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Foreword

We have all heard of the success story of the discovery of a link between the
mental problems of children and the chemical pollutants in their drinking water.
Similarly, we have heard of the 1854 Broad Street cholera outbreak in London,
and the linking of it to a contaminated public water pump. These are two high-
profile examples of bisociation, the combination of information from two different
sources.

This is exactly the focus of the BISON project and this book. Instead of
attempting to keep up with the meaningful annotation of the data floods we are
facing, the BISON group pursued a network-based integration of various types
of data repositories and the development of new ways to analyze and explore the
resulting gigantic information networks. Instead of finding well-defined global or
local patterns they wanted to find domain-bridging associations which are, by
definition, not well defined since they will be especially interesting if they are
sparse and have not been encountered before.

The present volume now collects the highlights of the BISON project. Not
only did the consortium succeed in formalizing the concept of bisociation and
proposing a number of types of bisociation and measures to rank their“bisociative-
ness,” but they also developed a series of new algorithms, and extended several
of the existing algorithms, to find bisociation in large bisociative information
networks.

From a personal point of view, I was delighted to see that some of our own
work on finding structurally similar pieces in large networks actually fit into that
framework very well: Random walks, and related diffusion-based methods, can
help find correlated nodes in bisociative networks. The concept of bisociative
knowledge discovery formalizes an aspect of data mining that people have been
aware of to some degree but were unable to formally pin down. The present
volume serves as a great basis for future work in this direction.

May 2012 Christos Faloutsos
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Teemu Hynönen, Sébastien Mahler, and Hannu Toivonen

Cover Similarity Based Item Set Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Marc Segond and Christian Borgelt

Patterns and Logic for Reasoning with Networks . . . . . . . . . . . . . . . . . . . . . 122
Angelika Kimmig, Esther Galbrun, Hannu Toivonen, and
Luc De Raedt

Part III: Network Analysis

Network Analysis: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Hannu Toivonen

BiQL: A Query Language for Analyzing Information Networks . . . . . . . . . 147
Anton Dries, Siegfried Nijssen, and Luc De Raedt



VIII Table of Contents

Review of BisoNet Abstraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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Towards Bisociative Knowledge Discovery�

Michael R. Berthold

Nycomed Chair for Bioinformatics and Information Mining,
Department of Computer and Information Science,

University of Konstanz, Germany
Michael.Berthold@Uni-Konstanz.DE

Abstract. Knowledge discovery generally focuses on finding patterns
within a reasonably well connected domain of interest. In this article we
outline a framework for the discovery of new connections between do-
mains (so called bisociations), supporting the creative discovery process
in a more powerful way. We motivate this approach, show the differ-
ence to classical data analysis and conclude by describing a number of
different types of domain-crossing connections.

1 Motivation

Modern knowledge discovery methods enable users to discover complex patterns
of various types in large information repositories. Together with some of the
data mining schema, such as CRISP-DM and SEMMA, the user participates in
a cycle of data preparation, model selection, training, and knowledge inspection.
Many variations on this theme have emerged in the past, such as Explorative
Data Mining and Visual Analytics to name just two, however the underlying
assumption has always been that the data to which the methods are applied
to originates from one (often rather complex) domain. Note that by domain
we do not want to indicate a single feature space but instead we use this term
to emphasize the fact that the data under analysis represents objects that are
all regarded as representing properties under one more or less specific aspect.
Multi View Learning [19] or Parallel Universes [24] are two prominent types of
learning paradigms that operate on several spaces at the same time but still
operate within one domain.

Even though learning in multiple feature spaces (or views) has recently gained
attention, methods that support the discovery of connections across previously
unconnected (or only loosely coupled) domains have not received much atten-
tion in the past. However, methods to detect these types of connections promise
tremendous potential for the support of the discovery of new insights. Research
on (computational) creativity strongly suggests that this type of out-of-the-box
thinking is an important part of the human ability to be truly creative. Discov-
eries such as Archimedes’ connection between weight and (water) displacement
and the – more recent – accidental (“serendipitous”) discovery of Viagra are two
illustrative examples of such domain-crossing creative processes.

� Extended version of [1].

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 1–10, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com



2 M.R. Berthold

In this introductory chapter we summarise some recent work focusing on es-
tablishing a framework supporting the discovery of domain-crossing connections
continuing earlier work [3]. In order to highlight the contrast of finding patterns
within a domain (usually associations of some type) with finding relations across
domains, we refer to the term bisociation, first coined by Arthur Koestler in [13].
We argue that Bisociative Knowledge Discovery represents an important chal-
lenge in the quest to build truly creative discovery support systems. Finding
predefined patterns in large data repositories will always remain an important
aspect, but these methods will increasingly only scratch the surface of the hidden
knowledge. Systems that trigger new ideas and help to uncover new insights will
enable the support of much deeper discoveries.

2 Bisociation

Defining bisociation formally is, of course, a challenge. An extensive overview of
related work, links to computational creativity and related areas in AI, as well as
a more thorough formalisation can be found in [7]. Here we will concentrate on
the motivational parts and only intuitively introduce the necessary background.

Boden [4] distinguishes among three different types of creative discoveries:Com-
binatorial, Exploratory, and Transformational Creativity. Where the second and
third category can be mapped on (explorative) data analysis or at least the dis-
covery process within a given domain, Combinatorial Creativity nicely represents
what we are interested in here: the combination of different domains and the cre-
ative discovery stemming from new connections between those domains.

Informally, bisociation canbe defined as (sets of) concepts that bridge two other-
wise not –or only very sparsely– connected domainswhereas an association bridges
conceptswithina givendomain.Of course, not all bisociation candidates are equally
interesting and in analogy to how Boden assesses the interestingness of a creative
idea as being new, surprising, and valuable [4], a similarmeasure for interestingness
can be specified when the underlying set of domains and their concepts are known.
Going back to Koestler we can summarise this setup as follows:

“The creative act is not an act of creation in the sense of the Old Tes-
tament. It does not create something out of nothing; it uncovers, selects,
re-shuffles, combines, synthesises already existing facts, ideas, faculties,
skills. The more familiar the parts, the more striking the new whole.”

Transferred to the data analysis scenario, this puts the emphasis on finding
patterns across domains whereas finding patterns in the individual domains
themselves is a problem that has been tackled already for quite some time. Put
differently, he distinguishes associations that work within a given domain (called
matrix by Koestler) and are limited to repetitiveness (here: finding other/new
occurrences of already identified patterns) and bisociations representing novel
connections crossing independent domains (matrices).
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3 Types of Bisociation

Obviously the above still remains relatively vague and for concrete implemen-
tations the type of bisociative patterns that are sought needs to be specified
better. In the past years a number of bisociation types emerged in the context
of Bisociative Knowledge Discovery: Bridging Concepts, Bridging Graphs, and
Bridging by Structural Similarity, see [14] for a more detailed analysis. Since
these ideas are also addressed in other areas of research, additional types most
likely exist in those fields as well.

3.1 Bridging Concepts

Fig. 1. Bridging concept (from [14])

The most natural type of bisociation
is represented by a concept linking
two domains, Figure 1 illustrates this.

Such bridging concepts do not need
to exist in the context of a network
based representation, as suggested by
the figure, but can also be found in
other representations. In [21], for in-
stance, different textual domains were
analysed to find bisociative terms that
link different concepts from the two
domains.

An example of a few bridging concepts is shown in Figure 2. Here a well known
data set containing articles from two domains (migraine and magnesium) was
searched for bridging terms (see [21] for more details). Note that this example
reproduces an actual discovery in medicine.

migraine

magnesium

serotonin
vasospasm

calcium channel blocker

Fig. 2. Bridging concepts - an example reproducing the Swanson discovery (from [21])



4 M.R. Berthold

(a) (b)

Fig. 3. Bridging graphs (from [14])

3.2 Bridging Graphs

More complex bisociations can be modelled by bridging graphs, Figure 3 illus-
trates this concept in a network context.

Here two different domains are connected by a (usually small) subset of con-
cepts that have some relationship among themselves. In a network-based repre-
sentation, a relatively dense subgraph can be identified connecting two domains.
However, also in other representations, such “chains of evidence” can be for-
malised, connecting seperate domains.

Two examples for bridging graphs are shown in Figure 4 (the data stems
from Schools-Wikipedia, see [17] for details). These demonstrate well how the
two concepts “probability space” and “arithmetic mean” connect the domain of
movies with a number of more detailed concepts in the statistics domain. This
is at first glance surprising but finds its explanation in the (in both cases also
somewhat “creative”) use of those concepts in the two films or the series of films
dominated by one actor. The second example nicely bridges physical properties
and usage scenarios of phonographs.

Arithmetic mean

Arnold Schwarzenegger

Harry Potter film series

Jurassic Park film

Linear regression

Mean

Pirates of the Caribbean film series

Probability space

Random variable Standard deviation

Steven Spielberg

The Golden Compass film

The Lord of the Rings film trilogy

Variance

Acceleration

American popular music   

Angular velocity

Jazz 

Kinematics

Louis Jordan  

Miles Davis  

Phonograph cylinder   

Rhythm and blues  

Velocity

Fig. 4. Bridging graphs - two examples (from [17])
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Fig. 5. Bridging by graph similarity (from [14])

3.3 Bridging by Structural Similarity

The third, so far most complex type of bisociation does not rely on some straight-
forward type of link connecting two domains but models such connections on a
higher level. In both domains two subsets of concepts can be identified that
share a structural similarity. Figure 5 illustrates this – again in a network-
based representation; also here other types of structural similarity can
exist.

An interesting example of such structural similarities can be seen in Figure 6.
The demonstration data set based on Schools-Wikipedia was used in this exam-
ple again. The two nodes slightly off centre (“Euclid” on the left and “Plato” on
the right) are farther apart in the original network but share structural proper-
ties such as being closely connected to the hub of a subnetwork (“mathematics”
vs. “philosophy”). Note that “Aristotle” also fills a similar role in the philosophy
domain.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Logic

Euclidean geometry

Real number

Square root

Goldbach's conjecture

Pythagoras

Theorem

Fermat's last theorem

Triangle

History of mathematics

Cartesian coordinate system

Irrational number

Mathematical proof

Georg Cantor

Geometry

Euclid

Pythagorean theorem

Algebra

Number

Mathematician

Polyhedron

Natural number

Euclid's Elements

Combinatorics

Golden ratio

Angle

Number theory

Arithmetic

David Hilbert

2.0

3.0

4.0

5.0

6.0

Humanities

Ethics

Mind

Logic

Philosophy of mind

Stoicism

Empiricism

Athena

Emotion

History of science
Pythagoras

Thales

Renaissance

Thucydides

Ancient history

Mesopotamia

Sparta

Middle Ages

Demosthenes

Science

Alexander the Great

Socrates

Baruch Spinoza

HomerFriedrich Nietzsche

Immanuel Kant

Fig. 6. Bridging by graph similarity - example (from [22])
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3.4 Other Types of Bisociation

The bisociation types discussed above are obviously not complete. The first two
types are limited to a 1:1 match on the underlying structures and require that
the two domains already have some type of (although sparse) neighbourhood
relation. Only the third type allows matching on a more abstract level, finding
areas of structural similarity and drawing connections between those. Other,
more abstract, types of bisociation certainly exist but also more direct bisociation
types can be defined as well. This is an exciting area of research and one could
also imagine systems that observe user interaction and learn new complex types
of bisociation from user feedback and successful discoveries.

4 Bisociation Discovery Methods

In order to formalise the types of bisociations and develop methods for finding
them, a more detailed model of the knowledge space needs to be available. When
dealing with various types of information and the desire to find patterns in
those information repositories a network-based model is often an appropriate
choice due to its inherent flexibility. A number of methods can be found in
this volume [2]. We hasten to add, however, that this is not the only way to
model domains and bisociations, some contributions finding bisociation in non-
network type domains can be found here as well, see for example the text-based
bisociative term discoveries in [12,21].

It is interesting to note that quite a few of the existing methods in the ma-
chine learning and data analysis areas can be used, frequently with only minor
modifications. For instance, methods for item set mining can be applied to the
detection of concept graphs [15] and measures of bisociation strength can also
be derived from other approaches to model interestingness [20,22]. Bisociative
Knowledge Discovery can rely to a fairly large extent on existing methods, how-
ever the way in which these methods are applied is often radically different.
Instead of searching for patterns that have reasonably high occurrence frequen-
cies we are often interested in the exact opposite: the essenace of bisociations is
something that is new and whose existence is only hinted at, if at all so far.

This focus on “finding the unexpected” obviously also requires rather different
approaches to the creation, analysis and exploration of the underlying structure.
Overviews of these three aspects can be found in [5], [23], and [18,9] respectively.
Note that an even bigger challenge as opposed to usual knowledge discovery
setups is the lack of comprehensive benchmarks. Finding the unexpected is a
moving target – once knowledge becomes common sense, it ceases to be all that
surprising. In [16] a number of application examples and attempts at benchmark-
ing are summarised and yet there is still scope for work here, specifying how such
discovery support systems can be evaluated more comprehensively. The classic
setup of benchmark repositories is unlikely to be sufficient, as pure numerical
performance does not really quantify a method’s potential for creativity support
– in fact individual methods will be hard to be evaluated properly, as they only
become useful in concert with a larger system enabling truly explorative use.
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5 Future Directions

The work briefly outlined in this paper is only the start, of course. Much more
needs to be done to fully understand and make use of bisociative knowledge dis-
covery systems. For once, the nature of bisociative patterns is far from complete
– so far we have mainly addressed more classical approaches of finding numeri-
cal ways to assess the potential for bisociative insights of fairly simple patterns.
The true potential lies in finding more abstract techniques to discover bisocia-
tions, similar to the methods described in [22] or [11]. Using abstract features to
describe neighbourhoods – quite similar to the fingerprint similarity measures
used in molecular searches for a long time already – shows enormous promise.
Finding structurally similar patterns in different domains allows more complex
knowledge to be transferred among the involved domains than only pointing to
an existing (or missing) link.

However, in order to support the exploration of these more complex patterns it
will be paramount to develop methods that allow smooth transitions among the
associated levels of abstraction. Formal groundings for view transformations,
similar to the methods described in [6] will be required. This will need to be
accompanied by other powerful visual tools, of course, in order to actually give
users access to these view transformations. BioMine [8] or CET [10] have been
used successfully but even more flexible methods will be needed to integrate
various views within the same structure. An interesting additional challenge will
be the integration of user feedback not only in terms of guiding the search but
also with respect to actually learning from the users’ feedback to avoid proposing
uninteresting patterns over and over again. Unfortunately, as discussed above,
“(un)interesting” is a moving target and heavily depends on the current scope
of analysis. Active Learning approaches offer interesting mechanisms to quickly
update internal models of interest to make those systems respond in a useful way.
An interesting side effect could be that such learning systems observe the users,
learn patterns of bisociation that were of interest in the past and actually transfer
those patterns among different analyses, thus forming meta level bisociations
over time.

6 Conclusions

Bisociative Knowledge Discovery promises great impact especially in those areas
of scientific research where data gathering still outpaces model understanding.
Once the mechanisms are well understood the task of data analysis tends to
change and the focus on (statistically) significant and validated patterns is much
stronger. However, in the early phase of research, the ability to collect data out-
performs by far the experts’ ability to make sense out of those gigantic data
repositories and use them to form new hypotheses. This trend can be seen in
the life sciences where data analysis barely scratches the surface of the wealth of
generated data. Current methods not only fall short of offering true, explorative
access to patterns within domains, but are also considerably lacking when it
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comes to offering this kind of access across domains. The framework sketched
here (and more substantially founded in [7]) can help to address this shortcoming.
Much work still needs to be done, however, as many more types of bisociations
can be formalised and many of the existing methods in the machine learning and
data analysis/mining community are waiting to be applied to these problems.

One very interesting development here can be seen in the network-based biso-
ciation discovery methods which are beginning to bridge the gap nicely between
solidly understood graph theoretical algorithms and overly heuristic, poorly con-
trollable methods. Putting those together can lead to the discovery of better
understood bisociative (and other) patterns in large networks.

The data mining community has been looking for an exciting “Grand Chal-
lenge” for a number of years now. Bisociative Knowledge Discovery could offer
just that: inventing methods and building systems that support the discovery of
truly new knowledge across different domains will have an immense impact on
how research in many fields can be computer supported in the future.
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Abstract. Creative information exploration refers to a novel framework
for exploring large volumes of heterogeneous information. In particular,
creative information exploration seeks to discover new, surprising and
valuable relationships in data that would not be revealed by conven-
tional information retrieval, data mining and data analysis technologies.
While our approach is inspired by work in the field of computational cre-
ativity, we are particularly interested in a model of creativity proposed
by Arthur Koestler in the 1960s. Koestler’s model of creativity rests on
the concept of bisociation. Bisociative thinking occurs when a problem,
idea, event or situation is perceived simultaneously in two or more “ma-
trices of thought” or domains. When two matrices of thought interact
with each other, the result is either their fusion in a novel intellectual
synthesis or their confrontation in a new aesthetic experience. This arti-
cle discusses some of the foundational issues of computational creativity
and bisociation in the context of creative information exploration.

“Creativity is the defeat of habit by originality.” – Arthur Koestler

1 Introduction

According to Higgins, creativity is the process of generating something new that
has value [19]. Along with other essentially human abilities, such as intelligence,
creativity has long been viewed as one of the unassailable bastions of the hu-
man condition. Since the advent of the computer age this monopoly has been
challenged. A new scientific discipline called computational creativity aims to
model, simulate or replicate creativity with a computer [7]. This article explores
the concept of bisociation [20] in the context of computational creativity. While
our discussion may be relevant to a large number of domains in which creativ-
ity plays a central role, we emphasize domains with clear practical applications,
such as science and engineering. We start our discourse on bisociation with the
familiar concept of association.

The concept of association is at the heart of many of today’s powerful computer
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” to locate or discover

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 11–32, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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information relevant to a user’s tasks. A typical feature of these approaches is that
the underlying information pool (document corpora, databases, Web sites, etc.)
contains information that has been pre-selected in some way to focus and simplify
the discovery process. For example, a biological study would pre-select scientific
papers from relevant life science journals or abstracts before applying a particular
text mining task. Pre-selecting information in this way already introduces certain
limits on how creative these conventional approaches can be. This means that un-
der normal circumstances such resources would not be combined to facilitate cre-
ative insights and solutions. A novel information exploration paradigm that aims
to facilitate the generation of creative insight or solutions could be referred to as
creative information exploration (CIE ). Domains were CIE is critical include de-
sign and engineering, the arts (e.g., painting, sculpture, architecture, music and
poetry) as well as scientific discovery disciplines.

In the remainder of this article we use the terms creative domains and creative
disciplines to designate domains and disciplines in which creative information
discovery plays an important role.

People working in creative domains employ creative thinking to connect seem-
ingly unrelated information, for example, by using metaphors, analogy and other
ways of thinking and reasoning [6]. Creative styles of thought allow the mixing
of conceptual categories and contexts that are normally separated. Our goal is
to develop computer-based solutions that support creative thinking. Inspired
by Koestler’s notion of bisociation [20], our particular aim is to develop con-
cepts and solutions that facilitate bisociative CIE tasks in creative domains.
Intuitively, bisociative CIE could be viewed as an approach that seeks to com-
bine elements from two or more “incompatible” concept or information spaces
(domains) to generate creative solutions and insight.

The remainder of this article is organized as follow: Sections 2 and 3 introduce
a working definition of creativity with a view to its computational realization.
In Sections 4 to 6 we review Kostler’s notion of bisociation and offer an initial
formal definition of this concept. Before we reflect on the work presented in this
article and offer some concluding remarks (Section 8), we present a short review
of related work in Section 7.

2 Creativity

2.1 What Is Creativity?

Human creativity, like other human capabilities, is difficult to define and formal-
ize. In this article we adopt the following working definition of creativity based
on the work by Margaret Boden [6].

Definition 1 (creativity). Creativity is the ability to come up with ideas or
artifacts that are new, surprising, and valuable.

In this working definition of creativity the notions of idea and artifact refer to
concepts and creations from art as well as science and engineering and other
areas. Here we view creativity as an ability which is an intrinsic part of an
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intelligent agent (human, machine-based or otherwise). In the following discus-
sion we elaborate the meaning of the concepts new, surprising and valuable in
the definition of creativity.

The word new in our working definition of creativity may refer to two dimen-
sions: historic creativity or personal creativity. By historic creativitywemean ideas
or artifacts that are original in the sense that they represent the first occurrence of
a particular idea or artefact in human history. The history of science and modern
legal practice tell us that sometimes it may not be straightforward to determine
precisely the first occurrence of a scientific or engineering idea. Examples of dis-
putes over historic creativity include the theory of evolution, the invention of gun
powder, and the social Web site Facebook. Personal creativity, on the other hand,
means that someone comes up with an idea or invention independently from some-
one else who had already conceived of the same thing before. From the perspective
of the “re-inventor” this still constitutes “true” creativity.

An important factor in our working definition of creativity concerns the notion
of surprise – for a new idea to be considered creative there has to be an element
of surprise. An idea or artefact may be surprising because it is unlikely (has a low
probability of occurring) or unfamiliar.When a new idea unexpectedly falls into an
already familiar conceptual framework (or thinking style) one is intrigued to not
have realized it before. For example, in 1996Akihiro Yokoi invented a “digital pet”
called Tamagotchi which soon became a best seller. While the concept of looking
after plants, pet animals and soft toy pets has been around for a long time, no one
had dared to think that this idea could be applied to devices that resemble digi-
tal pocket calculators. A different type of surprise occurs when we encounter an
apparently impossible concept or artefact. For instance, in 1905 Einstein shocked
the scientific establishment by suggesting that energy is being transmitted in fi-
nite “packets” called quanta [11]. Max Planck, the originator of quantum theory,
initially rejected Einstein’s proposal even though his own theory suggested that
energy transfer to and from matter is not continuous but discrete.

The last element in our working definition of creativity is the notion of value –
a new concept or artefact must be valuable in some non-trivial way to qualify as
creative. In the fine arts aesthetic values are difficult to recognize or agree about:
what makes a painting by one artist hundred times more expensive than a paint-
ing by another? To formally define aesthetic values is even harder. Furthermore,
values vary over time and within and across cultures. Even in science there is of-
ten considerable disagreement over the “simplicity”, “elegance” or “beauty” of a
theory or scientific argument. Einstein and Bohr, for instance, had argued over
decades about the value (correctness and completeness) of the two prevailing
models of the atom (the probabilistic and discrete model, favored by Bohr, and
the deterministic and continuous model, which was preferred by Einstein) [22].
Whether a particular hypothesis is interesting or valuable may depend on sci-
entific, social, economic, political and other factors. So even when we agree on
novelty and the factor of surprise, there may still be a considerable disagreement
over how valuable a new idea or artefact is, hence over the degree of creativity.
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This brief discussion about the nature of creativity and the difficulty to rec-
ognize and agree on what creativity actually is serves as a context for the de-
velopment of computational creativity techniques. Ultimately, what constitutes
human or machine creativity is difficult to judge and needs to be assessed on a
case-by-case basis.

2.2 Three Roads to Creativity

Following Boden [6] we distinguish three processes of creativity; these relate to
the three forms of surprises discussed above.

Combinatorial Creativity. Arthur Koestler1 is credited with the following
characterization of creativity:

The creative act is not an act of creation in the sense of the Old Testa-
ment. It does not create something out of nothing; it uncovers, selects, re-
shuffles, combines, synthesizes already existing facts, ideas, faculties, skills.
The more familiar the parts, the more striking the new whole.

This idea is very much in line with the first process of creativity identified by
Boden, which generates unfamiliar combinations of familiar concepts and con-
structs. In humans, analogy is a fundamental cognitive process in which familiar
elements appear in an unfamiliar arrangement. A typical example of analogy
establishes an analogical relationship between Niels Bohr’s model of the atom
with the basic structure of the heliocentric solar system. Facilitating this kind
of creative process requires a rich knowledge structure and flexible ways of ma-
nipulating this structure. Clearly, the novel combination of elements must have
a point or a meaning. Therefore, purely random shuffling and re-combination of
elements will not be sufficient to generate creativity.

Exploratory Creativity. Margaret Boden defines conceptual spaces as a
“structured style of thought”. In her definition, a key characteristic of concep-
tual spaces is that they are not originated by an individual but are a structure
adopted from the cultures and peer groups within which people live [6]. Concep-
tual spaces include ways of writing prose, styles of architecture and art, theories
of nature, as well as approaches to design and engineering. So any systematic
way of thinking which is valued by a certain group or culture could be thought
of as a conceptual space.

In Boden’s framework, a conceptual space defines a space of possible combi-
nations of its elements, where each combination represents a particular thought,
idea or artifact. While the number of possible thoughts within a conceptual
space may be very large, only a fraction of these may have actually been real-
ized. Consider, for instance, the games of chess and checkers. In chess the number
of possible legal positions or “configurations” has been estimated at 1015 790 and
for checkers the number is 1018 [16,29]. Clearly, even with the long history of
chess playing, only a very small number of possible “combinations” could have

1 Prolific writer and author of The act of creation [20].
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been explored so far. Clearly, Boden’s concept of a conceptual space is much
broader. For the game of chess, for example, it would not only include all possible
chess board positions but also all knowledge structures employed by chess players
to play the game as well as other facts and information about chess.

No matter what the actual size of a given conceptual space, someone who
comes up with a new combination within that space is considered to be creative
in the exploratory sense (provided the combination “has a point”). Boden likens
the exploration of conceptual spaces to the exploration of a territory with a map.
The map encompasses all possibilities, but to discover a particular and valuable
possibility one needs to go out and explore the actual territory. Exploratory cre-
ativity is important as it facilitates the discovery of so far unknown possibilities.
Once such novel possibilities come to light, the explorers may even be able to
reflect deeper on the limits and potentials of a particular conceptual space.

Transformational Creativity. Exploratory creativity is limited by the possi-
bilities defined within a conceptual space or thinking style (or “map”). Essen-
tially, each conceptual space restricts the kind of thoughts that can be thought.
To overcome this limitation, and to attempt to think what is unthinkable within
a given conceptual space, it is necessary to change or transform the conceptual
space. It must be transformed so that thoughts that were inconceivable within
the previous version of the space now become possible. Such transformations
may be subtle or radical. Transformational creativity constitutes the deepest
form of creative processes in Boden’s model of creativity.

3 Computational Creativity

Teaching humans to be creative is a flourishing business and the number of cre-
ativity techniques available is large [19]. Teaching or programming a computer to
be creative or appear to be creative is another matter altogether. Computational
creativity refers to an active scientific discipline that aims to model, simulate or
replicate creativity using a computer [7].

Computational creativity draws on many concepts developed within the field
of artificial intelligence (AI ). Analogously to computational creativity, AI could
be defined as a discipline aiming to model, simulate or replicate (human) intel-
ligence. Boden suggests that AI concepts could be used to define and construct
artificial conceptual spaces which could then be studied and eventually be used
to combine elements from the spaces, and to explore and transform such spaces
with the aim of generating creative insight and solutions. Boden describes con-
crete AI-based approaches to computational creativity [6,7].

4 Koestler’s Concept of Bisociation

People working in creative domains employ creative thinking to connect seem-
ingly unrelated information (true negatives under the association paradigm), for
example, by using a metaphoric or analogical way of thinking. Analogical and
metaphoric styles of thought allow the mixing of conceptual categories and
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contexts that are normally separated. In the 1960s Arthur Koestler developed a
model of creative thinking referred to as bisociation [20]. Bisociation facilitates the
mixture in one human mind of concepts from two contexts or categories of objects
that are normally considered separate by the literal processes of the mind.

Koestler proposed the bisociation concept to distinguish the type of
metaphoric thinking that leads to the acts of great creativity from the more
“pedestrian” associative style of thinking, with which we are so familiar in our
everyday lives and which pervades many of todays computing approaches. As-
sociative thinking is based on the “habits” or set of routines that have been
established over a period of time. Associative processes combine elements from
the same “matrix” of thought. The associative mode of thinking differs from
the bisociative mode that underlies the creative act. Bisociation, according to
Koestler, means to join unrelated, often conflicting, information in a new way.
It is being “double minded” or able to think simultaneously on more than one
plane or matrix of thought (see Figure 1). “When two independent matrices
of perception or reasoning interact with each other the result ... is a ... fusion
in a new intellectual synthesis ...” [20]. Frank Barron reinforces this idea and
characterizes bisociation as “the ability to tolerate chaos or seemingly oppo-
site information” [3]. Koestler makes a clear distinction between more routine
or habitual thinking (association) operating within a single plane or matrix of
thought, and the more creative bisociative mode of thinking which connects
independent autonomous matrices.

Koestler’s basic concept of bisociation is illustrated in Figure 1. The diagram
depicts two matrices of thought (domains or knowledge bases in our terminol-
ogy), M1 and M2, as orthogonal planes. M1 and M2 represent two self-contained
but “habitually incompatible” matrices of thought. An event, idea, situation,
concept or problem, π, which is perceived simultaneously in both matrices is
not merely linked to one associative context (M1 or M2) but bisociated with
two associative contexts (M1 and M2). In the diagram, π is illustrated by the
thick line cutting across M1 and M2. The diagram illustrates six concepts la-
beled c1, . . . , c6. The concepts c1, c2, c3 and c6 are perceivable in matrix M2 and
c1, c2, c3, c4 and c5 are perceivable in M1. The concepts c1, c2, c3 are associated
with the problem π – because c1, c2, c3 are perceivable in both matrices, it is
possible to “see” the problem simultaneously from two frames of mind.

Central to Koestler’s concept of bisociation are the notions of a matrix and a
code Koestler [20]; we quote from page 38:

... to introduce a pair of related concepts which play a central role
in this book and are indispensable to all that follows. ... I shall use the
word ‘matrix ’ to denote any ability, habit, or skill, any pattern of ordered
behavior governed by a ‘code’ of fixed rules.

A matrix2 in Koestler’s framework denotes any ability, skill, habit or pattern of
ordered behavior. Matrices shape our perceptions, thoughts, and activities; they

2 Other terms Koestler uses for the concept of a matrix include the following: matrix of
thought, matrix of behavior, matrix of experience, matrix of perception, associative
context, frame of reference, universe of discourse, type of logic, code of behavior.
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Matrix / Knowledge Base: M1

Matrix / Knowledge Base: M2

c1

c4

c3

c2

c5

c6

c1

c2

c3

Concept as perceived within M2

Legend:

Concept as perceived within M1

Problem perceived 

simultaneously 

in M1 and M2

Fig. 1. Illustration of Koestler’s concept of bisociation (adapted from Koestler [20])

could be viewed as condensations of learning into “habit”. For example, a spider
has an innate skill that enables it to build webs, a mathematician possesses the
ability of mathematical reasoning, and a chess grandmaster has a knowledge
base which allows him to play chess at a very high level. The abilities and skills
represented by a matrix may be applied to concrete problems and tasks in a
flexible way. For example, depending on the environment a spider finds itself in,
it may choose three, four or more points of attachment to suspend its web.

Each matrix in Koestler’s model of bisociation is governed by a set of fixed
codes or rules. The rules could be innate or acquired. For example, in the game of
chess, the rules of the game are fixed, while the patterns of knowledge (allowing
one to play well or not so well) vary across players3. In mathematics, operations
such as multiplication, differentiation, integration, etc. constitute fixed rules that
govern mathematical reasoning. Another example of a code are the assumptions,
concepts, notions, etc. that underly religious, political, economic, philosophical
and similar debates and arguments. For instance, a debate on abortion may be
held “in terms of” religious morality or social responsibility. Often the rules that
govern a matrix of skill (ability, habit) function on a lower level of awareness than
the actual performance itself (playing the piano, carrying out a conversation,
formulating a strategy).

Once people have reached adulthood they have formed more or less rigid,
automated patterns of behavior and thinking (“habits” or knowledge bases).
Sometimes these patterns are interrupted by spontaneous sparks of insight which
presents a familiar concept or situation in a new light. This happens when we
connect previously unconnected matrices of perception or experience in a creative
act of bisociation. Considering the field of humor, science and engineering as well
as the arts, Koestler’s conjecture was that bisociation is a general mechanism

3 Certain ways of playing chess are also relatively frequent or nearly constant. For
example, certain moves in chess openings, or certain endgame patterns.
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for the creative act. When two habitually independent matrices of perception
or reasoning interact with each other the result is either a collision ending in
laughter, or their fusion in a new intellectual synthesis, or their confrontation in
an aesthetic experience [20].

Koestler provides numerous examples and illustrations ofhis bisociation concept
indifferentareasanddomains. In the followingwebriefly summarize theArchimedes
example which Koestler refers to as the “Eureka act” (Figure 2). The Eureka act is
concerned with the discovery of solutions to a more or less scientific problem.

Archimedes, a leading scientists in classical antiquity, was taskedwith the prob-
lem of determining whether a crown (a present for Hiero, tyrant of Syracuse) con-
sisted of pure gold orwas adulteratedwith silver.To solve this problemArchimedes
needed tomeasure the volume of the crown.At the timenomethod existed to deter-
mine the volume of such an irregularly shaped three-dimensional object. Pondering
over this problem, Archimedes’s thoughts wandered around his matrix of geomet-
rical knowledge (Figure 2a). One day, while taking a bath, Archimedes noticed the
rise of thewater level as his body slid into the basin. Itwas at this pointwhenhe con-
nected the matrix of and experience associated with taking a bath with the matrix
of his knowledge of geometry. He realized that the volume of water displaced was
equal to the volume of the immersed parts of his own body. This Eurekamoment is
illustrated in Figure 2b.WhenArchimedes found the solution to this problemboth
matrices (associations of taking a bath and knowledge of geometry) were simulta-
neously active. In a sense Archimedes was looking at the same problem from two
different perspectives of knowledge or experience at the same time. This “double-
mindedness” allowed him to see the solution which was obscured under the view of
either of the two individual perspectives.

Consider the diagram in Figure 2a. The dashed line illustrates Archimedes’s
search through the conceptual space to find a solution for his problem. While
the search path traverses both knowledge bases (M1 and M2), the reasoning
of Archimedes is initially confined to perceiving only one knowledge base at a
time. Thinking about the problem in this “habitual” way, Archimedes fails to
“see” the solution, because he does not simultaneously perceive the concepts
describing the solution (c1 and c6) and the problem (c1, c2 and c3).

Now consider the diagram in Figure 2b. At some point Archimedes is able
to perceive the concepts describing both the problem (P ) and the solution (S)
simultaneously from the perspective of both knowledge bases. This is depicted
by the line connecting the corresponding concepts across both knowledge bases.
It is at this point when Archimedes experiences the Eureka moment which is
created by the bisociative view spanning two matrices of thought.

The example of Archimedes and the crown illustrates how a familiar but un-
noticed aspect of a phenomenon (rise of water level as a result of the immersion
of an object) is suddenly perceived at an unfamiliar and significant angle (deter-
mining the purity of substance of an irregularly shaped object). Koestler refers
to this as the “bisociative shock” often associated with discoveries when we
suddenly see familiar objects and events in a strangely new and revealing light.
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Concept as perceived withinM2

Legend:

Concept as perceived withinM1

Fig. 2. Illustration of the Eureka act (adapted from Koestler [20]). The matrix or
knowledge base M1 represents concepts or associations of geometrical knowledge, and
M2 those of taking a bath. The dashed lines represent the search or exploration of
the matrices as part of the problem-solving process. (a) Diagram on the left: The
line connecting the concepts c1, c2 and c3 represents the problem, P , as perceived
by Archimedes based on his geometric knowledge base M1. The arc connecting the
concepts c1 and c6 in M2 represents the solution, S. (b) Diagram on the right: The
concepts associated with the problem and solution when perceived simultaneously in
both knowledge bases.

The distinguishing characteristics of associative and bisociative thought are
summarized in Table 1.

Table 1. Comparison of characteristics of bisociation and association based on
Koestler [20]

Habit (Associative) Originality (Bisociative)

association within a given matrix bisociation of independent matrices
rigid to flexible variations on a theme super-flexibility

repetitiveness novelty
conservative destructive-constructive

5 Elements of Bisociative Computational Creativity

Before we formally define bisociation, we analyze and compare the concepts and
models of creativity proposed by Boden and Koestler. We do this by adopting
an AI perspective of the notions involved and, on this basis, attempt a synthe-
sis. In essence, we define creativity and bisociation in terms of domain theories
and knowledge bases. Simply put, a domain theory consists of all knowledge
(concepts) relevant to a given domain (at a given point in time), regardless of
the type of knowledge, how it is encoded (formalism, substrate) or where it is
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located. Under this definition of a domain theory, a knowledge base is simply
a subset of all the concepts in a domain theory. However, different classes of
knowledge bases may be distinguished.

Concept. A concept denotes a cognitive unit of meaning which is sometimes
referred to as “unit of knowledge”. Concept descriptions are constructed from
concept properties (features, dimensions) [30]. A concept is normally associated
with a corresponding representation or encoding in a particular language or
formalism. Concepts form the basis for the cognitive abilities of an intelligent
agent. Without a concept, an intelligent agent or reasoner, relying on a mem-
ory containing a potentially large number of items, would be hopelessly lost.
If a reasoner perceived each entity as unique, it would be overwhelmed by the
enormous diversity of what it experiences, unable to remember but a fraction of
what it encounters. A concept captures the notion that many objects, ideas or
events are alike in some important respects, and can therefore be thought about
in the same or similar ways. Once an entity has been assigned to a concept on
the basis of its perceptible properties, a concept may also be used to infer some
of the entity’s non-perceptible attributes. Having, for example, chosen percepti-
ble attributes like size, shape and material to decide an object is a book, it can
be inferred that the object contains pages and textual information. This idea
of inferability is based on the assumption that all instances of a given concept
are subject to the same, or similar, underlying mechanisms (e.g., cause-effect
relationships) which may or may not be completely known. Such mechanisms
may be simple, in the case of books, or complex in chess positions.

Different views and models of concepts have been proposed [30]; these vary
in a number of aspects, in particular, in the degree to which they are determin-
istic/probabilistic and intensional/extensional. In this article, concepts form the
basic units from which domain theories and knowledge bases are constructed.
Here, concepts include all forms of knowledge, including the three kinds of knowl-
edge normally distinguished in epistemology: “knowledge that” (propositional,
declarative knowledge), “knowledge how” (procedural knowledge) and “acquain-
tance knowledge” (about places, situations, cases, experiences) [1]. The knowl-
edge that concepts represent may be tacit or explicit, it may be implemented on
living tissue, electronic structures, paper or any other substrate. Critical for our
discussion on domain theories and knowledge bases is that concepts are normally
associated with one or more domains.

Notice that here we do not differentiate the representation languages or for-
malisms used to specify concrete knowledge structures (frames, rules, trees, net-
works, heuristics, case bases, etc.).

Domain Theory. For the purpose of this discussion, a domain is viewed as
a formal or common sense topic, subject area, field of interest, for example, a
scientific discipline (e.g., biology), a game (e.g., chess), social, cultural, economic
or political topics (e.g., religious morality), common patterns of activity (e.g.,
taking a bath), and so on. Based on this view of a domain, we define a domain
theory as follows:
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Definition 2 (domain theory). A domain theory Di defines a set of concepts
(knowledge units) that are associated with a particular domain i.

Notice that a particular concept may belong to more than one domain theory
at the same time.

In this view of a domain theory it is easy to see that most domain theo-
ries would be formed from an heterogeneous and distributed pool of knowledge
“sources”, including humans, documents, electronic systems, and so on. For ex-
ample, the domain theory of chess would be “encoded” in books, reports of
tournaments, databases, chess programs, and the minds of a large number of
chess players. While many of the concepts within the domain theory of chess
would be shared across many chess players, other concepts may be unique to
and accessible by individual players only (or by groups of players)4.

A domain theory is shared across a peer group. One consequence of the dis-
tributed and heterogeneous nature of most non-trivial domain theories is that
they are usually associated with a particular peer group, culture, society, etc.,
rather than with an individual or a very small group of people. Notice, a domain
theory, as it is defined here, usually includes elements that are not accessible
by the entire peer group associated with it. For example, the subjective case
base (acquaintance-knowledge) a particular chess master has accumulated over
his career is not likely to be accessible by other chess masters (members of the
peer group). Likewise, certain documents or electronic resources about chess
knowledge may be accessible only to a limited group of peer members.

A domain theory is fixed or changing only very slowly. An established domain
theory would normally not change radically but remain relatively stable and
undergo mostly minor modifications over time. Radical changes of a domain
theory would be related to changes in fundamental concepts of a domain theory.
For example, nowadays in chess it rarely happens that a “standard” move in a
particular game would be shown to be unsound.

A domain theory incorporates “hidden” concepts. At a given point in time, a large
database holds facts and patterns that have already been explicitly reported or
are known by at least one intelligent agent. However, at the same time there may
be many “hidden” facts or patterns contained in the same database which have
not been discovered yet. Analogously, a domain theory captures concepts which
are explicitly documented or known by an intelligent agent. At the same time,
a domain theory harbors concepts which are yet to be discovered. Notice that
while the total number of hidden and explicit/known concepts within a domain
theory may be very large (or even infinite), not every conceivable concept may
be expressible under the constraints of a particular domain theory.

KnowledgeBase. A knowledge base is constructed from the concepts of a domain
theory; we define a knowledge base as a subset of a domain theory as follows:

4 Detailed psychological studies suggest that, for example, the number of symptom-
illness correspondences known by a medical specialist, or the number of board posi-
tions memorized by a chess master, appear to be in the range of 30 000 to 100 000 [23].
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Definition 3 (knowledge base). A knowledge base Ki is defined as a subset
of a domain theory Di, i.e., Ki ⊆ Di.

This means that in the extreme case a knowledge base and a domain theory could
be identical. This is of course only a theoretical possibility, because for real-world
domain theories, a knowledge base is normally a highly selective subset of the
domain theory. In particular, a knowledge base would tend to have the following
characteristics.

A knowledge base is domain-specific. As a consequence of how a knowledge base
is defined, it is always defined with respect to a particular domain. Hence, a
knowledge base contains only concepts from the underlying domain theory.

A knowledge base is focused, selective, goal-oriented, biased ... A knowledge
base is normally not formed by a random process which selects elements from a
domain theory and puts them together to make up a knowledge base. Instead,
a knowledge base is either intentionally constructed or it is evolved, and as
a consequence a knowledge base normally represents a focused, selective, goal-
oriented, biased, subjective, etc. subset of the domain theory. When a knowledge
base is designed, its construction is guided by the function it is supposed to
fulfill, by other design constraints and requirements, and by the set of biases,
skills, abilities, etc. of its designers. In this process particular choices are made
in terms of which concepts from the underlying domain theory will be included
in the knowledge base. When an intelligent agent acquires knowledge (learning,
evolution) it normally does so under a set of constraints, including the goals it
pursues, its prior experience, abilities, skills, the environment it operates in, and
so on. A knowledge base which is thus constructed or evolved has selected (or
acquired) a set of domain concepts in a very biased or “habitual” way. Notice,
as an intelligent agent evolves a knowledge base, it does not only assimilate
knowledge from the domain theory that is shared by other peer members, but
it also creates a part of the domain theory space that is normally not accessible
to other peer members of the domain.

Agent-specific knowledge bases. In our definition of a knowledge base, a book on a
particular variant of the Sicilian Defence could be considered as a knowledge base
in the domain of chess. Often, however, in this discussion we are concerned with
knowledge bases that are tied to or integrated within a specific intelligent agent5.
In this case, we are talking about the type of knowledge base which is highly
subjective, containing domain concepts which are not shared with the domain’s
peer members. It is precisely the non-shared concepts in such an agent-specific
knowledge base that form a kind of “inertial system” or “reference system”
against which the common or shared parts of the knowledge base are viewed
and interpreted. What is important to understand is that an intelligent agent
has exactly one knowledge base for a given domain! This knowledge base may be

5 Here we use the term “intelligent agent” to denote a uniquely identifiable entity with
cognitive abilities such as reasoning, planning, hypothesizing, etc. It is irrelevant on
which physical substrate such an entity is implemented or whether or not it is highly
localized in physical space.
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empty, if the agent knows no concept in that domain, or it may be a non-empty
knowledge base consisting of shared and non-shared concepts of the domain
theory. The non-shared domain concepts impose a unique, biased perspective of
the agent on the domain. The fact that an agent captures part of the domain
theory which is normally not shared with other agents in the domain, makes
such an agent-specific knowledge base special.

Agent-specific knowledge bases are habitually incompatible. Another critical aspect
of the concept of an agent-specific knowledge base is that, given a concrete problem,
normally (or “habitually”) only a single knowledge base would be active at a given
time. This is what Koestler refers to as “habitually incompatible” matrices.

Models of Creativity. Both Boden and Koestler base their models on a corpus
of domain-specific knowledge or concepts called conceptual space by Boden and
code by Koestler. In our conceptualization both a code and a conceptual space
are viewed as a domain theory.

With respects to Boden’s model of creativity, domain theories are equivalent
to the notion of conceptual spaces. They satisfy the characteristic of not be-
ing tied to an individual as well as being relatively stable over time. Indeed, a
domain theory encompasses all the knowledge (or concepts) known about a do-
main at a given point in time. Furthermore, a domain theory represents Boden’s
“generative structure” [6] that contains the “possibilities” of hitherto unknown
knowledge which may be discovered in the creative process (combinatorial or
exploratory creativity). Essentially, these are all possible concepts within a do-
main theory that have not been made explicit in any form (documented) or are
not known by any agent of the domain’s peer group. Boden’s transformational
creativity is facilitated by a change or transformation of the underlying domain
theory. Such a change would typically be realized by a modification or addition
of concepts in a given domain theory.

In Koestler’s framework of creativity the notion of a code is equivalent to our
concept of a domain theory. Like Koestler’s concept of a code, a domain theory
constitutes a relatively fixed system of rules (or concepts) which governs the
processes of creativity.

Unlike Koestler’s model, which incorporates the notion of a matrix, Boden
does not make a distinction between a matrix and a conceptual space. Com-
paring her model with that of Koestler, Boden states: “Matrices appear in my
terminology as conceptual spaces, and different forms of bisociation as associa-
tion, analogy, exploration, or transformation.” [6]. This is where Koestler’s model
appears to be more differentiated. With the notion of a matrix, Koestler puts
the subjective perspective of the entity that engages in creative thought in the
center of his model. Indeed, the matrix notion provides this degree of individu-
ality that appears to be associated with many creative ideas and inventions. In
our model, Koestler’s matrix concept is reflected in the concept of a knowledge
base. A knowledge base, like a matrix in Kostler’s framework, is uniquely linked
to a particular reasoner or intelligent agent. Indeed, a knowledge base carries
the characteristics that Koestler associates with his matrices:
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1. There is exactly one knowledge base per agent for each domain.
2. A knowledge base reflects the subjective personal, prejudiced and unobjec-

tive views and patterns of thinking and behavior – i.e., a habitual frame of
thought – that provide a unique (albeit biased) perspective of the domain.
Usually, when pondering over a task or problem, only the concepts of a single
knowledge base would be active. This is why Koestler calls his matrices “ha-
bitually” incompatible. This notion does not seem to be reflected in Boden’s
model.

3. Because each agent or reasoner incorporates a set of (partially overlapping)
knowledge bases in a highly integrated fashion (with in a single “mind”),
such an agent is equipped with the unequaled potential to discern patterns
of bisociation by bringing together or superimposing multiple knowledge
bases simultaneously. It is this structure that allows an agent to “see” or
perceive a problem, situation or idea simultaneously from different frames of
mind (knowledge bases).

Viewing Koestler’s matrix as a knowledge base appears to be a more realistic
model for combinatorial, exploratory and transformational creativity, because it
takes into account the fact that an entity’s (agent) view of the world is normally
limited by the set of knowledge bases it has. One can assume that agents oper-
ating on the basis of Boden’s conceptual spaces are also limited to a subset of
the conceptual space, but this is not so clear in the model of Boden.

Boden argues that bisociation can be incorporated in her model. However,
in the absence of a clear account of the “habitual” dimension (represented by
matrices in Koestler’s framework and by knowledge bases in our model) involved
in bisociation, Boden’s model seems less convincing.

6 Towards a Formal Definition of Bisociation

Based on above considerations we now attempt to provide a formal definition of
bisociation. In our definition we employ the following symbols:

Let U denote the universe of discourse, which consists of all concepts.

Let c ∈ U denote a concept in U .

Within the universe of discourse, a problem, idea, situation or event π is associ-
ated with the concepts X ⊂ U . Typically, in a concrete setting, a subset P ⊂ X
is used to describe and reason about π.

Di denotes a domain theory which represents the total knowledge (concepts)
within a domain. Notice that the union of all domain theories represents the
universe of discourse: ∪iDi = U . Furthermore, ∃i, j : Di ∩ Dj �= ∅. This means
that many domain theories overlap.
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R denotes a reference system or intelligent agent which possesses exactly one
knowledge base (empty or non-empty) per domain theory Di.

KR
i ⊂ Di denotes the knowledge base with respect to the reference system or

intelligent agent R and domain theory Di. Notice, an intelligent agent R has
exactly a single knowledge base KR

i (empty or non-empty) per domain theory
i. For example, the knowledge base KR

chess defines the chess knowledge base an
intelligent R has.

KR = ∪iK
R
i denotes the entire set of knowledge bases incorporated in the refer-

ence system or intelligent agent R. KR represents the total knowledge that R has
in all the domains. For example, an intelligent agent R may possess non-empty
knowledge bases for the domains of chess, biology and religious morality, and an
empty knowledge base for the domain of geometry.

Definition 4 (habitually incompatible knowledge bases). Two
agent-specific knowledge bases KR

i and KR
i (i �= j) are said to be habitually in-

compatible if, at a given point in time t, there is no concept c : c ∈ KR
i ∧ c ∈ KR

j

that is active or perceived simultaneously in KR
i and KR

i .

In other words, an intelligent agent usually employs a single frame of mind
(knowledge base) at a given moment in time to think about a problem. One could
compare this “pedestrian” way of thinking to a “sequential” mode of reasoning
in which a reasoner switches between the matrices (knowledge bases) but only
uses one matrix at the time.

Definition 5 (bisociation). Let π denote a concrete problem, situation or
event and let X ⊂ U denote the concepts associated with π. Further, let KR

i and
KR

j denote two habitually incompatible agent-specific knowledge bases (i �= j).
Bisociation occurs when elements of X are active or perceived simultaneously in
both KR

i and KR
j at a given point in time t.

This refers to the situation where a problem is perceived simultaneously in two
frames of reference or matrices of thought (Figure 1).

For example, at time t the concepts B = {c1, c2, c3}may be active or perceived
simultaneously in KR

i and KR
j . In this case we say that the concepts in A are

bisociated.

Definition 6 (association). Let π denote a concrete problem, situation or
event and let X ⊂ U denote the concepts associated with π. Further, let KR

i

denote an agent-specific knowledge base. Association occurs when elements of X
are active or perceived in KR

i at time t only.

For example, at time t the concepts A = {c1, c2, c3} may be active in KR
i only.

In this case we say that the concepts in A are associated (with each other).
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7 Related Work

The key notion of bisociation is a knowledge structure that is defined on the
concepts originating from multiple domains. Below we briefly look at some of
the literature which is closely related to bisociation. This short review does not
claim to be exhaustive. A more comprehensive literature review should include
areas such as data and information fusion, heterogenous information networks,
interchange of knowledge bases and ontologies, multi-agent systems, hybrid in-
telligent systems, metaphor-based reasoning (conceptual/cognitive metaphors),
conceptual blending, discourse reasoning, and others.

Analogical Reasoning. Analogy is a powerful form of logical inference which
allows to make assertions about an entity or concept, X , based on its similarity
with another entity or concept, Y . For example, we use our knowledge about
water flow to determine properties of electrical circuits. The underlying assump-
tion of analogical reasoning is that if two entities or concepts are similar in some
respects, then they are probably alike in other respects as well. Like inductive
reasoning, which proceeds from the particular to the general, analogical reason-
ing does not guarantee the truth of the conclusion given a true premise. Despite
this similarity with inductive reasoning, analogical reasoning is often viewed as a
form of reasoning which is distinct from inductive reasoning. For instance, Sowa
and Majumdar view analogical reasoning as a two-step reasoning process which
first inductively creates a theory from a set of cases, and then deductively gener-
ates an answer to a specific question or problem on the basis of the theory [32].
In AI, analogical reasoning is often described as a representational or analogical
mapping from a known “source” domain to a (novel) “target” domain [17].

A key element in analogy is the mechanism of selection. Not all commonalities
between two concepts are equally important when we compare the concepts and
make predictions based on similarities. Therefore, a central issue in analogical
mapping is to determine the selection constraints that guide our assessment
of similarity and dissimilarity6. Two broad classes of selection constraints have
been investigated in AI: goal-relevance and structure-relevance. The former is
used to focus analogical mapping on information that is considered critical to
the problem or goal at hand. The latter is used to guide analogical mapping
based on the structural commonalities between two entities or concepts.

6 Similarity should consider the common and distinctive features of the entities under
investigation. For example, let x and y denote two entities, and X and Y the sets
of their characterizing features. Then the similarity, sim(x, y), between x and y is a
function of their common and distinctive features as follows:

sim(x, y) = θf(X ∩ Y )− αg(X \ Y )− βh(Y \X),

where f(X ∩ Y ) expresses the similarity based on common features in x and y,
g(X \ Y ) the dissimilarity based on properties x has but y does not, and h(Y \X)
the dissimilarity based on properties y has but x does not. θ, α and β influence how
the various components affect the overall score, with θ, α, β ∈ [0, 1].
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Investigating the mechanisms of analogical reasoning in humans, Gentner and
co-workers developed the structure-mapping theory of analogy [13]. The underly-
ing assumptions in the structure-mapping theory are that (a) connected knowl-
edge (concepts) is preferred over independent facts; this assumption is known as
the systematicity principle, and (b) analogical mappings are based on structure-
relevance selection constraints. The structure-mapping theory has been used
to create a computational model called the structure-mapping engine [12]. The
structure-mapping engine can find a mapping between the appropriate relations
(between concepts in the considered domains) given a properly constructed rep-
resentation of the domains of interest. Chalmers and co-workers [9] proposed a
different approach to explain and model analogical reasoning. They view analog-
ical reasoning as a product of a more general cognitive function called high-level
perception. Morrison et al. interpret high-level perception and the structure-
mapping theory as two aspects of analogy, rather than viewing them as mecha-
nisms on two distinct cognitive organizational levels [27].

Human cognition is continually establishing potential mappings between knowl-
edge domains or contexts. Analogical mapping occurs in a richly interconnected
conceptual space in long-term memory. Attribute/category information plays a
crucial role for the discovery of analogies across the conceptual spaces in long-
term memory. Based on such a model of human memory, the following (simpli-
fied) analogical reasoning processes could be distinguished [14]:

1. Retrieval: In respond to some input case, an analogous or similar case is
retrieved from long-term memory transferred to working memory.

2. Mapping: The two cases (the input case and the retrieved analogous case)
are “aligned” in terms of their analogous features. This enables the identifica-
tion of their common and distinctive properties and the inference of unknown
properties of the input case based on the properties of the retrieved case.

Clearly, one of the problems of the above procedure is that mapping should
already be part of the retrieval process.

Arguably, analogical reasoning is closely related to bisociative reasoning, in
particular its domain-crossing conceptual space (long-term memory) bears the
hallmarks of bisociation. Furthermore, the concept of “richly interconnected con-
ceptual space in long-term memory” is very similar to the assumption in our
formulation of bisociation that there needs to be an overlap of concepts in two
domains to facilitate bisociation.

Bisociation is different to analogical reasoning in a number of ways. First,
while analogy may be a mechanism in some forms of biosociation, bisociation
is not about analogy per se. Perceiving a problem simultaneously from the per-
spective of two distinct knowledge bases, does not mean that one views the
entire problem from one knowledge base and then from the other. In a sense,
when bisociation occurs, a fraction of both knowledge bases becomes unified
into a single knowledge base in the context of the problem at hand. Also, when
one considers some of the examples Koestler describes in the context of humor,
it is clear that some of these do no rely on the concept of analogy [20]. The
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Eureka act described in Figure 2 does not seem to be an example of analogi-
cal reasoning. Second, in contrast to bisociation, analogical reasoning seems to
suggest a similar (analogous) structure of the long-term memory entity that is
retrieved and the input case prompting the retrieval. Bisociation is more akin
to Minsky’s concept of knowledge lines [26], which are a kind of “scaffold” at-
tached to the “mental agencies” (facts, concepts, routines, habits, associations)
that were active in creating a certain idea or solving a particular problem in the
past. The knowledge lines later work as a way to re-activate the same structures
in the context of a new problem. Bisociation could be view in similar terms,
except that bisociation explicitly models knowledge lines that cut across knowl-
edge bases embodying domain-specific mental agencies. Thus, when bisociation
occurs, mental agencies usually (habitually) active in the context of a specific
domain, are activated together with mental agencies usually active in another
domain. There are also other perhaps more subtle difference between analogical
reasoning and bisociation that are not discussed here.

Swanson’s Theory. Swanson’s theory [33], also known as to as “Swanson
linking”, is based on the assumption that new knowledge and insight may be dis-
covered by connecting knowledge sources which are thought to be previously un-
related. By “unrelated” Swanson originally meant that there is no co-authorship,
no citation and no officially stated relationship among the considered knowledge
sources. Swanson coined the phrase “undiscovered public knowledge” to refer to
published knowledge that is effectively hidden in disjoint topical domains be-
cause researchers working in different domains are unaware of each others’ work
and scientific publications. He demonstrated his ideas by discovering new rela-
tionships in the context of biology and other areas. The field of literature-related
discovery has emerged from Swanson’s work. It aims at discovering new and
interesting knowledge by associating two or more concepts described in the lit-
erature that have not been linked before [21]. Conceptual biology is another line
of research in this direction – here the idea is to complement empirical biology by
generating testable and falsifiable hypotheses from digital biological information
using data mining, text mining and other techniques [4,28]. The methodologies
from literature-related discovery and Swanson’s theory have already been incor-
porated in conceptual biology. In combination with systems biology, automatic
hypothesis generation is being investigated to facilitate automated modeling and
simulation of biological systems [2].

The work by Swanson, literature-related discovery and conceptual biology are
related to bisociative information exploration in their attempt to discover infor-
mation across normally disjoint information spaces. Perhaps one aspect that is
strikingly different between the Swanson’s approach and bisociation is the notion
of unrelatedness and topical disjointedness in Swanson. This assumption separates
conceptual spaces on the basis of the originators of knowledge. In our definition
of bisociation we do not make this distinction. Nevertheless, the Swanson’s the-
ory, while being currently focused on literature as its main source of knowledge, is
interesting in the context of bisociation. Further investigations are needed to de-
termine how bisociation and Swanson’s approach could complement each other.
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Computational Creativity in Science. Computational creativity [7] in art,
music and poetry has been around for some time. A recent development is com-
putational creativity applied to the fields of science and engineering. For ex-
ample, the aim of the Symposium on Computational Approaches to Creativity
in Science7 (Stanford, US, 2008) was to explore (among other things) (a) the
role creativity plays in various scientific areas and how ICT-based tools could
contribute to scientific tasks and processes, (b) the nature of creativity in search
through a problem space and the representation of the search space and the prob-
lem description, (c) the role background knowledge plays in aiding and possibly
interfering with creative processes in science, and (d) the interactions among
scientists that increase creativity and how computational tools could support
these interactions.

There was a wide range of contributions at the Symposium which covered
themes such as the design of discovery systems; inter-disciplinary science and
communication; abstraction, analogy, classification; spatial transformations and
comparisons; conceptual simulation; strategies for searching a problem space; the
question of how discovery and creativity differs; knowledge acquisition/refinement
approaches and systems; knowledge-based and knowledge management systems,
and “knowledge trading zones”; and explanations, models and mechanisms of
creative cognition.

Computational creativity in science is a fruitful area and also an area in
which large amounts of data, information and knowledge are readily available in
computer-readable format. Given the specialization of science on the one hand,
and the need for inter-disciplinary science to tackle highly challenging problems
on the other hand, it seems that computational creativity in science offers a
formidable platform to further investigate biosociative information exploration.

8 Discussion and Conclusion

Computational creativity, in particular computational creativity in non-art ap-
plications, is a relatively new computing paradigm [15,8]. For example, computa-
tional creativity in science and engineering means that a scientist or an engineer
cedes part of her control over the discovery or design process to a computer
system that operates with a degree of autonomy, and contributes to the results.
In this article we have outlined a rationale or framework for computational cre-
ativity based on Koestler’s concept of bisociation [20]. The framework presented
here facilitates bisociation by “connecting” the knowledge bases of an intelligent
agent in the context of a concrete problem, situation or event (Figure 1).

Koestler’s treatise and other accounts of bisociation often illustrate bisoci-
ation by either bisociating two common or general knowledge domains, or by
bisociating one more specialized subject matter domain with a commonsense
knowledge domain. For example, the Eureka act (Section 4) bisociates the com-
monsense domain of taking a bath with the domain of geometry. If we want to
reflect this kind of structure in a computational creativity solution for non-art

7 http://cll.stanford.edu/symposia/creativity/
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applications, this would mean that we need to develop a knowledge base reflect-
ing the application domain and a knowledge base containing commonsense or
general knowledge. A commonsense knowledge base contains the knowledge that
most people possess and use to make inferences about the ordinary world [24].
Information in a commonsense knowledge base includes things like ontologies
of classes and individuals; properties, functions, locations and uses of objects;
locations, duration, preconditions and effects of events; human goals and needs;
and so on. A commonsense knowledge base must be able to facilitate spatial,
event and temporal reasoning. Tasks that require a commonsense knowledge
base are considered “AI-complete” or “AI-hard”, meaning that it would require
a computer to be as intelligent as people to solve the task.

Another approach to bisociation-based computational creativity would require
the bisociating of knowledge bases from different non-commonsense domains, for
example, biology and quantum mechanics. Here we have a two-fold challenge:

First, we need to somehow provide some form of interoperability of the in-
volved knowledge bases; this is a topic of active research [10]. Our approach to
integrating the concepts from different domains is by creating a heterogeneous
information networks (called BisoNet in this case) from underlying information
sources. The topic of mining of heterogeneous information networks and linked
data has become an area of very active research in recent years [18,5].

Second, when the content of bisociated concepts are presented to the user,
there may be a considerable problem for the user to recognize potentially useful
information from the other domain. For example, a life scientist investigating a
detailed mechanism in relation to gene regulation and nuclear receptors may be
presented with a scientific article in the field of quantum theory that discusses
metric tensors in the context of entanglement entropy. Even if the bisociated
article is potentially useful, the life scientist may not be able to “see” the use-
fulness because he does not have the necessary domain knowledge in field of
quantum mechanics.

Another issue – that is shared with all approaches to computational creativ-
ity – of the presented framework concerns the assessment of whether or not a
discovered item, relationship or bisociation is indeed creative in the sense of be-
ing new, surprising and valuable (see Definition 1). This problem is analogous to
the issue of determining the degree of interestingness or usefulness8 of patterns
discovered by means of data mining or machine learning techniques [25]. Sosa
and Gero [31] argue that creativity is a social construct based on individual-
generative and group-evaluative processes. This suggests that the assessment
of creativeness needs to incorporate social aspects that transcend the within-
individual cognitive dimension. This points to a rather complex challenge for
computational creativity and is something that future studies of computational
bisociation need to take on board.

8 In addition to these, the discovered patterns are usually also required to be non-
trivial, valid, novel and comprehensible. Depending on the technique used and the
application area, an automated assessment of these additional dimensions may also
pose a considerable challenge.
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With the increasing power of ICT and the growing amounts of data, information
and knowledge sources, there is a new wave of efforts aiming to construct comput-
ing solutions that exhibit creative behavior in the context of challenging applica-
tions such as science and engineering [8]. This article presents a framework for
computational creativity based on the concept of bisociation [20]. As a pioneering
effort in this field, the BISON project9 has been exploring bisociation networks for
creative information discovery. This article presents some of the rationale, ideas
and concepts we have explored in an effort to formally define the concept of bioso-
ciation and bisociative information exploration. Clearly, more work is needed to
develop a more comprehensive formal understanding of bisociation and how this
concept can be used to create novel ICT methods and tools.
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Abstract. The integration of heterogeneous data from various domains
without the need for prefiltering prepares the ground for bisociative
knowledge discoveries where attempts are made to find unexpected rela-
tions across seemingly unrelated domains. Information networks, due to
their flexible data structure, lend themselves perfectly to the integration
of these heterogeneous data sources. This chapter provides an overview
of different types of information networks and categorizes them by iden-
tifying several key properties of information units and relations which
reflect the expressiveness and thus ability of an information network to
model heterogeneous data from diverse domains. The chapter progresses
by describing a new type of information network known as bisociative
information networks. This kind of network combines the key properties
of existing networks in order to provide the foundation for bisociative
knowledge discoveries. Finally based on this data structure three differ-
ent patterns are described that fulfill the requirements of a bisociation
by connecting concepts from seemingly unrelated domains.

1 Introduction

Applications of bisociative creative information exploration derive their potential
to produce creative discoveries, insight and solutions from exploring bisociations
across large volumes of information originating from two or more domain the-
ories. To facilitate such applications it is necessary to integrate these domain
theories (or associated knowledge bases) in such a way that the integrated pool
can be processed coherently. Integration of such data is a considerable chal-
lenge not only because of the data volumes, but also because of the semantic
(ontologies of different domains) and syntactic (data and knowledge formats)
heterogeneity involved.

An obvious approach to integrate these large volumes of information from var-
ious domains with varying quality is a flexible representation in terms of an infor-
mation network. A number of different types of information networks have been
proposed in the last few years [38] particularly in the area of biomedical domains.
This area of research is known for its diverse information sources that need to be
considered, for example, in the drug discovery process [12]. The integrated sources
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range from experimental data, such as gene expression results, through to highly
curated ontologies, such as the ontology of Medical Subject Headings1.

Information networks are commonly composed of information units represent-
ing physical objects as well as immaterial objects such as ideas or events and
relations representing semantic or solely correlational connections between infor-
mation units. They are almost always based on a graph structure with vertices
and edges, where vertices represent units of information, e.g. genes, proteins or
diseases, and the relations between these units of information are usually rep-
resented by edges. In some information networks relations are represented by
vertices as well, and therefore apply a bi-partite graph representation. This type
of representation has the added advantage that relations between more than two
information units can be easily supported. Furthermore an edge can be directed
or undirected depending on the relationship it represents. Most networks also
allow additional attributes or properties to be attached to vertices and edges,
such as a vertex type, e.g. gene or protein, describing the nature of the informa-
tion unit. Such information networks that connect multi-typed vertices are also
known as heterogeneous information networks [28].

In order to integrate not only structured and well annotated repositories but
also other types of information such as experimental data or results from text
mining, some information networks support weighted edges. Therefore interac-
tions in biological systems, which can be noisy and erroneous, are often modeled
by Bayesian networks [22,24,31]. In these approaches the edge weight represents
the probability of the existence of the connection. However, the edge weight of
networks used by information retrieval techniques, such as knowledge or Hopfield
networks [14], represents the relatedness of terms. Usually the weights in these ap-
proaches are computed only once. In contrast to these approaches, Belew enables
each user of an adaptive information retrieval (AIR) model [6] to adapt the weights
according to their relevance feedback. The disadvantage of this approach is that
over time the network will be strongly biased by the opinions of the majority of
the users. Another weighted-graph method constructs a weighted graph based on
information extracted from available databases [49]. In doing so the edge weight
represents the quality of the relation and is based on three factors: edge reliabil-
ity, relevance and rarity. They assume that each edge type has a natural inverse,
such as“coded by”and“is referred by”. Similarly, there is one inverse edge for each
edge, leading to an undirected graph with directed edge labels.

Once the data is represented in an information network this well-defined struc-
ture can be used to discover patterns of interest, extract network summarizations
or abstractions and develop tools for the visual exploration of the underlying
relations. A general analysis of the structure of complex networks stemming
from real-world applications has been conducted by Albert and Barabasi [2].
They have discovered that these networks often share a number of common
properties such as the small-world property, clustering coefficient or degree dis-
tribution. A survey on link mining has been conducted by Getoor and Diehl [27].

1 http://www.nlm.nih.gov/mesh/meshhome.html
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They classified the link mining task into three categories: object-related tasks,
link-related tasks and graph-related tasks.

Network summarizations representing different levels of detail can be visu-
alized to gain insight into the structure of the integrated data. A general in-
troduction to network analysis can be found in [11]. An overview of existing
graph clustering methods can be found in [48] and a review of graph visualiza-
tion tools for biological networks can be found in [45]. The paper compares the
functionality, limitation and specific strength of these tools.

Approaches from the semantic Web community include formalization of gen-
eral semantic networks where the most popular variants have resulted in the
RDF standard [40] and for formalism of topic maps [23]. Both techniques imply
the construction of various formalizations in the form of different graph con-
structs. A highly complex example is the formalization of topic maps via shifted
hypergraphs [3]. In this approach a hypergraph model for topic maps is defined
in which the standard hypergraph is extended to a multi-level hypergraph via a
shift function. RDF models were proposed in the form of different graph struc-
tures: graph [29], bipartite graph [30] and hypergraph [42]. Standard graphs al-
low the modeling of relations between two nodes, whereas bipartite graphs and
hypergraphs permit the integration of relations among any number of members.

In order to visually analyze large networks with several million vertices and
many more edges, visualization has to focus on a sub-graph or at least summa-
rize the network to match the user’s interest or provide some kind of overview
of existing concepts. Various visualization and graph summarization techniques
have been developed to address this problem. Examples can be seen in the gen-
eralized fisheye views [25], the interactive navigation through different levels of
abstraction [1], the extraction of sub-graphs that contain most of the relevant
information by querying [21] or by spreading-activation [18]. Other approaches
summarize the graph by clustering or pruning it based on the topology [57] or
additional information such as a given ontology [50].

The next section describes different types of information networks and char-
acterizes them based on the features they support, which are relevant to the
integration of heterogeneous data types. We subsequently introduce bisociative
information networks, which have been tailored to support the integration of
heterogeneous data sources. Before we move on to the conclusion, we discuss
patterns of bisociation in this type of network that support creative thinking by
connecting seemingly unrelated domains.

2 Different Categories of Information Network

In order to differentiate among information networks, distinctions can be made
between different properties of information units and relations. These properties
are, of course, not exclusive. The properties of an information network define
its expressiveness and thus its ability to model data of a diverse nature, e.g.
ontologies or experimental data.
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2.1 Properties of Information Units

The basic information unit does not posses any additional semantical informa-
tion. However, they will at least include a label attached to them in order to
identify the object or concept they represent. Additional properties are the fol-
lowing:

Attributed. units of information can have additional attributes attached to
them. An attribute might be a link to the original data it stems from, or
a translation of a user-readable label. These attributes might be considered
while reasoning or analyzing the network but do not carry general semantic
information, such as the following properties.

Typed. information units carry an additional label that is used to distinguish
between different semantics of information units, e.g. gene or protein. These
types can additionally be organized in a hierarchy or an ontology.

Hierarchical. information units represent a sub-graph composed of any number
of information units and relations that can be used to condense parts of the
network or to represent more complex concepts such as cellular processes.

2.2 Properties of Relations

The basic connection between information units represents a relationship be-
tween the corresponding members. They are not required to carry a label.

Attributed. relations have attributes attached to them and also fall into this
category. Similar to attributed information units, they can be considered
during the reasoning process, but do not carry a general semantic informa-
tion.

Typed. relations are similar to typed information units and can carry a label
identifying their type. This attribute is used to distinguish between different
semantics of relations such as activates or encodes. These types, as well as
typed information units, can be organized in a hierarchy or an ontology.

Weighted. relations carry a special type of label - the weight - which repre-
sents the strength of a relation, e.g. a number reflecting the probability or
strength of a correlation or some other measure of reliability that allows the
integration of facts and pieces of evidence.

Directed. relations can be used to explicitly model relationships that are only
valid in one direction, such as parent child dependency in a hierarchy.

Multi-relation. relations are generally represented as edges supporting only
two members. Topic maps (see Section 3.3) in contrast represent relations as
multi edges supporting any number of members. This allows a more flexible
modeling of relationships with any number of members, e.g. co-expressed
genes of an experiment or co-authors of a paper. Furthermore connections
among relations themselves can be represented. Note that it is complicated
to combine this property with the directed property mentioned above. Addi-
tional information would need to be provided, such as an embedding graph
to identify sources and targets in a relation with more than two members.
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3 Prominent Types of Information Networks

This section describes prominent types of information networks and characterizes
them based on the previously discussed properties (see section 2) they support.

3.1 Ontologies

Ontologies are based on typed and directed relations using a controlled vocabu-
lary for information units and relations dedicated to a certain domain. The cre-
ation of the curated vocabulary leads in general to a manual or semi-automatic
creation of an ontology, requiring a comprehensive knowledge of the area to be
described.

Figure 1 depicts a simple ontology where information units are represented as
nodes and relations are represented as labeled arrows.

Fig. 1. Example of an ontology

In the area of life sciences particularly, many ontologies have been developed
to share data from diverse research areas such as chemistry, biology or pharma-
cokinetics. One of the probably best known and most integrated ontologies in
the biological field is the Gene Ontology (GO) [17]. The GO consists of three
main ontologies describing the molecular function, biological process and cellular
component of genes.

An attempt to integrate diverse ontologies has been made by the Open
Biomedical Ontologies (OBO) consortium [52]. They have created a file exchange
format and over 60 ontologies for different domains defining a general vocabulary
that can be used by other systems.

A classification of biomedical ontologies has been completed by Bodenrei-
der [10]. He classified these ontologies into three major categories: knowledge
management; data integration, exchange and semantic interoperability; decision
support and reasoning.

An ontology-based data integration platform is described in [33]. The authors
describe a system that extends the existing text-mining framework ONDEX.
ONDEX uses a core set of ontologies, which are aligned by several automated
methods to integrate biological databases. The existing system is extended to
support not only the alignment and integration of texts but heterogeneous data
sources. The data is represented as a graph with attributed edges.

Tzitzikas et al. [56] describe a system that is based on the hierarchical inte-
gration of ontologies from different data sources. The system uses a mediator
ontology, which bridges the heterogeneity of the different data source ontologies.
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3.2 Semantic Networks

Semantic networks use typed relations to model the semantic of the integrated
information units and their relations. Information units in semantic networks, in
contrast to ontologies, are not represented by a curated vocabulary but rather
described by attaching any number of attributes to them whose semantic is
defined by the type of the relation.

Most of the semantic networks rely on Semantic Web [8] technologies such as
the Resource Description Framework (RDF) [40], RDF Vocabulary Description
Language (RDF Schema) and the Web Ontology Language (OWL) defined by the
W3C consortium2. RDF is a knowledge representation and storage framework
that uses triples. A triple consists of a subject, predicate and object. The subject
and object are information units that are connected by a directed relation defined
by the predicate.

In Figure 2 subjects and objects that are uniquely identifiable are depicted in
ellipses, whereas objects containing values are depicted in boxes. Predicates are
shown as arrows pointing from the object to the subject with the type of the
relation as an annotation.

Fig. 2. Graph representation of a Semantic Web

The RDF Schema defines a core vocabulary that can be used to describe prop-
erties and classes. These properties and classes can be used to describe the mem-
bers of a triple. OWL extends the RDF Schema by providing a set of additional
standard terms to describe properties and classes in more detail such as relations
between classes. It also defines the behavior of properties, e.g. symmetry or tran-
sitivity. OWL as well as the RDF Schema extend RDF by providing the means to
model the semantics of the integrated data therefore enabling machines to make
sense of the data. They are both described using the RDF.

2 http://www.w3.org/2001/sw/
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Bales and Johnson [5] analyzed large semantic networks created from 1998-
2005 that involve both a graph theoretic perspective and semantic information.
The results indicate that networks derived from natural language share common
topological properties, such as scale-free and small-world characteristics.

Chen et al. [13] provide an introduction to semantic networks and seman-
tic graph mining. In four case studies, they demonstrate the usage of semantic
web technologies to analyze disease-causal genes, GO category cross-talks, drug
efficacy and herb-drug interactions.

Belleau et al.[7] propose the Bio2RDF project to integrate data from different
biological sources. Bio2RDF is used to integrate data from more than twenty
different public bioinformatic sources by converting them into the RDF format.

YeastHub [15] another RDF-based data integration approach likewise inte-
grates the data from heterogeneous sources into a RDF-based data warehouse.
In addition they propose a standard RDF format for tabular data integration.
The format can be used to convert any data table into a standardized RDF
format.

A loosely coupled integration of semantic networks is proposed by Smith et
al. [51] in the form of the LinkHub system. The system consists of smaller net-
works that can be connected by sharing a common hub. Thus independently
maintained networks can be connected to the whole system by connecting them
to one of the already integrated sub networks.

Biozon [9] combines the flexible graph structure with an ontology for vertex
and edge types similar to the semantic web approach. This combined approach
allows a more detailed description of a biological entity by either imposing more
constraints on its nature in the hierarchy or on the structure of its relations
to other entities in the graph. All vertices within Biozon are direct analogs to
physical entities and sets of entities. Proteins, for example, are identified by their
sequence of amino acids. In contrast to pure semantic networks Biozon allows any
number of attributes to be attached to information units as well as to relations.

3.3 Topic Maps

Topic maps [23,47] use typed information units and relations. Furthermore topic
maps support the modeling of multi relations with any number of members. The
semantic of a topic is described by attaching any number of attributes to it.

Figure 3 depicts the three major elements of a topic map: topics (ellipses),
associations (solid lines) and occurrences (boxes). Association and occurrence
types are connected by the dashed lines whereas occurrences are connected by
the dotted line.

A topic can generally be anything, for example a person, a concept or an idea.
Topics can be assigned zero or more topic types, which are, in turn, defined as
topics describing the semantics of the topic such as gene or protein.

Relations between any number of topics are represented by so-called associ-
ations. Associations are assigned a type that describes the association in more
detail. Members of associations play a certain role defined by the association
role. As with topic and occurrence types, association types and association roles
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Fig. 3. Example of a topic map

are defined as topics themselves. In order to attach attributes to an association
it needs to be converted into a topic by the act of reification.

Information resources that represent a topic or describe it in more detail are
linked to topics by so-called occurrences. Occurrences are not generally stored
in the topic map itself but are referenced using mechanisms supported by the
system, e.g. Uniform Resource Identifiers (URI). Occurrences can have any num-
ber of different types, so-called occurrence types, that describe their semantics.
These types are also defined as topics. Topic maps are self-documenting due
to the fact that virtually everything in topic maps is a topic in the map itself,
forming the ontology of the used topics and relation types.

An example of a topic-map-like data integration approach is PathSys [4]. In
PathSys a relation is also represented as a vertex. This approach models re-
lationships between relations themselves. To distinguish between information
units and relations they introduce vertex types. Besides primary vertices repre-
senting information units and connector vertices representing relationships, they
also introduce graph vertices. By introducing graph vertices, PathSys combines
the multi relation property of topic maps with the hierarchical information unit
property allowing the sub-graph representation to describe more complex objects
such as protein complexes or cellular processes.

3.4 Weighted Networks

In most weighted networks the edge weight represents the strength of a relation
such as reliability or probability. Weighted networks often exhibit additional
properties such as types in order to be more expressive by modeling the semantic
of the integrated data sources. They generally only support relationships with
two members represented by the edges of the graph.

Figure 4 depicts a weighted network modeling the probability of a bird to be
either a bird of prey or a flightless bird.

Probabilistic Weights. Probabilistic networks model the probability of the ex-
istence of a relationship. They are mostly used in the biological field to model in-
teraction networks, e.g. gene-gene or protein-protein interaction networks.
In order to model the probability of the relations the networks often depend
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Fig. 4. Example of a weighted network

on a specific network structure or weight distribution. Bayesian networks, for
example, depend on a directed acyclic graph, whose vertices model the random
variables an its relations indicate their conditional dependencies [46].

Franke et al. [24] use three steps to fuse the information from the GO with
microarray co-expression results and protein-protein interaction data using naive
Bayesian networks. The resulting network called Genenetwork can be used to
detect genes that are related to a disease based on genetic mutation.

Li et al. [41] use a two-layered approach to integrate gene relations from
heterogeneous data sources. The first layer creates a fully connected Bayesian
network for each integrated source, which represents the gene functional rela-
tions. The second layer combines these relations from the different data sources
into one integrated network using a naive Bayesian method.

Jansen et al. [31] likewise propose a combination of naive Bayesian networks
and fully connected Bayesian networks to create a protein-protein interaction
network. They use the fully connected Bayesian networks to integrate experi-
mental interaction data and naive Bayesian networks to incorporate other ge-
nomic features such as the biological process from the GO. To combine all results
they use a naive Bayesian network as well.

In [55], Troyanskaya et al. introduce MAGIC (Multisource Association of
Genes by Integration of Clusters). For each integrated data source, MAGIC
creates a gene-gene relationship matrix to predict the functional relationship
of two given genes. The matrices are generated from diverse high-throughput
techniques such as gene expression microarrays. These gene-gene relationship
matrices are weighted by the confidence in the integrated source and combined
into a single matrix. This approach allows genes to be members of more than
one group, which subsequently allows fuzzy clustering.

Heuristic Weights. Heuristic weights are mostly used to model the reliability
or relevance of a given relation, thus allowing the integration of well-curated
sources such as ontologies and pieces of evidence such as noisy experimental
data in a single network.

In order to integrate data from diverse biological sources for protein function
prediction, Chua et al. [16] propose Integrated Weighted Averaging (IWA). This
combines local prediction methods with a global weighting strategy. Each data
source is transformed into an undirected graph with proteins as vertices and rela-
tionships between proteins as edges. Each source graph has a score reflecting its
reliability. Finally, all source graphs are combined in a single graph using IWA.

Kiemer et al. [32] use a weighted network to integrate yeast protein informa-
tion from different data sources forming a protein-protein interaction network
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called WI-PHI. The network consists of 50,000 interactions from all data sources.
The edge weight of the WI-PHI network is computed using the socio-affinity in-
dex [26], quantifying the propensity of proteins to form partnerships, multiplied
by a weight constant per integrated data source defining its accuracy.

In Biomine [49] the edge weight is a combination of three different weights:
reliability, relevance and rarity. Reliability reflects the reliability of the source
the edge stems from. By changing the relevance of different node or edge types,
e.g. proteins, genes, a user can focus on the types he or she is most interested in.
Finally rarity is computed using the degree of the incident vertices. Edges that
connect vertices with a low degree have a higher rarity score than edges that
connect vertices with a high degree. Vertices and edges have a type assigned
describing their nature. Each edge has its inverse edge with a natural inverse
type such as“coded by”and“is referred by”. Thus forming a weighted undirected
graph with directed edge types.

In the next section we describe bisociative information networks that combine
the properties of the existing network types in order to support the integration
of heterogeneous data sources.

4 BisoNets: Bisociative Information Networks

Bisociative information networks (BisoNets) provide the flexibility to integrate
relations from semantically meaningful information as well as loosely coupled
information fragments with any number of members by adopting a weighted
k-partite graph structure (see Figure 5).

Fig. 5. Example of a 5-partite BisoNet

Vertices in BisoNets represent arbitrary units of information, e.g., a gene,
protein, specific molecule, index term, or document, or abstract concepts such as
ideas, acts or events. Vertices of the same type are grouped into vertex partitions
such as documents, authors, genes or experiments. Since a vertex can play diverse
roles it can be assigned to several partitions.

Depending on a certain view, the vertices of a partition can act as relations or
information units. Let us consider a document author network to illustrate this
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concept. In one view the documents can describe the relationship between co-
authors. Whereas in another view the authors describe the relationship between
documents that have been written by the same authors. Thus the role of a vertex
partition depends on the current view on the data.

Connections between vertices are represented by edges. An edge can only exist
between vertices of diverse partitions; this leads to the k-partite graph structure.
Hence a relation between two information units (e.g., authors) is described by
a third information unit (e.g., document). A BisoNet therefore consists of at
least two partitions, the first partition representing the information units and
the second partition describing the relations between the information units.

The certainty of a connection is represented by the weight of the edge. A
stronger weight represents a higher certainty in the existence of the connection.
Thus, a connection derived from a reliable data source (e.g., a manually cu-
rated ontology) is assigned a stronger weight than a connection derived from an
automated method (e.g., text mining method).

BisoNets model the main characteristics of the integrated information repos-
itories without storing all the detailed data from which these characteristics are
derived. By focusing on the concepts and their relations alone, BisoNets therefore
allow very large amounts of data to be integrated.

Definition 1 (BisoNet). A BisoNet B = (V1, ..., Vk, E, λ, ω) is an attributed
graph, where V =

⋃
i≤k Vi represents the union of all vertex partitions and k ≥ 2

denotes the number of existing partitions. Every vertex v ∈ V represents a unit
of information and can be a member of multiple partitions.

The set of edges E = {{u, v} : u ∈ Vi; v ∈ Vj ; j �= i} connects vertices
from two different vertex partitions, whereas an edge e = {u, v} ∈ E represents
a connection between the two vertices u ∈ Vi and v ∈ Vj where i �= j and
2 ≤ i, j ≤ k.

The function λ : V → Σ∗ assigns each vertex v ∈ V an unique label from Σ∗.
This allows for the identification of a vertex by its unique label.

The certainty of a relation is represented by the weight of an edge e ∈ E, which
is assigned by the function ω : E → [0, 1] and where a weight of 1 represents the
highest certainty.

4.1 Summary

Table 1 compares the prominent types of information networks from section 3
with BisoNets based on the properties they support. The table shows that most
of the networks support typed relations whereas topic maps and BisoNets also
support typed information units. The types enable us to distinguish between
different types of information units and relations, leading to to a better under-
standing of the integrated data. In addition the type information allows seman-
tical information to be processed by a computer system. But the usage of type
information requires detailed knowledge about the information that should be in-
tegrated into the network. The creation of a suitable type collection that allows
the integration of data from diverse sources is thus an elaborated task which
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Table 1. Properties matrix of prominent types of information network in conjunction
with BisoNets (A=Attributed, T=Typed, H=Hierarchical, W=Weighted, D=Directed
and M=Multi relation)

Information Units Relations
A T H A T W D M

Ontologies X X
Semantic Networks X X X

Topic Maps X X X X X
Weighted Networks X

BisoNets X X X X X X X X

often has to be done manually. Moreover, not all data sources do possess the
required semantical information to assign the right type and therefore manual
annotations of the integrated information units and relations might be required.
If information units and relation types are abandoned, the integration of data
from heterogeneous sources is much easier but it might make the comprehension
of the integrated data more difficult. As a result, BisoNets support typed infor-
mation units and relations and allow their usage if the integrated data sources
provide this information, however they are not mandatory. In contrast to topic
maps, BisoNets also support weighted relations, thus allowing not only the inte-
gration of facts but also pieces of evidence. BisoNets combine the properties of
the existing network types in order to provide a well-defined and powerful data
structure that provides the flexibility to integrate relations from heterogeneous
data sources.

5 Patterns of Bisociation in BisoNets

Once the information has been integrated into a BisoNet, it can be analyzed in
order to find interesting patterns in the integrated data. One class of pattern is
bisociation. So far, we have identified three different kinds of bisociations [37],
which are described in more detail below.

5.1 Bridging Concept

Bridging concepts connect dense sub-graphs from different domains (see Fig-
ure 6). Bridging concepts employ ambiguous concepts or metaphors and are
often used in humor [34] and riddles [19]. While ambiguity is useful for mak-
ing jokes or telling stories, it is less popular in serious scientific or engineering
applications. For example, the concept of a “jaguar” is ambiguous since it may
refer to either an animal or a car. Metaphors, on the other hand, describe a
form of understanding or reasoning in which a concept or idea in one domain is
understood or viewed in terms of concepts or ideas from another domain. The
statement “You are wasting my time”, for instance, can be seen as a metaphor
that connects the time with the financial domain. Metaphors play a major role in
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our everyday life as they afford a degree of flexibility that facilitates discoveries
by connecting seemingly unrelated subjects [39].

A first approach to detect bridging concepts is the discovery of concept graphs
[35,36] in the integrated data. Concept graphs can be used to identify existing
and missing concepts in a network by searching for densely connected quasi
bi-partite sub-graphs. Once a concept graph has been detected the domains, its
aspect and member vertices stem from, can be analyzed in order to find concepts
graphs, e.g. concepts that connect information units from different domains.

Fig. 6. Bridging concept

5.2 Bridging Graphs

Bridging graphs are sub-graphs that connect concepts from different domains
(see Figure 7). They may lead to surprising information arising from different
domains since they are able to link seemingly unrelated domains (see Figure 7a).
An example of where bridging graph could be used to realize bisociation is the
Eureka act of the Archimedes example [20]. A bridging graph may also lead to
the linking of two disconnected concepts from the same domain via a connection
through and unrelated domain (see Figure 7b).

A first step in the direction of the discovery of bridging graphs is the formaliza-
tion and detection of such domain-crossing sub-graphs [43,44]. The discovered
sub-graphs can be further ranked according to their potential interestingness.
Therefore the interestingness is measured by a so called b-score that takes into
account the size of the connected domains, the sparsity of the connections be-
tween the different domains and the distribution of the neighbors of the bridging
vertices.

(a) (b)

Fig. 7. Bridging graphs
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5.3 Bridging by Graph Similarity

Bisociations based on graph similarity are represented by sub-graphs of two dif-
ferent domains that are structurally similar (see Figure 8). This is the most
abstract pattern of bisociation that has the potential to lead to new discover-
ies by linking domains that do not have any connection except for the similar
interaction of the bridging concepts and their neighbors.

These structurally similar but disconnected regions in a BisoNet can be dis-
covered by means of a vertex similarity based on the structural properties of
vertices. In [53,54] a spatial similarity (activation similarity) and a structural
similarity (signature similarity) based on spreading activation are introduced,
which can be used in combination in order to identify bisociations based on
structurally similar but disconnected sub-graphs.

Fig. 8. Bridging by graph similarity

6 Conclusion

In this chapter we identified several key properties of information units and rela-
tions used in information networks. We provided an overview of different types
of information networks and categorized them based on the identified properties.
These properties reflect the expressiveness and thus the ability of an information
network to model data of a diverse nature.

We further describe BisoNets as a new type of information network that is
tailored to the integration of heterogeneous data sources from diverse domains.
They possess the main properties required to integrate large amounts of data
from a variety of information sources. By supporting weighted edges BisoNets
support the integration not only of facts such as hand curated ontologies but
also of pieces of evidence such as results from biological experiments.

Finally we described three patterns of bisociations in BisoNets. Bridging con-
cepts refer to a single vertex that is connected to vertices from different domains.
These vertices, which belong to multiple domains, might be an indication of am-
biguity or metaphor - metaphors often being used in humor and riddles. Bridging
graphs on the other hand are sub-graphs consisting of multiple vertices and edges
that connect concepts from different domains. These sub-graphs might lead to
new insights by connecting seemingly unrelated domains. Last but not least, do-
main bridging by structural similarity is the most abstract pattern of bisociation
with the potential to lead to truly new discoveries by linking domains that are
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otherwise unconnected, except for the similar structure of their corresponding
sub-graphs.
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Although networks are a very natural and straightforward way of organizing
heterogeneous data, as argued in the introductory chapters, few data sources
are in this form. We rather find the data we want to fuse, connect, analyze and
thus exploit for creative discoveries, stored in flat files, (relational) databases,
text document collections and the like. As a consequence, we need, as an initial
step, methods that construct a network representation by analyzing tabular and
textual data, in order to identify entities that can serve as nodes and to extract
relevant relationships that should be represented by edges.

Rather than simply connect all (named) entities for which there is evidence
that they may be related in some way, it is clearly desirable that these methods
should try to select edges that have a higher chance of being part of a bisociation
(or should at least try to endow such edges with higher weights) and should try
to identify nodes that have a higher chance of being a bridging concept. In this
way the created networks will be better geared towards the goal of creative
information discovery. In addition, we need a representational formalism that
allows us to reason about graph relationships, in order to support the network
analysis and exploration methods described in Parts III and IV, respectively.

Contributions

Most of the following chapters deal with constructing BisoNets from text docu-
ment collections, like web pages, (scientific) abstracts and papers, or news clip-
pings. In order to process such data sources, the authors all start with standard
text mining techniques for keyword extraction in order to obtain an initial set
of node candidates. These candidates may then be filtered in order to identify
potential bridging concepts or at least to rank them higher than other terms.

In more detail, the first chapter by Segond and Borgelt [1] simply takes the
extracted keywords as the node set of the BisoNet that is to be constructed
and focuses on the task of selecting appropriate edges. Since standard measures
for the association strength of terms turn out to be of fairly limited value, the
authors suggest a new measure, which has become known as “Bison measure”
or “bisociation index”. This measure is based on the insight that for selecting
appropriate edges the similarity of the term weights is at least as important as,
if not more important than, the magnitude of these weights.

In contrast to this, the chapter by Juric et al. [2] concentrates on the selec-
tion and ranking of terms and keywords in order to identify bridging concepts.
Starting with a more detailed description of the used text mining techniques and
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document representations, the authors provide a thorough overview of a variety
of approaches to compute term weights and of several distance measures between
vectors that represent documents in a bag-of-words vector space model. From
these the authors derive heuristics to rank terms based on their occurrence in two
or more document collections. Included here are heuristics relying on classifiers
that are trained to distinguish between the document collections, and for which
the misclassified terms are interpreted as potential bridging concepts. They show
that in this way a significantly higher number of bridging concepts appear at
the top of the ranking list than can be expected in a chance ranking.

The chapter by Hynönen et al. [3] again emphasizes the relation between
terms, but rather than selecting edges for a BisoNet the authors try to identify
terms that are connected in a document even though they are usually not in the
underlying document collection as a whole. The core idea is that such unusually
correlated terms can indicate a new development or a new insight that is de-
scribed in the corresponding document(s). In order to measure the connection
strength, the authors introduce two new aspects: the first consists in measures for
the term pair frequency to assess the strength of correlation in a document and
the term pair uncorrelation to describe the background of the document collec-
tion to which it is compared. The second aspect is that they take the document
apart into sentences in order to achieve more fine-grained assessments.

The second chapter by Segond and Borgelt [4] presents a new item set mining
technique, which may be applied to text document mining by seeing each term
as an item and each document as a transaction of the terms that occur in it. The
core idea of the approach is to go beyond terms pairs and to find correlations
between multiple terms, which correspond to possible hyperedges in a BisoNet.
However, since the standard measure for the selection of item sets, the support
(number of transactions containing all items) is not well suited to assess the
association of terms, the authors introduce an approach based on the similarity
of item covers (sets of transactions containing the items) and develop an efficient
algorithm to mine item sets with several such similarity measures.

Finally, the chapter by Kimmig et al. [5] discusses a representation and rea-
soning framework for graphs with probabilistically weighted edges that relies on
the ProbLog language. The authors demonstrate how both graphs and graph
patterns can conveniently be described in a logical framework and how deduc-
tive, abductive and inductive reasoning are supported, as is shown with several
precise examples. In addition, modifications of the knowledge base can easily be
expressed, including graph simplification, subgraph extraction, abstraction etc.
Finally, the authors demonstrate how probabilistic edge weights (interpreted as
the probability that an edge is present) can be incorporated and how all discussed
logical concepts can be transferred and extended to probabilistic graphs.

Conclusions

Whether graphs are described by explicit graph data structures or in a log-
ical framework (endowed with probabilistic edge weights or not), they are a
powerful framework for knowledge representation. However, creating them from
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heterogeneous and, in particular, from unstructured data like documents, is a
challenging task, especially if one wants to support creative information discov-
ery. Even though standard text mining techniques form the starting point for
all of the approaches discussed in this part, they are not sufficient for creating
useful BisoNets. As the following chapters demonstrate, several enhancements of
the selection of both nodes and edges can increase the chance of obtaining edges
that support bisociative discoveries and of identifying nodes that are potential
bridging concepts. It has to be conceded, though, that the methods are not per-
fect yet and that there is a lot of room for improvement. However, the described
methods are highly promising and they could be shown to produce significantly
better results than known techniques.
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Abstract. According to Koestler, the notion of a bisociation denotes
a connection between pieces of information from habitually separated
domains or categories. In this chapter, we consider a methodology to
find such bisociations using a BisoNet as a representation of knowledge.
In a first step, we consider how to create BisoNets from several tex-
tual databases taken from different domains using simple text-mining
techniques. To achieve this, we introduce a procedure to link nodes of
a BisoNet and to endow such links with weights, which is based on a
new measure for comparing text frequency vectors. In a second step, we
try to rediscover known bisociations, which were originally found by a
human domain expert, namely indirect relations between migraine and
magnesium as they are hidden in medical research articles published
before 1987. We observe that these bisociations are easily rediscovered
by simply following the strongest links.

1 Introduction

The concept of association is at the heart of many of today’s powerful ICT
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” in order to discover
new information that is relevant to the evidence already known to a user.

However, domains that are characterized by the need to develop innovative
solutions require a form of creative information discovery from increasingly com-
plex, heterogeneous and geographically distributed information sources. These
domains, including design and engineering (drugs, materials, processes, devices),
areas involving art (fashion and entertainment), and scientific discovery disci-
plines, require a different ICT paradigm that can help users to uncover, select,
re-shuffle, and combine diverse contents to synthesize new features and prop-
erties leading to creative solutions. People working in these areas employ cre-
ative thinking to connect seemingly unrelated information, for example, by using
metaphors or analogical reasoning. These modes of thinking allow the mixing
of conceptual categories and contexts, which are normally separated. The func-
tional basis for these modes is a mechanism called bisociation (see [1]).

According to Arthur Koestler, who coined this term, bisociation means to
join unrelated, and often even conflicting, information in a new way. It means
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being “double minded” or able to think on more than one plane of thought
simultaneously. Similarly, Frank Barron [2] says that the ability to tolerate chaos
or seemingly opposite information is characteristic of creative individuals.

Several famous scientific discoveries are good examples of bisociations, for
instance Isaac Newton’s theory of gravitation and James C. Maxwell’s theory
of electromagnetic waves. Before Newton, a clear distinction was made between
sub-lunar (below the moon) and super-lunar physics (above the moon), since
it was commonly believed that these two spheres where governed by entirely
different sets of physical laws. Newton’s insight that the trajectories of planets
and comets can be interpreted in the same way as the course of a falling body
joined these habitually separated domains. Maxwell, by realizing that light is
an electromagnetic wave, joined the domains of optics and electromagnetism,
which, at his time, were also treated as unrelated areas of physical phenomena.

Although the concept of bisociation is frequently discussed in cognitive sci-
ence, psychology and related areas (see, for example, [1,2,3]), there does not seem
to exist a serious attempt at trying to formalize and computerize this concept. In
terms of ICT implementations, much more widely researched areas include asso-
ciation rule learning (for instance, [4]), analogical reasoning (for example, [5,6]),
metaphoric reasoning (for example, [7]), and related areas such as case-based
reasoning (for instance, [8]) and hybrid approaches (for example, [9]).

In order to fill this gap in current research efforts, the BISON project1 was
created. This project focuses on a knowledge representation approach with the
help of networks of named entities, in which bisociations may be revealed by link
discovery and graph mining methods, but also by computer-aided interactive
navigation. In this chapter we report first results obtained in this project.

The rest of this chapter is structured as follows: in Section 2 we provide a
definition of the core notion of a bisociation, which guides our considerations.
Based on this definition, we justify why a network representation—a so-called
BisoNet—is a proper basis for computer-aided bisociation discovery. Methods
for generating BisoNets from heterogeneous data sources are discussed in Sec-
tion 3, including procedures for selecting the named entities that form its nodes
and principles for linking them based on the information extracted from the
data sources. In particular, we present a new measure for the strength of a link
between concepts that are derived from textual data. Such link weights are im-
portant in order to assess the strength of indirect connections like bisociations.

Afterwards, in Section 5 we report results on a benchmark data set (consisting
of titles and abstracts of medical research articles), in which a human domain
expert already discovered hidden bisociations. By showing that with our system
we can create a plausible BisoNet from this data source, in which we can redis-
cover these bisociations, we provide evidence that the computer-aided search for
bisociations is a highly promising technology.

Finally, in Section 6 we draw conclusions from our discussion.

1 See http://www.bisonet.eu/ for more information on this EU FP7 funded project.
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2 Reminder: Bisociation and BisoNets

Since the core notion of our efforts is bisociation, we start by trying to provide
a sufficiently clear definition, which can guide us in our attempts to create a
system able to support a user in finding bisociations. A first definition within
the BISON project2 characterizes bisociation as follows:

A bisociation is a link L that connects two domains D1 and D2 that are
unconnected given a specific context or view V by which the domains are
defined. The link L is defined by a connection between two concepts c1
and c2 of the respective domains.

Although the focus on a connection between two habitually (that is, in the con-
text a user is working in) separated domains is understandable, this definition
seems somewhat too narrow. Linking two concepts from the same domain, which
are unconnected within the domain, but become connected by employing indi-
rect relations that pass through another domain, may just as well be seen as
bisociations. The principle should rather be that the connection is not fully con-
tained in one domain (which would merely be an association), but needs access
to a separate domain. Taking this into account, we generalize the definition:

A bisociation is a link L between two concepts c1 and c2, which are
unconnected given a specific context or view V . The concepts c1 and c2
may be unconnected, because they reside in different domainsD1 and D2

(which are seen as unrelated in the view V ), or because they reside in
the same domain D1, in which they are unconnected, and their relation
is revealed only through a bridging concept c3 residing in some other
domain D2 (which is not considered in the view V ).

In both of these characterizations we define domains formally as sets of concepts.
Note that a bridging concept c3 is usually also required if the two concepts c1
and c2 reside in different domains, since direct connections between them, even
if they cross the border between two domains, can be expected to be known and
thus will not be interesting or relevant for a user.

Starting from the above characterization of bisociation, a network represen-
tation, called a BisoNet, of the available knowledge suggests itself: each concept
(or, more generally, any named entity) gives rise to a node. Concepts that are
associated (according to the classical paradigm of similarity or co-occurrence)
are connected by an edge. Bisociations are then indirect connections (technically
paths) between concepts, which cross the border between two domains.

Note that this fits both forms of bisociations outlined above. If the concepts c1
and c2 reside in different domains, the boundary between these two domains
necessarily has to be crossed. If they reside in the same domain, one first has to
leave this domain and then come back in order to find a bisociation.

2 See http://www.inf.uni-konstanz.de/bisonwiki/index.php5, which, however, is
not publicly accessible at this time.
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Fig. 1. Illustration of the structure of the BisoNet generator

3 BisoNet Generation

A system for generating BisoNets requires three ingredients: (1) A component
to access the original, usually heterogeneous data sources. In order to cope
with different data formats, we suggest, in Section 3.1, a two-layer architec-
ture. (2) A method for choosing the named entities that are to form the nodes
of the BisoNet. Here we rely on standard keyword extraction techniques, as dis-
cussed in Section 3.2. (3) A procedure for linking the nodes of a BisoNet and for
endowing them with weights that indicate the association strength. For this we
suggest, in Section 4, a new association measure for keywords.

3.1 Data Access and Pre-processing

As explained above, a BisoNet is a network that promises to contain bisociations.
In order to generate such networks, we first have to consider two things: we must
be able to read different and heterogeneous data sources, and we have to be able
to merge the information derived from them in one BisoNet. Data sources can be
databases (relational or of any other type), text collections, raw text, or any data
that provide information about a domain. Due to the wide variety of formats
a data source can have, the choice we made here is not to provide an interface
of maximal flexibility that can be made to read any data source type, but to
structure our creation framework into two separate steps.

In the first step, we directly accesses the data source and therefore a parser
has to be newly developed for or at least adapted to the specific format of the
data source. The second step is actual the BisoNet generation part. It takes its
information from the first step, always in the same format, and therefore can
generate a BisoNet from any data source, as far as it is parsed and exported in
the form provided by the first step process (see Figure 1 for a sketch).

The way data should be provided to the second layer is fairly simple, because
in this chapter we confine our considerations to textual data. As a consequence,
the second layer creates nodes from data that are passed as records containing
textual fields. These textual fields can contain, for now, either words or authors
names. This procedure and data format is well adapted to textual databases or
text collections, but is meant to evolve in future development in order to be
able to take other types of data sources into account. However, since most of the
data sources that we have used so far were textual data sources, this protocol
seems simple and efficient. Future extensions could consist in including raw data



58 M. Segond and C. Borgelt

fields (for example, to handle images), and will then require an adaptation of
the second layer to be able to create nodes from other objects than textual data.

The second layer builds a BisoNet by extracting keywords using standard text
mining techniques such as stop word removal and stemming (see [10]). The
extracted keywords are weighted by their TFIDF (Text Frequency - Inverse Docu-
ment Frequency) value (see [11]), thus allowing us to apply a (user-defined) thresh-
old in order to filter themost important keywords, as will be detailed in Section 3.2.
Links between nodes are created according to the presence of co-occurrences of the
correspondingkeywords in the samedocuments, andareweightedusinga similarity
measure adapted to the specific requirements of our case,whichwill be presented in
Section 4. In the case that author lists are providedwith each text string, extracted
keywords are also linked to the related authors. These links areweighted according
to the number of times a keyword occurs in a given author’s work.

3.2 Creating Nodes

In our BisoNets nodes represent concepts. As we only talk about textual
databases, we made the choice to characterize concepts by keywords that are
extracted from the textual records taken from the data sources. In the second
layer of our framework, each textual record j is processed with a stop word re-
moval algorithm. Then the text frequency values are computed for each remain-
ing term i as follows: tfi,j =

ni,j∑
k nk,j

, where ni,j is the number of occurrences

of the considered term in textual record j and
∑

k nk,j is the sum of number of
occurrences of all terms in textual record j.

Naturally, this procedure of keyword extraction is limited in its power to cap-
ture the contents of the text fields. The reason is that we are ignoring synonyms
(which should be handled by one node rather than two or more), hyper- and
hyponyms, pronouns (which may refer to a relevant keyword and thus may have
to be counted for the occurrence of this keyword) etc. However, such linguistic
properties are very difficult to take into account and need sophisticated tools
(like thesauri etc.). Since such advanced text mining is not the main goal of
our work (which rather focuses on BisoNet creation), keeping the processing
simple seemed a feasible option. Nevertheless, advanced implementations may
require such advanced processing, because ignoring, for example, synonyms and
pronouns can distorts the statistics underlying, for instance, the term frequency
value: ignoring pronouns that refer to a keyword, or not merging two synonyms
makes the term frequency lower than it should actually be.

After all records have been processed, the inverse document frequency of each

keyword i is computed the following way: idfi = log |D|
|{d∈D|ti∈d}| , where |D| is

the total number of records in the database and |{d ∈ D | ti ∈ d}| is the number
of records in which the term ti appears.

