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Foreword

We have all heard of the success story of the discovery of a link between the
mental problems of children and the chemical pollutants in their drinking water.
Similarly, we have heard of the 1854 Broad Street cholera outbreak in London,
and the linking of it to a contaminated public water pump. These are two high-
profile examples of bisociation, the combination of information from two different
sources.

This is exactly the focus of the BISON project and this book. Instead of
attempting to keep up with the meaningful annotation of the data floods we are
facing, the BISON group pursued a network-based integration of various types
of data repositories and the development of new ways to analyze and explore the
resulting gigantic information networks. Instead of finding well-defined global or
local patterns they wanted to find domain-bridging associations which are, by
definition, not well defined since they will be especially interesting if they are
sparse and have not been encountered before.

The present volume now collects the highlights of the BISON project. Not
only did the consortium succeed in formalizing the concept of bisociation and
proposing a number of types of bisociation and measures to rank their “bisociative-
ness,” but they also developed a series of new algorithms, and extended several
of the existing algorithms, to find bisociation in large bisociative information
networks.

From a personal point of view, I was delighted to see that some of our own
work on finding structurally similar pieces in large networks actually fit into that
framework very well: Random walks, and related diffusion-based methods, can
help find correlated nodes in bisociative networks. The concept of bisociative
knowledge discovery formalizes an aspect of data mining that people have been
aware of to some degree but were unable to formally pin down. The present
volume serves as a great basis for future work in this direction.

May 2012 Christos Faloutsos
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Towards Bisociative Knowledge Discovery™*

Michael R. Berthold

Nycomed Chair for Bioinformatics and Information Mining,
Department of Computer and Information Science,
University of Konstanz, Germany
Michael.Berthold@Uni-Konstanz.DE

Abstract. Knowledge discovery generally focuses on finding patterns
within a reasonably well connected domain of interest. In this article we
outline a framework for the discovery of new connections between do-
mains (so called bisociations), supporting the creative discovery process
in a more powerful way. We motivate this approach, show the differ-
ence to classical data analysis and conclude by describing a number of
different types of domain-crossing connections.

1 Motivation

Modern knowledge discovery methods enable users to discover complex patterns
of various types in large information repositories. Together with some of the
data mining schema, such as CRISP-DM and SEMMA, the user participates in
a cycle of data preparation, model selection, training, and knowledge inspection.
Many variations on this theme have emerged in the past, such as Explorative
Data Mining and Visual Analytics to name just two, however the underlying
assumption has always been that the data to which the methods are applied
to originates from one (often rather complex) domain. Note that by domain
we do not want to indicate a single feature space but instead we use this term
to emphasize the fact that the data under analysis represents objects that are
all regarded as representing properties under one more or less specific aspect.
Multi View Learning [19] or Parallel Universes [24] are two prominent types of
learning paradigms that operate on several spaces at the same time but still
operate within one domain.

Even though learning in multiple feature spaces (or views) has recently gained
attention, methods that support the discovery of connections across previously
unconnected (or only loosely coupled) domains have not received much atten-
tion in the past. However, methods to detect these types of connections promise
tremendous potential for the support of the discovery of new insights. Research
on (computational) creativity strongly suggests that this type of out-of-the-box
thinking is an important part of the human ability to be truly creative. Discov-
eries such as Archimedes’ connection between weight and (water) displacement
and the — more recent — accidental (“serendipitous”) discovery of Viagra are two
illustrative examples of such domain-crossing creative processes.

* Extended version of [].

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 1 2012.
© The Author(s). This article is published with open access at SpringerLink.com



2 M.R. Berthold

In this introductory chapter we summarise some recent work focusing on es-
tablishing a framework supporting the discovery of domain-crossing connections
continuing earlier work [3]. In order to highlight the contrast of finding patterns
within a domain (usually associations of some type) with finding relations across
domains, we refer to the term bisociation, first coined by Arthur Koestler in [13].
We argue that Bisociative Knowledge Discovery represents an important chal-
lenge in the quest to build truly creative discovery support systems. Finding
predefined patterns in large data repositories will always remain an important
aspect, but these methods will increasingly only scratch the surface of the hidden
knowledge. Systems that trigger new ideas and help to uncover new insights will
enable the support of much deeper discoveries.

2 Bisociation

Defining bisociation formally is, of course, a challenge. An extensive overview of
related work, links to computational creativity and related areas in Al, as well as
a more thorough formalisation can be found in [7]. Here we will concentrate on
the motivational parts and only intuitively introduce the necessary background.

Boden [4] distinguishes among three different types of creative discoveries: Com-
binatorial, Exploratory, and Transformational Creativity. Where the second and
third category can be mapped on (explorative) data analysis or at least the dis-
covery process within a given domain, Combinatorial Creativity nicely represents
what we are interested in here: the combination of different domains and the cre-
ative discovery stemming from new connections between those domains.

Informally, bisociation can be defined as (sets of ) concepts that bridge two other-
wise not —or only very sparsely— connected domains whereas an association bridges
concepts within a given domain. Of course, not all bisociation candidates are equally
interesting and in analogy to how Boden assesses the interestingness of a creative
idea as being new, surprising, and valuable [4], a similar measure for interestingness
can be specified when the underlying set of domains and their concepts are known.
Going back to Koestler we can summarise this setup as follows:

“The creative act is not an act of creation in the sense of the Old Tes-
tament. It does not create something out of nothing; it uncovers, selects,
re-shuffles, combines, synthesises already existing facts, ideas, faculties,
skills. The more familiar the parts, the more striking the new whole.”

Transferred to the data analysis scenario, this puts the emphasis on finding
patterns across domains whereas finding patterns in the individual domains
themselves is a problem that has been tackled already for quite some time. Put
differently, he distinguishes associations that work within a given domain (called
matriz by Koestler) and are limited to repetitiveness (here: finding other/new
occurrences of already identified patterns) and bisociations representing novel
connections crossing independent domains (matrices).
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3 Types of Bisociation

Obviously the above still remains relatively vague and for concrete implemen-
tations the type of bisociative patterns that are sought needs to be specified
better. In the past years a number of bisociation types emerged in the context
of Bisociative Knowledge Discovery: Bridging Concepts, Bridging Graphs, and
Bridging by Structural Similarity, see [I4] for a more detailed analysis. Since
these ideas are also addressed in other areas of research, additional types most
likely exist in those fields as well.

3.1 Bridging Concepts

The most natural type of bisociation
is represented by a concept linking
two domains, Figure[dlillustrates this.

Such bridging concepts do not need
to exist in the context of a network
based representation, as suggested by
the figure, but can also be found in
other representations. In [21], for in-
stance, different textual domains were
analysed to find bisociative terms that
link different concepts from the two
domains.

An example of a few bridging concepts is shown in Figure[2 Here a well known
data set containing articles from two domains (migraine and magnesium) was
searched for bridging terms (see [2I] for more details). Note that this example
reproduces an actual discovery in medicine.

Fig. 1. Bridging concept (from [14])

migraine & [ serotonin

[ vasospas1i

[calcium channel blocker} —» magnesium

Fig. 2. Bridging concepts - an example reproducing the Swanson discovery (from [21])
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Fig. 3. Bridging graphs (from [14])

3.2 Bridging Graphs

More complex bisociations can be modelled by bridging graphs, Figure ] illus-
trates this concept in a network context.

Here two different domains are connected by a (usually small) subset of con-
cepts that have some relationship among themselves. In a network-based repre-
sentation, a relatively dense subgraph can be identified connecting two domains.
However, also in other representations, such “chains of evidence” can be for-
malised, connecting seperate domains.

Two examples for bridging graphs are shown in Figure @] (the data stems
from Schools-Wikipedia, see [I7] for details). These demonstrate well how the
two concepts “probability space” and “arithmetic mean” connect the domain of
movies with a number of more detailed concepts in the statistics domain. This
is at first glance surprising but finds its explanation in the (in both cases also
somewhat “creative”) use of those concepts in the two films or the series of films
dominated by one actor. The second example nicely bridges physical properties
and usage scenarios of phonographs.

Steven Spiclberg Pirates of the Caribbean film series Kinematics
The Lord of the Rings film trilogy Harry Potter film series Angular velocity Acceleration
. Velocity
Jurassic Park film
The Golden Compass film
Phonograph cylinder
Arnold Schwarzenegger
American popular music
Probability space
g Mean Rhythm and blues
Random variable Standard deviation v Louis Jordan
Variance Linear regression Miles Davis

Fig. 4. Bridging graphs - two examples (from [17])
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Fig. 5. Bridging by graph similarity (from [I4])

3.3 Bridging by Structural Similarity

The third, so far most complex type of bisociation does not rely on some straight-
forward type of link connecting two domains but models such connections on a
higher level. In both domains two subsets of concepts can be identified that
share a structural similarity. Figure [ illustrates this — again in a network-
based representation; also here other types of structural similarity can
exist.

An interesting example of such structural similarities can be seen in Figure [Gl
The demonstration data set based on Schools-Wikipedia was used in this exam-
ple again. The two nodes slightly off centre (“Euclid” on the left and “Plato” on
the right) are farther apart in the original network but share structural proper-
ties such as being closely connected to the hub of a subnetwork (“mathematics”
vs. “philosophy”). Note that “Aristotle” also fills a similar role in the philosophy
domain.

— Ari(fnetic
S

Fig. 6. Bridging by graph similarity - example (from [22])
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3.4 Other Types of Bisociation

The bisociation types discussed above are obviously not complete. The first two
types are limited to a 1:1 match on the underlying structures and require that
the two domains already have some type of (although sparse) neighbourhood
relation. Only the third type allows matching on a more abstract level, finding
areas of structural similarity and drawing connections between those. Other,
more abstract, types of bisociation certainly exist but also more direct bisociation
types can be defined as well. This is an exciting area of research and one could
also imagine systems that observe user interaction and learn new complex types
of bisociation from user feedback and successful discoveries.

4 Bisociation Discovery Methods

In order to formalise the types of bisociations and develop methods for finding
them, a more detailed model of the knowledge space needs to be available. When
dealing with various types of information and the desire to find patterns in
those information repositories a network-based model is often an appropriate
choice due to its inherent flexibility. A number of methods can be found in
this volume [2]. We hasten to add, however, that this is not the only way to
model domains and bisociations, some contributions finding bisociation in non-
network type domains can be found here as well, see for example the text-based
bisociative term discoveries in [12/21].

It is interesting to note that quite a few of the existing methods in the ma-
chine learning and data analysis areas can be used, frequently with only minor
modifications. For instance, methods for item set mining can be applied to the
detection of concept graphs [I5] and measures of bisociation strength can also
be derived from other approaches to model interestingness [20/22]. Bisociative
Knowledge Discovery can rely to a fairly large extent on existing methods, how-
ever the way in which these methods are applied is often radically different.
Instead of searching for patterns that have reasonably high occurrence frequen-
cies we are often interested in the exact opposite: the essenace of bisociations is
something that is new and whose existence is only hinted at, if at all so far.

This focus on “finding the unexpected” obviously also requires rather different
approaches to the creation, analysis and exploration of the underlying structure.
Overviews of these three aspects can be found in [5], [23], and [18/9] respectively.
Note that an even bigger challenge as opposed to usual knowledge discovery
setups is the lack of comprehensive benchmarks. Finding the unexpected is a
moving target — once knowledge becomes common sense, it ceases to be all that
surprising. In [16] a number of application examples and attempts at benchmark-
ing are summarised and yet there is still scope for work here, specifying how such
discovery support systems can be evaluated more comprehensively. The classic
setup of benchmark repositories is unlikely to be sufficient, as pure numerical
performance does not really quantify a method’s potential for creativity support
— in fact individual methods will be hard to be evaluated properly, as they only
become useful in concert with a larger system enabling truly explorative use.
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5 Future Directions

The work briefly outlined in this paper is only the start, of course. Much more
needs to be done to fully understand and make use of bisociative knowledge dis-
covery systems. For once, the nature of bisociative patterns is far from complete
— so far we have mainly addressed more classical approaches of finding numeri-
cal ways to assess the potential for bisociative insights of fairly simple patterns.
The true potential lies in finding more abstract techniques to discover bisocia-
tions, similar to the methods described in [22] or [I1]. Using abstract features to
describe neighbourhoods — quite similar to the fingerprint similarity measures
used in molecular searches for a long time already — shows enormous promise.
Finding structurally similar patterns in different domains allows more complex
knowledge to be transferred among the involved domains than only pointing to
an existing (or missing) link.

However, in order to support the exploration of these more complex patterns it
will be paramount to develop methods that allow smooth transitions among the
associated levels of abstraction. Formal groundings for view transformations,
similar to the methods described in [6] will be required. This will need to be
accompanied by other powerful visual tools, of course, in order to actually give
users access to these view transformations. BioMine [§] or CET [10] have been
used successfully but even more flexible methods will be needed to integrate
various views within the same structure. An interesting additional challenge will
be the integration of user feedback not only in terms of guiding the search but
also with respect to actually learning from the users’ feedback to avoid proposing
uninteresting patterns over and over again. Unfortunately, as discussed above,
“(un)interesting” is a moving target and heavily depends on the current scope
of analysis. Active Learning approaches offer interesting mechanisms to quickly
update internal models of interest to make those systems respond in a useful way.
An interesting side effect could be that such learning systems observe the users,
learn patterns of bisociation that were of interest in the past and actually transfer
those patterns among different analyses, thus forming meta level bisociations
over time.

6 Conclusions

Bisociative Knowledge Discovery promises great impact especially in those areas
of scientific research where data gathering still outpaces model understanding.
Once the mechanisms are well understood the task of data analysis tends to
change and the focus on (statistically) significant and validated patterns is much
stronger. However, in the early phase of research, the ability to collect data out-
performs by far the experts’ ability to make sense out of those gigantic data
repositories and use them to form new hypotheses. This trend can be seen in
the life sciences where data analysis barely scratches the surface of the wealth of
generated data. Current methods not only fall short of offering true, explorative
access to patterns within domains, but are also considerably lacking when it
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comes to offering this kind of access across domains. The framework sketched
here (and more substantially founded in [7]) can help to address this shortcoming.
Much work still needs to be done, however, as many more types of bisociations
can be formalised and many of the existing methods in the machine learning and
data analysis/mining community are waiting to be applied to these problems.

One very interesting development here can be seen in the network-based biso-
ciation discovery methods which are beginning to bridge the gap nicely between
solidly understood graph theoretical algorithms and overly heuristic, poorly con-
trollable methods. Putting those together can lead to the discovery of better
understood bisociative (and other) patterns in large networks.

The data mining community has been looking for an exciting “Grand Chal-
lenge” for a number of years now. Bisociative Knowledge Discovery could offer
just that: inventing methods and building systems that support the discovery of
truly new knowledge across different domains will have an immense impact on
how research in many fields can be computer supported in the future.
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Abstract. Creative information exploration refers to a novel framework
for exploring large volumes of heterogeneous information. In particular,
creative information exploration seeks to discover new, surprising and
valuable relationships in data that would not be revealed by conven-
tional information retrieval, data mining and data analysis technologies.
While our approach is inspired by work in the field of computational cre-
ativity, we are particularly interested in a model of creativity proposed
by Arthur Koestler in the 1960s. Koestler’'s model of creativity rests on
the concept of bisociation. Bisociative thinking occurs when a problem,
idea, event or situation is perceived simultaneously in two or more “ma-
trices of thought” or domains. When two matrices of thought interact
with each other, the result is either their fusion in a novel intellectual
synthesis or their confrontation in a new aesthetic experience. This arti-
cle discusses some of the foundational issues of computational creativity
and bisociation in the context of creative information exploration.

“Creativity is the defeat of habit by originality.” — Arthur Koestler

1 Introduction

According to Higgins, creativity is the process of generating something new that
has value [19]. Along with other essentially human abilities, such as intelligence,
creativity has long been viewed as one of the unassailable bastions of the hu-
man condition. Since the advent of the computer age this monopoly has been
challenged. A new scientific discipline called computational creativity aims to
model, simulate or replicate creativity with a computer [7]. This article explores
the concept of bisociation [20] in the context of computational creativity. While
our discussion may be relevant to a large number of domains in which creativ-
ity plays a central role, we emphasize domains with clear practical applications,
such as science and engineering. We start our discourse on bisociation with the
familiar concept of association.

The concept of association is at the heart of many of today’s powerful computer
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” to locate or discover

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 11 2012.
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information relevant to a user’s tasks. A typical feature of these approaches is that
the underlying information pool (document corpora, databases, Web sites, etc.)
contains information that has been pre-selected in some way to focus and simplify
the discovery process. For example, a biological study would pre-select scientific
papers from relevant life science journals or abstracts before applying a particular
text mining task. Pre-selecting information in this way already introduces certain
limits on how creative these conventional approaches can be. This means that un-
der normal circumstances such resources would not be combined to facilitate cre-
ative insights and solutions. A novel information exploration paradigm that aims
to facilitate the generation of creative insight or solutions could be referred to as
creative information exploration (CIE). Domains were CIE is critical include de-
sign and engineering, the arts (e.g., painting, sculpture, architecture, music and
poetry) as well as scientific discovery disciplines.

In the remainder of this article we use the terms creative domains and creative
disciplines to designate domains and disciplines in which creative information
discovery plays an important role.

People working in creative domains employ creative thinking to connect seem-
ingly unrelated information, for example, by using metaphors, analogy and other
ways of thinking and reasoning [6]. Creative styles of thought allow the mixing
of conceptual categories and contexts that are normally separated. Our goal is
to develop computer-based solutions that support creative thinking. Inspired
by Koestler’s notion of bisociation [20], our particular aim is to develop con-
cepts and solutions that facilitate bisociative CIE tasks in creative domains.
Intuitively, bisociative CIE could be viewed as an approach that seeks to com-
bine elements from two or more “incompatible” concept or information spaces
(domains) to generate creative solutions and insight.

The remainder of this article is organized as follow: Sections 2 and Blintroduce
a working definition of creativity with a view to its computational realization.
In Sections [ to [6] we review Kostler’s notion of bisociation and offer an initial
formal definition of this concept. Before we reflect on the work presented in this
article and offer some concluding remarks (Section [§]), we present a short review
of related work in Section [7

2 Creativity

2.1 What Is Creativity?

Human creativity, like other human capabilities, is difficult to define and formal-
ize. In this article we adopt the following working definition of creativity based
on the work by Margaret Boden [6].

Definition 1 (creativity). Creativity is the ability to come up with ideas or
artifacts that are new, surprising, and valuable.

In this working definition of creativity the notions of idea and artifact refer to
concepts and creations from art as well as science and engineering and other
areas. Here we view creativity as an ability which is an intrinsic part of an
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intelligent agent (human, machine-based or otherwise). In the following discus-
sion we elaborate the meaning of the concepts new, surprising and valuable in
the definition of creativity.

The word new in our working definition of creativity may refer to two dimen-
sions: historic creativity or personal creativity. By historic creativity we mean ideas
or artifacts that are original in the sense that they represent the first occurrence of
a particular idea or artefact in human history. The history of science and modern
legal practice tell us that sometimes it may not be straightforward to determine
precisely the first occurrence of a scientific or engineering idea. Examples of dis-
putes over historic creativity include the theory of evolution, the invention of gun
powder, and the social Web site Facebook. Personal creativity, on the other hand,
means that someone comes up with an idea or invention independently from some-
one else who had already conceived of the same thing before. From the perspective
of the “re-inventor” this still constitutes “true” creativity.

An important factor in our working definition of creativity concerns the notion
of surprise — for a new idea to be considered creative there has to be an element
of surprise. An idea or artefact may be surprising because it is unlikely (has a low
probability of occurring) or unfamiliar. When a new idea unexpectedly falls into an
already familiar conceptual framework (or thinking style) one is intrigued to not
have realized it before. For example, in 1996 Akihiro Yokoi invented a “digital pet”
called Tamagotchi which soon became a best seller. While the concept of looking
after plants, pet animals and soft toy pets has been around for a long time, no one
had dared to think that this idea could be applied to devices that resemble digi-
tal pocket calculators. A different type of surprise occurs when we encounter an
apparently impossible concept or artefact. For instance, in 1905 Einstein shocked
the scientific establishment by suggesting that energy is being transmitted in fi-
nite “packets” called quanta [I1]. Max Planck, the originator of quantum theory,
initially rejected Einstein’s proposal even though his own theory suggested that
energy transfer to and from matter is not continuous but discrete.

The last element in our working definition of creativity is the notion of value —
a new concept or artefact must be valuable in some non-trivial way to qualify as
creative. In the fine arts aesthetic values are difficult to recognize or agree about:
what makes a painting by one artist hundred times more expensive than a paint-
ing by another? To formally define aesthetic values is even harder. Furthermore,
values vary over time and within and across cultures. Even in science there is of-
ten considerable disagreement over the “simplicity”, “elegance” or “beauty” of a
theory or scientific argument. Einstein and Bohr, for instance, had argued over
decades about the value (correctness and completeness) of the two prevailing
models of the atom (the probabilistic and discrete model, favored by Bohr, and
the deterministic and continuous model, which was preferred by Einstein) [22].
Whether a particular hypothesis is interesting or valuable may depend on sci-
entific, social, economic, political and other factors. So even when we agree on
novelty and the factor of surprise, there may still be a considerable disagreement
over how valuable a new idea or artefact is, hence over the degree of creativity.
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This brief discussion about the nature of creativity and the difficulty to rec-
ognize and agree on what creativity actually is serves as a context for the de-
velopment of computational creativity techniques. Ultimately, what constitutes
human or machine creativity is difficult to judge and needs to be assessed on a
case-by-case basis.

2.2 Three Roads to Creativity

Following Boden [6] we distinguish three processes of creativity; these relate to
the three forms of surprises discussed above.

Combinatorial Creativity. Arthur Koestlenl] is credited with the following
characterization of creativity:

The creative act is not an act of creation in the sense of the Old Testa-
ment. It does not create something out of nothing; it uncovers, selects, re-
shuffles, combines, synthesizes already existing facts, ideas, faculties, skills.
The more familiar the parts, the more striking the new whole.

This idea is very much in line with the first process of creativity identified by
Boden, which generates unfamiliar combinations of familiar concepts and con-
structs. In humans, analogy is a fundamental cognitive process in which familiar
elements appear in an unfamiliar arrangement. A typical example of analogy
establishes an analogical relationship between Niels Bohr’s model of the atom
with the basic structure of the heliocentric solar system. Facilitating this kind
of creative process requires a rich knowledge structure and flexible ways of ma-
nipulating this structure. Clearly, the novel combination of elements must have
a point or a meaning. Therefore, purely random shuffling and re-combination of
elements will not be sufficient to generate creativity.

Exploratory Creativity. Margaret Boden defines conceptual spaces as a
“structured style of thought”. In her definition, a key characteristic of concep-
tual spaces is that they are not originated by an individual but are a structure
adopted from the cultures and peer groups within which people live [6]. Concep-
tual spaces include ways of writing prose, styles of architecture and art, theories
of nature, as well as approaches to design and engineering. So any systematic
way of thinking which is valued by a certain group or culture could be thought
of as a conceptual space.

In Boden’s framework, a conceptual space defines a space of possible combi-
nations of its elements, where each combination represents a particular thought,
idea or artifact. While the number of possible thoughts within a conceptual
space may be very large, only a fraction of these may have actually been real-
ized. Consider, for instance, the games of chess and checkers. In chess the number
of possible legal positions or “configurations” has been estimated at 10'°7%° and
for checkers the number is 10*® [16J29]. Clearly, even with the long history of
chess playing, only a very small number of possible “combinations” could have

! Prolific writer and author of The act of creation [20].
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been explored so far. Clearly, Boden’s concept of a conceptual space is much
broader. For the game of chess, for example, it would not only include all possible
chess board positions but also all knowledge structures employed by chess players
to play the game as well as other facts and information about chess.

No matter what the actual size of a given conceptual space, someone who
comes up with a new combination within that space is considered to be creative
in the exploratory sense (provided the combination “has a point”). Boden likens
the exploration of conceptual spaces to the exploration of a territory with a map.
The map encompasses all possibilities, but to discover a particular and valuable
possibility one needs to go out and explore the actual territory. Ezploratory cre-
ativity is important as it facilitates the discovery of so far unknown possibilities.
Once such novel possibilities come to light, the explorers may even be able to
reflect deeper on the limits and potentials of a particular conceptual space.

Transformational Creativity. Exploratory creativity is limited by the possi-
bilities defined within a conceptual space or thinking style (or “map”). Essen-
tially, each conceptual space restricts the kind of thoughts that can be thought.
To overcome this limitation, and to attempt to think what is unthinkable within
a given conceptual space, it is necessary to change or transform the conceptual
space. It must be transformed so that thoughts that were inconceivable within
the previous version of the space now become possible. Such transformations
may be subtle or radical. Transformational creativity constitutes the deepest
form of creative processes in Boden’s model of creativity.

3 Computational Creativity

Teaching humans to be creative is a flourishing business and the number of cre-
ativity techniques available is large [19]. Teaching or programming a computer to
be creative or appear to be creative is another matter altogether. Computational
creativity refers to an active scientific discipline that aims to model, simulate or
replicate creativity using a computer [7].

Computational creativity draws on many concepts developed within the field
of artificial intelligence (AI). Analogously to computational creativity, Al could
be defined as a discipline aiming to model, simulate or replicate (human) intel-
ligence. Boden suggests that AI concepts could be used to define and construct
artificial conceptual spaces which could then be studied and eventually be used
to combine elements from the spaces, and to explore and transform such spaces
with the aim of generating creative insight and solutions. Boden describes con-
crete Al-based approaches to computational creativity [6I7].

4 Koestler’s Concept of Bisociation

People working in creative domains employ creative thinking to connect seem-
ingly unrelated information (true negatives under the association paradigm), for
example, by using a metaphoric or analogical way of thinking. Analogical and
metaphoric styles of thought allow the mixing of conceptual categories and
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contexts that are normally separated. In the 1960s Arthur Koestler developed a
model of creative thinking referred to as bisociation [20]. Bisociation facilitates the
mixture in one human mind of concepts from two contexts or categories of objects
that are normally considered separate by the literal processes of the mind.

Koestler proposed the bisociation concept to distinguish the type of
metaphoric thinking that leads to the acts of great creativity from the more
“pedestrian” associative style of thinking, with which we are so familiar in our
everyday lives and which pervades many of todays computing approaches. As-
sociative thinking is based on the “habits” or set of routines that have been
established over a period of time. Associative processes combine elements from
the same “matrix” of thought. The associative mode of thinking differs from
the bisociative mode that underlies the creative act. Bisociation, according to
Koestler, means to join unrelated, often conflicting, information in a new way.
It is being “double minded” or able to think simultaneously on more than one
plane or matrix of thought (see Figure [Ml). “When two independent matrices
of perception or reasoning interact with each other the result ... is a ... fusion
in a new intellectual synthesis ...” [20]. Frank Barron reinforces this idea and
characterizes bisociation as “the ability to tolerate chaos or seemingly oppo-
site information” [3]. Koestler makes a clear distinction between more routine
or habitual thinking (association) operating within a single plane or matrix of
thought, and the more creative bisociative mode of thinking which connects
independent autonomous matrices.

Koestler’s basic concept of bisociation is illustrated in Figure[ll The diagram
depicts two matrices of thought (domains or knowledge bases in our terminol-
ogy), My and Ms, as orthogonal planes. M; and Ms represent two self-contained
but “habitually incompatible” matrices of thought. An event, idea, situation,
concept or problem, 7, which is perceived simultaneously in both matrices is
not merely linked to one associative context (M; or Ms) but bisociated with
two associative contexts (M7 and Ms). In the diagram, 7 is illustrated by the
thick line cutting across M; and Ms. The diagram illustrates six concepts la-
beled cq, ..., cg. The concepts c1, co, c3 and cg are perceivable in matrix Ms and
c1,Co,c3,c4 and cy are perceivable in M7. The concepts c1, co, c3 are associated
with the problem 7 — because ci, cs, c3 are perceivable in both matrices, it is
possible to “see” the problem simultaneously from two frames of mind.

Central to Koestler’s concept of bisociation are the notions of a matriz and a
code Koestler [20]; we quote from page 38:

... to introduce a pair of related concepts which play a central role
in this book and are indispensable to all that follows. ... I shall use the
word ‘matriz’ to denote any ability, habit, or skill, any pattern of ordered
behavior governed by a ‘code’ of fixed rules.

A matrix? in Koestler’s framework denotes any ability, skill, habit or pattern of
ordered behavior. Matrices shape our perceptions, thoughts, and activities; they

2 Other terms Koestler uses for the concept of a matrix include the following: matrix of
thought, matrix of behavior, matrix of experience, matrix of perception, associative
context, frame of reference, universe of discourse, type of logic, code of behavior.
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Fig. 1. Ilustration of Koestler’s concept of bisociation (adapted from Koestler [20])

could be viewed as condensations of learning into “habit”. For example, a spider
has an innate skill that enables it to build webs, a mathematician possesses the
ability of mathematical reasoning, and a chess grandmaster has a knowledge
base which allows him to play chess at a very high level. The abilities and skills
represented by a matrix may be applied to concrete problems and tasks in a
flexible way. For example, depending on the environment a spider finds itself in,
it may choose three, four or more points of attachment to suspend its web.

Each matrix in Koestler’s model of bisociation is governed by a set of fixed
codes or rules. The rules could be innate or acquired. For example, in the game of
chess, the rules of the game are fixed, while the patterns of knowledge (allowing
one to play well or not so well) vary across playersﬁ. In mathematics, operations
such as multiplication, differentiation, integration, etc. constitute fixed rules that
govern mathematical reasoning. Another example of a code are the assumptions,
concepts, notions, etc. that underly religious, political, economic, philosophical
and similar debates and arguments. For instance, a debate on abortion may be
held “in terms of” religious morality or social responsibility. Often the rules that
govern a matrix of skill (ability, habit) function on a lower level of awareness than
the actual performance itself (playing the piano, carrying out a conversation,
formulating a strategy).

Once people have reached adulthood they have formed more or less rigid,
automated patterns of behavior and thinking (“habits” or knowledge bases).
Sometimes these patterns are interrupted by spontaneous sparks of insight which
presents a familiar concept or situation in a new light. This happens when we
connect previously unconnected matrices of perception or experience in a creative
act of bisociation. Considering the field of humor, science and engineering as well
as the arts, Koestler’s conjecture was that bisociation is a general mechanism

3 Certain ways of playing chess are also relatively frequent or nearly constant. For
example, certain moves in chess openings, or certain endgame patterns.
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for the creative act. When two habitually independent matrices of perception
or reasoning interact with each other the result is either a collision ending in
laughter, or their fusion in a new intellectual synthesis, or their confrontation in
an aesthetic experience [20].

Koestler provides numerous examples and illustrations of his bisociation concept
in different areas and domains. In the following we briefly summarize the Archimedes
example which Koestler refers to as the “Eureka act” (Figure[2]). The Eureka act is
concerned with the discovery of solutions to a more or less scientific problem.

Archimedes, a leading scientists in classical antiquity, was tasked with the prob-
lem of determining whether a crown (a present for Hiero, tyrant of Syracuse) con-
sisted of pure gold or was adulterated with silver. To solve this problem Archimedes
needed to measure the volume of the crown. At the time no method existed to deter-
mine the volume of such an irregularly shaped three-dimensional object. Pondering
over this problem, Archimedes’s thoughts wandered around his matrix of geomet-
rical knowledge (Figure[Zh). One day, while taking a bath, Archimedes noticed the
rise of the water level as his body slid into the basin. It was at this point when he con-
nected the matrix of and experience associated with taking a bath with the matrix
of his knowledge of geometry. He realized that the volume of water displaced was
equal to the volume of the immersed parts of his own body. This Eureka moment is
illustrated in FigureZb. When Archimedes found the solution to this problem both
matrices (associations of taking a bath and knowledge of geometry) were simulta-
neously active. In a sense Archimedes was looking at the same problem from two
different perspectives of knowledge or experience at the same time. This “double-
mindedness” allowed him to see the solution which was obscured under the view of
either of the two individual perspectives.

Consider the diagram in Figure Bh. The dashed line illustrates Archimedes’s
search through the conceptual space to find a solution for his problem. While
the search path traverses both knowledge bases (M; and M), the reasoning
of Archimedes is initially confined to perceiving only one knowledge base at a
time. Thinking about the problem in this “habitual” way, Archimedes fails to
“see” the solution, because he does not simultaneously perceive the concepts
describing the solution (¢; and ¢g) and the problem (c1, ¢2 and c3).

Now consider the diagram in Figure Zb. At some point Archimedes is able
to perceive the concepts describing both the problem (P) and the solution (5)
simultaneously from the perspective of both knowledge bases. This is depicted
by the line connecting the corresponding concepts across both knowledge bases.
It is at this point when Archimedes experiences the Eureka moment which is
created by the bisociative view spanning two matrices of thought.

The example of Archimedes and the crown illustrates how a familiar but un-
noticed aspect of a phenomenon (rise of water level as a result of the immersion
of an object) is suddenly perceived at an unfamiliar and significant angle (deter-
mining the purity of substance of an irregularly shaped object). Koestler refers
to this as the “bisociative shock” often associated with discoveries when we
suddenly see familiar objects and events in a strangely new and revealing light.
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Matrix/ Knowledge Base: M, Matrix/ Knowledge Base: M,

|
Legend:

@ Concept as perceived within M,
O Concept as perceived within M,

Fig. 2. Illustration of the Eureka act (adapted from Koestler [20]). The matrix or
knowledge base M, represents concepts or associations of geometrical knowledge, and
Mo those of taking a bath. The dashed lines represent the search or exploration of
the matrices as part of the problem-solving process. (a) Diagram on the left: The
line connecting the concepts ci, c2 and c3 represents the problem, P, as perceived
by Archimedes based on his geometric knowledge base M;. The arc connecting the
concepts ¢1 and c¢g in Ms represents the solution, S. (b) Diagram on the right: The
concepts associated with the problem and solution when perceived simultaneously in
both knowledge bases.

The distinguishing characteristics of associative and bisociative thought are
summarized in Table [I1

Table 1. Comparison of characteristics of bisociation and association based on
Koestler [20]

Habit (Associative) Originality (Bisociative)
association within a given matrix bisociation of independent matrices
rigid to flexible variations on a theme super-flexibility
repetitiveness novelty
conservative destructive-constructive

5 Elements of Bisociative Computational Creativity

Before we formally define bisociation, we analyze and compare the concepts and
models of creativity proposed by Boden and Koestler. We do this by adopting
an Al perspective of the notions involved and, on this basis, attempt a synthe-
sis. In essence, we define creativity and bisociation in terms of domain theories
and knowledge bases. Simply put, a domain theory consists of all knowledge
(concepts) relevant to a given domain (at a given point in time), regardless of
the type of knowledge, how it is encoded (formalism, substrate) or where it is
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located. Under this definition of a domain theory, a knowledge base is simply
a subset of all the concepts in a domain theory. However, different classes of
knowledge bases may be distinguished.

Concept. A concept denotes a cognitive unit of meaning which is sometimes
referred to as “unit of knowledge”. Concept descriptions are constructed from
concept properties (features, dimensions) [30]. A concept is normally associated
with a corresponding representation or encoding in a particular language or
formalism. Concepts form the basis for the cognitive abilities of an intelligent
agent. Without a concept, an intelligent agent or reasoner, relying on a mem-
ory containing a potentially large number of items, would be hopelessly lost.
If a reasoner perceived each entity as unique, it would be overwhelmed by the
enormous diversity of what it experiences, unable to remember but a fraction of
what it encounters. A concept captures the notion that many objects, ideas or
events are alike in some important respects, and can therefore be thought about
in the same or similar ways. Once an entity has been assigned to a concept on
the basis of its perceptible properties, a concept may also be used to infer some
of the entity’s non-perceptible attributes. Having, for example, chosen percepti-
ble attributes like size, shape and material to decide an object is a book, it can
be inferred that the object contains pages and textual information. This idea
of inferability is based on the assumption that all instances of a given concept
are subject to the same, or similar, underlying mechanisms (e.g., cause-effect
relationships) which may or may not be completely known. Such mechanisms
may be simple, in the case of books, or complex in chess positions.

Different views and models of concepts have been proposed [30]; these vary
in a number of aspects, in particular, in the degree to which they are determin-
istic/probabilistic and intensional/extensional. In this article, concepts form the
basic units from which domain theories and knowledge bases are constructed.
Here, concepts include all forms of knowledge, including the three kinds of knowl-
edge normally distinguished in epistemology: “knowledge that” (propositional,
declarative knowledge), “knowledge how” (procedural knowledge) and “acquain-
tance knowledge” (about places, situations, cases, experiences) [I]. The knowl-
edge that concepts represent may be tacit or explicit, it may be implemented on
living tissue, electronic structures, paper or any other substrate. Critical for our
discussion on domain theories and knowledge bases is that concepts are normally
associated with one or more domains.

Notice that here we do not differentiate the representation languages or for-
malisms used to specify concrete knowledge structures (frames, rules, trees, net-
works, heuristics, case bases, etc.).

Domain Theory. For the purpose of this discussion, a domain is viewed as
a formal or common sense topic, subject area, field of interest, for example, a
scientific discipline (e.g., biology), a game (e.g., chess), social, cultural, economic
or political topics (e.g., religious morality), common patterns of activity (e.g.,
taking a bath), and so on. Based on this view of a domain, we define a domain
theory as follows:



Towards Creative Information Exploration Based on Koestler’s Concept 21

Definition 2 (domain theory). A domain theory D; defines a set of concepts
(knowledge units) that are associated with a particular domain i.

Notice that a particular concept may belong to more than one domain theory
at the same time.

In this view of a domain theory it is easy to see that most domain theo-
ries would be formed from an heterogeneous and distributed pool of knowledge
“sources” , including humans, documents, electronic systems, and so on. For ex-
ample, the domain theory of chess would be “encoded” in books, reports of
tournaments, databases, chess programs, and the minds of a large number of
chess players. While many of the concepts within the domain theory of chess
would be shared across many chess players, other concepts may be unique to
and accessible by individual players only (or by groups of playersﬂ.

A domain theory is shared across a peer group. One consequence of the dis-
tributed and heterogeneous nature of most non-trivial domain theories is that
they are usually associated with a particular peer group, culture, society, etc.,
rather than with an individual or a very small group of people. Notice, a domain
theory, as it is defined here, usually includes elements that are not accessible
by the entire peer group associated with it. For example, the subjective case
base (acquaintance-knowledge) a particular chess master has accumulated over
his career is not likely to be accessible by other chess masters (members of the
peer group). Likewise, certain documents or electronic resources about chess
knowledge may be accessible only to a limited group of peer members.

A domain theory is fixed or changing only very slowly. An established domain
theory would normally not change radically but remain relatively stable and
undergo mostly minor modifications over time. Radical changes of a domain
theory would be related to changes in fundamental concepts of a domain theory.
For example, nowadays in chess it rarely happens that a “standard” move in a
particular game would be shown to be unsound.

A domain theory incorporates “hidden” concepts. At a given point in time, a large
database holds facts and patterns that have already been explicitly reported or
are known by at least one intelligent agent. However, at the same time there may
be many “hidden” facts or patterns contained in the same database which have
not been discovered yet. Analogously, a domain theory captures concepts which
are explicitly documented or known by an intelligent agent. At the same time,
a domain theory harbors concepts which are yet to be discovered. Notice that
while the total number of hidden and explicit/known concepts within a domain
theory may be very large (or even infinite), not every conceivable concept may
be expressible under the constraints of a particular domain theory.

Knowledge Base. A knowledge base is constructed from the concepts of a domain
theory; we define a knowledge base as a subset of a domain theory as follows:

4 Detailed psychological studies suggest that, for example, the number of symptom-
illness correspondences known by a medical specialist, or the number of board posi-
tions memorized by a chess master, appear to be in the range of 30 000 to 100 000 [23].
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Definition 3 (knowledge base). A knowledge base K; is defined as a subset
of a domain theory D;, i.e., K; C D;.

This means that in the extreme case a knowledge base and a domain theory could
be identical. This is of course only a theoretical possibility, because for real-world
domain theories, a knowledge base is normally a highly selective subset of the
domain theory. In particular, a knowledge base would tend to have the following
characteristics.

A knowledge base is domain-specific. As a consequence of how a knowledge base
is defined, it is always defined with respect to a particular domain. Hence, a
knowledge base contains only concepts from the underlying domain theory.

A knowledge base is focused, selective, goal-oriented, biased ... A knowledge
base is normally not formed by a random process which selects elements from a
domain theory and puts them together to make up a knowledge base. Instead,
a knowledge base is either intentionally constructed or it is evolved, and as
a consequence a knowledge base normally represents a focused, selective, goal-
oriented, biased, subjective, etc. subset of the domain theory. When a knowledge
base is designed, its construction is guided by the function it is supposed to
fulfill, by other design constraints and requirements, and by the set of biases,
skills, abilities, etc. of its designers. In this process particular choices are made
in terms of which concepts from the underlying domain theory will be included
in the knowledge base. When an intelligent agent acquires knowledge (learning,
evolution) it normally does so under a set of constraints, including the goals it
pursues, its prior experience, abilities, skills, the environment it operates in, and
so on. A knowledge base which is thus constructed or evolved has selected (or
acquired) a set of domain concepts in a very biased or “habitual” way. Notice,
as an intelligent agent evolves a knowledge base, it does not only assimilate
knowledge from the domain theory that is shared by other peer members, but
it also creates a part of the domain theory space that is normally not accessible
to other peer members of the domain.

