LNCS 7056

Costas 8. Iliopoulos
William E. Smyth (Eds.)

Combinatorial
Algorithms

22nd International Workshop, IWOCA 2011
Victoria, BC, Canada, July 2011
Revised Selected Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7056

Costas S. Iliopoulos William F. Smyth (Eds.)

Combinatorial
Algorithms

22nd International Workshop, IWOCA 2011
Vancouver, BC, Canada, July 20-22, 2011
Revised Selected Papers

@ Springer

Volume Editors

Costas S. Iliopoulos

King’s College London

Department of Informatics

Strand, London WC2R 2LS, UK

E-mail: csi@dcs.kel.ac.uk

and

Curtin University

Digital Ecosystems and Business Intelligence Institute
Perth WA 6845, Australia

William F. Smyth

McMaster University

Department of Computing and Software

Hamilton, ON L8S 4K1, Canada

E-mail: smyth@mcmaster.ca

and

Curtin University

Digital Ecosystems and Business Intelligence Institute

Perth WA 6845, Australia
ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25010-1 e-ISBN 978-3-642-25011-8

DOI 10.1007/978-3-642-25011-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011939494
CR Subject Classification (1998): G.2.1,G.2.2,1.1,1.3.5,F2,E.1,E4, H.1

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at IWOCA 11: the 22nd International
Workshop on Combinatorial Algorithms

The 22nd IWOCA was held July 20-22, 2011 on the green and spacious cam-
pus of the University of Victoria (UVic), itself located on green and spacious
Vancouver Island, off the coast of British Columbia, a few scenic kilometers by
ferry from the city of Vancouver. The meeting was sponsored and supported fi-
nancially by the Pacific Institute for the Mathematical Sciences (PIMS); hosted
by the UVic Department of Computer Science. The Local Arrangements Com-
mittee, cochaired by Wendy Myrvold and Venkatesh Srinivasan, did an out-
standing job; the Program Committee was cochaired by Costas Iliopoulos and
Bill Smyth; the intricacies of EasyChair were handled by German Tischler.

IWOCA descends from the original Australasian Workshop on Combinatorial
Algorithms, first held in 1989, then renamed “International” in 2007 in response
to consistent interest and support from researchers outside the Australasian
region. The workshop’s permanent website can be accessed at iwoca.org, where
links to previous meetings, as well as to IWOCA 2011, can be found.

The IWOCA 2011 call for papers was distributed around the world, resulting
in 71 submitted papers. The EasyChair system was used to facilitate manage-
ment of submissions and refereeing, with three referees selected from the 40-
member Program Committee assigned to each paper. A total of 30 papers were
accepted, subject to revision, for presentation at the workshop.

The workshop also featured a problem session, chaired — in the absence of
IWOCA Problems Cochairs Yuqing Lin and Zsuzsanna Liptak — by UVic grad-
uate student Alejandro Erickson. Four invited talks were given by Tetsuo Asano
on “Nearest Larger Neighbors Problem and Memory-Constrained Algorithms,”
Pavol Hell on “Graph Partitions,” J. Ilan Munro on “Creating a Partial Order and
Finishing the Sort, with Graph Entropy” and Cenk Sahinalp on “Algorithmic
Methods for Structural Variation Detection Among Multiple High-Throughput
Sequenced Genomes.”

The 51 registered participants at IWOCA 2011 hold appointments at institu-
tions in 15 different countries on four continents (Asia, Australia, Europe, North
America). The nations represented were: Australia (2), Canada (28), China (1),
Czech Republic (2), Denmark (1), France (1), Germany (3), India (2), Israel (1),
Iran (1), Italy (1), Japan (1), Russia (1), Taiwan (1), USA (5).

Atypical for IWOCA, the contributed talks were split into concurrent streams,
A (Combinatorics) and B (Graph Theory). This strategy allowed 30-minute talks
and so encouraged a relaxed atmosphere; still, one was often forced to choose
between two attractive alternatives. Stream A included such topic areas as com-
binatorics on words, string algorithms, codes, Venn diagrams, set partitions;

VI Preface

Stream B dealt with several graph theory areas of current interest: Hamiltonian
& Eulerian properties, graph drawing, coloring, dominating sets, spanning trees,
and others.

We wish to thank the authors for their contributions: the quality of their
papers made IWOCA exceptional this year. We would also like to thank the
referees for their thorough, constructive and helpful comments and suggestions
on the manuscripts.

August 2011 Costas S. Iliopoulos
Bill F. Smyth

Program Committee

Faisal Abu-Khzam
Amihood Amir

Subramanian Arumugam
Hideo Bannai

Ljiljana Brankovic

Gerth Stglting Brodal
Charles Colbourn
Maxime Crochemore

Diane Donovan
Alan Frieze
Dalibor Froncek
Roberto Grossi
Sylvie Hamel
Jan Holub

Seok-Hee Hong
Costas Iliopoulos
Ralf Klasing
Rao Kosaraju
Marcin Kubica
Anna Lubiw
Mirka Miller
Laurent Mouchard
Tan Munro
Wendy Myrvold
Kunsoo Park
Simon Puglisi

Rajeev Raman
Frank Ruskey
Jeffrey Shallit
Michiel Smid
Bill Smyth

Tain Stewart
Gabor Tardos
German Tischler

Organization

Lebanese American University, Lebanon

Bar-Ilan University and Johns Hopkins
University, Israel/USA

Kalasalingam University, India

Kyushu University, Japan

University of Newcastle, UK

Aarhus University, Dem

Arizona State University, USA

King’s College London, UK and Université
Paris-Est, France

University of Queensland, Australia

Carnegie Mellon University, USA

University of Minnesota Duluth, USA

Universita di Pisa, Italy

University of Montreal, Canada

Czech Technical University in Prague,
Czech Republic

University of Sydney, Australia

King’s College London, UK

LaBRI - CNRS, France

Johns Hopkins University, USA

Warsaw University, Poland

University of Waterloo, Canada

University of Newcastle, UK

University of Rouen, France

University of Waterloo, Canada

University of Victoria, Canada

Seoul National University, Korea

Royal Melbourne Institute of Technology,
Australia

University of Leicester, UK

University of Victoria, Canada

University of Waterloo, Canada

Carleton University, Canada

McMaster University, Canada

Durham University, UK

Simon Fraser University, Canada

King’s College London, UK

VIII Organization

Alexander Tiskin
Eli Upfal

Lynette Van Zijl
Koichi Wada

Sue Whitesides
Christos Zaroliagis

Additional Reviewers

Barbay, Jérémy
Battaglia, Giovanni
Beveridge, Andrew
Blin, Guillaume
Boeckenhauer, Hans-Joachim
Broersma, Hajo
Cadilhac, Michaél
Chauve, Cedric
Cooper, Colin
Cordasco, Gennaro
Erickson, Alejandro
Erlebach, Thomas
Fotakis, Dimitris
Foucaud, Florent
Franceschini, Gianni
Frieze, Alan
Golovach, Petr
Greene, John
Gupta, Anupam
Hahn, Gena
Hoffmann, Michael
Huang, Jing

Izumi, Taisuke
Izumi, Tomoko
Kalvoda, Tomas
Katayama, Yoshiaki
Klouda, Karel
Kontogiannis, Spyros
Korf, Richard
Kyncl, Jan

University of Warwick, UK

Brown University, USA

Stellenbosch University, South Africa
Nagoya Institute of Technology, Japan
University of Victoria, Canada

CTI University of Patras, Greece

Langiu, Alessio
Loh, Po-Shen
Macgillivray, Gary
Mamakani, Khalegh
Marshall, Kim
Martin, Barnaby
Mcfarland, Robert
Merlini, Donatella
Mertzios, George B.
Moemke, Tobias
Ono, Hirotaka
Phanalasy, Oudone
Pineda-Villavicencio, Guillermo
Pissis, Solon
Prencipe, Giuseppe
Puglisi, Simon
Radoszewski, Jakub
Radzik, Tomasz
Razgon, Igor
Rylands, Leanne
Sau, Ignasi
Steinhofel, Kathleen
Teska, Jakub
Theodoridis, Evangelos
Tsichlas, Kostas
Vandin, Fabio
Vialette, Stéphane
Wallis, Wal
Yamashita, Yasushi
Yuster, Raphael

Table of Contents

Weighted Improper Colouring,
Julio Araujo, Jean-Claude Bermond, Frédéric Giroire,
Frédéric Havet, Dorian Mazauric, and Remigiusz Modrzejewski

Algorithmic Aspects of Dominator Colorings in Graphs
S. Arumugam, K. Raja Chandrasekar, Neeldhara Misra,
Geevarghese Philip, and Saket Saurabh

Parameterized Longest Previous Factor
Richard Beal and Donald Adjeroh

p-Suffix Sorting as Arithmetic Coding
Richard Beal and Donald Adjeroh

Periods in Partial Words: An Algorithm
Francine Blanchet-Sadri, Travis Mandel, and Gautam Sisodia

The 1-Neighbour Knapsack Problem.............
Glencora Borradaile, Brent Heeringa, and Gordon Wilfong

A Golden Ratio Parameterized Algorithm for Cluster Editing..........
Sebastian Bicker

Stable Sets of Threshold-Based Cascades on the Erdés-Rényi Random
Graphs .« .o
Ching-Lueh Chang and Yuh-Dauh Lyuu

How Not to Characterize Planar-Emulable Graphs
Markus Chimani, Martin Derka, Petr Hlinény, and Matéj Klusdcek

Testing Monotone Read-Once Functions
Dmitry V. Chistikov

Complexity of Cycle Transverse Matching Problems
Ross Churchley, Jing Huang, and Xuding Zhu

Efficient Conditional Expectation Algorithms for Constructing Hash
Families
Charles J. Colbourn

2-Layer Right Angle Crossing Drawingsooiieio....
Emilio Di Giacomo, Walter Didimo, Peter Eades, and
Giuseppe Liotta

19

31

44

o7

71

85

X Table of Contents

Hamiltonian Orthogeodesic Alternating Paths
Emilio Di Giacomo, Luca Grilli, Marcus Krug, Giuseppe Liotta, and
Ignaz Rutter

Ranking and Loopless Generation of k-ary Dyck Words in Cool-lex
Order .ot
Stephane Durocher, Pak Ching Li, Debajyoti Mondal, and
Aaron Williams

Two Constant-Factor-Optimal Realizations of Adaptive Heapsort
Stefan Edelkamp, Amr Elmasry, and Jyrki Katajainen

A Unifying Property for Distribution-Sensitive Priority Queues
Amr Elmasry, Arash Farzan, and John Iacono

Enumerating Tatami Mat Arrangements of Square Grids..............
Alejandro Erickson and Mark Schurch

Quasi-Cyclic Codes over F1got e
T. Aaron Gulliver

Acyclic Colorings of Graph Subdivisions
Debajyoti Mondal, Rahnuma Islam Nishat, Sue Whitesides, and
Md. Saidur Rahman

Kinetic Euclidean Minimum Spanning Tree in the Plane
Zahed Rahmati and Alireza Zarei

Generating All Simple Convexly-Drawable Polar Symmetric 6-Venn
Diagrams
Khalegh Mamakani, Wendy Myrvold, and Frank Ruskey

The Rand and Block Distances of Pairs of Set Partitions
Frank Ruskey and Jennifer Woodcock

On Minimizing the Number of Label Transitions around a Vertex of a
Planar Graph
Bojan Mohar and Petr Skoda

A New View on Rural Postman Based on Eulerian Extension and
Matchingt
Manuel Sorge, René van Bevern, Rolf Niedermeier, and
Mathias Weller

Hamilton Cycles in Restricted Rotator Graphs.................... ...
Brett Stevens and Aaron Williams

Efficient Codon Optimization with Motif Engineering.................
Anne Condon and Chris Thachuk

Table of Contents XI

An Algorithm for Road Coloring o i ... 349
A.N. Trahtman

Complexityv of the Cop and Robber Guarding Game 361
Robert Samal, Rudolf Stolar, and Tomas Valla

Improved Steiner Tree Algorithms for Bounded Treewidth............. 374
Markus Chimani, Petra Mutzel, and Bernd Zey

Author Index 387

Weighted Improper Colouring™

Julio Araujo'-?, Jean-Claude Bermond', Frédéric Giroire', Frédéric Havet!,
Dorian Mazauric', and Remigiusz Modrzejewski'

' Mascotte, joint project I3SS(CNRS/Univ. de Nice)/INRIA, France
2 ParGO Research Group - Universidade Federal do Ceara - UFC, Brazil

Abstract. In this paper, we study a colouring problem motivated by a practi-
cal frequency assignment problem and up to our best knowledge new. In wire-
less networks, a node interferes with the other nodes the level of interference
depending on numerous parameters: distance between the nodes, geographical
topography, obstacles, etc. We model this with a weighted graph G where the
weights on the edges represent the noise (interference) between the two end-
nodes. The total interference in a node is then the sum of all the noises of the
nodes emitting on the same frequency. A weighted ¢-improper k-colouring of
G is a k-colouring of the nodes of G (assignment of k frequencies) such that
the interference at each node does not exceed some threshold . The Weighted
Improper Colouring problem, that we consider here consists in determining the
weighted #-improper chromatic number defined as the minimum integer & such
that G admits a weighted 7-improper k-colouring. We also consider the dual prob-
lem, denoted the Threshold Improper Colouring problem, where given a number
k of colours (frequencies) we want to determine the minimum real ¢ such that
G admits a weighted z-improper k-colouring. We show that both problems are
NP-hard and first present general upper bounds; in particular we show a general-
isation of Lovész’s Theorem for the weighted t-improper chromatic number. We
then show how to transform an instance of the Threshold Improper Colouring
problem into another equivalent one where the weights are either 1 or M, for a
sufficient big value M. Motivated by the original application, we study a special
interference model on various grids (square, triangular, hexagonal) where a node
produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for
the nodes that are at distance 2. Consequently, the problem consists of determin-
ing the weighted z-improper chromatic number when G is the square of a grid
and the weights of the edges are 1, if their end nodes are adjacent in the grid, and
1/2 otherwise. Finally, we model the problem using linear integer programming,
propose and test heuristic and exact Branch-and-Bound algorithms on random
cell-like graphs, namely the Poisson-Voronoi tessellations.

1 Introduction

Let G = (V,E) be a graph. A k-colouring of G is a function ¢ : V — {1,...,k}. The
colouring ¢ is proper if uv € E implies c¢(u) # c(v). The chromatic number of G, denoted
by %(G), is the minimum integer k such that G admits a proper k-colouring. The goal

* This work was partially supported by région PACA, ANR Blanc AGAPE and ANR Interna-
tional Taiwan GRATEL.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 1-I§, 2011.
(© Springer-Verlag Berlin Heidelberg 2011

2 J. Araujo et al.

of the VERTEX COLOURING problem is to determine (G) for a given graph G. It is a
well-known NP-hard problem [11]].

A k-colouring c is I-improper if |{v € N(u) | ¢(v) = c¢(u)}| < I for all u € V. Given
a non-negative integer [, the [-improper chromatic number of a graph G, denoted by
%:(G), is the minimum integer & such that G has an [-improper k-colouring. For given
graph G and integer /, the IMPROPER COLOURING problem consists in determining
%:(G) [141[6] and is also NP-hard. Indeed, if I = 0, observe that xo(G) = %(G). Conse-
quently, VERTEX COLOURING is a particular case of IMPROPER COLOURING.

In this work we define and study a new variation of the improper colouring problem
for edge-weighted graphs. Given an edge-weighted graph G = (V,E,w), w: E — R,
a threshold + € R, and a colouring ¢, we note the inferference of a vertex w in this
colouring as:

L,(G,w,c) = D w(u,v).
{veN(u)le(v)=c(u)}

We say that c is a weighted t-improper k-colouring of G if c is a k-colouring of G such
that 1,(G,w,c) <t,forallu e V.

Given a threshold ¢ € R}, the minimum integer k such that the graph G admits
a weighted f-improper k-colouring is the weighted t-improper chromatic number of
G, denoted by yx;(G,w). Given an edge-weighted graph G = (V,E,w) and a thresh-
old r € R, determining y,;(G,w) is the goal of the WEIGHTED IMPROPER COLOUR-
ING problem. Note that if # = 0 then ¥o(G,w) = %(G), and if w(e) =1 forall e € E,
then x;(G,w) = x;(G) for any positive integer [. Therefore, the WEIGHTED IMPROPER
COLOURING problem is clearly NP-hard since it generalises VERTEX COLOURING and
IMPROPER COLOURING.

On the other hand, we define the minimum k-threshold of G, denoted by (G, w)

as the minimum real ¢ such that G admits a weighted #-improper k-colouring. Then, for
a given edge-weighted graph G = (V,E,w) and a positive integer k, the THRESHOLD
IMPROPER COLOURING problem consists of determining wy (G, w).
Motivation. Our initial motivation to these problems was the design of satellite an-
tennas for multi-spot MFTDMA satellites [2]]. In this technology, satellites transmit
signals to areas on the ground called spots. These spots form a grid-like structure which
is modelled by an hexagonal cell graph. To each spot is assigned a radio channel or
colour. Spots are interfering with other spots having the same channel and a spot can
use a colour only if the interference level does not exceed a given threshold ¢. The level
of interference between two spots depends on their distance. The authors of [2] intro-
duced a factor of mitigation y and the interferences of remote spots are reduced by a
factor 1 —7y. When the interference level is too low, the nodes are considered to not
interfere anymore. Considering such types of interferences, where nodes at distance at
most i interfere, leads to the study of the i-th power of the graph modelling the network
and a case of special interest is the power of grid graphs (see Section[3).

Related Work. Our problems are particular cases of the FREQUENCY ASSIGNMENT
PROBLEM (FAP). FAP has several variations that were already studied in the literature
(see [1]] for a survey). In most of these variations, the main constraint to be satisfied is
that if two vertices (mobile phones, antennas, spots, etc.) are close, then the difference

Weighted Improper Colouring 3

between the frequencies that are assigned to them must be greater than some function
that usually depends on their distance.

There is a strong relationship between most of these variations and the L(p1, ..., pa4)-
LABELLING PROBLEM [[15]. In this problem, the goal is to find a colouring of the ver-
tices of a given graph G in such a way that the difference between the colours assigned
to vertices at distance i must be at least p;, foreveryi=1,...,d.

For some other variations, for each non-satisfied interference constraint a penalty
must be paid. In particular, the goal of the MINIMUM INTERFERENCE ASSIGNMENT
PROBLEM (MI-FAP) is to minimise the total penalties that must be paid, when the
number of frequencies to be assigned is given. This problem can also be studied for only
co-channel interferences, in which the penalties are applied only if the two vertices have
the same frequency. However, MI-FAP under these constraints does not correspond to
WEIGHTED IMPROPER COLOURING, because we consider the co-channel interference,
i.e. penalties, just between each vertex and its neighbourhood.

The two closest related works we found in the literature are [13]] and [[7]. However,
they both apply penalties over co-channel interference, but also to the adjacent channel
interference, i.e. when the colours of adjacent vertices differ by one unit. Moreover,
their results are not similar to ours. In [13], they propose an enumerative algorithm for
the problem, while in [7] a Branch-and-Cut method is proposed and applied over some
1nstances.

Results

In this article, we study both parameters y;(G,w) and wy(G,w). We first show that
THRESHOLD IMPROPER COLOURING is NP-hard. Then we present general upper
bounds; in particular we show a generalisation of Lovédsz’ Theorem for ¥, (G,w). We
then show how to transform an instance into an equivalent one where the weights are
either 1 or M, for a sufficient big value M.

Motivated by the original application, we study a special interference model on var-
ious grids (square, triangular, hexagonal) where a node produces a noise of intensity
1 for its neighbours and a noise of intensity 1/2 for the nodes that are at distance 2.
Consequently, the problem consists of determining x;(G,w) and @ (G,w), when G is
the square of a grid and the weights of the edges are 1, if their end nodes are adjacent
in the grid, and 1/2 otherwise.

Finally, we propose a heuristic and a Branch-and-Bound algorithm to solve the
THRESHOLD IMPROPER COLOURING for general graphs. We compare them to an inte-
ger programming formulation on random cell-like graphs, namely Voronoi diagrams of

Fig. 1. Construction of G(/,¢) from an instance (/,¢) of the PARTITION PROBLEM

4 J. Araujo et al.

random points of the plan. These graphs are classically used in the literature to model
telecommunication networks [4,(8.9]].

2 General Results

In this section, we present some results for WEIGHTED IMPROPER COLOURING and
THRESHOLD IMPROPER COLOURING for general graphs and general interference
models.

2.1 NP-Completeness of THRESHOLD IMPROPER COLOURING

In this section, we prove that the decision problem associated to THRESHOLD IM-
PROPER COLOURING is NP-complete already for k = 2.

Theorem 1. The following problem is NP-complete.
Instance: An edge-weighted graph G = (V,E,w), w : E — R, a thresholdt € R.
Question: Does G have a weighted t-improper 2-colouring?

Proof. Given a 2-colouring ¢ of G, one can test in O(|E|)-time if ¢ is weighted
t-improper by just checking, for each vertex v, if I,(G,w,c) < t. Consequently, this
problem is in NP.

Now we reduce the PARTITION problem [11] which is NP-complete, to it. In the
PARTITION problem, given a set of p positive integers = {iy,...,i,} and a threshold 7,
we want to decide if there is a partition of the elements of / into two sets A and B such
that ¥, cpis <tand Y, cpip <t. We consider thati; <t, forall j € {1,...,p}, and that
t < 2?:1 ij, otherwise the answer for this problem is trivially no and yes, respectively.

Given an instance (/,#) of the PARTITION PROBLEM, let G(I,¢) be a graph whose
vertex setis V(G(I,t)) ={v;|je{l,...,p}}U{a,b} and whose edge setis E(G(I,1)) =
{(a,b)} U{(a,v)),(b,v)) | j € {1,...,p}} (see Figure[I). Define M = 1 +37_, i;. Let
w:E(G(I,t)) — {i1,...,ip,M} be a weight function for the edges of G(/,t) defined in
the following way: w(a,b) = M and w(a,v;) = w(b,v;) = i;, forevery j € {1,...p}.

We claim that (I,7) is a yes answer for the PARTITION PROBLEM if, and only if,
G(I,t) admits a weighted ¢-improper 2-colouring.

If (1,¢) is a yes instance, let (A,B) be a partitioning such that ¥, c4is <t
and Y, cpip < 1. We claim that the following colouring ¢ is a weighted 7-improper
2-colouring of G(I,1):

e(v) = 1 ifve {.a}U{vj lijeA};

2 otherwise.
To verify this fact, observe that Io(G, w,c) = ¥ caij <t, that (G, w,c) = ¥ cpij <1
and that 1,,(G,w,c) =i; <t,foreach j € {1...,p}.

Conversely, consider that G(I,¢) admits a weighted z-improper 2-colouring c¢. Re-
mark that a and b must receive different colours since the weight of the edge (a,b) is
M > t. Thus, assume that ¢(a) = 1 and that ¢(b) = 2. Let A be the subset of integers
ij,j€{1,...,p}, suchthatc(v;) =1 and B=1\A = {ij | ¢(v;) =2}. Observe that the
sum of elements in A (resp. B) is equal to I,(G, w,¢) (resp. I,(G,w,c)) and they are both
smaller or equal to ¢, since c is a weighted z-improper 2-colouring.

Weighted Improper Colouring 5

2.2 Bounds

Upper Bound for WEIGHTED IMPROPER COLOURING. It is a folklore result
x(G) < A(G) + 1, for any graph G. Lovész [12] extended this result for IMPROPER

COLOURING problem. He proved that x;(G) < [A(ﬁ)f ". In what follows, we show an
extension of these results to WEIGHTED IMPROPER COLOURING.

Given an edge-weighted graph G = (V,E,w), w : E — RY, and v € V, let
dw(v) = Yuenw) w(u,v). Denote by A(G,w) = max,ey dy,(v). Given a k-colouring ¢ :
V —{1,...,k} of G, we denote div,c(v) = Y {ueN()|c(u)=i} W(u,v), for every vertex v € V

and colour i = 1,...,k. Note that dfvgz) (v) = I,(G,w,c). Finally, we denote gcd(w) the
greatest common divisor of the weights of w. We use here the generalisation of the gcd
to non-integer numbers (e.g. in Q) where a number x is said to divide a number y if
the fraction y/x is an integer. The important property of gcd(w) is that the difference
between two interferences is a multiple of gcd(w); in particular, if for two vertices v
and u, d, .(v) > dil.c(u), then dj, .(v) > diy o (u) + ged(w).

If ¢ is not a multiple of the gycd(w), that is, there exists an integer a € Z such that

a ged(w) <t < (a+ 1)ged(w), then x'(G) = x:fgcd(w)(G).

Theorem 2. Given an edge-weighted graph G = (V,E,w), w: E — Q% and a threshold
t multiple of gcd(w), then the following inequality holds:

y (o) < F(G,w) +gcd<w>l |

t+ged(w)
Proof. We say that a k-colouring ¢ of G is well-balanced if c satisfies the following
property:
Property 1. For any vertex v € V, I,(G,w,c) < dj,.(v), forevery j = 1,... k.

If k = 1 there is nothing to prove. Then, we prove that for any k > 2, there exists a well-
balanced k-colouring of G. To prove this fact one may just colour G arbitrarily with k
colours and then repeat the following procedure: if there exists a vertex v coloured i
and a colour j such that d’, .(v) > di,.(v), then recolour v with colour j. Observe that
this procedure neither increases (we just move a vertex from one colour to another)
nor decreases (a vertex without neighbour on its colour is never moved) the number
of colours within this process. Let W be the sum of the weights of the edges having
the same colour in their endpoints. In this transformation, W has increased by dj, . (v)
(edges that previously had colours i and j in their endpoints), but decreased by div’c(v)
(edges that previously had colour i in both of their endpoints). So, W has decreased by
dl, .(v) —dic(v) > ged(w). As W < |E|max.cg w(e) is finite, this procedure finishes
and produces a well-balanced k-colouring of G.
Observe that in any well-balanced k-colouring ¢ of a graph G, the following holds:

do(v) = Y wlu,v) > kdid (v). (1)
ueN(v)
Let k* = {A(?fg);‘%fj(w)—‘ > 2 and c¢* be a well-balanced k*-colouring of G. We claim
that ¢* is a weighted ¢-improper k*-colouring of G.

6 J. Araujo et al.

By contradiction, suppose that there is a vertex v in G such that ¢* (v) =i and that
dl, .(v) > 1. Since c* is well-balanced, diy,o(v) > 1, forall j=1,...,k*. By the definition

of ged(w) and as 7 is a multiple of ged(w), it leads to di.(v) > 1 + ged(w) for all
Jj=1,...,k*. Combining this inequality with Inequality (), we obtain:

A(G,w) = dy(v) > k*(t + ged(w)),
giving
A(G,w) > A(G,w) + gcd(w),
a contradiction. The result follows.

Note that when all weights are equal to one, we obtain the bound for the improper
colouring derived in [12].

u w’(u,v)=w(u,v)—-1 v

/‘:____::; sz=----= Py
1 s _-""> < <~ _-"
! i~ S~ -l \
& - -9

>
| ~~ "< YN -]
\ ~ O~ 1 1 PRGN \
\ - ~< > .- ~
- s P ~ , 7
P--—----=-"g” 0 T - --- :b
K" u’ v KY

Fig. 2. Construction of G'*! from G using edge (u,v) with k = 4. Dashed edges represent edges
with infinite weights.

Brooks [5]] proved that for a connected graph G, % (G) = A(G) + 1 if, and only if, G is
complete or an odd cycle. One could wonder for which edge-weighted graphs the bound
we provide is tight. However, Correa et al. [6] already showed that it is NP-complete
to determine if the improper chromatic number of a graph G attains the upper bound
of Lovdsz, which is a particular case of WEIGHTED IMPROPER COLOURING and the
bound we provided.

Upper Bound for THRESHOLD IMPROPER COLOURING. Let G = (V,E,w), w:
E — R}, be an edge-weighted graph and k be a positive integer. Observe that, for the
minimum k-threshold of G,

(G, w) SAG,w) < Y, w(e).
e€E(G)

In what follows, we improve this trivial upper bound.
Let V! = {u € V,d(u) > k} be the set of vertices with degree at least k. Set G’ =
G-V.

Lemma 1. oy (G,w) = wx(G',w)

Proof. If there is a weighted z-improper k-colouring of G/, then it is easy to get a
weighted ¢-improper k-colouring of G choosing, for each vertex u € V \ V/, a colour
different from the colours of its neighbours. It is always possible because d(u) <k — 1.
Conversely, if there is a weighted ¢-improper k-colouring of G, then there is a
weighted ¢-improper k-colouring of G’ by choosing, for every v € V', ¢ (v) = cg(v).

Weighted Improper Colouring 7

For the rest of the section, we only consider edge-weighted graphs with minimum de-
gree at least k. For each v € V, let EX-1(v) be the set of d(v) — (k— 1) least weighted
edges incident to v.

Theorem 3. Let G = (V,E,w), w: E — R, be an edge-weighted graph and k be a
positive integer. Then,
o (G,w) < maxw(EX-1(v)),

vev min

k=1
where w(E, " (v)) = ZeeEZ’fnl ") w(e).
Proof. Let G5 1 = GIE\{U,cy E*;! (v)}]. Observe that the maximum degree of a ver-
tex in G- 1 <k — 1. Consequently, G*! admits a proper k-colouring c of its vertices.
Observe that the maximum interference of a vertex v in G when G is coloured by the
colouring ¢ is at most max,cy w(EX~1(v)) and the result follows.

2.3 Transformation

In this section, we prove that the THRESHOLD IMPROPER COLOURING problem can
be transformed into a problem mixing proper and improper colouring. More precisely,
we prove the following:

Theorem 4. Let Gy = (Vo, Eo,wo) be an edge-weighted graph such that, for every e €
E, w(e) € 7%, and k be a positive integer. We can construct a graph G* = (V* ,E*,w*)
such that w*(e) € {1,M} for any e € E(G*), satisfying o (Go,wo) = @ (G*,w*), where
M =1+ Yecp(c)wole).

Proof. Consider the function f(G,w) = X (ccr(6)w(e)2my (W(e) — 1).

If f(G,w) =0, all edges have weight either 1 or M and G has the desired prop-
erty. In this case, G* = G. Otherwise, we construct a graph G’ and a function w’ such
that (G’ ,w') = & (G,w), but f(G',w') = f(G,w) — 1. By repeating this operation
f(Go,wp) times we get the required graph G*.

In case f(G,w) > 0, there exists an edge ¢ = (u,v) € E(G) such that 2 < w(e) < M.
G' is obtained from G by adding two complete graphs on k — 1 vertices K" and K* and
two new vertices «’ and v'. We join u and «’ to all the vertices of K“ and v and V' to all
the vertices of K¥. We assign weight M to all these edges. Note that, « and «’ (v and V')
always have the same colour, namely the remaining colour not used in K* (resp. K”).

We also add two edges uv' and u'v both of weight 1. The edges of G keep their
weight in G', except the edge e = uv whose weight is decreased by one unit, i.e., w'(e) =
w(e) — 1. Thus, f(G') = f(G) — 1 as we added only edges of weights 1 and M and we
decreased the weight of e by one unit.

Now consider a weighted ¢-improper k-colouring ¢ of G. We produce a weighted -
improper k-colouring ¢’ to colour G’ as follows: we keep the colours of all the vertices
in G, we assign to u’ (v') the same colour as u (resp., v), and we assign to K* (K") the
k — 1 colours different from the one used in u (resp. v).

8 J. Araujo et al.

Conversely, from any weighted improper k-colouring ¢’ of G', we get a weighted
improper k-colouring ¢ of G by just keeping the colours of the vertices that belong
to G.

For such colourings ¢ and ¢’ we have that I,(G,w,c) = L,(G',w',c’), for any ver-
tex x of G different from u and v. For x € K* UK", I,(G',w’,c") = 0. The neighbours
of u with the same colour as u in G’ are the same as in G, except possibly v/ which
has the same colour of u if, and only if, v has the same colour of u. Let e =1 if v
has the same colour as u, otherwise € = 0. As the weight of (u,v) decreases by one
and we add the edge (u,V') of weight 1 in G', we get I,(G',w',c) = 1,(G,w,c) —
e+w (u,v')e = 1,(G,w,c). Similarly, I,(G',w',c") = I,(G,w,c). Finally, I, (G',w',c") =
I,(G W) =¢e But,(G',w,c) > (w(u,v) — 1)e and so 1, (G',w',c") < 1,(G',w,c)
and I,(G',w',c’) < I,(G',w',c’). In summary, we have

max I, (G',w',c’) = maxI,(G,w,c)
X X

and therefore wy (G, w) = o (G',w').

In the worst case, the number of vertices of G* is n + m(wy,qx — 1)2k and the number of
edges of G* is m+ m(Wpay — 1)[(k+4)(k— 1) +2] with n = |V(G)|, m = |E(G)| and
Wmax = MaAXecE(G) W(e)'

In conclusion, this construction allows to transform the THRESHOLD IMPROPER
COLOURING problem into a problem mixing proper and improper colouring. Therefore
the problem consists in finding the minimum / such that a (non-weighted) /-improper
k-colouring of G* exists with the constraint that some subgraphs of G* must admit a
proper colouring. The equivalence of the two problems is proved here only for integers
weights, but it is possible to adapt the transformation to prove it for rational weights.

3 Squares of Particular Graphs

As mentioned in the introduction, WEIGHTED IMPROPER COLOURING is motivated by
networks of antennas similar to grids [2]]. In these networks, the noise generated by an
antenna undergoes an attenuation with the distance it travels.

It is often modelled by a decreasing function of d, typically 1/d* or 1/(29~1). Here
we consider a simplified model where the noise between two neighbouring antennas
is normalised to 1, between antennas at distance two is 1/2 and 0 when the distance is
strictly greater than 2.

Studying this model of interference corresponds to study the WEIGHTED IMPROPER
COLOURING of the square of the graph G, the graph obtained from G by joining every
pair of vertices at distance 2, and to assign weights wa(e) =1, if e € E(G), and wp(e) =
1/2,if e € E(G?) — E(G). Observe that in this case the interesting threshold values are
the non-negative multiples of 1/2.

In Figure 3l are given some examples of colouring for the square grid. In Figure
each vertex x has neither a neighbour nor a vertex at distance 2 coloured with its own
colour, 5o I,(G?,wy,c) = 0. In Figure each vertex x has exactly one vertex of the
same colour at distance 2, so [,(G?,wa,c) = 1/2.

Weighted Improper Colouring 9

For any r € R, we determine the weighted #-improper chromatic number for the
square of infinite paths, square grids, hexagonal grids and triangular grids under the
interference model w,. We also present lower and upper bounds for ; (Tz,wz), for any
tree 7 and any threshold ¢.

3.1 Infinite Paths and Trees

In this section, we characterise the weighted #-improper chromatic number of the square
of an infinite path, for all positive real . Moreover, we present lower and upper bounds
for y, (T2, wy), for a given tree T.

Theorem 5. Let P = (V,E) be an infinite path. Then,

3, f0<r<1;
x(PPow) =12, if1<r<3;
1, if3<t.

Proof. Let V. ={v; |i € Z} and E = {(vi_1,v;) | i € Z}. Each vertex of P has two
neighbours and two vertices at distance two. Consequently, the first case r > 3 is trivial.

There is a 2-colouring ¢ of (P?,w,) with maximum interference 1 by just colouring v;
with colour i mod 2. So y; (P?,wy) < 2 if t > 1. We claim that there is no weighted 0.5-
improper 2-colouring of (P?,w»). By contradiction, suppose that c is such a colouring.
If ¢(v;) =0, for some i € Z, then c(vi—1) = ¢(vi+1) = 1 and c(vi—2) = c(vi4+2) = 0. This
is a contradiction because v; would have interference 1.

Finally, the colouring c(v;) = i mod 3, for every i € 7Z, is a feasible weighted 0-
improper 3-colouring.

Theorem 6. Let T = (V,E) be a tree. Then, (A(;)_Clm T+ < (T2, wy) < [Agj_;l 1+2.

Proof. The lower bound is obtained by two simple observations. First, y,(H,w) <
x:(G,w), for any H C G. Let T be a tree and v be a node of maximum degree in 7.
Then, observe that the weighted 7-improper chromatic number of the subgraph of 7?2

induced by v and its neighbourhood is at least [MZT,);M] + 1. The colour of v can be
assigned to at most |¢] vertices on its neighbourhood. Any other colour used in the
neighbourhood of v cannot appear in more than 27 4- 1 vertices because each pair of
vertices in the neighbourhood of v is at distance two.

Let us look now at the upper bound. Choose any node r € V to be its root. Colour
with colour 1. Then, by a pre-order traversal in the tree, for each visited node v colour

all the children of v with the [AEITEI] colours different from the ones assigned to v

and to its parent. This is a feasible weighted -improper k-colouring of 7?2, with k <

[Agﬁ] 1+ 2, since each vertex interferes with at most 27 vertices at distance two which
are children of its parent.

3.2 Grids

In this section, we show the optimal values of X,(Gz,wz), whenever G is an infinite
square, or hexagonal or triangular grid, for all the possible values of ¢. The proofs of the
theorems presented in this section can be found in the research report [13].

10 J. Araujo et al.

(b)

Fig. 3. Optimal colorings of G2, for square grid G. Weighted 0-improper 5-colouring of G in
Figure weighted 0.5-improper 4-colouring of G2 in Figure [3(b) and weighted 3-improper
2-colouring of G? in[3(c)] Figure [3(d)] shows that there is no weighted 0.5-improper 3-colouring
of G2.

Square Grid. The square grid is the graph in which the vertices are all integer linear
combinations ae; + be; of the two vectors e; = (1,0) and e, = (0, 1), for any a,b € Z.
Each vertex (a,b) has four neighbours: its down neighbour (a — 1,b), its top neighbour
(a+1,b), its right neighbour (a,b + 1) and its left neighbour (a,b—1).

Theorem 7. If G is an infinite square grid, then

5, ift=0;
4, if1=0.5;

%(GPowa) =<3, if1<t<3;
2, if3<1<8;
1, if8<r.

Proof. If t =0, then the colour of vertex (a,b) must be different from the ones used on
its four neighbours. Moreover, all the neighbours have different colours, as each pair of
neighbours is at distance two. Consequently, at least 5 colours are needed. Figure
gives a a weighted O-improper 5-colouring of G?.