Each node is then weighted with its corresponding average TFIDF value:

tfidfi =
1

|D|
∑|D|

j=1 tfi,j · idfi
This TFIDF approach is a very well known approach in text mining that

is easy to implement and makes one able to easily apply a threshold, thus
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selecting only the most important nodes (keywords). A node then contains, as an
attribute, a list of the term frequency values of its associated term in the differ-
ent documents of the collection. This allows us to compute similarity measures
presented in Section 4 in order to create links.

According to the definition of a bisociation presented in Section 2, two con-
cepts have to be linked by other concepts that are not in their proper domain
(so-called bridging concepts). This leads us to introduce the notion of domains,
into which the nodes are grouped, so that we can determine when borders be-
tween domains are crossed. In order to be able to classify nodes according to
their membership in different domains, it is important that they keep, also as an
attribute, the domains the data sources belong to, from which they have been
extracted. Since the same keyword can occur in several data sources, taken from
different domains, one has to be able (for example, for graph mining and link dis-
covery purposes) to know whether a certain keyword has to be considered from
a certain domain’s point of view. The nodes therefore keep this information as
vector of domains their associated keyword belongs to.

This can be interesting, for example, to mine or navigate the BisoNet, keeping
in mind that a user may be looking for ideas related to a certain keyword belong-
ing to a domain A. The results of a search for bisociations might also belong to
domain A, because it is the domain of interest of the user. However, these results
should be reached following paths using keywords from other domains, that is
to say bisociations. This procedure provides related keywords of interest for the
user, as they belong to its research domain, but they might be also original and
new connections as they are the result of a bisociation process.

4 Linking Nodes: Different Metrics

As explained in Section 3.2, nodes are associated with a keyword and a set of doc-
uments in which this keyword occurs with a certain term frequency. Practically,
this is represented using a vector of real values containing, for each document,
the term frequency of the node’s keyword. In order to determine whether a link
should be created between two nodes or not, and if there is to be a link, to assign
it a weight, we have to use a similarity measure to compare two nodes (that is
to say: the two vectors of term frequency values).

Links in our BisoNets are weighted using similarity measures shown below.
This approach allows us to use several different kinds of graph mining algorithms,
such as simply thresholding the values to select a subset of the edges, or more
complex ones, like calculating, for example, shortest paths.

4.1 Cosine and Tanimoto Measures

One basic metric that directly suggests itself is an adaptation of the Jaccard

index (see [12]): J(A,B) = |A∩B|
|A∪B| .

Here |A ∩B| represents the number of elements at the same index that both
have a positive value in the two vectors and |A∪B| the total number of elements
in the two vectors.
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It can also be interpreted as a probability, namely the probability that both
elements are positive, given that at least one is positive (contain a given term i,
i.e., tfi > 0).

Cosine similarity is a measure of similarity between two vectors of n dimen-
sions by finding the angle between them. Given two vectors of attributes, A and
B, the cosine similarity, cos(θ), is represented using a dot product and mag-
nitude as cos(θ) = A·B

‖A‖‖B‖ , where, in the case of text matching, the attribute

vectors A and B are usually the tf-idf vectors of the documents.
This cosine similarity metric may be extended such that it yields the Jaccard

index in the case of binary attributes. This is the Tanimoto coefficient T (A,B),
represented as T (A,B) = A·B

‖A‖2+‖B‖2−A·B .

These measures allow us to compare two nodes according to the number of
similar elements they contain, but do not take into account the importance of
the text frequency values.

4.2 The Bison Measure

In the Jaccard measure, as applied above, we would consider only whether a term
frequency is zero or positive and thus neglect the actual value (if it is positive).
However, considering two elements at the same index i in two vectors, one way of
taking their values into account would be to use their absolute difference (that is,
in our case, the absolute difference of the term frequency values for two terms, but
the same document).With this approach, it is easy to compare two vectors (of term
frequencyvalues)by simply summing these values anddividingby the total number
of values (or the total number of elements that are positive in at least one vector).

However, this procedure does not properly take into account that both values
have to be strictly positive, because a vanishing term frequency value means that
the two keywords do not co-occur in the corresponding document. In addition, we
have to keep inmind that having two elements, both ofwhichhave a term frequency
value of 0.2, should be less important than having two elements with a term fre-
quency value of 0.9. In the first case, the keywords associated with the two nodes
we are comparing appear only rarely in the considered document. On the other
hand, in the latter case these keywords appear very frequently in this document,
which means that they are strongly linked according to this document.

A possibility of taking the term frequency values itself (and not only their differ-
ence) into account is to use the product of the two term frequency values as a coef-
ficient to the (absolute) difference between the term frequency values. This takes
care of the fact that the two term frequency values have to be positive, and that
the similarity value should be the greater, the larger the term frequency values are
(and, of course, the smaller their absolute difference is). However, in our case, we
also want to take into account that it is better to have two similar term frequency
values of 0.35 (whichmeans that the two keywords both appear rather infrequently
in the document) than to have term frequency values of 0.3 and 0.7 (which means
the first keywords appears rarely, while the other quite frequently).
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In order to adapt the product to this consideration, we use the expression
in Equation 1, in which k can be adjusted according to the importance one is
willing to give to low term frequency values.

B(A,B) = (tfAi · tfBi )k · (1− | tfAi − tfBi |), tfAi , tf
B
i ∈ [0, 1] (1)

Still another thing that we have to take into account in our case is that the same
difference between tfAi and tfBi can have a different impact depending on whether
tfAi and tfBi are large or small. To tackle this issue, we combine Equation 1 with
the use of the arctan function, and thus obtain the similarity measure shown
in Equation 2, which we call the Bison measure. This form has the advantage
that it takes into account that two term frequency values for the same index
have to be positive, that the similarity should be the greater, the larger the term
frequency values are, and that the same difference between tfAi and tfBi should
have a different impact according to the values of tfAi and tfBi .

B(A,B) = (tfAi · tfBi )k ·
(

1− | arctan(tfAi )− arctan(tfBi )|
arctan(1)

)

, tfAi , tf
B
i ∈ [0, 1]

(2)

4.3 The Probabilistic Measure

Another way of measuring the similarity between two nodes is based on a proba-
bilistic view. Considering two terms, it is possible to compute, for each document
they appear into, the probability of randomly selecting this document by ran-
domly choosing an occurrence of the considered term, all of which are seen as
equally likely. This value is given by the law of conditional probabilities shown
in Equation 3

P (di/tj) =
P (tj/di) · P (di)

P (tj)
(3)

with P (tj) =
∑

d

P (tj/d) · P (d)

This leads us to represent a node by a vector of all the conditional probabilities
of the documents they appear in instead of a vector of text frequencies.

Having this representation, we can compare two nodes using the similarity
measure shown in Equation 4.

S(A,B) =

√
1

n
·
∑

n

(P (dn/tA)− P (dn/tB))2 (4)

We can add that P (di/tj) in Equation 3 is equivalent to the term frequency if
P (di) is constant, which is the case in most of the textual data sources. We can
however use this P (di) to give arbitrary weights to certain documents.
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5 Benchmarks

Having shown how BisoNets can be built from textual data sources, we present
benchmark applications in this section. The idea is to provide a proof of principle,
that this approach of creating a BisoNet can help a user to discover bisociations.

In order to assess how effective the different similarity measures are, we count
how many domain crossing links there are in the generated BisoNets, then we
use different threshold values on the links in order to keep only the “strongest”
edges according to the similarity measure used.

5.1 The Swanson Benchmark

Swanson’s approach [13] to literature-based discovery of hidden relations be-
tween concepts A and C via intermediate B-terms is the following: if there is
no known direct relation A-C, but there are published relations A-B and B-C
one can hypothesize that there is a plausible, novel, yet unpublished indirect
relation A-C. In this case the B-terms take the role of bridging concepts. In his
paper [13], Swanson investigated plausible connections between migraine (A) and
magnesium (C), based on the titles of papers published before 1987. He found
eleven indirect relations (via bridging concepts B) suggesting that magnesium
deficiency may be causing migraine.

We tried our approach on the Swansons data source which consists of 8000
paper titles, taken from the PubMed database, published before 1987 and talking
about either migraine or magnesium, to see if it was possible to find again these
relations between migraine and magnesium. In order to generate a BisoNet,
we implemented a parser for text files containing the data from PubMed able to
export them in the format understandable by the second layer of our framework.
Then, this second layer performed the keywords extraction, using these keywords
as nodes and linking these nodes in the way described in Section 3.

By ranking and filtering the edges we then produced BisoNets that contained
the “strongest” edges and their associated nodes. The left graphic of Figure 2
shows how many domain crossing links that are kept using different threshold
values on the edges. On this graphic, we can observe that the Bison measure is the
one able to keep the most crossing-domain links even if only the very strongest
edges are kept (threshold set to keep only the best 5% of the edges). These tests
demonstrate that the Bison measure is very well suited for bisociation discovery,
since with it the strongest links are the bisociative ones.

We can observe this also in Figure 3 where the difference between the Tani-
moto and the Bison measure is graphically highlighted, showing that if we keep
only the 5% best edges, the Tanimoto measure loses any relation between mag-
nesium and migraine whereas the Bison measure manages to keep at least some.

5.2 The Biology and Music Benchmark

As we aim to discover bisociations, that is associations between concepts that ap-
pear unrelated from a certain, habitual point of view, an interesting benchmark
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Fig. 2. Comparison between different similarity measures on the Swanson benchmark
on the left and on the biology-music benchmark on the right

Fig. 3. Example of two BisoNets generated from the Swanson benchmark using the
Bison similarity measure and the probabilistic similarity measure
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would be to look for bisociations in data coming from very different domains. We
therefore use here data from two databases: the PubMed database that has al-
ready been talked about in the Swanson benchmark, and the FreeDB3 database
which is a freely available music database providing music titles, music styles
and artist names.

We use exactly the same procedure as for the Swanson benchmark, that is
reading the databases, performing textual pre-processing on terms and then
launching the BisoNet creation framework to obtain a BisoNet containing terms
linked to each other using the similarity distances described in this chapter. We
consider here as potential keywords every word and author in the articles of
the PubMed database, and every word of song titles, authors and styles in the
FreeDB database.

The right graphic of Figure 2 shows how many domain crossing links that are
kept using different threshold values on the edges.

6 Conclusion

In this chapter, we provided a definition of the notion of a bisociation, as un-
derstood by Koestler, which is the key notion of the BISON project. Building
on this definition, we then defined the concept of a BisoNet, which is a network
bringing together data sources from different domains, and therefore may help a
user to discover bisociations. We presented a way we create nodes using simple
text-mining techniques, and a procedure to generate links between nodes, which
is based on comparing text frequency vectors using a new similarity measure.

We then tested our approach on benchmarks in order to rediscover bisociations
between magnesium and migraine that have been discovered by Swanson using
articles published before 1987. We see that bisociations between these two terms
are easily discovered using the generated BisoNet, thus indicating that BisoNets
are a promising technology for such investigations.

Using the secondbenchmark,we showthat, evenwhilemixingverydifferentdata
sources, we are still able to produce BisoNets containing domain crossing links.

In summary, we venture to say that this work can be easily applied to any
kind of textual data source in order to mine data looking for bisociations, thanks
to the two layers architecture implementation.
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Abstract. A major challenge for next generation data mining systems is crea-
tive knowledge discovery from diverse and distributed data sources. In this task 
an important challenge is information fusion of diverse mainly unstructured re-
presentations into a unique knowledge format. This chapter focuses on merging 
information available in text documents into an information network – a graph 
representation of knowledge. The problem addressed is how to efficiently and 
effectively produce an information network from large text corpora from at 
least two diverse, seemingly unrelated, domains. The goal is to produce a net-
work that has the highest potential for providing yet unexplored cross-domain 
links which could lead to new scientific discoveries. The focus of this work is 
better identification of important domain-bridging concepts that are promoted 
as core nodes around which the rest of the network is formed. The evaluation is 
performed by repeating a discovery made on medical articles in the mi-
graine-magnesium domain. 

Keywords: Knowledge Discovery, Text Mining, Bridging Concept Identifica-
tion, Information Networks, PubMed, Migraine, Magnesium. 

1 Introduction 

Information fusion can be defined as the study of efficient methods for automatically 
or semi-automatically transforming information from different sources and different 
points in time into a representation that provides effective support for human and 
automated decision making [5]. Creative knowledge discovery can only be performed 
on the basis of a sufficiently large and sufficiently diverse underlying corpus of in-
formation. The larger the corpus, the more likely it is to contain interesting, still un-
explored relationships. 

The diversity of data and knowledge sources demands a solution that is able to rep-
resent and process highly heterogeneous information in a uniform way. This means 
that unstructured, semi-structured and highly structured content needs to be inte-
grated. Information fusion approaches are diverse and domain dependent. For in-
stance, there are recent investigations [7, 19] in using information fusion to support 
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scientific decision making within bioinformatics. Smirnov et al. [22] exploit the idea 
of formulating an ontology-based model of the problem to be solved by the user and 
interpreting it as a constraint satisfaction problem taking into account information 
from a dynamic environment. 

In this chapter we explore a graph-theoretic approach [1, 2] which appears to pro-
vide the best framework to accommodate the two dimensions of information source 
complexity – type diversity as well as volume size. Efficient management and proc-
essing of very large graph structures can be realized in distributed computing envi-
ronments, such as grids, peer-to-peer networks or service-oriented architectures on the 
basis of modern database management systems, object-oriented or graph-oriented 
database management systems. The still unresolved challenge of graph-theoretic ap-
proaches is the creation, maintenance and update of the graph elements in the case of 
very large and diverse data and knowledge sources. 

The core notion that guided our research presented in this chapter is based on the 
concept of bisociation, as defined by Koestler [11] and refined in our context by 
Dubitzky et al. [6]. Furthermore, Petrič et al. [15] explore the analogy between 
Koestler’s creativity model and comparable cross-domain knowledge discovery ap-
proaches from the field of literature mining. In the field of biomedical litera-
ture-mining, Swanson [24] designed the ABC model approach, which investigates 
whether agent A is connected with phenomenon C by discovering complementary 
structures via interconnecting phenomena B. The process of discovery when domains 
A and C are known in advance and the goal is to find interconnecting concepts from 
B is called a closed discovery process. On the other hand, if only domain A is known 
then this is an open discovery process since also domain C has to be discovered. 

Our research deals only with the closed discovery setting and is to some extent 
similar to the work of Smalheiser and Swanson [21] where they developed an online 
system ARROWSMITH, which takes as input two sets of titles from disjoint domains 
A and C and lists bridging terms (b-terms) that are common to literature A and C; the 
resulting b-terms are used to generate novel scientific hypotheses. Other related works 
in the domain of biomedical literature mining are work of Weeber et al. [28] where 
authors partly automate Swanson’s discovery and work of Srinivasan et al. [23] where 
they develop an algorithm for bridging term identification with even less expert inte-
raction needed. 

This work extensively uses the concepts of bisociation, bridging concept, b-term 
identification, closed discovery, cross-context and A-C domains presented in the pre-
vious paragraph. Furthermore, we have based the evaluation techniques mostly on the 
results reported by Swanson et al. [26] and Urbančič et al. [27]. 

The chapter is structured as follows. The second section explains the initial prob-
lem we are solving into much more detail, defines the terminology used in this work 
and outlines the structure of the solution proposed in this chapter. The next section is 
more technical and it lays ground for some basic procedures for retrieving and pre-
processing a collection of documents. It also introduces the standard text-mining pro-
cedures and terminology which is essential for understanding the subsequent sections. 
The fourth section presents the core contribution of this work, i.e., bisociative bridg-
ing concept identification techniques which are used to extract key network concepts 
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(nodes). Evaluation of these core ideas on a previously well studied domain is pre-
sented in the following section. The sixth section builds upon the results from concept 
identification part (Sections 4 and 5) and shows how the final information networks 
are constructed. 

2 Problem Description 

This section describes the problem addressed in this work. The initial goal is straight-
forward: to construct an information network from text documents. The input to the 
procedure consists of text documents (e.g., titles and abstract of scientific documents) 
from two disparate domains. The output of the procedure is an information network 
which could, for example, look like the graph shown in Fig. 1. However, the strong 
bias towards bisociations leads us to using advanced bridging term identification 
techniques for detecting important network nodes and relations. The following para-
graphs define in detail the input, the output, open issues and sketch the proposed solu-
tion. 
 

 

Fig. 1. Part of a network created from PubMed articles on migraine and magnesium 

This chapter focuses – similarly as related work from the literature-mining field – 
on text documents as the primary data source. Texts are in general considered to be 
one of the most unstructured data sources available, thus, constructing a meaningful 
graph of data and knowledge (also named an information network) is even more of a 
challenge. 

We are solving the closed discovery problem, which is the topic of research of this 
chapter and one of the basic assumptions of our methodology. The selected source 
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text documents are originating from at least two dissimilar domains (M1 and M2 con-
texts by Koestler’s naming or A and C domains according to Swanson and his follow-
ers). In this chapter, we always describe the methodology using exactly two domains 
even though it could be generalised to three or more domains. 

In this work, the selected knowledge representation formalism is the so-called bi-
sociative information network, called BisoNet. The BisoNet representation, as investi-
gated in the BISON1 project and discussed by Kötter and Berthold [12] is a graph 
representation, consisting of labeled nodes and edges (see Fig. 1). The original idea 
underlying the BISON project was to have a node for every relevant concept of an 
application domain, captured by terms denoting these concepts, that is, by named 
entities. For example, if the application domain is drug discovery, the relevant 
(named) entities are diseases, genes, proteins, hormones, chemical compounds etc. 
The nodes representing these entities are connected if there is evidence that they are 
related in some way. Reasons for connecting two terms/concepts can be linguistic, 
logical, causal, empirical, a conjecture by a human expert, or a co-occurrence ob-
served in documents dealing with considered domains. E.g., an edge between two 
nodes may refer to a document (for example, a research paper) that includes the repre-
sented entities. Unlike semantic nets and ontologies, a BisoNet carries little semantics 
and to a large extend encodes just circumstantial evidence that concepts are somehow 
related through edges with some probability. 

Open issues in BisoNet creation are how to identify entities and relationships in 
data, especially from unstructured data like text documents; i.e., which nodes should 
be created from text documents, what edges should be created, what are the attributes 
with which they are endowed and how should element weights be computed. Among 
a variety of solutions, this chapter presents the one that answers such questions by 
optimizing the main criterion of generated BisoNets: maximizing their bisociation 
potential. Bisociation potential is a feature of a network that informally states the 
probability that the network contains a bisociation. Thus, we want to be able to gener-
ate such BisoNets that contain as many bisociations as possible using the given data 
sources. In other words, maximizing the bisociation potential of the generated Bi-
soNet is our main guidance in developing the methodology for creating BisoNets 
from text documents. 

When creating large BisoNets from texts, we have to address the same two issues 
as in network creation from any other source: define a procedure for identifying key 
nodes, and define a procedure for discovering relations among the nodes. However, in 
practice, a workflow for converting a set of documents into a BisoNet is much more 
complex than just identifying entities and relations. We have to be able to preprocess 
text and filter out noise, to generate a large number of entities, evaluate their bisocia-
tion potential and effectively calculate various distance measures between the entities. 
As these tasks are not just conceptually difficult, but also computationally very inten-
sive, great care is needed when designing and implementing algorithms for BisoNet 
construction. 
  

                                                           
1 Bisociation Networks for Creative Information Discovery: http://www.BisoNet.eu/ 
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Our approach to confront the network construction problem is based on developing 
the following ingredients: 

1. Provide basic procedures for automatic text acquisition from different sources of 
interest on the Web. 

2. Employ the state of the art approaches for text preprocessing to extract as much 
information as available in raw text for the needs of succeeding procedures. 

3. Incorporate as much as possible available background knowledge into the stages of 
text preprocessing and candidate concept detection. 

4. Define a candidate concept detection method. 
5. Develop a method for relevant bisociative concept extraction from identified con-

cept candidates and perform its evaluation. 
6. Select a set of relevant extracted bisociative concepts to form the nodes of a Bi-

soNet. 
7. Construct relations between nodes and set their weights according to the Bisocia-

tion Index measure published and evaluated by Segond and Borgelt [4]. 
 

 

Fig. 2. Conceptual workflow of the proposed solution for BisoNet creation 

Fig. 2 illustrates the steps of the methodology proposed by our work. This chapter 
concentrates mostly on the part of the new methodology for bridging concept evaluation 
(frame in the middle Fig. 2). As this is an important scientific contribution we provide 
an evaluation that justifies the design choices in our methodology conception. An 
evaluation of the final results – BisoNets – is not provided since an experimental evalua-
tion is hard, if not impossible, to construct according to the data we currently possess 
and work on. We argue that by providing evaluation for high-quality bridging concept 
identification and evaluation (done in this work) and using the proven bisociative rela-
tion measure (defined by Segond and Borgelt [4]), the resulting BisoNets are also of 
high quality according to the loos defined measure of bisociation potential. 

3 Document Acquisition and Preprocessing 

This section describes the data preparation part (leftmost frame in Fig. 2) and is writ-
ten from a technical perspective as it sets grounds for the reproducibility of the subse-
quent scientifically more interesting steps. Alongside the reproducibility, it addresses 
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also the introduction of some essential text-mining concepts, which are crucial for 
understanding specific parts of our methodology. A top-level overview of the meth-
odology, discussed along with a description of the actual working system, defines the 
preprocessing steps supporting the main goal addressed by this work – bisociative 
concept detection. 

The system for text processing proposed and implemented in this work, named 
TexAs (Text Assistant), was used to produce the results presented in this chapter. The 
described TexAs implementation is built on top of the LATINO2 library (Link analy-
sis and text mining toolbox). This library contains a majority of elementary text min-
ing procedures, but, as the creation of BisoNet is a very specific task (in the field of 
text mining), a lot of modules had to be implemented from scratch or at least opti-
mized considerably. 

3.1 Document Acquisition 

For the study, we use only one data source, i.e., PubMed3, which was used to retrieve 
the datasets (migraine-magnesium) used in the following sections. However, when 
experimenting with other domains, we identified and partly supported in TexAs the 
following text acquisition scenarios: 

─ Using locally stored files in various application dependent formats – this is the 
traditional setting in data mining; however, it usually requires large amounts of 
partly manual work for transforming the data between different formats. 

─ Acquiring documents using the SOAP web services (e.g. PubMed uses SOAP 
web service interface to access their database). 

─ Selecting documents from the SQL databases – it is a fast and efficient but 
rarely available option. 

─ Crawling the internet gathering documents from web pages (e.g. Wikipedia). 
─ Collecting documents from snippets returned from web search engines. 

3.2 Document Preprocessing 

In addition to explaining various aspects of preprocessing, this section also briefly 
describes basic text mining concepts and terminology, some of which are taken from 
the work of Feldman and Sanger [8]. Preprocessing is an important part of network 
extraction from text documents. Its main task is the transformation of unstructured 
data from text documents into a predefined well-structured data representation. As 
shown below, preprocessing is inevitability very tightly connected to the extraction of 
network entities. In our case, actual bisociative concept candidates are defined already 
when preprocessing is finished. The subsequent processing step ‘only’ ranks the enti-
ties and to remove the majority of lower ranked entities from the set. 

                                                           
2  LATINO library: http://sourceforge.net/projects/latino/ 
3  PubMed: A service of U.S. National Library of Medicine, which comprises more than 20 

million citations for biomedical literature: http://www.ncbi.nlm.nih.gov/pubmed 
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In general, the task of preprocessing consists of the extraction of features from text 
documents. The set of all features selected for a given document collection is called a 
representational model. Each document is represented by a vector of numerical quan-
tities – one for each aligned feature of the selected representational model. Using this 
construction, we get the most standard text mining document representation called 
feature vectors where each numerical component of a vector is related to a feature and 
represents a form of weight related to the importance of the feature in the selected 
document. Usually the majority of weights in a vector are equal to zero showing that 
one of the characteristics of feature vectors is their sparseness – they are often re-
ferred to as sparse vectors. The goal of preprocessing is to extract a feature vector for 
each document from a given document collection. 

Commonly used document features are characters, words, terms and concepts [8]. 
Characters and words carry little semantic information and are therefore not interest-
ing to consider. Terms and concepts on the contrary carry much more semantic in-
formation. Terms are usually considered as single or multiword phrases selected from 
the corpus by means of term-extraction mechanisms (e.g. because of their high fre-
quency) or are present in an external lexicon of a controlled vocabulary. Concepts or 
keywords are features generated for documents employing the categorization or anno-
tation of documents. Common concepts are derived from manually annotating a 
document with some predefined keywords or by inserting a document into some pre-
defined hierarchy. When we refer to document features, we mean the terms and the 
concepts that we were able to extract from the documents. In the rest of this chapter, 
we do not distinguish between terms or concepts. In the case if a document set con-
tains both, we merge them and pretend that we have only one type of document fea-
tures, i.e. terms/concepts. 

A standard collection of preprocessing techniques [8] is listed below, together with 
a set of functionalities implemented in our system TexAs: 

─ Tokenization: continuous character stream must be broken up into meaningful 
sub-tokens, usually words or terms in the case where a controlled vocabulary is 
present. Our system uses a standard Unicode tokenizer: it mainly follows the 
Unicode Standard Annex #29 for Unicode Text Segmentation4. The alternative 
is a more advanced tokenizer, which tokenizes strings according to a predefined 
controlled vocabulary and discards all the other words/terms. 

─ Stopword removal: stopwords are predefined words from a language that usu-
ally carry no relevant information (e.g. articles, prepositions, conjunctions etc.); 
the usual practice is to ignore them when building a feature set. Our implemen-
tation uses a predefined list of stopwords – some common lists that are already 
included in the library are taken from Snowball5. 

─ Stemming or lemmatization: the process that converts each word/token into the 
morphologically neutral form. The following alternatives have been made  

                                                           
4 Unicode Standard Annex #29: 
 http://www.unicode.org/reports/tr29/#Word_Boundaries 
5 Snowball – A small string processing language designed for creating stemming algorithms: 
 http://snowball.tartarus.org 
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available: Snowball stemmers, the Porter stemmer [17], and the one that we pre-
fer, the LemmaGen lemmatization system [10]. 

─ Part-of-speech (POS) tagging: the annotation of words with the appropriate 
POS tags based on the context in which they appear. 

─ Syntactic parsing: performs a full syntactical analysis of sentences according to 
a certain grammar. Usually shallow (not full) parsing is used since it can be effi-
ciently applied to large text corpora. 

─ Entity extraction: methods that identify which terms should be promoted to enti-
ties and which not. Entity extraction by grouping words into terms using n-gram 
extraction mechanisms (an n-gram is a sequence of n items from a given se-
quence) has been implemented in TexAs. 

3.3 Background Knowledge 

Since high-quality features are hard to acquire, all possible methods that could im-
prove this process should be used at this point. The general approach that usually 
helps the most consists in incorporating background knowledge about the documents 
and their domain. The most elegant technique to incorporate background knowledge 
is to use a controlled vocabulary. A controlled vocabulary is a lexicon of all terms that 
are relevant in a given domain. Here we can see a major difference when processing 
general documents as compared to scientific documents. For many scientific domains 
there exists not only a controlled vocabulary, but also a pre-annotation for a lot of 
scientific articles. In this case we can quite easily create feature vectors since we have 
terms as well as concepts already pre-defined. Other interesting approaches to identi-
fying concepts include methods such as KeyGraph [13], which extract terms and con-
cepts with minimal assumptions or background knowledge, even from individual 
documents. Other alternatives are using domain ontologies which could be, for exam-
ple, semi-automatically retrieved by a combination of tools such as OntoGen and 
TermExtractor [9]. 

3.4 Candidate Concept Detection 

The design choice of our approach is that the entities of the BisoNets will be the fea-
tures of documents, i.e., the terms and concepts defined in the previous section. The 
subsequent steps are independent of term and concept detection procedure. 

Entities need to be represented in a way which enables efficient calculation of dif-
ferent distance measures between the entities. We chose a representation in which an 
entity is described by a set (vector) of documents in which it appears. In the same way 
as documents are represented as sparse vectors of features (entities), the entities can 
also be represented as sparse vectors of documents. This is illustrated in Example 1 
where entity ent1 is present in documents doc1, doc3 and doc4 and hence its feature 
vector consists of all these documents (with appropriate weights). By analogy to the 
original vector space – the feature space – the newly created vector space is named a 
document space. 
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Documents Extracted entities
doc1 ent1, ent2, ent3

doc2 ent3, ent4, ent4

doc3 ent1, ent2, ent2, ent5

doc4 ent1, ent1, ent1, ent3, ent4, ent4

Original documents and extracted entities 
 

Feature space ent1 ent2 ent3 ent4 ent5

doc1 wf
1:1 wf

1:2 wf
1:3

doc2 wf
2:3 wf

2:4

doc3 wf
3:1 wf

3:2 wf
3:5

doc4 wf
4:1 wf

4:3 wf
4:4

Sparse matrix of documents: wf
x:y denotes the weight (in the 

feature space) of entity y in the feature vector of document x 
 

Document space doc1 doc2 doc3 doc4

ent1 wd
1:1 wd

1:3 wd
1:4

ent2 wd
2:1 wd

2:3

ent3 wd
3:1 wd

3:2 wd
3:4

ent4 wd
4:2 wd

4:4

ent5 wd
5:3

Sparse matrix of entities: wd
x:y denotes the weight (in the 

document space) of document y in the document vector of entity x 

Example 1: Conversion between the feature and the document space 

Note that if we write document vectors in the form of a matrix, then the conversion 
between the feature space and the document space is performed by simply transposing 
the matrix (see Example 1). The only question that remains open for now is what to 
do with the weights? Is weight wf

x:y identical to weight wd
y:x? This depends on various 

aspects, but mostly on how we define weights of the entities in the first place when 
defining document vectors. 

There are four most common weighting models for assigning weights to features: 

─ Binary: a feature weight is either one, if the corresponding feature is present in 
the document, or zero otherwise. 

─ Term occurrence: a feature weight is equal to the number of occurrences of this 
feature. This weight might be sometimes better than a simple binary since fre-
quently occurring features are likely more relevant as repetitions indicate that 
the text is strongly concerned with them. 

─ Term frequency: a weight is derived from the term occurrence by dividing the 
vector by the sum of all vector’s weights. The reasoning of the quality of such 
weight is similar to term occurrence with the additional normalization that 
equalizes each document importance – regardless of its length. 

─ TF-IDF: Term Frequency-Inverse Document Frequency is the most common 
scheme for weighting features. It is usually defined as: ݓ௫:௬்ிூ஽ி ൌ TermFreq൫݁݊ݐ௫ , ௬൯ܿ݋݀ · logሺܰ ⁄௫ሻݐሺ݁݊ݍ݁ݎܨܿ݋ܦ ሻ, 
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where TermFreq൫݁݊ݐ௫, -௬ (equivalent to term frequency defined in bullet point above), ܰ is the numܿ݋݀ ௫ inside documentݐ݊݁ ௬൯ is the frequency of featureܿ݋݀
ber of all documents and ݍ݁ݎܨܿ݋ܦሺ݁݊ݐ௫ሻ is the number of documents that con-
tain ݁݊ݐ௫. The idea behind the TF-IDF measure is to lower the weight of features 
that appear in many documents as this is usually an indication of them being 
less important (e.g. stopwords). The quality of this approach has also been quan-
titatively proven by numerous usages in solutions to various problems in text-
mining. 

These four methods can be further modified by vector normalization (dividing each 
vector so that the length – usually the Euclidian or Manhattan length – of the vector is 
1). If and when this should be done depends on several factors: one of them is the 
decision which distance measure will be used in the next, the relation construction 
step. If the cosine similarity is used, a pre-normalization of the vectors is irrelevant, as 
this is also done during the distance calculation. Example 2 shows the four measures 
in practice – documents are taken from the first table in Example 1. Weights are cal-
culated for the feature space and are not normalized. 

It is worthwhile to note again the analogy between the feature space and the docu-
ment space. Although we have developed the methodology for entities network ex-
traction, the developed approach can be used also for document network extraction. 
Moreover, both approaches can be used to extract a unified network representation 
where documents and entities are nodes, connected using some special relations. 

 

 ent1 ent2 ent3 ent4 ent5  ent1 ent2 ent3 ent4 ent5 ent1 ent2 ent3 ent4 ent5 
doc1 1 1 1    1 1 1 1/3

1/3
1/3   

doc2  1 1   1 2 1/3
2/3  

doc3 1 1   1  1 2 1 1/4
2/4  1/4 

doc4 1 1 1   3 1 2 3/6
1/6

2/6  
 Binary weight  Term occurrence Term frequency 

 
 ent1 ent2 ent3 ent4 ent5 

doc1 (1/3)·log(4/3) (1/3)·log(4/2) (1/3)·log(4/3)  
doc2  (1/3)·log(4/3) (2/3)·log(4/2)  
doc3 (1/4)·log(4/3) (2/4)·log(4/2) (1/4)·log(4/1) 
doc4 (3/6)·log(4/3)  (1/6)·log(4/3) (2/6)·log(4/2)  

TF-IDF: term frequency – inversed document frequency 

Example 2: Weighting models of features in document vectors (from Example 1) 

3.5 Distance Measures between Vectors 

Although distance calculation addressed in this section is not used in the document 
preprocessing step, it is explained at this point since the content is directly related to 
the Section 3.4, and since the distance measures are extensively used in the two fol-
lowing sections about bridging concept identification as well as network creation. 

The most common measures in vector spaces, which are also implemented in our 
system TexAs, are the following: 
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─ Dot product: DotProd൫ܿ݁ݒ௫ ,  .௬൯ܿ݁ݒ

─ Cosine similarity: CosSim൫ܿ݁ݒ௫ , ௬൯ܿ݁ݒ ൌ D୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯|௩௘௖ೣ|·ห௩௘௖೤ห . 

is the dot product normalized by the length of the two vectors. In the cases 
where the vectors are already normalized, the cosine similarity is identical to the 
dot product. 

─ Jaccard index: this similarity coefficient measures the similarity between sample 
sets. It is defined as the cardinality of the intersection of the sample sets: JaccInx൫ܿ݁ݒ௫ , ௬൯ܿ݁ݒ ൌ ห௩௘௖ೣ ת ௩௘௖೤หห௩௘௖ೣ ׫ ௩௘௖೤ห ൌ D୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯|௩௘௖ೣ|ାห௩௘௖೤หିD୭୲P୰୭ୢ൫௩௘௖ೣ ,௩௘௖೤൯, 
where lengths |ܿ݁ݒ௫| and หܿ݁ݒ௬ห are Manhattan lengths of these vectors. 

─ Bisociation index: it is the similarity measure defined for the purpose of bisocia-
tion discovery in the BISON project. It is explained in more detail in [4]. This 
measure cannot be expressed by the dot product. Therefore, the following defi-
nition uses the notation from Example 1: BisInx൫ܿ݁ݒ௫, ௬൯ܿ݁ݒ ൌ ∑ ቆ ඥݓ௫:௜ · ௬:௜ೖݓ · ቀ1 െ  ห୲ୟ୬షభሺ௪ೣ:೔ሻ ି ୲ୟ୬షభሺ௪೤:೔ሻห୲ୟ୬షభሺଵሻ ቁቇெ௜ୀ଴ , 

where M is the number of all the entities. 

In general, the choice of a suitable distance measure should be tightly connected to 
the choice of the weighting model. Some of the combinations are very suitable and 
have understandable interpretations or were experimentally evaluated as useful, while 
others are less appropriate. We list the most commonly used pairs of weighting model 
and distance measure below: 

─ TF-IDF weighting and cosine similarity: this is the standard combination for 
computing the similarity in the feature space. 

─ Binary weighting and dot product distance: if this is used in the document space 
the result is the co-occurrence measure, which counts the number of documents 
where two entities appear together. 

─ Term occurrence weighting and dot product distance: this is another measure of 
co-occurrence of entities in the same documents. Compared to the previous 
measure, this one considers also multiple co-occurrences of two entities inside a 
document and gives them a greater weight in comparison with the case were 
each appears only once inside the same document. 

─ Binary weighting and Jaccard index distance: Jaccard index was primary de-
fined on sets, therefore the most suitable weighting model to use with it is the 
binary weighting model (since every vector then represents a set of features). 

─ Term frequency weighting and the Bisociation Index distance: the Bisociation 
Index was designed with the term frequency weighting in mind, thus it is rea-
sonable to use this combination when determining a weighting model for the Bi-
sociation index. 
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4 Identifying Bridging Concept Candidates for High Quality 
Network Entities Extraction 

This section presents the key part of our methodology for bisociative bridging terms 
identification. We propose a set of heuristics which are promising for b-term discov-
ery. In Section 5 we use them to rank all the terms from a document collection and 
thus obtain some terms which have a higher probability of being b-terms than a ran-
domly selected term. 

4.1 Heuristics Description 

Heuristics are functions that numerically evaluate the term’s quality by assigning a 
bisociation score (tendency that a term is a b-term) to it. For the definition of an ap-
propriate set of heuristics we define a set of special (mainly statistical) properties of 
terms which will separate b-terms from regular terms. Thus, these heuristics can also 
be viewed as advanced term statistics. 

All heuristics operate on the data retrieved from the documents in preprocessing or 
obtained from the background knowledge. Using an ideal heuristic and sorting all the 
terms by the its calculated bisociation scores should result in finding all the b-terms at 
the top of a list. However, sorting by actual heuristic bisociation scores (either ascend-
ing or descending) should still bring much more b-terms than non b-terms to the top 
of the term list. 

Formally, a heuristic is a function with two inputs, i.e., a set of domain labeled 
documents ܦ and a term ݐ appearing in these documents, and one output, i.e., a num-
ber that correlates with the term’s bisociation score. 

In this chapter we use the following notation: to say that the bisociation score ܾ is 
equal to the result of a heuristic named ݄݁ܺݎݑ, we can write it as ܾ ൌ ,ܦሺ ܺݎݑ݄݁  .ሻݐ
However, since the set of input documents is static when dealing with a concrete data-
set, we can – for the sake of simplicity – omit the set of input documents from a heu-
ristic notation and use only ܾ ൌ  ሻ. Whenever we need to explicitly specify theݐሺ ܺݎݑ݄݁
set of documents on which the function works (never needed for a heuristic, but 
sometimes needed for auxiliary functions used in a formula for a heuristic), we write 
it as ݂ܺܿ݊ݑ஽ሺݐሻ. For specifying an auxiliary function’s document set we have two 
options: either we use ܦ௨ that stands for the (union) set of all the documents from all 
the domains, or we use ܦ௡: ݊ א ሼ1. . ܰሽ, which stands for a set of documents from the 
domain ݊. In general the following statement holds: ܦ௨ ൌ ڂ  ௡ே௡ୀଵܦ  where ܰ is the 
number of domains. In the most common scenario, where we have exactly two dis-
tinct domains, we also use the notation ܦ஺ for ܦଵ and ܦ஼ for ܦଶ, since we introduced ܣ 
and ܥ as representatives of the initial and the target domain in the closed discovery 
setting introduced in Section 1. Due to a large number of heuristics and auxiliary 
functions we use a multi word naming scheme for easier distinction; names are 
formed by word concatenation and capitalization of all non-first words (e.g.: freqPro-
dRel and tfidfProduct). 
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It is valuable to note that all the designed heuristics are symmetric in the domains, 
as switching the order of domains (which domain is the initial domain and which is 
the target) should not affect the outcome of a heuristic. By allowing asymmetric heu-
ristics the approach would lose generality and also the possibility to generalize it to 
more than two domains. 

We divided the heuristics into different sets for easier explanation; however, most 
of the described heuristics work fundamentally in a similar way – they all manipulate 
solely the data present in document vectors and derive the terms’ bisociation score. 
The only exceptions to this are the outlier based heuristics which firstly calculate 
outlier documents and only later use the information from the document vectors. 

The heuristics can be logically divided into four sets which are based on: frequen-
cy, tf-idf, similarity, and, outliers. Besides those sets we define also two special heu-
ristics which are used as a baseline for other heuristics. 

4.2 Frequency Based Heuristics 

For easier definition of frequency based heuristics we need two auxiliary 
sub-functions: 

 ܦ in a document set ݐ ሻ: counts the number of occurrences of termݐ஽ሺ݉ݎ݁ܶݐ݊ݑ݋ܿ ─
(called term frequency in tf-idf related contexts), 

 appears in a ݐ ሻ: counts the number of documents in which termݐ஽ሺܿ݋ܦݐ݊ݑ݋ܿ ─
document set ܦ, (called document frequency in tf-idf related contexts). 

We define the following basic heuristics: 
ሻݐሺ݉ݎ݁ܶݍ݁ݎ݂ (1) ൌ  ,ሻ: term frequency across both domainsݐ஽ೠሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܿ݋ܦݍ݁ݎ݂ (2) ൌ  ,ሻ: document frequency across both domainsݐ஽ೠሺܿ݋ܦݐ݊ݑ݋ܿ 
ሻݐሺ݋݅ݐܴܽݍ݁ݎ݂ (3) ൌ ೎೚ೠ೙೟೅೐ೝ೘ವೠሺ೟ሻ೎೚ೠ೙೟ವ೚೎ವೠሺ೟ሻ : term to document frequency ratio, 
ሻݐሺ݊݅ܯ݋݅ݐܴܽ݊݉݋ܦݍ݁ݎ݂ (4) ൌ ୫୧୬ ൬೎೚ೠ೙೟೅೐ೝ೘ವభሺ೟ሻ೎೚ೠ೙೟೅೐ೝ೘ವమሺ೟ሻ ,೎೚ೠ೙೟೅೐ೝ೘ವమሺ೟ሻ೎೚ೠ೙೟೅೐ೝ೘ವభሺ೟ሻ൰: minimum of term fre-

quencies ratio between both domains, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦݍ݁ݎ݂ (5) ൌ ௖௢௨௡௧்௘௥௠ವభሺ௧ሻ · ௖௢௨௡௧்௘௥௠ವమሺ௧ሻ: product of term frequencies in 

both domains, 
ሻݐሺ݈ܴ݁݀݋ݎܲ݊݉݋ܦݍ݁ݎ݂ (6) ൌ ௖௢௨௡௧்௘௥௠ವభሺ௧ሻ · ௙௖௢௨௡௧்௘௥௠ವమሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : product of term frequen-

cies in both domains relative to the term frequency in all domains. 

4.3 Tf-idf Based Heuristics 

Tf-idf is the standard measure of term’s importance in a document which is used 
heavily in text mining research. In the following heuristic definitions we use the fol-
lowing auxiliary functions: 

݂݀݅ݐ ─ ௗ݂ሺݐሻ stands for tf-idf of a term ݐ in a document ݀, and, 
݂݀݅ݐ ─ ஽݂ሺݐሻ represents tf-idf of a term in the centroid vector of all the documents ݀: ݀ א  The centroid vector is defined as an average of all document vectors .ܦ

and thus presents an average document from the document collection ܦ 
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Heuristics based on tf-idf are listed below: 
ሻݐሺ݉ݑ݂݂ܵ݀݅ݐ (7) ൌ  ∑ ݂݀݅ݐ ௗ݂ሺݐሻௗא஽ೠ : sum of all tf-idf weights of a term across both 

domains – analogy to ݂݉ݎ݁ܶݍ݁ݎሺݐሻ, 
ሻݐሺ݃ݒܣ݂݂݀݅ݐ (8) ൌ  ∑ ௧௙௜ௗ௙೏ሺ௧ሻ೏אವೠ௙௥௘௤_ௗ௢௖ವೠሺ௧ሻ : average tf-idf of a term, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦ݂݂݀݅ݐ (9) ൌ ݂݀݅ݐ  ஽݂భሺݐሻ · ݂݀݅ݐ  ஽݂మሺݐሻ: product of a term’s importance in 

both domains. 
ሻݐሺ݉ݑܵ݊݉݋ܦ݂݂݀݅ݐ (10) ൌ ݂݀݅ݐ  ஽݂భሺݐሻ ൅ ݂݀݅ݐ  ஽݂మሺݐሻ: sum of a term’s importance in 

both domains. 

4.4 Similarity Based Heuristics 

Another approach to construct a relevant heuristic measures is to use the cosine simi-
larity measure. We start by creating a representational model as a document space and 
by converting terms (entities) into document vectors (see section 3.4). Next, we get the 
centroid vectors for both domains in the document space representation. Furthermore, 
we apply tf-idf weighting on top of all the newly constructed vectors and centroids. 
Finally we use the following auxiliary function to construct the heuristics: 

 ݐ ሻ: calculates the cosine similarity of the document vector of termݐ஽ሺݏ݋ܥ݉݅ݏ ─
and the document vector of a centroid of documents ݀ א  .ܦ

Constructed heuristics: 
ሻݐሺ݉ݎ݁ܶ݃ݒܣ݉݅ݏ (11) ൌ  ሻ: similarity to an average term – the distanceݐ஽ೠሺݏ݋ܥ݉݅ݏ 

from the center of the cluster of all terms, 
ሻݐሺ݀݋ݎܲ݊݉݋ܦ݉݅ݏ (12) ൌ · ሻݐ஽భሺݏ݋ܥ݉݅ݏ   ሻ: product of a term’s similarity toݐ஽మሺݏ݋ܥ݉݅ݏ 

the centroids of both domains, 
ሻݐሺ݊݅ܯ݋݅ݐܴܽ݊݉݋ܦ݉݅ݏ (13) ൌ ୫୧୬ ൬ ೞ೔೘಴೚ೞವభሺ೟ሻೞ೔೘಴೚ೞವమሺ೟ሻ  ,ೞ೔೘಴೚ೞವమሺ೟ሻೞ೔೘಴೚ೞವభሺ೟ሻ൰: minimum of a term‘s frequen-

cies ratio between both domains. 

4.5 Outlier Based Heuristics 

Conceptually, an outlier is an unexpected event, entity or – in our case – document. We 
are especially interested in outlier documents since they frequently embody new infor-
mation that is often hard to explain in the context of existing knowledge. Moreover, in 
data mining, an outlier is frequently a primary object of study as it can potentially lead 
to the discovery of new knowledge. These assumptions are well aligned with the bisoci-
ation potential that we are optimizing, thus, we have constructed a couple of heuristics 
that harvest the information possibly residing in outlier documents. 

We concentrate on a specific type of outliers, i.e., domain outliers, which are the 
documents that tend to be more similar to the documents of the opposite domain than 
to those of their own domain. The procedures that we use to detect outlier documents 
build a classification model for each domain and afterwards classify all the documents 
using the trained classifier. The documents that are misclassified are declared as out-
lier documents, since according to the classification model they do not belong to their 
domain of origin. 
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We defined three different outlier sets based on three classification models used. 
These outlier sets are: 

 ,஼ௌ: retrieved by Centroid Similarity (CS) classifierܦ ─
 ,ோி: retrieved by Random Forest (RF) classifierܦ ─
 .ௌ௏ெ: retrieved by Support Vector Machine (SVM) classifierܦ ─

Centroid similarity is a basic classifier model and is also implemented in the TexAs 
system. It classifies each document to the domain whose centroid’s tf-idf vector is the 
most similar to the document’s tf-idf vector. The description of the other two classifica-
tion models is beyond the scope of this chapter, as we used external procedures to re-
trieve these outlier document sets. The detailed description is provided by  
Sluban et al. [20]. 

For each outlier set we defined two heuristics: the first counts the frequency of a 
term in an outlier set and the second computes the relative frequency of a term in an 
outlier set compared to the relative frequency of a term in the whole dataset. The re-
sulting heuristics are listed below: 

ሻݐሺܵܥݍ݁ݎܨݐݑ݋ (14) ൌ  ,ሻ: term frequency in CS outlier setݐ஽಴ೄሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܨܴݍ݁ݎܨݐݑ݋ (15) ൌ  ,ሻ: term frequency in RF outlier setݐ஽ೃಷሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺܯܸܵݍ݁ݎܨݐݑ݋ (16) ൌ  ,ሻ: term frequency in SVM outlier setݐ஽ೄೇಾሺ݉ݎ݁ܶݐ݊ݑ݋ܿ 
ሻݐሺ݉ݑܵݍ݁ݎܨݐݑ݋ (17) ൌ ሻݐ஽಴ೄሺ݉ݎ݁ܶݐ݊ݑ݋ܿ  ൅ ܿ݉ݎ݁ܶݐ݊ݑ݋஽ೃಷሺݐሻ ൅ ܿ݉ݎ݁ܶݐ݊ݑ݋஽ೄೇಾሺݐሻ: 

sum of term frequencies in all three outlier sets, 
ሻݐሺܵܥ݈ܴ݁ݍ݁ݎܨݐݑ݋ (18) ൌ  ௖௢௨௡௧்௘௥௠ವ಴ೄሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in CS outlier set, 

ሻݐሺܨܴ݈ܴ݁ݍ݁ݎܨݐݑ݋ (19) ൌ  ௖௢௨௡௧்௘௥௠ವೃಷሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in RF outlier set, 

ሻݐሺܯܸ݈ܴܵ݁ݍ݁ݎܨݐݑ݋ (20) ൌ  ௖௢௨௡௧்௘௥௠ವೄೇಾሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ : relative frequency in SVM outlier set, 

ሻݐሺ݉ݑ݈ܴܵ݁ݍ݁ݎܨݐݑ݋ (21) ൌ ௖௢௨௡௧்௘௥௠ವ಴ೄሺ௧ሻା ௖௢௨௡௧்௘௥௠ವೃಷሺ௧ሻା ௖௢௨௡௧்௘௥௠ವೄೇಾሺ௧ሻ௖௢௨௡௧்௘௥௠ವೠሺ௧ሻ  : sum of rel-

ative term frequencies in all three outlier sets. 

4.6 Baseline Heuristics 

We have two other heuristics which are supplementary and serve as a baseline for the 
others. The auxiliary functions used in their calculation are: 

 ሺሻ: returns random number from the interval ሺ0,1ሻ regardless of the݉ݑܰ݀݊ܽݎ ─
term under investigation, 

 .appears in both domains and 0 otherwise ݐ ሻ: 1 if a termݐሺ݄ݐ݋ܤ݊݅ ─

The two baseline heuristics are: 
ሻݐሺ݉݋݀݊ܽݎ (22) ൌ  ,ሺሻ : random baseline heuristic݉ݑܰ݀݊ܽݎ
(23) ܽ ሻݐሺ݊݉݋ܦ݈݈ܣ݊ܫݎܽ݁݌݌ ൌ ሻݐሺ݄ݐ݋ܤ݊݅  ൅ ሺ݉ݑܰ݀݊ܽݎሺሻሻ/2 : it is a better baseline heu-

ristic which can separate two classes of terms – the ones that appear in both do-
mains and the ones that appear only in one. The terms that appear only in one 
domain have a strictly lower heuristic score than those that appear in both. The 
score inside of these two classes is still random. 
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5 Heuristics Evaluation 

This section presents the evaluation of the heuristics defined in the previous section. 
First we describe the evaluation procedure, then the domain on which we evaluate the 
heuristics is presented, and finally the results of the evaluation along with the discus-
sion of the results. 

5.1 Evaluation Procedure 

In the experimental setting used in this chapter we are given the following: a set of 
documents from two domains and a “gold standard” list of b-terms. Consequently, we 
are able to mark the true b-terms and evaluate how well our constructed heuristics are 
able to promote these b-terms compared to the rest of the terms. 

We compare the heuristics using ROC (Receiver Operating Characteristic) curve and 
AUC (Area Under ROC) analysis. Some ideas on using the ROC for our evaluation 
were taken from Foster et al. [18]. ROC curves are constructed in the following way: 

─ Sort all the terms by their descending heuristic score. 
─ Starting from the beginning of the term list, do the following for each term: if a 

term is a b-term, then draw one vertical line segment (up) on the ROC curve, 
else draw one horizontal line segment (right) on the ROC curve. 

─ Sometimes, a heuristic outputs the same score for many terms and therefore we 
cannot sort them uniquely. Among terms with the same bisociation score ܾ, let b௕ be the number of terms that are b-terms and nb௕ the number of non-b-terms. 
We then draw a line from the current point ݌ to the point ݌ ൅ ሺnb௕, b௕ሻ. In this 
way we may produce slanted lines, if such an equal scoring term set contains 
both b-terms and non b-terms. 

Using the stated procedure, we get one ROC curve for each heuristic. The ROC space 
is defined by its two axes. The ROC’s vertical axis scale goes from zero to the num-
ber of b-terms and the horizontal goes from zero to the number of non b-terms. AUC 
is defined as the percentage of the area under curve – the area under the curve is di-
vided by the area of the whole ROC space. If a heuristic is perfect (it detects all the 
b-terms and ranks them at the top of the ordered list), we get a curve that goes first 
just up and then just right with an AUC of 100%. The worst possible heuristic sorts all 
the terms randomly regardless of being a b-term or not and achieves AUC of 50%. 
This random heuristic is represented by the diagonal in the ROC space. 

The fact that some heuristics output the same score for many terms can produce 
different sorted lists and thus different performance estimates for the same heuristic 
on the same dataset. In the case of such equal scoring term sets, the inner sorting is 
random (which indeed produces different performance estimates). However, the 
ROCs that are provided (and constructed by the instructions in the paragraph above) 
correspond to the average ROC over all possible such random inner sortings. Besides 
AUC, we list also the interval of AUC which tells how much each heuristic varies 
among the best and the worst sorting of a possibly existing equal scoring term set. 
Preferable are the heuristics with a smaller interval which implies that they produce 
smaller and fewer equal scoring sets. 



82 M. Juršič et al. 

5.2 Migraine-Magnesium Dataset 

This section describes the dataset used to evaluate the heuristics’ potential of success-
ful b-term identification. The dataset that we used is the well-researched mi-
graine-magnesium domain pair which was introduced by Swanson [24] and later ex-
plored by several authors in several studies [25, 28, 26, 14]. In the literature-based 
discovery process Swanson managed to find more than 60 pairs of articles connecting 
the migraine domain with the magnesium deficiency via 43 b-terms. In our evaluation 
we are trying to rediscover these b-terms stated by Swanson to connect the two do-
mains (see Table 1). 

Table 1. B-terms identified by Swanson et al. in [26] 

1 5 ht 16 convulsive 31 prostaglandin 
2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin e1 
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis 
4 anti aggregation 19 diltiazem 34 reactivity 
5 anti inflammatory 20 epilepsy 35 seizure 
6 anticonvulsant 21 epileptic 36 serotonin 
7 antimigraine 22 epileptiform 37 spasm 
8 arterial spasm 23 hypoxia 38 spread 
9 brain serotonin 24 indomethacin 39 spread depression 

10 calcium antagonist 25 inflammatory 40 stress 
11 calcium blocker 26 nifedipine 41 substance p 
12 calcium channel 27 paroxysmal 42 vasospasm 
13 calcium channel blocker 28 platelet aggregation 43 verapamil 
14 cerebral vasospasm 29 platelet function   
15 convulsion 30 prostacyclin   

 
The dataset contains scientific paper titles which were retrieved by querying the 

PubMed database with the keyword “migraine” for the migraine domain and with the 
keyword “magnesium” for the magnesium domain. Additional condition to the query 
was the publishing date which was limited to before the year 1988, since Swanson’s 
original experiment – which we want to reproduce – also considered only articles 
published before that year. The query resulted in 8,058 titles (2,425 from the migraine 
domain and 5,633 from the magnesium domain) of the average length of 11 words. 
We preprocessed the dataset using the standard procedures described in Section 3.2 
and by additionally specifying terms as n-grams of maximum length 3 (max. three 
words were combined to form a term) with minimum occurrence 2 (each n-gram had 
to appear at least twice to be promoted to a term). Using this preferences we produced 
a dataset containing 13,525 distinct terms or 1,847 distinct terms that appear at least 
once in each domain; both numbers include also all the 43 terms that Swanson 
marked as b-terms. An average document in the dataset consists of 12 terms and 394 
(4,89%) documents contain at least one b-term. 
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5.3 Comparison of the Heuristics 

This section presents the results of the comparison of the heuristics on the magne-
sium-migraine dataset using ROC analysis. The experimental setting was presented in 
detail in the previous sections. Nevertheless, for the purpose of this evaluation, it was 
slightly extended, due to additional knowledge about b-terms in this domain (this may 
be a general observation for any future domain). We realized that all the 43 b-terms 
appear in both domains; therefore, it is more fair for the comparison that the heuristics 
are also aware of this fact. Therefore, we made sure that every heuristic ordered all 
the terms that appear in both datasets (1,847 terms) before all the other terms (11,678 
terms), however, every heuristic used its own score for ordering within these two sets 
of terms. In this way, we incorporated the stated background knowledge about 
b-terms in this domain into all the heuristics. 

Table 2. Comparison of the results of all the defined heuristics ordered by the quality – AUC. 
The first column states the name of the heuristic; the second displays a percentage of the area 
under the ROC curve; and the last is the nterval of AUC. 

 Heuristic AUC Interval  (6) freqDomnProdRel 93,71% 0,40% 
(21) outFreqRelSum 95,33% 0,35%  (13) simDomnRatioMin 93,58% 0,00% 
(19) outFreqRelRF 95,24% 0,55%  (7) tfidfSum 93,58% 0,00% 
(20) outFreqRelSVM 95,06% 1,26%  (9) tfidfDomnProd 93,47% 0,39% 
(18) outFreqRelCS 94,96% 1,30%  (5) freqDomnProd 93,42% 0,44% 
(17) outFreqSum 94,96% 0,70%  (3) freqRatio 93,35% 5,23% 
(8) tfidfAvg 94,87% 0,00%  (23) appearInAllDomn 93,31% 6,69% 

(15) outFreqRF 94,73% 1,53%  (12) simDomnProd 93,27% 0,00% 
(16) outFreqSVM 94,70% 2,06%  (1) freqTerm 93,20% 0,50% 
(14) outFreqCS 94,67% 1,80%  (2) freqDoc 93,19% 0,50% 
(4) freqDomnRatioMin 94,36% 0,62%  (11) simAvgTerm 92,71% 0,00% 

(10) tfidfDomnSum 93,85% 0,35%  (22) random 50,00% 50,00% 
 

 
The first look at numerical result comparison (Table 2) reveals the following: 

─ The overall AUC results of all heuristics, except for the (22)random baseline, are 
relatively good and in the range of from approx. 93% to 95%. 

─ The difference among AUC results is small (only 2.5% between the worst and 
the best performing heuristic). 

─ The improved baseline heuristic (23)appearInAllDomn performs well and is not 
worse than some other heuristics. 

─ Outlier based heuristics seem to perform the best. 
─ Some heuristics, including the best performing ones, have a relatively high AUC 

interval which means that they output the same score for many terms. 

Observing the results in Table 2, followed by the detailed ROC analysis described 
below, we selected the best heuristic that will be used as the heuristic for network 
node weighting, which is the final result of this work. The chosen heuristic is simply 
the first from the list in Table 2 – (21)outFreqRelSum – due to the fact that it has high-
est AUC and especially since it shows a low uncertainty. In other words, it has 
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Fig. 3. ROC curve of the selected heuristic (21)outFreqRelSum along with the baseline heuristic 
(22)random and improved baseline heuristic (23)appearInAllDomn on detecting the 43 b-terms 
among all 13,525 candidate concepts. 

small AUC interval, which means that it better defines the position of b-terms and we 
do not need to rely so much on random sorting of potential equal scoring term sets. 
We also assume it to be less volatile across domains since it actually represents coop-
eration (sum) of three other well performing heuristics: (19)outFreqRelRF, 
(20)outFreqRelSVM, and, (18)outFreqRelCS. 

Detailed ROC curve analysis of the chosen heuristic (see Fig. 3) shows that our 
heuristic is only slightly better than the improved baseline heuristic, which is evident 
also from Table 2. However, when examined carefully we perceive the property of the 
heuristic which is the initial assumption of this research, i.e., extremely steep incline 
at the beginning of the curve which is much steeper than the incline of the baseline 
heuristics. This means that the chosen heuristic is able to detect b-terms at the begin-
ning of the ordered list much faster than the baseline. The steep incline is even more 
evident in Fig. 4. 

Fig. 4 shows the zoom-in perspective on the ROC curves of the selected outlier 
based heuristics – enumerated from (18) to (21) – along with the baselines. The zoom-in 
(applied also in Fig. 5) refers to the axis x since we show only 1,804 terms which is 
the point where all the heuristics (except (22)random) reach the top point (43 found 
b-terms). In Fig. 4 we can see the steep incline property of the (21)outFreqRelSum 
even more clearly. At the position of the first tick on the axis x (by the term 50 in the 
ordered list of terms) the chosen heuristic is able to detect already 5-6 b-terms while 
the baseline heuristic only approximately one. Similarly, we notice at the 200th term 
the baseline heuristics detects 5 b-terms while (21)outFreqRelSum detects already 11. 
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Fig. 4. ROC curves of the best-performing set of heuristic – relative frequency of a term in 
outlier sets – along with both baseline heuristics on detecting the b-terms among only 1,847 
candidate concepts (only the concepts that appear in both domains) 

If we follow the curve further we see a decrease in relative difference; nevertheless, at 
the 1000th term the ratio is still 24:35, even though the performance here is not of such 
importance as the performance at the beginning of the curve. The presented behavior 
at the beginning of the curve is highly appreciated especially from the expert’s point 
of view who needs to go through such an ordered list of terms and detect potential 
b-terms. In such a setting we would really want to present some valuable b-terms at 
the very beginning of the list, even if other b-terms are dispersed evenly across it. 

Even though we chose the heuristic from the outlier set we are still interested how 
the heuristics from the other sets performed. This comparison is presented in Fig. 5 
where we show one (the best performing one) heuristic from each set of heuristics. 
Notice the outlier heuristic (19)outFreqRelRF which undoubtedly wins. It is harder to 
establish an order between the other three heuristics. The undesired property is ex-
posed by (13)simDomnRatioMin where the ROC curve shows performance worse than 
(23)appearInAllDomn at the right side of the curve; however, even this would be toler-
able if there is outperformance at the beginning of the curve. The conclusion for the 
other sets (besides the outlier one) is that even though they are slightly better than the 
baseline heuristic we are not able to infer their significant outperformance over it. 

Overall, the results of the evaluation are beneficial for the insight into heuristic per-
formance on the examined migraine-magnesium dataset. The conclusion is that it is 
extremely hard to promote b-terms in an ordered list of terms by observing only the 
terms’ statistical properties in the documents. However, we managed to construct a 
well performing heuristic which is based on relative frequency of a term in three out-
lier sets of all the documents. The outlier sets of documents are retrieved using 
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Fig. 5. ROC curves of the best-performing heuristics – one from each set (based on: frequency, 
tf-idf, similarity, outliers) along with both baseline heuristics on detecting the b-terms among 
only 1,847 candidate 

three types of classifiers: Centroid Similarity, Random Forest, and, Support Vector 
Machine. The conclusion of our evaluation is well aligned with the results presented 
by Sluban et al. [20] and Petrič et al. [16]. 

The presented chapter motivated our future work in several directions of which we 
will first proceed with the following: 

─ Reevaluate the findings on a new independent test domains. We have already 
done some initial tests on the autism-calcineurin domain pair presented by 
Urbančič et al. [27], which show similar results as the presented evaluation. 

─ Try to do some further research on heuristics based on statistical properties of 
the terms. If no heuristics which outperform (23)appearInAllDomn is found, we 
will consider completely abandoning this type of heuristics. 

─ Add some new, fundamentally different classes of heuristics to rank the terms. 
We have a couple of ideas to try, including using SVM keywords (SVM trained 
to separate between domains) as potential b-terms with high score. 

─ Implement the findings of this research as a web application where the user (a 
domain expert) will be able to perform an experimentation and b-term retrieval 
on his own domains of interest. 

6 Network Creation 

This section briefly presents the ideas behind the creation of a BisoNet – an informa-
tion network of concepts identified and weighted by the presented methodology.  
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The initial plan for BisoNet construction is first to take all the terms/concepts identi-
fied in the preprocessing step, next to weight them using the bisociation score of the 
(21)outFreqRelSum heuristic and finally to add links among concepts according to the 
Bisociation Index measure defined by Segond and Borgelt [4]. 

Table 3. The 40 highest ranked terms using the preferred heuristic (21)outFreqRelSum along 
with the weights (bisociation score) retrieved by the same heuristic. There are 5 gold standard 
b-terms in this list and they are all marked with asterisks. 

1 sturge 3.50 26 cerebral artery 2.50 
2 sturge weber 3.50 27 medication 2.50 
3 weber 3.50  28 animal human 2.50 
4 inflammatory agent 3.00 29 trial treatment 2.50 
5 double blind clinical 3.00  30 brain serotonin * 2.50 
6 migraine therapy magnesium 3.00 31 comparative double blind 2.50 
7 ophthalmologic 3.00  32 comparative double 2.50 
8 clinical aspect therapy 3.00 33 400 2.50 
9 anti inflammatory agent 3.00  34 hyperventilation 2.50 

10 therapy magnesium glutamate 3.00 35 cortical spread 2.50 
11 bruxism 3.00  36 concentration serotonin 2.50 
12 magnesium glutamate 3.00 37 pill 2.50 
13 blind clinical 3.00  38 physiopathological 2.50 
14 aspect therapy 3.00 39 vasospastic 2.50 
15 physiopathology 2.83  40 respiratory arrest 2.50 
16 hypotension 2.66 41 peripheral artery 2.50 
17 treatment spontaneous 2.66  42 spread depression * 2.43 
18 oral glucose tolerance 2.50 43 pharmacotherapy 2.33 
19 cerebral vasospasm * 2.50  44 arterial spasm * 2.33 
20 response serum 2.50 45 acid metabolism 2.33 
21 factor pathogenesis 2.50  46 clinical experimental study 2.33 
22 cortical spread depression * 2.50 47 chorea 2.33 
23 severe pre 2.50  48 lactase 2.33 
24 severe pre eclampsia 2.50 49 arginine 2.33 
25 experimental data 2.50  50 clinical effect 2.33 

 

 
We will explain BisoNet construction by creating an example network from the 

migraine-magnesium domain pair. Table 3 states first 50 terms which are the output 
of the first two steps of the procedure: candidate concept detection and 
(21)outFreqRelSum heuristic scoring. How many terms do we consider for inclusion in 
the final BisoNet depends on the use-case of the created network. In the case when 
the network is an input of the following automatic procedures for bisociation detec-
tion, we want to keep as many nodes as possible, i.e., all candidate concepts nodes 
(13,525 in the migraine-magnesium domain). There may be a need to trim the number 
of nodes down either due to the computational complexity of the subsequent bisocia-
tion discovery procedures or due to the fact that the network is meant to be explored 
by a human. In such a case we have two primary options to consider: the first is to 
remove all the nodes that do not appear in both domains since those are less probable 
to contain interesting bisociations (we are left with 1,847 nodes in the mi-
graine-magnesium domain). The second option is to use the scores of 
(21)outFreqRelSum to cut the nodes under the specified threshold limit. 
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Fig. 6. Part of the network constructed from the migraine-magnesium database using 
(21)outFreqRelSum heuristic for weighting the nodes and Bisociation Index for weighting the
links 

The only step remaining to finalize a BisoNet construction is to calculate the links. 
If we have a reasonably large number of nodes (e.g. 1,000 or more) then it is infeasi-
ble to calculate all the links since there are ሺ݊ · ሺ݊ െ 1ሻሻ/2 of them if ݊ is the number 
of nodes. Therefore, we again use thresholding to cut away lower weighted links. In 
extreme cases where there is a really vast number of nodes (e.g. 100,000 or more) 
there are special approaches needed to calculate all the links – even before threshold-
ing is applied and the nodes are stored. However, these algorithms are beyond the 
scope of this work. 

Fig. 6 shows a section of the final BisoNet constructed by the methodology de-
scribed in this work. A section contains all the highest-ranking nodes retrieved using a 
threshold on the concepts’ (21)outFreqRelSum heuristic score (see Table 3) and the 
two – in this domain – special nodes: migraine and magnesium. The links among 
nodes were calculated as described and were not thresholded. Weights on the links 
and nodes are not shown due to clarity; however, the node weights are stated in Table 
3 while link weights can be inferred from the strength – darkness of the links. 

With the presentation of this example we conclude this chapter. We addressed the 
problem of producing an information network, named BisoNet, from a large text cor-
pus consisting of at least two diverse domains. The goal was to produce a BisoNet 
that has a high potential for providing yet unexplored cross-domain links which could 
lead to new scientific discoveries. We devoted most of this chapter to the 
sub-problem: how to better identify important domain-bridging concepts which be-
come core nodes of the resulting network. We also provided a detailed description of 
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all the preprocessing steps required to reproduce this work. The evaluation of bridging 
concept identification was performed by repeating a discovery made on medical ar-
ticles in the migraine-magnesium domain. Further work is tightly related to the main 
focus of this chapter – heuristics for b-term identification and their evaluation – there-
fore, we stated the ideas for further work at the end of Section 5. 
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Abstract. We propose a method to mine novel, document-specific as-
sociations between terms in a collection of unstructured documents. We
believe that documents are often best described by the relationships they
establish. This is also evidenced by the popularity of conceptual maps,
mind maps, and other similar methodologies to organize and summarize
information. Our goal is to discover term relationships that can be used
to construct conceptual maps or so called BisoNets.

The model we propose, tpf–idf–tpu, looks for pairs of terms that are
associated in an individual document. It considers three aspects, two of
which have been generalized from tf–idf to term pairs: term pair fre-
quency (tpf; importance for the document), inverse document frequency
(idf; uniqueness in the collection), and term pair uncorrelation (tpu; in-
dependence of the terms). The last component is needed to filter out
statistically dependent pairs that are not likely to be considered novel or
interesting by the user.

We present experimental results on two collections of documents: one
extracted from Wikipedia, and one containing text mining articles with
manually assigned term associations. The results indicate that the tpf–
idf–tpu method can discover novel associations, that they are different
from just taking pairs of tf–idf keywords, and that they match better the
subjective associations of a reader.

1 Introduction

Documents are routinely characterized by their keywords, and keyword extrac-
tion is also a popular topic in text mining. Keywords certainly are useful, but
they fail to describe relations between concepts in a document. In this chapter,
we propose methods to mine characteristic term associations from unstructured
documents in a given collection.

An example application is automatic generation of conceptual maps from news
stories: such a map is a graph with terms or concepts as nodes and relations
between them as edges. (Different flavors of such representations are known,
e.g., as concept maps, mind maps, cognitive maps, and topic maps.) Conceptual
maps are a well-known learning tool used to study and organize information,
and one of our goals is to facilitate this process by automatic construction of
rough conceptual maps.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 91–103, 2012.
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In the context of creative information exploration and bisociative reasoning,
such graphical representations are called BisoNets [1]. BisoNets can then be used
to explore and discover novel information and unforseen connections between
concepts.

As an example application, consider an online service that aggregates news
stories from many sources and presents those to the user. Illustrating the novel
association as a conceptual map together with suitable associations from the
background knowledge provides a good overview of what is new in any par-
ticular story, and how it relates to existing information. As an example, con-
sider the mining incident in 2010 in Chile, where 33 miners were trapped in a
collapsed mine for more than two months before eventually being rescued via
a newly drilled tunnel. In the first news stories, associations such as (Chile,
mine), (mine, collapse) and (miner, trapped) were central. However, when more
and more stories were written about the incident, these associations became part
of the background. As the rescue operation advanced, new information became
available about drilling and the tunnel, the rescue vessel to be used in it, the
dates of the approaching final rescue operation, and eventually the success of
the operation.

We are building such a prototype system, currently harvesting news from
7 online sources and with approximately 30 000 stories indexed so far. As an
example, Figure 1 illustrates the essential associations, extracted with methods
proposed in this chapter, from a news story published by The Washington Post1

just before the lifting operation was to start. To highlight the news value of this
story, the background associations relating the event to Chile, the capsule, etc.
are not shown.

Fig. 1. Conceptual map of novel associations in a Washington Post news story “Chilean
miners to begin emerging tonight” (Tue, Oct. 12, 2010). The miners had been trapped
for over two months and were now about the be freed in an operation followed all
around the world. Urzua is the name of the shift chief in the mine, a spokesman for
the miners. Edge labels describe their importance.

Our goal is to extract interesting associations between terms in text docu-
ment collections, to be presented, for instance, as simple conceptual maps or
BisoNets. Roughly speaking, there are two different term association discovery
tasks. The more standard one is discovering semantic similarities of terms, e.g.,

1 http://www.washingtonpost.com/wp-dyn/content/article/

2010/10/12/ AR2010101203510.html?wprss=rss world
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by their frequent co-occurrences. The other task, on which we focus in this chap-
ter, is finding non-obvious, document-specific associations between terms. Note
the strong contrast: in the latter task our aim is to discover novel associations
between terms that are usually not related.

The remainder of the chapter is organized as follows: We will briefly review
related work in Section 2. In Section 3 we propose a new method that finds
exceptional relations in the sense that they are independent in the collection
and specific to the document. Section 4 contains experimental results on two
collections of documents: one extracted from Wikipedia, one containing text
mining articles with manually assigned term associations. Section 5 contains
concluding remarks and proposes further research on this topic.

2 Related Work

Conceptual maps, concept maps, mind maps, topic maps and many other similar
formalisms exist for organizing and representing concepts and their relations as a
graph. Many of them have been developed to be used as note taking and learning
tools (see, e.g., [2]). Topic maps, on the other hand, are an ISO-standardized
representation for interchange of knowledge. Unlike many of these techniques,
we do not currently label edges by relation types. This could perhaps be done
with information extraction methods (see below) after the associations have been
discovered. We are not aware of methods for automatic, domain-independent
construction of conceptual maps for documents in a given collection. We next
review methods for finding various kinds of relations between terms or concepts.

There is abundant literature on finding statistical relations between terms.
Most of the work is focused on discovering semantically related terms, such as
car and wheel. Typically these techniques either use lexical databases and on-
tologies or measure co-occurrences of words, or combine these two. For instance,
Hirst and St-Onge [3], as well as Patwardhan and Pedersen [4] measure seman-
tic relatedness using WordNet as background knowledge. WordNet is a lexical
database that consists of a thesaurus and several types relations between terms.
WordNet-based similarity measures use path lengths between terms as the basis
of relatedness. The Normalized Google Distance Measure (NGD) [5], in turn,
uses Google search engine to measure the semantic relatedness of two terms.
NGD has theoretical background in information theory, but in practice the idea
is to compute the ratio of web pages where the terms occur independently to
the pages where both of the terms occur. Latent Semantic Indexing (LSI) [6]
goes beyond direct co-occurrence of terms, and uses singular value decompo-
sition and reduction of matrix dimensions. Co-occurrence measures specifically
aimed at bisociation are proposed by Segond and Borgelt [7]. They use keywords
as the nodes of the BisoNet and focus on selecting appropriate edges between
them. For the example application of producing conceptual maps, such seman-
tic relations across documents are needed, and constitute an essential part of
the background. The method proposed in this chapter addresses an opposite
problem: find associations that are relatively specific to a document.
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Our approach shares some mental similarity with RaJoLink [8] even though
it works in a different setting. Given a collection of articles on some topic, Ra-
JoLink starts by finding rare terms in it. The motivation is that these may be
used to generate hypotheses about novel connections to other topics in further
steps of the RaJoLink process. RaJoLink’s emphasis is, however, on finding in-
direct relations of topics across documents, not on finding associations within
documents.

The goal of information extraction is to extract certain structured informa-
tion from textual documents (see, e.g., [9]). Information extraction methods are
also routinely used to discover associations between terms. Examples include
news story analysis (who did what, where and when) and automatic extraction
of biomedical facts from scientific articles (which proteins interact, which gene
contributes to which phenotype, etc.). While information extraction methods
are tuned to look for specific types of facts (including relations), our goal is to
be able to discover associations between arbitrary terms.

In topic detection and tracking the goal is to recognize events in news stories
and to relate stories to each other [10]. In this task, information extraction is one
of the key technologies. While we use news stories as an example application,
our approach is largely complementary to topic detection and tracking: our em-
phasis is on relations between terms, both within stories (the novel associations
looked for with methods introduced here) as well over several stories (semantic
associtions in the background).

The technique we propose in this chapter is inspired by the well-known tf–
idf (term frequency–inverse document frequency) keyword extraction method
[11,12]. Term frequency tf(t, d) is the relative frequency of term t within a docu-
ment d, and it measures how essential the term is for the document. The inverse
document frequency idf(t) of term t measures, in turn, how specific the term
is in the document collection. It is defined as the logarithm of the inverse of
the relative number of documents that contain the term. Tf–idf for term t in
document d is then the product tf-idf(t, d) = tf(t, d) · idf(t). Tf–idf and other
methods to extract keywords (e.g., Keygraph [13]) have been highly successful
in that task. However, they do not attempt to highlight associations between
terms. Our aim is to discover association even if the individual terms are not
important.

3 The tpf–idf–tpu Model of Important Term Pair
Associations

We now propose and formalize a model for extracting important term associ-
ations from unstructured documents in a collection. The starting point is tf–
idf [11,12], which we first generalize to pairs of terms. This generalization has,
however, a serious shortcoming: term pair frequency and inverse document fre-
quency do not sufficiently outrule possible correlation of the terms. We therefore
add a third component, term pair uncorrelation.

We introduce two variants of the model that differ in the way the terms are
paired in the documents. We use subscripts ”sen” and ”doc” to separate these
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variants where necessary. The sentence-level variant, tpf–idf–tpusen, creates pairs
from terms that occur in a same sentence. The document-level variant, tpf–idf–
tpudoc, pairs every term in the document with every other term in the document.

3.1 Term Pair Frequency (tpf) and Inverse Document Frequency
(idf)

Term pair frequency tpfsen({t, u}, d) is defined as the relative number of sen-
tences s in document d that contain both terms t and u:

tpfsen({t, u}, d) = |{s ∈ d | {t, u} ⊂ s}|
|{s ∈ d}| . (1)

The inverse document frequency idfsen(t, u) of term pair {t, u} is the logarithm
of the inverse of the relative number of documents in the given collection C that
contain both terms in the same sentence:

idfsen(t, u) = log
|C|

|{d ∈ C | ∃s ∈ d : {t, u} ⊂ s}| . (2)

For the document-level variant, there are corresponding definitions of term pair
frequency and inverse document frequency:

tpfdoc({t, u}, d) = min(tf(t, d), tf(u, d)), (3)

where tf(t, d) is the relative frequency of term t within a document d, and

idfdoc(t, u) = log
|C|

|{d ∈ C | {t, u} ⊂ d}| . (4)

There is no natural direct measure of term pair frequency in a document. Fol-
lowing a common practice, we use the minimum of the frequencies of the two
terms as the frequency of the pair.

3.2 Term Pair Uncorrelation (tpu)

Use of tpf–idf fails to recognize if there is a statistical (and possibly semantic)
correlation between the terms. This is because tpf–idf only considers the joint
occurrences of them, not if and how they occur without each other.

A pair that scores high on tpf–idf may be uninteresting for a number of
reasons, but technically the reason usually is that the occurrence of one term
(t) implies an occurrence of the other (u). Different instances of this problem
include the following.

1. Term t hardly ever occurs without term u. For instance, articles that talk
about “information retrieval” almost always mention “document”, too.

2. The two terms t and u occur roughly in the same set of documents. For
instance, “data mining” and “knowledge discovery” are roughly synonyms
and obviously tend to occur in the same documents.
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3. Term u occurs in almost all documents. For instance, “example” has a high
document frequency. Paired with any less frequent term t, the tpf and espe-
cially idf scores can be high, but the association is trivial.

4. Term t only occurs in few documents. For instance, “tpf–idf–tpu” occurs so
far only in this chapter. While associations with it are specific to this chapter,
they are also trivial in a sense: any other term of this document would make a
great pair with “tpf–idf–tpu”, since the pair would trivially have an excellent
idf score just because “tpf–idf–tpu” is so rare in a document collection.

In cases 1 and 2, the association between t and u is real but not document-
specific, and therefore it should be part of the background. Cases 3 and 4 are
trivial and therefore not interesting.

To rule all the above-mentioned cases out, we add a third component to the
model: term pair uncorrelation, or tpu. We define tpu in terms of the relative
amounts r(v) (where v = t or u) of co-occurrences in the document collection:

rsen(v) =
|{d ∈ C | ∃s ∈ d s.t. {t, u} ⊂ s}|

|{d ∈ C | v ∈ d}| . (5)

The value of r(t) is 1 if t and u always co-occur, 0 if they never co-occur, and
0.5 if u co-occurs in half of the documents in which t occurs.

We prefer that both terms occur often independently, i.e., that both r(t) and
r(u) are small. To measure this, we simply take their maximum. (Alternative
measures for tpu include Jaccard index and Tanimoto coefficient. We prefer the
measure based on max(r(t), r(u)), however, since it more strongly requires that
both terms also occur independently.)

In order to have a tpu measure that has larger values for the preferred situa-
tions, we define tpu as

tpu({t, u}) = γ −max(r(t), r(t)), (6)

where γ tunes the relative importance of the tpu component, γ ≥ 1. Smaller
values of γ give tpu more weight. An analysis of the effects of γ is outside the
scope of this chapter. In our experiments we use γ = 2 based on some preliminary
experiments.

For document-level analysis, we define rdoc(v) as

rdoc(v) =
|{d ∈ C | {t, u} ⊂ d}|
|{d ∈ C | v ∈ d}| . (7)

Finally, tpf–idf–tpu({t, u}, d) of term pair {t, u} in document d is defined as the
product of the three components defined above:

tpf–idf–tpu({t, u}, d) = tpf({t, u}, d) · idf({t, u}) · tpu({t, u}).

4 Experiments

In the following subsections we experimentally evaluate the performance of the
tpf–idf–tpu model. We contrast the discovered term pairs to keywords obtained
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using tf–idf, and we also compare the sentence and document-based variants to
each other.

Unfortunately, we are not aware of existing data sets with documents and
corresponding conceptual maps, so we have to resort to other test methods. We
use two different test settings.

In the first setting (used in Sections 4.1 and 4.2) the document collection
consists of 425 articles on everyday life (and its subtopics), obtained from the
Wikipedia Selection for Schools2. We use this document collection to compare
the sets of term pairs produced by the different variants.

In the second test setting (Section 4.3), we created a collection of annotated
text mining documents. One of the authors of this chapter manually annotated
23 documents with term associations that he considered most descriptive for
the topic of each document. The document collection additionally contains an-
other 15 text mining articles, so the total size of the collection is 38 documents.
The manually assigned 229 term pairs were considered equally important and
thus not ordered nor weighted in any way. Subjective annotation of key terms
(or term pairs, in our case) is criticized in the literature, as the background,
interests and viewpoint of the annotator affect what he or she considers to be
relevant [14]. With this precaution in mind, we believe that such an evaluation
can give indications of the performance of the method.

In both settings, the documents were preprocessed by removing stopwords
and by stemming with Porter stemmer [15]. In addition, automatic multiword
unit extraction was performed with Text-NSP program [16] using log-likelihood
measure. Consecutive sequences of two terms, or bigrams, that got log-likelihood
score of 70 or higher were treated as one term.

The goal of these tests is to give a first evaluation and illustration of the
potential of the method. More systematic experiments on different data sets are
left for future work.

4.1 Tpf–idf–tpu vs. tf–idf

Let us first address the question if and how different the results of term pair
extraction are from single keyword extraction. To study this, we performed the
following experiment with the everyday document collection.

First, n best tpf–idf–tpu term pairs were extracted from each document. Then
the pair structure was ignored and we simply considered the set of terms in these
top pairs. Then, an equal number of top tf–idf terms were extracted from each
document. As an evaluation measure, we used the ratio of the number of terms
produced by both methods divided by the total number of terms produced by
the methods. The ratios were computed for a wide range of values of n, the
number of top pairs to be picked in the first phase. For each n the average of the
ratios from all documents was computed. The results are shown in Figure 2(a)
as a function of n.

2 http://schools-wikipedia.org/ , downloaded in 2010.
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(a) Average ratio of identical terms to
all terms in the top n results of tf–idf
and the tpf–idf–tpu variants.

(b) The ratio of identical pairs to all
extracted pairs in the top n pairs ex-
tracted by the two tpf–idf–tpu variants.

Fig. 2. Overlap of results from tpf–idf–tpu variants and tf–idf

The results of this experiment clearly show that the terms extracted by the
tpf–idf–tpu and tf–idf methods differ considerably, even with large numbers
of extracted pairs. The tpf–idf–tpu method does not just create pairs of top
ranking tf–idf terms, but actually does extract other relations. At ten top pairs,
the ratio of identical tpf–idf–tpusen and tf–idf terms is only about 2% on average
and rises to approximately 25% at 300 pairs. The ratio of identical tpf–idf–tpudoc
and tf–idf terms in top ten pairs is about 2%, and rises to about 15% at 300
pairs.

4.2 Sentence vs. Document-Level tpf–idf–tpu Methods

We next compare the sentence and document-level tpf–idf–tpu directly to each
other. We will consider three related but different aspects: (1) how similar are
the term pairs chosen by the methods, (2) how similar are the terms in the pairs
chosen by the methods, and (3) are the pairs dominated by a small number of
terms.

First, the similarity of tpf–idf–tpusen and tpf–idf–tpudoc is examined by com-
paring their top scoring pairs. This is done by extracting top n pairs with each
method, and computing the ratio of identical pairs in the top n pairs to the total
number of pairs, that is, to 2 · n. To combine the ratios yielding from different
documents, the average, minimum and maximum of the ratios were taken. The
results are shown in Figure 2(b) as a function of n, the number of extracted top
pairs. The minimum ratio was zero for all n.

The experiment indicates that the top pairs produced by tpf–idf–tpusen and
tpf–idf–tpudoc differ considerably. The average ratio is slightly higher for small
numbers of extracted pairs. This indicates that the highest ranking pairs tend
to be slightly more similar. At top ten term pairs extracted by tpf–idf–tpusen
and tpf–idf–tpudoc, the average ratio is about 25% and maximum ratio is about
80%. At 300 top pairs the ratio of identical pairs lowers to about 15% and the
maximum ratio to about 40%.
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Next, the ratio of identical terms in the top pairs produced by tpf–idf–tpusen
and tpf–idf–tpudoc was studied. The motivation for this experiment was to see
if the methods generate the pairs from a similar set of terms but pair them in
different ways. The experiment was performed by selecting top n pairs for a
document by both tpf–idf–tpusen and tpf–idf–tpudoc methods. Then we again
computed the ratio of the number of identical terms in the top n pairs divided by
the total number of distinct terms in the pairs. Like in the previous experiment,
the average of these ratios from different documents was taken. In addition to the
average ratio, the minimum and maximum ratios are considered (Figure 3(a)).

(a) The ratio of identical terms to all
terms in the top n pairs extracted by
the two tpf–idf–tpu variants.

(b) The number of distinct terms in top
n pairs extracted either with tpf–idf–
tpusen or with tpf–idf–tpudoc.

Fig. 3. Overlap of results from tpf–idf–tpu variants and tf–idf, and internal variability
in tpf–idf–tpu results

The ratio of identical terms in the pairs is about 40 percent on average and
almost 90 percent at maximum when comparing top ten pairs. The ratios of
identical terms in Figure 3(a) are clearly higher than the ratios of identical pairs
in Figure 2(b), although on average the ratio is not very large.

Next we consider the number of distinct terms in the pairs produced by tpf–
idf–tpu. The goal is to see if the top pairs are dominated by a small set of
distinct terms. For this test, the top n pairs were picked from each document
and the average number of distinct terms was computed over the documents
(Figure 3(b)).

The number of distinct terms is relatively low for both of the methods. Espe-
cially pairs produced by tpf–idf–tpudoc are dominated by a small set of terms.
For top ten pairs the number of distinct terms is about ten on average for both
tpf–idf–tpusen and tpf–idf–tpudoc. At 300 top pairs the number of distinct term
rises to about 160 for tpf–idf–tpusen and to about 60 for tpf–idf–tpudoc. In com-
parison, 25 terms is the minimum number of terms to produce 300 pairs; in
tpf–idf–tpudoc there are about 60 terms on average that occur in the 300 top
pairs.

It is not clear from these results if a smaller or larger number of distinct terms
should lead to a better result. It is possible that the smaller term set used by
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tpf–idf–tpudoc contains less noise than the larger set extracted by tpf–idf–tpusen.
On the other hand, it could also miss relevant terms and term pairs.

4.3 Comparison of tpf–idf–tpu and tf–idf Using Annotated Test Set

We now move to experimental tests with the other document collection, text
mining articles, and compare the results of the methods against pairs annotated
by hand. As a simple baseline method, we used tf–idf to rank pairs of terms by
simply taking the sum of the terms’ individual tf–idf scores.

For each method, precision and recall were computed at several points in
range of n = 1 to 300 top pairs per document. Precision is the ratio of extracted
annotated pairs to n, the total number of pairs chosen, where “annotated” means
that the pair was among ones manually assigned to the document. Recall is the
ratio of extracted annotated pairs to all annotated pairs. In an optimal situation
both precision and recall would be high for the extracted top pairs, meaning
that in the top pairs there would be no non-key pairs and no key pairs would be
missing either.

There were 229 annotated pairs in total. From those, 66 pairs were out of
reach for the tpf–idf–tpusen method since the terms never co-occurred in the
same sentence. Because of this, extraction of all possible pairs only yields recall
of 0.71 for tpf–idf–tpusen. On the other hand, the number of term pairs per
document varied from 3 561 to 55 552 for tpf–idf–tpusen and from 118 341 to
3 386 503 for tpf–idf–tpudoc and tf–idf–sum.

The results for recall and precision (Figure 4) indicate the following. First,
due to the small number of documents, the results for n = 1 to 5 are very noisy,
and it is difficult to observe systematic differences between any of the three
methods. Then, however, for n = 10 to 100 extracted pairs, the sentence-based
method consistently outperforms the other two, in terms of both precision and
recall. The document-based method has a slight systematic edge over the tf–idf-
baseline in the mid-range. For n ≥ 100, the tf–idf-baseline in turn outperforms
the document-based method.

(a) Recall. (b) Precision.

Fig. 4. Recall and precision at different numbers of extracted pairs
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The recall and precision values may seem low. Notice, first, that the setup of
this experiment differs from the usual precision and recall experiments in docu-
ment retrieval. In this experiment only the annotated associations are classified
relevant; all the other pairs are implicitly classified as irrelevant even though
they are not inspected in any way for relevance or novelty. It is thus possible
that there are pairs that could be considered relevant for the document even
though they were not selected as key pairs in the manual annotation. Second,
consider the extreme challenge in the task: on average, 10 pairs were manually
extracted from each document, whereas the number of different pairs per docu-
ment ranges approximately from 3 500 to 3 400 000, depending on the method.
In other words, the fraction of manually tagged pairs ranges from 0,0000003
to 0,003. Compared to this scale, the numbers are high.

According to the results, we believe that tpf–idf–tpusen has great potential
to discover important associations between terms. The document-based variant
performs less consistently. Since the two variants find largely different pairs,
it will be an interesting topic for future research to try to combine their best
properties.

5 Conclusion

We have proposed to discover novel associations of terms in unstructured docu-
ments, and to use these to summarize the key concepts and relationships of the
documents. A term pair has a novel association in a document if the pair is fre-
quent in it (tpf), specific to it (idf), and uncorrelated in the document collection
(tpu). The proposed method, tpf–idf–tpu, is a generalization of tf–idf to pairs
of terms, with the tpu component added to avoid statistically related pairs of
terms.

We proposed two variants of tpf–idf–tpu: the document-level version checks
if the terms co-occur within a document, while the sentence-level variant only
considers the terms to co-occur if they are in the same sentence. For compar-
ison, we also implemented a simple tf–idf-based method that outputs pairs of
keywords.

We experimentally observed that tpf–idf–tpu produces pairs (and terms) sig-
nificantly different from tf–idf. The sentence and document-based variants also
produced results quite different from each other. In a recall/precision analysis
with a smaller, manually annotated set of documents, the tpf–idf–tpusen variant
based on sentence-level pairing of terms performed clearly better than the other
methods when 10-100 term pairs were extracted per document. For smaller num-
bers of extracted associations, the results are noisy and inconclusive. Systematic
experiments on different data sets are a topic for future work.

We are currently building an experimental online news summary system to
try out how an incremental version of tpf–idf–tpu manages to identify and sum-
marize the novelties in news stories and to visualize them as simple conceptual
graphs. For this task, semantic associations should also be extracted and visu-
alized as background knowledge.



102 T. Hynönen, S. Mahler, and H. Toivonen

We plan to apply graph mining and bisociation methods on the conceptual
graphs, e.g., to discover more distant relationships between concepts. For such
use, it could be useful to keep the tpu score separate from the tpf–idf scores, and
allow the graph mining algorithms to consider the strength of the link (tpf · idf)
and its unobviousness (tpu) separately.
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Abstract. In standard frequent item set mining one tries to find item
sets the support of which exceeds a user-specified threshold (minimum
support) in a database of transactions. We, instead, strive to find item
sets for which the similarity of the covers of the items (that is, the sets of
transactions containing the items) exceeds a user-defined threshold. This
approach yields a much better assessment of the association strength of
the items, because it takes additional information about their occurrences
into account. Starting from the generalized Jaccard index we extend our
approach to a total of twelve specific similarity measures and a general-
ized form. In addition, standard frequent item set mining turns out to be
a special case of this flexible framework. We present an efficient mining
algorithm that is inspired by the well-known Eclat algorithm and its im-
provements. By reporting experiments on several benchmark data sets
we demonstrate that the runtime penalty incurred by the more complex
(but also more informative) item set assessment is bearable and that the
approach yields high quality and more useful item sets.

1 Introduction

Frequent item set mining and association rule induction are among the most
intensely studied topics in data mining and knowledge discovery in databases.
The enormous research efforts devoted to these tasks have led to a variety of so-
phisticated and efficient algorithms, among the best-known of which are Apriori
[1,2], Eclat [38,39] and FP-growth [19,16,17].

Unfortunately, a standard problem in this research area is that the output
(that is, the set of reported item sets or association rules) is often huge and can
easily exceed the size of the transaction database to mine. As a consequence, the
(usually few) interesting item sets and rules drown in a sea of irrelevant ones.
One of the reasons for this is that the support measure for item sets and the
confidence measure for rules are not very informative, because they do not say
that much about the actual strength of association of the items in the set or rule:
a set of items may be frequent simply because its elements are frequent and thus
their frequent co-occurrence can even be expected by chance. In association rule
induction adding an item to the antecedent may be possible without affecting
the confidence much, because the association is actually brought about by the
other items in the antecedent. Therefore a considerable number of redundant
and/or irrelevant item sets and rules is often produced.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 104–121, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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Approaches to cope with this problem include, for instance, [36,37], which rely
on subsequent filtering and statistical tests in order to single out the relevant
rules and patterns. In this chapter, however, we pursue a different direction,
namely changing the search criterion for item sets, so that fewer irrelevant item
sets are produced in the first place. The core idea is to replace the support
measure with a more expressive measure that better captures whether the items
in a set are associated. To obtain such a measure we draw on the insight that for
associated items their covers—that is, the sets of transactions containing them—
are more similar than for independent items. Since the Jaccard index is a very
natural and straightforward measure for the similarity of sets, this leads us to the
definition of a Jaccard item set, which is an item set for which the generalized
Jaccard index of the covers of its items exceeds a user-specified threshold. This
index has the advantage that it is also anti-monotone, so that the same search
and pruning techniques can be employed as in frequent item set mining.

We then extend our approach to a total of twelve specific similarity measures
that can be generalized from pairs of sets (or, equivalently, binary vectors).
We present a generalized form, from which all of these measures can be obtained
by proper parameterization, but which also allows for other options. Finally, it
turns out that standard frequent item set mining is a special case of this flexible
framework, which, however, also offers several better alternatives.

The rest of this chapter is organized as follows: in Section 2 we briefly re-
view frequent item set mining and a core search procedure and introduce our
notation. In Section 3 we present the generalized Jaccard index with the help of
which we then define Jaccard item sets. Section 4 reviews the Eclat algorithm,
the processing scheme of which we employ in the search for Jaccard item sets.
In Section 5 we show how the difference set idea for Eclat can be adapted to ef-
ficiently compute the value of the denominator of the generalized Jaccard index,
thus completing our JIM algorithm (for Jaccard Item set Mining). In Section 6
we consider a total of twelve specific similarity measures that can be used in
place of the Jaccard index, together with a generalized form. In Section 7 we
apply our algorithm to standard benchmark data sets and to the 2008/2009
Wikipedia Selection for schools to demonstrate the speed and usefulness of our
algorithm. Finally, in Section 8, we draw conclusions from our discussion.

2 Frequent Item Set Mining

Frequent item set mining is a data analysis method that was originally developed
for market basket analysis. It aims mainly at finding regularities in the shopping
behavior of the customers of supermarkets, mail-order companies, online shops
etc. In particular, it tries to identify sets of products (or generally items) that are
associated or frequently bought together. Once identified, such sets of associated
products may be used to optimize the organization of the offered products on
the shelves of a supermarket or the pages of a mail-order catalog or web shop.
They can also give hints which products may conveniently be bundled or may
be suggested to a new customer, or to a current customer after a purchase.
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Formally, the task of frequent item set mining can be described as follows: we
are given a set B of items, called the item base, and a database T of transactions.
Each item represents a product, and the item base represents the set of all
products on offer. The term item set refers to any subset of the item base B. Each
transaction is an item set and represents a set of products that has been bought
by an actual customer. Since two or even more customers may have bought the
exact same set of products, the total of all transactions must be represented as a
vector, a bag, or a multiset, since in a simple set each transaction could occur at
most once.1 Note that the item base B is usually not given explicitly, but only
implicitly as the union of all transactions in the given database.

We write T = (t1, . . . , tn) for a transaction database with n transactions.
Thus we are able to distinguishing equal transactions by their position in the
database vector (that is, the transaction index is an implicit identifier). In order
to conveniently refer to the index set of the transactions, we introduce the ab-
breviation Nn := {k ∈ N | k ≤ n} = {1, . . . , n}. Given an item set I ⊆ B
and a transaction database T , the cover KT (I) of I w.r.t. T is defined as
KT (I) = {k ∈ Nn | I ⊆ tk}, that is, as the set of indices of transactions
that contain I. The support sT (I) of an item set I ⊆ B is the number of trans-
actions in the database T it is contained in, that is, sT (I) = |KT (I)|. Given a
user-specified minimum support smin ∈ N, an item set I is called frequent in T
iff sT (I) ≥ smin. The goal of frequent item set mining is to identify all item sets
I ⊆ B that are frequent in a given transaction database T . Note that the task of
frequent item set mining may also be defined with a relative minimum support,
which is the fraction of transactions in T that must contain an item set I in
order to make I frequent. This alternative definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T
and a minimum support smin, which is adopted by basically all frequent item set
mining algorithms (except those of the Apriori family), is a depth-first search in
the subset lattice of the item base B. Viewed properly, this approach can be seen
as a simple divide-and-conquer scheme. For some chosen item i, the problem to
find all frequent item sets is split into two subproblems: (1) find all frequent item
sets containing the item i and (2) find all frequent item sets not containing the
item i. Each subproblem is then further divided based on another item j �= i:
find all frequent item sets containing (1.1) both items i and j, (1.2) item i, but
not j, (2.1) item j, but not i, (2.2) neither item i nor j etc.

All subproblems that occur in this divide-and-conquer recursion can be defined
by a conditional transaction database and a prefix. The prefix is a set of items that
has to be added to all frequent item sets that are discovered in the conditional
database, from which all items in the prefix have been removed. Formally, all
subproblems are tuples S = (TC , P ), where TC is a conditional transaction
database and P ⊆ B is a prefix. The initial problem, with which the recursion is
started, is S = (T, ∅), where T is the given transaction database to mine and the
prefix is empty. A subproblem S0 = (T0, P0) is processed as follows: Choose an

1 Alternatively, each transaction may be enhanced by a unique transaction identifier,
and these enhanced transactions may then be combined in a simple set.



Cover Similarity Based Item Set Mining 107

item i ∈ B0, where B0 is the set of items occurring in T0. This choice is arbitrary,
but usually follows some predefined order of the items. A common choice is to
process the items in the order of increasing frequency in the transaction database
to mine, as this often leads to the shortest search times. If sT0(i) ≥ smin, then
report the item set P0 ∪ {i} as frequent with the support sT0(i), and form the
subproblem S1 = (T1, P1) with P1 = P0 ∪ {i}. The conditional transaction
database T1 comprises all transactions in T0 that contain the item i, but with
the item i removed. This also implies that transactions that contain no other
item than i are entirely removed: no empty transactions are ever kept. If T1

is not empty, process S1 recursively. In any case (that is, regardless of whether
sT0(i) ≥ smin or not), form the subproblem S2 = (T2, P2), where P2 = P0 and the
conditional transaction database T2 comprises all transactions in T0 (including
those that do not contain the item i), but again with the item i removed. If T2

is not empty, process S2 recursively.
Eclat, FP-growth, and several other frequent item set mining algorithms all

follow this basic recursive processing scheme [15,5]. They differ mainly in how
they represent the conditional transaction databases. There are basically two
fundamental approaches, namely horizontal and vertical representations. In a
horizontal representation, the database is stored as a list (or array) of transac-
tions, each of which is a list (or array) of the items contained in it. In a vertical
representation, a transaction database is stored by first referring with a list (or
array) to the different items. For each item a list of transaction identifiers is
stored, which indicate the transactions that contain the item.

However, this distinction is not pure, since there are many algorithms that use
a combination of the two forms of representing a database. For example, while
Eclat [38,39] uses a purely vertical representation and SaM (Split and Merge) [6]
uses a purely horizontal representation, FP-growth [19,16,17] combines in its
FP-tree structure a (compressed) horizontal representation (prefix tree of trans-
actions) and a vertical representation (links between the tree branches).2

The basic processing scheme outlined above can easily be improved with so-
called perfect extension pruning, which relies on the following simple idea: given
an item set I, an item i /∈ I is called a perfect extension of I, iff I and I ∪ {i}
have the same support, that is, if i is contained in all transactions containing I.
Perfect extensions have the following obvious properties: (1) if the item i is a
perfect extension of an item set I, then it is also a perfect extension of any item
set J ⊇ I as long as i /∈ J and (2) if I is a frequent item set and K is the set of
all perfect extensions of I, then all sets I ∪ J with J ∈ 2K (where 2K denotes
the power set of K) are also frequent and have the same support as I.

These properties can be exploited by collecting in the recursion not only prefix
items, but also, in a third element of a subproblem description, perfect extension
items. Once identified, perfect extension items are no longer processed in the
recursion, but are only used to generate all supersets of the prefix that have the

2 Note that Apriori, which also uses a purely horizontal representation, is not men-
tioned here, because it relies on a different processing scheme: it traverses the subset
lattice level-wise rather than depth-first.
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same support. Depending on the data set, this method, which is also known as
hypercube decomposition [34,35], can lead to a considerable acceleration of the
search. It should be clear that this optimization can, in principle, be applied in
all frequent item set mining algorithms.3

3 Jaccard Item Sets

As outlined in the introduction, we base our item set mining approach on the
similarity of item covers rather than on item set support. In order to measure
the similarity of a set of item covers, we start from the Jaccard index [22], which
is a well-known statistic for comparing sets. For two arbitrary sets A and B it
is defined as

J(A,B) =
|A ∩B|
|A ∪B| .

Obviously, J(A,B) is 1 if the sets coincide (i.e. A = B) and 0 if they are disjoint
(i.e. A ∩B = ∅). For overlapping sets its value lies between 0 and 1.

The core idea of using the Jaccard index for item set mining lies in the in-
sight that the covers of (positively) associated items are likely to have a high
Jaccard index, while a low Jaccard index rather indicates independent or even
negatively associated items. However, since we consider also item sets with more
than two items, we need a generalization to more than two sets (here: item cov-
ers). In order to achieve this, we define, in a perfectly straightforward manner,
the carrier LT (I) of an item set I w.r.t. a transaction database T as

LT (I) = {k ∈ Nn | I ∩ tk �= ∅} = {k ∈ Nn | ∃i ∈ I : i ∈ tk} =
⋃

i∈I

KT ({i}).

The extent rT (I) of an item set I w.r.t. a transaction database T is the size of its
carrier, that is, rT (I) = |LT (I)|. Recall also that, in analogy, the cover KT (I)
of an item set I w.r.t. a transaction database T is

KT (I) = {k ∈ Nn | I ⊆ tk} = {k ∈ Nn | ∀i ∈ I : i ∈ tk} =
⋂

i∈I

KT ({i})

and that the support sT (I) of an item set I is the size of this cover, that is,
sT (I) = |KT (I)|. With these two notions we can simply define the generalized
Jaccard index of an item set I w.r.t. a transaction database T as its support
divided by its extent, that is, as

JT (I) =
sT (I)

rT (I)
=

|KT (I)|
|LT (I)| =

|⋂i∈I KT ({i})|
|⋃i∈I KT ({i})| .

3 Note that perfect extension pruning is not the same as restricting the output to
closed frequent item sets [26], even though a closed item set can be defined as an
item set that does not possess a perfect extension. The reason is that the search,
in order to avoid redundant work, usually does not consider all possible extensions.
Hence there may be perfect extensions which are not detected in the search.
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Clearly, this is a very natural and straightforward generalization of the Jaccard
index. Since for an arbitrary item a ∈ B it is obviously KT (I ∪ {a}) ⊆ KT (I)
and equally obviously LT (I ∪ {a}) ⊇ LT (I), we have sT (I ∪ {a}) ≤ sT (I) and
rT (I ∪ {a}) ≥ rT (I). From these two relations it follows

JT (I ∪ {a}) ≤ JT (I).

Therefore the generalized Jaccard index w.r.t. a transaction database T over an
item base B is an anti-monotone function on the partially ordered set (2B ,⊆).

Given a user-specified minimum Jaccard value Jmin, an item set I is called
Jaccard-frequent if JT (I) ≥ Jmin. The goal of Jaccard item set mining is to
identify all item sets that are Jaccard-frequent in a given transaction database T .
Since the generalized Jaccard index is anti-monotone, this task can be addressed
with the same basic scheme as the task of frequent item set mining. The only
problem to be solved is to find an efficient scheme for computing the extent rT (I).

4 The Eclat Algorithm

Since we will draw on the scheme of the well-known Eclat algorithm for min-
ing Jaccard item sets, we briefly review some of its core ideas in this section.
As already mentioned, Eclat [38] uses a purely vertical representation of condi-
tional transaction databases. That is, it uses lists of transaction indices, which
represent the cover of an item or an item set. It then exploits the obvious relation

KT (I1 ∪ I2) = KT (I1) ∩KT (I2),

which can easily be verified by inserting the definition of a cover. In particular,
Eclat exploits the special case

KT (I ∪ {a, b}) = KT (I ∪ {a}) ∩KT (I ∪ {b}),

which allows to extend an item set by an item. This is used in the recursive
divide-and-conquer scheme described above by intersecting the list of transaction
indices associated with the split item with the lists of transaction indices of all
items that have not yet been considered in the recursion. In this case the set I
in the formula above is the prefix P of the conditional transaction database.