Agent-specific knowledge bases. In our definition of a knowledge base, a book on a
particular variant of the Sicilian Defence could be considered as a knowledge base
in the domain of chess. Often, however, in this discussion we are concerned with
knowledge bases that are tied to or integrated within a specific intelligent agentﬁ.
In this case, we are talking about the type of knowledge base which is highly
subjective, containing domain concepts which are not shared with the domain’s
peer members. It is precisely the non-shared concepts in such an agent-specific
knowledge base that form a kind of “inertial system” or “reference system”
against which the common or shared parts of the knowledge base are viewed
and interpreted. What is important to understand is that an intelligent agent
has exactly one knowledge base for a given domain! This knowledge base may be

5 Here we use the term “intelligent agent” to denote a uniquely identifiable entity with
cognitive abilities such as reasoning, planning, hypothesizing, etc. It is irrelevant on
which physical substrate such an entity is implemented or whether or not it is highly
localized in physical space.
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empty, if the agent knows no concept in that domain, or it may be a non-empty
knowledge base consisting of shared and non-shared concepts of the domain
theory. The non-shared domain concepts impose a unique, biased perspective of
the agent on the domain. The fact that an agent captures part of the domain
theory which is normally not shared with other agents in the domain, makes
such an agent-specific knowledge base special.

Agent-specific knowledge bases are habitually incompatible. Another critical aspect
of the concept of an agent-specific knowledge base is that, given a concrete problem,
normally (or “habitually”) only a single knowledge base would be active at a given
time. This is what Koestler refers to as “habitually incompatible” matrices.

Models of Creativity. Both Boden and Koestler base their models on a corpus
of domain-specific knowledge or concepts called conceptual space by Boden and
code by Koestler. In our conceptualization both a code and a conceptual space
are viewed as a domain theory.

With respects to Boden’s model of creativity, domain theories are equivalent
to the notion of conceptual spaces. They satisfy the characteristic of not be-
ing tied to an individual as well as being relatively stable over time. Indeed, a
domain theory encompasses all the knowledge (or concepts) known about a do-
main at a given point in time. Furthermore, a domain theory represents Boden’s
“generative structure” [6] that contains the “possibilities” of hitherto unknown
knowledge which may be discovered in the creative process (combinatorial or
exploratory creativity). Essentially, these are all possible concepts within a do-
main theory that have not been made explicit in any form (documented) or are
not known by any agent of the domain’s peer group. Boden’s transformational
creativity is facilitated by a change or transformation of the underlying domain
theory. Such a change would typically be realized by a modification or addition
of concepts in a given domain theory.

In Koestler’s framework of creativity the notion of a code is equivalent to our
concept of a domain theory. Like Koestler’s concept of a code, a domain theory
constitutes a relatively fixed system of rules (or concepts) which governs the
processes of creativity.

Unlike Koestler’s model, which incorporates the notion of a matriz, Boden
does not make a distinction between a matrix and a conceptual space. Com-
paring her model with that of Koestler, Boden states: “Matrices appear in my
terminology as conceptual spaces, and different forms of bisociation as associa-
tion, analogy, exploration, or transformation.” [6]. This is where Koestler’s model
appears to be more differentiated. With the notion of a matrix, Koestler puts
the subjective perspective of the entity that engages in creative thought in the
center of his model. Indeed, the matrix notion provides this degree of individu-
ality that appears to be associated with many creative ideas and inventions. In
our model, Koestler’s matrix concept is reflected in the concept of a knowledge
base. A knowledge base, like a matrix in Kostler’s framework, is uniquely linked
to a particular reasoner or intelligent agent. Indeed, a knowledge base carries
the characteristics that Koestler associates with his matrices:
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1. There is exactly one knowledge base per agent for each domain.

2. A knowledge base reflects the subjective personal, prejudiced and unobjec-
tive views and patterns of thinking and behavior — i.e., a habitual frame of
thought — that provide a unique (albeit biased) perspective of the domain.
Usually, when pondering over a task or problem, only the concepts of a single
knowledge base would be active. This is why Koestler calls his matrices “ha-
bitually” incompatible. This notion does not seem to be reflected in Boden’s
model.

3. Because each agent or reasoner incorporates a set of (partially overlapping)
knowledge bases in a highly integrated fashion (with in a single “mind”),
such an agent is equipped with the unequaled potential to discern patterns
of bisociation by bringing together or superimposing multiple knowledge
bases simultaneously. It is this structure that allows an agent to “see” or
perceive a problem, situation or idea simultaneously from different frames of
mind (knowledge bases).

Viewing Koestler’'s matrix as a knowledge base appears to be a more realistic
model for combinatorial, exploratory and transformational creativity, because it
takes into account the fact that an entity’s (agent) view of the world is normally
limited by the set of knowledge bases it has. One can assume that agents oper-
ating on the basis of Boden’s conceptual spaces are also limited to a subset of
the conceptual space, but this is not so clear in the model of Boden.

Boden argues that bisociation can be incorporated in her model. However,
in the absence of a clear account of the “habitual” dimension (represented by
matrices in Koestler’s framework and by knowledge bases in our model) involved
in bisociation, Boden’s model seems less convincing.

6 Towards a Formal Definition of Bisociation

Based on above considerations we now attempt to provide a formal definition of
bisociation. In our definition we employ the following symbols:

Let U denote the universe of discourse, which consists of all concepts.
Let ¢ € U denote a concept in U.

Within the universe of discourse, a problem, idea, situation or event 7 is associ-
ated with the concepts X C U. Typically, in a concrete setting, a subset P C X
is used to describe and reason about 7.

D; denotes a domain theory which represents the total knowledge (concepts)
within a domain. Notice that the union of all domain theories represents the
universe of discourse: U;D; = U. Furthermore, 34,5 : D; N D; # (. This means
that many domain theories overlap.
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R denotes a reference system or intelligent agent which possesses exactly one
knowledge base (empty or non-empty) per domain theory D;.

K C D; denotes the knowledge base with respect to the reference system or
intelligent agent R and domain theory D;. Notice, an intelligent agent R has
exactly a single knowledge base KiR (empty or non-empty) per domain theory
i. For example, the knowledge base K i css defines the chess knowledge base an
intelligent R has.

KT = U; K denotes the entire set of knowledge bases incorporated in the refer-
ence system or intelligent agent R. K7 represents the total knowledge that R has
in all the domains. For example, an intelligent agent R may possess non-empty
knowledge bases for the domains of chess, biology and religious morality, and an
empty knowledge base for the domain of geometry.

Definition 4 (habitually incompatible knowledge bases). Two
agent-specific knowledge bases KI* and K (i # j) are said to be habitually in-
compatible if, at a given point in time t, there is no concept c:c € KFAc e KJR
that is active or perceived simultaneously in K and KE.

In other words, an intelligent agent usually employs a single frame of mind
(knowledge base) at a given moment in time to think about a problem. One could
compare this “pedestrian” way of thinking to a “sequential” mode of reasoning
in which a reasoner switches between the matrices (knowledge bases) but only
uses one matrix at the time.

Definition 5 (bisociation). Let m denote a concrete problem, situation or
event and let X C U denote the concepts associated with 7. Further, let KZR and
KJR denote two habitually incompatible agent-specific knowledge bases (i # j).
Bisociation occurs when elements of X are active or perceived simultaneously in
both K* and KJR at a given point in time t.

This refers to the situation where a problem is perceived simultaneously in two
frames of reference or matrices of thought (Figure [II).

For example, at time ¢ the concepts B = {¢1, ¢z, c3} may be active or perceived
simultaneously in K and K JR. In this case we say that the concepts in A are
bisociated.

Definition 6 (association). Let m denote a concrete problem, situation or
event and let X C U denote the concepts associated with w. Further, let KI*
denote an agent-specific knowledge base. Association occurs when elements of X
are active or perceived in K1 at time t only.

For example, at time ¢ the concepts A = {c1, c2,c3} may be active in K} only.
In this case we say that the concepts in A are associated (with each other).
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7 Related Work

The key notion of bisociation is a knowledge structure that is defined on the
concepts originating from multiple domains. Below we briefly look at some of
the literature which is closely related to bisociation. This short review does not
claim to be exhaustive. A more comprehensive literature review should include
areas such as data and information fusion, heterogenous information networks,
interchange of knowledge bases and ontologies, multi-agent systems, hybrid in-
telligent systems, metaphor-based reasoning (conceptual/cognitive metaphors),
conceptual blending, discourse reasoning, and others.

Analogical Reasoning. Analogy is a powerful form of logical inference which
allows to make assertions about an entity or concept, X, based on its similarity
with another entity or concept, Y. For example, we use our knowledge about
water flow to determine properties of electrical circuits. The underlying assump-
tion of analogical reasoning is that if two entities or concepts are similar in some
respects, then they are probably alike in other respects as well. Like inductive
reasoning, which proceeds from the particular to the general, analogical reason-
ing does not guarantee the truth of the conclusion given a true premise. Despite
this similarity with inductive reasoning, analogical reasoning is often viewed as a
form of reasoning which is distinct from inductive reasoning. For instance, Sowa
and Majumdar view analogical reasoning as a two-step reasoning process which
first inductively creates a theory from a set of cases, and then deductively gener-
ates an answer to a specific question or problem on the basis of the theory [32].
In AI, analogical reasoning is often described as a representational or analogical
mapping from a known “source” domain to a (novel) “target” domain [17].

A key element in analogy is the mechanism of selection. Not all commonalities
between two concepts are equally important when we compare the concepts and
make predictions based on similarities. Therefore, a central issue in analogical
mapping is to determine the selection constraints that guide our assessment
of similarity and dissimilarityﬁ. Two broad classes of selection constraints have
been investigated in Al: goal-relevance and structure-relevance. The former is
used to focus analogical mapping on information that is considered critical to
the problem or goal at hand. The latter is used to guide analogical mapping
based on the structural commonalities between two entities or concepts.

5 Similarity should consider the common and distinctive features of the entities under
investigation. For example, let z and y denote two entities, and X and Y the sets
of their characterizing features. Then the similarity, sim(z,y), between x and y is a
function of their common and distinctive features as follows:

sim(z,y) = 0f(X NY) — ag(X \ Y) = Bh(Y \ X),

where f(X NY) expresses the similarity based on common features in = and y,
g(X \'Y) the dissimilarity based on properties z has but y does not, and h(Y \ X)
the dissimilarity based on properties y has but « does not. 8, a and g influence how
the various components affect the overall score, with 0, «, 8 € [0, 1].
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Investigating the mechanisms of analogical reasoning in humans, Gentner and
co-workers developed the structure-mapping theory of analogy [13]. The underly-
ing assumptions in the structure-mapping theory are that (a) connected knowl-
edge (concepts) is preferred over independent facts; this assumption is known as
the systematicity principle, and (b) analogical mappings are based on structure-
relevance selection constraints. The structure-mapping theory has been used
to create a computational model called the structure-mapping engine [12]. The
structure-mapping engine can find a mapping between the appropriate relations
(between concepts in the considered domains) given a properly constructed rep-
resentation of the domains of interest. Chalmers and co-workers [9] proposed a
different approach to explain and model analogical reasoning. They view analog-
ical reasoning as a product of a more general cognitive function called high-level
perception. Morrison et al. interpret high-level perception and the structure-
mapping theory as two aspects of analogy, rather than viewing them as mecha-
nisms on two distinct cognitive organizational levels [27].

Human cognition is continually establishing potential mappings between knowl-
edge domains or contexts. Analogical mapping occurs in a richly interconnected
conceptual space in long-term memory. Attribute/category information plays a
crucial role for the discovery of analogies across the conceptual spaces in long-
term memory. Based on such a model of human memory, the following (simpli-
fied) analogical reasoning processes could be distinguished [14]:

1. Retrieval: In respond to some input case, an analogous or similar case is
retrieved from long-term memory transferred to working memory.

2. Mapping: The two cases (the input case and the retrieved analogous case)
are “aligned” in terms of their analogous features. This enables the identifica-
tion of their common and distinctive properties and the inference of unknown
properties of the input case based on the properties of the retrieved case.

Clearly, one of the problems of the above procedure is that mapping should
already be part of the retrieval process.

Arguably, analogical reasoning is closely related to bisociative reasoning, in
particular its domain-crossing conceptual space (long-term memory) bears the
hallmarks of bisociation. Furthermore, the concept of “richly interconnected con-
ceptual space in long-term memory” is very similar to the assumption in our
formulation of bisociation that there needs to be an overlap of concepts in two
domains to facilitate bisociation.

Bisociation is different to analogical reasoning in a number of ways. First,
while analogy may be a mechanism in some forms of biosociation, bisociation
is not about analogy per se. Perceiving a problem simultaneously from the per-
spective of two distinct knowledge bases, does not mean that one views the
entire problem from one knowledge base and then from the other. In a sense,
when bisociation occurs, a fraction of both knowledge bases becomes unified
into a single knowledge base in the context of the problem at hand. Also, when
one considers some of the examples Koestler describes in the context of humor,
it is clear that some of these do no rely on the concept of analogy [20]. The
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Eureka act described in Figure [2] does not seem to be an example of analogi-
cal reasoning. Second, in contrast to bisociation, analogical reasoning seems to
suggest a similar (analogous) structure of the long-term memory entity that is
retrieved and the input case prompting the retrieval. Bisociation is more akin
to Minsky’s concept of knowledge lines [26], which are a kind of “scaffold” at-
tached to the “mental agencies” (facts, concepts, routines, habits, associations)
that were active in creating a certain idea or solving a particular problem in the
past. The knowledge lines later work as a way to re-activate the same structures
in the context of a new problem. Bisociation could be view in similar terms,
except that bisociation explicitly models knowledge lines that cut across knowl-
edge bases embodying domain-specific mental agencies. Thus, when bisociation
occurs, mental agencies usually (habitually) active in the context of a specific
domain, are activated together with mental agencies usually active in another
domain. There are also other perhaps more subtle difference between analogical
reasoning and bisociation that are not discussed here.

Swanson’s Theory. Swanson’s theory [33], also known as to as “Swanson
linking”, is based on the assumption that new knowledge and insight may be dis-
covered by connecting knowledge sources which are thought to be previously un-
related. By “unrelated” Swanson originally meant that there is no co-authorship,
no citation and no officially stated relationship among the considered knowledge
sources. Swanson coined the phrase “undiscovered public knowledge” to refer to
published knowledge that is effectively hidden in disjoint topical domains be-
cause researchers working in different domains are unaware of each others’ work
and scientific publications. He demonstrated his ideas by discovering new rela-
tionships in the context of biology and other areas. The field of literature-related
discovery has emerged from Swanson’s work. It aims at discovering new and
interesting knowledge by associating two or more concepts described in the lit-
erature that have not been linked before [21]. Conceptual biology is another line
of research in this direction — here the idea is to complement empirical biology by
generating testable and falsifiable hypotheses from digital biological information
using data mining, text mining and other techniques [4J28]. The methodologies
from literature-related discovery and Swanson’s theory have already been incor-
porated in conceptual biology. In combination with systems biology, automatic
hypothesis generation is being investigated to facilitate automated modeling and
simulation of biological systems [2].

The work by Swanson, literature-related discovery and conceptual biology are
related to bisociative information exploration in their attempt to discover infor-
mation across normally disjoint information spaces. Perhaps one aspect that is
strikingly different between the Swanson’s approach and bisociation is the notion
of unrelatedness and topical disjointedness in Swanson. This assumption separates
conceptual spaces on the basis of the originators of knowledge. In our definition
of bisociation we do not make this distinction. Nevertheless, the Swanson’s the-
ory, while being currently focused on literature as its main source of knowledge, is
interesting in the context of bisociation. Further investigations are needed to de-
termine how bisociation and Swanson’s approach could complement each other.
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Computational Creativity in Science. Computational creativity [7] in art,
music and poetry has been around for some time. A recent development is com-
putational creativity applied to the fields of science and engineering. For ex-
ample, the aim of the Symposium on Computational Approaches to Creativity
in Sciencd] (Stanford, US, 2008) was to explore (among other things) (a) the
role creativity plays in various scientific areas and how ICT-based tools could
contribute to scientific tasks and processes, (b) the nature of creativity in search
through a problem space and the representation of the search space and the prob-
lem description, (c) the role background knowledge plays in aiding and possibly
interfering with creative processes in science, and (d) the interactions among
scientists that increase creativity and how computational tools could support
these interactions.

There was a wide range of contributions at the Symposium which covered
themes such as the design of discovery systems; inter-disciplinary science and
communication; abstraction, analogy, classification; spatial transformations and
comparisons; conceptual simulation; strategies for searching a problem space; the
question of how discovery and creativity differs; knowledge acquisition/refinement
approaches and systems; knowledge-based and knowledge management systems,
and “knowledge trading zones”; and explanations, models and mechanisms of
creative cognition.

Computational creativity in science is a fruitful area and also an area in
which large amounts of data, information and knowledge are readily available in
computer-readable format. Given the specialization of science on the one hand,
and the need for inter-disciplinary science to tackle highly challenging problems
on the other hand, it seems that computational creativity in science offers a
formidable platform to further investigate biosociative information exploration.

8 Discussion and Conclusion

Computational creativity, in particular computational creativity in non-art ap-
plications, is a relatively new computing paradigm [I5/§]. For example, computa-
tional creativity in science and engineering means that a scientist or an engineer
cedes part of her control over the discovery or design process to a computer
system that operates with a degree of autonomy, and contributes to the results.
In this article we have outlined a rationale or framework for computational cre-
ativity based on Koestler’s concept of bisociation [20]. The framework presented
here facilitates bisociation by “connecting” the knowledge bases of an intelligent
agent in the context of a concrete problem, situation or event (Figure [).
Koestler’s treatise and other accounts of bisociation often illustrate bisoci-
ation by either bisociating two common or general knowledge domains, or by
bisociating one more specialized subject matter domain with a commonsense
knowledge domain. For example, the Eureka act (Section M) bisociates the com-
monsense domain of taking a bath with the domain of geometry. If we want to
reflect this kind of structure in a computational creativity solution for non-art

"http://cll.stanford.edu/symposia/creativity/
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applications, this would mean that we need to develop a knowledge base reflect-
ing the application domain and a knowledge base containing commonsense or
general knowledge. A commonsense knowledge base contains the knowledge that
most people possess and use to make inferences about the ordinary world [24].
Information in a commonsense knowledge base includes things like ontologies
of classes and individuals; properties, functions, locations and uses of objects;
locations, duration, preconditions and effects of events; human goals and needs;
and so on. A commonsense knowledge base must be able to facilitate spatial,
event and temporal reasoning. Tasks that require a commonsense knowledge
base are considered “Al-complete” or “Al-hard”, meaning that it would require
a computer to be as intelligent as people to solve the task.

Another approach to bisociation-based computational creativity would require
the bisociating of knowledge bases from different non-commonsense domains, for
example, biology and quantum mechanics. Here we have a two-fold challenge:

First, we need to somehow provide some form of interoperability of the in-
volved knowledge bases; this is a topic of active research [10]. Our approach to
integrating the concepts from different domains is by creating a heterogeneous
information networks (called BisoNet in this case) from underlying information
sources. The topic of mining of heterogeneous information networks and linked
data has become an area of very active research in recent years [I8J5].

Second, when the content of bisociated concepts are presented to the user,
there may be a considerable problem for the user to recognize potentially useful
information from the other domain. For example, a life scientist investigating a
detailed mechanism in relation to gene regulation and nuclear receptors may be
presented with a scientific article in the field of quantum theory that discusses
metric tensors in the context of entanglement entropy. Even if the bisociated
article is potentially useful, the life scientist may not be able to “see” the use-
fulness because he does not have the necessary domain knowledge in field of
quantum mechanics.

Another issue — that is shared with all approaches to computational creativ-
ity — of the presented framework concerns the assessment of whether or not a
discovered item, relationship or bisociation is indeed creative in the sense of be-
ing new, surprising and valuable (see Definition [I]). This problem is analogous to
the issue of determining the degree of interestingness or usefulness of patterns
discovered by means of data mining or machine learning techniques [25]. Sosa
and Gero [3I] argue that creativity is a social construct based on individual-
generative and group-evaluative processes. This suggests that the assessment
of creativeness needs to incorporate social aspects that transcend the within-
individual cognitive dimension. This points to a rather complex challenge for
computational creativity and is something that future studies of computational
bisociation need to take on board.

8 In addition to these, the discovered patterns are usually also required to be non-
trivial, valid, novel and comprehensible. Depending on the technique used and the
application area, an automated assessment of these additional dimensions may also
pose a considerable challenge.
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With the increasing power of ICT and the growing amounts of data, information
and knowledge sources, there is a new wave of efforts aiming to construct comput-
ing solutions that exhibit creative behavior in the context of challenging applica-
tions such as science and engineering [8]. This article presents a framework for
computational creativity based on the concept of bisociation [20]. As a pioneering
effort in this field, the BISON pro jecﬂg has been exploring bisociation networks for
creative information discovery. This article presents some of the rationale, ideas
and concepts we have explored in an effort to formally define the concept of bioso-
ciation and bisociative information exploration. Clearly, more work is needed to
develop a more comprehensive formal understanding of bisociation and how this
concept can be used to create novel ICT methods and tools.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.
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Abstract. The integration of heterogeneous data from various domains
without the need for prefiltering prepares the ground for bisociative
knowledge discoveries where attempts are made to find unexpected rela-
tions across seemingly unrelated domains. Information networks, due to
their flexible data structure, lend themselves perfectly to the integration
of these heterogeneous data sources. This chapter provides an overview
of different types of information networks and categorizes them by iden-
tifying several key properties of information units and relations which
reflect the expressiveness and thus ability of an information network to
model heterogeneous data from diverse domains. The chapter progresses
by describing a new type of information network known as bisociative
information networks. This kind of network combines the key properties
of existing networks in order to provide the foundation for bisociative
knowledge discoveries. Finally based on this data structure three differ-
ent patterns are described that fulfill the requirements of a bisociation
by connecting concepts from seemingly unrelated domains.

1 Introduction

Applications of bisociative creative information exploration derive their potential
to produce creative discoveries, insight and solutions from exploring bisociations
across large volumes of information originating from two or more domain the-
ories. To facilitate such applications it is necessary to integrate these domain
theories (or associated knowledge bases) in such a way that the integrated pool
can be processed coherently. Integration of such data is a considerable chal-
lenge not only because of the data volumes, but also because of the semantic
(ontologies of different domains) and syntactic (data and knowledge formats)
heterogeneity involved.

An obvious approach to integrate these large volumes of information from var-
ious domains with varying quality is a flexible representation in terms of an infor-
mation network. A number of different types of information networks have been
proposed in the last few years [38] particularly in the area of biomedical domains.
This area of research is known for its diverse information sources that need to be
considered, for example, in the drug discovery process [12]. The integrated sources
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range from experimental data, such as gene expression results, through to highly
curated ontologies, such as the ontology of Medical Subject Heading%

Information networks are commonly composed of information units represent-
ing physical objects as well as immaterial objects such as ideas or events and
relations representing semantic or solely correlational connections between infor-
mation units. They are almost always based on a graph structure with vertices
and edges, where vertices represent units of information, e.g. genes, proteins or
diseases, and the relations between these units of information are usually rep-
resented by edges. In some information networks relations are represented by
vertices as well, and therefore apply a bi-partite graph representation. This type
of representation has the added advantage that relations between more than two
information units can be easily supported. Furthermore an edge can be directed
or undirected depending on the relationship it represents. Most networks also
allow additional attributes or properties to be attached to vertices and edges,
such as a vertex type, e.g. gene or protein, describing the nature of the informa-
tion unit. Such information networks that connect multi-typed vertices are also
known as heterogeneous information networks [28].

In order to integrate not only structured and well annotated repositories but
also other types of information such as experimental data or results from text
mining, some information networks support weighted edges. Therefore interac-
tions in biological systems, which can be noisy and erroneous, are often modeled
by Bayesian networks [22l24)3T]. In these approaches the edge weight represents
the probability of the existence of the connection. However, the edge weight of
networks used by information retrieval techniques, such as knowledge or Hopfield
networks [I4], represents the relatedness of terms. Usually the weights in these ap-
proaches are computed only once. In contrast to these approaches, Belew enables
each user of an adaptive information retrieval (AIR) model [6] to adapt the weights
according to their relevance feedback. The disadvantage of this approach is that
over time the network will be strongly biased by the opinions of the majority of
the users. Another weighted-graph method constructs a weighted graph based on
information extracted from available databases [49]. In doing so the edge weight
represents the quality of the relation and is based on three factors: edge reliabil-
ity, relevance and rarity. They assume that each edge type has a natural inverse,
such as “coded by” and “is referred by”. Similarly, there is one inverse edge for each
edge, leading to an undirected graph with directed edge labels.

Once the data is represented in an information network this well-defined struc-
ture can be used to discover patterns of interest, extract network summarizations
or abstractions and develop tools for the visual exploration of the underlying
relations. A general analysis of the structure of complex networks stemming
from real-world applications has been conducted by Albert and Barabasi [2].
They have discovered that these networks often share a number of common
properties such as the small-world property, clustering coefficient or degree dis-
tribution. A survey on link mining has been conducted by Getoor and Diehl [27].

!'http://www.nlm.nih.gov/mesh/meshhome . html
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They classified the link mining task into three categories: object-related tasks,
link-related tasks and graph-related tasks.

Network summarizations representing different levels of detail can be visu-
alized to gain insight into the structure of the integrated data. A general in-
troduction to network analysis can be found in [II]. An overview of existing
graph clustering methods can be found in [48] and a review of graph visualiza-
tion tools for biological networks can be found in [45]. The paper compares the
functionality, limitation and specific strength of these tools.

Approaches from the semantic Web community include formalization of gen-
eral semantic networks where the most popular variants have resulted in the
RDF standard [40] and for formalism of topic maps [23]. Both techniques imply
the construction of various formalizations in the form of different graph con-
structs. A highly complex example is the formalization of topic maps via shifted
hypergraphs [3]. In this approach a hypergraph model for topic maps is defined
in which the standard hypergraph is extended to a multi-level hypergraph via a
shift function. RDF models were proposed in the form of different graph struc-
tures: graph [29], bipartite graph [30] and hypergraph [42]. Standard graphs al-
low the modeling of relations between two nodes, whereas bipartite graphs and
hypergraphs permit the integration of relations among any number of members.

In order to visually analyze large networks with several million vertices and
many more edges, visualization has to focus on a sub-graph or at least summa-
rize the network to match the user’s interest or provide some kind of overview
of existing concepts. Various visualization and graph summarization techniques
have been developed to address this problem. Examples can be seen in the gen-
eralized fisheye views [25], the interactive navigation through different levels of
abstraction [I], the extraction of sub-graphs that contain most of the relevant
information by querying [21] or by spreading-activation [I8]. Other approaches
summarize the graph by clustering or pruning it based on the topology [57] or
additional information such as a given ontology [50].

The next section describes different types of information networks and char-
acterizes them based on the features they support, which are relevant to the
integration of heterogeneous data types. We subsequently introduce bisociative
information networks, which have been tailored to support the integration of
heterogeneous data sources. Before we move on to the conclusion, we discuss
patterns of bisociation in this type of network that support creative thinking by
connecting seemingly unrelated domains.

2 Different Categories of Information Network

In order to differentiate among information networks, distinctions can be made
between different properties of information units and relations. These properties
are, of course, not exclusive. The properties of an information network define
its expressiveness and thus its ability to model data of a diverse nature, e.g.
ontologies or experimental data.
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2.1 Properties of Information Units

The basic information unit does not posses any additional semantical informa-
tion. However, they will at least include a label attached to them in order to
identify the object or concept they represent. Additional properties are the fol-
lowing;:

Attributed. units of information can have additional attributes attached to
them. An attribute might be a link to the original data it stems from, or
a translation of a user-readable label. These attributes might be considered
while reasoning or analyzing the network but do not carry general semantic
information, such as the following properties.

Typed. information units carry an additional label that is used to distinguish
between different semantics of information units, e.g. gene or protein. These
types can additionally be organized in a hierarchy or an ontology.

Hierarchical. information units represent a sub-graph composed of any number
of information units and relations that can be used to condense parts of the
network or to represent more complex concepts such as cellular processes.

2.2 Properties of Relations

The basic connection between information units represents a relationship be-
tween the corresponding members. They are not required to carry a label.

Attributed. relations have attributes attached to them and also fall into this
category. Similar to attributed information units, they can be considered
during the reasoning process, but do not carry a general semantic informa-
tion.

Typed. relations are similar to typed information units and can carry a label
identifying their type. This attribute is used to distinguish between different
semantics of relations such as activates or encodes. These types, as well as
typed information units, can be organized in a hierarchy or an ontology.

Weighted. relations carry a special type of label - the weight - which repre-
sents the strength of a relation, e.g. a number reflecting the probability or
strength of a correlation or some other measure of reliability that allows the
integration of facts and pieces of evidence.

Directed. relations can be used to explicitly model relationships that are only
valid in one direction, such as parent child dependency in a hierarchy.

Multi-relation. relations are generally represented as edges supporting only
two members. Topic maps (see Section[33]) in contrast represent relations as
multi edges supporting any number of members. This allows a more flexible
modeling of relationships with any number of members, e.g. co-expressed
genes of an experiment or co-authors of a paper. Furthermore connections
among relations themselves can be represented. Note that it is complicated
to combine this property with the directed property mentioned above. Addi-
tional information would need to be provided, such as an embedding graph
to identify sources and targets in a relation with more than two members.
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3 Prominent Types of Information Networks

This section describes prominent types of information networks and characterizes
them based on the previously discussed properties (see section 2)) they support.

3.1 Ontologies

Ontologies are based on typed and directed relations using a controlled vocabu-
lary for information units and relations dedicated to a certain domain. The cre-
ation of the curated vocabulary leads in general to a manual or semi-automatic
creation of an ontology, requiring a comprehensive knowledge of the area to be
described.

Figure [T depicts a simple ontology where information units are represented as
nodes and relations are represented as labeled arrows.

CBird>

is,a isa

Fig. 1. Example of an ontology

In the area of life sciences particularly, many ontologies have been developed
to share data from diverse research areas such as chemistry, biology or pharma-
cokinetics. One of the probably best known and most integrated ontologies in
the biological field is the Gene Ontology (GO) [I7]. The GO consists of three
main ontologies describing the molecular function, biological process and cellular
component of genes.

An attempt to integrate diverse ontologies has been made by the Open
Biomedical Ontologies (OBO) consortium [52]. They have created a file exchange
format and over 60 ontologies for different domains defining a general vocabulary
that can be used by other systems.

A classification of biomedical ontologies has been completed by Bodenrei-
der [I0]. He classified these ontologies into three major categories: knowledge
management; data integration, exchange and semantic interoperability; decision
support and reasoning.

An ontology-based data integration platform is described in [33]. The authors
describe a system that extends the existing text-mining framework ONDEX.
ONDEX uses a core set of ontologies, which are aligned by several automated
methods to integrate biological databases. The existing system is extended to
support not only the alignment and integration of texts but heterogeneous data
sources. The data is represented as a graph with attributed edges.

Tzitzikas et al. [56] describe a system that is based on the hierarchical inte-
gration of ontologies from different data sources. The system uses a mediator
ontology, which bridges the heterogeneity of the different data source ontologies.
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3.2 Semantic Networks

Semantic networks use typed relations to model the semantic of the integrated
information units and their relations. Information units in semantic networks, in
contrast to ontologies, are not represented by a curated vocabulary but rather
described by attaching any number of attributes to them whose semantic is
defined by the type of the relation.

Most of the semantic networks rely on Semantic Web [8] technologies such as
the Resource Description Framework (RDF) [40], RDF Vocabulary Description
Language (RDF Schema) and the Web Ontology Language (OWL) defined by the
W3C consortiunfd. RDF is a knowledge representation and storage framework
that uses triples. A triple consists of a subject, predicate and object. The subject
and object are information units that are connected by a directed relation defined
by the predicate.

In Figure[2lsubjects and objects that are uniquely identifiable are depicted in
ellipses, whereas objects containing values are depicted in boxes. Predicates are
shown as arrows pointing from the object to the subject with the type of the
relation as an annotation.

Animal

rdfs:label

rdfs:subClassOf

rdfs:label

http://.../bird.htm

rdfs:subClassOf

http://.../ostrich.htm

rdfs:label

Ostrich

rdfs:subClassOf

http://.../eagle.htm

rdfs:label

Fig. 2. Graph representation of a Semantic Web

The RDF Schema defines a core vocabulary that can be used to describe prop-
erties and classes. These properties and classes can be used to describe the mem-
bers of a triple. OWL extends the RDF Schema by providing a set of additional
standard terms to describe properties and classes in more detail such as relations
between classes. It also defines the behavior of properties, e.g. symmetry or tran-
sitivity. OWL as well as the RDF Schema extend RDF by providing the means to
model the semantics of the integrated data therefore enabling machines to make
sense of the data. They are both described using the RDF.

2 http: //www.w3.org/2001/sw/
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Bales and Johnson [5] analyzed large semantic networks created from 1998-
2005 that involve both a graph theoretic perspective and semantic information.
The results indicate that networks derived from natural language share common
topological properties, such as scale-free and small-world characteristics.

Chen et al. [I3] provide an introduction to semantic networks and seman-
tic graph mining. In four case studies, they demonstrate the usage of semantic
web technologies to analyze disease-causal genes, GO category cross-talks, drug
efficacy and herb-drug interactions.

Belleau et al.[7] propose the Bio2RDF project to integrate data from different
biological sources. Bio2RDF is used to integrate data from more than twenty
different public bioinformatic sources by converting them into the RDF format.

YeastHub [I5] another RDF-based data integration approach likewise inte-
grates the data from heterogeneous sources into a RDF-based data warehouse.
In addition they propose a standard RDF format for tabular data integration.
The format can be used to convert any data table into a standardized RDF
format.

A loosely coupled integration of semantic networks is proposed by Smith et
al. [51] in the form of the LinkHub system. The system consists of smaller net-
works that can be connected by sharing a common hub. Thus independently
maintained networks can be connected to the whole system by connecting them
to one of the already integrated sub networks.

Biozon [9] combines the flexible graph structure with an ontology for vertex
and edge types similar to the semantic web approach. This combined approach
allows a more detailed description of a biological entity by either imposing more
constraints on its nature in the hierarchy or on the structure of its relations
to other entities in the graph. All vertices within Biozon are direct analogs to
physical entities and sets of entities. Proteins, for example, are identified by their
sequence of amino acids. In contrast to pure semantic networks Biozon allows any
number of attributes to be attached to information units as well as to relations.

3.3 Topic Maps

Topic maps [23l47] use typed information units and relations. Furthermore topic
maps support the modeling of multi relations with any number of members. The
semantic of a topic is described by attaching any number of attributes to it.

Figure [ depicts the three major elements of a topic map: topics (ellipses),
associations (solid lines) and occurrences (boxes). Association and occurrence
types are connected by the dashed lines whereas occurrences are connected by
the dotted line.

A topic can generally be anything, for example a person, a concept or an idea.
Topics can be assigned zero or more topic types, which are, in turn, defined as
topics describing the semantics of the topic such as gene or protein.

Relations between any number of topics are represented by so-called associ-
ations. Associations are assigned a type that describes the association in more
detail. Members of associations play a certain role defined by the association
role. As with topic and occurrence types, association types and association roles
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[http://...fostrich.htm] [http://.../eagle.htm]

Fig. 3. Example of a topic map

are defined as topics themselves. In order to attach attributes to an association
it needs to be converted into a topic by the act of reification.

Information resources that represent a topic or describe it in more detail are
linked to topics by so-called occurrences. Occurrences are not generally stored
in the topic map itself but are referenced using mechanisms supported by the
system, e.g. Uniform Resource Identifiers (URI). Occurrences can have any num-
ber of different types, so-called occurrence types, that describe their semantics.
These types are also defined as topics. Topic maps are self-documenting due
to the fact that virtually everything in topic maps is a topic in the map itself,
forming the ontology of the used topics and relation types.

An example of a topic-map-like data integration approach is PathSys [4]. In
PathSys a relation is also represented as a vertex. This approach models re-
lationships between relations themselves. To distinguish between information
units and relations they introduce vertex types. Besides primary vertices repre-
senting information units and connector vertices representing relationships, they
also introduce graph vertices. By introducing graph vertices, PathSys combines
the multi relation property of topic maps with the hierarchical information unit
property allowing the sub-graph representation to describe more complex objects
such as protein complexes or cellular processes.

3.4 Weighted Networks

In most weighted networks the edge weight represents the strength of a relation
such as reliability or probability. Weighted networks often exhibit additional
properties such as types in order to be more expressive by modeling the semantic
of the integrated data sources. They generally only support relationships with
two members represented by the edges of the graph.

Figure Ml depicts a weighted network modeling the probability of a bird to be
either a bird of prey or a flightless bird.

Probabilistic Weights. Probabilistic networks model the probability of the ex-
istence of a relationship. They are mostly used in the biological field to model in-
teraction networks, e.g. gene-gene or protein-protein interaction networks.
In order to model the probability of the relations the networks often depend
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Bird
0,5 0,5
Flightless bird Bird of prey
1 11
Ostrich Eagle

Fig. 4. Example of a weighted network

on a specific network structure or weight distribution. Bayesian networks, for
example, depend on a directed acyclic graph, whose vertices model the random
variables an its relations indicate their conditional dependencies [46].

Franke et al. [24] use three steps to fuse the information from the GO with
microarray co-expression results and protein-protein interaction data using naive
Bayesian networks. The resulting network called Genenetwork can be used to
detect genes that are related to a disease based on genetic mutation.

Li et al. [41] use a two-layered approach to integrate gene relations from
heterogeneous data sources. The first layer creates a fully connected Bayesian
network for each integrated source, which represents the gene functional rela-
tions. The second layer combines these relations from the different data sources
into one integrated network using a naive Bayesian method.

Jansen et al. [31] likewise propose a combination of naive Bayesian networks
and fully connected Bayesian networks to create a protein-protein interaction
network. They use the fully connected Bayesian networks to integrate experi-
mental interaction data and naive Bayesian networks to incorporate other ge-
nomic features such as the biological process from the GO. To combine all results
they use a naive Bayesian network as well.

In [55], Troyanskaya et al. introduce MAGIC (Multisource Association of
Genes by Integration of Clusters). For each integrated data source, MAGIC
creates a gene-gene relationship matrix to predict the functional relationship
of two given genes. The matrices are generated from diverse high-throughput
techniques such as gene expression microarrays. These gene-gene relationship
matrices are weighted by the confidence in the integrated source and combined
into a single matrix. This approach allows genes to be members of more than
one group, which subsequently allows fuzzy clustering.

Heuristic Weights. Heuristic weights are mostly used to model the reliability
or relevance of a given relation, thus allowing the integration of well-curated
sources such as ontologies and pieces of evidence such as noisy experimental
data in a single network.

In order to integrate data from diverse biological sources for protein function
prediction, Chua et al. [16] propose Integrated Weighted Averaging (IWA). This
combines local prediction methods with a global weighting strategy. Each data
source is transformed into an undirected graph with proteins as vertices and rela-
tionships between proteins as edges. Each source graph has a score reflecting its
reliability. Finally, all source graphs are combined in a single graph using IWA.

Kiemer et al. [32] use a weighted network to integrate yeast protein informa-
tion from different data sources forming a protein-protein interaction network
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called WI-PHI. The network consists of 50,000 interactions from all data sources.
The edge weight of the WI-PHI network is computed using the socio-affinity in-
dex [26], quantifying the propensity of proteins to form partnerships, multiplied
by a weight constant per integrated data source defining its accuracy.

In Biomine [49] the edge weight is a combination of three different weights:
reliability, relevance and rarity. Reliability reflects the reliability of the source
the edge stems from. By changing the relevance of different node or edge types,
e.g. proteins, genes, a user can focus on the types he or she is most interested in.
Finally rarity is computed using the degree of the incident vertices. Edges that
connect vertices with a low degree have a higher rarity score than edges that
connect vertices with a high degree. Vertices and edges have a type assigned
describing their nature. Each edge has its inverse edge with a natural inverse
type such as “coded by” and “is referred by”. Thus forming a weighted undirected
graph with directed edge types.

In the next section we describe bisociative information networks that combine
the properties of the existing network types in order to support the integration
of heterogeneous data sources.

4 BisoNets: Bisociative Information Networks

Bisociative information networks (BisoNets) provide the flexibility to integrate
relations from semantically meaningful information as well as loosely coupled
information fragments with any number of members by adopting a weighted
k-partite graph structure (see Figure ().

Experiment Gene Term Document Disease
Fig. 5. Example of a 5-partite BisoNet

Vertices in BisoNets represent arbitrary units of information, e.g., a gene,
protein, specific molecule, index term, or document, or abstract concepts such as
ideas, acts or events. Vertices of the same type are grouped into vertex partitions
such as documents, authors, genes or experiments. Since a vertex can play diverse
roles it can be assigned to several partitions.

Depending on a certain view, the vertices of a partition can act as relations or
information units. Let us consider a document author network to illustrate this
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concept. In one view the documents can describe the relationship between co-
authors. Whereas in another view the authors describe the relationship between
documents that have been written by the same authors. Thus the role of a vertex
partition depends on the current view on the data.

Connections between vertices are represented by edges. An edge can only exist
between vertices of diverse partitions; this leads to the k-partite graph structure.
Hence a relation between two information units (e.g., authors) is described by
a third information unit (e.g., document). A BisoNet therefore consists of at
least two partitions, the first partition representing the information units and
the second partition describing the relations between the information units.

The certainty of a connection is represented by the weight of the edge. A
stronger weight represents a higher certainty in the existence of the connection.
Thus, a connection derived from a reliable data source (e.g., a manually cu-
rated ontology) is assigned a stronger weight than a connection derived from an
automated method (e.g., text mining method).

BisoNets model the main characteristics of the integrated information repos-
itories without storing all the detailed data from which these characteristics are
derived. By focusing on the concepts and their relations alone, BisoNets therefore
allow very large amounts of data to be integrated.

