t, are to be
computed using (2), or the equivalent form (set m = jd; take ¢, =0
when k = 0)

(4) (n - l)tn = E 2 dtu—_idtd) =1
d=1 =1

then divide by the left side
— i i dtn— d’td
J’= a=1 l)t"
and interpret the right side as a sum of probabilities: Choose a pair

(4, d), with j = 1, d = 1, with a priori probability

dt,_ta

(5) prob{(j, d) = (n—1Dt,

276 / 29: RANDOM UNLABELED ROOTED TREES (RANRUT)

then choose (inductively) a random tree T’ on n — jd vertices (with
1

tn —id

probability)and a random tree T'' on d vertices (with probability

;}-). Carry out the construction described above to yield a rooted tree
d

T. To calculate the a priori probability of T, observe that the present
single construction yields T with probability

dtn—ia‘td . 1 . _1_ — d
(n—]-)tn [. (n - l)tn

Suppose now, as before, that T can be constructed from p, copies of a

rooted tree r,, . . . , i, copies of 7,; then T could have been con-
structed with r, taking the part of T for j=1,. .., u, (so d=1,)
with 7, taking the part of T forj=1,. . . , us (so d =1,). The total
a priori probability of T is therefore

3 = lﬂ‘l 1

S 1
2 m=Dh - =Dt 2 *nn =g

m=1 j=1 LTS |

and it follows that all trees of n vertices are equally likely to occur.

The actual inductive construction of random rooted unlabeled
trees is complicated by the nonlinearity of (2) and (4): the construc-
tion of T requires the construction of fwo other random trees, T' and
T''; they in their tum require two trees, etc. This does not end until
we hit a random tree with 1 or 2 vertices, which we know how to
construct.

As an illustration, let n = 11. A random selection based on Egq. {5)
with n =11 produces, e.g., (j, d)={(2, 3); so n—jd=05. We draw
again, now for n=>5 (yielding, e.g., (3,1)) and n=2 (yielding
(1, 2)). We represent the results in a diagram (actually, a binary tree)
in which, for each n, the n — jd is written below n, the d to the right
of n —jd; and the j along the arrow connecting n to d. The bottom
row of Fig. 29.1 now gives rise to the trees in Fig. 29.2 (roots drawn
on top). By joining these according to the line above in Fig, 29.1, we

NN

2
Figure 29.1 Figure 29.2

29: RANDOM UNLABELED ROOTED TREES (RANRUT) / 277

Figure 29.3 Figure 29.4

obtain Fig. 29.3. Finally, join these again, and obtain Fig. 29.4.
Algorithm RANRUT is based on the idea of constructing the tree in
Fig. 29.1 in parts, going downward whenever possible, and to the
right only when needed. Then, we save what can be constructed and
combine pieces as quickly as possible. Figure 29.5 shows, in each
column, the part of Fig. 29.1 that has at any moment been deter-
mined, and under it a list of relevant graphs from F igs. 29.2-4,
which are being constructed at the same time. Each column consti-
tutes one step of progress over the previous one. The thin arrows in-
dicate transitions. The numerical codes 1 and 2 are translated into
trees because there is only one tree with that number of vertices.
Pairs (j, d) are split up into a pair (j, 0) which serves as a reminder
on how to combine two trees once they have been constructed, and d
which indicates the size of the tree which is to be worked on next.

The pairs of integers (j, d) are stored in one list and are retrieved
as needed, on a “last in, first-out” basis (a so-called “stack”). The
partial graphs are stored similarly, and constitute a second stack. The
graph is finished when the first stack is empty; the tree T just con-
structed is the desired output.

An examination of the Figs. 29.1-4 indicates that the stack of pairs
of integers never contains more than n elements. Similarly, the stack
of trees contains a total of no more than n vertices.

I =~—{2,3) (2,3) (2,3} (2,3) (2,3) (2,3) ?

5—(3,1) G&,0—(300 (3,0}
\z \:
\ \,
R NP7\

?12'0) (2,0) (2,0) {2,0) (2,0} (2,0
3 —(1,2) (1,2) —={1,0) (1,0)

IS i

71 I N R N

Figure 29.5

278 / 29: RANDOM UNLABELED ROOTED TREES (RANRUT)

Comment. The notion of unlabeled rooted tree means “equiva-
lence class under isomorphisms of trees in which roots correspond to
roots.” In more practical terms, the present algorithm claims to pro-
duce each equivalence class of rooted n-trees with equal probability,
but that does not necessarily hold for each of the inevitable labelings
of the vertices in a computer output with which a tree of one type
can occur. It is in that sense that the trees here are unlabeled even
though the computer forces each one to carry a labeling.

We now describe the implementation of these ideas in a computer
program. Two stacks are used. The first of these, STACK, will hold
the pairs {4, d) or (j, 0), and its elements are therefore ordered pairs
of integers.

The second stack, called TREE, is a stack of rooted trees. Initially,
TREE is empty. On output, TREE holds the output random rooted
tree, in the form: (I, TREE{I)) is the Ith edge of the output tree
{I=2 N). At an intermediate stage of the calculation TREE will hold
a number of rooted trees, and two kinds of information are stored
in TREE: if I is not the root of one of the rooted trees, then
{I,TREE(I)) is an edge of such a tree; if I is the root of such a tree
then TREE (I) points to the root of the next (smaller I) tree in the
stack.

For example, suppose we had, at some stage, the following three
rooted trees:
| 5 QI
2 & 10

7

8
Figure 29.6

Then the portion of the array TREE which would so far be filled
would look like this:

I 1234567388910

TREE{I) 0 1 2 2 1 5 6 7 5 9

One additional pointer, called L in the program, is used to point to
the root of the rightmost tree in the list (in the example above, L=9] .