An alternative to the intersection approach, which is particularly useful for
mining dense transaction databases4, relies on so-called difference sets (or diffsets
for short) [39]. The diffset DT (a | I) of an item a w.r.t. an item set I and a
transaction database T is defined as

DT (a | I) = KT (I)−KT (I ∪ {a}).
4 A transaction database is called dense if the average fraction of all items that occur
per transaction is relatively high. Formally, we may define the density of a transaction
database T as δ(T ) = 1

n·|B|
∑n

k=1 |tk|, which is equivalent to the fraction of ones in
a binary matrix representation of the transaction database T .
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That is, a diffset DT (a | I) lists the indices of all transactions that contain I,
but not a. Since obviously

sT (I ∪ {a}) = sT (I)− |DT (a | I)|,
diffsets are equally effective for finding frequent item sets, provided one can derive
a formula that allows to compute diffsets with a larger conditional item set I
without going through covers (using the above definition of a diffset). However,
this is easily achieved, because the following equality holds [39]:

DT (b | I ∪ {a}) = DT (b | I)−DT (a | I).
This formula allows to formulate the search entirely with the help of diffsets. It
may be started either with the complements of the covers of the items, which are
the diffsets for an empty condition, or by forming the differences of the covers of
individual items to obtain the diffsets for condition sets with only a single item.

5 The JIM Algorithm (Jaccard Item Set Mining)

The diffset approach as it was reviewed in the previous section can easily be
transferred in order to find an efficient scheme for computing the carrier and
thus the extent of item sets. To this end we define the extra set ET (a | I) as

ET (a | I) = KT ({a})−
⋃

i∈I

KT ({i}) = {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I : i /∈ tk}.

That is, ET (a | I) is the set of indices of all transactions that contain a, but no
item in I. Thus it identifies the extra transaction indices that have to be added
to the carrier if item a is added to the item set I. For extra sets we have

ET (a | I ∪ {b}) = ET (a | I)− ET (b | I),
which corresponds to the analogous formula for diffsets reviewed above. This
relation is easily verified as follows:

ET (a | I)− ET (b | I)
= {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I : i /∈ tk} − {k ∈ Nn | b ∈ tk ∧ ∀i ∈ I : i /∈ tk}
= {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I : i /∈ tk ∧ ¬(b ∈ tk ∧ ∀i ∈ I : i /∈ tk)}
= {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I : i /∈ tk ∧ (b /∈ tk ∨ ∃i ∈ I : i ∈ tk)}
= {k ∈ Nn | (a ∈ tk ∧ ∀i ∈ I : i /∈ tk ∧ b /∈ tk)

∨ (a ∈ tk ∧ ∀i ∈ I : i /∈ tk ∧ ∃i ∈ I : i ∈ tk)︸ ︷︷ ︸
=false

}

= {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I : i /∈ tk ∧ b /∈ tk}
= {k ∈ Nn | a ∈ tk ∧ ∀i ∈ I ∪ {b} : i /∈ tk}
= ET (a | I ∪ {b})
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In order to see how extra sets can be used to compute the extent of item sets,
let I = {i1, . . . , im}, with some arbitrary, but fixed order of the items that is
indicated by the index. This will be the order in which the items are used as
split items in the recursive divide-and-conquer scheme. It is

LT (I) =
⋃m

k=1 KT ({ik}) =
⋃m

k=1

(
KT ({ik})−

⋃k−1
l=1 KT ({il})

)

=
⋃m

k=1 E(ik | {i1, . . . , ik−1}),
and since the terms of the last union are clearly all disjoint, we have immediately

rT (I) =
m∑

k=1

|E(ik | {i1, . . . , ik−1})| = rT (I − {im}) + |E(im | I − {im})|.

Thus we have a simple recursive scheme to compute the extent of an item set
from its parent in the search tree (as defined by the divide-and-conquer scheme).

The search algorithm for Jaccard item sets can now easily be implemented as
follows: we start be creating a vertical representation of the given transaction
database. The only difference to the Eclat algorithm is that we have not only
one, but two transaction lists per item i: one represents KT ({i}) as in standard
Eclat, and the other represents ET (i | ∅), which happens to be equal to KT ({i}).
That is, for the initial transaction database the two lists are identical. However,
this will obviously not be maintained in the recursive processing. In the recursion
the first list for the split item is intersected with the first list of all other items
to form the lists representing the covers of the corresponding pairs. The second
list of the split item is subtracted from the second list of all other items, thus
yielding the extra sets of transactions for these items given the split item. From
the sizes of the resulting lists the support and the extent of the enlarged item
sets and thus their generalized Jaccard index can easily be computed.

Note that the support computation may, as in the Eclat algorithm, also be
based on diffsets. Likewise, an analogous scheme can be derived for the extent
computation. In addition, Jaccard item set mining can also exploit perfect exten-
sion pruning. The only difference is that an item a is now called a perfect exten-
sion of an item set I w.r.t. a transaction database T only if sT (I ∪ {a}) = sT (I)
and rT (I ∪ {a}) = rT (I), while standard frequent item set mining only requires
the first equality. Such perfect extensions are handled exactly in the same way:
they are not employed as split items, but collected in a third element of the
subproblem description, and are used only to generate all supersets of an item
set that share the same generalized Jaccard index.

6 Other Similarity Measures

Up to now we focused on the generalized Jaccard index to measure the simi-
larity of sets (item covers). However, there is a large number of other similarity
measures for sets (or, equivalently, for binary vectors, because a set may be rep-
resented by its indicator vector w.r.t. some base set). Recent extensive overviews
of such measures for the pairwise case include [7] and [8].
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Table 1. Quantities in terms of which the considered similarity measures are specified,
together with their behavior as functions on the partially ordered set (2B ,⊆)

quantity requirement on transaction behavior

nT none (independent of the set I) constant

sT (I) = |KT (I)| =
∣
∣⋂

i∈I KT ({i})
∣
∣ contains all items anti-monotone

rT (I) = |LT (I)| =
∣
∣⋃

i∈I KT ({i})
∣
∣ contains at least one item monotone

qT (I) = rT (I)− sT (I) contains some, but not all items monotone

zT (I) = nT − rT (I) contains no item anti-monotone

By relying on the same scheme that we used to generalize the Jaccard index
to more than two sets, a large number of such set similarity or binary vector
similarity measures can be generalized beyond pairwise comparisons as follows:
with the JIM algorithm we presented in the preceding section, we can easily
compute the five quantities listed in Table 1. These quantities count the number
of transactions that satisfy different requirements w.r.t. a given item set I (see
the second column of Table 1). With these quantities a wide range of similarity
measures for sets or binary vectors can be generalized.

Exceptions are measures for comparing two sets X and Y that refer explicitly
to the number |X − Y | of elements that are contained in the set X , but not in
the set Y , and distinguish this number from the number |Y −X | of elements that
are contained in the set Y , but not in the set X . This distinction is difficult to
generalize beyond the pairwise case, because the number of possible containment
patterns of an element to the members of a family of sets grows exponentially
with the number of the sets (here: covers, and thus: items). As a generalization
would have to consider all of these containment patterns separately, it becomes
quickly infeasible. Note, however, that an occurrence of the sum |X−Y |+|Y −X |
does not pose a problem, because this sum corresponds to the value qT (I).

By collecting from [8] similarity measures that can be specified in terms of the
quantities listed in Table 1, we compiled Table 2. Note that the index T and the
argument I are omitted to make the formulas more easily readable. Note also
that the Gower&Legendre measure SG = s+z

s+q/2+z [18] listed in [8] is exactly the

same as the second Sokal&Sneath measure (it is just written differently, with a
factor of 2 canceled from both numerator and denominator). Furthermore, note
that the Hamann measure SH = x+z−s

n = n−2s
n [20] listed in [8] is equivalent to

the Sokal&Michener measure SM, because SH + 1 = 2SM, and hence omitted.

Likewise, the second Baroni-Urbani&Buser measure SU =
√

xz+x−q√
xz+o

[4] listed in

[8] is equivalent to the one given in Table 2, because SU+1 = 2SB. Finally, note
that all of the measures listed in Table 2 have range [0, 1] except SK (Kulczynski)
and SO (Sokal&Sneath 3), which have range [0,∞).

Table 2 is split into two parts depending on whether the numerator of a mea-
sure refers only to the support s or to both the support s and the number z of
transactions that do not contain any of the items in the considered set I. The for-
mer are referred to as based on the inner product, because in the pairwise case
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Table 2. Considered similarity measures for sets/binary vectors

Measures derived from inner product:

Russel&Rao
[28]

SR =
s

n
=

s

r + z

Kulczynski
[25]

SK =
s

q
=

s

r − s

Jaccard [22]
Tanimoto [33]

SJ =
s

s+ q
=

s

r

Dice [10]
Sørensen [32]
Czekanowski [9]

SD =
2s

2s+ q
=

2s

r + s

Sokal&Sneath 1
[31,29]

SS =
s

s+ 2q
=

s

r + q

Measures derived from Hamming distance:

Sokal&Michener
Hamming [30,21]

SM =
s+ z

n
=

n− q

n

Faith
[12]

SF =
2s+ z

2n
=

s+ 1
2
z

n

AZZOO [7]
σ ∈ [0, 1]

SZ =
s+ σz

n

Rogers&
Tanimoto [27]

ST =
s+ z

n+ q
=

n− q

n+ q

Sokal&Sneath 2
[31,29]

SN =
2(s+ z)

n+ s+ z
=

n− q

n− 1
2
q

Sokal&Sneath 3
[31,29]

SO =
s+ z

q
=

n− q

q

Baroni-Urbani
&Buser [4]

SB =

√
sz + s√
sz + r

s is the value of the inner (or scalar) product of the binary vectors that are com-
pared. The latter measures (that is, those with both s and z in the numerator)
are referred to as based on the Hamming distance, because in the pairwise case
q is the Hamming distance of the two vectors and n− q = s+ z their Hamming
similarity. The decision whether for a given application the term z should be con-
sidered in the numerator of a similarity measure or not is difficult. Discussions
of this issue for the pairwise case can be found in [29] and [11].

Note that the Russel&Rao measure is simply normalized support, demon-
strating that our framework comprises standard frequent item set mining as a
special case. The Sokal&Michener measure is simply the normalized Hamming
similarity. The Dice/Sørensen/Czekanowski measure may be defined without the
factor 2 in the numerator, changing the range to [0, 0.5]. The Faith measure is
equivalent to the AZZOO measure (Alter Zero Zero One One) for σ = 0.5 and
the Sokal&Michener/Hamming measure results for σ = 1. AZZOO is meant to
introduce flexibility in how much weight should be placed on z, the number of
transactions which lack all items in I (zero zero), relative to s (one one).

All measures listed in Table 2 are anti-monotone on the partially ordered
set (2B,⊆), where B is the underlying item base. This is obvious if in at least
one of the formulas given for a measure the numerator is (a multiple of) a
constant or anti-monotone quantity or a (weighted) sum of such quantities, and
the numerator is (a multiple of) a constant or monotone quantity or a (weighted)
sum of such quantities (see Table 1). This is the case for all but SD, SN and SB.

That SD is anti-monotone can be seen by considering its reciprocal value

S−1
D =

2s+ q

2s
= 1 +

q

2s
.
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Since q is monotone and s is anti-monotone, S−1
D is clearly monotone and thus

SD is anti-monotone. Applying the same approach to SB, we arrive at

S−1
B =

√
sz + r√
sz + s

=

√
sz + s+ q√
sz + s

= 1 +
q√

sz + s
.

Since q is monotone and both s and
√
sz are anti-monotone, S−1

B is clearly
monotone and thus SB is anti-monotone. Finally, SN can be written as

SN =
2n− 2q

2n− q
= 1− q

2n− q
= 1− q

n+ s+ z
.

Since q is monotone, the numerator is monotone, and since n is constant and s
and z are anti-monotone, the denominator is anti-monotone. Hence the fraction
is monotone and since it is subtracted from 1, SN is anti-monotone.

Note that all measures in Table 2 can be expressed as

S =
c0s+ c1z + c2n+ c3

√
sz

c4s+ c5z + c6n+ c7
√
sz

(1)

by specifying appropriate coefficients c0, . . . , c7. For example, we obtain SJ for
c0 = c6 = 1, c5 = −1 and c1 = c2 = c3 = c4 = c7 = 0, since SJ = s

r = s
n−z .

Similarly, we obtain SO for c0 = c1 = c6 = 1, c4 = c5 = −1 and c2 = c3 = c7 = 0,
since SO = s+z

q = s+z
n−s−z . This general form allows for a flexible specification of

various similarity measures. Note, however, that not all selections of coefficients
lead to an anti-monotone measure and hence one has to carefully check this
property before using a measure that differs from the pre-specified ones.

7 Experiments

We implemented the described item set mining approach as a C program that
was derived from an Eclat implementation by adding the second transaction
identifier list for computing the extent of item sets. All similarity measures listed
in Table 2 are included as well as the general form (1). This implementation has
been made publicly available under the GNU Lesser (Library) Public License.5

In a first set of experiments we applied the program to five standard bench-
mark data sets, which exhibit different characteristics, especially different den-
sities, and compared it to a standard Eclat search. The data sets we used are:
BMS-Webview-1 (a web click stream from a leg-care company that no longer
exists, which has been used in the KDD cup 2000 [23,40]), T10I4D100K (an
artificial data set generated with IBM’s data generator [41]), census (a data set
derived from an extract of the US census bureau data of 1994, which was pre-
processed by discretizing numeric attributes), chess (a data set listing chess end
game positions for king vs. king and rook), and mushroom (a data set describ-
ing poisonous and edible mushrooms by different attributes). The first two data

5 See http://www.borgelt.net/jim.html
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Fig. 1. Logarithms of execution times, measured in seconds, over absolute minimum
support for Jaccard item set mining compared to standard Eclat frequent item set
mining. Items were processed in ascending or descending order w.r.t. their frequency.
Jaccard item set mining was executed with Jmin = 0, thus ensuring that exactly the
same item sets are found.

sets are available in the FIMI repository [14], the last three in the UCI machine
learning repository [3]. The discretization of the numeric attributes in the cen-
sus data set was done with a shell/gawk script that can be found on the web
page given in Footnote 5 (previous page). For the experiments we used an Intel
Core 2 Quad Q9650 (3GHz) machine with 8 GB main memory running Ubuntu
Linux 10.04 (64 bit) and gcc version 4.4.3.

The goal of these experiments was to determine how much the computation
of the carrier/extent of an item set affected the execution time. Therefore we
ran the JIM algorithm without any threshold for the similarity measure (we
used the Jaccard index, i.e. Jmin = 0, but any other measure gives basically the
same results), using only a minimum support threshold (which is supported by
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our implementation in parallel). As a consequence, JIM and Eclat always found
exactly the same set of frequent item sets for a given minimum support value
and thus any difference in execution time comes from the additional costs of the
carrier/extent computation. The difference in the generated output consists only
in the Jaccard index that the JIM program computes, but standard Eclat can
not compute as it lacks knowledge of the quantity rT (I). In addition, we explored
whether the common rule of thumb of frequent item set mining, namely that it
is best to process the items in the order of increasing frequency (cf. page 107),
also holds for cover similarity based item set mining. Therefore we tried both
ascending and descending frequency order for the items.

The results are depicted in the diagrams in Figure 1, which show the deci-
mal logarithm of the execution time in seconds over minimum support (as an
absolute number, that is, as a number of transactions). We observe first that for
Eclat (dashed lines) processing the items in increasing order of frequency (light
gray) almost always works better, since the execution times are shorter than for
the reverse order (dark gray)—as expected. For JIM (solid lines), however, the
picture is not so clear cut. On three data sets, namely census, BMS-Webview-1,
and T10I4D100K, it is better to process the items in descending order of their
frequency (the dark gray curve is lower than the light one). On chess it is better
to use ascending order (the light gray curve is lower than the dark one), while on
the fifth data set (mushroom) it depends on the minimum support which order
yields the shorter execution time (the two curves intersect).

We interpret these findings as follows: for the support computation (which is
all that Eclat does) it is clearly better to process the items in ascending order
of their frequency, because this reduces the average length of the transaction
identifier lists. By intersecting with short lists early, the lists processed in the
recursion tend to be shorter and thus are processed faster. The same obviously
also holds for the support computation part of JIM. However, for the extent
computation it is plausible that the opposite order is preferable. Since it works
on extra sets, it is advantageous to add frequent items as early as possible to the
carrier, because this increases the size of the already covered carrier and thus
reduces the average length of the extra lists that are processed in the recursion.
Therefore, since there are different preferences, it depends on the data set which
operation governs the complexity and thus which item order is better.

From Figure 1 we conjecture that dense data sets (high fraction of ones in
a bit matrix representation), like chess and mushroom, favor ascending order,
while sparse data sets, like census, BMS-Webview-1 and T10I4D100K, favor
descending order. This is plausible, because in dense data sets the intersection
lists tend to be long, so it is important to reduce them. In sparse data sets,
however, the extra lists tend to be long, so here it is more important to focus
on them. The mushroom data set behaves more like a dense data set for lower
minimum support and more like a sparse data set for higher minimum support.

Naturally, the execution times of JIM are always greater than those of the
corresponding Eclat runs (with the same order of the items), but the execution
times are still bearable. This shows that even if one does not use a similarity
measure to prune the search, this additional information can be computed fairly
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Table 3. Jaccard item sets found in the 2008/2009 Wikipedia Selection for schools

item set sT JT

Reptiles, Insects 12 1.0000
phylum, chordata, animalia 34 0.7391
planta, magnoliopsida, magnoliophyta 14 0.6667
wind, damag, storm, hurrican, landfal 23 0.1608
tournament, doubl, tenni, slam, Grand Slam 10 0.1370
dinosaur, cretac, superord, sauropsida, dinosauria 10 0.1149
decai, alpha, fusion, target, excit, dubna 12 0.1121
conserv, binomi, phylum, concern, animalia, chordata 14 0.1053

efficiently. However, it should be kept in mind that the idea of the approach is to
set a threshold for the similarity measure, which can effectively prune the search,
so that the actual execution times found in applications are much lower. In our
own practice we basically always achieved execution times that were lower than
for the Eclat algorithm (but, of course, with a different output).

In another experiment we used an extract from the 2008/2009 Wikipedia
Selection for schools6, which consisted of 4861 web pages. Each of these web
pages was taken as a transaction and processed with standard text processing
methods (like name detection, stemming, stop word removal etc.) to extract
a total of 59330 terms/keywords. The terms occurring on a web page are the
items occurring in the corresponding transaction. The resulting data file was
then mined for Jaccard item sets with thresholds of Jmin = 0.1 and smin = 10.
Some examples of term associations found in this way are listed in Table 3.

Clearly, there are several term sets with surprisingly high Jaccard indices and
thus strongly associated terms. For example, “Reptiles” and “Insects” always
appear together (on a total of 12 web pages) and never alone (as their Jaccard
index is 1, so their covers are identical). A closer inspection revealed, however,
that this is an artifact of the name detection, which extracts these terms from
the Wikipedia category title “Insects, Reptiles and Fish” (but somehow treats
“Fish” not as a name, but as a normal word). All other item sets contain normal
terms, though (only “Grand Slam” is another name), and are not artifacts of the
text processing step. The second item set captures several biology pages, which
describe different vertebrates, all of which belong to the phylum “chordata” and
the kingdom “animalia”. The third set indicates that this selection contains a
surprisingly high number of pages referring to magnolias. The remaining item
sets show that term sets with five or even six terms can exhibit a quite high Jac-
card index, even though they have a fairly low support (only 10–20 transactions,
which corresponds to 0.2–0.4% of the 4861 transactions/web pages).

An impression of the filtering power can be obtained by comparing the size
of the output to standard frequent item set mining: for smin = 10 there are
83130 frequent item sets and 19394 closed item sets with at least two items.
A threshold of Jmin = 0.1 for the generalized Jaccard index reduces the output

6 See http://schools-wikipedia.org/
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Table 4. Some Jaccard item sets that were found in BMS-Webview-1

item set sT JT

35201, 35205, 35193, 35189, 35197, 35209 37 0.1034
18767, 18751, 18755, 18763, 18743, 18747, 18759 33 0.1467
18543, 18567, 18751, 18539, 18763, 18743, . . .

. . . 18747, 18571, 18759 27 0.1089
18543, 18567, 18751, 18539, 18763, 18743, . . .

. . . 18747, 18571, 18759, 18767 27 0.0951

to 5116 (frequent) item sets. From manual inspection, we gathered the impres-
sion that the Jaccard item sets contained more meaningful sets and that the
Jaccard index was a valuable additional piece of information. It has to be con-
ceded, though, that whether item sets are more “meaningful” or “interesting”
is difficult to assess in a convincing fashion. Such an assessment would require
an objective measure, which is not available (and if it were available, it could
be used directly for the mining). What can be said, though, is that the support
and the generalized Jaccard index assess item sets in very different ways, since
for the 5116 item sets mentioned above, the correlation coefficient of the support
and the generalized Jaccard index is merely 0.18. That is, neither does a high
support imply a high generalized Jaccard index nor vice versa.

As an additional example, Table 4 lists Jaccard item sets that were found
in BMS-Webview-1. Despite their low support (25–40 transactions, which cor-
responds to 0.04%–0.07% of the 59602 transactions), they could quickly and
effectively be identified with Jaccard item set mining. This result is particularly
impressive, because standard frequent item set mining without a restriction to
e.g. closed item sets is not possible in reasonable time on BMS-Webview-1 for
a minimum support less than about 32 transactions. Restricting the output to
closed item sets makes mining feasible and yields 110427 item sets for smin = 32.
Jaccard item set mining with thresholds of smin = 32 and Jmin = 0.1 (but with-
out a restriction to closed item sets) reduces the output to 982 item sets. Again
item sets with fairly many items and surprisingly high generalized Jaccard index
are found. As for the 2008/2009 Wikipedia Selection for schools the correlation
coefficient of the support and the generalized Jaccard index is very low, in this
case actually even slightly negative, namely −0.02.

An example of a Jaccard item set from the census data set is

{loss=none, gain=none, country=United-States, race=White,
workclass=Private, sex=Male, age=middle-aged,
marital status=Married-civ-spouse, relationship=Husband},

that is, an item set with 9 items with a support of 5245 (10.7%) and a Jaccard
index of 0.1074. Again it is surprising to see how large an item set can possess
a high generalized Jaccard index. Although this set would be discovered with
standard frequent item set mining as well, the generalized Jaccard index provides
a relevant additional assessment and thus distinguishes it from other item sets.
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As a final remark we would like to point out that the usefulness of our method
is indirectly supported by a successful application of the Jaccard item set mining
approach for (missing) concept detection (see [24] as well as the chapter by Kötter
and Berthold in this book, which describes the application).

8 Conclusions

In this chapter we introduced the notion of a Jaccard item set as an item set
for which the generalized Jaccard index of the covers of its items exceeds a user-
specified threshold. In addition, we extended this basic idea to a total of twelve
similarity measures for sets or binary vectors, all of which can be generalized
in the same way and can be shown to be anti-monotone. By exploiting an idea
that is similar to the difference set approach for the well-known Eclat algorithm,
we derived an efficient search scheme that is based on forming intersections
and differences of sets of transaction indices in order to compute the quantities
that are needed to compute the similarity measures. Since it contains standard
frequent item set mining as a special case, mining item sets based on cover
similarity yields a flexible and versatile framework. Furthermore, the similarity
measures provide highly useful additional assessments of found item sets and
thus help us to select the interesting ones. By running experiments on standard
benchmark data sets we showed that mining item sets based on cover similarity
can be done fairly efficiently, and by evaluating the results obtained with a
threshold for the cover similarity measure we demonstrated that the output is
considerably reduced, while expressive and meaningful item sets are preserved.
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Abstract. Biomine and ProbLog are two frameworks to implement
bisociative information networks (BisoNets). They combine structured
data representations with probabilities expressing uncertainty. While
Biomine is based on graphs, ProbLog’s core language is that of the logic
programming language Prolog. This chapter provides an overview of im-
portant concepts, terminology, and reasoning tasks addressed in the two
systems. It does so in an informal way, focusing on intuition rather than
on mathematical definitions. It aims at bridging the gap between network
representations and logical ones.

1 Introduction

Nowadays, large, heterogeneous collections of uncertain data exist in many do-
mains, calling for reasoning tools that support such data. Networks and logical
theories are two common representations used in this context. In the setting
of bisociative knowledge discovery, such networks are called BisoNets [1]. The
Biomine project has constructed a large network (or BisoNet) of biological know-
ledge and provided several reasoning mechanisms to explore this network [2].
ProbLog [3], on the other hand, provides a logic-based representation language
and corresponding inference methods that have been used in the context of the
same network. Both Biomine and ProbLog allow one to associate probabilities
to network edges and thereby to reason about uncertainty. For ProbLog, this
idea has recently also been extended to other types of labels, such as for in-
stance costs, connection strengths, or revenues [4]. In this chapter, we highlight
the common underlying ideas of these two frameworks, focusing on illustrative
examples rather than formal detail. We provide an overview of network-related
inference techniques from a logical perspective. These techniques can potentially
be used to support bisociative reasoning and knowledge discovery. The aim is to
bridge the gap between the two views and to point out similarities and oppor-
tunities for cross-fertilization.

The chapter is organized as follows: We first introduce the Biomine and
ProbLog frameworks and their underlying concepts in Section 2. Section 3 then

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 122–143, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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Fig. 1. An example of a subgraph extracted from Biomine

gives an overview of various inference and reasoning tasks, focusing on the struc-
tural aspect, before Section 4 discusses their extension towards the use of prob-
abilities and other types of labels.

2 The Biomine and ProbLog Frameworks

The Biomine project has contributed a large network of biological entities and re-
lationships between them, represented as typed nodes and edges, respectively [2].
The Biomine network is probabilistic; to each edge is associated a value that rep-
resents the probability that the link between the entities exists. A subnetwork
extracted from this database is shown in Figure 1. Inspired on the Biomine

network, ProbLog [3] extends the logic programming language Prolog with in-
dependent random variables in the form of probabilistic facts, corresponding to
Biomine’s probabilistic edges. In the remainder of this section, we will introduce
the basic terminology used in the context of these frameworks for reasoning
about networks.

2.1 Using Graphs: Biomine

Figure 2 gives a simplified representation of the Biomine subnetwork of Figure 1.
We will use this representation for illustration throughout the chapter. Nodes
have numbers as identifiers. There are five node types (tn1 to tn5). The number
of edge types has been reduced to three (te1, te2 and te3) and their directions
have been removed. We use colors and border styles to represent the node types,
and line styles to represent the edge types; see Figure 5 for the exact mapping.

In general, nodes and edges could have several types simultaneously. Also,
edges can be directed and there may exist multiple edges between a given pair
of nodes. For ease of explanation, we will only consider the simpler case where
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Fig. 2. A simplified representation of the Biomine subgraph
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Fig. 3. Examples of graph patterns

edges and nodes have a single type and there is at most one edge between any
pair of nodes.1

A graph pattern is an expression over node and edge types. It is an abstract
graph that defines a subgraph by means of a set of constraints over the connection
structure and edge and node types. Six example patterns, p1 to p6, are presented
in Figure 3.

The pattern nodes are represented using circles to distinguish them from
network nodes, which are represented as squares. Pattern nodes and edges are
either required to be of a given type, or can be of arbitrary type. The latter is
denoted using white nodes and solid edges. Query nodes are labeled with capital
letters, these are the main points of interest when querying the network. As in
regular expressions, the star denotes unlimited repetitions of substructures.

For instance, pattern p1 corresponds to a path of length at least one between
the query nodes X and Y, using arbitrary node and edge labels, whereas p5

specifies the exact number of edges and all edge and node types.

1 Allowing multiple edges between the same pair of nodes can be done by introducing
explicit edge identifiers, both in the network and, where needed, also in the patterns.
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Fig. 4. Example of instantiation of pattern p4

A substitution assigns network nodes to nodes in a pattern. An instantiation
maps a pattern onto the network using subgraph isomorphism. Thus, it is a
substitution of all nodes in the pattern in such a way that a corresponding edge
mapping exists as well. An answer substitution is a restriction of an instantiation
to the query nodes.

An example instantiation of pattern p4 is shown in Figure 4. There might be
several possible instantiations of a pattern with the same answer substitution.
For instance, p4{X/9, Y/11} can be instantiated in two ways, either by mapping
the middle node to 7, as in the illustration, or by mapping it to 10.

While we here consider a flat type system, where types are either given or
completely undefined, it is also possible to use type hierarchies. When instan-
tiating patterns, a node (respectively an edge) can then be mapped to a node
(edge) of same type or one of its descendant types. The hierarchies used in our
example are shown in Figure 5, where the undefined type is the root node of the
hierarchy.

2.2 Using Logic: ProbLog

As ProbLog is based on the logic programming language Prolog, we first illus-
trate the key concepts of Prolog by means of an example; for a more detailed
introduction, we refer to [5]. We defer discussion of the probabilistic aspects of
ProbLog to Section 4.

In Prolog, the network of Figure 2 (ignoring the probability labels) can be
represented as a set of facts :
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Fig. 5. Node (left) and edge (right) types hierarchies

arc(1, 2, te1). arc(2, 3, te1). arc(1, 8, te1).

arc(8, 9, te2). arc(9, 10, te3). arc(1, 9, te1). . . . (1)

node(1, tn2). node(2, tn5). node(3, tn3). . . .

Here, arc(1,2,te1) states that there is a directed edge from node 1 to node 2

of type te1; node(1,tn1) specifies that node 1 is of type tn1, and so forth.2

arc/3 is a predicate of arity 3, that is, with 3 arguments. To obtain undirected
edges, a Prolog program would define an additional predicate edge/3 as follows:

edge(X, Y, T) : − arc(X, Y, T). (2)

edge(X, Y, T) : − arc(Y, X, T). (3)

Here, uppercase letters indicate logical variables that can be instantiated to con-
stants such as 1 or tn3. The definition of edge/3 above consists of two clauses
or rules. The first clause states that edge(X,Y,T) is true for some nodes X and Y

and node type T if arc(X,Y,T) is true. The second clause gives an alterna-
tive precondition for the same conclusion. Together, they provide a disjunctive
definition, that is, edge(X,Y,T) is true if at least one of the rules is true.

For instance, edge(2,1,te1) is true due to the second clause and the fact
arc(1,2,te1), where we use the substitution {X/2, Y/1, T/te1} to map rule
variables to constants. edge(2,1,te1) is said to follow from or to be entailed
by the Prolog program.

More formally, Prolog answers a given query by trying to prove the query using
the facts and clauses in the program. The answer will be yes (possibly together
with a substitution for the query variables, which are considered to be existen-
tially quantified), if the query follows from the program (for that substitution).
Query ?- edge(2,1,te1) results in the answer yes due to clause (3) and fact
arc(1,2,te1). For ?- edge(2,1,te2), the answer is no, as Prolog terminates
without finding a corresponding fact to complete the proof. For ?- edge(A,B,C),

2 Alternatively, one could also use facts such as te1(1,2) and tn1(1).



Patterns and Logic for Reasoning with Networks 127

Prolog will return the substitution {A/1, B/2, C/te1}, and will allow the user
to keep asking for alternative answers, such as {A/2, B/3, C/te1}, {A/1, B/8,

C/te1}, and so forth, until no more substitutions can be generated from the
program.

For convenience, we also define edges of arbitrary type:

edge(X, Y) : − edge(X, Y, T). (4)

Alternatively, one could encode the type hierarchy in Figure 5:

edge(X, Y, te0) : − edge(X, Y, te1).

edge(X, Y, te0) : − edge(X, Y, te2).

edge(X, Y, te0) : − edge(X, Y, te3).

Prolog also allows for more complex predicate definitions, such as a path between
two nodes:

path(X, Y) : − edge(X, Y). (5)

path(X, Y) : − edge(X, Z), path(Z, Y).

The set of facts in a Prolog program are also called the database, and the set of
clauses the background knowledge.

To simplify notation and to closely follow the network view, in the remainder
of this chapter we assume that different logical variables are mapped onto dif-
ferent constants; this could be enforced in Prolog by adding atoms of the form
X �= Y to predicate definitions.

So far, we have focused on encoding information about a specific network.
However, Prolog allows one to encode both data and algorithms within the same
logical language, and thus makes it easy to implement predicates that reason
about the program itself, for instance, by simulating proofs of a query in order
to generate additional information. As we will see in Section 3, this provides a
powerful means to cast reasoning tasks in terms of queries; we refer to [5] for a
detailed discussion.

In the logical setting, a pattern corresponds to a predicate. As in the graph
setting, its definition imposes constraints on the types and connection structure.
For example, the predicate path(X,Y) defined above directly corresponds to
pattern p1 in Figure 3. The query variables X and Y correspond to the query
nodes in graph patterns. Query variables are mapped to constants using answer
substitutions as in the network setting. Building on the definitions above, the
full set of patterns in Figure 3 can be encoded as follows:

p1(X, Y) : − path(X, Y). (6)

p2(X, Y, Z) : − node(X, tn5), edge(X, A), node(A, tn5), edge(A, Y,te2),

edge(A, Z, te3), edge(Y, B), edge(Z, B). (7)

p3(X, Y) : − node(X, tn3), path(X, Y), edge(Y, A), node(A, tn5). (8)

p4(X, Y) : − node(X, tn5), edge(X, A), edge(A, Y), node(Y, tn5). (9)
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p5(X, Y) : − node(X, tn5), edge(X, A, te1), node(A, tn2),

edge(A, Y, te1), node(Y, tn5). (10)

p6(X) : − node(X, tn3), edge(X, A), node(A, tn5), path(A, B),

node(B, tn3), edge(B, C), node(C, tn5), path(C, X). (11)

Furthermore, using logic also allows one to easily express additional constraints
on patterns. For instance, pattern p7 states that node X has a neighboring node
whose type is not tn5, while pattern p8 states that it has two outgoing edges of
the same type:

p7(X) : − edge(X, Y), not(node(Y, tn5)).

p8(X) : − edge(X, Y, T), edge(X, Z, T).

For ease of presentation, we assume that patterns are always defined by a single
clause. Note that this does not preclude disjunctive patterns, as can be seen
for p1 in (6) above.

A substitution θ is an answer substitution for a pattern p if the query pθ follows
from the Prolog program. For instance, {X/9, Y/11} is an answer substitution
for pattern p4(X,Y), as p4(9, 11) follows from our example program.

An explanation for a pattern is a minimal set S of database facts such
that the pattern follows from S and the background knowledge. For instance,
{node(9,tn5), arc(9,7,te2), arc(7,11,te2), node(11,tn5)} is an expla-
nation for p4(9, 11).

2.3 Summary

Table 1 summarizes the key terms introduced in this section.

Table 1. Correspondence of the different terminologies

logic view graphical view

background knowledge set of patterns
set of facts, database graph

predicate pattern
query variables query nodes
explanation instantiation

3 Inference and Reasoning Techniques

This section provides an overview of a broad range of reasoning techniques.
We start with the classical tasks of deduction and abduction, that are both
concerned with matching given patterns against the graph or database. Next,



Patterns and Logic for Reasoning with Networks 129

we discuss various settings for induction, that is, for inferring patterns under
different conditions. We then in turn consider techniques that combine pattern
creation and pattern matching, that identify nodes in the graph, and that modify
the database or the background knowledge in a number of different settings.
Throughout the discussion, we assume a Prolog program encoding the graph
and possible background knowledge as discussed in Section 2.2. This allows us
to view the different reasoning tasks as queries asked to a Prolog system.

3.1 Deduction: Reasoning about Node Tuples

The question answered by deduction is whether there exists an instantiation of a
pattern in a graph, or, equivalently, whether the pattern follows from the Prolog
program encoding the graph. It thus directly corresponds to answering Prolog
queries as discussed in Section 2.2.

In our example, given the ground query ?- p2(8,7,10), deduction will pro-
duce an affirmative answer, as there is an instantiation of the pattern using the
real nodes 9 and 11. Similarly, p4(8,10) is true but p2(10,7,8), p2(9,6,11)
and p4(14,10) are false.

To summarize, given a Prolog program, a pattern p and a substitution θ that
grounds p, deduction corresponds to answering the query ?- pθ from the pro-
gram.

The decision problem of deduction as described here forms the basis for many
other reasoning tasks on the level of node tuples; we discuss some examples next.

Answer Enumeration. For non-ground patterns, the enumeration problem
associated to deduction corresponds to finding all answer substitutions for the
pattern. Alternatively, one can ask for some answer substitution chosen from
the set of all possible ones. For instance, one possible answer substitution for ?-
p2(X,Y,Z) would be {X/8, Y/7, Z/10}, whereas ?- p4(15,Y) does not pro-
duce an answer substitution, as there is no proof of this query.

Thus, given a Prolog program and a pattern p, the answer substitution and
enumeration problem of deduction correspond to finding one or all answer sub-
stitutions for the query ?- p from the program, respectively.

Representative Nodes. A binary pattern p(X,Y) can be used to find a set of
representative nodes, that is, nodes r that, when substituted for X, lead to a set of
patterns p(r,Y) such that all other nodes appear in an answer substitution for at
least one such pattern. For instance, using p(X,Y) :- edge(X,Z),edge(Z,Y),
one set of representative nodes is {1, 4, 16}. Note that here, some nodes are
associated to several representative nodes, in this example node 7 is associated
to both the representative nodes 1 and 4. A harder variant of the problem would
be to require that there is exactly one such representative for each node.

In a nutshell, given a constant k, a Prolog program encoding a network with
nodes N , and a pattern p(X, Y), the task of finding representative nodes is to find
a subset S ⊆ N of size k such that for each node y /∈ S there is a node s ∈ S for
which the query ?- p(s,y) is answered affirmatively.
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Spread of Influence. Recursive patterns such as path(X,Y) can be used to
measure distances from a given node in a network to all other nodes in terms of
the minimal number of edges needed to reach the other node. This principle can
be regarded as the basis of techniques measuring spread of influence, and can be
used to enumerate nodes by increasing distance.

For instance, using pattern path(1,X), thus measuring the distance from
node 1, the closest set of nodes is {2, 8, 9, 14}, the next one {3, 7, 10, 13, 15},
and so forth.

In Prolog, this could easily be realized by extending the path predicate with
a third argument that counts the number of edges traversed:

path(X, Y, 1) : − edge(X, Y).

path(X, Y, L) : − edge(X, Z), path(Z, Y, L), L is N+ 1.

One would then ask a sequence of queries ?- path(1,X,i) with i = 1, . . . , n up
to a maximum length n, though some extra book-keeping would be required to
filter out nodes that have been returned as an answer on previous levels already.

Thus, given a Prolog program, a maximum distance n, and a recursive pattern
p(x, Y, D) with source node x, spread of inference corresponds to answer enumer-
ation for the sequence of queries ?- p(x,Y,i) for i = 1, . . . , n.

3.2 Abduction: Reasoning about Subgraphs

The task of abduction is closely related to that of generating an explanation for
a query as discussed in Section 2.2. In terms of graphs, it directly corresponds to
finding a minimal instantiation of a pattern. In the logical setting, abduction is
not restricted to database predicates, but can use all predicates marked abducible.
In the context of patterns and networks, one could simply assume all predicates
used in pattern definitions to be abducible and implement a predicate abduce;
see [5] for a general definition of this predicate and more details.

For instance, when calling the query ?- abduce(p6(7),E) (cf. Equation (11))
and assumming that all predicates are abducible, the answer E would be the
conjunction of node(7,tn3), edge(7,9), node(9,tn5), path(9,13), node(13,
tn3), edge(13,12), node(12,tn5), and path(12,7).

To summarize, given a Prolog program and a pattern p, abduction corresponds
to answering the query ?- abduce(p,E).

Again, one can also consider the corresponding enumeration problem, where
the task is to find all explanations or instantiations.

3.3 Induction: Finding Patterns

Frequent Patterns. The usual frequent subgraph mining problem corresponds
to the problem of finding all patterns from a given pattern language with more
than a chosen number of instantiations. The pattern language will specify both
allowed structures of patterns and which nodes in patterns can be query nodes.
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For instance, for a frequency threshold of 3, all patterns in Figure 3 would be
frequent.

Similarly to abduce/2 above, one could implement a Prolog predicate

frequent(P, T) : − pattern(P), count(P, N), N>= T.

that returns patterns with a frequency greater or equal to a user-defined thresh-
old T. It relies on suitable definitions of pattern/1 (defining elements of the
pattern language) and count/2 (counting instantiations of a given pattern).
Then, finding frequent patterns for a given frequency threshold t corresponds to
answering the query ?- frequent(P,t). While this simple approach illustrates
the basic idea, an efficient implementation would clearly be more involved.

To summarize, given a frequency threshold t and a Prolog program includ-
ing definitions of a pattern language and a counting function, finding frequent
patterns corresponds to answering the query ?- frequent(P,t).

Concept Learning. The aim of concept learning is to construct a definition of
a new predicate that covers all positive examples, but none of the negative ones.
In our context, examples are node tuples, but for convenience we represent them
as ground instances of the pattern to be found. Again, this could be realized in
Prolog based on a suitable definition of a predicate

concept(C) : − hypothesis(C),

findall(P, (pos(P), not(covers(C, P))), []),

findall(N, (neg(N), covers(C, N)), []).

Here, hypothesis/1 enumerates possible concepts, covers/2 checks whether the
concept covers an example, and pos/1 and neg/1 define examples. The Prolog
builtin findall/3 is used here to verify that there is no positive example that is
not covered by the concept, and no negative one that is covered. In general, its
third argument is a list of all instantiations of the variable in the first argument
for which the query in the second argument holds, and [] denotes the empty
list.

For instance, assume we are given examples pos(q(3,1)), pos(q(7,15))
and neg(q(7,4)). Then, querying ?- concept(C) could return C = (q(X,Y)

:- p3(X,Y)) as a possible solution.
Thus, given a Prolog program including definitions of a hypothesis language

and positive and negative examples, concept learning corresponds to answering
the query ?- concept(C).

Generalisation. Comparing patterns based on a generality relation provides a
means to choose between alternative solutions. Given a Prolog program including
two patterns

pa : − a1, . . . , an.

pb : − b1, . . . , bm.
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pa is more general than pb if the query ?- pa follows from the program that
is obtained by adding the facts b1 to bm to the original program, where each
variable is replaced by a new constant symbol. For instance, p4(X,Y) (Eq. (9))
is more general than p5(X,Y) (Eq. (10)), as ?- p4(x,y) can be proven from
our example program extended with the facts node(x,tn5), edge(x,a,te1),
node(a,tn2), edge(a,y,te1), and node(y,tn5).

From the perspective of graphs, generality can again be seen as a form of
subgraph isomorphism, this time between patterns where the nodes and edges
of the more general pattern are mapped to those of the more specific one of
same type or children type. Notice that in the literature on logical and relational
learning there are multiple notions of generality that can be employed [6].

The notion of generality can also be used to find a maximally specific common
generalisation of two given patterns, that is, a pattern that is more general
than each of the input patterns, but for which there is no more specific pattern
that also fulfills this criterion. A corresponding Prolog predicate generalize/3,
queried as ?- generalize(p2(X,Y),p4(X,Y),G) would provide the answer C =

(node(X,tn5), edge(X,A), edge(A,Y)).
Thus, given a Prolog program and two patterns pa and pb, the task of gener-

alization corresponds to answering the query ?- generalize(pa,pb,P).

Clustering. Patterns can also be used to cluster node tuples: all node tuples
that satisfy a given pattern fall into the same cluster. The task of clustering
a given set of node tuples then corresponds to that of finding k patterns that
cluster the node tuples into k disjoint (or possibly overlapping) subsets based
on characteristics of their local connection.

A very simple set of clustering patterns in our example would be the set
containing node(X,tni) for i = 1, . . . , 5 that would simply cluster single nodes
by their types.

In a nutshell, given a Prolog program, a constant k and a set of node tuples T ,
clustering is the task of finding a set P of k patterns such that for each t ∈ T ,
there is exactly one pattern p ∈ P for which t is an answer substitution for p.

3.4 Combining Induction and Deduction

As deduction matches patterns against the database, while induction constructs
new patterns, the two approaches can be naturally combined to find both pat-
terns and corresponding substitutions simultaneously.

Analogy. Node tuples can be considered analogous if they are answer sub-
stitutions for the same pattern. Given a substitution, the problem of finding
analogous tuples can be defined as finding a pattern for which this substitution
is an answer substitution along with all other answer substitutions for it. The
more specific the pattern, the stronger the analogy.

For example, the pairs of nodes (2,8), (12,16), (14,9) and (9,11) are
analogous with respect to pattern p4, i.e., in the sense that they are all pairs
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of nodes of type tn5 separated by an intermediate node. However, pattern p5

defines a stronger analogy that only relates the pairs (2,8) and (14,9). In the
case of an asymmetric pattern, it can be interesting to consider the sets of real
nodes assigned to one particular query node in the pattern, in other words, nodes
that take the same role in the analogy.

That is, given a Prolog program and a substitution θ, the task of reasoning by
analogy is to find a pattern p for which θ is an answer substitution as well as
the set S of all answer substitutions for p.

Synonyms. Two structurally distinct patterns are synonyms of one another
if they have the same answer substitutions. Synonyms are also known as re-
descriptions or syntactic variants. Finding synonym patterns and their answer
substitutions can be one way of finding sets of objects of special interest. Fur-
thermore, given two networks with node and edge types from different domains,
finding synonyms can help to establish mappings between these domains.

For instance, the following two patterns are synonyms (albeit only covering a
single node due to the simplicity of the example graph):

s1(X) : − edge(X, Y, te1), edge(X, Z, te1), edge(Y, Z).

s2(X) : − node(X, tn2).

Thus, given a Prolog program, finding synonyms means finding a set of pat-
terns P such that each pattern in P has the same set of answer substitutions.

3.5 Modifying the Knowledge Base

We now turn to a set of techniques that modify the graph, database, or back-
ground knowledge. The key difference to the techniques discussed so far is that
we now allow for loosing information.

Graph Simplification. The goal of graph simplification is to remove redundant
edges from a graph. Here, redundancy is defined with respect to paths: an edge
is considered redundant if all pairs of nodes connected in the original graph are
also connected in the graph after removing the edge. In the purely structural
case, graph simplification thus corresponds to finding a spanning tree; we will
come back to the use of additional quality measures in Section 4.6.

That is, given a Prolog program including a set E of facts representing edges
and a predicate path/2, graph simplification finds a minimal set S ⊆ E such that
the set of answer substitutions for path(X, Y) remains the same when reducing E
to S in the program.

Subgraph Extraction. The aim of subgraph extraction is to find a subgraph
of a given maximal size while retaining as much information as possible with
respect to a given set of examples, that is, answer substitutions for a pattern.
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For instance, given examples path(3,7) and path(3,13) and an upper limit
of 5 edges, our network could be compressed to contain edge(2,3), edge(1,2),
edge(1,9), edge(9,7) and edge(9,13) only.

Thus, given a Prolog program including a set E of facts representing edges, a
constant k and a set T of answer substitutions for pattern p, subgraph extrac-
tion finds a set S ⊆ E of size at most k such that all θ ∈ T are also answer
substitutions for p when reducing E to S in the program.

Abstraction. The task of abstraction is to rewrite the database using new
predicates that abstract away some of the information present in the initial
database. While techniques such as graph simplification and subgraph extraction
also loose information, abstraction differs in that it replaces database predicates
by a new predicate, obtained by computing answers for the pattern defining the
new predicate. For instance, one could replace the predicate arc/3, that is, the
directed, typed edges, using

p(X, Y) : − node(X, T), node(Y, T), T�= tn5, path(X, Y).

that is, edges that correspond to paths between pairs of nodes of the same
type (different from tn5) in the original network. This would result in the new
database

p(3, 7). p(3, 13). p(7, 13). p(4, 5).

p(7, 3). p(13, 3). p(13, 7). p(5, 4).

Abstractions can be created using any technique that identifies patterns and
thus predicate definitions. Instead of adding the definitions of these predicates
to the database, it computes all groundings of the new predicate, adds these to
the database, and deletes the old facts.

Thus, given a Prolog program, a database predicate d and a pattern p, abstrac-
tion adds pθ for all answer substitutions θ for p to the program and deletes the
definition of d.

Predicate Invention. The key idea of predicate invention is to introduce new
patterns that can be used to represent the background knowledge more com-
pactly. For instance, the DUCE system [7] measures compactness using the min-
imum description length principle. As an example, consider the following set of
rules:

q1(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn1).

q2(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn2).

q3(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn3).
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Inventing a predicate dist4(X,Y) allows one to rewrite these definitions more
compactly as

dist4(Z, V) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V).

q1(Z) : − dist4(Z, V), node(V, tn1).

q2(Z) : − dist4(Z, V), node(V, tn2).

q3(Z) : − dist4(Z, V), node(V, tn3).

While this transformation has preserved the meaning of the original fragment,
this need not be the case in general. Similar principles can also be used to
compress graphs by replacing instantiations of a pattern by new nodes [8].

In general, given a Prolog program, the task of predicate invention is to in-
troduce new pattern definitions which are then used to rewrite the program more
compactly.

3.6 Summary

Table 2 summarizes the different reasoning techniques presented in previous
sections. It recapitulates the information provided to and the problem solved by
each of them.

4 Using Probabilistic or Algebraic Labels

So far, we have restricted our discussion to crisply defined networks and logical
theories. However, in both Biomine and ProbLog, the information provided is
uncertain. This uncertainty is expressed by attaching probabilities to edges or
facts, and can be exploited in various ways for reasoning. Furthermore, ProbLog
has recently been generalized to aProbLog [4], where probabilities can be re-
placed by other types of labels, such as costs or distances. In this section, we
first briefly review the probabilistic model underlying Biomine and ProbLog,
and then illustrate how the techniques from Section 3 can benefit from the prob-
abilistic setting. While some of these techniques have already been realized in
Biomine, ProbLog, or other probabilistic frameworks, for others, the details of
such a transfer are still open. Finally, we touch upon the perspectives opened by
aProbLog.

4.1 The Probabilistic Model of Biomine and ProbLog

In the probabilistic graph model underlying Biomine, a value is associated to
each edge, indicating the probability that the relationship exists. In Biomine,
these values are obtained as the product of three factors, indicating the reliability,
the relevance, and the rarity (or specificity) of the information, cf. [2], but they
can be obtained in a different way as well. Existences of the edges are considered
independent from each other. This actually defines a probability distribution over
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Table 2. Summary of the different reasoning methods

Sec. Methods Information Problem

3.1 Deduction pattern, substitution is it an answer substitution?

3.1 Answer Enumeration pattern list all answer substitutions

3.1 Representative Nodes pattern, integer k find k representative nodes

3.1 Spread of Influence recursive pattern, node enumerate nodes by distance

3.2 Abduction pattern find an/all instantiation(s)

3.3 Frequent Patterns frequency threshold list all frequent patterns

3.3 Concept Learning pos./neg. examples find a discriminative pattern

3.3 Generalisation two patterns find a generalized pattern

3.3 Clustering substitutions, integer k find k clustering patterns

3.4 Analogy substitution find a pattern and answer

substitutions

3.4 Synonyms find a set of patterns with

same answer substitutions

3.5 Graph Simplification maximally reduce graph

keeping answer substitu-

tions for path

3.5 Subgraph Extraction examples, integer k reduce graph to size ≤ k re-

specting examples

3.5 Abstraction database predicate, pat-

tern

replace predicate definition

by pattern instances

3.5 Predicate invention reduce program size via new

predicates

possible subnetworks, i.e., deterministic instances of the probabilistic network.
Each subnetwork Ei has probability

P (Ei) =
∏

x∈E\Ei

(1− px)
∏

x∈Ei

px (12)

where E is the set of edges in the probabilistic network, Ei is the set of edges
realised in the deterministic instance and px the existence probability of edge x.
For instance, the network in Figure 6 has probability (starting with the edges
involving node 1) 0.78 · (1− 0.9) · 0.84 · 0.84 · . . . = 1.237e− 06.

In ProbLog, probabilities are associated to ground facts instead of edges, and
again, these facts are considered to correspond to independent random variables.
The directed edges of (1) are now represented as follows:

0. 78 :: arc(1, 2, te1). 0. 50 :: arc(2, 3, te1). 0. 90 :: arc(1, 8, te1).

0. 45 :: arc(8, 9, te2). 0. 61 :: arc(9, 10, te3). 0. 84 :: arc(1, 9, te1).

In analogy to Equation (12), ProbLog thus defines a probability distribution
over instances Ei of a probabilistic database with facts E.
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Fig. 6. A network sampled from the probabilistic graph in Figure 2

One can now ask for the probability of a specific pattern instantiation, which
corresponds to the probability that this subgraph is present in a randomly sam-
pled network. Due to the independence assumption, this probability is obtained
by simply multiplying the probabilities of the instance’s edges. Put differently,
it corresponds to the sum of probabilities of all subnetworks of the probabilis-
tic network that contain the instance. For example, the probability of the in-
stantiation of pattern p4(9,11) presented in Figure 4 is 0.43 · 0.47 = 0.2021.
The probability of its instantiation using node 10 as the middle node instead is
0.61 · 0.50 = 0.305.

The same principle of summing over all relevant subnetworks is also used to
define the probability of a pattern q, called success probability in ProbLog:

Ps(q) =
∑

Ei⊆E:q follows from Ei

P (Ei). (13)

Clearly, directly following this definition to calculate probabilities is infeasible in
any network of realistic size. However, several alternative approaches have been
developed, either based on sampling large numbers of networks or on enumer-
ating pattern instantiations instead of full subnetworks. The latter approach,
followed by ProbLog, requires to address the disjoint-sum-problem, that is, the
fact that more than one instantiation of the same pattern can exist in the same
subnetwork. It is therefore not possible to simply sum the probabilities of all
instantiations, as this would count such subnetworks multiple times. Consider
again the two instantiations of pattern p4(9,11) above. There are many sub-
networks that allow for both instantiations (including the one in Figure 6), and
we thus cannot simply sum these probabilities. Instead, we could split the rel-
evant set of subnetworks into three disjoint parts based on the edges occurring
in the instantiations: (1) all networks including the edges between 9 and 7 and
between 7 and 11, with probability 0.2021, (2) all networks that do not contain
the edge between 7 and 9, but the edges between 9 and 10 and between 10 and
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11, with probability (1 − 0.43) · 0.61 · 0.50 = 0.17385, and (3) all networks in-
cluding edges between 9 and 10, 10 and 11, 7 and 9, but not the one between 7

and 11, with probability 0.61 · 0.50 · 0.43 · (1− 0.47) = 0.0695095. (1) includes all
networks that allow for the first instantiation (regardless of the second), (2) and
(3) those that allow for the second, but not the first. Thus, the total probability
is 0.2021 + 0.17385 + 0.0695095 = 0.4454595.

In practice, ProbLog represents all instantiations of the pattern as a proposi-
tional formula, and then uses advanced data structures to calculate the proba-
bility of this formula; we refer to [9] for the technical details.

While the success probability takes into account all instantiations of a pattern,
it is also possible to approximate it using its most probable instantiation only.

4.2 Probabilistic Deduction

While deduction in the classical sense is concerned with deciding whether a
substitution is an answer substitution for a given pattern in the network, in a
probabilistic setting, it asks for the probability that this is the case, and thus
solves Equation (13).

Answer Enumeration. When considering the set of all answer substitutions
for a pattern, probabilities provide a natural means of ranking these. For in-
stance, each answer substitution for p5(X,Y) corresponds to a single instantia-
tion, that is, two edges linking node 1 to two of its neighbors. The most likely
answer substitutions (omitting symmetric cases for brevity) thus are {X/8,Y/9}
and {X/8,Y/14}, each with probability 0.9·0.84 = 0.756, followed by {X/9,Y/14}
(probability 0.7056), {X/2,Y/8} (0.702), and finally {X/2,Y/9} and {X/2,Y/14}
(0.6552 each).

Non-redundant Set of Representatives. Finding a non-redundant set of
representatives as proposed in [10] consists in solving the representative nodes
problem (cf. Section 3.1) in a probabilistic setting.

Using the path predicate, the aim is to find a set X of k representative nodes
such that the probability that {Y/y} is an answer substitution for path(x,Y)

for some x in X is maximum for each original node y. More formally, the set of
representative nodes is defined as

argmaxX⊂N,|X|=k

∑

y∈N

maxx∈XPpath(x,y)

where Ppath(x,y) is the probability of the best instance of path(x,y), namely the
most probable path between nodes x and y.

Spread of Influence. Instead of using the number of recursive steps or the
size of the instantiation as a measure for the distance, in a probabilistic context,
spread of inference can use the probability that a substitution is an answer
substitution for a pattern. It would thus prefer more distant nodes (in terms of
path length) if their probability of being connected to the source node is higher.
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4.3 Probabilistic Abduction and Top-k Instantiations

In the presence of probabilities, one might not be interested in finding an expla-
nation for a query but rather in finding the most probable one.

In that setting an interesting alternative to the enumeration problem of ab-
duction is the task of finding the k most probable instantiations of a given
pattern.

Note that identifying the k most probable instantiations of a pattern might
return rather uninteresting results if they are all about the same node tuple. In
order to obtain a more diverse set of answers one might look for the k tuples
with most probable instantiations instead (corresponding to deductive answer
enumeration approximating probabilities by those of the most likely instantia-
tions), or even require the tuples to not overlap.

4.4 Patterns and Probabilities

When looking for patterns, probabilities can again provide a natural way to
select between various alternative solutions.

Pattern Mining. Probabilistic local pattern mining in ProbLog [11] extends
pattern mining in multi-relational databases to the probabilistic setting. Instead
of a counting function, it uses a scoring function based on the probabilities
of candidate patterns on given node tuples. It thus basically replaces the 0/1-
membership function of frequent pattern mining with a gradual one based on
probabilities. Probabilities of individual instances are combined using sum (re-
sulting in a kind of probabilistic frequency) or product (resulting in a kind of
likelihood function).

Concept Learning. Concept learning in the context of ProbLog has been
studied in [12], where the relational rule learner FOIL is lifted to work with
probabilistic data and examples.

Generalisation. In a probabilistic setting, generalisation can be used in dif-
ferent contexts and ways. For instance, probabilistic explanation based learning
in ProbLog [13] generalizes an explanation of an example query in terms of
database predicates by replacing constants by variables, thus obtaining a new
pattern definition. Stochastic logic programs, a probabilistic logic language in-
spired on probabilistic grammars, can be learned from examples in the form of
proofs by generalizing pairs of clauses extracted from these examples [14]. In
the latter case, probabilities are associated to clauses, and need to be adapted
during generalisation as well.

Clustering. In the context of clustering, probabilities can express the degree
to which an example belongs to a cluster. One would then no longer require that
node tuples are assigned to single clusters.
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4.5 Combining Induction and Deduction

Analogy. While the generality of a pattern provides a first means to assess the
strength of an analogy, the probabilities of the different groundings additionally
provide a means to rank all node tuples that are analogous with respect to a
certain pattern. For instance, while (2,8), (12,16), (14,9) and (9,11) are
all analogous with respect to pattern p4, the probabilities are much higher for
(2,8) and (14,9) than for the other two pairs. In the context of ProbLog, both
local pattern mining [11] and probabilistic explanation based learning [13] have
been used for reasoning by analogy.

Synonyms. In the context of finding synonyms, probabilities allow for choosing
a subset of candidate synonyms based on the probabilities of the corresponding
answer substitutions, and to thus restrict a possibly large set of synonyms to a
set that is more suitable for manual inspection.

4.6 Modifying the Probabilistic Knowledge Base

Simplification of a Probabilistic Graph. The problem introduced by Toivo-
nen et al [15] consists in simplifying probabilistic networks while maintaining the
connectivity. It refines the task of graph simplification as defined in Section 3.5
by using the probabilities as an additional quality measure.

The aim is to find a minimal database by dropping edges while keeping the
probability of the path predicate for each pair of nodes constant. With the
probability of path(x,y) for a pair of nodes x and y defined as the probability
of the best instantiation, this corresponds to maintaining the best paths between
all pairs of nodes.

This definition might be too strict, as it might not allow for significant reduc-
tions of database size. In a later work [16], the condition is relaxed to maintaining
the overall best path quality as close to the original as possible.

Subgraph Extraction. Various approaches to extract subgraphs with strong
connections among given nodes have been developed in the context of Biomine
and ProbLog [17,18,19,20]. These works all aim at maintaining high probabilities
for connections between selected nodes. In Biomine, connections are typically
defined as paths between pairs of nodes from a given set, while ProbLog the-
ory compression [18] provides them as positive examples in the form of ground
patterns whose definitions are included in the background knowledge. The lat-
ter also takes into account corresponding negative examples by using a score
that encourages high probabilities for positive and low probabilities for negative
examples.

Abstraction. In a probabilistic database or network, abstraction would need to
take into account the probability labels as well. However, simply labeling the new
facts with their probabilities as deduced from the old program may introduce
hidden dependencies between facts that might be undesirable.
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Predicate Invention. When applying predicate invention to a probabilistic
database, the probabilities provide a means to measure the information loss and
balance it against the compactness of the representation obtained. While the un-
derlying probability distributions could be maintained for transformations that
maintain the meaning of the program, how to adapt probabilities for transfor-
mations that generalize the program is an open question.

4.7 Beyond Probabilities

While probability labels provide one way of defining a quality measure on differ-
ent subnetworks or databases, in certain situations, it can be more convenient to
use different types of labels, such as for instance costs, capacities, or numbers of
co-occurrences. For instance, in the context of a transportation network where
edges are labeled with travel times, prices, or the number of available seats, one
could be interested in shortest or cheapest routes, or in routes allowing for the
largest group of passengers traveling together, or even in some criterion balanc-
ing these requirements. In a co-authorship graph where edges are labeled with
the number of joint papers, one could be interested in patterns suggesting strong
collaboration networks.

aProbLog [4] generalizes ProbLog to labels from arbitrary commutative semi-
rings, that is, sets of labels together with two binary operators with certain
characteristics.3 Multiplication is used to define labels of subsets of the database
sets (as done for the semiring of probabilities in Equation (12)), while addition
is used to define labels of queries in terms of these (as done in Equation (13)). In
the case of probabilities, negative literals are naturally labeled with 1−p, where
p is the label of the database facts; in the general case considered in aProbLog,
these labels need to be given explicitly. By replacing summation with maximiza-
tion, one obtains another probabilistic semiring that can be used to obtain most
likely database instances. The examples given above can be formalized in this
framework.

Inference in aProbLog generalizes that in ProbLog, and the framework thus
allows one to explore the tasks discussed in this chapter in the context of different
types of labels on basic relations without the need to redefine the underlying
machinery.

5 Conclusions

We have given an overview of network inference tasks from the perspective of the
Biomine and ProbLog frameworks. These tasks provide information at the node,
subgraph, or pattern level, and they differ in the types of input they assume in
addition to the basic graph, such as training examples or background knowledge.

3 More formally, a commutative semiring is a tuple (A,⊕,⊗, e⊕, e⊗) where addition ⊕
and multiplication ⊗ are associative and commutative binary operations over the
set A, ⊗ distributes over ⊕, e⊕ ∈ A is the neutral element with respect to ⊕,
e⊗ ∈ A that of ⊗, and for all a ∈ A, e⊕ ⊗ a = a ⊗ e⊕ = e⊕.
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They all have been or can be extended to exploit the probabilistic information
present in both frameworks, or other types of labels as supported in aProbLog,
a recent generalization of ProbLog to algebraic labels.
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Heterogeneous information networks or BisoNets, as they are called in the
context of bisociative knowledge discovery, are a flexible and popular form of
representing data in numerous fields. Additionally, such networks can be created
or derived from other types of information using, e.g., the methods given in
Part II of this volume.

This part of the book describes various network algorithms for the exploration
and analysis of BisoNets. Their general goal is to support and partially even
automate the process of bisociation. More specific goals are to allow navigation
of BisoNets by indirect and predicted relationships and by analogy, to produce
explanations for discovered relationships, and to help abstract and summarise
BisoNets for more effective visualisation.

Contributions

In the first chapter of this part, Dries et al. [1] propose BiQL, a novel query lan-
guage for BisoNets. It is motivated by the observation that graph and network
databases have specific needs for query tools, but the tools are much less devel-
oped than for relational data. For instance, a statistic such as the shortest path
between two given nodes cannot be computed by a relational database. BiQL
allows for querying and analyzing databases, especially probabilistic graphs, by
using such aggregates and ranking.

The next three chapters address the problem of simplifying a large BisoNet
and providing a smaller version instead, both to aid visual exploration and to ease
the use of computationally more demanding methods. The first of these chapters,
by Zhou et al. [2], is an overview of existing approaches to this problem.

The next two chapters then propose novel methods for two specific network
abstraction tasks. Zhou et al. [3] provide methods for so called network sim-
plification. There, the goal is to remove least important edges, i.e., those that
have least effect on the quality of connections between any nodes. In this ap-
proach, nodes are left intact. In the chapter on network compression, in turn,
Toivonen et al. [4] obtain a smaller network by merging nodes that have similar
neighbours (or roles) in the network. Such a graph can also be uncompressed
to obtain an approximate copy of the original graph. Both of these abstraction
methods are designed specifically for BisoNets, paying attention to edge weights
and maintaining strengths of (indirect) relations between nodes.

Langohr and Toivonen [5] then introduce a method to identify representative
nodes in BisoNets, also motivated by the need to produce different simple views
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to large networks. They define a probabilistic similarity measure for nodes, and
then apply clustering methods to find groups of nodes. Finally, a representative
(the medoid) is output from each cluster, to obtain a sample of nodes that is
representative for the whole network.

Kötter and Berthold [6] propose a new approach to extract existing concepts,
or to detect missing ones, from a BisoNet by means of concept graph detection.
Extracted concepts can then be used to create a higher level representation of the
data, while discovered missing concepts might lead to new insights by connecting
seemingly unrelated information units.

The final two chapters propose two different approaches to discover similarities
or associations — or bisociations — in BisoNets. Thiel and Berthold [7] propose
a novel way to find non-trivial structural similarities between nodes in a BisoNet.
The basic idea is to compare the neighborhoods of the given nodes, also indirect
neighbors. The clue of the method is to do this by comparing the patterns of
activation spreading from each of the given nodes.

Finally, Nagel et al. [8] address the problem of finding domain bridging asso-
ciations between otherwise weakly connected domains. They propose a method
based purely on structural properties of the connections between entities. It first
identifies domains and then assesses interestingness of connections between these
domains.

Conclusions

The chapters in this part of the book cover a wide range of methods for biso-
ciation network analysis. Many of the methods are directed to making large
BisoNets easier to handle and grasp. Also, a multitude of methods were devel-
oped to measure relationships or similarities between entities in BisoNets, and
to discover interesting relations or concepts.

Automated discovery of actual, useful bisociations seems to be a very diffi-
cult problem. This observation is also supported by the experimental work and
applications that are described in Part V of this book. Instead, it is more use-
ful to offer the user tools and mechanisms that help her explore the data, and
that facilitate her bisociative processes. Part IV below will continue with even
stronger focus on interactive exploration methods for BisoNets.

The applications and evaluations in Part V indicate that the overall bisociative
methodology, including network analysis methods as its key components, has
potential for helping users make genuine discoveries. At the time of writing,
network analysis methods and tools descibed in this part have already been
adopted for regular use by end users.
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Abstract. One of the key steps in data analysis is the exploration of
data. For traditional relational data, this process is facilitated by rela-
tional database management systems and the aggregates and rankings
they can compute. However, for the exploration of graph data, relational
databases may not be most practical and scalable. Many tasks related
to exploration of information networks involve computation and analy-
sis of connections (e.g. paths) between concepts. Traditional relational
databases offer no specific support for performing such tasks. For in-
stance, a statistic such as the shortest path between two given nodes
cannot be computed by a relational database. Surprisingly, tools for
querying graph and network databases are much less well developed than
for relational data, and only recently an increasing number of studies are
devoted to graph or network databases. Our position is that the devel-
opment of such graph databases is important both to make basic graph
mining easier and to prepare data for more complex types of analysis.

In this chapter, we present the BiQL data model for representing and
manipulating information networks. The BiQL data model consists of
two parts: a data model describing objects, link, domains and networks,
and a query language describing basic network manipulations. The main
focus here lies on data preparation and data analysis, and less on data
mining or knowledge discovery tasks directly.

1 Introduction

Information networks are a popular way of representing information. In its most
basic form, such a network can be seen as a set of objects, interconnected by
links. Because of this link structure, these networks are capable of representing
complex information using a simple data model. Information networks can be
found in a wide variety of domains, for example, as social networks, bibliograph-
ical networks, and biological networks such as gene-protein interaction networks
and pathways. Although all these examples seem very different, their analysis
requires many similar operations. For example, determining the influence of a
publication in a citation network is similar to finding the role of a gene in a bio-
logical pathway, finding the well-connected users in a social network corresponds
to finding the important traffic hubs in a road network, and network analysis
algorithms such as PageRank can be applied to different types of networks such

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 147–165, 2012.
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as the world wide web and social networks. Because of this common structure it
seems natural to look for a common infrastructure to deal with these networks.

Currently, different graph databases are available (e.g. DEX [31] and
Neo4j [32]). However, many of these systems focus mainly on low-level aspects
such as data structures and algorithms, instead of higher level concepts such
as providing a simple data model and query language. In this article, we take
a different approach and we focus on developing a data model for information
networks that is suitable for network analysis and data mining. This data model,
called BiQL (or Bison Query Language), aims at providing a powerful set of
operations for manipulating a wide variety of heterogeneous networks. Within
the knowledge discovery process, BiQL mainly focusses on preprocessing, trans-
formation, analysis, and, to a lesser extent, data mining.

In this chapter, we give a general overview of the BiQL system. For a more
in-depth discussion on the query language and its underlying operations we refer
the reader to [19, chapter 6].

2 Motivating Example

Consider the bibliographic network shown in Figure 1. This network contains
authors, publications, keywords, citations, authorship and keyword relations.

Such a network can be used and analyzed in many ways. For example, one
could be interested in doing co-authorship analysis. In that case the ‘publication’
nodes are considered to be edges between ‘authors’ and the network can be
represented as shown in Figure 2. The co-author relationship can be expressed
using regular edges (Figure 2a) or using hyperedges (Figure 2b).

Alternatively, one may be interested in analyzing publications for each do-
main separately by splitting up the network into a set of networks, one for each
keyword, as can be seen in Figure 3.

Many more cases can be imagined, for example, citation analysis between
publications, authors, or even keyword domains. In order to be able to perform all
these tasks, we need a data representation and query language that are capable
of representing, manipulating and transforming information networks. Moreover,
we also want to analyse such networks, that is, calculate aggregate measures,
apply ranking functions, and store the results back in the network for future
querying. In general, we can identify a number of key tasks that a network
management system should support:

1. Introduce new relationships in the network, for example, create a ‘co-author’
relationship between authors that have published a paper together, or create
a citation relation between authors based on the citation relation between
publications.

2. Find connections between objects, for example, find co-citations between au-
thors, that is, author A cites author B and author B cites author A (possibly
indirectly).
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Author A

Author C

Author B

Pub 3

Pub 2

Pub 7
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Pub 6

Pub 5

Data 
Streams

Information 
Networks

Data Mining

Databases

Author D

Pub 1
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author of

has keyword

person

publication

keyword

Fig. 1. Bibliographic network containing the entities ‘authors’, ‘publications’ and ‘key-
words’, and the ‘author of’, ‘has keyword’, and ‘cites’ relationships

3. Find the transitive closure of a relation, for example, find the influence graph
of a publication based on citations, or the co-author neighbourhood of an
author.

4. Rank results, for example, find the authors with the most co-authors, or with
the largest co-author network.

Author A

Author C

Author B

Author D

co-author of

(a) Using regular edges

Author A

Author C

Author B

Author D

co-author of
(hyperedge)

(b) Using hyperedges

Fig. 2. Network from Figure 1 transformed for co-authorship analysis
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Fig. 3. Network from Figure 1 separated by keyword

5. Calculate network analysis metrics, for example, centrality of an author in
the co-author network.

6. Introduce weights and probabilities, and use them in probabilistic queries.
7. Discover bisociations or other non-obvious connections, for example, by com-

paring different distance measures.
8. Apply external algorithms on the network, for example, for finding quasi-

cliques [42].

Our goal is to support all these tasks.

3 Requirements

The main motivation and target application for our data model and query lan-
guage is supporting exploratory data analysis on networked data, which means
our system is intended to be part of the knowledge discovery process. This results
in the following requirements and design choices.
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Small is beautiful. The data model should consist of a small number of concepts
and primitives. As a consequence, we do not wish to introduce special language
constructs to deal with complicated types of networks (directed, undirected,
labeled, hypergraphs, etc.) or sets of graphs.

Uniform representation of nodes and edges. The most immediate consequence of
the former choice is that we wish edges and nodes to be represented in a uniform
way. We will do this by representing both edges and nodes as objects that are
linked together by links that have no specific semantics. This also allows one to
generate different views on a network. For instance, in a bibliographic database,
we may have objects such as papers, authors and citations. In one context one
could analyze the co-author relationship, in which case the authors are viewed
as nodes and the papers as edges, while in another context, one could be more
interested in citation-analysis, in which case the papers are the nodes and the
citations the edges.

Closure property. The result of any operation or query can be used as the starting
point for further queries and operations. The information created by a query
combined with the original database can therefore be queried again.

SQL-based. There are many possible languages that could be taken as starting
point, such as SQL, relational algebra or Datalog. We aimed for a data model
on which multiple equivalent ways to represent queries can be envisioned. The
queries that we propose on this model are expressed in an SQL-like notation
here, as this notation is more familiar to many users of databases, and is the
prime example of a declarative query language.

Aggregates. To support a basic analysis of graphs, we need to be able to calculate
statistics such as

– the degree of nodes;
– the number of nodes reachable from a certain node (connected component

size);
– the length of a shortest path between two nodes;
– the length of the longest shortest path from one node to all other nodes

(closeness centrality);
– the sum or product of weights on edges on paths.

These statistics are not only useful when obtaining an initial insight in data. It is
also important that these statistics can be attached to the newly created graph
(representing another context). For instance, in simple random walk models
the probability of going from one node to another node may be determined by the
degrees of the nodes involved. These probabilities can be seen as attributes of the
edges; ideally, a database query would be sufficient to put these probabilities in a
graph. The closure property entails that we can also run queries on the attributes
generated in this way. One such type of query could be a probabilistic query,
which calculates new probabilities from probabilities present in the network.
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Ranking. Once an aggregate is computed, it can be desirable to rank results
on aggregate values; for instance, one may not be interested in the centrality
of all nodes, but only in the nodes that are most central. A database system
should support such ranking queries and ideally be optimized to answer them
more efficiently than by post-processing a sorted list of all results.

In the following two sections, we translate these requirements into a specifi-
cation for a data representation and a data manipulation language.

4 Data Representation

An important choice for any data management system is the representation of
the data it operates on. For example, in Codd’s relational database model [16],
data is represented as sets of tuples. The challenge is to find a data model
that is capable of storing any kind of information network, and that fulfils the
requirements described in the previous section.

In its most basic form, an information network is a collection of objects with
links between them. It is therefore natural to use objects and links as the basic
building blocks for a network representation. However, as we have seen in the
examples of the previous section, it is not always clear which concepts to con-
sider as objects, and which as links. For example, is a publication an object, or a
link between (co-)authors? Usually, the answer to this question depends on the
application at hand. However, BiQL is intended as an application-independent
data management system. This means that the data should be modelled in the
most general way, and the term “object” should be taken as broad as possible.
Intuitively, we define it as any entity that has meaning in reality, or, less ab-
stractly, as any entity that can have additional properties or roles assigned to
it. Following this guideline, we only allow features on objects. That is, links are
modelled as nothing more than ordered pairs of object identifiers, and they only
express that two objects are connected.

Hence, the main choice that we have made is, in a sense, that also edges are
represented as objects. An edge object is linked to the nodes it connects. Even
though this may not seem intuitive, or could seem a bloated representation, the
advantages of this choice outweigh the disadvantages because:

– by treating both edges and nodes as objects, we obtain simplicity and uni-
formity in dealing with attributes;

– it is straightforward to treat (hyper)edges as nodes (or vice versa);
– it is straightforward to link two edges, for instance, when one wishes to

express a similarity relationship between two edges.

In this way, the data representation fulfills the requirements of simplicity, uni-
formity between nodes and edges, and flexibility.

However, not all objects in the network have the same meaning or role. In the
bibliographic network, we had objects that represented authors, publications,
citations, etc. In our data model, we use domains to indicate these categories
of objects. Such a domain is a named set of objects. Objects can belong to any
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number of domains, for example, an ‘author’ in the bibliographic network can
also be a ‘person’, or an ‘employee’, at the same time.

Apart from domain membership, each object can have an arbitrary set of
features described by a list of name-value pairs.

5 Basic Data Manipulation

Now that we have a basic understanding of how the data is organized in the
database, we can focus on manipulating this information. In this section, we give
a general overview of BiQL’s query language. For a more in-depth discussion on
the query language and its underlying operations we refer the reader to [19,
chapter 6].

The primary goal of BiQL is to manipulate a network by querying, analyzing,
and modifying its objects and links. The main operations offered by the query
language are

– adding an existing object to a new domain,
– adding links and attributes to an existing object,
– creating new objects (with links and attributes) and adding them to a new

domain.

Each of these tasks can be specified as an CREATE/UPDATE query of the
following form.

CREATE/UPDATE "domain name" <"variables"> {"object properties"}

FROM "selection from domains"

WHERE "predicate on attributes of objects"

LIMIT "k" ON "sorting criteria"

For example, the query

UPDATE Pubs2010<p>

FROM Publ p

WHERE p.year = 2010

creates a new domain Pubs2010 that contains all articles published in 2010. The
UPDATE keyword indicates that existing objects are used instead of newly created
ones. This means that all existing features for the objects are preserved (unless
they are overwritten by an object property definition in the query).

In general, a query in BiQL consists of the following statements:

The FROM statement defines the structural component of the query and intro-
duces variables that can be used in the other statements.

The WHERE statement defines constraints on these variables based on the fea-
tures of the objects.

The CREATE/UPDATE statement describes the output of the query, that is, how
objects should be created or updated based on the retrieved information, and
where they should be stored.

The LIMIT statement allows for ranking the results of a query and returning
only the top k results.
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FROM statement. The primary function of the FROM statement is to define a graph
pattern that must be matched in the network. Within this pattern, variables are
defined that can be used in the other parts of the query. In a sense, this statement
has the same role as SQL’s FROM statement, that is, determining which sources
of information to use, and how these sources are related. In BiQL, the FROM

statement consists of a list of path expressions, where each path expression
consists of an alternating sequence of object definitions and link expressions
indicating how the objects are connected. For example, a co-authorship relation
in the publication network can be expressed as the following sequence of objects
and links.

Author a -> AuthorOf -> Publ p <- AuthorOf <- Author b

Every object is described by a domain it belongs to (e.g. Author), and, optionally,
a variable name (e.g. a). The arrows between the objects indicate the direction of
the links between them. A path expression by itself can only express a sequence.
However, the FROM statement can contain multiple path expressions that can
be connected by references. For example, if we are interested in co-authorship
within certain topics, we can include the domain ‘Keyword’ in the graph pattern
by using the path expression

#p -> HasKeyword -> Keyword k

where #p is a reference to the variable p in the previous expression. This pattern
is shown in Figure 4. Variable references can also be used to point to variables
defined in the same path expression, for example, for expressing cycles.

A BP

K

Fig. 4. Example of a graph pattern

Many problems in network analysis are based on finding paths of arbitrary
length. To express such paths, we use regular expression operators. For example,
the path expression

Node (-> Edge -> Node)* -> Edge -> Node

defines a path as an alternating sequence of nodes and edges of arbitrary length.
To specify constraints on this path we can use list variables. These variables
capture a sequence of objects instead of a single object. For example, we can use
this to restrict the length of a path as shown in the following example.
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FROM Node (-> Edge [e] -> Node)* -> Edge [e] -> Node

WHERE length(e) <= 4

The list aggregate length counts the number of objects assigned to the
variable e.

WHERE statement. The FROM statement generates a set of tuples corresponding
to the possible assignments of objects in the network to the variables defined
in the path expressions. The WHERE statement of the query can impose further
constraints on this set of tuples based on the features of the resulting objects.
For example, given the path expressions above, one can express the constraints

WHERE p.year = 2009 AND k.keyword = ’Data Mining’

to find only publications from 2009 in the field of data mining. This statement
is equivalent to the WHERE/HAVING statements of SQL.

CREATE/UPDATE statement. The previous operations produce a set of tuples.
However, the final result of the query should fit into BiQL’s data representation
model. This means that this set of tuples should be transformed into a set of
objects, links and domains. This transformation is defined in the CREATE/UPDATE
statement, which is written as

CREATE/UPDATE DomainName<Var1,Var2,...> {<object properties>}.

A key part of this statement is the partition operation <Var1,Var2,...>, which
splits the set of tuples and creates a separate partition for each distinct combi-
nation of the variables Var1 ,Var2 , .... The final results of the query will contain
a separate object for each of these partitions. The features and links of this
object are described by the object properties. After construction, the set of ob-
jects is stored in the domain with the given name. This partition operation is
comparable to the GROUP BY statement in SQL.

For example, if we want to define the co-author relationship, we can use the
following query.

CREATE CoAuthor<a,b> { a ->, -> b, strength: count<p> }

FROM Author a -> AuthorOf -> Publ p <- AuthorOf <- Author b

WHERE a != b

This query creates a new object for each pair of authors a and b that have pub-
lished at least one article together, that is, for whom the path expression can be
mapped onto part of the network. The object properties specify that this new
object is linked to both authors and that it contains an attribute strength in-
dicating the number of articles the authors have co-written. The created objects
are added to the new domain CoAuthor.

The partition operator is also used in the calculation of aggregate functions,
for example, the function count<p> counts the number of distinct p, that is, the
number of partitions <p> creates. Other aggregates include sum<...>(expr),
min<...>(expr), max<...>(expr), etc.
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LIMIT statement. Apart from feature-based selection, BiQL also supports rank-
based selection through the LIMIT statement.

LIMIT k BY criteria

For example, we can select the three strongest co-authorship relationships using
the statement

LIMIT 3 BY count<p> DESC

where DESC indicates a descending sort order. This statement is a global limit
statement, that is, it is used to reduce the number of objects returned by the
query. The operation of this statement is comparable to the ORDER BY statement
in SQL, combined with a statement for selecting the top-k results (e.g. FETCH
FIRST in SQL.2008 [25]).

In this section, we provided a limited overview of the features present in the
BiQL query language. For an extensive description of this query language and
its operational model, we refer the reader to [19, chapter 6].

6 Illustrative Examples

In Section 2, we introduced a list of key tasks that we want to support in BiQL.
We now revisit this list to evaluate BiQL’s capabilities. Unless stated otherwise,
each of these queries can be evaluated using the prototype implementation on
the ILPnet2 publication database. This database is structurally similar to the
network shown in Figure 1.

1. Introduce new relationships in the network. Throughout this chapter, we have
repeatedly used the co-author relationship as an example of a new relationship.
Here, we express this relationship as a connection between authors that have
more than one publication in common.

CREATE CoAuthor<a,b> { a->, b<-, strength: count<p> }

FROM Author a -> AuthorOf -> Publ p <- AuthorOf <- Author b

WHERE count<p> > 1 AND a != b

Another example introduces the ‘InArea’ relation, which expresses whether an
author has published a paper within a certain research area (indicated by a
‘Keyword’).

CREATE InArea<a,k> { a->, k<-, weight: count<pk>/count<p> }

FROM Author a -> AuthorOf -> Publ pk -> HasKeyword -> Keyword k,

#a -> AuthorOf -> Publ p

The attribute ‘weight’ indicates the fraction of the author’s publications that
contain this keyword.
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2. Find connections between objects. Using the ‘InArea’ and ‘CoAuthor’ rela-
tions, we can express how far an author is removed from any given research
area.

CREATE RelatedToArea<a,k>{ a->, k<-, distance: min<b>(length(b))}

FROM Author a (-> CoAuthor -> Author [b])* -> InArea -> Keyword k

The expression min<b>(length(b) computes the length of the shortest path (i.e.
the number of intermediate authors) from a specific author to a specific keyword.

3. Find the transitive closure of a relation. The previous query already used
the transitive closure of the ‘CoAuthor’ relation to find a relationship between
authors and research areas. We can also use such a relationship to determine the
size of the neighborhood of an author.

UPDATE <a> { a->, b<-, networksize: count<b> }

FROM Author a (-> CoAuthor [co] -> Author)*

-> CoAuthor [co] -> Author b

WHERE length(co) < 4

4. Rank results. Often we are interested in finding the top-k results according
to some criteria. For example, we might be interested in the top 3 authors with
most co-authors.

SELECT1 <a>

FROM Author a -> CoAuthor co

LIMIT 3 BY count<co> DESC

We can also find the authors with the largest network of co-authors up to a
certain distance.

SELECT <a> { network_size: count<b> }

FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b

WHERE length(co) < 4

LIMIT 3 BY count<b> DESC

5. Calculate network analysis metrics. Another interesting task is calculating
network analysis metrics such as centrality measures. Perhaps the simplest cen-
trality measure is degree centrality which calculates, for a given node v, the
fraction of all nodes that v is connected to. In BiQL, this measure can be calcu-
lated, for all authors simultaneously, using the following query.

UPDATE <a> { Cdegree: count<b>/(count<n> - 1)}

FROM Author a -- CoAuthor -- Author b, Author n

1 In our prototype implementation, a SELECT query can be used to output a list of re-
sults without causing changes to the database.
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Another common centrality measure is closeness centrality, which involves de-
termining the length of the shortest path to all other nodes in the network.
First let us define the notion of shortest path between two authors using the
co-authorship relation.

CREATE ShortestPath<a,b>{ a->, b<-, len: min<co>(length(co))}

FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b

WHERE a != b

This query creates for each pair of (connected) authors a and b an object with as
attribute the length of a shortest path between them. Using these new objects,
we can easily calculate the closeness centrality as follows.

UPDATE <a>{ Cclose: 1/sum<b>(min2<sp>(sp.len))}

FROM Author a -> ShortestPath sp -> Author b

Another type of centrality measure is the betweenness centrality. This measure
expresses the importance of a node based on its occurrence on the shortest paths
in the network. In BiQL this measure can be expressed using the following two
queries. The first query computes the length of the shortest path between each
pair of authors and calculates how many paths of this length there are.3

CREATE ShortestPathCount<a,b> { a ->, b <-,

count: count<co>, length: min<co>(length(co)) }

FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b

LIMIT 1 KEYS ON length(co) ASC

The second query uses this information to calculate the betweenness centrality
of a node v as a fraction of shortest paths in the network that contain v.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }

FROM Author s -> ShortestPathCount sv -> Author v ->

ShortestPathCount vt -> Author t,

#s -> ShortestPathCount st -> #t

WHERE st.length = sv.length + vt.length

AND s != t AND s != v AND t != v

This query uses the calculation approach for betweenness centrality described in
[3, section 3].

2 Given the definition of ShortestPath we expect the variable sp to be uniquely
identified when a and b are fixed (i.e. there is only one shortest path length be-
tween two given nodes). However, BiQL currently does not support such type of
constraint reasoning across queries. This is why we need the additional aggrega-
tion min<sp> even though there is only one value for sp.len in this context.

3 For clarity, we omitted the extra aggregation operations on the variables sv, vt and
st as described in the previous footnote.
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6. Introduce weights and probabilities. Another important aspect of BiQL is
its ability to deal with probabilistic networks. To illustrate this, we first need to
introduce probabilities in our network. For this we assume that the information in
the network is very unreliable by stating that for each publication in the network
there is only 10% probability that it actually exists. Under this assumption we
can attach a probability to each co-author connection using the following query.

UPDATE <co>{ prob: 1-(0.9^co.strength) }

FROM CoAuthor co

We can now calculate for each pair of authors the probability that they are
connected using the probabilistic aggregate problog connect.

CREATE ProbConnect<a,b>{a->, b<-, prob: problog connect(co.prob)}

FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b

WHERE a != b

The problog connect aggregate uses ProbLog’s [18] approach to calculate the
connection probability between each pair of nodes in the network.

7. Discover bisociations. We can use this domain in combination with the short-
est path to find authors that are very likely connected, but that are relatively
far apart in the co-author network.

SELECT <a,b,pc,sp>{nameA: a.name, nameB: b.name,

prob: pc.prob, dist: sp.length }

FROM Author a -> ProbConnect pc -> Author b,

#a -> ShortestPath sp -> #b

WHERE sp.length > 2

LIMIT 3 BY pc.prob DESC

Another example of bisociative discovery consists of finding bridging nodes be-
tween different domains. In Example 5 we described betweenness centrality. If
we modify the second part of that query we can express the interdomain be-
tweenness centrality as the occurrence of a node on the shortest paths between
concepts in different domains.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }

FROM DomainA s -> ShortestPathCount sv -> DomainC v ->

ShortestPathCount vt -> DomainB t,

#s -> ShortestPathCount st -> #t

WHERE st.length = sv.length + vt.length

AND s != t AND s != v AND t != v

8. Apply external algorithms on the network. In the final task of section 2, we
want to apply external algorithms on the networks in BiQL. Unfortunately, there
are still many open questions on how this integration should work in practice.
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However, instead of providing integration of external tools within BiQL, we have
integrated BiQL in the data analysis integration platform KNIME [4]. Through
this platform, networks can be passed from BiQL to external algorithms and
back, allowing BiQL to be used as part of a broader knowledge discovery process.

7 Related Work

7.1 Knowledge Discovery

Graph mining. Graph mining aims at extending the field of pattern mining
towards graphs. Most graph mining techniques work in the transactional setting,
that is, on data consisting of sets of graphs. As in item set mining, the focus lies
on finding subgraphs that, for example, occur frequently in such a set [33,41,24].
However, many other interestingness measures have been translated towards
graph patterns (e.g. correlated patterns [8,15]), and new graph-specific measures
have been introduced (e.g. for finding quasi-cliques [42]). Several techniques have
been developed that target subsets of graph representations, such as sequences or
trees [39]. Recently, there has been increasing interest in applying graph mining
techniques to the network setting, that is, to a single graph [10,9,26].

Network analysis. Network analysis is concerned with analyzing the properties of
networks, by use of graph theoretical concepts such as node degrees and paths [6].
The primary tool in network analysis are measures such as centrality [36], and
specialized algorithms for calculating them efficiently have been developed (e.g.
[5]). This field has also gained a lot of interest in domains outside computer
science, for example, in social sciences (social network analysis) [40].

Another part of network analysis focusses on the spread of information in a
network. This can be used to determine the importance of, for example, web
pages on the World Wide Web [7], or to analyze the transmission of infectious
diseases [38].

7.2 Databases

General-purpose database systems. The best-known general purpose database
systems are based on Codd’s relational data model [16]. Many of these database
systems (e.g. Oracle Database, Microsoft SQL Server, MySQL, PostgresQL) use
(a variant of) ISO SQL [25] as the query language of choice. Datalog [13] is an
alternative query language that is based on first order logic. Syntactically, it is
a subset of Prolog restricted as to make efficient query answering possible.

A more recent development is that of object-oriented database systems and
query languages such as OQL (Object Query Language) [12]. These systems use
objects instead of tuples, and they allow for nested objects. Part of the OQL
standard focusses on a tight integration with object-oriented languages such as
Java and C++. However, due to the overall complexity of object databases, there
are few systems that fully support the OQL standard.
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Recently, there is a increasing interest in so-called NoSQL databases. These
database systems focus on applications that require extremely large databases.
Such databases typically use non-relational representations specialized for spe-
cific applications, such as Google’s BigTable [14] or Facebook’s Cassandra [11].
Current graph databases such as Dex [31] and Neo4J [32] also fall under this
category, and arguably BiQL does as well.

Graph query languages. A number of query languages for graph databases have
been proposed, many of which have been described in a recent survey [2]. How-
ever, none of these languages was designed for supporting the knowledge dis-
covery process and each language satisfies at most a few of the requirements
mentioned in Section 3. For instance, GraphDB [20] and GOQL [37] are based
on an object-oriented approach, with provisions for specific types of objects for
use in networks such as nodes, edges and paths. This corresponds to a more struc-
tured data model that does not uniformly represent nodes and edges. In addition,
these languages target other applications: GraphDB has a strong focus on rep-
resenting spatially embedded networks such as highway systems or power lines,
while GOQL [37], which extends the Object Query Language (OQL), is meant
for querying and traversing paths in small multimedia presentation graphs. Both
languages devote a lot of attention to querying and manipulating paths: for ex-
ample, GraphDB supports regular expressions and path rewriting operations.

GraphQL [22] provides a query language that is based on formal languages
for strings. It provides an easy, yet powerful way of specifying graph patterns
based on graph structure and node and edge attributes. In this model graphs are
the basic unit and graph specific optimizations for graph structure queries are
proposed. The main objective of this language is to be general and to work well
on both large sets of small graphs as well as small sets of large graphs. However,
extending existing graphs is not possible in this language; flexible contexts are
not supported.

PQL [27] is an SQL-based query language focussed on dealing with querying
biological pathway data. It is mainly focussed on finding paths in these graphs
and it provides a special path expression syntax to this end. The expressivity
of this language is, however, limited and it has no support for complex graph
operations.

GOOD [21] was one of the first systems that used graphs as its underlying
representation. Its main focus was on the development of a database system that
could be used in a graphical interface. To this end it defines a graphical trans-
formation language, which provides limited support for graph pattern queries.
This system forms the basis of a large group of other graph-oriented object data
models such as Gram [1] and GDM [23].

Hypernode [29] uses a representation based on hypernodes, which make it
possible to embed graphs as nodes in other graphs. This recursive nature makes
them very well suited for representing arbitrarily complex objects, for exam-
ple as underlying structure of an object database. However, the data model is
significantly different from a traditional network structure, which makes it less
suitable for modeling information networks as encountered in data mining.



162 A. Dries, S. Nijssen, L. De Raedt

A similar, but slightly less powerful representation based on hypergraphs is
used in GROOVY [30]. This system is primarily intended as an object-oriented
data model using hypergraphs as its formal model. It has no support for graph
specific queries and operations.

More recently, approaches based on XML and RDF are being developed, such
as SPARQL [34]. They use a semi-structured data model to query graph networks
in heterogenous web environments; support for creating new nodes and flexible
contexts is not provided.

While most of the systems discussed here use a graph-based data model and
are capable of representing complex forms of information, none of them uses a
uniform representation of edges and nodes (and its resulting flexible contexts),
nor supports advanced aggregates.

Graph databases. Whereas the previous studies propose declarative query lan-
guages, recently several storage systems have been proposed that do not pro-
vide a declarative query language. Notable examples here are Neo4J [32] and
DEX [31], which provide Java interfaces to graphs persistently stored on disk.
For Neo4J an alternative programming language called Gremlin is under devel-
opment [35].

Graph libraries. Finally, in some communities, Java or C++ libraries are used
for manipulating graphs in the memory of the computer (as opposed to the above
graph databases which support typical database concepts such as transactions).
Examples are SNAP [28] and igraph [17].

8 Conclusions

In this article, we gave an introduction to BiQL, a novel system for repre-
senting, querying and analyzing information networks. The key features of this
system are:

– It uses a simple, yet powerful representation model. Using only objects (with
attributes), links (as pairs of objects), and domains (as named sets of ob-
jects), it is capable of representing a wide variety of network types, such as
labelled graphs, directed hypergraphs, and even sets of graphs.

– Its query language is declarative. This means that the queries only describe
what the results should be, but not how they should be obtained. This makes
the language more accessible to the average user.

– Its query language uses a powerful mechanism for expressing graph patterns
based on regular expressions. This makes it possible to, for example, express
paths of arbitrary length.

– Its query language allows for the use of nested aggregates with a syntax
that closely resembles mathematical notation. These aggregates allow the
user to perform all kinds of analysis tasks, such as calculating distances and
centrality measures.
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– Its query language provides a powerful mechanism for object creation, which
makes it possible to return structured output from a query. However, the
result of a query always produces a new network that can be queried again.

– The system itself is developed from a knowledge discovery perspective. It
focusses on providing specific support for knowledge discovery operations
such as network analysis, ranking, and tool integration.

In this chapter, we focussed on defining a data model and the syntax and se-
mantics of the corresponding query language. In future work, the main challenge
is to develop a query optimization model that would form the basis of a scalable
implementation of the BiQL system.
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Abstract. BisoNets represent relations of information items as net-
works. The goal of BisoNet abstraction is to transform a large BisoNet
into a smaller one which is simpler and easier to use, although some in-
formation may be lost in the abstraction process. An abstracted BisoNet
can help users to see the structure of a large BisoNet, or understand
connections between distant nodes, or discover hidden knowledge. In
this paper we review different approaches and techniques to abstract a
large BisoNet. We classify the approaches into two groups: preference-
free methods and preference-dependent methods.

1 Introduction

Bisociative information networks (BisoNets) [2] are a representation for many
kinds of relational data. The BisoNet model is a labeled and weighted graph G =
(V,E). For instance, in a BisoNet describing biological information, elements
of the vertex set V are biological entities, such as genes, proteins, articles, or
biological processes. Connections between vertexes are represented by edges E,
which have types such as “codes for”, “interacts with”, or “is homologous to”,
and have weights to show how strong they are.

BisoNets are often large. One example is Biomine1. It currently consists of
about 1 million vertices and 10 million edges, so that it is difficult for users to
directly visualize and explore it. One solution is to present to a user an abstract
view of a BisoNet. We call this BisoNet abstraction.

The goal of BisoNet abstraction is to transform a large BisoNet into one that
is simpler and therefore easier to use, even though some information is lost in
the abstraction process. An abstracted view can help users see the structure
of a large BisoNet, or understand connections between distant nodes, or even
discover new knowledge difficult to see in a large BisoNet. This chapter is a
literature review of applicable approaches to BisoNet abstraction.

An abstracted BisoNet can be obtained through different approaches. For
example, a BisoNet can be simplified by removing irrelevant nodes or edges.

� This chapter is a modified version of article “Review of Network Abstraction Tech-
niques” in Workshop on Explorative Analytics of Information Networks, Sep 2009,
Bled, Slovenia [1].

1 http://biomine.cs.helsinki.fi/

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 166–178, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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Another example is that a BisoNet can be divided into several components, or
some parts of a BisoNet can be replaced by general structures. Furthermore,
user preference can be considered during abstraction. For instance, a user can
specify which parts of a BisoNet should retain more details.

Structure of the review. Although this chapter reviews potential techniques with
the goal to abstract large BisoNets, the techniques present here are also applica-
ble to general networks. In the rest of this chapter, we therefore use the general
term “network” instead of “BisoNet”. We first review methods which do not take
user preference into account in Section 2, and then review methods in which a
user can specify preference in Section 3. We conclude in Section 4.

2 Preference-Free Methods

In this section, we discuss network abstraction methods where the user has no
control over how specific parts of the graph are handled (but there may be
numerous other parameters for the user to set).

2.1 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) [3, 4] only contains edges whose two
endpoints are relatively close: by definition, nodes a and b are connected by an
edge if and only if there is no third node c which is closer to both endpoints a and
b than a and b are to each other. RNG has originally been defined for points,
but it can also be used to prune edges between nodes a and b that do have
a shared close neighbor c. The relative neighborhood graph then is a superset
of the Minimum Spanning Tree (MST) and a subset of Delaunay Triangulation
(DT). According to Toussaint [3], RNG can in most cases capture a perceptually
more significant subgraph than MST and DT.

2.2 Node Centrality

The field of social network analysis has produced several methods to measure the
importance or centrality of nodes [5–8]. Typical definitions of node importance
are the following.

1. Degree centrality simply means that nodes with more edges are more central.

2. Betweenness centrality [9–11] measures how influential a node is in connect-
ing pairs of nodes. A node’s betweenness is the number of times the node
appears on the paths between all other nodes. It can be computed for shortest
paths or for all paths [12]. Computation of a node’s betweenness involves all
paths between all pairs of nodes of a graph. This leads to high computational
costs for large networks.
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3. Closeness centrality [13] is defined as the sum of graph-theoretic distances
from a given node to all others in the network. The distance can be defined as
mean geodesic distance, or as the reciprocal of the sum of geodesic distances.
Computation of a node’s closeness also involves all paths between all pairs
of nodes, leading to a high complexity.

4. Feedback centrality of a vertex is defined recursively by the centrality of its
adjacent vertices.

5. Eigenvector centrality has also been proposed [14].

Node centrality measures focus on selecting important nodes, not on selecting
a subgraph (of a very small number of separate components). Obviously, cen-
trality measures can be used to identify least important nodes to be pruned.
For large input networks and small output networks, however, the result of such
straightforward pruning would often consist of individual, unconnected nodes,
not an abstract network in the intended sense.

Methods in the following subsections (2.3 and 2.4) are similar in this sense:
they help to rank nodes individually based on their importance, but do not as
such produce (connected) subgraphs.

2.3 PageRank and HITS

In Web graph analysis, PageRank algorithm [15, 16] is proposed to find the
most important web pages according to the web’s link structure. The process
can be understood as the probability of a random walk on a directed graph; the
quality of each page depends on the number and quality of all pages that link
to it. It emphasizes highly linked pages and their links. A closely related link
analysis method is HITS (Hyperlink-Induced Topic Search) [17, 18], which also
aims to discover web pages of importance. Unlike PageRank, it has two values
for each page, and is processed on a small subset of pages, not the whole web.
Haveliwala [19] discusses the relative benefits of PageRank and HITS.

In their basic forms, both PageRank and HITS value a node just according
to the graph topology. An open question is to add edge weights to them.

2.4 Birnbaum’s Component Importance

Birnbaum importance [20] is defined on (Bernoulli) random graphs where edge
weights are probabilities of the existence of the edge. The Birnbaum importance
of an edge depends directly on the overall effect of the existence of the edge. An
edge whose removal has a large effect on the probability of other nodes to be
connected, has a high importance. The importance of a node can be defined in
terms of the total importance of its edges. This concept has been extended for
two edges by Hong and Lei [21].

2.5 Graph Partitioning

Inside a network, there often are clusters of nodes (called communities in social
networks), within which connections are stronger, while connections between
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clusters are weaker and less frequent. In such a situation, a useful abstraction is
to divide the network into clusters and present each one of them separately to
the user.

A prevalent class of approaches to dividing a network into small parts is based
on graph partitioning [22, 23]. The basic goal is to divide the nodes into subsets
of roughly equal size and minimize the sum of weights of edges crossing different
subsets. This problem is NP-complete. However, many algorithms have been
proposed to find a reasonably good partition.

Popular graph partitioning techniques include spectral bisection methods
[24, 25] and geometric methods [26, 27]. While they are quite elegant, they
have some downsides. Spectral bisection in its standard form is computation-
ally expensive for very large networks. The geometric methods in turn require
coordinates of vertices of the graph.

Another approach is multilevel graph partitioning [28, 29]. It first collapses
sets of nodes and edges to obtain a smaller graph and partitions the small graph,
and then refines the partitioning while projecting the smaller graph back to
the original graph. The multilevel method combines a global view with local
optimization to reduce cut sizes.

An issue with many of these partitioning methods is that they only bisect net-
works [30]. Good results are not guaranteed by repeating bisections when more
than two subgroups are needed. For example, if the graph essentially has three
subgroups, there is no guarantee that these three subgroups can be discovered
by finding the best division into two and then dividing one of them again.

Other methods take a rough partitioning as input. A classical representative is
Kernighan-Lin (K-L) algorithm [31]. It iteratively looks for a subset of vertices,
from each part of the given graph, so that swapping them will lead to a partition
with smaller edge-cut. It does not create partitions but rather improves them.
The first (very!) rough partitioning can be obtained by randomly partitioning
the set of nodes. A weakness of the The K-L method is that it only has a
local view of the problem. Various modifications of K-L algorithm have been
proposed [32, 33], one of them dealing with an arbitrary number of parts [32].

2.6 Hierarchical Clustering

Another popular technique to divide networks is hierarchical clustering [34]. It
computes similarities (or distances) between nodes, for which typical choices
include Euclidean distance and Pearson correlation (of neighborhood vectors),
as well as the count of edge-independent or vertex-independent paths between
nodes.

Hierarchical clustering is well-known for its incremental approach. Algorithms
for hierarchical clustering fall into agglomerative or divisive class. In an agglom-
erative process, each vertex is initially taken as an individual group, then the
closest pair of groups is iteratively merged until a single group is constructed or
some qualification is met. Newman [35] indicates that agglomerative processes
frequently fail to detect correct subgroups, and it has tendency to find only the
cores of clusters. The divisive process iteratively removes edges between the least
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similar vertices, thus it is totally the opposite of an agglomerative method. Ob-
viously, other clustering methods can be applied on nodes (or edges) as well to
partition a graph.

2.7 Edge Betweenness

One approach to find a partitioning is through removing edges. This is similar to
the divisive hierarchical clustering, and is based on the principle that the edges
which connect communities usually have high betweenness [36]. Girvan and New-
man define edge betweenness as the number of paths that run along that given
edge [35]. It can be calculated using shortest-path betweenness, random-walk
betweenness and current-flow betweenness. The authors first use edge central-
ity indices to find community boundaries. They then remove high betweenness
edges in a divisive process, which eventually leads to a division of the origi-
nal network into separate parts. This method has a high computational cost: in
order to compute each edge’s betweenness, one should consider all paths in which
it appears. Many authors have already proposed different approaches to speed
up that algorithm [37, 38].

2.8 Frequent Subgraphs

A frequent subgraph may be considered as a general pattern whose instances can
be replaced by a label of that pattern (i.e., a single node or edge representing
the pattern). Motivation for this is two-fold. Technically, this operation can
be seen as compression. On the other hand, frequent patterns possibly reflect
some semantic structures of the domain and therefore are useful candidates for
replacement.

Two early methods for frequent subgraph mining use frequent probabilis-
tic rules [39] and compression of the database [40]. Some early approaches use
greedy, incomplete schemes [41, 42]. Many of the frequent subgraph mining
methods are based on the Apriori algorithm [43], for instance AGM [44] and
FSG [45, 46]. However, such methods usually suffer from complicated and costly
candidate generation, and high computation time of subgraph isomorphism [47].
To circumvent these problems, gSpan [47] explores depth-first search in frequent
subgraph mining. CloseGraph [48] in turn mines closed frequent graphs, which
reduces the size of output without losing any information. The Spin method [49]
only looks for maximal connected frequent subgraphs.

Most of the methods mentioned above consider a database of graphs as input,
not a single large graph. More recently, several methods have been proposed to
find frequent subgraphs also in a single input graph [50–53].

