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Preface

This volume contains the papers presented at IWOCA 11: the 22nd International
Workshop on Combinatorial Algorithms

The 22nd IWOCA was held July 20–22, 2011 on the green and spacious cam-
pus of the University of Victoria (UVic), itself located on green and spacious
Vancouver Island, off the coast of British Columbia, a few scenic kilometers by
ferry from the city of Vancouver. The meeting was sponsored and supported fi-
nancially by the Pacific Institute for the Mathematical Sciences (PIMS); hosted
by the UVic Department of Computer Science. The Local Arrangements Com-
mittee, cochaired by Wendy Myrvold and Venkatesh Srinivasan, did an out-
standing job; the Program Committee was cochaired by Costas Iliopoulos and
Bill Smyth; the intricacies of EasyChair were handled by German Tischler.

IWOCA descends from the original Australasian Workshop on Combinatorial
Algorithms, first held in 1989, then renamed “International” in 2007 in response
to consistent interest and support from researchers outside the Australasian
region. The workshop’s permanent website can be accessed at iwoca.org, where
links to previous meetings, as well as to IWOCA 2011, can be found.

The IWOCA 2011 call for papers was distributed around the world, resulting
in 71 submitted papers. The EasyChair system was used to facilitate manage-
ment of submissions and refereeing, with three referees selected from the 40-
member Program Committee assigned to each paper. A total of 30 papers were
accepted, subject to revision, for presentation at the workshop.

The workshop also featured a problem session, chaired — in the absence of
IWOCA Problems Cochairs Yuqing Lin and Zsuzsanna Liptak — by UVic grad-
uate student Alejandro Erickson. Four invited talks were given by Tetsuo Asano
on “Nearest Larger Neighbors Problem and Memory-Constrained Algorithms,”
Pavol Hell on “Graph Partitions,” J. Ian Munro on “Creating a Partial Order and
Finishing the Sort, with Graph Entropy” and Cenk Sahinalp on “Algorithmic
Methods for Structural Variation Detection Among Multiple High-Throughput
Sequenced Genomes.”

The 51 registered participants at IWOCA 2011 hold appointments at institu-
tions in 15 different countries on four continents (Asia, Australia, Europe, North
America). The nations represented were: Australia (2), Canada (28), China (1),
Czech Republic (2), Denmark (1), France (1), Germany (3), India (2), Israel (1),
Iran (1), Italy (1), Japan (1), Russia (1), Taiwan (1), USA (5).

Atypical for IWOCA, the contributed talks were split into concurrent streams,
A (Combinatorics) and B (Graph Theory). This strategy allowed 30-minute talks
and so encouraged a relaxed atmosphere; still, one was often forced to choose
between two attractive alternatives. Stream A included such topic areas as com-
binatorics on words, string algorithms, codes, Venn diagrams, set partitions;
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Stream B dealt with several graph theory areas of current interest: Hamiltonian
& Eulerian properties, graph drawing, coloring, dominating sets, spanning trees,
and others.

We wish to thank the authors for their contributions: the quality of their
papers made IWOCA exceptional this year. We would also like to thank the
referees for their thorough, constructive and helpful comments and suggestions
on the manuscripts.

August 2011 Costas S. Iliopoulos
Bill F. Smyth



Organization

Program Committee

Faisal Abu-Khzam Lebanese American University, Lebanon
Amihood Amir Bar-Ilan University and Johns Hopkins

University, Israel/USA
Subramanian Arumugam Kalasalingam University, India
Hideo Bannai Kyushu University, Japan
Ljiljana Brankovic University of Newcastle, UK
Gerth Stølting Brodal Aarhus University, Dem
Charles Colbourn Arizona State University, USA
Maxime Crochemore King’s College London, UK and Université
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Sylvie Hamel University of Montreal, Canada
Jan Holub Czech Technical University in Prague,

Czech Republic
Seok-Hee Hong University of Sydney, Australia
Costas Iliopoulos King’s College London, UK
Ralf Klasing LaBRI - CNRS, France
Rao Kosaraju Johns Hopkins University, USA
Marcin Kubica Warsaw University, Poland
Anna Lubiw University of Waterloo, Canada
Mirka Miller University of Newcastle, UK
Laurent Mouchard University of Rouen, France
Ian Munro University of Waterloo, Canada
Wendy Myrvold University of Victoria, Canada
Kunsoo Park Seoul National University, Korea
Simon Puglisi Royal Melbourne Institute of Technology,

Australia
Rajeev Raman University of Leicester, UK
Frank Ruskey University of Victoria, Canada
Jeffrey Shallit University of Waterloo, Canada
Michiel Smid Carleton University, Canada
Bill Smyth McMaster University, Canada
Iain Stewart Durham University, UK
Gabor Tardos Simon Fraser University, Canada
German Tischler King’s College London, UK



VIII Organization

Alexander Tiskin University of Warwick, UK
Eli Upfal Brown University, USA
Lynette Van Zijl Stellenbosch University, South Africa
Koichi Wada Nagoya Institute of Technology, Japan
Sue Whitesides University of Victoria, Canada
Christos Zaroliagis CTI University of Patras, Greece

Additional Reviewers

Barbay, Jérémy
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Weighted Improper Colouring�

Julio Araujo1,2, Jean-Claude Bermond1, Frédéric Giroire1, Frédéric Havet1,
Dorian Mazauric1, and Remigiusz Modrzejewski1

1 Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France
2 ParGO Research Group - Universidade Federal do Ceará - UFC, Brazil

Abstract. In this paper, we study a colouring problem motivated by a practi-
cal frequency assignment problem and up to our best knowledge new. In wire-
less networks, a node interferes with the other nodes the level of interference
depending on numerous parameters: distance between the nodes, geographical
topography, obstacles, etc. We model this with a weighted graph G where the
weights on the edges represent the noise (interference) between the two end-
nodes. The total interference in a node is then the sum of all the noises of the
nodes emitting on the same frequency. A weighted t-improper k-colouring of
G is a k-colouring of the nodes of G (assignment of k frequencies) such that
the interference at each node does not exceed some threshold t. The Weighted
Improper Colouring problem, that we consider here consists in determining the
weighted t-improper chromatic number defined as the minimum integer k such
that G admits a weighted t-improper k-colouring. We also consider the dual prob-
lem, denoted the Threshold Improper Colouring problem, where given a number
k of colours (frequencies) we want to determine the minimum real t such that
G admits a weighted t-improper k-colouring. We show that both problems are
NP-hard and first present general upper bounds; in particular we show a general-
isation of Lovász’s Theorem for the weighted t-improper chromatic number. We
then show how to transform an instance of the Threshold Improper Colouring
problem into another equivalent one where the weights are either 1 or M, for a
sufficient big value M. Motivated by the original application, we study a special
interference model on various grids (square, triangular, hexagonal) where a node
produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for
the nodes that are at distance 2. Consequently, the problem consists of determin-
ing the weighted t-improper chromatic number when G is the square of a grid
and the weights of the edges are 1, if their end nodes are adjacent in the grid, and
1/2 otherwise. Finally, we model the problem using linear integer programming,
propose and test heuristic and exact Branch-and-Bound algorithms on random
cell-like graphs, namely the Poisson-Voronoi tessellations.

1 Introduction

Let G = (V,E) be a graph. A k-colouring of G is a function c : V → {1, . . . ,k}. The
colouring c is proper if uv∈E implies c(u) �= c(v). The chromatic number of G, denoted
by χ(G), is the minimum integer k such that G admits a proper k-colouring. The goal

� This work was partially supported by région PACA, ANR Blanc AGAPE and ANR Interna-
tional Taiwan GRATEL.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J. Araujo et al.

of the VERTEX COLOURING problem is to determine χ(G) for a given graph G. It is a
well-known NP-hard problem [11].

A k-colouring c is l-improper if |{v ∈ N(u) | c(v) = c(u)}| ≤ l for all u ∈ V . Given
a non-negative integer l, the l-improper chromatic number of a graph G, denoted by
χl(G), is the minimum integer k such that G has an l-improper k-colouring. For given
graph G and integer l, the IMPROPER COLOURING problem consists in determining
χl(G) [14, 6] and is also NP-hard. Indeed, if l = 0, observe that χ0(G) = χ(G). Conse-
quently, VERTEX COLOURING is a particular case of IMPROPER COLOURING.

In this work we define and study a new variation of the improper colouring problem
for edge-weighted graphs. Given an edge-weighted graph G = (V,E,w), w : E → R∗+,
a threshold t ∈ R+, and a colouring c, we note the interference of a vertex w in this
colouring as:

Iu(G,w,c) = ∑
{v∈N(u)|c(v)=c(u)}

w(u,v).

We say that c is a weighted t-improper k-colouring of G if c is a k-colouring of G such
that Iu(G,w,c)≤ t, for all u ∈V .

Given a threshold t ∈ R∗+, the minimum integer k such that the graph G admits
a weighted t-improper k-colouring is the weighted t-improper chromatic number of
G, denoted by χt(G,w). Given an edge-weighted graph G = (V,E,w) and a thresh-
old t ∈R∗+, determining χt(G,w) is the goal of the WEIGHTED IMPROPER COLOUR-
ING problem. Note that if t = 0 then χ0(G,w) = χ(G), and if w(e) = 1 for all e ∈ E ,
then χl(G,w) = χl(G) for any positive integer l. Therefore, the WEIGHTED IMPROPER

COLOURING problem is clearly NP-hard since it generalises VERTEX COLOURING and
IMPROPER COLOURING.

On the other hand, we define the minimum k-threshold of G, denoted by ωk(G,w)
as the minimum real t such that G admits a weighted t-improper k-colouring. Then, for
a given edge-weighted graph G = (V,E,w) and a positive integer k, the THRESHOLD

IMPROPER COLOURING problem consists of determining ωk(G,w).
Motivation. Our initial motivation to these problems was the design of satellite an-
tennas for multi-spot MFTDMA satellites [2]. In this technology, satellites transmit
signals to areas on the ground called spots. These spots form a grid-like structure which
is modelled by an hexagonal cell graph. To each spot is assigned a radio channel or
colour. Spots are interfering with other spots having the same channel and a spot can
use a colour only if the interference level does not exceed a given threshold t. The level
of interference between two spots depends on their distance. The authors of [2] intro-
duced a factor of mitigation γ and the interferences of remote spots are reduced by a
factor 1− γ. When the interference level is too low, the nodes are considered to not
interfere anymore. Considering such types of interferences, where nodes at distance at
most i interfere, leads to the study of the i-th power of the graph modelling the network
and a case of special interest is the power of grid graphs (see Section 3).

Related Work. Our problems are particular cases of the FREQUENCY ASSIGNMENT

PROBLEM (FAP). FAP has several variations that were already studied in the literature
(see [1] for a survey). In most of these variations, the main constraint to be satisfied is
that if two vertices (mobile phones, antennas, spots, etc.) are close, then the difference
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between the frequencies that are assigned to them must be greater than some function
that usually depends on their distance.

There is a strong relationship between most of these variations and the L(p1, . . . , pd)-
LABELLING PROBLEM [15]. In this problem, the goal is to find a colouring of the ver-
tices of a given graph G in such a way that the difference between the colours assigned
to vertices at distance i must be at least pi, for every i = 1, . . . ,d.

For some other variations, for each non-satisfied interference constraint a penalty
must be paid. In particular, the goal of the MINIMUM INTERFERENCE ASSIGNMENT

PROBLEM (MI-FAP) is to minimise the total penalties that must be paid, when the
number of frequencies to be assigned is given. This problem can also be studied for only
co-channel interferences, in which the penalties are applied only if the two vertices have
the same frequency. However, MI-FAP under these constraints does not correspond to
WEIGHTED IMPROPER COLOURING, because we consider the co-channel interference,
i.e. penalties, just between each vertex and its neighbourhood.

The two closest related works we found in the literature are [13] and [7]. However,
they both apply penalties over co-channel interference, but also to the adjacent channel
interference, i.e. when the colours of adjacent vertices differ by one unit. Moreover,
their results are not similar to ours. In [13], they propose an enumerative algorithm for
the problem, while in [7] a Branch-and-Cut method is proposed and applied over some
instances.

Results
In this article, we study both parameters χt(G,w) and ωk(G,w). We first show that
THRESHOLD IMPROPER COLOURING is NP-hard. Then we present general upper
bounds; in particular we show a generalisation of Lovász’ Theorem for χt(G,w). We
then show how to transform an instance into an equivalent one where the weights are
either 1 or M, for a sufficient big value M.

Motivated by the original application, we study a special interference model on var-
ious grids (square, triangular, hexagonal) where a node produces a noise of intensity
1 for its neighbours and a noise of intensity 1/2 for the nodes that are at distance 2.
Consequently, the problem consists of determining χt(G,w) and ωk(G,w), when G is
the square of a grid and the weights of the edges are 1, if their end nodes are adjacent
in the grid, and 1/2 otherwise.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to solve the
THRESHOLD IMPROPER COLOURING for general graphs. We compare them to an inte-
ger programming formulation on random cell-like graphs, namely Voronoi diagrams of

Fig. 1. Construction of G(I,t) from an instance (I,t) of the PARTITION PROBLEM
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random points of the plan. These graphs are classically used in the literature to model
telecommunication networks [4, 8, 9].

2 General Results

In this section, we present some results for WEIGHTED IMPROPER COLOURING and
THRESHOLD IMPROPER COLOURING for general graphs and general interference
models.

2.1 NP-Completeness of THRESHOLD IMPROPER COLOURING

In this section, we prove that the decision problem associated to THRESHOLD IM-
PROPER COLOURING is NP-complete already for k = 2.

Theorem 1. The following problem is NP-complete.
Instance: An edge-weighted graph G = (V,E,w), w : E→R∗+, a threshold t ∈R+.
Question: Does G have a weighted t-improper 2-colouring?

Proof. Given a 2-colouring c of G, one can test in O(|E|)-time if c is weighted
t-improper by just checking, for each vertex v, if Iv(G,w,c) ≤ t. Consequently, this
problem is in NP.

Now we reduce the PARTITION problem [11] which is NP-complete, to it. In the
PARTITION problem, given a set of p positive integers I = {i1, . . . , ip} and a threshold t,
we want to decide if there is a partition of the elements of I into two sets A and B such
that ∑ia∈A ia ≤ t and ∑ib∈B ib ≤ t. We consider that i j ≤ t, for all j ∈ {1, . . . , p}, and that
t ≤ ∑p

j=1 i j , otherwise the answer for this problem is trivially no and yes, respectively.
Given an instance (I, t) of the PARTITION PROBLEM, let G(I,t) be a graph whose

vertex set is V (G(I,t))= {v j | j∈{1, . . . , p}}∪{a,b} and whose edge set is E(G(I,t))=
{(a,b)}∪{(a,v j),(b,v j) | j ∈ {1, . . . , p}} (see Figure 1). Define M = 1 + ∑p

j=1 i j . Let
w : E(G(I,t))→ {i1, . . . , ip,M} be a weight function for the edges of G(I,t) defined in
the following way: w(a,b) = M and w(a,v j) = w(b,v j) = i j , for every j ∈ {1, . . . p}.

We claim that (I,t) is a yes answer for the PARTITION PROBLEM if, and only if,
G(I, t) admits a weighted t-improper 2-colouring.

If (I,t) is a yes instance, let (A,B) be a partitioning such that ∑ia∈A ia ≤ t
and ∑ib∈B ib ≤ t. We claim that the following colouring c is a weighted t-improper
2-colouring of G(I,t):

c(v) =

{
1 i f v ∈ {a}∪{v j | i j ∈ A};
2 otherwise.

To verify this fact, observe that Ia(G,w,c) = ∑i j∈A i j ≤ t, that Ib(G,w,c) = ∑i j∈B i j ≤ t
and that Iv j(G,w,c) = i j ≤ t, for each j ∈ {1 . . . , p}.

Conversely, consider that G(I,t) admits a weighted t-improper 2-colouring c. Re-
mark that a and b must receive different colours since the weight of the edge (a,b) is
M > t. Thus, assume that c(a) = 1 and that c(b) = 2. Let A be the subset of integers
i j, j ∈ {1, . . . , p}, such that c(v j) = 1 and B = I\A = {i j | c(v j) = 2}. Observe that the
sum of elements in A (resp. B) is equal to Ia(G,w,c) (resp. Ib(G,w,c)) and they are both
smaller or equal to t, since c is a weighted t-improper 2-colouring.
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2.2 Bounds

Upper Bound for WEIGHTED IMPROPER COLOURING. It is a folklore result
χ(G) ≤ Δ(G) + 1, for any graph G. Lovász [12] extended this result for IMPROPER

COLOURING problem. He proved that χl(G)≤ 	Δ(G)+1
l+1 
. In what follows, we show an

extension of these results to WEIGHTED IMPROPER COLOURING.
Given an edge-weighted graph G = (V,E,w), w : E → R∗+, and v ∈ V , let

dw(v) = ∑u∈N(v) w(u,v). Denote by Δ(G,w) = maxv∈V dw(v). Given a k-colouring c :
V →{1, . . . ,k} of G, we denote di

w,c(v) = ∑{u∈N(v)|c(u)=i}w(u,v), for every vertex v∈V

and colour i = 1, . . . ,k. Note that dc(v)
w,c (v) = Iv(G,w,c). Finally, we denote gcd(w) the

greatest common divisor of the weights of w. We use here the generalisation of the gcd
to non-integer numbers (e.g. in Q) where a number x is said to divide a number y if
the fraction y/x is an integer. The important property of gcd(w) is that the difference
between two interferences is a multiple of gcd(w); in particular, if for two vertices v
and u, di

w,c(v)> d j
w,c(u), then di

w,c(v)≥ d j
w,c(u)+ gcd(w).

If t is not a multiple of the gcd(w), that is, there exists an integer a ∈ Z such that
a gcd(w)< t < (a +1)gcd(w), then χw

t (G) = χw
a gcd(w)(G).

Theorem 2. Given an edge-weighted graph G = (V,E,w), w : E→Q∗+, and a threshold
t multiple of gcd(w), then the following inequality holds:

χt(G,w)≤
⌈

Δ(G,w)+ gcd(w)
t +gcd(w)

⌉
.

Proof. We say that a k-colouring c of G is well-balanced if c satisfies the following
property:

Property 1. For any vertex v ∈V , Iv(G,w,c)≤ d j
w,c(v), for every j = 1, . . . ,k.

If k = 1 there is nothing to prove. Then, we prove that for any k≥ 2, there exists a well-
balanced k-colouring of G. To prove this fact one may just colour G arbitrarily with k
colours and then repeat the following procedure: if there exists a vertex v coloured i
and a colour j such that di

w,c(v) > d j
w,c(v), then recolour v with colour j. Observe that

this procedure neither increases (we just move a vertex from one colour to another)
nor decreases (a vertex without neighbour on its colour is never moved) the number
of colours within this process. Let W be the sum of the weights of the edges having
the same colour in their endpoints. In this transformation, W has increased by d j

w,c(v)
(edges that previously had colours i and j in their endpoints), but decreased by di

w,c(v)
(edges that previously had colour i in both of their endpoints). So, W has decreased by
di

w,c(v)− d j
w,c(v) ≥ gcd(w). As W ≤ |E|maxe∈E w(e) is finite, this procedure finishes

and produces a well-balanced k-colouring of G.
Observe that in any well-balanced k-colouring c of a graph G, the following holds:

dw(v) = ∑
u∈N(v)

w(u,v)≥ kdc(v)
w,c (v). (1)

Let k∗ =
⌈

Δ(G,w)+gcd(w)
t+gcd(w)

⌉
≥ 2 and c∗ be a well-balanced k∗-colouring of G. We claim

that c∗ is a weighted t-improper k∗-colouring of G.
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By contradiction, suppose that there is a vertex v in G such that c∗(v) = i and that
di

w,c(v)> t. Since c∗ is well-balanced, d j
w,c(v)> t, for all j = 1, . . . ,k∗. By the definition

of gcd(w) and as t is a multiple of gcd(w), it leads to d j
w,c(v) ≥ t + gcd(w) for all

j = 1, . . . ,k∗. Combining this inequality with Inequality (1), we obtain:

Δ(G,w)≥ dw(v)≥ k∗(t + gcd(w)),

giving
Δ(G,w)≥ Δ(G,w)+ gcd(w),

a contradiction. The result follows.

Note that when all weights are equal to one, we obtain the bound for the improper
colouring derived in [12].

11

u v

u’K Kv’

w’(u,v)=w(u,v)−1

u v

Fig. 2. Construction of Gi+1 from Gi using edge (u,v) with k = 4. Dashed edges represent edges
with infinite weights.

Brooks [5] proved that for a connected graph G, χ(G) = Δ(G)+1 if, and only if, G is
complete or an odd cycle. One could wonder for which edge-weighted graphs the bound
we provide is tight. However, Correa et al. [6] already showed that it is NP-complete
to determine if the improper chromatic number of a graph G attains the upper bound
of Lovász, which is a particular case of WEIGHTED IMPROPER COLOURING and the
bound we provided.

Upper Bound for THRESHOLD IMPROPER COLOURING. Let G = (V,E,w), w :
E → R∗+, be an edge-weighted graph and k be a positive integer. Observe that, for the
minimum k-threshold of G,

ωk(G,w) ≤ Δ(G,w)≤ ∑
e∈E(G)

w(e).

In what follows, we improve this trivial upper bound.
Let V ′ = {u ∈ V,d(u) ≥ k} be the set of vertices with degree at least k. Set G′ =

G−V ′.

Lemma 1. ωk(G,w) = ωk(G′,w)

Proof. If there is a weighted t-improper k-colouring of G′, then it is easy to get a
weighted t-improper k-colouring of G choosing, for each vertex u ∈ V \V ′, a colour
different from the colours of its neighbours. It is always possible because d(u)≤ k−1.

Conversely, if there is a weighted t-improper k-colouring of G, then there is a
weighted t-improper k-colouring of G′ by choosing, for every v ∈V ′, cG′(v) = cG(v).
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For the rest of the section, we only consider edge-weighted graphs with minimum de-
gree at least k. For each v ∈ V , let Ek−1

min (v) be the set of d(v)− (k− 1) least weighted
edges incident to v.

Theorem 3. Let G = (V,E,w), w : E → R∗+, be an edge-weighted graph and k be a
positive integer. Then,

ωk(G,w)≤max
v∈V

w(Ek−1
min (v)),

where w(Ek−1
min (v)) = ∑e∈Ek−1

min (v) w(e).

Proof. Let Gk−1
min = G[E\{⋃v∈V Ek−1

min (v)}]. Observe that the maximum degree of a ver-
tex in Gk−1

min ≤ k−1. Consequently, Gk−1
min admits a proper k-colouring c of its vertices.

Observe that the maximum interference of a vertex v in G when G is coloured by the
colouring c is at most maxv∈V w(Ek−1

min (v)) and the result follows.

2.3 Transformation

In this section, we prove that the THRESHOLD IMPROPER COLOURING problem can
be transformed into a problem mixing proper and improper colouring. More precisely,
we prove the following:

Theorem 4. Let G0 = (V0,E0,w0) be an edge-weighted graph such that, for every e ∈
E, w(e) ∈ Z∗+, and k be a positive integer. We can construct a graph G∗ = (V ∗,E∗,w∗)
such that w∗(e)∈ {1,M} for any e∈ E(G∗), satisfying ωk(G0,w0) = ωk(G∗,w∗), where
M = 1 + ∑e∈E(G) w0(e).

Proof. Consider the function f (G,w) = ∑{e∈E(G)|w(e) �=M}(w(e)−1).
If f (G,w) = 0, all edges have weight either 1 or M and G has the desired prop-

erty. In this case, G∗ = G. Otherwise, we construct a graph G′ and a function w′ such
that ωk(G′,w′) = ωk(G,w), but f (G′,w′) = f (G,w)− 1. By repeating this operation
f (G0,w0) times we get the required graph G∗.

In case f (G,w) > 0, there exists an edge e = (u,v) ∈ E(G) such that 2≤ w(e)<M.
G′ is obtained from G by adding two complete graphs on k−1 vertices Ku and Kv and
two new vertices u′ and v′. We join u and u′ to all the vertices of Ku and v and v′ to all
the vertices of Kv. We assign weight M to all these edges. Note that, u and u′ (v and v′)
always have the same colour, namely the remaining colour not used in Ku (resp. Kv).

We also add two edges uv′ and u′v both of weight 1. The edges of G keep their
weight in G′, except the edge e = uv whose weight is decreased by one unit, i.e., w′(e) =
w(e)−1. Thus, f (G′) = f (G)−1 as we added only edges of weights 1 and M and we
decreased the weight of e by one unit.

Now consider a weighted t-improper k-colouring c of G. We produce a weighted t-
improper k-colouring c′ to colour G′ as follows: we keep the colours of all the vertices
in G, we assign to u′ (v′) the same colour as u (resp., v), and we assign to Ku (Kv) the
k−1 colours different from the one used in u (resp. v).
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Conversely, from any weighted improper k-colouring c′ of G′, we get a weighted
improper k-colouring c of G by just keeping the colours of the vertices that belong
to G.

For such colourings c and c′ we have that Ix(G,w,c) = Ix(G′,w′,c′), for any ver-
tex x of G different from u and v. For x ∈ Ku ∪Kv, Ix(G′,w′,c′) = 0. The neighbours
of u with the same colour as u in G′ are the same as in G, except possibly v′ which
has the same colour of u if, and only if, v has the same colour of u. Let ε = 1 if v
has the same colour as u, otherwise ε = 0. As the weight of (u,v) decreases by one
and we add the edge (u,v′) of weight 1 in G′, we get Iu(G′,w′,c′) = Iu(G,w,c)−
ε+w′(u,v′)ε = Iu(G,w,c). Similarly, Iv(G′,w′,c′) = Iv(G,w,c). Finally, Iu′(G′,w′,c′) =
Iv′(G′,w′,c′) = ε. But Iu(G′,w′,c′)≥ (w(u,v)−1)ε and so Iu′(G′,w′,c′)≤ Iu(G′,w′,c′)
and Iv′(G′,w′,c′)≤ Iv(G′,w′,c′). In summary, we have

max
x

Ix(G′,w′,c′) = max
x

Ix(G,w,c)

and therefore ωk(G,w) = ωk(G′,w′).

In the worst case, the number of vertices of G∗ is n+m(wmax−1)2k and the number of
edges of G∗ is m + m(wmax− 1)[(k + 4)(k− 1)+ 2] with n = |V (G)|, m = |E(G)| and
wmax = maxe∈E(G) w(e).

In conclusion, this construction allows to transform the THRESHOLD IMPROPER

COLOURING problem into a problem mixing proper and improper colouring. Therefore
the problem consists in finding the minimum l such that a (non-weighted) l-improper
k-colouring of G∗ exists with the constraint that some subgraphs of G∗ must admit a
proper colouring. The equivalence of the two problems is proved here only for integers
weights, but it is possible to adapt the transformation to prove it for rational weights.

3 Squares of Particular Graphs

As mentioned in the introduction, WEIGHTED IMPROPER COLOURING is motivated by
networks of antennas similar to grids [2]. In these networks, the noise generated by an
antenna undergoes an attenuation with the distance it travels.

It is often modelled by a decreasing function of d, typically 1/dα or 1/(2d−1). Here
we consider a simplified model where the noise between two neighbouring antennas
is normalised to 1, between antennas at distance two is 1/2 and 0 when the distance is
strictly greater than 2.

Studying this model of interference corresponds to study the WEIGHTED IMPROPER

COLOURING of the square of the graph G, the graph obtained from G by joining every
pair of vertices at distance 2, and to assign weights w2(e) = 1, if e∈ E(G), and w2(e) =
1/2, if e ∈ E(G2)−E(G). Observe that in this case the interesting threshold values are
the non-negative multiples of 1/2.

In Figure 3 are given some examples of colouring for the square grid. In Figure 3(a)
each vertex x has neither a neighbour nor a vertex at distance 2 coloured with its own
colour, so Ix(G2,w2,c) = 0. In Figure 3(b) each vertex x has exactly one vertex of the
same colour at distance 2, so Ix(G2,w2,c) = 1/2.
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For any t ∈ R+, we determine the weighted t-improper chromatic number for the
square of infinite paths, square grids, hexagonal grids and triangular grids under the
interference model w2. We also present lower and upper bounds for χt(T 2,w2), for any
tree T and any threshold t.

3.1 Infinite Paths and Trees

In this section, we characterise the weighted t-improper chromatic number of the square
of an infinite path, for all positive real t. Moreover, we present lower and upper bounds
for χt(T 2,w2), for a given tree T .

Theorem 5. Let P = (V,E) be an infinite path. Then,

χt(P2,w2) =

⎧⎪⎨
⎪⎩

3, if 0≤ t < 1;

2, if 1≤ t < 3;

1, if 3≤ t.

Proof. Let V = {vi | i ∈ Z} and E = {(vi−1,vi) | i ∈ Z}. Each vertex of P has two
neighbours and two vertices at distance two. Consequently, the first case t ≥ 3 is trivial.

There is a 2-colouring c of (P2,w2) with maximum interference 1 by just colouring vi

with colour i mod 2. So χt(P2,w2)≤ 2 if t ≥ 1. We claim that there is no weighted 0.5-
improper 2-colouring of (P2,w2). By contradiction, suppose that c is such a colouring.
If c(vi) = 0, for some i ∈Z, then c(vi−1) = c(vi+1) = 1 and c(vi−2) = c(vi+2) = 0. This
is a contradiction because vi would have interference 1.

Finally, the colouring c(vi) = i mod 3, for every i ∈ Z, is a feasible weighted 0-
improper 3-colouring.

Theorem 6. Let T = (V,E) be a tree. Then, 	Δ(T )−
t�
2t+1 
+1≤ χt(T 2,w2)≤ 	Δ(T )−1

2t+1 
+2.

Proof. The lower bound is obtained by two simple observations. First, χt(H,w) ≤
χt(G,w), for any H ⊆ G. Let T be a tree and v be a node of maximum degree in T .
Then, observe that the weighted t-improper chromatic number of the subgraph of T 2

induced by v and its neighbourhood is at least 	Δ(T)−
t�
2t+1 
+ 1. The colour of v can be

assigned to at most 
t� vertices on its neighbourhood. Any other colour used in the
neighbourhood of v cannot appear in more than 2t + 1 vertices because each pair of
vertices in the neighbourhood of v is at distance two.

Let us look now at the upper bound. Choose any node r ∈ V to be its root. Colour r
with colour 1. Then, by a pre-order traversal in the tree, for each visited node v colour
all the children of v with the 	Δ(T)−1

2t+1 
 colours different from the ones assigned to v
and to its parent. This is a feasible weighted t-improper k-colouring of T 2, with k ≤
	Δ(T)−1

2t+1 
+2, since each vertex interferes with at most 2t vertices at distance two which
are children of its parent.

3.2 Grids

In this section, we show the optimal values of χt(G2,w2), whenever G is an infinite
square, or hexagonal or triangular grid, for all the possible values of t. The proofs of the
theorems presented in this section can be found in the research report [3].
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(a) (b)

(c) (d)

Fig. 3. Optimal colorings of G2, for square grid G. Weighted 0-improper 5-colouring of G2 in
Figure 3(a), weighted 0.5-improper 4-colouring of G2 in Figure 3(b) and weighted 3-improper
2-colouring of G2 in 3(c). Figure 3(d) shows that there is no weighted 0.5-improper 3-colouring
of G2.

Square Grid. The square grid is the graph in which the vertices are all integer linear
combinations ae1 + be2 of the two vectors e1 = (1,0) and e2 = (0,1), for any a,b ∈Z.
Each vertex (a,b) has four neighbours: its down neighbour (a−1,b), its top neighbour
(a + 1,b), its right neighbour (a,b + 1) and its left neighbour (a,b−1).

Theorem 7. If G is an infinite square grid, then

χt(G2,w2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5, if t = 0;

4, if t = 0.5;

3, if 1≤ t < 3;

2, if 3≤ t < 8;

1, if 8≤ t.

Proof. If t = 0, then the colour of vertex (a,b) must be different from the ones used on
its four neighbours. Moreover, all the neighbours have different colours, as each pair of
neighbours is at distance two. Consequently, at least 5 colours are needed. Figure 3(a)
gives a a weighted 0-improper 5-colouring of G2.

When t = 0.5, we claim that at least four colours are needed to colour G2. The proof
is by contradiction. Suppose that there exists a weighted 0.5-improper 3-colouring of
it. Let (a,b) be a vertex coloured 0. No neighbour is coloured 0, otherwise (a,b) has
interference 1. If three neighbours have the same colour, then each of them will have
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interference 1. So two of its neighbours have to be coloured 1 and the two other ones 2
(see Figure 3(d)). Consider now the four nodes (a−1,b−1), (a−1,b+1), (a+1,b−1)
and (a + 1,b + 1). For all configurations, at least two of these 4 vertices have to be
coloured 0. But then (a,b) will have interference at least 1, a contradiction. A weighted
0.5-improper 4-colouring of G2 is shown in Figure 3(b).

If t = 1, there exists a weighted 1-improper 3-colouring of G2 given by the following
construction: for 0 ≤ j ≤ 2, let A j = {(0, j) + a(3e2) + b(e1 + e2) | ∀a,b ∈ Z}. For
0≤ j ≤ 2, assign the colour j to all the vertices in A j.

Now we prove by contradiction that for t = 2.5 we still need at least three colours in a
weighted 2.5-improper colouring of G2. Consider a weighted 2.5-improper 2-colouring
of G2 and let (a,b) be a vertex coloured 0. Vertex (a,b) has at most two neighbours of
colour 0, otherwise it will have interference 3. We distinguish three cases:

1. Exactly one of its neighbours is coloured 0; let (a,b− 1) be this vertex. Then, the
three other neighbours are coloured 1. Consider the two set of vertices {(a−1,b−
1),(a− 1,b + 1),(a− 2,b)} and {(a + 1,b− 1),(a + 1,b + 1),(a + 2,b)}; each of
them has at least two vertices coloured 0, otherwise the vertex (a,b+1) or (a,b−1)
will have interference 3. But then (a,b) having 4 vertices at distance 2 coloured 0
has interference 3, a contradiction.

2. Two neighbours of (a,b) are coloured 0.

(a) These two neighbours are opposite, say (a,b−1) and (a,b+1). Consider again
the two sets {(a− 1,b− 1),(a− 1,b + 1),(a− 2,b)} and {(a + 1,b− 1),(a +
1,b + 1),(a + 2,b)}; they both contain at least one vertex of colour 0 and there-
fore (a,b) will have interference 3, a contradiction.

(b) The two neighbours of colour 0 are of the form (a,b−1) and (a−1,b). Consider
the two sets of vertices {(a+1,b−1),(a+1,b+1),(a+2,b)} and {(a+1,b+
1),(a−1,b+1),(a,b+2)}; these two sets contain at most one vertex of colour
0, otherwise (a,b) will have interference 3. So vertices (a+1,b−1), (a+2,b),
(a,b + 2) and (a−1,b + 1) are of colour 1. Vertex (a + 1,b + 1) is of colour 0,
otherwise (a + 1,b) has interference 3. But then (a,b−2) and (a−1,b−1) are
of colour 1, otherwise (a,b) will have interference 3. Thus, vertex (a,b−1) has
exactly one neighbour coloured 0 and we are again in Case 1.

3. All neighbours of (a,b) are coloured 1. If any of this neighbours has itself a neigh-
bour (distinct from (a,b)) of colour 1, we are in case 1 or 2 for this neighbour.
Therefore, all vertices at distance two from (a,b) have colour 0 and the interference
in (a,b) is 4, a contradiction.

A weighted 3-improper 2-colouring of G2 is given in Figure 3(c). Finally, since each
vertex has 4 neighbours and 8 vertices at distance two, there is no weighted 7.5-improper
1-colouring of G2 and, whenever t ≥ 8, one colour suffices.

Hexagonal Grid. To define the hexagonal grid graph, there are many ways to define
the system of coordinates. Here, we use grid coordinates as shown in Figure 4. The
hexagonal grid graph is then the graph whose vertex set is the pairs of integers (a,b) ∈
Z2 and where each vertex (a,b) has 3 neighbours: (a− 1,b), (a + 1,b), and (a,b + 1)
if a + b is odd, or (a,b−1) otherwise.
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Fig. 4. Optimal construction with t = 0, k = 4. Left: Graph with coordinates. Right: Correspond-
ing hexagonal grid in the euclidean space.
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(b) t = 2, k = 2

Fig. 5. Optimal constructions for the hexagonal grid

Theorem 8. If G is an infinite hexagonal grid, then

χt(G2,w2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4, if 0≤ t < 1;

3, if 1≤ t < 2;

2, if 2≤ t < 6;

1, if 6≤ t.

Triangular Grid. The triangular grid is graph whose vertices are all the integer linear

combinations ae1 + be2 of the two vectors e1 = (
√

3
2 ,

1
2 ) and e2 = (0,1). Thus we may

identify the vertices with the ordered pairs (a,b) of integers. Each vertex v = (a,b) has
six neighbours: its left neighbour (a,b− 1), its right neighbour (a,b + 1), its left-up
neighbour (a +1,b−1), its right-up neighbour (a +1,b +1), its left-down neighbour
(a− 1,b− 1) and its right-down neighbour (a−1,b +1).
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(a) Weighted 0-improper 7-colouring
of G2.

(b) Weighted 0.5-improper 6-
colouring of G2.

(c) Weighted 1.5-improper 4-
colouring of G2.

Fig. 6. Constructions for the triangular grid

Theorem 9. If G is an infinite triangular grid, then

χt(G2,w2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7, if t = 0;

6, if t = 0.5;

5, if t = 1;

4, if 1.5≤ t < 3;

3, if 3≤ t < 5;

2, if 5≤ t < 12;

1, if 12≤ t.

For determining the lower bounds for the cases in which χt(G2,w2) is equal to 2 and 3,
the proofs involved too many subcases to be readable. Then, we used CPLEX with the
integer programming formulations we present in Section 4 to validate them.

4 Integer Programs, Algorithms and Results

In this section, we look at how to solve the WEIGHTED IMPROPER COLOURING and
THRESHOLD IMPROPER COLOURING for realistic instances. We consider Poisson-
Voronoi tesselations as they are good models of antennas networks [4,8,9]. We present
integer programming models for both problems. Then, we introduce two algorithmic
approaches for THRESHOLD IMPROPER COLOURING: a simple greedy heuristic and a
Branch-and-Bound algorithm.
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4.1 Integer Programs and Algorithms

Integer Programming Models. Given an edge-graph G = (V,E,w), w : E→R∗+, and a
positive real threshold t, we model WEIGHTED IMPROPER COLOURING by using two
kinds of variables. Variable xip indicate if vertex i is coloured p and variable cp indicate
if colour p is used, for every 1 ≤ i ≤ n and 1 ≤ p ≤ l, where l is an upper bound for
the number of colours needed in an optimal weighted t-improper colouring of G (see
Section 2). The model follows:

min ∑p cp

subject to
∑ j �=i w(i, j)x jp ≤ t + M(1− xip) (∀i ∈V,∀p ∈ {1, . . . , l})

cp ≥ xip (∀i ∈V,∀p ∈ {1, . . . , l})
∑p xip = 1 (∀i ∈V )
xip ∈ {0,1} (∀i ∈V,∀p ∈ {1, . . . , l})
cp ∈ {0,1} (∀p ∈ {1, . . . , l})

where M is a large integer. For instance, it is sufficient to choose M > ∑(u,v)∈E w(u,v).
For THRESHOLD IMPROPER COLOURING, given an edge-weighted graph

G = (V,E,w), w : E→R∗+, and a positive integer k, the model we consider is:

min t
subject to

∑ j �=i w(i, j)x jp ≤ t + M(1− xip) (∀i ∈V,∀p ∈ {1, . . . ,k})
∑p xip = 1 (∀i ∈V )
xip ∈ {0,1} (∀i ∈V,∀p ∈ {1, . . . ,k})

Levelling Heuristic. We develop a heuristic to solve THRESHOLD IMPROPER COLOUR-
ING. The idea is to try to level the distribution of interference over the vertices. Each
vertex is coloured one after the other by the colour minimising the local interference.
More precisely this is achieved by considering for the nodes not yet coloured the “cur-
rent interference” i.e. the interference induced by the already coloured vertices.

Precisely, consider a vertex v not yet coloured and a colour i ∈ {1, . . . ,k}. We define
the potential interference I′v,i as:

I′v,i = ∑
{u∈N(v)∩Vi|c(u)=i}

w(u,v),

where Vi is the set of vertices that have already been assigned a colour. The order in
which vertices are coloured is decided according to the total potential interference, de-
fined as I′′v = ∑k

i=1 I′v,i. The algorithm finds a feasible colouring in the first step and tries
to improve it for p runs, where p is part of the input.

– The interference target is set tt = M;
– while the number of runs is smaller than p;
• all potential interferences are set to zero;
• while there are still vertices to colour:
∗ choose a vertex v randomly among the uncoloured vertices that have the

maximum total potential interference;
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∗ try each colour i in the order of increasing potential interference I′v,i:
· if colouring v with i does not result in interference greater than tt for v

or any of its neighbours, colour v with i, else try a new colour;
· if all colours resulted in excessive interferences, start new run.

• If all the vertices were successfully coloured, set tt = maxv∈V,i∈{1,...,k} Iv(G,w,c)
−gcd(w) and store the colouring as the best found.

As a randomised greedy colouring heuristic, it has to be run multiple times to achieve
satisfactory results. This is not a practical issue due to low computational cost of each
run. The local immutable colouring decision is taken in time O(k). Then, after each
such decision, the interference has to be propagated, which takes time linear in the
vertex degree. This gives a computational complexity bound O(knΔ).

Branch-and-Bound Algorithm. We also implemented a simple Branch-and-Bound al-
gorithm inspired by the above heuristic. The order in which vertices are coloured is
produced by a similar procedure to the one used in the above heuristic. In order to com-
pute this order, we start by marking a random vertex and setting is as the first in a to
colour list. Then, as long as there are unmarked vertices, we keep choosing a random
vertex u among the unmarked vertices with biggest ∑v∈N(u)∩Vm

w(u,v), where Vm is the
set of already marked vertices. Then we mark u and append it to the to order. A basic
Branch-and-Bound colours vertices in the obtained order. Potential interference, as de-
fined for the heuristic, is tracked with the additional step of decreasing the values when
backing from a colouring. Colours are tried in the order of increasing potential interfer-
ence. Thanks to that it produces results similar to the heuristic in a short time. On the
other hand it is guaranteed to find the optimal solution in a finite time.

In the following, we compare the performance of these ILP models with the Level-
ling heuristic and the Branch-and-Bound algorithm .

4.2 Results

In this section, we look at the performances of the methods to solve the THRESHOLD

IMPROPER COLOURING. We consider Delaunay graphs (dual of Voronoi diagram) for
a set of random points. This kind of graph is a natural approximation of a network of
irregular cells. The interference model is the one described in Section 3: adjacent nodes
interfere by 1 and nodes at distance two interfere by 1/2.

Figure 7 shows a performance comparison of the above-mentioned algorithms. For
all the plots, each data point represents an average over ten different graphs. The same
graph is used for all values of colours and time limit. Therefore sub-figures 7(b) and 7(c)
plot how results for a given problem instance get enhanced with increasing time limits.
Plots 7(e) and 7(f) show decreasing interference along increasing the number of colours
allowed. Finally plot 7(d) shows how well all the programs scale with increasing graph
sizes.

One immediate observation about both the heuristic and Branch-and-Bound algo-
rithm is that they provide solutions in relatively short time. Despite their naive imple-
mentation in a high-level programming language, they tend to find near-optimal results
in matter of seconds even for graphs of thousands of vertices. On the other hand, with
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(a) Example Delaunay graph, dotted lines de-
limit corresponding Voronoi diagram cells

0 100 200 300 400 500 600 700

l - Time limit [seconds]

0

5

10

15

20

25

30

35

t
-i

nt
er

fe
re

nc
e

fo
un

d

Delaunay graph, n=2000 vertices, k=5 colors

Branch & Bound
Heuristic
IP

(b) Over time

0 100 200 300 400 500 600 700

l - Time limit [seconds]

0

5

10

15

20

25

30

35

t
-i

nt
er

fe
re

nc
e

fo
un

d

Delaunay graph, n=2000 vertices, k=2 colors

Branch & Bound
Heuristic
IP

(c) Over time

0 500 1000 1500 2000 2500 3000

n - number of vertices

0

5

10

15

20

25

30

35

40

t
-i

nt
er

fe
re

nc
e

fo
un

d

Delaunay graph, k=2 colors, l=60 sec

Branch & Bound
Heuristic
IP

(d) Over size

2 4 6 8 10 12 14

k – number of colors

0

5

10

15

20

25

30

35

t
–

in
te

rfe
re

nc
e

fo
un

d

Delaunay graph, N=2000 vertices, L=60 sec

Branch & Bound
Heuristic
IP

(e) Over colours

2 4 6 8 10 12 14

k – number of colors

0

20

40

60

80

100

120

140

160

180

t
–

in
te

rfe
re

nc
e

fo
un

d
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Fig. 7. Results comparison for Levelling heuristic, Branch-and-Bound algorithm and Integer
Programme

limited time, they fail to improve up to optimal results, especially with a low number
of allowed colours. Although it is easy to envision an implementation faster by orders
of magnitude, this may still give little improvement — once a near-optimal solution
is found, the Branch-and-Bound algorithm does not improve for a very long time (an
example near-optimal solution found in around three minutes was not improved in over
six days).

ILP solvers with good Branch-and-Cut implementations do not suffer from this prob-
lem. However, they can not take advantage of any specialised knowledge of the prob-
lem, only the basic integer programmming representation. Thus it takes much more
time to produce first good results. Despite taking advantage of multi-core processing,
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CPLEX — ILP solver used in this work, does not scale with increasing graph sizes as
well as our simple algorithms. Furthermore, Figure 7(e) reveals one problem specific
to integer programming. When increasing the number of allowed colours, obtaining
small interferences gets easier. But this introduces additional constraints in the linear
program, thus increasing the complexity for a solver.

Above observations are valid only for the very particular case of the simple interfer-
ence function and very sparse graphs. The average degree in Delaunay graph converges
to 6. Proposed algorithms also work quite well for denser graphs. Figure 7(f) plots
interferences for different numbers of colours allowed found by the programs for an
Erdös-Rényi graph with n=500 and p=0.1. This gives us an average degree of 50. Both
Branch-and-Bound and heuristic programs achieve acceptable, and nearly identical, re-
sults. But the large number of constraints makes the linear program nearly inefficient.

5 Conclusion, Open Problems and Future Directions

In this paper, we introduced and studied a new colouring problem, WEIGHTED IM-
PROPER COLOURING . This problem is motivated by the design of telecommunication
antenna network in which the interferences between two vertices depends on
different factors and can take various values. For each vertex, the sum of the inter-
ference it receives should be less than a given threshold value.

We first give general bounds on the weighted-improper chromatic number. We then
study the particular case of square, triangular and hexagonal grids. For these graphs, we
provide their weighted-improper chromatic number for all possible values of t. Finally,
we propose a heuristic and a Branch-and-Bound algorithm to find good solutions of
the problem. We compare their results with the one of an integer program on cell-like
networks, Poisson Voronoi tessellations.

Open Problems and Future Directions. Many problems remain to be solved :

– For the study of the grid graphs, we considered a specific function where vertex at
distance one interfere by 1 and vertices at distance 2 by 1/2. Other weight func-
tions should be considered. e.g. 1/d2 or 1/(2d−1), where d is the distance between
vertices.

– Other families of graphs could be considered, for example hypercubes.
– Let G = (V,E,w) be an edge-weighted graph where the weights are all equal to 1

or M. Let GM be the subgraph of G induced by the edges of weight M; is it true

that if Δ(GM)<< Δ(G), then χt(G,w)≤ χt(G)≤
⌈

Δ(G,w)+1
t+1

⌉
? A similar result for

L(p,1)-labelling [10] suggests it could be true.
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Abstract. In this paper we initiate a systematic study of a problem that
has the flavor of two classical problems, namely Coloring and Domi-
nation, from the perspective of algorithms and complexity. A dominator
coloring of a graph G is an assignment of colors to the vertices of G such
that it is a proper coloring and every vertex dominates all the vertices
of at least one color class. The minimum number of colors required for a
dominator coloring of G is called the dominator chromatic number of G
and is denoted by χd(G). In the Dominator Coloring (DC) problem,
a graph G and a positive integer k are given as input and the objective
is to check whether χd(G) ≤ k. We first show that unless P=NP, DC
cannot be solved in polynomial time on bipartite, planar, or split graphs.
This resolves an open problem posed by Chellali and Maffray [Domina-
tor Colorings in Some Classes of Graphs, Graphs and Combinatorics,
2011] about the polynomial time solvability of DC on chordal graphs.
We then complement these hardness results by showing that the prob-
lem is fixed parameter tractable (FPT) on chordal graphs and in graphs
which exclude a fixed apex graph as a minor.

Keywords: Dominator Coloring, Fixed-Parameter Tractability, Chordal
Graphs, Apex-Minor-Free Graphs.

1 Introduction

Dominating Set and Coloring are among the most fundamental problems
in graph theory, algorithms and combinatorial optimization. Dominating Set
asks for the minimum set of vertices such that every vertex of the graph not in
this set has a neighbor in it. In Coloring we are asked to color the vertices
with as few colors as possible, so that no edge is monochromatic, that is, both
the endpoints of each edge receive different colors. These are classical NP-hard
problems [17] and are well-studied from the point of view of approximation algo-
rithms [12,23,25,26,27] and parameterized complexity [10,14,16]. Dominating
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Set and Coloring are “hard” problems from these perspectives. Thus, Domi-
nating Set and Coloring are known to be W[2]-complete and para-NP com-
plete, respectively, in parameterized complexity [10]. Further, (1− o(1)) lnn and
nε; ε > 0 are respective thresholds below which these problems cannot be approx-
imated efficiently (unless NP has slightly super-polynomial time algorithm [12]
or unless P=NP [27]).

Dominating Set and Coloring have a number of applications and this has
led to the algorithmic study of numerous variants of these problems. Among the
most well known ones are Connected Dominating Set, Independent Dom-
inating Set, Perfect Code, List Coloring, Edge Coloring, Acyclic
Edge Coloring and Choosability. Since both the problem and its variants
are computationally hard problems, most of the research centers around algo-
rithms in special classes of graphs like interval graphs, chordal graphs, planar
graphs and H-minor free graphs. In this paper we initiate a systematic algorith-
mic study on the Dominator Coloring (DC) problem that has a flavor of
both these classical problems. A dominator coloring of a graph G is an assign-
ment of colors to the vertices of G such that it is a proper coloring (no edge
is monochromatic) and every vertex dominates all vertices of at least one color
class. The minimum number of colors required for a dominator coloring of G
is called the dominator chromatic number of G and is denoted by χd(G). The
problem we study is formally defined as follows.

Dominator Coloring (DC)
Input: A graph G and an integer k ≥ 1.
Parameter: k.
Question: Does there exist a dominator coloring of G using at most k

colors?

Gera et al. [22] introduced the concept of dominator chromatic number, and
a number of basic combinatorial and algorithmic results on DC have been ob-
tained [20,21,22,24]. For example, it was observed by Gera et al. [22] that DC is
NP-complete on general graphs by a simple reduction from 3-Coloring. More
precisely, for any fixed k ≥ 4, it is NP-complete to decide if a graph admits a
dominator coloring with at most k colors [22]. In a recent paper Chellali and
Maffray [6] show that unlike 3-Coloring, one can decide in polynomial time if
a graph has dominator chromatic number 3. Furthermore, they show that the
problem is polynomial time solvable on P4 free graphs, and leave as a “challeng-
ing open problem” whether the problem can be solved in polynomial time on
chordal graphs.

In this paper we do a thorough algorithmic study of this problem, analyzing
both the classical complexity and the parameterized complexity. We begin by
showing that unless P=NP, DC cannot be solved in polynomial time on bipartite,
planar, or split graphs. The first two arguments are simple but make use of
an unusual sequence of observations. The NP-completeness reduction on split
graphs is quite involved. Since split graphs form a subclass of chordal graphs,
this answers, in the negative, the open problem posed by Chellali and Maffray.
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We complement our hardness results by showing that the problem is “fixed
parameter tractable" on several of the graph classes mentioned above. Informally,
a parameterization of a problem assigns an integer k to each input instance and a
parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
that solves the problem in time f(k) · |I|O(1), where |I| is the size of the input
and f is an arbitrary computable function that depends only on the parameter
k. We refer the interested reader to standard texts [10,14] on parameterized
complexity. We show that DC is FPT on planar graphs, apex minor free graphs,
split graphs and chordal graphs.

2 Preliminaries

All graphs in this article are finite and undirected, with neither loops nor multiple
edges. n denotes the number of vertices in a graph, and m the number of edges.
A subset D ⊆ V of the vertex set V of a graph G is said to be a dominating set
of G if every vertex in V \D is adjacent to some vertex in D. The domination
number γ(G) of G is the size of a smallest dominating set of G. A proper coloring
of graph G is an assignment of colors to the vertices of G such that the two end
vertices of any edge have different colors. The chromatic number χ(G) of G is
the minimum number of colors required in a proper coloring of G. A clique is a
graph in which there is an edge between every pair of vertices. The clique number
ω(G) of G is the size of a largest clique which is a subgraph of G. We make use
of the following known results.

Theorem 1. [20] Let G be a connected graph. Then max{χ(G), γ(G)} ≤
χd(G) ≤ χ(G) + γ(G).

Definition 1. A tree decomposition of a (undirected) graph G = (V,E) is a
pair (X,U) where U = (W,F ) is a tree, and X = ({Xi | i ∈ W}) is a collection
of subsets of V such that

1.
⋃
i∈W Xi = V ,

2. for each edge vw ∈ E, there is an i ∈W such that v, w ∈ Xi, and
3. for each v ∈ V, the set of vertices {i | v ∈ Xi} forms a subtree of U .

The width of (X,U) is maxi∈W {|Xi| − 1}. The treewidth tw(G) of G is the
minimum width over all the tree decompositions of G.

Both our FPT algorithms make use of the fact that the DC problem can be
expressed in Monadic Second Order Logic (MSOL) on graphs. The syntax of
MSOL on graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for
vertices, edges, sets of vertices and sets of edges, the quantifiers ∀, ∃ that can
be applied to these variables, and the following five binary relations: (1) u ∈ U
where u is a vertex variable and U is a vertex set variable; (2) d ∈ D where d
is an edge variable and D is an edge set variable; (3) inc(d, u), where d is an
edge variable, u is a vertex variable, and the interpretation is that the edge d
is incident on the vertex u; (4) adj(u, v), where u and v are vertex variables
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and the interpretation is that u and v are adjacent; (5) equality of variables
representing vertices, edges, sets of vertices and sets of edges.

Many common graph and set-theoretic notions can be expressed in MSOL [5,8].
In particular, let V1, V2, . . . , Vk be a set of subsets of the vertex set V (G) of a
graph G. Then the following notions can be expressed in MSOL:

– V1, V2, . . . , Vk is a partition of V (G):

Part(V (G);V1, V2, . . . , Vk) ≡ ∀v ∈ V (G)[(v ∈ V1 ∨ v ∈ V2 ∨ · · · ∨ v ∈ Vk) ∧
(¬(v ∈ V1 ∩ V2)) ∧ (¬(v ∈ V1 ∩ V3)) ∧ · · · ∧ (¬(v ∈ Vk−1 ∩ Vk))] ∧

(∃v ∈ V (G)[v ∈ V1]) ∧ (∃v ∈ V (G)[v ∈ V2]) ∧ · · · ∧ (∃v ∈ V (G)[v ∈ Vk])
– Vi is an independent set in G:

IndSet(Vi) ≡ ∀u ∈ Vi[∀v ∈ Vi[¬adj(u, v)]]

– Vertex v dominates all vertices in the set Vi:

Dom(v, Vi) ≡ ∀w ∈ Vi[¬(w = v) =⇒ adj(v, w)]

For a graph G and a positive integer k, we use ϕ(G, k) to denote an MSOL
formula which states that G has a dominator coloring with at most k colors:

ϕ(G, k) ≡ ∃V1, V2, . . . , Vk ⊆ V (G)[Part(V (G);V1, V2, . . . , Vk) ∧ (1)
IndSet(V1) ∧ IndSet(V2) ∧ · · · ∧ IndSet(Vk) ∧

∀v ∈ V (G)[Dom(v, V1) ∨Dom(v, V2) ∨ · · · ∨Dom(v, Vk)]]

The following well known result states that every optimization problem express-
ible in MSOL has a linear time algorithm on graphs of bounded treewidth.

Proposition 1. [1,3,5,7,9] Let ϕ be a property that is expressible in Monadic
Second Order Logic. For any fixed positive integer t, there is an algorithm that,
given a graph G of treewidth at most t as input, finds a largest (alternatively,
smallest) set S of vertices of G that satisfies ϕ in time f(t, |ϕ|)|V (G)| for a
computable function f().

Since the size |ϕ(G, k)| of the MSOL expression 1 is a function of k, we have

Theorem 2. Given a graph G of treewidth t and a positive integer k as inputs,
the Dominator Coloring problem can be solved in f(t, k)|V (G)| time for a
computable function f().

The operation of contracting an edge {u, v} of a graph consists of replacing
the two vertices u, v with a single vertex which is adjacent to all the former
neighbours of u and v. A graph H is said to be a contraction of a graph G if H
can be obtained from G by contracting zero or more edges of G. H is said to be
a minor of G if H is a contraction of some subgraph of G. A graph G is said to
be apex graph if there exists a vertex in G whose removal from G yields a planar
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Fig. 1. The graph Γ6

graph. A family F of graphs is said to be apex minor free if there is a specific
apex graph H such that no graph in F has H as a minor. For instance, planar
graphs are apex minor free since they exclude the apex graph K5 as a minor.
The treewidth of an apex minor free graph can be approximated to within a
constant factor in polynomial time:

Proposition 2. [13, Theorem 6.4] For any graph H, there is a constant wH
and a polynomial time algorithm which finds a tree decomposition of width at
most wH t for any H-minor-free graph G of treewidth t.

For � ∈ N, Γ� is defined [15] to be the graph obtained from the � × �-grid by
(1) triangulating the internal faces such that all the internal vertices become
of degree 6 and all non-corner external vertices are of degree 4, and (2) adding
edges from one corner of degree two to all vertices of the external face. Figure 1
depicts Γ6. Fomin et al. showed that any apex minor free graph of large treewidth
contains a proportionately large Γ� as a contraction. More precisely:

Proposition 3. [15, Theorem 1] For any apex graph H, there is a constant
cH such that every connected graph G which excludes H as a minor and has
treewidth at least cH� contains Γ� as a contraction.

3 Hardness Results

In this section we show that DC is NP-hard on very restricted classes of graphs.
The only known hardness result for this problem is that it is NP-complete on
general graphs [22]. In fact even determining whether there exists a dominator
coloring of G using at most 4 colors is NP-complete. The proof is obtained by
a reduction from 3-Coloring – checking whether an input graph is 3-colorable
or not – to DC. Given an instance G to 3-Coloring, an instance G′ for DC is
obtained by adding a new vertex (universal vertex) and making it adjacent to
every vertex of G. Now one can easily argue that G is 3 colorable if and only if
G′ has dominator coloring of size at most 4. Notice, however, that this simple
reduction cannot be used to show that DC is NP-complete on restricted graph
classes like planar graphs or split graphs or chordal graphs. We start with a few
simple claims that we will make use of later.
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Lemma 1. Let G = (V,E) be a graph. Given a proper a-coloring C of G and
a dominating set D of G with |D| = b, we can find, in O(|V | + |E|) time, a
dominator coloring of G with at most a+ b colors.

Proof. Let C = {V1, V2, . . . , Va} be a proper coloring of G and let D be a
dominating set with |D| = b. Then C′ = {{v} : v ∈ D} ∪ {Vi ∩ (V −D) : Vi ∈ C}
is a dominator coloring of G with at most a+ b colors. ��
Corollary 1. [	]1 If there exists an α-approximation algorithm for the chro-
matic number problem and a β-approximation algorithm for the domination
number problem, then there exists an (α + β)-approximation algorithm for the
dominator chromatic number problem.

Lemma 2. [	] Let F be a class of graphs on which the Dominating Set problem is
NP-complete. If the disjoint union of any two graphs in F is also in F , then there
is no polynomial time algorithm that finds a constant additive approximation for
the Dominating Set problem on F , unless P = NP.

Corollary 2. [	] Dominator Coloring on planar graphs cannot be solved in
polynomial time, unless P = NP.

Corollary 3. [	] Dominator Coloring on bipartite graphs cannot be solved
in polynomial time, unless P = NP.

3.1 NP-Hardness of DC on Split Graphs

We now proceed to prove that the DC problem is NP-complete for split graphs.
Our starting point is the following known characterization:

Theorem 3. [2] Let G be a split graph with split partition (K, I) and |K| =
ω(G), where K is a clique and I an independent set. Then χd(G) = ω or ω+ 1.
Further χd(G) = ω if and only if there exists a dominating set D of G such that
D ⊆ K and every vertex v in I is nonadjacent to at least one vertex in K \D.
We exploit this characterization, and prove NP-completeness on split graphs by
demonstrating the NP-completeness of the problem of checking if there exists a
dominating set D of G such that D ⊆ K and every vertex v in I is nonadjacent
to at least one vertex in K\D. We call this problem Split Graph Domination.

For showing Split Graph Domination NP-complete, we will need to define
an intermediate problem called Partition Satisfiability, and demonstrate
that it is NP-complete. We will then show that DC is NP-hard on split graphs
by establishing a reduction from Partition Satisfiability.

Let φ be a CNF formula. Then we use C(φ) to denote the set of clauses of φ.
If C is a clause of φ, then we use ν(C) to denote the set of variables that appear
in C. A clause is said to be all-positive (negative) if all the literals that appear
in it are positive (negative).
1 Due to space constraints, proofs of results marked with a [�] have been deferred to

a longer version of the paper.



Algorithmic Aspects of Dominator Colorings in Graphs 25

Definition 2 (Partition Normal Form). A CNF formula φ over the variable
set V is said to be in partition normal form if C(φ) admits a partition into two
parts CP (φ) and CN (φ) and there exists a bijection f : CP (φ) → CN (φ) such
that for every C ∈ CP (φ) the following conditions are satisfied: (1) ν(C) ∪
ν(f(C)) = V and (2) ν(C) ∩ ν(f(C)) = ∅. Any clause in CP (φ) is required to
be an all-positive clause and any clause in CN (φ) is required to be an all-negative
clause.

We are now ready to describe the problem Partition Satisfiability.

Partition Satisfiability
Input: A formula φ in CNF, over variables in V , given in partition

normal form.
Question: Is φ satisfiable?

We establish the NP-completeness of Partition Satisfiability by a reduction
from Disjoint Factors:

Disjoint Factors
Input: A word w over an alphabet Σ.
Question: For every a ∈ Σ, does there exist a substring wa of w that

begins and ends in a, such that for every a, b ∈ Σ, wa and wb
do not overlap in w?

The problem of Disjoint Factors is known to be NP-complete [4]. Substrings
that begin and end with the same letter a are referred to as a-factors.

Lemma 3. Partition Satisfiability is NP-complete.

Proof. Let w = w1w2 . . . wn be an instance of Disjoint Factors over the
alphabet

Σ = {a1, . . . , ak}.
For 1 ≤ i < j ≤ n and 1 ≤ l ≤ k, we call the triplet (i, j, l) valid if the substring
wi . . . wj is an al-factor. Let F denote the set of valid triplets. We construct an
instance of Partition Satisfiability as follows:

For every valid triplet (i, j, l), introduce the variable Pl(i, j). For every 1 ≤
l ≤ k, introduce the clause:

Cl :=

⎛
⎝ ∨

{i,j : (i,j,l)∈F}
Pl(i, j)

⎞
⎠ .

Let φFACTOR be the conjunction of the clauses thus formed: φFACTOR := C1∧C2∧
. . . ∧ Ck.

Further, for every i1, j1 and i2, j2 such that 1 ≤ i1 < j1 ≤ n and 1 ≤ i2 <
j2 ≤ n, and [i1, j1] ∩ [i2, j2] �= ∅, and there exist l1, l2; 1 ≤ l1, l2 ≤ k, such that
(i1, j1, l1) ∈ F and (i2, j2, l2) ∈ F , we introduce the following clause:
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C :=
(
Pl1(i1, j1) ∨ Pl2(i2, j2)

)
Let D denote the set of clauses described above. Further, let φDISJOINT be the
conjunction of these clauses: φDISJOINT :=

∧
C∈D C.

Claim. The formula: φ := φDISJOINT ∧ φFACTOR is satisfiable if and only if (w,Σ)
is a YES-instance of Disjoint Factors.

Proof. (⇒) Let χ be a satisfying assignment of φ. For all l, 1 ≤ l ≤ k, there
exists at least one pair (i, j), 1 ≤ i < j ≤ n, such that χ sets Pl(i, j) to 1.
Indeed, if not, χ would fail to satisfy the clause Cl. Now, note that wi . . . wj is
a al-factor, since the variable Pl(i, j) corresponds to a valid triplet.

We pick wi . . . wj as the factor for al (if Pl(i, j) is set to 1 by χ for more
than one pair (i, j), then any one of these pairs will serve our purpose). It only
remains to be seen that for r, s ∈ Σ, if wi1 . . . wj1 is chosen as a ar-factor, and
wi2 . . . wj2 is chosen as a as-factor, then wi1 . . . wj1 and wi2 . . . wj2 do not overlap
in w. This is indeed the case, for if they did overlap, then it is easily checked
that χ would fail to satisfy the clause:

(
Pr(i1, j1) ∨ Ps(i2, j2)

)
.

(⇐) If (w,Σ) is a YES-instance of Disjoint Factors, then for every l,
1 ≤ l ≤ k, there exist i, j; 1 ≤ i < j ≤ n, such that (i, j, l) ∈ F . We claim that
setting all the “corresponding” Pl(i, j) variables to 1 is a satisfying assignment
for φ.

Indeed, every Cl is satisfied because there exists an al-factor for every l.
Further, it is routine to verify that all clauses in D are satisfied because the
chosen factors do not overlap in w. ��
Now, it remains to construct from φ an equivalent formula ψ that is in partition
normal form. To this end, we will use two new variables, {x, y}. Recall that we
use V to denote the set of variables that appear in φ. For every clause Cl, define
the clause Ĉl as: Ĉl :=

(
x ∨ y ∨∨z ∈ V \ν(Cl)

z
)
.

Similarly, for every clause C ∈ D, define Ĉ as: Ĉ :=
(
x ∨ y ∨∨z ∈ V \ν(C) z

)
.

Let ψ be obtained by the conjunction of φ with the newly described clauses:
ψ := φ ∧

(∧
1≤l≤k Ĉl

)
∧
(∧

C∈D Ĉ
)
.

Clearly, ψ is in partition normal form. The following partition of the clauses
of ψ: CP = {Cl : 1 ≤ l ≤ k} ∪ {Ĉ : C ∈ D} and CN = {Ĉl : 1 ≤ l ≤
k} ∪ {C : C ∈ D} is a partition into all-positive and all-negative clauses. The
bijection f defined as: f(Cl) = Ĉl, for 1 ≤ l ≤ k and f(Ĉ) = C, for C ∈ D is
easily seen to be a bijection with the properties demanded by the definition of
the partition normal form. We now arrive at our concluding claim:

Claim. φ is satisfiable if and only if ψ is satisfiable.

Proof. (⇒) Let χ be a satisfying assignment for φ. Extend φ to the new variables
{x, y} as follows: χ(x) = 1 and χ(y) = 0. It is easy to see that χ is satisfying for
ψ.

(⇐) This direction is immediate, as C(φ) ⊆ C(ψ). ��
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The proof that Partition Satisfiability is NP-hard follows when we put the
two claims together: by appending the construction of ψ from φ to the formula
φ obtained from the Disjoint Factors instance, we obtain an equivalent in-
stance of Partition Satisfiability. This concludes the proof. We note that
membership in NP is trivial — an assignment to the variables is clearly a cer-
tificate that can be verified in linear time. The lemma follows. ��
Recall the Split Graph Domination problem that we introduced in the be-
ginning of this section:

Split Graph Domination
Input: Split graph G with split partition (K, I) and |K| = ω.
Question: Does there exist a dominating set D of G such that D ⊆ K

and every vertex v in I is nonadjacent to at least one vertex
in K \D ?

We now turn to a proof that Split Graph Domination is NP-complete.

Theorem 4. Split Graph Domination is NP-complete.

Proof. It is straightforward to see that Split Graph Domination is in NP. We
now prove that it is NP-hard by a reduction from Partition Satisfiability.

Given an instance φ (over the variables V ) of Partition Satisfiability, we
construct a split graph G with split partition (K, I) as follows. Introduce, for
every variable in V , a vertex in K and for every all-positive clause of φ, a vertex
in I: K = {v[x] : x ∈ V }, I = {u[C] : C ∈ CP (φ)}.

A pair of vertices v[x] and u[C] are adjacent if the variable x belongs to the
clause C, that is, x ∈ ν(C). We also make all vertices in K pairwise adjacent
and all vertices in I pairwise independent. This completes the construction.

Suppose φ admits a satisfying truth assignment χ. Let D = {v[x] ∈
K : χ(x) = 1}. We now prove that this choice of D is a split dominating
set. Consider u[C] ∈ I. There exists at least one x ∈ V such that x ∈ ν(C)
and χ(x) = 1. Thus the corresponding vertex v[x] ∈ D, and u[C] is dominated.
Further, consider the all-negative clause Ĉ corresponding to C, that contains
every variable in V that is not in ν(C). Since χ is a satisfying assignment, there
is at least one y ∈ V \ ν(C) such that χ(y) = 0. Clearly, v[y] /∈ D, and v[y] is
not adjacent to u[C].

Conversely, suppose there exists a dominating set D ⊆ K such that each u[C]
in I is nonadjacent to at least one vertex in K \D. Consider the following truth
assignment χ for φ: χ(x) = 1 if, and only if, v[x] ∈ K ∩D. We now prove that
χ is a satisfying assignment. Consider any all-positive clause C. Since u[C] was
dominated by D, there exists a variable x ∈ ν(C) such that v[x] ∈ D, and thus
χ(x) = 1. Consider the corresponding all-negative clause Ĉ. Since K \D contains
at least one non-neighbor of v[x], there exists a y /∈ ν(C) such that χ(y) = 0.
Note that y /∈ ν(C) implies that y ∈ ν(Ĉ). Recall that the assignment χ(y) = 0
is then satisfying for Ĉ, since Ĉ is an all-negative clause. ��
From Theorem 3 and Theorem 4 we get
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Theorem 5. DC when restricted to split graphs is NP-complete.

4 Parameterized Algorithms

In this section we investigate the fixed-parameter tractability of the DC problem
in certain graph classes. Recall that it is NP-complete to decide if a graph admits
a dominator coloring with at most 4 colors [22]. It follows that in general graphs,
the DC problem cannot be solved even in time ng(k) for any function g(k) —
that is, DC does not belong to the complexity class XP — unless P=NP. Hence
DC is not FPT in general graphs unless P=NP. As we show below, however,
the problem is FPT in two important classes of graphs, namely apex-minor-
free graphs (which include planar graphs as a special case) and chordal graphs.
Recall that it is NP-complete to decide if a planar graph admits a proper 3-
coloring [18]. As a consequence, the Graph Coloring problem parameterized
by the number of colors is not even in XP in planar graphs. Our result for planar
graphs thus brings out a marked difference in the parameterized complexity of
these two problems when restricted to planar graphs.
Apex Minor Free Graphs. We now show that the Dominator Coloring
problem is FPT on apex minor free graphs. This implies, as a special case, that
the problem is FPT on planar graphs. We first show that if the treewidth of the
input apex minor free graph is large, then the graph has no dominator coloring
with a small number of colors.

Theorem 6. [	] For any apex graph H, there is a constant dH such that any
connected graph G which excludes H as a minor and has treewidth at least dH

√
k

has no dominator coloring with at most k colors.

Let (G, k) be an instance of the Dominator Coloring problem, where G
excludes the apex graph H as a minor. Let t = wHdH

√
k where dH , wH are the

constants of Theorem 6 and Proposition 2, respectively. To solve the problem on
this instance, we invoke the approximation subroutine implied by Proposition 2
on the graph G. If this subroutine returns a tree decomposition with treewidth
more than t, then we return NO as the answer. Otherwise we solve the problem
using the algorithm of Theorem 2, and so we have:

Theorem 7. [	] The Dominator Coloring problem is fixed parameter
tractable on apex minor free graphs.
Chordal Graphs and Split Graphs. We now show that the Dominator
Coloring problem is FPT on chordal graphs. For a special class of chordal
graphs, namely split graphs, we give an FPT algorithm which runs in time
single-exponential in the parameter.

Theorem 8. The Dominator Coloring problem is fixed parameter tractable
on chordal graphs.

Proof. Let (G, k) be an instance of the Dominator Coloring problem, where
G is chordal. The algorithm first finds a largest clique in G. If the number of
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vertices in this clique is more than k, then it returns NO as the answer. Otherwise
it invokes the algorithm of Theorem 2 as a subroutine to solve the problem.

To see that this algorithm is correct, observe that if G contains a clique C
with more than k vertices, then χ(G) > k since it requires more than k colors to
properly color the subgraph C itself. It follows from Theorem 1 that χd(G) > k,
and so it is correct to return NO. A largest clique in a chordal graph can be
found in linear time [19]. If the largest clique in G has size no larger than k, then
— as is well known — the treewidth of G is at most k−1, and so the subroutine
from Theorem 2 runs in at most f((k − 1), k)|V (G)| = g(k)|V (G)| time. Thus
the algorithm solves the problem in FPT time. ��
The Dominator Coloring problem can be solved in “fast” FPT time on split
graphs:

Theorem 9. [	] The Dominator Coloring problem can be solved in O(2k ·n2)
time on a split graph on n vertices.

5 Conclusion and Scope

We derived several algorithmic results about the Dominator Coloring (DC)
problem. We showed that the DC problem remains hard on several graph classes,
including bipartite graphs, planar graphs, and split graphs. In the process we also
answered, in the negative, an open problem by Chellali and Maffray [6] about
the polynomial time solvability of DC on chordal graphs. Finally, we showed that
though the problem cannot be solved in polynomial time on the aforementioned
graph classes, it is FPT on apex minor free graphs and on chordal graphs. From
Theorem 1 and from the fact that finding a constant additive approximation
for the Dominating Set problem is W[2]-hard [11], it follows that the DC
problem is W[2]-hard on bipartite graphs, and so also on the larger class of
perfect graphs. An interesting problem which remains open is whether the DC
problem is solvable in polynomial time on interval graphs.
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Abstract. The longest previous factor (LPF) problem is defined for
traditional strings exclusively from the constant alphabet Σ. A param-
eterized string (p-string) is a sophisticated string composed of symbols
from a constant alphabet Σ and a parameter alphabet Π . We generalize
the LPF problem to the parameterized longest previous factor (pLPF)
problem defined for p-strings. Subsequently, we present a linear time so-
lution to construct the pLPF array. Given our pLPF algorithm, we show
how to construct the pLCP (parameterized longest common prefix) ar-
ray in linear time. Our algorithm is further exploited to construct the
standard LPF and LCP arrays all in linear time.

Keywords: parameterized suffix array, parameterized longest common
prefix, p-string, p-match, LPF, LCP.

1 Introduction

Given an n-length traditional stringW = W [1]W [2]...W [n] from the alphabetΣ,
the longest previous factor (LPF) problem is to determine the maximum length
of a previously occurring factor for each suffix occurring in W . More formally, for
any suffix u beginning at index i in the string W , the LPF problem is to identify
the length of the longest factor between u and another suffix v at some position h
before i in W : that is, 1 ≤ h < i. The LPF problem, introduced by Crochemore
and Ilie [1], yields a data structure convenient for fundamental applications such
as string compression [2] and detecting runs [3] within a string. In order to
compute the LPF array, it is shown in [1] that the suffix array SA is useful
to quickly identify the most lexicographically similar suffixes that constitute as
previous factors for the chosen suffix in question. The use of SA expedites the
work required to solve the LPF problem and likewise, is the cornerstone to
solutions for many problems defined for traditional strings.

A generalization of traditional strings over an alphabet Σ is the parame-
terized string (p-string), introduced by Baker [4]. A p-string is a production
of symbols from the alphabets Σ and Π, which represent the constant sym-
bols and parameter symbols respectively. The parameterized pattern matching
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(p-match) problem is to identify an equivalence between a pair of p-strings S and
T when 1) the individual constant symbols match and 2) there exists a bijection
between the parameter symbols of S and T . For example, the following p-strings
that represent program statements z=y ∗ f/++y; and a=b ∗ f/++b; over the
alphabets Σ = {∗, /,+,=, ; } and Π = {a, b, f, y, z} satisfy both conditions and
thus, the p-strings p-match. The motivation for addressing a problem in terms
of p-strings is the range of problems that a single solution can address, including
1) exact pattern matching when |Π| = 0, 2) mapped matching (m-matching)
when |Σ| = 0 [5], and clearly, 3) p-matching when |Σ| > 0∧ |Π | > 0. Prominent
applications concerned with the p-match problem include detecting plagiarism
in academia and industry, reporting similarities in biological sequences [6], dis-
covering cloned code segments in a program [7], and even answering critical legal
questions regarding the unauthorized use of intellectual property [8].

In this work, we introduce the parameterized longest previous factor (pLPF)
for p-strings analogous to the LPF problem for traditional strings, which can
similarly be used to study compression and duplication within p-strings. Given
an n-length p-string T = T [1]T [2]...T [n], the pLPF problem is to determine the
longest parameterized suffix (p-suffix) v at position h for a p-suffix starting at
i in T with 1 ≤ h < i. Our approach uses a parameterized suffix array (pSA)
[9,10,11,12] for p-strings analogous to the traditional suffix array [13]. The major
difficulty of the pLPF problem is that unlike traditional suffixes of a string, the
p-suffixes are dynamic, varying with the starting position of the p-suffix. Thus,
traditional LPF solutions cannot be directly applied to the pLPF problem.
Main Contributions: We generalize the LPF problem for traditional strings
to the parameterized longest previous factor (pLPF) problem defined for p-
strings. Then, we present a linear time algorithm for constructing the pLPF
data structure. Traditionally, the LPF problem is solved by using the longest
common prefix (LCP ) array. This was one approach used in [1]. In this work,
we show how to go in the reverse direction: that is, given the pLPF solution, we
now construct the pLCP array. Further, we identify how to exploit our algorithm
for the pLPF problem to construct the LPF and LCP arrays. Our main results
are stated in the following theorems:

Theorem 1. Given an n-length p-string T , prevT = prev(T ), the prev encoding
of T , and pSA, the parameterized suffix array for T , the algorithm compute pLPF
constructs the pLPF array in O(n) time.

Theorem 2. Given an n-length p-string T , prevT = prev(T ), the prev encoding
of T , and pSA, the parameterized suffix array for T , the compute pLPF algorithm
can be used to construct the pLCP array in O(n) time.

2 Background / Related Work

Baker [7] identifies three types of pattern matching: 1) exact matching, 2) pa-
rameterized matching (p-match), and 3) matching with modifications. The first
p-match breakthroughs, namely, the prev encoding and the parameterized suffix
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tree (p-suffix tree) that demands the worst case construction time of O(n(|Π|+
log(|Π| + |Σ|))), were introduced by Baker [4]. Like the traditional suffix tree
[14,15,16], the p-suffix tree [4] implementation suffers from a large memory foot-
print. Other solutions that address the p-match problem without the space
limitations of the p-suffix tree include the parameterized-KMP [5] and
parameterized-BM [17], variants of traditional pattern matching approaches.
Idury et al. [18] studied the multiple p-match problem using automata. The
parameterized suffix array (p-suffix array) and the parameterized longest com-
mon prefix (pLCP ) array combination is analogous to the suffix array and LCP
array for traditional strings [13,14,15,16], which is both time and space efficient
for pattern matching. Direct p-suffix array and pLCP construction was first in-
troduced by Deguchi et al. [10] for binary strings with |Π| = 2, which required
O(n) work. Deguchi and colleagues [9] later proposed the first approach to p-
suffix sorting and pLCP construction with an arbitrary alphabet size requiring
O(n2) time in the worst case. We introduce new algorithms in [11,12] to p-suffix
sort in linear time on average using coding methods from information theory.

Table 1. LPF calculation for string W = AAABABAB$

i SA[i] W [SA[i]...n] LCP [i] W [i...n] LPF [i]

1 9 $ 0 AAABABAB$ 0
2 1 AAABABAB$ 0 AABABAB$ 2
3 2 AABABAB$ 2 ABABAB$ 1
4 7 AB$ 1 BABAB$ 0
5 5 ABAB$ 2 ABAB$ 4
6 3 ABABAB$ 4 BAB$ 3
7 8 B$ 0 AB$ 2
8 6 BAB$ 1 B$ 1
9 4 BABAB$ 3 $ 0

In a novel application of the suffix array and the corresponding LCP array,
Crochemore and Ilie [1] introduced the longest previous factor (LPF) problem
for traditional strings. Table 1 shows an example LPF for a short sequence
W = AAABABAB$. For any suffix u beginning at index i in string W , the
LPF problem is to identify the exact matching longest factor between u and
another suffix v starting prior to index i in W . We note that this definition is
similar to (though not the same as) the Prior array used in [14]. Crochemore
and Ilie [1] exploited the notion that the nearby elements within a suffix array
are closely related en route to proposing a linear time solution to the LPF prob-
lem. They also proposed another linear time algorithm to compute the LPF
array by using the LCP structure. The significance of an efficient solution to
the LPF is that the resulting data structure simplifies computations in various
string analysis procedures. Typical examples include computing the Lempel-
Ziv factorization [2,19], which is fundamental in string compression algorithms
such as the UNIX gzip utility [14,15] and in algorithms for detecting repeats in a
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string [3]. Our motivation to study the LPF in terms of p-strings is the power
of parameterization with relevance to various important applications.

3 Preliminaries

A string on an alphabet Σ is a production T = T [1]T [2]...T [n] from Σn with
n = |T | the length of T . We will use the following string notations: T [i] refers to
the ith symbol of string T , T [i...j] refers to the substring T [i]T [i+ 1]...T [j], and
T [i...n] refers to the ith suffix of T : T [i]T [i + 1]...T [n]. Parameterized pattern
matching requires the finite alphabets Σ and Π . Alphabet Σ denotes the set of
constant symbols while Π represents the set of parameter symbols. Alphabets
are defined such that Σ ∩Π = ∅. Furthermore, we append the terminal symbol
$ /∈ Σ ∪Π to the end of all strings to clearly distinguish between suffixes. For
practical purposes, we can assume that |Σ| + |Π | ≤ n since otherwise a single
mapping can be used to enforce the condition.

Definition 1. Parameterized String (p-string): A p-string is a production
T of length n from (Σ ∪Π)∗$.

Consider the alphabet arrangements Σ = {A,B} and Π = {w, x, y, z}. Example
p-strings include S = AxByABxy$, T = AwBzABwz$, and U = AyByAByy$.

Definition 2. ([4,10]) Parameterized Matching (p-match): A pair of p-
strings S and T are p-matches with n = |S| if and only if |S| = |T | and each
1 ≤ i ≤ n corresponds to one of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */
(a) S[i] 
= S[j], T [i] 
= T [j] for any 1 ≤ j < i

(b) S[i] = S[i− q] iff T [i] = T [i− q] for any 1 ≤ q < i

In our example, we have a p-match between the p-strings S and T since every
constant/terminal symbol matches and there exists a bijection of parameter
symbols between S and T . U does not satisfy the parameter bijection to p-match
with S or T . The process of p-matching leads to defining the prev encoding.

Definition 3. ([4,10]) Previous (prev) Encoding: Given Z as the set of
non-negative integers, the function prev : (Σ ∪ Π)∗$ → (Σ ∪ Z)∗$ accepts a
p-string T of length n and produces a string Q of length n that 1) encodes
constant/terminal symbols with the same symbol and 2) encodes parameters to
point to previous like-parameters. More formally, Q is constructed of individual
Q[i] with 1 ≤ i ≤ n where:

Q[i] =

⎧⎨
⎩

T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 
= T [j] for any 1 ≤ j < i
i− k, if T [i] ∈ Π ∧ k = max{j|T [i] = T [j], 1 ≤ j < i}
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For a p-string T of length n, the above O(n) space prev encoding requires the
construction time of order O(n log(min{n, |Π |})), which follows from the dis-
cussions of Baker [4,17] and Amir et al. [5] on the dependency of alphabet Π
in p-match applications. Given an indexed alphabet and an auxiliary O(|Π |)
mapping structure, we can construct prev in O(n) time. Using Definition 3, our
working examples evaluate to prev(S) = A0B0AB54$, prev(T ) = A0B0AB54$,
prev(U) = A0B2AB31$. The relationship between p-strings and the lexico-
graphical ordering of the prev encoding is fundamental to the p-match problem.

Definition 4. prev Lexicographical Ordering: Given the p-strings S and
T and two symbols s and t from the encodings prev(S) and prev(T ) respec-
tively, the relationships =, 
=, <, and > refer to lexicographical ordering between
s and t. We define the ordering of symbols from a prev encoding of the pro-
duction (Σ ∪ Z)∗$ to be $ < ζ ∈ Z < σ ∈ Σ, where each ζ and σ is lexico-
graphically sorted in their respective alphabets. The relationships =, 
=, ≺, and

 refer to the lexicographical ordering between strings. In the case of prev(S)
and prev(T ), prev(S) ≺ prev(T ) when prev(S)[1] = prev(T )[1], prev(S)[2] =
prev(T )[2], ..., prev(S)[j−1] = prev(T )[j−1], prev(S)[j] < prev(T )[j] for some
j, j ≥ 1. Similarly, we can define =k, 
=k, ≺k, and 
k to refer to the lexico-
graphical relationships between a pair of p-strings considering only the first k ≥ 0
symbols.

It is shown in [11,12] how to map a symbol in prev to an integer based on the
ordering of Definition 4 and subsequently, call the function in(x,X) to answer
alphabet membership questions of the form x ∈ X in constant time. The fol-
lowing proposition essential to the p-matching problem is directly related to the
established symbol ordering.

Proposition 1. ([4]) Two p-strings S and T p-match when prev(S) = prev(T ).
Also, S ≺ T when prev(S) ≺ prev(T ) and S 
 T when prev(S) 
 prev(T ).

The example prev encodings show a p-match between S and T since prev(S) =
A0B0AB54$ and prev(T ) = A0B0AB54$. Also, U 
 S and U 
 T since
prev(U) = A0B2AB31$ 
 prev(S) = prev(T ) = A0B0AB54$. We use the
ordering established in Definition 4 to define the parameterized suffix array and
the parameterized longest common prefix array.

Definition 5. Parameterized Suffix Array (pSA): The pSA for a p-string
T of length n maintains a lexicographical ordering of the indices i representing in-
dividual p-suffixes prev(T [i...n]) with 1 ≤ i ≤ n, such that prev(T [pSA[q]...n]) ≺
prev(T [pSA[q + 1]...n])∀q, 1 ≤ q < n.

Definition 6. Parameterized Longest Common Prefix (pLCP ) Array:
The pLCP array for a p-string T of length n maintains the length of the
longest common prefix between neighboring p-suffixes. We define plcp(α, β) =
max{k|prev(α) =k prev(β)}. Then, pLCP [1] = 0 and pLCP [i] = max{k | plcp
(T [pSA[i]...n], T [pSA[i− 1]...n])}, 2 ≤ i ≤ n.
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For the example T = AwBzABwz$ with prev(T ) = A0B0AB54$, we have
pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3} and pLCP = {0, 0, 1, 1, 1, 0, 1, 0, 2}. The encoding
prev is supplemented by the encoding forw.

Definition 7. ([11,12]) Forward (forw) Encoding: Let the function rev(T )
reverse the p-string T and repl(T, x, y) replace all occurrences in T of the symbol
x with y. We define the function forw for the p-string T of length n as forw(T ) =
rev(repl(prev(rev(T )), 0, n)).

For a p-string T of length n, the encoding forw 1) encodes constant/termi-
nal symbols with the same symbol and 2) encodes each parameter p with the
forward distance to the next occurrence of p or an unreachable forward dis-
tance n. Our definition of forw generates output mirroring the fw encoding used
by Deguchi et al. [9,10]. The forw encodings in our example with n = 9 are
forw(S) = A5B4AB99$, forw(T ) = A5B4AB99$, forw(U) = A2B3AB19$.

Definition 8. ([1]) Longest Previous Factor (LPF ): For an n-length tra-
ditional string W , the LPF is defined for each index 1 ≤ i ≤ n such that
LPF [i] = max({0} ∪ {k | W [i...n] =k W [h...n], 1 ≤ h < i}).
The traditional string W = AAABABAB$ yields LPF = {0, 2, 1, 0, 4, 3, 2, 1, 0}.

4 Parameterized LPF

We define the parameterized longest previous factor (pLPF) problem as follows
to generalize the traditional LPF problem to p-strings.

Definition 9. Parameterized Longest Previous Factor (pLPF ): For a p-
string T of length n, the pLPF array is defined for each index 1 ≤ i ≤ n to
maintain the length of the longest factor between a p-suffix and a previous p-
suffix occurring in T . More formally, pLPF [i] = max({0}∪{k | prev(T [i...n]) =k

prev(T [h...n]), 1 ≤ h < i}).
The pLPF problem requires that we deal with p-suffixes, which are suffixes
encoded with prev. This task is more demanding than the LPF for traditional
strings because Lemma 1 indicates that we cannot guarantee the individual
suffixes of a single prev encoding to be p-suffixes. Thus, the changing nature of
the prev encoding poses a major challenge to efficient and correct construction
of the pLPF array using current algorithms that construct the LPF array for
traditional strings. The proof is provided in [12] and omitted for space.

Lemma 1. Given a p-string T of length n, the suffixes of prev(T ) are not nec-
essarily the p-suffixes of T. More formally, if π ∈ Π occurs more than once in
T , then ∃i, s.t. prev(T [i...n]) 
= prev(T )[i...n], 1 ≤ i ≤ n.
Consider the p-string T = AAAwBxyyAAAzwwB$ using the previously defined
alphabets. Table 2 shows the pLPF computation for the p-string T . We note
the intricacies of Lemma 1 since simply using the traditional LPF algorithm 1)
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Table 2. pLPF calculation for p-string T = AAAwBxyyAAAzwwB$

i pSA[i] pLCP [i] prev(T [pSA[i]...n]) before<[pSA[i]] before>[pSA[i]] pLPF [i]

1 16 0 $ -1 6 0
2 6 0 001AAA001B$ -1 4 2
3 12 3 001B$ 6 7 1
4 7 1 01AAA001B$ 6 4 0
5 13 2 01B$ 7 8 0
6 8 1 0AAA001B$ 7 4 1
7 14 1 0B$ 8 4 1
8 4 2 0B001AAA091B$ -1 3 1
9 11 0 A001B$ 4 3 4
10 3 2 A0B001AAA091B$ -1 2 3
11 10 1 AA001B$ 3 2 2
12 2 3 AA0B001AAA091B$ -1 1 3
13 9 2 AAA001B$ 2 1 2
14 1 4 AAA0B001AAA091B$ -1 -1 2
15 15 0 B$ 1 5 1
16 5 1 B001AAA001B$ 1 -1 0

with T yields LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0}, 2) with prev(T ) pro-
duces LPF = {0, 2, 1, 0, 0, 1, 1, 0, 4, 3, 2, 1, 0, 1, 1, 0}, and 3) with forw(T ) gener-
ates LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 3, 2, 1, 1, 0}, neither of which is the correct
pLPF array.

Crochemore and Ilie [1] efficiently solve the LPF problem for a traditional
string W by exploiting the properties of the suffix array SA. They construct
the arrays prev<[1...n] and prev>[1...n], which for each i in W maintain the
suffix h < i positioned respectively before and after suffix i in SA; when no such
suffix exists, the element is denoted by −1. The conceptual idea to compute the
prev< and prev> arrays in linear time via deletions in a doubly linked list of the
SA was suggested in [1]. The algorithm is given in [12]. Furthermore, we will
refer to prev< and prev> as before< and before> respectively, in order to avoid
confusion with the prev encoding for p-strings. Then, LPF [i] is the maximum
q between W [i...n] =q W [before<[i]...n] and W [i...n] =q W [before>[i]...n]. The
magic of a linear time solution to constructing the LPF array is achieved through
the computation of an element by extending the previous element, more formally
LPF [i] ≥ LPF [i − 1] − 1, which is a variant of the extension property used in
LCP construction proven by Kasai et al. [20]. We prove that this same property
holds for the pLPF problem defined on p-strings.

Lemma 2. The pLPF for a p-string T of length n is such that pLPF [i] ≥
pLPF [i− 1]− 1 with 1 < i ≤ n.
Proof. Consider pLPF [i] at i = 1 by which Definition 9 requires that we find a
previous factor at 1 ≤ h < 1 that does not exist; i.e., pLPF [1] = 0. At i = 2,
indeed pLPF [2] ≥ pLPF [1]− 1 = −1 is clearly true for all succeeding elements
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Algorithm 1. pLPF computation

1 int [ ] compute pLPF( int be f o r e< [ ] , int be f o r e> [ ] ) {
2 int pLPF [ n ] , pLPF<=0, pLPF>=0, i , j , k
3 for i = 1 to n {
4 j = max{0 ,pLPF<−1}
5 k = max{0 ,pLPF>−1}
6 i f ( b e f o r e< �= null ) pLPF< = Λ( i , b e f o r e< [ i ] , j )
7 i f ( b e f o r e> �= null ) pLPF> = Λ( i , b e f o r e> [ i ] , k )
8 pLPF [ i ] = max{pLPF< ,pLPF>}
9 }return pLPF

10 }

Algorithm 2. p-matcher function Λ

1 int Λ( int a , int b , int q ) {
2 boolean c = true
3 int x , y
4 i f (b = −1) return 0
5 while ( c ∧ ( a+q) ≤ n ∧ (b+q ) ≤ n) {
6 x = prevT [ a+q ] , y = prevT [ b+q ]
7 i f (in(x , Σ ) ∧ in(y , Σ ) ){
8 i f ( x = y ) q++
9 else c = fa l se

10 } else i f (in(x ,Z) ∧ in(y ,Z ) ){
11 i f ( q < x ) x = 0
12 i f ( q < y ) y = 0
13 i f ( x = y ) q++
14 else c = fa l se
15 } else c = fa l se
16 }return q
17 }

in which a previous factor does not exist. For arbitrary i = j with 1 < j <
n, suppose that the maximum length factor is at g < j and without loss of
generality, consider that the first q ≥ 2 symbols match so that prev(T [j...n]) =q

prev(T [g...n]). Thus, pLPF [j] = q. Shifting the computation to i = j+1, we lose
the symbols prev(T [j]) and prev(T [g]) in the p-suffixes at j and g respectively.
By Proposition 1, prev(T [j...j+ q− 1]) = prev(T [g...g+ q− 1])⇒ prev(T [j]) =
prev(T [g]) and as a consequence of the prev encoding in Definition 3 we have
prev(T [i...n]) =q−1 prev(T [g + 1...n]). Since we can guarantee that ∃ a factor
with (q − 1) symbols for pLPF [i] or possibly find another factor at h with
1 ≤ h < i matching q or more symbols, the lemma holds. ��

Lemma 2 permits us to adapt the algorithm compute LPF given in [1] to p-strings.
We introduce compute pLPF in Algorithm 1 to construct the pLPF array, which
makes use of the p-matcher Λ in Algorithm 2 to properly handle the sophisticated
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matching of p-suffixes, the dynamic suffixes under the prev encoding. The role
of Λ is to extend the matches between the p-suffixes at a and b beyond the initial
q symbols by directly comparing constant/terminal symbols and comparing the
dynamically adjusted parameter encodings for each p-suffix.

Theorem 1. Given an n-length p-string T , prevT= prev(T ), the prev encoding
of T , and pSA, the parameterized suffix array for T , the algorithm compute pLPF
constructs the pLPF array in O(n) time.

Proof. It follows from Lemma 2 that our algorithm exploits the properties of
pLPF to correctly compute and extend factors, which requires O(n) time. Com-
puting the arrays before< and before> require O(n) processing [12]. What re-
mains now is to show that, between Algorithm 1 and Algorithm 2, the total
number of times that the body of the while loop (lines 6-15 in Algorithm 2) will
be executed is in O(n). The number of iterations of the while loop is given by
the number of matching symbol comparisons, namely the number of increments
of the variable q, which identifies the shift required to compare the current sym-
bol. Without loss of generality, suppose that the initial p-suffixes at position a
and b are the longest suffixes at positions 1 and 2 in T of lengths n and (n− 1)
respectively. In the worst case, (n− 1) of the symbols will match between these
suffixes, by which each comparison that clearly requires O(1) work, will incre-
ment q. Lemma 2 indicates that succeeding calculations, or calls to Λ, already
match at least (q − 1) symbols that are not rematched and rather, the match
is extended. Since the decreasing lengths of the succeeding suffixes at 3, 4, ..., n
cannot extend the current q, no further matching or increments of q are needed.
Hence, the while loop iterates a total of O(n) times amortized across all of the
n iterations of the for loop in Algorithm 1. Thus, the total work is O(n). ��
Our algorithm compute pLPF is motivated by the compute LPF algorithm in
[1]. We also observe that similar pattern matching mechanisms as the one used
between the for loop in Algorithm 1 and the while loop in Algorithm 2 exist in
standard string processing, for example in computing the border array discussed
in [15].

5 From pLPF to pLCP

Deguchi et al. [9,10] studied the problem of constructing the pLCP array given
the pSA. They showed that constructing the pLCP array requires a non-trivial
modification of the traditional LCP construction by Kasai et al. [20]. In [1], the
LCP array was used as the basis for constructing the LPF array for traditional
strings. Here, we present a simpler algorithm for constructing the pLCP array. In
particular, we show that, unlike in [1], it is possible to go the other way around:
that is, given the pLPF solution, we now construct the pLCP array. Later, we
show that the same pLPF algorithm can be used to construct the LCP array
and the LPF array for traditional strings. Crochemore and Ilie [1] identify that
the traditional LPF array is a permutation of the well-studied LCP array. We
observe the same relationship in terms of the pLPF and pLCP arrays.
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Proposition 2. The pLPF array is a permutation of pLCP .

This observation allows us to view the pLCP array from a different perspective.
As a novel use of our compute pLPF algorithm, we introduce a way to construct
the pLCP array in linear time. The key observation is that we can integrate the
fact that the pLCP occurs between neighboring p-suffixes and the fact that we
preprocess the before< array, which for each i in the p-string T maintains the
p-suffix h < i positioned prior to the p-suffix i in pSA. We can also construct the
array after< to maintain the p-suffix j > i also positioned prior to the p-suffix
i in pSA. Since h and j are both positioned prior to i in pSA, we can guarantee
that either h or j must be the nearest neighbor to i. So, the maximum factor
determines the nearest neighbor and thus, pLCP [R[i]], where R is the inverse
of pSA (see Algorithm 3). Theorem 2 shows that this computation is performed
in linear time.

Algorithm 3. pLCP computation

1 int [ ] compute pLCP( int be f o r e< [ ] , int a f t e r < [ ] ) {
2 int pLCP[ n ] , M[ n ] , R[ n ] , i
3 for i = 1 to n
4 R[pSA[ i ] ] = i
5 M = compute pLPF( b e f o r e< , a f t e r < )
6 for i = 1 to n
7 pLCP[R[ i ] ] = M[ i ]
8 return pLCP
9 }

Theorem 2. Given an n-length p-string T , prevT = prev(T ), the prev en-
coding of T , and pSA, the parameterized suffix array for T , the compute pLPF
algorithm can be used to construct the pLCP array in O(n) time.

Proof. We can clearly relax the p-suffix selection restrictions enforced by the
problem pLPF in Lemma 2 to exploit the idea of extending factors. Subsequently,
only the parameters of Algorithms 1 and 2 impose such restrictions. Let R[1...n]
be the rank array, the inverse of pSA. We prove that the pLCP is constructed
with compute pLPF(before<, after<). Let before<[1...n] and after<[1...n] main-
tain, for all the i in T , the p-suffixes h < i at position R[h] in pSA and j > i
at position R[j] in pSA, respectively, that are positioned prior to the p-suffix i
at position R[i] in pSA; when no such suffix exists, the element is denoted by
−1. Without loss of generality, suppose that both h and j exist and 2 < i ≤ n,
so we have either R[j] = R[i]−1 or R[h] = R[i]−1 as the neighboring p-suffix. So,
max{plcp(prev(T [h...n]), prev(T [i...n])), plcp(prev(T [j...n]), prev(T [i...n]))}
distinguishes which p-suffix h or j is closer to i, identifying the nearest neighbor
and in turn, pLCP [R[i]]. This statement is utilized in compute pLPF exactly in
terms of factors except that the value will be stored in pLCP [i]. So, after the
computation using the call to compute pLPF (line 5) in Algorithm 3, rearrang-
ing the resulting array using the rank array R (lines 6-7) produces the required



Parameterized Longest Previous Factor 41

pLCP array. We have yet to prove the time complexity. Since the parameter
after< can be computed in O(n) by deletions and indexing into a doubly linked
list similar to before< [12] and since compute pLPF executes in O(n) time via
Theorem 1, the theorem holds. ��

Algorithm 4. Improved pLCP computation

1 int [ ] compute pLCP ( ) {
2 int pLCP[ n ] , M[ n ] , i
3 M[pSA [ 1 ] ] = −1
4 for i = 2 to n
5 M[pSA[ i ] ] = pSA[ i −1]
6 M = compute pLPF(M, null )
7 for i = 1 to n
8 pLCP[ i ] = M[pSA[ i ] ]
9 return pLCP

10 }

For discussion purposes, Algorithm 3 uses a rank arrayR to index and preprocess
the arrays before< and after< to determine the neighboring suffix, which can be
found trivially with a p-suffix array, and thus, may be omitted for practical space.
The improved solution is shown in Algorithm 4. For further improved space
consumption, the implementation of Algorithm 4 may incorporate the LCP
indexing contributions of [21]. In passing, we identify that upon the completion
of line 6 in Algorithm 4, the M array is the permuted longest common prefix
(PLCP ) data structure observed in [22] for traditional strings.

6 From pLPF to LPF and LCP

The power of defining the pLPF problem in terms of p-strings is the gener-
alization of a p-string production. We show in Theorems 3 and 4 that our
compute pLPF algorithm also computes the traditional LPF and LCP arrays.

Theorem 3. Given an n-length traditional string W , the compute pLPF algo-
rithm constructs the LPF array in O(n) time.

Proof. Since W [i] ∈ Σ ∀ i, 1 ≤ i < n and W [n] ∈ {$}, then by Definition 1 we
have W ∈ (Σ∪Π)∗$, which classifies W as a valid p-string. Given this, Theorem
1 proves that the construction of pLPF for a p-string requires O(n) time. In this
special case, W consists of no such symbol π ∈ Π so Lemma 1 identifies that
prev(W [i...n]) = prev(W )[i...n] and further W = prev(W ) by Definition 3,
so W [i...n] = prev(W )[i...n], which constrains the pLPF in Definition 9 to the
LPF problem in Definition 8. Thus, from Theorem 1, compute pLPF computes
the LPF of W . ��
Theorem 4. Given an n-length traditional string W , the compute pLCP
algorithm constructs the LCP array in O(n) time.
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Proof. In the same manner as Theorem 3, we may classify W as a valid p-
string. Given this, Theorem 2 proves that the construction of pLCP for a p-
string requires O(n) time. Mirroring the proof of Theorem 3, we have W [i...n] =
prev(W )[i...n], which constrains the pLCP in Definition 6 to the traditional LCP
problem. Thus, from Theorem 2, compute pLCP computes the LCP of W . ��

7 Conclusion and Discussion

We introduce the parameterized longest previous factor (pLPF) problem for
p-strings, which is analogous to the longest previous factor (LPF) problem de-
fined for traditional strings. A linear time algorithm is provided to construct the
pLPF array for a given p-string. The advantage of implementing our solution
compute pLPF is that the algorithm may be used to compute the arrays pLPF ,
pLCP , LPF , LCP , or even the permuted LCP [22] in linear time, which are
fundamental data structures preprocessed for the efficiency of countless pattern
matching applications. Each of the proposed algorithms requires O(n) worst case
time and O(n) worst case space. Since we provide construction algorithms for
several data structures using the pLPF construction as the groundwork, we are
faced with the practical limitation that our algorithms are only as efficient as the
compute pLPF solution. We acknowledge that it is possible to use the techniques
in [22,23,24] to improve the space consumption of the LCP array and similarly,
the pLCP data structure, since pLCP is an array of integers analogous to the
traditional LCP . Nonetheless, the significance of working though the LPF as an
intermediate data structure is the straightforward and space efficient algorithm
to construct the Lempel-Ziv (LZ) factorization [1,2,19]. Similarly, the pLPF ar-
ray can easily derive the LZ structure and allow us to study such applications as
maximal runs in p-strings extended to source code plagiarism or redundancies
in biological sequences.
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Abstract. The challenge of direct parameterized suffix sorting (p-suffix
sorting) for a parameterized string (p-string) is the dynamic nature of
parameterized suffixes (p-suffixes). In this work, we propose transforma-
tive approaches to direct p-suffix sorting by generating and sorting lexi-
cographically numeric fingerprints and arithmetic codes that correspond
to individual p-suffixes. Our algorithm to p-suffix sort via fingerprints
is the first theoretical linear time algorithm for p-suffix sorting for non-
binary parameter alphabets, which assumes that each code is represented
by a practical integer. We eliminate the key problems of fingerprints by
introducing an algorithm that exploits the ordering of arithmetic codes
to sort p-suffixes in linear time on average.

Keywords: parameterized suffix array, parameterized suffix sorting,
arithmetic coding, fingerprints, p-string, p-match.

1 Introduction

Conventional pattern matching typically involves the matching of traditional
strings over an alphabet Σ. Parameterized pattern matching using parame-
terized strings, introduced by Baker [1], attempts to answer pattern matching
questions beyond its classical counterpart. A parameterized string (p-string) is a
production of symbols from the alphabetsΣ andΠ, which represent the constant
symbols and parameter symbols respectively. Given a pair of p-strings S and T ,
the parameterized pattern matching (p-match) problem is to verify whether the
individual constant symbols match and whether there exists a bijection between
the parameter symbols of S and T . If the two conditions are met, S is said to
be a p-match of T . For example, there exists a p-match between the p-strings
z=y ∗ f/++y; and a=b ∗ f/++b; that represent program statements over the
alphabets Σ = {∗, /,+,=, ; } andΠ = {a, b, f, y, z}. Applications inherent to the
p-matching problem include detecting plagiarism in academia and industry, re-
porting similarities in biological sequences [2], discovering cloned code segments
in a program to assist with software maintenance [1], and answering critical legal
questions regarding the unauthorized use of intellectual property [3].
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Initial solutions to the p-match problem were based on the parameterized
suffix tree (p-suffix tree) [1]. Idury et al. [4] studied the multiple p-match prob-
lem using automata. The physical space requirements of the p-suffix tree led
to algorithms such as parameterized-KMP [5], parameterized-BM [6], and the
parameterized suffix array (p-suffix array) [7,8]. Analogous to standard suffix
sorting, the problem of parameterized suffix sorting (p-suffix sorting) is to sort
all the n parameterized suffixes (p-suffixes) of an n-length p-string into a lex-
icographic order. The major difficulty is that unlike traditional suffixes of a
string, the p-suffixes are dynamic, varying with the starting position of the p-
suffix. Thus, standard suffix sorting approaches cannot be directly applied to the
p-suffix sorting problem. Current approaches to directly construct the p-suffix
array without a p-suffix tree for an n-length p-string from an arbitrary alphabet
require O(n2) time in the worst case [7]. Such demands the need for alternative
approaches to direct p-suffix sorting.

Main Contribution: We construct p-suffix arrays by generating and sorting
codes that represent the individual p-suffixes of a p-string. We propose the first
theoretical linear time claims to directly p-suffix sort p-strings from non-binary
parameter alphabets. We state our main result in the following theorem:

Theorem 4. Given a p-string T of length n, p-suffix-sorting of T can be accom-
plished in O(n) time on average via parameterized arithmetic coding.

2 Background / Related Work

Baker [1] defines pattern matching as either: 1) exact matching, 2) parameterized-
matching, or 3) matching with modifications. A parameterized match (p-match)
is a sophisticated matching scheme based on the composition of a parameterized
string (p-string). A p-string is composed of symbols from a constant symbol al-
phabet Σ and a parameter alphabet Π . A pair of p-strings S and T of length n
are said to p-match when the constant symbols σ ∈ Σ match and there exists a
bijection of parameter symbols π ∈ Π between the pair of p-strings. Baker [1]
offered the first p-match breakthroughs, namely, the prev encoding to detect a p-
match and the parameterized suffix tree (p-suffix tree) analogous to the suffix tree
for traditional strings [9,10,11]. The p-suffix tree is built on the prev encodings
of the suffixes of the p-string, demanding O(n(|Π |+log(|Π |+ |Σ|))) construction
time in the worst case [1]. Improvements to the p-suffix tree construction were
introduced by Kosaraju [12]. Other contributions in the area of parameterized
suffix trees include constructon via randomized algorithms [13,14]. Like the tra-
ditional suffix tree [9,10,11], the p-suffix tree [1] implementation suffers from a
large memory footprint. Other solutions that address the p-match problem with-
out the space limitations of the p-suffix tree include the parameterized-KMP [5]
and parameterized-BM [6], variants of traditional pattern matching approaches.