Definition 1 (BisoNet). A BisoNet B = (V1,..., Vi, E, \,w) is an attributed
graph, where V. = J,.,. Vi represents the union of all vertex partitions and k > 2
denotes the number of existing partitions. Every vertex v € V represents a unit
of information and can be a member of multiple partitions.

The set of edges E = {{u,v} : u € Vi;v € V;;j # i} connects vertices
from two different vertex partitions, whereas an edge e = {u,v} € E represents
a connection between the two vertices uw € V; and v € V; where i # j and
2<i4,j< k.

The function X : V. — X* assigns each vertex v € V' an unique label from X*.
This allows for the identification of a vertex by its unique label.

The certainty of a relation is represented by the weight of an edge e € E, which
is assigned by the function w : E — [0, 1] and where a weight of 1 represents the
highest certainty.

4.1 Summary

Table [Il compares the prominent types of information networks from section [3]
with BisoNets based on the properties they support. The table shows that most
of the networks support typed relations whereas topic maps and BisoNets also
support typed information units. The types enable us to distinguish between
different types of information units and relations, leading to to a better under-
standing of the integrated data. In addition the type information allows seman-
tical information to be processed by a computer system. But the usage of type
information requires detailed knowledge about the information that should be in-
tegrated into the network. The creation of a suitable type collection that allows
the integration of data from diverse sources is thus an elaborated task which
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Table 1. Properties matrix of prominent types of information network in conjunction
with BisoNets (A=Attributed, T=Typed, H=Hierarchical, W=Weighted, D=Directed
and M=Multi relation)

Information Units Relations
A|T| H |A|T|W|D|M
Ontologies X X
Semantic Networks| X X X
Topic Maps| X X X X X
Weighted Networks X
BisoNets| X | X X X | X | X | X | X

often has to be done manually. Moreover, not all data sources do possess the
required semantical information to assign the right type and therefore manual
annotations of the integrated information units and relations might be required.
If information units and relation types are abandoned, the integration of data
from heterogeneous sources is much easier but it might make the comprehension
of the integrated data more difficult. As a result, BisoNets support typed infor-
mation units and relations and allow their usage if the integrated data sources
provide this information, however they are not mandatory. In contrast to topic
maps, BisoNets also support weighted relations, thus allowing not only the inte-
gration of facts but also pieces of evidence. BisoNets combine the properties of
the existing network types in order to provide a well-defined and powerful data
structure that provides the flexibility to integrate relations from heterogeneous
data sources.

5 Patterns of Bisociation in BisoNets

Once the information has been integrated into a BisoNet, it can be analyzed in
order to find interesting patterns in the integrated data. One class of pattern is
bisociation. So far, we have identified three different kinds of bisociations [37],
which are described in more detail below.

5.1 Bridging Concept

Bridging concepts connect dense sub-graphs from different domains (see Fig-
ure [6). Bridging concepts employ ambiguous concepts or metaphors and are
often used in humor [34] and riddles [I9]. While ambiguity is useful for mak-
ing jokes or telling stories, it is less popular in serious scientific or engineering
applications. For example, the concept of a “jaguar” is ambiguous since it may
refer to either an animal or a car. Metaphors, on the other hand, describe a
form of understanding or reasoning in which a concept or idea in one domain is
understood or viewed in terms of concepts or ideas from another domain. The
statement “You are wasting my time”, for instance, can be seen as a metaphor
that connects the time with the financial domain. Metaphors play a major role in
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our everyday life as they afford a degree of flexibility that facilitates discoveries
by connecting seemingly unrelated subjects [39].

A first approach to detect bridging concepts is the discovery of concept graphs
[35136] in the integrated data. Concept graphs can be used to identify existing
and missing concepts in a network by searching for densely connected quasi
bi-partite sub-graphs. Once a concept graph has been detected the domains, its
aspect and member vertices stem from, can be analyzed in order to find concepts
graphs, e.g. concepts that connect information units from different domains.

Fig. 6. Bridging concept

5.2 Bridging Graphs

Bridging graphs are sub-graphs that connect concepts from different domains
(see Figure [M). They may lead to surprising information arising from different
domains since they are able to link seemingly unrelated domains (see Figure [7al).
An example of where bridging graph could be used to realize bisociation is the
Eureka act of the Archimedes example [20]. A bridging graph may also lead to
the linking of two disconnected concepts from the same domain via a connection
through and unrelated domain (see Figure [7h]).

A first step in the direction of the discovery of bridging graphs is the formaliza-
tion and detection of such domain-crossing sub-graphs [43l44]. The discovered
sub-graphs can be further ranked according to their potential interestingness.
Therefore the interestingness is measured by a so called b-score that takes into
account the size of the connected domains, the sparsity of the connections be-
tween the different domains and the distribution of the neighbors of the bridging
vertices.

Fig. 7. Bridging graphs



46 T. Kotter and M.R. Berthold

5.3 Bridging by Graph Similarity

Bisociations based on graph similarity are represented by sub-graphs of two dif-
ferent domains that are structurally similar (see Figure ). This is the most
abstract pattern of bisociation that has the potential to lead to new discover-
ies by linking domains that do not have any connection except for the similar
interaction of the bridging concepts and their neighbors.

These structurally similar but disconnected regions in a BisoNet can be dis-
covered by means of a vertex similarity based on the structural properties of
vertices. In [63l54] a spatial similarity (activation similarity) and a structural
similarity (signature similarity) based on spreading activation are introduced,
which can be used in combination in order to identify bisociations based on
structurally similar but disconnected sub-graphs.

Fig. 8. Bridging by graph similarity

6 Conclusion

In this chapter we identified several key properties of information units and rela-
tions used in information networks. We provided an overview of different types
of information networks and categorized them based on the identified properties.
These properties reflect the expressiveness and thus the ability of an information
network to model data of a diverse nature.

We further describe BisoNets as a new type of information network that is
tailored to the integration of heterogeneous data sources from diverse domains.
They possess the main properties required to integrate large amounts of data
from a variety of information sources. By supporting weighted edges BisoNets
support the integration not only of facts such as hand curated ontologies but
also of pieces of evidence such as results from biological experiments.

Finally we described three patterns of bisociations in BisoNets. Bridging con-
cepts refer to a single vertex that is connected to vertices from different domains.
These vertices, which belong to multiple domains, might be an indication of am-
biguity or metaphor - metaphors often being used in humor and riddles. Bridging
graphs on the other hand are sub-graphs consisting of multiple vertices and edges
that connect concepts from different domains. These sub-graphs might lead to
new insights by connecting seemingly unrelated domains. Last but not least, do-
main bridging by structural similarity is the most abstract pattern of bisociation
with the potential to lead to truly new discoveries by linking domains that are
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otherwise unconnected, except for the similar structure of their corresponding
sub-graphs.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribu-
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Although networks are a very natural and straightforward way of organizing
heterogeneous data, as argued in the introductory chapters, few data sources
are in this form. We rather find the data we want to fuse, connect, analyze and
thus exploit for creative discoveries, stored in flat files, (relational) databases,
text document collections and the like. As a consequence, we need, as an initial
step, methods that construct a network representation by analyzing tabular and
textual data, in order to identify entities that can serve as nodes and to extract
relevant relationships that should be represented by edges.

Rather than simply connect all (named) entities for which there is evidence
that they may be related in some way, it is clearly desirable that these methods
should try to select edges that have a higher chance of being part of a bisociation
(or should at least try to endow such edges with higher weights) and should try
to identify nodes that have a higher chance of being a bridging concept. In this
way the created networks will be better geared towards the goal of creative
information discovery. In addition, we need a representational formalism that
allows us to reason about graph relationships, in order to support the network
analysis and exploration methods described in Parts III and IV, respectively.

Contributions

Most of the following chapters deal with constructing BisoNets from text docu-
ment collections, like web pages, (scientific) abstracts and papers, or news clip-
pings. In order to process such data sources, the authors all start with standard
text mining techniques for keyword extraction in order to obtain an initial set
of node candidates. These candidates may then be filtered in order to identify
potential bridging concepts or at least to rank them higher than other terms.

In more detail, the first chapter by Segond and Borgelt [I] simply takes the
extracted keywords as the node set of the BisoNet that is to be constructed
and focuses on the task of selecting appropriate edges. Since standard measures
for the association strength of terms turn out to be of fairly limited value, the
authors suggest a new measure, which has become known as “Bison measure”
or “bisociation index”. This measure is based on the insight that for selecting
appropriate edges the similarity of the term weights is at least as important as,
if not more important than, the magnitude of these weights.

In contrast to this, the chapter by Juric et al. [2] concentrates on the selec-
tion and ranking of terms and keywords in order to identify bridging concepts.
Starting with a more detailed description of the used text mining techniques and
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document representations, the authors provide a thorough overview of a variety
of approaches to compute term weights and of several distance measures between
vectors that represent documents in a bag-of-words vector space model. From
these the authors derive heuristics to rank terms based on their occurrence in two
or more document collections. Included here are heuristics relying on classifiers
that are trained to distinguish between the document collections, and for which
the misclassified terms are interpreted as potential bridging concepts. They show
that in this way a significantly higher number of bridging concepts appear at
the top of the ranking list than can be expected in a chance ranking.

The chapter by Hynénen et al. [3] again emphasizes the relation between
terms, but rather than selecting edges for a BisoNet the authors try to identify
terms that are connected in a document even though they are usually not in the
underlying document collection as a whole. The core idea is that such unusually
correlated terms can indicate a new development or a new insight that is de-
scribed in the corresponding document(s). In order to measure the connection
strength, the authors introduce two new aspects: the first consists in measures for
the term pair frequency to assess the strength of correlation in a document and
the term pair uncorrelation to describe the background of the document collec-
tion to which it is compared. The second aspect is that they take the document
apart into sentences in order to achieve more fine-grained assessments.

The second chapter by Segond and Borgelt [4] presents a new item set mining
technique, which may be applied to text document mining by seeing each term
as an item and each document as a transaction of the terms that occur in it. The
core idea of the approach is to go beyond terms pairs and to find correlations
between multiple terms, which correspond to possible hyperedges in a BisoNet.
However, since the standard measure for the selection of item sets, the support
(number of transactions containing all items) is not well suited to assess the
association of terms, the authors introduce an approach based on the similarity
of item covers (sets of transactions containing the items) and develop an efficient
algorithm to mine item sets with several such similarity measures.

Finally, the chapter by Kimmig et al. [5] discusses a representation and rea-
soning framework for graphs with probabilistically weighted edges that relies on
the ProbLog language. The authors demonstrate how both graphs and graph
patterns can conveniently be described in a logical framework and how deduc-
tive, abductive and inductive reasoning are supported, as is shown with several
precise examples. In addition, modifications of the knowledge base can easily be
expressed, including graph simplification, subgraph extraction, abstraction etc.
Finally, the authors demonstrate how probabilistic edge weights (interpreted as
the probability that an edge is present) can be incorporated and how all discussed
logical concepts can be transferred and extended to probabilistic graphs.

Conclusions

Whether graphs are described by explicit graph data structures or in a log-
ical framework (endowed with probabilistic edge weights or not), they are a
powerful framework for knowledge representation. However, creating them from
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heterogeneous and, in particular, from unstructured data like documents, is a
challenging task, especially if one wants to support creative information discov-
ery. Even though standard text mining techniques form the starting point for
all of the approaches discussed in this part, they are not sufficient for creating
useful BisoNets. As the following chapters demonstrate, several enhancements of
the selection of both nodes and edges can increase the chance of obtaining edges
that support bisociative discoveries and of identifying nodes that are potential
bridging concepts. It has to be conceded, though, that the methods are not per-
fect yet and that there is a lot of room for improvement. However, the described
methods are highly promising and they could be shown to produce significantly
better results than known techniques.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.
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Abstract. According to Koestler, the notion of a bisociation denotes
a connection between pieces of information from habitually separated
domains or categories. In this chapter, we consider a methodology to
find such bisociations using a BisoNet as a representation of knowledge.
In a first step, we consider how to create BisoNets from several tex-
tual databases taken from different domains using simple text-mining
techniques. To achieve this, we introduce a procedure to link nodes of
a BisoNet and to endow such links with weights, which is based on a
new measure for comparing text frequency vectors. In a second step, we
try to rediscover known bisociations, which were originally found by a
human domain expert, namely indirect relations between migraine and
magnesium as they are hidden in medical research articles published
before 1987. We observe that these bisociations are easily rediscovered
by simply following the strongest links.

1 Introduction

The concept of association is at the heart of many of today’s powerful ICT
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” in order to discover
new information that is relevant to the evidence already known to a user.
However, domains that are characterized by the need to develop innovative
solutions require a form of creative information discovery from increasingly com-
plex, heterogeneous and geographically distributed information sources. These
domains, including design and engineering (drugs, materials, processes, devices),
areas involving art (fashion and entertainment), and scientific discovery disci-
plines, require a different ICT paradigm that can help users to uncover, select,
re-shuffle, and combine diverse contents to synthesize new features and prop-
erties leading to creative solutions. People working in these areas employ cre-
ative thinking to connect seemingly unrelated information, for example, by using
metaphors or analogical reasoning. These modes of thinking allow the mixing
of conceptual categories and contexts, which are normally separated. The func-
tional basis for these modes is a mechanism called bisociation (see [1]).
According to Arthur Koestler, who coined this term, bisociation means to
join unrelated, and often even conflicting, information in a new way. It means
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being “double minded” or able to think on more than one plane of thought
simultaneously. Similarly, Frank Barron [2] says that the ability to tolerate chaos
or seemingly opposite information is characteristic of creative individuals.

Several famous scientific discoveries are good examples of bisociations, for
instance Isaac Newton’s theory of gravitation and James C. Maxwell’s theory
of electromagnetic waves. Before Newton, a clear distinction was made between
sub-lunar (below the moon) and super-lunar physics (above the moon), since
it was commonly believed that these two spheres where governed by entirely
different sets of physical laws. Newton’s insight that the trajectories of planets
and comets can be interpreted in the same way as the course of a falling body
joined these habitually separated domains. Maxwell, by realizing that light is
an electromagnetic wave, joined the domains of optics and electromagnetism,
which, at his time, were also treated as unrelated areas of physical phenomena.

Although the concept of bisociation is frequently discussed in cognitive sci-
ence, psychology and related areas (see, for example, [IJ2J3]), there does not seem
to exist a serious attempt at trying to formalize and computerize this concept. In
terms of ICT implementations, much more widely researched areas include asso-
ciation rule learning (for instance, [4]), analogical reasoning (for example, [56]),
metaphoric reasoning (for example, [7]), and related areas such as case-based
reasoning (for instance, [§]) and hybrid approaches (for example, [9]).

In order to fill this gap in current research efforts, the BISON projec was
created. This project focuses on a knowledge representation approach with the
help of networks of named entities, in which bisociations may be revealed by link
discovery and graph mining methods, but also by computer-aided interactive
navigation. In this chapter we report first results obtained in this project.

The rest of this chapter is structured as follows: in Section 2 we provide a
definition of the core notion of a bisociation, which guides our considerations.
Based on this definition, we justify why a network representation—a so-called
BisoNet—is a proper basis for computer-aided bisociation discovery. Methods
for generating BisoNets from heterogeneous data sources are discussed in Sec-
tion 3 including procedures for selecting the named entities that form its nodes
and principles for linking them based on the information extracted from the
data sources. In particular, we present a new measure for the strength of a link
between concepts that are derived from textual data. Such link weights are im-
portant in order to assess the strength of indirect connections like bisociations.

Afterwards, in Section [§] we report results on a benchmark data set (consisting
of titles and abstracts of medical research articles), in which a human domain
expert already discovered hidden bisociations. By showing that with our system
we can create a plausible BisoNet from this data source, in which we can redis-
cover these bisociations, we provide evidence that the computer-aided search for
bisociations is a highly promising technology.

Finally, in Section [6l we draw conclusions from our discussion.

! See http://www.bisonet.eu/ for more information on this EU FP7 funded project.
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2 Reminder: Bisociation and BisoNets

Since the core notion of our efforts is bisociation, we start by trying to provide
a sufficiently clear definition, which can guide us in our attempts to create a
system able to support a user in finding bisociations. A first definition within
the BISON projectd characterizes bisociation as follows:

A bisociation is a link L that connects two domains D; and Do that are
unconnected given a specific context or view V' by which the domains are
defined. The link L is defined by a connection between two concepts c;
and co of the respective domains.

Although the focus on a connection between two habitually (that is, in the con-
text a user is working in) separated domains is understandable, this definition
seems somewhat too narrow. Linking two concepts from the same domain, which
are unconnected within the domain, but become connected by employing indi-
rect relations that pass through another domain, may just as well be seen as
bisociations. The principle should rather be that the connection is not fully con-
tained in one domain (which would merely be an association), but needs access
to a separate domain. Taking this into account, we generalize the definition:

A bisociation is a link L between two concepts ¢; and co, which are
unconnected given a specific context or view V. The concepts ¢; and ¢
may be unconnected, because they reside in different domains Dy and Do
(which are seen as unrelated in the view V'), or because they reside in
the same domain D1, in which they are unconnected, and their relation
is revealed only through a bridging concept c3 residing in some other
domain Do (which is not considered in the view V).

In both of these characterizations we define domains formally as sets of concepts.
Note that a bridging concept cs is usually also required if the two concepts ¢y
and cp reside in different domains, since direct connections between them, even
if they cross the border between two domains, can be expected to be known and
thus will not be interesting or relevant for a user.

Starting from the above characterization of bisociation, a network represen-
tation, called a BisoNet, of the available knowledge suggests itself: each concept
(or, more generally, any named entity) gives rise to a node. Concepts that are
associated (according to the classical paradigm of similarity or co-occurrence)
are connected by an edge. Bisociations are then indirect connections (technically
paths) between concepts, which cross the border between two domains.

Note that this fits both forms of bisociations outlined above. If the concepts ¢;
and ¢y reside in different domains, the boundary between these two domains
necessarily has to be crossed. If they reside in the same domain, one first has to
leave this domain and then come back in order to find a bisociation.

% See http://www.inf.uni-konstanz.de/bisonwiki/index.php5, which, however, is
not publicly accessible at this time.
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1% layer %

Fig. 1. Illustration of the structure of the BisoNet generator

3 BisoNet Generation

A system for generating BisoNets requires three ingredients: (1) A component
to access the original, usually heterogeneous data sources. In order to cope
with different data formats, we suggest, in Section 3 a two-layer architec-
ture. (2) A method for choosing the named entities that are to form the nodes
of the BisoNet. Here we rely on standard keyword extraction techniques, as dis-
cussed in Section 32 (3) A procedure for linking the nodes of a BisoNet and for
endowing them with weights that indicate the association strength. For this we
suggest, in Section d] a new association measure for keywords.

3.1 Data Access and Pre-processing

As explained above, a BisoNet is a network that promises to contain bisociations.
In order to generate such networks, we first have to consider two things: we must
be able to read different and heterogeneous data sources, and we have to be able
to merge the information derived from them in one BisoNet. Data sources can be
databases (relational or of any other type), text collections, raw text, or any data
that provide information about a domain. Due to the wide variety of formats
a data source can have, the choice we made here is not to provide an interface
of maximal flexibility that can be made to read any data source type, but to
structure our creation framework into two separate steps.

In the first step, we directly accesses the data source and therefore a parser
has to be newly developed for or at least adapted to the specific format of the
data source. The second step is actual the BisoNet generation part. It takes its
information from the first step, always in the same format, and therefore can
generate a BisoNet from any data source, as far as it is parsed and exported in
the form provided by the first step process (see Figure [l for a sketch).

The way data should be provided to the second layer is fairly simple, because
in this chapter we confine our considerations to textual data. As a consequence,
the second layer creates nodes from data that are passed as records containing
textual fields. These textual fields can contain, for now, either words or authors
names. This procedure and data format is well adapted to textual databases or
text collections, but is meant to evolve in future development in order to be
able to take other types of data sources into account. However, since most of the
data sources that we have used so far were textual data sources, this protocol
seems simple and efficient. Future extensions could consist in including raw data
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fields (for example, to handle images), and will then require an adaptation of
the second layer to be able to create nodes from other objects than textual data.

The second layer builds a BisoNet by extracting keywords using standard text
mining techniques such as stop word removal and stemming (see [I0]). The
extracted keywords are weighted by their TFIDF (Text Frequency - Inverse Docu-
ment Frequency) value (see [11]), thus allowing us to apply a (user-defined) thresh-
old in order to filter the most important keywords, as will be detailed in Section[3.2l
Links between nodes are created according to the presence of co-occurrences of the
corresponding keywords in the same documents, and are weighted using a similarity
measure adapted to the specific requirements of our case, which will be presented in
SectionMl In the case that author lists are provided with each text string, extracted
keywords are also linked to the related authors. These links are weighted according
to the number of times a keyword occurs in a given author’s work.

3.2 Creating Nodes

In our BisoNets nodes represent concepts. As we only talk about textual
databases, we made the choice to characterize concepts by keywords that are
extracted from the textual records taken from the data sources. In the second
layer of our framework, each textual record j is processed with a stop word re-
moval algorithm. Then the text frequency values are computed for each remain-

ing term 7 as follows: tf; ; = = rvt where n; ; is the number of occurrences
k »J

of the considered term in textual record j and ), ny,; is the sum of number of
occurrences of all terms in textual record j.

Naturally, this procedure of keyword extraction is limited in its power to cap-
ture the contents of the text fields. The reason is that we are ignoring synonyms
(which should be handled by one node rather than two or more), hyper- and
hyponyms, pronouns (which may refer to a relevant keyword and thus may have
to be counted for the occurrence of this keyword) etc. However, such linguistic
properties are very difficult to take into account and need sophisticated tools
(like thesauri etc.). Since such advanced text mining is not the main goal of
our work (which rather focuses on BisoNet creation), keeping the processing
simple seemed a feasible option. Nevertheless, advanced implementations may
require such advanced processing, because ignoring, for example, synonyms and
pronouns can distorts the statistics underlying, for instance, the term frequency
value: ignoring pronouns that refer to a keyword, or not merging two synonyms
makes the term frequency lower than it should actually be.

After all records have been processed, the inverse document frequency of each

keyword i is computed the following way: idf; = log |{de+

—<ay)» Where |D| is
the total number of records in the database and |{d € D | t; € d}| is the number
of records in which the term ¢; appears.

Each node is then weighted with its corresponding average TFIDF wvalue:
tfidf; = b 3120 i ; - idf;

This TFIDF approach is a very well known approach in text mining that
is easy to implement and makes one able to easily apply a threshold, thus
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selecting only the most important nodes (keywords). A node then contains, as an
attribute, a list of the term frequency values of its associated term in the differ-
ent documents of the collection. This allows us to compute similarity measures
presented in Section []in order to create links.

According to the definition of a bisociation presented in Section Bl two con-
cepts have to be linked by other concepts that are not in their proper domain
(so-called bridging concepts). This leads us to introduce the notion of domains,
into which the nodes are grouped, so that we can determine when borders be-
tween domains are crossed. In order to be able to classify nodes according to
their membership in different domains, it is important that they keep, also as an
attribute, the domains the data sources belong to, from which they have been
extracted. Since the same keyword can occur in several data sources, taken from
different domains, one has to be able (for example, for graph mining and link dis-
covery purposes) to know whether a certain keyword has to be considered from
a certain domain’s point of view. The nodes therefore keep this information as
vector of domains their associated keyword belongs to.

This can be interesting, for example, to mine or navigate the BisoNet, keeping
in mind that a user may be looking for ideas related to a certain keyword belong-
ing to a domain A. The results of a search for bisociations might also belong to
domain A, because it is the domain of interest of the user. However, these results
should be reached following paths using keywords from other domains, that is
to say bisociations. This procedure provides related keywords of interest for the
user, as they belong to its research domain, but they might be also original and
new connections as they are the result of a bisociation process.

4 Linking Nodes: Different Metrics

As explained in Section[3.2], nodes are associated with a keyword and a set of doc-
uments in which this keyword occurs with a certain term frequency. Practically,
this is represented using a vector of real values containing, for each document,
the term frequency of the node’s keyword. In order to determine whether a link
should be created between two nodes or not, and if there is to be a link, to assign
it a weight, we have to use a similarity measure to compare two nodes (that is
to say: the two vectors of term frequency values).

Links in our BisoNets are weighted using similarity measures shown below.
This approach allows us to use several different kinds of graph mining algorithms,
such as simply thresholding the values to select a subset of the edges, or more
complex ones, like calculating, for example, shortest paths.

4.1 Cosine and Tanimoto Measures

One basic metric that directly suggests itself is an adaptation of the Jaccard
. ANB
index (see [12)): J(4, B) = {3551-

Here |A N B| represents the number of elements at the same index that both
have a positive value in the two vectors and |AU B| the total number of elements

in the two vectors.
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It can also be interpreted as a probability, namely the probability that both
elements are positive, given that at least one is positive (contain a given term 4,
ie., tf; > 0).

Cosine similarity is a measure of similarity between two vectors of n dimen-
sions by finding the angle between them. Given two vectors of attributes, A and
B, the cosine similarity, cos(f), is represented using a dot product and mag-
nitude as cos(f) = %, where, in the case of text matching, the attribute
vectors A and B are usually the tf-idf vectors of the documents.

This cosine similarity metric may be extended such that it yields the Jaccard
index in the case of binary attributes. This is the Tanimoto coefficient T'(A, B),
represented as T'(A, B) = W.

These measures allow us to compare two nodes according to the number of
similar elements they contain, but do not take into account the importance of

the text frequency values.

4.2 The Bison Measure

In the Jaccard measure, as applied above, we would consider only whether a term
frequency is zero or positive and thus neglect the actual value (if it is positive).
However, considering two elements at the same index ¢ in two vectors, one way of
taking their values into account would be to use their absolute difference (that is,
in our case, the absolute difference of the term frequency values for two terms, but
the same document). With this approach, it is easy to compare two vectors (of term
frequency values) by simply summing these values and dividing by the total number
of values (or the total number of elements that are positive in at least one vector).

However, this procedure does not properly take into account that both values
have to be strictly positive, because a vanishing term frequency value means that
the two keywords do not co-occur in the corresponding document. In addition, we
have to keep in mind that having two elements, both of which have a term frequency
value of 0.2, should be less important than having two elements with a term fre-
quency value of 0.9. In the first case, the keywords associated with the two nodes
we are comparing appear only rarely in the considered document. On the other
hand, in the latter case these keywords appear very frequently in this document,
which means that they are strongly linked according to this document.

A possibility of taking the term frequency values itself (and not only their differ-
ence) into account is to use the product of the two term frequency values as a coef-
ficient to the (absolute) difference between the term frequency values. This takes
care of the fact that the two term frequency values have to be positive, and that
the similarity value should be the greater, the larger the term frequency values are
(and, of course, the smaller their absolute difference is). However, in our case, we
also want to take into account that it is better to have two similar term frequency
values of 0.35 (which means that the two keywords both appear rather infrequently
in the document) than to have term frequency values of 0.3 and 0.7 (which means
the first keywords appears rarely, while the other quite frequently).
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In order to adapt the product to this consideration, we use the expression
in Equation [Il in which k can be adjusted according to the importance one is
willing to give to low term frequency values.

Still another thing that we have to take into account in our case is that the same
difference between tf:' and tfZ can have a different impact depending on whether
tfs and tf2 are large or small. To tackle this issue, we combine Equation [l with
the use of the arctan function, and thus obtain the similarity measure shown
in Equation [2, which we call the Bison measure. This form has the advantage
that it takes into account that two term frequency values for the same index
have to be positive, that the similarity should be the greater, the larger the term
frequency values are, and that the same difference between tf: and tfZ should
have a different impact according to the values of tf{* and tfZ.

| arctan(tf') — arctan(tf?)|

arctan(1)

B(A, B) = (tf# - tfB)~ . <1 ) . tf P € [0,1]

4.3 The Probabilistic Measure

Another way of measuring the similarity between two nodes is based on a proba-
bilistic view. Considering two terms, it is possible to compute, for each document
they appear into, the probability of randomly selecting this document by ran-
domly choosing an occurrence of the considered term, all of which are seen as
equally likely. This value is given by the law of conditional probabilities shown
in Equation

with P(t;) = Y P(t;/d) - P(d)
d

This leads us to represent a node by a vector of all the conditional probabilities
of the documents they appear in instead of a vector of text frequencies.

Having this representation, we can compare two nodes using the similarity
measure shown in Equation [4

S(A,B) = ¢ S (P(dafta) ~ Pldn/t5))? @

We can add that P(d;/t;) in Equation Bl is equivalent to the term frequency if
P(d;) is constant, which is the case in most of the textual data sources. We can
however use this P(d;) to give arbitrary weights to certain documents.
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5 Benchmarks

Having shown how BisoNets can be built from textual data sources, we present
benchmark applications in this section. The idea is to provide a proof of principle,
that this approach of creating a BisoNet can help a user to discover bisociations.

In order to assess how effective the different similarity measures are, we count
how many domain crossing links there are in the generated BisoNets, then we
use different threshold values on the links in order to keep only the “strongest”
edges according to the similarity measure used.

5.1 The Swanson Benchmark

Swanson’s approach [I3] to literature-based discovery of hidden relations be-
tween concepts A and C via intermediate B-terms is the following: if there is
no known direct relation A-C, but there are published relations A-B and B-C
one can hypothesize that there is a plausible, novel, yet unpublished indirect
relation A-C'. In this case the B-terms take the role of bridging concepts. In his
paper [13], Swanson investigated plausible connections between migraine (A) and
magnesium (C), based on the titles of papers published before 1987. He found
eleven indirect relations (via bridging concepts B) suggesting that magnesium
deficiency may be causing migraine.

We tried our approach on the Swansons data source which consists of 8000
paper titles, taken from the PubMed database, published before 1987 and talking
about either migraine or magnesium, to see if it was possible to find again these
relations between migraine and magnesium. In order to generate a BisoNet,
we implemented a parser for text files containing the data from PubMed able to
export them in the format understandable by the second layer of our framework.
Then, this second layer performed the keywords extraction, using these keywords
as nodes and linking these nodes in the way described in Section Bl

By ranking and filtering the edges we then produced BisoNets that contained
the “strongest” edges and their associated nodes. The left graphic of Figure
shows how many domain crossing links that are kept using different threshold
values on the edges. On this graphic, we can observe that the Bison measure is the
one able to keep the most crossing-domain links even if only the very strongest
edges are kept (threshold set to keep only the best 5% of the edges). These tests
demonstrate that the Bison measure is very well suited for bisociation discovery,
since with it the strongest links are the bisociative ones.

We can observe this also in Figure [3] where the difference between the Tani-
moto and the Bison measure is graphically highlighted, showing that if we keep
only the 5% best edges, the Tanimoto measure loses any relation between mag-
nesium and migraine whereas the Bison measure manages to keep at least some.

5.2 The Biology and Music Benchmark

As we aim to discover bisociations, that is associations between concepts that ap-
pear unrelated from a certain, habitual point of view, an interesting benchmark



Selecting the Links in BisoNets Generated from Document Collections 63

I8 Cosine
M Tanimoto
[ Bison = -
[] Probabilistic [ Cosine
B Tanimoto
L Bison
% % [ Proba

% of domain crossing links kept
% of domain crossing links kept

= o

5 25
% of highest ranked edges kept

25
% of highest ranked edges kept

Fig. 2. Comparison between different similarity measures on the Swanson benchmark
on the left and on the biology-music benchmark on the right

cccccc

]
4 @@i’i‘ nfluence

Migraine

Magnesium

Fig. 3. Example of two BisoNets generated from the Swanson benchmark using the
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would be to look for bisociations in data coming from very different domains. We
therefore use here data from two databases: the PubMed database that has al-
ready been talked about in the Swanson benchmark, and the FreeDBH database
which is a freely available music database providing music titles, music styles
and artist names.

We use exactly the same procedure as for the Swanson benchmark, that is
reading the databases, performing textual pre-processing on terms and then
launching the BisoNet creation framework to obtain a BisoNet containing terms
linked to each other using the similarity distances described in this chapter. We
consider here as potential keywords every word and author in the articles of
the PubMed database, and every word of song titles, authors and styles in the
FreeDB database.

The right graphic of Figure [2] shows how many domain crossing links that are
kept using different threshold values on the edges.

6 Conclusion

In this chapter, we provided a definition of the notion of a bisociation, as un-
derstood by Koestler, which is the key notion of the BISON project. Building
on this definition, we then defined the concept of a BisoNet, which is a network
bringing together data sources from different domains, and therefore may help a
user to discover bisociations. We presented a way we create nodes using simple
text-mining techniques, and a procedure to generate links between nodes, which
is based on comparing text frequency vectors using a new similarity measure.

We then tested our approach on benchmarks in order to rediscover bisociations
between magnesium and migraine that have been discovered by Swanson using
articles published before 1987. We see that bisociations between these two terms
are easily discovered using the generated BisoNet, thus indicating that BisoNets
are a promising technology for such investigations.

Using the second benchmark, we show that, even while mixing very different data
sources, we are still able to produce BisoNets containing domain crossing links.

In summary, we venture to say that this work can be easily applied to any
kind of textual data source in order to mine data looking for bisociations, thanks
to the two layers architecture implementation.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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Abstract. A major challenge for next generation data mining systems is crea-
tive knowledge discovery from diverse and distributed data sources. In this task
an important challenge is information fusion of diverse mainly unstructured re-
presentations into a unique knowledge format. This chapter focuses on merging
information available in text documents into an information network — a graph
representation of knowledge. The problem addressed is how to efficiently and
effectively produce an information network from large text corpora from at
least two diverse, seemingly unrelated, domains. The goal is to produce a net-
work that has the highest potential for providing yet unexplored cross-domain
links which could lead to new scientific discoveries. The focus of this work is
better identification of important domain-bridging concepts that are promoted
as core nodes around which the rest of the network is formed. The evaluation is
performed by repeating a discovery made on medical articles in the mi-
graine-magnesium domain.

Keywords: Knowledge Discovery, Text Mining, Bridging Concept Identifica-
tion, Information Networks, PubMed, Migraine, Magnesium.

1 Introduction

Information fusion can be defined as the study of efficient methods for automatically
or semi-automatically transforming information from different sources and different
points in time into a representation that provides effective support for human and
automated decision making [5]. Creative knowledge discovery can only be performed
on the basis of a sufficiently large and sufficiently diverse underlying corpus of in-
formation. The larger the corpus, the more likely it is to contain interesting, still un-
explored relationships.

The diversity of data and knowledge sources demands a solution that is able to rep-
resent and process highly heterogeneous information in a uniform way. This means
that unstructured, semi-structured and highly structured content needs to be inte-
grated. Information fusion approaches are diverse and domain dependent. For in-
stance, there are recent investigations [7, 19] in using information fusion to support

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 66 2012.
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scientific decision making within bioinformatics. Smirnov et al. [22] exploit the idea
of formulating an ontology-based model of the problem to be solved by the user and
interpreting it as a constraint satisfaction problem taking into account information
from a dynamic environment.

In this chapter we explore a graph-theoretic approach [1, 2] which appears to pro-
vide the best framework to accommodate the two dimensions of information source
complexity — type diversity as well as volume size. Efficient management and proc-
essing of very large graph structures can be realized in distributed computing envi-
ronments, such as grids, peer-to-peer networks or service-oriented architectures on the
basis of modern database management systems, object-oriented or graph-oriented
database management systems. The still unresolved challenge of graph-theoretic ap-
proaches is the creation, maintenance and update of the graph elements in the case of
very large and diverse data and knowledge sources.

The core notion that guided our research presented in this chapter is based on the
concept of bisociation, as defined by Koestler [11] and refined in our context by
Dubitzky et al. [6]. Furthermore, Petri¢ et al. [15] explore the analogy between
Koestler’s creativity model and comparable cross-domain knowledge discovery ap-
proaches from the field of literature mining. In the field of biomedical litera-
ture-mining, Swanson [24] designed the ABC model approach, which investigates
whether agent A is connected with phenomenon C by discovering complementary
structures via interconnecting phenomena B. The process of discovery when domains
A and C are known in advance and the goal is to find interconnecting concepts from
B is called a closed discovery process. On the other hand, if only domain A is known
then this is an open discovery process since also domain C has to be discovered.

Our research deals only with the closed discovery setting and is to some extent
similar to the work of Smalheiser and Swanson [21] where they developed an online
system ARROWSMITH, which takes as input two sets of titles from disjoint domains
A and C and lists bridging terms (b-terms) that are common to literature A and C; the
resulting b-terms are used to generate novel scientific hypotheses. Other related works
in the domain of biomedical literature mining are work of Weeber et al. [28] where
authors partly automate Swanson’s discovery and work of Srinivasan et al. [23] where
they develop an algorithm for bridging term identification with even less expert inte-
raction needed.

This work extensively uses the concepts of bisociation, bridging concept, b-term
identification, closed discovery, cross-context and A-C domains presented in the pre-
vious paragraph. Furthermore, we have based the evaluation techniques mostly on the
results reported by Swanson et al. [26] and Urbancic et al. [27].

The chapter is structured as follows. The second section explains the initial prob-
lem we are solving into much more detail, defines the terminology used in this work
and outlines the structure of the solution proposed in this chapter. The next section is
more technical and it lays ground for some basic procedures for retrieving and pre-
processing a collection of documents. It also introduces the standard text-mining pro-
cedures and terminology which is essential for understanding the subsequent sections.
The fourth section presents the core contribution of this work, i.e., bisociative bridg-
ing concept identification techniques which are used to extract key network concepts
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(nodes). Evaluation of these core ideas on a previously well studied domain is pre-
sented in the following section. The sixth section builds upon the results from concept
identification part (Sections 4 and 5) and shows how the final information networks
are constructed.

2 Problem Description

This section describes the problem addressed in this work. The initial goal is straight-
forward: to construct an information network from text documents. The input to the
procedure consists of text documents (e.g., titles and abstract of scientific documents)
from two disparate domains. The output of the procedure is an information network
which could, for example, look like the graph shown in Fig. 1. However, the strong
bias towards bisociations leads us to using advanced bridging term identification
techniques for detecting important network nodes and relations. The following para-
graphs define in detail the input, the output, open issues and sketch the proposed solu-
tion.
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Fig. 1. Part of a network created from PubMed articles on migraine and magnesium

This chapter focuses — similarly as related work from the literature-mining field —
on text documents as the primary data source. Texts are in general considered to be
one of the most unstructured data sources available, thus, constructing a meaningful
graph of data and knowledge (also named an information network) is even more of a
challenge.

We are solving the closed discovery problem, which is the topic of research of this
chapter and one of the basic assumptions of our methodology. The selected source
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text documents are originating from at least two dissimilar domains (M1 and M2 con-
texts by Koestler’s naming or A and C domains according to Swanson and his follow-
ers). In this chapter, we always describe the methodology using exactly two domains
even though it could be generalised to three or more domains.

In this work, the selected knowledge representation formalism is the so-called bi-
sociative information network, called BisoNet. The BisoNet representation, as investi-
gated in the BISON' project and discussed by Kétter and Berthold [12] is a graph
representation, consisting of labeled nodes and edges (see Fig. 1). The original idea
underlying the BISON project was to have a node for every relevant concept of an
application domain, captured by terms denoting these concepts, that is, by named
entities. For example, if the application domain is drug discovery, the relevant
(named) entities are diseases, genes, proteins, hormones, chemical compounds etc.
The nodes representing these entities are connected if there is evidence that they are
related in some way. Reasons for connecting two terms/concepts can be linguistic,
logical, causal, empirical, a conjecture by a human expert, or a co-occurrence ob-
served in documents dealing with considered domains. E.g., an edge between two
nodes may refer to a document (for example, a research paper) that includes the repre-
sented entities. Unlike semantic nets and ontologies, a BisoNet carries little semantics
and to a large extend encodes just circumstantial evidence that concepts are somehow
related through edges with some probability.

Open issues in BisoNet creation are how to identify entities and relationships in
data, especially from unstructured data like text documents; i.e., which nodes should
be created from text documents, what edges should be created, what are the attributes
with which they are endowed and how should element weights be computed. Among
a variety of solutions, this chapter presents the one that answers such questions by
optimizing the main criterion of generated BisoNets: maximizing their bisociation
potential. Bisociation potential is a feature of a network that informally states the
probability that the network contains a bisociation. Thus, we want to be able to gener-
ate such BisoNets that contain as many bisociations as possible using the given data
sources. In other words, maximizing the bisociation potential of the generated Bi-
soNet is our main guidance in developing the methodology for creating BisoNets
from text documents.

When creating large BisoNets from texts, we have to address the same two issues
as in network creation from any other source: define a procedure for identifying key
nodes, and define a procedure for discovering relations among the nodes. However, in
practice, a workflow for converting a set of documents into a BisoNet is much more
complex than just identifying entities and relations. We have to be able to preprocess
text and filter out noise, to generate a large number of entities, evaluate their bisocia-
tion potential and effectively calculate various distance measures between the entities.
As these tasks are not just conceptually difficult, but also computationally very inten-
sive, great care is needed when designing and implementing algorithms for BisoNet
construction.

! Bisociation Networks for Creative Information Discovery: http: / /www.BisoNet .eu/
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Our approach to confront the network construction problem is based on developing
the following ingredients:

1. Provide basic procedures for automatic text acquisition from different sources of
interest on the Web.

2. Employ the state of the art approaches for text preprocessing to extract as much
information as available in raw text for the needs of succeeding procedures.

3. Incorporate as much as possible available background knowledge into the stages of
text preprocessing and candidate concept detection.

4. Define a candidate concept detection method.

5. Develop a method for relevant bisociative concept extraction from identified con-
cept candidates and perform its evaluation.

6. Select a set of relevant extracted bisociative concepts to form the nodes of a Bi-
soNet.

7. Construct relations between nodes and set their weights according to the Bisocia-
tion Index measure published and evaluated by Segond and Borgelt [4].