3 Preference-Dependent Methods

In this section, we discuss abstraction methods in which a user can explicitly
indicate which parts or aspects are more important, according to his interests.
Such network abstraction methods are useful when providing more flexible ways
to explore a BisoNet.



Review of BisoNet Abstraction Techniques 171

3.1 Relevant Subgraph Extraction

Given two or more nodes, the idea here is to extract the most relevant subnetwork
(of a limited size) with respect to connecting the given nodes as strongly as
possible. This subnetwork is then in some sense maximally relevant to the given
nodes. There are several alternatives for defining the objective function, i.e., the
quality of the extracted subnetwork.

An early approached proposed by Grötschel et al. [54] bases the definition
on the count of edge-disjoint or vertex-disjoint paths from the source to the
sink. A similar principle has later been applied to multi-relational graphs [55],
where a pair of entities could be linked by a myriad of relatively short chains of
relationships.

The problem in its general form was later formulated as the connection sub-
graph problem by Faloutsos et al. [56]. The authors also proposed a method
based on electricity analogies, aiming at maximizing electrical currents in a net-
work of resistors. However, Tong and Faloutsos later point out the weaknesses of
using delivered current criterion as a goodness of connection [57]: it only deals
with query node pair, and is sensible to the order of the query nodes. Thus, they
propose method to extract a subgraph with strong connections to any arbitrary
number of nodes.

For random graphs, work from reliability research suggests network reliability
as suitable measure [58]. This is defined as the probability that query nodes
are connected, given that edges fail randomly according to their probabilities.
This approach was then formulated more exactly and algorithms were proposed
by Hintsanen and Toivonen [59]. Hintsanen and Toivonen restrict the set of
terminals to a pair, and propose two incremental algorithms for the problem.

A logical counterpart of this work, in the field of probabilistic logic learning, is
based on ProbLog [60]. In a ProbLog program, each Prolog clause is labeled with
a probability. The ProbLog program can then be used to compute the success
probabilities of queries. In the theory compression setting for ProbLog [61], the
goal is to extract a subprogram of limited size that maximizes the success prob-
ability of given queries. The authors use subgraph extraction as the application
example.

3.2 Detecting Interesting Nodes or Paths

Some techniques aim to detect interesting paths and nodes, with respect to given
nodes. Lin and Chapulsky [62] focus on determining novel, previously unknown
paths and nodes from a labeled graph. Based on computing frequencies of similar
paths in the data, they use rarity as a measure to find interesting paths or nodes
with respect to the given nodes.

An alternative would be to use node centrality to measure the relative im-
portance. White and Smyth [63] define and compute the importance of nodes in
a graph relative to one or more given root nodes. They have also pointed out
advantages and disadvantages of such measurement based on shortest paths,
k-short paths and k-short node-disjoint paths.
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3.3 Personalized PageRank

On the basis of PageRank, Personlized PageRank (PPR) is proposed to person-
alize ranking of web pages. It assigns importance according to the query or user
preferences. Early work in this area includes Jeh and Widom [64] and Haveli-
wala [19]. Later, Fogaras et al. [65] have proposed improved methods for the
problem.

An issue for network abstraction with these approaches is that they can
identity relevant individual nodes, but not a relevant subgraph.

3.4 Exact Subgraph Search

Some substructures may represent obvious or general knowledge, which may
moreover occur frequently. Complementary to the approach of Subsection 2.8
where such patterns are identified automatically, here we consider user-input
patterns or replacement rules. We first introduce methods that find all exact
specified subgraphs.

Finding all exact instances of a graph structure reduces to the subgraph iso-
morphism problem, which is NP-complete. Isomorphisms are mappings of node
and edge labels that preserve the connections in the subgraph.

Ullmann [66] has proposed a well-known algorithm to number the isomor-
phisms with a refinement procedure that overcomes brute-force tree-search
enumeration. Cordella et al. [67] include more selective feasibility rules to prune
the state search space of their VF algorithm.

A faster algorithm, GraphGrep [68], builds an index of a database of graphs,
then uses filtering and exact matching to find isomorphisms. The database is
indexed with paths, which are easier to manipulate than trees or graphs. As
an alternative, GIndex [69] relies on frequent substructures to index a graph
database.

3.5 Similarity Subgraph Search

A more flexible search is to find graphs that are similar but not necessarily
identical to the query. Two kinds of similarity search seem interesting in the
context of network abstraction. The first one is the K-Nearest-Neighbors (K-
NN) query that reports the K substructures which are the most similar to the
user’s input; the other is the range query which returns subgraphs within a
specific dissimilarity range to user’s input.

These definitions of the problem imply computation of a similarity measure
between two subgraphs. The edit distance between two graphs has been used
for that purpose [70]: it generally refers to the cost of transforming one object
into the other. For graphs, the transformations are the insertion and removal
of vertices and edges, and the changing of attributes on vertices and edges. As
graphs have mappings, the edit distance between graphs is the minimum distance
over all mappings.
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Tian et al. [71] propose a distance model containing three components: one
measures the structural differences, a second component is the penalty associated
with matching two nodes with different labels, and the third component measures
the penalty for the gap nodes, nodes in the query that cannot be mapped to any
nodes in the target graph.

Another family of similarity measures is based on the maximum common sub-
graph of two graphs [72]. Fernandez and Valiente [73] propose a graph distance
metric based on both maximum common subgraph and minimum common su-
pergraph. The maximum percentage of edges in common has also been used as
a similarity measure [74].

Processing pairwise comparisons is very expensive in term of computational
time. Grafil [74] and PIS [75] are both based on GIndex [69], indexing the
database by frequent substructures.

The concept of graph closure [70] represents the union of graphs, by recording
the union of edge labels and vertex labels, given a mapping.

The derived algorithm, Closure-tree, organizes graphs in a hierarchy where
each node summarizes its descendants by a graph closure: efficiency of similarity
query may improve, and that may avoid some disadvantages of path-based and
frequent substructure methods.

The authors of SAGA (Substructure Index-based Approximate Graph Align-
ment) [71] propose the FragmentIndex technique, which indexes small and
frequent substructures. It is efficient for small graph queries, however, process-
ing large graph queries is much more expensive. TALE (Tool for Approximate
Subgraph Matching of Large Queries Efficiently) [76] is another approximate
subgraph matching system. The authors propose to use NH-Index (Neighbor-
hood Index) to index and capture the local graph structure of each node. An
alternative approach uses structured graph decomposition to index a graph
database [77].

4 Conclusion

There is a large literature on methods suitable for BisoNet abstraction. We
reviewed some of the most important approaches, classified by whether they
allow user focus or not. Even though we did not cover the literature exhaustively,
we can propose areas for further research based on the gaps and issues observed
in the review.

First, we noticed that different node ranking measures (Sections 2.2–2.4) are
useful for picking out important nodes, as evidenced by search engines, but the
result is just that – a set of nodes. How to better use those ideas to find a
connected, relevant subBisoNet is an open question.

Second, although there are lots of methods for partitioning a BisoNet (Sec-
tion 2.5–2.7), the computational complexity usually is prohibitive for large
BisoNets, such as Biomine, with millions of nodes and edges. Obviously, parti-
tioning would be a valuable tool for BisoNet abstraction there.
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Third, we observed that some more classical graph problems have been re-
searched much more intensively for graph databases consisting of a number of
graphs, rather than for a single large graph. This holds especially for frequent
subgraphs (Section 2.8) and subgraph search (Section 3.5).

Finally, a practical exploration system needs an integrated approach to ab-
straction, using several of the techniques reviewed here to complement each other
in producing a simple and useful abstract BisoNet.
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tronic Atricles in Computer and Information Science. Linköping University Elec-
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Abstract. We propose a novel problem to simplify weighted graphs by
pruning least important edges from them. Simplified graphs can be used
to improve visualization of a network, to extract its main structure, or
as a pre-processing step for other data mining algorithms.

We define a graph connectivity function based on the best paths be-
tween all pairs of nodes. Given the number of edges to be pruned, the
problem is then to select a subset of edges that best maintains the overall
graph connectivity. Our model is applicable to a wide range of settings,
including probabilistic graphs, flow graphs and distance graphs, since the
path quality function that is used to find best paths can be defined by
the user. We analyze the problem, and give lower bounds for the effect
of individual edge removal in the case where the path quality function
has a natural recursive property. We then propose a range of algorithms
and report on experimental results on real networks derived from public
biological databases.

The results show that a large fraction of edges can be removed quite
fast and with minimal effect on the overall graph connectivity. A rough
semantic analysis of the removed edges indicates that few important
edges were removed, and that the proposed approach could be a valuable
tool in aiding users to view or explore weighted graphs.

1 Introduction

Graphs are frequently used to represent information. Some examples are social
networks, biological networks, the World Wide Web, and so called BisoNets,
used for creative information exploration [2]. Nodes usually represent objects,
and edges may have weights to indicate the strength of the associations between
objects. Graphs with a few dozens of nodes and edges may already be difficult to
visualize and understand. Therefore, techniques to simplify graphs are needed.
An overview of such techniques is provided in reference [3].

In this chapter, we propose a generic framework and methods for simplifica-
tion of weighted graphs by pruning edges while keeping the graph maximally
connected. In addition to visualization of graphs, such techniques could have
applications in various network design or optimization tasks, e.g., in data com-
munications or traffic.
� This chapter is a modified version of article “Network Simplification with Minimal

Loss of Connectivity” in the 10th IEEE International Conference on Data Mining
(ICDM), 2010 [1].
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The framework is built on two assumptions: the connectivity between nodes is
measured using the best path between them, and the connectivity of the whole
graph is measured by the average connectivity over all pairs of nodes. We signif-
icantly extend and generalize our previous work [4]. The previous work prunes
edges while keeping the full original connectivity of the graph, whereas here we
propose to relax this constraint and allow removing edges which result in loss of
connectivity. The intention is that the user can flexibly choose a suitable trade-off
between simplicity and connectivity of the resulting network. The problem then
is to simplify the network structure while minimizing the loss of connectivity.

We analyze the problem in this chapter, and propose four methods for the
task. The methods can be applied to various types of weighted graphs, where
the weights can represent, e.g., distances or probabilities. Depending on the
application, different definitions of the connectivity are possible, such as the
shortest path or the maximum probability.

The remainder of this article is organized as follows. We first formalize the
problem of lossy network simplification in Section 2, and then analyze the prob-
lem in Section 3. We present a range of algorithms to simplify a graph in Sec-
tion 4, and present experimental results in Section 5. We briefly review related
work in Section 6, and finally draw some conclusions in Section 7.

2 Lossy Network Simplification

Our goal is to simplify a given weighted graph by removing some edges while
still keeping a high level of connectivity. In this section we define notations and
concepts, and also give some example instances of the framework.

2.1 Definitions

Let G = (V,E) be a weighted graph. We assume in the rest of the chapter that
G is undirected. An edge e ∈ E is a pair e = {u, v} of nodes u, v ∈ V . Each
edge has a weight w(e) ∈ R. A path P is a set of edges P = {{u1, u2}, {u2, u3},
. . . , {uk−1, uk}} ⊂ E. We use the notation u1

P� uk to say that P is a path
between u1 and uk, or equivalently, to say that u1 and uk are the endvertices
of P . A path P can be regarded as the concatenation of several sub-paths, i.e.,
P = P1 ∪ . . . ∪ Pn, where each Pi is a path.

We parameterize our problem and methods with a path quality function
q(P ) → R

+. The form of the path quality function depends on the type of
graph and the application at hand. For example, in a probabilistic or random
graph, it can be the probability that a path exists. Without loss of generality,
we assume that the value of any path quality function is positive, and that a
larger value of q indicates better quality.

Given two nodes u and v in a weighted graph, they might be linked by a direct
edge or a path, or none in a disconnected graph. A simple way to quantify how
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strongly they are connected is to examine the quality of the best path between
them [4]. Thus, the connectivity between two nodes u and v in the set E of edges
is defined as

C(u, v;E) =

{
max

P⊂E:u
P�v

q(P ) if such P exists

−∞ otherwise.
(1)

A natural measure for the connectivity of a graph is then the average connectivity
over all pairs of nodes,

C(V,E) =
2

|V |(|V | − 1)

∑
u,v∈V,u�=v

C(u, v;E), (2)

where |V | is the number of nodes in the graph. Without loss of generality, in
the rest of the chapter we assume the graph is connected, so C(V,E) > 0. (If
the graph is not connected, we simplify each connected component separately,
so the assumption holds again.)

Suppose a set of edges ER ⊂ E is removed from the graph. The connectivity
of the resulting graph is C(V,E \ ER), and the ratio of connectivity kept after
removing ER is

rk(V,E,ER) =
C(V,E \ER)

C(V,E)
. (3)

Clearly, connectivity can not increase when removing edges. rk = 1 means the
removal of edges does not affect the graph’s connectivity. 0 < rk < 1 implies that
the removal of edges causes some loss of connectivity, while rk = −∞ implies
the graph has been cut into two or more components.

Our goal is to remove a fixed number of edges while minimizing the loss of
connectivity. From the definitions in Equations (1)–(3) it follows that cutting
the input graph drops the ratio to −∞. In this chapter, we thus want to keep
the simplified graph connected (and leave simplification methods that may cut
the graph for future work). Under the constraint of not cutting the input graph,
possible numbers of edges remaining in the simplified graph range from |V | − 1
to |E|. This follows from the observation that a maximally pruned graph is a
spanning tree, which has |V | − 1 edges. Thus numbers of removable edges range
from 0 to |E| − (|V | − 1).

In order to allow users to specify different simplification scales, we introduce
a parameter γ, with values in the range from 0 to 1, to indicate the strength of
pruning. Value 0 indicates no pruning, while value 1 implies that the result should
be a spanning tree. Thus, the number of edges to be removed by an algorithm
is |ER| = �γ(|E| − (|V | − 1))�. Based on notations and concepts defined above,
we can now present the problem formally.

Given a weighted graphG = (V,E), a path quality function q, and a parameter
γ, the lossy network simplification task is to produce a simplified graph H =
(V, F ), where F ⊂ E and |E \F | = �γ(|E|−(|V |−1))�, such that rk(V,E,E \F )
is maximized. In other words, the task is to prune the specified amount of edges
while keeping a maximal ratio of connectivity.
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2.2 Example Instances of the Framework

Consider a random (or uncertain) graph where edge weight w(e) gives the prob-
ability that edge e exists. A natural quality of a path P is then its probability,
i.e., the probability that all of its edges co-exist: q(P ) = Π{u,v}∈Pw({u, v}).
Intuitively, the best path is the one which has the highest probability.

If edge weights represent lengths of edges, then the shortest path is often
considered as the best path between two given nodes. Since in this case smaller
values (smaller distances) indicate higher quality of paths, one can either reverse
the definitions where necessary, or simply define the path quality as the inverse
of the length, i.e., q(P ) = 1/length(P ).

A flow graph is a directed graph where each edge has a capacity w(e) to
transport a flow. The capacity c(P ) of a path is limited by the weakest edge
along that path: c(P ) = min{u,v}∈P w({u, v}) = q(P ). The best path is one that
has the maximal flow capacity. If the flow graph is undirected, the graph can
be simplified without any loss of quality to a spanning tree that maximizes the
smallest edge weight in the tree.

3 Analysis of the Problem

In this section, we investigate some properties of the problem of lossy network
simplification. We first note that the ratio of connectivity kept rk(V,E,ER) is
multiplicative with respect to successive removals of sets of edges. Based on
this we then derive two increasingly fast and approximate ways of bounding
rk(V,E,ER). These bounds will be used by algorithms we give in Section 4.

3.1 Multiplicativity of Ratio of Connectivity Kept

Let ER be any set of edges to be removed. Consider an arbitrary partition of
ER into two sets E1

R and E2
R, such that ER = E1

R ∪E2
R and E1

R ∩E2
R = ∅. Using

Equation (3), we can rewrite the ratio of connectivity kept by ER as

rk(V,E,E1
R ∪E2

R)

=
C(V,E\(E1

R∪E2
R))

C(V,E)

=
C(V,E\E1

R)
C(V,E) · C(V,E\E1

R\E2
R)

C(V,E\E1
R
)

= rk(V,E,E1
R) · rk(V,E \ E1

R, E
2
R).

In other words, the ratio of connectivity kept rk(·) is multiplicative with respect
to successive removals of sets of edges.

An immediate consequence is that the ratio of connectivity kept after remov-
ing set ER of edges can also be represented as the product of ratios of connectivity
kept for each edge, in any permutation:

rk(V,E,ER) = Π
|ER|
i=1 rk(V,E \ Ei−1, ei),



Simplification of Networks by Edge Pruning 183

where ei the ith edge in the chosen permutation and Ei = {e1, . . . , ei} is the set
of i first edges of ER.

Note that the ratio of connectivity kept is not multiplicative for the ratios
rk(V,E, {ei}) of connectivity kept with respect to the original set E of edges.
It is therefore not straightforward to select an edge set whose removal keeps the
maximal rk(V,E,ER) value among all possible results.

The multiplicativity directly suggests, however, to greedily select the edge
maximizing rk(V,E \ Ei−1, ei) at each step. The multiplicativity property tells
that the exact ratio of connectivity kept will be known throughout the process,
even if it is not guaranteed to be optimal. We will use this approach in the brute
force algorithm that we give in Section 4. Two other algorithms will use the
greedy search too, but in a more refined form that uses results from the next
subsections.

3.2 A Bound on the Ratio of Connectivity Kept

Recall that the connectivity of a graph is the average connectivity among all
pairs of nodes. In principle, the removal of an edge may cause the connectivity
between any arbitrary pair of nodes to decrease. We now derive a lower bound for
the connectivity kept, based on the effect of edge removal only on the endpoints
of the edge itself.

Many path quality functions are recursive in the sense that sub-paths of a best
path are also best paths between their own endpoints. (This is similar to the
property known as optimal substructure in dynamic programming.) Additionally,
a natural property for many quality functions q is that the effect of a local change
is at most as big for the whole path P as it is for the modified segment R ⊂ P .

Formally, let P = argmax
P⊂E:u

P�v
q(P ) be a best path (between any pair

of nodes u and v), let m ∈ P be a node on the path, let R ⊂ P be a subpath
(segment) of P and S a path (not in P ) with the same endvertices as R. Function
q is a local recursive path quality function if

q(P ) = q( argmax

P1⊂E:u
P1�m

q(P1) ∪ argmax

P2⊂E:m
P2�v

q(P2))

and

q(P \R ∪ S)

q(P )
≥ q(S)

q(R)
.

Examples of local recursive quality functions include the (inverse of the) length
of a path (when edge weights are distances), the probability of a path (when
edge weights are probabilities), and minimum edge weight on a path (when edge
weights are flow capacities). A negative example is average edge weight.

The local recursive property allows to infer that over all pairs of nodes, the
biggest effect of removing a particular edge will be seen on the connectivity of
the edge’s own endvertices. In other words, the ratio of connectivity kept for any
pair of nodes is at least as high as the ratio kept for the edge’s endvertices.
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To formalize this bound, we denote by κ(E, e) the ratio of connectivity kept
between the endvertices of an edge e = {u, v} after removing it from the set E
of edges:

κ(E, e) =

⎧⎨
⎩

−∞ if C(u, v;E \ {e}) = −∞;
C(u,v;E\{e})

q({e}) if C(u, v;E \ {e}) < q({e});
1 if C(u, v;E \ {e}) ≥ q({e}).

(4)

The first two cases directly reflect the definition of ratio of connectivity kept
(Equation 3) when edge e is the only path (case one) or the best path (case
two) between its endpoint. The third case applies when {e} is not the best
path between between its endpoints. Then, its absence will not cause any loss of
connectivity between u and v, and κ(E, e) = 1.

Theorem 1. Let G = (V,E) be a graph and e ∈ E an edge, and let q be a local
recursive path quality function. The ratio of connectivity kept if e is removed is
lower bounded by rk(V,E, e) ≥ κ(E, e).

Sketch of a proof. The proof is based on showing that the bound holds for
the ratio of connectivity kept for any pair of nodes. (1) Case one: κ(E, e) = −∞
clearly is a lower bound for any ratio of connectivity kept. (2) Case two: Consider
any pair of nodes u and v. In the worst case the best path between them contains
e and, further, the best alternative path between u and v is the one obtained
by replacing e by the best path between the endvertices of e. Since q is local
recursive, even in this case at least fraction κ(E, e) of connectivity is kept between
u and v. (3) Case three: edge e has no effect on the connectivity of its own
endvertices, nor on the connectivity of any other nodes.

Theorem 1 gives us a fast way to bound the effect of removing an edge and
suggests a greedy method to the lossy network simplification problem by remov-
ing an edge with the largest κ. Obviously, only based on κ(E, e) < 1, we can
not infer the exact effect of removing edge e, nor the relative difference between
removing two alternative edges. However, computing κ is much faster than com-
puting rk, since only the best path between the edge’s endvertices needs to be
examined, not all-pairs best paths.

3.3 A Further Bound on the Ratio of Connectivity Kept

Previously, we suggested two ways to compute or approximate the best alterna-
tive path for an edge [4]. The global best path search finds the best path with
unlimited length and thus gives the exact C(u, v;E \{e}) and κ values. However,
searching the best path globally takes time. A faster alternative, called triangle
search, is to find the best path of length two, denoted by S2(e). That is, let
S2(e) = {{u,w}{w, v}} ⊂ E, e �∈ S2(e), be a path between the endvertices u, v
such that q(S2(e)) is maximized. Obviously, path S2(e) may not be the best path
between the edge’s endvertices, and therefore q(S2(e)) is a lower bound for the
quality of the best path between the endvertices of e.
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To sum up the results from this section, we have two increasingly loose lower
bounds for the ratio of connectivity kept for local recursive functions. The first
one is based on only looking at the best alternative path for an edge. The second
one is a further lower bound for the quality of this alternative path. Denoting
by S2(e) the best path of length two as defined above, we have

rk(V,E, e) ≥ κ(E, e) ≥ min(
q(S2(e))

q({e}) , 1).

In the next section, we will give algorithms that use these lower bounds to
complete the simplification task with different trade-offs between connectivity
kept and time complexity.

4 Algorithms

We next present four algorithms to simplify a given graph by pruning a fixed
number of edges while aiming to keep a high connectivity. All algorithms take
as input a weighted graph G, a path function q and a ratio γ. They prune
n = γ(|E| − (|V | − 1)) edges. The first algorithm is a naive approach, simply
pruning a fraction of the weakest edges by sorting edges according to the edge
weight. The second one is a computationally demanding brute-force approach,
which greedily removes an edge with the highest rk value in each iteration. The
third and fourth algorithms are compromises between these extremes, aimed
at a better trade-off between quality and efficiency. The third one iteratively
prunes the edge which has the largest κ value through global search. The fourth
algorithm prunes edges with the combination of triangle search and global search.

4.1 Naive Approach

Among the four algorithms that we present, the simplest approach is the naive
approach (NA), outlined in Algorithm 1. It first sorts edges by their weights
in an ascending order (Line 1). Then, it iteratively checks the edge from the
top of the sorted list (Line 7), and prunes the one whose removal will not lead
to disconnected components (Line 8). The algorithm stops when the number of
edges removed reaches n, derived from G and γ.

The computational cost of sorting edges is O
(|E| log |E|) (Line 1). On Line 7,

we use Dijkstra’s algorithm with a complexity of O
(
(|E|+ |V |) log |V |) to check

whether there exists a path between the edge’s endvertices. So, the total compu-
tational complexity of the naive approach is O

(|E| log |E|+n(|E|+ |V |) log |V |).

4.2 Brute Force Approach

The brute force approach (BF), outlined in Algorithm 2, prunes edges in a
greedy fashion. In each iteration, it picks the edge whose removal best keeps the
connectivities, i.e., has the largest rk value. It first calculates the rk(V, F, e) value



186 F. Zhou, S. Mahler, and H. Toivonen

Algorithm 1. NA algorithm

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: Sort edges E by weights in an ascending order.
2: F ← E
3: n← γ(|E| − (|V | − 1))
4: { Iteratively prune the weakest edge which does not cut the graph }
5: i← 1, j ← 1 { j is an index to the sorted list of edges }
6: while i ≤ n do
7: if C(u, v;F \ {ej}) is not−∞ then
8: F ← F \ {ej}
9: i← i + 1

10: j ← j + 1
11: Return H = (V, F )

for every edge e (Line 10), and then stores the information of the edge whose
rk(V, F, e) value is the highest at the moment (Line 11), and finally prunes the
one which has the highest rk value among all existing edges (Line 16). As an
optimization, set M is used to store edges that are known to cut the remaining
graph (Lines 9 and 15), and the algorithm only computes rk(V, F, e) for the
edges which are not in M (Line 8).

When computing rk(V, F, e) for an edge (Line 10), all-pairs best paths need
to be computed with a cost of O

(|V |(|E| + |V |) log |V |). (This dominates the
connectivity check on Line 9.) Inside the loop, rk(V, F, e) is computed for all
edges in each of n iterations, so the total time complexity is O

(
n|E||V |(|E| +

|V |) log |V |).

Algorithm 2. BF algorithm

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: { Iteratively prune the edge with the highest rk value. }
4: M ← ∅ { edges whose removal is known to cut the graph. }
5: for r = 1 to n do
6: rk largest← −∞
7: e largest← null
8: for e = {u, v} in F and e �∈M do
9: if graph (V, F \ {e}) is connected then

10: compute rk(V, F, e) = C(V,F\{e})
C(V,F )

11: if rk(V, F, e) > rk largest then
12: rk largest← rk(V, F, e)
13: e largest← e
14: else
15: M ←M + e
16: F ← F \ {e largest}
17: Return H = (V, F )
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4.3 Path Simplification

The outline of the path simplification approach (PS) is in Algorithm 3. The
main difference to the brute force approach is that PS calculates κ instead of
rk(V, F, e) for each edge.

The method finds, for each edge, the best possible alternative path S globally
(Line 9). It then prunes in each loop the edge with the largest lower bound κ of
connectivity kept. As an efficient shortcut, as soon as we find an edge whose κ is
equal to 1, we remove it immediately. Again, list M is used to store information
of those edges whose removal cuts the graph.

Algorithm 3. PS algorithm

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: {Iteratively prune the edge with the largest κ value. }
4: M ← ∅
5: for r = 1 to n do
6: κ largest← −∞
7: e largest← null
8: for e = {u, v} in F and e �∈M do
9: Find path S such that q(S) = C(u, v;F \ {e})

10: if q(S) ≥ q({e}) then
11: κ← 1
12: F ← F \ {e}
13: break
14: else if 0 < q(S) < q({e}) then

15: κ← q(S)
q({e})

16: else
17: κ← −∞
18: M ←M + e
19: if κ > κ largest then
20: κ largest← κ
21: e largest← e
22: F ← F \ {e largest}
23: Return H = (V, F )

The complexity of the innermost loop is dominated by finding the best path
between the edge’s endvertices (Line 9), which has time complexity O

(
(|E| +

|V |) log |V |). This is done n times for O(|E|) edges, so the total time complexity
is O

(
n|E|(|E| + |V |) log |V |). While still quadratic in the number of edges, this

is a significant improvement over the brute force method.

4.4 Combinational Approach

The fourth and final algorithm we propose is the combinational approach (CB),
outlined in Algorithm 4. The difference to the path simplification (PS) method
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Algorithm 4. CB algorithm

Input: A weighted graph G = (V,E), q and γ
Output: Subgraph H ⊂ G
1: F ← E
2: n← γ(|E| − (|V | − 1))
3: { Iteratively prune the edge with the largest κ using triangle search }
4: r ← 1
5: find ← true
6: while r ≤ n and find = true do
7: κ largest← −∞
8: e largest← null
9: for e = {u, v} in F do

10: Find path S2 = {{u, w}{w, v}} ⊂ F \ {e} that maximizes q(S2)
11: if q(S2) ≥ q({e}) then
12: κ← 1
13: F ← F \ {e}
14: r ← r + 1
15: break
16: else if 0 < q(S2) < q({e}) then

17: κ← q(S2)
q({e})

18: else
19: κ← −∞
20: if κ > κ largest then
21: κ largest← κ
22: e largest← e
23: if κ largest > 0 then
24: F ← F \ {e largest}
25: r ← r + 1
26: else
27: find ← false
28: if r < n then
29: apply the path simplification (PS) method in Algorithm 3 to prune n− r edges
30: Return H = (V, F )

above is that the best path search is reduced to triangle search (Line 10). How-
ever, triangle search is not always able to identify a sufficient number of edges
to be removed, depending on the number and quality of triangles in the graph.
Therefore the combinational approach invokes the PS method to remove addi-
tional edges if needed (Line 29).

The computational complexity of triangle search for a single edge is O
(|V |)

(Line 10). Thus, if we only apply triangle search, the total cost is O
(
n|E||V |).

However, if additional edges need to be removed, the worst case computational
complexity equals the complexity of the path simplification method (PS).

5 Experiments

To assess the problem and methods proposed in this chapter, we carried out
experiments on real graphs derived from public biological databases. With the
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experiments, we want to evaluate the trade-off between the size of the result and
the loss of connectivity, compare the performances of the proposed algorithms,
study the scalability of the methods, and assess what the removed edges are like
semantically in the biological graphs.

5.1 Experimental Setup

We have adopted the data and test settings from Toivonen et al. [4]. The data
source is the Biomine database [5] which integrates information from twelve ma-
jor biomedical databases. Nodes are biological entities such as genes, proteins,
and biological processes. Edges correspond to known or predicted relations be-
tween entities. Each edge weight is between 0 and 1, and is interpreted as the
probability that the relation exists. The path quality function is the probability
of the path, i.e., the product of weights of the edges in the path. This function
is local recursive.

For most of the tests, we use 30 different graphs extracted from Biomine. The
number of nodes in each of them is around 500, and the number of the edges
ranges from around 600 to 900. The graphs contain some parallel edges that can
be trivially pruned. For more details, see reference [4]. For scalability tests, we
use a series of graphs with up to 2000 nodes, extracted from the same Biomine
database.

The algorithms are coded in Java. All tests were run on standard PCs with
x86 64 architecture with Intel Core 2 Duo 3.16GHz, running Linux.

5.2 Results

Trade-Off between Size of the Result and Connectivity Kept. By con-
struction, our methods work on a connected graph and keep it connected. As
described in Section 2, maximally simplified graphs are then spanning trees, with
|V | − 1 edges. The number of edges removed is algorithm independent: they all
remove fraction γ of the |E| − (|V | − 1) edges that can be removed. The distri-
bution of the number of edges to be removed in our test graphs, relative to the
total number of edges, are shown as a function of γ in Figure 1. These graphs
are relatively sparse, and approximately at most 35% of edges can be removed
without cutting the graph.

In this chapter, we extend a previous simplification task [4] from lossless to
lossy simplification (with respect to the connectivity of the graph). In other
words, in the previous proposal the ratio of connectivity kept must always stay
at 1. We now look at how many more edges and with how little loss of connec-
tivity our new methods can prune. We use the path simplification method as a
representative here (and will shortly compare the proposed methods).

In Figure 2, we plot the ratio of connectivity kept by the four methods of
Toivonen et al. [4] for two different graphs, randomly selected from our 30 graphs.
Four different types of points are positioned horizontally according to n, the
number of edges pruned by the previous methods. The x-axis shows the number
of edges pruned in terms of γ, computed as γ = n/(|E|−(|V |−1)). Results of the
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path simplification method proposed in this chapter are shown as lines. Among
the four previous methods, the Iterative Global (IG) method prunes the maximal
number of edges. Significantly more edges can be pruned, with larger values of γ,
while keeping a very high ratio of connectivity. This indicates that the task of
lossy network simplification is useful: significant pruning can be achieved with
little loss of connectivity.

Comparison of Algorithms. Let us next compare the algorithms proposed in
this chapter. Each of them prunes edges in a somewhat different way, resulting
in different ratios of connectivity kept. These ratios with respect to different γ
are shown in Figure 3. For γ = 1 (Figure 3(e)), where the result of all methods
is a spanning tree, we also plot the results of a standard maximum spanning tree
method [6] that maximizes the sum of edge weights.

Among all methods, the brute force approach expectedly always keeps the
highest ratio of graph connectivity. When γ is between 0.2 and 0.6, the brute
force method can actually keep the original connectivity, and even when γ = 1
it still keeps around 93% connectivity.

Overall, the four proposed methods perform largely as expected. The sec-
ond best method is path simplification, followed by the combinational approach.
They both keep high connectivities for a wide range of values for γ, still approx-
imately 90% with γ = 0.8. The naive approach is clearly inferior, but it also
produces useful results for smaller values of γ.

An interesting observation can be made from Figure 3(e) where γ = 1. The
maximum spanning tree has similar ratios of connectivity kept with all methods
except the brute force method, which can produce significantly better results.
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(a) (b)

(c) (d)

Fig. 4. Two examples where the brute force and path simplification methods remove
different edges. In (a) and (c), dashed edges are removed by the brute force method.
In (b) and (d), dashed edges are removed by the path simplification method.

This illustrates how the problem of keeping maximum connectivity in the limit
(γ = 1) is different from finding a maximum spanning tree. (Recall that the lossy
network simplification problem is parameterized by the path quality function q
and can actually have quite different forms.)

Figure 4 shows two simple examples where the brute force method removes
different edges than the path simplification method (or the maximum spanning
tree method). The removed edges are visualized with dotted lines; Figures 4(a)
and (c) are the results of the brute force method, and (b) and (d) are the results
of the path simplification method. Consider the case in Figures 4(a) and (b).
Since κ({b, c}) = 0.63∗0.78

0.7 = 0.7 and κ({a, c}) = 0.78∗0.7
0.63 = 0.91, edge {a, c}

is removed by the path simplification method. However, when considering the
connectivity between node c and other nodes which are a’s neighbors, removing
{b, c} keeps connectivity better than removing edge {a, c}.

We notice that the brute force method has a clear advantage from its more
global viewpoint: it may select an edge whose weight is higher than the weight
of the edge removed by the other methods that work more locally. We will next
address the computational costs of the different variants.

Running Times. We next compare the running times of the four algorithms.
Running times as functions of γ are shown in Figure 5. As we already know
from the complexity analysis, the brute force method is quite time consuming.
Even when γ is small, like 0.2, the brute force method still needs nearly one
hundred minutes to complete. With the increase of γ, the time needed by the
brute force increases from 100 to more than 400 minutes, while the other three
methods only need a few seconds to complete. The second slowest method is the
path simplification, which running time increases linearly with γ from 5 to 50
seconds. The naive approach always needs less than 1 second to complete.
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The combinational approach is the fastest one when γ is very small, but it
comes close to the time the path simplification method needs when γ is larger.
The reason for this behavior is that the combinational approach removes varying
shares of edges using the computationally more intensive global search: Figure 6
shows that, with small values of γ, all or most edges are removed with the efficient
triangle search. When γ increases, the fraction of edges removed by global search
correspondingly increases.

In order to evaluate the scalability of the methods, we ran experiments with
a series of graphs with up to 2000 nodes. The node degree is around 2.5. The
running times as functions of graph size are shown in Figures 7 (with γ = 0.4)
and 8 (with γ = 0.8).
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All methods have superlinear running times in the size of the graph, as is
expected by the time complexity analysis. As such, these methods do not scale
to very large graphs, at least not with large values of γ.

A Rough Semantic Analysis of Removed Edges. We next try to do a
rough analysis of what kind of edges are pruned by the methods in the biological
graphs of Biomine. The methods themselves only consider edge weights, but from
Biomine we also have edges labels describing the relationships. We classify edges
to important and irrelevant by the edge labels, as described below, and will then
see how the methods of this chapter prune them.

In Biomine, certain edge types can be considered elementary: edges of an
elementary type connect entities that strongly belong together in biology, such
as a protein and the gene that codes for it. An expert would not like to prune
these links. On the other hand, if they are both connected to a third node, such
as a biological function, then one of these edges could be considered redundant.
Since the connection between the protein and gene is so essential, any connections
to either one could be automatically considered to hold also for the other one.
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Fig. 9. Shares of different semantic categories among all removed edges with γ = 0.8
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An explicit representation of such an edge would be considered “semantically
irrelevant”.

Following the previous setting [4], we considered the edge types codes for, is
homologous to, subsumes, and has synonym as “important.” Then, we computed
the number of those edges that are “semantically irrelevant.” Additionally, we
marked the edges which have the same endvertices as “Parallel” edges. For the
sake of completeness, we also counted the number of “other edges” that are
neither important nor semantically irrelevant, nor parallel edges.

The semantic categories of the edges removed with γ = 0.8 are shown in
Figure 9. Among edges removed by the naive approach, 3% are important, 45%
are irrelevant, 8% are parallel and around 44% are other edges. The results of the
path simplification and the combinational approach are quite similar: with edges
removed by them there are around 2% important edges, 60% irrelevant edges,
around 8% parallel edges and 30% other edges. (We do not analyze the semantic
types of edges removed by the brute force method due to its time complexity.)

We notice that the path simplification and the combinational approach remove
more irrelevant edges than the naive approach does. The reason is that these
irrelevant edges may have a high weight, but they also have high κ value, in
most cases, κ = 1.

The results indicate that the path simplification and the combinational ap-
proaches could considerably complement and extend expert-based or semantic
methods, while not violating their principles.

6 Related Work

Network simplification has been addressed in several variants and under differ-
ent names. Simplification of flow networks [7, 8] has focused on the detection of
vertices and edges that have no impact on source-to-sink flow in the graph. Net-
work scaling algorithms produce so-called Pathfinder networks [9–11] by pruning
edges for which there is a better path of at most q edges, where q is a parameter.
Relative Neighborhood Graphs [12] only connect relatively close pairs of nodes.
They are usually constructed from a distance matrix, but can also be used to
simplify a graph: indeed, relative neighborhood graphs use the triangle test only.

The approach most closely related to ours is path-oriented simplification [4],
which removes edges that do not affect the quality of best paths between any pair
of nodes. An extreme simplification that still keeps the graph connected, can be
obtained by Minimum Spanning Tree (MST) [6, 13] algorithms. Our approach
differs from all these methods in an important aspect: we measure and allow loss
of network quality, and let the user choose a suitable trade-off.

There are numerous measures for edge importance. These can be used to
rank and prune edges with varying results. Representative examples include
edge betweenness [14], which is measured as the number of paths that run along
the edge, and Birnbaum’s component importance [15], defined as the probability
that the edge is critical to maintain a connected graph.
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The goal of extracting a subgraph graph is similar to the problem of reliable
subgraph or connection subgraph extraction [16–18]). Their problem is, however,
related to a set of (query) nodes, while our problem is independent of query
nodes. They also prune least useful nodes, while we only prune edges.

We have reviewed related work more extensively in [3].

7 Conclusion

We have addressed the problem of network simplification given that the loss
of connectivity should be minimized. We have introduced and formalized the
task of selecting an edge set whose removal keeps the maximal ratio of the
connectivity. Our framework is applicable to many different types of networks
and path qualities. We have demonstrated the effect on random (or uncertain)
graphs from a real-world application.

Based on our definition of ratio of connectivity kept, we have proposed a naive
approach and a brute force method. Moreover, we have shown that the property
of local recursive path quality functions allows to design a simpler solution: when
considering the removal of one edge, the ratio of connectivity kept between the
edge’s endvertices can be used to bound the ratio for all pairs of nodes. Based
on this observation, we have proposed two other efficient algorithms: the path
simplification method and the combinational approach.

We have conducted experiments with 30 real biological networks to illustrate
the behavior of the four methods. The results show that the naive approach is
in most cases the fastest one, but it induces a large loss of connectivity. The
brute force approach is very slow in selecting the best set of edges. The path
simplification and the combinational approach were able to select a good set in
few seconds for graphs with some hundreds of nodes. A rough semantic analysis
of the simplification indicates that, in our experimental setting, both the path
simplification and the combinational approach have removed very few important
edges, and a relatively high number of irrelevant edges. We suggest those two
approaches can well complement a semantic-based simplification.

Future work includes development of more scalable algorithms for the task of
lossy network simplification. The problem and algorithms we proposed here are
objective techniques: they do not take into account any user-specific emphasis on
any region of the network. Future work may be to design query-based simplifi-
cation techniques that would take user’s interests into account when simplifying
a network. It would also be interesting to combine different network abstraction
techniques with network simplification, such as a graph compression method to
aggregate nodes and edges [19].
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Abstract. We give methods to compress weighted graphs (i.e., networks
or BisoNets) into smaller ones. The motivation is that large networks
of social, biological, or other relations can be complex to handle and
visualize. Using the given methods, nodes and edges of a give graph are
grouped to supernodes and superedges, respectively. The interpretation
(i.e. decompression) of a compressed graph is that a pair of original
nodes is connected by an edge if their supernodes are connected by one,
and that the weight of an edge equals the weight of the superedge. The
compression problem then consists of choosing supernodes, superedges,
and superedge weights so that the approximation error is minimized
while the amount of compression is maximized.

In this chapter, we describe this task as the ’simple weighted graph
compression problem’. We also discuss a much wider class of tasks un-
der the name of ’generalized weighted graph compression problem’. The
generalized task extends the optimization to preserve longer-range con-
nectivities between nodes, not just individual edge weights. We study the
properties of these problems and outline a range of algorithms to solve
them, with different trade-offs between complexity and quality of the
result. We evaluate the problems and algorithms experimentally on real
networks. The results indicate that weighted graphs can be compressed
efficiently with relatively little compression error.

1 Introduction

Graphs and networks are used in numerous applications to describe relation-
ships between entities, such as social relations between persons, links between
web pages, flow of traffic, or interactions between proteins. We are also inter-
ested in conceptual networks called BisoNets which allow creative information
exploration and support bisociative reasoning [2]. In many applications, includ-
ing most BisoNets, relationships have weights that are central to any use or
analysis of graphs: how frequently do two persons communicate or how much do
they influence each other’s opinions; how much web traffic flows from one page

� This chapter is a modified version of article “Compression of Weighted Graphs”
in the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2011 [1].

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 199–217, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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to another or how many cars drive from one crossing to another; or how strongly
does one protein regulate another one?

We describe models and methods for the compression of BisoNets (weighted
graphs) into smaller ones that contain approximately the same information. In
this process, also known as graph simplification in the context of unweighted
graphs [3, 4], nodes are grouped to supernodes, and edges are grouped into
superedges between supernodes. A superedge then represents all possible edges
between two nodes, one from each of the conneceted supernodes.

This problem is different from graph clustering or partitioning where the aim
is to find groups of strongly related nodes. In graph compression, nodes are
grouped based on the similarity of their relationships to other nodes, not by
their (direct) mutual relations.

As a small example, consider the co-authorship social network in Figure 1a. It
contains an excerpt from the DBLP Computer Science Bibliography1, a subgraph
containing Jiawei Han and Philip S. Yu and a dozen related authors. Nodes
in this graph represent authors and edges represent co-authorships. Edges are
weighted by the number of co-authored articles.

Compressing this graph by about 30% gives a simpler graph that highlights
some of the inherent structure or roles in the original graph (Figure 1b). For
instance, Ke Wang and Jianyong Wang have identical sets of co-authors (in this
excerpt from DBLP) and have been grouped together. This is also an example
of a group that would not be found by traditional graph clustering methods,
since the two nodes grouped together are not directly connected. Daxin Jiang
and Aidong Zhang have been grouped, but additionally the self-edge of their
supernode indicates that they have also authored papers together.

Groups that could not be obtained by the existing compression algorithms of [3,
4] can be observed among the six authors that (in this excerpt) only connect to
Jiawei Han and Philip S. Yu. Instead of being all grouped together as structurally
equivalent nodes, we have three groups that have different weight profiles. Charu
C. Aggarwal is a group by himself, very strongly connected with Philip S. Yu.
A second group includes Jiong Yang, Wei Fan, and Xifeng Yan, who are roughly
equally strongly connected to both Jiawei Han and Philip S. Yu. The third group,
Hong Cheng and Xiaoxin Yin, are more strongly connected to Jiawei Han. Such
groups are not found with methods for unweighted graphs [3, 4].

In what we define as the simple weighted graph compression problem, the ap-
proximation error of the compressed graph with respect to original edge weights
is minimized by assigning each superedge the mean weight of all edges it rep-
resents. For many applications on weighted graphs it is, however, important
to preserve relationships between faraway nodes, too, not just individual edge
weights. Motivated by this, we also introduce the generalized weighted graph
compression problem where the goal is to produce a compressed graph that
maintains connectivities across the graph: the best path between any two nodes
should be approximately equally good in the compressed graph as it is in the
original graph, but the path does not have to be the same.

1 http://dblp.uni-trier.de/
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Fig. 1. A neighborhood graph of Jiawei Han in the DBLP bibliography
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Compressed weighted graphs can be utilized in a number of ways. Graph algo-
rithms can run more efficiently on a compressed graph, either by considering just
the smaller graph consisting of supernodes and superedges, or by decompressing
parts of it on the fly when needed. An interesting possibility is to provide an
interactive visualization of a graph where the user can adjust the abstraction
level of the graph on the fly.

The rest of this chapter is organized as follows. We formulate and analyze
the weighted graph compression problems in Section 2. Related work is briefly
reviewed in Section 3. We give algorithms for the weighted graph compression
problems in Section 4 and evaluate them experimentally in Section 5. Section 6
contains concluding remarks.

2 Problem Definition

The goal is to compress a given weighted graph (BisoNet) into a smaller one.
We address two variants of this problem. In the first one, the simple weighted
graph compression problem, the goal is to produce a compressed graph that can
be decompressed into a graph similar to the original one. In the second variant,
the generalized weighted graph compression problem, the decompressed graph
should approximately preserve the strengths of connections between all nodes.

2.1 Weighted and Compressed Graphs

We start by defining concepts and notations common to both problem variants
of weighted graph compression.

Definition 1. A weighted graph is a triple G = (V,E,w), where V is a set of
vertices (or nodes), E ⊂ V × V is a set of edges, and w : E → R

+ assigns a
(non-negative) weight to each edge e ∈ E. For notational convenience, we define
w(u, v) = 0 if (u, v) �∈ E.

In this chapter, we actually assume that graphs and edges are undirected, and
in the sequel use notations such as {u, v} ∈ V × V in the obvious way. The
definitions and algorithms can, however, be easily adapted for the directed case.
In the compressed graph we also allow self-edges, i.e., an edge from a node
back to itself. The following definition of a compressed graph largely follows the
definition of graph summarization for the unweighted case [3]. The essential role
of weights will be defined after that.

Definition 2. A weighted graph S = (V ′, E′, w′) is a compressed representation
(or compressed graph) of G if V ′ = {v′1, . . . , v′n} is a partition of V (i.e., v′i ⊂ V
for all i, ∪iv

′
i = V , and v′i ∩ v′j = ∅ for all i �= j). The nodes v′ ∈ V ′ are also

called supernodes, and edges e′ ∈ E′ are also called superedges.

We use the notation com : V → V ′ to map original nodes to the corresponding
supernodes: com(u) = v′ if and only if u ∈ v′ ∈ V ′.
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The idea is that a supernode represents all original nodes within it, and that
a single superedge represents all possible edges between the corresponding origi-
nal nodes, whether they exist in G or not. Apparently, this may cause structural
errors of two types: a superedge may represent edges that do not exist in the
original graph, or edges in the original graph are not represented by any super-
edge. (Our algorithms in Section 4 only commit the first kind of errors, i.e., they
will not miss any edges, but may introduce new ones.) In addition, edge weights
may have changed in compression. We will next formalize these issues using the
concepts of decompressed graphs and graph dissimilarity.

Definition 3. Given G and S as above, the decompressed graph dec(S) of S
is a weighted graph dec(S) = (V,E′′, w′′) such that E′′ = {{u, v} ∈ V × V |
{com(u), com(v)} ∈ E′} and w′′({u, v}) = w′({com(u), com(v)}). (By the defi-
nition of compressed representation, V = ∪n

i=1V
′
i .)

In other words, a decompressed graph has the original set of nodes V , and
there is an edge between two nodes exactly when there is a superedge between
the corresponding supernodes. The weight of an edge equals the weight of the
corresponding superedge.

Definition 4. Given G and S as above, the compression ratio of S (with respect

to the original graph G) is defined as cr(S) = |E′|
|E| .

The compression ratio measures how much smaller the compressed graph is. The
number of supernodes vs. original nodes is not included in the definition since
nodes are actually not compressed, in the sense that their identities are preserved
in the supernodes and hence no space is saved. They are also always completely
recovered in decompression.

2.2 Simple Weighted Graph Compression

Compression ratio does not consider the amount of errors introduced in edges
and their weights. This issue is addressed by a measure of dissimilarity between
graphs. We first present a simple distance measure that leads to the simple
weighted graph compression problem.

Definition 5. The simple distance between two graphs Ga = (V,Ea, wa) and
Gb = (V,Eb, wb), with an identical set of nodes V , is

dist1(Ga, Gb) =

√ ∑
{u,v}∈V ×V

(wa({u, v})− wb({u, v}))2. (1)

This distance measure has an interpretation as the Euclidean distance between
Ga and Gb in a space where each pair of nodes {u, v} ∈ V × V has its own
dimension. Given the distance definition, the dissimilarity between a graphG and
its compressed representation S can then be defined simply as dist1(G, dec(S)).
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Edges introduced by the compression/decompression process are considered in
this measure, since edge weight w({u, v}) = 0 if edge {u, v} is not in G.

The distance can be seen as the cost of compression, whereas the compression
ratio represents the savings. Our goal is to produce a compressed graph which
optimizes the balance between these two. In particular, we will consider the
following form of the problem.

Definition 6. Given a weighted graph G and a compression ratio cr, 0 < cr <
1, the simple weighted graph compression problem is to produce a compressed
representation S of G with cr(S) ≤ cr such that dist1(G, dec(S)) is minimized.

Other forms can be just as useful. One obvious choice would be to give a max-
imum distance as parameter, and then seek for a minimum compression ratio.
In either case, the problem is complex, as the search space consists of all parti-
tions of V . However, the compression ratio is non-increasing and graph distance
non-decreasing when nodes are merged to supernodes, and this observation can
be used to devise heuristic algorithms for the problem, as we do in Section 4.

2.3 Generalized Weighted Graph Compression

We next generalize the weighted graph compression problem. In many applica-
tions, it is not the individual edge weights but the overall connectivity between
nodes that matters, and we propose a model that takes this into account. The
model is based on measuring the best paths between nodes, and trying to pre-
serve these qualities. We start with some preliminary definitions and notations.

Definition 7. Given a graph G = (V,E,w), a path P is a set of edges P =

{{u1, u2}, {u2, u3}, . . ., {uk−1, uk}} ⊂ E. We use the notation u1
P� uk to say

that P is a path between u1 and uk, and that u1 and uk are the endnodes of P .

The definition of how good a path is and which is the best one depends on the
kind of graph and the application. For the sake of generality, we parameterize
our formulation by a path quality function q. For example, in a flow graph
where edge weights are capacities of edges, path quality q can be defined as
the maximum flow through the path (i.e., as the minimum edge weight on the
path). In a probabilistic or uncertain graph where edge weights are probabilities
that the edge exists, q often is defined as the probability that the path exists
(i.e., as the product of the edge weights). Without loss of generality, we assume
that the value of any path quality function is positive, that a larger value of q
indicates better quality, and that q is monotone in the sense that a path with a
cycle is never better than the same path without the cycle. We also parameterize
the generalized definition by a maximum path length λ. The goal of generalized
weighted graph compression will be to preserve all pairwise connectivities of
length at most λ.

Definition 8. Given a weighted graph G = (V,E,w), a path quality function q,
and a positive integer λ, the λ-connection between a pair of nodes u and v is
defined as
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Qλ(u, v;G) =

{
max

P⊂E:u
P�v,|P |≤λ

q(P ) if such P exists

0 otherwise,

i.e., as the quality of the best path, of length at most λ, between u and v. If G is
obvious in the context, we simply write Qλ(u, v).

Definition 9. Let Ga and Gb be weighted graphs with an identical set V of
nodes, and let λ be a positive integer and q a path quality function as defined
above. The generalized distance between Ga and Gb (with respect to λ and q) is

distλ(Ga, Gb) =

√ ∑
{u,v}∈V ×V

(Qλ(u, v;Ga)−Qλ(u, v;Gb))2. (2)

Definition 10. Given a weighted graph G and a compression ratio cr, 0 <
cr < 1, the generalized weighted graph compression problem is to produce a
compressed representation S of G with cr(S) ≤ cr such that distλ(G, dec(S)) is
minimized.

The simple weighted graph compression problem defined earlier is an instance
of this generalized problem with λ = 1 and q({e}) = w(e). In this chapter, we
will only consider the two extreme cases with λ = 1 and λ = ∞. For notational
convenience, we often write dist(·) instead of distλ(·) if the value of λ is not
significant.

2.4 Optimal Superedge Weights and Mergers

Given a compressed graph structure, it is easy to set the weights of superedges
to optimize the simple distance measure dist1(·). Each pair {u, v} ∈ V × V of
original nodes is represented by exactly one pair {u′, v′} ∈ V ′×V ′ of supernodes,
including the cases u = v and u′ = v′. In order to minimize Equation 1, given
the supernodes V ′, we need to minimize for each pair {u′, v′} of supernodes
the sum

∑
{u,v}∈u′×v′(w({u, v})−w′({u′v′}))2. This sum is minimized when the

superedge weight is the mean of the original edge weights (including “zero-weight
edges” for those pairs of nodes that are not connected by an edge):

w′({u′, v′}) =
∑

{u,v}∈u′×v′ w({u, v})
|u′| |v′| , (3)

where |x| is the number of original nodes in supernode x.
The compression algorithms that we propose below work in an incremental,

often greedy fashion, merging two supernodes at a time into a new supernode
(following the ideas of references [3, 4]). The merge operation that these algo-
rithms use is specified in Algorithm 1. It takes a graph and two of its nodes
as parameters, and it returns a graph where the given nodes are merged into
one and the edge weights of the new supernode are set according to Equation 3.
Line 6 of the merge operation sets the weight of the self-edge for the supernode.
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When λ = 1, function W (x, y) returns the sum of weights of all original edges
between x and y using their mean weight Q1({x, y};S). The weight of the self-
edge is then zero and the edge non-existent if neither u nor v has a self-edge and
if there is no edge between u and v.

Algorithm 1. merge(u, v, S)

Input: Nodes u and v, and a compressed graph S = (V,E,w) s.t. u, v ∈ V
Output: A compressed graph S′ obtained by merging u and v in S
1: S′ ← S {i.e., (V ′, E′, w′)← (V,E,w)}
2: z ← {u ∪ v}
3: V ′ ← V ′ \ {u, v} ∪ {z}
4: for all x ∈ V s.t. u �= x �= v, and {u, x} or {v, x} ∈ E do

5: w′({z, x}) = |u|Qλ({u,x};S)+|v|Qλ({v,x};S)
|u|+|v|

6: w′({z, z}) = W (u,u)+W (v,v)+W (u,v)
|z|(|z|−1)/2

7: return S′

8: function W (x, y):
9: if x �= y then
10: return Qλ({x, y};S)|x||y|
11: else
12: return Qλ({x, x};S)|x|(|x| − 1)/2

Setting superedge weights optimally is much more complicated for the gener-
alized distance (Equation 2) when λ > 1: edge weights contribute to best paths
and therefore distances up to λ hops away, so the distance cannot be optimized
in general by setting each superedge weight independently. We use the merge
operation of Algorithm 1 as an efficient, approximate solution also in these cases,
and leave better solutions for future work.

2.5 Bounds for Distances between Graphs

Our compression algorithms produce the compressed graph S by a sequence of
merge operations, i.e., as a sequence S0 = G,S1, . . . , Sn = S of increasingly com-
pressed graphs. Since the distance function dist(·) is a metric and satisfies the tri-
angle inequality (recall its interpretation as Euclidian distance), the distance of the
final compressed graph S from the original graph G can be upper-bounded by

dist(G, dec(S)) ≤ ∑n
i=1 dist(dec(Si−1), dec(Si)).

An upper bound for the distance between two graphs can be obtained by consid-
ering only the biggest distance over all pairs of nodes. Let Ga and Gb be weighted
graphs with an identical set V of nodes, and denote the maximum distance for
any pair of nodes by

dmax(G1, G2) = max
{u,v}∈V ×V

|(Qλ(u, v;Ga)−Qλ(u, v;Gb))|.
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We now have the following bound:

dist(G1, G2) ≤
√∑

{u,v}∈V ×V dmax(G1, G2)2

∝ dmax(G1, G2).
(4)

This result can be used by compression algorithms to bound the effects of po-
tential merge operations.

2.6 A Bound on Distances between Nodes

We now derive an upper bound for dmax(S, S
′) for the case where S′ =

merge(u, v, S) for some nodes u and v in V (cf. Algorithm 1). Let dmax(u, v;S)
be the maximum difference of weights between any two edges merged together
as the result of merging u and v:

dmax(u, v;S) =

max{ max
x:{u,x} or {v,x}∈E

(|Qλ(u, x;S)−Qλ(v, x;S)|),

|Qλ(u, u;S)−Qλ(v, v;S)|, (5)

|Qλ(u, u;S)−Qλ(u, v;S)|,
|Qλ(v, v;S)−Qλ(u, v;S)| }.

The first element is the maximum over all edges to neighboring nodes x, and the
rest are the differences between edges that are merged into the self-edge.

For λ = 1 it is fairly obvious that we have the bound

dmax(S,merge(u, v, S)) ≤ dmax(u, v;S), (6)

since all effects of merge operations are completely local to the edges adjacent to
the merged nodes. The situation is more complicated for λ = ∞ since a merger
can also affect arbitrary edges. Luckily, many natural path quality functions q
have the property that a change in the weight of an edge (from w(e) to w′(e))
changes the quality of the whole path (from q(P ) to q′(P )) at most as much as
it changes the edge itself:

|q(P )− q′(P )|
q(P )

≤ |w(e) − w′(e)|
w(e)

.

Path quality functions q that have this property include the sum of edge weights
(e.g., path length), product of edge weights (e.g., path probability), minimum
edge weight (e.g., maximum flow), maximum edge weight, and average edge
weight. Based on this property, we can infer that the biggest distance after
merging u and v will be seen on the edges connecting u, v and their neighbors,
i.e., that the bound of Equation 6 holds also for λ = ∞ for many usual path
quality functions.

Based on Equations 4 and 6, we have a fast way to bound the effect of merging
any two nodes. We will use this bound in some of our algorithms.
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3 Related Work

Graph compression as presented in this chapter is based on merging nodes that
have similar relationships to other entities i.e., that are structurally most equiv-
alent — a classic concept in social network analysis [5]. Structural equivalence
and many other types of relations between (super)nodes have been considered
in social networks under block modeling (see, e.g., [6]), where the goal is both to
identify supernodes and to choose among the different possible types of connec-
tions between them. Our approach (as well as that of references [3, 4], see below)
uses only two types: “null” (no edges) and “complete” (all pairs are connected),
as these seem to be best suited for compression.

Graph compression has recently attracted new interest. The work most closely
related to ours is by Navlakha et al. [3] and Tian et al. [4], who independently
proposed to construct graph summaries of unweighed graphs by grouping nodes
and edges to supernodes and superedges. We generalize these approaches in two
important and related directions: to weighted graphs, and to long-range, indirect
(weighted) connections between nodes.

Both above-mentioned papers also address issues we do not consider here.
Navlakha et al. [3] propose a representation which has two parts: one is a graph
summary (in our terminology, an unweighted compressed graph), the other one
is a set of edge corrections to fix the errors introduced by mergers of nodes
and edges to superedges. Tian et al. [4] consider labeled graphs with categorical
node and edge attributes, and the goal is to find relatively homogeneous super-
nodes and superedges. This approach has been generalized by Zhang et al. [7]
to numerical node attributes which are then automatically categorized. They
also addressed interactive drill-down and roll-up operations on graphs. Tian et
al. used both top-down (divisive) and bottom-up (agglomerative) algorithms,
and concluded that top-down methods are more practical in their problem [4],
whereas Navlakha et al. had the opposite experience [3]. This difference is likely
due to different use of node and edge labels. The methods we propose work
bottom-up since we have no categorical attributes to guide a divisive approach
like Tian et al. had.

Unweighted graph compression techniques have been used to simplify graph
storage and manipulation. For example, Chen et al. [8] successfully applied a
graph compression method to reduce the number of embeddings when searching
frequent subgraphs in a large graph. Navlakha et al. [9] revealed biological mod-
ules with the help of compressed graphs. Furthermore, Chen et al. [10] incorpo-
rated the compressed graph notion with a generic topological OLAP framework
to realize online graph analysis.

There are many related but subtly different problems. Graph partitioning
methods (e.g. [11, 12]) aim to find groups of nodes that are more strongly con-
nected to each other than to nodes in other groups. Extraction of a subgraph,
whether based on a user query (e.g. [13, 14]) or not (e.g., [15–17]) produces a
smaller graph by just throwing out edges and nodes. Web graph compression
algorithms aim to produce as compact a representation of a graph as possi-
ble, in different formats (e.g., [18, 19]). For more related work, we refer to the
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good overviews given in references [3, 4]. A wider review of network abstraction
techniques is available in [20].

4 Algorithms

We next propose a series of algorithms for the weighted graph compression prob-
lem. All of the proposed algorithms work more or less in a greedy fashion, merg-
ing two (super)nodes and their edges at a time until the specified compression
rate is achieved. All these algorithms have the following input and output:

Input: weighted graph G = (V,E,w), compression ratio cr (0 < cr < 1), path
quality function q, and maximum path length λ ∈ N.

Output: compressed weighted graph S = (V ′, E′, w′) with cr(S) ≤ cr, such
that dist(G, dec(S)) is minimized.

Brute-force greedy algorithm. The brute-force greedy method (Algorithm 2) com-
putes the effects of all possible pairwise mergers (Line 4) and then performs the
best merger (Line 5), and repeats this until the requested compression rate is
achieved. The algorithm generalizes the greedy algorithm of Navlakha et al. [3]
to distance functions distλ(·) that take the maximum path length λ and the path
quality function q as parameters.

Algorithm 2. Brute-force greedy search

1: S ← G {i.e., (V ′, E′, w′)← (V, E,w)}
2: while cr(S) > cr do
3: for all pairs {u, v} ∈ V ′ × V ′ do {(*)}
4: d{u,v} ← dist(G, dec(merge(u, v, S)))
5: S ← merge(argmin{u,v} d{u,v}, S)
6: return S

(*) 2-hop optimization can be used, see text.

The worst-case time complexity for simple weighted graph compression is
O(|V |4), and for generalized compression O(|V |3|E| log |V |). We omit the details
for brevity.

2-hop optimization. The brute-force method, as well as all other methods we
present here, can be improved by 2-hop optimization. Instead of arbitrary pairs
of nodes, the 2-hop optimized version only considers u and v for a potential
merger if they are exactly two hops from each other. Since 2-hop neighbors
have a shared neighbor that can be linked to the merged supernode with a
single superedge, some compression may result. The 2-hop optimization is safe
in the sense that any merger by Algorithm 1 that compresses the graph involves
2-hop neighbors.

The time saving by 2-hop optimization can be significant: for the brute-force
method, for instance, there are approximately O(deg |E|) feasible node pairs
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with the optimization, where deg is the average degree, instead of the O(|V |2)
pairs in the unoptimized algorithm.

For the randomizedmethods below, a straight-forward implementation of 2-hop
optimization by randomwalk has a nice property. Assume that one node has been
chosen, then find a randompair for it by taking two consequtive randomhops start-
ing from the first node. Now 2-hop neighbors withmany shared neighbors aremore
likely to get picked, since there are several 2-hop paths to them, and a merger be-
tweennodeswithmany sharedneighborswill lead tobetter compression.Auniform
selection among all 2-hop neighbors does not have this property.

Thresholded algorithm. We next propose a more practical algorithmic alternative,
the thresholded method (Algorithm 3). It iterates over all pairs of nodes and
merges all pairs (u, v) such that dmax(u, v;S) ≤ Ti (Lines 5–6). The threshold
value Ti is increased iteratively in a heuristic manner whenever no mergers can
be done with the current threshold (Lines 2 and 4).

Algorithm 3. Thresholded algorithm

1: for all 0 ≤ i ≤ K do
2: Ti ← 2−K+i

3: S ← G {i.e., (V ′, E′, w′)← (V, E,w)}
4: for all i = 0, . . . ,K do
5: while there exists a pair {u, v} ∈ V ′×V ′ such that dmax(u, v;S) ≤ Ti do {(*)}
6: S ← merge(u, v, S)
7: if cr(S) ≤ cr then
8: return S

(*) 2-hop optimization can be used, see text.

Different schemes for setting the thresholds would give different results and
time complexity. The heuristic we have used has K = 20 exponentially growing
steps and aims to produce relatively high-quality results faster than the brute-
force method. Increasing the threshold in larger steps would give a faster method,
but eventually a random compression (cf. Algorithm 5 below). We will give better
informed, faster methods below.

The time complexity is O(|V |4) for the simple and O(|V |4+|V |2|E| log |V |) for
the generalized problem. These are upper bounds for highly improbable worst
cases, and in practice the algorithm is much faster. See experiments in Section 5
for details on real world performance.

Randomized semi-greedy algorithm. The next algorithm is half random, half
greedy (Algorithm 4). In each iteration, it first picks a node v at random (Line 3).
Then it chooses node u so that the merge of u and v is optimal with respect to
dmax(u, v;S) (Line 6). This algorithm, with 2-hop optimization, is a generalized
version of the randomized algorithm of Navlakha et al. [3].

The worst-case time complexity of the algorithm is O(|V |3) for the simple and
O(|V |2|E| log |V |) for the generalized problem.

Random pairwise compression. Finally, we present a naive, random method
which simply merges pairs of nodes at random without any aim to produce
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Algorithm 4. Randomized semi-greedy algorithm

1: S ← G {i.e., (V ′, E′, w′)← (V, E,w)}
2: while cr(S) > cr do
3: randomly choose v ∈ V ′

4: for all nodes u ∈ V ′ do {(*)}
5: du ← dmax(v, u;S)
6: S ← merge(argminu du, v, S)
7: return S

(*) 2-hop optimization can be used, see text.

Algorithm 5. Random pairwise compression

1: S ← G {i.e., (V ′, E′, w′)← (V, E,w)}
2: while cr(S) > cr do
3: randomly choose {u, v} ∈ V ′ × V ′{(*)}
4: S ← merge(u, v, S)
5: return S

(*) 2-hop optimization can be used, see text.

a good compression (Algorithm 5). The uninformed random method provides a
baseline for the quality of other methods that make informed decisions about
mergers.

The time complexity of the random algorithm is O(|V |2) for the simple and
O(|V ||E| log |V |) for the generalized problem. The random algorithm is essen-
tially the fastest possible compression algorithm that uses pairwise mergers. It
therefore provides a baseline (lower bound) for runtime comparisons.

Interactive compression. Thanks to the simple agglomerative structure of the
methods, all of them lend themselves to interactive visualization of graphs where
the abstraction level can be adjusted dynamically. This simply requires that the
merge operations save the hierarchical composition of the supernodes produced.
A drill-down operation then corresponds to backtracking merge operations, and
a roll-up operation corresponds to mergers.

5 Experiments

We next present experimental results on the weighted graph compression prob-
lem using algorithms introduced in the previous section and real data sets. With
these experiments we aim to address the following questions. (1) How well can
weighted graphs be compressed: what is the trade-off between compression (lower
number of edges) and distance to the original graph? (2) How do the different
algorithms fare in this task: how good are the results they produce? (3) What
are the running times of the algorithms? And, finally: (4) How does compression
affect the use of the graph in clustering?
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5.1 Experimental Setup

We extracted test graphs from the biological Biomine database2 and from a co-
authorship graph compiled from the DBLP computer science bibliography. Edge
weights are in [0, 1], and the path quality function is the product of weights of
the edges in the path. Below we briefly describe how the datasets were obtained.

A set of 30 connection graphs, each consisting of around 1000 nodes and 2411
to 3802 edges (median 2987 edges; average node degree 2.94) was used in most of
the tests. These graphs were obtained as connection graphs between three sets
of related genes (different gene sets for each of the 30 replicates) so that they
contain some non-trivial structure. We mostly report mean results over all 30
graphs.

A set of 30 smaller graphs was used for tests with the time-consuming brute-
force method. These graphs have 50 nodes each and 76 to 132 edges (median
117 edges; average node degree 2.16).

Two series of increasingly larger graphs were used to compare the scalability
of the methods. The sizes in one series range from 1000 to 5000 nodes and from
2000 to 17000 edges, and in the other series from 10 000 to 200 000 nodes and
about 12 000 to 400 000 edges.

The algorithms were implemented in Java, and all the experiments were run
on a standard PC with 4 GB of main memory and an Intel Core 2 Duo 3.16
GHz processor.

5.2 Results

Compressibility of weighted graphs. Figures 2a and 2b give the distance between
the compressed and original graphs as a function of the compression ratio. For
better interpretability, the distance is represented as the root mean square error
(RMSE) over all pairs of nodes. Overall, the distances are small. Compression
to half of the original size can be achieved with errors of 0.03 (λ = 1) or 0.06
(λ = ∞) per node pair. Especially for λ = ∞ graphs compress very nicely.

Comparison of algorithms. Figure 2c complements the comparison with results
for the smaller graphs, and now including the brute-force method (λ = 1). The
brute-force method clearly produces the best results (but is very slow as we will
see shortly). Note also how small graphs are relatively harder to compress and
the distances are larger than for the standard set of larger graphs.

The thresholded method is almost as good for compression ratios 0.8-0.9 but
the gap grows a bit for smaller compression ratios. The semi-greedy version, on
the other hand, is not as good with the larger compression ratios, but has a rel-
atively good performance with smaller compression ratios. The random method
is consistently the worst. A few early bad mergers already raise the distance for
high compression ratios. Experiments on larger graphs could not be run with
the brute force methods.

2 http://biomine.cs.helsinki.fi
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Fig. 2. (a)-(c): Distance between the compressed and the original graph as a function
of compression ratio. (d): Running times of algorithms.

Efficiency of algorithms. Mean running times of the algorithms (except brute-
force, see below) over the 30 standard graphs are shown in Figure 2d. The
differences in the running times are big between the methods, more than two
orders of magnitude between the extremes.

The 2-hop-optimized versions are an order of magnitude faster than the un-
optimized versions while the results were equally good (cf. Figure 2c). 2-hop
optimization thus very clearly pays off.

The brute-force method is very slow compared to the other methods (results
not shown). Its running times for the small graphs were 1.5–5 seconds with λ = 1
where all other methods always finished within 0.4 seconds. With λ = ∞, the
brute-force method spent 20–80 seconds whereas all other methods used less
than 0.5 second.

Running times with λ = ∞ are larger than with λ = 1 by an order of magni-
tude, for the semi-greedy versions by two orders of magnitude (not shown).

We evaluated the effect of graph size on running times of the three fastest algo-
rithm, using the series of increasingly large graphs and a fixed compression ratio 0.8
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Fig. 3. Running times of weighted graph compression algorithms on graphs of various
sizes from different sources

(Figures 3a and 3b). For λ = 1 the random method should be linear (and devia-
tions are likely due to random effects). The thresholded method seems in practice
approximately quadratic as is to be expected: for any value of λ, it will iterate over
all pairs of nodes. The semi-greedy algorithm has a much more graceful behavior,
even if slightly superlinear. Relative results are similar for λ = ∞.

Additional scalability experiments were run with larger graphs from both
biological and co-authorship domains, using the semi-greedy algorithm with 2-
hop optimization, compression ratio cr = 0.8, and λ = 1 (Figures 3c and 3d).
The algorithm compressed graphs of upto 400000 edges in less than 10 minutes
(biology) or in less than 3 minutes (co-authorship). The biological graphs contain
nodes with high degrees, and this makes the compression algorithms slower.

Effect of compression on node clustering results. We next study how errors in-
troduced by weighted graph compression affectmethods that work on graphs. As a
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case study, we consider node clustering andmeasure the difference of clusters in the
original graph vs. clusters in (the decompressed version of) the compressed graph.

We applied the k-medoids clustering algorithm on the 30 standard graphs. We
set k = 3, corresponding to the three gene groups used to obtain the graphs. The
proximity between two nodes was computed as the product of weights (probabil-
ities) of edges on the best path. We measure the difference between clusterings
by the Rand index (more exactly, by 1 minus Rand index). In other words, we
measure the fraction of node pairs that are clustered inconsistently in the clus-
terings, i.e., assigned to the same cluster in one graph and to different clusters
in the other graph.
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Fig. 4. Effect of compression on node clustering. Y -axis is the fraction of node pairs
clustered inconsistently in the original and the compressed graph.

According to the results, the thresholded and semi-greedy compression meth-
ods can compress a weighted graph with little effect on node clustering (Fig-
ure 4). The effect is small especially when λ = ∞, where the inconsistency ratio
is less than 0.1 (the thresholded method) or 0.3 (the semi-greedy method) for a
wide range of compression ratios. The effects of the thresholded and semi-greedy
versions are larger for λ = 1, especially when the compression ratio cr becomes
smaller. This is because a clustering based solely on immediate neighborhoods
is more sensitive to individual edge weights, whereas Q∞(·) can find a new best
path elsewhere if an edge on the current best path is strongly changed.

Surprisingly, the semi-greedy method performs best in this comparison with
compression ratio cr ≤ 0.2. With λ = ∞ even an aggressive compression intro-
duced relatively little changes to node clustering. In the other extreme, clusters
found in randomly compressed graphs are quite—but not completely—different
from the clusters found in the original graph. Close to 50% of pairs are clustered
inconsistently, whereas a random clustering of three equally sized clusters would
have about 2/3 inconsistency.
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6 Conclusions

We have discussed the problem of compressing BisoNets or, in more general,
weighted graphs. We derived bounds for it and gave algorithms and experimen-
tal results on real datasets. We presented two forms of the problem: a simple
one, where the compressed graph should preserve edge weights, and a general-
ized one, where the compressed graph should preserve strengths of connections
of up to λ hops. The generalized form may be valuable especially for graph anal-
ysis algorithms that rely more on strengths of connections than individual edge
weights.

The results indicate the following. (1) BisoNets can be compressed quite a lot
with little loss of information. (2) The generalized weighted graph compression
problem is promising as a pre-processing step for computationally complex graph
analysis algorithms: clustering of nodes was affected very little by generalized
compression. (3) BisoNets can be compressed efficiently. E.g., the semi-greedy
method processed a 16 000 edge graph in 2 seconds.

An additional good property of the methods is that compressed graphs are
graphs, too. This gives two benefits. First, some graph algorithms can be applied
directly on the compressed graph with reduced running times. Second, represent-
ing graphs as graphs is user-friendly. The user can easily tune the abstraction
level by adjusting the compression ratio (or the maximum distance between
the compressed and the original graph). This can also be done interactively to
support visual inspection of a graph.

There are several directions in which this work can be developed further.
Different merge operations may be considered, also ones that remove edges. More
efficient algorithms can be developed for even better scalability to large graphs.
It could be useful to modify the methods to guarantee a bounded edge-wise or
node pair-wise error, or to also accommodate categorical labels.
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Abstract. We introduce the problem of identifying representative nodes
in probabilistic graphs, motivated by the need to produce different sim-
ple views to large BisoNets. We define a probabilistic similarity measure
for nodes, and then apply clustering methods to find groups of nodes.
Finally, a representative is output from each cluster. We report on exper-
iments with real biomedical data, using both the k-medoids and hierar-
chical clustering methods in the clustering step. The results suggest that
the clustering based approaches are capable of finding a representative
set of nodes.

1 Introduction

Bisociative information networks (BisoNets) allow integration and analytical use
of information from various sources [1]. However, information contained in large
BisoNets is difficult to view and handle by users. The problem is obvious for
BisoNets of hundreds of nodes, but the problems start already with dozens of
nodes.

In this chapter, we propose identification of a few representative nodes as one
approach to help users make sense of large BisoNets. As an example scenario of
the approach, consider link discovery. Given a large number of predicted links,
it would be useful to present only a small number of representative ones to the
user. Or, representatives could be used to abstract a large set of nodes, e.g.,
all nodes fulfilling some user-specified criteria of relevance, into a smaller but
representative sample.

Our motivation for this problem comes from genetics, where current high-
throughput techniques allow simultaneous analysis of very large sets of genes or
proteins. Often, these wet lab techniques identify numerous genes (or proteins,
or other biological components) as potentially interesting, e.g., by the statistical
significance of their expression, or association with a phenotype (e.g., disease).
Finding representative genes among the potentially interesting ones would be
useful in several ways. First, it can be used to remove redundancy, when several
genes are closely related and showing all of them adds no value. Second, represen-
tatives might be helpful in identifying complementary or alternative components
in biological mechanisms.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 218–229, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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The BisoNet in our application is Biomine [2], an integrated network database
currently consisting of about 1 million biological concepts and about 10 million
links between them. Concepts include genes, proteins, biological processes, cel-
lular components, molecular functions, phenotypes, articles, etc.; weighted links
mostly describe their known relationships. The data originates from well known
public databases such as Entrez1, GO2, and OMIM3.

The problem thus is to identify few representative nodes among a set of them,
in a given weighted network. The solutions proposed in this chapter are based
on defining a probabilistic similarity measure for nodes, then using clustering to
group nodes, and finally selecting a representative from each cluster.

In this framework, two design decisions need to be made: how to measure
similarities or distances of nodes in a probabilistic network (Section 3), and
which clustering method to use on the nodes (Section 4). Experimental results
with real datasets are reported in Section 5, and we conclude in Section 6 with
some notes about the results and future work.

2 Related Work

Representatives are used to reduce the number of objects in different applica-
tions. In an opposite direction to our work, clustering can be approximated by
finding representative objects, clustering them, and assigning the remaining ob-
jects to the clusters of their representatives. Yan et al. [3] use k-means or RP
trees to find representative points, Kaufman and Rousseeuw [4] k-medoids, and
Ester et al. [5] the most central object of a data page.

Representatives are also used to reduce the number of datapoints in large
databases, i.e., to eliminate irrelevant and redundant examples in databases to
be tested by data mining algorithms. Riquelme et al. [6] use ordered projections
to find representative patterns, Rozsypal and Kubat [7] genetic algorithms, and
Pan et al. [8] measure the representativeness of a set with mutual information
and relative entropy.

DeLucia and Obraczaka [9] as well as Liang et al. [10] use representative
receivers to limit receiver feedback. Only representatives provide feedback and
suppress feedback from the other group members. Representatives are found
by utilizing positive and negative acknowledgments in such a way that each
congested subtree is represented by one representative.

The cluster approximation and example reduction methods use clustering al-
gorithms to find representatives, but are not applied on graphs. The feedback
limitation methods again use graph structures, but not clustering to find repre-
sentatives. Other applications like viral marketing [11], center-piece subgraphs
[12], or PageRank [13] search for special node(s) in graphs, but not for represen-
tative nodes. The authors are not aware of approaches to find representatives by
clustering nodes and utilizing the graph structure.

1 www.ncbi.nlm.nih.gov/Entrez/
2 www.geneontology.org/
3 www.ncbi.nlm.nih.gov/omim/
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3 Similarities in Probabilistic Graphs

Probabilistic graphs offer a simple yet powerful framework for modeling rela-
tionships in weighted networks. A probabilistic graph is simply a weighted graph
G = (V,E) where the weight associated with an edge e ∈ E is probability p(e)
(or can be transformed to a probability). The interpretation is that edge e ex-
ists with probability p(e), and conversely e does not exist, or is not true, with
probability 1− p(e). Edges are assumed mutually independent.

The probabilistic interpretation of edge weights p(e) gives natural measures
for indirect relationships between nodes. In this chapter we call these similarity
measures, as is conventional in the context of clustering.

Probability of a Path. Given a path P consisting of edges e1, . . . , ek, the proba-
bility p(P ) of the path is the product p(e1) · . . . · p(ek). This corresponds to the
probability that the path exists, i.e., that all of its edges exist.

Probability of the Best Path. Given two nodes u, v ∈ V , a measure of their
connectedness or similarity is the probability of the best path connecting them:

s(u, v) = max
P is a path from u to v

p(P ).

Obviously, this is not necessarily the path with the least number of edges. This
similarity function s(·) is our choice for finding representatives.

Network Reliability. Given two nodes s and t, an alternative measure of their
connectivity is the probability that there exists at least one path (not necessar-
ily the best one) between s and t. This measure is known as the (two-terminal)
network reliability (see, e.g., [14]). A classical application of reliability is in com-
munication networks, where each communication link (edge) may fail with some
probability. The reliability then gives the probability that s and t can reach each
other in the network.

Network reliability is potentially a more powerful measure of connectedness
than the probability of the best path, since reliability uses more information
— not only the best path. The reliability measure considers alternative paths
between s and t as independent evidence for their connectivity, and in effect
rewards for such parallelism, while penalizing long paths. The reliability is always
at least as high as the probability of the best path, but can also be considerably
higher.

However, computing the two-terminal network reliability has been shown to
be NP-hard [15]. Fortunately, the probability can be estimated, for instance,
by using a straightforward Monte Carlo approach: generate a large number of
realizations of the random graph and count the relative frequency of graphs
where a path from s to t exists. For very large graphs, we would first extract
a smaller neighborhood of s and t, and perform the computation there. These
techniques are described in more detail, e.g., by Sevon et al. [2] and Hintsanen
and Toivonen [16]. Due to the complexity of computing the network reliability,
we stick to the simpler definition of similarity s(·) as the probability of the best
path.
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4 Clustering and Representatives in Graphs

Our approach to finding representatives in networks is to cluster the given nodes,
using the similarity measure defined above, and then select one representative
from each cluster (Algorithm 1). The aim is to have representatives that are
similar to the nodes they represent (i.e., to other members of the cluster), and
also to have diverse representatives (from different clusters). In clustering, we
experiment with two methods: k-medoids and hierarchical clustering. Both are
well-known and widely used methods which can be applied to our problem of
finding representatives; k-medoids is an obvious choice, since it directly produces
representatives.

Algorithm 1. Find representative nodes

Input: Set S of nodes, graph G, number k of representatives
Output: k representative nodes from S
1: Find k clusters of nodes in S using similarities s(·) in graph G
2: For each of the k clusters, output its most central node (the node with the maximum

similarity to other nodes in the cluster)

k-medoids. k-medoids is similar to the better known k-means method, but bet-
ter suited for clustering nodes in a graph. Given k, the number of clusters to be
constructed, the k-medoids method iteratively chooses cluster centers (medoids)
and assigns all nodes to the cluster identified by the nearest medoid. The differ-
ence to the k-means clustering method is that instead of using the mean value
of the objects within a cluster as cluster center, k-medoids uses the best object
as a cluster center. This is a practical necessity when working with graphs, since
there is no well defined mean for a set of nodes. The k-medoids method also
immediately gives the representatives. The method is described in more detail,
e.g., by Han and Kamber [17] and Kaufman and Rousseeuw [4].

For very large graphs, a straight forward implementation of k-medoids is not
necessarily the most efficient. In our applications we use the Biomine database
and tools to facilitate faster clustering. Given a set S of nodes, i.e., biological
entities, to be clustered, and k, the number of clusters to be constructed, the
method proceeds as follows. First, the Biomine system is queried for a graph
G of at most 1000 nodes cross-connecting nodes in S as strongly as possible.
The pairwise similarities between nodes are then calculated as the best path
probabilities in G.

The Biomine system uses a heuristic to obtain G, details are omitted here. As
the Biomine network consists of a million nodes, querying it for a graph exceeds
by far the computational complexity of running k-medoids on the extracted
graph. For brevity, we here omit discussion of the computational complexities of
k-medoids and other approaches.

To start the actual clustering, k nodes from S are chosen randomly as initial
medoids. Each remaining node in S is then clustered to the most similar medoid.
If the pairwise similarity between a node and all medoids equals zero, the node
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will be considered an outlier and is not assigned to any medoid in this iteration.
Then, a new medoid is calculated for each cluster. The node that has a maximal
product of similarities between each other node in the cluster and itself is chosen
as the new medoid. The last two steps are then repeated until the clustering
converges or the maximum number of iterations is reached.

Example. As an example, k-medoids was run with k = 3 and a set of nine genes.
The genes belong to three known groups, each group of three genes being associ-
ated to the same phenotype. The three OMIM phenotypes used in the example
are a pigmentation phenotype (MIM:227220), lactase persistence (MIM:223100),
and Alzheimer disease (MIM: 104300).
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Fig. 1. Clusters (diamonds, boxes, ellipses) and representatives (double borders) of
nine given nodes, and some connecting nodes (circles) on best paths between them.
Lines represent edges between two nodes, dotted lines represent best paths with several
nodes.

The algorithm converged in this case after two iterations. The result of the ex-
ample run is shown in Figure 1. Looking at the quality of clustering, only one
gene (EntrezGene:1627) was assigned to another cluster than it should with re-
spect to the OMIM phenotypes. Apart from this gene, the clustering produced
the expected partitioning: each gene was assigned to a cluster close to its corre-
sponding phenotype. The three representatives (medoids) are genes assigned to
different phenotypes. Hence, the medoids can be considered representative for
the nine genes.

Hierarchical Clustering. As an alternative clustering method we use hierarchical
clustering. Hierarchical clustering is a greedy clustering method that iteratively
merges pairs of clusters. (Again, see, e.g., Han and Kamber [17] or Kaufman and
Rousseeuw [4] for more information.) A possible problem with the k-medoids
approach is that it may discover star-shaped clusters, where cluster members are
connected mainly through the medoid. To give more weight on cluster coherence,
we use the hierarchical clustering method with average linkage, as follows.
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In the practical implementation, we again start by querying the Biomine sys-
tem for a graph G of at most 1000 nodes connecting the given nodes S, and
compute similarities of nodes in S as the probabilities of the best paths connect-
ing them in G.

The hierarchical clustering proceeds in the standard, iterative manner, start-
ing with having each node in a cluster of its own. In each iteration, those two
clusters are merged that give the best merged cluster as a result, measured by
the average similarity of nodes in the merged cluster. The clustering is finished
when exactly k clusters remain.

After the clusters have been identified, we find the medoid in each cluster (as
in the k-medoids method) and output them as representatives.

Random Selection of Representatives. For experimental evaluation, we also con-
sider a method that selects representatives randomly. We again query the Biomine
system for a graph G of at most 1000 nodes connecting the given nodes S, and
compute similarities of nodes in S as the probabilities of the best paths connect-
ing them in G.

We randomly select k medoids and cluster the remaining nodes of S to the
most similar medoid. If the pairwise similarity between a node and all medoids
equals zero, the node will be considered an outlier, as in k-medoids.

5 Experiments

Our goal in this section is to evaluate how successful the method is in finding
representative nodes.

5.1 Test Setting

Test Data. We used data published by Köhler et al. [18], who defined 110 disease-
gene families based on the OMIM database. The families contain three to 41
genes each; each family is related to one disease. Köhler et al. originally used
the families in their experiments on candidate gene prioritization. Given a list
of candidate genes they used a protein-protein interaction network to score the
given genes by distance to all genes that are known to be related to a particular
disease. Then they set up a ranking of the candidate genes based on their scores.
Although their aim was different from ours, and the network they used was only
a protein interaction network, the data sets also give a real test case for our
problem.

Test Setting. In each test run, k gene families were randomly chosen as the nodes
to find k representatives for. We performed 100 test runs for k = 3 and k = 10 of
all three variants (k-medoids, hierarchical, random) of the method, and report
averages over the 100 runs. As k-medoids is sensitive to the randomly selected
first medoids, we applied k-medoids five times in each run and selected the best
result. We applied the random selection of representatives 20 times in each run
and used average values of the measures in order to compensate the random
variation.
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Measures of Representativeness. We use two measures of representativeness of
the selected nodes. The first one is based on the similarity of nodes to their
representatives, the second one on how well the k (known) families of nodes are
covered by the k representatives.

The first measure is directly related to the objective of the k-medoids method.
The idea is that each node is represented by its nearest representative, and we
simply measure the average similarity of objects to their closest representative
(ASR):

ASR =
1

|S| −K

∑

x∈S,x�=m(x)

s(x,m(x))

where S is the set of given vertices, K is the number of clusters, m(x) is the
medoid most similar to x, and s(x,m(x)) denotes the similarity (probability of
best path) between node x and medoid m(x).

The second measure takes advantage of the known families of genes in our
test setting. The rationale here is that a representation is better if it covers
more families, i.e., contains a representative in more families. For this purpose,
we calculate the fraction of non-represented classes (NRC):

NRC =
1

K
|{k |�∃j : mj ∈ Hk, j = 1..K}|,

where K is the number of classes and clusters (equal in our current test setting),
mj is the medoid of the jth cluster, and Hk is the kth original class.

For the k-medoids variant, we also report the number of outliers. Recall that
the method outputs as outliers those nodes that are not connected (in the ex-
tracted subnetwork) to any medoid.

As additional characteristics of the methods we measure how good the under-
lying clusterings are. Again, we have two measures, one for the compactness of
clusters, and one based on the known classification.

The first additional measure is the average compactness of clusters (ACC),
where the compactness of a given cluster is defined as the minimum similarity
of two objects in the cluster. The average is computed over clusters having at
least two members:

ACC =
1

k′

K∑

k=1

min
x,y∈Ck

s(x, y), where k′ = |{k | |Ck| > 1, k = 1..K}|,

i.e., k′ is the number on non-trivial clusters. This measure is sensitive to outliers,
and thus may favor the k-medoids variant.

The second additional measure compares the clustering to the known classes
and measures their difference. We first identify the class best represented by each
cluster, and then calculate how many objects were “wrongly assigned” (WAO):

WAO =
1

|S|
K∑

k=1

min
k′=1..K

|Ck\Hk′ |.

Rand index could have been used here just as well.
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5.2 Results

In terms of average similarity of nodes to their representative (ASR), the k-
medoids method slightly but clearly outperforms the hierarchical method (Fig-
ure 2, left panels). The hierarchical method, in turn, is clearly superior to the
random selection of representatives (Figure 2, right panels). For the k-medoids
variant and k = 3, average similarities in the 100 test runs range from 0.3 to
0.8, and the total average is 0.51. For k = 10 the average is 0.55 and range is
0.4 to 0.8. For the hierarchical variant and k = 3, the average is 0.48 and range
is 0.1 to 0.8. For k = 10 the average is 0.51 and range is 0.3 to 0.7. For the
random variant and k = 3, average is 0.36 and range is 0.2 to 0.7. For k = 10
average is 0.43 and range is 0.3 to 0.6. These differences are no big surprise,
since the k-medoids method more directly aims to maximize this measure than
the hierarchical method, which however performs better than random choice of
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Fig. 2. Average similarity of objects to their nearest representative (ASR). In each
panel 100 runs are visualized. Each point represents one run, thereby comparing ASR
values of two variants (see x- and y-axis).
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Table 1. Fraction of non-represented classes (NRC)

k=3 k=10

k-medoids 14 % 29 %
hierarchical 16 % 21 %
random 34 % 39 %

representatives. Further, the k-medoids method may output some nodes as out-
liers. The average fraction of outliers in the experiments was 1.9 % for k = 3
and 4.5 % for k = 10.

The fraction of non-represented classes is a more neutral measure of perfor-
mance since neither variant directly maximizes this. The results indicate that
the k-medoids variant is slightly better with respect to this measure for k = 3
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Fig. 3. Average compactness of nontrivial clusters (ACC). In each panel 100 runs
are visualized. Each point represents one run, thereby comparing ACC values of two
variants (see x- and y-axis).
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(Table 1), but for k = 10 the hierarchical variant is clearly superior. Both meth-
ods clearly outperform the random selection of representatives.

To gain a better understanding of the performance of the methods, we look at
the quality of clusterings produced. It is not surprising that clusters produced by
the hierarchical method are on averagemore compact than those produced by the
k-medoids method (Figure 3), as the hierarchical method more directly optimizes
this measure. It is however somewhat surprising that k-medoids performs only
slightly better than the random variant. The average compactness (minimum
similarity within a cluster) is 0.20 (k = 3) and 0.23 (k = 10) for k-medoids, 0.33
(k = 3) and 0.48 (k = 10) for the hierarchical variant, and 0.16 (k = 3) and 0.21
(k = 10) for the random variant, with considerable spread and variance in all
results.

In terms of wrongly assigned objects, the hierarchical variant clearly out-
performs k-medoids (Table 2). The k-medoids variant outperforms the random
selection of representatives, but for k = 10 only by a small difference.

Table 2. Wrongly assigned objects (WAO)

k=3 k=10

k-medoids 18 % 44 %
hierarchical 15 % 25 %
random 27 % 46 %

6 Conclusions

We have described the problem of finding representative nodes in large prob-
abilistic graphs. We based our definition of node similarity on a simple proba-
bilistic interpretation of edge weights. We then gave a clustering-based method
for identifying representatives, with two variants: one based on the k-medoids
methods, one on the hierarchical clustering approach.

We performed a series of 100 experiments on real biomedical data, using pub-
lished gene families [18] and the integrated Biomine network [2]. We measured
the success of finding representatives with two measures: the similarity of nodes
to their representatives, and the fraction of classes represented by the output.

In our experimental comparison, the k-medoids based variant and the hierar-
chical method are promising approaches. A look at the quality of the clusterings
indicates that the success of the methods in identifying the underlying clusters
depends on the measure used, and may also depend on the number of clusters to
be constructed. According to the results, the hierarchical method is more robust,
especially when looking for more than just a couple of representatives.

More work is needed to understand the reasons for the differences of the two
approaches. Further, the problem of finding representative nodes needs to be
validated in real applications. Based on the simple methods introduced here,
and the initial experimental results, the clustering approach seems to be capable
of reliably identifying a high quality set of representatives.
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Abstract. This article proposes a new approach to extract existing (or
detect missing) concepts from a loosely integrated collection of informa-
tion units by means of concept graph detection. Thereby a concept graph
defines a concept by a quasi bipartite sub-graph of a bigger network with
the members of the concept as the first vertex partition and their shared
aspects as the second vertex partition. Once the concepts have been ex-
tracted they can be used to create higher level representations of the
data. Concept graphs further allow the discovery of missing concepts,
which could lead to new insights by connecting seemingly unrelated in-
formation units.

1 Introduction

The amount of data to which researchers have access is increasing at a breath-
taking pace. The available data stems from heterogeneous sources from diverse
domains with varying semantics and of various quality. It is a big challenge to
integrate and reason from such an amount of data. However by integrating data
from diverse domains, relations can be discovered spanning multiple domains,
leading to new insights and thus a better understanding of complex systems.
In this article we use a network-based approach to integrate data from diverse
domains of varying quality. The network consists of vertices that represent in-
formation units such as objects, ideas or emotions, whereas edges represent the
relations between these information units.

Once the data has been merged into a unifying model it needs to be analyzed.
In this article we describe an approach based on concept graphs to extract seman-
tical information from loosely integrated information fragments. This approach
was presented at the International Conference on Computational Creativity [6].
Concept graphs allow for the detection of existing concepts, which can be used
to create an abstraction of the underlying data. They define a concept by a
quasi bipartite sub-graph consisting of two vertex partitions. The first partition
contains the members of the concept and the second partition the aspects they
have in common. By providing a higher level view on the data the user might
obtain a better insight into the integrated data and discover new relations across
diverse domains that have been hidden in the noise of the integrated data.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 230–245, 2012.
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Concept graphs also allow for the detection of domain bridging concepts [8]
that connect information units from various domains. These domain bridging
concepts support creative thinking by connecting seemingly unrelated informa-
tion units from diverse domains.

Another advantage of concept graphs is that they enable information units
to be detected that share common properties but to which no concept has yet
been assigned. This might lead to the discovery of concepts that are missing in
the data or to the detection of new concepts.

The rest of the chapter is organized as follows: in the next section we will
briefly review Bisociative Information Networks [7], which we use for the in-
tegration of heterogeneous data sources from diverse domains. We move on to
introduce concept graphs and describe their detection, and subsequently discuss
the discovery of concept graphs in a real world data set and show some example
graphs. Finally we draw conclusions from our discussion and provide an outlook
on future work.

2 Bisociative Information Networks

Bisociative Information Networks (BisoNets) [3,7] provide a framework for the
integration of semantically meaningful information but also loosely coupled in-
formation fragments from heterogeneous data sources. The term bisociation [5]
was coined by Arthur Koestler in 1964 to indicate the “...joining of unrelated,
often conflicting information in a new way...”.

BisoNets are based on a k-partite graph structure, whereby the most trivial
partitioning consists of two partitions (k = 2), with the first vertex set repre-
senting units of information and the second set representing the relations among
information units. By representing relations as vertices BisoNets support the
modeling of relationships among any number of members.

However the role of a vertex is not fixed in the data. Depending on the point
of view a vertex can represent an information unit or a relation describing the
connection between units of information. Members of a relation are connected by
an edge with the vertex describing the relation they share. One example is the
representation of documents and authors where documents as well as authors
are represented as vertices. Depending on the point of view, a document might
play the role of the relation describing authorship or might be a member in the
relation of documents written by the same author.

The unified modeling of information units and relations as vertices has many
advantages e.g. they both support the assigning of attributes such as different
labels. However these attributes do not carry any semantic information. Edges
can be further marked as directed to explicit model relationships that are only
valid in one direction. Vertices can also be assigned to partitions to distinguish
between different domains such as biology, chemistry, etc.

In contrast to ontologies, semantic networks or topic maps, relations are as-
signed a weight that describes the reliability of the connection. This means that
BisoNets support the integration not only of facts but also of pieces of evidence.



232 T. Kötter and M.R. Berthold

Thus units of information and their relations can be extracted from various
information sources such as existing databases, ontologies or semantical net-
works. But also semistructured and noisy data such as literature or biological
experiments can be integrated in order to provide a much richer and broader
description of the information units. By applying different mining algorithms
to the same information source, diverse relations and units of information can
be extracted with each mining algorithm representing an alternative view that
might highlight a different aspect of the same data.

BisoNets focus solely on the information units and their relations and do not
store all the more detailed data underneath the pieces of information. However
vertices do reference the detailed data they stem from. This allows BisoNets to
integrate huge amounts of data and still be able to show the data from which a
vertex originates.

3 Concept Graphs

Once all the data has been integrated, it has to be analyzed in order to find valu-
able information. We propose a new method to automatically extract semantic
information from the loosely integrated collection of information units by means
of concept graph detection.

A concept graph represents a concept that stands for a mental symbol. A
concept consists of its members, which do not only refer to materialized objects
but also to ideas, activities or events, and their common aspects, which represent
the properties the concept members share. In philosophy and psychology, the
concept members are also known as the extension of a concept, which consists of
the things to which the concept applies - whereby the aspects are known as the
intension of a concept, consisting of the idea or the properties of the concept. An
example could be a concept representing birds with specific birds such as eagles
or sparrows as members, which in turn are related to their common aspects such
as feather, wing, and beak.

Concept graphs base on the assumption that similar information units share
more properties than dissimilar information units. Therefore the more similar
two information units are, the more properties they share. This assumption bases
on the family resemblance proposed by Wittgenstein [12], which states that
objects that already share some properties are likely to share further common
properties. The theory of basic objects in natural categories from Rosch et al. [9]
is also bases on the family resemblance. Rosch et al. define a basic category as
the category that carries the most information; the basic categories consist of
properties that are mostly connected to the members of the category. Thus family
resemblance as well as the basic categories speak in favor of the assumption
that a concept does not only possess one property, but many. These properties
describe the members of a concept and distinguish the members of a concept
from non-members.
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Fig. 1. Example of aconcept graph describing the concept flightless bird with its mem-
bers Ostrich and Weka and their common aspects wing and feather

In addition to the concept members and their shared aspects, a concept graph
might also contain the symbolic representation of the concept itself.
This symbolic representation can be used to generate an abstract view on the
data since it represents all members of the corresponding concept graph.

An example of a concept graph that represents the concept of flightless birds
is depicted in Figure 1. It consists of the two concept members Ostrich and Weka
and their shared aspects wing and feather. The graph also contains the symbolic
representation of the flightless bird concept, which can be used as an abstract
representation of this particular concept graph.

3.1 Preliminaries

As mentioned above the members of a concept graph are similar in that they
share some aspects. In BisoNets the aspects of an information unit are repre-
sented by its direct neighbors. The more neighbors two information units share
the more similar they are. This leads to the representation of a concept graph
as a dense sub-graph in a BisoNet, consisting of two disjoint and fully connected
vertex sets. Here the first vertex set represents the concept members and the sec-
ond vertex set the aspects that are shared by all members of the concept graph.
Thus a perfect concept graph would form a complete bipartite graph as depicted
in Figure 1 with the concept members as the first partition and the aspects with
the concept as the second partition. A concept graph might also contain rela-
tions among the vertices within a partition and thus does not necessarily form
a perfect bipartite (sub) graph.
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Once a dense sub-graph has been detected it needs to be analyzed in order
to distinguish between the member set and the aspect set. We have developed
heuristics to detect the different set types for directed and undirected networks.
Both heuristics are based on the assumption that information units are described
by their neighbors in the network. In addition, the heuristics for the directed net-
work are based on the assumption that information units point to their aspects.
Hence a relation in a directed network consists of an information unit as the
source and an aspect as the target vertex.

The heuristics to identify the different vertex types are based on the following
definitions:

Let B(V,E) be the un/directed BisoNet that contains all information with
V representing the vertices and E ⊆ V × V representing the edges. The edge
(u, v) ∈ E represents a directed edge with u ∈ V as source and v ∈ V as target
vertex whereas {u, v} ∈ E represents an undirected edge connecting the two
vertices u, v ∈ V .

C(VA, VM , EC) ⊆ B defines the concept graph C in the BisoNet B. VA ⊆ V
represents the aspect set and VM ⊆ V the member set of the concept graph C
in which VA∩VM = ∅. VC = VA ∪VM is the set of all vertices within the concept
graph. EC ⊆ E is the subset of all edges that connect vertices within the concept
graph EC = {{u, v} ∈ E : u, v ∈ VC}.

Let

N(v) = {u ∈ V : {v, u} ∈ E}

be the neighbors of the vertex v ∈ V in the BisoNet B. Whereby

N+(v) = {u ∈ V : (v, u) ∈ E}

denotes its target neighbors and

N−(v) = {u ∈ V : (u, v) ∈ E}

its source neighbors.
The neighbors of a vertex v ∈ V in a given vertex set U ⊆ V are denoted by

N(v, U) = N(v) ∩ U = {u ∈ U : {u, v} ∈ E} .

In the directed case

N+(v, U) = N+(v) ∩ U = {u ∈ U : (v, u) ∈ E}

denotes the target neighbors and

N−(v, U) = N−(v) ∩ U = {u ∈ U : (u, v) ∈ E}

the source neighbors of a given vertex v ∈ V within a given vertex set U ⊆ V .
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Member Set. The concept members form the first of the two disjoint vertex
sets of the concept graph. The heuristic that denotes the probability of a vertex
v ∈ VC to be part of the member set VM is denoted by the function m : VC →
[0, 1].

Given the set VC ⊆ V of all vertices within a concept graph C in an undirected
network, m(v) is defined as the ratio of neighbors inside and outside the concept
graph for a given vertex v ∈ VC

m(v) =
|N(v, VC)|
|N(v)| .

In a directed network the heuristic bases on the assumption that concept mem-
bers point to their aspects. This assumption leads to the computation of the
ratio of target neighbors inside and outside the concept graph for a given vertex
v ∈ VC

m(v) =
|N+(v, VC)|
|N+(v)| .

The set of information units VM for a given BisoNet B is defined as

VM = max
V ′∈VC

1

|V ′|
∑

v∈V ′
m(v).

Aspect Set. The aspect set is the second vertex set of the concept graph that
describes the members of the concept graph. Each aspect on its own might
be related to other vertices as well but the set of aspects is only shared by
the members of the concept graph. The vertices of the aspect set might differ
considerably in the number of relations to vertices outside of the concept graph
depending on their level of detail. More abstract aspects such as animals are
likely to share more neighbors outside of the concept graph than more detailed
aspects such as bird.

The heuristic that denotes the probability of a vertex v ∈ VC to belong to the
aspect set VA is denoted by the function a : VC → [0, 1].

Given the set VC ⊆ V of all vertices within a concept graph C in an undirected
network, a(v) is defined as the inverse ratio of neighbors inside and outside the
concept graph for a given vertex v ∈ VC

a(v) = 1− |N(v, VC)|
|N(v)| = 1−m(v).

In a directed network the heuristic is defined as the ratio of the source neighbors
inside and outside the concept graph for a given vertex v ∈ VC

a(v) =
|N−(v, VC)|
|N−(v)| .

The set of aspects VA for a given BisoNet B is defined as

VA = max
V ′∈VC

1

|V ′|
∑

v∈V ′
a(v).
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Concepts. The concept c ∈ VA is a vertex of the aspect set. A concept differs
from the other vertices of the aspect set in that it should only be related to the
vertices of the member set within the concept graph. Hence a perfect concept
has no relations to vertices outside of the concept graph and can thus be used
to represent the concept graph.

The heuristic c : VA → [0, 1] denotes the probability of a vertex being the
concept that can represent concept graph C. The heuristic is based on the cue
validity [2] which describes the relevance of an aspect for a given concept. More
specific aspects have a higher cue validity than more general ones.

Given the set VC ⊆ V of all vertices within a concept graph C in an undirected
network, the heuristic is defined as the ratio of the neighbors inside and outside
the concept graph

c(v) =
|N(v, VC)|
|N(v)| = m(v), v ∈ VA.

In a directed network the heuristic considers the ratio of the source neighbors
inside and outside the concept graph

c(v) =
|N−(v, VC)|
|N−(v)| = a(v), v ∈ VA.

The concept c that can represent the concept graph is the vertex v ∈ VA with
the highest value for c(v)

c = max
v∈VA

c(v).

Depending on a user-given threshold we are able to detect a concept graph
without a concept. The concept graph lacks a concept if the concept value c(v)
of all vertices of its aspect set is below the given threshold. This might be an
indication of an unknown relation among information units that has not been
discovered yet and to which no concept has been assigned.

3.2 Detection

In this chapter we use a frequent item set mining algorithm [1] to detect concept
graphs in BisoNets. By using frequent item set algorithms we are able to detect
concept graphs of different sizes and specificity.

Frequent item set mining has been developed for the analysis of market bas-
kets in order to find sets of products that are frequently bought together. It
operates on a transaction database that consists of a transaction identifier and
the products that have been bought together in the transaction. Represented as
a graph, the overlapping transactions form a complete bipartite graph, which is
the basis of our concept graphs.

In order to apply frequent item set mining algorithms to find concept graphs
in BisoNets we use the adjacency list of the network as transaction database.
Therefore, for each vertex in the BisoNet, we create an entry in the transaction
database with the vertex as the identifier and its direct neighbors as the products
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�

(a) Network

⇐⇒

a: {c, d, e}
b: {e, f, g}
c: {a, h}
d: {a, h}
e: {a, b, h, i}
f: {b, j}
g: {b}
h: {c, d, e}
i: {e}
j: {f}

(c) Transaction
database

Fig. 2. Network and the corresponding adjacency list which serves as the transaction
database for the frequent item set mining algorithm

(Figure 2). Once the database has been created we can apply frequent item set
mining algorithms to detect vertices that share some neighbors.