When t = 0.5, we claim that at least four colours are needed to colour G2. The proof
is by contradiction. Suppose that there exists a weighted 0.5-improper 3-colouring of
it. Let (a,b) be a vertex coloured 0. No neighbour is coloured 0, otherwise (a,b) has
interference 1. If three neighbours have the same colour, then each of them will have

Weighted Improper Colouring 11

interference 1. So two of its neighbours have to be coloured 1 and the two other ones 2
(see Figure[3(d)). Consider now the fournodes (a—1,b—1), (a—1,b+1), (a+1,b—1)
and (a+ 1,b+ 1). For all configurations, at least two of these 4 vertices have to be
coloured 0. But then (a,b) will have interference at least 1, a contradiction. A weighted
0.5-improper 4-colouring of G? is shown in Figure 3(b)}

If r = 1, there exists a weighted 1-improper 3-colouring of G? given by the following
construction: for 0 < j <2, let A; = {(0,j) +a(3ez) + b(e1 + e2) | Va,b € Z}. For
0 < j <2, assign the colour j to all the vertices in A ;.

Now we prove by contradiction that for # = 2.5 we still need at least three colours in a
weighted 2.5-improper colouring of G2. Consider a weighted 2.5-improper 2-colouring
of G? and let (a,b) be a vertex coloured 0. Vertex (a,b) has at most two neighbours of
colour 0, otherwise it will have interference 3. We distinguish three cases:

1. Exactly one of its neighbours is coloured 0; let (a,b — 1) be this vertex. Then, the
three other neighbours are coloured 1. Consider the two set of vertices {(a —1,b —
1),(a=1,b+1),(a—2,b)} and {(a+1,b—1),(a+1,b+1),(a+2,b)}; each of
them has at least two vertices coloured 0, otherwise the vertex (a,b+ 1) or (a,b—1)
will have interference 3. But then (a,b) having 4 vertices at distance 2 coloured 0
has interference 3, a contradiction.

2. Two neighbours of (a,b) are coloured 0.

(a) These two neighbours are opposite, say (a,b — 1) and (a,b + 1). Consider again
the two sets {(a—1,b—1),(a—1,b+1),(a—2,b)} and {(a+ 1,b—1),(a+
1,b+1),(a+2,b)}; they both contain at least one vertex of colour 0 and there-
fore (a,b) will have interference 3, a contradiction.

(b) The two neighbours of colour 0 are of the form (a,b— 1) and (a— 1,b). Consider
the two sets of vertices {(a+ 1,b—1),(a+1,b+1),(a+2,b)} and {(a+ 1,b+
1),(a—1,b+1),(a,b+2)}; these two sets contain at most one vertex of colour
0, otherwise (a,b) will have interference 3. So vertices (a+1,b— 1), (a+2,b),
(a,b+2) and (a—1,b+ 1) are of colour 1. Vertex (a+ 1,b+ 1) is of colour 0,
otherwise (@ + 1,b) has interference 3. But then (a,b —2) and (a — 1,b— 1) are
of colour 1, otherwise (a,b) will have interference 3. Thus, vertex (a,b — 1) has
exactly one neighbour coloured 0 and we are again in Case 1.

3. All neighbours of (a,b) are coloured 1. If any of this neighbours has itself a neigh-
bour (distinct from (a,b)) of colour 1, we are in case 1 or 2 for this neighbour.
Therefore, all vertices at distance two from (a,b) have colour 0 and the interference
in (a,b) is 4, a contradiction.

A weighted 3-improper 2-colouring of G is given in Figure Finally, since each
vertex has 4 neighbours and 8 vertices at distance two, there is no weighted 7.5-improper
1-colouring of G? and, whenever ¢ > 8, one colour suffices.

Hexagonal Grid. To define the hexagonal grid graph, there are many ways to define
the system of coordinates. Here, we use grid coordinates as shown in Figure @ The
hexagonal grid graph is then the graph whose vertex set is the pairs of integers (a,b) €
7? and where each vertex (a,b) has 3 neighbours: (a — 1,b), (a+ 1,b), and (a,b+1)
ifa+bis odd, or (a,b — 1) otherwise.

12 J. Araujo et al.

Fig. 4. Optimal construction with t = 0, k = 4. Left: Graph with coordinates. Right: Correspond-
ing hexagonal grid in the euclidean space.

b)t=2,k=2

Fig. 5. Optimal constructions for the hexagonal grid

Theorem 8. If G is an infinite hexagonal grid, then

4, if0<r<1;

3, f1<t<2;
XI(GZ’WZ): lf P

2, if2<t<6;

1, if6<t.

Triangular Grid. The triangular grid is graph whose vertices are all the integer linear

V31

combinations ae| + be; of the two vectors e; = (Y, ;) and ez = (0,1). Thus we may
identify the vertices with the ordered pairs (a,b) of integers. Each vertex v = (a,b) has
six neighbours: its left neighbour (a,b — 1), its right neighbour (a,b+ 1), its left-up
neighbour (a+1,b— 1), its right-up neighbour (a+1,b+ 1), its left-down neighbour
(a—1,b—1) and its right-down neighbour (a — 1,b+1).

Weighted Improper Colouring 13

(a0 s 2D (>
B S e T
renenesetatetetatatateds

e aesensaesecenananas:
e nsnsaansaetanesecss
Gacacetecanacadetes
DB BB -D BT

(a) Weighted O-improper 7-colouring (b) Weighted 0.5-improper 6-
of G%. colouring of G2.

® aCaalals’
BTGB 32005 ()3} -<2{ 03/ <3

(3l a3 323} 0 32130

e e e et et et ol ol el

(c) Weighted 1.5-improper 4-
colouring of G2.

Fig. 6. Constructions for the triangular grid
Theorem 9. If G is an infinite triangular grid, then

ift=0;
ift =0.5;
ift=1,
if1.5<t<3;
if3<t<5;
, if5<t<12;
, if12<zt.

Xt(G27W2) =

— NN W A N

For determining the lower bounds for the cases in which x, (G?,w») is equal to 2 and 3,
the proofs involved too many subcases to be readable. Then, we used CPLEX with the
integer programming formulations we present in Section 4] to validate them.

4 Integer Programs, Algorithms and Results

In this section, we look at how to solve the WEIGHTED IMPROPER COLOURING and
THRESHOLD IMPROPER COLOURING for realistic instances. We consider Poisson-
Voronoi tesselations as they are good models of antennas networks [4118,9]]. We present
integer programming models for both problems. Then, we introduce two algorithmic
approaches for THRESHOLD IMPROPER COLOURING: a simple greedy heuristic and a
Branch-and-Bound algorithm.

14 J. Araujo et al.

4.1 Integer Programs and Algorithms

Integer Programming Models. Given an edge-graph G = (V,E,w),w: E — R ,and a
positive real threshold ¢, we model WEIGHTED IMPROPER COLOURING by using two
kinds of variables. Variable x;, indicate if vertex i is coloured p and variable c” indicate
if colour p is used, for every 1 <i<nand 1 < p </, where [is an upper bound for
the number of colours needed in an optimal weighted z-improper colouring of G (see
Section). The model follows:

min 2P
subject to
Yiiw(i, j)xjp <t +M(1—x;,) (VieV,Vpe{l,...,1})
c? > xip (Viev,Vpe{l,...,1})
YpXip=1 (VieV)
xip €{0,1} (VieV,vpe{l,...,1})

?e{0,1} Vpell,...1)

where M is a large integer. For instance, it is sufficient to choose M > ¥,) w(u,v).
For THRESHOLD IMPROPER COLOURING, given an edge-weighted graph
G=(V,E,w),w:E— IR, and a positive integer k, the model we consider is:

min t
subject to
Yiiw(i, j)xjp <t +M(1—xip) (VieV,Vpe{l,... k})
XpXip=1 (VieV)
xip €{0,1} (VieV,Vpe{l,... ,k})

Levelling Heuristic. We develop a heuristic to solve THRESHOLD IMPROPER COLOUR-
ING. The idea is to try to level the distribution of interference over the vertices. Each
vertex is coloured one after the other by the colour minimising the local interference.
More precisely this is achieved by considering for the nodes not yet coloured the “cur-
rent interference” i.e. the interference induced by the already coloured vertices.

Precisely, consider a vertex v not yet coloured and a colour i € {1,...,k}. We define
the potential interference 7} ; as:
I\//,i = Z W(M, V)7

{ueN()NVile(u)=i}

where V; is the set of vertices that have already been assigned a colour. The order in
which vertices are coloured is decided according to the total potential interference, de-
fined as I = ¥X_, I,;. The algorithm finds a feasible colouring in the first step and tries
to improve it for p runs, where p is part of the input.

— The interference target is set #; = M,
— while the number of runs is smaller than p;
e all potential interferences are set to zero;
e while there are still vertices to colour:
* choose a vertex v randomly among the uncoloured vertices that have the
maximum total potential interference;

Weighted Improper Colouring 15

* try each colour i in the order of increasing potential interference 7} ;:
- if colouring v with i does not result in interference greater than # for v
or any of its neighbours, colour v with i, else try a new colour;
- if all colours resulted in excessive interferences, start new run.
o If all the vertices were successfully coloured, set #; = maXyey ic(l,...k} L(G,w,c)
— gcd(w) and store the colouring as the best found.

As a randomised greedy colouring heuristic, it has to be run multiple times to achieve
satisfactory results. This is not a practical issue due to low computational cost of each
run. The local immutable colouring decision is taken in time O(k). Then, after each
such decision, the interference has to be propagated, which takes time linear in the
vertex degree. This gives a computational complexity bound O(knA).

Branch-and-Bound Algorithm. We also implemented a simple Branch-and-Bound al-
gorithm inspired by the above heuristic. The order in which vertices are coloured is
produced by a similar procedure to the one used in the above heuristic. In order to com-
pute this order, we start by marking a random vertex and setting is as the first in a to
colour list. Then, as long as there are unmarked vertices, we keep choosing a random
vertex u among the unmarked vertices with biggest 3,cn(u)nv,, w(u,v), where V,,, is the
set of already marked vertices. Then we mark u and append it to the to order. A basic
Branch-and-Bound colours vertices in the obtained order. Potential interference, as de-
fined for the heuristic, is tracked with the additional step of decreasing the values when
backing from a colouring. Colours are tried in the order of increasing potential interfer-
ence. Thanks to that it produces results similar to the heuristic in a short time. On the
other hand it is guaranteed to find the optimal solution in a finite time.

In the following, we compare the performance of these ILP models with the Level-
ling heuristic and the Branch-and-Bound algorithm .

4.2 Results

In this section, we look at the performances of the methods to solve the THRESHOLD
IMPROPER COLOURING. We consider Delaunay graphs (dual of Voronoi diagram) for
a set of random points. This kind of graph is a natural approximation of a network of
irregular cells. The interference model is the one described in Section[3 adjacent nodes
interfere by 1 and nodes at distance two interfere by 1/2.

Figure [7] shows a performance comparison of the above-mentioned algorithms. For
all the plots, each data point represents an average over ten different graphs. The same
graph is used for all values of colours and time limit. Therefore sub-figures[7(b)|and[7(c)|
plot how results for a given problem instance get enhanced with increasing time limits.
Plots and[7(D)]show decreasing interference along increasing the number of colours
allowed. Finally plot[7(d)]shows how well all the programs scale with increasing graph
sizes.

One immediate observation about both the heuristic and Branch-and-Bound algo-
rithm is that they provide solutions in relatively short time. Despite their naive imple-
mentation in a high-level programming language, they tend to find near-optimal results
in matter of seconds even for graphs of thousands of vertices. On the other hand, with

16 J. Araujo et al.

s Delaunay graph, n=2000 vertices, k=5 colors
5 T

T T T

T 30 ‘ ‘ —_— Bran(l:hl& Bound ||
5 25 - - - Heuristic
8 20 - P
s E T+~][]
g 10 | T~ - B
J.» 5 P o w = . - o . . . T_\. s N

Il Il Il Il Il Il

0
0 100 200 300 400 500 600 700
1 - Time limit [seconds]

(a) Example Delaunay graph, dotted lines de- (b) Over time

limit corresponding Voronoi diagram cells
Delaunay graph, n=2000 vertices, k=2 colors Delaunay graph, k=2 colors, /=60 sec
;r T T I I I 40 I I I T T
° —— Branch & Bound || © 35 H—— Branch & Bound I =
c o c e F |- { 7
3 - - - Heuristic 3 30 H- - - Heuristic t E
3 - — P g25H— — IP ; E
= =
] o 20 [/ B
L b 2 15| 1
o - ———= = S = &
goF A __ __ _ =] Zo0r =-]
1 1 — =
- b w 5F R
0 1 1 1 1 1 0 1 1 1 1 1
0 100 200 300 400 500 600 700 0 500 1000 1500 2000 2500 300(
[- Time limit [seconds] n - number of vertices
(c) Over time (d) Over size
Delaunay graph, N=2000 vertices, L=60 sec Erdds-Rényi graph, N=500 vertices, L=120 sec
35 T T T T T T 180 T T T T T T
o5k] — Branch&Bound l{ T w60 _ /N ’//I\\\ _-F a4
Sl - - = Heuristic s MK [+ ¥ - b
g \ —— P g 120 —— Branch & Bound []
22} \ < 100 | - H
o _ o - - - Heuristic
S5 M- - N 1 & s}
3 ~ | B ooof - P
% N % 20 F
- SO < 20f
Il - 0 Il Il Il 1 1 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14
k — number of colors k — number of colors
(e) Over colours (f) Over colours

Fig.7. Results comparison for Levelling heuristic, Branch-and-Bound algorithm and Integer
Programme

limited time, they fail to improve up to optimal results, especially with a low number
of allowed colours. Although it is easy to envision an implementation faster by orders
of magnitude, this may still give little improvement — once a near-optimal solution
is found, the Branch-and-Bound algorithm does not improve for a very long time (an
example near-optimal solution found in around three minutes was not improved in over
six days).

ILP solvers with good Branch-and-Cut implementations do not suffer from this prob-
lem. However, they can not take advantage of any specialised knowledge of the prob-
lem, only the basic integer programmming representation. Thus it takes much more
time to produce first good results. Despite taking advantage of multi-core processing,

Weighted Improper Colouring 17

CPLEX — ILP solver used in this work, does not scale with increasing graph sizes as
well as our simple algorithms. Furthermore, Figure reveals one problem specific
to integer programming. When increasing the number of allowed colours, obtaining
small interferences gets easier. But this introduces additional constraints in the linear
program, thus increasing the complexity for a solver.

Above observations are valid only for the very particular case of the simple interfer-
ence function and very sparse graphs. The average degree in Delaunay graph converges
to 6. Proposed algorithms also work quite well for denser graphs. Figure plots
interferences for different numbers of colours allowed found by the programs for an
Erdos-Rényi graph with n=500 and p=0.1. This gives us an average degree of 50. Both
Branch-and-Bound and heuristic programs achieve acceptable, and nearly identical, re-
sults. But the large number of constraints makes the linear program nearly inefficient.

5 Conclusion, Open Problems and Future Directions

In this paper, we introduced and studied a new colouring problem, WEIGHTED IM-
PROPER COLOURING . This problem is motivated by the design of telecommunication
antenna network in which the interferences between two vertices depends on
different factors and can take various values. For each vertex, the sum of the inter-
ference it receives should be less than a given threshold value.

We first give general bounds on the weighted-improper chromatic number. We then
study the particular case of square, triangular and hexagonal grids. For these graphs, we
provide their weighted-improper chromatic number for all possible values of ¢. Finally,
we propose a heuristic and a Branch-and-Bound algorithm to find good solutions of
the problem. We compare their results with the one of an integer program on cell-like
networks, Poisson Voronoi tessellations.

Open Problems and Future Directions. Many problems remain to be solved :

— For the study of the grid graphs, we considered a specific function where vertex at
distance one interfere by 1 and vertices at distance 2 by 1/2. Other weight func-
tions should be considered. e.g. 1/d? or 1/(2¢~1), where d is the distance between
vertices.

— Other families of graphs could be considered, for example hypercubes.

— Let G = (V,E,w) be an edge-weighted graph where the weights are all equal to 1
or M. Let Gy be the subgraph of G induced by the edges of weight M; is it true

that if A(Gy) << A(G), then 3, (G, w) < x:(G) < [Mthl)H —‘ ? A similar result for

L(p,1)-labelling [10] suggests it could be true.

References

1. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models
and solution techniques for frequency assignment problems. Annals of Operations Re-
search 153(1), 79-129 (2007)

18

10.

11.

12.
13.

14.

15.

J. Araujo et al.

. Alouf, S., Altman, E., Galtier, J., Lalande, J.F., Touati, C.: Quasi-optimal bandwidth alloca-

tion for multi-spot MFTDMA satellites. In: INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 1, pp. 560—
571. IEEE (2005)

. Araujo, J., Bermond, J.-C., Giroire, F., Havet, F., Mazauric, D., Modrzejewski, R.: Weighted

Improper Colouring. Research Report RR-7590, INRIA (April 2011)

. Baccelli, F,, Klein, M., Lebourges, M., Zuyev, S.: Stochastic geometry and architecture of

communication networks. Telecom. Systems 7(1), 209-227 (1997)

. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of the Cam-

bridge Philosophical Society 37(02), 194-197 (1941)

. Correa, R., Havet, F.,, Sereni, J.-S.: About a Brooks-type theorem for improper colouring.

Australasian Journal of Combinatorics 43, 219-230 (2009)

. Fischetti, M., Lepschy, C., Minerva, G., Romanin-Jacur, G., Toto, E.: Frequency assignment

in mobile radio systems using branch-and-cut techniques. European Journal of Operational
Research 123(2), 241-255 (2000)

. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information

Theory 46(2), 388—404 (2000)

. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geom-

etry and random graphs for the analysis and design of wireless networks. IEEE Journal on
Selected Areas in Communications 27(7), 1029-1046 (2009)

Havet, F., Reed, B., Sereni, J.-S.: L(2,1)-labelling of graphs. In: Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 621-630.
Society for Industrial and Applied Mathematics, Philadelphia (2008)

Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.)
Complexity of Computer Computations, pp. 85-103. Plenum Press (1972)

Lovasz, L.: On decompositions of graphs. Studia Sci. Math. Hungar. 1, 238-278 (1966)
Mannino, C., Sassano, A.: An enumerative algorithm for the frequency assignment problem.
Discrete Applied Mathematics 129(1), 155-169 (2003)

Woodall, D.R.: Improper colorings of graphs. In: Nelson, R., Wilson, R.J. (eds.) Pitman Res.
Notes Math. Ser., vol. 218, pp. 45-63. Longman Scientific and Technical (1990)

Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete Mathemat-
ics 306(12), 1217-1231 (2006)

Algorithmic Aspects of Dominator Colorings
in Graphs

S. Arumugam'? K. Raja Chandrasekar!, Neeldhara Misra?,
Geevarghese Philip?, and Saket Saurabh®

! National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH),
Kalasalingam University, Krishnankoil, India
{s.arumugam.klu,rajmath84}0@gmail . com
2 Conjoint Professor, School of Electrical Engineering and Computer Science
The University of Newcastle, NSW 2308, Australia
3 The Institute of Mathematical Sciences, Chennai, India
{neeldhara,gphilip,saket}@imsc.res.in

Abstract. In this paper we initiate a systematic study of a problem that
has the flavor of two classical problems, namely COLORING and Dowmi-
NATION, from the perspective of algorithms and complexity. A dominator
coloring of a graph G is an assignment of colors to the vertices of G such
that it is a proper coloring and every vertex dominates all the vertices
of at least one color class. The minimum number of colors required for a
dominator coloring of G is called the dominator chromatic number of G
and is denoted by xq(G). In the DoMINATOR COLORING (DC) problem,
a graph G and a positive integer k are given as input and the objective
is to check whether x4(G) < k. We first show that unless P=NP, DC
cannot be solved in polynomial time on bipartite, planar, or split graphs.
This resolves an open problem posed by Chellali and Maffray [Domina-
tor Colorings in Some Classes of Graphs, Graphs and Combinatorics,
2011] about the polynomial time solvability of DC on chordal graphs.
We then complement these hardness results by showing that the prob-
lem is fixed parameter tractable (FPT) on chordal graphs and in graphs
which exclude a fixed apex graph as a minor.

Keywords: Dominator Coloring, Fixed-Parameter Tractability, Chordal
Graphs, Apex-Minor-Free Graphs.

1 Introduction

DOMINATING SET and COLORING are among the most fundamental problems
in graph theory, algorithms and combinatorial optimization. DOMINATING SET
asks for the minimum set of vertices such that every vertex of the graph not in
this set has a neighbor in it. In COLORING we are asked to color the vertices
with as few colors as possible, so that no edge is monochromatic, that is, both
the endpoints of each edge receive different colors. These are classical NP-hard
problems [17] and are well-studied from the point of view of approximation algo-
rithms [12123125126/27] and parameterized complexity [T0[T4/T6]. DOMINATING

C.S. Iliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 197, 2011.
© Springer-Verlag Berlin Heidelberg 2011

20 S. Arumugam et al.

SET and COLORING are “hard” problems from these perspectives. Thus, DoMI-
NATING SET and COLORING are known to be W[2]-complete and para-NP com-
plete, respectively, in parameterized complexity [10]. Further, (1 —o(1))Inn and
n®; e > 0 are respective thresholds below which these problems cannot be approx-
imated efficiently (unless NP has slightly super-polynomial time algorithm [12]
or unless P=NP [27]).

DoMINATING SET and COLORING have a number of applications and this has
led to the algorithmic study of numerous variants of these problems. Among the
most well known ones are CONNECTED DOMINATING SET, INDEPENDENT DOM-
INATING SET, PERFECT CODE, LiST COLORING, EDGE COLORING, ACYCLIC
EDGE COLORING and CHOOSABILITY. Since both the problem and its variants
are computationally hard problems, most of the research centers around algo-
rithms in special classes of graphs like interval graphs, chordal graphs, planar
graphs and H-minor free graphs. In this paper we initiate a systematic algorith-
mic study on the DOMINATOR COLORING (DC) problem that has a flavor of
both these classical problems. A dominator coloring of a graph G is an assign-
ment of colors to the vertices of G such that it is a proper coloring (no edge
is monochromatic) and every vertex dominates all vertices of at least one color
class. The minimum number of colors required for a dominator coloring of G
is called the dominator chromatic number of G and is denoted by x4(G). The
problem we study is formally defined as follows.

DoMINATOR COLORING (DC)

Input: A graph G and an integer k > 1.

Parameter: k.

Question: Does there exist a dominator coloring of G using at most k
colors?

Gera et al. [22] introduced the concept of dominator chromatic number, and
a number of basic combinatorial and algorithmic results on DC have been ob-
tained [2002112224]. For example, it was observed by Gera et al. [22] that DC is
NP-complete on general graphs by a simple reduction from 3-COLORING. More
precisely, for any fixed k > 4, it is NP-complete to decide if a graph admits a
dominator coloring with at most k& colors [22]. In a recent paper Chellali and
Maffray [6] show that unlike 3-COLORING, one can decide in polynomial time if
a graph has dominator chromatic number 3. Furthermore, they show that the
problem is polynomial time solvable on P, free graphs, and leave as a “challeng-
ing open problem” whether the problem can be solved in polynomial time on
chordal graphs.

In this paper we do a thorough algorithmic study of this problem, analyzing
both the classical complexity and the parameterized complexity. We begin by
showing that unless P=NP, DC cannot be solved in polynomial time on bipartite,
planar, or split graphs. The first two arguments are simple but make use of
an unusual sequence of observations. The NP-completeness reduction on split
graphs is quite involved. Since split graphs form a subclass of chordal graphs,
this answers, in the negative, the open problem posed by Chellali and Maffray.

Algorithmic Aspects of Dominator Colorings in Graphs 21

We complement our hardness results by showing that the problem is “fixed
parameter tractable" on several of the graph classes mentioned above. Informally,
a parameterization of a problem assigns an integer k to each input instance and a
parameterized problem is fized-parameter tractable (FPT) if there is an algorithm
that solves the problem in time f(k) - |[I|°("), where |I| is the size of the input
and f is an arbitrary computable function that depends only on the parameter
k. We refer the interested reader to standard texts [I0JI4] on parameterized
complexity. We show that DC is FPT on planar graphs, apex minor free graphs,
split graphs and chordal graphs.

2 Preliminaries

All graphs in this article are finite and undirected, with neither loops nor multiple
edges. n denotes the number of vertices in a graph, and m the number of edges.
A subset D C V of the vertex set V of a graph G is said to be a dominating set
of G if every vertex in V' \ D is adjacent to some vertex in D. The domination
number v(G) of G is the size of a smallest dominating set of G. A proper coloring
of graph G is an assignment of colors to the vertices of G such that the two end
vertices of any edge have different colors. The chromatic number x(G) of G is
the minimum number of colors required in a proper coloring of G. A clique is a
graph in which there is an edge between every pair of vertices. The clique number
w(G) of G is the size of a largest clique which is a subgraph of G. We make use
of the following known results.

Theorem 1. [20] Let G be a connected graph. Then max{x(G),v(G)} <
xa(G) < x(G) +7(G).

Definition 1. A tree decomposition of a (undirected) graph G = (V, E) is a
pair (X, U) where U = (W, F) is a tree, and X = ({X; | i € W}) is a collection
of subsets of V' such that

L Ujew Xi =V,
2. for each edge vw € E, there is an i € W such that v,w € X;, and
3. for each v € V, the set of vertices {i | v € X;} forms a subtree of U.

The width of (X,U) is max;ew{|X;| — 1}. The treewidth tw(G) of G is the
minimum width over all the tree decompositions of G.

Both our FPT algorithms make use of the fact that the DC problem can be
expressed in Monadic Second Order Logic (MSOL) on graphs. The syntax of
MSOL on graphs includes the logical connectives V, A, -, <, =, variables for
vertices, edges, sets of vertices and sets of edges, the quantifiers V, 3 that can
be applied to these variables, and the following five binary relations: (1) v € U
where u is a vertex variable and U is a vertex set variable; (2) d € D where d
is an edge variable and D is an edge set variable; (3) inc(d,u), where d is an
edge variable, u is a vertex variable, and the interpretation is that the edge d
is incident on the vertex u; (4) adj(u,v), where u and v are vertex variables

22 S. Arumugam et al.

and the interpretation is that u and v are adjacent; (5) equality of variables
representing vertices, edges, sets of vertices and sets of edges.

Many common graph and set-theoretic notions can be expressed in MSOL [Glg].
In particular, let Vi, Va,..., Vi be a set of subsets of the vertex set V(G) of a
graph G. Then the following notions can be expressed in MSOL:

— V1, Va, ...,V is a partition of V(G):

Part(V(G); Vi, Va,..., Vi) =Yoo e V(G)[(ve V1 Vv e VoV - Vv eV, A
(CweVinV))A(-veVinVa) A A(=(v e Ve NVR))] A
(FveV(@weW)A(FveV(G)veVao)A--AFveV(G)ve V)

— V; is an independent set in G:
IndSet(V;) = Vu € V;[Vv € V;[-adj(u, v)]]
— Vertex v dominates all vertices in the set V;:
Dom(v,V;) =Vw € V;[~(w =v) = adj(v,w)]

For a graph G and a positive integer k, we use ¢(G, k) to denote an MSOL
formula which states that G has a dominator coloring with at most &k colors:

o(G, k) =3IV, Va,..., Vi, CV(Q)[Part(V(G); Vi, Va, ..., Vi) A (1)
IndSet(Vi) A IndSet(Va) A -+ A IndSet(Vi) A
Yo € V(G)[Dom(v, V1)V Dom(v,V2) V - -V Dom(v, V)]]

The following well known result states that every optimization problem express-
ible in MSOL has a linear time algorithm on graphs of bounded treewidth.

Proposition 1. [T3J57)9] Let ¢ be a property that is expressible in Monadic
Second Order Logic. For any fixed positive integer t, there is an algorithm that,
given a graph G of treewidth at most t as input, finds a largest (alternatively,
smallest) set S of vertices of G that satisfies ¢ in time f(t,|p])|V(G)| for a
computable function f().

Since the size |¢(G, k)| of the MSOL expression [l is a function of k, we have

Theorem 2. Given a graph G of treewidth t and a positive integer k as inputs,
the DOMINATOR COLORING problem can be solved in f(t,k)|V(G)| time for a
computable function f().

The operation of contracting an edge {u,v} of a graph consists of replacing
the two vertices u,v with a single vertex which is adjacent to all the former
neighbours of v and v. A graph H is said to be a contraction of a graph G if H
can be obtained from G by contracting zero or more edges of G. H is said to be
a minor of G if H is a contraction of some subgraph of G. A graph G is said to
be apex graph if there exists a vertex in G whose removal from G yields a planar

Algorithmic Aspects of Dominator Colorings in Graphs 23

Fe —

\\

Fig. 1. The graph Is

graph. A family F of graphs is said to be apex minor free if there is a specific
apex graph H such that no graph in F has H as a minor. For instance, planar
graphs are apex minor free since they exclude the apex graph K5 as a minor.
The treewidth of an apex minor free graph can be approximated to within a
constant factor in polynomial time:

Proposition 2. [13, Theorem 6.4] For any graph H, there is a constant wy
and a polynomial time algorithm which finds a tree decomposition of width at
most wgt for any H-minor-free graph G of treewidth t.

For ¢ € N, Iy is defined [I5] to be the graph obtained from the ¢ x ¢-grid by
(1) triangulating the internal faces such that all the internal vertices become
of degree 6 and all non-corner external vertices are of degree 4, and (2) adding
edges from one corner of degree two to all vertices of the external face. Figure [l
depicts I's. Fomin et al. showed that any apex minor free graph of large treewidth
contains a proportionately large Iy as a contraction. More precisely:

Proposition 3. [15, Theorem 1| For any apex graph H, there is a constant
cyg such that every connected graph G which excludes H as a minor and has
treewidth at least cyf contains Iy as a contraction.

3 Hardness Results

In this section we show that DC is NP-hard on very restricted classes of graphs.
The only known hardness result for this problem is that it is NP-complete on
general graphs [22]. In fact even determining whether there exists a dominator
coloring of GG using at most 4 colors is NP-complete. The proof is obtained by
a reduction from 3-COLORING — checking whether an input graph is 3-colorable
or not — to DC. Given an instance G to 3-COLORING, an instance G’ for DC is
obtained by adding a new vertex (universal vertex) and making it adjacent to
every vertex of G. Now one can easily argue that G is 3 colorable if and only if
G’ has dominator coloring of size at most 4. Notice, however, that this simple
reduction cannot be used to show that DC is NP-complete on restricted graph
classes like planar graphs or split graphs or chordal graphs. We start with a few
simple claims that we will make use of later.

24 S. Arumugam et al.

Lemma 1. Let G = (V, E) be a graph. Given a proper a-coloring C of G and
a dominating set D of G with |D| = b, we can find, in O(|V| + |E|) time, a
dominator coloring of G with at most a + b colors.

Proof. Let C = {V1,Va,...,V,} be a proper coloring of G and let D be a
dominating set with |D| =b. Then C' = {{v}:v € D}U{V,;N(V —=D) :V; € C}
is a dominator coloring of G with at most a + b colors. O

Corollary 1. [*]E If there exists an a-approzimation algorithm for the chro-
matic number problem and a [-approzimation algorithm for the domination
number problem, then there exists an (a + [)-approxzimation algorithm for the
dominator chromatic number problem.

Lemma 2. [x] Let F be a class of graphs on which the Dominating Set problem is
NP-complete. If the disjoint union of any two graphs in F is also in F, then there
18 no polynomial time algorithm that finds a constant additive approximation for
the Dominating Set problem on F, unless P = N P.

Corollary 2. [x] DOMINATOR COLORING on planar graphs cannot be solved in
polynomial time, unless P = N P.

Corollary 3. [x] DOMINATOR COLORING on bipartite graphs cannot be solved
in polynomial time, unless P = N P.

3.1 NP-Hardness of DC on Split Graphs

We now proceed to prove that the DC problem is NP-complete for split graphs.
Our starting point is the following known characterization:

Theorem 3. [2] Let G be a split graph with split partition (K,I) and |K| =
w(G), where K is a cliqgue and I an independent set. Then xq(G) = w orw+ 1.
Further x4(G) = w if and only if there exists a dominating set D of G such that
D C K and every vertez v in I is nonadjacent to at least one vertex in K \ D.

We exploit this characterization, and prove NP-completeness on split graphs by
demonstrating the NP-completeness of the problem of checking if there exists a
dominating set D of G such that D C K and every vertex v in I is nonadjacent
to at least one vertex in K\ D. We call this problem SPLIT GRAPH DOMINATION.

For showing SPLIT GRAPH DOMINATION NP-complete, we will need to define
an intermediate problem called PARTITION SATISFIABILITY, and demonstrate
that it is NP-complete. We will then show that DC is NP-hard on split graphs
by establishing a reduction from PARTITION SATISFIABILITY.

Let ¢ be a CNF formula. Then we use C(¢) to denote the set of clauses of ¢.
If C is a clause of ¢, then we use v(C) to denote the set of variables that appear
in C. A clause is said to be all-positive (negative) if all the literals that appear
in it are positive (negative).

! Due to space constraints, proofs of results marked with a [«] have been deferred to
a longer version of the paper.

Algorithmic Aspects of Dominator Colorings in Graphs 25

Definition 2 (Partition Normal Form). A CNF formula ¢ over the variable
set V' is said to be in partition normal form if C($) admits a partition into two
parts Cp(¢p) and Cn(¢) and there exists a bijection f : Cp(¢) — Cn(¢) such
that for every C € Cp(¢) the following conditions are satisfied: (1) v(C) U
v(f(C)) =V and (2) v(C) N v(f(C)) = 0. Any clause in Cp(d) is required to
be an all-positive clause and any clause in Cn (@) is required to be an all-negative
clause.

We are now ready to describe the problem PARTITION SATISFIABILITY.

PARTITION SATISFIABILITY

Input: A formula ¢ in CNF, over variables in V', given in partition
normal form.
Question: Is ¢ satisfiable?

We establish the NP-completeness of PARTITION SATISFIABILITY by a reduction
from DISJOINT FACTORS:

Di1sjoINT FACTORS

Input: A word w over an alphabet X.

Question: For every a € X, does there exist a substring w, of w that
begins and ends in a, such that for every a,b € X, w, and wy
do not overlap in w?

The problem of DisJOINT FACTORS is known to be NP-complete [4]. Substrings
that begin and end with the same letter a are referred to as a-factors.

Lemma 3. PARTITION SATISFIABILITY is NP-complete.

Proof. Let w = wjws...w, be an instance of DISJOINT FACTORS over the
alphabet
Y =Aai,...,ar}.

For1 <i<j<nand1l<I[<k, we call the triplet (¢, j,1) valid if the substring
w; ... w; is an a;-factor. Let F denote the set of valid triplets. We construct an
instance of PARTITION SATISFIABILITY as follows:

For every valid triplet (i,7,1), introduce the variable P,(4,j). For every 1 <
I < k, introduce the clause:

Cy = \V R,j)
{3+ (4,5,)EF}
Let ¢pacror be the conjunction of the clauses thus formed: ¢ppcror := C1 AC2 A
o NCh.
Further, for every i1, 71 and is,j2 such that 1 < i3 < j3 <nmand 1 < iy <
Jo < n,and [i1, j1] N [i2, jo] # 0, and there exist l1,lo; 1 < I1,ls < k, such that
(i1,71,01) € F and (iz, jo,l2) € F, we introduce the following clause:

26 S. Arumugam et al.

C = (Ph(ihjl) Vv B, (iz’ﬁ))

Let D denote the set of clauses described above. Further, let ¢pis50ne be the
conjunction of these clauses: ¢psjomnr = /\CeD C.

Claim. The formula: ¢ := @pisjomt A Pracror 1S satisfiable if and only if (w, X)
is a YES-instance of DISJOINT FACTORS.

Proof. (=) Let x be a satisfying assignment of ¢. For all I, 1 < [< k, there
exists at least one pair (i,5), 1 < i < j < n, such that x sets P(i,j) to 1.
Indeed, if not, x would fail to satisfy the clause C;. Now, note that w;...wj is
a aj-factor, since the variable P;(,j) corresponds to a valid triplet.

We pick w; ... w; as the factor for a; (if P;(4,5) is set to 1 by x for more
than one pair (4,7), then any one of these pairs will serve our purpose). It only
remains to be seen that for r,s € X, if w;, ... w;y, is chosen as a a,-factor, and
Wi, . .. Wj, is chosen as a a,-factor, then w;, ... w;, and w;, ... w;, do not overlap
in w. This is indeed the case, for if they did overlap, then it is easily checked

that y would fail to satisfy the clause: (PT (i1,71) V Ps (ig,jg)) .

(<) If (w,X) is a YES-instance of DISJOINT FACTORS, then for every I,
1 <1<k, there exist 4,7; 1 <i < j <n, such that (i,,1) € F. We claim that
setting all the “corresponding” P, (i, j) variables to 1 is a satisfying assignment
for ¢.

Indeed, every Cj is satisfied because there exists an a;-factor for every [.
Further, it is routine to verify that all clauses in D are satisfied because the
chosen factors do not overlap in w. a

Now, it remains to construct from ¢ an equivalent formula v that is in partition
normal form. To this end, we will use two new variables, {z, y}. Recall that we
use V' to denote the set of variables that appear in ¢. For every clause Cj, define

the clause C; as: C; := (x VyVvV, ¢ VA\r(C) Z) .

Similarly, for every clause C' € D, define Cas: C = (:z: VyVvV, ¢ VAR (C) z) .

Let ¢ be obtained by the conjunction of ¢ with the newly described clauses:
Pi=oA </\1§l§k Cl) A (/\CED C) :

Clearly, ¢ is in partition normal form. The following partition of the clauses
OwaCp:{Cl : 1§l§]€}U{C : CeD}andCN:{Cl 1< <L
k}u{C : C € D} is a partition into all-positive and all-negative clauses. The
bijection f defined as: f(C;) = C}, for 1 <[<k and f(C) =C, for C € D is
easily seen to be a bijection with the properties demanded by the definition of
the partition normal form. We now arrive at our concluding claim:

Claim. ¢ is satisfiable if and only if v is satisfiable.