The native time and space efficiency of the suffix array led to the origination
of the parameterized suffix array (p-suffix array). The p-suffix array is analogous
to the suffix array for traditional strings introduced in [15]. Manber and Myers
[15] show how to combine the suffix array and the LCP (longest common prefix)



46 R. Beal and D. Adjeroh

array to competitively search for pattern P = P [1...m] in a text T = T [1...n]
in O(m+ logn) time. Direct p-suffix array construction was first introduced by
Deguchi et al. [8] for binary strings with |Π | = 2 requiring O(n) construction
time through the assistance of a defined fw encoding. Deguchi and colleagues
[7] later proposed the first approach to direct p-suffix sorting with an arbitrary
alphabet size requiring O(n2) time in the worst case, without the assistance of a
p-suffix tree. The parameterized longest common prefix (pLCP ) array, analogous
to the traditional LCP , was also defined and constructed in [7,8]. In this work,
we propose efficient methods to the direct p-suffix sorting problem that avoid
the large memory footprint of the p-suffix tree by using fingerprints and coding
methods from information theory.

3 Preliminaries

A string on an alphabet Σ is a production T = T [1]T [2]...T [n] from Σn with
n = |T | the length of T . We will use the following string notations: T [i] refers to
the ith symbol of string T , T [i...j] refers to the substring T [i]T [i+ 1]...T [j], and
T [i...n] refers to the ith suffix of T : T [i]T [i+1]...T [n]. The area of parameterized
pattern matching defines the finite alphabets Σ and Π . Alphabet Σ denotes
the set of constant symbols while Π represents the set of parameter symbols.
Alphabets are defined such that Σ∩Π = ∅. Furthermore, we append the terminal
symbol $ /∈ Σ∪Π to the end of all strings to clearly distinguish between suffixes.
For practical purposes, we can assume that |Σ|+|Π | ≤ n since, otherwise a single
mapping can be used to enforce the condition.

Definition 1. Parameterized String (p-string): A p-string is a production
T of length n from (Σ ∪Π)∗$.

Consider the alphabet arrangements Σ = {A,B} and Π = {w, x, y, z}. Example
p-strings include S = AxByABxy$, T = AwBzABwz$, and U = AyByAByy$.

Definition 2. ([1,8]) Parameterized Matching (p-match): A pair of p-
strings S and T are p-matches with n = |S| if and only if |S| = |T | and each
1 ≤ i ≤ n corresponds to one of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */
(a) S[i] 
= S[j], T [i] 
= T [j] for any 1 ≤ j < i

(b) S[i] = S[i− q] iff T [i] = T [i− q] for any 1 ≤ q < i

In our example, we have a p-match between the p-strings S and T since every
constant/terminal symbol matches and there exists a bijection of parameter
symbols between S and T . U does not satisfy the parameter bijection to p-match
with S or T . The process of p-matching leads to defining the prev encoding.
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Definition 3. ([1,8]) Previous (prev) Encoding: Given Z as the set of non-
negative integers, the function prev : (Σ∪Π)∗$→ (Σ∪Z)∗$ accepts a p-string T
of length n and produces a string Q of length n that 1) encodes constant/terminal
symbols with the same symbol and 2) encodes parameters to point to previous
like-parameters. More formally, Q is constructed of individual Q[i] with 1 ≤ i ≤
n where:

Q[i] =

⎧⎨
⎩

T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 
= T [j] for any 1 ≤ j < i
i− k, if T [i] ∈ Π ∧ k = max{j|T [i] = T [j], 1 ≤ j < i}

For a p-string T of length n, the above O(n) space prev encoding demands
the worst case construction time O(n log(min{n, |Π |})), which follows from the
discussions of Baker [1,6] and Amir et al. [5] on the dependency of alphabet Π
in p-match applications. Note that with an indexed alphabet and an auxiliary
O(|Π |) mapping structure, we can construct prev in O(n) time. Using Definition
3, our examples evaluate to prev(S) = A0B0AB54$, prev(T ) = A0B0AB54$,
prev(U) = A0B2AB31$. The relationship between p-strings and the lexico-
graphical ordering of the prev encoding is fundamental to the p-match problem.

Definition 4. prev Lexicographical Ordering: Given the p-strings S and
T and two symbols s and t from the encodings prev(S) and prev(T ) respec-
tively, the relationships =, 
=, <, and > refer to lexicographical ordering between
s and t. We define the ordering of symbols from a prev encoding of the pro-
duction (Σ ∪ Z)∗$ to be $ < ζ ∈ Z < σ ∈ Σ, where each ζ and σ is lexico-
graphically sorted in their respective alphabets. The relationships =, 
=, ≺, and

 refer to the lexicographical ordering between strings. In the case of prev(S)
and prev(T ), prev(S) ≺ prev(T ) when prev(S)[1] = prev(T )[1], prev(S)[2] =
prev(T )[2], ..., prev(S)[j−1] = prev(T )[j−1], prev(S)[j] < prev(T )[j] for some
j, j ≥ 1. Similarly, we can define =k, 
=k, ≺k, and 
k to refer to the lexico-
graphical relationships between a pair of p-strings considering only the first k ≥ 0
symbols.

The following proposition essential to the p-matching problem is directly related
to the symbol ordering established in Definition 4.

Proposition 1. ([1]) Two p-strings S and T p-match when prev(S) = prev(T ).
Also, S ≺ T when prev(S) ≺ prev(T ) and S 
 T when prev(S) 
 prev(T ).

The example prev encodings show a p-match between S and T since prev(S) =
A0B0AB54$ and prev(T ) = A0B0AB54$. Also, U 
 S and U 
 T since
prev(U) = A0B2AB31$ > prev(S) = prev(T ) = A0B0AB54$. We use the
ordering established in Definition 4 to define the parameterized suffix array.

Definition 5. Parameterized Suffix Array (p-suffix array): The p-suffix
array (pSA) for a p-string T of length n maintains a lexicographical ordering
of the indices i representing individual p-suffixes prev(T [i...n]) with 1 ≤ i ≤ n,
such that prev(T [pSA[q]...n]) ≺ prev(T [pSA[q + 1]...n])∀q, 1 ≤ q < n. The act
of constructing pSA is referred to as p-suffix sorting.
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In the working example using T , the p-suffix array pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3}.
The encoding prev is supplemented by the encoding forw.

Definition 6. Forward (forw) Encoding: Let the function rev(T ) reverse
the p-string T and repl(T, x, y) replace all occurrences in T of the symbol x
with y. We define the function forw for the p-string T of length n as forw(T ) =
rev(repl(prev(rev(T )), 0, n)).

Essentially, forw performs the following on a p-string T of length n: 1) encodes
constant/terminal symbols with the same symbol and 2) encodes each parameter
p with the forward distance to the next occurrence of p or an unreachable for-
ward distance n. Our definition of the forw encoding generates output mirroring
the fw encoding used by Deguchi et al. [7,8]. Let N refer to the set of positive,
non-zero integers. The function fw : (Σ ∪ Π)∗ → (Σ ∪ N)∗ produces an output
encoding G with fw(T ) = G for each 1 ≤ i ≤ n:

G[i] =

⎧⎨
⎩

T [i], if T [i] ∈ Σ
∞, if T [i] ∈ Π ∧ T [i] 
= T [j] for any i < j ≤ n
k − i, if T [i] ∈ Π ∧ k = min{j|T [i] = T [j], i < j ≤ n}

The forw encodings in our example with n = 9 are forw(S) = A5B4AB99$,
forw(T ) = A5B4AB99$, forw(U) = A2B3AB19$.

4 p-Suffix Sorting via Fingerprints

The magic of sorting the suffixes of a string T of length n from an alphabet Σ is
rooted in the notion that individual suffixes are very closely related. Through-
out this work, we are challenged with the reality that the p-suffix, more for-
mally prev(T [i...n]), is not näıvely the suffix of the prev encoding of T , namely
prev(T )[i...n], which is formalized in Lemma 1. (Given space constraints, we
omit the proofs of the lemmas, which are included in [16]).

Lemma 1. Given a p-string T of length n, the suffixes of prev(T) are not
necessarily the p-suffixes of T. More formally, if π ∈ Π occurs more than once
in T , then ∃i, s.t. prev(T [i...n]) 
= prev(T )[i...n], 1 ≤ i ≤ n.

The centerpiece of this work is the idea that we can directly construct the p-
suffix array without the large memory footprint of the p-suffix tree by handling
the dynamically changing p-suffixes, which is fundamentally different from the
standard suffix sorting approaches for traditional strings. To visually identify
the difference between traditional suffixes and p-suffixes, consider the example
T = zAwz$ as a traditional string, in which the suffixes are methodically created
by removing a symbol: zAwz$ → Awz$ → wz$ → z$ → $ . If we consider
the same example T = zAwz$ with Σ = {A} andΠ = {w, z}, then the p-suffixes
defined under the prev encoding are dynamically changing: 0A03$ → A00$ →
00$ → 0$ → $ .

Our idea is to modify the traditional Karp and Rabin (KR) fingerprinting
scheme presented in [10,11,17] to accommodate the changing nature of p-suffixes.
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The KR algorithm generates an integral KR “signature” or “fingerprint” code to
represent a string using the lexicographical ordering of symbols [17]. By repre-
senting p-suffixes through numeric fingerprints we devise a mechanism to retain
a “tangible” copy of the changing p-suffixes under the prev encoding. In this
section, we assume that n is not too large. That is, the KR codes can fit into
standard integer representations such as long long integer.

We now denote the following variables that are continually reused through-
out this section for the working p-string T of length n: prevT = prev(T ),
forwT = forw(T ), max = maxdist(prevT ) (see below), R = |Σ| + max + 2.
Our fingerprinting approach relies on a lexicographical ordering implementation
of Definition 4 to appropriately accommodate the prev alphabet Σ ∪ Z ∪ {$}.
Our ordering scheme, function map, is formalized in Definition 7.

Definition 7. Mapping Function: Let max=maxdist(prevT )=max{prevT [i]
| prevT [i] ∈ Z for 1 ≤ i ≤ n}. Let function αi(x,X) return the lexicographical
order (1, 2, ..., |X |) of the symbol x in alphabet X. We then define the function
map : (Σ∪Z∪{$})→ N to map a symbol, say x, in prevT to an integer preserving
the ordering of Definition 4. We also define the supplement function in(x,X) to
determine if x ∈ X instantaneously based on the definition of map(x).

map(x) =

⎧⎨
⎩

1, if x = $
αi(x,Z) + 1, if x ∈ Z

αi(x,Σ) +max+ 2, if x ∈ Σ

in(x,X) =

⎧⎨
⎩

true, if X = Z ∧ (1 < map(x) ≤ max+ 2)
true, if X = (Σ ∪ {$}) ∧ (map(x) = 1 ∨ map(x) > max+ 2)
false, otherwise

The function map is fundamental for the parameterized Karp-Rabin fingerprint-
ing (pKR) algorithm, which generates parameterized Karp-Rabin (pKR) codes.

Definition 8. Parameterized Karp-Rabin (pKR) Function: Let prevTi =
prev(T [i...n]). We define pKR(i) =

∑i
k=n

[
Rk−1 × map(prevTi[n− k + 1])

]
to

return a fingerprint generated for the p-suffix beginning at index i.

Table 1 shows example fingerprints using our pKR algorithm and also the stan-
dard algorithm KR for the string T = AwBzABwz$. This example shows the
true power of our pKR algorithm in that the ordering of the computed fingerprints
for p-suffixes of T yields the correct p-suffix array pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3}.
We notice that using KR directly produces the array {1, 4, 5, 2, 3, 6, 7, 9, 8}, which
is not the correct p-suffix array. The execution of function pKR may be näıvely
cascaded to produce fingerprints for all n p-suffixes at positions 1 ≤ i ≤ n of
p-string T requiring O(n2) time, which is a theoretical bottleneck. We can in-
telligently construct pKR codes for the p-suffixes of T by taking advantage of
the relationship between p-suffixes and pKR codes. Consider qi to be the pKR
code for the p-suffix at position i. The code qi+1 can be used to compute the
fingerprint for qi for i ≥ 1 by introducing a new symbol at position i. Lemmas 2
and 3 identify the adjustments that dynamically change the p-suffixes between
the neighboring p-suffixes at i and (i+1) when considering a symbol introduced
at position i.
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Table 1. Lexicographical ordering of p-suffixes with pKR, using T = AwBzABwz$

i pSA T [pSA[i]...n] prev(T [pSA[i]...n]) pKR(pSA[i]) KR(pSA[i])

1 9 $ $ 43046721 43046721
2 8 z$ 0$ 90876411 263063295
3 7 wz$ 00$ 96190821 330556302
4 4 zABwz$ 0AB04$ 129298356 129593601
5 2 wBzABwz$ 0B0AB54$ 130740084 130740084
6 1 AwBzABwz$ A0B0AB54$ 358900444 358900444
7 5 ABwz$ AB00$ 388608030 391501431
8 6 Bwz$ B00$ 398108358 424148967
9 3 BzABwz$ B0AB04$ 401786973 401819778

Lemma 2. Given p-string T , prevT = prev(T ), and prevT [i + 1...n] =
prev(T [i + 1...n]) where T [i] is a constant, terminal, or the only occurrence
of parameter T [i] in T [i...n], then prevT [i...n] = prev(T [i...n]) if prevT [i] =
prev(T [i]).

Lemma 3. Given p-string T , prevT = prev(T ), forwT = forw(T ), and
prevT [i + 1...n] = prev(T [i + 1...n]) where T [i] ∈ Π occurs multiple times
in T [i...n], then prevT [i...n] = prev(T [i...n]) after 1) identifying the current
parameter as the first occurrence of T [i] (prevT [i] = 0) and 2) modifying the
future occurrence of T [i] (prevT [i+ forwT [i]] = forwT [i]).

We refer to a code generated by pKR for the p-suffix i as qi. The transitions needed
to compute a p-suffix i from a p-suffix (i+ 1) formalized in Lemmas 2 and 3 are
subsequently the requirements to compute code qi from qi+1. These transitions
are consolidated into δpKR and shown to efficiently generate pKR codes.

Definition 9. Function δpKR: Let β = forwT [i], λ = (map(β) − map(0)) ×
Rn−β−1, and B = qi+1+map(prev(T [i]))Rn

R . We define the function δpKR(i, qi+1) as
follows to return the code qi via a transition of the provided code qi+1 with the
newly added symbol at position i.

δpKR(i, qi+1) =
{
B, if in(prevT [i], Σ ∪ {$}) ∨ (in(prevT [i],Z) ∧ forwT [i] ≥ n)
B + λ, if in(prevT [i],Z) ∧ forwT [i] < n

Theorem 1. Given a p-string T of length n and precalculated variables prevT
and forwT , function δpKR requires O(n) time to generate fingerprints for all
p-suffixes in T .

Proof. The fingerprints are generated successively by the function calls qn =
δpKR(n, 0), qn−1 = δpKR(n − 1, qn),...,q1 = δpKR(1, q2). Either case of function δpKR
may be computed in O(1) time and is called sequentially a total of n times, once
for each of the n p-suffixes. The overall time is O(n). ��
We introduce p suffix sort pKR in Algorithm 1 to sort p-suffixes via the sorting
of fingerprints through the transition function in Definition 9. Theorem 2 proves
the time complexity of Algorithm 1.
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Theorem 2. Given a p-string T of length n, function p suffix sort pKR sorts
all the n p-suffixes of T in O(n) time.

Proof. We assume that the fingerprints for each p-suffix are practically repre-
sented by an integer code and each use of the code is accomplished in constant
time. Thus, Section A) of p suffix sort pKR follows from Theorem 1 to re-
quire O(n) time. The radix sorting required in section B) requires O(cn), where
c is a constant. The loop in section C) clearly requires O(n) time. Overall,
p suffix sort pKR requires O(n) time. ��
The idea used in Algorithm p suffix sort pKR is novel, but assumes that the
pKR fingerprints fit into practical integer representations. This assumption is
primarily a limitation inherent to fingerprinting. It is well documented that
Karp-Rabin integral fingerprints can be large and exceed the extremes of an
integer with large strings and vast alphabets. The modulo operation discussed
in [10,11,17] is used to handle this problem. However, the modulo operation will
not preserve the lexicographical ordering between fingerprints and creates a new
problem with respect to suffix sorting. Even if we use fingerprints to encode
prefixes of p-suffixes, the codes can still be quite large with collisions. We extend
our idea using arithmetic coding to address these limitations.

Algorithm 1. p-suffix sorting with fingerprints

1 struct pcode { int i , long long int pKR }
2 int [ ] p suffix sort pKR(char T [ ] ) {
3 pcode code [ n ] , long long int pKR=0
4 int pSA[ n ] , k
5 // A) −− genera te the i n d i v i d u a l prev f i n g e r p r i n t s
6 for k=n to 1 {
7 pKR=δpKR (k ,pKR)
8 code [ k ]=(k ,pKR)
9 }

10 // B) −− s o r t p−s u f f i x e s
11 radix sort the pKR a t t r i b u t e o f each pa i r in code
12 // C) −− r e t a i n p−s u f f i x array
13 for k=1 to n
14 pSA[ k]=code [ k ] . i
15 return pSA
16 }

5 p-Suffix Sorting via Arithmetic Coding

Arithmetic coding compresses a string by recursively dividing up a real number
line into intervals that account for the cumulative distribution function (cdf),
which describes the probability space of each symbol. The interval for an arith-
metic code AC is (lo, hi), where lo and hi are the low and high boundaries,
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respectively. Any consistent choice in this region, say tag(s) = s.hi+s.lo
2 , repre-

sents the arithmetic code and preserves the lexicographical ordering of strings.
Arithmetic coding is further described in [18,19]. Recently, Adjeroh and Nan [20]
used a novel application of Shannon-Fano-Elias codes from information theory to
address the traditional suffix sorting problem. In the work, they generate arith-
metic codes for m-blocks, or m-length prefixes of the suffixes, to maintain the
ordering of m symbols. They show how to efficiently transition one AC m-block
code at suffix i to construct the m-block AC at suffix (i + 1) by removing the
symbol at i and appending the symbol at (i +m). The transitioning scheme is
illustrated in Fig. 1. In terms of suffix sorting with arithmetic codes in [20], the
suffixes are recursively partitioned and the generated m-block arithmetic codes
are exploited to induce the ordering of the partitions in linear time. Extending
the suffix sorting via arithmetic coding algorithm given in [20] to the p-suffix
sorting problem is not straightforward because of the dynamic relationship be-
tween p-suffixes, identified in Lemma 1.

Fig. 1. Transitioning the AC m-block code from a cab→ cab→ cab d

Given an n-length p-string T , we can create a parameterized arithmetic code
pAC via function pAC from Definition 10 for the m-blocks, or m-length prefixes,
of the n p-suffixes of T . The distribution of symbols will impact the size of the
intervals and hence the tag, but this does not change the order of the generated
arithmetic codes. Thus, without loss of generality, we assume that each symbol
x ∈ (Σ ∪ Z ∪ {$}) in the alphabet of a prev encoding to be equally probable,
where p represents the probability of a symbol and the array cdf contains the
values of the uniform cdf with respect to the neighboring lexicographical alpha-
bet symbols. The following definition modifies the traditional AC algorithm to
create an m-block arithmetic code for a p-suffix at position i in T .

Definition 10. Parameterized Arithmetic Coding (pAC) Function: For
an n-length p-string T , the function pAC in Algorithm 2 will generate an arith-
metic code interval for the m-block of the p-suffix starting at position i.

Table 2 shows the pAC codes for m-blocks of m = 2, 3, n of p-string T =
AwBzABwz$. We notice that a “collision” occurs for two pAC codes using
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Algorithm 2. Generating pAC for an m-length prefix of p-suffix i

1 struct AC { long double lo , long double hi }
2 AC pAC( int i , int m) {
3 int end=min{ i+m−1,n} , k
4 char prevTi [ ]=prev(T[ i . . . end ] ) , AC new=(0 ,0) , o ld =(0 ,1)
5 for k=i to end {
6 new . h i=old . l o+(old . hi−old . l o )∗ cd f [ map( prevTi [ k−i +1 ] ) ]
7 new . l o=old . l o+(old . hi−old . l o )∗ cd f [ map( prevTi [ k−i +1])−1]
8 old=new
9 }return new

10 }

Table 2. Lexicographical ordering of p-suffixes with pAC, using T = AwBzABwz$

i pSA T [pSA[i]...n] prev(T [pSA[i]...n]) tag(pAC(pSA[i], m))
m = 2 m = 3 m = n

1 9 $ $ 0.055556 0.055556 0.055556
2 8 z$ 0$ 0.117284 0.117284 0.117284
3 7 wz$ 00$ 0.129630 0.124143 0.124143
4 4 zABwz$ 0AB04$ 0.203704 0.209191 0.208743
5 2 wBzABwz$ 0B0AB54$ 0.216049 0.211934 0.212459
6 1 AwBzABwz$ A0B0AB54$ 0.796296 0.801783 0.801384
7 5 ABwz$ AB00$ 0.882716 0.878601 0.878076
8 6 Bwz$ B00$ 0.907407 0.903292 0.902683
9 3 BzABwz$ B0AB04$ 0.907407 0.911523 0.912083

m = 2 since the m-blocks are equivalent. Even though the pAC codes distinctly
sort the n p-suffixes of T when m approaches n, we highlight that the practical
limitation is arithmetic precision. See [18,20] for handling this problem.

In order to use the m-block codes, we must generate them efficiently. We
denote the m-block arithmetic code at p-suffix i by pACi. The idea is to first
use function pAC to compute pAC1 and use this code to generate the remaining
(n − 1) codes, namely pAC2, pAC3, ..., and pACn. Iteratively, we will need to
adjust the arithmetic codes to 1) remove the old symbol and 2) add the new
symbol. These cases are described below. The lemmas are similar in nature to
Lemmas 2 and 3 and thus, are omitted for space.

Case 1: Removing a symbol s from an arithmetic code m-block requires us to
simply delete s when s ∈ Σ or s ∈ Π and does not occur in the m-block. When
s ∈ Π and occurs later in the m-block, the code must accommodate for both
the removed occurrence and the future occurrence of s.

Definition 11. Remove Symbol δ−pAC Transition: Given the AC code A at
m-block i with i+m−1 ≤ n, δ−pAC supplies the transition to remove the symbol at
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position i and provide the new code A of the (m-1)-block at p-suffix (i+ 1). Let
β = forwT [i], j = i+ β, e = min{i+m− 1, n}, λ = (map(β)− map(0))× pβ+1,
and c = cdf [map(prev(T [i]))− 1].

δ−pAC(i, A) =

⎧⎪⎪⎨
⎪⎪⎩

(
A.lo−c
p

, A.hi−c
p

)
,if (in(prevT [i],Z) ∧ j > e)∨

in(prevT [i], Σ ∪ {$})(
A.lo−λ−c

p
, A.hi−λ−c

p

)
,if in(prevT [i],Z) ∧ j ≤ e

Case 2: Adding (i.e. appending) symbol s to an arithmetic codem-block requires
us to simply append the code when s ∈ Σ or s ∈ Π and does not occur in the
m-block. When s ∈ Π and occurs previously in the m-block, the code must
account for the new occurrence in terms of the previous occurrence of s.

Definition 12. Add Symbol δ+pAC Transition: Given the AC code A at (m-
1)-block (i−m+1) ≥ 1, δ+pAC supplies the transition to add the symbol at position
i and provide the new code A of the m-block at p-suffix (i − m + 1). Let b =
max{1, i−m+1}, k = i−prevT [i],Δ = A.hi−A.lo, d = Δ×cdf [map(prev(T [i]))],
f = Δ × cdf [map(prev(T [i])) − 1], v = Δ × cdf [map(prevT [i])], and w = Δ ×
cdf [map(prevT [i])− 1])

δ+pAC(i, A) =

⎧⎨
⎩

(A.lo+ f,A.lo+ d),if (in(prevT [i],Z) ∧ k < b)∨
in(prevT [i], Σ ∪ {$})

(A.lo+ w,A.lo+ v),if in(prevT [i],Z) ∧ k ≥ b

With the assistance of Definitions 11 and 12, we can efficiently generate the
m-block codes for all n p-suffixes of T . Consider the p-string T = zwzABA$,
Σ = {A,B}, Π = {w, z}, and m = 4, we successively generate the m-block codes

in the following fashion: 0 0 2 A
δ−pAC→ 00A

δ+pAC→ 00A B → · · · .
Theorem 3. Given a p-string T of length n and precalculated variables prevT
and forwT , the pAC codes for all the m-length prefixes of the p-suffixes require
O(n) time to generate.

Proof. Generating the first m-block code pAC1 via pAC1 = pAC(1,m) will re-
quire O(m) time. Iteratively, the neighboring pAC codes will be used to cre-
ate the successive p-suffix codes. The first extension of code pAC1 to create
pAC2 will require the removal of prevT [1] via a call to pAC2 = δ−pAC(1, pAC1),
which is O(1) work, and the addition of symbol prevT [2 +m − 1] via a call to
pAC2 = δ+pAC(2 + m − 1, pAC2), which also demands O(1) work. This process
requiring two O(1) steps is needed for the remaining (n− 1) m-block p-suffixes
of T . The resulting time is O(m + n). Since m ≤ n, the theorem holds. ��
The efficient preprocessing from Theorem 3 leads to our main result: an average
case linear time algorithm for direct p-suffix sorting for non-binary parameter
alphabets. We discuss the intricacies of worst case p-suffix array construction in
the conclusions as an area for future work.
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Theorem 4. Given a p-string T of length n, p-suffix-sorting of T can be ac-
complished in O(n) time on average via parameterized arithmetic coding.

Proof. We can construct prev(T ) in O(n) time given an indexed alphabet and
an O(|Π|) auxiliary data structure. The lexicographical ordering of the m-block
pAC codes follow from the notion of arithmetic coding and Definition 7. From
Theorem 3, we can create all the m-block pAC codes in O(n) time. Similar
to [20], the individual floating-point codes may be converted to integer codes
di in the range [0, c(n − 1)] by di =

⌊
c(n− 1) tag(pACi)−tag(pACmin)

tag(pACmax)−tag(pACmin)

⌋
, where

the constant c > 1 is chosen to best separate the di and values pACmin and
pACmax correspond to the minimum and maximum pAC codes, respectively.
From [21,22], we know that an n-length general string has a max longest com-
mon prefix of O(log|Σ| n). Let x◦y be the string concatenation of x and y. Then,
Q = prev(T [1...n−1])$◦prev(T [2...n−1])$◦...◦prev(T [n−2...n−1])$◦$ contains
each individual p-suffix of T . Notice that Q is of length |Q| = n(n+1)

2 ∈ O(n2)
and since all p-suffixes are clearly represented, the symbols of Q may be mapped
to a traditional string alphabet, allowing us to use the contribution of [21,22] to
obtain the length of the maximum longest common prefix for an average string,
which is of the same order O(log n2) ∈ O(log n). Then by choosing m = O(logn)
and generating the m-block pAC codes, only the first O(n) radix sort of the di
codes is required to differentiate the p-suffixes of an average case string, demand-
ing only O(n) operations. ��

6 Conclusion and Discussion

Approaching the direct p-suffix sorting problem by representing p-suffixes with
fingerprints and arithmetic codes provides new mechanisms to handle the chal-
lenges of the p-string. We proposed a theoretical algorithm using fingerprints to
p-suffix sort an n-length p-string in O(n) time, with n and the alphabet size con-
strained in practice. Arithmetic codes were then used to propose an algorithm to
p-suffix sort p-strings in linear time on average. In terms of direct suffix sorting,
the time/space tradeoff varies with algorithms. For instance, the algorithm in
[23] accomplishes in-place suffix sorting in super-linear time, using only space
for the suffix array and text. On a practical note, our algorithms use space and
computation to achieve linear time direct construction of the p-suffix array, im-
proving on the time required by the approaches introduced in [7]. With respect
to space, our algorithms use an array for the prev encoding, which replaces the
text, in addition to an array for pairs of elements representing the numeric codes
and suffix indices. A future reseach problem is to address the worst case per-
formance by identifying the intricate relationship between the dynamic nature
of p-suffix partitions with induced sorting, the fundamental mechanism in worst
case linear time suffix sorting of traditional strings [9,20,24,25].
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In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
31–38. Springer, Heidelberg (2009)

15. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22, 935–948 (1993)

16. Beal, R.: Parameterized Strings: Algorithms and Data Structures. MS Thesis. West
Virginia University (2011)

17. Karp, R., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev. 31, 249–260 (1987)

18. Moffat, A., Neal, R., Witten, I.: Arithmetic coding revisited. ACM Trans. Inf.
Syst. 16, 256–294 (1995)

19. Cover, T., Thomas, J.: Elements of Information Theory. Wiley (1991)
20. Adjeroh, D., Nan, F.: Suffix sorting via Shannon-Fano-Elias codes. Algorithms 3(2),

145–167 (2010)
21. Karlin, S., Ghandour, G., et al.: New approaches for computer analysis of nucleic

acid sequences. PNAS 80(18), 5660–5664 (1983)
22. Devroye, L., Szpankowski, W., Rais, B.: A note on the height of suffix trees. SIAM

J. Comput. 21, 48–53 (1992)
23. Franceschini, G., Muthukrishnan, S.: In-Place Suffix Sorting. In: Arge, L., Cachin,
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Abstract. Partial words are finite sequences over a finite alphabet that
may contain some holes. A variant of the celebrated Fine-Wilf theorem
shows the existence of a bound L = L(h, p, q) such that if a partial
word of length at least L with h holes has periods p and q, then it has
period gcd(p, q). In this paper, we associate a graph with each p- and
q-periodic word, and study two types of vertex connectivity on such a
graph: modified degree connectivity and r-set connectivity where r =
q mod p. As a result, we give an algorithm for computing L(h, p, q) in
the general case.

1 Introduction

The problem of computing periods in words, or finite sequences of symbols from
a finite alphabet, has important applications in several areas including data com-
pression, coding, computational biology, string searching and pattern matching
algorithms. Repeated patterns and related phenomena in words have played
over the years a central role in the development of combinatorics on words [1],
and have been highly valuable tools for the design and analysis of algorithms.
In many practical applications, such as DNA sequence analysis, repetitions ad-
mit a certain variation between copies of the repeated pattern because of errors
due to mutation, experiments, etc. Approximate repeated patterns, or repeti-
tions where errors are allowed, are playing a central role in different variants of
string searching and pattern matching problems [2]. Partial words, or finite se-
quences that may contain some holes, have acquired importance in this context.
A (strong) period of a partial word u over an alphabet A is a positive integer p
such that u(i) = u(j) whenever u(i), u(j) ∈ A and i ≡ j mod p (in such a case,
we call u p-periodic). In other words, p is a period of u if for all positions i and
j congruent modulo p, the letters in these positions are the same or at least one
of these positions is a hole.
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There are many fundamental results on periods of words. Among them is the
well-known periodicity result of Fine and Wilf [3], which determines how long a
p- and q-periodic word needs to be in order to also be gcd(p, q)-periodic. More
precisely, any word having two periods p, q and length at least p+ q − gcd(p, q)
has also gcd(p, q) as a period. Moreover, the length p+ q − gcd(p, q) is optimal
since counterexamples can be provided for shorter lengths, that is, there exists
an optimal word of length p+ q−gcd(p, q)−1 having p and q as periods but not
having gcd(p, q) as period [1]. Extensions of Fine and Wilf’s result to more than
two periods have been given. For instance, in [4], Constantinescu and Ilie give
an extension for an arbitrary number of periods and prove that their lengths are
optimal.

Fine and Wilf’s result has been generalized to partial words [5,6,7,8,9,10,11].
Some of these papers are concerned with weak periodicity, a notion not discussed
in this paper. The papers that are concerned with strong periodicity refer to the
basic fact, proved by Shur and Konovalova (Gamzova) in [10], that for positive
integers h, p and q, there exists a positive integer l such that a partial word u
with h holes, two periods p and q, and length at least l has period gcd(p, q).
The smallest such integer is called the optimal length and it will be denoted
by L(h, p, q). They gave a closed formula for the case where h = 2 (the cases
h = 0 or h = 1 are implied by the results in [3,5]), while in [9], they gave a
formula in the case where p = 2 as well as an optimal asymptotic bound for
L(h, p, q) in the case where h is “large.” In [7], Blanchet-Sadri et al. gave closed
formulas for the optimal lengths when q is “large,” whose proofs are based on
connectivity in the so-called (p, q)-periodic graphs. In this paper, we study two
types of vertex connectivity in these graphs: the modified degree connectivity and
r-set connectivity where r = q mod p. Although the graph-theoretical approach
is not completely new, the paper gives insights into periodicity in partial words
and provides an algorithm for determining L(h, p, q) in all cases.

We end this section by reviewing basic concepts on partial words. Fixing a
nonempty finite set of letters or an alphabet A, finite sequences of letters from
A are called (full) words over A. The number of letters in a word u, or length
of u, is denoted by |u|. The unique word of length 0, denoted by ε, is called the
empty word. The set of all words over A of finite length is denoted by A∗. A
partial word u of length n over A is a partial function u : {0, . . . , n − 1} → A.
For 0 ≤ i < n, if u(i) is defined, then i belongs to the domain of u, denoted by
i ∈ D(u), otherwise i belongs to the set of holes of u, denoted by i ∈ H(u). For
convenience, we will refer to a partial word over A as a word over the enlarged
alphabet A� = A∪{�}, where � �∈ A represents a “do not know” symbol or hole.

2 (p, q)-Periodic Graphs

In this section, we discuss the fundamental property of periodicity, the goal of
our paper which is to describe an algorithm to compute L(h, p, q) in all cases,
and some initial results. We can restrict our attention to the case where p and q
are coprime, since it is well-known that the general case can be reduced to the
coprime case (see, for example, [5,9]). Also, we assume without loss of generality
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that 1 < p < q. Fine and Wilf show that L(0, p, q) = p+ q− gcd(p, q) [3], Berstel
and Boasson that L(1, p, q) = p+q [5], and Shur and Konovalova prove L(2, p, q)
to be 2p+ q − gcd(p, q) [10]. Other results include the following.

Theorem 1 ([7,9]). For 0 ≤ m < q, L(nq +m, 2, q) = (2n+ 1)q +m+ 1.

Theorem 2 ([7]). If q > x(p, h) where x(p, h) is p(h
2
) if h is even and p(h+1

2
)

if h is odd, then

L(h, p, q) =

{
p(h+2

2 ) + q − gcd(p, q), if h is even;
p(h+1

2
) + q, if h is odd.

The problem of finding L(h, p, q) is equivalent to a problem involving the vertex
connectivity of certain graphs, as described in [7], which we now discuss. We
can represent the periodic structure of a full word with two periods through a
graph associated with the word. The (p, q)-periodic graph of size l is the graph
G = (V,E) where V = {0, 1, . . . , l − 1} and for i, j ∈ V , the pair {i, j} ∈ E if
and only if i ≡ j mod p or i ≡ j mod q. The degree of a vertex i ∈ V , denoted
d(i), is the number of vertices connected to i, that is,

d(i) =
⌊
l − 1− i mod p

p

⌋
+
⌊
l − 1− i mod q

q

⌋
−
⌊
l − 1− i mod pq

pq

⌋
.

The first term gives the number of p-connections, the second term the number
of q-connections, and the third term the number of pq-connections.

Fig. 1. The (3, 4)-periodic graph of size 11. The bold connections are q-edges, while
the lighter ones are p-edges.

The (p, q)-periodic graph of size l can be thought to represent a full word of
length l with periods p and q, with the vertices corresponding to positions of the
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word, and the edges corresponding to the equalities between letters of the word
forced by one of the periods. For example, we see that if the (p, q)-periodic graph
of size l is connected, then a word of length l with periods p and q is 1-periodic,
because there exists a path between every pair of vertices, thus the word is over
a singleton alphabet. A graph has vertex connectivity κ if it can be disconnected
with a suitable choice of κ vertex removals, but cannot be disconnected by any
choice of κ− 1 vertex removals.

Note that a hole in a partial word u of length l with periods p and q cor-
responds to the removal of the associated vertex from the (p, q)-periodic graph
of size l. Thus our search for L(h, p, q) (when gcd(p, q) = 1) can be restated in
terms of vertex connectivity.

Lemma 1. The length L(h, p, q) is the smallest l such that the (p, q)-periodic
graph of size l has vertex connectivity at least h + 1.

If G = (V,E) is the (p, q)-periodic graph of size l, then the p-class of vertex i
is {j ∈ V | j ≡ i mod p}. A p-connection (or p-edge) is an edge {i, j} ∈ E such
that i ≡ j mod p. If an edge {i, j} is a p-connection, then i and j are considered
p-connected. Similar statements hold for q-classes, q-connections and pq-classes,
pq-connections.

Throughout the paper, we will find it useful to group together p-classes whose
smallest elements are congruent modulo r where r = q mod p. We do so by
introducing the r-set of vertex i, where i ∈ {0, 1, . . . , r − 1}, which is the set

⋃
0≤j<p and j≡i mod r

p-class of vertex j =
	 p−i−1

r 
⋃
j=0

p-class of vertex jr + i.

3 Connectivity in (p, q)-Periodic Graphs

Our algorithm to calculate L(h, p, q) is based on (p, q)-periodic graphs. In this
section, we discuss modified degree and q mod p-set connectivity in these graphs.
Using Theorems 1 and 2, we can restrict our discussion to the case where p �= 2
and q ≤ p	h+1

2

. Let G = (V,E) be a graph. A disconnection of G is a partition

{V1, V2, H} of V (that is, V = V1 ∪H ∪ V2 and V1, V2, H are mutually disjoint),
such that neither V1 nor V2 is empty, and for v1 ∈ V1, v2 ∈ V2, {v1, v2} /∈ E.
An optimal disconnection is a disconnection such that the cardinality of H is
κ, where κ is the vertex connectivity of G. The set H represents the vertices
removed in a disconnection, while the sets V1 and V2 represent the vertices
disconnected from each other in a disconnection.

If G is the (p, q)-periodic graph of size l for some p, q and l and {V1, V2, H}
is an optimal disconnection of G, note that we cannot disconnect G within a
p-class since p-classes form complete subgraphs. In other words, a p-class cannot
both contain elements in V1 and V2, that is, for a p-class C, either C ⊂ V1∪H or
C ⊂ V2 ∪H. We say that a disconnection {V1, V2, H} of G disconnects a union
of p-classes P if V1 ⊂ P and P ⊂ V1 ∪H, or V2 ⊂ P and P ⊂ V2 ∪H . Similarly,
a q-class cannot both contain elements in V1 and V2.
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Fig. 2. A (p, q)-periodic graph where the vertical lines represent p-classes, while the
diagonal lines represent q-classes. The q-edges wrap around at the dashed lines. All
vertices in vertical and diagonal lines are connected to each other. In other words, lines
represent several “normal” edges. In the graph, p-classes are grouped into two r-sets.

Suppose we want to disconnect a single p-class C from G. For a q-class C′

of G, all of the vertices of C′ within C or all of the vertices of C′ outside of C
must be removed. For l ≥ 2q, a vertex i ∈ C has q-connections with vertices
outside of C. Each of these q-connections must be broken in order to disconnect
C from G. The most efficient way to do so is to remove i itself, since i may have
more than one q-connection. However, if we remove all of C from G, we have not
formed a disconnection (V1 or V2 is empty). Thus, we do not remove the vertex
in C contained in the smallest q-class in order to minimize the number of vertex
removals required to disconnect C. So, if each vertex i ∈ C is q-connected to
some vertex j outside of C such that no other vertex in C is q-connected to j (no
vertex in C is q-connected to i), then the most efficient way of disconnecting C
from G is to disconnect a vertex of lowest degree in C. As long as l ≤ pq, any two
distinct vertices within a p-class belong to different q-classes. In this case, the
most efficient way to disconnect a single p-class from G is to disconnect a single
vertex of lowest degree in G (this is called a minimum degree disconnection).

When l > pq, vertices within the same p-class may belong to the same q-class
(that is to say, vertices may be both p- and q-connected, or pq-connected). For a
vertex i in V , vertices that are pq-connected to i share all other connections with
i, and thus should not be counted in the number of vertices required to disconnect
i as they are disconnected when i is disconnected. Thus, we introduce the idea
of “modified” degree.

Let G = (V,E) be the (p, q)-periodic graph of size l, and let i ∈ V . The
modified degree of i, denoted d∗(i), is the number of vertices that are either p-
or q-connected to i, but not pq-connected to i, that is,

d∗(i) =
⌊
l − 1− i mod p

p

⌋
+
⌊
l − 1− i mod q

q

⌋
− 2

⌊
l − 1− i mod pq

pq

⌋
. (1)

We subtract 2 times the number of pq-connections: once because we double
counted them, and again because vertices that are pq-connected are connected to
the same vertices, so disconnecting one vertex will also disconnect all the vertices
pq-connected to it. Note that when l ≤ pq, d(i) = d∗(i). When l > pq, minimum
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degree disconnections are replaced by minimum modified degree disconnections.
For a (p, q)-periodic graph G, we define the modified degree connectivity of G,
denoted κd, to be the smallest number of vertex removals required to make a
minimum modified degree disconnection, and denote the minimum size of G such
that κd = h+ 1 by ld(h, p, q).

Usually, disconnecting more than one p-class takes more holes than individ-
ually disconnecting any one p-class, because in general, a set of p-classes has
more connections with the rest of the graph than any single p-class. However,
disconnecting entire r-sets may prove to be efficient when l is small, as the graph
“bottlenecks” between r-sets (that is, fewer q-classes span r-sets than connect
p-classes within an r-set). For a (p, q)-periodic graph G, we define the r-set con-
nectivity of G, denoted κr, to be the smallest number of vertex removals required
to make an r-set disconnection, and denote the minimum size of G such that
κr = h+1 by lr(h, p, q). Thus, if G is the (p, q)-periodic graph of size l for l > 2q,
then either a modified degree disconnection or an r-set disconnection will give
an optimal disconnection of G.

Note that the sizes at which our graphs change connectivity are the optimal
lengths in question. If the (p, q)-periodic graph of size l has vertex connectivity
κ while the (p, q)-periodic graph of size l+ 1 has vertex connectivity κ+ 1, then
L(κ, p, q) = l+ 1. Similarly, if the (p, q)-periodic graph of size l has modified de-
gree connectivity κd (respectively, r-set connectivity κr) while the (p, q)-periodic
graph of size l + 1 has modified degree connectivity κd + 1 (respectively, r-set
connectivity κr + 1), then ld(κd, p, q) = l + 1 (respectively, lr(κr, p, q) = l + 1).

4 r-Set Connectivity

Consider the (p, q)-periodic graph of size l where q = mp + r with 0 < r < p.
Set l = kp + r′ where 0 ≤ r′ < p. Figure 3 depicts a case in which r′ = 0. We
can see here that there are k rows in each r-set. In the columns on either side of
any r-set we see that m + 1 vertices do not have q-connections to the adjacent
r-set, so exactly β = k − (m + 1) vertices are q-connected to the adjacent r-
set. Consider two adjacent r-sets. Looking at the q-classes that connect these
r-sets, we can see that the bottom m of these q-classes have 1 vertex in the left
r-set. The next m q-classes have 2 vertices in the left r-set, and so on for the
first k − (m + 1) q-classes. The left side of the right r-set is anti-symmetric to
this: the top m q-classes each have 1 vertex in the right r-set, and the next m
q-classes each have 2 vertices and so on working down. When breaking these
q-connections it is best to remove all the vertices from the smaller side of the
q-class. Thus, for the bottom half of the q-classes we remove vertices from the
left side, and for the top half we remove the same number of vertices from
the right side. If β = γ(2m) + φ for 0 ≤ φ < 2m, then we see that the number
of vertices we must remove to separate these adjacent r-sets is

2m
γ∑
i=1

i+ φ(γ + 1) = 2m
γ(γ + 1)

2
+ φ(γ + 1).
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Fig. 3. An r-set disconnection for p = 16, q = 35 = 2p + 3, and l = 9p (this length is
not optimal). Here we are disconnecting the r-set of vertex 2 from the other r-sets.

Since an r-set disconnection requires separating adjacent r-sets twice, we have

κr
2

= mγ(γ + 1) + φ(γ + 1) = (mγ + φ)(γ + 1).

Since γ is an integer and φ < 2m, we can find γ in terms of κr and m by solving
for when φ is equal to zero and then taking the floor. Using the quadratic formula,

γ =
⌊√

m2 + 2mκr −m
2m

⌋
.

We solve for φ and find φ = κr

2(γ+1)
− mγ. From the definition of β we have

k = 2mγ + φ + m + 1. The length is never optimal when r′ = 0 because κr
only increases for nonzero values of r′, as described below. We therefore want to
select γ and φ such that they give us a value of κr that is strictly less than h+1.
We will make room for the remaining vertex removals by adding r′ vertices.

Now we need to calculate r′ by determining at exactly which sizes the r-
set connectivity actually increases. Starting with size l = kp, if we increase
the size by r then the number of vertex removals required to break any r-set
connection increases by 1 because between each connected pair of r-sets there
is one more q-connection. Thus, the r-set connectivity increases by 2. Notice
that every connected pair of r-sets requires the same number of vertex removals
to separate them. Thus, if we remove the last vertex we added, then the r-set
connectivity will have only increased by 1 from the previous size. After decreasing
the size by one more vertex the r-set connectivity will be back down to where



64 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

it was for l = kp. The same thing happens if we add another r vertices and
continue until we reach the r-set connectivity of the graph of size l = (k + 1)p.
If we have calculated k for a given p, q and h, then define δ to be the difference
between the r-set connectivity that we are looking for and the r-set connectivity
at length l = kp. Then δ = h + 1 − 2(mγ + φ)(γ + 1), and we can calculate
r′ =

⌊
δ+1
2

⌋
r − δ mod 2. We arrive at the following theorem.

Theorem 3. Let q = mp + r where 0 < r < p, and let β = 2mγ + φ, where

γ is the greatest integer strictly less than
√
m2+2m(h+1)−m

2m and φ is the greatest
integer strictly less than h+1

2(γ+1)
−mγ. Define δ = h+1−2(mγ+φ)(γ+1). Then

lr(h, p, q) = (β +m + 1)p+
⌊
δ + 1

2

⌋
r − δ mod 2.

Using this theorem we have calculated the lengths in Table 1. By comparing the

Table 1. Optimal lengths for r-set disconnections. The empty entries of the table are
where q > p

⌊
h+1
2

⌋
, so r-set disconnections are not optimal (see Theorem 2).

h = 3 h = 4 h = 5 h = 6 h = 7
p < q < 2p 2p + q 3p + q − 1 3p + q 2p + 2q − 1 2p + 2q
2p < q < 3p 3p + q 4p + q − 1 4p + q
3p < q < 4p 4p + q

lengths in Table 1 to the lengths that can be calculated using modified degree,
r-set disconnections are only more efficient when h = 4 and q < 3p

2
. As we

increase the length beyond the values shown in the table, experimental evidence
suggests that r-set disconnections will continue to become less efficient because
r-sets now gain q-connections faster than any pq-class gains connections.

5 Modified Degree Connectivity

To count the number of vertices we must remove to disconnect vertex i and all
the vertices pq-connected to it, we use the formula in (1) for d∗(i).

Suppose l = τpq + ω for nonnegative integers τ and ω < pq. If ω = 0 then
every vertex has the same modified degree: d∗(i) = (τq−1)+(τp−1)−2(τ−1) =
τ(p + q − 2). If ω > 0 then define G′ to be the subgraph of the (p, q)-periodic
graph G of size l that contains only the vertices in the last ω positions. Each of
the last ω vertices has τ(p+ q − 2) vertices in the first τpq positions to which it
is either p-connected or q-connected but not pq-connected. Thus, the modified
degree of a vertex i in G′ is equal to τ(p + q − 2) + dG′(i), where dG′(i) is the
degree of i in G′. In other words, we can find the degree of the vertex i within
the subgraph G′, and add this degree to τ(p+ q − 2) to get its modified degree
in G. Thus, we have

d∗(i) = τ(p+ q − 2) + d∗
G′(i). (2)
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The positions of these last ω vertices modulo pq are all less than ω = l mod pq,
and any two positions in the same pq-class have the same modified degree. Thus
we know that one of them will have the lowest modified degree of the graph.

Fig. 4. The (4, 5)-periodic graph of size 47. This figure depicts an optimal disconnection
where the dashed vertices are in H , the bold vertices are in V2, and the rest of the
vertices are in V1. Notice that the vertices in V2 have the minimal modified degree.
They are all pq-connected to each other, and are p- or q-connected to the vertices in H .
Increasing the size by 1 gives this pq-class one more p-connection, thereby increasing
the connectivity of the graph by 1.

We want d∗(i) = h + 1. Since τ is an integer and d∗
G′(i) < p+ q − 2, we can

use the division algorithm and Equation (2) to get τ =
⌊

h+1
p+q−2

⌋
and d∗

G′(i) =
(h+1) mod (p+ q − 2). Recall that ld(h, p, q) is the smallest length at which the
minimum modified degree is h+1. In other words, ld(h, p, q) is the optimal length
L(h, p, q) if we restrict ourselves to minimum modified degree disconnections.
Note that we consider the degree of the empty graph to be zero. We now arrive
at the following theorem.

Theorem 4. The equality ld(h, p, q) = τpq + ω holds, where 0 ≤ ω < pq. More
specifically, τ =

⌊
h+1
p+q−2

⌋
and

ω =

{
ld((h+ 1) mod (p+ q − 2)− 1, p, q), if (h+ 1) mod (p+ q − 2) �= 0;
0, otherwise.
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We have now reduced cases where ld(h, p, q) ≥ pq to those where ld(h, p, q) < pq,
so now we will assume ld(h, p, q) < pq. A vertex i in a graph of size l has

⌊
l
p

⌋
−1

p-connections if i ≥ l mod p and
⌊
l
p

⌋
p-connections if i < l mod p. Similarly, i

has
⌊
l
q

⌋
− 1 q-connections if i ≥ l mod q and

⌊
l
q

⌋
q-connections if i < l mod q.

We add together the number of p-connections and the number of q-connections
to find that the degree of i is

⌊
l
p

⌋
plus

⌊
l
q

⌋
minus either 0, 1 or 2 depending on

the value of i. We can assume that l ≥ p because there will never be an optimal
length with 0 < ld(h, p, q) mod pq < p, since there are no p- or q- connections
within this range. Thus we can assume that the vertex in the p−1 position exists,
and we know that the p−1 position always satisfies the condition p−1 ≥ l mod p.
This allows us to make the following claim.

Theorem 5. Define the function

f(ω, p, q) =

⎧⎪⎨
⎪⎩

2, if there exists i ∈ [0..ω − 1] such that
i mod p ≥ ω mod p and i mod q ≥ ω mod q;

1, otherwise.

Then the (p, q)-periodic graph of size ω has a modified degree connectivity κd =⌊
ω
p

⌋
+
⌊
ω
q

⌋
− f(ω, p, q).

From this theorem we can see that κd increases whenever f(ω, p, q) changes from
2 to 1, or whenever ω increases to a multiple of either p or q while f(ω, p, q) stays
constant.

Remark 1. If ld(h, p, q) = ω and f(ω, p, q) = 2, then ω = n1p or ω = n2q for
some positive integers n1 and n2.

Since adding a new vertex never decreases the modified degree connectivity of
these graphs, f(ω, p, q) can only change from 1 to 2 at multiples of p and q. If
ω = n1p for a positive integer n1, then a vertex in the q− 1 q-class with position
i satisfies i > ω mod p and i > ω mod q, so f(n1p, p, q) = 2 for n1p > q and
f(n1p, p, q) = 1 for n1p < q. Similarly, f(n2q, p, q) = 2 for any positive n2.

To calculate n1 when f(ω, p, q) = 2 we use the formula κd = h+ 1 =
⌊
n1p
p

⌋
+⌊

n1p
q

⌋
− 2. We can solve as follows: n1 +

⌊
n1p
q

⌋
= (h+ 1) + 2 or

⌊
n1

(
1 + p

q

)⌋
=

h+ 3. So if a solution exists, it is

n1 =

⌈
h+ 3
1 + p

q

⌉
. (3)

If there is no solution for n1 satisfying n1 +
⌊
n1p
q

⌋
− 2 = h+ 1, then there must

be a solution for n2 satisfying κd = h+ 1 = n2 +
⌊
n2q
p

⌋
− 2 and we calculate

n2 =

⌈
h+ 3
1 + q

p

⌉
. (4)
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We now consider the f(ω, p, q) = 1 case. Note that f(l, p, q) = 1 for all l < q. For
these cases vertices can only have p-connections, and we can see that ld(h, p, q) =
(h + 2)p so long as h + 2 ≤

⌊
q
p

⌋
. For larger numbers of holes we must better

characterize when vertices of lowest degree gain p- and q-connections. First, there
is always a vertex of minimal degree in either the p−1 p-class or the q−1 q-class.
This is because if we pick any other position that has minimal degree then we
can increase this position without adding more p- or q-connections until it is in
either the p − 1 p-class or the q − 1 q-class. Optimal lengths occur when these
positions of minimal degree gain a new p- or q-connection.

Remark 2. If ld(h, p, q) = ω, f(ω, p, q) = 1, and h+2 >
⌊
q
p

⌋
, then ω = n′

1p+n′
2q

for some positive integers n′
1 and n′

2. For ω = n′
1p+n′

2q−1, the vertices of lowest
degree are in the symmetric positions n′

1p− 1 and n′
2q − 1.

We now focus on finding these positions n′
1p−1 and n′

2q−1. If f(ω, p, q) changes
from 2 to 1 when the n′

1p − 1 vertex gains a q-connection, then we see from
the definition of f(ω, p, q) that the n′

1p − 1 vertex must have a larger value
modulo q than the other vertices in the p − 1 p-class. Thus we can say that
(n′

1p − 1) mod q > (n′′
1p − 1) mod q for all positive integers n′′

1 �= n′
1 where

n′′
1p < n′1p+n′

2q. Similarly we must have (n′
2q− 1) mod p > (n′′

2q− 1) mod p for
all positive integers n′′

2 �= n′
2 where n′′

2q < n′
1p+ n′

2q. Also, n′
1p + n′

2q must fall
between the f(ω, p, q) = 2 solutions for ld(h− 1, p, q) and ld(h, p, q).

Algorithm 1. Find ld(h, p, q) when 1 < p < q, gcd(p, q) = 1 and h < p+ q − 2

if h+ 2 ≤
⌊
q
p

⌋
then ld(h, p, q) = (h+ 2)p

else solve for f(ω, p, q) = 2 solutions for ld(h− 1, p, q) and ld(h, p, q)
if the f(ω, p, q) = 2 value for ld(h, p, q) is n1p then

find the maximum value of n′
1p mod q for 0 < n′

1 < n1

if the vertex in this position has a q-connection between
f(ω, p, q) = 2 solutions for ld(h − 1, p, q) and ld(h, p, q) then

ld(h, p, q) is the position of this q-connection
else ld(h, p, q) = n1p

if the f(ω, p, q) = 2 value for ld(h, p, q) is n2q then
find the maximum value of n′

2q mod p for 0 < n′
2 < n2

if the vertex in this position has a p-connection between
f(ω, p, q) = 2 solutions for ld(h − 1, p, q) and ld(h, p, q) then

ld(h, p, q) is the position of this p-connection
else ld(h, p, q) = n2q
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For m =
⌊
q
p

⌋
, the mp − 1 vertex has the lowest degree in a large number of

cases when the length is less than pq (keep in mind that we can reduce any case
to one where the length is less than pq). The following lemma identifies many
of these cases. We then use this knowledge to find a large number of optimal
lengths in the theorem that follows.

Lemma 2. Let G be the (p, q)-periodic graph of size l, let q = mp + r where
0 < r < p, and let l = nq + r1 where 0 ≤ r1 < q. Let mp ≤ l ≤ pq. If
l mod q < mp or nr− 1 < l mod p, then the mp− 1 vertex has minimum degree.

Proof. We require l ≥ mp so the mp− 1 vertex exists, and we require l ≤ pq so
we do not have vertices that are both p- and q- connected to each other. We have
that l = nq + r1 = n(mp + r) + r1 = mnp + nr + r1, so l ≡ (nr + r1) mod p. A
vertex in the p-class of i has

⌊
l
p

⌋
p-connections if i < (nr+ r1) mod p or

⌊
l
p

⌋
− 1

p-connections if i ≥ (nr + r1) mod p. Similarly, the number of q-connections for
a position in the q-class of j is n if j < r1 or n − 1 if j ≥ r1. The mp − 1
vertex is in the p-class of p − 1 so it always has

⌊
l
p

⌋
− 1 p-connections since

p− 1 ≥ (nr+ r1) mod p. The mp− 1 vertex is in the q-class of mp− 1 and so it
has n− 1 q-connections if r1 ≤ mp− 1 and has n q-connections if mp ≤ r1 < q.
The degree of the mp−1 vertex is clearly minimum when r1 < mp, that is, when
l mod q < mp.

However, if mp ≤ r1 ≤ mp + s for some 0 ≤ s < r, then the vertices in the
q-class of mp + s have one fewer q-connection than any other vertex, and may
have the same number of p-connections as the mp − 1 vertex, giving them a
lower degree than the mp− 1 vertex. These vertices are of the form (mp+ s) +
tq = mp + s + t(mp + r) = (t + 1)mp + tr + s for some nonnegative integer t
satisfying mp+ s + tq ≤ l − 1. Thus a vertex mp + s+ tq falls in the p-class of
(tr + s) mod p. Thus, vertices in the q-class of mp + s have

⌊
l
p

⌋
p-connections

if and only if (tr + s) mod p < l mod p for all integers t ∈ {0, . . . , n − 1} and
s ∈ {r1 −mp, . . . , r − 1}. If this is the case then these vertices have one more
p-connection than the mp − 1 vertex and therefore do not have lower degree.
Since t ≤ n − 1 and s ≤ r − 1, we have that tr + s ≤ nr − 1. Note that if
nr−1 < l mod p, then (tr+s) mod p = (tr+s) < l mod p for all t ∈ {0, . . . , n−1}
and s ∈ {r1 −mp, . . . , r− 1}. Thus, if nr− 1 < l mod p, then the mp− 1 vertex
has lowest degree in G. ��
The following theorem gives ld(h, p, q) when the mp−1 vertex has the minimum
degree in the graph of size ld(h, p, q)− 1.

Theorem 6. Let q = mp + r where 0 < r < p. Define n1 =
⌈
h+3
1+ p

q

⌉
and n2 =⌈

h+3
1+ q

p

⌉
, and define ω′ = min{n1p,mp + (n2 − 1)q}. Let mp ≤ ω′ ≤ pq. If

ω′ mod q < mp or 	ω′
q

r − 1 < ω′ mod p, then ld(h, p, q) = ω′.

Proof. Let G denote the (p, q)-periodic graph of size l. If we restrict the size so
that mp ≤ l ≤ pq with l mod q < mp or nr − 1 < l mod p, then by Lemma 2
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the vertex mp − 1 of G has lowest degree. Thus, within these ranges, optimal
lengths occur whenever the mp−1 vertex gains a p- or q-connection. The mp−1
vertex gains a p-connection exactly when l = n1p for an integer n1 > m. We can
calculate n1 using Equation (3).

The mp−1 position gains a q-connection exactly when l = mp+n′
2q. This fits

the form described in Remark 2 where n′
1 = m. After using Equations (3) and 4

to calculate n1 and n2, we search for n′
2 satisfying max{(n1 − 1)p, (n2 − 1)q} <

mp+ n′
2q < n1p. The optimal length is then mp+ n′

2q if and only if such an n′
2

exists. Since mp < q and n2q is the smallest multiple of q greater than n1p, any
such n′

2 satisfying the inequalities must be equal to n2−1, where we calculate n2

using Equation (4). We then know that mp+ n′
2q > max{(n1 − 1)p, (n2 − 1)q},

so we can now say that mp + n′
2q is the optimal length if and only if it is less

than n1p. Otherwise, n1p is the optimal length. ��

Algorithm 2. Find L(h, p, q) when 1 < p < q and gcd(p, q) = 1

if p = 2 then L(h, p, q) = (2
⌊
h
q

⌋
+ 1)q + h mod q + 1 by Thm 1

else
if q > p

⌊
h+1

2

⌋
then L(h, p, q) = p

⌊
h+2

2

⌋
+ q − (h + 1) mod 2 by Thm 2

else
compute lr(h, p, q) using Theorem 3
compute ld(h, p, q) using Theorem 4 (and Algorithm 1)
L(h, p, q) = max{lr(h, p, q), ld(h, p, q)}

Theorem 7. Given a number of holes h and two periods p and q, Algorithm 2
computes the optimal length L(h, p, q). Computing ld(h, p, q) is linear in p and q
and constant in h.

6 Conclusion

Using the ideas of r-set and modified degree connectivities described in this
paper, we have been able to answer conjectures in [7] (due to page restrictions
however, we cannot provide these results here). Our methods can be used to
prove closed formulas for any given number of holes. However, as the number
of holes increases, the number of cases also increases. Our calculations show
that an r-set disconnection is strictly more efficient than any modified degree
disconnection, or lr(h, p, q) > ld(h, p, q), if and only if h = 4 and q < 3p

2 , in
which case, L(h, p, q) = q + 3p − 1. For instance, we have proved that if p and
q are integers satisfying 2 < p < q and gcd(p, q) = 1, then L(3, p, q) is p + 2q if
q < 3p

2 , 4p if 3p
2 < q < 2p, and 2p+ q if q > 2p. A topic of future research is to

extend our approach to any number of periods. Moreover, a World Wide Web
server interface has been established at
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www.uncg.edu/cmp/research/finewilf4

for automated use of a program which given as input a number of holes h and
two periods p and q, outputs L(h, p, q) and an optimal word for that length.
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Abstract. We study a constrained version of the knapsack problem
in which dependencies between items are given by the adjacencies of a
graph. In the 1-neighbour knapsack problem, an item can be selected only
if at least one of its neighbours is also selected. We give approximation
algorithms and hardness results when the nodes have both uniform and
arbitrary weight and profit functions, and when the dependency graph
is directed and undirected.

1 Introduction

We consider the knapsack problem in the presence of constraints. The input is
a graph G = (V,E) where each vertex v has a weight w(v) and a profit p(v),
and a knapsack of size k. We start with the usual knapsack goal—find a set of
vertices of maximum profit whose total weight does not exceed k—and handle
the additional requirement that a vertex can be selected only if at least one of its
neighbours is also selected (vertices with no neighbours can always be selected).
We call this the 1-neighbour knapsack problem. We consider the problem with
general (arbitrary) and uniform (p(v) = w(v) = 1 ∀v) weights and profits,
and with undirected and directed graphs. In the case of directed graphs, the
neighbour constraint applies to the out-neighbours of a vertex.

Constrained knapsack problems have applications to scheduling, tool manage-
ment, investment strategies and database storage [8,1,7]. There are also applica-
tions to network formation. For example, suppose a set of customers C ⊂ V in
a network G = (V,E) wish to connect to a server, represented by a single sink
s ∈ V . The server may activate each edge at a cost and each customer would
result in a certain profit. The server wishes to activate a subset of the edges
with cost within the server’s budget. By introducing a vertex mid-edge with
zero-profit and weight equal to the cost of the edge and giving each customer
zero-weight, we convert this problem to a 1-neighbour knapsack problem.
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Results. We show that the four resulting problems

{general, uniform} × {undirected, directed}
vary in complexity but admit several algorithmic approaches. We summarize our
results in Table 1.

Table 1. Our results: upper and lower bounds on the approximation ratios for com-
binations of {general, uniform} × {undirected, directed}. For uniform, undirected, the
bounds are running-times of optimal algorithms.

Upper Lower

Uniform
Undirected linear-time exact

Directed PTAS NP-hard (strong sense)

General
Undirected (1−ε)

2
· (1− 1/e1−ε) 1− 1/e + ε

Directed open 1/Ω(log1−ε n)

In Section 2 we describe a greedy algorithm that applies to the general 1-
neighbour problem for both directed and undirected dependency graphs. The
algorithm requires two oracles: one for finding a set of vertices with high profit
and another for finding a set of vertices with high profit-to-weight ratio. In
both cases, the total weight of the set cannot exceed the knapsack capacity
and the subgraph defined by the vertices must adhere to a strict combinatorial
structure which we define later. The algorithm achieves an approximation ratio
of (α/2) · (1 − 1/eβ). The approximation ratios of the oracles determine the α
and β terms respectively.

For the general, undirected 1-neighbour case, we give polynomial-time oracles
that achieve α = β = (1 − ε) for any ε > 0. This yields a polynomial time
((1 − ε)/2) · (1 − 1/e1−ε)-approximation. We also show that no approximation
ratio better than 1− 1/e is possible (assuming P �=NP). This matches the upper
bound up to (almost) a factor of 2. These results appear in Section 2.1.

In Section 2.2, we show that the general, directed 1-neighbour knapsack prob-
lem is 1/Ω(log1−ε n)-hard to approximate, even in DAGs.

In Section 3 we show that the uniform, directed 1-neighbour knapsack problem
is NP-hard in the strong sense but that it has a polynomial-time approximation
scheme (PTAS)1. Thus, as with general, undirected 1-neighbour problem, our
upper and lower bounds are essentially matching.

Finally, in Section 4 we show that the uniform, undirected 1-neighbour knap-
sack problem affords a simple, linear-time solution.

Related Work. There is a tremendous amount of work on maximizing sub-
modular functions under a single knapsack constraint [13], multiple knapsack
1 A PTAS is an algorithm that, given a fixed constant ε < 1, runs in polynomial time

and returns a solution within 1 − ε of optimal. The algorithm may be exponential
in 1/ε.
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constraints [11], and both knapsack and matroid constraints [12,4]. While our
profit function is submodular, the constraints given by the graph are not char-
acterized by a matroid (our solutions, for example, are not closed downward).
Thus, the 1-neighbour knapsack problem represents a class of knapsack problems
with realistic constraints that are not captured by previous work.

As we show in Section 2.1, the general, undirected 1-neighbour knapsack
problem generalizes several maximum coverage problems including the budgeted
variant considered by Khuller, Moss, and Naor [9] which has a tight (1 − 1/e)-
approximation unless P=NP. Our algorithm for the general 1-neighbour problem
follows the approach taken by Khuller, Moss, and Naor but, because of the de-
pendency graph, requires several new technical ideas. In particular, our analysis
of the greedy step represents a non-trivial generalization of the standard greedy
algorithm for submodular maximization.

Johnson and Niemi [7] give an FPTAS for knapsack problems on dependency
graphs that are in-arborescences (these are directed trees in which every arc is
directed toward a single root)2. This problem can be viewed as an instance of
the general, directed 1-neighbour knapsack problem.

In a longer technical report [2] we explore a version of the constrained knap-
sack problem where an item may be selected only if all its neighbours are se-
lected. This problem generalizes the subset-union knapsack problem (SUKP) [8],
the precedence constrained knapsack problem (PCKP) [1], and the partially or-
dered knapsack problem (POK) [10].

Notation. We consider graphs G with n vertices V (G) and m edges E(G).
Whether the graph is directed or undirected will be clear from context. We refer
to edges of directed graphs as arcs. For an undirected graph, NG(v) denotes the
neighbours of a vertex v in G. For a directed graph, NG(v) denotes the out-
neighbours of v in G, or, more formally, NG(v) = {u : vu ∈ E(G)}. Given a set
of nodes X , N−

G (X) is the set of nodes not in X but that have a neighbour (or
out-neighbour in the directed case) in X . That is, N−

G (X) = {u : uv ∈ E(G), u �∈
X, and v ∈ X}. The degree (in undirected graphs) and out-degree (in directed
graphs) of a vertex v in G is denoted δG(v). The subscript G will be dropped
when the graph is clear from context. For a set of vertices or edges U , G[U ] is
the graph induced on U .

For a directed graph G, D is the directed, acyclic graph (DAG) resulting from
contracting maximal strongly-connected components (SCCs) of G. For each node
u ∈ V (D), let V (u) be the set of vertices of G that are contracted to obtain u.

For convenience, extend any function f defined on items in a set X to any
subset A ⊆ X by letting f(A) =

∑
a∈A f(a). If f(a) is a set, then f(A) =⋃

a∈A f(a). If f is defined over vertices, then we extend it to edges: f(E) =
f(V (E)). For any knapsack problem, OPT is the set of vertices/items in an
optimal solution.

2 In their problem formulation, the constraints are given as an out-arborescences—
directed trees in which every arc is directed away from a single root—and feasible
solutions are subsets of vertices that are closed under the predecessor operation.
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(a) (b)

Fig. 1. (a) An undirected graph. If H is the family of star graphs, then the shaded re-
gions give the only viable partition of the nodes—no other partition yields 1-neighbour
sets. However, every edge viable with respect to H. The singleton node is also viable
since it is a 1-neighbour set for the graph. (b) A graph G with 1-neighbour sets A
(dark shaded) and B (dotted). For convenience, we include both directed and undi-
rected edges. The lightly shaded regions give a viable partition for G[A \ B] and the
white nodes denote N−

G (B). For the undirected case, Y2 is viable for G[A \ B], and
since |Y2| = 2, it is viable for G[V (G) \B]. Y1 is not viable for G[V (G) \B] but it is in
N−
G (B). For the directed case, Y3 is viable in G[V (G) \ B] whereas Y4 is a viable set

only since we consider G[V (G) \ B] with the dotted arc removed.

Viable Families and Viable Sets. A set of nodes U is a 1-neighbour set for G
if for every vertex v ∈ U , |NG[U ](v)| ≥ min{δG(v), 1}. That is, a 1-neighbour set
is feasible with respect to the dependency graph. A family of graphsH is a viable
family for G if, for any subgraph G′ of G, there exists a partition YH(G′) of G′

into 1-neighbour sets for G′, such that for every Y ∈ YH(G′), there is a graph
H ∈ H spanning G[Y ]. For directed graphs, we take spanning to mean that H
is a directed subgraph of G[Y ] and that Y and H contain the same number of
nodes. For a graph G, we call YH(G) a viable partition of G with respect to H.

In Section 2.1 we show that star graphs form a viable family for any undi-
rected dependency graph. That is, we show that any undirected graph can be
partitioned into 1-neighbour sets that are stars. Fig. 1 (a) gives an example. In
contrast, edges do not form a viable family since, for example, a simple path
with 3 nodes cannot be partitioned into 1-neighbour sets that are edges. For
DAGs, in-arborescences are a viable family but directed paths are not (consider
a directed graph with 3 nodes u, v, w and two arcs (u, v) and (w, v)). Note that
a viable family always contains a singleton vertex.

A 1-neighbour set U for G is viable with respect toH if there is a graphH ∈ H
spanningG[U ]. Note that the 1-neighbour sets in YH(G) are, by definition, viable
for G, but a viable set for G need not be in YH(G). For example, if H is the
family of stars and G is the undirected graph in Fig. 1 (a), then any edge is a
viable set for G but the only viable partition is the shaded region. Note that
if U is a viable set for G then it is also a viable set for any subgraph G′ of G
provided U ⊆ V (G′).
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Viable families and viable sets play an essential role in our greedy algorithm
for the general 1-neighbour knapsack problem. Viable families establish a set
of structures over which our oracles can search. This restriction simplifies both
the design and analysis of efficient oracles as well as couples the oracles to a
shared family of graphs which, as we’ll show later, is essential to our analysis.
In essence, viable families provide a mechanism to coordinate the oracles into
returning sets with roughly similar structure. Viable sets correctly capture the
idea of an indivisible unit of choice in the greedy step. We formalize this with
the following lemma which is illustrated in Fig. 1 (b).

Lemma 1. Let G be a graph and H be a viable family for G. Let A and B be
1-neighbour sets for G. If YH(C) is a viable partition of G[C] where C = A \B
then every set Y ∈ YH(C) is either (i) a singleton node y such that y ∈ N−

G (B)
(i.e., y has a neighbour in B), or (ii) a viable set for G′ = G[V (G) \ B] where,
in the case that G is directed, G′ contains no arc with a tail in N−

G (B).

Proof. Let YH(C) be a viable partition for G[C] where C = A \ B and A, B,
G, G′ and H are defined as above. If |Y | = 1 then let Y = {y}. If δG(y) = 0
then Y is a viable set for G so it is viable set for G′. Otherwise, since A is a
1-neighbour set for G, y must have a neighbour in B so y ∈ N−

G (B). If |Y | > 1
then, provided G is undirected, Y is also a viable set in G so it is a viable set
in G′. If G is directed, then Y may not be viable in G since it might contain a
node z that is a sink in G[C] but that is not a sink in G. However, in this case
c ∈ N−

G (B) so it is a sink in G′ since G′ contains no arc with a tail in N−
G (B).

Therefore, Y is viable for G′. �	

2 The General 1-Neighbour Knapsack Problem

Here we give a greedy algorithm Greedy-1-Neighbour for the general 1-
neighbour knapsack problem on both directed and undirected graphs. A formal
description of our algorithm is available in Fig. 2. Greedy1-Neighbour re-
lies on two oracles Best-Profit-Viable and Best-Ratio-Viable which find
viable sets of nodes with respect to a fixed viable family H. In each iteration
i, we call Best-Ratio-Viable which, given the nodes not yet chosen by the
algorithm, returns the highest profit-to-weight ratio, viable set Si with weight
not exceeding the remaining capacity. We also consider the set of nodes Z not
in the knapsack, but with at least one neighbour already in the knapsack. Let si
be the node with highest profit-to-weight ratio in Z not exceeding the remaining
capacity. We greedily add either si or Si to our knapsack U depending on which
has higher profit-to-weight ratio. We continue until we can no longer add nodes
to the knapsack.

For a viable family H, if we can efficiently approximate the highest profit-to-
weight ratio viable set to within a factor of β and if we can efficiently approximate
the highest profit viable set to within a factor of α, then our greedy algorithm
yields a polynomial time α

2 (1− 1/eβ)-approximation.
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Greedy-1-Neighbour(G, k) :

Smax = best-profit-viable(G, k)
K = k, U = ∅, i = 1, G′ = G, Z = ∅
WHILE there is either a viable set in G′ or a node in Z with weight ≤ K

Si = best-ratio-viable(G′, K)
si = arg max{p(v)/w(v) | v ∈ Z}
IF p(si)/w(si) > p(Si)/w(Si)

Si = {si}
G′ = G[V (G′) \ Si]
i = i + 1, U = U ∪ V (Si), K = K − w(Si)
Z = N−

G (U)
If G is directed, remove any arc in G′ with a tail in Z

RETURN arg max{p(Smax), p(U)}

Fig. 2. The Greedy-1-Neighbour algorithm. In each iteration i, we greedily add
either the viable set Si or the node si to our knapsack U depending on which has
higher profit-to-weight ratio. This continues until we can no longer add nodes to the
knapsack.

Theorem 1. Greedy-1-Neighbour is a α
2
(1− 1

eβ )-approximation for the gen-
eral 1-neighbour problem on directed and undirected graphs.

Proof. Let OPT be the set of vertices in an optimal solution. In addition, let
Ui = ∪ij=1V (Sj) correspond to U after the first i iterations where U0 = ∅. Let
� + 1 be the first iteration in which there is either a node in Z ∩ OPT or a
viable set in OPT\U� whose profit-to-weight ratio is larger than S�+1. Of these,
let S�+1 be the node or set with highest profit-per-weight. For convenience, let
Si = Si and Ui = Ui for i = 1 . . . �, and U�+1 = U� ∪ S�+1. Notice that U� is a
feasible solution to our problem but that U�+1 is not since it contains S�+1 which
has weight exceeding K. We analyze our algorithm with respect to U�+1.

Lemma 2. For each iteration i = 1, . . . , �+ 1, the following holds:

p(Si) ≥ βw(Si)
k

(p(OPT)− p(Ui−1))

Proof. Fix an iteration i and let I be the graph induced by OPT \ Ui−1. Since
both OPT and Ui−1 are 1-neighbour sets for G, by Lemma 1, each Y ∈ YH(I)
is either a viable set for G′ (so it can be selected by best-ratio-viable) or a
singleton vertex in N−

G (Ui−1) (which Greedy-1-Neighbour always considers).
Thus, if i ≤ �, then by the greedy choice of the algorithm and approximation
ratio of best-ratio-viable we have

p(Si)
w(Si) ≥ β

p(Y )
w(Y )

for all Y ∈ YH(I). (1)

If i = � + 1 then p(S�+1)/w(S�+1) is, by definition, at least as large as the
profit-to-weight ratio of any Y ∈ Y . It follows that for i = 1, . . . , �+ 1
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p(OPT)− p(Ui−1) =
∑

u∈V (I)

p(u) ≤ 1
β

p(Si)
w(Si)

∑
u∈V (I)

w(u), by Eq. 1

≤ 1
β

p(Si)
w(Si)w(OPT), since I is a subset of OPT

≤ 1
β

k

w(Si)p(Si), since w(OPT) ≤ k

Rearranging gives Lemma 2. �	

Lemma 3. For i = 1, . . . , �+ 1, the following holds:

p(Ui) ≥
⎡
⎣1−

i∏
j=1

(
1− βw(Sj)

k

)⎤⎦ p(OPT)

Proof. We prove the lemma by induction on i. For i = 1, we need to show that

p(U1) ≥ βw(S1)
k

p(OPT). (2)

This follows immediately from Lemma 2 since p(U0) = 0 and U1 = S1. Suppose
the lemma holds for iterations 1 through i − 1. Then it is easy to show that
the inequality holds for iteration i by applying Lemma 2 and the inductive
hypothesis. This completes the proof of Lemma 3. �	

We are now ready to prove Theorem 1. Starting with the inequality in Lemma 3
and using the fact that adding S�+1 violates the knapsack constraint (so
w(U�+1) > k) we have

p(U�+1) ≥
⎡
⎣1−

�+1∏
j=1

(
1− βw(Sj)

k

)⎤⎦ p(OPT)

≥
⎡
⎣1−

�+1∏
j=1

(
1− β w(Sj)

w(U�+1)

)⎤⎦ p(OPT)

≥
[
1−

(
1− β

�+ 1

)�+1
]
p(OPT) ≥

(
1− 1

eβ

)
p(OPT)

where the penultimate inequality follows because equal w(Sj) maximize the
product. Since Smax is within a factor of α of the maximum profit viable set
of weight ≤ k and S�+1 is contained in OPT, p(Smax) ≥ α · p(S�+1). Thus,
we have p(U) + p(Smax)/α ≥ p(U�) + p(S�+1) = p(U�+1) ≥

(
1− 1

eβ

)
p(OPT).

Therefore max{p(U), p(Smax)} ≥ α
2

(
1− 1

eβ

)
p(OPT).

�	
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2.1 The General, Undirected 1-Neighbour Problem

Here we formally show that stars are a viable family for undirected graphs
and describe polynomial-time implementations of Best-Profit-Viable and
Best-Ratio-Viable that operate with respect to stars. Both oracles achieve
an approximation ratio of (1 − ε) for any ε > 0. Combined with Greedy-1-
Neighbour this yields a polynomial time ((1−ε)/2)·(1−1/e1−ε)-approximation
for the general, undirected 1-neighbour problem. In addition, we show that
this approximation is nearly tight by showing that the general, undirected 1-
neighbour problem generalizes many coverage problems including the max
k-cover and budgeted maximum coverage, neither of which have a (1− 1/e+ ε)-
approximation for any ε > 0 unless P=NP.

Stars. For the rest of this section, we assume H is the family of star graphs (i.e.
graphs composed of a center vertex u and a (possibly empty) set of edges all of
which have u as an endpoint) so that given a graph G and a capacity k, Best-
Profit-Viable returns the highest profit, viable star with weight at most k
and Best-Ratio-Viable returns the highest profit-to-weight, viable star with
weight at most k.

Lemma 4. The nodes of any undirected constraint graph G can be partitioned
into 1-neighbour sets that are stars.

Proof. Let Gi be an arbitrary connected component of G. If |V (Gi)| = 1 then
V (Gi) is trivially a 1-neighbour set and the trivial star consisting of a single node
is a spanning subgraph of Gi. If Gi is non-trivial then let T be any spanning
tree of Gi and consider the following algorithm: while T contains a path P with
|P | > 2, remove an interior edge of P from T . When the algorithm finishes, each
path has at least one edge and at most two edges, so T is a set of non-trivial
stars, each of which is a 1-neighbour set. �	

Best-Profit-Viable. Finding the maximum profit, viable star of a graph G
subject to a knapsack constraint k reduces to the traditional unconstrained knap-
sack problem which has a well-known FPTAS that runs in O(n3/ε) time [6,14].
Every vertex v ∈ V (G) defines a knapsack problem: the items are NG(v) and
the capacity is k − w(v). Combining v with the solution returned by the FP-
TAS yields a candidate star. We consider the candidate star for each vertex and
return the one with highest profit. Since we consider all possible star centers,
Best-Profit-Viable runs in O(n4/ε) time and returns a viable star within a
factor of (1− ε) of optimal, for any ε > 0.

Best-Ratio-Viable. We again turn to the FPTAS for the standard knapsack
problem. Our goal is to find a high profit-to-weight star in G with weight at most
k. The standard FPTAS for the unconstrained knapsack problem builds a dy-
namic programing table T with n rows and nP ′ columns where n is
the number of available items and P ′ is the maximum adjusted profit over all
the items. Given an item v, its adjusted profit is p′(v) = � p(v)

(ε/n)·P � where P is
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the true maximum profit over all the items. Each entry T [i, p] gives the weight of
the minimum weight subset over the first i items achieving profit p. An auxiliary
data structure allows us to efficiently retrieve the corresponding subset.

Notice that, for any fixed profit p, p/T [n, p] is the highest profit-to-weight
ratio for that p. Therefore, for 1 ≤ p ≤ nP ′, the p maximizing p/T [n, p] gives
the highest profit-to-weight ratio of any feasible subset provided T [n, p] ≤ k.
Let S be this subset. We will show that p(S)/w(S) is within a factor of (1− ε)
of OPT where OPT is the profit-to-weight ratio of the highest profit-to-weight
ratio feasible subset S∗.

Letting r(v) = p(v)/w(v) and r′(v) = p′(v)/w(v), and following [14], we have

r(S∗)− ((ε/n) · P ) · r′(S∗) ≤ εP/w(S∗)

since, for any item v, the difference between p(v) and ((ε/n) ·P ) ·p′(v) is at most
(ε/n) ·P and we can fit at most n items in our knapsack. Because r′(S) ≥ r′(S∗)
and OPT is at least P/w(S∗) we have

r(S) ≥ (ε/n) · P · r′(S∗) ≥ r(S∗)− εP/w(S∗) ≥ OPT− εOPT = (1− ε)OPT.

Now, just as with Best-Profit-Viable, every vertex v ∈ V (G) defines a knap-
sack instance where NG(V ) is the set of items and k −w(v) is the capacity. We
run the modified FTPAS for knapsack on the instance defined by v and add v to
the solution to produce a set of candidate stars. We return the star with highest
profit-to-weight ratio. Since we consider all possible star centers, Best-Ratio-
Viable runs in O(n4/ε) time and returns a viable star within a factor of (1− ε)
of optimal, for any ε > 0.

Why Stars? Besides some isolated vertices, our solution is a set of edges, but
the edges are not necessarily vertex disjoint. Analyzing our greedy algorithm
in terms of edges risks counting vertices multiple times. Partitioning into stars
allows us to charge increases in the profit from the greedy step without this risk.
In fact, stars are essentially the simplest structure meeting this requirement
which is why we use them as our viable family.

General, Undirected 1-Neighbour Knapsack is APX-Complete. Here
we show that it is NP-hard to approximate the general, undirected 1-neighbour
knapsack problem to within a factor better than 1− 1/e+ ε for any ε > 0 via an
approximation-preserving reduction from max k-cover [3]. An instance of max
k-cover is a set cover instance (S,R) where S is a ground set of n items and R
is a collection of subsets of S. The goal is to cover as many items in S using at
most k subsets from R.

Theorem 2. The general, undirected 1-neighbour knapsack problem has no 1−
1/e+ ε-approximation for any ε > 0 unless P=NP.

Proof. Given an instance of (S,R) of max k-cover, build a bipartite graph G =
(U ∪ V,E) where U has a node ui for each si ∈ S and V has a node vj for each
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set Rj ∈ R. Add the edge {ui, vj} to E if and only if ui ∈ Rj . Assign profit
p(ui) = 1 and weight w(ui) = 0 for each vertex ui ∈ U and profit p(vj) = 0
and weight w(ui) = 1 for each vertex vj ∈ V . Since no pair of vertices in U
have an edge and since every vertex in U has no weight, our strategy is to pick
vertices from V and all their neighbours in U . Since every vertex of U has unit
profit, we should choose the k vertices from V which collectively have the most
neighbours. This is exactly the max k-cover problem. �	
The max k-cover problem represents a class of budgeted maximum coverage
(BMC) problems where the elements in the base set have unit profit (referred
to as weights in [9]) and the cover sets have unit weight (referred to as costs
in [9]). In fact, one can use the above reduction to represent an arbitrary BMC
instance: form the same bipartite graph, assign the element weights in BMC as
vertex profits in U , and finally assign the covering set costs in BMC as vertex
weights in V .

2.2 General, Directed 1-Neighbour Knapsack Is Hard to
Approximate

Here we consider the 1-neighbour knapsack problem where G is directed and
has arbitrary profits and weights. We show via a reduction from directed Steiner
tree (DST) that the general, directed 1-neighbour problem is hard to approxi-
mate within a factor of 1/Ω(log1−ε n). Our result holds for DAGs. Because of
this negative result, we also don’t expect that good approximations exist for
either Best-Profit-Viable and Best-Ratio-Viable for any family of viable
graphs.

In the DST problem on DAGs we are given a DAG G = (V,E) where each
arc has an associated cost, a subset of t vertices called terminals and a root
vertex r ∈ V . The goal is to find a minimum cost set of arcs that together
connect r to all the terminals (i.e., the arcs form an out-arborescence rooted
at r). For all ε > 0, DST admits no log2−ε n-approximation algorithm unless
NP ⊆ ZTIME[npoly logn] [5]. This result holds even for very simple DAGs such
as leveled DAGs in which r is the only root, r is at level 0, each arc goes from a
vertex at level i to a vertex at level i+ 1, and there are O(log n) levels. We use
leveled DAGs in our proof of the following theorem.

Theorem 3. The general, directed 1-neighbour knapsack problem is
1/Ω(log1−ε n)-hard to approximate unless NP ⊆ ZTIME[npoly logn].

Proof. Let D be an instance of DST where the underlying graph G is a leveled
DAG with a single root r. Suppose there is a solution to D of cost C.

Claim. If there is an α-approximation algorithm for the general, directed 1-
neighbour knapsack problem then a solution to D with cost O(α log t) × C can
be found where t is the number of terminals in D.

Proof. Let G = (V,A) be the DAG in instance D. We modify it to G′ = (V ′, A′)
where we split each arc e ∈ A by placing a dummy vertex on e with weight equal
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to the cost of e according to D and profit of 0. In addition, we also reverse the
orientation of each arc. Finally, all other vertices are given weight 0 and terminals
are assigned a profit of 1 while the non-terminal vertices of G are given a profit
of 0. We create an instance N of the general, directed 1-neighbour knapsack
problem consisting of G′ and budget bound of C. By assumption, there is a
solution to N with cost C and profit t. Therefore given N , an α-approximation
algorithm would produce a set of arcs whose weight is at most C and includes
at least t/α terminals. That is, it has a profit of at least t/α. Set the weights
of dummy nodes to 0 on the arcs used in the solution. Then for all terminals
included in this solution, set their profit to 0 and repeat. Standard set-cover
analysis shows that after O(α log t) repetitions, each terminal will have been
connected to the root in at least one of the solutions. Therefore the union of
all the arcs in these solutions has cost at most O(α log t) × C and connects all
terminals to the root. �	
Using the above claim, we’ll show that if there is an α-approximation algo-
rithm for the general, directed-1-neighbour problem then there is an O(α log t)-
approximation algorithm for DST which implies the theorem. Let L be the total
cost of the arcs in the instance of DST. For each 2i < L, take C = 2i and
perform the procedure in the previous claim for α log t iterations. If after these
iterations all terminals are connected to the root then call the cost of the result-
ing arcs a valid cost. Finally, choose the smallest valid cost, say C′ and C′ will
be no more than 2COPT where COPT is the optimal cost of a solution for the
DST instance. By the previous claim we have a solution whose cost is at most
2COPT ×O(α log t). �	

3 The Uniform, Directed 1-Neighbour Knapsack Problem

In this section, we give a PTAS for the uniform, directed 1-neighbour knapsack
problem. We rule out an FPTAS by proving the following theorem, the proof of
which appears in [2].

Theorem 4. The uniform, directed 1-neighbour problem is strongly NP-hard.

A PTAS for the Uniform, Directed 1-Neighbour Problem. Let U be a
1-neighbour set. Let AU be a minimal set of arcs of G such that for every vertex
u ∈ U , δG[AU ](u) ≥ min{δG(u), 1}. That is, AU is a witness to the feasibility of
U as a 1-neighbour set. Since each node of U in G[AU ] has out-degree 0 or 1,
the structure of AU has the following form.

Property 1. Each connected component of G[AU ] is a cycle C and a collection of
vertex-disjoint in-arborescences, each rooted at a node of C. C may be trivial,
i.e., C may be a single vertex v, in which case δG(v) = 0.

For a strongly connected component X , let c(X) be the size of the shortest
directed cycle in X with c(X) = 1 if and only if |X | = 1.
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C
C'

P

(a) (b)

Fig. 3. Construction of a witness containing the smallest cycle of an SCC. The shaded
region highlights the vertices of an SCC (edges not in C, C′, or P are not depicted).
The edges of the witness are solid. (a) The smallest cycle C ′ is not in the witness. (b)
By removing an edge from C and leaf edges from the in-arborescences rooted on C, we
create a witness that includes the smallest cycle C′.

Lemma 5. There is an optimal 1-neighbour knapsack U and a witness AU such
that for each non-trivial, maximal SCC K of G, there is at most one cycle of
AU in K and this cycle is a smallest cycle of K.

Proof. First we modify AU so that it contains smallest cycles of maximal SCCs.
We rely heavily on the structure of AU guaranteed by Property 1. The idea is
illustrated in Fig. 3.

Let C be a cycle of AU and let K be the maximal SCC of G that contains
C. Suppose C is not the smallest cycle of K or there is more than one cycle of
AU in K. Let H be the connected component of AU containing C. Let C′ be
a smallest cycle of K. Let P be the shortest directed path from C to C ′. Since
C and C ′ are in a common SCC, P exists. Let T be an in-arborescence in G
spanning P , C and H rooted at a vertex of C ′.

Some vertices of C ′ ∪ P might already be in the 1-neighbour set U : let X be
these vertices. Note that X and V (H) are disjoint because of Property 1. Let T ′

be a sub-arborescence of T such that:

– T ′ has the same root as T , and
– |V (T ′ ∪ C ′) ∪X | = |V (H)|+ |X |.

Since |V (T ∪ C′)| = |V (P ∪H ∪ C ′)| ≥ |V (H)| + |X | and T ∪ C ′ is connected,
such an in-arborescence exists.

Let B = (AU \H)∪ T ′ ∪C ′. Let B′ be a witness spanning V (B) contained in
B that contains the arcs in C ′. We have that B′ has |U | vertices and contains a
smallest cycle of K.

We repeat this procedure for any SCC in our witness that contains a cycle of
a maximal SCC of G that is not smallest or contains two cycles of a maximal
SCC. �	
To describe the algorithm, let D = (S, F ) be the DAG of maximal SCCs ofG and
let ε > 1/k be a fixed constant where k is the knapsack bound. (If ε ≤ 1/k then
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the brute force algorithm which considers all subsets V ′ ⊆ V (G) with |V ′| ≤ k
yields an acceptable bound for a PTAS.)

We say that u ∈ S is large if c(u) > ε k, petite if 1 < c(u) ≤ ε k, or tiny
if c(u) = 1. Let L, P , and T be the set of all large, petite and tiny SCCs
respectively. Note that since ε > 1/k, for every u ∈ L, c(u) > ε k > 1.

uniform-directed-1-neighbour

B = ∅
For every subset X ⊆ L such that |X | ≤ 1/ε

DX = D[P ∪X ].
Z = {tiny sinks of D} ∪ {petite sinks of DX}
P ′ = any maximal subset of Z such that c(P ′) + c(X) ≤ k.
U =

⋃
K∈P ′∪X{V (C) : C is a smallest cycle of K}

Greedily add vertices to U such that U remains a 1-neighbour
set until there are no more vertices to add or
|U | = k. (Via a backwards search rooted at U .)

B = argmax{|B|, |U |}
Return B.

Theorem 5. uniform-directed-1-neighbour is a PTAS for the uniform,
directed 1-neighbour knapsack problem.

Proof. Let U∗ be an optimal 1-neighbour knapsack and let AU∗ be its witness
as guaranteed by Lemma 5. Let L,P , and T be the sets of large, petite, and tiny
cycles in AU∗ respectively. By Lemma 5, each of these cycles is in a different
maximal SCC and each cycle is a smallest cycle in its maximal SCC.

Let L = {L1, . . . , L�} and let L∗ be the set of large SCCs that intersect
L1, . . . , L�. Note that |L∗| = �. Since k ≥ |U∗| ≥ ∑�

i=1 |Li| > � ε k we have
� < 1/ε. So, in some iteration of uniform-directed-1-neighbour, X = L∗.
We analyze this iteration of the algorithm. There are two cases:

P ′ = Z. First we show that every vertex in U∗ has a descendant in X ∪ P ′.
Clearly if a vertex of U∗ has a descendant in some Li ∈ L, it has a descendant
in X . Suppose a vertex of U∗ has a descendant in some Pi ∈ P . Pi is within
an SCC of DX , and so it must have a descendant that is in a sink of DX .
Similarly, suppose a vertex of U∗ has a descendant in some Ti ∈ T . Ti is
either a sink in D or has a descendant that is either a sink of D or a sink of
DX . All these sinks are contained in X ∪ P ′. Since every vertex of U∗ can
reach a vertex in X ∪ P ′, greedily adding to this set results in |U | = |U∗|
and the result of uniform-directed-1-neighbour is optimal.

P ′ �= Z. For any sink x /∈ P ′, c(P ′) + c(X) + c(x) > k but c(x) ≤ ε k by the
definition of tiny and petite. So, |U | ≥ c(P ′) + c(X) > (1 − ε)k, and the
resulting solution is within (1− ε) of optimal.

The running time of uniform-directed-1-neighbour is nO(1/ε). It is domi-
nated by the number of iterations, each of which can be executed in poly time.

�	
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4 The Uniform, Undirected 1-Neighbour Problem

As our final result, we note that there is a relatively straightforward linear time
algorithm for finding an optimal solution for instances of the uniform, undirected
1-neighbour knapsack problem. The algorithm essentially breaks the graph into
connected components and then, using a counting argument, builds an optimal
solution from the components. A proof of the following theorem appears in [2].

Theorem 6. The uniform, undirected case has a linear-time solution.

Acknowledgments. We thank Anupam Gupta for helpful discussions in show-
ing hardness of approximation for general, directed 1-neighbour knapsack.
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Abstract. The Cluster Editing problem asks to transform a graph by
at most k edge modifications into a disjoint union of cliques. The problem
is NP-complete, but several parameterized algorithms are known. We
present a novel search tree algorithm for the problem, which improves
running time from O∗(1.76k) to O∗(1.62k). In detail, we can show that
we can always branch with branching vector (2, 1) or better, resulting in
the golden ratio as the base of the search tree size. Our algorithm uses
a well-known transformation to the integer-weighted counterpart of the
problem. To achieve our result, we combine three techniques: First, we
show that zero-edges in the graph enforce structural features that allow
us to branch more efficiently. Second, by repeatedly branching we can
isolate vertices, releasing costs. Finally, we use a known characterization
of graphs with few conflicts.

1 Introduction

Given an undirected graphG, the Cluster Editing problem asks for a minimal
set of edge modifications such that the resulting graph is a vertex-disjoint
union of cliques. In the corresponding Integer-Weighted Cluster Editing
problem, we are given modification costs for each edge or non-edge, and we search
for a set of edge modifications with minimum total weight. Here, one assumes
that all edges have non-zero modification cost.

In application, the above task corresponds to clustering objects, that is,
partitioning a set of objects into homogeneous and well-separated subsets.
Similar objects are connected by an edge, and a cluster is a clique of the input
graph. The input graph is corrupted and we have to clean (edit) the graph to
reconstruct the clustering under the parsimony criterion. Clustering data still
represents a key step of numerous life science problems. The weighted variant
of the Cluster Editing problem has been frequently proposed for clustering
biological entities such as proteins [18].

The Cluster Editing problem is NP-hard [13]. The parameterized
complexity of Cluster Editing, using the number of edge modifications as
parameter k, is well-studied, see also the FPT races column in [17]. A first
algorithm with running time O∗(2.27k) [10] was improved to O∗(1.92k) by an
extensive case analysis [9]. By transforming the problem to the integer-weighted
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variant, running time was advanced to O∗(1.82k) [1]. Using a characterization
of graphs that do not contain many conflicts, results in the currently fastest
algorithm with running time O∗(1.76k) [3]. There exist linear problem kernels
for the unweighted [5] and the integer-weighted variant [4]. Recently, Cluster
Editing with “don’t care edges” (that is, edges whose modification cost is zero)
has been shown to be fixed-parameter tractable [14]. To find exact solutions
in practice, a combination of data reduction and Integer Linear Programming
proved to be very efficient [2].

Our contributions. We present a new search tree algorithm for Cluster
Editing with running time O(1.62k + k2 +m+ n) for m edges and n vertices,
being the fastest known for the problem. The algorithm itself is rather simple,
and is based on the merge branching introduced in [1]. We stress that our result
only holds for the unweighted Cluster Editing problem, as general integer-
weighted instances will not satisfy the “parity property” introduced below.

2 Preliminaries

A problem with input size n and parameter k is fixed-parameter tractable (FPT)
if it can be solved in O(f(k) · p(n)) time where f is any computable function
and p is a polynomial. We naturally focus on the f(k) factor, and sometimes
adopt the O∗(f(k)) notation that suppresses polynomial factors. For a general
introduction we refer to [7,15]; in particular, we assume familiarity with bounded
search trees, branching vectors, and branching numbers. In the following, let n
be the number of vertices, and k the number of edge modifications.

For brevity, we write uv as shorthand for an unordered pair {u, v} ∈ (
V
2

)
.

Let s :
(
V
2

) → Z be a weight function that encodes the input graph: For
s(uv) > 0 a pair uv is an edge of the graph and has deletion cost s(uv), while for
s(uv) < 0, the pair uv is not an edge (a non-edge) of the graph and has insertion
cost −s(uv). Let N(u) be the set of all vertices v ∈ V such that s(uv) > 0. If
s(uv) = 0, we call uv a zero-edge. We require that there are no zero-edges in the
input graph. Nonetheless, zero-edges can appear in the course of computation
and require additional attention when analyzing the algorithm.

When analyzing connected components we only consider edges of the graph.
We say that C ⊆ V is a clique in an integer-weighted graph if all pairs uv ∈ (

C
2

)
are edges. If all vertex pairs of a connected component are either edges or
zero-edges, we call it a weak clique. Vertices uvw form a conflict triple in an
integer-weighted graph if uv and vw are edges but uw is either a non-edge or
a zero-edge. We distinguish two types of conflict triples uvw: if uw has weight
zero then the conflict triple is called weak, whereas if uw is a non-edge then the
conflict triple is called strong. If the integer-weighted graph contains no conflict
triples then it is transitive, i.e. a disjoint union of weak cliques. But the converse
is obviously not true, as the example of a single weak conflict triple shows: This
graph is a weak clique but contains a (weak) conflict triple. To solve Weighted
Cluster Editing we first identify all connected components of the input graph
and calculate the best solutions for each component separately, because an
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optimal solution never connects disconnected components. Furthermore, if the
graph is decomposed during the course of the algorithm, then we recurse and
treat each connected component individually.

An unweighted Cluster Editing instance can be encoded by assigning
weights s(uv) ∈ {+1,−1}. In the resulting graph, all conflict triples are strong.
During data reduction and branching, we may set pairs uv to “forbidden”
or “permanent”. Permanent edges can be merged immediately: Merging uv
means replacing the vertices u and v with a single vertex u′, and, for all
vertices w ∈ V \ {u, v}, replacing pairs uw, vw with a single pair u′w. In this
context, we say that we join vertex pairs uw and vw. The weight of the joined
pair is s(u′w) = s(uw) + s(vw). In case one of the pairs is an edge while the
other is a non-edge, then we can decrease parameter k by min{|s(uw)| , |s(vw)|}.
Note that we may join any combination of two edges, non-edges, or zero-edges
when merging two vertices. We stress that joined pairs can be zero-edges.

We encode a forbidden pair uv by setting s(uv) = −∞. By definition, every
forbidden pair uv is a non-edge, since s(uv) < 0. A forbidden pair uw can be part
of a conflict triple uvw, which then is a strong conflict triple. Assume that we join
pairs uv and uw where uw is forbidden and, hence, a non-edge. From the above
definition, the resulting pair u′w is forbidden, too, as s(u′w) = s(uw)+ s(vw) =
−∞+ s(vw) = −∞ holds for all s(vw) ∈ R ∪ {−∞}. Finally, if uw is forbidden
and vw is an edge then k is decreased by min{∞, |s(vw)|} = s(vw).

The following branching was proposed in [1]: We branch on an edge uv by
recursively calling the algorithm two times, either removing uv and setting it
to forbidden, or merging uv. If uv is part of at least one strong conflict triple,
then merging uv will generate cost: As there is both an edge uw and a non-edge
vw, we can reduce k by min{s(uw),−s(vw)}. In case s(uw) = −s(vw), joining
uw and vw into u′w results in u′w being a zero-edge. At a later stage of the
algorithm, this would prevent us from decreasing our parameter when joining
the zero-edge u′w. To circumvent this problem, the following bookkeeping trick
was introduced in [1]: We assume that joining uw and vw with s(uw) = −s(vw)
only reduces the parameter by min{s(uw),−s(vw)} − 1

2
= |s(uw)| − 1

2
≥ 1

2
.

If at a later stage we join this zero-edge with another pair, we decrease our
parameter by the remaining 1

2 . So, both generating and destroying a zero-edge
generates cost of at least 1

2
. Note that joining with a forbidden pair cannot create

a zero-edge.
Assume that s(vw) = −s(uw) with |s(vw)| = |s(uw)| ≥ 2. Then, merging an

edge uv in a conflict triple uvw will also generate a zero-edge, and generates
cost of at least 3

2 . In our analysis, we sometimes concentrate on the case that
s(vw) = −s(uw) = ±1, where merging uv has cost 1

2
. We do so only if it is

absolutely obvious that |s(vw)| = |s(uw)| ≥ 2 will result in the desired branching
vector.

Our fixed-parameter algorithms require a cost limit k: In case a solution
with cost ≤ k exists, the algorithm finds this solution; otherwise, “no solution”
is returned. To find an optimal solution we call the algorithm repeatedly,
increasing k.
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3 Vertex Parities

We need a simple observation about the input graphs to reach an improved
running time: An integer-weighted graphG with weight function s :

(
V
2

)→ Z has
the parity property if there is a parity mapping p : V → {even,odd} such that,
for each pair uv, s(uv) is odd if and only if both p(u) = odd and p(v) = odd
holds. We ignore forbidden pairs in this definition, since s(uv) = −∞ has no
parity. Note that p is not necessarily unique, as demonstrated by a graph with
two vertices and even edge weight. We infer a few simple observations from this
definition: If s(uv) is even, then either u or v or both must have even parity. If
u is even then s(uv) is even or uv is forbidden, for all v 	= u.

Clearly, an unweighted instance of Cluster Editing has the parity property,
as we can set p(u) = odd for all vertices u ∈ V . The interesting observation
is that a graph does not loose the parity property if we merge two vertices.
Quite possibly, this results has been stated before in a different graph-theoretical
context. We defer the simple, constructive proof to the full paper.

Lemma 1. Assume that an integer-weighted graph G has the parity property. If
we merge two vertices in G, then the resulting graph also has the parity property.

If the input graph has the parity property then, after any sequence of merging
operations, the resulting graph still has the parity property. This is particularly
so for the edge branching from [1], as both operations (setting an edge to
forbidden, or merging two vertices) preserve the parity property. For our
branching, it is important to notice that a zero-edge has even parity, so the
parity of at least one of its incident vertices must be even.

4 Isolation and Vertices of Even Parity

Let ϕ = 1+
√

5
2

= 1.61803 . . . be the golden ratio, satisfying ϕ = 1 + 1
ϕ
. One

can easily see that a search tree algorithm with branching vector (2, 1) results
in a search tree of size O(ϕk): This branching number is the positive root of
x−2 + x−1 − 1, so 1 + x − x2 = 0, and dividing by x results in the definition of
the golden ratio.

Our branching strategy is based on a series of lemmata, ensuring that either
there is an edge to branch on, or that the remaining graph is “easy”. Clearly,
branching on an edge that is part of four or more conflict triples results in the
desired branching vector. To this end, we concentrate on the critical case of three
conflict triples. First, we consider the case of three strong conflict triples:

Lemma 2. Let G be an integer-weighted graph that has the parity property.
Assume that an edge uv is part of exactly three conflict triples, all of which are
strong. Then, we can branch with branching number ϕ = 1.61803 . . . .

We use this lemma to show that we can find an edge to branch on, if we can find
an edge that is part of at least three conflict triples.
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Lemma 3. Let G be an integer-weighted graph that has the parity property.
Assume that an edge uv is part of three or more conflict triples. Then, we
can either find an edge with branching number ϕ, or we can reduce k without
branching.

The remainder of this section is devoted to proving these two central lemmata.

Proof (Lemma 2). We will show that we can find an edge to branch on, with
branching vector (1, 2) or better. In our reasoning, we will show that either,
we have already reached the desired branching vector; or, we can infer certain
structural properties about the instance.

Let a, b, c be the three vertices that are part of the three conflict triples with
u, v. If s(uv) ≥ 2 then branching on uv results in deletion cost s(uv) ≥ 2 and
merging cost 3 · 1

2 , so we reach branching vector (2, 3
2 ) and we are done. If

uvx with x ∈ {a, b, c} is a conflict triple such that s(vx) ≥ 2 or s(ux) ≤ −2,
then merging uv into u′ will not create a new zero-edge incident to u′. So,
branching on uv has branching vector (1, 2 · 1

2 + 1) = (1, 2), and we are done.
The same argumentation holds for a conflict triple vux. In the following, we may
assume that a, b, c are odd, and that s(uv) = 1 and |s(wx)| = 1 holds for all
w ∈ {u, v} and x ∈ {a, b, c}; for all other cases, we have just shown that the
desired branching vector can be reached.

Assume that u, v do not have a common neighbor,N(u)∪N(v) = {u, v, a, b, c}.
Then, merging u, v into u′ generates three zero-edges u′a, u′b, u′c, and u′ is
isolated, N(u′) = ∅. But then, we do not have to use bookkeeping for these
edges, as {u′} will also be a separated cluster of size one in the solution. So,
branching on uv results in branching vector (1, 3).

We will now use the same trick that the merged vertex u′ can be isolated, but
this is slightly more involved in case u, v have at least one common neighbor.
Let D := N(u) ∩N(v), then N(u) ∪N(v) = D ∪ {u, v, a, b, c} and |D| ≥ 1. Our
first step is to branch on uv: We delete uv with cost 1, and set it to forbidden.

Next, we merge u, v into a new vertex u′. This generates three zero edges
u′a, u′b, u′c with costs 3

2
. Here, s(u′d) ≥ 2 holds for all d ∈ D = {d1, . . . , dl}. We

will now branch on all edges u′dj where the case that u′dj is deleted, is further
analyzed. In detail, we either merge u′di with costs 3

2
; or, we delete u′di with

cost 2 and branch on u′di+1, if i < l. Note that we either delete all d1, . . . , dl, or
we finally merge some u′di with cost 3

2 . In the latter case, the total costs of this
branch are 2(i−1)+ 3

2 . But in the very last case where all d1, . . . , dl are deleted,
we separate u′. Hence, by the reasoning introduced above, we can “cash” cost 3

2
we have put aside when generating the three zero-edges u′a, u′b, u′c. So, the costs
of this final branch are 2l + 3

2
. Recall that in all cases, we have additional cost

3
2 for generating the three zero-edges. In total, we reach the partial branching
vector (0 + 3, 2 + 3, . . . , 2l + 3) = (3, 5, 7, . . . , 2l + 3).

We combine these two partial branching vectors into one branching vector
(1, 3, 5, 7, 9, . . . , 2l+3). We claim that any such branching vector corresponds to
a branching number x < ϕ, and that the numbers converge towards ϕ. To this
end, first note that 1/ϕ is the unique positive root of the polynomial x2 + x− 1,
that is the characteristic polynomial of branching vector (2, 1). We analyze the
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infinite series f(x) := x0 + x2 + x4 + . . . that converges for all |x| < 1. Now,
x2 · f(x) = f(x)− 1 and

(x2 + x− 1) · f(x) = f(x)− 1 + xf(x)− f(x) = xf (x) − 1.

So, for the series g(x) := xf (x) − 1 we have

g(x) = xf (x)− 1 = (x2 + x− 1) · f(x)

and, hence, g(1/ϕ) = 0. For the partial sums Sl(x) := x2l+3 +x2l+1 + · · ·+ x3 +
x1 − 1 we infer Sl(x) < Sl+1(x) and Sl(x) < g(x) for x ∈ (0,∞). Also, Sl is
strictly increasing in [0,∞).

Note that any polynomial of the form p(x) := anx
n + · · · + a1x

1 − 1 with
ai ≥ 0 for all i, has exactly one positive root for p 	≡ −1. This follows as p
is continuous, p′(x) > 0 for all x > 0, so p is strictly increasing in (0,∞),
p(0) = −1, and limx→∞ p(x) = ∞. Let xl be the unique positive root of Sl(x).
With Sl(xl+1) < Sl+1(xl+1) = 0 we finally infer

x1 > x2 > x3 > · · · > 1/ϕ.