Frequent item set mining algorithms allow the selection of a minimum support
that defines the minimum number of transactions containing a given item set in
order to make it frequent. They also allow a minimum size to be set for the item
set itself in order to discard all item sets that contain fewer items than the given
threshold. By setting these two thresholds we are able to define the minimum
size of the concept graph.

Since we want to find concept graphs of different specificity we need an addi-
tional threshold that takes the general overlap of the transactions into account.
To achieve this we used an adaption of the Eclat [13] algorithm called Jaccard
Item Set Mining (JIM) [10]. JIM uses the Jaccard index [4] as an additional
threshold for pruning the frequent item sets. For two arbitrary sets A and B the
Jaccard index is defined as

j(A,B) =
|A ∩B|
|A ∪B| .

Obviously, j(A,B) is 1 if the sets coincide (i.e. A = B) and 0 if they are disjoint
(i.e. A ∩B = ∅).

By setting the threshold for the JIM algorithm between 0 and 1 we are able to
detect concept graphs of different specificity. By setting the threshold to 1 only
those vertices that share all of their neighbors are retained by the algorithm.
This results in the detection of more specific concept graphs, which contain
information units or aspects that exclusively belong to the detected concept
graph. Relaxing the threshold by setting a smaller value results in the detection
of more general concept graphs where the information units share some but not
all of their aspects. Varying thresholds might lead to the detection of overlapping
concept graphs. This can be used to create a hierarchy among the concepts.
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4 Application

The 2008/09 Wikipedia Selection for schools1 (Schools Wikipedia) is a free,
hand-checked, non-commercial selection of the English Wikipedia2 funded by
SOS Children’s Villages. It has been created with the intention of building a child
safe encyclopedia. It has about 5500 articles and is about the size of a twenty
volume encyclopedia (34,000 images and 20 million words). The encyclopedia
contains 154 subjects, which are grouped into 16 main subjects such as countries,
religion and science. The network has been created from the Schools Wikipedia
version created in October 2008. Each article is represented by a vertex and the
subjects are represented by domains. Every article is assigned to one or more
domains depending on the assigned subjects. Hyperlinks are represented by links
connecting the article that contains the hyperlink and the referenced article.

This example data set and the representation as a hyperlink graph has been
chosen since it can be validated manually by reading the Schools Wikipedia
articles and inspecting their hyperlinks.

4.1 Results

This section illustrates concept graphs discovered in the Schools Wikipedia data
set using the JIM algorithm. The concept graphs consist of the discovered item
sets that form the first vertex set and the corresponding root vertices of the
transaction that build the second vertex set. Once we have discovered both
vertex sets and determined their types we can display them as a graph.

The following graphs display the information units with triangular vertices.
Both aspects and the concept are represented by a squared vertex whereas the
concept has a box around its label.

Figure 3 depicts such a discovered concept graph that represents the dinosaur
concept from the biological section of the Schools Wikipedia. The members of the
concept graph consist of the orders (e.g. Ornithischia) and genera (e.g. Tricer-
atops) of the dinosaurs. The members are described by their aspects Animal,
phylum Chordate and the reference to the Biological classification as well as the
concept Dinosaur itself.

Detection and Expansion of Existing Hierarchies. This section demon-
strates the ability of concept graphs to detect and expand existing hierarchies
in the integrated data. Figure 4 depicts the Saurischia order (see Fig. 4a) and
one of its suborders Sauropodomorpha (see Fig. 4b), which where discovered in
the integrated data with the help of the detected concept graphs. These concept
graphs benefit from the structure of the Schools Wikipedia pages of the animal
section, as they include an information box with the Kingdom, Phylum etc. of
the animal.

1 http://schools-wikipedia.org/
2 http://en.wikipedia.org
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Fig. 3. Dinosaur concept graph with the orders and genera of the dinosaurs as members
and their biological classification as their common aspects

Figure 5 depicts two different bird categories which were also extracted from
the animal section of the Schools Wikipedia data set but which are not part of
the standard information box of the corresponding Schools Wikipedia pages.

The concept graph in Figure 5a represents the group of Waders. Waders are
long-legged wading birds such as Herons, Flamingos and Plovers. The concept
graph also contains Terns even though they are only distantly related to Waders.
However Schools Wikipedia states that studies in 2004 showed that some of the
gene sequences of Terns showed a close relationship between Terns and the
Thinocori, a species of aberrant Waders.

The concept graph in Figure 5b represents the Bird of prey group. Birds of
prey or raptors hunt for food on the wing. The graph includes different sub
families such as Hawk, Kite and Falcon as well as members of these sub families
such as the Harrier Hawk. The Common Cuckoo is not a Bird of prey but is
included in the concept graph since it looks like a small Bird of prey in flight as
stated in its article in Schools Wikipedia. The concept graph contains the Great
Black-backed Gull which is a gull that behaves more like a Bird of prey than a
typical gull by frequently hunting any prey that is smaller than itself.

These examples partially benefit from the structure of the Schools Wikipedia
pages of the animal section. They all contain an information box specifying
the Kingdom, Phylum etc. of the animal. However this demonstrates that our
method is able to discover ontologies, such as the biological classification of the
dinosaurs (see Fig. 4), if they are available in the integrated data. Furthermore
the examples demonstrate the capability of the method to detect further cate-
gories such as Waders or Birds of prey (see Fig. 5) even though they are not part
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(a) Concept graph of the dinosaur order
Saurischia.

Saurischia

Reptile
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Velociraptor
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Chordate

Mamenchisaurus

Theropoda

Massospondylus

Dinosaur

Biological classification
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Brachiosaurus

Saltasaurus Therizinosaurus

Sauropodomorpha
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Alamosaurus

Titanosaur

Herrerasaurus

Sauroposeidon
Ornithischia

(b) Concept graph of the dinosaur suborder
Sauropodomorpha.

Fig. 4. Concept graphs of the dinosaur order and one of its suborders

of the ontology structure in Schools Wikipedia. By including the Great Black-
backed Gull and the Common Cuckoo the concept graph for the Bird of prey
also demonstrates the ability to detect information units that are not typically
related to the concept.

Missing Concept Detection. This section demonstrates the ability of concept
graphs to detect groups of information units that share common aspects but to
which no concept has been assigned. These concept graphs might be the result of
incomplete or erroneous data. They might also be a hint of groups of information
units that share certain aspects that have not been discovered yet.

The concept graph in Figure 6 is an example of such a concept graph, which
lacks an appropriate concept. The graph describes battles between the United
States and the Imperial Japanese Navy duringWorld War II. The various battles
represent the information units of the concept graph whereas the combatants and
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Plover

African Jacana

Eurasian Oystercatcher

Chordate

Biological classification

Black-winged Stilt

Animal

Tern

Pied Avocet

Bird
Flamingo

Heron

Wader

(a) Wader concept

Kite (bird)

Great Auk
Chordate

Hawk

Biological classification

Animal

Vulture

Eurasian Sparrowhawk

Bird of prey

Bird

Falcon

Common Cuckoo

Great Black-backed Gull Kestrel

Harrier Hawk

(b) Bird of prey concept

Fig. 5. Concept graphs that expand the existing birds hierarchy

Aircraft carrier

United States

Australia

Attack on Pearl Harbour

World War II

Naval Battle of Guadalcanal

Imperial Japanese Navy

Battleship

Battle of the Santa Cruz Islands

Destroyer

Battle of Midway

Battle of Leyte Gulf

Battle of the Eastern Solomons

Fig. 6. Example concept graph with a low concept confidence

some of their warships form its aspects. The concept is missing since the Schools
Wikipedia data set does not contain an article that groups the described battles.

The following concept graphs contain more aspects than information units.
The information units represented by triangular vertices are therefore depicted in
the center whereas the aspects and the concepts represented by squared vertices
form the outer circle.

Overlapping Concept Graphs. This section describes concept graphs that
overlap by sharing common vertices. These shared vertices might have different
types since their type depends on the role they possess in a given concept graph.
These vertices, which belong to several concept graphs and possess different
types, are represented by circular vertices in the following figures.

Figure 7 depicts the connection among the concepts of Meteorology, Green-
house effect, Attribution of recent climate change and the Ice sheet of Glaciers.
The concept graphs demonstrate the ability of the discussed method to assign
different types to the same vertex depending on a given concept graph. The ver-
tex Earth’s atmosphere as an example is an information unit of the Greenhouse
effect but an aspect of the concept Meteorology. The vertices Global warming
and Climate change are information units of the concept of Attribution of recent
climate change but aspects of the Ice sheet concept.
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Ultraviolet
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Earth

Ammonia
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Fig. 7. Overlapping concept graphs reveal complex relations between different concepts

Domain Bridging Concept Graphs. The following examples demonstrate
the ability of concept graphs to detect domain bridging concepts [8]. They depict
concept graphs that contain either information units or aspects from diverse
domains.

The first Figure 8a depicts the concept graph for Blood pressure. This concept
contains two information units from the Health and medicine domain, which are
described by aspects from various domains. The domains of the aspects range
from Health and medicine (e.g. Blood), to Chemical compounds (e.g. Glucose),
to Sports (e.g. Sumo) and Recreation (e.g. Walking) as well as Plants (e.g.
Garlic).

The second Figure 8b groups information units from diverse domains such as
Cartoons and Military History and War. The vertex Donald Duck represents
a famous character from the Cartoons domain that was used as propaganda

Alzheimer's disease

Stroke Diabetes mellitus

Glucose Blood pressure

Hypertension

Kidney

Insulin

Atherosclerosis

Nutrition

Blood

Hormone

Retina

Garlic
Myocardial infarction

Milk

Sumo

Physical exercise

Walking

(a) Blood pressure concept

PropagandaUnited States

Germany

Russia World War II

Battle of Stalingrad

Nazi Germany

S-mine

Donald Duck

(b) Propaganda concept

Fig. 8. Two domain bridging concept graphs that connect aspects and information
units from different domains



(Missing) Concept Discovery in Heterogeneous Information Networks 243

Roman mythology

Jupiter

Mercury (planet)
Planet

Neptune

Definition of planet
Sun

Telescope

Mass

Hubble Space Telescope

Acceleration

Hydrogen

Temperature

Uranus

Pluto

Gravitation

Asteroid

Saturn
Ultraviolet

Solar System

Astronomy

Space exploration

Roche limit Comet

Helium

Star

Timeline of discovery of Solar System planets and their moons

Volume

21st century

Oboe

The Planets

The Rite of Spring

Symphony No. 6 (Beethoven)

Timpani

TrumpetMusical instrument

Orchestra

Peter and the Wolf

Der Ring des Nibelungen

Horn (instrument)

Jazz

Bassoon

Trombone

The Young Person's Guide to the Orchestra

Day
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Richard Strauss

Igor Stravinsky

Fig. 9. Example of an overlapping concept graph that connects concepts from hetero-
geneous domains

whereas S-mine describes a weapon from the Military History and War domain
that was used during World War II.

The last Figure 9 depicts not a single concept graph connecting vertices from
diverse domains but two overlapping concept graphs that describe concepts from
diverse domains. The first concept graph from the Musical recordings and com-
positions domain describes the concept of the Symphony No. 6, a famous sym-
phony written by Ludwig van Beethoven. The second concept graph stems from
the Space(Astronomy) domain describing the concept of the Roche limit, which
defines the distance within a celestial body such as a planet held together by
its own gravity alone. Both concepts are connected by their shared aspect, The
Planets, which is an orchestral suite that consists of seven movements named
after planets (e.g. Jupiter, Neptune, etc.).

5 Conclusion and Future work

In this chapter we have discussed a new approach to detect existing or missing
concepts from a loosely integrated collection of information fragments that can
lead to deeper insight into the underlying data. We have discussed concept graphs
as a way to discover conceptual information in BisoNets. Concept graphs allow
for the abstraction of the data by detecting existing concepts and producing
a better overview of the integrated data. They further support the detection
of missing concepts by discovering information units that share certain aspects
but which have no concept and could be a hint of a previously unknown and
potentially novel concept.

By using information networks as input data and retrieving existing as well
as unknown concepts from the integrated data, the discussed approach supports
creative thinking by improving the understanding of complex systems and the
discovery of interesting and unexpected relationships.
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This approach can also be expanded to detect domain bridging concepts [8],
which might support creative thinking by connecting information units from
diverse domains. Since BisoNets store the domain from which a vertex stems,
we can use this information to find concept graphs that contain information
units from diverse domains.

In addition to the discovery of concept graphs we plan to identify overlapping
concept graphs, which can be used to create a hierarchy among the detected
concepts using methods from formal concept analysis [11]. The hierarchy ranging
from most specific to most general concepts can be created by detecting more
specific concept graphs, which are included in more general concept graphs. The
different levels of concept graphs can be detected by varying the threshold of
the discussed Jaccard Item Set Mining algorithm.
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Abstract. In this paper we propose two methods to derive different kinds of
node neighborhood based similarities in a network. The first similarity measure
focuses on the overlap of direct and indirect neighbors. The second similarity
compares nodes based on the structure of their possibly also very distant neigh-
borhoods. Both similarities are derived from spreading activation patterns over
time. Whereas in the first method the activation patterns are directly compared,
in the second method the relative change of activation over time is compared. We
applied both methods to a real world graph dataset and discuss some of the results
in more detail.

1 Introduction

It is essential for many experts of various fields to consider all or at least the bigger part
of their accessible data before making decisions, to make sure that no important pieces
of information are ignored or underestimated. In many areas the amount of available
data grows rapidly and manual exploration is therefore not feasible. Many of these
datasets consist of units of information, e.g. genes, or proteins in biomedical datasets,
or terms and documents in text datasets, as well as relations between these units, and
thus can be represented as networks, with units of information represented as nodes or
vertices and their relations as edges.

For analysts and experts it can be interesting to find nodes in such networks that are
directly or indirectly connected to given query nodes in order to find a community, or
a dense subgraph located around a given query node. In terms of biomedical networks,
proteins can be found interacting with a query protein, or sharing certain properties.
In social networks a circle of friends or acquaintances of a person can be determined,
and in textual networks frequently shared terms or documents, according to a query
can be discovered. To identify and extract closely connected nodes to certain query
nodes, often methods based on spreading activation are used, especially in the field of
information retrieval [9,10,4].

Besides finding nodes, which are part of the community of a query node and thereby
closely positioned to it, the discovery of structurally similar nodes can be desirable,
too. Nodes are structurally similar if the connection structure of their neighborhoods is
similar. An overlap of neighborhoods is not required, which means that the nodes can
be located far away from each other. For instance structurally similar individuals in so-
cial networks may play the same role in their community. In biomedical networks, for

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 246–262, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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example, proteins can be found playing the same role in their metabolic pathways. Ad-
ditionally the comparison of communities of the query node and its structurally similar
result nodes, can lead to new insights as well. For instance information such as the num-
ber and size of sub-communities, the number and connectedness of central nodes, and
the structural position of the query, and result nodes in their corresponding community,
can be interesting.

Experts and analysts do not always know exactly what to look for, or where. Thus
the usage of classical information retrieval systems, requiring specific queries, is of-
ten not sufficient. Methods that suggest unknown, interesting and potentially relevant
pieces of information around a certain topic can help to find a focus, induce new ideas,
or support creative thinking. In [11,18] these pieces of information are described as do-
main bridging associations, or bisociations. The underlying data is thereby organized
in a bisociative network or BisoNet, consisting of units of information and their rela-
tions [6,17]. A bisociation pattern based on the structural similarity of two subgraphs
from different knowledge domains is defined in [17,18].

In contrast to nodes of bisociations based on bridging concepts and bridging graphs,
nodes of bisociations based on structural similarity do not necessarily have to be po-
sitioned close to each other. These patterns of bisociation link domains, which may
not have any direct connections by means of the abstract concepts they have in com-
mon, are represented by the structure of their node neighborhood. A prodrug that passes
the blood-brain barrier by carrier-mediated transport, and soldiers who pass the gate
of Troy hidden in a wooden horse are examples of the kind of bisociation, described
in [18]. Both the prodrug as well as the soldiers cannot pass the barrier or gate without
the help of a carrier. The abstract concept of using a carrier in order to pass a barrier
is represented by the structure of the corresponding subgraph. Finding nodes that are
structurally similar to a query node, extracting densely connected, direct and indirect
neighbor nodes, and comparing these subgraphs can lead to the discovery of structural
bisociations.

Therefore two different kinds of node similarities can be used, structural and spatial
similarity. We propose two methods to derive these two kinds of similarities between
nodes in a graph from spreading activation processes. The first method is based on the
comparison of activation vectors, yielding a spatial similarity. The second method is
based on the comparison of change of activation, the velocity, yielding a structural sim-
ilarity. The focus of this article is the definition and explanation of these two similarities
and their application to a real world dataset in order to estimate their suitability.

The article is organized as follows. The next section concerns related work about
spreading activation and node similarities. Section 3 defines the preliminaries of spread-
ing activation processes on graphs and the underlying framework. The concept of sig-
nature vectors, which can be derived from spreading activation processes to represent
nodes is introduced in Section 4. In Section 5 we introduce two kinds of node similar-
ities based on the comparison of activation vectors and signature vectors. This is fol-
lowed by Section 6, which describes the application of these similarities on the Schools-
Wikipedia1 (2008/09) data. Finally Section 7 concludes the article.

1 http://schools-wikipedia.org/
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2 Related Work

In the field of graph analysis different kinds of node equivalences, especially in the
context of role assignments have been made [8]. Thereby nodes can be considered
equivalent based on different properties, such as neighborhood identity, neighborhood
equivalence, automorphic mapping, equal role assignments to neighboring nodes, and
others. Networks from real world data are usually noisy and irregular, which makes
finding equivalent nodes unlikely. Thus a relaxed notion of equivalence, in the sense
that nodes are defined similarly to a certain extent, based on certain properties, is useful
for a robust comparison of nodes [20].

Approaches which are conceptually similar to the comparison of activation pattern of
nodes, from spreading activation processes are given in [22,23,19]. These approaches,
like spreading activation, base on an iterative process, consider nodes to be more similar
the more their direct and indirect neighborhood overlaps. The aim of these approaches
is to detect dense clusters and communities. Since they also take into account an overlap
of indirect node neighborhoods as well, they are more robust than measures comparing
only the direct neighborhoods, such as e.g. the Jaccard index [14].

Each of these approaches suffers from different drawbacks. In [22] the characteris-
tic node vectors of the corresponding normalized adjacency matrix are projected onto
a lower dimensional space. Then the values of the projected vectors of each node are
replaced iteratively by the mean of their neighbor values. Due to the projection into a
lower dimensional space, information can get missing. In [23] node distances are deter-
mined, based on random walks, which are iterative processes as well. Nodes are similar
if the probability of reaching other nodes in a specified number of iterations is simi-
lar. Here only walks of a certain length are considered when computing the distances.
However, a more general variant of the algorithm considers walks of different lengths
as well. Taking into account all computed iterations, as in [19] may yield to higher ac-
curacy. In [19] all iteration results are accumulated with a decay to decrease the impact
of the global node neighborhood. Since the accumulated and normalized activation val-
ues are used as similarities the method may yield asymmetric similarities on directed
graphs.

In our approach we compare the computed activation pattern by means of a well
known similarity measure, the cosine similarity, yielding symmetric values. Thus our
method can be applied to directed graphs as well. We do not use a lower dimensional
node representation by means of a projection into a lower dimensional space and hence
may not lose information. We consider all iteration results up to a maximal number of
iterations and not only walks of a certain length.

Additionally we propose a second node similarity derived from the comparison of ac-
tivation changes in each iteration. Based on this method nodes are similar if the structure
of their neighborhood is similar, although the neighborhood does not need to overlap at
all. This yields a completely different similarity compared to those mentioned above.

Originally spreading activation was proposed by Quillian [24,25] and Collins et
al. [9] to query information networks. The method facilitates the extraction of sub-
graphs, nodes and edges directly and indirectly related to a given query. Initially the
nodes representing the query are activated. The activation is than spread iteratively to
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adjacent nodes, which are activated with a certain level as well until a termination cri-
terion is reached or the process converges. The subset of activated nodes, their level
of activation, as well as the induced subgraph compose the final result. The level of
activation of nodes is often used as relevancy heuristic.

Spreading activation has been applied in many fields of research from seman-
tic networks [25], associative retrieval [27], to psychology [9,1,2], information re-
trieval [26,4,10,3] and others [13,28,21,16,12]. Most of these approaches use a set of
common heuristic constraints [10] in order to restrict the dynamics of the process, such
as distance constraints to terminate the process after a certain number of iterations, or
fan out constraints to avoid excessive spreading. In [5] it is shown that pure (constraint
free) spreading activation with a linear activation function on a connected and not bi-
partite graph always converges to the principal eigenvector of the adjacency matrix of
the graph.

Usually the level of activation itself, which is sometimes normalized or accumulated
over the iterations, represents the relevancy or similarity of nodes to a given query. We
propose the comparison of (accumulated) activation patterns, as well as the change of
activation patterns to determine similarities between nodes of the underlying network.

In the next section the preliminaries of spreading activation and its framework, that
we use in this work are defined.

3 Spreading Activation

Activation is spread on a graph G = (V,E,w), with V as the set of nodes V =
{1, . . . , n}, E ⊆ V × V as the set of edges and w(u, v) as the weight of the edge
connecting u and v, with u, v ∈ V , w(u, v) = 0 if (u, v) /∈ E. For an ease of exposi-
tion we assume that the graph G is undirected, however our results easily generalize to
directed graphs. The activation state at a certain time k is denoted by a(k) ∈ R

n with
a
(k)
v as the activation of node v ∈ V . Each state a(k) with k > 0 is obtained from the

previous state a(k−1) by the three families of functions described below.

– Input function: combines the incoming activation from adjacent nodes.
– Activation function: determines the state of activation based on the incoming acti-

vation.
– Output function: determines the outgoing activation based on the current activation.

The initial state a(0) defines the activation of nodes representing the query. In each
iteration activation is spread to adjacent nodes activating them with a certain level as
well. The process is usually terminated after a certain number of iterations, activated
nodes or convergence.

3.1 Linear Standard Scenario

In our approach we use a linear standard scenario described in [5] for which conver-
gence is shown for non-bipartite connected graphs. The input, activation, and output
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function can be combined to one function. Given a graph G = (V,E,w) and an activa-
tion state a(k−1) at time k − 1, the activation of a certain node v at time k is defined by

a(k)v =
∑

u∈N(v)

w(u, v) · a(k−1)
u , ∀v ∈ V , (1)

with N(v) = {u | {u, v} ∈ E} as the set of neighbors of v. Furthermore the spreading
activation process can be described in matrix notation. With W ∈ R

n×n as the weight
matrix defined by (W )uv = w(u, v) a single iteration can be stated as a(k) = Wa(k−1)

leading to
a(k) = W ka(0) . (2)

Note that this holds for undirected graphs only. In general an iteration can be stated as
a(k) = (WT )ka(0), holding for directed graphs as well. In order to prevent the activa-
tion values from increasing heavily or vanishing, the activation vector is normalized by
its Euclidean length after each iteration.

a(k) =
W ka(0)∥∥W ka(0)

∥∥ . (3)

Rescaling does not change the direction of the activation vector, so convergence to the
principal eigenvector v1 of W is still ensured since lim

k→∞
a(k) = v1

‖v1‖ .

4 Node Signatures

Convergence of the spreading activation process yields to query independent results. No
matter from which node(s) spreading processes have been started initially, the activation
state becomes equal after a sufficient number of iterations. From iteration to iteration,
activation vectors change their directions towards the direction of the principal eigen-
vector of the weight matrix W . How quickly a process converges can be described by
its velocity and depends on the node(s) from which it was started. For each node the
corresponding convergence speed can be determined and represented as a vector, called
signature vector.

The velocity represents the change of direction of activation patterns between each
subsequent iterations. A velocity vector at time k of a spreading process started at v ∈ V
is defined as

δ(k)(v) =

{
0 , if k = 0

a(k)(v)− a(k−1)(v) , else
, (4)

with 0 as a vector of all 0 and a(k)(v) as the activation vector at iteration k of a spreading
process started at node v, whereas

a
(0)
i (v) =

{
1 , if i = v
0 , else

,

for all i ∈ V . A norm of a velocity vector represents the amount of change, the step size
of the process towards the principal eigenvector of the adjacency matrix. In this work
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we use the l2 norm as step size ‖·‖. Based on the step sizes of each iteration k up to
a maximum number of iterations kmax, with 0 ≤ k ≤ kmax, the signature vector of
each node is defined. This vector provides information about the convergence speed of
a spreading process, starting from a certain node v and is defined as

τk(v) =
∥∥∥δ(k)(v)

∥∥∥ , (5)

with τ(v) ∈ R
kmax .

5 Node Similarities

Two kinds of node similarities can be derived based on the comparison of activation
and convergence behaviors of spreading activation processes starting from each node.
On the one hand nodes can be considered similar if their activation vectors are similar
(activation similarity). On the other hand nodes can be considered similar if the change
of activation from one iteration to another is similar (signature similarity).

These two kinds of similarities compare nodes based on two different properties,
(direct and indirect) neighborhood overlap or neighborhood similarity. A neighborhood
overlap between two nodes means that a part of the neighborhood of these two nodes is
identical. This consequently means, the larger the overlap the closer the nodes are in the
graph. This property yields a spatial similarity measure and is taken into account when
activation vectors are compared (activation similarity). A neighborhood similarity of
two nodes means that their neighborhood is structurally equivalent to a certain degree
but not necessarily identical [20], which can be determined when comparing the change
of activation vectors (signature similarity). This property yields a structural similarity
measure.

Two node partitionings based on these two different properties are illustrated in
Figure 1. The partitioning is indicated by the shading of the nodes. Nodes with the same
shade are considered maximally similar (with a similarity value of 1) w.r.t. an equiva-
lent (Figure 1a) or identical (Figure 1b) neighborhood. In Figure 1a the white as well as
the black nodes are structurally equivalent since they are automorphic images of each
other [8]. In Figure 1b the leaf nodes {4, 5, 6, 7}, {8, 9, 10, 11} and {12, 13, 14, 15} are
the most similar nodes, due to their identical neighborhood, depicted by the shading
gray, black, and white. Even if the leaf nodes are structurally equivalent only those with
an identical neighborhood are highly similar. Furthermore the three nodes in the middle
{1, 2, 3} are not equal based on the comparison of their neighborhood. Node 3 is more
similar to {12, 13, 14, 15} than to 1 or 2 when comparing their pattern of activation.

The two different similarity measures derived from spreading activation processes
allow on the one hand for the identification of structurally similar nodes to a given
query node, even if they are located far apart in the graph via the signature similarity.
On the other hand a densely connected subgraph of direct and indirect neighbors can
be extracted for each node applying the activation similarity measure. In the following,
these two node similarities are formalized and described in detail.
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Fig. 1. Two node partitionings, indicated by the shading based on two different node properties,
equivalent and identical neighborhood. In 1a the white nodes are structurally equivalent as well as
the black nodes, which can be determined by the comparison of the signature vectors (signature
similarity). In 1b the leaf nodes are divided into three partitions white, gray, and black, since their
neighborhood is only partially identical. In addition node 3 is more similar to the white nodes,
node 2 to the black nodes, and node 1 to the gray nodes than to others, which can be determined
by the comparison of the accumulated activation vectors (activation similarity).

5.1 Activation Similarity

The first similarity described is based on the comparison of activation vectors and
named activation similarity. The sequence of activation states of a spreading process
started from a certain node describes the node relative to its local and global neighbor-
hood in the graph. Dependent on its neighborhood many or few nodes will be activated
and activation will spread fast or slow. Nodes close to the initially activated node will
get activated sooner than nodes further apart from this node. Furthermore nodes will get
activated to a higher level, at least in the primary iterations, if many walks of different
lengths exist, connecting these nodes with the initially activated node. Nodes that are
similarly connected to a shared neighborhood will induce similar activation states.

The level of activation a
(k)
i (v) of a node i ∈ V at a time k, induced by a spreading

process started at node v, reflects the reachability of i from node v along (weighted)
connecting walks of length k. The more (highly weighted) walks of length k exist con-
necting i and v, the higher the level of activation. A query node u inducing a similar
level of activation a

(k)
i (u) at node i at iteration k is consequently similarly connected

to i along (weighted) connecting walks of length k.
Comparing the activation pattern of iterations k ≥ 1 allows for the determination of

the direct and indirect neighborhood overlap of nodes, whereas measures like the cosine
similarity

σcos(u, v) =
|N(u) ∩N(v)|√|N(u)| |N(v)|
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or Jaccard index [14]

σjaccard(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

based on the characteristic vectors of nodes allow for a comparison of the direct node
neighborhood only. Figure 2 depicts a graph for which the cosine node similarities
have been computed and indicated by the node shading. The nodes 1 and 3 have a
cosine similarity of 1, since their direct neighborhood (node 2) is identical. The nodes
1 and 2 have a similarity of 0, as well as nodes 2 and 3. Although they are direct
neighbors, the related similarity is 0 since the particular direct neighborhoods do not
overlap. Consideration of the indirect neighborhood via connecting walks of lengths
greater than 1 (k > 1) by applying activation similarity (with 5 iterations) still yields
a similarity of 1 for nodes 1 and 3 due to their identical neighborhood, but a similarity
greater than 0 for nodes 1 and 2 as well as for nodes 2 and 3. For the detection of dense
subgraphs, comparison of the direct node neighborhoods only is too strict. Not all of
the nodes in a dense subregion necessarily share a direct neighborhood. Taking into
account the indirect k-neighborhoods yields a more robust similarity measure.

���

Fig. 2. Nodes 1 and 3 (white) have a cosine node similarity of 1, since their direct neighborhood
is identical. Although nodes 1 and 2, as well as 2 and 3 are direct neighbors their cosine similarity
is 0 since their direct neighborhood is not overlapping.

In [23] it is stated that in terms of random walks of length k starting from a node v
the probability is high for other nodes to be reached if they are located in the same dense
subgraph or community as node v. For an additional node u, the probability of reaching
these nodes is high as well if it is located in the same community. Since random walks
are driven by power iterations of the transition matrix of a graph they can be seen as
spreading activation processes on a normalized weight matrix.

Considering not only walks of a certain length k as in [23] but all connecting walks
of different lengths as in [19] provides a more detailed representation of the local and
global neighborhood of a node. Accumulating all activation vectors a(k)(v) from a
spreading process starting from v with a decay α results in a final activation vector
a∗(v) defined by

a∗(v) =
kmax∑

k=1

αka(k)(v) (6)

with 0 < α < 1. The decay α decreases the impact of longer walks and ensures
convergence for kmax → ∞ for l2 normalized systems [5]. It is reasonable to decrease
the contribution of longer walks in order to keep more information about the local
neighborhood of v. The above mentioned form is closely related to the centrality index
of Katz [15]. We do not want to let the series fully converge since activation vectors
of latter iterations do not contribute much to the final activation based on the decay α,
and become more and more similar due to convergence of the spreading processes. We
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chose kmax based on the convergence behavior of the underlying graph as well as the
decay factor α.

Before a similarity on the final activation vectors is defined it needs to be considered
that nodes with very high degrees will be activated to a higher level. They are more
likely to be reached even if they are not located in the same dense region as the node
from which activation has spread initially. To take this into account we normalize, re-
lated to [23], the final activation by the degree of the corresponding node. The degree
normalized final activation vector is thereby denoted as

â∗(v) = D− 1
2a∗(v) = D− 1

2

(
kmax∑

k=1

αka(k)(v)

)
(7)

with D as the (weighted) degree matrix defined by (D)ii = d(i), (D)ij = 0 for i �=
j, ∀i and d(i) =

n∑
j=1

(W )ij . Based on these normalized final activation vectors we define

the activation similarity between two nodes u and v

σact(u, v) = cos(â∗(v), â∗(u)) (8)

=
〈â∗(u), â∗(v)〉
‖â∗(u)‖ ‖â∗(v)‖

=

n∑
i=1

a∗i (u)a
∗
i (v)d(i)

−1

‖â∗(u)‖ ‖â∗(v)‖ ,

with 〈x,y〉 as the inner product between vectors x,y ∈ R
n. The more nodes are simi-

larly activated in both spreading processes, one starting at node u and one at v, the more
similar u and v are. This measure allows for a detection of dense communities and re-
quires a direct and indirect neighborhood overlap, as can be seen in Figure 1b. Node 1
is more similar to {4, 5, 6, 7} than to 2 or 3 even if 1 is automorphically equivalent to 2
and 3. In [20] this kind of node similarity is categorized as closeness similarity.

The computation of node similarities proposed in [19] can be seen in terms of spread-
ing activation as well. The accumulated and normalized activation values themselves
represent the similarities between the activated nodes and the node at which the spread-
ing process started. As stated, their method is applicable only on undirected graphs. For
directed graphs the activation values are not necessarily symmetric, yielding asymmet-
ric similarities.

5.2 Signature Similarity

The second similarity is based on the comparison of the amount of activation changes
during spreading activation processes and named signature similarity. For each node a
signature vector can be determined, consisting of velocity vector norms (see Section 4).
The direction of the velocity vectors represent the change of direction of the activation
patterns and their norms represent the step size between subsequent iterations towards
the principal eigenvector of the weight matrix W . By the comparison of the signature
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vectors a structural similarity can be derived. In this work we use the cosine measure to
compare the signature vectors, thus the signature similarity is denoted as

σsig(u, v) = cos(τ(u), τ(v)) (9)

=
〈τ(u), τ(v)〉
‖τ(u)‖ ‖τ(v)‖

=

kmax∑
k=1

∥∥δ(k)(u)
∥∥ ∥∥δ(k)(v)

∥∥

‖τ(u)‖ ‖τ(v)‖ .

Nodes that are similar due to the activation similarity have to be close to each other
in the graph, since the same direct and indirect neighbor nodes need to be activated
similarly. The signature similarity is not based on the activation pattern itself but on the
amount of change of these patterns. If the structure of the neighborhood of two nodes
is similar, the change of activation will be similar too, and thus the signature similarity
will yield higher values as if the structure is different.

A similar step size between two subsequent iterations yields from a similar structure,
i.e. the nodes {1, 2, 3} (black) of Figure 1a are not distinguishable by their signature
vectors, since they are automorphic images from each other. Whereas the activation
vectors of these nodes are different, as well as the corresponding velocity vectors, the
amount of change of direction of the activation vectors in each iteration is equal. Nodes
do not necessarily have to be located in the same densely connected region to have
a high signature similarity. This makes the signature similarity not a closeness but a
structural similarity measure. Nodes with a structurally similar neighborhood have a
high signature similarity even if they are located far apart from each other. An over-
lapping neighborhood is thereby not necessary, which can be seen in Figure 1a, where
all the leaf nodes (white) have a signature similarity value of 1, even if their direct
neighborhood is not overlapping at all.

6 Experiments

To demonstrate our approach we apply the two kinds of node similarities to the Schools-
Wikipedia2 (2008/09) dataset. The first aim is to find result nodes that are structurally
similar to given query nodes by using the signature similarity. Secondly we want to find
nodes that are closely connected (directly or indirectly) to the query nodes or interesting
result nodes, respectively, using the activation similarity, and extract the corresponding
subgraphs. Since the extraction of communities is not the aim of this work we do not fo-
cus on this issue. Instead we consider the induced subgraph of the k most similar nodes
based on the activation similarity according to a query node, as dense local neighbor-
hood, or community of that query.

Once structurally similar nodes have been detected and the corresponding commu-
nities have been extracted and illustrated by means of centrality layouts, we manually
compare these subgraphs in order to find structural coherences. We are thereby inter-
ested in the status or rank of the result nodes in their community and the most central

2 http://schools-wikipedia.org/
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nodes. Our assumption is that the communities of the result nodes are similar, in these
terms, to the community of the query node.

6.1 Schools-Wikipedia

The Schools-Wikipedia (2008/09) dataset consists of a subset of the English Wikipedia3

dataset, with around 5500 articles. The articles are grouped into 154 different categories,
consisting of 16 main or top-level categories, where each article is assigned to at least
one category. As in Wikipedia, articles can reference other articles via hyperlinks. In
Schools-Wikipedia external links have been filtered.

To create the graph, each article is considered as a unit of information and modeled
as a node. Each hyperlink that connects articles is considered as a relation between two
units of information and represented as an undirected edge connecting the correspond-
ing nodes. The resulting graph consists of four connected components, whereas three
of the components consist only of one node and are also filtered. Convergence of all
spreading activation processes on the filtered graph is ensured by connectedness, non-
bipartiteness and undirectedness. Table 1 lists some basic properties of the remaining
graph.

Table 1. Basic graph properties of the filtered Schools-Wikipedia graph

Schools-Wikipedia graph properties
Number of nodes 5536
Number of edges 190149
Minimal node degree 1
Maximal node degree 2069
Average node degree 68.7
Diameter 5

We applied spreading activation processes as described in Section 3 to the graph, in
order to compute the activation and signature similarities between all nodes, defined
in Section 5. Since the spreading activation processes converge quickly due to the un-
derlying graph structure, indicated e.g. by the small diameter, we only computed the
first 10 iterations of each spreading process to compute the similarities. Concerning the
activation similarity we used a decay value of α = 0.3 to compute the accumulated
activation vectors in order to focus on the local neighborhood of nodes. The choice of
parameters is not discussed in this work. Here it is sufficient to mention that further
iterations (> 10) do not contribute significantly to both similarities due to the small
decay as well as the small diameter and thus fast convergence.

In our experiment we wanted to find well-known, scholarly persons from different
areas of research, which play similar roles in their communities. Our focus is on well-
known people, since the results can be reasonably evaluated based on general knowl-
edge. The query consists of the node of the well-known Italian physicist Galileo Galilei.

3 http://en.wikipedia.org/wiki/Main_Page
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To find the structurally most similar persons, all nodes, which are assigned to the Peo-
ple category are sorted based on their corresponding signature similarity to the query.
Since we focused only on people with a similar structural position, we filtered out all
nodes not belonging to the People category. Additionally we were interested in the
nodes belonging to the community around Galileo Galilei. Therefore we considered all
nodes, not only those assigned to the People category and sorted them according to their
activation similarity to the query. Table 2 lists the 10 most similar nodes, as well as
the 16th and 17th nodes of the People category, based on the signature similarity,
and the 10 most similar nodes, as well as the 16th and 17th nodes of all categories
based on the activation similarity, compared to Galileo Galilei.

Table 2. 10 most similar nodes to Galileo Galilei and the 16th and 17th nodes; left assigned to the
People category, based on the signature similarity; right of all categories, based on the activation
similarity.

Galileo Galilei
Rank Signature similarity Activation Similarity
1 Galileo Galilei Galileo Galilei
2 Isaac Newton Johannes Kepler
3 Johannes Kepler Heliocentrism
4 Aristotle Nicolaus Copernicus
5 Leonhard Euler Isaac Newton
6 Mary II of England Phil. Nat. Principa Mathematica
7 James Clerk Maxwell Kepler’s laws of planetary motion
8 Anne of Great Britain Classical mechanics
9 James I of England History of physics
10 Henry VII of England Astronomy
...

...
...

16 Plato Newton’s laws of motion
17 Euclid General relativity

It can be seen that Galileo himself is the most similar node, which makes sense in
terms of the cosine similarity used on activation and signature vectors. Nodes such as
Heliocentrism, Astronomy, History of physics, etc. are part of his closer community,
reasonably, since he worked primarily in these fields and played a major role in them.
Among others Galileo is called “the father of modern physics”. Other important sci-
entists who played a major role in these areas as well, such as Nicolaus Copernicus,
Johannes Kepler, and Isaac Newton are also part of his community.

On inspecting the structurally similar nodes, the names Plato and Euclid attract our
attention; they are the 16th and 17th structurally most similar nodes of the People cat-
egory. Both men played a major role in their areas of research too, philosophy and
mathematics, respectively, which are different to those of Galileo. Plato contributed
significantly to the foundations of Western philosophy and Euclid is said to be the “fa-
ther of geometry”. Newton and Kepler, have a high signature similarity as well and
played - like Galilei - a major role in their areas of research too. However, their areas of



258 K. Thiel and M.R. Berthold

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Heliocentrism

Mass

Motion (physics)

Light

Time

Gravitation

Universe

History of science

Force

Physics

Astronomy

Classical mechanics

Physical science

Experimental physics

Momentum

Cosmology

Isaac Newton

General relativity

History of physicsAstrophysics

Newton's laws of motion

Pierre-Simon Laplace

Centre of mass
Introduction to general relativity

Kepler's laws of planetary motion

Philosophiæ Naturalis Principia Mathematica

Johannes Kepler
Nicolaus Copernicus

René Descartes

Galileo Galilei

Fig. 3. The subgraph of the 30 most similar nodes to Galileo Galilei based on activation similarity.
The used layout is a centrality layout, based on eigenvector centrality.

research do not differ to Galilei’s as much as those of Plato and Euclid do. In terms of
structural bisociations, structurally similar nodes, that represent units of information in
unrelated fields of knowledge are potentially more interesting, than those in the same
or similar fields. As a result of this fact and due to their high degree of popularity, Plato
and Euclid were chosen in order to compare their communities.

We extracted the induced subgraphs of their communities consisting of the 30 most
similar nodes based on the corresponding activation similarities. We used 30 nodes,
since the subgraphs of this size can be visualized in a reasonable manner and both struc-
tural similarities as well as differences can be shown. Figure 3 shows the community
around Galileo, Figure 4a that around Plato and Figure 4b that around Euclid.

Nodes are represented as circles, whereas the corresponding size and the size of
the label is proportional to their degree. The nodes of the corresponding persons are
emphasized by dark gray; their direct neighbors are light gray and all other nodes white.
The layout of all graphs is a centrality layout based on eigenvector centrality [7]. The
eigenvector centrality is, like other centrality indices, a measure to quantify the status of
nodes in a graph. The higher the value compared to others, the more central or important
the node, and the more central its position in the visualization. In contrast, the lower the
value, the lower its status or importance and the more peripherical the position.
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Fig. 4. Two subgraphs of the 30 most similar nodes to Plato (4a) and Euclid (4b), based on the
activation similarity. The used layout is a centrality layout, based on the eigenvector centrality.

It can be seen that Galileo, Plato, and Euclid are connected to most of the nodes of
their communities. Galileo has 23 direct neighbors, Plato 22 and Euclid 21. Their neigh-
borhoods can roughly be partitioned into three semantic groups: the fields they worked
in, topics and issues important in these particular fields and other important persons
who contributed significantly to these fields as well. In the case of Galileo, the fields of
research are Physics, Astronomy, Classical mechanics etc. Important topics and issues
in these fields are e.g. Gravitation, Mass, and Force and other important persons who
worked in these fields are e.g. Nicolaus Copernicus, Isaac Newton or Johannes Kepler.
In the case of Plato, the fields of research are Philosophy and Philosophy of mind. Im-
portant topics are e.g. Emotion and Logic and other important persons are Aristotle and
Socrates. In the case of Euclid, the fields of research are Mathematics and Euclidean
geometry. Important issues are e.g. Angle and Triangle and other important persons
are Pythagoras and David Hilbert. Even if Galileo, Plato, and Euclid are directly con-
nected to most of the nodes in their community, the most central nodes are, however the
fields for which (among others) they are famous for: History of physics, Philosophy,
and Mathematics. Nevertheless their status is very central compared to all other nodes
in the corresponding communities.

In all three subgraphs there exist other nodes with a similar centrality. In Galiliei’s
community these nodes are Isaac Newton, Johannes Kepler, Physics, Astronomy, and
Gravitation, in Plato’s Aristotle, and Anchient Greece and in Euclid’s Geometry, Eu-
clids Elements, and History of mathematics. All of these nodes, except Euclids Elements
and Gravitation have a high signature similarity according to Galilei, even though some
nodes, such as Aristotle are not part of his community and thus do not have a high de-
gree of activation similarity. However, the signature similarity of Euclids Elements and
Gravitation is also not very low. The nodes are part of the 270 most similar nodes of
all categories. Additionally it can be seen that in the case of Galileo and Plato, there
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Fig. 5. The subgraph of the 30 most similar nodes to Pinworm, based on the activation similarity.
The used layout is a centrality layout, based on the eigenvector centrality.

is one slightly more central node in the People category: Isaac Newton and Aristotle,
respectively. In all three communities the most peripheric nodes are not connected to
Galileo, Plato and Euclid.

In a nutshell, structural coherences of nodes with high signature similarity and their
corresponding communities can be seen based on various aspects, such as their own
status or centrality and those of other nodes, their connectedness, their degree as well
as the density of their community, etc.

On the one hand very similar nodes to a certain query, based on signature similarity,
are interesting to show structural coherences. On the other, very dissimilar nodes are
also interesting to show structural differences. The most dissimilar node to Galileo is
Pinworm. Again we extracted the 30 nodes most similar to Pinworm, based on acti-
vation similarity, and illustrated the induced subgraph in Figure 5 using the centrality
layout.

Nodes are represented as circles, whereas size and labelsize are proportional to their
degree, up to a certain maximum size. The Pinworm node is emphasized by dark gray,
its direct neighbors are light gray and all other nodes white. The structural differences
of the Pinworm node as well as its community can be seen clearly. Pinworm has, as
well as almost all other nodes a very peripheric position. Additionally the most central
position is shared by the two nodes Animal and Biological classification, which are
connected to all nodes of the community. In addition the density of the community is
much lower then those of the communities of Galilei, Plato, or Euclid.

7 Conclusion

In this work we have shown how two kinds of similarities to compare nodes in a graph
can be derived from spreading activation processes. The activation similarity is based
on the comparison of accumulated activation vectors and yields a spatial or closeness
similarity. The signature similarity is based on the comparison of norms of velocity
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vectors and yields a structural similarity. By applying both kinds of similarities we can
find structurally similar nodes on the one hand, which are not necessarily located close
together, and dense subgraphs or communities around nodes on the other. We applied
this procedure to the Schools-Wikipedia (2008/09) dataset and preliminary results are
very encouraging: the nodes of Euclid, and Plato for example, are structurally similar to
that of Galileo Galilei. By comparing their communities structural similarity was able
to be confirmed manually. The experiments suggested that the combination of these
two kinds of similarities is a promising tool in terms of identification and extraction of
structural bisociations.

Open Access. This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are credited.
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Abstract. The discovery of surprising relations in large, heterogeneous
information repositories is gaining increasing importance in real world
data analysis. If these repositories come from diverse origins, forming dif-
ferent domains, domain bridging associations between otherwise weakly
connected domains can provide insights into the data that are not ac-
complished by aggregative approaches. In this paper, we propose a first
formalization for the detection of such potentially interesting, domain-
crossing relations based purely on structural properties of a relational
knowledge description.

1 Motivation

Classical data mining approaches propose (among others) two major alternatives
to exploit data collections. One scenario tries to fit a model to the given data and
thereby to predict the behavior of some underlying system. Another approach
describes all or part of the given data by patterns such as clusters or frequent
itemsets to provide an insight or highlight mechanisms that led to such patterns.
Both variants have in common that some hypothesis about the considered data is
involved and that the processing is motivated by a concrete question. A necessity
for such a motivated processing is some a priori knowledge or decision about
either the involved data (i.e. what type of model could be fitted) or the form
in which findings are described (e.g. clusters or frequent item sets). While in
the first case the possible findings are narrowed by the aspect of the systems
behavior that is modelled, in the latter case the choice of patterns limits the
possible findings. In short, one could say that in those approaches the problem
to be solved is simplified by narrowing it down through the investment of a priori
knowledge or by specifying the form of outcome.
Alternatively, Explorative (or Visual) Data Mining attempts to overcome this

problem by creating a more abstract overview of the entire data together with
subsequent drill-down operations. Thereby it additionally enables the search for
arbitrary interesting patterns on a structural level, detached from the semantics
of the represented information. However, such overviews still leave the entire
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search for interesting patterns to the user and therefore often fail to actually
point to interesting and truly novel details.
We propose a different approach: instead of considering all available data or

large parts of it at once, we concentrate on the identification of interesting, sel-
dom appearing details. In that, integrated data is explored by finding unexpected
and potentially interesting connections that hopefully trigger the user’s interest,
ultimately supporting creativity and outside-the-box thinking. Our assumption
is that such connections qualify as unexpected by connecting seemingly unre-
lated domains. As already pointed out by Henri Poincaré [14]: “Among chosen
combinations the most fertile will often be those formed of elements drawn from
domains which are far apart. . . Most combinations so formed would be entirely
sterile; but certain among them, very rare, are the most fruitful of all.” A his-
torical example for such a combination is provided by the theory of electromag-
netism by Maxwell [11], connecting electricity and magnetism. Consequently,
we embrace the diversity of different data sources and domains of knowledge.
We thus do not fuse those into one large homogeneous knowledge base by e.g.
mapping them into a common feature space. Instead, we model the given data
sparsely, try to identify (possibly hidden) domains and search for rare instead of
frequent and weak instead of strong patterns, i.e. exclusive, domain crossing con-
nections. Though for technical integration we still need a certain homogeneity
in the data representation.
With respect to this demand, we assume a knowledge representation fulfill-

ing only very few conditions: the representation of information units and links
between them without any further attributes. Based on that, we address two
sub-problems: the identification of domains and the assessment of the potential
interestingness of connections between these domains.

2 Networks, Domains and Bisociations

In this section, we transfer the theoretical concept of domain crossing associ-
ations which are called bisociations [10] (to emphasize the difference to asso-
ciations within a single domain) to a setting where a relational description of
knowledge is given. We will explain the model that incorporates our knowledge
base, narrow down the concepts underlying domains and bisociations and iden-
tify properties that allow to assess the interestingness of a bisociation.

2.1 Knowledge Modeling

As a preliminary, we assume that the available knowledge is integrated into a
unifying data model. We model this as an undirected, unweighted graph struc-
ture with nodes representing units of information and edges representing their
relations. Examples for information units are terms, documents, genes or experi-
ments. Relations could arise from references, co-occurrences or explicitly encoded
expert knowledge. The only semantic assumption we do make is, that the re-
lation expressed by the links is of positive nature, i.e. is to be interpreted as
similarity not dissimilarity.
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A graph is described as G = (V,E) with node set V , edge set E ⊆ (V2
)
and

n = |V | the number of nodes. The degree of a node, i.e. the number of incident
edges, is denoted as d(v) and its neighboring nodes in G as N(v). We further
access the structure of G via its adjacency matrix A, with (A)uv = 1 if {u, v} ∈ E
and 0 otherwise. Finally, for a set of nodes U ⊆ V , G[U ] denotes the subgraph of
G induced by the nodes of U , i.e. the nodes of U and all edges of E that connect
two nodes of U .
The presented model does not contain any hints on the semantics behind the

incorporated units of information except for their relations. In practice, such
semantics would be provided by additional attributes attached to nodes and
links. Our approach will, however, not employ them in any automatic processing,
thereby ensuring maximal flexibility. Yet supporting attributes are helpful and
necessary in the process of manual result interpretation and should consequently
not be removed. In contrast they should be preserved completely: in the phase of
manual interpretation they provide the necessary link to the semantic layer of the
considered data. The fact that they are not employed in any automatic processing
rules out the demand for homogeneity and thereby the necessity to convert them
into a common format, leaving freedom to attach arbitrary information that
might be useful.
While we ignore additional information attached to nodes and details about

link interpretations, the general interpretation of links is an important aspect
since the structural information provided by them is the sole basis of reasoning
about the connected objects. In general, we consider different types of links ex-
pressing different relations and we allow some inhomogeneity within the set of
links, such as different sources that led to the formation of links. However, we
assume that within an individual data set all links obey roughly the same inter-
pretation. Consider as an example a knowledge collection consisting of scientific
articles. We would interpret the articles as information units and therefore model
them as nodes. For the derivation of links we can choose between alternative se-
mantic relations. As an example we could derive similarities by text analysis
and derive links from these. Alternatively, we could exploit the fact that scien-
tific articles reference each other and introduce a link for each reference. Both
approaches have their assets and drawbacks and surely do not represent all pos-
sibilities of link derivation. In the identification of domains as described in the
following, these two interpretations have to be handled differently which makes
their distinction very important. We do not fix any decision about the type of
links, but consider it as an important design decision in the process of data mod-
eling and stress that it has to be considered carefully in the whole process. In
the remainder we restrict our considerations to the two interpretations described
above and point out where the method has to be adapted to the type of link
interpretation.

2.2 Domains

As indicated before, in this context a domain is a set of information units from
the same field or area of knowledge. Domains exist with different granularity and
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thus can be partially ordered in a hierarchical way from specific to general. As an
example consider the domains chemistry, biology, biochemistry and the science
domain in general. While the first three are clearly subsets of the science domain,
biochemistry is neither a proper subset of biology nor chemistry but overlaps
with both of them. Furthermore, this distinction of domains may be sufficient in
the context of common knowledge while scientists working in these fields would
surely subdivide them. Consequently, the granularity of a domain depends on a
specific point of view, which can be a very local one. In addition, information
units may belong to several domains which are not necessarily related. The eagle
for example belongs to the domain of animals and in addition to the coat of arms
domain.

Relation to Graph Structure. Intuitively, a set of highly interconnected nodes in-
dicates an intense interrelation that should be interpreted as a common domain.
While this is a sound assumption when connections express similarities between
the involved concepts, it is not necessarily true when links express other semantic
relations. In the example of scientific articles a collection of papers approaching
a common problem would signify an example domain. Yet the similarity of these
articles is not necessarily reflected by mutual references, especially if they were
written at the same time. However, they will very likely share a number of refer-
ences. Consequently, we derive domains from common neighborhoods instead of
relying on direct connections between information units. This allows domains to
be identified when the connections express either references or similarities since
nodes in a densely connected region also have similar neighborhoods. Two infor-
mation units that share all (or - more realistically - almost all) their connections
to other information units should therefore belong to a common domain. Since
they are in this respect indistinguishable and their relations form the sole basis
for our reasoning about them, all possibly identifiable domains have to contain
either both or none of them. We will show a concrete node similarity that ex-
presses this property and relaxes the conditions in Section 3. This similarity will
then be used as a guidance in the identification of domains.
As mentioned before, the discussed guidelines are necessarily tailored to the

considered link semantics and have to be adapted if links in the graph represen-
tation are derived differently. The interface between link interpretation and the
process of domain identification is here established by a node similarity hinting
at common domain affiliation. For the adaption to different link interpretations
it is thus only necessary to adapt the node similarity correspondingly, ensuring
that highly similar nodes tend to belong to identical domains on all levels while
decreasing similarity indicates that nodes share fewer and thus only upper level
domains.

Domain Recovery. Assuming a node similarity with the described properties,
recursive merging of the most similar nodes leads to a merge tree as produced
by hierarchical clustering. In the following, we consider the inner nodes of such
a merge tree as candidates for domains.
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The resulting domains form a hierarchy on the information units which is
similar to an ontology but is not able to render all possible domain assignments.
That is, any two domains resulting from this process overlap completely (one is
contained in the other) or are completely disjoint. A number of domains could
remain unidentified since cases of partially overlapping domains are excluded by
the procedure, as the domain of biochemistry from the example above, given
that biology and chemistry are identified as domains. We consider this as an un-
avoidable approximation for now, posing the extraction of domains as a separate
problem.

2.3 Bisociations

A connection - usually indirect - between information units from multiple, oth-
erwise unrelated domains is called bisociation in contrast to associations that
connect information units within the same domain. The term was introduced by
Koestler [9] in a theory to describe the creative act in humor, science and art.
Up to now, three different patterns of bisociation have been described in this

context [10]: bridging concepts, bridging graphs and structural similarity. Here
we focus on the discovery of bridging graphs, i.e. a collection of information units
and connections providing a “bisociative” relation between diverse domains.
Among the arbitrary bisociations one might find, not all are going to be in-

teresting. To assess their interestingness, we follow Boden [2] defining a creative
idea in general as new, surprising, and valuable. All three criteria depend on a
specific reference point: A connection between two domains might be long known
to some specialists but new, surprising, and hopefully valuable to a specific ob-
server, who is not as familiar with the topic. To account for this, Boden [2] defines
two types of creativity namely H-creativity and P-creativity. While H-creativity
describes globally (historical) new ideas, P-creativity (psychological) limits the
demand of novelty to a specific observer. Our findings are most likely to be P-
creative since the found connections have to be indicated by the analyzed data
in advance. However, a novel combination of information sources could even lead
to H-creative bisociations. Analogous to novelty, the value of identified bisocia-
tions is a semantically determined property and strongly depends on the viewers’
perspective. Since both novelty and value cannot be judged automatically, we
leave their evaluation to the observer. In contrast, the potential surprise of a
bisociation can be interpreted as the unlikeliness of a connection between the
corresponding domains. We will express this intuition in more formal terms and
use it as a guideline for an initial evaluation of possible bisociations.

Identifying Bisociations. Based on these considerations, we now narrow down
properties that are in our view essential for two connected domains to form a
bisociation. Despite the discussion above, we have not yet given a technical def-
inition of what a domain is. We will return to this problem in Section 3.1 and
assume for now that a domain is simply a set of information units. In the graph
representation, two domains are connected either directly by edges between their
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nodes or more generally by nodes that are connected to both domains - the
bridging nodes. Analogous to these more or less direct connections, of course con-
nections spanning larger distances in the graph are possibly of interest. However,
for the simplicity of description and due to the complexity of their determina-
tion, we will reduce the following considerations to the described simple cases.
Such connecting nodes or edges bridge the two domains and together with the
connected domains they form a bisociation candidate:

Definition 1 (Bisociation Candidate). A bisociation candidate is a set of
two domains and their connection within the network. That is, the subgraph
induced by the nodes of the two domains δ1, δ2 and any further nodes that are
connected to both domains:

G [δ1 ∪ δ2 ∪ {v ∈ V : N(v) ∩ δ1 �= ∅ ∧N(v) ∩ δ2 �= ∅}]

Since it is impossible to precisely define what a surprising bisociation is, we
develop three properties that distinguish promising bisociation candidates: ex-
clusiveness, size, and balance. These technical demands are derived from an
information-scientific view as e.g. expressed in [6]. In Ford’s view, the creativity
of a connection between two domains is related to (i) the dissimilarity of the
connected domains and (ii) the level of abstraction on which the connection is
established. In the following, we transfer these notions into graph theoretic terms
by capturing them in properties that relate to structural features which can be
identified in our data model.
We begin with the dissimilarity of two domains which we interpret as their

connectedness within the graph. Maximal dissimilarity is rendered by two com-
pletely unconnected domains, closely followed by “minimally connected” do-
mains. While the former case does not yield a bridging graph based bisociation
(i.e. the connection itself is missing) the latter is captured by the exclusiveness
property. Exclusiveness of a bisociation candidate states that the two involved
domains are only sparsely connected, thereby expressing the demand of dissimi-
larity. On a more technical level it also excludes merely local exclusivity caused
by nodes of high degree which connect almost everything, even unrelated do-
mains, without providing meaningful connections.

Property (Exclusiveness)
A bisociation candidate is exclusive iff the connection between the two domains
is

1. small: the number of nodes connected to both domains (bridging nodes) is
small in relation to the number of nodes in the adjacent domains;

2. sparse: the number of links between either the two domains directly or the
domains and the nodes connecting them is small compared to the theoretical
maximum;

3. concentrated: neighbors of the bridging nodes are concentrated in the adjacent
domains and not scattered throughout the rest of the graph.
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Alternatively, this could be described in terms of probabilities: In a bisociation
candidate two nodes from different domains are linked when they share an edge
or have a common neighbor. Then exclusiveness describes the fact that two
such nodes, randomly chosen from the two domains, are linked only with a low
probability.
Directly entangled with this argument is the demand for size: a connection

consisting of only a few nodes and links becomes less probable with growing
domain sizes. In addition, a relation between two very small domains is hard
to judge without knowledge about the represented semantic. It could be an ex-
pression of their close relation being exclusive only due to the small size of the
connected domains. In that case the larger domains containing these two would
show even more relations. It could also be an exclusive link due to domain dis-
similarity. However, this situation would in turn be revealed when considering
the larger domains, since these would also be exclusively connected. In essence,
the exclusiveness of such a connection is pointless if the connected domains are
very small, while it is amplified by domains of larger size. We capture this as
follows:

Property (Size)
The size of a bisociation candidate is the number of nodes in the connected do-
mains.
In terms of [6], the demand for size relates to the level of abstraction. A

domain is more abstract than its subdomains since it includes more information
units and thus an exclusive link between larger (i.e. more abstract) domains is
a more promising bisociation candidate than a link between smaller domains.
Finally, the balance property assures that we avoid the situation of a very

small domain attached to a large one:

Property (Balance)
A bisociation candidate is balanced iff the connected domains are of similar size.
In addition, we assume that domains of similar size tend to be of similar

granularity and are thus likely to be on comparable levels of abstraction. Again,
this is an approximation based on the assumption that domains are covered in
comparable density. Thereby the demand for balance avoids exclusive links to
small subdomains that are actually part of a broader connection between larger
ones.
Following a discussion of the domain extraction process in Section 3.1, we

will turn these three properties into a concrete measure for the quality of a
bisociation candidate in Section 3.2.

3 Finding and Assessing Bisociations

In this section, we translate the demands described in the last section into an
algorithm for the extraction and rating of bisociations. Therein we follow the
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previously indicated division of tasks: (i) domain extraction and (ii) scoring of
bisociation candidates.

3.1 Domain Extraction

As described in Section 2, domain affiliation of nodes is reflected by similar direct
and indirect neighborhoods in the graph. Thus comparing and grouping nodes
based on their neighborhoods yields domains. In the following, we establish the
close relation of a node similarity measure called activation similarity [16] to the
above described demands. Based on this similarity, we show in a second part
how domains can be found using hierarchical clustering.

Activation Similarity. The employed node similarity is based on spreading ac-
tivation processes in which initially one node is activated. The activation spreads
iteratively from the activated node, along incident edges, to adjacent nodes and
activates them to a certain degree as well. Given that the graph is connected,
not bipartite, and activation values are normalized after each step, the process
converges after sufficient iterations. The final activation states are determined
by the principal eigenvector of the adjacency matrix of the underlying graph as
shown in [1]. They differ, however, by their initial state and those following it.
Adopting the notation of [1], activation states of all nodes at a certain time k
can be represented by the activation vector a(k) ∈ R

n given by

a(k) = Aka(0)/
∥
∥
∥Aka(0)

∥
∥
∥
2
.

The value a(k) at index v, i.e. a(k)v , is the activation level of node v and the
initial activation levels of all nodes are determined by a(0). The denominator
in the equation further ensures that the overall activation levels do not grow
unrestricted with the dominating eigenvalue. We add a parameter u to denote
that the spreading activation was started by activating node u with unit value.
The level of activation a(k)v (u) of a certain node v ∈ V at a time k, induced
by a spreading activation process started at node u, reflects the reachability
of node v from node u via walks of length k. More precisely, it represents the
fraction of weighted walks of length k from u to v among all walks of length
k started at u. The more walks end at v the better is v reachable from u and
the higher its activation level a(k)v (u) will be. To consider more than just walks
of a certain length, the activation vectors are normalized and accumulated. In
this accumulation an additional decay α ∈ [0, 1) serves to decrease the impact
of longer walks. The accumulated activation vector of node u is then defined by

â∗(u) = D−
1
2

(
kmax∑

k=1

αka(k)(u)

)

,

with D = diag(d(v1), . . . , d(vn)) being the degree matrix and kmax the number
of spreading iterations. Using D−

1
2 for degree normalization accounts for nodes
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of a very high degree: these are more likely to be reached and would thus distort
similarities by attracting the activation if not taken care of. The value â∗v(u)
represents the (normalized) sum of weighted walks of different lengths 1 	 k 	
kmax from u to v proportional to all weighted walks of different length starting
at u and thus the relative reachability from u to v. â∗(u) consequently serves as
a description of the relations of node u to all other nodes in the graph.
Our basic assumption was, that nodes of similar domain are strongly con-

nected and have a strong overlap of direct and indirect neighborhood. Hence,
their reachability among each other is higher than that to other nodes. A com-
parison of the accumulated activation vectors of nodes compares the reachability
of all other nodes from the specific nodes. On this basis we define the activation
similarity σact : V × V → R between nodes u, v ∈ V as

σact(u, v) = cos(â∗(u), â∗(v))

and use it as node similarity for domain identification. For usual reasons we use
the corresponding distance 1− σact(u, v) for hierarchical clustering.

Domain Identification. Based on the distance described above, we apply hi-
erarchical clustering for domain identification. To decide which subsets are to be
merged we use Ward’s linkage method [17], which minimizes the sum of squared
distances within a cluster. This corresponds well with the notion of a domain
since it tends to produce compact clusters and to merge clusters of similar size.
First of all, we would expect a certain amount of similarity for arbitrary infor-
mation units within a domain and thus a compact shape. Further, clusters of
similar size are likely to represent domains on the same level of granularity and
thus merging those corresponds to building upper-level domains. The resulting
merge tree is formalized as follows:

Definition 2 (Merge tree). A merge tree T = (VT , ET ) for a graph G =
(V,E) is a tree produced by a hierarchical clustering with node set VT = V ∪ Λ
where Λ is the set of clusters obtained by merging two nodes, a node and a cluster
or two clusters. ET describes the merging structure: {uλ, vλ} ⊆ ET iff the nodes
or clusters u and v are merged into cluster λ ∈ Λ.
However, not all clusters in the hierarchy are good domain candidates. If a cluster
is merged with a single node, the result is unlikely to be an upper-level domain.
Most likely, it is just an expansion of an already identified domain resulting from
agglomerative clustering. These considerations lead to the domain definition:

Definition 3 (Domain). A cluster δ1 is a domain iff it is merged with another
cluster in the corresponding merge tree:

δ1 ∈ Λ is a domain ⇔ ∃δ2, κ ∈ Λ such that {{δ1, κ}, {δ2, κ}} ⊆ ET .

Note that in this definition δ2 is also a domain.
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3.2 Scoring Bisociation Candidates

In the next step, we iterate over all pairs of disjoint domains and construct a
bisociation candidate for each pair. We then try to assess the potential of each
candidate using the properties shown in Section 2. A first step in this assessment
is the identification of the bridging nodes:

Definition 4 (Bridging nodes). Let δ1 and δ2 be two domains derived from
the merge tree of the graph G = (V,E). The set of bridging nodes bn(δ1, δ2)
containes all nodes that are connected to both domains:

bn(δ1, δ2) = {v ∈ V : ∃{v, u1}, {v, u2} ∈ E with u1 ∈ δ1, u2 ∈ δ2} .

Note that this definition includes nodes belonging to one of the two domains,
thereby allowing direct connections between nodes of these domains.
Using this concept we can define the b-score, which combines the properties

described in Section 2 into a single index that can be used to compare bisociation
candidates directly. We therefore consider each property separately and combine
them into an index at the end.
Exclusiveness could be directly expressed by the number of nodes in bn(δ1, δ2).

However, this is not a sufficient condition. Nodes of high degree are likely to con-
nect different domains, maybe even some of them exclusively. Nevertheless, such
nodes are unlikely to form good bisociations since they are not very specific. On
the other hand, bridging nodes providing only a few connections at all (and thus
a large fraction of them within δ1 and δ2) tend to express a very specific connec-
tion. This interpretation of node degrees is of course an unproved assumption,
yet we consider it as necessary and reasonable. Since we are only interested in
the case of specific connection, we assess exclusiveness by using the inverse of the
sum of the bridging nodes’ degrees: 2/

∑
v∈bn(δ1,δ2) d(v). The 2 in the numerator

ensures that this quantity is bound to the interval [0, 1], with 1 being the best
possible value. The balance property is accounted for by relating the domain
sizes in a fraction: min{|δ1|, |δ2|}/max{|δ1|, |δ2|}, again bound to [0, 1] with one
expressing perfect balance. Finally, the size property is integrated as the sum of
the domain sizes.
As described above, a combination of all three properties is a necessary prereq-

uisite for an interesting bisociation. Therefore, our bisociation score is a product
of the individual quantities. Only in the case of bn(δ1, δ2) = ∅ is our measure un-
defined. However, this situation is only possible if the domains are unconnected,
so we define the score to be 0 in this case. For all non-trivial cases the score has
strictly positive values and is defined as follows:

Definition 5 (b-score). Let δ1 and δ2 be two domains, then the b-score of the
corresponding bisociation candidate is

b-score(δ1, δ2) =
2

∑

v∈bn(δ1,δ2)
d(v)
· min{|δ1|, |δ2|}
max{|δ1|, |δ2|} · (|δ1|+ |δ2|).
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This combination acts comparably to a conjunction of the involved properties.
In our opinion, an ideal bisociation is represented by two equally sized domains
connected directly by a single edge or indirectly by a node connected to both
domains. This optimizes the b-score, leaving the sum of the domain sizes as
the only criterion for the assessment of this candidate. Further, every deviation
from this ideal situation results in a deterioration of the score. In addition, the
calculation of the b-score only involves information about the two domains and
their neighborhoods and not the whole graph, which is important when the
underlying graph is very large.

3.3 Complexity and Scalability

To determine the complexity and scalability of the complete algorithm, the pro-
cess can be split into three parts: similarity computation, clustering, and scoring
of domain pairs. In the following, we examine the complexity of each of these
three parts.
To compute the pairwise activation similarities, the accumulated activation

vectors for all nodes need to be determined. For each node several matrix vector
multiplications, normalizations, scalings and additions are necessary. The com-
putational complexity is dominated by that of the matrix vector multiplication
with a complexity of O(n2). Repeating this process for all nodes leads to an
overall complexity of O(n3).
Note, that this is a worst case result which can be improved substantially

by exploiting the graph structure and the characteristics of the convergence
of the spreading activation process: First of all, in a large, sparsely connected
network the activation is only spread over existing edges. This alone speeds
up the matrix multiplication depending on the network density which should
usually be low, since otherwise the considered information units are connected
to most other information units which is not very informative. Further, a large
network diameter yields strongly localized activation vectors (i.e. most nodes
have zero activation) in the first few iterations, since activation can only spread
to nodes that are adjacent to already activated nodes in each step. This can be
exploited, when only the first few activation vectors are used to approximate
the activation similarity. In addition, the convergence rate of the power iteration
itself is exponentially related to the ratio of the first two eigenvalues and the
additional decay factor (c.f. [1]). The latter guarantees that only a few iterations
of activation spreading are necessary and together with the sparsity and large
diameter of the underlying network, only a small part has to be considered in
the computation for an individual node. Unfortunately, the assumption of a
large diameter is contradicted by many observed real-world networks and our
own application example. A possible counter measure could be the removal of
high-degree nodes, which should result in a larger diameter and only minimal
information loss since the information provided by these nodes is most likely of
highly general nature.
The crucial part of the domain identification process is the clustering of the

nodes based on the computed similarity. Here, the complexity is dominated by
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the ward clustering which involves O(n2 log2 n) steps (c.f. [5]). This could be
further reduced by the employment of other clustering algorithms (i.e. density
based approaches) or a completely different domain identification process.
The final step is the determination of the b-scores for all domain pairs. Since

in the hierarchical clustering n− 1 merge steps are executed, |VT | and thus the
number of domains is bound by n − 1. Consequently, the number of domain
pairs to be analyzed is less than

(
n
2

)
, i.e. in O(n2). For the determination of the

b-score of an individual domain pair, the domain sizes can already be prepared
in the domain identification process, avoiding additional time consumption. The
complexity of the b-score computation for two domains δ1, δ2 is therefore deter-
mined completely by the calculation of

∑
v∈bn(δ1,δ2) d(v) - the sum of the bridging

nodes’ degrees. This calculation is again dominated by the determination of the
elements of bn(δ1, δ2). Considering a domain as a set of its contained nodes these
common neighbors can be determined in O (maxδ∈{δ1,δ2}

∑
v∈δ d(v)

)
as shown

by Algorithm 1.

Algorithm 1. b-score computation
Input: domains δ1, δ2, graph G = (V,E)
Result: b-score(δ1, δ2)
for v ∈ δ1 do
for u ∈ N(v) do
mu := true;

s := 0;
for v ∈ δ2 do
for u ∈ N(v) do
if mu then
s := s+ d(u);
mu := false;

return 2
s
· min(|δ1|,|δ2|)max(|δ1|,|δ2|) · (|δ1|+ |δ2|);

Withmv = false ∀v ∈ V being initialized only once for the whole computation
and cleaned up after each candidate evaluation, the complexity of the procedure
is directly related to the loops over the neighbors of each node in either domain.
Besides the clustering process, the determination of b-scores is an important

aspect in the total time spent in the analysis of a dataset. To speed up this
process, we propose pruning of the set of domains and candidate domain pairs.
Recall our definition of a domain based on the merge tree: it is sufficient that
a cluster from Λ is merged with another cluster from Λ in contrast to merging
with a single element from V . Firstly, this produces a large number of small
domains: e.g. two node domains which are in turn merged with other elements
from Λ. Secondly, this procedure yields a number of largely overlapping clusters
that differ only in a small numer of nodes, e.g. when a large cluster is merged
with a very small one. This is illustrated by the distribution of domain sizes in
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Fig. 1. Distribution of domain sizes for domains of size 0 to 50 (the number of 2-node
domains is not depicted completely)

our evaluation example of Section 4 shown in Figure 1. It can be observed that
a large number of domains consist of only two or three nodes. Considering the
demand for size, balance and the exclusiveness of a connection between such
small domains it can be seen that a large gain in efficiency could be obtained by
pruning small domains or bisociation candidates involving very small domains.
In addition, a further reduction of the number of domain pairs to be considered

may be achieved by filtering highly unbalanced candidates, though in that case
a threshold needs to be chosen cautiously.

4 Preliminary Evaluation

To demonstrate our approach, we applied our method to the Schools-Wikipedia1

(2008/09) dataset, which is described in more detail in [16]. Due to the lack of
a benchmark mechanism we manually explored the top rated bisociation candi-
dates and describe some of them to demonstrate the reasonability of the results.
The dataset consists of a subset of the English Wikipedia with about 5500

articles. For our experiment, we consider each article as a separate unit of in-
formation and model it as a node. We interpret cross-references as relations
and introduce an undirected edge whenever one article references another. The
resulting graph is connected except for two isolated nodes which we removed be-
forehand. For the remaining nodes we extracted the domains using the procedure
described above.

Parameter Choices. To focus on the local neighborhood of nodes we used the
decay value α = 0.3 for the activation similarity. Due to this decay and the graph
structure the activation processes converged quickly allowing a restriction to
kmax = 10 iterations for each process. This choice seems arbitrary, but we ensured

1 http://schools-wikipedia.org/ .
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that additional iterations do not contribute significantly to the distances. First of
all, the values of the following iterations tend to vanish due to the exponentially
decreasing scaling factor, e.g. 0.310 in the last iteration. Additionally, we ensured
that the order of distances between node pairs is not altered by further iterations.

Domain Results. Altogether, we extracted 4,154 nested domains resulting in
8,578,977 bisociation candidates.
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Fig. 2. Part of merge tree with articles about birds

A part of the merge tree involving birds is shown in Figure 2. This small
excerpt illustrates that the hierarchical clustering can yield conceptually well
defined domains, though we could not verify the complete result manually. In
the example, birds of prey such as hawk, falcon, eagle etc. end up in the same
cluster with carnivorous birds such as e.g. vulture and are finally combined with
non-carnivorous birds to a larger cluster. This example further illustrates that
the nodes of a good domain are not necessarily connected, as there are few
connections within the sets of birds, and yet they share a number of external
references.

Bisociation Results. The b-scores of the best 200 bisociation candidates are
shown in Figure 3. It can be observed that the scores quickly decrease from some
exceptionally high rated examples (b-score 1.5 and more) to the vast majority
of candidates rated lower than 1. This indicates that - using the b-score as
basis of judgement - the dataset contains some outstanding bisociations while
most candidates are uninteresting. Since the individual candidates have to be
assessed manually, this encourages the decision to concentrate on the first few
pairs. Note, that due to the design of the b-score the best rated candidates often
exhibit only a single bridging node. In addition, these bridging nodes appear
repeatedly in bisociation candidates that differ only slightly in the composition
of the connected domains which usually shrink along with decreasing b-scores.
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Fig. 3. Distribution of the b-score for the 200 top rated bisociation candidates

In such cases we focused on the first appearance and ignored the lower rated
ones. Finally, due to the employed distance in the domain extraction process the
resulting domains are not necessarily connected.

Result Evaluation. Since a comprehensive description and illustration of results
would quickly exceed the scope of this article, we only show the three top-rated
candidates and emulate a realistic result evaluation by additionally presenting
interesting candidates found under the top-rated ones. In our visualizations of
the individual candidates, we show the nodes of the individual candidate together
with the link structure of the extracted network. Domain affiliation of the nodes
is indicated by their background color (white or gray) while bridging nodes are
highlighted by a black node border.
The overall best rated bisociation candidate, shown in Figure 4a, is composed

of a domain of classical music composers such as Schumann, Schubert, Beethoven,
Mozart, etc. connected to a domain incorporating operating systems and software
such as Microsoft Windows, Linux, Unix and the X window system. Intuitively
these domains - composers and operating systems - are highly separated and a
direct connection seems to be unlikely. However, a connection between both is
provided by Jet Set Willy which is a computer game for the Commodore 64.
The unusual connection to the domain of composers is explained by its title

music, which was adapted from the first movement of Beethoven’s Moonlight
Sonata. On the other side, a level editor developed for Microsoft Windows con-
nects to the domain of operating systems. To us, this connection was new and
surprising, though one might argue its value. Besides that, the formalized de-
mands are met well. The connection itself is very specific, since Jet Set Willy
provides only a few links and the two domains are far apart, i.e. not connected
otherwise. The sizes of the two domains are not exactly equal but with 5 nodes
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Fig. 4. The two top rated bisociations and their b-score (see text for details)

in one domain and 9 nodes in the other they are comparable. Finally, in view
of the small size of the dataset and its wide distribution of topics, the absolute
domain sizes are reasonable.
Figure 4b depicts the next best candidate where the node Nine Million Bi-

cycles connects a geography with an astronomy domain. Excluding repetitions
of Jet Set Willy, this is the second best rated bisociation candidate and it also
appears in several variants within the best rated candidates. The bridging node
Nine Million Bicycles refers to a song which was inspired by a visit in Beijing,
China. The connection to the astronomy section is established by the second
verse which states that the Observable universe is twelve billion years old. The
actual link in the data set is established by the report of a discussion about the
correctness of this statement in the article. As in the first example, the value of
this connection is at least arguable, while the formal criteria are met well.
Figure 5a shows the third best rated candidate. Here, the node Tesseract

connects a geometry domain with the domain of a famous BBC series called
Doctor Who. A tesseract is a special geometrical shape also known as hypercube,
which has a natural connection to the domain of geometry. In the context of
the TV-series it is used to describe the form of Doctor Who’s spaceship called
TARDIS.
In the following, we present some hand-picked samples that appeared as in-

teresting to us. These should illustrate, that despite the limits imposed by the
analyzed data some interesting, though not always valuable, proposals where
made by the presented method. Figure 5b shows a bisociation candidate, where
the node Sequence alignment connects domains from computer science and chem-
istry. The connection to the computer science domain results from reports about
open source software programs implementing some of the involved algorithms.
NMR spectroscopy, providing the connection to a domain about chemistry, is an
analysis technique with applications in organic chemistry.
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Fig. 5. Third best rated bisociation candidate and a bisociation candidate connecting
open source related articles with articles about chemistry
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Fig. 6. Two interesting bisociation candidates with good b-scores

A quite surprising example - at least for us - is given in Figure 6a, where
ionic liquid provides a nearly direct connection between the Redshift effect and
Banana. While the relation to the Redshift effect is due to applications of ionic
liquids in infra-red imaging in telescopes, the link to Banana is produced by an
example for an application in food science
An example for a historical bisociation is shown in Figure 6b, where a music

domain is connected to some physical notions in an article about the phonograph-
cylinder. The phonograph-cylinder was - quoting the article - the “earliest method
of recording and reproducing sound” and thus a historically new connection be-
tween physics and music. The concrete connections are established by a



280 U. Nagel et al.

discussion of the physical properties of cylinders with respect to sound record-
ing and reproduction and the fact that this technique was of major importance
in the development of recorded music, discussed in the article about American
popular music.
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Fig. 7. Bisociation candidates with two bridging nodes

Due to the nature of the b-score, bisociation candidates with more than one
bridging node tend to receive lower scores as they provide more opportunity for
edges. To illustrate that there are actually interesting candidates with more than
one bridging node, we show some examples for such cases in Figures 7 and 8a.
The first of these (Figure 7a) connects a domain of movies and actors with a

mathematical domain. The connection itself is established by direct links, since
the bridging nodes belong to the mathematical domain. Both of these links are
deeply semantically reasoned, since Schwarzenegger is used in a voting example
in the article about Probability theory while the link from the article The Golden
Compass film is explanatory in the report about different ratings of the movie.
The same is true for our second example where an algebraic/mathematical

domain is connected to a domain around the node BBC. Both connections to
the BBC refer to documentary productions about the corresponding topics M
theory and Fermat’s last theorem. While the latter is clearly related to the alge-
braic/mathematical domain (it is a theorem of abstract algebra), the link from
M theory to Associativity appears in the explanation of some details about M
theory.
An example for a bisociation candidate with three bridging nodes and a b-

score of 0.35 is shown in Figure 8a. It is basically an extension of the example
shown in Figure 7a. The bridging nodes Chaos theory, Probability space and
Arithmetic mean connect a statistics domain with nodes like Variance or Mean
and a movie domain with nodes like Arnold Schwarzenegger or The Lord of the
Rings.
For completeness, we additionally evaluated very low rated candidates. A

negative example of a bisociation can be seen in Figure 8b. A football domain
consisting of football clubs Celtic F.C., Rangers F.C., etc. is connected to an arc-
tic domain containing Arctic, Arctic Ocean, Polar bear, etc. The bridging nodes
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Fig. 8. A bisociation candidate (b-score=0.35) involving three bridging nodes (8a) and
a bad bisociation (b-score=0.003) due to non exclusiveness and missing balance (8b)

are countries such as Canada, Europe, England, etc. and Edinburgh. Clearly, this
bisociation candidate is not exclusive since the number of connecting nodes is
high (proportional to the domain sizes) and the degree of these nodes is high as
well (countries have a very high degree in Schools-Wikipedia).
The above examples illustrate that our index discriminates well with respect

to exclusiveness and balance. A detailed examination showed in addition that size
is negatively correlated with both other index components. This and the limited
size of the dataset could explain the small sizes of the best rated candidates.
Our preliminary evaluation indicates the potential of the presented method

to detect bisociations based on the analysis of the graph structure. Even though
Schools-Wikipedia is a reasonable dataset for evaluation purposes, one cannot
expect to find valuable or even truly surprising bisociations therein since it is lim-
ited to handpicked, carefully administrated common knowledge, suitable for chil-
dren. We opted to manually evaluate the results since the value of a bisociation
is a highly subjective semantic property, which inhibits automatic evaluation.
An evaluation using synthetic data is complicated by the difficulty of realistic
simulation and could introduce an unwanted bias on certain types of networks,
distorting the results. Finally, manually tagged datasets for this purpose are not
available.

5 Related Work

Although a wealth of techniques solving different graph mining problems already
exist (see e.g. [4] for an overview), we found none to be suitable for the problem
addressed here. Most of them focus on finding frequent subgraphs, which is not
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of concern here. Closely related to our problem are clustering and the identifi-
cation of dense substructures, since they identify structurally described parts of
the graph. Yet bisociations are more complicated structures due to a different
motivation and therefore require a different approach to be detected.
The exclusiveness of a connection between different groups is also of concern

in the analysis of social networks. Social networks are used to model contacts,
acquaintances and other relations between persons, companies or states. Burt [3]
for example regards the connections in a network of business contacts as part
of the capital a player brings to the competitive arena. In his setting, a player
profits if he can provide an exclusive connection between two otherwise separated
groups. By controlling this connection, he controls the flow of information or
value between the groups, thereby gaining an advantage. Burt terms such a
situation a structural hole that is bridged by this player. Translating the two
separated groups into domains and the player into a bridging node relates Burt’s
concept to the bisociation. However, in the index he defines to measure the
presence of a structural hole only the very local view of the player himself is
integrated. Further, his index would implicitly render domains a product of only
direct connections between concepts, whereas we showed earlier that a more
general concept of similarity is advisable.
A global measure for the amount of control over connections between other

players is provided by betweenness [7]. Betweenness measures the fraction of
shortest paths between all other nodes that employ an individual node. In-
tuitively, the shortest paths in a network are the preferred channel of trans-
portation. Consequently, if a node appears in a large fraction of these shortest
connections, it can exert a certain amount of control on the flow of goods or
information. The translation to our setting is again straightforward, but it pro-
vides no explanation of what a domain is. However, this approach leads to the
variant of hierarchical graph clustering proposed in [12]. Girvan and Newman
develop a top-down approach in which the edges of highest betweenness are re-
moved recursively until the graph splits up into several components. Still, only
a subset of the properties we demand from a bisociation is considered.
Strongly related to bisociations is the notion of serendipity [15] which describes

accidental discoveries. Serendipitous discoveries strongly overlapwith bisociations
since the involved fortuitousness is often caused by the connection of dissimilar
domains of knowledge. A number of approaches (e.g. [13,8]) were developed to
implement this concept in recommender systems balancing between the sugges-
tion of strongly related versus loosely related surprising suggestions of content
which lead the user into new directions not too far from his original interests. In a
sense this work is parallel to ours, but targets a different setting - users and their
preferences - and thus follows different criteria of optimality.
None of these approaches provide a coherent, formal setting for the description

of domains and potentially interesting links between these. Note further, that
our approach is additionally distinguished from all of the mentioned variants in
that the process of community or domain detection is guided by a node similarity
tailored to the identification of domains of knowledge.
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6 Conclusion

We presented an approach for the discovery of potentially interesting, domain
crossing associations, so-called bisociations. For this purpose we developed a for-
mal framework to describe potentially interesting bisociations and corresponding
methods to identify domains and rank bisociations according to interestingness.
Our evaluation on a well-understood benchmark data set has shown promising
first results. We expect that the ability to point the user to potentially interest-
ing, truly novel insights in data collections will play an increasingly important
role in modern data analysis.
The presented method is, however, not intended to be directly applicable to

real world problems. Instead, we presented a framework that can be used as
a guideline and benchmark for further developments in this direction. Concep-
tually, we divide the presented approach in two parts: (i) basic considerations
about the expression of domains and bisociations in a structural knowledge de-
scription and (ii) a framework for the identification of the described concepts.
To demonstrate the soundness of our considerations and their general applica-
bility, we then filled this framework with a number of heuristics to solve the
resulting subproblems. Clearly, the choice of these heuristics is to some extend
arbitrary and can be improved, especially in light of additional experience with
more realistic data. However, by using them in a first instantiation of the de-
scribed framework, we demonstrated that the underlying assumptions lead to
promising results. Finally, we hope that further improvements of this framework
will ultimately lead to systems that are applicable in practical settings.
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2. Boden, M.A.: Précis of the creative mind: Myths and mechanisms. Behavioral and
Brain Sciences 17(03), 519–531 (1994)

3. Burt, R.S.: Structural holes: the social structure of competition. Harvard University
Press (1992)

4. Cook, D.J., Holder, L.B.: Mining graph data. Wiley-Interscience (2007)



284 U. Nagel et al.

5. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest
pairs. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 1998, pp. 619–628. Society for Industrial and Applied Mathe-
matics, Philadelphia (1998)

6. Ford, N.: Information retrieval and creativity: Towards support for the original
thinker. Journal of Documentation 55(5), 528–542 (1999)

7. Freeman, L.C.: A set of measures of centrality based upon betweenness. Sociome-
try 40, 35–41 (1977)

8. Kamahara, J., Asakawa, T., Shimojo, S., Miyahara, H.: A community-based rec-
ommendation system to reveal unexpected interests. In: Proceedings of the 11th
International Multimedia Modelling Conference (MMM 2005), pp. 433–438. IEEE
(2005)

9. Koestler, A.: The Act of Creation. Macmillan (1964)
10. Kötter, T., Thiel, K., Berthold, M.R.: Domain bridging associations support cre-
ativity. In: Proceedings of the International Conference on Computational Creativ-
ity, Lisbon, pp. 200–204 (2010)

11. Maxwell, J.C.: A treatise on electricity and magnetism. Nature 7, 478–480 (1873)
12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026113 (2004)

13. Onuma, K., Tong, H., Faloutsos, C.: Tangent: a novel, ’surprise me’, recommenda-
tion algorithm. In: Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2009, pp. 657–666. ACM,
New York (2009)
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1 Introduction

In the previous chapters of this book quite different approaches to create net-
works based on existing data collections (Part II) have been discussed and diverse
methods for network analysis have been proposed (Part III). All these methods
provide powerful means in order to obtain different insights into the properties
of huge information networks or graphs. However, one disadavantage of these
individual approaches is that each approach provides only specific facets of in-
formation to the end user. Integrated exploration tools that enable the interactive
exploration of huge graphs and data collections using data viusalization, aggre-
gation and mining methods could be much more beneficial for the (interactive)
task of finding bisociations. Therefore, we present and discuss in this part of the
book methods for interactive exploration that bring these fields together.

2 Contributions

This part starts with a more general discussion of methods for interactive data ex-
ploration. Therefore, the chapter of Gossen et al. [1] provides first a brief review
of methods and tools for the interactive exploration of graphs with a focus on ap-
proaches to supportbisociativediscoveries.Furthermore, a critical discussionof the
challenges of evaluating the performance and quality of exploration tools is given.

In the second chapter of Haun et al. [2] the Creative Exploration Toolkit
(CET) is presented, which was developped as part of the BISON project. CET
is a user interface for graph visualization designed towards explorative tasks.
It supports the integration and communication with external data sources and
mining tools, especially the data-mining platform KNIME. Besides the tool it-
self, the chapter also presents the results of a small case study, in which the
applicability of the tool for bisociative discoveries is analyzed.

In the chapter “Bisociative Knowledge Discovery by Literature Outlier Detec-
tion”, Petrič et al. [4] discuss the role of outliers in literature-based knowledge
discovery. They show that outlier documents can be successfully used as means
of detecting bridging terms that connect documents of two different literature
sources.

The chapter “Exploring the Power of Outliers for Cross-Domain Literature
Mining” of Sluban et al. [5] proposes an approach to find outliers that are po-
tential candidates of documents that discuss bisociative discoveries bridging dif-
ferent scientific domains. The discussed approach aims at finding cross-domain

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 285–286, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com



286 A. Nürnberger

links by mining for bridging concepts or terms (b-terms) and can be used for an
exploration task using iterative search and filter methods.

An example of an exploration tool that is based on the idea of Sluban et al.
[5] is presented in the final chapter by Juršič et al. [3]. Juršič et al. introduce a
system for bisociative literature mining called CrossBee. This system is focussed
on b-term identification and ranking and supports the search for hidden links
connecting two different domains. The chapter contains a detailed description
of the proposed methodology that is implemented in CrossBee. Furthermore,
an experimental evaluation on two datasets, Migraine-Magnesium and Autism-
Calcineurin, is reported.

3 Conclusions

Interactive exploration methods provide powerful means to support bisociative
discoveries in huge data collections and networks. The contributions presented
in this part of the book, provide some insights into their capabilities and the
challenges these approaches have to face. The tools presented can – together
with the critical discussions – serve as a basis for the development of advanced
exploration methods that can enable interactive bisociative discoveries.

OpenAccess.This article is distributed under the terms of theCreativeCommonsAttri-

bution Noncommercial License which permits any noncommercial use, distribution, and

reproduction in any medium, provided the original author(s) and source are credited.
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by Literature Outlier Detection. In: Berthold, M.R. (ed.) Bisociative Knowledge
Discovery. LNCS (LNAI), vol. 7250, pp. 313–324. Springer, Heidelberg (2012)
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Abstract. In this chapter we explain the definition of the term (data)
exploration. We refine this definition in the context of browsing, navigat-
ing and searching. We provide a definition of bisociative exploration and
derive requirements on user interfaces, which are designed to support
bisociative knowledge discovery. We discuss how to support subtasks of
bisociative data exploration with appropriate user interface elements. We
also present a set of exploratory tools, which are currently available or
in development. Finally, we discuss the problem of usability evaluation
in the context of exploratory search. Two main issues - complexity and
comparability - are explained and possible solutions proposed.

Keywords: exploration, exploratory search, tools, usability evaluation.

1 Introduction

A lot of data in different domains, e.g. biology, astronomy, geography, and other
sciences were gathered and became available during the last decades. Much useful
and interesting knowledge is hidden in these data sets. Therefore, experts in
different knowledge domains explore the data in order to make new discoveries
and, thus, data exploration becomes one of the standard user tasks.

Unfortunately, the well-known phrase of the futurist John Naisbitt “We are
drowning in information but starved for knowledge” [26] is still relevant. One
man alone is not able to examine even small parts of the available data. Knowl-
edge discovery tools are a way out and show a promising direction to support
users by data exploration. Finding implicit links between given data (sets) from
different domains is an even more challenging task. This is what bisociative
knowledge discovery tools are supposed to support. This chapter addresses the
issue of data exploration for bisociative knowledge discovery. Further details on
bisociative knowledge discovery in general can be found in [6].

The structure of this work is as follows. In Sect. 2 we explain the meaning of
(data) exploration, which, although often used, has no formal definition. Then,
we discuss how to support bisociative data exploration trough user interface
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elements and give a short overview of tools for data discovery and exploration
in Sect. 3. In Sect. 4 we discuss the problem of evaluating the performance
and usability of knowledge discovery tools and propose a possible solution. The
chapter ends with a conclusion and a discussion of future work in Sect. 5.

2 Bisociative Data Exploration

Many authors use the term exploration without giving a well-formed explana-
tion. Since this term has many meanings and just some of them are related to
computer science, it is important to clarify what exploration in the context of
this chapter refers to. Therefore, we explain the meaning of the term exploration
in the context of information retrieval, human computer interaction, visual data
analysis and bisociative knowledge discovery. We also elaborate on the implica-
tions for user interface design.

2.1 Different Meanings of Exploration

A general definition of exploring is found in The American Heritage Dictionary
of the English Language. Here, exploring is defined as “to search into or travel
in for the purpose of discovery” [3].

In his book “Interaction Design” Michael Herczeg provides a more specific ex-
planation of the term exploration in the context of human-computer interaction
(translated from German into English from [19], p. 81):

“Exploration is a method for searching in new, unknown information
spaces. It is similar to browsing with the important difference that explo-
ration is defined by sounding the user’s interest in the information space.
Further exploration is connected to the user’s wish to get to know al-
most the entire structure and the content of the information space. After
a successful exploration of the information space users mainly navigate
in it. The user builds up an overview map while exploring. The entry
point for exploratory search is [...] in most cases given by accident.”

Contrary to Herczeg’s definition we see exploration not as a specific method
of information access. More likely we see it as an enhancement of other methods:
The basic information access methods browsing, navigating and searching can be
enhanced by aspects of exploration. Hence, there exist exploratory browsing, ex-
ploratory navigation and exploratory search. Furthermore, the information space
does not necessarily need to be unknown. For example, in exploratory navigation
users are already familiar with certain navigation points and are able to make
more sophisticated decisions where to go next.

Searching is often an integral part of exploration. Searching means “to look
through (a place, records, etc.) thoroughly in order to find someone or some-
thing” [2]. Many users on computer systems are engaged in searching. Search
systems usually provide an input box for entering search keywords to describe
the user’s information need. Gary Marchionini [24] calls this lookup which is a
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Fig. 1. Categorization of information access methods according to Marchionini [24]

summarization for procedures like fact retrieval, known item search, navigation,
transaction, verification and question answering (see Figure 1).

Furthermore, Marchionini distinguishes between lookup activity and explor-
atory search. Exploratory search is, according to Marchionini, divided into learn-
ing and investigating. The first describes methods like knowledge acquisition,
comprehension and interpretation, comparison, aggregation, integration and so-
cializing. Investigative tasks contain accretion, analysis, exclusion and nega-
tion, synthesis, evaluation, discovery, planning, forecasting and transformation.
Therefore the general task of exploration can be defined as exploring data sets
in order to filter or extract relevant information from it, to (re)define the user’s
information need and to find associations between displayed information items.

Exploratory data analysis (EDA) is an approach to analyze data in order to
formulate hypotheses worth testing and to complement programs of conventional
testing for testing hypotheses [22]. We distinguish between this definition based
on statistics and definitions found in human-computer interaction. EDA is a term
named by John Tukey [38], which is strongly related to suggesting hypotheses
about causes of observed phenomena in data and therefore has a specific use case
in data analysis, while exploratory search is more about supporting the task in
general.

Furthermore, there is a concept of visual exploration. Kreuseler [21] describes
exploration as an undirected search for interesting features in a data set. Accord-
ing to John Tuckey [37], users engaged in exploratory data analysis are searching
interactively and usually undirected for structures and trends in the data. Their
goal is to find implicit but potentially useful information and they do not have
an initial hypothesis about the data.

A definition for visual exploration is given by Tominski [35]:

“The aim pursued with visual exploration is to give an overview of the
data and to allow users to interactively browse through different portions
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of the data. In this scenario users have no or only vague hypotheses about
the data; their aim is to find some. In this sense, visual exploration can be
understood as an undirected search for relevant information within the
data. To support users in the search process, a high degree of interactivity
must be a key feature of visual exploration techniques.”

To sum up, we define exploration in the context of searching as follows: Ex-
ploratory search is a highly dynamic process of a user to interact with an infor-
mation space in order to satisfy an information need that requires learning about
structure and/or content of the information space.

Thereby the process expands a simple lookup by using techniques of explo-
ration. Furthermore, users usually look at a (sub) set of information through a
specific view angle, which might change during the investigation process. There-
fore we call it highly dynamic. This personal and dynamic view is more gener-
ally known as the context of use that allows changes of perspective in order to
(re)formulate or to refine an initial query. User’s overall goals are to learn, to
investigate, to understand, or to conceptualize (about) their initial information
need by building up a personal mental map or model. Thereby the acts of ex-
plorative searching, browsing and navigation are often more important than the
actual find, i.e. success in this context does not necessarily mean to find a certain
piece of information. This makes evaluation of exploration tasks rather difficult,
as we discuss later.

2.2 Definition of Bisociative Exploration

In the context of this book we are talking about bisociative knowledge discovery.
That means that people are engaged in the creative discovery of previously
unknown information, in particular relationships that were before overlooked in-
between different data sets. To find those bisociations users explore the data sets
in a creative way: “Creative information exploration refers to a new information
exploration paradigm that aims to facilitate the generation of creative insight or
solutions.” Bisociative information exploration is an approach where elements
from two or more “incompatible concepts” or information spaces are combined
to generate creative solutions and insight [10]. Thus, we can define bisociative
data exploration as follows:

Exploration is bisociative, if the data set consists of two or more
habitually incompatible domains and the user is presented unusual, but
interesting domain-crossing connections with the aim of finding relevant
and new relationships between those domains.

2.3 Implications for User Interface Design

During exploration, the user is interactively exploring a given data set. His task is
to build up a mental model - an overview map - in order to get a structured view
on unknown data. Furthermore, the user needs to be able to follow connected
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items in order to understand the context of the explored items. Another task, a
user might try to fulfil, is to follow the boundaries of information he or she is
already aware of to gain new insights and to establish further relations between
the information items that are already known.

Since association is an important capacity in human communication, visual
information addresses patterns of understanding [9]. Furthermore, exploration
can be seen as a creative act that requires the user to recognize important parts
of the presented information and build connections to the facts he or she already
knows while discarding irrelevant knowledge or postpone it for later reference in
a different context. This process can be easily disturbed by external influences
such as distractions from the environments or inconvenient means of navigation
through the information space.

As the user can only keep the most important seven chunks of information
in his working memory [25] anything requiring one’s immediate attention leads
to a loss of just gained insight, which most probably has not been retained yet.
Constantly losing ideas due to interruptions will make the user anxious and
less productive. Not only one will lose information, but the higher probability
of user’s work being in vain will lower the motivation. Users may settle with
worse results than the one initially intended to find. Supporting exploration in
an ergonomic way means taking into account a lot of psychological and physical
properties of human beings. Overall the requirements for bisociative knowledge
discovery tools are:

1. Supporting dynamic exploration within information spaces.
2. Supporting users in deriving connections between different domains.
3. Supporting the human creativity processes.
4. It should incorporate online mining tools that are capable to return the

results to the user interface in real-time, see e.g. [15].

Here we use the domain and creativity definitions from [10]. We believe that
a tool that only visualize the whole data set, e.g. gives a large graph view,
would not appropriatly support bisociative knowledge discovery. The mentioned
implications should be reflected in appropriate user interfaces. In the next section
we give a brief overview of possible widgets for data exploration and discuss their
applicability for bisociative knowledge discovery. We also present a short state
of the art on existing exploration tools.

3 Supporting Bisociative Data Exploration

In this section, we first elaborate on the interface elements (widgets) which could
be used to support data exploration.We analyse their applicability for bisociative
data exploration. The second part of the section contains the state of the art on
tools for data exploration.

There are several ways of providing users with appropriate user interface ele-
ments in order to support subtasks of exploration like getting an overview. Most
common solutions are lists, item sets and graphs.
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1. Lists are good to present accurate rankings, but due to their structure they
only support sequential item observation. It is not possible to discover items
in parallel or even generate an overview. Furthermore, relations between
listed items are hard to identify without prior knowledge. Therefore lists do
not provide good means for exploration tasks.

2. Item sets, often represented as Venn diagrams, provide a good overview
about a data set. By using different colors and sizes, relations and groups
can be easily recognized by users. Unfortunately, item sets do not provide
users with an understanding where certain connections between single item
sets exist.

3. Graphs consist of nodes and edges. While nodes often symbolize data entries
or information items, edges provide users with understanding which connec-
tions / relations do exist between single items. Also groups of items can be
identified by using different colors or sizes of nodes or by identifying sepa-
rated sub graphs. One big disadvantage in this visualization method might
be that users find it difficult to find an entry point to start from to explore
the data set. Navigation might be also harder than in lists because there are
multiple directions to go to. Especially for unknown data sets users might
have difficulties to decide which path they like to follow. On the other hand
exactly these characteristics support data sets analysis in an unconventional
way and offer the possibility to find something new and unexpected, to find
new insights in a certain topic.

Lists, item sets and graphs can be utilized to visualize the whole data set. They
may also be incorporated within a tool for dynamic exploration of huge data,
e.g. users can explore different levels of a collection which is visualized as a hi-
erarchical list. But only graphs support users in deriving connections between
different domains. These arguments and the requirements for bisociative knowl-
edge discovery tools (from the previous section) lead us to the conclusion that a
graph structure is the most promising approach for bisociative data exploration.

3.1 Tools for Data Exploration

The Jigsaw [12] system for investigative analysis across collections of text docu-
ments, the Enronic [18] tool for a graph based information exploration in emails
(see Figures 2,3) and the CET [15,16] for efficient exploration and analysis of
complex graph structures are some examples of exploration tools.

Since data exploration is an interdisciplinary topic at the intersection of knowl-
edge discovery, visualization techniques and human-computer-interaction, we
would like to structure the following overview into these subsections:

Data Set Analysis. By exploring data sets users want to locate anomalies, man-
age information and understand trends. It is very hard for users to deal with
large, high-dimensional and heterogeneous data sets. Therefore, users need to be
supported in their data analysis tasks by powerful data analysis methods [34].
Meanwhile, there exist a large amount of powerful algorithms for data analysis
which deal with [14].
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Fig. 2. List based visualization of an email dataset in the Jigsaw tool [12] showing
connections of “Tim Belden”

Visualization Techniques Supporting Knowledge Discovery. Visualization, as a
kind of external memory, supports users cognitive abilities [8] and enhances her
or his memory while performing complex cognitive operations [28]. Tominski et
al. [36] proposed an interactive graph visualization system CGV. This system
is supposed to support users in visual exploration of linked information items.
Ten years before Eick and Williams [11] already proposed a similar tool called
HierNet for network-based visualization, which allows grouping, expanding and
collapsing of information items. In Jigsaw [12] the authors present a system for
investigative analysis across collections of text documents, exemplarily demon-
strated on the ENRON data set. The same data set has been used in [18] to build
up a graph based information exploration tool Enronic. While ChainGraph [23]
is a further example for a graph-based exploration tool, designers of the Tiara
tool [39] show that there are also other opportunities for supporting exploratory
search than using graphs. Here, a visual summary based on different layers, which
are organized in a coordinate system, is used to support exploratory search.

Human-Computer Interaction (HCI) for Explorative Tasks. Users interact with
exploration tools in order to formulate problems and to solve them [32]. When
considering HCI aspects in exploratory search, we need to take into account
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Fig. 3. Graph based visualization of an email dataset in the Enronic tool [18]

the fact that each new piece of information is providing the user with possible
directions for further investigation, new insights and ideas [5].

4 Evaluation of Knowledge Discovery Tools

Usability evaluation is an integral part of user interface software development.
With tool evaluation designers prove that their software fulfils its purpose and
satisfies the needs of the target user, i.e. the software is “usable” [27]. With an
evaluation it should be proven that, using exploration tools, users are able to
make discoveries: effectively, efficiently and with positive attitude.

Our starting point are systems designed for exploration of large, heterogeneous
and high-dimensional data sets. The research question that we target is how to
evaluate such systems. The most important functionality of knowledge discovery
tools is to support users in the creative discovery of new information and relations
that were overlooked before in data sets. Thus, users of such tools usually have
complex information needs.

Evaluation methods which can be used vary and consist of formal usability
studies in the form of controlled experiments and longitudinal studies, bench-
mark evaluation of the underlying algorithms, informal usability testing and
large-scale log-based usability testing [17]. There is also some research in the
area of automatic evaluation of user interfaces [33]. Here the idea is using simu-
lation to reflect the way a user is exploring a document collection. We consider
an automatic approach, but it is not clear if this would work for biociative ex-
ploration which requires creativity.
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In the following, we discuss how to apply existing evaluation methods to ex-
ploration tools for biociative knowledge discovery. Evaluation of such complex
systems is very challenging and requires collaboration with domain experts for
creating scenarios and participation. Furthermore, complex information needs
are usually vaguely defined and require much user time to be solved. In order to
evaluate these tools more efficiently four components are essential: a standard-
ized evaluation methodology, benchmark data sets, benchmark tasks and clearly
defined evaluation measures [13].