29: RANDOM UNLABELED ROOTED TREES (RANRUT) / 279

In terms of this array TREE , the reader should observe the simplic-
ity of carrying out the two operations which are demanded by the
program: adding a new tree to the stack, or performing the operation
T« T +j®T", both of which are done in the TREE array itself.
The formal algorithm follows.

ALGORITHM RANRUT

[Note: T,, T, denote, respectively, the unique rooted unlabeled
trees on 1, 2 vertices; Input is NN, output is a random rooted tree on
NN vertices.]

(A) n < NN; Set STACK and TREE arrays empty.

(B) If n =2, then write a T, on the list TREE and go to (C); Else,
find a pair (j, d) by (5) and write (j, d) on STACK: Set
n < n —jd and go to (B).

(C) Read in a pair (j, d) from STACK; If d =0 then join j copies of
the last tree in TREE to the root of the next-to-last tree in TREE
leaving the resulting tree in TREE to replace both of them; If
STACK is empty, exit with the output tree in TREE; else go to
step (C). Else, if d # 0, write (j, 0) on STACK, set n < d and go
to (B) A

In the FORTRAN program, the instructions prior to number 10 sim-
ply calculate the numbers t,, ¢,, . . . , &, from the recurrence (4). In-
structions 10-60 choose a pair of integers (j, d) according to the prob-
abilities (5) and write the pair on STACK.

Step (B) of the formal algorithm begins at instruction 70 where
n =2 and the new tree is placed on TREE and linked to its left
neighbor.

Step (C) of the formal algorithm begins at instruction 90. The stack
counter IS1 is decremented as the next (4, d} is read in. Then in the
DO 104... loop we make J copies of the last tree and write them in
TREE, taking care that their roots are all set to the root of the next-to-
lasttree (thisrootiscalled LL , andthe IF(MOD . . .)instructionsets
every Mth array element, i.e., the root of each of the j copies, to LL),

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: RANRUT.
(2) Calling statement: CALL RANRUT{NN, T, STACK,K TREE) .

280 / 29: RANDOM UNLABELED ROOTED TREES (RANRUT)

(3) Purpose of subroutine: Generate random unlabeled rooted
tree.

(4) Descriptions of variables in calling statement:

Name Type I/O/WIB Description

NN INTEGER 1 Number of vertices in desired tree.

T INTEGER (NN} B T(I} is the number of rooted, unlabeled trees
of I vertices (I=1,2,...) {universal con-
stants).

STACK INTEGER({Z2, NN) W Working storage.

TREE INTEGER {NN) (0] (I, TREE{(I)) is the Ith edge of the output

tree (I=2 NN) TREE(1)=0.

(5) Other routines which are called by this one: FUNCTION
RAND{I) (random numbers).
(6) Number of FORTRAN instructions: 63.

SUBROUTINE RANRUT (NN,T,STACK, TREE)
IMPLICIT INTEGER(A-Z)

REAL RAND

DIMENSION TREE(NN),6 STACK(2 6NN} T (NN}
DATA NLAST/1/

L=0
T(1)=1
1 IF(NN.LE.NLAST) GO TO 10
SUM=0
DO 2 D=1 NLAST
I=NLAST+1
TD=T (D} *D
DO 3 J=1 NLAST
I=I-D

IF(I.LE.Q) GO TO 2
SUM=SUM+T (I)*TD
CONTINUE
NLAST=NLAST+1
T{NLAST)=SUM/ (NLAST-1)
GO TO 1
10 N=NN

IS1=0

I52=0
12 IFIN.LE.2) GO TO 70
20 Z={N-1)*T (N)}*RAND (1)

D=0

N W

29: RANDOM UNLABELED ROOTED TREES (RANRUT) / 281

30 D=D+1
TD=D*T (D)
M=N
J=0
40 J=J+1
M=M-D
IF{M.LT.1) GO TO 30
50 Z=Z-T (M) *TD
IF{Z.GE.Q) GO TO 40
680 IS1=IS81+1
STACK(1,ISl)=J
STACK(2,1S1)=D
N=M
GO TO 12
70 TREE(IS2+1)=L
L=I52+1
IS2=IS2+N
IF(N.GT.1l) TREE(IS2)=I52-1
80 N=STACK(2,6I51)
IF(N.EQ.0) GO TO 90
STACK(2,IS1}=0
GO TO 12
90 J=STACK(1,K6 IS1)
IS1=I51-1
M=IS2-L+1
LL=TREE (L)
LS=L+(J-1)*M-1
IF{J.EQ.1} GO TO 105
DO 104 I=L,LS
TREE{I+M)=TREE(I)+M
IF{MOD(I-L ,M).EQ.0} TREE{I+M)=LL
104 CONTINUE
105 IS2=LS+M
IF(IS2.EQ.NN) RETURN
L=LL
GO TO 80
END

SAMPLE OUTPUT

Subroutine RANRUT was called 450 times with NN=5. There are 9
different rooted unlabeled trees of 5 vertices (Fig. 29.7). The

282 ;7 29: RANDOM UNLABELED ROOTED TREES (RANRUT)
Ok . ® ——=< ® —X
g—a—;“ ® >y @ >__
—F— ® +

Figure 29.7

frequency with which each of these 9 trees was constructed by
RANRUT is shown in the output below.

The value of x? (not shown) is x* = 5.6 with 8 degrees of freedom.
In 95% of such experiments the value of x* would lie between 2.03
and 18.17 if the choice of the trees were truly uniform.