Document |~ | Relevant Nodes
Acquisition Selection

i v

Document - Tnclusi
. |—=| Candidate Concepts’ nclusion of
Preprocessing Concepts |+= |Bisociativity Relations
A S =| Detection Evaluation \
Background -
Knowledge
Data Acquisition and Preprocessing Bridging Concept ~ Network Creation
Identification

Fig. 2. Conceptual workflow of the proposed solution for BisoNet creation

Fig. 2 illustrates the steps of the methodology proposed by our work. This chapter
concentrates mostly on the part of the new methodology for bridging concept evaluation
(frame in the middle Fig. 2). As this is an important scientific contribution we provide
an evaluation that justifies the design choices in our methodology conception. An
evaluation of the final results — BisoNets — is not provided since an experimental evalua-
tion is hard, if not impossible, to construct according to the data we currently possess
and work on. We argue that by providing evaluation for high-quality bridging concept
identification and evaluation (done in this work) and using the proven bisociative rela-
tion measure (defined by Segond and Borgelt [4]), the resulting BisoNets are also of
high quality according to the loos defined measure of bisociation potential.

3 Document Acquisition and Preprocessing

This section describes the data preparation part (leftmost frame in Fig. 2) and is writ-
ten from a technical perspective as it sets grounds for the reproducibility of the subse-
quent scientifically more interesting steps. Alongside the reproducibility, it addresses
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also the introduction of some essential text-mining concepts, which are crucial for
understanding specific parts of our methodology. A top-level overview of the meth-
odology, discussed along with a description of the actual working system, defines the
preprocessing steps supporting the main goal addressed by this work — bisociative
concept detection.

The system for text processing proposed and implemented in this work, named
TexAs (Text Assistant), was used to produce the results presented in this chapter. The
described TexAs implementation is built on top of the LATINO? library (Link analy-
sis and text mining toolbox). This library contains a majority of elementary text min-
ing procedures, but, as the creation of BisoNet is a very specific task (in the field of
text mining), a lot of modules had to be implemented from scratch or at least opti-
mized considerably.

3.1 Document Acquisition

For the study, we use only one data source, i.e., PubMed3, which was used to retrieve
the datasets (migraine-magnesium) used in the following sections. However, when
experimenting with other domains, we identified and partly supported in TexAs the
following text acquisition scenarios:

— Using locally stored files in various application dependent formats — this is the
traditional setting in data mining; however, it usually requires large amounts of
partly manual work for transforming the data between different formats.

— Acquiring documents using the SOAP web services (e.g. PubMed uses SOAP
web service interface to access their database).

— Selecting documents from the SQL databases — it is a fast and efficient but
rarely available option.

— Crawling the internet gathering documents from web pages (e.g. Wikipedia).

— Collecting documents from snippets returned from web search engines.

3.2  Document Preprocessing

In addition to explaining various aspects of preprocessing, this section also briefly
describes basic text mining concepts and terminology, some of which are taken from
the work of Feldman and Sanger [8]. Preprocessing is an important part of network
extraction from text documents. Its main task is the transformation of unstructured
data from text documents into a predefined well-structured data representation. As
shown below, preprocessing is inevitability very tightly connected to the extraction of
network entities. In our case, actual bisociative concept candidates are defined already
when preprocessing is finished. The subsequent processing step ‘only’ ranks the enti-
ties and to remove the majority of lower ranked entities from the set.

2 LATINO library: http://sourceforge.net/projects/latino/
> PubMed: A service of U.S. National Library of Medicine, which comprises more than 20
million citations for biomedical literature: http: //www.ncbi.nlm.nih.gov/pubmed
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In general, the task of preprocessing consists of the extraction of features from text
documents. The set of all features selected for a given document collection is called a
representational model. Each document is represented by a vector of numerical quan-
tities — one for each aligned feature of the selected representational model. Using this
construction, we get the most standard text mining document representation called
feature vectors where each numerical component of a vector is related to a feature and
represents a form of weight related to the importance of the feature in the selected
document. Usually the majority of weights in a vector are equal to zero showing that
one of the characteristics of feature vectors is their sparseness — they are often re-
ferred to as sparse vectors. The goal of preprocessing is to extract a feature vector for
each document from a given document collection.

Commonly used document features are characters, words, terms and concepts [8].
Characters and words carry little semantic information and are therefore not interest-
ing to consider. Terms and concepts on the contrary carry much more semantic in-
formation. Terms are usually considered as single or multiword phrases selected from
the corpus by means of term-extraction mechanisms (e.g. because of their high fre-
quency) or are present in an external lexicon of a controlled vocabulary. Concepts or
keywords are features generated for documents employing the categorization or anno-
tation of documents. Common concepts are derived from manually annotating a
document with some predefined keywords or by inserting a document into some pre-
defined hierarchy. When we refer to document features, we mean the terms and the
concepts that we were able to extract from the documents. In the rest of this chapter,
we do not distinguish between terms or concepts. In the case if a document set con-
tains both, we merge them and pretend that we have only one type of document fea-
tures, i.e. terms/concepts.

A standard collection of preprocessing techniques [8] is listed below, together with
a set of functionalities implemented in our system TexAs:

— Tokenization: continuous character stream must be broken up into meaningful
sub-tokens, usually words or terms in the case where a controlled vocabulary is
present. Our system uses a standard Unicode tokenizer: it mainly follows the
Unicode Standard Annex #29 for Unicode Text Segmentation’. The alternative
is a more advanced tokenizer, which tokenizes strings according to a predefined
controlled vocabulary and discards all the other words/terms.

— Stopword removal: stopwords are predefined words from a language that usu-
ally carry no relevant information (e.g. articles, prepositions, conjunctions etc.);
the usual practice is to ignore them when building a feature set. Our implemen-
tation uses a predefined list of stopwords — some common lists that are already
included in the library are taken from Snowball’.

— Stemming or lemmatization: the process that converts each word/token into the
morphologically neutral form. The following alternatives have been made

* Unicode Standard Annex #29:
http://www.unicode.org/reports/tr29/#Word_Boundaries

3 Snowball — A small string processing language designed for creating stemming algorithms:
http://snowball.tartarus.org
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available: Snowball stemmers, the Porter stemmer [17], and the one that we pre-
fer, the LemmaGen lemmatization system [10].

— Part-of-speech (POS) tagging: the annotation of words with the appropriate
POS tags based on the context in which they appear.

— Syntactic parsing: performs a full syntactical analysis of sentences according to
a certain grammar. Usually shallow (not full) parsing is used since it can be effi-
ciently applied to large text corpora.

— Entity extraction: methods that identify which terms should be promoted to enti-
ties and which not. Entity extraction by grouping words into terms using n-gram
extraction mechanisms (an n-gram is a sequence of n items from a given se-
quence) has been implemented in TexAs.

3.3 Background Knowledge

Since high-quality features are hard to acquire, all possible methods that could im-
prove this process should be used at this point. The general approach that usually
helps the most consists in incorporating background knowledge about the documents
and their domain. The most elegant technique to incorporate background knowledge
is to use a controlled vocabulary. A controlled vocabulary is a lexicon of all terms that
are relevant in a given domain. Here we can see a major difference when processing
general documents as compared to scientific documents. For many scientific domains
there exists not only a controlled vocabulary, but also a pre-annotation for a lot of
scientific articles. In this case we can quite easily create feature vectors since we have
terms as well as concepts already pre-defined. Other interesting approaches to identi-
fying concepts include methods such as KeyGraph [13], which extract terms and con-
cepts with minimal assumptions or background knowledge, even from individual
documents. Other alternatives are using domain ontologies which could be, for exam-
ple, semi-automatically retrieved by a combination of tools such as OntoGen and
TermExtractor [9].

3.4 Candidate Concept Detection

The design choice of our approach is that the entities of the BisoNets will be the fea-
tures of documents, i.e., the terms and concepts defined in the previous section. The
subsequent steps are independent of term and concept detection procedure.

Entities need to be represented in a way which enables efficient calculation of dif-
ferent distance measures between the entities. We chose a representation in which an
entity is described by a set (vector) of documents in which it appears. In the same way
as documents are represented as sparse vectors of features (entities), the entities can
also be represented as sparse vectors of documents. This is illustrated in Example 1
where entity ent; is present in documents doc;, doc; and doc, and hence its feature
vector consists of all these documents (with appropriate weights). By analogy to the
original vector space — the feature space — the newly created vector space is named a
document space.
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Documents | Extracted entities
doc; ent;, ent,, ent;z
doc, ents, enty, enty
doc; ent;, ent,, ent,, ents
d0C4 ent;, ent;, ent;, ents, enty, enty

Original documents and extracted entities

Feature space | ent; | ent; | ent; | enty | ents
doc; Wf1:1 Wf]:Z Wf_1;3

doc, sz-j' Wf2-4
dOC; Wf;-j Wf3A2 ng-_s
docy W wWes | Wy

Sparse matrix of documents: w/, xy denotes the weight (in the
feature space) of entity y in the feature vector of document x

Document space | doc; | doc, | doc; | docy
a a a
ent; Wd1-1 Wdz-? W4
ent; W W3
a a a
enis W3 de\-z Wd3;4
enty W42 W44
a
ents W 5.3

Sparse matrix of entities: wdx_.y denotes the weight (in the
document space) of document y in the document vector of entity x

Example 1: Conversion between the feature and the document space

Note that if we write document vectors in the form of a matrix, then the conversion
between the feature space and the document space is performed by simply transposing
the matrix (see Example 1). The only question that remains open for now is what to
do with the weights? Is weight wf .y identical to weight wdysx? This depends on various
aspects, but mostly on how we define weights of the entities in the first place when
defining document vectors.

There are four most common weighting models for assigning weights to features:

— Binary: a feature weight is either one, if the corresponding feature is present in
the document, or zero otherwise.

— Term occurrence: a feature weight is equal to the number of occurrences of this
feature. This weight might be sometimes better than a simple binary since fre-
quently occurring features are likely more relevant as repetitions indicate that
the text is strongly concerned with them.

— Term frequency: a weight is derived from the term occurrence by dividing the
vector by the sum of all vector’s weights. The reasoning of the quality of such
weight is similar to term occurrence with the additional normalization that
equalizes each document importance — regardless of its length.

— TF-IDF: Term Frequency-Inverse Document Frequency is the most common
scheme for weighting features. It is usually defined as:

wlFIPF = TermFreq(ent, ,docy,) - log(N /DocFreq(ent,)),
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where TermFreq(ent,,doc,) is the frequency of feature ent, inside document
doc,, (equivalent to term frequency defined in bullet point above), N is the num-
ber of all documents and DocFreq(ent,) is the number of documents that con-
tain ent,. The idea behind the TF-IDF measure is to lower the weight of features
that appear in many documents as this is usually an indication of them being
less important (e.g. stopwords). The quality of this approach has also been quan-
titatively proven by numerous usages in solutions to various problems in text-
mining.
These four methods can be further modified by vector normalization (dividing each
vector so that the length — usually the Euclidian or Manhattan length — of the vector is
1). If and when this should be done depends on several factors: one of them is the
decision which distance measure will be used in the next, the relation construction
step. If the cosine similarity is used, a pre-normalization of the vectors is irrelevant, as
this is also done during the distance calculation. Example 2 shows the four measures
in practice — documents are taken from the first table in Example 1. Weights are cal-
culated for the feature space and are not normalized.

It is worthwhile to note again the analogy between the feature space and the docu-
ment space. Although we have developed the methodology for entities network ex-
traction, the developed approach can be used also for document network extraction.
Moreover, both approaches can be used to extract a unified network representation
where documents and entities are nodes, connected using some special relations.

ent; | ent, | ents | enty | ents ent; | ent, | ents | enty | ents ent; | ent, | ents | enty | ents
doc;| 1 |11 1|1 |1 AR
doc, 1] 1 1|2 A
doc;| 1 | 1 1 1|2 1 I Y
docy| 1 1] 1 3 1|2 36 Yo | s
Binary weight Term occurrence Term frequency
ent; ent, ent;s enty ents
doc;| ('13)-1og(*y) | (1) -log(h) | ('15)-log(*ls)
doc, (1) -log(*1s) | Cl3)-log(*h)
docs | (19 -1og(*y) | Cly) -log(*l) (1) -log(1)
docy | () -log(*l) (1e) -log(*13) | Cle) -log(*1»)
TF-IDF: term frequency — inversed document frequency

Example 2: Weighting models of features in document vectors (from Example 1)

3.5 Distance Measures between Vectors

Although distance calculation addressed in this section is not used in the document
preprocessing step, it is explained at this point since the content is directly related to
the Section 3.4, and since the distance measures are extensively used in the two fol-
lowing sections about bridging concept identification as well as network creation.

The most common measures in vector spaces, which are also implemented in our
system TexAs, are the following:
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— Cosine similarity: CosSim(vec,,vec,) =

M. Jursic et al.

— Dot product: DotProd(vec, , vecy).

DotProd(vec, ,vec,)

lvecy|-|vecy|
is the dot product normalized by the length of the two vectors. In the cases
where the vectors are already normalized, the cosine similarity is identical to the
dot product.
Jaccard index: this similarity coefficient measures the similarity between sample
sets. It is defined as the cardinality of the intersection of the sample sets:

|vecy nvec,| DotProd(vec, ,vec,)

]aCC]HX(Uer ! vecy) = |vecy Uvecy| — |vecyl+|vecy|~DotProd(vecy vecy)’

where lengths |vec,| and |vec, | are Manhattan lengths of these vectors.
Bisociation index: it is the similarity measure defined for the purpose of bisocia-
tion discovery in the BISON project. It is explained in more detail in [4]. This
measure cannot be expressed by the dot product. Therefore, the following defi-
nition uses the notation from Example 1:

; _yM |tan~! (W) = tan~  (wy)|
BisInx(vec,, vec,) = Zi:o(k/Wx:i Wy, (1 - e 2 ) ,

where M is the number of all the entities.

In general, the choice of a suitable distance measure should be tightly connected to
the choice of the weighting model. Some of the combinations are very suitable and
have understandable interpretations or were experimentally evaluated as useful, while
others are less appropriate. We list the most commonly used pairs of weighting model
and distance measure below:

— TF-IDF weighting and cosine similarity: this is the standard combination for

computing the similarity in the feature space.

— Binary weighting and dot product distance: if this is used in the document space

the result is the co-occurrence measure, which counts the number of documents
where two entities appear together.

Term occurrence weighting and dot product distance: this is another measure of
co-occurrence of entities in the same documents. Compared to the previous
measure, this one considers also multiple co-occurrences of two entities inside a
document and gives them a greater weight in comparison with the case were
each appears only once inside the same document.

— Binary weighting and Jaccard index distance: Jaccard index was primary de-

fined on sets, therefore the most suitable weighting model to use with it is the
binary weighting model (since every vector then represents a set of features).
Term frequency weighting and the Bisociation Index distance: the Bisociation
Index was designed with the term frequency weighting in mind, thus it is rea-
sonable to use this combination when determining a weighting model for the Bi-
sociation index.
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4 Identifying Bridging Concept Candidates for High Quality
Network Entities Extraction

This section presents the key part of our methodology for bisociative bridging terms
identification. We propose a set of heuristics which are promising for b-term discov-
ery. In Section 5 we use them to rank all the terms from a document collection and
thus obtain some terms which have a higher probability of being b-terms than a ran-
domly selected term.

4.1 Heuristics Description

Heuristics are functions that numerically evaluate the term’s quality by assigning a
bisociation score (tendency that a term is a b-term) to it. For the definition of an ap-
propriate set of heuristics we define a set of special (mainly statistical) properties of
terms which will separate b-terms from regular terms. Thus, these heuristics can also
be viewed as advanced term statistics.

All heuristics operate on the data retrieved from the documents in preprocessing or
obtained from the background knowledge. Using an ideal heuristic and sorting all the
terms by the its calculated bisociation scores should result in finding all the b-terms at
the top of a list. However, sorting by actual heuristic bisociation scores (either ascend-
ing or descending) should still bring much more b-terms than non b-terms to the top
of the term list.

Formally, a heuristic is a function with two inputs, i.e., a set of domain labeled
documents D and a term t appearing in these documents, and one output, i.e., a num-
ber that correlates with the term’s bisociation score.

In this chapter we use the following notation: to say that the bisociation score b is
equal to the result of a heuristic named heurX, we can write it as b = heurX (D, t).
However, since the set of input documents is static when dealing with a concrete data-
set, we can — for the sake of simplicity — omit the set of input documents from a heu-
ristic notation and use only b = heurX (t). Whenever we need to explicitly specify the
set of documents on which the function works (never needed for a heuristic, but
sometimes needed for auxiliary functions used in a formula for a heuristic), we write
it as funcX,(t). For specifying an auxiliary function’s document set we have two
options: either we use D,, that stands for the (union) set of all the documents from all
the domains, or we use D,:n € {1.. N}, which stands for a set of documents from the
domain n. In general the following statement holds: D, = U¥_, D, where N is the
number of domains. In the most common scenario, where we have exactly two dis-
tinct domains, we also use the notation D, for D, and D, for D,, since we introduced A
and C as representatives of the initial and the target domain in the closed discovery
setting introduced in Section 1. Due to a large number of heuristics and auxiliary
functions we use a multi word naming scheme for easier distinction; names are
formed by word concatenation and capitalization of all non-first words (e.g.: freqPro-
dRel and tfidfProduct).
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It is valuable to note that all the designed heuristics are symmetric in the domains,
as switching the order of domains (which domain is the initial domain and which is
the target) should not affect the outcome of a heuristic. By allowing asymmetric heu-
ristics the approach would lose generality and also the possibility to generalize it to
more than two domains.

We divided the heuristics into different sets for easier explanation; however, most
of the described heuristics work fundamentally in a similar way — they all manipulate
solely the data present in document vectors and derive the terms’ bisociation score.
The only exceptions to this are the outlier based heuristics which firstly calculate
outlier documents and only later use the information from the document vectors.

The heuristics can be logically divided into four sets which are based on: frequen-
cy, tf-idf, similarity, and, outliers. Besides those sets we define also two special heu-
ristics which are used as a baseline for other heuristics.

4.2  Frequency Based Heuristics

For easier definition of frequency based heuristics we need two auxiliary
sub-functions:

— countTermp(t): counts the number of occurrences of term t in a document set D
(called term frequency in tf-idf related contexts),

— countDocp(t): counts the number of documents in which term t appears in a
document set D, (called document frequency in tf-idf related contexts).

We define the following basic heuristics:

D freqTerm(t) = countTermp, (t): term frequency across both domains,
@ fregDoc(t) = countDocp, (t): document frequency across both domains,

®) freqRatio(t) = Z2Tm0u®: torm to document frequency ratio,
@ freqDomnRatioMin(t) = min(

quencies ratio between both domains,
® freqDomnProd(t) = countTermp, (t) - countTermp, (t): product of term frequencies in
both domains,

countDocDu ®)
countTerle ®) countTersz @)

): minimum of term fre-

countTersz ®) 'countTerle @®

tT t)- tT t
© freqDomnProdRel(t) = == ermp, ) - feountTermp, ©), product of term frequen-
countTermp,, (t)

cies in both domains relative to the term frequency in all domains.

4.3 Tf-idf Based Heuristics

Tf-idf is the standard measure of term’s importance in a document which is used
heavily in text mining research. In the following heuristic definitions we use the fol-
lowing auxiliary functions:

— tfidf,(t) stands for tf-idf of a term ¢ in a document d, and,

— tfidfp(t) represents tf-idf of a term in the centroid vector of all the documents
d:d € D. The centroid vector is defined as an average of all document vectors
and thus presents an average document from the document collection D
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Heuristics based on tf-idf are listed below:

D tfidfSum(r) = 2aep, tfidfa(t): sum of all tf-idf weights of a term across both
domains — analogy to freqTerm(t),

® tridfAvg(t) = %: average tf-idf of a term,

@ tfidfDomnProd(t) = tfidfp, (t) - tfidfp,(t): product of a term’s importance in
both domains.

10t fidf DomnSum(t) = tfidfp, (t) + tfidfp,(t): sum of a term’s importance in
both domains.

4.4  Similarity Based Heuristics

Another approach to construct a relevant heuristic measures is to use the cosine simi-
larity measure. We start by creating a representational model as a document space and
by converting terms (entities) into document vectors (see section 3.4). Next, we get the
centroid vectors for both domains in the document space representation. Furthermore,
we apply tf-idf weighting on top of all the newly constructed vectors and centroids.
Finally we use the following auxiliary function to construct the heuristics:

— simCosp(t): calculates the cosine similarity of the document vector of term ¢t
and the document vector of a centroid of documents d € D.

Constructed heuristics:

U simAvgTerm(t) = simCosp, (t): similarity to an average term — the distance

from the center of the cluster of all terms,
simDomnProd(t) = simCosp, (t) - simCosp,(t): product of a term’s similarity to

the centroids of both domains,
simCole(t) simCosDZ @)

(12

(13)

simDomnRatioMin(t) = min( ): minimum of a term‘s frequen-

simCosp, (t) 'simCole(t)
cies ratio between both domains.

4.5  Outlier Based Heuristics

Conceptually, an outlier is an unexpected event, entity or — in our case — document. We
are especially interested in outlier documents since they frequently embody new infor-
mation that is often hard to explain in the context of existing knowledge. Moreover, in
data mining, an outlier is frequently a primary object of study as it can potentially lead
to the discovery of new knowledge. These assumptions are well aligned with the bisoci-
ation potential that we are optimizing, thus, we have constructed a couple of heuristics
that harvest the information possibly residing in outlier documents.

We concentrate on a specific type of outliers, i.e., domain outliers, which are the
documents that tend to be more similar to the documents of the opposite domain than
to those of their own domain. The procedures that we use to detect outlier documents
build a classification model for each domain and afterwards classify all the documents
using the trained classifier. The documents that are misclassified are declared as out-
lier documents, since according to the classification model they do not belong to their
domain of origin.
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We defined three different outlier sets based on three classification models used.
These outlier sets are:

— D¢s: retrieved by Centroid Similarity (CS) classifier,
— Dgp: retrieved by Random Forest (RF) classifier,
— Dgyy: retrieved by Support Vector Machine (SVM) classifier.

Centroid similarity is a basic classifier model and is also implemented in the TexAs
system. It classifies each document to the domain whose centroid’s tf-idf vector is the
most similar to the document’s tf-idf vector. The description of the other two classifica-
tion models is beyond the scope of this chapter, as we used external procedures to re-
trieve these outlier document sets. The detailed description is provided by
Sluban et al. [20].

For each outlier set we defined two heuristics: the first counts the frequency of a
term in an outlier set and the second computes the relative frequency of a term in an
outlier set compared to the relative frequency of a term in the whole dataset. The re-
sulting heuristics are listed below:

a4

as

(6)

outFreqCS(t) = countTermp  (t): term frequency in CS outlier set,
outFreqRF(t) = countTermp, (t): term frequency in RF outlier set,
outFreqSVM(t) = countTermy,, (t): term frequency in SVM outlier set,
outFreqSum(t) = countTermp  (t) + countTermp, (t) + countTermy, (t):
sum of term frequencies in all three outlier sets,

a7

tT t . . .
(lg)outFreqRelCS (t) = M: relative frequency in CS outlier set,
countTermp, (t)
tT. t . . .
" outFreqRelRF(t) = countermogy O, ol ative frequency in RF outlier set,
countTermp, (t)
tT t . . .
(zo)outFreqRelS VM(t) = w: relative frequency in SVM outlier set,
countTermp, (t)
(21)0utFreqRelSum(t) _ countTermDCS(tH countTermDRF(tH countTermDSVM(t) - sum of rel-

countTermp,,(t)
ative term frequencies in all three outlier sets.

4.6 Baseline Heuristics

We have two other heuristics which are supplementary and serve as a baseline for the
others. The auxiliary functions used in their calculation are:

— randNum(): returns random number from the interval (0,1) regardless of the
term under investigation,
— inBoth(t): 1 if a term t appears in both domains and 0 otherwise.

The two baseline heuristics are:
(22)
(23)

random(t) = randNum() : random baseline heuristic,

appearInAllDomn(t) = inBoth(t) + (randNum())/2 : it is a better baseline heu-
ristic which can separate two classes of terms — the ones that appear in both do-
mains and the ones that appear only in one. The terms that appear only in one
domain have a strictly lower heuristic score than those that appear in both. The
score inside of these two classes is still random.
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5 Heuristics Evaluation

This section presents the evaluation of the heuristics defined in the previous section.
First we describe the evaluation procedure, then the domain on which we evaluate the
heuristics is presented, and finally the results of the evaluation along with the discus-
sion of the results.

5.1 Evaluation Procedure

In the experimental setting used in this chapter we are given the following: a set of
documents from two domains and a “gold standard” list of b-terms. Consequently, we
are able to mark the true b-terms and evaluate how well our constructed heuristics are
able to promote these b-terms compared to the rest of the terms.

We compare the heuristics using ROC (Receiver Operating Characteristic) curve and
AUC (Area Under ROC) analysis. Some ideas on using the ROC for our evaluation
were taken from Foster et al. [18]. ROC curves are constructed in the following way:

— Sort all the terms by their descending heuristic score.

— Starting from the beginning of the term list, do the following for each term: if a
term is a b-term, then draw one vertical line segment (up) on the ROC curve,
else draw one horizontal line segment (right) on the ROC curve.

— Sometimes, a heuristic outputs the same score for many terms and therefore we
cannot sort them uniquely. Among terms with the same bisociation score b, let
b, be the number of terms that are b-terms and nb,, the number of non-b-terms.
We then draw a line from the current point p to the point p + (nby,b;). In this
way we may produce slanted lines, if such an equal scoring term set contains
both b-terms and non b-terms.

Using the stated procedure, we get one ROC curve for each heuristic. The ROC space
is defined by its two axes. The ROC’s vertical axis scale goes from zero to the num-
ber of b-terms and the horizontal goes from zero to the number of non b-terms. AUC
is defined as the percentage of the area under curve — the area under the curve is di-
vided by the area of the whole ROC space. If a heuristic is perfect (it detects all the
b-terms and ranks them at the top of the ordered list), we get a curve that goes first
just up and then just right with an AUC of 100%. The worst possible heuristic sorts all
the terms randomly regardless of being a b-term or not and achieves AUC of 50%.
This random heuristic is represented by the diagonal in the ROC space.

The fact that some heuristics output the same score for many terms can produce
different sorted lists and thus different performance estimates for the same heuristic
on the same dataset. In the case of such equal scoring term sets, the inner sorting is
random (which indeed produces different performance estimates). However, the
ROC:s that are provided (and constructed by the instructions in the paragraph above)
correspond to the average ROC over all possible such random inner sortings. Besides
AUC, we list also the interval of AUC which tells how much each heuristic varies
among the best and the worst sorting of a possibly existing equal scoring term set.
Preferable are the heuristics with a smaller interval which implies that they produce
smaller and fewer equal scoring sets.
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5.2  Migraine-Magnesium Dataset

This section describes the dataset used to evaluate the heuristics’ potential of success-
ful b-term identification. The dataset that we used is the well-researched mi-
graine-magnesium domain pair which was introduced by Swanson [24] and later ex-
plored by several authors in several studies [25, 28, 26, 14]. In the literature-based
discovery process Swanson managed to find more than 60 pairs of articles connecting
the migraine domain with the magnesium deficiency via 43 b-terms. In our evaluation
we are trying to rediscover these b-terms stated by Swanson to connect the two do-
mains (see Table 1).

Table 1. B-terms identified by Swanson et al. in [26]

1 5ht 16 convulsive 31 prostaglandin

2 5 hydroxytryptamine 17 coronary spasm 32 prostaglandin el
3 5 hydroxytryptamine receptor 18 cortical spread depression 33 prostaglandin synthesis
4 anti aggregation 19 diltiazem 34 reactivity

5 anti inflammatory 20 epilepsy 35 seizure

6 anticonvulsant 21 epileptic 36 serotonin

7 antimigraine 22 epileptiform 37 spasm

8 arterial spasm 23 hypoxia 38 spread

9 brain serotonin 24 indomethacin 39 spread depression
10 calcium antagonist 25 inflammatory 40 stress

11 calcium blocker 26 nifedipine 41 substance p

12 calcium channel 27 paroxysmal 42 vasospasm

13 calcium channel blocker 28 platelet aggregation 43 verapamil

14 cerebral vasospasm 29 platelet function

15 convulsion 30 prostacyclin

The dataset contains scientific paper titles which were retrieved by querying the
PubMed database with the keyword “migraine” for the migraine domain and with the
keyword “magnesium” for the magnesium domain. Additional condition to the query
was the publishing date which was limited to before the year 1988, since Swanson’s
original experiment — which we want to reproduce — also considered only articles
published before that year. The query resulted in 8,058 titles (2,425 from the migraine
domain and 5,633 from the magnesium domain) of the average length of 11 words.
We preprocessed the dataset using the standard procedures described in Section 3.2
and by additionally specifying terms as n-grams of maximum length 3 (max. three
words were combined to form a term) with minimum occurrence 2 (each n-gram had
to appear at least twice to be promoted to a term). Using this preferences we produced
a dataset containing 13,525 distinct terms or 1,847 distinct terms that appear at least
once in each domain; both numbers include also all the 43 terms that Swanson
marked as b-terms. An average document in the dataset consists of 12 terms and 394
(4,89%) documents contain at least one b-term.
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5.3  Comparison of the Heuristics

This section presents the results of the comparison of the heuristics on the magne-
sium-migraine dataset using ROC analysis. The experimental setting was presented in
detail in the previous sections. Nevertheless, for the purpose of this evaluation, it was
slightly extended, due to additional knowledge about b-terms in this domain (this may
be a general observation for any future domain). We realized that all the 43 b-terms
appear in both domains; therefore, it is more fair for the comparison that the heuristics
are also aware of this fact. Therefore, we made sure that every heuristic ordered all
the terms that appear in both datasets (1,847 terms) before all the other terms (11,678
terms), however, every heuristic used its own score for ordering within these two sets
of terms. In this way, we incorporated the stated background knowledge about
b-terms in this domain into all the heuristics.

Table 2. Comparison of the results of all the defined heuristics ordered by the quality — AUC.
The first column states the name of the heuristic; the second displays a percentage of the area
under the ROC curve; and the last is the nterval of AUC.

Heuristic AUC  Interval ©® freqDomnProdRel ~ 93,71%  0,40%
D outFreqRelSum 9533% 0,35% 19 simDomnRatioMin ~ 93,58%  0,00%
19 outFreqRelRF 9524% 0,55% D tfidfSum 93,58%  0,00%
@9 outFreqRelSVM 95,06% 1,26% © tfidfDomnProd 9347%  0,39%
"% outFreqRelCS 94,96% 1,30% ® freqgDomnProd 9342%  0,44%
U7 outFreqSum 9496% 0,70% @ freqRatio 9335%  5,23%
® tfidfAvg 94,87%  0,00% @3 appearlnAllDomn  93,31%  6,69%
U9 outFreqRF 94,73% 1,53% U2 simDomnProd 9327%  0,00%
19 outFreqSVM 94,70%  2,06% M freqTerm 93,20% 0,50%
U outFreqCS 94,.67% 1,80% @ freqDoc 93,19%  0,50%
@ freqDomnRatioMin ~ 94,36%  0,62% D simAvgTerm 92,71%  0,00%
19 tfidfDomnSum 93,85% 0,35% 2 random 50,00% 50,00%

The first look at numerical result comparison (Table 2) reveals the following:

— The overall AUC results of all heuristics, except for the random baseline, are

relatively good and in the range of from approx. 93% to 95%.

— The difference among AUC results is small (only 2.5% between the worst and
the best performing heuristic).

— The improved baseline heuristic “’appearInAllDomn performs well and is not
worse than some other heuristics.

— Outlier based heuristics seem to perform the best.

— Some heuristics, including the best performing ones, have a relatively high AUC
interval which means that they output the same score for many terms.

Observing the results in Table 2, followed by the detailed ROC analysis described
below, we selected the best heuristic that will be used as the heuristic for network
node weighting, which is the final result of this work. The chosen heuristic is simply
the first from the list in Table 2 — “"outFreqRelSum — due to the fact that it has high-
est AUC and especially since it shows a low uncertainty. In other words, it has
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Fig. 3. ROC curve of the selected heuristic
@random and improved baseline heuristic
among all 13,525 candidate concepts.

small AUC interval, which means that it better defines the position of b-terms and we
do not need to rely so much on random sorting of potential equal scoring term sets.
We also assume it to be less volatile across domains since it actually represents coop-
eration (sum) of three other well performing heuristics: “®outFreqRelRF,
(zo)outFreqReISVM, and, (lg)outFreqRelCS.

Detailed ROC curve analysis of the chosen heuristic (see Fig. 3) shows that our
heuristic is only slightly better than the improved baseline heuristic, which is evident
also from Table 2. However, when examined carefully we perceive the property of the
heuristic which is the initial assumption of this research, i.e., extremely steep incline
at the beginning of the curve which is much steeper than the incline of the baseline
heuristics. This means that the chosen heuristic is able to detect b-terms at the begin-
ning of the ordered list much faster than the baseline. The steep incline is even more

evident in Fig. 4.
Fig. 4 shows the zoom-in perspective on the ROC curves of the selected outlier
1% to 2V _ along with the baselines. The zoom-in

based heuristics — enumerated from
(applied also in Fig. 5) refers to the axis x since we show only 1,804 terms which is

the point where all the heuristics (except “”random) reach the top point (43 found
b-terms). In Fig. 4 we can see the steep incline property of the “"outFreqRelSum
even more clearly. At the position of the first tick on the axis x (by the term 50 in the
ordered list of terms) the chosen heuristic is able to detect already 5-6 b-terms while

the baseline heuristic only approximately one. Similarly, we notice at the 200™ term
@YoutFreqRelSum detects already 11.

the baseline heuristics detects 5 b-terms while
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Fig. 4. ROC curves of the best-performing set of heuristic — relative frequency of a term in
outlier sets — along with both baseline heuristics on detecting the b-terms among only 1,847
candidate concepts (only the concepts that appear in both domains)

If we follow the curve further we see a decrease in relative difference; nevertheless, at
the 1000™ term the ratio is still 24:35, even though the performance here is not of such
importance as the performance at the beginning of the curve. The presented behavior
at the beginning of the curve is highly appreciated especially from the expert’s point
of view who needs to go through such an ordered list of terms and detect potential
b-terms. In such a setting we would really want to present some valuable b-terms at
the very beginning of the list, even if other b-terms are dispersed evenly across it.
Even though we chose the heuristic from the outlier set we are still interested how
the heuristics from the other sets performed. This comparison is presented in Fig. 5
where we show one (the best performing one) heuristic from each set of heuristics.
Notice the outlier heuristic "”outFreqRelRF which undoubtedly wins. It is harder to
establish an order between the other three heuristics. The undesired property is ex-
posed by "YsimDomnRatioMin where the ROC curve shows performance worse than
@appearInAllDomn at the right side of the curve; however, even this would be toler-
able if there is outperformance at the beginning of the curve. The conclusion for the
other sets (besides the outlier one) is that even though they are slightly better than the
baseline heuristic we are not able to infer their significant outperformance over it.
Overall, the results of the evaluation are beneficial for the insight into heuristic per-
formance on the examined migraine-magnesium dataset. The conclusion is that it is
extremely hard to promote b-terms in an ordered list of terms by observing only the
terms’ statistical properties in the documents. However, we managed to construct a
well performing heuristic which is based on relative frequency of a term in three out-
lier sets of all the documents. The outlier sets of documents are retrieved using
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Fig. 5. ROC curves of the best-performing heuristics — one from each set (based on: frequency,
tf-idf, similarity, outliers) along with both baseline heuristics on detecting the b-terms among
only 1,847 candidate

three types of classifiers: Centroid Similarity, Random Forest, and, Support Vector
Machine. The conclusion of our evaluation is well aligned with the results presented
by Sluban et al. [20] and Petri¢ et al. [16].

The presented chapter motivated our future work in several directions of which we
will first proceed with the following:

— Reevaluate the findings on a new independent test domains. We have already
done some initial tests on the autism-calcineurin domain pair presented by
Urbanci¢ et al. [27], which show similar results as the presented evaluation.

— Try to do some further research on heuristics based on statistical properties of
the terms. If no heuristics which outperform * appearInAllDomn is found, we
will consider completely abandoning this type of heuristics.

— Add some new, fundamentally different classes of heuristics to rank the terms.
We have a couple of ideas to try, including using SVM keywords (SVM trained
to separate between domains) as potential b-terms with high score.

— Implement the findings of this research as a web application where the user (a
domain expert) will be able to perform an experimentation and b-term retrieval
on his own domains of interest.

6 Network Creation

This section briefly presents the ideas behind the creation of a BisoNet — an informa-
tion network of concepts identified and weighted by the presented methodology.
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The initial plan for BisoNet construction is first to take all the terms/concepts identi-
fied in the preprocessing step, next to weight them using the bisociation score of the
“DoutFreqRelSum heuristic and finally to add links among concepts according to the
Bisociation Index measure defined by Segond and Borgelt [4].

Table 3. The 40 highest ranked terms using the preferred heuristic ®"outFreqRelSum along
with the weights (bisociation score) retrieved by the same heuristic. There are 5 gold standard
b-terms in this list and they are all marked with asterisks.

1 sturge 3.50 26 cerebral artery 2.50
2 sturge weber 3.50 27 medication 2.50
3 weber 3.50 28 animal human 2.50
4 inflammatory agent 3.00 29 trial treatment 2.50
5 double blind clinical 3.00 30 brain serotonin * 2.50
6 migraine therapy magnesium 3.00 31 comparative double blind 2.50
7 ophthalmologic 3.00 32 comparative double 2.50
8 clinical aspect therapy 3.00 33 400 2.50
9 anti inflammatory agent 3.00 34 hyperventilation 2.50
10 therapy magnesium glutamate 3.00 35 cortical spread 2.50
11 bruxism 3.00 36 concentration serotonin 2.50
12 magnesium glutamate 3.00 37 pill 2.50
13 blind clinical 3.00 38 physiopathological 2.50
14 aspect therapy 3.00 39 vasospastic 2.50
15 physiopathology 2.83 40 respiratory arrest 2.50
16 hypotension 2.66 41 peripheral artery 2.50
17 treatment spontaneous 2.66 42 spread depression * 2.43
18 oral glucose tolerance 2.50 43 pharmacotherapy 2.33
19 cerebral vasospasm * 2.50 44 arterial spasm * 2.33
20 response serum 2.50 45 acid metabolism 2.33
21 factor pathogenesis 2.50 46 clinical experimental study 2.33
22 cortical spread depression * 2.50 47 chorea 2.33
23 severe pre 2.50 48 lactase 2.33
24 severe pre eclampsia 2.50 49 arginine 2.33
25 experimental data 2.50 50 clinical effect 2.33

We will explain BisoNet construction by creating an example network from the
migraine-magnesium domain pair. Table 3 states first 50 terms which are the output
of the first two steps of the procedure: candidate concept detection and
@YoutFreqRelSum heuristic scoring. How many terms do we consider for inclusion in
the final BisoNet depends on the use-case of the created network. In the case when
the network is an input of the following automatic procedures for bisociation detec-
tion, we want to keep as many nodes as possible, i.e., all candidate concepts nodes
(13,525 in the migraine-magnesium domain). There may be a need to trim the number
of nodes down either due to the computational complexity of the subsequent bisocia-
tion discovery procedures or due to the fact that the network is meant to be explored
by a human. In such a case we have two primary options to consider: the first is to
remove all the nodes that do not appear in both domains since those are less probable
to contain interesting bisociations (we are left with 1,847 nodes in the mi-
graine-magnesium domain). The second option is to use the scores of
“DoutFreqRelSum to cut the nodes under the specified threshold limit.
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Fig. 6. Part of the network constructed from the migraine-magnesium database using
@DoutFreqRelSum heuristic for weighting the nodes and Bisociation Index for weighting the
links

The only step remaining to finalize a BisoNet construction is to calculate the links.
If we have a reasonably large number of nodes (e.g. 1,000 or more) then it is infeasi-
ble to calculate all the links since there are (n - (n — 1))/2 of them if n is the number
of nodes. Therefore, we again use thresholding to cut away lower weighted links. In
extreme cases where there is a really vast number of nodes (e.g. 100,000 or more)
there are special approaches needed to calculate all the links — even before threshold-
ing is applied and the nodes are stored. However, these algorithms are beyond the
scope of this work.

Fig. 6 shows a section of the final BisoNet constructed by the methodology de-
scribed in this work. A section contains all the highest-ranking nodes retrieved using a
threshold on the concepts’ *outFreqRelSum heuristic score (see Table 3) and the
two — in this domain — special nodes: migraine and magnesium. The links among
nodes were calculated as described and were not thresholded. Weights on the links
and nodes are not shown due to clarity; however, the node weights are stated in Table
3 while link weights can be inferred from the strength — darkness of the links.

With the presentation of this example we conclude this chapter. We addressed the
problem of producing an information network, named BisoNet, from a large text cor-
pus consisting of at least two diverse domains. The goal was to produce a BisoNet
that has a high potential for providing yet unexplored cross-domain links which could
lead to new scientific discoveries. We devoted most of this chapter to the
sub-problem: how to better identify important domain-bridging concepts which be-
come core nodes of the resulting network. We also provided a detailed description of
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all the preprocessing steps required to reproduce this work. The evaluation of bridging
concept identification was performed by repeating a discovery made on medical ar-
ticles in the migraine-magnesium domain. Further work is tightly related to the main
focus of this chapter — heuristics for b-term identification and their evaluation — there-
fore, we stated the ideas for further work at the end of Section 5.
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Abstract. We propose a method to mine novel, document-specific as-
sociations between terms in a collection of unstructured documents. We
believe that documents are often best described by the relationships they
establish. This is also evidenced by the popularity of conceptual maps,
mind maps, and other similar methodologies to organize and summarize
information. Our goal is to discover term relationships that can be used
to construct conceptual maps or so called BisoNets.