4.1 Evaluation Challenges

Since knowledge discovery tools are complex systems [30], evaluation of them
is very challenging. The first challenge is to create an appropriate scenario for
evaluation. The tasks must be complex enough to represent a realistic situation.
Such realistic exploratory tasks might require much time (sometimes weeks or
even months) to be solved. Lab experiments are limited in time, therefore a
“good balance” between time and the right level of complexity is crucial for lab
user studies. Longitudinal studies, i.e. research studies that observe users’ usage
of a system over long periods of time (e.g. months), overcome lab experiments
drawbacks like strong time limitation and artificial environment. Researchers
motivate the community to conduct long-term user studies because they can
be well applied for studying the creative activities that users of information
visualization systems engage in. [31]

Controlled lab studies and longitudinal studies require an involvement of tar-
get users. Unfortunately, knowledge discovery tools are often designed to be
used by experts with domain-specific knowledge, e.g. molecular biologists, who
are more difficult to find than participants without special skills or knowledge.
Thus, the second challenge is recruiting the participants. This should be a group
of people which represents the end users. It requires either collaboration with
scientific institutions or some incentive (like money) to engage their participa-
tion [30]. In the study preparation step collaboration with domain experts is also
needed to help the researchers in creation of appropriate scenarios.

4.2 Open Issues

By evaluating knowledge discovery tools we can either focus on the tool exam-
ination or carry out a comparative evaluation. Most researchers concentrate on
evaluating their own tool to gain a deeper understanding of user interactions
with it. However, the results do not provide such important information if or
under what conditions their tool outperforms alternative tools for the same pur-
pose. We found only one publication [20] that proposed an experimental design
and a methodology for a comparative user study of complex systems.

To be able to compare and rank a tool among similar ones, benchmark data
sets and tasks for user studies are essential [29]. Suppose we wanted to repeat the
study conducted in [20] to compare our tool to theirs, we would need the docu-
ment collection and the task solution used by the authors. However, this data is
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not available to the public, so we cannot compare the results. A promising direc-
tion here is the Visual Analytics Science and Technology (VAST) contest1 which
offers data sets of different application domains with description and open-ended
domain specific tasks. These tasks should be solved with the help of specific soft-
ware within the contest. After the contest the solutions are made public, making
the data available to evaluations. Thus, the data can be used for evaluations.

Additionally, clearly defined evaluation measures are also important in order
to evaluate exploration tools more efficiently. These could be measures from
different domains, e.g. information retrieval and human computer interaction,
but new measures are still necessary in order to capture the amount of discoveries
in document collections or how creative a solution is. The solution of a task itself
can be very complex, so we need a way to account for answers which are only
partially correct or complete.

The well established three usability aspects from HCI which are usually eval-
uated in user studies, are effectiveness, efficiency and satisfaction [1,17]. Each
of these aspects can be expressed in various measures. In the context of discov-
ery tools evaluation, one can express effectiveness in the amount of discovered
information, efficiency in time to find new facts or in importance of the made
discovery and satisfaction in the user’s rating of the tool’s comfort and accept-
ability [7]. All the three aspects should be ideally measured when evaluating a
discovery user interface. Depending on the use case scenario, some of the criteria
can be more important than others. If the exploration tool, for example, is pri-
marily designed to support creative discovery of earlier unseen relations among
data, the focus may lay more on user satisfaction and less on efficiency. It is not
crucial to find the relations fast, but user’s satisfaction by using the tool may
directly influence his creativity, which is very important by bisociation discovery.
A positive attitude helps the user to keep an open mind or play around with the
information. User satisfaction, in general, is important, because if the user does
not like the interface, one is not likely to use the tool any more again.

One can draw an analogy between user evaluation of exploration tools and
automated benchmark evaluation of ranking algorithms in information retrieval.
The latter requires a set of test queries, a document collection with labels accord-
ing to relevancies (e.g. TREC) and a measure (e.g. Average Precision) [17], while
discovery tools user evaluation requires a benchmark data set, a benchmark task
with a standard solution and an evaluation measure.

4.3 Benchmark Evaluation for Discovery Tools

In the following we propose an evaluation method for discovery tools, consisting
of two parts: The first part is a “small” controlled experiment with about 5–10
participants. The purpose of this is to collect qualitative data using user obser-
vations like audio/video recording and interviewing the participants afterwards.
We actually do not need a special task to be solved by the participants. The
assignment can be to discover new information using the software. From this

1 http://hcil.cs.umd.edu/localphp/hcil/vast11/
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study we collect data about learnability improvements and user satisfaction. We
also get feedback about the users’ favourite features and software drawbacks.

The second part is an online study, in which the software is provided to the
participants as an online application. This makes it possible to overcome the
time limitation found in lab experiments. The participants can access the tool
from their own working environment and spend as much time as they like with
the tool, even working discontinuously. After that they can use an online ques-
tionnaire to provide the task solution and usability feedback. Participants are
motivated to solve an interesting task using the tool. We assume that the VAST
benchmark data with an investigative task (from IEEE VAST 2006 Contest) can
be used as a benchmark data set and a benchmark task. The tool interactions
of each participant are logged on the server side. Each participant can spend
arbitrarily much time to solve the quest.

We can analyze the log files to get the time spent by participants, to get
the solution and interaction patterns. The outcome of the study also contains
the number of participants who succeeded in solving the task in comparison to
all participants who tried. Each participant is motivated to answer an online
questionnaire to provide the task solution and usability feedback. It is beneficial
to get the user feedback during the study as it may forget some important issues
due to the extended duration. This can be done in the form of a diary. The
purpose of the second part is to collect quantitative data.

The described method is only the first step in the creation of a good method-
ology. It still has several limitations. The first problem is to get an appropriate
number of participants. It is not easy to stimulate the participation even with
money and if it would work the study becomes cost consuming. One possible
solution lies in automatic evaluation (see, e.g., [4]). We could simulate explo-
ration process on different levels and for diverse tasks. However it is not clear
how to model a creative exploration process, which is important in the case of
tasks like creative information discovery, e.g. of relations that were overlooked
before in data sets. We also do not have a clear understanding how to judge
the success of the search given a complex information need. Thus, the question
about evaluation measures remains.

5 Conclusion and Future Work

In this chapter we tried to elaborate on a definition for the term data exploration,
which—although often used—has no formal description. Our findings, however,
can only serve as a starting point for more thorough research on contexts and
tools which are recognized as exploratory and therefore should be covered by a
formal definiton of the term. A selection of tools for graph and data exploration
has been provided in Section 3. We propose a simple classification, however
creating a taxonomy on these tools would on the one hand require a more spe-
cific context, on the other hand we would need a definitive formal specification
of what exactly an exploratory tool would be. Finally, we have discussed the
problem of evaluating the performance and usability of exploratory tools and
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identified two main issues: First, evaluation scenarios for those tools are much
more complex, resulting in longer sessions and more effort. Second, there is no
benchmark against which a tool can be tested, i.e. each evaluation needs to come
up with a reference scenario of itself.

With the VAST data set we proposed a starting point for finding such bench-
mark, which still needs to be specified and tested. However, several aspects are
yet unclear. This applies to evaluation methodology, in particular the possibil-
ity to evaluate the discovery tools automatically, and evaluation measures. We
would like to motivate the community and make the researchers pay attention
to the fact that evaluation of knowledge discovery tools should be carried out
using a standardized evaluation methodology in combination with benchmark
data sets, tasks and measures. Only then discovery tools designers can evaluate
their tools more efficiently.
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Abstract. To enable discovery in large, heterogenious information net-
works a tool is needed that allows exploration in changing graph struc-
tures and integrates advanced graph mining methods in an interactive
visualization framework. We present the Creative Exploration Toolkit
(CET), which consists of a state-of-the-art user interface for graph visu-
alization designed towards explorative tasks and support tools for inte-
gration and communication with external data sources and mining tools,
especially the data-mining platform KNIME. All parts of the interface
can be customized to fit the requirements of special tasks, including
the use of node type dependent icons, highlighting of nodes and clus-
ters. Through an evaluation we have shown the applicability of CET for
structure-based analysis tasks.

1 Introduction

Today’s search is still concerned mostly with keyword-based searches and the
closed discovery of facts. Many tasks, however, can be solved by mapping the
underlying data to a graph structure and searching for structural features in a
network, e.g. the connection between certain pages in Wikipedia1 or documents
closely related to a specific document, which may be defined by the exploration
task itself, i.e. documents mentioning each other, documents which are term-
related, etc. Exploring a hyperlink structure in a graph representation enables
these tasks to be fulfilled much more efficiently. On the other hand, graph visu-
alization can handle quite large graphs, but is rather static, i.e. the layout and
presentation methods calculate the graph visualization once and are not well
suited for interactions, such as adding or removing nodes. For example, one of
the well known graph layout methods, the Spring Force Layout, can yield very

1 http://www.wikipedia.org
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chaotic results when it comes to small changes in the graph, leading to a com-
pletely different layout if just one node is removed [13]. Since a user’s memory is
strongly location-based [16] and relies on the node positions during interaction
with the graph, such behavior is not desirable.

With the Creative Exploration Toolkit (CET), we present a user interface
with several distinct features: Support of interactive graph visualization and
exploration, integration of a modular open source data analytics system, and
easy configuration to serve specific user requirements.

In the following sections, we describe these features in more detail. We start
with a short overview on the state of the art in graph interaction and visu-
alization (Sect. 2), describe the explorative user interface (Sect. 3) and the
XMPP communication (Sect. 4.1), discuss the integrated (graph)mining meth-
ods (Sect. 4), present a first evaluation of the tool by a user study (Sect. 5) and
finally discuss some future work.

2 State of the Art in Graph Interaction and Visualization

Related work can be found in the field of graph visualization and graph lay-
outing. Cook and Holder, although mostly concerned with graph mining, pro-
vide a good overview on the state of the art and current systems [3]. For a
general overview there are several surveys on graph visualization available (c.f.
[14], [4], [18]). According to [5], there are three major methods for graph lay-
outing: force-directed, hierarchical and topology-shape-metrics, where the force
directed method introduced by [7] is most used today, despite its disadvanta-
geous behavior in interactive systems [14]. Special visualizations can be used
to accommodate data specific features such as time lines: [6] introduces a 2.5D
time-series data visualization, which uses stacks to represent time-dependent
advances in data series. A large number of visualization systems is available.
Approaches tailored to web searching and the visualization of hypermedia struc-
tures can be found among the web meta-search clustering engines (Vivsmo2,
iBoogie3, SnakeT4, WhatsOnWeb5) and in the field of semantic wikis (iMap-
ping Wiki [10]).

However, existing layout and visualization methods do not take continuous
graph development in the exploration scenario or the heterogeneousity of vi-
sualized information networks and their data sources into account. Besides the
grave differences between data mining tools and human-computer interaction
(see [11]) and the aforementioned shortcomings in continuous visualization of
changing graph structures, a loosly-coupled, but efficient integration between
network-providing services and visualization tools is often not available.

2 http://vivismo.com/
3 http://www.iboogie.com/
4 http://snaket.di.unipi.it
5 http://whatsonweb.diei.unipg.it
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3 The Creative Exploration Toolkit

The Creative Exploration Toolkit (CET) is a user interface that visualizes the
graph—derrived from an information network—and allows interaction with it.
The global design, shown in Figure 1, consists of

– a dashboard at the top, where the controls are located,
– a logging area, below, to show information on running processes and the tool

status,
– a sidebar on the right which displays detailed information about a node,
– and the workspace in the center, which is used for visualization.

We currently use the Stress Minimization Layout [15] to determine the initial
graph layout, followed by an overlap removal [8]. Nodes can be moved to cre-
ate certain arrangements, selected for further action, and expanded by double-
clicking them. On expansion the surrounding graph structure—obtained from
the data provider—is added to the visualization. Additionally, the user may is-
sue keyword-based queries. The corresponding results consists of graphs and can
be visualized as well. Subsequent query results are added to the graph, enabling
the user to explore the graph itself and the structures between the query results.
Additionally, there is support for node handling such as a list of all available or
all marked nodes, a keyword search for specific nodes and an attribute editor for
the selected node, allowing to manually add, change and delete properites.

Fig. 1. Screenshot of the Creative Exploration Toolkit (CET), showing an exploration
subgraph from the Wikipedia provider
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While CET takes care of graph visualization and presentation, domain-specific
semantics are not supported. To give an example: The shortest path between two
nodes is displayed by highlighting all nodes on the path. However, the user inter-
face is not aware of the path-property, but only displays the highlight attribute
of the nodes, while the actual calculation takes place in the underlying data
analysis platform described in the next section. The user interface is therefore
very flexible when it comes to tasks from different domains.

4 Network and Algorithm Providers

While the CET provides interaction and visualization, it relies on external tools
to provide graphs and algorithms. We are working on a selection of providers,
including the KNIME platform and Wikipedia—both presented here—as well as
a provider for the MusicBrainz6 network and Personal Information Management
(PIM) data.

4.1 Communication between CET and Other Tools

When an interactive process is spread over several nodes, i.e. databases and
computation services, it is necessary to keep track of the current status and to be
able to propagate changes in the request or outcome very quickly. The Extensible
Messaging and Presence Protocol (XMPP)7 has originally been developed for the
Jabber instant messenger, i.e. for the fast and cheap exchange of small messages.
From this application, an XML-based real-time messaging protocol has emerged,
which now offers numerous extensions (XEPs) for several tasks, including the
exchange of large data portions and Remote Method Invocation (RMI) [17].

We definied a unified text message format to allow communication between
the tools. This format is also human-readable, which allows for easy debugging
and tracing of any communication as well as sending man-made messages during
development. A library encapsulates message creation/parsing as well as process
management. As the XMPP is an asynchronous protocol, a respective software
design is needed. In contrast to a web application one cannot send a request
and wait for a response, but has to define a communication context—here as
an XMPP process—which groups messages between two or more clients. As an
advantage the messages are cheap enough to handle progress messages on a very
fine level, allowing to use UI elements such as progress bars even on remotely
executed calculations.

4.2 The KNIME Information Mining Platform

KNIME [2], the Konstanz Information Miner, was initially developed by the
Chair for Bioinformatics and Information Mining at the University of Konstanz,

6 http://www.musicbrainz.org
7 http://www.xmpp.org
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Germany. KNIME is released under an open source license (GPL v38) and can
be downloaded free of charge9. KNIME is a modular data exploration platform
that enables the user to visually create data flows (often referred to as pipelines),
selectively execute some or all analysis steps, and later investigate the results
through interactive views on data and models. The KNIME base version al-
ready incorporates hundreds of processing nodes for data I/O, preprocessing
and cleansing, modeling, analysis and data mining as well as various interactive
views, such as scatter plots, parallel coordinates and others. It integrates all
analysis modules of the well known Weka data mining environment and addi-
tional plugins allow, among others, R-scripts10 to be run, offering access to a
vast library of statistical routines.

KNIME has been extended to allow for the flexible processing of large net-
works via a network plugin, which is available on the KNIME Labs homepage11.
The network plugin provides new data types and nodes to process (un)weighted
and (un)directed multigraphs as well as hypergraphs within KNIME. It further
supports the handling of vertex, edge and graph features. Networks can either
be processed in memory or in a relational database which enables large networks
to be handled within KNIME.

The plugin provides nodes to create, read and write networks. It also provides
nodes for filtering and analyzing networks. The created networks can be visu-
alized directly in KNIME or in other existing network visualization tools e.g.
visone12. Nodes to convert a network into other data types such as matrices and
various data tables allow already existing nodes to be used within KNIME. Due
to this seamless integration, KNIME can be applied to model complex network
processing and analysis tasks.

CET offers a very generic access to KNIME, enabling the user to make arbi-
trary calls without adapting the user interface. CET can be configured to directly
call a KNIME workflow via a configuration and execution dialog. which provides
a list of all available workflows and parameters for a selected workflow, which
can be edited by the user. Essentially, all information that would be sent by
the user interface can be provided to start a KNIME workflow. The result is
then visualized in the graph. New analysis methods can therefore be integrated
easily into CET by simply adding a new workflow providing the corresponding
functionality.

Figure 2 shows an example of a workflow computing the network diameter.
In this workflow, first all nodes with a certain feature value are filtered to take
only those into account that have been selected and marked by the user. Second,
degree filters are applied on nodes and edges to filter unconnected nodes. The
shortest paths of all node pairs are subsequently computed and a feature is

8 http://www.gnu.org/licenses/gpl.html
9 http://www.knime.org

10 http://www.r-project.org
11 http://tech.knime.org/knime-labs
12 http://visone.info
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Fig. 2. An example KNIME workflow for calculating the network diameter which is
called from CET

assigned consisting of the path length to those nodes of the longest of shortest
paths. Finally the graph is sent back to the CET.

4.3 Wikipedia

The Wikipedia client provides query methods needed to explore the Wikipedia
structure graph. To obtain the structure, a Wikipedia database dump13 has been
crawled and its structure stored into a MySQL database containing

– the pages—which constitute the nodes in the graph structure—with the page
URL, their title and a flag stating whether a page is a redirect to another
page. For pages with content, the text part before the first heading is stored
as an abstract. However, this only holds the source code from the Wiki page,
not any rendered contents, i.e. to display the abstract as it can be seen from
Wikipedia, a MediaWiki conversion must be applied.

– links between the pages, including the source page, the destination and an
alternative text given for a link, as the MediaWiki markup allows to state
any text to be displayed for the link content.

An XMPP service has been set up to provide access to the Wikipedia structure.
There are commands to query pages by their name, get the list of all pages
connected to a specific page (expansion) and find all links connecting a list of
pages (completion). The completion step is needed to fill a graph after nodes
have been added, as a simple expansion only views outgoing links with respect
to a node. To find incoming links, i.e. links which are outgoing from another
node, all pages in the displayed subgraph have to be revisited. Additionally, the
abstract of a page can be acquired to be displayed in the side-bar.

5 Evaluation

In this section we describe the evaluation of the CET in the form of a small
user study. With this study we prove the applicability of the CET for graph
exploration tasks and show how basic functionality of KNIME can support the
user by these activities. In this case study we concentrate on one possible scenario

13 http://en.wikipedia.org/wiki/Wikipedia:Database_download
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for graph exploration which is knowledge discovery, ex. bisociations discovery or
discovery of new unexpected relations in the graph data (see [1]).

The case study is carried out in the form of a controlled comparative lab ex-
periment. Our research question is, whether graph based navigation outperforms
hypertext navigation in terms of effectiveness, efficiency and user satisfaction.
Thus, the target of this study is to compare knowledge discovery, using the CET,
which is based on graph navigation with hypertext navigation when users are
searching online using web resources e.g. Wikipedia. For a general discussion
about the evaluation of exploratory user interfaces see [9].

Hypothesis: Users can make more novel discoveries or make them faster when
using our graph-based interface in comparison to exploration based on hypertext
navigation.

5.1 Study Design

The study consisted of a lab experiment combined with a questionnaire. By the
questionnaire we collected the participants’ demographic data, their computer
skills and search experience, results of the search experiment using the user in-
terface and Wikipedia, and usability assessment. For the experiment we used the
German version of Wikipedia.

We designed several search tasks to reflect knowledge discovery. Especially we
concentrated on bisociations discovery.There are three types of bisociations: bridg-
ing concepts, bridging graphs and structural similarity (see [1]). We concentrated
on bisociations of type “bridging graphs”, which can be found inWikipedia. These
bisociations contain named entities that havemany “connecting domains” in com-
mon. As example, Indira Gandhi and Margaret Thatcher are concepts from the
same domain (person) connected through such domains as: university (both at-
tended Oxford), career (Female heads of government), political position (Cold
War leaders), sex and century (Women in 20th century warfare). Here, the “con-
necting domains” are Wikipedia categories. However, the direct link between In-
dira Gandhi and Margaret Thatcher was missing in Wikipedia.

To be able to find such bisociations the user interface should support searching
for similarities between concepts. Therefore we considered the following indepen-
dent searching tasks for our study:

– Participants should find what the two concepts have in common.
– Participants should build the association chain between two concepts14.

In the lab experiment the participants used the CET to solve two tasks of the
types described above. They also did two similar tasks using online web search
on Wikipedia. We employed a Latin Square blocking design [12] in our lab study
to get rid of the effects like the order the users use the discovery tools which
can bias the results. That means one group of our participants started with the
first task set and used the CET and after that used online Wikipedia to solve

14 To avoid confusion we omitted the term “bisociation” in the study and used “asso-
ciation” instead.
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the second task set. Second half of the participants started with the first task
set and used online Wikipedia interface and after that used the CET to solve
the second task set. Our toolkit supports the user discovery process with the
following features:

– Querying the graph: exact match and its neighbour nodes can be found.
– Graph visualisation: with Wikipedia articles as nodes and links between

them if there is a hypertext link in the abstract of one of the articles.
– Explanation of relations between graph nodes: for each node a corresponding

article abstract can be seen.
– Graph navigation: each node can be expanded by its neighbours.
– Shortest path: indication of the minimum intermediate concepts/nodes be-

tween two or more concepts/nodes in the graph.

Before conducting the lab experiment, the participants were given instructions on
how to operate the CET. They were also given some time to try out the toolkit.
When using online Wikipedia the participants used the Firefox15 browser and
were allowed to perform Wikipedia search as they usually do, e.g. open several
tabs and use the internal search feature. The participants were allowed to use
only the text in the abstract of an article. They could also follow the hyper-
text links found only within an abstract. This limitation arose from the limited
experiment time (otherwise the users could spend much time reading and under-
standing information) and from the construction of our graph-based interface.
Each participant was told that the target answer, he or she was supposed to find
in the lab experiment, should be derived from article abstracts.

5.2 Results of the Study

Twelve users participated in our study: 66.7% (8) men and 33.3% (4) women.
Their average age was about 26. The majority of participants had informatics-
related profession like engineering, IT-research assistant or student. As we em-
ployed a Latin Square blocking design there were 50% of the users (6) in the
first group and 50 % (6) in the second with equal percentage of women in each
group. All participants categorized themselves as professional users of computer
programs. Almost all participants (91.7%) used search engines (e.g. Google) ev-
ery day to make their investigations. One participant uses search engine several
times a week. The majority used Wikipedia to make their investigations several
times a week.

The experiment consisted of two similar sets, each with two unrelated tasks
(see Table 1). The participants were equally successful solving the first task set
independent of the tool they used: based on hypertext navigation or graph based
navigation. The second task set was more complicated than the first one. Espe-
cially the task about the association chain between amino acids and Gerardus
Johannes Mulder showed that graph-based tool better supports users by knowl-
edge discovery. All the participants managed the task using the CET while only

15 http://www.mozilla.com/firefox
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one third did it based on Wikipedia. One third of the participants who were
supposed to solve the task based on Wikipedia even gave up and presented no
solution. The participants also spent less time on task solution if using the CET
in comparison to hypertext navigation with exception on one task (Table 2).
One important note is that the participants mainly did not know the answers
in advance16. The proportion of people who knew the answer before the search
experiment was equal comparing two configuration groups. This information is
important because it would not make sense to compare the programs if the users
already knew the answers as then they could find the right answer not because
they used one of the tools.

Table 1. Task solving statistic. Success rate in %.

Wikipedia CET

Task
set

Task description Right
answer

Wrong
answer

Not
solved

Right
answer

Wrong
answer

Not
solved

1
What do Tom Cruise
and Niels Bohr have in
common?

83.3 16.7 0 83.3 16.7 0

Build an association
chain between computer
science and Netherlands

100 0 0 100 0 0

2
What do Jean-Marie
Lehn and Thomas Mann
have in common?

83.3 16.7 0 100 0 0

Build an association
chain between amino
acids and Gerardus
Johannes Mulder

33.3 33.3 33.3 100 0 0

Table 2. Task solving statistic. Mean time spent on solving (in minutes).

Task
set

Task description Wikipedia CET

1
What do Tom Cruise and Niels Bohr have in
common?

4.00 1.33

Build an association chain between computer
science and Netherlands

1.50 1.67

2
What do Jean-Marie Lehn and Thomas Mann
have in common?

2.33 1.50

Build an association chain between amino
acids and Gerardus Johannes Mulder

3.83 2.67

16 For the task about association chain between computer science and Netherlands,
two participants, who used Wikipedia, and two participants, who used CET, knew
the answer before the search. This information was learned from the questionnaire.
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To summarize, our hypothesis that users can make more new discoveries or
achieve them faster using our graph-based interface in comparison to online
web search based on hypertext navigation was supported by the study17. We
also observed on user actions during the experiment. Participants experienced
difficulties analyzing even small portions of text without the support of CET
(see the example of Tom Cruise and Niels Bohr in Figure 3).

CET, which has a graph-based interface, helps users to see the connections
between concepts at once (see the example of Tom Cruise and Niels Bohr in
Figure 1). That is why our tool is better for knowledge discovery.

We analyzed the participants’ opinion on our tool to improve it. The overall
rate of the program support of the functions for information discovery was good
(see Table 3). The best mean assessment (nearly very good) was for finding
relations between topics. The study results show that the program does not
sufficiently support the search for topics and we should work in the direction to
better support this functionality.

Furthermore we evaluated the usability of the user interface. This statistic
is summarized in Table 4. The overall usability assessment was good. The best
mean assessment was for user support by solving the searching tasks which
was nearly very good. The participants again confirmed our hypothesis that

Fig. 3. Screenshots of abstracts of the Wikipedia articles on Tom Cruise and Niels
Bohr. Tom Cruise was born in the year Niels Bohr died.

17 As the participants group was relatively small we do not have a statistical proof.
Further studies would be beneficial.
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Table 3. User assessment how well the program supports them by knowledge discovery
with a scale from 1 (very bad) to 5 (very good)

Functionality Mean Min Max St. Dev.

Topic search 3.67 2 5 0.78
Navigation between topics 4.25 3 5 0.75
Finding relations between topics 4.67 4 5 0.49
Understanding the relations between topics 4.08 2 5 1.08
Knowledge discovery 4.08 3 5 0.67

Table 4. Usability assessment with a scale from 1 (very bad) to 5 (very good)

Usability criteria Mean Min Max St. Dev.

Intuitive operation 4.00 3 5 0.74
User support by task solving 4.75 3 5 0.62
User support of knowledge discovery vs. Wikipedia 4.17 3 5 0.84

graph-based interface in comparison to online web search based on hypertext
navigation better supports knowledge discovery18.

6 Conclusion and Future Work

We presented a user interface for generic, exploratory graph visualization with
special emphasis on extensibility by integration with data and graph analysis
methods provided by KNIME. The presented interface allows for easy interaction
with the visualized graphs. This setup is particularly interesting for researchers
in the area of Data Mining and Network Analysis, as it is very simple to plug
in new approaches and visualize the results, even if there is interaction involved.
With a case study we proved the CET applicability for knowledge discovery on
tasks requiring structural analysis of data sets.

Future work includes the enhancement of available interaction elements, even-
tually being able to plug in arbitrary control widgets, improvements on the com-
munication facilities—with extensions of our XMPP library—and the integration
of more data sources.
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18 One participant wrote a note, that he did not use Wikipedia for discovery. That is
why he could not compare these two tools. But he admitted he knew no alternative
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Abstract. The aim of this chapter is to present the role of outliers in literature-
based knowledge discovery that can be used to explore potential  bisociative 
links between different domains of expertise. The proposed approach upgrades 
the RaJoLink method which provides a novel framework for effectively guiding 
the knowledge discovery from literature, based on the principle of rare terms 
from scientific articles. This chapter shows that outlier documents can be 
successfully used as means of detecting bridging terms that connect documents 
of two different literature sources. This linking process, known also as closed 
discovery, is incorporated as one of the steps of the RaJoLink methodology, and 
is performed by using publicly available topic ontology construction tool 
OntoGen. We chose scientific articles about autism as the application example 
with which we  demonstrated the proposed approach.  

Keywords: outliers, bisociations, literature mining, knowledge discovery. 

1 Introduction 

In statistics, an outlier is described as an observation that is numerically distant from 
the rest of the data, or more formally, it is an observation that falls outside the overall 
pattern of a distribution [1]. While in many data sets outliers may be due to data 
measurement errors (therefore it would be best to discard them from the data), there 
are also several examples where outliers actually led to important discoveries of 
intriguing information.  

In this chapter we explore the potential of outliers for guiding bisociative 
knowledge discovery from literature. We present an approach to outliers-based 
knowledge discovery from text documents that can be used to explore implicit 
relationships across different domains of expertise, indicating interesting cross-
domain connections, called bisociations [2], [3]. The development of this approach 
was conducted in three phases that were described in a comprehensive report [4]. The 
approach upgrades the RaJoLink method [5] for knowledge discovery from literature, 
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where the hypotheses generation phase is based on the principle of rare terms from 
scientific articles,  with the notion of bisociation.  

The motivation for work has grounds in the associationist creativity theory [8]. 
Mednick [8] defines creative thinking as the faculty of generating new combinations 
of distant associative elements (e.g. words). He explicates how thinking of concepts 
that are not strictly related to the elements under research inspires unforeseen useful 
connections between elements. In this manner, bisociations considerably improve the 
knowledge discovery process. This chapter pays special attention to the category of 
context-crossing associations, called bisociations [3].  

RaJoLink is intended to support experts in their overall process of open knowledge 
discovery, where hypotheses have to be generated, followed by  the closed knowledge 
discovery process, where hypotheses are tested. It was demonstrated in [5], [6], 
and [7] that this method can successfully support the user-guided knowledge 
discovery process.  

The RaJoLink methodology has been applied to a challenging medical domain: the 
set of records for our study was selected from the domain of autism. Autism belongs 
to a group of pervasive developmental disorders that are portrayed by an early delay 
and abnormal development of cognitive, communication and social interaction skills 
of a person [9]. It is a very complex and not yet sufficiently understood domain, 
where precise causes are still unknown, hence we have chosen it as our experimental 
testing domain.  

This chapter is organized as follows. Section 2 presents the related work in the area 
of literature mining. Section 3 introduces the literature-based knowledge discovery 
process and further explores rarity as a principle for guiding the knowledge discovery 
in the upgraded RaJoLink method. Section 4 presents the RaJoLink approach by 
focusing on outliers in the closed discovery process. Section 5 illustrates the 
application of outlier detection to the autism literature. Section 6 provides discussion 
and conclusions. 

2 Related Work in Literature Mining 

Novel interesting connections between disparate research findings can be extracted 
from the published literature. Analysis of implicit associations hidden in scientific 
literature can guide the hypotheses formulation and lead to the discovery of new 
knowledge. To support such literature-based discoveries in medical domains, 
Swanson has designed the ABC model approach [10] that investigates whether an 
agent A influences a phenomenon C by discovering complementary structures via 
interconnecting phenomena B. Two literatures are complementary if one discusses the 
relations between A and B, while a disparate literature investigates the relations 
between B and C. If combining these relations suggests a previously unknown 
meaningful relation between A and C, this can be viewed as a new piece of 
knowledge that might contribute to a better understanding of phenomenon C. 

Weeber and colleagues [11] defined the hypothesis generation approach as an open 
discovery process and the hypothesis testing as a closed discovery process. In the 
open discovery process only the phenomenon under investigation (C) is given in 
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advance, while the target agent A is still to be discovered. In the closed discovery 
process, both C and A are known and the goal is to search for bridging phenomena B 
in order to support the validation of the hypothesis about the connection between A 
and C. Smalheiser and Swanson [12] developed an online system named 
ARROWSMITH, which takes as input two sets of titles from disjoint domains A and 
C and lists terms b that are common to literature A and C; the resulting terms b are 
used to generate novel scientific hypotheses.1 As stated by Swanson [13], his major 
focus in literature-based discovery has been on the closed discovery process, where 
both A and C have to be specified in advance.  

Several researchers have continued Swanson’s line of research. Most of them have 
made literature-based discoveries in the field of biomedicine. In biomedicine, huge 
literature databases and well structured knowledge based-systems provide effective 
supports for literature mining tasks. An on-line literature-based discovery tool called 
BITOLA has been designed by Hristovski [14]. It uses association rule mining 
techniques to find implicit relations between biomedical terms. Weeber and 
colleagues [15] developed Literaby, the concept-based Natural Language Processing 
tool. The units of analysis that are essential for their approach are UMLS 
Metathesaurus concepts. The open discovery approach developed by Srinivasan and 
colleagues [16], on the other hand, relies almost completely on Medical Subject 
Headings (MeSH). Yetisgen-Yildiz and Pratt [17] proposed a literature-based 
discovery system called LitLinker. It mines biomedical literature by employing 
knowledge-based and statistical methods. All the pointed systems use MeSH 
descriptors [18] as a representation of scientific medical documents, instead of using 
title, abstract or full-text words. Thus, problems arise since MeSH indexers normally 
use only the most specific vocabulary to describe the topic discussed in a 
document [19] and therefore some significant terminology from the documents’ 
content may not be covered. The Swanson’s literature-based discovery approach has 
been extended also by Lindsay and Gordon [20], who used lexical statistics to 
determine relative frequencies of words and phrases. In their open discovery approach 
they search for words on the top of the list ranked by these statistics. However, their 
approach fails when applied to Swanson’s first discoveries and extensive analysis has 
to be based on human knowledge and judgment.  

Unlike related work, we put an emphasis on rare terms. Since rare terms are considered 
to be special terms, not characteristic for a particular domain context, they are more 
informative than frequent terms. For this reason, rare terms are very likely to be relevant 
for crossing the boundaries of domains and leading to some interesting observations. 

3 The Upgraded RaJoLink Knowledge Discovery Process 

The aim of knowledge discovery presented in this chapter is to detect the previously 
unnoticed concepts (chances) at the intersections of multiple meaningful scenarios. As 
a consequence, tools for indicating rare events or situations prove to play a significant 
                                                           
1  Here we use the notations A, B, and C that are written in uppercase letter symbols to represent 

a set of terms (e.g., literature or collection of titles, abstracts or full texts of documents), while 
with a, b, and c (lowercase symbols) we represent a single term. 
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role in the process of research and discovery [21]. From this perspective  curious or 
rare observations of phenomena can provide novel possible opportunities for 
reasoning [22].  Regarding this, the use of data mining tools is essential to support 
experts, in choosing meaningful scenarios.  

Outliers actually attract a lot of attention in the research world and are becoming 
increasingly popular in text mining applications as well. Detecting interesting outliers 
that rarely appear in a text collection can be viewed as searching for the needles in the 
haystack. This popular phrase illustrates the problem with rarity since identifying 
useful rare objects is by itself a difficult task [22]. 

The rarity principle that we apply in the first (open discovery) step of the RaJoLink 
literature-based discovery is a fundamental difference from the previously proposed 
methods and represents a unique contribution of the RaJoLink method. In our earlier 
work [5], [6], and [7] we presented the idea of extending the Swanson’s ABC model 
to handle the open discovery process with rare terms from the domain literature. For 
that purpose we employed the Txt2Bow utility from the TextGarden library [23] in 
order to compute total frequencies of terms in the entire text corpus/corpora.  

The entire RaJoLink method involves three principal steps, Ra, Jo and Link, which 
have been named after the key elements of each step: Rare terms, Joint terms and 
Linking terms. Note that the steps Ra and Jo implement the open discovery, while the 
step Link corresponds to the closed discovery. The methodological description of the 
three steps has been provided in our previous publications [5], [6], and [7]. 

We developed a software tool that implements the RaJoLink method and provides 
decision support to experts. It can be used to find scientific articles in MEDLINE 
database [24], to compute statistics about the data, and to analyze them to discover 
eventually new knowledge. By such exploration, massive amounts of textual data are 
automatically collected from databases, and text mining methods are employed to 
generate and test hypotheses. In the step Ra, a specified number (set by user as a 
parameter value) of interesting rare terms in literature about the phenomenon C under 
investigation are identified. In the step Jo, all available articles about the selected rare 
terms are inspected and interesting joint terms that appear in the intersection of the 
literatures about rare terms are identified and selected as the candidates for A. In order 
to provide explanation for hypotheses generated in the step Jo, our method searches 
for links between the literature on joint term a and the literature on term c.  

The upgraded RaJoLink methodology for bisociative knowledge discovery consists 
of the following steps.  

• The crucial step in the RaJoLink method is to identify rare elements within 
scientific literature, i.e., terms that rarely appear in articles about a certain 
phenomenon.  

• Sets of literature about rare terms are then identified and considered together 
to formulate one or more initial hypotheses in the open discovery process.  

• Next, in the closed discovery process, RaJoLink focuses on outlying and their 
neighbouring documents in the documents’ similarity graphs. We construct 
such graphs with the computational support of a semi-automatic tool for topic 
ontology construction, called OntoGen [25].  



 Bisociative Knowledge Discovery by Literature Outlier Detection 317 

• Outlier documents are then used as a heuristic guidance to speed-up the search 
for the linking terms (bridging terms, also called b-terms) between different 
domains of expertise and to alleviate the burden from the expert in the process 
of hypothesis testing. In this way, the detection of outlier documents 
represents an upgrade to our previous method that results in significant 
improvements of the closed discovery process. This step of the upgraded 
RaJoLink methodology is the focus of research presented in this chapter. 

4 Outlier Detection in the RaJoLink Knowledge Discovery 
Process 

This chapter focuses on the steps of the closed discovery process, where two domains 
of interest A and C have already been identified prior to starting the knowledge 
discovery process. The closed discovery process is supported by using the OntoGen 
tool [25]. One of its features is its capacity of visualizing the similarity between the 
selected documents of interest. The main novelty of the upgraded RaJoLink 
methodology is the visualization of outlier documents in the documents’ similarity 
graph (Figure 1) which enables us to find bisociations in the combined set of 
literatures A and C. Our argumentation is that outlier documents of two implicitly 
linked domains can be used to search for relevant linking terms (bridging terms or b-
terms) between the two domains. The idea of representing instances of literature A 
together with instances of literature C in the same similarity graph with the purpose of 
searching for their bisociative links is a unique aspect of our method in comparison to 
the literature-based discovery investigated by other researchers. 

When investigating whether disjoint domains A and C can be connected by domain 
bridging concepts B, we take as input two sets of documents from disjoint domains A 
and C and visualize them in the documents’ similarity graph. The goal of constructing 
such graphs is to discover complementary structures that are common to both 
literatures, A and C via domain bridging concepts B. These domain bridging terms can 
be found in similarity graphs in those outlying documents of literature A and/or 
literature C that are not positioned in the mainstream domain literatures but are 
relatively distinct from a prototypical document of each domain literature, where a 
prototypical/average document is, technically speaking, computed as the centroid of 
the selected domain. Such outlying documents are most frequently observed at the 
intersection between literatures A and C as shown in Figure 1. 

In the closed discovery process of the RaJoLink method, text documents 
containing terms b that bridge the literature A and the literature C can be expected to 
be present in outlier documents. Therefore, in our approach to closed knowledge 
discovery, outliers are used as heuristic guidance to speed up the search for bridging 
concepts between different domains of expertise. Having disparate literatures A and 
C, both domains are examined by the combined dataset of literatures A and C in order 
to assess whether they can be connected by implicit relations. Within the whole 
corpus of texts consisting of literatures A and C, which acts as input for step Link (i.e. 
the closed discovery) of RaJoLink, each text document represents a separate 
instance/record.  
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Fig. 1. A graph representing instances (documents) of literature A and instances (documents) of 
literature C according to their content similarity to a prototypical document of literature A. In 
this similarity graph, outliers of literature C are positioned closer to the  typical representatives 
of the literatures A than to the central documents of literature  C. 

Each document from the two literatures is an instance, represented by a set of 
words using frequency statistics based on the Bag of Words (BoW) text 
representation [26]. The BoW vector enables to measure content similarity of 
documents. Content similarity computation is performed with OntoGen, which was 
designed for interactive data-driven construction of topic ontologies [25]. Content 
similarity is measured using the standard TF*IDF (term frequency inverse document 
frequency) weighting method [27], where high frequency of co-occuring words in 
documents indicates high document similarity. The similarity between documents is 
visualized with OntoGen in the document’s similarity graph, as illustrated in Figure 1. 

The cosine similarity measure, commonly used in information retrieval and text 
mining to determine the semantic closeness of two documents where document 
features are represented using the BoW vector space model, is used to position the 
documents according to their similarity to the representative document (centroid) of a 
selected domain. Documents positioned based on the cosine similarity measure can be 
visualized in OntoGen by a similarity graph with cosine similarity values that fall 
within the [0, 1] interval. Value 0 means extreme dissimilarity, where two documents 
(a given document and the centroid vector of its cluster) share no common words, 
while value 1 represents the similarity between two semantically identical documents 
in the BoW representation. 
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The method uses domains A and C, and builds a joint document set AC (i.e. A∪C). 
For this intention, two individual sets of documents (e.g. titles, abstracts or full texts 
of scientific articles), one for each term under research (namely, literature A and 
literature C), are automatically retrieved from bibliographic databases or extracted 
from other document sources. The documents from the two individual sets are loaded 
as a single text file (i.e. a joint document set AC) where each line represents a 
document with the first word in the line being its name. We consider all the terms and 
not just the medical ones. A list of 523 English stop words is then used to filter out 
meaningless words, and English Porter stemming is applied.  

From a joint document set A∪C, a similarity graph (Figure 1) between two 
document sets A and C is constructed with OntoGen by ranking and visualizing all the 
documents from AC in terms of their similarity to centroid a of document set A. The 
OntoGen tool can then be used to build two document clusters, A’ and C’ (where 
A’∪C’=AC) in an unsupervise manner, using OntoGen’s 2-means clustering 
algorithm. Cluster A’ consists mainly of documents from A, but may contain also 
some documents from C. Similarly, cluster C’ consists mainly of documents from C, 
but may contain also some documents from A. 

Each cluster is further divided into two document subclusters based on domains A 
and C with the aim to identify outlying documents. For each individual document 
cluster we proceed as follows: cluster A’ is divided into subclusters A’∩A and A’∩C, 
while cluster C’ is divided into C’∩A and C’∩C. In this manner, subclusters A’∩C 
(outliers of C, consisting of documents of domain C only) and C’∩A (outliers of A, 
consisting of documents of domain A only) are the two document sets that consist of 
outlying documents.  

5 Application of Outlier Detection in the Autism Literature 

This section is dedicated to a practical application of the upgraded RaJoLink 
methodology to text analysis of biomedical scientific documents. We present how text 
mining and link analysis techniques, which are implemented in our approach, can be 
performed and show how they can be applied to a biomedical domain. For the 
experimental field we chose autism, for which causes and risk factors are still poorly 
recognized although it is known, that both genetic and environmental factors 
influence this disorder. When exploring the literature on autism, the collaborating 
medical expert has proposed to take the NF-kappaB literature as one of the most 
promising potential target domains for further focused studies [7]. For a given 
hypothesis of NF-kappaB and autism relationship we automatically extracted  
abstracts of MEDLINE articles that could connect the domain of autism with the 
knowledge gained through the studies of the transcription factor NF-kappaB. In fact, 
according to the semantic similarity measure we identified some articles on  
NF-kappaB in the group of articles on autism. Technically speaking, when autism 
literature was selected as domain A and when from the joint domain AC (joining 
autism and NF-kappaB literatures) OntoGen’s 2-means clustering method was  
applied to obtain document groups (clusters) A’ and C’, some documents from 
domain C (NF-kappaB literature) appeared as members of document cluster A’ 
containing mostly articled from domain A (autism). Similarly, there were also some 
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articles on autism in the group of articles on NF-kappaB (article group C’). It turned 
out that indeed these exceptional documents contain uncommon and therefore 
potentially bridging terms. In particular, terms Bcl-2, cytokines, MCP-1, oxidative 
stress and other meaningful linking terms between the literature on autism and the 
literature on NF-kappaB were detected in these outlier documents.  

Here we present finding of an abstract of MEDLINE articles that makes logical 
connection between the specific autism observations and the NF-kappaB findings across 
the bridging term Bcl-2, a regulatory protein for control of programmed brain cell death. 
Figure 2 shows the similarity graph representing instances of literature A (autism 
context) among instances of literature C (nf-kappab+ context) according to their content 
similarity, where A denotes a set of documents containing term autism, A’ denotes the 
group of documents constructed from the AC document set where most documents are 
documents on autism (i.e., the so-called autism+ context, where + autism being the 
majority document class in this document group), and C denotes a set of documents 
containing term NF-kappaB (i.e., the so-called nf-kappab+ context). 

The presented bisociative linking approach suggests a novel way to improve the 
evidence gathering phase when analyzing individual  terms appearing in literature A 
in terms of their potential for connecting with  terms from literature C. In fact, even 
 

 

Fig. 2. OntoGen’s similarity graph representing instances of literature A (autism+ context) 
among instances of the literature C (nf-kappab+ context) according to their content similarity. 
The distinctive article about the substance Bcl-2 in relation to autism (2179A) is visualized 
among the nf-kappab+ context documents. 
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 Srinivasan and colleagues, who declared to have developed the algorithms that 
require the least amount of manual work in comparison with other studies [16], still 
need significant time and human effort for collecting evidence relevant to the 
hypothesized connections. In the comparable upgraded RaJoLink approach, the 
domain expert should be involved only in the conclusive actions of the Link step to 
accelerate the choice of significant linking terms. In this step, similarity graph 
visualization proves to be extremely beneficial for speeding the process of 
discovering the bridging concepts. Not only that the documents detected as outliers 
are visualized and their contents presented on the screen by simply clicking on the 
pixel representing the document (see Figure 2), but also the keywords are listed, 
explicitly indicating a set of potential bridging concepts (terms) to be explored by the 
domain experts. 

6 Conclusions 

Current literature-based approaches depend strictly on simple, associative information 
search. Commonly, literature-based association is computed using measures of 
similarity or co-occurrence. Because of their ‘hard-wired’ underlying criteria of co-
occurrence or similarity, these methods often fail to discover relevant information, 
which is not related in obvious associative ways. Especially information related 
across separate contexts is hard to identify with the conventional associative 
approach. In such cases the context-crossing connections, called bisociations, can help 
generate creative and innovative discoveries. The RaJoLink method has the potential 
for bisociative relation discovery as it allows switching between contexts and for  
discovering interesting terms in the intersections between contexts. 

Similar to Swanson’s closed discovery approach [10], the search for bridging  
terms consists of looking for terms b that can be found in the intersection of two 
separate sets of records, namely in the literature A as well as in the literature C. 
However, our focusing is on outliers from the two sets of records and their 
neighbouring documents. Thus we show how outlying documents in the similarity 
graphs yield useful information in the closed discovery, where bridging concepts have 
to be found between the literatures A and C. In fact, such visual analysis can show 
direction to the previously unseen relations like bisociations, which provide new 
knowledge. This is an important aspect and significant contribution of our method to 
literature-based discovery research.  

Most of the data analysis research is focused on discovering mainstream relations. 
These relations are well statistically supported; findings usually confirm the 
conjectured hypothesis. However, this research provides insight into the relationship 
between outliers and the literature-based knowledge discovery. An important feature 
of our approach is the way of detecting the bridging concepts connecting unrelated 
literatures, which we have performed by the OntoGen’s similarity graphs. We used 
them for representing instances of the literature A together with instances of the 
literature C according to their content similarity with the goal to identify outliers from 
the two sets of literatures and their neighbouring documents. We showed that with the 
similarity graphs that enable the visual analysis of the literature it is easier to detect 
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the documents, which are very interesting for a particular link analysis investigation, 
for the reason that such outlying documents often represent particularities in domain 
literature. Therefore, to test whether the hypothetical observation could be related to 
the phenomenon under investigation or not, we compare the sets of literature about 
the initial phenomenon with the literature about the hypothetically related one in the 
documents’ similarity graphs. By our original discovery of linking terms between the 
literature on autism and the literature on calcineurin we proved that such combination 
of two previously unconnected sets of literatures in a single content similarity graph 
can be very effective and useful [5] and  [6]. In the autism domain we also discovered 
a relation between autism and transcription factor NF-kappaB, which has been 
evaluated by a medical expert as relevant for better understanding of autism [7]. From 
the similarity graphs that we drew with OntoGen we could quickly notice, which 
documents from the observed domain are semantically more related to another 
context. They were positioned in the middle portions of the similarity curves. In the 
present autism experiment we found a document about the anti-apoptotic protein Bcl-
2 [28] that presents a bridging concept among disjoint sets of scientific articles about 
autism on one hand, and NF-kappaB on the other hand. In fact, Sheikh and colleagues 
 [28] found reduction of Bcl-2, the important marker of apoptosis, in the cerebellum 
of autistic subjects. Some years before them also Araghi-Niknam and Fatemi showed 
the reduction of Bcl-2 in superior frontal and cerebellar cortices of autistic 
individuals [29]. On the other hand, Mattson [30] reported in his review that 
activation of NF-kappaB in neurons can promote their survival by inducing the 
expression of genes encoding antiapoptotic proteins such as Bcl-2. However, further 
research about timing, maturational differences in brain development, and other 
determinants of NF-kappaB involvement in autism would be needed to substantiate 
the hypotheses generated by our literature-based experiments.  
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Abstract. In bisociative cross-domain literature mining the goal is to
identify interesting terms or concepts which relate different domains.
This chapter reveals that a majority of these domain bridging concepts
can be found in outlier documents which are not in the mainstream do-
main literature. We have detected outlier documents by combining three
classification-based outlier detection methods and explored the power
of these outlier documents in terms of their potential for supporting the
bridging concept discovery process. The experimental evaluation was per-
formed on the classical migraine-magnesium and the recently explored
autism-calcineurin domain pairs.

1 Introduction

Scientific literature serves as the basis of research and discoveries in all scientific
domains. In literature-based creative knowledge discovery one of the interesting
goals is to identify terms or concepts which relate different domains, as these
terms may represent germs of new scientific discoveries.

The aim of this chapter1 is to present an approach which supports scientists
in their creative knowledge discovery process when analyzing scientific papers
of their interest. The presented research follows Mednick’s associative creativity
theory [9] defining creative thinking as the capacity of generating new combina-
tions of distinct associative elements (e.g. words), and Koestler’s book The act of
creation [7] stating that scientific discovery requires creative thinking to connect
seemingly unrelated information. Along these lines, Koestler explores domain-
crossing associations, called bisociations, as a crucial mechanism for progressive
insights and paradigm shifts in the history of science.

Based on the definition of bisociations—defined by Koestler [7] and further
refined by Dubitzky et al. [3]—our work addresses the task of supporting the
search for bisociative links that cross different domains. We consider a simplified
setting, where a scientist has identified two domains of interest (two different
scientific areas or two different contexts) and tries to find concepts that represent
potential links between the two different contexts. This simplified cross-context

1 This chapter is an extension of our short paper [16].

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 325–337, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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link discovery setting is usually referred to as the closed discovery setting [23].
Like Swanson [19] and Weeber et al. [23], we address the problem of literature
mining, where papers from two different scientific areas are available, and the
task is to support the scientist in cross-context literature mining. By addressing
this task, our aim is to contribute to a methodology for semi-automated cross-
context literature mining, which will advance both the area of computational
creativity as well as the area of text mining.

We investigate the role of outliers in literature mining, and explore the utility
of outliers in this non-standard text mining task of cross-context link discovery.
We provide evidence that outlier detection methods can contribute to literature-
based cross-domain scientific discovery based on the notion of bisociation.

This chapter is organized as follows. Section 2 presents the related work in
literature mining and outlier detection. In Section 3 we present the experimental
datasets, and the method for transforming a set of documents into a format re-
quired for text processing and outlier detection. Section 4 presents the methodol-
ogy for outlier document detection in cross-domain knowledge
discovery, together with its evaluation in two medical problem settings: in the
classical migraine-magnesium cross-domain discovery problem and in the autism-
calcineurin domain pair. Section 5 concludes by a discussion and directions for
further work.

2 Related Work

The motivation for new scientific discoveries from disparate literature sources
grounds in Mednick’s associative creativity theory [9] and in the literature on
domain-crossing associations, called bisociations, introduced by Koestler [7]. Fur-
thermore, we are inspired by the work of Weeber et al. [23] who followed the work
of creative literature-based discovery in medical domains introduced by Swan-
son [19]. Swanson designed the ABC model approach that investigates whether
an agent A is connected with a phenomenon C by discovering complementary
structures via interconnecting phenomena B (see Figure 1)2. Two literatures
are complementary if one discusses the relations between A and B, while a dis-
parate literature investigates the relations between B and C. If combining these
relations suggests a previously unknown meaningful relation between A and C,
this can be viewed as a new piece of knowledge that may contribute to a better
understanding of phenomenon C.

In a closed discovery process, where domains A and C are specified by the
expert at the beginning of the discovery process, the goal is to search for bridging
concepts (terms) b in B in order to support the validation of the hypothesized
connection between A and C (see Figures 1 and 2). Smalheiser and Swanson [17]
developed an online system ARROWSMITH, which takes as input two sets of
titles from disjoint domains A and C and lists b-terms that are common to
literature A and C; the resulting bridging terms (b-terms) are used to generate

2 Uppercase letter symbols A, B and C are used to represent sets of terms, and
lowercase symbols a, b and c to represent single terms.
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a

c

b1

b2

bn

Fig. 1. Closed discovery
process as defined by
Weeber et al. [23]

migraine

magnesium

serotonin
vasospasm

calcium channel blocker

Fig. 2. Closed discovery when exploring migraine and
magnesium documents, with b-terms as identified by
Swanson et al. [21]

novel scientific hypotheses. As stated by Swanson et al. [21], the major focus in
literature-based discovery has been on the closed discovery process, where both
A and C are specified in advance.

Srinivasan [18] developed an algorithm for bridging concept identification that
is claimed to require the least amount of manual work in comparison with other
literature-based discovery studies. However, it still needs substantial time and
human effort for collecting evidence relevant to the hypothesized connections.
In comparison, one of the advantages of the approach presented in this chapter
is that the domain expert needs to be involved only in exploring the potential
b-terms in outlier documents, instead of exploring all the most frequent potential
b-terms in all the documents.

In a closely related approach, rarity of terms as means for knowledge discovery
has been explored in the RaJoLink system [13,22], which can be used to find
interesting scientific articles in the PubMed database with the aim to discover
new knowledge. The RaJoLink method involves three principal steps, Ra, Jo and
Link, which have been named after the key elements of each step: Rare terms,
Joint terms and Linking terms, respectively. In the Ra step, interesting rare terms
in literature about the phenomenon A under investigation are identified. In the
Jo step, all available articles about the selected rare terms are inspected and
interesting joint terms that appear in the intersection of the literatures about
rare terms are identified as the candidates for C. This results in a candidate
hypothesis that C is connected with A. In order to provide explanation for
hypotheses generated in the Jo step, in the Link step the method searches for
b-terms, linking the literature on joint term c from C and the literature on term
a from A. Note that steps Ra and Jo implement the open discovery, while step
Link corresponds to the closed discovery process, searching for b-terms when
A and C are already known, as illustrated in Figure 1. Figure 2 illustrates the
closed discovery process for a real-life case of exploring the migraine-magnesium
domain pair.
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Petrič et al. [10] have recently upgraded the RaJoLink methodology by in-
specting outlier documents as a source for speeding up the b-term detection
process. Like in this work—and similar to the definition of outliers in statistics
where an outlier is defined as an observation that is numerically distant from
the rest of the data—they also focus on outlier observations (documents) that
lie outside the overall pattern of the given (class) distribution. More specifically,
their methodology focuses on the search for b-terms in outlier documents iden-
tified by OntoGen, a semi-automated tool for topic ontology construction [4].
Opposed to their approach, which uses k-means clustering in OntoGen to detect
outlier documents included in the opposite cluster [14], our approach uses several
classification algorithms to identify misclassified documents as domain outliers,
which are inspected for containing domain bridging terms.

Since outlier mining has already proved to have important applications in
fraud detection and network intrusion detection [1], we focused on outliers as
they may actually have the potential to lead to the discovery of intriguing new
information. Classification noise filters and their ensembles, recently investigated
by the authors [15], are used for outlier document detection in this chapter.
Documents of a domain pair dataset (i.e., the union of two different domain
literatures) that are misclassified by a classifier can be considered as domain
outliers, since these instances tend to be more similar to regular instances of the
opposite domain than to instances of their own domain. The utility of domain
outliers as relevant sources of domain bridging terms is the topic of study of this
chapter.

3 Experimental Datasets

This section shortly describes two datasets which were used to evaluate the pro-
posed outlier detection approach for cross-domain literature mining. Along with
the descriptions of datasets we also provide the description of our preprocessing
techniques and some basic statistics for the reader to get a better idea of the
data.

The first dataset - the migraine-magnesium domain pair - was previously well
researched by different authors [13,19,20,21,23]. In the literature-based discovery
process Swanson managed to find more than 60 pairs of articles connecting the
migraine domain with the magnesium deficiency via several bridging concepts.
In this process Swanson identified 43 b-terms connecting the two domains of the
migraine-magnesium domain pair [21].

The second dataset - the autism-calcineurin domain pair - was introduced and
initially researched by Petrič et al. in [11,12,22] and later also in [8,10,13]. Autism
belongs to a group of pervasive developmental disorders that are portrayed by an
early delay and abnormal development of cognitive, communication and social
interaction skills of a person. It is a very complex and not yet sufficiently under-
stood domain, where precise causes are still unknown. Alike Swanson, Petrič et
al. [13] also provide b-terms, 13 in total, whose importance in connecting autism
to calcineurin (a protein phosphatase) is discussed and confirmed by the domain
expert.
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Table 1. Bridging terms – b-terms identified by Swanson et al. [21] and Petrič et al. [13]
for the migraine-magnesium and autism-calcineurin domain pair, respectively

migraine-magnesium autism-calcineurin

serotonin, spread, spread depression, seizure, calcium
antagonist, vasospasm, paroxysmal, stress,
prostaglandin, reactivity, spasm, inflammatory, anti
inflammatory, 5 hydroxytryptamine, calcium channel,
epileptic, platelet aggregation, verapamil, calcium
channel blocker, nifedipine, indomethacin,
prostaglandin e1, anticonvulsant, arterial spasm,
coronary spasm, cerebral vasospasm, convulsion,
cortical spread depression, brain serotonin,
5 hydroxytryptamine receptor, epilepsy, antimigraine,
5 ht, epileptiform, platelet function, prostacyclin,
hypoxia, diltiazem, convulsive, substance p, calcium
blocker, prostaglandin synthesis, anti aggregation

synaptic,
synaptic plasticity,
calmodulin,
radiation,
working memory,
bcl 2,
type 1 diabetes,
ulcerative colitis,
asbestos,
deletion syndrome,
22q11 2,
maternal hypothyroxinemia,
bombesin

We use the b-terms, which were identified in each of the two domain pair
datasets, as the gold standard to evaluate the utility of domain outlier documents
in the cross-context link discovery process. Table 1 presents the b-terms for the
migraine-magnesium and the autism-calcineurin domain pair datasets used in
our experiments.

Both datasets were retrieved from the PubMed database3 using the keyword
query; however, we used additional filtering condition for selection of migraine-
magnesium dataset. It was necessary to select only the articles published before
the year 1988 as this was the year when Swanson published his research about
this dataset and thus making an explicit connection between migraine and mag-
nesium domain. Preprocessing was done in a standard text mining way, using
the preprocessing steps described in [6]: (a) text tokenization, (b) stopword re-
moval, (c) word stemming/lemmatization using LemmaGen lemmatizer for En-
glish [5], (d) construction of N-grams which are terms defined as a concatenation
of 1 to N words than appear consecutively in text with minimum supporting fre-
quency, (e) creation of standard bag-of-words (BoW) representation of text using
term-frequency-inverse-document-frequency (tf-idf) or binary (depends on classi-
fication algorithm) term weights. Besides this standard workflow we additionally
removed from the dataset all terms (N-grams) containing words which were used
as query terms during document selection. Experiments showed that the corre-
lation between the domain class and the query terms is too high for an outlier
detection algorithm to find a reasonable number of high quality outliers. A sum-
mary of statistics on the datasets used in our experiments is presented in Table 2.

The 43 b-terms identified by Swanson in the standard migraine-magnesium
dataset were retrieved from article titles only [21]. Therefore, we also used only
article titles in our experiments. In the preprocessing of this dataset we con-
structed 3-grams to obtain more features for each document despite a relatively

3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed
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Table 2. Some basic properties and statistics of the domain pair datasets used in the
experimental evaluation

Dataset name migraine-magnesium autism-calcineurin

Document source PubMed PubMed
Query terms “migraine” |“magnesium” “autism” |“calcineurin”

(condition: year<1988)
Number of retrieved doc. 8,058 (2,425 |5,633) 15,243 (9,365 |5,878)

Part of document used (text) title abstract
Average text length 11 words, 12 terms 180 words, 105 terms

Term definition 3-grams, min. freq. 2 1-grams, min. freq. 15
Number of distinct terms 13,524 5,255

Number of b-terms 43 13
Num. of doc. with b-terms 394 = 4.89% 1672 = 10.97%

low average word count. On the other hand, for the autism-calcineurin dataset,
which contains titles and the abstracts, we had to limit ourselves to 1-grams
and had to set the minimum supporting frequency of terms higher to reduce the
number of features due to computational limitations.

4 Detecting Outlier Documents

This research aims at supporting the search for cross-domain links between con-
cepts from two disparate literatures A and C, based on exploring outlier articles
of the two domains. Our method assumes that by exploring outlier documents
it will be easier to discover linking b-terms (bridging concepts) that establish
previously unknown links between literature A and literature C, as the hypoth-
esis of this work is that most bridging concepts occur in outlier documents.
This section first presents the algorithms used for outlier detection, followed by
the experimental validation of our hypothesis that outlier documents contain a
relatively higher number of bridging terms than other documents.

4.1 Classification Noise Filters for Outlier Detection

The novelty of our work is to use noise detection approaches for findinging outlier
documents containing cross-domain links (bridging terms – b-terms) between
different domains. When exploring a domain pair dataset we searched for a set
of outlier documents with different classification noise filtering approaches [2],
implemented and adapted for this purpose.

Classification noise filtering is based on the idea of using a classifier as a
tool for detecting noisy and outlier instances in data. In this work the simple
classifiers used in [2] were replaced by new, better performing classifiers, as the
noise filter should, as much as possible, trust the classifiers that they will be
able to correctly predict the class of a data instance. In this way the incorrectly
classified instances are considered to be noise/outliers. In other words, if an
instance of class A is classified in the opposite class C, we consider it to be an
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Fig. 3. Detecting outliers of a domain pair dataset with classification filtering

outlier of domain A, and vice versa. We denote the two sets of domain outlier
documents with O(A) and O(C), respectively. Figure 3 depicts this principle.

The proposed outlier detection method works in a 10-fold cross-validation
manner, where repeatedly nine folds are used for training the classifier and on
the complementary fold the misclassified instances are denoted as noise/outliers.
Instances of a domain pair dataset that are misclassified by a classifier can be
considered as domain outliers, since these instances tend to be more similar to
regular instances of the opposite domain than to instances of their own domain.

4.2 Experimental Evaluation

The goal of this section is to provide experimental evidence for the hypothesis
that outliers can be used as the focus of exploration to speed-up the search for
bridging concepts between different domains of expertise [10,14]. Therefore, our
experiments are designed to validate that sets of outlier documents are rich on
b-terms and contain significantly more b-terms than sets of arbitrary documents.

We implemented three classification noise detection algorithms, using three
different classifiers: Näıve Bayes (abbreviated: Bayes), Random Forest (RF) and
Support Vector Machine (SVM). In addition to the outlier sets obtained by
these three classification filters, we examined also the union of these outlier sets
and the so called “Majority” outlier set containing outlier documents that were
detected by at least two out of three classification filters.

Our experiments were performed on the migraine-magnesium and the autism-
calcineurin domain pair datasets, described in Section 3. To measure the rele-
vance of the detected outlier documents in terms of their potential for containing
domain bridging terms, we inspected 43 terms known as bridging terms ap-
pearing in the migraine-magnesium domain pair and 13 known b-terms in the
autism-calcineurin domain pair. Tables 3 and 4 present the size of all exam-
ined sets of outlier documents and the amount of b-terms they contain, for the
migraine-magnesium and autism-calcineurin dataset, respectively.
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Columns of Tables 3 and 4 present the numbers of outlier documents (and
contained b-terms) identified by different outlier detection approaches, together
with percentages showing their proportion compared to the given dataset. The
rows present these numbers separately for each class, for both classes together,
and—for the needs of results validation explained below—for a random sample
of documents in the size of the detected outlier set.

These results show that all five outlier subsets4 of each of the two domain pairs
contain from 70% to over 90% (for the “Union” subset) of b-terms, on average
in less than 10% of all documents from the migraine-magnesium dataset and
in less than 5% of all documents of the autism-calcineurin dataset. This means
that by inspecting outlier documents, which represent only a small fraction of the
datasets, a great majority of b-terms can be found, which substantially reduces
the time and effort needed by the domain expert to discover cross-domain links.

To confirm that these results are not due to chance (do not hold for just any
arbitrary subset that has the same size as an outlier set), we have randomly
sampled 1,000 subsets for each of the five outlier sets (all of them having the
same size as their corresponding outlier set) in order to present the average b-
term occurrences in randomly sampled subsets. The last row of Tables 3 and 4
shows that the sets of outlier documents contain on average more than 30% more
of all b-terms in the migraine-magnesium dataset and more than 20% more of
all b-terms in the autism-calcineurin dataset than randomly sampled sets of the
same size.

A comparison of the above discussed results relative to the whole migraine-
magnesium and autism-calcineurin datasets is summarized in Figures 4 and 5,
respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bayes RF SVM Union Majority

Re
la
tiv

e
to

Da
ta
se
tS

ize
or

N
um

be
rO

fA
ll
b
te
rm

s

Outlier Sets

Rel. Size of
Outlier Set

Rel. Amount
of b terms

Rel. Amount
of b terms in
Randomly
Sampled Sets
of Same Size

Fig. 4. Relative size of outlier sets and the amount of b-terms for the migraine-
magnesium dataset

4 Outlier subset is used instead of outlier set to emphasize its relation to the entire
dataset of documents. The terms are used interchangeably, however they always refer
to a set of detected outlier documents that belong to a certain domain pair.
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Additionally, we compared relative frequencies of b-terms in the detected out-
lier sets to their relative frequencies in the whole dataset, i.e. the fraction of
documents containing a certain b-term among the documents of a chosen set.
In Figure 6 we present the increase of relative frequencies of b-terms in the
“Majority” outlier set detected on the migraine-magnesium dataset.
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Fig. 6. Comparison of relative frequencies of bridging terms in the entire migraine-
magnesium dataset and in the “Majority” set of outlier documents detected by three
different outlier detection methods

The “Majority” outlier set approach proved to have the greatest potential
for bridging concept detection. Firstly, because of the best ratio among the
proportion of the size of the outlier subset and the proportion of b-terms which
are present in that outlier subset (see Table 4 and Figure 4), and secondly,
because the relative frequency of all the b-terms present in the“Majority” outlier
set is higher compared to the entire migraine-magnesium dataset, as can be
clearly seen from Figure 6.
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Similarly, encouraging results for the ”Majority” outlier set detected on the
autism-calcineurin dataset can be observed in Figure 7.
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Fig. 7. Comparison of relative frequencies of bridging terms in the entire autism-
calcineurin dataset and in the “Majority” set of outlier documents detected by three
different outlier detection methods5

All b-terms that are present in the ”Majority” outlier set, except for one
(“calmodulin”), have a higher relative frequency in the outlier set compared to
the relative frequency in the entire dataset. Although (1) the RF outlier set is
best in terms of the ratio among the proportion of the size of the outlier subset
and the proportion of b-terms which are present in that outlier subset and (2)
the “Majority” outlier set is second best (for the autism-calcineurin dataset), in
general we prefer the “Majority” outlier set for bridging concept detection. The
majority approach is more likely to give quality outliers on various datasets, in
contrast to a single outlier detection approach, since it reduces the danger of
overfitting or bias to a certain domain by requiring the agreement of at least two
outlier detection approaches for a document to declare it as an domain outlier.

5 Conclusions

In our research we investigated the potential of outlier detection methods in
literature mining for supporting the discovery of bridging concepts between dis-
parate domains.

We retrieved articles for the migraine-magnesium and the autism-calcineurin
domain pairs from the PubMed database. In our experiments we obtained five
sets of outlier documents for each domain pair by three different outlier detec-
tion methods, their union and a majority voting approach. Experimental results

5 Note that the scale of the chart in Figure 7 is different from the scale of the chart
in Figure 6.



336 B. Sluban et al.

show that inspecting outlier documents considerably contributes to the bridging
concept discovery process, since it enables the expert to focus only on a small
fraction of documents which is rich on concept bridging terms (b-terms). Thus,
the effort needed for finding cross-domain links is substantially reduced, as it
requires to explore a much smaller subset of documents, where a great majority
of b-terms are present and more frequent.

In further work we will examine other outlier detection methods in the context
of cross-domain link discovery and use outlier documents as a heuristic guidance
in the search for potential b-terms on yet unexplored domain-pairs.
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understanding of autism: Connecting knowledge through literature mining. Autism
Research and Treatment (2011)

9. Mednick, S.A.: The associative basis of the creative process. Psychological Re-
view 69, 219–227 (1962)



Exploring the Power of Outliers 337
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method RaJoLink for uncovering relations between biomedical concepts. Journal
of Biomedical Informatics 42(2), 220–232 (2009)
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Abstract. In literature mining, the identification of bridging concepts that link 
two diverse domains has been shown to be a promising approach for finding 
bisociations as distinct, yet unexplored cross-domain connections which could 
lead to new scientific discoveries. This chapter introduces the system CrossBee 
(on-line Cross-Context Bisociation Explorer) which implements a methodology 
that supports the search for hidden links connecting two different domains. The 
methodology is based on an ensemble of specially tailored text mining 
heuristics which assign the candidate bridging concepts a bisociation score. 
Using this score, the user of the system can primarily explore only the most 
promising concepts with high bisociation scores. Besides improved bridging 
concept identification and ranking, CrossBee also provides various content 
presentations which further speed up the process of bisociation hypotheses 
examination. These presentations include side-by-side document inspection, 
emphasizing of interesting text fragments, and uncovering similar documents. 
The methodology is evaluated on two problems: the standard migraine-
magnesium problem well-known in literature mining, and a more recent autism-
calcineurin literature mining problem. 

Keywords: Bisociative Literature Mining, Term Ranking, Ensemble Heuristics, 
Bisociation Score. 

1 Introduction 

One of the prevailing trends in research and development is professional over-
specialization, resulting in islands of deep, but relatively isolated knowledge. On the 
other hand, many complex problems require knowledge from different domains to be 
combined. Due to huge amounts of information available on-line it has become 
difficult to follow even specific literature limited to a single specialization. Searching 
for cross-domain scientific connections is even harder, as also scientific literature all 
too often remains closed and cited only in professional sub-communities. As a 
promising solution to this problem, literature mining offers methods and software 
tools which support the experts in their knowledge discovery process, especially in 
searching for yet unexplored connections between different domains. The notion of 
such connections is closely related to bisociations as defined by Koestler [8] and 
further refined by Dubitzky et al. [3]. 
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A specific type of knowledge discovery problems, addressed in this chapter, is 
closed discovery introduced by Weeber et al., [21] which has been explored 
previously in literature mining. In closed discovery we start with a hypothesis that 
two particular concepts usually investigated in separate literatures are connected. We 
search for supportive evidence for this by investigating available literatures about 
these two concepts. As suggested already by Swanson [16], this can be done by 
identifying interesting bridging terms (b-terms) appearing in both literatures and 
bearing a potential of indirectly connecting the two concepts under investigation. 
Although being time-consuming, searching for terms appearing in both literatures is 
not the main problem. The main issue which also motivated the research presented in 
this chapter is the fact that a list of terms shared by the two literatures can be very 
long. Estimating which of the terms have higher potential for interesting discoveries is 
an interesting research question, important for practical applications. 

Narrowing the list of candidate bridging terms can be done in different ways. For 
example, in the RaJoLink methodology presented by Petrič et al. [11] the list of 
interesting terms is effectively filtered according to MeSH (Medical Subject 
Headings) categories; in the next step the expert checks which of the remaining terms 
seem to be promising. In spite of MeSH filtering, the list of interesting terms can still 
be long and estimating the potential of a particular bridging term candidate to lead to 
useful bisociations is based on the expert’s knowledge and intuition. The expert’s 
involvement assures that the search is guided towards promising bridging concepts 
which are meaningful and interesting for the expert [11]. Therefore, we believe that 
experts’ involvement should remain an important part of the process. However, in 
order to ensure that the expert’s inspection of the list of candidate bridging terms is 
made easier, our main motivation was to automatically estimate the bisociation 
potential of term candidates and rank the terms. 

In the methodology proposed in this work, we estimate the bisociation potential of 
a term by calculating its bisociation score. To this end, different heuristics were 
developed (see [7]), which are summarized in this chapter. As the experiments 
described in this chapter show the choice of the right heuristic for a particular domain 
is far from being trivial. A solution, proposed in this work, is to combine multiple 
heuristics into an ensemble heuristic which is less sensitive to the variability of 
domain characteristics. 

Ensemble learning is a known approach used in machine learning for combining 
predictions of multiple models into one final prediction. It is well known [2] that the 
resulting ensemble model is more accurate than any of the individual models used to 
build it as long as the models are similarly accurate, are better than random, and their 
errors are uncorrelated. There is a wide variety of known and well tested ensemble 
techniques, e.g., Bagging, Boosting, Majority voting, Random forest, Naïve bayes, 
etc. (see [14]). However, these approaches are usually used for the problem of 
classification while the core problem presented in this work is ranking. Nevertheless, 
as information retrieval and especially ranking of web pages by search engines are 
becoming more and more popular also the ensemble ranking is gaining research 
attention, e.g., [4, 6]. 

To evaluate the proposed methodology, implemented in the on-line CrossBee 
(Cross-Context Bisociation Explorer) system, we applied it to two problems. The first 
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one is the well-known migraine-magnesium example [16, 17] which represents a gold 
standard in literature mining and served as a testing dataset also in more recent 
studies [20]. To prevent overfitting the given literature pair and to show the 
performance in a more complex case, we performed the evaluation of the proposed 
methodology in the autism-calcineurin problem introduced in [19, 12, 13]. 

This chapter is structured as follows. In Section 2 the problem of ranking potential 
b-terms according to their bisociation potential is defined in detail. Section 3 
describes the newly introduced ranking methodology and deals with heuristics, the 
main emphasis being on the proposed ensemble heuristic. In Section 4, the proposed 
methodology is evaluated through the migraine-magnesium and autism-calcineurin 
experiments. Section 5 presents a new on-line software tool CrossBee which 
implements the methodology and provides additional functionalities, making expert’s 
knowledge discovery process easier and more efficient. The chapter concludes with a 
discussion and plans for further work. 

2 Problem Description 

The problem addressed in this work is to help the domain expert to effectively find 
bisociations between two domains presented by two sets of text documents. The main 
inputs to this task are two sets of documents – one for each of the examined domains. 
The top-level problem is split, mainly for the reason of evaluation, in two 
subproblems as follows: 

─ Develop a methodology for identifying bisociations which (among various 
patterns of bisociation, identified by Dubitzky et al. in [3]) identifies and ranks 
the key bridging concepts (also named bridging terms or b-terms) that provide 
the expert with clues about the potential bisociations. The evaluation of this 
subproblem is based on defining quality values of different solutions which can 
then be compared to each other. In this way one is able to evaluate the 
improvements made over the previously existing solutions. 

─ Create a system which can support the expert not only by providing results of the 
b-term identification methodology but also by adding multiple layers of 
information to plain data (documents). The added information can be used for 
human exploration and judgment whether the connections suggested by b-terms are 
indeed bisociations. The evaluation of this subproblem is slightly less clear, 
however, by setting an experiment and observing the effectiveness of the expert 
using the system, one can approximately estimate the quality of different solutions. 

3 Methodology for Bridging Concept Identification and 
Ranking 

This section describes the methodology for identifying and ranking of terms 
according to their potential for being b-terms. The basics of our methodology was 
developed with the purpose of using potential bridging concepts in the construction of 
information networks from text documents (see [7] for details), as well as for b-term 
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identification and ranking in our new CrossBee system described in more detail in 
Section 5 below. 

The input to the procedure for b-term identification and ranking consists of two 
sets of documents – one for each domain. Input documents can be either in the 
standard form of running text, e.g., titles and abstracts of scientific documents or in 
the form of partly preprocessed text, e.g., text with already recognized named entities. 
The output of the procedure is a ranked list of all identified interesting terms. The 
output list of terms is ordered according to terms’ bisociation score which is the 
estimate of a potential that the evaluated term is indeed a b-term which can trigger a 
bisociation. Our solution to the presented problem of b-term identification and 
ranking is based on the following three procedural steps: 

1. Preprocess input documents: Employ state of the art approaches for text 
preprocessing to extract the most of useful information present in raw texts. 
Documents are transformed into the bag-of-words [5] feature vector 
representation, where features represent the terms or concepts. The extracted 
concepts are identified as candidate b-terms and ranked in the next step. More 
details on text preprocessing are presented in [7]. 

2. Score candidate b-terms: Take the list of candidate b-terms generated in the 
document preprocessing step and evaluate their b-term potential by calculating 
the bisociation score for each term from the list. This is performed in two steps: 

a. Employ the base heuristics: Based on the feature vector representation and 
some other properties of documents and terms, use specially designed base 
heuristic functions to score the terms. The output of a base heuristic (the 
term’s score) evaluates the term’s potential of being a b-term (see [7] for 
details). 

b. Employ the ensemble heuristic: Scores of base heuristics are integrated into 
one ensemble heuristic score which represents the final output of the 
scoring candidate b-terms step and is used as the estimate of the term’s 
bisociation potential. The exact procedure for calculating the ensemble 
bisociation score is explained in more detail below in this section. 

3. Output the ranked list of b-terms: Order the list of terms according to the 
descending order of the calculated bisociation score and return the ranked list of 
terms with their bisociation scores. This step is elementary and does not need to 
be presented in detail. 

The rest of this section deals with the second step sketched above. 

3.1 Base Heuristics 

We use the term “heuristic” or “heuristic function” to name a function that 
numerically evaluates term’s quality in the view of its bisociation potential. Ranking 
all the terms using the scores calculated by an ideal heuristic should result in finding 
all the b-terms together at the top of such a sorted list. This ideal scenario is generally 
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not realistic; however, ranking by heuristic scores (either ascending or descending) 
should still increase the proportion of b-terms at the top of the term list.1 

In [7] we defined a heuristic as a function with two inputs: (a) a set of documents 
labeled with two domain labels and (b) a term ݐ appearing in these documents; and 
one output, i.e., a score that estimates the term’s bisociation potential. We here list the 
heuristics with short descriptions only, while the detailed heuristics definition along 
with their equations are provided in [7]. 

BoW Heuristics 
The heuristics in the group of BoW (bag-of-words) work in a similar way – they 
manipulate the data present in document vectors to derive the terms’ bisociation 
score. They can be divided into three subgroups: 

Term frequency based 
 ,ሻ: dataset term frequency࢚ሺ࢓࢘ࢋࢀࢗࢋ࢘ࢌ (1)
 ,ሻ: dataset document frequency࢚ሺࢉ࢕ࡰࢗࢋ࢘ࢌ (2)
 ,ሻ: dataset term to document frequency ratio࢚ሺ࢕࢏࢚ࢇࡾࢗࢋ࢘ࢌ (3)
 ,ሻ: minimum of domain term frequencies ratio࢚ሺ࢔࢏ࡹ࢕࢏࢚ࢇࡾ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (4)
 ,ሻ: product of domain term frequencies࢚ሺࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (5)
 ሻ: product of domain term frequencies relative to a࢚ሺ࢒ࢋࡾࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢗࢋ࢘ࢌ (6)

dataset term frequency. 

Tf-idf based 
 ,ሻ: sum of document tf-idf weights of a term in a dataset࢚ሺ࢓࢛ࡿࢌࢊ࢏ࢌ࢚ (7)
 ,ሻ: average of document tf-idf weight of a term in a dataset࢚ሺࢍ࢜࡭ࢌࢊ࢏ࢌ࢚ (8)
 ,ሻ: product of domain centroid tf-idf weights of a term࢚ሺࢊ࢕࢘ࡼ࢔࢓࢕ࡰࢌࢊ࢏ࢌ࢚ (9)
 .ሻ: sum of domain centroid tf-idf weights of a term࢚ሺ࢓࢛ࡿ࢔࢓࢕ࡰࢌࢊ࢏ࢌ࢚ (10)

Similarity based 
 ሻ: similarity of a term to an average dataset document – the࢚ሺ࢓࢘ࢋࢀࢍ࢜࡭࢓࢏࢙ (11)

distance of a term to the dataset centroid, 
 ,ሻ: product of similarities of a term to domain centroids࢚ሺࢊ࢕࢘ࡼ࢔࢓࢕ࡰ࢓࢏࢙ (12)
 .ሻ: min of similarities of a term to domain centroids࢚ሺ࢔࢏ࡹ࢕࢏࢚ࢇࡾ࢔࢓࢕ࡰ࢓࢏࢙ (13)

Outlier Heuristics 
The outlier heuristics focus on outlier documents since they frequently embody new 
information that is often hard to explain in the context of existing knowledge. We 
concentrate on a specific type of outliers, i.e., domain outliers, which are the 
documents that tend to be more similar to the documents of the opposite domain than 
to those of their own domain. In the definition of outlier heuristics we used three 
outlier sets of documents corresponding to the three different underlying document  
 

                                                           
1  Note that regardless of the choice, all the heuristics give score 0 to all the terms which appear 

only in one of the two domains, as these terms have zero potential for bisociation between the 
two domains. 
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classification algorithms used for outlier detection: Centroid Similarity classifier 
(CS), Random Forest classifier (RF), and Support Vector Machine classifier (SVM). 
Research focused in detecting the outlier documents was performed in [15] and two of 
the sets, namely RF and SVM were provided by that research. The detection of CS 
outlier documents was implemented directly in CrossBee using the principles 
described in [15] but using the Centroid Similarity classifier. The resulting heuristics 
are: 

Based on absolute term frequency in outlier sets 
 ,ሻ: term frequency in CS outlier set࢚ሺࡿ࡯ࢗࢋ࢘ࡲ࢚࢛࢕ (14)
 ,ሻ: term frequency in RF outlier set࢚ሺࡲࡾࢗࢋ࢘ࡲ࢚࢛࢕ (15)
 ,ሻ: term frequency in SVM outlier set࢚ሺࡹࢂࡿࢗࢋ࢘ࡲ࢚࢛࢕ (16)
 .ሻ: sum of term frequencies in all three outlier sets࢚ሺ࢓࢛ࡿࢗࢋ࢘ࡲ࢚࢛࢕ (17)

Based on relative term frequency in outlier sets 
 ,ሻ: relative frequency in CS outlier set࢚ሺࡿ࡯࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (18)
 ,ሻ: relative frequency in RF outlier set࢚ሺࡲࡾ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (19)
 ,ሻ: relative frequency in SVM outlier set࢚ሺࡹࢂࡿ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (20)
 .ሻ: sum of relative term frequencies in all three outlier sets࢚ሺ࢓࢛ࡿ࢒ࢋࡾࢗࢋ࢘ࡲ࢚࢛࢕ (21)

Baseline Heuristics 
We defined two heuristics which are supplementary and serve as baselines: 

 ,(ሻ: random number in the interval [0,1࢚ሺ࢓࢕ࢊ࢔ࢇ࢘ (22)
 ሻ: a better baseline heuristic which separates two classes࢚ሺ࢔࢓࢕ࡰ࢒࢒࡭࢔ࡵ࢘ࢇࢋ࢖࢖ࢇ (23)

of terms, the ones that appear in both domains and the ones that appear in one 
domain only. The terms that appear in one domain only have a strictly lower 
heuristic score that those appearing in both. The inner scores of terms inside 
these two classes are still random numbers. 

3.2 Ensemble Heuristic 

An ensemble heuristic is a heuristic which combines results of multiple base 
heuristics into one aggregated result. This work extends the methodology presented in 
our previous work [7] with an ensemble heuristic due to identified problematic aspect 
of using a single heuristic for final ranking. The problem arises from the fact that the 
process of selection of a single heuristic is prone to overfitting the training dataset 
which results in heuristics’ performance instability across other datasets. As long as 
our experiments were performed only on a single dataset, i.e., the migraine-
magnesium dataset, the results of the selected single heuristic, i.e., the 
(21)outFreqRelSum which proved to be the best heuristic on that dataset were stable, 
even if we used various modifications of data preprocessing, removed random 
documents from the set, randomly deleted words from documents or did some other 
data perturbations. 
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One possible approach to designing an ensemble heuristic from a set of base 
heuristics consists of two steps. In the first step the task is to select member heuristics 
for the ensemble heuristic using standard data mining approaches like feature selection. 
In the second step equation discovery is used to obtain an optimal combination of 
member heuristics. The advantage of such approach is that the ensemble creation does 
not require manual intervention. Therefore, we performed several experiments with 
such approach; however, the results were even more overfitted to the training domain 
used in our study. Consequently, we decided to manually – based on experiences and 
experimentation – select appropriate base heuristics and construct an ensemble 
heuristic. As the presentation of numerous experiments which support our design 
decisions is beyond the scope of this chapter, we only describe the final solution, 
presented in the following subsections. 

Ensemble Construction 
The ensemble heuristic results in the ensemble score, constructed from two parts: the 
ensemble voting score and the ensemble position score which are summed together to 
give the final ensemble score. 

─ The ensemble voting score (ݏ௧௩௢௧௘) of a given term ݐ is an integer which denotes 
how many base heuristics voted for the term. Each selected base heuristic ݄௜ gives one vote ሺݏ௧ೕ,௛೔௩௢௧௘ ൌ 1ሻ to each term which is in the first third2 in its ranked 
list of terms and zero votes to all the other terms ሺݏ௧ೕ,௛೔௩௢௧௘ ൌ 0ሻ. Formally, the 

ensemble voting score of a term ݐ௝ that is at position ݌௝ in the ranked list of ݊ terms is computed as a sum of individual heuristics’ voting scores: ݏ௧ೕ௩௢௧௘ ൌ  ෍ ௧ೕ,௛೔௩௢௧௘௞௜ୀଵݏ ൌ ෍ ൜1: ݌௝ ൏ ݊/3,0: ௞௜ୀଵ݁ݏ݅ݓݎ݄݁ݐ݋ . 
Therefore, each term can get a score ݏ௧ೕ௩௢௧௘ א ሼ0, 1, 2, … , ݇ሽ, where ݇ is the number 

of base heuristics used in the ensemble. 
─ The ensemble position score (ݏ௧௣௢௦) is calculated as an average of position scores 

of individual base heuristics. For each heuristic ݄௜, the term’s position score ݏ௧ೕ,௛೔௣௢௦  is calculated as ൫݊ െ ௝൯݌ ݊⁄ , which results in position scores being in the 

interval ሾ0,1ሻ. For an ensemble of ݇ heuristics, the ensemble position score is 
computed as an average of individual heuristics’ position scores: ݏ௧ೕ௣௢௦ ൌ 1݇ ෍ ௧ೕ,௛೔௣௢௦௞௜ୀଵݏ ൌ 1݇ ෍ ሺ݊ െ p௝ሻ݊௞௜ୀଵ . 

─ The final ensemble score is computed as: ݏ௧ ൌ ௧௩௢௧௘ݏ  ൅  .௧௣௢௦ݏ

Using the proposed construction we make sure that the integer part of the ensemble 
score always presents the ensemble vote score, while the ensemble score’s fractional 
part always presents the ensemble position score. An ensemble position score is 

                                                           
2 The voting threshold is one third (1/3) of the terms which appear in both domains (not one 

third of all the terms). It was set empirically based on the evaluation of the ensemble heuristic 
on the migraine-magnesium domain. 
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strictly lower than 1, therefore, a term with a lower ensemble voting score can never 
have a higher final ensemble score than a term with a higher ensemble voting score. 

Note that at the first sight our method of constructing the ensemble score looks 
rather intricate. An obvious way to construct an ensemble score of a term could be 
simply to sum together individual base heuristics scores; however, the calculation of 
the ensemble score by our method is well justified by extensive experimental results 
on the migraine-magnesium dataset. 

The described method for ensemble score calculation is illustrated in Example 1. In 
the upper left table the base heuristics scores are shown for each term. The next table 
presents terms ranked according to the base heuristics scores. From this table, the 
voting and position scores are calculated for every term based on its position, as 
shown in the upper right table. For example, all terms at position 2, i.e., t1, t6, and t6, 
get voting score 1 and position score 4/6. The central table below shows the exact 
equation how these individual base heuristics’ voting and position scores are 
combined for each term. The table at the bottom displays the list of terms ranked by 
the calculated ensemble scores. 

 

 Base 
scores 

  Base
ranking 

Voting
score 

Position 
score 

Term h1 h2 h3  Pos. h1 h2 h3 Pos. ݏ௧ೕ,௛೔௩௢௧௘ ௧ೕ,௛೔௣௢௦ݏ  
t1 0.93 0.46 0.33  1 t6 t4 t3 1 1 (6-1)/6=5/6 
t2 0.26 0.15 0.10  2 t1 t6 t6 2 1 (6-2)/6=4/6 
t3 0.51 0.22 0.79  3 t3 t1 t4 3 0 (6-3)/6=3/6 
t4 0.45 0.84 0.73  4 t4 t3 t1 4 0 (6-4)/6=2/6 
t5 0.41 0.15 0.11  5 t5 t2 t5 5 0 (6-5)/6=1/6 
t6 0.99 0.64 0.74  6 t2 t5 t2 6 0 (6-6)/6=0/6 
Base heuristic scores  Terms ranked by

base heuristics 
Voting and position scores based 

on positions in the ranked lists 

 
   Voting score sum + Pos. score average    = Ensemble score 

௧ೕ,௛భ௩௢௧௘ݏ)  ௧ೕ,௛మ௩௢௧௘ݏ + ௧ೕ,௛య௩௢௧௘ݏ + ) + ( ௧ೕ,௛భ௣௢௦ݏ
௧ೕ,௛మ௣௢௦ݏ+

௧ೕ,௛య௣௢௦ݏ+
)/k = ௧ೕ௩௢௧௘ݏ + ௧ೕ௣௢௦ݏ

= ) = ௧భݏ  ௧ೕݏ 1 + 0 + 0 ) + ( 4/6 + 3/6 + 2/6 )/3 = 1 + 9/18 = ) = ௧మݏ 1.50 0 + 0 + 0 ) + ( 0/6 + 1/6 + 0/6 )/3 = 0 + 1/18 = ) = ௧యݏ 0.06 0 + 0 + 1 ) + ( 3/6 + 2/6 + 5/6 )/3 = 1 +10/18= ) = ௧రݏ 1.56 0 + 1 + 0 ) + ( 2/6 + 5/6 + 3/6 )/3 = 1 +10/18= ) = ௧ఱݏ 1.56 0 + 0 + 0 ) + ( 1/6 + 0/6 + 1/6 )/3 = 0 + 2/18 = ) = ௧లݏ 0.11 1 + 1 + 1 ) + ( 5/6 + 4/6 + 4/6 )/3 = 3 +13/18= 3.72 
Calculation of ensemble heuristic score 

 
t6 (3.72), [t2, t3] (1.56), t1 (1.50), t5 (0.11), t2 (0.06) 

Ranked list of terms produced by the ensemble 

Example 1. Ensemble construction illustrated on a simple example with six terms and three 
heuristics. The last table states the result – the ranked list of terms. 
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Selecting Base Heuristics for the Ensemble 
Another important decision when constructing the ensemble is the selection of base 
heuristics. Table 1 shows the results that influenced our decision which base 
heuristics to select. The measure used for heuristic performance comparison is the 
AUC (area under ROC) presented and discussed already in [7]. Our final set of 
heuristics included in the ensemble is the following: 
 

─ (19)outFreqRelRF ─ (18)outFreqRelCS ─ (10)tfidfDomnSum 
─ (20)outFreqRelSVM ─ (17)outFreqSum ─ (3)freqRatio 

Table 1. Comparison of the results (presented and discussed already in [7]) for the base 
heuristics ordered by the quality – AUC. The first column states the name of the heuristic; the 
second displays the AUC. The heuristics chosen for the ensemble are shown in italics. 

Heuristic AUC  (16)outFreqSVM 94,70% (5)freqDomnProd 93,42%
(21)outFreqRelSum 95,33% (14)outFreqCS 94,67% (3)freqRatio 93,35%
(19)outFreqRelRF 95,24% (4)freqDomnRatioMin 94,36% (23)appearInAllDomn 93,31%
(20)outFreqRelSVM 95,06% (10)tfidfDomnSum 93,85% (12)simDomnProd 93,27%
(18)outFreqRelCS 94,96% (6)freqDomnProdRel 93,71% (1)freqTerm 93,20%
(17)outFreqSum 94,96% (13)simDomnRatioMin 93,58% (2)freqDoc 93,19%
(8)tfidfAvg 94,87% (7)tfidfSum 93,58% (11)simAvgTerm 92,71%

(15)outFreqRF 94,73% (9)tfidfDomnProd 93,47% (22)random 50,00%

 
Our initial idea was to choose one (possibly the best performing) heuristic form 

each set. The rationale behind this idea was to include the top performing heuristics 
that are as independent as possible. In such a way, the combined information provided 
by the constructed ensemble was expected to be higher than the information 
contributed by the individual heuristics. However, certain additional decisions were 
made to maximize ensemble performance on the migraine-magnesium dataset as well 
as due to trying not to overfit this dataset: 

─ The first observation (see Table 1) is that all outlier heuristics based on relative 
term frequency, i.e., (19)outFreqRelRF, (20)outFreqRelSVM, and, 
(18)outFreqRelCS perform very well. Actually the only heuristic that is better is 
the (21)outFreqRelSum which is the combination of all these three. As we want 
to emphasize the power of this best performing set, we include all three 
heuristics into the ensemble instead of only (21)outFreqRelSum. So they get more 
votes and a chance to over-vote some other – not so well performing – 
heuristics. 

─ A representative heuristic of the second outlier heuristic set, based on absolute 
term frequency, is (17)outFreqSum which is not only the best performing of this 
set, but also integrates the votes of other three heuristics from this set and is 
therefore the best candidate. 

─ Representatives of BoW heuristics based on frequency and tf-idf were chosen in 
a way which tries to avoid overfitting the migraine-magnesium dataset. We 
chose (3)freqRatio and (10)tfidfDomnSum with the reasoning that they are not 
among the best performing on the training dataset (but we expect them to 
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perform better on other datasets) and will therefore act as a counterweight to 
prevent overfitting. 

─ We completely discarded all the heuristics of the type similarity, as their 
performance is in the range of the baseline heuristic (23)appearInAllDomn. 

Table 2. B-terms for the autism-calcineurin dataset identified by Petrič et al. [11] 

1 synaptic 6 bcl 2 11 22q11 2
2 synaptic plasticity 7 type 1 diabetes 12 maternal hypothyroxinemia 
3 calmodulin 8 ulcerative colitis 13 bombesin 
4 radiation 9 asbestos   
5 working memory 10 deletion syndrome   

4 Evaluation of the Methodology 

This section presents the evaluation of the presented base and ensemble heuristics. 
The key result of this evaluation is the assessment how well the proposed ensemble 
heuristic performs when ranking the terms from the perspective of the domain expert 
who acts as the end-user of the CrossBee system. From the expert’s point of view, the 
ROC curves and AUC statistics (as used and described in [7]) are not the most crucial 
information about the quality of a single heuristic – even though, in general, a better 
ROC curve reflects a better heuristic. Usually the user is interested in questions like: 
(a) how many b-terms are likely to be found among the first n terms in a ranked list 
(where n is a selected number of terms the expert is willing to inspect, e.g., 5, 20 or 
100), or (b) how much one can trust a heuristic if a new dataset is explored. This 
section provides the evaluation of the heuristics in terms of their performance on a 
training dataset as well as on a new experimental dataset. 

4.1 Experimental Setting 

The experimental setting is related to the one in [7] and [15]. The evaluation was 
performed based on two datasets (or two domain pairs, since each dataset consists of 
two domains), which can be viewed as a training and test dataset. The training dataset is 
the dataset we employed when developing the methodology, i.e., for creating a set of 
base heuristics in [7], as well as for creating the ensemble heuristic presented in this 
work. The results of the evaluation on the training dataset are important, but needs to be 
interpreted carefully due to a danger of overfitting the dataset. The test dataset is used 
for the evaluation of the methodology in a broader (non-dataset biased) scenario. 

As the training data we used the well-researched migraine-magnesium domain pair 
which was introduced by Swanson in [16] and was later explored in [17, 18, 20, 11] 
and others. In the literature-based discovery process Swanson managed to find more 
than 60 pairs of articles connecting the migraine domain with the magnesium 
deficiency via 43 bridging concepts (b-terms). Using the developed methodology we 
tried to rank these 43 b-terms (listed in Table 1 in [7]) as high as possible among other 
terms which are not marked as b-terms. Since Swanson does not state that this is an 
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exclusive list, there may be also other important bridging terms which he did not list. 
Consequently, there are two obvious reasons for our results not showing 43 b-terms as 
the first 43 terms on the ensemble’s ranked list. The first reason is a non-optimal 
ensemble performance and the second reason is that some other terms – not listed by 
Swanson – may be equally important for bridging the two domains. 

For the training dataset we used the autism-calcineurin domain pair which was 
introduced and initially researched by Urbančič et al. [19] and later also in [11, 12]. 
Like Swanson, Petrič et al. [11] also provide b-terms, 13 in total (listed in Table 2), 
whose importance in connecting autism to calcineurin (a protein phosphatase) is 
discussed and confirmed by the domain expert. In the view of searching for b-terms, 
this dataset has a relatively different dimensionality compared to the migraine-
magnesium dataset. On the one hand it has only approximately one fourth of the 
b-terms defined, while on the other hand, it contains more than 40 times as many 
potential b-term candidates. Therefore, the ratio between b-terms and candidate terms 
is substantially lower – approximately by factor 160, i.e., the chance to find a b-term 
among the candidate terms if picking it at random is 160 times lower in the autism-
calcineurin dataset then in the magnesium-migraine dataset. Consequently, finding the 
actual b-terms in the autism-calcineurin dataset is much more difficult compared to 
the migraine-magnesium dataset. 

Both datasets, retrieved from the PubMed database using the keyword query, are 
formed of titles or abstracts of scientific papers returned by the query; however, we used 
an additional filtering condition for selecting the migraine-magnesium dataset. We 
needed to select only the articles published before the year 1988 as this was the year 
when Swanson published his research about this dataset and consequently making an 
explicit connection between the migraine and magnesium domains. 

Table 3 states some properties for comparing the two datasets used in the evaluation. 
One of the major differences between the datasets is the length of an average  
document since only the titles were used in the migraine-magnesium dataset, while the 
full abstracts were used in the autism-calcineurin case – due to matching the properties 
of experiments of original research [16, 19] on these two datasets. Consequently,  
also the number of distinct terms and b-term candidates is much larger in  
 

Table 3. Comparison of statistical properties of the two datasets used in the experiments 

 Migraine-magnesium Autism-calcineurin 

R
et

ri
ev

al
 Source PubMed PubMed 

Query terms "migraine"-"magnesium" "autism"-"calcineurin" 
Additional conditions Year < 1988 / 

Part of paper used Title Abstract 

D
oc

um
. 

St
at

is
tic

s Number 8,058 (2,415-5,633) 15,243 (9,365-5,878) 
Doc. with b-term 394 (4.89%) 1672 (10.97%) 

Avg. words per doc. 11 180 
Outliers (CS-SVM-RF) (505 - 362 - 896) (377 - 292 - 142) 

T
er

m
 

st
at

is
tic

 Avg. term per doc. 7 173
Distinct terms 13,525 322,252 

b-term candidates 1,847 78,805 
Defined b-terms 43 13 
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the case of the autism-calcineurin dataset. Nevertheless, the preprocessing of both 
datasets was the same with the exception of outlier document identification. For the 
needs of RF and SVM outlier based heuristics we used the outlier documents 
identified by Sluban et al. [15] since we did not implement RF and SVM classifiers 
ourselves. Thus, our outlier heuristics results are completely aligned with the results 
provided in [15] for both datasets; however, Sluban et al. used slightly different 
document preprocessing for each of the two datasets. Table 3 also shows the exact 
number of outliers identified in each dataset. We can inspect higher numbers in the 
migraine-magnesium dataset which points to the problem of harder classification of 
documents in this dataset – this is also partly due to shorter texts. 

4.2 Results in the Migraine-Magnesium Dataset 

Fig. 1 shows the comparison of ranking performance for the ensemble and all the base 
heuristics on the migraine-magnesium dataset. The heuristics are ordered by their 
AUC. Black dots along with percentages show the heuristic’s AUC performance. 
Gray bars around AUC central point shows the interval of a heuristics’ AUC result, 
explained below. 

The property of heuristics having AUC on the interval and not as a fixed value is due 
to the fact that some heuristics do not produce unambiguous ranking of all the terms. 
Several heuristics assign the same score to a set of terms – including both the actual  
 

 

Fig. 1. Graphical representation of the AUC measure for all the individual heuristics and the 
ensemble heuristic on the migraine-magnesium dataset 
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b-terms as well as non b-terms – which results in a fact that unique sorting is not 
possible (i.e., see equal ensemble scores for terms t2 and t3 in Example 1). In such cases, 
the AUC calculation can either maximize the AUC by sorting all the b-terms in front of 
all the other terms inside equal scoring sets or minimize it by putting the b-terms at the 
back. The AUC calculation can also achieve many AUC values in between these two 
extremes by using different (e.g., random) sorts of equal scoring sets. Therefore, an 
interval bar of AUC shows the interval which contains all the possible AUC values and 
a black dot shows the interval’s middle point which represents the average AUC over a 
large number of random sorts of equal scoring sets. 

Fig. 1 shows no surprises among the base heuristics, since the results are equal to 
those presented in our previous work (see [7]), however, when focusing on the 
ensemble heuristic, we notice that it is better in both, higher AUC value and lower AUC 
interval compared to all the other heuristics. We constructed the ensemble using also 
two not so well performing heuristics ((10)tfidfDomnSum and (3)freqRatio) in order to 
avoid overfitting on the training domain. This could have a negative effect to the 
ensemble performance, however, the ensemble performance was not seriously affected 
which signals an evidence on the right decisions when designing the ensemble. 

As stated in the introduction of this section, we are mostly interested in the 
heuristics quality from the end user’s perspective. Such evaluation of heuristics 
quality is shown in Fig. 2, where the length of colored bars tells how many b-terms 
were found among the first 5, 20, 100, 500 and 2000 terms on the ranked list of terms  
 

 

Fig. 2. Comparison of the ensemble and base heuristics capacity to rank the b-terms at the very 
beginning of the terms list for the migraine-magnesium dataset 
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produced by a heuristic. We can see that the ensemble finds one b-term among the 
first 5 terms (the darkest gray bar), one b-term – no additional b-terms – among the 
first 20 terms (no bar), 6 b-terms – 5 additional – among the first 100 terms (lighter 
gray bar), 22 b-terms – 16 additional – among first 500 terms (even lighter gray bar) 
and all the 43 b-terms – 21 additional – among the first 2000 terms (the lightest gray 
bar). Thus, if the expert limits himself to inspect only the first 100 terms, he will find 
6 b-terms in the ensemble list, slightly more than 6 in the (21)outFreqRelSum list, 6 in 
the (19)outFreqRelRF, and so on. Results in Fig. 2 also give us the confirmation that 
the ensemble is among the best performing heuristics also from the user’s perspective. 
Even though a strict comparison depends also on the threshold of how many terms an 
expert is willing to inspect, the ensemble is always among the best. 

4.3 Results in Autism-Calcineurin Dataset 

Fig. 3 shows how our methodology works on a new independent test dataset which 
was not used in the development of our methodology. As discussed, the dimensionality 
of the autism-calcineurin dataset is considerably different and less favorable compared 
to the migraine-magnesium dataset. This is evident also when observing Fig. 3, since 
the performance of individual base heuristics significantly changes. Some of the 
originally best performing heuristics, e.g., based on relative frequency in outlier sets 
are now among the worst and the other types, e.g., tf-idf based that were not 
performing well before, are now among the best. The most important observation is  
 

 

Fig. 3. Graphical representation of the AUC measure for all the individual heuristics and the 
ensemble heuristic on the autism-calcineurin dataset 
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that the ensemble heuristic is still among the best (placed after (3)freqRatio and 
(17)outFreqSum) and preserves a zero AUC interval. Otherwise, we can notice a slight 
AUC increase of the best performing heuristics which is very positive since the 
candidate term list is much longer now and we expect we will find the same number of 
b-terms much later in the candidate term list compared to the migraine-magnesium 
dataset. 

The last result in this section is the user oriented visualization of heuristics 
performance shown in Fig. 4. This gives us the final argument for the quality of the 
ensemble heuristic since it outperforms or at least equals to all the other heuristics on 
the most interesting ranked list lengths (up to 20, 100, 500 terms). The ensemble finds 
one b-term among 20 ranked terms, 2 among 100 and 3 among 500 ranked terms. At a 
first sight, this may seem a bad performance, but, note that there are 78,805 candidate 
terms which the heuristics have to rank. The evidence of the quality of the ensemble 
can be understood if we compare it to the (23)appearInAllDomn heuristic which is the 
baseline heuristic and represents the performance which is achievable without 
developing the methodology presented in this work. The (23)appearInAllDomn 
heuristic discovers in average only approximately 0.33 b-terms before position  
2000 in the ranked list while the ensemble discovers 5 – not to mention the  
shorter term lists where the ensemble is relatively even better compared to the 
(23)appearInAllDomn heurisitc. 

 

 

Fig. 4. Comparison of the ensemble and base heuristics capacity to rank the b-terms at the very 
beginning of the terms list for the autism-calcineurin dataset. The longer the dark part, the more 
b-terms a heuristic ranks at the specified partition of the ranked list. 
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5.1 A Typical Use Case
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5. At this point, the user inspects the actual appearances of the selected term in 
both domains, using the side-by-side document inspection as shown in Fig. 7. In 
this way, he can verify whether his rationale behind selecting this term as a 
bridging term can be justified based on the contents of the inspected documents. 

6. Afterwards, the user continues with the exploration by returning to step 3 or by 
choosing another term in step 4, or concludes the session. 

The most important result of the exploration procedure is a proof for a chosen term to 
be an actual bridge between the two domains, based on supporting facts from the 
documents. As experienced in sessions with the experts, the identified documents are 
an important result as well, as they usually turn out to be a valuable source of 
information providing a deeper insight into the discovered cross-domain relations. 

5.2 Other CrossBee Functionalities 

Below we list the most important additional functionalities of the CrossBee system: 

─ Document focused exploration empowers the user to filter and order the 
documents by various criteria. The user can find it more pleasing to start 
exploring the domains by reading documents and not browsing through the term 
lists. The ensemble ranking can be used to propose the user which documents to 
read by suggesting those with the highest proportion of highly ranked terms. 

─ Detailed document view provides a more detailed presentation of a single 
document including various term statistics and a similarity graph showing the 
similarity between this document and other documents from the dataset. 