58
48
44
b2
52
50
40
58
48

OOU10ONhWNDFE

30

Tree of Minimal Length (MINSPT)

Suppose we are given n cities, which are to be interconnected by a
communications network by connecting certain pairs of cities, and
suppose the network is to be as short as possible. For example, in
Fig. 27.5 on page 265 there appears a map of five cities along with
the distances between each pair of them. How can we find the short-
est network, shown in Fig, 27.6 of the same page, without examining
all possibilities?

It happens that this is one of the pleasant mathematical situations
in which a method which is as “greedy” as possible at each step
turns out also to be optimal. The algorithm which we describe in this
chapter will deliver the shortest interconnection in O(n? running
time.

Observe first that in any given interconnecting network, if a closed
path exists then an edge can be removed without disconnecting the
network. Hence the connection of minimum length will be a tree
which spans the n given points (i.e., visits all of them).

The algorithm itself is recursive. Let T, denote the tree which con-
sists of the single vertex {n}. Generically, suppose that a tree T;,
has been constructed. Then adjoin to T;, a single edge a; whose
length is minimal in the class of all edges with one end in T, and
one end not in T,_,. This defines T;(j=1,2, ... ,n—1).

7 283

284 / 30: TREE OF MINIMAL LENGTH (MINSPT)

We claim that T,_, is a spanning tree of minimal length.

Indeed, suppose T* is any spanning tree of minimal length. Let
D*, D be the lengths of T*, T,_,, respectively. Suppose D > D*. Let
a; be the first edge in the sequence

al) aEs L au—I

of edges of T,_,, which does not appear in T*, In T*, let b denote the
edge which joins the component C, spanned by edges ¢, . . . , a1
to the component of T* induced by the vertices of T* which are not
in C.. Suppose b is longer than «;. Then we could replace b by a;and
obtain a shorter tree, contradicting the minimality of T*. Suppose b
is shorter than g; Then we would have chosen b instead of a, at the
ith stage of our construction of T,_,. Hence b and 4; have the same
length.

Replace b by ¢;in T*, which leaves its length invariant, and repeat
the argument. The process halts after at most n — 1 steps with T#
having been transformed into T,., by a sequence of length-
preserving edge substitutions, W

For the implementation of the algorithm we suppose that input to
the subroutine will consist of n and the distance matrix dist(s, §) (i,
i=1,n).

Qutput will be a single linear array tree(i) (i =1, n — 1) such that
(i, tree(d)) is the ith edge of a minimal spanning tree (i=1, n — 1).

At a typical intermediate stage of the algorithm, the array tree(i)
will hold two kinds of numbers. A negative entry tree(i) = —m in-
dicates that vertex i is not in the current partially constructed span-
ning tree, and furthermore the vertex which is in the current partial
tree which is closest to vertex i is vertex m. A positive entry tree(i) =
m indicates that vertex i is in the current tree, and indeed, edge (i,
m) is in the tree.

Initially this array is set to (—n, —n, . , —n, 0), corresponding to
an initial tree Ty = {n}. The full algonthm follows

ALGORITHM MINSPT

(A} Settree(i) < —n{i=1, n — 1), then do step {(B) n — 1 times and
exit.
(B) Let

Amin < min{dist(i, [tree(i)) | 1 £ i = n — 1; tree(i) < 0}

and let iy, be a value of i at which the minimum is attained;

30: TREE OF MINIMAL LENGTH (MINSPT) / 285

[Adjoin new edge] tree(imm) < —treelimm); [Update list of
nearest vertices]
Fori=1,n—1do:
If tree(i) < 0 and dist(, imm) < dist(i, —tree(s))
set tree(i) « —ig,
End R

SUBROUTINE SPECIFICATIONS

(1) Name of subroutine: MINSPT.
(2) Calling statement: CALL MINSPT{N,NDIM,DIST, TREE).
(3) Purpose of subroutine: Find spanning tree of minimal length,
(4) Descriptions of variables in calling statement:
Name Type HO/WIB Description
N INTEGER I Number of vertices.
NDIM INTEGER I Dimension of DIST in calling program.
DIST REAL (N, N} I DIST({I,J) = distance from Ito J(1=TI,
J=N) |
TREE INTEGER (N) o (I, TREE(I}) is the TIth edge of the output
minimal tree (I=1 N-1) .
(3) Other routines which are called by this one: None.
(6) Number of FORTRAN instructions: 24
(7} Remarks: If input graph is not complete, put DIST= ® on miss-
ing edges.
SUBROUTINE MINSPT({N NDIM,DIST, TREE)
REAL DIST(NDIM,6 NDIM)
INTEGER TREE (N)
NM1=N-1
20 DO 21 I=1,NMl
21 TREE(I)=-N
TREE{N}=0
25 DO 51 L=1,NMl
DMIN=1 E50
40 DO 41 I=1 NM1
IT=TREE{I)

IF(IT.GT.0) GO TO 41

286 / 30: TREE OF MINIMAL LENGTH (MINSPT)

D=DIST(—IT,I)
IF (D.GE.DMIN) GO TO 41
DMIN=D
IMIN=T
41 CONTINUE
TREE (IMIN) =—TREE (IMIN)
50 DO 51 I=1,NMl
IT=TREE(I)
IF(IT.GT.0)} GO TO 51
IF(DIST (T, IMIN) .LT.DIST(I,-IT)) TREE(I)=-IMIN
51 CONTINUE
RETURN
END

SAMPLE CUTPUT

We present two sample problems. One of them appears in Chapter
27(E), page 265, where a network appears, along with its minimal
spanning tree. ’

For a somewhat larger example, in Fig. 30.1 we show a minimal

Figure 30.1

30: TREE OF MINIMAL LENGTH (MINSPT) / 287

spanning tree for the capitols of the 48 contiguous states of the
United States. The complete connection which is displayed there
would require about 8850 miles of telephone cable. The output was
obtained by reading in the latitudes and longitudes of each state cap-
itol, calculating the 48 X 48 DIST matrix, and then calling MINSPT.
The running time was 0.6 seconds with a WATFIV compiler on an
IBM 370/168 computer.