Proof. (=) Let x be a satisfying assignment for ¢. Extend ¢ to the new variables
{z,y} as follows: x(z) = 1 and x(y) = 0. It is easy to see that y is satisfying for
.

(<) This direction is immediate, as C(¢) C C(2)). 0

Algorithmic Aspects of Dominator Colorings in Graphs 27

The proof that PARTITION SATISFIABILITY is NP-hard follows when we put the
two claims together: by appending the construction of ¥ from ¢ to the formula
¢ obtained from the DISJOINT FACTORS instance, we obtain an equivalent in-
stance of PARTITION SATISFIABILITY. This concludes the proof. We note that
membership in NP is trivial — an assignment to the variables is clearly a cer-
tificate that can be verified in linear time. The lemma follows. a

Recall the SPLIT GRAPH DOMINATION problem that we introduced in the be-
ginning of this section:

SPLIT GRAPH DOMINATION

Input: Split graph G with split partition (K,I) and |K| = w.

Question: Does there exist a dominating set D of G such that D C K
and every vertex v in I is nonadjacent to at least one vertex
in K\D?

We now turn to a proof that SPLIT GRAPH DOMINATION is NP-complete.
Theorem 4. SPLIT GRAPH DOMINATION is NP-complete.

Proof. 1t is straightforward to see that SPLIT GRAPH DOMINATION is in NP. We
now prove that it is NP-hard by a reduction from PARTITION SATISFIABILITY.

Given an instance ¢ (over the variables V) of PARTITION SATISFIABILITY, we
construct a split graph G with split partition (K, I) as follows. Introduce, for
every variable in V| a vertex in K and for every all-positive clause of ¢, a vertex
inl: K ={vlz] : €V} I={u[C] : CeCp(¢)}.

A pair of vertices v[z] and u[C] are adjacent if the variable x belongs to the
clause C, that is, € v(C). We also make all vertices in K pairwise adjacent
and all vertices in I pairwise independent. This completes the construction.

Suppose ¢ admits a satisfying truth assignment y. Let D = {v[z] €
K : x(z) = 1}. We now prove that this choice of D is a split dominating
set. Consider u[C] € I. There exists at least one x € V such that z € v(C)
and x(z) = 1. Thus the corresponding vertex v[z] € D, and u[C] is dominated.
Further, consider the all-negative clause C corresponding to C, that contains
every variable in V' that is not in v(C). Since y is a satisfying assignment, there
is at least one y € V\ v(C) such that x(y) = 0. Clearly, v[y] ¢ D, and v[y] is
not adjacent to u[C].

Conversely, suppose there exists a dominating set D C K such that each u[C]
in I is nonadjacent to at least one vertex in K \ D. Consider the following truth
assignment y for ¢: x(x) = 1 if, and only if, v[z] € K N D. We now prove that
X is a satisfying assignment. Consider any all-positive clause C. Since u[C] was
dominated by D, there exists a variable x € v(C') such that v[z] € D, and thus
x(z) = 1. Consider the corresponding all-negative clause C. Since K \ D contains
at least one non-neighbor of v[z], there exists a y ¢ v(C) such that x(y) = 0.
Note that y ¢ v(C) implies that y € v(C). Recall that the assignment y(y) = 0
is then satisfying for C, since C is an all-negative clause. ad

From Theorem [B] and Theorem M we get

28 S. Arumugam et al.
Theorem 5. DC when restricted to split graphs is NP-complete.

4 Parameterized Algorithms

In this section we investigate the fixed-parameter tractability of the DC problem
in certain graph classes. Recall that it is NP-complete to decide if a graph admits
a dominator coloring with at most 4 colors [22]. It follows that in general graphs,
the DC problem cannot be solved even in time n9¥) for any function g(k) —
that is, DC does not belong to the complexity class XP — unless P=NP. Hence
DC is not FPT in general graphs unless P=NP. As we show below, however,
the problem is FPT in two important classes of graphs, namely apex-minor-
free graphs (which include planar graphs as a special case) and chordal graphs.
Recall that it is NP-complete to decide if a planar graph admits a proper 3-
coloring [I8]. As a consequence, the GRAPH COLORING problem parameterized
by the number of colors is not even in XP in planar graphs. Our result for planar
graphs thus brings out a marked difference in the parameterized complexity of
these two problems when restricted to planar graphs.

Apex Minor Free Graphs. We now show that the DOMINATOR COLORING
problem is FPT on apex minor free graphs. This implies, as a special case, that
the problem is FPT on planar graphs. We first show that if the treewidth of the
input apex minor free graph is large, then the graph has no dominator coloring
with a small number of colors.

Theorem 6. [x] For any apex graph H, there is a constant dg such that any
connected graph G which excludes H as a minor and has treewidth at least dg 'k
has no dominator coloring with at most k colors.

Let (G,k) be an instance of the DOMINATOR COLORING problem, where G
excludes the apex graph H as a minor. Let t = wrdgVk where dy,wpy are the
constants of Theorem [B] and Proposition 2] respectively. To solve the problem on
this instance, we invoke the approximation subroutine implied by Proposition
on the graph G. If this subroutine returns a tree decomposition with treewidth
more than ¢, then we return NO as the answer. Otherwise we solve the problem
using the algorithm of Theorem Pl and so we have:

Theorem 7. [x] The DOMINATOR COLORING problem is fized parameter
tractable on apexr minor free graphs.

Chordal Graphs and Split Graphs. We now show that the DOMINATOR
COLORING problem is FPT on chordal graphs. For a special class of chordal
graphs, namely split graphs, we give an FPT algorithm which runs in time
single-exponential in the parameter.

Theorem 8. The DOMINATOR COLORING problem is fixed parameter tractable
on chordal graphs.

Proof. Let (G, k) be an instance of the DOMINATOR COLORING problem, where
G is chordal. The algorithm first finds a largest clique in G. If the number of

Algorithmic Aspects of Dominator Colorings in Graphs 29

vertices in this clique is more than &, then it returns NO as the answer. Otherwise
it invokes the algorithm of Theorem [2] as a subroutine to solve the problem.

To see that this algorithm is correct, observe that if G contains a clique C
with more than k vertices, then x(G) > k since it requires more than k& colors to
properly color the subgraph C itself. It follows from Theorem [that x4(G) > k,
and so it is correct to return NO. A largest clique in a chordal graph can be
found in linear time [I9]. If the largest clique in G has size no larger than &, then
— as is well known — the treewidth of G is at most k£ — 1, and so the subroutine
from Theorem 2] runs in at most f((k — 1), k)|V(G)| = g(k)|V(G)| time. Thus
the algorithm solves the problem in FPT time. O

The DOMINATOR COLORING problem can be solved in “fast” FPT time on split
graphs:

Theorem 9. [x] The DOMINATOR COLORING problem can be solved in O(2F-n?)
time on a split graph on n vertices.

5 Conclusion and Scope

We derived several algorithmic results about the DOMINATOR COLORING (DC)
problem. We showed that the DC problem remains hard on several graph classes,
including bipartite graphs, planar graphs, and split graphs. In the process we also
answered, in the negative, an open problem by Chellali and Maffray [6] about
the polynomial time solvability of DC on chordal graphs. Finally, we showed that
though the problem cannot be solved in polynomial time on the aforementioned
graph classes, it is FPT on apex minor free graphs and on chordal graphs. From
Theorem [I] and from the fact that finding a constant additive approximation
for the DOMINATING SET problem is W[2]-hard [I1], it follows that the DC
problem is WJ[2]-hard on bipartite graphs, and so also on the larger class of
perfect graphs. An interesting problem which remains open is whether the DC
problem is solvable in polynomial time on interval graphs.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12(2), 308-340 (1991)

2. Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs
(2010) (manuscript)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305-1317 (1996)

4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and
Disjoint Paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
635-646. Springer, Heidelberg (2009)

5. Borie, R.B., Parker, G.R., Tovey, C.A.: Automatic Generation of Linear-Time
Algorithms from Predicate Calculus Descriptions of Problems on Recursively
Constructed Graph Families. Algorithmica 7, 555-581 (1992)

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

S. Arumugam et al.

Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs
and Combinatorics, 1-11 (2011)

Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and Computation 85(1), 12-75 (1990)

Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Gram-
mars and Computing by Graph Transformations: Foundations, ch. 5, vol. 1. World
Scientific (1997)

Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science 109(1-2), 49-82 (1993)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

Downey, R.G., Fellows, M.R.., McCartin, C., Rosamond, F.: Parameterized approx-
imation of dominating set problems. Information Processing Letters 109(1), 68-70
(2008)

Feige, U.. A threshold of In n for approximating set cover. Journal of the
ACM 45(4), 634-652 (1998)

Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for
minimum-weight vertex separators. STAM Journal on Computing 38(2), 629-657
(2008)

Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction Bidimensionality: The Ac-
curate Picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
706-717. Springer, Heidelberg (2009)

Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. STAM Journal on Computing 36(2), 281-309 (2006)

Garey, M.R.., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1, 237-267 (1976)

Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM Journal on
Computing 1(2), 180-187 (1972)

Gera, R.: On dominator coloring in graphs. In: Graph Theory Notes of New York,
pp. 25-30. LIT (2007)

Gera, R.: On the dominator colorings in bipartite graphs. In: ITNG, pp. 1-6. IEEE
(2007)

Gera, R., Rasmussen, C., Horton, S.: Dominator colorings and safe clique parti-
tions. Congressus Numerantium 181(7-9), 19-32 (2006)

Halldorsson, M.M.: A still better performance guarantee for approximate graph
coloring. Information Processing Letters 45(1), 19-23 (1993)

Hedetniemi, S., Hedetniemi, S., McRae, A., Blair, J.: Dominator colorings of graphs
(2006) (preprint)

Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256278 (1974)

Lovasz, L.: On the ratio of optimal integral and fractional covers. Discrete Mathe-
matics 13, 383-390 (1975)

Lund, C., Yannakakis, M.: On the hardness of approximating minimization
problems. Journal of the ACM 41(5), 960-981 (1994)

Parameterized Longest Previous Factor*

Richard Beal and Donald Adjeroh

West Virginia University,
Lane Department of Computer Science and Electrical Engineering,
Morgantown, WV 26506
r.beal@computer.org, don@csee.wvu.edu

Abstract. The longest previous factor (LPF) problem is defined for
traditional strings exclusively from the constant alphabet X¥. A param-
eterized string (p-string) is a sophisticated string composed of symbols
from a constant alphabet X' and a parameter alphabet I1. We generalize
the LPF problem to the parameterized longest previous factor (pLPF)
problem defined for p-strings. Subsequently, we present a linear time so-
lution to construct the pLPF array. Given our pLPF algorithm, we show
how to construct the pLC'P (parameterized longest common prefix) ar-
ray in linear time. Our algorithm is further exploited to construct the
standard LPF and LCP arrays all in linear time.

Keywords: parameterized suffix array, parameterized longest common
prefix, p-string, p-match, LPF, LCP.

1 Introduction

Given an n-length traditional string W = W[1]W[2]...W[n] from the alphabet X,
the longest previous factor (LPF) problem is to determine the maximum length
of a previously occurring factor for each suffix occurring in W. More formally, for
any suffix u beginning at index 7 in the string W, the LPF problem is to identify
the length of the longest factor between u and another suffix v at some position h
before 7 in W: that is, 1 < h < i. The LPF problem, introduced by Crochemore
and Ilie [I], yields a data structure convenient for fundamental applications such
as string compression [2] and detecting runs [3] within a string. In order to
compute the LPF array, it is shown in [I] that the suffix array SA is useful
to quickly identify the most lexicographically similar suffixes that constitute as
previous factors for the chosen suffix in question. The use of SA expedites the
work required to solve the LPF problem and likewise, is the cornerstone to
solutions for many problems defined for traditional strings.

A generalization of traditional strings over an alphabet Y is the parame-
terized string (p-string), introduced by Baker [4]. A p-string is a production
of symbols from the alphabets X and II, which represent the constant sym-
bols and parameter symbols respectively. The parameterized pattern matching

* This work was partly supported by a grant from the National Historical Publications
& Records Commission.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 31-f3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

32 R. Beal and D. Adjeroh

(p-match) problem is to identify an equivalence between a pair of p-strings S and
T when 1) the individual constant symbols match and 2) there exists a bijection
between the parameter symbols of S and T'. For example, the following p-strings
that represent program statements z=y * f/++y; and a=b x f/++b; over the
alphabets X' = {x, /,4+,=,;} and IT = {a,, f,y, z} satisfy both conditions and
thus, the p-strings p-match. The motivation for addressing a problem in terms
of p-strings is the range of problems that a single solution can address, including
1) exact pattern matching when |II| = 0, 2) mapped matching (m-matching)
when | Y| = 0 [5], and clearly, 3) p-matching when |X| > 0 A |II| > 0. Prominent
applications concerned with the p-match problem include detecting plagiarism
in academia and industry, reporting similarities in biological sequences [6], dis-
covering cloned code segments in a program [7], and even answering critical legal
questions regarding the unauthorized use of intellectual property [g].

In this work, we introduce the parameterized longest previous factor (pLPF)
for p-strings analogous to the LPF problem for traditional strings, which can
similarly be used to study compression and duplication within p-strings. Given
an n-length p-string T' = T[1]T'[2]...T'[n], the pLPF problem is to determine the
longest parameterized suffix (p-suffix) v at position h for a p-suffix starting at
¢ in T with 1 < h < i. Our approach uses a parameterized suffix array (pSA)
[OTOITTIT2] for p-strings analogous to the traditional suffix array [I3]. The major
difficulty of the pLPF problem is that unlike traditional suffixes of a string, the
p-suffixes are dynamic, varying with the starting position of the p-suffix. Thus,
traditional LPF solutions cannot be directly applied to the pLPF problem.

Main Contributions: We generalize the LPF problem for traditional strings
to the parameterized longest previous factor (pLPF) problem defined for p-
strings. Then, we present a linear time algorithm for constructing the pLPF
data structure. Traditionally, the LPF problem is solved by using the longest
common prefix (LCP) array. This was one approach used in [I]. In this work,
we show how to go in the reverse direction: that is, given the pLPF solution, we
now construct the pLC P array. Further, we identify how to exploit our algorithm
for the pLPF problem to construct the LPF and LCP arrays. Our main results
are stated in the following theorems:

Theorem [l Given an n-length p-string T, prevT = prev(T), the prev encoding
of T, and pS A, the parameterized suffix array for T, the algorithm compute pLPF
constructs the pLPF array in O(n) time.

Theorem [2L Given an n-length p-string T, prevT = prev(T), the prev encoding
of T', and pS A, the parameterized suffix array for T, the compute pLPF algorithm
can be used to construct the pLCP array in O(n) time.

2 Background / Related Work

Baker [7] identifies three types of pattern matching: 1) exact matching, 2) pa-
rameterized matching (p-match), and 3) matching with modifications. The first
p-match breakthroughs, namely, the prev encoding and the parameterized suffix

Parameterized Longest Previous Factor 33

tree (p-suffix tree) that demands the worst case construction time of O(n(|II] 4+
log(|1I] + |X))), were introduced by Baker [4]. Like the traditional suffix tree
[T4T5/16], the p-suffix tree [4] implementation suffers from a large memory foot-
print. Other solutions that address the p-match problem without the space
limitations of the p-suffix tree include the parameterized-KMP [5] and
parameterized-BM [I7], variants of traditional pattern matching approaches.
Idury et al. [I8] studied the multiple p-match problem using automata. The
parameterized suffix array (p-suffix array) and the parameterized longest com-
mon prefix (pLCP) array combination is analogous to the suffix array and LC'P
array for traditional strings [I3IT4YT5T6], which is both time and space efficient
for pattern matching. Direct p-suffix array and pLCP construction was first in-
troduced by Deguchi et al. [I0] for binary strings with |IT| = 2, which required
O(n) work. Deguchi and colleagues [9] later proposed the first approach to p-
suffix sorting and pLC'P construction with an arbitrary alphabet size requiring
O(n?) time in the worst case. We introduce new algorithms in [IT12] to p-suffix
sort in linear time on average using coding methods from information theory.

Table 1. LPF calculation for string W = AAABABABS$

i SA[i] W[SAJi]..n] LCP[i] Wli...n] LPFi]
19 $ 0 AAABABABS$ 0
21 AAABABABS$ 0 AABABABS$ 2
32 AABABAB$ 2 ABABABS$ 1
47 AB$ 1 BABABS$ 0
55 ABABS$ 2 ABABS$ 4
63 ABABABS$ 4 BABS$ 3
78 B$ 0 AB$ 2
86 BABS$ 1 B$ 1
94 BABABS$ 3 $ 0

In a novel application of the suffix array and the corresponding LC'P array,
Crochemore and Ilie [I] introduced the longest previous factor (LPF) problem
for traditional strings. Table [l shows an example LPF for a short sequence
W = AAABABABS. For any suffix u beginning at index 7 in string W, the
LPF problem is to identify the exact matching longest factor between u and
another suffix v starting prior to index ¢ in W. We note that this definition is
similar to (though not the same as) the Prior array used in [I4]. Crochemore
and Ilie [I] exploited the notion that the nearby elements within a suffix array
are closely related en route to proposing a linear time solution to the LPF prob-
lem. They also proposed another linear time algorithm to compute the LPF
array by using the LCP structure. The significance of an efficient solution to
the LPF is that the resulting data structure simplifies computations in various
string analysis procedures. Typical examples include computing the Lempel-
Ziv factorization [2J19], which is fundamental in string compression algorithms
such as the UNIX gzip utility [T4JT5] and in algorithms for detecting repeats in a

34 R. Beal and D. Adjeroh

string [3]. Our motivation to study the LPF in terms of p-strings is the power
of parameterization with relevance to various important applications.

3 Preliminaries

A string on an alphabet X is a production T' = T[1]T[2]...T[n] from X" with
n = |T| the length of T'. We will use the following string notations: T'[i] refers to
the ' symbol of string T', T|i...j] refers to the substring T'[i|T[i + 1]...T'[j], and
T[i...n] refers to the i** suffix of T: T[i]T[i + 1]...T[n]. Parameterized pattern
matching requires the finite alphabets X and II. Alphabet X denotes the set of
constant symbols while IT represents the set of parameter symbols. Alphabets
are defined such that X’ N IT = (). Furthermore, we append the terminal symbol
$ ¢ X U II to the end of all strings to clearly distinguish between suffixes. For
practical purposes, we can assume that |X| + |II| < n since otherwise a single
mapping can be used to enforce the condition.

Definition 1. Parameterized String (p-string): A p-string is a production
T of length n from (X U IT)*$.

Consider the alphabet arrangements X = {A, B} and IT = {w, z,y, z}. Example
p-strings include S = AxzByABxzy$, T = AwBzABwz$, and U = AyByAByy$.

Definition 2. ([4/10]) Parameterized Matching (p-match): A pair of p-
strings S and T are p-matches with n = |S| if and only if |S| = |T| and each
1 < i <n corresponds to one of the following:

1. S[i), T[] € (2 U{$}) A S[i] = Ti]

2. S[i], T[] € II A ((a) V (b)) /* parameter bijection */
(a) Sl # SUj), Tlil # T]j] for any 1< j <

(b) S[i{)=8li—q) if T[i]=T[i—q] for any 1 < g <1

In our example, we have a p-match between the p-strings S and T since every
constant/terminal symbol matches and there exists a bijection of parameter
symbols between S and T'. U does not satisfy the parameter bijection to p-match
with S or T'. The process of p-matching leads to defining the prev encoding.

Definition 3. ([4)10]) Previous (prev) Encoding: Given Z as the set of
non-negative integers, the function prev : (X U II)*$ — (X UZ)*$ accepts a
p-string T of length n and produces a string Q of length n that 1) encodes
constant/terminal symbols with the same symbol and 2) encodes parameters to
point to previous like-parameters. More formally, Q is constructed of individual
Q[i] with 1 < i <n where:

T, if T[] € (X U{$})
Q=1 0,ifT[i] € I ANT[i] #T[j] for any 1 < j <

i—k, if T € I ANk =max{j|T[i]=T[j,1 <j<i}

Parameterized Longest Previous Factor 35

For a p-string T of length n, the above O(n) space prev encoding requires the
construction time of order O(nlog(min{n,|I7|})), which follows from the dis-
cussions of Baker [4I7] and Amir et al. [5] on the dependency of alphabet IT
in p-match applications. Given an indexed alphabet and an auxiliary O(|II|)
mapping structure, we can construct prev in O(n) time. Using Definition 3, our
working examples evaluate to prev(S) = A0B0AB54$, prev(T) = AOB0OAB543,
prev(U) = A0B2AB31$. The relationship between p-strings and the lexico-
graphical ordering of the prev encoding is fundamental to the p-match problem.

Definition 4. prev Lexicographical Ordering: Given the p-strings S and
T and two symbols s and t from the encodings prev(S) and prev(T) respec-
tively, the relationships =, #, <, and > refer to lexicographical ordering between
s and t. We define the ordering of symbols from a prev encoding of the pro-
duction (X UZ)*$ to be $ < (€ Z < 0 € X, where each ¢ and o is lexico-
graphically sorted in their respective alphabets. The relationships =, #, <, and
> refer to the lexicographical ordering between strings. In the case of prev(S)
and prev(T), prev(S) < prev(T) when prev(S)[1] = prev(T)[1], prev(S)[2] =
prev(T)[2],...,prev(S)[j—1] = prev(T)[j —1],prev(S)[j] < prev(T)[j] for some
J, 7 = 1. Similarly, we can define =k, #x, <k, and =y to refer to the lexico-
graphical relationships between a pair of p-strings considering only the first k > 0
symbols.

It is shown in [ITI12] how to map a symbol in prev to an integer based on the
ordering of Definition [and subsequently, call the function in(z, X) to answer
alphabet membership questions of the form x € X in constant time. The fol-
lowing proposition essential to the p-matching problem is directly related to the
established symbol ordering.

Proposition 1. ([4]) Two p-strings S and T p-match when prev(S) = prev(T).
Also, S < T when prev(S) < prev(T) and S = T when prev(S) > prev(T).

The example prev encodings show a p-match between S and T since prev(S) =
AO0B0AB54% and prev(T) = AO0BOAB54$. Also, U = S and U > T since
prev(U) = A0B2AB31$ > prev(S) = prev(T) = A0BOAB54%. We use the
ordering established in Definition 4 to define the parameterized suffix array and
the parameterized longest common prefix array.

Definition 5. Parameterized Suffix Array (pSA): The pSA for a p-string
T of length n maintains a lexicographical ordering of the indices i representing in-
dividual p-suffizes prev(T[i...n]) with 1 < i < n, such that prev(T[pSAlg]...n]) <
prev(T[pSA[g+1]..n))Vq,1 < g < n.

Definition 6. Parameterized Longest Common Prefix (pLCP) Array:
The pLCP array for a p-string T of length n maintains the length of the
longest common prefiz between neighboring p-suffizes. We define plep(a,) =
max{k|prev(a) = prev(8)}. Then, pLCP[1] = 0 and pLC P[i] = max{k | plcp
(T[pSAi)..n], T[pSA[i —1]..n])}, 2 <i < n.

36 R. Beal and D. Adjeroh

For the example T = AwBzABwz$ with prev(T) = AOBOAB54957 we have
pSA=1{9,8,7,4,2,1,5,6,3} and pLCP = {0,0,1,1,1,0,1,0,2}. The encoding
prev is supplemented by the encoding forw.

Definition 7. ([11J12]) Forward (forw) Encoding: Let the function rev(T)
reverse the p-string T and repl(T, x,y) replace all occurrences in T of the symbol
x with y. We define the function forw for the p-string T of lengthn as forw(T) =
rev(repl(prev(rev(T)),0,n)).

For a p-string T of length n, the encoding forw 1) encodes constant/termi-
nal symbols with the same symbol and 2) encodes each parameter p with the
forward distance to the next occurrence of p or an unreachable forward dis-
tance n. Our definition of forw generates output mirroring the fw encoding used
by Deguchi et al. [9[I0]. The forw encodings in our example with n = 9 are
forw(S) = A5B4AB99S, forw(T) = A5B4AB99S, forw(U) = A2B3AB19S.

Definition 8. (|I]) Longest Previous Factor (LPF): For an n-length tra-
ditional string W, the LPF is defined for each index 1 < ¢ < n such that
LPF[i] = max({0} U {k | W[i...n] = Wh...n],1 < h < i}).

The traditional string W = AAABABABS yields LPF = {0,2,1,0,4,3,2,1,0}.

4 Parameterized LPF

We define the parameterized longest previous factor (pLPF) problem as follows
to generalize the traditional LPF problem to p-strings.

Definition 9. Parameterized Longest Previous Factor (pLPF'): For a p-
string T of length n, the pLPF array is defined for each index 1 < i < n to
maintain the length of the longest factor between a p-suffix and a previous p-
suffix occurring in T. More formally, pLPF[i] = max({0}U{k | prev(T[i...n]) =k
prev(T[h...n]),1 < h < i}).

The pLPF problem requires that we deal with p-suffixes, which are suffixes
encoded with prev. This task is more demanding than the LPF for traditional
strings because Lemma [I] indicates that we cannot guarantee the individual
suffixes of a single prev encoding to be p-suffixes. Thus, the changing nature of
the prev encoding poses a major challenge to efficient and correct construction
of the pLPF array using current algorithms that construct the LPF array for
traditional strings. The proof is provided in [12] and omitted for space.

Lemma 1. Given a p-string T of length n, the suffizes of prev(T) are not nec-
essarily the p-suffizes of T. More formally, if m € II occurs more than once in
T, then 3i, s.t. prev(T[i...n]) # prev(T)[i..n],1 < i < n.

Consider the p-string T' = AAAwBzyyAAAzwwB$ using the previously defined
alphabets. Table [2] shows the pLPF computation for the p-string 7. We note
the intricacies of Lemma [I] since simply using the traditional LPF algorithm 1)

Parameterized Longest Previous Factor 37

Table 2. pLPF calculation for p-string T' = AAAwBxyyAAAzwwB$

i pSA[i] pLCPJi] prev(T[pSA[i]...n]) before<[pSA[i]] befores[pSA[i]] pLPF[i]
1 16 0 $ -1 6 0
2 6 0 001AAA001B$% -1 4 2
3 12 3 001B$% 6 7 1
4 7 1 01AAA001B$ 6 4 0
5 13 2 01B$% 7 8 0
6 8 1 0AAA001B$ 7 4 1
7 14 1 0B$ 8 4 1
8 4 2 0B001AAA091BS -1 3 1
9 11 0 A001B$ 4 3 4
10 3 2 A0B001AAA091B$ -1 2 3
11 10 1 AA001B$ 3 2 2
12 2 3 AA0B001AAA091BS -1 1 3
139 2 AAA001B$ 2 1 2
141 4 AAA0BO01AAA091BS -1 -1 2
15 15 0 B$ 1 5 1
16 5 1 B001AAA001BS 1 -1 0

with T yields LPF = {0,2,1,0,0,0,0,1,3,2,1,0,1,2,1,0}, 2) with prev(T) pro-
duces LPF = {0,2,1,0,0,1,1,0,4,3,2,1,0,1,1,0}, and 3) with forw(7) gener-
ates LPF ={0,2,1,0,0,0,0,1,3,2,1,3,2,1,1,0}, neither of which is the correct
pLPF array.

Crochemore and Ilie [I] efficiently solve the LPF problem for a traditional
string W by exploiting the properties of the suffix array SA. They construct
the arrays prev<[l...n] and prevs[l...n], which for each ¢ in W maintain the
suffix h < i positioned respectively before and after suffix ¢ in S A; when no such
suffix exists, the element is denoted by —1. The conceptual idea to compute the
prev< and prevs arrays in linear time via deletions in a doubly linked list of the
SA was suggested in [I]. The algorithm is given in [12]. Furthermore, we will
refer to prev. and prevs as before. and be fores respectively, in order to avoid
confusion with the prev encoding for p-strings. Then, LPFi] is the maximum
q between Wli...n] =, Wibefore<[i]...n] and W{i..n] =4 Wbefores[i]...n]. The
magic of a linear time solution to constructing the L PF array is achieved through
the computation of an element by extending the previous element, more formally
LPF[i]| > LPF[i — 1] — 1, which is a variant of the extension property used in
LCP construction proven by Kasai et al. [2(]]. We prove that this same property
holds for the pLPF problem defined on p-strings.

Lemma 2. The pLPF for a p-string T of length n is such that pLPF[i] >
pLPF[i —1] — 1 with 1 < i < n.

Proof. Consider pLPF[i] at i = 1 by which Definition [requires that we find a
previous factor at 1 < h < 1 that does not exist; i.e., pLPF[1] = 0. At i = 2,
indeed pLPF[2] > pLPF[1] — 1 = —1 is clearly true for all succeeding elements

38 R. Beal and D. Adjeroh

Algorithm 1. pLPF computation

1 int[] compute pLPF(int before<[], int befores[]) {
2 int pLPF[n], pLPF.=0, pLPF-=0, i, j, k
3 for i =1 to n {
4 j = max{0,pLPF.—1}
5 k = max{0,pLPF—1}
6 if (before< # null) pLPF. = A(i,beforec<[i],])
7 if (befores # null) pLPF. = A(i,befores[i],k)
8 pLPF[i] = max{pLPF. pLPFs}
9 }return pLPF
10 }
Algorithm 2. p-matcher function A
1 int A(int a, int b, int q) {
2 boolean ¢ = true
3 int x, y
4 if(b = —1) return 0
5 while(c A (at+q) <n A (b+q) <n) {
6 x = prevT[atq], y = prevT[b+q]
7 if(in(x,X) ANin(y,X)){
8 if(x = y) qh+
9 else ¢ = false
10 telse if(in(x,Z) A in(y,Z)){
11 if(q <x) x=0
12 ifq<y) y=20
13 if(x =y) qb+
14 else ¢ = false
15 telse ¢ = false
16 }return q
17}

in which a previous factor does not exist. For arbitrary ¢ = j with 1 < j <
n, suppose that the maximum length factor is at ¢ < j and without loss of
generality, consider that the first ¢ > 2 symbols match so that prev(T'[j...n]) =,
prev(T[g...n]). Thus, pLPF[j] = g. Shifting the computation to i = j+1, we lose
the symbols prev(T[j]) and prev(7T[g]) in the p-suffixes at j and g respectively.
By Proposition] prev(T7[j...j + ¢—1]) = prev(T[g...g+q —1]) = prev(T[j]) =
prev(T'[g]) and as a consequence of the prev encoding in Definition [B] we have
prev(T'[i..n]) =¢—1 prev(T[g + 1...n]). Since we can guarantee that 3 a factor
with (¢ — 1) symbols for pLPF[i] or possibly find another factor at h with
1 < h < ¢ matching g or more symbols, the lemma holds. a

Lemmal2permits us to adapt the algorithm compute LPF given in [I] to p-strings.
We introduce compute pLPF in Algorithm 1 to construct the pL PF array, which
makes use of the p-matcher A in Algorithm 2 to properly handle the sophisticated

Parameterized Longest Previous Factor 39

matching of p-suffixes, the dynamic suffixes under the prev encoding. The role
of A is to extend the matches between the p-suffixes at a and b beyond the initial
g symbols by directly comparing constant/terminal symbols and comparing the
dynamically adjusted parameter encodings for each p-suffix.

Theorem 1. Given an n-length p-string T, prevT =prev(T), the prev encoding
of T, and pS A, the parameterized suffix array for T, the algorithm compute pLPF
constructs the pLPF array in O(n) time.

Proof. Tt follows from Lemma [l that our algorithm exploits the properties of
pLPF to correctly compute and extend factors, which requires O(n) time. Com-
puting the arrays before. and befores require O(n) processing [12]. What re-
mains now is to show that, between Algorithm 1 and Algorithm 2, the total
number of times that the body of the while loop (lines 6-15 in Algorithm 2) will
be executed is in O(n). The number of iterations of the while loop is given by
the number of matching symbol comparisons, namely the number of increments
of the variable ¢, which identifies the shift required to compare the current sym-
bol. Without loss of generality, suppose that the initial p-suffixes at position a
and b are the longest suffixes at positions 1 and 2 in T of lengths n and (n — 1)
respectively. In the worst case, (n — 1) of the symbols will match between these
suffixes, by which each comparison that clearly requires O(1) work, will incre-
ment ¢. Lemma [2 indicates that succeeding calculations, or calls to A, already
match at least (¢ — 1) symbols that are not rematched and rather, the match
is extended. Since the decreasing lengths of the succeeding suffixes at 3,4,...,n
cannot extend the current ¢, no further matching or increments of ¢ are needed.
Hence, the while loop iterates a total of O(n) times amortized across all of the
n iterations of the for loop in Algorithm 1. Thus, the total work is O(n). O

Our algorithm compute pLPF is motivated by the compute LPF algorithm in
[1]. We also observe that similar pattern matching mechanisms as the one used
between the for loop in Algorithm 1 and the while loop in Algorithm 2 exist in
standard string processing, for example in computing the border array discussed
in [I5].

5 From pLPF to pLCP

Deguchi et al. [9JT0] studied the problem of constructing the pLC P array given
the pSA. They showed that constructing the pLC' P array requires a non-trivial
modification of the traditional LC'P construction by Kasai et al. [20]. In [I], the
LCP array was used as the basis for constructing the LPF array for traditional
strings. Here, we present a simpler algorithm for constructing the pLC'P array. In
particular, we show that, unlike in [I], it is possible to go the other way around:
that is, given the pLPF solution, we now construct the pLCP array. Later, we
show that the same pLPF algorithm can be used to construct the LCP array
and the LPF array for traditional strings. Crochemore and Ilie [I] identify that
the traditional LPF array is a permutation of the well-studied LC'P array. We
observe the same relationship in terms of the pLPF and pLCP arrays.

40 R. Beal and D. Adjeroh

Proposition 2. The pLPF array is a permutation of pLC'P.

This observation allows us to view the pLC' P array from a different perspective.
As a novel use of our compute pLPF algorithm, we introduce a way to construct
the pLCP array in linear time. The key observation is that we can integrate the
fact that the pLC P occurs between neighboring p-suffixes and the fact that we
preprocess the before. array, which for each ¢ in the p-string 7" maintains the
p-suffix h < 7 positioned prior to the p-suffix 7 in pSA. We can also construct the
array after< to maintain the p-suffix j > ¢ also positioned prior to the p-suffix
7 in pSA. Since h and j are both positioned prior to 7 in pSA, we can guarantee
that either h or j must be the nearest neighbor to . So, the maximum factor
determines the nearest neighbor and thus, pLC P[R]i]], where R is the inverse
of pSA (see Algorithm 3). Theorem 2] shows that this computation is performed
in linear time.

Algorithm 3. pLCP computation

1 int[] compute pLCP(int before<[], int after<[]) {
2 int pLCP[n], M[n], R[n], i

3 for i =1 ton

4 R[pSA[i]] =i

5 M = compute pLPF(before«,after<)

6 for i =1 to n

7 pLCP[R[i]] =M][i]

8 return pLCP

9

}

Theorem 2. Given an n-length p-string T, prevT = prev(T), the prev en-
coding of T, and pSA, the parameterized suffix array for T, the compute pLPF
algorithm can be used to construct the pLCP array in O(n) time.

Proof. We can clearly relax the p-suffix selection restrictions enforced by the
problem pLPF in Lemma[lto exploit the idea of extending factors. Subsequently,
only the parameters of Algorithms 1 and 2 impose such restrictions. Let R[1...n]
be the rank array, the inverse of pSA. We prove that the pLCP is constructed
with compute pLPF(before<,after<). Let before<[l...n] and after<[1...n] main-
tain, for all the ¢ in T, the p-suffixes h < i at position R[h] in pSA and j > i
at position R[j] in pSA, respectively, that are positioned prior to the p-suffix ¢
at position R[i] in pSA; when no such suffix exists, the element is denoted by
—1. Without loss of generality, suppose that both h and j exist and 2 < i < n,
so we have either R[j] = R[i]—1 or R[h] = R[i]—1 as the neighboring p-suffix. So,
max{plcp(prev(T'[h...n]), prev(T[i...n])), plcp(prev(T[j...n]), prev(T[i...n]))}

distinguishes which p-suffix h or j is closer to 7, identifying the nearest neighbor
and in turn, pLC P[R][i]]. This statement is utilized in compute pLPF exactly in
terms of factors except that the value will be stored in pLCPJi]. So, after the
computation using the call to compute pLPF (line 5) in Algorithm 3, rearrang-
ing the resulting array using the rank array R (lines 6-7) produces the required

Parameterized Longest Previous Factor 41

pLCP array. We have yet to prove the time complexity. Since the parameter
after can be computed in O(n) by deletions and indexing into a doubly linked
list similar to before< [I2] and since compute pLPF executes in O(n) time via
Theorem [I the theorem holds. a

Algorithm 4. Improved pLCP computation

1 int[] compute pLCP() {

2 int pLCP[n], M[n], i

3 M[pSA[1]] = —1

4 for i =2 ton

5 M[pSA[i]] = pSA[i—1]
6 M = compute pLPF (M, null)
7 for i =1 ton

8 pLCP[i] = M[pSA[i]]

9 return pLCP

10 }

For discussion purposes, Algorithm 3 uses a rank array R to index and preprocess
the arrays be fore. and a fter~ to determine the neighboring suffix, which can be
found trivially with a p-suffix array, and thus, may be omitted for practical space.
The improved solution is shown in Algorithm 4. For further improved space
consumption, the implementation of Algorithm 4 may incorporate the LC'P
indexing contributions of [21]. In passing, we identify that upon the completion
of line 6 in Algorithm 4, the M array is the permuted longest common prefix
(PLCP) data structure observed in [22] for traditional strings.

6 From pLPF to LPF and LCP

The power of defining the pLPF problem in terms of p-strings is the gener-
alization of a p-string production. We show in Theorems Bl and E] that our
compute pLPF algorithm also computes the traditional LPF and LCP arrays.

Theorem 3. Given an n-length traditional string W, the compute pLPF algo-
rithm constructs the LPF array in O(n) time.