─ Methodology performance analysis supports the evaluation of the methodology 
by providing various data which can be used to measure the quality of the 
results, e.g., data for plotting the ROC curves. 

─ High-ranked term emphasis marks the terms according to their bisociation score 
calculated by the ensemble heuristic. When using this feature all high-ranked 
terms are emphasized throughout the whole application making them easier to 
spot (note different font sizes in Fig. 7). 

─ b-term emphasis marks the terms defined as b-terms by the user (note yellow 
terms in Fig. 7). 

─ Domain separation is a simple but effective option which colors all the documents 
from the same domain with the same color, making an obvious distinction 
between the documents from the two domains (note different colors in Fig. 7). 

─ UI customization enables the user to decrease or increase the intensity of the 
following features: high-ranked term emphasis, b-term emphasis and domain 
separation. In cooperation with the experts, we discovered that some of them do 
like the emphasizing features while the others do not. Therefore, we introduced 
the UI customization where everybody can set the intensity of these features by 
their preferences. 

6 Discussion and Further Work 

This work presents a methodology and a system for bisociative literature mining 
focusing on b-term identification and ranking by using an ensemble heuristic. First, a 
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detailed description of the proposed methodology and its experimental evaluation are 
provided, followed by the overview of the implemented system CrossBee. 

In the experimental evaluation we tested a set of base heuristics and the proposed 
ensemble heuristic on two datasets: migraine-magnesium and autism-calcineurin. 
While the first dataset was used to develop the b-term ranking methodology, the 
second dataset was used as an independent test to validate the findings. 

The comparison of the results on both datasets has shown that the performances of 
individual heuristics vary substantially. This indicates that there are differences between 
datasets which influence the performance of individual heuristics; while some base 
heuristic can be more adapted to one dataset, the others might be better suited to 
another. The proposed ensemble heuristic, which is among the best performing 
heuristics in both datasets, is therefore suggested as a dataset independent methodology. 

The results of the heuristics were evaluated from two perspectives: (a) using the 
AUC measure, and (b) by counting the number of b-terms found in the first n term 
candidates. While the first measure (a) is used to estimate the quality of heuristics as a 
single number, which is good for ranking the heuristics, the second measure (b) is 
used to illustrate the heuristics quality from the end-user’s perspective. In a typical 
scenario, the end-user appreciates reducing the burden of exploration by browsing 
through as few b-term candidates as possible to find the b-terms bridging the two 
domains. The comparison of baseline heuristics results with the constructed ensemble 
heuristic results confirms that the proposed methodology substantially reduces the 
end-user burden in this respect. 

The CrossBee System has proved to be a user-friendly implementation of the 
presented methodology. Its visualization functionalities, in particular its presentation 
of pairs of documents which can be inspected in more detail for meaningful relations, 
is very helpful. An obvious extension planned for the near future is automatic 
download of documents from a selected bibliographic database, such as MEDLINE. 

Investigation of more general connections between properties of domains and the 
best choice of selected heuristics combined into ensemble heuristic remains an 
important issue for further work, together with a more systematic study and 
comparison with other ensemble approaches known from the literature. 
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Applications and Evaluation: Overview

Igor Mozetič and Nada Lavrač
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1 Introduction

This part of the book presents several applications which were motivated by the
concept of bisociation, and to some extent exploited the notions of heterogeneous
information networks, explicit contextualization and/or context crossing.

The main goals of these applications are:

– to verify if the principles of heterogeneous information networks and bisoci-
ation, and their computational realization, can lead to new discoveries,

– to test the software platforms developed for bisociative knowledge discovery,
and

– to find actual new discoveries in at least some application domains.

Most of the applications are in the area of biology, but in addition there are
interesting digressions to finance, improvements of business processes, and music
recommendations.

2 Contributions

Eronen at al. [1] discusses Biomine as a BisoNet which integrates heterogeneous
biological databases. It consists of over 1 million nodes, representing biological
entities (genes, proteins, ontology terms, . . . ), and over 8 million edges, repre-
senting weighted relations of different types. Biomine search algorithms imple-
ment link discovery between distant nodes in the graph, and can be exploited
for context crossing in bisociative reasoning.

Biomine is an essential component of SegMine, described by Mozetič et al. [8],
which implements a form of bisociative reasoning for the analysis of microarray
data. SegMine first performs explicit contextualization by subgroup discovery
(implemented by the SEGS algorithm), where sets of enriched genes are found.
Context crossing is then triggered by queries to Biomine which discovers long
range links between distant sets of genes. In the analysis of senescence in human
stem cells [10] (not described in this book), a biology expert used SegMine to
formulate three new hypotheses which can improve the understanding of the
underlying mechanisms in senescence.

A novel application of SegMine, extended to plant biology, is described by
Langohr et al. [5]. The problem addressed is the analysis of plant response to a
virus attack, from a series of microarray datasets. All human related databases
and ontologies in SEGS and Biomine were replaced by plant related data, and

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 359–363, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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subgroup discovery is used again in the later stage of analysis to characterize
contrasts between different microarray datasets. The bisociative component in
this study consists of the transfer of knowledge about a well-understood plant,
namely A. thaliana, to investigate a less well-understood plant, in this case the
potato.

Bisociations between related organisms are also exploited in the approach by
Kimming and Costa [4]. They investigate metabolic pathways with the goal of
automatic pathway curration by link and node prediction, similar to Biomine.
However, they make use of information on related organisms to suggest filling of
incomplete pathways.

An exploration of textual resources to get an insight into a biological domain
is described by Miljković et al. [7]. The ultimate goal is to develop a dynamic
model of plant defense to a virus attack. Scientific literature read by domain
experts is automatically analyzed to extract triplets of the form <node1, edge,
node2> which then form a heterogeneous information network. The network
can be explored to find cross-context links between different bodies of human
expertise, or eventually (not described in this book) to find novel cross-talk links
between different submodels of the plant defense response.

Another analysis of textual resources is described by Schmidt et al. [11]. The
goal is to better understand a biological bile acid and xenobiotic system (BAXS)
by bisociative hints from a drastically different domain of finance. The idea was to
retreive several thousands of scientific papers from both domains, cluster them,
and then identify outlier documents. Outliers are biological papers more similar
to financial papers than to the rest of biological papers, or vice versa. From the
outliers, some interesting bridging terms can be identified which connect the two
disparate domains.

An application to business process modelling is presented by Martin and He
[6]. The goal is to improve business processes by discovery of process models,
their analysis, extension and mining. Process instances concerning repair and
call-center data were used to define different contexts, and bisociative reasoning
suggested three possible routes which could lead to process improvement.

Finally, Stober et al. [12] present an advanced user interface for music recom-
mendation. Here, the concept of bisociation provides motivation for unexpected
and fortunate (serendipitous) recommendations. The article demonstrates how
the separation of the similarity measures for projection and distortion makes it
possible to link two distinct views on a music collection. As a consequence, it
creates a setting where serendipitous recommendations become more likely.

The main conclusions of the applications presented in this volume are the
following:

– The concepts of bisociation, explicit contextualization, and context crossing
have the potential to help formulate research hypotheses which lead to new
discoveries.

– Several software platforms for bisociative reasoning were developed; at least
two of them are used regularly by domain experts in human and plant biology
(SegMine and Biomine).
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– At least in two domains (microarray analysis of human stem cells, autism)
biology and medical experts formulated significant new research hypotheses
which facilitate novel insights into the domains.

3 Lessons Learned

3.1 The BISON Software for Applications Development

There are numerous lessons learned from the applications described in this vol-
ume. In addition to the BISON platform and the software developed within the
BISON project, a lesson learned is that in bisociative discovery tasks we were
often able to use also other existing software tools, which were used beyond
their original scope and purpose. For example, Ontogen [2] is an interactive tool
for the construction of topic ontologies, but was used in several applications
described in this book for outlier detection and b-term identification. A lesson
learned from using Ontogen’s similarity graph is, however, that it needs to be
used with care. Although two documents appear to be close to each other in
the similarity graph, actually they can be distant but at a similar distance from
the centroid of the given document cluster. Another tool successfully used in the
BISON project was Biomine which was designed for link discovery in biological
domains, but in the stem cells microarray analysis its visualization facility en-
abled the biology expert to identify “gene hubs” (nodes with a large number of
edges) and “outlier genes” (nodes with a few edges and of low strength). These
concepts are known in social network analysis, but were not exploited in the
Biomine context before. Another success, for which Biomine and SEGS were de-
signed but not actually used before, was the relative ease with which we replaced
human related databases with plants related databases.

3.2 Application Potential of the BISON Methodology

A major lesson learned from the microarray analysis applications described in
this part of the book is that a huge amount of effort is needed to develop a
software platform to be used by biology experts. On one hand, the software must
match state-of-the-art biological software tools to be competitive. On the other
hand, it must address a large number of data management requirements (e.g.,
different and sometimes inconsistent formats) which are important for routine
biological research, but are largely uninteresting and irrelevant from a computer
science and knowledge discovery perspective.

The role of bisociations was mainly conceptual but played a crucial role in the
formulation of new hypotheses. It made us aware of the need for explicit defini-
tion of distinct contexts, for the search of links between them, and for intentional
jumps “out-of-the-context”. These were initially accomplished by ingenious con-
nection of seemingly unrelated tools (SEGS and Biomine), but later evolved into
a novel, interactive, service-oriented platform with a set of SegMine workflows,
implemented in a principled way. This led to a natural extension to contrasting
coSegMine [5] which opens exciting opportunities for future research.
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3.3 Evaluation of the BISON Methodology and the Potential for
Triggering Creativity

The problem of cross-context link discovery from scientific papers (presented in
Part IV: Exploration) is that in new domains the success criteria are unclear and
that only the expert’s evaluation is possible. However, in the document analysis
case studies on migraine-magnesium and autism-calcineurin [3] this problem did
not occur since the task was to evaluate the method by rediscovering known
b-terms.

In these cross-context link discovery applications we reused Ontogen in a
novel, unforeseen way. The Ontogen approach may not be seen as an approach
that triggers creativity, but still it is a useful tool for cross-context discovery. The
strongest novelty and lesson learned is that indeed outliers are very useful means
of speeding up link discovery in cross-context domains, which was confirmed
experimentally in the migraine-magnesium and autism-calcineurin domains [9].
The utility of Ontogen was further proven in the completely new BAXS-finance
domain pair as well.

4 The Future of Bisociative Reasoning and Cross-Context
Data Mining

Computational creativity community is aware of Koestler’s work, but this com-
munity can now establish a clear link with the data mining community through
the results presented in this book. The BISON project has identified a novel
cross-context data mining task which could be of large interest to the data min-
ing community. The investigated research topic, cross-context data mining and
knowledge discovery, is not yet part of mainstream data mining research. By
further raising awareness of this cross-context/cross-domain knowledge discov-
ery paradigm, the work presented in this book has the potential to ensure that
cross-context knowledge discovery will become a recognized topic and thus a first
class citizen of major machine learning, data mining and knowledge discovery
conferences.

Open Access. This article is distributed under the terms of the Creative Commons
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Abstract. Biomine is a biological graph database constructed from pub-
lic databases. Its entities (vertices) include biological concepts (such as
genes, proteins, tissues, processes and phenotypes, as well as scientific
articles) and relations (edges) between these entities correspond to real-
world phenomena such as “a gene codes for a protein” or “an article refers
to a phenotype”. Biomine also provides tools for querying the graph for
connections and visualizing them interactively.

We describe the Biomine graph database. We also discuss link
discovery in such biological graphs and review possible link prediction
measures. Biomine currently contains over 1 million entities and over
8 million relations between them, with focus on human genetics. It is
available on-line1 and can be queried for connecting subgraphs between
biological entities.

1 Introduction

Biomine is a large biological graph (or BisoNet [1]) whose entities (vertices)
include concrete biological concepts such as genes, proteins and tissues, but also
abstract concepts such as biological processes, phenotypes and scientific articles.
Relations (edges) between these entities correspond to real-world phenomena
such as “a gene codes for a protein” or “an article refers to a phenotype”. We
are motivated by link discovery in such biological graphs with the primary aim
of prioritising putative disease-susceptibility genes.

A generic goal of Biomine is to help users discover and understand relations
between biological entities, such as indirect connections between a gene and a
disease. In the context of bisociative or creative information exploration [2], our
aim is to facilitate discovery of bisociations between biological entities that are
not connected within a single existing database. As a concrete and motivating
example, consider a gene mapping process for a disease (or other phenotype).
Current genome-wide analysis methods produce a large number of candidate
genes, i.e., putative disease-susceptibility genes for the disease. A question then
is how to prioritize these genes so that further efforts can be focused on the
most promising candidates. One approach is to look at what is already known
about the putative disease genes and see how they relate to each other and

1 http://biomine.cs.helsinki.fi

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 364–378, 2012.
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to the phenotype under study. This might reveal evidence for the hypothesised
association or facilitate a more detailed hypothesis about the mechanisms of
the relationship. Due to the lack of automated methods the work is mostly
done by manually browsing the databases. This is a slow and laborious process
which necessarily limits the extent and coverage of the search. In this chapter
we describe a database and methods for (partial) automation of the prioritising
task.

Biological graphs can be built from publicly available biological databases.
Converting (relational) biological knowledge to a graph form is conceptually
simple though not straightforward. For instance, how to map different biological
concepts and their attributes into the graph and how to weight edges is non-
trivial. In Sections 2 and 3 we consider these issues in the context of Biomine, a
relatively large biological graph. In Section 4 we then review some proposed link
goodness measures and consider the evaluation of link significance. We briefly
review related work in Section 5 and conclude in Section 6.

2 Biomine Database

We now describe in more detail Biomine, a large index of various interlinked pub-
lic biological databases. Biomine offers a uniform view to these databases by rep-
resenting their contents as a large, heterogeneous graph, with probabilistic edges.
Vertices in this graph represent entities (records) in the original databases and
edges represent their annotated relationships (cross-references between records).
Edges have weights that are interpreted as probabilities. A preliminary version
of Biomine has been described by Sevon et al [3]. In this section we take a brief
look at the core components of Biomine: its data model and source databases.
Edge weighting is considered separately in Section 3.

2.1 Data Model

The choice of data representation, or data model, is important in link mining [4].
To facilitate wide applicability, the core Biomine data model is deliberately sim-
ple: all source database records are represented as vertices in an undirected,
labelled and weighted multigraph G = (V,E). The elements of the vertex set V
are biological entities such as genes, proteins and biological processes as well as
more general objects like article abstracts. They are labelled by a type, such as
gene or protein, from set Tv. We denote the vertex type mapping by tv : V �→ Tv.

Edge multiset E ⊂ [V ]2 consists of unordered vertex pairs {u, v}. As with
vertices, edges have labels from edge type set Te and we denote this mapping
by te : E �→ Te. Edge types depict annotated relations between vertices, such as
codes for (e.g., gene codes for protein) or refers to (e.g., article refers to gene).

Each edge has a source database where the corresponding relation resides. We
denote this source database mapping by s : E �→ D where D is the set of source
databases. For a given graph G = (V,E), we refer to its vertex set V by V (G)
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and its edge set E by E(G). Finally, we denote the set of neighbouring vertices
of v by N(v) = {u ∈ V : {v, u} ∈ E}.

Table 1 lists the vertex types used in Biomine; similarly, Table 2 lists the edge
types. Some representative examples of typed edges are given in Table 3. All
tables refer to the Biomine database built at 4th June 2010.

Table 1. Biomine vertex types Tv, primary source database for each type, and the
total amount and mean degrees of corresponding vertices

Type Primary source database Amount Mean degree

Active site InterPro 89 95.82
Allelic variant OMIM 19,455 1.44
Article PubMed 532,675 3.98
Binding site InterPro 62 111.18
Biological process GO 19,539 32.47
Cellular component GO 2,856 122.18
Compound KEGG 15,879 0.55
Conserved site InterPro 575 58.29
Domain InterPro 5,515 69.55
Drug KEGG 8,846 0.69
Enzyme KEGG 5,095 10.15
Family InterPro 12,718 10.61
Gene Entrez Gene 192,893 18.60
Gene/Phenotype OMIM 343 82.35
Genomic context Entrez Gene 11,825 18.68
Glycan KEGG 2,519 0.92
Homolog group HomoloGene 25,780 3.18
Molecular function GO 9,529 49.07
Ortholog group KEGG 13,067 3.81
Pathway UniProt 1,875 37.10
Phenotype OMIM 6,559 16.95
PTM InterPro 16 82.88
Protein UniProt 275,292 29.58
Region InterPro 1,441 20.14
Repeat InterPro 255 94.84
Tissue UniProt 1,317 189.10

total 1,166,020 14.84

2.2 Source Databases

Biomine essentially is an index to several interlinked, publicly available source
databases. Each database provides different kinds of entities and relations to
Biomine, some overlapping. We briefly review the main features of the source
databases below.

NCBI’s Entrez Gene [5,6] provides gene entries for different organisms. Cur-
rently, Biomine contains five model organisms: human, mouse, rat, fruit fly and
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Table 2. Biomine edge types Te and amount of edges of each type

Type Source databases Amount

affects Entrez Gene 5,077
belongs to Entrez Gene, HomoloGene, KEGG,

STRING, SwissProt, TrEMBL
689,026

codes for Entrez Gene, KEGG, STRING 174,480
contains SwissProt, TrEMBL 454,553
functionally associated to STRING 2,916,286
has Entrez Gene, InterPro, KEGG, OMIM,

SwissProt, TrEMBL
464,369

has synonym Entrez Gene 1,666
interacts with Entrez Gene, SwissProt, TrEMBL 97,361
is a GO, InterPro, KEGG 51,483
is expressed in SwissProt, TrEMBL 234,153
is found in Entrez Gene, InterPro, KEGG, SwissProt,

TrEMBL
337,542

is homologous to HomoloGene 259,390
is located in Entrez Gene, OMIM 144,495
is part of GO, InterPro, OMIM 54,196
is related to GO, HomoloGene, KEGG, OMIM, Swis-

sProt, TrEMBL
25,414

overlaps OMIM 8,199
participates in Entrez Gene, InterPro, KEGG, SwissProt,

TrEMBL, UniProt
605,237

refers to Entrez Gene, KEGG, OMIM, SwissProt,
TrEMBL

2,216,614

subsumes Entrez Gene, KEGG, STRING, SwissProt,
TrEMBL

140,555

targets KEGG 4,885

total 8,884,981

Table 3. Some examples of Biomine edge types, their source databases and the amount
of corresponding edges. Observe that a sequence of such edges would constitute a gene–
gene path in the graph.

Edge Source database Amount

Gene codes for Protein STRING 5,948
Protein belongs to Family SwissProt 30,651
Family participates in Biological process InterPro 5,274
Biological process is related to Tissue GO 13,103
Protein is expressed in Tissue SwissProt 176,034
Enzyme subsumes Protein TrEMBL 7,907
Gene codes for Enzyme KEGG 14,195
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nematode (Caenorhabditis elegans). Genes are connected to their protein prod-
ucts and other homologous genes (similar genes in different organisms). Homol-
ogy relations come from an another Entrez database HomoloGene [6]

UniProt [7] is the main source of protein-related information. Its core ele-
ments are proteins, pathways and tissues. These elements form vertices in the
graph. Manually annotated and reviewed proteins are in Swiss-Prot subdatabase,
while TrEBML subdatabase contains automatically annotated and nonreviewed
proteins. UniProt contains many relations, such as protein interactions and ex-
pressions, and classifications into protein families and pathways.

InterPro [8] is another protein-related database. It indexes protein families
and structural elements (domains, regions, sites, etc.), and it has hierarchies for
these elements. The third protein database, STRING [9], contains known and
predicted protein–protein interactions. The interactions include direct (physical)
and indirect (functional) associations. STRING also contains clusters of orthol-
ogous groups (COGs) and their interactions, with mappings between proteins
and COGs.

Gene Ontology (GO) aims to provide a controlled vocabulary for genes and
gene products [10]. Its core domains are cellular components, biological processes
and molecular functions. The ontology is structured as a directed acyclic graph
and each term has defined relationships to one or more other terms in the same
domain and sometimes to other domains. This graph is a subgraph of Biomine,
and the term vertices are referred to by other databases such as Entrez Gene
and UniProt.

Online Mendelian Inheritance in Man (OMIM) is a catalogue of human genes
and genetic disorders. It is the main source of phenotype information in Biomine:
most of the OMIM entries are Phenotype vertices. The database also contains
descriptions of allelic variants, gene locations and a large number of references
to biomedical literature.

PubMed [6] is a freely accessible online database of biomedical journal citations
and abstracts with approximately 20 million entries at the time of writing. Many
biological databases (such as UniProt and OMIM) contain references to PubMed
entries, for example to index articles where a particular gene or phenotype is men-
tioned. In Biomine these cross-referenced PubMed entries are Article vertices.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a large, integrated
database resource consisting of 16 main databases broadly categorised into sys-
tems information, genomic information and chemical information [11]. Biomine
uses a subset of KEGG: its pathway, gene, drug, orthology, compound and glycan
databases.

Each of the source databases has its own schema for arranging and format-
ting data. Raw data files are preprocessed into a uniform intermediate format
before integration. Intermediate format files are essentially lists of typed edges,
vertex attributes and synonym mappings. These files are then imported into a
single database to form a large graph. During the importing process synonyms,
invalid references and other anomalies are resolved. The complete conversion and
importing process is complicated and out of the scope of this chapter.
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3 Edge Goodness in Biomine

One of the goals of Biomine is to allow discovery and evaluation of links be-
tween vertices specified by the user. To rank paths or assess the significance of
a connection between two vertices we need a measure for edge goodness. Edges
sometimes have natural weights in the source databases. For example, a homol-
ogy between two proteins could have a value denoting the degree of sequence
similarity. Biomine extends such domain-specific static weighting by considering
edge weight, or goodness, as a function of three factors:

1. Reliability. How confident are we that the relation (and consequently the
edge) really exists? How reliable is the data source, how reliable is the
method used to produce or predict the edge and how strong or probable
is the connection estimated to be in the data source?

2. Relevance. How relevant is the edge with respect to the query? We assume
that the investigator can give query-specific weights for vertex and/or edge
types according to his or her subjective opinions of the importance of each
type for the query at hand.

3. Rarity of informativeness. How rare and informative is the edge? As an
extreme example, an article [12] that refers to over 18,000 human and mouse
genes is not likely to be relevant for a specific gene whereas an article that
only refers to few genes is much more likely to be informative. In Biomine
edge rarity is directly related to the degrees of its incident vertices.

A distinguishing feature of Biomine is the probabilistic interpretation of the
above factors: an edge e ∈ E is considered to be reliable with probability r(e),
relevant with probability q(e) and rare (or informative) with probability d(e).
These factors are combined to a single probability g(e) so that e is an existing
and potentially useful relation if e is at the same time reliable, relevant and
informative. In other words, edges are random: e “exists” or “is true” with
probability g(e), or “does not exist” or “is not true” with probability 1 − g(e).
With the probabilistic interpretation G is a random graph that naturally models
the uncertainty in the source data and the query-specific relevance. We next give
definitions for r, q and d, and we combine them into one goodness g.

Reliability r(e) of an edge e ∈ E is defined as a product of two (indepen-
dent) reliabilities: a database reliability rd : D �→ [0, 1] and a relation (edge)
reliability rr : E �→ [0, 1]. The database reliability rd is given by the user,
and the interpretation of rd is the degree of belief the user has for a relation
being correctly annotated in the corresponding database. For example, the man-
ually curated Swiss-Prot database could be given a perfect reliability by letting
rd(Swiss-Prot) = 1.0, while the computer-annotated TrEMBL database could
be assumed to be less precise by letting rd(TrEMBL) = 0.75. Relation reliabil-
ity rr comes from the source database instead: if there is a separate confidence
value c associated to e (that reflects similarity or homology score, for example),
we let rr(e) = c, where c is scaled between 0 and 1 if needed. Otherwise we let
rr(e) = 1. The interpretation of rr(e) is the confidence of the data source itself
on the relation represented by e.
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We define the edge reliability r : E �→ [0, 1] by treating the reliabilities
rd and rr as probabilities of independent events:

r(e) = rd
(
s(e)

) · rr(e) (1)

where s(e) is the source database of e. The interpretation of r(e) is that e is
reliable if both the database (as a whole) and the annotation are considered
reliable.

Relevance q(e) of an edge e ∈ E is the degree of belief that e represents a
relevant connection between vertices u and v with respect to the current query.
Edge relevance is analogous to edge reliability r but, in contrary to the static
database-related reliability, relevance is query-specific.

Relevance values may be sometimes easier to give in terms of vertex types
instead of edge types. Hence Biomine uses two relevance functions: qv : Tv �→
[0, 1] for vertex types and qe : Te �→ [0, 1] for edge types. Both qv and qe are given
by the user. A practical implementation could have a default configuration for
both qv and qe, so only few adjustments would be needed for a typical query.

As in (1), relevance values qv and qe are treated as probabilities of independent
events. The edge relevance q : E �→ [0, 1] is

q(e) = qe
(
te(e)

) ·
√

qv
(
tv(u)

) ·
√

qv
(
tv(v)

)
(2)

where e = {u, v} ∈ E. Vertex relevance coefficient
√
qv
(
tv(x)

)
in (2) decomposes

the vertex type specific relevance qv
(
tv(x)

)
of vertex x for each of its adjacent

edges. As path relevance will be later defined as a product of edge relevance
values this gives the desired outcome: the relevance of any path visiting a vertex
of type τ is multiplied by q(τ).

We want to give lower scores for paths that visit vertices with high degrees: the
higher the degree of vertex v ∈ V the less likely it is that any two neighbours of v
actually have an interesting connection through v. Hence we define rarity dv :
V �→ [0, 1] first for vertices. Rarity dv(v) represents the probability that any two
edges incident on v are related to each other and represent a meaningful path;
the higher the rarity, the more informative v is. The following ad hoc formula is
used as a basis for rarity:

dv(v) =
1

(deg(v) + 1)α
(3)

where 0 ≤ α ≤ 1 is a penalising parameter. It determines how steeply dv decreases
as a function of vertex degree. With α = 0 we have dv(v) ≡ 1 so that all vertices
are considered equally informative. With α = 1 we have dv(v) = (deg(v,+)1)−1

and dv(v) has the following probabilistic interpretation. Consider a random
walker who, at any vertex, is equally likely to follow any edge or stop at the
vertex. Given a path P = (v1, v2, . . . , vk), vi ∈ V , rarity dv(vi) is the probability
that the walker who has so far traversed vertices v1, . . . , vi will next stay on the
path and visit vertex vi+1.
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The simple formula (3) can be too inflexible in practise. Take for example
PLA2G7: a widely studied asthma gene that has been referred in 97 articles. Be-
cause of these article links (3) would penalise PLA2G7 vertex severely. However,
it has only one interaction link and it participates in three biological processes,
so PLA2G7 could be informative when the investigator is mostly interested in
gene–gene interactions or biological processes. Another issue is that vertex de-
grees vary wildly between different vertex types (see Table 1) but α is indepen-
dent of vertex types. This causes unreasonable penalisation for some large-degree
vertex types such as GO terms.

To allow more flexibility in degree penalising we replace the single constant α
and vertex degree function deg with vertex-type and edge-type specific func-
tions α : Tv �→ [0, 1] and deg : V × Te �→ N (that is, deg(v, τ,) denotes the num-
ber of edges of type τ adjacent to v). Now the vertex rarity dv : V × Te �→ [0, 1]
for vertex v ∈ V is

dv(v, τ) =
1

(deg(v, τ) + 1)α
(
tv(v)

) . (4)

As with relevance (2), the rarity values are decomposed into edge-specific coef-
ficients. The edge rarity d : E �→ [0, 1] becomes

d(e) =
√
dv
(
u, te(e)

) ·
√

dv
(
v, te(e)

)
=

[
dv

(
u, t(e)

) · dv
(
v, t(e)

)]−1/2
(5)

where e = {u, v} ∈ E.
Now that we have defined all the components of edge goodness, the good-

ness g : E �→ [0, 1] itself is simply a product of those factors:

g(e) = r(e) · q(e) · d(e) (6)

where r(e), q(e) and d(e) are the reliability (1), relevance (2) and rarity (5) of
an edge e ∈ E. Under the assumptions that r(e), q(e) and d(e) are probabilities
for mutually independent necessary conditions for the edge and that edges are
independent of each other, the goodness g(e) is the probability that e exists. We
remark that these assumptions of independence are strong and in some cases they
are arguably unrealistic. However, independence allows us to calculate path and
subgraph probabilities easily; we return to these in Section 4.

4 Link Goodness Measures

A link is a more general concept of connection than a simple relation (edge)
between two vertices s and t. Links are useful since they can be used to model
indirect, weak or otherwise non-trivial connections. A path (a sequence of con-
secutive edges) is probably the simplest link type, but shared neighbourhoods,
connected subgraphs and random walks can also be used to represent links. To
discover or predict links, assess their strengths or analyse statistical significances
of links we need a measure for link goodness in addition to edge goodness.
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We next give a short review of some link goodness measures proposed in the
literature. They are presented in the order of increasing generality; more general
measures utilise more information to determine the strength of a link. The dis-
cussion is not restricted to Biomine graphs, so G = (V,E) refers to an arbitrary
directed or undirected graph below. See Liben-Nowell and Kleinberg [13] for an
experimental evaluation of many of these measures for link prediction.

4.1 Path and Neighbourhood Level

The shortest s–t-path P is a simple but efficient link type. Its length w(P ) is a
natural measure for link strength:

gs(s, t) = min
P∈P

w(P ) = min
P∈P

∑

e∈P

w(e) (7)

where w(e) is the length (weight) of an edge e ∈ E and P is the set of all s–t-
paths in G. This measure is easy and efficient to calculate by any shortest path
algorithm.

For random graphs where edge “lengths” are probabilities, (7) does not make
much sense. However, if edges are independent of each other, like in Biomine
graphs, path “length” or goodness follows in a natural way. Let P = (e1, . . . , ek),
ei ∈ E, be a path in G. The path goodness gp : P �→ [0, 1] is

gp(P ) =
∏

e∈P

g(e). (8)

With the interpretation that g(e) is the probability that edge e exists (Section 3)
the path goodness gp(P ) is the probability that the whole path P exists in a
realisation H of G. A realisation of G is a non-random subgraph H ⊂ G where
each edge of G has been randomly and independently decided according to the
corresponding edge probability.

With path goodness gp the shortest path corresponds to the most probable,
or best path. By combining (7) and (8) we get

gb(s, t) = max
P∈P

gp(P ) = max
P∈P

∏

e∈P

g(e). (9)

Again, any shortest path algorithm can be applied to find most probable paths
by using edge weights w(e) = − log

(
g(e)

)
. Let P be the shortest path found

with weight w(P ). Then

w(P ) =
∑

e∈P

− log
(
g(e)

)
= − log

(∏

e∈P

g(e)
)
= − log

(
gp(P )

)
(10)

and since the logarithm function is strictly increasing and w(P ) is minimised,
gp(P ) is maximised.



A Network-Structured Resource of Biological Entities for Link Prediction 373

Overlapping vertex neighbourhoods may indicate indirect similarity or prox-
imity. The number of overlapping neighbours is the simplest measure in this
context:

gn(s, t) = |N(s) ∩N(t)|. (11)

This measure has been observed to positively correlate with future collaboration
probability in coauthor networks [14]. The normalised form of (11)

gJ(s, t) =
|N(s) ∩N(t)|
|N(s) ∪N(t)| (12)

is the well known Jaccard index. Adamic and Adar have proposed [15] a modifi-
cation of (12) that rewards vertex pairs that share neighbours with low degrees:

gA(s, t) =
∑

u∈N(s)∩N(t)

1

log |N(u)| . (13)

4.2 Subgraph Level

The goodness of a single s–t-path, as in (7) and (9), is not necessarily a good
measure of the strength of the link between vertices s and t. For example, a link
consisting of several parallel paths could be considered to be stronger than a
single path even if all of the parallel paths are weak. Connection subgraphs take
this into account by evaluating connected subgraphs, which can be thought to
be a set of paths, containing s and t. Specifically, a connection subgraph between
s and t is a connected subgraph H ⊂ G, of a given size, such that {s, t} ⊂ V (H).
Subgraph H can be, for example, a set of k shortest paths for some fixed k or it
can be chosen to maximise a given connection subgraph goodness function [16].

Faloutsos et al. view G as an electrical network of resistors [16]. They propose
an algorithm that extracts a fixed size subgraph H which maximises total deliv-
ered current over the subnetwork from s to t when s is assigned a potential of
+1 volt and t is grounded (0 volts). Total delivered current has a random walk
interpretation [17]. At first, let us define transition probabilities

p(u, v) =
g(u, v)

∑
w∈N(u) g(u,w)

(14)

for each (u, v) ∈ E. Next, let pesc denote the escape probability according to (14)
from s to t; i.e. the probability that a random walker starting from s will reach t
before returning to s. The effective conductance between s and t is now

gEC(s, t) =
∑

u∈N(s)

g(s, u) · pesc (15)

which is the expected number of “successful escapes” when the number of escape
attempts is

∑
u∈N(s) g(s, u) [18].
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Effective conductance is an appealing link goodness measure and it has been
used to measure centrality in networks [19]. However, it does not penalise unin-
formative vertices that have large degrees (cf. (4)). Faloutsos et al. dodge this
by introducing a global grounded “sink” vertex that is connected to all ver-
tices v ∈ V with conductance proportional to

∑
u∈N(v) g(v, u). As pointed out

by Koren et al. [17], this introduces a counterintuitive size bias where the link
goodness can decrease if the connection subgraph is enlarged. They propose a
modified version of (15) titled cycle-free effective conductance (CFEC):

gCFEC(s, t) =
∑

u∈N(s)

g(s, u) · pcf-esc(s, t) =
∑

u∈N(s)

g(s, u) ·
∑

P∈P
Pr(P ), (16)

where pcf-esc is the escape probability restricted to cycle-free randomwalks (walks
that are simple s–t-paths) and P is the set of all simple s–t-paths in G. CFEC
has two desirable properties: it is monotonically increasing as a function of graph
size, and a relatively small connection subgraph consisting of the most probable
simple s–t-paths is usually enough to approximate gCFEC(s, t) [17].

4.3 Graph Level

A link goodness measure can utilise the topology of the whole graph G. Most
measures on this scale are based on random walks like (15) and (16), although
a measure proposed by Katz [20] considers sets of s–t-paths such that

gK(s, t) =
∞∑

l=1

βl|Pl| (17)

where Pl is the set of all s–t-paths of length l. Parameter β > 0 controls the
effect of longer paths to the goodness.

Random walk models typically consider a single walker w starting from s or
two walkers w1 and w2 with one starting from s and the other from t. Walkers
traverse G randomly with transition probabilities (14). Hitting time H(s, t) con-
siders the expected number of steps w has to take to reach t [21]. Its symmetric
variant is commute time C(s, t) = H(s, t) + H(t, s). Both can be readily used
as distance measures, and they have been used as link goodness (proximity)
measures as well [13].

SimRank by Jeh and Widow [22] is based on a recursive definition

gSR(s, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if N(s) = ∅ or N(t) = ∅,
1 if s = t,

C/(|N(s)||N(t)|) ·∑u∈N(s)
v∈N(t)

s(u, v) otherwise

(18)
where C ∈ [0, 1] is a constant. SimRank also has a random walk interpretation:
value gSR(s, t) corresponds to the expected value of Ct where t is the time
(number of steps) when walkers w1 and w2 first meet [22].
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Liben-Nowell and Kleinberg [13] proposed a rooted PageRank measure for link
goodness based on the well known PageRank measure [23]. In rooted PageRank
the random walker w returns to s with probability α in every step, or it continues
the walk with probability 1 − α. The measure is the steady state (stationary)
probability of t.

With random graphs gb(s, t) is the probability that the best path exists in
a realisation of G. A more appropriate measure could be the probability that
at least one path exists between s and t. This measure is closely related to the
theory of network reliability [24], and the desired measure

gR(s, t) = Pr(H : H ⊂ G,H contains an s–t-path), (19)

where H is a random instantiation of the uncertain graph G, is the two-terminal
network reliability of G with terminals s and t. (The connected parties are called
terminals in the reliability literature.)

4.4 Estimation of Link Significance

We eventually want to measure how strongly two given vertices s and t are related
in graph G. Link goodness measures, such as those discussed in Section 4, allow
ranking of links but their values may be difficult to put into perspective. For
example, assume we have f(s, t) = 0.4 for some goodness measure f . Is this
particular value of f high or low? This obviously depends on the data and the
specific instances of s and t.

We can estimate the statistical significance of the link by using the goodness
value f(s, t) as a test statistic. Returning to the previous example this tells us
how likely it is to obtain a link with goodness 0.4 or better by chance. There are
multiple meaningful null hypotheses:

N1. Vertices s and t of types τs ∈ Tv and τt ∈ Tv are not more strongly
connected than randomly chosen vertices s′ and t′ of types τs and τt.

N2. Vertex s of type τ ∈ Tv is not more strongly connected to vertex t than a
randomly chosen vertex s′ of type τ .

N3. Vertices s and t are not more strongly connected in the given graph G than
in random graph H with edge weights w′ : E(H) �→ R generated by model H
similar to the (unknown) model which generated G and w.

The last null hypothesis N3 is clearly the most complicated one: it is not easy to
come up with model H that generates random graphs that are sufficiently similar
to the observed graph. The choice from the first two null hypotheses depends
on what we are testing. In a symmetrical case, for example when testing the
significance of connection between two candidate genes, N1 is appropriate. If
the roles of the vertices are asymmetric, as in testing for the connection from a
set of candidate genes to a single phenotype, N2 should be used.

Under null hypothesis N1 we can estimate p-value for the test statistic f(s, t)
by randomly sampling N pairs of vertices (s′, t′) from V . Let us denote the
sample by S = {(s1, t1), . . . , (sN , tN )}. To obtain an empirical null distribution
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we compute the value of test statistic f(si, ti) for each (si, ti) ∈ S, and let
S+ = {(si, ti) ∈ S : f(si, ti) ≥ f(s, t)}. Then the estimated p-value p̃ is simply

p̃ =
|S+|
N

. (20)

The same procedure can be used under null hypothesis N2 by sampling single
vertices S = {t1, . . . , tn} and letting S+ = {ti ∈ S : f(s, ti) ≥ f(s, t)}.

Because vertices of the same type may have wildly varying degrees one should
sample vertices s′ and t′ that have degrees similar to s and t, respectively. If
several hypotheses are tested (several candidate genes, for example), the resulting
p-values should be adjusted accordingly to account for multiple testing.

5 Related Work

Concurrently with the development of Biomine, several other data integration
systems have been proposed in the literature. Of these, most similar to our
approach are ONDEX [25] and Biozon [26], which both collect the data from
various sources under a single data store. They also use a graph data schema.
In both systems, the data model is a graph with typed nodes and edges, allow-
ing for the incorporation of arbitrary data sources. In addition to curated data
derived from the source databases, both ONDEX and Biozon include in-house
data such as similarity links computed from sequence similarity of proteins and
predicted links derived by text mining. Biozon provides several types of queries,
most interestingly searching by graph topology and ranking of nodes by impor-
tance defined by the graph structure. In ONDEX, the integrated data is accessed
by a pipeline, in which individual filtering and graph layout operations may be
combined to process the graph in application-specific ways. BioWarehouse [27]
aims to provide generic tools for enabling users to build their own combinations
of biological data sources. Their data management approach is rather similar
to ONDEX and Biozon, but the data is stored in a relational database with a
dedicated table for each data type instead of a generic graph structure. This ap-
proach allows database access through standard SQL queries, and is not directly
suitable for graph-oriented queries.

6 Conclusion

We presented Biomine, a system that integrates data from a number of heteroge-
nous sources into a single, graph-structured index. The current implementation
of Biomine contains over 1 million entities and over 8 million relations between
them, with focus on human genetics. The index can be queried using a pub-
lic web interface2, and results are visualized graphically. Biomine in its current
form is a functional proof of concept, covering only part of the available data
and with a limited focus on human genetics. Initial experimental results indicate
that Biomine and other similar approaches have strong potential for predicting
links and annotations.
2 biomine.cs.helsinki.fi
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Abstract. The article presents an approach to computational knowl-
edge discovery through the mechanism of bisociation. Bisociative rea-
soning is at the heart of creative, accidental discovery (e.g., serendipity),
and is focused on finding unexpected links by crossing contexts. Contex-
tualization and linking between highly diverse and distributed data and
knowledge sources is therefore crucial for the implementation of bisocia-
tive reasoning. In the article we explore these ideas on the problem of
analysis of microarray data. We show how enriched gene sets are found
by using ontology information as background knowledge in semantic sub-
group discovery. These genes are then contextualized by the computation
of probabilistic links to diverse bioinformatics resources. Preliminary ex-
periments with microarray data illustrate the approach.

1 Introduction

Systems biology studies and models complex interactions in biological systems
with the goal of understanding the underlying mechanisms. Biologists collect
large quantities of data from wet lab experiments and high-throughput plat-
forms. Public biological databases, like Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes, are sources of biological knowledge. Since the growing
amounts of available knowledge and data exceed human analytical capabilities,
technologies that help analyzing and extracting useful information from such
large amounts of data need to be developed and used.

The concept of association is at the heart of many of today’s ICT technolo-
gies such as information retrieval and data mining (for example, association rule
learning is an established data mining technology, [1]). However, scientific dis-
covery requires creative thinking to connect seemingly unrelated information,
for example, by using metaphors or analogies between concepts from different
domains. These modes of thinking allow the mixing of conceptual categories and

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 379–389, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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contexts, which are normally separated. One of the functional basis for these
modes is the idea of bisociation, coined by Artur Koestler half a century ago [8]:

“The pattern . . . is the perceiving of a situation or idea, L, in two self-
consistent but habitually incompatible frames of reference, M1 and M2.
The event L, in which the two intersect, is made to vibrate simultane-
ously on two different wavelengths, as it were. While this unusual situa-
tion lasts, L is not merely linked to one associative context but bisociated
with two.”

Koestler found bisociation to be the basis for human creativity in seemingly
diverse human endeavors, such as humor, science, and arts. The concept of biso-
ciation in science is discussed in depth in [2]. Here we take a more restricted and
focused view (illustrated in Figure 1).

T
T

M1

L

M2

S

Fig. 1. Koestler’s schema of bisociative discovery in science ([8], p. 107)

We are interested in creative discoveries in science, and in particular in com-
putational support for knowledge discovery from large and diverse sources of
data and knowledge. The computational realization of bisociative reasoning is
based on the following, somewhat simplified, assumptions:

– A bisociative information network (named BisoNet) can be created from
available resources. BisoNet is a large graph, where nodes are concepts and
edges are probabilistic relations. Unlike semantic nets or ontologies, the
graph is easy to construct automatically since it carries little semantics.
To a large extent it encodes just circumstantial evidence that concepts are
somehow related through edges with some probability.

– Different subgraphs can be assigned to different contexts (frames of refer-
ence).
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– Graph analysis algorithms can be used to compute links between distant
nodes and subgraphs in a BisoNet.

– A bisociative link is a link between nodes (or subgraphs) from different
contexts.

In this article we thus explore one specific pattern of bisociation: long-range links
between nodes (or subgraph) which belong to different contexts. A long-range
link is a special case of a bridging graph [2] since it has the form of a path
between two nodes. More precisely, we say that two concepts are bisociated if:

– there is no direct, obvious evidence linking them,
– one has to cross contexts to find the link, and
– this new link provides some novel insight into the problem domain.

We have to emphasize that context crossing is subjective, since the user has to
move from his ‘normal’ context (frame of reference) to an habitually incompatible
context to find the bisociative link [2]. In Koestler’s terms (Figure 1), a habitual
frame of reference (plane M1) corresponds to a BisoNet subgraph as defined
by a user or his profile. The rest of the BisoNet represents different, habitually
incompatible contexts (in general, there may be several planes M2). The creative
act here is to find links (from S to target T ) which lead ‘out-of-the-plane’ via
intermediate, bridging concepts (L). Thus, contextualization and link discovery
are two of the fundamental mechanisms in bisociative reasoning.

Finding links between seemingly unrelated concepts from texts was already
addressed by Swanson [12]. The Swanson’s approach implements closed discov-
ery, the so-called A-B-C process, where A and C are given and one searches
for intermediate B concepts. On the other hand, in open discovery [18], only A
is given. One approach to open discovery, RaJoLink [9], is based on the idea
to find C via B terms which are rare (and therefore potentially interesting) in
conjunction with A. Rarity might therefore be one of the criteria to select links
which lead out of the habitual context (around A) to known, but non-obviously
related concepts C via B.

In this article we present an approach to bisociative discovery and contextu-
alization of genes which helps in the analysis of microarray data. The approach
is based on semantic subgroup discovery (by using ontologies as background
knowledge in microarray data analysis), and the linking of various publicly avail-
able bioinformatics databases. This is an ongoing work, where some elements of
bisociative reasoning are already implemented: creation of the BisoNet graph,
identification of relevant nodes in a BisoNet, and computation of links to indi-
rectly related concepts. Currently, we are expanding the BisoNet with textual
resources from PubMed, and implementing open discovery from texts through
BisoNet graph mining. We envision that the open discovery process will identify
potentially interesting concepts from different contexts which will act as the tar-
get nodes for the link discovery algorithms. Links discovered in this way, crossing
contexts, might provide instances of bisociative discoveries.

The currently implemented steps of bisociative reasoning are the following.
The semantic subgroup discovery step is implemented by the SEGS system [16].



382 I. Mozetič et al.

SEGS uses as background knowledge data from three publicly available, seman-
tically annotated biological data repositories, GO, KEGG and Entrez. Based on
the background knowledge, it automatically formulates biological hypotheses:
rules which define groups of differentially expressed genes. Finally, it estimates
the relevance (or significance) of the automatically formulated hypotheses on ex-
perimental microarray data. The BisoNet creation and the link discovery steps
are implemented by the Biomine system [3,11]. Biomine weakly integrates a large
number of biomedical resources, and computes most probable links between ele-
ments of diverse sources. It thus complements the semantic subgroup discovery
technology, due to the explanatory potential of additional link discovery and
Biomine graph visualization. While this link discovery process is already imple-
mented, our current work is devoted to the contextualization of Biomine nodes
for bisociative link discovery.

The article is structured as follows. Section 2 gives an overview of five steps in
exploratory analysis of gene expression data. Section 3 describes an approach to
the analysis of microarray data, using semantic subgroup discovery in the context
of gene set enrichment. A novel approach, a first attempt at bisociative discovery
through contextualization, composed of using SEGS and Biomine (SegMine,
for short) is in Section 4. An ongoing experimental case study is presented in
Section 5. We conclude in Section 6 with plans for future work.

2 Exploratory Gene Analytics

This section describes the steps which support bisociative discovery, targeted
at the analysis of differentially expressed gene sets: gene ranking, the SEGS
method for enriched gene set construction, linking of the discovered gene set to
related biomedical databases, and finally visualization in Biomine. The schematic
overview is in Figure 2.

The proposed method consists of the following five steps:

1. Ranking of genes. In the first step, class-labeled microarray data is pro-
cessed and analyzed, resulting in a list of genes, ranked according to differ-
ential expression.

2. Ontology information fusion. A unified database, consisting of GO1 (bio-
logical processes, functions and components), KEGG2 (biological pathways)
and Entrez3 (gene-gene interactions) terms and relationships is constructed
by a set of scripts, enabling easy updating of the integrated database (details
are discussed by [14]).

3. Discovering groups of differentially expressed genes. The ranked list
of genes is used as input to the SEGS algorithm [16], an upgrade of the
RSD relational subgroup discovery algorithm [4, 5, 15], specially adapted to
microarray data analysis. The result is a list of most relevant gene groups that

1 http://www.geneontology.org/
2 http://www.genome.jp/kegg/
3 ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/interaction sources
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. . .

gene2: gene2: 
gene3: 

gene1: + +
+
+

geneN: − −

BiomineSEGS

Microarray data Enriched gene sets Contextualized genes.

Fig. 2. Microarray gene analytics proceeds by first finding candidate enriched gene sets,
expressed as intersections of GO, KEGG and Entrez gene-gene interaction sets. Selected
enriched genes are then put in the context of different bioinformatic resources, as
computed by the Biomine link discovery engine. The ’+’ and ’-’ signs under Microarray
data indicate over- and under-expression values of genes, respectively.

semantically explain differential gene expression in terms of gene functions,
components, processes, and pathways as annotated in biological ontologies.

4. Finding links between gene group elements. The elements of the dis-
covered gene groups (GO and KEGG terms or individual genes) are used to
formulate queries for the Biomine link discovery engine. Biomine then com-
putes most probable links between these elements and entities from a number
of public biological databases. These links help the experts to uncover unex-
pected relations and biological mechanisms potentially characteristic for the
underlying biological system.

5. Gene group visualization. Finally, in order to help in explaining the dis-
covered out-of-the-context links, the discovered gene relations are visualized
using the Biomine visualization tools.

3 SEGS: Search for Enriched Gene Sets

The goal of the gene set enrichment analysis is to find gene sets which form
coherent groups and are different from the remaining genes. More precisely, a
gene set is enriched if the member genes are semantically coherent and statisti-
cally significantly differentially expressed as compared to the rest of the genes.
Two methods for testing the enrichment of gene sets were developed: Gene set
enrichment analysis (GSEA) [13] and Parametric analysis of gene set enrich-
ment (PAGE) [7]. Originally, these methods take individual terms from GO and
KEGG (which annotate gene sets), and test whether the genes that are anno-
tated by a specific term are statistically significantly differentially expressed in
the given microarray dataset.

The novelty of the SEGS method, developed by Trajkovski et al. [14,16] and
used in this study, is that the method does not only test existing gene sets for
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Fig. 3. Schematic representation of the SEGS method

differential expression but it also generates new gene sets that represent novel
biological hypotheses. In short, in addition to testing the enrichment of individual
GO and KEGG terms, this method tests the enrichment of newly defined gene
sets constructed by the intersection of GO terms, KEGG terms and gene sets
defined by taking into account also the gene-gene interaction data from Entrez.

The SEGS method has four main components:

– the background knowledge (the GO, KEGG and Entrez databases),
– the SEGS hypothesis language (the GO, KEGG and interaction terms, and

their conjunctions),
– the SEGS hypothesis generation procedure (generated hypotheses in the

SEGS language correspond to gene sets), and
– the hypothesis evaluation procedure (the Fisher, GSEA and PAGE tests).

The schematic workflow of the SEGS method is shown in Figure 3.

4 SegMine: Contextualization of genes

We made an attempt at exploiting bisociative discoveries within the biomedi-
cal domain by explicit contextualization of enriched gene sets. We applied two
methods that use publicly available background knowledge for supporting the
work of biologists: the SEGS method for searching for enriched gene sets [16] and
the Biomine method for contextualization by finding links between genes and
other biomedical databases [3,11]. We combined the two methods in a novel way.
We used SEGS for hypothesis generation in the form of interesting gene sets,
which are constructed as intersections of terms from different ontologies (dif-
ferent contexts). Queries are then formulated to Biomine for out-of-the-context
link discovery and visualization (see Figure 4). We believe that this combina-
tion provides an easier interpretation of the biological mechanisms underlying
differential gene expression for biologists.

In the Biomine4 project [3,11], data from several publicly available databases
were merged into a large graph, a BisoNet, and a method for link discovery

4 http://biomine.cs.helsinki.fi/
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Fig. 4. SegMine workflow

between entities in queries was developed. In the Biomine framework nodes cor-
respond to entities and concepts (e.g., genes, proteins, GO terms), and edges
represent known, probabilistic relationships between nodes. A link (a relation
between two entities) is manifested as a path or a subgraph connecting the cor-
responding nodes.

Table 1. Databases included in the Biomine snapshot used in the experiments

Vertex Type Source Database Nodes Degree

Article PubMed 330,970 6.92
Biological process GO 10,744 6.76
Cellular component GO 1,807 16.21
Molecular function GO 7,922 7.28
Conserved domain ENTREZ Domains 15,727 99.82
Structural property ENTREZ Structure 26,425 3.33
Gene Entrez Gene 395,611 6.09
Gene cluster UniGene 362,155 2.36
Homology group HomoloGene 35,478 14.68
OMIM entry OMIM 15,253 34.35
Protein Entrez Protein 741,856 5.36

Total 1,968,951

The Biomine graph data model consists of various biological entities and an-
notated relations between them. Large, annotated biological data sets can be
readily acquired from several public databases and imported into the graph
model in a relatively straightforward manner. Some of the databases used in
Biomine are summarized in Table 1. The snapshot of Biomine we use consists
of a total of 1,968,951 nodes and 7,008,607 edges. This particular collection of
data sets is not meant to be complete, but it certainly is sufficiently large and
versatile for real link discovery.

5 A Case Study

In the systems biology domain, our goal is to computationally help the experts
to find a creative interpretation of wet lab experiment results. In the particular
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experiment, the task was to analyze microarray data in order to distinguish
between fast and slowly growing cell lines through differential expression of gene
sets, responsible for cell growth.

Table 2. Top SEGS rules found in the cell growth experiment. The second rule states
that one possible distinction between the slow and fast growing cells is in genes par-
ticipating in the process of DNA replication which are located in the cell nucleus and
which interact with genes that participate in the cell cycle pathway.

Enriched Gene Sets

1. SLOW-vs-FAST ← GO Proc(’DNA metabolic process’) &
INTERACT( GO Comp(’cyclin-dep. protein kinase holoenzyme complex’))

2. SLOW-vs-FAST ← GO Proc(’DNA replication’) &
GO Comp(’nucleus’) &
INTERACT( KEGG Path(’Cell cycle’))

3. SLOW-vs-FAST ← . . .

Table 2 gives the top rules resulting from the SEGS search for enriched gene
sets. For each rule, there is a corresponding set of over expressed genes from
the experimental data. Figure 5 shows a part of the Biomine graph which links
a selected subset of enriched gene set to the rest of the nodes in the Biomine
graph.

Fig. 5. Biomine subgraph related to five genes from the enriched gene set produced by
SEGS. Note that the gene and protein names are not explicitly presented, due to the
preliminary nature of these results.
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The wet lab scientists have assessed that SegMine, SEGS in combination with
Biomine, provides additional hints on what to focus on when comparing the ex-
pression data of cells. In subsequent analysis of senescence in human stem cells,
the use of SegMine resulted in formulation of three novel research hypotheses
which could improve understanding of the underlying mechanisms and identifi-
cation of candidate marker genes [10].

In principle, such an in-silico analysis can considerably lower the costs of in-
vitro experiments with which the researchers in the wet lab are trying to get
a hint of a novel process or phenomena observed. This may be especially true
for situations when one cannot find deeper explanation for drug effects, organ
functions, or diseases from surface observations only. Namely, the gross, yet
important characteristics of the cells (organ function) are not directly accessible
(since they do not affect visual morphology) or could not be identified soon
enough. An initial requirement for this approach is wide accessibility and low
costs of high throughput microarray analysis which generate appropriate data
for in-silico analysis.

6 Conclusions

We presented SegMine, a bisociation discovery system for exploratory gene ana-
lytics. It is based on the non-trivial steps of subgroup discovery (SEGS) and link
discovery (Biomine). The goal of SegMine is to enhance the creation of novel
biological hypotheses about sets of genes. An implementation of the gene ana-
lytics software, which enhances SEGS and creates links to Biomine queries and
graphs, is available as a set of workflows in the Orange4WS5 service-oriented
platform at http://segmine.ijs.si/.

In the future we plan to enhance the contextualization of genes with contexts
discovered by biomedical literature mining. We will add PubMed articles data
into the BisoNet graph structure. In particular, we already have a preliminary
implementation of software, called Texas [6], which creates a probabilistic net-
work (BisoNet, compatible to Biomine) from textual sources. By focusing on
different types of links between terms (e.g., frequent and rare co-ocurances) we
expect to get hints at some unexpected relations between concepts from different
contexts.

Our long term goal is to help biologists better understand inter-contextual
links between genes and their role in explaining (at least qualitatively) under-
lying mechanisms which regulate gene expression. The proposed approach is
considered a first step at computational realization of bisociative reasoning for
creative knowledge discovery in systems biology.
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information networks from text documents. In: ECML/PKDD 2009 Workshop on
Explorative Analytics of Information Networks, Bled, Slovenia (2009)

7. Kim, S.Y., Volsky, D.J.: PAGE: Parametric Analysis of Gene Set Enrichment. BMC
Bioinformatics 6, 144 (2005)

8. Koestler, A.: The Act of Creation. The Macmillan Co., New York (1964)
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15. Trajkovski, I., Železny, F., Lavrač, N., Tolar, J.: Learning relational descriptions
of differentially expressed gene groups. IEEE Transactions of Systems, Man and
Cybernetics C, Special Issue on Intelligent Computation for Bioinformatics 38(1),
16–25 (2008)
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Abstract. Subgroup discovery methods find interesting subsets of ob-
jects of a given class. We propose to extend subgroup discovery by a
second subgroup discovery step to find interesting subgroups of objects
specific for a class in one or more contrast classes. First, a subgroup
discovery method is applied. Then, contrast classes of objects are de-
fined by using set theoretic functions on the discovered subgroups of
objects. Finally, subgroup discovery is performed to find interesting sub-
groups within the two contrast classes, pointing out differences between
the characteristics of the two. This has various application areas, one
being biology, where finding interesting subgroups has been addressed
widely for gene-expression data. There, our method finds enriched gene
sets which are common to samples in a class (e.g., differential expres-
sion in virus infected versus non-infected) and at the same time specific
for one or more class attributes (e.g., time points or genotypes). We re-
port on experimental results on a time-series data set for virus infected
potato plants. The results present a comprehensive overview of potato’s
response to virus infection and reveal new research hypotheses for plant
biologists.

1 Introduction

Subgroup discovery is a classical task in data mining for finding interesting
subsets of objects. We extend subgroup discovery by a second subgroup discovery
step to find interesting subgroups of objects of a specific class in one or more
contrast classes. Contrast classes can represent, for example, different time points
or genotypes. Their exact definition depends on the interest of the user. We build
on a generic assumption that objects are grouped into classes and described by
features (e.g., terms). Often several terms can be summarized under a more
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c© The Author(s). This article is published with open access at SpringerLink.com
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general term. We use hierarchies to incorporate such background knowledge
about terms. We are not concerned whether objects represent individuals, genes,
or something else, and neither what features, classes, and hierarchies represent.
Consider the following examples.

In bioinformatics a common problem is that high-throughput techniques and
simple statistical tests produce rankings of thousands of genes. Life-scientists
have to choose few genes for further (often expensive and time consuming) ex-
periments. Genes can be annotated, for example, by molecular functions or bi-
ological processes, which are organized as hierarchies. A life-scientist might be
interested in studying an organism in virus infected and non-infected condition
(classes) at different time points after infection (contrast classes). In this context,
subgroup discovery is known as gene set enrichment, where genes represent fea-
tures and the aim is to find subgroups of features. In contrast, to fit the retrieval
of gene sets into the general subgroup discovery context, we consider genes as
objects, their ranking values and their annotations as features. See Table 1 for
a line-up of the terms used in the two communities.

We report on experimental results on a time-series data set for virus infected
Solanum tuberosum (potato) plants. As S. tuberosum has only sparsely biological
annotations, we use bisociations. Bisociations are concepts that are bridging
two domains which are connected only very sparsely or not at all [1]. In our
experiments we transfer knowledge from the well studied model plant A. thaliana
to S. tuberosum, our plant under investigation.

Table 1. Synonyms from different communities

Subgroup Discovery Bioinformatics

object or instance gene

feature or attribute value, annotation or biological concept,
e.g., a term in a hierarchy e.g., a GO term

class attribute gene expression under a specific
experimental condition such as
a specific time point or genotype

class (or class attribute value), differential/non-differential
e.g., positive/negative gene expression

subgroup of objects gene set

interesting subgroup enriched gene set

In sociology objects are individuals which are described by different features.
For example, bank customers can be described by their occupation, location,
loan and insurance type. An economist then might be interested in comparing
bank customers who are big spender (classes) and those who are not, before
and after the financial crisis (contrast classes). Consider, as a toy example, bank
customers in Table 2 and four background hierarchies in Fig. 1. The economist
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might know that before the financial crisis there were more big spenders than
afterwards. Other, perhaps less obvious subgroups, can be more interesting. For
example, the economist might not expect that the subgroup described by the
term Ljubljana is statistically significant for a contrast class “after financial
crisis” in comparison to the contrast class “before the financial crisis”.

While subgroup discovery has been addressed in different applications be-
fore (see Section 2 for related work). We propose and formulate the problem
of subgroup discovery from interesting subgroups and describe how well-known
algorithms can be combined to solve the problem (Section 3). In Section 4 we
show how these definitions can be applied to find interesting subgroups of genes.
We report on experimental results on a time-series data set for virus infected
potato plants in Section 5. In Section 6 we conclude with some notes about the
results and future work.

Table 2. Bank customers described by features: occupation (OCC), location (LOC),
loan (LOAN), insurance (INS) (adapted from Kralj Novak et al. [2]). Different classes
are big spender (BSP) as well as before/after financial crisis.

Before financial crisis After financial crisis

ID OCC LOC LOAN INS BSP OCC LOC LOAN INS BSP

1 private Maribor flat yes yes private Maribor flat yes yes
2 private Piran no no yes private Ljubljana no no yes
3 private Ljubljana flat no yes private Ljubljana no no yes
4 public Ljubljana flat yes yes private Ljubljana no no yes
5 public Maribor no yes yes private Maribor no yes yes
6 private Maribor no no yes unemployed Maribor no no no
7 private Ljubljana car no yes unemployed Ljubljana car no no
8 public Maribor no no yes unemployed Maribor no no no
9 unemployed Maribor no no yes unemployed Ljubljana no no no

10 private Ljubljana no yes no private Ljubljana no yes no
11 private Piran no no no unemployed Piran no no no
12 public Piran car yes no public Piran car yes no
13 unemployed Piran no no no unemployed Piran no no no
14 unemployed Ljubljana flat no no unemployed Ljubljana no no no
15 unemployed Piran car no no unemployed Ljubljana car no no

Fig. 1. Bank account feature ontologies (adapted from Kralj Novak et al. [2])
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2 Related Work

Discovering patterns in data is a classical problem in data mining and ma-
chine learning [3,4]. To represent patterns in an explanatory form they are de-
scribed by rules (or logical implications) Condition �→ Subgroup, where the
antecedent Condition is a conjunction of attributes (e.g., terms) and the conse-
quent Subgroup is a set of objects.

Subgroup discovery methods find interesting subgroups of objects of a specific
class compared to a complementary class. A subgroup of objects is interesting,
when the feature values within the subgroup differ statistical significant from
the feature values of the other objects. To analyze the constructed subgroups we
use Fisher’s exact test [5] and a simple test of significance. Alternatively, other
statistical tests, like χ2 test can be used.

Various application areas exist: sociology [6,7],marketing [8], vegetation data [9]
or transcriptomics [10] amongst others. In sociology objects typically represent
individuals and the aim is to find interesting subgroups of individuals.

In bioinformatics subgroup discovery is known as gene set enrichment. There,
objects represent genes and the aim is to find subgroups of genes. A gene set is
interesting (or enriched) if the differential expression of the genes of that gene
set are statistically significant compared to the rest of the genes. The expression
values of several samples are transformed into one feature value, called differen-
tial expression, and the genes are partitioned into two classes: differentially and
not differentially expressed. Then, subgroup discovery methods find enriched
gene sets. Alternatively, gene set enrichment analysis (GSEA) [11] or parametric
analysis of gene set enrichment (PAGE) [12] can be used to analyze whether a
subgroup is interesting (a gene set is enriched) or not. Both methods use not a
partitioning of the genes into two classes, but a ranking of differential expressions
instead.

Subgroup discovery differs from typical time series analysis where one obser-
vation per time point is given. Recently, different approaches have been described
which split time series into shorter time-windows to be clustered in separated
groups [13] or to find interesting subgroups [14,15]. However, subgroup discovery
is not restricted to time series. In addition to time points it can also compare
other types of classes, for example, healthy individuals compared to virus in-
fected ones.

Contrast set mining aims to understand the differences between contrasting
groups [16]. It is a special case of rule discovery [17] that can be effectively solved
by subgroup discovery [18]. It is thus a generalization of subgroup discovery, in
which two contrast classes are defined, in contrast subgroup discovery, where
one class and it’s complement are used.

Association rules describe associations like Y tends to be in the database if
X is in it, where X and Y are item sets (sets of terms) [19]. Exception rules
are association rules which differ from a highly frequent association rule [20].
Alike in our approach they aim to find unexpected rules. Their approach differs
from the one presented here, as we are not only interested in finding subgroups
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in one specific class, but in set theoretic combinations like intersections or set
differences of subgroups found by a first subgroup discovery instance.

Frequent item set mining aims to find item sets describing a set of transactions
(a subgroup) that are frequent [21]. Similar to the approach presented here, some
methods intersect transactions to find closed frequent item sets [22,23,24].

Descriptive induction algorithms aim to discover individual rules defining in-
teresting patterns in the data. This includes association rule learning [19], clausal
discovery [25], contrast set mining [16] and subgroup discovery [6,7] amongst
others. In contrast, predictive induction aims to construct rules to be used for
classification and/or prediction [4]. We will focus on descriptive induction, even
though our proposed approach could be adapted for predictive induction.

Semantic data mining denotes data mining methods which use background
knowledge to improve pattern discovery and interpretation by using semantic
annotations of objects as features [2]. Michalski [4] describes different types of
background knowledge which can be subsumed under the term ontology. An on-
tology is a representation of a conceptualization and is often represented by a hi-
erarchy, where nodes represent concepts and edges a subsumption relations [26].
Several ontologies can be modeled by a single ontology [27].

In biology commonly used ontologies include Gene Ontology (GO)1 [28] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)2 [29].
GoMapMan3 is an extension of the MapMan [30] ontology for plants used in our
experiments. These ontologies are hierarchical vocabularies of gene annotations
(semantic descriptors) organized as a directed acyclic graphs. Nodes represent
molecular functions, biological processes or cellular components in GO, molec-
ular pathways in KEGG and plant’s molecular functions or biological processes
in GoMapMan. Edges represent “is a” or “part of” relationships between the
concepts (nodes).

Ontologies are extensively used in gene set enrichment [11,12]. Other appli-
cation areas include association rule mining [27,31], where the transactions are
either extended [27] or frequent item sets are generated one level at at a time [31].
Here, we use the subgroup construction method by Trajkovski et al. [32], which
combines terms from the same level as well as from different levels.

3 Contrast Mining from Interesting Subgroups

Given a set of objects described by features and different classes of objects, the
goal is to find interesting subgroups of objects of a specific class in one or more
contrast classes. That is, for example, to find interesting subgroups specific for
big spenders (class) after the financial crisis (contrast class).

Our approach finds such subgroups by dividing the task into three steps:
First, interesting subgroups are found by a subgroup discovery method. Second,
contrast classes on those subgroups are defined by set theoretic functions. Third,

1 http://www.geneontology.org/
2 http://www.genome.jp/kegg/ko.html
3 http://www.gomapman.org/
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subgroup discovery finds interesting subgroups in the contrast classes. Next, we
will describe each step in detail.

3.1 Subgroup Discovery (Step 1)

To find interesting subgroups, we use search for enriched gene set (SEGS) [32],
a method developed for gene set enrichment analysis, but not restricted to this
application area [2].

First, all subgroups that contain at least a minimal number of objects are con-
structed by a depth-first traversal [32]. Afterwards, the constructed subgroups
are analyzed if they are statistically significant for the class of interest.

Construction of Subgroups. We use hierarchies of terms as background
knowledge to construct subgroups that contain at least a minimal number of
objects. Subgroups are constructed by individual terms and logical conjunctions
of terms.

Subgroup Construction by Individual Terms. Let S be the set of all objects and
T the union of all terms of n background knowledges. Each term t ∈ T defines a
subgroup St ⊂ S that consists of all objects s where feature value t is true, that
is, are annotated by term t:

St = {s | s is annotated by t}. (1)

Subgroup Construction with Logical Conjunctions. Subgroups can be constructed
by intersections, which are described by logical conjunctions of terms. Let S1, . . . ,
Sk be k subgroups described by terms t1, . . . , tk. Then, the logical conjunction
of k terms defines the intersection of k subgroups:

t1 ∧ t2 ∧ . . . ∧ tk �→ S1 ∩ S2 ∩ . . . ∩ Sk . (2)

Example 1. In Table 2, before the financial crisis, the conjunction Ljubljana ∧
¬Insurance defines a subgroup of three bank customers {3, 7, 14}.

A subgroup description can be seen as the condition part of a rule Condi-
tion �→ Subgroup [33]. If an object is annotated by several terms, it is a member
of several subgroups. A subgroup might be a subset of another subgroup. In
particular, consider the example hierarchies in Figure 1. Then, an object that is
annotated by a term t is also annotated by its ancestors.

To construct all possible subgroups one ontology is used, where the root has
n children, one for each ontology. We start with the root term and recursively
replace each term by each of its children. We are not interested in constructing
all possible subgroups, but only those representing at least a minimal number
of objects. Therefore, we extend a condition only if the subgroup defined by it
contains more than a minimum number of objects. If a condition defines the
same group of objects as a more general condition, the more general condition is
deleted. Furthermore, in each recursion we add another term to the rule to obtain
intersections of two or more subgroups and test if the intersection represents at
least a minimal number of objects.
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Analysis of Constructed Subgroups. Statistical tests can be used to analyze
if the constructed subgroups are interesting, that is, the feature values within
the subgroup differ statistically significant from the feature values of the other
objects with respect to given classes A and B. For each subgroup St ⊂ S the
data is arranged in a table:

A B

St n11 n12

S \ St n21 n22

where n = |S| = n11 + n12 + n21 + n22, n11 is the number of objects in St that
are annotated by A, n12 is the number of objects in St that are annotated by B,
n21 is the number of objects in S \ St that are annotated by A, and n21 is the
number of objects in S \ St that are annotated by B.

Fisher’s Exact Test. Fisher’s exact test evaluates if the equal proportions and
the observed difference is within what is expected by chance alone or not [5].
The probability of observing each possible table configuration is calculated by

P (X = n11) =
(
n11+n12

n11

)(
n21+n22

n21

)
/
(

n
n11+n21

)
. (3)

The p-value is then the sum of all probabilities for the observed or more extreme
(that is, X<n11) observations:

p =
n11∑

i=0

P (X = i) . (4)

Example 2. Consider the bank customers in Table 2, the condition Maribor and
the class big spender versus not big spender and a significance level α. There are
five bank customers in Maribor: St = {1, 5, 6, 8, 9}, which are all big spenders.
Hence, the p-value is p ≈ 0.043956.

Test of Significance. To address the multiple testing problem, that is, that sub-
groups might have occurred by chance alone, we correct the p-values. Therefore,
we randomly permute the genes and calculate the p-value for each subgroup. We
repeat this first step for 1, 000 permutations, create a histogram by the p-values
of each permutation’s best subgroup, and estimate the (corrected) p-value using
the histogram: The corrected p-value is the reciprocal of the permutations in
which the p-value obtained by Fisher’s exact test is smaller than all p-values ob-
tained from the permutations. For example, if the p-value obtained by Fisher’s
exact test is in all permutations smaller, then the corrected p-value is p = 0.001.
If the corrected p-value is smaller than the given significance level α then the
feature values within the subgroup differ statistical significantly from the fea-
ture values from the other objects and we call the subgroup interesting and the
subgroup is called interesting.
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3.2 Construction of Contrast Classes (Step 2)

Let S1, . . . , Sn denote the interesting subgroups found for n classes. Then, two
contrast classes Sf and Sg are defined by two set theoretic functions f and g:

f(S1, . . . , Sn) = Sf ⊆ ⋃

i

Si . (5)

and g(S1, . . . , Sn) is defined as the complement. If g(·) is defined as something
else than the complement, the next step is contrast set mining rather than sub-
group discovery (see [33] for a line-up of both approaches).

Which set theoretic functions should be used depends on the objective. For
example, if we aim to find interesting subgroups which are common to all classes,
then f(·) is defined as the set of objects occurring in at least one interesting
subgroup of each class:

f(S1, . . . , Sn) =
⋂

i∈{1,...,n}
Si . (6)

Hence, every object of Sf occurred in each class in at least one interesting sub-
group.

Alternatively, if the aim is to find interesting subgroups which are specific for
class k, then f(·) is defined as the set of objects only occurring in interesting
subgroups found for kth class:

f(S1, . . . , Sn) = Sk \
⋃

i∈{1,...,n},
i�=k

Si . (7)

Hence, every object in Sf occurred in one or more interesting subgroups of class
Sk, but not in a single one of the other classes.

Example 3. Consider again the bank customers in Table 2, subgroups with at
least four bank customers and α = 0.3 (for sake of simplicity we consider a rela-
tively high significance level in this toy example). For the“before financial crisis”
class we obtain four subgroups: Maribor, Maribor ∧ ¬Loan, Piran, and Unem-
ployed. The set of bank customers described by at least one of them is S1 =
{1, 5, 6, 8, 11, . . . , 15}. For the “after financial crisis” class we obtain two sub-
groups: Private and Unemployed and the set S2 = {1, 2, 3, 6, . . . , 11, 13, 14, 15}.
Then the sets Sf = S2 \ S1 = {2, 3, 7, 10} and Sg = S1 specify contrast classes.

3.3 Subgroup Discovery (Step 3)

We find interesting subgroups in contrasting classes by a second subgroup dis-
covery instance, where the two classes are now the sets Sf and Sg. The p-values
are calculated by (3) and (4), followed by a test of significance.

Example 4. Given the contrast classes (sets) of bank customers Sf = {2, 3, 7, 10}
and Sg = {1, 5, 6, 8, 9, 11, . . . , 15} we analyze the statistical significance of sub-
groups with respect to these contrast classes. The condition Ljubljana has after
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the financial crisis eight bank customers {2, 3, 4, 7, 9, 10, 14, 15}, from which four
are in Sf and three in Sg. Hence, we obtain a p-value of p = 0.0699301. Next,
we test the p-value for significance to assure we did not obtain the subgroup by
chance alone. In the first subgroup discovery instance, we did not not obtain
Ljubljana as logical condition. When compared to the contrast class “before fi-
nancial crisis”, and assuming it passed the significance test, Ljubljana is found
to be statistically significant for the contrast class “after financial crisis”.

4 An Instance of Our Method: Gene Set Enrichment
from Enriched Gene Sets

Next, we will discuss how our proposed method can be applied in the area of gene
set enrichment. In gene-expression experiments objects are genes and features
are their annotations by, for example, GO and KEGG terms. Here, our aim is
to find enriched gene sets of a specific class (e.g., virus infected plants) in one
or more other classes (e.g., different time points). Next, we describe measures
used for transforming the expression values of several samples (e.g., different
individuals). into a feature value, called differential expression, and how the
constructed gene sets are analyzed for statistical significance.

Measures for Differential Expression. After preprocessing the data (in-
cluding microarray image analysis and normalization) the genes can be ranked
according to their gene expression.

Fold change (FC) is a metric for comparing the expression level of a gene g
between two distinct experimental conditions (classes) A and B [10]. It is the log
ratio of the average gene-expression levels with respect to two conditions [34].
However, FC values do not indicate the level of confidence in the designation of
genes as differently expressed or not.

The t-test statistic is a statistical test to determine the statistically significant
difference of gene g between two classes A and B [10]. Though, the probabil-
ity that a real effect can be identified by the t-test is low if the sample size is
small [34]. A Bayesian t-test is advantageous if few (that is, two or three) repli-
cates are used only, but no advantage is gained if more replicated are used [35].
In our experiments we used four replicates and therefore will use the simple
t-test.

Analysis of Gene Set’s Enrichment. For the enrichment analysis of gene
sets statistical tests like Fisher’s exact test [5] can be used. Alternatively, GSEA
and PAGE can be used. We next describe each of them.

Fisher’s Exact Test. In the gene set enrichment setting St is the gene set analyzed
and S \ St is the gene set consisting of all other genes. The two classes are
differential expression and non-differential expression. To divide the genes into
two classes a cut off is set in the gene ranking: genes in the upper part are
defined as differentially expressed and the genes in the lower part are defined as
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not differentially expressed genes. Then the p-values are calculated and tested
for significance.

Gene Set Enrichment Analysis (GSEA) [11]. Given a list L = {g1, . . . , gn} of n
ranked genes, their expression levels e1, . . . , en, and a gene set St , GSEA eval-
uates whether St’s objects are randomly distributed throughout L or primarily
found at the top or bottom [36]. An enrichment score (ES) is calculated, which is
the maximum deviation from zero of the fraction of genes in the set St weighted
by their correlation and the fraction of genes not in the set:

ES(St) = max
i∈{1,...,n}

∣
∣
∣

∑

gj∈St
j≤i

|ej |p
nw

− ∑

gj �∈St
j≤i

1
n−nw

∣
∣
∣ (8)

where nw =
∑

gj∈St

|ej |p. If the enrichment score is small, then St is randomly

distributed across L. If it is high, then the genes of St are concentrated in the
beginning or end of the list L. The exponent p controls the weight of each step.
ES(St) reduces to the standard Kolmogorov-Smirnov statistic if p = 0:

ES(S) = max
i∈{1,...,n}

∣
∣
∣

∑

gj∈St
j≤i

1
|St| −

∑
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1
|S|−|St|

∣
∣
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The significance of ES(St) is then estimated by permutating the sample la-
bels, reordering the genes, and re-computing ES(St). From 1, 000 permutations
a histogram is created and the nominal p-value for St is estimated by using the
positive (or the negative) portion if ES(St) > 0 (or ES(St) < 0, respectively).

Parametric Analysis of Gene Set Enrichment (PAGE). PAGE is a gene set
enrichment analysis method based on a parametric statistical analysis model [12].
For each gene set St a Z-score is calculated, which is the fraction of mean
deviation to the standard deviation of the ranking score values:

Z(St) = (μSt − μ) 1σ
√|St| (10)

where σ is the standard deviation and μ and μSt are the means of the score
values for all genes and for the genes in set St, respectively. The Z-score is high
if the deviation of the score values is small or if the means largely differ between
the gene set and all genes. As gene sets may vary in size, the fraction is scaled
by the square root of the set size. However, because of this scaling the Z-score is
also high if St is very large. Assuming a normal distribution, a p-value for each
gene set is calculated. Finally, the p-values are corrected by a test of significance.

Using normal distributions for statistical inference makes PAGE computation-
ally lighter than GSEA which requires permutations. On the other hand, GSEA
makes no assumptions about the variability and can be used if the distribution
is not normal or unknown. Kim and Volsky [12] studied different data sets for
which PAGE generally detected a larger number of significant gene sets than
GSEA. Trajkovski et al. [32] used the sum of GSEA’s and PAGE’s p-values,
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weighted by percentages (e.g., one third of GSEA’s and two third of PAGE’s
or half of both). Hence, gene sets with small p-values for GSEA and PAGE are
output as enriched gene sets.

In the second gene set enrichment analysis instance, we want to analyze sub-
groups with respect to the constructed contrast classes, and not with respect to
to the differential expression. Now, we have two classes, but not a ranking and
thus GSEA and PAGE cannot be used for analyzing the constructed gene sets.
Statistical test for categorical analysis can still be used. We use Fisher’s exact
test to compare the two classes Sf and Sg against each other.

5 Experiments

For our experiments we use a Solanum tuberosum (potato) time course gene-
expression data set for virus infected and non-infected plants. The data set
consists of three time points: one, three and six days after virus infection when
the viral infected leaves as well as leaves from non-infected plants were collected.
The aim is to find enriched gene sets which are common to virus infected samples
compared to non-infected samples (classes in subgroup discovery of Step 1), and
at the same time specific for one or all time points (classes in subgroup discovery
of Step 3).

Test Setting. Recently, S. tuberosum’s genome has been completely
sequenced [37], but only few GO or KEGG annotations of S. tuberosum genes
exist. However, plenty GO and KEGG annotations exist for the well studied
model plant Arabidopsis thaliana. We use homologs between S. tuberosum and
A. thaliana to make gene set enrichment analysis for S. tuberosum possible. There
are more than 26.000 homologs provided by the POCI consortium [38] for more
than 42.000 S. tuberosum genes. We consider only the best (with respect to the
e-value) in case there are several homologs. Gene set enrichment analysis is per-
formed based on expression values in the dataset, the gene IDs of the A. thaliana
homologs, and GO and KEGG annotations for A. thaliana.

In parallel, we built potato ontologies independently using Blast2GO4 to ob-
tain homologue sequences in NCBI (BLASTX with high scoring segment pair
(HSP) length 33 and e-value 1e− 15) and their GO annotations (GO weight 5,
cutoff 55 and e-value 1e− 15). In this case, enrichment analysis is performed us-
ing the gene IDs and expression values of S. tuberosum, and the GO and KEGG
annotations obtained with Blast2GO.

For both approaches we carried out gene set enrichment experiments in an
Orange4WS5 workflow [39]. We restricted gene sets to contain at minimum ten
genes, the gene set description to contain at maximum four terms, and the p-
value to be 0.05 or smaller. For analyzing the constructed gene sets in Step 1
we used Fisher’s exact test, GSEA, PAGE and the combined GSEA and PAGE
(equal percentages).

4 http://www.blast2go.org/
5 http://orange4ws.ijs.si/
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We consider two types of contrast classes for gene set enrichment (Step 2):
genes that are common to all classes compared to the genes occurring in some
gene sets, but not in all (obtained by (6) and genes that are specific for one class
compared to the genes of the gene sets of the other classes (obtained by (7).
Fisher’s exact test is used to analyze gene set enrichment in Step 3 for both
approaches.

Results. Several subgroup descriptions that are known to relate to potato’s
response to virus infection were found. That is, our method reveals molecular
functions, biological processes and pathways that have a central role in it. We
are interested in assisting the biologist in generating new research hypotheses.
Therefore, we evaluate our results by counting the number of gene set descrip-
tions which were unexpected to a plant biologist to relate to potato’s response
to virus infection. In this context, “unexpected” means that the knowledge was
contained in GO, KEGG or GoMapMan, but it was not shown previously to
be related to experimental conditions studied (here, related to the response of
potato to viral infection).

The amount of enriched gene sets found for the A. thaliana homologs approach
are shown in Table 3. and for the GO ontologies for potato genes approach in
Table 4. For both approaches, both subgroup discoveries (Step 1 and 3) found
few rules if any at all for the first and third day, whereas for the sixth day several
rules are found. This matches well with the biological knowledge about potato’s
respond on virus infection: In the first days the potato activates the defense
response, but the full effect can be witnessed only on day six.

The quantities of unexpected enriched gene sets found for the A. thaliana
homologs approach are shown in Table 5. and for the GO ontologies for potato
genes approach in Table 6. Few enriched gene sets are found in the first stage
when using GSEA or the combination of GSEA and PAGE for analyzing the
gene sets of the first stage. Hence, few enriched gene sets (if any at all) are found
in Step 3. When using either Fisher’s exact test or PAGE instead, more en-
riched gene sets are found, from which several are of interest to a plant biologist,
suggesting one of these methods should be preferred.

The subgroups discovered in Step 3 revealed some enriched gene sets for the
intersection, but none of them was more specific in comparison to the enriched
gene sets found in Step 1 or even unexpected for the biologist. This is most
likely due to the characteristic of a defense response: The gene expression of the
first days (when activating the defense response) differs from the gene expression
on day six (when the defense response is active) and therefore the intersection
reveals only few enriched gene sets that are active at all time points.

For the set differences we obtain new and more specific gene sets. Some of them
we did not find in the first stage, some other are more specific than in Step 1, both
of interest for biologists. Hence, this shows that our proposed method reveals
new enriched gene sets if the set theoretic functions are selected appropriately
for the experiment and user’s objective.
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Table 3. Quantities of enriched gene sets found for the A. thaliana homologs approach
for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA and PAGE
with equal percentages (G+P)

F G P G+P
S
te
p
1 first day 6 4 5 1

third day 7 4 16 5
sixth day 14 5 12 5

S
te
p
3 first day set difference 9 0 7 1

third day set difference 7 0 7 6
sixth day set difference 21 5 16 6
intersection 4 4 16 4

Table 4. Quantities of enriched gene sets found for the GO ontologies for potato genes
approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA
and PAGE with equal percentages (G+P)

F G P G+P

S
te
p
1 first day 1 0 4 0

third day 1 1 5 0
sixth day 25 21 33 16

S
te
p
3 first day set difference 15 0 7 0

third day set difference 5 1 10 0
sixth day set difference 42 2 34 3
intersection 0 0 1 0

Table 5. Quantities of unexpected enriched gene sets found for the A. thaliana ho-
mologs approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of
GSEA and PAGE with equal percentages (G+P). In Step 3 only unexpected enriched
gene sets are counted which were new or more specific in comparison to Step 1.

F G P G+P

S
te
p
1 first day 2 2 0 0

third day 4 2 4 4
sixth day 14 5 12 5

S
te
p
3 first day set difference 1 0 4 0

third day set difference 1 0 1 0
sixth day set difference 11 1 4 1
intersection 0 0 0 0
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Table 6. Quantities of unexpected enriched gene sets found for the GO ontologies
approach for Fisher (F), GSEA (G), PAGE (P), and the combined approach of GSEA
and PAGE with equal percentages (G+P). In Step 3 only unexpected enriched gene
sets are counted which were new or more specific in comparison to Step 1.

F G P G+P
S
te
p
1 first day 0 0 1 0

third day 1 1 2 0
sixth day 24 21 28 16

S
te
p
3 first day set difference 4 0 0 0

third day set difference 0 0 2 0
sixth day set difference 15 0 13 0
intersection 0 0 0 0

6 Conclusion

We addressed the problem of subgroup discovery from interesting subgroups.
After reviewing subgroup discovery we introduced the construction of contrast
classes on the discovered subgroups. Subgroup discovery then finds interesting
subgroups in those contrast classes. Thereby, we allow the user to specify contrast
classes she is interested in, for example, she can choose to contrast several time
points.

We showed how our approach works on an example of bank customers and
applied it to a gene set enrichment application, a time-series data set for virus
infected potato plants. The results indicate that our proposed approach reveals
new research hypotheses for biologists.

Further experimental evaluation is planned, including experiments on other
data sets and with more complex set theoretic functions. A careful interpretation
of our results is needed as the subgroup discovery of the first step reduced the
number of genes (objects) and hence Fisher was applied (in the third step) on a
relatively small number of genes. Furthermore, gene set descriptions were often
biologically redundant which we will address in future, for example, by clustering
or filtering the obtained gene sets.

We will carry out a more extensive evaluation by analyzing the quality of
gene sets descriptions which are unknown to relate to potato’s virus response
and visualize the gene sets and their relations with the enrichment map tool.
We will evaluate quantity and quality of the genes of the unknown gene sets
with Biomine, a search engine for visualization and discovery of non-trivial con-
nections between biological entities, such as genes. Finally, some genes will be
selected for wet-lab experiments, which may further the understanding of the
biological mechanisms of virus response, particularly that of potatoes.
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18. Kralj Novak, P., Lavrač, N., Gamberger, D., Krstacic, A.: CSM-SD:
Methodology for Contrast Set Mining through Subgroup Discovery. Journal of
Biomedical Informatics 42(1), 113–122 (2009)

19. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast Discovery of
Association Rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,
R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI
(1996)

20. Suzuki, E.: Autonomous Discovery of Reliable Exception Rules. In: KDD 1997
(1997)
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33. Kralj Novak, P., Lavrač, N., Webb, G.: Supervised Descriptive Rule Discovery: A
Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining. Journal
of Machine Learning Research 10, 377–403 (2009)

34. Cui, X., Churchill, G.: Statistical Tests for Differential Expression in cDNA Mi-
croarray Experiments. Genome Biology 4(4), 210.1–210.10 (2003)

35. Baldi, P., Long, A.: A Bayesian Framework for the Analysis of Microarray Expres-
sion Data: Regularized t-test and Statistical Inferences of Gene Changes. Bioinfor-
matics 17(6), 509–519 (2001)

36. Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette,
M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., Mesirov, J.: Gene Set En-
richment Analysis: A Knowledge-based Approach for Interpreting Genome-wide
Expression Profiles. PNAS 102(43), 15545–15550 (2005)

37. The Potato Genome Sequencing Consortium: Genome sequence and analysis of the
tuber crop potato. Nature 475, 189–195 (2011)

38. Bioinformatics @ IPK Gatersleben: BLASTX against Arabidopsis,
http://pgrc-35.ipk-gatersleben.de/pls/htmldb pgrc/

f?p=194:5:941167238168085::NO

(visited on March 2011)
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Abstract. Information on metabolic processes for hundreds of organ-
isms is available in public databases. However, this information is often
incomplete or affected by uncertainty. Systems capable to perform auto-
matic curation of these databases and capable to suggest pathway-holes
fillings are therefore needed. To this end such systems should exploit data
available from related organisms and cope with heterogeneous sources of
information (e.g. phylogenetic relations). Here we start to investigate two
fundamental problems concerning automatic metabolic networks cura-
tion, namely link prediction and node prediction using ProbLog, a simple
yet powerful extension of the logic programming language Prolog with
independent random variables.

1 Introduction

Living organisms rely on a large interconnected set of biochemical reactions to
provide the requirements of mass and energy for the cellular processes to take
place. This complex set of reactions constitute the organism’s metabolic net-
work [1]. Highly specialized proteins, called enzymes, are used to regulate the
time and place for the various processes as most of the reactions taking place in
organisms would be too slow without them. Enzymes control in practice which
parts of the overall metabolic network is active in a given cell region in a given
cellular phase. A large quantity of information about these networks accumulated
through years of research, and is nowadays stored and organized in databases
allowing researchers to develop network based approaches to study organisms
metabolism. There exist collections of metabolic networks for several hundreds
of organisms (e.g., the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2]
or the BioCyc database [3]) where relations between genes, enzymes, reactions
and chemical compounds are available and organized in collections called “path-
ways”. The knowledge that we have of these relations is however incomplete
(most annotation efforts fail to assign functions to 40-60% of the protein se-
quences [4]) and is affected by uncertainty (wrong catalytic function assignment,
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incomplete annotation (e.g., only one function of a multi-domain protein) or
non-specific assignment (e.g., to a protein family)). Systems capable to perform
automatic curation of these databases and capable to suggest pathway-holes fill-
ings are therefore in dear need. However, in order to overcome the limitations
of homology searches, it is paramount to make use of information from het-
erogeneous sources and to therefore encode all the available data into complex
relational data bases (i.e., BisoNets [5]). Finally, to leverage the different amount
of coverage for different organisms (i.e., there is more information regarding hu-
mans than for other vertebrates), a case-based approach that uses information
on related organisms should also be employed. All these requirements raise the
problem of how to integrate heterogeneous and uncertain sources of information
in a principled way.

Although systems for reconstructing pathways from relevant gene sets [6] and
filling pathway-holes [7] are known in literature, they do not offer sufficient
flexibility when new additional sources of information become available or, more
importantly, in case one needs to change the set of queries involved in the solution
of a specific task.

We study an approach that satisfies these flexibility requirements by repre-
senting metabolic networks in the probabilistic logical framework ProbLog [8],
a simple yet powerful extension of the logic programming language Prolog with
independent random variables in the form of probabilistic facts. This allows us
to easily include background knowledge affected by uncertainty, and to obtain
an answer to several key questions by performing probabilistic inference in a
principled manner.

In this work, we start to investigate some fundamental problems concerning
automatic metabolic networks curation, namely: 1) link prediction, i.e., estima-
tion of the degree of belief in a link between a gene and an enzyme, and 2) node
prediction, that is, whether the existence of a certain enzyme (and its link to
an unknown gene) has to be hypothesized in order to maintain the contiguity
of a pathway. For both tasks, the key components of our probabilistic model
are (1) a preliminary estimate of the degree of belief for an association between
a gene G and an enzyme E in an organism O, (2) background knowledge BK
on organisms related to O obtained from the KEGG database, and (3) a linear
model that predicts the probability of the gene-enzyme relation G − E for the
organismO given the dataset BK. The features employed in the linear model are
complex queries and the associated values correspond to the probability of the
query in BK including the preliminary estimate. The parameters of the model
encode the relevance of the query for the specific pair gene-enzyme. The core idea
is to leverage the flexibility of ProbLog to define meaningful queries at a con-
veniently abstract level. We finally compute the probability of the gene-enzyme
relation G−E based on the queries that are satisfied with high probability and
that are predicted to be relevant for G− E.

The chapter is organized as follows: in Section 2 we introduce the probabilistic
logic framework ProbLog; in Section 3 we describe how we model the knowledge
associated with the metabolic reconstruction tasks and how we query this model
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for prediction; finally in Section 4 we present some initial empirical results on a
specific pathway in yeast.

2 The Probabilistic Logic Environment: ProbLog

Our work uses ProbLog to model data and queries. ProbLog is a probabilis-
tic extension of the logic programming language Prolog. It thus combines the
expressivity of a first order modeling language with the ability to reason un-
der uncertainty. In contrast to propositional graphical models (such as Bayesian
Networks), connections between random variables in ProbLog can be specified
on the first order level, thus avoiding the need of explicitly grounding all infor-
mation a priori. This results in a higher level of abstraction and more flexibility
in the specification of queries. In this section, we briefly illustrate the basic ideas
of ProbLog by means of an example; for more details, we refer to [8].

The following ProbLog program1 models a tiny fraction of the type of network
considered in this chapter:

0. 8 :: ortholog(g1, g2). 0. 7 :: ortholog(g1, g3).

0. 6 :: function(g1, e1). 0. 9 :: function(g2, e1). 0. 5 :: function(g3, e1).

With probability 0.8, genes g1 and g2 are orthologs, with probability 0.6, the
enzymatic function of g1 is e1, and so forth. One can now add background
knowledge to the program to define more complex relations. For instance,

edge(X, Y) : − ortholog(X, Y).

edge(X, Y) : − function(X, Y).

connected(X, Y) : − edge(X, Y).

connected(X, Y) : − edge(X, Z), connected(Z, Y).

defines a simple general path relation in terms of the edges present in the net-
work, whereas

connected via ortholog(X, Y) : − ortholog(X, Z), function(Z, Y).

defines a specific type of connection from a gene via an ortholog gene to an
enzymatic function.

More formally, a ProbLog program T consists of a set of labeled facts pi :: fi to-
gether with a set of definite clauses encoding background knowledge (BK).2 Each
ground instance of such a fact fi is true with probability pi, that is, corresponds
to a random variable with probability pi. All random variables are assumed

1 We use standard Prolog notation, that is, arguments starting with lower case letters
are constants, those starting with upper case letters are variables, and a definite
clause h : −b1, . . . , bn is read as ”if the bi are all true, h is true as well”.

2 Uncertain clauses can be modeled by adding a probabilistic fact to the clause body.
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to be mutually independent. The program thus naturally defines a probability
distribution

PT (L) =
∏

fi∈L
pi

∏
fi∈LT \L(1− pi)

over logic programs L ⊆ LT = {f1, · · · , fn}. The success probability of query q
is then defined as

P T
s (q) =

∑

L⊆LT :L∪BK|=q

PT (L). (1)

It thus corresponds to the probability that q is provable in a randomly sampled
logic program.

Given the example program above, one could now ask for the probability of
a connection between g1 and e1, that is, for the success probability of query
connected(g1, e1). As enumerating all possible programs (subgraphs in the ex-
ample) is infeasible in most cases, ProbLog instead calculates success probabil-
ities using all proofs of a query. The query connected(g1, e1) has three proofs
in our example: one direct connection, and two connections involving an addi-
tional gene each, with probabilities 0.6, 0.8 · 0.9 = 0.72 and 0.7 · 0.5 = 0.35,
respectively. As there are several subgraphs that contain more than one of these
connections, we cannot simply sum the probabilities of proofs. This problem is
also known as the disjoint-sum-problem or the two-terminal network reliability
problem, which is #P-complete [9]. When calculating success probabilities from
proofs, one has to take care to address this problem and to remove the overlap
between proofs. In the example, this could be done by explicitly stating that
proofs only add information if none of the previous ones are true. That is, the
second proof via g2 only adds to the probability if the direct connection is not
present, and its contribution therefore needs to be reduced to 0.8 · 0.9 · (1− 0.6).
Similarly, the third proof only adds information if neither the first nor the second
are true, resulting in an overall probability of

PT
s (connected(g1, e1)) = 0.6 + 0.8 · 0.9 · (1− 0.6) (2)

+ 0.7 · 0.5 · (1 − 0.6) · (1− 0.8) (3)

+ 0.7 · 0.5 · (1 − 0.6) · 0.8 · (1− 0.9) (4)

= 0.9272

Here, (2) lists the contributions of the first and second proof as explained
above, (3) and (4) that of the third proof, split into the two possible causes
for the second proof being invalidated, that is, ortholog(g1, g2) being false, or
ortholog(g1, g2) being true, but function(g2, e1) being false.

While this disjoining approach is sound for any order of the proofs, it does not
scale very well. In practice, ProbLog therefore represents all proofs of the query
as a propositional formula, and then uses advanced data structures to calculate
the probability of this formula; we refer to [8] for the technical details.
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Fig. 1. Part of KEGG metabolic network used. The number in the node shape is the
cardinality of the element set. The number on the edge is the average ± standard
deviation number of relations between the element at the starting endpoint and the
elements at the final endpoint of the edge. Dashed elements represent information
present in KEGG but not currently used.

3 Method

We first discuss the information modeled in the background knowledge and then
introduce the structural queries used in the prediction models.

3.1 Metabolic Network Representation

We represent the knowledge about metabolic networks in a probabilistic logical
framework. To this end, we identify the main entities involved in the problem and
encode all relations between them quantifying the uncertainty of each relation
with an associated probability value. The entities that we consider (and that are
represented as vertices in the global network) are: organisms, genes, enzymes,
reactions, compounds (also called metabolites) and pathways (see Fig. 1).

Informally, a metabolic network contains information on the set of genes that
belong to specific organisms and how these code for proteins, called enzymes,
that are responsible for specific reactions involving the transformation of one
compound into another. An organism is thus capable to perform certain related
sets of reactions (semantically grouped under a single pathway concept) in order
to produce and transform sets of metabolites, only if the organism can express
the enzymes needed to catalyze those reactions.

We derive all data from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [2].
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Organisms are organized in a taxonomy with 5 levels and comprise eukary-
otes (256) and prokaryotes (1332). As an example, in the KEGG taxonomy
human would receive the following classification: Eukaryotes/ Animals/ Verte-
brates/ Mammals/ Homo sapiens. We represent each level of the hierarchy as
a node so to be able to express relationships between organisms that involve
different degrees of relatedness. In this work we present results related only to
the bacteria domain in prokaryotes.

The KEGG Release 58.0 (May 2011) lists 6,405,661 gene entries although in
this work we limit the study to a subset of 400,000 genes relevant to the bac-
teria domain. Entry names of the KEGG GENES database are usually locus-
tags given by the International Nucleotide Sequence Database Collaboration
(INSDC) although a conversion into other gene/protein identifiers for main se-
quence databases such as NCBI and UniProt/Swiss-Prot, is possible. In this way
additional information from external sources could be easily incorporated.

Enzymes are identified by the Enzyme Commission number (EC number) [10],
which is a hierarchical classification scheme based on the chemical reactions they
catalyze. Different enzymes in different organisms receive the same EC number
if they catalyze the same reaction. Every enzyme code consists of the letters
”EC” followed by four numbers separated by periods. Those numbers represent
a progressively finer classification of the enzyme and induce a functional hierar-
chy. For example, the tripeptide aminopeptidases have the code ”EC 3.4.11.4”,
whose components indicate the following groups of enzymes: EC 3 enzymes are
hydrolases (enzymes that use water to break up some other molecule); EC 3.4
are hydrolases that act on peptide bonds; EC 3.4.11 are those hydrolases that
cleave off the amino-terminal amino acid from a polypeptide; EC 3.4.11.4 are
those that cleave off the amino-terminal end from a tripeptide.

The compounds involved in the metabolic transformations are a collection of
small molecules, biopolymers, and other chemical substances that are relevant
to biological systems. We consider 6000 unique compounds.

Enzyme mediated reactions between specific compounds are uniquely identi-
fied. The compounds involved in the reaction are distinguished into substrates
and products. Note however that the reaction is considered to be bidirectional as
we do not make use of more complex (and less reliable) reaction rate information.

Finally, the concept of pathways is used to express and organize our know-
ledge on metabolic processes occurring in a cell. A pathway is a set of related
chemical reactions where a principal substance is modified by a series of chemical
processes. Given the many compounds (”metabolites”) and co-factors that are
involved, single metabolic pathways can be quite complex. Moreover the separa-
tion in pathways is induced by human knowledge rather than being defined in a
natural and uncontroversial way. Finally, the metabolic output of one pathway
is the input for another, which implies that all the pathways are interconnected
into the global complex metabolic network (see Fig. 23).

All the aforementioned entities constitute vertices in our relational represen-
tation and are connected by several types of relations: at the highest level, the

3 Image source: http:\\commons.wikimedia.org\wiki\File:Metabolism_790px.svg
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Fig. 2. Graphical representation of the major known pathways

various organisms are phylogenetically related to each other; genes are related
to the organisms they are part of and they are related to each other via the
ortholog relationship (see further in the text); enzymes are organized in a hier-
archy following the Enzyme Commission number system; reactions are related
to the compounds they require as substrate and to those they produce; genes
are related to the enzymatic function of the protein that they code for; enzymes
are related to the reactions they catalyze; and finally pathways are collections of
related reactions. Our current model only treats the gene-enzyme relation prob-
abilistically while all the other relations are assumed to be known with certainty.
Note that in principle all relations are of the type many-to-many although in
practice a gene is almost always associated to a single enzyme, which in turn
catalyzes almost always a single reaction (see Fig. 1).

While the majority of these relations are intuitive, the ortholog relationship
deserves some further detail. Orthologs, or orthologous genes, are genes in differ-
ent species that are similar to each other because they descended from a single
gene of the last common ancestor. Information about ortholog genes is available
in KEGG and is obtained via a heuristic method that determines an ortholog
cluster identifier in a bottom-up approach [11]. In this method, each gene sub-
group is considered as a representative gene and the correspondence is computed
using bi-directional best hit (BBH) relations obtained from the KEGG SSDB
database which stores all-vs-all Smith-Waterman similarity scores. For efficiency
reasons, the similarity score is thresholded and binarized: two genes are linked via
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the ortholog relation only if each one is ranked in the top most similar genes of
the other and if the similarity between the two exceeds a pre-specified threshold.

3.2 Models for Automatic Network Curation

Given the metabolic information about a set of organisms we identify two main
problems of interest relevant for the concept of automatic network curation: 1) link
prediction, where we estimate the probability associated to a given set of relations
on the basis of an initial guess, in order to increase the consistency with respect to
the information on related organisms; and 2) node prediction, where we introduce
specific nodes in order to best fill gaps in the pathway of interest.

More in detail, we work in the following setting.We are given information about
a new organism consisting of a set of genes and their associated functions (i.e.,
the enzyme they code for). This information is understood as being affected by
uncertainty, and a probability serves as a preliminary approximation.Our goal is to
derivemore reliable estimates by integrating structural information froma broader
context based on this first set of probabilities.The available backgroundknowledge
contains information on themetabolic network for a large set of organisms. In order
to transfer knowledge from related organisms and/or genes we make use of two
similarity notions: the first one is between the test organism and other organisms
(obtained from the phylogenetic tree), the second between the genes in the test
organism and genes in other organisms (via the ortholog relationship).

In principle we prefer evidence that is consistent across multiple sources as
noise is likely to affect each source in an uncorrelated way. In practice, it is
at times hard to propagate information from multiple sources because of the
partial knowledge that we have of the metabolic network. In particular: a) not
all genes of a test organism have an initial associated function; b) not all genes
have known orthologs; c) not all reactions are known in a given pathway.

Another source of troubles in propagating evidence is to be found in the
topological properties of the reaction network itself, known as the “small world”
property [12]. A network is said to exhibit a small world property if there exist
paths (reaction chains) of short length that can be followed to connect any two
vertices (metabolites). This apparently surprising property of real metabolic net-
works can be explained by the presence of so called “currency” or “commodities”
compounds [13], i.e., substances that occur commonly in any chemical process
and that are assumed to be present in any needed quantity at any time in the
cell environment. Common examples of such substances are water and ADP.
Saying that two unrelated metabolites are connected because water is present
in different reactions that involve them is therefore just an artifact of the data
representation that has to be dealt with in an ad-hoc way. The problem is made
non-trivial by the fact that there is no consensus on how to identify these sub-
stances. In this work we make use of the flexibility offered by the ProbLog
language and specify a list of “accepted” (and “forbidden”) compounds that can
(cannot) be part of the path definition used to propagate information. Here we
create such lists based on the frequency of the compounds in different reactions
but expert knowledge can be as easily incorporated.
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Fig. 3. Graphical representation of the portion of metabolic network used to obtain
evidence for the link prediction task. The single gene-enzyme edge marked in bold cor-
responds to the substructures of type (1) used to obtain evidence for the link prediction
task.

To summarize, the key idea of our prediction models is to use structural
queries of increasing complexity to combine different forms of evidence. In the
following, we discuss the queries we use for link prediction, their adaptation for
node prediction, and the linear model that combines the success probabilities
of the individual queries. Prediction then corresponds to a call to the ProbLog
inference engine to compute the associated probability value.

Link Prediction Task. Figure 3 shows the part of the background knowledge
queried to obtain support in link prediction. We use three types of queries of
increasing complexity, illustrated in Figures 3, 4 and 5:

1. an estimate of the degree of belief for a gene-enzyme relation, either given
a-priori or estimated by an external predictive system;

2. support coming from paths that contain the probabilistic gene-enzyme link
under consideration; and

3. support coming from more complex subgraphs, that is, network portions
that involve both the probabilistic gene-enzyme link and links to ortholog
genes in related organisms.

For all queries, we only consider enzymes linked to a reaction in the pathway of
interest. In particular, we require (2) to be a path that traverses in order the
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Fig. 4. Graphical representation of the substructures of type (2) used to obtain evi-
dence for the link prediction task (marked in bold): path between two genes

following selected types of entities: gene, enzyme, reaction, compound, (reaction-
compound)*, reaction, enzyme, gene. The intended meaning of the star notation
here is that the path is only allowed to follow further reaction-compound links if
the current reaction does not have an enzyme associated in the database. This
latter condition is motivated by both computational efficiency issues (i.e., we
do not consider all possible paths but only the shortest ones) and the desire
to favor paths that make use of information relevant to the test organism. In
words: we consider linear chains that originate in one gene of the test organism
and end up in another gene of the same organism traversing the enzyme-reaction
network relevant to a specific pathway. The subgraph for case (3) is obtained
considering paths of type (2) with the addition of two extra paths at both ends.
These provide additional links between the genes and enzymes at the end of the
path via ortholog genes. The ratio here is to prefer evidence that is consistent
with the information on similar genes in different organisms.