The model we propose, tpf-idf-tpu, looks for pairs of terms that are
associated in an individual document. It considers three aspects, two of
which have been generalized from tf-idf to term pairs: term pair fre-
quency (tpf; importance for the document), inverse document frequency
(idf; uniqueness in the collection), and term pair uncorrelation (tpu; in-
dependence of the terms). The last component is needed to filter out
statistically dependent pairs that are not likely to be considered novel or
interesting by the user.

We present experimental results on two collections of documents: one
extracted from Wikipedia, and one containing text mining articles with
manually assigned term associations. The results indicate that the tpf—
idf-tpu method can discover novel associations, that they are different
from just taking pairs of tf-idf keywords, and that they match better the
subjective associations of a reader.

1 Introduction

Documents are routinely characterized by their keywords, and keyword extrac-
tion is also a popular topic in text mining. Keywords certainly are useful, but
they fail to describe relations between concepts in a document. In this chapter,
we propose methods to mine characteristic term associations from unstructured
documents in a given collection.

An example application is automatic generation of conceptual maps from news
stories: such a map is a graph with terms or concepts as nodes and relations
between them as edges. (Different flavors of such representations are known,
e.g., as concept maps, mind maps, cognitive maps, and topic maps.) Conceptual
maps are a well-known learning tool used to study and organize information,
and one of our goals is to facilitate this process by automatic construction of
rough conceptual maps.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 91 2012.
© The Author(s). This article is published with open access at SpringerLink.com
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In the context of creative information exploration and bisociative reasoning,
such graphical representations are called BisoNets [I]. BisoNets can then be used
to explore and discover novel information and unforseen connections between
concepts.

As an example application, consider an online service that aggregates news
stories from many sources and presents those to the user. Illustrating the novel
association as a conceptual map together with suitable associations from the
background knowledge provides a good overview of what is new in any par-
ticular story, and how it relates to existing information. As an example, con-
sider the mining incident in 2010 in Chile, where 33 miners were trapped in a
collapsed mine for more than two months before eventually being rescued via
a newly drilled tunnel. In the first news stories, associations such as (Chile,
mine), (mine, collapse) and (miner, trapped) were central. However, when more
and more stories were written about the incident, these associations became part
of the background. As the rescue operation advanced, new information became
available about drilling and the tunnel, the rescue vessel to be used in it, the
dates of the approaching final rescue operation, and eventually the success of
the operation.

We are building such a prototype system, currently harvesting news from
7 online sources and with approximately 30 000 stories indexed so far. As an
example, Figure [Tl illustrates the essential associations, extracted with methods
proposed in this chapter, from a news story published by The Washington Postl
just before the lifting operation was to start. To highlight the news value of this
story, the background associations relating the event to Chile, the capsule, etc.
are not shown.

long 1.15 .
trap world life
urzua

119

183 116 132 o8
. : 127
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freedom 245

miner 1.10 i

Fig. 1. Conceptual map of novel associations in a Washington Post news story “Chilean
miners to begin emerging tonight” (Tue, Oct. 12, 2010). The miners had been trapped
for over two months and were now about the be freed in an operation followed all
around the world. Urzua is the name of the shift chief in the mine, a spokesman for
the miners. Edge labels describe their importance.

Our goal is to extract interesting associations between terms in text docu-
ment collections, to be presented, for instance, as simple conceptual maps or
BisoNets. Roughly speaking, there are two different term association discovery
tasks. The more standard one is discovering semantic similarities of terms, e.g.,

!http://www.washingtonpost.com/wp-dyn/content/article/
2010/10/12/ AR2010101203510.html?wprss=rss_world
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by their frequent co-occurrences. The other task, on which we focus in this chap-
ter, is finding non-obvious, document-specific associations between terms. Note
the strong contrast: in the latter task our aim is to discover novel associations
between terms that are usually not related.

The remainder of the chapter is organized as follows: We will briefly review
related work in Section Bl In Section [B] we propose a new method that finds
exceptional relations in the sense that they are independent in the collection
and specific to the document. Section [] contains experimental results on two
collections of documents: one extracted from Wikipedia, one containing text
mining articles with manually assigned term associations. Section [B contains
concluding remarks and proposes further research on this topic.

2 Related Work

Conceptual maps, concept maps, mind maps, topic maps and many other similar
formalisms exist for organizing and representing concepts and their relations as a
graph. Many of them have been developed to be used as note taking and learning
tools (see, e.g., [2]). Topic maps, on the other hand, are an ISO-standardized
representation for interchange of knowledge. Unlike many of these techniques,
we do not currently label edges by relation types. This could perhaps be done
with information extraction methods (see below) after the associations have been
discovered. We are not aware of methods for automatic, domain-independent
construction of conceptual maps for documents in a given collection. We next
review methods for finding various kinds of relations between terms or concepts.

There is abundant literature on finding statistical relations between terms.
Most of the work is focused on discovering semantically related terms, such as
car and wheel. Typically these techniques either use lexical databases and on-
tologies or measure co-occurrences of words, or combine these two. For instance,
Hirst and St-Onge [3], as well as Patwardhan and Pedersen [4] measure seman-
tic relatedness using WordNet as background knowledge. WordNet is a lexical
database that consists of a thesaurus and several types relations between terms.
WordNet-based similarity measures use path lengths between terms as the basis
of relatedness. The Normalized Google Distance Measure (NGD) [0], in turn,
uses Google search engine to measure the semantic relatedness of two terms.
NGD has theoretical background in information theory, but in practice the idea
is to compute the ratio of web pages where the terms occur independently to
the pages where both of the terms occur. Latent Semantic Indexing (LSI) [6]
goes beyond direct co-occurrence of terms, and uses singular value decompo-
sition and reduction of matrix dimensions. Co-occurrence measures specifically
aimed at bisociation are proposed by Segond and Borgelt [7]. They use keywords
as the nodes of the BisoNet and focus on selecting appropriate edges between
them. For the example application of producing conceptual maps, such seman-
tic relations across documents are needed, and constitute an essential part of
the background. The method proposed in this chapter addresses an opposite
problem: find associations that are relatively specific to a document.
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Our approach shares some mental similarity with RaJoLink [§] even though
it works in a different setting. Given a collection of articles on some topic, Ra-
JoLink starts by finding rare terms in it. The motivation is that these may be
used to generate hypotheses about novel connections to other topics in further
steps of the RaJoLink process. RaJoLink’s emphasis is, however, on finding in-
direct relations of topics across documents, not on finding associations within
documents.

The goal of information extraction is to extract certain structured informa-
tion from textual documents (see, e.g., [9]). Information extraction methods are
also routinely used to discover associations between terms. Examples include
news story analysis (who did what, where and when) and automatic extraction
of biomedical facts from scientific articles (which proteins interact, which gene
contributes to which phenotype, etc.). While information extraction methods
are tuned to look for specific types of facts (including relations), our goal is to
be able to discover associations between arbitrary terms.

In topic detection and tracking the goal is to recognize events in news stories
and to relate stories to each other [10]. In this task, information extraction is one
of the key technologies. While we use news stories as an example application,
our approach is largely complementary to topic detection and tracking: our em-
phasis is on relations between terms, both within stories (the novel associations
looked for with methods introduced here) as well over several stories (semantic
associtions in the background).

The technique we propose in this chapter is inspired by the well-known #f-
idf (term frequency—inverse document frequency) keyword extraction method
[I1UT2]. Term frequency tf(¢, d) is the relative frequency of term ¢ within a docu-
ment d, and it measures how essential the term is for the document. The inverse
document frequency idf(¢) of term ¢ measures, in turn, how specific the term
is in the document collection. It is defined as the logarithm of the inverse of
the relative number of documents that contain the term. Tf-idf for term ¢ in
document d is then the product tf-idf(¢,d) = tf(¢,d) - idf(¢). Tf-idf and other
methods to extract keywords (e.g., Keygraph [I3]) have been highly successful
in that task. However, they do not attempt to highlight associations between
terms. Our aim is to discover association even if the individual terms are not
important.

3 The tpf-idf-tpu Model of Important Term Pair
Associations

We now propose and formalize a model for extracting important term associ-
ations from unstructured documents in a collection. The starting point is tf-
idf [TIIT2], which we first generalize to pairs of terms. This generalization has,
however, a serious shortcoming: term pair frequency and inverse document fre-
quency do not sufficiently outrule possible correlation of the terms. We therefore
add a third component, term pair uncorrelation.

We introduce two variants of the model that differ in the way the terms are
paired in the documents. We use subscripts "sen” and "doc” to separate these
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variants where necessary. The sentence-level variant, tpf-idf-tpuge,, creates pairs
from terms that occur in a same sentence. The document-level variant, tpf-idf—
tpUdoc, pairs every term in the document with every other term in the document.

3.1 Term Pair Frequency (tpf) and Inverse Document Frequency
(idf)

Term pair frequency tpfsen({t,u},d) is defined as the relative number of sen-
tences s in document d that contain both terms ¢ and u:
_ Hsed|{t,u} C s}

tpfsen ({t, u}, d) = sedl| ) (1)

The inverse document frequency idfsen(t,u) of term pair {¢,u} is the logarithm
of the inverse of the relative number of documents in the given collection C' that
contain both terms in the same sentence:

C|
HdeC|3sed: {t,u} C s}’

idfyen (t,u) = log (2)

For the document-level variant, there are corresponding definitions of term pair
frequency and inverse document frequency:

tpfaoc({t, u}, d) = min(tf(t, d), tf(u, d)), ®3)
where tf(¢, d) is the relative frequency of term ¢ within a document d, and

€]

idfdoc(t, u) = log Hd e C|{t,u} Ccd}|

(4)

There is no natural direct measure of term pair frequency in a document. Fol-
lowing a common practice, we use the minimum of the frequencies of the two
terms as the frequency of the pair.

3.2 Term Pair Uncorrelation (tpu)

Use of tpf—idf fails to recognize if there is a statistical (and possibly semantic)
correlation between the terms. This is because tpf-idf only considers the joint
occurrences of them, not if and how they occur without each other.

A pair that scores high on tpf-idf may be uninteresting for a number of
reasons, but technically the reason usually is that the occurrence of one term
(t) implies an occurrence of the other (u). Different instances of this problem
include the following.

1. Term t hardly ever occurs without term w. For instance, articles that talk
about “information retrieval” almost always mention “document”, too.

2. The two terms t and u occur roughly in the same set of documents. For
instance, “data mining” and “knowledge discovery” are roughly synonyms
and obviously tend to occur in the same documents.
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3. Term wu occurs in almost all documents. For instance, “example” has a high
document frequency. Paired with any less frequent term ¢, the tpf and espe-
cially idf scores can be high, but the association is trivial.

4. Term t only occurs in few documents. For instance, “tpf—idf-tpu” occurs so
far only in this chapter. While associations with it are specific to this chapter,
they are also trivial in a sense: any other term of this document would make a
great pair with “tpf-idf-tpu”, since the pair would trivially have an excellent
idf score just because “tpf-idf-tpu” is so rare in a document collection.

In cases 1 and 2, the association between t and wu is real but not document-
specific, and therefore it should be part of the background. Cases 3 and 4 are
trivial and therefore not interesting.

To rule all the above-mentioned cases out, we add a third component to the
model: term pair uncorrelation, or tpu. We define tpu in terms of the relative
amounts r(v) (where v =t or u) of co-occurrences in the document collection:

reen (1) = {d e C|3sedst. {t,u} C s}
e {d € C |v e d} ’

()

The value of r(¢) is 1 if ¢ and w always co-occur, 0 if they never co-occur, and
0.5 if w co-occurs in half of the documents in which ¢ occurs.

We prefer that both terms occur often independently, i.e., that both r(¢) and
r(u) are small. To measure this, we simply take their maximum. (Alternative
measures for tpu include Jaccard index and Tanimoto coefficient. We prefer the
measure based on max(r(t),r(u)), however, since it more strongly requires that
both terms also occur independently.)

In order to have a tpu measure that has larger values for the preferred situa-
tions, we define tpu as

tpu({t, u}) =7= maX(I"(t), I“(t)), (6)

where 7 tunes the relative importance of the tpu component, v > 1. Smaller
values of 7 give tpu more weight. An analysis of the effects of 7 is outside the
scope of this chapter. In our experiments we use v = 2 based on some preliminary
experiments.

For document-level analysis, we define rqoc(v) as

auc(0) = {deC|{tu}cCd}
doc {deClved]

Finally, tpf-idf-tpu({¢, u}, d) of term pair {¢,u} in document d is defined as the
product of the three components defined above:

tpt-idf-tpu({¢t,u},d) = tpf({¢t, u}, d) - idf({¢, u}) - tpu({t, u}).

(7)

4 Experiments

In the following subsections we experimentally evaluate the performance of the
tpf—idf—-tpu model. We contrast the discovered term pairs to keywords obtained
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using tf-idf, and we also compare the sentence and document-based variants to
each other.

Unfortunately, we are not aware of existing data sets with documents and
corresponding conceptual maps, so we have to resort to other test methods. We
use two different test settings.

In the first setting (used in Sections 1] and E2)) the document collection
consists of 425 articles on everyday life (and its subtopics), obtained from the
Wikipedia Selection for Schooldd. We use this document collection to compare
the sets of term pairs produced by the different variants.

In the second test setting (Section E3]), we created a collection of annotated
text mining documents. One of the authors of this chapter manually annotated
23 documents with term associations that he considered most descriptive for
the topic of each document. The document collection additionally contains an-
other 15 text mining articles, so the total size of the collection is 38 documents.
The manually assigned 229 term pairs were considered equally important and
thus not ordered nor weighted in any way. Subjective annotation of key terms
(or term pairs, in our case) is criticized in the literature, as the background,
interests and viewpoint of the annotator affect what he or she considers to be
relevant [I4]. With this precaution in mind, we believe that such an evaluation
can give indications of the performance of the method.

In both settings, the documents were preprocessed by removing stopwords
and by stemming with Porter stemmer [15]. In addition, automatic multiword
unit extraction was performed with Text-NSP program [16] using log-likelihood
measure. Consecutive sequences of two terms, or bigrams, that got log-likelihood
score of 70 or higher were treated as one term.

The goal of these tests is to give a first evaluation and illustration of the
potential of the method. More systematic experiments on different data sets are
left for future work.

4.1 Tpf-idf-tpu vs. tf—idf

Let us first address the question if and how different the results of term pair
extraction are from single keyword extraction. To study this, we performed the
following experiment with the everyday document collection.

First, n best tpf—idf—tpu term pairs were extracted from each document. Then
the pair structure was ignored and we simply considered the set of terms in these
top pairs. Then, an equal number of top tf-idf terms were extracted from each
document. As an evaluation measure, we used the ratio of the number of terms
produced by both methods divided by the total number of terms produced by
the methods. The ratios were computed for a wide range of values of n, the
number of top pairs to be picked in the first phase. For each n the average of the
ratios from all documents was computed. The results are shown in Figure
as a function of n.

2http://schools-wikipedia.org/, downloaded in 2010.
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Fig. 2. Overlap of results from tpf-idf—tpu variants and tf—idf

The results of this experiment clearly show that the terms extracted by the
tpf-idf-tpu and tf—idf methods differ considerably, even with large numbers
of extracted pairs. The tpf—idf—tpu method does not just create pairs of top
ranking tf-idf terms, but actually does extract other relations. At ten top pairs,
the ratio of identical tpf—idf—tpuge, and tf—idf terms is only about 2% on average
and rises to approximately 25% at 300 pairs. The ratio of identical tpf—idf—tpugoc
and tf-idf terms in top ten pairs is about 2%, and rises to about 15% at 300
pairs.

4.2 Sentence vs. Document-Level tpf-idf-tpu Methods

We next compare the sentence and document-level tpf—idf—tpu directly to each
other. We will consider three related but different aspects: (1) how similar are
the term pairs chosen by the methods, (2) how similar are the terms in the pairs
chosen by the methods, and (3) are the pairs dominated by a small number of
terms.

First, the similarity of tpf—idf—tpugen and tpf-idf—tpugec is examined by com-
paring their top scoring pairs. This is done by extracting top n pairs with each
method, and computing the ratio of identical pairs in the top n pairs to the total
number of pairs, that is, to 2 - n. To combine the ratios yielding from different
documents, the average, minimum and maximum of the ratios were taken. The
results are shown in Figure as a function of n, the number of extracted top
pairs. The minimum ratio was zero for all n.

The experiment indicates that the top pairs produced by tpf—idf—tpuge, and
tpf—idf-tpuge. differ considerably. The average ratio is slightly higher for small
numbers of extracted pairs. This indicates that the highest ranking pairs tend
to be slightly more similar. At top ten term pairs extracted by tpf—idf—tpugen
and tpf—idf—tpugec, the average ratio is about 25% and maximum ratio is about
80%. At 300 top pairs the ratio of identical pairs lowers to about 15% and the
maximum ratio to about 40%.
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Next, the ratio of identical terms in the top pairs produced by tpf-idf—tpugen
and tpf-idf-tpugo. was studied. The motivation for this experiment was to see
if the methods generate the pairs from a similar set of terms but pair them in
different ways. The experiment was performed by selecting top n pairs for a
document by both tpf-idf—tpuge, and tpf-idf—tpuge. methods. Then we again
computed the ratio of the number of identical terms in the top n pairs divided by
the total number of distinct terms in the pairs. Like in the previous experiment,
the average of these ratios from different documents was taken. In addition to the
average ratio, the minimum and maximum ratios are considered (Figure .
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Fig. 3. Overlap of results from tpf—idf-tpu variants and tf-idf, and internal variability
in tpf-idf—tpu results

The ratio of identical terms in the pairs is about 40 percent on average and
almost 90 percent at maximum when comparing top ten pairs. The ratios of
identical terms in Figure are clearly higher than the ratios of identical pairs
in Figure although on average the ratio is not very large.

Next we consider the number of distinct terms in the pairs produced by tpf—
idf—tpu. The goal is to see if the top pairs are dominated by a small set of
distinct terms. For this test, the top n pairs were picked from each document
and the average number of distinct terms was computed over the documents
(Figure 3(b)).

The number of distinct terms is relatively low for both of the methods. Espe-
cially pairs produced by tpf-idf-tpuge. are dominated by a small set of terms.
For top ten pairs the number of distinct terms is about ten on average for both
tpf—idf—tpuse, and tpf-idf—tpugec. At 300 top pairs the number of distinct term
rises to about 160 for tpf—idf-tpuge, and to about 60 for tpf-idf-tpugec. In com-
parison, 25 terms is the minimum number of terms to produce 300 pairs; in
tpf-idf—tpugec. there are about 60 terms on average that occur in the 300 top
pairs.

It is not clear from these results if a smaller or larger number of distinct terms
should lead to a better result. It is possible that the smaller term set used by
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tpf-idf—tpugec contains less noise than the larger set extracted by tpf—idf—tpuse -
On the other hand, it could also miss relevant terms and term pairs.

4.3 Comparison of tpf-idf-tpu and tf-idf Using Annotated Test Set

We now move to experimental tests with the other document collection, text
mining articles, and compare the results of the methods against pairs annotated
by hand. As a simple baseline method, we used tf—idf to rank pairs of terms by
simply taking the sum of the terms’ individual tf—idf scores.

For each method, precision and recall were computed at several points in
range of n = 1 to 300 top pairs per document. Precision is the ratio of extracted
annotated pairs to n, the total number of pairs chosen, where “annotated” means
that the pair was among ones manually assigned to the document. Recall is the
ratio of extracted annotated pairs to all annotated pairs. In an optimal situation
both precision and recall would be high for the extracted top pairs, meaning
that in the top pairs there would be no non-key pairs and no key pairs would be
missing either.

There were 229 annotated pairs in total. From those, 66 pairs were out of
reach for the tpf-idf-tpuse., method since the terms never co-occurred in the
same sentence. Because of this, extraction of all possible pairs only yields recall
of 0.71 for tpf-idf—tpuge,. On the other hand, the number of term pairs per
document varied from 3 561 to 55 552 for tpf—idf—tpuge, and from 118 341 to
3 386 503 for tpf—idf-tpugec and tf-idf-sum.

The results for recall and precision (Figure M) indicate the following. First,
due to the small number of documents, the results for n = 1 to 5 are very noisy,
and it is difficult to observe systematic differences between any of the three
methods. Then, however, for n = 10 to 100 extracted pairs, the sentence-based
method consistently outperforms the other two, in terms of both precision and
recall. The document-based method has a slight systematic edge over the tf—idf-
baseline in the mid-range. For n > 100, the tf—idf-baseline in turn outperforms
the document-based method.
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Fig. 4. Recall and precision at different numbers of extracted pairs
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The recall and precision values may seem low. Notice, first, that the setup of
this experiment differs from the usual precision and recall experiments in docu-
ment retrieval. In this experiment only the annotated associations are classified
relevant; all the other pairs are implicitly classified as irrelevant even though
they are not inspected in any way for relevance or novelty. It is thus possible
that there are pairs that could be considered relevant for the document even
though they were not selected as key pairs in the manual annotation. Second,
consider the extreme challenge in the task: on average, 10 pairs were manually
extracted from each document, whereas the number of different pairs per docu-
ment ranges approximately from 3 500 to 3 400 000, depending on the method.
In other words, the fraction of manually tagged pairs ranges from 0,0000003
to 0,003. Compared to this scale, the numbers are high.

According to the results, we believe that tpf-idf-tpugs., has great potential
to discover important associations between terms. The document-based variant
performs less consistently. Since the two variants find largely different pairs,
it will be an interesting topic for future research to try to combine their best
properties.

5 Conclusion

We have proposed to discover novel associations of terms in unstructured docu-
ments, and to use these to summarize the key concepts and relationships of the
documents. A term pair has a novel association in a document if the pair is fre-
quent in it (tpf), specific to it (idf), and uncorrelated in the document collection
(tpu). The proposed method, tpf-idf-tpu, is a generalization of tf—idf to pairs
of terms, with the tpu component added to avoid statistically related pairs of
terms.

We proposed two variants of tpf-idf-tpu: the document-level version checks
if the terms co-occur within a document, while the sentence-level variant only
considers the terms to co-occur if they are in the same sentence. For compar-
ison, we also implemented a simple tf—idf-based method that outputs pairs of
keywords.

We experimentally observed that tpf—idf—tpu produces pairs (and terms) sig-
nificantly different from tf—idf. The sentence and document-based variants also
produced results quite different from each other. In a recall/precision analysis
with a smaller, manually annotated set of documents, the tpf—idf-tpuge, variant
based on sentence-level pairing of terms performed clearly better than the other
methods when 10-100 term pairs were extracted per document. For smaller num-
bers of extracted associations, the results are noisy and inconclusive. Systematic
experiments on different data sets are a topic for future work.

We are currently building an experimental online news summary system to
try out how an incremental version of tpf-idf—tpu manages to identify and sum-
marize the novelties in news stories and to visualize them as simple conceptual
graphs. For this task, semantic associations should also be extracted and visu-
alized as background knowledge.
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We plan to apply graph mining and bisociation methods on the conceptual
graphs, e.g., to discover more distant relationships between concepts. For such
use, it could be useful to keep the tpu score separate from the tpf—idf scores, and
allow the graph mining algorithms to consider the strength of the link (tpf - idf)
and its unobviousness (tpu) separately.
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Abstract. In standard frequent item set mining one tries to find item
sets the support of which exceeds a user-specified threshold (minimum
support) in a database of transactions. We, instead, strive to find item
sets for which the similarity of the covers of the items (that is, the sets of
transactions containing the items) exceeds a user-defined threshold. This
approach yields a much better assessment of the association strength of
the items, because it takes additional information about their occurrences
into account. Starting from the generalized Jaccard index we extend our
approach to a total of twelve specific similarity measures and a general-
ized form. In addition, standard frequent item set mining turns out to be
a special case of this flexible framework. We present an efficient mining
algorithm that is inspired by the well-known Eclat algorithm and its im-
provements. By reporting experiments on several benchmark data sets
we demonstrate that the runtime penalty incurred by the more complex
(but also more informative) item set assessment is bearable and that the
approach yields high quality and more useful item sets.

1 Introduction

Frequent item set mining and association rule induction are among the most
intensely studied topics in data mining and knowledge discovery in databases.
The enormous research efforts devoted to these tasks have led to a variety of so-
phisticated and efficient algorithms, among the best-known of which are Apriori
[112], Eclat [38)39] and FP-growth [T9/T6/IT].

Unfortunately, a standard problem in this research area is that the output
(that is, the set of reported item sets or association rules) is often huge and can
easily exceed the size of the transaction database to mine. As a consequence, the
(usually few) interesting item sets and rules drown in a sea of irrelevant ones.
One of the reasons for this is that the support measure for item sets and the
confidence measure for rules are not very informative, because they do not say
that much about the actual strength of association of the items in the set or rule:
a set of items may be frequent simply because its elements are frequent and thus
their frequent co-occurrence can even be expected by chance. In association rule
induction adding an item to the antecedent may be possible without affecting
the confidence much, because the association is actually brought about by the
other items in the antecedent. Therefore a considerable number of redundant
and/or irrelevant item sets and rules is often produced.

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 104-{121} 2012.
© The Author(s). This article is published with open access at SpringerLink.com
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Approaches to cope with this problem include, for instance, [36J37], which rely
on subsequent filtering and statistical tests in order to single out the relevant
rules and patterns. In this chapter, however, we pursue a different direction,
namely changing the search criterion for item sets, so that fewer irrelevant item
sets are produced in the first place. The core idea is to replace the support
measure with a more expressive measure that better captures whether the items
in a set are associated. To obtain such a measure we draw on the insight that for
associated items their covers—that is, the sets of transactions containing them—
are more similar than for independent items. Since the Jaccard index is a very
natural and straightforward measure for the similarity of sets, this leads us to the
definition of a Jaccard item set, which is an item set for which the generalized
Jaccard index of the covers of its items exceeds a user-specified threshold. This
index has the advantage that it is also anti-monotone, so that the same search
and pruning techniques can be employed as in frequent item set mining.

We then extend our approach to a total of twelve specific similarity measures
that can be generalized from pairs of sets (or, equivalently, binary vectors).
We present a generalized form, from which all of these measures can be obtained
by proper parameterization, but which also allows for other options. Finally, it
turns out that standard frequent item set mining is a special case of this flexible
framework, which, however, also offers several better alternatives.

The rest of this chapter is organized as follows: in Section 2] we briefly re-
view frequent item set mining and a core search procedure and introduce our
notation. In Section [3] we present the generalized Jaccard index with the help of
which we then define Jaccard item sets. Section Hl reviews the Eclat algorithm,
the processing scheme of which we employ in the search for Jaccard item sets.
In Section [f] we show how the difference set idea for Eclat can be adapted to ef-
ficiently compute the value of the denominator of the generalized Jaccard index,
thus completing our JIM algorithm (for Jaccard Item set Mining). In Section
we consider a total of twelve specific similarity measures that can be used in
place of the Jaccard index, together with a generalized form. In Section [ we
apply our algorithm to standard benchmark data sets and to the 2008/2009
Wikipedia Selection for schools to demonstrate the speed and usefulness of our
algorithm. Finally, in Section[8] we draw conclusions from our discussion.

2 Frequent Item Set Mining

Frequent item set mining is a data analysis method that was originally developed
for market basket analysis. It aims mainly at finding regularities in the shopping
behavior of the customers of supermarkets, mail-order companies, online shops
etc. In particular, it tries to identify sets of products (or generally items) that are
associated or frequently bought together. Once identified, such sets of associated
products may be used to optimize the organization of the offered products on
the shelves of a supermarket or the pages of a mail-order catalog or web shop.
They can also give hints which products may conveniently be bundled or may
be suggested to a new customer, or to a current customer after a purchase.
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Formally, the task of frequent item set mining can be described as follows: we
are given a set B of items, called the item base, and a database T of transactions.
Each item represents a product, and the item base represents the set of all
products on offer. The term item set refers to any subset of the item base B. Each
transaction is an item set and represents a set of products that has been bought
by an actual customer. Since two or even more customers may have bought the
exact same set of products, the total of all transactions must be represented as a
vector, a bag, or a multiset, since in a simple set each transaction could occur at
most oncel] Note that the item base B is usually not given explicitly, but only
implicitly as the union of all transactions in the given database.

We write T = (t1,...,t,) for a transaction database with n transactions.
Thus we are able to distinguishing equal transactions by their position in the
database vector (that is, the transaction index is an implicit identifier). In order
to conveniently refer to the index set of the transactions, we introduce the ab-
breviation N,, := {k € N | £ < n} = {1,...,n}. Given an item set I C B
and a transaction database T', the cover Kp(I) of I w.r.t. T is defined as
Kr(I) = {k € N, | I C t}, that is, as the set of indices of transactions
that contain I. The support st(I) of an item set I C B is the number of trans-
actions in the database T it is contained in, that is, sp(I) = |Kr(I)|. Given a
user-specified minimum support smin € N, an item set [ is called frequent in T
iff sp(I) > smin. The goal of frequent item set mining is to identify all item sets
I C B that are frequent in a given transaction database T'. Note that the task of
frequent item set mining may also be defined with a relative minimum support,
which is the fraction of transactions in 7" that must contain an item set I in
order to make I frequent. This alternative definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T'
and a minimum support Spyin, which is adopted by basically all frequent item set
mining algorithms (except those of the Apriori family), is a depth-first search in
the subset lattice of the item base B. Viewed properly, this approach can be seen
as a simple divide-and-conquer scheme. For some chosen item i, the problem to
find all frequent item sets is split into two subproblems: (1) find all frequent item
sets containing the item ¢ and (2) find all frequent item sets not containing the
item 4. Each subproblem is then further divided based on another item j # i:
find all frequent item sets containing (1.1) both items ¢ and j, (1.2) item ¢, but
not j, (2.1) item j, but not 4, (2.2) neither item ¢ nor j etc.

All subproblems that occur in this divide-and-conquer recursion can be defined
by a conditional transaction database and a prefiz. The prefix is a set of items that
has to be added to all frequent item sets that are discovered in the conditional
database, from which all items in the prefix have been removed. Formally, all
subproblems are tuples S = (T¢, P), where T is a conditional transaction
database and P C B is a prefix. The initial problem, with which the recursion is
started, is S = (T, 0), where T is the given transaction database to mine and the
prefix is empty. A subproblem Sy = (7o, Py) is processed as follows: Choose an

1 Alternatively, each transaction may be enhanced by a unique transaction identifier,
and these enhanced transactions may then be combined in a simple set.
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item ¢ € By, where By is the set of items occurring in 7. This choice is arbitrary,
but usually follows some predefined order of the items. A common choice is to
process the items in the order of increasing frequency in the transaction database
to mine, as this often leads to the shortest search times. If sg,(¢) > Smin, then
report the item set Py U {i} as frequent with the support st,(¢), and form the
subproblem S; = (Th,P;) with P, = Py U {i}. The conditional transaction
database T} comprises all transactions in T that contain the item 4, but with
the item i removed. This also implies that transactions that contain no other
item than i are entirely removed: no empty transactions are ever kept. If T}
is not empty, process S7 recursively. In any case (that is, regardless of whether
s1, (%) > Smin or not), form the subproblem So = (T%, P;), where P, = Py and the
conditional transaction database Ty comprises all transactions in Ty (including
those that do not contain the item i), but again with the item ¢ removed. If T
is not empty, process S recursively.

Eclat, FP-growth, and several other frequent item set mining algorithms all
follow this basic recursive processing scheme [I55]. They differ mainly in how
they represent the conditional transaction databases. There are basically two
fundamental approaches, namely horizontal and vertical representations. In a
horizontal representation, the database is stored as a list (or array) of transac-
tions, each of which is a list (or array) of the items contained in it. In a vertical
representation, a transaction database is stored by first referring with a list (or
array) to the different items. For each item a list of transaction identifiers is
stored, which indicate the transactions that contain the item.

However, this distinction is not pure, since there are many algorithms that use
a combination of the two forms of representing a database. For example, while
Eclat [38I39] uses a purely vertical representation and SaM (Split and Merge) [6]
uses a purely horizontal representation, FP-growth [19[16/17] combines in its
FP-tree structure a (compressed) horizontal representation (prefix tree of trans-
actions) and a vertical representation (links between the tree branches)

The basic processing scheme outlined above can easily be improved with so-
called perfect extension pruning, which relies on the following simple idea: given
an item set I, an item ¢ ¢ I is called a perfect extension of I, iff I and I U {i}
have the same support, that is, if ¢ is contained in all transactions containing I.
Perfect extensions have the following obvious properties: (1) if the item 4 is a
perfect extension of an item set I, then it is also a perfect extension of any item
set J O I aslong asi ¢ J and (2) if I is a frequent item set and K is the set of
all perfect extensions of I, then all sets I U J with J € 25 (where 2% denotes
the power set of K) are also frequent and have the same support as I.

These properties can be exploited by collecting in the recursion not only prefix
items, but also, in a third element of a subproblem description, perfect extension
items. Once identified, perfect extension items are no longer processed in the
recursion, but are only used to generate all supersets of the prefix that have the

2 Note that Apriori, which also uses a purely horizontal representation, is not men-
tioned here, because it relies on a different processing scheme: it traverses the subset
lattice level-wise rather than depth-first.
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same support. Depending on the data set, this method, which is also known as
hypercube decomposition [34J35], can lead to a considerable acceleration of the
search. It should be clear that this optimization can, in principle, be applied in
all frequent item set mining algorithmsE

3 Jaccard Item Sets

As outlined in the introduction, we base our item set mining approach on the
similarity of item covers rather than on item set support. In order to measure
the similarity of a set of item covers, we start from the Jaccard index [22], which
is a well-known statistic for comparing sets. For two arbitrary sets A and B it
is defined as AN B

J(A7B) —_— m.

Obviously, J(A4, B) is 1 if the sets coincide (i.e. A = B) and 0 if they are disjoint
(i.e. AN B =0). For overlapping sets its value lies between 0 and 1.

The core idea of using the Jaccard index for item set mining lies in the in-
sight that the covers of (positively) associated items are likely to have a high
Jaccard index, while a low Jaccard index rather indicates independent or even
negatively associated items. However, since we consider also item sets with more
than two items, we need a generalization to more than two sets (here: item cov-
ers). In order to achieve this, we define, in a perfectly straightforward manner,
the carrier Lp(I) of an item set I w.r.t. a transaction database T' as

Lr(I)={keN, | INty #0} ={k €N, | i € Ii € t} = | J Kr({i}).
i€l

The extent rr(I) of an item set I w.r.t. a transaction database T is the size of its
carrier, that is, rp(I) = |Lr(I)|. Recall also that, in analogy, the cover Kr(I)
of an item set I w.r.t. a transaction database T is

Kr(I)={keN, [ I Cty} ={k €N, |Viel:icty}=)Kr({i})
i€l

and that the support sp(I) of an item set I is the size of this cover, that is,
st(I) = |Kr(I)]. With these two notions we can simply define the generalized
Jaccard index of an item set I w.r.t. a transaction database T as its support
divided by its extent, that is, as

sr(D) _ [Ke(D] _ [Mier Br({d})]
re(D) LoD [Uier Ke({iH)I

3 Note that perfect extension pruning is not the same as restricting the output to
closed frequent item sets [20], even though a closed item set can be defined as an
item set that does not possess a perfect extension. The reason is that the search,
in order to avoid redundant work, usually does not consider all possible extensions.
Hence there may be perfect extensions which are not detected in the search.

Jr(l) =
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Clearly, this is a very natural and straightforward generalization of the Jaccard
index. Since for an arbitrary item a € B it is obviously K¢(I U {a}) C K¢(I)
and equally obviously Ly (I U{a}) 2 Lr(I), we have sp(I U{a}) < sp(I) and
rp(IU{a}) > rp(I). From these two relations it follows

Jr(IU{a}) < Jr(I).

Therefore the generalized Jaccard index w.r.t. a transaction database T" over an
item base B is an anti-monotone function on the partially ordered set (27, C).
Given a user-specified minimum Jaccard value Jyin, an item set I is called
Jaccard-frequent if Jp(I) > Jmin. The goal of Jaccard item set mining is to
identify all item sets that are Jaccard-frequent in a given transaction database T
Since the generalized Jaccard index is anti-monotone, this task can be addressed
with the same basic scheme as the task of frequent item set mining. The only
problem to be solved is to find an efficient scheme for computing the extent r(I).

4 The Eclat Algorithm

Since we will draw on the scheme of the well-known Eclat algorithm for min-
ing Jaccard item sets, we briefly review some of its core ideas in this section.
As already mentioned, Eclat [38] uses a purely vertical representation of condi-
tional transaction databases. That is, it uses lists of transaction indices, which
represent the cover of an item or an item set. It then exploits the obvious relation

KT(I1 U IQ) = KT(I1) N KT(I2)a

which can easily be verified by inserting the definition of a cover. In particular,
Eclat exploits the special case

Kr(IU{a,b}) = Kr(IU{a}) N Kr(IU{b}),

which allows to extend an item set by an item. This is used in the recursive
divide-and-conquer scheme described above by intersecting the list of transaction
indices associated with the split item with the lists of transaction indices of all
items that have not yet been considered in the recursion. In this case the set I
in the formula above is the prefix P of the conditional transaction database.

An alternative to the intersection approach, which is particularly useful for
mining dense transaction databasesﬁ, relies on so-called difference sets (or diffsets
for short) [39]. The diffset Dr(a | I) of an item a w.r.t. an item set I and a
transaction database T is defined as

Dr(a|I) = Kr(I) — Kp(IU {a}).

4 A transaction database is called dense if the average fraction of all items that occur

per transaction is relatively high. Formally, we may define the density of a transaction
database T as 0(T) = ﬁ > r—1 |tx|, which is equivalent to the fraction of ones in

a binary matrix representation of the transaction database T
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That is, a diffset Dr(a | I) lists the indices of all transactions that contain I,
but not a. Since obviously

st(I U{a}) = sr(I) = |Dr(a | T)],

diffsets are equally effective for finding frequent item sets, provided one can derive
a formula that allows to compute diffsets with a larger conditional item set I
without going through covers (using the above definition of a diffset). However,
this is easily achieved, because the following equality holds [39]:

Dr(b| TU{a}) = Dr(b| I) - Dr(a| ).

This formula allows to formulate the search entirely with the help of diffsets. It
may be started either with the complements of the covers of the items, which are
the diffsets for an empty condition, or by forming the differences of the covers of
individual items to obtain the diffsets for condition sets with only a single item.

5 The JIM Algorithm (Jaccard Item Set Mining)

The diffset approach as it was reviewed in the previous section can easily be
transferred in order to find an efficient scheme for computing the carrier and
thus the extent of item sets. To this end we define the extra set Er(a | I) as

Er(a| 1) = Kr({a}) = | JKr({i}) = {k €Ny [a € tx AVi € I:i ¢ ti).
el

That is, Er(a | I) is the set of indices of all transactions that contain a, but no
item in I. Thus it identifies the extra transaction indices that have to be added
to the carrier if item a is added to the item set I. For extra sets we have

Er(a[TU{b})=Er(a|l)—Er(b|1),

which corresponds to the analogous formula for diffsets reviewed above. This
relation is easily verified as follows:

Er(a|I)— Er(b| )
={keN,|actyAViel:id¢ty}—{keN,|betyA\Viel:i¢ty}
={keN,|aetyAViel:i¢tyAN-(betyA\Viel:idty)}
={keN,|lactyAViel:i¢gt, ANbetrVI el i €ty)}
={keN,|(a€ty AVieTl:i¢t, Nbéty)

Vieety A\Viel:idtoNTiel:iety)}

=false
:{kGNn|a€tk/\Vi€I:i¢tk/\b¢tk}
={keN,|acty, A\VieTU{b}:i¢ts}
— Er(a| TU{b))
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In order to see how extra sets can be used to compute the extent of item sets,
let T = {i1,...,im}, with some arbitrary, but fixed order of the items that is
indicated by the index. This will be the order in which the items are used as
split items in the recursive divide-and-conquer scheme. It is

Lr(I) = Uiy Kr({in}) = Upsy (Br({in}) — US| Ko({id}))
= UZLzl E(ik | {7:17 < '77:16—1})7

and since the terms of the last union are clearly all disjoint, we have immediately
m
rr(D) =Y 1B | {iv, . inma )| = v = {im}) + | Elim | T = {im})].
k=1

Thus we have a simple recursive scheme to compute the extent of an item set
from its parent in the search tree (as defined by the divide-and-conquer scheme).

The search algorithm for Jaccard item sets can now easily be implemented as
follows: we start be creating a vertical representation of the given transaction
database. The only difference to the Eclat algorithm is that we have not only
one, but two transaction lists per item 4: one represents Kp({i}) as in standard
Eclat, and the other represents Fr (i | #), which happens to be equal to K7 ({i}).
That is, for the initial transaction database the two lists are identical. However,
this will obviously not be maintained in the recursive processing. In the recursion
the first list for the split item is intersected with the first list of all other items
to form the lists representing the covers of the corresponding pairs. The second
list of the split item is subtracted from the second list of all other items, thus
yielding the extra sets of transactions for these items given the split item. From
the sizes of the resulting lists the support and the extent of the enlarged item
sets and thus their generalized Jaccard index can easily be computed.

Note that the support computation may, as in the Eclat algorithm, also be
based on diffsets. Likewise, an analogous scheme can be derived for the extent
computation. In addition, Jaccard item set mining can also exploit perfect exten-
sion pruning. The only difference is that an item a is now called a perfect exten-
sion of an item set I w.r.t. a transaction database T only if sp(I U{a}) = sr(I)
and rp(I U{a}) = rp(I), while standard frequent item set mining only requires
the first equality. Such perfect extensions are handled exactly in the same way:
they are not employed as split items, but collected in a third element of the
subproblem description, and are used only to generate all supersets of an item
set that share the same generalized Jaccard index.