Exercises

[The numbers in brackets are those of the relevant chapters.]

1. Find the first ten Taylor series coefficients, about the origin, of
w(z)}, the solution of the equation we™" =z, [21]

2. Statistically estimate, by 1000 random trials, the probability that
a shufled deck of 52 cards contains no “straight,” i.e., a set of five
consecutive cards of consecutive face values (Ace =1, Jack =11,

Queen = 12, King = 13). [8]
3. Tabulate the number of labeled trees on n vertices which have
exactly j endpoints (=1,2, ..., n; n=2,3,4, 5, 6). [27(E)]
4. Find the average number of endpoints in a sample of 200
random labeled trees on n vertices (n =2, 3, 4, 5, 6). [28]
5. Deal poker hands to k people. (4]
6. The symmetric group S, is generated by just two elements
t:1-2,2-1;,3—23;,...;n—>n
#:1-2—-3— - -—=>n—1

288 /

EXERCISES / 289

Sequence the 24 elements of S, so that each is obtained from its
predecessor by either ¢ or u. 8; cannot be so sequenced. Prove this
by exhaustive computation, [7, 27]

7. For some small values of n, estimate by random trials the
average number of edges which must be added one at a time to the
totally disconnected graph on n vertices in order to connect it. [18]

8. Given A, an n X n integer matrix. Qutput a single integer word
whose ith bit position is I or 0 according to whether the ith row sum
of A is odd or even, respectively.

9, For Hamilton's graph of Fig. 27.4,

{a) calculate the chromatic polynomial P(x; G)

(b) evaluate P(\; G) (A = 0(1)8)

(c) find the edge-connectivity of G

(d) what is the chromatic number y of G?

(e} list all x-colorings of G. [19, 20, 22, 27(b)]

10. Modify PERMAN to calculate the permanent of a double-
precision complex matrix. Test your program to make sure it works.
[23]

11. (a) Which of the “random” routines in this book do you think
would provide a sensitive test of the randomness of a random
number generator? Discuss.

(b) Use the program of your choice to compare any three
random number generators.

12. Think about how a subroutine can discover how many bits are
in a machine word in the machine on which the subroutine is being
run.

13. Given blocks of information B{1),...,B(N) (each block could
be, e.g., a row of a matrix). Assume a subroutine MOVE(I,J) will
move the content of B(I) to B(J}. There is one more block BO. In-
formation is moved into and out of BO by calling MOVE(I,0} or
MOVE(0,I). - [16]

Permute the blocks so that B{P{I)) is moved to B{I) (I=1,N),
where P is a given permutation.

14. (a) Identify the revolving-door algorithm as the unfolding of a

Hamilton circuit on a certain graph G(n, k). Describe G(n, k). [3]
(b} How many vertices does G(n, k) have? How many edges?
{c) What is the valence of each vertex of G{n, k)?

2890 / EXERCISES

(d) Draw G(5, 3).
(e} Use HAMCRC [27(D)] to list all of the Hamilton circuits of
G(5, 3). Identify the RD algorithm as one of these circuits.

15. (a} Determine if two given graphs G, H are isomorphic. [27]
(b} Determine all isomorphism types of graphs on six vertices.

16. Sample a nonnegative integer n at random from the Poisson dis-
tribution

Prob(n)=i—:e‘“ (n=0,1,...)

where a > 0 is given. (See also [K1, Vol. 2].)

17. Determine if the integers from 1 to n, inclusive, can be ar-
ranged in three sets so that if a and b are in the same set, then a + b
is not in that set. Run this program to find the largest n for which it
can be done. [27]

18. Given a Boolean polynomial f of M terms, in N variables. Deter-
mine if fis a tautology (always true), and if not, output a set of values

of the variables at which fis false. [1]
19. Given two partitions of n: 7 and #’. Output +1 if 7 is a refine-
ment of w', —1 if 7’ is a refinement of &, 0 otherwise. [9]

20. Write a program that will find the Mdbius function of the set of
partitions of n, partially ordered by refinement. [9, 22]

21. Given a permutation 7 on n letters, construct its inversion table.
Try to do it in O(n log n) steps. [7]

22. (a} Output the list of edges of a random graph on n labeled
vertices, k edges, without loops or multiple edges.

(b) Estimate, by random trials, the probability that such a
graph is connected, for some small values of k, n. [4, 18]

23. Show that when the chromatic polynomial is expressed in facto-
rial form, m! times the coeflicient of (A),, is the number of colorings
in exactly m colors, m=0,1, [19, 20]

24. To find random subsets of {1, . . . , n}, note that 2~ is the prob-
ability that i is the smallest element. A random ¢ can determine,
without a search, a, as the smallest i for which 27! = ¢ (use loga-
rithms!); adjoin this i to the subset; now work on {i +1,. .., n},
etc. Work out all details and estimate the labor involved per subset.