Proof. Since W[i] € XV i,1 <i < n and W[n] € {$}, then by Definition [we
have W € (X UII)*$, which classifies W as a valid p-string. Given this, Theorem
[Mproves that the construction of pLPF for a p-string requires O(n) time. In this
special case, W consists of no such symbol m € IT so Lemma [I] identifies that
prev(Wli...n]) = prev(W)li..n] and further W = prev(W) by Definition Bl
so Wli...n] = prev(W)[i...n], which constrains the pLPF in Definition [to the
LPF problem in Definition [8l Thus, from Theorem [Il compute pLPF computes
the LPF of W. O

Theorem 4. Given an n-length traditional string W, the compute pLCP
algorithm constructs the LCP array in O(n) time.

42 R. Beal and D. Adjeroh

Proof. In the same manner as Theorem B we may classify W as a valid p-
string. Given this, Theorem [] proves that the construction of pLC'P for a p-
string requires O(n) time. Mirroring the proof of Theorem B, we have W{i...n] =
prev(W)[i...n|, which constrains the pLCP in Definition[Glto the traditional LCP
problem. Thus, from Theorem 2] compute pLCP computes the LCP of W. O

7 Conclusion and Discussion

We introduce the parameterized longest previous factor (pLPF) problem for
p-strings, which is analogous to the longest previous factor (LPF) problem de-
fined for traditional strings. A linear time algorithm is provided to construct the
pLPF array for a given p-string. The advantage of implementing our solution
compute pLPF is that the algorithm may be used to compute the arrays pLPF,
pLCP, LPF, LCP, or even the permuted LCP [22] in linear time, which are
fundamental data structures preprocessed for the efficiency of countless pattern
matching applications. Each of the proposed algorithms requires O(n) worst case
time and O(n) worst case space. Since we provide construction algorithms for
several data structures using the pL PF' construction as the groundwork, we are
faced with the practical limitation that our algorithms are only as efficient as the
compute pLPF solution. We acknowledge that it is possible to use the techniques
in [22123|24] to improve the space consumption of the LC'P array and similarly,
the pLC'P data structure, since pLCP is an array of integers analogous to the
traditional LC'P. Nonetheless, the significance of working though the LPF as an
intermediate data structure is the straightforward and space efficient algorithm
to construct the Lempel-Ziv (LZ) factorization [IJ2/T9]. Similarly, the pLPF ar-
ray can easily derive the LZ structure and allow us to study such applications as
maximal runs in p-strings extended to source code plagiarism or redundancies
in biological sequences.

References

1. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inf. Process. Lett. 106(2), 75-80 (2008)

2. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337-343 (1977)

3. Main, M.: Detecting leftmost maximal periodicities. Discrete Appl. Math. 25(1-2),
145-153 (1989)

4. Baker, B.: A theory of parameterized pattern matching: Algorithms and applica-
tions. In: STOC 1993, pp. 71-80. ACM, New York (1993)

5. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49, 111-115 (1994)

6. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1-19 (2004)

7. Baker, B.: Finding clones with dup: Analysis of an experiment. IEEE Trans. Soft-
ware Eng. 33(9), 608-621 (2007)

8. Zeidman, B.: Software v. software. IEEE Spectr. 47, 32-53 (2010)

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Parameterized Longest Previous Factor 43

Tomohiro, 1., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight Param-
eterized Suffix Array Construction. In: Fiala, J., Kratochvil, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 312-323. Springer, Heidelberg (2009)
Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: PSC 2008, Czech Republic, pp. 84-94 (2008)
Beal, R., Adjeroh, D.: p-Suffix Sorting as Arithmetic Coding. In: lliopoulos, C.S.,
Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 44-56. Springer, Heidelberg
(2011)

Beal, R.: Parameterized Strings: Algorithms and Data Structures. MS Thesis. West
Virginia University (2011)

Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22, 935-948 (1993)

Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

Smyth, W.: Computing Patterns in Strings. Pearson, New York (2003)

Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays and Pattern Matching. Springer, New York (2008)

Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
SODA 1995, pp. 541-550. ACM, Philadelphia (1995)

Idury, R., Schéffer, A.: Multiple matching of parameterized patterns. Theor. Com-
put. Sci. 154, 203-224 (1996)

Crochemore, M., Ilie, L., Smyth, W.: A simple algorithm for computing the Lempel
Ziv factorization. In: DCC 2008, pp. 482-488 (2008)

Kasai, T., Lee, G., et al.: Linear-time Longest-common-prefix Computation in Suf-
fix Arrays and its Applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001.
LNCS, vol. 2089, pp. 181-192. Springer, Heidelberg (2001)

Manzini, G.: Two Space Saving Tricks for Linear Time LCP Array Computation.
In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372-383.
Springer, Heidelberg (2004)

Karkkéinen, J., Manzini, G., Puglisi, S.: Permuted Longest-common-prefix Array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181—
192. Springer, Heidelberg (2009)

Puglisi, S., Turpin, A.: Space-time Tradeoffs for Longest-Common-prefix Array
Computation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 124-135. Springer, Heidelberg (2008)

Fischer, J.: Wee LCP. Inf. Process. Lett. 110(8-9), 317-320 (2010)

*

p-Suffix Sorting as Arithmetic Coding

Richard Beal and Donald Adjeroh

Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV 26506
r.beal@computer.org, don@csee.wvu.edu

Abstract. The challenge of direct parameterized suffix sorting (p-suffix
sorting) for a parameterized string (p-string) is the dynamic nature of
parameterized suffixes (p-suffixes). In this work, we propose transforma-
tive approaches to direct p-suffix sorting by generating and sorting lexi-
cographically numeric fingerprints and arithmetic codes that correspond
to individual p-suffixes. Our algorithm to p-suffix sort via fingerprints
is the first theoretical linear time algorithm for p-suffix sorting for non-
binary parameter alphabets, which assumes that each code is represented
by a practical integer. We eliminate the key problems of fingerprints by
introducing an algorithm that exploits the ordering of arithmetic codes
to sort p-suffixes in linear time on average.

Keywords: parameterized suffix array, parameterized suffix sorting,
arithmetic coding, fingerprints, p-string, p-match.

1 Introduction

Conventional pattern matching typically involves the matching of traditional
strings over an alphabet Y. Parameterized pattern matching using parame-
terized strings, introduced by Baker [I], attempts to answer pattern matching
questions beyond its classical counterpart. A parameterized string (p-string) is a
production of symbols from the alphabets Y’ and I, which represent the constant
symbols and parameter symbols respectively. Given a pair of p-strings S and T,
the parameterized pattern matching (p-match) problem is to verify whether the
individual constant symbols match and whether there exists a bijection between
the parameter symbols of S and T. If the two conditions are met, S is said to
be a p-match of T'. For example, there exists a p-match between the p-strings
z=y * f/++y; and a=b * f/++b; that represent program statements over the
alphabets X' = {x, /,+,=,; } and Il = {a,b, f,y, z}. Applications inherent to the
p-matching problem include detecting plagiarism in academia and industry, re-
porting similarities in biological sequences [2], discovering cloned code segments
in a program to assist with software maintenance [1], and answering critical legal
questions regarding the unauthorized use of intellectual property [3].

* This work was partly supported by a grant from the National Historical Publications
& Records Commission.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 44-p8@, 2011.
© Springer-Verlag Berlin Heidelberg 2011

p-Suffix Sorting as Arithmetic Coding 45

Initial solutions to the p-match problem were based on the parameterized
suffix tree (p-suffix tree) [I]. Idury et al. [4] studied the multiple p-match prob-
lem using automata. The physical space requirements of the p-suffix tree led
to algorithms such as parameterized-KMP [5], parameterized-BM [6], and the
parameterized suffix array (p-suffix array) [7J8]. Analogous to standard suffix
sorting, the problem of parameterized suffix sorting (p-suffix sorting) is to sort
all the n parameterized suffixes (p-suffixes) of an n-length p-string into a lex-
icographic order. The major difficulty is that unlike traditional suffixes of a
string, the p-suffixes are dynamic, varying with the starting position of the p-
suffix. Thus, standard suffix sorting approaches cannot be directly applied to the
p-suffix sorting problem. Current approaches to directly construct the p-suffix
array without a p-suffix tree for an n-length p-string from an arbitrary alphabet
require O(n?) time in the worst case [7]. Such demands the need for alternative
approaches to direct p-suffix sorting.

Main Contribution: We construct p-suffix arrays by generating and sorting
codes that represent the individual p-suffixes of a p-string. We propose the first
theoretical linear time claims to directly p-suffix sort p-strings from non-binary
parameter alphabets. We state our main result in the following theorem:

Theorem [l Given a p-string T of length n, p-suffiz-sorting of T can be accom-
plished in O(n) time on average via parameterized arithmetic coding.

2 Background / Related Work

Baker [I] defines pattern matching as either: 1) exact matching, 2) parameterized-
matching, or 3) matching with modifications. A parameterized match (p-match)
is a sophisticated matching scheme based on the composition of a parameterized
string (p-string). A p-string is composed of symbols from a constant symbol al-
phabet X and a parameter alphabet II. A pair of p-strings S and T of length n
are said to p-match when the constant symbols ¢ € X' match and there exists a
bijection of parameter symbols 7w € IT between the pair of p-strings. Baker [1]
offered the first p-match breakthroughs, namely, the prev encoding to detect a p-
match and the parameterized suffix tree (p-suffix tree) analogous to the suffix tree
for traditional strings [9II0IT]. The p-suffix tree is built on the prev encodings
of the suffixes of the p-string, demanding O(n(|IT|+log(|IT|+|X]))) construction
time in the worst case [I]. Improvements to the p-suffix tree construction were
introduced by Kosaraju [I2]. Other contributions in the area of parameterized
suffix trees include constructon via randomized algorithms [I3[14]. Like the tra-
ditional suffix tree [9T0JIT], the p-suffix tree [I] implementation suffers from a
large memory footprint. Other solutions that address the p-match problem with-
out the space limitations of the p-suffix tree include the parameterized-KMP [5]
and parameterized-BM [6], variants of traditional pattern matching approaches.

The native time and space efficiency of the suffix array led to the origination
of the parameterized suffix array (p-suffix array). The p-suffix array is analogous
to the suffix array for traditional strings introduced in [I5]. Manber and Myers
[15] show how to combine the suffix array and the LC'P (longest common prefix)

46 R. Beal and D. Adjeroh

array to competitively search for pattern P = P[l..m] in a text T = T[l...n]
in O(m + logn) time. Direct p-suffix array construction was first introduced by
Deguchi et al. [§] for binary strings with |II| = 2 requiring O(n) construction
time through the assistance of a defined fw encoding. Deguchi and colleagues
[7] later proposed the first approach to direct p-suffix sorting with an arbitrary
alphabet size requiring O(n?) time in the worst case, without the assistance of a
p-suffix tree. The parameterized longest common prefix (pLC P) array, analogous
to the traditional LC'P, was also defined and constructed in [7I8]. In this work,
we propose efficient methods to the direct p-suffix sorting problem that avoid
the large memory footprint of the p-suffix tree by using fingerprints and coding
methods from information theory.

3 Preliminaries

A string on an alphabet X' is a production T' = T'[1|T[2]...T'[n] from X™ with
n = |T| the length of T'. We will use the following string notations: T'[i] refers to
the i'" symbol of string T, T'[i...j] refers to the substring T'[i|T[i + 1]...T'[j], and
T[i...n] refers to the i'" suffix of T: T[i|T[i + 1]...T[n]. The area of parameterized
pattern matching defines the finite alphabets X and II. Alphabet X denotes
the set of constant symbols while IT represents the set of parameter symbols.
Alphabets are defined such that X’NIT = (). Furthermore, we append the terminal
symbol § ¢ X UIT to the end of all strings to clearly distinguish between suffixes.
For practical purposes, we can assume that | X|+|IT| < n since, otherwise a single
mapping can be used to enforce the condition.

Definition 1. Parameterized String (p-string): A p-string is a production
T of length n from (X U IT)*$.

Consider the alphabet arrangements X = {A, B} and IT = {w, z,y, z}. Example
p-strings include S = AzByABxy$, T = AwBzABw2z$, and U = AyByAByyS.

Definition 2. ([I)8]) Parameterized Matching (p-match): A pair of p-
strings S and T are p-matches with n = |S| if and only if |S| = |T| and each
1 < i <n corresponds to one of the following:

1. S|, Tli] € (S U{$}) A S[i] = T}i]

2. S[i], T[] € II A ((a) V (b)) /* parameter bijection */
(a) S[i) # S[j], T[i] # T[j] for any 1 <j <

(b) S[i]=8[i—q) if T[i]=T[i—q] for any 1 < g <1

In our example, we have a p-match between the p-strings S and T since every
constant /terminal symbol matches and there exists a bijection of parameter
symbols between S and T'. U does not satisfy the parameter bijection to p-match
with S or T'. The process of p-matching leads to defining the prev encoding.

p-Suffix Sorting as Arithmetic Coding 47

Definition 3. ([1,8]) Previous (prev) Encoding: Given Z as the set of non-
negative integers, the function prev : (YUIT)*$ — (X UZ)*$ accepts a p-string T
of length n. and produces a string Q of lengthn that 1) encodes constant/terminal
symbols with the same symbol and 2) encodes parameters to point to previous
like-parameters. More formally, @ is constructed of individual Q[i] with 1 < i <
n where;

T[], if Tli] € (XU {$})
Qli|=<¢ 0,if T[] e I ANT[i]# T[j] for any 1 < j <4

i—k,if T[i]e Nk =max{j|T}i]=T[j,1 <j<i}

For a p-string T of length n, the above O(n) space prev encoding demands
the worst case construction time O(nlog(min{n,|II|})), which follows from the
discussions of Baker [I6] and Amir et al. [5] on the dependency of alphabet IT
in p-match applications. Note that with an indexed alphabet and an auxiliary
O(]II]) mapping structure, we can construct prev in O(n) time. Using Definition
Bl our examples evaluate to prev(S) = A0B0AB54$, prev(T) = AOB0OAB543,
prev(U) = A0B2AB31$. The relationship between p-strings and the lexico-
graphical ordering of the prev encoding is fundamental to the p-match problem.

Definition 4. prev Lexicographical Ordering: Given the p-strings S and
T and two symbols s and t from the encodings prev(S) and prev(T) respec-
tively, the relationships =, #, <, and > refer to lexicographical ordering between
s and t. We define the ordering of symbols from a prev encoding of the pro-
duction (X UZ)*$ to be § < (€ Z < o0 € X, where each { and o is lexico-
graphically sorted in their respective alphabets. The relationships =, #, <, and
> refer to the lexicographical ordering between strings. In the case of prev(S)
and prev(T), prev(S) < prev(T) when prev(S)[1] = prev(T)[1], prev(S)[2] =
prev(T)[2],...,prev(S)[j—1] = prev(T)[j—1],prev(S)[j] < prev(T)[j] for some
g, g = 1. Similarly, we can define =y, #r, <k, and =i to refer to the lexico-
graphical relationships between a pair of p-strings considering only the first k > 0
symbols.

The following proposition essential to the p-matching problem is directly related
to the symbol ordering established in Definition [4]

Proposition 1. ([1]) Two p-strings S and T p-match when prev(S) = prev(T).
Also, S < T when prev(S) < prev(T) and S = T when prev(S) = prev(T).

The example prev encodings show a p-match between S and T since prev(S) =
AO0BOAB54% and prev(T) = AO0BOAB54$. Also, U = S and U > T since
prev(U) = A0B2AB31$ > prev(S) = prev(T) = A0B0AB54$. We use the
ordering established in Definition [to define the parameterized suffix array.

Definition 5. Parameterized Suffix Array (p-suffix array): The p-suffiz
array (pSA) for a p-string T of length n maintains a lexicographical ordering
of the indices i representing individual p-suffizes prev(T[i..n]) with 1 < i < n,
such that prev(T[pSA[q]..n]) < prev(T[pSA[g + 1]..n])Vq,1 < g < n. The act
of constructing pSA is referred to as p-suffiz sorting.

48 R. Beal and D. Adjeroh

In the working example using T', the p-suffix array pSA = {9,8,7,4,2,1,5,6, 3}.
The encoding prev is supplemented by the encoding forw.

Definition 6. Forward (forw) Encoding: Let the function rev(T) reverse
the p-string T and repl(T,x,y) replace all occurrences in T of the symbol x
with y. We define the function forw for the p-string T of length n as forw(T) =
rev(repl(prev(rev(T)),0,n)).

Essentially, forw performs the following on a p-string T of length n: 1) encodes
constant /terminal symbols with the same symbol and 2) encodes each parameter
p with the forward distance to the next occurrence of p or an unreachable for-
ward distance n. Our definition of the forw encoding generates output mirroring
the fw encoding used by Deguchi et al. [7I8]. Let N refer to the set of positive,
non-zero integers. The function fw: (XU IT)* — (X UN)* produces an output
encoding G with fw(T") = G for each 1 <14 < n:

T[], if T[i)e X
Gli]=1Q o0, if T[i] € I NT[i]#T[j] for any i < j <n

k—i,if T[i] € I ANk =min{j|T[i]] =T[jl,i <j <n}
The forw encodings in our example with n = 9 are forw(S) = A5B4AB998,
forw(T) = ASB4AB993, forw(U) = A2B3AB19S.

4 p-Suffix Sorting via Fingerprints

The magic of sorting the suffixes of a string 7" of length n from an alphabet X' is
rooted in the notion that individual suffixes are very closely related. Through-
out this work, we are challenged with the reality that the p-suffix, more for-
mally prev(T[i...n]), is not naively the suffix of the prev encoding of T', namely
prev(T)[i...n], which is formalized in Lemma [l (Given space constraints, we
omit the proofs of the lemmas, which are included in [16]).

Lemma 1. Given a p-string T of length n, the suffizes of prev(T) are not
necessarily the p-suffizes of T. More formally, if m € II occurs more than once
in T, then Ji, s.t. prev(Ti...n]) # prev(T)[i..n],1 <i< n.

The centerpiece of this work is the idea that we can directly construct the p-
suffix array without the large memory footprint of the p-suffix tree by handling
the dynamically changing p-suffixes, which is fundamentally different from the
standard suffix sorting approaches for traditional strings. To visually identify
the difference between traditional suffixes and p-suffixes, consider the example
T = zAwz$ as a traditional string, in which the suffixes are methodically created
by removing a symbol: zAwz$ — Awz$ — wz$ — 28 — $. If we consider
the same example T' = zAwz$ with X' = {A} and IT = {w, z}, then the p-suffixes

defined under the prev encoding are dynamically changing: 0403% — A00$ —
00$ — 0% — §.

Our idea is to modify the traditional Karp and Rabin (KR) fingerprinting
scheme presented in [TOITIITT] to accommodate the changing nature of p-suffixes.

p-Suffix Sorting as Arithmetic Coding 49

The KR algorithm generates an integral K R “signature” or “fingerprint” code to
represent a string using the lexicographical ordering of symbols [I7]. By repre-
senting p-suffixes through numeric fingerprints we devise a mechanism to retain
a “tangible” copy of the changing p-suffixes under the prev encoding. In this
section, we assume that n is not too large. That is, the KR codes can fit into
standard integer representations such as long long integer.

We now denote the following variables that are continually reused through-
out this section for the working p-string T of length n: prevT = prev(T),
forwT = forw(T), maxr = maxdist(prevT) (see below), R = |X| + max + 2.
Our fingerprinting approach relies on a lexicographical ordering implementation
of Definition [to appropriately accommodate the prev alphabet X U Z U {$}.
Our ordering scheme, function map, is formalized in Definition [7.

Definition 7. Mapping Function: Let max =maxdist(prevT) =max{prevT[i]
| prevTi] € Z for 1 < i < n}. Let function o;(x, X) return the lexicographical
order (1,2,....|X|) of the symbol x in alphabet X. We then define the function
map : (YUZU{$}) — N to map a symbol, say x, in prevT to an integer preserving
the ordering of Definition[f] We also define the supplement function in(z, X) to
determine if x € X instantaneously based on the definition of map(x).
1,ifz=3$
map(z) =< «;(z,Z)+1,ifx € Z
aj(z, X)+max+2,ifxe X
true, if X =Z A (1 < map(z) < max + 2)
in(z, X) = ¢ true, if X = (X U{$}) A (map(z) =1V map(x) > mazx + 2)
false, otherwise
The function map is fundamental for the parameterized Karp-Rabin fingerprint-
ing (pKR) algorithm, which generates parameterized Karp-Rabin (pK R) codes.

Definition 8. Parameterized Karp-Rabin (pKR) Function: Let prevT; =
prev(T[i..n]). We define pKR(i) = > ;_, [R*"! x map(prevT;[n — k +1])] to
return a fingerprint generated for the p-suffix beginning at index i.

Table [shows example fingerprints using our pKR algorithm and also the stan-
dard algorithm KR for the string 7' = AwBzABwz$. This example shows the
true power of our pKR algorithm in that the ordering of the computed fingerprints
for p-suffixes of T yields the correct p-suffix array pSA = {9,8,7,4,2,1,5,6, 3}.
We notice that using KR directly produces the array {1,4,5,2,3,6,7,9,8}, which
is not the correct p-suffix array. The execution of function pKR may be naively
cascaded to produce fingerprints for all n p-suffixes at positions 1 < i < n of
p-string T' requiring O(n?) time, which is a theoretical bottleneck. We can in-
telligently construct pK R codes for the p-suffixes of T' by taking advantage of
the relationship between p-suffixes and pK R codes. Consider ¢; to be the pK R
code for the p-suffix at position . The code ¢;1+1 can be used to compute the
fingerprint for ¢; for ¢ > 1 by introducing a new symbol at position i. Lemmas
and [3 identify the adjustments that dynamically change the p-suffixes between
the neighboring p-suffixes at ¢ and (i 4 1) when considering a symbol introduced
at position i.

50 R. Beal and D. Adjeroh

Table 1. Lexicographical ordering of p-suffixes with pKR, using T' = AwBzABw2z$

i pSA T[pSA[i]..n] prev(T[pSA[i]...n]) pKR(pSA[i]) KR(pSA[i])

19 8 $ 43046721 43046721

28 2% 0% 90876411 263063295
37 wz$ 003 96190821 330556302
44 zABwz$ 0AB04$ 129298356 129593601
52 wBzABwz$ 0B0AB54$ 130740084 130740084
61 AwBzABwz$ AOBOAB54$ 358900444 358900444
75 ABwz$ ABO00S 388608030 391501431
86 Bwz$ B00$ 398108358 424148967
93 BzABw:z$ B0ABO04$ 401786973 401819778

Lemma 2. Given p-string T, prevl = prev(T), and prevT[i + 1l..n] =
prev(T[i + 1...n]) where Ti] is a constant, terminal, or the only occurrence
of parameter T[i] in Tli...n], then prevT[i..n] = prev(Ti..n]) if prevT[i] =
prev(T[i]).

Lemma 3. Given p-string T, prevT = prev(T), forwT = forw(T), and
prevI[i + 1..n] = prev(T[i + 1..n]) where T[i] € II occurs multiple times
in Tli...n], then prevTi..n] = prev(T[i..n]) after 1) identifying the current
parameter as the first occurrence of T[i] (prevT[i] = 0) and 2) modifying the
future occurrence of T[i] (prevT[i + forwT[i]] = forwT][i]).

We refer to a code generated by pKR for the p-suffix i as g;. The transitions needed
to compute a p-suffix ¢ from a p-suffix (i + 1) formalized in Lemmas 2l and Bl are
subsequently the requirements to compute code ¢; from g¢; 1. These transitions
are consolidated into dpkr and shown to efficiently generate pK R codes.

Definition 9. Function 0ys: Let 3 = forwT[i], A = (map(5) — map(0)) x
R"A=1 and B = qi+1+map(p1r;v(T[i]))Rn. We define the function dpxr(i, git1) as
follows to return the code q; via a transition of the provided code q;+1 with the
newly added symbol at position 1.

S (iaia) — B, if in(prevT[i], ¥ U{$}) V (in(prevT[i], Z) A forwT[i] > n)
pea(ls Gi1) = B+ A, if in(prevT[i],Z) A forwT[i] <n

Theorem 1. Given a p-string T of length n and precalculated variables prevT
and forwT, function dpxp requires O(n) time to generate fingerprints for all
p-suffizes in T.

Proof. The fingerprints are generated successively by the function calls ¢, =
Sprr(1,0), -1 = Spxr(n — 1,4n),..,q1 = Spxr(1, g2). Either case of function dpks
may be computed in O(1) time and is called sequentially a total of n times, once
for each of the n p-suffixes. The overall time is O(n). O

We introduce p suffix sort pKRin Algorithm 1 to sort p-suffixes via the sorting
of fingerprints through the transition function in Definition[d Theorem [2 proves
the time complexity of Algorithm 1.

p-Suffix Sorting as Arithmetic Coding 51

Theorem 2. Given a p-string T of length n, function p suffix sort pKR sorts
all the n p-suffizes of T in O(n) time.

Proof. We assume that the fingerprints for each p-suffix are practically repre-
sented by an integer code and each use of the code is accomplished in constant
time. Thus, Section A) of p suffix sort pKR follows from Theorem [to re-
quire O(n) time. The radix sorting required in section B) requires O(cn), where
¢ is a constant. The loop in section C) clearly requires O(n) time. Overall,
p suffix sort pKR requires O(n) time. O

The idea used in Algorithm p suffix sort pKR is novel, but assumes that the
pK R fingerprints fit into practical integer representations. This assumption is
primarily a limitation inherent to fingerprinting. It is well documented that
Karp-Rabin integral fingerprints can be large and exceed the extremes of an
integer with large strings and vast alphabets. The modulo operation discussed
in [IOUITII7] is used to handle this problem. However, the modulo operation will
not preserve the lexicographical ordering between fingerprints and creates a new
problem with respect to suffix sorting. Even if we use fingerprints to encode
prefixes of p-suffixes, the codes can still be quite large with collisions. We extend
our idea using arithmetic coding to address these limitations.

Algorithm 1. p-suffix sorting with fingerprints

1 struct pcode { int i, long long int pKR }

2 int[] p suffix sort pKR(char T[]) {

3 pcode code[n], long long int pKR=0

4 int pSA[n], k

5 // A) — generate the individual prev fingerprints
6 for k=n to 1 {

7 pKRq;pKR(k,pKR)

8 code [k]=(k,pKR)

9 }

10 // B) — sort p—suffizes

11 radix sort the pKR attribute of each pair in code
12 // C) — retain p—suffiz array

13 for k=1 to n

14 pSA[k]=code[k]. i

15 return pSA

16}

5 p-Suffix Sorting via Arithmetic Coding

Arithmetic coding compresses a string by recursively dividing up a real number
line into intervals that account for the cumulative distribution function (cdf),
which describes the probability space of each symbol. The interval for an arith-
metic code AC is (lo, hi), where lo and hi are the low and high boundaries,

52 R. Beal and D. Adjeroh

respectively. Any consistent choice in this region, say tag(s) = S"”"z"s'lo, repre-

sents the arithmetic code and preserves the lexicographical ordering of strings.
Arithmetic coding is further described in [I8I19]. Recently, Adjeroh and Nan [20]
used a novel application of Shannon-Fano-Elias codes from information theory to
address the traditional suffix sorting problem. In the work, they generate arith-
metic codes for m-blocks, or m-length prefixes of the suffixes, to maintain the
ordering of m symbols. They show how to efficiently transition one AC m-block
code at suffix i to construct the m-block AC at suffix (i + 1) by removing the
symbol at i and appending the symbol at (i +m). The transitioning scheme is
illustrated in Fig. [l In terms of suffix sorting with arithmetic codes in [20], the
suffixes are recursively partitioned and the generated m-block arithmetic codes
are exploited to induce the ordering of the partitions in linear time. Extending
the suffix sorting via arithmetic coding algorithm given in [20] to the p-suffix
sorting problem is not straightforward because of the dynamic relationship be-
tween p-suffixes, identified in Lemma [T

Elw
nlu

Al
.

Fig. 1. Transitioning the AC m-block code from a cab — cab — cab d

Given an n-length p-string 7', we can create a parameterized arithmetic code
pAC via function pAC from Definition [I{0] for the m-blocks, or m-length prefixes,
of the n p-suffixes of T'. The distribution of symbols will impact the size of the
intervals and hence the tag, but this does not change the order of the generated
arithmetic codes. Thus, without loss of generality, we assume that each symbol
x € (¥ UZU{$}) in the alphabet of a prev encoding to be equally probable,
where p represents the probability of a symbol and the array cdf contains the
values of the uniform cdf with respect to the neighboring lexicographical alpha-
bet symbols. The following definition modifies the traditional AC algorithm to
create an m-block arithmetic code for a p-suffix at position ¢ in T

Definition 10. Parameterized Arithmetic Coding (pAC) Function: For
an n-length p-string T, the function pAC in Algorithm 2 will generate an arith-
metic code interval for the m-block of the p-suffix starting at position i.

Table [2] shows the pAC' codes for m-blocks of m = 2,3,n of p-string T =
AwBzABwz$. We notice that a “collision” occurs for two pAC codes using

p-Suffix Sorting as Arithmetic Coding 53

Algorithm 2. Generating pAC for an m-length prefix of p-suffix ¢

struct AC { long double lo, long double hi }
AC pAC(int i, int m) {
int end=min{i+m—1,n}, k
char prevT;[]=prev(T[i...end]), AC new=(0,0), old=(0,1)
for k=i to end {
new . hi=old .lo+(old . hi—old .lo) cdf [map(prevT; [k—i+1])]
new . lo=old .lo+(old . hi—old.lo) cdf [map(prevT; [k—i+1])—1]
old=new
}return new

S © 00O Uk WN -

Table 2. Lexicographical ordering of p-suffixes with pAC, using T'= AwBzABwz$

t pSA T[pSA[i]..n] prev(T[pSA[i...n]) tag(pAC(pSA[i], m))
m=2 m=3 m=n

19 $ $ 0.055556 0.055556 0.055556
28 z$ 0% 0.117284 0.117284 0.117284
37 wz$ 00% 0.129630 0.124143 0.124143
44 zABwz$ 0AB04$ 0.203704 0.209191 0.208743
52 wBzABwz$ 0B0AB54$ 0.216049 0.211934 0.212459
61 AwBzABwz$ AOBOAB54$ 0.796296 0.801783 0.801384
75 ABwz$ AB00$ 0.882716 0.878601 0.878076
86 Bwz$ B00$ 0.907407 0.903292 0.902683
93 BzABwzS$ B0ABO04$ 0.907407 0.911523 0.912083

m = 2 since the m-blocks are equivalent. Even though the pAC' codes distinctly
sort the n p-suffixes of T" when m approaches n, we highlight that the practical
limitation is arithmetic precision. See [I820] for handling this problem.

In order to use the m-block codes, we must generate them efficiently. We
denote the m-block arithmetic code at p-suffix ¢ by pAC;. The idea is to first
use function pAC to compute pAC; and use this code to generate the remaining
(n — 1) codes, namely pACsy, pACs, ..., and pAC,,. Tteratively, we will need to
adjust the arithmetic codes to 1) remove the old symbol and 2) add the new
symbol. These cases are described below. The lemmas are similar in nature to
Lemmas [2] and [} and thus, are omitted for space.

Case 1: Removing a symbol s from an arithmetic code m-block requires us to
simply delete s when s € Y or s € II and does not occur in the m-block. When
s € II and occurs later in the m-block, the code must accommodate for both
the removed occurrence and the future occurrence of s.

Definition 11. Remove Symbol 4,,. Transition: Given the AC code A at
m-block i with i+m —1 < n, d,5c supplies the transition to remove the symbol at

54 R. Beal and D. Adjeroh

position i and provide the new code A of the (m-1)-block at p-suffiz (i +1). Let
B = forwT[i], j =i+ f, e =min{i +m —1,n}, X = (map(8) — map(0)) x p”*',
and ¢ = cdf [map(prev(T[i])) — 1].
(A'l;’_c, A'};’:_C>,if (in(prevT[i],Z) N j > e)V
Opac(is A) = in(prevT|[i], ¥ U {$})
(A'l";)"c7 A'h’;)"c),if in(prevT[i|,Z) Nj <e
Case 2: Adding (i.e. appending) symbol s to an arithmetic code m-block requires
us to simply append the code when s € X' or s € II and does not occur in the
m-block. When s € II and occurs previously in the m-block, the code must
account for the new occurrence in terms of the previous occurrence of s.

Definition 12. Add Symbol 5;‘0 Transition: Given the AC code A at (m-
1)-block (i—m+1) > 1, 6;30 supplies the transition to add the symbol at position
i and provide the new code A of the m-block at p-suffic (i — m + 1). Let b =
max{1l,i—m+1}, k = i—prevTi], A = A.hi—A.lo, d = Axcdf [map(prev(T[i]))],
f = A x cdfmap(prev(T[i])) — 1], v = A X cdf[map(prevT|i])], and w = A x
cdf ap(prevT(i]) — 1))
(Aldo+ f, Alo+ d),if (in(prevT[i],Z) N k < b)V
Onc(i, A) = in(prevTli], ¥ U {$})
(Ado+w, Alo+ v),if in(prevT[i],Z) Nk > b

With the assistance of Definitions [[1] and [[2] we can efficiently generate the
m-block codes for all n p-suffixes of T. Consider the p-string T = zwzABAS,
Y ={A, B}, II ={w,z}, and m = 4, we successively generate the m-block codes

Song Tphc
in the following fashion: 002 A = 00A & 00A B — ---

Theorem 3. Given a p-string T of length n and precalculated variables prevT
and forwT, the pAC' codes for all the m-length prefizes of the p-suffizes require
O(n) time to generate.

Proof. Generating the first m-block code pAC; via pAC, = pAC(1,m) will re-
quire O(m) time. Iteratively, the neighboring pAC codes will be used to cre-
ate the successive p-suffix codes. The first extension of code pAC; to create
pACy will require the removal of prevT[1] via a call to pACs = d,5c(1,pACY),
which is O(1) work, and the addition of symbol prevT’[2 +m — 1] via a call to
pACsy = 5P+AC(2 + m — 1,pAC,), which also demands O(1) work. This process
requiring two O(1) steps is needed for the remaining (n — 1) m-block p-suffixes
of T. The resulting time is O(m + n). Since m < n, the theorem holds. O

The efficient preprocessing from Theorem [Blleads to our main result: an average
case linear time algorithm for direct p-suffix sorting for non-binary parameter
alphabets. We discuss the intricacies of worst case p-suffix array construction in
the conclusions as an area for future work.

p-Suffix Sorting as Arithmetic Coding 55

Theorem 4. Given a p-string T of length n, p-suffiz-sorting of T can be ac-
complished in O(n) time on average via parameterized arithmetic coding.

Proof. We can construct prev(T) in O(n) time given an indexed alphabet and
an O(|II|) auxiliary data structure. The lexicographical ordering of the m-block
pAC codes follow from the notion of arithmetic coding and Definition [[l From
Theorem [B] we can create all the m-block pAC codes in O(n) time. Similar
o [20], the individual floating-point codes may be converted to integer codes

d; in the range [0,¢(n — 1)] by d; = {c(n - 1)t:ga(i(zéci);iig;;’(‘zgg”",))J, where

the constant ¢ > 1 is chosen to best separate the d; and values pAC,,;, and
PAC 4. correspond to the minimum and maximum pAC' codes, respectively.
From [21I22], we know that an n-length general string has a max longest com-
mon prefix of O(logw‘ n). Let zoy be the string concatenation of and y. Then,
Q = prev(T[l..n—1])$oprev(T[2...n—1])$o...oprev(T[n—2...n—1])o contains
each individual p-suffix of T'. Notice that @ is of length |Q| = ”("2+1) € O(n?)
and since all p-suffixes are clearly represented, the symbols of) may be mapped
to a traditional string alphabet, allowing us to use the contribution of [2T22] to
obtain the length of the maximum longest common prefix for an average string,
which is of the same order O(logn?) € O(logn). Then by choosing m = O(log n)
and generating the m-block pAC codes, only the first O(n) radix sort of the d;
codes is required to differentiate the p-suffixes of an average case string, demand-
ing only O(n) operations. O

6 Conclusion and Discussion

Approaching the direct p-suffix sorting problem by representing p-suffixes with
fingerprints and arithmetic codes provides new mechanisms to handle the chal-
lenges of the p-string. We proposed a theoretical algorithm using fingerprints to
p-suffix sort an n-length p-string in O(n) time, with n and the alphabet size con-
strained in practice. Arithmetic codes were then used to propose an algorithm to
p-suffix sort p-strings in linear time on average. In terms of direct suffix sorting,
the time/space tradeoff varies with algorithms. For instance, the algorithm in
[23] accomplishes in-place suffix sorting in super-linear time, using only space
for the suffix array and text. On a practical note, our algorithms use space and
computation to achieve linear time direct construction of the p-suffix array, im-
proving on the time required by the approaches introduced in [7]. With respect
to space, our algorithms use an array for the prev encoding, which replaces the
text, in addition to an array for pairs of elements representing the numeric codes
and suffix indices. A future reseach problem is to address the worst case per-
formance by identifying the intricate relationship between the dynamic nature
of p-suffix partitions with induced sorting, the fundamental mechanism in worst
case linear time suffix sorting of traditional strings [9I20/2425].