6 Other Similarity Measures

Up to now we focused on the generalized Jaccard index to measure the simi-
larity of sets (item covers). However, there is a large number of other similarity
measures for sets (or, equivalently, for binary vectors, because a set may be rep-
resented by its indicator vector w.r.t. some base set). Recent extensive overviews
of such measures for the pairwise case include [7] and [§].
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Table 1. Quantities in terms of which the considered similarity measures are specified,
together with their behavior as functions on the partially ordered set (27, C)

quantity requirement on transaction behavior

nr none (independent of the set I) | constant
st(I) = |Kr(I)| = |N,e; Kr({i})] | contains all items anti-monotone
rr(I) = |Lr(I)| = |U;e; Kr({i})| | contains at least one item monotone
gr(I) =rr(I) —sr(I) contains some, but not all items | monotone
zr(I)=ny —rr(I) contains no item anti-monotone

By relying on the same scheme that we used to generalize the Jaccard index
to more than two sets, a large number of such set similarity or binary vector
similarity measures can be generalized beyond pairwise comparisons as follows:
with the JIM algorithm we presented in the preceding section, we can easily
compute the five quantities listed in Table[Il These quantities count the number
of transactions that satisfy different requirements w.r.t. a given item set I (see
the second column of Table[d]). With these quantities a wide range of similarity
measures for sets or binary vectors can be generalized.

Exceptions are measures for comparing two sets X and Y that refer explicitly
to the number |X — Y| of elements that are contained in the set X, but not in
the set Y, and distinguish this number from the number |Y — X| of elements that
are contained in the set Y, but not in the set X. This distinction is difficult to
generalize beyond the pairwise case, because the number of possible containment
patterns of an element to the members of a family of sets grows exponentially
with the number of the sets (here: covers, and thus: items). As a generalization
would have to consider all of these containment patterns separately, it becomes
quickly infeasible. Note, however, that an occurrence of the sum | X —Y|+|Y — X|
does not pose a problem, because this sum corresponds to the value g (I).

By collecting from [§] similarity measures that can be specified in terms of the
quantities listed in Table [, we compiled Table[2l Note that the index T" and the
argument [ are omitted to make the formulas more easily readable. Note also
that the Gower & Legendre measure Sg = % [18] listed in [§] is exactly the
same as the second Sokal& Sneath measure (it is just written differently, with a
factor of 2 canceled from both numerator and denominator). Furthermore, note
that the Hamann measure Sy = £+2=2 = 2=25 3] listed in [8] is equivalent to

the Sokal& Michener measure Sy, because Sy + 1 = 25\, and hence omitted.

Likewise, the second Baroni-Urbani& Buser measure Sy = % [4] listed in

[]] is equivalent to the one given in Table 2] because Sy + 1 = 2Sg. Finally, note
that all of the measures listed in Table 2 have range [0, 1] except Sk (Kulczynski)
and So (Sokal& Sneath 3), which have range [0, 00).

Table 2l is split into two parts depending on whether the numerator of a mea-
sure refers only to the support s or to both the support s and the number z of
transactions that do not contain any of the items in the considered set I. The for-
mer are referred to as based on the inner product, because in the pairwise case
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Table 2. Considered similarity measures for sets/binary vectors

Measures derived from inner product: = Measures derived from Hamming distance:
Russel & Rao g.— 5 __S8 Sokal & Michener Gy— ¢ +z  n—gq
28] R= 5 T r¥z| [Hamming 30021 |°M n T T
Kulczynski Go— 5 __S Faith g — 2s+2z s+ %Z
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s is the value of the inner (or scalar) product of the binary vectors that are com-
pared. The latter measures (that is, those with both s and z in the numerator)
are referred to as based on the Hamming distance, because in the pairwise case
q is the Hamming distance of the two vectors and n — ¢ = s + z their Hamming
similarity. The decision whether for a given application the term z should be con-
sidered in the numerator of a similarity measure or not is difficult. Discussions
of this issue for the pairwise case can be found in [29] and [11].

Note that the Russel& Rao measure is simply normalized support, demon-
strating that our framework comprises standard frequent item set mining as a
special case. The Sokal& Michener measure is simply the normalized Hamming
similarity. The Dice/Sgrensen/Czekanowski measure may be defined without the
factor 2 in the numerator, changing the range to [0,0.5]. The Faith measure is
equivalent to the AZZOO measure (Alter Zero Zero One One) for o = 0.5 and
the Sokal& Michener/Hamming measure results for o = 1. AZZOO is meant to
introduce flexibility in how much weight should be placed on z, the number of
transactions which lack all items in I (zero zero), relative to s (one one).

All measures listed in Table [ are anti-monotone on the partially ordered
set (2B, C), where B is the underlying item base. This is obvious if in at least
one of the formulas given for a measure the numerator is (a multiple of) a
constant or anti-monotone quantity or a (weighted) sum of such quantities, and
the numerator is (a multiple of) a constant or monotone quantity or a (weighted)
sum of such quantities (see Table[I]). This is the case for all but Sp, Sy and Sg.

That Sp is anti-monotone can be seen by considering its reciprocal value
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Since ¢ is monotone and s is anti-monotone, S ! is clearly monotone and thus
Sp is anti-monotone. Applying the same approach to Sg, we arrive at

S_l_,/sz—ﬁ—r_,/sz—i—s—i—q_l_’_ q
B ™ Jsz+s  sz+s Vsz+s

Since ¢ is monotone and both s and /sz are anti-monotone, Sg Lis clearly
monotone and thus Sp is anti-monotone. Finally, Sy can be written as

2n — 2
Syom=2 4 94
2n —q 2n —q n+s+z

Since ¢ is monotone, the numerator is monotone, and since n is constant and s
and z are anti-monotone, the denominator is anti-monotone. Hence the fraction
is monotone and since it is subtracted from 1, Sy is anti-monotone.

Note that all measures in Table 2 can be expressed as

g_ coS + c1z + con 4 c3+/82 (1)

Cc48 + Cc52 4+ cgn + c7/S82

by specifying appropriate coefficients co, ..., c7. For example, we obtain Sy for
00:06:1705:—1and01:02:03:04:07:0,sinceSJ:2:niz.
Similarly, we obtain So forco =¢1 =cg =1,¢c4 =c5 = —land ¢y = c3 = ¢7 =0,
since So = % = =2 This general form allows for a flexible specification of
various similarity measures. Note, however, that not all selections of coefficients
lead to an anti-monotone measure and hence one has to carefully check this

property before using a measure that differs from the pre-specified ones.

7 Experiments

We implemented the described item set mining approach as a C program that
was derived from an Eclat implementation by adding the second transaction
identifier list for computing the extent of item sets. All similarity measures listed
in Table[2 are included as well as the general form (). This implementation has
been made publicly available under the GNU Lesser (Library) Public Licensed

In a first set of experiments we applied the program to five standard bench-
mark data sets, which exhibit different characteristics, especially different den-
sities, and compared it to a standard Eclat search. The data sets we used are:
BMS-Webview-1 (a web click stream from a leg-care company that no longer
exists, which has been used in the KDD cup 2000 [23/40]), T10I14D100K (an
artificial data set generated with IBM’s data generator [41]), census (a data set
derived from an extract of the US census bureau data of 1994, which was pre-
processed by discretizing numeric attributes), chess (a data set listing chess end
game positions for king vs. king and rook), and mushroom (a data set describ-
ing poisonous and edible mushrooms by different attributes). The first two data

® See http://www.borgelt.net/jim.html
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Fig. 1. Logarithms of execution times, measured in seconds, over absolute minimum
support for Jaccard item set mining compared to standard Eclat frequent item set
mining. Items were processed in ascending or descending order w.r.t. their frequency.

Jaccard item set mining was executed with Jmin = 0, thus ensuring that exactly the
same item sets are found.

sets are available in the FIMI repository [I4], the last three in the UCI machine
learning repository [3]. The discretization of the numeric attributes in the cen-
sus data set was done with a shell/gawk script that can be found on the web
page given in Footnote 5 (previous page). For the experiments we used an Intel
Core 2 Quad Q9650 (3GHz) machine with 8 GB main memory running Ubuntu
Linux 10.04 (64 bit) and gcc version 4.4.3.

The goal of these experiments was to determine how much the computation
of the carrier/extent of an item set affected the execution time. Therefore we
ran the JIM algorithm without any threshold for the similarity measure (we
used the Jaccard index, i.e. Jyi, = 0, but any other measure gives basically the
same results), using only a minimum support threshold (which is supported by
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our implementation in parallel). As a consequence, JIM and Eclat always found
exactly the same set of frequent item sets for a given minimum support value
and thus any difference in execution time comes from the additional costs of the
carrier/extent computation. The difference in the generated output consists only
in the Jaccard index that the JIM program computes, but standard Eclat can
not compute as it lacks knowledge of the quantity ro(I). In addition, we explored
whether the common rule of thumb of frequent item set mining, namely that it
is best to process the items in the order of increasing frequency (cf. page [[07),
also holds for cover similarity based item set mining. Therefore we tried both
ascending and descending frequency order for the items.

The results are depicted in the diagrams in Figure [I which show the deci-
mal logarithm of the execution time in seconds over minimum support (as an
absolute number, that is, as a number of transactions). We observe first that for
Eclat (dashed lines) processing the items in increasing order of frequency (light
gray) almost always works better, since the execution times are shorter than for
the reverse order (dark gray)—as expected. For JIM (solid lines), however, the
picture is not so clear cut. On three data sets, namely census, BMS-Webview-1,
and T1014D100K, it is better to process the items in descending order of their
frequency (the dark gray curve is lower than the light one). On chess it is better
to use ascending order (the light gray curve is lower than the dark one), while on
the fifth data set (mushroom) it depends on the minimum support which order
yields the shorter execution time (the two curves intersect).

We interpret these findings as follows: for the support computation (which is
all that Eclat does) it is clearly better to process the items in ascending order
of their frequency, because this reduces the average length of the transaction
identifier lists. By intersecting with short lists early, the lists processed in the
recursion tend to be shorter and thus are processed faster. The same obviously
also holds for the support computation part of JIM. However, for the extent
computation it is plausible that the opposite order is preferable. Since it works
on extra sets, it is advantageous to add frequent items as early as possible to the
carrier, because this increases the size of the already covered carrier and thus
reduces the average length of the extra lists that are processed in the recursion.
Therefore, since there are different preferences, it depends on the data set which
operation governs the complexity and thus which item order is better.

From Figure [l we conjecture that dense data sets (high fraction of ones in
a bit matrix representation), like chess and mushroom, favor ascending order,
while sparse data sets, like census, BMS-Webview-1 and T10I4D100K, favor
descending order. This is plausible, because in dense data sets the intersection
lists tend to be long, so it is important to reduce them. In sparse data sets,
however, the extra lists tend to be long, so here it is more important to focus
on them. The mushroom data set behaves more like a dense data set for lower
minimum support and more like a sparse data set for higher minimum support.

Naturally, the execution times of JIM are always greater than those of the
corresponding Eclat runs (with the same order of the items), but the execution
times are still bearable. This shows that even if one does not use a similarity
measure to prune the search, this additional information can be computed fairly
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Table 3. Jaccard item sets found in the 2008/2009 Wikipedia Selection for schools

item set st | Jr

Reptiles, Insects 12 | 1.0000
phylum, chordata, animalia 3410.7391
planta, magnoliopsida, magnoliophyta 14 10.6667
wind, damag, storm, hurrican, landfal 23| 0.1608
tournament, doubl, tenni, slam, Grand Slam 101 0.1370
dinosaur, cretac, superord, sauropsida, dinosauria 10(0.1149
decai, alpha, fusion, target, excit, dubna 12]0.1121
conserv, binomi, phylum, concern, animalia, chordata | 14 | 0.1053

efficiently. However, it should be kept in mind that the idea of the approach is to
set a threshold for the similarity measure, which can effectively prune the search,
so that the actual execution times found in applications are much lower. In our
own practice we basically always achieved execution times that were lower than
for the Eclat algorithm (but, of course, with a different output).

In another experiment we used an extract from the 2008/2009 Wikipedia
Selection for schoolsﬁ, which consisted of 4861 web pages. Each of these web
pages was taken as a transaction and processed with standard text processing
methods (like name detection, stemming, stop word removal etc.) to extract
a total of 59330 terms/keywords. The terms occurring on a web page are the
items occurring in the corresponding transaction. The resulting data file was
then mined for Jaccard item sets with thresholds of J,i, = 0.1 and s, = 10.
Some examples of term associations found in this way are listed in Table [3

Clearly, there are several term sets with surprisingly high Jaccard indices and
thus strongly associated terms. For example, “Reptiles” and “Insects” always
appear together (on a total of 12 web pages) and never alone (as their Jaccard
index is 1, so their covers are identical). A closer inspection revealed, however,
that this is an artifact of the name detection, which extracts these terms from
the Wikipedia category title “Insects, Reptiles and Fish” (but somehow treats
“Fish” not as a name, but as a normal word). All other item sets contain normal
terms, though (only “Grand Slam” is another name), and are not artifacts of the
text processing step. The second item set captures several biology pages, which
describe different vertebrates, all of which belong to the phylum “chordata” and
the kingdom “animalia”. The third set indicates that this selection contains a
surprisingly high number of pages referring to magnolias. The remaining item
sets show that term sets with five or even six terms can exhibit a quite high Jac-
card index, even though they have a fairly low support (only 10-20 transactions,
which corresponds to 0.2-0.4% of the 4861 transactions/web pages).

An impression of the filtering power can be obtained by comparing the size
of the output to standard frequent item set mining: for sp;, = 10 there are
83130 frequent item sets and 19394 closed item sets with at least two items.
A threshold of Jyi, = 0.1 for the generalized Jaccard index reduces the output

5 See [http://schools-wikipedia.org/
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Table 4. Some Jaccard item sets that were found in BMS-Webview-1

item set st| Jr

35201, 35205, 35193, 35189, 35197, 35209 3710.1034
18767, 18751, 18755, 18763, 18743, 18747, 18759|33|0.1467
18543, 18567, 18751, 18539, 18763, 18743, ...

... 18747, 18571, 18759 2710.1089
18543, 18567, 18751, 18539, 18763, 18743, ...
... 18747, 18571, 18759, 18767 2710.0951

to 5116 (frequent) item sets. From manual inspection, we gathered the impres-
sion that the Jaccard item sets contained more meaningful sets and that the
Jaccard index was a valuable additional piece of information. It has to be con-
ceded, though, that whether item sets are more “meaningful” or “interesting”
is difficult to assess in a convincing fashion. Such an assessment would require
an objective measure, which is not available (and if it were available, it could
be used directly for the mining). What can be said, though, is that the support
and the generalized Jaccard index assess item sets in very different ways, since
for the 5116 item sets mentioned above, the correlation coefficient of the support
and the generalized Jaccard index is merely 0.18. That is, neither does a high
support imply a high generalized Jaccard index nor vice versa.

As an additional example, Table @ lists Jaccard item sets that were found
in BMS-Webview-1. Despite their low support (25-40 transactions, which cor-
responds to 0.04%-0.07% of the 59602 transactions), they could quickly and
effectively be identified with Jaccard item set mining. This result is particularly
impressive, because standard frequent item set mining without a restriction to
e.g. closed item sets is not possible in reasonable time on BMS-Webview-1 for
a minimum support less than about 32 transactions. Restricting the output to
closed item sets makes mining feasible and yields 110427 item sets for sy = 32.
Jaccard item set mining with thresholds of syin = 32 and Jyi, = 0.1 (but with-
out a restriction to closed item sets) reduces the output to 982 item sets. Again
item sets with fairly many items and surprisingly high generalized Jaccard index
are found. As for the 2008/2009 Wikipedia Selection for schools the correlation
coefficient of the support and the generalized Jaccard index is very low, in this
case actually even slightly negative, namely —0.02.

An example of a Jaccard item set from the census data set is

{loss=none, gain=none, country=United-States, race=White,
workclass=Private, sex=Male, age=middle-aged,
marital_status=Married-civ-spouse, relationship=Husband},

that is, an item set with 9 items with a support of 5245 (10.7%) and a Jaccard
index of 0.1074. Again it is surprising to see how large an item set can possess
a high generalized Jaccard index. Although this set would be discovered with
standard frequent item set mining as well, the generalized Jaccard index provides
a relevant additional assessment and thus distinguishes it from other item sets.
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As a final remark we would like to point out that the usefulness of our method
is indirectly supported by a successful application of the Jaccard item set mining
approach for (missing) concept detection (see [24] as well as the chapter by Kotter
and Berthold in this book, which describes the application).

8 Conclusions

In this chapter we introduced the notion of a Jaccard item set as an item set
for which the generalized Jaccard index of the covers of its items exceeds a user-
specified threshold. In addition, we extended this basic idea to a total of twelve
similarity measures for sets or binary vectors, all of which can be generalized
in the same way and can be shown to be anti-monotone. By exploiting an idea
that is similar to the difference set approach for the well-known Eclat algorithm,
we derived an efficient search scheme that is based on forming intersections
and differences of sets of transaction indices in order to compute the quantities
that are needed to compute the similarity measures. Since it contains standard
frequent item set mining as a special case, mining item sets based on cover
similarity yields a flexible and versatile framework. Furthermore, the similarity
measures provide highly useful additional assessments of found item sets and
thus help us to select the interesting ones. By running experiments on standard
benchmark data sets we showed that mining item sets based on cover similarity
can be done fairly efficiently, and by evaluating the results obtained with a
threshold for the cover similarity measure we demonstrated that the output is
considerably reduced, while expressive and meaningful item sets are preserved.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.
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Abstract. Biomine and ProbLog are two frameworks to implement
bisociative information networks (BisoNets). They combine structured
data representations with probabilities expressing uncertainty. While
Biomine is based on graphs, ProbLog’s core language is that of the logic
programming language Prolog. This chapter provides an overview of im-
portant concepts, terminology, and reasoning tasks addressed in the two
systems. It does so in an informal way, focusing on intuition rather than
on mathematical definitions. It aims at bridging the gap between network
representations and logical ones.

1 Introduction

Nowadays, large, heterogeneous collections of uncertain data exist in many do-
mains, calling for reasoning tools that support such data. Networks and logical
theories are two common representations used in this context. In the setting
of bisociative knowledge discovery, such networks are called BisoNets [I]. The
Biomine project has constructed a large network (or BisoNet) of biological know-
ledge and provided several reasoning mechanisms to explore this network [2].
ProbLog [3], on the other hand, provides a logic-based representation language
and corresponding inference methods that have been used in the context of the
same network. Both Biomine and ProbLog allow one to associate probabilities
to network edges and thereby to reason about uncertainty. For ProbLog, this
idea has recently also been extended to other types of labels, such as for in-
stance costs, connection strengths, or revenues [4]. In this chapter, we highlight
the common underlying ideas of these two frameworks, focusing on illustrative
examples rather than formal detail. We provide an overview of network-related
inference techniques from a logical perspective. These techniques can potentially
be used to support bisociative reasoning and knowledge discovery. The aim is to
bridge the gap between the two views and to point out similarities and oppor-
tunities for cross-fertilization.

The chapter is organized as follows: We first introduce the Biomine and
ProbLog frameworks and their underlying concepts in Section 2l Section Bl then

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 122 2012.
© The Author(s). This article is published with open access at SpringerLink.com
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Fig. 1. An example of a subgraph extracted from Biomine

gives an overview of various inference and reasoning tasks, focusing on the struc-
tural aspect, before Section [ discusses their extension towards the use of prob-
abilities and other types of labels.

2 The Biomine and ProbLog Frameworks

The Biomine project has contributed a large network of biological entities and re-
lationships between them, represented as typed nodes and edges, respectively [2].
The Biomine network is probabilistic; to each edge is associated a value that rep-
resents the probability that the link between the entities exists. A subnetwork
extracted from this database is shown in Figure [Il Inspired on the Biomine
network, ProbLog [3] extends the logic programming language Prolog with in-
dependent random variables in the form of probabilistic facts, corresponding to
Biomine’s probabilistic edges. In the remainder of this section, we will introduce
the basic terminology used in the context of these frameworks for reasoning
about networks.

2.1 Using Graphs: Biomine

Figure[2 gives a simplified representation of the Biomine subnetwork of Figure[Il
We will use this representation for illustration throughout the chapter. Nodes
have numbers as identifiers. There are five node types (tnl to tn5). The number
of edge types has been reduced to three (tel, te2 and te3) and their directions
have been removed. We use colors and border styles to represent the node types,
and line styles to represent the edge types; see Figure [l for the exact mapping.

In general, nodes and edges could have several types simultaneously. Also,
edges can be directed and there may exist multiple edges between a given pair
of nodes. For ease of explanation, we will only consider the simpler case where
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p6

Fig. 3. Examples of graph patterns

edges and nodes have a single type and there is at most one edge between any
pair of nodes[]

A graph pattern is an expression over node and edge types. It is an abstract
graph that defines a subgraph by means of a set of constraints over the connection
structure and edge and node types. Six example patterns, p1 to p6, are presented
in Figure[3

The pattern nodes are represented using circles to distinguish them from
network nodes, which are represented as squares. Pattern nodes and edges are
either required to be of a given type, or can be of arbitrary type. The latter is
denoted using white nodes and solid edges. Query nodes are labeled with capital
letters, these are the main points of interest when querying the network. As in
regular expressions, the star denotes unlimited repetitions of substructures.

For instance, pattern p1 corresponds to a path of length at least one between
the query nodes X and Y, using arbitrary node and edge labels, whereas p5
specifies the exact number of edges and all edge and node types.

! Allowing multiple edges between the same pair of nodes can be done by introducing
explicit edge identifiers, both in the network and, where needed, also in the patterns.
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Fig. 4. Example of instantiation of pattern p4

A substitution assigns network nodes to nodes in a pattern. An instantiation
maps a pattern onto the network using subgraph isomorphism. Thus, it is a
substitution of all nodes in the pattern in such a way that a corresponding edge
mapping exists as well. An answer substitution is a restriction of an instantiation
to the query nodes.

An example instantiation of pattern p4 is shown in Figure [dl There might be
several possible instantiations of a pattern with the same answer substitution.
For instance, p4{X/9, Y/11} can be instantiated in two ways, either by mapping
the middle node to 7, as in the illustration, or by mapping it to 10.

While we here consider a flat type system, where types are either given or
completely undefined, it is also possible to use type hierarchies. When instan-
tiating patterns, a node (respectively an edge) can then be mapped to a node
(edge) of same type or one of its descendant types. The hierarchies used in our
example are shown in Figure Bl where the undefined type is the root node of the
hierarchy.

2.2 Using Logic: ProbLog

As ProbLog is based on the logic programming language Prolog, we first illus-
trate the key concepts of Prolog by means of an example; for a more detailed
introduction, we refer to [5]. We defer discussion of the probabilistic aspects of
ProbLog to Section [l

In Prolog, the network of Figure [ (ignoring the probability labels) can be
represented as a set of facts:
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arc(1,2,tel). arc(2,3,tel). arc(1,8,tel).
arc(8,9,te2). arc(9,10,te3). arc(1,9,tel). ... (1)
node(1,tn2). node(2,tn5). node(3,tn3). ...

Here, arc(1,2,tel) states that there is a directed edge from node 1 to node 2
of type tel; node(1,tnl) specifies that node 1 is of type tnl, and so forth &
arc/3 is a predicate of arity 3, that is, with 3 arguments. To obtain undirected
edges, a Prolog program would define an additional predicate edge/3 as follows:

edge(X,Y,T) : — arc(X,Y,T). (2)
edge(X,Y,T) : — arc(Y,X,T). (3)

Here, uppercase letters indicate logical variables that can be instantiated to con-
stants such as 1 or tn3. The definition of edge/3 above consists of two clauses
or rules. The first clause states that edge (X,Y,T) is true for some nodes X and Y
and node type T if arc(X,Y,T) is true. The second clause gives an alterna-
tive precondition for the same conclusion. Together, they provide a disjunctive
definition, that is, edge (X,Y,T) is true if at least one of the rules is true.

For instance, edge(2,1,tel) is true due to the second clause and the fact
arc(1,2,tel), where we use the substitution {X/2, Y/1, T/tel} to map rule
variables to constants. edge(2,1,tel) is said to follow from or to be entailed
by the Prolog program.

More formally, Prolog answers a given query by trying to prove the query using
the facts and clauses in the program. The answer will be yes (possibly together
with a substitution for the query variables, which are considered to be existen-
tially quantified), if the query follows from the program (for that substitution).
Query 7- edge(2,1,tel) results in the answer yes due to clause (@) and fact
arc(1,2,tel). For 7- edge(2,1,te2), the answer is no, as Prolog terminates
without finding a corresponding fact to complete the proof. For 7- edge(A,B,C),

2 Alternatively, one could also use facts such as te1(1,2) and tni(1).
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Prolog will return the substitution {A/1, B/2, C/tel}, and will allow the user
to keep asking for alternative answers, such as {A/2, B/3, C/tel}, {A/1, B/8,
C/tel}, and so forth, until no more substitutions can be generated from the
program.

For convenience, we also define edges of arbitrary type:

edge(X,Y) : — edge(X,Y,T). (4)

Alternatively, one could encode the type hierarchy in Figure

edge(X,Y,te0) edge(X,Y,tel).
edge(X,Y,te0) edge(X,Y,te2).
edge(X,Y,te0) : — edge(X,Y,te3).

Prolog also allows for more complex predicate definitions, such as a path between
two nodes:

path(X,Y) : — edge(X,Y). (5)
path(X,Y) : — edge(X,Z),path(Z,Y).

The set of facts in a Prolog program are also called the database, and the set of
clauses the background knowledge.

To simplify notation and to closely follow the network view, in the remainder
of this chapter we assume that different logical variables are mapped onto dif-
ferent constants; this could be enforced in Prolog by adding atoms of the form
X # Y to predicate definitions.

So far, we have focused on encoding information about a specific network.
However, Prolog allows one to encode both data and algorithms within the same
logical language, and thus makes it easy to implement predicates that reason
about the program itself, for instance, by simulating proofs of a query in order
to generate additional information. As we will see in Section [B], this provides a
powerful means to cast reasoning tasks in terms of queries; we refer to [5] for a
detailed discussion.

In the logical setting, a pattern corresponds to a predicate. As in the graph
setting, its definition imposes constraints on the types and connection structure.
For example, the predicate path(X,Y) defined above directly corresponds to
pattern p1 in Figure Bl The query variables X and Y correspond to the query
nodes in graph patterns. Query variables are mapped to constants using answer
substitutions as in the network setting. Building on the definitions above, the
full set of patterns in Figure [l can be encoded as follows:

p1(X,Y) : — path(X,Y). (6)
p2(X,Y,Z) : — node(X,tn5), edge(X, A),node(A, tnb), edge(A, Y, te2),

edge(A, Z,te3), edge(Y,B), edge(Z, B). (7)

p3(X,Y) : — node(X,tn3),path(X,Y),edge(Y,A),node(A, tnb). (8)

p4(X,Y) : — node(X,tn5), edge(X, A), edge(A, Y),node(Y, tnb). 9)
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p5(X,Y) : — node(X,tn5),edge(X, A, tel),node(A, tn2),
edge(A,Y,tel),node(Y, tnb). (10)
p6(X) : — node(X,tn3),edge(X,A),node(A, tn5), path(4,B),
node(B, tn3), edge(B, C),node(C, tn5), path(C, X). (11)

Furthermore, using logic also allows one to easily express additional constraints
on patterns. For instance, pattern p7 states that node X has a neighboring node
whose type is not tn5, while pattern p8 states that it has two outgoing edges of
the same type:

p7(X) : — edge(X,Y),not(node(Y,tn5)).
p8(X) : — edge(X,Y,T),edge(X,Z,T).

For ease of presentation, we assume that patterns are always defined by a single
clause. Note that this does not preclude disjunctive patterns, as can be seen
for p1 in (@) above.

A substitution 6 is an answer substitution for a pattern p if the query pf follows
from the Prolog program. For instance, {X/9, Y/11} is an answer substitution
for pattern p4(X,Y), as p4(9, 11) follows from our example program.

An explanation for a pattern is a minimal set S of database facts such
that the pattern follows from S and the background knowledge. For instance,
{node(9,tnb), arc(9,7,te2), arc(7,11,te2), node(11,tnb)} is an expla-
nation for p4(9, 11).

2.3 Summary

Table [I] summarizes the key terms introduced in this section.

Table 1. Correspondence of the different terminologies

logic view graphical view
background knowledge set of patterns
set of facts, database graph
predicate pattern
query variables query nodes
explanation instantiation

3 Inference and Reasoning Techniques

This section provides an overview of a broad range of reasoning techniques.
We start with the classical tasks of deduction and abduction, that are both
concerned with matching given patterns against the graph or database. Next,
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we discuss various settings for induction, that is, for inferring patterns under
different conditions. We then in turn consider techniques that combine pattern
creation and pattern matching, that identify nodes in the graph, and that modify
the database or the background knowledge in a number of different settings.
Throughout the discussion, we assume a Prolog program encoding the graph
and possible background knowledge as discussed in Section This allows us
to view the different reasoning tasks as queries asked to a Prolog system.

3.1 Deduction: Reasoning about Node Tuples

The question answered by deduction is whether there exists an instantiation of a
pattern in a graph, or, equivalently, whether the pattern follows from the Prolog
program encoding the graph. It thus directly corresponds to answering Prolog
queries as discussed in Section

In our example, given the ground query ?- p2(8,7,10), deduction will pro-
duce an affirmative answer, as there is an instantiation of the pattern using the
real nodes 9 and 11. Similarly, p4(8,10) is true but p2(10,7,8), p2(9,6,11)
and p4(14,10) are false.

To summarize, given a Prolog program, a pattern p and a substitution 0 that
grounds p, deduction corresponds to answering the query ?- p@ from the pro-
gram.

The decision problem of deduction as described here forms the basis for many
other reasoning tasks on the level of node tuples; we discuss some examples next.

Answer Enumeration. For non-ground patterns, the enumeration problem
associated to deduction corresponds to finding all answer substitutions for the
pattern. Alternatively, one can ask for some answer substitution chosen from
the set of all possible ones. For instance, one possible answer substitution for 7-
p2(X,Y,Z) would be {X/8, Y/7, Z/10}, whereas ?7- p4(15,Y) does not pro-
duce an answer substitution, as there is no proof of this query.

Thus, given a Prolog program and a pattern p, the answer substitution and
enumeration problem of deduction correspond to finding one or all answer sub-
stitutions for the query 7— p from the program, respectively.

Representative Nodes. A binary pattern p(X,Y) can be used to find a set of
representative nodes, that is, nodes r that, when substituted for X, lead to a set of
patterns p(r,Y) such that all other nodes appear in an answer substitution for at
least one such pattern. For instance, using p(X,Y) :- edge(X,Z),edge(Z,Y),
one set of representative nodes is {1,4,16}. Note that here, some nodes are
associated to several representative nodes, in this example node 7 is associated
to both the representative nodes 1 and 4. A harder variant of the problem would
be to require that there is exactly one such representative for each node.

In a nutshell, given a constant k, a Prolog program encoding a network with
nodes N, and a pattern p(X,Y), the task of finding representative nodes is to find
a subset S C N of size k such that for each node y ¢ S there is a node s € S for
which the query 7- p(s,y) is answered affirmatively.
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Spread of Influence. Recursive patterns such as path(X,Y) can be used to
measure distances from a given node in a network to all other nodes in terms of
the minimal number of edges needed to reach the other node. This principle can
be regarded as the basis of techniques measuring spread of influence, and can be
used to enumerate nodes by increasing distance.

For instance, using pattern path(1,X), thus measuring the distance from
node 1, the closest set of nodes is {2,8,9, 14}, the next one {3,7,10,13, 15},
and so forth.

In Prolog, this could easily be realized by extending the path predicate with
a third argument that counts the number of edges traversed:

path(X,Y,1) : — edge(X,Y).
path(X,Y,L) : — edge(X,Z),path(Z,Y,L),L is N+ 1.
One would then ask a sequence of queries 7- path(1,X,i) withi=1,...,n up

to a maximum length n, though some extra book-keeping would be required to
filter out nodes that have been returned as an answer on previous levels already.

Thus, given a Prolog program, a maximum distance n, and a recursive pattern
p(x,Y,D) with source node x, spread of inference corresponds to answer enumer-
ation for the sequence of queries 7- p(x,Y,1i) fori=1,...,n.

3.2 Abduction: Reasoning about Subgraphs

The task of abduction is closely related to that of generating an explanation for
a query as discussed in Section In terms of graphs, it directly corresponds to
finding a minimal instantiation of a pattern. In the logical setting, abduction is
not restricted to database predicates, but can use all predicates marked abducible.
In the context of patterns and networks, one could simply assume all predicates
used in pattern definitions to be abducible and implement a predicate abduce;
see [B] for a general definition of this predicate and more details.

For instance, when calling the query ?- abduce (p6(7) ,E) (cf. Equation (ITI))
and assumming that all predicates are abducible, the answer E would be the
conjunction of node(7,tn3), edge(7,9), node(9,tnbd), path(9,13), node (13,
tn3), edge(13,12), node(12,tnb), and path(12,7).

To summarize, given a Prolog program and a pattern p, abduction corresponds
to answering the query 7- abduce(p,E).

Again, one can also consider the corresponding enumeration problem, where
the task is to find all explanations or instantiations.

3.3 Induction: Finding Patterns

Frequent Patterns. The usual frequent subgraph mining problem corresponds
to the problem of finding all patterns from a given pattern language with more
than a chosen number of instantiations. The pattern language will specify both
allowed structures of patterns and which nodes in patterns can be query nodes.
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For instance, for a frequency threshold of 3, all patterns in Figure Bl would be
frequent.
Similarly to abduce/2 above, one could implement a Prolog predicate

frequent(P,T) : — pattern(P),count(P,N),N>=T.

that returns patterns with a frequency greater or equal to a user-defined thresh-
old T. It relies on suitable definitions of pattern/1 (defining elements of the
pattern language) and count/2 (counting instantiations of a given pattern).
Then, finding frequent patterns for a given frequency threshold t corresponds to
answering the query 7?- frequent(P,t). While this simple approach illustrates
the basic idea, an efficient implementation would clearly be more involved.

To summarize, given a frequency threshold t and a Prolog program includ-
ing definitions of a pattern language and a counting function, finding frequent
patterns corresponds to answering the query 7- frequent(P,t).

Concept Learning. The aim of concept learning is to construct a definition of
a new predicate that covers all positive examples, but none of the negative ones.
In our context, examples are node tuples, but for convenience we represent them
as ground instances of the pattern to be found. Again, this could be realized in
Prolog based on a suitable definition of a predicate

concept(C) : — hypothesis(C),
findall(P, (pos(P),not(covers(C,P))),[]),
findall(N, (neg(N), covers(C,N)),[]).

Here, hypothesis/1 enumerates possible concepts, covers/2 checks whether the
concept covers an example, and pos/1 and neg/1 define examples. The Prolog
builtin findall/3 is used here to verify that there is no positive example that is
not covered by the concept, and no negative one that is covered. In general, its
third argument is a list of all instantiations of the variable in the first argument
for which the query in the second argument holds, and [] denotes the empty
list.

For instance, assume we are given examples pos(q(3,1)), pos(q(7,15))
and neg(q(7,4)). Then, querying ?- concept(C) could return C = (q(X,Y)
:- p3(X,Y)) as a possible solution.

Thus, given a Prolog program including definitions of a hypothesis language
and positive and negative examples, concept learning corresponds to answering
the query 7- concept(C).

Generalisation. Comparing patterns based on a generality relation provides a
means to choose between alternative solutions. Given a Prolog program including
two patterns
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Pa is more general than py if the query ?- p, follows from the program that
is obtained by adding the facts by to b, to the original program, where each
variable is replaced by a new constant symbol. For instance, p4 (X,Y) (Eq. (@))
is more general than p5(X,Y) (Eq. (I0)), as ?- p4(x,y) can be proven from
our example program extended with the facts node(x,tnb5), edge(x,a,tel),
node(a,tn2), edge(a,y,tel), and node(y,tnb).

From the perspective of graphs, generality can again be seen as a form of
subgraph isomorphism, this time between patterns where the nodes and edges
of the more general pattern are mapped to those of the more specific one of
same type or children type. Notice that in the literature on logical and relational
learning there are multiple notions of generality that can be employed [6].

The notion of generality can also be used to find a maximally specific common
generalisation of two given patterns, that is, a pattern that is more general
than each of the input patterns, but for which there is no more specific pattern
that also fulfills this criterion. A corresponding Prolog predicate generalize/3,
queried as 7- generalize(p2(X,Y),p4(X,Y),G) would provide the answer C =
(node(X,tnb), edge(X,A), edge(A,Y)).

Thus, given a Prolog program and two patterns pa and py, the task of gener-
alization corresponds to answering the query 7- generalize(pa.,pv,P).

Clustering. Patterns can also be used to cluster node tuples: all node tuples
that satisfy a given pattern fall into the same cluster. The task of clustering
a given set of node tuples then corresponds to that of finding & patterns that
cluster the node tuples into k disjoint (or possibly overlapping) subsets based
on characteristics of their local connection.

A very simple set of clustering patterns in our example would be the set
containing node (X, tni) for ¢ = 1,...,5 that would simply cluster single nodes
by their types.

In a nutshell, given a Prolog program, a constant k and a set of node tuples T,
clustering is the task of finding a set P of k patterns such that for each t € T,
there is exactly one pattern p € P for which t is an answer substitution for p.

3.4 Combining Induction and Deduction

As deduction matches patterns against the database, while induction constructs
new patterns, the two approaches can be naturally combined to find both pat-
terns and corresponding substitutions simultaneously.

Analogy. Node tuples can be considered analogous if they are answer sub-
stitutions for the same pattern. Given a substitution, the problem of finding
analogous tuples can be defined as finding a pattern for which this substitution
is an answer substitution along with all other answer substitutions for it. The
more specific the pattern, the stronger the analogy.

For example, the pairs of nodes (2,8), (12,16), (14,9) and (9,11) are
analogous with respect to pattern p4, i.e., in the sense that they are all pairs
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of nodes of type tnb separated by an intermediate node. However, pattern p5
defines a stronger analogy that only relates the pairs (2,8) and (14,9). In the
case of an asymmetric pattern, it can be interesting to consider the sets of real
nodes assigned to one particular query node in the pattern, in other words, nodes
that take the same role in the analogy.

That is, given a Prolog program and a substitution 6, the task of reasoning by
analogy is to find a pattern p for which 6 is an answer substitution as well as
the set S of all answer substitutions for p.

Synonyms. Two structurally distinct patterns are synonyms of one another
if they have the same answer substitutions. Synonyms are also known as re-
descriptions or syntactic variants. Finding synonym patterns and their answer
substitutions can be one way of finding sets of objects of special interest. Fur-
thermore, given two networks with node and edge types from different domains,
finding synonyms can help to establish mappings between these domains.

For instance, the following two patterns are synonyms (albeit only covering a
single node due to the simplicity of the example graph):

s1(X) : — edge(X,Y,tel),edge(X,Z,tel), edge(Y,Z).
s2(X) : — node(X,tn2).

Thus, given a Prolog program, finding synonyms means finding a set of pat-
terns P such that each pattern in P has the same set of answer substitutions.

3.5 Modifying the Knowledge Base

We now turn to a set of techniques that modify the graph, database, or back-
ground knowledge. The key difference to the techniques discussed so far is that
we now allow for loosing information.

Graph Simplification. The goal of graph simplification is to remove redundant
edges from a graph. Here, redundancy is defined with respect to paths: an edge
is considered redundant if all pairs of nodes connected in the original graph are
also connected in the graph after removing the edge. In the purely structural
case, graph simplification thus corresponds to finding a spanning tree; we will
come back to the use of additional quality measures in Section

That is, given a Prolog program including a set E of facts representing edges
and a predicate path/2, graph simplification finds a minimal set S C E such that
the set of answer substitutions for path(X,Y) remains the same when reducing E
to S in the program.

Subgraph Extraction. The aim of subgraph extraction is to find a subgraph
of a given maximal size while retaining as much information as possible with
respect to a given set of examples, that is, answer substitutions for a pattern.
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For instance, given examples path(3,7) and path(3,13) and an upper limit
of 5 edges, our network could be compressed to contain edge(2,3), edge(1,2),
edge(1,9), edge(9,7) and edge(9,13) only.

Thus, given a Prolog program including a set E of facts representing edges, a
constant k and a set T of answer substitutions for pattern p, subgraph extrac-
tion finds a set S C E of size at most k such that all 0 € T are also answer
substitutions for p when reducing E to S in the program.

Abstraction. The task of abstraction is to rewrite the database using new
predicates that abstract away some of the information present in the initial
database. While techniques such as graph simplification and subgraph extraction
also loose information, abstraction differs in that it replaces database predicates
by a new predicate, obtained by computing answers for the pattern defining the
new predicate. For instance, one could replace the predicate arc/3, that is, the
directed, typed edges, using

p(X,Y) : — node(X,T),node(Y,T),T # tnb5, path(X,Y).

that is, edges that correspond to paths between pairs of nodes of the same
type (different from tn5) in the original network. This would result in the new
database

p(3,7). p(3,13). p(7,13). p(4,5).
p(7,3). p(13,3). p(13,7). p(5,4).

Abstractions can be created using any technique that identifies patterns and
thus predicate definitions. Instead of adding the definitions of these predicates
to the database, it computes all groundings of the new predicate, adds these to
the database, and deletes the old facts.

Thus, given a Prolog program, a database predicate d and a pattern p, abstrac-
tion adds pO for all answer substitutions 6 for p to the program and deletes the
definition of d.