[2]

EXERCISES / 291

25. What is a rhyme scheme, in poetry? How many rhyme schemes
can an n-line poem have? Print all possible rhyme schemes of an
n-line poem, n=2, 3, 4, 5, 6. {Our thanks to John Riordan for this

one.) (See also [Ga2].) [11]
26. (a) Construct the vertex-adjacency matrix of the n-cube Q,.

{b) List the Hamilton circuits of Q. (1]
27. Print the multiplication table of S,,. [7]
28. To choose random k-subsets of {1,...,n}: for each
i=1, ...,k choosel at random in [1, n —i + 1]; let g, be the Ith
smallest of the integers in {1, . . . ,n} —{a, . . ., ai}.

(a) Prove that the method works.

(b) Estimate its operation count.

(¢} Modify it by binary search and insertion to obtain the
elements in increasing order, [4]

29. Given numbers k;, . . . , k; whose sum is n. Write a subroutine
which randomly partitions {1,. .., n} into subsets §,,. ..., S;

with k,, . . . , k, elements, respectively.
Can you do this with O{nl) operations? With O(n log 1) operations?
[12]

30. Let S{n,, . . ., ny) be a multiset, which contains n; copies of
i=1,...,m). Design a “NEX” algorithm which produces each
of the submultisets of S (all, or those of a fixed cardinality) exactly
once,

31. Consider a tree on n vertices, rooted at 1. Determine for each
vertex its distance from the root. Can you do this in O(n} time?

32. Leta,,. .., abe given positive integers. For each n = 0, let
P(n) denote the number of representations of n in the form

n=p,a, + oty + ¢ -+ ppa, (=0, Vi)

(a) Show that

1 Z ,
(l_xm) - e (l_xak)=j=EOP(J)xJ

{b) Differentiate logarithmically to show that

nP(n) = 2 g(n—m)P{m) (P(0)=1)

m<n

292 / EXERCISES

Describe &(m).
(c) Modify RANPAR to select a representation of n in this form
at random (see also [NW2]). [10]

33. Transpose an m X n matrix in place using no additional array
storage.

34. Devise an algorithm which will generate all compositions of n
into k parts, sequenced so that each is obtained from its immediate
predecessor by a single jump of one ball from one cell to another.

[5]

35. Devise an algorithm which will generate all partitions of an
n-set, sequenced so that each is obtained from its predecessor by
changing the class of some single element. [11]

36. Given an m X n matrix over the integers modulo 2, with m = 4.
Devise an algorithm which counts the nonsingular m X m submat-
rices, in less than O{n™) time. Can you do it in O(n) time?

37. Write a FORTRAN subroutine of =25 instructions, which will
select at random a binary tree on n vertices and output the edge list.

38. (a) Given an array B(1l),...,B{N). Describe a method of
sorting B into nondecreasing order by constructing the zeta matrix of
a certain partial order, then calling TRIANG, then calling RENUME,

(b) Why is this a very inefficient sorting method? [15, 17, 25]

39. Tabulate the number of displacements and the number of com-
parisons required to sort each of 100 random input vectors B(1}, . . .,

B(N}. Print the average and the maximum for N=3,4,...,12. Do
this for the Heapsort program of Chapter 15, and for two other sorting
methods of your choice. [8, 15]

40. Let F(n, j) denote the number of permutations of »n letters such
that the Heapsort program requires exactly j exchanges of pairs in
order to sort the permutation into ascending order.

Tabulate F(n, j} forn =2, 3, 4, 5, 6, 7 and all j. [15, 7]

41. Encode the elements of the field GF(p*) (p prime, k = 1) of p*

elements, and construct routines (or tables) for the 4 basic opera-
tions.

42, Given long lists L,, . . . , L, of integers. Suppose each L, is
sorted in increasing order. Merge these lists into one sorted list,
using no more than O{log k) comparisons for each integer in the list.

EXERCISES / 293

Try to do it in one pass. (This is of importance, e.g., if L;, . . . , L,
fill all available disk space, and only one tape is available for output.)

43. Given a generalized chessboard; i.e., a finite subset of the
squares of a chessboard with infinitely many squares in all direc-
tions. Determine if it can be covered by dominoes, and if so, find
such a covering. [Hint: the black and white squares form a bipartite
graph.] (22]

44, Given a partially ordered set with n elements. Devise a
“NEX" algorithm which produces all the labelings of the elements
with the integers 1, . . . , n, so that the ordering of the labels is a
refinement of the given partial order. [25]

45. Suppose someone wished to make RANPER “more” random, by
replacing step (B) by: For m = 1, n: {p <= 1 + [¢n]; Exchange ¢, a,}.
Prove that this does not work. [8]

46, Write an algorithm which will output the Priifer word of a
labeled tree in linear time. [28]

47. [Refer to Problem 44] Identify the consistent labelings of the
elements of a partially ordered set as the set of walks or a certain
graph [Hint: Generalize the identification of Young Tableaux as such
a family of walks in Chapter 14.] [13, 14]

48. Take algorithm NEXT of Chapter 13 in the case of partitions of a
set of n elements into k classes, and restate it directly in the language
of set-partitions (i.e., making no reference to walks, graphs, code-
words, ete,), [13]

49. Devise encoding algorithms for the combinatorial families of
Chapter 13 (e.g., given a partition of a set in the “usual” format, find
the walk to which it corresponds). [13]

50. Identify the recurrence for Fibonacci numbers as a recurrence
for the number of objects of order n in a family of walks on the posi-
tive integers,

Deduce a unique representation theorem for positive integers as
sums of Fibonacci numbers from the fact that every object in the
family has a unique rank. [13]

51. Program the first algorithm for random partitions which is men-
tioned in Chapter 10. [10]

32. Write a program which performs the functions of SPANFO as a
depth first search and which uses BACKTR. [18, 27]

Bibliographic Notes

Chapter 1 This algorithm is well known. See Gilbert [G1] for
further interesting properties of paths on the cube. For a history of
the Gray Code, see Gardner [Gal].