56

R. Beal and D. Adjeroh

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Baker, B.: A theory of parameterized pattern matching: Algorithms and applica-
tions. In: STOC 1993, pp. 71-80. ACM, New York (1993)

Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1-19 (2004)

Zeidman, B.: Software v. software. IEEE Spectr. 47, 32-53 (2010)

Idury, R., Schéffer, A.: Multiple matching of parameterized patterns. Theor. Com-
put. Sci. 154, 203-224 (1996)

Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49, 111-115 (1994)

Baker, B.: Parameterized pattern matching by Boyer-Moore-type algorithms. In:
SODA 1995, pp. 541-550. ACM, Philadelphia (1995)

Tomohiro, 1., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight Param-
eterized Suffix Array Construction. In: Fiala, J., Kratochvil, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 312-323. Springer, Heidelberg (2009)
Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: PSC 2008, Czech Republic, pp. 84-94 (2008)
Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays and Pattern Matching. Springer, New York (2008)
Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

Smyth, W.: Computing Patterns in Strings. Pearson, New York (2003)

Kosaraju, S.: Faster algorithms for the construction of parameterized suffix trees.
In: FOCS 1995, pp. 631-637. ACM, Washington, DC (1995)

Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.
In: STOC 2000, pp. 407-415. ACM, New York (2000)

Lee, T., Na, J.C., Park, K.: On-Line Construction of Parameterized Suffix Trees.
In: Karlgren, J., Tarhio, J., Hyyro, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
31-38. Springer, Heidelberg (2009)

Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22, 935-948 (1993)

Beal, R.: Parameterized Strings: Algorithms and Data Structures. MS Thesis. West
Virginia University (2011)

Karp, R., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev. 31, 249-260 (1987)

Moffat, A., Neal, R., Witten, I.: Arithmetic coding revisited. ACM Trans. Inf.
Syst. 16, 256-294 (1995)

Cover, T., Thomas, J.: Elements of Information Theory. Wiley (1991)

Adjeroh, D., Nan, F.: Suffix sorting via Shannon-Fano-Elias codes. Algorithms 3(2),
145-167 (2010)

Karlin, S., Ghandour, G., et al.: New approaches for computer analysis of nucleic
acid sequences. PNAS 80(18), 5660-5664 (1983)

Devroye, L., Szpankowski, W., Rais, B.: A note on the height of suffix trees. STAM
J. Comput. 21, 48-53 (1992)

Franceschini, G., Muthukrishnan, S.: In-Place Suffix Sorting. In: Arge, L., Cachin,
C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 533-545.
Springer, Heidelberg (2007)

Karkkainen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM. 53, 918-936 (2006)

Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction
algorithm. Algorithmca 40, 33-50 (2004)

Periods in Partial Words: An Algorithm*

Francine Blanchet-Sadri', Travis Mandel?, and Gautam Sisodia®

! Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402-6170, USA
blanchet@uncg.edu
2 Department of Mathematics, The University of Texas at Austin,
1 University Station, C1200, Austin, TX 78712, USA
3 Department of Mathematics, University of Washington,
P.O. Box 354350, Seattle, WA 98195-4350, USA

Abstract. Partial words are finite sequences over a finite alphabet that
may contain some holes. A variant of the celebrated Fine-Wilf theorem
shows the existence of a bound L = L(h,p,q) such that if a partial
word of length at least L with h holes has periods p and ¢, then it has
period ged(p, q). In this paper, we associate a graph with each p- and
g-periodic word, and study two types of vertex connectivity on such a
graph: modified degree connectivity and r-set connectivity where r =
gmod p. As a result, we give an algorithm for computing L(h,p,q) in
the general case.

1 Introduction

The problem of computing periods in words, or finite sequences of symbols from
a finite alphabet, has important applications in several areas including data com-
pression, coding, computational biology, string searching and pattern matching
algorithms. Repeated patterns and related phenomena in words have played
over the years a central role in the development of combinatorics on words [I],
and have been highly valuable tools for the design and analysis of algorithms.
In many practical applications, such as DNA sequence analysis, repetitions ad-
mit a certain variation between copies of the repeated pattern because of errors
due to mutation, experiments, etc. Approximate repeated patterns, or repeti-
tions where errors are allowed, are playing a central role in different variants of
string searching and pattern matching problems [2]. Partial words, or finite se-
quences that may contain some holes, have acquired importance in this context.
A (strong) period of a partial word u over an alphabet A is a positive integer p
such that u(7) = u(j) whenever u(i),u(j) € A and ¢ = j mod p (in such a case,
we call u p-periodic). In other words, p is a period of w if for all positions ¢ and
j congruent modulo p, the letters in these positions are the same or at least one
of these positions is a hole.

* This material is based upon work supported by the National Science Foundation
under Grant No. DMS-0452020.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 57-0] 2011.
© Springer-Verlag Berlin Heidelberg 2011

58 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

There are many fundamental results on periods of words. Among them is the
well-known periodicity result of Fine and Wilf [3], which determines how long a
p- and g-periodic word needs to be in order to also be ged(p, ¢)-periodic. More
precisely, any word having two periods p, ¢ and length at least p + ¢ — ged(p, q)
has also ged(p, q) as a period. Moreover, the length p + ¢ — ged(p, ¢) is optimal
since counterexamples can be provided for shorter lengths, that is, there exists
an optimal word of length p+ ¢ — ged(p, ¢) — 1 having p and ¢ as periods but not
having ged(p, ¢) as period [1]. Extensions of Fine and Wilf’s result to more than
two periods have been given. For instance, in [4], Constantinescu and Ilie give
an extension for an arbitrary number of periods and prove that their lengths are
optimal.

Fine and Wilf’s result has been generalized to partial words [BI6I7ISIOITOITT].
Some of these papers are concerned with weak periodicity, a notion not discussed
in this paper. The papers that are concerned with strong periodicity refer to the
basic fact, proved by Shur and Konovalova (Gamzova) in [I0], that for positive
integers h, p and ¢, there exists a positive integer [such that a partial word u
with A holes, two periods p and ¢, and length at least { has period ged(p, q).
The smallest such integer is called the optimal length and it will be denoted
by L(h,p,q). They gave a closed formula for the case where h = 2 (the cases
h =0 or h = 1 are implied by the results in [3]5]), while in [9], they gave a
formula in the case where p = 2 as well as an optimal asymptotic bound for
L(h,p,q) in the case where h is “large.” In [7], Blanchet-Sadri et al. gave closed
formulas for the optimal lengths when ¢ is “large,” whose proofs are based on
connectivity in the so-called (p, ¢)-periodic graphs. In this paper, we study two
types of vertex connectivity in these graphs: the modified degree connectivity and
r-set connectivity where r = ¢ mod p. Although the graph-theoretical approach
is not completely new, the paper gives insights into periodicity in partial words
and provides an algorithm for determining L(h, p, q) in all cases.

We end this section by reviewing basic concepts on partial words. Fixing a
nonempty finite set of letters or an alphabet A, finite sequences of letters from
A are called (full) words over A. The number of letters in a word u, or length
of u, is denoted by |u|. The unique word of length 0, denoted by ¢, is called the
empty word. The set of all words over A of finite length is denoted by A*. A
partial word u of length n over A is a partial function u : {0,...,n — 1} — A.
For 0 <i < n, if u(4) is defined, then i belongs to the domain of u, denoted by
i € D(u), otherwise ¢ belongs to the set of holes of u, denoted by i € H(u). For
convenience, we will refer to a partial word over A as a word over the enlarged
alphabet A, = AU{¢}, where ¢ & A represents a “do not know” symbol or hole.

2 (p, q)-Periodic Graphs

In this section, we discuss the fundamental property of periodicity, the goal of
our paper which is to describe an algorithm to compute L(h,p,q) in all cases,
and some initial results. We can restrict our attention to the case where p and ¢
are coprime, since it is well-known that the general case can be reduced to the
coprime case (see, for example, [5l9]). Also, we assume without loss of generality

Periods in Partial Words: An Algorithm 59

that 1 < p < ¢. Fine and Wilf show that L(0,p,q) = p+ ¢ — ged(p, q) [3], Berstel
and Boasson that L(1,p,q) = p+q [B], and Shur and Konovalova prove L(2, p, q)
to be 2p + ¢ — ged(p, ¢) [10]. Other results include the following.

Theorem 1 ([7)9]). For 0 <m < q, L(ng+m,2,q) = 2n+ 1)g+m+ 1.

Theorem 2 ([7]). If ¢ > z(p, h) where x(p,h) is p(g) if h is even and p(h'gl)
if h is odd, then
L(h)_ p(h;2)+q_g6d(p>Q)7 th is even;
PO priy 4 g, if s odd,

The problem of finding L(h, p, q) is equivalent to a problem involving the vertex
connectivity of certain graphs, as described in [7], which we now discuss. We
can represent the periodic structure of a full word with two periods through a
graph associated with the word. The (p, q)-periodic graph of size [is the graph
G = (V,E) where V = {0,1,...,l — 1} and for ¢,5 € V, the pair {i,j} € E if
and only if ¢ = j mod p or i = j mod q. The degree of a vertex i € V', denoted
d(7), is the number of vertices connected to i, that is,

d(i) = V—l—imodpJ N V—l—imoqu B V—l—imodqu.
p q bq

The first term gives the number of p-connections, the second term the number
of g-connections, and the third term the number of pg-connections.

Fig. 1. The (3,4)-periodic graph of size 11. The bold connections are g-edges, while
the lighter ones are p-edges.

The (p, g)-periodic graph of size | can be thought to represent a full word of
length [with periods p and ¢, with the vertices corresponding to positions of the

60 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

word, and the edges corresponding to the equalities between letters of the word
forced by one of the periods. For example, we see that if the (p, ¢)-periodic graph
of size [is connected, then a word of length [with periods p and ¢ is 1-periodic,
because there exists a path between every pair of vertices, thus the word is over
a singleton alphabet. A graph has vertex connectivity & if it can be disconnected
with a suitable choice of k vertex removals, but cannot be disconnected by any
choice of kK — 1 vertex removals.

Note that a hole in a partial word w of length [with periods p and ¢ cor-
responds to the removal of the associated vertex from the (p, ¢)-periodic graph
of size I. Thus our search for L(h,p,q) (when ged(p,q) = 1) can be restated in
terms of vertex connectivity.

Lemma 1. The length L(h,p,q) is the smallest | such that the (p,q)-periodic
graph of size | has vertex connectivity at least h + 1.

If G = (V, E) is the (p, q)-periodic graph of size I, then the p-class of vertex i
is {j € V| j=imodp}. A p-connection (or p-edge) is an edge {i,j} € E such
that ¢ = j mod p. If an edge {i,j} is a p-connection, then i and j are considered
p-connected. Similar statements hold for g-classes, g-connections and pg-classes,
pg-connections.

Throughout the paper, we will find it useful to group together p-classes whose
smallest elements are congruent modulo r where r = ¢ mod p. We do so by

introducing the r-set of vertex i, where i € {0,1,...,r — 1}, which is the set
7=
U p-class of vertex j = U p-class of vertex jr + i.
0<j<p and j=i mod r 7=0

3 Connectivity in (p, q)-Periodic Graphs

Our algorithm to calculate L(h,p,q) is based on (p, q)-periodic graphs. In this
section, we discuss modified degree and ¢ mod p-set connectivity in these graphs.
Using Theorems [I] and] we can restrict our discussion to the case where p # 2
and q < pLh'QHJ. Let G = (V, E) be a graph. A disconnection of G is a partition
{Vi,Va, H} of V (that is, V. = V1 UH UV, and V4, Va, H are mutually disjoint),
such that neither V; nor Vs is empty, and for v; € Vi, vy € Vi, {v1,v2} ¢ E.
An optimal disconnection is a disconnection such that the cardinality of H is
K, where K is the vertex connectivity of G. The set H represents the vertices
removed in a disconnection, while the sets V; and V5 represent the vertices
disconnected from each other in a disconnection.

If G is the (p, q)-periodic graph of size ! for some p, ¢ and I and {V;, V5, H}
is an optimal disconnection of G, note that we cannot disconnect G within a
p-class since p-classes form complete subgraphs. In other words, a p-class cannot
both contain elements in Vi and V5, that is, for a p-class C, either C C V;UH or
C C Vo U H. We say that a disconnection {Vi, V2, H} of G disconnects a union
of p-classes Pif Vi C Pand PC ViUH, or Vo C P and P C V5 U H. Similarly,
a g-class cannot both contain elements in V7 and V5.

Periods in Partial Words: An Algorithm 61

Fig. 2. A (p, q)-periodic graph where the vertical lines represent p-classes, while the
diagonal lines represent g-classes. The g-edges wrap around at the dashed lines. All
vertices in vertical and diagonal lines are connected to each other. In other words, lines
represent several “normal” edges. In the graph, p-classes are grouped into two r-sets.

Suppose we want to disconnect a single p-class C' from G. For a ¢-class C’
of G, all of the vertices of C” within C' or all of the vertices of C’ outside of C
must be removed. For [> 2q, a vertex ¢ € C has g-connections with vertices
outside of C'. Each of these g-connections must be broken in order to disconnect
C from G. The most efficient way to do so is to remove i itself, since i may have
more than one g-connection. However, if we remove all of C from G, we have not
formed a disconnection (V4 or V3 is empty). Thus, we do not remove the vertex
in C' contained in the smallest g-class in order to minimize the number of vertex
removals required to disconnect C. So, if each vertex i € C' is g-connected to
some vertex j outside of C' such that no other vertex in C' is g-connected to j (no
vertex in C is g-connected to), then the most efficient way of disconnecting C
from G is to disconnect a vertex of lowest degree in C. As long as | < pq, any two
distinct vertices within a p-class belong to different g-classes. In this case, the
most efficient way to disconnect a single p-class from G is to disconnect a single
vertex of lowest degree in G (this is called a minimum degree disconnection).

When [> pgq, vertices within the same p-class may belong to the same g-class
(that is to say, vertices may be both p- and g-connected, or pg-connected). For a
vertex ¢ in V', vertices that are pg-connected to 7 share all other connections with
1, and thus should not be counted in the number of vertices required to disconnect
i as they are disconnected when i is disconnected. Thus, we introduce the idea
of “modified” degree.

Let G = (V,E) be the (p,q)-periodic graph of size I, and let ¢ € V. The
modified degree of i, denoted d*(¢), is the number of vertices that are either p-
or g-connected to 7, but not pg-connected to i, that is,

4 (i) = V—l—imodpJ N V—l—imoqu Ly V—l—z’modqu W
p q pq

We subtract 2 times the number of pg-connections: once because we double

counted them, and again because vertices that are pg-connected are connected to

the same vertices, so disconnecting one vertex will also disconnect all the vertices

pg-connected to it. Note that when | < pg, d(i) = d* (7). When [> pg, minimum

62 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

degree disconnections are replaced by minimum modified degree disconnections.
For a (p, g)-periodic graph G, we define the modified degree connectivity of G,
denoted k4, to be the smallest number of vertex removals required to make a
minimum modified degree disconnection, and denote the minimum size of G such
that kg = h+ 1 by la(h,p, q).

Usually, disconnecting more than one p-class takes more holes than individ-
ually disconnecting any one p-class, because in general, a set of p-classes has
more connections with the rest of the graph than any single p-class. However,
disconnecting entire r-sets may prove to be efficient when [is small, as the graph
“bottlenecks” between r-sets (that is, fewer g-classes span r-sets than connect
p-classes within an r-set). For a (p, ¢)-periodic graph G, we define the r-set con-
nectivity of G, denoted k,, to be the smallest number of vertex removals required
to make an r-set disconnection, and denote the minimum size of G such that
kr = h+1Dby l.(h,p, q). Thus, if G is the (p, ¢)-periodic graph of size [for [> 2g,
then either a modified degree disconnection or an r-set disconnection will give
an optimal disconnection of G.

Note that the sizes at which our graphs change connectivity are the optimal
lengths in question. If the (p, g)-periodic graph of size [has vertex connectivity
x while the (p, ¢)-periodic graph of size [4+ 1 has vertex connectivity x + 1, then
L(k,p,q) =1+ 1. Similarly, if the (p, g)-periodic graph of size [has modified de-
gree connectivity kq (respectively, r-set connectivity k,.) while the (p, ¢)-periodic
graph of size | + 1 has modified degree connectivity k4 + 1 (respectively, r-set
connectivity x, + 1), then l4(ka,p,q) =1+ 1 (respectively, I, (k,,p,q) =1+ 1).

4 r-Set Connectivity

Cousider the (p, g)-periodic graph of size | where ¢ = mp + r with 0 < r < p.
Set I = kp + 1’ where 0 < v’ < p. Figure 3 depicts a case in which ' = 0. We
can see here that there are k£ rows in each r-set. In the columns on either side of
any 7-set we see that m + 1 vertices do not have g-connections to the adjacent
r-set, so exactly § = k — (m 4 1) vertices are g-connected to the adjacent r-
set. Consider two adjacent r-sets. Looking at the g-classes that connect these
r-sets, we can see that the bottom m of these g-classes have 1 vertex in the left
r-set. The next m g-classes have 2 vertices in the left r-set, and so on for the
first k — (m + 1) g-classes. The left side of the right r-set is anti-symmetric to
this: the top m g-classes each have 1 vertex in the right r-set, and the next m
g-classes each have 2 vertices and so on working down. When breaking these
g-connections it is best to remove all the vertices from the smaller side of the
g-class. Thus, for the bottom half of the g-classes we remove vertices from the
left side, and for the top half we remove the same number of vertices from
the right side. If 8 = v(2m) + ¢ for 0 < ¢ < 2m, then we see that the number
of vertices we must remove to separate these adjacent r-sets is

y(v+1)

-
2m2i+¢(’y+1):2m 5

i=1

+o(y+1).

Periods in Partial Words: An Algorithm 63

hY
-
Al

=

SSSSSS
\\C\i\(\
D

®<o
w
P

e e e R)

kY

[
o0
g
o
=

Fig. 3. An r-set disconnection for p = 16, ¢ = 35 = 2p + 3, and | = 9p (this length is
not optimal). Here we are disconnecting the r-set of vertex 2 from the other r-sets.

Since an r-set disconnection requires separating adjacent r-sets twice, we have

Ky

2

Since 7 is an integer and ¢ < 2m, we can find v in terms of &, and m by solving
for when ¢ is equal to zero and then taking the floor. Using the quadratic formula,

N \‘\/m2 + 2mK, — mJ

=my(y+1)+¢o(y+1) = (my+¢)(y +1).

2m

We solve for ¢ and find ¢ = 2(5_’;1)

k = 2my + ¢ + m + 1. The length is never optimal when ' = 0 because k.
only increases for nonzero values of 7/, as described below. We therefore want to
select v and ¢ such that they give us a value of k, that is strictly less than h+1.
We will make room for the remaining vertex removals by adding " vertices.
Now we need to calculate ' by determining at exactly which sizes the r-
set connectivity actually increases. Starting with size [= kp, if we increase
the size by r then the number of vertex removals required to break any r-set
connection increases by 1 because between each connected pair of r-sets there
is one more g-connection. Thus, the r-set connectivity increases by 2. Notice
that every connected pair of r-sets requires the same number of vertex removals
to separate them. Thus, if we remove the last vertex we added, then the r-set
connectivity will have only increased by 1 from the previous size. After decreasing
the size by one more vertex the r-set connectivity will be back down to where

— m~. From the definition of g we have

64 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

it was for [= kp. The same thing happens if we add another r vertices and
continue until we reach the r-set connectivity of the graph of size | = (k + 1)p.
If we have calculated k for a given p, ¢ and h, then define ¢ to be the difference
between the r-set connectivity that we are looking for and the r-set connectivity
at length | = kp. Then 6 = h + 1 — 2(my + ¢)(y + 1), and we can calculate
r = L‘S;IJ r — 6 mod 2. We arrive at the following theorem.

Theorem 3. Let ¢ = mp + r where 0 < r < p, and let B = 2m~y + ¢, where

2 —
v 1is the greatest integer strictly less than Vm +272';(1h+1) " and ¢ is the greatest

integer strictly less than 2@111) —my. Define d = h+1—2(my+¢)(y+1). Then

0+1

5 Jr—émon.

h@m&%ﬂﬁ+m+1m+{

Using this theorem we have calculated the lengths in Table[Il By comparing the

Table 1. Optimal lengths for r-set disconnections. The empty entries of the table are
h+1

where ¢ > p L 5 J, so r-set disconnections are not optimal (see Theorem [2]).
h=3 h=4 h=5 h=6 h=T7
p<qg<2p 2p+q3p+q—13p+qg2p+2¢—12p+2¢q
2p<q<3p 3p+q dp+q—1 4p+gq
3p<q<dp dp +gq

lengths in Table [to the lengths that can be calculated using modified degree,
r-set disconnections are only more efficient when A = 4 and ¢ < 321” . As we
increase the length beyond the values shown in the table, experimental evidence
suggests that r-set disconnections will continue to become less efficient because

r-sets now gain g-connections faster than any pg-class gains connections.

5 Modified Degree Connectivity

To count the number of vertices we must remove to disconnect vertex i and all
the vertices pg-connected to it, we use the formula in () for d*(z).

Suppose | = 7pq + w for nonnegative integers 7 and w < pq. If w = 0 then
every vertex has the same modified degree: d* (i) = (r¢g—1)+(7p—1)—2(7—1) =
7(p+ ¢ — 2). If w > 0 then define G’ to be the subgraph of the (p, q)-periodic
graph G of size [that contains only the vertices in the last w positions. Each of
the last w vertices has 7(p + ¢ — 2) vertices in the first 7pg positions to which it
is either p-connected or g-connected but not pg-connected. Thus, the modified
degree of a vertex ¢ in G’ is equal to 7(p + ¢ — 2) + d¢-(3), where dg- (%) is the
degree of 7 in G'. In other words, we can find the degree of the vertex ¢ within
the subgraph G’, and add this degree to 7(p + ¢ — 2) to get its modified degree
in G. Thus, we have

d*(i) = 7(p+ ¢ —2) +dg(d). (2)

Periods in Partial Words: An Algorithm 65

The positions of these last w vertices modulo pg are all less than w = [mod pgq,
and any two positions in the same pg-class have the same modified degree. Thus
we know that one of them will have the lowest modified degree of the graph.

\Oi\@

SRR

o N N e T N N N

K=}

DX

R S

[=]
—
L&

O\hm
G\m
o

Fig. 4. The (4, 5)-periodic graph of size 47. This figure depicts an optimal disconnection
where the dashed vertices are in H, the bold vertices are in V2, and the rest of the
vertices are in Vi. Notice that the vertices in V> have the minimal modified degree.
They are all pg-connected to each other, and are p- or g-connected to the vertices in H.
Increasing the size by 1 gives this pg-class one more p-connection, thereby increasing
the connectivity of the graph by 1.

We want d*(¢) = h + 1. Since 7 is an integer and d,, (i) < p+ ¢ — 2, we can

use the division algorithm and Equation () to get 7 = {pi;riQJ and d§, (i) =
(h+1) mod (p + g — 2). Recall that l4(h, p,) is the smallest length at which the
minimum modified degree is h+1. In other words, l4(h, p, ¢) is the optimal length
L(h,p,q) if we restrict ourselves to minimum modified degree disconnections.
Note that we consider the degree of the empty graph to be zero. We now arrive

at the following theorem.

Theorem 4. The equality l4(h,p,q) = Tpq + w holds, where 0 < w < pq. More

specifically, T = {pf_;ﬂzJ and

0, otherwise.

66 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

We have now reduced cases where l4(h,p, q) > pq to those where l4(h,p, q) < pg,

so now we will assume l4(h,p, q) < pq. A vertex i in a graph of size [has U}J -1

p-connections if ¢ > [mod p and U}J p-connections if ¢ < [mod p. Similarly, 4

l

has LJJ — 1 g-connections if ¢ > [mod ¢ and MJ g-connections if ¢ < [mod gq.

We add together the number of p-connections and the number of g-connections

to find that the degree of 7 is U}J plus LZJJ minus either 0,1 or 2 depending on
the value of 7. We can assume that [> p because there will never be an optimal
length with 0 < l4(h,p,q) mod pg < p, since there are no p- or ¢- connections
within this range. Thus we can assume that the vertex in the p—1 position exists,
and we know that the p—1 position always satisfies the condition p—1 > [mod p.

This allows us to make the following claim.

Theorem 5. Define the function

2, if there exists i € [0..w — 1] such that
flw,p,q) = imod p > wmod p and i mod ¢ > w mod ¢;
1, otherwise.

Then the (p, q)-periodic graph of size w has a modified degree connectivity kq =

HEARECYX}

From this theorem we can see that k4 increases whenever f(w, p, ¢) changes from
2 to 1, or whenever w increases to a multiple of either p or ¢ while f(w, p, q) stays
constant.

Remark 1. If 14(h,p,q) = w and f(w,p,q) = 2, then w = n1p or w = naq for
some positive integers n, and no.

Since adding a new vertex never decreases the modified degree connectivity of
these graphs, f(w,p,q) can only change from 1 to 2 at multiples of p and ¢. If
w = nqp for a positive integer n1, then a vertex in the g — 1 g-class with position
i satisfies ¢ > wmod p and ¢ > w mod ¢, so f(ni1p,p,q) = 2 for n1p > ¢ and
f(nip,p,q) =1 for n1p < ¢. Similarly, f(nagq,p,q) = 2 for any positive ns.

To calculate n; when f(w,p,q) = 2 we use the formula kg =h+1 = V;”J +

V;pJ — 2. We can solve as follows: n; + L”;pJ =(h+1)+2o0r Lnl (1 + S)J

h + 3. So if a solution exists, it is

- {ms] 3)

P
1+
If there is no solution for n; satisfying n, + V;pJ — 2= h+1, then there must

be a solution for ny satisfying kg =h + 1 =no + V;‘IJ — 2 and we calculate

RQ_PJF:;] n

q
1+p

Periods in Partial Words: An Algorithm 67

We now consider the f(w,p, q) =1 case. Note that f(I,p,q) =1 for all] < ¢q. For
these cases vertices can only have p-connections, and we can see that l4(h, p, q) =

(h+2)p solong as h + 2 < {ZJ. For larger numbers of holes we must better

characterize when vertices of lowest degree gain p- and g-connections. First, there
is always a vertex of minimal degree in either the p—1 p-class or the ¢—1 g-class.
This is because if we pick any other position that has minimal degree then we
can increase this position without adding more p- or g-connections until it is in
either the p — 1 p-class or the ¢ — 1 g-class. Optimal lengths occur when these
positions of minimal degree gain a new p- or g-connection.

Remark 2. It l4(h,p,q) = w, f(w,p,q) =1,and h+2 > BJ, then w = nip+niq

for some positive integers n} and nj. For w = nfp+nbq—1, the vertices of lowest
degree are in the symmetric positions njp — 1 and nhHg — 1.

We now focus on finding these positions nfp—1 and nhg—1. If f(w,p, q) changes
from 2 to 1 when the nfp — 1 vertex gains a ¢-connection, then we see from
the definition of f(w,p,q) that the nip — 1 vertex must have a larger value
modulo ¢ than the other vertices in the p — 1 p-class. Thus we can say that
(nip — 1) mod ¢ > (nfp — 1) mod ¢ for all positive integers n] # n} where
nyp < nip+nhq. Similarly we must have (njg — 1) mod p > (nfq— 1) mod p for
all positive integers ng # n,, where nfq < nip + nhq. Also, np + nbq must fall
between the f(w,p,q) = 2 solutions for l4(h — 1,p,q) and l4(h,p, q).

Algorithm 1. Find l4(h,p,q) when 1 < p < ¢, ged(p,q) =1l and h <p+q —2

if h+2< LZJ then l4(h,p,q) = (h+ 2)p
else solve for f(w,p,q) =2 solutions for ly(h —1,p,q) and l4(h,p,q)
if the f(w,p,q) =2 value for ly(h,p,q) is nip then
find the maximum value of nipmod ¢ for 0 <nj <mny
if the vertex in this position has a g-connection between
f(w,p,q) =2 solutions for ly(h—1,p,q) and l4(h,p,q) then
lg(h,p,q) is the position of this g-connection
else lq4(h,p,q) = mip
if the f(w,p,q) =2 value for l4(h,p,q) is naq then
find the maximum value of n'zq mod p for 0 < n'2 < n2
if the vertex in this position has a p-connection between
f(w,p,q) =2 solutions for l4(h —1,p,q) and l4(h,p,q) then
la(h,p,q) is the position of this p-connection
else lq(h,p,q) = nagq

68 F. Blanchet-Sadri, T. Mandel, and G. Sisodia

For m = “}J, the mp — 1 vertex has the lowest degree in a large number of

cases when the length is less than pg (keep in mind that we can reduce any case
to one where the length is less than pg). The following lemma identifies many
of these cases. We then use this knowledge to find a large number of optimal
lengths in the theorem that follows.

Lemma 2. Let G be the (p,q)-periodic graph of size I, let ¢ = mp + r where
0 <r <p,andletl = ng+r where 0 < ry < q. Let mp <[< pq. If
lmod ¢ < mp ornr—1 <lmod p, then the mp — 1 vertex has minimum degree.

Proof. We require I > mp so the mp — 1 vertex exists, and we require [< pq so
we do not have vertices that are both p- and ¢- connected to each other. We have
that l=nqg+r1 =n(mp+7r)+ri =mnp+nr+ry,sol=(nr+r) modp. A
vertex in the p-class of i has U}J p-connections if ¢ < (nr+ry) mod p or U}J -1

p-connections if ¢ > (nr + r1) mod p. Similarly, the number of ¢-connections for
a position in the g-class of j is n if j < r orn—11if j > r1. The mp — 1

M 1 p-connections since

p—12> (nr+ry) mod p. The mp — 1 vertex is in the g-class of mp — 1 and so it
has n — 1 g-connections if r; < mp — 1 and has n g-connections if mp <r; < gq.
The degree of the mp—1 vertex is clearly minimum when r; < mp, that is, when
Il mod ¢ < mp.

However, if mp < r; < mp+ s for some 0 < s < r, then the vertices in the
g-class of mp + s have one fewer g-connection than any other vertex, and may
have the same number of p-connections as the mp — 1 vertex, giving them a
lower degree than the mp — 1 vertex. These vertices are of the form (mp + s) +
tg=mp+s+timp+r)=(t+ 1)mp+tr + s for some nonnegative integer ¢
satisfying mp 4+ s + tq < [— 1. Thus a vertex mp + s + tq falls in the p-class of

vertex is in the p-class of p — 1 so it always has VJ

(tr + s) mod p. Thus, vertices in the g-class of mp + s have UJ p-connections

if and only if (¢r 4+ s) mod p < I mod p for all integers t € {0,...,n — 1} and
s € {ry —mp,...,r — 1}. If this is the case then these vertices have one more
p-connection than the mp — 1 vertex and therefore do not have lower degree.
Since t < n—1and s < r — 1, we have that tr + s < nr — 1. Note that if
nr—1 <l mod p, then (tr+s) mod p = (tr+s) <l mod pforallt € {0,...,n—1}
and s € {ry —mp,...,r —1}. Thus, if nr — 1 <! mod p, then the mp — 1 vertex
has lowest degree in G. a

The following theorem gives l4(h, p, ¢) when the mp — 1 vertex has the minimum
degree in the graph of size l4(h,p,q) — 1.

Theorem 6. Let ¢ = mp + r where 0 < r < p. Define ny = {“ﬂ and ny =

Hig—‘, and define w' = min{nip,mp + (na — 1)q}. Let mp < ' < pq. If

w’ mod qg < mp or I_(A:I/JT —1 < w' mod D, then ld(hapv Q) =w'.

Proof. Let G denote the (p, ¢)-periodic graph of size [. If we restrict the size so
that mp <1 < pg with I mod ¢ < mp or nr — 1 < [mod p, then by Lemma

Periods in Partial Words: An Algorithm 69

the vertex mp — 1 of G has lowest degree. Thus, within these ranges, optimal
lengths occur whenever the mp — 1 vertex gains a p- or g-connection. The mp—1
vertex gains a p-connection exactly when [= nqp for an integer n; > m. We can
calculate n; using Equation (3)).

The mp — 1 position gains a g-connection exactly when I = mp+nbq. This fits
the form described in Remark 2l where n)j = m. After using Equations ([B]) and [l
to calculate ny and ng, we search for n} satisfying max{(ny — 1)p, (na — 1)q} <
mp + nbq < nip. The optimal length is then mp + nq if and only if such an n}
exists. Since mp < g and nayq is the smallest multiple of ¢ greater than nyp, any
such nf satisfying the inequalities must be equal to ng — 1, where we calculate ns
using Equation (#l). We then know that mp + nq > max{(n1 — 1)p, (n2 — 1)q},
so we can now say that mp + nhq is the optimal length if and only if it is less
than nyp. Otherwise, nip is the optimal length. O

Algorithm 2. Find L(h,p,q) when 1 < p < ¢ and ged(p,q) =1

if p=2 then L(h,p,q) = (2 MLJ +1)¢g+ hmod g+ 1 by Thm [
else
if ¢>p VLJQAJ then L(h,p,q) =p Lh;ﬂj +¢qg—(h+1)mod 2 by Thm
else
compute l.(h,p,q) using Theorem [3
compute l4(h,p,q) using Theorem [(and Algorithm 1)

L(h,p,q) = max{l,(h,p,q),la(h, p,q)}

Theorem 7. Given a number of holes h and two periods p and q, Algorithm 2
computes the optimal length L(h,p,q). Computing l4(h,p, q) is linear in p and q
and constant in h.

6 Conclusion

Using the ideas of r-set and modified degree connectivities described in this
paper, we have been able to answer conjectures in [7] (due to page restrictions
however, we cannot provide these results here). Our methods can be used to
prove closed formulas for any given number of holes. However, as the number
of holes increases, the number of cases also increases. Our calculations show
that an r-set disconnection is strictly more efficient than any modified degree
disconnection, or I.(h,p,q) > la(h,p,q), if and only if h = 4 and ¢ < 321’, in
which case, L(h,p,q) = g+ 3p — 1. For instance, we have proved that if p and
q are integers satisfying 2 < p < ¢q and ged(p, q) = 1, then L(3,p,q) is p + 2¢ if
q < 32p, 4p if 32” < q < 2p, and 2p + q if ¢ > 2p. A topic of future research is to
extend our approach to any number of periods. Moreover, a World Wide Web
server interface has been established at

70

F. Blanchet-Sadri, T. Mandel, and G. Sisodia

www.uncg.edu/cmp/research/finewilf4

for automated use of a program which given as input a number of holes h and
two periods p and ¢, outputs L(h,p,q) and an optimal word for that length.

References

10.

11.

. Choffrut, C., Karhumaki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa,

A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329-438. Springer, Berlin
(1997)

. Smyth, W.F.: Computing Patterns in Strings. Pearson, Addison-Wesley (2003)
. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of

the American Mathematical Society 16, 109-114 (1965)

. Constantinescu, S., Ilie, L.: Generalised Fine and Wilf’s theorem for arbitrary

number of periods. Theoretical Computer Science 339, 4960 (2005)

. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical

Computer Science 218, 135-141 (1999)

. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &

Hall/CRC Press, Boca Raton, FL (2008)

. Blanchet-Sadri, F., Bal, D., Sisodia, G.: Graph connectivity, partial words, and a

theorem of Fine and Wilf. Information and Computation 206(5), 676-693 (2008)

. Halava, V., Harju, T., Karki, T.: Interaction properties of relational periods. Dis-

crete Mathematics and Theoretetical Computer Science 10, 87-112 (2008)

. Shur, A.M., Gamzova, Y.V.: Partial words and the interaction property of peri-

ods. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 68(2), 191-214
(2004)

Shur, A.M., Konovalova, Y.V.: On the Periods of Partial Words. In: Sgall, J.,
Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 657-665. Springer,
Heidelberg (2001)

Smyth, W.F., Wang, S.: A new approach to the periodicity lemma on strings with
holes. Theoretical Computer Science 410, 4295-4302 (2009)

The 1-Neighbour Knapsack Problem

Glencora Borradaile"*, Brent Heeringa?**, and Gordon Wilfong®

! Oregon State University
glencora@eecs.oregonstate.edu
2 Williams College
heeringa@cs.williams.edu
% Bell Labs

gtwlresearch.bell-labs.com

Abstract. We study a constrained version of the knapsack problem
in which dependencies between items are given by the adjacencies of a
graph. In the I-neighbour knapsack problem, an item can be selected only
if at least one of its neighbours is also selected. We give approximation
algorithms and hardness results when the nodes have both uniform and
arbitrary weight and profit functions, and when the dependency graph
is directed and undirected.

1 Introduction

We consider the knapsack problem in the presence of constraints. The input is
a graph G = (V, E) where each vertex v has a weight w(v) and a profit p(v),
and a knapsack of size k. We start with the usual knapsack goal—find a set of
vertices of maximum profit whose total weight does not exceed k—and handle
the additional requirement that a vertex can be selected only if at least one of its
neighbours is also selected (vertices with no neighbours can always be selected).
We call this the 1-neighbour knapsack problem. We consider the problem with
general (arbitrary) and wuniform (p(v) = w(v) = 1 Vv) weights and profits,
and with undirected and directed graphs. In the case of directed graphs, the
neighbour constraint applies to the out-neighbours of a vertex.

Constrained knapsack problems have applications to scheduling, tool manage-
ment, investment strategies and database storage [8JII7]. There are also applica-
tions to network formation. For example, suppose a set of customers C' C V in
a network G = (V, E) wish to connect to a server, represented by a single sink
s € V. The server may activate each edge at a cost and each customer would
result in a certain profit. The server wishes to activate a subset of the edges
with cost within the server’s budget. By introducing a vertex mid-edge with
zero-profit and weight equal to the cost of the edge and giving each customer
zero-weight, we convert this problem to a 1-neighbour knapsack problem.

* Glencora Borradaile is supported by NSF grant CCF-0963921.
** Brent Heeringa is supported by NSF grant I1S-08125414.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 71-§4, 2011.
© Springer-Verlag Berlin Heidelberg 2011

72 G. Borradaile, B. Heeringa, and G. Wilfong

Results. We show that the four resulting problems
{general, uniform} x {undirected, directed}

vary in complexity but admit several algorithmic approaches. We summarize our
results in Table [Tl

Table 1. Our results: upper and lower bounds on the approximation ratios for com-
binations of {general, uniform} X {undirected, directed}. For uniform, undirected, the
bounds are running-times of optimal algorithms.

Upper Lower
. Undirected linear-time exact
Uniform
Directed PTAS NP-hard (strong sense)
. (1—e) . _ 1—e _
General Undirected o (1=1/e7°) 1-1/e+e€
Directed open 1/02(log' ™ n)

In Section 2] we describe a greedy algorithm that applies to the general 1-
neighbour problem for both directed and undirected dependency graphs. The
algorithm requires two oracles: one for finding a set of vertices with high profit
and another for finding a set of vertices with high profit-to-weight ratio. In
both cases, the total weight of the set cannot exceed the knapsack capacity
and the subgraph defined by the vertices must adhere to a strict combinatorial
structure which we define later. The algorithm achieves an approximation ratio
of (a/2) - (1 — 1/€). The approximation ratios of the oracles determine the a
and [terms respectively.

For the general, undirected 1-neighbour case, we give polynomial-time oracles
that achieve « = § = (1 — ¢) for any e > 0. This yields a polynomial time
(1 —¢€)/2) - (1 — 1/e'~#)-approximation. We also show that no approximation
ratio better than 1 — 1/e is possible (assuming P#NP). This matches the upper
bound up to (almost) a factor of 2. These results appear in Section 2T

In Section 2.2] we show that the general, directed 1-neighbour knapsack prob-
lem is 1/£2(log" "¢ n)-hard to approximate, even in DAGs.