By definition, 1/xl is the branching number for branching vector
(1, 3, 5, 7, 9, . . . , 2l + 3), and we reach

1/x1 < 1/x2 < 1/x3 < · · · < ϕ.

Since the series Sl converges uniformly to g in the interval [0, α] for every α < 1,
we infer that liml 1/xl = ϕ must hold, which concludes the proof of the lemma.


�
Proof (Lemma 3). Again, we will show that either, we have already reached
the desired branching vector (1, 2) or better; or, we can infer certain structural
properties about the instance.

If uv is part of four conflict triples then we reach branching vector (1, 4 · 1
2
) =

(1, 2). If uv is part of three strong conflict triples then Lemma 2 guarantees
branching number ϕ. So, assume that uv is part of exactly three conflict triples,
and that uvw is a weak conflict triple, so uw is a zero-edge. As uv is part of three
conflict triples, we can choose a, b such that N(u)�N(v) = {w, a, b}. Clearly,
for s(uv) = 2 we have branching vector (2, 3

2 ), so we may assume s(uv) = 1. This
implies that both u and v must have odd parity. Since uw is a zero-edge, we infer
that w has even parity and, hence, that s(vw) ≥ 2 holds. For our worst-case
considerations, we may assume s(vw) = 2.

If vw is part of any additional conflict triples besides wvu, then we reach
branching vector (2, 1) for branching on vw: Deleting vw has cost 2, and merging
vw then has cost 2 · 1

2
. The same holds true if v or w are incident to additional

zero-edges besides uw. So, assume there are no zero-edges incident to v or w
besides uw, and vx is an edge if and only if wx is an edge for all x 	= u, v, w.
Let X ⊆ V \ {u, v, w} be the set of vertices incident to v and, consequently, also
to w. Let X ′ := X \ {a, b}, and note that this set can be empty. All x ∈ X ′ are
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also incident with u; otherwise, there is a fourth conflict triple for the edge uv.
We infer N({u, v, w}) ⊆ {u, v, w, a, b} ∪X ′.

Choose an arbitrary x ∈ X ′. If wx is part of an additional conflict triple
besides wxu, or if x is incident to a zero-edge, then we again reach branching
vector (2, 1) for branching on wx: Deleting wx has cost 2 since w is even,
and merging wx has cost 2 · 1

2 . Hence, we infer three things: Firstly, each y
adjacent to some x ∈ X ′ is also adjacent to w and, hence, y ∈ X . So, N(X ′) ⊆
{u, v, w, a, b}∪X ′. Secondly, each pair x, y ∈ X ′ must be connected by an edge.
We distinguish three cases:

1. Assume a, b ∈ X , so va and vb are edges. In this case, u, v, w, a, b,X ′ form
a connected component. If ab is a zero-edge or non-edge, then branching
on wa results in branching vector (2, 2 · 1

2 ): although w, a, u do not form
a conflict triple, merging wa still destroys the zero-edge uw. So, we may
assume that ab is an edge. By the same reasoning, ax and bx must be edges,
for all x ∈ X ′. Next, s(ux) = 1 must hold for all x ∈ X ′; otherwise, we
can branch on ux with branching vector (2, 3 · 1

2 ). The cost of separating u
from all other vertices is |X ′| + 1, and the resulting graph consists of two
cliques {u} and {v, w, a, b}∪X ′. The cost of any other cut in this connected
component is at least |X ′|+ 3 (for separating a or b), since w is adjacent to
all vertices but u with edges of weight at least 2. The cost of transforming
the connected component into a clique is |s(ua)|+ |s(ub)|. So, we can test in
constant time if one of the two possible transformations has cost at most k.

2. Assume a ∈ X and b /∈ X , so va and ub are edges. Then, N({u, v, w, a} ∪
X ′) ⊆ {u, v, w, a, b}∪X ′. For s(ua) < −1 we reach branching vector (1, 2· 1

2
+

1) for branching on uv, as merging u, v will not generate a zero-edge incident
to a and, hence, no bookkeeping is required. (Obviously, this includes the
case that ua is forbidden.) So, s(ua) ∈ {0, 1} must hold. Since bv is a non-
edge, bw and bx for all x ∈ X ′ are also non-edges. If s(ub) ≥ 2 then branching
on ub results in branching vector (2, 1), as vub is a conflict triple. Now, one
can easily see that no optimal solution can bisect v, w, a,X ′: For X ′ = ∅
a bisection of vertices v, w, a costs at least 3, and for X ′ 	= ∅ costs are at
least 4. Given a solution that bisects v, w, a,X ′, we modify the solution by
putting u, v, w, a,X ′ in a separate clique, with cost at most 1 for inserting ua,
and cost 1 for removing ub. Clearly, this new solution has smaller total cost
than the initial solution, so the initial solution cannot be optimal. Hence,
we can merge v, w, a,X ′ without branching, generating cost of at least 1

2 for
destroying the zero-edge uw.

3. Assume a, b /∈ X , so ua and ub are edges. Then, va and vb are non-edges,
since no zero-edges can be incident to v. Similar to above, this implies that
wa and wb, as well as ax and bx for all x ∈ X ′, are non-edges, too: Otherwise,
we can branch on vw or wx. If s(ua) ≥ 2 then branching on uv results in
branching vector (1, 2). So, we infer s(ua) = 1 and, by symmetry, s(ub) = 1.
Now, merging uv into some vertex u′ results in a separated clique with



92 S. Böcker

vertex set u′, w,X that is not connected to the rest of the graph, and can
be removed immediately. Hence, branching on uv leads to branching vector
(1, 2) as we do not have put away 2 · 1

2 for potentially destroying zero-edges
u′a and u′b later.

We have shown that we can find an edge that allows for the desired branching
vectors, simplify the instance and reduce k without branching, or solve the
remaining instance in constant time. 
�

5 Solving Remainder Instances

Assume that there is no edge in the graph that is part of three or more (weak
or strong) conflict triples. We transform our weighted graph into an unweighted
counterpart Gu, where zero-edges are counted as non-existing. This graph Gu
is called the type graph of the weighted graph. Then, there is no edge uv in
the unweighted graph Gu that is part of three conflict triples. Damaschke [6]
characterizes such graphs: Let Pn, Cn,Kn be the chordless path, cycle, and clique
on n vertices, respectively. Let G +H denote the disjoint union of two graphs,
and let p ·G denote p disjoint copies of G. Let G ∗H be the graph G+H where,
in addition, every vertex from G is adjacent to every vertex from H. Finally, the
graph Gc has the same vertex set as G, and {u, v} is an edge of Gc if and only
if it is no edge of G. Now, Theorem 2 from [6] states:

Lemma 4. Let G be a connected, unweighted graph such that no edge is part of
three or more conflict triples. Then, G has at most six vertices, is a clique, a
path, a cycle, or a graph of type Kq∗H for q ≥ 0 and H ∈ {K1+K1, C5, P4,K1+
K1 +K1,K2 +K2,K2 +K1, (p ·K2)c}, p ≥ 2.

In fact, the characterization in [6] is slightly more complicated: To this end, note
that Kq ∗ P3 = Kq+1 ∗ (K1 + K1). Any non-edge in the type graph can be a
non-edge or zero-edge in the weighted graph, and edges and non-edges can be
arbitrarily weighted. We now show that we can efficiently solve all remaining,
“simple” instances. This is similar to our argumentation in [3] but as we want to
reach branching vector (2, 1), our argumentation is slightly more involved. We
defer the proof of Lemma 5 to the full version of this paper.

Lemma 5. Let G be a connected graph that has the parity property. Assume
that there is no edge that is part of three conflict triples. Then, we can find an
edge with branching number ϕ; reduce k without branching; or, we can solve the
instance in polynomial time.

6 A Golden Ratio Base for Search Tree Size

Assume that G has the parity property. We want to show that we can either find
an edge to branch on with branching number ϕ; decrease k without branching;
or, solve the remaining instance in polynomial time. If there is an edge uv that
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is part of at least three (weak or strong) conflict triples, we branch on this edge.
By Lemma 3, doing so results in branching number ϕ, or we reduce k without
branching, as desired. We can find an edge to branch on, in time O(n3). Similarly,
we can perform all other tasks required for one step of the branching, in this time.
If there is no edge uv that is part of at least three conflict triples, then Lemma 5
guarantees that we can branch with branching number ϕ; reduce k without
branching; or, solve the instance in polynomial time. To compute minimum s-t-
cuts as part of Lemma 5, we use the Goldberg-Tarjan algorithm [8] to compute
a maximum s-t-flow in time O(n3), independent of edge weights. We reach:

Lemma 6. Given an integer-weighted instance of the Cluster Editing
problem with no zero-edges that satisfies the parity property, this instance can be
solved in O(ϕk · n3) time.

We can combine this with the weighted kernel from [4] of size O(k) with
running time O(n2), resulting in running time O(ϕk · k3 + n2). To get rid of
the multiplicative polynomial factor, we use interleaving [16]: Here, a small trick
is required to make this kernel work with instances that may contain zero-edges;
we defer the details to the full paper.

Theorem 1. Given an integer-weighted instance of the Cluster Editing
problem with no zero-edges that satisfies the parity property, this instance can be
solved in O(ϕk + n2) time.

Given an unweighted Cluster Editing instance, we first identify all critical
cliques in time O(m + n) for a graph with n vertices and m edges [12], and
merge the vertices of each critical clique [1, 11]. The resulting integer-weighted
instance has O(k) vertices and no zero-edges, and satisfies the parity property.
Using Theorem 1 we reach:

Theorem 2. Cluster Editing can be solved in O(1.62k + k2 +m+ n) time.

7 Conclusion

We have presented a parameterized algorithm for the Cluster Editing
problem, that finally reaches the golden ratio as the base for the exponential
growth of the running time. It is noticeable that search tree approaches plus
additional structural observations still have a lot of potential to yield better
FPT algorithms for well-known problems, even without extensive case handling.
Note that the underlying edge branching is also very swift in practice, and can
usually process instances with thousands of edge modifications in a matter of
minutes [2].

The base ϕ = 1+
√

5
2 = 1.61803 . . . , resulting from branching vector (2, 1),

appears repeatedly in the analysis of advanced algorithms for the problem [1,3].
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Hence, it is an interesting question for the future if we can get beyond the O∗(ϕk)
barrier. One possible extension lies in the split-off technique introduced in [3] for
Cluster Deletion, even though it cannot be directly applied, as branching on
a C4 results in branching vector (1, 1) for Cluster Editing. Improving upon
the running time should not be problematic for the rather technical Lemma 5,
though. Here, the open question is, which of these special cases are tractable
(such as H = K1 +K1) and which are intractable (such as H = K1 +K1 +K1),
and what FPT algorithms can be derived for the hard ones.
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Abstract. Consider the following reversible cascade on the Erdős-Rényi
random graph G(n, p). In round zero, a set of vertices, called the seeds,
are active. For a given ρ ∈ ( 0, 1 ], a non-isolated vertex is activated
(resp., deactivated) in round t ∈ Z+ if the fraction f of its neighboring
vertices that were active in round t − 1 satisfies f ≥ ρ (resp., f < ρ).
An irreversible cascade is defined similarly except that active vertices
cannot be deactivated. A set of vertices, S, is said to be stable if no
vertex will ever change its state, from active to inactive or vice versa,
once the set of active vertices equals S. For both the reversible and
the irreversible cascades, we show that for any constant ε > 0, all p ∈
[ (1 + ε) (ln (e/ρ))/n, 1 ] and with probability 1−n−Ω(1), every stable set
of G(n, p) has size O(�ρn�) or n−O(�ρn�).

1 Introduction

Let G(V,E) be a simple undirected graph and ρ ∈ ( 0, 1 ], where each vertex of
G can be in one of two states, active or inactive. Consider the following process,
called the reversible cascade. In round zero, only a set of vertices, called the seeds,
are active. Thereafter, a non-isolated vertex is activated (resp., deactivated) in a
round if the fraction f of its neighboring vertices that were active in the previous
round satisfies f ≥ ρ (resp., f < ρ). A set S ⊆ V is said to be stable for the
reversible cascade if no vertex will ever change its state once the set of active
vertices equals S. The irreversible cascade and its stable sets are defined similarly
except that the deactivations of vertices are prohibited.

To model socio-economic contagion amongst fully rational individuals, Mor-
ris [32] considers a countably infinite population in which each player has two
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strategies and a finite set of neighbors. In each round, a player chooses strat-
egy 1 if and only if at least a ρ ∈ ( 0, 1 ] fraction of its neighbors do likewise
in the previous round. So the resulting model is the same as our reversible cas-
cade except that G(V,E) is now an infinite graph with finite degrees. Define
the contagion threshold to be the largest ρ such that there exists a finite set of
players whose initial choice of strategy 1 eventually leads all players to strategy
1. Morris proves several characterizations of the contagion threshold and an 1/2
upper bound on it. For variants with partially rational players whose states are
updated at random times governed by a Poisson process, much research studies
the expected waiting time until everyone or almost everyone enters the same
state [7, 14, 28, 43].

Consensus formation and periodic behavior are important aspects of the re-
versible cascade with ρ = 1/2 [34, 36, 44]. No matter what vertices are chosen
as seeds, the set of active vertices in a simple undirected graph will eventually
(1) stabilize or (2) coincide with one subset of V in even-numbered rounds and
another subset in odd-numbered rounds [20, 21]. More general discrete-time dy-
namical systems also exhibit similar behavior [19, 29–31, 38, 39]. The reversible
cascade with ρ = 1/2 as well as its slight variants also model the propagation
of transient faults in majority-based fault-tolerant systems [17, 18, 35] and the
evolution of host-pathogen systems [2–4, 22]. Flocchini et al. [17, 18] and Pe-
leg [35] study the minimum number of seeds guaranteeing that (1) all vertices
will be active after a finite number of rounds and (2) no active vertices will
ever be deactivated in any round. For any simple undirected graph G(V,E),
Peleg [35] shows that Ω(

√|V | ) seeds are needed for activating all vertices in
two rounds. Berger [6] constructs a graph family for which a constant number of
seeds can activate all vertices after a finite number of rounds. Agur et al. [2, 4]
and Granville [22] derive exact formulas for the number of stable sets of a ring.
They also count the number of cyclic binary strings with arbitrary restrictions
on the numbers of consecutive 0’s and 1’s. For a survey of the above results,
see [36].

Next, we turn to irreversible cascades. Luccio et al. [26] and Flocchini
et al. [16–18] assume that each vertex is activated when the majority of its neigh-
boring vertices are active, where the majority may assume the strict or the simple
form. Their setup is suitable for modeling the propagation of permanent faults in
majority-based fault-tolerant systems [15–18, 26, 36]. Bounds have been derived
on the minimum number of seeds that can activate all vertices after a finite num-
ber of rounds for rings [16, 17], complete trees, butterflies, cube-connected cycles,
shuffle-exchange graphs, DeBruijn graphs, hypercubes [16, 17, 26], tori [13, 18, 24,
25, 37], Erdős-Rényi random graphs [9, 11] or directed graphs without source ver-
tices [1, 9, 10]. Bootstrap percolation analyzes the density of independently chosen
seeds needed to activate all vertices at the end with high probability [5, 41].

Computational issues regarding irreversible cascades have also been studied.
In particular, efficient algorithms are known for the problem of finding a min-
imum set of seeds activating all vertices after a finite number of rounds in a
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tree [13, 40], cycle, complete graph and bipartite complete graph [40]. In contrast,
many hardness results are known for the same problem and its variants in general
graphs [12, 23, 24, 40].

For both the reversible and the irreversible cascades, this paper proves that
for any constant ε > 0, all p ∈ [ (1 + ε) (ln (e/ρ))/n, 1] and with probability
1 − n−Ω(1), every stable set of G(n, p) has size O(�ρn�) or n − O(�ρn�). With
ρ→ 0+, therefore, any stable set of G(n, p) occupies either an o(1) or a 1− o(1)
fraction of all vertices.

2 Definitions

Let G(V,E) be a simple undirected graph [42]. For X,Y ⊆ V, define e(X,Y ) to
be the number of edges with one endpoint in X and the other in Y . For a positive
integer n and a real number p ∈ [ 0, 1 ], the Erdős-Rényi random graph G(n, p) is
a simple undirected graph with vertices 1, 2, . . . , n where each of the possible

(
n
2

)
edges appears independently with probability p [8]. For each v ∈ {1, 2, . . . , n},
define N(v) ⊆ [n ] \ {v} to be the set of neighbors of v and deg(v) ≡ |N(v) |.
For convenience, define [n ] ≡ {1, 2, . . . , n}. Furthermore, define 2[n ] to be the
power set of [n ], i.e., the set of all subsets of [n ].

Consider the following reversible cascade on the Erdős-Rényi random graph
G(n, p) whose vertices have two possible states, active or inactive. In round zero,
only a set of vertices, called the seeds, are active. For a given ρ ∈ ( 0, 1 ], a non-
isolated vertex is activated (resp., deactivated) in round t ∈ Z+ if the fraction
f of its neighboring vertices that were active in round t − 1 satisfies f ≥ ρ
(resp., f < ρ). More precisely, a vertex with degree d > 0 is activated (resp.,
deactivated) in a round if at least (resp., less than) �ρd� of its neighboring vertices
are active in the previous round. The irreversible cascade is defined similarly
except that deactivations of vertices are prohibited. Define σrev

ρ : 2[n ] → 2[n ] to
map the set of active vertices in a round to that in the next round, assuming the
reversible cascade. Then define σirr

ρ : 2[n ] → 2[n ] similarly for the irreversible
cascade. A set S ⊆ [n ] is said to be stable for the reversible (resp., irreversible)
cascade if σrev

ρ (S) = S (resp., σirr
ρ (S) = S). So a reversible or irreversible cascade

stops evolving precisely when its set of active vertices is stable.
Below is a straightforward lemma.

Lemma 1. For a simple undirected graph G(V,E) and all disjoint A,B ⊆ V,

e (A,A ∪B) ≥
∑
v∈A

|N(v) ∩ (A ∪B) |
2

.

Proof. Each edge with an endpoint in A and the other in B \A contributes 1 to
both e(A,A ∪ B) and

∑
v∈A |N(v) ∩ (A ∪B) |. Each edge with both endpoints

in A contributes 1 to e(A,A ∪B) and 2 to
∑

v∈A |N(v) ∩ (A ∪B) |. ��
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3 Stable Sets of the Erdős-Rényi Random Graphs

This section shows that for any constant ε > 0, all p ∈ [ (1 + ε) (ln (e/ρ))/n, 1],
ρ ∈ ( 0, 1 ] and with probability 1 − n−Ω(1), every stable set of G(n, p) has size
O(�ρn�) or n−O(�ρn�).
Lemma 2. Let n ∈ Z+, p ∈ [ 0, 1 ] and ρ ∈ ( 0, 1 ]. Then

Pr [ | {v ∈ [n ] | deg(v) > 30pn} | ≥ ρn ] <
(

n

�ρn�
)

2−15pn�ρn�,

where the probability is taken over the random graphs G(n, p).

Proof. In the proof, all probabilities are taken over the random graphs G(n, p).
Clearly,

Pr [ | {v ∈ [n ] | deg(v) > 30pn} | ≥ ρn ]
= Pr [∃X ⊆ [n ], |X | = �ρn�, ∀v ∈ X,deg(v) > 30pn ]

≤
∑

X⊆[n ],|X |=�ρn�
Pr [ ∀v ∈ X, deg(v) > 30pn ] . (1)

Now fix an arbitrary X ⊆ [n ] with size �ρn�. If deg(v) > 30pn for all v ∈ X,
then Lemma 1 implies e(X, [n ]) > 15pn |X |. Hence

Pr [ ∀v ∈ X, deg(v) > 30pn ]
≤ Pr [ e (X, [n ]) > 15pn |X | ]
< 2−15pn�ρn�,

where the last inequality follows from Chernoff’s bound [33, Exercise 4.1]. This
and inequality (1) complete the proof. ��
Lemma 3. For any n ∈ Z+, p ∈ [ 0, 1 ], ρ ∈ [ 1/n, 1 ], ξ ∈ Z+ with ξ > 30 and
η ≡ 1− (30/ξ),

Pr [∃X,U ⊆ [n], |X| = �ρn�, ξ�ρn� ≤ |U| ≤ n− ξ�ρn�, ∀v ∈ [n] \ (U ∪X) , |N(v) ∩ U| ≤ 30ρpn]

≤ 2

�n/2�∑
s=ξ�ρn�

exp

(
2ρn ln

e

ρ
+ s ln

en

s
+ ηps(n − s) ln

e−η

(1 − η)1−η

)
,

where the probability is taken over the random graphs G(n, p).

Proof. In the proof, all probabilities are taken over the random graphs G(n, p).
For any X,U ⊆ [n ] with |U | ≥ ξ�ρn� and each u ∈ [n ] \ (U ∪X),

Pr [ |N (u) ∩ U | ≤ 30ρpn ]
≤ Pr [ |N(u) ∩ U | ≤ (1 − η) ·E [ |N(u) ∩ U | ] ]

≤
(

e−η

(1 − η)1−η
)p |U |
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by Chernoff’s bound [27, Theorem 4.5]; hence, as the random variables |N(v)∩
U | for v ∈ [n ] \ (U ∪X) are independent,

Pr [∀v ∈ [n] \ (U ∪X) , |N(v) ∩ U | ≤ 30ρpn] ≤
(

e−η

(1− η)1−η
)p|U|(n−|U∪X|)

. (2)

If, furthermore, |X | = �ρn� and |U | ≤ n− ξ�ρn�, then(
e−η

(1− η)1−η
) p |U | (n−|U∪X |)

≤
(

e−η

(1− η)1−η
)η p |U | (n−|U |)

(3)

by the easily verifiable fact that n− |U ∪X | ≥ η (n− |U |). Now,
Pr [∃X,U ⊆ [n], |X| = �ρn�, ξ�ρn� ≤ |U | ≤ n − ξ�ρn�, ∀v ∈ [n] \ (U ∪X) , |N(v) ∩ U| ≤ 30ρpn]

≤
∑

X⊆[ n ],| X |=�ρn�

∑
U⊆[ n ],ξ�ρn�≤|U |≤n−ξ�ρn�

Pr [∀v ∈ [n ] \ (U ∪X) , |N(v) ∩ U | ≤ 30ρpn ]

≤
∑

X⊆[ n ],| X |=�ρn�

∑
U⊆[ n ],ξ�ρn�≤|U |≤n−ξ�ρn�

(
e−η

(1 − η)1−η

)η p | U | (n−| U |)

≤
( n

�ρn�
) ∑

U⊆[ n ],ξ�ρn�≤| U |≤n−ξ�ρn�

(
e−η

(1 − η)1−η

)η p | U | (n−| U |)
, (4)

where the second inequality follows from inequalities (2)–(3). Furthermore,

∑
U⊆[n ],ξ�ρn�≤|U |≤n−ξ�ρn�

(
e−η

(1− η)1−η
)η p |U | (n−|U |)

=
n−ξ�ρn�∑
s=ξ�ρn�

∑
U⊆[n ], |U |=s

(
e−η

(1− η)1−η
)ηps(n−s)

≤ 2
�n/2
∑
s=ξ�ρn�

(
n

s

) (
e−η

(1 − η)1−η
)ηps(n−s)

(5)

≤ 2
�n/2
∑
s=ξ�ρn�

exp
(
s ln

en

s
+ ηps(n− s) ln

e−η

(1− η)1−η
)
, (6)

where inequality (5) follows from
(
n
s

)
=

(
n
n−s

)
and s (n− s) = (n− s) s. Inequal-

ities (4)–(6) complete the proof. ��
Theorem 4. Let ε > 0. Then there exists an integer ξ > 30 such that for any
n ∈ Z+, ρ ∈ [ 1/n, 1/ξ2 ), p ∈ [ (1+ ε) (ln (e/ρ))/n, 1 ], σG : 2[n ] → 2[n ] satisfying

∀U ⊆ [n ], {v ∈ [n ] | |NG(v) ∩ U | > ρ degG(v)} ⊆ σG(U ) (7)

for each simple undirected graph G with vertex set [n ], and writing σ ≡ σG(n,p),

Pr [∃U ⊆ [n ], ξ�ρn� ≤ |U | ≤ n− ξ�ρn�, σ(U) ⊆ U ] = n−Ω(1), (8)

where the probability is taken over over the random graphs G(n, p). The hidden
constants in the Ω notations are independent of n, p, ρ, ε and ξ.
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Proof. We will leave ξ to be determined later; before that we only need ξ > 30
in the derivation. Define η ≡ 1− (30/ξ). As p ∈ [ (1 + ε) (ln (e/ρ))/n, 1 ],

exp
(
s ln

en

s
+ ηps(n− s) ln

e−η

(1 − η)1−η
)

≤ exp
(
s ln

en

s
+ η (1 + ε)

(
ln
e

ρ

)
s
(
1− s

n

)
ln

e−η

(1− η)1−η
)
, (9)

s ∈ ( 0, n ]. Define

g(s, n, ρ) ≡ s ln
en

s
+ η (1 + ε)

(
ln
e

ρ

)
s
(
1− s

n

)
ln

e−η

(1− η)1−η . (10)

Elementary calculus and laborious calculations reveal the following properties of
g(s, n, ρ):

– g(ξρn, n, ρ) ≤ −4ρn ln(e/ρ) provided that ρ ∈ (0, 1/ξ2) and

ξ

(
1 + η (1 + ε)

(
1− 1

ξ

)
ln

e−η

(1 − η)1−η
)
< −4; (11)

– ∂g(s, n, ρ)/∂s < 0 for s ∈ [ ξρn, εn/(4 + 4ε) ] provided that

1 + η (1 + ε)
(

1− ε

2 + 2ε

)
ln

e−η

(1− η)1−η < 0; (12)

– g(s, n, ρ) ≤ −3n for s ∈ [ εn/(4 + 4ε), n/2 ] provided that ρ ∈ (0, 1/ξ2) and

1

2
ln

(
e(4 + 4ε)

ε

)
+η (1+ε)

(
ln

(
eξ2)) ε

4+4ε

(
1− ε

4+4ε

)
ln

e−η

(1− η)1−η
< −3. (13)

By elementary calculus and η = 1− (30/ξ),

lim
ξ→∞

ln
e−η

(1− η)1−η = −1.

Therefore, with laborious calculations, inequalities (11)–(13) hold in the limit
as ξ → ∞. Hence there exists a real number C(ε) > 30, depending only on ε,
such that inequalities (11)–(13) hold for ξ ≥ C(ε). From now on, we assume that
ξ ≥ C(ε) and ρ ∈ [ 1/n, 1/ξ2 ). So the derived properties on g(s, n, ρ) give

max
s∈[ ξρn,n/2 ]

g(s, n, ρ) ≤ max
{
−4ρn ln

e

ρ
,−3n

}
. (14)

By Lemma 3 and inequalities (9)–(10) and (14),

Pr [∃X,U ⊆ [n], |X| = �ρn�, ξ�ρn� ≤ |U | ≤ n − ξ�ρn�, ∀v ∈ [n] \ (U ∪X) , |N(v) ∩ U| ≤ 30ρpn]

≤ 2

�n/2�∑
s=ξ�ρn�

exp

(
max

{
−2ρn ln

e

ρ
,−3n+ 2ρn ln

e

ρ

})

= O

(
1

n

)
. (15)
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Let
Y ≡ {v ∈ [n ] | deg(v) > 30pn}

be the set of vertices with degrees greater than 30pn. By Lemma 2,

Pr [ |Y | ≥ ρn ] ≤
(

n

�ρn�
)

2−15pn�ρn� = n−Ω(1). (16)

For any U ⊆ [n ] with σ(U) ⊆ U and v ∈ [n ] \ U, |N(v) ∩ U | ≤ ρdeg(v) by
relation (7); if, furthermore, v /∈ Y, then

|N(v) ∩ U | ≤ 30ρpn. (17)

Therefore,

Pr [(| Y | < �ρn�) ∧ (∃U ⊆ [n ], ξ�ρn� ≤ |U | ≤ n− ξ�ρn�, σ(U) ⊆ U) ]

≤ Pr [(|Y | < �ρn�) ∧ (∃U ⊆ [n], ξ�ρn� ≤ |U| ≤ n− ξ�ρn�, ∀v ∈ [n] \ (U ∪ Y ) , |N(v) ∩ U| ≤ 30ρpn)]

≤ O

(
1

n

)
, (18)

where the last inequality follows from inequality (15). Summing up inequali-
ties (16) and (18) proves Eq. (8). ��
As a remark, in Theorem 4, σG is nonrandom for each undirected graph G(V,E),
whereas σG(n,p) depends on the underlying random graph G(n, p).

As ξ depends only on ε in Theorem 4, we may take ξ�ρn� = O(�ρn�) in Eq. (8)
when ε > 0 is a constant, as done below.

Theorem 5. Let ε > 0 be a constant, n ∈ Z+, ρ ∈ ( 0, 1 ] and p ∈ [ (1 +
ε) (ln (e/ρ))/n, 1 ]. Assume that σG : 2[n ] → 2[n ] satisfies relation (7) for each
simple undirected graph G with vertex set [n ]. Then, writing σ ≡ σG(n,p),

Pr [∀S ⊆ [n ], (σ(S) = S) ⇒ (|S | = O (�ρn�)) ∨ (|S | = n−O (�ρn�)) ] = 1 − n
−Ω(1)

, (19)

where the probability is taken over the random graphs G(n, p). The hidden con-
stants in the O and Ω notations are independent of n, p, ρ and S.

Proof. Assume without loss of generality that ρ ≥ 1/n. Let ξ be as in Theorem 4,
which is a constant because ε is now a constant. The case of ρ ∈ [ 1/n, 1/ξ2 )
is an immediate consequence of Theorem 4. For the case of ρ ≥ 1/ξ2 = Ω(1),
Eq. (19) trivially holds. ��
We now have the following corollary on the stable sets for the reversible and the
irreversible cascades.

Corollary 6. Let ε > 0 be a constant. For any n ∈ Z+, ρ ∈ ( 0, 1 ], p ∈ [ (1 +
ε) (ln (e/ρ))/n, 1 ] and with probabilities taken over the random graphs G(n, p),

Pr [ every stable set of G(n, p) has size O (�ρn�) or n−O (�ρn�) ] = 1− n−Ω(1) (20)

for both the reversible and the irreversible cascades. The hidden constants in the
O and Ω notations are independent of n, p and ρ.
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Proof. Immediate from Theorem 5 and the fact that relation (7) holds with
σ ∈ {σrev

ρ , σirr
ρ }. ��

For the irreversible cascades on G(n, p) with p ∈ [ (1 + ε) (ln (e/ρ))/n, 1 ], Corol-
lary 6 implies the following polynomial-time algorithm for finding with proba-
bility 1 − o(1) a set of O(�ρn�) seeds activating all vertices at the end: First,
pick a set S of C�ρn� seeds arbitrarily, where C > 0 is a sufficiently large con-
stant. Second, pick all the vertices in [n ] \ σirr

ρ (S) also as seeds. The number
of seeds thus picked is O(�ρn�) with probability 1 − o(1) because, by Corol-
lary 6, an irreversible cascade with C�ρn� seeds cannot stop activating vertices
until at least n − C�ρn� vertices are activated. It is asymptotically optimal for
p ∈ [β (ln(e/ρ))/(ρn), 1 ], where β > 0 is a sufficiently large constant [11]. We
note that results of Ackerman et al. [1] can also be used to show the existence
of O(�ρn�) seeds activating all vertices at the end for the irreversible cascades
with p ∈ [ (1 + ε) (ln (e/ρ))/n, 1 ].

The next theorem shows that the range p ∈ [ (1 + ε) (ln (e/ρ))/n, 1 ] in Corol-
lary 6 cannot be widened to p ∈ [ (1 − ε) (ln (e/ρ))/n, 1 ]. The proof follows a
standard analysis on the number of isolated vertices of the Erdős-Rényi random
graphs.

Theorem 7. Let ε ∈ (0, 1) be a constant. For any n ∈ Z+, ρ ∈ [ 1/n, 1 ],
p ∈ [ 0, (1− ε) (ln (e/ρ))/n ] and with probabilities taken over the random graphs
G(n, p),

Pr
[
G(n, p) has stable sets of sizes Ω

(
ρ1−ε/2n

)
and n−Ω

(
ρ1−ε/2n

) ]
= 1− o(1)

for both the reversible and the irreversible cascades. The hidden constants in the
Ω notations are independent of p.

Proof. It is implicit in [42, Theorem 8.5.22] that for p ∈ [ 0, (1− ε) (ln (e/ρ))/n ],
the number of isolated vertices ofG(n, p) is Ω

(
ρ1−ε/2n

)
with probability 1−o(1).

The theorem follows because both the set of isolated vertices and that of non-
isolated vertices are stable for either the reversible or the irreversible cascade.

References

[1] Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds
for target set selection. Theoretical Computer Science (forthcoming 2010),
doi:10.1016/j.tcs.2010.08.021

[2] Agur, Z.: Resilience and variability in pathogens and hosts. IMA Journal on Math-
ematical Medicine and Biology 4(4), 295–307 (1987)

[3] Agur, Z.: Fixed points of majority rule cellular automata with application to
plasticity and precision of the immune system. Complex Systems 5(3), 351–357
(1991)

[4] Agur, Z., Fraenkel, A.S., Klein, S.T.: The number of fixed points of the majority
rule. Discrete Mathematics 70(3), 295–302 (1988)

[5] Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Combinatorics, Probability and Computing 19(5-6), 643–692 (2010)



104 C.-L. Chang and Y.-D. Lyuu

[6] Berger, E.: Dynamic monopolies of constant size. Journal of Combinatorial Theory
Series B 83(2), 191–200 (2001)

[7] Blume, L.E.: The statistical mechanics of strategic interaction. Games and Eco-
nomic Behavior 5(3), 387–424 (1993)

[8] Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press (2001)
[9] Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theoretical Computer Sci-

ence 410(27-29), 2714–2724 (2009)
[10] Chang, C.-L., Lyuu, Y.-D.: Bounding the Number of Tolerable Faults in Majority-

Based Systems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078,
pp. 109–119. Springer, Heidelberg (2010)

[11] Chang, C.-L., Lyuu, Y.-D.: Spreading of messages in random graphs. Theory of
Computing Systems 48(2), 389–401 (2011)

[12] Chen, N.: On the approximability of influence in social networks. In: Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1029–
1037 (2008)

[13] Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Math-
ematics 157(7), 1615–1627 (2009)

[14] Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5),
1047–1071 (1993)

[15] Flocchini, P.: Contamination and decontamination in majority-based systems.
Journal of Cellular Automata 4(3), 183–200 (2009)

[16] Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal
rings. Discrete Applied Mathematics 113(1), 23–42 (2001)
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Abstract. We investigate the question of which graphs have planar
emulators (a locally-surjective homomorphism from some finite planar
graph)—a problem raised in Fellows’ thesis (1985) and conceptually re-
lated to the better known planar cover conjecture by Negami (1986). For
over two decades, the planar emulator problem lived poorly in a shadow
of Negami’s conjecture—which is still open—as the two were considered
equivalent. But, in the end of 2008, a surprising construction by Rieck
and Yamashita falsified the natural “planar emulator conjecture”, and
thus opened a whole new research field. We present further results and
constructions which show how far the planar-emulability concept is from
planar-coverability, and that the traditional idea of likening it to projec-
tive embeddability is actually very out-of-place. We also present several
positive partial characterizations of planar-emulable graphs.

1 Introduction

A graph G has a planar emulator (cover) H if H is a finite planar graph and
there exists a homomorphism from H onto G that is locally surjective (bijective,
respectively). In such a case we also say that G is planar-emulable (-coverable).
See Def. 2.1 for a precise definition, and Fig. 1 for a simple example. Informally,
every vertex of G is represented by one or more vertices in H such that the
following holds: Whenever two nodes v and u are adjacent in G, any node repre-
senting v in H has at least one (in case of an emulator) or exactly one (in case of
a cover) adjacent node in H that represents u. Conversely, no node representing
v in H has a neighbor representing u if v, u are nonadjacent in G.

Coarsely speaking, the mutually similar concepts of planar covers and planar
emulators both “preserve” the local structure of a graph G while “gaining”
planarity for it. Of course, the central question is which nonplanar graphs do
have planar covers or emulators.
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Fig. 1. Examples of a planar cover (center) and a planar emulator (right) of the triangle
G = K3 (left). We simply denote by aj , j = 1, 2, . . . the vertices representing a of G,
and analogically with b, c.

The two concepts emerged independently from works of Fellows [5,6] (emula-
tor) and Negami [16,17,18] (cover). On the one hand, the class of planar-coverable
graphs is relatively well understood. At least, we have the following:

Conjecture 1.1 (Negami [17], 1988). A graph has a (finite) planar cover if
and only if it embeds in the projective plane.

Yet, this natural (see below) and firmly believed conjecture is still open today
despite of more than 20 years of intensive research. See [11] for a recent survey.

On the other hand, it was no less natural to assume [5,6] that the prop-
erty of being planar-emulable coincides with planar-coverability. By definition,
the latter immediately implies the former. For the other direction, it was highly
counterintuitive to assume that, having more than one neighbors in H represent-
ing the same adjacent vertex of G, could ever help to gain planarity of H—such
“additional” edges seem to go against Euler’s bound on the number of edges of
a planar graph. Hence, it was widely believed:

Conjecture 1.2 (Fellows [6], 1988, falsified 2008). A graph has a (finite)
planar emulator if and only if it embeds in the projective plane.

Perhaps due to similarity to covers, no significant effort to specifically study
planar-emulable graphs occurred during the next 20 years after Fellows’
manuscript [6].

Today, however, we know of one important difference between the two cases:
Conjecture 1.2 is false! In 2008, Rieck and Yamashita [19] proved the truly
unexpected breakthrough result that there are graphs which have planar em-
ulators, but no planar covers and do not embed in the projective plane; see
Theorem 2.4. This finding naturally ignited a new research direction, on which
we report herein. We show that the class of planar-emulable graphs is, in fact,
much larger than the class of planar-coverable ones; that the concept of projec-
tive embeddability seems very out-of-place in the context of planar emulators;
and generally, how poorly planar emulators are yet understood.

Apart from its pure graph theoretic appeal, research regarding planar em-
ulators and covers may in fact have algorithmic consequences as well: While



108 M. Chimani et al.

G = K5
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Fig. 2. The graph G = K5 (left) and its two-fold planar cover (right) via a homo-
morphism ϕ. The cover is obtained for a “crosscap-less” drawing of G and its mirror
image.

Negami’s main interest [16] was of pure graph theoretic nature, Fellows [5, and
personal communication] considered computing motivation for emulators. Ad-
ditionally, we would like to sketch another potential algorithmic connection;
there are problems that are NP-hard for general graphs, but polynomial-time
solvable for planar graphs (e.g., maximum cut), or where the polynomial com-
plexity drops when considering planar graphs (e.g., maximum flow). Yet, the
precise breaking point is usually not well understood. Considering such prob-
lems for planar-emulable or planar-coverable graphs may give more insight into
the problems’ intrinsic complexities. Before this can be investigated, however,
these classes first have to be reasonably well understood themselves. Our paper
aims at improving upon this latter aspect of planar emulators.

This paper is organized as follows: Section 2 discusses all the major prior find-
ings w.r.t. covers and emulators, including the aforementioned result by Rieck
and Yamashita. Then, Theorem 2.5 presents our main new improvement. Sec-
tion 3 reviews some necessary basic properties and tools, most of which have
been previously sketched in [6]. In Section 4 we give previously unknown emu-
lator constructions, proving Theorem 2.5 and also showing how unrelated emu-
lators are from covers. We would particularly like to mention a very small and
nicely-structured emulator of the notoriously difficult graph K1,2,2,2 in Fig. 8.
Finally, in Section 5 we study how far one can get in the pursuit to character-
ize planar-emulable graphs with the structural tools previously used in [12] for
covers, and where the current limits are.

Due to space restrictions, many arguments and constructions have to be
skipped in this paper, and we refer to the long preprint version [2] for the rest.

2 On Planar Covers and Emulators

We restate the problem on a more formal level. All considered graphs are simple,
finite, and undirected. A projective plane is the simplest nonorientable surface—
a plane with one crosscap (informally, a place in which a bunch of selected edges
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K3,3 ·K3,3 K5 ·K3,3 K5 ·K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

K3,5 K4,5−4K2 K4,4−e K7−C4 D3 E5 F1

K1,2,2,2 B7 C3 C4 D2 E2

Fig. 3. The 32 connected projective forbidden minors. (The three disconnected ones,
K5 + K5, K5 + K3,3, K3,3 + K3,3, are skipped since they are not important here.)

of an embedded graph may “cross” each other). A graph homomorphism of H
into G is a mapping h : V (H)→ V (G) such that, for every edge {u, v} ∈ E(H),
we have {h(u), h(v)} ∈ E(G).

Definition 2.1. A graph G has a planar emulator (cover) H if H is a planar
finite graph and there exists a graph homomorphism ϕ : V (H)→ V (G) such that,
for every vertex v ∈ V (H), the neighbors of v in H are mapped by ϕ surjectively
(bijectively) onto the neighbors of ϕ(v) in G. The homomorphism ϕ is called an
emulator (cover) projection.

One immediately obtains the following two claims:

Lemma 2.2. a) If H is a planar cover of G, then H is also a planar emulator
of G. The converse is not true in general.
b) If G embeds in the projective plane, then G has a two-fold planar cover (i.e.,
|ϕ−1(u)| = 2 for all u ∈ V (G)); cf. [16]. See also Fig. 2.

These two claims, together with some knowledge about universal coverings in
topology, make Conjectures 1.1 and 1.2 sound very plausible. To precisely de-
scribe the motivation for our research direction in planar emulators, we briefly
comment on the methods that have been used in the investigation of planar-
coverable graphs, too.
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←

Fig. 4. A colour-coded 3D-rendering of a planar emulator patched on a polyhedral
body (right) for the graph K4,5 − 4K2 (left), taken from http://vivaldi.ics.nara-wu.ac.jp

/~yamasita/emulator/

Firstly, we note that the properties of planar-coverability and planar-emula-
bility are closed under taking minors (Proposition 3.1), and all 35 minor-minimal
nonprojective graphs (projective forbidden minors, Fig. 3) are known [1]. If a
connected graph G is projective, then G is planar-coverable (and hence also
planar-emulable); otherwise, G contains one of the mentioned projective for-
bidden minors. Hence to prove Conjecture 1.1, only a seemingly simple task
remains: we have to show that the known 32 connected projective forbidden
minors have no planar covers. The following was established through a series of
previous papers:

Theorem 2.3 (Archdeacon, Fellows, Hliněný, and Negami, 1988–98).
If the (complete four-partite) graph K1,2,2,2 has no planar cover, then Conjec-
ture 1.1 is true.

One can naturally think about applying the same arguments to planar emulators,
i.e. to Conjecture 1.2. The first partial results of Fellows [6]—see an overview in
Section 3—were, in fact, encouraging. Yet, all the more sophisticated tools (of
structural and discharging flavor) used to show the non-existence of planar covers
in Theorem 2.3 fail on a rather technical level when applied to emulators. As
these problems seemed to be more of technical than conceptual nature, Fellows’
conjecture was always believed to be true until the following:

Theorem 2.4 (Rieck and Yamashita [19], 2008). The graphs K1,2,2,2 and
K4,5 − 4K2 do have planar emulators (cf. Fig. 4). Consequently, the class of
planar-emulable graphs is strictly larger than the class of planar-coverable graphs,
and Conjecture 1.2 is false.

We remark that this is not merely an existence result, but the actual (and, sur-
prisingly, not so large) emulators were published together with it. Both K1,2,2,2

and K4,5 − 4K2 are among the projective forbidden minors, and K4,5 − 4K2 has
already been proved not to have a planar cover.

One important new message of our paper is that Theorem 2.4 is not a rarity—
quite the opposite, many other nonprojective graphs have planar emulators. In
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particular we prove that, among the projective forbidden minors that have been
in doubt since Fellows’ [6], all except possibly K4,4−e do have planar emulators:

Theorem 2.5. All of the graphs (Fig. 3) K4,5 − 4K2, K1,2,2,2, B7, C3, C4, D2,
E2, and also K7 − C4, D3, E5, F1 have planar emulators.

Consequently, the class of planar-emulable graphs is much larger than the class
of planar-coverable ones. We refer to Section 4 for details.

3 Basic Properties of Emulators

In this section, we review the basic established properties of planar-emulable
graphs. These are actually all the properties of planar-coverable graphs which
are known to extend to planar emulators (though, the extensions of some of the
proofs are not so straightforward).

The claims presented here, except for Theorem 3.4, were proved or sketched
already in the manuscript [6] of Fellows. However, since [6] has never been pub-
lished, we consider it appropriate to include their full statements with proof
sketches here (while the complete formal proofs can be found also in [2]).

We begin with two crucial closure properties.

Proposition 3.1 (Fellows [6]). The property of being planar-emulable is closed
under taking minors; i.e., under taking subgraphs and edge contractions.

Proposition 3.2 (Fellows [6]). The property of being planar-emulable is closed
under applying YΔ-transformations; i.e., the operations replacing (successively)
any degree-3 vertex with a triangle on its three neighbors.

Next, we identify some basic forbidden minors for planar-emulable graphs among
the known list of projective forbidden minors (cf. Lemma 2.2b). These again ex-
tend folklore knowledge about planar-coverable graphs, but the arguments are
definitely not trivial this time. Actually, the following two theorems represent
all the current knowledge about non-planar-emulable graphs (besides the trivial
cases of K7 and K4,4, for which the nonexistence of planar emulators is imme-
diate from Euler’s formula).

Theorem 3.3 (Fellows [6]). A planar-emulable graph cannot contain “two dis-
joint k-graphs” (see [2]). Consequently, each of the 19 graphs—projective forbid-
den minors—in the first three rows of Fig. 3 has no planar emulator.

Theorem 3.4 (Fellows / Huneke [13]). The graph K3,5 has no planar
emulator.

In a remaining limited space we try to briefly outline the two important technical
tools used to prove Theorems 3.3 and 3.4. Lemma 3.5 particularly implies both
Proposition 3.2 and Theorem 3.4 with simple arguments.
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Fig. 5. Splitting vertex x with a cubic image in X into vertices of lower degree

Lemma 3.5 (Fellows [6]). Let G be a planar-emulable graph and X ⊆ V (G)
an independent set of vertices of degree 3. Then there exists a planar emulator
H of G with a projection ϕ : V (H) → V (G) such that every vertex u ∈ ϕ−1(v)
over all v ∈ X is of degree 3.

Proof (sketch). Whenever F is an emulator of our graph G with a projection
ψ : V (F )→ V (G); let Dg(F ) (≥ 3) shortly denote the maximal F -degree of the
vertices u ∈ ψ−1(v) over all v ∈ X . We choose H as a planar emulator of G with
projection ϕ such that the value Dg(H) is minimized.

If Dg(H) > 3, then we choose any vertex x ∈ ϕ−1(v) where v ∈ X such that
x is of H-degree Dg(H) = d > 3. Let a, b, c be the three neighbors of v in G. The
neighbors of x in H naturally define a cyclic word over the alphabet {a, b, c},
and we analyze its structure in three easy cases, showing in each of them how
the degree of x can be decreased (while touching only the neighbors of x). The
most interesting case is a “split” illustrated in Fig. 5. The proof then proceeds
inductively, and we skip the remaining details. ��
On the other hand, Theorem 3.3 is implied by the next Lemma 3.6. For moti-
vation we briefly explain that the property to “contain two disjoint k-graphs”
roughly means that a graph has two minors, each isomorphic to nonplanar K5

or K3,3, that “overlap” one another in one vertex (which may be formed by
the other graph). Validity of Theorem 3.3 then follows from a suitable local
application of the following:

Lemma 3.6 (Fellows [6]). In every planar emulator H of a nonplanar con-
nected graph G with the projection ϕ : V (H) → V (G), the following holds:
|ϕ−1(v)| ≥ 2 for each v ∈ V (G).

Proof (sketch). The claim is proved separately for G = K5, G = K3,3, and
then it is routinely extended to all nonplanar graphs using Proposition 3.1. We
illustrate here the first case G = K5:

Suppose, for a contradiction, that ϕ−1(w) = {x} for some w ∈ V (K5) and
x ∈ V (H). Then H−x is an emulator of K4 = K5−w, and H−x is outerplanar,
i.e. all its vertices are incident with one face since they are all adjacent to the
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Fig. 6. A planar emulator (actually, a cover) for the complete graph K4 with the rich
faces depicted in gray colour. The same figure in a “polyhedral” manner on the right.

same vertex x in H . However, all degrees in H − x are at least 3 while an
outerplanar simple graph must contain a vertex of degree ≤ 2, a contradiction.

��
4 Constructing New Planar Emulators

The central part of this paper deals with new constructions of planar emulators
which consequently give the proof of Theorem 2.5. In this section we sketch
the interesting (and in some sense central) emulators for the graphs E2 and
K7 − C4 (Fig. 3), while a more detailed description together with emulators
for the rest of the graphs discussed in Theorem 2.5 can be found in [2]. We
remark that, to our best knowledge, no planar emulators of nonprojective graphs
other than those mentioned in Theorem 2.4 have been studied or published prior
to our paper. Moreover, using our systematic techniques we have succeeded in
finding a much smaller emulator for K1,2,2,2 than the one presented by Rieck
and Yamashita in [19].

Planar Emulator for E2. In order to obtain an easily understandable descrip-
tion of an emulator for E2, we note the following: A graph isomorphic to E2 (in
Fig. 3) can be constructed from the complete graph K4 on V (K4) = {1, 2, 3, 4}
by subdividing each edge once, calling the new vertices bi-vertices, and finally
introducing a new vertex 0 adjacent to all the bi-vertices.

A similar sketch can be applied to a construction of a planar emulator for E2:
If one can find a planar emulator for K4 with the additional property that each
edge is incident to at least one rich face—i.e., a face bordered by representatives
of all edges of K4, then a planar emulator for E2 can be easily derived from this.
More precisely, if H0 is such a special emulator of K4, see an example in Fig. 6,
then the following construction is applied. Each edge of H0 is subdivided with
a new vertex representing the corresponding bi-vertex of E2, and a new vertex
representing the vertex 0 of E2 is added to every rich face of H0 such that it
is adjacent to all the subdividing vertices within this face. The resulting plane
graph H clearly is an emulator for E2 (and this construction is reversible).
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Fig. 7. A planar emulator for E2. The bi-vertices of the construction are in white and
labeled with letters, while the numbered core vertices (cf. Fig. 6) are in gray.

Fig. 8. A planar emulator for K1,2,2,2; obtained by taking YΔ-transformations on the
core vertices labeled 1, 2, 3, 4 of the E2 emulator from Fig. 7.

Perhaps the simplest possible such an emulator for K4 with rich faces is
depicted in Fig. 6 (left). This leads to the nicely structured planar emulator
for the graph E2 in Fig. 7. It is also worth to note that the same core ideas which
helped us to find this emulator for E2, were actually used in [10] to prove the
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nonexistence of a planar cover for E2. This indicates how different the coverability
and emulability concepts are from each other, too.

More Emulators Derived from the E2 Case. By Proposition 3.2, the prop-
erty of having a planar emulator is closed under taking YΔ-transformations.
Moreover, the proof is constructive, and we may use it to mechanically pro-
duce new emulators from existing ones (this principle goes even slightly beyond
straightforward YΔ-transformations, see Section 5). Therefore we can easily ob-
tain an alternative emulator for K1,2,2,2 (cf. Theorem 2.4) which is significantly
smaller and simpler than the original one in [19]. The emulator is presented in
Fig. 8.

Furthermore, in the same mechanical way, we can obtain planar emulators for
other members of the “K1,2,2,2-family”; namely for B7, C3, D2 in Fig. 3. On the
other hand, finding a planar emulator for the last member, C4, seems to be a
more complicated case—the smallest one currently has 338 vertices [2].

Planar Emulator for K7 − C4. Already the survey [11]—when commenting
on the surprising Rieck–Yamashita construction—stressed the importance of de-
ciding whether the graph K7−C4 is planar-emulable. Its importance is tied with
the structural search for all potential nonprojective planar-emulable graphs; see
[12,3] and Section 5 for a detailed explanation. Briefly saying, K7 −C4 (and its
“family” of D3, E5, F1; Fig. 3) are the only projective forbidden minors which
have planar emulators and are not “internally 4-connected”. In fact, for several
reasons we believed that K7−C4 cannot have a planar emulator, and so it came
as another surprise when we have just recently discovered one.

In order to describe our planar emulator construction for K7−C4, it is useful
to divide the vertex set of K7−C4 into three groups: the triple of central vertices
(named 1, 2, 3 in Fig. 10 left) adjacent to all other vertices, and the two vertex
pairs (named A,B and C,D) each of which has connections only to its mate
and to the central triple. This view allows us to identify a skeleton of the poten-
tial emulator as the subgraph induced on the vertices representing the central
triple 1, 2, 3 and place the remaining vertices representing A,B and C,D into
the skeleton faces, provided certain additional requirements are met.

This simple idea leads to the introduction of basic building blocks (Fig. 9),
each of which “almost” emulates the subgraph induced on 1,2,3,A,B and

Fig. 9. Basic building blocks for our K7 −C4 planar emulator: On the left, only vertex
2 misses an A-neighbor and 1,3 miss a B-neighbor. Analogically on the right. The
right-most picture shows the skeleton of the emulator in a “polyhedral” manner.
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Fig. 10. A planar emulator for K7 − C4, constructed from the blocks in Fig. 9. The
skeleton representing the central vertices is drawn in bold.

1,2,3,C,D, respectively. The crucial property of the blocks is that the vertices
labeled A,B or C,D have all the required neighbors in place. Finally, four copies
of each of the blocks can be arranged in the shape of an octahedron such that all
missing requirements in the blocks are satisfied. The resulting planar emulator
is in Figure 10.

Similar, though much more involved, procedures lead to constructions of pla-
nar emulators for the graphsD3, E5, F1 (which are YΔ-transformable toK7−C4).
Those emulators have 126, 138, and 142 vertices, respectively, and we refer read-
ers to an illustration in Figure 11 and the full description in [2].

5 Structural Search: How Far Can We Go?

Until now, we have presented several newly discovered planar emulators of non-
projective graphs. Unfortunately, despite the systematic construction methods
introduced in Section 4, we have got nowhere closer to a real understanding of
the class of planar-emulable graphs. It is almost the other way round—the new
planar emulators evince more and more clearly how complicated the problem is.
Hence, we also need to consider a different approach.

The structural search method, on which we briefly report in this section, is
directly inspired by previous [12]; we refer to [3,4] for closer details which cannot
fit into this paper.

The general idea can be outlined as follows: If H is a mysterious nonprojective
planar-emulable graph, then H must contain one of the projective forbidden
minors, say F , while F cannot be among those forbidden minors not having
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Fig. 11. A planar emulator for F1

planar emulators (Theorems 3.3, 3.4). Now there are basically three mutually
exclusive possibilities:

i. H is a planar expansion of a smaller graph. A graph H is a planar expansion
of G if it can be obtained by repeatedly substituting a vertex of degree ≤ 3
in G by a planar subgraph with the attachment vertices on the outer face.

ii. H contains a nonflat 3-separation. A separation in a graph is called flat if
one of the sides has a plane drawing with all the boundary vertices on the
outer face.

iii. H is internally 4-connected, i.e., it is 3-connected and each 3-separation in
H has one side inducing the subgraph K1,3 (informally, H is 4-connected up
to possible degree-3 vertices with stable neighborhood).

We denote by 〈K7 − C4〉 = {K7 − C4,D3, E5,F1} the family of K7 − C4. The
underlying idea is that all the graphs in a family are YΔ-transformable to the
family’s base graph. Particularly the family of K7−C4 comprises all the projec-
tive forbidden minors in question which are not internally 4-connected. See in
Fig. 3.
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In the case (i.) above, we simply pay attention to the smaller graph G. In
the case (ii.), one can argue that either the projective forbidden minor F (in H)
itself contains a nonflat 3-separation (so F ∈ 〈K7 − C4〉), or F is internally
4-connected and H then is not planar-emulable (a contradiction). The former
is left for further investigation. Finally, in the case (iii.) we may apply a so-
called splitter theorem for internally 4-connected graphs [14], provided that F is
also internally 4-connected. This leads to a straightforward computerized search
which has a high chance to finish in finitely many steps, producing all such
desired internally 4-connected graphs H .

Actually, when the aforementioned procedure was applied to the planar cover
case in [12], the search was so efficient that the outcome could have been de-
scribed by hand; giving all 16 specific graphs that potentially might be coun-
terexamples to Conjectures 1.1. In our emulator case, we get the following:

Theorem 5.1 ([4]). Let H be a nonprojective planar-emulable graph. Then, H
is a planar expansion of one of specific 175 internally 4-connected graphs, or H
contains a minor isomorphic to a member of {E2,K4,5 − 4K2} ∪ 〈K7 − C4〉.
Up to this point, we have not been successful in finishing the computations for
the graphs F = K4,5− 4K2 and E2, due to the high complexity of the generated
extensions. Yet, we strongly believe that it is possible to obtain finite results also
for those cases, perhaps with the help of an improved generating procedure. On
the other hand, the cases starting with F ∈ 〈K7 − C4〉 will need an alternative
procedure, e.g., using so-called “separation bridging”. This is subject to future
investigations.

6 Conclusion and Further Questions

While our paper presents new and surprising findings about planar-emulable
graphs, the truth is that these findings are often negative in the sense that
they bring more intriguing questions than answers. Of course, the fundamental
open question in the area is to find a characterization of the class of planar-
emulable graphs in terms of some other natural (and preferably topological)
graph property. Even coming up with a plausible conjecture (cf. Conjecture 1.1)
would be of high interest, but, with our current knowledge, already this seems
to be out of reach yet.

Instead, we suggest to consider the following specific (sub)problems:

– Is there a planar emulator of the graph K4,4− e? We think the answer is no,
but are currently unable to find a proof, e.g. extending the arguments of [8].

– The emulators shown in Section 4 suggest that we can, in some mysterious
way, reflect ΔY -transformations in emulator constructions (i.e., the converse
direction of Proposition 3.2). Such a claim cannot be true in general since,
e.g., a YΔ-transformation of the graph D4 (Fig. 3) leads to a strict subgraph
of B3, which therefore has a two-fold planar cover while D4 is not planar-
emulable by Theorem 3.3. But where is the precise breaking point?
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– The two smallest projective forbidden minors are on 7 vertices, K7 − C4

(missing four edges of a cycle) and K1,2,2,2 (missing three edges of a match-
ing). Both of them, however, have planar emulators while their common
supergraph K7 does not. What is a minimal subgraph of K7 not having a
planar emulator? Can we, at least, find a short argument that the graph
K7 − e has no planar emulator?

– Finally, Conjecture 1.1 can be reformulated in a way that a graph has a
planar cover iff it has a two-fold planar cover. The results of [12] moreover
imply that the minimal required fold number for planar-covers is bounded
by a constant. Although, in the emulator case, the numbers of representa-
tives for each vertex of the emulated graph differ, there is still a possibility
of a fixed upper bound on them: Is there a constant K such that every
planar-emulable graph H has a planar emulator with projection ψ such that
|ψ−1(v)| ≤ K for all v ∈ V (H)? A computerized search as in Section 5 would
be of great help in this task.
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Abstract. A checking test for a monotone read-once function f depend-
ing essentially on all its n variables is a set of vectors M distinguishing
f from all other monotone read-once functions of the same variables. We
describe an inductive procedure for obtaining individual lower and upper
bounds on the minimal number of vectors T (f) in a checking test for any
function f . The task of deriving the exact value of T (f) is reduced to
a combinatorial optimization problem related to graph connectivity. We
show that for almost all functions f expressible by read-once conjunc-
tive or disjunctive normal forms, T (f) ∼ n/ ln n. For several classes of
functions our results give the exact value of T (f).

1 Introduction

A Boolean function of variables X is called monotone read-once iff it can be
expressed by a formula over {∧,∨} without repetitions of variables (such formu-
lae are also called read-once). By definition, we say that 0 and 1 are monotone
read-once functions too. One can see that f depends essentially on a variable xi
iff xi appears in a read-once formula for f .

Suppose that f is a monotone read-once function depending essentially on all
variables from X ; then a set M of input vectors is a checking test (or simply a
test) for f iff for each monotone read-once function f ′ �≡ f of variables X there
exists a vector α ∈ M such that f ′(α) �= f(α). In other words, M is a checking
test for f iff values of f on vectors from M allow one to distinguish between f
and all other monotone read-once functions of variables X .

The length of a test is the number of vectors contained in it. For a read-once
function f , the minimal length of a checking test for f is denoted by T (f). Any
test for f having this length is called optimal or, equivalently, minimal.

The problem of checking for read-once functions and study of minimal test
length were suggested by A. A. Voronenko, whose paper [9] investigated this
problem for the basis of all binary Boolean functions (in this setting the definition
of a read-once function is appropriately generalized; most further results are
available in English; see, e. g., [11]). It was proved that every n-variable read-
once function over this basis has a checking test of length less or equal to 4

(
n
2

)
.

This universal bound was subsequently lowered to match a trivial individual
lower bound of

(
n
2

)
+n+1 for an n-ary disjunction x1 ∨ . . .∨xn [6]. It is known,

though, that there exist individual functions allowing checking tests of length
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O(n) [8,12]. Generalizations of these results to the case of arbitrary Boolean bases
are discussed in [11,13]. For the basis {∧,∨,¬}, a universal upper bound of 7n/2
is proved in [10]. This bound has recently been improved to reach 2n + 1 [2],
whereas the highest known individual lower bound is equal to n+ 1.

In this paper, we study minimal test length for individual monotone read-once
functions (these functions are read-once over the basis {∧,∨}). It is known [1]
that for any such function f depending essentially on n variables it holds that
2
√
n ≤ T (f) ≤ n+1. An example of a function requiring n+1 vectors in a check-

ing test is an n-ary disjunction x1 ∨ . . .∨ xn, whereas the best known individual
upper bound is 3

√
n−1, for a special subsequence of CNF-expressible functions,

i. e., those expressible by monotone read-once conjunctive normal forms (CNF).
It is also known that all CNF-expressible functions f have T (f) ≥ 2

√
2
√
n− 1.

We demonstrate that for any monotone read-once function f sets of zeros and
ones (false and true points) of f in an optimal test can be chosen independently:
for instance, one cannot reduce the number of zeros at the expense of adding
several extra ones. If we denote by T0(f) and T1(f) the smallest possible number
of zeros and ones, respectively, in a checking test for f , this result is stated as

T (f) = T0(f) + T1(f) .

For CNF-expressible functions f , it turns out that the value of T (f) is primarily
determined by T0(f). More precisely, for almost all such functions f depending
essentially on n variables (regarded as mappings from {0, 1}n to {0, 1}) it holds
that

T (f) ∼ T0(f) = l(f) ∼ n

ln n
,

where l(f) is the number of clauses in the CNF expressing f , and the equality in
the center holds for all CNF-expressible f . Interestingly, the task of deriving the
exact value of T1(f) reveals a curious combinatorial optimization problem related
to graph connectivity. Our bounds on the optimal solution to this problem show
that for a CNF with r1 ≥ . . . ≥ rl variables in its clauses it holds that

T1(f) ≥ max

{
r1 + r2 − 1, log2

(
l∑
i=1

2ri−1 − l + 1

)
+ 1

}
,

T1(f) ≤ min

⎧⎨
⎩
∑
i�=3k

(ri − 1), 4 (max{r1, l} − 1),
�log2(l+1)�∑

i=1

(ri − 1)

⎫⎬
⎭+ 1 .

For the general case of monotone read-once functions, we show that the task of
deriving the exact value of T (f) for an individual function f can be performed
by an inductive procedure traversing a read-once formula for f . Calculations on
each step involve determining the optimal solution to the combinatorial prob-
lem mentioned above. For any function f our results allow one to easily obtain
individual lower and upper bounds on the value of T (f). The known universal
upper bound of n + 1 can be deduced as a simple corollary. For one class of
read-once functions, we present a simple way of computing exact values of T (f)
using read-once formulae for f .
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Note that our definition of a checking test requires that all variables of f be
essential, while alternatives f ′ may well have fictitious variables. This restriction
is imposed so that the definition would be word-to-word identical to that for
wider bases. Take, for instance, the basis {∧,∨,¬}. If the restriction on f is not
imposed, then any checking test for f(x1, . . . , xn) ≡ 0 must distinguish it from
all conjunctions of n literals and, therefore, must contain all 2n vectors. Such a
setting should be considered degenerate.

For monotone read-once functions considered in this paper, however, such
a restriction can be freely lifted. Indeed, if a monotone read-once function f
depends essentially on variables x1, . . . , xn, and g is obtained from f by adding
fictitious variables y1, . . . , ym, then a checking test for g can be obtained from a
checking test M for f by extending all zeros of f in M with values y1 = . . . =
ym = 1, and all ones of f in M with values y1 = . . . = ym = 0. Hence, the length
of an optimal checking test for g is equal to that for f .

2 Combinatorial Reduction

Let f be a monotone read-once function of variables X . Denote by R(f) a
graph on vertices X such that an edge {xi, xk} is present in R(f) iff f has a
projection equivalent to xi∧xk . A classic result of V. A. Gurvich [4] (see also [5])
states that all projections of f that depend essentially on exactly two variables
xi and xk are equal to each other, equivalent either to xi ∧ xk or to xi ∨ xk,
and that at least one such projection exists. Every monotone read-once function
is uniquely determined by its graph R(f). We shall use a widely known fact
that the complement of any nontrivial connected induced subgraph of R(f) is
disconnected (R(f) is a cograph [3]). We say that a formula F is of type ∧ (∨) iff
it is either a variable or a conjunction (a disjunction) of two or more subformulae.
A monotone read-once function f is of type ◦ ∈ {∧,∨} iff it can be expressed
by a read-once formula of type ◦ over {∧,∨}. Clearly, f is of type ∧ iff R(f) is
connected.

We need the following notation. An integer partition is a way of represent-
ing an integer as a sum of several positive integers. When referring to integer
partitions, we write m = t1 + · · · + tp, where m, p, t1, . . . , tp ≥ 1. We also use
one operation on equivalence relations. Suppose that ε′ and ε′′ are equivalence
relations on a set S; then by ε′ ∨ ε′′ we denote the transitive closure of the union
of ε′ and ε′′. Thus, ε′ ∨ ε′′ is itself an equivalence relation ε such that a ∼ε b
iff there exists a sequence c0, . . . , ck ∈ S such that a = c0, b = ck and for each
i = 1, . . . , k either ci−1 ∼ε′ ci or ci−1 ∼ε′′ ci. In other words, ε′ ∨ ε′′ is the finest
equivalence relation on S that is coarser than both ε′ and ε′′. By true we denote
the binary all-true relation on a set. Finally, we use symbols 0 and 1 to denote
vectors consisting only of zeros and ones, respectively.

Suppose that l ≥ 1 and r1, . . . , rl ≥ 1. Take arbitrary positive integers ti,j
for 1 ≤ i ≤ l and 1 ≤ j ≤ ri. Denote by F the multiset of l integer partitions
mi = ti,1 + · · · + ti,ri , for i = 1, . . . , l. Define L(F ) as the smallest number t
having the following property: there exist equivalence relations ε1, . . . , εl on the
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set {1, . . . , t} such that each εi has ri equivalence classes of cardinality greater or
equal to ti,1, . . . , ti,ri , respectively, and εi ∨ εk = true whenever i �= k. If ti,j = 1
for all possible i, j, the number L(F ) will also be referred to as L(r1, . . . , rl).

Theorem 1. Let l ≥ 2 and r1, . . . , rl ≥ 1. Suppose that fi,j , 1 ≤ j ≤ ri,
1 ≤ i ≤ l, are monotone read-once functions of type ∧ depending on disjoint sets
of variables, fi = fi,1 ∨ . . . ∨ fi,ri for i = 1, . . . , l, f = f1 ∧ . . . ∧ fl, and fi,1 is a
single variable whenever ri = 1. Then

T (f) = T0(f) + T1(f) ,

T0(f) =
l∑
i=1

T0(fi) , and T1(f) = L(F ) ,

where F is the multiset of integer partitions T1(fi,1) + · · · + T1(fi,ri) for all
i = 1, . . . , l.

Proof. First obtain the lower bounds. Suppose that a checking test M for f
contains a vector α such that f(α) = 1. Clearly, replacing α with any vector
β ≤ α such that f(β) = 1 yields a set of vectors that retains the property of
being a checking test. Similarly, one can replace all vectors γ such that f(γ) = 0
with vectors δ ≥ γ such that f(δ) = 0. The obtained set M ′ will still constitute
a checking test for f , and |M ′| ≤ |M | (note that it may be the case that, e. g.,
different vectors α′ and α′′ can be replaced with a single vector β). Further on,
we assume that all possible replacements have been performed, i. e., M ′ contains
only lower ones and upper zeros of f .

Now take an arbitrary upper zero α of f . Let α be a concatenation of vectors
α1, . . . , αl such that each fi depends essentially on the variables assigned by αi.
Since f is a read-once conjunction of all fi, 1 ≤ i ≤ l, this means that there
exists a unique index i such that fi(αi) = 0 and fk(αk) = 1 for all k �= i.
Moreover, it follows that αi is an upper zero of fi and all αk = 1 for k �= i.
Denote by zi the number of all vectors α in M ′ such that fi(αi) = 0. Since M ′

is a checking test for f , it follows that zi ≥ T0(fi). (Indeed, if zi < T0(fi), then
there exists a monotone read-once function f ′i �≡ fi which depends on the same
variables as fi and agrees with it on all zi vectors αi. It then follows that f
cannot be distinguished from the function f ′ obtained by substituting f ′i for fi
in the read-once formula for f .) Observe that no vector α can be counted more
than once in z1, . . . , zl, for all non-constant monotone read-once functions take
the value of 1 at 1. Thus, T0(f) ≥∑l

i=1 zi ≥
∑l

i=1 T0(fi).
In order to prove the lower bound on T1(f), consider the set

{
α(1), . . . , α(t)

}
of all lower ones of f contained in M ′. One can see that an arbitrary lower one α
of f is a concatenation of α1, . . . , αl such that fi(αi) = 1 for all i. Moreover, each
αi must be a lower one of fi. Hence, each αi is a concatenation of αi,1, . . . , αi,ri ,
and there exists a unique index j such that fi,j(αi,j) = 1 and all αi,s = 0 for
s �= j. For each α(p), these indices will be denoted by j1(p), . . . , jl(p).

For each i = 1, . . . , l consider an equivalence relation εi on {1, . . . , t} such
that p ∼εi q iff ji(p) = ji(q). We claim that εi ∨ εk = true if i �= k. Assume
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the converse, then there exists a non-empty proper subset S of {1, . . . , t} such
that for all p ∈ S and q ∈ {1, . . . , t} \ S it holds that p �∼εi q and p �∼εk

q.
By definition, put I = { ji(p) | p ∈ S } and K = { jk(p) | p ∈ S }. Construct
a monotone read-once function f ′ by replacing the conjunction fi ∧ fk in the
read-once formula for f with a disjunction (f ′

i ∧ f ′k) ∨ (f ′′i ∧ f ′′
k ), where

f ′
i =

∨
j∈I

fi,j , f ′
k =

∨
j∈K

fk,j ,

f ′′i =
∨
j �∈I

fi,j , f ′′k =
∨
j �∈K

fk,j .

We see that f is always greater or equal to f ′ and disagrees with it only on
vectors α such that either f ′

i(αi)∧ f ′′
k (αk) = 1 or f ′′i (αi)∧ f ′

k(αk) = 1. Since M ′

is a checking test, such a vector α must be present among α(1), . . . , α(t). Assume
without loss of generality that f ′i

(
α

(p)
i

)
∧ f ′′

k

(
α

(p)
k

)
= 1. By definition of f ′i and

f ′′k , it holds that ji(p) ∈ I and jk(p) �∈ K, so p ∈ S and p �∈ S, which is a
contradiction.

In order to prove that T1(f) ≥ L(F ), we show that ji(p) = j for at least
T1(fi,j) numbers p ∈ {1, . . . , t}. Indeed, if this is not the case, then M ′ contains
fewer than T1(fi,j) vectors α such that αi,j �= 0,1, fi,j(αi,j) = 1 and f(α) = 1.
By definition of T1(fi,j), this means that these αi,j do not allow one to distinguish
between fi,j and a certain monotone read-once function f ′

i,j. (Note that 1 is
included in a minimal checking test for fi,j iff T1(fi,j) = 1, otherwise it is
obviously of no use.) Substituting f ′i,j for fi,j in the read-once formula for f
yields a formula expressing a monotone read-once function f ′ �≡ f such that f
agrees with f ′ on all vectors from M ′. This concludes the proof of the lower
bounds.

We now prove the upper bounds and the equality T (f) = T0(f) + T1(f). We
use induction on the depth of the read-once formula for f . In the inductive step,
we shall use only the fact that T (fi) = T0(fi)+T1(fi) as an inductive assumption.
Therefore, we need to check this equality for single variables, conjunctions and
disjunctions. It can easily be checked that for n ≥ 1,

T0(x1 ∨ . . . ∨ xn) = 1 , T1(x1 ∨ . . . ∨ xn) = n , T (x1 ∨ . . . ∨ xn) = n+ 1 ,

T0(x1 ∧ . . . ∧ xn) = n , T1(x1 ∧ . . . ∧ xn) = 1 , T (x1 ∧ . . . ∧ xn) = n+ 1 ,

so we proceed to the main part of the proof.
Let M1, . . . ,Ml be optimal checking tests for f1, . . . , fl, respectively, all con-

sisting of upper zeros and lower ones of fi. Let N consist of all vectors α =
(1, . . . ,1, αi,1, . . . ,1) for all αi ∈Mi such that fi(αi) = 0 and i = 1, . . . , l. Now
suppose that L(F ) = t and equivalence relations ε1, . . . , εl on {1, . . . , t} satisfy
the conditions of L(F ) definition. Assume that equivalence classes of each εi
are numbered 1 through ri so that jth class’s cardinality is greater or equal to
T1(fi,j). Now recall that every vector αi ∈Mi such that fi(αi) = 1 is a lower one
of fi and thus has a special representation as a concatenation of αi,j , 1 ≤ j ≤ ri.
Put Ui,j = {αi,j | αi ∈ Mi, fi(αi) = 1, αi,j �= 0 }. For each p = 1, . . . , t put
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α(p) =
(
α

(p)
1 , . . . , α

(p)
l

)
, where α(p)

i =
(
α

(p)
i,1 , . . . , α

(p)
i,ri

)
such that α(p)

i,j ∈ Ui,j if

the number p belongs to the jth equivalence class of εi and α(p)
i,j = 0 otherwise.

We also require that for each valid pair i, j the set of all non-0 vectors α(p)
i,j

be equal to Ui,j . This is possible because the number of elements in jth equiv-
alence class of εi is greater or equal to |Ui,j | = T1(fi,j) (this equality follows
from the inductive assumption and our choice of Mi, for it is easily checked that∑ri

j=1 |Ui,j | = T1(fi)). We claim that M = N ∪{α(1), . . . , α(t)
}

is a checking test
for f .

We show that if a monotone read-once function f ′ coincides with f on all vec-
tors from M , then f ′ ≡ f . This is sufficient both for proving the claimed upper
bound and, as a corollary, for establishing the equality T (f) = T0(f) + T1(f).
First, observe that f ′(α(p)

)
= 1 for all p = 1, . . . , t. Since f ′ is monotone,

it follows that f ′(α) = 1 for any α of type
(
1, . . . ,1, α(p)

i ,1, . . . ,1
)
, where

p = 1, . . . , t. By our construction of M , all vectors from Mi are present in{
α

(p)
i | α(p) ∈M

}
. Since M contains all vectors from N , it follows that f ′(α) =

f(α) for all α = (1, . . . ,1, αi,1, . . . ,1), where αi ∈ Mi. One concludes, then,
that for each i = 1, . . . , l the function f ′ has a projection equivalent to fi.

Now we are going to reconstruct the graph R(f ′) = R(f) using the values of
f on vectors from M . Note that all subgraphs Ri = R(fi) are already known.
Recall that all functions fi,j are of type ∧, so all Ri,j are connected. On the
contrary, each Ri is either disconnected or a single vertex. It suffices to show
that each subgraph Ri ∪ Rk of R(f ′) (a subgraph of R(f ′) induced by vertices
of Ri and Rk) is connected if i �= k, for then all edges between Ri and Rk must
be present in it, otherwise any edge between Ri and Rk not present in Ri ∪Rk
would imply the connectivity of Ri ∪ Rk’s complement, which contradicts the
connectivity of Ri ∪ Rk (recall that R(f ′) is a cograph). We now contract all
vertices in each Ri,j (Rk,j) to a single vertex j (j′) and prove the connectivity
of the obtained bipartite graph R′ on vertices {1, . . . , ri} ∪ {1′, . . . , r′k}.

We first claim that the equality f ′
(
α(p)

)
=1 implies that the edge {ji(p),jk(p)}

is present in R′. Indeed, since f ′(α(p)
)

= 1, it holds that f ′(β) = 1, where β
is obtained from α(p) by changing all α(p)

u to 1 for u �= i, k. Suppose that γ is
obtained from β by changing a 1 in αi to 0. One now observes that replacing
αk with 1 in γ yields a vector γ′ with a known value f ′(γ′) = 0, since every αu,
where u �= i, is now replaced by 1, and αi is a lower one of the known projection
fi. Monotonicity of f ′ implies f ′(γ) = 0. Arguing as above, we see that f ′(δ) = 0,
where δ is obtained from β by changing a 1 in αk to 0. The values of f ′ on vectors
β, γ, and δ are uniquely determined by its values on vectors from M and imply
that f ′ has a projection of the type x′ ∧x′′, where fi,ji(p) and fk,jk(p) depend on
x′ and x′′, respectively. Thus, R′ contains all edges {ji(p), jk(p)} for p = 1, . . . , t.

It remains to prove that these edges imply the connectivity of R′. Consider a
graph G on 2t vertices {1, . . . , t}∪{1′, . . . , t′}. Let G contain all the edges {p, p′}
for p = 1, . . . , t, edges {p, q} whenever p ∼εi q, and {p′, q′} whenever p′ ∼εk q′.
Contracting all the edges within {1, . . . , t} and {1′, . . . , t′} yields a graph H ,
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which is known to be isomorphic to a subgraph of R′. Clearly, H is connected
if so is G. Contracting all the edges {p, p′} in G yields a graph G′ on vertices
{1, . . . , t} such that {p, q} is present in G′ if and only if p ∼εi q or p ∼εk

q. Since
εi ∨ εk = true, it follows that G′ is connected, and so are G, H and R′. This
concludes the proof.

Corollary 2. For all non-constant monotone read-once functions f ,

T (f) = T0(f) + T1(f) .

Corollary 3. For a monotone read-once function

f = (x1,1 ∨ . . . ∨ x1,r1) ∧ (x2,1 ∨ . . . ∨ x2,r2) ∧ . . . ∧ (xl,1 ∨ . . . ∨ xl,rl
) ,

where l ≥ 1 and all ri ≥ 1, the following equality holds:

T (f) = l + L(r1, . . . , rl) .

Remark 4. The statements of Theorem 1 and Corollary 3 hold true if all sym-
bols ∧ and ∨ are exchanged and so are Boolean constants 0 and 1. Provided
that an algorithm for determining L(F ) is known, one can use a simple in-
ductive procedure to determine the value of T (f) for any arbitrary monotone
read-once function f . The induction basis is given by the values of T0(f) and
T1(f) for disjunctions and conjunctions of n ≥ 1 variables. Since L(F ) is evi-
dently monotonically non-decreasing in all parameters in F , one can substitute
lower and upper bounds for the unknown parameters to obtain lower and upper
bounds on L(F ), respectively.

3 Obtaining Bounds on L(F )

Proposition 5. L(r1, . . . , rl) ≤ L(F ) ≤ L(r1, . . . , rl)+ max
1≤i≤l

(mi−ri)−d, where

d = 1 if there exist numbers s �= k such that s is a maximum point of mi − ri
and rk ≥ 2, and d = 0 otherwise.

Proof. The lower bound is obvious and the upper bound follows from the obser-
vation that in all non-trivial cases any equivalence relation εi from the definition
of t = L(r1, . . . , rl) has at least one equivalence class of size greater or equal to
2, so for each i such that mi > ri one needs less or equal to mi − ri − 1 new
elements beyond 1, . . . , t. The only exception is the case when rk = 1 for all
k �= i.

When obtaining bounds on L(F ), we often use graph-theoretic terminology, as
given by the following lemma. (Note that when we speak of graphs, we always
mean undirected graphs without loops or multiple edges.)

Lemma 6. The number L(F ) is the smallest number t having the following
property: there exist graphs G1, . . . Gl on vertices {1, . . . , t} such that each Gi
has exactly ri connected components of size greater or equal to ti,1, . . . , ti,ri , and
all graphs Gi ∪Gk are connected whenever i �= k.



128 D.V. Chistikov

The proof is trivial. Note that we can use arbitrary connected graphs as compo-
nents of Gi. It is often convenient, though, to use only trees as these components;
in this case all graphs Gi are required to be forests.

Theorem 7. Suppose that F is a multiset of integer partitions mi = ti,1 + · · ·+
ti,ri for i = 1, . . . , l. Then the following inequality holds:

L(F ) ≥ max

{
max
i
mi, max

i�=k
ri + rk − 1, log2

(
l∑
i=1

2ri−1 − l + 1

)
+ 1

}
.

Proof. Let t be the value of L(F ). One can easily see that t ≥ mi for all i =
1, . . . , l. Indeed, since Gi has to contain ri connected components of size at least
ti,1, . . . , ti,ri , it follows that t ≥∑ri

j=1 ti,j = mi.
Now suppose that i �= k and assume without loss of generality that both Gi

and Gk are forests. Then the number of edges in these two graphs is t− ri and
t−rk, respectively. Since Gi∪Gk is connected, we see that (t−ri)+(t−rk) ≥ t−1
and t ≥ ri + rk − 1.

Finally, consider partitions of {1, . . . , t} into two non-empty sets S′ and S′′.
The number of such partitions is 2t−1−1. For each graph Gi having ri connected
components there exist exactly 2ri−1 − 1 such partitions without edges between
S′ and S′′ in Gi. These sets of partitions must be disjoint for i �= k, otherwise
Gi ∪ Gk contains no edges between S′ and S′′ and, therefore, is disconnected.
Hence, 2t−1 − 1 ≥∑l

i=1(2
ri−1 − 1), which gives the desired.

In several cases the bounds of Theorem 7 turn out to be tight. Two next propo-
sitions show that all three expressions under max can give the exact value of
L(F ) for some F .

Proposition 8. If l = 2, then L(F ) = max{m1, m2, r1 + r2 − 1}.
Proof. Let F consist of partitions m1 = t1 + · · ·+ tp and m2 = s1 + · · ·+ sq. By
Theorem 7, L(F ) ≥ m, wherem = max{m1,m2, p+q−1}. Our goal is to prove an
equal upper bound. Assume without loss of generality that m1 = m2 ≥ p+q−1.
(If this is not the case, increase some of the numbers t1, . . . , tp and s1, . . . , sq
appropriately so thatm1 andm2 would reachm and observe that for the multiset
F ′ of the two obtained partitions it holds that L(F ) ≤ L(F ′).) We claim that
for any multiset F satisfying this condition and any appropriate graph G1 on
m = m1 vertices there exists a graph G2 with the needed properties. The proof
of this claim is by induction over q ≥ 1. For q = 1, the desired is straightforward.
Indeed, since m = m1 and m = m2 = s1, one can take a complete graph on m
vertices for G2. Now suppose that q ≥ 2. Assume that t1 ≤ t2 ≤ . . . ≤ tp and
s = maxi si. If s = 1, then p = (p+ q− 1)− (q− 1) ≤ m− q+ 1 = q− q+ 1 = 1.
So, p = 1 and G1 is a complete graph on m vertices, similarly to the case above.
If s ≥ 2, take connected components of size t1, . . . , ts−1 and tp in G1, choose one
vertex from each of these components and form a clique of size s on these vertices
in G2. If p ≤ s, missing s− p vertices are chosen arbitrarily and we have proved
the desired without the inductive assumption. If p > s, the problem is reduced
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to a simpler one, with q′ = q− 1 (we use prime symbols for distinguishing a new
instance of the problem from the old one), p′ = p−s+1, p′+q′−1 = (p+q−1)−s
and m′ = m′

1 = m′
2 = m − s. Indeed, components of size t1, . . . , ts−1 and tp in

G1 are connected with a clique in G2, whose s vertices are excluded from further
consideration. The rest t′1 = (t1 − 1) + . . . + (ts−1 − 1) + (tp − 1) vertices from
these components (note that t′1 ≥ 0 + . . .+ 0 + 1 = 1) are considered to belong
to the same component of G′

1 and so may be connected with, e. g., a clique in
G′

1. Thus, q is decreased by 1 and the property m′ = m′
1 = m′

2 ≥ p′ + q′− 1 still
holds. This concludes the proof.

Proposition 9. L(2, . . . , 2) = �log2(l + 1)
+ 1.

Proof. The lower bound is given by Theorem 7. To prove the upper bound,
take all possible graphs Gi on vertices {1, . . . , t} having exactly two connected
components and all edges within each component (any Gi is a union of two
cliques). Clearly, if Gi and Gk are two such graphs, then Gi ∪Gk is connected if
and only if Gi �= Gk . So, if t is fixed, l can be chosen as large as 2t−1− 1. Hence,
t ≤ �log2(l + 1)
+ 1.

We now present an example of using Theorem 1 for deriving exact values of
T (f). This example is directly related to the result of Proposition 8. We say
that a formula F over {∧,∨} is strictly alternating iff it is either a variable
or a disjunction (respectively, a conjunction) of exactly two strictly alternating
formulae that have type ∧ (respectively, ∨). The structure of strictly alternating
formulae can be represented by binary trees with alternating levels of internal
vertices labeled with ∧ and ∨. By F∗ we denote a formula obtained from F by
exchanging all symbols ∧ and ∨.
Proposition 10. Let f be a monotone read-once function expressed by a strictly
alternating read-once formula F . By definition, put x � y = 3 if x = y = 2 and
x � y = max{x, y} otherwise. Then T (f) = E(F) + E(F∗), where E(F) is the
value of the formula obtained from F by changing all symbols ∨ to +, all symbols
∧ to �, and setting all variables’ values to 1.

Proof. Use the inductive procedure of Theorem 1. For conjunctions and disjunc-
tions, there is nothing to prove. For all other cases, use Proposition 8. Observe
that if max{m1,m2} < r1 + r2 − 1, then r1 = r2 = 2, since each ri is less or
equal to min{mi, 2}. It follows that m1 = m2 = 2, which gives the desired.

Example 11. Suppose that formulae Fn are represented by perfect binary trees
with n = 2h leaves. For the corresponding read-once functions fn, if h ≥ 3, then
T (fn) = 3

√
n if h is even and T (fn) = 9

√
2 / 4 ·√n if h is odd.

Proof. Without loss of generality, denote by fn a read-once function expressed
by a formula Fn of type ∧, and by f∗

n a read-once function expressed by F∗
n.

Clearly, T0(fn) = T1(f∗
n) and T1(fn) = T0(f∗

n). Straightforward application of
Proposition 10 shows that

T (f8) = 9 = 9
√

2 / 4 ·
√

8 ,

T (f16) = 12 = 3
√

16 ,
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which proves the induction basis. For n ≥ 8, Proposition 10 reveals that

T0(f4n) = 2T0(f∗2n) = 2T0(fn) ,
T1(f4n) = T1(f∗

2n) = 2T1(fn) ,

and it follows that
T (f4n) = 2T (fn) .

This completes the proof.

By F1+F2 denote the sum of multisets F1 and F2, i. e., a multiset which contains
each element of F1 or F2 as many times as F1 and F2 do together. Simple
decomposition gives the following upper bound on L(F1 + F2).

Lemma 12. L(F1 + F2) ≤ L(F1) + L(F2)− 1.

Proof. Suppose that t1 = L(F1) and t2 = L(F2). Let G1
1, . . . , G

1
l1

and G2
1, . . . , G

2
l2

be graphs from the alternative definition of L(F1) and L(F2) given by Lemma 6.
Assume without loss of generality that each Gsi , where s = 1, 2, is a graph on
vertices {(s, 1), . . . , (s, ts)}. Take each Gsi and extend it with a clique on vertices
{(3 − s, 1), . . . , (3 − s, t3−s)}, and then identify vertices (1, 1) and (2, 1). The
obtained graph Hs

i has t1 + t2 − 1 vertices and the same number of connected
components as Gsi . The number of vertices in each component is greater or equal
to that in Gsi . For all possible i �= k, graphs Hs

i ∪Hs
k are connected because so

are Gsi ∪ Gsk. Moreover, all H1
i ∪H2

k for any possible i, k are connected too, for
they all contain cliques on vertices {(1, 1), . . . , (1, t1)} and {(2, 1), . . . , (2, t2)},
where (1, 1) and (2, 1) are one vertex. This means that L(F1 +F2) ≤ t1 + t2− 1.

The results of Theorem 1 and Lemma 12 lead to an inductive proof of the
following known result:

Theorem 13. For all monotone read-once functions f depending on n vari-
ables,

T (f) ≤ n+ 1 .

Proof. Use induction on n ≥ 1. For n = 1, the bound is clearly true. Suppose
now that n ≥ 2. Assume without loss of generality that f = f1 ∧ . . . ∧ fl and
fi = fi,1 ∨ . . . ∨ fi,ri , where all fi,j are monotone read-once functions of type ∧
depending on disjoint sets of variables, and fi,1 is a single variable whenever
ri = 1. Let ni be the number of variables of fi. By the inductive assumption,
T (fi) ≤ ni + 1. By Theorem 1, T1(f) ≤ L(F ), where F is the multiset of integer
partitions T1(fi,1) + · · ·+ T1(fi,ri) for i = 1, . . . , l. By Lemma 12,

L(F ) ≤
l∑
i=1

L({T1(fi,1) + · · ·+ T1(fi,ri)})− l + 1 =
l∑
i=1

ri∑
j=1

T1(fi,j)− l + 1 .
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Applying Theorem 1 three more times yields

T1(f) ≤
l∑
i=1

T1(fi)− l + 1 , T0(f) =
l∑
i=1

T0(fi) ,

and T (f) ≤
l∑
i=1

(T (fi)− 1) + 1 ≤
l∑
i=1

ni + 1 = n+ 1 ,

which completes the proof.

To prove more accurate individual upper bounds, we need the following notation.
If m is a positive integer, then Zm2 = { (x1, . . . , xm) | x1, . . . , xm ∈ Z2 } is a
vector space over Z2 = {0, 1}. For an arbitrary vector x ∈ Zm2 , put suppx =
{ i | 1 ≤ i ≤ m, xi = 1 }. The following lemma gives an alternative definition of
L(r1, . . . , rl).

Lemma 14. The number L(r1, . . . , rl) − 1 is the smallest integer m having
the following property: there exist linear subspaces V1, . . . , Vl of Zm2 such that
dimVi = ri − 1, Vi ∩ Vk = {0} for i �= k and each Vi has a basis ei,1, . . . , ei,ri−1

with supp ei,j′ ∩ supp ei,j′′ = ∅ for j′ �= j′′.

The idea of the proof is that if i = 1, . . . , l, then sets supp ei,j for j = 1, . . . , ri−1
are equivalence classes of εi not containing t = L(r1, . . . , rl). Details are left to
the reader. Note that we can also reformulate the definition of L(F ) in a way
similar to that of Lemma 14. Such a definition, though, is out of our scope now.
We now aim to obtain an efficient upper bound on L(r1, . . . , rl). For convenience,
by L(e1, . . . , es) we denote the linear subspace spanned by vectors e1, . . . , es.

Proposition 15. If r1 ≥ r2 ≥ r3, then L(r1, r2, r3) = r1 + r2 − 1.

Proof. The lower bound follows from Theorem 7. To prove the upper bound, put
m = r1 + r2 − 2. By ej denote a vector from Zm2 with m− 1 zeros and an only
one in jth position. Consider subspaces

V1 = L(e1, . . . , er1−1) , V2 = L(er1 , . . . , em) ,
V3 = L(e1 + er1 , e2 + er1+1, . . . , er3−1 + er1+r3−2) .

Since r3 is less or equal to both r1 and r2, the sets Vi \ {0} are pairwise disjoint.
Each Vi is spanned by ri−1 linearly independent vectors without common ones,
so, by Lemma 14, we get the needed upper bound.

In the next proposition, the proof of the upper bound follows from a construction
of [1] due to Voronenko, and the lower bound is given by Theorem 7.

Proposition 16. If r1 ≥ . . . ≥ rl, then L(r1, . . . , rl) ≤ 2 p̂(max{r1, l}) − 1 ≤
4 max{r1, l} − 3, where p̂(k) is the smallest prime greater or equal to k. In par-
ticular, if r1 = . . . = rl = l and l is prime, then L(l, . . . , l) = 2l− 1.

Now we are ready to prove our main upper bounds.
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Theorem 17. If r1 ≥ r2 ≥ . . . ≥ rl, then

L(r1, . . . , rl) ≤ min

⎧⎨
⎩
∑
i�=3k

(ri − 1), 4 (max{r1, l} − 1),
�log2(l+1)�∑

i=1

(ri − 1)

⎫⎬
⎭+ 1 .

Proof. First combine the results of Propositions 8 and 15 using Lemma 12. Put
l = 3s + d, where d ∈ {1, 2, 3}, and observe that the difference L(r1, . . . , rl) −
L(r3s+1, . . . , r3s+d) cannot be greater than

s−1∑
i=0

L(r3i+1, r3i+2, r3i+3)− s =
s−1∑
i=0

(r3i+1 + r3i+2 − 1)− s =
∑

1≤i≤3s
i�=3k

(ri − 1) ,

which gives the first needed inequality. The second inequality follows from Propo-
sition 16. To prove the third inequality, use Lemma 14 directly. Choose d =
�log2(l + 1)
 as the number of digits in a binary representation of l. For i =
1, . . . , l by αs(i) denote sth least significant bit in a d-bit binary representation
α(i) = (αd(i) . . . α1(i)) of i. Let π be any permutation on {1, . . . , l} such that
π(s) = 2s−1 for s = 1, . . . , d. Put uπ(i) = ri − 1 for i = 1, . . . , l and choose m =∑d
s=1 uπ(s) =

∑d
s=1(rs − 1). For s = 1, . . . , d and j = 1, . . . , uπ(s) by fs,j denote

a vector from Zm2 with m−1 zeros and an only one in (uπ(1)+ . . .+uπ(s−1)+j)th
position. Take

ei,j =
d∑
s=1

αs(i) fs,j , j = 1, . . . , ui, i = 1, . . . , l,

and consider subspaces Ui = L(ei,1, . . . , ei,ui) for i = 1, . . . , l. Clearly, dimUi =
ui, for

∑ui

j=1 λjei,j = 0 implies
∑ui

j=1

∑d
s=1 λjαs(i) fs,j = 0 and λj = 0 for

all possible j, since vectors fs,j are linearly independent. (Note the special case
i = 2q, where j can assume values greater than us, but it turns out that all αs(i)
equal 0 except for one s and we still see that all λj must be equal to 0.) It is
easily observed that for each i sets supp ei,j , where j = 1, . . . , ui, are disjoint.
We claim that Ui ∩ Uk = {0} whenever i �= k, which is evidently sufficient for
obtaining the desired bound.

Instead of using linear algebra in a straightforward way, we prove a special
property of sets Ui. For each x ∈ Zm2 , define sig x = { s | 1 ≤ s ≤ d, ∃ j : x ≥
fs,j , 1 ≤ j ≤ us }. Take an arbitrary non-0 vector x ∈ Ui. Observe that

x =
ui∑
j=1

λjei,j =
ui∑
j=1

λj

d∑
s=1

αs(i) fs,j =
d∑
s=1

αs(i)
ui∑
j=1

λjfs,j .

If αs(i) = 1, then j assumes the values 1, . . . , ui ≤ uπ(s). Therefore, all vectors
fs,j have ones in different single components. It follows that sigx = suppα(i),
where α(i) = (αd(i) . . . α1(i)) is a d-bit binary representation of i. Hence, the
sets Ui \ {0} are disjoint, which completes the proof.
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In the next theorem, when we speak of almost all CNF- and DNF-expressible
functions, these functions are regarded as mappings from {0, 1}n to {0, 1}. For
each n, all mappings expressible by monotone read-once CNF or DNF are
assigned equal non-zero probabilities. For instance, formulae (x1 ∨ x2) ∧ x3

and (x2 ∨ x1) ∧ x3 express the same function, different from one expressed by
(x1 ∨ x3) ∧ x2.

Theorem 18. For almost all monotone read-once CNF- and DNF-expressible
functions f depending essentially on n variables,

T (f) ∼ n

lnn
.

Proof. Consider a monotone read-once CNF-expressible function f which de-
pends essentially on n variables x1, . . . , xn. One can easily see that there exists
a one-to-one mapping φ between the set of all such functions and the set of all
partitions of the set {1, . . . , n}. For a function f expressed by a CNF F , indices
p and q belong to the same block in φ(f) iff they belong to the same clause in F .
Denote by l the number of clauses in F . It is known that almost all partitions
have asymptotically n/ lnn blocks, all of which have size less or equal to O(lnn)
(see, e. g., [7]). One observes then that the upper bound of Theorem 17 is almost
always less or equal to⌈

log2

( n

lnn

)
+ o(1)

⌉
·O(lnn) = O(ln2 n) = o

( n

lnn

)
,

so the value of T (f) given by Corollary 3 is asymptotically equivalent to T0(f) =
l ∼ n/ lnn.

4 Conclusions

We reduced the problem of deriving the value of T (f) to several instances of
another combinatorial problem, that of determining the smallest number of ver-
tices L allowing the construction of a set of graphs with special properties. Our
results give several explicit bounds on L numbers and allow to deduce the im-
plied bounds on T (f) easily. For almost all CNF- and DNF-expressible functions,
these bounds determine the asymptotic behaviour of T (f). For arbitrary read-
once functions f , one can use Theorem 1 repeatedly to obtain both lower and
upper bounds on T (f). For several classes of functions our results determine the
exact value of T (f). Finally, we remark that one can easily indicate a special
class of read-once functions which shows that it is impossible to derive the exact
values of T (f) for all f without computing L.
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Abstract. The stable transversal problem for a fixed graph H asks
whether a graph contains a stable set that meets every induced copy
of H in the graph. Stable transversal problems generalize several vertex
partition problems and have been studied for various classes of graphs.
Following a result of Farrugia, the stable transversal problem for each C�
with � ≥ 3 is NP-complete. In this paper, we study an ‘edge version’ of
these problems. Specifically, we investigate the problem of determining
whether a graph contains a matching that meets every copy of H . We
show that the problem for C3 is polynomial and for each C� with � ≥ 4
is NP-complete. Our results imply that the stable transversal problem
for each C� with � ≥ 4 remains NP-complete when it is restricted to line
graphs. We show by contrast that the stable transversal problem for C3,
when restricted to line graphs, is polynomial.

Keywords: Stable transversal problem, transverse matching problem,
algorithm, complexity.

1 Introduction

For a fixed graph H, an H-transversal of a graph G is a vertex set T that meets
every induced copy of H in G; in other words, G − T does not contain H as
an induced subgraph. When such a set T is a stable set, it is called a stable H-
transversal of G. While every graph has an H-transversal, stable H-transversals
may not exist in a graph. The stable H-transversal problem ST(H) for a fixed
H asks whether a graph has a stable H-transversal.

It is easy to see that a graph has a stable K2-transversal if and only if it
is bipartite and it has a stable K2-transversal if and only if it is a split graph
(cf. [4]). As both bipartite and split graphs are recognizable in polynomial time,
ST(H) is polynomial when H has at most two vertices. Farrugia [3] proved that
ST(H) is NP-complete when H has at least three vertices and is connected. It
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follows that ST(C�) is NP-complete when � ≥ 3, where C� denotes the cycle with
� vertices. For graphs which have at least three vertices and are disconnected,
there are polynomial as well as NP-complete cases, but the dichotomy of stable
transversal problems has not been determined. Stable transversal problems have
also been studied for various classes of graphs, cf. [7,9].

In this paper, we investigate an ‘edge version’ of stable transversal problems.
The H-transverse matching problem TM(H) for a fixed graph H asks whether a
graph G has a matching M which meets every (not necessarily induced) copy of
H in G, i.e., H is not a subgraph of G−M . Such a matching M will be called
an H-transverse matching. We shall prove the following:

Theorem 1. TM(C�) is polynomial when � = 3 and NP-complete otherwise.

Given a graph G = (V,E), the line graph L(G) of G is the graph with vertex
set E and two vertices adjacent in L(G) if and only if the two corresponding
edges have a common endvertex in G. With the sole exception of H = C3,
the transverse matching problem TM(H) is equivalent to the stable transversal
problem ST(L(H)) for line graphs. Since L(H) = C� if and only if H = C� for
each � ≥ 4, Theorem 1 implies that ST(C�) remains NP-complete for line graphs
for each � ≥ 4.

Due to the fact that C3 is the line graph of two different graphs C3 and K1,3,
ST(C3) is not equivalent to TM(C3) for line graphs. However, we show that
determining whether a graph G has a matching M which meets every copy of
C3 and K1,3 in G is polynomial. Hence the problem ST(C3) is polynomial for
line graphs and therefore we also obtain the following:

Theorem 2. When restricted to line graphs, ST(C�) is polynomial for � = 3
and NP-complete otherwise.

We remark that the polynomial case stated in Theorem 2 is in sharp contrast to
the fact that ST(C3) is NP-complete in general.

2 TM(C3) and ST(C3) for Line Graphs are Polynomial

A paw is the graph consisting of a triangle and an edge sharing a common vertex.
Call a matching M pawssible if, for every paw consisting of triangle xyz and edge
xw, xw ∈ M implies yz ∈ M . The lemma below follows immediately from the
fact that any C3-transverse matching contains at least one of the three edges in
each triangle and is pawssible.

Lemma 3. If a graph G has a C3-transverse matching, then at least one of the
three edges in each triangle is contained in a pawssible matching. ��
In polynomial time we can check whether an edge e of G is contained in a
pawssible matching and find one if it exists. This can be done by letting Fe = {e}
initially, then adding edges one by one to Fe which are ‘forced by’ paws, and
finally checking if Fe is a matching. In the case when Fe is a matching, it is also
a minimal pawssible matching containing e.
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Lemma 4. Suppose that M is a pawssible matching and e is an edge in G. If
both M ∪ {e} and Fe are matchings, then M ∪Fe is a pawssible matching where
Fe is defined as above.

Proof. From the definition of Fe, M∪Fe may be viewed as the set obtained from
M by including e initially and then adding edges which are ‘forced by’ paws.
The process of adding edges ensures that M ∪ Fe is pawssible. We claim that it
produces a matching. Indeed, suppose that a paw consists of triangle xyz and
edge xw such that M ∪ {xw} is a matching. Since M is pawssible, M does not
contain any edge incident with y or z as otherwise M would contain xz or xy,
contradicting the assumption that M ∪{xw} is a matching. Hence M ∪{xw, yz}
is also a matching. This means that the process of adding edges always produces
matchings. So M ∪ Fe is a matching. ��
Theorem 5. A graph G has a C3-transverse matching if and only if every tri-
angle has an edge that is contained in a pawssible matching.

Proof. The necessity is treated in Lemma 3. For sufficiency, suppose that every
triangle has an edge that is contained in a pawssible matching. The assumption
implies in particular that every triangle has an edge e for which Fe is a pawssible
matching.

We apply the following algorithm to construct a set M of edges in G: Initially,
M = ∅. As long asG−M contains a triangle, find an edge e which is contained in
a triangle in G−M and for which Fe is a matching and enlarge M to include Fe.

Clearly, the set M contains at least one edge from each triangle in G. Lemma
4 ensures that M obtained by the algorithm is a matching. Therefore M is a
C3-transverse matching in G. ��
Theorem 5 and its proof suggest a polynomial time algorithm which determines
if a graph G has a C3-transverse matching and constructs one if it exists: We
first compute Fe for each edge e of G as described above. If for some triangle
xyz, none of Fxy, Fyz , Fxz is a matching, then G does not have a C3-transverse
matching according to Theorem 5. Otherwise, the algorithm in the proof of
Theorem 5, which can be implemented in polynomial time, constructs a C3-
transverse matching.

Corollary 6. TM(C3) is polynomial. ��
Next we show how to determine, in polynomial time, whether a graph has a
matching which meets every copy of C3 and of K1,3. It is well-known that a
perfect matching (if exists) can be found in polynomial time (cf. [2,8]). We can
apply such an algorithm to determine if a graph has a matching covering specified
vertices.

Lemma 7. Given a graph G and vertex set S, it can be determined in polynomial
time whether G has a matching covering every vertex of S.
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Proof. We show how to convert the problem in the lemma into the problem of
finding a perfect matching. Let G′ be a (disjoint) copy of G with f : G → G′

an isomorphism. Let G∗ be obtained from G ∪ G′ by adding the edge vf(v) if
v ∈ V (G) − S. If M is a matching of G covering every vertex of S, then M ∪
f(M)∪{vf(v) : v is not covered by M} is a perfect matching of G∗. Conversely,
any perfect matching of G∗ restricts to a desired matching of G. Thus G has a
matching covering every vertex of S if and only if G∗ has a perfect matching. ��
Clearly, no graph of maximum degree ≥ 4 contains a matching which meets
every copy of K1,3. So we may restrict the search of a matching among graphs
of maximum degree at most three (i.e., subcubic graphs).

Proposition 8. There exists a polynomial time algorithm to determine whether
a subcubic graph has a matching that meets every copy of C3 and of K1,3.

Proof. We may assume without loss of generality that G is connected. We show
how to reduce the problem in the proposition to the problem of determining
whether a graph has a matching covering specified vertices, which can be solved
in polynomial time according to Lemma 7. Specifically, we will construct a sub-
cubic graph G′ and a set S ⊆ V (G′) such that G has a desired matching if and
only if G′ has a matching covering S.

Initially, we let G′ = G and let S consist of all vertices of degree 3 in G′. If
G′ has no triangle, then G′ together with S satisfy the desired properties. So
assume that G′ contains triangles. We modify G′ and the set S recursively for
every triangle. Each modification on a triangle results in a subcubic graph and
maintains the property that S consists of all vertices of degree three. Moreover,
any matching covering S in the resulting graph must meet the triangle.

Let abc be a triangle in G′ and a′, b′, c′ be the only other neighbours of a, b, c
respectively, if they exist. If a′, b′, c′ exist and are the same vertex, then the graph
is K4 which has a desired matching. If, without loss of generality, a′ = b′ exist
and are distinct from c′ (if it exists), then we do nothing. Any matching covering
a, b (which are in S) in the resulting graph meets the triangle abc. On the other
hand, if a′, b′, c′ exist and are distinct we contract the triangle, identifying the
vertices a, b, c in G′ and in S. Finally, if a′, b′, c′ are distinct but do not all exist,
we contract the triangle but also remove the identified vertex from S. Clearly, G
has a desired matching if and only if the resulting graph has a desired matching.

By repeating the above reduction for every triangle in G′, we either obtain
K4 (in which case G has a desired matching) or a graph G′ and a set S such
that G has a desired matching if and only if G′ has a matching covering S. ��
Corollary 9. ST(C3) for line graphs is polynomial. ��

3 TM(C4) is NP-Complete

In this section, we show that TM(C4) is NP-complete even when it is restricted
to bipartite graphs.
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Proposition 10. TM(C4) for bipartite graphs is NP-complete.

Proof. We reduce from 4-SAT, which is well-known to be NP-complete [5]. Let
C = {c1, . . . cq} be a set of clauses each consisting of four variables from A =
{a1, a2, . . . , ap, a1, . . . , ap}. A valid truth assignment for C is a function f : A →
{0, 1} such that f(ai) 
= f(ai) and f−1(1) ∩ cj 
= ∅ for every i = 1, . . . p and
j = 1, . . . , q. In other words, ai is the negation of ai and every clause has at
least one true variable. We construct in polynomial time a bipartite graph H
which admits a C4-transverse matching if and only if such a satisfiability function
exists.

There are two main gadgets in our reduction: one corresponding to each vari-
able and one corresponding to each clause. The variable gadgets (see Fig. 1,
upper left) are constructed as follows. Associate each ai, 1 ≤ i ≤ p with a
path wi0w

i
1w

i
2w

i
3w

i
4; three vertices vi1, v

i
2, v

i
3 adjacent to wi0 and wi2, w

i
1 and wi3,

and wi2 and wi4, respectively; three more vertices ui1, ui2, ui3; and nine vertices
vik,1, v

i
k,2, v

i
k,3 each adjacent to the respective uik and vik. It is easy to check

that the gadget admits C4-transverse matchings containing wi0w
i
1 and wi2w

i
3, or

containing wi1wi2 and wi3w
i
4, and that any such matching contains one of those

pairs.
The clause gadgets (see Fig. 1), on the other hand, are somewhat simpler than

the variable gadgets. Each clause cj ∈ C is associated with a C8 : sj1t
j
1s
j
2t
j
2s
j
3t
j
3s
j
4t
j
4

and two additional vertices rj1, r
j
2 adjacent to tj1, t

j
2, t

j
3 and tj2, t

j
3, t

j
4, respectively.