Chapter 4 Random number generators are in Ralston and Wilf
[RW1] and Knuth [K1, Vol. II]. The method of this chapter is an-
nounced in Nijenhuis [N1].

Chapter 5 Three other algorithms are mentioned in Lehmer
fL1].

Chapter 7 Many methods are known for generating permuta-
tions. For Wells’s see [W1] or his book [W2]. The adjacent mark
method is due to Trotter [Trl]. Other possibilities are in Lehmer
[L1].

Chapter 9 For combinatorial properties of Stirling Numbers see
Feller [F1] and Knuth [K1].

Chapter 10 These ideas are from Nijenhuis and Wilf [NW1].

Postscript See Bender and Goldman [BGI1] and Foata and Schiit-
zenberger [FS1].

Chapter 12 For an account of Bell numbers, see Gardner [Ga2].

294 s

BIBLIOGRAPHIC NOTES / 295

Chapter 13 This material is from Wilf [Wi2], [Wi3].

Chapter 14 This material is from Greene, Nijenhuis, and Wilf
[GNWI1].

Chapter 15 A definitive discussion of sorting is in Knuth [X1,
Vol. I1I]. The Heapsort is due to Floyd [FI1] and Williams [WI1].

Chapter 18 Tarjan’s algorithm is in [Tal].

Chapter 21 Faa diBruno’s formula is discussed in Knuth [K1].
The logarithmic differentiation algorithm for f(z)" is well known [K1,
Vol. 11, Section 47]. Its use for a general g(f{z)) seems to be new.

Chapter 22 The standard reference on network flows is Ford and
Fulkerson [FF1]; see also [Bel]. For an in-depth discussion of
edge-connectivity see Tutte [Tul]. Karzanov’s algorithm is in [Kal];
see especially Even’s exposition in [Ev2]. The modified method
which replaces a layered structure by the more general KZ-net and
avoids the use of push-down stacks by observing the role of order-
ideals is due to Nijenhuis[N2]. See also [BK1].

Chapter 23 Ryser’s formula is in [Ryl]; For the rencontres
numbers, see Riordan [Ril]. The factor of 2, as in Eq. (24), can also
be derived from Eq. (2) of Wilf [Wil). The applicability of the Gray
code has also been observed by Knuth [K1, Vol. 2, p. 440] who also
gives an algorithm as fast as ours, which however requires nearly 2"
storage registers.

A short and elementary proof of Bregman’s theorem (conjecture of
Ryser and Minc[M1], [Ry2]) is in [Scl].

Chapter 28 The linear-time decoding algorithm is due to Paul
Klingsberg (doctoral dissertation, University of Pennsylvania, 1577).

References

Beckenbach, E.
[Bel] Network fow problems, in “Applied Combinatorial Mathematics” (E. Beck-
enbach, ed.). Wiley, New York, 1964,
Bender, E. A., and Goldman, J. R.
[BG1] Enumerative uses of generating functions, Indigna Univ. Math. J. 20
{1971), 753-765.
Bender, E. A., and Knuth, D. E.
{BK1] Enumeration of plane partitions, J. Combinatorial Theory Ser. A 13 (1972)
40~-54,
Conte, S. I., and de Boor, C.
[CB1] “Elementary Numerical Analysis” 2nd ed. McGraw-Hill, New York, 1972,
Even, S.
[Ev1] “Combinatorial Algorithms.” Macmillan, New York, 1973.
[Ev2] The max How algorithm of Dinic and Karzanov. Lecture Notes, Mas-
sachusetts Inst, of Tech., Cambridge (1876).
Feller, W. :
[F1] “An Introduction to Probability Theory and Its Applications.” Wiley, New
York, 1951.
Floyd, R, W.
[FI11] Comm. ACM. 7 (1964), 701
Foata, D., and Schiitzenberger, M.
[FS1] “Théorie géomékique des polynomes euleriens” (Lecture Notes in Math.,
No. 138). Springer-Verlag, Berlin and New York, 1970.
Ford, L. R,, and Fulkerson, D. R,
[FF1] “Flows in Networks.” Princeton Univ, Press, Princeton, New Jersey, 1962.