In SectionBlwe show that the uniform, directed 1-neighbour knapsack problem
is NP-hard in the strong sense but that it has a polynomial-time approximation
scheme (PTAS. Thus, as with general, undirected 1-neighbour problem, our
upper and lower bounds are essentially matching.

Finally, in Section 4] we show that the uniform, undirected 1-neighbour knap-
sack problem affords a simple, linear-time solution.

Related Work. There is a tremendous amount of work on maximizing sub-
modular functions under a single knapsack constraint [I3], multiple knapsack

1 A PTAS is an algorithm that, given a fixed constant ¢ < 1, runs in polynomial time
and returns a solution within 1 — € of optimal. The algorithm may be exponential
in 1/e.

The 1-Neighbour Knapsack Problem 73

constraints [11], and both knapsack and matroid constraints [12J4]. While our
profit function is submodular, the constraints given by the graph are not char-
acterized by a matroid (our solutions, for example, are not closed downward).
Thus, the 1-neighbour knapsack problem represents a class of knapsack problems
with realistic constraints that are not captured by previous work.

As we show in Section 2] the general, undirected 1-neighbour knapsack
problem generalizes several maximum coverage problems including the budgeted
variant considered by Khuller, Moss, and Naor [9] which has a tight (1 — 1/e)-
approximation unless P=NP. Our algorithm for the general 1-neighbour problem
follows the approach taken by Khuller, Moss, and Naor but, because of the de-
pendency graph, requires several new technical ideas. In particular, our analysis
of the greedy step represents a non-trivial generalization of the standard greedy
algorithm for submodular maximization.

Johnson and Niemi [7] give an FPTAS for knapsack problems on dependency
graphs that are in-arborescences (these are directed trees in which every arc is
directed toward a single root)lg. This problem can be viewed as an instance of
the general, directed 1-neighbour knapsack problem.

In a longer technical report [2] we explore a version of the constrained knap-
sack problem where an item may be selected only if all its neighbours are se-
lected. This problem generalizes the subset-union knapsack problem (SUKP) [§],
the precedence constrained knapsack problem (PCKP) [1], and the partially or-
dered knapsack problem (POK) [10].

Notation. We consider graphs G with n vertices V(G) and m edges FE(G).
Whether the graph is directed or undirected will be clear from context. We refer
to edges of directed graphs as arcs. For an undirected graph, N¢(v) denotes the
neighbours of a vertex v in G. For a directed graph, Ng(v) denotes the out-
neighbours of v in G, or, more formally, Ng(v) = {u : vu € E(G)}. Given a set
of nodes X, N (X) is the set of nodes not in X but that have a neighbour (or
out-neighbour in the directed case) in X. That is, N5 (X) = {u : uv € E(G),u ¢
X, and v € X}. The degree (in undirected graphs) and out-degree (in directed
graphs) of a vertex v in G is denoted d¢(v). The subscript G will be dropped
when the graph is clear from context. For a set of vertices or edges U, G[U] is
the graph induced on U.

For a directed graph G, D is the directed, acyclic graph (DAG) resulting from
contracting maximal strongly-connected components (SCCs) of G. For each node
u € V(D), let V(u) be the set of vertices of G that are contracted to obtain u.

For convenience, extend any function f defined on items in a set X to any
subset A C X by letting f(A) = > ,c4 f(a). If f(a) is a set, then f(A) =
Uaea f(a). If f is defined over vertices, then we extend it to edges: f(E) =
f(V(E)). For any knapsack problem, OPT is the set of vertices/items in an
optimal solution.

2 In their problem formulation, the constraints are given as an out-arborescences—
directed trees in which every arc is directed away from a single root—and feasible
solutions are subsets of vertices that are closed under the predecessor operation.

74 G. Borradaile, B. Heeringa, and G. Wilfong

(a) (b)

Fig.1. (a) An undirected graph. If H is the family of star graphs, then the shaded re-
gions give the only viable partition of the nodes—no other partition yields 1-neighbour
sets. However, every edge viable with respect to H. The singleton node is also viable
since it is a 1-neighbour set for the graph. (b) A graph G with 1-neighbour sets A
(dark shaded) and B (dotted). For convenience, we include both directed and undi-
rected edges. The lightly shaded regions give a viable partition for G[A \ B] and the
white nodes denote N (B). For the undirected case, Y2 is viable for G[A \ B], and
since |Y2| = 2, it is viable for G[V(G) \ BJ. Y1 is not viable for G[V(G) \ B] but it is in
N¢ (B). For the directed case, Y3 is viable in G[V(G) \ B] whereas Y; is a viable set
only since we consider G[V(G) \ B] with the dotted arc removed.

Viable Families and Viable Sets. A set of nodes U is a 1-neighbour set for G
if for every vertex v € U, |[Ngu)(v)| > min{dc(v), 1}. That is, a 1-neighbour set
is feasible with respect to the dependency graph. A family of graphs H is a viable
family for G if, for any subgraph G’ of G, there exists a partition Yy (G') of G’
into 1-neighbour sets for G’, such that for every Y € Y (G’), there is a graph
H € H spanning G[Y]. For directed graphs, we take spanning to mean that H
is a directed subgraph of G[Y] and that Y and H contain the same number of
nodes. For a graph G, we call Yy (G) a viable partition of G with respect to H.

In Section 2] we show that star graphs form a viable family for any undi-
rected dependency graph. That is, we show that any undirected graph can be
partitioned into 1-neighbour sets that are stars. Fig.[Il (a) gives an example. In
contrast, edges do not form a viable family since, for example, a simple path
with 3 nodes cannot be partitioned into 1-neighbour sets that are edges. For
DAGs, in-arborescences are a viable family but directed paths are not (consider
a directed graph with 3 nodes u, v, w and two arcs (u,v) and (w,v)). Note that
a viable family always contains a singleton vertex.

A 1-neighbour set U for G is viable with respect to H if there is a graph H € ‘H
spanning G[U]. Note that the 1-neighbour sets in Y3 (G) are, by definition, viable
for G, but a viable set for G need not be in Yy (G). For example, if H is the
family of stars and G is the undirected graph in Fig. [(a), then any edge is a
viable set for G but the only viable partition is the shaded region. Note that
if U is a viable set for G then it is also a viable set for any subgraph G’ of G
provided U C V(GF').

The 1-Neighbour Knapsack Problem 75

Viable families and viable sets play an essential role in our greedy algorithm
for the general 1-neighbour knapsack problem. Viable families establish a set
of structures over which our oracles can search. This restriction simplifies both
the design and analysis of efficient oracles as well as couples the oracles to a
shared family of graphs which, as we’ll show later, is essential to our analysis.
In essence, viable families provide a mechanism to coordinate the oracles into
returning sets with roughly similar structure. Viable sets correctly capture the
idea of an indivisible unit of choice in the greedy step. We formalize this with
the following lemma which is illustrated in Fig. [(b).

Lemma 1. Let G be a graph and H be a viable family for G. Let A and B be
I-neighbour sets for G. If Yy (C) is a viable partition of G[C] where C = A\ B
then every set Y € Yy (C) is either (i) a singleton node y such that y € N (B)
(i.e., y has a neighbour in B), or (ii) a viable set for G' = G|V (G) \ B] where,
in the case that G is directed, G' contains no arc with a tail in N (B).

Proof. Let Y3(C) be a viable partition for G[C] where C = A\ B and A, B,
G, G’ and H are defined as above. If |Y| = 1 then let Y = {y}. If dg(y) =0
then Y is a viable set for G so it is viable set for G’. Otherwise, since A is a
I-neighbour set for G, y must have a neighbour in B so y € N5 (B). If [Y| > 1
then, provided G is undirected, Y is also a viable set in G so it is a viable set
in G’. If G is directed, then Y may not be viable in G since it might contain a
node z that is a sink in G[C] but that is not a sink in G. However, in this case
c € Ng (B) so it is a sink in G’ since G’ contains no arc with a tail in N (B).
Therefore, Y is viable for G’. O

2 The General 1-Neighbour Knapsack Problem

Here we give a greedy algorithm GREEDY-1-NEIGHBOUR for the general 1-
neighbour knapsack problem on both directed and undirected graphs. A formal
description of our algorithm is available in Fig. 2l GREEDY1-NEIGHBOUR re-
lies on two oracles BEST-PROFIT-VIABLE and BEST-RATIO-VIABLE which find
viable sets of nodes with respect to a fixed viable family H. In each iteration
i, we call BEST-RATIO-VIABLE which, given the nodes not yet chosen by the
algorithm, returns the highest profit-to-weight ratio, viable set S; with weight
not exceeding the remaining capacity. We also consider the set of nodes Z not
in the knapsack, but with at least one neighbour already in the knapsack. Let s;
be the node with highest profit-to-weight ratio in Z not exceeding the remaining
capacity. We greedily add either s; or S; to our knapsack U depending on which
has higher profit-to-weight ratio. We continue until we can no longer add nodes
to the knapsack.

For a viable family H, if we can efficiently approximate the highest profit-to-
weight ratio viable set to within a factor of § and if we can efficiently approximate
the highest profit viable set to within a factor of a, then our greedy algorithm

yields a polynomial time § (1 —1/ e”)-approximation.

76 G. Borradaile, B. Heeringa, and G. Wilfong

GREEDY-1-NEIGHBOUR(G, k) :

Smax = BEST-PROFIT-VIABLE(G, k)
K=kU=0,i=1,G =G, Z=10
WHILE there is either a viable set in G’ or a node in Z with weight < K
S; = BEST-RATIO-VIABLE(G', K)
s; = arg max{p(v)/w(v) |v € Z}
IF p(si)/w(si) > p(Si)/w(S:)
Si = {si}
G =G[V(G)\ Si]
i=i+1, U=UUV(S;), K=K —w(S:)
7= N5 (U)
If G is directed, remove any arc in G’ with a tail in Z
RETURN arg max{p(Smax), p(U)}

Fig.2. The GREEDY-1-NEIGHBOUR algorithm. In each iteration i, we greedily add
either the viable set S; or the node s; to our knapsack U depending on which has
higher profit-to-weight ratio. This continues until we can no longer add nodes to the
knapsack.

Theorem 1. GREEDY-1-NEIGHBOUR is a § (1— elﬁ)-approximation for the gen-
eral 1-neighbour problem on directed and undirected graphs.

Proof. Let OPT be the set of vertices in an optimal solution. In addition, let
U, = U;le(Sj) correspond to U after the first ¢ iterations where Uy = (. Let
{4+ 1 be the first iteration in which there is either a node in Z N OPT or a
viable set in OPT\ U, whose profit-to-weight ratio is larger than Sp;. Of these,
let Sg+1 be the node or set with highest profit-per-weight. For convenience, let
Si=S andU; =U; fori=1...¢, and Up11 = Uy U Sp11. Notice that Uy is a
feasible solution to our problem but that i/, ; is not since it contains Sy41 which
has weight exceeding K. We analyze our algorithm with respect to Uy .

Lemma 2. For each iteration i =1,... 0+ 1, the following holds:

p(s) > g

3 (p(OPT) — p(Ui-1))

Proof. Fix an iteration i and let I be the graph induced by OPT \ U;_;. Since
both OPT and U;_; are 1-neighbour sets for G, by Lemma [l each Y € Yy (1)
is either a viable set for G’ (so it can be selected by BEST-RATIO-VIABLE) or a
singleton vertex in N (Uj—1) (which GREEDY-1-NEIGHBOUR always considers).
Thus, if ¢ < /¢, then by the greedy choice of the algorithm and approximation
ratio of BEST-RATIO-VIABLE we have

p(Si) >3 p(Y)

w(s) =P w) for all Y € Yu(I). (1)

If i = £+ 1 then p(Se+1)/w(Ses1) is, by definition, at least as large as the
profit-to-weight ratio of any Y € Y. It follows that for i =1,...,/+1

The 1-Neighbour Knapsack Problem "

1
pOPT) —pth) = 3 p(w) < L7 S), by Ba.m
wev () Buw(S:) wev(I)
1 p(&i) : .
< w(OPT), since I is a subset of OPT
< Lok (S;i), since w(OPT) < k
S ﬁw(&)p i)s S
Rearranging gives Lemma 2 a

Lemma 3. Fori=1,...,£+ 1, the following holds:

sy > 1= IT (1-5"57) [scor)

j=1
Proof. We prove the lemma by induction on i. For ¢ = 1, we need to show that

w(Sh)

p(Ur) > &

p(OPT). 2)
This follows immediately from Lemma [2] since p(Uy) = 0 and Uy = S1. Suppose
the lemma holds for iterations 1 through i — 1. Then it is easy to show that
the inequality holds for iteration i by applying Lemma [2] and the inductive
hypothesis. This completes the proof of Lemma [3 a

We are now ready to prove Theorem[Il Starting with the inequality in Lemma 3]
and using the fact that adding Syy; violates the knapsack constraint (so
w(Ues+1) > k) we have

{41
st = [1-T] (1-5")) | siopm)

v
—
I

041
o w(S))
<1 ﬁw(Ueﬂ)

e+1
> 1_(1_ /)
+1

where the penultimate inequality follows because equal w(S;) maximize the
product. Since Spax is within a factor of a of the maximum profit viable set
of weight < k and S;41 is contained in OPT, p(Smax) > @ - p(Sp4+1). Thus,
we have p(U) + p(Smax)/a > pUs) + p(Sex1) = pUe1) > (1= %) p(OPT).
Therefore max{p(U), p(Smax)} > § (1 — 1) p(OPT).

)| or)

p(OPT) > (1 - ;) p(OPT)

O

78 G. Borradaile, B. Heeringa, and G. Wilfong

2.1 The General, Undirected 1-Neighbour Problem

Here we formally show that stars are a viable family for undirected graphs
and describe polynomial-time implementations of BEST-PROFIT-VIABLE and
BEST-RATIO-VIABLE that operate with respect to stars. Both oracles achieve
an approximation ratio of (1 — ¢) for any ¢ > 0. Combined with GREEDY-1-
NEIGHBOUR this yields a polynomial time ((1—¢)/2)-(1—1/e!~¢)-approximation
for the general, undirected 1-neighbour problem. In addition, we show that
this approximation is nearly tight by showing that the general, undirected 1-
neighbour problem generalizes many coverage problems including the max
k-cover and budgeted maximum coverage, neither of which have a (1—1/e+¢€)-
approximation for any € > 0 unless P=NP.

Stars. For the rest of this section, we assume H is the family of star graphs (i.e.
graphs composed of a center vertex u and a (possibly empty) set of edges all of
which have u as an endpoint) so that given a graph G and a capacity k, BEST-
PROFIT-VIABLE returns the highest profit, viable star with weight at most k
and BEST-RATIO-VIABLE returns the highest profit-to-weight, viable star with
weight at most k.

Lemma 4. The nodes of any undirected constraint graph G can be partitioned
into 1-neighbour sets that are stars.

Proof. Let G; be an arbitrary connected component of G. If |[V(G;)| = 1 then
V(G,) is trivially a 1-neighbour set and the trivial star consisting of a single node
is a spanning subgraph of G;. If G; is non-trivial then let T' be any spanning
tree of G; and consider the following algorithm: while 7' contains a path P with
|P| > 2, remove an interior edge of P from T. When the algorithm finishes, each
path has at least one edge and at most two edges, so T' is a set of non-trivial
stars, each of which is a 1-neighbour set. O

BEST-PROFIT-VIABLE. Finding the maximum profit, viable star of a graph G
subject to a knapsack constraint k reduces to the traditional unconstrained knap-
sack problem which has a well-known FPTAS that runs in O(n3/¢) time [6/14].
Every vertex v € V(G) defines a knapsack problem: the items are Ng(v) and
the capacity is k — w(v). Combining v with the solution returned by the FP-
TAS yields a candidate star. We consider the candidate star for each vertex and
return the one with highest profit. Since we consider all possible star centers,
BEST-PROFIT-VIABLE runs in O(n*/e) time and returns a viable star within a
factor of (1 —) of optimal, for any € > 0.

BEST-RATIO-VIABLE. We again turn to the FPTAS for the standard knapsack
problem. Our goal is to find a high profit-to-weight star in G with weight at most
k. The standard FPTAS for the unconstrained knapsack problem builds a dy-
namic programing table T with n rows and nP’ columns where n is
the number of available items and P’ is the maximum adjusted profit over all

the items. Given an item v, its adjusted profit is p’(v) = L(;S’)),PJ where P is

The 1-Neighbour Knapsack Problem 79

the true maximum profit over all the items. Each entry T'[¢, p] gives the weight of
the minimum weight subset over the first ¢ items achieving profit p. An auxiliary
data structure allows us to efficiently retrieve the corresponding subset.

Notice that, for any fixed profit p, p/T'[n,p] is the highest profit-to-weight
ratio for that p. Therefore, for 1 < p < nP’, the p maximizing p/T'[n,p] gives
the highest profit-to-weight ratio of any feasible subset provided T[n,p] < k.
Let S be this subset. We will show that p(S)/w(S) is within a factor of (1 — ¢)
of OPT where OPT is the profit-to-weight ratio of the highest profit-to-weight
ratio feasible subset S*.

Letting r(v) = p(v)/w(v) and 7’/ (v) = p’(v) /w(v), and following [14], we have

r(S*) = ((g/n) - P) - 1'(S") < eP/w(S")

since, for any item v, the difference between p(v) and ((e/n)- P)-p'(v) is at most
(e/n)- P and we can fit at most n items in our knapsack. Because r/(S) > r/(S*)
and OPT is at least P/w(S*) we have

r(S) > (¢/n) - P-r'(S*) > r(S*) — eP/w(S*) > OPT — cOPT = (1 — ¢)OPT.

Now, just as with BEST-PROFIT-VIABLE, every vertex v € V(@) defines a knap-
sack instance where Ng(V) is the set of items and & — w(v) is the capacity. We
run the modified FTPAS for knapsack on the instance defined by v and add v to
the solution to produce a set of candidate stars. We return the star with highest
profit-to-weight ratio. Since we consider all possible star centers, BEST-RATIO-
VIABLE runs in O(n?/e) time and returns a viable star within a factor of (1 —¢)
of optimal, for any € > 0.

Why Stars? Besides some isolated vertices, our solution is a set of edges, but
the edges are not necessarily vertex disjoint. Analyzing our greedy algorithm
in terms of edges risks counting vertices multiple times. Partitioning into stars
allows us to charge increases in the profit from the greedy step without this risk.
In fact, stars are essentially the simplest structure meeting this requirement
which is why we use them as our viable family.

General, Undirected 1-Neighbour Knapsack is APX-Complete. Here
we show that it is NP-hard to approximate the general, undirected 1-neighbour
knapsack problem to within a factor better than 1 —1/e + € for any € > 0 via an
approximation-preserving reduction from max k-cover [3]. An instance of max
k-cover is a set cover instance (S, R) where S is a ground set of n items and R
is a collection of subsets of S. The goal is to cover as many items in S using at
most k subsets from R.

Theorem 2. The general, undirected 1-neighbour knapsack problem has no 1 —
1/e + e-approximation for any € > 0 unless P=NP.

Proof. Given an instance of (S, R) of max k-cover, build a bipartite graph G =
(U UV, E) where U has a node u; for each s; € S and V has a node v; for each

80 G. Borradaile, B. Heeringa, and G. Wilfong

set R; € R. Add the edge {u;,v;} to E if and only if u; € R;. Assign profit
p(u;) = 1 and weight w(u;) = 0 for each vertex u; € U and profit p(v;) = 0
and weight w(u;) = 1 for each vertex v; € V. Since no pair of vertices in U
have an edge and since every vertex in U has no weight, our strategy is to pick
vertices from V' and all their neighbours in U. Since every vertex of U has unit
profit, we should choose the k vertices from V' which collectively have the most
neighbours. This is exactly the max k-cover problem. O

The max k-cover problem represents a class of budgeted maximum coverage
(BMC) problems where the elements in the base set have unit profit (referred
to as weights in [9]) and the cover sets have unit weight (referred to as costs
in [9]). In fact, one can use the above reduction to represent an arbitrary BMC
instance: form the same bipartite graph, assign the element weights in BMC as
vertex profits in U, and finally assign the covering set costs in BMC as vertex
weights in V.

2.2 General, Directed 1-Neighbour Knapsack Is Hard to
Approximate

Here we consider the 1-neighbour knapsack problem where G is directed and
has arbitrary profits and weights. We show via a reduction from directed Steiner
tree (DST) that the general, directed 1-neighbour problem is hard to approxi-
mate within a factor of 1/02(log' = n). Our result holds for DAGs. Because of
this negative result, we also don’t expect that good approximations exist for
either BEST-PROFIT-VIABLE and BEST-RATIO-VIABLE for any family of viable
graphs.

In the DST problem on DAGs we are given a DAG G = (V, E) where each
arc has an associated cost, a subset of ¢t vertices called terminals and a root
vertex r € V. The goal is to find a minimum cost set of arcs that together
connect r to all the terminals (i.e., the arcs form an out-arborescence rooted
at r). For all ¢ > 0, DST admits no log> ¢ n-approximation algorithm unless
NP C ZTIME[nP°Yosn] [5]. This result holds even for very simple DAGs such
as leveled DAGs in which r is the only root, r is at level 0, each arc goes from a
vertex at level ¢ to a vertex at level 4 4 1, and there are O(log n) levels. We use
leveled DAGs in our proof of the following theorem.

Theorem 3. The general, directed I1-neighbour knapsack problem s
1/02(log* "¢ n)-hard to approzimate unless NP C ZTIM E[nPoY1gn],

Proof. Let D be an instance of DST where the underlying graph G is a leveled
DAG with a single root r. Suppose there is a solution to D of cost C.

Claim. If there is an «a-approximation algorithm for the general, directed 1-
neighbour knapsack problem then a solution to D with cost O(alogt) x C can
be found where ¢ is the number of terminals in D.

Proof. Let G = (V, A) be the DAG in instance D. We modify it to G’ = (V', A")
where we split each arc e € A by placing a dummy vertex on e with weight equal

The 1-Neighbour Knapsack Problem 81

to the cost of e according to D and profit of 0. In addition, we also reverse the
orientation of each arc. Finally, all other vertices are given weight 0 and terminals
are assigned a profit of 1 while the non-terminal vertices of G are given a profit
of 0. We create an instance N of the general, directed 1-neighbour knapsack
problem consisting of G’ and budget bound of C. By assumption, there is a
solution to IV with cost C' and profit t. Therefore given IV, an a-approximation
algorithm would produce a set of arcs whose weight is at most C' and includes
at least ¢/ terminals. That is, it has a profit of at least t/a. Set the weights
of dummy nodes to 0 on the arcs used in the solution. Then for all terminals
included in this solution, set their profit to 0 and repeat. Standard set-cover
analysis shows that after O(alogt) repetitions, each terminal will have been
connected to the root in at least one of the solutions. Therefore the union of
all the arcs in these solutions has cost at most O(alogt) x C and connects all
terminals to the root. ad

Using the above claim, we’ll show that if there is an a-approximation algo-
rithm for the general, directed-1-neighbour problem then there is an O(alogt)-
approximation algorithm for DST which implies the theorem. Let L be the total
cost of the arcs in the instance of DST. For each 2! < L, take C = 2 and
perform the procedure in the previous claim for alogt iterations. If after these
iterations all terminals are connected to the root then call the cost of the result-
ing arcs a valid cost. Finally, choose the smallest valid cost, say C’ and C’ will
be no more than 2Copt where Copr is the optimal cost of a solution for the
DST instance. By the previous claim we have a solution whose cost is at most
2CopT X O(alogt). O

3 The Uniform, Directed 1-Neighbour Knapsack Problem

In this section, we give a PTAS for the uniform, directed 1-neighbour knapsack
problem. We rule out an FPTAS by proving the following theorem, the proof of
which appears in [2].

Theorem 4. The uniform, directed 1-neighbour problem is strongly NP-hard.

A PTAS for the Uniform, Directed 1-Neighbour Problem. Let U be a
1-neighbour set. Let Ay be a minimal set of arcs of G such that for every vertex
u € U, dgray)(u) > min{ég(u),1}. That is, Ay is a witness to the feasibility of
U as a l-neighbour set. Since each node of U in G[Ay] has out-degree 0 or 1,
the structure of Ay has the following form.

Property 1. Each connected component of G[Ay] is a cycle C' and a collection of
vertex-disjoint in-arborescences, each rooted at a node of C. C' may be trivial,
i.e., C may be a single vertex v, in which case dg(v) = 0.

For a strongly connected component X, let ¢(X) be the size of the shortest
directed cycle in X with ¢(X) =1 if and only if | X| = 1.

82 G. Borradaile, B. Heeringa, and G. Wilfong

c /\ ’;«&‘_CL’ C \:/T\‘ (03

,
FAR)
’

\ e

p)

(a) (b)

Fig. 3. Construction of a witness containing the smallest cycle of an SCC. The shaded
region highlights the vertices of an SCC (edges not in C, C’, or P are not depicted).
The edges of the witness are solid. (a) The smallest cycle C’ is not in the witness. (b)
By removing an edge from C and leaf edges from the in-arborescences rooted on C, we
create a witness that includes the smallest cycle C’.

Lemma 5. There is an optimal 1-neighbour knapsack U and a witness Ay such
that for each non-trivial, mazimal SCC K of G, there is at most one cycle of
Ay in K and this cycle is a smallest cycle of K.

Proof. First we modify Ay so that it contains smallest cycles of maximal SCCs.
We rely heavily on the structure of Ay guaranteed by Property Il The idea is
illustrated in Fig. Bl

Let C be a cycle of Ay and let K be the maximal SCC of G that contains
C. Suppose C' is not the smallest cycle of K or there is more than one cycle of
Ay in K. Let H be the connected component of Ay containing C. Let C’ be
a smallest cycle of K. Let P be the shortest directed path from C to C’. Since
C and C’ are in a common SCC, P exists. Let T be an in-arborescence in G
spanning P, C and H rooted at a vertex of C’.

Some vertices of C' U P might already be in the 1-neighbour set U: let X be
these vertices. Note that X and V(H) are disjoint because of Property [l Let T”
be a sub-arborescence of T" such that:

— T’ has the same root as T', and
- |VT'ud)uX|=I|V(H)| +|X|

Since V(T UC")|=|V(PUHUC)| > |V(H)| +|X| and T U C’ is connected,
such an in-arborescence exists.

Let B= (Ay \ H)UT'UC". Let B’ be a witness spanning V(B) contained in
B that contains the arcs in C’. We have that B’ has |U| vertices and contains a
smallest cycle of K.

We repeat this procedure for any SCC in our witness that contains a cycle of
a maximal SCC of G that is not smallest or contains two cycles of a maximal

SCC. O

To describe the algorithm, let D = (.5, F') be the DAG of maximal SCCs of G and
let € > 1/k be a fixed constant where k is the knapsack bound. (If ¢ < 1/k then

The 1-Neighbour Knapsack Problem 83

the brute force algorithm which considers all subsets V' C V(G) with |[V'| < k
yields an acceptable bound for a PTAS.)

We say that u € S is large if c(u) > ek, petite if 1 < c(u) < €k, or tiny
if ¢(u) = 1. Let L, P, and T be the set of all large, petite and tiny SCCs
respectively. Note that since ¢ > 1/k, for every u € L, c(u) > ek > 1.

UNIFORM-DIRECTED-1-NEIGHBOUR

B=10
For every subset X C L such that |X| < 1/e
Dy = D[PUX].

7 = {tiny sinks of D} U {petite sinks of Dx}

P’ = any maximal subset of Z such that ¢(P’) + ¢(X) < k.

U=Ugepux1V(C) : Cis asmallest cycle of K'}

Greedily add vertices to U such that U remains a 1-neighbour
set until there are no more vertices to add or
|U| = k. (Via a backwards search rooted at U.)

B = argmax{|B|, |U[}

Return B.

Theorem 5. UNIFORM-DIRECTED-1-NEIGHBOUR is a PTAS for the uniform,
directed 1-neighbour knapsack problem.

Proof. Let U* be an optimal 1-neighbour knapsack and let Ay be its witness
as guaranteed by Lemmafbl Let £, P, and 7 be the sets of large, petite, and tiny
cycles in Ay« respectively. By Lemma [0 each of these cycles is in a different
maximal SCC and each cycle is a smallest cycle in its maximal SCC.

Let £ = {L1,...,L¢} and let L* be the set of large SCCs that intersect
Ly,...,Lg. Note that |[L*| = £. Since k > |U*| > Yt_, |Li| > ek we have
¢ < 1/e. So, in some iteration of UNIFORM-DIRECTED-1-NEIGHBOUR, X = L*.
We analyze this iteration of the algorithm. There are two cases:

P’ = Z. First we show that every vertex in U* has a descendant in X U P'.
Clearly if a vertex of U* has a descendant in some L; € L, it has a descendant
in X. Suppose a vertex of U* has a descendant in some P; € P. P; is within
an SCC of Dy, and so it must have a descendant that is in a sink of Dx.
Similarly, suppose a vertex of U* has a descendant in some T; € 7. T; is
either a sink in D or has a descendant that is either a sink of D or a sink of
Dx. All these sinks are contained in X U P’. Since every vertex of U* can
reach a vertex in X U P/, greedily adding to this set results in |U| = |U*|
and the result of UNIFORM-DIRECTED-1-NEIGHBOUR is optimal.

P’ # Z. For any sink x ¢ P’, ¢(P’) + ¢(X) + ¢(z) > k but ¢(x) < €k by the
definition of tiny and petite. So, |U| > ¢(P’) + ¢(X) > (1 —)k, and the
resulting solution is within (1 — ¢) of optimal.

The running time of UNIFORM-DIRECTED-1-NEIGHBOUR is n©(1/¢)_ Tt is domi-
nated by the number of iterations, each of which can be executed in poly time.
O

84 G. Borradaile, B. Heeringa, and G. Wilfong

4 The Uniform, Undirected 1-Neighbour Problem

As our final result, we note that there is a relatively straightforward linear time
algorithm for finding an optimal solution for instances of the uniform, undirected
1-neighbour knapsack problem. The algorithm essentially breaks the graph into
connected components and then, using a counting argument, builds an optimal
solution from the components. A proof of the following theorem appears in [2].

Theorem 6. The uniform, undirected case has a linear-time solution.

Acknowledgments. We thank Anupam Gupta for helpful discussions in show-
ing hardness of approximation for general, directed 1-neighbour knapsack.

References

1. Boland, N., Fricke, C., Froyland, G., Sotirov, R.: Clique-based facets for the prece-
dence constrained knapsack problem. Technical report. Tilburg University Repos-
itory, Netherlands (2005), http://arno.uvt.nl/oai/wo.uvt.nl.cgi

2. Borradaile, G., Heeringa, B., Wilfong, G.: The knapsack problem with neighbour
constraints. CoRR, abs/0910.0777 (2011)

3. Feige, U.: A threshold of Inn for approximating set cover. J. ACM 45(4), 634-652
(1998)

4. Goundan, P.R., Schulz, A.S.: Revisiting the greedy approach to submodular set
function maximization (2009) (preprint)

5. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings
of STOC, pp. 585-594 (2003)

6. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22, 463-468 (1975)

7. Johnson, D.S., Niemi, K.A.: On knapsacks, partitions, and a new dynamic pro-
gramming technique for trees. Mathematics of Operations Research, 1-14 (1983)

8. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

9. Khuller, S., Moss, A., Naor(Seffi), J.: The budgeted maximum coverage problem.
Inf. Process. Lett. 70(1), 39-45 (1999)

10. Kolliopoulos, S.G., Steiner, G.: Partially ordered knapsack and applications to
scheduling. Discrete Applied Mathematics 155(8), 889-897 (2007)

11. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject
to multiple linear constraints. In: Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, pp. 545-554. Society for Indus-
trial and Applied Mathematics, Philadelphia (2009)

12. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular
maximization under matroid and knapsack constraints. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 323-332.
ACM, New York (2009)

13. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Operations Research Letters 32(1), 41-43 (2004)

14. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)

A Golden Ratio Parameterized Algorithm
for Cluster Editing

Sebastian Bocker

Lehrstuhl fiir Bioinformatik, Friedrich-Schiller-Universitét Jena, Ernst-Abbe-Platz 2,
07743 Jena, Germany
sebastian.boeckerQuni-jena.de

Abstract. The CLUSTER EDITING problem asks to transform a graph by
at most k edge modifications into a disjoint union of cliques. The problem
is NP-complete, but several parameterized algorithms are known. We
present a novel search tree algorithm for the problem, which improves
running time from O*(1.76%) to O*(1.62"). In detail, we can show that
we can always branch with branching vector (2,1) or better, resulting in
the golden ratio as the base of the search tree size. Our algorithm uses
a well-known transformation to the integer-weighted counterpart of the
problem. To achieve our result, we combine three techniques: First, we
show that zero-edges in the graph enforce structural features that allow
us to branch more efficiently. Second, by repeatedly branching we can
isolate vertices, releasing costs. Finally, we use a known characterization
of graphs with few conflicts.

1 Introduction

Given an undirected graph G, the CLUSTER EDITING problem asks for a minimal
set of edge modifications such that the resulting graph is a vertex-disjoint
union of cliques. In the corresponding INTEGER-WEIGHTED CLUSTER EDITING
problem, we are given modification costs for each edge or non-edge, and we search
for a set of edge modifications with minimum total weight. Here, one assumes
that all edges have non-zero modification cost.

In application, the above task corresponds to clustering objects, that is,
partitioning a set of objects into homogeneous and well-separated subsets.
Similar objects are connected by an edge, and a cluster is a clique of the input
graph. The input graph is corrupted and we have to clean (edit) the graph to
reconstruct the clustering under the parsimony criterion. Clustering data still
represents a key step of numerous life science problems. The weighted variant
of the CLUSTER EDITING problem has been frequently proposed for clustering
biological entities such as proteins [I8].

The CLUSTER EDITING problem is NP-hard [I3]. The parameterized
complexity of CLUSTER EDITING, using the number of edge modifications as
parameter k, is well-studied, see also the FPT races column in [I7]. A first
algorithm with running time O*(2.27%) [10] was improved to O*(1.92%) by an
extensive case analysis [0]. By transforming the problem to the integer-weighted

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 85-P§, 2011.
© Springer-Verlag Berlin Heidelberg 2011

86 S. Bocker

variant, running time was advanced to O*(1.82%) [1]. Using a characterization
of graphs that do not contain many conflicts, results in the currently fastest
algorithm with running time O*(1.76%) [3]. There exist linear problem kernels
for the unweighted [5] and the integer-weighted variant [4]. Recently, CLUSTER
EDITING with “don’t care edges” (that is, edges whose modification cost is zero)
has been shown to be fixed-parameter tractable [I4]. To find exact solutions
in practice, a combination of data reduction and Integer Linear Programming
proved to be very efficient [2].

Our contributions. We present a new search tree algorithm for CLUSTER
EDITING with running time O(1.62% + k% + m + n) for m edges and n vertices,
being the fastest known for the problem. The algorithm itself is rather simple,
and is based on the merge branching introduced in [I]. We stress that our result
only holds for the unweighted CLUSTER EDITING problem, as general integer-
weighted instances will not satisfy the “parity property” introduced below.

2 Preliminaries

A problem with input size n and parameter k is fixed-parameter tractable (FPT)
if it can be solved in O(f(k) - p(n)) time where f is any computable function
and p is a polynomial. We naturally focus on the f(k) factor, and sometimes
adopt the O*(f(k)) notation that suppresses polynomial factors. For a general
introduction we refer to [7[15]; in particular, we assume familiarity with bounded
search trees, branching vectors, and branching numbers. In the following, let n
be the number of vertices, and k the number of edge modifications.

For brevity, we write uv as shorthand for an unordered pair {u,v} € (‘2/)

Let s : (‘2/) — 7 be a weight function that encodes the input graph: For
s(uv) > 0 a pair uv is an edge of the graph and has deletion cost s(uv), while for
s(uv) < 0, the pair uv is not an edge (a non-edge) of the graph and has insertion
cost —s(uv). Let N(u) be the set of all vertices v € V' such that s(uv) > 0. If
s(uv) = 0, we call uv a zero-edge. We require that there are no zero-edges in the
input graph. Nonetheless, zero-edges can appear in the course of computation
and require additional attention when analyzing the algorithm.

When analyzing connected components we only consider edges of the graph.
We say that C C V is a clique in an integer-weighted graph if all pairs uv € (g)
are edges. If all vertex pairs of a connected component are either edges or
zero-edges, we call it a weak clique. Vertices uvw form a conflict triple in an
integer-weighted graph if uv and vw are edges but uw is either a non-edge or
a zero-edge. We distinguish two types of conflict triples wvw: if uw has weight
zero then the conflict triple is called weak, whereas if uw is a non-edge then the
conflict triple is called strong. If the integer-weighted graph contains no conflict
triples then it is transitive, i.e. a disjoint union of weak cliques. But the converse
is obviously not true, as the example of a single weak conflict triple shows: This
graph is a weak clique but contains a (weak) conflict triple. To solve WEIGHTED
CLUSTER EDITING we first identify all connected components of the input graph
and calculate the best solutions for each component separately, because an

A Golden Ratio Parameterized Algorithm for Cluster Editing 87

optimal solution never connects disconnected components. Furthermore, if the
graph is decomposed during the course of the algorithm, then we recurse and
treat each connected component individually.

An unweighted CLUSTER EDITING instance can be encoded by assigning
weights s(uv) € {+1, —1}. In the resulting graph, all conflict triples are strong.
During data reduction and branching, we may set pairs uv to “forbidden”
or “permanent”. Permanent edges can be merged immediately: Merging uv
means replacing the vertices u and v with a single vertex v/, and, for all
vertices w € V \ {u, v}, replacing pairs uw, vw with a single pair v'w. In this
context, we say that we join vertex pairs uw and vw. The weight of the joined
pair is s(v'w) = s(uw) + s(vw). In case one of the pairs is an edge while the
other is a non-edge, then we can decrease parameter k by min{|s(uw)|, |s(vw)]|}.
Note that we may join any combination of two edges, non-edges, or zero-edges
when merging two vertices. We stress that joined pairs can be zero-edges.