Predicate Invention. The key idea of predicate invention is to introduce new
patterns that can be used to represent the background knowledge more com-
pactly. For instance, the DUCE system [7] measures compactness using the min-
imum description length principle. As an example, consider the following set of
rules:

q1(Z) : — edge(Z,Y),edge(Y,X),edge(X, W), edge(W,V),node(V,tnl).
q2(Z) : — edge(Z,Y),edge(Y,X), edge(X, W), edge(W, V), node(V, tn2).
q3(Z) : — edge(Z,Y),edge(Y,X), edge(X,W), edge(W, V), node(V, tn3).
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Inventing a predicate dist4(X,Y) allows one to rewrite these definitions more
compactly as

dist4(Z,V) : — edge(Z,Y),edge(Y,X), edge(X,W), edge(W, V).
q1(Z) : — dist4(Z,V),node(V,tnl).
q2(Z) : — dist4(Z,V),node(V,tn2).
q3(Z) : — dist4(Z,V),node(V,tn3).

While this transformation has preserved the meaning of the original fragment,
this need not be the case in general. Similar principles can also be used to
compress graphs by replacing instantiations of a pattern by new nodes [g].

In general, given a Prolog program, the task of predicate invention is to in-
troduce new pattern definitions which are then used to rewrite the program more
compactly.

3.6 Summary

Table 2 summarizes the different reasoning techniques presented in previous
sections. It recapitulates the information provided to and the problem solved by
each of them.

4 Using Probabilistic or Algebraic Labels

So far, we have restricted our discussion to crisply defined networks and logical
theories. However, in both Biomine and ProbLog, the information provided is
uncertain. This uncertainty is expressed by attaching probabilities to edges or
facts, and can be exploited in various ways for reasoning. Furthermore, ProbLog
has recently been generalized to aProbLog [4], where probabilities can be re-
placed by other types of labels, such as costs or distances. In this section, we
first briefly review the probabilistic model underlying Biomine and ProbLog,
and then illustrate how the techniques from Section [Blcan benefit from the prob-
abilistic setting. While some of these techniques have already been realized in
Biomine, ProbLog, or other probabilistic frameworks, for others, the details of
such a transfer are still open. Finally, we touch upon the perspectives opened by
aProbLog.

4.1 The Probabilistic Model of Biomine and ProbLog

In the probabilistic graph model underlying Biomine, a value is associated to
each edge, indicating the probability that the relationship exists. In Biomine,
these values are obtained as the product of three factors, indicating the reliability,
the relevance, and the rarity (or specificity) of the information, cf. [2], but they
can be obtained in a different way as well. Existences of the edges are considered
independent from each other. This actually defines a probability distribution over
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Table 2. Summary of the different reasoning methods
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Abduction
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Concept Learning
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Synonyms

I
3

Graph Simplification

I
o

Subgraph Extraction

8

Abstraction

B.5] Predicate invention

pattern, substitution
pattern

pattern, integer k
recursive pattern, node
pattern

frequency threshold
pos./neg. examples
two patterns
substitutions, integer k
substitution

examples, integer k

database predicate, pat-

tern

is it an answer substitution?
list all answer substitutions
find k representative nodes
enumerate nodes by distance
find an/all instantiation(s)
list all frequent patterns
find a discriminative pattern
find a generalized pattern
find k clustering patterns
find a pattern and answer
substitutions

find a set of patterns with
same answer substitutions
reduce

maximally graph

keeping answer substitu-
tions for path

reduce graph to size < k re-
specting examples

replace predicate definition
by pattern instances

reduce program size via new

predicates

possible subnetworks, i.e., deterministic instances of the probabilistic network.
Each subnetwork F; has probability

pe= 11 0= I o

z€E\E; zEE;

(12)

where F is the set of edges in the probabilistic network, F; is the set of edges
realised in the deterministic instance and p, the existence probability of edge x.
For instance, the network in Figure [6] has probability (starting with the edges
involving node 1) 0.78 - (1 —0.9) - 0.84-0.84 - ... = 1.237¢ — 06.

In ProbLog, probabilities are associated to ground facts instead of edges, and
again, these facts are considered to correspond to independent random variables.
The directed edges of (Il) are now represented as follows:

0.78::arc(1,2,tel). 0.50: arc(2,3,tel). 0.90 :: arc(1,8,tel).
0.45 :: arc(8,9,te2). 0.61 :: arc(9,10,te3). 0.84 :: arc(1,9,tel).

In analogy to Equation (I2), ProbLog thus defines a probability distribution
over instances E; of a probabilistic database with facts E.
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Fig. 6. A network sampled from the probabilistic graph in Figure

One can now ask for the probability of a specific pattern instantiation, which
corresponds to the probability that this subgraph is present in a randomly sam-
pled network. Due to the independence assumption, this probability is obtained
by simply multiplying the probabilities of the instance’s edges. Put differently,
it corresponds to the sum of probabilities of all subnetworks of the probabilis-
tic network that contain the instance. For example, the probability of the in-
stantiation of pattern p4(9,11) presented in Figure @ is 0.43 - 0.47 = 0.2021.
The probability of its instantiation using node 10 as the middle node instead is
0.61-0.50 = 0.305.

The same principle of summing over all relevant subnetworks is also used to
define the probability of a pattern ¢, called success probability in ProbLog;:

Py(q) = > P(E;). (13)

E;CE:q follows from E;

Clearly, directly following this definition to calculate probabilities is infeasible in
any network of realistic size. However, several alternative approaches have been
developed, either based on sampling large numbers of networks or on enumer-
ating pattern instantiations instead of full subnetworks. The latter approach,
followed by ProbLog, requires to address the disjoint-sum-problem, that is, the
fact that more than one instantiation of the same pattern can exist in the same
subnetwork. It is therefore not possible to simply sum the probabilities of all
instantiations, as this would count such subnetworks multiple times. Consider
again the two instantiations of pattern p4(9,11) above. There are many sub-
networks that allow for both instantiations (including the one in Figure [l), and
we thus cannot simply sum these probabilities. Instead, we could split the rel-
evant set of subnetworks into three disjoint parts based on the edges occurring
in the instantiations: (1) all networks including the edges between 9 and 7 and
between 7 and 11, with probability 0.2021, (2) all networks that do not contain
the edge between 7 and 9, but the edges between 9 and 10 and between 10 and
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11, with probability (1 — 0.43) - 0.61 - 0.50 = 0.17385, and (3) all networks in-
cluding edges between 9 and 10, 10 and 11, 7 and 9, but not the one between 7
and 11, with probability 0.61-0.50-0.43- (1 —0.47) = 0.0695095. (1) includes all
networks that allow for the first instantiation (regardless of the second), (2) and
(3) those that allow for the second, but not the first. Thus, the total probability
is 0.2021 + 0.17385 4 0.0695095 = 0.4454595.

In practice, ProbLog represents all instantiations of the pattern as a proposi-
tional formula, and then uses advanced data structures to calculate the proba-
bility of this formula; we refer to [9] for the technical details.

While the success probability takes into account all instantiations of a pattern,
it is also possible to approximate it using its most probable instantiation only.

4.2 Probabilistic Deduction

While deduction in the classical sense is concerned with deciding whether a
substitution is an answer substitution for a given pattern in the network, in a
probabilistic setting, it asks for the probability that this is the case, and thus
solves Equation (I3).

Answer Enumeration. When considering the set of all answer substitutions
for a pattern, probabilities provide a natural means of ranking these. For in-
stance, each answer substitution for p5(X,Y) corresponds to a single instantia-
tion, that is, two edges linking node 1 to two of its neighbors. The most likely
answer substitutions (omitting symmetric cases for brevity) thus are {X/8,Y/9}
and {X/8,Y/14}, each with probability 0.9-0.84 = 0.756, followed by {X/9,Y/14}
(probability 0.7056), {X/2,Y/8} (0.702), and finally {X/2,Y/9} and {X/2,Y/14}
(0.6552 each).

Non-redundant Set of Representatives. Finding a non-redundant set of
representatives as proposed in [I0] consists in solving the representative nodes
problem (cf. Section [B]) in a probabilistic setting.

Using the path predicate, the aim is to find a set X of k representative nodes
such that the probability that {Y/y} is an answer substitution for path(x,Y)
for some x in X is maximum for each original node y. More formally, the set of
representative nodes is defined as

argmarxcn, x|=k Z matze x Ppath(z,y)
yeEN
where Ppip(2,y) is the probability of the best instance of path(x,y), namely the
most probable path between nodes x and y.

Spread of Influence. Instead of using the number of recursive steps or the
size of the instantiation as a measure for the distance, in a probabilistic context,
spread of inference can use the probability that a substitution is an answer
substitution for a pattern. It would thus prefer more distant nodes (in terms of
path length) if their probability of being connected to the source node is higher.
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4.3 Probabilistic Abduction and Top-k Instantiations

In the presence of probabilities, one might not be interested in finding an expla-
nation for a query but rather in finding the most probable one.

In that setting an interesting alternative to the enumeration problem of ab-
duction is the task of finding the k most probable instantiations of a given
pattern.

Note that identifying the & most probable instantiations of a pattern might
return rather uninteresting results if they are all about the same node tuple. In
order to obtain a more diverse set of answers one might look for the k£ tuples
with most probable instantiations instead (corresponding to deductive answer
enumeration approximating probabilities by those of the most likely instantia-
tions), or even require the tuples to not overlap.

4.4 Patterns and Probabilities

When looking for patterns, probabilities can again provide a natural way to
select between various alternative solutions.

Pattern Mining. Probabilistic local pattern mining in ProbLog [I1] extends
pattern mining in multi-relational databases to the probabilistic setting. Instead
of a counting function, it uses a scoring function based on the probabilities
of candidate patterns on given node tuples. It thus basically replaces the 0/1-
membership function of frequent pattern mining with a gradual one based on
probabilities. Probabilities of individual instances are combined using sum (re-
sulting in a kind of probabilistic frequency) or product (resulting in a kind of
likelihood function).

Concept Learning. Concept learning in the context of ProbLog has been
studied in [I2], where the relational rule learner FOIL is lifted to work with
probabilistic data and examples.

Generalisation. In a probabilistic setting, generalisation can be used in dif-
ferent contexts and ways. For instance, probabilistic explanation based learning
in ProbLog [I3] generalizes an explanation of an example query in terms of
database predicates by replacing constants by variables, thus obtaining a new
pattern definition. Stochastic logic programs, a probabilistic logic language in-
spired on probabilistic grammars, can be learned from examples in the form of
proofs by generalizing pairs of clauses extracted from these examples [14]. In
the latter case, probabilities are associated to clauses, and need to be adapted
during generalisation as well.

Clustering. In the context of clustering, probabilities can express the degree
to which an example belongs to a cluster. One would then no longer require that
node tuples are assigned to single clusters.
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4.5 Combining Induction and Deduction

Analogy. While the generality of a pattern provides a first means to assess the
strength of an analogy, the probabilities of the different groundings additionally
provide a means to rank all node tuples that are analogous with respect to a
certain pattern. For instance, while (2,8), (12,16), (14,9) and (9,11) are
all analogous with respect to pattern p4, the probabilities are much higher for
(2,8) and (14,9) than for the other two pairs. In the context of ProbLog, both
local pattern mining [I1] and probabilistic explanation based learning [13] have
been used for reasoning by analogy.

Synonyms. In the context of finding synonyms, probabilities allow for choosing
a subset of candidate synonyms based on the probabilities of the corresponding
answer substitutions, and to thus restrict a possibly large set of synonyms to a
set that is more suitable for manual inspection.

4.6 Modifying the Probabilistic Knowledge Base

Simplification of a Probabilistic Graph. The problem introduced by Toivo-
nen et al [I5] consists in simplifying probabilistic networks while maintaining the
connectivity. It refines the task of graph simplification as defined in Section
by using the probabilities as an additional quality measure.

The aim is to find a minimal database by dropping edges while keeping the
probability of the path predicate for each pair of nodes constant. With the
probability of path(x,y) for a pair of nodes x and y defined as the probability
of the best instantiation, this corresponds to maintaining the best paths between
all pairs of nodes.

This definition might be too strict, as it might not allow for significant reduc-
tions of database size. In a later work [16], the condition is relaxed to maintaining
the overall best path quality as close to the original as possible.

Subgraph Extraction. Various approaches to extract subgraphs with strong
connections among given nodes have been developed in the context of Biomine
and ProbLog [T7/I8/T9J20]. These works all aim at maintaining high probabilities
for connections between selected nodes. In Biomine, connections are typically
defined as paths between pairs of nodes from a given set, while ProbLog the-
ory compression [I8] provides them as positive examples in the form of ground
patterns whose definitions are included in the background knowledge. The lat-
ter also takes into account corresponding negative examples by using a score
that encourages high probabilities for positive and low probabilities for negative
examples.

Abstraction. In a probabilistic database or network, abstraction would need to
take into account the probability labels as well. However, simply labeling the new
facts with their probabilities as deduced from the old program may introduce
hidden dependencies between facts that might be undesirable.



Patterns and Logic for Reasoning with Networks 141

Predicate Invention. When applying predicate invention to a probabilistic
database, the probabilities provide a means to measure the information loss and
balance it against the compactness of the representation obtained. While the un-
derlying probability distributions could be maintained for transformations that
maintain the meaning of the program, how to adapt probabilities for transfor-
mations that generalize the program is an open question.

4.7 Beyond Probabilities

While probability labels provide one way of defining a quality measure on differ-
ent subnetworks or databases, in certain situations, it can be more convenient to
use different types of labels, such as for instance costs, capacities, or numbers of
co-occurrences. For instance, in the context of a transportation network where
edges are labeled with travel times, prices, or the number of available seats, one
could be interested in shortest or cheapest routes, or in routes allowing for the
largest group of passengers traveling together, or even in some criterion balanc-
ing these requirements. In a co-authorship graph where edges are labeled with
the number of joint papers, one could be interested in patterns suggesting strong
collaboration networks.

aProbLog [4] generalizes ProbLog to labels from arbitrary commutative semi-
rings, that is, sets of labels together with two binary operators with certain
characteristics [ Multiplication is used to define labels of subsets of the database
sets (as done for the semiring of probabilities in Equation (I2)), while addition
is used to define labels of queries in terms of these (as done in Equation (I3))). In
the case of probabilities, negative literals are naturally labeled with 1 — p, where
p is the label of the database facts; in the general case considered in aProbLog,
these labels need to be given explicitly. By replacing summation with maximiza-
tion, one obtains another probabilistic semiring that can be used to obtain most
likely database instances. The examples given above can be formalized in this
framework.

Inference in aProbLog generalizes that in ProbLog, and the framework thus
allows one to explore the tasks discussed in this chapter in the context of different
types of labels on basic relations without the need to redefine the underlying
machinery.

5 Conclusions

We have given an overview of network inference tasks from the perspective of the
Biomine and ProbLog frameworks. These tasks provide information at the node,
subgraph, or pattern level, and they differ in the types of input they assume in
addition to the basic graph, such as training examples or background knowledge.

3 More formally, a commutative semiring is a tuple (A, &, ®,e®, e®) where addition @
and multiplication ® are associative and commutative binary operations over the
set A, ® distributes over @, e¥ € A is the neutral element with respect to @,
e® ¢ Athat of @, and for alla € A, e? ® a = a ® e® = ¥,
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They all have been or can be extended to exploit the probabilistic information
present in both frameworks, or other types of labels as supported in aProbLog,
a recent generalization of ProbLog to algebraic labels.
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Heterogeneous information networks or BisoNets, as they are called in the
context of bisociative knowledge discovery, are a flexible and popular form of
representing data in numerous fields. Additionally, such networks can be created
or derived from other types of information using, e.g., the methods given in
Part II of this volume.

This part of the book describes various network algorithms for the exploration
and analysis of BisoNets. Their general goal is to support and partially even
automate the process of bisociation. More specific goals are to allow navigation
of BisoNets by indirect and predicted relationships and by analogy, to produce
explanations for discovered relationships, and to help abstract and summarise
BisoNets for more effective visualisation.

Contributions

In the first chapter of this part, Dries et al. [I] propose BiQL, a novel query lan-
guage for BisoNets. It is motivated by the observation that graph and network
databases have specific needs for query tools, but the tools are much less devel-
oped than for relational data. For instance, a statistic such as the shortest path
between two given nodes cannot be computed by a relational database. BiQL
allows for querying and analyzing databases, especially probabilistic graphs, by
using such aggregates and ranking.

The next three chapters address the problem of simplifying a large BisoNet
and providing a smaller version instead, both to aid visual exploration and to ease
the use of computationally more demanding methods. The first of these chapters,
by Zhou et al. [2], is an overview of existing approaches to this problem.

The next two chapters then propose novel methods for two specific network
abstraction tasks. Zhou et al. [3] provide methods for so called network sim-
plification. There, the goal is to remove least important edges, i.e., those that
have least effect on the quality of connections between any nodes. In this ap-
proach, nodes are left intact. In the chapter on network compression, in turn,
Toivonen et al. [4] obtain a smaller network by merging nodes that have similar
neighbours (or roles) in the network. Such a graph can also be uncompressed
to obtain an approximate copy of the original graph. Both of these abstraction
methods are designed specifically for BisoNets, paying attention to edge weights
and maintaining strengths of (indirect) relations between nodes.

Langohr and Toivonen [5] then introduce a method to identify representative
nodes in BisoNets, also motivated by the need to produce different simple views

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 144 2012.
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to large networks. They define a probabilistic similarity measure for nodes, and
then apply clustering methods to find groups of nodes. Finally, a representative
(the medoid) is output from each cluster, to obtain a sample of nodes that is
representative for the whole network.

Kotter and Berthold [6] propose a new approach to extract existing concepts,
or to detect missing ones, from a BisoNet by means of concept graph detection.
Extracted concepts can then be used to create a higher level representation of the
data, while discovered missing concepts might lead to new insights by connecting
seemingly unrelated information units.

The final two chapters propose two different approaches to discover similarities
or associations — or bisociations — in BisoNets. Thiel and Berthold [7] propose
a novel way to find non-trivial structural similarities between nodes in a BisoNet.
The basic idea is to compare the neighborhoods of the given nodes, also indirect
neighbors. The clue of the method is to do this by comparing the patterns of
activation spreading from each of the given nodes.

Finally, Nagel et al. [8] address the problem of finding domain bridging asso-
ciations between otherwise weakly connected domains. They propose a method
based purely on structural properties of the connections between entities. It first
identifies domains and then assesses interestingness of connections between these
domains.

Conclusions

The chapters in this part of the book cover a wide range of methods for biso-
ciation network analysis. Many of the methods are directed to making large
BisoNets easier to handle and grasp. Also, a multitude of methods were devel-
oped to measure relationships or similarities between entities in BisoNets, and
to discover interesting relations or concepts.

Automated discovery of actual, useful bisociations seems to be a very diffi-
cult problem. This observation is also supported by the experimental work and
applications that are described in Part V of this book. Instead, it is more use-
ful to offer the user tools and mechanisms that help her explore the data, and
that facilitate her bisociative processes. Part IV below will continue with even
stronger focus on interactive exploration methods for BisoNets.

The applications and evaluations in Part V indicate that the overall bisociative
methodology, including network analysis methods as its key components, has
potential for helping users make genuine discoveries. At the time of writing,
network analysis methods and tools descibed in this part have already been
adopted for regular use by end users.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.
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Abstract. One of the key steps in data analysis is the exploration of
data. For traditional relational data, this process is facilitated by rela-
tional database management systems and the aggregates and rankings
they can compute. However, for the exploration of graph data, relational
databases may not be most practical and scalable. Many tasks related
to exploration of information networks involve computation and analy-
sis of connections (e.g. paths) between concepts. Traditional relational
databases offer no specific support for performing such tasks. For in-
stance, a statistic such as the shortest path between two given nodes
cannot be computed by a relational database. Surprisingly, tools for
querying graph and network databases are much less well developed than
for relational data, and only recently an increasing number of studies are
devoted to graph or network databases. Our position is that the devel-
opment of such graph databases is important both to make basic graph
mining easier and to prepare data for more complex types of analysis.

In this chapter, we present the BiQL data model for representing and
manipulating information networks. The BiQL data model consists of
two parts: a data model describing objects, link, domains and networks,
and a query language describing basic network manipulations. The main
focus here lies on data preparation and data analysis, and less on data
mining or knowledge discovery tasks directly.

1 Introduction

Information networks are a popular way of representing information. In its most
basic form, such a network can be seen as a set of objects, interconnected by
links. Because of this link structure, these networks are capable of representing
complex information using a simple data model. Information networks can be
found in a wide variety of domains, for example, as social networks, bibliograph-
ical networks, and biological networks such as gene-protein interaction networks
and pathways. Although all these examples seem very different, their analysis
requires many similar operations. For example, determining the influence of a
publication in a citation network is similar to finding the role of a gene in a bio-
logical pathway, finding the well-connected users in a social network corresponds
to finding the important traffic hubs in a road network, and network analysis
algorithms such as PageRank can be applied to different types of networks such

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 147 2012.
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as the world wide web and social networks. Because of this common structure it
seems natural to look for a common infrastructure to deal with these networks.

Currently, different graph databases are available (e.g. DEX [3I] and
Neodj [32]). However, many of these systems focus mainly on low-level aspects
such as data structures and algorithms, instead of higher level concepts such
as providing a simple data model and query language. In this article, we take
a different approach and we focus on developing a data model for information
networks that is suitable for network analysis and data mining. This data model,
called BiQL (or Bison Query Language), aims at providing a powerful set of
operations for manipulating a wide variety of heterogeneous networks. Within
the knowledge discovery process, BiQL mainly focusses on preprocessing, trans-
formation, analysis, and, to a lesser extent, data mining.

In this chapter, we give a general overview of the BiQL system. For a more
in-depth discussion on the query language and its underlying operations we refer
the reader to [19], chapter 6].

2 DMotivating Example

Consider the bibliographic network shown in Figure [l This network contains
authors, publications, keywords, citations, authorship and keyword relations.

Such a network can be used and analyzed in many ways. For example, one
could be interested in doing co-authorship analysis. In that case the ‘publication’
nodes are considered to be edges between ‘authors’ and the network can be
represented as shown in Figure 2l The co-author relationship can be expressed
using regular edges (Figure 2a)) or using hyperedges (Figure 21).

Alternatively, one may be interested in analyzing publications for each do-
main separately by splitting up the network into a set of networks, one for each
keyword, as can be seen in Figure Bl

Many more cases can be imagined, for example, citation analysis between
publications, authors, or even keyword domains. In order to be able to perform all
these tasks, we need a data representation and query language that are capable
of representing, manipulating and transforming information networks. Moreover,
we also want to analyse such networks, that is, calculate aggregate measures,
apply ranking functions, and store the results back in the network for future
querying. In general, we can identify a number of key tasks that a network
management system should support:

1. Introduce new relationships in the network, for example, create a ‘co-author’
relationship between authors that have published a paper together, or create
a citation relation between authors based on the citation relation between
publications.

2. Find connections between objects, for example, find co-citations between au-
thors, that is, author A cites author B and author B cites author A (possibly
indirectly).
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Fig. 1. Bibliographic network containing the entities ‘authors’; ‘publications’ and ‘key-
words’, and the ‘author of’, ‘has keyword’, and ‘cites’ relationships

3. Find the transitive closure of a relation, for example, find the influence graph
of a publication based on citations, or the co-author neighbourhood of an
author.

4. Rank results, for example, find the authors with the most co-authors, or with
the largest co-author network.

Aumﬂr D

(a) Using regular edges (b) Using hyperedges

Author B

co-author of
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Fig. 2. Network from Figure [] transformed for co-authorship analysis
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Fig. 3. Network from Figure [1l separated by keyword

5. Calculate network analysis metrics, for example, centrality of an author in

the co-author network.
6. Introduce weights and probabilities, and use them in probabilistic queries.
7. Discover bisociations or other non-obvious connections, for example, by com-

paring different distance measures.
8. Apply external algorithms on the network, for example, for finding quasi-

cliques [42].

Our goal is to support all these tasks.

3 Requirements

The main motivation and target application for our data model and query lan-
guage is supporting exploratory data analysis on networked data, which means
our system is intended to be part of the knowledge discovery process. This results
in the following requirements and design choices.
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Small is beautiful. The data model should consist of a small number of concepts
and primitives. As a consequence, we do not wish to introduce special language
constructs to deal with complicated types of networks (directed, undirected,
labeled, hypergraphs, etc.) or sets of graphs.

Uniform representation of nodes and edges. The most immediate consequence of
the former choice is that we wish edges and nodes to be represented in a uniform
way. We will do this by representing both edges and nodes as objects that are
linked together by links that have no specific semantics. This also allows one to
generate different views on a network. For instance, in a bibliographic database,
we may have objects such as papers, authors and citations. In one context one
could analyze the co-author relationship, in which case the authors are viewed
as nodes and the papers as edges, while in another context, one could be more
interested in citation-analysis, in which case the papers are the nodes and the
citations the edges.

Closure property. The result of any operation or query can be used as the starting
point for further queries and operations. The information created by a query
combined with the original database can therefore be queried again.

SQL-based. There are many possible languages that could be taken as starting
point, such as SQL, relational algebra or Datalog. We aimed for a data model
on which multiple equivalent ways to represent queries can be envisioned. The
queries that we propose on this model are expressed in an SQL-like notation
here, as this notation is more familiar to many users of databases, and is the
prime example of a declarative query language.

Aggregates. To support a basic analysis of graphs, we need to be able to calculate
statistics such as

— the degree of nodes;

the number of nodes reachable from a certain node (connected component

size);

the length of a shortest path between two nodes;

— the length of the longest shortest path from one node to all other nodes
(closeness centrality);

— the sum or product of weights on edges on paths.

These statistics are not only useful when obtaining an initial insight in data. It is
also important that these statistics can be attached to the newly created graph
(representing another context). For instance, in simple random walk models
the probability of going from one node to another node may be determined by the
degrees of the nodes involved. These probabilities can be seen as attributes of the
edges; ideally, a database query would be sufficient to put these probabilities in a
graph. The closure property entails that we can also run queries on the attributes
generated in this way. One such type of query could be a probabilistic query,
which calculates new probabilities from probabilities present in the network.
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Ranking. Once an aggregate is computed, it can be desirable to rank results
on aggregate values; for instance, one may not be interested in the centrality
of all nodes, but only in the nodes that are most central. A database system
should support such ranking queries and ideally be optimized to answer them
more efficiently than by post-processing a sorted list of all results.

In the following two sections, we translate these requirements into a specifi-
cation for a data representation and a data manipulation language.

4 Data Representation

An important choice for any data management system is the representation of
the data it operates on. For example, in Codd’s relational database model [16],
data is represented as sets of tuples. The challenge is to find a data model
that is capable of storing any kind of information network, and that fulfils the
requirements described in the previous section.

In its most basic form, an information network is a collection of objects with
links between them. It is therefore natural to use objects and links as the basic
building blocks for a network representation. However, as we have seen in the
examples of the previous section, it is not always clear which concepts to con-
sider as objects, and which as links. For example, is a publication an object, or a
link between (co-)authors? Usually, the answer to this question depends on the
application at hand. However, BiQL is intended as an application-independent
data management system. This means that the data should be modelled in the
most general way, and the term “object” should be taken as broad as possible.
Intuitively, we define it as any entity that has meaning in reality, or, less ab-
stractly, as any entity that can have additional properties or roles assigned to
it. Following this guideline, we only allow features on objects. That is, links are
modelled as nothing more than ordered pairs of object identifiers, and they only
express that two objects are connected.

Hence, the main choice that we have made is, in a sense, that also edges are
represented as objects. An edge object is linked to the nodes it connects. Even
though this may not seem intuitive, or could seem a bloated representation, the
advantages of this choice outweigh the disadvantages because:

— by treating both edges and nodes as objects, we obtain simplicity and uni-
formity in dealing with attributes;

— it is straightforward to treat (hyper)edges as nodes (or vice versa);

— it is straightforward to link two edges, for instance, when one wishes to
express a similarity relationship between two edges.

In this way, the data representation fulfills the requirements of simplicity, uni-
formity between nodes and edges, and flexibility.

However, not all objects in the network have the same meaning or role. In the
bibliographic network, we had objects that represented authors, publications,
citations, etc. In our data model, we use domains to indicate these categories
of objects. Such a domain is a named set of objects. Objects can belong to any
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number of domains, for example, an ‘author’ in the bibliographic network can
also be a ‘person’; or an ‘employee’; at the same time.

Apart from domain membership, each object can have an arbitrary set of
features described by a list of name-value pairs.

5 Basic Data Manipulation

Now that we have a basic understanding of how the data is organized in the
database, we can focus on manipulating this information. In this section, we give
a general overview of BiQL’s query language. For a more in-depth discussion on
the query language and its underlying operations we refer the reader to [19,
chapter 6].

The primary goal of BiQL is to manipulate a network by querying, analyzing,
and modifying its objects and links. The main operations offered by the query
language are

— adding an existing object to a new domain,

— adding links and attributes to an existing object,

— creating new objects (with links and attributes) and adding them to a new
domain.

Each of these tasks can be specified as an CREATE/UPDATE query of the
following form.

CREATE/UPDATE "domatin name" <"variables"> {"object properties"}
FROM "selection from domains”

WHERE "predicate on attributes of objects”

LIMIT "k" ON "sorting criterta”

For example, the query

UPDATE Pubs2010<p>
FROM Publ p
WHERE p.year = 2010

creates a new domain Pubs2010 that contains all articles published in 2010. The
UPDATE keyword indicates that existing objects are used instead of newly created
ones. This means that all existing features for the objects are preserved (unless
they are overwritten by an object property definition in the query).

In general, a query in BiQL consists of the following statements:

The FROM statement defines the structural component of the query and intro-
duces variables that can be used in the other statements.

The WHERE statement defines constraints on these variables based on the fea-
tures of the objects.

The CREATE/UPDATE statement describes the output of the query, that is, how
objects should be created or updated based on the retrieved information, and
where they should be stored.

The LIMIT statement allows for ranking the results of a query and returning
only the top k results.
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FROM statement. The primary function of the FROM statement is to define a graph
pattern that must be matched in the network. Within this pattern, variables are
defined that can be used in the other parts of the query. In a sense, this statement
has the same role as SQL’s FROM statement, that is, determining which sources
of information to use, and how these sources are related. In BiQL, the FROM
statement consists of a list of path expressions, where each path expression
consists of an alternating sequence of object definitions and link expressions
indicating how the objects are connected. For example, a co-authorship relation
in the publication network can be expressed as the following sequence of objects
and links.

Author a -> Author0Of -> Publ p <- Author0f <- Author b

Every object is described by a domain it belongs to (e.g. Author), and, optionally,
a variable name (e.g. a). The arrows between the objects indicate the direction of
the links between them. A path expression by itself can only express a sequence.
However, the FROM statement can contain multiple path expressions that can
be connected by references. For example, if we are interested in co-authorship
within certain topics, we can include the domain ‘Keyword’ in the graph pattern
by using the path expression

#p -> HasKeyword -> Keyword k

where #p is a reference to the variable p in the previous expression. This pattern
is shown in Figure @l Variable references can also be used to point to variables
defined in the same path expression, for example, for expressing cycles.

Fig. 4. Example of a graph pattern

Many problems in network analysis are based on finding paths of arbitrary
length. To express such paths, we use regular expression operators. For example,
the path expression

Node (-> Edge -> Node)* -> Edge -> Node

defines a path as an alternating sequence of nodes and edges of arbitrary length.
To specify constraints on this path we can use list variables. These variables
capture a sequence of objects instead of a single object. For example, we can use
this to restrict the length of a path as shown in the following example.
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FROM Node (-> Edge [e] -> Node)* -> Edge [e] -> Node
WHERE length(e) <= 4

The list aggregate length counts the number of objects assigned to the
variable e.

WHERE statement. The FROM statement generates a set of tuples corresponding
to the possible assignments of objects in the network to the variables defined
in the path expressions. The WHERE statement of the query can impose further
constraints on this set of tuples based on the features of the resulting objects.
For example, given the path expressions above, one can express the constraints

WHERE p.year = 2009 AND k.keyword = ’Data Mining’

to find only publications from 2009 in the field of data mining. This statement
is equivalent to the WHERE/HAVING statements of SQL.

CREATE/UPDATE statement. The previous operations produce a set of tuples.
However, the final result of the query should fit into BiQL’s data representation
model. This means that this set of tuples should be transformed into a set of
objects, links and domains. This transformation is defined in the CREATE /UPDATE
statement, which is written as

CREATE/UPDATE DomainName<Varl,Var2,...> {<object properties>}.

A key part of this statement is the partition operation <Var1l,Var2,...>, which
splits the set of tuples and creates a separate partition for each distinct combi-
nation of the variables Varl, Var2, .... The final results of the query will contain
a separate object for each of these partitions. The features and links of this
object are described by the object properties. After construction, the set of ob-
jects is stored in the domain with the given name. This partition operation is
comparable to the GROUP BY statement in SQL.

For example, if we want to define the co-author relationship, we can use the
following query.

CREATE CoAuthor<a,b> { a ->, -> b, strength: count<p> }
FROM Author a -> AuthorOf -> Publ p <- Author0f <- Author b
WHERE a != b

This query creates a new object for each pair of authors a and b that have pub-
lished at least one article together, that is, for whom the path expression can be
mapped onto part of the network. The object properties specify that this new
object is linked to both authors and that it contains an attribute strength in-
dicating the number of articles the authors have co-written. The created objects
are added to the new domain CoAuthor.

The partition operator is also used in the calculation of aggregate functions,
for example, the function count<p> counts the number of distinct p, that is, the
number of partitions <p> creates. Other aggregates include sum<...>(expr),
min<...>(expr), max<...>(expr), etc.
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LIMIT statement. Apart from feature-based selection, BiQL also supports rank-
based selection through the LIMIT statement.

LIMIT k BY criteria

For example, we can select the three strongest co-authorship relationships using
the statement

LIMIT 3 BY count<p> DESC

where DESC indicates a descending sort order. This statement is a global limit
statement, that is, it is used to reduce the number of objects returned by the
query. The operation of this statement is comparable to the ORDER BY statement
in SQL, combined with a statement for selecting the top-k results (e.g. FETCH
FIRST in SQL.2008 [25]).

In this section, we provided a limited overview of the features present in the
BiQL query language. For an extensive description of this query language and
its operational model, we refer the reader to [19, chapter 6].

6 Illustrative Examples

In Section [2, we introduced a list of key tasks that we want to support in BiQL.
We now revisit this list to evaluate BiQL’s capabilities. Unless stated otherwise,
each of these queries can be evaluated using the prototype implementation on
the ILPnet2 publication database. This database is structurally similar to the
network shown in Figure [l

1. Introduce new relationships in the network. Throughout this chapter, we have
repeatedly used the co-author relationship as an example of a new relationship.
Here, we express this relationship as a connection between authors that have
more than one publication in common.

CREATE CoAuthor<a,b> { a->, b<-, strength: count<p> }
FROM Author a -> Author0Of -> Publ p <- Author0f <- Author b
WHERE count<p> > 1 AND a !=b

Another example introduces the ‘InArea’ relation, which expresses whether an
author has published a paper within a certain research area (indicated by a
‘Keyword’).

CREATE InArea<a,k> { a->, k<-, weight: count<pk>/count<p> }
FROM Author a -> Author0Of -> Publ pk -> HasKeyword -> Keyword k,
#a -> Author0Of -> Publ p

The attribute ‘weight’ indicates the fraction of the author’s publications that
contain this keyword.
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2. Find connections between objects. Using the ‘InArea’ and ‘CoAuthor’ rela-
tions, we can express how far an author is removed from any given research
area.

CREATE RelatedToArea<a,k>{ a->, k<-, distance: min<b>(length(b))}
FROM Author a (-> CoAuthor -> Author [b])* -> InArea -> Keyword k

The expression min<b>(length (b) computes the length of the shortest path (i.e.
the number of intermediate authors) from a specific author to a specific keyword.

3. Find the transitive closure of a relation. The previous query already used
the transitive closure of the ‘CoAuthor’ relation to find a relationship between
authors and research areas. We can also use such a relationship to determine the
size of the neighborhood of an author.

UPDATE <a> { a->, b<-, networksize: count<b> }
FROM Author a (-> CoAuthor [co] -> Author)x*

-> CoAuthor [co] -> Author b
WHERE length(co) < 4

4. Rank results. Often we are interested in finding the top-k results according
to some criteria. For example, we might be interested in the top 3 authors with
most co-authors.

SELECT <a>
FROM Author a -> CoAuthor co
LIMIT 3 BY count<co> DESC

We can also find the authors with the largest network of co-authors up to a
certain distance.

SELECT <a> { network_size: count<b> }
FROM Author a -> CoAuthor [co] —>
(Author -> CoAuthor [co] ->)* -> Author b
WHERE length(co) < 4
LIMIT 3 BY count<b> DESC

5. Calculate network analysis metrics. Another interesting task is calculating
network analysis metrics such as centrality measures. Perhaps the simplest cen-
trality measure is degree centrality which calculates, for a given node v, the
fraction of all nodes that v is connected to. In BiQL, this measure can be calcu-
lated, for all authors simultaneously, using the following query.

UPDATE <a> { Cdegree: count<b>/(count<n> - 1)}
FROM Author a -- CoAuthor -- Author b, Author n

! In our prototype implementation, a SELECT query can be used to output a list of re-
sults without causing changes to the database.



158 A. Dries, S. Nijssen, L. De Raedt

Another common centrality measure is closeness centrality, which involves de-
termining the length of the shortest path to all other nodes in the network.
First let us define the notion of shortest path between two authors using the
co-authorship relation.

CREATE ShortestPath<a,b>{ a->, b<-, len: min<co>(length(co))}
FROM Author a —-> CoAuthor [co] —>

(Author -> CoAuthor [co] ->)* -> Author b
WHERE a != Db

This query creates for each pair of (connected) authors a and b an object with as
attribute the length of a shortest path between them. Using these new objects,
we can easily calculate the closeness centrality as follows.

UPDATE <a>{ Cclose: 1/sum<b>(miIE<sp>(sp.1en))}
FROM Author a -> ShortestPath sp -> Author b

Another type of centrality measure is the betweenness centrality. This measure
expresses the importance of a node based on its occurrence on the shortest paths
in the network. In BiQL this measure can be expressed using the following two
queries. The first query computes the length of the shortest path between each
pair of authors and calculates how many paths of this length there are[d

CREATE ShortestPathCount<a,b> { a ->, b <-,
count: count<co>, length: min<co>(length(co)) }
FROM Author a -> CoAuthor [co] ->
(Author -> CoAuthor [co] ->)* -> Author b
LIMIT 1 KEYS ON length(co) ASC

The second query uses this information to calculate the betweenness centrality
of a node v as a fraction of shortest paths in the network that contain v.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }
FROM Author s -> ShortestPathCount sv -> Author v ->
ShortestPathCount vt -> Author t,
#s -> ShortestPathCount st -> #t
WHERE st.length = sv.length + vt.length
AND s !=t AND s '= v AND t !=v

This query uses the calculation approach for betweenness centrality described in
[3, section 3].

2 Given the definition of ShortestPath we expect the variable sp to be uniquely
identified when a and b are fixed (i.e. there is only one shortest path length be-
tween two given nodes). However, BiQL currently does not support such type of
constraint reasoning across queries. This is why we need the additional aggrega-
tion min<sp> even though there is only one value for sp.len in this context.

3 For clarity, we omitted the extra aggregation operations on the variables sv, vt and
st as described in the previous footnote.
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6. Introduce weights and probabilities. Another important aspect of BiQL is
its ability to deal with probabilistic networks. To illustrate this, we first need to
introduce probabilities in our network. For this we assume that the information in
the network is very unreliable by stating that for each publication in the network
there is only 10% probability that it actually exists. Under this assumption we
can attach a probability to each co-author connection using the following query.

UPDATE <co>{ prob: 1-(0.97co.strength) }
FROM CoAuthor co

We can now calculate for each pair of authors the probability that they are
connected using the probabilistic aggregate problog_connect.

CREATE ProbConnect<a,b>{a->, b<-, prob: problog connect(co.prob)}
FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b
WHERE a !'= b

The problog_connect aggregate uses ProbLog’s [I8] approach to calculate the
connection probability between each pair of nodes in the network.

7. Discover bisociations. We can use this domain in combination with the short-
est path to find authors that are very likely connected, but that are relatively
far apart in the co-author network.

SELECT <a,b,pc,sp>{nameA: a.name, nameB: b.name,
prob: pc.prob, dist: sp.length }
FROM Author a -> ProbConnect pc -> Author b,
#a -> ShortestPath sp -> #Db
WHERE sp.length > 2
LIMIT 3 BY pc.prob DESC

Another example of bisociative discovery consists of finding bridging nodes be-
tween different domains. In Example 5 we described betweenness centrality. If
we modify the second part of that query we can express the interdomain be-
tweenness centrality as the occurrence of a node on the shortest paths between
concepts in different domains.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }
FROM DomainA s -> ShortestPathCount sv -> DomainC v ->
ShortestPathCount vt -> DomainB t,
#s -> ShortestPathCount st -> #t
WHERE st.length = sv.length + vt.length
AND s !'= t AND s !=v AND t !I=v

8. Apply external algorithms on the network. In the final task of section 2, we
want to apply external algorithms on the networks in BiQL. Unfortunately, there
are still many open questions on how this integration should work in practice.
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However, instead of providing integration of external tools within BiQL, we have
integrated BiQL in the data analysis integration platform KNIME [4]. Through
this platform, networks can be passed from BiQL to external algorithms and
back, allowing BiQL to be used as part of a broader knowledge discovery process.