It turns out that this gadget has a C4-transverse leaving any three of si1, s
i
2, s

i
3, s

i
4

uncovered, but no C4-transverse matching leaving all four uncovered.
We complete the construction of H by connecting the clause gadgets to the

variable gadgets. Let cj = {aj1, aj2, aj3, aj4}. If ajk = ai, add two new vertices
xjk, y

j
k and edges xjky

j
k, s

j
ky
j
k, w

i
2y
j
k, w

i
1x
j
k and wi3s

j
k (thus wi1w

i
2w

i
3s
j
2y
j
kx

j
k is a C6:

see Fig. 1). On the other hand, if ajk = ai, do the same thing with the roles of
wi1 and wi3 reversed.

Suppose the resulting graph H has a C4-transverse matching M . We interpret
M as a truth assignment f according to its intersection with each variable gadget,
setting

f(ai) =

{
0 if wi1w

i
2, w

i
3w

i
4 ∈M

1 if wi0wi1, wi2wi3 ∈M
and f(ai) 
= f(ai). We must show that f−1(1) ∩ cj 
= ∅ for all j = 1, . . . q.

The above discussion of the clause gadgets implies that, for a fixed j, the
matching M contains at most three of the four edges sjky

j
k, k = 1, 2, 3, 4; as M

must cover at least one sjk with an edge from the clause gadget associated with cj .
Suppose that ai = ajk ∈ cj . The above discussion of the variable gadgets implies
that neither wi2y

j
k nor wi3s

j
k is in M , and since M covers the C4 : wi2w

i
3s
j
ky
j
k it

must be the case that wi2w
i
3 ∈ M . Consequently, ai ∈ f−1(1) ∩ cj. A similar

argument applies when ai = ajk ∈ cj , showing that ai ∈ f−1(1) ∩ cj . It follows
that f is a satisfiability function.

Conversely, suppose that f is a satisfiability function for the clauses C. Then,
as mentioned above, we can extend



140 R. Churchley, J. Huang, and X. Zhu

Fig. 1. Connecting the gadget corresponding to clause cj = {aj1, aj2, aj3, aj4} (right)
with the gadget corresponding to the variable ai = aj2 (upper left)

M ′ ={wi1wi2, wi3wi4 : f(ai) = 0}
∪ {wi0wi1, wi2wi3 : f(ai) = 1}
∪ {yjksjk : f maps the kth variable in clause cj to 0}

to a Ck-transverse matching of H , using the fact that M ′ leaves at least one
sjk uncovered for every j, and the clause gadget has a Ck-transverse matching
leaving the other three uncovered.

Finally, H has bipartition (X,V (H) \X), where

X = {wi0, wi2, wi4, vik,1, vik,2, vik,3 : i = 1, . . . , p; k = 1, 2, 3}
∪ {xjk, sjk : j = 1, . . . , q; k = 1, 2, 3, 4}.

The construction ofH takesO(p+q) time, so this reduction is polynomial. There-
fore, the C4-transverse matching problem for bipartite graphs is NP-complete.

��

4 TM(C�) is NP-Complete for � ≥ 5

A broadly similar approach can be taken to show that TM(C�) is NP-complete
for each � ≥ 5. As the variable gadgets are slightly different depending on whether
� is odd or even, we treat these cases separately. However, both cases depend on
the following useful structure.

A u-v accordion path consists of edge-disjoint u-v paths ux1w1x2 . . . wkxk+1v,
uy1w1y2 . . . wk−1ykv, and uy1w1y2 . . . wkyk+1v, each having the same (even)
length and sharing every second vertex. An example is given in Fig. 2. The
length of an accordion path is the length (i.e. number of edges) of any of the
paths comprising it.

The importance of accordion paths comes from the following observation:
any matching in a u-v accordion path fails to cover some u-v path of the same
length k. More importantly, if a graph contains such an accordion path and an
additional u-v path P of length �− k, then any C�-transverse matching contains
at least one of the edges of P . We will find this property very useful when
constructing our gadgets.
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Fig. 2. An accordion path of length 6

Proposition 11. TM(C�) for bipartite graphs is NP-complete when � ≥ 6 is
even.

Proof. The reduction is from �
2
-SAT, using a similar strategy as the one in the

previous section. This time, the clause gadget corresponding to each cj is simply
a C� : sj1t

j
1 . . . s

j
�/2t

j
�/2. By definition, any C�-transverse matching of the resulting

graph contains at least one edge of this cycle and hence covers at least one sjk.
The variable gadget corresponding to ai consists of a path wi0w

i
1w

i
2w

i
3w

i
4 and

three disjoint accordion paths of length � − 2 from wi0 to wi2, from wi1 to wi3,
and from wi2 to wi4. The only minimal C�-transverse matchings of this gadget
are {wi0wi1, wi2wi3} and {wi1wi2, wi3wi4}.

We connect the variable gadgets to the clause gadgets as follows. If cj =
{aj1, aj2, aj3, aj4} and ajk = ai, add three new vertices xjk, y

j
k, z

j
k, edges xjky

j
k,

sjky
j
k, w

i
0x
j
k , w

i
1z
j
k, w

i
3s
j
k, and an accordion path of length � − 4 from zjk to yjk.

Likewise, if ajk = ai, do the same except adding edges wi1s
j
k and wi3x

j
k instead

of wi3s
j
k and wi1x

j
k. This process is illustrated in Fig. 3.

As in the previous section, we can interpret a C4-transverse matching M of
the resulting bipartite graph H as a truth assignment f by

f(ai) =

{
0 wi1w

i
2, w

i
3w

i
4 ∈M

1 wi0w
i
1, w

i
2w

i
3 ∈M

and f(ai) 
= f(ai). A similar argument to that in the proof of Proposition 10
shows that f is a satisfiability function for C. Likewise, a satisfiability function
can be used to construct a C�-transverse matching for H. The graph H is easily
seen to be bipartite. ��
When � is odd, we can use a nearly identical reduction and proof to show that
TM(C�) is NP-complete. The graph produced by the reduction is not bipartite
in this case, for any matching in a bipartite graph is C� transverse for odd �.

Proposition 12. TM(C�) is NP-complete when � ≥ 5 is odd.

Proof. We only describe the construction of H from an instance C of (k+1)
2

-
SAT. As in the proof of Proposition 11, the gadget corresponding to each clause
cj is a cycle C� : sj1t

j
1s
j
2t
j
2 . . . s

j
(k+1)/2. Each variable ai corresponds to a path

wi0w
i
1w

i
2w

i
3w

i
4 in such a way that any C�-transverse matching contains either

{wi0wi1, wi2wi3} or {wi1wi2, wi3wi4}; to ensure this property we add vertices ui, vi,
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Fig. 3. Connecting the cycle corresponding to clause cj to the variable gadget corre-
sponding to ai. Dashed lines indicate accordion paths.

edges uiwi2, u
iwi3, u

iwi4 and uivi, an accordion path of length �− 1 from ui to vi,
and accordion paths of length �−3 from wi0, w

i
1, and wi2 to ui. (See Fig. 4). As de-

sired, the minimal C�-transverse matchings of this gadget are {wi0wi1, wi2wi3, uivi}
and {wi1wi2, wi3wi4, uivi}.

The clause gadgets are connected with the appropriate variable gadgets in
nearly the same way as in Proposition 11. If cj = {aj1, aj2, aj3, aj4} and ajk = ai,
add two new vertices xjk, y

j
k, edges xjky

j
k, s

j
ky
j
k, w

i
0x
j
k, w

i
3s
j
k, and an accordion path

of length � − 3 from wi1 to yjk; if ai is negated in cj , replace the edges wi3s
j
k and

wi1x
j
k with wi1s

j
k and wi3x

j
k.

The same argument of Propositions 10 and 11 shows that the resulting graph
H has a C�-transverse matching if and only if the original instance of (�+1)

2
-SAT

has a satisfiability function. When � ≥ 5, (�+1)
2 -SAT is NP-complete. Therefore,

the C�-transverse matching problem is NP-complete. ��

Fig. 4. Connecting the cycle corresponding to cj to the variable gadget for ai. Dashed
lines in the left-hand gadgets indicate accordion paths.
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5 Conclusion and Further Remarks

Theorem 1 follows from Corollary 6 and Propositions 10, 11, and 12. Theorem
2 follows from Theorem 1, Corollary 9, and the fact that ST(C�) for line graphs
is equivalent to TM(C�) for each � ≥ 4.

We have classified in this paper the complexity of the transverse matching
problems for cycles of fixed lengths. Brandstädt [1] proved that determining
whether a graph has a stable set which meets every cycle in the graph is an
NP-complete problem even when it is restricted to bipartite graphs. We remark
that an edge version of this problem is also NP-complete.

Consider the class C of subcubic planar graphs having exactly two two vertices
of degree two. It is an NP-complete problem to determine whether a graph in C
contains a Hamiltonian path joining the two vertices of degree two [6]. Observe
that such a path exists if and only if there is a matching that meets every cycle
in the graph. Hence determining whether a graph in C contains a matching that
meets every cycle in the graph is an NP-complete problem.
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Abstract. Greedy methods for solving set cover problems provide a
guarantee on how close the solution is to optimal. Consequently they
have been widely explored to solve set cover problems arising in the con-
struction of various combinatorial arrays, such as covering arrays and
hash families. In these applications, however, a naive set cover formula-
tion lists a number of candidate sets that is exponential in the size of the
array to be produced. Worse yet, even if candidate sets are not listed,
finding the ‘best’ candidate set is NP-hard. In this paper, it is observed
that one does not need a best candidate set to obtain the guarantee —
an average candidate set will do. Finding an average candidate set can
be accomplished using a technique employing the method of conditional
expectations for a wide range of set cover problems arising in the con-
struction of hash families. This yields a technique for constructing hash
families, with a wide variety of properties, in time polynomial in the size
of the array produced.

1 Introduction

Let X be a finite set of size n, and let B be a collection of subsets of X . A set
cover for the set system (X,B) is a collection B′ ⊆ B so that ∪B∈B′B = X .
Finding the smallest set cover is NP-hard [15], and hence approximation and
heuristic techniques have been developed. Stein [20], Lovász [16], and Johnson
[14] (see also [5]) analyze a greedy algorithm and establish a useful upper bound
on the sizes of set covers that it produces; we review the Stein-Lovász-Johnson
theorem and its constructive proof in Section 2. In terms of the sizes of X and
B, the greedy method that they employ requires only polynomial run time.

The Stein-Lovász-Johnson method has been applied in establishing upper
bounds on the sizes of numerous combinatorial arrays. In these contexts, how-
ever, the admissible sets B are often known implicitly rather than presented ex-
plicitly. Then the size of the input is simply |X |, and the run time of the greedy
algorithm may be exponential in |X |, because |B| may be exponentially large
with respect to |X |. This has limited the practical uses of such greedy methods
for the actual construction of the set covers needed to produce the corresponding

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 144–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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combinatorial arrays. Despite this, the Stein-Lovász-Johnson paradigm has been
used to develop methods whose run time is polynomial in |X |. One method is
to list only a small subset of the sets [7]. Another method employs an implicit
representation of all of the sets; we outline two instances next.

A first example arises with covering arrays. Let N , k, t, and v be positive
integers. Let C be an N × k array with entries from an alphabet Σ of size v; we
typically take Σ = {0, . . . , v − 1}. When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for
1 ≤ i ≤ t, (c1, . . . , ct) is a tuple of t column indices (ci ∈ {1, . . . , k}), and ci �= cj
whenever νi �= νj , the t-tuple {(ci, νi) : 1 ≤ i ≤ t} is a t-way interaction. The
array covers the t-way interaction {(ci, νi) : 1 ≤ i ≤ t} if, in at least one row ρ
of C, the entry in row ρ and column ci is νi for 1 ≤ i ≤ t. Array C is a covering
array CA(N ; t, k, v) of strength t when every t-way interaction is covered. The
goal here is to minimize N for given values of t, k, and v.

Existence of a CA(N ; t, k, v) can be formulated as a set cover problem as
follows. Let K be a set of k column indices, let Σ be a set of size v, and let
X =

(
K
t

) × Σt. Then |X | = (
k
t

)
vt. Form a set B of vk sets as follows. The set

corresponding to the k-tuple (x1, . . . , xk) ∈ Σk contains element {γ1, . . . , γt} ×
(ν1, . . . , νt) (where γi < γi+1 for 1 ≤ i < t) exactly when xγi = νi for 1 ≤ i ≤ t.
Every element of X appears in exactly vk−t sets in B, and every set in B has size(
k
t

)
. By the Stein-Lovász-Johnson theorem, there exists a CA(N ; t, k, v) with

N ≤ vk

vk−t (1 + ln
(
k
t

)
) = vt(1 + ln

(
k
t

)
). A similar result was established in [6]

without recourse to the Stein-Lovász-Johnson theorem. An explicit presentation
of the set system involves listing vk

(
k
t

)
elements, but X contains ‘only’

(
k
t

)
vt

elements.
When v and t are fixed, the size of X is a polynomial in k. Still the number

of sets in B remains exponential in k. In the specific case of covering arrays,
Cohen et al. [6] exploit the fact that we need not list all sets in B. Rather we can
generate sets one at a time, as needed. After some sets have been generated (each
corresponding to rows of a partial covering array), certain elements are covered
by sets already selected and the remaining elements are uncovered. Following
the Stein-Lovász-Johnson paradigm, the next set to be selected should be one
that covers the largest number of previously uncovered elements. There may be
no need to list all possible sets explicitly in order to select one that covers this
maximum number.

Unfortunately, given a specific set of uncovered elements, it is not clear how
to find a set that covers the maximum number efficiently (in time polynomial in
the number of elements). Indeed, in the covering array situation, this problem
is itself NP-hard [3], even when t = 2. For covering arrays, Bryce and Colbourn
[3,4] nevertheless developed an efficient (time polynomial in k for fixed v and
t) algorithm for generating covering arrays with a number of rows meeting that
of the Stein-Lovász-Johnson theorem. To do this, they made two improvements.
First they showed that the same bound is obtained when one chooses a set that
covers the average number of uncovered elements at each stage, rather than the
maximum. Then they developed a ‘density’ method (a form of the ‘method of
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conditional expectations’, to be described in Section 5) to produce a set that
covers at least the average number at each step, and to do so efficiently.

A second example also involves an implicit representation of the sets. A hash
family HF(N ; k, v), A = (aij), is an N × k array; each cell contains one symbol
from a set Σ of v symbols. A perfect hash family PHF(N ; k, v, t) is an HF(N ; k,v),
in which in for every set C of at most t columns, there exists a row ρ for which
|{aρc : c ∈ C}| = |C|. These have been explored for numerous applications
(see [12,21], for example). Although perfect hash families were first studied for
applications in hashing [17], our reasons for interest in them are quite different
(see [9] for the principal applications in which we are interested). Hence this
paper does not discuss the use of such hash families for hashing, despite their
name.

Take K to be a set of k column indices and X =
(
K
t

)
. Form a set B of vk sets,

one for each k-tuple in Σk. The set corresponding to the k-tuple (x1, . . . , xk) ∈
Σk contains element {γ1, . . . , γt} exactly when |{xγi : 1 ≤ i ≤ t}| = t. Then every
element belongs to vk−t · v · (v− 1) · · · · · (v− t+1) sets. Every set covers at most(
k
t

)
elements, and hence by the Stein-Lovász-Johnson theorem we find that N ≤

1+ vt

v(v−1)···(v−t+1)
ln
(
k
t

)
. Once again this yields an exponential time method. But

again by showing that it suffices to find a set that covers an average number of
uncovered elements and developing a method of conditional expectations to find
such a set, Colbourn [8] developed an efficient (time polynomial in k for fixed
t) algorithm for for the construction of perfect hash families with a number of
rows meeting the given bound.

Unfortunately, in each case the analysis is specific to the problem at hand:
Different proofs are employed both to show that it suffices to select a set for
inclusion that covers at least the average number of uncovered elements, and to
show that such a set can be found in time polynomial in |X |. Here we establish
a substantial generalization of both methods.

In Section 2, we review the statement and proof of the Stein-Lovász-Johnson
theorem. Then we demonstrate that it always suffices to choose a set that covers
the average number of elements in order to achieve the bound in the Stein-
Lovász-Johnson theorem. This observation, while quite easy, seems not to have
been explicitly stated or used in the literature. In Section 3, we describe numer-
ous variants of hash families. Then in Section 4 develop a greedy construction
method for these many variants. In Section 5, we apply the method of conditional
expectations to make the construction of hash families efficient.

2 The Stein-Lovász-Johnson Paradigm

A greedy strategy for set cover problems has been widely used, starting with
work of Stein [20], Lovász [16], and Johnson [14]. We give (one version of) the
algorithm in Figure 1.

The size of the set cover can be viewed either as the smallest value of i for
which we encounter Yi = 0, or it can be viewed as

∑α
i=0 �i, taking �i = |Mi|. We

consider the latter expression. First, ni−1 = ni−i�i, and hence �i = (ni−ni−1)/i.
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Greedy Set Cover(X,B): (|X| = n; |B| = c)
Set r(x) = |{B : x ∈ B ∈ B}| for x ∈ X
Set α = max{|B| : B ∈ B} and r = min{r(x) : x ∈ X}
SetMj = ∅ for 0 ≤ j ≤ α
Set D0 = B and Y0 = X
Set nα = |X|
Set L = ∅ and i = 0
while Yi �= ∅ do

Set γi = |Di|; ρi = |Yi|; and αi = max{|B| : B ∈ Di}
If i > 0 and αi < αi−1 set nαi = |Yi|
Choose a set Di ∈ Di for which |Di| ≥ αi
Set L = L ∪ {Di}
Set Mαi =Mαi ∪ {Di}
Set Yi+1 = Yi \Di

Set Di+1 = {B \Di : B ∈ Di, B �⊆ Di}
Set i = i + 1

Set n0 = 0
return L

Fig. 1. The Greedy Algorithm

Because in each set system (Xi,Bi), every element appears in at least r sets and
every set has size at most i, rni ≤ ic. Moreover,

� =
∑α
i=1 �i =

∑a
i=1

ni−ni−1
i

= nα

α
+ nα−1

α(α−1)
+ nα−2

(α−1)(α−2)
+ · · ·+ n1

2·1 − n0

Combining these, we obtain � ≤ n
α + c

r

(∑α
i=2

1
i

)
, which yields the bound in the

theorem of Stein [20], Lovász [16], and Johnson [14]:

Theorem 1. [Stein-Lovász-Johnson] Let (X,B) be an set system with |X | =
n and |B| = c so that |B| ≤ α for every B ∈ B and |{B : x ∈ B ∈ B}| ≥ r for
every x ∈ X. Then there is a collection B′ ⊆ B forming a set cover with � sets
for some � ≤ n

α
+ c

r
lnα ≤ c

r
(1 + lnα).

A second analysis of Greedy Set Cover uses the fact that it terminates when
Yi = ∅, or equivalently when ρi < 1. An element xj of Yi is not a member of
∪i−1
j=0Dj , and hence r(xj) is unchanged by the deletion of the elements already

covered. Because r(xj) ≥ r for all xj ∈ Yi, and γi ≤ c, the size of Di is at least
rρi

c . Then ρi+1 ≤ ρi − rρi

c = ρi
c−r
c . Because this holds for every i > 0, we have

that ρi ≤ n
(
c−r
c

)i. We determine the smallest value of i for which n
(
c−r
c

)i
< 1.

Equivalently, n <
(

c
c−r
)i

. Taking logarithms base c/(c − r) of both sides, we
have that logc/(c−r) n < i.

This establishes:

Theorem 2. Let (X,B) be an set system with |X | = n and |B| = c so that
r(x) ≥ r for every x ∈ X . Then there is a collection B′ ⊆ B forming a set cover
with � sets for some � ≤ 1 + lnn

ln c/(c−r) .
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This improves the constant in the bound over that of the Stein-Lovász-Johnson
theorem when ln c

c−r lnα ≥ c−r
c lnn, but yields a weaker bound in other cases.

This apparent discrepancy is an artifact of the analyses, not the algorithms.
When the set system (X,B) is provided as an explicit listing of the elements

and sets, the running time of either method is a polynomial in the size of the
input. Careful examination shows that the only operations that consider all of
the sets in Di are the ones to select Di, and to remove all elements of Di to
form Di+1. To obtain an algorithm whose running time is polynomial in |X |, we
cannot hope to examine (or even list) all sets in B. Our first task, then, is to
simplify the selection of the setDi. In fact, we show that selecting a set of average
size yields the same results. At the same time, we equip B with a probability
distribution, so that Pr[B] is the probability that set B ∈ B is selected.

Average Set Cover(X,B): (|X| = n; |B| = c)
Set r(x) = c

∑
{B∈B:x∈B} Pr[B] for x ∈ X

Set r = min{r(x) : x ∈ X} and α =
⌈∑

x∈X r(x)

c

⌉
SetMj = ∅ for 0 ≤ j ≤ α
Set D0 = B and Y0 = X
Set nα = |X|
Set L = ∅ and i = 0
while Yi �= ∅ do

Set γi = |Di|; ρi = |Yi|; and αi =
⌈∑

x∈Yi
r(x)

c

⌉
If i > 0 and αi < αi−1 set nαi = |Yi|
Choose a set Di ∈ Di for which |Di| ≥ αi and Pr[Di] > 0
Set L = L ∪ {Di}
Set Mαi =Mαi ∪ {Di}
Set Yi+1 = Yi \Di

Set Di+1 = {B \Di : B ∈ Di, B �⊆ Di}
Set i = i + 1

Set n0 = 0
return L

Fig. 2. The Average Algorithm

Average Set Cover, shown in Figure 2, is essentially the same method –
with one important difference. Each set selected is only required to cover the
average number of as yet uncovered elements of X rather than the maximum.
Moreover, this average is weighted by the initial probability distribution selected
on B.

The analyses of Greedy Set Cover carry through for the average method
as well. For the first, we employed the fact that ni−1 = ni − i�i, and hence �i =
(ni−ni−1)/i; and the fact that rni ≤ ic. For the average method, ni−1 ≤ ni−i�i,
and hence �i ≤ (ni − ni−1)/i; and rni ≤ ic because i = 	 rni

c 
. For the second,
we employed only the fact that |Di| ≥ rρi

c
, which holds for the average method

as well.
Hence we have shown that
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Theorem 3. Let (X,B) be a set system with |X | = n and |B| = c, for which
Pr[B] is the probability that B ∈ B is selected. Let r(x) = c

∑
{B∈B:x∈B} Pr[B]

and r = min{r(x) : x ∈ X}. Let β =
⌈∑

x∈X r(x)

c

⌉
. Then Average Set Cover

produces a set cover B′ ⊆ B with � sets, with � ≤ min
(
c
r (1 + lnβ), 1 + lnn

ln c/(c−r)
)
.

When the probability distribution is uniform (and in many other cases), β ≤ α,
and hence Theorem 3 improves on Theorem 1. This may come as a surprise,
because the original Stein-Lovász-Johnson method selects a largest set while the
average method may select a smaller one. As we have noted, the discrepancy
arises from the algorithm analysis, not from the algorithm itself. In practice, it
is quite possible that selecting the maximum coverage yields a better result in
the end that does selecting the average coverage. Nevertheless, Theorem 3 shows
that the conclusion of Theorem 1 can be obtained by selecting the average.

Whether the sets are listed explicitly or not, one potential benefit of selecting
a set with average rather than maximum coverage is that the average can be
often be easily computed or bounded, and then finding any set with at least that
average coverage suffices. We explore this next, for a broad class of combinatorial
construction problems.

3 Variants of Hash Families

Let v = (v1, . . . , vN ) be a tuple of positive integers. A hash family HF(N ; k,v),
A = (aij), is an N × k array; each cell contains one symbol, and for 1 ≤ ρ ≤
N , |{aρj : 1 ≤ j ≤ k}| ≤ vρ. When v1 = · · · = vN = v (i.e., the array is
homogeneous), the result can be treated as an N × k array on v symbols; we
employ the notation HF(N ; k, v). We permit heterogeneity here (i.e. that vi and
vj are not necessarily equal when i �= j), for two reasons. First, heterogeneity
is useful in certain applications of hash families in so-called column replacement
techniques [9,10,11]. Secondly, and more importantly, when we build a hash
family one row at a time by the Stein-Lovász-Johnson strategy, it turns out to be
an easy matter to change the number of permitted symbols in each row (by using
a different choice of Σ for each row). Naturally this renders the determination of
the number of rows needed much more complicated, but it in no way complicates
the algorithm for the construction of the hash family.

Many variants of perfect hash families have been studied before. We mention
a few, in order to indicate the types of requirements placed on the hash family.
An HF(N ; k,v), A = (aij), is

perfect of strength t: denoted PHF(N ; k,v, t), when for every set C of at most
t columns, there exists a row ρ for which |{aρc : c ∈ C}| = |C| (see [1,21],
for example);

(w1, w2, . . . , ws)-separating: denoted SHF(N ; k,v, (w1, w2, . . . , ws)), if when-
ever C is a set of

∑s
i=1 wi columns and C1, C2, . . . , Cs is a partition of C

with |Ci| = wi for 1 ≤ i ≤ s, there exists a row ρ for which aρx �= aρy
whenever x ∈ Ci, y ∈ Cj and i �= j (see [2,22], for example).
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W-separating: denoted SHF(N ; k,v,W) for W a set of tuples of nonnegative
integers of the form (w1, w2, . . . , ws), if whenever (w1, w2, . . . , ws) ∈ W , C
is a set of

∑s
i=1 wi columns, and C1, C2, . . . , Cs is a partition of C with

|Ci| = wi for 1 ≤ i ≤ s, there exists a row ρ for which aρx �= aρy whenever
x ∈ Ci, y ∈ Cj and i �= j (see [22], for example).

(t, s)-distributing: denoted DHF(N ; k,v, t, s), if it isW-separating withW con-
taining every tuple (w1, . . . , ws) of nonnegative integers with

∑s
i=1 wi = t.

The definition ofW-separating encompasses the remaining three, so we can treat
this general situation. On occasion, we wish to further restrict the choice of rows
that can be employed to provide the desired separation. There are at least two
natural ways to do this.

Let d = (d1, . . . , dN ) and m = (m1, . . . ,mN ) be tuples of positive integers.
An HF(N ; k,v), A = (aij), is

W-separating and d-scattering: if whenever (w1, w2, . . . , ws) ∈ W, C is a set
of
∑s

i=1 wi columns, and C1, C2, . . . , Cs is a partition of C with |Ci| = wi
for 1 ≤ i ≤ s, there exists a row ρ for which aρx �= aρy whenever x ∈ Ci,
y ∈ Cj and i �= j and the multiset {aρx : x ∈ C} contains no symbol more
than dρ times.

W-separating and m-strengthening: if whenever (w1, w2, . . . , ws) ∈ W, C
is a set of

∑s
i=1 wi columns, and C1, C2, . . . , Cs is a partition of C with

|Ci| = wi for 1 ≤ i ≤ s, there exists a row ρ for which aρx �= aρy whenever
x ∈ Ci, y ∈ Cj and i �= j and the multiset {aρx : x ∈ C} contains no more
than mρ different symbols.

A justification of the need for scattering or strengthening hash families is be-
yond the scope of this paper. Suffice it to say that O’Brien [19] proposed the
scattering requirement and that strengthening generalizes the notion of (t, s)-
partitioning hash families (see [9]). There is evidently a wide variety of possible
conditions that might be imposed on the hash family to be constructed, and
we have surely not exhausted them here. To treat these and other variants, we
proceed as follows. Let C = {γ1, . . . , γt} be a set of columns. In constructing
the ρth row, an alphabet Σρ of size vρ is available. A requirement is a partition
of C into sets C1, . . . , Cs. An assignment A ∈ Σt

ρ for C is a determination of a
value for each column in C. A constraint for requirement R is a logical predicate
Pρ(A) : Σt

ρ �→ {true, false}. In essence, a constraint specifies which selections
of symbols on the columns of C meet the requirement. A constraint could spec-
ify, for example, that a certain (w1, . . . , ws)-separation is accomplished, that no
more than mi symbols are used on these t columns, or that no symbol occurs
more than di times. Indeed it could involve any combination of these, and a
variety of other properties. The requirements in constructing a hash family are
fixed at the outset, but the constraints on meeting each requirement may vary
depending on which row is being selected. Hence we employ constraints Pρ(A)
for every assignment A to every requirement R, for 1 ≤ ρ ≤ N , in forming the
hash family.

From Theorem 3, one can immediately deduce bounds on the sizes of hash
families in a general setting. We suppose that the candidate rows are selected
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uniformly at random, and that the hash family needed is homogeneous with v
symbols. Take c = vk and r = μvk in Theorem 3 to establish:

Theorem 4. An HF(N ; k, v) satisfying q requirements exists whenever

N ≥ min
(

1
μ

(1 + ln β), 1 +
ln q

ln 1/(1− μ)

)
,

taking δR to be the ratio of the number of assignments A to R that satisfy the
constraint for R to the total number of assignments to R, μ to be the minimum
of δR over all requirements R, and β to be the integer ceiling of the sum of δR
over all requirements R.

In Theorem 4, it may be puzzling that the bound does not appear to involve k.
However, when requirements are placed on all of the k columns, the number q of
requirements must be a function of k, and β is a function of q. The quantities in
Theorem 4 can often easily be calculated; we give one example. Suppose that vi =
v = 6, di = 3, and mi = 3 for 1 ≤ i ≤ N . Suppose that W = {(1, 4), (2, 3)}, and
our objective is to produce a W-separating, d-scattering, and m-strengthening
HF(N ; k, 6). Write K = k(k−1)(k−2)(k−3)(k−4). There are

(
k
1

)(
k−1
4

)
= 1

24K

requirements for the (1,4) separation, and
(
k
2

)(
k−2

3

)
= 1

12
K for the (2,3) separa-

tion. Each has 65 = 7776 assignments. A (1,4) separation R has 840 separations
that meet the constraint, so δR = 35

324 . A (2,3) separation R has 510 separations
that meet the constraint, so δR = 85

1296
. Then μ = 85

1296
, and β = 155

15552
K . Then

the hash family exists provided that N ≥ min
(

1296
85

(1 + ln 155K
15552

), 1 + ln K
8

ln 1296
1211

)
.

4 Constructing a Hash Family

Following the paradigm of Average Set Cover, we proceed as follows. The
set X is the set of all requirements, and N is (an upper bound on) the number
of rows permitted. Then Average Hash Family(X,N, {Pρ(A,R)}), given in
Figure 3, produces the desired hash family, or may fail if N is too small.

Average Hash Family requires that we repeatedly select a next row for
inclusion. For a requirement R ∈ Xρ, which is a set C = {γ1, . . . , γt} of columns
and a partition of C into sets C1, . . . , Cs, and a candidate row x = (x1, . . . , xk) ∈
Σk
ρ , R is covered by the row exactly when Pρ(Ax,R) holds for the assignmentAx,R

in which column γi contains symbol xγi for 1 ≤ i ≤ t. Select Average Row
must find a row x ∈ Σk

ρ for which Pr[x] > 0 and |R ∈ Xρ : Pρ(Ax,R)}| is at least
the average over all choices of row y.

Suppose that we simply selected the row x at random (according to the
probability distribution) from Σk

ρ . Then Pr[x] > 0, and the expectation of
|R ∈ Xρ : Pρ(Ax,R)}| is precisely the desired average,

∑
x∈Σk

ρ

Pr[x] ·
⎛
⎝ ∑
R∈Xρ

Pρ(Ax,R)

⎞
⎠ =

∑
R∈Xρ

⎛
⎝ ∑

x∈Σk
ρ

Pr[x] · Pρ(Ax,R)

⎞
⎠ ,

treating Pρ(Ax,R) as a 0,1-indicator variable. This yields a randomized algorithm
for producing hash families, but in some cases we can do better.
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Average Hash Family(X, N, {Pρ(A, R)})
// {Pρ(A, R)} provides a predicate for each row ρ, each R ∈ X,
// and each assignment A to R
Set X1 = X and L = ∅
for ρ from 1 to N do

y = Select Average Row(ρ, Xρ, {Pρ(A,R)})
Set L = L ∪ {y}
Set Xρ+1 = Xρ \ {R ∈ Xρ : Pρ(Ay,R)}

if XN+1 = ∅ return L else return fail

Fig. 3. The Average Algorithm for Hash Families

5 The Method of Conditional Expectations

It suffices to calculate the expectation of Pρ(Ax,R) for each R ∈ Xρ in order
to determine the average sought. Nevertheless, we must also find a row x ∈ Σk

ρ

that yields at least this average. To do this, we start with a row in which no
entries have been chosen, and repeatedly choose one coordinate whose entry is
unspecified in which to choose an entry. Our objective is to ensure that at each
stage the expectation of finding a row that covers at least the average does not
decrease. In other words, we want the conditional expectation, based on the
selection of the entries already made, never to decrease. Hence we employ the
fundamental idea in the method of conditional expectations [13,18].

We must deal with rows in which only some of the entries have been chosen.
Suppose that (x1, . . . , xk) ∈ (Σρ ∪ {
})k. We interpret an entry in Σρ to mean
that the entry has been chosen, while the entry 
 means that the entry has
not yet been chosen. A row (y1, . . . , yk) ∈ Σk

ρ is a completion of (x1, . . . , xk) if
xi = yi or xi = 
 for 1 ≤ i ≤ k. A row with s 
 entries has vsρ completions, and
these are denoted by Bx. For two rows x and y, the probability that y occurs
given that x occurs, Pr[y|x], is 0 whenever yi �= xi but xi ∈ Σρ; otherwise
it is (

∑
z∈By

Pr[z])/(
∑

z∈Bx
Pr[z]). The expected coverage ec(x) for a row x =

(x1, . . . , xk) ∈ (Σρ ∪ {
})k is
∑

z∈Bx
Pr[z|x] · (∑R∈Xρ

Pρ(Az,R)).
A row (y1, . . . , yk) ∈ (Σρ ∪ {
})k is a j-successor of (x1, . . . , xk) if, for some

1 ≤ j ≤ k, it holds that xj = 
 and yj ∈ Σρ, and that xi = yi for 1 ≤ i ≤ k when
i �= j. A row having a 
 entry in the jth position has exactly vρ j-successors.

Letting χ(R,x) be the probability that a completion z of x satisfies the predi-
cate Pρ(Az,R), we have ec(x) =

∑
R∈Xρ

χ(R,x). The selection of a row is accom-
plished by Select Average Row in Figure 4, when furnished with a routine
Expected Completions that calculates χ(R,x).

When r(i−1) has yγ = 
, and y(1), . . . ,y(vρ) are its γ-successors, ec(r(i−1)) =∑vρ

i=1 Pr[y(i)|x]·ec(y(i)). Hence ec(r(i−1)) ≤ ec(r(i)) for 1 ≤ i ≤ k. Now ec(r(0)) is
the expected number of elements of X covered by a row selected at random from
Σk
ρ according to the probability distribution. Moreover, ec(r(k)) is the actual

number of elements of X covered by the row r(k), which therefore covers at least
the expected number.
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Select Average Row(ρ, Xρ, {Pρ(A,R)})
// {Pρ(A,R)} provides a predicate for each R ∈ X and assignment A to R

Set r(0) = {�}k
for i from 1 to k do

Choose an coordinate γ for which r
(i−1)
γ = �

Set maxcov = 0 and choice = ∅
for σ ∈ Σρ

Let z be the γ-successor of r(i−1) with zγ = σ

if Pr[z|r(i−1)] > 0
Set cov = 0
for R ∈ Xρ

cov = cov + Expected Completions(ρ, R,z)
if cov ≥ maxcov {maxcov = cov; choice = z}

Set r(i) = choice

return r(k)

Fig. 4. The Average Algorithm for Hash Families: Selecting a Row

It remains to compute χ(R,x) by Expected Completions for each require-
ment R and an arbitrary x ∈ (Σρ∪{
})k. While this can be carried out for some
different probability distributions, in Figure 5 we treat only the case when the
probability distribution is uniform.

Expected Completions(ρ,R,x)
// for the uniform distribution
// R is the set C = {γ1, . . . , γt} of columns and the partition C1, . . . , Cs
Let F = {γ ∈ C : xγ = �} and F = C \ F
Set count = 0

for each assignment A = {aγi : 1 ≤ i ≤ t} with aγi = xγi for γi ∈ F
and aγi ∈ Σρ for γi ∈ F

if Pρ(A, R) then count = count + 1

return count · (vρ)−|F |

Fig. 5. The Average Algorithm for Hash Families: Expected Completions

Expected Completions relies on the fact whether or not a completion z
of x satisfies predicate Pρ(Az,R) depends only on the assignment to the coor-
dinates C specified by R. Because every completion is equally probable, once
the assignment to coordinates of C is specified, either every completion satisfies
the predicate or none does. Therefore we can just treat each assignment to the
coordinates of C.

The routines in Figures 3, 4, and 5 implement the method of Figure 2 for
a wide variety of hash families, producing a hash family of size no larger than
that produced by applying the average algorithm directly. The improvement is
that, by using a method of conditional expectations, the algorithm has run-
ning time polynomial in the number of requirements rather than the number of
sets, when the (maximum) number of symbols v and the strength t are fixed.
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To see this, Expected Completions takes time O(vt) = O(1). Then when
there are r requirements, Select Average Row takes time O(k · v · r), but
r is bounded by (kv)t, so the time is O(kt+1). When N rows are produced,
Average Hash Family takes time O(N · kt+1). By Theorem 4, N is O(log k)
when v and t are fixed, and hence the running time is indeed a polynomial in k.
(Surprisingly, the large constants suppressed in this analysis do not render the
method impractical, as evidenced by [4,8]. But that is a story for another day.)

6 Conclusion

Being less greedy in solving set cover problems does not negate the guarantee
on the size of the set cover obtained. Indeed, for general set cover problems, at
each stage selecting a set that covers at least the average number of uncovered
elements suffices. When all sets are listed explicitly, and all can be examined,
finding a set with average coverage is not substantially easier than finding one
with maximum coverage. However, if candidate sets are generated from a known
probability distribution, finding – with high probability – a set with average cov-
erage is an easy task. Focussing on set cover problems arising in the construction
of hash families, we have shown that when the probability distribution is uni-
form, finding a set with average coverage admits an algorithm whose running
time is polynomial in the size of the set cover produced.

The method developed provides not only useful bounds on the sizes of hash
families, but also an efficient algorithm for their construction. We expect that
this method will prove to be a practical one, in view of the similar but simpler
method previously developed for perfect hash families [8].

Acknowledgments. Thanks to Daniel Horsley, Chris McLean, Peyman Nayeri,
Devon O’Brien, and Violet Syrotiuk for helpful discussions. Thanks particularly
to Daniel for suggesting the use of general probability distributions.
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13. Erdős, P., Selfridge, J.L.: On a combinatorial game. J. Combinatorial Theory Ser.
A 14, 298–301 (1973)

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9, 256–278 (1974)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum, New York (1972)

16. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete
Math. 13(4), 383–390 (1975)

17. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer,
Berlin (1984)

18. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
Cambridge (1995)

19. O’Brien, D.J.: Exploring hash families and their applications to broadcast encryp-
tion. Master’s thesis, Arizona State University (2011)

20. Stein, S.K.: Two combinatorial covering theorems. J. Combinatorial Theory Ser.
A 16, 391–397 (1974)

21. Stinson, D.R., Tran Van Trung, Wei, R.: Secure frameproof codes, key distribu-
tion patterns, group testing algorithms and related structures. J. Statist. Plann.
Infer. 86, 595–617 (2000)

22. Stinson, D.R., Wei, R., Chen, K.: On generalized separating hash families. J.
Combinat. Theory (A) 115, 105–120 (2008)



2-Layer Right Angle Crossing Drawings�

Emilio Di Giacomo1, Walter Didimo1, Peter Eades2, and Giuseppe Liotta1
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Abstract. A 2-layer drawing represents a bipartite graph so that the vertices of
each partition set are points of a distinct horizontal line (called a layer) and the
edges are straight-line segments. In this paper we study 2-layer drawings where
all edge crossings form right angles. We characterize which graphs admit this type
of drawing, provide linear-time testing and embedding algorithms, and present a
polynomial-time crossing minimization technique. Also, for a given graph G and
a constant k, we prove that it is NP-complete to decide whether G contains a
subgraph of at least k edges having a 2-layer drawing with right angle crossings.

1 Introduction

The study of drawings of graphs where any two crossing edges form crossing angles
that are not too small is among the emerging topics in Graph Drawing. This interest is
motivated by recent experiments of Huang et al. [15,16], who show that crossing angles
guarantee good readability properties only if they are “large enough” (approximatively
larger than π

3
). These experiments therefore imply that non-planar drawings of graphs

should not only be optimized in terms of classical parameters such as the number of
edge crossings and the number of bends along the edges, but also in terms of the mini-
mum angle formed by any two crossing edges.

We study straight-line Right Angle Crossing drawings (or RAC drawings for short).
In a RAC drawing any two crossing edges form π

2
crossing angles. RAC drawings have

been first introduced in [4], where it is proved that straight-line RAC drawings with n
vertices have at most 4n−10 edges, which is a tight bound. Straight-line RAC drawings
are also studied by Dujmović et al. [7], who give an alternative proof of the 4n − 10
bound. The relationship between straight-line RAC drawings with 4n − 10 edges and
1-planar graphs is studied in [10]. Angelini et al. [2] investigate straight-line upward
RAC drawings of digraphs. Van Kreveld [21] studies how much better a straight-line
RAC drawing of a planar graph can be than any straight-line planar drawing of the same
graph. Complete bipartite straight-line RAC drawable graphs are studied in [5].

Despite the growing literature about straight-line RAC drawings, no algorithms for
computing such drawings have been described so far. Existing papers either establish
combinatorial properties of RAC drawings (they typically address Túran-type ques-
tions) or compute RAC drawings with bends along the edges. Also, deciding whether a

� Work supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 156–169, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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graph admits a straight-line RAC drawing is NP-hard in the general case [3] and it is
not even known if this problem is in NP .

In this paper we present the first efficient algorithms for straight-line RAC drawings.
We focus on bipartite graphs and both consider the problem of deciding whether a
bipartite graph admits a straight-line RAC drawing and the problem of computing one in
the positive case. We also study how to efficiently compute straight-line RAC drawings
of bipartite graphs with the minimum number of edge crossings. We adopt the widely
accepted 2-layer drawing paradigm, in which the vertices of each partition set lie on a
distinct horizontal layer. A limited list of papers on 2-layer drawings of bipartite graphs
includes [9,13,17,20]; for more references see also [18]. A 2-layer RAC drawing is a
2-layer straight-line drawing with right angle crossings. An overview of our results is
given below (n denotes the number of vertices of the input graph).

– We characterize 2-layer RAC drawable graphs (Theorem 6). This is the counter-
part for RAC drawings of the characterization of 2-layer planar drawings (see,
e.g., [11,14,19]). Our characterization implies that 2-layer RAC drawings have at
most 1.5n− 2 edges, which is a tight bound (Corollary 1); we also give an O(n)-
time algorithm that tests whether a graph has a 2-layer RAC drawing and, if so, it
computes one.

– We show an O(n2 logn)-time algorithm to compute a 2-layer RAC drawing with
the minimum number of edge crossings (Theorem 7). The algorithm models the op-
timization problem as the one of computing a flow of minimum cost on a suitable
network. We recall that computing a 2-layer drawing of a graph with the mini-
mum number of crossings is NP-hard and that heuristics [9], approximation algo-
rithms [13], FPT algorithms [6,8], and exact methods [17,20] for this problem have
been described.

– Finally, we study the complexity of computing the maximum 2-layer RAC draw-
able subgraph. We prove that for a given bipartite graph G and for a given k, it is
NP-complete to decide whether G has a 2-layer RAC drawable subgraph with at
least k edges (Theorem 8). This extends to RAC drawings the NP-completeness
result for the maximum 2-layer planar subgraph problem [12].

2 Geometry and Combinatorics of 2-Layer RAC Drawings

Let G = (V1, V2, E) be a bipartite graph. A 2-layer drawing of G has a fan crossing
if there exist two adjacent edges that are both crossed by a third edge. For a given 2-
layer drawing of G, denote by �i the horizontal line on which the vertices of Vi are
drawn (i = 1, 2). We always assume that �1 is above �2. Two 2-layer drawings of G are
equivalent if they have the same left-to-right order πi of the vertices of Vi (i = 1, 2)
along �i. A 2-layer embedding is an equivalence class of 2-layer drawings and it is
described by a pair of linear orderings (i.e., permutations) γ = (π1, π2) of the vertices
in V1 and V2, respectively. If Γ is a drawing within class γ, we also say that γ is the
embedding of Γ . Let Γ1 and Γ2 be 2-layer drawings of G with the same embedding γ.
Two edges e and e′ cross in Γ1 if and only if they cross in Γ2. We say that embedding γ
has a crossing at edges e and e′. Also, three edges e, e′ and e′′ form a fan crossing in Γ1
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if and only if they form a fan crossing in Γ2. Correspondingly, we say that embedding
γ has a fan crossing at edges e, e′, and e′′. Let γ = (π1, π2) be a 2-layer embedding of
a bipartite graph G. The first (last) vertex of π1 and the first (last) vertex of π2 are the
leftmost vertices (rightmost vertices) of γ.

The following result proves that the problem of computing a 2-layer RAC drawing
of a bipartite graph G = (V1, V2, E) can be studied in purely combinatorial terms as
the one of choosing a suitable pair (π1, π2) of permutations of the vertices in V1 and
V2, disregarding details about the exact coordinates of the vertices.

Theorem 1. Let G be a connected graph with n vertices. G is 2-layer RAC drawable if
and only if it has a 2-layer embedding without fan crossings. Also, if γ is a 2-layer em-
bedding of G without fan crossings, there exists an O(n)-time algorithm that computes
a 2-layer RAC drawing of G with embedding γ.

Sketch of Proof: The proof is by construction. The drawing algorithm assigns real co-
ordinates to the vertices of G in such a way that the vertex ordering defined by γ on
the two layers is preserved and each crossing edge has either 45-degree or -45-degree
slope. Crossing edges have opposite slopes, so to form orthogonal crossings. ��
A 2-layer embedding without fan crossings is a 2-layer RAC embedding. Based on
Theorem 1, the problem of characterizing 2-layer RAC drawable graphs is equivalent
to characterizing which graphs have a 2-layer RAC embedding. Note that, a graph is 2-
layer RAC drawable if and only if its connected components are 2-layer RAC drawable.
Hence, from now on we assume to work on connected graphs. Given two vertices a and
b of a path, we will denote by d(a, b) the distance between a and b on the path, that is,
the number of edges from a to b along the path. Given a vertex v, the degree of v is the
number of edges incident to v and is denoted as deg(v).

3 Characterization and Testing Algorithms

We start by giving an intuition of the characterization of 2-layer RAC drawable graphs.
In the more general case, a 2-layer RAC drawable graph consists of a set of non-trivial
biconnected components1 and a set of tree components that are ordered along the two
layers. Such an order is not, in fact, a total order because there can be some overlap be-
tween different tree components. For example, Fig. 1(b) shows a 2-layer RAC drawing
of the graph G depicted in Fig. 1(a). G consists of two non-trivial biconnected compo-
nents and five tree components (highlighted in Fig. 1(c)) that are ordered left-to-right
along the two layers in the drawing; as shown in Fig. 1(d), the left-to-right order is not
a total ordering because in some cases the tree components overlap as it happens for
components T1 and T2 and for components T4 and T5 in the drawing of Fig. 1(b).

In what follows we first characterize biconnected 2-layer RAC drawable graphs
(Section 3.1), and then 2-layer RAC drawable trees (Section 3.2). These two charac-
terizations will then be combined to characterize 2-layer RAC drawable graphs. The
combination, however, is not straightforward because the drawings of the different
components of G must satisfy additional properties in order to be assembled together.

1 A trivial biconnected component consists of a single edge.
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Fig. 1. (a) A graph G. (b) A 2-layer RAC drawing Γ of G. (c) The biconnected components and
the tree components of G. (d) The biconnected components and the tree components of G in Γ .
(e) A graph G′. (f) G′ does not admit a 2-layer RAC drawing.

In particular, it must be possible to order the components along the two layers in such
a way that: (i) Each component shares vertices only with the components that imme-
diately precede and follow it and with the components that overlap with it; (ii) The
vertices shared by two consecutive components C1 and C2 (in this left-to-right order)
must be the rightmost for C1 and the leftmost for C2. For example, the graph G′ of
Fig. 1(e) has a biconnected component (isomorphic to B1 in Fig. 1(c)) and a tree com-
ponent (consisting of edge (3, 9)). Both components are 2-layer RAC drawable, but the
biconnected component does not admit a 2-layer RAC drawing with the vertex 3 as
leftmost or rightmost vertex; as a consequence whatever the position of vertex 9 will
be, it is not possible to obtain a 2-layer RAC drawing of G′ (see Fig. 1(f)). For this rea-
son, Sections 3.1 and 3.2 contain: (i) the characterizations of biconnected 2-layer RAC
drawable graphs and 2-layer RAC drawable trees; (ii) the characterization of bicon-
nected graphs that are 2-layer RAC drawable in such a way that two specified edges are
the leftmost and the rightmost ones; (iii) the characterization of trees that are 2-layer
RAC drawable so that two specified leaves are the leftmost and the rightmost ones.

3.1 Characterization of Biconnected Graphs

Let G be a biconnected bipartite graph with at least two edges, and let e and e′ be two
independent edges of G. If there exists a 2-layer RAC embedding γ of G such that the
end-vertices of e are the leftmost vertices of γ and the end-vertices of e′ are the right-
most vertices of γ, we say that γ is a 2-layer RAC embedding of G with respect to e
and e′. Clearly, edges e and e′ cannot cross any edge in γ. A 2-layer RAC drawing with
embedding γ is a 2-layer RAC drawing with respect to e and e′. If G admits such a
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drawing, we say that G is 2-layer RAC drawable with respect to e and e′ (see Fig. 2(b))
A biconnected bipartite graph is a ladder if it consists of two paths of the same length
〈u1, u2, . . . , un

2
〉 and 〈v1, v2, . . . , vn

2
〉 plus the edges (ui, vi) (i = 1, 2, . . . , n2 ) (see

Fig. 2(a)). The edges e = (u1, v1) and e′ = (un
2
, vn

2
) are the extremal edges of the

ladder. Theorem 2 characterizes those biconnected graphs that are 2-layer RAC draw-
able with respect to two independent edges. Theorem 3 is the counterpart of Theorem 2
without any fixed extremal edges.

v1 v2 v3 v4 v5

u1 u5u3 u4u2

e e′

(a)

u1 v2 u3 v4 u5

v1 u2 v3 u4 v5

e′e

(b)

Fig. 2. (a) A ladder G. (b) A 2-layer RAC drawing of G with respect to e and e′.

Theorem 2. Let G be a biconnected graph and let e and e′ be two independent edges
of G. G is 2-layer RAC drawable with respect to e and e′ if and only if it is a spanning
subgraph of a ladder with extremal edges e and e′. Also, if G has n vertices, there
exists an O(n)-time algorithm that tests whetherG admits a 2-layer RAC drawing with
respect to e and e′ and, if so, it computes such a drawing.

Sketch of Proof: We prove that every 2-layer RAC embedding of G with respect to
edges e and e′ is such that the edges of the external cycle are interlaced like shown in
Fig. 2(b). These edges are the only edges that can cross in a 2-layer RAC drawing. ��

Theorem 3. Let G be a biconnected graph.G is 2-layer RAC drawable if and only if it
is a spanning subgraph of a ladder. Also, if G has n vertices, there exists an O(n)-time
algorithm that tests whetherG is 2-layer RAC drawable and, if so, it computes a 2-layer
RAC drawing of G.

3.2 Characterization of Trees

Roughly speaking, a 2-layer RAC drawing of a tree consists of a monotone “zig-zag”
path between the two layers with some suitable sub-structures attached to its vertices
(see Fig. 3(b)). In order to define the different types of sub-structures we define a sort of
simplified version of the tree, called its weighted contraction. The characterization for
trees relies on this concept. As explained at the beginning of this section, along with the
characterization of 2-layer RAC drawable trees (Theorem 5), we give the characteriza-
tion of 2-layer RAC drawable trees where two given vertices u and v are required to be
a leftmost vertex and a rightmost vertex, respectively (Theorem 4). The latter character-
ization will be used in Subsection 3.3 to characterize 2-layer RAC drawable graphs. In
Theorem 4 we focus on the case when u and v are two leaves for two reasons: (i) This is
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the only case needed for the characterization of 2-layer RAC drawable graphs that con-
tain both non-trivial biconnected components and tree components; (ii) As Lemma 1
claims, any 2-layer RAC drawable tree admits a 2-layer RAC drawing where a leftmost
vertex and a rightmost vertex are leaves.

Let T be a tree and let u and v be two leaves of T . If there exists a 2-layer RAC
embedding γ where u and v are a leftmost vertex and a rightmost vertex of γ, respec-
tively, we say that γ is a 2-layer RAC embedding with respect to u and v. A 2-layer
RAC drawing with embedding γ is a 2-layer RAC drawing with respect to u and v. If T
admits such a drawing, we say that T is 2-layer RAC drawable with respect to u and v.

Lemma 1. Let T be a 2-layer RAC drawable tree. There exists two leaves u and v such
that T is 2-layer RAC drawable with respect to u and v.

A weighted contraction of T is a weighted tree obtained from T by replacing each chain
of length k > 1 with a single edge of weight k. We denote by wc(T ) the weighted
contraction of T and by ω(a, b) the weight of an edge (a, b) of wc(T ). An edge of T
that also belongs to wc(T ) has weight 1. The vertices of wc(T ) are a subset of the
vertices of T and every vertex of wc(T ) has the same degree in T and in wc(T ). A
path between two leaves u, v of T is a spine of T and is denoted by suv(T ). The path
between u and v in wc(T ), denoted by scuv(T ), is a spine of wc(T ). The vertices of
scuv(T ) are the spine vertices; the others are non-spine vertices (see also Fig. 3).

T

3

3
11

2

1 3

11

u
v

u

wc(T )

v

(a)

u v

(b)

Fig. 3. (a) A tree T and its weighted contraction wc(T ); the gray vertices are internal vertices of
chains and disappear in wc(T ); the path between u and v in T (edges in bold) is a spine. (b) A
2-layer RAC embedding of T with respect to u and v.

Our characterization of a 2-layer RAC drawable tree is expressed in terms of prop-
erties of its weighted contraction. In order to do that, we look at what type of subtrees
are “attached” to the vertices of the spine. For a given spine scuv(T ) of wc(T ), we de-
fine three kinds of subtrees in wc(T ), called k-fence, y-tree, and star-tree, respectively.
Also, for a subtree T ′ of any of the types above, we give the definition of feasibility of
T ′, which expresses the possibility of representing the “non-contracted” version of T ′

in a 2-layer RAC embedding with respect to the end-vertices, u and v, of the spine. We
will prove that a tree T is 2-layer RAC drawable with respect to u and v if and only if
every subtree “attached” to scuv(T ) is either a feasible k-fence, or a feasible y-tree, or
a feasible star-tree. The three kinds of subtrees are defined as follows:
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– k-fence (refer to Fig. 4(a) and 4(c)). Let 〈z0, z1, z2, . . . , zk, zk+1〉 (k ≥ 2) be a
maximal sequence of spine vertices such that: deg(zi) = 3 (i ∈ {1, . . . , k});
ω(zi, zi+1) = 1 (i ∈ {1, . . . , k − 1}); deg(wi) = 1, where wi is the non-spine
vertex adjacent to zi (i ∈ {1, . . . , k}). The weighted subtree T ′ induced by the
vertices of {zi | i = 1, . . . , k} ∪ {wi | i = 1, . . . , k} is a k-fence of wc(T ). The
subsequence z1, z2, . . . , zk is the chain root of T ′, each wi is a leaf of T ′.
• A 2-fence is feasible if either ω(z1, w1) ≤ ω(z0, z1) + 1 and ω(z2, w2) ≤
ω(z2, z3) + 1 or ω(z2, w2) ≤ ω(z0, z1) and ω(z1, w1) ≤ ω(z2, z3).
• A 3-fence is feasible if one of the following conditions holds:

* the subtree induced by z1, z2,w1,w2 is a feasible 2-fence and ω(z3, w3) ≤
ω(z3, z4) + 1;

* the subtree induced by z2, z3,w2,w3 is a feasible 2-fence and ω(z1, w1) ≤
ω(z0, z1) + 1;

• A k-fence (k > 3) is feasible if the following conditions holds:
* the subtree induced by z1, z2, w1, and w2 is a feasible 2-fence;

* the subtree induced by zk−1, zk, wk−1, and wk is a feasible 2-fence; (iii)
If k ≥ 5, then ω(zi, wi) ≤ 2 (i ∈ {3, . . . , k − 2}).

– y-tree (refer to Fig. 4(d)). Let z be a degree-3 spine vertex of wc(T ) that does
not belong to any k-fence and such that: (i) deg(w) = 3, where w is the non-
spine vertex adjacent to z: and (ii) the vertices a, b �= z adjacent to w have degree
one. The weighted subtree T ′ induced by z, w, a, b is a y-tree of wc(T ). Vertex
z is the root, w is the internal vertex, and a, b are the leaves of T ′. Denote by
z1, z2 the spine vertices adjacent to z. Tree T ′ is feasible if: (i) ω(z, w) = 1; (ii)
either ω(w, a) ≤ ω(z1, z) and ω(w, b) ≤ ω(z, z2) or ω(w, b) ≤ ω(z1, z) and
ω(w, a) ≤ ω(z, z2).

– star-tree (refer to Fig. 4(e)). Let z be a spine vertex of wc(T ) that does not belong
to either a k-fence or a y-tree and such that: (i) deg(z) ≥ 3; (ii) every non-spine
vertex wi adjacent to z has degree one (i = 1, . . . , deg(z)). The weighted subtree
T ′ induced by z and all vertices wi is a star-tree of wc(T ). Vertex z is the root
of T ′. Denote by z1, z2 the spine vertices adjacent to z. Tree T ′ is feasible if: (i)
There exist at most two vertices wj , wh such that 1 < ω(z, wj) ≤ ω(z1, z)+1 and
1 < ω(z, wh) ≤ ω(z, z2) + 1; (ii) for every vertex wi /∈ {wj , wh}, ω(z, wi) = 1.

A spine suv(T ) is feasible if for every vertex z ∈ scuv(T ) distinct from u and v one of
the three conditions holds: (i) z belongs to the chain root of a k-fence; (ii) z is the root
of exactly one feasible y-tree; (iii) z is the root of exactly one feasible star-tree.

Theorem 4. Let T be a tree and let u, v be two leaves of T . Tree T is 2-layer RAC
drawable with respect to u and v if and only if suv(T ) is a feasible spine. Also, if T has
n vertices, there exists an O(n)-time algorithm that tests whether T admits a 2-layer
RAC drawing with respect to u and v and, if so, it computes such a drawing.

Sketch of Proof: The sufficiency is by construction: The spine is drawn as a monotone
“zig-zag” path; the non-contracted version of each feasible substructure of the weighted
contraction is embedded as shown in Fig. 5(a)– 5(f). The necessity is proved by case
analysis on the vertices of degree larger than two in the weighted contraction of T . ��
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Fig. 4. Feasible (a) 2-fence, (b) 3-fence, (c) 5-fence, (d) y-tree, and (e) star-tree
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Fig. 5. 2-layer RAC embeddings for the non-contracted version of the feasible substructures of
Fig. 4; (f)-(g) 2-fence, (h) 3-fence, (i) 5-fence, (j) y-tree, and (k) star-tree

Theorem 5. A tree T is 2-layer RAC drawable if and only if it admits a feasible spine.
Also, if T has n vertices, there exists an O(n)-time algorithm that tests whether T is
2-layer RAC drawable and, if so, it computes a 2-layer RAC drawing of T .

Sketch of Proof: The characterization is a consequence of Lemma 1 and Theorem 4.
The existence of a linear time testing algorithm is proved by showing that a constant
number of pairs of leaves as end-vertices of a feasible spine can be considered. ��

3.3 Characterization of 2-Layer RAC Graphs

Intuitively, a general 2-layer RAC drawable graph is a chain of non-trivial biconnected
components (each of them being the spanning subgraph of a ladder) alternated with
trees having a feasible spine. Additionally, some other simple types of trees can be
attached to the vertices of the extremal edges of a biconnected component (we call
each of such trees an addendum). Fig. 6(a) shows a 2-layer RAC drawable graph and
Fig. 6(d) depicts a 2-layer RAC embedding of G. More formally, a connected graph
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B1 B2 B3 B4

Π2Π1

(c) (d)

Fig. 6. (a) A graph G. Solid edges form skel(G). (b) skel(G) is feasible; for each component
Bi, the gray vertices are the cut-vertices of G in Bi, and the bold edges are two edges e, e′ that
cover all the cut-vertices in Bi and such that Bi is 2-layer RAC drawable with respect to e, e′.
(c) A 2-layer RAC embedding of skel(G). (d) A 2-layer RAC embedding of G.

G is outerplanarly biconnectible if it has two vertices {s, t} such that G ∪ (s, t) is
outerplanar and biconnected. Let G be a bipartite graph that is neither biconnected
nor a tree. The skeleton of G, denoted as skel(G), is the subgraph of G obtained by
repeatedly removing the vertices of degree one. We denote by {B1, . . . , Bk} the non-
trivial biconnected components of skel(G). We say that skel(G) is feasible if skel(G)
is outerplanarly biconnectible and each Bi (i = 1, . . . , k) contains two independent
edges e and e′ such that: (a) Each cut-vertex of G in Bi is an end-vertex of e or e′;
(b) Bi is 2-layer RAC drawable with respect to e and e′. Fig. 6(a)-6(c) show a graph
G, its (feasible) skeleton skel(G), and a 2-layer RAC embedding of skel(G). Observe
that, if skel(G) is feasible then each Bi has at most four cut-vertices of G. Also, the
components {B1, . . . , Bk} form a sequence such that Bi and Bi+1 are connected by a
pathΠi from a vertex ui of Bi to a vertex vi ofBi+1 (i = 1, . . . , k− 1), where ui may
coincide with vi. For each path Πi, we denote by Ti the tree consisting of Πi and all
the subtrees of G rooted at each internal vertex ofΠi. A pathΠi is a bridge of skel(G)
and tree Ti is the tree of Πi. If Πi is a single vertex then Ti coincides with Πi, and Πi

is a degenerate bridge.
It is easy to see that G is 2-layer RAC drawable only if skel(G) is feasible and

each Πi is a feasible spine of Ti. However, for the characterization, we need additional
conditions. Let T be a tree that is 2-layer RAC drawable with respect to two leaves u and
v. We denote by ν(u, T ) the vertex closest to u along suv(T ) such that deg(ν(u, T )) ≥
3 in T . If such a vertex does not exist then ν(u, T ) coincides with v. We can analogously
define ν(v, T ). Let w be a cut-vertex of G that belongs to Bi (1 ≤ i ≤ k). Denote by
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T (w) the subtree ofG rooted at w. ClearlyG is the union of allBi, all Ti, and all T (w),
for each cut-vertexw of G that belongs to some Bi. Each tree T (w) is an addendum of
skel(G). We now classify each addendumT (w) of skel(G) and correspondingly define
the partner of T (w) (the partner is the tree that can overlap with T (w)). Also, we define
the properties that each type of addendum must satisfy to be embedded correctly in a
2-layer RAC embedding of G whose skeleton is feasible (refer to Fig. 7):

Bi

T (w)

w
Bi+1

(a) type 1

zw
Bi

Ti

xT (w)

Bi+1

(b) type 2

zw′

x

w

Bi
Ti Bi+1

T (w)

(c) type 3

zw

x

Bk
T (w)

w′
T (w′)

(d) type 4

zw

x

u

T2(w)

T1(w)Bk

(e) type 5

Fig. 7. (a)-(e): Illustration of the different types of addendum. Each addendum in this picture is
feasible

– Ifw coincides with the single vertex of a degenerate bridge, T (w) is a tree of type 1
and it has no partner. T (w) is feasible if it is a star centered at w.

– If w coincides with an end-vertex of a non-degenerate bridge Πi, T (w) is a tree of
type 2 and its partner is Ti. T (w) is feasible if it consists of a star centered at w
plus at most one path from w to a leaf x such that d(w, x) ≤ d(w, z) + 1, where
z = ν(w, Ti).

– If w is adjacent to an end-vertex w′ of a non-degenerate bridge Πi, T (w) is a tree
of type 3 and its partner is Ti. T (w) is feasible if it consists of a path from w to a
leaf x such that d(w, x) ≤ d(w′, z), where z = ν(w′, Ti).

– Otherwise, w is a cut-vertex of B ∈ {B1, Bk} and one of the following cases
applies:
• w is adjacent to another cut-vertex w′ of G that belongs to B and that does

not belong to any Πi, in which case T (w) and T (w′) are trees of type 4 and
each of them is the partner of the other. T (w) and T (w′) are feasible if (i) w
is a leaf of T (w) and there is another leaf u of T (w) such that T (w) is 2-layer
RAC drawable with respect to u and w; (ii) T (w′) is a path from w to a leaf x
such that d(w′, x) ≤ d(w, z), where z = ν(w, T (w)).
• w is not adjacent to a cut-vertex, in which case T (w) is of type 5 and has

no partner. T (w) is feasible if it can be decomposed into subtrees T1(w) and
T2(w) such that: (i) T1(w) ∩ T2(w) = {w} (T2(w) may consist of w only);
(ii) w is a leaf of T1(w) and there is another leaf u of T1(w) such that T1(w)
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is 2-layer RAC drawable with respect to u and w; (iii) T2(w) is a star centered
at w plus at most one path from w to a leaf x, such that d(w, x) ≤ d(w, z) +1,
where z = ν(w, T1(w)).

Theorem 6. A graph G is 2-layer RAC drawable if and only if one of the following
cases holds: (i) G is biconnected and it is a spanning subgraph of a ladder. (ii) G is
a tree that admits a feasible spine. (iii) skel(G) is feasible, each path of skel(G) is a
feasible spine of its tree, and each addendum of skel(G) is also feasible. Furthermore,
if G has n vertices, there exists an O(n)-time algorithm that tests whether G is 2-layer
RAC drawable and, if so, it computes a 2-layer RAC drawing of G.

Sketch of Proof: The proof of the theorem combines the arguments used to prove The-
orems 2-5. Fig. 8 shows how to embed each type of addendum. ��
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Fig. 8. (a)-(e) 2-layer RAC embedding for the different types of addendum

Since by Theorem 6, ladders are the densest graphs admitting a 2-layer RAC draw-
ing, it is immediate to derive the following bound.

Corollary 1. A 2-layer RAC drawable graph with n vertices has at most 1.5n−2 edges,
which is a tight bound.

4 Optimization Problems

In this section we consider two optimization problems that are naturally raised by the
results in the previous sections. Namely, we consider both the problem of computing a
2-layer RAC drawing with the minimum number of edge crossings and the problem of
extracting the maximum 2-layer RAC drawable subgraph of a given bipartite graph.

We first show that ifG is a 2-layer RAC drawable graph then a 2-layer RAC drawing
of G with the minimum number of crossings can be computed in polynomial time. If
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G is a biconnected graph the problem is easy, because all crossings in any 2-layer RAC
drawing of G are formed by the edges of the external cycle. Hence, every 2-layer RAC
drawing of a biconnected component G with n > 2 vertices has (n − 2)/2 crossings.
For reasons of space, we only show how to model the crossing minimization problem
for a tree T , assuming that no k-fences are present in the weighted contraction of T .

Suppose that T is a 2-layer RAC drawable tree with respect to two leaves u and v
and let scuv(T ) = 〈u = z0, z1, z2, . . . , zh, zh+1 = v〉 such that each zi is the root of a
subtree T ′ that is either a y-tree or a star-tree ofwc(T ). In both cases, the non-contracted
version of T ′ contains at most two pathsΠi,1 andΠi,2, going from zi to two leaves xi,1
and xi,2, respectively, such that d(zi, xi,1) > 1 and d(zi, xi,2) > 1. Note that, if T ′ is a
y-tree,Πi,1 andΠi,2 share the first edge. In a 2-layer RAC embedding γ of T ,Πi,1 and
Πi,2 are embedded one to the left and one to the right of zi, as explained in the previous
sections (see Fig. 5(e), where zi = z, xi,1 = a, xi,2 = b, and Fig. 5(f), where zi = z,
xi,1 = w1, xi,2 = w4). If d(zi−1, zi) and d(zi, zi+1) are both greater than or equal to
max{d(zi, xi,1) − 1, d(zi, xi,2) − 1}, then we can arbitrarily decide which path Πi,j

goes to the left of zi and which one goes to the right of zi (j = 1, 2); in this case, we
say that Πi,1 and Πi,2 are free paths, otherwise we say that they are constrained paths.
The number of crossings that Πi,j forms with the spine suv(T ) is the same for each of
the two choices, and it is equal to d(zi, xi,j) − 1. However, the path Πi,j embedded to
the left of zi may form some crossings with a path Πi−1,l (l = 1, 2) embedded to the
right of zi−1, if such a path exists; if so, the number of crossings between the two paths
is at least d(zi, xi,j)+d(zi−1, xi−1,l)−d(zi−1, zi)−3, and the embedding constructed
with our technique matches this number. Hence, our crossing minimization problem
reduces to the problem of embedding each path Πi,j to the left or to the right of zi so
that the total number of crossings between all paths is minimized. In the following we
assume that for each vertex zi (i = 1, . . . , h) there are exactly two pathsΠi,1 and Πi,2.
If not, we can attach to zi dummy paths of length 1, which can always be embedded
without crossings. If γ is a 2-layer RAC embedding where Πi,j is to the left of zi and
Πi−1,l is to the right of zi−1 we say that Πi,j and Πi−1,l are matched, and the cost
of their matching equals max{0, d(zi, xi,j) + d(zi−1, xi−1,l)− d(zi−1, zi)− 3}. Each
path Πi,j is matched with some other path in γ, but the path to the left of z1 and the
path to the right of zh (these paths do not cross any other path). Thus, if γ is a 2-layer
RAC embedding with the minimum number of crossings, γ corresponds to a maximum
matching among 2h− 2 paths with minimum total cost. Also, the path to the left of z1
in γ is the longest between Π1,1 and Π1,2, unless Π1,1 and Π1,2 are constrained to be
embedded in the other way. Similarly, the path to the right of zh is the longest between
Πh,1 and Πh,2, unless Πh,1 and Πh,2 are constrained to be embedded in the other way.

To compute a 2-layer RAC embedding γ with the minimum number of crossings, we
compute the corresponding optimal matching by solving a minimum cost flow problem
on a suitable capacitated network N , having a single source and a single sink. Since
N has O(n) vertices and edges, and since the value of the maximum flow is O(n), a
maximum flow of minimum cost can be computed in O(n2 logn) time [1].

Theorem 7. Let G be a 2-layer RAC drawable graph. A 2-layer RAC embedding of G
with the minimum number of crossings can be computed in O(n2 logn) time.
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As for the computation of the maximum 2-layer RAC drawable subgraph, we prove the
NP-completeness of its associated decision problem, namely the following:

MAXIMUM 2-LAYER RAC SUBGRAPH (M2LS): Given a bipartite graphG and a pos-
itive integer k, does G admit a 2-layer RAC drawable subgraph with k edges?

Guessing an ordering of the vertices along the two layers proves that M2LS is in
NP . The hardness is proved by reducing HP3 to M2LS, where HP3 is the problem of
deciding whether a cubic graph has a Hamiltonian path.

Theorem 8. M2LS is NP-complete

5 Open Problems

We conclude the paper by listing some open problems that we consider worth to
investigate.

1. Design heuristic methods or approximation algorithms for the Maximum 2-layer
RAC Drawable Subgraph problem.

2. Study the problem of computing 2-layer drawings where the number of crossings
that form π

2
angles is maximized.

3. Study the problem of computing 2-layer drawings of a bipartite graphs where the
minimum crossing angle is at least a given α such that 0 ≤ α < π

2
.
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Abstract. Given a set of red and blue points, an orthogeodesic alternating path
is a path such that each edge is a geodesic orthogonal chain connecting points
of different colour and no two edges cross. We consider the problem of deciding
whether there exists a Hamiltonian orthogeodesic alternating path, i.e., an or-
thogeodesic alternating path visiting all points. We provide an O(n log2 n)-time
algorithm for finding such a path if no two points are horizontally or vertically
aligned. We show that the problem is NP-hard if bends must be at grid points.
Nevertheless, we can approximate the maximum number of vertices of an ortho-
geodesic alternating path on the grid by roughly a factor of 3. Finally, we consider
the problem of finding orthogeodesic alternating matchings, cycles, and trees.

1 Introduction

Let R and B be two disjoint point-sets in the plane with |R| ≤ |B|. We shall refer
to points of R and B as red points and blue points, respectively. We say that the set
P = R∪B is equitable if |B|− |R| ≤ 1 and it is balanced if |B| = |R|. An alternating
path on a set of red and blue points P is a sequence of points p1, . . . , ph alternatingly
red and blue, such that pi and pi+1 (i = 1, . . . , h− 1) are connected by a straight-line
segment and no two segments cross.

The problem of computing an alternating path on a given equitable set of points
in general position is a classical subject of investigation in the computational geom-
etry field. Several papers are devoted to alternating paths containing all points of P ;
this type of alternating paths are called Hamiltonian. Akiyama and Urrutia [3] studied
Hamiltonian alternating paths on equitable point-sets in convex positions. They show
that it is not always possible to compute a Hamiltonian alternating path on a given eq-
uitable point-set and give an O(n2)-time algorithm that, given an equitable point-set,
computes a Hamiltonian alternating path if it exists. Abellanas et al. [2] studied the
case when points are not restricted to be in convex position; they prove that if either
the convex hull of P consists of all the red points and no blue points or the two point-
sets are linearly separable (i.e., there exists a straight line that separates the red from
the blue points), then a Hamiltonian alternating path always exists. Kaneko, Kano, and
Suzuki [7] studied the values of n for which every equitable set of n points admits a
Hamiltonian alternating path and proved that this happens only for n ≤ 12 and n = 14;
for any other value of n, there exist equitable point-sets that do not admit a Hamiltonian

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 170–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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alternating path. Cibulka et al. [5] described arbitrarily large equitable point-sets that
admit a Hamiltonian alternating path for any colouring of the points. Non-Hamiltonian
alternating paths have also been considered in the literature. In particular, the following
problem has been investigated: given a set of n red and blue points P in the plane, what
is the length �(n) of the longest alternating path that can be defined on P ? Abellanas
et al. [1] and Kynčl et al. [11] studied this problem on special cases of points in convex
position and proved upper and lower bounds on the value of �(n).

Similar problems on red-blue points with graph families other than paths have also
been studied. Abellanas et al. [2] investigate alternating spanning trees, i.e., spanning
trees of red and blue point-sets such that each edge is a straight-line segment connecting
points of different colours and no two edges cross, and prove that every point-set P =
R ∪ B admits an alternating spanning tree whose maximum vertex degree is O( |B|

|R| +
log |R|). Kaneko, Kano, and Yoshimoto [8] consider Hamiltonian alternating cycles,
but they allow edge crossings. They proved that at most n − 1 crossings are sufficient
to compute a Hamiltonian alternating cycle and that this is the best possible in some
cases.

In this paper we study orthogeodesic alternating paths, i.e., crossing-free alternating
paths where the edges are drawn as geodesic orthogonal chains instead of straight-line
segments. A geodesic orthogonal chain is an orthogonal chain (i.e., a polygonal chain
of horizontal and vertical segments) whose length is equal to the Manhattan distance of
its endvertices. Since a geodesic orthogonal chain is a connection between two points
that has the shortest length in the L1 metric, orthogeodesic alternating paths can be re-
garded as the counterpart in theL1 metric of alternating paths in theL2 metric. Kano [9]
has recently studied equitable point-sets such that no two points are horizontally and
vertically aligned. He shows that any of such point-sets admits a perfect matching con-
necting the red points to the blue ones such that every edge is “L-shaped”, that is it
consists of exactly one horizontal and exactly one vertical segment. While it is easy to
construct an equitable point-set for which a Hamiltonian orthogeodesic alternating path
whose edges are all L-shaped does not exist, one may wonder whether every equitable
point-set admits a Hamiltonian orthogeodesic alternating path in the L1 metric.

Contribution. In this paper we describe an O(n log2 n)-time algorithm that computes
a Hamiltonian orthogeodesic alternating path on an equitable set of red and blue points
P such that no two points are horizontally or vertically aligned. The computed path has
at most two bends per edge which is worst-case optimal. However, the bends along the
edges may not have integer coordinates. For a contrast, we show that deciding whether
a set of red and blue grid points P admits a Hamiltonian orthogeodesic alternating
path with bends at grid points is NP-complete. We also consider several related ques-
tions. Namely, we prove that there exist point-sets that do not admit a Hamiltonian
orthogeodesic alternating cycle and point-sets such that every alternating spanning tree
is, in fact, a path; we describe a O(n log2 n)-time algorithm that computes an ortho-
geodesic alternating path of length (|P | + 2)/3 with bends at grid points; finally, we
show that if points of P are allowed to be horizontally or vertically aligned then it is NP-
complete to decide whether a point-set P = R ∪B with |B| = |R| has a perfect ortho-
geodesic alternating matching. This contrasts a recent paper by Kano stating that such a
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matching always exists if we are not allowed to place more than one point per horizontal
or vertical line.

For reasons of space some proofs are sketched or omitted.

2 Preliminaries

An orthogonal chain is a polygonal chain of horizontal and vertical segments. A geodesic
chain is an orthogonal chain whose length is equal to the Manhattan distance of its end-
vertices. A crossing between two geodesic chains is an intersection that occurs at an
interior point of at least one of the two chains.

Let P = R ∪ B be a set of red and blue points; we use c(p), x(p) and y(p) to de-
note the colour, the x-coordinate and the y-coordinate of point p ∈ P , respectively. An
orthogeodesic path (cycle) is a drawing of a path (cycle) such that each edge is repre-
sented by a geodesic chain and edges intersect only at common endvertices. An ortho-
geodesic alternating path (cycle) on P is an orthogeodesic path (cycle) whose vertices
are the points of P and each edge connects points of distinct colours. An orthogeodesic
alternating path (cycle) is Hamiltonian if it contains all points of P . Clearly, for an or-
thogeodesic alternating path (cycle) to be Hamiltonian it is necessary that P is equitable
(balanced). An orthogeodesic alternating spanning tree on a point-set P = R ∪B is a
spanning tree of P such that each edge is a geodesic chain connecting points of different
colours and no two edges cross.

Given a point-set P ′ ⊆ P , the bounding box of P ′, denoted as B(P ′), is the smallest
axis-parallel rectangle enclosing P ′. Let p and q be two points such that B({p, q}) is
a non-degenerate rectangle. A horizontal chain (vertical chain) is a two-bend geodesic
chain such that the first and the last segment are horizontal (vertical). Notice that a
horizontal chain (vertical chain) is uniquely determined when the x-coordinate (y-
coordinate) of its vertical (horizontal) segment is specified.

A point-set P = R ∪ B is a butterfly if it has the following properties: (i) for every
two blue points p and q of P , x(p) < x(q) implies y(p) < y(q); (ii) for every two red
points p and q of P , x(p) < x(q) implies y(p) < y(q); (iii) for every pair consisting of
a blue point p and a red point q of P , x(p) > x(q) and y(p) < y(q) (see Figure 2(a)).
When printed in black and white, the darker dots in our figures represent blue points
while the light gray ones represent red points.

3 Hamiltonian Orthogeodesic Alternating Paths

We describe now an algorithm to compute a Hamiltonian orthogeodesic alternating
path on an equitable set of red and blue points such that no two points are horizontally
or vertically aligned. We assume that points are not vertically or horizontally aligned
in order to avoid straightforward counterexamples. Namely, it is easy to find point-sets
that contain vertically or horizontally aligned points and that do not admit a Hamiltonian
orthogeodesic alternating path. Consider, for example, a set of three points on the same
vertical/horizontal line with two consecutive points of the same colour.

The algorithm is a recursive algorithm that incrementally constructs the path. Con-
sider a generic call of the algorithm. When such a call is activated, a connected subpath



Hamiltonian Orthogeodesic Alternating Paths 173

Π has already been constructed on a subset U of the input point-set P . Given a point
p in U and a point q in the plane (not necessarily a point of P ), we say that q is left-
connectible to p if y(p) = y(q) and pq ∩ Π = {p}. The input of the recursive call is
a balanced point-set P ′ ⊆ P \ U and a point ql (not necessarily belonging to P ) to
the left of B(P ′). The point ql is called the enter point. The point-set P ′ and the enter
point ql are such that the intersection between B(P ′ ∪ {ql}) and the path Π (if any) is
completely contained in the left side of B(P ′ ∪ {ql}). Also, ql is either an endvertex
of Π or it is left-connectible to an endvertex of Π . The output of the recursive call is a
Hamiltonian orthogeodesic alternating path Π ′ on P ′ ∪{ql} with the following proper-
ties: (P1) ql is an endpoint of Π ′; also, Π ′ is completely contained in B(P ′ ∪{ql}) and
the intersection between Π ′ and the left side of B(P ′ ∪ {ql}) is ql; (P2) there exists a
point qr, called exit point, on the right side of B(P ′) such that c(qr) = c(ql); also, qr
is either an endvertex of Π ′ or it is left-connectible to an endvertex of Π ′. (P3) each
geodesic chain in Π is drawn with at most two bends;

Before describing the algorithm it is worth clarifying what is the input of the main
call of the algorithm. If P is balanced, we extend P with a point ql to the left of B(P )
arbitrarily coloured red or blue. This point will be the enter point of the first recursive
call. IfP is unbalanced, we add a point r to the left of B(P ) in order to make it balanced;
the colour of r is therefore red (recall that we are assuming |R| ≤ |B|). Then we can
proceed as in the previous case, i.e., we add an enter point ql to the left of r arbitrarily
coloured red or blue. The input is then ql andP∪{r}. Clearly, at the end of the algorithm
the added points and the chains incident to them will be removed.

We are now ready to describe our recursive algorithm. Without loss of generality
we assume that c(ql) is blue. If |P ′| = 2 then we compute a drawing as follows (see
Figure 1(a)). Let p′ be the point of the left side of B(P ′) that has the same y-coordinate
of the red point p of P ′ (p and p′ may coincide). Connect point p′ to p with zero bends
and to ql with a horizontal chain whose vertical segment has x-coordinate (x(ql) +
x(p′))/2. Also, connect p to the blue point r ofP ′ with a vertical chain whose horizontal
segment has y-coordinate (y(p) + y(r))/2.

Assume now that |P ′| > 2 and let pt, pb, pl, and pr be the points on the top, bot-
tom, left, and right side of B(P ′), respectively. Notice that some of these points may
coincide. We distinguish the following cases, depending on the colour of pl:
Case 1: c(pl) is blue. We further distinguish the following sub-cases: Case 1.a: c(pt)
is red. Notice that, in this case pt �= pl. Let p′t be the top-left corner of B(P ′). Connect
point p′t to pt with zero bends and to ql with a horizontal chain whose vertical seg-
ment has x-coordinate (x(ql) + x(p′t))/2. Let r be the point of P ′ immediately below
pt. Connect pt and pl with a vertical chain whose horizontal segment has y-coordinate
(y(pt) + y(r))/2. Recursively apply the algorithm with input the point pl and the set
P ′ \ {pl, pt}. See Figure 1(b) for an illustration. Case 1.b: c(pb) is red. Symmetric
to Case 1.a. The drawing is obtained from Case 1.a by a vertical reflection. Case 1.c:
c(pt) = c(pb) is blue. There are two sub-cases: Case 1.c.1: c(pr) is red. First recur-
sively apply the algorithm with input the point ql and the set P ′ \ {pt, pr}. Let Π ′ be
the sub-path computed by the recursive call and let q′r be its exit point. Connect q′r to its
corresponding extremal point with a horizontal segment if necessary and connect pr to
q′r with a horizontal chain whose vertical segment has x-coordinate (x(pr) +x(q′r))/2.
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(f) Case 2.b - input/output

Fig. 1. The different cases of the algorithm. Case 1.b is a vertical reflection of Case 1.a. The
squares in the pictures represents the enter points and the exit points of the different recursive
calls.

Let r be the point of P ′ immediately below pt. Connect pr and pt with a vertical chain
whose horizontal segment has y-coordinate (y(pt) + y(r))/2. See Figure 1(c) for an
illustration. Case 1.c.2: c(pr) is blue. Let r be the leftmost red vertex such that the set
P ′

l = {p | p ∈ P ′ ∧ x(p) ≤ x(r)} is balanced and let P ′
r = P ′ \ P ′

l . Since point r
cannot coincide with pr, both P ′

l and P ′
r are not empty. Also, P ′

r is balanced because
so are P ′ and P ′

l . Recursively apply the algorithm with input the point ql and the set
P ′

l . Let Π ′ be the sub-path computed by the recursive call and let q′r be its exit point.
Recursively apply the algorithm with input the point q′r and the set P ′

r. See Figure 1(d)
for an illustration.
Case 2: c(pl) is red. Based on the colour of pr, we distinguish the following sub-
cases: Case 2.a: c(pr) is blue. Connect ql to pl with a horizontal chain whose vertical
segment has x-coordinate (x(ql)+x(pl))/2. Recursively apply the algorithm with input
the point pl and set P ′ \ {pl, pr}. Let Π ′ be the sub-path computed by the recursive
call and let q′r be its exit point. Connect q′r to its corresponding extremal point with
a horizontal segment if necessary and connect pr to q′r with a horizontal chain whose
vertical segment has x-coordinate (x(pr)+x(q′r))/2. See Figure 1(e) for an illustration.
Case 2.b: c(pr) is red. Let r be the leftmost blue vertex such that the set P ′

l = {p | p ∈
P ′ ∧ x(p) ≤ x(r)} is balanced and let P ′

r = P ′ \ P ′
l . Since point r cannot coincide

with pr, both P ′
l and P ′

r are not empty. Also, P ′
r is balanced because so are P ′ and P ′

l .
Recursively apply the algorithm with input the point ql and the set P ′

l . Let Π ′ be the
sub-path computed by the recursive call and let q′r be its exit point. Recursively apply
the algorithm with input the point q′r and the set P ′

r. See Figure 1(f) for an illustration.

Theorem 1. Every equitable set of n red and blue points such that no two points are
horizontally or vertically aligned admits a Hamiltonian orthogeodesic alternating path.
Also, there exists an O(n log2 n)-time algorithm to compute such a path. Furthermore,
the computed path has at most two bends per edge, which is worst-case optimal. Finally,
if the input point-sets consists of grid points all bends are at half-integer grid points.
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Sketch of Proof: For reasons of space the proof that the algorithm described above
correctly computes a Hamiltonian orthogeodesic alternating path on P is omitted. In
this sketch of proof we only show that two bends per edge are worst-case optimal and
that the algorithm can be implemented to run in O(n log2 n) time, where n := |P |.

We start by proving that it is not always possible to obtain a Hamiltonian ortho-
geodesic alternating path such that every edge has at most one bend. Consider a butterfly
P with at least four points and let Π be any Hamiltonian orthogeodesic alternating path
on P . Let p be a blue point that is not an endpoint of Π (notice that at most one blue
point is an endpoint of Π because |R| = |B|). Point p is connected to two red points q1
and q2 by two geodesic chains χ1 and χ2, respectively, as depicted in Figure 2(b). One
of the two chains, say χ1, must have a horizontal segment incident to p while the other
chain, that is χ2, must have a vertical segment incident to p. If we use 1-bend geodesic
chains, then χ1 has a vertical segment incident to q1 while χ2 has a horizontal segment
incident to q2. Since all red points are above and to the left of all the blue points, and
since the two chains cannot cross, then x(q1) < x(q2). At least one of q1 and q2 must
be connected to a blue point p′ distinct from p (recall that at most one red point is an
endpoint of Π because |R| = |B|). If x(p′) < x(p) then the geodesic chain connecting
q1 or q2 to p′ would cross chain χ1; If x(p′) > x(p) then the geodesic chain connecting
q1 or q2 to p′ would cross chain χ2.

We now prove that the algorithm can be implemented to run in O(n log2 n) time.
We sort the points with respect to their x- and y-coordinates and maintain respective
arrays, such that each point p can be addressed by two integers h(p) and v(p) denoting
the index of p in the horizontal and vertical array, respectively. Further, we maintain
two spatial data structures with O(n log n) initialization time and O(log n) query time
for orthogonal range queries [4] for the blue and red points, respectively.

We assume that we are given the bounding box R of the instance P ′ in the form
of at most four points pl, pr, pt and pb on the bounding box of the instance, each of
which is specified by two integers pointing to the position of the points in the horizonal
and vertical array, respectively. First we consider all cases, except for Case 1.c.2 and
Case 2.b. In these cases we compute the geodesic chain from two points p1 and p2 on
the boundary of B(P ′) and the sub-path computed for P ′′ := P ′ \ {p1, p2}. In order
to recurse on P ′′ we need to compute the extremal points of P ′′, given an axis-aligned
rectangleR ⊃ P ′′ with R∩ {p1, p2} = ∅ that can easily be obtained from the extremal
points of P ′ and the horizontal and vertical arrays. Suppose that R is given by two
intervals [i, j] and [k, l] where i, j, k and l are integers pointing to the horizontal and
vertical arrays. First we determine the number of points m in R ∩ P using the spatial
data structures. For each horizontal and vertical boundary of R that is not yet covered
by a point, we perform a binary search on the horizontal and vertical arrays [i, j] and
[k, l], respectively, in order to locate the extremal point in P ′′ along the axis orthogonal
to the boundary line. In each iteration of the binary search we query the spatial data
structures with the corresponding rectangle R to determine the number of points in R.
If this number is equal to m and the boundary is defined by a point in P ′′, then we have
found an extremal point. Since the number of steps is at most log n and each step can
be performed in O(log n), we can find the extremal points in O(log2 n) time.
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(a)

p

q1
q2

χ1

χ2

(b)

Fig. 2. (a) A butterfly. (b) Illustration for the proof of Theorem 1. If point p is connected to q1 and
q2 with two 1-bend geodesic chains, then q1 and q2 cannot be connected to any other blue point
by a geodesic chain without introducing a crossing.

Next, we describe how to split the point sets as in Cases 1.c.2 and 2.b. In both cases,
we would like to split the current instance vertically into two balanced subsets. Since
both cases can be treated similarly, we only describe Case 1.c.2. In this case, we would
like to split the instance vertically such that the rightmost point in the left sub-instance is
red. Given an integer i, we can count the number of red and blue points in the rectangle
Ri defined by the horizontal interval [h(pl), i] and the vertical interval [v(pb), v(pt)]
in time O(log n). Let f(i) be defined as the number of blue points in Ri minus the
number of red points in Ri. Clearly, f(h(pl)) = 1 and f(h(pr) − 1) = −1 since both
c(pl) and c(pr) are blue and the instance is balanced. Since there is at most one point
in each column, we have |f(i)− f(i+ 1)| ≤ 1 for all i in the range. This implies that
f must attain the value 0 in the interval (i, j) whenever f(i) > 0 and f(j) < 0 or vice
versa. Using this observation, we can find an index i such that f(i) = 0 in the interval
(h(pl), h(pr)) in O(log2 n) using binary search. Whenever we encounter an index i
such that f(i) = 0 and the rightmost point on the left sub-instance is a blue point, we
continue with the binary search by considering the interval (h(pl), i − 1). Note that
f(i−1) = −1 in this case. Having found an index i with the desired properties, we can
find all points on the boundary of the bounding boxes of the two sub-instances in time
O(log2 n) similar to the cases described above.

Finally, note that each operation of the algorithm can be implemented to run in
O(log2 n) time and is executed at most n times. Hence, the running time of the al-
gorithm is in O(n log2 n). ��

4 Hamiltonian Orthogeodesic Alternating Paths on the Grid

In the previous section, we have seen that any equitable set of red and blue points such
that no two points are on a common horizontal or vertical line allows for a Hamiltonian
orthogeodesic alternating path. A common requirement when computing orthogonal
drawings is that the endpoints of each segment be represented by grid points, i.e., points
with integer coordinates. A Hamiltonian orthogeodesic alternating path satisfying this
requirement is said to be on the grid. Clearly, such a path can exist only if the points of
P are grid points. The algorithm described above may not produce Hamiltonian ortho-
geodesic alternating paths on the grid even if the points of P are grid points. Namely,
our algorithm sometimes needs to draw a horizontal chain connecting two points with
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consecutive x-coordinates. In this case the bends of the chain have a x-coordinate that
is half-way between the x-coordinates of the two points. Clearly if the two points have
consecutive integer x-coordinate, the bends will have a non-integer x-coordinate. The
same happens with vertical chains between points having consecutive y-coordinates.

One may wonder whether it is always possible to compute Hamiltonian orthogeodesic
alternating paths on the grid. The following theorem shows that this is not possible.

Theorem 2. For every n ≥ 5, there exists an equitable set of red and blue grid points
of size n that does not admit a Hamiltonian orthogeodesic alternating path on the grid.

Motivated by Theorem 2, we study the HAMILTONIAN ORTHOGEODESIC ALTERNAT-
ING PATH ON THE GRID problem, i.e., the problem of deciding whether an equitable
set of grid points such that no two points are horizontally or vertically aligned, admits
a Hamiltonian orthogeodesic alternating path on the grid. We show that this problem is
NP-complete. Similar techniques can be used to show that it is NP-complete to decide
whether there is a Hamiltonian orthogeodesic alternating cycle. If we are allowed to
place more than one point on a horizontal or vertical line, we can show that it is NP-
complete to decide whether there exists an orthogeodesic alternating perfect matching.
This contrasts a result by Kano [9] stating that such a matching always exists if we are
not allowed to place more than one point per horizontal or vertical line.

Theorem 3. HAMILTONIAN ORTHOGEODESIC ALTERNATING PATH ON THE GRID

is NP-complete.

Sketch of Proof: We show that the problem is in NP by showing that it suffices to guess
a linear number of bends for each of the edges. For reasons of space we omit the proof.
We show NP-hardness by reduction from 3-PARTITION.

Similar techniques have been used, for example, in [10]. An instance of 3-PARTITION

consists of a multiset A = {a1, . . . , a3m} of 3m positive integers, each in the range
(B/4, B/2), where B = (

∑3m
i=1 ai)/m, and the question is whether there exists a par-

tition of A into m subsets A1, . . . , Am of A, each of cardinality 3, such that the sum of
the numbers in each subset is B. Since 3-PARTITION is strongly NP-hard [6], we may
assume that B is bounded by a polynomial in m.

Given an instance A of 3-PARTITION, we construct a corresponding instance P =
R ∪ B of the HAMILTONIAN ORTHOGEODESIC ALTERNATING PATH ON THE GRID

problem such that P allows for a Hamiltonian orthogeodesic alternating path if and
only if there exists a partition of A with the desired properties as follows.

A sequence of diagonally aligned grid points is called k-spaced if the Euclidean
distance between subsequent points is exactly k

√
2. The point-set P consists of four

different types of points, called hinge points, element points, mask points and parti-
tion points, and is aligned on a regular sawtooth-pattern with 3m+ 2 teeth, numbered
T0, . . . , T3m+1 from left to right. The pointset, as well as the sawtooth-pattern and the
teeth are illustrated in Figure 3.

Let L be some integer to be specified later. Each tooth Ti consists of a diagonal seg-
ment with slope 1 of length L

√
2, denoted by Si, and a diagonal segment with slope−1

of length (2L+1)
√

2. Hence, the tips of the teeth are aligned along a line with negative
slope such that the tip of Ti is below the lowest point of Si−1 for 1 ≤ i ≤ 3m+ 1.
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Fig. 3. Pointset used in the reduction. Each shaded triangle constitutes a tooth Ti. All points are
arranged on the ascending slope Si of Ti.

Along S0, we align m2B + 4m 2-spaced blue hinge points starting at the leftmost
point of S0. For each element ai we align 2ai +1 1-spaced red element points along Si.
Further, we align m sets of B 2-spaced blue partition points along S3m+1, each acting
as a partition. These partitions are separated by m− 1 sequences of mB + 1 2-spaced
red mask points which will act as a sort of “dot mask” separating the partitions. The
maximal sequences of blue points along S3m+1 are called partitions and the maximal
sequences of red points along S3m+1 are called masks. By construction P contains
m2B + mB + 4m − 1 red and m2B + mB + 4m blue points and, thus, is equitable
with one more blue point. Hence, any alternating path must start and end with a blue
point and all red points must be interior points. This implies that every red point must
be connected to exactly two blue points.

We now show that there is a partition of A if and only if the point-set contains a
Hamiltonian orthogeodesic alternating path. Assume that we are given such a path. See
Figure 4 for a high-level illustration. In each mask there must be one mask point that
is connected to a blue hinge point on S0. To see this, note that there are mB + 1 red
mask points in each of the m − 1 masks, but only mB blue points in total on S3m+1.
Hence, at least one of the red mask points in each mask must be connected to a blue
hinge point. Each edge between a mask point and a hinge point is called a partitioner.

Since the element points corresponding to a single element are 1-spaced, no parti-
tioner can pass between them. Hence, the partitioners will partition the element points
according to the element sizes, such that all element points corresponding to a single
element are contained in the same partition.

Next, consider the element points. LetDi be the diagonal line through Si and letH+
i

and H−
i denote the upper and lower halfplanes defined by Di, respectively. We claim

that each group of 2ai +1 element points corresponding to element ai can have at most
2ai + 2 blue incidences in H+

i . Each of these incidences is a geodesic chain starting
either with a horizontal segment to the left or with a vertical segment towards the top.
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Fig. 4. A high-level illustration of an examplary reduction from 3-PARTITION to HAMILTONIAN

ORTHOGEODESIC ALTERNATING PATH ON THE GRID using the instance
A1 = {a1, a5, a7},
A2 = {a2, a3, a8},
A3 = {a4, a6, a9}

(not to scale). Details are depicted in the circles.

These segments can be covered by gridpoints adjacent to the element points. As there
are only 2ai + 2 such gridpoints, the claim holds.

Since the group of element points corresponding to ai must have 4ai + 2 incidences
in total, it must therefore have at least 2ai blue incidences in H−

i . Hence all element
points must have 2mB blue incidences on S3m+1 in total. On the other hand, there
are only mB blue points on S3m+1, each of which must have two red incidences. This
implies that element ai has exactly 2ai incidences in H−

i and that the blue partition
points are connected only to the element points. Since there areB blue points in each of
the partitions, the number of element points must add up to 2B, i.e., the corresponding
elements add up to B and thus yield a valid 3-partition of A.

Conversely, suppose that we are given a valid partition of A. Then we can find a
Hamiltonian orthogeodesic alternating path as follows. Each geodesic chain is drawn
as the bottommost geodesic that runs across all geodesics drawn so far as illustrated in
Figure 4. We start with the leftmost element ai that is inserted in the first partition. We
draw an alternating path starting at the leftmost hinge point using the first ai partition
points, the first 2ai element-points corresponding to ai as well as the leftmost hinge
points on S0. After that, we connect the last element point only to the two next hinge
points. Then we proceed in the same manner with the second and third elements that
are inserted in the first partition. After that, we draw the partition starting at the current
hinge point and going back and forth between the hinge points and mask points until we
have connected all mask points of the first mask. The rest of the path is connected in a
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similar fashion. Since we are given a valid partition, the drawing will be a Hamiltonian
path and by choosing L large enough, e.g., L = |P |+ 1, we can make sure that there is
enough space between the element points for all geodesic chains, so that the resulting
drawing is planar. ��

The following corollary can be obtained by similar techniques.

Corollary 1. It is NP-complete to decide whether a given balanced set of red and blue
grid points such that no two points are on a common horizontal or vertical line allows
for a Hamiltonian orthogeodesic alternating cycle if bends are only allowed at grid
points.

Due to Kano [9] every balanced set of red and blue points such that no two points are on
a common horizontal or vertical line contains a perfect orthogeodesic alternating match-
ing consisting of L-shaped orthogonal chains. Hence such a matching is completely on
the grid whenever the points are grid points. If we are given an arbitrary balanced set
of red and blue grid points allowing points to be aligned on a common horizontal or
vertical line, the problem becomes NP-complete. The proof is similar to the proof of
Theorem 3 and can be found in the appendix.

Theorem 4. Given an arbitrary balanced set of red and blue grid points, it is NP-
complete to decide whether there is a perfect orthogeodesic alternating matching on
the grid.

5 Additional Results

In this section we consider some questions naturally related with Theorems 1 and 3.
First, we investigate whether the result of Theorem 1 can be extended to other families
of graphs, such as cycles and trees having vertex degree larger than two. The following
two theorems present counterexamples using equitable point-sets that are butterflies.

Theorem 5. For every even n ≥ 4, there exists a balanced set of red and blue points of
size n that does not admit a Hamiltonian orthogeodesic alternating cycle.

Theorem 6. For every n ≥ 4, there exists a set of n red and blue points such that any
orthogeodesic alternating spanning tree has maximum vertex degree 2.

Motivated by Theorem 3, we consider the following optimization problem: Given an
equitable set of red and blue grid points P such that no two points are on a common
horizontal or vertical line, we wish to find a subset P ′ ⊆ P of maximum size such that
there is a Hamiltonian orthogeodesic alternating path for P ′ on the grid. The following
theorems show lower and upper bounds on the maximum size of P ′.

Theorem 7. Let P be an equitable set of grid points. There is an O(n log2 n)-time
algorithm that computes an equitable set P ′ ⊆ P with |P ′| ≥ (|P |+ 2)/3 that admits
a Hamiltonian orthogeodesic alternating path on the grid.

Theorem 8. The maximum number of points on any orthogeodesic alternating path on
the grid for the butterfly with 2n points is at most n+ 1.



Hamiltonian Orthogeodesic Alternating Paths 181

6 Open Problems

The results of this paper suggest some problems that can be further investigated:

– Based on the results of Theorems 2, 5, and 6, it may be worth characterizing those
point-sets that admit an alternating path on the grid, an alternating cycle, and an
alternating spanning tree, respectively.

– Also, it would be interesting to close the gap between Theorem 7 and Theorem 8.
– Finally, the concept of Hamiltonian orthogeodesic alternating path can be extended

to the case that the point-set P is partitioned into k colour classes. In this case a
point of one colour can be connected to any point of one of the other k−1 colours. Is
it always possible to compute a Hamiltonian orthogeodesic alternating path in this
multi-coloured setting? We recall here that the (straight-line) alternating paths on
multi-coloured point-sets have been studied by Merino, Salazar, and Urrutia [12].
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Abstract. A binary string B of length n = kt is a k-ary Dyck word if
it contains t copies of 1, and the number of 0s in every prefix of B is at
most k−1 times the number of 1s. We provide two loopless algorithms
for generating k-ary Dyck words in cool-lex order: (1) The first requires
two index variables and assumes k is a constant; (2) The second requires
t index variables and works for any k. We also efficiently rank k-ary Dyck
words in cool-lex order. Our results generalize the “coolCat” algorithm by
Ruskey and Williams (Generating balanced parentheses and binary trees
by prefix shifts in CATS 2008) and provide the first loopless and ranking
applications of the general cool-lex Gray code by Ruskey, Sawada, and
Williams (Binary bubble languages and cool-lex order under review).

1 Background

1.1 k-ary Dyck Words

Let B(n, t) be the set of binary strings of length n containing t copies of 1. A
string B ∈ B(kt, t) is a k-ary Dyck word if the number of 0s in each prefix is at
most k−1 times the number of 1s. Let Dk(t) be the set of k-ary Dyck words of
length kt. For example, the k-ary Dyck words with k = t = 3 are given below

D3(3) = {111000000, 110100000, 101100000, 110010000, 101010000, 100110000,
110001000, 101001000, 100101000, 110000100, 101000100, 100100100}.

The k-ary Dyck words of length kt have simple bijections with a number of
combinatorial objects including k-ary trees with t internal nodes [2,3]. The 2-
ary Dyck words are known as balanced parentheses when 1 and 0 are replaced by
‘(’ and ‘)’ respectively, and the cardinality of D2(t) is the tth Catalan number.

A simple property of k-ary Dyck words is that they can be “separated” ac-
cording to the following remark. We let αβ denote the concatenation of the
binary strings α and β, and we say that α and β have the same content if they
have equal length and an equal number of 1s.

Remark 1. If αβ, γδ ∈ Dk(t) and α and γ have the same content, then αδ, βγ ∈
Dk(t). In other words, prefixes (or suffixes) of k-ary Dyck words with the same
content can be separated and recombined.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 182–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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1.2 Combinatorial Generation

Many computational problems require iterating through combinatorial objects
of a given type and size without duplication. Generation algorithms store one
object in a data structure, and create successive objects by modifying its con-
tents. Constant-amortized time (CAT) and loopless algorithms create successive
objects in amortized O(1)-time and worst-case O(1)-time, respectively. Memory
for input parameters and the aforementioned data structure are fixed expenses,
and the algorithm’s remaining variables are additional variables. Index variables
have values in {1, 2, . . . , n} when generating combinatorial objects of size O(n).

Successive objects created by loopless algorithms differ by a constant amount
(in the chosen data structure) and the resulting order of objects is a Gray code.
If successive objects differ by operation ‘x’, then the order is an ‘x’ Gray code;
in a 2-‘x’ Gray code successive objects differ by at most two applications of ‘x’.
In a cyclic Gray code the last object differs from the first object in same way.

Suppose B = B1B2 · · ·Bn is a binary string of length n and 1 ≤ i ≤ j ≤ n.
Informally, swap(B, i, j) exchanges the ith and jth bits of B, and shift(B, j, i)
moves the jth bit of B leftwards into the ith position by moving the intermediate
bits to the right. Formally, the swap and shift operations are defined as follows:

– swap(B, i, j) = B1 · · ·Bi−1BjBi+1 · · ·Bj−1BiBj+1 · · ·Bn, and
– shift(B, j, i) = B1 · · ·Bi−1BjBiBi+1 · · ·Bj−1Bj+1 · · ·Bn.

When appropriate we shorten swap(B, i, j) to swap(i, j), and shift(B, j, i) to
shift(j, i). Swaps are also known as transpositions with special cases including

– adjacent-transpositions: swap(i, i+1),
– two-close-transpositions: swap(i, i+1) or swap(i, i+2), and
– homogeneous-transpositions : swap(B, i, j) where Bi = Bi+1 = · · · = Bj−1.

Prefix-shifts are usually defined as operations of the form shift(j, 1). Swaps and
prefix-shifts are efficient operations for binary strings stored in arrays and com-
puter words, respectively.

Given an order of combinatorial objects, the rank of an object is its position
in the order. Ranking determines the rank of a particular object in a given order,
and unranking determines the object with a particular rank in a given order.

1.3 CoolCat Order

Balanced parentheses are among the most studied objects in combinatorial gen-
eration [3] but fewer results exist for k-ary Dyck words. Generation of Dk(t)
was first discussed by Zaks [10]. A general result by Pruesse and Ruskey implies
that Dk(t) has a 2-adjacent-transposition Gray code [4] and a result by Canfield
and Williamson [1] proves that Dk(t) can be generated by a loopless algorithm1.
More recently, Vajnovszki and Walsh [9] found a two-close transposition Gray

1 Both results use that strings in Dk(t) correspond to linear-extensions of a poset with
cover relations a1 ≺ · · · ≺ at, b1 ≺ · · · ≺ b(k−1)t, and ai ≺ b(k−1)(i−1)+1 for 1 ≤ i ≤ t.
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code and created a loopless algorithm that requires twelve if-statements and
O(n) additional variables stored in three additional arrays e, s, and p. Results
on k-ary trees date back to Ruskey [5] and Trojanowski [8].

There are no prefix-shift Gray codes for Dk(t) (except when k, t ≤ 2). However,
the first bit of every k-ary Dyck word is 1, so we can instead define a prefix-shift as
shift(i, 2) with the understanding that the redundant bit could be omitted from
a computer word representation. Using this definition Ruskey and Williams [7]
discovered an ordering of D2(t) with the following properties:

– it is both a cyclic prefix-shift Gray code, and a cyclic 2-swap Gray code that
uses at most one adjacent-transposition and one homogeneous -transposition,

– it can be generated by a loopless algorithm using only two if-statements and
two additional index variables, and

– the ordering has an efficient ranking algorithm.

Furthermore, the Gray code can be created by the “successor rules” in Table 1.
More specifically, every string in D2(t) has a prefix that matches a unique rule
in (1a)-(1d) which describes how the prefix is changed to obtain the next string.
Table 1 uses exponentiation for symbol repetition, and the order for D2(4) is:

10111000, 11011000, 11101000, 10110100, 11010100, 10101100, 11001100,
11100100, 10110010, 11010010, 10101010, 11001010, 11100010, 11110000.

For example, the matched prefix for 11001100 is 1i0j11 with i = 2 and j = 2.
By (1a), shift(i+j+1, 2) (or swap(i+1, i+j+1)) creates the next string 11100100.
Similarly, the matched prefix for 11100100 is 1i0j10 with i = 3 and j = 2. By
(1c), shift(i+j+2, 2) (or swap(2, i+1) swap(i+j+1, i+j+2)) creates 10110010.

Table 1. Rules for generating balanced parentheses D2(t) from [7]. Prefixes change
according to (1a)-(1d) by the specified shift or the equivalent swap(s). †j > 0.

Current Prefix† Next Prefix Shift Swap(s)
(1a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)
(1b) 1i0j10 for i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)
(1c) 1i0j10 for i > j 101i−10j1 (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)
(1d) 1i0j for i = j = t 101i−10j−1 (i+j, 2) (2, i+1)

Rules (1a) and (1b) can be combined (see [7]) since they perform the same
operation and Rule (1d) simply transforms the ‘last’ string in the cyclic Gray
code into the ‘first’ string. The Gray code is also interesting because it generates
Dk(t) according to a cyclic Gray code for B(kt, t) known as cool-lex order. That
is, if α ∈ Dk(t) comes before β ∈ Dk(t) in the cool-lex order of B(kt, t), then α
comes before β in the Gray code defined by Table 1. The order and algorithm
are named “CoolCat” after cool-lex order and the Catalan numbers.