We encode a forbidden pair uv by setting s(uv) = —oo. By definition, every
forbidden pair wv is a non-edge, since s(uv) < 0. A forbidden pair uw can be part
of a conflict triple uvw, which then is a strong conflict triple. Assume that we join
pairs wv and uw where ww is forbidden and, hence, a non-edge. From the above
definition, the resulting pair v/w is forbidden, too, as s(v'w) = s(uw) 4+ s(vw) =
—00 + s(vw) = —oo holds for all s(vw) € RU {—oo}. Finally, if uw is forbidden
and vw is an edge then k is decreased by min{oo, [s(vw)|} = s(vw).

The following branching was proposed in [I]: We branch on an edge uv by
recursively calling the algorithm two times, either removing uv and setting it
to forbidden, or merging wv. If uv is part of at least one strong conflict triple,
then merging uv will generate cost: As there is both an edge uw and a non-edge
vw, we can reduce k by min{s(uw), —s(vw)}. In case s(uw) = —s(vw), joining
uw and vw into w'w results in «w/'w being a zero-edge. At a later stage of the
algorithm, this would prevent us from decreasing our parameter when joining
the zero-edge u'w. To circumvent this problem, the following bookkeeping trick
was introduced in [I]: We assume that joining uvw and vw with s(uw) = —s(vw)
only reduces the parameter by min{s(uw), —s(vw)} — 5 = [s(uw)| — 5 > 1.
If at a later stage we join this zero-edge with another pair, we decrease our
parameter by the remaining % So, both generating and destroying a zero-edge
generates cost of at least é Note that joining with a forbidden pair cannot create
a zero-edge.

Assume that s(vw) = —s(uw) with |s(vw)| = |s(uw)| > 2. Then, merging an
edge uv in a conflict triple uvw will also generate a zero-edge, and generates
cost of at least g In our analysis, we sometimes concentrate on the case that

s(vw) = —s(uw) = +1, where merging uv has cost ;. We do so only if it is
absolutely obvious that |s(vw)| = |s(uw)| > 2 will result in the desired branching
vector.

Our fixed-parameter algorithms require a cost limit k: In case a solution
with cost < k exists, the algorithm finds this solution; otherwise, “no solution”
is returned. To find an optimal solution we call the algorithm repeatedly,
increasing k.

88 S. Bocker

3 Vertex Parities

We need a simple observation about the input graphs to reach an improved
running time: An integer-weighted graph G with weight function s : (‘2/) — Z has
the parity property if there is a parity mapping p : V. — {EVEN, ODD} such that,
for each pair uv, s(uv) is odd if and only if both p(u) = ODD and p(v) = ODD
holds. We ignore forbidden pairs in this definition, since s(uv) = —oo has no
parity. Note that p is not necessarily unique, as demonstrated by a graph with
two vertices and even edge weight. We infer a few simple observations from this
definition: If s(uwv) is even, then either u or v or both must have EVEN parity. If
u is EVEN then s(uv) is even or wv is forbidden, for all v # wu.

Clearly, an unweighted instance of CLUSTER EDITING has the parity property,
as we can set p(u) = oDD for all vertices u € V. The interesting observation
is that a graph does not loose the parity property if we merge two vertices.
Quite possibly, this results has been stated before in a different graph-theoretical
context. We defer the simple, constructive proof to the full paper.

Lemma 1. Assume that an integer-weighted graph G has the parity property. If
we merge two vertices in G, then the resulting graph also has the parity property.

If the input graph has the parity property then, after any sequence of merging
operations, the resulting graph still has the parity property. This is particularly
so for the edge branching from [I], as both operations (setting an edge to
forbidden, or merging two vertices) preserve the parity property. For our
branching, it is important to notice that a zero-edge has even parity, so the
parity of at least one of its incident vertices must be EVEN.

4 Isolation and Vertices of Even Parity

Let ¢ = 1+2‘/5 = 1.61803... be the golden ratio, satisfying ¢ = 1+ ;. One
can easily see that a search tree algorithm with branching vector (2,1) results
in a search tree of size O(p*): This branching number is the positive root of
2724271 — 1,501+ 2 — 2% =0, and dividing by « results in the definition of
the golden ratio.

Our branching strategy is based on a series of lemmata, ensuring that either
there is an edge to branch on, or that the remaining graph is “easy”. Clearly,
branching on an edge that is part of four or more conflict triples results in the
desired branching vector. To this end, we concentrate on the critical case of three
conflict triples. First, we consider the case of three strong conflict triples:

Lemma 2. Let G be an integer-weighted graph that has the parity property.
Assume that an edge uv is part of exactly three conflict triples, all of which are
strong. Then, we can branch with branching number ¢ = 1.61803. ...

We use this lemma to show that we can find an edge to branch on, if we can find
an edge that is part of at least three conflict triples.

A Golden Ratio Parameterized Algorithm for Cluster Editing 89

Lemma 3. Let G be an integer-weighted graph that has the parity property.
Assume that an edge uv is part of three or more conflict triples. Then, we
can either find an edge with branching number ¢, or we can reduce k without
branching.

The remainder of this section is devoted to proving these two central lemmata.

Proof (Lemma[d). We will show that we can find an edge to branch on, with
branching vector (1,2) or better. In our reasoning, we will show that either,
we have already reached the desired branching vector; or, we can infer certain
structural properties about the instance.

Let a, b, ¢ be the three vertices that are part of the three conflict triples with
u,v. If s(uv) > 2 then branching on uv results in deletion cost s(uv) > 2 and
merging cost 3 - é, so we reach branching vector (2, g) and we are done. If
wvx with € {a,b,c} is a conflict triple such that s(vz) > 2 or s(ux) < =2,
then merging wv into «' will not create a new zero-edge incident to u'. So,
branching on uv has branching vector (1,2 -3 +1) = (1,2), and we are done.
The same argumentation holds for a conflict triple vuz. In the following, we may
assume that a,b,c are ODD, and that s(uv) = 1 and |s(wz)| = 1 holds for all
w € {u,v} and z € {a,b,c}; for all other cases, we have just shown that the
desired branching vector can be reached.

Assume that u, v do not have a common neighbor, N (u)UN (v) = {u, v, a, b, c}.
Then, merging u,v into v’ generates three zero-edges u'a,u’b,u'c, and u’ is
isolated, N(u') = (. But then, we do not have to use bookkeeping for these
edges, as {u'} will also be a separated cluster of size one in the solution. So,
branching on uw results in branching vector (1, 3).

We will now use the same trick that the merged vertex u’ can be isolated, but
this is slightly more involved in case w,v have at least one common neighbor.
Let D := N(u) N N(v), then N(u)U N(v) = DU {u,v,a,b,c} and |D| > 1. Our
first step is to branch on uv: We delete uwv with cost 1, and set it to forbidden.

Next, we merge u,v into a new vertex u’. This generates three zero edges
u'a,u'b, u'c with costs g Here, s(u'd) > 2 holds for all d € D = {dy,...,d;}. We
will now branch on all edges v'd; where the case that u'd; is deleted, is further
analyzed. In detail, we either merge u'd; with costs ;’; or, we delete u'd; with
cost 2 and branch on u'd; 41, if i < [. Note that we either delete all dy,...,d;, or
we finally merge some u’d; with cost ‘;’ In the latter case, the total costs of this
branch are 2(i — 1) 4+ g But in the very last case where all d, ..., d; are deleted,
we separate u’/. Hence, by the reasoning introduced above, we can “cash” cost ;’
we have put aside when generating the three zero-edges u’a, u'b, u’c. So, the costs
of this final branch are 2[+ :2)’ Recall that in all cases, we have additional cost
g for generating the three zero-edges. In total, we reach the partial branching
vector (0+3,243,...,2l4+3)=(3,5,7,...,20 + 3).

We combine these two partial branching vectors into one branching vector
(1,3,5,7,9,...,2l4+ 3). We claim that any such branching vector corresponds to
a branching number =z < ¢, and that the numbers converge towards ¢. To this
end, first note that 1/¢ is the unique positive root of the polynomial 2%+ 2 — 1,
that is the characteristic polynomial of branching vector (2,1). We analyze the

90 S. Bocker

infinite series f(z) := 2° + 2 + 2% + ... that converges for all |z| < 1. Now,

2% f(z) = f(z) — 1 and
(22— 1) f(@) = f&) — 1+ 2f () — (&) = (@) — 1.
So, for the series g(z) := zf(z) — 1 we have

g(z) =af() = 1= (2% +z - 1) f(2)

and, hence, g(1/¢) = 0. For the partial sums Sj(x) := 223 4 22+ ... 4 23
! — 1 we infer Sj(z) < Sip1(z) and Si(z) < g(z) for x € (0,00). Also, S; is
strictly increasing in [0, 00).

Note that any polynomial of the form p(z) := a,z"™ + --- + ajz* — 1 with
a; > 0 for all i, has exactly one positive root for p #Z —1. This follows as p
is continuous, p’(z) > 0 for all x > 0, so p is strictly increasing in (0, c0),
p(0) = —1, and lim,_ p(z) = oco. Let x; be the unique positive root of S;(x).
With Sj(z1+1) < Si+1(xi4+1) = 0 we finally infer

£E1>CCQ>CC3>"'>1/(p.

By definition, 1/x; is the branching number for branching vector
(1,3,5,7,9,...,2l + 3), and we reach

1wy <1/we < 1/xg < -+ < .

Since the series S; converges uniformly to g in the interval [0, o] for every a < 1,
we infer that lim; 1/2; = ¢ must hold, which concludes the proof of the lemma.
O

Proof (Lemma [3). Again, we will show that either, we have already reached
the desired branching vector (1,2) or better; or, we can infer certain structural
properties about the instance.

If wv is part of four conflict triples then we reach branching vector (1,4 - é) =
(1,2). If wv is part of three strong conflict triples then Lemma Pl guarantees
branching number ¢. So, assume that uv is part of exactly three conflict triples,
and that uvw is a weak conflict triple, so uw is a zero-edge. As uv is part of three
conflict triples, we can choose a,b such that N(u) A N(v) = {w,a,b}. Clearly,
for s(uv) = 2 we have branching vector (2, 3), so we may assume s(uv) = 1. This
implies that both u and v must have ODD parity. Since uw is a zero-edge, we infer
that w has EVEN parity and, hence, that s(vw) > 2 holds. For our worst-case
considerations, we may assume s(vw) = 2.

If vw is part of any additional conflict triples besides wvu, then we reach
branching vector (2, 1) for branching on vw: Deleting vw has cost 2, and merging
vw then has cost 2 - ; The same holds true if v or w are incident to additional
zero-edges besides uw. So, assume there are no zero-edges incident to v or w
besides uw, and vx is an edge if and only if wz is an edge for all x # u,v,w.
Let X C V' \ {u,v,w} be the set of vertices incident to v and, consequently, also
to w. Let X' := X \ {a,b}, and note that this set can be empty. All z € X’ are

A Golden Ratio Parameterized Algorithm for Cluster Editing 91

also incident with u; otherwise, there is a fourth conflict triple for the edge uv.
We infer N ({u,v,w}) C {u,v,w,a,b} UX".

Choose an arbitrary x € X'. If wx is part of an additional conflict triple
besides wxu, or if x is incident to a zero-edge, then we again reach branching
vector (2,1) for branching on wa: Deleting wax has cost 2 since w is EVEN,
and merging wx has cost 2 - % Hence, we infer three things: Firstly, each y
adjacent to some x € X’ is also adjacent to w and, hence, y € X. So, N(X') C
{u,v,w,a,b} UX'. Secondly, each pair z,y € X’ must be connected by an edge.
We distinguish three cases:

1. Assume a,b € X, so va and vb are edges. In this case, u, v, w,a,b, X' form
a connected component. If ab is a zero-edge or non-edge, then branching
on wa results in branching vector (2,2 - é) although w, a,u do not form
a conflict triple, merging wa still destroys the zero-edge uw. So, we may
assume that ab is an edge. By the same reasoning, ax and bx must be edges,
for all x € X’. Next, s(uxz) = 1 must hold for all z € X’; otherwise, we
can branch on uwz with branching vector (2,3 - ;) The cost of separating u
from all other vertices is |X’| + 1, and the resulting graph consists of two
cliques {u} and {v,w, a,b} UX’. The cost of any other cut in this connected
component is at least |X'| + 3 (for separating a or b), since w is adjacent to
all vertices but u with edges of weight at least 2. The cost of transforming
the connected component into a clique is |s(ua)| + |s(ub)|. So, we can test in
constant time if one of the two possible transformations has cost at most k.

2. Assume a € X and b ¢ X, so va and ub are edges. Then, N({u,v,w,a} U
X" C{u,v,w,a,b}UX’. For s(ua) < —1 we reach branching vector (1, 2 é +
1) for branching on uv, as merging u, v will not generate a zero-edge incident
to a and, hence, no bookkeeping is required. (Obviously, this includes the
case that ua is forbidden.) So, s(ua) € {0,1} must hold. Since bv is a non-
edge, bw and bz for all x € X’ are also non-edges. If s(ub) > 2 then branching
on ub results in branching vector (2,1), as vub is a conflict triple. Now, one
can easily see that no optimal solution can bisect v,w,a, X’: For X' = {§
a bisection of vertices v, w,a costs at least 3, and for X’ # () costs are at
least 4. Given a solution that bisects v, w, a, X', we modify the solution by
putting u, v, w, a, X’ in a separate clique, with cost at most 1 for inserting ua,
and cost 1 for removing ub. Clearly, this new solution has smaller total cost
than the initial solution, so the initial solution cannot be optimal. Hence,
we can merge v, w, a, X' without branching, generating cost of at least % for
destroying the zero-edge uw.

3. Assume a,b ¢ X, so ua and ub are edges. Then, va and vb are non-edges,
since no zero-edges can be incident to v. Similar to above, this implies that
wa and wb, as well as ax and bz for all z € X', are non-edges, too: Otherwise,
we can branch on vw or wz. If s(ua) > 2 then branching on uv results in
branching vector (1,2). So, we infer s(ua) = 1 and, by symmetry, s(ub) = 1.
Now, merging uv into some vertex u’' results in a separated clique with

92 S. Bocker

vertex set u’,w, X that is not connected to the rest of the graph, and can
be removed immediately. Hence, branching on uv leads to branching vector
(1,2) as we do not have put away 2 - é for potentially destroying zero-edges
u'a and u'b later.

We have shown that we can find an edge that allows for the desired branching
vectors, simplify the instance and reduce k& without branching, or solve the
remaining instance in constant time. a

5 Solving Remainder Instances

Assume that there is no edge in the graph that is part of three or more (weak
or strong) conflict triples. We transform our weighted graph into an unweighted
counterpart G, where zero-edges are counted as non-existing. This graph G,
is called the type graph of the weighted graph. Then, there is no edge uv in
the unweighted graph G,, that is part of three conflict triples. Damaschke [6]
characterizes such graphs: Let P,,, C,, K, be the chordless path, cycle, and clique
on n vertices, respectively. Let G + H denote the disjoint union of two graphs,
and let p- G denote p disjoint copies of G. Let G« H be the graph G + H where,
in addition, every vertex from G is adjacent to every vertex from H. Finally, the
graph G¢ has the same vertex set as G, and {u,v} is an edge of G if and only
if it is no edge of G. Now, Theorem 2 from [0] states:

Lemma 4. Let G be a connected, unweighted graph such that no edge is part of
three or more conflict triples. Then, G has at most six vertices, is a clique, a
path, a cycle, or a graph of type Ky H for ¢ > 0 and H € {K1+K1,Cs, Py, K1+
Ki+ K, Ko+ Ko, Ko+ Ky, (p- K2)¢}, p> 2.

In fact, the characterization in [6] is slightly more complicated: To this end, note
that K, % Py = Kg41 * (K7 4+ K1). Any non-edge in the type graph can be a
non-edge or zero-edge in the weighted graph, and edges and non-edges can be
arbitrarily weighted. We now show that we can efficiently solve all remaining,
“simple” instances. This is similar to our argumentation in [3] but as we want to
reach branching vector (2,1), our argumentation is slightly more involved. We
defer the proof of Lemma [5] to the full version of this paper.

Lemma 5. Let G be a connected graph that has the parity property. Assume
that there is no edge that is part of three conflict triples. Then, we can find an
edge with branching number ; reduce k without branching; or, we can solve the
imstance in polynomial time.

6 A Golden Ratio Base for Search Tree Size

Assume that G has the parity property. We want to show that we can either find
an edge to branch on with branching number ¢; decrease k without branching;
or, solve the remaining instance in polynomial time. If there is an edge uv that

A Golden Ratio Parameterized Algorithm for Cluster Editing 93

is part of at least three (weak or strong) conflict triples, we branch on this edge.
By Lemma [B] doing so results in branching number ¢, or we reduce k& without
branching, as desired. We can find an edge to branch on, in time O(n?). Similarly,
we can perform all other tasks required for one step of the branching, in this time.
If there is no edge uv that is part of at least three conflict triples, then Lemma [
guarantees that we can branch with branching number ¢; reduce k£ without
branching; or, solve the instance in polynomial time. To compute minimum s-¢-
cuts as part of Lemma [, we use the Goldberg-Tarjan algorithm [§] to compute
a maximum s-t-flow in time O(n?), independent of edge weights. We reach:

Lemma 6. Given an integer-weighted instance of the CLUSTER EDITING
problem with no zero-edges that satisfies the parity property, this instance can be
solved in O(¢* - n?) time.

We can combine this with the weighted kernel from [4] of size O(k) with
running time O(n?), resulting in running time O(¢* - k* + n?). To get rid of
the multiplicative polynomial factor, we use interleaving [16]: Here, a small trick
is required to make this kernel work with instances that may contain zero-edges;
we defer the details to the full paper.

Theorem 1. Given an integer-weighted instance of the CLUSTER EDITING
problem with no zero-edges that satisfies the parity property, this instance can be
solved in O(¢® +n?) time.

Given an unweighted CLUSTER EDITING instance, we first identify all critical
cliques in time O(m + n) for a graph with n vertices and m edges [12], and
merge the vertices of each critical clique [I,[IT]. The resulting integer-weighted
instance has O(k) vertices and no zero-edges, and satisfies the parity property.
Using Theorem [we reach:

Theorem 2. CLUSTER EDITING can be solved in O(1.62% + k? + m +n) time.

7 Conclusion

We have presented a parameterized algorithm for the CLUSTER EDITING
problem, that finally reaches the golden ratio as the base for the exponential
growth of the running time. It is noticeable that search tree approaches plus
additional structural observations still have a lot of potential to yield better
FPT algorithms for well-known problems, even without extensive case handling.
Note that the underlying edge branching is also very swift in practice, and can
usually process instances with thousands of edge modifications in a matter of
minutes [2].

The base ¢ = 1+2\/5 = 1.61803..., resulting from branching vector (2,1),
appears repeatedly in the analysis of advanced algorithms for the problem [I}3].

94

S. Bocker

Hence, it is an interesting question for the future if we can get beyond the O* ()
barrier. One possible extension lies in the split-off technique introduced in [3] for
CLUSTER DELETION, even though it cannot be directly applied, as branching on
a Cy results in branching vector (1,1) for CLUSTER EDITING. Improving upon
the running time should not be problematic for the rather technical Lemma [l
though. Here, the open question is, which of these special cases are tractable
(such as H = K; + K1) and which are intractable (such as H = Ky + K1 + K),
and what FPT algorithms can be derived for the hard ones.

References

10.

11.

12.

13.

14.

. Bocker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameter-

ized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467-5480 (2009)

. Bocker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:

Evaluation and experiments. Algorithmica 60(2), 316-334 (2011)

. Bocker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster

editing. Inform. Process. Lett. 111(14), 717-721 (2011)

. Cao, Y., Chen, J.: Cluster Editing: Kernelization Based on Edge Cuts. In: Raman,

V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 60-71. Springer, Heidelberg
(2010)

. Chen, J., Meng, J.: A 2k Kernel for the Cluster Editing Problem. In: Thai,

M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459-468. Springer,
Heidelberg (2010)

. Damaschke, P.: Bounded-Degree Techniques Accelerate Some Parameterized

Graph Algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 98-109. Springer, Heidelberg (2009)

. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)

. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.

ACM 35(4), 921-940 (1988)

Gramm, J., Guo, J., Hiiffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321-347
(2004)

Gramm, J., Guo, J., Hiiffner, F., Niedermeier, R.: Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4),
373-392 (2005)

Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8-10), 718-726 (2009)

Hsu, W.-L., Ma, T.-H.: Substitution Decomposition on Chordal Graphs and
Applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp.
52-60. Springer, Heidelberg (1991)

Kfiivdnek, M., Moravek, J.: NP-hard problems in hierarchical-tree clustering. Acta.
Inform. 23(3), 311-323 (1986)

Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In: Proc. of ACM Symposium on Theory of Computing,
STOC 2011, pp. 469-478. ACM (2011), doi:10.1145/1993636.1993699

15.

16.

17.

18.

A Golden Ratio Parameterized Algorithm for Cluster Editing 95

Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Inform. Process. Lett. 73, 125-129 (2000)

Rosamond, F. (ed.): FPT News: The Parameterized Complexity Newsletter (Since
2005), http://fpt.wikidot.com/

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J.H., Bocker,
S., Stoye, J., Baumbach, J.: Partitioning biological data with transitivity clustering.
Nat. Methods 7(6), 419-420 (2010)

Stable Sets of Threshold-Based Cascades
on the Erdos-Rényi Random Graphs

Ching-Lueh Chang'* and Yuh-Dauh Lyuu®3**

! Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan
clchang@saturn.yzu.edu.tw
2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan
lyuu@csie.ntu.edu.tw
3 Department of Finance, National Taiwan University, Taipei, Taiwan

Abstract. Consider the following reversible cascade on the Erd6s-Rényi
random graph G(n,p). In round zero, a set of vertices, called the seeds,
are active. For a given p € (0,1], a non-isolated vertex is activated
(resp., deactivated) in round ¢ € Z" if the fraction f of its neighboring
vertices that were active in round ¢t — 1 satisfies f > p (resp., f < p).
An irreversible cascade is defined similarly except that active vertices
cannot be deactivated. A set of vertices, S, is said to be stable if no
vertex will ever change its state, from active to inactive or vice versa,
once the set of active vertices equals S. For both the reversible and
the irreversible cascades, we show that for any constant ¢ > 0, all p €
[(14+¢€) (In(e/p))/n, 1] and with probability 1 —n~?®) every stable set
of G(n,p) has size O([pn]) or n — O([pn]).

1 Introduction

Let G(V, E) be a simple undirected graph and p € (0,1], where each vertex of
G can be in one of two states, active or inactive. Consider the following process,
called the reversible cascade. In round zero, only a set of vertices, called the seeds,
are active. Thereafter, a non-isolated vertex is activated (resp., deactivated) in a
round if the fraction f of its neighboring vertices that were active in the previous
round satisfies f > p (resp., f < p). A set S C V is said to be stable for the
reversible cascade if no vertex will ever change its state once the set of active
vertices equals S. The irreversible cascade and its stable sets are defined similarly
except that the deactivations of vertices are prohibited.

To model socio-economic contagion amongst fully rational individuals, Mor-
ris [32] considers a countably infinite population in which each player has two

* Supported in part by the National Science Council of Taiwan under grant 99-2218-
E-155-014-MY2.

** Supported in part by the National Science Council of Taiwan under grant 97-2221-E-
002-096-MY3 and Excellent Research Projects of National Taiwan University under
grant 98R0062-05.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 96-[[03, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Stable Sets of Threshold-Based Cascades 97

strategies and a finite set of neighbors. In each round, a player chooses strat-
egy 1 if and only if at least a p € (0,1] fraction of its neighbors do likewise
in the previous round. So the resulting model is the same as our reversible cas-
cade except that G(V, E) is now an infinite graph with finite degrees. Define
the contagion threshold to be the largest p such that there exists a finite set of
players whose initial choice of strategy 1 eventually leads all players to strategy
1. Morris proves several characterizations of the contagion threshold and an 1/2
upper bound on it. For variants with partially rational players whose states are
updated at random times governed by a Poisson process, much research studies
the expected waiting time until everyone or almost everyone enters the same
state |17, [14, 128, 43].

Consensus formation and periodic behavior are important aspects of the re-
versible cascade with p = 1/2 [34, 136, [44]. No matter what vertices are chosen
as seeds, the set of active vertices in a simple undirected graph will eventually
(1) stabilize or (2) coincide with one subset of V' in even-numbered rounds and
another subset in odd-numbered rounds [20, 21]. More general discrete-time dy-
namical systems also exhibit similar behavior |19, 29431, 138, 139]. The reversible
cascade with p = 1/2 as well as its slight variants also model the propagation
of transient faults in majority-based fault-tolerant systems [17, [18, [35] and the
evolution of host-pathogen systems [2-4, [22]. Flocchini et al. [17, 18] and Pe-
leg [35] study the minimum number of seeds guaranteeing that (1) all vertices
will be active after a finite number of rounds and (2) no active vertices will
ever be deactivated in any round. For any simple undirected graph G(V, E),
Peleg [35] shows that £2(1/|V|) seeds are needed for activating all vertices in
two rounds. Berger [6] constructs a graph family for which a constant number of
seeds can activate all vertices after a finite number of rounds. Agur et al. [2, 4]
and Granville |22] derive exact formulas for the number of stable sets of a ring.
They also count the number of cyclic binary strings with arbitrary restrictions
on the numbers of consecutive 0’s and 1’s. For a survey of the above results,
see [36].

Next, we turn to irreversible cascades. Luccio et al. [26] and Flocchini
et al. [16-18] assume that each vertex is activated when the majority of its neigh-
boring vertices are active, where the majority may assume the strict or the simple
form. Their setup is suitable for modeling the propagation of permanent faults in
majority-based fault-tolerant systems |[L5-18, (26, 36]. Bounds have been derived
on the minimum number of seeds that can activate all vertices after a finite num-
ber of rounds for rings [16,117], complete trees, butterflies, cube-connected cycles,
shuffle-exchange graphs, DeBruijn graphs, hypercubes |16, [17,126], tori [13,[18, 124,
25,137], Erd4s-Rényi random graphs |9, 11] or directed graphs without source ver-
tices |1,19,110]. Bootstrap percolation analyzes the density of independently chosen
seeds needed to activate all vertices at the end with high probability |5, 41].

Computational issues regarding irreversible cascades have also been studied.
In particular, efficient algorithms are known for the problem of finding a min-
imum set of seeds activating all vertices after a finite number of rounds in a

98 C.-L. Chang and Y.-D. Lyuu

tree [13,140], cycle, complete graph and bipartite complete graph [40]. In contrast,
many hardness results are known for the same problem and its variants in general
graphs [12, 23, 24, l4d].

For both the reversible and the irreversible cascades, this paper proves that
for any constant € > 0, all p € [(1 + ¢€) (In(e/p))/n,1] and with probability
1 — n=2M every stable set of G(n,p) has size O([pn]) or n — O([pn]). With
p — 0T, therefore, any stable set of G(n,p) occupies either an o(1) or a 1 —o(1)
fraction of all vertices.

2 Definitions

Let G(V, E) be a simple undirected graph [42]. For X,Y C V, define e(X,Y) to
be the number of edges with one endpoint in X and the other in Y. For a positive
integer n and a real number p € [0, 1], the Erdds-Rényi random graph G(n, p) is
a simple undirected graph with vertices 1,2, ..., n where each of the possible (g)
edges appears independently with probability p [8]. For each v € {1,2,...,n},
define N(v) C [n]\ {v} to be the set of neighbors of v and deg(v) = | N(v) |.
For convenience, define [n] = {1,2,...,n}. Furthermore, define 2["] to be the
power set of [n], i.e., the set of all subsets of [n].

Consider the following reversible cascade on the Erdos-Rényi random graph
G(n, p) whose vertices have two possible states, active or inactive. In round zero,
only a set of vertices, called the seeds, are active. For a given p € (0,1], a non-
isolated vertex is activated (resp., deactivated) in round ¢t € Z" if the fraction
f of its neighboring vertices that were active in round ¢ — 1 satisfies f > p
(resp., f < p). More precisely, a vertex with degree d > 0 is activated (resp.,
deactivated) in a round if at least (resp., less than) [pd] of its neighboring vertices
are active in the previous round. The irreversible cascade is defined similarly
except that deactivations of vertices are prohibited. Define o7V : 2ln] — 2] o
map the set of active vertices in a round to that in the next round, assuming the
reversible cascade. Then define 0;)” - 2ln] — oln] similarly for the irreversible
cascade. A set S C [n] is said to be stable for the reversible (resp., irreversible)
cascade if 07?¥(S) = S (resp., oh"(S) = S). So a reversible or irreversible cascade
stops evolvmg precisely when its set of active vertices is stable.

Below is a straightforward lemma.

Lemma 1. For a simple undirected graph G(V, E) and all disjoint A,B C 'V,

¢ (A, AU B) Z|N AUB)|
vEA

Proof. Each edge with an endpoint in A and the other in B\ A contributes 1 to
both e(4,AUB) and) ., | N(v) N (AU B)|. Each edge with both endpoints
in A contributes 1 to e(A,AUB) and 2to) ., | N(v)N(AUB)]|. O

Stable Sets of Threshold-Based Cascades 99

3 Stable Sets of the Erdés-Rényi Random Graphs

This section shows that for any constant € > 0, all p € [(1 + €) (In(e/p))/n, 1],
p € (0,1] and with probability 1 — n~?() every stable set of G(n,p) has size
O([pnl) or n—O([pn]).

Lemma 2. Letn € Z*, pe[0,1] and p € (0,1]. Then
Pr[|{v e [n]]|deg(v) >30pn}| > pn] < <[p7:ﬂ) g~ 1opnlonl

where the probability is taken over the random graphs G(n,p).

Proof. In the proof, all probabilities are taken over the random graphs G(n, p).
Clearly,

Pr(|{v € [n] | dea(v) > 30pn} | > pn]

=Pr[3X C[n],| X | = [pn],Yv € X,deg(v) > 30pn|

< Z Pr[Vv € X,deg(v) > 30pn]. (1)
XCln],| X |=[pn]

Now fix an arbitrary X C [n] with size [pn]. If deg(v) > 30pn for all v € X
then Lemma [I]implies e(X, [n]) > 15pn | X |. Hence

Pr[Vv € X, deg(v) > 30pn]|
< Prle(X,[n]) > 15pn| X
< 2—15pn|'pn'\7

where the last inequality follows from Chernoff’s bound [33, Exercise 4.1]. This
and inequality () complete the proof. O

Lemma 3. For anyn € Z*, p € [0,1], p € [1/n,1], £ € ZT with £ > 30 and

Pr[3X,U C [nl,|X| = [pn],€[pn] < U] < n—¢[pn], Yo € [n]\ (UUX), [N(v) N U| < 30ppn]
Ln/2]

e en e "
<2 Z exp | 2pnIn +sln + nps(n — s) In) R
aETom] p s (L—m)t=m

where the probability is taken over the random graphs G(n,p).

Proof. In the proof, all probabilities are taken over the random graphs G(n, p).
For any X, U C [n] with |U | > £[pn] and each v € [n]\ (U U X),

Pr|N(u)NU| < 30ppn]
SPrNwnU[< (1 =n) E[[NunU|]

“(a —en;—n)w

100 C.-L. Chang and Y.-D. Lyuu

by Chernoff’s bound [27, Theorem 4.5]; hence, as the random variables | N (v) N
U|for v e [n]\ (UUX) are independent,

6777
=)t
If, furthermore, | X | = [pn] and |U | < n — &[pn], then

oon A\ PIUIG-IUUX) o \PIUL-UD
<<1— >> <<< BT) ®)

)
by the easily verifiable fact that n — |[UU X | > n(n —|U|). Now,
Pr(3X,U C [n],|X| = [pn], &[pn] < |U| < n —€fpn], Vo € [n] \ (U U X), [N (v) N U| < 30ppn]

< > > Pr[Vv e [n]\ (UUX),|N(w)nU| < 30ppn]
XC[n],| X |=[pn] UC[n],E[pn]<|U |<n—&[pn]

p|U|[(n—|UUX])
) @)

Pr[vv e [n]\ (UUX),|N(w)NU| < 30ppn] < ((1

IN

—n np|U|(n—|U|)
e
1—n

XC[n].[X |=[pn] UC[n],[pn]<|U |<n—€lpn] <(1 -

N - np Ul (n—| U
<()

_ (4)
(o1 e neronT<IU 1<n—glomT (“‘")1 K

where the second inequality follows from inequalities [2)—(B]). Furthermore,

Z ((1 _e;;,l_n>npU(n—lUl)

Cln]&lpn]<|U |<n—€lpn]

n—¢&fpn] e nps(n—s)
> 2 ((1 - 77)1"7)

s=¢[pn] UC[n],|U|=s

=3 05"

[n/2]

-
<2 Z exp <s lnesn—i—nps(n—s) In (1677)1—77)’ (6)
s=¢[pn]

where inequality (B]) follows from () = (,”,) and s (n —s) = (n — s) s. Inequal-

n—s

ities @)—(6) complete the proof. O

Theorem 4. Let € > 0. Then there exists an integer & > 30 such that for any
neZt, pe1/n,1/¢2), pe [(1+6) (n(e/p)/n,1], oa: 2m) — 2ln) satisfying

VU C [n], {veln] | [Na(v)NU|> pdegg(v)} € oa(U) (7)
for each simple undirected graph G with vertex set [n], and writing o = 0¢(np),
Pr[3U C [n],&[pn] < |U| <n—¢€lpn], o(U) SUT=n"%D, (8)

where the probability is taken over over the random graphs G(n,p). The hidden
constants in the {2 notations are independent of n, p, p, € and &.

Stable Sets of Threshold-Based Cascades 101

Proof. We will leave & to be determined later; before that we only need £ > 30
in the derivation. Define n =1 — (30/¢). Asp € [(1+¢) (In(e/p))/n,1],

=7
exp <s n "+ nps(n — s) In ¢)
s

(1 —mn)t=n
< exp (s In e: +n(1+e¢) (ln Z) 5 (1 . Z) In (1 —6777)7177)’ 9)
€ (0,n]. Define
g(s,n,p) =sn e: +n(l+e) <ln Z) s (1 — 2) In (1 _6;)71—71' (10)

Elementary calculus and laborious calculations reveal the following properties of
g9(s,n, p):
— g(épn,n, p) < —4pnln(e/p) provided that p € (0,1/£?) and

1+n(1 -, 4; 11
(narai- g 5,) < -
— 0g(s,n,p)/0s < 0 for s € [Epn, en/(4 + 4€) | provided that

efn

1—|—77(1+e)(1—2+26) ln(l—n)1*”<0; (12)

— g(s,n,p) < —3n for s € [en/(4 + 4¢),n/2] provided that p € (0,1/£?) and

iln (6(41‘46))4—7](14—6) (In (e€?)) 4;46 (1—4;%) n) _e;)m < —3.(13)

By elementary calculus and n =1 — (30/¢),

e
lim In =—1.
g¢—oo (L—m)t=m
Therefore, with laborious calculations, inequalities ([I)-(I3]) hold in the limit
as & — o0o. Hence there exists a real number C(¢) > 30, depending only on e,
such that inequalities ([I)—(I3) hold for £ > C(e). From now on, we assume that
¢€>Cle) and p € [1/n,1/£%). So the derived properties on g(s,n, p) give

e
max s,m,p) <maxq —4pnln |, —3n,. 14
s€[Epn,n/2] gl 2 { P P } 14)

By Lemma [and inequalities ([@)—(I0) and (I4),

Pr[3X,U C [n],|X] = [pn],&[pn] < [U] < n —¢lpn], Yo € []\ (U U X), |N(v) N U| < 30ppn]
Ln/2]

e e
<2 Z exp (max{72pn In ,-3n+2pn In })
p p

s=¢fpn]

:o(i). (15)

102 C.-L. Chang and Y.-D. Lyuu

Let
Y ={ve[n]|deg(v) > 30pn}

be the set of vertices with degrees greater than 30pn. By Lemma [2]

PI‘[|Y| > pn] < < n)215pn(ﬂn] :nfﬁ(l). (16)

pn]
For any U C [n] with o(U) C U and v € [n]\ U, |[N(v)NU| < pdeg(v) by
relation [@); if, furthermore, v ¢ Y, then

| N(v)NU| < 30ppn. (17)
Therefore,

Pr(|Y| < [pn]) A(BU C [n],&[pn] < |U| <n—¢[pn],o(U) CU)]
S Pr[(JY] < [pn]) A (FU C [n],£[pn] < [U] < n —£fpn], Vo € [n]\ (UUY),|N(v) NU| < 30ppn)]

§O<:L)7 (18)

where the last inequality follows from inequality (I5). Summing up inequali-

ties (I0) and (IJ]) proves Eq. (). O

As aremark, in Theorem [o4 is nonrandom for each undirected graph G(V, E),
whereas o (. p) depends on the underlying random graph G(n, p).

As ¢ depends only on € in Theorem [l we may take £[pn] = O([pn]) in Eq. (8)
when € > 0 is a constant, as done below.

Theorem 5. Let € > 0 be a constant, n € Z*, p € (0,1] and p € [(1 +
€)(In(e/p))/n,1]. Assume that og: 2I" — 2["] satisfies relation (@) for each
simple undirected graph G with vertex set [n]. Then, writing o = 0gm,p),

Pr[vS C [n],(0(S)=8) = (S| =0 () V(S|=n-0(pm])]=1-n"D, (19

where the probability is taken over the random graphs G(n,p). The hidden con-
stants in the O and {2 notations are independent of n, p, p and S.

Proof. Assume without loss of generality that p > 1/n. Let £ be as in Theorem[4]
which is a constant because € is now a constant. The case of p € [1/n,1/£2)
is an immediate consequence of Theorem Hl For the case of p > 1/£2 = (1),
Eq. (I9) trivially holds. O

We now have the following corollary on the stable sets for the reversible and the
irreversible cascades.

Corollary 6. Let € > 0 be a constant. For anyn € Z*, p € (0,1], p € [(1 +
€) (In(e/p))/n, 1] and with probabilities taken over the random graphs G(n,p),

Pr [every stable set of G(n, p) has size O ([pn]) or n— O ([pn])] =1 —n" "M (20)

for both the reversible and the irreversible cascades. The hidden constants in the
O and {2 notations are independent of n, p and p.