7 Related Work

7.1 Knowledge Discovery

Graph mining. Graph mining aims at extending the field of pattern mining
towards graphs. Most graph mining techniques work in the transactional setting,
that is, on data consisting of sets of graphs. As in item set mining, the focus lies
on finding subgraphs that, for example, occur frequently in such a set [33J4T24].
However, many other interestingness measures have been translated towards
graph patterns (e.g. correlated patterns [8/15]), and new graph-specific measures
have been introduced (e.g. for finding quasi-cliques [42]). Several techniques have
been developed that target subsets of graph representations, such as sequences or
trees [39]. Recently, there has been increasing interest in applying graph mining
techniques to the network setting, that is, to a single graph [T0/9126].

Network analysis. Network analysis is concerned with analyzing the properties of
networks, by use of graph theoretical concepts such as node degrees and paths [6].
The primary tool in network analysis are measures such as centrality [36], and
specialized algorithms for calculating them efficiently have been developed (e.g.
[6]). This field has also gained a lot of interest in domains outside computer
science, for example, in social sciences (social network analysis) [40].

Another part of network analysis focusses on the spread of information in a
network. This can be used to determine the importance of, for example, web
pages on the World Wide Web [7], or to analyze the transmission of infectious
diseases [38].

7.2 Databases

General-purpose database systems. The best-known general purpose database
systems are based on Codd’s relational data model [I6]. Many of these database
systems (e.g. Oracle Database, Microsoft SQL Server, MySQL, PostgresQL) use
(a variant of) ISO SQL [25] as the query language of choice. Datalog [I3] is an
alternative query language that is based on first order logic. Syntactically, it is
a subset of Prolog restricted as to make efficient query answering possible.

A more recent development is that of object-oriented database systems and
query languages such as OQL (Object Query Language) [12]. These systems use
objects instead of tuples, and they allow for nested objects. Part of the OQL
standard focusses on a tight integration with object-oriented languages such as
Java and C++. However, due to the overall complexity of object databases, there
are few systems that fully support the OQL standard.



BiQL: A Query Language for Analyzing Information Networks 161

Recently, there is a increasing interest in so-called NoSQL databases. These
database systems focus on applications that require extremely large databases.
Such databases typically use non-relational representations specialized for spe-
cific applications, such as Google’s BigTable [14] or Facebook’s Cassandra [11].
Current graph databases such as Dex [31] and Neo4J [32] also fall under this
category, and arguably BiQL does as well.

Graph query languages. A number of query languages for graph databases have
been proposed, many of which have been described in a recent survey [2]. How-
ever, none of these languages was designed for supporting the knowledge dis-
covery process and each language satisfies at most a few of the requirements
mentioned in Section Bl For instance, GraphDB [20] and GOQL [37] are based
on an object-oriented approach, with provisions for specific types of objects for
use in networks such as nodes, edges and paths. This corresponds to a more struc-
tured data model that does not uniformly represent nodes and edges. In addition,
these languages target other applications: GraphDB has a strong focus on rep-
resenting spatially embedded networks such as highway systems or power lines,
while GOQL [37], which extends the Object Query Language (OQL), is meant
for querying and traversing paths in small multimedia presentation graphs. Both
languages devote a lot of attention to querying and manipulating paths: for ex-
ample, GraphDB supports regular expressions and path rewriting operations.

GraphQL [22] provides a query language that is based on formal languages
for strings. It provides an easy, yet powerful way of specifying graph patterns
based on graph structure and node and edge attributes. In this model graphs are
the basic unit and graph specific optimizations for graph structure queries are
proposed. The main objective of this language is to be general and to work well
on both large sets of small graphs as well as small sets of large graphs. However,
extending existing graphs is not possible in this language; flexible contexts are
not supported.

PQL [27] is an SQL-based query language focussed on dealing with querying
biological pathway data. It is mainly focussed on finding paths in these graphs
and it provides a special path expression syntax to this end. The expressivity
of this language is, however, limited and it has no support for complex graph
operations.

GOOD [21] was one of the first systems that used graphs as its underlying
representation. Its main focus was on the development of a database system that
could be used in a graphical interface. To this end it defines a graphical trans-
formation language, which provides limited support for graph pattern queries.
This system forms the basis of a large group of other graph-oriented object data
models such as Gram [I] and GDM [23].

Hypernode [29] uses a representation based on hypernodes, which make it
possible to embed graphs as nodes in other graphs. This recursive nature makes
them very well suited for representing arbitrarily complex objects, for exam-
ple as underlying structure of an object database. However, the data model is
significantly different from a traditional network structure, which makes it less
suitable for modeling information networks as encountered in data mining.
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A similar, but slightly less powerful representation based on hypergraphs is
used in GROOVY [30]. This system is primarily intended as an object-oriented
data model using hypergraphs as its formal model. It has no support for graph
specific queries and operations.

More recently, approaches based on XML and RDF are being developed, such
as SPARQL [34]. They use a semi-structured data model to query graph networks
in heterogenous web environments; support for creating new nodes and flexible
contexts is not provided.

While most of the systems discussed here use a graph-based data model and
are capable of representing complex forms of information, none of them uses a
uniform representation of edges and nodes (and its resulting flexible contexts),
nor supports advanced aggregates.

Graph databases. Whereas the previous studies propose declarative query lan-
guages, recently several storage systems have been proposed that do not pro-
vide a declarative query language. Notable examples here are Neo4J [32] and
DEX [31], which provide Java interfaces to graphs persistently stored on disk.
For Neo4J an alternative programming language called Gremlin is under devel-
opment [35].

Graph libraries. Finally, in some communities, Java or C++ libraries are used
for manipulating graphs in the memory of the computer (as opposed to the above
graph databases which support typical database concepts such as transactions).
Examples are SNAP [28] and igraph [I7].

8 Conclusions

In this article, we gave an introduction to BiQL, a novel system for repre-
senting, querying and analyzing information networks. The key features of this
system are:

— It uses a simple, yet powerful representation model. Using only objects (with
attributes), links (as pairs of objects), and domains (as named sets of ob-
jects), it is capable of representing a wide variety of network types, such as
labelled graphs, directed hypergraphs, and even sets of graphs.

— Its query language is declarative. This means that the queries only describe
what the results should be, but not how they should be obtained. This makes
the language more accessible to the average user.

— Its query language uses a powerful mechanism for expressing graph patterns
based on reqular expressions. This makes it possible to, for example, express
paths of arbitrary length.

— Its query language allows for the use of nested aggregates with a syntax
that closely resembles mathematical notation. These aggregates allow the
user to perform all kinds of analysis tasks, such as calculating distances and
centrality measures.
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— Its query language provides a powerful mechanism for object creation, which

makes it possible to return structured output from a query. However, the
result of a query always produces a new network that can be queried again.

— The system itself is developed from a knowledge discovery perspective. It

focusses on providing specific support for knowledge discovery operations
such as network analysis, ranking, and tool integration.

In this chapter, we focussed on defining a data model and the syntax and se-
mantics of the corresponding query language. In future work, the main challenge
is to develop a query optimization model that would form the basis of a scalable
implementation of the BiQL system.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribu-

tion, and reproduction in any medium, provided the original author(s) and source are
credited.
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Abstract. BisoNets represent relations of information items as net-
works. The goal of BisoNet abstraction is to transform a large BisoNet
into a smaller one which is simpler and easier to use, although some in-
formation may be lost in the abstraction process. An abstracted BisoNet
can help users to see the structure of a large BisoNet, or understand
connections between distant nodes, or discover hidden knowledge. In
this paper we review different approaches and techniques to abstract a
large BisoNet. We classify the approaches into two groups: preference-
free methods and preference-dependent methods.

1 Introduction

Bisociative information networks (BisoNets) |2] are a representation for many
kinds of relational data. The BisoNet model is a labeled and weighted graph G =
(V, E). For instance, in a BisoNet describing biological information, elements
of the vertex set V are biological entities, such as genes, proteins, articles, or
biological processes. Connections between vertexes are represented by edges F,
which have types such as “codes for”, “interacts with”, or “is homologous to”,
and have weights to show how strong they are.

BisoNets are often large. One example is Biomindl. Tt currently consists of
about 1 million vertices and 10 million edges, so that it is difficult for users to
directly visualize and explore it. One solution is to present to a user an abstract
view of a BisoNet. We call this BisoNet abstraction.

The goal of BisoNet abstraction is to transform a large BisoNet into one that
is simpler and therefore easier to use, even though some information is lost in
the abstraction process. An abstracted view can help users see the structure
of a large BisoNet, or understand connections between distant nodes, or even
discover new knowledge difficult to see in a large BisoNet. This chapter is a
literature review of applicable approaches to BisoNet abstraction.

An abstracted BisoNet can be obtained through different approaches. For
example, a BisoNet can be simplified by removing irrelevant nodes or edges.

* This chapter is a modified version of article “Review of Network Abstraction Tech-
niques” in Workshop on Explorative Analytics of Information Networks, Sep 2009,
Bled, Slovenia [1].

!http://biomine.cs.helsinki.fi/
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Another example is that a BisoNet can be divided into several components, or
some parts of a BisoNet can be replaced by general structures. Furthermore,
user preference can be considered during abstraction. For instance, a user can
specify which parts of a BisoNet should retain more details.

Structure of the review. Although this chapter reviews potential techniques with
the goal to abstract large BisoNets, the techniques present here are also applica-
ble to general networks. In the rest of this chapter, we therefore use the general
term “network” instead of “BisoNet”. We first review methods which do not take
user preference into account in Section [2, and then review methods in which a
user can specify preference in Section [8l We conclude in Section Ml

2 Preference-Free Methods

In this section, we discuss network abstraction methods where the user has no
control over how specific parts of the graph are handled (but there may be
numerous other parameters for the user to set).

2.1 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) |3, 4] only contains edges whose two
endpoints are relatively close: by definition, nodes a and b are connected by an
edge if and only if there is no third node ¢ which is closer to both endpoints a and
b than a and b are to each other. RNG has originally been defined for points,
but it can also be used to prune edges between nodes a and b that do have
a shared close neighbor c. The relative neighborhood graph then is a superset
of the Minimum Spanning Tree (MST) and a subset of Delaunay Triangulation
(DT). According to Toussaint [3], RNG can in most cases capture a perceptually
more significant subgraph than MST and DT.

2.2 Node Centrality

The field of social network analysis has produced several methods to measure the
importance or centrality of nodes |3Hg]. Typical definitions of node importance
are the following.

1. Degree centrality simply means that nodes with more edges are more central.

2. Betweenness centrality [9-11] measures how influential a node is in connect-
ing pairs of nodes. A node’s betweenness is the number of times the node
appears on the paths between all other nodes. It can be computed for shortest
paths or for all paths [12]. Computation of a node’s betweenness involves all
paths between all pairs of nodes of a graph. This leads to high computational
costs for large networks.
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3. Closeness centrality |13] is defined as the sum of graph-theoretic distances
from a given node to all others in the network. The distance can be defined as
mean geodesic distance, or as the reciprocal of the sum of geodesic distances.
Computation of a node’s closeness also involves all paths between all pairs
of nodes, leading to a high complexity.

4. Feedback centrality of a vertex is defined recursively by the centrality of its
adjacent vertices.

5. Eigenvector centrality has also been proposed [14].

Node centrality measures focus on selecting important nodes, not on selecting
a subgraph (of a very small number of separate components). Obviously, cen-
trality measures can be used to identify least important nodes to be pruned.
For large input networks and small output networks, however, the result of such
straightforward pruning would often consist of individual, unconnected nodes,
not an abstract network in the intended sense.

Methods in the following subsections (23] and [2.4]) are similar in this sense:
they help to rank nodes individually based on their importance, but do not as
such produce (connected) subgraphs.

2.3 PageRank and HITS

In Web graph analysis, PageRank algorithm [15, [16] is proposed to find the
most important web pages according to the web’s link structure. The process
can be understood as the probability of a random walk on a directed graph; the
quality of each page depends on the number and quality of all pages that link
to it. It emphasizes highly linked pages and their links. A closely related link
analysis method is HITS (Hyperlink-Induced Topic Search) [17, [18], which also
aims to discover web pages of importance. Unlike PageRank, it has two values
for each page, and is processed on a small subset of pages, not the whole web.
Haveliwala [19] discusses the relative benefits of PageRank and HITS.

In their basic forms, both PageRank and HITS value a node just according
to the graph topology. An open question is to add edge weights to them.

2.4 Birnbaum’s Component Importance

Birnbaum importance [20] is defined on (Bernoulli) random graphs where edge
weights are probabilities of the existence of the edge. The Birnbaum importance
of an edge depends directly on the overall effect of the existence of the edge. An
edge whose removal has a large effect on the probability of other nodes to be
connected, has a high importance. The importance of a node can be defined in
terms of the total importance of its edges. This concept has been extended for
two edges by Hong and Lei [21]].

2.5 Graph Partitioning

Inside a network, there often are clusters of nodes (called communities in social
networks), within which connections are stronger, while connections between
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clusters are weaker and less frequent. In such a situation, a useful abstraction is
to divide the network into clusters and present each one of them separately to
the user.

A prevalent class of approaches to dividing a network into small parts is based
on graph partitioning [22, [23]. The basic goal is to divide the nodes into subsets
of roughly equal size and minimize the sum of weights of edges crossing different
subsets. This problem is NP-complete. However, many algorithms have been
proposed to find a reasonably good partition.

Popular graph partitioning techniques include spectral bisection methods
[24, 25] and geometric methods [26, 27]. While they are quite elegant, they
have some downsides. Spectral bisection in its standard form is computation-
ally expensive for very large networks. The geometric methods in turn require
coordinates of vertices of the graph.

Another approach is multilevel graph partitioning [28, [29]. Tt first collapses
sets of nodes and edges to obtain a smaller graph and partitions the small graph,
and then refines the partitioning while projecting the smaller graph back to
the original graph. The multilevel method combines a global view with local
optimization to reduce cut sizes.

An issue with many of these partitioning methods is that they only bisect net-
works [30]. Good results are not guaranteed by repeating bisections when more
than two subgroups are needed. For example, if the graph essentially has three
subgroups, there is no guarantee that these three subgroups can be discovered
by finding the best division into two and then dividing one of them again.

Other methods take a rough partitioning as input. A classical representative is
Kernighan-Lin (K-L) algorithm [31]. It iteratively looks for a subset of vertices,
from each part of the given graph, so that swapping them will lead to a partition
with smaller edge-cut. It does not create partitions but rather improves them.
The first (very!) rough partitioning can be obtained by randomly partitioning
the set of nodes. A weakness of the The K-L method is that it only has a
local view of the problem. Various modifications of K-L algorithm have been
proposed |32, 133], one of them dealing with an arbitrary number of parts [32].

2.6 Hierarchical Clustering

Another popular technique to divide networks is hierarchical clustering [34]. It
computes similarities (or distances) between nodes, for which typical choices
include Euclidean distance and Pearson correlation (of neighborhood vectors),
as well as the count of edge-independent or vertex-independent paths between
nodes.

Hierarchical clustering is well-known for its incremental approach. Algorithms
for hierarchical clustering fall into agglomerative or divisive class. In an agglom-
erative process, each vertex is initially taken as an individual group, then the
closest pair of groups is iteratively merged until a single group is constructed or
some qualification is met. Newman [35] indicates that agglomerative processes
frequently fail to detect correct subgroups, and it has tendency to find only the
cores of clusters. The divisive process iteratively removes edges between the least
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similar vertices, thus it is totally the opposite of an agglomerative method. Ob-
viously, other clustering methods can be applied on nodes (or edges) as well to
partition a graph.

2.7 Edge Betweenness

One approach to find a partitioning is through removing edges. This is similar to
the divisive hierarchical clustering, and is based on the principle that the edges
which connect communities usually have high betweenness [36]. Girvan and New-
man define edge betweenness as the number of paths that run along that given
edge [35]. It can be calculated using shortest-path betweenness, random-walk
betweenness and current-flow betweenness. The authors first use edge central-
ity indices to find community boundaries. They then remove high betweenness
edges in a divisive process, which eventually leads to a division of the origi-
nal network into separate parts. This method has a high computational cost: in
order to compute each edge’s betweenness, one should consider all paths in which
it appears. Many authors have already proposed different approaches to speed
up that algorithm [37, |38].

2.8 Frequent Subgraphs

A frequent subgraph may be considered as a general pattern whose instances can
be replaced by a label of that pattern (i.e., a single node or edge representing
the pattern). Motivation for this is two-fold. Technically, this operation can
be seen as compression. On the other hand, frequent patterns possibly reflect
some semantic structures of the domain and therefore are useful candidates for
replacement.

Two early methods for frequent subgraph mining use frequent probabilis-
tic rules [39] and compression of the database [40]. Some early approaches use
greedy, incomplete schemes [41, 42]. Many of the frequent subgraph mining
methods are based on the Apriori algorithm [43], for instance AGM [44] and
FSG [45, 46]. However, such methods usually suffer from complicated and costly
candidate generation, and high computation time of subgraph isomorphism [47].
To circumvent these problems, gSpan [47] explores depth-first search in frequent
subgraph mining. CloseGraph [48] in turn mines closed frequent graphs, which
reduces the size of output without losing any information. The Spin method [49]
only looks for maximal connected frequent subgraphs.

Most of the methods mentioned above consider a database of graphs as input,
not a single large graph. More recently, several methods have been proposed to
find frequent subgraphs also in a single input graph [50-53].

3 Preference-Dependent Methods

In this section, we discuss abstraction methods in which a user can explicitly
indicate which parts or aspects are more important, according to his interests.
Such network abstraction methods are useful when providing more flexible ways
to explore a BisoNet.
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3.1 Relevant Subgraph Extraction

Given two or more nodes, the idea here is to extract the most relevant subnetwork
(of a limited size) with respect to connecting the given nodes as strongly as
possible. This subnetwork is then in some sense maximally relevant to the given
nodes. There are several alternatives for defining the objective function, i.e., the
quality of the extracted subnetwork.

An early approached proposed by Grotschel et al. [54] bases the definition
on the count of edge-disjoint or vertex-disjoint paths from the source to the
sink. A similar principle has later been applied to multi-relational graphs [55],
where a pair of entities could be linked by a myriad of relatively short chains of
relationships.

The problem in its general form was later formulated as the connection sub-
graph problem by Faloutsos et al. [56]. The authors also proposed a method
based on electricity analogies, aiming at maximizing electrical currents in a net-
work of resistors. However, Tong and Faloutsos later point out the weaknesses of
using delivered current criterion as a goodness of connection [57]: it only deals
with query node pair, and is sensible to the order of the query nodes. Thus, they
propose method to extract a subgraph with strong connections to any arbitrary
number of nodes.

For random graphs, work from reliability research suggests network reliability
as suitable measure [58]. This is defined as the probability that query nodes
are connected, given that edges fail randomly according to their probabilities.
This approach was then formulated more exactly and algorithms were proposed
by Hintsanen and Toivonen [59]. Hintsanen and Toivonen restrict the set of
terminals to a pair, and propose two incremental algorithms for the problem.

A logical counterpart of this work, in the field of probabilistic logic learning, is
based on ProbLog [60]. In a ProbLog program, each Prolog clause is labeled with
a probability. The ProbLog program can then be used to compute the success
probabilities of queries. In the theory compression setting for ProbLog [61], the
goal is to extract a subprogram of limited size that maximizes the success prob-
ability of given queries. The authors use subgraph extraction as the application
example.

3.2 Detecting Interesting Nodes or Paths

Some techniques aim to detect interesting paths and nodes, with respect to given
nodes. Lin and Chapulsky [62] focus on determining novel, previously unknown
paths and nodes from a labeled graph. Based on computing frequencies of similar
paths in the data, they use rarity as a measure to find interesting paths or nodes
with respect to the given nodes.

An alternative would be to use node centrality to measure the relative im-
portance. White and Smyth [63] define and compute the importance of nodes in
a graph relative to one or more given root nodes. They have also pointed out
advantages and disadvantages of such measurement based on shortest paths,
k-short paths and k-short node-disjoint paths.
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3.3 Personalized PageRank

On the basis of PageRank, Personlized PageRank (PPR) is proposed to person-
alize ranking of web pages. It assigns importance according to the query or user
preferences. Early work in this area includes Jeh and Widom [64] and Haveli-
wala [19]. Later, Fogaras et al. [65] have proposed improved methods for the
problem.

An issue for network abstraction with these approaches is that they can
identity relevant individual nodes, but not a relevant subgraph.

3.4 Exact Subgraph Search

Some substructures may represent obvious or general knowledge, which may
moreover occur frequently. Complementary to the approach of Subsection [Z8
where such patterns are identified automatically, here we consider user-input
patterns or replacement rules. We first introduce methods that find all exact
specified subgraphs.

Finding all exact instances of a graph structure reduces to the subgraph iso-
morphism problem, which is NP-complete. Isomorphisms are mappings of node
and edge labels that preserve the connections in the subgraph.

Ullmann [66] has proposed a well-known algorithm to number the isomor-
phisms with a refinement procedure that overcomes brute-force tree-search
enumeration. Cordella et al. |67] include more selective feasibility rules to prune
the state search space of their VF algorithm.

A faster algorithm, GraphGrep [6&], builds an index of a database of graphs,
then uses filtering and exact matching to find isomorphisms. The database is
indexed with paths, which are easier to manipulate than trees or graphs. As
an alternative, GIndex [69] relies on frequent substructures to index a graph
database.

3.5 Similarity Subgraph Search

A more flexible search is to find graphs that are similar but not necessarily
identical to the query. Two kinds of similarity search seem interesting in the
context of network abstraction. The first one is the K-Nearest-Neighbors (K-
NN) query that reports the K substructures which are the most similar to the
user’s input; the other is the range query which returns subgraphs within a
specific dissimilarity range to user’s input.

These definitions of the problem imply computation of a similarity measure
between two subgraphs. The edit distance between two graphs has been used
for that purpose [70]: it generally refers to the cost of transforming one object
into the other. For graphs, the transformations are the insertion and removal
of vertices and edges, and the changing of attributes on vertices and edges. As
graphs have mappings, the edit distance between graphs is the minimum distance
over all mappings.
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Tian et al. [71] propose a distance model containing three components: one
measures the structural differences, a second component is the penalty associated
with matching two nodes with different labels, and the third component measures
the penalty for the gap nodes, nodes in the query that cannot be mapped to any
nodes in the target graph.

Another family of similarity measures is based on the maximum common sub-
graph of two graphs |72]. Fernandez and Valiente |73] propose a graph distance
metric based on both maximum common subgraph and minimum common su-
pergraph. The maximum percentage of edges in common has also been used as
a similarity measure [74].

Processing pairwise comparisons is very expensive in term of computational
time. Grafil |74] and PIS [75] are both based on GIndex [69], indexing the
database by frequent substructures.

The concept of graph closure [70] represents the union of graphs, by recording
the union of edge labels and vertex labels, given a mapping.

The derived algorithm, Closure-tree, organizes graphs in a hierarchy where
each node summarizes its descendants by a graph closure: efficiency of similarity
query may improve, and that may avoid some disadvantages of path-based and
frequent substructure methods.

The authors of SAGA (Substructure Index-based Approximate Graph Align-
ment) [71] propose the FragmentIndex technique, which indexes small and
frequent substructures. It is efficient for small graph queries, however, process-
ing large graph queries is much more expensive. TALE (Tool for Approximate
Subgraph Matching of Large Queries Efficiently) [76] is another approximate
subgraph matching system. The authors propose to use NH-Index (Neighbor-
hood Index) to index and capture the local graph structure of each node. An
alternative approach uses structured graph decomposition to index a graph
database [717].

4 Conclusion

There is a large literature on methods suitable for BisoNet abstraction. We
reviewed some of the most important approaches, classified by whether they
allow user focus or not. Even though we did not cover the literature exhaustively,
we can propose areas for further research based on the gaps and issues observed
in the review.

First, we noticed that different node ranking measures (Sections Z2H24) are
useful for picking out important nodes, as evidenced by search engines, but the
result is just that — a set of nodes. How to better use those ideas to find a
connected, relevant subBisoNet is an open question.

Second, although there are lots of methods for partitioning a BisoNet (Sec-
tion ZBHZT), the computational complexity usually is prohibitive for large
BisoNets, such as Biomine, with millions of nodes and edges. Obviously, parti-
tioning would be a valuable tool for BisoNet abstraction there.
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Third, we observed that some more classical graph problems have been re-
searched much more intensively for graph databases consisting of a number of
graphs, rather than for a single large graph. This holds especially for frequent
subgraphs (Section [Z8) and subgraph search (Section B3).

Finally, a practical exploration system needs an integrated approach to ab-
straction, using several of the techniques reviewed here to complement each other
in producing a simple and useful abstract BisoNet.
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Abstract. We propose a novel problem to simplify weighted graphs by
pruning least important edges from them. Simplified graphs can be used
to improve visualization of a network, to extract its main structure, or
as a pre-processing step for other data mining algorithms.

We define a graph connectivity function based on the best paths be-
tween all pairs of nodes. Given the number of edges to be pruned, the
problem is then to select a subset of edges that best maintains the overall
graph connectivity. Our model is applicable to a wide range of settings,
including probabilistic graphs, flow graphs and distance graphs, since the
path quality function that is used to find best paths can be defined by
the user. We analyze the problem, and give lower bounds for the effect
of individual edge removal in the case where the path quality function
has a natural recursive property. We then propose a range of algorithms
and report on experimental results on real networks derived from public
biological databases.

The results show that a large fraction of edges can be removed quite
fast and with minimal effect on the overall graph connectivity. A rough
semantic analysis of the removed edges indicates that few important
edges were removed, and that the proposed approach could be a valuable
tool in aiding users to view or explore weighted graphs.

1 Introduction

Graphs are frequently used to represent information. Some examples are social
networks, biological networks, the World Wide Web, and so called BisoNets,
used for creative information exploration [2]. Nodes usually represent objects,
and edges may have weights to indicate the strength of the associations between
objects. Graphs with a few dozens of nodes and edges may already be difficult to
visualize and understand. Therefore, techniques to simplify graphs are needed.
An overview of such techniques is provided in reference |3].

In this chapter, we propose a generic framework and methods for simplifica-
tion of weighted graphs by pruning edges while keeping the graph maximally
connected. In addition to visualization of graphs, such techniques could have
applications in various network design or optimization tasks, e.g., in data com-
munications or traffic.

* This chapter is a modified version of article “Network Simplification with Minimal
Loss of Connectivity” in the 10th IEEE International Conference on Data Mining
(ICDM), 2010 [1].

M.R. Berthold (Ed.): Bisociative Knowledge Discovery, LNAI 7250, pp. 179 2012.
© The Author(s). This article is published with open access at SpringerLink.com
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The framework is built on two assumptions: the connectivity between nodes is
measured using the best path between them, and the connectivity of the whole
graph is measured by the average connectivity over all pairs of nodes. We signif-
icantly extend and generalize our previous work [4]. The previous work prunes
edges while keeping the full original connectivity of the graph, whereas here we
propose to relax this constraint and allow removing edges which result in loss of
connectivity. The intention is that the user can flexibly choose a suitable trade-off
between simplicity and connectivity of the resulting network. The problem then
is to simplify the network structure while minimizing the loss of connectivity.

We analyze the problem in this chapter, and propose four methods for the
task. The methods can be applied to various types of weighted graphs, where
the weights can represent, e.g., distances or probabilities. Depending on the
application, different definitions of the connectivity are possible, such as the
shortest path or the maximum probability.

The remainder of this article is organized as follows. We first formalize the
problem of lossy network simplification in Section 2 and then analyze the prob-
lem in Section [Bl We present a range of algorithms to simplify a graph in Sec-
tion Ml and present experimental results in Section Bl We briefly review related
work in Section [} and finally draw some conclusions in Section [1

2 Lossy Network Simplification

Our goal is to simplify a given weighted graph by removing some edges while
still keeping a high level of connectivity. In this section we define notations and
concepts, and also give some example instances of the framework.

2.1 Definitions

Let G = (V, E) be a weighted graph. We assume in the rest of the chapter that
G is undirected. An edge e € F is a pair e = {u,v} of nodes u,v € V. Each
edge has a weight w(e) € R. A path P is a set of edges P = {{u1,u2}, {ua,us},

ooy {uk—1,ux}} C E. We use the notation uy 5 up to say that P is a path
between u; and ug, or equivalently, to say that u; and wuy are the endvertices
of P. A path P can be regarded as the concatenation of several sub-paths, i.e.,
P =P U...UP,, where each P; is a path.

We parameterize our problem and methods with a path quality function
q(P) — RT. The form of the path quality function depends on the type of
graph and the application at hand. For example, in a probabilistic or random
graph, it can be the probability that a path exists. Without loss of generality,
we assume that the value of any path quality function is positive, and that a
larger value of ¢ indicates better quality.

Given two nodes u and v in a weighted graph, they might be linked by a direct
edge or a path, or none in a disconnected graph. A simple way to quantify how
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strongly they are connected is to examine the quality of the best path between
them [4]. Thus, the connectivity between two nodes w and v in the set E of edges
is defined as

maXPCE:uvP;U q(P) if such P exists

—00 otherwise.

C(u,v; E) = { (1)
A natural measure for the connectivity of a graph is then the average connectivity
over all pairs of nodes,

2
C(\V,E) = VIVI=D U’UEXV;W&U C(u,v; E), (2)

where |V is the number of nodes in the graph. Without loss of generality, in
the rest of the chapter we assume the graph is connected, so C(V, E) > 0. (If
the graph is not connected, we simplify each connected component separately,
so the assumption holds again.)

Suppose a set of edges Er C E is removed from the graph. The connectivity
of the resulting graph is C(V, E'\ ERr), and the ratio of connectivity kept after
removing Ep is

C(V,E\ ER)

rk(V,E, Eg) = AR 3)

Clearly, connectivity can not increase when removing edges. 7k = 1 means the
removal of edges does not affect the graph’s connectivity. 0 < rk < 1 implies that
the removal of edges causes some loss of connectivity, while 7k = —oo implies
the graph has been cut into two or more components.

Our goal is to remove a fixed number of edges while minimizing the loss of
connectivity. From the definitions in Equations ([I)-(B]) it follows that cutting
the input graph drops the ratio to —oo. In this chapter, we thus want to keep
the simplified graph connected (and leave simplification methods that may cut
the graph for future work). Under the constraint of not cutting the input graph,
possible numbers of edges remaining in the simplified graph range from V]| —1
to |E|. This follows from the observation that a maximally pruned graph is a
spanning tree, which has |V| — 1 edges. Thus numbers of removable edges range
from 0 to |E| — (|]V] —1).

In order to allow users to specify different simplification scales, we introduce
a parameter 7y, with values in the range from 0 to 1, to indicate the strength of
pruning. Value 0 indicates no pruning, while value 1 implies that the result should
be a spanning tree. Thus, the number of edges to be removed by an algorithm
is |[Er| = [v(|E| — (V] — 1))]. Based on notations and concepts defined above,
we can now present the problem formally.

Given a weighted graph G = (V, E), a path quality function ¢, and a parameter
v, the lossy network simplification task is to produce a simplified graph H =
(V,F), where F C E and |[E\F| = [y(|E|—(]V]—1))], such that rk(V, E, E\ F)
is maximized. In other words, the task is to prune the specified amount of edges
while keeping a maximal ratio of connectivity.
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2.2 Example Instances of the Framework

Consider a random (or uncertain) graph where edge weight w(e) gives the prob-
ability that edge e exists. A natural quality of a path P is then its probability,
i.e., the probability that all of its edges co-exist: ¢(P) = Il ,yepw({u,v}).
Intuitively, the best path is the one which has the highest probability.

If edge weights represent lengths of edges, then the shortest path is often
considered as the best path between two given nodes. Since in this case smaller
values (smaller distances) indicate higher quality of paths, one can either reverse
the definitions where necessary, or simply define the path quality as the inverse
of the length, i.e., ¢(P) = 1/length(P).

A flow graph is a directed graph where each edge has a capacity w(e) to
transport a flow. The capacity ¢(P) of a path is limited by the weakest edge
along that path: ¢(P) = ming, ,}ep w({u,v}) = q(P). The best path is one that
has the maximal flow capacity. If the flow graph is undirected, the graph can
be simplified without any loss of quality to a spanning tree that maximizes the
smallest edge weight in the tree.

3 Analysis of the Problem

In this section, we investigate some properties of the problem of lossy network
simplification. We first note that the ratio of connectivity kept rk(V, E, ER) is
multiplicative with respect to successive removals of sets of edges. Based on
this we then derive two increasingly fast and approximate ways of bounding
rk(V, E, ER). These bounds will be used by algorithms we give in Section

3.1 Multiplicativity of Ratio of Connectivity Kept

Let EFr be any set of edges to be removed. Consider an arbitrary partition of
Ep into two sets Ex and F%, such that Er = ELUFE% and ELNE% = (). Using
Equation (B]), we can rewrite the ratio of connectivity kept by Eg as

rk(V, E, E4 U E2)

_ C(V,E\(ERUE}))

- C(V.E)

C(V,E\Eg) C(V,E\Ep\E%)
C(V,E) ~ C(V,E\EL)

In other words, the ratio of connectivity kept rk(-) is multiplicative with respect
to successive removals of sets of edges.

An immediate consequence is that the ratio of connectivity kept after remov-
ing set E'r of edges can also be represented as the product of ratios of connectivity
kept for each edge, in any permutation:

rk(V,E,Eg) = IEMrk(V,E\ Ei_1, e:),
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where e; the ith edge in the chosen permutation and E; = {ey,...,e;} is the set
of i first edges of Eg.

Note that the ratio of connectivity kept is mot multiplicative for the ratios
rk(V, E,{e;}) of connectivity kept with respect to the original set E of edges.
It is therefore not straightforward to select an edge set whose removal keeps the
maximal rk(V, E, Er) value among all possible results.

The multiplicativity directly suggests, however, to greedily select the edge
maximizing rk(V, E '\ E;_1,e;) at each step. The multiplicativity property tells
that the exact ratio of connectivity kept will be known throughout the process,
even if it is not guaranteed to be optimal. We will use this approach in the brute
force algorithm that we give in Section @l Two other algorithms will use the
greedy search too, but in a more refined form that uses results from the next
subsections.

3.2 A Bound on the Ratio of Connectivity Kept

Recall that the connectivity of a graph is the average connectivity among all
pairs of nodes. In principle, the removal of an edge may cause the connectivity
between any arbitrary pair of nodes to decrease. We now derive a lower bound for
the connectivity kept, based on the effect of edge removal only on the endpoints
of the edge itself.

Many path quality functions are recursive in the sense that sub-paths of a best
path are also best paths between their own endpoints. (This is similar to the
property known as optimal substructure in dynamic programming.) Additionally,
a natural property for many quality functions g is that the effect of a local change
is at most as big for the whole path P as it is for the modified segment R C P.

Formally, let P = arg max, . p q(P) be a best path (between any pair
UMV

of nodes v and v), let m € P be a node on the path, let R C P be a subpath
(segment) of P and S a path (not in P) with the same endvertices as R. Function
q is a local recursive path quality function if

q(P) = q( argmax ¢(P1) U argmax ¢(FPz))
PlCE:uilwn PQCE:mizw

and
o(P\RUS) _ o(S)
qg(P)  ~ q(R)

Examples of local recursive quality functions include the (inverse of the) length
of a path (when edge weights are distances), the probability of a path (when
edge weights are probabilities), and minimum edge weight on a path (when edge
weights are flow capacities). A negative example is average edge weight.

The local recursive property allows to infer that over all pairs of nodes, the
biggest effect of removing a particular edge will be seen on the connectivity of
the edge’s own endvertices. In other words, the ratio of connectivity kept for any
pair of nodes is at least as high as the ratio kept for the edge’s endvertices.
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To formalize this bound, we denote by k(F,e) the ratio of connectivity kept
between the endvertices of an edge e = {u, v} after removing it from the set E
of edges:

—00 if C(u,v; E\ {e}) = —o0;
K(E,e) = { St BB i Clu 0 B\ {e}) < a({e}); (4)
1 if C(u,v; E\ {e}) > q({e}).

The first two cases directly reflect the definition of ratio of connectivity kept
(Equation [B) when edge e is the only path (case one) or the best path (case
two) between its endpoint. The third case applies when {e} is not the best
path between between its endpoints. Then, its absence will not cause any loss of
connectivity between v and v, and k(E,e) = 1.

Theorem 1. Let G = (V, E) be a graph and e € E an edge, and let q be a local
recursive path quality function. The ratio of connectivity kept if e is removed is
lower bounded by rk(V,E e) > k(E,e).

Sketch of a proof. The proof is based on showing that the bound holds for
the ratio of connectivity kept for any pair of nodes. (1) Case one: k(E, e) = —oco
clearly is a lower bound for any ratio of connectivity kept. (2) Case two: Consider
any pair of nodes u and v. In the worst case the best path between them contains
e and, further, the best alternative path between u and v is the one obtained
by replacing e by the best path between the endvertices of e. Since ¢ is local
recursive, even in this case at least fraction k(F, e) of connectivity is kept between
u and v. (3) Case three: edge e has no effect on the connectivity of its own
endvertices, nor on the connectivity of any other nodes.

Theorem [I] gives us a fast way to bound the effect of removing an edge and
suggests a greedy method to the lossy network simplification problem by remov-
ing an edge with the largest x. Obviously, only based on k(E,e) < 1, we can
not infer the exact effect of removing edge e, nor the relative difference between
removing two alternative edges. However, computing « is much faster than com-
puting 7k, since only the best path between the edge’s endvertices needs to be
examined, not all-pairs best paths.

3.3 A Further Bound on the Ratio of Connectivity Kept

Previously, we suggested two ways to compute or approximate the best alterna-
tive path for an edge [4]. The global best path search finds the best path with
unlimited length and thus gives the exact C(u,v; E'\ {e}) and k values. However,
searching the best path globally takes time. A faster alternative, called triangle
search, is to find the best path of length two, denoted by Sa(e). That is, let
Sa(e) = {{u,wH{w,v}} C E, e & Sa(e), be a path between the endvertices u, v
such that ¢(S2(e)) is maximized. Obviously, path S2(e) may not be the best path
between the edge’s endvertices, and therefore ¢(Sz2(e)) is a lower bound for the
quality of the best path between the endvertices of e.
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To sum up the results from this section, we have two increasingly loose lower
bounds for the ratio of connectivity kept for local recursive functions. The first
one is based on only looking at the best alternative path for an edge. The second
one is a further lower bound for the quality of this alternative path. Denoting
by Sa(e) the best path of length two as defined above, we have

. q(S2(¢))
rk(V,E,e) > k(E,e) > min( oD ,1).

In the next section, we will give algorithms that use these lower bounds to
complete the simplification task with different trade-offs between connectivity
kept and time complexity.

4 Algorithms

We next present four algorithms to simplify a given graph by pruning a fixed
number of edges while aiming to keep a high connectivity. All algorithms take
as input a weighted graph G, a path function g and a ratio . They prune
n = v(|E| — ([V| — 1)) edges. The first algorithm is a naive approach, simply
pruning a fraction of the weakest edges by sorting edges according to the edge
weight. The second one is a computationally demanding brute-force approach,
which greedily removes an edge with the highest rk value in each iteration. The
third and fourth algorithms are compromises between these extremes, aimed
at a better trade-off between quality and efficiency. The third one iteratively
prunes the edge which has the largest x value through global search. The fourth
algorithm prunes edges with the combination of triangle search and global search.

4.1 Naive Approach

Among the four algorithms that we present, the simplest approach is the naive
approach (NA), outlined in Algorithm [Il It first sorts edges by their weights
in an ascending order (Line [I). Then, it iteratively checks the edge from the
top of the sorted list (Line [7]), and prunes the one whose removal will not lead
to disconnected components (Line §)). The algorithm stops when the number of
edges removed reaches n, derived from G and ~.

The computational cost of sorting edges is O(|E|log |E|) (Line[d). On Line[T]
we use Dijkstra’s algorithm with a complexity of O((|E|+ |V])log|V]) to check
whether there exists a path between the edge’s endvertices. So, the total compu-
tational complexity of the naive approach is O(|E|log |E| +n(|E| +|V|) log [V]).

4.2 Brute Force Approach

The brute force approach (BF), outlined in Algorithm [2] prunes edges in a
greedy fashion. In each iteration, it picks the edge whose removal best keeps the
connectivities, i.e., has the largest rk value. It first calculates the rk(V, F, e) value



186 F. Zhou, S. Mahler, and H. Toivonen

Algorithm 1. NA algorithm
Input: A weighted graph G = (V| E), q and ~
Output: Subgraph H C G
1: Sort edges E by weights in an ascending order.
F+FE
n (B - (V|- 1))
{ Tteratively prune the weakest edge which does not cut the graph }
i<+ 1,7+ 1{jis an index to the sorted list of edges }
while i <n do
if C(u,v; F\ {e;}) is not — co then
FeF\{e}
14 1+1
j+—J+1
: Return H = (V, F)

PO X

— =

for every edge e (Line [I0), and then stores the information of the edge whose
rk(V, F,e) value is the highest at the moment (Line [IT]), and finally prunes the
one which has the highest 7k value among all existing edges (Line [IG]). As an
optimization, set M is used to store edges that are known to cut the remaining
graph (Lines [0 and [[H), and the algorithm only computes rk(V, F,e) for the
edges which are not in M (Line [§]).

When computing rk(V, F,e) for an edge (Line [I0), all-pairs best paths need
to be computed with a cost of O(|V|(|E| + |V])log|V|). (This dominates the
connectivity check on Line [@) Inside the loop, rk(V, F,e) is computed for all
edges in each of n iterations, so the total time complexity is O(n|E||V|(|E| +
[V[) log [V']).

Algorithm 2. BF algorithm

Input: A weighted graph G = (V, E), q and ~
Output: Subgraph H C G

1. F+< F

2 n (B - (V] - 1))

3: { Iteratively prune the edge with the highest rk value. }
4: M <+ 0 { edges whose removal is known to cut the graph. }
5: for r=1ton do