Theorem 1 ([7]). The balanced parentheses of length 2t in D2(t) are generated
in cool-lex order by the prefix-shift (or equivalent swap(s)) in Table 1.
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1.4 Bubble Languages and Cool-lex Order

A bubble language2 is a set of binary strings L ⊆ B(n, t) with the following
property: If B ∈ L where B = 1i0j01γ for some j ≥ 0, then 1i0j10 ∈ L. In other
words, they are sets of binary strings with the same content in which the leftmost
01 of any string can be replaced by 10 to give another string in the set. This
definition comes from Ruskey, Sawada, and Williams who showed that bubble
languages generalize many combinatorial objects including binary necklaces and
solutions to knapsack problems [6]. They substantially generalized Theorem 1 by
proving that cool-lex order provides a cyclic Gray code for any bubble language.
In particular, the successor rules in Table 2 generate all of these Gray codes.

Lemma 1 ([6]). The k-ary Dyck words in Dk(t) are a bubble language. Further-
more, the k-ary Dyck prefixes in Dk(t, s) (see Section 4) are a bubble language.

Proof. Replacing 01 by 10 cannot decrease the number of 1s in a string’s prefix.
��

Table 2. Rules for generating a bubble language L from [6]. Strings change according to
(2a)-(2e) by the specified shift or equivalent swap(s). †j > 0. ‡h is the minimum value
such that 1h01i−h0j1γ ∈ L and g is the minimum value such that 1g01i−g0j−1 ∈ L.

Current String† Next String‡ Shift Swap(s)
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)
(2b) 1i0j10γ for 1i0j+11γ /∈ L 1i+10i+1γ (i+j+1, 1) (i+1, i+j+1)
(2c) 1i0j10γ for 1i0j+11γ ∈ L 1h01i−h0j1γ (i+j+2, h+1) (h+1, i+1) (i+j+1, i+j+2)
(2d) 1i0j 1g01i−g0j−1 (i+j, g+1) (g+1, i+1)
(2e) 1i0j1 1i+10j (i+j+1, 1) (i+1, i+j+1)

Theorem 2 ([6]). The strings in any bubble language are generated in cool-lex
order by the shift (or equivalent swap(s)) in Table 2.

We will examine how this result applies to k-ary Dyck words later in this article.
In the meantime, observe that the rules in Table 2 refer to entire strings, and not
just specific prefixes as in Table 1. This is due to the fact that bubble languages
do not necessarily have the separability property mentioned in Remark 1. Also
note that Table 2 produces a shift Gray code that is not necessarily a prefix-shift
Gray code. On the other hand, the Gray code is still a 2-swap Gray code using
at most one adjacent-transposition and one homogeneous-transposition.

1.5 New Results

We apply Theorem 2 to obtain a simple set of successor rules that generate a
cyclic prefix-shift Gray code of k-ary Dyck words in Section 2. Then we use
the Gray code as the basis for two loopless generation algorithms that store the
2 These are called “binary fixed-density bubble languages” in [6].
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current string in an array in Section 3. The first algorithm works for constant
k and requires only two additional index variables. The second algorithm works
for arbitrary k and requires four if-statements and one array of O(n) additional
index variables. In Section 4 we show how the Gray code can be efficiently ranked
and unranked. With respect to the existing literature these results include

– the first prefix-shift Gray code for k-ary Dyck words [6],
– the first loopless algorithm for generating k-ary Dyck words that uses O(1)

additional index variables (when k is constant),
– a simpler loopless algorithm for generating k-ary Dyck words using 1/3 the

if-statements and additional arrays as [9] (when k is arbitrary), and
– the first order of k-ary Dyck words that has a loopless generation algorithm

as well as efficient ranking and unranking algorithms.

Our results also include the first application of bubble languages to loopless
generation and efficient ranking and unranking. Due to the generalization from
“CoolCat” to k-ary Dyck words, we name the order and algorithms “CoolKat”.

2 CoolKat Order

In this section we specialize the cool-lex Gray code for bubble languages to the
special case of k-ary Dyck words of length kt. In particular, Theorem 3 will prove
that k-ary Dyck words can be generated cyclically using the rules in Table 3.
The resulting “CoolKat” order appears below for D3(3)

101100000, 110100000, 101010000, 100110000, 110010000, 101001000,
100101000, 110001000, 101000100, 100100100, 110000100, 111000000.

As in Table 1 for balanced parentheses, the rules in Table 3 refer to string prefixes
and the stated shifts are prefix-shifts. Also, the rule (3d) refers only to the ‘last’
string 1t0(k−1)t. In the second half of this section we optimize the swap rules in
Table 3 for the array-based loopless algorithms in Section 3.

Table 3. New rules for generating k-ary Dyck words Dk(t) in cool-lex order. These
rules generalize those in Table 1 and specialize those in Table 2. †j > 0.

Current Prefix† Next Prefix Shift Swap(s)
(3a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)
(3b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)

(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+2, 2) (2, i+1) (i+j+1, i+j+2)

(3d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (i+j, 2) (2, i+1)

Theorem 3. The k-ary Dyck words of length kt are generated in cool-lex order
by the rules in Table 3.



Ranking and Loopless Generation of k-ary Dyck Words in Cool-lex Order 187

Proof. Since L = Dk(t) is a bubble language [6], Theorem 2 implies that its
strings are generated by Table 2. We now compare each rule in Table 2 to its
proposed specialization in Table 3. In the comparison, recall that (2a)-(2e) refer
to entire strings, whereas (3a)-(3d) refer to prefixes, and that j > 0 is always
assumed in 1i0j1.

Current Next Shift Swap
(2a) 1i0j11γ 1i+10j1γ (i+j+1, 1) (i+1, i+j+1)
(3a) 1i0j11 1i+10j1 (i+j+1, 2) (i+1, i+j+1)

If a k-ary Dyck word has prefix 1i0j11 and j > 0, then it must be that i > 0.
Therefore, shift(i+j+1, 2) in (3a) is the special case of shift(i+j+1, 1) in (2a).

Current Next Shift Swaps
(2b) 1i0j10γ for 1i0j+11γ /∈ L 1i+10i+1γ (i+j+1, 1) (i+1, i+j+1)
(3b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+j+1, 2) (i+1, i+j+1)

Suppose 1i0j10γ is a k-ary Dyck word. Remark 1 implies that 1i0j+11γ is
not k-ary Dyck word if and only if (k−1)i = j. Therefore, the condition “for
(k−1)i = j” in (3b) is a special case of the condition “for 1i0j+11γ /∈ L” in (2b).
Next observe that i > 0 since k-ary Dyck words must begin with the symbol 1.
Therefore, shift(i+j+1, 2) in (3b) is the special case of shift(i+j+1, 1) in (2b).

Current Next‡ Shift Swaps
(2c) 1i0j10γ for 1i0j+11γ ∈ L 1h01i−h0j1γ (i+j+2, h+1) (i+j+1, i+j+2) (h+1, i+1)
(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+2, 2) (i+j+1, i+j+2) (2, i+1)

‡h is the minimum value such that 1h01i−h0j1γ ∈ L.

Suppose 1i0j10γ is a k-ary Dyck word. Remark 1 implies that 1i0j+11γ is a k-ary
Dyck word if and only if (k−1)i > j. Therefore, the condition “for (k−1)i > j”
in (3c) is a special case of the condition “for 1i0j+11γ ∈ L” in (2c). Next observe
that Remark 1 implies that h = 1 is the minimum value such that 1h01i−h0j1γ ∈
L. Therefore, the shifts and swaps in (3c) are special cases of those in (2c).

Current Next‡ Shift Swaps
(2d) 1i0j 1g01i−g0j−1 (i+j, g+1) (g+1, i+1)
(3d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (i+j, 2) (2, i+1)

‡g is the minimum value such that 1g01i−g0j−1 ∈ L.

By similar reasoning as above, g = 1 is the minimum value such that 1g01i−g0j−1

is a k-ary Dyck word.

Current Next Shift Swaps
(2e) 1i0j1 1i+10j (i+j+1, 1) (i+1, i+j+1)

This general rule for bubble languages does not apply to k-ary Dyck words
because k-ary Dyck words cannot have 1 as the last symbol. ��
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2.1 Optimized Swap Rules

Table 4 gives swap rules that are equivalent to those in Table 3. In these rules,
swap(i+1, i+j+1) is performed when creating the successor of every string (ex-
cept 1t0(k−1)t). This allows more compact array-based algorithms in Section 3.

Table 4. Equivalent swap rules for generating k-ary Dyck words. These swap rules
differ slightly from those in Table 3 and allow for a more efficient algorithm.†j > 0.

Current Prefix† Next Prefix Swap(s)
(4a) 1i0j11 1i+10j1 (i+1, i+j+1)
(4b) 1i0j10 for (k−1)i = j 1i+10j+1 (i+1, i+j+1)

(4c) 1i0j10 for (k−1)i > j 101i−10j1 (i+1, i+j+1) (2, i+j+2)

(4d) 1i0j for i = t, j = (k − 1)t 101i−10j−1 (2, i+1)

Corollary 1. Dk(t) is generated in cool-lex order by the rules in Table 4.

Proof. The swap(s) are identical to those in Table 3 except for (4c) below.

Current Prefix Next Prefix Swap(s)
(3c) 1i0j10 for (k−1)i > j 101i−10j1 (i+j+1, i+j+2) (2, i+1)
(4c) 1i0j10 for (k−1)i > j 101i−10j1 (i+1, i+j+1) (2, i+j+2)

When B ∈ Dk(t) has prefix 1i0j10 with j > 0, then the relevant bit values are

B[2] =

{
1 if i > 1
0 if i = 1,

B[i+1] = 0, B[i+j+1] = 1, and B[i+j+2] = 0.

If i > 1, then (3c) and (4c) both change the prefix to 101i−10j1. If i = 1, then (3c)
and (4c) both change the prefix to 1i0j01 = 10j1i−101 via swap(i+j+1, i+j+2).

��

3 Loopless Algorithms

In this section we provide two loopless algorithms for generating k-ary Dyck
words in cool-lex order: coolkat (for “small” k) and coolKat (for “large” k).

3.1 Algorithm for Constant k

We begin with coolkat, which is a simple algorithm that uses only two additional
index variables. We prove its correctness in Theorem 4 and then prove that it is
loopless for constant k in Theorem 5.

Theorem 4. Algorithm coolkat(k, t) generates each successive k-ary Dyck word
of length kt in cool-lex order.
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Procedure coolkat(k, t)
1:
2: B ← array(1t0(k−1)t)
3: x← t
4: y ← t
5: visit()
6: while x < k(t− 1) + 1
7: B[x]← 0
8: B[y]← 1
9: x← x + 1

10: y ← y + 1
11: if B[x] = 0 then
12: if x− 2 = k(y − 2) then
13:
14: while B[x] = 0
15: x← x + 1
16: end
17:
18: else
19: B[x]← 1
20: B[2]← 0
21: if y > 3 then
22: x← 3
23: end
24: y ← 2
25: end
26: end
27: visit()
28: end

Procedure coolKat(k, t)
1: A← array(0t−2)
2: B ← array(1t0(k−1)t)
3: x← t
4: y ← t
5: visit()
6: while x < k(t− 1) + 1
7: B[x]← 0
8: B[y]← 1
9: x← x + 1

10: y ← y + 1
11: if B[x] = 0 then
12: if x− 2 = k(y − 2) then
13: if B[x + 1] = 1 then
14: A[y − 2]← 0
15: end
16: A[y − 2]← A[y − 2] + 1
17: x← x + A[y − 2]
18: else
19: B[x]← 1
20: B[2] ← 0
21: if y > 3 then
22: x← 3
23: end
24: y ← 2
25: end
26: end
27: visit()
28: end

Algorithms 1: coolkat(k, t) and coolKat(k, t) generate k-ary Dyck words of
length kt in cool-lex order for any k, t ≥ 1 (with 1t0(k−1)t visited first).

Proof. We prove that the “main loop” on lines 6-28 always modifies B ac-
cording to Table 4 by induction on the number of iterations. The first itera-
tion visits 1t0(k−1)t and the second iteration begins with y = 2, x = 3, and
B = 101t−10(k−1)t−1, which is correct by (4c). The second iteration provides a
base case for the following main-loop invariant:

If B has prefix 1i0j1 for j > 0 on line 6, then y = i+1 and x = i+ j+1.

Inductively suppose this invariant holds for the mth iteration and consider the
next iteration. Lines 7-8 apply swap(i+1, i+j+1), which is the first swap listed
in each of (4a)-(4c). Lines 9-10 increment the additional variables to y = i + 2
and x = i+ j + 2. Now consider the possible paths through the algorithm.

– If B[x] = 1 on line 11, then themth string in cool-lex order had prefix 1i0j11.
By (4a) the successor has already been obtained by swap(i+1, i+j+1). Fur-
thermore, y = i+ 2 and x = i+ j + 2 correctly satisfy the invariant.
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– If B[x] = 0 on line 11, then themth string in cool-lex order had prefix 1i0j10.
• If x − 2 = k(y − 2) on line 12, then j = (k − 1)i by simple algebra.

By (4b) the successor has already been obtained by swap(i+1, i+j+1).
Furthermore, y = i+ 2 is correct. Since B now has prefix 1i+10j+1, x is
greater than its current value of i+ j + 2. The loop on line 14 scans the
remainder of the B to determine the correct value of x.

• If x − 2 < k(y − 2) on line 12, then j < (k − 1)i. Lines 19-20 correctly
apply swap(2, i+ j+2) by (4c) and change the prefix of B to 101i−10j1.
∗ If y > 3 on line 21, then i > 1 and x = 2 is correctly set by line 22.
∗ If y = 3 on line 21, then i = 1 and the current value of x = i+ j + 2

is already correct.
Finally, y = 2 is correctly set by line 24.

This induction continues until B = 1t−10(k−1)(t−1)10k−1 since this is the only
string in Dk(t) for which x ≥ k(t− 1)+ 1 by the loop-invariant x = i+ j+ 1. By
(4b) the successor of 1t−10(k−1)(t−1)10k−1 is 1t0(k−1)t, which was the first string
visited. Therefore, coolkat(k, t) visits every string in Dk(t). ��
Now we analyze coolkat. We need to show that the loop on line 14 runs a constant
number of times when generating k-ary Dyck words for constant k. Towards this
goal we present the following lemma.

Lemma 2. If 1i0j10γ is a k-ary Dyck word and j = (k − 1)i, then γ does not
have 0k−1 as a prefix.

Proof. A k-ary Dyck word cannot have 1i0(k−1)i10k as a prefix. ��
Theorem 5. Algorithm coolkat(k, t) uses two additional variables, and when k
is a constant each successive string is created in worst-case O(1)-time.

Proof. The algorithm uses the input values k and t, and stores the current k-ary
Dyck word in the array B. Otherwise, the only additional variables are x and y.
Therefore, the stated memory requirements are correct.

Next consider the run-time of creating each successive string in B. Notice that
the only loop inside of the main loop on lines 6–28 is on 14. This loop is run
when the current string stored in B at line 6 has a prefix equal to 1i0(k−1)i10.
By Lemma 2, the next k bits in B cannot all be 0. Therefore, the line 14 runs
at most k times. If k is treated as a constant, then this loop can be replaced
by a constant number of nested if-statements. Therefore, when k is a constant,
successive strings are created in worst-case O(1)-time. ��

3.2 Algorithm for Arbitrary k

To obtain a loopless algorithm for arbitrary k we perform the loop on line 14
with in O(1)-time by introducing an additional array of index variables A.

Theorem 6. coolKat(k, t) is a loopless algorithm that generates each successive
k-ary Dyck word of length kt in cool-lex order and uses only t index variables.
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Proof. Observe that coolkat and coolKat differ only in line 1 and lines 13-17.
These lines are executed in coolKat when B begins the main-loop with a prefix
of the form 1i0(k−1)i10. By line 16, the A array is updated so that A[i] contains
the number of 0s that follow the prefix of the form 1i0(k−1)i1. A formal proof
of correctness requires an understanding of the recursive formulation of cool-lex
order presented in Section 4 and is omitted. ��

4 Ranking and Unranking

In this section we generalize k-ary Dyck words, discuss cool-lex order recursively,
and then efficiently rank and unrank k-ary Dyck words in cool-lex order.

A string B ∈ B(s+t, t) is a k-ary Dyck prefix if the number of 0s in each prefix
is at most k−1 times the number of 1s. Notice that k-ary Dyck prefixes with
t 1s can have s ≤ (k−1)t 0s, whereas k-ary Dyck words with t 1s must have
s = (k−1)t 0s. Let Dk(t, s) be the k-ary Dyck prefixes in B(s+t, t). Thus,

Dk(t, s) = {B ∈ B(s + t, t) | B0(k−1)t−s ∈ Dk(t)}.
Let Nk(t, s) be the cardinality of Dk(t, s). Also let v = (k−1)(t−1) in this section.
The significance of this value is that every B ∈ Dk(t, s) has suffix 0s−v if s > v.

Lemma 3. Nk(t, s) = 0 if t = 0, Nk(t, s) = 1 if t > 0 and s = 0, and otherwise

Nk(t, s) =
{

Nk(t−1, s) + Nk(t, s−1) if 1 ≤ s ≤ v;
1

kt+1

(
kt+1

t

)
if v < s ≤ (k − 1)t.

Proof. Dk(0, s) = ∅ and Dk(t, 0) = {1t} if t > 0. If 1 ≤ s ≤ v, then B1 ∈
Dk(t, s) ⇐⇒ B ∈ Dk(t−1, s) and B0 ∈ Dk(t, s) ⇐⇒ B ∈ Dk(t, s−1). Thus,
Nk(t, s) = Nk(t−1, s)+Nk(t, s−1). If v < s ≤ (k−1)t, then all strings in Dk(t, s)
end in 0 and B ∈ Dk(t, s) ⇐⇒ B0(k−1)t−s ∈ Dk(t). Thus, Nk(t, s) = 1

kt+1

(
kt+1

t

)
by the bijection between Dk(t) and k-ary trees with t internal nodes [3,10]. ��
Ruskey, Sawada, Williams [6] prove that the following recursive formula gives
the cool-lex order of any bubble language L. The formula is explained below.

C(t, s, γ) =

{
C(t−1, 1, 10s−1γ), . . . , C(t−1, s−j, 10jγ), 1t0sγ if t > 0;
0sγ if t = 0.

(1a)
(1b)

If 1t0sγ ∈ L and γ doesn’t begin with 0, then C(t, s, γ) is the cool-lex order for
the strings in L with suffix γ. The “fixed-suffix” γ is extended in turn in (1)
to 10s−1γ, 10s−2γ, . . . , 10jγ where j is the minimum value such that 10jγ is the
suffix of a string in L. Notice that γ is extended by 10i for decreasing i with one
exception: The single string resulting from i = s (namely, 1t0sγ = 1t−110sγ =
C(t−1, 0, 10sγ)) is last instead of first. In fact, this is the only difference between
cool-lex order and conventional “co-lex order” (see [3] for lexicographic orders).
The entire cool-lex order for some L with 1t0s ∈ L is C(t, s, ε). Now we specialize
cool-lex order to k-ary Dyck prefixes. Let the coolKat order for L = Dk(t, s) be
denoted Dk(t, s, ε) = C(t, s, ε).
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Lemma 4. CoolKat order is Dk(t, s, γ) = ε if t = 0, and otherwise

Dk(t, s, γ)=

{
Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, s, 1γ), 1t0s if s ≤ v;
Dk(t−1, 1, 10s−1γ), . . . ,Dk(t−1, v, 10s−vγ), 1t0s if v < s ≤ (k−1)t.

Proof. L = Dk(t, s) is a bubble language, so Dk(t, s, γ) follows from (1) by giving
the minimum j such that 10j is the suffix of a string in L. If s ≤ v, then j = 0
by 1t−10s1 ∈ L. If v < s ≤ (k − 1)t, then j = s− v by 1t−10s10s−v ∈ L. ��
Now we efficiently rank and unrank k-ary Dyck prefixes with examples after
Theorems 7 and 8. With respect to an ordered set of strings L = B1, B2, . . . , Bm,
the rank of Bi is rank(Bi,L) = i−1, and unrank(i−1,L) = Bi for 1 ≤ i ≤ m.
For convenience let R(B,L) = rank(B,L)+1. Also let Dk(t, s) denote Dk(t, s, ε).

Theorem 7. If B = α10m ∈ Dk(t, s) for possibly empty α and m ≥ 0, then

R(B,Dk(t, s)) =

⎧⎪⎪⎨
⎪⎪⎩

Nk(t, s) if B = 1t0s;

R(α,Dk(t−1, s−m))+
s−m−1∑

i=1

Nk(t−1, i) if B �=1t0s and s≤v;
R(β,Dk(t, v)) otherwise,

where β is the first t+ v bits of B.

Proof. If B = 1t0s, then R(B,Dk(t, s)) = Nk(t, s) since B is last in Dk(t, s) by
Lemma 4.

If B �= 1t0s and 0 ≤ s ≤ v, then Dk(t−1, i) appears before B in Dk(t, s) for
1 ≤ i ≤ s−m−1 by Lemma 4.

If s > v, then by Lemma 4 each string of Dk(t, v) appears as a prefix of
the corresponding string in Dk(t, s), i.e., Dk(t, s) = Dk(t, v, 0s−v). Therefore,
R(B,Dk(t, s)) = R(β,Dk(t, v)). ��
With respect to an ordered set of strings L, let U(x,L) = unrank(x−1).

Theorem 8

U(x,Dk(t, s)) =

⎧⎪⎪⎨
⎪⎪⎩

1t0s if x = Nk(t, s);

U(x−
y∑

i=1

Nk(t−1, i),Dk(t−1, y+1))10s−y−1 if x<Nk(t, s) and s≤v;

U(x,Dk(t, v))0s−v otherwise,

where y is the largest integer such that x >
∑y

i=1 Nk(t−1, i).

Proof. If x = Nk(t, s), then U(x,Dk(t, s)) is the last string in Dk(t, s) and by
Lemma 4, U(x,Dk(t, s)) = 1t0s.

We now consider the case when x < Nk(t, s) and 0 ≤ s ≤ v. Let p be an integer,
such that U(x,Dk(t, s)) is in Dk(t, p, 10s−p). By Lemma 4, x >

∑p−1
i=1 Nk(t−1, i).

It is now straightforward to observe that y = p− 1. Therefore, U(x,Dk(t, s)) =
U(x−∑y

i=1 Nk(t− 1, i),Dk(t−1, y + 1))10s−y−1.
The remaining case is x < Nk(t, s) and s > v. By Lemma 4, each string of

Dk(t, v) appears as a prefix of the corresponding string in Dk(t, s), i.e., Dk(t, s) =
Dk(t, v, 0s−v). Therefore, U(x,Dk(t, s)) = U(x,Dk(t, v))0s−v. ��
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We precompute and store the values of Nk(t, s) in a table so that for any value
of k, t, s, we can obtain Nk(t, s) in O(1) time. As a result we obtain O(t + s)-
time ranking and unranking algorithms for k-ary Dyck words using Theorems 7
and 8, respectively. For example, the following table illustrates the first few
values of Nk(t, s) for k = 5. In the ranking and unranking process we assume
that such tables for small fixed values of k are computed in advance. Thus for
the corresponding precomputed values, we can obtain Nk(t, s) in O(1) time.

N5(t, s) s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12

t = 1 1 1 1 1 1

t = 2 1 2 3 4 5 5 5 5 5

t = 3 1 3 6 10 15 20 25 30 35 35 35 35 35

We now compute R(100100010,D5(3, 6)) and U(16,D5(3, 6)) as follows:

R(100100010,D5(3, 6)) = R(1001000,D5(2, 5)) +
∑6−1−1

i=1 N5(2, i)

= R(100,D5(1, 2)) +
∑5−3−1

i=1 N5(1, i) +
∑4

i=1N5(2, i)

= N5(1, 2) +
∑1

i=1N5(1, i)+
∑4

i=1N5(2, i)
= 16.

U(16,D5(3, 6)) = U(16−∑4
i=1N5(2, i),D5(2, 5))106−4−1

= U(2,D5(2, 5))10

= U(2,D5(2, 4))05−(2−1)(5−1)10

= U(2−∑1
i=1N5(1, i),D5(1, 2))104−1−1010

= U(1,D5(1, 2))100010
= 100100010.
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Abstract. In this paper we introduce two efficient priority queues. For
both, insert requires O(1) amortized time and extract -min O(lg n) worst-
case time including at most lg n + O(1) element comparisons, where n is
the number of elements stored. One priority queue is based on a weak
heap (array-based) and the other on a weak queue (pointer-based). In
both, the main idea is to temporarily store the inserted elements in a
buffer, and once it is full to move its elements to the main queue using an
efficient bulk-insertion procedure. By employing the new priority queues
in adaptive heapsort, we guarantee, for several measures of disorder, that
the formula expressing the number of element comparisons performed by
the algorithm is optimal up to the constant factor of the high-order term.
We denote such performance as constant-factor optimality. Unlike some
previous constant-factor-optimal adaptive sorting algorithms, adaptive
heapsort relying on the developed priority queues is practically workable.

Keywords: Priority queues, weak heaps, weak queues, adaptive sorting,
adaptive heapsort, constant-factor optimality.

1 Introduction

A sorting algorithm is adaptive if it changes its performance according to the pre-
sortedness within the input. When sorting n elements, the running time of such
algorithm is O(n) for sequences that are sorted or almost sorted, and O(n lg n)
for sequences that have a high degree of disorder. It is important to note that
such algorithms do not know in advance about the amount of existing disorder.

In the literature, several measures of disorder that characterize the input
sequence have been considered [18]. An adaptive sorting algorithm is said to
be asymptotically optimal, or simply optimal, if its running time asymptotically
matches the lower bound derived using the number of input elements and the
amount of disorder as parameters. In this paper we focus on a stronger form of op-
timality. We call an asymptotically-optimal algorithm constant-factor-optimal, if
the number of element comparisons performed matches the information-theoretic
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lower bound up to the constant factor hidden behind the big-Oh notation, i.e. the
constant factor multiplied by the high-order term.

Some of the known measures of disorder are the number of oscillations Osc [15],
the number of inversions Inv [14], the number of runs Runs [14], the number
of blocks Block [3], and the measures Max , Exc and Rem [3]. Some measures
dominate the others: every Osc-optimal algorithm is Inv optimal and Runs opti-
mal; every Inv -optimal algorithm is Max optimal [15]; and every Block -optimal
algorithm is Exc optimal and Rem optimal [3]. Natural mergesort, described by
Knuth [14, Section 5.2.4], is an example of an adaptive sorting algorithm that is
constant-factor-optimal; this is with respect to the measure Runs.

For a sequence X = 〈x1, x2, . . . , xn〉, the number of inversions is the number
of pairs of elements that are in the wrong order, i.e. Inv(X) = |{(i, j) | 1 ≤ i <
j ≤ n and xi > xj}| [14, Section 5.1.1]. An optimal algorithm with respect to the
measure Inv sorts a sequenceX inΘ(n lg

(
Inv(X)/n

)
+n) time. The optimality is

implied by the information-theoretic lower bound Ω(n lg
(
Inv(X)/n

)
+n) known

for the number of element comparisons performed by any sorting algorithm with
respect to the parameters n and Inv [12]. A constant-factor-optimal algorithm
should perform at most n lg

(
Inv(X)/n

)
+O(n) element comparisons.

Several adaptive sorting algorithms are known to be asymptotically optimal
with respect to the measure Inv . The known approaches are inspired by in-
sertionsort [7,8,12,19,20,23], quicksort [16], mergesort [8,21], or heapsort [6,15].
However, only a few of the known algorithms are constant-factor-optimal; these
are the insertionsort-based and mergesort-based algorithms of Elmasry and Fred-
man [8], and the heapsort-based algorithm of Levcopoulos and Petersson [15]
when implemented with the multipartite priority queue of Elmasry et al. [10].
Most of these algorithms are complicated and have never been implemented.

Adaptive heapsort [15] is optimal with respect to all the aforementioned mea-
sures of disorder. We recall the description and analysis of adaptive heapsort
in Section 2. In this paper we present two new realizations of adaptive heap-
sort. Our main motivation is to use, instead of a worst-case efficient priority
queue [10], a simpler priority queue that can support insert in O(1) amortized
time and extract-min in O(lg n) worst-case time including at most lgn + O(1)
element comparisons. From these bounds and the analysis given in [15], the
constant-factor optimality follows for the following measures of disorder: Osc,
Inv , Runs, and Max . Our main contribution is to present two priority queues
with the required performance guarantees. The first priority queue improves over
a weak heap (an array-based priority queue described in the context of sorting
by Dutton [4] and further analysed by Edelkamp and Wegener [5]). We modify
and analyse this priority queue in Section 3. The second priority queue improves
over a weak queue (a binomial queue implemented using binary trees as sug-
gested by Vuillemin [24]). We modify and analyse this priority queue in Section
4. The simple—but powerful—tool we used in both data structures is a buffer,
into which the new elements are inserted. When the buffer becomes full, all its
elements are moved to the main queue. In accordance, for both priority queues,
we give an efficient bulk-insertion procedure.
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We demonstrate the effectiveness of our approach by comparing the new
realizations to the best implementations of known efficient sorting algorithms
(splaysort [20] and introsort [22]). Our experimental settings, measurements,
and outcomes are discussed in Section 5.

2 Adaptive Heapsort

In this section we describe the basic version of adaptive heapsort [15] and sum-
marize the analysis of its performance.

The algorithm begins by building the Cartesian tree [25] for the input X =
〈x1, . . . , xn〉. The root of the Cartesian tree stores xk = min{x1, . . . , xn}, the left
subtree of the root is the Cartesian tree for 〈x1, . . . , xk−1〉, and the right subtree
of the root is the Cartesian tree for 〈xk+1, . . . , xn〉. Such a tree can be built in
O(n) time [11] by scanning the input in order and inserting each element xi into
the existing tree as follows. The nodes along the right spine of the tree (the path
from the root to the rightmost leaf) are traversed bottom up, until a node with
an element xj that is not larger than xi is found. In such case, the right subtree
of the node of xj is made the left subtree of the node of xi, and the node of xi is
made the right child of the node of xj . If xi is smaller than all the elements on
the right spine, the whole tree is made the left subtree of the node of xi. This
procedure requires at most 2n− 3 element comparisons [15].

The algorithm proceeds by moving the smallest element at the root of the
Cartesian tree into a priority queue. The algorithm then continues by repeat-
edly outputting and deleting the minimum from the priority queue. After each
deletion, the elements at the children of the Cartesian-tree node corresponding
to the deleted element are inserted into the priority queue. As for the priority-
queue operations, n insert and n extract-min operations are performed. But,
the heap will be small if the input sequence has a high amount of existing order.

The following improvement to the algorithm [15] is both theoretically and
practically effective; even though, in this paper, it only affects the constant in the
linear term. Since at least �n/2� of the extract-min operations are immediately
followed by an insert operation (deleting a node that is not a leaf of the Cartesian
tree must be followed by an insertion), every such extract-min can be combined
with the following insert . This can be implemented by replacing the minimum of
the priority queue with the new element and thereafter reestablishing the heap
properties. Accordingly, the cost for half of the insertions will be saved.

The worst-case running time of the algorithm is O(n lg
(
Osc(X)/n

)
+ n) =

O(n lg
(
Inv(X)/n

)
+ n) [15]. For a constant β, the number of element com-

parisons performed is βn lg
(
Osc(X)/n

)
+ O(n) = βn lg

(
Inv(X)/n

)
+ O(n).

Levcopolous and Petersson suggested using a binary heap [26], which results in
β = 3 (can be improved to β = 2.5 by combining extract-min and insert when-
ever possible). By using a binomial queue [24], we get β = 2. By using a weak
heap [4], we get β = 2 (can be improved to β = 1.5 by combining extract-min
and insert). By using the complicated multipartite priority queue [10], we in-
deed get the optimal β = 1. The question then arises whether we can achieve the
constant-factor optimality, i.e. β = 1, and in the meantime ensure practicality!
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In addition to the priority queue, the storage required by the algorithm is 2n
extra pointers for the Cartesian tree. (We need not keep parent pointers since,
during the construction, on the right spine of the tree we can temporarily revert
each right-child pointer to point to the parent.) We also need to store the n
elements inside the nodes of the Cartesian tree, either directly or indirectly.

3 Weak Heaps with Bulk Insertions

A weak heap [4] is a binary tree, where each node stores an element. A weak heap
is obtained by relaxing the requirements of a binary heap [26]. The root has no
left child, and the leaves are found at the last two levels only. The height of a
weak heap that has n elements is therefore �lgn� + 1. The weak-heap property
enforces that the element stored at a node is not larger than all the elements
stored in the right subtree of that node. In our implementation, illustrated in
Fig. 1, besides the element array a an array r of reverse bits is used, i.e. ri ∈ {0, 1}
for i ∈ {0, . . . , n−1}. We use ai to refer to either the element at index i of array
a or to a node in the corresponding tree structure. A weak heap is laid out such
that, for ai, the index of its left child is 2i + ri, the index of its right child is
2i + 1 − ri, and (assuming i 
= 0) the index of its parent is �i/2�. Using the
fact that the indices of the left and the right children of ai are exchanged when
flipping ri, subtrees can be swapped in constant time by setting ri ← 1− ri.

The distinguished ancestor of ai, i 
= 0, is the parent of ai if ai is a right
child, and the distinguished ancestor of the parent of ai if ai is a left child. We
use d -ancestor(i) to denote the index of such ancestor. The weak-heap property
enforces that no element is smaller than that at its distinguished ancestor.

To insert a new element e, we first add e to the next available array entry,
making it a leaf in the heap. To reestablish the weak-heap property, as long
as e is smaller than the element at its distinguished ancestor, we swap the two
elements and repeat this for the new location of e. It follows that insert requires
O(lg n) time and involves at most �lg n� element comparisons.

a)

0 1 2 3 4 5 6 7 8 9 10 1211

10 47 49 53 46 75 80 26 42128 127

minbufferminheap

b)
0
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76 5 4

23

910 8

26

8

2710

12

4746 4953

8075

Fig. 1. A weak heap of size 11 and a buffer of size 2: a) the array representation and
b) the corresponding tree representation of the weak heap; the nodes, for which the
reverse bits are set, are highlighted
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The subroutine link combines two weak heaps into one weak heap conditioned
on the following settings. Let ai and aj be two elements in a weak heap, such
that ai is not larger than all the elements in the left subtree of aj . Conceptually,
aj and its right subtree form a weak heap, while ai and the left subtree of aj
form another weak heap. (Note that ai could be at any location of the array.) If
aj < ai, the subroutine link swaps the two elements and flips rj ; otherwise it does
nothing. As a result, aj will not be larger than any of the elements in its right
subtree, and ai will not be larger than any of the elements in the subtree rooted
at aj . All in all, link requires O(1) time and involves one element comparison.

To perform extract-min, the element stored at the root of the weak heap is
swapped with that stored at the last occupied array entry. To restore the weak-
heap property, repeated link operations are performed that involve the current
root of the weak heap; the details follow. The last node on the left spine (the
path from a node to the leftmost leaf) of the right child of the root is identified.
Starting from the child of the root, this is done by repeatedly traversing left
children until reaching a node that has no left child. The path from this node
to the child of the root is traversed upwards, and link operations are repeatedly
performed between the root of the weak heap and the nodes along this path. The
correctness of the extract-min operation follows from the fact that, after each
link , the element at the root of the heap is not larger than all the elements in
the left subtree of the node to be considered in the next link . Thus, extract-min
requires O(lg n) time and involves at most �lgn� element comparisons.

The cost of insert can be improved to an amortized constant. The key idea is
to use a buffer that supports constant-time insertion. The buffer can be imple-
mented as a resizable array. Additionally, a pointer to the minimum element in
the buffer is maintained. The maximum size of the buffer is set to �lg n�, where n
is the total number of elements stored. A new element is inserted into the buffer
as long as its size is below the threshold. Once the threshold is reached, a bulk
insertion is performed by moving all the elements of the buffer to the weak heap.
For the extract-min operation, the minimum of the buffer is compared with the
minimum of the weak heap, and accordingly the operation is performed either
in the buffer or in the weak heap. Deleting the minimum of the buffer is done by
removing the minimum and scanning the buffer to determine the new minimum.
Almost matching the bounds for the weak heap, deleting the minimum of the
buffer requires O(lg n) time and involves at most �lg n�−2 element comparisons.
Thus, extract-min involves at most �lgn�+ 1 element comparisons.

Let us now consider how to perform a bulk insertion in O(lg n) time (see
Fig. 2). First, we move the elements of the buffer to the next available entries
of the array that stores the weak heap. The main idea is to reestablish the
weak-heap property bottom-up level-by-level. Starting with the inserted nodes,
for each node we link its distinguished ancestor to it. We then consider the
parents of these nodes on the next upper level, and for each parent we link its
distinguished ancestor to it, restoring the weak-heap property up to this level.
This is repeated until the number of nodes that we need to deal with at a level
is two (or less). At this point, we switch to a more efficient strategy. For each of
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input: a: array of elements, r: array of bits, buffer : array of elements
right ← size(a) + size(buffer)− 1
left ← max{size(a), �right/2�}
while size(buffer) > 0

size(a)++
a[size(a)− 1]← buffer [size(buffer)− 1]
size(buffer)--
size(r)++
r[size(r)− 1]← 0

while right > left + 1
for j ∈ {right , right − 1, . . . , left}

i← d-ancestor (j)
if a[j] < a[i]

swap(a[i], a[j])
r[j]← 1− r[j]

left ← �left/2�
right ← �right/2�

for j ∈ {left, right}
while j �= 0

i← d-ancestor (j)
if a[j] < a[i]

swap(a[i], a[j])
r[j]← 1− r[j]

j ← i

Fig. 2. The pseudo-code for bulk insertion in a weak heap

these two nodes, we reestablish the weak-heap property by traversing the path
from such node towards the root. If the value of the current node x is smaller
than that at its distinguished ancestor, we link the distinguished ancestor to x.
We then repeat after setting x to be its old distinguished ancestor.

The correctness of the bulk-insertion procedure follows since, before consider-
ing the ith level, the value at any node below level i is not smaller than that
at its distinguished ancestor. Hence, the value at the distinguished ancestor of a
node x at level i is guaranteed not to be larger than the value at any node of the
left subtree of x; this ensures the validity of the link operations to be performed
at level i. Once we reach the root, the weak-heap property is valid for all nodes.

Let k be the number of elements moved from the buffer to the weak heap by
the bulk-insertion procedure. The number of element comparisons performed at
the ith iteration equals the number of link operations at the ith last level of the
weak heap, which is at most �(k − 2)/2i−1�+ 2. Here, we use the fact that the
number of parents of a contiguous block of b elements in the array of a weak heap
is at most �(b−2)/2�+2. Since the number of iterations is at most �lgn�, the total
number of element comparisons is less than

∑�lg n�
i=1 (1/2i−1 ·k+2) < 2k+2�lgn�.

When k = �lgn�, the number of element comparisons is less than 4�lgn�; this
accounts for four comparisons per element in the amortized sense. Due to the
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bulk insertion and the check for whether the minimum of the buffer is up to date
or not, insert involves amortized five element comparisons in total.

The running time of the bulk insertion is dominated by the localization of the
distinguished ancestors of the involved nodes. To find the distinguished ancestor
of a node, we repeatedly go to the parent and check whether the current node is
its right child or not. We call such an operation an ancestor check. We separately
consider two parts of the procedure. The first part comprises the process of
finding the distinguished ancestors for the levels with more than two involved
nodes. Recall that the total number of those nodes at the ith last level is k/2i−1+
O(1), for a total of 2k+ o(k). Among the nodes involved, at most (2k+ o(k))/2j

need j ancestor checks to get to the distinguished ancestor, where j ≥ 1. This
accounts for at most

∑
j≥1 j/2

j−1 · (k + o(k)) < 4(k + o(k)) = 4�lgn�+ o(lg n)
ancestor checks. The second part comprises two path traversals towards the
root, which involve at most 2�lgn� ancestor checks in total. We conclude that
the amortized cost accounted per element is a constant.

4 Weak Queues with Bulk Insertions

In this section we resort to a binomial queue that is implemented using binary
trees [24]; we call this variant a weak queue. This data structure is a collection
of perfect weak heaps (binomial trees in the binary-tree form), where the size of
each tree is a power of two. The binary representation of n specifies the sizes of
the perfect weak heaps that are present. A 1-bit at position r indicates that a
perfect weak heap of size 2r is present. The rank of a perfect weak heap of size
2r is r. In our implementation, illustrated in Fig. 3, every node stores a pointer
to its left child, a pointer to its right child, and (a pointer to) an element.

Two perfect weak heaps of rank r can be linked to form a perfect weak heap
of rank r + 1, by making the root that has the smaller element the root of the
resulting weak heap, the other root the right child of the new root, and the
previous right child of the new root the left child of the other root.

minqueue

4726

75

46 49

12

10

80

5342

27minbuffer

1 8

Fig. 3. A buffer of size 2 and a weak queue of size 11 (1011 in binary)
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To insert a node into a weak queue, we let the new node form a single-node
tree. This may trigger a sequence of link operations until no two trees of the
same rank exist. Still, the amortized cost per insert is a constant [24].

To perform extract-min, we scan the roots of the perfect weak heaps to find
the minimum. We then borrow the root of the smallest tree; let that root be x.
In accordance, every node on the left spine of x’s right subtree becomes the root
of a perfect weak heap, and these heaps are added to the collection. Hereafter,
we detach the root with the minimum value; let that root be y. Now every node
on the left spine of y’s right subtree is the root of a perfect weak heap. Using
repeated link operations, the node x is combined with the roots of these heaps
to create a perfect weak heap that has the same size as the heap rooted at y
before the deletion. (A link operation is performed between x and the root of
the smallest such heap, and the resulting heap is repeatedly linked with the next
larger remaining heap, and so on.) It follows that extract -min requires O(lg n)
time and involves at most 2�lgn� − 2 element comparisons.

To speed things up, we maintain prefix-minimum pointers for the roots of the
perfect weak heaps (for the origin of this idea, consult [10] and the references
therein). The prefix-minimum pointer of the root of a heap of size 2r points to
the root with the smallest value among the heaps of size 2j for j ≤ r. The overall
minimum can be located by following the prefix-minimum pointer of the root of
the largest heap. Now we have to borrow a node such that the prefix-minimum
pointers need not be updated. As before, the borrowed node is repeatedly linked
with the roots of the heaps resulting from detaching the minimum node. This
requires r element comparisons if the rank of the deleted node is r. We still
have to update the prefix-minimum pointers. The key idea is that we only need
�lgn� − r element comparisons to update the prefix-minimum pointers of the
larger heaps. Hence, extract-min involves at most �lg n� element comparisons.

If we implement insert in the normal way, we then have to update the prefix-
minimum pointers; this would require a logarithmic number of element compari-
sons. Our way out is again to rely on bulk insertions (see Fig. 4). We collect
at most �lgn� elements into a buffer, where n is the total number of elements
stored. The buffer is implemented as a circular singly-linked list, having its min-
imum first. When the buffer becomes full, we clear it by repeatedly inserting its
elements into the weak queue in the normal way, without updating the prefix-
minimum pointers. After finishing these insertions, the prefix-minimum pointers
are updated once. For the bulk insertion, an amortized analysis accounts for a
constant amortized cost per element, involving amortized two element compari-
sons. Since it is necessary to maintain the minimum of the buffer, an insertion
into the buffer involves one element comparison. This together with the bulk
insertion accounts for three element comparisons per insert .

We have to implement borrowing carefully so that it does not invalidate the
prefix-minimum pointers. While performing no element comparisons, it takes
O(lg n) time. If the buffer is non-empty, a node is borrowed from there. Other-
wise, a node is borrowed from the main queue. If the size of the smallest heap
is larger than one, the last node from the left spine of the right subtree of its
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input: Q: queue of perfect weak heaps, buffer : list of nodes
while size(buffer) > 0

x← pop(buffer)
insert(Q, x)

update-prefix -minimum-pointers(Q)

Fig. 4. The pseudo-code for bulk insertion in a weak queue. For a list, subroutine pop
removes and returns its last node. For a queue, subroutine insert adds the given node
to the queue and makes the necessary linkings leaving at most one heap per rank.
Subroutine update-prefix -minimum-pointers updates all the prefix-minimum pointers
as they may not be up to date after insert operations.

root is borrowed. The root and the other nodes on the left spine are added as
new roots to the main structure, and the prefix-minimum pointers associated
with each of them is set to point to the old root (rooting a heap of size one
now). Otherwise, the smallest heap is a singleton. This singleton is borrowed if
the prefix-minimum pointer of the second smallest heap does not point to it.
Otherwise, these two roots are swapped and the current singleton is borrowed.

For the extract-min operation, the minimum of the buffer is compared with
the minimum of the weak queue, and accordingly the operation is performed
either in the buffer or in the weak queue. After these modifications, extract-min
involves at most �lgn�+ 1 element comparisons.

5 Experimental Findings

We implemented two versions of adaptive heapsort, one using a weak heap and
another using a weak queue. In this section we discuss the settings and outcomes
of our performance tests. In these tests we measured the actual running time
of the programs and the number of element comparisons performed. The main
purpose for carrying out these experiments was to validate our theoretical results.

Our implementation of adaptive heapsort using a weak heap was array-based.
Each entry of the array representing the Cartesian tree stored a copy of an
element and two references to other entries in the tree. The arrays representing
the weak heap and the buffer stored references to the Cartesian tree, and a
separate array was used for the reverse bits. In total, the space usage per element
was three references, a copy of the element, and one bit. Dynamic memory
allocation was avoided by preallocating all arrays from the stack. Users should
be aware that, due to the large space requirements, the algorithm has a restricted
utility depending on the amount of memory available.

In our implementation of adaptive heapsort using a weak queue, some non-
trivial enhancements were made. First, we used two pointers per node: one point-
ing to the left child and another to the right child. As advised by Vuillemin [24],
because of the lack of parent pointers, we reverted the left-child pointers to tem-
porarily point to the parents while performing repeated linkings in extract -min.
Second, we used an array of pointers to access the roots of the trees. This array
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also infers the ranks of these roots; the nodes themselves did not store any rank
information. Third, we used the same nodes to store the pointers needed by the
Cartesian tree and the buffer. Fourth, all memory was preallocated from the
stack. In total, the space usage per node was four pointers and a copy of an
element; another O(lg n) space was used by the array of root pointers and the
array of prefix-minimum pointers. Accordingly, this implementation used even
more memory than the version employing a weak heap.

To select suitable competitors for our implementations, we consulted some
earlier research papers concerning the practical performance of inversion-optimal
sorting algorithms [9,20,23]. Based on this survey, we concluded that splaysort
performs well in practice. In addition, the implementation of Moffat et al. [20] is
highly tuned, practically efficient, and publicly available. Consequently, we se-
lected their implementation of splaysort as our primary competitor. In the afore-
mentioned experimental papers, splaysort has been reported to perform better
than other tree-based algorithms (e.g. AVL-sort [7]), cache-oblivious algorithms
(e.g. greedysort [1]), and partition-based algorithms (e.g. splitsort [16]).

When considering comparison-based sorting, one should not ignore quicksort
[13]. Introsort [22] is a highly tuned variant of quicksort that is known to be fast
in practice. It is based on half-recursive median-of-three quicksort, it coarsens the
base case by leaving small subproblems unsorted, it calls insertionsort to finalize
the sorting process, and it calls heapsort if the recursion depth becomes too large.
Using the middle element as a candidate for the pivot, and using insertionsort
at the back end, make introsort adaptive with respect to the number of element
comparisons (though not optimally adaptive with respect to any known measure
of disorder). Quicksort and its variants are also known to be optimally adaptive
with respect to the number of element swaps performed [2]. For these reasons,
we selected the standard-library implementation of introsort shipped with our
C++ compiler as our secondary competitor.

In the experiments, the results of which are discussed here (see Figs. 5–8), we
used 4-byte integers as input data. The results were similar for different input
sizes; for the reported experiments the number of elements was fixed to 107

and 108. We ensured that all the input elements were distinct. Integer data was
sufficient to back up our theoretical analysis. However, for other types of input
data, the number of element comparisons performed and the number of cache
misses incurred may have more significant influence on the running time.

We performed the experiments on one core of a desktop computer (model Intel
i/7 CPU 2.67 GHz) running Ubuntu 10.10 (Linux kernel 2.6.32-23-generic). This
computer had 32 KB L1 cache memory, 256 KB L2 cache memory, 8 MB (shared)
L3 cache memory, and 12 GB main memory. With such memory capacity, there
was no need to use virtual memory. We compiled all programs using GNU C++
compiler (gcc version 4.4.3 with option -O3).

To generate the input data, we used two types of generators:

Repeated Swapping. We started with a sorted sequence of the integers from
1 to n, and repeatedly performed random transpositions of two consecutive
elements. This generator was used to produce data with few inversions.
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Fig. 5. Repeated swapping, n = 107: CPU time used and the number of element
comparisons performed by different sorting algorithms
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Fig. 6. Controlled shuffling, n = 107: CPU time used and the number of element
comparisons performed by different sorting algorithms

Controlled Shuffling [9]. We started with a sorted sequence of the integers
from 1 to n, and performed two types of perturbations; we call the sequences
resulting from these two phases local and global shuffles. For local shuffles, the
sorted sequence was broken into �n/m� consecutive blocks each containing
m elements (except possibly the last block), and the elements of each block
were randomly permuted. For global shuffles, the sequence produced by the
first phase was broken into m consecutive blocks each containing �n/m�
elements (except possibly the last block). From each block one element was
selected at random, and these elements were randomly permuted. A small
value of m means that the sequence is sorted or almost sorted, and a large
value of m means that the sequence is random. Given a parameter m, this
shuffling results in a sequence with expected Θ(n ·m) inversions.

Since in both cases the resulting sequence is a permutation of the integers from
1 to n, the number of inversions could be easily calculated as

∑n
i=1 |xi − i|/2.

The experiments showed that our realizations of adaptive heapsort perform
a low number of element comparisons. For both versions, the number of ele-
ment comparisons was about the same, as already verified analytically. When
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Fig. 7. Repeated swapping, n = 108: CPU time used and the number of element
comparisons performed by different sorting algorithms
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Fig. 8. Controlled shuffling, n = 108: CPU time used and the number of element
comparisons performed by different sorting algorithms

the number of inversions was small, splaysort performed about the same num-
ber of element comparisons as the two realizations of adaptive heapsort. When
the number of inversions was large, splaysort performed a few more element
comparisons than the two realizations of adaptive heapsort. In all our experi-
ments, introsort was a bad performer with respect to the number of element
comparisons; it showed very little adaptivity and came last in the competition.

As to the running time, the weak-heap version of adaptive heapsort was faster
than the weak-queue version; about 60% faster when the number of inversions
was small and about 20% faster when the number of inversions was large. The
running times of splaysort were larger than the ones of the weak-heap version
for almost all experiments. For random data, splaysort performed worst, and
adaptive heapsort could be up to a factor of 15 slower than introsort. (In our
supplementary experiments, for random data, normal heapsort was only a factor
of 2–6 slower than introsort depending on the input size.) In most experiments,
introsort was the fastest sorting method; it was only beaten by the weak-heap
version when the number of inversions was very small (less than n).



Two Constant-Factor-Optimal Realizations of Adaptive Heapsort 207

6 Conclusions

We studied the optimality and practicality of adaptive heapsort. We introduced
two new realizations for it, which are theoretically optimal and practically work-
able. Even though our realizations outperformed the state-of-the-art implemen-
tation of splaysort, the C++ standard-library introsort was faster for most inputs,
at least on integer data. Despite decades of research, there is still a gap between
the theory of adaptive sorting and the actual computing practice.

In spite of the optimality with respect to several measures of disorder, the high
number of cache misses is not on our side. Compared to earlier implementations
of adaptive heapsort, a buffer increased the locality of memory references and
thus reduced the number of cache misses incurred. Still, introsort has consider-
ably better cache behaviour. Earlier research has pointed out [9] that existing
cache-efficient adaptive sorting algorithms are not competitive. The question
arises whether constant-factor optimality with respect to the number of element
comparisons can be achieved side by side to cache efficiency.

Another drawback of adaptive heapsort is the extra space required by the
Cartesian tree. In introsort the elements are kept in the input array, and sorting is
carried out in-place. Overheads attributable to pointer manipulations, and a high
memory footprint in general, deteriorate the performance of any implementation
of adaptive heapsort. This is in particular true when the amount of disorder is
high. As to the memory requirements, we used about 4n extra words of storage
for pointers and n extra space for copies of elements. An in-place algorithm that
is optimal with respect to the measure Inv exists [17], but it is not practical.
The question arises whether the memory efficiency of adaptive heapsort can be
improved without sacrificing the optimal adaptivity.

In another extension, one should carry out experiments on data types for
which element comparisons are more expensive than other operations. We are not
far away from n lgn element comparisons when the amount of disorder is high.
(Our best bound on the number of element comparisons is n lg

(
1+Osc(X)/n

)
+

5.5n.) The question arises whether the constant factor for the linear term in the
number of element comparisons can be improved; that is, how close we can get
to the information-theoretic lower bound up to low-order terms.

Source Code

The programs used in the experiments are available via the home page of the
CPH STL (http://cphstl.dk/) in the form of a PDF document and a tar file.
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Abstract. We present a priority queue that supports the operations:
insert in worst-case constant time, and delete, delete-min , find-min and
decrease-key on an element x in worst-case O(lg(min{wx, qx}+2)) time,
where wx (respectively, qx) is the number of elements that were accessed
after (respectively, before) the last access of x and are still in the priority
queue at the time when the corresponding operation is performed. Our
priority queue then has both the working-set and the queueish properties;
and, more strongly, it satisfies these properties in the worst-case sense.
We also argue that these bounds are the best possible with respect to the
considered measures. Moreover, we modify our priority queue to satisfy a
new unifying property — the time-finger property — which encapsulates
both the working-set and the queueish properties.

In addition, we prove that the working-set bound is asymptotically
equivalent to the unified bound (which is the minimum per operation
among the static-finger, static-optimality, and working-set bounds). This
latter result is of tremendous interest by itself as it had gone unnoticed
since the introduction of such bounds by Sleater and Tarjan [10].

Together, these results indicate that our priority queue also satisfies
the static-finger, the static-optimality and the unified bounds.

1 Introduction

Distribution-sensitive data structures are those structures for which the time
bounds to perform operations vary depending on the sequence of operations per-
formed [8]. These data structures typically perform as well as their distribution-
insensitive counterparts on a random sequence of operations in the amortized
sense. Yet, when the sequence of operations follows some particular distributions
(for example, having temporal or spatial locality), the distribution-sensitive data
structures perform significantly better.
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The quintessential distribution-sensitive data structure is the splay tree [10].
Splay trees seem to perform very efficiently (much faster than O(lg n) search
time on a set of n elements) over several natural sequences of operations. There
still exists no single comprehensive distribution-sensitive analysis of splay trees;
instead, there are theorems and conjectures that characterize their distribution-
sensitive properties. These properties include: static finger, static optimality,
sequential access, working set, unified bound, dynamic finger, and unified con-
jecture [1,3,4,10,11]. As defined in [10], the “unified bound” is the per-operation
minimum of the static-optimality, static-finger, and working-set bounds. By the
“unified conjecture”, we follow the definition given in [1], which subsumes both
the dynamic-finger and working-set bounds (The reason for such name is that
the splay trees are conjectured to attain such bound.). We refer the reader to [1]
and also [10] for a thorough definition and discussion of these properties.

There are implication relationships between the distribution-sensitive proper-
ties, as illustrated in Figure 1. Implications depicted by “−→” were known in
previous work, and the ones depicted by “=⇒” are contribution of this paper. In
particular, we prove in Section 2 the implication of the unified bound from the
working-set bound. This indicates that the working-set bound and the unified
bound are asymptotically equivalent. In the course of the proof, we show that
the sum of the working-set bounds on two sequences is asymptotically the same
as the working-set bound of any interleaving sequence of these two sequences;
this result is of independent interest. A sequence X is an interleaving sequence
of two sequences Y and Z if and only if X is composed of all the elements of Y
and Z in the same order they appear in their respective sequences. We defer the
full discussion of the previously-known implications shown in Figure 1 to a full
version of this paper.

Distribution-sensitive data structures are not limited to search trees. Priority
queues have also been designed and analyzed in the context of distribution-
sensitivity [2,5,7,8,9]. In the comparison model, it is easy to observe that a
priority queue with constant insertion time cannot have the sequential-access
property (and hence cannot as well have the dynamic-finger property). For oth-
erwise, a sequence of insertions followed by a sequence of minimum-deletions lists
the elements in sorted order in linear time. Alternatively, the working-set prop-
erty has been of main interest for priority queues. Informally, the working-set
property states that elements that have been recently operated on are faster to
operate on subsequently compared to the elements that have not been accessed
in the recent past. Iacono [7] proved that pairing-heaps [6] satisfy the working-set
property as follows; in a heap of maximum size n, it takes O (lg(min {nx, n}+ 2))
amortized time to delete the minimum element x, where nx is the number of op-
erations performed since x’s insertion. Funnel-heaps are I/O-efficient heaps for
which it takes O (lg(min {ix, n}+ 2)) to delete the minimum element x, where
ix is the number of insertions made since x’s insertion. Elmasry [5] gave a prior-
ity queue supporting the deletion of the minimum element x in O (lg(wx + 2))
worst-case time, where wx is the number of elements inserted after the insertion
of x and are still present in the priority queue when x is deleted (note that
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Fig. 1. The implication relationships between various distribution-sensitive properties.
The implications depicted by “=⇒” are contribution of this paper.

wx ≤ ix ≤ nx). We briefly review this priority queue in Section 3. None of the
aforementioned priority queues supports delete within the working-set bound.
In Section 4, we present a priority queue that supports insert in worst-case con-
stant time, and supports delete, delete-min, and decrease-key in O (lg(wx + 2))
worst-case time.

One natural sequence of operations is the first-in-first-out type. Data struc-
tures sensitive to these sequences must operate fast on elements that have been
least recently accessed. This distribution-sensitive property is referred to as the
“queueish” property in [9]. In the context of priority queues, such property states
that the time to perform delete or delete-min on an element x is O (lg (qx + 2)),
where qx is the number of elements inserted before x and are still present in the
priority queue when x is deleted. Note that qx = n−wx, where n is the number
of elements currently present in the priority queue. It is shown in [9] that no
binary search tree can be sensitive to this property. However, a priority queue
with the queueish property is presented in the same paper [9].

It remained open whether there exists a priority queue sensitive to both the
working-set and the queueish properties. We resolve the question affirmatively
by presenting such a priority queue in Section 5. In Section 6, we introduce the
time-finger property for priority queues. This property encapsulates the queueish
and the working-set properties, and thus also captures the unified-bound, static-
optimality, and static-finger properties. As these properties are the complete
list of the distribution-sensitive properties known for priority queues, we refer
to the time-finger property as the “unifying property for priority queues”. In
consequence, we modify our priority queue to satisfy this unifying property.
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2 From the Working-Set Bound to the Unified Bound

Consider a sufficiently long sequence of access operations X = x1, x2 . . . , xm
performed on a given data set of elements.

The static-finger property [10] indicates that, for any fixed item f (the finger),
the amortized time to perform xi is O(lg(dX (i, f) + 2)), where dX(i, f) is the
difference in order within the data set between the item corresponding to xi and
the finger f . More specifically, for an access sequence X , the total access time

for a structure with the static-finger property is O(
m∑
i=1

lg(dX(i, f ) + 2)).

The static-optimality property (entropy bound) [10] indicates that, for an
access sequence X , where the item corresponding to xi is accessed hX(i) times,

the total access time is O(
m∑
i=1

lg( m
hX (i)

+ 1)).

The working-set size wX(i), for an operation xi in sequence X , is defined
as the number of distinct elements accessed since the last access to the item
corresponding to xi, or from the beginning of the sequence if this is the first
access to xi. The working-set property [10] indicates that the total access time

for a sequence X is O(
m∑
i=1

lg(wX (i) + 2)).

Iacono [8] observed that the working-set property implies the static-optimality
and static-finger properties. Therefore, the working-set property is the strongest
of the three properties. However, the unified bound [10] indicates an apparently
(but not indeed) stronger property. The unified bound states that the total access
time for a sequence X and any fixed finger f is

O

(
m∑
i=1

lg min
{
dX(i, f ) + 2,

m

hX(i)
+ 1, wX (i) + 2

})
. (1)

For the rest of this section, we show that the working-set bound is asymptotically
equivalent to the unified bound. First, we show that the sum of the working-
set bounds of two sequences is asymptotically the same as the bound for the
sequence that results when those two sequences are arbitrarily interleaved. This
result will be needed to prove the main claim of this section, and is interesting
in its own right.

Theorem 1. Let X be an access sequence and let Y and Z be two subsequences
that partition X . Stated another way, X is an interleaving of Y and Z. Then,

|X|∑
i=1

lg(wX (i) + 2) = Θ

⎛
⎝ |Y |∑
i=1

lg(wY (i) + 2) +
|Z|∑
i=1

lg(wZ(i) + 2)

⎞
⎠ .

Proof. The Ω(.) direction is immediate, and thus we focus on the O(.) direction.
We use ηi to map the indices of Y to X : yi is the operation that corresponds

to xηi . The function βi is analogously defined to map the indices of Z to X .
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Let � be the largest index such that � < i and xi and x� access the same
element. That is, x� is the previous access to the same element as that accessed
by xi. Let WX (i) be the set of indices r such that xr is the first access to that
element in the range x�+1 .. xi−1. Note that WX (i) is the set envisioned by the
concept of the “working set” of xi and is constructed so that |WX(i)| = wX(i).

Observe that the t-th largest index in WX(i) has a working-set size at least
wX(i)− t. Let W ′

X be the set of the �wX(i)/2� largest indices of WX . Therefore,
the working-set size for each index in W ′

X is at least �wX (i)/2�.
Let Ai be formally defined as:

Ai =
{
j | wX(ηj) > w2

Y (j) and i = �lg(wX(ηj) + 2)�} .
That is, the set Ai consists of the indices of the access operations in Y for which
the logarithm of the working-set size of the corresponding access in X is more
than double that value for the access in Y , and in addition the working-set size
in X is in the range [2i .. 2i+1). All sets Ai are thus disjoint, and all indices j in
[1 .. |Y |] are in some set Ai unless the logarithm of the working-set size for yj
at most doubles as a result of the merge with Z.

Now, pick some index j ∈ Ai. Consider the indices in WX(ηj) and W ′
X (ηj).

Some of these indices come from Y , and some from Z. However, the vast majority
come from Z, since the total number is at least the number from Y squared.
Very conservatively, at least half of the indices in W ′

X(ηj) correspond to the Z
sequence. We say that these indices of Z are covered by the element j at level i;
this set is represented by Ci(j) and is defined as:

Ci(j) = {k | βk ∈ W ′
X(ηj)} .

We can bound |Ci(j)| from above as:

|Ci(j)| ≤ |WX(ηj)| = wX(ηj) < 2i+1,

and it can be bounded from below as:

|Ci(j)| ≥ 1
2
|W ′

X(ηj)| ≥ 1
4
wX (ηj) ≥ 1

4
2i = 2i−2.

By construction, for any fixed value k, there are less than 2i+1 indices j such
that k ∈ Ci(j). Let Ci be the covered set of the union of all Ci(j), for all j ∈ Ai.
It follows that |Ci| ≥ (2i−2 · |Ai|)/2i+1 = |Ai|/8.

Also, following the fact that |Ci(j)| = Ω(2i), each index k ∈ Ci(j) has a
working-set size of wZ(k) = Ω(2i). Hence,

∞∑
i=1

|Ci| · i = O(
|Z|∑
k=1

lg(wZ(k) + 2)).
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Putting this information together gives

|Y |∑
j=1

lg(wX (ηj) + 2)−
|Y |∑
j=1

2 lg(wY (j) + 2) = O(|Y |+
∞∑
i=1

|Ai| · i)

= O(|Y |+
∞∑
i=1

|Ci| · i)

= O

⎛
⎝|Y |+ |Z|∑

k=1

lg(wZ(k) + 2)

⎞
⎠ .

Analogously, we have

|Z|∑
k=1

lg(wX (βk) + 2)−
|Z|∑
k=1

2 lg(wZ (k) + 2) = O

⎛
⎝|Z|+ |Y |∑

j=1

lg(wY (j) + 2)

⎞
⎠ .

Adding the last two equations, we get

|Y |∑
j=1

lg(wX(ηj)+2)+

|Z|∑
k=1

lg(wX(βk)+2) = O

⎛
⎝ |Y |∑
j=1

lg(wY (j) + 2) +

|Z|∑
k=1

lg(wZ(k) + 2)

⎞
⎠ .

The theorem follows because

|Y |∑
j=1

lg(wX (ηj) + 2) +
|Z|∑
k=1

lg(wX (βk) + 2) =
|X|∑
i=1

lg(wX (i) + 2). ��

Now, we prove the main result of the section.

Theorem 2. The working-set bound is asymptotically equivalent to the unified
bound.

Proof. Clearly, the unified bound implies the working-set bound as

m∑
i=1

lg min
{
dX(i, f) + 2,

m

hX(i)
+ 1, wX(i) + 2

}
≤

m∑
i=1

lg(wX(i) + 2).

The other direction requires more effort. We begin by partitioning X into two
subsequences Y and Z, by placing in Y all operations xi where wX (i) + 2 =
min

{
dX (i, f) + 2, m

hX(i)
+ 1, wX(i) + 2

}
and the remainder in Z. We use ηi to

map the indices of Y to X : yi is the element that came from xηi . The function
βi is analogously defined to map the indices of Z to X . Then:
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m∑
i=1

lg min
{
dX(i, f) + 2,

m

hX(i)
+ 1, wX (i) + 2

}
(2)

=
|Y |∑
i=1

lg(wX (ηi) + 2) +
|Z|∑
i=1

lg min
{
dX (βi, f) + 2,

m

hX(βi)
+ 1
}

(3)

= Ω

⎛
⎝ |Y |∑
i=1

lg(wY (i) + 2) +
|Z|∑
i=1

⎛
⎝1 + lg

1

max
{

1
dX(βi,f)+1 ,

hX (βi)
m

}
⎞
⎠
⎞
⎠ (4)

= Ω

⎛
⎝ |Y |∑
i=1

lg(wY (i) + 2) +
|Z|∑
i=1

⎛
⎝1 + lg

1

max
{

1
(dX(βi,f)+1)2

, hX(βi)
m

}
⎞
⎠
⎞
⎠ (5)

= Ω

⎛
⎝ |Y |∑
i=1

lg(wY (i) + 2) +
|Z|∑
i=1

lg
( |Z|
hZ(i)

+ 1
)⎞⎠ (6)

= Ω

⎛
⎝ |Y |∑
i=1

lg(wY (i) + 2) +
|Z|∑
i=1

lg(wZ(i) + 2)

⎞
⎠ (7)

= Ω

(
m∑
i=1

lg(wX (i) + 2)

)
(8)

Equation 3 splits one sum into two using the partitioning of X into Y and Z.
The left term of Equation 4 is obtained by replacing wX with wY , which can
only cause a decrease. The right sum of Equation 4 follows from the fact that
min(x, y) = 1

max(1/x,1/y)
. The only change in Equation 5 is the square in the

denominator; because this is inside a logarithm it makes no asymptotic differ-
ence. The formula 1/max

{
1

(dX(βi,f)+1)2 ,
hX(βi)
m

}
now has two nice properties:

First, it depends solely on the element corresponding to xβi (not on the value
of i). Second, summed over all distinct elements, the sum is O(1). Hence, this
is a static-optimality type weighting scheme. It follows from information theory
that the second sum of Equation 6 is asymptotically bounded from below by the
entropy of the access frequencies of the elements, and this yields Equation 6. To
get from Equation 6 to Equation 7, the fact that the static-optimality bound is
big-Omega of the working-set bound is used; this is Theorem 10 of [8]. Moving
from Equation 7 to Equation 8 requires the observation that the sum of the
working-set bounds of two sequences is asymptotically the same as the working-
set bound of an interleaving sequence of both; this is Theorem 1. ��

3 A Priority Queue with the Working-Set Property

Our priority queue builds on the priority queue in [5], which supports insert
in constant time and delete-min within the working-set bound. The advantage
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Fig. 2. The recursive structure of a (2, 3) binomial tree of rank r: Subtrees rooted
at the children of the root are (2, 3) binomial trees. The sequence of ranks of such
children forms a non-decreasing sequence from right to left such that each value from
0, 1, . . . , r − 1 occurs either once or twice.

of the priority queue in [5] over those in [2,6,7] is that it satisfies the stronger
working-set property, in which elements that are deleted do not count towards
the working set. Next, we outline the structure of this priority queue.

The priority queue in [5] comprises heap-ordered (2, 3) binomial trees. As
defined in [5], the subtrees of the root of a (2, 3) binomial tree of rank r are
(2, 3) binomial trees; there are one or two children having ranks 0, 1, . . . , r − 1,
ordered in a non-decreasing rank order from right to left. It is easy to verify that
the rank of any (2, 3) binomial tree is Θ (lg n), where n is the number of nodes.
Figure 2 illustrates the recursive structure of a (2, 3) binomial tree.

The ranks of the (2, 3) binomial trees of the priority queue are as well non-
decreasing from right to left. For the amortized solution, there are at most two
(possibly zero) trees per rank. For the worst-case solution, the number of trees
per rank obey an extended-regular number system that imposes stronger regu-
larity constraints, which implies that the ranks of any two adjacent trees differ
by at most 2 (see [5] for the details of the number system). The root of every
(2, 3) binomial tree has a pointer to the root with the minimum value among the
roots to its left, including itself. Such prefix-minimum pointers allow for find-
ing the overall minimum element in constant time, with the ability to maintain
such pointers after deleting the minimum in time proportional to the rank of the
deleted node. Figure 3 illustrates the structure of our priority queue.

Two primitive operations are split and join. A (2, 3) tree of rank r is split to
two or three trees of rank r−1; this is done by detaching the one or two children
of the root having rank r−1. On the other hand, two or three (2, 3) trees of rank
r − 1 can be joined to form a (2, 3) tree of rank r; this is done by making the
root(s) with the larger value the leftmost child(ren) of the one with the smallest
value. To join a tree of rank r− 1 and a tree of rank r− 2, we split the first tree
then join all the resulting trees; the outcome is a tree whose rank is either r− 1
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rank 0rank1rank 2rank i

Fig. 3. (2, 3) binomial trees comprise the priority queue: The rank of the trees are
non-decreasing from right to left. Prefix-minimum pointers are maintained at the roots
of the trees. Each tree root points to the minimum root to the left of it, including itself.

or r. With these operations in hand, it is possible to detach the root of a (2, 3)
binomial tree of rank r and reconstruct the tree again as a (2, 3) binomial tree
with rank r − 1 or r; this is done by repeated joins and splits starting from the
rightmost subtrees of the deleted root to the leftmost (see [5] for the details).

A total order is maintained indicating the time the elements were inserted.
We impose that if a binomial tree T1 is to the right of another T2, then all
elements in T1 must have been inserted after those in T2. Furthermore, within
an individual binomial tree, we aim that the preorder traversal of elements with
a right-to-left precedence to subtrees would indicate the insertion time of these
elements. However, when performing join operations, we occasionally disobey
this ordering by possibly reversing the order of two entire subtrees. To get the
right ordering, it is enough to maintain a reverse bit with every node x; such
reverse bit indicates whether the elements in x’s subtree were inserted before or
after the elements in x’s parent plus those in the descendants of the right siblings
of x. When a join is performed, the corresponding reverse bit is properly set.

To perform an insert operation, a new single node is added as the rightmost
tree in the priority queue. This may give rise to several joins once there are
three trees with the same rank; the number of such joins is amortized constant,
resulting in a constant amortized cost per insertion. After performing the joins,
the prefix-minimum pointer of the surviving root is updated. For the worst-case
solution, the underlying number system guarantees at most two joins per insert .

To perform a delete-min operation, the tree T of the minimum root is iden-
tified via the prefix-minimum pointer of the rightmost root, the tree T is recon-
structed as a (2, 3) binomial tree after detaching its root. This may be followed
by a split and a join if T has rank one less that its original rank. Finally, the
prefix-minimum pointers are updated. For the amortized solution, several splits
of T may follow the delete-min operation. Starting with T , we repeatedly split
the rightmost tree resulting from previous splits until such tree and its right
neighbor (the right neighbor of T before the delete-min) have consecutive ranks;
this splitting is unnecessary for the worst-case solution. It is not hard to conclude
that the cost of delete-min is O(r), where r is the rank of the deleted node. In
the worst-case solution, the rank of the deleted node x is O(lg (wx + 2)). This
follows from the fact that there are O(wx) elements in the trees to the right
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of T , and hence the number of such trees is O(lg (wx + 2)). For the amortized
solution, an extra lemma (see [5]) proves the same bound in the amortized sense.

4 Supporting delete, find-min and decrease-key

The existing distribution-sensitive priority queues [2,5,7,8,9] do not support
delete within the working-set bound. In this section, we modify the priority
queue outlined in Section 3 to support delete within the working-set bound. In-
cluding delete in the repertoire of operations is not hard but should be done
carefully. The major challenge is to maintain the chronological order of the
elements.

We start by traversing upwards via the parent pointers from the node x to-be-
deleted until the root of the tree of x is reached. We use two stacks; a right stack
and a left stack. Starting at this root, the current subtree is repeatedly split into
two or three trees, one or two of them are pushed to one of the stacks (depending
on the reverse bits) while continuing to split the tree that contains x, until we
end up with a tree whose root is x. At this stage, we delete x analogously to
the delete-min operation; the node x is detached and the subtrees resulting from
removing x are incrementally joined from right to left, while possibly performing
one split before each join (similar to the delete-min operation).

We now have to work our way up to the root of the tree and merge all subtrees
which we have introduced by splits on the way down from the root. The one or
two trees that have the same rank are repeatedly popped from the stacks and
joined with the current tree, while possibly performing one split before each join
(as required for performing a join operation). Once the two stacks are empty, a
split and a join may be performed if the resulting tree has rank one less that its
original rank (again, similar to the delete-min operation).

The total order is correctly maintained by noting that the only operations
employed are the split and join, which are guaranteed to set the reverse bits
correctly. Since the height of a (2, 3) binomial tree is one plus its rank, the time
bound for delete is O(r), where r is the rank of the tree that contains the deleted
node. This establishes the same time bound as that for delete-min in both the
amortized and worst-case solutions.

Using the prefix-minimum pointers, the find-min operation is easily performed
in constant time. However, this operation is not considered as an access to the
minimum element. As otherwise, a following delete operation would have to be
supported in constant time by the working-set property, which is impossible.
The version of find-min that is considered as an access to the minimum element
can not be supported in time asymptotically less than that for the delete-min
operation. It is straightforward to implement such an operation in asymptotically
optimal time by executing a delete-min followed by a re-insertion.

Also, the decrease-key operation that is considered as an access cannot be
performed in asymptotically less time than a delete operation. As otherwise, a
delete operation can be performed by executing a decrease-key operation with
decrease value of zero, which essentially brings the element to the front of the
working set, followed by a delete operation which now runs in constant time as
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the element has just been accessed. A decrease-key operation can be made to run
in O (lg (wx + 2)) time by simply executing a delete followed by a re-insertion.

Finally, the time optimality of delete-min and delete operations directly fol-
lows from the logarithmic lower bound of these operations for (non distribution-
sensitive) priority queues in the comparison model.

Theorem 3. The priority queue presented in this section performs insert in
constant time, and delete, delete-min, find-min and decrease-key of an element
x in asymptotically optimal time of O (lg (wx + 2)), where wx is the number of
elements accessed after the last access of x and are still present in the priority
queue at the time of the current operation.

5 Incorporating the Queueish Property

The queueish property for priority queues states that the time to perform delete
or delete-min on an element x is O (lg (n− wx + 2)), where n is the number
of elements currently present in the priority queue, and wx is the number of
elements accessed after the last access of x and are still present in the priority
queue. In other words, the queueish property states that the time to perform
delete or delete-min on an element x is O (lg (qx + 2)), where qx = n − wx is
the number of elements last accessed prior to x and are still present. Queaps [9]
are queueish priority queues that support insert in amortized constant time and
support delete-min of an element x in amortized O (lg(qx + 2)) time.

We extend our priority queue, in addition to supporting the working-set
bound, to also support the operations within the queueish bound. Accordingly,
the priority queue simultaneously satisfies both the working-set and the queueish
properties. Instead of having the ranks of the trees of the queue non-decreasing
from right to left, we split the queue in two sides, a right queue and a left queue,
forming a two-sided priority queue. The ranks of the trees of the right queue are
monotonically non-decreasing from right to left (as in the previous section), and
those of the left queue are monotonically non-decreasing from left to right. We
also impose the constraint that the difference in rank between the largest tree
on each side is at most one. Figure 4 depicts the new priority queue.

The prefix-minimum pointers in the left and right queues are kept indepen-
dently. In the right queue, the root of each tree maintains a pointer to the root
with the minimum value among those in the right queue to the left of it. Con-
versely, in the left queue, the root of each tree maintains a pointer to the root
with the minimum value among those in the left queue to the right of it. To find
the overall minimum value, both the left and right queues are probed.

Insertions are performed exactly as before in the right queue. The delete-
min operation is performed in the left or right queue depending on where the
minimum lies. Deletions are also performed as mentioned in the previous section.

However, we must maintain the invariant that the difference in rank between
the largest tree in the left and right sides is at most one. Since the total chrono-
logical order is maintained among our trees, this invariant guarantees that the
rank of the tree of an element x is O (lg(min {wx, qx}+ 2)). As a result of an
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Fig. 4. A priority queue satisfying the queueish property: the priority queue comprises
two queues one of which has tree ranks increasing from right to left (right queue) and
one increasing from left to right (left queue). The ranks of the largest trees on the two
sides must differ by at most one. The prefix-min pointers are separate for each side.

insertion or a deletion, the difference in such ranks may become two. Once the
largest rank on one side is two more than that on the other side, the trees with
such largest rank are split each in two or three trees, and the appropriate tree
among the resulting ones is moved to the other side, increasing the largest rank
on the second side by one. As a result of those splits, the number of trees of the
same rank on the first side may now exceed the limit, and hence one or two joins
would be needed to satisfy the constraints. Once a tree is moved from one side to
the other, the prefix-minimum pointers of the priority queues on both sides need
to be updated. Because such action happens only after a lot of operations (a frac-
tion of the current number of elements), updating the prefix-minimum pointers
only accounts for an extra constant in the amortized cost per operation. If we
want to guarantee the costs in the worst case, updating those prefix-minimum
pointers is to be done incrementally with the upcoming operations.

A deletion of a node x in a tree of rank r would still cost O(r) time, but now
r = O(lg (min {wx, qx}+2)) in the amortized sense (for the amortized solution),
or in the worst-case sense (for the worst-case solution).

Theorem 4. The priority queue presented in this section performs insert in
constant time, and delete, delete-min, find-min and decrease-key of an element
x in asymptotically optimal time of O (lg(min {wx, qx}+ 2)), where wx and qx
are the number of elements accessed after, respectively before, the last access to
x and are still present in the priority queue at the time of the current operation.

6 Supporting Multiple Time Fingers

We define time fingers t1, t2, . . . , tc as time instances within the sequence of
operations, which are freely set by the implementer. We define the working-
set of an element x with respect to time finger ti, wx(ti), as the number of
elements that have been last accessed in the window of time between the last
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access of x and ti and are still present in the priority queue. We say that a
priority queue satisfies the multiple-time-finger property if the time to access x

is O(lg(
c

min
i=1
{wx(ti)}+ 2)). It is not hard to see that the working-set property is

equivalent to having a single time finger t1 = +∞, and the queueish property is
equivalent to having a single time finger t1 = 0. The priority queue presented in
Section 5, which supports both the working-set and the queueish properties, has
two time fingers t1 = 0, t2 = +∞. In this section, we present a priority queue
that satisfies the property for a constant number of time fingers.

The structure consists of multiple two-sided priority queues, as those designed
in Section 5. We start with a single two-sided priority queue PQ0, and at each
point when a new time finger is introduced we finalize the priority queue and
start a new one. Therefore, corresponding to c time-fingers t1 = 0, . . . , tc = ∞,
we have c− 1 two-sided priority queues PQ1, . . . , PQc−1.

Insertions are performed in the last (at the time when the insertion is per-
formed) priority queue, and, following Theorem 4, takes constant time each. For
delete operations, we are given a reference to an element x to delete. We deter-
mine to which priority queue PQj the element belongs and delete it. This re-
quires O(lg(min {wx(tj), wx(tj+1)}+2)) time, as indicated by Theorem 4. Since x
belongs to PQj , for any i < j, wx(tj) ≤ wx(ti), and for any i > j+1, wx(tj+1) ≤
wx(ti). It follows that lg(min {wx(tj), wx(tj+1)}+2) = lg(

c
min
i=1
{wx(ti)}+2). For

the delete-min operation, it suffices to note that finding the minimum element
per queue takes constant time. Therefore, we can determine in constant time the
priority queue containing the minimum, and perform the operation there. The
running-time argument is the same as that for the delete operation.

Theorem 5. Given a constant number of time fingers t1, t2, . . . , tc, the priority
queue presented in this section performs insert in constant time, and delete,

delete-min, find-min, and decrease-key of an element x in O(lg(
c

min
i=1
{wx(ti)}+2))

time, where wx(ti) is the number of elements that have been last accessed in the
window of time between the last access of x and time ti and are still present in
the priority queue at the time of the current operation.

7 Conclusion

We gave a hierarchy of distribution-sensitive properties in Figure 1. We proved
that the working-set and the unified bounds are asymptotically equivalent.

Our focus was on distribution-sensitive priority queues. Provably, priority
queues cannot satisfy the sequential-access property, and in accordance neither
the dynamic-finger nor the unified conjecture. We therefore considered other
distribution-sensitive properties, namely: the working-set and the queueish prop-
erties. We presented a priority queue that satisfies both properties. Our priority
queue builds on the priority queue of [5], which supports insert in constant time
and delete-min in the working-set time bound. We showed that the same struc-
ture can also support delete operations within the working-set bound. We then
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modified the structure to satisfy the queueish property as well. It is worthy to
note that the priority queue designed supports the stronger definition of the
working-set and the queueish properties in which the elements deleted are not
accounted for in the time bounds.

Our result about the asymptotic equivalence of the working-set bound and
the unified bound then implies that our priority queue also satisfies the unified,
static-optimality and static-finger bounds. We defined the notion of time fingers,
which encapsulates the working-set and the queueish properties. The priority
queue described thus far has two time fingers. We extended our priority queue
to possibly support any constant number of time fingers.

The bounds mentioned are amortized. However, we showed that the time
bounds for the working-set and queueish properties can also be made to work in
the worst case. More generally, the multiple time-finger bounds can be made to
work in the worst case. However, the time bounds for other properties: unified
bound, static optimality, and static finger, naturally remain amortized.
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Abstract. We prove that the number of monomer-dimer tilings of an
n× n square grid, with m < n monomers in which no four tiles meet at
any point is m2m +(m+1)2m+1, when m and n have the same parity. In
addition, we present a new proof of the result that there are n2n−1 such
tilings with n monomers, which divides the tilings into n classes of size
2n−1. The sum of these over all m ≤ n has the closed form 2n−1(3n−4)+2
and, curiously, this is equal to the sum of the squares of all parts in all
compositions of n.

1 Introduction

Tatami mats are a traditional Japanese floor covering, whose outside is made of
soft woven rush straw, and whose core is stuffed with rice straw. They have been
in use by Japanese aristocracy since the 12th century, but modern versions of
them are now available to the average consumer to be used as floor mats, in lieu
of carpeting, or as essential furnishing in a tatami room. The mats are integral
to Japanese culture, and are often used to describe the square footage of a room.
A standard full mat measures 6′ × 3′, and a half mat is 3′ × 3′.

An arrangement of the mats in which no four meet at any point is often pre-
ferred because it is said to be auspicious. We call such arrangements monomer-
dimer tatami tilings. The monomer-dimer tiling in Fig. 1 violates the tatami
condition, and the one in Fig. 2 does not.

Fig. 1. The tatami condition is that no four tiles may meet at a point. Such violations
are circled.

Tilings with polyominoes are well studied, and they appear in physical models,
the theory of regular languages, and of course, combinatorics (see [2, 12, 4, 8, 5]).

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 223–235, 2011.
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Fig. 2. A tatami tiling of the 10× 31 grid with 10 monomers, 64 vertical dimers and
86 horizontal dimers. Compare this with Fig. 6.

Considerable credit is owed to these and other authors for the popularity of
monomer-dimer tilings, particularly of their enumeration.

This begs the question, given a room’s size, how many different auspicious
arrangements of mats are there? The dimer-only version of the problem appears
in the fourth volume of The Art of Computer Programming ([7]), a series named
by American Scientist as one of the 100 most influential over a century of science
([9]). Motivated by the exercise posed by Prof. Knuth, our co-authors from [3]
published the ordinary generating functions for fixed height, dimer-only tatami
tilings in [11], and their solution appears in [7].

In Fall 2009 our research group discovered the structure which is published
in [3], and described in the next section. Problems such as the enumeration of
tatami tilings with r rows, c columns, and m monomers, have since become
within reach. This paper completes such an enumeration for square grids.

In the same year, Prof. Ruskey shared a tatami flavoured New Year’s greeting
with Prof. Knuth, among others. He filled the letters of “Happy New Year” with
tatami tilings that illustrate the structure we had discovered (see Fig. 3), and
closed by proposing the problem:

... perhaps you will have fun proving that the number of such tilings of
an n× n square that maximize the number of monomers is n2n−1.

Fig. 3. Part of Prof. Ruskey’s new year’s greeting for 2010

Before the new decade came about, Ruskey received a reply from Knuth which
read:
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Dear Frank,
I resisted the challenge in your New Year’s card (about 2n−1n) for more
than four weeks, but finally realized that I couldn’t live any longer with-
out trying to find out what was going on with those tatami tilings.
I budgeted half a day to explore the problem; and finally figured out
enough of the structure to declare victory after two days; but my deriva-
tion is not at all simple. Certainly I have no way to group the solutions
into, say, n classes of size 2n−1 (although I do have lots of classes of
solutions of size 2n−2).

Our solution in [3] does not divide the tilings into such classes either, so we
remedy the lack of symmetry by presenting a new proof which does. This time
we count the tilings directly, rather than recursively.

Alhazov et al. followed up on the aforementioned dimer-only research with
a treatment of odd-area tatami tilings which include a single monomer. They
closed [1] with this remark:

However, the variety of tilings with arbitrary number of monominoes
is quite “wild” in sense that such tilings cannot be easily decomposed,
see Figure 11; therefore, most results presented here do not generalize
to arbitrary number of monominoes, the techniques used here are not
applicable, and it is expected that any characterization or enumeration
of them would be much more complicated.

The structure we found, however, reveals the opposite; the tilings with an ar-
bitrary number of monomers are easily decomposed. The decomposition has a
satisfying symmetry, it is ammenable to inductive arguments, and it shows that
the complexity of a tatami tiling is linear in the dimensions of the grid (compare
Fig. 2 with Fig. 6). We use it extensively to prove our main result. Let T (n,m)
be the number of n× n tatami tilings with exactly m monomers.

Theorem 1. If n and m have the same parity, and m < n, then T (n,m) =
m2m + (m+ 1)2m+1.

This confirms Conjecture 3 in [3] for d = 0 (as was promised there), and com-
pletes the enumeration of tatami tilings of square grids, since T (n,m) = 0 when
m > n.

Nice round numbers such as these tend to be easily identified in output gener-
ated by exhaustively listing all tilings on a given size of grid. Both our research
group and Knuth saw the sequence long before it was proven. Knuth wrote to
Ruskey:

I did happen to notice that even more is true — although I won’t have
time to prove it. I just have overwhelming empirical evidence for the
following theorem, at least up to 12× 12 (and I’ll soon have much more
data because the computer programs are nowhere near any breaking
points): The number of monomer-dimer tatami tilings of an n×n square,
in which there are m monomers, where m < n and m + n is even, is
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exactly 2m(3m+ 2). For example, the generating function when n = 11
is 10z + 88z3 + 544z5 + 2944z7 + 14848z9 + 11264z11, and when n = 12
it is 2 + 32z2 + 224z4 + 1280z6 + 6656z8 + 32768z10 + 24576z12.

Evaluating Knuth’s generating functions at z = 1 and simplifying reveals that
there are 2n−1(3n − 4) + 2 tatami tilings of the n × n grid. As a curious af-
terthought, we note that this is equal to the sum of the squares of all parts in
all compositions of n.

1.1 Structure

Tatami tilings of rectangular grids have an underlying structure, called the T-
diagram, which is an arrangement of four possible types of features, shown in
Figures 4-5, up to rotation and reflection (see [3] for a complete explanation).
Each feature consists of a source, shown in colour, which forces the placement of
up to four rays. Rays propagate to the boundary of the grid and do not intersect
each other.

A valid placement in the grid of a non-zero number of features determines a
tiling uniquely. Otherwise, the trivial T-diagram corresponds to the four possible
running bond patterns (brick laying pattern).

(a) A loner fea-
ture.

(b) A vee feature.

Fig. 4. These two types of features must have their coloured tiles on a boundary, as
shown, up to rotation and reflection

Monomers occur on the boundary of the grid, and inside vortices, but nowhere
else. The T-diagram is also a partition of the tiles into blocks of horizontal and
vertical running bond. Wherever horizontal bond meets a vertical boundary of
the grid, dimers alternate with monomers, forming a section of jagged boundary,
and similarly when vertical bond meets horizontal boundary. The tiling in Fig. 6
uses all four types of features, displays this partition into horizontal and vertical
running bond, and indicates all instances of jagged boundary. Its T-diagram is
shown on its own in Fig. 7.

Throughout this paper we consider tilings on the n× n integer grid, with the
origin at the bottom left of the tiling. Let the coordinate of a grid square be the
point at its bottom left corner as well.

A diagonal is a rotation of the following: a monomer at (x0, 0), and (vertical)
dimers covering the pairs of grid squares (x0 + 1 + k, k) and (x0 + 1 + k, k + 1),
for each non-negative k such that x0 + 1 + k ≤ n− 1. A diagonal can be flipped
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(a) A vertical bidimer
feature.

(b) A counterclock-
wise vortex feature.

Fig. 5. These two types of features may appear anywhere in a tiling provided that the
coloured tiles are within the boundaries of the grid

Fig. 6. A tiling showing all four types of sources. Coloured in magenta, from left to
right they are, a clockwise vortex, a vertical bidimer, a loner, a vee, and another loner.
Jagged boundaries are indicated by brackets.

in place, so that the monomer is mapped to (n− 1, n− x0 − 1), and the dimers
change orientation. These equivalent operations preserve the tatami condition.
Diagonals are used and illustrated frequently in the next section.

2 Square Grids

Let T (n,m) be the number of n× n tatami tilings with m monomers.

Theorem 1. If n and m have the same parity, and m < n, then T (n,m) =
m2m + (m+ 1)2m+1.

Proof. We show that any n× n tiling with m monomers and m < n has exactly
one bidimer or vortex and we show that m is a function of the shortest distance
from this source to the boundary. Such a feature determines all tiles in the tiling
except a number of diagonals that can be flipped independently. Proving the
result becomes a matter of counting the number of allowable positions for the
bidimer or vortex. For example, the 20×20 tiling in Fig. 8 has a vertical bidimer
which forces the placement of the green and blue tiles, while the remaining
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Fig. 7. A T-diagram

diagonals are coloured in alternating grey and magenta. There are eight such
diagonals, so there are 28 tilings of the 20× 20 grid, with a vertical bidimer in
the position shown. Each of these 28 tilings has exactly 10 monomers.

Let the centers of bidimers and vortices be the crossing point of an X-drawn
through them symmetrically, where the origin is the grid point at the bottom
left of the grid as in Figures 8-10. Suppose the center of a feature is at the point
(xf , yf), then without loss of generality, we may re-orient the tiling, by rotating
and reflecting, so that yf ≤ xf ≤ n/2, to count the monomers and diagonals as
follows.

The number of diagonals for each type of bidimer or vortex centered at
(xf , yf), can be abstracted from the figures, by counting certain grid squares
on boundaries. Namely, the grid squares indicated by the brackets filled with
grey in Figures 8-10, which are not covered by green or blue dimers. Omitting
some details which can be gleaned from Figures 8-10, we tabulate these numbers,
abbreviating top, bottom, left, right, and corner with the letters t,b,l,r, and c,
respectively.

feature center positions grid squares diagonals c-monomers
yf = xf bl and tr 0 0 0
yf < xf bl and tr 2(xf − yf )− 1 xf − yf − 1 1
yf = xf = n/2 tl and br 0 0 0
yf + xf < n tl and br 2(n− xf − yf )− 1 n− xf − yf − 1 1

The number of monomers is equal to the number of diagonals plus corner-
monomers, plus, possibly, a vortex. When yf = xf = n/2, this number is either
0 or 1, and if yf = xf < n/2, it is n− xf − yf = n− 2yf , or n− 2yf + 1. When
yf < xf , the number of monomers is also n− 2yf or n− 2yf + 1.

In both the cases, yf = xf and yf < xf , the number of monomers is n−2yf if
the feature is a bidimer, and n− 2yf + 1 if it is a vortex. Therefore, the number
of monomers is decided by the distance from the center of this feature to the
nearest boundary of the grid. The number of positions for features whose tilings
have m monomers are tabulated below the following explanation.

We count the number of positions for bidimers for a fixed yf , whose tilings
have n−2yf monomers as in Fig. 9 and Fig. 8. Abandoning the range restriction
on xf , there are four such positions when xf = yf , up to rotation, and otherwise
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tl

bl br

tr

x

y y

y

x− y n− x− y

y

n− x

x− y

n− x− y

(0, 0)

Fig. 8. Vertical bidimer

we count the four rotations of the case where yf < xf < n− yf . Thus there are
4(n− yf − 1− yf ) positions for xf , and 4(n− 2yf − 1) = 4(m− 1), where m is
the number of monomers.

The same argument works for the vortex in Fig. 10, at distance y′f from the
nearest boundary, in spite of the fact that x′f and y′f are not integers. Here the
number of monomers is n− 2y′f +1. Once again, the number of positions for the
feature is four when x′f = y′f , and otherwise it is 4(n− 2y′f − 1), which is equal
to 4(m− 2) when expressed in terms of m.

We tabulate what we have derived above. The words horizontal, vertical,
counterclockwise and clockwise are abbreviated as h, v, cc and c, respectively.

Position Feature Positions Diagonals
xf = yf h and v bidimers 4 m− 1
xf = yf cc and c vortices 4 m− 2
xf < yf h and v bidimers 4(m− 1) m− 2
xf < yf cc and c vortices 4(m− 2) m− 3

Each term in the following sum comes from a row of the table, in the same
respective order, and similarly, the three factors in each sum term come from
the last three columns of the table.

T (n,m) =2 · 4 · 2m−1 + 2 · 4 · 2m−2 + 2 · 4(m− 1) · 2m−2 + 2 · 4(m− 2) · 2m−3

=2 · 2m+1 + 2 · 2m + (m − 1)2m+1 + (m− 2)2m

=m2m + (m + 1)2m+1.

That is, there are m2m tilings with vortices and (m+ 1)2m+1 without. ��
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tl

bl br

tr
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x− y n− x− y

y
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x− y

n− x− y

(0, 0)

Fig. 9. Horizontal bidimer

This completes the enumeration of n× n tatami tilings with m monomers.
Let this not be the end of the square tatami tiling story. We are compelled

by other mathematicians, including Knuth, to organize the n× n tatami tilings
with n monomers into n classes of size 2n−1. We present a proof which directly
counts diagonal flips. The proof in [3] uses induction on the dimensions of the
grid to show that n2n−1 = 4S(n), where

S(n) = 2n−2 + 4S(n− 2), where S(1) =
1
4

and S(2) = 1.

The recurrence arises from relating the collisions of diagonals in an (n−2)×(n−2)
tiling with those of an n× n tiling.

Theorem 2 (Erickson, Ruskey, Schurch, Woodcock, [3]). T (n, n) = n2n−1

Proof (n classes of size 2n−1). We use the setup in [3]. Every tatami tiling of
the n×n grid with n monomers can be obtained by performing a set of flips (of
diagonals) on a running bond, in which no monomer is moved more than once,
and the corner monomers remain fixed. As an immediate consequence, every
tiling has exactly two corner monomers which are in adjacent corners, and as
such, it has four distinct rotational symmetries.

Let S be the n × n tilings with n monomers whose upper corners have
monomers. It is sufficient to divide the n2n−3 tilings of S, into n classes of size
2n−3, and then use the rotational symmetries of these to obtain the n classes of
size 2n−1 of all the tilings.

In this context, a flipped diagonal or monomer refers to one which was flipped
from its initial position in the running bond, in the set of flips referred to above.
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tl

bl br

tr

x′

y′ y′

y′

x′ − y′ n− x′ − y′

y′

n− x′

x′ − y′

n− x′ − y′

(0, 0)

Fig. 10. Counter clockwise vortex. Note that x′
f and y′

f are not integers.

Each monomer is either flipped on its longest or shortest diagonal, or not
flipped at all (see Fig. 11). Two monomers flipped on their longest diagonals
cannot have been flipped on diagonals of the same length, because any two
longest diagonals either interfere with each other, or they have different parities.
A tiling in S has either,

(a) a monomer flipped on (one of) its longest diagonal which is the unique
diagonal of maximum length, or

(b) no monomer that is flipped on its longest diagonal.

Suppose n is odd. The tilings in S are obtained from a vertical running bond
with monomers in the top corners, as illustrated for n = 17 in Fig. 11. Here, the
lengths of a monomer’s diagonals, defined by the number of tiles they contain,
differ except when the monomer is in the central column of the grid.

Flip a monomer μ on (one of) its longest diagonal, δ, as in Fig. 12(a). There
are n− 3 monomers that may still be flipped. We claim that if these are flipped
only along diagonals strictly shorter than δ, then each monomer has exactly
one flip available to it, and the flips can be made independently, so that the
number of combinations is 2n−3. This is obviously the case in Fig. 12(a), where
the available flips are shown by the diagonal lines.

We set up the general argument. Label each monomer with its x coordinate
in the running bond, recalling that a grid square’s coordinate is its bottom left
corner. The diagonal to its left has size x+ 1, and the one to the right has size
n−x. Diagonals interfere with each other on the left boundary if and only if they
map monomers from top and bottom boundaries, whose labels α and β sum to
more than n. Diagonals interfere on the right if and only if they map monomers
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Fig. 11. Each monomer is initially in two diagonals

from top and bottom boundaries which do not interfere on the left. This labeling
serves to prove that our statement about Fig. 12(a) holds in general.

There are n− 2 choices for μ, and when μ is on the central column there are
two choices of diagonals to flip it on. This gives n− 1 classes of size 2n−3.

The case where no monomer is flipped on its longest diagonal gives the nth
class of size 2n−3, because neither the middle column monomer nor the two
corner monomers are flipped (see Fig. 12(b)). This concludes the odd case.

(a) One monomer is flipped on
(one of) its longest diagonal.

(b) No monomer is flipped on its
longest diagonal.

Fig. 12. Odd n

Let n be even. The tilings in S are obtained from a horizontal running bond,
and, contrary to the odd case, all monomers initially have two diagonals whose
lengths differ.

Flip a monomer μ on its longest diagonal. Again, there are n− 3 monomers
remaining, and each one has one available diagonal which is strictly shorter than
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that of μ, and they can each be flipped on these independently. This can be seen
to hold in Fig. 13(a), and a labeling similar to the one described for odd n shows
that it holds in general.

The case where no monomer is flipped on its longest diagonal introduces an
asymmetry for even n, resulting from the fact that every monomer has two
diagonals that differ in length. The class of size 2n−2 is easily divided into two
classes, however, since we are merely dealing with combinations of an n− 2 set.

��

(a) One monomer is flipped on its
longest diagonal.

(b) Every monomer is flipped on its
shortest diagonal.

Fig. 13. Even n

It comes as a surprise at first, but the total number of n × n tilings is equal
to the sum of the squares of all parts in all compositions of n. We prove this by
showing they satisfy the following expression.

Corollary 1. The number of n× n tatami tilings is 2n−1(3n− 4) + 2.

Proof. From [3], we have that T (n,m) = 0 when m > n. Let T (n) =
∑

m≥0 T (n, m),

so that

T (n) = n2n−1 +
�n/2�∑
i=1

(
(n− 2i)2n−2i + (n− 2i+ 1)2n−2i+1

)
,

and notice that the sum simplifies to

T (n) = n2n−1 +
n−1∑
i=1

i2i.
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Now we use the fact that 2k + 2k+1 + · · ·+ 2n−1 = 2n − 1− 2k + 1 = 2n − 2k to
rearrange the sum.

T (n) =n2n−1 +
n−1∑
i=1

i2i

=n2n−1 + (n− 1)2n −
n−1∑
i=1

2i

=2n−1(3n− 4) + 2

We omit the details of this next, and final curiosity. A reference to the sequence
in question can be found in sequence A027992 of the The On-Line Encyclopedia
of Integer Sequences ([6]).

Corollary 2. The number of n × n tatami tilings is equal to the sum of the
squares of all parts in all compositions of n.

3 Conclusions and Further Research

The number of red squares in the Hasse diagram in [10] is the sum of the squares
of all parts in all compositions of n, and it would be aesthetically pleasing to see
a natural bijection from the tatami tilings of the n×n grid to these red squares
(see Fig. 14).

Fig. 14. Is there a mapping from n× n tatami tilings to red squares?

Perhaps of broader interest is the enumeration of T (n,m, v, h), the number
of n × n tilings with m monomers and v and h vertical and horizontal dimers,
respectively. Some progress has been made on this by Knuth, as well as the
authors of [3] (Section 4.1, Conjecture 4).
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Abstract. Let dq(n, k) be the maximum possible minimum Hamming
distance of a linear [n, k] code over Fq. Tables of best known linear codes
exist for all fields up to q = 9. In this paper, linear codes over F13 are
constructed for k up to 6. The codes constructed are from the class of
quasi-cyclic codes. In addition, the minimum distance of the extended
quadratic residue code of length 44 is determined.

1 Introduction

Let Fq denote the Galois field of q elements, and let V (n, q) denote the vector
space of all ordered n-tuples over Fq . A linear [n, k] code C of length n and
dimension k over Fq is a k-dimensional subspace of V (n, q). The elements of C
are called codewords. The (Hamming) weight of a codeword is the number of
non-zero coordinates. The minimum weight of C is the smallest weight among
all non-zero codewords of C. The minimum weight of a linear code equals the
minimum distance between codewords. An [n, k, d] code is an [n, k] code with
minimum weight d. Let Ai be the number of codewords of weight i in C. Then
the numbers A0, A1, . . . , An are called the weight distribution of C.

A central problem in coding theory is that of optimising one of the parameters
n, k and d for given values of the other two. One version is to find dq(n, k), the
largest value of d for which there exists an [n, k, d] code over Fq. Another is to
find nq(k, d), the smallest value of n for which there exists an [n, k, d] code over
Fq. A code which achieves either of these values is called optimal. Tables of best
known linear codes exist for all fields up to q = 9 [6]. In this paper, linear codes
over F13 are constructed for k up to 6.

The Griesmer bound is a well-known lower bound on nq(k, d)

nq(k, d) ≥ gq(k, d) =
k−1∑
j=0

⌈
d

qj

⌉
, (1)

where �x� denotes the smallest integer ≥ x. For k ≤ 2, the Griesmer bound is
met for all q and d. The Singleton bound [13] is a lower bound on nq(k, d) and
is given by

nq(k, d) ≥ d+ k − 1 (2)

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 236–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Codes that meet this bound are called maximum distance separable (MDS).
MDS codes exist for all values of n ≤ q + 1. Thus for q = 13, MDS codes exist
for all lengths 14 or less.

For larger lengths and dimensions, far less is known about codes over F13.
MDS self-dual codes (k = n/2), of lengths 2, 4, 6, 8, 10 and 14 are given in
[2], as well as self-dual [12, 6, 6], [16, 8, 8], [20, 10, 10], [22, 11, 10] and [24, 12, 10]
codes. de Boer earlier discovered a self-dual [18, 9, 9] code, and [23, 3, 20] and
[23, 17, 6] codes [7]. The [18, 9, 9], [24, 12, 10] and [30, 15, 12] extended quadratic
residue (QR) codes are given in [14]. Using Magma [3], it was determined that
the next extended QR code over F13 has parameters [44, 22, 16]. In this paper,
codes with dimensions k = 3 − 6 are constructed. These codes establish lower
bounds on the minimum distance. Many of these meet the Singleton and/or
Griesmer bounds, and so are optimal.

A punctured code of C is a code obtained by deleting a coordinate from every
codeword of C. A shortened code of C is a code obtained by taking only those
codewords of C having a zero in a given coordinate position and then delet-
ing that coordinate. The following bounds can be established based on these
constructions

1) dq(n+ 1, k) ≤ dq(n, k) + 1,

and

2) dq(n+ 1, k + 1) ≤ dq(n, k).

Using the codes given in this paper, they provide many additional lower bounds.
The next section presents the class of quasi-cyclic codes, and the construction

results are given in Section 3.

2 Quasi-Cyclic Codes

A code C is said to be quasi-cyclic (QC) if a cyclic shift1 of any codeword by p
positions is also a codeword in C [8]. A cyclic code is a QC code with p = 1. The
length of a QC code considered here is n = mp. With a suitable permutation of
coordinates, many QC codes can be characterized in terms of (m×m) circulant
matrices. In this case, a QC code can be transformed into an equivalent code
with generator matrix

G = [R0 R1 R2 ... Rp−1] , (3)

where Ri, i = 0, 1, . . . , p− 1, is a circulant matrix of the form

Ri =

⎡
⎢⎢⎢⎢⎢⎣

r0,i r1,i r2,i · · · rm−1,i

rm−1,i r0,i r1,i · · · rm−2,i

rm−2,i rm−1,i r0,i · · · rm−3,i

...
...

...
...

r1,i r2,i r3,i · · · r0,i

⎤
⎥⎥⎥⎥⎥⎦ . (4)

1 A cyclic shift of an m-tuple (x0, x1, . . . , xm−1) is the m-tuple (xm−1, x0, . . . , xm−2).
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The algebra of m × m circulant matrices over Fq is isomorphic to the algebra
of polynomials in the ring Fq[x]/(xm − 1) if Ri is mapped onto the polynomial
ri(x) = r0,i + r1,ix+ r2,ix

2 + · · ·+ rm−1,ix
m−1, formed from the entries in the

first row of Ri [13]. The ri(x) associated with a QC code are called the defining
polynomials [8]. The set {r0(x), r1(x), . . . , rp−1(x)} defines an [mp,m] QC code
with k = m.

The construction of QC codes requires a representative set of defining poly-
nomials. These are the equivalence class representatives of a partition of the set
of polynomials of degree less than m. Two polynomials, rj(x) and ri(x) are said
to be equivalent if they belong to the same class, which here means

rj(x) = γxlri(x) mod (xm − 1),

for some integer l > 0 and scalar γ ∈ Fq\{0}. The number of representative
defining polynomials, N(m), for F13 is given below

m N(m)
2 8
3 63
4 604
5 6189
6 67116

The QC codes presented here were constructed using a stochastic optimization
algorithm, tabu search, similar to that in [4] and [11]. This algorithm will be
described in the next section. By restricting the search to the class of QC codes,
and using a stochastic heuristic, codes with high minimum distance can be found
with a reasonable amount of computational effort.

3 The Construction Algorithm

Imposing a structure on the codes being considered results in a search space that
is smaller than for the original problem. The more restrictions on the structure,
the smaller the search problem. This results in a tradeoff, since good codes may
be missed if too much structure is imposed on the code. However, it is often the
case that good codes have significant structure, and this partially explains why
the approach presented here works so well.

It is not necessary to check the weight of every codeword in a QC code in order
to determine d. Only a subset, N < M , of the codewords need be considered
since the Hamming weight of i(x)bs(x) mod (xm − 1) is equal to the weight of
i(x)γxlbs(x) mod (xm − 1) for all l ≥ 0 and γ ∈ GF(q) \ {0}. Note that this
argument also applies to the set of defining polynomials. Thus, for example,
with q = 13 and m = 3, from the above table N = 63.
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To simplify the process of searching for good codes, the weights of the subset
of codewords can be stored in an array, and a matrix, D, can be formed from
the arrays for the defining polynomials to be considered

D =

b1(x) b2(x) · · · bs(x) · · · by(x)
i1(x) w11 w12 · · · w1s · · · w1y

i2(x) w21 w22 · · · w2s · · · w2y

...
...

...
...

...
it(x) wt1 wt2 · · · wts · · · wty

...
...

...
...

...
iz(x) wz1 wz2 · · · wzs · · · wzy,

where it(x) is the tth information polynomial, bs(x) is the sth defining polyno-
mial, and wts is the Hamming weight of it(x)bs(x) mod (xm − 1). Since it(x)
and bs(x) correspond to the same polynomials, D is a square (y = z = N),
symmetric (by letting it(x) = bt(x) for all 1 ≤ t ≤ N) matrix. For example, if
q = 13 and m = 2, the matrix is

D =

1 x+ 1 x+ 2 x+ 3 x+ 4 x+ 5 x+ 6 x+ 12
1 1 2 2 2 2 2 2 2

x+ 1 2 2 2 2 2 2 2 0
x+ 2 2 2 2 2 2 2 1 2
x+ 3 2 2 2 2 1 2 2 2
x+ 4 2 2 2 1 2 2 2 2
x+ 5 2 2 2 2 2 1 2 2
x+ 6 2 2 1 2 2 2 2 2
x+ 12 2 0 2 2 2 2 2 2

The complete weight distribution for a QC code composed of any set of bs(x)
can be constructed from D. The search for a good code consists of finding p
columns of D with a large minimum row sum, since the weight of a minimum
distance codeword must be contained in these sums.