296 /

REFEREMNCES / 297
Gardner, M.
[Cal] Sci, Amer, (August 1972), pp. 105-109.
[Ga2] Sci. Amer. (May 1978), pp. 24-30.
Gilbert, E. N. '
[G1] Gray codes and paths on the n-cube, Bell System Tech. J. 37 (1958), 815-826.
Gilbert, E. N, and Pollak, H. O.
[GP1] Steiner minimal trees, STAM J. Appl. Math. 16 {1968), 1-29.
Goldman, J. R.
See [BG1],
Greene, C., Nijenhuis, A., and Wilf, H. S.
[GNW1] A probabilistic proof of the hook formula; Advances in Math. to appear.
Hutchinson, J. P.
[H1] Eulerian graphs and polynomial identities for sets of matrices, Proc. Nat,
Acad. Sci. U.5.A., 1974,
Karzanov, A, V.
[Kal] Determining the maximal flow in a network by the method of preflows,
Soviet Math. Dokl, 15 (1974) 434-437.
Knuth, D.
[K1] “The Art of Computer Programming” (3 vols.). Addison-Wesley, Reading,
Massachusetts, 1968, 1969, 1973.
Kostant, B.
[Kol] A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology
theory, J. Math. Mech, 7 (1958) 237-264.
Kruskal, J. B, Jr.
[Krl] On the shortest spanning subtree of 2 graph and the travelling salesman
problem, Proc. Amer. Math. Soc. 7 (1956), 48-50.
Lehmer, I, H.
[.1] The machine tools of combinatories, in “Applied Combinatorial Mathe-
matics” (E. Beckenbach, ed.). Wiley, New York, 1964.
Liu, C. L.
[Lil] “Introduction to Combinatorial Mathematics.” McGraw-Hill, New York, 1968.
Mine, H.
[M1] Upper bounds for permanents of (0, 1} matrices, Bull. Amer. Math. Soc. 69
(1963), 789-791.
Moon, J. W.
[Mol] Various proofs of Cayley’s formula for counting trees, in “A Seminar on
Graph Theory” (L. Beineke and F. Harary, eds.). Holt, New York, 1967.
[Mo2] Counting labelled trees, Canad. Math. Monographs, No. 1, 1970.
Nijenhuis, A.
[N1] Random subsets of fixed size, with optimal time and storage, Notices Amer.
Math. Soc. (to appear).
[N2] Network low with linear storage requirements, Notices Amer. Math. Soc.
(to appear).
See also [GNWI1].
Nijenhuis, A., and Wilf, H. S.
[NW1] A method and two algorithms in the theory of partitions, J. Combinatorial
Theory, to appear.
[NW2] Representations of integers by linear forms in nonnegative integers, J.
Number Theory, 4 (1970), 98-106.
Pollak, H. O.
See [GP1].

288 / REFERENCES

Prim, R. C.

[P1] Shortest connection networks and some generalizations, Bell System Tech. J.
36 (1957) 1389-1401.

Ralston, A., and Wilf, H. S,

[RW1] “Mathematical Methods for Digital Computers™ (2 vols.). Wiley, New Yark,
1960, 1966.

Read, R. C.

[R1] An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968),
52-71.
Riordan, John
[Ril] “An Introduction to Combinatorial Analysis.” Wiley, New York, 1958.
Rota, G. C.

[Rol] On the foundations of combinatorial theory, I. The Mibius function. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1964), 340-368.
Ryser, H.

[Ryl] “Combinatorial Mathematics” (Carus Math. Monographs, No. 14). Wiley,
New York, 1963.

[Ry2] Matrices of zeros and ones, Bull. Amer. Math. Soc. 66 (1960), 442-464.

Schrijver, A.
[Scl] A short proof of Minc's conjecture, Mathematisch Centrum, Amsterdam,
1977,
Swan, R. G.
[S1] An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963),
367-373; Correction, 21 (1969}, 379-380.
Tarjan, R. E,
[Tal] Depth-frst search and linear graph algorithms, SIAM J. Computing I,
2(1972), 146-160.
Trotter, H.
[Trl] “PERM”, Algorithm 115, Comm. ACM. 5 (1962), 434-435,
Tutte, W. T.
fT1] “Connectivity in Graphs.” Univ. of Toronto Press, Toronto, 1966.
Walker, R. J.

[Wal]l An enumerative technique for a class of combinatorial problems, in “Com-
binatorial Analysis,” Proc. Symp. Appl. Math. 10 (1960), 91-94 (R. Bellman
and M. Hall, eds.). Amer. Math. Soc., Providence, Rhode Island,

Wells, M. B.
[W1] Generation of permutations by transposition, Math. Comp. 15 (1961),
192-195.
[W2] “Elements of Combinatorial Computing.” Pergamon, New York, 1971.
Whitney, H.)
[Wh1] The coloring of graphs, Ann. of Meth, 33 (1932) 688-718.
wilf, H. S.

[Wil] A mechanical counting method and combinatorial applications, J. Combina-
torial Theory 4 (1968), 246-258.

[Wi2] A unified setting for sequencing, ranking and random selection of combina-
torial objects, Advances in Math, 24 (1977) 281-29].

[Wid] A unified theory of selection algorithms, II, Ann. Discr. Math, 2 (1978)
135-148,

See also [NW1], [NW2], [RW1], [CNW1].
Williams, J. W.].
[WIl] Comm, ACM, 7 {1964), 347-348.

Index

Arrays, hidden, 8
policies, 8-9

B

Backtrack method, 240-245
Balls-in-cells model, 4748, 52
Bell number, 94

Binary tree, 180

Breadth-first search, 161
Bumping algorithm, 85

C

Capacity, 196
Categories of usage, 3
Cayley’s theorem, 261
Chi-square test, 24
Chromatic polinomial, 178-186
factorial form, 290
tree, 180
Coloring, graph, 178, 246
Combinatorial family, 100
Composition, 65, 105
next, 46-51

power series, 187-195
random, 52--53
Connected component, 158
Connectivity, 158
edge, 199
Covering relation, 234
Cycle, permutation, 144-149
product, 151-155

D

Decoding, 106, 113-115
Delete-and-identify algorithm, 181
Depth-first search, 160, 240-245
Dilworth number, 198

E

Edge connectivity, 199
Encoding, 293
Equivalence relation, 89
Euler
circuit, 148, 249-250
identity, 73
number, 104
Exheap program, 141

| 299

300 / INDEX

F M
Factorization, unique, 80 Marriage theorem, 199
Flow, 197 Matching, 198
admissible, 197 Malrix
Frobenius construction, 86 entries (0-1), 199
renumber, 150-157
G Max-flow-min-cut theorem, 198