Stable Sets of Threshold-Based Cascades 103

Proof. Immediate from Theorem [and the fact that relation (7] holds with
oe{oyV, o)} O

For the irreversible cascades on G(n,p) with p € [(1+¢) (In(e/p))/n, 1], Corol-
lary [6] implies the following polynomial-time algorithm for finding with proba-
bility 1 — o(1) a set of O([pn]) seeds activating all vertices at the end: First,
pick a set S of C[pn] seeds arbitrarily, where C' > 0 is a sufficiently large con-
stant. Second, pick all the vertices in [n]\ o}"(S) also as seeds. The number
of seeds thus picked is O([pn]) with probability 1 — o(1) because, by Corol-
lary [l an irreversible cascade with C[pn] seeds cannot stop activating vertices
until at least n — C'[pn] vertices are activated. It is asymptotically optimal for
p € [B(In(e/p))/(pn), 1], where 8 > 0 is a sufficiently large constant [11]. We
note that results of Ackerman et al. [1] can also be used to show the existence
of O([pn]) seeds activating all vertices at the end for the irreversible cascades
with p € [(1+¢€) (In(e/p))/n,1].

The next theorem shows that the range p € [(1+ €) (In(e/p))/n,1] in Corol-
lary 6 cannot be widened to p € [(1 — €) (In(e/p))/n,1]. The proof follows a
standard analysis on the number of isolated vertices of the Erdés-Rényi random
graphs.

Theorem 7. Let € € (0,1) be a constant. For any n € Z*, p € [1/n,1],
p€[0,(1—¢)(In(e/p))/n] and with probabilities taken over the random graphs
G(n,p),

Pr [G(n,p) has stable sets of sizes {2 (plfe/zn) and n — 2 <p176/2n> } =1-0(1)

for both the reversible and the irreversible cascades. The hidden constants in the
{2 notations are independent of p.

Proof. Tt is implicit in [42, Theorem 8.5.22] that for p € [0, (1 —¢€) (In(e/p))/n],
the number of isolated vertices of G(n, p) is £2 (p'~¢/?n) with probability 1—o(1).
The theorem follows because both the set of isolated vertices and that of non-
isolated vertices are stable for either the reversible or the irreversible cascade.

References

[1] Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds
for target set selection. Theoretical Computer Science (forthcoming 2010),
doi:10.1016/j.tcs.2010.08.021

[2] Agur, Z.: Resilience and variability in pathogens and hosts. IMA Journal on Math-
ematical Medicine and Biology 4(4), 295-307 (1987)

[3] Agur, Z.: Fixed points of majority rule cellular automata with application to
plasticity and precision of the immune system. Complex Systems 5(3), 351-357
(1991)

[4] Agur, Z., Fraenkel, A.S., Klein, S.T.: The number of fixed points of the majority
rule. Discrete Mathematics 70(3), 295-302 (1988)

[5] Balogh, J., Bollobés, B., Morris, R.: Bootstrap percolation in high dimensions.
Combinatorics, Probability and Computing 19(5-6), 643-692 (2010)

104

[6]

[7]

[22]

23]

24]

C.-L. Chang and Y.-D. Lyuu

Berger, E.: Dynamic monopolies of constant size. Journal of Combinatorial Theory
Series B 83(2), 191-200 (2001)

Blume, L.E.: The statistical mechanics of strategic interaction. Games and Eco-
nomic Behavior 5(3), 387-424 (1993)

Bollobds, B.: Random Graphs, 2nd edn. Cambridge University Press (2001)
Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theoretical Computer Sci-
ence 410(27-29), 2714-2724 (2009)

Chang, C.-L., Lyuu, Y.-D.: Bounding the Number of Tolerable Faults in Majority-
Based Systems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078,
pp. 109-119. Springer, Heidelberg (2010)

Chang, C.-L., Lyuu, Y.-D.: Spreading of messages in random graphs. Theory of
Computing Systems 48(2), 389-401 (2011)

Chen, N.: On the approximability of influence in social networks. In: Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1029—
1037 (2008)

Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Math-
ematics 157(7), 1615-1627 (2009)

Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5),
1047-1071 (1993)

Flocchini, P.: Contamination and decontamination in majority-based systems.
Journal of Cellular Automata 4(3), 183-200 (2009)

Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal
rings. Discrete Applied Mathematics 113(1), 23-42 (2001)

Flocchini, P., Krélovi¢, R., Ruzicka, P., Roncato, A., Santoro, N.: On time versus
size for monotone dynamic monopolies in regular topologies. Journal of Discrete
Algorithms 1(2), 129-150 (2003)

Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discrete Applied Mathematics 137(2), 197-212 (2004)

Ginosar, Y., Holzman, R.: The majority action on infinite graphs: Strings and
puppets. Discrete Mathematics 215(1-3), 59-71 (2000)

Goles, E., Olivos, J.: Periodic behavior of generalized threshold functions. Discrete
Mathematics 30(2), 187-189 (1980)

Goles-Chacc, E., Fogelman-Soulie, F., Pellegrin, D.: Decreasing energy functions
as a tool for studying threshold networks. Discrete Applied Mathematics 12(3),
261-277 (1985)

Granville, A.: On a paper by Agur, Fraenkel and Klein. Discrete Mathemat-
ics 94(2), 147-151 (1991)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. In: Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 137-146 (2003)

Kynél, J., Lidicky, B., Vyskocil, T.: Irreversible 2-conversion set is NP-complete.
Technical Report KAM-DIMATTIA Series 2009-933, Department of Applied Math-
ematics, Charles University, Prague, Czech Republic (2009)

Luccio, F.: Almost exact minimum feedback vertex set in meshes and butterflies.
Information Processing Letters 66(2), 5964 (1998)

Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Pro-
ceedings of the 6th International Colloquium on Structural Information and Com-
munication Complexity, pp. 204-218 (1999)

[27]

(28]

29]
[30]

[31]

Stable Sets of Threshold-Based Cascades 105

Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press (2005)
Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games.
In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science, pp. 303-312 (2009)

Moran, G.: Parametrization for stationary patterns of the r-majority operators on
0-1 sequences. Discrete Mathematics 132(1-3), 175-195 (1994)

Moran, G.: The r-majority vote action on 0-1 sequences. Discrete Mathemat-
ics 132(1-3), 145-174 (1994)

Moran, G.: On the period-two property of the majority operator in infinite graphs.
Transactions of the American Mathematical Society 347(5), 1649-1667 (1995)
Morris, S.: Contagion. Review of Economic Studies 67(1), 57-78 (2000)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

Mustafa, N.H., Pekec, A.: Majority Consensus and the Local Majority Rule. In:
Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.
530-542. Springer, Heidelberg (2001)

Peleg, D.: Size bounds for dynamic monopolies. Discrete Applied Mathemat-
ics 86(2-3), 263273 (1998)

Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theo-
retical Computer Science 282(2), 231-257 (2002)

Pike, D.A., Zou, Y.: Decycling Cartesian products of two cycles. STAM Journal
on Discrete Mathematics 19(3), 651-663 (2005)

Poljak, S., Sura, M.: On periodical behavior in societies with symmetric influences.
Combinatorica 3(1), 119-121 (1983)

Poljak, S., Turzik, D.: On an application of convexity to discrete systems. Discrete
Applied Mathematics 13(1), 27-32 (1986)

Reddy, T.V.T., Krishna, D.S., Rangan, C.P.: Variants of spreading messages. In:
Proceedings of the 4th Workshop on Algorithms and Computation, pp. 240-251
(2010)

Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor &
Francis (1994)

West, D.B.: Introduction to Graph Theory, 3rd edn. Prentice-Hall, Upper Saddle
River (2007)

Young, H.P.: The diffusion of innovations in social networks. In: Blume, L.E.,
Durlauf, S.N. (eds.) Economy as an Evolving Complex System. Proceedings Vol-
ume in the Santa Fe Institute Studies in the Sciences of Complexity, vol. 3, pp.
267-282. Oxford University Press, New York (2006)

Zollman, K.J.S.: Social structure and the effects of conformity. Humanities, Social
Sciences and Law 172(3), 317-340 (2008)

How Not to Characterize Planar-Emulable
Graphs

Markus Chimani'*, Martin Derka?*,
Petr Hlinény?**, and Matéj Klusacek? **

! Algorithm Engineering, Friedrich-Schiller-University Jena, Germany
markus.chimaniQuni-jena.de
2 Faculty of Informatics, Masaryk University Brno, Czech Republic
{hlineny,xderka,xklusac1}@fi.muni.cz

Abstract. We investigate the question of which graphs have planar
emulators (a locally-surjective homomorphism from some finite planar
graph)—a problem raised in Fellows’ thesis (1985) and conceptually re-
lated to the better known planar cover conjecture by Negami (1986). For
over two decades, the planar emulator problem lived poorly in a shadow
of Negami’s conjecture—which is still open—as the two were considered
equivalent. But, in the end of 2008, a surprising construction by Rieck
and Yamashita falsified the natural “planar emulator conjecture”, and
thus opened a whole new research field. We present further results and
constructions which show how far the planar-emulability concept is from
planar-coverability, and that the traditional idea of likening it to projec-
tive embeddability is actually very out-of-place. We also present several
positive partial characterizations of planar-emulable graphs.

1 Introduction

A graph G has a planar emulator (cover) H if H is a finite planar graph and
there exists a homomorphism from H onto G that is locally surjective (bijective,
respectively). In such a case we also say that G is planar-emulable (-coverable).
See Def. 2] for a precise definition, and Fig.[Il for a simple example. Informally,
every vertex of GG is represented by one or more vertices in H such that the
following holds: Whenever two nodes v and v are adjacent in GG, any node repre-
senting v in H has at least one (in case of an emulator) or ezactly one (in case of
a cover) adjacent node in H that represents u. Conversely, no node representing
v in H has a neighbor representing « if v, u are nonadjacent in G.

Coarsely speaking, the mutually similar concepts of planar covers and planar
emulators both “preserve” the local structure of a graph G while “gaining”
planarity for it. Of course, the central question is which nonplanar graphs do
have planar covers or emulators.

* M. Chimani has been funded by a Carl-Zeiss-Foundation juniorprofessorship.
™ M. Derka has been supported by Masaryk University internal grant for students.
** Supported by the Czech science foundation; grants P202/11/0196 and
GIG/11/E023.

C.S. Tliopoulos and W.F. Smyth (Eds.): IWOCA 2011, LNCS 7056, pp. 106-[20, 2011.
© Springer-Verlag Berlin Heidelberg 2011

How Not to Characterize Planar-Emulable Graphs 107

b6 Cs

Co C1 b3 Cy

ay by
ay
Fig. 1. Examples of a planar cover (center) and a planar emulator (right) of the triangle
G = K3 (left). We simply denote by aj, j = 1,2,... the vertices representing a of G,
and analogically with b, c.

The two concepts emerged independently from works of Fellows [56] (emula-
tor) and Negami [I6JT7/T8] (cover). On the one hand, the class of planar-coverable
graphs is relatively well understood. At least, we have the following;:

Conjecture 1.1 (Negami [17], 1988). A graph has a (finite) planar cover if
and only if it embeds in the projective plane.

Yet, this natural (see below) and firmly believed conjecture is still open today
despite of more than 20 years of intensive research. See [II] for a recent survey.

On the other hand, it was no less natural to assume [56] that the prop-
erty of being planar-emulable coincides with planar-coverability. By definition,
the latter immediately implies the former. For the other direction, it was highly
counterintuitive to assume that, having more than one neighbors in H represent-
ing the same adjacent vertex of GG, could ever help to gain planarity of H —such
“additional” edges seem to go against Euler’s bound on the number of edges of
a planar graph. Hence, it was widely believed:

Conjecture 1.2 (Fellows [6], 1988, falsified 2008). A graph has a (finite)
planar emulator if and only if it embeds in the projective plane.

Perhaps due to similarity to covers, no significant effort to specifically study
planar-emulable graphs occurred during the next 20 years after Fellows’
manuscript [6].

Today, however, we know of one important difference between the two cases:
Conjecture is false! In 2008, Rieck and Yamashita [I9] proved the truly
unexpected breakthrough result that there are graphs which have planar em-
ulators, but no planar covers and do not embed in the projective plane; see
Theorem 241 This finding naturally ignited a new research direction, on which
we report herein. We show that the class of planar-emulable graphs is, in fact,
much larger than the class of planar-coverable ones; that the concept of projec-
tive embeddability seems very out-of-place in the context of planar emulators;
and generally, how poorly planar emulators are yet understood.

Apart from its pure graph theoretic appeal, research regarding planar em-
ulators and covers may in fact have algorithmic consequences as well: While

108 M. Chimani et al.

&) dy

p(v1) = p(v2) = v vy

N
N

(11 (&)

U1

G =Ks ay by

Fig. 2. The graph G = K5 (left) and its two-fold planar cover (right) via a homo-
morphism ¢. The cover is obtained for a “crosscap-less” drawing of G and its mirror
image.

Negami’s main interest [I6] was of pure graph theoretic nature, Fellows [5, and
personal communication] considered computing motivation for emulators. Ad-
ditionally, we would like to sketch another potential algorithmic connection;
there are problems that are NP-hard for general graphs, but polynomial-time
solvable for planar graphs (e.g., maximum cut), or where the polynomial com-
plexity drops when considering planar graphs (e.g., maximum flow). Yet, the
precise breaking point is usually not well understood. Considering such prob-
lems for planar-emulable or planar-coverable graphs may give more insight into
the problems’ intrinsic complexities. Before this can be investigated, however,
these classes first have to be reasonably well understood themselves. Our paper
alms at improving upon this latter aspect of planar emulators.

This paper is organized as follows: Section [2] discusses all the major prior find-
ings w.r.t. covers and emulators, including the aforementioned result by Rieck
and Yamashita. Then, Theorem presents our main new improvement. Sec-
tion [l reviews some necessary basic properties and tools, most of which have
been previously sketched in [6]. In Section @] we give previously unknown emu-
lator constructions, proving Theorem and also showing how unrelated emu-
lators are from covers. We would particularly like to mention a very small and
nicely-structured emulator of the notoriously difficult graph Kj 29 in Fig. B
Finally, in Section Bl we study how far one can get in the pursuit to character-
ize planar-emulable graphs with the structural tools previously used in [12] for
covers, and where the current limits are.

Due to space restrictions, many arguments and constructions have to be
skipped in this paper, and we refer to the long preprint version [2] for the rest.

2 On Planar Covers and Emulators

We restate the problem on a more formal level. All considered graphs are simple,
finite, and undirected. A projective plane is the simplest nonorientable surface—
a plane with one crosscap (informally, a place in which a bunch of selected edges

How Not to Characterize Planar-Emulable Graphs 109

wwm@@@

K33- K33 “ K33

@@%&%@%@@

@@%@@@@
%%%@ﬁ@@@

Ky 5—4K3 Kya—e

@@@@@@

K222

Fig. 3. The 32 connected projective forbidden minors. (The three disconnected ones,
Ks + K5, K5 + K33, K33 + K33, are skipped since they are not important here.)

of an embedded graph may “cross” each other). A graph homomorphism of H
into G is a mapping h : V(H) — V(G) such that, for every edge {u,v} € E(H),
we have {h(u), h(v)} € E(G).

Definition 2.1. A graph G has a planar emulator (cover) H if H is a planar
finite graph and there exists a graph homomorphism ¢ : V(H) — V(G) such that,
for every vertex v € V(H), the neighbors of v in H are mapped by ¢ surjectively
(bigectively) onto the neighbors of p(v) in G. The homomorphism ¢ is called an
emulator (cover) projection.

One immediately obtains the following two claims:

Lemma 2.2. a) If H is a planar cover of G, then H is also a planar emulator
of G. The converse is not true in general.

b) If G embeds in the projective plane, then G has a two-fold planar cover (i.e.,
lo~H(w)| =2 for allu € V(G)); ¢f. [10)]. See also Fig. 2

These two claims, together with some knowledge about universal coverings in
topology, make Conjectures [I.1] and sound very plausible. To precisely de-
scribe the motivation for our research direction in planar emulators, we briefly
comment on the methods that have been used in the investigation of planar-
coverable graphs, too.

110 M. Chimani et al.

Fig.4. A colour-coded 3D-rendering of a planar emulator patched on a polyhedral
body (right) for the graph K45 — 4K (left), taken from http://vivaldi.ics.nara-wu.ac.jp

/~yamasita/emulator/

Firstly, we note that the properties of planar-coverability and planar-emula-
bility are closed under taking minors (PropositionB1l), and all 35 minor-minimal
nonprojective graphs (projective forbidden minors, Fig. B) are known [I]. If a
connected graph G is projective, then G is planar-coverable (and hence also
planar-emulable); otherwise, G contains one of the mentioned projective for-
bidden minors. Hence to prove Conjecture [[LIl only a seemingly simple task
remains: we have to show that the known 32 connected projective forbidden
minors have no planar covers. The following was established through a series of
previous papers:

Theorem 2.3 (Archdeacon, Fellows, Hlinény, and Negami, 1988—98).
If the (complete four-partite) graph Ki 222 has no planar cover, then Conjec-
ture [I1] is true.

One can naturally think about applying the same arguments to planar emulators,
i.e. to Conjecture The first partial results of Fellows [6]—see an overview in
Section Bl—were, in fact, encouraging. Yet, all the more sophisticated tools (of
structural and discharging flavor) used to show the non-existence of planar covers
in Theorem 23] fail on a rather technical level when applied to emulators. As
these problems seemed to be more of technical than conceptual nature, Fellows’
conjecture was always believed to be true until the following:

Theorem 2.4 (Rieck and Yamashita [19], 2008). The graphs Ki 222 and
K5 — 4Ky do have planar emulators (cf. Fig. [f]). Consequently, the class of
planar-emulable graphs is strictly larger than the class of planar-coverable graphs,
and Conjecture [L2 is false.

We remark that this is not merely an existence result, but the actual (and, sur-
prisingly, not so large) emulators were published together with it. Both K1 229
and K45 — 4K are among the projective forbidden minors, and Ky 5 — 4K>3 has
already been proved not to have a planar cover.

One important new message of our paper is that Theorem [Z4lis not a rarity—
quite the opposite, many other nonprojective graphs have planar emulators. In

How Not to Characterize Planar-Emulable Graphs 111

particular we prove that, among the projective forbidden minors that have been
in doubt since Fellows’ [6], all except possibly K4 4 — e do have planar emulators:

Theorem 2.5. All of the graphs (Fig.[3) K45 — 4Ks, K1 22,2, Bz, C3, C4, Do,
&>, and also K7 — Cy, D3, &, F1 have planar emulators.

Consequently, the class of planar-emulable graphs is much larger than the class
of planar-coverable ones. We refer to Section [for details.

3 Basic Properties of Emulators

In this section, we review the basic established properties of planar-emulable
graphs. These are actually all the properties of planar-coverable graphs which
are known to extend to planar emulators (though, the extensions of some of the
proofs are not so straightforward).

The claims presented here, except for Theorem [B.4] were proved or sketched
already in the manuscript [6] of Fellows. However, since [6] has never been pub-
lished, we consider it appropriate to include their full statements with proof
sketches here (while the complete formal proofs can be found also in [2]).

We begin with two crucial closure properties.

Proposition 3.1 (Fellows [6]). The property of being planar-emulable is closed
under taking minors; i.e., under taking subgraphs and edge contractions.

Proposition 3.2 (Fellows [6]). The property of being planar-emulable is closed
under applying YA-transformations; i.e., the operations replacing (successively)
any degree-3 vertexr with a triangle on its three neighbors.

Next, we identify some basic forbidden minors for planar-emulable graphs among
the known list of projective forbidden minors (cf. Lemma [Z2]b). These again ex-
tend folklore knowledge about planar-coverable graphs, but the arguments are
definitely not trivial this time. Actually, the following two theorems represent
all the current knowledge about non-planar-emulable graphs (besides the trivial
cases of K7 and K, 4, for which the nonexistence of planar emulators is imme-
diate from Euler’s formula).

Theorem 3.3 (Fellows [6]). A planar-emulable graph cannot contain “two dis-
joint k-graphs” (see [2]). Consequently, each of the 19 graphs—projective forbid-
den minors—in the first three rows of Fig.[3d has no planar emulator.

Theorem 3.4 (Fellows / Huneke [13]). The graph Kss has no planar
emulator.

In a remaining limited space we try to briefly outline the two important technical
tools used to prove Theorems and [3.4] Lemma particularly implies both
Proposition and Theorem [3.4] with simple arguments.

112 M. Chimani et al.

y1 € ¢ (a) y1 € 9 (a)
y2 € o1 (b) . y2 € 7 (b)

Yit+1

Yi—1

vi € '(c) vi € ¢ ' (c)

Fig. 5. Splitting vertex = with a cubic image in X into vertices of lower degree

Lemma 3.5 (Fellows [6]). Let G be a planar-emulable graph and X C V(QG)
an independent set of vertices of degree 3. Then there exists a planar emulator
H of G with a projection ¢ : V(H) — V(G) such that every verter u € p~*(v)
over all v € X is of degree 3.

Proof (sketch). Whenever F is an emulator of our graph G with a projection
P V(F) — V(G); let Dg(F) (> 3) shortly denote the maximal F-degree of the
vertices u € 971 (v) over all v € X. We choose H as a planar emulator of G with
projection ¢ such that the value Dg(H) is minimized.

If Dg(H) > 3, then we choose any vertex x € ¢~ *(v) where v € X such that
x is of H-degree Dg(H) = d > 3. Let a, b, ¢ be the three neighbors of v in G. The
neighbors of z in H naturally define a cyclic word over the alphabet {a,b, c},
and we analyze its structure in three easy cases, showing in each of them how
the degree of x can be decreased (while touching only the neighbors of x). The
most interesting case is a “split” illustrated in Fig. Bl The proof then proceeds
inductively, and we skip the remaining details. a

On the other hand, Theorem is implied by the next Lemma For moti-
vation we briefly explain that the property to “contain two disjoint k-graphs”
roughly means that a graph has two minors, each isomorphic to nonplanar K
or K33, that “overlap” one another in one vertex (which may be formed by
the other graph). Validity of Theorem then follows from a suitable local
application of the following:

Lemma 3.6 (Fellows [6]). In every planar emulator H of a nonplanar con-
nected graph G with the projection ¢ : V(H) — V(G), the following holds:
lo~1(v)| > 2 for each v € V(G).

Proof (sketch). The claim is proved separately for G = K5, G = K33, and
then it is routinely extended to all nonplanar graphs using Proposition 3.1l We
illustrate here the first case G = Kj:

Suppose, for a contradiction, that ¢~!(w) = {z} for some w € V(K5) and
x € V(H). Then H —z is an emulator of Ky = K5 —w, and H —x is outerplanar,
i.e. all its vertices are incident with one face since they are all adjacent to the

How Not to Characterize Planar-Emulable Graphs 113

<
A

Fig. 6. A planar emulator (actually, a cover) for the complete graph K4 with the rich
faces depicted in gray colour. The same figure in a “polyhedral” manner on the right.

same vertex x in H. However, all degrees in H — x are at least 3 while an
outerplanar simple graph must contain a vertex of degree < 2, a contradiction.
d

4 Constructing New Planar Emulators

The central part of this paper deals with new constructions of planar emulators
which consequently give the proof of Theorem In this section we sketch
the interesting (and in some sense central) emulators for the graphs £ and
K; — C4 (Fig. Bl), while a more detailed description together with emulators
for the rest of the graphs discussed in Theorem can be found in [2]. We
remark that, to our best knowledge, no planar emulators of nonprojective graphs
other than those mentioned in Theorem 2.4l have been studied or published prior
to our paper. Moreover, using our systematic techniques we have succeeded in
finding a much smaller emulator for K 222 than the one presented by Rieck
and Yamashita in [19].

Planar Emulator for €. In order to obtain an easily understandable descrip-
tion of an emulator for £, we note the following: A graph isomorphic to & (in
Fig. B) can be constructed from the complete graph K, on V(K,) = {1,2,3,4}
by subdividing each edge once, calling the new vertices bi-vertices, and finally
introducing a new vertex 0 adjacent to all the bi-vertices.

A similar sketch can be applied to a construction of a planar emulator for &:
If one can find a planar emulator for K, with the additional property that each
edge is incident to at least one rich face—i.e., a face bordered by representatives
of all edges of K4, then a planar emulator for £ can be easily derived from this.
More precisely, if Hy is such a special emulator of K4, see an example in Fig. [6]
then the following construction is applied. Each edge of Hy is subdivided with
a new vertex representing the corresponding bi-vertex of &, and a new vertex
representing the vertex 0 of & is added to every rich face of Hy such that it
is adjacent to all the subdividing vertices within this face. The resulting plane
graph H clearly is an emulator for & (and this construction is reversible).

114 M. Chimani et al.

Fig. 7. A planar emulator for £. The bi-vertices of the construction are in white and
labeled with letters, while the numbered core vertices (cf. Fig. [are in gray.

—

7\

N
£

e’

©)
(]

AN
V
4
%

I/
IN
[

7
7
\2‘
2N

[

|

Fig. 8. A planar emulator for K 22 2; obtained by taking YA-transformations on the
core vertices labeled 1,2, 3,4 of the £ emulator from Fig. [7}

Perhaps the simplest possible such an emulator for K, with rich faces is
depicted in Fig. [0 (left). This leads to the nicely structured planar emulator
for the graph & in Fig. [l It is also worth to note that the same core ideas which
helped us to find this emulator for &, were actually used in [I0] to prove the

How Not to Characterize Planar-Emulable Graphs 115

nonezistence of a planar cover for £. This indicates how different the coverability
and emulability concepts are from each other, too.

More Emulators Derived from the £ Case. By Proposition[3.2] the prop-
erty of having a planar emulator is closed under taking YA-transformations.
Moreover, the proof is constructive, and we may use it to mechanically pro-
duce new emulators from existing ones (this principle goes even slightly beyond
straightforward YA-transformations, see Section [B)). Therefore we can easily ob-
tain an alternative emulator for Ki 222 (cf. Theorem [24]) which is significantly
smaller and simpler than the original one in [I9]. The emulator is presented in
Fig. B

Furthermore, in the same mechanical way, we can obtain planar emulators for
other members of the “K; 3 2 o-family”; namely for Bz, C3, D2 in Fig. Bl On the
other hand, finding a planar emulator for the last member, C4, seems to be a
more complicated case—the smallest one currently has 338 vertices [2].

Planar Emulator for Ky — C4. Already the survey [I1]—when commenting
on the surprising Rieck—Yamashita construction—stressed the importance of de-
ciding whether the graph K7 —Cy is planar-emulable. Its importance is tied with
the structural search for all potential nonprojective planar-emulable graphs; see
[12/3] and Section [l for a detailed explanation. Briefly saying, K7 — Cy (and its
“family” of D3, &5, F1; Fig.) are the only projective forbidden minors which
have planar emulators and are not “internally 4-connected”. In fact, for several
reasons we believed that K7 — Cy cannot have a planar emulator, and so it came
as another surprise when we have just recently discovered one.

In order to describe our planar emulator construction for K7 — Cy, it is useful
to divide the vertex set of K7 —)4 into three groups: the triple of central vertices
(named 1,2, 3 in Fig. [0l left) adjacent to all other vertices, and the two vertex
pairs (named A, B and C, D) each of which has connections only to its mate
and to the central triple. This view allows us to identify a skeleton of the poten-
tial emulator as the subgraph induced on the vertices representing the central
triple 1,2,3 and place the remaining vertices representing A, B and C, D into
the skeleton faces, provided certain additional requirements are met.

This simple idea leads to the introduction of basic building blocks (Fig. [@),
each of which “almost” emulates the subgraph induced on 1,2,3,A,B and

.
<1

e

Fig. 9. Basic building blocks for our K7 — Cy4 planar emulator: On the left, only vertex
2 misses an A-neighbor and 1,3 miss a B-neighbor. Analogically on the right. The
right-most picture shows the skeleton of the emulator in a “polyhedral” manner.

116 M. Chimani et al.

Fig. 10. A planar emulator for K7 — Cy, constructed from the blocks in Fig. @ The
skeleton representing the central vertices is drawn in bold.

1,2,3,C,D, respectively. The crucial property of the blocks is that the vertices
labeled A,B or C,D have all the required neighbors in place. Finally, four copies
of each of the blocks can be arranged in the shape of an octahedron such that all
missing requirements in the blocks are satisfied. The resulting planar emulator
is in Figure

Similar, though much more involved, procedures lead to constructions of pla-
nar emulators for the graphs Ds, &, F1 (which are YA-transformable to K7—Cy).
Those emulators have 126, 138, and 142 vertices, respectively, and we refer read-
ers to an illustration in Figure [[1] and the full description in [2].

5 Structural Search: How Far Can We Go?

Until now, we have presented several newly discovered planar emulators of non-
projective graphs. Unfortunately, despite the systematic construction methods
introduced in Section [we have got nowhere closer to a real understanding of
the class of planar-emulable graphs. It is almost the other way round—the new
planar emulators evince more and more clearly how complicated the problem is.
Hence, we also need to consider a different approach.

The structural search method, on which we briefly report in this section, is
directly inspired by previous [12]; we refer to [3l4] for closer details which cannot
fit into this paper.

The general idea can be outlined as follows: If H is a mysterious nonprojective
planar-emulable graph, then H must contain one of the projective forbidden
minors, say F', while F' cannot be among those forbidden minors not having

How Not to Characterize Planar-Emulable Graphs 117

Fig.11. A planar emulator for F;

planar emulators (Theorems B3] B4l). Now there are basically three mutually
exclusive possibilities:

i. H is a planar expansion of a smaller graph. A graph H is a planar expansion
of GG if it can be obtained by repeatedly substituting a vertex of degree < 3
in G by a planar subgraph with the attachment vertices on the outer face.

ii. H contains a nonflat 3-separation. A separation in a graph is called flat if
one of the sides has a plane drawing with all the boundary vertices on the
outer face.

iii. H is internally 4-connected, i.e., it is 3-connected and each 3-separation in
H has one side inducing the subgraph K 3 (informally, H is 4-connected up
to possible degree-3 vertices with stable neighborhood).

We denote by (K7 — C4) = {K7 — C4,Ds,E5, F1} the family of K7 — Cy. The
underlying idea is that all the graphs in a family are YA-transformable to the
family’s base graph. Particularly the family of K7 — Cy comprises all the projec-
tive forbidden minors in question which are not internally 4-connected. See in
Fig. Bl

118 M. Chimani et al.

In the case (i.) above, we simply pay attention to the smaller graph G. In
the case (ii.), one can argue that either the projective forbidden minor F' (in H)
itself contains a nonflat 3-separation (so F' € (K7 — C4)), or F is internally
4-connected and H then is not planar-emulable (a contradiction). The former
is left for further investigation. Finally, in the case (iii.) we may apply a so-
called splitter theorem for internally 4-connected graphs [14], provided that F' is
also internally 4-connected. This leads to a straightforward computerized search
which has a high chance to finish in finitely many steps, producing all such
desired internally 4-connected graphs H.

Actually, when the aforementioned procedure was applied to the planar cover
case in [12], the search was so efficient that the outcome could have been de-
scribed by hand; giving all 16 specific graphs that potentially might be coun-
terexamples to Conjectures [Tl In our emulator case, we get the following;:

Theorem 5.1 ([4]). Let H be a nonprojective planar-emulable graph. Then, H
is a planar expansion of one of specific 175 internally 4-connected graphs, or H
contains a minor isomorphic to a member of {E2, Ka5 — 4K} U (K7 — Cy).

Up to this point, we have not been successful in finishing the computations for
the graphs F' = K4 5 — 4K and &, due to the high complexity of the generated
extensions. Yet, we strongly believe that it is possible to obtain finite results also
for those cases, perhaps with the help of an improved generating procedure. On
the other hand, the cases starting with F' € (K7 — C4) will need an alternative
procedure, e.g., using so-called “separation bridging”. This is subject to future
investigations.

6 Conclusion and Further Questions

While our paper presents new and surprising findings about planar-emulable
graphs, the truth is that these findings are often negative in the sense that
they bring more intriguing questions than answers. Of course, the fundamental
open question in the area is to find a characterization of the class of planar-
emulable graphs in terms of some other natural (and preferably topological)
graph property. Even coming up with a plausible conjecture (cf. Conjecture [1])
would be of high interest, but, with our current knowledge, already this seems
to be out of reach yet.
Instead, we suggest to consider the following specific (sub)problems:

— Is there a planar emulator of the graph K4 4 —e? We think the answer is no,
but are currently unable to find a proof, e.g. extending the arguments of [g].

— The emulators shown in Section Ml suggest that we can, in some mysterious
way, reflect AY -transformations in emulator constructions (i.e., the converse
direction of Proposition B.2]). Such a claim cannot be true in general since,
e.g., a YA-transformation of the graph D, (Fig.) leads to a strict subgraph
of Bz, which therefore has a two-fold planar cover while Dy is not planar-
emulable by Theorem [3.3] But where is the precise breaking point?

How Not to Characterize Planar-Emulable Graphs 119

— The two smallest projective forbidden minors are on 7 vertices, K7y — Cy

(missing four edges of a cycle) and K 222 (missing three edges of a match-
ing). Both of them, however, have planar emulators while their common
supergraph K; does not. What is a minimal subgraph of K7 not having a
planar emulator? Can we, at least, find a short argument that the graph
K7 — e has no planar emulator?

Finally, Conjecture [[.T] can be reformulated in a way that a graph has a
planar cover iff it has a two-fold planar cover. The results of [I2] moreover
imply that the minimal required fold number for planar-covers is bounded
by a constant. Although, in the emulator case, the numbers of representa-
tives for each vertex of the emulated graph differ, there is still a possibility
of a fixed upper bound on them: Is there a constant K such that every
planar-emulable graph H has a planar emulator with projection 1 such that
[~1(v)| < K for allv € V(H)? A computerized search as in Section [flwould
be of great help in this task.

References

10.

11.

12.

13.

14.

Archdeacon, D.: A Kuratowski Theorem for the Projective Plane. J. Graph The-
ory 5, 243-246 (1981)

Chimani, M., Derka, M., Hlinény, P., Klusidcek, M.: How Not to Characterize
Planar-emulable Graphs. ArXiv e-prints 1107.0176,
http://arxiv.org/abs/1107.0176

Derka, M.: Planar Graph Emulators: Fellows’ Conjecture. Bc. Thesis, Masaryk
University, Brno (2010), http://is.muni.cz/th/255724/fi_b/thesis.pdf
Derka, M.: Towards Finite Characterization of Planar-emulable Non-projective
Graphs. Congressus Numerantium, 207211 (submitted, 2011)

Fellows, M.: Encoding Graphs in Graphs. Ph.D. Dissertation, Univ. of California,
San Diego (1985)

Fellows, M.: Planar Emulators and Planar Covers (1988) (unpublished manuscript)
Glover, H., Huneke, J.P., Wang, C.S.: 103 Graphs That Are Irreducible for the
Projective Plane. J. of Comb. Theory Ser. B 27, 332-370 (1979)

Hlinény, P.: K44 — e Has No Finite Planar Cover. J. Graph Theory 27, 51-60
(1998)

Hlinény, P.: Planar Covers of Graphs: Negami’s Conjecture. Ph.D. Dissertation,
Georgia Institute of Technology, Atlanta (1999)

Hlinény, P.: Another Two Graphs Having no Planar Covers. J. Graph Theory 37,
227-242 (2001)

Hlinény, P.: 20 Years of Negami’s Planar Cover Conjecture. Graphs and Combina-
torics 26, 525-536 (2010)

Hlinény, P., Thomas, R.: On possible counterexamples to Negami’s planar cover
conjecture. J. of Graph Theory 46, 183-206 (2004)

Huneke, J.P.: A Conjecture in Topological Graph Theory. In: Robertson, N., Sey-
mour, P.D. (eds.) Graph Structure Theory. Contemporary Mathematics, Seattle,
WA, vol. 147, pp. 387-389 (1991/1993)

Johnson, T., Thomas, R.: Generating Internally Four-Connected Graphs. J.
Combin. Theory Ser. B 85, 21-58 (2002)

120 M. Chimani et al.

15. Klusacek, M.: Construction of planar emulators of graphs. Bc. Thesis, Masaryk
University, Brno (2011), http://is.muni.cz/th/324101/fi_b/bc_thesis.pdf

16. Negami, S.: Enumeration of Projective-planar Embeddings of Graphs. Discrete
Math. 62, 299-306 (1986)

17. Negami, S.: The Spherical Genus and Virtually Planar Graphs. Discrete Math. 70,
159-168 (1988)

18. Negami, S.: Graphs Which Have No Finite Planar Covering. Bull. of the Inst. of
Math. Academia Sinica 16, 378-384 (1988)

19. Rieck, Y., Yamashita, Y.: Finite planar emulators for K45 — 4K and Ki,2,2,2 and
Fellows’ Conjecture. European Journal of Combinatorics 31, 903-907 (2010)

Testing Monotone Read-Once Functions

Dmitry V. Chistikov

Faculty of Computational Mathematics and Cybernetics
Moscow State University, Russia
dch@cs.msu.ru

Abstract. A checking test for a monotone read-once function f depend-
ing essentially on all its n variables is a set of vectors M distinguishing
f from all other monotone read-once functions of the same variables. We
describe an inductive procedure for obtaining individual lower and upper
bounds on the minimal number of vectors T'(f) in a checking test for any
function f. The task of deriving the exact value of T'(f) is reduced to
a combinatorial optimization problem related to graph connectivity. We
show that for almost all functions f expressible by read-once conjunc-
tive or disjunctive normal forms, T'(f) ~ n/Inn. For several classes of
functions our results give the exact value of T'(f).

1 Introduction

A Boolean function of variables X is called monotone read-once iff it can be
expressed by a formula over {A, V} without repetitions of variables (such formu-
lae are also called read-once). By definition, we say that 0 and 1 are monotone
read-once functions too. One can see that f depends essentially on a variable z;
iff x; appears in a read-once formula for f.

Suppose that f is a monotone read-once function depending essentially on all
variables from X; then a set M of input vectors is a checking test (or simply a
test) for f iff for each monotone read-once function f’ # f of variables X there
exists a vector « € M such that f/'(«) # f(a). In other words, M is a checking
test for f iff values of f on vectors from M allow one to distinguish between f
and all other monotone read-once functions of variables X.

The length of a test is the number of vectors contained in it. For a read-on