Having decided on the values of m and p (and thus also n = mp), the entries
of the integer matrix D can be calculated and the problem formulated as a
combinatorial optimization problem. The goal is to find

max
S

min
1≤j≤N

∑
s∈S

wj,s, (5)

where S ⊆ {1, 2, . . . , N} and |S| = p. In general, one can take a multiset S
with p elements, but it was found in past studies that for the new codes obtained,
no defining polynomial occurs more than once, so S is here required to be a set.
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The optimization method used in this work is tabu search [5]. This method
can produce good near-optimal (optimal in some cases) solutions to difficult
optimization problems with a reasonable amount of computational effort [12].
Tabu search is a local search algorithm, which means that starting from an
initial solution, a series of solutions is obtained so that every new solution
only differs slightly from the previous one. A potential new solution is called
a neighbor of the old solution, and all neighbors of a given solution consti-
tute the neighborhood of that solution. To evaluate the quality of solutions, a
cost function is needed. Tabu search always proceeds to a best possible solu-
tion in the neighborhood of the current solution. In a simple version, if there
are several equally good neighbors with the best cost, a random choice is made
(note that it is possible that the best neighbor has a worse cost than the cur-
rent solution has). To ensure that the search does not loop on a subset of
moves or solutions, attributes of recent solutions are stored in a so-called tabu
list; new moves or solutions with these attributes are then not allowed for L
moves.

Tabu search is applied here to the problem of finding QC codes, defined as
a minimization problem, in the following way. First, the problem is not formu-
lated as generally as in (5), as the desired minimum distance, d, of the code
is fixed. A solution is any set S ⊆ {1, 2, . . . , N} of p columns of D, the neigh-
borhood of a solution is the set of solutions obtained by replacing one column
with a column that is not in the code, and the cost function is of the form

C =
N∑

j=1

max

(
0, d−

∑
s∈S

wj,s

)

A solution with cost 0 now corresponds to a code with minimum distance at
least d. If such a solution is found, the search ends. Otherwise, the search is
continued (and possibly restarted occasionally), until a given time or iteration
limit is reached. The tabu list is simply the indexes of the new columns. Thus,
if a column is replaced by another, the new column must not be replaced during
the next L moves.

The values of L used were small, in the range p/10 ≤ L ≤ p/5. If a code was
not found within 1000–2000 iterations, the search was restarted from a new ran-
dom initial solution. As many as 1000 restarts were performed for given values
of m and p. The total number of iterations to find a code varied between about
one hundred and a few million.

The best QC codes found are given in Tables 1 to 4. The defining polyno-
mials are listed with the lowest degree coefficient on the left, i.e., 7321 cor-
responds to the polynomial x3 + 2x2 + 3x + 7, with leading zeroes left out for
brevity. The digits 10, 11 and 12 are denoted by (10), (11) and (12), respectively.
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As an example, consider the [18,3] code in Table 1 with m = 3 and p = 6
defining polynomials. These polynomials give the following generator matrix

G =

⎡
⎣016 175 125 117 135 143

601 517 512 711 513 314
160 751 251 171 351 431

⎤
⎦

with weight distribution

i Ai

0 1
15 456
16 468
17 720
18 552

This code is optimal since it meets the Griesmer bound (1), and so establishes
that d13(18, 3) = 15.

For m = 5 and p = 4, the best code found has generator matrix

G =

⎡
⎢⎢⎢⎢⎣

00018 14(10)(12)4 01(12)8(11) 12(11)3(12)
80001 414(10)(12) (11)01(12)8 (12)12(11)3
18000 (12)414(10) 8(11)01(12) 3(12)12(11)
01800 (10)(12)414 (12)8(11)01 (11)3(12)12
00180 4(10)(12)41 1(12)8(11)0 2(11)3(12)1

⎤
⎥⎥⎥⎥⎦

with weight distribution

i Ai

0 1
15 9300
16 11640
17 51960
18 98520
19 125220
20 74652

This code is also optimal since it meets the Griesmer bound (1), and so estab-
lishes that d13(20, 5) = 15. In addition, the codes for m = 3 and 4 with p = 5
meet the Griesmer bound. Note that all codes with n ≤ 14 given in the tables
are MDS.
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Table 1. Best QC codes over F13 with p = 3

code d ri(x)
[6,3] 4 1, 12(12)
[9,3] 7 1, 15(11), 117
[12,3] 10 1, 135, 112, 153
[15,3] 12 11, 153, 12, 143, 11(10)
[18,3] 15 16, 175, 125, 117, 135, 143
[21,3] 18 115, 11(10), 146, 132, 16, 1, 176
[24,3] 20 1, 174, 1(11), 112, 19(12), 138, 114, 12(12)
[27,3] 23 112, 117, 12, 162, 17, 12(12), 13, 114, 19
[30,3] 26 124, 176, 11(12), 156, 13, 129, 13(11), 14, 17, 132
[33,3] 29 12, 1(10), 13(11), 18, 15, 12(12), 15(11), 132, 156, 126, 116
[36,3] 32 129, 11(10), 11, 11(11), 19, 146, 12(12), 14(11), 11(12), 145, 13, 18
[39,3] 34 1(11), 138, 12, 11, 14(11), 11(11), 16, 125, 112, 114, 113, 156, 15
[42,3] 37 15, 12, 119, 158, 126, 156, 138, 11(12), 11, 176, 117, 1(11), 112, 13(10)
[45,3] 40 18, 1(11), 163, 11, 134, 135, 126, 156, 174, 19(12), 17, 132, 125, 13, 162
[48,3] 43 116, 1(10), 1(11), 114, 14(11), 142, 1(10)6, 12(12), 19(12), 163, 11(12), 12

174, 146, 11, 1(12)
[51,3] 45 113, 16, 11, 17, 142, 146, 18, 118, 132, 194, 1(12), 156, 15, 117, 176, 116, 115
[54,3] 48 17, 11, 13(12), 132, 118, 19, 153, 185, 13(10), 14(11), 146, 162, 142, 11(11), 135

175, 15, 11(10)
[57,3] 51 1(11), 11(10), 175, 123, 12(12), 115, 156, 1, 163, 124, 13, 18, 11(12), 11(11), 146

112, 19, 17(12), 132
[60,3] 54 162, 11(12), 13, 118, 113, 115, 13(12), 117, 19, 18, 112, 12, 185, 138, 153, 123, 17

156, 126, 132
[63,3] 56 116, 143, 119, 185, 146, 15(11), 11, 134, 19(12), 117, 156, 115, 19, 135, 12(11), 15

158, 125, 154, 113, 18
[66,3] 59 118, 1, 11(11), 13(12), 135, 154, 17, 11, 13(11), 163, 12(10), 129, 112, 115, 15

12(11), 19(12), 119, 132, 19, 18, 123
[69,3] 62 18, 142, 19, 11(11), 194, 17, 14(11), 13(11), 118, 132, 11, 123, 125, 112, 113, 12(10)

156, 17(12), 16, 117, 129, 116, 1(11)
[72,3] 65 1(12), 134, 1(11), 17(12), 119, 1, 11, 15(11), 163, 13(10), 124, 114, 142, 13, 128

14(11), 154, 126, 11(12), 11(11), 156, 19, 117, 176
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Table 2. Best QC codes over F13 with p = 4

code d ri(x)
[8,4] 5 1135, 1326
[12,4] 9 104, 1197, 135
[16,4] 12 17, 1(10)3, 14(11)8, 161(11)
[20,4] 16 116, 1(11), 1186, 142, 134(10)
[24,4] 19 1326, 11, 1745, 111(11), 186, 1165
[28,4] 23 14, 13, 1159, 163(11), 1252, 112(12), 1294
[32,4] 26 103, 1(10)3, 1182, 114, 1143, 1(10)(10), 1132, 1(11)(10)
[36,4] 30 1155, 113, 139, 1117, 13(10)(11), 153(11), 125, 136, 122
[40,4] 33 12, 1315, 1, 115(10), 141, 117(10), 1825, 112(12), 1(12)4, 1184
[44,4] 37 14, 1118, 112(10), 11(11)(12), 113(10), 102, 1214, 12(10)4, 1(11)

13(10), 13(12)2
[48,4] 40 102, 1115, 12, 1166, 12(10)4, 133, 18(11), 145(11), 12(10)5, 1197

1825, 112(12)
[52,4] 44 11, 1, 1125, 1546, 12(11)6, 1(12)5, 11(10)4, 1293, 1135, 1197, 17(10)

1458, 168
[56,4] 48 103, 19, 1(11)6, 1112, 145(11), 17(10), 141, 13(10)6, 1376, 1385

119(10), 11(10)9, 11(12)8, 1(10)7
[60,4] 51 11, 135, 153, 1598, 169, 13(11)(12), 123, 1112, 12(12), 1416, 128(12)

1346, 1219, 118(10), 181
[64,4] 55 135, 14(10)5, 151, 11(11)(10), 1418, 166, 13(10)5, 13(11)2, 1564, 16(10)

14(11)(12), 1193, 1153, 14, 1116, 111(10)
[68,4] 58 1, 112, 14(10)2, 1592, 1265, 17(10), 151(11), 167(12), 193, 145(12)

1416, 117, 1115, 189, 1464, 14(12), 135
[72,4] 62 13, 1623, 1243, 1462, 1475, 12, 172, 1128, 161(11), 164, 1535, 12(12)

1625, 1148, 1284, 134, 18(12), 1328
[76,4] 66 171, 1284, 1376, 12(11)3, 113(12), 12(10), 1, 11(10)3, 161(12), 1154, 143

1289, 12(10)(11), 119(11), 1(11)(12), 129(12), 187, 1278, 1318
[80,4] 69 105, 11(10)(11), 1825, 1314, 1(12)(12), 102, 14(10)(11), 113, 11(12), 1423

127(12), 124(10), 1148, 1243, 1215, 12(11)6, 1329, 127, 1(11), 1382
[84,4] 73 196, 1376, 158, 167, 18(10)3, 1343, 129, 14(12), 1, 1498, 1187, 133

143(10), 1237, 1(11)5, 1598, 1217, 1172, 125, 12(11)2, 1238
[88,4] 76 11, 1245, 1, 1585, 113(12), 112(12), 1329, 1(12)(10), 1876, 197, 199, 1138

121(11), 1(11)6, 17(11), 1354, 15(11)6, 1134, 17(10), 1684, 1319, 14(10)
[92,4] 80 102, 1169, 149, 16(12), 1, 146, 1(12)(12), 1384, 1172, 1425, 1114, 1(10)1

115, 1217, 192, 12(11)3, 147(12), 1193, 1456, 1454, 1756, 127(10), 11(12)6
[96,4] 84 113, 1415, 1, 1254, 1(12)(12), 137(11), 13(11)3, 119(11), 187, 13, 11(11)9

1194, 1623, 13(12)2, 1264, 11(10), 1516, 11(11)5, 145(11), 128(11), 1148
106, 121, 129(10)
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Table 3. Best QC codes over F13 with p = 5

code d ri(x)
[10,5] 6 13(10), 10(10)(10)
[15,5] 10 154, 14(10)56, 11(12)9(10)
[20,5] 15 18, 14(10)(12)4, 1(12)8(11), 12(11)3(12)
[25,5] 19 10(12), 1(12)(11)(12), 14168, 11893, 17(10)(12)3
[30,5] 23 1561(11), 11659, 1163(12), 1(10)6(11), 126(10)(12), 1842
[35,5] 27 10(10), 112(12)6, 16842, 11458, 11(10)(12), 1212(12), 11(10)92
[40,5] 31 1, 13(12)1, 12434, 1157, 158(12)3, 133(10), 11(12)3(11), 111
[45,5] 36 11(10), 19, 11453, 1156(12), 12(12)5, 11247, 16746, 1222, 1635(11)
[50,5] 40 121(10)2, 14, 12619, 1(12)47, 12(12)2(12), 1454, 11586, 12835, 13792

13(10)(12)
[55,5] 45 138(12)8, 11, 1(10)3(10)6, 159, 172(11), 12348, 1673(11), 10(12)(12), 15684

128(11)8, 1776
[60,5] 49 13, 1589, 11284, 1333, 11(11), 153, 1456, 12(12)52, 13(12)6(11), 12(11)89

1(11)1(12), 11724
[65,5] 54 16(12), 1(10)94, 128(10)(11), 10(11)9, 1(11)11, 13(11)6, 11(12)49, 13138

1152(11), 1351(10), 11139, 1124(10), 14(11)
[70,5] 58 103, 14, 17(12)34, 12(11)(10)(12), 124(10)(11), 112, 1713, 11(11)89, 14182

106(12), 11374, 11553, 1(10)17, 145(11)3
[75,5] 62 1137, 11, 103, 1161(12), 1(10)9, 1987, 1(12)32, 1783, 11766, 142(11)3, 11618

12(12)43, 141(12)2, 127(11)5, 1152(12)
[80,5] 67 152, 102, 14(11)3(11), 15(10), 11(12)7(10), 1385, 11(11)38, 11229, 11295

15385, 1334, 18(11)6, 1115(12), 12154, 1841, 11(11)8
[85,5] 71 1944, 13, 1268(11), 1(11)92, 12(12)72, 119, 1131(10), 1841, 15(11)5

129(10)6, 1497(12), 11(12)82, 15325, 11584, 14742, 14(10)(11)3, 1397(10)
[90,5] 76 122, 1675(11), 1262(12), 12825, 113(11)5, 15(12)(11), 1(11)8, 1(10)4

12(10)3(10), 1394(12), 119(12)9, 1172(12), 12723, 1552, 121, 12(12)8(11)
14(11)(10)(11), 19(12)

[95,5] 80 14(10), 12978, 14, 11474, 11(11)7(11), 14(11)2(11), 1285, 127, 12132, 14646
1955, 12(11)63, 134(10)2, 14934, 11(12)96, 1(12), 1627(12), 14163, 119(12)8

[100,5] 84 135, 11(11)96, 15(10), 13494, 1241(11), 127(10)(12), 13(10)23, 11(10)2(11)
137(11), 13156, 13(10)28, 13(10)6(10), 1(10)95, 128(12)3, 12496, 1134(11)
159(11)8, 11917, 19(10)(10), 13(11)2(11)

[105,5] 89 108, 11445, 14(11)2, 12328, 14(11)82, 11833, 135(11)4, 18(10)9(12), 11269
114(12)5, 13172, 173(10), 144(12), 11(10)3, 142(12)4, 16975, 117(12)7
113(11)8, 11(12)(11)3, 12(10)3(12), 11875

[110,5] 93 106, 1121(11), 14(10)(11), 111, 161(12)6, 12694, 193, 14172, 11564, 1117(12)
13(10)4, 1(11)3(10), 115(10)8, 12349, 1131(12), 14374, 161(11)2, 1721
11(12)7(11), 1437, 11935, 11719

[115,5] 98 116, 137(10)5, 113, 15(11)(10)6, 13(11)(12)(10), 11(11)95, 119(12)(10)
15694, 15156, 126(12)9, 1(10)98, 119(12)5, 1275(10), 1588, 11917, 1229
12(10)(12)4, 1118(10), 11(11)(12), 114(11)(10), 118(12)5, 1427(10), 1515(11)

[120,5] 102 118(11), 169, 1127, 1, 124(12)3, 10(11), 11, 1338, 19(12)1(12), 13258
1863, 128(10)4, 1274, 1161(10), 13438, 116(10)(12), 18(12)(11)
131(10)(11), 11814, 11363, 117(10)6, 12(10)28, 11(12)93, 13862
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Table 4. Best QC codes over F13 with p = 6

code d ri(x)
[12,6] 7 12212, 11(10)93
[18,6] 11 12, 10(12)5(11), 128(10)3
[24,6] 16 185, 1827(12)4, 12835, 114947
[30,6] 21 13, 11183(10), 1133(12)4, 14(10)2(11)(12), 13537
[36,6] 26 1002, 118217, 115184, 126596, 12179, 1112
[42,6] 32 11(10), 12(12)235, 111893, 1121(12)(12), 138745, 119(12)24

13(12)6(11)(10)
[48,6] 37 114, 107, 1(11)267, 1131(12), 128(11)(10)(11), 1346(11)5

11(11)6(11)4, 1(12)511
[54,6] 42 105(11)7, 118633, 19, 111299, 1698(10)3, 1269(11)8, 121976, 1451(11)4

11(12)9(10)(11)
[60,6] 47 1(11)(12), 104(10), 12(12)4(10)4, 1469(10), 119(10)6, 1(10)25(11)

11(11)38(11), 14(10)46, 15564, 12361
[66,6] 52 13, 11, 1214, 10633, 1124(10)7, 141(11)8(10), 14187(11), 1455(11)

11(12)7(11)(12), 135843, 15577
[72,6] 57 1, 11(11)5, 12(10)(10)(11), 11(11)543, 147(12)92, 1299, 128958

111(12)(11)2, 15768, 11(12)61(10), 19247, 12773
[78,6] 63 12(12)1, 19, 153(10)3(11), 13784(10), 19(10)3, 10326, 12(12)(10)85

125268, 11(11)65, 13564, 187(11)9, 1192(10)7, 1(10)269
[84,6] 68 119, 149, 18332, 13(10)17(12), 14623, 131768, 105(10)3, 11837(10)

11123(11), 121435, 1241(10)8, 151(10)7, 11385, 11(10)535
[90,6] 73 106, 11, 11(11)68(11), 11398(11), 14(11)4(10), 143(11)2, 119(11)29

125286, 10169, 17556, 13469(11), 129474, 1535, 108(10)(10), 13(11)2(10)5
[96,6] 78 132345, 14535(12), 14(10)(12)82, 11(10)395, 1029, 112453, 115(10)68

19452, 1231(12), 132(11)(12), 11286, 1(12)(12)(12)(12), 116684, 13(11)476
147(12)(12), 1591

[102,6] 83 102, 1432, 116735, 1263, 12(10)8, 1, 11123(12), 11585(12), 14689(11)
19432, 17(10)96, 124592, 117758, 1347(11), 1419(12)4, 12(11)7(12)(11)
14(12)(12)6

[108,6] 88 1, 107, 149(11)1(12), 14(10)8(10)2, 121796, 11(12)173, 10249, 14142(12)
13(12)8(10)(11), 116, 116895, 126714, 11323(11), 1114(10)6, 1(11)684, 1901
19(12)84, 13673

[114,6] 94 104(11)7, 118(11)(10)8, 11(10)418, 1688(12), 15, 1(10)8(10)8, 125894
112452, 1282(12)(10), 1(10)4(11)(10), 1178(10)2, 121752, 16(12)59, 14618
135(12)15, 19(11)(10)2, 117(10)15, 113564, 16235(11)

[120,6] 99 125, 119(11)56, 1432(12)6, 1, 16726, 101(12), 1382(11)(10), 19133, 107(11)
112(11)(11), 1427(10)6, 116459, 121(11)6, 1187(12)(10), 131645, 1(10)46
146(10)(12)5, 112(10)(12)2, 1421(11)(10), 14(10)(11)9

[126,6] 105 16, 11, 117(12)6, 125(12), 11668(12), 14(11)(10)92, 11(11)(12)18
13(11)8(11)5, 10759, 114578, 111934, 11493(12), 1(10)91, 123575, 132193
114188, 13(12)5(12)4, 119427, 1154(10)3, 14147(12), 12(11)3(12)4

[132,6] 110 13, 17(10)72, 11, 19(12), 14295, 121(12)63, 119615, 11572(10), 116784
14(11)1(10)2, 1(12)(10)(12)(11), 129234, 111114, 11598(11), 14935(11)
132398, 1(12)918, 1417(11)2, 141(11)53, 10927, 115(11)5(12), 1(10)(12)14

[138,6] 115 112146, 12, 1(10)83, 119125, 17, 116(10)35, 1397, 11(11)683, 11(11)843
145(11)68, 13026, 1(10)4(11)8, 10743, 1846(11), 1251(12)9, 11635
112(11)(12)5, 129373, 164(12)2, 15(12)56, 14(11)818, 1328(11)4, 11032

[144,6] 120 101, 1574(11), 121642, 19(11)28, 127(12)6(10), 139(10)62, 1(12)969
16(11)2(11), 14(10)5(12), 125438, 1419(10)6, 119324, 12(12)45(11), 16(12)
13(12)3(12)2, 142(10)84, 1326(11)4, 15(11)(12)38, 1419, 129585, 13(11)434
114897, 114(10)64, 12(11)6(10)
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Abstract. An acyclic coloring of a graph G is a coloring of the vertices
of G, where no two adjacent vertices of G receive the same color and
no cycle of G is bichromatic. An acyclic k-coloring of G is an acyclic
coloring of G using at most k colors. In this paper we prove that any
triangulated plane graph G with n vertices has a subdivision that is
acyclically 4-colorable, where the number of division vertices is at most
2n − 6. We show that it is NP-complete to decide whether a graph with
degree at most 7 is acyclically 4-colorable or not. Furthermore, we give
some sufficient conditions on the number of division vertices for acyclic
3-coloring of subdivisions of partial k-trees and cubic graphs.

Keywords: Acyclic coloring, Subdivision, Triangulated plane graph.

1 Introduction

A coloring of a graph G is an assignment of colors to the vertices of G such that
no two adjacent vertices receive the same color. A coloring of G is an acyclic
coloring if G has no bichromatic cycle in that coloring. The acyclic chromatic
number of G is the minimum number of colors required in any acyclic coloring
of G. See Figure 1 for an example.

The large number of applications of acyclic coloring has motivated much re-
search [4,7]. For example, acyclic coloring of planar graphs has been used to
obtain upper bounds on the volume of 3-dimensional straight-line grid drawings
of planar graphs [6]. Consequently, acyclic coloring of planar graph subdivisions
can give upper bounds on the volume of 3-dimensional polyline grid drawings,
where the number of division vertices gives an upper bound on the number
of bends sufficient to achieve that volume. As another example, solving large
scale optimization problems often makes use of sparse forms of Hessian matri-
ces; acyclic coloring provides a technique to compute these sparse forms [7].

Acyclic coloring was first studied by Grünbaum in 1973 [8]. He proved an
upper bound of nine for the acyclic chromatic number of any planar graph G,
� Work is supported in part by the Natural Sciences and Engineering Research Council
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with n ≥ 6 vertices. He also conjectured that five colors are sufficient for acyclic
coloring of any planar graph. His upper bound was improved many times [1,9,10]
and at last Borodin [3] proved that five is both an upper bound and a lower
bound. Testing acyclic 3-colorability is NP-complete for planar bipartite graphs
with maximum degree 4, and testing acyclic 4-colorability is NP-complete for
planar bipartite graphs with the maximum degree 8 [13].

(a) (b)

c1

c5

c4

c2
c1

c3

Fig. 1. (a) A graph G and (b) an acyclic coloring of G using five colors c1–c5

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge
(u, v) and adding a path u(= w0), w1, w2, . . . , wk, v(= wk+1) through new ver-
tices w1, w2, . . . , wk, k ≥ 1, of degree two. A graph G′ is said to be a subdivision
of a graph G if G′ is obtained from G by subdividing some of the edges of G.
A vertex v of G′ is called an original vertex if v is a vertex of G; otherwise, v
is called a division vertex. Wood [15] observed that every graph has a subdivi-
sion with two division vertices per edge that is acyclically 3-colorable. Recently
Angelini and Frati [2] proved that every plane graph has a subdivision with one
division vertex per edge that is acyclically 3-colorable.

Main Results : We study acyclic colorings of subdivisions of graphs and prove
the following claims.

(1) Every cubic graph with n vertices has a subdivision that is acyclically 3-
colorable, where the number of division vertices is 3n/4. Every triconnected
plane cubic graph has a subdivision that is acyclically 3-colorable, where
the number of division vertices is at most n/2. Every Hamiltonian cubic
graph has a subdivision that is acyclically 3-colorable, where the number of
division vertices is at most n/2 + 1. See Section 2.

(2) Every partial k-tree, k ≤ 8, has a subdivision with at most one division
vertex per edge that is acyclically 3-colorable. See Section 2.

(3) Every triangulated plane graph G with n vertices has a subdivision with at
most one division vertex per edge that is acyclically 4-colorable, where the
total number of division vertices is at most 2n− 6. See Section 3.

(4) It is NP-complete to decide whether a graph with degree at most 7 is acycli-
cally 4-colorable or not. See Section 4.
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2 Preliminaries

In this section we present some definitions and preliminary results that are used
throughout the paper. See also [12] for graph theoretic terms.

Let G = (V,E) be a connected graph with vertex set V and edge set E. The
degree d(v) of a vertex v ∈ V is the number of neighbors of v in G. A subgraph
of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
If G′ contains exactly the edges of G that join vertices in V ′, then G′ is called
the subgraph induced by V ′. If V ′ = V then G′ is a spanning subgraph of G.
A spanning tree is a spanning subgraph of G that is a tree. The connectivity
κ(G) of a graph G is the minimum number of vertices whose removal results
in a disconnected graph or a single-vertex graph. G is said to be k-connected if
κ(G) ≥ k.

Let P = u0, u1, u2, . . . , ul+1, l ≥ 1, be a path of G such that d(u0) ≥ 3,
d(u1) = d(u2) = . . . = d(ul) = 2, and d(ul+1) ≥ 3. Then we call the subpath
P ′ = u1, u2, . . . , ul of P a chain of G. A subsequence is a sequence that can
be derived from another sequence by deleting some elements without changing
the order of the remaining elements. An ear of a graph G is a maximal path
whose internal vertices have degree two in G. An ear decomposition of G is a
decomposition P1, . . . , Pk such that P1 is a cycle and Pi, 2 ≤ i ≤ k, is an ear of
P1 ∪ . . . ∪ Pi.

Throughout the paper, division vertices are colored gray in all the figures. We
now have the following two facts.

Fact 1. Let G be a graph with two distinct vertices u and v and let G′ be a graph
obtained by adding a chain w1, . . . , wk between the vertices u and v of G. Let G
be acyclically 3-colorable such that the colors of u and v are different. Then G′

is acyclically 3-colorable.

Proof. In an acyclic coloring of G that colors vertices u and v differently, let the
colors of vertices u and v be c1 and c2, respectively. For eachwi, i = 1, 2, . . . , k, we
assign color c3 when i is odd and color c1 when i is even as in Figure 2(a). Clearly,
no two adjacent vertices of G′ have the same color. Therefore, the coloring of
G′ is a valid 3-coloring. Suppose for a contradiction that the coloring of G′ is
not acyclic. Then G′ must contain a bichromatic cycle C. The cycle C either
contains the chain u,w1, w2, . . . , wk , v or is a cycle in G. C cannot contain the
chain since the three vertices u, v and w1 are assigned three different colors
c1, c2 and c3, respectively. Thus we can assume that C is a cycle in G. Since
G does not contain any bichromatic cycle, C cannot be a bichromatic cycle, a
contradiction. ��
Fact 2. Let G be a biconnected graph with n vertices and let P1 ∪ . . . ∪ Pk be
an ear decomposition of G where each ear Pi, 2 ≤ i ≤ k, contains at least one
internal vertex. Then G has a subdivision G′, with at most k−1 division vertices,
that is acyclically 3-colorable.
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Proof. We prove the claim by induction on k. The case k = 1 is trivial since P1

is a cycle, which is acyclically 3-colorable. Therefore we assume that k > 1 and
that the claim is true for the graphs P1 ∪ . . . ∪ Pi, 1 ≤ i ≤ k − 1. By induction,
G−Pk has a subdivision G′′ that is acyclically 3-colorable and that has at most
k − 2 division vertices. Let the end vertices of Pk in G be u and v. If u and v
have different colors in G′′ then we can prove in a similar way as in the proof of
Fact 1 that G has a subdivision G′ that is acyclically 3-colorable and that has
the same number of division vertices as G′′, which is at most k−2. Otherwise, u
and v have the same color in G′′. Let the color of u and v be c1 and let the two
other colors in G′′ be c2 and c3. If Pk contains more than one internal vertex
then we assign the colors c2 and c3 to the vertices alternately. If Pk contains only
one internal vertex v then we subdivide an edge of Pk once. We color v with c2
and the division vertex with c3 as shown in Figure 2(b). In both cases we can
prove in a similar way as in the proof of Fact 1 that G′ has no bichromatic cycle.
Moreover, the number of division vertices in G′ is at most (k−2)+1 = k−1. ��

v
w1

w3
wn

w2

G
G

(b)(a)

u

v

G

u

w

v

G

c3

c2
c3

c2

c1

c1

c3

c1

c2

c2c3

c2

c3

c1

c1 c1

c3

c3

c2

c1

c2

c3

Fig. 2. Illustration for the proof of (a) Fact 1 and (b) Fact 2

Let G = (V,E) be a 3-connected plane graph and let (v1, v2) be an edge on
the outer face of G. Let π = (V1, V2, ..., Vl) be an ordered partition of V . Then we
denote by Gk, 1 ≤ k ≤ l, the subgraph of G induced by V1∪V2∪...∪Vk and by Ck
the outer cycle of Gk. We call the vertices of the outer face the outer vertices. An
outer chain of Gk is a chain on Ck. We call π a canonical decomposition of G with
an edge (v1, v2) on the outer face if the following conditions are satisfied [12].

(a) V1 is the set of all vertices on the inner face that contains the edge (v1, v2).
Vl is a singleton set containing an outer vertex v, v 	∈ {v1, v2}.

(b) For each index k, 2 ≤ k ≤ l − 1, all vertices in Vk are outer vertices of Gk
and the following conditions hold:
(1) if |Vk| = 1, then the vertex in Vk has two or more neighbors in Gk−1

and has at least one neighbor in G−Gk; and
(2) If |Vk| > 1, then Vk is an outer chain of Gk.

Figure 3 illustrates a canonical decomposition of a 3-connected plane graph.
A cubic graph G is a graph such that every vertex of G has degree exactly

three. Every cubic graph has an acyclic 4-coloring [14]. We can get an acyclic
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Fig. 3. (a) A 3-connected plane graph G and (b) a canonical decomposition of G

3-coloring of a subdivision G′ of G with 3n/4 division vertices from an acyclic
4-coloring of G as follows. Let c4 be the color of the vertices that belong to the
smallest color class and let the other colors be c1, c2 and c3. We first assign to
each vertex v with color c4 a different color c ∈ {c1, c2, c3}. If all three neighbors
of v have different colors, we assign any one of the three colors c1, c2, c3 to v.
Otherwise, we assign v the color that is not assigned to any of its neighbors. We
then subdivide each of the three edges incident to v with a vertex u such that
u is assigned a color c1, c2 or c3, which is not assigned to the end vertices of the
edge. It is now straightforward to observe that the resulting subdivision G′ of G
is acyclically colored with 3 colors. Since the number of vertices with color c4 is
at most n/4, the number of division vertices in G′ is at most 3n/4.

In the following two lemmas we show two subclasses of cubic graphs for which
we can obtain acyclic 3-colorings using smaller number of division vertices.

Lemma 1. Let G be a triconnected plane cubic graph with n vertices. Then G
has a subdivision G′ with at most one division vertex per edge that is acyclically
3-colorable and has at most n/2 division vertices.

Proof. Let π = {V1, V2, . . . , Vk} be a canonical decomposition of G. G1 is a cycle,
which can be colored acyclically with three colors c1, c2 and c3. Since every vertex
of G has degree three, each Vi, 1 < i < k, has exactly two neighbors in Gi−1.
Therefore, Vi corresponds to an ear of Gi and V1 ∪ . . . ∪ Vk−1 corresponds to
an ear decomposition of Gk−1. By Fact 2, Gk−1 has a subdivision G′

k−1 that
is acyclically 3-colorable with at most k − 2 division vertices. We now add the
singleton set Vk to G′

k−1. First, suppose that all the three neighbors of Vk have
the same color c1. Then Vk is assigned color c2 and any two edges incident to
Vk are subdivided with division vertices of color c3 as in Figure 4(a). In all
other cases, at most one edge incident to Vk is subdivided. Thus any cycle that
passes through the vertex Vk uses three different colors. Since G′

k−1 has at most
k− 2 division vertices and the last partition needs at most two division vertices,
the total number of division vertices in the subdivision G′ of G is equal to the
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number of partitions in π. Note that the addition of Vk creates two inner faces
and the addition of each Vi, 1 < i < k, creates one inner face. Let the number of
inner faces of G be F . Then the number of partitions is F − 1 = n/2 by Euler’s
formula. Therefore, G′ has at most n/2 division vertices. ��

Lemma 2. Any Hamiltonian cubic graph G, not necessarily planar, with n ver-
tices has a subdivision G′ that is acyclically 3-colorable and has n/2+1 division
vertices.

Proof. Let C be a Hamiltonian cycle in G. Since the number of vertices in G
is even by the degree-sum formula, we can color the vertices on C with colors
c1 and c2. We next subdivide an edge on C and each of the other edges in G
that are not on C to get G′. We assign color c3 to all the division vertices. See
Figure 4(b).

kV
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Fig. 4. Illustration for the proof of (a) Lemma 1 and (b) Lemma 2

Each cycle C ′ in G′ corresponds to a unique cycle C′′ in G that contains only
the original vertices of C′. If C′ in G′ corresponds to the Hamiltonian cycle C
in G, then C ′ is not bichromatic. Since every vertex in G′ has degree at most
3, no cycle can be formed with only edges that are not on C in G. Let C′ be a
cycle in G′ that corresponds to a cycle C′′ in G where C′′ 	= C. Then C′′ must
contain at least one edge e on C and one edge e′ not on C. According to the
coloring of G′, the end vertices of e in G must have different colors c1, c2 and
the division vertex on the edge e′ has the remaining color c3. Therefore G′ does
not contain any bichromatic cycle. The total number of edges in G is 3n/2. We
have subdivided all the edges of G other than (n − 1) edges on C. As a result,
the total number of division vertices in G′ is 3n/2− (n− 1) = n/2 + 1. ��

A graph G with n vertices is a k-tree if G satisfies the following (a)-(b).

(a) If n = k, then G is the complete graph with k vertices.
(b) If n > k, then G can be constructed from a k-tree G′ with n− 1 vertices by

adding a new vertex to exactly k vertices of G′, where the induced graph of
these k-vertices is a complete graph.
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Let G be a k-tree with vertex set V . Then by definition, there is an ordered
partition π = (V1, V2, ..., Vm) of V that satisfies the following:

(a) V1 contains k vertices inducing a complete graph.
(b) Let Gk, 1 ≤ k ≤ m, be the subgraph of G induced by V1 ∪ V2 ∪ ... ∪ Vk.

Then Gk, k > 1, is a k-tree obtained by adding Vk to Gk−1, where Vk is a
singleton set and its neighbors in Gk−1 form a k-clique.

A partial k-tree is a subgraph of a k-tree. It is straightforward to observe that
k-trees are acyclically (k + 1)-colorable.

Lemma 3. For k ≤ 8, every partial k-tree G with n vertices has a subdivision
G′ with at most one division vertex per edge that is acyclically 3-colorable.

Proof. For n ≤ 3, G is itself acyclically 3-colorable. We thus assume that n > 3
and that all partial k-trees with less than n vertices have a subdivision with
at most one division vertex per edge that is acyclically 3-colorable. Let G be a
partial k-tree obtained from a k-tree K. Let π = (V1, V2, ..., Vm) be an ordered
partition of the vertex set of K and let π′ = (V ′

1 , V
′
2 , ..., V

′
m′) be an ordered

partition of the vertex set of G, where V ′
1 ⊆ V1 and V ′

2 , ..., V
′
m′ is a subsequence

of V2, ..., Vm. Now we add V ′
m′ to Gm′−1 to obtain G. By induction Gm′−1 has a

subdivision G′
m′−1 that is acyclically 3-colorable, where the number of division

vertices per edge of Gm′−1 is at most one. Let V ′
m′ = v. By definition of k-tree,

v is connected to at most k original vertices of G′
m′−1. However, the neighbors

of v may not induce a complete graph since G is a partial k-tree. Let G′′ be the
graph obtained by adding v to G′

m′−1. Then G′′ is a subdivision of G. To get G′

from G′′, we consider the following three cases.
Case 1 : The neighbors of v in G′′ have the same color c1. Assign color c2

to v and subdivide each edge (v, u), where u is a neighbor of v. Finally, assign
color c3 to all these new division vertices. See Figure 5(a). Thus any cycle that
passes through v uses three different colors.

Case 2 : The neighbors of v in G′′ have color c1 and c2. Then assign color c3
to v. For each neighbor u of v, if u has color c1, subdivide the edge (v, u) and
assign color c2 to the division vertex. Similarly, for each neighbor u of v, if u has
color c2, subdivide the edge (v, u) and assign color c1 to the division vertex as
in Figure 5(b). So any cycle that passes through v, uses three different colors.

Case 3 : The neighbors of v have all three colors c1, c2 and c3. Since k ≤ 8
there is at least one color assigned to less than or equal to two neighbors of
v. Let the color be c3. Assign color c3 to v. If only one neighbor u1 of v has
color c3, subdivide edge (v, u1) and assign color c1 to the division vertex. If two
neighbors u1, u2 of v have color c3, subdivide each of the edges (v, u1) and (v, u2)
once. Then assign color c1 to the division vertex of edge (u, v1) and color c2 to
the division vertex of edge (u, v2). For each neighbor u 	∈ {u1, u2} of v, if u has
color c1, then subdivide the edge (v, u) and assign color c2 to the division vertex.
Similarly, for each neighbor u of v, if u has color c2, then subdivide the edge
(v, u) and assign color c1 to the division vertex. See Figure 5(c). Note that any
cycle that passes through v but does not contain both u1 or u2, must have three
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different colors. Any cycle that passes through v, u1 and u2 has color c3 on v
and colors c1, c2 on the two division vertices on the edges (v, u1), (v, u2).

In all the three cases above, any cycle that passes through vertex v is not a
bichromatic cycle. All the other cycles are cycles of G′

m′−1, thus are not bichro-
matic. Thus the computed coloring in each of Cases 1–3 is an acyclic 3-coloring
of a subdivision G′ of G. By construction, the number of division vertices on
each edge of G is at most one.

v v v

(a) (b) (c)

c1 c1 c1
c1

c1
c1

c1

c2

c3
c3

c3

c3c3c3c3

c3

c1 c1
c1 c1

c1c1c2

c2
c2

c3

c1 c1

c1c2

c2c2

c2

c2

c1
c1 c1 c2

c2
c2

c3
c3

c3

c1

c1
c1

c2

c2

c1

c2c2

Fig. 5. Illustration for the proof of Lemma 3 ��
An independent set S of G is a set of vertices in G, where no two vertices in S
are adjacent in G. The following lemma is of independent interest.

Lemma 4. Let S be an independent set of a graph G. If G− S is acyclic then
G is acyclically 3-colorable.

Proof. If G − S is acyclic then G − S is a tree or a forest and hence, it is 2–
colorable. Color the vertices of G− S with colors c1 and c2. Add the vertices of
S to G−S and assign the vertices color c3. Since S is an independent set, a cycle
in G contains at least one edge (u1, u2) from G − S and at least one vertex u3

from S. Since, by the coloring method given above, u1, u2 and u3 have different
colors, there is no bichromatic cycle in G. ��

3 Acyclic Coloring of Plane Graphs

In this section we prove our results for acyclic 3 and 4-colorability of plane
graph subdivisions. We first introduce “canonical ordering” of triangulated plane
graphs. Let G be a triangulated plane graph on n ≥ 3 vertices. We denote by
C0(G) the outer cycle of G. Let the three vertices on C0(G) be v1, v2 and vn
in counterclockwise order. Let π = (v1, v2, . . . , vn) be an ordering of all vertices
in G. For each integer k, 3 ≤ k ≤ n, we denote by Gk the plane subgraph of G
induced by the k vertices v1, v2, . . . , vk. We call π a canonical ordering of G with
respect to the outer edge (v1, v2) if it satisfies the following conditions [12]:
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(a) Gk is 2-connected and internally triangulated for each k, 3 ≤ k ≤ n.
(b) If k+ 1 ≤ n, then the vertex vk+1 is located on the outer face of Gk, and all

neighbors of vk+1 in Gk appear on C0(Gk) consecutively.

Observe that the vertex partition obtained by a canonical decomposition of a
triangulated plane graph G determines a vertex ordering, which corresponds to
a canonical ordering of G.

Let E∗ be the set of edges that do not belong to any C0(Gk), 3 ≤ k ≤ n.
We call these edges the internal edges of G because they never appear on the
outer face of any Gk. We call all the other edges of G, the external edges. Let
V ∗ = V − {v1, v2} and let G∗ = (V ∗, E∗). Now we prove that G∗ is a tree.

Lemma 5. For any triangulated plane graph G with a canonical ordering π =
(v1, v2, . . . , vn), the subgraph G∗ = (V ∗, E∗) is a tree.

Proof. We prove that G∗ is a tree by first showing that G∗ is connected and
then showing that |E∗| = |V ∗| − 1.

To show that G∗ is connected, we show that each internal node vk, 3 ≤ k ≤ n,
has a path to vn inG∗. For a contradiction, let k be the maximum index such that
vk, k < n, does not have such a path to vn. Since vk ∈ C0(Gk) but vk /∈ C0(G),
there exists an integer l, k < l ≤ n, such that vk ∈ C0(Gl−1) but vk /∈ C0(Gl).
Hence by property (b) of π, (vk, vl) must be an internal edge in G. Since l > k,
by assumption there must be a path from vl to vn in G∗. Therefore vk has a
path to vn in G∗ which is a contradiction.

Each vk, 3 ≤ k ≤ n, is connected to Gk−1 by exactly two external edges.
Since (v1, v2) is also an external edge, the number of external edges in G is
2(n−2)+1 = 2n−3. By Euler’s formula, G has 3n−6 edges in total. Therefore,
|E∗| = 3n− 6− (2n− 3) = n− 3 = |V ∗| − 1. Therefore, G∗ is a tree. ��

We use Lemma 5 to prove the following theorem on acyclic 3-colorability of
subdivisions of triangulated plane graphs. This theorem is originally proved by
Angelini and Frati [2]. However, our proof is simpler and relates acyclic coloring
of graph subdivisions with canonical ordering, which is an important tool for
developing graph algorithms.

Theorem 1. Any triangulated plane graph G has a subdivision G′ with one
division vertex per edge that is acyclically 3-colorable.

Proof. Let G = (V,E) be a triangulated plane graph and let π = (v1, v2, ..., vn)
be a canonical ordering of G. Let E′ be the set of external edges and let E∗ =
E − E′ be the set of internal edges of G. Let Gs = (V,E′). We now compute a
subdivision G′

s of Gs and color G′
s acyclically with three colors as follows.

We assign colors c1, c2 and c3 to the vertices v1, v2 and v3, respectively. For
3 ≤ k ≤ n, as we traverse C0(Gk) in clockwise order starting at v1 and ending
at v2, let lvk

be the first neighbor of vk encountered and let rvk
be the other

neighbor of vk on C0(Gk). Then assign vk a color other than the colors of lvk

and rvk
.
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We now subdivide each edge in E′ with one division vertex to get G′
s. Finally,

we assign each division vertex a color other than the colors of its two neighbors.
It is easy to see that every edge in Gs along with its division vertex uses three
different colors. Therefore, the resulting coloring of G′

s is an acyclic 3-coloring.
We now add the edges of E∗ to G′

s and subdivide each of these edges with
one division vertex to obtain G′. We assign each new division vertex a color
other than the colors of its two neighbors. By Lemma 5, E∗ is the edge set of
a tree. Therefore, any cycle in G′ must contain an edge from E′. Consequently,
the cycle must use three different colors. Figure 6(a) shows an example of G′,
where the edges of E′ are shown by solid lines and the edges of E∗ are shown
by dashed lines. ��
We now extend the technique used in the proof of Theorem 1 to obtain the
following theorem on acyclic 4-colorability of triangulated plane graphs.

Theorem 2. Any triangulated plane graph G has a subdivision G′ with at most
one division vertex per edge that is acyclically 4-colorable, where the number of
division vertices in G′ is at most 2n− 6.

Proof. We define π and Gs as in the proof of Theorem 1. We first compute
a subdivision G′

s of Gs and color G′
s acyclically with three colors as follows.

We assign colors c1, c2 and c3 to the vertices v1, v2 and v3, respectively. For
3 ≤ k ≤ n, as we traverse C0(Gk) in clockwise order starting at v1, let lvk

be
the first neighbor of vk encountered and let rvk

be the other neighbor of vk on
C0(Gk). Then for each vertex vk we consider the following two cases.

Case 1: The colors of lvk
and rvk

are the same. In this case we assign vk a
color other than the color of lvk

and rvk
. Then we subdivide edge (vk, rvk

) with
one division vertex and assign the division vertex a color other than the colors
of its two neighbors.

Case 2: The colors of lvk
and rvk

are different. In this case we assign vk a
color other than the color of lvk

and rvk
and do not subdivide any edge.

At each addition of vk, Cases 1 and 2 ensure that any cycle passing through
vk has three different colors. Hence, the resulting subdivision is the required G′

s

and the computed coloring of G′
s is an acyclic 3-coloring.

We now add the edges of E∗ to G′
s and subdivide each of these edges with

one division vertex to obtain G′. We assign each new division vertex the fourth
color. Any cycle that does not contain any internal edge is contained in G′

s and
hence, uses three different colors. On the other hand, any cycle that contains an
internal edge must use the fourth color and two other colors from the original
vertices on the cycle. Therefore, the computed coloring of G′ is an acyclic 4-
coloring. Figure 6(b) shows an example of G′. We have not subdivided any
edges between the vertices v1, v2 and v3. Moreover, for each vk, we subdivided
exactly one external edge. Therefore the number of division vertices is at most
(3n− 6)− (n− 3)− 3 = 2n− 6. ��
Observe that canonical ordering and Schnyder’s realizer of a triangulated plane
graph are equivalent notions [11]. Using the fact that G∗ = (V ∗, E∗) is a tree of
Schnyder’s realizer [5], one can obtain alternate proofs for Theorems 1 and 2.
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Fig. 6. Illustration for the proof of (a) Theorem 1 and (b) Theorem 2

4 NP-Completeness

In this section we prove that it is NP-complete to decide whether a graph with
maximum degree 7 has an acyclic 4-coloring or not. We denote the problem by
Acyclic 4-Color Max-deg 7. The equivalent decision problem is given below.
Instance: A graph G with maximum degree 7.
Question: Can the vertices of G be acyclically colored with 4 colors?

Theorem 3. Acyclic 4-Color Max-deg 7 is NP-complete.

Proof. The problem is in NP. If a valid 4-coloring of the vertices of G is given,
we can check in polynomial time whether that is an acyclic coloring or not. We
consider each pair of colors and the subgraph induced by the vertices of those
two colors. We check whether that subgraph contains a cycle. If none of the

(
4
2

)
subgraphs contains any cycles, the 4-coloring is an acyclic coloring.

We will prove the NP-hardness by reducing the problem of deciding acyclic 3-
colorability of plane graphs with maximum degree 4 to our problem. The problem
of acyclic 3-colorability, which was proved to be NP-complete by Angelini and
Frati [2], is given below.

Instance: A plane graph H with maximum degree 4.
Question: Can the vertices of H be acyclically colored with 3 colors?

Let H be an instance of the problem of deciding acyclic 3-colorability of plane
graphs with maximum degree 4, as in Figure 7. Let p be the number of vertices in
H . Then we construct a plane 3-tree G4p of 4p vertices as in Figure 7 as follows.
We first take a triangle with vertices v1, v2 and v3. Next we take a vertex v4
in the inner face of the triangle and connect v4 to v1, v2 and v3 to get G4. In
any valid coloring of G4, v1, v2, v3 and v4 must be assigned four different colors
and hence the coloring is acyclic. Let the colors assigned to v1, v2, v3 and v4
be c1, c2, c3 and c4, respectively. Now we place a new vertex v5 inside the face
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bounded by the triangle v2, v3, v4 and connect v5 with the three vertices on
the face to get G5. It is obvious that G5 is 4–colorable and v5 must be assigned
the same color as v1 in a 4-coloring of G5. In this recursive way, we construct the
graph G4p with 4p vertices, where each inner vertex of G4p has degree exactly
six. In any valid 4-coloring of G4p, each of the four colors is assigned to exactly
p vertices.

We now prove that any valid 4-coloring of a plane 3-tree Gn with n vertices
is an acyclic coloring. The proof is by induction on n. When n ≤ 4, any 4-
coloring of G3 is an acyclic coloring. We thus assume that n > 4 and that any
valid 4-coloring of a plane 3-tree with less than n vertices is an acyclic coloring.
By definition of plane 3-tree, Gn has a vertex v of degree three. We remove v
from Gn to get another plane 3-tree Gn−1 with n− 1 vertices. By the induction
hypothesis, any 4-coloring of Gn−1 is an acyclic coloring. We now add v to Gn−1

to get Gn. By construction of plane 3-trees, v must be placed in a face of Gn−1

and must be connected to the three vertices on the face. Let the colors assigned
to three neighbors of v be c1, c2 and c3. Then v is assigned color c4. Now, any
cycle that goes through v must also go through at least two of the neighbors of v.
Hence any cycle containing v contains vertices of at least three colors. Therefore,
Gn has no bichromatic cycle.
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v3
G4p

H

v4 v2

v5

G

c1 c2
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c1

c1

c1

c2

c2
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c2 c1

c3

c1
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Fig. 7. Illustration for the proof of Theorem 3

Let S be the set of the vertices of G4p that are assigned color c4 in a 4-coloring
when the outer vertices use the colors c1, c2, c3. We connect each vertex of H to
exactly one vertex of S as illustrated in Figure 7, so that the edges connecting
vertices of H and G4p form a matching. Let the resulting graph be G. It is easy
to see that the degree of each vertex of G is at most seven. We argue that G has
an acyclic 4-coloring if and only if H has an acyclic 3-coloring.

First we assume that G admits an acyclic 4-coloring. Let the colors assigned
to the vertices of G be c1, c2, c3 and c4. Let the colors assigned to the outer
vertices of G4p be c1, c2 and c3. Then each vertex in S has color c4 and hence no
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vertex in H receives color c4. Therefore, the vertices of H are acyclically colored
with three colors c1, c2 and c3.

We now assume that H has an acyclic 3-coloring where the colors assigned to
the vertices of H are c1, c2 and c3. We assign the three colors to the three outer
vertices v1, v2 and v3 of G4p. Clearly the common neighbor v4 of the three outer
vertices must be assigned a fourth color c4. In the same way, all the vertices of
S get the color c4. Suppose for a contradiction that G contains a bichromatic
cycle C. C cannot be a cycle of H . Since any 4-coloring of G4p is acyclic, C
cannot be a cycle of G4p. Therefore, C must contain vertices from both G4p and
H . Since the edges connecting G4p and H form a matching, no two vertices of
G4p have the same neighbor in H . Therefore, C must contain at least one edge
e of H . The end vertices of e have two of the three colors c1, c2, c3. Since C
must contain a vertex in G4p with color c4, C contains vertices of at least three
colors and hence cannot be a bichromatic cycle. Therefore, the 4-coloring of G
described above is acyclic. ��

5 Open Problems

Acyclic colorings of plane graph subdivisions with fewer division vertices will be
an interesting direction to explore. We ask the following question:

What the minimum positive constant c such that every triangulated planar
graph with n vertices has an acyclic k-coloring, k ∈ {3, 4}, with at most cn
division vertices?

Every cubic graph is acyclically 4-colorable [14]. On the other hand, we have
proved that testing acyclic 4-colorability is NP-complete for graphs with the
maximum degree 7. The problem of obtaining acyclic 4-colorings for graphs
with maximum degree greater than three and less than seven remains open, as
does using our results to improve volume bounds on 3-dimensional polyline grid
drawings.
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Abstract. This paper presents the first kinetic data structure (KDS)
for maintenance of the Euclidean minimum spanning tree (EMST) on a
set of n moving points in 2-dimensional space. We build a KDS of size
O(n) in O(n log n) preprocessing time by which their EMST is main-
tained efficiently during the motion. In terms of the KDS performance
parameters, our KDS is responsive, local, and compact.

Keywords: computational geometry; Euclidean minimum spanning
tree; kinetic data structures.

1 Introduction

Problem statement. For a weighted graph G(V,E), a minimum spanning tree
of G is a connected sub-graph G′(V,E′) of G where the sum of the weights of
its edges is the minimum possible. For a set P = {p1, p2, . . . , pn} of n points,
there is a complete weighted graph with P as its nodes. The weight of each edge
of this graph is the Euclidean distance between its two endpoints. A minimum
spanning tree of this graph is known as the Euclidean minimum spanning tree
(EMST) of the underlying points.

The EMST has many applications in solving geometric and graph problems
and has been studied extensively. Some of which are described below.

In this paper, we consider the kinetic version of the EMST problem in the
plane. This problem was first posed by Basch et al. [4] and has been open since
1997. In this setting, the points are moving independently in the plane and
the goal is to maintain the combinatorial structure of their EMST during the
motion. We assume that the position of a point pi at time t, denoted by pi(t) =
(xi(t), yi(t)), is defined by two algebraic functions (for x and y coordinates) of
constant maximum degree (in terms of time). Moreover, we assume that the
points move without collision, i.e. ∀i�=j∀t∈Rpi(t) �= pj(t). This assumption is
required by the kinetic Delaunay triangulation algorithm on which our solution
is built.

Related work. Whereas EMST is a special version of the minimum spanning
tree problem, we can use any of the classic minimum spanning tree algorithms to
solve the EMST problem. Therefore, the EMST can be obtained in O(E+n logn)

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 261–274, 2011.
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time using the Prim’s algorithm [14] or in time O(E logE) using the Kruskal’s
algorithm [12] where E = O(n2) is the number of the edges in the complete
graph over the n points. Based on the geometric properties of the EMST, this
problem can be solved in optimal O(n log n) time in the plane [7].

A good method for computing the EMST in the plane obtained just after
the Delaunay triangulation (DT) problem was solved in O(n log n) time [6,11].
The edges of the EMST of points P are a subset of the edges of their DT and the
number of the edges of the DT is O(n) which result a O(n log n) time algorithm
for the EMST problem using the Prim or Kruskal algorithms.

Afterward, the dynamic and kinetic versions of this problem were investi-
gated where respectively, point insertion/deletion and point movement are al-
lowed. Eppstein [8] proposed an algorithm that maintains the EMST of a set
of points in the plane allowing point insertion and deletion (the dynamic ver-
sion). This algorithm requires O(n

1
2 log2 n) amortized time per update (point

insertion/deletion). The first algorithm for the kinetic situation was proposed
by Fu and Lee [9]. Their algorithm requires O(kn4 logn) preprocessing time and
O(m) space where k is the maximum degree of the algebraic functions defining
the points motion and m is the maximum number of the changes of the EMST
from time t = 0 to t = ∞. Then, the EMST of the points at any given time
can be constructed in query time O(n). For the restricted version of the kinetic
EMST problem, in which the distances between each pair of points are defined
by linear functions of time, Agarwal et al. [1] proposed an algorithm that runs
in time O(n

1
2 log

3
2 n) per combinatorial change of the EMST. They propose this

algorithm for maintaining the minimum spanning tree of a general graph where
the edge weights are linear functions of time and supports edge insertion and
deletion as well.

The kinetic data structure framework. The kinetic data structure (KDS) frame-
work was initially introduced by Basch et al. [3]. In this framework, a set of
certificates is defined to maintain a special attribute of a set of moving objects.
Validity of these certificates implies the correctness of the goal attribute. When-
ever a certificate fails, it means that the computed value of the attribute must
be updated and the new set of certificates must be built. Therefore, it is enough
to compute the failure time of these certificates, called events, and put them in
an event queue.

The most important part of this framework is a set of criteria that determines
the performance of a KDS. The performance of a KDS is measured according to
the following four criteria [2,3]:

• Responsiveness: The response time of a KDS is the processing time of an
event spent by the repair mechanism. If the response time is a polylogarith-
mic function of the number of the moving objects, the KDS is responsive.

• Compactness: The size of a KDS is defined by the space used by its data
structures and certificates. A KDS is called compact if its size is within a
polylogarithmic factor of linear in the total number of the moving objects.

• Locality: The locality of a KDS is defined by the maximum number of
events associated with one particular object, at any fixed time. A KDS is
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called local if this number is always a polylogarithmic function of the total
number of the moving objects.
• Efficiency: The efficiency of a KDS deals with the number of events pro-

cessed during the motion. Not every event (certificate failure) of a KDS
necessarily implies a change in the attribute being maintained. Processing
an event may produce only internal changes to the data structures while
the desired attribute is still valid. These events are called internal events.
An event that produces a change in the target attribute is called an exter-
nal event. The efficiency of a KDS is defined as the ratio between the total
number of the internal events and the total number of the external events
(enumerated from time t = 0 to t = ∞). A KDS is called efficient if this
ratio is polylogarithmic in the number of the moving objects.

Our Results. To the best of our knowledge there is no algorithm for solving the
exact EMST problem in general kinetic settings satisfying the KDS performance
metrics. This was our motivation in considering this problem.

It is known that the edges of the EMST of a set of points are a subset of the
edges of their Delaunay triangulation (DT). Using this fact, we use the KDS
proposed by Guibas et al. [10] for tracking changes of the DT. As soon as a
DT change happens the necessary updates are applied on the EMST. Moreover,
if the ordering of the edge-lengths of two edges of the DT is changed, it may
produce a change in the EMST. One can maintain the edges of the DT in a
sorted list and whenever the ordering of two edges in this list is changed, apply
the required changes to the EMST. Our contribution in this paper is to do this
while satisfying some of the performance criteria of the KDS framework.

Besides one instance of the KDS proposed by Guibas et al. [10] for maintain-
ing the DT, we build a set of data structures of total size O(n) in O(n log n)
preprocessing time by which a certificate failure (event) is handled in O(log2 n)
time. According to the KDS performance metrics, our KDS is responsive, local
in expectation and compact.

2 Certificates and Events

As mentioned in the introduction, our approach is based on the fact that the
edges of the EMST of a set of points is a subset of the edges of their Delaunay
triangulation. On the other hand, the minimum spanning tree of a graph depends
on the orderings of its edge weights. Therefore, we need to track two types of
changes to correctly update and maintain the EMST of a set of moving points:

1. Changes in the order of each pair of consecutive edges in the sorted list
(according to the edge’s length) of the Delaunay triangulation edges of the
points.

2. Changes in the Delaunay triangulation of the points which causes an edge
removal from or an edge insertion into the potential edges of the EMST.
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Let E(DT) and E(EMST) be respectively the set of edges of the Delaunay tri-
angulation and the edges of the EMST of a set of moving points P in the plane
and let path(pi, pj) be the simple path between pi and pj in the EMST .

The first change type corresponds to a pair of edges e and e′ in E(DT) such
that (for small enough value of ε)

• at time t− ε the Euclidean length of e is smaller than that of e′, and
• at time t+ ε the Euclidean length of e is greater than that of e′.

Then, e may be replaced by e′ in E(EMST) at time t. Such a change is called
an order event with parameters e, e′ and t. It is simple to prove the following
lemma about the order-events:

Lemma 1. An order-event of parameters e, e′ and t changes the EMST if and
only if at time t− ε we have e ∈ E(EMST), e′ /∈ E(EMST) and e ∈ path(pi, pj)
where pi and pj are the end points of e′.

We call such order-events effective order-events.
The second change type means that there is a pair of edges e and e′ such that

(for small enough value of ε)

• at time t− ε we have e ∈ E(DT) and e′ /∈ E(DT),
• at time t the four endpoints of e and e′ lie on a circle, and
• at time t+ ε we have e /∈ E(DT) and e′ ∈ E(DT).

Then, e′ may appear in E(EMST) at some time t′ > t. Such a change is called a
DT-event with parameters e, e′ and t. If we add the points of a sufficiently large
bounding box of the points to the set of input points, the convex hull of the
points is always this box and DT-events do not affect it. Having this bounding
box, we prove that a DT-event does not directly affect the EMST.

Lemma 2. For any DT-event of parameters e, e′ and t there is an arbitrarily small
value of ε such that neither e nor e′ exist in E(EMST) at times t− ε and t+ ε.

Proof. We prove this lemma by showing that exactly at time t and before re-
moving e from the Delaunay triangulation e /∈ E(EMST) and exactly at time t
and after adding e′ to the Delaunay triangulation e′ /∈ E(EMST). Any DT-event
has a configuration shown in Figure 1 where four points lie on a circle. In this
figure e = p2p4 and e′ = p1p3. Assume that p1 is the point on the opposite side
of e relative to the center of this circle (if e is a diameter of this circle then there
is no distinction between the points p1 and p3 in this proof). Then, |p1p2| < |e|
and |p1p4| < |e|. We prove by contradiction that e /∈ E(EMST) at time t − ε.
If e ∈ E(EMST), at most one of the edges p1p2 and p1p4 can be a member of
E(EMST). Without loss of generality, assume that p1p2 /∈ E(EMST). Then, ei-
ther e ∈ path(p1, p2) which we can obtain a smaller EMST by using p1p2 instead
of e, or e /∈ path(p1, p2) which means that p1p4 /∈ E(EMST) and e ∈ path(p1, p4)
and therefore, we can obtain a smaller EMST by using p1p4 instead of e. In both
cases we have the contradiction that e /∈ E(EMST) at time t − ε. By the same
argument we can prove that e′ does not exist in the EMST at time t+ ε. �
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According to Lemmas 1 and 2, the actual set of certificates that may affect our
goal attribute (the EMST) is the set of O(n) certificates that defines the order
of the weights of E(DT); see Theorem 1

Theorem 1. The EMST of a set of moving points is changed if and only if an
effective order-event happens.

Using this theorem, we can maintain the sorted list of the edges of the Delaunay
triangulation and whenever the ordering of a pair of consecutive edges is changed
we must check to see whether it defines an effective order-event. If so, the required
changes are applied to the EMST. Doing this naively, each event can be processed
in O(n) time which is not responsive in terms of the KDS metrics.

e

p1

p2

p4

p3

e′

Fig. 1. The EMST of a set of
points does not contain the degen-
erate edges of the Delaunay trian-
gulation

In the next sections, we describe how these
certificates are handled to maintain a respon-
sive, local, and compact EMST during the
motion.

However, we need to track and process DT-
events to have the correct value of E(DT)
that is necessary to have the correct set of
the order-event certificates. We employ the
method proposed by Guibas et al. [10] to de-
tect the DT-events. In this method, after pre-
processing requiring O(n log n) time and O(n)
space, the Voronoi diagram of a set of moving
points can be maintained by processing the required events. Any event is pro-
cessed in O(log n) time and the total number of processed events from t = 0
to t = ∞ is O(n2λs(n)) where λs(n) is the maximum length of a Davenport-
Schinzel sequence of length n and order s. Thereby, s = 4q where q is the
maximum degree of the polynomial curves defining the points motion.

3 Building the Kinetic Data Structure

Besides the data structures and algorithms proposed by Guibas et al. [10] which
triggering the DT-events, our KDS contains three parts:

• The DT Edges and Certificates: We store the Euclidean lengths of E(DT)
in a balanced binary search tree, T (DT), and for each pair of consecutive
nodes of this tree we compute the closest time at which the order of these
nodes is changed. These times are put in a priority queue Q(DT). The root
of Q(DT) contains the closest time at which the order of the lengths of two
edges of E(DT) is changed. Moreover, we make links between the Delaunay
triangulation edges and their length entries in T (DT) and Q(DT) for removal
purposes.
• The EMST Planar Structure: Assume that SD is the subdivision pro-

duced from the overlay of the convex hull of the points (which is the added
bounding box) and their EMST. This part of our KDS is a variation of the
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DCEL data structure [5] that maintains the status of SD and has three
structures for vertices, edges and faces which are respectively denoted by V ,
E and F . For each point pi ∈ P , there is an entry V(pi) that points to the
root of a search tree in which the edges of SD that are adjacent to pi are
sorted according to their radial order around pi. For each edge ei in SD there
is an entry in E that points to the two directed half-edges of ei in its both
sides. The direction of these half-edges are such that their adjacent faces lie
to their left. Moreover, each half-edge have a pointer to its occurrence in F
to be defined as follows. For each face fi of SD there is an entry F(fi) that
points to the root of a search tree in which the half-edges of the boundary of
fi are sorted according to their order on this boundary. To be precise, each
F(fi) is a balanced binary search tree that supports merge and split opera-
tions efficiently as well as search, insert and delete in O(log n) time [15]. we
denote these trees by MS-BBST. Moreover, we assign the maximum ordering
values to the bounding half-edges of a face fi that are not member of the
EMST (these half-edges belongs to the convex hull). This convention makes
our next discussions easier. Figure 2 sketches a typical configuration of these
structures.

p1

p2

p3

p4

p5

p7

p6

f1

−−→p1p2

−−→p2p3

−−→p3p4

−−→p4p5

−−→p5p6

−−→p6p5

−−→p5p7

−−→p7p1

F(f1)

E(p1p2) = (−−→p1p2,
−−→p2p1)

p5p6

V(p5)

p4p5 p5p7

Fig. 2. A typical configuration of the V, E and F structures

• The Relation between E(DT) and E(EMST): The last part of our KDS
exhibits relations between edges of the current EMST and its future potential
edges which are those edges of DT that are not members of the current
EMST. In other words, during the motion some edges of E(DT)−E(EMST)
may be inserted into the EMST. We describe next, how these updates are
handled by our KDS. For each edge pipj ∈ E(DT) − E(EMST) there is a
simple path path(pi, pj) in the EMST that connects pi and pj . Assume that
pspt has the maximum Euclidean length among edges of path(pi, pj). Then,
|pipj | > |pspt| and if |pipj| gets to decrease while the points are moving it will
be added to the EMST just after the moment that its length reaches |pspt|
(we assume that pspt has still the maximum Euclidean length among edges
of path(pi, pj)). For such situations we say that pipj is a potential candidate
for pspt. In other words, it is possible to have an effective order-event of
parameters pspt, pipj and t for any potential candidate edge pipj of pspt.
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In this part of our KDS, we store the set of all potential candidates of each
edge pspt ∈ E(EMST) and pspt itself in a MS-BBST. In the MS-BBST of an
edge pspt denoted by PK(pspt), the ordering of the nodes are according to
their distance from the edge pspt to be defined later.

Now, we describe how these data structures are initially constructed and analyze
their complexities.

Lemma 3. For a set of n points, their T (DT) and Q(DT) can be constructed
in O(n logn) time and the size of these structures is O(n).

Proof. We can compute the Delaunay triangulation in O(n logn) time. We know
that |E(DT)| = O(n). Then, the lengths of these edges are computed in O(n)
time and they are inserted in a balanced binary search tree T (DT) in O(n log n)
time. Finally, for each consecutive pair of nodes in T (DT) we compute the time
at which this ordering changes and put this event time into a priority queue
Q(DT). The size of this queue is also O(n) and can be constructed in O(n log n)
time. �

Lemma 4. For a set of n points, the V, E and F data structures can be con-
structed in O(n logn) time and their total size is O(n).

Proof. After computing the Delaunay triangulation, the EMST and the convex
hull of the points, the overlay SD can be constructed in O(n) time and the
subdivision can be obtained as a standard DCEL data structure [5]. Having this
DCEL, the V , E and F data structures is constructed in a linear trace on this
DCEL in O(n log n) time. The size of the subdivision SD is O(n) which implies
that the total size of these three data structures is also O(n). �
Before analyzing the PK structures we need to know more about them. Assume
that pspt ∈ E(EMST). Removing this edge from the EMST will break this graph
into two connected components C1(P1, E1) and C2(P2, E2). Only those edges
pipj of E(DT) that pi ∈ P1 and pj ∈ P2 can be used to reconnect C1 and C2 and
obtain a spanning tree (not necessarily minimum). Let denote this set of edges
by cut(pspt). Figure 3a shows such cuts for edges p4p5 and p5p6. It is simple
to argue that each edge of PK(pspt) exists in cut(pspt), but the reverse is not
necessarily true. For all edges pspt ∈ path(pi, pj), pipj exists in cut(pspt) but
pipj belongs only to PK(pspt) where pspt has the maximum length among the
edges of the path path(pi, pj).

Using the following steps we can find the edges of PK(pspt) for all edges
pspt ∈ E(EMST):

1. For each face fk of the SD subdivision we build a dual directed tree D(fk)
as follows. Each triangle of DT that is inside the face fk corresponds to a
node in D(fk) and two nodes of D(fk) are connected by an edge if their
corresponding triangles have an edge in common. The face fk has exactly
one boundary edge which is not in E(EMST) and is an edge of the convex hull
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Fig. 3. (a) cut(p4p5) = {p4p7, p4p5, p3p5, p2p5, p2p6, p1p6, p1p7} and cut(p5p6) =
{p5p6, p2p6, p1p6, p7p6}. (b) Dual trees of the faces of a Delaunay triangulation.

of the points. We add one extra node to D(fk) as its root that is connected
to the node corresponding to the triangle that is adjacent to this convex hull
edge (see Figure 3b). The direction of the edges of D(fk) is set to be from
parent to child.

2. We assign a left label l(−−→pipj) and a right label r(−−→pipj) to each directed edge−−→pipj ∈ D(fk) as follows (In the following items max(a, b) denotes the edge
of maximum length among edges a and b):

2.1. If pj is a leaf node, both edges of its dual triangle lie on the EMST. Let
pmpl and pmpr be these edges which pl lies on the left of the directed
chain −−−−→pipjpm and pr lies on the right of this chain. We set l(−−→pipj) and
r(−−→pipj) to be pmpl and pmpr, respectively.

2.2. If pj has only one child pk, one of the edges of its dual triangle lies on the
EMST. Let e be this edge. If e lies on the left (right) of the chain −−−−→pipjpk,
we set l(−−→pipj) and r(−−→pipj) to be max(l(−−→pjpk), e) and r(−−→pjpk) (l(−−→pjpk) and
max(r(−−→pjpk), e)), respectively.

2.3. Otherwise, pj has two children. Assume that pl is the left child (according
to the direction of−−→pipj) and pr is the right one. If r(−−→pjpl) �= l(−−→pjpr), we set
l(−−→pipj) and r(−−→pipj) to be max(l(−−→pjpl), l(−−→pjpr)) and max(r(−−→pjpl), r(−−→pjpr)),
respectively. Otherwise, assume that e = r(−−→pjpl) = l(−−→pjpr) and pm and
ps are the dual nodes of the triangles adjacent to e and e lies to the left
of a chain −−−−−−−→pm′pmpm′′ and lies to the right of a chain −−−−−→ps′psps′′ of D(fk) (If
l(−−−−→pmpm′′) = r(−−−→psps′′), we use this value (l(−−−−→pmpm′′)) as the new value of e
and find the nodes pm and ps corresponding to this value of e as defined
before. This is done until we obtain different values for l(−−−−→pmpm′′) and
r(−−−→psps′′).). Then, we set l(−−→pipj) and r(−−→pipj) to be max(l(−−→pjpl), l(−−−−→pmpm′′))
and max(r(−−→pjpr), r(−−−→psps′′)), respectively. If pm (ps) is a leaf node in
D(fk), its dual triangle must have another edge in the EMST which
is used instead of l(−−−−→pmpm′′) (r(−−−→psps′′)) to obtain l(−−→pipj) (r(−−→pipj)).

For example, assuming that in Figure 3b we have |p5p7| < |p4p5| < |p5p6|
and |p2p3| < |p3p4| < |p1p2|. Then,
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l(
−→
ba) = p4p5, r(

−→
ba) = p3p4; l(

−→
cb) = p4p5, r(

−→
cb) = p3p4;

l(−→ec) = p5p6, r(−→ec) = p3p4; l(
−→
fe) = p5p6, r(

−→
fe) = p1p2;

l(
−→
fh) = p5p7, r(

−→
fh) = p5p6; l(

−→
gf) = p4p5, r(

−→
gf) = p1p2;

3. An edge e ∈ E(DT) − E(EMST) is added to PK(e′) where e′ =
max(l(−−→pipj), r(−−→pipj)) and −−→pipj is the dual edge of e in a D(fk) tree. The
distance of this entry in PK(e′) is set to be the height of the subtree of
D(fk) with root pj. There are two faces adjacent to e′ in its left and right
sides. Therefore, we may have two edges in PK(e′) with the same distance
one for each side of e′. In order to obtain a well-defined ordering and distinct
values of distances, we set the sign of distances of all edges of PK(e′) that
come from one side of e′ to be positive and the other ones to be negative.

4. For each edge e′ ∈ E(EMST), it will be added to PK(e′) with zero as its
distance value.

We used three simple observations inside the above steps which we ignore their
proves.

1. D(fk) is a tree.
2. Each internal node of D(fk) has at most two children.
3. Each face fk has exactly one boundary edge that is an edge of the convex

hull of the points.

Lemma 5. The above procedure correctly computes the edges of PK(e) for all
edges e ∈ E(EMST).

Proof. According to our definition, an edge pipj ∈ E(DT)−E(EMST) is added to
PK(pspt) if and only if pspt exists in path(pi, pj) and has the maximum length
among edges of path(pi, pj).

Assume that after running the above procedure pipj has been added to PK
(pspt). This implies that pipj ∈ cut(pspt) and therefore, pspt is a member of
path(pi, pj). On the other hand, for each edge ps′pt′ ∈ path(pi, pj) there is a
path in D(fk) along which the ps′pt′ label can reach to either the left or the
right label of the edge a where fk is the face containing edge pipj and a is the
dual edge of pipj inD(fk). The only exception to this claim is due to the 2.3. step
of the building procedure in witch the labels l(−−→pjpr) and r(−−→pjpl) are omitted if
they are equal. It is simple to prove that such labels do not belong to path(pi, pj).
For example, the label p5p6 can not reach to the edge

−→
gf in Figure 3b even if

it has the maximum length among all edges of the EMST and it is apparent
that p5p6 /∈ path(p7, p1). Therefore, if pspt is the left or right label of the edge
a with the maximum length, |pspt| must have the maximum among all edges of
path(pi, pj) which proves the only if part.

To prove the if part, assume that pspt exists in path(pi, pj) and has the
maximum length among edges of path(pi, pj) where pipj ∈ E(DT)− E(EMST).
Trivially, pipj ∈ cut(ps, pt) and lies inside the face fk where pspt lies on its
boundary. On the other hand, any edge ps′pt′ ∈ E(EMST) that can be the label
of the dual edge a of pipj in D(fk) lies on the path path(pi, pj). These implies
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that the label of the edge a must be equal to pspt which means that pipj must
be added to PK(pspt). �

Lemma 6. For a set of n points, the PK structures of all edges of the EMST
can be constructed in O(n log n) time and their total size is O(n).

Proof. By the same argument the DCEL structure of the DT, EMST and SD
of the points can be constructed in O(n log n) time. Having this DCEL, the first
step can be done in O(n) time. The second step can be done in O(n) time as
well. Finally, the last steps insert O(n) items into their corresponding MS-BBST
in total O(n log n) time. The number of PK structures is O(n) but their total
size is still O(n). �
Summarizing the above discussions, we have the following theorem about the
complexity of our KDS.

Theorem 2. The proposed KDS can be constructed in O(n logn) time and re-
quires O(n) space.

4 Event Handling

In this section we describe how the events are processed to correctly maintain
the EMST as well as updating our KDS during the motion.

4.1 Processing DT-Events

According to Lemma 2, when a DT-event with parameters pipj , pkpl and t
happens it does not have a direct effect on the EMST and, therefore, it is enough
to update our KDS with respect to this event.

First, we update the PK data structures. These data structures are affected
because the edge pipj must be removed from the DT and pkpl must be inserted
instead. pipj belongs to PK(e) for some e ∈ E(EMST) and because we have a
pointer from pipj to its position in PK(e) it can be removed in O(log n) time.
Now, we should find the edge e′ such that the new edge pkpl must be inserted in
PK(e′). We determine the edge e′ by checking the status of the four edges pipk,
pipl, pjpk and pjpl.

Assume that pipk ∈ PK(e1), pipl ∈ PK(e2), pjpk ∈ PK(e3) and pjpl ∈ PK(e4).
It is simple to prove that it is impossible to have four distinct values for e1, e2,
e3 and e4. So assume that two of these four edges are the same. Without loss of
generality, assume that e1 is equal to one of the other edges. We continue with
two cases where either e1 = e2 or e1 = e4. The other case (e1 = e3) is the same
as the case of e1 = e2.

For the first case where e1 = e2, the edge pkpl must be added to the PK data
structure of one the edges e3 or e4 that has greater Euclidean length. Assuming
that |e3| > |e4|, pkpl is added to PK(e3) and its position (ordering) is just before
(resp. after) the position of the edge pjpk if e3 lies before (resp. after) pjpk in
the ordering of PK(e3).
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In the other case where e1 = e4 the edge pkpl is added to PK(e1) between
positions of the edges pipk and pjpl in PK(e1).

Doing the above updates, we obtain the correct values of PK for the time t+ε
just after the event.

The second part of our KDS, the V , E and F data structures only depend
on the subdivision SD. This subdivision is the overlay of the EMST and the
convex hull of the points. DT-events does not change the EMST. Hence, a DT-
event changes these data structures if it affects the convex hull of the points.
According to our bounding box assumption which defines the convex hull, the
DT-events do not affect the V , E and F data structures.

Finally, on processing a DT-event of parameters pipj, pkpl and t, the T (DT)
andQ(DT) data structures are updated as follows. The edge pipj is removed from
T (DT) and its associated certificates (at most two certificates for its previous
and next edges in T (DT) ) are removed from Q(DT). Then, the new DT edge,
pkpl is inserted into T (DT) and the new certificates (at most two) associated to
this edge are determined and inserted into Q(DT).

4.2 Processing Order Events

For an order event of parameters pipj , pkpl and t we should apply the necessary
changes to the EMST as well as to our KDS. These changes are applied as
follows.

We first update the order of the edges pipj and pkpl in T (DT) by swapping
their positions in T (DT). Then, the previous certificates of these edges that are
no longer valid are removed from Q(DT) and the new certificates, according to
the new adjacent edges of pipj and pkpl in T (DT) are computed and inserted
into Q(DT).

An order event changes the V , E and F data structures if it results a change
in the EMST. Otherwise, these data structures are not affected due to an order
event.

In order to identify the effect of the assumed order event we distinguish be-
tween four different cases:

a) pipj /∈ E(EMST) and pkpl /∈ E(EMST).
b) pipj ∈ E(EMST) and pkpl ∈ E(EMST).
c) pipj /∈ E(EMST) and pkpl ∈ E(EMST).
d) pipj ∈ E(EMST) and pkpl /∈ E(EMST).

In cases (a) and (c) none of the PK, V , E and F data structure is changed.
Therefore, the EMST is not changed in these cases.

In case (b) the order event does not change the EMST of the points and
therefore, it does not change the V , E and F data structures. However, it should
be checked to see whether there is an edge e in both PK(pipj) and cut(pkpl).
If there are such edges, they must be removed from PK(pipj) and added to
PK(pkpl). Trivially, if pipj and pkpl do not lie on the boundary of a single face
of SD, there is no edge e in both PK(pipj) and cut(pkpl).
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Therefore, we first check this condition using the E and F data structures:
Each edge has two half-edges in E and each half-edge points to its corresponding
half-edge in F(fs) for some face fs of SD. If we obtain the same face for a half-
edge of pipj and a half-edge of pkpl, a subset Δ of edges of PK(pipj) must be
removed and these edges must be inserted into PK(pkpl). The subset Δ has the
following properties:

– The subset Δ is a connected part of the sorted list of edges in PK(pipj) i.e.
if e1 ∈ Δ has the minimum distance and e2 ∈ Δ has the maximum distance
among edges of Δ, there is no edge e′ ∈ PK(pipj)−Δ that its distance is
between the distances of e1 and e2.

– For each pspt ∈ Δ, plpk ∈ f where f is the face of SD that contains the edge
pspt. Moreover, f is adjacent to only one of the half-edges of pkpl.

Using the above properties, we can find the two extreme edges ofΔ by navigating
along two paths from the root of PK(pipj) to two leaves. At any node of these
paths we check the second property using the F(f) data structure to determine
the direction of the next step downward.

After finding Δ, it will be removed from PK(pipj) and inserted into its appro-
priate position in PK(pkpl). Assume that this appropriate position is between
the edges pspt and ps′pt′ of PK(pkpl). We have the following property about
these edges:

– For each edge pmpn ∈ Δ, pathf (ps, pt) ⊂ path(pm, pn) and pathf (pm, pn) ⊂
path(ps′ , pt′) where pathf(pi, pj) is the path between pi and pj on the bound-
ary of f that uses only the half-edges of the edges of the EMST.

Using this property, we can find the position of Δ in PK(pkpl) by navigating a
path from the root of PK(pkpl) to a leaf. It is notable that in some cases there
is no edge pspt or ps′pt′ in PK(pkpl) and Δ must be added to the start or the
end of PK(pkpl).

pl

pj

pk

fs

pift

fmid

Fig. 4. Cutting fmid from fs and
adding it to ft

In case (d) if pkpl /∈ PK(pipj), none of
the PK, V , E and F data structures and the
EMST is changed. Otherwise, by adding pkpl

to the EMST and removing pipj we obtain an
EMST of smaller weight. Therefore, in such
conditions the EMST and some parts of our
KDS must be updated. To do this pkpl is
added to the EMST and pipj is removed from
it. Whereas pipj no longer exists in the EMST
and pkpl is a new edge of the EMST, PK(pipj) is no longer required and we must
build the PK(pkpl) data structure. It is interesting to note that just after the
event PK(pkpl) is equal to PK(pipj) just before the event and we can use
the existing PK(pipj) as the value of the required PK(pkpl). Moreover, pipj is
removed from E , V(pi) and V(pj). Finally, F(fs) and F(ft) are updated accord-
ingly where fs and ft are the two faces adjacent to pipj . As shown in Figure 4,
a set of half-edges of the boundary of fs is removed from F(fs) and this set
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is inserted into F(ft). Precisely, the half-edge −−→pipj is removed from F(ft), the
sequence of half-edges from pi to pk are removed from F(fs) and are inserted
into F(ft) just after the point pi, the half-edge −−→pkpl is inserted into F(ft) just
after the point pk, the sequence of half-edges from pl to pj are removed from
F(fs) and are inserted into F(ft) just after the point pl, the half-edge −−→pjpi is
removed from F(fs), and the half-edge −−→plpk is inserted into F(fs) just after the
point pl.

Except for the case (b) of processing an order-event, other processes required
for a DT-event and order-event includes a constant number of logarithmic oper-
ations (search, insert, delete, merge, split) on data structures of linear size. The
excepted part of the processing of an order event can be done in O(log2 n) time
using the PK and F MS-BBST data structures. Therefore,

Theorem 3. Each DT-event and order event can be handled in O(log n) and
O(log2 n) time.

5 Performance Analysis

In this section, we analyze the performance of the proposed KDS according to
the KDS performance criteria.

Theorem 4. The proposed KDS for a set of n moving points has the following
properties:

• It processes O(n4) events.
• Each event can be handled in O(log2 n) time.
• Each point participates in O(1) (in average) number of certificates.
• It uses O(n) space and requires O(n logn) preprocessing time.

Therefore, the proposed KDS is responsive, compact and local (in average).

Proof. Assume that x and y coordinates of moving points are defined by algebraic
functions of maximum degree s. There are O(n2) items (lengths of edges) that
can appear in T (DT). Although at any fixed time onlyO(n) items exist in T (DT),
to obtain an upper bound we assume that all these items exist in T (DT). The
total number of swaps in this sorted list is O(n4) which dominates the number of
the DT-events (the number of the Delaunay triangulation events is O(n2λs(n))).
This O(n4) bound is a consequence of our assumption about the motion of the
points: x and y coordinates of the points change according to some algebraic
functions of constant maximum degree which means that s is constant. However,
we do not know how much this upper bound is tight.

The second property is concluded from Theorem 3. the Delaunay triangula-
tion is a planar graph which means that the average number of edges of its points
is constant. This concludes the third property. The last property is concluded
from Theorem 2. �
Efficiency is somehow the main KDS performance evaluation metric. As dis-
cussed in Section 1, this metric depends on the upper bound of the number of
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the internal events and the lower bound of the number of the external events. We
proved an upper bound of O(n4) for the number of internal events in Theorem 4.
But, the number of external events is smaller [13] which means that this KDS is
not efficient.

6 Conclusion

In this paper, we considered the kinetic version of the planar Euclidean minimum
spanning tree. We proposed a KDS that can be used to track the combinatorial
changes of the EMST of a set of moving points. Our KDS is the first responsive,
local in average and compact solution for this problem.

Proving the tight bounds of the number of the changes of the EMST is the
immediate open direction in continuing this research. Extending to higher di-
mensions as well as to dynamic environments in which the points are added or
removed are the other future directions.
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Generating All Simple Convexly-Drawable Polar

Symmetric 6-Venn Diagrams

Khalegh Mamakani, Wendy Myrvold, and Frank Ruskey
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Abstract. An n-Venn diagram consists of n curves drawn in the plane
in such a way that each of the 2n possible intersections of the interiors
and exteriors of the curves forms a connected non-empty region. A Venn
diagram is convexly-drawable if it can be drawn with all curves convex
and it is simple if at most two curves intersect at any point. A Venn
diagram is called polar symmetric if its stereographic projection about
the infinite outer face is isomorphic to the projection about the innermost
face. We outline an algorithm that shows there are exactly 375 simple
convexly drawable polar-symmetric 6-Venn diagrams.

Keywords: Venn diagram, polar-symmetry.

1 Introduction

Named after John Venn(1834− 1923), who used diagrams of overlapping circles
to represent propositions [10], Venn diagrams are commonly used in set theory
to visualize the relationship between different sets. When talking about Venn
diagrams, the traditional three circles diagram with 3-fold symmetry often comes
to mind (Figure 1(a)). Although it is not possible to use circles to draw Venn
diagrams of more than 3 sets, more than 3 sets can be represented if the curves
of the Venn diagram are other simple closed curves. Figure 1(b) shows a 5-
set Venn diagram composed of 5 congruent ellipses which was discovered by
Grünbaum[5], and Figure 1(c) shows a 7-set Venn diagram with 7-fold rotational
symmetry called Adelaide which was discovered independently by Grünbaum [7]
and Edwards [3].

Intensive research has been done recently on generating and drawing Venn
diagrams of more than three sets, particularly in regard to symmetric Venn dia-
grams, which are those where rotating the diagram by 360/n degrees results in
the same diagram. Henderson considered rotationally symmetric Venn diagrams
and he showed that they could exist only if the number of curves is prime [9].
Griggs, Killian, and Savage published a constructive method for producing sym-
metric Venn diagrams with a prime number of curves [8]. Venn diagrams exist
for any number of curves and several constructions of them are known [12].

Another type of symmetry, introduced by Grünbaum [6], is called polar-
symmetry which can be imagined by first projecting the diagram onto the surface
of a sphere with the regions corresponding to the full and empty sets at the north
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and south poles, respectively. The Venn diagram is polar-symmetric if it is in-
variant under polar flips, meaning that the north and south hemispheres are
congruent. In other words, for a polar-symmetric Venn diagram on the plane
turning the diagram inside-out (the innermost face becomes the outermost face)
gives the same Venn diagram. Note that all three Venn diagrams of Figure 1 are
polar-symmetric, as well as being rotationally symmetric.

The only other attempt that we know of to exhaustively list some interesting
class of 6-Venn diagrams is the work of Jeremy Carroll, who discovered that
there are precisely 126 such Venn diagrams where all curves can be drawn as
triangles [2]. He used a brute force search algorithm for all possible face sizes
of a Venn diagram. However, the problem of generating polar-symmetric six-set
Venn diagrams has not been studied before. In this paper we are restricting
our attention to the special (and most studied) class of Venn diagrams that are
both simple and drawable with convex curves. We introduce two representa-
tions of these diagrams. Inspired by Carroll’s work, an algorithm for generating
all possible simple convexly-drawable polar-symmetric six-set Venn diagrams is
developed — an algorithm which determines that there are exactly 375 simple
convexly-drawable polar-symmetric 6-Venn diagrams.

Although our results are oriented towards 6-Venn diagrams, they could in prin-
ciple be applied to general n-Venn diagrams, but the computations will quickly
become prohibitive. Nevertheless, we believe that the data structures and ideas
introduced here (i.e., the representations) will be useful in further investigations,
and in particular to resolving one of the main outstanding open problems in the
area of Venn diagrams: is there a simple 11-Venn diagram? We intend to use the
data structures proven useful here to attack a restricted, but natural, version
of that problem: is there a simple convexly-drawable polar-symmetric 11-Venn
diagram?

The study of symmetric Venn diagrams in interesting not only because sym-
metry is core aspect of mathematical enquiry, but also because we are often led
to diagrams of great inherent beauty. Furthermore, the geometric dual of a sim-
ple Venn diagram is a maximal planar spanning subgraph of the the hypercube,
and so results about Venn diagrams often have equivalent statements as results
about the hypercube.

The remainder of paper is organized as follows. In Section 2 we introduce
basic definitions. Representations of simple convexly-drawable Venn diagrams
are explained in Section 3. The generating algorithm and results are explained
in the last two sections.

2 Basic Definitions

A closed curve in the plane is simple if it doesn’t intersect itself. Each simple
closed curve decomposes the plane into two connected regions, the interior and
the exterior. An n-Venn diagram is a collection of n finitely intersecting simple
closed curves C = {C0, C1, . . . , Cn−1} in the plane, such that there are exactly
2n nonempty and connected regions of the form X0 ∩ X1 ∩ · · · ∩ Xn−1, where
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{1,2,3}

{1,3}{1,2}

{2,3}
{3}{2}

{1}

(a) (b)

(c)

Fig. 1. (a) A 3-Venn diagram whose curves are circles. (b) A 5-Venn diagram whose
curves are ellipses. (c) A symmetric 7-Venn known as “Adelaide.”

Xi is either the unbounded open exterior or open bounded interior of curve Ci.
Each connected region corresponds to a subset of the set {0, 1, . . . , n− 1}. Two
Venn diagrams are isomorphic if one of them can be changed into the other or
its mirror image by a one-to-one continuous transformation of the plane onto
itself.

A k-region in a diagram is a region that is in the interior of precisely k curves.
In an n-Venn diagram, each k-region corresponds to a k-element subset of a set
with n elements. So, there are

(
n
k

)
k-regions. A Venn diagram is monotone if

every k-region is adjacent to both some (k − 1)-region (if k > 0) and also to
some (k + 1)-region (if k < n). A diagram is monotone if and only if it is
drawable with each curve convex [1]. A simple Venn diagram is one in which
exactly two curves cross each other at each intersection point. Figure 2 shows a
simple monotone 6-Venn diagram.

Consider a Venn diagram as being projected onto the surface of a unit sphere
where the empty region of the diagram encloses the north pole of the sphere
and the innermost region contains the south pole. A cylindrical projection of the
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Fig. 2. A simple monotone 6-Venn diagram

Venn diagram can be obtained by mapping the surface of sphere to a 2π by 2
rectangle on the plane, where the equator of the sphere maps to a horizontal line
of length 2π and the north and south pole of the sphere are mapped to the top
and bottom sides of the rectangle respectively. In this representation, the top
of cylinder represents the empty region and bottom of cylinder represents the
innermost region. A Venn diagram is said to be polar symmetric if it is invariant
under polar flips. In the cylindrical representation the polar flip is equivalent
to turning the cylinder upside-down. For a Venn diagram on the plane, a polar
flip is equivalent to turning the diagram inside-out, with the innermost face
becoming the outermost. It is known that there are exactly 6 simple monotone
7-Venn diagrams with rotational and polar symmetry [4],[3]. Figure 3 shows
the cylindrical representation of the polar symmetric 6-Venn diagram shown in
Figure 2. Note that in the cylindrical representation of a monotone Venn diagram
every curve is x-monotone because of the monotonicity of the diagram; i.e., every
vertical line intersects each curve at a single point at most.

A simple Venn diagram can be viewed as a planar graph where the intersection
points of the Venn diagram are the vertices of the graph and the sections of the
curves that connect the intersection points are the edges of the graph. For a

Fig. 3. Cylindrical representation of the 6-Venn diagram of Figure 2
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planar graph with f faces, v vertices and e edges, Euler’s formula states that
f + v = e + 2. A graph of an n-Venn diagram has 2n faces. In a simple Venn
diagram each vertex of this graph has degree 4; i.e. e = 2v, so a simple n-Venn
diagram has 2n − 2 vertices.

3 Representing Venn Diagrams

In this section we introduce two representations for simple monotone Venn di-
agrams. First we discuss the binary matrix representation where each 1 in the
matrix represents an intersection point of the corresponding Venn diagram. Hav-
ing the matrix representation of a diagram, it is easy to check if it is a Venn dia-
gram or not. In the second part we show how to represent simple monotone Venn
diagrams using compositions. We use this representation to find all candidate
diagrams. Then we filter non-Venn diagrams using the matrix representation.

3.1 Matrix Representation

For a simple monotone n-Venn diagram, every 1-region is adjacent to the empty
region. So the empty region surrounds a “ring” of

(
n
1

)
1-regions. An intersection

point is said to be part of ring i if of the four incident regions, two are in ring i
and the other two are in ring i− 1 and i+ 1. Since each region is started by one
intersection point and ended by another one, there are

(
n
1

)
intersection points

in the first ring. Similarly, every 2-region is adjacent to at least one 1-region.
So, there are

(
n
2

)
2-regions that form a second ring surrounded by the first ring

and which contains
(
n
2

)
intersection points. In general, in a simple monotone

n−Venn diagram, there are n− 1 rings of regions, where all regions in a ring are
enclosed by the same number of curves and every region in ring i, 1 ≤ i ≤ n− 1,
is adjacent to at least one region in ring i− 1 and also to at least one region in
ring i + 1. The number of intersection points in the ith ring is the same as the
number of regions in the ith ring, which is

(
n
i

)
. The rings have different colors

in Figure 1(c).
Thus a simple monotone n−Venn diagram can be represented by a n−1 by m

binary matrix, m ≤ 2n−2, where each 1 in the matrix represents an intersection
point in the Venn diagram. Row i of the matrix corresponds to ring i of the
Venn diagram. A Venn matrix has the following properties :

– There are
(
n
i

)
1’s in the ith row of the matrix, 1 ≤ i ≤ n− 1.

– There are no two adjacent 1’s in any row or column of the matrix.
– A valid matrix must represent exactly 2n − 2 distinct regions of the corre-

sponding Venn diagram. The two other regions are the outermost and the
innermost regions. Figure 4 shows the matrix representation of the Venn
diagram of Figures 2 and 3.

The rank of a region of a Venn diagram is defined by
∑n−1

i=0 2ixi where xi = 1 if
curve i encloses the region and xi = 0 otherwise. Given a matrix representation
P , we need to check that no two ranks are the same to check if it represents a
valid Venn diagram.
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1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 000100 0

0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 010001010 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 101010101 0

0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 010100010 1

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 001001000 0

0 0 0

0

000

10

01

10

00

1

0

0

0

1

0 0 0 0 0

Fig. 4. Matrix representation of the 6-Venn diagram of Figures 2 and 3

For a given matrix P , suppose vector C = [c0, c1, · · · , cn−1] represents the
curve labels of the corresponding diagram in cylindrical representation along
some column where c0 is the label of the outermost(top) curve and cn−1 is the
label of the innermost(bottom) curve. Then a region at ring i, 1 ≤ i ≤ n− 1, is
enclosed by curves c0, · · · , ci−1 and the rank of the region is

∑i−1
k=0 2ck . To get

the curve labels for each region we need to update C based on the entries of
matrix P at each column. For a given column j of the matrix, each entry of 1
represents an intersection point. So for each row i, if pij = 1 then we need to
exchange ci and ci+1 to get the next curve labels. Starting from left to right with
C = [0, 1, · · · , n− 1] as the initial curve labels, then we can compute the rank of
each region. Matrix P represents a valid simple monotone Venn diagram if we
get exactly 2n−2 regions with distinct ranks and C = [0, 1, · · · , n−1] at the end
given that we start with C = [0, 1, · · · , n−1]. We used the matrix representation
in [4] to generate all monotone simple symmetric 7-Venn diagrams.

3.2 Compositions

In this part we introduce the other representation we use to generate Venn
diagrams. In this representation, we use a sequence of non-negative integers
to show the size of faces in each ring and and also to specify the position of
intersection points of the next ring.

Definition 1. Let a1, a2, · · · , ak be non-negative integers such that :

k∑
i=1

ai = n

Then (a1, a2, · · · , ak) is called a composition of n into k parts or a k−composition
of n.

In a simple monotone n-Venn diagram there are
(

n
i+1

)
intersection points at ring

i+ 1 that are distributed among
(

n
i

)
intersection points at ring i. So if we pick

a particular point at ring i as the reference point, then we can specify the exact
location of points at ring i+ 1 using a composition of

(
n

i+1

)
into

(
n
i

)
parts.
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Definition 2. Let C(n, k) be the set of all compositions of n into k parts. For
a simple monotone n-Venn diagram V , starting from an arbitrary point of the
first ring, we label the intersection points of V from 1 to 2n − 2 in clockwise
direction. Let �i denote the label of the starting point at ring i. The composition
representation P of V is a set of n− 2 pairs of form 〈�i, ci〉, where

�1 = 1, �i = �i−1 +
(

n

i− 1

)
, ci ∈ C

((
n

i+ 1

)
,

(
n

i

))

Figure 5 shows the composition representation of the 6-Venn diagram of
Figure 2 and 3.

42

3 3 3 3 2 1

1111 222 112 1 11

1111 1 1 1 11 1 11

2

1 0 1 0 1

00 1 1 0 1 0 0 1 0 0

0 0

1 0 0 1

0

1

1

7

22

Fig. 5. Composition representation of the 6-Venn diagram of Figures 2 and 3

We now list several observations that will help us cut down on the size of the
search space.

Observation 1. For any simple monotone n-Venn diagram V , the largest part
of ci in the composition representation is at most n− i− 1.

Proof. A region at ring i is enclosed by i curves above its starting and ending
points. Since the size of a region is at most n and no two edges belong to the
same curve [11], at most n− i remaining curves can be used to shape the region.
As shown in Figure 6, to put p intersection points between the two end points
of the region on the next ring, we need p+ 1 curves, p− 1 curves for the bottom
side and two curves for the left and right sides. So, p ≤ n− i− 1.

Observation 2. In the composition representation of any simple monotone
Venn diagram with more than 3 curves, there are no two non-adjacent 1’s in
c1.

Proof. Suppose, there is such a Venn diagram V , then the first ring of the Venn
diagram will be like Figure 7 , where regions A andD correspond to non-adjacent
1’s in the composition and A �= D. Then A ∩ D = ∅ which contradicts the
assumption that V is a Venn diagram. So in the first ring composition there are
at most two 1’s which must be adjacent.

Observation 3. There are no two faces of size 3 adjacent to another face of
size 3 in a simple monotone n−Venn diagram V.
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Enclosed by i curves

p intersection points

Fig. 6. Largest part of the composition at level i

DE

EF

AF AB CD

A B C D

Fig. 7. Non-Adjacent 1’s in the first ring composition

Proof. There are only two cases, shown in Figure 8, that two faces of size 3 could
be adjacent to a single face of size 3. However, both cases result in a two part
disconnected region(the shaded region) which contradicts the fact that V is a
Venn diagram.

Observation 4. There are no two consecutive 0’s in c2 for the composition
representation of any simple monotone n-Venn diagram.

Proof. By observation 3

Definition 3. Let r1, r2 ∈ C(n, k) be two compositions of n into k parts. r1 and
r2 are rotationally distinct if it is not possible to get r2 from any rotation of r1
or its reversal.

Let Fn denote the set of all rotationally distinct compositions of
(
n
2

)
into n parts

such that for any r ∈ Fn there are no two non-adjacent parts of 1 and all parts
are less than or equal to n− 2.

Theorem 5. If c1 is the composition corresponding to the first ring of a simple
monotone n-Venn diagram, then c1 ∈ Fn.

Proof. Given a simple monotone n-Venn diagram, suppose we get the compo-
sition representation P of V by picking a particular intersection point x in the
first ring as the reference point. Now let P ′ be another representation of V using
any other intersection point different than x as the reference point. It is clear
that c′1 in P ′ is a rotation of c1 in P . Also for any composition representation
P

′′
of the mirror of V the first composition c

′′
1 in P

′′
is a rotation of the reversal
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ACBC

A

AB

B C A

(a)

BC

C

ACAB BC

B A

(b)

Fig. 8. Possible cases for two faces of size 3 being adjacent to a single face of size 3

of c1. By the observations 1 and 2 the largest part of c1 is n − 2 and there are
no two non-adjacent 1’s in c1. Therefore, there is a composition c ∈ Fn which is
rotationally identical to c1.

4 Generating Algorithm

Given the upper/lower half of the cylindrical representation of a polar symmetric
Venn diagram, one can generate the whole diagram by creating a copy of the
given half, turning it upside down and rotating it until the two parts match
together. So, to generate a polar symmetric monotone Venn diagram, we need
only to generate the first 	n−2

2

 compositions.

Two halves of the diagram can match only if gluing them using the intersection
points doesn’t create any faces of size 2. Given the last composition of the upper
half, for each positive part aj there are aj−1 edges that bound the corresponding
face from the bottom and there is a gap between two faces corresponding to two
consecutive parts of the composition. So, we can map the composition to a bit-
string where each 1 represents a bounding edge of a face and each 0 represents
the gap between two faces. The length of bit-string is the same as the sum of
all parts of the composition. In other words the composition (a1, a2, · · · , ak) is
mapped to the following bit-string.

a1−1 bits︷ ︸︸ ︷
11 · · · 1 0

a2−1 bits︷ ︸︸ ︷
11 · · ·1 0 · · · 0

ak−1 bits︷ ︸︸ ︷
11 · · · 1 0

We can find all matchings of the two halves by computing the bitwise “and”
of the bit-string and its reverse for all left rotations of the reverse bit-string. Any
result other than 0 means that there is at least one face of size 2 in the middle.
Then for each matching we compute the matrix representation of the resulting
diagram. The matrix can be obtained by sweeping the compositions from left
to right and computing the position of each intersection point. Checking each
resulting matrix for all compositions gives us all possible polar symmetric 6-Venn
diagrams.
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Algorithm 1. GenPolarSymSixVenn

begin
foreach composition (a1, a2, · · · , a6) ∈ F6 do

foreach composition (b1, b2, · · · , b15) ∈ C(20, 15) do
create the corresponding upper and lower halves
for i← 1 to 20 do

glue the upper and lower halves
if there are no parallel edges in the diagram then

compute matrix X representing the diagram
if isV enn(X) then

Print(X)

rotate lower half one point to the left

end

5 Results

Using the exhaustive search we found 375 simple monotone polar symmetric
6-Venn diagrams. This result was independently checked by using a separate
program that is based on a different search method. That search method will be
explained in the eventual expanded version of this paper.

Table 1. Number of polar symmetric 6-Venn diagrams for F6

Composition Venn Diagrams Composition Venn Diagrams

4 4 3 2 1 1 25 2 3 4 3 2 1 5

4 3 4 2 1 1 0 4 2 2 4 2 1 0

3 4 4 2 1 1 38 3 3 2 4 2 1 9

4 4 2 3 1 1 0 2 4 2 4 2 1 0

4 3 3 3 1 1 12 3 2 3 4 2 1 3

3 4 3 3 1 1 9 4 3 2 2 3 1 9
4 2 4 3 1 1 0 3 4 2 2 3 1 15

4 3 2 4 1 1 0 4 2 3 2 3 1 0

4 4 2 2 2 1 15 3 3 3 2 3 1 9
4 3 3 2 2 1 2 3 2 4 2 3 1 0

3 4 3 2 2 1 30 4 2 2 3 3 1 12

4 2 4 2 2 1 0 3 3 2 3 3 1 4

3 3 4 2 2 1 6 4 2 2 2 4 1 0

2 4 4 2 2 1 13 4 3 2 2 2 2 15

4 3 2 3 2 1 7 4 2 3 2 2 2 22

3 4 2 3 2 1 8 3 3 3 2 2 2 6

4 2 3 3 2 1 6 4 2 2 3 2 2 1

3 3 3 3 2 1 41 3 3 2 3 2 2 21

2 4 3 3 2 1 22 3 2 3 2 3 2 3

3 2 4 3 2 1 7
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Table 1 shows the number of Venn diagrams for each particular composition
of the first level. Figure 9 shows one Venn diagram for each of those 29 com-
positions that have at least one Venn diagram. Renderings of each of the 375
diagrams may be found at the website:
http://webhome.cs.uvic.ca/~ruskey/Publications/SixVenn/SixVenn.html.

Fig. 9. 29 simple monotone polar symmetric 6-Venn diagrams, representing all possible
compositions for the outermost ring
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The Rand and Block Distances of Pairs of Set

Partitions

Frank Ruskey1,� and Jennifer Woodcock1

Dept. of Computer Science, University of Victoria, Canada

Abstract. The Rand distance of two set partitions is the number of
pairs {x, y} such that there is a block in one partition containing both
x and y, but x and y are in different blocks in the other partition. Let
R(n, k) denote the number of distinct (unordered) pairs of partitions of
n that have Rand distance k. For fixed k we prove that R(n, k) can be
expressed as

∑
j ck,j

(
n
j

)
Bn−j where ck,j is a non-negative integer and Bn

is a Bell number. For fixed k we prove that there is a constant Kn such
that R(n,

(
n
2

) − k) can be expressed as a polynomial of degree 2k in n
for all n ≥ Kn. This polynomial is explicitly determined for 0 ≤ k ≤ 3.

The block distance of two set partitions is the number of elements that
are not in common blocks. We give formulae and asymptotics based on
N(n), the number of pairs of partitions with no blocks in common. We
develop an O(n) algorithm for computing the block distance.

1 Introduction and Motivation

In statistics, particularly as it is applied to cluster analysis, it is sometimes useful
to have a measure of the difference between two set partitions [4]. The Rand
distance is one such measure, and was introduced in Rand [8]. In this paper we
will initiate a combinatorial study of the properties of the Rand distance, taken
over all unordered pairs of partitions of an n-set. We will also introduce another
measure, which we call the block distance, and determine some of its properties.
For example, we will determine an exact expression for the number of pairs of
partitions that have no blocks in common. Furthermore, we will show how to
compute the block distance efficiently.

The Rand distance of two set partitions is the number of unordered pairs
{x, y} such that there is a block in one partition containing both x and y,
but x and y are in different blocks in the other partition. We use R(P,Q)
to denote the Rand distance between two set partitions P and Q. For exam-
ple, R({{1, 2}, {3}}, {{1}, {2, 3}}) = 2 (the pairs are {1, 2} and {2, 3}) and
R({{1, 2, 3}}, {{1}, {2}, {3}}) = 3 (the pairs are {1, 2}, {1, 3}, and {2, 3}). In
general, if P and Q are partitions of an n-set, then 0 ≤ R(P,Q) ≤ (

n
2

)
.

Let R(n, k) be the number of distinct (unordered) pairs of partitions of an
n-set that have Rand distance k. See Table 2 in Section 3.1. This table was
computed from exhaustive computer listings of all partitions of {1, 2, . . . , n} up

� Research supported in part by NSERC.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 287–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to n = 11. The column sums are
(
Bn

2

)
. Note that the numbers for fixed n are

not unimodal in general.
We define the block distance B(P,Q) between two partitions of n as the num-

ber of elements in the blocks that are not common to both P andQ. For example,

B({{1, 2}, {3}}, {{1}, {2}, {3}}) = 2

since the only block that is common to both partitions is {3} and there are 2
elements in the remaining blocks. By B(n, k) we denote the number of pairs
of partitions of n that have block distance k. See Table 1 in Section 2. The
Rand distance can be cleverly computed using a linear number of arithmetic
operations; see Filkov and Skiena [2] and we will show that the block distance
is also efficiently computable.

Organizationally, we will finish this section by giving some background on set
partitions. In the succeeding two sections, we discuss first the block distance
and then the Rand distance. The focus is mainly on the elucidation of some
enumerative results along with a clever O(n) algorithm for computing the block
distance.

1.1 Background on Set Partitions

A partition of a set S is collection of disjoint subsets of S, say {S1, S2, · · · , Sk}
whose union is S. Each Si is referred to as a block. The number of partitions
of an n-set into k blocks is the Stirling number (of the second kind), which is
denoted as

{
n
k

}
. We use [n] to denote {1, 2, . . . , n}.

In the computer, partitions are usually represented by restricted growth strings.
We assume that the blocks of a partition X are numbered S1, S2, . . . , Sk accord-
ing to the size of the smallest element in each block. That is, S1 contains 1, S2

contains the smallest element not in S1, and so on. Then the restricted growth
string r[1..n] of X is defined by taking r[i] to be the distance of the block con-
taining i. The Gray code algorithms for generating restricted growth strings
developed in [9] and discussed in [5] were used to generate the numbers in Ta-
bles 1 and 2; as each string was generated the O(n) algorithms for computing
the Rand distance and the block distance were applied.

The n-th Bell number, Bn, is the total number of partitions of an n-set, irre-
spective of block size. Thus Bn =

∑
k

{
n
k

}
. The exponential generating function

(egf) of the Bell numbers is well-known (e.g., Stanley [10], pg. 34)) to be

B(z) =
∑
n≥1

Bn
zn

n!
= ee

z−1. (1)

The number of pairs of partitions is
(
Bn

2

)
. For n = 1, 2, 3, . . . , 10 these numbers

are

0, 1, 10, 105, 1326, 20503, 384126, 8567730, 223587231, 6725042325.