Maximal chain, 235
Memoryless codes, 19, 34, 59
Menger theorem, 201

Mébius function, 228, 233-239

Generator, group, 55
Gray code, 14-17
Greedy algorithm, 283

Group, 55 MTC, 6
H N
Hamilton
circuit, 256-257, 289 Network, 196-216
walk, 15, 55 flow problem, 197
Heap, 136 Newton form, polynecinial, 171-177
Heapsort, 136-140 NEX programs, 3, 6
Hook, 118 Next algorithm 3, 6, 102, 293
formula, 124 composition, 46-51, 292,
praof, 127 equivalence, 88-92, 202
k-subset, 26-38
I object, 102-103
Incidence matrix, 218 partition
Inclusion-exclusion, 221 integer, 65-71
? plane, 84
Inverse ,
function, 191, 195 set, 88-02, 292
permutation, 146 memoryless, 19, 31, 34, 59
Inversion multisubset, 291

matrix. 996. 936 permutation, 54-61

permutation, 146 object, 101-102

table, 57 subset, 13-22
OB 56 Young tableau, 117-132
K 0O
Kirchhoff law, 197 Off-line algorithm, 159
KZ-net, 199 On-line algorithm, 159
L P
Latin rectangle, 218 Partially ordered set, 100, 200, 298, 233-
Lexicographic sequence 239
combinatorial family, 102 Partition of integer, 78
k-subset, 27-38 largest part k, 105
partition, 66-273 next, 65-71
subset, 17~18 random, 72-77
Young tableau, 120 Partition of set

Loop-free program, 68 k classes, 103

next, 88-92
random, 93-98
Permanent, 217-225
Permutation
adjacent, 56, 260
cycle, 144
inverse, 146
inversion table, 57
k cycles, 104
k runs, 104
next, 54-61
product, 151-157
random, 62-64
signature, 57, 144
Trotter algorithm, 56
Plane partition, §1-87
Poisson distribution, 250
Polynomial
chromatic, 178-186
Newton form, 171
factorial form, 172
Taylor expansion, 173
Power series, 187-195
inversion, 191
Prefab, 79-81
random, 80
Preflow, 200
Primes, 79
Proper coloring, 178
Priifer correspondence, 268

R

RAN programs, 7
Random algorithm, 2,4, 7
composition, 52-53
k-subset, 35-45, 291
number, 7
ohject, 80-81, 101-109
partition
integer, 72-77
set, 53-98
permutation, 62-54

subset, 23-25

unlabeled rooted tree, 274-282

Young tableau, 117-132
Rank, 101
Ranking algorithm, 99-116

Recursive algorithm, 15, 28, 56, 99-116,

283

Rencontre number, 218
Replication, 80

INDEX / 301

Revolving door algorithm, 28-32

Run, permutation, 104
Ryser formula, 221-222

S
Selection algorithm, 99-116

Sequencing algorithm, 99-116

Sign, permutation, 144
Sorting, 135-143
topological, 229
Spanning forest, 158-170
Spanning tree, 262-263
minimal, 283-287
Specification list, 5

Stirling number, 174-1886, 270

Subset, 103
next, 13-22, 26-38
random, 23-25, 39-45
Synthesis, 79-81

Svstem of distinct representatives, 198

T
Tag algorithm, 145

Taylor expansion coefficient, 172

Terminal veriex, 249

Transposition, 54, 145
adjacent, 56

Tree
chromatic polynomial, 180
labeled, 267-273

minimum spanning, 283-287

rooted, 274-282

spanning, 262-263

unlabeled, 81
Trotter algorithm, 56
Tutte polynomial, 181

U
Unrank, 99-116

v

van der Waerden conjecture, 220

Vector subspace, 104

302 / INDEX
Y

Young tableau, 117-132
combinatorial family, 119
hook, 118

sequencing, 120
random, 123

yA
Zeta mairix, 228, 233

Errata for ‘Combinatorial Algorithms— for Computers
and Calculators’

Albert Nijenhuis and Herbert S. Wilf
September 1, 2006

e page 33, line 3:
Replace

by

e page 49, line 19:
Replace “measuring” by “reasoning”.
e page 57, line 8:
Replace “4,5,6” by “5,6,7”.
e page 75, line -1:
“partition of I” should be “partitions of I”.

e page 83:
Replace
3 10 11 00 001 000
10 00 01 000 000
000 100
by

001 000
. (39). (). (). 0] 0}

000 100

page 105, line 20:
Replace “2v > 07 by “2v > 27.

page 105, line 22:
Replace “u=v =17 by “u < 2v7.

page 115:
Under RANK 2, EDGE replace “01101” by “01100”.

Column under NU should be
333210

332210
332110
332100
322210
322110
322100
321110
321100
321000

line -2:

Replace “1)(25)(34)” by “(1)(25)(34)”.

page 126, line -8:

Replace “u.a.r.a” by “u.a.r. a”.

page 128, line -5:

Replace “Approximate number” by “Number”.
page 131, line 1:

Replace “LAN(I) + 1 + J” by “LAN(I) + 1 + J”.
page 168, line 12:

Move “Q = X(I)” to normal indentation.

pages 168,169:
Ignore the program comment lines that contain the phrase “FROM WHERE TO”

page 183, line 1:
Replace “just” by “G"”.

page 192, line -5:
Replace “C(J)” by “C(J+Q)”.

page 197, line 6:

Replace “z € S” by “z ¢ S”.

line 13

Replace “Kirchoft” by “Kirchhoft”.

page 224, between lines -7 and -6:
Insert “MTC = .False.”.

page 287, line 1:

Replace “capitols” by “ capitals”.
page 299, line -7:

Replace “polinomial” by “polynomial”.