ProbLog allows us to specify the characteristics of these substructures at an
intensional level. The network links are encoded using a set of (possibly proba-
bilistic) predicates. Facts of the form reaction_compound_reaction(r1,c,r2)

represent connections between reactions r1 and r2 via compound c. The list
of compounds that may be traversed in queries is given as facts of the form
accept_compound(c). ortholog(g1,g2) facts list pairs of ortholog genes g1

and g2, whereas function(g,e) facts link genes g to their enzymatic functions e.
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Fig. 5. Graphical representation of the substructures of type (3) used to obtain evi-
dence for the link prediction task (marked in bold): subgraph involving ortholog genes

Finally, reaction_enzyme(r,e) facts connect reactions r in the background net-
work to enzymes e. The background knowledge then defines additional relations
and subgraph structures.

reaction reaction(R1, R2) : − reaction compound reaction(R1, C, R2),

accept compound(C).

restricts the reaction network to those links connected via accepted compounds
as defined by the user.

enzyme reaction path(G1, E1, E2, G2) : − function(G1, E1),

reaction enzyme(R1, E1),

reaction reaction(R1, R2),

reaction enzyme(R2, E2),

function(G2, E2).

corresponds to the second query (modulo the star part), but making the gene
and enzyme at the other end explicit, which is used in the third query to extend
the query towards ortholog genes using

ortholog support(G, E) : − ortholog(G, G2), function(G2, E).



418 A. Kimmig and F. Costa

The queries of Fig. 3-5 are then encoded as follows (where we omit some com-
putational details for better readability):

query1(G, E) : − function(G, E), reaction enzyme(R, E).

query2(G, E) : − enzyme reaction path(G, E, E2, G2).

query3(G, E) : − enzyme reaction path(G, E, E2, G2),

ortholog support(G, E), ortholog support(G2, E2).

Note that if the database does not contain enough information to match a com-
plex query, the query will simply fail. The failure does not provide any infor-
mation and hence contributes a probability of 0. In these cases we resort to
increasingly simpler queries in a fashion similar in spirit to the interpolation
techniques employed in computational linguistics.4

Node Prediction Task. In node prediction, the goal is to identify enzymes
that do not have an associated gene in the test organism, but would fill a hole
in that organism’s pathway if they did. As we cannot directly query the genes
and enzymes of the organism of interest here, we resort to links between a hy-
pothetical gene and the enzymes effectively present in the pathway of related
organisms, cf. Fig. 6. We adapt the queries in Figures 3-5 as follows. Instead of
the a-priori estimate of query type (1), which is not available here, we consider
the average degree of belief in a link between the given enzyme and any known
gene present in related organisms. For queries of types (2) and (3), we replace
the test organism’s gene at the top by a gene in some other related organism,
but still require the path to end in a gene that is known to belong to the test
organism.

Model. In both the link and node prediction setting, we estimate degrees of
belief for our target relation by calculating the success probability (cf. Equa-
tion (1)) for each of the three types of supporting queries in the given model.
We combine those results to answer the two main questions: 1) what is the prob-
ability of a specific gene of a test organism to be associated to a specific enzyme
in the pathway? and 2) what is the probability of some unknown gene of a test
organism to be associated to a specific enzyme in the pathway?

The combination is done via a linear model whose weights encode the reliabil-
ity for each type of query.5 Let Qi(G,E) be the success probability of the query
of type i that relates the geneG with the enzyme E. The probability p(G,E) that
the gene effectively encodes the function E is computed as a convex combination
of the success probability of each type of query, that is:

p(G,E) =
∑

i=1,2,3

wi(E)Qi(G,E)

4 When employing n-gram models, a common practice is to assess the probability of
complex n-grams using the frequency counts of smaller n-grams that are more likely
to occur in (small) datasets.

5 Technically, the linear model is itself encoded as a ProbLog query and inference thus
done in a single step without obtaining the individual success probabilities.
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Fig. 6. Graphical representation of the portion of metabolic network used to obtain
evidence for the node prediction task

where for each enzyme E,
∑

i=1,2,3 wi(E) = 1. We consider two variants of this
model: one with enzyme-specific weights wi(E), and a global model that uses
identical wi(E) for all enzymes.

The idea behind the linear model is to adapt to the level of missing infor-
mation in the network: when assessing the degree of belief for an enzyme that
is embedded in a network region where few reactions are known, it is better to
trust the prior estimate with respect to more complex queries since they will
mainly fail over the poorly connected reaction network; analogously when or-
tholog genes are known for a given enzyme, the evidence from the more complex
queries becomes compelling. In summary, we adapt to the unknown local quality
of the network by estimating the relative reliability of each query for the final
answer on related organisms known in a background knowledge base.

In this work we explore two ways to induce the weights:
Frequency estimation: for each query type and enzyme, we count the num-

ber of proofs obtained for both positive and negative examples and obtain first
estimates as p/(p+n); these are then normalized over the three query types. Pa-
rameters for the global model, which does not model the dependency on enzymes,
are obtained by summing counts over all enzymes before calculating frequencies.

Machine learning estimation: the weights are learned with ProbLog’s gradient-
descent approach to parameter learning [14]. Given a set of queries with associ-
ated target probabilities, this method uses standard gradient descent to minimize
the mean squared error (MSE) on the training data.
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4 Experimental Setup

Common sources of noise in available metabolic databases range from wrong
catalytic function assignment to incomplete annotation (e.g., only one function of
a multi-domain protein) or nonspecific assignment (e.g., to a protein family). In
the empirical part of this study we analyze the curation/reconstruction capacity
of the proposed system. To this end, we consider the KEGG data as ground
truth and perturb the knowledge of the true function of a gene in such a way as
to simulate these types of uncertainty in a controlled fashion.

4.1 Agnostic Noise Model

Since the enzymatic functions can be arranged in a hierarchical ontology [10], we
can control the noise level by introducing extra links to enzymes that are in the
neighborhood of the true enzymes. Two elements parametrize the noise model:

1. s: fraction of affected gene-enzyme pairs;
2. d: depth of lowest common parent in hierarchy.

We then proceed as follows: given an organism we select a fraction s of its
known gene-enzyme links; for each link, we select all enzymes that have the
lowest common parent with the link’s enzyme at depth d in the hierarchy and
that appear in the background knowledge network of the pathway of interest. We
then introduce a uniform distribution over the set of gene-enzyme links resulting
from the original gene and the selected enzymes.

General Setting. In the experiments reported here, we focus on the Pyru-
vate metabolism pathway (cf. Fig. 7) and organisms from subfamilies of pro-
teobacteria, cf. Fig. 8. Pyruvate is an important intermediate in the fermentative
metabolism of sugars by yeasts and is located at a major junction of assimilatory
and dissimilatory reactions as well as at the branch-point between respiratory
dissimilation of sugars and alcoholic fermentation.

A total of 40 organisms are picked uniformly at random, ensuring that all
organisms of the smallest three subfamilies are included. For each such organism,
we construct the background knowledge network by superimposing the networks
of all organisms of the other five subfamilies, thus leaving out the most closely
related organisms.

We create six different noise settings by perturbing the true relationships for
s = 1/5/10% of gene-enzyme links, using d = 2 and d = 3, and use the linear
model to rank candidate instances of the target relationship in each setting. For
efficiency reasons, the linear model parameters are computed using the simple
frequency estimate.

Experimental Results: Link Prediction. In the link prediction setting, pos-
itive examples are the test organism’s real gene-enzyme links, while negative ones
are the ones added by the noise model. The linear model uses the three queries
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Fig. 7. Pyruvate metabolism pathway

depicted in Fig. 3-5. As the data is unbalanced, we report the area under the
precision-recall curve as a performance measure. Results are summarized in Ta-
ble 1 for the enzyme-specific linear model, the global mixture model, and the
baseline using the most simple query type only. With increasing noise levels, the
enzyme-based mixture model clearly improves over the baseline that does not
take into account background information, and also over the less flexible global
mixture model.

Experimental Results: Node Prediction. In the node prediction setting,
examples are pairs of organisms and enzymes from the background knowledge.
If the enzyme occurs in the organism’s network, such an example is considered
positive, and negative otherwise. We adopt an enzyme level leave-one-out design
among those enzymes in the background knowledge that are not associated to
any gene in the test organism. We remove these enzymes in turn and we measure
the precision at one, that is, the fraction of times that the missing enzyme is
ranked in first position as the most probable among all the missing enzymes.

The linear model uses the queries described in Section 3. Results are sum-
marized in Table 2. While both mixture models significantly improve over the
random ranking of all background enzymes, there is no significant difference
between the global model (which doesn’t take into account enzyme-specific in-
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Fig. 8. Overview of organisms and subfamilies used in the background knowledge,
including total number of organisms and number of organisms used as test cases (in
brackets)

Table 1. Link prediction with varying noise level s and d: average and standard de-
viation of area under the precision-recall curve over 40 test organisms for the enzyme-
specific linear model, the global mixture model, and the baseline using the most simple
query type only

d=3

s enzyme global baseline

1% 0.987 ± 0.019 0.980 ± 0.026 0.975 ± 0.025
5% 0.935 ± 0.039 0.921 ± 0.045 0.911 ± 0.049
10% 0.863 ± 0.065 0.828 ± 0.068 0.831 ± 0.062

d=2

s enzyme global baseline

1% 0.981 ± 0.022 0.973 ± 0.027 0.966 ± 0.027
5% 0.889 ± 0.040 0.867 ± 0.045 0.853 ± 0.047
10% 0.775 ± 0.059 0.721 ± 0.064 0.743 ± 0.052

Table 2. Node prediction with varying noise level s and d: average and standard
deviation of precision at one over 40 test organisms for the enzyme-specific linear
model, the global mixture model, and the baseline using a random ranking

d=3

s enzyme global baseline

1% 0.218 ± 0.111 0.271 ± 0.143 0.020 ± 0.000
5% 0.217 ± 0.091 0.340 ± 0.124 0.020 ± 0.000
10% 0.198 ± 0.082 0.325 ± 0.144 0.020 ± 0.000

d=2

s enzyme global baseline

1% 0.223 ± 0.107 0.290 ± 0.165 0.020 ± 0.000
5% 0.224 ± 0.045 0.386 ± 0.081 0.019 ± 0.005
10% 0.152 ± 0.035 0.262 ± 0.080 0.011 ± 0.010

formation) and the enzyme-specific model. We conjecture that averaging the
performance over “easy” and “hard” to predict enzymes yields a too coarse re-
sult and that a more detailed analysis is needed to identify the conditions that
favour the enzyme-specific vs. the global model.
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4.2 Noise Model for Unreliable Predictions

In this scenario, we assume that a predictor (i.e., a machine learning algorithm)
is available and that it can compute the enzymatic function of a gene with a
certain reliability. Instead of working with a specific predictor here we perturb
the knowledge of the true function of a gene in order to simulate different degrees
of reliability. Once again we make use of the fact that the enzymatic functions can
be arranged in a hierarchical ontology [10]. Under this assumption we relate the
topological distance in the ontology tree to the functional distance, i.e., the closer
two enzyme nodes are in the hierarchy the more similar their functions. Under
this assumption we build a noise model described by the following parameters:

1. s: fraction of affected genes;
2. k: number of noisy gene-enzyme links added per gene;
3. σEC : parameter controlling the size of the neighborhood where to randomly

sample the additional noisy gene-enzyme links;
4. σN : parameter controlling the quantity of noise added to the gene-enzyme

relationship probability estimate.

We then proceed as follows (see Fig. 9). Given an organism, we select a frac-
tion s of its genes. For each selected gene, we add k extra links to randomly
sampled nearby enzymes. Sampling selects enzymes using a normal distribution
N(0, σEC) over their topological distance induced by the ontology, i.e., the length
of the shortest path between the leafs containing the actual and the sampled en-
zyme in the tree structured ontology. Finally, we obtain the degree of belief for
the link between the gene and the randomly selected enzyme as the probability
of selecting the enzyme plus additional N(0, σN) noise. In this way enzymes that
are less related to (i.e., more distant from) the true enzymatic function of the
original gene receive on average a smaller probability.

Experimental Results. In the experiments reported here, we focus on the
Pyruvate metabolism pathway for the Escherichia coli UTI89 test organism. We
perturb the true relationships with k=5 extra links for s = 50% of genes. The
probability estimate of the gene-enzyme relationship receives additional noise
from N(0, 1

8 ).
The linear model parameters are computed using ProbLog’s gradient-descent

approach to parameter learning [14]. We use default settings in our experiments
and run learning for at most 50 iterations, stopping earlier if the MSE on the
training data does not change between two successive iterations. Training data
is generated from the other organisms with the same parent in the organism
hierarchy as the test organism, and target probabilities are set to 1.0 for positive
and 0.0 for negative examples, respectively.

In the link prediction setting, positive examples are real gene-enzyme links,
while negative ones are the ones added by the noise model where no real one is
known between these entities. We use the three queries depicted in Fig. 3-5. We
measure the area under the precision-recall curve.

When using the initial (perturbed) estimate for the gene-enzyme link we
achieve an AUCPR of 0.69. If we use only the most complex query (type (3))
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Fig. 9. Noise model: the E.C. hierarchy induced metric notion (i.e., topological distance
between nodes) is used for the perturbed enzymatic function. The hypothetical true
enzyme is marked with a double line. In the example a gene is associated to an incorrect
enzymatic activity with probability 0.52 and to the correct one with probability 0.4.

we increase to 0.74, but when we learn the linear model over all queries we
achieve 0.80. Note that simply learning a fixed mixture of experts for the whole
organism (i.e., not modeling the dependency on the enzyme) we do not improve
over the initial 0.69 result, as for this particular test organism, it is better to
resort on average to the most simple query.

In the node prediction experiment, we follow the same scheme as above. That
is, we adopt an enzyme level leave-one-out design among those enzymes in the
background knowledge that are not associated to any gene in the test organism,
remove these enzymes in turn and measure the precision at one.

The set of training examples is the set of all pairs of training organisms (as
before) and enzymes appearing in the pathway for organisms different from the
test organism. Such a pair is considered positive if the enzyme appears in the
organism’s pathway, and negative else.

We use the query described in Section 3 both with and without ortholog in-
formation, as well as a basic query that predicts each enzyme with the average
probability of a gene-enzyme link involving this enzyme in one of the training or-
ganisms. In this experiment we achieve a precision at one of 0.66 over 35 possible
enzymes (i.e., the baseline random guessing precision at one would be 0.03).

5 Conclusions

We have started tackling the problem of automatic network curation by employ-
ing the ProbLog probabilistic logic framework. To overcome the limitations of
homology searches, we have made use of information from heterogeneous sources,
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encoding all available data into a large BisoNet. To leverage the different quan-
tity and quality of information available for different organisms, we have used a
case-based approach linking information on related organisms. The use of a prob-
abilistic logic framework has allowed us to: a) represent the knowledge about the
metabolic network even when affected by uncertainty, and b) express complex
queries to extract support for the presence of missing links or missing nodes in an
abstract and flexible way. Initial experimental evidence shows that we can par-
tially recover missing information and correct inconsistent information. Future
work includes the integration of gene function predictor and the development
of novel queries that make use of additional sources of information such as the
gene position in the genome or the co-expression of genes in the same pathway
from medical literature abstract analysis.
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Abstract. The chapter proposes an approach to support modelling of
plant defence response to pathogen attacks. Such models are currently
built manually from expert knowledge, experimental results, and litera-
ture search, which is a very time consuming process. Manual model con-
struction can be effectively complemented by automated model extrac-
tion from biological literature. This work focuses on the construction of
triplets in the form of subject-predicate-object extracted from scientific
papers, which are used by the Biomine automated graph construction
and visualisation engine to create the biological model. The approach
was evaluated by comparing the automatically generated graph with a
manually developed Petri net model of plant defence. This approach to
automated model creation was explored also in a bisociative setting. The
emphasis is not on creative knowledge discovery, but rather on specifying
and crossing the boundaries of knowledge of individual scientists. This
could be used to model the expertise of virtual scientific consortia.

1 Introduction

The mechanism of a plant’s defence response to virus attacks is a hot topic of
current biological research. Despite a vivid interest in creating a holistic model
of plant defence, only partial and oversimplified models of the entire defence
system are created so far.

The motivation of biologists to develop a more comprehensive model of the
entire defence response is twofold. Firstly, it will provide a better understanding
of the complex defence response mechanism in plants by highlighting important
connections between biological molecules and understanding how the mechanism
operates. Secondly, prediction of experimental results through simulation saves
time and indicates further research directions to biological scientists. The devel-
opment of a more comprehensive model of plant defence for simulation purposes
raises three research questions:
� Corresponding author.
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– What is the most appropriate formalism for representing the plant defence
model?

– How to extract the model, i.e. network structure; more precisely, how to
retrieve relevant molecules and relations between them?

– How to determine network parameters such as initial molecules values, types
and speeds of the reactions, threshold values, etc.?

Having studied different representation formalisms, we have decided to repre-
sent the model of the given biological network in the form of a graph. This
chapter addresses the second research question, i.e. automated extraction of the
graph structure through information retrieval and natural language processing
techniques. We propose a methodology to support modelling of plant defence re-
sponse to pathogen attacks, and present its implementation in a workflow which
combines open source natural language processing tools, data from publicly avail-
able databases, and hand-crafted knowledge. The evaluation of the approach is
carried out using a manually crafted Petri net model which was developed by
fusing expert knowledge and the results of manual literature search.

The structure of the chapter is as follows. Section 2 presents existing approaches
to modelling plant defence and discusses their advantages and shortcomings. Sec-
tion 3 briefly presents our manually crafted Petri net model, followed by Section 4
which proposes a methodology used for automated model extraction from the bi-
ological literature. Section 5 explores the results of model extraction in a bisocia-
tive setting, where extracted knowledge of different scientists is combined. Section
6 concludes the chapter and proposes directions for further work.

2 Related Work

Due to the complexity of the plant defence mechanism, the challenge of building a
general model for simulation purposes is still not fully addressed. Early attempts
to accomplish simulation by means of Boolean formalism from experimental
microarray data [5] have already indicated the complexity of defence response
mechanisms, and highlighted many crosstalk connections. However, several of
the interconnecting molecules were not considered in the model presented in that
work. These intermediate molecules as well as the discovery of new connections
between them are of particular interest for biological scientists.

Other existing approaches, such as the MoVisPP tool [6], attempt to auto-
matically retrieve information from databases and transfer the pathways into
the Petri net formalism. MoVisPP is an online tool which automatically pro-
duces Petri net models from KEGG and BRENDA pathways. However, not all
pathways are accessible, and the signalling pathways for plant defence do not
exist in the databases.

Tools for data extraction and graphical representation are also related to our
work as they are used to help experts to understand the underlying biological
principles. They can be roughly grouped according to their information sources:
databases (Biomine [14][4], Cytoscape [15], ProteoLens [8], VisAnt [7], PATIKA
[2]), databases and experimental data (ONDEX [9], BiologicalNetworks [1]), and
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literature (TexFlame [10]). More general approaches, such as visualisation of ar-
bitrary textual data through triplets [13] are also relevant. However, such general
systems have to be adapted in order to produce domain-specific models.

3 Manually Constructed Petri Net Model of Plant
Defence Response

This section presents a part of the manually crafted Petri net model using the
Cell Illustrator software [12]. We briefly describe the development cycle of the
model and show some simulation results.

Fig. 1. A partial and simplified Petri net model of SA biosynthesis and signalling
pathway in plants. Biological molecules SA-chl and SA-cyto represent SA located in
different parts of the cell. Both SA-chl and SA-cyto of this figure correspond to node
SA in the graph of Figure 4.
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A Petri net is a bipartite graph with two types of nodes: places and transitions.
Standard Petri net models are discrete in terms of variables and sequence of events,
but their various extensions can represent both qualitative and quantitative mod-
els. The Cell Illustrator software implements an extension of Petri nets, called hy-
brid functionalPetri net,whichwas used in our study. In the hybrid functionalPetri
net formalism, the speed of transitions depends on the amount of input components
and both, discrete and continuous places, are supported.

Our manually crafted Petri net model of plant defence currently represents
a complex network where molecules and reactions, according to the Petri net
formalism, correspond to places and transitions, respectively. A part of the model
of salicylic acid (SA) biosynthesis and signalling pathway, which is one of the
key components in plant defence, is shown in Figure 1.

Early results of the simulation already show the effects of positive and neg-
ative feedback loops in the SA pathway as shown in Figure 2. The light grey
line represents the level of SA-chl (SA in chloroplast) that is not part of the
positive feedback loop. The dark grey line represents SA-cyto, same component
in cytoplasm, that is a part of the positive feedback loop. The peak of the dark
grey line depicts the effect of the positive feedback loop which rapidly increases
the amount of SA-cyto. After reaching the peak, the trend of the dark grey line
is negative as the effect of the negative feedback loop prevails.

The represented Petri net model consists of two types of biological pathways:
metabolic and signalling. The metabolic part is a cascade of reactions with small
compounds as reactants, and was obtained from KEGG database. The signalling
part is not available in the databases and had to be obtained from the literature.

Fig. 2. Simulation results of the Petri net model of SA pathway. The light grey line
represents the level of SA-chl, i.e. SA in chloroplast that is not part of the posi-
tive feedback loop. The dark grey line represents the same component in cytoplasm,
SA-cyto, which is in the positive feedback loop.
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The biological scientists have manually extracted relevant information related to
this pathway within a period of approximately two months. Keeping in mind that
the SA pathway is only one out of three pathways involved in plant defence re-
sponse, it is clear that a purely manual approach would be very time-consuming.

4 Automated Extraction of Plant Defence Response
Model from Biological Literature

The process of fusing expert knowledge and manually obtained information from
the literature as presented in the previous section turns out to be time consuming
and error-prone. Therefore, we suggest the automated extraction of information
from the scientific literature relevant to the construction and curation of such
models. The proposed methodology consists of a series of text mining and in-
formation retrieval steps, which offer reusability and repeatability, and can be
easily extended with additional components. For natural language processing
we employed functions from the NLTK library [11], which were transformed
into web services and used in the proposed triplet extraction, graph construc-
tion, visualisation and exploration workflow. Additionally, the GENIA tagger
[16] for biological domains was used to perform part-of-speech tagging and shal-
low parsing. The data was extracted from PubMed1 and Web of Science2 using
web-service enabled access.

The methodology for information retrieval from public databases to support
modelling of plant defence is shown in Figure 3. Computer-assisted creation of
plant defence models from textual data, is performed by using following services:

1. PubMed web service and Web of Science search to extract the article data,
2. PDF-to-text converter service, which is based on Poppler3, an open source

PDF rendering library,
3. natural language processing web services based on NLTK: tokenizer, shallow

parser (chunker), sentence splitter,
4. the GENIA tagger,
5. filtering components, e.g. negation removal, etc.

The goal of this study is to extract sets of triplet in the form:

(Subject, Predicate, Object)

from biological texts which are freely available. The defence response related
information is obtained by employing the vocabulary which we have manu-
ally developed for this specific field. Subject and Object are biological molecules
such as proteins or small compounds, and their names with synonyms are built
1 PubMed is a free database that comprises biomedical journals and online books.
2 Web of Science is an online academic citation index constructed to access multiple

databases and explore cross-disciplinary studies and specialized subfields within a
scientific domain.

3 http://poppler.freedesktop.org/
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Fig. 3. Methodology for information retrieval from public databases to support mod-
elling of plant defence response

Fig. 4. A graph constructed from a set of triplets, extracted from ten documents,
visualised using the Biomine visualisation engine

into the vocabulary. Predicate represents the relation or interaction between the
molecules. We have defined three types of reactions, i.e. activation, inhibition and
binding, and the synonyms for these reactions are also part of the vocabulary.
An example of such a triplet is shown below:

(PAD4 protein, activates, EDS5 gene)
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Such triplets, if automatically found in text, composed and visualised as a graph,
can assist the development of the plant defence Petri net model. Triplet extrac-
tion is performed by employing simple rules to find the last noun of the first
phrase as Subject. Predicate is a part of a verb phase located between the noun
phrases. Object is then detected as a part of the first noun phrase after the
verb phrase. In addition to these rules, pattern matching from the dictionary is
performed to search for more complex phrases in text to enhance the informa-
tion extraction. The graph is then constructed and visualised using the Biomine
graph construction and visualisation engine [14]. An example of such a graph is
shown in Figure 4.

While such automatically extracted knowledge currently cannot compete — in
terms of details and correctness — with the manually crafted Petri net model,
it can be used to assist the expert in the process of building and curation of
the model. Also, it can provide novel and relevant information to the biological
scientist.

5 Two Modelling Scenarios

5.1 An Illustrative Example

Consultation with biological scientists resulted in the first round of experiments
performed on a set of ten most relevant articles from the field which were pub-
lished after 2005. Figure 4 shows the extracted triplets, visualised using the
Biomine graph visualiser.

SA appears to be the central component in the graph, which confirms the
biological fact that SA is indeed one of the three main components in plant
defence. The information contained in the graph of Figure 4 is similar to the
initial knowledge obtained from biological scientists by manual information re-
trieval from the literature4. Such a graph, however, cannot provide the cascade
network type which is closer to reality (and to the manually crafted Petri net
model).

The feedback from the biologists was positive. Even though this approach
cannot completely substitute human experts, biologists consider it a helpful tool
in speeding up information acquisition from the literature. The presented results
indicate the usefulness of the proposed approach but also the necessity to further
improve the quality of information extraction.

5.2 Crossing the Boundaries of Individual Readers

The goal of the second experiment is to elicit differences in knowledge and in-
terests between different scientists. We take a simplifying assumption that each

4 It is worth noting that before the start of joint collaboration between the computer
scientists and biologists, the collaborating biological scientists have tried to manually
extract knowledge from scientific articles in the form of a graph, and have succeeded
to build a simple graph representation of the SA biosynthesis and signalling pathway.
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Fig. 5. A model constructed from a set of triplets extracted from 122 documents, read
by two different readers and displayed using the Biomine graph visualisation engine
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scientists’ knowledge corresponds to a set of papers it read. The extracted triplets
and subgraph thus model her/his subjective, habitual knowledge [3]. By combin-
ing subjective knowledge bases we obtain a join BisoNet where the intersecting
subgraph represents a bridging graph pattern of bisociation. In particular, we
extracted triplets from a set of 122 documents, read by two biology experts:

Reader A: Reader A (colored dark grey) has read 91 papers, of which 13 unique
triplets were extracted automatically.

Reader B: Reader B (colored medium grey) has read 31 papers, of which 21
unique triplets were extracted automatically.

Intersections: Eight common triplets, extracted from 91 publications read by
reader A and from 31 publications read by reader B, were colored in light
grey colour.

Figure 5 shows the model extracted from 122 articles read by the two readers
(two biological scientists). Besides supporting the automatic model construction,
there are other benefits from visualising knowledge of different domain experts
as illustrated in Figure 5. For instance, one can clearly see which nodes are in
the intersection of interest of the two experts (coloured light grey in Figure 5).

This could indicate the areas of joint interest which the two experts might
want to investigate jointly in more detail, e.g., to get answers to some yet unex-
plored research question in the intersection of their domains of expertise. On the
other hand, this visualisation enables to see also who has some unique expertise
in the field, with no intersection with other experts (coloured dark and medium
grey in Figure 5). If applied to modelling the knowledge of larger consortia of
readers, this type of information could be used to determine the complementar-
ities of research groups.

The proposed approach to modelling and visualisation of knowledge extracted
from the literature could be used also for modelling the know-how of large project
consortia where it is hard to track the expertise of all project participants. Con-
sequently, the proposed approach to cross-context modelling may be viewed as
a step towards creating virtual laboratory knowledge models.

6 Conclusion

In this chapter we presented a methodology which supports the domain expert
in the process of creation, curation, and evaluation of plant defence response
models by combining publicly available databases, natural language process-
ing tools, and hand-crafted knowledge. The methodology was implemented as a
reusable workflow of software services, and evaluated using a hand crafted Petri
net model. This Petri net model has been developed by fusing expert knowledge,
experimental results and biological literature, and serves as a baseline for eval-
uation of automatically extracted plant defence response knowledge, but it also
enables computer simulation and prediction.

This chapter presented also an approach to modelling the knowledge of differ-
ent domain experts, by visualising the intersections as well as complementarities
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of their expertise, with a potential of providing a global overview of the exper-
tise of consortia members. This type of modelling can be used to analyze and
monitor knowledge of larger groups of experts to establish how their knowledge
grows and evolves in terms of time and research topics.
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Abstract. The bile acid and xenobiotic system describes a biological
network or system that facilitates detoxification and removal from the
body of harmful xenobiotic and endobiotic compounds. While life sci-
entists have developed a relatively comprehensive understanding of this
system, many mechanistic details are yet to be discovered. Critical mech-
anisms are those which are likely to significantly further our understand-
ing of the fundamental components and the interaction patterns that
govern this systems gene expression and the identification of potential
regulatory nodes. Our working assumption is that a creative informa-
tion exploration of available bile acid and xenobiotic system information
could support the development (and testing) of novel hypotheses about
this system. To explore this we have set up an information space con-
sisting of information from biology and finance, which we consider to be
two semantically distant knowledge domains and therefore have a high
potential for interesting bisociations. Using a cross-context clustering ap-
proach and outlier detection, we identify bisociations and evaluate their
value in terms of their potential as novel biological hypotheses.

Keywords: Clustering, outlier detection, bisociative information
exploration.

1 Introduction

Bisociative information exploration is based on the assumption that the pool-
ing of information from different domains could facilitate the discovery of new
knowledge. In this study we explore bisociative information discovery based on
literature from molecular biology and finance. Our hypothesis is that the biso-
ciative approach may help life scientists interested in the bile acid and xenobiotic
system to generate (and possibly test) novel hypotheses which will ultimately
support the discovery of biological mechanisms.

The presented approach is based on the work by Petrič et al. [10] who devel-
oped methods to investigate the role of outliers in literature-based knowledge
discovery. Their approach rests upon the assumption that cluster outliers of two
document sets with known classification can be used to discover new, useful
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knowledge. In this context we define outliers as domain-labeled documents that
are further away from the centroid of their knowledge domain then the majority
of documents from its domain.

The work by Petrič et al.[10], which focuses on the domains of biology and
medicine, differs from our approach in the way that we consider selected docu-
ments from two unrelated domains, namely, finance and biology. With unrelated
domains we mean knowledge domains or domain theories (as defined in Part
I: Bisociation [2]) that share less concepts than the knowledge domains of bi-
ology and medicine for instance. Therefore we expect to find less documents
than between related domains, which in turn enables us to have a more detailed
semi-automatic analysis of those documents.

We investigate the cluster outliers and their opposite-domain neighborhood
in order to identify bisociations between biology and finance. In particular, we
are looking for shared features in scientific abstracts across the two domains.
Such features might be common terms or even sets of relationships within one
domain which have correspondences in the other domain.

2 The Bile Acid and Xenobiotic System

The bile acid and xenobiotic system (BAXS) defines a biological network that
facilitates two distinct but intimately overlapping physiological processes. The
enterohepatic circulation and maintenance of bile acid concentrations (Fig. 1)
and the detoxification and removal from the body of harmful xenobiotic (e.g.
drugs, pesticides) and endobiotic compounds (e.g., steroid hormones) [8]. The
system involves the coordination of several levels of gene activity, including con-
trol of mRNA and protein expression and regulation of metabolizing enzyme and
transporter protein function in tissues such as liver, intestine/colon and kidney.
Bile acids are necessary for the emulsification and absorption of dietary fats and
are therefore valuable compounds, however as their build-up can cause harm,
their concentrations need to be appropriately regulated and recycled. Similarly
there is a requirement for a system that can “sense” the accumulation of xeno-
biotic and endobiotic compounds and facilitate their detoxification and removal
from the body. The BAXS accomplishes this and maintains enterohepatic cir-
culation (the circulation of biliary acids from the liver as depicted in Fig. 1)
through a complex network of sensors in the form of nuclear receptors that func-
tion as ligand-activated transcription factors (see molecular interaction network
depicted in Fig. 2). They serve to detect fluctuations in concentration of many
compounds and initiate a physiological response by regulating the BAXS.

Transcriptional regulation by nuclear receptors1 involves both activating and
repressive effects upon specific “sets” of genes. There is considerable overlap ex-
hibited between nuclear receptors in the genes they target and also the ligands

1 Nuclear receptors are a class of proteins within the interior of cells responsible for
sensing the presence of steroid and thyroid hormones and certain other molecules.
In response, these receptors work in concert with other proteins to regulate the
expression of specific genes, thereby controlling the development, homeostasis, and
metabolism of the organism.
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Fig. 1. The enterohepatic circulation system of the BAXS

that bind to and activate them, i.e. each gene has multiple functions within
this system depending on the tissue it is expressed. It is these factors that con-
tribute, for example, to the phenomenon of drug-drug interactions, e.g. between
St. John’s Wort and Cyclosporine or St. John’s Wort and oral contraceptive [1,7].

The goal of the BAXS application within the BISON project is to support
the discovery of hitherto unknown but important biological mechanisms in the
BAXS. Critical mechanisms are those which are likely to significantly further
our understanding of the fundamental components and the interaction patterns
that govern BAXS gene expression and the identification of potential regulatory
nodes. It has been established that the overall flux of the BAXS is achieved
through a regulatory transcriptional network mediated through the activities of
members of the nuclear receptors (such as FXR, LXR, PXR, CAR) and nuclear
factors (such HNF1α, HNF4α). However, given the overall complexity of the
bile acid/xenobiotic system it is difficult to assess the exact importance of each
receptor and modulatory factor with respect to BAXS activity in different tis-
sues. One of the key issues in the understanding of the BAXS is to decipher the
components and the interaction patterns that govern BAXS gene expression and
the identification of potential regulatory nodes. This understanding is essential
to identify targets for treatment regimes, to understand the components impact-
ing drug-drug interactions, to provide a framework for the design of large-scale,
integrated prediction studies, and to aid in the definition of high-quality “gold
standards” or research frameworks for future systems biology studies.

To investigate the potential of bisociative exploration of the BAXS, we are
pooling two groups of information resources from the biological and financial
domains respectively.
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Fig. 2. The gene network and molecular interactions of the BAXS

3 Materials and Methods

OntoGen2 is a semi-automatic and data-driven ontology editor facilitating the
editing of topic ontologies (a hierarchy of topics connected with the subtopic of
relation). The editor uses text mining and machine learning techniques to help
create ontologies from a set of text documents. For this the tool adopts k-means
clustering and latent semantic indexing techniques(LSI) [6]. A screenshot of the
tool is shown in Fig. 3.

In OntoGen each text document is represented as a term vector which is
generated by the standard bag of words approach and the assignment of the
term frequency / inverse document frequency (TFIDF )3 measure to each term.
The similarity between term vectors is calculated using Cosine similarity and
shown in the center of Fig. 3. The similarity values are recalculated when the
document selection changes. For further mentioning of the similarity between
documents we refer to these similarity values calculated by OntoGen.

2 http://ontogen.ijs.si/
3 Elements of vectors are weighted with the TFIDF weights as follows [3]: the ith
element of the vector containing frequency of the ith term is multiplied with IDFi =
log(N/dfi), where N represents the total number of documents and dfi is document
frequency of the ith term (i.e. the number of documents from the whole corpus in
which the ith term appears).
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Fig. 3. Screenshot of the OntoGen’s user interface. Left: The ontology concepts we
created (top) and the functionality to create further sub concepts (bottom). Right:
Details of the ontology, underlying documents and similarity graph information.

One of OntoGen’s powerful features allows to visualize the similarity among
a set of selected documents, which is called Concept visualization(as shown in
Fig. 4). This visualization is created using dimensionality reduction techniques
by combining linear subspace and multidimensional scaling methods. For a de-
tailed description and explanation of OntoGen’s main components and function-
ality we refer to work by Fortuna and colleagues [3,6,5,4].

In the following we describe how we generated and explored the document
outliers across two domains: BAXS and finance. Petrič et al. [10] outline pro-
cedures that facilitate the identification of cross-context outliers with OntoGen.
The main steps comprise the k-means clustering of documents with two differ-
ent labels, the further subdivision of each cluster according to the labels and
the outlier analysis of these misclassified documents in contrast to the clusters.
Before going into the details of outlier detection, we describe the retrieval of the
scientific documents for both domains. A document in this study refers to the
abstract and associated keywords of a published scientific article.

The document corpus for the biological domain (as relevant to the BAXS)
consists of documents from PubMed4. PubMed is a free resource containing
over 20 million biomedical article citations and articles.

To compile a corpus of BAXS-relevant PubMed abstracts, we used keywords
and phrases that reflect important concepts in relation to BAXS research. Fur-
thermore, we restricted the search to articles that discuss these concepts in
the context of human biology (ignoring other species). We used the following

4 www.pubmed.gov
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Fig. 4. OntoGen’s concept visualization of all documents. Yellow crosses denote docu-
ments and the white labels depict document terms. The 3 potential clusters are labeled
accordingly

PubMed query to select the articles:

(‘‘bile acids and salts’’ [MeSH Terms] OR

(‘‘bile’’ [All Fields] AND ‘‘acids’’ [All Fields] AND

‘‘salts’’ [All Fields] ) OR ‘‘bile acids and salts’’

[All Fields] OR (‘‘bile’’ [All Fields] AND

‘‘acids’’ [All Fields]) OR ‘‘bile acids’’ [All Fields]) OR

(‘‘xenobiotics’’ [MeSH Terms] OR

‘‘xenobiotics’’ [All Fields] ) AND ‘‘humans’’ [MeSH Terms]

The query resulted in 21 565 articles of which 16 106 had an abstract. In addition to
the abstracts, we retrieved all articles with the MeSH terms provided by PubMed,
i.e., we included also articles with MeSH5 terms only. With this approach we com-
piled 21 276 documents containing either abstracts, MeSH terms or both.

The information resources from the financial domain are abstracts from the
financial literature. We obtained these from the Journal Storage6 (JSTOR).
Currently, JSTOR contains approximately 1224 journals, which are categorized

5 Medical Subject Headings (MeSH) provides a vocabulary of ca. 25 000 terms used to
characterize the content of biomedical document such as articles in scientific journals.

6 http://dfr.jstor.org/
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into 19 collections and 53 disciplines. The archive currently offers approximately
295 000 individual journal issues and about 6.4 million articles of which about
3.2 million articles are full-text articles available online. Out of 27 613 available
finance articles that we retrieved, 7674 provided an abstract. In addition to the
abstracts, we retrieved a set of JSTOR-generated keywords for each abstract.

We created a simple text file for the BAXS and finance articles, respectively,
each file containing all the abstracts in that domain. Within each file the docu-
ments were organized as a sequence of lines, each line representing a document,
and the first word in the line is used as the title of the document. A list of 532
English stop words was used to filter out the “low-content” words followed by
Porter stemming to reduce inflected (or derived) words to their stem [9]. For the
construction of the similarity graph the document labels were ignored.

After some experimentation and visual analysis of the clusters, we generated
the final set of clusters using k-means clustering with k = 3. Viewing the resulting
clustering of the document vectors (as shown in Fig. 4), one can easily recognize
the three clusters. In order to get an idea about the information content of the
clusters and the area between them, a more detailed view on Fig. 4 (shown in
Fig. 5) is provided.

Fig. 5. Zoomed in detail from the top centre of Figure 4 (area between BAXS1 and
Finance cluster).

Another interesting feature of OntoGen is its ability to determine the most
common keywords for each cluster. OntoGen uses two methods to extract the
keywords (1) using centroid vectors to get descriptive keywords and (2) Support
Vector Machine classification to extract distinctive keywords. In this study we
considered keywords extracted frommethod (1) only. The keywords provide users
with an idea of the meaning of the clusters. According to this we characterized
the three clusters as follows:
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1. The Finance Cluster characterized by the keywords priced, market, stocks,
returned, firm,trading, investments, models, portfolio and rate.

2. The BAXS1 Cluster with the keywords cells, activity, protein, drug, trans-
port, receptor, enzyme, xenobiotics, expression and gene.

3. The BAXS2 Cluster with the keywords bile, cholesterol, patients, liver,
acid, diseases, age, bile acid, biliary and ursodeoxycholic.

In order to determine the outliers for each cluster, we separated the documents
of each of the three clusters according to the assigned document labels BAXS and
FIN. The resulting topic ontology is depicted in Fig. 6.

Fig. 6. Visualization of the topic ontology with the root in the middle and its three
ascending nodes/clusters (Finance, BAXS1, BAXS2 ) of which each has two ascending
nodes/clusters corresponding to either labels BAXS or FIN.

Fig. 6 suggests that each cluster contains outliers, i.e., BAXS in Finance for
BAXS-labeled documents in the Finance cluster, FIN in BAXS1 for FIN-labeled
documents in the BAXS1 cluster, and FIN in BAXS2 for FIN-labeled documents
in the BAXS2 cluster. A detailed breakdown of the distribution of outliers over
the clusters is provided in Table 1 as a contingency table.

The rows in the table described the number of documents falling into one of
the three clusters, and the columns describe the number of documents labeled
BAXS and FIN respectively. Out of 7674 FIN-labeled documents, 7671 were as-
signed to cluster Finance, 2 documents were assigned to cluster BAXS1, and
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Table 1. Contingency table: Overview of document distribution over the clusters Fi-
nance, BAXS1 and BAXS2

Cluster/Label FIN BAXS Total

Finance 7671 59 7730
BAXS1 2 9129 9131
BAXS2 1 12 088 12 089

Total 7674 21 276 28 950

1 document was assigned to cluster BAXS2. Out of 21 276 BAXS-labeled docu-
ments, 59 were assigned to cluster Finance, 9129 documents were assigned to
cluster BAXS1, and 12 088 documents were assigned to cluster BAXS2. From a
total of 28 950 documents 26,5% are labeled as FIN and 73,5% as BAXS. The num-
ber of documents shared between the clusters is 26,7% in the Finance cluster,
31,5% in BAXS1 cluster and 41,8% in BAXS2 cluster of all documents.

In order to show the ratio between the documents with initial label and the
cluster membership of documents, we combined the documents and outliers from
the two clusters BAXS1 and BAXS2 to a single cluster, BAXS, as shown in the
confusion matrix in Table 2. Out of 7674 FIN documents, 3 were assigned to
combined BAXS cluster, and out of 21 276 BAXS documents, 59 were assigned to
the Finance cluster. That is, from all FIN documents 0.04% were outliers and
from all BAXS documents 0.28% were outliers.

Table 2. Confusion matrix: Overview of correctly and misclassified documents for the
labels FIN and BAXS

Initial label
FIN BAXS

Cluster membership
Finance 7671 59
BAXS 3 21 217

The aim of this study is to interpret the outliers in context to the documents
which are most similar for each cluster. As looking at 62 outliers and their most
similar neighbours for each cluster would be manually not feasible we reduced
the amount of BAXS outliers within the Finance cluster.

From the 59 BAXS outliers within the Finance cluster, we decided to consider
13 of them to be relevant for this study. The decision making process was ac-
complished by experts analysing the 59 BAXS documents and filtering them. We
selected the outliers that were most relevant to BAXS but also most promising
to find relationships in finance. The list of outliers and the topic covered is shown
in Table 3.

As next step we investigated the most similar documents for each outlier
document for each cluster. We considered the 5 most similar documents for the
BAXS clusters (BAXS1 and BAXS2) and the 6 most similar documents for the
Finance cluster. The reason for considering one more document from the Finance
cluster was that FIN-labeled documents were generally much shorter than BAX
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Table 3. General topic of outlier documents

Outlier Topic

BO 01 Data analysis using statistical models
BO 02 Study about how paracetamol dissolves in different conditions
BO 03 A new model in pharmacokinetics is introduced
BO 04 Paper discusses legal criteria and judicial precedents related to hormesis
BO 05 How to calculate reference doses for toxic substances
BO 06 Nonlinear system to model concentration of hormones important for

menstrual cycle
BO 07 Paper about volume of distribution and mean residence time of phar-

maceutics in the body
BO 08 Book about chronic kidney disease and future perspective for Japan
BO 09 Application of data mining methods for biomonitoring and usage of

xenobiotics
BO 10 Xenobiotics in the air close to industrial centres affect mechanisms of

inheritance
BO 11 Data analysis about colorectal polyp prevention
BO 12 Statistical data analysis for Alzheimer’s disease
BO 13 Costs and effectiveness of anti-fungal agents for patients are assessed
FO 01 Analysis about how new drug launches affect life expectancy
FO 02 Analysis of Russian’s investment in transport infrastructure
FO 03 Relationship between choice of treatment for illness and getting a job

documents, and were therefore considered to offer less information than the BAXS
documents. The set of abstracts we retrieved contained on average 8 sentences
for PubMed abstracts and 4 for JSTOR.

As OntoGen wasn’t designed or intended to be used in such a way we adopted
the following procedure to obtain the documents that are most similar to an out-
lier. First, we selected the outlier of interest and deselected all other documents.
Then, using OntoGen, we recalculated the similarity of all documents for this out-
lier. The most similar documents to the outlier are then listed below the outlier.

In order to find the most similar documents from a different cluster, one had
to assign the considered outlier to the other cluster. This was achieved by the
selection of the outlier and selecting OntoGen’S move function (shown in the top
left corner in Fig. 7). After the outlier was moved to one of the other clusters,
the procedure was repeated to obtain the most similar neighborhood documents.

Petrič et al. [10] considered only neighborhood documents within the same
cluster for the interpretation of outliers. Our approach extends this approach by
taking into account the neighborhood documents from the other clusters. Thus,
possible relationships between the clusters can be assessed, where the outliers
serve as link between the most similar neighborhood documents. Table 4 lists the
common bridging terms between the outliers and their neighborhood documents
that we found.
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Fig. 7. Screenshot showing how the outlier document FIN 10.2307 3528838 in cluster
BAXS2 can be moved to different clusters

4 Results and Discussion

Initially, we wanted to look at all 16 outliers and how they might be linked or
related to the topic they cover. For this we first looked at the selected BAXS
outlier documents and how they cover the topics of all BAXS outliers within the
Finance cluster. As shown in Fig. 8, the 13 outliers (the dark labels) seem to
cover most of the topic space of all 59 outliers. We realized that the outliers
are not evenly distributed over this space, which is due to the bias created by
manual selection by the experts. In fact, there are more outliers close to each
other on the left side of the diagram then on the right side.

If we look at the topics covered by each outlier (as shown in Table 3), we see
that most of them cover topics related to clinical studies, statistical analysis or
models related to BAXS in one way or another.

The FIN outliers, on the other hand, do not seem to be similar to each other.
There do not seem to be any obvious relationships between the life expectancy
affected by drug launches (FO 01), how Russians invest in their transport infras-
tructure (FO 02), or how the choice of treatment for illness is related to getting
a job (FO 03).

Therefore, we analyzed the outliers in detail and determined the terms they
share with their most similar neighbor documents. The results of this analysis
are summarized in Table 4. The table lists the most frequent bridging terms
(b-terms) between each outlier and their neighbors.

Then we looked at the bridging terms for the BAXS outliers within each
cluster. The b-terms between the 13 BAXS outliers and the documents in the
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Fig. 8. Concept visualization of all BAXS outlier documents within the Finance cluster.
The relevant outliers under investigation are highlighted in black

Finance cluster are usually general terms such as model, event, predict, estimate
or risk. The b-terms within the BAXS1 cluster and BAXS2 appear to be more
specific, i.e., biological or medical terms such as hygiene, hormone, pharmacoki-
netic, colon cancer. The b-terms between the 3 Finance outliers within BAXS1
and BAXS2 do not provide any new insights compared to Table 3

Meaningful bisociative relationships between the outliers and their neighbor
documents could not be found. As this neglects the neighbor documents within
the other clusters, we decided to search for relationships between the neighbor
documents from the clusters. For this we picked the outliers BO 05 and FO 02
(see Table 4) due to their common b-terms in each cluster.

The BO 05 outlier relates finance models concerned with the risk of investment
to abstracts which analyze the risk of cancer depending on different factors.
The most promising outlier for this was FO 02, as it relates BAXS abstracts to
transporter pathways within and across cells with the transporting infrastructure
within and across countries.
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Table 4. Discovered bridging terms via outliers with most similar neighbours
from the clusters Finance, BAXS1 and BAXS2.

Outlier Finance BAXS1 BAXS2

BO 01 event, model, simulation model regression
BO 02 model, predict, statistical model, dissolution dissolution
BO 03 curve, distribution, long-

term, model
model, pharmacokinetic model, pharmacokinetic

(PK), kinetic
BO 04 decision-making, regula-

tory, agency
hormesis, toxic, regulator humans (Mesh)

BO 05 risk, estimate, observe NOAEL, BMD risk
BO 06 cycles, non-linear systems,

model
hormone cycle, women, hormone

BO 07 volume, estimate clearance, estimate, phar-
macokinetic

volume

BO 08 japanese, assume, analyse filtration humans, middle aged
(Mesh)

BO 09 decision-tree, predict,
model

environmental PCB, biomonitoring,
HCB

BO 10 air, risk hygiene, air, xenobiotics
(Mesh)

xenobiotics

BO 11 estimation, method colorectal, colon cancer recurrence, prevention,
polyp

BO 12 model, predict model, analysis, PLSDA Alzheimer’s disease, pa-
tient

BO 13 cost, hospitals antifungal cost, leukemia
FO 01 health, expenditure, cost-

effectiveness
drug, database drug

FO 02 Russia, transport, transit transport transit, transport
FO 03 choice renal treatment, disease,

chronic, cholestasis

5 Conclusions

In this case study we investigated the potential bisociations between the finance
and BAXS domain based on document outliers as determined by a cross-context
clustering approach.

One main issue in this study is the asymmetric nature of knowledge, i.e., we
have more knowledge about the BAXS than about the finance domain. Another
issue is the asymmetric nature of the data sources (73% BAXS documents and
27% Finance documents). Both put a strong bias on the discovered outliers in
this study and therefore reduce the quality of the results. Based on this study it
would appear that the most promising method to find potential bisociations is to
look at the neighbor documents from the different clusters related to one outlier.
The use of scientific abstracts only could be another reason for the lack of finding
interesting relationships between the domains. More work is needed to explore
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this approach to bisociative information discovery but the approach presented
here shows promise in the discovery of novel connections between domains
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Abstract. Bisociative knowledge discovery - finding useful, previously 
unknown links between concepts - is a vital tool in unlocking the economic and 
social value of the vast range of networked data and services that is now 
available. An important application for bisociative knowledge discovery is 
business process analysis, where bisociation could lead to improvements in one 
domain being disseminated to other domains. We identify two forms of 
bisociation, based on structural similarity, that are applicable to business 
processes, and present examples using real-world data to show how bisociative 
reasoning can be applied. 

1 Introduction  

Business Intelligence has been defined as a broad category of “applications and 
technologies for gathering, storing, analyzing, and providing access to data to help 
users and automated systems make fact-driven business decisions1 ” Business process 
analysis is a subfield, arising from the need for companies to learn more about how 
their processes operate in the real world. According to Andersen and Fagerhaug [1], a 
business process is  “a logical series of related transactions that converts input to 
results or output” In particular, business process analysis involves aspects such as  

• discovery of process models, based on event logs  
• process conformance (do event logs follow prescribed paths through process 

models)  
• process analysis (e.g. are there significant bottlenecks, can process instances 

be grouped on the basis of different paths through the process model)  
• extension of process models, in cases where the actual process execution is 

not properly reflected in the model.  

A business process can be represented naturally as a graph,  and hence business processes 
form suitable inputs for the bisociation operations described in [2] – particularly 

                                                           
1 This definition was taken from www.oracle.com/us/solutions/sap/database/ 
sapbocmtsizing-352636.pdf; there are many similarly phrased descriptions on the 
web. 
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Fig. 1. Simplified process diagram showing 70% of high value customers leave after sending 3 
or more emails to a support centre 

the notion of graph (structural) similarity. There are, however, some features which 
distinguish process graphs from most of the other (document- and graph- based) 
demonstrators mentioned in [3]. In particular, the sequential nature of most business 
processes is fundamental - there is a specific order required for the steps within a process. 
In contrast, measures of similarity which depend on counting the number of occurrences 
(or co-occurrences) of words, nodes, etc. do not require a specific order of occurrence.  
Additionally, the BisoNet representation assumes that numerical edge labels reflect the 
probability or strength of a link. In process graphs, edges can be labelled by the time 
taken to move from one process stage to the next. Notwithstanding these differences, the 
Bison framework has been used to generate useful suggestions for domain experts, 
showing its versatility and potential. 

As discussed in [4], creative knowledge discovery can be distinguished from 
“standard” knowledge discovery by defining the latter as the search for explanatory 
and/or predictive patterns and rules in large volume data within a specific domain. For 
example, a knowledge discovery process might examine an ISP (internet service 
provider)’s customer database and determine that people who have a high monthly 
spend and who send more than three emails to the support centre in a single month are 
very likely to change to a different provider in the following month. Such knowledge 
is  implicit within the data but is useful in predicting and understanding behaviour. 
Figure 1 illustrates this as a summary process diagram (the actual set of process 
instances would be a more complex graph). 

By contrast, creative knowledge discovery is more concerned with “thinking the 
unthought-of” and looking for new links, new perspectives, etc.  Such links are often 
found by drawing parallels between different domains and looking to see how well 
those parallels hold - for example, compare the ISP example mentioned above to a 
hotel chain finding that regular guests who report dissatisfaction with two or more 
stays often cease to be regular guests unless they are tempted back by special 
treatment (such as complimentary room upgrades), as illustrated in Fig. 2. This is a 
simple illustration of similar problems (losing customers) in different domains. There 
is a structural similarity, and a solution in one domain  (complimentary upgrades) 
could inspire a solution in the second (e.g. a higher download allowance at the same 
price).  Of course, such analogies may break down when probed too far but they often 
provide the creative insight necessary to spark a new solution through a new way of 
looking at a problem. In many cases, this inspiration is referred to as “serendipity”, or 
accidental discovery.  
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Fig. 2. (a) Simplified process showing 60% of regular customers do not re-book after making 2 
or more complaints 

 

Fig. 2. (b) Updated process introducing loyalty rewards after which only 30% of regular 
customers do not re-book after making 2 or more complaints 

The core of the Bison project is the automation of creativity, in this sense of 
making novel connections between previously unrelated concepts. For networks 
representing business processes, we have investigated two possible modes of 
bisociation: 

(i) structural bisociation between two process networks from different domains, 
with respect to a specific mapping between node types in the two networks. The 
processes in one domain are assumed to need improvement. We look for 
sections of the two networks where there is high similarity between most of the 
nodes and links, with a small segment exhibiting low similarity. The operation 
of bisociation swaps the (mapped) low similarity segments, as illustrated in the 
ISP/hotel chain example above. 

(ii) conceptual bisociation, which is a form of structural bisociation, requiring one 
process network and a generalisation / specialisation hierarchy on the node 
types. Similar process graphs for use in bisociative combination can be 
generated using the generalisation/ specialisation hierarchy. The origin of this 
approach is explained below.  

Sherwood [5] proposed a systematic method, in which a situation or artefact is 
represented as an object with multiple attributes, and the consequences of changing 
attributes, removing constraints, etc are progressively explored. For example, given 
an old style reel-to-reel tape recorder as starting point, Sherwood’s approach is to list 
some of its essential attributes, substitute plausible alternatives for a number of these 
attributes, and evaluate the resulting conceptual design or solution. Table 1 shows 
how this could have led to the Sony Walkman in the late 70s [5]. Again, with the 
benefit of hindsight the reader should be able to see that by changing magnetic tape to 
a hard disk and by also considering the way music is purchased and distributed, the 
same method could (retrospectively, at least) lead one to invent the iPod. Of course, 



 Bisociative Discovery in Business Process Models 455 

having the vision to choose new attributes and the knowledge and foresight to 
evaluate the result is the hard part - and the creative steps are usually only obvious 
with hindsight.  

This systematic approach is ideally suited to handling data which is held in an 
object-attribute-value format, with a taxonomy defined on the domain of (at least) one 
attribute. This provides a means of changing/generalising attribute values, so that 
“sensible” changes can be made (e.g. mains electricity, battery are possible values for 
a power attribute).  Representing an object O as a set of attribute-value pairs  

ai , vi( )attribute ai of object O has value vi{ } 

we generate a new “design”  

O* = ai , T vi( )( ){ } 

by changing one or more values using T, a non-deterministic transformation of a 
value to another value from the same taxonomy. Given sufficient time, this would 
simply enumerate all possible combinations of attribute values. We can reduce the 
search space by looking at the solution to an analogous problem in a different domain, 
as in the structural bisociation method, so that analogies can be found. This requires 
tools for taxonomy matching e.g. [6], for converting the data into object-attribute-
value form (or extending the number of attributes), and for detecting structure arising 
from the attribute patterns. The latter two are covered in the next section.   

Table 1. Attributes of two music players (taken from [4]) 

Conventional tape recorder Sony Walkman 
big small 
clumsy neat 
records does not record 
plays back plays back 
uses magnetic tape uses magnetic tape 
tape is on reels tape is in cassette 
speakers in cabinet speakers in headphones 
mains electricity battery 

2 Tools Used for Pre-processing Data 

Two sets of process data were examined, as described in section 3. In order to identify 
taxonomic elations within the data, we used fuzzy formal concept analysis. One 
dataset contained short text sequences at each process step, and fuzzy grammars were 
used to extract key features from the text, prior to the concept analysis. For 
completeness, both methods (fuzzy grammars and fuzzy formal concept analysis) are 
briefly described  in this section.  

2.1 Fuzzy Grammars 

A text fragment is a sequence of symbols, and it is common to use shallow processing 
(e.g. presence / absence of keywords) to find attributes of the text. This operation can 



456 T. Martin and H. He 

be viewed as a way to label sub-sequences of symbols with different tags indicating 
the nature of the text fragment. For example, we could have a schema for the process 
step “arranging to call back a customer”, including attributes such as the time, which 
party requested the call-back, reason for the call-back, etc. It is not necessary to 
extract every attribute from the text, and it is possible that information may not be 
recognised due to unexpected ways of expressing the information or abbreviations, 
mis-spelling etc. The latter case can be handled by extending the matching process to 
include fuzzy matches, that is sequences of symbols that almost conform to the 
pattern and are sufficiently close to be recognisable as examples of the pattern. 

It is often not possible to define simple patterns (such as regular expressions) 
which can reliably identify the information structure. The key contribution of the 
fuzzy grammar approach is the definition and use of approximate grammars, where a 
degree of support is calculated for the matching process between an approximate 
grammar and a sequence of symbols that may not precisely conform to the grammar.  

For example, the following fragments are all examples where a call back has been 
arranged: 

spoke with Michelle the cust partner need a call after 2hrs. 
cust need a call tomorrow. 
cust is going to think about charge and call back if needs to. 
eu is going to call back in a minute on a different phone 

(cust is an abbreviation for customer, and eu is an abbreviation for “end user” i.e. 
customer). It is difficult to anticipate all possible forms (including abbreviations) in a 
regular expression. Full details of the fuzzy grammar approach are given in [7, 8] 

2.2 Fuzzy Formal Concept Analysis  

Formal concept analysis (FCA) [9, 10] is a way of extracting hidden structure 
(specifically, lattice-based structure) from a dataset that is represented in object-
attribute-value form. In its simplest form, FCA considers a binary-valued relation on a 
set of objects O and attributes A 

 

The structure (O, A, R) is a formal context. Given X, a subset of objects and Y, a 
subset of the attributes, 

 

the operators ↑ and ↓ are defined as follows: 

X↑ = y ∈Y | ∀x ∈X : x, y( )∈R{ }                                   (1) 

Y ↓ = x ∈X ∀y ∈Y : x, y( )∈R{ }                                     (2) 

Any pair (X, Y) such that X↑=Y and Y↓=X is a formal concept.  
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Table 2. A simple formal context 

 a1 a2 a3 

o1 1 0 1 

o2 1 1 0 

o3 0 0 1 
 
For example, Table 2 shows the relation between three objects o1, o2, o3 and 

attributes a1, a2 and a3. The resulting concepts are  

({o2}, {a1, a2}) 
({o1}, {a1, a3}) 
({o1, o2}, {a1}) 
({o1, o3}, {a3}) 

i.e. the object o2 is the only one to have both attributes a1 and a2, objects o1 and o2 
are the only objects to have attribute a1 etc. In larger tables, this is less obvious to 
inspection.  

A partial order, ≤ , is defined on concepts such that  

(X1, Y1) ≤ (X2, Y2) 

means X1 ⊆ X2 and Y2 ⊆Y1 i.e. the higher concept contains more objects and fewer 
conditions (attributes that must be true) than the lower concept. This gives rise to a 
lattice, enabling us to discover relations between concepts - for example, in Fig 3 we 
see that attributes a2 and a3 in Table 2 are mutually exclusive, since no object has 
both attributes i.e. the least upper bound is equal to the top element of the lattice and 
the greatest lower bound is equal to the bottom. Each node drawn as a large circle 
represents an object (or objects), and each object has all the attributes attached to its 
node and all higher nodes linked directly or 
indirectly to it. The software draws a node 
with a black lower half if it represents an 
object (or set of objects), and with a blue 
upper half if it is the highest node 
corresponding to an attribute; this 
convention allows the diagram to be 
simplified by omitting labels.  

2.2.1     Conceptual Scaling 
For attributes which take a range of values 
(rather than true / false as above), the idea of 
“conceptual scaling” is introduced [11]. This 
transforms a many-valued attribute (e.g. a 
number) into a symbolic attribute - for 

 
Fig. 3. Concept lattice corresponding 
to the formal context in Table 2. The 
lattice is drawn using the conexp tool 
(conexp.sourceforge.net). 
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example, an attribute such as “time in seconds”, given an integer or real value 
between 0 and 200 could be transformed to attributes “timeLessthan50”, 
“timeFrom50to99”, etc. These derived attributes have true/false values and can thus 
be treated within the framework described above. 

2.2.2     Fuzzy FCA 
Clearly the idea of conceptual scaling is ideally suited to a fuzzy treatment, which 
reduces artefacts introduced by having to draw crisp lines between the categories. The 
idea of a binary-valued relation is easily generalised to a fuzzy relation, in which an 
object can have an attribute to a degree. Instead of defining the relation  

 

as 

 

we define it as a fuzzy relation 

 

where each tuple of R, ( ) Rao ∈,  has a membership value in [0, 1]. 

We  define a fuzzy formal concept as a pair X, Y where X is a fuzzy set of objects 
and Y is a crisp set of attributes such that X↑=Y and Y↓=X where 

X↑ = y ∈Y | ∀x ∈X : μR x, y( )≥ μX x( ){ }                          
(3) 

Y ↓ = x / μX x( ) μX x( ) = min
y∈Y

μR x, y( )( ){ }
                            

(4)
 

It is also possible to define crisp sets of objects and fuzzy sets of attributes, using a 
dual of these operators. 

Our approach is related to that of Belohlavek (e.g. [12], [13] ) but differs in some 
important practical and philosophical respects. By restricting ourselves to crisp 
attribute sets (intensions), we simplify the calculation of the closures but (more 
importantly) we follow Zadeh’s original motivation for fuzzy sets - modelling 
predicates for which there is no clear boundary between membership and non-
membership. This notion is based on a universe of discourse, and a generalisation of 
the characteristic function corresponding to the set defined by a predicate, reflecting 
the fuzziness in the predicate. The extension of the predicate is fuzzy but the 
underlying universe is not - for example, the set of small dice values could be 1 and 2 
with full membership, and 3 with intermediate membership. From the set of possible 
values,  {1, 2, 3, 4, 5, 6} we identify a fuzzy subset of small values. Given the value 1, 
we can say that it definitely has the attribute small, whereas given the value 3 we can 
say that it only has the attribute small to an intermediate degree.   If we are told that a 
single dice roll has resulted in a small value, we can model it as a possibility 
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distribution using the same membership function. We have a crisp event (small dice 
roll) with a fuzzy attribute (value displayed on the dice).  

In contrast, methods based on residuated implication allow both intension and 
extension to be fuzzy.  

Methods based on the alpha-cut are essentially crisp, once the choice of a threshold 
is made; changing the threshold is equivalent to defining a different conceptual 
scaling.  

3 Process Data 

Access to a number of process datasets was provided by an industrial partner, BT 
Innovation and Design. The datasets were taken from real operations, and were 
anonymised by removal of obvious personal details; in order to ensure commercial 
and customer confidentiality, the datasets were not taken offsite. Two datasets were 
selected for study: 

1. Repair Data - a dataset of approximately 55000 process instances, stored in an 
XML format. Each process instance represented a single case of fault analysis and 
repair, and contained data on the tasks carried out in that case, the length of time 
taken for each task, the location, etc. Process and task names were structured but not 
necessarily understandable - for example,  task names (or WorkFlowModelElement, 
using the XML tag) mostly consisted of a 5 character code (e.g. UK106) representing 
the centre at which the task was carried out, followed by a three character identifier 
(e.g. TS2) representing the actual task. Process instances varied in length from 3 up to 
440  (including start and end) e.g. 

start BB450GAB end 

Figure 4 shows the distribution of path lengths. Over 30 centre identifiers were 
included in the data, representing a wide range of repair functions within the 
company. Python and Unix scripts, plus custom java modules were used with KNIME 
to convert the data into BisoNet form. 

2. Call-Centre Data - a dataset of call-centre interactions, related to different 
business units within the company. Each process instance involved a number of 
questions designed to elicit information (customer details, problem symptoms, etc) 
and find a solution (including an immediate fix, additional tests, or appointment for an 
engineer to visit). These questions were a mixture of scripted and free-form text. Each 
step in the process had a unique identifier; additional data included an identifier for 
each process instance, the customer and call-centre agent, date/time and duration of 
the step, and information about the handling department and ultimate resolution of the 
problem. The data was recorded automatically, with scripted questions provided by 
the system and unscripted questions plus responses entered by the call centre agent. 
The free-form nature of unscripted questions and the number of abbreviations, mis-
spellings and grammatical shortcuts taken when these questions are typed added an 
additional complication to the dataset.  
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Fig. 4. Distribution of path lengths in dataset 1 (top)  and dataset 2 (bottom)  

The dataset consisted of around 5500 process instances and a total of over 65000 
steps. The process data was in the form of a series of questions (and answers) plus 
time taken, and identifiers for caller and call-centre agent, date/time and other data. 
The complete set of attributes (with brief description) was 

 
CASE_ID a unique identifier for this process instance  
USER_RESPONSE_ID unique identifier for this process step 
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AGENT  call centre agent 
CONTACT_CREATED timestamp for one (or more) steps 
CUSTOMER identifier for customer 
QUESTION text of scripted or unscripted question / other notes  
RESPONSE text of answer / summary of test result 
DURATION System-generated time taken by this process step 
EXIT_POINT1, 2, 3 internal data 
CASESTATUS boolean indicating whether process has finished  
DEPARTMENT name of dept that handled this process 

 
Figure 4 shows the distribution of path lengths (note that dataset 1 contains  
approximately 10 times as many instances as dataset 2). Table 4 shows a small part of 
an interaction; the “question” field was used to record scripted questions and notes 
made by the agent. Each sequence of questions as a process instance, represented as a 
directed graph.  

Because there was so much flexibility in the question/answer patterns, we pre-
processed the text to extract key features, using fuzzy grammar tagging [7] to add 
attributes. This went beyond a simple keyword-recognition approach (which was 
found to be inadequate) and was able to cope with the non-standard language 
employed in the questions. Table 4 shows examples of the tags added; these were 
used as node labels in the directed graphs.  

Subsequent to the tagging, a combination of Unix scripts and customised Java / 
KNIME workflows were used to convert the data into Bisonet form. 

Table 3. Example of call centre interaction (a single process instance) 

Question Response Duration 
What is the call about? New fault 11 
What type of fault? No incoming calls 30 
Is the Customer calling from home? Yes, using line with 

the fault 
4 

Is this an early life Customer? No 3 
Are there any Open orders or billing restrictions 
(including issues from high value accounts) on the 
account which could be causing this problem? 

No problems 4 

Ask the Customer if they are reporting an issue with 
a BB talk hub phone, a VOIP phone or an internet 
phone. 

No 5 

Is there an open SR with a valid test within the last 
30 minutes? 

No Open SR 2 

Start the test to check settings on the asset in 
OneView, use the Incoming calls option. 

OK 34 

… 
 

… 
 

… 
 

*System Test* Line Test Green Test Result 3 
Have all line/equipment checks been completed for 
this problem? 

Yes 2 

cust will do more checking Progress Saved 147 
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Table 4. Tags applicable to example shown in Table 3 

Question Fuzzy Tag(s) 
What is the call about? <g1FindCustomerProblem /> 
What type of fault? <g1FindProblemDetails /> 
Is the Customer calling from home? <g1FindProblemDetails /> 
Is this an early life Customer? <g1FindProblemDetails /> 
Are there any Open orders or billing restrictions 
(including issues from high value accounts) on the 
account which could be causing this problem? 

 <g1FindAccountDetails /> 

Ask the Customer if they are reporting an issue with a 
BB talk hub phone, a VOIP phone or an internet 
phone. 

<g1ProblemFeature /> 

Is there an open SR with a valid test within the last 30 
minutes? 

<g1SystemTest /> 

Start the test to check settings on the asset in 
OneView, use the Incoming calls option. 

<g1SystemTest /> 

 
… 
 

 
… 
 

*System Test* Line Test  <g1CheckTestResult /> 
Have all line/equipment checks been completed for 
this problem? 

<unknown /> 

cust will do more checking  <g1EndCall /> 

 
The process instances were derived from different call centres, dealing with 

different business areas (business and consumer phone services, broadband, cable 
broadcasting, etc). This was indicated to some extent by the “Department” field, and 
we took this as a starting point for finding different Bison domains within the data. 
Departments whose processes involved similar sequences of questions were grouped 
together using fuzzy FCA; we also divided each of these domains into good and bad 
process instances.  The characteristics of a good process instance are  

• it does not involve multiple interactions,  
• it does not contain loops, and  
• it is completed in a reasonably short time. 

4 Bisociative Knowledge Discovery in Business Processes 

4.1 Illustrative Example 

We first provide a simple illustration to show how the fuzzy FCA approach can aid in 
conceptual bisociation for creative knowledge discovery. The data used to create the 
examples shown in Figs 1 and 2 leads to the concept lattices shown in Figs 5 and 6. 
Note that this is a “toy” example and the similarity between lattices is obvious in this 
case. We have developed methods which facilitate this matching by comparing lattices 
[14] and by finding fuzzy association confidences in fuzzy class hierarchies [15].   
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The attribute highVal indicates that a customer is a member of the set of high 
valued customers at the beginning of a specified period, time point t0; the attribute 
retained indicates membership at the end of the period, time point t1, and zeroC, 
lowC, medC, highC show the number of complaints (respectively, zero, low, medium, 
high) made in the period. Note that every object with membership in medC is also in 
lowC because of the overlapping nature of these sets. In this dataset, there are no 
customers who have made a high number of complaints, so the concept labelled 
highC is at the bottom of the lattice with no elements,.   

Figure 5 shows the concept lattice for the ISP example of Fig. 1. The arrow 
indicates the association rule between the set of high value customers who 
complained a non-zero (low or medium) number of times and the subset who also 
satisfy the retained attribute. In this case, the confidence is 40% and this forms a key 
performance indicator for the process. 

Figure 6 shows concept lattices corresponding to the hotel example of Fig. 2. The 
introduction of the reward attribute makes a major difference to the key performance 
indicator, raising it from 30% to 70%.  Because the lattice is isomorphic to Fig. 5, the 
automated creative knowledge discovery process suggests that introduction of 
“something like” a rewards programme could also benefit the ISP in retaining high 
value customers Although the parallels are obvious here, practical examples require 
considerable search to find the best match between lattices. Work in this area is 
ongoing, outside the Bison project. 

4.2 Business Process Example - Definition of Domains 

Our second application looks for structural bisociations, and we start by defining 
domains. In both cases (datasets 1 and 2), data was gathered during a specific time 
interval, and was not balanced across different business units. Since the business units 
are (effectively) anonymised, the first step was to group processes from different units 
into domains for bisociation. 

 

Fig. 5. Concept lattice corresponding to the process shown in Fig 1. The arrow indicates 
nodes used in calculating the association confidence (key performance indicator) 
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Because the range of problem areas is large (domestic and businesses customers 
using a wide range of services such as standard telephone, voice over IP, all aspects of 
broadband connections - including wireless - and TV), it is valid to regard different 
centres as different domains. At the same time, there is significant overlap between 
some centres - for example, a centre dealing with domestic broadband in one region is 
effectively identical to a centre dealing with domestic broadband in another region. 
The first stage of analysis in both cases was to identify similarities between centres; 
this was achieved using fuzzy formal concept analysis [9, 15] In dataset 1, we 
extracted relative frequencies of task-codes associated with the various centres, 
converted the frequencies to fuzzy memberships using a mass assignment approach 
[16] and used the task- code/membership pairs as attributes for FCA. The result (Fig 
7, displayed using software adapted from conexp.sourceforge.net) shows that some 
centres are very similar (for example, UK450, GT450, WA450 near the top of the 
diagram), that there is a generalisation hierarchy (the UK450, GT450, WA450 cluster 
is more general than BB450, in terms of tasks performed), and that there are 
dissimilarities (e.g. UK107, UK106 near the bottom left have no overlap). The 
opinion of a domain expert was that these groupings were a realistic reflection of the 
functions. 

In dataset 2, we used the fuzzy tags assigned by fuzzy grammar analysis as 
attributes, leading to the concept lattice in Fig 7(b). Here, it is possible to assess the 
groupings by inspection of the centre names - for example, it is not surprising to see 
the strong connection between centres dealing with businesses (six connected nodes 
on right hand side), with vision products (three nodes on left), etc. 

4.3 Bisociations 

There are a number of indicators for “good” and “bad” process execution. Reaching a 
satisfactory end point in a relatively short time, with no unnecessary loops is an ideal 
situation; cases which require repeated work, suffer from long delays and/or incorrect 
execution paths are not ideal.  

Multiple Domains in a Single Dataset 
Having defined different domains within each dataset, we looked for possible 
overlapping concepts between the domains.  We first combined all process instances 
within a domain by adding universal start-process and finish-process nodes, and 
combining common paths from / to these universal nodes (using a modification of the 
DAWG algorithm in [17]).  

In dataset 2, we used the fuzzy tags assigned by fuzzy grammar analysis as 
attributes, Three variants were initially produced for each set of instances. The first 
retained loops, but unrolled them so that each vertex had indegree and outdegree of 1 
(other than the start-process and finish-process nodes). Second and third variants were 
produced, in which a node representing the loop (including the source/sink node of 
the loop) was given a derived identifier or given the same arbitrary identifier as all 
loops. Figure 8 shows an example of a single process with a loop from dataset 1. 
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Bisociations were sought by looking for structural similarity between domains. 
This was interpreted as finding a consistent mapping from the set of nodes in one 
graph to the set of nodes in the second graph, such that paths (i.e. process instances) 
are preserved (NB timing data for process steps was ignored here). For two domains 
(V1, E1) and (V2, E2) we search for a mapping  

f :V1 → V2
 

such that for each process instance from domain 1 

P1i = vi1,vi2 , … ,vin( )  where each v1i ∈V1 

there is a corresponding process  

 P2 k = f P1 j( )= f vj1( ), f v j2( ), … , f vjn( )( ) 

in domain 2. 
 

 

 

Fig. 6. Concept lattices corresponding to the processes shown in Fig 2. The key performance 
indicator is not shown, but improves from 40% to 70% . The similarity to Fig 5 is clear, and the 
suggestion to add an attribute corresponding to “reward” is obvious, once the parallel between 
contexts is seen. 
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Fig. 7. Fuzzy Formal Concepts used to group different centres into domains for bisociation 
within dataset 1 (top) and dataset 2 (bottom) 

Clearly this is a computationally intensive task, and in general it is not possible to 
find a consistent mapping that covers all processes. We therefore measured the 
goodness of a mapping by minimising 

 

 1

NP1

min
j

d f P1i( ), P2 j ,( )( )
length P1i( )i =1

NP1

                                              (5) 

where d is the edit distance between the two sequences, length measures the number 
of steps in a process instance and NP1  is the number of process instances in domain 1 
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and j indexes processes in domain 2. The value of (5) ranges between 0 (every 
mapped process instance in domain 1 is identical to a process instance in domain 2) 
and 1 (no overlap at all). Subtracting the value of (5) from 1 gives an indication of the 
degree of overlap.  

A number of heuristics were used to guide the search for a good mapping, based on 
the frequencies of nodes and node pairs.   

Obviously if there is an exact mapping, there is an equivalence between the process 
domains and the only contribution from bisociative reasoning would be to suggest 
that improvements in one domain might also be made in the other. In cases where 
there is a short distance between a process instance and its image in the target domain, 
bisociative reasoning might suggest process modification - for example if 

d f P1i( ), P2k( )= 1 

(a)    (b)  (c)  (d) 
 

Fig. 8. Different options for treating loops in processes 
   (a) original process with a loop 
   (b) unrolled loop  
   (c) all loop nodes replaced by a single node, named by its start/end node 
   (d) all loop nodes replaced by an anonymous loop node 
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for some process P2k  then there is one node where the processes differ. Bisociation 
would suggest replacing this node by the inverse image of its counterpart in  D2. That 
is, if 

P2k = f vj1( ), f vj 2( ), … , vkl
*, … , f vjn( )( ) 

then we should change the first process to  

P1 j = vj1,vj 2, … , f −1 vkl
*( ), … ,vjn( ) 

This is a limited interpretation of bisociation, and - in the cases studied here - meets 
with little success, not least, because of the difficulty in finding a possible f which 
gives a reasonable mapping between process domains. Examination of the most 
frequently occurring substitutions and substitutions applied to pairs did not lead to 
any significant insight.  

Greater success in finding mappings occurred when anonymised loops were 
considered. In part this is due to the reduced size of the problem. A possible 
additional explanation is that there is an underlying similarity between the different 
process domains, and that the loops represent parts of the process that should not be 
carried out at all or that could be carried out independently (i.e. in parallel with the 
rest of the process, where this is semantically feasible). Evidence for this view arises 
from the observation that there is a (roughly) 50% reduction in the number of 
execution paths within a domain graph if we treat anonymised loops as identical 
irrespective of their position in the sequence. 

This effect was seen in both datasets. An example of a partial mapping between the 
BT Vision domain and the BT Business domain (both from dataset 2) is shown in 
Table 5.  

Another successful outcome arose from examining sequences of events in dataset 2 
where  domain experts had noticed anomalous event durations. In these call centre 
interactions, there were sequences of operations with very short duration (defined as 0 
-2 seconds). This represents the time taken to ask a question and gather an answer, 
and is not a plausible duration - expert opinion was that it represented questions that 
were skipped by call centre agents, i.e. the related information was gathered at 
another point in the interaction. 

D1 = V1,E1( )
D2 = V2 ,E2( ) 

We identified all sequences of more than 2 operations with short duration and then 
replaced each sequence with a single node indicating the sequence and whether or not 
the time was short or “normal”. Thus if the sequence 

...  a - (0) -> b - (1) -> c - (0) -> … 

was found, then all sequences a-b-c were replaced by a single node ABC-short or 
ABC-normal. The two domains for bisociation were defined as (i) processes 
containing one or more nodes denoting a short sequence and  (ii) processes containing 
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Fig. 9. Schematic illustration of bisociation between short duration sequences and normal 
duration sequences. The two graphs on the left both contain the sequence -a2-a3- , in the first 
case with “normal” duration and in the second with abnormally short duration. The sequences 
are concatenated to a2-a3-normal (N) and -short (S), and the durations of adjacent nodes are 
compared - see Fig. 10. 

one or more nodes denoting a normal sequence. The replacement nodes were treated 
as bridging concepts (e.g. ABC-short in one domain was matched with ABC-normal 
in the second domain). Process time was examined in the joined graphs, since it was 
key to the bridging concepts, and we found that there was a significant increase in 
process step time for the immediate predecessors / successors of the bridging nodes 
(see Fig. 10). This suggests that although questions were skipped, the related 
information was gathered during preceding or succeeding questions. In turn, this 
means that the sequences could be moved e.g. they could be asked whilst waiting for 
another part of the process to complete. Such delays can happen when tests are run on 
the line, for instance, but further work would be required to test the feasibility of the 
suggestion.   

The final example of bisociation was reached by comparing all of dataset 1 with all 
of dataset 2. Within each dataset, all processes were combined into a single large graph 
(with universal start-process and finish-process nodes). Based on the previous 
investigations, we chose as bridging concepts the loops in dataset 1 and the short-
duration sequences in dataset 2. These were used to derive a mapping between nodes 
from domain 1 and domain 2, and the overlap in process graphs arising from the 
mapping was estimated by (5). Note that we used relative frequencies of process paths, 
since there are approximately 10 times more process instances in dataset 1 than in 
dataset 2. The resultant mapping between domains was deemed to be relatively high 
quality, since it led to high similarity between the mapped domain 1 and domain 2. 
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Table 5. Example of mapping between domains 

domain 1 tag domain 2 tag 
g1Migration  g2ProblemFeature 
g1EndCall g2EndCall 
g1Signal  g2FindProblemDetails 
g1FindCustomerProblem g2ProblemFeature 
g1SystemTest g2SystemTest 
g1FollowKM  g2FindProblemDetail 

Total overlap in process graphs : 56.4% 

 

Fig. 10. Comparison of process durations for nodes adjacent to abnormally short duration 
sequences. The most frequent nodes are shown. Left (blue) column denotes the average 
duration when adjacent to an abnormal sequence, the right (red) column shows the average 
duration when not adjacent to an abnormal sequence. The difference may be due to additional 
information being gathered in adjacent nodes   

5 Summary 

Application of bisociation analysis to the task of creative process engineering has 
generated novel insight into the underlying data and into possible improvements - in 
particular, by suggesting parts of processes that could be performed at different points 
in the process sequence. The results of this study are sufficiently encouraging to 
warrant further investigation. Areas for future work include better presentation and 
visualisation of results, particularly with large data sets, the need to handle matching 
in edges as well as within the node structure, and issues relating to the non-static 
nature of process data (relevant links that may emerge and change with further data).   



 Bisociative Discovery in Business Process Models 471 

Acknowledgment. This work was partly funded by BT Innovate and Design and by 
the FP7 BISON (Bisociation Networks for Creative Information Discovery) project, 
number 211898 
 
Open Access. This article is distributed under the terms of the Creative Commons Attribution 
Noncommercial License which permits any noncommercial use, distribution, and reproduction 
in any medium, provided the original author(s) and source are credited. 

References 

[1] Andersen, B., Fagerhaug, T.: Advantages and disadvantages of using predefined process 
models. Strategic Manufacturing: IFIP WG5 (2001) 

[2] Kotter, T., Berthold, M.R.: From Information Networks to Bisociative Information 
Networks. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), 
vol. 7250, pp. 33–50. Springer, Heidelberg (2012) 

[3] Berthold, M.R. (ed.): Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250. 
Springer, Heidelberg (2012) 

[4] Berthold, M.R. (ed.): Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250. 
Springer, Heidelberg (2012) 

[5] Sherwood, D.: Koestler’s Law: The Act of Discovering Creativity-And How to Apply It 
in Your Law Practice. Law Practice 32 (2006) 

[6] Martin, T.P., Shen, Y.: Fuzzy Association Rules to Summarise Multiple Taxonomies in 
Large Databases. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data 
Management and Analysis: Methods and Design, pp. 273–301. IGI-Global (2009) 

[7] Martin, T.P., Shen, Y., Azvine, B.: Incremental Evolution of Fuzzy Grammar Fragments 
to Enhance Instance Matching and Text Mining. IEEE Transactions on Fuzzy 
Systems 16, 1425–1438 (2008) 

[8] Sharef, N.M., Martin, T.P.: Incremental Evolving Fuzzy Grammar for Semi-structured 
Text Representation. Evolving Systems (2011) (to appear) 

[9] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1998) 
[10] Priss, U.: Formal Concept Analysis in Information Science. Annual Review of 

Information Science and Technology 40, 521–543 (2006) 
[11] Prediger, S.: Logical Scaling in Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., 

Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 332–341. 
Springer, Heidelberg (1997) 

[12] Belohlavek, R.: Fuzzy Relational Systems. Springer (2002) 
[13] Belohlavek, R., Sklenar, V., Zacpal, J.: Crisply Generated Fuzzy Concepts. In: Albrecht, 

A.A., Jung, H., Mehlhorn, K. (eds.) Parallel Algorithms and Architectures. LNCS, 
vol. 269, pp. 269–284. Springer, Heidelberg (1987) 

[14] Martin, T.P., Majidian, A.: Dynamic Fuzzy Concept Hierarchies (2011) (to appear) 
[15] Martin, T., Shen, Y., Majidian, A.: Discovery of time-varying relations using fuzzy  

formal concept analysis and associations. International Journal of Intelligent Systems 25, 
1217–1248 (2010) 

[16] Baldwin, J.F.: The Management of Fuzzy and Probabilistic Uncertainties for Knowledge 
Based Systems. In: Shapiro, S.A. (ed.) Encyclopedia of AI, 2nd edn., pp. 528–537. John 
Wiley (1992) 

[17] Sgarbas, K.N., Fakotakis, N.D., Kokkinakis, G.K.: Optimal Insertion in Deterministic 
DAWGs. Theoretical Computer Science 301, 103–117 (2003) 



Bisociative Music Discovery

and Recommendation

Sebastian Stober, Stefan Haun, and Andreas Nürnberger

Data & Knowledge Engineering Group, Faculty of Computer Science,
Otto-von-Guericke-University Magdeburg, D-39106 Magdeburg, Germany

{sebastian.stober,stefan.haun,andreas.nuernberger}@ovgu.de

Abstract. Surprising a user with unexpected and fortunate recommen-
dations is a key challenge for recommender systems. Motivated by the
concept of bisociations, we propose ways to create an environment where
such serendipitous recommendations become more likely. As application
domain we focus on music recommendation using MusicGalaxy, an adap-
tive user-interface for exploring music collections. It leverages a non-
linear multi-focus distortion technique that adaptively highlights related
music tracks in a projection-based collection visualization depending on
the current region of interest. While originally developed to alleviate the
impact of inevitable projection errors, it can also adapt according to
user-preferences. We discuss how using this technique beyond its orig-
inal purpose can create distortions of the visualization that facilitate
bisociative music discovery.

1 Introduction

One of the big challenges of computer science in the 21st century is the digital
media explosion. Online music stores already contain several millions of music
tracks and steadily growing hard-drives are filled with personal music collections
of which a large portion is almost never used. Music recommender systems aim
to help us cope with this amount of data and find new interesting music or
rediscover once loved pieces we have forgotten about – a task also called “re-
comindation” [22]. One common problem that many recommender systems face
is that their recommendations are often too obvious and thus not particularly
useful when it comes to discovering new music. Especially, collaborative filter-
ing approaches are prone to a strong popularity bias [2]. In fact, McNee et al.
argue that there is too much focus on improving the accuracy of recommender
systems. They identify several important aspects of human-recommender inter-
action of which serendipity is specifically related to the above phenomenon [17].
A serendipitous recommendation is unexpected and fortunate – something that
is particularly hard to grasp and evaluate.

We recently conducted a user study to assess the usability and usefulness
of a visualization technique for the exploration of large multimedia collections.
One task was to find photographs of lizards in a collection of photos taken in
Western Australia. The user-interface was supposed to support the participants

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 472–483, 2012.
c© The Author(s). This article is published with open access at SpringerLink.com
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Fig. 1. Serendipitous encounter with a rock painting of a lizard when looking for pho-
tographs of a lizard (using the Adaptive SpringLens visualization for exploring multi-
media collections [26])

by pointing out possibly relevant photos for a seed photo. As it happened, one
of the participants encountered a funny incident: While looking for photographs
showing a lizard, he selected an image of a monitor lizard as seed. To his surprise,
the system retrieved an image showing the rock painting of a lizard (Figure 1).
Interestingly, rock paintings were actually another topic to find photos for and
the relevant photos were a lot harder to make out in the collection than the
lizards. Bearing in mind that according to Isaac Asimov “the most exciting
phrase to hear in science, the one that heralds new discoveries, is not ’Eureka!’
(I found it!) but ’That’s funny ...’ ”, we decided to further investigate this phe-
nomenon. What the participant encountered is called a bisociation – a bridging
element between the two distinct domains: animals and rock paintings. While
most associations are found between concepts of one domain, there are certain
paths which either bridge two different domains or connect concepts by incor-
porating another domain. In his book The Act of Creation, Arthur Köstler, an
Austrian publisher, coined the term bisociation for these types of associations
and as it turns out, many scientific discoveries are in some way bisociations [9].

Admittedly, no one expects scientific discoveries from a music recommender
application. However, the question persists whether we can leverage the effect
of bisociations and create an environment where serendipitous recommendations
become more likely. After all, the concept of bisociation is much easier to grasp
than serendipity and can even be formalized by means of graph theory [10].
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This paper is structured as follows: Section 2 points out related work in the
field of exploratory music discovery and recommendation. Section 3 briefly re-
views the MusicGalaxy user-interface based on the Adaptive SpringLens visu-
alization technique that we have developed in previous work and evaluated in
the above mentioned user study. Based on this foundation, Section 4 describes
how the MusicGalaxy user-interface can be turned into an environment that
supports bisociative music discovery. Finally, Section 5 discusses early findings
and Section 6 concludes the paper.

2 Related Work

There is a variety of approaches to music discovery and recommendation that
rely on some way of collection exploration. Generally, there are several possible
aspects—each with different levels of abstraction—that can be supported, the
most common being: track, album, artist and genre. Though a system may cover
more than one aspect (e.g., in [31] visualized as disc or TreeMap), usually a single
one is chosen. In this paper, the focus is on the track level but knowledge about
relations to artists and albums is also incorporated.

2.1 Interfaces for Creative Music Discovery

MusicRainbow [19] is an interface to explore music collections at the artist level.
Using a traveling salesman algorithm, similar artists are mapped near each other
on a circular rainbow where the colors of the rainbow reflect the genres. Audio-
based similarity is combined with words extracted from web pages related to the
artists. The words are used to label the rainbow and describe the artists.

MusicSun [20] applies a similar concept to discover artists. Recommendations
are based on one or more artists that are selected by the user and displayed in
the center of a sun. The sun rays (triangles) represent words that describe these
seed artists. The size of a ray’s base reflects how well the respective word fits to
the artist and its length is proportional to the number of artists in the collection
that can also be described by that word. Selecting a ray, a list of recommended
artists is generated. Similarly to the work presented in this paper, users can also
adapt the impact of three different aspects of music similarity that are combined.

Musicream [7] facilitates active, flexible, and unexpected encounters with mu-
sical pieces by extending the common concept of query by example: Several tubs
provide streams of music pieces (visualized as discs) that the user can grab and
drop into the playback region of the interface or use as a magnet to filter similar
pieces from the streams. The interface also provides enhanced playback functions
such as building playlists of playlists or going back to any previous point in the
play history.

The MusicExplorer FX1 takes a different approach: Built upon the EchoNest
API2, it displays a local similarity graph, connecting an artist with the most

1 http://musicexplorerfx.citytechinc.com/
2 http://developer.echonest.com/
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similar ones. The interface also shows a navigation history containing the previ-
ously visited artists. A similar approach is taken by the Relational Artist Map
RAMA [24] that additionally displays labels as graph overlay. However, both
lack a global overview of the whole artist space and users need to specify a seed
artist to start with. In contrast to this, the Last.fm artist map3 displays the whole
graph (based on the Last.fm API4). As this results in a lot of clutter caused by
crossing edges, it is hard to navigate and explore the graph. Consequently, it is
rather suited to map a user’s listening preferences.

2.2 Projection of a Similarity Space

In contrast to the already described works, the visualization approach taken here
is primarily based on a projection of a similarity space. This is a very common
method to create an overview of a collection. Popular dimensionality reduc-
tion techniques applied are self-organizing maps (SOM) [21,8,18,15,27] principal
component analysis (PCA) [13] and multidimensional scaling (MDS) or similar
force-based approaches [12,4,14]. Mapping the collection from high-dimensional
feature/similarity space onto display space, it is usually impossibly to correctly
preserve all distances (independent of the method used). Some objects will ap-
pear closer than they actually are and on the other side, some objects that are
distant in the projection may in fact be neighbors in the original space.5 Only
a small number of approaches tries to additionally visualize such properties of
the projection itself: The MusicMiner [18] draws mountain ranges between songs
that are displayed close to each other but are dissimilar. The SoniXplorer [15]
uses the same geographical metaphor but in a 3D virtual environment that the
user can navigate with a game pad. The “Islands of Music” [21] and its related
approaches [8,4] use the third dimension the other way around: Here, islands
or mountains refer to regions of similar songs (with high density). Both ways,
local properties of the projection are visualized – neighborhoods of either dis-
similar or similar songs. Soundbite [14], on the other hand, attempts to visualize
properties of the projection that are not locally confined: For selected objects
in the (MDS) projection, edges are drawn additionally that connect them to
their nearest neighbors – according to the underlying similarity and not the dis-
tance in the projection. We take a similar approach, interpreting connections
between neighbors that are distant in the projection as ”wormholes” through
the high-dimensional feature space in analogy to the concept in astrophysics.

2.3 User-Adaption during the Exploration Process

Additionally, our goal is to support user-adaptation during the exploration pro-
cess by means of weighting aspects of music similarity. Of the above approaches,

3 http://sixdegrees.hu/last.fm/interactive_map.html
4 http://www.last.fm/api
5 Note that it is impossible to fix these problems without causing damage elsewhere as
the projection is in general already optimal with respect to the projection technique
applied.
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projection weights 
dynamics 0.0 
rhythm 1.0 
timbre 0.0 

distortion weights 
dynamics 1.0 
rhythm 0.0 
timbre 1.0 

Fig. 2. Left: MusicGalaxy visualization. Top right: corresponding SpringLens distor-
tion resulting from primary focus (red) and 5 secondary lenses (blue). Bottom right:
facet weights for the projection and distortion distance measures.

only the revised SoniXplorer [15], MusicBox [13], MusicSun [20] and our original
SOM-based prototype [27] allow automatic adaptation of the view on the col-
lection through interaction. Apart from this, there exist systems that also adapt
a similarity measure but not to change the way the collection is presented in
an overview but to directly generate playlists (e.g., [1,32]). In contrast to these
systems that purely focus on the task of playlist generation, we pursuit a more
general goal in providing an adaptive overview of the collection that can then
be used to easily generate playlists as, e.g., already shown in [8] or [13].

3 The MusicGalaxy Visualization

In previous work [28,29], we have developed an interface for exploring large mu-
sic collections using a galaxy metaphor that addresses the problem of distorted
neighborhoods. Figure 2 shows a screenshot of the interface visualizing a music
collection.6 Each track is displayed as a star, i.e., a point, with its brightness
and—to some extend—its hue depending on a predefined importance measure
(here a play count obtained from last.fm – other measures such as a general
popularity or ratings are possible). A spatially well distributed subset of the

6 A demo video is available at http://www.dke-research.de/aucoma
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collection (specified by filters) is additionally displayed as an album cover for
orientation. The arrangement of the stars is computed using multi-dimensional
scaling (MDS) [11] relying on a set of descriptive features to be extracted be-
forehand.7 MDS is a popular neighborhood-preserving projection technique that
attempts to preserve the distances (dissimilarities) between the objects in the
projection. The result of the MDS is optimal with respect to the minimization
of the overall distance distortions. Thus, fixing one distorted neighborhood is
not possible without damaging others. However, if the user shows interest in
a specific neighborhood, this one can get a higher priority and be temporarily
fixed (to some extend) at the cost of the other neighborhoods. To this end, an
adaptive distortion technique called SpringLens [5] is applied that is guided by
the user’s focus of interest. The SpringLens is a complex overlay of multiple
fish-eye lenses divided into primary and secondary focus. The primary focus is
a single large fish-eye lens used to zoom into regions of interest. At the same
time, it compacts the surrounding space but does not hide it from the user to
preserve overview. While the user can control the primary focus, the secondary
focus is automatically adapted. It consists of a varying number of smaller fish-
eye lenses. When the primary focus changes, a neighbor index is queried with
the object closest to the center of focus. If nearest neighbors are returned that
are not in the primary focus, secondary lenses are added at the respective posi-
tions. As a result, the overall distortion of the visualization temporarily brings
the distant nearest neighbors back closer to the focused region of interest. This
way, distorted distances introduced by the projection can to some extend be
compensated.

The user-interface has been evaluated in a study as reported in [26]. In the
study, 30 participants had to solve an exploratory image retrieval task8: Each par-
ticipant was asked to find representative images for five non-overlapping topics in a
collection containing 350 photographs. This was repeated on three different collec-
tions – each one with different topics and with varying possibilities for interaction,
comparing the fish-eye with traditional panning and zooming and a combination
thereof. In total, each participant spent between 30 and 60 minutes using the sys-
tem. The participants clearly preferred the fish-eye and the combined interface
over the traditional panning and zooming in terms of helpfulness, simplicity and
intuitivity. Further, gaze information recorded with an eye-tracker showed exten-
sive use of the secondary focus to find more relevant images belonging to the same
topic as the one in primary focus. As anticipated, some participants used the pri-
mary lens to skim through the photo collection in a rather continuous fashion. But
surprisingly, there was also a group that browsed the collection mostly by moving
(in a single click) the primary focus to some (previously) secondary focus region
step-by-step – much like navigating an invisible neighborhood graph. Thus, it can

7 Alternatively, feature information may also be annotated manually or collected from
external sources.

8 Images were used instead of tracks because (1) it could be guaranteed that the collec-
tion is unknown to all users and (2) visual similarity and relevance are much quicker
assessed.
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be concluded that the multi-focus SpringLens technique is very well suited for ex-
ploratory recommendation scenarios.

An aspect not addressed in the user study is that MusicGalaxy additionally
allows to adapt the underlying music similarity. To this end, music similarity
is represented as a distance measure that is a weighted linear combination of
facet distances. Each facet covers a specific aspect of music similarity such as
melody, harmony, rhythm, dynamics or lyrics and is defined by one ore more
representative features and an appropriate distance measure. The importance
of the individual facets can be adapted by changing their weights for the linear
aggregation. To this end, the user interface has a control panel (not shown in
the screenshot) with respective sliders. As we have shown in recent experiments
with simulated user-interaction [30], it is also possible to adapt the weights
automatically based on (relative) preferences derived from user actions such
as judging two objects to be more similar with respect to a third one. Using
adaptation, it becomes possible to personalize the music similarity measure used
for recommendations.

4 Bisociative Lens Distortions

How can MusicGalaxy be turned into an environment that supports bisocia-
tive music discovery? The general idea is to combine two distinct domain views
into one visualization by using the secondary focus to highlight connections to
nearest neighbors in a different domain than the one used for projection: The
“primary domain” is directly visualized by the projection and contains the dis-
played tracks connected by neighborhood relations that are implicitly induced
between each track and its neighbors in the projection.9 Additionally the “sec-
ondary domain”—which is used to identify nearest neighbors for the secondary
focus distortion—is not directly visible to the user. A bisociation occurs in this
setting if two tracks are not neighbors in the projection domain, i.e., close to each
other in the display, but are connected in the secondary domain. In this case,
the secondary focus will highlight this connection by focusing on the bisociated
track – or similar image with respect to another domain as shown in Figure 1.

4.1 Orthogonal Similarity Measures

The simplest way to create such a setting is to use orthogonal similarity mea-
sures, i.e., defined on non-overlapping facet sets, for the two domains by choosing
the facet weights accordingly. E.g., in Figure 2 the tracks in secondary focus are
very different in rhythm (large distance in projection) but very similar in dy-
namics and timbre with respect to the track in primary focus. This approach
could also be used in different applications. To illustrate the possibilities, imag-
ine a user wants to explore a collection of world-music as, e.g., addressed by

9 This is rather an artificial mental model a user perceives as no connections are explic-
itly visualized. Due to possible distortions introduced by dimensionality reduction,
it only approximates the one derived from the actual distances in the original space.
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mHashup [16]. In such applications, a straightforward way for the arrangement
of the tracks would be according to their geographical origin, i.e., mapping the
tracks on a common world map. Using this primary domain instantly gives the
user an overview of the geographic distribution of the tracks in the collection.
With the primary fish-eye lens, the user could magnify a region he is interested
in. This would allow to display the local distribution of tracks in more detail and
differentiate smaller (sub)regions. Note that in this special case, the arrangement
of the tracks is perfect in the sense that all distances can be displayed distortion-
free (except for the neglectible mapping of the earth’s surface to a plane) because
there is no dimensionality reduction involved. The secondary focus in its origi-
nal setting would be unnecessary here anyway and it could therefore be freely
used to highlight regions with nearest neighbors with respect to other aspects
addressed by the secondary domain – e.g., acoustic similarity as a combination
of its respective facets. Further, analyzing the interaction with the user, the sys-
tem can—over time—learn which (acoustic) facets (of the secondary domain)
are particularly important for the user and personalize the similarity measure
for nearest neighbor retrieval accordingly. This has already been described and
evaluated in [30].

4.2 Generalization to Domain Graphs

The above example uses an orthogonal similarity measure for the secondary do-
main. This is, however, only a very special case. Generally, the secondary domain
might be any graph that contains at least the tracks as concepts (nodes) and
allows to find neighboring tracks by some way of traversing relations between the
concepts. An orthogonal similarity measure as described above induces such a
graph: In this case, the graph contains only the tracks as concepts plus relations
between tracks that are nearest neighbors and finding nearest neighbors for a
track means simply returning all directly related tracks. An alternative way to
construct such a sparse neighborhood graph for the secondary domain is to use
any (black-box) system that recommends similar tracks for a seed track or even
a combination of several such systems. However, the graph does not need to be
confined to tracks. In fact, it may be arbitrarily complex – e.g., contain also
artists, albums plus respective relations and possibly allowing multiple paths
between tracks. For instance, from the freely available data from MusicBrainz10,
a user maintained community music meta-data base, a large graph can be con-
structed containing more than 10M tracks, 740K albums, 600K artists and 48K
labels.11 Between these entities, common relationships exist that, e.g., link tracks
to artists and albums as well as albums to artists and labels. Apart from this, a
large variety of advanced relationships links (ARL) exists. They are particularly
interesting as they go beyond trivial information, such as links from tracks and
albums to mastering and recording engineers, producers and studios (in total
more than 281K artist-album and 786K artist-recording ARLs), how artists are

10 http://musicbrainz.org/
11 Figures as of January 2011 when the graph was created.
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related with each other (more than 135K ARLs), or which tracks contain samples
of others (more than 44K recording-recording ARLs).12

Nearest neighbors for a track in primary focus can be found by traversing the
MusicBrainz graph in breadth-first order collecting paths to other tracks. Graph
traversal stops when either the traversal depth or the number of reached track
nodes exceeds a predefined threshold. As only the most relevant tracks can be
highlighted by the secondary focus, some relevance measure is required to rank
the retrieved tracks. Because increasing serendipity is the main objective, the
relevance measure should capture how likely a track will be a lucky surprise for
the user. This is however all but trivial. Possible simple heuristics are:

– Prefer tracks that are projected far away from the primary focus (and thus
most likely sound very different).

– Prefer tracks that the user has not listened to a lot or for a long time (and
probably is no longer aware of).

– Prefer tracks of different artists and/or albums.

The result of using either heuristic or a combination thereof will most likely
surprise the user but at the same time the risk is high that the connection to the
primary focus is too far fetched. Therefore, paths need to be judged according
to their interestingness. Platt [23] defines discrete edge distances depending on
the type of relationships for a similar graph created on a dataset from the All
Music Guide [3]. Similar weightings can be applied here. Alternatively, weights
could be assigned to common path patterns instead – possibly penalizing longer
paths. For instance, some path patterns are straightforward such as track-artist-
track (same artist) or track-album-track (same album) where the latter is more
interesting in terms of serendipity because it could be a compilation that also
contains tracks of other artists. Both weighting approaches require empirical
tuning of the respective weights. Another option is to count the frequencies of
occurring path patterns and boost infrequent and thus remarkable patters which
can be interpreted as analogy to the idf weights used in text retrieval. This fa-
vors patterns containing ARLs. If multiple paths between two tracks are found,
their weights can be aggregated, e.g., using the maximum, minimum or average.
More sophisticated methods like those described in [25] are currently developed
to facilitate bisociations on text collections and could also be applied here to fur-
ther increase the chances of bisociative recommendations from complex domain
graphs. This is currently studied more thoroughly as the impact of the different
heuristics and the values of their respective parameters are not yet fully clear.

5 Discussion

This research in the field of bisociative music collection exploration is still in
an early stage and clearly leaves several options for elaboration. For instance, it
would be possible to extend the domain graph beyond MusicBrainz by incorpo-
rating information from other sources such as last.fm, The EchoNest or Myspace

12 Full list available at: http://wiki.musicbrainz.org/Category:Relationship_Type
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(see Section 2 for some graphs created from artist-similarity relations that can
be obtained from these resources).

The user-interface needs to better integrate the graph information – possi-
bly displaying (single) interesting connections. It can also be important to point
out why a specific track is highlighted by the secondary focus. Such explanations
would make the recommendation more understandable and less ambiguous. Cur-
rently, a user can only recognize tracks of the same album (because of the same
cover) and to some extend tracks of the same artists (given he can associate
the album covers with the respective artists). Looking at the screenshot of Mu-
sicGalaxy shown in Figure 2, four tracks from the same album can be seen in
secondary focus. This is in fact because of a strong album effect (the album
contains jazz cover versions of Beatles songs) captured entirely only by acoustic
facets and without knowledge of track-album or track-artist relations. However,
a similar result could have been produced by using the MusicBrainz graph as
secondary domain. There is currently no visual clue to differentiate one from the
other. A deeper analysis of the relationship graph could lead to more sophis-
ticated ways of judging the interestingness of paths to related tracks. In order
to personalize recommendations and increase the chance of surprises, additional
information from a user-profile could be incorporated. Finally, it is necessary to
test the proposed approach in another user study. However, it still remains an
open question how to objectively judge the quality of recommendations in terms
of serendipity.13

6 Conclusions

This paper described an approach to increase the chance of serendipitous rec-
ommendations in an exploratory music retrieval scenario. Instead of addressing
serendipity directly, we proposed to exploit the related concept of bisociations
that can be formalized by means of graph theory. We demonstrated how separat-
ing the underlying similarity measures for projection and distortion in the Music-
Galaxy interface makes is possible to link two distinct domain views on a music
collection – creating a setting that promotes bisociations where serendipitous
recommendations become more likely. We hope that this paper can contribute
to the ongoing discussion of improving the serendipity of recommendations and
at the same time spreads the awareness of the bisociation concept.
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