They give the row sums in Tables 1 and 2.
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We use several times a generalization of the fact that if f(z) =
∑
n≥0 fnz

n/n!
is the egf of a sequence fn, then zf(z) is the egf of the sequence nfn−1. See
Knuth, Graham, Patashnik [3], page 350. Furthermore, for k ≥ 0,

zkf(z) =
∑
n≥k

n(n− 1) · · · (n− k + 1)fn−k
zn

n!

= k!
∑
n≥0

(
n

k

)
fn−k

zn

n!
. (2)

Thus k!
(
n
k

)
fn−k is the n-th coefficient of zkf(z).

2 The Block Distance

Recall that the block distance B(P,Q) of two partitions of n is the number of
elements in the blocks that are not common to both P and Q, and that B(n, k)
is the number of pairs of partitions of n that have block distance k. See Table 1.

Table 1. The values of B(n, k) for 1 ≤ k ≤ n ≤ 9

n\k 2 3 4 5 6 7 8 9

2 1
3 3 7
4 12 28 65
5 50 140 325 811
6 225 700 1950 4866 12762
7 1092 3675 11375 34062 89334 244588
8 5684 20384 68250 227080 714672 1956704 5574956
9 31572 119364 425880 1532790 5360040 17610336 50174604 148332645

Let N(n) = B(n, n); this is the number of unordered pairs of partitions that
have no blocks in common. The numerical values of N(n), for 0 ≤ n ≤ 10, are

0, 0, 1, 7, 65, 811, 12762, 244588, 5574956, 148332645, 4538695461.

Determining N (n) for i = 1, . . . , n is sufficient to determine B(n, k) since, by
direct combinatorial considerations,

B(n, k) = N(k)
(
n

k

)
Bn−k. (3)

We also note that(
Bn
2

)
=

n∑
k=0

B(n, k) =
n∑
k=0

N(k)
(
n

k

)
Bn−k. (4)
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Letting N(z) be the egf of the N(n) numbers, from (4) we obtain the equation

P (z) :=
∑
n≥0

(
Bn
2

)
zn

n!
= N(z)ee

z−1.

And thus
N (z) = P (z)e1−e

z

. (5)

The egf e1−e
z

is known; it is the egf of the “complementary Bell numbers” (OEIS
A000587). The complementary Bell numbers, Cn, for n = 0, 1, 2, . . . , 14 are

1,−1, 0, 1, 1,−2,−9,−9, 50, 267, 413,−2180,−17731,−50533, 110176.

It is known that

Cn =
n∑
k=0

(−1)k
{
n

k

}
.

Thus, from (5) we get a “closed-form” formula for N(n), namely

N(n) =
n∑
j=0

(
n

j

)
Cj

(
Bn−j

2

)
=

n∑
j=0

(
n

j

)(
Bn−j

2

) j∑
k=0

(−1)k
{
j

k

}
.

2.1 Linear Time Algorithm to Compute the Block Distance

In this subsection we present a linear time algorithm to compute the block
distance of two partitions.

Closely related to the restricted growth string, we define the block string,
b[1..n], of P as follows: b[i] is the smallest element in the block containing i.
Every block string has the characterizing property that b[1] = 1, and for i > 1,

b[i] ∈ {i, b[1], b[2], . . . , b[i− 1]}.
It is relatively simple to convert a restricted growth string into the corresponding
block string in O(n) time.

The following code takes as input a restricted growth function r[1..n] and
returns the corresponding block string b[1..n]. It uses a temporary array m[1..n]
that maintains the invariant b[i] = m[r[i]].

for i ∈ {1, 2, . . . , n} do m[i] := 0;
for i := 1, 2, . . . , n do

if m[r[i]] = 0 then m[r[i]] := i;
b[i] := m[r[i]];

Before describing the algorithm for computing the block distance, we encourage
the reader to consider the following small example. Suppose

P = {1}{2}{3, 4}{5, 7}{6}, Q = {1, 2}{3, 4, 6}{5, 7}.
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Then the restricted growth strings for P and Q are

rP = 1, 2, 3, 3, 4, 5, 4, rQ = 1, 1, 2, 2, 3, 2, 3

and the block strings are

p = 1, 2, 3, 3, 5, 6, 5, q = 1, 1, 3, 3, 5, 3, 5.

Comparing the elements, we find that the blocks labelled 1, 2, 3, and 6 are not
common to P and Q and that the block labelled 5 is common to P and Q. Since
there are 5 elements in blocks 1, 2, 3, and 6, the block distance of P and Q is 5.

The algorithm maintains a boolean array C[1..n] with the property that, upon
termination, C[i] is true if i is in a block common to P and Q, and is false
otherwise. The block distance is thus equal to the number of entries in this array
that are false.

The algorithm makes two passes over p, one pass over q, and one pass over
C. Consider p[i] and q[i]; there are three mutually exclusive cases: (a) p[i] �= q[i]
and i is not in a common block, (b) p[i] = q[i] and i is in a common block, and
(c) p[i] = q[i] and i is not in a common block. (Because we are using the block
string and not the restricted growth string, it is not possible that p[i] �= q[i] and
i is in a common block.) In the first pass we test only for case (a). In the second
pass we (indirectly) distinguish cases (b) and (c).

The key observation is this: If i is not in a common block and p[i] = q[i], then
there is some value j �= i such that j is in the same block as i in P but is in a
different block than i in Q, or vice-versa. In other words, p[i] = p[j] �= q[j] or
p[j] �= q[j] = q[i]. Thus, in the first pass C[p[j]] and C[q[j]] were set to false.

So on the second pass, we test whether C[p[i]] is false to determine whether
i is in a common block or not. On the final pass, we find the block distance by
counting the number of false values in C. Below is the code in detail.

for i ∈ {1, 2, . . . , n} do C[i] := true
for i := 1, 2, . . . , n do

if p[i] �= q[i] then C[p[i]] := C[q[i]] := false ;
for i := 1, 2, . . . , n do

if ¬C[p[i]] then C[i] := false ;
c := 0;
for i ∈ {1, 2, . . . , n} do

if ¬C[i] then c := c+ 1;
return(c);

3 Results on the Rand Distance

Now recall that R(P,Q) is the number of unordered pairs {x, y} such that there
is a block in one partition containing both x and y, but x and y are in different
blocks in the other partition, and that R(n, k) is the number of distinct (un-
ordered) pairs of partitions of an n-set that have Rand distance k. See Table 2.
Let R(n) be the sum of the Rand distance over all unordered pairs of partitions.
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Table 2. The values of R(n, k) for 2 ≤ n ≤ 11 and 1 ≤ k ≤ 55. This table is inverted
in the sense that k increases down columns and n varies along the columns.

k\n 2 3 4 5 6 7 8 9 10 11

1 1 3 12 50 225 1092 5684 31572 186300 1163085

2 6 30 150 780 4200 23772 141624 887220 5835060

3 1 32 280 1720 10885 69272 452508 3060360 21482340

4 24 300 3360 25200 183960 1341648 9883440 74471760

5 6 240 3426 42672 391356 3266172 26969040 222185304

6 1 220 4100 56889 696178 7234374 67288830 612903720

7 60 2400 60165 941088 12259368 141778440 1469224350

8 15 2700 57750 1182888 18992502 256463820 3164268690

9 10 1075 46585 1150520 23324140 399874640 5762811670

10 1 471 31374 1165416 28129626 547907454 9538994388

11 150 24528 815640 26605908 670419540 13513772745

12 35 14140 780570 26190612 742419510 18112131840

13 45 4725 413840 21568932 744780330 20675910420

14 15 1890 369180 17119818 701747010 23653643310

15 1 1302 178080 13040280 607809750 22677991578

16 252 115780 8948079 520591950 22923998460

17 210 43512 6244308 377521875 19287053775

18 140 20734 3679032 312082260 17554312490

19 105 6860 2431044 198307620 13495597225

20 21 7098 1250109 158606532 11143736604

21 1 3508 640908 87210930 8029798920

22 574 315828 63688410 6035010960

23 840 197568 33243120 4254456690

24 665 57288 25703205 2872892550

25 476 46116 11343906 1924619235

26 210 30366 6764940 1215058680

27 28 25732 3272500 789847190

28 1 7695 2003805 453548480

29 4104 1532340 306871290

30 2226 757080 177358500

31 3780 211410 112440900

32 2205 212625 53211510

33 1344 198345 35497935

34 378 138600 16793040

35 36 82512 13781493

36 1 21080 10664335

37 16200 6744100

38 15750 2483415

39 14910 1445565

40 13545 802164

41 7245 1320165

42 3270 860640

43 630 580965

44 45 215325

45 1 104313

46 62205

47 103950

48 70455

49 74250

50 45045

51 21945

52 7095

53 990

54 55

55 1
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Theorem 1

R(n) =
(n
2)∑

k=0

k R(n, k) =
(
n

2

)
Bn−1(Bn −Bn−1).

Proof Choose a pair {x, y}. The number of partitions in which this pair appears
in the same block is Bn−1. The number of partitions in which this pair appears in
different blocks is the difference Bn−Bn−1. Thus in total, each pair contributes
Bn−1(Bn − Bn−1) to the sum. Since there are

(
n
2

)
ways to choose a pair, the

proof is finished. ��
The average value of the Rand distance is thus

R(n)(
Bn

2

) =
n(n− 1)Bn−1(Bn −Bn−1)

Bn(Bn − 1)
.

Since the Bell numbers grow exponentially,

R(n)(
Bn

2

) ∼ n2Bn−1

Bn
,

which experimentally appears to be Θ(n log n).

3.1 Determining R(n, k) for Small Values of k

We now consider R(n, k) for small values of k.
Clearly R(n, 0) = 0.

Theorem 2. For all n ≥ 1,

R(n, 1) =
(
n

2

)
Bn−2.

Proof. The only way that the Rand distance can be 1 is if there is a block {x, y}
in one partition and two blocks {x}, {y} in the other, and all other blocks in one
partition are present in the other. There are

(
n
2

)
ways to choose the pair and

Bn−2 ways to determine the other blocks. ��
Corollary 1. The egf of the R(n, 1) numbers is

∑
n≥1

R(n, 1)
zn

n!
=

z2

2
B(z) =

z2

2
ee

z−1.

Proof. Apply (2) with k = 2. ��
The previous two results were warm-ups for the more technical results that
follow.
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Theorem 3. For fixed k, there are non-negative integer constants ck,j such that,
for all n ≥ 1,

R(n, k) =
2k∑

j=�(1+√
1+8k)/2�

ck,j

(
n

j

)
Bn−j .

Proof. Any two partitions P and Q will have a largest subpartition X that is
common to both P and Q. As a consequence, R(P,Q) = R(P \ X,Q \X). In
the sum above j represents n − |X |, given that R(P,Q) = k. Thus, ck,j is the
number of pairs of j-element set partitions with no common blocks and that
have Rand distance k. It remains to prove that the restrictions on the index of
summation are correct.

The lower bound in the summation follows from the fact that the maximum
Rand distance between two partitions of n is

(
n
2

)
and thus k ≤ (

j
2

)
. Solving the

implied quadratic yields j ≥ (1 +
√

1 + 8k)/2, which gives us the lower bound.
We hereafter use α = 
(1 +

√
1 + 8k)/2� for ease of reading.

For the upper bound, consider two partitions P and Q of an j-set that have no
block in common, and have Rand distance k. We claim that k ≥ 
j/2�. Consider
some arbitrary integer x ∈ {1, 2, . . . , j}. Since P and Q have no common blocks,
there is some integer y that is in the same block as x in one partition, and
in another block in the other partition. Thus we have j distinct ordered pairs
(x, y), one for each different value of x. At least 
j/2� of them have to be distinct
as unordered pairs, and each such unordered pair contributes 1 to the Rand
distance. Thus k ≥ 
j/2� as claimed. From this it follows that j ≤ 2k, which is
the upper bound in the sum above. ��
Theorem 4. For all n ≥ 1,

R(n, 2) = 6
(
n

3

)
Bn−3 + 6

(
n

4

)
Bn−4.

Proof. Theorem 3 tells us that

R(n, 2) = c2,3

(
n

3

)
Bn−3 + c2,4

(
n

4

)
Bn−4.

From the k = 2 row of Table 2 we then have the following two equations.

R(3, 2) = 6 = c2,3

(
3
3

)
B0 + c2,4

(
3
4

)
B−1 = c2,3 and

R(4, 2) = 30 = c2,3

(
4
3

)
B1 + c2,4

(
4
4

)
B0 = c2,34 + c2,4.

This system of equations can be solved to obtain c2,3 = c2,4 = 6. ��
Corollary 2. The egf of the R(n, 2) numbers is

∑
n≥1

R(n, 2)
zn

n!
=

(
z3 +

z4

4

)
B(z) =

(
z3 +

z4

4

)
ee

z−1.
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In a similar fashion we can solve systems of linear equations to obtain the fol-
lowing theorems and corollaries.

Theorem 5. For all n ≥ 1,

R(n, 3) =
(
n

3

)
Bn−3 + 28

(
n

4

)
Bn−4 + 120

(
n

5

)
Bn−5 + 60

(
n

6

)
Bn−6.

Corollary 3. The egf of the R(n, 3) numbers is
∑
n≥1

R(n, 3)
zn

n!
=

(
z3

6
+

7z4

6
+ z5 +

z6

12

)
B(z) =

(
z3

6
+

7z4

6
+ z5 +

z6

12

)
ee

z−1.

Theorem 6. For all n ≥ 1, the value of R(n, 4) is

24
(
n

4

)
Bn−4 + 180

(
n

5

)
Bn−5 + 1560

(
n

6

)
Bn−6 + 2520

(
n

7

)
Bn−7 + 840

(
n

8

)
Bn−8.

Corollary 4. The egf of the R(n, 4) numbers is

∑
n≥1

R(n, 4)
zn

n!
=

(
z4 +

3z5

2
+

13z6

6
+
z7

2
+
z8

48

)
B(z).

We summarize the known values of ck,j in Table 3. Although we don’t know the
value of ck,j in general, we can determine a few specific infinite sequences, which
are given in the next lemma.

Lemma 1. For all k ≥ 1,

ck,2k =
(2k − 1)!
(k − 1)!

and ck,α = R(α, k).

Proof. For a pair of 2k element set partitions P and Q to have Rand distance
k with no common blocks, the 2k elements must be paired, and each pair of
elements is a block in either P or Q. Further, if {a, b} is a block in set P then set
B contains the singleton blocks {a} and {b} and vice versa. Since the order of
the blocks doesn’t matter, we can assume the blocks (pairs) are sorted by their
smallest elements. So, for i = 1, 2, . . . , k, once we have chosen the elements for
blocks 1, 2, . . . , i− 1, the first element in block i must be the smallest remaining
element and there are 2k − (2(i − 1) + 1) = 2k − 2i + 1 choices for the second
element in block i. Thus the number of ways to pair the elements is

k∏
i=1

(2k − 2i+ 1) =
(2k − 1)!

2k−1(k − 1)!

If we assume, without loss of generality, that a pair, say {a, b}, is in partition
P , then there are 2k−1 unique ways to distribute the remaining pairs between
P and Q. So we have

cj,2k =
(2k − 1)!

2k−1(k − 1)!
2k−1 =

(2k − 1)!
(k − 1)!

.
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Table 3. Known values of ck,j for 2 ≤ j ≤ 11. The bold value at the beginning of each
row is ck,α = R(α, k).

k\j 2 3 4 5 6 7 8 9 10 11

1 1

2 6 6

3 1 28 120 60

4 24 180 1560 2520 840

5 6 210 1986 18900 63840 60480 15120

6 1 215 2780 28224 253246 1340640 2520000 1663200

7 60 2040 43365 463128 3998736 26878320 82328400

8 15 2610 38850 721728 8575200 74028240 554843520

9 10 1015 39060 778400 13061020 172444150 1568364600

10 1 465 28077 914480 17680572 270474480 3714220092

11 150 23478 619416 19277748 407335320 6281694045

12 35 13895 667450 19168422 482217540 10078945140

13 45 4410 376040 17848152 529667460 12553128060

14 15 1785 354060 13798458 530778780 15995950740

15 1 1295 167664 11437644 477563400 16021896264

16 252 113764 7906059 431141400 17216673870

17 210 41832 5852700 315103995 15141561930

18 140 19614 3492426 275308740 14124874940

19 105 6020 2369304 174009780 11315379955

20 21 6930 1186227 146107962 9400242852

21 1 3500 609336 80801970 7071057840

22 574 310662 60530130 5334533160

23 840 190008 31267440 3888920970

24 665 51303 25130325 2590267020

25 476 41832 10882746 1799914809

26 210 28476 6461280 1140678990

27 28 25480 3015180 753854310

28 1 7686 1926855 431506790

29 4104 1491300 290015550

30 2226 734820 169030620

31 3780 173610 110115390

32 2205 190575 50872635

33 1344 184905 33316140

34 378 134820 15268440

35 36 82152 12873861

36 1 21070 10432455

37 16200 6565900

38 15750 2310165

39 14910 1281555

40 13545 653169

41 7245 1240470

42 3270 824670

43 630 574035

44 45 214830

45 1 104302

46 62205

47 103950

48 70455

49 74250

50 45045

51 21945

52 7095

53 990

54 55

55 1
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Since Bi = 0 when i < 0, B0 = 1, and
(
i
i

)
= 1,

R(α, k) =
2k∑
j=α

ck,j

(
α

j

)
Bα−j = ck,α.

��
Lemma 2. For all j ≥ 1,

c(j
2),j = R

(
j,

(
j

2

))
= 1.

For all j ≥ 4:

c(j
2)−1,j = R

(
j,

(
j

2

)
− 1

)
=

(
j

2

)
.

For all j ≥ 5:

c(j
2)−2,j = R

(
j,

(
j

2

)
− 2

)
=

((
j−1
2

)
2

)
.

For all j ≥ 2 + x:

c(j
2)−x,j = R

(
j,

(
j

2

)
− x

)
.

Proof. Omitted in this extended abstract. ��

3.2 The Numbers R(n,
(n
2

) − k) for Small k

We now consider the numbers at the bottom of the columns in Table 2. Clearly
R(n,

(
n
2

)
) = 1 (the pair is {1, 2 . . . n} and {1}{2} . . .{n}).

Theorem 7. For all n ≥ 4,

R(n,
(
n

2

)
− 1) =

(
n

2

)
, and R(3, 2) = 6.

Proof. For n ≥ 4, the two partitions are the full set {1, 2, . . . , n} and the partition
consisting of one pair and n− 2 singleton sets. ��

Theorem 8. For all n ≥ 5,

R(n,
(
n

2

)
− 2) =

((
n−1

2

)
2

)
=

1
8
n(n− 1)(n− 2)(n− 3),

and R(3, 1) = 3, R(4, 4) = 24.
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Proof. For n ≥ 5 the two partitions are the full set {1, 2, . . . , n} and the partition
consisting of two pairs and n− 4 singleton sets. The order of the two pairs does
not matter so we have

R(n,
(
n

2

)
− 2) =

1
2

(
n

2

)(
n− 2

2

)
,

which can be shown to be equal to the two values given in the statement of the
theorem. ��
The numbers in Theorems 7 and 8 are a shifted versions of OEIS A000217 and
OEIS A050534, respectively.

Theorem 9. For all n ≥ 6,

R(n,
(
n

2

)
− 3) =

1
6

(
n

2

)(
n− 2

2

)(
n− 4

2

)
+

(
n

3

)
,

and R(4, 3) = 32, R(5, 7) = 60.

Proof. For n ≥ 5 the two partitions are either the full set {1, 2, . . . , n} and
the partition consisting of three pairs and n − 6 singleton sets, or the full set
{1, 2, . . . , n} and the partition consisting of one triple and n− 3 singleton sets.

��
Theorem 10. For fixed k there is a constant Kk such that R(n,

(
n
2

) − k) is a
polynomial of degree 2k in n for all n ≥ Kk.

Proof. Omitted in this extended abstract. ��
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On Minimizing the Number of Label Transitions

around a Vertex of a Planar Graph
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Department of Mathematics, Simon Fraser University,
8888 University Drive, Burnaby, BC, V5A 1S6, Canada

{mohar,pskoda}@sfu.ca

Abstract. We study the minimum number of label transitions around
a given vertex v0 in a planar multigraph G in which the edges incident
with v0 are labelled with integers 1, . . . , l, where the minimum is taken
over all embeddings of G in the plane. For a fixed number of labels, a
linear-time FPT algorithm that (given the labels around v0) computes
the minimum number of label transitions around v0 is presented. If the
number of labels is unconstrained, then the problem of deciding whether
the minimum number of label transitions is at most k is NP-complete.

Keywords: label transitions, planar graph, fixed-parameter tractable.

1 Introduction

Let G be a planar 2-connected multigraph. Suppose that the edges incident with
a vertex v0 ∈ V (G) are labelled by integers 1, 2, . . . , l. We are interested in finding
an embedding of G in the plane such that the number of label transitions around
v0 is minimized. By a label transition we mean two edges that are consecutive
in the local rotation around v0 and whose labels are different. The motivation
for this problem comes from investigations of minimum genus embeddings of
graphs with small separations. In particular, to compute genus of a 2-sum of two
graphs [11], see also [4], [5] and [10], it is necessary to know if a graph admits a
planar embedding with only four label transitions (where l = 2).

By deleting the vertex v0 from G and putting all edge labels onto vertices
incident with the deleted edges, we obtain an equivalent formulation of the same
problem. Both representations are useful and will be treated in this paper. Let
H be the graph obtained from G by deleting v0. Note that H is connected. For
each v ∈ V (H) let λ(v) be the set of all labels of edges joining v and v0 in G.
If v is not a neighbor of v0, then λ(v) = ∅. The pair (H,λ) carries the whole
information about G and the labels of edges around v0 (except for multiplicity
of the edges with the same label).

Let L be a set of labels. The graph H together with the labelling λ : V (H)→
2L is a labelled graph. Let Ĥ be the graph obtained from a labelled graph H
by adding a vertex v0 to H and joining it to each vertex v by |λ(v)| edges and
labelling these edges by elements of λ(v). The vertex v0 is called the center of

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 300–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Ĥ . If the graph Ĥ is planar (which can be checked in linear time, see [7]), we
are back to an instance of the original problem.

Given (H,λ) or Ĥ , v0, and the labelling of edges incident with v0, consider
an embedding Π of Ĥ in the plane (all embeddings in this paper are into the
plane). Define the label sequence Q = Q(Π) of Π to be the cyclic sequence of
labels of edges coming to v0 in the clockwise order of the local rotation around
v0 in Π . The origin of a label L ∈ Q that came from an edge vv0 is the vertex
v. A label transition in Q is a pair of (cyclically) consecutive labels A, B in Q
such that A �= B. The number of transitions τ(Q) of Q is the number of label
transitions in Q. The number of transitions τ(Ĥ) of Ĥ is the minimum τ(Q(Π))
taken over all planar embeddings Π of Ĥ . When considering label transitions,
the graphs H and Ĥ are used interchangeably, i.e., τ(H) ≡ τ(Ĥ).

The following problem will be of our main interest:

Min-Trans. Given a planar 2-connected multigraph G with edges incident
to a fixed vertex v0 labelled by 1, . . . , l and an integer k, determine if τ(G) ≤ k.
In the following, we show that Min-Trans can be solved in linear time when
the number of labels l is fixed.

Theorem 1. For every fixed integer l, there is a linear-time algorithm that de-
termines the minimum number of transitions τ(G) of a given planar 2-connected
multigraph G with edges incident to a fixed vertex v0 labelled by 1, . . . , l. This
algorithm is fixed-parameter tractable.

We also show that this is best possible in the sense that Min-Trans becomes
NP-complete when l is part of the input.

Theorem 2. Min-Trans is NP-complete if the number of labels l is uncon-
strained. The problem remains NP-complete even when each label occurs precisely
twice.

2 Bounded Number of Labels

In this section we develop most of the formalism needed to prove Theorem 1. In
particular, it is observed that we can restrict our attention to a special class of
cactus graphs; also, the basic structure of the algorithm is presented.

Let H and G be labelled graphs. If every label sequence of H is also a label
sequence of G, and vice versa, then H and G are said to be equivalent .

A connected graph G is called a cactus if every block of G is either an edge
or a cycle. A labelled cactus G is leaf-labelled if every endblock of G is an edge,
every vertex of G has at most one label, and a vertex of G is labelled if and only
if it is a leaf.

The following lemma shows that it is enough to prove Theorem 1 for the
case when H is a leaf-labelled cactus. The main idea is that the “interiors” of
2-connected components are not significant for our problem. The proof is given
in the full paper.
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Lemma 1. Let H be a connected labelled graph. If Ĥ is planar, then there ex-
ists a leaf-labelled cactus G which is equivalent to H. Furthermore, G can be
constructed in linear time.

In our algorithm, we use a rooted version of graphs. A root r in a leaf-labelled
cactus H can be any vertex of H . The root is marked by a special label Lr �∈ L.
We then speak of a rooted leaf-labelled cactus , or simply a cactus (H, r). The
restriction on labels in a rooted leaf-labelled cactus is slightly relaxed, every
leaf still has a unique label (possibly Lr) but a non-leaf vertex can also be
labelled if it is the root. When a label sequence Q of H is cut at the label Lr

(and Lr is deleted), we obtain a linear sequence called a rooted label sequence
of H . Let Q(H) denote the set of all rooted label sequences of H . Similarly to
the unrooted graphs, two rooted graphs are equivalent if they admit the same
rooted label sequences.

There exists a tree-like structure, called a PC-tree (see [12]), that captures all
embeddings of a cactus in the plane. PC-trees and their rooted version, PQ-trees,
are used in testing planarity [2]. We note that Min-Trans reduces to the prob-
lem of minimizing the number of label transitions over all cyclic permutations
of the leaves of a PC-tree that are compatible with the PC-tree.

For every embedding Π of Ĥ there is the flipped embedding Π ′ of Ĥ where
each clockwise rotation in Π is a counter-clockwise rotation in Π ′. The following
lemma formulates this for a rooted label sequence of H . For a linear sequence
Q, let QR denote the sequence obtained by reversing Q.

Lemma 2. Let (H, r) be a rooted leaf-labelled cactus. If Q is a rooted label
sequence of H, then the reversed sequence QR is also a rooted label sequence
of H.

The following lemmas establish a recursive construction of rooted label se-
quences. Let us recall that for a cut vertex v of H , v-bridge in H is a subgraph of
H consisting of a connected component of H − v together with all edges joining
this component and v.

Lemma 3. Let (H, r) be a rooted leaf-labelled cactus where r is a leaf. Let u
be the neighbor of r. If u is labelled, then H has a unique rooted label sequence
Q = λ(u). Otherwise, (H, r) is equivalent to (H − r, u).
Proof. If u is labelled, then u is a leaf and H contains precisely one label λ(u)
and therefore λ(u) is the unique rooted label sequence of H . Otherwise, take an
embedding of Ĥ − r in the plane. Recall that u as the root of H − r is given a
special label Lu and thus there is an edge connecting u and the center of Ĥ − r.
Subdividing this edge gives a planar embedding of Ĥ with the same rooted label
sequence. Similarly, one can obtain an embedding of Ĥ − r from an embedding
of Ĥ with the same rooted label sequence. �	
Lemma 4. Let (H, r) be a rooted leaf-labelled cactus with r in a cycle C of length
k. For v ∈ V (H), let Dv be the union of v-bridges in H that do not contain C.
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If Dr is empty, then every rooted label sequence Q of H can be partitioned into
k−1 (possibly empty) consecutive parts Pv, v ∈ V (C)\{r}, where Pv is a rooted
label sequence of (Dv, v) and Pv appear in Q in one of the two cyclic orders
corresponding to the two orientations of C.

Proof. Let Q be a rooted label sequence of H such that the conclusion of the
lemma is not true. If labels contained in one of the subgraphs Dv do not form
a consecutive subsequence of Q, we obtain a contradiction as in the proof of
Lemma 5. Suppose now that Q contains a cyclic subsequence L1L3L2L4 (in
this order) such that the origins u1, . . . , u4 of L1, . . . , L4 are in Dv1 , . . . , Dv4

and v1, . . . , v4 appear on C in this order. Let Π be an embedding of Ĥ that
corresponds to Q and let G be the graph obtained from Ĥ by deleting the center
v0 and adding an edge uv for every two consecutive edges uv0, vv0 in the local
rotation around v0. Π can be easily modified to a planar embedding Π ′ of G. It
is easy to check that u1, . . . , u4, v1, v3 are the branch-vertices of a subdivision of
K3,3 in G, a contradiction with G being planar (see [9]). �	
Lemma 5. Let (H, r) be a rooted leaf-labelled cactus with r a cut vertex and
let B1, . . . , Bk be the r-bridges in H. Every rooted label sequence of H can be
partitioned into k consecutive parts where each of the k parts is a rooted label
sequence of one of (Bi, r). Furthermore, if Qi is a rooted label sequence of (Bi, r)
(1 ≤ i ≤ k) and (i1, . . . , ik) is a permutation of (1, . . . , k), then the concatenation
Qi1Qi2 · · ·Qik

is a rooted label sequence of H.

Proof. Suppose for a contradiction that there is a rooted label sequence Q of H
with a cyclic subsequence L1L2L3L4 (in this order) such that L1 and L3 have
origins in B1 and L2, L4 have origins outside B1. Let Π be an embedding of
Ĥ that corresponds to Q and v1, . . . , v4 the origins of L1, . . . , L4. Let G be the
graph obtained from Ĥ by deleting the center v0 and adding an edge uv for every
two consecutive edges uv0, vv0 in the local rotation around v0. The embedding
Π can be extended to a planar embedding Π ′ of G such that the added edges
form a facial cycle. Since v1 and v3 are in B1, there is a path P in B1− r joining
v1 and v3. Similarly, there is a path Q in H − (B1 − r) joining v2 and v4. Since
P and Q are disjoint and both embedded inside C, their endvertices cannot
interlace on C. This contradiction proves the claim and implies that all labels in
each Bi appear consecutively in every rooted label sequence of H . This proves
the first part of the lemma.

The second part is an easy consequence of the fact that arbitrary embeddings
of B̂i (1 ≤ i ≤ k) can be combined into an embedding of Ĥ so that the cyclic
order of r-bridges around r is Bi1 , Bi2 , . . . , Bik

. �	
We are interested in rooted label sequences that have minimum number of tran-
sitions. But to combine them later on, it is important to know what is the first
and the last label in the rooted label sequence. This motivates the following
definition. Let Q be a set of (linear) label sequences. We say that a sequence
Q ∈ Q is AB-minimal for labels A,B ∈ L, if

τ(AQB) = min{τ(ASB) | S ∈ Q}
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where AQB is the sequence obtained from Q by adding labels A and B at the
beginning and at the end of Q, respectively. A rooted label sequence Q of (H, r)
is AB-minimal if Q is AB-minimal in Q(H). Minimal sequences are composed
of minimal sequences as shows the following lemma. This allows us to restrict
our attention to minimal sequences. The proof is not difficult and is included in
the full paper.

Lemma 6. Let Q be the set of all sequences that are concatenations of a se-
quence in Q1 and a sequence in Q2 (in this order). Then for A,B ∈ L, every
AB-minimal sequence Q in Q is a concatenation of an AC-minimal sequence in
Q1 and a CB-minimal sequence in Q2 for some label C ∈ L.
Let (H, r) be a rooted leaf-labelled cactus. We can describe “optimal” embed-
dings of Ĥ in the plane by a set of AB-minimal rooted label sequences of H ,
one for each pair of labels A,B ∈ L. Let ρH [A,B] be the minimum number of
label transitions in an AB-minimal rooted label sequence of H . Note that the
values of ρH differ by at most 2 since adding labels A and B to a sequence in-
creases the number of label transitions by at most 2. Hence we can represent ρH

by the minimum ρH [A,B] over all labels A,B and by the individual differences
from this minimum. Let nH be the minimum number of label transitions in a
rooted label sequence of H and let pH [A,B] = ρH [A,B] − nH be the type of
H . Note that pH [A,B] ∈ {0, 1, 2}. The type pH of H is viewed as a function
pH : L × L → {0, 1, 2} and also as a number between 1 and t ≡ 3l2 . Note that
the number t of different types is a constant. We will show that cacti of the
same type “behave” the same. We call the pair (pH , nH) the descriptor of H .
For simplicity, we also call ρH the descriptor of H since it is easy to compute
ρH from (pH , nH) and vice versa.

Note that the “unrooted” number of transitions τ(H) can be obtained from
the descriptor of H as

τ(H) = min
A∈L

ρH [A,A].

It is time to consider how a descriptor of a rooted leaf-labelled cactus can be
computed from descriptors of its subtrees. The first non-trivial case is when the
root lies on a cycle. This case is easily dealt with using Lemmas 4 and 6 since
minimal sequences of the subtrees attached to the cycle have fixed cyclic order.
The following lemma is proven in the full paper.

Lemma 7. Let (H, r) be a rooted leaf-labelled cactus such that r is a vertex of
degree 2 in a cycle C of length k in H, and let Bv, v ∈ V (C), be the union of
v-bridges in H that do not contain C. Then the descriptor of H can be computed
from descriptors of (Bv, v), v ∈ V (C), in time O(l3k).

Computing the descriptor of a leaf-labelled cactus rooted at a cut vertex turns
out to be main issue. Let (H, r) be a rooted leaf-labelled cactus where r is
a cut vertex of H and let B1, . . . , Bk be the r-bridges in H . Let bH(i) be the
number of r-bridges in H of type i, i = 1, . . . , t. We view bH as an integer vector
in Zt with

∑t
i=1 bH(i) = k. A non-negative integer vector b ∈ Zt is called a
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bridge vector and sum(b) =
∑t

i=1 b(i) the sum of b. Note that there are at most
O(kt+1) different non-negative integer vectors b in Zt with the sum at most k.

Each bridge vector b describes a problem to be solved: How to order k =
sum(b) bridges of types given by b around a vertex so that the number of label
transitions on the boundaries between bridges is minimized. For fixed labels
A,B, let RAB(b) be the set sequences of k + 1 labels A0, A1, . . . , Ak such that
A0 = A and Ak = B. For an ordering of types in b, P = p1, p2, . . . , pk, and
a sequence R ∈ RAB(b), R = L0, . . . , Lk, let m(P,R) =

∑k
i=1 pi[Li−1, Li]. Let

mb[A,B] be the the minimum m(P,R) taken over all orderings P of b and all
sequences R ∈ RAB(b). This minimum depends only on the types of the bridges,
not on the minimum number of label transitions of the bridges.

The fact that computation ofmb is a solution to the posed problem and gives a
way how to compute the descriptor of a leaf-labelled cactus rooted at a cutvertex
is not difficult to see. The precise relation of mb and the descriptor is stated in
the following lemma and the details of the proof are provided in the full paper.

Lemma 8. Let (H, r) be a rooted leaf-labelled cactus and let B1, . . . , Bk be the
r-bridges in H. Then

ρH [A,B] = mbH [A,B] +
k∑

i=1

nBi .

This gives rise to the following dynamic program. Given a non-zero bridge b
vector, there are only t possibilities for the type p of the first bridge whose label
sequence starts a minimal label sequence of H (the existence of such a bridge
follows from Lemma 5). By deleting the type p from b, we obtain a smaller
bridge vector bp. The array mbp is computed recursively and then combined
with p to obtain mb. However, using this approach would yield a polynomial-
time algorithm that is not fixed parameter tractable (since there areΘ(nt) bridge
vectors of sum at most n). In the next section, we sidestep this problem and
present a linear-time algorithm for computing mb.

Let us describe an algorithm for Min-Trans that, as we show in the next
section, yields Theorem 1. We assume that the input graph has at least 3 labels
to avoid trivialities.

Algorithm 1
Input: a labelled graph G
Output: minimal number of transitions τ(G)

1 Construct the leaf-labelled cactus H that is equivalent to G (Lemma 1).
2 Root H at an arbitrary unlabelled vertex r.
3 ρH ←− Descriptor(H, r).
4 Compute τ(G) from ρH .

5 return τ(G).
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Function. Descriptor(H, r)
Input: a rooted leaf-labelled cactus (H, r)
Output: the descriptor of H, ρH

1 switch according to the role of r do
2 case r is a leaf and its neighbor u is labelled
3 Note that F has just two vertices r and u.
4 The descriptor ρH corresponds to the single-label sequence λ(u).

5 case r is a leaf and its neighbor u is not labelled
6 ρH ←− Descriptor(H − r, u).

7 case r is in a cycle C and is of degree two
8 foreach v ∈ V (C) \ {r} do
9 Let Bv be the union of all v-bridges that do not contain C.

10 ρBv ←− Descriptor(Bv, v).

11 Use Lemma 7 to compute ρH from ρBv .

12 case r is a cut vertex
13 foreach r-bridge Bi do
14 ρBi ←− Descriptor(Bi, r).

15 Construct the bridge vector b from ρBi .
16 Compute mb.
17 Use Lemma 8 to compute ρH from mb and ρBi .

18 return ρH .

Note that throughout Algorithm 1, each vertex of H appears as a root in
Descriptor at most twice; once as a cut vertex and once either as a leaf or on a
cycle. Therefore, each of the cases can happen at most n times, n = |V (H)|, and
the basic recursion runs in linear time. By Lemma 7, the case when the root is in
a cycle takes time O(l3n) since the sum of lengths of all cycles is bounded by n.
If we can compute mb for a bridge vector b in constant time, then Algorithm 1
runs in linear time. This is the goal of the next section.

3 Dealing with Bridge Vectors

In the previous section we have sketched an algorithm for computing the min-
imum number of label transitions in a planar multigraph. In this section we
outline an algorithm for computing mb of a bridge vector b in constant time
(Lemma 11), the last ingredient for the proof of Theorem 1. We start by observ-
ing that mb is bounded independently of the bridge vector b. Let us recall that
t = 3l2 .

Lemma 9. Let b be a bridge vector. Then for A,B ∈ L,
mb[A,B] ≤ 2t+ 2.
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Proof. For every type p = 1, . . . , t, there are labels Ap, Bp such that p[Ap, Bp] =
0. By Lemma 2, p[Bp, Ap] = 0 as well. Let k = sum(b) and let P = p1, p2, . . . , pk

be the sequence of types in b in the increasing order. Let R be the sequence of
labels L0, L1, . . . , Lk be the sequence of labels such that L0 = A, Lk = B, and
for i = 1, . . . , k − 1, Li = Api if i is odd and Li = Bpi if i is even.

Note that for i = 2, . . . , k − 1, if pi−1 = pi, then either pi[Li−1, Li]
= pi[Api , Bpi ] or pi[Li−1, Li] = pi[Bpi , Api ] and so pi[Li−1, Li] = 0. Since
pi[A′, B′] ≤ 2 for all labels A′, B′ and there are at most t−1 transitions between
different types,

m(P,R) =
k∑

i=1

pi[Li−1, Li] ≤ 2(t− 1) + 4.

Thus, mb[A,B] ≤ m(P,R) ≤ 2t+ 2. �	
Let K be the complete edge-colored and edge-weighted multigraph on vertex
set L where two vertices A,B ∈ L are joined by t edges such that pth edge
is colored by p and given weight p[A,B]. Note that there are t loops at every
vertex of K. For a walk W in K, the weight w(W ) of W is the sum of weights of
edges in W . Let P = p1, . . . , pk be an ordering of types in a bridge vector b and
R = L0, . . . , Lk be a sequence of labels. The sequences P , R generate a walk W
in K of length k where in the ith step the edge Li−1Li with color pi is used. The
weight of W is m(P,R). The walk W uses b(p) edges of color p. The converse
statement also holds: A walk W that uses b(p) edges of color p gives an ordering
P of types in b and a label sequence R such that m(P,R) = w(W ). This gives
the following lemma.

Lemma 10. Let b be a bridge vector, A,B labels, and w an integer. There is
an AB-walk W of weight w in K such that W uses b(p) edges of color p if and
only if there is an ordering P of types in b and a label sequence R = A, . . . , B
such that m(P,R) = w.

In order to show that mb can be computed in constant time, a bridge vector
b′ equivalent to b such that the sum of b′ is bounded by a constant is found.
The array mb′ (and thus also mb) is then computed in constant time by brute
force. The main idea arise from the correspondence between orderings of bridge
vectors and walks in the constant-sized graph K. Given a walk W in K with
enough edges, it is shown that one can find a set of disjoint cycles in W that
contain even number of edges of each color. The removal of the cycles then yields
a smaller version of the problem that can be easily tested for extension to the
original problem. This will be elaborated in detail in the full paper. We obtain
the following lemma showing that, for a bridge vector b, the array mb can be
computed in constant time.

Lemma 11. Let b be a bridge vector. Then for labels A,B, mb[A,B] can be
computed in time O(l2t(l2t)4l2t).
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It is likely that a fixed-parameter tractable solution can also be described by the
use of min-max algebra for shortest paths, see [3] and [1], [6].

Finally, let us conclude the section by sketching the proof of Theorem 1.

Proof (of Theorem 1). The proof of the correctness of Algorithm 1 consists of
several lemmas. Lemma 1 shows that any input graph can be transformed to an
equivalent leaf-labelled cactus. Lemmas 3, 4, and 5 justify our recursive approach
for computing the descriptors of rooted cacti.

The linearity of Algorithm 1 was established at the end of Sec. 2 provided that
we can compute mb in constant time. The cornerstone of the argument was that
Lemma 8 allows us to deal with bridge vectors instead to collection of bridges.
By Lemma 11, we can compute mb for a bridge vector in time O(l4t(l2t)4lt)
(applying the lemma for each pair of labels). This is the slowest part of the
algorithm and, since there are at most n cut-vertices in the graph, the algorithm
runs in time O(l4t(l2t)4ltn).

4 NP-Completeness

When the number of labels is not bounded, Min-Trans becomes harder. In this
section we give a proof of Theorem 2 by providing a polynomial-time reduction
from the Hamiltonian Cycle Problem (see [8]).

Proof (of Theorem 2). An embedding of G with small number of transitions is
a certificate for Min-Trans which asserts that Min-Trans is in NP. To show
that Min-Trans is NP-complete, we give a polynomial-time reduction from the
Hamiltonian Cycle Problem.

Let G be a graph of order n and let H be the graph whose vertex set is
V (H) = {v1} ∪ V (G) ∪ (E(G) × {0, 1}). We connect v1 to each vertex in V (G)
and for each edge uv ∈ E(G) we join (uv, 0) with u and (uv, 1) with v. Only the
leaves of H are labelled. Vertex (e, i) is labelled e. Thus, the number of labels
is |E(G)| and each label occurs precisely twice. It is immediate that H can be
constructed in polynomial time in |V (G)|.

We ask if the number of transitions τ(H) is smaller or equal to k for

k =
∑

v∈V (G)

(deg(v)− 1) = 2|E(G)| − |V (G)|.

In the affirmative, there is a planar embedding Π of Ĥ with τ(Π) ≤ k. The
local rotation around v1 gives a cyclic order π of vertices of G. Root H at v1.
By Lemma 5, every label sequence of H is a concatenations of seqeuences Qv,
v ∈ V (G), such that Qv consists of labels on leaves of H attached to v. Since
labels in Qv are the edges adjacent to v, they are different and thus τ(Qv) =
deg(v) − 1. Hence,

τ(H) ≥
∑

v∈V (G)

(deg(v)− 1) = k. (1)
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To get an equality here, we need that there are no more label transitions between
neighboring sequences Qv.

Let e1(v) and e2(v) be the first and the last label in Qv. We have an equality
in (1) if and only if for every two consecutive vertices u, v in π, e1(u) = e2(v).
This gives a cyclic sequence C of n edges that visits every vertex precisely once.
Hence C is a hamiltonian cycle in G.

On the other hand, a hamiltonian cycle C in G gives a cyclic order on vertices
of G. This and the cyclic order of the edges of C give a construction of an
embedding of Ĥ with τ(H) = k. �	
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Abstract. We provide a new characterization of the NP-hard arc routing prob-
lem Rural Postman in terms of a constrained variant of minimum-weight perfect
matching on bipartite graphs. To this end, we employ a parameterized equiva-
lence between Rural Postman and Eulerian Extension, a natural arc addition
problem in directed multigraphs. We indicate the NP-hardness of the introduced
matching problem. In particular, we use it to make some partial progress towards
answering the open question about the parameterized complexity of Rural Post-
man with respect to the number of weakly connected components in the graph
induced by the required arcs. This is a more than thirty years open and long-time
neglected question with significant practical relevance.

1 Introduction

The Rural Postman (RP) problem with its special case, the Chinese Postman prob-
lem, is a famous arc routing problem in combinatorial optimization. Given a directed,
arc-weighted graph G and a subset R of its arcs (called “required arcs”), the task is to
find a minimum-cost closed walk in G that visits all arcs of R. The manifold prac-
tical applications of RP include snow plowing, garbage collection, and mail deliv-
ery [1, 2, 3, 6, 7, 15]. Recently, it has been observed that RP is closely related (more
precisely, “parameterized equivalent”) to the arc addition problem Eulerian Exten-
sion (EE). Here, given a directed and arc-weighted multigraph G, the task is to find
a minimum-weight set of arcs to add to G such that the resulting multigraph is Eu-
lerian [10, 4]. RP and EE are NP-hard. In fact, their mentioned parameterized equiv-
alence means that many algorithmic and complexity-theoretic results for one of them
transfer to the other. In particular, this gives a new view on RP, perhaps leading to novel
approaches to attack its computational hardness. A key issue in both problems is to de-
termine the influence of the number c of connected components1 on each problem’s
computational complexity [4, 9, 11, 13, 14]. Indeed, Frederickson [9] observed that
RP (and, thus, EE) is polynomial-time solvable when c is constant. However, this left
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1 More precisely, c refers to the number of weakly connected components in the input for
EE and the number of weakly connected components in the graph induced by the required
arcs for RP.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 310–323, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A New View on Rural Postman Based on Eulerian Extension and Matching 311

open whether c influences the degree of the polynomial or whether RP can be solved
in f (c) · nO(1) time for some exponential function f . In other words, it remained open
whether RP and EE are fixed-parameter tractable2 with respect to the parameter c [4].
We remark that this parameter is presumably small in a number of applications [4, 7, 9],
strongly motivating to attack this seemingly hard open question.

Our Results. In this work, we contribute new insights concerning the seemingly hard
open question whether RP (and EE) is fixed-parameter tractable with respect to the
parameter “number of components”. To this end, our main contribution is a new charac-
terization of RP in terms of a constrained variant of minimum-weight perfect matching
on bipartite graphs. Referring to this problem as Conjoining BipartiteMatching (CBM),
we show its NP-hardness and a parameterized equivalence to RP and EE. Moreover, we
show that CBM is fixed-parameter tractable3 when restricted to bipartite graphs where
one partition set has maximum vertex degree two. This implies corresponding fixed-
parameter tractability results for relevant special cases of RP and EE which would
probably have been harder to formulate and to detect using the definitions of these
problems. Indeed, we hope that CBM might help to finally answer the puzzling open
question concerning the parameterized complexity of RP with respect to the number of
components. In this paper we consider decision problems. However, our results easily
transfer to the corresponding optimization problems.

For the sake of notational convenience and justified by the known parameterized
equivalence [4], most of our results and proofs refer to EE instead of RP. Due to space
constraints, most proofs are deferred to a full version of the paper.

2 Preliminaries and Preparations

Consider a directed multigraph G = (V, A), comprising the vertex set V and the arc
multiset A. For notational convenience, we define a component graph �G as a clique
whose vertices one-to-one correspond to the weakly connected components of G. Since
we never consider strongly connected components, we omit the adverb “weakly”. A
walk W in G is a sequence of arcs in G such that each arc ends in the same vertex as
the next arc starts in. We use V(W) and A(W) to refer to the set of vertices in which
arcs of W start or end, and the multiset of arcs of W, respectively. The first vertex in
the sequence is called the initial vertex of the walk and the last vertex in the sequence
is called the terminal vertex of the walk. A walk W in G such that A(W) is a submul-
tiset of the multiset A(G) is called a trail of G. A trail T in G such that every vertex
in G has at most two incident arcs in A(T ) is called a cycle if the initial and terminal
vertices of T are equal, and path otherwise. If G is clear from the context, we omit it.
We use balance(v) � indeg(v) − outdeg(v) to denote the balance of a vertex v in G and
I+G and I−G to denote the set of all vertices v in G with balance(v) > 0 and balance(v) < 0,
respectively. A vertex v is balanced if balance(v) = 0.

2 See Section 2 and the literature [5, 8, 12] for more on parameterized complexity analysis.
3 The corresponding parameter “join set size” measures the instance’s distance from triviality

and translates to the parameter “number of components” in equivalent instances of EE and RP.
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Our results are in the context of parameterized complexity [5, 8, 12]. A parameter-
ized problem L ⊆ Σ∗ × � is called fixed-parameter tractable (FPT) with respect to a
parameter k if (x, k) ∈ L is decidable in f (k) · |x|O(1) time, where f is a computable
function only depending on k.

We consider two types of parameterized reductions between problems: A polynomial-
parameter polynomial-time many-one reduction (≤PPP

m -reduction) from a parameterized
problem L to a parameterized problem L′ is a polynomial-time computable function g
such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′, with (x′, k′) � g(x, k), and k′ ≤ p(k), where p
is a polynomial only depending on k. If such a reduction exists, we write L≤PPP

m L′. A
parameterized Turing reduction (≤FPT

T -reduction) from a parameterized problem L to a
parameterized problem L′ is an algorithm that decides (x, k) ∈ L in f (k) · |x|O(1) time,
where queries of the form (x′, g(k)) ∈ L′ are assumed to be decidable in O(1) time and
f , g are functions solely depending on k. If such a reduction exists, we write L≤FPT

T L′. If
L≤FPT

T L′ and L′ ≤FPT
T L, then we say that L and L′ are ≤FPT

T -equivalent. Note that every
≤PPP

m -reduction is a ≤FPT
T -reduction. Also, if L′ ∈ FPT and L≤FPT

T L′, then L ∈ FPT.
In this work, we consider the problem of making a given directed multigraph Eule-

rian by adding arcs. A directed multigraph G is Eulerian if it is connected and each
vertex is balanced. An Eulerian extension E for G = (V, A) is a multiset over V ×V such
that G′ = (V, A ∪ E) is Eulerian.

Eulerian Extension (EE)
Input: A directed multigraph G = (V, A), an integer ωmax, and a weight func-

tion ω : V × V → [0, ωmax] ∪ {∞}.
Question: Is there an Eulerian extension E of G whose weight is at most ωmax?

In the context of EE we speak of allowed arcs a ∈ V × V , if ω(a) < ∞.

2.1 Preprocessing Routines

A polynomial-time preprocessing routine for EE introduced by Dorn et al. [4] ensures
that the balance of every vertex is in {−1, 0, 1}. This simplifies the problem and helps in
constructions later on. Dorn et al. [4] showed that the corresponding transformation can
be computed in O(n(n+m)) time. In the following, we assume that all input instances of
EE have been transformed thusly, and hence, we assume that the following observation
holds.

Observation 1. Let v be a vertex in a pre-processed instance of EE. Then, balance(v) ∈
{−1, 0, 1}.
We use a second preprocessing routine to make further observations about trails in Eule-
rian extensions. This preprocessing is a variant of the algorithm used by Dorn et al. [4]
to remove isolated vertices from the input graph. Basically, it replaces the weight of a
vertex pair by the weight of the “lightest” path in the graph (V,V ×V) with respect to ω.
Note that the resulting weight function respects the triangle inequality. Dorn et al. [4]
showed that this transformation can be computed in O(n3) time. In the following, we
assume all input instances of EE to have gone through this transformation, and hence,
we assume that the following holds.
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Observation 2. Let ω be a weight-function of a pre-processed instance of EE. Then, ω
respects the triangle inequality, that is, for each x, y, z, it holds that ω(x, z) ≤ ω(x, y) +
ω(y, z).

In the subsequent sections, we use this preprocessing in parameterized algorithms and
reductions. To this end, note that both transformations are parameter-preserving, that is,
they do not change the number of connected components.

The presented transformations lead to useful observations regarding trails in Eulerian
extensions. For instance, we often need the following fact.

Observation 3. For any Eulerian extension E of G, there is an Eulerian extension E′
of at most the same weight such that any path p and any cycle c in E′ does not visit a
connected component of G twice, except for the initial and terminal vertex of p and c.

2.2 Advice

Since Eulerian extensions have to balance every vertex, they contain paths starting in
vertices with positive balance and ending in vertices with negative balance. These paths
together with cycles have to connect all connected components of the input graph. In
order to reduce the complexity of the problem, we use advice as additional information
on the structure of optimal Eulerian extensions. Advice consists of hints which specify
that there must be a path or cycle in an Eulerian extension that visits connected com-
ponents in a distinct order. Hints however do not specify exactly which vertices these
paths or cycles visit. For an example of advice, see Figure 1a.

Formally, a hint for a directed multigraph G = (V, A) is an undirected path or cycle t
of length at least one in the component graph �G together with a flag determining
whether t is a cycle or a path.4 Depending on this flag, we call the hints cycle hints
and path hints, respectively. We say that a set of hints H is an advice for the graph G
if the hints are edge-disjoint.5 For a trail t in G, �G(t) is the trail in �G that is obtained
by making t undirected and, for every connected component C of G, substituting every
maximum length subtrail t′ of t with V(t′) ⊆ C by the vertex in �G corresponding to C.
We say that a path p in the graph (V,V × V) realizes a path hint h if �G(p) = h and
the initial vertex of p has positive balance and the terminal vertex has negative balance
in G. We say that a cycle c in the graph (V,V × V) realizes a cycle hint h if �G(c) = h.
We say that an Eulerian extension E heeds the advice H if it can be decomposed into a
set of paths and cycles that realize all hints in H.

A topic in this work is how having an advice helps in solving an instance of Eulerian
extension. In order to discuss this, we introduce the following version of EE.

Eulerian Extension with Advice (EEA)
Input: A directed multigraph G = (V, A), an integerωmax, a weight functionω : V×

V → [0, ωmax] ∪ {∞}, and advice H.
Question: Is there an Eulerian extension E of G that is of weight at most ωmax and

heeds the advice H?
4 The flag is necessary because a hint to a path in �G may correspond to a cycle in G.
5 Note that there is a difference between advice in our sense and the notion of advice in compu-

tational complexity theory. There, an advice applies to every instance of a specific length.
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We will see that the hard part of computing an Eulerian extension that heeds a given ad-
vice H is to choose initial and terminal vertices for path hints in H. In fact, it is possible
to compute optimal realizations for all cycle hints in any given advice in O(n3) time.

Observation 4 ([16]). Let (G, ωmax, ω,H) be an instance of EEA. In O(n3) time we can
compute an equivalent instance (G′, ωmax, ω,H′) such that H′ does not contain a cycle
hint. Furthermore, the number of components at most decreases.

In this regard we note that we can compute an optimal realization of a path hint for given
endpoints in the corresponding directed multigraph. This is possible in quadratic time,
mainly using Observation 2, forbidding arcs contained in one connected component,
and Dijkstra’s algorithm.

Observation 5. Let (G, ωmax, ω,H) be an instance of EE, let h ∈ H be a path hint
and let Ci,Ct be the connected components of G that correspond to the endpoints of h.
Furthermore, let (u, v) ∈ (Ci ×Ct)∩ (I+G × I−G). Then, we can compute a minimum-weight
realization of h with initial vertex u and terminal vertex v in O(n2) time.

Since we want to derive Eulerian extensions from an advice and every Eulerian ex-
tension for a graph connects all of the graphs connected components, we are mainly
interested in “connecting” advice. We say that an advice for a directed multigraph G is
connecting, if its hints connect all vertices in �G . Furthermore, if there is no connecting
advice H′ with H′ ⊂ H, then H is called minimal connecting advice. We consider the
following restricted version of EEA that allows only minimal connecting advice (note
that, by Observation 4, we can assume the given advice to be cycle-free).

Eulerian Extension with Cycle-freeMinimal Connecting Advice (EE∅CA)
Input: A directed multigraph G = (V, A), an integerωmax, a weight functionω : V×

V → [0, ωmax] ∪ {∞}, and minimal connecting cycle-free advice H.
Question: Is there an Eulerian extension E of G with weight at most ωmax and

heeding the advice H?

We can show that each minimal connecting cycle-free advice can be obtained from a
forest in�G. Enumerating these forests allows us to generate all such advices for a given
graph G with c connected components in f (c) · |G|O(1)) time, where f is some function
only depending on c. Deferring the presentation of details to a long version of this work,
we state that EE is parameterized Turing reducible to EE∅CA [16].

Lemma 1. EE is ≤FPT
T -reducible to EE∅CA in 16c log(c)|G|O(1) time.

3 Eulerian Extension and Conjoining Bipartite Matching

This section shows that Rural Postman (RP) is parameterized equivalent to a matching
problem. By the parameterized equivalence of RP and Eulerian Extension (EE) given
by Dorn et al. [4], we may concentrate on the equivalence of EE and matching instead.

First we introduce a variant of perfect bipartite matching. Let G be a bipartite graph,
M be a matching of the vertices in G, and let P be a vertex partition with the
cells C1, . . . ,Ck. We call an unordered pair {i, j} of integers 1 ≤ i < j ≤ k a join
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and a set J of such pairs a join set with respect to G and P. We say that a join {i, j} ∈ J
is satisfied by the matching M of G if there is at least one edge e ∈ M with e ∩ Ci � ∅
and e ∩ C j � ∅. We say that a matching M of G is J-conjoining with respect to a join
set J if all joins in J are satisfied by M. If the join set is clear from the context, we
simply say that M is conjoining.

Conjoining BipartiteMatching (CBM)
Input: A bipartite graph G = (V1 � V2, E), an integer ωmax, a weight func-

tion ω : E → [0, ωmax], a partition P = {C1, . . . ,Ck} of the vertices in G, and a
join set J.

Question: Is there a matching M of the vertices of G such that M is perfect, M is
conjoining and M has weight at most ωmax?

CBM can be interpreted as a job assignment problem with additional constraints: an
assignment of workers to tasks is sought such that each worker is busy and each task
is being processed. Furthermore, every worker must be qualified for his or her assigned
task. Both the workers and the tasks are grouped and the additional constraints are of
the form “At least one worker from group A must be assigned a task in group B”. An
assignment that satisfies such additional constraints may be favorable in settings where
the workers are assigned to projects and the projects demand at least one worker with
additional qualifications.

Over the course of the following subsections, we prove the following theorem.

Theorem 1. Conjoining Bipartite Matching and Eulerian Extension are ≤FPT
T -

equivalent with respect to the parameters “join set size” and “number of connected
components in the input graph.”

The proof of Theorem 1 consists of four reductions, one of which is a parameterized Tur-
ing reduction. The other three reductions are polynomial-time polynomial-parameter
many-one reductions.

It is easy to see that the equivalence of EE and RP given by Dorn et al. [4] also holds
for the parameters “number of components” and “number of components in the graph
induced by the required arcs.” Thus, we obtain the following from Theorem 1.

Theorem 2. Conjoining Bipartite Matching and Rural Postman are ≤FPT
T -equivalent

with respect to the parameters “number of components in the graph induced by the
required arcs” and “join set size.”

3.1 From Eulerian Extension to Matching

In this section we sketch a reduction from EE∅CA to CBM. By Lemma 1 this reduction
leads to the following theorem.

Theorem 3. Eulerian Extension is ≤PPP
m -reducible to Conjoining Bipartite Matching

with respect to the parameters “number of components” and “join set size.”

Outline of the Reduction. The basic idea of our reduction is to use vertices of positive
balance and negative balance in an instance of EE∅CA as the two cells of the graph bi-
partition in a designated instance of CBM. Edges between vertices in the new instances
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(a) EE∅CA instance
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(b) Long-hint gadget in CBM instance

Fig. 1. Example of the long-hint gadget. In (a) an EE∅A-instance is shown, consisting of a graph
with three connected components and an advice that contains a single path hint h (dashed lines).
In (b) a part of an instance of CBM is shown, comprising the cells that correspond to the initial
and terminal vertices of h and a gadget to model h. The gadget consists of new vertices put into
a new cell which is connected by two joins (dashed and dotted lines) to the cells corresponding
to the initial and terminal vertices of h.

represent shortest paths between these vertices that consist of allowed extension arcs in
the original instance. Every connected component in the original instance is represented
by a cell in the partition in the matching instance and hints are basically modeled by
joins.

Description of the Reduction. For the description of the reduction, we need the
following definition.

Definition 1. Let C1, . . . ,Cc be the connected components of a directed multigraph G,
and let H be a cycle-free advice for G. For every h ∈ H define connect(h) � {i, j},
where Ci,C j are the components corresponding to the initial and terminal vertices of h.

First, consider an EE∅CA-instance (G, ωmax, ω,H) such that H is a cycle-free mini-
mal connecting advice that contains only hints of length one. We will deal with longer
hints later. We create an instance ICBM of CBM by first defining B0 = (I+G � I−G, E0) as
a bipartite graph. Here, the set E0 consists of all edges {u, v} such that u ∈ I+G, v ∈ I−G,
andω(u, v) < ∞.6 Second, we derive a vertex partition {V′1, . . . ,V ′c} of B0 by intersecting
the connected components of G with (I+G�I−G). The vertex partition obviously models the
connected components in the input graph, and the need for connecting them according
to the advice H is modeled by an appropriate join-set J0, defined as {connect(h) : h ∈ H}.
Finally, we make sure that matchings also correspond to Eulerian extensions weight-
wise, by defining the weight function ω′({u, v}) for every u ∈ I+G, v ∈ I−G as ω(u, v)
with ω′max = ωmax.

By Observation 3 we may assume that every hint in H of length one is realized by a
single arc. Since the advice connects all connected components, by the same observa-
tion, we may assume that all other trails in a valid Eulerian extension have length one.
Finally, by Observation 1, we may assume that every vertex has at most one incident in-
coming or outgoing arc in the extension and, hence, we get an intuitive correspondence
between conjoining matchings and Eulerian extensions.

To model hints of length at least two, we utilize gadgets similar to the one shown
in Figure 1. The gadget comprises two vertices (u ◦ v and u • v) for every pair (u, v)
of vertices with one vertex in the component the hint starts and one in the component

6 This serves the purpose of modeling the structure of “allowed” arcs in the matching instance.
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the hint ends. The vertices u ◦ v and u • v are adjacent and each of these two vertices
is connected with one vertex of the pair it represents. The edge {u • v, u} is weighted
with the cost it takes to connect u, v with a path that realizes h. This cost is computed
using Observation 5. The edges {u • v, u ◦ v} and {u ◦ v, v} have weight 0. Intuitively
these three edges in the gadget represent one concrete realization of h. If u ◦ v and u • v
are matched, this means that this specific path does not occur in a designated Eulerian
extension. However, by adding the vertices of the gadget as cell to the vertex partition
and by extending the join set to the gadget, we enforce that there is at least one out-
going edge that is matched. If a perfect matching matches u ◦ v with u, then it also
matches u • v with v and vice versa. This introduces an edge to the matching that has
weight corresponding to a path that realizes h.

3.2 From Matching to Eulerian Extension with Advice

We reduce Conjoining BipartiteMatching to Eulerian Extension with Advice:

Theorem 4. Conjoining Bipartite Matching is ≤PPP
m -reducible to Eulerian Extension

with Advice with respect to the parameters “join set size” and “connected components
in the input graph”.

To reduce CBM to EEA we first observe that for every instance of CBM there is an
equivalent instance such that every cell in the input vertex partition contains equal num-
bers of vertices from both cells of the graph bipartition. This observation enables us to
model cells as connected components and vertices in the bipartite graph as unbalanced
vertices in the designated instance of EEA.

Lemma 2. For every instance of CBM there is an equivalent instance comprising the
bipartite graph G = (V1 � V2, E), the vertex partition P = {C1, . . . ,Ck} and the join
set J, such that

(i) for every 1 ≤ i ≤ k it holds that |V1 ∩Ci| = |V2 ∩Ci |, and
(ii) the graph (P, {{Ci,C j} : {i, j} ∈ J}) is connected.

This equivalent instance contains at most one cell more than the original instance.

Description of the Reduction. To reduce instances of CBM that conform to Lemma 2 to
instances of EEA we use the simple idea of modeling every cell as connected compo-
nent, vertices in V1 as vertices with balance −1, vertices in V2 as vertices with balance 1,
and joins as hints.

Construction 1. Let the bipartite graph B = (V1 � V2, E), the weight function ω : E →
[0, ωmax], the vertex partition P = {C1, . . . ,Ck} and the join set J constitute an in-
stance ICBM of CBM that corresponds to Lemma 2. Let v1

1, v
2
1, . . . , v

1
n/2, v

2
n/2 be a se-

quence of all vertices chosen alternatingly from V1 and V2. Let the graph G = (V, A) �
(V1 ∪ V2, A1 ∪ A2) where the arc sets A1 and A2 are as follows: A1 � {(v1

i , v
2
i ) : 1 ≤ i ≤

n/2}. For every 1 ≤ j ≤ k let C j = {v1, . . . , v jk}, and let

A j
2 � {(vi, vi+1) : 1 ≤ i ≤ jk − 1} ∪ {(v jk , v1}
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and define A2 �
⋃k

j=1 A j
2. Define a new weight function ω′ for every pair of ver-

tices (u, v) ∈ V × V by

ω′(u, v) �

⎧
⎪⎪⎨
⎪⎪⎩

ω({u, v}), u ∈ V2, v ∈ V1, {u, v} ∈ E

∞, otherwise.

Finally, derive an advice H for G by adding a length-one hint h to H for every
join {o, p} ∈ J such that h consists of the edge that connects vertices in �G that cor-
respond to the connected components Co, and Cp. The graph G, the weight function ω′,
the maximum weight ωmax and the advice H constitute an instance of EEA.

Theorem 4 follows, since Construction 1 is a ≤PPP
m -reduction.

3.3 Removing Advice

For Theorem 1, it remains to show, that the advice in an instance of EEA created by
Construction 1 can be removed. That is, it remains to show the following theorem.

Theorem 5. Eulerian Extension with Advice is ≤PPP
m -reducible to Eulerian Extension

with respect to the parameter “number of components in the input graph.”

The basic ideas for proving Theorem 5 are as follows. First, we remove every cycle-hint
using Observation 4. We use the fact that every Eulerian extension has to connect all
connected components of the input graph. Thus, for each hint h, we introduce a new
connected component Ch. Let the components Cs,Ct correspond to the endpoints of
hint h. To enforce that hint h is realized, we use the weight function to allow an arc from
every vertex with balance 1 in Cs to a number of distinct vertices in Ch. This number
is the number of vertices with balance −1 in Ct . That is, for every pair of unbalanced
vertices in Cs × Ct, we have an associated vertex in Ch. Then, for every inner vertex v
on h, we copy Ch and connect it to the component corresponding to v. From one copy
to another, using the weight function, we allow only arcs that start and end in vertices
corresponding to the same pair of unbalanced vertices in Cs×Ct. This enforces that every
hint is realized and connects every component it visits. Using the weight function and
Observation 5 we can ensure that the arcs corresponding to a realization of a hint have
the weight of an optimal realization with the same endpoints. Using this construction,
Theorem 5 can be proven which concludes the proof of Theorem 1.

4 Conjoining Bipartite Matching: Properties and Special Cases

This section investigates the properties of CBM introduced in Section 3. As discussed
before, CBM might eventually help us derive a fixed-parameter algorithm for EE with
respect to the parameter number of connected components. Section 4.1 first shows
that also CBM is NP-complete. Section 4.2 then establishes tractability of the problem
on restricted graph classes and translates this tractability result into the world of
EE and RP.
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4.1 NP-Hardness

NP-Hardness for Conjoining Bipartite Matching (CBM) does not follow from the pa-
rameterized equivalence to Eulerian Extension (EE) we gave in Section 3, since the
reduction from EE we gave is a parameterized Turing reduction. To show that CBM
is NP-hard, we polynomial-time many-one reduce from the well-known 3SAT, where
a Boolean formula φ in 3-conjunctive normal form (3-CNF) is given and it is asked
whether there is an assignment to the variables of φ that satisfies φ. Herein, a formula φ
in 3-CNF is a conjunction of disjunctions of three literals each, where each literal is
either x or ¬x and x is a variable of φ. In the following, we represent each clause
as three-element-set γ ⊆ X × {+,−}, where (x,+) ∈ γ means that x is contained in
the clause represented by γ and (x,−) ∈ γ means that ¬x is contained in the clause
represented by γ.

Construction 2. Let φ be a Boolean formula in 3-CNF with the variables
X � {x1, . . . , xn} and the clauses γ1, . . . , γm ⊆ X × {+,−}. We translate φ into an in-
stance of CBM that is a yes-instance if and only if φ is satisfiable. To this end, for every
variable xi, introduce a cycle with 4m edges consisting of the vertex set Vi � {v j

i :
1 ≤ j ≤ 4m} and the edge set Ei � {ek

i � {vk
i , v

k+1
i } ⊆ Vi} ∪ {e4m

i � {v1
i , v

4m
i }}. Let

G � (
⋃n

i=1 Vi,
⋃n

i=1 Ei), and let ω(e) � 0, e ∈ Ei for any 1 ≤ i ≤ n, and define ωmax � 1.
To construct an instance of CBM, it remains to find a suitable partition of the vertices
of G and a join set.

Inductively define the vertex partition Pm of V(G) and the join set Jm as follows:
Let J0 = ∅, and let P0 � ∅. For every clause γ j introduce the cell

C j � {v4 j−1
i : (xi,+) ∈ γ j ∨ (xi,−) ∈ γ j} ∪ {v4 j−2

i : (xi,+) ∈ γ j} ∪ {v4 j
i : (xi,−) ∈ γ j}.

Define P j � P j−1 ∪ {C j} and J j � J j−1 ∪ {{0, j}}.
Finally, define C0 � V(G)\(⋃m

j=1 C j). The graph G, the weight functionω, the vertex
partition Pm ∪ {C0} and the join set Jm constitute an instance of CBM.

Using this construction, we can prove the following theorem.

Theorem 6. CBM is NP-complete, even in the unweighted case and when the input
graph G = (V � W, E) has maximum degree two, and for every cell Ci in the given
vertex partition of G it holds that |Ci ∩ V | = |Ci ∩W |.
Proof. CBM is contained in NP, because a perfect conjoining matching of weight at
most ωmax is a certificate for a yes-instance.

We prove that Construction 2 is a polynomial-time many-one reduction from 3SAT
to CBM. Notice that in instances created by Construction 2 any matching has weight
lower thanωmax and, thus, the soundness of the reduction implies that CBM is hard even
without the additional weight constraint. Also, since the cells in the instances of CBM
are disjoint unions of edges, every cell in the partition Pm contains the same number of
vertices from each cell of the graph bipartition.

It is easy to check that Construction 2 is polynomial-time computable. For the cor-
rectness we first need the following definition: For every variable xi ∈ X let

Mtrue
i � {ek

i ∈ Ei : k odd} and

Mfalse
i � Ei \ Mtrue

i = {ek
i ∈ Ei : k even}.
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Observe that all perfect matchings in G are of the form
⋃n

i=1 Mν(xi )
i , where ν is an as-

signment of truth values to variables in X. We show that the matching
⋃n

i=1 Mν(xi)
i is a

conjoining matching for G with respect to the join set Jm if and only if ν is satisfies φ.
For this, it suffices to show that for every variable xi ∈ X it holds that

{ j : (xi,+) ∈ γ j} = { j : Mtrue
i satisfies the join {0, j}}, and (1)

{ j : (xi,−) ∈ γ j} = { j : Mfalse
i satisfies the join {0, j}}. (2)

We only show that (1) holds; (2) can be proven analogously. Assume that (xi,+) ∈ γ j.
By Construction 2, v4 j−2

i ∈ C j, v
4 j−3
i ∈ C0 and thus, since

{v4 j−2
i , v4 j−3

i } = e4 j−3 ∈ Mtrue
i ,

the matching Mtrue
i satisfies the join {0, j}. Now assume that (xi,+) � γ j, that is, either

(1) (xi,±) � γ j or (2) (xi,−) ∈ γ j. If (xi,±) � γ j, then Vi and C j are disjoint and, thus,
no matching in G[Vi] can satisfy the join {0, j}. If (xi,−) ∈ γ j, then the only edges in Ei

that can satisfy the join {0, j} are e4 j−2
i and e4 j

i . Both edges are not in Mtrue
i and, thus,

this matching cannot satisfy the join {0, j}. ��

4.2 Tractability on Restricted Graph Classes

This section presents data reduction rules and employs them to sketch an algorithm for
CBM on a restricted graph class, leading to the following theorem:

Theorem 7. Conjoining Bipartite Matching can be solved in O(2 j( j+1)n + n3) time,
where j is the size of the join set, provided that in the bipartite input graph G =

(V1 � V2, E) each vertex in V1 has maximum degree two.

In this section, let (G, ωmax, ω, P = {C1, . . . ,Cc}, J) be an instance of CBM, where in G
is as in Theorem 7. The following lemma plays a central role in the proof of Theorem 7.
It implies that, in a yes-instance, every component of G consists of an even-length cycle
with a collection of pairwise vertex-disjoint paths incident to it.

Lemma 3. If G has a perfect matching, then every connected component of G contains
at most one cycle as subgraph.

Proof. We show that if G contains a connected component that contains two cycles c1, c2

as subgraphs, then G does not have a perfect matching. First assume that c1, c2 are
vertex-disjoint. Then, there is a path p from a vertex v ∈ V(c1) to a vertex w ∈ V(c2)
such that p is vertex-disjoint from c1 and c2 except for v,w. It is clear that both v,w ∈ V2

because they have degree three. Consider the vertices Vcp
1 � (V(c1)∪V(p)∪V(c2))∩V1

and the set Vcp
2 � (V(c1) ∪ V(p) ∪ V(c2)) ∩ V2. The set Vcp

2 is the set of neighbors of
vertices in Vcp

1 , because they have degree two and thus have neighbors only within p, c1,
and c2. It is |Vcp

1 | = (|E(c1)| + |E(p)| + |E(c2)|)/2 since neither of these paths and cycles
overlap in a vertex in V1. However, it is |Vcp

2 | = |Vcp
1 | − 1 because c1 and p overlap in v

and c2 and p overlap in w. This is a violation of Hall’s condition and thus G does not
have a perfect matching.
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The case where c1 and c2 share vertices can be proven analogously. (Observe that
then there is a subpath of c2 that is vertex-disjoint from c1 and contains an even number
of edges.) ��
We now present four polynomial-time executable data reduction rules for CBM. The
correctness of the first three rules is easy to verify, while the correctness of the fourth
one is more technical and omitted. We note that all rules can be applied exhaustively in
O(n3) time.

Reduction Rule 1 removes paths incident to the cycles of a graph G in a yes-instance.
As a side-result, Reduction Rule 1 solves CBM in linear time on forests.

Reduction Rule 1. If there is an edge {v,w} ∈ E(G) such that deg(v) = 1, then re-
move both v and w from G, and remove all joins {i, j} from J, with v ∈ Ci,w ∈ C j.
Decrease ωmax by ω({v,w}).
If exhaustively applying Reduction Rule 1 to G does not transform G such that each
connected component is a cycle, which is checkable in linear time, then, by Lemma 3,
G does not have a perfect matching and we can return “NO”. Hence, in the following,
assume that each connected component of G is a cycle. Reduction Rule 2 now deletes
connected components that cannot satisfy joins.

Reduction Rule 2. If there is a connected component D of G such that it contains no
edge that could satisfy any join in J, then compute a minimum-weight perfect match-
ing M in G[D], remove D from G and decrease ωmax by ω(M).

After exhaustively applying Reduction Rule 2, we may assume that each connected
component of G contains an edge that could satisfy a join. We next present a data reduc-
tion rule that removes joins that are always satisfied. To this end, we need the following
definition.

Definition 2. For each connected component D (that is, each cycle) in G, denote by
M1(D) a minimum-weight perfect matching of D with respect to ω and denote by
M2(D) � E(D) \ M1(D) the other perfect matching of D.7 Furthermore, denote

σ1(D) � { j ∈ J : ∃e ∈ M1(D) : e satisfies j},
σ2(D) � { j ∈ J : ∃e ∈ M2(D) : e satisfies j},

and the signature σ(D) of D as {σ1(D), σ2(D)}.
Reduction Rule 3. Let D be a connected component of G. If there is a join j ∈ σ1(D)∩
σ2(D), then remove j from J.

A final data reduction rule removes connected components that satisfy the same joins.

Reduction Rule 4. Let S = {D1, . . . ,D j} be a maximal set of connected components
of G such that σ(D1) = . . . = σ(D j) and j ≥ 2. Let M∗1 =

⋃ j
k=1 M1(Dk), let Dl ∈ S such

that ω(M2(Dl)) − ω(M1(Dl)) is minimum, and let M∼1 = M∗1 \ M1(Dl).

7 Note that in bipartite graphs every cycle is of even length.
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(i) If the matching M∗1 is conjoining for the join set σ1(D1) ∪ σ2(D1), then remove
each component in S from G, remove each join in σ1(D1) ∪ σ2(D1) from the join
set J, and reduce ωmax by ω(M∗1).

(ii) If the matching M∗1 is not conjoining for the join set σ1(D1)∪σ2(D1), then remove
each component in S \ {Dl} from G, remove any join in σ1(D1) from the join set J,
and reduce ωmax by ω(M∼1 ).

In either case, update the partition P accordingly.

Observation 6. If Reduction Rule 4 is not applicable to G, then G contains at most one
connected component for each of the 2|J|+1 possible signatures.

Now, Theorem 7 follows: Exploiting Observation 6, a search-tree algorithm solving
CBM can in O(n) time choose a join j ∈ J and choose one of the at most 2|J|+1 con-
nected components of the graph that can satisfy j and match the component accordingly.
Then, the algorithm can recurse on how the remaining |J| − 1 joins are satisfied.

Analyzing the pre-images that lead to tractable instances of CBM under the reductions
we gave in Section 3, Theorem 7 can be translated to a tractability result for EE. A sim-
ilar tractability result can also be shown for Rural Postman. Due to its length, we only
state it for EE here.

Corollary 1. Let the graph G and the weight function ω constitute an instance IEE of
EE. Let c be the number of connected components in G.

(i) If every path or cycle in the set of allowed arcs w.r.t. ω has length at most one,
(ii) if G contains only vertices with balance between −1 and 1,

(iii) if every vertex in I+G (every vertex in I−G) has only outgoing allowed arcs (incoming
allowed arcs), and

(iv) if in every connected component C of G, either all vertices in I+G ∩ C or in I−G ∩ C
have at most two incident allowed arcs,

then it is decidable in O(2c(c+log(2c4))(n4 + m)) time whether IEE is a yes-instance.

5 Conclusion

Clearly, the most important remaining open question is to determine whether Rural
Postman is fixed-parameter tractable with respect to the number of connected com-
ponents of the graph induced by the required arcs. This question also extends to the
presumably harder undirected case. The newly introduced Conjoining BipartiteMatch-
ing (CBM) problem might also be useful in spotting new, computationally feasible
special cases of Rural Postman and Eulerian Extension. The development of
polynomial-time approximation algorithms for CBM or the investigation of other (struc-
tural) parameterizations for CBM seem worthwhile challenges as well. Finally, we re-
mark that previous work [10, 4] also left open a number of interesting open problems
referring to variants of Eulerian Extension. Due to the practical relevance of the con-
sidered problems, our work is also meant to further stimulate more research on these
challenging combinatorial problems.
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Abstract. The rotator graph has vertices labeled by the permutations
of n in one line notation, and there is an arc from u to v if a prefix
of u’s label can be rotated to obtain v’s label. In other words, it is
the directed Cayley graph whose generators are σk := (1 2 · · · k) for
2 ≤ k ≤ n and these rotations are applied to the indices of a permutation.
In a restricted rotator graph the allowable rotations are restricted from
k ∈ {2, 3, . . . , n} to k ∈ G for some smaller (finite) set G ⊆ {2, 3, . . . , n}.
We construct Hamilton cycles for G = {n−1, n} and G = {2, 3, n}, and
provide efficient iterative algorithms for generating them. Our results
start with a Hamilton cycle in the rotator graph due to Corbett (IEEE
Transactions on Parallel and Distributed Systems 3 (1992) 622–626) and
are constructed entirely from two sequence operations we name ‘reusing’
and ‘recycling’.

1 Introduction

Let Πn denote the set of permutations of [n] := {1, 2, . . . , n} written in one-line
notation as strings. For example,Π3 = {1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1} and
we henceforth omit spaces between individual symbols when appropriate. The
operation σk is a prefix-rotation, or simply rotation, and it cyclically moves the
first k symbols one position to the left. In other words, σk applies the permutation
(1 2 · · · k) to the indices of a string. For example, 541362 σ4 = 413562 since 413
moves one position to the left and 5 “wraps around” into the fourth position.
The operation is also known as a prefix-shift of length k in the literature.

1.1 Rotator Graphs and Hamilton Cycles

The rotator graph Rn has nodes labeled with the strings in Πn, and arcs labeled
σk directed from α ∈ Πn to β ∈ Πn when β = α σk. In group-theoretic terms,
Rn is the directed Cayley graph

−−→
Cay({σ2, σ3, . . . , σn}, Sn) with generators σk

for 2 ≤ k ≤ n and where Sn is the symmetric group corresponding to Πn. A
restricted rotator graph for G ⊆ [n] is Rn(G) =

−−→
Cay(G, Sn) where the generators

are restricted to σk for k ∈ G. Figure 1 (a) illustrates R3.
A Hamilton cycle of Rn(G) can be described by a Hamilton sequence of in-

tegers S = s0, s1, · · · , sn!−1 where σsi is the label of the (i + 1)st arc in the
� Research supported in part by NSERC.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 324–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (a) The rotator graph R3, and (b) a Hamilton cycle in R3

cycle and si ∈ G for each i ∈ {0, 1, . . . , n!− 1}. A Hamilton cycle of Rn(G) can
also be described by the order of node labels along the cycle. In combinatorial
generation, these orders are cyclic Gray codes since each string in Πn appears
exactly once, and successive strings differ by some σk for k ∈ G where ‘succes-
sive’ includes last to first. For example, Figure 1 (b) contains a Hamilton cycle
for R3 that can be described by

3, 3, 2, 3, 3, 2 or 321, 213, 132, 312, 123, 231. (1)

Restricted rotator graphs are vertex-transitive; our Hamilton cycles and their
associated Gray code orders for Rn(G) will all ‘start’ at n n−1 · · · 1. Orders of
strings that do not necessarily have the Gray code properties are called lists.

An explicit Hamilton cycle in Rn was first constructed by Corbett [2]. Hamil-
ton cycles were then constructed for different generalizations of Rn by Pon-
nuswamy and Chaudhary [11] and Williams [13]. Hamilton cycle constructions
for Rn({n − 1, n}) were proposed as an open problem by Knuth, and this was
answered by Ruskey and Williams [12]. Observe that σn must be included in
a restricted rotator graph in order to generate the entire symmetric group Sn.
Moreover, σn and σc are not sufficient for generating Sn if and only if c and n
are both odd (in these cases the parity of a permutation cannot be changed). A
well-known conjecture is that a Hamilton cycle exists in every connected undi-
rected Cayley graph, where undirected Cayley graphs include the inverse of each
generator. In particular, a Hamilton cycle was constructed for Cay({σ2, σn}, Sn)
by Compton and Williamson in a 50-page paper [1].

Corbett introduced the term “rotator graph” when considering point-to-point
multiprocessor networks, where Hamilton cycles establish indexing schemes for
sorting and for mapping rings and linear arrays [2] Applications of rotator graphs
include fault-tolerant file transmission by Hamada et al [5] and parallel sorting
by Corbett and Scherson [3]. Properties of rotator graphs have been examined
including minimum feedback sets by Kuo et al [9] and node-disjoint paths by
Yasuto, Ken’Ichi, and Mario [14]. Other variations of rotator graphs include
incomplete rotator graphs [11], the bi-rotator graph (see Lin and Hsu [10]),
and graphs where the labels can have repeated symbols [13]. The relationship
between Hamilton cycles of Rn(n− 1, n) and universal cycles of Πn is discussed
by Holroyd, Ruskey, and Williams along with applications [6,7].
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1.2 New Results

We construct a new Hamilton cycle inRn({n−1, n}) and the first Hamilton cycle
in Rn({2, 3, n}). The chosen sets {n−1, n} and {2, 3, n} are natural since σn−1

is the “largest” rotation other than σn, whereas σ2 and σ3 are the “smallest”
pair of rotations given the previously mentioned difficulty of the Compton and
Williamson result for Cay({σ2, σn},Sn) [1] and the trivial lack of connectivity in
Cay({σ3, σn}, Sn) when n is odd.

Our new constructions are intimately related to Corbett’s original Hamil-
ton cycle in Rn. In fact, the beauty of our results is that all three Hamilton
sequences can be described by two operations that we name ‘reusing’ and ‘re-
cycling’. We also provide an algorithm for constructing the Hamilton sequences.
The algorithm is loopless since successive values in the sequence are obtained in
worst-case O(1)-time (see Ehrlich [4] for the first use of this term).

Section 2 formally defines the ‘reuse’ and ‘recycle’ operations. Section 3 con-
structs the three Hamilton cycles and proves that two of the constructions are
correct. Section 4 gives a loopless algorithm that generates the Hamilton se-
quences. Section 5 extends Corbett’s recursive construction with an iterative
description that is instrumental to the final proof of correctness. Section 6 com-
pletes the final proof of correctness by proving that Corbett’s Hamilton sequence
of Rn can be ‘recycled’ into a Hamilton cycle of Rn+1({n, n+1}). Section 7 con-
cludes with open problems.

2 Sequence Building

This section defines two operations for building sequences of positive integers
and examines the lists they create when they are treated as rotation indices.

2.1 Reusing and Recycling

In this subsection we define the reusing and recycling sequence operations, and
describe how they are applied to create lists of strings. Given i and n satisfying
1 < i < n, the result of reusing and recycling i with respect to n is

reusen(i) =
n−1 copies︷ ︸︸ ︷
n, . . . , n , n−i+1 and recyclen(i) = n, n,

i−1 copies︷ ︸︸ ︷
n−1, . . . , n−1,

n−i−1 copies︷ ︸︸ ︷
n, . . . , n

respectively. Notice that both operations create sequences of n symbols that are
each at least 2 and at most n. For example,

reuse6(3) = 6, 6, 6, 6, 6, 4 and recycle6(3) = 6, 6, 5, 5, 6, 6. (2)

We build longer sequences by applying these operations to each symbol in a
sequence. If S = s1, s2, . . . , st is a sequence with 1 < si < n for each i, then

reusen(S) = reusen(s1), reusen(s2), . . . , reusen(st) and
recyclen(S) = recyclen(s1), recyclen(s2), . . . , recyclen(st).
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We use sequences to create lists of strings by applying successive prefix-rotations.
If α ∈ Πn and S = s1, s2, . . . , st is a sequence with 1 < si ≤ n for each i, then

α ◦ S = β0, β1, . . . , βt where β0 = α and βi = βi−1 σsi for i = 1, 2, . . . , t.

For example, if α = 612345 then

α ◦ reuse6(3) = 612345, 123456, 234561, 345612, 456123, 561234, 612534 (3)
α ◦ recycle6(3) = 612345, 123456, 234561, 345621, 456231, 562314, 623145

since reuse6(3) = 6, 6, 6, 6, 6, 4 and recycle6(3) = 6, 6, 5, 5, 6, 6 by (2). In some
situations it is more convenient to leave off the last permutation in the list α◦S,
and we use α • S in these cases.

A symbol x is periodic in a list L of Πn if the position of x moves once to
the left (cyclically) between successive strings in L. For example, 6 is periodic
in both lists from (3). More generally, the first symbol x of α ∈ Πn is periodic
in any list of the form α ◦ reuse(S) or α ◦ recycle(S). This is because the first
rotation σn moves x from the first position to the last position, the next n−1
rotations move x one position to the left, and this pattern is repeated.

2.2 Rotation Identities

In this subsection we give two identities involving rotations. In addition to σi =
(1 2 · · · i) for prefix-rotations, let ςi = (n n−1 · · · n−i+1) denote the suffix-
rotation operation, and σ′

i = (2 3 · · · i+1) denote a modified prefix-rotation that
begins at the second symbol. We also let σji denote j successive copies of σi, and
successive rotations are applied from left-to-right. Using these conventions we
have the following simple identities

σn−1
n σn−i+1 = ςi and σ2

nσ
i−1
n−1σ

n−i−1
n = σ′i

“reuse equality” “recycle equality”.
(4)

The “reusing equality” on the left follows from (n n−1 · · · 1)(1 2 · · · n−i+1) =
(n−i+1 n−i+2 · · · n), while the “recycling equality” on the right is the second
equality of Lemma 2 in [7]. The equalities allow the last string obtained by
applying reusen(i) and recyclen(i) to be computed directly. For example, when
i = 3 and n = 6 we obtain the final strings in (3) as follows

612345σ5
6σ4 = 612345ς3 612345σ2

6σ
2
5σ

2
6 = 612345σ′

3 (5)
= 612534 = 623145.

2.3 List Quotients

In Section 2.1 we saw that every nth string in n n−1 · · · 1 ◦ S begins with n,
whenever S is obtained by reusing or recycling. Furthermore, Section 2.2 gave
identities for these strings. This subsection examines these strings in more detail.

The quotient of a list L of Πn with a symbol x ∈ [n] is the list obtained from
L by (1) removing the strings that do not begin with x, and (2) removing x from



328 B. Stevens and A. Williams

the strings that begin with x. We denote this operation by x/L. Our first lemma
uses recycling and is illustrated by the next example. If S = 3, 3, 2, 3, 3, 2 then

321 • S = 321, 213, 132, 312, 123, 231 and (6)

4321 • recycle(S) = 4321, 3214, 2143, 1423, 4213, 2134, 1342, 3412, 4132, 1324, 3241, 2431,

4312, 3124, 1243, 2413, 4123, 1234, 2341, 3421, 4231, 2314, 3142, 1432.

Notice the quotient of the second list with 4 equals the first list (as underlined).
That is, 4/(4321 • recycle(S)) = 321 • S. Lemma 1 proves this is true for any S.

Lemma 1. If sequence S has values in {2, . . . , n−1} and αi = i i−1 · · · 1, then

n/(αn • recyclen(S)) = αn−1 • S.
Proof. The first string in both lists is αn−1 since n/αn = αn−1. Since n is
periodic in αn◦recyclen(S), every nth string begins with n. Therefore, successive
strings in n/(αn◦recyclen(S)) are obtained by successive σsi for S = s1, . . . , st by
the “recycling identity” in (4). Therefore, the two lists are equal. ��
Our second lemma instead uses reusing and is illustrated by the next example

321 • S = 321, 213, 132, 312, 123, 231 and (7)

4321 • reuse(S) = 4321, 3214, 2143, 1432, 4132, 1324, 3241, 2413, 4213, 2134, 1342, 3421,

4231, 2314, 3142, 1423, 4123, 1234, 2341, 3412, 4312, 3124, 1243, 2431.

In this case the quotient of the second list with 4 equals the “double-reverse” of
the first list. Given a string a1a2 · · ·an ∈ Πn the double-reverse is

a1a2 · · · aRn = (n−an+1) · · · (n−a2+1) (n−a1+1).

In a double-reverse the relative order of symbols is changed from a1a2 · · · an
to an · · ·a2a1 and relative values are reversed from x to n−x+1. Given a list
L = α1, . . . , αm the double-reversal of L is LR = αR1 , . . . , α

R
m. For example,

(321, 132, 213, 231, 123, 312)R = 321R, 132R, 213R, 231R, 123R, 321R

= 321, 213, 132, 312, 123, 231.

This equation illustrates the relationship 4/(4321 • reuse(S)) = (321 •S)R in (7)
(as underlined). Lemma 2 proves this is true for any S.

Lemma 2. If sequence S has values in {2, . . . , n−1} and αi = i i−1 · · · 1, then

n/(αn ◦ reusen(S)) = (αn−1 ◦ S)R.

Proof. The first string in both lists is αn−1 since n/αn = αn−1 and αRn−1 =
αn−1. Since n is periodic in αn ◦ reusen(S), every nth string begins with n.
Therefore, successive strings in n/(αn ◦ reusen(S)) are obtained by successive ςsi

for S = s1, . . . , st by the “reusing identity” in (4). Notice that suffix-rotations
in a double-reversed string are ‘equivalent’ to prefix-rotations in the original
string. That is, if α = βR, then α σi = β ςRi . Therefore, the two lists are
equal. ��
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3 Three Hamilton Sequences

This section constructs Hamilton sequences for Rn, Rn({n − 1, n}), and
Rn({2, 3, n}) through reusing and recycling. Two of the three main theorems
are proven in this section, and the third is proven in Sections 5 and 6.

3.1 Hamilton Sequence for Rn

This subsection proves that a Hamilton sequence for Rn can be obtained entirely
with the reuse operation. The Corbett sequence is defined recursively as follows

C(n) =

{
2, 2 if n = 2
reusen(C(n−1)) if n > 2.

(8)

Corbett proved that C(n) is a Hamilton sequence for the rotator graph Rn [2].
Let ΠC(n) = n n−1 · · · 1 ◦ C(n) denote this Corbett Gray code of Πn. Table 1
gives C(n) and ΠC(n) for n = 3, 4.

Table 1. (a)-(b) Corbett sequence for n = 3, 4, and (c)-(d) Corbett Gray code for
n = 3, 4. Prefix-rotations in (c) and suffix-rotations of every fourth string in (d) are
underlined according to (a) by the “reusing equality” in (4).

C(3) C(4) = reuse4(C(3)) ΠC(3) ΠC(4) = 4321 ◦ C(4)

3, 4, 4, 4, 2, 321, 4321, 3214, 2143, 1432,
3, 4, 4, 4, 2, 213, 4132, 1324, 3241, 2413,
2, 4, 4, 4, 3, 132, 4213, 2134, 1342, 3421,
3, 4, 4, 4, 2, 312, 4231, 2314, 3142, 1423,
3, 4, 4, 4, 2, 123, 4123, 1234, 2341, 3412,
2 4, 4, 4, 3 231 4312 3124, 1243, 2431

(a) (b) (c) (d)

Theorem 1 extends Corbett’s result by proving that any Hamilton sequence
for Rn−1 can be ‘reused’ into a Hamilton sequence for Rn. Furthermore, we
explicitly state the values used in the resulting sequence. (A simple induction
proves that Corbett’s ‘canonical’ sequence C(n) uses each value in {2, 3, . . . , n}.)
Theorem 1. [2] If S is a Hamilton sequence in Rn−1(G), then reusen(S) is a
Hamilton sequence in Rn(H), where i ∈ H if and only if i = n or n− i+1 ∈ G.

Proof. Let α = n n−1 · · · 1. By Lemma 2 the nth strings in α ◦ reusen(S)
form a Gray code for the strings in Πn that begin with n. Each of these strings
is followed by n−1 applications of σn by the definition of reusen(i). Therefore,
α◦reusen(S) contains every string inΠn and so reusen(S) is a Hamilton sequence.
Finally, the values in H follow immediately from the definition of reusing. ��
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3.2 Hamilton Sequence for Rn({n−1, n})

This subsection states that a Hamilton sequence for Rn(n−1, n) can be obtained
by recycling Corbett’s Hamilton sequence. In other words, a Hamilton sequence
forRn(n−1, n) can be obtained by repeated reusing following by a single recycle.
Let D(n) = recyclen(C(n−1)) denote this sequence and ΠD(n) = n n−1 · · · 1 ◦
D(n) denote its Gray code. Table 2 gives D(n) and ΠD(n) for n = 4.

Table 2. (a)-(b) Recycling the Corbett sequence and (c)-(d) the Corbett Gray code
from n = 3 to n = 4. Prefix-rotations in (c) and modified prefix-rotations of every
fourth string in (d) are underlined according to (a) by the “recycling equality” in (4).

C(3) D(4) = recycle4(C(3)) ΠC(3) ΠD(4) = 4321 ◦D(4)

3, 4, 4, 3, 3, 321, 4321, 3214, 2143, 1423,
3, 4, 4, 3, 3, 213, 4213, 2134, 1342, 3412,
2, 4, 4, 3, 4, 132, 4132, 1324, 3241, 2431,
3, 4, 4, 3, 3, 312, 4312, 3124, 1243, 2413,
3, 4, 4, 3, 3, 123, 4123, 1234, 2341, 3421,
2 4, 4, 3, 4 231 4231 2314, 3142, 1432

(a) (b) (c) (d)

Theorem 2. If S = C(n−1) is the Corbett sequence for Rn−1, then recyclen(S)
is a Hamilton sequence in Rn({n−1, n}).
To illustrate the difficulty of Theorem 2, we point out that arbitrary Hamilton
sequences for Rn−1 cannot be recycled into Hamilton sequences for Rn. For
example, consider the following Hamilton sequence for R4 and its associated
Gray code for Π4

S = 4, 3, 3, 2, 3, 4, 2, 3, 4, 2, 3, 3, 4, 4, 2, 3, 3, 2, 3, 4, 4, 4, 3, 4 (9)
4321 ◦ S = 4321, 3214, 2134, 1324, 3124, 1234, 2341, 3241, 2431, 4312, 3412, 4132,

1342, 3421, 4213, 2413, 4123, 1243, 2143, 1423, 4231, 2314, 3142, 1432.

Observe that 1324 is followed by 1324 σ2 = 3124, and that 2314 is followed by
2314 σ4 = 3142 in 4321 ◦ S. Therefore, Lemma 1 implies that 51324 is followed
by 51324 • recycle5(2), and 52314 followed by 52314 • recycle5(4) in the recycled
list 54321 • recycle5(S). These two sublists appear below

51324 • recycle5(2) 52314 • recycle5(4) (10)
= 51324 • 5, 5, 4, 5, 5 = 52314 • 5, 5, 4, 4, 4
= 51324, 13245, 32451, 24531, 45312 = 52314, 23145, 31452, 14532, 45312.

Since both sublists contain 45312, the list 54321 • recycle5(S) is not a Gray
code. Furthermore, the reader can verify that recycle6(reuse5(S)) is also not a
Hamilton sequence. In other words, an arbitrary Hamilton sequence S cannot be
recycled into a Hamilton sequence, even when S is the result of reusing a previous
Hamilton sequence. We prove Theorem 2 by developing results in Sections 5-6.
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3.3 Hamilton Sequence for Rn({2, 3, n})

This subsection proves that a Hamilton sequence for Rn({2, 3, n}) can be ob-
tained by recycling and then reusing Corbett’s Hamilton sequence. In other
words, a Hamilton sequence for Rn(2, 3, n) can be obtained by repeated reusing
followed by a single recycle and then a single reuse. Let E(n) = reusen(D(n−1))
denote this sequence and ΠE(n) = n n−1 · · · 1 ◦ E(n) denote its Gray code.
More generally, Theorem 3 proves that a Hamilton sequence for Rn({2, 3, n})
can be obtained by reusing any Hamilton sequence for Rn−1({n−2, n−1}).
Theorem 3. If S is a Hamilton sequence in Rn−1({n−2, n−1}), then reusen(S)
is a Hamilton sequence in Rn({2, 3, n}).
Proof. By the statement of the theorem, S is a Hamilton sequence for Rn−1(G)
for G = {n−2, n−1}. By theorem 1, reusen(S) is a Hamilton sequence in Rn(H)
where H = {n−(n−2)+1, n−(n−1)+1, n} = {2, 3, n}. ��

4 Loopless Algorithm

In this section we show how to generate each symbol of Corbett’s Hamilton
sequence C(n) for the rotator graph Rn in worst-case O(1)-time. Furthermore,
our CorbettLoopless(n) algorithm is significant because
1. It adapts a well-known algorithm for generating multi-radix numbers, and
2. A modification generates Hamilton sequences in Rn({n−1, n}) or
Rn({2, 3, n}).

4.1 Staircase Sequence

The staircase sequence S(n) is obtained from repeated applications of the step
sequence operation as defined below

stepn(i) =
n−1 copies︷ ︸︸ ︷
n, . . . , n , i and S(n) =

{
2 if n = 1
stepn(S(n−1)) if n > 1.

(11)

The step operation is identical to the reuse operation except the final symbol
i has replaced n−i+1. Lemma 3 specifies each value of Corbett’s sequence in
terms of the staircase sequence and gives a simple condition for the occurrence
of each value.
Lemma 3. If the staircase sequence is S(n) = s1, s2, . . . , sn! and the Corbett
sequence is C(n) = c1, c2, . . . , cn! and n ≥ 2, then for each i satisfying 1 ≤ i ≤ n!,
we have si = j if n(n− 1) · · · (j + 1) divides i but n(n− 1) · · · (j + 1)j does not
divide i, and

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if si = n

2 if si = n−1

n−1 if si = n−2

3 if si = n−3

n−2 if si = n−4

. . . . . .

�n+1
2
� if si = 2.
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Proof. The result is true for n = 2 since S(2) = C(2) = 2, 2. Assume the result
is true for S(k) = s′1, . . . , s

′
k! and C(k) = c′0, . . . , c

′
k! for k ≥ 2. When n = k+1,

S(n) = step(S(n−1)) =
n−1 copies︷ ︸︸ ︷
n, . . . , n , s′1, . . . ,

n−1 copies︷ ︸︸ ︷
n, . . . , n , s′n−1!

C(n) = reuse(C(n−1)) = n, . . . , n︸ ︷︷ ︸
n−1 copies

, n−c′1+1, . . . , n, . . . , n︸ ︷︷ ︸
n−1 copies

, n−c′n−1!+1

so the result follows by induction by (11) and (8), respectively. ��

Algorithm 1. Generate the staircase sequence S(n) by StaircaseLoopless(n) and
Corbett’s Hamilton sequence C(n) for rotator graph Rn by CorbettLoopless(n).
Note: The final symbol output by StaircaseLoopless(n) is 1 instead of 2 by (11).
Require: StaircaseLoopless(n)
1:
2: a1 · · · an ← 0 · · · 0
3: f1 · · · fn ← 1 · · ·n
4: loop
5: j ← f1

6: output(n−j+1)
7: if j = n then
8: return
9: end if

10: f1 ← 1
11: aj ← aj + 1
12: if aj = n−j then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1
16: end if
17: end loop

Require: CorbettLoopless(n)
1: r1 · · · rn ← n 2 n−1 3 · · · �n+1

2
� �n+1

2
�

2: a1 · · · an ← 0 · · · 0
3: f1 · · · fn ← 1 · · ·n
4: loop
5: j ← f1

6: output(rj)
7: if j = n then
8: return
9: end if

10: f1 ← 1
11: aj ← aj + 1
12: if aj = n−j then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1
16: end if
17: end loop

4.2 Staircase Strings

Staircase sequences arise naturally in combinatorial generation. A string α =
a1a2 · · · an is a staircase string if its symbols satisfy 1 ≤ ai ≤ i for all 1 ≤ i ≤ n.
In other words, staircase strings are multi-radix numbers with radices mi = i for
1 ≤ i ≤ n. Loopless Algorithm H in The Art of Computer Programming gener-
ates multi-radix numbers in reflected Gray code order, meaning that successive
strings differ by ±1 in a single symbol (see Knuth [8] pg. 20). In the special
case of staircase strings, Algorithm H generates the ± indices according to the
staircase sequence. For example, the Gray code appears below for n = 3

111, 112, 113, 123, 122, 121,
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where the ± indices follow S(3) = 3, 3, 2, 3, 3, 2 (cyclically). StaircaseLoopless(n)
in Algorithm 1 gives our presentation of Algorithm H, which is simplified by
removing references to the multi-radix number, the ± direction array d, and by
“hard-coding” the radices mi = i for 1 ≤ i ≤ n. As in Knuth’s presentation,
array f stores focus pointers. To generate C(n), we introduce an auxiliary array
of constants

r1, r2, r3, r4, · · · , rn−1, rn = n, 2, n−1, 3, · · · ,
⌈n

2

⌉
,
⌈n

2

⌉
whose values are explained by Lemma 3. Finally, CorbettLoopless(n) in Algorithm
1 is obtained by replacing output(n−j+1) on line 6 by output(rj).

Theorem 4. CorbettLoopless(n) is a loopless algorithm that generates Corbett’s
sequence C(n).

By Theorem 2 algorithm CorbettLoopless(n) can instead generate the Hamilton
sequence D(n) for Rn+1({n, n+1}) via recycling by replacing line 6 with

output(n+1, n+1, n, . . . , n︸ ︷︷ ︸
rj−1 copies

, n+1, . . . , n+1︸ ︷︷ ︸
n−rj copies

).

Similarly, by Theorem 1 the algorithm can generate the Hamilton sequence E(n)
for Rn+2({2, 3, n+2}) via recycling and reusing by replacing line 6 with

output(

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 2,

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 2,

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 3, ...,

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 3︸ ︷︷ ︸

rj−1 copies

,

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 2, ...,

n+1 copies︷ ︸︸ ︷
n+2, ..., n+2, 2︸ ︷︷ ︸

n−rj copies

).

5 Corbett’s Successor Rule

In Section 4 we showed how to generate Corbett’s sequence C(n) one symbol at
a time, with Algorithm CorbettLoopless(n) creating the entire sequence and re-
quiring two auxiliary arrays. Theorem 5 gives a successor rule that describes how
each string in Corbett’s Gray code ΠC(n) can be computed from the previous
string without additional state. The theorem is illustrated after its proof.

Theorem 5. Suppose α = a1a2 · · · an ∈ Πn. Let x and y be the lengths of the
longest prefix of the form n n−1 n−2 · · · and the longest suffix of the form
· · · 3 2 1 in a2a3 · · · an, respectively. The string that follows α in ΠC(n) is

β =
{
σy+2(α) if x > y (12a)
σn−x(α) otherwise (x ≤ y). (12b)

Proof. Suppose Corbett’s sequence is C(n) = c1, c2, . . . , cn!, Corbett’s Gray code
is ΠC(n) = α1, α2, . . . , αn!, and n ≥ 2. Consider an arbitrary αi = a1a2 · · · an in
the Gray code. By using Lemma 2 and 3 the following conditions can be proven
by induction on n
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a2 = n ⇐⇒ ci �= n, and

an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2}, and

a3 = n−1 and an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2, n−1}, and

an−1 = 2 and a3 = n−1 and an = 1 and a2 = n ⇐⇒ ci /∈ {n, 2, n−1, 3}, and

. . . ⇐⇒ . . .

α = a1 n n−1 · · · p+2 p+1 aq+1 p−2 p−3 · · · 2 1 ⇐⇒ ci = p.

where p =
⌈
n+1

2

⌉
and q =

⌊
n+1

2

⌋
. The rule follows from these conditions. ��

For example, if α = 48756231 then x = 2 and y = 1 due to the underlined
prefix and overlined suffix of 8756231, respectively. Therefore, the string after α
in ΠC(8) is α σ3 = 48756231 σ3 = 87456231 by (12a) since x > y and y = 2.

Theorem 5 also allows the lookup table of size n! to be avoided in Corbett’s
original application involving point-to-point multiprocessor networks [2].

6 Recycling Corbett’s Sequence

In this section we prove a restatement of Theorem 2: If S = C(n) is the Corbett
sequence for Rn, then recyclen+1(S) is a Hamilton sequence in Rn+1({n, n+1}).
Proof. We prove an arbitrary string in Πn+1 appears in n+1 n · · · 1◦ recycle(S)
where S = C(n). Let this arbitrary string equal ai ai+1 · · · an n+1 b1 b2 · · · bi−1

for some i satisfying 1 ≤ i ≤ n+1. We choose this expression for our arbitrary
string since we will find α and β such that the following criteria hold

1. α has suffix ai ai+1 · · · an, and
2. β has prefix b1 b2 · · · bi−2, and
3. α is followed by β in ΠC(n) by applying σr, and
4. α◦ recycle(r) contains the arbitrary string ai ai+1 · · · an n+1 b1 b2 · · · bi−1.

The result is trivial when n+1 is in the first, last, or second-last position of the
arbitrary string. In the remaining cases we define the following

– γ := g1 g2 ...gn := b1 b2 ... bi−1 ai ai+1 ... an and p = 
n
2
�−1 and q = �n

2

−1,

– xb is the length of the longest n n−1 n−2 · · · prefix in g1 g2 · · · gi−2,
– ya is the length of the longest · · · 3 2 1 suffix in gi gi+1 · · · gn,
– x′ is the length of the longest n n−1 n−2 · · · prefix in g1 g2 · · · gp, and
– y′ is the length of the longest · · · 3 2 1 suffix in gn−q+1 gn−q+2 · · · gn.

One difference between (xb, ya) and (x′, y′) is that the former considers
b1 b2 · · · bi−2 and ai ai+1 · · · an separately, whereas the latter considers γ
as a whole. Choose

α :=

⎧⎪⎨
⎪⎩

bi−1 b1 b2 ... bi−2 ai ai+1 ... an if xb≤ya (13a)

gy′+2 g1 g2 ... gy′+1 gy′+3 gy′+4 ...gn if xb>ya and x′ > y′(13b)

gn−x′ g1 g2 ... gn−x′−1 gn−x′+1 gn−x′+2 ...gn if xb>ya and x′ ≤ y′.(13c)
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In each case, we prove the first criterion holds for the choice of α. For (13a) this
result is obvious. For (13b) there are two cases two consider. If xb ≥ x′, then

y′ + 3 ≤ x′ + 2 ≤ xb + 2 ≤ i
where the inequalities follow from x′ > y′, xb ≥ x′, and xb ≤ i− 2, respectively.
On the other hand, if xb < x′ then it must be that ya = y′ and so

y′ + 3 = ya + 3 ≤ xb + 2 ≤ i
where the equalities and inequalities follow from y′ = ya, xb > ya, and xb ≤ i−2,
respectively. In both cases, α has the suffix stated in the first criterion. For (13c)
it must be that i = n− ya + 1 and xb = x′. Therefore,

n− x′ + 1 = n− xb + 1 ≤ n− ya = i− 1

where the equalities and inequalities follow from xb = x′, xb < ya, and i =
n− ya + 1, respectively. Therefore, α has the suffix stated in the first criterion.
To complete the proof, use the successor rule from Theorem 5 to verify the
remaining criteria. ��
Theorem 2 also affirms Conjecture 1 in [7]. That paper uses an equivalent no-
tion of ‘recycling’ that acts on rotation Gray codes of Πn instead of Hamilton
sequences of Rn. The conjecture is that Corbett’s Gray code is ‘recyclable’ and
Theorem 2 equivalently proves that Corbett’s Hamilton sequence is ‘recyclable’.

7 Open Problems

The following open problems are related to this research:

1. Efficiently generate an explicit Hamilton cycle in Rn({2, n}).
2. Necessary and sufficient conditions for recyclable Hamilton sequences of Rn.
3. A loopless algorithm for generating a recyclable order of Πn in an array.
4. The diameter of Rn(G) for G = {n−1, n} and G = {2, 3, n} and others.

For the fourth problem, we mention that Corbett showed the diameter of Rn is
small [2] and discussed applications of this fact. For the third problem, we men-
tion that there are many loopless algorithms that generate successive permuta-
tions in an array, but none are known to be ‘recyclable’ using the terminology
from [7]. In fact, the known recyclable orders using rotations by Corbett [2] and
Williams [13] cannot be generated by a loopless array-based algorithm since σn
cannot be implemented in constant time.

Acknowledgement. The authors wish to thank all three referees for helpful
comments. In particular, we wish to thank one referee who made several correc-
tions and the observation that the direction array d could be removed from our
initial presentation of Algorithm 1.
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Abstract. It is now common to add protein coding genes into cloning
vectors for expression within non-native host organisms. Codon opti-
mization supports translational efficiency of the desired protein product,
by exchanging codons which are rarely found in the host organism with
more frequently observed codons. Motif engineering, such as removal of
restriction enzyme recognition sites or addition of immuno-stimulatory
elements, is also often necessary. We present an algorithm for optimiz-
ing codon bias of a gene with respect to a well motivated measure of
bias, while simultaneously performing motif engineering. The measure
is the previously studied codon adaptation index, which favors the use,
in the gene to be optimized, of the most abundant codons found in the
host genome. We demonstrate the efficiency and effectiveness of our al-
gorithm on the GENCODE dataset and provide a guarantee that the
solution found is always optimal.

1 Introduction

Gene synthesis is now an economical and technically viable option for the con-
struction of non-natural genes. Synthetic genes can be novel or derivatives of
those found in nature. In either case, the expression levels of these genes, when
inserted into the genome of a host organism, depend on many factors. One im-
portant factor is the bias of codon usage, relative to the host organism [16,7,10].
Note that for each amino acid in a protein, there may be many (up to six) valid
codons, as given by the genetic code. Loosely speaking, the codon bias of a gene
for the protein measures how well – or poorly – codons used in the gene match
codon usage in the genome of a host organism (we describe specific measures
later in this paper). Several studies have indicated that [10,3,11] codon opti-
mization is necessary to ensure designed genes are maximally expressed within
the host.

In addition to optimizing the codon bias of a gene relative to the genome of
a host, it is often desirable to add or remove certain motifs via silent mutation,
whereby DNA sequence is altered without changing the expressed amino acid
sequence. Removal or addition of motifs can be treated as optimization crite-
ria to be minimized or maximized. For example, with immuno-regulatory CpG

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 337–348, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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motifs in mammalian expression vectors [13] it is desirable to minimize immuno-
inhibitory elements and maximize immuno-stimulatory motifs. In the remainder
of this work, we will refer to inclusion or exclusion of motifs, via silent mutation,
as motif engineering.

A number of published software tools are capable of codon optimization, in-
cluding DNA Works [8], Codon Optimizer [2], GeMS [9], Gene Designer [17],
JCat [4], OPTIMIZER [12], the Synthetic Gene Designer [18], UpGene [3] and
a method by Satya et. al [13]. Some of these methods also consider the other
problem considered here, motif engineering. Of these, only the method of Satya
et. al provides a mathematical guarantee of finding an optimal solution when
one exists. However, their method – based on the graph theoretic approach of
finding a critical path – runs in O(n2) time and space, where n is the length
of the DNA sequence being optimized. In this work, we propose the first linear
time and space codon optimization algorithm, which is guaranteed to find an op-
timal solution that also satisfies motif engineering constraints. We have focused
our attention on optimizing codon usage according to the Codon Adaptation
Index (CAI). The index, originally proposed by Sharp and Li [14], is based on
the premise of each amino acid having a ‘best’ codon for a particular organism.
This perspective evolved from the observation that protein expression is higher
in genes using codons of high fitness and lower in genes using rare codons [6]. It
is believed that this is due to the relative availability of tRNAs within a cell.

We also provide an experimental study of the performance of our algorithm on
a biological data set comprising 3,157 coding sequence regions of the GENECODE
subset of the Encode dataset [15].

The remainder of this paper is structured as follows. In the Preliminaries
section, we formally define the problem of codon optimization. We detail the
general objectives of the problem, and formalize the goals of motif engineering.
We then present our algorithm, providing a proof of correctness and time and
space analysis. In the Empirical Results section, we describe the performance
of our algorithm, both in terms of run-time efficiency and also in terms of the
quality of optimization achieved. Finally, we conclude with a summary of our
major findings and directions for future work.

2 Preliminaries

A DNA strand is a string over the alphabet of DNA. A codon is a triple over
the DNA alphabet and therefore there are at most 43 = 64 distinct codons.
An amino acid sequence is a string over the alphabet of amino acids, ΣAA =
{Ala, Arg, Asn,. . . ,Tyr,V al,stop}, with each symbol representing an amino acid
and the special symbol ‘stop’ denoting a string terminal. We assume there is a
predetermined ordering of amino acids, for example, lexicographic.

Therefore, we can represent an amino acid sequence A as a sequence of in-
tegers, with A = α1, α2, . . . , α|A|, where 1 ≤ αk ≤ 21, for 1 ≤ k ≤ |A|. We
denote the ith amino acid by λ(i). The genetic code is a mapping between amino
acids and codons. However, as there are 64 possible codons and only 20 amino
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Trp His Arg Trp

TGG CAC

CAT

AGA

AGG

CGA

CGC

CGG

CGT

TGG

Fig. 1. Shown above is an instance consisting of four amino acids, a forbidden set
F = { CGC, CGA, CGG, ACC, TAG }, a desired set D = { TTG, GGT, CCG }, and therefore
k = 1. Arginine has six corresponding codons, however, three of them appear in F and
are shown with red boxes. A valid codon assignment for this instance must contain no
occurrence of a forbidden motif and one occurrence of a desired motif. There are two
valid codon assignments for this problem instance, shown as paths with bold edges.
The top (bottom) path denotes an assignment containing the desired motif GGT (TTG).

acids (plus one stop symbol), the code is degenerate, resulting in a one-to-many
mapping from each amino acid to a set of corresponding codons.

We define |λ(i)| to be the number of codons corresponding to the ith amino
acid and λj(i) to be the jth such codon, 1 ≤ j ≤ |λ(i)|, where again we use
lexicographic ordering. Therefore, we can define a codon design, with respect
to an amino acid sequence, as a sequence of codon indices. Again consider the
problem instance in Figure 1. For the Arginine amino acid (Arg) which is the
second amino acid in lexicographic order, |λ(2)| = 6 and λ3(2) is the codon CGA.
The DNA sequence TGA CAC CGA TGG can be represented by the codon index
sequence S = 1, 1, 3, 1.

A codon’s frequency is the number of times that it appears in nature, divided
by the total number of times that all codons corresponding to the same amino
acid appear in nature. By “in nature”, we mean codon frequencies present in
some reference sequence or set of sequences such as a genome or set of genomes.
As an example, if for some amino acid index i, |λ(i)| = 2, and the codon λ1(i) is
observed 37 times in nature, while λ2(i) is observed 63 times, we can define the
frequency of λ1(i) to be 37

37+63
= 0.37. Let ρj(i) denote the frequency of the jth

codon of the ith amino acid, 1 ≤ j ≤ |λ(i)|. Note that
∑|λ(i)|

j=1 ρj(i) = 1.0, for any
i, assuming λ(i) is in the reference set. In the example above, we say that λ2(i)
is the most frequent codon. Note that it is possible for more than one codon to
have this property.
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A codon’s fitness is the number of times that it appears in nature, divided by
the number of occurrences of the corresponding most frequent codon (originally
referred to as the relative adaptiveness of a codon [14]). Let τj(i) denote the
fitness value of the jth codon of the ith amino acid. Returning to our previous
example, if the ith amino acid has two codons with frequencies ρ1(i) = 0.37 and
ρ2(i) = 0.63, then their fitness values, denoted by τ1(i) and τ2(i) respectively,
are 0.37/0.63 ≈ 0.59 and 0.63/0.63 = 1.0. Note that a most frequent codon will
always have a fitness value of 1.0.

Motif Engineering. We focus our attention on designing codon sequences
which minimize occurrences of forbidden motifs from a predetermined set, F ,
while maximizing occurrences of desired motifs from a predetermined set, D. A
codon design – a sequence of codon assignments – is said to be valid with respect
to an amino acid sequence it codes for if it satisfies the following constraints,
in order: the DNA sequence corresponding to the codon design (1) contains the
minimum possible number of forbidden motifs, and (2) contains the maximum
possible number of desired motifs, given that (1) is satisfied. It is important to
recognize that a valid design does not necessarily guarantee that the number of
occurrences of desired motifs is the maximum number possible, of all possible
codon designs. Again, consider the problem instance of Figure 1. Two codon de-
signs result in a minimum number of forbidden motif occurrences (none), shown
with paths having bold edges. Both of these paths also contain one occurrence
of a desired motif. The top (bottom) path denotes an assignment containing the
desired motif GGT (TTG). Therefore, a valid codon design for this instance, by
our previous definition, contains no forbidden motifs and one desired motif. No-
tice that the DNA sequence TGG CAC CGG TGG, corresponding to a codon design
S = 1, 1, 5, 1, actually contains more desired motifs (two) than a valid codon
design; however, it does contain one forbidden motif and therefore cannot be
valid.

We now develop some notation for motif engineering. For a sequence of
amino acid indices A = α1, α2, . . . , α|A|, a corresponding codon design S =
c1, c2, . . . , c|A|, a set of forbidden motifs F and a set of desired motifs D, let
MF(λci(αi) . . . λcj (αj)) and MD(λci(αi) . . . λcj (αj)) be the number of occur-
rences of forbidden motifs and desired motifs, respectively, in the DNA sequence
λci

(αi) . . . λcj
(αj), where j ≥ i. For convenience in our algorithms, we also in-

troduce M ′
F (λci

(αi) . . . λcj
(αj)) and M ′

D(λci
(αi) . . . λcj

(αj)) which respectively
determine the number of forbidden and desired motifs in λci

(αi) . . . λcj
(αj) that

end within the last codon position (the last 3 bases), here indexed by j. For
instance consider the codon design S = 1, 1, 5, 1 of the problem instance in Fig-
ure 1. MD(TGGCACCGGTGG) = 2 as it contains the motifs CCG and GGT, however,
M ′

D(TGGCACCGGTGG) = 1 as only the motif GGT ends within the last codon.
In practice, forbidden and desired motifs are short and we assume their length

is bounded by a constant, g [13].
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Observation 1. If the largest forbidden or desired motif is of length g, then
any forbidden or desired motif can span at most k+1 consecutive codons, where
k = �g/3�.

Codon Optimization. The codon adaption index (CAI) is a metric defined
in terms of the relative fitness of codons constituting a codon design. For some
codon design S = c1, c2, . . . , c|A|, which correctly codes for a desired amino acid
sequence A = α1, α2, . . . , α|A|, the CAI value for S with respect to A, CAI(S,A),
can be calculated as in Eqn. (1). Based on this definition, if S consists only of
most frequent codons, it would have a CAI value of 1.0. Intuitively, the higher
the CAI value, the better.

CAI(S,A) =

⎛
⎝ |A|∏
i=1

τci(αi)

⎞
⎠

1
|A|

(1)

With the previously defined definitions, notation, and optimization criteria, we
now formally define the problem of codon optimization with motif engineering.

The CAI Codon Optimization Problem with Motif Engineering
Instance: Amino acid sequence represented by the sequence of indices A =
α1, α2, . . . , α|A|, a set of forbidden motifs F , and a set of desired motifs D.

Problem: Find a codon design S∗, with |S∗| = |A|, corresponding to A such that
S∗ is valid, with respect to F and D, and CAI(S∗, A) = max{CAI(S,A)|S ∈
S(A)}, where S(A) is the set of all valid codon designs corresponding to A. S∗

is an optimal codon design with respect to the CAI measure.

3 A DP Algorithm for CAI Optimization

We now propose a linear time and space dynamic programming algorithm guar-
anteed to maximize the CAI measure, such that the codon design is valid. In
terms of efficiency, this is a direct improvement in both run-time and space over
the current state-of-the-art, previously proposed by Satya et al. [13]. Although
we have chosen to first ensure forbidden motifs are minimized, then desired mo-
tifs maximized and finally the CAI value maximized, it should be clear that the
algorithm we present can be adapted to optimize these criteria in any order.

One necessary feature of a codon optimization algorithm is an efficient means
to detect if a forbidden motif from F , or a desired motif from D, is present in a
potential design. For both algorithms proposed in this work, we utilize an Aho-
Corasick search for this purpose. Briefly, the Aho-Corasick algorithm builds a
keyword tree (trie) for F and transforms the structure into an automaton with
the addition of failure links. Space and time complexity for building the initial
structure is O(h), where h is the sum of the lengths of the motifs in F . Queries
to determine if a sequence b contains any forbidden motif take O(|b|) time [1].
Likewise, a second tree is constructed for the desired motifs in D. For a detailed
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description of the algorithm and existing applications of its use in computational
biology, see Gusfield [5]. We note that Satya et. al [13] use the same approach for
motif detection in their θ(n2) algorithm. We note that any dictionary matching
algorithm can be employed for the same task; however, Aho-Corasick automata
were chosen due to their simpler implementation.

We first define three quantities that will be important in describing our algo-
rithm. The first quantity, F ici−k+1,...,ci−1,ci

, denotes the minimum possible number
of forbidden motifs in a DNA sequence which codes for an amino acid sequence
A = α1, α2, . . . , αi, given that the last k codons (of i total codons) have indices
denoted as ci−k+1, . . . , ci−1, ci. Similarly, the second quantity, Di

ci−k+1,...,ci−1,ci
,

denotes the maximum possible number of desired motifs, among those sequences
which contain a minimum number of forbidden motifs. P ici−k+1,...,ci−1,ci

denotes
the maximum possible CAI score among all valid sequences.

Our algorithm stores a k-dimensional entry for each position i, k ≤ i ≤ |A|, of
the input amino acid sequence, where k = �g/3� and g is the constant bounding
the length of any forbidden or desired motif. The base case occurs when i = k
and is computed as follows. Every combination of codons for the first k amino
acids is evaluated to determine, independently, the number of forbidden and
desired motifs fully contained within the k consecutive codons (Eqn. (2) and
Eqn. (3), respectively) and the CAI value (Eqn. (4)).

F kc1,c2,...,ck−1,ck
= MF

(
λc1(α1)λc2(α2) . . . λck−1(αk−1)λck

(αk)
)

(2)

Dk
c1,c2,...,ck−1,ck

= MD
(
λc1(α1)λc2(α2) . . . λck−1(αk−1)λck

(αk)
)

(3)

P kc1,c2,...,ck−1,ck
=

k∏
i=1

(τci(αi)) (4)

The recursive case occurs for i > k. By Observation 1, a forbidden motif could
span k + 1 codons. Therefore, it is necessary to evaluate the last k + 1 codons
of a potential design to ensure codons are selected which 1) minimize forbidden
motifs, then 2) maximize desired motifs, then 3) maximize the CAI score.

For any arbitrary assignment of the last k codons, we select the codon pre-
ceding them, denoted by the index ci−k, such that the sum of forbidden motifs
ending at position i− 1, F i−1

ci−k,...,ci−2,ci−1
, and the count of new forbidden motifs

which end in the new codon ci, determined by the function M ′
F , is minimized.

The number of forbidden motifs is recorded.
F ici−k+1,...,ci−1,ci

= min1≤ci−k≤|λ(αi−k)|{
F i−1
ci−k,...,ci−2,ci−1

+M ′
F
(
λci−k

(αi−k) . . . λci−1(αi−1)λci(αi)
)}

(5)

Similarly, D is calculated in the same manner, after ensuring that the minimal
number of forbidden motifs criteria is first satisfied.
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Di
ci−k+1,...,ci−1,ci

= max1≤ci−k≤|λ(αi−k)|⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ , if F i−1
ci−k,...,ci−2,ci−1

+
M ′

F
(
λci−k

(αi−k) . . . λci−1(αi−1)λci(αi)
)

	= F ici−k+1,...,ci−1,ci

Di−1
ci−k,...,ci−2,ci−1

+M ′
D
(
λci−k

(αi−k) . . . λci(αi)
) , otherwise

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(6)

Likewise, P is calculated to first ensure forbidden motifs are minimized, followed
by desired motifs being maximized. Of these possible codon assignments, the one
with the highest CAI value is selected and the score recorded.
P ici−k+1,...,ci−1,ci

= max1≤ci−k≤|λ(αi−k)|
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ , if
F i−1

ci−k,...,ci−2,ci−1+

M ′
F
(
λci−k (αi−k) . . . λci(αi)

) �= F i
ci−k+1,...,ci−1,ci

∨Di−1
ci−k,...,ci−2,ci−1

+M ′
D
(
λci−k(αi−k) . . . λci(αi)

) �= Di
ci−k+1,...,ci−1,ci

τci(αi)× P i−1
ci−k,...,ci−2,ci−1 , otherwise

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(7)

Eqn. (10) determines the optimal CAI score up to position i of the input amino
acid sequence. Therefore, the optimal CAI value of some input sequence A of

length |A| is given by P̃ |A|
k , where

F̃ ik = min
1≤ci≤|λ(αi)|

1≤ci−1≤|λ(αi−1)|
...

1≤ci−k+1≤|λ(αi−k+1)|

{
F ici−k+1,...,ci−1,ci

}
(8)

D̃i
k = max

1≤ci≤|λ(αi)|
1≤ci−1≤|λ(αi−1)|

...
1≤ci−k+1≤|λ(αi−k+1)|

{
Di
ci−k+1,...,ci−1,ci

, if F ici−k+1,...,ci−1,ci
= F̃ ik

−∞ , otherwise

}
(9)

P̃ ik = max
1≤ci≤|λ(αi)|

1≤ci−1≤|λ(αi−1)|
...

1≤ci−k+1≤|λ(αi−k+1)|

⎧⎪⎨
⎪⎩
P ici−k+1,...,ci−1,ci

, if F ici−k+1,...,ci−1,ci
= F̃ ik

∧Di
ci−k+1,...,ci−1,ci

= D̃i
k

−∞ , otherwise

⎫⎪⎬
⎪⎭ (10)

The correctness of the algorithm can be shown by induction on the position in
the amino acid sequence. Lemma 1 shows that Eqn. (7) gives an optimal score
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under the assumption that the previous k codons are fixed. Since Eqn. (10)
evaluates all combinations of the previous k codons, Theorem 1 states that an
optimal design must be found, if one exists.

Lemma 1. P ici−k+1,,...,ci−1,ci
of Eqn. (7) correctly determines the score of the

optimal valid codon design up to the ith codon position, having the codon assign-
ment ci−k+1, . . . , ci−1, ci for the last k codons, given that the maximum length
of any motif is 3k.

Proof. We will argue by induction. The base case (i = k) is trivially valid as
Eqn. (4) correctly determines the CAI score of the first k codons, by definition.

Assume P i−1
c′i−k,...,c

′
i−2,c

′
i−1

correctly determines the score of an optimal valid
codon assignment, up to position i−1, having the codon assignment c′i−k, . . . , c

′
i−2,

c′i−1 for the last k codons. Similarly, assume F i−1 and Di−1 are also correct for
the corresponding codon assignment. When moving one position ahead, from
i − 1 to i, we must consider the case of any new motifs we may introduce. By
Observation 1, any new motif which ends within codon ci could not extend
past codon ci−k. There are at most 6 possible codon assignments to position
ci−k that can directly precede a specific codon assignment ci−k+1, . . . , ci−1, ci
ending at position i as there are at most 6 codons for any amino acid. There-
fore, the optimal assignment(s) to ci−k must be a subset of these possibilities.
M ′

F
(
λci−k

(αi−k) . . . λci−1(αi−1)λci(αi)
)

calculates the number of new forbidden
motifs introduced in the codon assignment ci−k, . . . , ci−1, ci which end in codon
ci. By our assumption, F i−1

ci−k,...,ci−2,ci−1
correctly determines the minimum num-

ber of forbidden motifs having codon assignment ci−k, . . . , ci−2, ci−1, ending
at position i − 1. Therefore, the sum of these two quantities correctly deter-
mines the minimum number of forbidden motifs. As codons ci−k+1, . . . , ci−1, ci
are fixed, and Eqn. (5) evaluates every possible assignment to ci−k to deter-
mine a minimum, then it must be the case that F ici−k+1,...,ci−1,ci

is the mini-
mum number of forbidden motifs up to position i, having the codon assignment
ci−k+1, . . . , ci−1, ci for the last k codons. We argue similarly for Di

ci−k+1,...,ci−1,ci

in Eqn. (6) with the addition that any assignment of ci−k also be forbidden motif
minimal ensured by line 1 of the equation.

Finally, consider P ici−k+1,...,ci−1,ci
. Line 1 of Eqn. (10) assigns the value −∞ if

the codon assignment ci−k, . . . , ci−1, ci is not valid. For all assignments which are
valid, the equation (line 2) determines the CAI score by multiplying the optimal
score up to position i−1 (guaranteed optimal by our assumption) with the fitness
of the codon represented by ci for amino acid αi. Since every assignment to codon
ci−k is evaluated and the maximum is determined, then it must be the case that
P ici−k+1,...,ci−1,ci

correctly determines the score of the optimal valid codon design
up to the ith codon position, having the codon assignment ci−k+1, . . . , ci−1, ci
for the last k codons, given that the maximum length of any motif is 3k. ��

Theorem 1. P̃ ik of Eqn. (10) correctly determines the score of an optimal valid
codon design, with respect to CAI value, up to the ith codon, given that the
maximum length of any motif is 3k.
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Proof. Lemma 1 guarantees that P ici−k+1,...,ci−1,ci
correctly determines the score

of the optimal valid codon design up to the ith codon, having the codon assign-
ment ci−k+1, . . . , ci−1, ci for the last k codons, given that the maximum length
of any motif is 3k. Therefore, if every possible assignment of the last k codons
is evaluated, a maximum of 6k possibilities, the score of an optimal valid codon
design ending at position i can easily be determined.

First, consider that F̃ ik correctly determines the minimum number of forbidden
motifs possible, up to position i, by evaluating all possible assignments of that
last k codons. Similarly, D̃i

k evaluates the maximum number of desired motifs
possible, by first ensuring that the minimum number of forbidden motifs criteria
is satisfied. Finally, by evaluating all possible codon assignments of the last k
codons, and determining the maximum score of all those which are valid, P̃ ik
must determine the optimal valid CAI score, up to position i. ��
Under the assumption that the maximum length of any motif is constant, The-
orem 2 proves that the overall time and space complexity is linear.

Theorem 2. The dynamic programming algorithm for CAI optimization finds
a valid nucleic acid sequence design for an amino acid sequence A in O(|A|+h)
time and O(|A| + h) space, where h is the total length of forbidden and desired
motifs and all motifs are of constant length.

4 Empirical Results

Data Set. We use a filtered set of the 3,891 CDS (coding DNA sequence) regions
of the GENECODE subset of the Encode dataset [15] (version hg17 NCBI build
35). This curated dataset comprises approximately 1% of the human genome and
is representative of several its characteristics such as distribution of gene lengths
and GC composition (54.31%). After filtering any sequences less than 75 bases in
length, the remaining 3,157 CDS regions range in length from 75 to 8186 bases,
averaging 173 bases with 267 bases standard deviation.

Codon Frequencies. In all cases, we use the codon frequencies of Escherichia
coli as reported by the Codon Usage Database [http://www.kazusa.or.jp/codon].

Implementation and Hardware. All algorithms were implemented in C++
and compiled with g++ (GCC 4.1.0). Experiments were run on our reference
Pentium IV 2.4 GHz processor machines, with 1GB main memory and 256 Kb
of CPU cache, running SUSE Linux version 10.1.

4.1 Results

To evaluate the effectiveness and efficiency of our algorithm, a forbidden and
desired motif set were constructed which could be considered typical in practice.
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It is common for a gene synthesis experiment to use a single restriction enzyme.
Furthermore, for reasons affecting gene expression, a common task is the removal
of polyhomomeric regions (consecutive repeat region of identical nucleotides).
Therefore, we have created a forbidden motif set containing ten elements includ-
ing GAGTC, GACTC, AAAA, TTTT, GGGG, and CCCC where GAGTC is the motif for the
MlyI restriction enzyme, GACTC is its reverse complement and the other motifs
ensure no polyhomomeric regions greater than length three are permitted. The
other four elements of the forbidden motif set (not shown) are immuno-inhibitory
motifs originally used in the work of Satya et. al [13]. That work also used a
desired motif set consisting entirely of thirty-three immuno-stimulatory motifs.
We use this same desired motif set in our study.

Performance of the CAI Optimization Algorithm

Results are shown for all 3,157 sequences in Figure 2. On the left side of the
figure, the difference in optimal CAI value and the original CAI value of each se-
quence, when forbidden motifs are minimized, is plotted against sequence length.
Desired motifs were not considered. For all sequences, the CAI value is improved
compared with the original, with an average improvement of approximately 0.27.
Shown on the right is the difference in CAI value for each sequence when the
forbidden motifs are minimized and then the desired motifs are maximized. For
this case, the average improvement of CAI value drops to 0.18, with only 12
sequences ( 0.4%) reporting a worse CAI value than the original. A summary
of CAI statistics is presented in Table 1. In virtually all cases, forbidden motifs
were eliminated entirely. Less than 2% of all sequences contained more than one
forbidden motif after optimization, with only 0.6% containing more than two.
On average 10 motifs were added to optimized sequences, when desired motifs
were considered. These results demonstrate that it is possible to engineer motifs
while still optimizing codon usage considerably. The runtime of the algorithm
scales linearly with sequence length as would be expected. Considering desired
motifs, in addition to forbidden motifs, increases run-time by a small constant

Table 1. The mean values and standard deviations (averaged over 3,157 sequences)
of CAI score, number of forbidden motifs, and number of desired motifs are shown
for the original sequences (wild-types), the optimized sequences with forbidden motifs
minimized and the optimized sequences with forbidden motifs minimized and then
desired motifs maximized.

motif sets CAI value
(std. dev.)

# forbidden
(std. dev.)

# desired
(std. dev.)

none (wild-types) 0.6477 (0.06) 9.2372 (16.24) 0.4869 (1.06)
forbidden 0.9161 (0.04) 0.1384 (0.45) 0 (0.00)
forbidden and desired 0.8280 (0.05) 0.1384 (0.45) 10.1324 (14.84)
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Fig. 2. Results are shown for the difference between the optimal CAI value and the
original CAI value, plotted against sequence length, for each of the 3,157 sequences. On
the left, results are shown when only the forbidden motif set is considered. The right
side shows the results when both the forbidden and desired motif sets are considered.

factor, on average. In the worst case, the algorithm terminates in 0.43 CPU
seconds for the longest sequence (8,141 bases).

5 Conclusions

In this work we have presented the first linear time and space algorithm for the
problem of optimizing the codon adaptation index (CAI) value of a gene. The
algorithm provides a guarantee that codon designs will be found which have a
minimum number of forbidden motifs from some user defined set. The algorithm
is also capable of adding desirable motifs, when applicable. A formal proof of
correctness and time and space analysis was given. An extensive empirical anal-
ysis of the algorithm has shown it to be highly effective and efficient in practice.
An efficient algorithm is a crucial first step towards designing genes while con-
sidering other important sequence features. For instance, designing genes with a
guarantee that the resulting nucleic acid sequence does not form stable nucleic
acid secondary structure is an interesting future direction, and one that may
greatly effect translational efficiency.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their constructive suggestions to improve the presentation of this manuscript.
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An Algorithm for Road Coloring
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Abstract. A coloring of edges of a finite directed graph turns the graph
into a finite-state automaton. The synchronizing word of a deterministic
automaton is a word in the alphabet of colors (considered as letters) of its
edges that maps the automaton to a single state. A coloring of edges of a
directed graph of uniform outdegree (constant outdegree of any vertex)
is synchronizing if the coloring turns the graph into a deterministic finite
automaton possessing a synchronizing word.

The road coloring problem is the problem of synchronizing coloring
of a directed finite strongly connected graph of uniform outdegree if the
greatest common divisor of the lengths of all its cycles is one. The prob-
lem posed in 1970 has evoked noticeable interest among the specialists
in the theory of graphs, automata, codes, symbolic dynamics as well as
among the wide mathematical community.

A polynomial time algorithm of O(n3) complexity in the worst case
and quadratic in the majority of studied cases for the road coloring of
the considered graph is presented below. The work is based on the re-
cent positive solution of the road coloring problem. The algorithm was
implemented in the freeware package TESTAS.

Keywords: algorithm, road coloring, graph, deterministic finite
automaton, synchronization.

Introduction

The road coloring problem was stated almost 40 years ago [2], [1] for a strongly
connected directed finite deterministic graph of uniform outdegree where the
greatest common divisor (gcd) of the lengths of all its cycles is one. The edges of
the graph being unlabelled, the task is to find a labelling of the edges that turns
the graph into a deterministic finite automaton possessing a synchronizing word.
The outdegree of the vertex can be considered also as the size of an alphabet
where the letters denote colors.

The condition on gcd is necessary [1], [9]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets
V1, V2, ..., Vk = V1 (k > 2) such that every edge which begins in Vi has its end
in Vi+1 [9], [16].

Together with the Černy conjecture [7], [8], [15], [20] the road coloring problem
used to belong to the most fascinating problems in the theory of finite automata.

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 349–360, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The popular Internet Encyclopedia ”Wikipedia”mentioned it many years on the
list of the most interesting unsolved problems in mathematics.

For some results in this area, see [5], [6], [10], [11], [12], [13], [14], [16], [17],
[19]. A detailed history of investigations can be found in [6]. The final positive
solution of the problem is stated in [24].

An algorithm for road coloring oriented on DNA computing [13] is based on the
massive parallel computing of sequences of length O(n3). The implementation
of the algorithm as well as the implementation of effective DNA computing is
still an open problem.

Another new algorithm for road coloring (ArXiv [4]) as well as our algo-
rithm below is based on the proof of [24]. This proof is constructive and leads
to an algorithm that finds a synchronized labelling with cubic worst-case time
complexity. Both of the above mentioned algorithms use concepts and ideas of
the considered proof together with the concepts from [9], [14], but use different
methods to reduce the time complexity. A skillful study of the graph was added
in [4].

The presented algorithm for the road coloring (see also ArXiv [22]) reduces
the time complexity with the help of the study of two cycles with common vertex
(Lemma 10). It gives us the possibility to reduce quite often the time complexity.

The theorems and lemmas from [24] and [23] are presented below without
proof. The proofs are given only for new (or modified) results. The time com-
plexity of the algorithm for a graph with n vertices and d outgoing edges of any
vertex is O(n3d) in the worst case and quadratic in the majority of the studied
cases. The space complexity is quadratic. This is the first embedded algorithm
for road coloring.

The description of the algorithm is presented below together with some pseudo
codes of the implemented subroutines. The algorithm is implemented in the free-
ware package TESTAS (http://www.cs.biu.ac.il/∼trakht/syn.html) [25]. The
easy access to the package ensures the possibility to everybody to verify the
considered algorithm.

The role of the road coloring is substantial also in education. ”The Road Col-
oring Conjecture makes a nice supplement to any discrete mathematics course”
[18]. The realization of the algorithm is demonstrated on the basis of a linear
visualization program [25] and can analyze any kind of input graph.

Preliminaries

As usual, we regard a directed graph with letters assigned to its edges as a finite
automaton, whose input alphabet Σ consists of these letters. The graph is called
a transition graph of the automaton. The letters from Σ can be considered as
colors and the assigning of colors to edges will be called coloring.

A finite directed strongly connected graph with constant outdegree of all its
vertices where the gcd of lengths of all its cycles is one will be called an AGW
graph (as introduced by Adler, Goodwyn and Weiss).

We denote by |P | the size of the subset P of states of an automaton (of vertices
of a graph).
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If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈
Σ+ we shall write q = ps.

Let Ps be the set of states ps for p ∈ P , s ∈ Σ+. For the transition graph Γ
of an automaton, let Γs denote the map of the set of states of the automaton.

A word s ∈ Σ+ is called a synchronizing word of the automaton with transition
graph Γ if |Γs| = 1.

A coloring of a directed finite graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.

Bold letters will denote the vertices of a graph and the states of an automaton.
A pair of distinct states p,q of an automaton (of vertices of the transition

graph) will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite
case, if ps �= qs for any s, we call the pair a deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for any
word u the pair pu,qu is also synchronizing [9], [14].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

The subset of states (of vertices of the transition graph Γ ) of maximal size
such that every pair of states from the set is a deadlock will be called an F -clique.

1 Some Properties of F -Cliques and Stable Pairs

The road coloring problem was formulated for AGW graphs [1] and only such
graphs are considered in Sections 1 and 2.

Let us recall that a binary relation ρ on the set of the states of an automaton
is called congruence if ρ is equivalence and for any word u from p ρ q follows pu
ρ qu. Let us formulate an important result from [9], [14] in the following form:

Theorem 1. [14] Let us consider a coloring of an AGW graph Γ . Let ρ be
the transitive and reflexive closure of the stability relation on the obtained au-
tomaton. Then ρ is a congruence relation, Γ/ρ is also an AGW graph and a
synchronizing coloring of Γ/ρ implies a synchronizing recoloring of Γ .

Lemma 1. [24], [9] Let F be an F -clique of some coloring of an AGW graph
Γ . For any word s the set Fs is also an F -clique and any state p belongs to
some F -clique.

Lemma 2. Let A and B (with |A| > 1) be distinct F -cliques of some coloring
of an AGW graph Γ such that |A| − |A ∩ B| = 1. Then for all p ∈ A \ A ∩ B
and q ∈ B \A ∩B, the pair (p,q) is stable.

Proof. By the definition of an F -clique, |A| = |B| and |B| − |A ∩ B| = 1, too.
If the pair of states p ∈ A \ B and q ∈ B \ A is not stable, then for some
word s the pair (ps,qs) is a deadlock. Any pair of states from the F -clique
A and from the F -clique B, as well as from the F -cliques As and Bs, is a
deadlock. So any pair of states from the set (A ∪ B)s is a deadlock. One has
|(A∪B)s| = |As|+1 = |A|+1 > |A|. So the size of the set (A∪B)s of deadlocks
is greater than the maximal size of F -clique. Contradiction.
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Lemma 3. If some vertex of an AGW graph Γ has two incoming bunches,
then the origins of the bunches form a stable pair by any coloring.

Proof. If a vertex p has two incoming bunches from q and r, then the couple q,
r is stable for any coloring because qσ = rσ = p for any σ ∈ Σ.

2 The Spanning Subgraph of an AGW Graph

Definition 4. Let us call a subgraph S of an AGW graph Γ , a spanning sub-
graph of Γ , if S contains all vertices of Γ and if each vertex has exactly one
outgoing edge. (In usual graph-theoretic terms it is a 1-outregular spanning sub-
graph).

A maximal subtree of a spanning subgraph S with its root on a cycle from S
and having no common edges with the cycles of S is called a tree of S.

The length of a path from a vertex p through the edges of the tree of the
spanning set S to the root of the tree is called a level of p in S.

A tree with a vertex of maximal level is called a maximal tree.

Remark 5. Any spanning subgraph S consists of disjoint cycles and trees with
roots on the cycles. Any tree and cycle of S is defined identically. The level of the
vertices belonging to some cycle is zero. The vertices of the trees except the roots
have positive level. The vertices of maximal positive level have no incoming edge
in S. The edges labelled by a given color defined by any coloring form a spanning
subgraph. Conversely, for each spanning subgraph, there exists a coloring and
a color such that the set of edges labelled with this color corresponds to this
spanning subgraph.
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Lemma 6. [24] Let N be a set of vertices of maximal level in some tree of the
spanning subgraph S of an AGW graph Γ . Then, via a coloring of Γ such that
all edges of S have the same color α, for any F -clique F holds |F ∩N | ≤ 1.

Lemma 7. [24] Let Γ be an AGW graph with a spanning subgraph R which
is a union of cycles (without trees). Then the non-trivial graph Γ has another
spanning subgraph with exactly one maximal tree.

Lemma 8. Let R be a spanning subgraph of an AGW graph Γ . Let T be a
maximal tree of R with a vertex p of maximal positive level L and with a root r
on a cycle H of R. Let us change the spanning subgraph by means of the following
flips:
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1)an edge ā = a → p replaces the edge d̄ = a → d of R for appropriate
vertices a and d �= p,

2) replacing edge b̄ = b → r of T by an edge b → x for appropriate vertices
b and x �= r,

3) replacing edge c̄ = c→ r of H by an edge c→ x for appropriate vertices c
and x �= r.

Suppose that one or two consecutive flips do not increase the number of
edges in cycles (Condition∗) and no vertex of Γ has two incoming bunches
(Condition∗∗). Then there exists a spanning subgraph with a single maximal non-
trivial tree.

Proof. In view of Lemma 7, suppose that R has non-trivial trees. Further con-
sideration is necessary only if the maximal tree T is not single.
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Our aim is to increase the maximal level L using the three aforesaid flips. If
one of the flips does not succeed, let us go to the next, assuming the situation in
which the previous fails, and excluding the successfully studied cases. We check
at most two flips together. Let us begin from

the edge ā) Suppose first a �∈ H. If a belongs to the path in T from p to
r then a new cycle with part of the path and the edge a → p is added to R
extending the number of vertices in its cycles in spite of Condition∗ of lemma.
In the opposite case the level of a is L+ 1 in a single maximal tree.

So let us assume a ∈ H. In this case the vertices p, r and a belong to a cycle
H1 of a new spanning subgraph R1 obtained by removing d̄ and adding ā. So
we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of the path from r
to a in H is r1, then H1 has length L+ r1 + 1. A path from r to d of the cycle
H remains in R1. Suppose that its length is r2. So the length of the cycle H is
r1 + r2 + 1. The length of the cycle H1 is not greater than the length of H in
view of Condition∗. So r1 + r2 + 1 ≥ L+ r1 + 1, whence r2 ≥ L. If r2 > L, then
the length r2 of the path from d to r in a tree of R1 (as well as the level of d)
is greater than L. The tree containing d is the desired single maximal tree.

So we can assume for further consideration that L = r2 and a ∈ H . An
analogous statement can be stated for any maximal tree.

The edge b̄) Suppose that the set of outgoing edges of the vertex b is not a
bunch. So one can replace in R the edge b̄ by an edge v̄ = b→ v (v �= r).

The vertex v could not belong to T because in this case a new cycle is added
to R in spite of Condition∗.
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If the vertex v belongs to another tree of R but not to the cycle H , then T is
a part of a new tree T1 with a new root of a new spanning subgraph R1 and the
path from p to the new root has a length greater than L. Therefore the tree T1

is the unique maximal tree in R1.
If v belongs to some cycle H2 �= H in R, then together with replacing b̄ by v̄,

we also replace the edge d̄ by ā. So we extend the path from p to the new root
v of H2 at least by the edge ā = a → p and there is a unique maximal tree of
level L1 > L which contains the vertex d.

Now it remains only the case when v belongs to the cycle H . The vertex p
also has level L in a new tree T1 with root v. The only difference between T and
T1 (just as between R and R1) is the root and the incoming edge of this root.
The new spanning subgraph R1 has the same number of vertices in their cycles
just as does R. Let r

′
2 be the length of the path from d to v ∈ H .

For the spanning subgraph R1, one can obtain L = r
′
2 just as it was done

earlier in the case of the edge ā) for R. From v �= r follows r
′
2 �= r2, though

L = r
′
2 and L = r2.

So for further consideration suppose that the set of outgoing edges of the
vertex b is a bunch to r.

The edge c̄) The set of outgoing edges of the vertex c is not a bunch in virtue
of Condition∗∗ (r has another bunch from b.)

Let us replace in R the edge c̄ by an edge ū = c → u such that u �= r. The
vertex u could not belong to the tree T because one has in this case a cycle with
all vertices from H and some vertices of T whence its length is greater than |H |
and so the number of vertices in the cycles of a new spanning subgraph grows
in spite of Condition∗.

If the vertex u does not belong to T , then the tree T is a part of a new tree
with a new root. The path from p to the new root is extended at least by a part
of H starting at the former root r. The new level of p therefore is maximal and
greater than the level of any vertex in another tree.

Thus in any case we obtain a spanning subgraph with a single non-trivial
maximal tree.

Lemma 9. For some coloring of any AGW graph Γ , there exists a stable pair
of states.

Proof. We exclude the case of two incoming bunches of a vertex in virtue of
Lemma 3. There exists a coloring such that for some color α, the corresponding
spanning subgraph R has maximum edges in cycles.

By Lemma 8, we must consider now a spanning subgraph R with a single
maximal tree T . Let the root r of T belong to the cycle C.

By Lemma 1, in a strongly connected transition graph for every word s and
F -clique F of size |F | > 1, the set Fs also is an F -clique of the same size and
for any state p there exists an F -clique F such that p ∈ F .

In particular, some F -clique F has a non-empty intersection with the set N
of vertices of maximal level L. The set N belongs to one tree, whence by Lemma
6 |N ∩ F | = 1. Let p ∈ N ∩ F .
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The word αL−1 maps F on an F -clique F1 of size |F |. One has |F1 \ C| = 1
because any sequence of length L− 1 of edges of color α in any tree of R leads
to a cycle. For the set N of vertices of maximal level, NαL−1 �⊆ C holds. So
|NαL−1 ∩ F1| = |F1 \ C| = 1, pαL−1 ∈ F1 \ C and |C ∩ F1| = |F1| − 1.

Let the integer m be a common multiple of the lengths of all considered cycles
colored by α. So for any r in C as well as in F1 ∩ C holds rαm = r. Let F2 be
F1α

m. We have F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus the two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common

vertices. So |F1 \ (F1 ∩ F2)| = 1, whence by Lemma 2, the pair of states pαL−1

from F1 \ (F1 ∩ F2) and q from F2 \ (F1 ∩ F2) is stable. It is obvious that
q = pαL+m−1.

Theorem 2. [24] Every AGW graph has a synchronizing coloring.

Theorem 3. [23] Let every vertex of a strongly connected directed graph Γ have
the same number of outgoing edges. Then Γ has synchronizing coloring if and
only if the greatest common divisor of lengths of all its cycles is one.

The goal of the following lemma is to reduce the complexity of the algorithm.

Lemma 10. Let Γ be an AGW graph having two cycles Cu and Cv. Suppose
that either Cu ∩Cv = {p1} or Cu ∩Cv = {pk,..., p1}, where all incoming edges
of pi develop a bunch from pi+1 (i < k).

Let u ∈ Cu and v ∈ Cv be the distinct edges of the cycles Cu and Cv leaving
p1. Let Ru be a spanning subgraph with all edges from Cu and Cv except u. The
spanning subgraph Rv is obtained from Ru by removing v and adding u.

Then at least one of two spanning subgraphs Ru, Rv has a unique maximal
tree whose root is p1.

Proof. Let us add to Ru the edge u and consider a set of trees with roots on
the cycles Cu and Cv. The trees have no common vertices and have no vertices
except a root on the cycles Cu and Cv. The same set of trees can be obtained
by adding the edge v to Rv.

Let us define the levels of vertices of a tree as in the case of a spanning
subgraph and consider the set of maximal trees (the trees with a maximal vertex
level).

If all maximal trees have a common root, then Ru (and also Rv) is a spanning
subgraph with a unique maximal tree.

If maximal trees have different roots, then let as take a maximal tree T with
root r such that the length of the path P from r to p1 on the cycle Cu (or Cv) is
maximal. If P belongs to Cu, then the tree T is extended by the path P , whence
Ru has a unique maximal tree. In the opposite case, Rv has a unique maximal
tree.

3 The Algorithm for Synchronizing Coloring

Let us start with transition graph of an arbitrary deterministic complete finite
automaton.
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3.1 Preliminary Steps

The study is based on Theorem 3. A synchronizing graph has a sink strongly
connected component (SCC). Our aim is to reduce the study to sink SCC (if
it exists) in order to remove non-synchronizing graphs without sink SCC and
then check the condition on gcd.

The function CheckSinkSCC verifies the existence of sink SCC. We use the
linear algorithm for finding strongly connected components SCC [3], [21].

Then we remove all SCC as having outgoing edges to other SCC. If only one
SCC remains then let us continue. In the opposite case a synchronizing coloring
does not exist.

We study a strongly connected graph (with one SCC). The function Find-
GCDofCycles finds the great common divisor (gcd) of lengths of cycles of the
automaton and verifies the necessary conditions of synchronizability (gcd = 1).

Let p be an arbitrary fixed vertex. Suppose d(p) = 1. Then we use a depth-
first search from p. For an edge r→ q where d(r) is already defined and d(q) is
not, suppose d(q) = d(r)+1. If d(q) is defined, let us add the non-zero difference
abs(d(q) − 1− d(r)) to the set D. The integer from D is a difference of lengths
of two paths from p to q. In a strongly connected graph, the gcd of all elements
of D is also a gcd of lengths of all cycles [2], [23].

If gcd = 1 for all integers from D, then the graph has synchronizing coloring.
In opposite case the answer is negative. So we reduce the investigation to an
AGW graph.

Let us proceed with an arbitrary coloring of such a graph Γ with n vertices
and constant outdegree d. The considered d colors define d spanning subgraphs
of the graph.

We keep the preimages of vertices and colored edges by any transformation
and homomorphism.

If there exists a loop in Γ around a state r, then let us color the edges of
a tree whose root is r with the same color as the color of the loop. The other
edges may be colored arbitrarily. The coloring is synchronizing [1]. The function
FindLoopColoring finds the coloring.

3.2 Help Subroutines

In the case of two incoming bunches of some vertex, the origins of these bunches
develop a stable pair by any coloring (Lemma 3). We merge both vertices in
the homomorphic image of the graph (Theorem 1) and obtain according to the
theorem a new AGW graph of a smaller size. The pseudo code of corresponding
procedure returns two such origins of bunches (a stable pair).

The linear search of two incoming bunches and of the loop can be made at
any stage of the algorithm.

The function HomonorphicImage of linear complexity reduces the size of
the considered automaton and its transition graph. The congruence classes of the
homomorphism are defined by a stable pair (Theorem 1). A new AGW graph of
a smaller size will be the output.
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The main part of the algorithm needs the parameters of the spanning sub-
graph: levels of all vertices, the number of vertices (edges) in cycles, trees, next
and former vertices. We keep the tree and the cycle of any vertex, the root of the
tree. We form the set of vertices of maximal level and the set of maximal trees.
The function FindParameters (spanning subgraph S, parameters) is linear
and used by any recoloring step.

The subroutine MaximalTreeToStablePair of linear complexity finds a
stable pair in a given spanning subgraph with unique maximal tree. The stable
pair consists of two beginnings of incoming edges of the root of the unique
maximal tree (Lemma 9).

3.3 A Possibility to Reduce the Complexity

Our algorithm as well as the algorithm of [4] is based on [24]. Only this section
essentially differs in both these papers.

If there are two cycles with one common vertex (path) then we use Lemma
10 and find a spanning subgraph with single maximal tree. Then after coloring
edges of spanning subgraph by a color α, we find a stable pair (beginnings of
two incoming edges to the root of the tree).

The function TwoCyclesWithIntersection as a rule returns a pair of cycles
with common vertex (path). The vast majority of digraphs contains such a pair
of cycles. The goal of the subroutine is to omit the cubic complexity of the
algorithm. The search of a stable pair is linear in this case and thus the whole
algorithm is quadratic.

TwoCyclesWithIntersection (graph G)
1 levels of all vertices first are negative
2 level(r) = 1 and add r to stack
3 for every vertex q from stack
4 do
5 for every letter β
6 do
7 add qβ to stack
8 if level(qβ) ≥ 0
9 level(qβ) =level(q) + 1
10 keep the cycle C of vertices qβ,q and break from both cycles
11 remove q from stack
12 for every vertex r
13 do
14 if r �∈ C level((r) = −1 (for a search of second cycle)
15 for every vertex q from cycle C
16 do
17 r = qα
18 for every letter β
19 do
20 if r �= qβ break



358 A.N. Trahtman

21 if r �= qβ break
22 add q to stack 1 (possible intersection of two cycles)
23 for every vertex r from stack 1
24 do
25 for every letter β
26 do
27 if level(rβ) < 0
28 level(rβ) =level(r) + 1
29 add rβ to stack 1
30 if rβ = q (found second cycle)
31 develop trees with roots on both cycles, find maximal trees
32 color the edge v from q on cycle of maximal tree by color 2
33 color the edges of trees and both cycles except v by color 1
34 FindParameters (spanning subgraph of color 1)
35 MaximalTreeToStablePair (subgraph, p, s)
36 return p, s (stable pair)
37 remove r from stack 1
38 return False

3.4 The Recoloring of the Edges

A repainting of the edges of the transition graph for to obtain a spanning sub-
graph with single maximal tree is a most complicated part of the algorithm. Let
us fix the spanning subgraph R of edges of a given color α. We consider the flips
from Lemmas 7 and 8. The flips change R. According to the Lemmas, after at
most 3d steps either the number of edges in the cycles is growing or there exists
a single maximal tree.

The subroutine of pseudo code Flips (spanning subgraph F ) returns either
a stable pair or enlarges the number of edges in cycles of the spanning sub-
graph. The subroutine uses linear subroutines FindParameters, Maximal-
TreeToStablePair and also has linear time complexity O(nd).

We repeat the procedure with pseudo code Flips for a new graph if the
number of edges in cycles after the flips grows. In the opposite case, we find a
stable pair and then a homomorphic image of a smaller size. For a graph of given
size, the complexity of this step is quadratic.

3.5 Main Procedure and Complexity

The Procedure Main uses all above-mentioned linear procedures and returns a
synchronizing coloring (if exists) of the graph.

Main()
1 arbitrary coloring of G
2 if False(CheckSinkSCC(graph G))
3 return False
4 if FindLoopColoring(F=SCC of G)
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5 return
6 if False(FindGCDofCycles(SCCF ))
7 return False
8 while |G| > 1
9 ifFindLoopColoring(F)
10 change the coloring of generic graph G
11 return
12 for every letter β
13 do
14 if FindTwoIncomingBunches(spanning subgraph,stable pair)
15 HomonorphicImage(automaton A,stable pair,new A)
16 FindParameters (A = new A)
17 break
18 while Flips(spanning subgraph F of color β) = GROWS
19 F = new F
20 if FindTwoIncomingBunches( F ,stable pair)
21 HomonorphicImage(automaton A,stable pair,new A)
22 FindParameters (A = new A)
23 break
24 MaximalTreeToStablePair (subgraph, stable pair)
25 HomonorphicImage(automaton A,stable pair,new A)
26 FindParameters (A = new A)
27 change the coloring of G on the base of the last homomorphic image

Some of above-mentioned linear subroutines are included in cycles on n and
d, sometimes twice on n. So the upper bound of the time complexity is O(n3d).

Nevertheless, the overall complexity of the algorithm in a majority of cases is
O(n2d). The upper bound O(n3d) of the time complexity is reached only if the
number of edges in the cycles grows slowly, the size of the automaton decreases
also slowly, loops do not appear and the case of two ingoing bunches emerges
rarely (the worst case). The space complexity is quadratic.
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Abstract. The guarding game is a game in which several cops has to
guard a region in a (directed or undirected) graph against a robber. The
robber and the cops are placed on vertices of the graph; they take turns in
moving to adjacent vertices (or staying), cops inside the guarded region,
the robber on the remaining vertices (the robber-region). The goal of the
robber is to enter the guarded region at a vertex with no cop on it. The
problem is to determine whether for a given graph and given number of
cops the cops are able to prevent the robber from entering the guarded
region. The problem is highly nontrivial even for very simple graphs. It is
known that when the robber-region is a tree, the problem is NP-complete,
and if the robber-region is a directed acyclic graph, the problem becomes
PSPACE-complete [Fomin, Golovach, Hall, Mihalák, Vicari, Widmayer:
How to Guard a Graph? Algorithmica, DOI: 10.1007/s00453-009-9382-4].
We solve the question asked by Fomin et al. in the previously mentioned
paper and we show that if the graph is arbitrary (directed or undirected),
the problem becomes E-complete.

Keywords: pursuit game, cops and robber game, graph guarding game,
computational complexity, E-completeness.

1 Introduction and Motivation

The guarding game (G, VC , c), introduced by Fomin et al. [1], is played on a graph
G = (V,E) (or directed graph −→G = (V,E)) by two players, the cop-player and
the robber-player, each having his pawns (c cops and one robber, respectively) on
V . There is a protected region (also called cop-region) VC ⊂ V . The remaining
region V \ VC is called robber-region and denoted VR. The robber aims to enter
VC by a move to vertex of VC with no cop on it. The cops try to prevent the
robber from entering a vertex of VC with no cop on it. The game is played in
alternating turns. In the first turn the robber-player places the robber on some
vertex of VR. In the second turn the cop-player places his c cops on vertices of VC
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(more cops can share one vertex). In each subsequent turn the respective player
can move each of his pawns to a neighbouring vertex of the pawn’s position (or
leave it where it is). However, the cops can move only inside VC and the robber
can move only on vertices with no cops. At any time of the game both players
know the positions of all pawns. The robber-player wins if he is able to move the
robber to some vertex of VC in a finite number of steps. The cop-player wins if
the cop-player can prevent the robber-player from placing the robber on a vertex
in VC indefinitely. Note that after exponentially many (in the size of the graph
G) turns the positions has to repeat and obviously if the robber can win, he can
win in less than 2|V |(c+1) turns, as 2|V |(c+1) is the upper bound on the number
of all possible positions of the robber and all cops, together with the information
who is on move.

For a given graph G and guarded region VC , the task is to find the minimum
number c such that cop-player wins.

The guarding game is a member of a big class called the pursuit-evasion
games, see, e.g., Alspach [4] for introduction and survey. The discrete version of
pursuit-evasion games on graphs is called the Cops-and-Robber game. This game
was first defined for one cop by Winkler and Nowakowski [5] and Quilliot [6].
Aigner and Fromme [7] initiated the study of the problem with several cops.
The minimum number of cops required to capture the robber is called the cop
number of the graph. In this setting, the Cops-and-Robber game can be viewed
as a special case of search games played on graphs. Therefore, the guarding game
is a natural variant of the original Cops-and-Robber game. The complexity of
the decision problem related to the Cops-and-Robbers game was studied by
Goldstein and Reingold [11]. They have shown that if the number of cops is not
fixed and if either the graph is directed or initial positions are given, then the
problem is E-complete. Another interesting variant is the “fast robber” game,
which is studied in Fomin et al. [12]. See the annotated bibliography [10] for
reference on further topics.

A different well-studied problem, the Eternal Domination problem (also known
as Eternal Security) is strongly related to the guarding game. The objective in
the Eternal Domination is to place the minimum number of guards on the ver-
tices of a graph G such that the guards can protect the vertices of G from an
infinite sequence of attacks. In response to an attack of an unguarded vertex v,
at least one guard must move to v and the other guards can either stay put, or
move to adjacent vertices. The Eternal Domination problem is a special case of
the guarding game. This can be seen as follows. Let G be a graph on n vertices
and we construct a graph H from G by adding a clique Kn on n vertices and
connecting the clique and G by n edges which form a perfect matching. The
cop-region is V (G) and the robber-region is V (Kn). Now G has an eternal dom-
inating set of size k if and only if k cops can guard V (G). Eternal Domination
and its variant have been considered for example in [15,16,17,18,19,20,21,22].

In our paper we focus on the complexity issues of the decision problem related
to the guarding game: Given the guarding game G = (G, VC , c), who has the
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winning strategy? Observe that the task of finding the minimum c such that G
is cop-win is at least as hard as the decision version of the problem.

Let us define the computational problem precisely. The directed guarding de-
cision problem is, given a guarding game (−→G, VC , c) where −→G is a directed graph,
to decide whether it is a cop-win game or a robber-win game. Analogously, we
define the undirected guarding decision problem with the difference that the un-
derlying graph G is undirected. The guarding problem is, given a a directed or
undirected graph G and a cop-region VC ⊆ V (G), to compute the minimum
number c such that the (G, VC , c) is a cop-win.

The directed guarding decision problem was introduced and studied by Fomin
et al. [1]. The computational complexity of the problem depends heavily on
the chosen restrictions on the graph G. In particular, in [1] the authors show
that if the robber’s region is only a path, then the problem can be solved in
polynomial time, and when the robber moves in a tree (or even in a star), then
the problem is NP-complete. Furthermore, if the robber is moving in a directed
acyclic graph, the problem becomes PSPACE-complete. Later Fomin, Golovach
and Lokshtanov [13] studied the reverse guarding game which rules are the same
as in the guarding game, except that the cop-player plays first. They proved in
[13] that the related decision problem is PSPACE-hard on undirected graphs.
Nagamochi [8] has also shown that that the problem is NP-complete even if VR
induces a 3-star and that the problem is polynomially solvable if VR induces
a cycle. Also, Thirumala Reddy, Sai Krishna and Pandu Rangan have proved
[9] that if the robber-region is an arbitrary undirected graph, then the decision
problem is PSPACE-hard.

Let us consider the class E = DTIME(2O(n)) of languages recognisable by a
deterministic Turing machine in time 2O(n). We consider log-space reductions,
this means that the reducing Turing machine is log-space bounded. Very little
is known how the class E is related to PSPACE. However, it is known [3] that
E �= PSPACE. Fomin et al. [1] asked, whether the guarding decision problem
for general graphs is PSPACE-complete too. We disprove this conjecture in the
following theorem.

Theorem 1. The directed guarding decision problem is E-complete under log-
space reductions.

Immediately, we get the following corollary.

Corollary 1. The guarding problem is E-complete under log-space reductions.

We would like to point out the fact that we can prove Theorem 1 without
prescribing the starting positions of players.

We also state Theorem 2, a theorem similar to Theorem 1 for general undi-
rected graphs. Unfortunately, we omit the proof of Theorem 2 due to the page
limit imposed on the paper. We define the guarding game with prescribed starting
positions G = (G, VC , c, S, r), where S : {1, . . . , c} → VC is the initial placement
of cops and r ∈ VR is the initial placement of robber. The undirected guarding de-
cision problem with prescribed starting positions is, given a guarding game with
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prescribed starting positions (G, VC , c, S, r) where G is an undirected graph, to
decide whether it is a cop-win game or a robber-win game. The directed guarding
decision problem with prescribed starting positions is defined analogously.

Theorem 2. The undirected guarding decision problem with prescribed starting
positions is E-complete under log-space reductions.

Here, we would like to point out the fact that with the exception of the re-
sult in [13], all known hardness results for cops and robbers, or pursuit evasion
games are for the directed graph variants of the games [1,11]. For example, the
classical Cop and Robbers game was shown to be PSPACE-hard on directed
graphs by Goldstein and Reingold in 1995 [11] while for undirected graphs, even
an NP-hardness result was not known until recently by Fomin, Golovach and
Kratochv́ıl [14].

For the original Cops-and-Robber game, Goldstein and Reingold [11] have
proved that if the number c of cops is not fixed and if either the graph is directed
or initial positions are given, then the related decision problem is E-complete.

In a sense, we show analogous result for the guarding game as Goldstein and
Reingold [11] have shown for the original Cops-and-Robber game. Similarly to
Goldstein and Reingold, we can prove the complexity of the undirected guarding
decision problem only when having prescribed the initial positions of players.
Dealing with this issue now seems to be the main task in this family of games.

2 The Directed Case

In order to prove E-completeness of the directed guarding decision problem, we
first note that the problem is in E.

Lemma 1. The guarding decision problem (directed or undirected) is in E.

The proof is standard and easy (we just have to realize that the cops are mutually
indistinguishable so the number of all configurations is 2O(n)) and we omit it.

Let us first study the problem after the second move, where both players have
already placed their pawns. We reduce the directed guarding decision problem
with prescribed starting positions from the following formula-satisfying game F .

A position in F is a 4-tuple (τ, FR(C,R), FC(C,R), α) where τ ∈ {1, 2}, FR
and FC are formulas in 12-DNF both defined on set of variables C ∪R, where C
and R are disjoint and α is an initial (C ∪R)-assignment. The symbol τ serves
only to differentiate the positions where the first or the second player is on move.
Player I (II) moves by changing the values assigned to at most one variable in
R (C); either player may pass since changing no variable amounts to a “pass”.
Player I (II) wins if the formula FR (FC) is true after some move of player I
(II). More precisely, player I can move from (1, FR, FC , α) to (2, FR, FC , α′) in
one move if and only if α′ differs from α in the assignment given to at most one
variable in R and FC is false under the assignment α; the moves of player II are
defined symmetrically.
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According to Stockmeyer and Chandra [2], the set of winning positions of
player I in the game F is an E-complete language under log-space reduction.

Let us first informally sketch the reduction from F to G, i.e., simulating F by
an equivalent guarding game G. The setting of variables is represented by posi-
tions of certain cops so that only one of these cops may move at a time (otherwise
cop-player loses the game). The variables (or more precisely the corresponding
cops) of C are under control of cop-player. However, in spite of being represented
by cops, the variables of R are under control of the robber-player by a gadget in
the graph −→G , which allows him to force any setting of cops representing R.

When describing the features of various gadgets, we will often use the term
normal scenario. By normal scenario S of certain gadget (or even the whole
game) we mean a flow of the game that imitates the formula game F . The graph
G will be constructed in such a way that if the player (both cop-player and
robber-player) does not exactly follow the normal scenario S, he loses the game
in a few moves.

There are four cyclically repeating phases of the game, determined by the
current position of the robber. The normal scenario is that robber cyclically
goes through the following phases marked by four special vertices and in different
phases he can enter certain gadgets.

1. “Robber Move” (RM): In this step the robber can enter the Manipulator
gadget, allowing him to force setting of at most one variable in R.

2. “Robber Test” (RT ): In this step the robber may pass through the Robber
Gate into the protected region VC , provided that the formula FR is satisfied
under the current setting of variables.

3. “Cop Move” (CM): In this step (and only in this step) one (and at most
one) variable cell Vx for x ∈ C is allowed to change its value. This is realized
by a gadget called Commander.

4. “Cop Test” (CT ): In this step, if the formula FC is satisfied under the current
setting of variables, the cops are able to block the entrance to the protected
region forever (by temporarily leaving the Cop Gate gadget unguarded and
sending a cop to block the entrance to VC provided by the Robber Gate
gadgets).

See Fig. 1 for the overview of the construction.

RM RT

CMCT

Manipulators

Commander

Variables

Cop gates

Robber gates

Fig. 1. The sketch of the construction
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2.1 The Variable Cells

Tx

Fx

TFx FTx

Fig. 2. Variable cell Vx

For every variable x ∈ C ∪R we introduce a variable cell Vx, which is a directed
cycle (Tx, TFx, Fx, FTx) (see Fig. 2). There is one cop (variable cop) located in
every Vx and the position of the cop on vertices Tx, Fx represents the boolean
values true and false, respectively. The prescribed starting position of the variable
cop is Tx if α(x) is true, and Fx otherwise. All the vertices of Vx belong to VC .

The cells are organised into blocks C and R. The block C is under control
of cop-player via the Commander gadget, the block R is represented by cops as
well, however, there are the Manipulator gadgets allowing the robber-player to
force any setting of variables in R, by changing at most one variable in his turn.

Every variable cell Vy , y ∈ R has assigned the Manipulator gadget My. Ma-
nipulator My consists of directed paths (RM,T ′

y, T
′′
y , Ty) and (RM,F ′

y, F
′′
y , Fy)

and edges (T ′
y, RT ) and (F ′

y, RT ) (see Fig. 3).

Ty

Fy

TFy FTy

Cop region Robber region

RM

RT

T ′′
y

F ′′
y

T ′
y

F ′
y

Fig. 3. The Manipulator gadget My

The vertices {T ′
y, F

′
y , T

′′
y , F

′′
y , RM,RT } ⊂ VR, the rest belongs to VC .

Lemma 2. Let us consider variable cell Vy, y ∈ R, and the corresponding Ma-
nipulator My. Let the robber be at the vertex RM , let the cop be either on Ty
or Fy and suppose no other cop can access any vertex of My in less than three
moves. Then the normal scenario is following: By entering the vertex T ′

y (F ′
y),

the robber forces the cop to move towards the vertex Ty (Fy). Robber then has to
enter the vertex RT .
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Proof. If the cop refuses to move, the robber advances to T ′′
y or F ′′

y and easily
reaches VC before the cop can block him. On the other hand, if the robber
moves to T ′′

y or F ′′
y even though the cop moved towards the opposite vertex,

then cop finishes his movement to the opposite vertex and robber cannot move
anymore. �	

Note that this is not enough to ensure that the variable cop really reaches the
opposite vertex and that only one variable cop from variable cells can move. We
deal with this issue later.

When changing variables of C, we have to make sure that at most one variable
is changed at a time. We ensure that by the gadget Commander (see Fig. 4),
connected to every Vx, x ∈ C. It consists of vertices {fx, gx, hx; x ∈ C} ∪ {HQ}
and edges

{(HQ,hx), (hx, HQ), (hx, fx), (Tx, fx), (Fx, fx), (gx, fx), (CM, gx); x ∈ C}.

Cop region Robber region

CM

gx

HQ

hx fxTx Fx

Fig. 4. The Commander gadget

The vertices {gx; x ∈ C} and CM belong to VR, the rest belongs to VC .
There is one cop, the “commander”, whose prescribed starting position is the
vertex HQ. From every vertex w ∈ V \ (VC ∪ {CM} ∪ {gx; x ∈ C}) we add
the edge (w,HQ) to −→G , thus the only time the commander can leave HQ is
when the robber stands at CM . The normal scenario is as follows: If the robber
moves to CM , the commander decides one variable x to be changed and moves
to hx, simultaneously the cop in the variable cell Vx starts its movement towards
the opposite vertex. The commander temporarily guards the vertex fx, which is
otherwise guarded by the cop in the cell Vx. Then the robber moves (away from
CM) and the commander has to return to HQ in the next move.
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Lemma 3. Let us consider the Commander gadget and the variable cells Vx for
x ∈ C with exactly one cop each, standing either on Tx or Fx. Let the robber
be at the vertex CM and the cop at HQ, with the cop-player on move. Suppose
no other cop can access the vertices in the Commander gadget. Then the normal
scenario is that in at most one variable cell Vx, x ∈ X the cop can start moving
from Tx to Fx or vice versa.

Proof. Only the vertex fx is temporarily (for one move) guarded by the com-
mander. If two variable cops starts moving, some fy is unsecured and robber
exploits it by moving to gy in his next move. �	
Note that the Manipulator allows the robber to “pass” changing of his variable
by setting the current position of cop in some variable. Also note, that the robber
may stay on the vertex CM , thus allowing the cop-player to change more than
one of his variables. However, in any winning strategy of the robber-player this
is not necessary and if the robber-player does not have a winning strategy, this
trick does not help him as the cops may pass.

2.2 The Gates to VC

For every clause φ of FR, there is one Robber gate gadget Rφ. If φ is satisfied
by the current setting of variables, Rφ allows the robber to enter VC .

zφ

Cop region Robber region

RTz′φ

C ′

R′

Fig. 5. The Robber Gate Rφ

The Robber gate Rφ consists of a directed path (RT, z′φ, zφ) and the following
edges. Let φ = (�1& . . .&�12) where each �i is a literal. If �i = x then we put the
edge (Fx, zφ) to −→G . If �i = ¬x then we put the edge (Tx, zφ) to −→G . See Fig. 5 for
illustration. The vertices {z′φ; φ ∈ FR} and RT belong to VR, the rest belongs
to VC .

Lemma 4. Let φ be a clause of FR, consider a Robber Gate Rφ. Let the robber
stand at the vertex RT and let there be exactly one cop in each Vx, x ∈ φ,
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standing either on Tx or Fx. Suppose no other cop can access Rφ in less than
three moves. Then in the normal scenario robber can reach zφ if and only if φ
is satisfied under the current setting of variables (given by the positions of cops
on variable cells).

Proof. If φ is satisfied, no cop at the variable cells can reach zφ in two (or less)
steps. Therefore, the robber may enter zφ. On the other hand, if φ is not satisfied,
at least one cop is one step from zφ and the robber would be blocked forever if
he moves to z′φ. �	
For every clause ψ of FC , there is one Cop Gate gadget Cψ (see Fig. 6). If ψ is
satisfied, Cψ allows cops to forever block the entrance to VC , the vertices zφ from
each Robber GateRφ. The Cop GateCψ consists of directed paths (CT, b′ψ,x, bψ,x)
for each variable x of the clause ψ, the directed cycle (aψ, a′ψ, a

′′
ψ, a

′′′
ψ ) and edges

{(aψ, bψ,x), (a′′ψ, bψ,x); x ∈ ψ} and {(a′′ψ, zφ); φ ∈ FR}.
Let ψ = (�1& . . .&�12) where each �i is a literal. If �i = x then we put the

edge (Tx, bψ,x) to −→G . If �i = ¬x then we put the edge (Fx, bψ,x) to −→G . From the
vertices aψ and a′′ψ there is an edge to every bψ,x and from a′′ψ there is an edge
to every zφ (from each Robber Gate Rφ). There is a cop, we call him Arnold,
and his prescribed starting position is aψ. Each Cψ has its own Arnold, it would
be therefore more correct to name him ψ-Arnold, however, we would use the
shorter name if no confusion can occur. The vertices {b′ψ,x; ψ ∈ FC , x ∈ ψ} and
CT belong to VR, the rest belongs to VC .

Cop region

Robber region

CT

C ′ R′

zψ1

zψ2

zψ3

a′′ψ

a′ψ

aψ

a′′′ψ
bψ,x

b′ψ,x

Fig. 6. The Cop Gate Cψ

Lemma 5. Let us consider a Cop Gate Cψ. Let there be one cop at the vertex
aψ (we call him Arnold) and let there be exactly one cop in each Vx, x ∈ ψ,
standing on either Tx or Fx. Let the robber be at the vertex CT and no other cop
can access Cψ in less than three moves. Then in the normal scenario, Arnold
is able to move to a′′ψ (and therefore block all the entrances zφ forever) without
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permitting robber to enter VC if and only if ψ is satisfied under the current
setting of variables (given by the position of cops in the variable cells).

Proof. If ψ is satisfied, the vertices bψ,x, x ∈ ψ are all guarded by the vari-
able cops, therefore Arnold can start moving from aψ towards a′′ψ. If the robber
meanwhile moves to some b′ψ,x, the variable cop from Vx will intercept him by
moving to bψ,x and the robber loses the game. On the other hand, if ψ is not
satisfied, there is some bψ,x unguarded by the cop from Vx. Therefore, Arnold
cannot leave aψ, because otherwise robber would reach bψ,x before Arnold or the
cop from Vx could block him. �	

2.3 The Big Picture

We further need to assure that the cops cannot move arbitrarily. This means,
that the following must be the normal scenario:

1. During the “Robber Move” phase, the only cop who can move is the cop in
variable cell Vx chosen by the robber when he enters Manipulator Mx. All
other variable cops must stand on either Tx of Fx vertices for some variable
x. The cop in Vx must reach the vertex Tx from Fx (or vice versa) in two
consecutive moves.

2. During the “Robber Test” phase, no cop can move.
3. During the “Cop Move” phase, only the commander and the cop in exactly

one variable cell Vx can move. The cop in Vx must reach the vertex Tx from
Fx (or vice versa) in two consecutive moves.

4. During the “Cop Test” phase, no other cop than Arnold may move. Arnold
may move from vertex aψ to a′′ψ and he must do that in two consecutive
steps (and of course Arnold may do that only if the clause ψ is satisfied).

We say that we force the vertex w by the vertex set S, when for every v ∈ S
we add the oriented path Pv,w = (v, pvw , p′vw, w) of length 3 to the graph −→G .
The vertices pvw, p′vw belong to VR. We say that we block the vertex w by
the vertex set S, when for every v ∈ S we add the Blocker gadget Bwv. The
Blocker Bwv consists of vertices pv1, p

v
2 ∈ VR and qv1 , q

v
2 ∈ VC and the edges

(v, pvi ), (p
v
i , q

v
i ), (w, q

v
i ) for i = 1, 2.

A cop on a vertex w blocked by v cannot leave w even for one move when the
robber is on v. Note also that if the cop on w enters qvi when it is not necessary
to block pvi , then he is permanently disabled until the end of the game and the
next time the robber visits v he may enter the cop-region through the other pvj .

Forcing serves as a tool to prevent moving of more than one variable cops (and
Arnolds) however, because of the structure of variable cells, we cannot do it by
simply blocking the vertices Tx, Fx and we have to develop the notation of forcing.

Case 1: For every variable x ∈ C ∪ R do the following construction. Let
Sx = {RM,RT } ∪ {V (My); y ∈ R, x �= y} where V (My) are the vertices of
Manipulator for variable y. We force the vertices Tx and Fx by the set Sx. Let
S1 = {RM} ∪ {V (My); y ∈ R}. For each Cop Gate Cψ, we force the vertex
aψ by the set S1. Finally, we block the vertex HQ by the set S1. Observe that
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whenever a cop from any other Vy than given by the Manipulator Mx is not on
Ty or Fy, the robber can reach VC faster than the variable cop can block him. On
the other hand, if all variable cops are in the right places, the robber may never
reach VC unless being forever blocked. The same holds for Arnold on vertices aψ
and a′′ψ. The commander cannot move because of the properties of the Blocker
gadget. If the variable cop does not use his second turn to finish his movement,
the robber will exploit this by reaching VC by a path from the vertex RT .

Case 2: Let S2 = {RT } ∪ {z′φ; φ ∈ FR} and let F = {Tx, Fx; x ∈ C ∪ R} ∪
{aψ; ψ ∈ FC}. We force every v ∈ F by the set S and we block the vertex HQ
by S2. Observe that in the normal scenario no cop may move.

Case 3: Let S3 = {CM} and let F = {Tx, Fx; x ∈ R} ∪ {aψ; ψ ∈ FC}.
We force every v ∈ F by S3. Now, in normal scenario, no variable cop from Vx,
x ∈ R may move and by Lemma 3, only commander and exactly one variable
cop from Vy , y ∈ C may move.

Case 4: Let S4 = {CT } and let F = {Tx, Fx; x ∈ C ∪ R}. We force every
v ∈ F by S4 and we block the vertex HQ by S4. Observe that in normal scenario
no variable cop and the commander may move. The rest follows from Lemma 5
and the fact, that a′′ψ is forced by the vertex RM .

Finally, we connect the vertices in a directed cycle (RM,RT,CM,CT ) and let
the prescribed starting position r of the robber be the vertex RM . All the
construction elements so far presented prove the following corollary.

Corollary 2. For every gameF=(τ, FC(C,R), FR(C,R), α) there exists a guard-
ing game G = (−→G, VC , c, S, r), −→G directed, with a prescribed starting positions such
that player I wins F if and only if the robber-player wins the game G.
Next we note, that we can modify our current construction so that it fully
conforms to the definition of the guarding game on a directed graph.

Lemma 6. Let G = (−→G, VC , c, S, r) be a guarding game with a prescribed start-
ing positions. Let the position r has no in-going edge and let no two cops start at
the same vertex. Then there exists a guarding game G′ = (−→G ′

, V ′
C , c

′), −→G ⊆ −→G ′
,

VC ⊆ V ′
C such that

– the robber-player wins G′ if and only if the robber-player wins the game G
– if the cop-player does not place the cops to completely cover S in his first

move, he will lose
– if the robber-player does not place the robber on r in his first move, the cops

win.

Proof. Consider an edge (u, v) ∈ E(−→G ) such that u ∈ VR and v ∈ VC (a border
edge). Observe, that the out-degree of each such vertex u in our construction is
exactly 1. Let m = |{v ∈ VC ; (u, v) ∈ E(−→G ), u ∈ VR}| be the number of vertices
from VC directly threatened (i.e. in distance 1) from the robber region.

Let us define the graph −→G ′
= (V ′, E′) such that V ′ = V (−→G) ∪ {r} ∪ T where

T = {t1, . . . , tm} is the set of new vertices and E′ = E(−→G )∪ {(r, v); v ∈ T ∪S}.
Consider the game G′ = (−→G ′

, V ′
C , c

′) where V ′
C = VC ∪ T and c′ = c + m. See

Fig. 7 for illustration.
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S
T

r

Fig. 7. Forcing starting positions

Suppose that the robber-player places the robber in the first move to some
vertex v ∈ VR\{r}. Then there are m vertices in VC directly threatened by edges
going from VR and because we have at least m cops available, the cops in the
second move can occupy all these vertices and prevent the robber from entering
VC forever. So the robber must start at the vertex r. Then observe, that c cops
must occupy the positions S and m cops must occupy the vertices T . If any cop
does not start either on T or S, the robber wins in the next move. The cops on
T remain there harmless to the end of the game. The cops cannot move until
the robber decides to leave the vertex r. �	
Let us have a guarding game G = (−→G, VC , c, S, r) with prescribed starting posi-
tions. Note that in our construction no two cops had the same starting position.
We add new vertex r and edge (r,RM) to −→G and by the previous lemma there is
an equivalent guarding game G′, G ⊆ G′, without prescribed starting positions.

Theorem 1 is now proved.

3 Further Questions and Acknowledgements

For a guarding gameG = (G, VC , c), what happens if we restrict the size of strongly
connected components ofG? If the sizes are restricted by 1, we get DAG, for which
the decision problem is PSPACE-complete. For unrestricted sizes we have shown
that G is E-complete. Is there some threshold for G to become E-complete from
being PSPACE-complete? We are also working on forcing the starting position in
the guarding game on undirected graphs in a way similar to Theorem 1.

We would like to thank Peter Golovach for giving a nice talk about the prob-
lem, which inspired us to work on it. We would also like to thank Jarik Nešetřil
for suggesting some of the previous open questions and to Honza Kratochv́ıl for
fruitful discussion of the paper structure.
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Abstract. We propose a new algorithm that solves the Steiner tree
problem on graphs with vertex set V to optimality in O(B2

tw+2 · tw · |V |)
time, where tw is the graph’s treewidth and the Bell number Bk is the
number of partitions of a k-element set. This is a linear time algorithm
for graphs with fixed treewidth and a polynomial algorithm for tw =
O(log |V |/ log log |V |).

While being faster than the previously known algorithms, our thereby
used coloring scheme can be extended to give new, improved algorithms
for the prize-collecting Steiner tree as well as the k-cardinality tree
problems.

1 Introduction

In this paper we consider the well-known Steiner tree problem (STP), as well as
the related problems prize-collecting Steiner tree (PCST) and k-cardinality tree
(KCT), all defined on graphs. Our central results are new exact algorithms to
solve these problems in the case of graphs with bounded treewidth: the treewidth
tw of a graph (see below for a concise definition) can be seen as a measure of
how similar the given graph is to a tree.

Let G = (V,E) be a given edge-weighted graph and T ⊆ V a set of terminals.
The Steiner tree problem is to find a minimum-weight tree S in G which contains
all terminals T and possibly also some non-terminal (Steiner) vertices of V \ T .
Note that while often the edge weights are considered to be only positive, we do
not require any such restriction. The corresponding decision problem is strongly
NP-complete, even when restricted to edge weights 1 and 2 [23], or when G is
planar [18]. The traditional algorithm by Dreyfus and Wagner [17] solves the
STP exactly in O(3t · |V |) time—recently improved to O(2t · |V |) [8]—where
t := |T | is the number of terminals.

Regarding G’s treewidth tw, the oldest but yet strongest result is due to
Korach and Solel [20]; yet this technical report has never been officially published
and has been cited only rarely, e.g., in [7, 19, 22]. Their algorithm achieves a
runtime of O(tw4tw · |V |) but the paper’s description is very sketchy and leaves
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many details unclear; it does not contain a formal proof of either the running
time nor of its correctness. More recent publications, in particular those dealing
with PTASes (see next paragraph) where the STP on bounded-treewidth-graphs
arises as a subproblem, instead propose their own, yet weaker, results.

For the unweighted STP, i.e., the objective is to minimize the number of
edges of S, a very recent and surprising result by Cygan et al. [15] gives a
Monte Carlo algorithm for the decision problem with a one-sided error—false
negatives occur with probability of at most 1/2—requiring only O(3tw|V |O(1))
time. While the result is of course directly applicable to integer weighted STP
where the maximum edge weight is bounded by a constant, we cannot see how
to generalize the algorithm to arbitrary edge weights, and its derandomization
is considered an open problem.

Recently, the STP and related problems for graphs with bounded treewidth
achieved more attention due to their applicability to approximate network prob-
lems in planar graphs: In multiple papers [2,3,4,12,13,14], PTASes (polynomial
time approximation schemes) are proposed which transform the given planar
graph into a graph with bounded treewidth (via edge removals), solve the prob-
lem optimally (or within 1+ε) on this modified graph, and then use this solution
to construct a (1 + ε) solution to the original graph. Hence, the development of
faster algorithms for the problem on bounded treewidth directly leads to faster
PTASes for the corresponding problem on planar graphs.

For the STP, the approximation scheme of [13] uses an algorithm for solving
the problem on graphs with bounded carving-width (a relative of treewidth) as
a black box. Chekuri et al. [14] (later merged into [2]) give an algorithm for the
prize-collecting Steiner tree problem (cf. Section 3) with running time O(B3

k ·sk ·
|V |), where k := tw + 1, Bk is the number of partitions of a set with k elements
(k-th Bell number), and sk is the number of subgraphs of a k-vertex graph. Since
sk = O(2(k2)), this leads to a running time of O(2(tw2) ·B3

tw+1 · |V |) for a graph
with treewidth tw. This algorithm then allows PTASes for PCST and prize-
collecting Steiner forest problems. Independently, Bateni et al. [4] (also later
merged into [2]) describe PTASes for prize-collecting network design problems
on planar graphs by using a similar approach. They investigate the PCST (the
solution is a tree), prize-collecting TSP (the solution is a cycle), and the prize-
collecting Stroll (the solution is a path). To this end they describe a (1 + ε)-
approximation for the PCST problem (that can be adapted to solve the other
two considered problems as well) with a running time of order O(twtw ·2tw · |V |).

Furthermore, Polzin and Daneshmand [22] introduced an algorithm with run-
ning time O(23b · |V |) where b (the size of a “border” obtained throughout the
algorithm) is a parameter similar to pathwidth. Yet note that even for simple
trees—with natural treewidth 1—the pathwidth is unbounded.

Note that all these exact algorithms (not the approximations) fall into the
category of FPT (fixed parameter tractable) algorithms w.r.t. the considered
parameters (e.g., treewidth). An introduction to this research field can be found
in [16, 21].
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Our Contribution. Herein, we propose a new algorithm to solve the Steiner
tree problem exactly in O(B2

tw+2 ·tw·|V |) time. The k-th Bell number Bk thereby
is the number of partitions of a set with k elements, and can be recursively defined
as B0 = 1, Bk+1 =

∑k
i=0

(
k
i

)
Bi. We can bound Bk < (0.792k/ ln(k + 1))k [5]

and in particular Bk < k! < kk for k ≥ 3. Our algorithm is hence linear for
graphs with fixed treewidth and requiresO(|V |3 log |V |/ log log |V |) time for tw ∈
O(log |V |/ log log |V |). The algorithm guarantees a running time that is smaller
than the currently best proposed running times, including the works of [20].
This paper therefore also closes the unclear situation regarding the latter. We
will discuss our algorithm in Section 2.

To achieve this result, we use the well-known dynamic programming paradigm
over the decomposition tree (see next section), coupled with a special number-
ing and coloring scheme. Furthermore, our new coloring scheme shows to be
versatile enough to also allow new, faster algorithms to solve the prize-collecting
Steiner tree problem in the same time complexity, as well as the k-cardinality
tree problem in O(B2

tw+2 · (tw + k2) · |V |) time. We discuss these extensions in
Sections 3 and 4, respectively.

Preliminaries: Tree Decompositions. The concept of treewidth was intro-
duced by Robertson and Seymour [25] by the term tree decomposition. See [9,11]
for an in-depth introduction to this topic:

Let G = (V,E) be the given graph. Its tree decomposition (T ,X ) is a pair of
a tree T = (I, F ) and a collection X = {Xi}i∈I of vertex subsets (called bags)
with the following properties:

td/1: Every vertex v ∈ V is contained in at least one bag Xi, i ∈ I. For every
edge (u, v) ∈ E there is at least one bag Xi, i ∈ I, containing both vertices
u, v.

td/2: For every vertex v ∈ V , the nodes i with v ∈ Xi form a subtree of T .

To avoid confusion, we speak of vertices V in the graph G, and of nodes I in the
tree T . The width of a tree decomposition (T ,X ) is the size of the largest bag
in X minus 1. The treewidth of a graph is the smallest width over all possible
tree decompositions. Hence, the treewidth measures how similar the decomposed
graph is to a tree: trees have treewidth 1, (generalized) series-parallel graphs
have treewidth 2, etc. On the other side of the spectrum, complete graphs have
treewidth |V | − 1, by putting all vertices in one bag. Determining whether a
graph has treewidth k, for a given integer k, is NP-complete [1] but polynomial
(i.e., in FPT) for any constant k [10].

Most importantly, we note that the size of (T ,X ) is only linear, even when
considering nice tree decompositions. Such tree decompositions always exist even
for the optimal treewidth and have the following properties:

1. The tree T is considered to be rooted at some r ∈ I.
2. Each node is either a leaf (0 children), or has exactly 1 or 2 children.
3. Let i ∈ I be a leaf, then |Xi| = 1.
4. Let j ∈ I be the only child of a node i ∈ I, then either (a) Xj contains all

vertices ofXi except for one (Xj ⊂ Xi, |Xj |+1 = |Xi|), or (b) Xj contains all



Improved Steiner Tree Algorithms for Bounded Treewidth 377

vertices ofXi plus one additional one (Xi ⊂ Xj , |Xi|+1 = |Xj |). Considering
the tree in a bottom-up fashion, the node i is then called an introduce or
forget node, respectively.

5. Let j, j′ ∈ I be the two children of a node i ∈ I, then all three corresponding
bags are identical (Xj = Xj′ = Xi), and i is called a join node.

Overall, given any tree decomposition, we can easily transform it into a nice
tree decomposition where we pick the root r such that its bag Xr contains at
least one terminal vertex. While the latter property is not ultimately necessary,
it allows us to give a simpler description of our algorithm. We will discuss this
in more detail at the end of Section 2.2.

2 Steiner Tree Algorithm

Our algorithm follows the classical bottom-up approach for algorithms based
on tree decompositions: Starting from the leaves of a nice tree decomposition
(T = (I, F ),X ), we enumerate a sufficient number of possible sub-solutions per
tree node i ∈ I, using only the information previously computed for the children
of i. Such information is stored in a table tabi, for the node i ∈ I. The final
optimal solution of the original problem can then be read from the table tabr of
T ’s root node r.

Since the tree traversal requires only O(|V |) time, the algorithm’s time com-
plexity is mainly dependent on the amount of information to be stored per node
(i.e., the size of tabi which can be estimated by the number of sub-solutions
times the size per sub-solution), as well as on the necessary effort to establish
the sub-solutions at a node, based on its children’s data.

In Section 2.1, we will concentrate on the first question, i.e., how to represent
the necessary solutions efficiently. In fact, this modeling (based on coloring) is
the main result of this paper, which subsequently allows us to obtain stronger
memory and runtime bounds than the previous approaches. Section 2.2 then
describes how to efficiently combine our coloring with the bottom-up traversal
to solve the Steiner tree problem. Finally, Section 2.3 formally establishes the
correctness and running time of our approach.

2.1 Representing Sub-solutions

The general idea of using the (rooted) tree decomposition is the following:
Let i be any node in T with the corresponding bag Xi. We define X+

i to be
the set of all vertices in Xj for all nodes j ∈ I that are either i itself or any of
its descendants. Then, let Gi (G+

i ) describe the subgraph of G induced by the
vertices Xi (X+

i , respectively). Let Ti (T+
i ) be the set of terminals in Xi (X+

i ,
respectively).

When we consider any node i ∈ I, we observe, based on property td/2 of a
tree decomposition, that no vertex of X+

i \Xi will appear in any other bag than
the ones descending from node i. For our bottom-up approach this means that
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these vertices are not considered in other parts of the algorithm and will never
be considered again. Hence, the sub-solutions at node i have to ensure that all
terminals T+

i \ Ti are properly connected with other vertices to allow a feasible
solution in the end. Consider the optimal Steiner tree S in G. The subgraph of
S in G+

i then forms a forest, with the property that any terminal T+
i \ Ti is

connected to some vertex in Xi.
Our table tabi hence stores multiple rows, each row representing a solution.

Observe that we do not have to consider all possible subgraphs of a bag Xi but
can use the fact that a forest in Gi contains at most |Xi| − 1 edges. It remains
how to uniquely, succinctly, and compactly describe these forests (and allow
for fast merging operations within the bottom-up approach). We show that it
(coarsely) is sufficient to consider all possible partitions of the (at most tw + 1
many) vertices Xi by assigning colors to them. Each color then indicates the set
of vertices that lie in a connected component (tree, in fact) in G+

i . We will see
that by careful enumeration we only require a table with at most Btw+2 different
partitions, instead of the straight-forward O((tw + 1)tw+1).

To obtain such a description scheme, we first consider some arbitrary but
fixed total numbering Φ : V 1:1−−→ {1, . . . , |V |} of all vertices of the given graph.
Based thereon, we assign—locally for each bag Xi—the unique secondary index
ϕi : Xi

1:1−−→ {1, . . . , |Xi|} which satisfies Φ(v) < Φ(w) ⇔ ϕi(v) < ϕi(w) for all
v, w ∈ Xi. We now introduce a coloring function γi : Xi → {0, . . . , |Xi|}; thereby
any vertex v ∈ Xi may only be colored by a color at most as large as its local
index, i.e., γi(v) ≤ φi(v). Our interpretation is that all vertices of color 0 are
not contained in the represented sub-solution. All vertices with a common color
> 0 are connected in the graph G+

i . Note that these connections do not have to
exist in Gi. Finally, in order to be a feasible coloring, we require all terminals Ti
in Xi to be colored > 0.

Note that, by the above coloring properties, the color of a connected compo-
nent C of the sub-solution is exactly the smallest secondary index of all vertices
contained in C. We observe that a vertex v with ϕi(v) = z has z+1 possible col-
ors. Hence the number of possible colorings for a bag Xi (and therefore of rows
in tabi) can trivially be bounded by

∏|Xi|
z=1(z + 1) = (|Xi| + 1)! = O((tw + 2)!).

This would already allow better overall bounds for the algorithm than previously
known. Yet, we can observe that when we conceptually add an additional “ghost”
element to an |Xi|-element set, and consider all possible partitions thereof, we
can interpret these resulting partitions as all possible colorings: The partition
that contains the “ghost” element is considered to be the partition with color 0.
All other partitions get the color of the smallest secondary index among its
elements. It is straight-forward to efficiently enumerate all B|Xi|+1 possible par-
titions (hence rows in tabi) of a |Xi|+ 1-element set.

In each row, we store the unique corresponding coloring of the solution, i.e., a
color index for each vertex of Xi, which we can trivially compute in O(tw) time.
Additionally, we will store a solution value for each row, see below. Hence, the
size of any table tabi can be bounded by O(Btw+2 · tw).
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2.2 Processing the Decomposition Tree

Having our coloring concept at hand, we can now describe how to ensure its prop-
erties when computing the actual sub-solution tables in a bottom-up fashion.
Our recursion can be described by distinguishing between the different currently
considered nodes of T . Recall that for each row, representing some coloring γ,
we store the cost val(γ) of the represented sub-solution.

Leaf Node. Let i ∈ I be a leaf, and hence a (trivial) base case for our algorithm.
The table tabi contains only two rows corresponding to the two possible colors 0
and 1, respectively, for the only vertex v ∈ Xi. If v ∈ T but is colored 0, the
sub-solution’s cost is +∞; in all other cases the cost is 0.

Introduce Node. Let i ∈ I be an introduce node, and j ∈ I its only child. We
have Xj ⊂ Xi, |Xj |+ 1 = |Xi|, and let v be the additional vertex.

As a preprocessing, we initialize tabi and modify tabj as follows: We generate
all B|Xi|+1 possible rows of tabi and set their value entries to +∞. In tabj we
add an additional column for v (which remains uncolored, say color −1) and
modify the other color numbers to match the coloring scheme of i, instead of
j: By the fact that both secondary indices stem from a common primary index
Φ, this means that precisely all colors ≥ φi(v) have to be increased by one. We
observe that this preprocessing takes only O(Btw+2 · tw) time.

The cost for any coloring γi of Xi with γi(v) = 0 is straight-forward: Let γj
be the unique coloring in tabj that agrees with γi on all vertices except for v. If
v ∈ T , i.e., v is a terminal vertex, val(γi) = +∞, otherwise val(γi) = val(γj).

Now, we consider all compatible combinations of rows of tabj and tabi with
the intuition that several connected components of a solution at j may become
connected via the newly inserted, > 0-colored vertex v. Therefore, a coloring γj
of Xj is compatible with a coloring γi of bag Xi with γi(v) 
= 0 if and only if
the color partitions agree for all colors except for the color to which v belongs.
More formally, let c be the color of v in γi, then any vertex partition induced by
some color in γj is either also a vertex partition with the same color in γi, or a
(proper) subset of the vertex partition of color c in γi. Intuitively, the vertex v
connects with some formerly separated color partitions, coloring them all with
a common color.

We can compute the cost val(γi) for this solution at the introduce node i by
adding the costs of these new connections to the precomputed cost val(γj) of γj .
For the former, we simply have to find, for each formerly separate color partition
W , the cheapest edge in Gi connecting v with any vertex in W , and sum over
these costs. If no such edge exists, the corresponding connection cost is +∞.
If the so computed cost of γi is smaller than the current val(γi) entry for this
coloring in tabi, we update val(γi) accordingly. Hence, processing an introduce
node takes O(B2

tw+2 · tw) time.

Forget Node. Let i ∈ I be a forget node, and j ∈ I its only child. We have
Xi ⊂ Xj , |Xi|+1 = |Xj |, and let v be the additional (discarded, in fact) vertex.

As a preprocessing, we generate all rows of tabi and set their solution costs to
+∞. We then look at the rows of tabj one by one; let γj be the corresponding
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coloring, and c := γj(v). We say γj induces a coloring γi of the vertices Xi, by
simply dropping the vertex v and shifting the color index by −1 for all colors
> φj(v); the vertices colored with color φj(v) in γj obtain the color matching
the smallest secondary index φi(.) among themselves. Note that we can look up
the row of the induced coloring in tabi in O(tw) by exploiting the enumeration
scheme.

If c > 0 but there is no other vertex with color c, we cannot easily remove
this vertex from the solution, as it represents a component (containing, in gen-
eral, terminals) that has to be connected to the final Steiner tree S (recall that
we can safely assume that the decomposition tree’s root node contains a ter-
minal). Hence we cannot use this sub-solution to improve the solution value of
the induced coloring of Xi. Otherwise, we can safely drop the vertex and set
val(γi) := val(γj) if the current value of val(γi) is not already smaller.

Join Node. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have
Xj = Xj′ = Xi.

Again, we first construct all rows of tabi and set the solution values to +∞.
Then we consider all possible combinations of solutions from Xj and Xj′ . Let γj
and γj′ be colorings (rows) of tabj and tabj′ , respectively. We want to construct a
merged solution γi that resembles the combined connectivities of both solutions,
i.e., two vertices vs, vt ∈ Xi should be in the same color partition if and only
if there is a vertex sequence 〈vs := v1, v2, . . . , vβ := vt〉 in Xi such that, for all
1 ≤ α < β, the vertices vα, vα+1 have the same color in γj or γj′ .

Note that, a priori, such a merge might lead to cycles in the solution: assume
two vertices v1, v2 are colored with identical color cj in γj . Furthermore, they
have a (probably different but) common color cj′ in γj′ . Hence the vertices
are connected in both sub-solutions, but the connection paths do not need to
coincide. Even if the paths do coincide, we would have to identify them to not
count their cost twice for the combined solution. Hence, we only want to combine
solutions with the property that any pair of vertices has a common color > 0 in
at most one of the two colorings γj , γj′ . Then, the value of the combined solution
can be given as val(γi) := val(γj)+ val(γj′ ), which we can store into tabi (unless
the stored value for this solution is already smaller). Again, observe that we can
identify the row index in tabi of any given solution γi in O(tw) by exploiting the
enumeration scheme.

It would be trivial to perform the check whether to merge, as well as the actual
merge, in O(tw2) time, for any given pair of sub-solutions. Yet, we can do better
and perform the merge operation, including the check of the precondition, in
linear time O(tw): Consider a helper array recol : {1, . . . , |Xi|} → {1, . . . , |Xi|}
and construct a graph C with a vertex cr per possible color r. Then, for each
v ∈ Xi, add an edge (cγj(v), cγj′ (v)). Clearly, the graph has only O(tw) vertices
and edges. Remove the vertex c0 together with its incident edges, and mark all
other vertices in C as unvisited. Then, for increasing r ∈ {1, . . . , |Xi|}, start a
depth-first search (DFS) in C at any unvisited cr: set recol(cr′) := r for any
vertex cr′ visited in this DFS run. Hence, in the end, recol gives the new color
for any color in either γj or γj′ . Whenever a DFS run revisits an already visited
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vertex (within the same run), we identified a cycle (including the special case
of multiple edges), and the merge operation should be aborted. If no cycles
are detected, we can finally again consider each v ∈ Xi and set γi(v) := 0 if
γj(v) = γj′ (v) = 0, and γi(v) := recol(max{γj(v), γj′ (v)}) otherwise.

Remark. Note that if the given graph G has only positive edge weights, we do
not need to actively identify cycles or multiedges: the merged solution’s objec-
tive value will be greater than the alternative cycle/multiedge-free combination,
which will, at some point, also be considered. Since we store only the best so-
lution for any coloring in tabi, the stored solutions will always be cycle- and
multiedge-free.

Extracting the Solution at the Root Node. From the described construc-
tion process it is clear that each solution of a bag Xi describes the (minimum)
costs of a forest where all terminals from X+

i are (probably indirectly) connected
to some vertex of Xi. Also recall that it can be safely assumed that at least one
terminal is contained in the root bag Xr of T . Hence the optimum solution value
for the whole graph can be found in the root bag Xr of T , identifying a cheapest
solution where all vertices with color 
= 0 are contained in the same connected
component (i.e., have the same color).

Computing the optimum solution, i.e., the set of edges, is possible by back-
tracking or by storing the set of edges for each row and each bag. The latter
increases the required memory but has no negative impact on the running time
since these sets are simple linked lists that can be concatenated in O(1).

Remark. We can—with the same time complexity—also run the algorithm on
a tree decomposition where the root node does not contain any terminal vertex.
In this case, whenever we process a tree node i where T ⊆ X+

i (i.e., all terminals
are within the subtree induced by i), we check for the best solution where all
vertices with color 
= 0 belong to the same color partition, and store a reference
to it. After processing the root node, this reference gives the optimal solution.

2.3 Analysis

In the following, we will discuss the algorithm’s running time and prove that it
correctly computes an optimal solution.

Lemma 1. The above algorithm requires O(B2
tw+2 · tw · |V |) time.

Proof. The running time mainly depends on the size of the tables and the com-
bination of tables during the bottom-up traversal of the decomposition tree. We
already established that each table tabi at some tree node i stores O(Btw+2)
rows and requires overall O(Btw+2 · tw) storage.

During the bottom-up traversal of T we consider all possible row combina-
tions for two tables in the case of the introduce and the join node. For each
such combination, we perform a merge operation in O(tw), and we hence re-
quire overall O(B2

tw+2 · tw) time. This bound dominates the time required for
the other tree node types (forget and leaf nodes), as well as all other extra
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effort—feasibility tests, shifting of indices, etc.—which is only linearly dependent
on the treewidth. Due to the linear size of T , we can deduce the overall running
time. 
�
Lemma 2. The above algorithm correctly computes an optimal solution to the
given Steiner tree problem.

Proof. The algorithm’s correctness can be shown by a straight-forward inductive
proof on the decomposition tree. Let Γ ci := {v ∈ Xi | γi(v) = c} be the vertices
colored c in a coloring γi. Our induction hypothesis (IH) states that, for each
processed bag Xi, the cost of each solution γi corresponds to a minimum forest
Fi ⊆ G+

i with the properties
– Fi consists of (pairwise disconnected) trees F ci , one for each color c > 0 with
Γ ci 
= ∅, with Γ ci ⊆ V (F ci ), and Γ c

′
i ∩ V (F ci ) = 0 for all c′ 
= c. I.e., each tree

connects only vertices of the same color partition.
– Fi contains all terminals of G+

i , i.e., T+
i ⊆ V (Fi).

The base cases are leaf nodes where the hypothesis clearly holds. Now, let the
induction hypothesis be true for all descendants of a bag Xi.

Forget node. Each coloring of a forget bag Xi is induced by |Xi| + 1 many
colorings in the child table—one for each possible color of the forget vertex. Our
algorithm picks the minimal among them that remains feasible after the removal
of the forget vertex, and does not change its solution value.

Assume the minimum solution γi at Xi would be smaller then this identified
sub-solution. Then we could add the forget vertex to the solution γi of Xi,
coloring it as required by Fi. This is a feasible coloring for the child node,
and stays feasible after removing the forget vertex. Hence, it would have been
considered by our algorithm (without modifying its solution value).

Introduce node. For an introduce node i, the solution table contains a copy of
its child table, when coloring the new vertex either 0 or with its own secondary
index. Furthermore, the new vertex allows the connection of several components.

Assume some optimal solution at an introduce bag Xi would be smaller than
the one obtained by the algorithm. If the introduced vertex v is colored 0 or
has a unique color, the otherwise identical coloring (up to index shifting) was
stored in the child table (IH). As the algorithm would not have changed the
solution value, we arrive at a contradiction. Now assume v belongs to some color
class Γ ci with more than one element, and let F ci be the corresponding solution
tree. When we remove v from F ci , it decomposes into several components. Our
algorithm considered all possible such components in the child table, including
their optimal costs (IH), and attached them to v via the minimal edges. That
means that our algorithm considered this solution and would have computed its
costs correctly.

Join node. Similar to above, assume that we would have a solution γi at a
join node i which is strictly smaller than the one computed by our algorithm,
and consider the forest Fi. Observe that the vertex set Xi of i is identical to
those of its children j, j′. We can partition Fi into two sub-forests: Let F 1

i be
the forest restricted to the edges of G+

j , and let F 2
i be the forest restricted to

the edges E(G+
j′) \E(Gj′), i.e., it does not contain any edges already contained
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in F 1
i . Observe that F 1

i induces a feasible coloring solution at node j, and F 2
i a

feasible coloring solution at node j, and that both are disjoint. Hence, by (IH),
our algorithm would have considered to merge the corresponding optimal sub-
solutions to obtain γi, with the correct objective value based on summing the
costs of F 1

i and F 2
i . 
�

Finally, the following theorem summarizes the above lemmas.

Theorem 1. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the Steiner tree problem can be solved to optimality in O(B2

tw+2 ·
tw · |V |) time.

3 Prize-Collecting Steiner Tree

The prize-collecting Steiner tree problem (PCSTP) is an extension of the STP.
Thereby, instead of being required to connect all terminals, we get a (vertex-
specific) prize for each vertex we connect. We are hence given a function p :
V → R>0 and want to find a tree S = (VS , ES) that minimizes

∑
e∈ES c(e) −∑

v∈S p(v), where c is the edge-cost function.1

Our algorithm for the STP can be adapted by introducing the profits into
the cost calculations (at the introduce nodes) and removing the necessity that
terminals are assigned a color 
= 0. Because terminals may be omitted, the opti-
mum solution need not necessarily be captured by the table at the decomposition
tree’s root node. Hence, during the bottom-up traversal each row of each table
is a potential global solution if the corresponding coloring induces a feasible
tree. The remaining part of the algorithm remains identical and after the pre-
vious discussion on the running time and optimality we conclude the following
theorem.

Theorem 2. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the prize-collecting Steiner tree problem can be solved to optimality
in O(B2

tw+2 · tw · |V |) time.

4 k-Cardinality Tree

The k-cardinality tree (KCT) problem is defined on an edge-weighted, undi-
rected graph and asks for a minimum-cost tree containing exactly k edges. Bet-
zler [7] introduced an FPT algorithm with parameter k and time complexity
O(2O(k)k · |E| · log |V |). Ravi et al. [24] sketched a general FPT strategy for
any decomposable graph [6] (including graphs with bounded treewidth) with
time complexity O(f(tw) · k2 · |V |). As their general description considers any

1 Sometimes, the objective function is also described as min
∑
v �∈VS p(v)+

∑
e∈ES c(e).

From the point of view of optimal solutions, both problems are equivalent as∑
v∈V p(v) is a constant. We prefer the former definition to be able to locally evaluate

the objective function at each node of the decomposition tree.
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dependence on the decomposition’s parameter (e.g., treewidth) a constant, there
are no more details on the non-polynomial function f(tw). In the following, we
describe how to extend our previous algorithm for the STP to obtain an exact
algorithm for the KCT problem with a running time that increases by less than
a factor of k2, compared to the STP. In fact, our extension follows the concept
of [24], although in a less abstract way. Our obtained runtime bound is equiva-
lent to their result, and, to our knowledge, constitutes the first published bound
for f(tw).

As for the (PC)STP, we enumerate all possible partitions of the vertices of
each bag by assigning colors, and propagate optimal solutions to the root bag in
a bottom-up traversal of T . Yet, in contrast to the (PC)STP, holding a single
solution per partition and choosing minima is not sufficient as we have to take
the overall number of chosen edges into account.

Therefore the algorithm maintains, for each possible coloring at node i, a
solution value of a minimal forest with exactly k′ edges—establishing the color-
induced partition—for each possible 0 ≤ k′ ≤ k. All vertices of such a k′-forest
are either from Xi or are (indirectly) connected to vertices in Xi; all vertices
of a tree of such a forest are colored identically. Clearly, for solutions with 

non-0-colored vertices and c different colors > 0, the solution value for k′ < 
− c
is +∞, as any feasible forest requires more edges. The main observation is that
these k′-forests are always disjoint from any solution considered at any node not
in the subtree rooted at i, except for the vertices and edges in Gi. Overall, the
size of each row at any table tabi is O(tw + k).

Trivially, both possible colorings at a leaf node have cost 0 for the 0-forest
and +∞ otherwise. For a forget node the component of the forget vertex v has
to be considered: if v is the only vertex with color > 0 in the child table tabj , the
attached size-k forest (tree, in fact) might be the optimum k-cardinality tree;
hence, we compare and update the global optimum (similar as for the PCSTP). If
v is the only vertex with color γj but there are also other vertices colored > 0, we
cannot deduce a feasible solution and obtain forest values +∞. Otherwise (i.e.,
v does not define its own color class, or is colored 0), v can be simply discarded
without changing the costs of the k′-forests. Analogously to the STP—and in
the following also for the cases of the other inner nodes—we always store the
smallest solution value for each k′ that is achievable by a reduction from any
compatible coloring of the child bag.

The new vertex v in an introduce node might connect several connected com-
ponents, say c many. Similar to the STP, the cheapest edges connecting v with
each component are chosen; the cost of a k′-forest at the child node, together
with the cost-sum of the new edges, gives the cost of a (k′ +c)-forest for the con-
sidered coloring at node i. As we consider all compatible colorings at the child
node and store the minimum per k′′, we will, in the end, know the minimally
achievable k′′-forest for any possible cardinality 1 ≤ k′′ ≤ k at i.

For a join node observe that k′-forests from two combined solutions are pair-
wise disjoint, as long as their coloring does not induce cycles or multiedges, as we
discussed for the STP. Hence, as for the STP, we combine only two solutions with
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this property, reusing our DFS sub-algorithm. To compute the new minimal k′-
forest, for each k′, we consider all combinations of a k1-forest of the first, and a
k2-forest of the second solution with k1+k2 = k′. These areO(k2) computations.

After processing the root node, we may update the globally stored optimum
by the k-forests (trees, in fact) arising from colorings with a single non-0 color.

Analyzing the running time, we again require tables with O(Btw+2) rows, each
row of size O(tw + k). In case of a join and an introduce node, two tables are
combined by considering all possible O(B2

tw+2) combinations; the largest effort
of O(k2 + tw) per combination arises at a join node. Due to space restrictions
and obvious analogies to the STP we omit the correctness proof and close the
discussion on the KCT problem with the following theorem.

Theorem 3. Given a graph with vertex set V and a tree decomposition with
treewidth tw, the k-cardinality tree problem can be solved optimally in O(B2

tw+2 ·
(tw + k2) · |V |) time.

5 Conclusions

We showed new, currently fastest treewidth-based exact algorithms for the STP,
the PCSTP, and the KCT problem. For the former two problems, these al-
gorithms also directly speed-up current PTASes for planar STP and PCSTP,
as those use algorithms for bounded treewidth as their most time-consuming
subroutines.
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